The radio amateur's handbook

THE STANDARD MANUAL OF AMATEUR

RADIO COMMUNICATION

1947

EDITION

$$
51.25
$$

IN U.S.A. PROPER

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

The

Radio

Amateur's Handbook

SCHEMATIC SYMBOLS USED IN CIRCUIT DIAGRAMS

[^0]
TWENTY-FOURTH EDITION

1947

The Radis Amatemros Hanolbool:

by the
headquarters staff of The american ridio relay leagle

. published by
THE AMERICAN RADIO RELAY LEAGUE, INC.
West Hartford 7, Connecticut U.s. 1.

COPYRIGHT 1947 BY

THE AMERICAN RADIO RELAY LEAGUE, INC.

Copyright secured under the Pan-American Convention

This work is Publication No. 6 of The Radio Amateur's Library, published by the League. All rights reserved. No part of this work may be reproduced in any form except by written permission of the publisher. All rights of translation are reserved. Printed in U. S. A.

Twenty-Fourth E'dition

First Priuting, December, 1946, 75,000 copies
(Of the previous iwenty-three editions, $1,598,250$
copies were published.)

Toreword

Twenty-one years ago - in 1926 - the first edition of The Radio A mateur's Handbook was presented to the amateur world. Produced by the amatcur's own organization, the American Radio Relay League, and written with the needs of the practical amateur constantly in mind, its publication was eagerly greeted by the radio enthusiasts of that day. Subsequent editions have earned ever-increasing acceptance not only by amateurs but by all segments of the radio world, from students to engineers, servieemen to operators.

This wide dependence on the Hantbook, evidenced by a total printing of over a million and a half copies, primarily is founded on its practical utility, its treatment of radio communication problems in terms of how-to-do-it rather than by abstract discussion and abstruse formulas.
But there is another factor as well: dealing with a fast-moving and progressive science, sweeping and virtually continuous modification has been a feature of the IIandhomk always with the objective of presenting the soundest and best aspects of current practice rather than the merely new and novel. Its annual rewriting is a major task of the headquarters group of the League, participated in by skilled and experienced amateurs well acquainted with the practical problems in the art.

In contrast to most publications of a comparable nature, the Handbook is printed in the format of the League's monthly magazine. QST'. This, together with extensive and usefullyappropriate catalog advertising by manufacturers producing equipment for the radio amateur, makes it possihle to distribute for a very modest charge a work which in volume of subjert matter and profusity of illustration surpasses most available radio texts selling for several times its price.
When war came to this nation it was discovered by the military and other agencies that the Handbook was precisely what was needed to help make practical radiomen for the Army and Navy and to help those who were training themselves for wartime radio work. Not only was the Handbook used as a text or reference in many training programs, but it also provided souree data for many service-written special courses. During the war years the training aspects have heen given increasing emphasis - not, however, to the detriment of other long-established features, but rather by increasing the size and scope of the book.

With the constant editorial problem before us of gearing each year's edition to the needs of amateur radio of that year. as we perceive them. it has seemed best to leave intact in this edition the entire section on principles and design factors. large as that portion of the book grew during the war years. During this early postwar period there are many new people roming into amateur radio who need sound guidance, and it is a commonplace anong practising amateurs that we all grew so rusty during the war that we have forgotten many of even the simple and fundamental things in radio. The preservation of this material in a connected and related manner scems to our staff to be the best possible way of presenting it during this transition period. The section of the book dealing with the construction of equipment, on the other hand, has been thoroughly revised in terms of postwar practices and postwar components. Many new pieces of apparatus, employing the best known amateur technique, have been designed and built for this year's edition, and proved hy thorough testing, so that we are confident that other a mateurs will find them reliable guides in their constructional projects.
A word about the reference system: It will be noted that each chapter is divided into sections and that these are numbered serially within each chapter. The number takes the form of two digits or groups separated by a hyphen. The first figure is the ehapter number. the second the section number within the chapter. Cross-references in the text take such a form as ($\S 4-7$), for example, which means that the subject referred to will be found discussed in Chapter Four, Section 7. Throughout the book, illustrations are serially numbered within earh chapter. Thus Fig. 1107 can be readily identified as the seventh illustration in Chapter Eleven. There is a carcfully-prepared index at the rear of the book.

To a long-established reputation of indispensability in the amateur station of prewar days the IIandbook now has added a proud record of participation in the national war effort. With the opening of the new postwar era in amateur communication, we earnestly hope that the present edition will succeed in bringing as much assistance and inspiration to amateurs and would-be amateurs as have its predecessors.

West Hartrord, Conn. December. 1946

Table of Contents

INTRODUCTION

Fronfispiece 2
The Amateur's Code 8
Chapter I • Amateur Radio 9
PRINCIPLES and DESIGN
Chapter II • Fundamentals 13
Chupter III • Vacuum Tubes 60
Chapter IV • R.-F. Power Gencration 94
Chapter V• Radiotelephony 117
Chapter VI • Keying 137
Chapter I'II • Receiver Prineiples and Design 142
Chapter V'III • Power Supply 175
Chapter IX • Wave Propagation 188
Chapter X - Antenna Systems 194
EQUIPMENT CONSTRUCTION
Chapter XI • Workshop Practice 234
Chapter XII • Recciver Construction 239
Chapter XIII - Transmitter Construction 255
Chapter XIV • Modulation Equipment 312
Chapter XV • V.II.F. Receivers 329
Chapter XVI • V.H.F. Transmitters 347
Chapter XVII • V.H.F. Antennas 375
Chapter XVIII • Emergency and Portable 383
Chapter XIX • Measurements and Mcasuring Equipment 393
GENERAL
Chapter XX • Vacuum-Tube Characteristics and Miscellaneous Data 411
Chapter XXI • Radio Operating 460
International fmatenr Prefixes 469
Index 470

THE AMATEUR'S CODE

- ONE

The Amateur is Gentlemanly . . . He never knowingly uses the air for his own ammement in such a way as to lessen the pleasure of others. He abides by the pledges given by the ARRL in his behalf to the public and the Government.

- TWO •

The Amateur is Loval . . . He owes his amateur radio to the American Radio Relay Leagne, and he offers it his minswerving loyalty.

- THREE •

The Amateur is Progressire... He keeps his station abreast of science. It is built well and efficiently. Itis operating practice is clean and regular.

- FOUR•

The Amateur is Friendly . . Slow and patient sending when requested, friendly advice and connsel to the beginmer. kindly assistance and coöperation for the broadeast listencr; these are ntarks of the amateur spirit.

- FIVE•

The fmateur is Balanced . . . Radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school, or his community.

The Amateur is Patriotic . . . Itis knowledge and his station are always ready for the service of his country and his community.

Countless thousands of persons all over the world have enjoyed the thrills'and pleasures of a matcur radio. This is a bricf account of how it grew into the magnificentlyuseful institution it is today.

Amateur radio is as old as the art itself. There were amateurs before the present cerntury. Shortly after the late Marconi astounded the world with his experiments proving that wireless telegraph messages actualty could be sent, "amateurs" were attempting to duplicate his results. But amateur radio actually began when private citizens discovered this means for personal communication with others, and set about learning enough about "wireless" to build home-made stations. Its subsequent development may be divided into two phases. the period before 1917 and the years between that war and December 7. 1941. Plus, of course, the new phase now opening.
Amateur radio of pre-World War I bere little resemblance to radio as we know it today, except in principle. Transmitting and receiving equipment was of a type now long obsolete. No U. S. amateur had ever heard a forcign one nor had any foreignor ever reported an American signal. The oceans were an impenetrable wall. Cross-country communication could be accomplished only by relays. "Short waves" meant 200 meters; the entire spectrum below that was a vast silence undisturbed by any signals. By 1912, however, there were numerous Government and commercial stations and hundreds of amateurs; regulation was needed; and laws, licenses and wavelength specifications for the various services appeared.
"Amateurs? . . . Oh, yes. . . . Well, stick 'em on 200 meters and below; they'll never get out of their backyards with that."

But as the years rolled on, a mateurs found out how, and DX jumped from local to $500-$ mile and even occasional 1,000 -mile two-way contacts. Because all long-distance messages had to be relayed, relaying developed into a fine art - an ability that was to prove invaluable when the Government suddenly called hundreds of skilled amateurs into war service in 1917. Meanwhile U. S. amateurs began to wonder if there were amateurs in other countries across the seas and if, some day, we might not span the Atlantic on 200 meters.

Most important of all, this period witnessed the birth of the American Radio Relay League, the amateur radio organization whose name was to be virtually synonymous with subsequent amateur progress and short-wave development. Conceived and formed by the famous inventor, the late Hiran Percy Maxim, ARRLL was formally launched in early 1914. It
had just begun to exert its full foree in amateur activities when the United States declared war in 1917, and by that act sounded the knell for amateur radio for the next two and a half years. There were then over 6,000 amateurs. Over 4,000 of them served in the armed forces during that war.

Today, few amateurs realize that World War I not only marked the elose of the finst, phase of amateur development but came very near marking its end for all time. The fate of amateur radio was in the balance in the days immediately following the signing of the Armistice. The Government, having had a taste of supreme authority over communications in wartime, was more than half inclined to keep it. The war had not been emded a month before Congress was considering legislation that would have made it imposible for the amateur radio of old ever to be resumed. ARRL's President Maxim rushed to Washington, pleaded, argued, and the bill was defeated. But there was still no amateur radio: the war ban continned. Repeated representations to Washington met only with silonre. . . The Iearue's offices had been closed for a year and a hatf, its records stored a way. Monst of the former amateurs had gone into service: many of them would never come back. Would those returning be interested in such things as amateur radio? Mr. Maxim, determined to find out, calleel a meeting of the old board of directors. The situation was discouraging: amateur radios still banned by law, former members scattered, no organization, no membership, no funds. But those few determined men finaned the pablication of a notice to all the former :mateurs that could be located, hired kenneth 13. Warner as the Learue's first paid seeretary, floated a bond issue a mong old League members to obtain money for immediate ruming expenses, bought the magazine $Q \backslash T$ to be the League's official organ, started activitics, and dumned officialdom until the wartime ban was lifted and anateur radio resumed again, on October 1, 1919. There was a headlong rush to get back on the air.
From the start, amateur radio took on new aspeets. Wartime needs had stimulated technical development. Vacuum tubes were being used both for receiving and transmitting. Anateurs immediately adapted the new gear to 200 -meter work. Ranges promptly increased and it became possible to bridge the continent with but one intermediate relay.

As DX became 1,000, then 1.500 and then 2,000 miles, anateurs began to dream of transAtlantic work. Could they get across'? In December, 1921, in what has been called the
greatest sporting event of all time, ARRL sent abroad an expert amateur, Paul F. Godley, 2ZE, with the best receiving equipment available. Tests were run, and thirty American stations wore heard in Europe. In 1922 another trans-Atlantic test was carried out and 315 American calls were logged by European amafours and one Fronch and two British stations were heard on this side.

Everything how was centered on one ohjective: two-way amaterur communication across the Atlantie! It must be possible - but somehow it couldn't quite be done. More power? Many already were using the legal maximum. Better receivers? They had superheterodynes. Another wavelongla? What about those undisturined wavelengths bedon 200 meters? The anginerring world thought they were worthless - but they had said that about 200 meters. So, in 1922, tests between Hartford and boston were made on 130 meters with encouraging resulis. Early in 1923, ARRL-sponsored tests on wavelengthe down to 90 meters were suecessful. Reports indiated that as the ranelength droppel the results were better. A growing excitement began to spreal through amateur ranks.

Finally, in November, 1923, after some months of caroful preparation, two-way amateur trans-Atlantic communication was accomplished, when Schnell, 1MO, and Reinartz, 1.AM (now W91'Z and WYIBZ, respectively) worked for severnl hours with Deloy, SAB, in France, with all three stations on 110 moters! Additional stations dropped down to 100 moters and found that they, too, eould easily work two-way aroses the Atlantic. The exolus from the 200 -meter region had started. The "short-wave" era had begun!

By 192t dozens of commerrial companies had rushed stations into the 100 -meter region. Chaos threatened, until the first of a suries of national and international radio conferences partitioned off various bands of frequencies for the different serviers. Although thought still contered around 100 meters, heague officials at the first of these conferences, in 1924, wisely obtained amateur bands not only at 80 meters but at 40,20, 10 and even 5 meters.

Eighty meters proved so successful that "forty" was given at try, and QSOs with Australia. New Zaband and South Africa soon heoame commonplate. Then how about 20 metors:" This now band revealed entirely umexpected possibilities when 1 NAM worked ors on the West Coast, direet, at high noon. The dream of amateur radio -- daylight D I! was finally true.
l'rom then mint " Pearl Harbor," when U. S. amateurs were again elosed down "for the duration," amateur radio thrilled with a series of unparalleled accomplishments. Countries all ower the world came on the air, and the world total of amatenurs passed the 100,000 mark. . . . ARRL representatives deliberated whith the repesentatives of twenty-two other
nations in Paris in 1925 where, on April 17th, the International Amateur Radio thion was formed - a federation of national amateur radio socicties. . . . The League began issuing certificates to those who could prove they had worked all six continents. By 1941 over five thousand $W \Lambda C$ erertifentes had been issued!

Amateur radio is a grand and glorious hobly but this fact alone would hardly merit such wholehearted support as was given it by our Govermment at international conferences. There are other reasons. One of these is a thorough appreciation by the Army and Navy of the value of the amateur as a source of skilled radio persomnel in time of war. Another asset is best desrribed as "public service."

About 4,000 amateurs had contributed their skill and ability in '17-'18. After the war it was only natural that cordial relations should prevail between the Army and Nayy and the amateur. These relations strengthened in the next few years and, in gradual steps, grew into cooperative activities which resulted, in 1925, in the essablishment of the Naval Communications Reverve and the Army-Amateur Radio System. In World War 11 thousands of amsteurs in the Naval Reserve were called to active duty, where they served with distinction, while nany other thousands served in the Army, Air Forees, Coast Guard and Marine Corps. Altogether, nore than 25, 000 radio amateurs served in the armed forces of the Cinited States. Other thousands were engaged in vital civilian electronic research, development and manulacturing.

The "public service" record of the amateur is a brilliant tribute to his work. These activities can le roughly divided into two classes, expeditions and emergencies. Amateur cooperation with expeditions began in ' 23 when a League member, Don Mix, 1 TS, of Bristol, Comn. (now assistant technical editor of $Q ふ T$), accompanied MacMillan to the Arctic on the schooner Bowdoin with an amateur station. Amateurs in Canada and the I'nited States provided the home contacts. The success of this venture was such that other explorers followed suit. During subseruent years a total of perhaps two hundred voyages and expeditions were assisted by amateur radio, and for many years no expedition has taken the field without such plans.

Since 1913 amateur radio has been the principal, and in many cases the only. means of outside communication in several hundred storm, flond and carthouake emergencies in this country. The 1936 eastern states flood, the 1937 Ohio River Valley flood, and the Southern California flood and Long Lstand-New England hurricane disaster in '38 called for the amatcur's greatest emergency effort. In these disasters and many others - tomadoes, sleet storms, forest fires. blizzards - a amateurs played a major rôle in the relief work and carned wide commendation for their resource-
fulness in effecting communication where all other means had failed. During 1938 ARRL inaugurated a new emergency-preparedness program, registering personnel and equipment in its Emergency Corps and putting into offcet a comprehensive program of coïperation with the Red Cross.
Throughout these many years the amateur was careful not to slight exprerimental development in the cothusiasm incident to international DN. The experimenter was constantly at work on ever-ligher frequencies, devising improved apparatus, and learning how to cram several stations where previously there was room for only one! In particular, the amateur pressed on to the development of the very high frequencies and his experience with five meters is especially representative of his initiative and resourcefulness and his ability to make the most of what is at hand. In 1924, first amateur experiments in the vicinity of 56 Mc . indicated that band to be practically worthless for DN. Nonctheless, great "short-haul" activity ewentually came about in the band and new gear was developed to meet its special problems. Beginning in 193+ a series of inverstigations by the brilliant experimenter, Ross Hull (later QST's sditor), developed the theory of v.a.f. wave-bending in the lower atmosphere and led amateurs to the attainment of better distances; while occasional manifestations of ionospheric propagation, with still greater distances, gave the band uniquely-crratic performance. By Poarl Harbor thousands of a mateurs were spending much of their time on this and the next higher band, many having worked hundreds of stations at distances up to several thousand miles - transcontinental 5 meter DX had been accomplished! It is a tribute to these indefatigable amateurs that today's concept of v.h.f. propagation was developed largely through amateur research.

The amateur is constantly in the forefront of technical progress. Many amateur developments have come to rupresent valuable contributions to the art. The complete record would fill a book! From the ARRI.'s own laboratory in 1932 came James Lamb;s "single-signal" superheterodyne - the world's most advanced high-frequency radiotelegraph receiver - and, in 1936, the "noise-silencer"" circuit for superheterodynes. During the war, thousands of skilled amateurs contributed their knowledge to the development of secret radio devieses, both in Government and private laboratories. Equally as important, the prewar technical progress by amateurs provided the keystone for the development of modern military communications equipment.

Emergency relief, expedition contact, cxperimental work and countless instances of other forms of public service - rendered, as they always have been and always will be, without hope or expectation of material reward - made anateur radio an integral part of our peacetime national life. The importance
of amateur participation in the armed forces and in other asjects of national defense have emphasized more strongly than ever that amateur radio is vital to our national existence.

(I. The American Radio Relay League

The ARRRL is today not only the spokerman for amateur radio in this country but, it is the largest amateur organization in the world. It is strictly of, by and for amateurs, is noncommercial and has no stockholders. The members of the League are the owners of the ARRL and QST.
The League is organized to represent the amateur in legislative matters. It is pledged to promote interest in two-way amateur communication and experimentation. It is interested in the relaying of messages by amateur radio. It is concerned with the advancement of the radio art. It stands for the maintenance of fraternalism and a high standard of conduct. One of its principal purposes is to keep amateur activities so woll comducted that the amateur will continue to justify his existence.

The operating territory of ARRL is divided into fourteen U.S. and six Canadian divisions. The affairs of the League are managed by a Board of Directors. One director is elected cvery 1, wo y yars by the membership of each U. S. division, and a Canadian (ieneral Manager is elected cuery two years by the Canadian membership. These directors then choose the president and vierepresident, who are also members of the Board. The managing seeretary, treasurer and communications manager are appointed by the Board.

ARRL owns and publishes the monthly magazine, Qs'T. Acting as a bulletin of the League's organized activitics, Q $x^{\prime \prime} T$ also serves as a medium for the exchange of ideas and fosters amateur spirit. Its technical articles are renowned. It has grown to be the "amateur's bible," as well as one of the foremost radio magazines in the world. Membership dues include a subscription to $Q s S^{T}$.

ARRL maintains a model headquarters amatcur station, known as the Hiram Percy Maxim Memorial Station, in Newington, Conn. Its call is W1AW, the call held by Mr. Maxim until his death and later transferred to the ARIRL station by a special FCC action. Separate transmitters of maximum legal power on each amateur band have permitted the station to be heard regularly all over the world.

Among its other activities the League maintains, at its headquarters offices in West Hartford, Conn., a Communications Department concerned with the operating activities of League members. A large field organization is headed by a Section Communications Manager in cach of the eountry's sevent y-one sections. There are appointments for qualified members as Official Relay Station or Official 'Plone Station for traffic-handling; as Official Observer for monitoring frequencies and the quality of signals; as Route Manager and
'Phone detivities Manager for the establishment of trunk lines and networks; as Emergency Coordinator for the promotion of anateur preparedness to cope with natural disasters. Mimeographed bulletins keep appointees informed of the latest developments. Special activities and contests promote operating skill and thereby add to the ability of amateur radio to function "in the public interest, convenience and necessity." A special section is reserved cael month in $Q S T$ for amateur news from every section of the country.

(1) Amateur Licensing in the United States

The Communications Art lodges in the Federal Communications Commission authority to classify and liconse radio stations and to preseribe regulations for their operation. Pursuant to the law, FCC has issued detailed regulations for the amateur sorvice.

A radio amateur is a duly authorized person interested in radio teclnique solely with a personal aim and withont pecuniary interest. Amateur operator licenses are given to U. S. citizens who pass an examination on operation and apparatus and on the provisions of law and regulations affecting amateurs, and who demonstrate ability to send and reccive code at 13 words per minute. Station licenses are granted only to licensed operators and permit communication between such stations for amateur purposes, i.e., for personal noncommercial ains flowing from an interest in radio technique. An amateur station may not be used for material conipensation of any sort nor for broadcasting. Narrow bands of frequencies are allocated exclusively for use by amateur stations. Transmissions may be on any frequency within the assigned bands. All the frequencies may be used for e.w. telegraphy and some are available for radio-telephony by any amateur, while others are reserved for radiotelephone use by persons having at least a year's experience and who pass the examination for a Class A license. The input to the final stage of amateur stations is limited to 1,000 watts and on frequencirs below 60 Mc . nust be adequatelyfiltered direct current. Emissions must be free from spurious radiations. The licensec must provide for measurement of the transmitter frequency and establish a procedure for checking it regularly. A complete log of station operation nust be maintained, with specified data. The station license also authorizes the holder to operate portable and portable-mobile stations on certain frequencies, subject to further regulations. An anateur station may be operated only by an amateur operator licensec, but any licensed amateur operator may operate any amateur station. All radio licensees are subject to penalties for violation of regulations.

Amateur licenses are issued entirely free of charge. They can be issued only to citizens but that is the only limitation, and they are given without regard to age or physical condition to anyone who successfully completes the examination. When you are able to copy 13 words per minute, have studied basic transmitter theory and are familiar with tho low and ammteur regulations, you are ready to give serious thought to securing the Government amateur licenses which are isshed you, after examination at a local district office, through FCC at Washington. A complete up-to-the-minute discussion of license requirements, and a study guide for those preparing for the examination, are to be found in an ARRL publication, The Ratio Amatcur's License Manual, available from the American Radio Relay League, West Hartford 7, Conn., for 25¢, postpaid.

d The Amateur Bands

During 1946, FCC announced its final determination of postwar frequency allocations above 25 Mc., with certain alterations and additions to prewar amateur frequencies. Similarly the Commission announced proposed allocations brlow 25 Mc., these still being under consideration as this is written in the late summer of 1946. The final recommendations for the ragion below 25 Mc. will then be subject to further consideration at the next international conference.

Meanwhile, as of our press date, the following are the postwar amateur bands:

3,500- 4,000 ke.	50-	54 Mc .	2,300-2,450. Mc .
7,000-7,300 "	144-	148	3,300-3,500
14,000-14,400 "	$235-$	240	$5,650-5,850$
27,185-27,455	$420-$	450	10,000-10.500
28,000-29,700 !	1,215-1	,295	21,000-22,000

The future of the prewar amateur band at 1.75 Mc. has not been determined as of this date but, at the least, it is expected that the amateur, along with other services, will be given nonexclusive rights in the frequencies $1750-1800 \mathrm{ke}$. for the maintenance of emergency networks and necessary tests and drills incident thereto. There is also a pending proposal for a new anateur band at 21 Me. but this will not likely be made available until after the agreement of the next world conference.

It should be carcfully noted that as of this writing the 420 Me. band has not yet been opened in its entircty to amateur use, being still partly in use by other services as a result of the war. Moreover, the portion of each band available for 'phone operation is customarily varied from time to time in accordance with changes in amateur operational habits. In such respects earh amateur should keep himself currently informed by consulting QST or by writing ARIRL for latest information.

Fundamentals

(1) 2-1 Fundamentals of a Radio System

The basis of radio communication is the transmission of electromagnetic waves through space. The production of suitable waves constitutes radio transmission, and their detection, or conversion at a distant point into the intelligence put into them at the originating point, is radio reception. There are several distinct processes involved in the complete chain. At the transmitting point, it is necessary first to generate power in such form that when it is applied to an appropriate radiator, called the antenna, it will be sent off into space in electromagnetic waves. The message to be conveyed must be superimposed on that power by suitable means, a process called modulution.

As the waves sprear outward from the transmitter they rapidly become weaker, so at the receiving point an antenna is again used to abstract as much energy as possible from them as they pass. The wave energy is transformed into an electric current which is them amplified, or increased in amplitude, to a suitable value. Then the modulation is changed back into the form it originally had at the transmitter. Thus the message becomes intelligible.

Since all these processes are performed by electrical means, a knowledge of the basic principles of clectrieity is necessary to understand them. These essential principles are the subject of the present chapter.

(C 2-2 The Nature of Electricity

Electrons - All matter - solids, liquids and gases - is made up of fundimental units called molccules. The molecule, the smallest subdivision of a substance retaining all its characteristic properties, is constructed of atoms of the elements comprising the substance.
Atoms in turn are made up of partirles, or charges, of electricity, and atoms differ from each other chiefly in the number and arrangement of these charges. The atom has a nucleus containing both "positive" and "negative" charges, with the positive predominating so that the nature of the nucleus is positive. The charges in the nucleus are closely bound together. Exterior to the nucleus are negative charges - clectrons - some of which are not so closely bound and can be made to leave the vicinity of the nurleus withont too much urging. These clectrons whirl around the nucleus like the planets around the sum, and their orbits are not random paths but geometricallyregular ones determined by the charges on the
mucleus and the number of electrons. Ordinarily the atom is clectrically neutral, the outer negative electrons balancing the positive nucleus, but when something disturbs this balance electrical activity becomes evident, aud it is the study of what happens in this unbalanced condition that makes up clectrical theory.

Electrons are expeedingly small particles so small that many billions of them must act together before measurable electrical effects are observed.

Insulators and conductors - Materials which will readily give up an election are called conductors, while those in which all the clectroms are firmly bound in the atom are called insulutors. Most metals are good conductors, as are also acid or salt solutions. A mong the insulators are such substances as wood, hard rubber, bakelite, quartz, glass, porcelain, textiles, and many other non-metallic materials.

Resistance - No substance is a perfect conductor - a "perfect" conductor would be one in which an electron could be dotached from the atom without the expenditure of enorgy - and there is also no such thing as a perfect insulator. The measure of the difficulty in moving an electron by electrical means is called resistance. Good conductors have low resistance, good insulators very high resistance. Between the two are materials which are neither good conductors nor good insulators, but they are nonetheless useful since there is often need for intermediate values of resistance in electrical circuits.

Conduction - Under the influence of a suitable force - that is, an electric field electrons tend to move. If the substance is one in which clectrons can be detached from atoms as explained above, these clectrons will move through the substance. This is the process of conduction, and the moving electrons constitute an electric current. The intensity of the current depends upon the amount of force exerted on the electrons, and adso upon the resistance of the material through which they are moving.

Strictly speaking, this description applies only to conduction through solid substances. However, conduction in liduids and gases, although different in detail, is similar in principle. These cases are treated later in chapter.

Circuits - A circuit is simply a complete path along which electrons can transmit their charges. There will normally be a source of energy (a battery, for instance) and a lond or portion of the circuit where the current is made to do work. There must be an unbroken path
through which the electrons can move, with the source of energy acting as an electron pump and sending them around the circuit. The circuit is said to be open when no charges can muse, beranse of a break in the path. It is closed when no break exists - When switches are closed and all eonnections are made.

11 2-3 Static Electricity

The electric charge - Many materials that have a high resistance cin be made to ac(quire a charge (iurplus or deficiency of electrons) by merhanical means, such as friction. The familiar crackling when a hard-rubber comb is run through hair on a dry winter day is an example of an electric charge generated by friction. Objects can have either a surplus or a deficiency of electrons - a surplus of electrons is called a negative charge: a lack of them is called a positive charge. The kind of charge is called its polarity. A negatively charged ohject is frequently called a negative pole, while a positively charged ohject similarly is called a positive pole.
ftraction and repulsion - Tnlike charges (one positive, one negative) excrt an attraction on each other. This can be demonstrated by giving chatrges of opposite polarity to two very light, well-insulated conductors, such as bits of metal foil suspended from dry thread (Fig. 201). Pith balls cowered with foil frequently are used in this experiment.

When the two charged ohjerts are brought rlose together, it will be ohserved that they will be attracted to earch other. If the charges are equal and the charged bodies are permitted to touch. the surplus electrons on the negatively charged ohject will transfer to the positively charged ohject (i.e., the one deficient in electrons) and the two charges will neutralize,

Fig. 201 - Attraction and repulsion of charbed objects, as demonstrated loy the familiar pith-hall experiment.
leaving both bodies uncharged. If the charges are not equal, the weaker charge neutralizes an equal tmount of the stronger when the two bodies touch, upon which the excess of the stmonger charge distributes itself over both. Both bodies then have charges of the same polarity, and a force of repulsion is exercised hetween them. Consequently, the bits of foil tend to spring away from each other. Enlike charges attract, like charges repel.

Electrostatic field - From the foregoing it is evident that an clectric charge can exert a fore through the space surrounding the charged object. Tha region in whirh this force is exerted is considered to be pervaded by an
electrostatic field, this concept of a field being adopted to explain the "action at a distance" of the charge. The field is pictured as consisting of lines of force originating on the charge and

Fig. 202 - Lines of force from a charged object extend outward radially. Athough only two dimensions are shown, the field extends in all directions from the charge, and should be visualized in three dimensious.
spreading in all directions, finally terminating on other charges of opposite polarity. These other charges may be a very large distance away. The number of lines of force per unit area is, however, a measure of the intensity of the field.

The general picture of a charged object in isolated space is shown in Fig. 202. This is an idealized situation, since in practice the charged object could not be completely isolated. The prosence of other charges, or simply of insulators or conductors, in the vicinity will greatly change the configuration of the field. The direction of the field, as indicated by the arrowheads, is away from a positively charged object; if the charge were negative, the direction would be toward the charge.

It should be understood that the field picture as represonted above is morely a convenient method of explaining observed effects, and is not to be taken too literally. The electric force does not consist of separate lines like strings or rods; instead, it completely pervades the medium throurh which the force is exerted. With this understanding in mind, it is conrenicnt to talk of lines of force and to measure the field intensity in terms of number of lines per unit area.

The intensity of the field dies away with distance from the charged object in a manner determined by its shape and the circumstances of its surroundings. In the case of an isolatad charge at a point (an infinitesimally small object), the field strength is inversely proportional to the square of the distance. However, this relationship is not true in many other cases: in some important practical applications the field intensity is inversely proportional to the distance involved, and not to its square.

Electrostatic induction - If a piece of conducting material is brought near a charged object, the ficld will exert a fore on the electrons of the metal so that those free to move will do so. If the object is positively charged. as indirated in Fig. 203, the free clectrons will move toward the end of the conductor nearest the charged borly, leaving a defiriency of electrons at the other end. Hence, one end of the
conductor becomes negatively charged while the other end has an equal positive charge. The lines of force from the charged body terminate on the conductor, where suffirient electrons accumulate to provide an electric intensity equal and opposite to that of the field at that point. Because of this effect, the electrostatic field inside the conductor is completely neutralized by the induced charge; in other words, the field dues not penetrate the conductor. In radio work this principle provides the means by which electrostatic fields may be excluded from regions where they are not wanted.

Charges induced in a conductor as shown in Fig. 203-A are held in existence by the field from the charged object. On taking the ronductor out of the field the electrons will redistribute themselves so that the charges disappear. However, if the conductor is connerted to the earth through a wire while under the influenee of the field, as shown in Fig. 203-13, the induced positive charge will tend to move as far as possible from the source of the field (that is, clectrons will flow from the earth to the conductor). If the grounding wire is then removed, the conductor will be left with an excess of clectrons and will have accuired a "permanent" charge - permanent, that is, so long as the conductor is well enough insulated to prevent the charge from escaping to earth or to other objects. The polarity of the induced charge always is opposite to the polarity of the charge which set up, the original fichd.

Energy in the electrostatic field - The expenditure of energy is necessary to place an electrical charge upon an object and thus establish an electrostatic field. Once the field is established and is ronstant, no further expenditure of energy is required. The energy supplied to establish the field is stored in the field; thus the field represents potential energy (that is, energy available for use). The potential energy is arequired in the same way that potential cnergy is given any object (a 10pound weight, for instance) when it is lifted against the gravitational pull of the earth. If

Fig. 203 - Electrostatie induction. The field from the positively charged body attracts electrons, which accumulate to form a negative charge. The opposite end of the conductor consequently acguires a positive charge. This charge may be "drained off" to earthas shownat B.
the weight is allowed to drop, its potential energy is changed into the energy of motion. Similarly, if the clectrostatic field is made to disappear its potential energy is transformed into a movement of electrons; in other words, into an cleetrice current.

The potential energy of the lifted weight is measured by its weight and the distance it is lifted; that is, by the work done in lifting it. Similarly, the potential energy (called simply potential) of the electrostatic field at any point is measured by the work done in moving a charge of specified value to that point, against the repulsion of the field. In practier, absolute potential is of less interest than the difference of potential between two points in the fiede.

Potential difference - If two objects are charged differenty, a potential difference exists between them. Potential difference is measured by an electrical unit called the volt. The greater the potential difference, the higher (mmerically) the voltage. This voltage exerts an electrical pressure or force as explained above, and is often called electromotive force or, simply, e.m.f. It is not necessary to have unlike charges in order to have a difference of potential; both, for instance, may be negative. so long as one charge is more intense than the other. from the viewpoint of the stronger charge, the woaker one appears to be positive in such a case, since it has a smaller number of excess electrons; in other words, its relative polurily is positive. The greater the potential difforence, the more intense is the electrostatic field between the t wo charged objects.

Capacity - More work must be done in moving a given charge against the repulsion of a strong field than against a weak one; hence, potential is proportional to the strength of the field. In turn, field strength is proportional to the charge or quantity of cleatricity on the charged object, so that potential also is proportional to charge. By inserting a suitable constant, the proportionality can be changed to an equality:

$$
Q=C E
$$

where Q is the quantity of charge. E is the potential, and C is a constant depending upon the charged object (usually a rouductor) and its surroundings and is called the capacily of the object. Capacity is the ratio of quantity of charge to the potential resulting from it, or

$$
C=\frac{Q}{E}
$$

When Q is in coulombs and E in volts, C is measured in forads. A conductor has a caparity of one farad when the addition of one cunlomb, to its charge raises its potential by one volt.

The farad is much too large a unit for practical purposes. In radio work, the microfarad (one millionth of a farad) and the micrumicrofarad (one millionth of a mierofarad) are the units most frequently used. They are abbreviated $\mu f f$. and $\mu \mu f d$., respectively.

The capacity of a conductor in air depends upon its size and shape. A given charge on a small conductor results in a more intense electrostatic field in its vicinity than the same charge on a larger conductor. This is because the charge distributes itself over the surface, hence its density (the quantity of electricity per unit area) is smaller on the larger conductor. Consequently, the potential of the larger conductor is smaller, for the same anount of charge. In other words, its capacity is greater because a greater charge is required to raise its potential by the same amount.

Condensers - If a grounded conductor, A (Fig. 204), is brought near a second eonductor, B, which is charged, the former will actuire a charge by electrostatic induction. Since the charge on A is opposite in polarity to that on B, the field set up by the induced charge on A will oppose the original field set up by the charge on B, hence the potential of B will be lowered. Because of this, more charge must be placed on B to raise its potential to its original value; in other words. its capacity has been increased by the presence of the second conductor. The combination of the two conductors separated by a diclectric is called a condenser.

The capacity of a condenser depends upon the areas of the conductors, ats before, and also beromes greater as the distance between the conductors is decreasod, since, with a fised amount of charge, the potential difference between them decreases as they are moved closer together.

Fig. 201- The principle of the condenser.
If insulating or dielactric material other than air is inserted between the conductors, it is found that the potential difference is lowered still more - that is, there is a furthor increase in capacity. This lowering of the potential difference is comsidered to be the result of polarization of the dielertric. By this it is meant that the molecules of the substance tend to be distorted umder the influence of the electrostatic field in such a way that the negative charges within the molecule are drawn toward the positively charged conductor. leaving the other end of the molscule with a positive charge facing the negatively charged anductor. Since the electrons are firmly bound in the atoms of the dielectric, there is no flow of current and the total charge on each atom is still zero, but there is a tendency toward separation which causes a reartion on the electrostatic field. The dielectric of a charged condenser thus is under mechanical stress, and if the potential difference between the plates of the condenser is
great enough the dielectric may break down mechanically and electrically.

The ratio of the capacity of a condenser with a given dielectric material between its plates to the capacity of the same condenser with air as a dielectric is called the specific inductive capacity of the dielectric, or, probably more commonly, the dielectric constant. Strictly speaking, the comparison should be made to empty spare (i.e., a vacuum) rather than to air. but the dielertric constant of air is so nearly that of a varuum that the practical difference is negligible. A tatule of dielectric constants is given in Chapter 'Jwenty.

Condensers have many uses in electrical and radio circuits, all hased on their ability to store energy in the electric field when a potential difference or voltage is cansed to exist between the plates - energy which later can be released to perform useful functions.

Fig. 205-A simple condenser, consisting of two metal plates separated by dielectric material.

(1) 2-4 The Electric Current

Conduction in metals - When a difference of potential is maintained between the ends of a metallic conductor, there is a continuous drift of electrons through the condurtor toward the end having a positive potential (relative polarity positive). This electron drift constitutes an celectric current through the metal (§ 2-2). The specd with which the electron movement, is extahbished is very nearly the speed of light ($300,000,000$ meters, or approximately 186.000 miles. per second), so that the current is said to travel at nearly the speed of light. By this it is meant that the time interval between the application of the electromotive force and the flow of current in all parts of a circuit, even one extending over hundreds of miles, is negigible. However, the individual electrons do not move at anything approaching such a speed. The situation is similar to that existing when a mechanical force is transmitted by means of a rigid rod. A force applied to one end of the rod is transmitted practically instantancously to the other end, even though the rod itself moves relatively slowly or not at all.

The magnituie of the electric current is the rate at which electricity is moved past a point in the circuit. If the rate is constant, then the current is equal to the quantity of electricity moved past a given point in some selected time interval. That is,

$$
I=\frac{0}{t}
$$

Electrical and Radio Jundamentals 17

where I is the intensity or magnitude of the current, Q is the quantity of electricity, and t is the time. If Q is in coulombs and t in seconds, the unit for I is called the ampere. One ampere of current is equal to one coulomb of electricity moving or "flowing" past a given point in a circuit in one second.
The currents used by different electrical devices vary greatly in magnitude. The current which flows in an ordinary (i0-watt lamp, for instance, is about one-half a mpere. the current in an electric iron is about 5 amperes, and that in a radio tube may be as low as 0.001 ampere.

When a current flows through a metallic conductor there is no visible or chemical effect on the conductor. The only physical effect is the heat developed ($82-2$) as the result of energy loss in the conductor. Under normal conditions the rate at which heat is generated and that at which it is radiated by the conductor will quickly reach equilibrium. However, if the heat is developed at a more rapid rate than it can be radiated, the temperature will continue to rise until the conductor burns or melts.

Experimental metsurements have shown that the current which flows in a given metallic conductor is directly proportional to the applied e.m.f., so long as the temperature of the conductor is held constant. There is no e.m.f. so small but that some current will fow as a result of its application to a metallic conductor.

Fig. 206-Ilustrating conduction through a gas at low pressure. Positive ions are attracted to the nepative electrode, while electrons are attracted to the positive electrode. This takes place only after the gas is ionized.

Gaseous conduction - In any gas or mixture of gases (such as air, for example) there are always some frec electrons - that is, electrons not attached to an atom - and also some atoms lacking an electron. Thus there are both positively and negatively charged particles in the gas, as well as many neutral atoms. An atom lacking an electron is called a positive ion, while the free electron is called a negative ion. The term ion is, in fact, applied to any elemental particle which has an electric charge.
If the gas is in an electric field, the fiee electrons will be attracted toward the source of positive potential and the positive ions will be attracted toward the source of negative potential. If the gas is at at mospheric pressure neit her particle can travel very far before meeting an ion of the opposite kind, when the two combine to form a neutral atom. Since a neutral atom is not affected by the electric field, there is no flow of current through the gas.

However, if the gas is enclosed in a glass container in which two separate metal pieres called electrodes are sealed, and the gas pressure is then reduced by punping out most of the gas, a different set of conditions results. At low pressure there is a comparatively: large distance between each atom, and when an electric field is established by applying a difference of potential to the cleatrodes the ions can travel a considerable distance before meeting another ion or atom. 'The fart her the ion travels the greater the velocity it acpuires, since the effect of the field is to acerelerate its motion. If the field is strong enough the ions will actuire such velocity that when one happens to collide with a ueutral atom the fore of the collision will knock an electron out of the atom, so that this atom also becomes ionized. The process is cumulative, and the freed clectrons are attracted to the positive electrode while the prsitive ioms are attracted to the negative electrode. This movement of charged particles constitutes an electric current through the gas.

Since an ion must acequire a ecrtain velowity before it can knock an electron out of a neutral atom, a definite field strength is required before conduction can take place in a gas. That is. a certain value of potential difference. called the ionizing potential, must be applid to the electrodes. If less voltage is applied. the gas does not ionize and the current is negligible. On the other hand, one the gits is iomized an increase in potential does not have much effect on the current. since the ions already have sufficient velocity to maintain the ionization. The ionizing potential required depends upon the kind of gas and the pressure. Ionization is usuatly accompanied by a colored glow, different gases having different characteristio colors.
Current flow in liquids-A very large number of chemical componnds have the peculiar characteristic that, when they are put into solution, the component parts bercime ionized. For example, common table salt (sodium chloride), each moleroule of which is made up of one atom of solium and one of chlorine, will, when put into water, break down intor a sodium ion (positive, with one electron deficient) and a chlorine ion (negative, with one excess electron). This can omly orrur so long as the salt is in solution - take away the

Fig. 207 - Electrolytic conduction. When an c.m.f. is applied to the clectrodes, negative ions are attracted to the positively charged plate and positive ions to the neg. atively charged plate. The battery, which is the source of the e.m.f., is indirated by its customary symbul.
water and the ions are recombined into the neutral sodium chloride. This spontaneous dissociation in solution is another form of ionization. If two wires with a difference of potential between them are plared in the solution, the negative wire will att ract the positive sodium ions while the positive wire will at tract the negative chlorine ions and an eleolric current will flow through the solution. When the ions reach the wires the electron surplus or deficiency will be remedied, and a neutral atom will be formed.

In this process the water is decomposed into its gaseous constituents, hydrogen and oxygen. The energy used up in decomposing the water and in moving the ions is supplied by the sourre of potential difference. The energy used in decomposing the water is efnivalent to an opposing e.m.f., of the order of a volt or two. If this constant. "back voltage" is subtracted from the applied voltage, it is foum that the current flowing through a given solution, or clectrolyte, is proportional to the difference between the two voltages.

Current flou in racuum - If a suitable metallice combluctor is heated to a high temperature in a vacuum, e ectrons will be enitted from the surface. The clectrons are freed from this filament on cathode berause it has been

Fit, 208 - Conduction by thermionic cmission in a vaeuum tube. One hattery is used only to heat the filament to a temperature where it will emit electrons. The other battery places a potential on the plate which is positive with respect to the filament, and as a result the electroms are attracted to the plate. The rlectron flow from filament to plate conipletes the circuit.
heated to a temperature that gives them sufficient energy of motion to allow them to break away from the surface. The process is called thermionic elction emission. Now, if a metal plate is placed in the vacuum and given a positive charge with respect to the cathode, this plate or anode will attract a number of the electrons that surround the cathode. The passage of the electrons from cathode to anode constitutes an electric current. All thermionic vacuum tubes depend for their operation on the emission of electrons from a hot cathode.

Since the clectrons emitted from the hot cathode are negativoly charged, it is evident that they will be attracted to the plate only when the latter is at a positive potential with respect to the cathode. If the plate is negatively charged with respect to the cathode the electrons will be repelled back to the cathode, hence no current will flow through the vacuum. Consequently, a thermionic vacuum tube conducts current in one direction only. When the plate is positive, it is found that (if the poten-
tial is not too large) the current increases with an increase in potential difference between the plate and cathode. However, the relationship betwen current and applied voltage is not a simple one. If the voltage is made large enough all the electrons cmitted by the athode will be drawn to the plate, and a further increase in voltage therofore cannot caluse a further increase in current. The number of electrons emitted by the rathode depends upon the temperature of the cathode and the material of which it is constructed.

Direction of current flow - Use was heing made of electricity for a long time bofore its electronie nature was understood. While it is now clair that current flow is a drift of negative electrical charges or electrons toward a source of positive potential, in the era preceding the electron theory it was assumed that the current flowed from the point of higher positive potential to a point of lower (i.e., less positive or more negative) potential. While this assumption turned out to be wholly wrong, it is still customary to speak of eurrent as flowing " from positive to negative" in many applications. The practice often causes confusion, but this distinction between "current" flow and "electron" flow often must be taken into account. If electron flow is sperifically mentioned there can be, of course, no doubt as to the meaning; but when the direction of curreat flow is specified, it may be taken, by convention, as being opposite to the direction of electron movement.

Primary cells - If two electroles of dissimilar metals are immersod in an electrolyte, it is found that a small difference of potential exists between the elertrodes. Such a combination is called a cell. If the two electrodes are connerted together by a conductor external to the cell, an electric eurrent will flow between them. In such a coll. chemical energy is converted into electrical energy. The difference of potential arises as a result of the fact that material from one or both of the electrodes goes into solution in the clectrolyte, and in the process ions are formed in the viemity of the electrodes. The electroles acquire charges becanse of the electric fiold associated with the charged ions. The difference of potential betwen the elect todes is principally a function of the metals used, and is more or less independent of the kind of electrolyte or the size of the cell.

When current is supplied to an external circuit, two principal effects oceur within the cell. The negative clertrode (negative as viewed from outside the cell) loses weight as its material is used up in furnishing energy, and hydrogen bubbles form on the positive electrode. Since the gas bubbles are non-conducting, their accumulation tends to reduce the effective area of the positive electrode, and consequently reduces the current. The effect is cumulative, and eventually the electrode will be completely covered and no further current can flow. This effect is called polarization. If the bubbles are
removed, or prevented from forming by chenical means, polarization is reduced and current can flow as long as there is material in the negative electrode to furnish the energy. A chemical which provents the formation of hydrogen bubbles in a cell is ealled a depolarizer.

In addition to polarization effects, a coll has a certain amount of internal resistance becanse of the resistance of the electrodes and the electrolyte and the contact resistance between the electrodes and electrolyte. The internal resistance depends upon the materials used and the size and electrode spacing of the rell. Large cells with the electrodes close togather will have smaller interual resistance than small cells made of the same materials.

A collection of cells connected together is called a battery. The term hattery also is applied (although incorrectly) to a single cedl.

Dry cells - The most familiar form of primary cell is the dr!/ coll. Like the elementary type of cell just described, it has a liquid electrolyte, but the liquid is mixed with other materials to form a paste. The cell therefore ran he used in any position and handled as though it actually were dry.

Fig. 209 - Construction of a dry cell.
The construction of an ordinary dry eell is shown in Fig. 209. The container is the negative electrode and is made of zine. Next to it is a section of blotting material saturated with the electrolyte, a solution of sal ammoniar. The positive electrode is a carbon rod, and the space between it and the blotting paper is filled with a mixture of carbon, manganese dioxide (the depolarizer) and the electrolyte. The top is filled with sealing compound to prevent evaporation, since the cell will not work when the electrolyte drys out. The e.m.f. of a dry cell is about 1.5 volts.

Dry cells are made in various sizes, depending upon the current which they will be called upon to furnish. The construction frequently varies from that shown in Fig. 209, although in general the basic materials are the same in all dry cells. Batteries of smatl cells are assembled together as a unit for furnishing plate current for the vacuum tubes used in portable receiving sets; such " B " batteries, as they are called, can supply a current of a few hundredths of an ampere continuously. Larger cells, such as the common "No. 6" cell, can deliver currents of a fraction of an ampere con-
tinuously, or currents of several amperes for very short periods of time. The total amount of energy delivered by a dry cell is larger when the cell is used only intermittently, as compared with continuous use. The cell will deteriorate even without use, and should be put into service within a year or sofrom the time it is mannfactured. The period during which it is usable (without having been put in service) is known as the "shelf life" of the cell or battery.

Secomidary cells - The types of cells just described are known as primary cells, because the electrical energy is obtaincd directly from chemical energy. In some types of cells the chemical actions are reversible; that is, forcing a current through the cell, in the opposite direction to the current flow when the cell is delivering electrical energy, causes just the reverse chemical action. This tends to restore the cell to its original condition, and electrical energy is transformed into chemical energy. The proaes is called charging the cell. A coll which must first be charged before it can deliver electrical energy is called a secondary cell.

A simple form of secondary cell can be made by inmersing two le:d electrodes in a dilute solution of sulphuric acid. If a current is foreod through the cell. the surface of the electrode which is connected to the positive terminal of the charging e.m.f. will be changed to lead peroxide and the surface of the electrode connected to the negative terminal will be changed to spongy lead. After a priod of charging the charging source can be discomneoted, and the cell will be found to have an e.m.f. of about 2.1 volts. It will furnish a small current to an external circuit for a period of time. This discharge of electrical energy is accompanied by chemical action which forms lead sulphate on both electrodes. When the lead peroxide and spongy lead are converted to lead sulphate there is no longer a difference of potential, since both electrodes are now the same material, and the cell is completely discharged.

The lead storage batiery - The most common form of secondary cell is the lead storage cell. The common storage battery for automobile starting consists of three such cells connected together electrically and assembled in a single container. The principle of operation is similar to that just described, but the construction of the cell is considerably more complicated. To obtain large currents it is necessary to use electrodes having a great deal of surface area and to put them as close together as possible. The clectrodes are made in the form of rectangular flat plates, consisting of a latticework or grid of lead or an alloy of lead. The interstices of the latticework are filled with a paste of load oxide. The electrolyte is a solution of sulphuric acid in water. When the cell is charged, the lead oxide in the positive plate is converted to lead peroxide and that in the negative plate to spongy lead. To obtain high current capacity, a cell consists of a number of positive plates, all connected together,

1

and a number of negative plates likewise conneeted together. They are arranged as shown in Fig. 210, with alternate negative and positive plates kept from touching by means of thin separators of insulating material, generally treated wood or perforated hard rubber. The sephatator: preferably should be porous, so that the electrolyte can pass through them freely; thus they do not ampede the passage of current from one plate to the next. There is always one extra nequtive plate in such an assembly, becanse the active material in the positive plate expands when the cell is being charged and if all the expansion took place on one side the plate would be distorted out of shape.

The e.m.f. of atully charged storage cell is about 2.1 volts. When the e.m.f. drops to about 1.75 volts on discharge, the cell is considered to be completely discharged. Discharge beyond this limit may result in the formation of so much lead sulphate on the plates that the cell cannot be recharged, since lead sulphate is an insulator. During the charging process water in the electrolyte is used up, with the result that the sulphuric acid solution becomes more concentrated. The higher concentration increases the specilic gravity of the solution, so that the sperific gravity may be used to indieate the state of the battery with respect to charge. In the ordinary lead storage cell the solution is such that a sperific gravity of $1.2 s 5$ to 1.300 indicates a fully charged cell, while a discharged cell is indicated by a specific gravity of 1.150 to 1.17%. The specific gravity can be measured by means of a hydrometer, shown in lig. 211. For use with protable batteries, the hydrometer usually consists of a glass tube fitted with a syringe so that some of the electrulyte can be drawn from the cell into the tube. The hydrometer float is a smaller glass tube, air-tight and partly filled with shot to make it sink into the solution. The lower the specifie gravity of the solution, the farther the float sinks into it. A graduated scale on the float shows the specific gravity directly, being read at the level of the solution.

Storago cells are rated in amperc-hour capacity, hased on the number of amperes which can be furnished continuously for a stated period of time. For example, the cell may have a rating of 100 ampere-lours at an 8 -hour discharge

Fig, 2l0-Details of typical lead storage-battery construction.
rate. This means that the cell will deliver $100 / 8$ or 12.5 anmeres continuously for 8 hours after having been fully charged. The ampere-hour capacity of a cell will vary with the discharge rate, hecoming smaller as the rated time of discharge is made shorter. It also depends upon the size of the plates and their number. In automobile-type batteries the dimensions of the plates are fairly well standardized, so that the amperc-hour capacity is chicfly determined by the number of plates in a cell. It is, therefore, common practice to speak of "11-plate," "1i-plate," etc., batteries as an indication of the battery capacity.

I cad storage batteries must be kept fully charged if they are to stay in good condition. If a discharged battery is left standing idle,

Fig. 211 - The hydrone etir, a device with a calilorated scale for moasuring the specilie gravity of the electrofyte, used to determine the state of charpe of a lead storage battery. lead sulphate will form on the plates and eventually the battery will be useless. When the battery is being charged, hydrogen bubbles are given off by theclectrolyte which, in bursting at the surface, throw out fine drops of the electrolyte. This is called "gassing." The sulphuric-acid solution spray from gassing will attack many materials, and consequently care must be used to see that it is not permitted to fall on near-by objerts. It should also be wiped off the battery itself.

A lead battery may be charged at its nominal discharge rate; i.e., a 100-ampere-hour battery, 8 -hour rating, can be charged at $100 / 8$, or $12 . \mathrm{j}^{5}$ amperes. The charging voltage required is slightly more than the output voltage of the cell. The preferred method is to charge at the full rate until the cells start to "gas" freely, after which the charging rate should be dropped to about half its initial value until the battery is fully charged, as indieated by the hydrometer reading. Alternatively, the battery may be charged from a constant-potential source (ahout 2.3 volts per cell), when the rise of terminal voltage of the battery as it accumulates a charge will automatically "taper" the charging rate.

The solution in a lead storage battery will freeze at a temperature of about zcro degrees Fahrenheit when the battery is discharged, but a fully charged hattery will not freeze until the temperature reaches about 90 degrees below zero. Fieeping the battery

Fig. 212 --Scries, parallel, and scries-parallel connedtion of cells. Series commetion increases the total voltaye without changing current caparity; parallel commection inereases curront capacity without inereasing voltage.
eharged therefore is the best way to insure against damage by frecring.
Cells in series amd parallel - For proper opcration, many electrical deviees require highor voltage or current than can be ohtained from a single cell. If greater voltage is needed, cells may be comnected in series, as shown in lig. $212-\mathrm{A}$. The negative terminal of one cell is connected to the positive terminal of the next, so that the total e.m.f. of the battery is equal to the sum of the e.m.f.s of the individual cells. For radio purposes, batteries of 45 and 90 volts or more are built up in this way from 1.5 -volt dry cells. An automobile storage battery consists of three lead storage cells in series, totalling b. 3 volts - or, in round figures, 6 volts. The current which may be taken safely from a battery composed of cells in series is the s:me as that which may be taken safely from one rell alone; since the same current flows through all cells, the current cupacity is unchanged.

When the device or load to which the battery is to be eonnented requires more current than ean be taken safely from a single cell, the cells may be connected in parallel, as shown in Fig. $212-\mathrm{B}$. In this case the total current is the sum of the currents contributed by the individual cells, each contributing the same amount if the cells are all alike. When cells are connected in parallel it is cssential that the e.m.f.s all be the same, since if one cell generated a larger voltage than the others it would force current through the other cells in the reverse direction and thus would take most, if not all, of the load. Also. if one cell has a lower terminal voltage than the others it will take current from the others rather than carrying its fair share

Cells may be connected in series-parallel, ass in Fig. 212-C, to increase both the voltage and the current-carrying capacity of the battery.

C. 2-5 Electromagnefism

The magnetic fiell - Everyone is familiar with the fart that a bar or horseshoe magnet will attract small pieces of iron. Just as in the case of electrostatic attraction ($\$ 2-3$) the concept of a field, in this case a field of magnetic force, is adopted to explain the magnetic action. The field is visualized as being made up of lines of magnetic force, the number of which per unit area determines the field strength. As in the case of the eleetrontatie field, the lines of force do not have physical existence but simply represent a convenient way of describing the properties of the force.

Magnetic attraction and repalsion - The forces exerted hy the magnetic field are analogous to clectrostatie forces. Corresponding to positive and negative electric charges, it is found that there are two kinds of magnetic poles. Instead of being called "positive" and "ncgative," however, the magnetic poles are called "north" (N) and "south" (S) poles. These names arise from the fact that, when a magnetized steet rorl is freely suspended, it will turn into such a pesition that one end points toward the north. The end which points north is called the "north-seeking," or simply the "north," pole.

Unlike electric lines of forre, which termi. nate on charges of opposite polarity ($\$ 2-3$) magnetic lines of force are closed upon themselues. This is illustrated by the field about a bar magnet, as shown in Fig. 213-A. The lines extend through the magnet, the direction being taken from S to.V inside the magnet and from N to S outside the magnet. If similar poles of two magnets are brought near each other, there is a force of repulsion between them, while dissimilar poles are attracted when brought elose towether. As in the case of electric charges, like poles repel, unlike poles attract.

Fip. 2l3-(1) The fiell about a bar mapnet. The mapnetic limes of force are continuous, part of the path being inside the magnet and part outside. (B) Gutting a mapnet produces two magnets, each coniplete with N and S poles. With the magnets in the positions shown, some of the lines of force are common to both magnets.

If a bar magnet is cut in half, as in Fig. 213-B, it is found that the cut ends also are poles, of opposite kind to the original poles on the same piece. Such cutting can be continued indefinitely, and, no matter how small the pieces are made, there are always two opposite poles assoriated with each piece. In other words, a single magnetic pole camnot exist alone; it must always be associated with a pole of the opposite kind.

To explain this property of a magnet, it is considered that pach molecule of a magnetic substance is itself a miniature magnet. If the material is not magnetized, the molecules are in random positions and the total magnetic effect is zero since there are just as many molecules tending to set up a magnetic field in one direction as there are others tending to set up a field in the oppesite direction. When the substance becomes magnetized, however, the molecules are aligned so that most or all of the N poles of the molecular magnets are turned toward one end of the material white the S poles point toward the other end.
Magnetic induction - When an unmagnetized piece of iron is brought into the field of a magnet, its molecules tend to align themselves as described in the preceding paragraph. If one end of the iron is near the N pole of the magnet, the S poles of the molecules will turn toward that end and an S pole is said to be induced in the iron. An N pole will appear at the opposite end. Berause of the attraction between opposite poles, the iron will be drawn toward the magnet. Since the iron has berome a magnet under the influence of the field, it also possesses the property of attracting other pieces of iron.

When the magnetic field is removed, the molecules may or may not resume their random positions. If the material is suft iron the marnetism disappears quite rapidly when the field is removed, but in some types of steel the molecules are slow to resume their random positions and such materials will retain magnetism for a long time. A magnet which loses its magnetism quickly when there is no external magnetizing force is called a temporary magnet, while one which retains its magnetism for a long time is called a permanent magnet. The tendency to retain magnetism is called retentivity. The process of destroying magnetism can be hastened by heating, which increases the motion of the molecules within the substance, as well as hy mechanical shock, which also tends to disturb the molecular alignment.

Electric current and the magnetic field Experiment shows that a moving electron generates a magnetic field of exactly the same nature as that existing about a permanent magnet. Since a moving electron, or group of electrons moving together, constitutes an electric current, it follows that the flow of current is accompanied by the creation of a magnetic field. When the conductor is a wire the magnetic lines of force are in the form of concentric

Fig. 214 - Whenever clectric current passes througha wire, magnetic lines of force are set up, in the form of concentric circles, at ripht angles to the wire, and a mapnetic fielli is said torexist around the wire. The direction of this field is controlled by the direction of eurrent flow, and can be traced by means of a sinall compass.
circles around it and lie in planes at right angles to it, as shown in Fig. 214. The direction of this field is controlled by the direction of current flow.

There is an easily remembered method for finding the relative directions of the current and of the magnetic field it sets up. I magine the fingers of the right hand curled about the wire, with the thumb extended along the wire in the direction of current flow (the conventional direction, from positive to negative, not the direction of electron movement). Then the fingers will be found to point in the direction of the magnetic field; that is, from N to S.

Magnetomotive force - The force which causes the magnetic field is called magnetomotive force, abbreviated m.m.f. It corresponds to electromotive force or e.m.f. in the electric circuit. The greater the magnetomotive force, the stronger the magnetic field; that is, the larger the number of magnetic lines per unit area. Magnetomotive force is proportional to the current flowing. When the wire earrying the current is formed into a coil so that the magnetic flux will be concentrated instead of being spread over a large area, the m.m.f. also is proportional to the number of turns in the coil. Consequently magnetomotive force can be expressed in terms of the product of current and turns, and the ampere-turn, as this product is called, is in fact the common unit of magnetomotive force. The same magnetizing effect can be secured with a great many turns and a weak current or with a few turns and a strong current. For example, if 10 amperes flow in one turn of wire, the magnetizing effect is 10 am -pere-turns. If there is one ampere flowing in 10 turns of wire, the magnetomotive force also is 10 ampereturns.
The magnetic circuit - Since magnetic lines of force are always closed upon themselves, it is possible to draw an analogy between the magnetic circuit and the ordinary electrical circuit. The electrical circuit also must be closed so that a complete path is provided around which the electrons or current can flow. However, there is no insulator for the magnetic field, so that the magnetic circuit is always complete even though no magnetic material (such as iron) may be present.

The number of lines of magnetic force, or $f l u x$, is equivalent in the magnetic circuit to current in the electric circuit. However, it is
usual practice to express the strength of the field in terms of the number of lines per unit area, or flux density. The unit of flux density is the gauss, which is equal to one line per square centimeter, but the terms "lines per square centimeter" or "lines per square inch" are commonly used instead.

Corresponding to resistance in the electric circuit is the tendency to obstruct the passage of magnetic flus, which is called reluctance. The reluctance of food magnetic materials, such as irom and steel, is quite low.

The permeability of a material is the ratio of the flux which would be set up in a closed magnetic path or circuit of the material to the flux that would exist in a path of the same dimensions in air, the same m.m.f. being used in both cases. The permeability of air is assigned the value 1 . The permeability of steels of various types varies from about 50 to several thousand, depending upon the materials alloyed with the steol. Very high permeabilitios are attained in certain special magnetic materials, such as "permalloy," which is an alloy of iron and nickel.

The permeability of magnetic materials depends upon the density of magnetic flux in the material. At very high flux densities the permeability is less than its value at low or moderate flux densities. This is beranse the flux in magnetic materials is proportional to the applied m.m.f. only over a limited range. As the m.m.f. increases more and more of the molecular magnets within the material become aligned, until eventually a point is reached where a very great increase in m.m.f. is required to cause a relatively small increase in flux. This is called maynetic saturation. In this region of saturation the permeability decrases, since the ratio between the number of lines in the material and the number in air, for the same m.m.f., is smaller than when the flux density is below the saturation point.

Energy in the magnetic field - Like the electrostatic field (\$2-3), the magnetic field represents potential energy. Consequently the expenditure of energy is necessary to set up a magnetic field, but once the field has been established and remains constant no further energy is consumed in maintaining it. If by some means the field is caused to disappear, the stored-up magnetic energy is converted to energy in some other form. In other words the energy undergoes a transformation when the magnetic field is changing, being stored in the field when the field strength is increasing and being released from the field when the field strength is decreasing.

When a magnetic field is set up by a current flowing in a wire or coil, a certain amount of energy is used initially in bringing the field into existence. Thereaiter the current must continue to flow, if the field is to be maintained at steady strength, but no expenditure of energy is required for this purpose. (There will be a steady energy loss in the circuit, but only.
because of the resistance of the wire.) If the current stops the energy of the field is transformed back into electrical energy, tending to keep the current flowing. The amount of energy stored and subsequently released depends upon the strength of the field, which in turn depends upon the intensity of the current and the circuit conditions; i.e., it depends upon the relationship between field strength and current in the circuit.

Induced roltage - Since a magnetic fichd is set up by an electric current, it is not surprising to find that, in turn, a magnetic field can cause a current to flow in a closed electrical circuit. That is, an e.m.f. can be induced in a wire in a magnetic field. However, since a change in the field is required for energy transformation, an e.m.f. will be indured only when there is a change in the fied with respeet to the wire.

This change may be an actual change in the field strength or may be caused by relative motion of the field and wire; e.g., a moving field and a stationary wire, or a moving wire and a stationary field. It is convenient to consider this induced e.m.f. as resulting from the wire's "cutting through" the lines of force of the field. The strength of the e.m.f. so induced is proportional to the rate of cutting of the lines of force.

If the conductor is moving parillel with the lines of force in a field, no voltage is induced since no lines are cut. Maximum cutting results when the conductor moves through the field in such a way that both its longer dimension and direction of motion are perpendicular to the lines of force, as shown in Fig. 215. When the conductor is stationary and the field strength varies, the indured voltage results from the alternate increase and decrease in the number of lines of force cutting the wire as the m.m.f. viries in intensity.

Fig. 215 - Showing how e.m.f. is induced in a conductor moving through a stationary magnetic field, cutting the lines of force. Conversely, a current sent through the condurtor in the same direction by means of an external e.m.f. will cause the conductor to move downward.

Lenz's Iaw - When a voltage is induced and current flows in a conductor moving in a magnetic field, energy of motion is transformed into electrical energy. That is. mechanical work is done in moving the conductor when an induced current flows in it. If this were not so the induced voltage would be creating electrical energy, in violation of the fundamental principle of physics that energy ran neither be created nor destroyed but only transformed.

It is found therefore, that the flow of eurrent ereates an opposing magnetic force tending to stop the movement of the wire. The statement of this principle is known as Lenz's Law: "In all cases of clectromagnetic induction, the induced currents have such a direction that their reartion tends to stop the motion which produces them."

Molor principle - The faret that current flowing in a conductor moving through a magnetic fied tends to oppose the motion indirates that current sent through a stalionar? rondurtor in a magnetic field would tend to set the conductor in motion. Such is the case. If moving the conductor through the fied in the direction indicated in Fig. 21.5 canses a curment to flow as shown, then, if the romburtor is stationary and an e.m.f. is appliod to send a current through the conductor in the same direction, the conductor will tend to move aeross the field in the opposite dirertion.

This priaciple is used in the electric motor. The same rotating machine frequontly may be used either as a gememator or motor; as a generator it is turned merhanically to cause an induced e.m.f., and as a motor electrie eurrent through it auses mechanical motion.

Self-induction - When an e.m.f. is applied to a wire or coil, curment begins to fow and a magnetic field is created. Just before rlosing the cirenit there was no field: just after closing it the field exists. Consequently, at the instant of closing the cironit the rate of change of the field is very rapid. Since the wire or coil carrying the current is a conductor in a changing firld, an e.m.f. will be indured in the wire. This inducod voltage is the e.m.f. of sclf-induction, so called beramso it results from the enrent flowing in the wire itself.

By the principle of conservation of energy (and Lenzs law), the polarity of the induced voltage must be such as to oppose the applied voltage; that is, the imbuced voltage must tend to send current through the cireuit in the direction opposite to that of the current caused by the applied voltage. At the instant of closing the rirruit the field changes at such a rate that the indured voltage robats the applied voltage (it cannot exceed the applied voltage, becanse

Fit. 216 - When the rondacting wire is coiled, the individual mawnelie diedis of cach turn are in swell a diretion as to promber a lied similar to that of a bar onagnet. 'lhe schmatic symbols for inductance are shown at the ripht. The symbol at the laft in the tope row indioates an iron-core indurtance; at the right, air core. Variable inductances are fownin the botton row.
then it would be supplying energy to the source of applied e.m.f.). but after a short interval the rate of change of the field no longer is so rapid and the induced voltage decreases. Thas the current flowing is very small at first when the applied and induced e.m.f.s are about equal, but rises as the indured voltage becomes snaller. The proress is cumulative, the current eventually reaching a final value determined only by the resistance in the cirmit.

In forcing current through the circuit against the pressure of the induced or "bark" voltage. work is done. The total amomet of work done during the time that the current is rising to its final value is equal to the amount of energy stored in the magnetie fiold. nergecting heat losses in the wire itself. As explained before, no further energy is put inta the field one the current beromes steady. However, if the circuit is opened and current flow cansed by the applied e.m.f. ceases, the ficld collapses. The rate of change of field strength is very great in this caser, and a voltage is again indured in the coil or wire. This voltage camses a current flow in the same direction as that of the applied e.m.f., since energy is now being restored to the circuit. The energy usually is dissipated in the spark which ocrurs when sueh a eirenit is opened. Sime the fich collapses very rapidly when the switch is opened, the induced e.m.f. at such a time ran be extremely high.

Inductance - As explained above, the strength of the self-indued voltage is proportional to the rate of change of the field. Ifowever, it is also apparent from the formoing that the voltange also depends upon the properties of the circuit. simes, if a number of similar conductors are in the same varying field. he same voltage will he induced in cach. By combining the conductors properly, the total induced voltage in such at case will be the sum of the voltages induced in each wire. Also, the rate of change of field strengt h depends upon the strength of the field set up by a given amount of current flowing in the wire or coil, and this in turn depends upon the ampere-turns, permeability, length and cross-section of the magnetia path, etc.

For a given rircuit, however. the fied strongth will be determined hy the current, and the rate of change of the fiold conseguentidy will be determined by the rate of elange of current. Hemer, it is pessible to group all of these other factors into one quantity, a prop)erty of the circuit. This property is ralled inductance. When this is dome, the equ.tion giving the value of the induced voltage becomes:

$$
\begin{aligned}
& \text { Induced voltage } \\
&=L \times \text { rate of change of current }
\end{aligned}
$$

where L is the value of inductance in the circuit.

Inductance is a property associated with all circuits, although in nang cases it may be so small in comparison to other circuit properties (such as resistance) that no error results from neglecting it. The inductane of a straight wire

Electrical and Radio Jundamentals 25

increases with the length of the wire and decreases with increasing wire diameter. The inductance of such a wire is small, however. For a given length of wire, much greater incluctance can be seeured be winding the wire into a roil so that the total flux from the wire is concentrated into a small spare and the flux density correspondingly increased. The unit of inductance is the henry. A circuit or coil has an inductance of one henry if an e.m.f. of one volt is induced when the current changes at the rate of one ampere per second. In radio work it is frequently convenient to use smaller units; those commonly used are the millihenry (one thousandth of a henry) and the microhenry (one millionth of a henry).

It will be reongnized that the relationshin between inductance and the magnotic field is similar to that between caparity and the electrostatic field. The greater the inductance, the greater the amount of energy stored in the magnetic: field for a given amonint of current; the greater the eapacity, the greater the amonint of energy stomed in the eleatrostatic field for a given voltage.

The inductance of a coil of wite depmeds rupen the number of turns. the cross-seretional dimensions of the coil, and the length of the winding. It also depembs upon the permeability of the material on which the coil is wound, or core. Formulas for computing the inductance of air-core coils of the type commonly used in ratio work, are given in ("haptor Twanty.

Matual inductance - If two coils are arranged with their axes coinciding, as shown in Fig. 217, a current sent through Coil 1 will canse a magnetic field which cuts Coil 2. Consequently, an e.m.f. will be indured in Coil 2 whenever the field strength is changing. This induced e.m.f. is similar to the e.m.f. of selfinduction: that is,

Induced e.m.f.

$$
=1 / \times \text { rate of change of current }
$$

where $I /$ is a quantity called the mutual inductance of the two coils. The imatual inductance may be large or small, depending upon the self-inductances of the coils and the proportion of the total flux set up by one coil which cuts the turns of the other eosil. If all the flux set up by one coil cuts all the turns of the other coil the mutual inductance has its maximum possible value, while if ouly a small part of the flux set up by ane coil cuts the turns of the other the mutual inductance may be relatively small. Two eoils having mutual inductance are said to be coupled.

The dearee of compling cxpresses the ratio of artual mutual inductance to the maximum possible value. Coils which have nearly the maximum possible mutual indurtance are said to be closely, or tightly, compled. while if the mutual inductance is relatively small the eoils are said to be loosely coupled. The degree of coupling depends upon the physical spacing between the coils and how they are placed with

Fis. 217 - Mutnal inductance. When the switch, S, is closed current flows throuph coil No. i, secting upa mayntic field which indures an e.m.f. in the turns of coil No. 2.

respect to each other. Maximum coupling exists when they have a common axis, as shown in Fig. 217 , and are as close together as porsible. - If two coils having muthal indurtance are connected in the same rirenit, the directions: of the rospertive magnetic fiedn may be sum as to add or oppose. In the former case the mutual imductanee is sald to be "mositive": in the latter case, "negative" Positive mutami indurtance in surh a rirenit mesms that the total indurtance is greater than the sum of the two individual inductances, whilo nomative inductinne means that the total inductance is lese than the sum of the towo individual indurtances. The mutual imburtane may be made aither positive or mentive simply by reversing the connections to one of the coils.

(1) 2-6 Fundamental Relations

Direct chrrent - A current which always flows in the same dirertion theough a circuit is called a direct curremt. frepuently abbreviated d.c. Current flow answ by batterios. for example, is direct curent One terminal of each cell is always pesitive and the other always negative. hence elect mons ate attractod only in the one direction around the circuit. To make the eurrent change dirmetion, the commertions to the battery termimal mast hereversed.

Work. energy ath pouer - When a guantity of elertricity is moved from a point of one potential to a point at a serond potential, work is dome. The work dome is the produet of the quantity of elecetricity and the differenere of potential through which it is moved; that is,

$$
W=Q E
$$

In the practical system of units, with Q in coulombs and E in volts, the unit of work is called the joulc. Energy, which is the caparity for doing work, is measured in the sime units.

Since $l=(Q / t$ when the current is constant $(\$ 2-1),(!=I t$. Substituting for Q in the equation above gives

$$
\|=E\|
$$

Where $E \cdot$ is in volts. I in amperes, and t in secombls. ()ne ampere flowing through a difference of pertential of one volt for one second does one joule of work. I'oner is the time rate at which work is done, so that, if the work is dune at a uniform rate, dividing the equation by t will give the electrical power:

$$
P=E 1
$$

The unit of electrical power is the walt.

In practical work, the term "joule" is seldom used for the unit of work or energy. The nore common name is watt-second (one joule is egual to one watt applied for one second). The watt-second is a relatively small unit; a larger one, the watt-hour (one watt of power applied for one hour) is more frepuently used. Again, for some purposes the watt is too small a imit, and the kiluratt (1000 watts) is used instead, A still larger energy unit is the kilomentt-hour, the meaning of which is easily interpreted.
Fractional and multiple units - As illustrated by the examples in the preceding paragraph, it is frequently convenient to change the value of a unit so that it will not be neressary to use very large or very small numbers. As applied to electrical units, the practice is to add a prefix to the name of the fundamental unit to indicate whether the modified unit is larger or smatler. The common prefixes are micro (one millionth), milli (one thousandth), kilo (one thonsaml) and mega (one nillion). Thus, a microvolt is one millionth of a volt, a nilliampere is one thousandth of an ampere, a kilovolt is one thousand volts, and so (in.
Unless there is some indication to the contrary, it should be assumed that, whenever a formula is given in terms of unprefixed letters (E, I, I, R, ete.), the fundamental units are meant. If the quantities to be substituted in the equation are given in fractional or multiple units, conversion to the fundamental units is necessary before the equation can be used.
Ohm's Law- In any metallic conductor, the current which fows is directly proportional to the applied electromotive force. This relationship, known as Ohm's Lave, can be written

$$
E=R I
$$

where E is the e.m.f., I is the current, and R is a constant, depending on the conductor, called the resistance of the conductor. By definition, a conductor has one unit of resistance when an applied e.m.f. of one volt causes a current of one ampere to flow. The unit of resistance is called the ohm.

Ohmis Law does not apply to all types of ronduction, particularly to conduction through gases and in a vacuum. The law is of very great importance. however, berause practically all electrical circuits use metallic conduction.

By transposing the equation, the following equally useful forms are obtained:

$$
R=\frac{E}{I} \quad I=\frac{E}{R}
$$

The three equations state that, in a circuit to which Ohm's law applies, the voltage across the circuit is equal to the current multiplied by the resistance; the resistance of the circuit is equal to the voltage divided by the current; and the current in the cireuit is equal to the voltage divided by the resistance.
Kesistanceand resistivity- The resistance of a conductor is determined by the material of which it is made and its temperature, and is
directly proportional to the length of the conductor (that is, the length of the path of the current through the conductor) and inversely proportional to the area through which the current flows. If the temperature is constant,

$$
R=k \frac{L}{A}
$$

where R is the resistance, k is a constant depending upon the material of which the conductor is made, L is the length and A the area. For the purpose of giving a specific value to k, L is taken as one centimeter and A as one square centimeter (a cube of the material ineasuring one centimeter on a side); k is then the resistance in ohms of such a cube at a specified temperature. It is called the specific resistonce or resistivity of the material. If the resistivity is known, the resistance of any conductor of known length and unifurm crosssection readily can be determined by the formula above. The length must be in centimeters and the area in square centimeters.

The relationships given above are true only for unidirectional (direct) currents and lowfrequency alternating currents. Modifications must be made when the current reverses its direction many times earh secomd (8 2-8).

Conductance and conductirity - The reciprocal of resistance is called comiluctance, and has the opposite properties to resistance. The lower the resistance of a rircuit. the higher is the conductance, and viee versa. 'The symbol of comductance is G, and the relationship to resistance is

$$
G=\frac{1}{R} \quad h=\frac{1}{G}
$$

The unit of romductance is called the mho. A circuit or conductor which has a resistance of one ohm has a conductance of one mho. By substituting $1 / G$ for R in Ohm's Law,

$$
G=\frac{I}{E} \quad I=E G \quad E=\frac{I}{G}
$$

The reciprocal of resistivity is called the specific conductance or conductivity of a material, and is measured in mhos per centimeter cube. It is frequently useful to know the relative conductivity of different materials. This is usually expressed in per cent conductirity, the conductivity of amnealed copper being taken as 100 per cent. A table of per cent conductivities is given in Chapter Twenty.

Power used in resistance - If two conductors of different resistances have the same current flowing through them, then by Ohm's Law the conductar with the larger resistance will have a greater difference of potential arross its terminals. Consequently, more energy is supplied to the larger resistance, since in a given periol of time the same amount of electricity is movel through a greater potential difference. The energy appears in the form of heat in the conductor. With a steady current, the heat will raise the temperature of the con-

SYMBOLS
Fig. 218 - 'lwo common types of fixed resistors. The wire-wound type is used for dissipating power of the urder of 5 watts or more. "Pigtail" resistors, usially made of carton or other resistance material in the form of a molded rod or as a thin coating on an insulatine tube, rather than being womm with wire, are small in size hut do mot safely dissipate momel power. Schematic symbols for fixed amd variable resistors are shown at lewer right.
ductor until a balance is reached botween the heat generated and that radiated to the surrounding air or otherwise carried away.

Since $\Gamma^{\prime}=E I$, substituting for E the appropriate form of Ohm's Law ($E=I R$) gives

$$
P^{2}=I^{2} R
$$

and making a similar substitution for l gives

$$
P=\frac{E^{2}}{R}
$$

That is, the power used in heating a resistance (or dissipated in the resistance) is proportional to the square of the voltage applied or to the square of the current flowing. In the ese formulas P is in watts, E in volts and $/$ in amperes.

Further transposition of the equations gives the following forms, useful when the resistance and power are known:

$$
E=\sqrt{\Gamma R} \quad I=\sqrt{\frac{\Gamma}{R}}
$$

Conless the circuit eontaining the resistance is being used for the sperifice purpose of generating heat, the power used in heating a resistamere is generaily considered ats a boss. However, there are very many applications in radio circuits where, lespite the loss of power, a useful purpose is served by introducing resistance deliberately. Resistaness made to sperified values and provided with commecting terminals are called resistors. They are frequently wound on ceramic or other heat-resisting tuhing with wire having high resistivity.

Temperature coefficient of resistumenThe resistance of mont pure metals increases with an indrase in temperature. The resistance of a wire at any temporature is given by

$$
R=R_{0}(1+a t)
$$

Where R is the reguired resistince, K_{0} the resistance at $0^{\circ}(\%$. (temperature of melting iee), t is the temperature (${ }^{\text {ronligrade }) \text {, and }}$ \because is the temperature coefficient of resistance. For copper, a is about 0.004 ; that is, starting at $0^{\circ} \mathrm{C}$., the resistance increases 0.4 per cent per degree above zero.

Temperature coefficient of resistance becomes of importance when conductors operate at high temperatures. In the case of resistors used in clectrical and radio circuits, the heat developed by current flow may raise the temperature of the resistane wire to several hundred degrees F. Thus the resistance at operating temperatures can be very much higher than the resistance at room temperature. Consequently such resistors are wound with wire which has a low temperature coeffirient of resistance, so that the resistance will be more nearly constant under all conditions.

Resistances in series - When two or more resistances are connected so that the same current flows through each in turn, as shown in Fig. 219 , they are said to be connected in series. Then, by Ohm's Law,

$$
\begin{aligned}
& E_{1}=I R_{1} \\
& E_{2}=I R_{2} \\
& F_{3}=I R_{3}
\end{aligned}
$$

etc., where the subseripts $1,2,3$ indicate the first, second and third resistor, and the voltages E_{1}, E_{2} and E_{3} are the voltages appearing arross the terminals of the respertive resistors. Adding the three voltages gives the total voltage arross the three resistors:

$$
\begin{gathered}
E=E_{1}+E_{2}+E_{3}=I R_{1}+I R_{2}+I R_{3}= \\
I\left(R_{1}+R_{2}+R_{3}\right)=I R_{1}
\end{gathered}
$$

 ances in scries.

That is, the voltage across the resistors in series is equal to the current multiplied by the sum of the individual resistamers. In the alowe equation. R. which denotes this sum, may he ralled the equiralent resistance or total resistance. The equivalent resistance of a number of rosistors commeded in series is, thercfore, equal to the sum of the values of the individual resisturs.

Resistances in frarallel-When a number of resistances are connerted so that the same voltage is applied to all, as shown in lig. 220,

fig. 220 - Rwistamers in parallal.
they ate said to be commerted in parallel. By Ohnis Laiw,

$$
I_{1}=\frac{E}{R_{1}} \quad I_{2}=\frac{E}{R_{2}} \quad I_{3}=\frac{E}{R_{3}}
$$

so that the total current, I, which is the sum
of the currents in the individual resistors, is

$$
\begin{gathered}
I=I_{1}+I_{2}+I_{3}=\frac{E}{R_{1}}+\frac{E}{R_{2}}+\frac{E}{R_{3}}= \\
E\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)=E \frac{1}{R}
\end{gathered}
$$

where R is the equivalent resistance-i.e.. the resistance through which the same total current would flow if surh a resistance were substituted for the three shown. Therefore,

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

That is, the reciprocal of the equivalent resistance of a number of resistances in parallel is equal to the sum of the reciprocals of the individual resistances. Since the reciprocal of resistance is conductance,

$$
G=G_{1}+G_{2}+G_{3}
$$

where G is the total conductance and G_{1}, G_{2}, G_{3}. etc.. are the individual conductances in paraltel.

To obtain R instead of its reciprocal the equation above may be inverted, so that

$$
R=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}
$$

The number of trrms in the denominator of this equation will, of course, be equal to the actual number of resistors in parallel.

For the special case of only two resistances in parallel, the eguation reduces to

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Seriss-parallel connection of resistors is shown in Fig. 221. When circuits of this type are encountered the equivalent or total resistance can be found by first adding the series resistances in each group, then treating each group as a single resistor so that the formula for resistors in parallel can be used.

Fig, 22l-Serics-parallel conmerion of resistances. Doltage and current relationships are given at the ripht.

Foltage diciders and potentiometersSince the same current flows through resistors connected in series, it follows from Ohm's Law that the voltage (termed vollage drop) aeross each resistor of a series-eonnected group) is proportional to its resistance. Thus, in Fig. $2 \underline{2}-1$, the voltare E_{1} across R_{1} is equal to the applied voltage, E, multiplied by the ratio of
R_{1} to the total resistance, or

$$
E_{1}=\frac{R_{1}}{R_{1}+R_{2}+R_{3}} \cdot E
$$

Similarly, the voltage, E_{2}, is equal to

$$
\frac{R_{1}+R_{2}}{R_{1}+R_{2}+R_{3}} \cdot E
$$

Such an arrangement is called a voltage divibre. since it provides a means for obtaining smatler voltages from a soure of fixed voltage. When current is drawn from the divider at the varions: tap prints the above relations are no longer strictly true, for then the same current does not flow in all parts of the divider. Design data for such cases are given in § $8-10$.

Fig. 222 - Voltage divider (A) and potentiometer (B).
A similar arrangement is shown in Fig. 222-3, where the resistor. R, is eguipped with a sliding tap, for fine adjustment. Such a variable resistor is frequently called a potominmeter.

Inductances in series and parallel-As explained in \$2-5, inductance determines the voltage induced when the current changes at a given rate. That is, $E=L \times$ rate of change of current. This resembers Ohm's Law, if L corresponds to R and the rate of change of current to l. Thus, by reasoning similar to that used in the case of resistors, it can be shown that, for inductances in series.

$$
L=L_{1}+L_{2}+L_{3}
$$

and for inductances in parallel,

$$
L=\frac{1}{\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}}
$$

where the number of terms in either equation is determined by the artual number of inductances comected in series or parallel.

These equations do not hold if there is mutual inductance (\$2-i) botween the coils.

Condensers in series and parallel - When a momber of condensers are in parallel, as in Fig. 223-A, the same e.m.f. is applied to all. Consequently, the quantity of electricity stored in each is in proportion to its rapacity. The total quantity stored is the sum of the quantities in the individual condensers:
$Q=Q_{1}+Q_{2}+Q_{3}=C_{1} E+C_{2} E+C_{3} E=$

$$
\left(C_{1}+C_{2}+C_{3}\right) E=C E
$$

- where C is the equivalent capacity. The equivalent capacity of condensers in parallel is equal to the sum of the individual capacities,

Fig. 223 - Condensers in parallel (A) and in series (B).
When eondensers are commected in series, as in Fig. 223-13, the application of an e.m.f. to the circuit causes a certain quantity of electricity to accumulate on the top plate of C_{1}. By electrostatic iuduction, an equal charge of opposite polarity (necative in the illustration) appears on the bottom plate of C_{1}, and, since the lower plate of C'1 and the upper plate of C_{2} are connected together, this must leave an equal positive charge on the upper plate of ('s. This, in turn, causes the lower plate of (2 to assume an equal negative charge, and so on down to the plate comnected to the negative terminal of the source of e.m.f. In other words the same quantity of electricity is placed on each condenser, and this is equal to the total quantity stored. The voltage amoss each condenser will depend upon its capacity, and the sum of these voltages must equal the applied voltage. Thus,

$$
\begin{gathered}
E=E_{1}+E_{2}+E_{3}=\frac{Q}{C_{1}}+\frac{Q}{C_{2}}+\frac{Q}{C_{3}}= \\
Q\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}\right)=\frac{Q}{C^{\prime}}
\end{gathered}
$$

where C is the equivalent caparity. This leads to an expression similar to that for resistances in parallel:

$$
r=\frac{1}{\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}}
$$

where the number of terms in the dinominator should be the same as the actual number of condensers in series.

Time constant - When a rondenser and resistor are connected in series with a source of e.m.f., such as a battery. the initial flow of current into the condenser is limited by the resistance, so that a longer period of time is required to complete the charging of the con-

Fig. 224The $K L$ and $R C$ circuits at the left, together with the curves of currentanplitinde vs. time, show how the current in a circuit rombining resistance with inductance or capacitytakes a finite period of time to rearhasteadystatevalue.
denser than would be the case without the resistor. Likewise, when the condenser is discharged through a resistor a measurable period of time is taken for the current flow to reacha a negligibe value. In the rase of either charge or discharge the time required is proportional to the eapacity and resistance, the product of which is called the time constant of the rimuit. If C is in farads and k in ohms, or C ' in microfarads and R in megohms, the product gives the time in seconds required for the voltage across a discharging comdenser to derp to 1ρ. or approximately 37 per rent of its origital value. (lhe eonstant e is the base of the natural series of logarithms.)

 for d.e. curent measurement, Current lewning thronath the rotatathe coil in the firld of the permanome magnet ratuer a forer to act on the coil. tending to turn it. The turning tendency is comuteractod by springs (ant shown) so that the amount of movement in proportional to the value of the current in the coil. Right - In the simpler moving-irom-vane type, a lisht-weipht soft-iron phuger is attracted by current flowing in a fixed coil. As the phnger moves the peimter to whirls it is linked ako mover, until the magnetie forree in the coil is latanerd by the spiral spring restraining the plungremonement.

In a cirwit rontaining indurt:uce and resistance in series, the effect of the resismane is to shorten the period repuited for the curent 10 reach its fimal value ($\$ 2-\mathrm{F})$ aftor an e.m.f. is applied to the circuit. The time eonstant of such a cireuit is equal to $L A$, where L is in henrys and R in ohnts. It gives the time in weonds required for the eurrent (o) reach $1-1 / \mathrm{p}$, or approximately 63 per cont of its final steady value when a constant voltage is applied.

By proper application to Resociaterd rimuits and rlevices surh as varum tubes, it is possible by suitable sclection of time constant to crate almost any desired wave or pulse shape. This is of pratical importance in many circuit applieations in amateur tramsmission and reception, as in elertronic keyers, antomatic volume control, resistanceraparity filters and remote control. Apart from those applirations, many of the terhmiques employed in television and sperialized electronic devices are bated on this principle.

Measuring instruments - Instrument: for measuring d.e. current and voltage make nse of the force acting on a coil carring curent in a magnetic ficld (\$2-5), produred by a permanent magnet, to move a pointer along a calibrated scale. The magnetic field may he produced by a permanent magnet acting upon a moving eoil, or by a fised coil acting upon a moving irm vane or plunger.

The first type of instrument, based on what is known as the d'Arsonval moving-coil movement, is shown at the left in Fig. 225. The mov-ing-iron vane instrument shown at the right is less accurate and requires higher energizing current, making it rolatively insensitive as compared to the moving-coil type. ()nly the cheaper measuring instruments available to amatours are basid on this prineiple.

fig. 220- (ircuit monnctions for measuring current and woltape. The shant re-istor is used for incrasing the value of the curent whirh the instrument can meamere, by prowiding an alternate path throngh whidh amme of the: rurrent van flow. 'Phe series multiplier limits the current when the instrament is used to measure voltage.

In sueh instruments the current required for futl-scale deflection of the pointer varies from several milliamperes to a bew mieroamperes, anoording to the sensitivity repuired. If the instrument is to read high eurronts, it is shumted (paralleled) by a low resistance through which most of the current flows, learing only enongh flowing through the instrument to give a full-wale deflection corresponding to the total current flowing through both meter and shunt. An instrument which reads microamperes is called a micrommmeter or gralranompter: one calibrated m milliamperes is called a milliammeter: one calibrated in amperes is an ammeter. A rollmeter is simply a milliammetre with a high resistance in series so that the curvent will be limited to a suitable value when the instrmment is commereded areves a voltage somere: it is mabrated in terms of the voltage which must appoar arooss the terminals to cause a given value of current to fow. The serios gesistance is called a multiplier. A uattmeter" is a combination voltmeter and ammeter in which the pointer deflection is proportional to the power in the cirenit.

An ammeter or milliammeter is comnected in series with the circuit in which current is being measured. so that the current flows through the instrument. A voltmeter is connected in parallel with the circuit.

©. 2-7 Alternating Current

Description - An altornating current is one which periodically reverses its direction of flow. In addition to this altermate change in divection, usually the amount or amplitule of the current also varies continually during the period when the eurent is flowing in she direction. These variations are accompanied by corresponding variations in the magnetic fied set up by the aurrent, and it is this feature which makes the alternating current so useful. Jy means of the varying ficld, corgy may be
continually transferred (by induction) from one circuit to another without direct comection, and the voltage may be changed in the process. Neither of these is possible with direct current because, except for brief periods when the circuit is closed or opened, the field accompanying a steady direct current is unchanging, and hence there is no way of imducing an e.m.f. except by moving a conductor through the field (\$2-5).

Alternating currents may be generated in several ways. Rotating electrical machines (a.c. generators or alternators) are used for developing large anounts of power when the rate of reversal is relatively slow. However, such machines are not suitable for producing currents which reverse direction thousands or millions of times each second. The thermionie vacumm tube is used for this purpose, as desseribed in Chapter Three.

The simplest form of altermating current (or voltage) is shown graphically in Fig. 227. This chart shows that the current starts at zero value. buids up to a maximum in one direction, comes back down to zero, builds up to a maximum in the opposite direction and comes back to zero. The curve follows the sine law and is known as a sine uane, because of the wavelike nature of the curve which results when sine values are plotted on rectangular coürdinates as a function of angle or time.

Frequency - The eomplete wave shown in Fig. 227 is called a cugle, and the length of time repuired to complete one cyrle is called the period. Farlh half of the cycle, during which the corrent is flowing in one direction, although its strength is varbing, is known as an alteration. The mamber of cyiles the wate groes through each socond of time is called the frequencly. In radio work, where frequencies are extremely large. it is conveniont to use two other units. hilorycles persecomd (cyerspersecond $\div 1000$) and megacyeles per serond (eyeles per second $\div 1.000,000)$. These are usually abbreviated ke. and Mc.. respertively. Occasionally these abbreviations are written kes. and Mrs. to indicate "kilocercles per serond" and "megacycles, per second" rather than simply "kilncycles" and "megarveles." but it is understood that "per second" is meant when the shorter forms are usel.

Fig. 29:- Sine wave of alternating current or voltape.

Electrical and Radio Fundamentals 31

Electrical degrees - If we take a fixed point on the periphery of a revolving wheel, we find that at the end of each revolution, or cyele. the point has come back to its original starting place. Its position at any instant can be expressed in terms of the angle bet ween two lines, one drawn from the center of the wheel to the point at the instant of time considered, the other drawn from the whel eenter to the starting point. In making one complete revolution the point has travelled through 360 degrees, a half revolution 180 degrees, a quarter revolution 90 degrees, and no on. The periodic wave of alternating current may be treated similarly, one complete cycle equalling one revolution or 360 degrees, one alternation (hallf eycle) 180 degrens, and so on. With the cyrle divided up in this way, the sine curve simply means that the value of current at any instant is proportional to the sine of the angle which corresponds to the particular fraction of the ascle considered.

The concept of angle is universally used in athernating eurrents. Gienerally, it is expressed in the fundamental form, using the radian rather than the degree as a unit, whence a cyele is equal to 2π radians, or a half cycle to π radians. The expression $2 \pi f$, for which the symbol ω is often used, simply means elect rical degrees per ache times freguency, and is called the anfular relocity. It gives the total number of elect rical radians pased through by a current of given frequency in one second.
Peak, instantancons, pflertice und acrage walues - The highest value of current or voltage during the time when the current is flowing in one direction is called the maximum or peak value. For the sine wave, the peak has the same absolute value on both the positive and negative halves of the cycle. This is not neressarily true of waves having shapes other than the true sine form.
The value of current or voltage existing at any particular point of time in the rycle is called the instantaneous value. The instant for which a particular value is to be found can be specified in terms of time (fraction of the period) or of angle.

Since both the voltage and current are swinging continuously between their positive maximum and negative maximum values, it might be wondered how one can speak of so many amperes of alternating current when the value is changing continuously. The problem is simplified in practical work by considering that an alternating current has an effective value of one ampere when it produces heat, in flowing through a given resistance, at the same average rate as one ampere of contimous direct current flowing through the same resistance. This effective value is the square root of the mean of all of the instantancous current values squared. In the case of the sine-wave form,

$$
E_{\mathrm{cff}}=\sqrt{1 / 2 E_{\mathrm{max}}^{2}}
$$

For this reason, the effective value of an alter-
nating current or voltage is also known as the root-mcan-square, or r.m.s.s, value. Hence, the effective value is the square root of $1 / 2$, or 0.707 , times the maximum value.
In a purely ace. circuit the average current over a whole eycle must be zero, because if the a verage current on, say, the positive half of the cycle were greater than the average on the negative half, there would be a net current flow in the positive direction. This would correxpond to a direct (although intermittent) current, and hence must be excluded because a purely alternating current was assumed. The "average" value of an alternating current is defined as the average current during the part of the aycle when the current is fowing in one direction only. It is of particular importance when alternating current is changed to direct current by the methods considered in later chapters. For a sime wave, the average value is equal to 0.636 of the peak value.

In the sine wave the three voltage values, peak, effective and average, are related to each other as follows:

$$
\begin{aligned}
& E_{\text {max }}=E_{\text {.ff }} \times 1.414=E_{\text {ave }} \times 1.57 \\
& E_{\text {.ff }}=E_{\text {wax }} \times 0.707=E_{\text {ane }} \times 1.11 \\
& E_{\text {ave }}=E_{\text {tuax }} \times 0.636=E_{\text {.ff }} \times 0.9
\end{aligned}
$$

The relationships for current are equivalent to thuse given above for voltage.

Phase - As the nest few paragraphs with show, the current, and voltage in an alternat-ing-current circuit may not pass through their maximum and minimum values at the same time, even thongh both are sine waves of the same frequency: The time at whicll a particular part of the cycle (such as the positive peak) ocrurs is called the phase of the wave. If two waves are not examply in step there is a phase difference betwen them. The phase difference can be expressed in terms of the actuad difference in time bet ween the two instants at which the two waves reach corresponding parts of their cycles, but it is generally more convenient to meature it in angular units. A phase difference of 90 degrees, for example, means that one wave reaches its maximum value one-quarter cycle before the other wive reaches its maximum value in the same direction.
The phase relationships between two currents (or two voltages) of the same frequency are defined in the sime way. When two surh currents are combined the resultant is a single current of the same frequency, but having an instantaneous amplitude equal to the algebraic sum of the amplitudes of the two components: at the same instant. The amplitude of the resultant current hence is determined by the phase relationship between the two currents before combination. Thus if the two currents are exartly in phase. the maximum value of the resultant will be the numerical sum of the maximum values of the individual currents; if they are 180 degrees out of phase, one reaches its positive maximum at the instiant the other reaches it: negative maximum, hence the resultant current is the difference between the
two. In the latter case, if the two currents have the same amplitude the resultant current is zero.

Current, voltage and power in an inductance - When alternating current flows through an inductance, the eontimatly varying magnetir firld rames the rontinnous generation of an c.m.f. of self-inductinn (\$2-5). The induced voltage at any instant is proportional to the rate at which the current is changing at that instant. If the current is a sine wave. it can be shown that the rate of change is greatest when the current is passing through zero and least when the eurrent is maximum. For this reasom, the indued voltage is maximmo when the current is zoro and zero when the eurent is maximum. The direction or polarity of the induced voltage is such as to tend to sustain the current flow when the current is derreasing and to prevent it from flowing when the current is increasing ($\$ 2-i$). As a result. the indured voltage in an inductance hage 90 degrees beblind the courent.

By Lenz's Law, the induced voltage must always oppose the applied voltage; that is, the induced and applied voltages must be in phase opposition, or 180 dearees wat of whase. Consequently. the applied voltage leats the current by 90 degres. Or'. using the voltage as a reference. tho current in an inductance lags 90 degrees, or ono-rfuarter eycle, bohind the voltage. These relationships are shown in Fig. $22 S$.

When the current is Increasing in either direction, energy is being stored in the magnetir field. At such times the voltage has the simme polarity as the current, so that the product of the two. Which gives the instantaneons power fed to the inductance, is positive. When the current is derrasing energy is being restored to the riventit and the applied voltage has the opposite polarity, so that the product of curent and voltage is negative. This is alson shown in Fig. 22s. Positive power means power taken from the source (i.e.. the source of the applied e.m.f.). White negative power means power returned to the source. Power is alternately taken and given back in earh quarter ryele, and, since the amount given bark is the same as that taken, the arcage puwer in an inductance is zero when considering a whole cyele. In a practical inductance the wire will have some resistance. so that some of the power supplied will be consumed in heating the wire, but if the resistance of the circuit is small compared to the inductance the power
consumption is very small compared to the power which is alternately stored and returned.

Current, coltage and pourer in a condenser - When an alternating voltage is appiled to a condenser, the condenser acquires a charge while the voltage is rising and loses its charge while the voltage is decreasing. The quantity of electricity stored in the condenser at any instant is proportional to the voltage across its terminals at that instant ($Q=C E)$. Since current is the rate of transfer of quantity of electricity, the rurrent flowing into the condenser (when it is being charged) or out of it (when it is discharging) consequently will be proportional to the rate of change of the applied voltage. If the voltage is a sme wave, its rate of change will be greatest when passing through zero and least when the voltage is maximm. As a result, the current flowing into or out of the condenser is greatest when the voltare is passing through zero and least when the voltage rearhes its prak value.

This relationship is shown in Fig. 229. Whenever the voltage is rising (in either direction) the current fluw is in the same direction as the applied voltage. When the voltage is decreasing and the condenser is discharging, the current flows in the opposite direction. The energy stored in the comdenser on the charging part of the cycle is restored to the circuit on the discharge part, and the total energy consumed in a whole eyele therefore is zero. A condenser operating on a.r. takes no average power from the souree, except for such actual energy losses as may orfor as the result of heating of the dielectric ($\$ 2-3$). The energy loss in air condensers used in radio circuits is negligibly small except at extremely high frequencies.

As shown by Fig. 229, the phase relationship between current flow and applied voltage is such that the current leads the voltage by 90 degrees. This is just the opposite to the inductance case.

Fip. 229 - Voltage, current and power relations in an alternating-current eircuit consisting of capacity only.

Current, voltage and pouer in resistance

- In a circuit containing resistance only there are no energy st orage effeets, and consequently the current and voltage are in phase. The current therefore always flows in the same direction as the applied voltage, and, since the power is always positive, there is continual power
dissipation in the resistance. The relationships are shown in Fig. 230.

Strictly speaking, no circuit can have resistance only, because the flow of current always is accompanied by the creation of a magnetic field and every combluctor also has a certain amount of capucity. Whether or not such residual inductance and rapacity are large conough to require consideration is detemined by the frequency at which the cireuit is to operate.

The a.e, spectrum - Alternating currents of different frequencies have different propertics and are useful in a variety of wats. For the transmission of power to light homes, run mo-

Fig. 230 - Voltaqe, current and mwer relations in an alicrnat-ing-eurrent cirenit consisting of resistance only. tors and pertorm familiar everyday tasks by electrical means, low frequencies are most suitable. Frequencies of 25. so and 60 eyrles are in common wes, the latter being most widely used in this country. The range of freguencies between about 15 and 15,000 cycles is known as the autio-frequent! ranue, beraluse when freduencies of this order are converterl from ale. into air vibations, as by a loudspeaker or telephone reeaver, they are diatinguishable as somuds hatring a tone piteh proportimat to the fremuency. Frequencies above 15,000 cycles (15 kilocycles) are used for radio communatation, because at frequencies of this order it is possible to convert electrical energy into madio waves which can be radiated over long dishanmes.

For convenience in reference, the following classifications for radio frequencies have been recommended by an international technical conference and are now increasingly in use:

10 to 30 kilocveles
30 to 360 kilocycles
300 to 30% kilocycles 3 to 30 megacycles
30 to 300 megacycles
300 to 3000 megacycles
3000 to 30,000 megacycles

> Very-low frequrncies
> Iow frequencies
> Mhedinif frequencics High frequencies Very-hiph frequenries Utrahigh frequenci"s Superhiph frequences

Until recently, other terminology wats used; for example, the reqion above 30 mematerles formerly was considered the "ultrahigh" frequencies.

Wareform, harmonies - The sine wave is not only the simplest but for many purposes is the most desirable waveform. Many other waveforms are met in practice. however, and they maly differ considerably from the simple sine case. It is possible to show by amalysis that any such waveform can be resolved into a number of components of differing frefuencies and amplitudes. but related in frequeney in sumh a way that all atre integer multiples of
the lowest freduency present. The lowest frequency is called the fumbmental, and the multiple frequencies are catled harmonirs. 'Thus a wave may comsist of fundamental, 3rd, 5th, and 7 th hamonies, meaning, if the fambamental freguency is say 100 rycles, that frequencies of 300.500 and 700 cycles also are present in the ware.

Fig. 231 shows how at fumbamental ambla second harmonic might combine to form a nonsimusoidal watve. An infinite number of waveforms could be ohtained from the combination of 1 wo such waves, since the shape of the eombined wave will depend upon the amplitude and phase of the two (יnmponent wave.

The squate wave also shown in lig. 231, consists of a fundamental and an infinite mumber of harmonies. This type of wave is useful in a variety of applications.

C. 2-8 Ohm's Law for Alternating Currents

Resistamere - Since current and voltage are always in phase through a resistance. the instamtaneous relations for ace are equivalent to thase in d.c. eircuits. By definition, the effective units of curvent and voltage for a.d. are made equal to those for d.e. in resistive circuits (\mathbf{S}^{2-7}). Therefore the various formulas expressing Ohm's Jaw for d.e. cirmits apply without any change to are ciments comtaming resistance only, or for purely resistive parts of complex a.e cireuits. Sorese

In applying the formmats, it must be remembered that eomsistent mits must be used. For example. if the instantanemus value of current is used in fimbing voltage or prower. the voltage foumd will be the itratantanerome woltage amd the power will be the instantaneons power. Tikewise if the effertive value is thed for one glathtity in the formala, the unknown will beexpressed in effertive value. I'nIese otherwise indirated. the effertive value of current or voltage is alWays understood to be mealit. when referme is made to ". 1 .trrem1" or "voltame."

Reachaner -

 In the proceding section it Was shown that energy-storatre efferts in induct: Hoce and rapmaitance rallve a phase difference 10 exist betwern horaphlied voltatre and the rour-

Fie 23 (immhinatiom of a fumdammatal am! -qumbl harmentic: with the amplitude and plasad mation-luipe htown wiver the nom-anmerrislal reatiant. Tlor sguare wala. bifon. edontain- an intinit. mamber of harmomics.
rent that flows as a result. Berause of this, Ohm's Law cannot be applied in its entirety to ale. circuits containing inductance and/or capacitance, particularly for the calculation of power consmmed. However, the amplitude of the current that flows in such cireuits is directly proportional to the voltage applied. just as it is in purely resistive circuits. In other words, both inductance and rapatcity offer opposition to current flow, and this opposition can be measured in ohms just as it is in the case of resistance. But, the opposition is called reactance to indieate that it does not consume power and thereby distinguish it from resistance.

Ohm's Law formulas extented to include reactance are quite similar to the formulas for resistive circuits:

$$
I=\frac{E}{X} \quad E=X I \quad X=\frac{E}{I}
$$

where X is the symbol for reartance.
Reactance diffors from resistance in another respect -- its value for a given amount of inductance or eapacity, varics with the frequency of the current flowing, wherets resistance is not inherently affected by frequency. However, the reactance of a given inductance or capacity is constant for all values of applied voltage solong as the frequency is constant.

Inductice reactance - When altemating current flows through an inductance it must take just the right value to make the induced voltage equal the applied voltage (\$2-7). Since the inducel voltage is equal to the inductance multiplied by the rate of change of the current. it is evident that the larger the value of inductance considered, the smatler the rate of current change required to induce a given voltage. If the frequency is fixed, the rate at which the alternating current changes is simply proportional to the amplitude of the current. Hence a small current will suffice if the inductance is large, while a large current will be required if the inductance is small, assuming that the applied voltage is the same in both cases. In other words, the reatetance of an inductance is direrily proportional to the value of the inductance, at a fixed frequency.

However, the rate of change of current is proportional to frequency as well as to amplitude, because the greater the number of rycles per second the more rapidly the current goes through its regular variations. Consequently, increasing the frequency will have the same effect as increasing the amplitude of the current insofar th the induced voltage is concerned ; or, to put it another way, if the frequency is in(reased the amplitude may be decreased in the same proportion to maintain the same induced voltage in a given inductance. Smaller courrent amplitude through a fixed value of inductance means that the retwinnee is higher, so it is apparent that the reactance of an inductance increases with increasing frequency.

Thus three factors, inductance, current amplitude, and frequency (angular velority) de-
termine the indured voltage. Combining then, we have, for sine-wave current,

$$
E=2 \pi f L I, \text { or } \frac{E}{I}=2 \pi f L
$$

Since $X=E / I$, then

$$
X_{L}=2 \pi f L
$$

where the subseript L indicates that the reactance is inductive.

The fundamental units (ohms, cycles, henrys) mast be used in the above equation, or appropriate factors inserted if other units are employed. If inductance is in millihenrys, the frequeney should be stated in kilocycles; if inductance is in mierohenrys, the frequency should be given in megacyeles, to bring the answer in ohms.

Capacitive reactance - The quantity of electricity stored in a condenser depends upon the rapacity and the applied voltage ($Q=C E$), and if losses are negligible the sume quantity of electricity is taken out of the condenser on discharge. Current must flow into the condenser to charge it, and must flow out of it to discharge it ; the value of the current is the rate at which the quantity of electricity is put into the condenser or taken out (\$2-4). When an a.c. voltage is applied to a condenser the alternate movement of a quantity of electricity to charge and discharge it as the applied voltage rises and falls and reverses polarity, constitutes current flow "through'" the condenser.

The amplitude of the current at any instant is proportioual to the rate of change of the voltage at that instant; the greater the rate of change the faster the given ruantity of clectricity is moved. The amplitude is also proportional to the capacitance of the condenser, since a larger capactance will take a larger quantity of clectricity at a given voltage. Since the rate of change of voltage is proportional to the amplitude of the voltage and its frequency, then for a sine-wave voltage

$$
I=2 \pi f C E, \text { or } \frac{E}{I}=\frac{1}{2 \pi f C}
$$

Since $X=E / I$, then

$$
X_{C}=\frac{1}{2 \pi f C}
$$

where the subscript C indicates that the reactance is capacitive. Capacitive reactance is inversely proportional to caparity and to the applied frequency. l'or a given value of capacity, the reactance decreases as the frequency increases.

Fundanmental units (farads, eycles per second) must be used in the right-hand side of the equation to obtain the reactance in ohms. Conversion factors must be used if the frequency and capacity are in units other than cycles and farads. If (is in microfarads and f in megacyeles, the conversion factors cancel.
Impedance - In any series circuit the same current flows through all parts of the circuit. If a resistance and inductance are connected in series to form an a.c. circuit they both carry
the same current, but the voltage across the resistance is in phase with the current while the voltage across the inductance leads the current by 90 degrees. In a d.e. circuit with resistances in series, the applied voltage is equal to the sum of the voltages across the individual resistances ($\$ 2-6$). T'his is also true of the a.c. circuit with resistance and inductance in series if the instantaneous voltages are added algebraically to find the instantaneous value of applied voltage. But, because of the phase difference between the two voltages, the maximum value of the applied voltage will not be the sum of the maximum values of the two voltages, so that the effective values cannot be added directly. The same considerations hold in the case of resistance and capacity in series.

In either case the total voltage is given by the following expressions:

$$
E^{2}=E^{2} \mathrm{x}+E_{R}^{2}, \text { or } E=\sqrt{E_{R}^{2}+E^{2} X}
$$

where E_{X} indicates the voltage arross the reactance, which may be either inductive or capacitive, and E_{R} is the voltage across the resistance.

Since $E_{R}=I R$ and $E_{X}=I X$, substitution gives

$$
E=I \sqrt{R^{2}+X^{2}}, \text { or } \frac{E}{I}=\sqrt{R^{2}+X^{2}}
$$

E / I is called the impedance of the circuit and is designated by the letter Z. Hence,

$$
Z=\sqrt{R^{2}+X^{2}}
$$

The impedance determines the voltage which must be applied to the circuit to cause a given current to flow. The unit of inpedance is, therefore, the ohm, just as in the case of resistance and reactance, which also determine the ratio of voltage to current. Ohm's Law for alternating current circuits then becomes

$$
I=\frac{E}{Z} ; Z=\frac{E}{I} ; E=I Z
$$

It should be noted that the equivalent Ohm's Law relationship for power in a d.c. circuit does not apply directly in the case of an a.c. circuit where Z replaces R. As will be explained, the power factor of the circuit must be taken into consideration.

In summary, impedance is a generalized quantity applying to a.c. or d.c. circuits, sin)ple or complex. In a d.c. circuit or in an a.c. circuit containing resistance only, the phase angle is zero (current and voltage are in phase) and the impedance is equal to the resistance.
In an a.c. circuit containing reactance only the phase angle is 90 degrees, with current lagging the voltage if the reactance is inductive and current leading the voltage if the reactance is capacitive. In either case, the impedance is equal to the reactance.

In an a.c. circuit containing both resistance and reactance the phase angle may have any
value between zero and 90 degrees, with the current lagging the voltage if the reactance is inductive and leading the voltage if the reactance is capacitive. The valuc of impedance, in olims, may be found from the equation given above.

Power is consumed in a circuit only when the current flow produced by the applied voltage is less than 90 degrees out of phase with that voltage. Power consumption decreases from maximum with in-phase conditions to zero at a 90-degree phase difference.

Series circuits with L, C and $R-$ When inductance, capacity and resistance all are in series in an a.c. circuit, the voltage relations are a combination of the scparate cases just considcred. The voltage across each element will be proportional to the resistance or reactance of that clement, since the current is the same through all. The voltages across the inductance and capacity are 180 degrees out of phase, since one leads the current by 90 degrees and the other lags the current by 90 degrees. This means that the two voltages tend to cancel; in fact, if the voltage across only the inductance and capacity in series is considered (leaving out the resistance), the total voltage is the difference between the two voltages.

The total reactance in a series circuit is, therefore, the difference between the individual inductive and capacitive reactances; or

$$
X=X_{L}-X_{C}
$$

If more than one inductance clement is present in the circuit, the total inductive reactance is the sum of the individual reactances; similarly, the same is true for capacitive reactances. Inductive reactance is conventionally taken as "positive" (+) in sign and capacitive reactance as "negative" (-). With this convention, algebraic addition of all the reactances in a series circuit gives the total reactance of the circuit.

Parallel circuits with L, C and R - The equivalent resistance of a number of resistances in parallel in an a.c. circuit is found by the same rules as in the case of d.c. circuits (§2-6). Parallel reactances of the same kind have an equivalent reactance given by a similar rule:

$$
X=-\frac{1}{\frac{1}{X_{1}}+\frac{1}{X_{2}}+\frac{1}{X_{3}}} \cdots \cdots
$$

This formula applies to reactances of the same sign; it cannot be used if both inductive and capacitive reactance are in parallel.

When both resistance and reactance are in parallel the same voltage is applied to both, but the current in the resistance branch will not be in phase with the current in the reactive branch. The phase difference will be 90 degrees if each branch contains only resistance or only reactance, so that the total current may be found by a rule similar to that used for finding
the total voltage in a series circuit. That is,

$$
I=\sqrt{I_{R}^{2}}+I_{X}^{2}
$$

The impedance of the circuit is equal to E / I, so

$$
Z=\frac{E}{\sqrt{I_{R}^{2}+I_{X}^{2}}}
$$

By assuming some convenient value for the applied voltage and then solving for the currents in the resistance and reactance, the values so found may be substituted in this equation to find the impedance of the circuit.

The fornulas above may be used for either inductive or capacitive reactance. When inductive reactance and capacitive reactance are in parallel, the current through the inductance is 180 degrees out of phase with the current through the condenser, hence the total current is the difference between the two currents. This difference may be substituted for I_{X} in the above equations.

It is of interest to note that, since the total current flowing in a circuit containing inductive and capacitive reactance in parallel is the difference between the currents in the two branches, the imperlance of such a parallel combination always is larger than the reactance of either branch alone. Any resistance which also may be in parallel is unafferted, since the current taken by the resistance is determined solely by the applied voltage.

With series-parallel circuits the solution becomes considerably more complicated, since the phase relationships in any parallel branch may not be either 90 degrees or zero. However, the majority of parallel circuits used in radio work can be solved by the rather simple approximate methods described in § 2-10.

Power factor - The power dissipated in an a.c. circuit containing both resistance and reactance is consumed entirely in the resistance, hence is equal to $I^{2} R$. However, the reactance is also effective in determining the current or voltage in the circuit, even though it consumes no energy. Hence the product of volts times amperes (which gives the power consumed in d.c. circuits) for the whole circuit may be several times the actual power used up. The ratio of power dissipated (watts) to the volt-ampere product is called the power factor of the circuit, or

$$
\text { Power factor }=\frac{\text { W'atts }}{\text { Volt-amperes }}
$$

Distributed caparity and inductance-

 If should not be thought that the reactance of coils beromes infinitely high as the frequeney is increased to a high value and, likewise. that the reactance of condensers becomes infinitely low at high frequencies. All coils have some capacity between turns, and the reactance of this capacity can become low enough at sone high frequencies to tend to cancel the high reactance of the coil. Likewise, the leads and plates of condensers will have considerable inductance at very high frequencies, which willtend to offset the capacitive reactance of the condenser itself. For these reasons, coils constructed for high-frequency use must be designed to have low "distributed" capacity. Similarly, condensers must be made with short, heavy leads so that they will have low self-inductance.

Units and instruments - The units used in a.c. circuits may be divided or multiplied to give convenient numerical values to different orders of magnitude, just as in d.c. circuits (§2-6). Because the rapidly reversing current is accompanied by similar reversals in the magnetic field, instruments used for measurement of d.c. (§ 2-6) will not operate on a.c.

At low frequencies suitabie instruments can be constructed by making the current produce both magnetic fields, one by means of a fixed coil and the other by the moving coil. Instruments having movements of this kind are variously known as dynamometer, electrodynamometer and electrodynamic types.

Another type of instrument suitable for measuring alternating current is less expensive in construction and therefore more widely used. This is the repulsion-type moving-iron a.c. ammeter shown in Fig. 232. Fundamentally, the movement is based on the same principle as the inexpensive moving-iron-vane meter for d.c. shown in Fig. 225. In the repulsion-type instrument current flowing through the stationary coil magnetizes two iron vanes, one

Fig. 232 - Ammeter based on a repulsion. type moving-iron movement used for a.c. measurements.
fixed and the other attached to the movable pointer shaft. Inasmuch as the two vanes are in the same plane and magnetized by the same source, the magnetic effect upon them by the current through the coil will be identical regardless of its polarity. When the two vanes are magnetized they repel each other (§2-2) and the movable vane moves away from the fixed vane, causing the pointer to travel along the scale. The degree of travel is controlled by a spring which brings the pointer to rest at a point where the electrical and mechanical forces balance, and returns the pointer to zero on the scale when current flow ceases.

Such instruments are used for measurement of either current or voltage. However, when employed for voltage measurement by the use of high-resistance series multipliers, the minimum current drain required by such instruments because of their inherent insensitivity is so great that excessive load is placed upon the measurement source. For this reason, in radio work it is more common practice to convert the a.c. voltage to d.c. by means of a
copper-oxide or vacuum-tube rectifier and then measure the resulting indication on a d.c. instrument, as described in § $2-6$.

At radio frequencies instruments of the type dewribed above are inarcurate because of distributed capacity and other effects, and the only reliable type of direct-reading instrument is the thermeocouple ammeter or milliammeter. This is a power-operated device consisting of a resistance wire heated by the flow of r.f. current through it, to which is attached a thernocouple or pair of wires of dissimilar metals joined together and possessing the property of developing a small d.e. voltage between the terminals when heated. This voltage, which is proportional to the heat applied to the couple, is used to operate a d.c. instrument of ordinary design.

(1) 2-9 The Transformer

Principles - It has been shown in the preceding sections that, when an alternating voltage is applied to an inductance, the flow of alternating current throurh the coil causes an induced e.m.f. which is opposed to the applied e.m.f. The induced e.m.f. results from the varyiny magnetic field accompanying the flow of altermating current. It a socond coil is brought into the same field, a similar em.f. likewise will be induced in this coil. This induced e.m.f. may be used to force a current through a wire, resistance or other electrical device connected to the terminals of the second coil.

Two coils operating in this way are said to be couplet, and the pair of coils constitutes a transformer. The coil connected to the source of energy is called the primary coil, and the other is called the secombary woil. Winergy may be taken from the serondary, being transferred from the primary through the medium of the varying magnetic fichl.

Types of transformers - The usefulness of the transformer lies in the fact that energy can be transferred from one cirenit to another without direct connection, and in the process can be readily changed from one voltage level to another. Thus, if a device to be operated requires, for example. 120 volts and only a 440volt source is available, a transformer can be used to change the source voltage to that required. The transformer of course can be used only on a.c., since no voltage will be induced in the secondary if the magnetic field is not changing. If d.c. is applied to the primary of a transformer, a voltage will be imdued in the secondary only at the instant of closing or opening the primary circuin. since it is only at these times that the field is changing.

As shown in Fig. 23:3, the primary and secondary coils of a tramsformer may he wound on a core of magnetic material. This increases the inductance of the coils so that a relatively smatl number of turns may be used to induce a given value of voltage with a sinall current. A clowed core (one having a continuous magnetic path) such as that shown in F"ig. 23:3
also tends to insure that practically all of the field set up by the current in the primary coil will cut the turns of the secondary coil. However, the core introduces a puwer loss becanse of hysteresis, an effect which oceurs because the iron tends to retain its magnetism, and hence reguires the expenditure of energy to owerome this residual matgetism every time the atternating current reverses in direction, and hecaluse of celdy currerts, or currents induced in the core by the varying magnetic field.

SYMBOLS
Fig. 23.3 - The transformer. Power is transferred from the primary coil t, the seremlary leveans of the matnetio feld. The upher -ymbed at rimht indicato an ironcore transformer, the lower one an air-core transformer.

Core losess increase with frequency to sumela an extent that they become exressive at radio frequencies if a transformer is wound on the type of core used for power and audio frequenries. Transformers for use at radio frequencies either are wound on mon-magnetir material ("air core") or on spectial cores made of powdered iron partirles held in an insulating binder. In the latter case the core is mot used as a means of carreing the magnemic field from the primary to the secondary, hat simply to give a larger indurtane with a fixed number of tums. In radin-frequency 1 ramsformers relatively little of the manetio flux set up by the primary cuts the turms of the secombary. The discussion in this section is confined to lowfrequency iron-rore transormers, where prattically all of the primary flus cuts the serondary. liadio-frequency tamsformers are considered in \$ 2-10.

Voltage and turns ratio - For a given varying magnetic field, the voltage induced in a coil in the field will be propertional to the number of turns on the coil. If the two coils of a transformer are in the sinme fiold, it follows that the induced voltages will be proportional to the number of turns on earh coil. In the case of the primary, or coil connected to the source of power. the induced roltage is practically equal to, and opposes, the applied voltage. Hence, for all practical purposes,

$$
L_{s}=\frac{n_{s}}{n_{p}} E_{p}
$$

where E_{s} is the sccondary voltage. E_{p} is the primary voltage, and n_{s} and n_{p} are the number of turns on the secondary and primary, respertively. The ratio $n_{s,} n_{p}$ is called the ciums ratio of the transformer.

This relationship is true only when all the flux set up by the primary current cuts all the turns of the secondary. If some of the magnet ic flux follows a path which does not nake it cut the secondary turns then the secondary voltage is less than given by this formula, since this reduces the number of lines of furce (and thus redures the eflective strongth of the magnetic field affecting the secondary) by causing the rate of change of flux to be less in the seeondary than in the primary. In general, the equation can be used only when both coils are wound on a closed core of high permeability, so that practically all of the flux can be confined to definite paths.

Effect of secondary current - The primary current whien has been discussed above is usually called the maynetizing current of the transformer. Like the current in any inductance, it lags the applied voltage by 90 degrees, neslerting the small energy losses in the resistance of the primary coil and in the iron core.

When earrent is drawn from the secondary winding, the secondary current sets up a magnetic ficld of its own in the core. The phase relationship between this field and that caused by the magnetizing current will depend upon the phase relationship between current and voltage in the scondlary circuit. In cevery case there will be an effert upon the original field. To maintain the induced primary voltage equal to the applied voltage, however, the original field must be maintained. ('onsequently the primary current must change in such a way that the effect of the field set up by the secondary current is completely ranceled. This is areomplished when the primary draws additional current that sets up a field exactly equal to the ficld set up by the secondary current, but which opposes the secondary field. The additional primary current is thas 180 degrees ont of phase with the serondary current.

In rough calculations on transformers it is eonvenient to nerlect the mannetizing current and to assume that the primary current is caused entirely by the secondary load. This is justifiable. because in any well-designed transformer the magnetizing current is quite small in comparison to the load current when the latter is near the rated value.

For the fiedds set up by the primary and secondary load currents to be equal. the number of ampere turns in the primary must equal the number of ampere turns in the secondary. That is,

$$
n_{s} I_{\mathrm{s}}=n_{p} I_{p}
$$

Hence,

$$
I_{p}=\frac{n_{s}}{n_{p}} I_{s}
$$

The load current in the primary for a given load current in the serondary is proportional to the turns ratio, secondary to primary. This is the opposite of the voltage relationships.

If the magnetizing current is neglected, the phase relationship botween current and voltage
in the primary cireuit will be identical with that existing between the secondary current and voltage. This is because the applied voltage and induced voltage are 180 degrees out of phase, and the primary current and secondary current likewise are 180 degrees out of phase.

Energy relationships; efficiency-A transformer cannot create energy': it can only transfer and transform it. Hence, the power taken from the secondary cannot exceed that taken by the primary from the source of applied e.m.f. Since there is always some power loss in the resistance of the coils and in the iron core, the power taken from the source always will exceed that taken from the secondary. Thus,

$$
P_{o}=n P_{i}
$$

where P_{o} is the power taken from the secondary, P_{i} is the power input to the primary, and n is a fictor which always is less than 1 . It is called the efficiency of the transformer and is usually expressed as a percentage. The efficiency of small power transformers such as are used in radio receivers and transmitters may vary between about 60 per cent and 90 per cent, depending upon the size and design,

Leahage reactarice - In a practical transformer not all of the magnetic flux is common to both windings, although in well-designed transformers the amount of flux which cuts one coil and not the other is only a small percentage of the total flux. This leatage flux acts in the same way as flux about any coil which is not couphal to another coil; that is, it, gives rise to self-imbuction. Consequently, there is a small amount of leakage inductance associated with both windings of the transformer, but not common to them. Ieakage inductance acts in caactly the same way as an equivalent amount of ordinary inductance inserted in series with the circuit. It has, therefore, a certain reactance, depending upon the amount of inductance and the frequency. This reactance is called lewkage ractunce.

In the primary the practical effect of leakage reactance is equivalent to a reduction in applied voltage, since the primary current flowing through the leakine reactance causes a voltage drop. This voltage drop inercases with increasing primary current, hence it increases as more current is drawn from the secondary. The induced voltage ronsequently decreases, since the applied voltage (which the induced voltare must equal in the primary) has been effertively redured. The secondary induced voltage also decreases proportionately. When current flows in the secondary circuit the secondary leakare reactance causes an additional voltage drop, which results in a further reduction in the voltage available from the secondary terminals. 'Fhus, the greater the secondary current, the smaller the secondary terminal voltage becomes. The resistance of the primary and socondary windings of the transformer also causes voltage drops when current is flowing, and, although these voltage

Electrical und Radio Jundamentals 39

drops are not in phase with those caused by leakage reactance, together they result in a lower secondary voltage under load than is indicated by the turns ratio of the transformer.

Fig. 23: - The equivalent circuit of a transformer includes the effects of leakage inductance and resistance of both primary and secondary windings. The rusistance R_{e} is an equivalent resistance representing the constant core losses. Since these are comparatively small, their offect may be neglected in many approximate calculations.

At power frequencies (60 cycles) the voltage at the secondary, with a reasonably well-designed transformer, should not drop more than about 10 per cent under load. The drop in voltage may be considerably more than this in a transformer operating at audio frequencies, however, since the leakage reactance in a transformer increases directly with the frequency.

Impedance ratio - In an ideal transformer having no losses or leakage reactance, the primary and secondary volt-amperes are equal; that is.

$$
E_{p} I_{p}=E_{s} I_{s}
$$

On this assumption, and by making use of the relationships between voltage, current and turns ratio previously given, it can be shown that

$$
\frac{E_{p}}{I_{p}}=\frac{E_{s}}{I_{s}}\left(\frac{n_{p}}{n_{s}}\right)^{2}
$$

Since $Z=E / I, E_{s} / I_{s}$ is the impedance of the load on the secondary circuit, and E_{p} / I_{p} is the impedance of the loaded transformer as viewed from the line. The equation states that the impedance presented by the primary of the transformer to the line, or source of power, is equal to the secondary load impedance multiplied by the square of the primary-to-secondary turns ratio. This primary impedance is called the reflected impedance or reflected load. The reflected impedance will have the same phase angle as the secondary load impedance, as previously explained. If the secondary load is resistive only, then the input terminals of the transformer primary will appear to the source of e.m.f. as a pure resistance.

In practice there is always some leakage reactance and power loss in the transformer, so that the relationship above does not hold exactly. However, it gives results which are adequate for many practical cases. The impedance ratio of the transformer consequently is considered to be equal to the square of the turns ratio, both ratios being taken from the same winding to the other.
Impedance matching - Many devices require a specific value of load resistance (or impedance) for optimum operation. The re-
sistance of the actual load which is to dissipate the power may differ widely from this value, hence the transformer, with its impedancetransforming properties, is frequently called upon to change the actual load to the desired value. This is called impodance matchiny. From the preceding paragraph,

$$
\frac{n_{s}}{n_{p}}=\sqrt{\frac{Z_{s}}{Z_{p}}}
$$

where n_{s} / n_{p} is the required serondary-toprimary turns ratio, Z_{s} is the impedance of the actual load, and Z_{p} is the impedance required for optimum operation of the device delivering the power.

Transformer construction - Transformers are generally built so that flux leakage is minimized insofar as possible. The magnetic path is laid out so that it is as short as possible, since this reduees its reluctance and hence the number of ampere-turns required for a given flux density, and also tends to minimize flux leakage. Two core shapes are in common use, as shown in Fig. 235. In the shell type both windings are placed on the inner leg, while in the core type the primary and secondary windings may be placed on separate legs, if desired. This is sometimes done when it is necessary to minimize capacity effects between the primary and secondary, or when there is a large difference of potential between primary and secondary.

Core material for small transformers is usually silicon steel, called "transformer iron." The core is built up of thin sheets, called laminations, insulated from each other (by a thin coating of shellac, for example) to prevent the flow of eddy currents which are induced in the iron at right angles to the direction of the field. If allowed to flow, these eddy currents would cause considerable loss of energy in overcoming the resistance of the core material. The separate laminations are overlapped, to make the magnetic path as continuous as possible and thus reduce leakage.

The number of turns required on the primary for a given applied e.m.f. is determined by the maximum permissible flux density in the

Fig. 2.35 - Two common types of transformer construction. Core pieces are interleaved to provide a continuous magnetic path with as low reluctance as possible.
type of core material used, the frequency, and the magnetomotive force required to force the flux through the iron. As a rough indication, windings of small power transformers frequently have about two turns per volt for a core of 1 square inch cross-section and a magnetic path 10 or 12 inches in length. A longer path or smaller cross section would require more turns per volt, and vice versa.

In most transformers the coils are wound in layers, with a thin sheet of paper insulation between each layer. Thicker insulation is used between separate coils and between the coils and the core.

In power transformers distributed capacity in the windings is of little consequence, but in audio-frequency transformers it may cause undesired resonance effects (see $\$ 2-10$ for a discussion of resonance). High-grade audio transformers often have special types of windings designed to minimize distributed capacity.

The autotransformer- The transformer principle can be utilized with only one winding instead of two, as shown in Fig. 236; the principles just discussed apply equally well. The autotransformer has the advantage that, since

Fig. 236 - The auto-transformer is based on the transformer principle, but uses only one winding. The line and load currents in the common winding (A) flow in opposite directions, so that the resultant current is the difference bet ween them. The voltage aeruss A is proportional to the turns ratio.
the line and load currents are out of phase, the section of the winding common to both circuits carries less current than the remainder of the coil. This advantage is not very marked unless the primary and secondary voltages do not differ very greatly, while it is frequently disadvantageous to have a direct connection between primary and secondary circuits. For these reasons, application of the autotransformer is usually limited to boosting or reducing the line voltage by a relatively small amount for purposes of voltage correction.

(1) 2-10 Resonant Circuits

Principle of resonance - It has been shown (§2-8) that the inductive reactance of a coil and the capacitive reactance of a condenser are oppositely affected by frequency. In any series combination of inductance and capacitance, therefore, there is one particular frequency for which the inductive and capacitive reactances are equal. Since these two reactances cancel each| other, the net reactance in the circuit becomes zero, leaving only the resistance to impede the flow of current. The frequency at which this occurs is known as the resonant frequency of the circuit and the circuit is said to be in resonance at that frequency, or tuncd to that frequency.

Series circuits - The frequency at which a series circuit is resonant is that for which $X_{L}=X_{C}$. Substituting the formulas for inductive and capacitive reactance ($\$ 2-8$) gives

$$
2 \pi f L=\frac{1}{2 \pi f C}
$$

Solving this equation for frequency gives

$$
=\frac{1}{2 \pi \sqrt{L C}}
$$

This equation is in the fundamental units cycles per second, henrys and farads - and so, if fractional or multiple units are used, the appropriate factors must be inserted to change them to the fundamental units. A formula in units commonly used in radio circuits is

$$
f=\frac{1}{2 \pi \sqrt{L C}} \times 10^{6}
$$

where f is the frequency in kilocycles per second, 2π is $6.28, L$ is the inductance in microhenrys ($\mu \mathrm{h}$.), and C is the capacitance in micromicrofarads ($\mu \mu \mathrm{fd}$.).

The resistance that may be present does not enter into the formula for resonant frequency.

When a constant a.c. voltage of variable frequency is applied, as shown in Fig. 237-A, the current flowing through such a circuit will be maxinum at the resonant frequency. The magnitude of the current at resonance will be determined by the resistance in the circuit. The curves of Fig. 237 illustrate this, curve a being for low resistance and curves b and c being for increasingly greater resistances.

In the circuits used at radio frequencies the reartance of either the coil or condenser at resonance is usually several times as large as the resistance of the circuit, although the net reactance is zero. As the applied frequency departs from resonance, say on the low-frequency side, the reactance of the condenser increases and that of the inductance decreases, so that the net reactance (which is the difference between the two) increases rather rapidly. When it becomes several times as high as the resistance, it becomes the chief factor in determining the amount of current flowing. Hence, for circuits having the same values of inductance and capacity but varying amounts of resistance, the resonance curves tend to coincide at fre-

Fig. 237 - Charaeteristics of series-resonant and par-allel-resonant cireuits with variations in resistance, R.

Electrical and Radio Jundamentals 41

quencies somewhat removed from resonance. The three curves in the figure show this tendency.

Parallel circuits - The parallel-resonant circuit is illustrated in Fig. 237-13. This circuit also contains inductance, capacitance and resistance in series, but the voltage is applied in parallel with the combination instead of in series with it as in A. As explained in connection with parallel inductance and capacity (\$2-8), the total current through such a combination is less than the current flowing in the branch having the smaller reactance. If the currents through the inductive and capacitive branches are equal in amplitude and exactly 180 degrees out of phase, the total current, called the line rurrent, will be zero no matter how large the individual branch currents may be. The impedance ($Z=E / I$) of such a circuit, viewed from its parallel terminals, would be infinite. In practice the two currents will not be exartly 180 degrees out of phase, because there is always some resistance in one or both brancles. This revistance makes the phase relationship between current and voltage less than 90 degrees in the branch containing it, hence the phase difference between the currents in the two branches is less than 180 degrees and the two rurrents will not cancel completely. However, the line current may be very small if the rexistance is small compared to the reactance, and thus the parallel impedance at resonance may be very high.
As the applied frequency is increased or decreased from the resonant frequency, the reactance of one branch decreases and that of the other branch increases. The branch with the smaller reactance takes a larger current. if the applied voltage is constant, and that with the larger reartance takes a smaller current. As a result, the difference between the two currents becomes larger as the frequency is moved farther from resonance. Since the line current is the difference between the two currents, the current increases when the frequency moves away from resonance: in other words, the parallel impedance of the circuit decreases.
The variation of parallel inpedance of a parallel-resonant eircuit with frequency is illustrated by the same curves of Fig. 237 that show the variation in current with frequency for the series-resonant cireuit. The parallel impedance at resonance increases as the series resistance is made smaller.
In the case of parallel circuits, resonance may be defined in three ways: the condition which gives maximum impedance, that which gives a power factor of 1 (impedance purely resistive), or (as in series circuits) when the inductive and capacitive reactances are equal. If the resistance is low, the resonant frequencies obtained on the three bases are practically identical. This condition usually is satisfied in radio work, so that the resonant frequency of a parallel circuit is generally computed by the series-resonance formula given above.

Resistance at high frequencies - When current flows in a conductor a magnetic field is set up inside the conductor as well as externally. When the current is alternating, the internal magnetic field induces a voltage inside the conduetor which opposes the applied voltage and becomes larger as the center of the conductor is approarhed. As a result, the current is forced to distribute itself so that the greater proportion flows near the surface and less near the renter. This is known as skin affect.
Skin effect is negligible at low frequencies, but increases with increasing frequency to such an extent that at radio frequencies the major portion of the current flows near the surface. In the u.h.f. range, all the current may be concentrated within one or two thousandths of an inch of the surface, so that for all practical purposes the current flows entirely on the surface.

Since liftle current flows in the interior of a conductor at radio frequencies, the effect is the same as though the current were flowing in a thin conducting tube. This is the same as reducing the cross-sectional area of the conductor, which increases its resistance. Consequently skin effert increases the resistance of a solid condurdor as compared to its value for d.e. and low-frequency are.

Low resistance at radio frequencies can be achieved by using comductors with large surface area. since the imer part of the conductor does not carry current, thin-walled tubing may be used for corils equally as well as solid wire of the same diameter.

In the case of inductance coils, the magnetic field close to the wire causes the current to tend to concentrate in the part of the conductor where the fich is weakest, again rausing an effective decrease in the condurtor size and raising the revisuance. These effects, plus the effects of st ray currents flowing through the distributed apanty ($82-8$) between turns, raise the offective resistance of a coil at radio frequencies to many times the d.c. resistance of the wire.

Sharpness of resonance - As the internal series resistance is increased the resonance curves beeome "flatter" for frequencies near the resonance frequency, as shown in Fig. 237. The relative sharpness of the resonance curve near resonance frequency is a measure of the sharpness of tuning or selectivity (ability to discriminate between voltages of different frequencies) in such (ircuits. This is an important consideration in tuned cireuits for radio work.

Flywheel effect; $\boldsymbol{Q}-\boldsymbol{\Lambda}$ resonant circuit may be compared to a flywhecl in its behavior. Just as such a wheel will continue to revolve after it is no longer driven, so also will oscillations of electrical energy continue in a resonant circuit after the source of power is removed. The flywheel continues to revolve because of its stored mechanical energy; current flow continues in a resonant circuit by virtue of the energy stored in the magnetic field of the coil and the electric field of the condenser. When
the applied power is shut off the energy surges back and forth between the roil and condenser, being first stored in the fiekl of one, then released in the form of current flow, and then restored in the field of the other. Since there is always resistance present some of the energy is lost as heat in the resistance during each of these oxcillations of encrgy, and eventually all the energy is so dissipated. The length of time the oscillations will continue is proportional to the ratio of the eneroy storen to that dissipated in cach eycle of the oscillation. This ratio is called the () (cuality factor) of the circuit.

Since energy is stored by either the inductance or capacity and maty he dissipated in either the inductive or eapacitive branch of the circuit, a (can be established for either the inductance or capacity alone as well as for the entire circuit. It can be shown that the energy stored is proportional to the reactance and that the energy dissipateal is proportional to the resistanee, so that, for either inductance or eapacity associated with resistance,

$$
Q=\frac{X}{R}
$$

This relationship is useful in a variety of cirenit problems.

In resomant circuits at frepuencies below about 28 Me. the internal resistance is almost wholly in the eoil: the condenser resistance may be maglected. Conserguently, the (f of the circuit as a whole is determined by the Q of the eoil. Coils for use at frequencies below the verv-high-frequeney rowion may have Q s ranging from 100 to several hundred, depending upon their size and construction.

The sharpmess of resomance of a tuned circuit is directly propertional to the Q of the rircuit. As an indication of the effeet of Q, the current in a sories cirmuit drops to a little less than half its resonamer value when the applied frequency is changed by an amount equal to $1 / Q$ times the resonant frequeney. The parallel impedance of a parallel cireuit similarly dereases with change in frequency. For example, in a circuit having a () of lol , whanger the applied frequency hy $1 / 100$ th of the resonant frequency will derease the paralled impedance to less that hatf its value at resonathere.

Damping, decremont - The rate at which current dies down in amplitude in a resonant circlit after the sourre of power has been renoved is called the decrememt or damping of the rircuit. A rimuit with high decrement (low (d) is saill to be highly dimped; one with luw decrement (high (g) is lightly damped.

Foltage rise - When a voltage of the resonant frequency is inserted in series in a resonant cirmit, the voltage which appears across cither the eril or condenser is considerably higher than the applied voltage. This is becanse the current in the circuit is limited only by the actual resistance of the cuil-condenser rombination in the circuit, and hence may have a relatively high valur; however, the same
current flows through the high reactances of the eoil and condenser, and consequently causes large voltage drops ($\$ 2-8$). As explained above. the reactances are of opposite types and hence the voltages are opposite in phave, so that the net voltage around the circuit is moly that which is applied. The ratio of the reactive voltage to the applied voltage is proportional to the ratio of reactance to resistance, which is the Q of the circuit. Hence, the voltage across either the coil or condenser is equal to Q times the voltage inserted in series with the circuit.

If, for example, the inductive reactance of a circuit is 200 ohms, the capacitive reactance is 200 ohms, the resistance \bar{j} ohms, and the applied voltage is 50 , the two reactances cancel and there will be but the 5 ohms of pure resistance to limit the current flow. Thus the current will be 50,5 or 10 amperes. The voltage developed across either the coil or the condenser will be equal to its reatance times the current, or $200 \times 10=2000$ volts.

The ratio of reartive voltage to applied voltage is equal to the ratio of the ramance of the eoil or the comdenser to the resistance. Since the latter ratio equals the Q of the circuit. the ranctive voltage equals the applied voltage times the $Q(200 / 5$ or $40 \times 50=2000$ volts).

Parallel-resonant circuit impedanceThe parallel-resonant cirmuit offers pure resistance (its resonant imperiance) betwern its terminals because the line current is practically in phase with the applied voltare. it frequencies off resumance the current increases through the branch having the lower reactance (and vice versa) so that the cirmit becomes reactive, and the resistive component of the impedance derreases as shown in lig. 238.

If the circuit Q is 10 or more, the parallel impedance at resonance is given by the formula

$$
Z_{r}=X^{2} / R=X Q
$$

where X is the reactance of either the coil or the condenser and R is the internal resistance.

O of londed circuits-In many applications, partirularly in receiving, the only power dissipated is that lost in the resistance of the resonant circuit itself. Henco the coil should be designed to have as high O as possible. Since, within limits, increasing the number of turns raises the reactance faster than it raises the

Fig. 238 - The impledance of a parallel-resonant resistance circuit is shown here separated into its reactance and resistance components. The parallel resistance of the circuit is equal to the parallel impedance at resonance.

Electrical and Radio Fundamentals 43

resistance, coils for such purposes are made with relatively large inductance for the frequency under consideration.

On the other hand, when the circuit delivers energy to a load, as in the case of the resonant rireuits used in transmitters, the energy consumed in the circuit itself is usually negligible compared with that consumed by the load. The equivalent of such a cirruit can be represented as shown in Fig. 2:09-A, where the parallel resistor represents the load to which power is delivered. If the power dissipated in the load is greater by 10 times or more than the power lost in the coil and condenser, the patallel impedance of the resonant circuit alone will be so high compared to the resistance of the load that the latter maty be considered to determine the impedance of the combincd circuit. (The parallel impedance of the tuned cireuit alone is resistive at resonnme, so that the impedance of the rombined circuit inay be calculated from
(A)

(B)

Fig. 2.39 - The eruivalent circuit of a resonant circuit delivering power to a lead. The resistor 14 represents the load resistance. At (B) the load is tapped across part of L, which by transformer action is equivalent to using a higher load resintance arross the whole eirenit.
the formula for resistances in parallel. If one of two resistances in parallel has 10 times the resistance of the other, the resultant resistance is practically equal to the smaller resistance.) The error will be small, therefore, if the losses in the tumed circuit alone are neglected. Then, since $Z=X()$, the Q of a circuit loaded with a resistive impedance is

$$
Q=\frac{Z}{X}
$$

where Z is the load resistance connerted across the circuit and X is the reactance of either the coil or condenser. Hence, for a given parallel impedance, the effective Q of the circuit inchuding the load is inversely proportional to the reactance of cither the coil or the condenser. A circuit loaded with a relatively low resistance (a few thousand ohms) must therefore have a large capacity and relatively small induetance to have reasonably high ().

From the above it is evident that connecting a resistance in parallel with a resonant circuit decreases the impedance of the circuit. However. the reactances in the circuit are unchanged, hence the reduction in impedance is equivalent to a reduction in the Q of the circuit. The same reduction in inpedance also could be brought about by increasing the series resistance of the circuit. The equiralent series resistance introduced in a resonant circuit by an actual resistance comnected in parallel is that value of resistance which, if added in series with the coil and condenser, would decrease the circuit Q to the same value it has when the parallel resistance is connected.

When the resistance of the resomant circuit alone can be neglected, the equivalent resistance is

$$
R=\frac{X^{2}}{Z}
$$

the symbols having the same moming as in the formula above.

The effect of a load of given resistance on the (l of the cirait can be whanged by connecting the load across only part of the eircuit. The most common method of aceomplishing this is by tapping the losd acrose part of the coil. as shown in Fig. 2:39-13. The smatler the portion of the coil arross which the load is tapped, the less the loatding on the circuit; in other words, tapping the load "down" is equivalent to comuerting a higher value of load resistance across the whole circuit. This is similar in primeiple to impedance trinsformation with an iron-core transformer (\$2-9). Ifowever, in the high-frequency resonant cireuit the impedance ratio does not vary exactly as the sequare of the turn ratio. berause all the magnetic flux limes du not cut every turn of the eril. A desired reflected impedanere usually must be obtained be experimental adjustment.

L/C: ratio - Thic formula for resomant frequency of a cireuit shows that the same frequency shways will be obtained so longe ats the prorluct of \dot{L} and C is constant. Within this limitation, it is evident that L can be latge and C small. L smath and ("large, ote. The relation betwern the two for a fixed fregueney is called the $/ / \mathrm{C}^{*}$ ratio. A high-(eircuit is one which has more caparity than "normal" for the frequency ; a lou-f circuit one which has less than normall capacity. These terms dopend to a considerable extont upon the particular application considered, and have no exate numerical meaning.

LC constants - As printed ont in the prereding paragraph, the product of incluctance and capacity is constant for any given frequency. It is frequently conveniont to use the numerical value of the $L C$ constant when a number of calculatoons have to be made involving different L ' C ratios for the same frequency. The constant for any frequency is given by the following equation:

$$
L C=\frac{25330}{f^{2}}
$$

Where L is in mideohenrys. (C in micronierofarads, and f is in megarocles.

[1 2-11 Coupled Circuits

Energy transfer; lomeling - Two eircuits are said to be coupled when energy can be transforred from one to the other. The circuit delivoring energy is called the primary circuit: that receiving energy is called the secondary rircuit. The energy may be practically all dissipated in the secomdary circuit itself, as in receiver circuits, or the secondiry maty simply act as a mediam through which the energy is transferred to a load resistance where it does
work. In the latter ease, the coupled circuits may act as a radio-frequency impedancematching device ($\$ 2-9$) where the matching can be aceomplished by adjusting the loading on the secondary ($\$ 2-10$) and by varying the coupling between the primary and secondary.

Fig. 240 - Basie methods of circuit coupling.
Coupling by a common circuit element One method of coupling between two resonant circuits is to have some type of circuit element common to both circuits. The three variations of this type of coupling (often called direct coupling) shown at A, B and C of Fig. 240, utilize a common inductance, capacity and resistance, respectively. Current circulating in one $L C$ branch flows through the common element (L_{c}, C_{c}, or R_{c}) and the voltage developed across this clement causes current to flow in the other $L C$ branch. The degree of coupling between the two circuits becomes greater as the reactance (or resistance) of the common element is increased in comparison to the remaining reactances in the two branches.

If both circuits are resonant to the same frequency, as is usually the case, the common impedance - reactance or resistance - required for maximum energy transfer is generally quite small compared to the other reactances in the circuits.

Capacity coupling - The circuit at D shows electrostatic coupling between two resonant circuits. The coupling increases as the capacity of C_{c} is made greater (reactance of C_{c} is decreased). When two resonant circuits are coupled by this means, the capacity required
for maximum energy transfer is quite small if the Q of the secondary circuit is at all high. For example, if the parallel impedance of the secondary circuit is 100,000 ohms, the reactance of the coupling condenser need not be lower than 10,000 ohms or so for ample coupling. The corresponding capacity required is only a few micromicrofarads at high frequencies.

Inductive coupling - Fig. 240-E illustrates inductive coupling, or coupling by means of the magnetic field. A circuit of this type resembles the iron-core transformer ($\S 2-9$) but, beeause only a small percentage of the flux lines set up by one coil cut the turns of the other coil, the simple relationships between turns ratio, voltage ratio and impedance ratio in the iron-core transformer do not hold. To determine the operation of such circuits, it is necessary to take account of the mutual inductance ($\S 2-5$) between the coils.

Link coupling - A variation of inductive coupling, called link coupling, is shown in Fig. 241. This gives the effect of inductive coupling between two coils which may be so separated that they have no mutual inductance; the link may be considered simply as a means of providing the mutual inductance. Because mutual inductance between coil and link is involved at each end of the link, the total mutual inductance.between two link-coupled circuits cannot be made as great as when normal inductive coupling is used. In practice, however, this ordinarily is not disadvantageous. Link coupling frequently is convenient in the design of equipment where inductive coupling would be impracticable for constructional reasons.

The link coils generally have few turns compared to the resonant-circuit coils, since the coefficient of coupling is relatively independent of the number of turns on either coil.

Coefficient of coupling - The degree of coupling between two coils is a function of their mutual inductance and self-inductances:

$$
k=\frac{M}{\sqrt{L_{1} L_{2}}}
$$

where k is called the coefficient of coupling. It is often expressed as a percentage. The coefficient of coupling cannot be greater than 1, and generally is much smaller in resonant circuits.
Inductively coupled circuits - Three types of circuits with inductive coupling are in general use. As shown in Fig. 242, one type has a tuned-secondary circuit with an untunedprimary coil, the second a tuned-primary circuit and untuned-secondary coil, and the third uses tuned circuits in both the primary and

Fig. 241 - Link coupling. The mutual inductances at hoth ends of the link are equivalent to mutual inductance between the tuned eireuits, and serve the same purpose.

Fig. 242 - Types of indurtively roupled circuits. In A and B, one wircuit is tuned, the other mutuned. (: shows the method of coupling between two tuncd circuits.
secondary. The circuit at A is frequently used in receivers for coupling between amplifier tubes when the tuning of the circuit must be varied to respond to signals of different frequencies. Circuit I3 is used principally in transmitters, for coupling a radio-frequency amplifier to a resistive load. Circuit (is used for fixed-frequency amplification in receivers. The same cireut also is used in transmitters for transferring power to a load which has both reartance and resistance.

If the coupling between the primary and seeondary is "tight" (cocflicient of coupling large), the effect of inductive coupling in circuits A and B, Fig, 242. is much the same as though the circuit having the untuned coil were tapped on the tuned circuit ($\$ 2-10$). Thus any resistance in the circuit to which the un.tuned coil is connected is coupled into the tuned circuit in proportion to the mutual inductance. This is equivalent to an increase in the series resistance of the tuned cirenit, and its Q and selectivity are reduced ($\$ 2-10$). The higher the coefficient of coupling, the lower the Q for a given value of resistance in the coupled circuit. These circuits may be used for impedance matching by adjustment of the coupling and of the number of turns in the untuned coil.

If the circuit to which the untuned coil is connected has reactance, a certain amount of reactance will be "coupled in" to the tuned circuit depending upon the amount of reactance present and the degree of coupling. The chief effect of this coupled reartance is to require readjustment of the tuning when the eoupling is increased, if the tumed circuit has first been adjusted to resonance under conditions of very loose coupling.

Coupled resonant circuits - The effret of a tuned-secondary circuit on a tuned primary is somewhat more complicated than in the simpler circuits just described. When the seeondary is tuned to resonance with the applied frequency, its impedance is resistive only. If the primary also is tuned to resonance, the current
flowing in the secondary circuit (caused by the induced voltage) will, in turn. indure a voltage in the primary which is opposite in phase to the voltage acting in series in the primary circuit. This opposing voltage reduces the effective primary voltage, and thus causes a reduction in primary current. Sinee the actual voltage applied in the primary circuit has not changed, the reduction in current an be looked upon as being caused by an increase in the resistance of the primary eireuit. That is, the effect of coupling a resonant secondary to the primary is to increase the prinary resistance. The resistance under consideration is the series resistance of the primary cireuit, not the marallel impedance or resistance. The parallel resistance decreases, since the increase in series resistance reduces the () of the primary circuit.

If the secondary circuit is not tunced to resonance, the voltage induced batel in the primary by the secomdary current will hot be exactly out of phase with the voltage acting in the primary; in effect, reatance is cooupled into the primary circuit. If the applied frequency is fixed and the secondary cirruit tuming is bering varied, this means that the primary circuit will have to be retuned to resonance each time the seromdary tuming is changed.

If the two rirenits are initially tumed to resonance at a given freguency and then the applied frequency is variod, both areaits beowme reactive at all frequencies off resoname. L'uder these conditions, the reactance rompledinto the primary by the seombary rotumes the primary circuit to a new resonant frequency. Thas, at some frequency off resonance, the primary worrent will be maximum, while at the actual resonant frequency the current will be smaller because of the resistance conphed in from the secondary at resomance. There is a point of maximmm prinary eurrent both above and below the true resomant frerperney.

These effects are almost therligible with very "loose" rompling (rocfficient of coupling very small), but increase rapid!y as the coupling increases. Because of them, the selectivity of a pair of roupled resonant cirenits can be varied over a considerable range simply by changing the coupling between them. Typical curves showing the variation of selectivity are shown in Fig. 24:3, lettered in order of increasing co-

Fig. 2a3 - Showing the effect on the mutpmt voltage from the secombary cireuit of changing the coefliciont of eoupling between two resonant eircuits independenty tuned to the same frequency. 'The ingut voltage is held constant in amplitude while the frequency is varied.
efficient of coupling. At loose coupling, A, the voltage across the secondary circuit (induced voltage multiplied by the Q of the secondary circuit) is less than the maximum possible because the induced voltage is small with loose coupling. As the coupling increases the secondary voltage also increases, until critical coupling, B, is reached. At still closer coupling the effect of the primary current "humps" causes the secondary voltage to show somewhat similar humps, while when the coupling is further increased the frequency separation of the humps becomes greater. Resonance curves such as those at C and D are called "flattopped." because the output voltage is substantially constant over an appreciable frequency range.

Critical coupling - It will be observed that maximum secondary voltage is obtained in the curve at B in Fig. 243. With tighter coupling the resonance curve tends to be double-peaked, but in no case is such a peak higher than that shown for curve 13 . The coupling at which the secondary voltage is maximum is known as critical coupling. With this coupling the resistance coupled into the primary circuit is equal to the resistance of the primary itself, corresponding to the condition of matched impedances. Hence, the energy transer is maximum at critical coupling. The over-all selectivity of the coupled circuits at critical coupling is intermediate between that obtainable with loose coupling and tight coupling. At very loose coupling, the selectivity of the system is very nearly equal to the product of the selectivities of the two circuits taken separately; that is, the effective \& of the circuit is equal to the product of the $Q s$ of the primary and secondary.

Effect of circuit 0 -Critical coupling is a function of the Qs of the two circuits taken independently. A higher coefficient of coupling is required to reach critical coupling when the $Q s$ are low; if the $Q s$ are high, as in receiving applications, a coupling coefficient of a few per cent inay give critical coupling.

With loaded circuits it is not impossible for the Q to reach such low values that critical coupling cannot be obtained even with the highest practicable coefficient of coupling (coils as close physically as possible). In such case the only way to secure sufficient coupling is to increase the Q of one or both of the coupled circuits. This can be done either by decreasing the L / C ratio or by tapping the load down on the secondary coil ($(2-10$). One or the other of these methools often must be used with link coupling, because the maximum coefficient of coupling bet ween two coils seldom runs higher than 50 or 60 per cent and the net coeflicient is approximately equal to the products of the coefficients at each end of the link. If the load resistance is known beforehand, the cireuits may be designed for a Q in the vicinity of 10 or so with assurance that sufficient coupling will be available; if unknown, the proper $Q s$ can be determined by experiment.

Shielding - Frequently it is necessary to prevent coupling between two circuits which, for constructional reasons, must be physically near each other. Capacitive coupling may readily be prevented by enclosing one or both of the circuits in grounded low-resistance metallic containers, called shields. The electrostatic field from the circuit components does not penetrate the shield, because the lines of force are short-circuited ($\$ 2-3$). A metallic plate called a baflle shicld, inserted between two components, may suffice to prevent electrostatic coupling between them, since very little of the field tends to bend around such a shield if it is large enough to make the components invisible to each other.

Sinilar metallie shielding is used at radio frequencies to prevent magnetic coupling. In this case the magnetic fiold induces a current (eddy current) in the shield, which in turn sets up its own magnetic field opposing the original field ($\$ 2-5$). The induced current is proportional to the frequency and also to the conductivity of the shield, hence the shielding effect increases with frequency and with the conductivity and thickness of the shielding material. A closed shield is required for good magnetic shielding; in some cases separate shields, one about each coil, may be required. The baffle shield is rather ineffective for magnetic shielding, although it will give partial shielding if placed at right angles to the axes of, as well as between, the two coils to be shielded from each uther.

Cancellation of part of the field of the coil reduces its inductance, and, since some energy is dissipated in the shield, the effective resistance of the coil is raised as well. Hence the Q of the coil is reduced. The effect of shielding on coil Q and inductance becomes less as the distance between the coil and shicld is increased. The losses also clecrease with an increase in the conductivity of the shield material. Copper and aluninum are satisfactory materials. The Q and inductance will not be greatly reduced if the spacing between the sides of the coil and the shield is at least half the coil diameter, and is not less than the coil diameter at the ends of the coil.

At audio frequencies the shielding container should be made of magnetic material, preferably of high permeability ($\$ 2-5$), to provide a low-reluctance path for the external flux about the coil to be shielded. A nonmagnetic shield is quite ineffectual at these low frequencies since the induced current is small.

Fillers - By suitable choice of circuit elements a coupling system may be designed to pass, without undue attenuation, all frequencies below and reject all frequencies above a certain value, called the cut-off frequency. Such a coupling system is called a filter, and in the above case is known as a low-pass filter.

If frequencies above the cut-off frequency are passed and those below attenuated, the filter is a high-pass filter. Simple filter circuits of both

Électrical and Radio Jundamentals 47

types are shown in Fig. ott. along with typical frequency-rtsponse curves. The fund:mental circuit. from which more romplex filters are constructed, is the $/$-section. Fig. 21t also shows π-sction and T-section filters, both construeted from the basie I-sertion.

A bomd-phos filter; also showa in lig. 24f, is a combination of high- alld low-pans filter clements desigmed to pass withous attomataion all frequencies betwern two selented cot-off frequencies, athe 1.0 attomater all frequencies
 which is passed by t.her filter is called the persesboud. Two resonamt cireuits with grealter thatn critieal coupling represent, a common form of band-pass filter.

In curves of Fig. 214. A shows the attemur tion at high frequencies of a single-section lowpass filter with high-Q components: B illustrates the extremely sharp rut-off obtainable with a more elaborate three-sertion filter. Curve C is that of a high-pass section having high Q, comparable to A. D shows the aftenuation by a less-efficient section having some resistance in the inductance branch. Curves E, F and \mathbf{G} illustrate various band-pass chatacterisics, l: being a low- $($) narow-band filter, F a high- Q narrow-band, and G a wide-band high-Q two-section filter.

Filter cirenits are frequently encountered both in low-frequeney and r.f. applications. The proportions of L and C for proper operation depend upon the load resistance conner ted aeross the output terminals, L being larger and C smaller as the load resistance is increased. The type of section does not affeet the attenuation curve, provided the input and output resistances are correct. In a symmetrical filter the input and output impedanees must be equal to the impedance for which the filter is designed. Assuming these relationships, the
frollowing design equations: apply to the sections illustrated in Figr, 2.14.
Lou-pass filter:

$$
\begin{array}{ll}
L=\frac{R}{\pi f_{\mathrm{e}}} & C=\frac{1}{\pi / /_{\mathrm{c}} R} \\
R=\frac{\sqrt{L_{1}}}{C_{2}} & f_{C}=\frac{1}{\pi \sqrt{L_{1} C_{2}}}
\end{array}
$$

Migh-pmss filtor:

$$
\begin{array}{ll}
U=\frac{R}{1 \pi h_{1}} & C=\frac{1}{1 \pi / h_{1}} \\
R=\frac{\sqrt{L_{2}}}{C_{1}} & f_{\mathrm{c}}=\frac{1}{4 \pi \sqrt{L_{2}} \overline{C_{1}}}
\end{array}
$$

Band-pass filter:

$$
\begin{gathered}
L_{1}=\frac{R}{\pi\left(f_{2}-f_{1}\right)} \quad C_{1}=\frac{f_{2}-f_{1}}{4 \pi f_{1} f_{2} / R} \\
L_{2}=\frac{\left(f_{2}-l_{1}\right) R}{4 \pi l_{1} f_{2}} \quad C_{2}=\frac{1}{\pi\left(f_{2}-f_{1}\right) R} \\
R=\frac{\sqrt{L_{1}}}{C_{2}}=\frac{\sqrt{L_{2}}}{C_{1}} \quad f_{M}=\sqrt{f_{1} f_{2}} \\
f_{M}=\frac{1}{2 \pi \sqrt{L_{1} \prime_{1}^{\prime}}}=\frac{1}{2 \pi \sqrt{L_{2} C_{2}}}
\end{gathered}
$$

In these formulas. R is the torminal impedance and f_{c} the design cut-off frepuency for low-pass and high-pass filtors. For band-pass filters, f_{1} and f_{2} are the pass-band limits and \int_{14} the middle frequener: $L_{2} C_{2}$ the paratlel shunt element:

The resistance-capacity filter, shown in Jis. 245 , is used where both d.e. and a.e. are flowing throumh a cimeut and greater attenuation is desired for the a.c. than for d.e. It is usually cm ploved where the direct eurrent is small so that d.e. voluage drop is not excessive, or
Fig. 24.5 - L-section and π-sere. tion resi-tance-caparity filter circuits (left) and curves showing the attemnation in db . for three different RC prodnets at varions frequencies in the audio-frequency range.

L-Section

when a voltage drop actually is required. The time eonstant, RC, (\$2-6) must be large compared to the time of one cycle of the lowest frequency to be attenuated. In determining the time constant, the resistance of the load must be included as well as that in the filter itself.
(A)

(c)

(E)

Fig. 2.fo - Brideceronits utilizing rosistanne, indnctance and capanis! arms, both alone and in combination.

Bridge circuils - A bridye circuit is a device primatily used in making moasurements of resistame. reactance or impedance ($\$ \geq-8$), and frequency, although bridges also have other applications in radin circuits.

The fundamental form is shown in Fig. 246 -A. It consists of four resistances (ralled arms) connected in series-parallel to a source of voltage, E, with a sensitive galvamomater, M, connected between the junctions of the series-connected pairs. When the equation

$$
\frac{R_{1}}{R_{2}^{\prime}}=\frac{R_{3}}{R_{4}}
$$

is satisfied there is no potential difference between points A and B, since the drop across R_{2} equals that across l_{1} and the drop ancoss R_{1} equals that arrons h_{3}. linder these conditions the bridge is sail to be batanecd. and no current flows through M. If $R R_{3}$ is an unknown resistance and h_{i} is a variable known resistance, R_{3} can be found from the following equation after R_{+}has been adjusted to balance the brilge (tull indication un M):

$$
K_{3}=\frac{R_{1}}{R_{2}} K_{4}
$$

K_{1} and R_{2} are knuwn as the ratio armas of the bridge; the ratio of their resistances is usually adjustable (frequently in steps of $1,10,100$, etc.), so that a single variable mosistor. R_{1}, can serve as a stamdard for measuring widely different valme of unknown resistance.

Bridges similarly can be formed with arms containing capacity or inductance, and with combinations of either with resistance. Typical simple arrangements are shown in Fig. 246. For measurements involving alternating current the bridge must not introduce phase shifts which will destroy the balance, hence similar impedances should be used in each branch, as shown in lig. 246 , and the $Q s$ of the coils and condensers should be the same. When bridges are used at audio frequencies, a telephone headset is a suitable null indicator. The bridges at E and F are commonly used in r.f. neutralizing circuits (§.4-7); the voltage from the source, $E_{a c}$, is balanced out at X.

I 2-12-A Linear Circuits

Standing uaves - If an electrical impulse is started along a wire, it will travel at approximately the speed of light until it reaches the end. If the end of the wire is open circuited, the impulse will be reflected at this point and will travel back again. When a high-frequency alternating voltage is applied to the wire a current will flow toward the open end, and reflection will oceur continuously. If the wire is long enourh so that time comparable to a half cycle or more is required for current to travel to the open end. the phase relations between the reflected current and outgoing current will vary along the wire. At one point the two currents will be 180° out of phase and at another in phase, with intermediate values between. Assuming negligible losses, the resultant current along the wire, ats measured by a current-indirating instrument such as a thermo-couple ammeter, will vary in amplitude from zero to a maximum valuc. Such a variation is called a starding ware. The voltage along the wire also gues through stamding waves, reaching its maximum value where the current is minimum and vice versa.

When the wire is cut to such a length that the current traverses it in one direction in exactly the time of one-half cycle, a single standing wave will occur along the wire and the wire is said to be resonant to the applied frequency. Although the inductance and capacity are distributed along the wire rather than being concentrated in a coil and condenser, such a wire is in many ways equivalent to an ordinary resonant circuit.

Frequency and wavelength - It is possible to describe the constants of such line circuits in terms of imductance and capacitance, but it is more convenient to give them simply in terms of fundamental resonant frequency or of length. since the velucity at which the current travels is 300,000 kilometers (186.000 mile:s) per secoud, the wacelength, or distance the ceurrent will travel in the time of one eycle, is

$$
\lambda=\frac{300,000}{f_{k c \cdot}}
$$

where λ is the navelength in meters and $f_{k c}$ is the frequency in kilocycles.

Electrical and Radio Fundamentals 49

Fig. $2 / 7$ - standinq-wave current distribution on a wire operatinn as an oseillatory cirenit, at the fumbamental, second harmonic and third harmonic fremencies.

Harmonic resonance - Although a coilcondenser combination having lumped ronstants (capacitance and inductance) resonates only at one frequency, circuits such as antennas which contain distributed constants resonate readily at frequencies which are very nearly interal moltiples of the fundamental frequency. These frequencies are, therefore, in harmonic relationship to the fundamental freque:ncy, and hence are referred to as harmonics ($\$ 2-7$). In radio practice the fundamental itwelf is called the first harmonic, the frequency twine the fundamental is called the second harmonic, and so on.

Fig. 247 illustrates the distribution of current on a wire for fundamental, second and third harmonic excitation. There is one point of maximum current with fundamental operation, two when operation is at the second harmonic, and three at the third harmonie; the number of eurrent maxima corresponds to the order of the harmonie and the number of standing waves on the wire. As noted in the figure, the points of maximum current are called anti-nodes (also known as "loops") and the points of zero current are called nodes.

In the case of the harmoni- current curves, the half-wave curves are dratw altemately above and below the reference line to indicate that the phase of the current reverses in each half wavelengh. In other words, if current in one half-wave scction is flowing to the right, for example, the current in the adjacent halfwave section will be flowing to the left. However, when the current is measured with an r.f. ammeter there will simply be a maximum indication at the center of cach half-wave seetion, since the ammeter camot indicate phase.
Radiation resistance - Since a line cireuit has distributed inductance and capacity, cur-

Fig. 248 - Standing wive and instantanoous corront (shomn by the arrows) in a folded rewonath-line circuit.
rent flow causes storage of energy in magnetic and clectrostatic fiches ($5-3,2-5$). As the ficlds travel outward from the wire at the speed of light, some of the eneryy encapes from the circuit in the form of cleatomagnetio? waves; that is, encrgy is ralialed from the wire. Such a wire is, in fact, an antonna. Since the encrgy radiated by the line or antenna represents a loss, insoliar as the line is concerned, the loss of energy can be considered to take place in an equivalent resisiaure. The value of the equivalent resistance is fommal from the ordinary Ohm's Law formmata. $R=P / I^{2}$, where P is the power radiated and I is the current in the wire. R, the equivalent resistance, is called radiation resistance.

Fuo-conductor lines - The effertive resistance of a resmant staight wire is fairly high, because a large proportion of the power sumplied to such a wire is radiated. In many cases it is nevesuary to transer powre from one point to :mother with the least porsible lom- for example, from a transmituer to a radiating antenma which may be bocated some distance awny. If the line is folded so that there are two conductors instead of one, as shown in lïn. 248 . the currents in adjacent sertions of the two wires are flowing in opmosite directions, consequently the fields set up by the two oppove each other and there is rery lithe radiation.

The puarter-wive folded line in Fig. 2-18 has a total length of onc-half wavelengith. hence is resonant to the freguency correpponding to its length. Since the current is large and the voltage is low at the closed end, the impedance at this point is quite low. On the other hand, the

Fig. 2.19 - A quater-wave coasial-lime remonath circuit.
voltage is high and the chrrent is very low at the open end, suat this point the impedance is high. These properties of a quarter-wave twoconductor line have applications to be described later.

A folded line also may be constructed in the form of 1 wo conxial or conematre condertors, as shown in lige. 249. In effeet, this line is aliredtly comparable with the parallel comductor line, except that one condurtor may be wided to have been rotated around the other in at romplete circle. The coaxial line has even lower ratiation resistance than the folded-wire line. since the wuter condmetor acte as as shichd. Standing waves exst but are custined to the untside of the inmer conductor ant the inside of the outer conductor, since skin effeet prevents the currents from penetruting to the other sides. Thus such a line will hate no radio-frequency potentials on its exposed surfares, and no radiation ('an ocrur. Becallace of the low radiation resistamer and the relativaly latrge
conducting surfaces, such self-enclosed resonant lines can be made to have much higher (?s than are attainable with coils and comblensers. They are most applicable at very high frequenries (very short wavelengths) (\$2-7), where the dimensions are small.

A modified form of construstion for eoaxial lines is the "trough" line in which a tubular inner conductor is enclosed within a rectangular sheet-metal box or trough, usually left open on one side to facilitate tapping or other adjustments. The absence of shielding on one side does not affect the performance materially and the simplicity of construction is an advantage.

The term transmission line is generally applied to all lines whet her they are actually used as a means for transferring radio-frequency power between two points or whether they are used as replacements for coil-and-condenser resonant circuits. The lines shown in Figs. 248 and 249 are "short" lines of the type frequently used for the latier purpose. lor transferring power the line may be many wavelengths long, depending upon the distane over which the power is to be tramsmitted. Furthermore, a line used for this purpose is mot newerssarily resomant; in fart, it may be deximable to avoid resoname effects entirely.

If a transmission line could be made infnitely long, power wondd simply travel along it until it was entirely dissipated in the resistance of the line; there would be nothing to reflect it and st anding waves would not exist. Such a line would present a constant impedance in the form of a pure resistance to an input at any frequency, and hence would show no resonance

Fig. 250 - Chararteristic impedance of uniform lines.
efferts. Practically, the characteristics of an in-finitely-long line can be simulated by terminating a line of finite length in a load resistance equal to the characteristic impedance of the line. This and other general properties of transmission lines are discussed in the following paragraphs.

Characteristic impedance - The characteristic impelance of a transmission line, also known as the surge impedance. is defined as that impedance which a long line would present to an electrical impulse induced in the line. In an ideal line having no resistance it is equal to the square root of the ratio of inductance to capacity per unit length of the line.
'The characteristic impedance of air-insulated transmission lines may be calculated from the following formulas:

Parallel-conductor line:

$$
\begin{equation*}
Z=2 \sim 6 \log \frac{b}{a} \tag{5}
\end{equation*}
$$

where Z is the surge inpedance, b the sparing, center to center, and a the radius of the conductor. The quantities b and a must be measured in the same units (inches, cm., etc.).
Coaxial or concentric line:

$$
\begin{equation*}
Z=198 \log \frac{b}{a} \tag{6}
\end{equation*}
$$

where Z again is the surge impedance. In this rase, b is the irside diameler (not radius) of the outer conductor and a is the outside diameter of the inner conductor. The formula is true for lines having air as the dielectric, and approximately so with ceramic insulators so spaced that the major part of the insulation is air.

The surge impedance for both parallel and conxial lines using various sizes of conductors is given in chart form in Fig. 2:0.

When a solid insulating material is used between the conductors, the increase in line capacity causes the impedance to decrease by the factor $1 / \sqrt{ } \bar{K}$, where K is the dielectric constant of the insulating material.

Although two-conductor lines have lower radiation, a single-conductor line can be used for transferring power if it is terminated in its chararteristic impedance. Dinder such circumstances the current in the litie will be small, and since radiation is proportional to current the ratiation also will be small. The characteristic impedance of a single-wire transmission line varies with conductor size, height above ground, and orientation with respect to ground. An average figure is about 500 ohms.

Standing-uave ratio - The lengths of transmission lines used at radio frequencies: are of the same order as the operating wavelengths, and therefore standing waves of current and voltage may appear on the line. The ratio of current (or voltage) at a loop to the value at a node (standing-uate ratio) depends upon the ratio of the resistance of the loud comected t.o the output end of the line (its termination) to the characteristis imped-

Electrical and Radio Fundamentals 51

ance of the line itself. That is,

$$
\begin{equation*}
\text { Standing-ware ratio }=\frac{Z_{t}}{Z_{t}} \text { or } \frac{Z_{t}}{Z_{t}} \tag{7}
\end{equation*}
$$

where Z_{s} is the characteristic impodance of the line and Z_{t} is the terminating resistance. Z_{t} is generally called an impedance, although it must be non-rearetive and therefore must correspond to a pure resistance for the line to operate as desuribed. For example, this means that if the load or termination is an antenma, it must be resonant at the operating frequency.

The formula is given in two ways beeause it is customary to put the larger mumber in the numerator, so that the ratio will not be fractional. As an example, a $600-\mathrm{ohm}$ line terminated in a resistance of 70 ohms will have a standing wave ratio of $600 / 70$, or 8.57 . The ratio on a 70 orhm line terminated in a resistance of 600 ohns would be the same. Thus, if the current as measured at a node is 0.1 ampere, the current at a loop will be 0.807 ampere.

A line terminated in a resistance equal to its characteristic impedance is equivalent to an infinitely long line; consequently there is no reflection, and no standing waves will appear. The standing wave ratio therefore is 1 . The input end of surch a line appears as a pure resistance of a value equal to the characteristic impedance of the line.

Electrical length - The electrical length of a line is not exactly the same as its physical length for reasons corresponding to the end offects in antennas (\$10-2). Spacers used to separate the conductors have dielectric eonstants larger than that of air, so that the waves do not travel quite as fast along a line as they would in air. The lengths of electrical quarter waves of various types of lines can be calculated from the formula

$$
\text { Length }(\text { feet })=\frac{2.46 \times V}{\text { Freq. }(M / c .)}
$$

where V depends upon the type of line. For lines of ordinary construction, V is as follows:

Parallel wire line	$V=0.975$
Parallel tubing line $V=0.95$ Concentric line (air-insulated) $V=0.85$ Concentric line (rubber-insu- \quad lated) Twisted pair	$V=0.56-0.65$

Reactance, resistance, impedance - The input end of a line may show reactance as well as resistance, and the values of these quantities will depend upon the nature of the load at the output end, the electrical length of the line, and the line characteristic impedance. The reactance and resistance are important in determining the method of coupling to the source of power. Assuming that the load at the output end of the line is purely resistive, a line less than a quarter wavelength long electrically will show inductive reactance at its input terminals when the output termination is less than the charaeteristic impedance, and capaci-

Characteristucs of Line Sections LESS THAN A QUARTER WAVELENGTM With Definite Source-Resistance			Characteristucs of Line Sections BETWEEN ONE-QuARTIR MMS OWE +NLIF WavELENGIT With Definte Source-Resstance		
Relature Legths of Line Sections	ficitre tisues of and Live lumedonee			Relintrue Wilues of wind une fropednce	Open End Look Luke
	$\mathrm{R}=\mathbf{Z}$	$\sum_{\text {Matched }}^{\}}$		$R=Z$	$\sum_{\text {(Matched) }}^{1}$
	$\mathrm{R}>2$	$\frac{1}{5}$	511	$\mathrm{R}>\mathrm{Z}$	\%
	R<2	ξ	$5: 1$	$R<Z$	$\frac{1}{5}$

Fig. 251 - Input reactive characteristics of resistancterminated transmission lines as a function of line length.
tive reactance when the termination is higher than the characteristic impedance. If the line is more than a quarter wave but less than a half wave long. the reverse conditions exist. These properties are shown in Fig. 251, With still longer lengths, the reactance characteristics reverse in earh succeeding quarter wavelength. 'The input impedance is purely resistive if the line is an exact multiple of a quarter wave in length. The reactance at intermediate lengths is higher the greater the standing-wave ratio. being zero for a ratio of 1 .
Whether limes are classified as resonant or nonresonant depends upon the standing-wave ratio. If the ratio is near 1 , the line is said to be nonresonant, and reactive effects will be small even when the line length is not an exact multiple of a quarter wavelength. If the standingwave ratio is large, the input reactance must be canceled or "tuned out" unless the line is resonant - i.e., a multiple of a quarter wavelength.

Impedance transformation - Regardless of the standing-wave ratio, the input impedance of a line a half-wave long electrically will be equal to the impedance connected at its output end; the same thing is true of a line any integral multiple of a half-wave in length. Such a line can be considered to be a one-to-one transformer. However, if the line is a quarterwave (or an odd multiple of a quarter-wave) long, the input impedance will be equal to

$$
Z_{i}={\frac{Z_{s}^{2}}{Z_{t}}}^{2}
$$

where Z_{s} is the eharacteristic inpedance of the line and Z_{t} the impedance connected to the output end. That is, a quarter-wave section of line will mateh two impedances. Z_{i} and Z_{i}, provided its characteristic impedance, Z_{s}, is equal to the geometric mean of the two impedances. A quarter-wave line may, therefore, be used as an impedance transformer. By suitable selection of constants, a wide range of impedancematehing values can be obtained.

Since the inypedanee measured between the two conductors anywhere along the line will vary between the two end values, a quarterwave line short-eireuited at the output end can be used as a linear transformer with an adjustable impedance ratio. For best operation,

Fig. 252 - Fiquivalent conpling circuits for parallelline, coaxial-line and conventional resouant circuits.
the (woterminating impedances must be of the s:ame orter of magnitude. However, a series of fuarter-wave sections can be used to obtain a ctep-by-step match of two terminal impedances effieiently if they are widely different.
impedance-matching or transformation with transmission-line sections may also be effected by taps on quarter-ware resonant lines employed as coupling circuits in the same manner as comventional coil-condenser cirenits. The equivalont relationships between parallel-line, concial-line and coil-and-condenser cireuits for this purpose are shown in lig. 252.

Other impedance-matehing arrangements employ the use of matehing stubs or equivalent sections so arranged so as to balance out the reactive component introduced by the coupled rirenit. 'These are employed primarily in connection with antenna feed systems and are described in detail in $\$ 10-8$.

Transmission lines as circuit elements Sections of transmission lines, togerher with combinations of such sections, can be used to simalate pratically any electrical circuit property. 'lramsmission lines can be used as resistince, indurtance and capacity, as well as for resonant cireuits, impedance-matching transformers, filters, and even as insulators.

When a short-cireuited quarter-wavelength line is connerted between a "hot" circuit and gromad. the input end offers an extremely high resistive impedance. In other words, the transmission line is virtually an insulator. lnsulating lines of this sort are commonly employed in ultrahigh frequancy work. Such insulators can be used to provide a d.e path between the r.f. conductor aud chassis, and at the same time effectively bloek the flow of r.f. current.

A transmission line terminated in its chamateristic impedance affords a pure resistance at high frequencies, and $s u$ may be used as a non-reactive resistor. Unterminated lines afford a varict y of reartive properties. Lengths of short-eireuited line less than a quarter wavelength represent pure induetive reactance, while open-circuited lines have pure capacitive reactance.

Thus the former can be used in lieu of r.f. chokes, while the latter can serve as by-pass condensers.

The reartive characteristics of open- and closed-end lines are summarized in Fig. 253.
Resonant lines as turned circuits- In resonant circuits as employed at the lower frequencies it is possible to consider each of the reactance components as a separate entity. A coil is used to provide the required inductance and a condenser is connected across it to provide the necessary caparity. The fart that the coil has a certain amount of self-capacity of its own, as well as some resistance, while the condenser also possesses a small self-inductance, can usually be disregarded.
At the very-high and ultrahigh frequencies, however, it is no longer possible to separate these components. The connecting leads which, at lower frequencies, would serve merely to join the condenser to the coil now may have more inductance than the coil itself. The required inductance coil may be no more than a single turn of wire, yet even this single turn may have dimensions comparable to a wavelength at the operating frequency. Thus the energy in the field surrounding the "coil," may in part be radiated. At a sufficiently high frequency the loss by radiation may represent a major portion of the total energy in the circuit. Since energy which cannot be utilized as intended is wasted, regardless of whether it is consumed as heat by the resistance of the wire or simply radiated into space, the effect is as though the resistance of the tuned circuit were greatly increased and its Q greatly reduced.

For this reason. it is common practice to utili\%e resonant sections of transmission line as tuned circuits at frequencies above 100 Mc . A quarter-wavelength line, or any odd multiple thereof, shorted at one end and open at the other, exhibits large standing waves. When a voltage of the frequency at which such a line is resonant is applied to the open end, the response is very similar to that of a parallel resonant circuit; it will have very high input imperlance at resonance and a large current flowing at the short-circuited end.

Fig. 253 - Open and elosed transmission lines as circuit elcments.

The action of a resonant quarter-wavelength line can be compared with that of a coil-andcondenser combination whose constants have been adjusted to resonance at a corresponding frequency. Around the point of resonance, in fact, the line will display very nearly the same characteristics as those of the tuned circuit. The equivalent relationships are shown in Fig. 253. At frequencies off resonance the line displays qualities comparable to the inductive and capacitive reactances of the coil and condenser circuit, although the exact relationships involved are somewhat different. For all practical purposes, however, sections of resonant wire or transmission line can be used in much the same manner as coils or condensers.
In v.h.f. circuits operating above 300 Mc ., the spacing between conductors becomes an appreciable fraction of a wavelength. To keep the radiation loss as small as possible the parallel conductors should not be spaced farther apart than 10 per cent of the wavelength, center to center. On the other hand, the spacing of large-diameter conductors should not be reduced to much less twice the diameter because of what is known as the proximity effect, whereby another form of loss is introduced through eddy currents set up by the adjacent fields. Because the cancellation is no longer complete, radiation from an open line becomes so great that the (Q is greatly reduced. Consequently, at these frequencies coaxial lines must be used. The coaxial line is advantageous at the lower frequencies, as well, but because it is more complieated to construct and adjustments are more difficult the open type of line is generally favored at these frequencies.

Transmission-line filler neturorks - The same general equations can be applied to any type of electrical petwork whether it be an actual section of transmission line, a combination of lumped-circuit elements, or a combination of transmission-line elements. Ordinary electric filters (\$ 2-11) at lower frequencies use combinations of coils and condensers, but conventional circuit elements cannot be used at extrenely high frequencies. However, combinations of transmission-line sections or combinations of transmission lines and parallelplate condensers may be used for the elements of very-high-frequency filter net works, instead.

Construction - Practical information coneerning the construction of transmission lines for sucl specific uses as feeding antennas and as resonant circuits in radio transmitters will be found in the constructional chapters of this Handbook. Certain basic considerations applicable in general to resonant lines used as circuit elements may be considered here, however.

While either parallel-line or coaxial sections may be used, the latter are preferred for higherfrequency operation. Representative methods for adjusting the length of such lines to resonance are shown in Fig. 254. At the left, a sliding shorting dise is used to reduce the effective length of the line by altering the position of
the short circuit. In the center, the same effect is accomplished by using a telescoping tute in the end of the imer conductor to vary its length and thereby the effertive length of the

Fig. 254 - Methods of tuning coaxial resonant lines.
line. At the right, two possible methods of nomuting parallel phate condensers, used to tune a "foreshortened" line to resonance, are illustratted. The arrangement with the loading capacity at the open end of the line has the greatest tuning effect per unit of capacity; the alternative method, which is equivalent to "tapping" the rondenser down on the line, has less effect on the Q of the circuit. Lines with capacity "loading" of the sort illustrated will be shorter, physically, than an unloaded line resmant at the same frequency.

The short-circuiting dise at the end of the line must be designed to make perfect electrical contact. The voltage is a mininum at this end of the line; therefore, it will not break down some of the thimest insulating films. Usually a soldered connection or a tight clamp is used to secure good contact. When the length of line nust be readily adjustable, the shorting plug is provided with spring collars which make contact on the inner and outer conductors at some distance away from the shorting plug at a point where the voltage is sufficient to break down the film between the collar and conductor.
Two methorls of tuning parallel-conductor lines are shown in Fig. 255. The sliding shortcircuiting strap can be tightened by means of screws and nuts to make good electrical contact. The parallel-plate condenser in the second drawing may be placed anywhere along the line, the tuning effect becoming less as the condenser is located nearer the shorted end

Fig. 2.55-Methods of tuning paralleltype resonant lines.

of the line. Although a low-capacity variable condenser of ordinary construction can be used, the circular-plate type shown is symmetrical and thus does not unbalance the line. It also has the furt her advantage that no insulating naterial is required.

Fig. 256 - Evolution of

(1. 2-12-B Wave Guides and Cavity Resonators

Hollow wher guides - A wave guide is a conducting tube through which energy is transmitted in the form of electromagnetic waves. The tube is not considered as sarrying a murrent in the same sense that the wires of a twoconductor line do, but rather as a boundary which confines the waves to the enclosed space. Skin effect prevents any electromagnetic effects from being evident outside the guide. The v.h.f. energy is injerted at one end, either through capacitive or inductive coupling or by radiation, and is received at the other end. The wave guide then merely comfines the energy of the fields, which are proparated throngh it to the receiving end by means of reflections against its inner walls.

The difliculty of visualizing energy transfer without the usual closed cireuit can be relieved somewhat by considering the guide as being evolved from an ordinary two-eonductor line.

In Fig. 256-A, several closed quarter-wave stubs are shown comected in parallel arross a two-wire transmission line. Since the open end of each stub is equivalent to an open circuit, the line impedance is not affected by their presence. Enough stubs may be added to form a U-shaped rectangular tube with solicl walls, as at B , and another identical U-shaped tube may be added edge-to-edge to form the rectangular pipe shown in Fig. $256-\mathrm{C}$. As before, the line impedance still will not be affected. But now, instead of a two-wire transmiswion line, the encrgy is being conducted within a hollow rectangular tube.

This analogy to wave-guide operation is not exact, and therefore should not be taken too literally. In the evolution from the two-wire line to the closed tube the electric and magnetic field configurations undergo considerable change, with the result that the guide does not actually operate like a tworomductor line shunted by an infinite number of quart er-wave stubs. If it did, only waves of the proper length to correspond to the stubs would be propagated through the tube, but the fact is that such waves do not pass through the suide. Only waves of shorter length - that is, higher frequeney - can go through. The distance x represents half the cut-off wavelenyth. or the shortest wavelength which is unable to so through the guide. Or, to put it another way, waves of length equal to or greater than $2 x$ cannot be propagated in the guide.

A second point of difference is that the apparent length of a wave along the direction of propagation through a guide always is greater than that of a wave of the same frequency in free spare. whereas the wavelength along a twoeonductor transmission line is the sane as the free-spare wave-length (when the insulation betwen the wires is air).
Operating principles of wave guidesAnalysis of wave-guide operation is based on the assumption that the guide material is a perfect conductor of electricity. Typical distributions of electric and magnetic fieds in a rectangular guide are shown in Fig. 257. It will be observed that the intensity of the electric field is greatest at the center along the x dimension, diminishing to zero at the end walk. The latter is a necessary condition, sinee any electric field parallel to the walls at the surface would cause an infinite current to flow in a perfect conductor. This represents an imposible siluation.

Kero ele $\begin{gathered}\text { tric field at the end walls will result }\end{gathered}$ if the wave is considered to consist of two sepatrate waves moving in gig-zag fashion down the guide, reflected back athl forth from the end walls as shown in Fig. 258. Just at the walls, the positive crest of one wave meets the negative crest of the other, giving eomplete cancellation of the electric ficlds. The angle of aeflection at which this camellation oceurs depend upon the wilth x of the guide and the lenglh of the wates; rig. 205s-A illustrates the

Fig. 2.57 - Field distribution in a rectangular wave guide. The 'TE1, mole of propagation is depieted.

Electrical and Radio Fundamentals 55

case of a wave considerably shorter than the cut-off wavelength. while 13 shows a longer wave. When the wavelength erpals the cut-off value, the two waves simply boune back and forth between the walls and no energy is transmitted through the gaide.

The two waves travel with thespeed of light, but since they do not travel in at saight line the enorgy does not travel throurh the guide as rapidly as it ches in space. A further conse-

> POSITIVE CREST $-\ldots \ldots$ NEGATIVE CREST

Fig. 258 - Reflection of two eomponent waves in a rectangular guide. $\lambda=$ wavelength in spare. $\lambda \phi=$ wavelength in gades. Jirection of nate motion is perpemtionlar to the wave front (crests) as shown by the arrows.
quence of the repeated reflections is that the points of maximum intensity or wave cersts are separated more along the line of propagation in the gulde than they are in the two separate wabes. In other words, the wavelagth in the guide is greater than the free-spate wavelength. This is also showin in figg. 2is.

Modes of propagation - F'ig. 257 represents a relatively simple distribution of the electrid and magnetic fields. There is in general an infinite number of ways in which the fichls can arrange themselves in a guide so long as there is no upper limit to the frequency to be transmitted. latach field ronfiguration is ealled a morle. All modes mary be separated into two gracril groups. (One group, devignited $T . I /$ (transperse magnetic), has the magnetic field entirely transverse to the direction of propagation, but has a component of clectric fied in that direation. The ohber type designated TE' (fratherve electric) has the elentre field entirely tranverse, but has a component of magnetic field in the direetion of propatgattion. T'M waves are sometimes called E waves. and 'le'waves are sometines catlod $I /$ wates, but the TM and TVE designations are preferred.

The particular mode of transmission is identified by the group letters followed by two subscript numerals: for example, Tlis, TM ${ }_{1.1}$, ete. The number of possibie modes increases with frequency for a given size of gute. There is only one possible mode (adled the dominant mode) for the lowest frequency that. can be transmitted. The dominant mode is the one generally used in partical work.

Ware-guide dimensions - In the rectangular guide the critical dimension is x in Fig. 256: this dimension must be more than $\frac{1}{2}$ wavelength at the lowest frequency to be transmitted. In practire, the y dimension tisu-
ally is made about equal to $1 / 2 x$ to avoid the posibibity of operation at other than the dominant mode.

Other ross-sectional shapes than the rectangle can be used, the most important being the circular pipe. Much the same considerations: apply an in the rectangular anse.

Wavelength formalas for rectangular and circular guides are given in the following table, where x is the width of a rectangular gnide and r is the radius of a cireular guide. All figures are in terms of the dominant mode.

Carity resomators - At low and medium ralio frefuencies resomant circuits usually are composed of "lumped" constants of L and C; thatt is. the inductance is rencentrated in a coil and the caparity concentrated in a condenser. However, as the frequency is increased coils and condensers must be reduced to impracticably small physical dimensions. Up to a rertain point this difliculty may be overome by using lincar circuit: (\$2-12-13) but even these fail at extremely high frequencios. Another lind of areuit particularly appliable at wavelengths of the order of rentimeters is the canity resomator, whioh may be looked upon as a serfion of a wave guide with the dimensions chwen so that waves of a given length can be matintained inside.

The derivation of one type of cavity resonator from an ordinary $L C$ cireuit is shown in Fig. 259. As in the case of the wave-guide derivation, this picture must be arcepted with some reservations, and for the same reasons.

Considering that even a straight piece of wire hats approciable inductance at vory-high frequencies, it may be seen in Fig. 2;9-A and - 13 that a direct short across a two-plate condenser with air dielectric is the equivalent of a tuned circuit with a typical coiled inductance. With two wires between the plates, as shown in Fig. en?-C, the circuit may be thought of as

F'if. 2:59 - Steps in the derivation of a cavity resonator from a conventional coil-andeondenser tuntrl rircuit.
a resonant-line section. For d.c. or even low frequency r.f., this line would appear as a short across the two condenser plates. At the ultrahigh frequencies, however, as shown in Fig. 252, such a section of line a quarter-wavelength long would appear as an open rircuit when viewed from one of the plates with respect to the other end of the section.

Increasing the number of parallel wires between the plates of the condenser would have no effect on the equivalent circuit, is shown at D. Eventually, the closed figure at E will be developed. Since each wire which is added in D is like connecting inductances in parallel, the total inductance across the condenser becomes increasingly smaller as the solid form is approached, and the resonant frequency of the figure therefore becomes higher.

If energy from some $v . h . f$. source now is introduced into the eavity in a manner such as that shown at P, the circuit will respond like any equivalent coil-condenser tank circuit at its resonant frequency, A ravity resonator may therefore be used as a u.h.f. tuming element, along with a vacuum tube of suitable design, to form the main components of an owillator circuit which will be capable of functioning at frequencies ronsiderably beyond the maximum limits possible when conventional tubes, coils and condensers are employed.

Fig. 260 - Forms of cavity resonators.
Other shapes than the eylinder mas be used as resonators, among them the reetangular box, the sphere, and thesphere with re-entrant cones, as shown in lig. 260. The resonant frequenty depends upon the dimemsions of the cavity and the mode of oscillation of the waves (eomparable to the tramsmission moses in a wave guide). For the lowest modes the resonant wavelengths are as follows:

Culinder	2.61r
square box	$1.41 /$
sphere.	$2.28 r$
Sphere with re-entrant custe	r

The resonant wavelengths of the eylinder and square box are independent of the height when the height is less than a half wavelength. In other modes of oscillation the height must be a multiple of a half wavelength as measured inside the cavity. Fig. 2aj9-F shows how a cylindrical cavity can be tuned when operaliner
in such a mode. Other tuning methorls inchude placing adjusiable tuning pardeles or "shugs" inside the cavily so that the standing-wave pattern of the electric and magnetic fields can be varied.

A form of ravity resonator in wide pratotical use is the re-chtrant cylindrical tope shown in Fig. 261. It is useful in connection with vac-

Fig. 261 - IRe-entrant cylindrical cavity resonator.
uum-tube oscillators of the types described for u.h.f. use in Chapter Three. In construction it resembles a concentric line closed at both ends with raparity loading at the top, but the actual mode of oscillation may differ considerably from that oceurring in coaxial lines. The resonant frequency of such a ravity depends upon the dimmeters of the two cylinders and the dist:me d between the ends of the inner and outcre celinders.

Compared to ordinary resonant cireuits, cavity resonators have extremoly high (2. A value of Q of the order of 1000 or more is readily obtainable, and Q values of scveral thousand ean readily be secured with good devign and construction.

Compling to wave guides and canity resomotors - linergy may be introduced into or abstracted from a wave guide or resonator by means of either the electric or magnetic field. The energy transfer frequently is through a coaxial lime, two met hods for coipling to which are shown in Fig. 262. The probe shown at A is simply a short extension of the inner conductor of the roaxial line, so oriented that it is parallel to the electric tines of force. The loop shown at B is arranged so that it encloses some of the magnetir lines of foree. The point at which maximum coupling will be secured deponds upon the particular mode of propagation in the guide or cavity; the counling will be maximum when the coupling device is in the most intense field.

(A)

(B)

Fig. 262 - Coupting to wave guide's and resonators.
Coupling can be varied by turning either the probe or luop through a 90 -degree angle. When the probe is perpendicular to the elertric lines the coupling will be minimun ; similarly, when the phane of the loop is paralled to the magnetic lines the coupling will have its le:ast passible value.

(1) 2-12-C Lumped-Constant Circuits

I'h.f. resonator circuits - At the veryhigh frequencies the low values of L and C required make ordinary coils and condensers impracticable, while linear cirruits offer mechanical difficulties in making tuning adjustments over a wide-frequency range.

To overcome these difficulties, sperial high- Q lumped-constant circuits have been developed in which connections from the "rondenser" to the "coil" are an inherent part of the structure. Integral design minimizes both resistance and inductance and increases the C / L ratio.

The simplest of these circuits is based on the use of dises combining half-turn inductance loops with semi-rircular condenser plates. By comecting several of these half-turn coils in parallel, the effective inductance is reduced to a value appreciably below that for a single turn. Tuning is accomplished by intenleating grounded rotor plates between the turns. Both by shichling action and short-circuited-turn effect, these further reduce the inductance.

Another type of high-C circuit is a singleturn toroid, commonly termed the "hat" resonator. Two copper shells with wide, flat "brims" are mounted faring each other on an axially aligmed copper rod. The capacity in the circuit is that bet ween the wide shells, while the central rod comprises the inductance.

Fig. 26.3 - Concentriccylinder or "pot"-type tank for v.h.f. The equivalent eireuit diagram is alon shown. Combrotions are made to the terminats marhed T. Formaximum Q the ratio of b to c shombl be between 3 and 5 .

"Pot"-type tonk circuits - The lumpedconstant concentric-element tank in Fig. 2033, commonly referred to as the "pot" circuit, is equivalent to a very short coaxial line (no linear dimension should exreed $1 / 20$ th wavelength), loaded by a large integral capacity.

The inductance is supplied by the copper rod, A. The capacity is provided by the concentric cylinders, B and C, plus the capacity between the plates at the bottoms of the cylinders.

Approximate values of capacity and inductance for tank circuits of the "pot" type can be determined by the following:

$$
\begin{aligned}
L & =0.0117 \log \frac{b}{c} \mu \mathrm{~h} \\
C & =\left(\frac{0.6225 d}{\log \frac{a}{b}}\right)+\left(\frac{0.1775 b^{2}}{e}\right) \mu \mu \mathrm{fd}
\end{aligned}
$$

where the symbols are as indicated in Fig. 263, and all dimensions are in inches. The lefthand term for eapacity applies to the concentric cylinders, B and \dot{C}, while the sccond term gives the capacity between the bottom plates.
"Butterfly" circuits - The tank circuits deseribed in the preceding section are primarily fixed-frequency devices. The "butterfly" circuits shown in Fig. 264 are capable of being tuned over an exceptionally wide range,

Fig. 26.1 - "Butterlly" tank circuits for v.h.f., showing front and eross-section viens and the equivalent cireuit.
while still having high Q and reasonable physical dimensions. The circuit at A is clerived from a conventional balanced-type variable condenser. The inductance is in the wide circular band connecting the stator plates. At its minimum setting the rotor plate fills the opening of the loop, reducing the inductance to a minimum. Comnertions are made to points 1 and 2. Phis busic structure eliminates all commecting leads and avoids all sliding or wiping electrical contacts to a rotating member. A disadvantage is that the electrical midpoint shifts from point 3 to point 3^{\prime} as the rotor is turned. Constant magnetic roupling may be obtained by a coupling loop located at puint 4, however.

In the modification shown at D, two sectoral stators are spaced 180 degrees, thereby achieving the electrical symmetry required to permit tapping for balanced operation. Commections to the cirenit should be made at points 1 and 2 and it may be tapped at points 3 and 3^{\prime}. which are the electrical midpoints. Where magnetic coupling is employed, points 4 and 4^{\prime} are suitable locations for coupling links.

The capacity of any butterfly circuit may be computed by the standard formula for parallelplate condensers given in Chapter 20. The maximum inductance can be obtained approximately by finding the inductance of a full ring of the same diameter and multiplying the result by a factor of 0.17 . The ratio of minimum to maximum inductance varies between 1.5 and 4 with usual construction.

Any number of butterfly sections may be conuected in parallel. In practice, units of four to eight plates prove most satisfactory. The ring and stator may either be made in one piece or with separate scctoral stator plates and spacing rings assembled with machine screws.

C 2-12-D Piezoelectric Crystals

Piezoclectricity - Properly ground phates or bars of quartz and certain other crystalline materials, such as Rochelle salts, show a mechanical strain when subjected to an electric charge and, conversely, a difference in potential between two faces when subjected to mechanical stress. The relationship between mechanical force and electrical stress under such conditions is known as the piezorletric effect. The charges appearing on the crystal is a result of mechanical force applied to the errestal, or of mechanical vibration of the crystal itself, are termed piczoelcctricity.

Piezoelectric crystals may be employed as devices cither for changing merhanical energy to electrical energy or for changing electrical energy to merhanical energy. In the former category are such devices as crystal microphones and phonograph pickups: in the tatter. crystal healphones, crystal loud-speakers and erystal recording heads.

A properly cut crystal is a mechanical vibrator electrically equivalent to a serics-resonant circuit of very high $($, and so can be also used for many of the purposes for which ordinary resonant circuits are used. The resonant frequency depends upon shape, thickness, length and cut.

Natural quartz crystals are usually in the form of a hexagonal prism terminated at one or both ends by a six-sided pyramid. Joining the vertices of these prramidal ends, and perpendicular to the plane of the hexagonal cross section, is the optical or Z axis. The threc electrical or X axes lie in a plane perpendicular to the optical axis and passing through opposite corners of the hexagon. The three mechanical or I axes lie in the same plane but perpendicularly to the sides of the hexagon.

Active plates cut from a raw crystal at various angles to its optical, electrical and mechanical axes have differing eharacteristies as to thickness, frequency-temperature coelficient, power-handling capabilities, etc. The basic cuts are designated \mathbf{X} and Y after their respective axes, but a variety of specialized cuts, such as the AT, are in more common use.

Frequency-thickness ratio - At frequencies above about 500 kc . the thickness of the crystal is the principal frequency-determining factor, the other dimensions being of relatively munor importance. Thickness and frequency are related by a constant, K, such that

$$
\uparrow=\frac{K}{t}
$$

where f is the frequency in megacycles and t the thickness of the crystal in mils. For the X-cut, $K=112.6$; ${ }^{\prime}$-cut, $K=77.0$; АТ-cut, $K=66.2$, BT-cut, $K=97.3$.

At frequencies above about 10 Mc . the crystal becomes very thin and correspondingly fragıle, so that crystals scldom are manufactured for fundamental operation above this
frequency. Direct erystal control on 14 and 28 Mc. is secured by use of "harmonic" crystals, which are ground to be active oscillitors when excited at a harmonic (usually the third).

Temperature coesficient of frequencyThe resonant frequency of a crystal varies with temperature, the variation depending upon the type of cut. The frequency change is usually expressed the a coelficient relating the number of cycles of frequency change per megacycle per ${ }^{\circ} \mathrm{C}$. It may be either positive (increasing frequency with increasing temperature) or negative (decreasing frequency with increasing temperature). N-cut erystals have a negative coeflicient of 15 to 25 (.9(cles/Mc. $/{ }^{\circ} \mathrm{C}$. The coefficient of Y-cut crystals may vary from - 20 cycles $/ \mathrm{Mc} . /{ }^{\circ} \mathrm{C}$. to +100 cycles $/ \mathrm{Mc} . /{ }^{\circ} \mathrm{C}$.

Variations in frequency caused by temperature changes can be minimized by proper cutting of the plate. By orienting the plate through various angles in relation to itsoptical, electrical and mechanical axes, a compensatory relationship can be derived between the dimensions of the phate, its density, and its elastic constants - the components responsible for the temperature condicient.

The AT cut is the type perhaps most extensively used for transmitter frequency control. This plate can be ground to almost any frequeney betwen 300 and 5000 kc . Its complement. the l3' the range $4500 \mathrm{to} 10,000 \mathrm{kc}$.

For frequencies below $500 \mathrm{kc} . . \mathrm{CT}$ and I)T shear-type cuts have been developed which depend not meon thickness but on length and width for determining frequency. Plates of the CT and DT type vibrating at a harmonic mode are designated ET or FT cuts.

The low-drift types described above show a zero temperature coefficient through only a few dagrees of charige. Another type of cut, the GT', will drift less than 1 cycle/Mc. $/{ }^{\circ} \mathrm{C}$. over a temperature change of $100^{\circ} \mathrm{C}$. In this plate a face shear vibration is changed into two longitudinal vibrations coupled together. At a certain ratio of length to width one mode

Fig. 265 - Morles of vibration for various crystal ruts. A - Fundamental (ahose) and harmonic (helow) of the

Fig. 266 - Firgruency change in part- per million vs. variation in temperature in ${ }^{\circ} \mathrm{C}$. for variens erystal conts.
has a zero temperature coefficient, making it especially useful as a frequency standard. The MT eut, which also vibrates longitudinally, can le used from 50 to 100 ke . The N'l' crystal is a flexurally vibrating cut having a low temperature coefficiont in the range from 4 to 50 ke. MT and N'l' ruts are useful for phatsemodulated f.m. transmitters.

© 2-13 Miscellaneous Circuit Details

Combined a.r. and d.c. - There are many practical instances of simultaneous flow of alternating and dirert currents in a circuit. When this orcurs there is a pulsafing curront, and it is said that an alternating current is superimposed on a dirert current. As shown in Fig. 267, the maximum value is equal to the d.e. value phas the a, maximum, while the minimum value (on the negative a.e. peak) is the difference between the d.e. and the maximum a.e. values. The average value (\$2-7) of the current is simply equal to the direct-current component alone. The effective value (§2-7) of the combination is equal to the square root of the sum of the effective a.c. squared and the d.c. squared:

$$
I=\sqrt{I_{a c^{2}}+I_{d c}{ }^{2}}
$$

where $I_{a c}$ is the effertive value of the a.c. component, I is the effective value of the combination, and $I_{d c}$ is the average (d.c.) value of the eombination.

Beals - If two or more alternating currents of different frequencies are present in a normal circuit they will have no particular effect upon one another and can be separated again by the proper selertive circuits. However, if two (or more) altermating currents of different frequencies are present in an clement having unilateral or one-way current flow froperties. not only will the two original frequencies be present in the output but also curents having frequencies equal to the sum, and dilference, of the origimal frequencies. These sum and differene frequenrics are catled the brat frequencies. For example. if frequencies of 2000 and 3000 ke , are present in a normal cirruit only those two firequencies exist. hut if they are passed through a
unilateral element there will be present in the output not only the two original frequencies of 2000 and 3000 kc . but also currents of 1000 $(3000-2000)$ and $5000(3000+2000) \mathrm{kc}$. Suitable circuits can be used to select the desired beat frequency. The human ear has unilateral characteristics and is, therefore, capable of hearing audible beat frequencies. Electronic devices of this nature are called mixers, converters, and letectors.

By-passing - In combined circuits, it is frequently necessary to provide a low-impedance path for a.c. around, for instance, a source of d.e. voltage. This can be done by using a bypass condenser, which will not pass direet current but will readily permit the flow of alternating current. The capacity of the condenser should be of such value that its reactance is low (of the order of $1 / 10$ th or less) compared to the a.r. impedance of the device being bypassed. The lower the reactance, the more effertively will the alternating current be confined to the desired path.

Similarly, alternating current can be prevented from flowing through a direct-current circuit to which it may be connerted by inserting an inductance of high reactance (called a choke coil) between the two rirenits. This will permit the direct current to flow without hindrance. since the resistance of the choke coil mas be male quite low, but will effectively prevent the altemating current from flowing where it is not wanted.

If both r.f and low-frequency (audio or pow(r) currents are present in a circuit, they may be confined to desired paths by similar means, since an inductance of high reactance for radio frequencies will have negligible reactance at low frequencies, while a condenser of low roactance at radio frequencies will have high reactanow at low frequencies.

Cirounds - The term "ground" is frequently encomatered in discussions of eircuits. Normally it means the voltage reference point

Fig. 267-Pulsat ing current, compowed of an alternating current or volt. age superimposed on a stady diract current or voltage.

in the circuit. There may or may not be an actual connection to earth. but it is understood that a point in the circuit said to be at ground potential could be connected to earth without disturbing the operation of the circuit in any way. In direct-current circuits, the negative side generally is gromuded. The ground symbol in circuit diagrams is used for convenience in indiating common connections between various parts of the circuit, as through a metal chassis, and. with respecet to actual ground, usually has the meaning indicated above.

Chapter. Three

Vamen The

1. 3-1 Diodes

Rectification - Practically all of the vacunm tubes ased in radio work depend upon thermionic conduetion (\$2-4) for their operation. The simplest type of vacum tube is that shown in Fig. 301. It has two elements, a cathode and a plate, and is called a diode. When heated by the "A" battery the rathode cmits electrons, which are attracted to the plate if the plate is at a positive potential with respect to the cathode.

Becalase of the nature of thermionic ronduction, the tube is a conductor in one direction only. If a source of alternating voltage is connected between the cathode and plate, then electrons will flow only on the positive halfcycles of alternating voltage; there will be no electron flow during the half cyele when the plate is negative with respect to the cathode. Thus the tube can be used as a rectifier, to change alternating current to pulsating direct current. This alternating current can be anything from the 60 -cycle kind to the highest radio frepuencies.

Rectification finds its chief applications in detecting radio signals and in power supplies. These are treated in Chapters Seven and Eight, respectively.

Characteristic curres - The performance of the tuhe can be reduced to casily understond ternas by making use of tube characteristic curves. A typical characteristie curve for a diode is shown at the right, in Fig. 301. It shows the current flowing between plate and cathode with different d.c. voltages applied between the elements. The curve of Fig. :301 shows that, with fixed cathode temperature, the plate current increases as the voltage between eathode and plate is raised. For an actual tube the values of plate curront and plate voltage would be plotted along their respective axes.

The power consumed in the tube is the produet of the plate voltage multiplied by the plate current, just as in any d.e. cireuit. In a vacumm tube this power is dissipated in heat developed in the plate and radiated to the bulb.

Fig. 301 - The diode or twoelement tube and a typiral characteristic curve showing plate current is. voltage.

Space charge - With the cathode temperature fixed the total number of electrons enitted is always the same, regardless of the plate voltage. Fig. 301 shows, however, that less plate current will flow at low plate voltages thin when the plate voltage is large. With low plate voltage, only those electrons nearest the plate are attracted to the plate. The electrons in the space near the cathode, being themselves negatively charged, tend to repel the similarly charged electrons leaving the cathode surface and catuse them to fall back on the cathode. This is called the space-charge effect. As the plate voltage is raised more and more electrons are attrarted to the plate, until finally the space charge effect is completely overcome. When this occurs all the electrons emitted by the cathode are attracted to the plate, and a further increase in pate voltage can cause no further increase in plate current. This condition is called saturation.

(1) 3-2 Triodes

Grid conerol - If a third element, called the control griel, or simply the grid, is inserted betweon the cathode and plate of the diode, the space-charge effect can be controlled. The tube then becomes a triade (three-olement tube) and is useful for more things than rectification. The grid is usually in the form of an open spiral or mesh of fine wire. If the grid is connerted externally to the cathode so that it is at the same potential as the cathode, and a steady voltage from a d.c. supply is then applied bet ween the cathode and plate (the positive of the "I)" supply is abways comected to the pate), there will be a constant flow of electrons from cathode to plate through the openings of the grid, mueh as in the diode. However, if the grid is given a positive potential with respect to the cathode, the space charge will be partially neutralized and there will be an inerease in plate current. If the grid is made negative with respect to the cathode, the space charge will be reinforced and the current will decrease.

This effect of grid voltage can be shown by curves in which plate current is plotted agatinst grid voltage. At any given value of grid voltage the plate current will still depom upon the plate voltage, so if complete information about the tube is to be secured it is neecesary to plat a serics of curves taken with various values of plate voltage. Such a set of grid voltage vs. plate current curves, typical of a small receiving triode, is shown in Fig. 30:3.

So long as the grid has a negative potential with respect to the cathode, electrons emitted

Fig. 302 - Illustrat. ing the construction of an elementary triode vacuum tube, showing the filament, grid (with an end view of the grid wires) and plate. The relative density of the space charge is indicated roughly by the dot density. Battery symbols follow those of the usual sehematic diagrams, while the schematic tule symbol is shown at the right.

by the cathode are repelled ($\$ 2-3$) from the grid, with the result that no current flows to the grid. Hence, under these conditions, the grid consumes no power. However, when the grid becomes positive with respect to the cathode, electrons are attracted to it, and a current flows to the grid; when this grid current flows, power is dissipated in the grid circuit.

In addition to the set of curves showing the relationship between grid voltage and plate current at various fixed values of plate voltage, two other sets of curves may be plotted to show the characteristies of a triode. These are the plate voltage $v s$. plate current characteristic, which shows the relationship between plate voltage and plate current for various fixed values of grid voltage, and the constant-current characteristic, which shows the relationship between plate voltage and grid voltage for various fixed values of plate current.

Amplification - The grid evidently acts as a valve to control the flow of plate current, and it is found that it has a much greater effect on plate current flow than does the plate voltage; that is. a small change in grid voltage is just as effective in bringing about a given change in plate current as is a large change in plate voltage.

The fact that a small voltage acting on the grid is equivalent to a large voltage acting on the plate indicates the possibility of amplification with the triode tube; that is, the generation of a large voltage by a small one, or the generation of a relatively large amount of power from a small amount. The many uses of the electronic tube nearly all are based upon this amplifying feature. The amplified power or voltage output from the tube is obtained, not from the tube itsclf, lut from the source of e.m.f. connected between its plate and cathode. The tube simply controls the power from this source, changing it to the desired form.

To utilize the controlled power, a device for consuming it, or for transferring it to another circuit, must be connected in the plate circuit, since no particularly useful purpose would be served in having the current mercly flow through the tube and the source of e.m.f. Such a deviec is called the load, and may be either a resistance or an impedance. The term "impedance" is frequently used even though the load may be purely resistive.

Amplification factor - The relative effect of the grid and plate voltages on the plate current is measured by the amplificution factor of the tube, usually represented by the (ireek letter μ. Amplification factor is defined as the ratio of the change in plate voltage required to produce a given change in plate current to the change in grid voltage reduired to produce the same plate-current change. Strictly speaking, very small changes in both grid and plate voltage must be used in detormining the amplification factor, because the curves showing the relationship between plate voltage and plate current, and between grid voltage and plate current, are not perfectly straight, especially if the plate current is nearly zero. This indieates that the amplification factor varies at different points along the curves, and different values will be obtained as larger or smaller voltage differences are taken for the purpose of calculating it. The expression for amplification factor can be written:

$$
\mu=\frac{\Delta E_{p}}{\Delta E_{\theta}^{\prime}}
$$

where ΔE_{p} indicates a very small change in plate voltage and $A E_{0}$ is the change in grid voltage produring the same wate corrent change. The symbold (the Greck letter delta) indieates a small incroment, or smatl change.

The amplification factor is simply a ratio, and has no unit.

Plate resistance - Since only a limited amount of plate current flows when a given voltage is applied between plate and wathode, it is evident that the paterathode cireuit of the tube has resistance. However, there is no simple relationship between phate voltare and plate current, so that in general the pate circuit of the tube does not follow Ohm's Law. Under a given set of conditions the application of a given plate voltage will callse a certain plate current to flow, and if the plate voltage is divided by the plate current a "resistance" value will be obtained which frequently is called the "d.c. resistance" of the tube. This "d.c. resistance" will he different for every value of plate voltage and also for different values of grid voltage, since the plate current also depends upon the grid voltage when the plate voltage is fixed.

In applications of the vacuum tube, it is more

Fig. 303 - Grid voltage vs. plate current curves at various fixed values of plate voltage ($E \Delta$) for a ty yical small triode. Characteristic curves of this type can be taken by varying the battery voltages in the circuit at the right.
important to know how the plate current changes with a change in plate vultage than it is to know the relationship between the actual values of plate current and plate voltage. The relationship between plate-current change and plate-voltage change determines the a.c. plate resistance of the tube. This resistance, which usually is designated r_{p}, is significant when there is an a.c. component in the plate current. It can be found from the plate voltage vs. plate current characteristic curves, That is,

$$
r_{p}=\frac{\Delta E_{p}}{\Delta I_{p}}
$$

where ΔE_{p} is a small change in plate voltage and $د I_{p}$ the corresponding small change in plate current, the grid voltage being fixed.

Plate resistance is expressed in ohms, since it is the ratio of voltage to current. The value of plate resistance will, in general, change with the particular woltages applied to the plate and grid. It depends ass well upon the structure of the tube; low- μ tubes have relatively luw plate resistance and high- μ tubes have high plate resistance.

Transconductance- The effect of grid voltage upon plate eurrent is expressed by the grid-plate transconductance of the tube. Transconductance is a general term giving the relationship between the voltage applied to one electrode and the current which flows, as a result, in a second electrode. As in the previous two cases, it is defined as the chonge in current through the second electrode caused by a change in voltage on the first. Thus the grielplate transconductance, commonly called the mutual conductance, is

$$
g_{m}=\frac{\Delta I_{p}}{\Delta E_{0}^{\prime}}
$$

where g_{m} is the mutual conductance, ΔI_{p} the change in plate current, and $\triangle E_{g}$ the change in grid voltage, the plate voltage being fixed. As before, the sign $د$ indicates that the changes must be small. Transconductance is measured in mhos, since it is the ratio of current to voltage. The unit usually employed in connection with varuum tubes is the micromho (one millionth of a moso), hecause the comductances are small. By eombining with the two preceding formulas, it can be shown that $g_{m}=\mu / r_{p}$.

The mutual conductance of a tube is a rough indication of its merit as an amplifier, since it

Fig. 304 - Plate voltage vs. plate current curves at various fixed values of negative grid voltage for the same triode as that used to obtain the curves in Fig. 303.
includes the effects of both amplification factor and plate resistance. Its value varies with the voltages applied to the plate and grid. With the plate voltage fixed, the mutual conductance decreases when the grid is made increasingly negative with respect to the cathode. This characteristic frequently can be used to advantage in the control of amplification, since the amount of amplification can be varied over wide limits simply by adjusting the value of a steady voltage applied to the grid.

Static and dynamic curtes- Curves of the type shown in Figs. 301 and 303 are called static curves. They show the current which flows when various voltages are applied directly to the tube electrodes. Another useful set of static curves is the "plate family," or plate voltage va. plate current characteristic. A typical set of curves of this type is shown in F'ig. 304.

A curve showing the relationship between grid voltage :und plate current when a load resistance is connected in the plate circuit is called a dynamic characteristic curve. Such a curve includes the effect of the load resistance. and hence is more indicative of the performance of the tube as an amplifier. With a fixed value of plate-supply voltage the actual value of voltage between the hate and cathode of the tube will depend upon the anmount of plate current flowing, since the plate current also flows through the load resistance and therefore results in a voltage drop which must he subtracted from the piate-supply voltage. The dynmmic curve includes the effeet of this voltage drop. Consequently, the plate current always is lower, for a given value of grid bias and plate-supply voltage. with the load resistance in the circuit than it is without it.

Represontative dyamic characteristics are shown in Fig. 30., These were taken with the same twe of tube whose static curves are shown in Fig. 30:3. Different curves would be obtancel with different values of plate-supply voltage, E_{n}; this set is for a plate-supply voltage of 300 volts. Note that increasing the value of the load resistance reduces the plate current at a given bias voltage, and also that the eurves are st raighter with the higher values of load resistance. Zaro plate eurrent always occurs at the same value of mogative grid hises, sime at zero plate current there is no voltage drop in the load resistance and the full supply voltage is applied to the plate.

Fig, 30 ti shows how the plate current responds to an alternating voltage (signal) applied to the grid. If the plate current is to have the same waveshape as that of the signal, it is necessary to confine the operation to the straight section of the curve. To do this, it is necessary to select an operating point near the middle of the straight portion; this operating point is determined by the fixed voltage (bias) applied to the grid. The alternating signal voltage then adds to or subtracts from the grid bias, depending upon whether the instantane-
ous signal voltage is negative or positive with respect to the cathode, and causes a corresponding variation in plate current. The maximum departure of instantaneous grid voltare or plate current from the operating point is called the saring. The varying plate current flows through the load resistance, camsing a varying voltage drop which constitutes the useful output voltage of the tube.

The point at which the plate current is reduced to zero is called the cut-off point. The value of negative grid voltage at which cut-off occurs depends upon the amplification factor of the tube and the plate voltage. It is approximately equal to the plate-supply voltage divided by the amplification factor.

Interelectrode capacities - Any pair of elements in a tube forms in miniature condenser (§2-3), and, although the caparities of these condensers may be only a few micromicrofarads or less, they must frequently be taken into acrount in vacuum-tube circuits. The capacity from grid to plate (grid-plute cupucit!!) has an important effert in many applications. In triodes, the other capacities are the gridcathode and plate-crathorle. In multi-clement tubes ($\mathbf{\$} 3-6$), similar capacities exist between these and other electrodes. With sereen-grid tubes, the terms "imput" and "output" capacity mean, respectively, the capacity measured from grid to all other elements connected together and from plate to all other elements connected together. The same terms are used with triodes but are not so easily defined, since the effective capacities existing depend upon the operating conditions (\$3-3).

Tube rasings - Sperifications of suitable operating voltages and corrents are called twhe ratings. Ratings inchude proper values for filament or heater voltage and current, plate voltage and current, and similar operating specitications for other celements. An important rating in power tubes is the maximum sufe plate dissipation, or the maximum power that can be dissipated continuously in heat on the plate(§3-1).

(1) 3-3 Amplification

Principles - The operation of a simple amplifier, which was described briefly in the preceding section, is shown in more detail in Fig. 307. The load in the plate circuit is the resistor, R_{p}. For the sake of example, it is assumed that the plate-supply voltage is 300 volts, the negative grid bias is 5 volts, and the plate current at this bias when R_{p} is 50,000 ohms is 2 milli amperes (0.002 ampere). If no signal is applied to the grid eircuit. the voltage drop in the load resistor is $50,000 \times 0.002$, or 100 volts, leaving 200 volts between the plate and cathode.

If a sine-wave signal having a peak value of 2 volts is applied in series with the bias voltage in the grid circuit, the instantancous voltage at the grid will swing to -3 volts at the instant the signal reaches its positive pak and to -7 volts at the instant the signal reaches its negative pak. The maximum plate current
will occur at the instant the grid voltage is -3 volts and, as shown by the graph, will have a value of 2.65 milliamperes. The minimum plate current occurs at the instant the grid voltage is -7 volts, and has a value of 1.35

Fig. 305- I ynamic characteristies of a small triode with various load resistances from 5,000 to 100,000 ohmes.
ma. At intermediate values of grid voltage, intermediate plate-current values will oceur. The instantaneous voltage between the plate and cathode of the tube also is shown on the graph. When the plate current is maximum the intstantaneous voltage drop in R_{p} is $50,000 \times$ $0.002 \operatorname{tin}^{3}$ or 130.5 volts, and when the plate current is minimum the instantaneous voltage drop in h_{p} is $50,000 \times 0.00135$ or 67.5 volts. The actual voltage hetween plate and cathode is therefore the difference between the platesupply voltage, 300 volts, and these voltage drops in the load resistance, or 167.5 and 232.5 volts, respectively.

The varying plate voltage is an a.c. voltage superimposed ($\$ 2-13$) on the steady platecathode voltage of 200 volts, which was previously determined for mo-signal conditions. The peak value of this a.s. output voltage is the differenee between either the maximum or minimum plate-eathode voltage and the nosignal value of 200 volts. In the illustration this difference is $232.5-200$ or $200-167.5$, or 32.5 volts. Since the grid signal voltage has a peak value of 2 volts, the voltage amplification ratio of the amplifier is $32.5 / 2$ or 16.25 . That is, approximately 16 times as much volt-

Fig. 306 - Behavior of the plate current of a vacuum tube in respomse to an alternating simnal voltage superimposed on a steady negative grid voltage or bias.

Fis. 30^{-7} - Amplifier operation. When the plate corrent varies in respuse to the mipual applied to the \&rid, a varsing voltage drop appears across the load, R_{p}, as shown by the dashed curve, lip. I_{p} is the plate curreut.
age will be obtained from the plate circuit as is appliod to the arid rireuit.

It will be observed that only the alternating plate and grid voltanes enter into the ealenatation of the amplification ratio. The dee plate and grid voltatges are of course essential to the uperation of the tube, since they set the operating point, but otherwise their presence may be ignured. This being the rase, it is possible to show that the tube can be replaced by an rquitalent gonerator which has an internal resistance equal to the are plate resistance of the tube (Which generates a voltare equal to the amplification factor of the tate multiplied by the signal woltage applied to the grid. The equivalent eremerator, tugether with the lond resistance, R, is shown in Fig. :30s. This simplification onables realy cealculation of the amplificalimen. If the remerated voltane is μE_{g}, then the same curremt flow through r_{p} and R_{p}. and hence the voltage drop across R_{p}, which is the uscoul ontput voltage, is

$$
F_{o}=\mu E_{o} \frac{R_{p}}{r_{p}+R_{p}}
$$

since R_{p} and r_{p} together eonstitute a voltage divider (s シ-i). The voltage-amplification ratio is given hy the output voltage divided by the input vollage, hence dividing the above expression by E_{g} gives the following formula for the amplification of the tube:

$$
\text { Amplification }=\frac{\mu R_{p}}{r_{p}+R_{p}}
$$

This expression shows that, to obtain a large voltage-amplification ratio, it is necessary to make the plate load resistance, R_{p}, large compared tu the plate resistance, r_{p}, of the tube. The maximum possible amplification, obtained when R_{p}, is infinitely larger than r_{p}, is equal to the μ of the tube. A tube with a large value of μ will, in general, give more voltage amplitication that one with a melium or low value. However, the advantage of the high μ is less that mirht he expected, hecause a high- μ tube 1asually also has a correspondingly high value of $r_{p,}$ so that a high value of load resistance must be used to realize an appreciable part of
the possible amplification. This in turn not only requires the use of high values of plate-supply voltage, but has some further disadvantages to be deseribed later.

Amplifiersin which the voltage output, rather than the power output, is the primary consideration are ealled voltage a mplifirrs.

Pouer in grid circuit - In the operation depicted in Fig. 306, the grid is always negative with respect to the cathode. If the peak signal voltage is larger than the bias voltage, the grid will be positive with respect to the cathode during part of the signal cycle. Grid current will flow during this time, and the signal source will be called upon to furnish power during the period while grid current is flowing. In many cases the signal source is not capable of furnishing appreciable power, so that care must be taken to avoid "driving the grid positive."

When dealing with small signals the source of signal voltage frequently las high internal resistance, so that a considerable voltage drop occurs in the source itself whenever it is called upon to furnish grid current. Since this voltage drop occurs only during part of the cycle, the voltage applied to the grid undergoes a change in waveshape beeause of the current flow. This is shown in Fig. 309, where a sine-wave signal is generated but, because of the internal resistance of the source, is distorted at the grid of the tube during the time when grid current flows.

If the internal resistance of the signal source is low, so that the intermal voltage drop is negligible when current flows, this distortion does not ocrur. With such a source, it is possible to operate over a greater portion of the amplifier characteristie.

Marmonia disiortion - If the operation of the tube is not confined to a straight or linear portion of the dynamic characteristic, the waveshape of the output voltage will not be exactly the same as that of the signal voltage. This is shown in Fig. 310, where the operating point is selected so that the signal voltage swings into the curved part of the characteristic. While the upper half-cyele of plate current reproduces the sine-wave shape of the positive half-cycle of signal voltage, the lower half-cyele of plate current is considerably distorted and bears little resemblance to the upper half-cycle of plate current.

As explained in § 2-7, a non-sinusoidal waveshape can be resolved into a number of sinewave components or harmonies which are integral multiples of the lowest frequency present. Consequently, this type of distortion is known as harmonic distortion. Distortion re-

Fig. 308 - Equivalent cirsuit of the vacuumtule amplifier. The tube is replaced by an equivalent penerator having an internal resistancerqual to the a.c. plate resistance of the vacumm tube.
sulting from grid-current flow, described in the preceding paragraph, also is harmonic distortion. Ifarmonic distortion from either or both causes may arise in the same amplifier.

Harmonic distortion may or may not be tolerable in an amplifier. At audio frequencies it is desirable to keep harmonic distortion to a minimum, but radio-frequency amplifiers are frequently operated in such a may that the r. i. wave is greatly distorted.

Frequency distortion - Another type of distortion, known as frequency distortion, occurs when the amplification varies with the frequency of the a.c. voltage applied to the grid circuit of the amplifier. It is not necessarily accompanied by harmonic distortion. It can be shown by a frequency-response curve or graph in which the relative amplification is plotted against frequency over the frequency range of interest.
Resistance-coupled amplifiers-An amplifier with a resistance load is known as a "resistance-coupled" amplifier. This type of amplifier is widely used for amplification at audio frequencies. A simplified circuit is shown in Fig. 311, where the amplifier is compled to a following tube. Since all the power output of a resistance-coupled amplifier is consumed in the load resistor such amplifiers are used almost wholly for voltage amplification, usuatly working into still another amplifier.

A single amplifier is called a slage of amplification, and a number of amplifior stages in succession are said to be in cascade.

The purpose of the coupling condenser, C_{c}, is to transfer to the grid of the following tube the a.c. voltage developed across R_{p}, and to prevent the d.c. plate voltage on tube A from being applied to the grid of tube B. The grid resistor, R_{o}, transfers the bias voltage to the grid of tube B and prevents short-cireuiting the a.c. voltage through the bias battery. Since no grid current flows, there is no d.c. voltage drop in R_{g}; consequently the full bias voltage is applied to the grid. In order to obtain the maxi-

Fig. 309 - Distortion of an. plied signal because of gridcurrent flow. With the operating point at 3 volts negative bias, grid current will flow as shown by the curve whenever the applied signal voltage is more than 3 volts poritive. If there is appreciable internal resistance, as indicated in the second draw. ing, there will be a voltape drop in the resistance whenever current is flowing but not during the period when no current flows. The simnal will reach the grid umehanged so long as the instantancons voltage is lese than 3 volts positive, lut the voltage at the grid will be less than the instantameous voltage whern the latter is above this fig. ure. The shape of the negative half-cycle is unaltered.

Fig. 310 - IIarmonic distortion resulting from chaire of an ofrating point on the curved part of the tulncharacteristic. The lower halferyedr of plate current dow. not have the same shape as the grid voltage causing it.
mum a.c. voltage at the grid of tube B the reactance of the coupling condenser must be small compared to the resistane of R_{y}, so that most of the voltage will appear across R_{0} rather than across C_{c}. Also, the resistance of R_{0} must he large compared to $R_{\text {; }}$ because, so far as the a.c. voltage developed in R_{p} is concerned, R_{g} is in parallel with R_{p} and therefore is just as much a part of R_{p} as though it wore connected directly in parallel with it. (The impedance of the plate-supply battery is assumed to be nergigible, so that there is no a.c. voltare drop between the lower end of k_{j} and the common connection between the two tubes.) In practice the maximum usable value of R_{0} is limited to from 0.5 to about 2 megohms, depending upon the characteristics of the tube with which it is associated. If the value is made too high, stiay electrons collecting on the grid may not "leak off" back to the cathode rapidly enough to prevent the accumulation of a negative charge on the grid. This is equivalent to an increase in the negative grid bias, and hence to a shift in the operating point.

The equivalent circuit of the amplifier now includes C_{c}, R_{a}, and a shunt capacity, C_{s}, which represents the input capacity of tube B and the plate-cathode capacity of tulee A, together with such stray capacity as cxists in the circuit. The reactance of C_{s} will depend upon the frequency of the voltage being amplified, and, since C_{s} is in parallel with R_{p} and R_{ρ}, it also becomes part of the load impedance for the amplifier. At low frequencies - below 1000 eycles or so - the reactance of C e usually is so high that it has practically no effect on the amplification, but, since the reactance decreases at higher frequencies, it is found that the amplification drops off rapidly when the reactance of C, becomes conmarable to the resistance of R_{p} and R_{0} in parallel. To maintain the amplification at high frequencies, it is necessary that R_{n} be relatively small if C^{\prime}, is large, or that C_{s} be small if R_{p} is large.

Under the best conditions, in practice C_{8} will be of the order of $15 \mu \mu \mathrm{fd}$. or more, while it is
possible for it to reach values as high as a few hundred $\mu \mu \mathrm{fl}$. The larger values are encountered when tuhe B is a ligh- μ triode, as deseribed in a later paragraph. Even with a low value of shont capacity, the shmot reactance

Fig. 311 - 'ly pieal resistancerouphed amplifier cirenits.
will decrease to a comparatively low value at the upper linut of the audio-frequency range; a shunting capacity of $20 \mu \mu \mathrm{fd}$., for example, represents a reactance of about 0.5 megoh at 15,000 eycles, and hence is of the same order as R_{p} for the type of tubes with which surh a low value of capaeity would be associated. In order to secure the same amplification at high ats at low frequencies, therefore, it is necessity t_{0} satrifice low-frequency amplification by reducing the value of R_{r} to the point where the reactance of C_{s} at the highest frequency of interest is considerahly larger than $h_{p}{ }_{p}$.

At radio frequencies the reactance of C s hecomes so low that the amount of amplification it is possible to realize is negligible compared to that which ean be obtained in the aduliofrequency range. The resistance-coupled amplifier, therefore, is used principally for atudiofrequeney work.

Impedance-conplad amplifiers - If either the plate resistor or grid resistor (or both) in the amplifier deseribed in the preceding paragraph is replaced by an inductance, the amplifier is said to he impedance-coupled. The inductance or impedince is commonly substitut el for the plate load resistor, so that the usual cirmit for such an amplifier is as given in Fig. 31:.

Considering the operation of the tube from the standpoint of the equivalent eircuit of Fig. 30R, it is evident that a voltage drop would exist across a reactance of suitable value substituted for the indicated load resistance, h_{p}, so long as the output of the generator is alternating eurrent. From the physical stampoint, any change in the current flowing through the inductance in Fig. 312 would cause a selfinduced e.m.f. having a value proportional to the rate of change of current and to the inductance of the coil. Consequently, if an ac. signal voltage is applied to the grid of the tube, the resultant variations in plate current catase a corresponding a.c. voltage to appear across
the coil terminals. This induced voltage is the useful output voltage of the tube.

The amplitude of the output voltage can be calculated, knowing the μ and phate resistance of the tube and the impedance of the load, in much the same way as in the case of resistance coupling, except that the equation must be modified to take account of the fact that the phase relationship bet ween current and voltage is not the same in an impedanee as it is in a resistanee. In practice, the plate load inductance is shunted by the tube and stray capacities of the circuit as well as by its own distributed capacity. Since the greatest amplification will be secured when the load imperlance is as high as possible, the coil usually is made to have sulficient inductance so that, in combination with these shunting capacities, the circuit as a whole will be parallel-resonant at some frequency near the middle of the audio-frequency range. Inder these conditions the load impedance has its highest possible value, and is approximately resistive rather than reactive.

The equation for amplification with resistance coupling shows that, when R_{p} is several times the plate resistance, r_{p}, a further increase in R_{p} results in comparatively little increase in amplification. The load rircuit of an imped-ance-coupled amplifier usually has an imperlance value quite high in comparison to the plate resistance of the tube with which it is used, so that the load impedance can vary over a considerable range without much effect on the amplification. This gives the impedancecoupleal amplifier :un amplification vs. frequency characteristie which is fairly "flat" - that is, the amplification is practically constant with changes in frequency - over a considerable portion of the audio-frecuency range. However, the performane of the impedance-coupled amplifier is not as good in this respect as that of a well-designed resistance-coupled amplifier.

If the imperlance of the load eircuit is high eompared to the pate resistance of the tube, which will he the case if the tube is a low- μ triode sund normal induetance values (a few hundred hemrss) are used in the plate circuit,

Fig. $31:-1$ Impedance-coupled amplifier.
the amplification in the optimum frequency range will be practically equal to the μ of the tube. At lower frequencies the impedance decreases beratise of the decreasing reactance of the coil, while at higher frequencies the impedance again decreasios beramse of the decreasing reactance of the shment capacities. Thus the amplification drops off at both ends of the range. usually more rapidly than with resistance coupling.

The frequency-response characteristic of the impedance-coupled amplifier depends considerably upon the plate resistance of the tube. If inpedance coupling is used with tubes of very high plate resistance, the response will be markedly greater at the resomant frequency than at frequencies either higher or lower.

Impedance coupling can be used at radio frequencies, since the inductance can be adjusted to resonate with the shment capacities at practically any desired frequence.

Transformer-coupled amplifiors - The coupling impedance in Fig. 312 may be replaced hy a transformer, connected as shown in Fig. 313. A.c. voltage is developed across the primary of the transformer in the same way as in the case of impedance coupling. The serondary of the transformer serves as a means for transferring the voltage to the grid of the following tube, and if the secondary has more turns than the primary the voltage arross the secondary terminals will, in peneral, be larger than the voltage arross the primary terminals.

As in the case of impedance coupling, the effective capacity shonting the primary of an audio-frequency transformer usially comses the primary circuit to be parallel-resomant at some frequency in the middle of the atodiofrequency range. At the modium andio frequencies, therefore, the voltage across the primary is practically equal to the applied grid voltage maltiplied by the μ of the tube. The voltage across the secombary will be the primary voltage multiplied he the secomdary-toprimary turns ratio of the transformer, so that the total voltage amplifieation is μ times the turns ratio. The amplification at low frepuencies depends upon the ratio of the primary reactance to the plate resistance of the tube, as in the case of inpedance-coupled amplifiers.

At some high frequeney, usually in the range 5000-10,000 creles with ordinary transomers, the leakage indurtance ($\$ 2-9$) of the serondary becomes series resonant with the effective capacity shunting the secondary. At and near this resonant frequency the resomant rise in voltage may increase the amplifiontion considerably, giving rise to a "peak" in the frequency-response curve of the amplifier. At frequencies above this resonane point amplification decreases rapidly, beranse as the reactance of the shunting capacity decreases it tends to act more and more as a short cirmit across the secondary of the transformer. The relative height of the high-frequency peak depends principally upon the effective resistance of the seromdary circuit. This effertive resistance includes the actual resistance of the secondary coil and the "reflected" (\$2-9) plate resistance of the tube, this resistance being in parallel with the primary of the transformer. Consequently, the height of the peak is affected by the tube with which the transformer is used. The peak can be redueed by connecting a 0.25 to 1 mogohm resistor arross the transfomer secondary. While this helpa to flatten the fre-
quancy response curve, it also redures the amplification at medium and low frequencies.

Transformer coupling is most suitable for triodes of low or medimm μ and having medium values of plate resistance. This is because the primary inductance required for good amplification at low frequencies is proportional to the plate resistance of the tube with which the transformer is to be used, and in practice it is difficult to olotain high primary inductance, a large secondary-to-primary turns ratio ("stepup ratio"), and low distributed capacity in the windings all at the same time. Increasing the primary inductance usually means that the turns ratio nust be reduced, because the increase in distributed capacity as the coils are made larger tends to bring the resonant peak down to a relatively low frequency unless the secondary inductance is decreased to compensate for the incroase in capacity. The step-up ratio seldom is more than 3 to 1 in transformers designed for good frequency response.

Fig. 313- Transformeroompled amplifior.
Transformer coupling can be used at radio frocueneres if the tramsformers are properly designed for the purpose. In surl transformers cither the primary or secondary (or both) is made resonant at the frequency to be used, so that maximum amplification will he secured.

Phase relations in plate and grial circuits - When the exciting voltage on the grid has its maximum positive instantaneous value. the plate current also is maximum ($3-2$), so that the voltage drop across the resistance connected in the plate cireuit of a resistancecoupled amplifier likewise has its greatest value. The artual instantaneons voltage between plate and rathode is therefore minimum at the same instant, beranse it is equal to the d.c. supply voltage (which is unvarying) minus the voltage drop across the lond resistance. When the signal voltage is at its negative peak the plate current has its least value, with the result that the voltage drop in the load resistance is less than at any other part of the eycle. At this instant, therefore, the voltage between plate and cathode is maximum.

These variations in plate-cathode voltage coustitute the a.c. output of the tube, superimposed on the mean or no-signal plate-cathode voltage. Since the alternating plate-eathode voltage is decreasing when the instantaneous grid voltage is increasing (hecoming more positive with respect to the cathode), the output voltage is less than the mean value, or negative, when the signal voltage is positive. Likewise, when the sigmal voltage is negative the output voltage is positive. or greater than
the mean value. In other words, the alternating plate voltage is 180 degrees out of phase with the alternating grid voltage. Thus there is a phase reversal through the amplifier. The relationships should become clear from the hehavior of the signal voltage and E_{p} in Fig. 307.

The same phase relationship between signal and output voltages holds when the amplifier is impedance- or transformer-coupled, in the frequeney region where the load acts like a parallel-resonant circuit. IIowever, if the load is reactive the phase relationship is not exactly 180 degrees but depends upon the kind of reactance present and the relative amounts of reactance and resistance. (This is true also of the rexistance-coupled amplifier at low frequencies where the reactance of the coupling condenser affects the amplitication, or at high frequencies where the reactance of the shunting eapacitics becomes important.) Since the reactance varies with the applied signal frefueney, the phase relationship between signal voltage and output voltage depends upon the frequency in such cases.

Infut capacity and resistance - When :n alternating voltage is applied between the grid and cathode of an amplifier tube, an alternating current llows through the small condenser formed by these elements ($\$ 3-2$) just as it would in any other condenser. Similarly, an alternating current also flows in the condenser formed by the errid and plate, since there is an alternating difference of potential between these elements. When the tube is amplifying, the altomating plate voltage and simal volate are effectively applied in series acruss the grinlplate condenser, as indicated in Fig . 314 . As described in the preceding paragraph, in the revistane-coupled amplifier the two voltages are out of phase with respect to the cathude, but inspection of the circuit shows that they are in phase so far as the grid-phate condenser is concerned. Consequently, the voltage applied to the grid-plate capacity is the sum of the alternating grid and plate voltages, or $E_{y}+E_{p}$, Since E_{2} is equal to $A \times E_{\%}$, where A is the voltage amplification of the tube and circuit, the a.c. voltage between the grid and plate is $E_{c}(1+A)$. The current. I, flowing in the grid-p)!ate capacity is $E_{a}(1+A)$ divided by the reactance of the grid-phate condenser. and thas is proportional to the grid-phate capacity.

The signal voltage must help in causing this re'atively large current to flow, and, since the rebetance as viewed from the imput circuit

fige 318-The a.s. voltace apraring between the prid and plate of the amplitier is the furn of the signal voltage and the output voltage, as shown by this simwified circuit. In-tantancous polaritiee are indicated.
is $\bar{X}_{0}=E_{0} I$, the input reactance becomes smatler as the current becomes larger. That is, the effective input capacity of the amplifier is increased when the tube is amplifying. From the above, the increase in input capacity is approximately proportional to the voltage amplitication of the cirenit and to the grid-plate capacity of the tube. The total input capacity is the sum of the grid-cathode capacity and this additional effective capacity. The total imput capacity of an amplitier may reach values ranging from 50 to a few hundred micromicrofarads, if the voltage amplification is high and the grid-plate capacity relatively large. Both usually are true in a high- μ triode.

When the load is reactive the a.c. grid and plate voltares still aet in series across the gridplate condenser, but since they are not exactly 150 degrees out of phase with respect to the cathode thes are not exactly in phase with respect to the grid-plate capacity. The lack of exact phase relationship indicates that resist ance as wall as capacity is intronduced into the input circuit. Analywis show that, when the reactance of the load circuit is capacitive the resistance compmont is positive - that is, it represents a loss oi power in the input circuit - and that when the load circuit has inductive reactance the resistance conponent is negative. Negative resi-tance indicates that power is being supplied to the grid circuit from the plate.

Ferd-back-If some of the amplified energy in the plate circuit of an amplifier is coupled back into the errid eircuit, the amplifier is said to have fed-buck. If the voltage fed from the plate circuit to the grid circuit is in such phase that, when it is added to the signal voltage aldecody existing, the sum of the t wn voltages is larger than the original signal voltage, the feed-batk is said to be positive. Pusitive feed-back umally is called rueneration. If remeneration exists in a circuit the total amplification is increased because the feed-back increases the amplitude of the signal at the grid and this larger signal is amplified in the same ratio, giving a greater output voltage than would exist if the signal voltage alone were present in the grid circuit. Many types of rircuits can be used to secure positive feedback. A simple one is shown in Fig. 315. The feed-back coil, L, a third winding on the grideircuit transformer, is connected in series with the primary of the transformer in the plate circuit. so that some of the amplified voltage appears across its terminals. This induces a voltage in the secondary, S, of the grid-cireuit transformer which, if the winding directions of the two coils are correct, will increase the value of signal voltage applied to the grid.

Positive foed-back is acommanied by a tendency to give maximum amplification at only one frequency, since the feed-back voltage will tend to be highest at the frequency ut which the oriminal amplitication is greatest. It therefore increases the selectivity of the amplifier, and hence is used chiefly where high gain
and sharpness of resonance both are wanted.
If the phase of the voltage fed back to the grid eircuit is such that the sum of the feedback voltage and the original signal voltage is less than the latter alone, the feed-hack is said to be negatior. Negative feed-back frequently is called degentiotion. In this case the total amplification is decreased, since the grid sigual has been made smaller. and hence the amplified output voltage is smaller for a given original signal than it would be without ieed-back.

The amount of voltage fed back will depend apon the actual amplification of the tube and circuit, and if the amplification ratio tends to change, as it may at the extreme high or low frequencies in the audio-frequency range, the feed-back voltage will be reduced when the amplification decreases. For example, suppuse that an amplifier has a voltage gain of 20 and that it is delivering an output voltage of 50 volts. Without feed-back, the grid signal voltage required to produce 50 volts ontput is 50,20 or 2.5 volts. But suppose that 10 per cent of the output voltage (5 volts) is fed back to the grid circuit in opposite phase to the applied grid voltage. Then, since it is still necessary to have a 2.5 -volt signal to prombee 50 volts output, the applied voltare must be $2.5+\bar{j}$ or 7.5 volts. Now suppose that at some other freguency the voltane gain dropes to 10 . Then for the same $\delta 0$-volt output a 5 rolt signal is required, but since the feed-hack voltage is still 5 volts the tutal required signal is now 10 volts. With feed-back the gain in the first case was $50 / 7.5$ volts or 6.66 and in the second (ase 5010 or 5 , the gain in the seeobld case being $\bar{j}=$ per cent as high as in the first. Without feed-back the gain in the second caso. was io per cent as high $a=$ in the first. The effect of feed-back therefore is to make the resultant gan more miform, despite the tendency of the amplifier itself to discriminate against certain frerpuencies.

Negative feed-back also tends to decrease harmonic distortion arising in the plate circuit of the amplifier. This distortion is present in the amplified output voltage. but not in the original sigual voltage applied to the grid. The voltuge fed back to the grid circuit comains the distortion but in opposite phase to the distorfion components in the plate circuit, hence the two tend to cancel each other. For similar renouns. the over-all amplification is less dependent upon the value of load impedance ued in the plate cirenit : in fact, if a large amount of nerative feed-back is used in an amplifier it is even possible to substitute tubes of rather widely different characteristics without much effect on the over-all periormanee.

Both positive and negative feed-back may be applied over several stares of an amplifier, rather than being applied directly from the plate circuit to the grid circuit of a single stage.

Pouer amplifiention - In the typen of amplitiers previously described, the chief consid--ation was that of semaring as much voltage
gain as posible within the permissible limits of harmonic distortion and frequency response characteristic. Such amplifiers are principally used to furnish an anmplifed signal voltane, which in turn can be supplied to a succeeding amplifier. If the surcceding amplifier is operaded in such a way that its grid is never driven positive with respect to its cathorle, grid current does not flow, and hence the power requirements are negligibly small. However, if an amplifier is used to actuate some power-consuming device, such as a londspeaker or a succeeding amplifier in which it is permissible to drive the grid into the positive region, the primary consderation is that of obtaining the maxinum power output consistent with the permissible distortion. In such a case the volt age at which the power is scrured is of little consequence, since a transformer mat be used to change the voltage to any desined value, within reasonable limits. ILence, the voltage galin of a power amplifier is of little importance.

In power-amplifier operation the grid may or may not be driven into the positive region, depending upon the particular application. The preant discussion wall be confined to the triode amplifier operating without grid curment; other tyes are considered in \& $3-4$. The principles upon which such a power amplifice operates are practically identical with those aheady describerl. The chief differences between a volt age amplitier and a power amplifier lie in the selection of tubes and in the choice of the value of luad rosistance. As previously described, if voltage gain is the mimary consideration the load resistance shouht be as large as ponsible in comparison to the phate resistance of the tube. It can be shown that. in any eledrical circuit. maximum pmere output is secured when the reaistance of the load is made equal to the internal resistame of the soure of power. This is true whether the power source is a battery; a generator or a vacuum tube. In the case of the vacuum tube the internal resistance is the plate resistance of the tube, so that for maximum power outphit the load resistance should be made equal to the plate resistance. However, when the tube is operated with so low ε value of load resistance there is considerable hamonic distorion, and optimum power output. representing an aceeptable compromise between distortion and the power obtainable, is secured when the load reointame is approximately t wice the phate resistance.

Fig. 315 - In flementary form of feed-back circuit. The fed-back may he either positive or negative, depemting unon how the coil L is connected in the cireat. This type whereit illustrates the principle of ferd-back, but it i-

Pozer-amplifier circuits - The plate or output circuit of a power amplifier almost invariably is transformer-coupled to the powerconsuming device or luad with which it is associated. This is berathse the impedance of the desired lowd shlom is the proper value for obtaining optimum power out put from the amplifier. Consequently, the hat impedane must be changed to a value suitable for the plate circuit of the amplifier tube. This can be done by the use of transformors, as doseribed in §2-9.

Fig. 3/6-An Alomentary power-anplitier riment in which the proser-tomsuming lerad is compled to the blate circuil thromph an impedanee-matching transformer.

A basic power-amplifier circuit is shown in lig. 316. so long ats the amplifier is operated entirely in the menative-gral resion and no grid eurrent flows, aty uf the previously doseribod types of compling maty be wed hetween the grid of the power amplifier and the preceding amplitier. If there is no precoding amplifier, the nethod of compling will depend prineipally on the eharacteristies of the somere of the signal.

In Fig. : 3 lif the lowd is represented as a resistance. An antual latal may have a reactance as well as at rexistance eomponent, but only the resistance will consume power ($\$_{2}^{2-8)}$).

Power amplification ratio- The ration of a.e. output power to the a.e. power consumed in the grid circuit (driving power) is called the purer amplification ratio or simply patior amdification of the amplifier. If the amplifier operates without grid current the a.e. power consumed in the grid rirenit is negligibly small, so that the power amplification ration of sum an amplifier is extremely large. With other types of operation the pmwer amplification ratio may be relatively small, as deseribed in s.3-4.

Plate efficionoy - The ration af ace output power to the dic. power supplied to the phate eircuit is callud the phate calictine!g of the amplifier. It is expressed as a percentage:

$$
\% \text { plate efliciency }=\frac{P_{0}}{E l} \times 100
$$

where P_{0} is the ace. output power, E the plate voltage and l the blate eurrent, the latter two being d.e. values.

The plate efficieney of amplifiers designed for minimum distortion and a ligh power amplification ratio (oneration without grid current) is redatively low - of the order of 15 to :3) per eent. For minimum distort ion the operation must be confined to the region where the waveshape of the altermating plate current is substantially identical with that of the signal on the grid, and, as previously explained, this roguirentent can be met only by limiting the
plate-current variations (that is, the alternating component of plate current) too the straight portion of the dynamic grid voltage vs. plate current characteristic. Since with a given load resistance the power output is proportional to the square of the alternating eomponent of plate current, it follows that limiting the platecurrent variation also limits the power output in comparison to the d.c. plate power input.

Higher plate efficiency can be secured by increasing the alternating component of plate current, but this is accompanied by increased distortion. Special types of amplifiers have been devised to compensate for this distortion, as described in the next section. In some applications, as in r.f. power amplification, the fact that the signal applied to the grid is greatly distorted is of no conseruence, so that such amplifiers can have high plate efliciency.

Poucer sensitivity - The ratio of a.e. power output to alternating grid voltage is called the pouer sensitivit!/ of an amplifier. It provides a convenient measure for comparing power tubes, especially those designed for audio-frequency amplification where the operation is to be without grid current, since it expresses the relationship between power output and the amount of signal voltage required to produce the power.

The term power sensitivity also is used in connection with radio-frequenc'y power amplifiers, in which case it has the same meaning as power amplification ratio. A tuhe which delivers its rated output power with a relatively small anount of power consumed in the grid circuit is said to have high power sensitivity.

Parallel operation - When it is necessary to ohtain more power output than one tube is capable of giving, two or more tubes may be connected in parallel. In this case the similar cloments in all tubes are connected together. This method is shown in Fig. 317 for a trans-former-coupled amplifier. The power output of a parallel stage will be in proportion to the number of tubes used; the exciting voltage required, however, is the same as for one tube.

If the amplifier operates in such a way as to consume power in the grid circuit, the grid power required also is in proportion to the number of tubes used.

Push-pull operation-An increase in power output can he secured by connecting two tubes in push-pull, the grids and plates of the two tubes heing connected to opposite ends of the circuit as shown in Fig. 317. A "balanced" circuit, in which the cathode returns are made to the midpoint of the input and output devices, is necessary with pushpull operation. At any instant the ends of the seromdary winding of the input transformer, T_{1}, will be at opposite potentials with respect to the cathode connection, so that the grid of one tube is swung positive at the same instant that the grid of the other is swong negative. Hence, in any push-pull-connected stage the voltages and currents of one tube are out of phase with those of the other tube. The
plate current of one tube is rising while the plate current of the other is falling, hence the name "push-pull." In push-pull operation the even-harmonic (s.econd, fourth, ete.) distortion is cancrolled in the symmetrical plate circuin. so that for the same pewer output the distortion will be less than with paralled operation.
The exefing voltage measured between the two grids must be twise that required for one tube. If the grids consume power, the driving power for the push-pull stake is twice that taken by cither tube alone.
The decibel - The ratio of the power levels at two points in a circuit such as an amplifier can be expressed in terms of a unit called the decibel, abbreviated d (l). The number of decibels is 10 times the logarithm of the power ratio, or

$$
\mathrm{db} .=10 \log \frac{P_{1}}{P_{\mathrm{z}}}
$$

The deribel is a particularly useful unit because it is logerithmic, and thus corresponds to the response of the human ear to somuds of varying loudness. One decibel is approximately the power ratio required to make a just noticeable difference in sound intensity. Within wide limits, changing the power by a given ratio produces the same apparent change in loudness regardless of the power level: thus if the power is doubled the increate is 3 dh., or three steps of intensity: if it is dombled again the increase is again: 3 dh., or three furt her distinguishable stepls. Siuccessive amplifications expressed in decibels can be added to obtain the over-all amplification.

A power loss also cam be expressed in decibels. A decrease in power is indicated by a minus sigu (c.g., -7 db), and an increase in power by a phas sign (e.g., +4 db .). Negative and positive quantities can be added numerieally. Zero db. indicates the reference power level, or a power ratio of 1 .

Appliantions of omplificotion - The major uses of vacum-tube amplifiers in radio work are for amplifying at audio and radio frequencies ($\stackrel{2-7}{ }$). The audio-frequeney amplifier gemerally is used to amplify without dis-

Fig. 317 - Parallel and mash-pull a.f. amplifier circuits.
(rimination at all frequencies in a wide range (saty from 100 to 3000 cyeles for voice communication), and therefore is assuristed with monresmant or untuned cirenits whirh ,ffer a miform load ow the desired range. Ther radis-frequency amplifier, on the on her hand, generally is ased to amplify selerfively at a single radio frequency, or over a small band of frequencios at most, and therefore is associated with rusonant circuits tunable to the desired frequence.

An audio-frequency amplifier mas be considered a bromelobund "mplifur: most radiofresulacy amplifiers ate designed to have relatively narrow bandwidthe.
In audin circuits the power tube or output tube in the last stage usibally is designed to deliver a considerable amount of andio power, while requiring but nosliquble power from the input or exciting signal. To get the alternating voltage (grid suring) rectuired for the grid of such a tube. voltage amplifiers are used conploying high- μ tubes which greatly increaser the roltage amplitude of the signal. Voltage amplitiers are used in the randin-irepuener stages of reverivers as well ats in andinamplitions: power amplifiers are nised in the radionfefurney stages of tramimitters.

C. 3-4 Classes of Amplifiers

Reasonfor chasificmion - His convenient to divide amplifiers into gromps aceording to the work they are intended to preform, as related to the operating comelition meressary to aceomplish the purpose. This m: lase identifio: tion easy and ohbiates the necessity for giving a detailed description of the opration when specific onerating data are not reanimed.

Class A-An amplifier operatell as shown in Fig. 300 or 30 , in which the out put waveshape is a faithful reproduction of the input waveshape, is known as: Class- 1 :mplifier.

As generally med. the grid of al (lass-a amplifier nower is driven panitive with respect to the cathode he the expining signal, and never is driven so far negative that phate-emrent cut-off is reacheol. The phate curment is constant buth with and without griad excitation. The chief elanacteristion of the (lass- 1 amplifier are low distortion, relatively low power output for a given size of tube, and at high power-amplification ratio. The plate efficiency is relatively low (今, $3-3$).
(las--A power amplitiors find application as output amplifiers in :undius syterns and as drivers for ('lass- 3 power amplifiers. (lass-A voltave amplifiers are formd in the stages preceding the power stage ur stayes in such appliations and ans. a amplifers in recrivers.

Class B - The Class-ls :mplifier is primalrily one in which the output current, or alternating component of the plate furrent. is propertional to the amplitule of the axciting grid coltage. Since power is propertional to the square of the current, the power ontput of at Class-B amplifier is propertional to the square of the exciting grid voltage.

In Class-B service the grid hias is set so that the mate current is relatively low without grid excitation: the rexiting signal amplitude is made such that the entire linear portion of the characteristic is used. Fir, 318 illustrater operation with the tube biased practically to cutoff. In this condition plate curvent fons: only luring the pesitive half-rele of excitation. Ň. plate current flows during the negative halfrycle. The shape of the phate eurreat pulse is orsentially the same as that of the presitive swing of the signal roltage since the plate rurrent is driven up toward the saturation point, it is usually necessary for the grid to he driven positive with respect to the cathode during part of the grid swing. Grid current flows, therefore, and the driving source must furnish power to suphly the grid losses.

Class-B amplifiers are characterized hy medium power output, medium plate efficieney (50 to 60 per cent at maximum signal), and a moderate ratio of power amplification. At radio frequencies they are used as linear amplificrs to raise the ont put powrer level in radiotelephone transmitters after modulation.

For Clas-B audio-frequency amplification two tubes must be used, the second tube working alternately with the first so that both halies of the eycle will be present in the output. A typical method of achieving this is shown in Fig. 319. The signal is fed to a transformer, T_{1}, whose secondary is divided into two equal parts, with the tube grids connceted to the outer terminals and the grid bias fed in at the center. A transformer, T_{2}, with a similariy divided primary, is comected to the plates of the tubes. When the signal voltage in the upper half of T_{1} is positive with respect to the center

Fig. $319-$ Showing how the outputs of the two tubes in push-pull aremombined in the Chas- B andin amplifier.
(ammection (center tap), the upper tube draws plate current while the lower tube is idle; when the lower half of T_{1} becomes positive, the lower tube draws plate current while the upper tute is idle. The voltages induced in the primary of 7 'z combine in the serondary to producean amplified reproduction of the sigmal.

Class AB - The similarity between the ('lass-AB amplifier, Fig. 319, and the ortinary push-pull circuit (Fig. 317) will be noted. Artually, the only difference lies in the method of operation. If the bias is adjusted so that the tubes draw a moderate value of plate current with no signal, the amplifier will operate Clasis A at low signal voltages and more nearly (hass B at high signal voltages. This methord gives low distortion at moderate signal levels and high plate efficiency at high signal levelmationg posible the we of relatively small tubes in audio power amplifiers.

A further distinction ran be made between amplifiers which draw grid current and those which do not. The Class-a $1 B_{1}$ amplifier draws no grid rurrent and thus comsumes no power from the driving sulure. The Class-i $B=$ ant plitier dratws grid curent at higher signal levels. and power must be supplied to its grid cirenit.

Class C - The Class-C amplifier is one operated so that the alternating eomponent of the plate current is directly proportional to the plate voltage. The output power is therefore proportional to the square of the plate voltage. Other characteristics inherent to Class-C operation are high plate efficiency, high power output, and relatively low power amplification.

The grid hias is set at a value at least twice that required for plate-current cut-ofi without excitation. Thus plate current flows during only a fraction of the positive excitation cyele. The exciting signal should be of sufficient amplitude to drive the plate current to the saturation point, as shown in Fig. 320. Since the grid must be driven far into the positive region to cause saturation, considerable numbers of electrons are attracted to the grid it the peak of the cycle, robbing the plate of some that it would normally attract. This atases the droop at the upper bend of the chararteristic, and also may cause the plate-current pulse to be indented at the top. The output w:ave-form is badly distorted, but at radio trequencies the distortion is largely eliminated by the flywheel effect of the tuned output, circhit.

(1) 3-5 Cathodes; Grid Bias

Types of cuthodes - There are two general types of eathodes, known as directly heated and indirectly heated. In the former the beating current is passed directly thruugh the electronemitting material. usually a fine wire or filament. In the latter the electrons are emitted from a sleeve or thimble raised to the proper temperature by an elertrially-semarate heathing element :ts shown in Fig. 321.

Directly-heatorl or filament-tyer eathoules maty he of pure thmpten, tung-an hatsing a small amount of thorium dissolved in it, of thansten coated with rare carthe (oxide-conted type). The latter give the latgent amount of electron emission per watt of heating power. Thoriated tungsten filaments are intermodiate in electron-emitting efficieney, and are umed unjversally in small and medium-power transmitting thibes. Indirectly-heated rathodes are invariably of the oxide-coated type.

When direotly-heated cathodes are oprerated on alternating current, the evelie variation of current causes the phate current of the thbe to vary at the supply-frequency rate. produciner hum in the cutpat. Hum from this source is eliminated in the indirembly hated aphode. This trpe is :tsis known as the rqui-poloniabl cathorle sinee all of it is at the same purntial. in contrast to the direotly heated filament Where a voltage drop wewars along the witc.

The source of filament power for a directly heated wathode - hattery or transformer necessarily is dirently comnested to the tube circuit. With an indiemtly heated cathorle the source of heating power ean be entirdy independent of the tube circuit.

The operating temperature of a thoriated tungsten filament is fairly eritiral, and the specified filament voltage should be maintained within n few fur cent. Thace tilanemit. tas well as oxide-conted rathoden, evontually "lose "uission": that is. the emission effidiency of the cathode decorases until aufticient chectron cuission for satisfactory tube operation cannot be ohtatined without raising the cathode temperature to an unsate value.

Fig. 321 - Isprs ni cathode construetion. Directly heatod cathodes or filements are shown at A, B, and C. The inverted V fitament is ozed in small receiving tubes, the M in both receiving and transmitting tubes. The spiral filament is a transmitting-tabe trpe. Th indirectly heated cathodes at D and E show two typen of heater construction, one a twisted loop and the other bunched heater wires. both typr= tend w. "ancel th.

Cathode circuits; filament center tapWhen a filament-type cathode is heated by a.c.. hum can be minimized by making the two ends of the filament have equal and opposite potentials with respect to a center point, usually grounded (§2-13), to which the grid and

phate return cireuts ate emmerted. The filament transformer winding mas be conter-tapped for this purpuse, as sown in Fig. 32?-A. With an unt:pped winding, a conter-tapped resistor of 10 to 50 ohms is used. as at 13 . The by-pass combensers. C_{1} and ('o, are used in r.f. circuits to avoid having the r.i. current How theroush the transformer or resistor.

The heater subly for tubes with indireetly heated rathodes simetimes is renter-titpped for the same purpose: more frequmaty, however, whe side of the heater is grounded.

Mcthorls of obtaining grid bias-Grid bias maty be chtained from at source of voltage espretially provided for that purpose, surh as: a hattery or other type of d.c. power supply. This is indirated in Fig. 323-1. A secund method, utilizing a cothode rosistor, is shown at 13: d.e. mate curront flowing through the resistor canses a voltage drop which, with the commections shown, has the right polarity to bias the grid negatively with respect to the "athode. The value of the resintor is determined by the bias reguired and the plate current which flows at that value of biss, as foumd from the thbe eharateristie eneres: with the voltage and current known, the resistance can be detrmined by Ohmis Law (\$2-6):

$$
R_{c}=\frac{E \times 11 m, 0}{I_{c}}
$$

Where $F_{0}=$ rithode hias resistor in ohms
$E=$ desired bias voltage
$I_{r}=$ total d.c. cathode current in millianperes.
It the tube is a multi-element type, the sereenand suppressor-grid currents should be added to the plate current to obtain the total cathode current. The eontrol-grid current also shonid be included if the cont rol grid is driven positive.

The a.o. component of plate current flowing chrough the cathode resistor will cause an a.c Foltage drop which gives negative feod-back $(83-3)$ into the grid circuit, and thus reducos the amplification. To prevent this, the resistor usually is by-passed ($\$ 2-13$), C, being the caihode by-pass condenscr. To bo effective, the reactance of the by-pass condenser must be stuall compapol io P at the frerpuency beins
amplified. This condition generally is satisfied if the reactance is 10 pereent or less of the cathode resistance. In ablio-frogueney amplifiers, the lowest frequency at which full amplification must be serured shoulal be used in calculating the rerguired eapacity.

Fig. 323 - The three hasiv methruls of ohtaining grid bias. A, fixed bias; It, callomde bia; C, grid-leak bias.

A third liasing mothod is by use of a grid
 exerither voltare he positive whatereet to the eathode duming part wif the eycle, su that grid corrent will flow. 'The flow of arid corrent throwigh the grial beak callases a voltage drop
 tive blas. The time comstant (s) 2-6) of the grid
 parison to the time of one erele of the exciting voltage, se that the erin hate will he substantially constant and will mot fullow the varisutions in ace. grial voltage, For grid-leak bias,

$$
R_{v}=\frac{E \times 1000}{I_{g}}
$$

where ${ }^{\prime}$ is the grid-latak rewistane in ohms, E the dexired hias voltage and $I_{\text {s }}$ the d.e. grid current in mat.

For two tulks mprated in pheh-pull or parallel with a common cathode- or grid-leak resistur, the requided resistame beromes onehalf that for a single tube. In pushopull Class-A rimuits operatine at andio frequencies, it is mmecessary to ber-pass the eathode resistor. In this rase the a.r. enmponent of eathode current in one tube is sut of phaw with the ase centument in the other, su that the two rallcel earla witer.

The rlonere at a initsing method depends unon the type of oprotion. Fixed bias usually is requiral where the d.e. plate current of the amplifier varies in "preation, ats in Class-B andio-frequency amplifiers: if cathode bias is used the bias voltage would vary with the
plate current. Since the plate current of a Class-A amplifier is constant with or without signal, such amplifiers almost invariably have cathorle bias. Grid-leak bias camot be used with amplifiers operated so that the grid is always negative with respect to the cathode, since in wheh a case there is no grid current and hence no voltage drop in the grid leak. (iridleak bias is chiefly used for r.f. power amplifiers and for certain types of detectors. In power amplifiers. a combination of two or evern all three types of bias may be used on one tube.

C. 3-6-A Mulfi-Grid Tubes

Radio-frequency amplification-As desoribed in $\$ 3$ - . the reactances of the grid-tocathode and plate-to-rathode capacities (together with unavoinable stray (apacitics) in a vacumm tube become very low at frequendes higher than the audio-frequency range. As a result, ordinary resistance, impedame or tramsformer coupling camot be used at radio frequencies beranse the capacitios ad as lowreactance by-passes across the input and output circuits. Hence the total impedance in either the plate or the grid circuit is too low for appreciable voltage to be developed.

This situation can be overcome by using resonant circuits as impedances for radiofrequency amplification. As described in \$2-10, the parallel impedance of a resonant circuit ean reach quite high values when the Q is high. Values of parallel-resonant impedance suitable for effortive amplification are reatily obtainable with reasomably well-designed rirenits. The thbe and stray caparities herome part of the tmang eapacity and thus are mate to serve a useful purpose. However, the circuits have maximum impedance at the resomant freduency only, hence the amplification will decrease at frequencies somewhat removed from resonance. Thus a radio-frequency amplifier must be designed for a sperifie frequency.

An clementary circuit illustrating the primciples of r.f. amplifiration is shown in Fig. 324. The grid cirruit, $L_{1} C_{1}$, and the pate circuit, $L_{2} C_{2}$, must be tuned to the same frequency for maximum amplifieation. But if the plate circuit is tuned slightly to the high-frequency side of resonance it will show inductive reactance, and as desoribed in \& $3-3$ mergy will be transfered from the plate cirenit to the grid circuit under such conditions. If enough energy is transferred the tube will generate a self-sustaming r.f. current, in which case it is said to be oscillating. When oscillation commenere the circuit ceases to amplify incoming signals, since it is generating al signal of its

Fig. 32:1 - Elcmentary radio.frequency amplifier.
own. Unfortunately, it is almost impossible to prevent such oscillation in a simple triode a mplifier such as is shown in Fig. 32-4.

Special "neutralizing" circuitic (s t-7) have been devised to prevent oscillation with triode amplifiers, but mont of thewe are more suitable for use in transmitting applications, where the amplifier does not have to be tunable over a wide range of frequencies. thatn in receivers. However, oseillation can be avoided by using a circuit in which the feed-back is negative rather than positive, as indicated in the next paragraph.
Grounded-grid amplifier - In the rirenit of Fig. 32:- the grid of the tube is commerted to ground :and the eathode is conneeted to the

Fig. 325 - Grounded-rrid amplifice circuit.
high-potential side of the input resonant circuit, reversing the nisula connetions. The output circuit is comected in the customary way betwern plate and ground. Since the alternating component of phate curent must flow through the tuned imput cirenit to return to the eathode there is feed-back from the plate to the grid circuit, but it is negative rather than positive feed-back. Hence this coupling between the two circuits will not cause oscillation.

However, it is still possible for the circuit to oscillate if there is capacity coupling between the plate and cathode. The grounded grial prevents this coupling bey acting as a shield between the other wo elements (\$2-11). The eircuit is most suecensful with tubes having very low plate-to-cathonde caparity. It is used principally at ultra-high frequencies (where the sereen-grid tubes described in the next paragraph become ineffective as amplifiers with tubes designed especially for the purpose.

The r.f. chokes in the cathode circuit are used to isolate the heater from ground and thus eliminate the effect of the capacity between cathode and heater. This capacity tends to short-cirenit the tuned input cirenit and thus prevents the amplifier from operating properly.

Screen-grid tubes - The grid-plate capacity can be eliminated, or at least reduced to a negligible value, by inserting a second grid between the control grid and the plate as indieated in Fig. 326. The second grid, called the screen grid or shield grid, acts as an electrostatic shield ($\$ 2-11$) between the control grid and plate. It is made in the form of a grid or coarse screen rather than as a solid metal shect, so that electrons can pass through it to the
phate; a solid shield would entirely prevent the flow of plate current. The sereen grid is conneeted to the eathode through a by-pass condenser, which has low impelanee at the ratio frequency beins :mplified. The clectric lines of force from the plate terminate on the srreen grid, very little of the fied getting thromgh to the control grid: similarly, the fied set up by the control gricl does mit penetrate pist the sereen grod. Thus there is no common field between the control grid and plate; hene no caparity hetwem these two tube elements.
Since the elertric field from the plate does not penctrate into the region occupied thy the control grid, which is the rewion in which most of the spare change is comerntrated, the plate is unable to exert an attration upon the electrons in this region. Conseequently, the plate voltage cammet control the flow of plate charent as it does in a triode. In order to get eleetrons to the plate it is necessary to apply a poitive potential with respert to the cathode) to the sercen. The sercen then att ra-t elect tonts mach as does the plate in a triode tube. In traveling
 ity, so that mont of them shout betwern the sereen wires into the fied from the plate. Those that pass throush and are attracted to the plate constitute the plate carrent of the tuhe. A certain proportion whe strike the seren, however. with the result that some current alsio flows to the seren grid. The seren current will be low compared to the phate current in a tetrod or fom-element tube. however.

Secomdary amission - When all electron traveling at appreciable volowity through a tube strikes the plate it dismalere wher electrons. These "splath" from the plate into the

pentode

SYMBOLS

 wrid eat away. 'The seremprid matally is mate longer

 trul prid connertion is mater through a cap on the top of

 throweh the hater. Some mondern mhe- which haw hoth leads poing throngh the have nor-perial thioldiner and

interelement space, a phenomenon called secondary emission. In a triode ordinarily operated with the grid negative with respect to rathode, secondary electrons are repelled back into the plate and cause no disturbance. In the screen-grid tube, however, the positively charged screen attracts the secondary electrons, cansing a reverse current to flow between sreen and plate. The effert is partioularly marked when the plate and soreen potentials are nearly equal, which may be the case during the part of the a.c. cycle when th. instantaneous plate current is large and the plate voltage low (§ 3-3).

Pentorle tubes - To overcome the effects of secondary emission, a thind grid, called the suppressor grid, may be inserted between the sereen and plate. This grid, which is connected directly to the eathode, repels the relatively low-velocity secondary clectrom:. They are driven bark to the plate without apreciably obstructing the regular plate-current flow.

Although the screen grid in either the tetrode or pentode greatly reduces the influence of the plate upon plate-current flow, it is ruite olbvious that the control grid still can control ther plate current in essentially the same way that it does in a triode, since the control grid is still in the space-rharge region. Consequently, the grid-plate transcunductance (or mutual conductance) of a tetrode or pentode will be of the same order of value as in a triode of corresponding structure. On the other hand, simee the plate voltage has very little effect on the plate-current flow, both the amplification factor and plate resistance of a pentode or tetrode are very high, as is apparent from the definitions of these constants (\$3-2) In small receiving pentodes the amplification factor is of the order of 1000 or higher, while the plate resistance maty be from 0.5 to 1 or more megohms. Because of the high plate resistancer, the actual woitage anplification possible with a pentode is very murble lest than the large amplification factor miorht indicate. In resistancecoupled atudio-frequency amplifiers, voltage amplification or gain of 100 to 200 is typical.

A trpical set of characteristic curves for a small prentode is shown in Fig. 327. That the plate voltage has lit tle effect on the plate current is indicated by the fact that the curves are practienlly horizontal onee the plate voltage is

rin. 327 Plate woltage vis. plate current rurves for a small receiving peatore. Grem-krid roltage, Fi, q. is jot vilts and -uppressorgrid voltayc, lisumpo is erer.

high enongh to prevent the elecrons in the spare between the sereen grid and the plate from being attracted back to the sereen. The plate potential at which this occurs is less than the screen potential, becallse the electrons entering the space have considerable velocity and hence tend to move away from the sereen despite the fart that it has a positive charge.

In addition to their appliations as radiofrequency amplifiers, pentode or tetrode sereen grid tubes also can be constricted for andiofrequency power amplification. In tubes designed for this purpose the shielding effect of the srreen grid is not so important; the chief function of the screen is to serve as an acederator of the electrons, so that large values of plate curreut can be drawn at relatively low plate voltages. Such tubes have quite high powrr sensitivity ($\$ 3-4$) compared to triodes of the same power output, berause the amplification factor of an equivalent triokle has to be made fuite low in order tos secure the same plate current at the same plate voltage. Because of the low μ, the triode requires a relatively large signal voltage for full nutput, hence has fow power sensitivity. The harmonic distortion is somewhat greater with pentodes and tetrodes than with triodes, however.

Vuriable-mu and sharp rut-off tubes Recofiving sereen-grid tetrodes and pentodes for radio-frequency voltage amplification are male in two types, known as shorp cut-off and rariable- μ or "super-control" types. In the sharp cut-off type the amplification factor is practically constant regardless of grid bias, while in the variable- μ type the amplification factor decreases as the negative bias is increased. The purpose of this design is to permit the tube to handle large signal voltages without distortion in circuits in which grid-bias control is used to vary the mutual conductance, and hence the amplification.

The way in which mutual conductance varies with grid bias in two typical small receiving pentodes, similar except in that one is a sharp cut-off type and the ot her a variable- μ trpe, is shown in Fig. 32S. Obviously, the vari-able- μ type can handle a much larger signal voltage without swinging bevond either the point of zero grid hias or of plate-current cut-
off (zero mutual conductance), if the bias is properly chosen.

Beam tubes - A "beam'-type tube is a tetrode with grids so constructed as to form the electrons traveling to the plate into concentrated beams, resulting in higher plate efficieney and power sensitivity. Suitable design also overcomes the effects of secondary emission without the neressity for a suppressor grid. Tubes constructed on the beam principle are used in receivers as both r.f. and audio amplifiers, and are built in larger sizes for trausmitting circuits.

Fis. 329 - Irontonde r.f. amplifier circuit. $I_{11} C_{1}$ and $L_{2} C_{2}$ are tumed to the same frectuenes. R_{1} is the cathode resistor, by + passed for r.f. by C_{3}, R_{2} is the serern voltage. dropping resistor, by-pisefd by Ca. Cs is the plate hy-pass.

(1)3-6-B Pentode Amplifiers

K.F. amplification - A fundamental rircuit for radio-frequency amplification with a pentode tube is shown in Fig. 339. The grid and plate circuits may be tuned to the same frequency, thus obtaining maximum amplification, without danger of oscillation provided there is no feed-hack coupling between the tuned cireuits themselves. Practical variations of this circuit and their application to receivers are discussed in \$ $7-4$ and $\$ 7-11$.
A.F. amplification - Recciving-type penttodes frequent! are used as voltage amplifers for audio frequencies, usiner the circuit shown in basic form in Fig. 330. In this application they are capable of much higher voltage gain than can be obtained fromi triodes, and have the arlvantage that since there is no coupling from plate to grid there is no increase in input capacity with amplification ($\$ 3-3$. For the latter reason it is possible to obtain high gain. in resistance-coupled amplifiers, at considerably higher frequencies than is possible with a triode.

The discutsion of amplification in §3-3 applies equally to pentordes and triodes, with the exception that the plate resistance of a pentode is so high that the amplification is

usually considered to be proportional to the plate load resistance alone. For maximum voltage gain, R_{p} should have as high resistance as possible without causing too great a voltage drop. Values range from 0.1 to 0.5 megohm. The value of R_{c} depends upon R_{p}, which principally determines the plate current. Values for the srreen resistor, R_{s}, may vary from 0.25 to 2 megohms. A sereen by-pass condenser $\left(C_{s}\right)$ of $0.1 \mu \mathrm{fd}$. will be adequate in most cases.

Table I in Chapter Fourteen shows suitable values for the more popular types of amplifier tubes. The calculated stage gain and peak undistrited output voltage also are given.

Plate and screen woltage - Since the d.c. plate current flows through any resistance placed in the plate circuit of a tube as a load or coupling medium (\& 3-3), the actual voltage at the plate is less than the supply voltage by the voltage drop across the total resistance.

With transformer coupling this efiect is not ordinarily of great importance, berause the inductance of the transformer primary provides a high-impedance frad at audio frequencies. while the d.e. resistance of the winding causes only a small drop in d.e. plate voltage.

In a resistance-coupled or parallel-fed stage the operating voltage is less than the sumply voltage by the denp throngh the load resistor, h_{p}. Thus, in Fig, 331-A, $E_{n}=E_{n}-\left(I_{p} \times R_{p}\right)$.

Gercen voltage is chermined in the same way. using the scroen current, I_{s}. to calculate the drop across the sereen dropping resistor, $R_{\text {e }}$.

Fig. 331 - Calculation of plate and serecu voltages.
In Fig. 331-B both plate and screen current flows through a common filter resistor, so that both currents must be added in calculating the voltage drop across R_{f}. Thus

$$
\begin{aligned}
& E_{p}=E_{b}-\left(I_{p}+I_{s}\right)\left(R_{1}\right)-I_{p} R_{p} \\
& E_{s}=E_{b}-\left(I_{p}+I_{s}\right)\left(R_{1}\right)-I_{s} R_{s}
\end{aligned}
$$

In Fig. 331-C, the screen voltnge, E_{8}, is obtained from a tap on a voltage divider consisting of R_{s} and K_{b}. Assume a value of bleeder current, I_{δ} ($88-4$). Then $R_{b}=E_{s} / I_{b}$, where E_{s} is the rated screen voltage. The total current, $I_{s r}$, is the sum of I_{b} and I_{d}. The voltage across R_{s} is the difference between the supply voltage and E_{s}. Henee $R_{s} \Rightarrow\left(E_{b}-E_{s}\right) / I_{s r}$. F_{p} is determined as above.

The resistance-capacity filter (§ 2-11) in Fig. 332, $C_{f} R_{f}$, is a decoupling circuit which isolates the stage from the power supply, to eliminate untranted coupling between stages through the common impedance of the power
supply. Although shown in connertion with a triode amplifier in the diagram, the same type of filter is used with pentodes.

Wide-band amplifiers - Amplification of audio frequencies, which extend from about 50 to 15,000 ryales, presents no particularly dificult problems so long as the design prints discussed in § 3-3 are observad. However, for amplifying signals surh as television signals or pulses having a time duration of only a few millionths of a second it is neressary to extend the frequency response of the amplifier well beyond the audin frequency range - and even well into the medium radio-frequency range. At the same time it is frequently moressary to extend the louer frequency limit of the amplifier as welt. This extension of range is made possible by the use of compensalim! eireuits.

Low-frequency compensation - While the amplitude response of a resisiance-roupled amplifier usually is satisfactory at low froquencies, the phase angle introduced by the output coupling rondenser and the nexi-stage grid resistor is sufficiont to prevent proper reproduction of low-frequeney square wave unless very large values are emploted. Vet whel large values increase the shunt (atparity to ground, introduce grid-curven: difleaitics in the following stage, and may even indure relaxation nseillations (motorbuating).
The effect of the time constant of
Fig. $3.32-1$ Herompling in a resistance-coupledamplifier.

Fig. 333 - Wide-band frequency-compensated amplifier.
ing) indurtance in parallel with the circuit capacity, as shown in Fig. 333. By resonance efferts this raises the impedance to an extent and over a frequency range determined by the Q of the rireuit consistmin of L_{L}, h_{P} and C_{t}. Since h^{\prime} is relatively latge for a resonant circuit, the () is tairly low and the resonance curve is quite broad. This is desimble for an amplifier intended for wide-bamd applications. Tlae design values of L and R_{p}, are based on the shant capacily. C'a and the maximum required frupuenc: $\mathrm{f}_{\text {mas }}$. (${ }_{l}$ ban be estimated by adding 3 to $3 \mu \mu \mathrm{fl}$. (for socket and wiring) to the sum of the tube input and output capacities.

The reactance of L is made one-half the reatemer of C_{ℓ} at $f_{\text {mar }}$. This is equivalent to making the resonam freguency between L and C_{t} equal to 1.41 time: $f_{\text {mar }}$.
simpliled design equations for shunt peaking compensation are as follows:

$$
\begin{aligned}
R_{P} & =\frac{1}{2 \pi f_{\operatorname{mar}} C_{t}} \\
L & =0.5 C_{t} R_{p}^{2}
\end{aligned}
$$

Typiral values of h_{P} are from 2000 to 10,000 ohms; oi L, from 25 to $100 \mu \mathrm{~h}$.

Cathode follower - The cathode-coupler or cathorle folloner shown in Fïg. 334 , differs from a conventional amplifier in that output is taken from the rathode circuit rather than from the plate. The cinenit is applable wherever matrhing to a low value of foad impedance (filty torevoral homdred ohms) is reguired and the usw of at transormer is impractioable, as in whithamb amplifiers. Revatse the eathode follower is inheremtly degenerative, it is particularly uaful wherever equatized frequency response and minimum phase shift are important. Power amplification comparable to that of an cquivalent plate-compled stage may be secured. hut the voltage gain is always less than unity.

Fig. 334-Cathode follower or inverted amplifier rir. cuit. A, dirwt-woppod output; C, resintaneerapacity couphing to load. R_{c} is the usual cathode-hias resistor.

4. 3-6-C Special-Purpose Tubes

Multi-purpose types - A number of combination types of tubes have been constructed to perform multiple functions, particularly in receiver circuits. For the most part these are multi-unit tubes made up of individual tube element structures, combined in a single bulb, for eompactness and ecomomy. Among the simplest are full-wave rectifiers, combining two diodes in one envelope, and twin triodes, consisting of two triodes in one bulb for Class-13 audio amplification. More complex types include duplex-diode triodes, duplexdiode pentodes, converters and mixers (for superheterodyne receivers), combination power tubes and rectifiers, and so on. In many cases the nature can be identified by the name.

Mercurv-rapor rectificors - For a given walue of plate rurrent, the power lost in a diode rectifier (\$3-1) will be lessenced if it is posisible to derrease the plate-mathode voltage at which the current is oltained. If a smallamont of mercury is put in the tuhe, the mercury will vaporize when the cathode is heated, and, further, will ionize ($\S=-4$) when plate voltage is applied. The positive ions neutralize the spare charge and reduce the plate-cathode voltage drop to a practically constant value of about 15 volts, regardless of the value of plate current. Since this voltage drop is smaller than can be attained with purely thermionie conduction, there is less power luss in the rectifier. Voltage drop is constant despite variations in load current. Mercury-vapor tubes are widdy used in rectifiers built to deliver large power out puts.
Grid-control rectifiers - If a grid is inserted in a mercury-vapor rectifior it is fomm that with sufficient negative grid hias it is possible to prevent plate current from flowing, but only if the bias is present before plate voltage is applied. If the bias is lowered to the point where plate current can flow, the mercury vapor will ionize and the grid will lose control of plate current. sine the spare charge disappears when ionization ofcurs. It can assume control again only after the plate voltage is reduced below the ionizing potential. The same phenomenon also occurs in triodes filled with other gases which imnize at low pressure. Grid-control rectifiers or thyratrons find considerable application in "electronic switching."

C 3-7-A Oscillators

Self-oscillation - An amplifier tube can be made to penerate a whatained radio-frequeney rurrent ($\$ 3-6$ - A) berathe more cuergy is developed in the plate cirruit thath is required in the grid eirenit. If chongh mergy is fed hack from the plate to the grial, the fred-hack process becomes independen of any applied signal voltage. The tube supplies its own grial excitation and continuons oscillations are generated. The actual energy required to wercome the grid losses is, in the end, taken from the d.c. plate supply.

The process of oscillation nay also be considered from the standpoint of negative resistance. As previously described ($\$ 3-3$), positive feed-back is equivalent to shunting a negative: resistance across the input circuit of the tubeWhen the value of negative resistance becomes Iower than the positive resistance of the cireuit (if the eircuit is parallel resonant the positive resistance will be the resonant impedance of the circuit) the net resistance is negative, indicating that the circuit can be looked upon as a source of energy. Surh a source is capable of maintaining a constant voltage which can be amplified by the tulve. The actual energy, of course, eomes from the plate circuit of the tube, so that the two viewpoints are equivalent.

A circuit having the property of generating pontimuous oscillations is called an ascillutor. It is not necessary to apply external excitation to such a circuit, since any random variation in rurrent will be amplified to cause oscillation. The frequency of oscillation will be that at which the feed-back voltage hats the proper phase and amplitude. Where resomant, circuit: are associated with oscillators. the oscillation frequeney is very nearly that of the tund circuit.

Excitation and bias - The excitation voltage required depends upon the characteristics of the tube and the losses in the grid circuit. In practically all oseillators the grid is driven positive during part of the cycle, so that power is consumed in the grid circuit ($\$ 3-2$). This power nust be supplied from the plate circuit. With insufficient excritation, the tube will not oscillate; with over-excitation, the !rid losses (power consumed in the grid circuit) will be excersive.

Osiflators enstomarily are grid-leak biased ($83-5$). This takes advantage of the gridecurrent flow and gives hetter operation, the bias adjusting itself to the exritation voltage.

Tank circuit - The resomant eircuit associated with the oscillator is commonly called the tank circuit. a name derived from the storage of energy associated with a resonant circuit ($\$ 2-10$). The term is applied to any resonant circuit in transmitting applications, whether in an oscillator or in an amplifier.

Plate efficiency - The plate efficiency (\$3-3) of an oscillator depends upon the load resistance, excitation and other operating factors. Usuaily it is around 50 per cent. It is not as high as in an amplifier, since the oscillator must supply its own grid losses. These may represent 10 w 20 per cent of the output power.

Pourer output - The poiver output of an oscillator is the useful a.c. power consumed in any lond connected to the useillator. The load maty be roupled as deseribed in $\$ 2-11$.

Prequency stability - The frequener stability of an oscillator is its ability to maintain constant frequency. The more important factors which may cause a change in frequency are (1) temperature, (2) plate voltage, (3) loading, (4) mechanical variations of circuit elements. Temperature changes will cause vacuum-tube
elements to expand or contract slightly, thus causing variations in the interelectrode capacities (§ 3-2). Since these are unavoidably purt of the tuned circuit, the frequency will change correspondingly. Temperature changes in the coil or condenser will alter their inductance or capacity slighty, again causing a shift in the resonant frequency. These effects are relatively slow in operation, and the frequency change caused by them is called drift.

Load variations act in much the same way as plate voltage variations. A temperature change in the load may also result in drift.

Plate-voltage variations will cause a corresponding instantanerus shift in frequency; this type of frequency shift is called dynamic instability. Dynamic instability can be reduced by using a tuned circuit of high effective Q. Since the tube and load represent a relatively low resistance in parallel with the circuit, this means that a low L / C ratio ("high-("') must be used ($\$ 2-10$) and that the rircuit should be lightly loaded. Dynamic stability also can be improved by using a high value of grid leak, which gives high grid bias and raises the effective resistance of the tube as seen by the tank circuit, and by using relatively high plate voltage and low plate current. Drift can be minimized by keeping the d.c. input low for the size of tube. by using coils of large wire to prevent undue temperature rise, and by providing good ventilation to carry off heat rapidly. A low L / C ratio in the tank circuit is desirable, because the interelectrode cipacity variations bave proportionately less effect on the frequency when shunted by a large condenser.

Mechanical variations, usually caused by vibration, cause changes in indluctance and/ or caparity which in turn cause the frequency to "wobble" in step with the vibration.

Mechanical instability can be minimized by using well-designed components and by insulating the oseillator from mechinical vibration.

(1) 3-7-B Feed-Back Oscillators

Magnetic feed-buet - One form of feedback is by electromagnetic coupling between plate (output) and grid (input) circuits. 'Two

Fig 335 - Two iypee of ofcillaior circtutes with magnetic feed6.4.6. A, grid ticklor; B, Hartlog. representative circuits of this trpe are shown in Fig. 335. That at A is called the tickler circuit. The amplified current flowing in the "tickler." L_{2}, induces a voltage in L_{1} in the proper phave when both coils are wound in the samo direotion and connected as shown in the
dingram. The feed-back can be adjusted by adjusting the coupling between L_{1} and L_{2}.

The Hartlcy circuit, B, is similar in principle. There is only one coil, but it is divided so that part of it is in the plate circuit and part in the grid circuit. The magnetic coupling between the two sections provides the feed-back, which can be adjusted by moving the tap on the eoil.

Capacity feed-bach - The feed-back can also be obtained through capacity coupling, as shown in Fig. 3:36. In A, the Colpitts circuit, the voltage across the resonant circuit is divided, by means of the series condensers, into two parts. The instantaneous voltages at the ends of the circuit are opposite in polarity with respect to the cathode, hence in the right phase to sustalin oscillation. The tuned-grid tunedplate circuit at B utilizes the grid-plate capacity of the tube to provide feed-back coupling. There should be no magnctic coupling between the two
 tuned-eircuit coils. Feed-bark can be adjusted by varying the tuning of either the grid or plate circuit. The cir-
 cuit with the higher Q (§ 2-10) deternines the frequency of nscillation. The plate circuit must be tuned to a slightly higher frectueney than the grid eircuit. so that it will have inductive reactance and hence give positive feclback (s 3-3). The amount of
 plate tuncd-grid; C ; ultraudion. detuning is so smatl it is enstomary to assume that the circuits are tuned to the same frernemer.

The ullaudion circuit at C is equivalent to the Colpitts, with the voltage division for oscillation brought about through the urid-tofilament and plate-to-filament caparities of the tube. In this and in the Colpitts circuit, the feedback can be controlled by varying the ratio of the two enpacities. In the ultraudion circuit, this can be done by connecting a small variable condenser between grid and cathode. Feedback decreases with increasing capacity,

The clectron-coupled oscillator - The effects of loading and coupling to the next stage can be greatly reduced by use of the cleciron-coupled circuit, in which a screen-grid tube ($3-5$) is so connceted that its screen grid is used as a plate, in conjunction with the control grid and cathode, in an ordinary triode oscillator circuit. The sercen is operate?
at ground r.f. potential (\$2-13) to act as a shield between the actual plate and the cathode and control grid; the latter two elements therefore must he above ground potential. The out-

Fig. 337 - Electron-conpled oreillatur circuit.
put is taken from the plate circuit. Under these conditions the capacity coupling ($\$ 2-11$) between the plate and other ungrounded tube elemonts is quite small, hence the output power is secured almost entirely by variations in the plate current caused by the varying potentials on the grid and eathode. Since in a screen-grid tube the plate voltage has a relatively small effect on the plate current, the reaction on the oseillator frequeney for different conditions of loading is small.

A Hartley rircuit is used in the frequencydetermining portion of the oscillator shown in Fig. 337, where $L_{1} C_{1}$ is the oscillator tank circuit. The screan is grounded for r.f. through a by-pass condenser ($\$ 2-13$), but has the usual d.e potential. The cathode comertion is made to a tap on the tank coil to provide feed-back. The resomant plate circuit, $L_{2}{ }^{\prime}{ }^{2} 2$, is tuned either to the oscillation frequency or to a harmonic. Cintmed output coupling alsu may be used; the output voltige and power are considerabiy lower, but better isolation between osciliator and amplifier is secured.

If the oscillator tube is a pentode having an external suppressor connection the suppressor grid should be grounded. This provides additional internal shiclding and further isolates the plate from the frequency-detormining circuit.

Franklinascillator - The Franklin oseillator circuit of Fig. 338, popular abroad, has characteristics similar to the e.c.o. A high-gain feed-back amplifier is very loosely coupled to a tank cireuit, $L C$, via two condensers, C_{1} and C_{2}, of extremely small capacity. So weak is the eoupling that the tube circuit has uegligible effect upon the frequency-controlling tank.

FIg. 338 - Franklin master-oscillator circuit. $\mathrm{C}_{1}, \mathrm{C}_{2}$ - Approsimatels 1 io $2 . \mu \mu \mathrm{fl}$. (adjuatable). $\therefore-10,101 \cdot \mu \mathrm{fol}$.

Crystal oscillators - Since a properly cut quartz crystal is equivalent to a high-(l tuned circuit ($\$ 2-10$), it may be substituted for a conventional tuned circuit in an oscillator to control the frequency of oscillation. A simple crystal oscillator circuit is shown in Fig. 339. It is similar to the tuned-plate tuned-grid circuit except that a crystal is substituted for the resonant grid circuit. Detailed information on crystal oscillators is given in Chapter Four.

Series and parallel feed-I cirenit such as the tickler rircuit of Fig. $335-\mathrm{A}$ is said to be scrisefed because the sourer of plate voltage and the r.f. plate circuit (the tickler coil) aro connected in serios; henee the d.r. plate endernt flows through the eroil to the plate. A by-pass ($\$ 2-13$) condenser. (b. is commentad atoross the plate supply to shunt the r.f. curent around the purier source. Other examples of series phate feed are shown in Jins. 3:3i-13 and 337.

In some cases the soure of plato power must be eonnerted in parallel with the tuncd circuit to provide a dirretecurrent path to the plate. This is illastretme in frim. 33 B-B. where it would be impussible to feed the plate current through
 tween the coil and cat hode. Howe the voltage is applied to the plate therongh a radio-farqueney choke, which prevents the r.f. morent.
fity. 334 - Simple crynal oncillater circuit. Mans variations of this basic cir. cuit are used in practice.

from flowing to the plate supply and thus short-circuiting the oscillator. The blocking condenser, Cob, provides a lew-impertane path for radio-frequency eurrent flow but is an open circuit for direct current ($82-13$). Other examples of paratlel feed are shown in Figs.

Values for the r.l. chokes, by-pass and bhotiing condensers shown will be detemmen by the considerations outlined in \& 2-13.

C. 3-7-C Negative Resistance Oscillators

Negative-resistance oscillations - In addition to its ability to simulate negrative resistance by feed-bick ($\$ 3-7-A$), a varuum tube can in itwelf be made to show negative resistance by a number of arangements of electrode poientials. When a tube so operated is ronnected to a parallel-resonant circuit, oscillation will be established if the negative resistance is less than the parallel impedance of the resonant circuit. Typical oscillator cir* cuits are shown in Fig. 310.

The circuit of Fig. $310-\mathrm{A}$ is that of the dynatron cscillator, which functions because of the secondary emission from the plate occurring in certain types of screen-grid tetrodes. The simplest but also the least stable of the negutire-resistanam or tworterminal oneillators.
it makes use of the fart that the plate current of a sereen－grid tetrode decreases when the plate voltage is inereased at eertain values of sereen voltage，riving a nerative piate－resist－ anee characteristio．

In the newaticelrataremblactance or fans－ itron rircnit shown in Fïr． 340－13．nega－ tive resistance is protueced by vitue of the fact that，if the －upprestor grid of a pentode is given negative hias，electrons which nor－ mally womld pass thratgh （o）the plate are furned batek to ihe serect，thus increasing the sareen eurrent and rewosing tormal thbe ac－ tion（\＄3－2）．The negative resistanee produced between the screen and suppreson grids is sufficiently low so that omfinary tuned circuits will oscillate readily up to 15 IIe．or so．

（1）3－7－D Other Types of Oscillators

Resisfanmeraparity tmmins－It is passible to replace the L ．C rewnant riment in an os－ rillator hy a resikance－rallareity combinalion

 I or C the rimuit ratu be daned over ：s wede

Fid．31］－Ro－i－tamematarit，w－illat－
 r：llw in the same
 A5：：11 1.6° cireait．

The two more com－ mon cir－ chits of this sype are blewn in fig． 341 ．The $\therefore \mathrm{ingle} \mathrm{g}$ stage RC－ tumed os－ cillator at A hals a three－ser－ tionphate－ shillor m\＆゙がいた rammerted betwen oulput and iupul，so ：11－ ranged that just enoughonignal io foll batck 180
 owilation．By careful feed－hack adjushmont． exedent sine－wave form with good irequency rability may be obtained．

The twotube $R C$－tuned circuit at B is derived from a two－stage cascade resistance－ compled amplifier with pentode tubes，the serond tube constituting the phase－shifting element ：upplying a regenerative signal to the aljustable C^{\prime}, C_{1} and R_{1} combination at the desired frequency，while at all other frequencies the circont is degenerative．

Phase－shift oscillators are most useful at andio frequencies．athough they cin be made to operate up to about 50 kc ．

Relavation oscillators－There is another basie cateryory of oscillators，the relarution type．in which the osrillation frequency is enn－ trolled not by a resonant circuit but by the reciprocating change of a current or voltage through the chatrging of dischanging of a condenser when a eertain eritical value is reamed．hedaxation oseillation requires，first， a me：ms for charging a condenser（or other reactive eloment）at a uniform rate and．second， means for rapidly dis－ charging this condenser once a pre－ determined voltare has been buill up acmes it．The antion is char－ aderized by ：a period of rapid dhange or insability followerl hy：a period of reda－ live quies－ rence or stil－ bility during which the

Fip．322－Typical relasation os－ cillators．A，＂dynatrom＂－type pen－ todecirchit．R，hiph－frequency pen－ todecircuit．C，squegging oscillator． stored－up mergy transferred or otherwise dissipated in the rirent．

Relaxation oscillators have high harmonic content（nomsinusoidal output）and are inher－ ently unstable，permitting ready symehroniza－ tion with an external controlling voltage．

In the circuit of Fig． $3-12-A$ ，the operation is hased on the reversed sereen－current or dyna－ fron characteristic of a pentode tube，the froquency being determined by the rate at which the feed－hack rondenser，C ，discharges through the tobe．Apart from the frequener－ controlling mochanism，this circuit resembles that of the transitron oscillatur（Fig．340－13）．

The alternative pentode cireuit at 13 has the frequency－entrolling elements．＂and R ，in the plate circuit．It is rapable of operation at frequencies up to several hundred kilocycles， and affords greater control of ware form．

Operation of the squegging oscillator at C is based on the tendency of any uscillator with excessive feed-back to produce relatively lowfrecuency intermittent oscillations, controlled
 and R through the tube grid resistanere. if the time constant of the rombination is large comparal to the normal perion of oscillation.

The most versatile relanation oscillator circuit of all, shown in Fig. 343, is known the the multivibrator. 'lwo tubes are used with resistance coupling, the ounput of ome tube being fed to the input circuit of the other. The frequency of the resulting osiblation is determined by the time constants ($\$ 2-1 ;$) of the resistance-caparity combinations. The prineiple of oscillation is that of altermately switching condurtion from one tube tu the other, with one grid at cut-off and the other at zero bias, so that continuous oscillation is mantained, the second tube being neressary to obtain the proper thase relationship (\$3-3) for oscillation when the energy is fed buck.

Although the multivibrator is a very mastable oscillator, its frequeney can be romtrolled readly bey a small signal of stealy frequency introducel into the eirenit. This phenomenon is called lacking or symbromization. The output waveshape of the mutivibrator is highly distorted, hence has high harmonic content (\$2-7). A nseful feature is that the multivibrator can be locked at its fumdamental frequency by a frequency comesponding to one of its higher harmonirs (the tenth harmonic is frequently used), and thas the circuit can be used as a frequency dirider.

11 3-8 Cathode-Ray Tubes

Principles - The cathode-ray tube is a vacum tube in which the eleetrons emitted from a hot cathonde are first accelerated to give them considerable velocity, then formed into a beam, athl fizally allowed to strike a sperial translucent screen which lluoresces, or gives off light at the point where the beam strikes. A narrow beam of moving electroms is analognoms to a wire carrying current (s 2-1) :und, as in the wire, is accompanied by electrostatie and electromatgetir fields. Hence the beam ran be moved laterally, or deflected, by electric or
magnetic fields. Such fields exert a force on the beam in much the same way as on charged bodies or on wires carrving current ($\$ 2-3,2-5$).

Since the eathode-riy beam consists only of moving clectrons, its weight and inertia are negligibly small. For this reason, it can be made to follow instantly the variations in periondically ehanging fields even at radio frequencies.

Electron gun - The electrode arrangement which forms the electrons into a beam is called the dectron gun. In the simpie tube structure shown in Fig. 3.4, the gim comsists of the cathorle. grid, and amodes Nos. 1 amd 2. 'lhe indensily ol the chertron beam is regulated by the grid in the same wat as in an ordinary 1 bue (s (3-2). Anoule No. 1 is operated at a positive putential with remend to the cathote. thas: acerberating the electrons which patss through the

Fig. $3 \cdot 13$ - 'llis mul. tivilurator, or relaxation oscillator. grid. athd is provided with small apertures through which the elertron strean passes, On emerging from the apertures the eleetrons are traveling in practically parallel staight-line paths. The elomenstatid fields set un bey the potentials on anomde No. 1 and anoule No. 2 form ath eledron tems:ystem, comparable to an umicad lente, whidh makes the evectron baths converge to a point at the flnoresernt sureen in muel the same way that a glase lons takes paralled rays of light and brings them to a perint forns. forusing of the eleertron beam is arromplished by varying the potentials on the ammes, the potential in turn determining the shength of the fieh. The poten-
 on anode No. 1 is varied to bring the beam into fosus, Amode No. 1 is, therefore, called the focusin! rlectrond.
sharpest foous is ohnaned when the electrons of the beam have high volocity, so that relatively high d.e. potentials are eommon with cathoderay thbes. IInwever, the current refuired is small, su that the pewer consumption is negligible. A second grid may be plated betwern the control grid and anode No, 1, for adelitional accoleration of the electrons.

Fif. 34t - Typical coustruction for a modern cathome-ray tube of the electrostatic-deflection type. The envelope is made of plase, with the fluorseent seren at one end. Ladu for the hiph-woltage anodr, the deflection plates, and other electrodes are insolated low-capacity conductors carriod insids the envelope to the base.

 detlector potentials. A - Both deflectors at zere potential. 13 - Positive potential on ripht horizontal deflector. C-Positive potential on upper vertical deffector. I), E, F, G - Egual positive potentials on adjacent plates.

Methods of deflection - When focused, the beam from the gun produces only a small spot on the sereen, as described above. However, if after leaving the gun the beam is deflocted by either magnetic or electrostatic fiolds, the spot will move across the screen in arcordance with the force exerted on the beam. If the motion is rapid, the path of the spot (trace) appeats as a continuous line.

Electrostatic deflection, the type genoratly used in the smaller tubes, is produced be deHecting plates. Two sets of platos are placed at right angles to each other, as indicated in Fig. 344 . The firlds are created by applying suitable voltages between the two plates of each pair. I'sually one plate of cach pair is commeted 10 anode No. 2, t.0 establish the polaritios (\$2-3) of the vertiral and horizontal fids with respect to the beam and to each other.

Tubes for magnetic deflection use the same trpe of electron gun, but have no deflection plates. Instead, the deflecting fields are set up by means of coils enruesponding to the plates nised in tubes having electrostatic deflection. The coils are external to the tube, as shown in Fig. 34t, but are mounted close to the glass anvelope in the relative positions orcupied by electrostatic deflection plates. (vils d, and A2 are commerted so their fiohls aid and their axes are on the same line theough the tube. Coils B_{1} and B g likewise are connected with fields aiding and are aligned along the same axis through the tube, but perpendicularly to the $A_{1: 12}$ axis.

Fluorescent screens - The fluorescent sereen materials used have varying characteristics, according to the type of work for which the tube is intended. The spot color is green, white, yellow or blue, deprnding upon the screen material. The persistcnce of the screen is the time duration of the after-glow which exists when the excitation of the electron beam is remored. Arreens are classified as long-,

Fig. 346 - A cathodo-ray tube with mapnetic deflection. The gun is the same as in the electrostatic-detlection tube shown in Fig. 341, but the beam is deflected by magnetic inatead of electiof firlds. Actual deflection coils lit clomely to the neek of the tuhe, on that the fielld will be as strone as possible for a piven cuil eurrent.
modium- and short-persistence types. Small tuhes for oscilloseope use ustually have mediumpersistence screens of greenish fluorescence.

Tube circuits - A representative cathoderay tube circuit with electrostatic deflection is shown in Fig. 347. One plate of each pair of deflecting plates is connerted to annde No. 2. Since the voltages required normally are rather high, the positive terminal of the supply is usually grounded ($\$ 2-13$) so that the enmmon deflection plates will be at ground potential. This places the cathode and other elements at high potentials above ground, hence these elements must be well insulated. The various electrode voltages are ohtained from a boltace divider ($\$ 2-6$) across the high-voltage der. supply. R_{3} is a variable divider or "potentiometer" for adjusting the negative bias on the control grid and therebe varying the beam current: it is called the inteusity or brightress control. The fache, or sharpness of the luminons: spot formed on the screen by the beam, is controllod by R_{2}, which changes the ratio of the anode Šo. 2 and annde So. 1 voltages. The focusing and intensity controls interlock to some extent, and the sharpest focus is obtained by kecping the beam current low.

Deflecting voltages for the plates are applied to the terminals marked "vertical" and "horizontal." R_{4} and R_{5} drain off any accumulation of charge on the deflecting plates. Tsually some provision is made to place an adjustable d.c. voltare on each set of plates, so that the spot can be "centered" when stray electrostatic or magnetic fields are present; the adjustable d.c. voltage neutralizes the effect of such fields.

The tube is mounterl so that one set of plates produces a horizontal line when a varying voltage is applied to it, whike the other set of plates produces a vertical line under similar conditions. They are called, respectively, the "horizontal" and "vertical" plates, but which set of actual phates produces which line is simply a matter of how the tube is mounted. It is usually necessary to provide a mounting which can be rotated to some extent, so that the lines will actually be horizontal and vertical.

Power supply - The d.c. voltage required for operation of the tube may vary from 500 volts for the miniature type (1-inch diameter screen) to several thousand volts for the larger tubes. The current, however, is very small, so that the power required likewise is small. Because of the low current drain, a power supply with half-wave rectification ($\$(-3)$ and a single $0.5-$ to $2-\mu \mathrm{f} d$. filter condenser is satisfactory.

(1) 3-9 The Oscilloscope

Deseription - An oscilloscope is essentially a cathode-ray tube in the basic eircuit of Fig. 347 , but with provision for supplying a suitable: deflection voltage on one set of plates (ordinarily those giving horizontal deflection). The deflection voltage is the time base on suedp. Oscilloseopos frequently are also equipped with varnum-tube amplifiers for increasing the amplitude of smatl a.e. vultages to valures suitahbo for applieation to the defle ting plates. These amplifiers ordinaty are limited to operation in the audio- or video-frequency range.

Formmtion of patterns - When periodically varying voltages are applied to the two sets of deflecting plates, the path traced by the fluorescent spot forms a pottern which is stat tionary solong as the amplitude and phase reIationships of the voltages remain unchanged. Figr. 348 shows how such patterns are formed. The horizontal swerp voltage is assumed to have the "sawtooth" Waveshape imlicated; with no voltage applied to the vertieal plates the trace simply sworps from left to right, acrose the sereen aloug the horizontal axis $X-X^{\prime}$ until the instant H is reached, when it reverses direction and returns to the starting point. The sine-wave voltage applied to the vertioal plates similarty would trace a line along the asis $Y-Y^{\prime}$ in the absence of any deflecting voltage on the herizontal plates. However. when both waltames are present the position of the spot at any instant depends upon the voltases on buth sets of plates at that instant. Thus at time B the horizontal voltage has moved the spot a short distance to the right and the vertical voltage has similarly moved it upwarel, so that it rearhes the actual position B^{\prime} on the screen. The resulting trace is asily followed from the other indicated positions, which are taken at equal time intervals.

Fig. 347 - Cathole-ray tuhe cirruit. Iypicul values for a 3-inch (screen-diameiter) whe such as the 3 :Ill/thot:

$\mathrm{k}_{2}-0.2$ merohnı. $R_{1}-0.5$ megohm.

Types of sucepps - A suwtooth sweep-voltage waveshape, such as is shown in Figs. 348 and 350 is called a linear sureep, because the deflection in the horizontal direction is directly proportional to time. If the sweep were perfect the "Hy-back" time, or time taken for the spot to return from the end ($I I$) to the begiming (I or A) of the horizontal trace, would be zero, so that the line $/ I /$ would be perpendicular to the axis $Y^{\prime}-Y^{\prime}$. Although the fly-back time camot, be made zero in practicable sweep-voltage generators it can be made quite small in comparison to the time of the desired trace $A H$, at loast at most frequencies within the atudio range. The fly-back time is somewhat exaggerated in Fig. 345 , to show its effect on the pattern. The line $H^{\prime} I^{\prime}$ is called the return truce; with a linear sweep it is less brilliant than the pattern, because the spot is moving much more rapidly during the fly-back time than during the time of the main trace. If the fly-back time is short enough, the return trace will be invisible.

The linear sweep has the advantage that it shows the shape of the wave applied to the vertical plates in the same way in which it is usually represented graphically ($\$ 2-7$). If the time of one cycle of the a.c. voltage applied to the vertical plates is a fraction of the time taken to sweep horizontally across the screen, several cycles of the vertical or signal voltage will appear in the pattern. The shape of only the last cycle (or the last few cycles, depending upon the number in the pattern and the characteristies of the sweep) to appear will be affected by the fly-back in such a case.

Although the linear sweep generally is most useful, other sweep waveshapes may be desirable for certain purposes. The shape of the pattern obtained, with a given signal waveshape on the vertical plates, obviously will depend upon the shape of the horizontal sweep voltage. If the horizontal sweep is sinusoidal, the main and return sweeps each occupy the samo time and the soot moves faster horizontally in the
center of the pattern than it does at the ends. If two sinusoidal voltages of the same frequency are applied simultancously to both sets of plates, the resulting pattern may be a straight line, an ellipse or a circle, depending upou the

Fig. 349 - A linear-swecp uscillator using a pas triode. $\mathrm{C}_{1}-0.001$ to $0.25 \mu \mathrm{fd}$.
$\mathrm{C}_{2}-0.5 \mu \mathrm{fd}$.
$h_{1}-0.3$ to 1.5 megohme.
H_{2} - 2000 ohme.
$\mathrm{K}_{3}-0.25$ macholm. $\mathrm{C}_{3}-0.1 \mu \mathrm{fd}$.
$\mathbf{R}_{5}-0.1$ megohm.
"The " B " supply should deliver 300 volts. C_{1} and K_{1} are proportioned to give a smitable swerp frequency: the higher the time comstant ($\$ 2.6$), the lower the frequeney. K_{4} limits prid current flow during the deionizing period, when positive ions are attracted to the negative grid.
amplitude and phase relationships. If the frequencies are harmonically related (\$2-7) a stationary pattern will result, but if one frequency is not an exact harmonic of the other the pattern will show continuous motion. This is also the case when a linear sweep circuit is used; the sweep frequency and the frequency under observation must be harmonically related or the pattern will not be stationary.

The sweep generator dors not ordinarily function as a self-controlled oscillator but rather as in externally controlled or synchronized ascillator which supplies voltage of the required waveform at the same frequency as the signal under study, or a sub-multiple thereot.

Sucep rircuits - A simusoidal sweep is casiest to obtain, since it is possible to apply a.c. voltage from the power line, either directly or through a suitable transformer, to the horizontal plates. A variable voltage divider or potentiometer may be used to regulate the width of the horizontal trace.

A typical circuit for a linear sweep generator is shown in Fig. 34). The tube is a gas triode or grid-control reetifiry (\$3-6-C). The striking or breakdown voltage, which is the phate voltage at which the tube ionizes or fires and starts conducting, is determined by the grid bias.

Fig. 350 Condenser charging curves showing how a sawtooth wave is produced by a paseous-tube linear sweep oscillator.

When plate voltage, E_{b}, is applied, the condenser, $\because \mathrm{l}$, acquires a charge through R_{1}. As shown in lig. 350, the charging voltage rises relatively slowly, as shown by the solid line, until the breakdown or flashing point, V_{f}, is
reached. Then the condenser discharges rapidly through the comparatively low plate-cathode resistance of the tube. When the voltage drops to a value too low to maintain plate-current flow, E_{a}, the ionzation is extinguished and $C_{1}{ }_{1}$ once more charges through R_{1}. If R_{1} is large enough, the voltage across ('1 rises linearly with time, t_{1}, up to the breakdown point. This linear voltage change is used for the sweep, being applied to the eathode-ray tube plates through ('s. The fly-back time, t_{2}, is the time required for discharge through the tube; to kerp this time small, the resistance during discharge must be low.

To ohtain a stationary pattern, the "sawtooth" rate is controlled by varying C_{1} and R_{1} and synchronized by introducing some of the voltage being observed on the vertical plates into the grid circuit of the 884 tube. Tllis voltage "triggers" the tube into operation in synchronism with the signal frequency. Synchronization will oecur so long as the signal frequency is nearly the same as, or a multiple of, the sweep frequency, provided the circuit constants and the amplitude of the synchronizing voltage are properly adjusted.

The upper frequency limit of gaseous-tabe sweep oscillators is in the vicinity of 50,000 cycles, even with the most careful dexign, because of the fly-back time limitations imposed by the gaseous content of the tube.

Fig. 351 - Pentodetube high-speed sweep qeameator.

To attain a higher-frequency swecp, a "hard"-tube oscillator such as that shown in Fig. $3 \overline{5} 1$ must be used. This circuit may be recognized as being similar to that of the pentode relaxation oscillator of Fig. 3+2-13. With suitable constants it is capable of an upper frequency limit of 100 to 200 kc or more. If a tube is used which has a high ratio of plate current to screen current, the screen wohage will rise to a very high value during the plate discharge and thus aid in reduring the fly-hark time.

A variety of waveshapes may be obtained from this circuit, ranging from the sawtooth or triangular waves which occur at the plate to the rectangular waveform of the sercen-grid voltage. The plate-circuit waveforms are those most often employed for oscilloseope work.

The sweep rate is controlled by R and C, but it is influenced also by the value of $R_{2} . R_{3}$ determines the output waveshape hy regulating the ratio of charge to discharge time, thus determining the part of the cyole occupied by the rectangular-shaped screen-voltage wave.

The blocking-lube oscillator in Fig. $3 \overline{3} 2$ iss also capable of high-frequency operation,
cliefly because the oscillator portion generates a very short, sharp pulse which charges C almost instantaneously. Berause of its superiority in this rospect, this circuit has received considerable application in television work. Its operation is distimguished from that of the sipucgeing oseillator (Fig, 342-C) in that the intermittent high-frequency usillations are almost instantly blocked as the bias built up by the grid-leak and condenser, (\% and R, goes far beyond rut-off. With suitable constants, the build-up time for this borking bias can be limited to a single high-frequency eycle, resulting in a very short, abrupt pulse of plate current (I_{k}). Because of the large time constant of C and R, the discharge time is very much slower. Vntil the charge again leaks off through R, the rircuit is paralyzed. When C is discharged, the corele repeats.
L_{1} and I_{2} are tightly coupled and designed to be self-resomant at perhaps ten times the maximum sweep frequenos.

In the pratical form, shown in Fig. 35: , the blocking aseillator itsed is the left-hand seetion of the dasal trionde. The serond triode section is ued as a diseharge tube the rate of discharge being controlled by the $C_{2} R_{1}$ combination. Isy giving this combination the proper time constant, the output wave can be made to have almost any desired form. R exereises limited control ower the frequency range, while the value of h_{1} determines the output amplitude.

Vacumotube suitrhing circuits - In contrast to time-base circuits which deliver recurrent output impulses, fertain applieations in owilleseope and other clectromic work call for what are termed racumb-tube or electronic switching cireuits.

A keying rireuit is a mon-locking electronic switrh whide closes (or opens) a cireuit when a control volage is applied and returns the circuit to normal when the control voltage is removed. The keving voltage is usually applied as control-grid hias, although sereen- and suppressor-grid voltage also are employed.

Atrigger circuit, also called a flip-flop cirmuit, may also be operated in this manner, but more strictly it is a type of locking or holding electronie switch, wherein a second impulse is reguired to restore the circuit. After the

 charge tube, with characteristic waveforms at the right.

C $-0.001-0.01-\mu \mathrm{fd}$ mica. $\mathrm{R}-0.25$ niegohm variable.
$\mathrm{C}_{1}, \mathrm{C}_{3}-0.005-0.5$ ufd. $\quad \mathrm{R}_{1}-0.1-2$ megohm.
($2-0.1{ }_{\mu} \mathrm{ft}$.

Fig. 35,3 - Typical vacomm-tube trieger circuits.
initiating control pulse the circuit remains closed, despite remosal of the control voltage, until a serond releasing impulse is received. Cirnuits in which values of furme or voltage change abruptly from one stable condition to amother at some critical value of voltage or resistance, and then change back abruptly at a different eritical vatue of the controlling voltage or resistance, are used for this purpose.

Fig. $3 \pi \overline{3} 3$ - A shows the basic pentude form of trigger circuit. In this circuit d.c. coupling between the sereen and suppressor grids causes the suppressor voltage to change with sereen voltage. With a high value of resistance in series with the sereom, abrupt chames in these currents oneur when the suphly voltages or the sorentarmat vesistane are variod. For example. by moper choice of voltage amd circuit eomstints the plate current corresponding to a given value of sereen current maty be made zero. Trighering impulses may be introduced in scries with any of the clectrodes, but the control grid is the most sensitive. The values of the supply voltages are not critiral, but the proper relation must be maintained between them.

In the two-t ube trigger circuit of Fig. 353-B, a positive impulse applied to the grid of the first tube will increase its plate current. This causes an increased voltage drop across R_{3}. which in turn makes the bias on the serond tube more negative. Consequently the plate current of the second tube decreases, decreasing the voltage drop across R_{4}. This makes the grid bias on the first tube more positive, causing a further increase in the plate current of this tube and a resultant further decrease in the phate edrrent of the second tube. The prosess contimues until the seeond tabe is ent off, when only the first tube lakes current. This condition will continue until a negative pulse is applied to the first grid, or a positive pulse to the scond grid, when the action will be reversed. The initial operating point is established by the variable tap on the cathode resistor, R_{7}.

C 3-10 Pulse Technique

In pulse transmission and reception (\$ 1-4). specialized means are employed to generate and shape characteristic pulses on the transmitting end and to recreate and interpret these pulsess on the receiving end. One is a process of waveshaping and injection; the other of separation and selection. Certain basic circuit elements are common to both; elementary examples of sneh circuits will be discussed in this section.

Waveshaping - The primary waveforms employed in pulse transmission, apart from the basic sine wave, are the rectangular wave (from narrow pulse to sytare wave), trapezoidal wave, triangular wave (from isosceles to right-angle sawtonth), exponential and sawtooth waves.

The nonsinusoidal waveforms obtainable from certain oscillators, particularly those of the relaxation type, approximate the general shapes required. To trim such waves to the ideal form required, auxiliary waveshaping cir-

Fig. 351 - Shaping of sitte wate to - fuare wave by diokle elipping action, The waveforms at the upper right illustrate, pragrenaively, the sinumidal input wave. the ponitive peak elipped thy the diode parallel limiter (A), and the nequtive peak clipped by the dionle series limiter (B). Thewe are performed jointly in the double-diende parallel limiter (C) and double-diode series limiter (D).
cuits are employed. The basic categories are (1) limiter circuits, which utilize the voltagelimiting action of vacuum tubes, and (2) peaking circuits, which employ $R C$ (or $L C$) timeconstant circuits.

Fig. 354 shows the use of biased-diode limiters in rlipping a sine wave to create a square or trapezoidal meveshape by lim= iting action,

The diode parallel limiter at A does not limit the output until the input voltage attains a value more positive than that of the negative biasing voltage applied in series

Fig. 355 - Triode limiter action in meneratine equare or trapezoidal wave by clipping peaks of a simusoidal wave.
with R_{1}. In the diode series timiter at B, conduction can occur only when the input is mone positive than the bianing voltage inserted it series with R_{1}. Thus there can be no inerease in output during the most negative period of the cycle. The series limiter produces a more squarely clipped wave than the parallel type. The operation of either type can be reversed by reversing the diode conncetions and the polarity of the biswing voltage.

In the double-diode parallel limiter at (', the left-hand diode removes pusitive peaks white that at the right clips the negative. The degree of limiting is adjusted by varying the fixed bias: hy means of R_{3} and R_{4}. The double series timiere at D functions in a similar manner but is more critical of adjustment.

Triode limiters may be operated at cut-off or at saturation. In Fig. 3ns, the tube is biased near the center of its characteristie. When the Nignal voltage goes negative. at mut-off phate current ceases to flow and the bottom of the sine wave is clipped. On the prositive peak the plate current is limited by saturation and the top of the sine curve is symared off. The input signal should be 20 or 30 times the grid bias for the sine wate to be squazed off sharply.

Limiter circuits may also be employed tor grenerating other types of pulses. If the tube in Fig. $3 \overline{5} 5$ is biased beyond cut-off and a conderner is connected between phate and ground. a positive rectangular palse applied to the grid will produce a sawtooth wave. During the interval betwen pulses the comdenier is charged in a relatively slow linear rate through R_{4}. The shary front of the positive pulse on the grid canses plate current to flow, and the condenser diseharges rapidly through the tube. A triangular waveshape can be obtained by reduring the bias to zero and applying negative pulas to the grid. Bet ween pulses phate rurment
will flow, but each negative pulce biases tho tube beyond cut-off, making it nonconducting. The condenser charges through A_{1} for the duration of the pulse. then diuchasem through l_{1} The result is a symmencal triangular palse.

Pulse solection - Pule selectivity is based on the following eharateristios: (1) polarity: (2) amplitudn: (3) :haipe: athl (1) duration (includines both " matk" and "space" inturvals).

The diode soparator functions much like the diode limiters of F in. $3 \overline{5}$, except that the action is revered. Selection he polarity is bused on the unilateral conductivity of the diode rectifier. and rembires only that the diodn be so con-

Fig. 3.: - (iutoff lid-al triale amplitude erparator.

nemend as 10 pars paxitive or the eftive mises. as desimel. For amplinde separation the diode is so bia-od that only fuloes having an amplatude exceding the has volute will be pasied.

The same rearmblance applies in the case of triode :mplitude spptators. In the chit-off sepatator of Fig. 8it, the grid nomally is biased bevonel cut-oft. When a persitive voltage of sufforient amplitude is applied. plate current flaws. There will be no ravamee to vole

Fig. 353-terwhin= or pm-inio. grid limiter-st jarator.
$\mathrm{C}_{1}-0.1$ mil.
$\mathrm{Ii}_{1}, R_{2}-1$ megohan.
$\mathrm{C}_{2}-0.3{ }_{\mu} \mathrm{l} \mathrm{l}$.
$R_{3}-I_{1} 1$ megohm
Tle positive-rym ar hocked-rid separator. Fig. 358, operates at saturation and is characterized by a series resictor in the grid circuit. Positive pulses dive the lube into the positivegrid region. where grib-surent flow increases bias and limits phatecurrent to a steady value regartless of signal level. Since this circuit passes only negative pulese, it is selective as in polarity.

Diffrentiation and irtegration - If the front of a reetangular wate is appliced to an $R C$ circuit with series capactit and shunt resistance, as in Fig. 359. the voltage arross the lomet resistor will equal the applied voltage at the instant of application. Then, as the condenser acquires charge the voltage across the resistor will dererease expronentially (\$2-6). If the timu.

Fing. 359 - With square wave imple the woltag. wawe whape acres R and C repertively in an $R C$ Circuit have the thater-show. Note the variation in wawhapere for different tithe contants. Thime com-tant valucm piven are in terms of fractions of the perionl of the input wave.
constant of the ritenit is very small, the charging period will be very short. Thus the voltage ucross the esisor will hatw the shape of a short pulse, sharply perated at the firont

Following this initial pulse, no current flows through the resistor because the condenser is charged to the maximum voltage of the applied square wava. Hance the voltage across the resistor is zero so long as the input woltage is tuchanging. At the trailingeredge of the imput wate the process is repeated, except that the resultant pulse has the opposite polarity since the condenser is now discharging.

By altering the stempes of either the asrending or deserending slopes of the input wave the amplitude of the output pulse can be controlled. This is the principle upon which pulse selection by waveshape is based, as illustrated in Fig. 360. A steep front produess a sharp pine having am amplitude eciual to the applied voltage, while a sloping front prontuces a pulse oi correrpondingly greater length and leser amplitude. For sharp pulses the time constant must be considerably shorter than one-half cyrle of the input wave. With a longer time eonstant the charging period becones corresprontingly longer. while retaining a logarithmie shape, and apmosaches the dumation and form of the wave. Such a network is called a diffremtiating circuit.

In a circuit with the resistor in series and the condenser in shunt. also shown in Fig. 359. the action is such that with a very short time constant the output wave resembles that of the iuput except for a slight curvature at the beginning because of the exponential charging characteristic. The amplitude is, however, greatly reduced because of the voltage divider effect of the reactance-resistance combination. Increasing the time constant to a value comparable to the duration of the constant-amplitude portion of the input wave increases the amplitude but accentuates also both the ascending and descending slopes of the wave.

Increasing the time constant to a value very long compared with the base of the input wave. rewults in what is called an integrating circuit. In this riment discrimination or selection is

Fiz. 360 - Pulse selection !ased no the dix-riminating ation of a diffrrentiating cirenit with infuts of different wavefiom shape. 'lypical input wase are shown above and the re. sulting output pulses belows.
based on the duration or frequency of the input wave. For example, if a series of short pulses is applied, the energy stored in the condenser by each individual pulse will be small and will be discharged before the next pulse arrives. If, however, a serice of pulses with longer bases and shorter intervals is applied. conly a portion of the energy from each pulse will be diseharged before the next begins charging. Energy is therefore aerolmulated on the condenser until a predetermined amplitude is established. Thus long-bise pulvers can be separated from shorter pulses.

Fig. 361-Sectional view of the "lighthomer" tuhe ${ }^{\circ}$ s ronstruction. (Snee ploctrode sparing reduces transit time while the dise electrode connections refluce bed inductance.
lead types the electrodes are provided with up to three separate leads which, when connerted in parallel. have considerably redured effertive inductance. In double-lead types the plate and grid clements are supported hy heavy single nires which run entirely through the envelope, providing terminals at cither cud of the bulb. When a resonant cireuit is commected to each pair of leads, the shmating capacity divides betwern the two cireuits. With linear cireuits the leads become a part of the line and have distributed rather than lumped constants. Radiation loss is minimized and the offert of the trimsit time is reduced. In "lighthomse" tube's or megotrons the plate. grid and cathode are assembled in parallel plates, as shown in Fig. 361, instead of cosaially. The miform coplanar electrode design and disc-sal terminals permit very low interelectrode capacities.

In the orbitat-beam tube, Fig. 362, a small electrode structme is used in combination with a secondary-eloctron emitter to raiso the effertive transeonduetance. Fileatrons emitted from the athote. K_{1}, are accelorated through the control grid, G_{1}, by a positive grid, G_{2}, and

Fig. 36.3 - Schematic of the inductio ontput amplifier.
enter a radial chectrostatic field established by the ceylindrinal chectrodes. J_{1} and J_{2}. "alusing the electrons to move in a circular path and driving them against the serondary-emitter clectrode. Ko. About ten serondary eleetrons are emitted for each primary electron; thus the ultimate electron flow to the plate, l ', is considerably greater than the original current emitted. As a result, high over-all transeonductance (15.000 at 500 Mc. in ath experimental tube) is obtained without increasing transittime losses or internal capacitios.

Inductive output amplifier - In the induc-tive-ontput tuhe shown in Fige, 363 : highvolocity electron beam is intensit y-modalated by the eontrol grid (grid No. 1). Aftor being accelerated and focused by the combinod action of the first and second lenses in the marnetic eircuit and the sleeve electrodes (grids

Fig. 36it - Simple furm of celimdrical-grid velocity. modulated tule with retarding-ficld eollector and coavial-lime output circuit, used as a superheterodyne highefrequeney oatillator or as a superregenerative deteetor. *imilar tubes can also be used as r,f. amplifiers and frequency converters in the $5-50-\mathrm{cm}$, region.

No. 2 and 3), the beam moves past a small aporture in the "dimpled sphere" ravity resonator. The potential difference across this gap slows down the electrons and thereby calses the resomant cavity to absorb power from the beam. Electrons passing through the structure are decelerated by a suppressor slertrode (nrid No. 4) before reaching the final anode or rollector. The control-grid structure gives sharp cut-off and large transeonductance. white the high arecelerating potentiak and smatl apertures result in very short transit time and conserguently low input conductance. The in-ductive-output tube is useful for wide-band operation above $\overline{\mathrm{D}} 00 \mathrm{Ma}$., giving efficiencies of 25 per cent or hetter.

Velocity modulation- \ln negative-grid operation the potential on the grid tends to reduce the dectron velocity during the more negative half of the ascillation cycle, while on the other half eyole the positive potential on the grid serves to atecelerate them. Thus the electrons tend to separate into groups. those leaving the cathode during the negative hatf evele being collectively slowed down, while those leaving on the positive half are accelerated. After passing into the grid-plate space only a part of the electron stream follows the uriginal form of the osrillation cyrle, the remainder traveling to the plate at differing velocities. since these contribute nothing to the power output at the operating frequency, the efficiency is reduced in proportion to the variation in velocity, the out put beroming zero when the transit time approaches a half eycle.

This effect, such a disadvantage in conventional tulers is an advantage in volocity-modulated tubes in that the imput signal voltage on the grid is used to change the velority of the electrons in a constant-current electron beam, rather than to vary the intensity of a constant velocity current flow as in ordinary tubes.

A simple form of velocity-modulation oscillator tube is shown in Fig. 3i4. Electrons emitted from the eathode are accelerated through a mogatively biased eylindrical grid by a constant positive voltage applied to a
sleeve electrode, shown in heary lines. This eloctrode, which is the velocity-modulation control grid, consists of two hollow tubes, with a small space at each end between the inner tube, through which the electron beam passes, and the dives at the ends of the larger fabe portion. With r.f. voltage applied ateross these gaps. Which are small compared to the distance traveled by the electrons in one half evele, electrons entering the tube will be arcelerated on positive half eycles and dere!crated on the negative half eycles. The length of the tube is made equal to the distance covered by the electrons in one-half cyele. so that the electrons will be further arcelerated or decelerated as they lave the tube.

As the beam approaches the collector clecetrode, which is at nearly zero potential, the electrons are retarded. brought to rest, and ultimately turned back by the atitraction of the positive sleeve dectrods. The collector electrode is, therefore, also termed a reflector. The point at which colectrons are retumed dopends on their velocity. Thas the velocity modulation is again tramslated into current modulation.

Velocity-modulated tubes operate satisfactorily up to 6000 Mc . (5 (m .) and higher, with outputs of 100 watts or more.

The klysiron - ln the klysiron volonitymodulated tube, the clectrons amitued by the cathode are aceckrated or retarded during their passage through an elocotric fiold established by two grids in a cavily resonator, or rhambatron, called the "buncherr." 'The highfrequency electric fich between the grids is parallel to the electron stream. This fichl accelerates the electrons at one moment and retards them at another, in aroorlanm with the variations of the r.f. vollage applied.

Fig. 365 - Circuit diagram of the klystron oscillator, showing the feed-back loop coupling the friqueney econtrolling rhambatrons and the output lowin the cateher.

The resulting velocity-modulated beam travels through a field-free "drift space," where the slowly moving electrons are gradually overtaken by the faster ones. The electrons emerg-

ing from the pair of grids therefore are separated into groups or bunched along the direction of motion. The velority-modulated electron stream is passed to a "catcher" rhumbatron, and as the heam prasses through two parallel grids, the r.f. current ereated by the bunching of the electron beam induces an r.f. voltage between the grids. The catcher cavity is made resonamt at the freguency of the velocity-modatated clectron beam, so that an osidillating fied is set up within it by the passage of the electron bunches through the grid aperture.

If a feed-back loop is provided between the two rhumbatrons, as shown in Fig. 365, oscillations will occur. The resomant frequency depends on the electrode voltages and on the shape of the eavitios, and may be adjusted by varying the supply voltage and altering the dimensinns of the rhumbatrons. The bunched beam current is rich in harmonics. but the output waveform is remarkably pure beranse the high (of the rateher rhumbatron suppresses the unwanted harmonies.

Positice-grid electron oscillators - . A triode in which the grid rather than the pate is positive with respect to the cathode will oscillate at frequencies higher than those at Which transit-time effects canse the tube to be inoperative as a normal negative-grid oseillator. Oscillators of the positive-grid type are known as "brakefield" or "electron transittime" oscillators. Successful performance is most readily :1chieved with tube structures having eylindrical grids and plates.

This ippe of operation makes use of the transit time of electrons from the eathode to the grid and phate regions. lilectrons emitted by the mathode are accelerated toward the positive grid, some striking it and some passing through. Those that pass through are repelled by the negative plate and turn around, passing between the grid wire: once nore. In the process, the electrons induce a.c. voltages in the grid at a frequency depending upon the transit time. Some electrons may pass back and forth between the grid wires several times, while whers may strike the grid after a single round trip. Those which remain free in the tube for several oscillations lose energy, but those which make only one trip gain energy. Howneer. since
the former are free for a longer time there is a net transfer of energy which can be used to maintain oscillations.

In this type of oscillatur, shown in Fig. 366, the frequency is controlled primarily by the grid voltage and the tube element spacing. The resonant cireuit must be tuned to approximately the oscillation frequency for maximum output.

Positive-grid oscillators can be operated at frequencies up to $10,000 \mathrm{Mc}$. (3 cm.), but the efficieney is usually only 2 or 3 per eent. Since most of the power is dissipated in the grid, the tube is not capable of delivering much power.

Magnetrons - A magnetion is fundamentally a diode with eylindriesl clectrodes phaced in : uniform magnetic field with the lines of electromarnetic force parallel to the elements. The simple cylindrical magnetron consists of a filamentary cathode surounded by a concentric cylindrical anode. In the more efficient split-anode magnetron the cylinder is divided longit udinally:

Magactron oscillators are operated in two different ways. Electrically the cirmuts are similar, the differene being in the relation between electron transit time and the irequeney of oscillation.

In the negative-resistance or dynatron type of magnetron ascillator, the element dimensions and anode voltage are such that the transit time is short compared with the period of the oscillation freguency. J:lectrons onit ted from the cathode are driven towards both halves of the anode. If the potentials of the two halves are unequal, the effect of the magnetic field is such that the majority of we electrons travel to that hatif of the amorle which is at the lower putential. In onher words, at decrease in the potential of either hall of the athode results in an increase in the dectron rurent flowing to that hatf. 'lhe matuetron eonsequenty exhibits negative-resistance ehararteristies (s3-7). Negrativeresistanco magnetron oscillators are useful between 100 and 1000 Nc. Under the best operating conditions efficiencies of 20 to 25 per cent may be obtained. Since the power loss in the tube apiears as heat in the anode, where it is readily dissipated, relatively large power-handing eaparity ran be obtained.

Fig. 30 - - Conventional mannetrons, with equivalent gehematic symbols at the ripht. A, simple erlimulical

In the transit-time magnetron the frequency: is determined primarily by its dimensions and by the electric and magnetic field intensities rather than by the tuning of the tank circuits. The efficiency is much better than that of a positive-grid oscillator and good power output can be ohtained even on the superlighs.

In a nonossillating magnetron with a weak magnetic field, electrons traveling from the cathode to the anode move almost radially: their trajertories being bent only slightly by the magnetic field. With increased magnetic field the electrons tend to spiral around the filament, their radial component of velocity being much smaller than the angular coniponent. Under critical conditions of magnetic field strength, a eloud of electrons rotates about the filament. It extends up to the anode but does not actually reach it.

The nature of these electron trajectories is, shown in Fig. 368. Cases A, B, and Correspond to the non-oscillating condition. For a

Fig. 368 - Blectron trajectorier for increasing values of mapnetic field strength, H. Below is shown the corresponding eurve of plate current, I. Oceillations commence when II reaches a critical value, He; progressively hisher order modes of oscillation oceur beyond this point.
small magnetic field (A) the trajectory is bent slightly near the anode. This bending increases for a higher magnetic field (B) and the electron moves through quite a large angle near the anode before reaching it, signifying a large increase of space charge near the anode. For a strong magnetic field (C) electrons start radially from the cathude but are soon bent and curl about the filament in the form of a long spiral before reaching the anode. This meuns a very long transit time and a very large space charge in the whole region where the spirating takes place. Under critical conditions (D), no current flow: to the anode and no electron is able to mowe from cathode to anode but a large space charge still exists between the eathod and anode. The spiraling becomes a set of concentric circles, and the entire space-charge distribution rotates about the filaneent.
Figs. 368-E, - F and -G depiet higher order (harmonic-type) modes of operation in which the space charge oscillaten not only symmetrically but in transverse directions contrasting to the vibrations of the fundamental.
In a transit-time magnet ron wiekilator the intensity of the magnetic field is adjusted :o that, under static conditions, electrons leaving the cathode move in rurved pathe which just

 B, four-anode typ wilh opposite mertrodes paralleled.
fail to reach the anode. All electrons are therefore deflected back to the cathode, and the anode current is zero. When an alternating voltage is applied between the two halves of the anode, catusing the potentials of these hatvers to vary about their arerage positive values, the conditions in the tube beeme analogous to thase in a positive-grid oseillator. If the period of the alternating rultage is made equal to the time required for an electron to make one complete rotation in the magnetie field, the a.c. component of the anode voltage reverses direction twice with each clectron rotation. Some dertrons will lose chergy to the eleetric fich. with the result that they are unable to reach the eathobe and continue to rotate about it. Me:mwhile other clectrons gain eneres from the field and are returned to the cathode. Since thuse electrons which lose energy remain in the interelectrode space longer than thuse which gain cuergy, the net effect is a transfer of energy from the electrons to the electric field. This energy can be applied to sustain oscillations in a resonant transmision line connected between the two halves of the anode.
split-anode magnetrons for u.h.f. are constructed with a cavity resonator built into the tube structure as illustrated in Fig. 370. The assembly is a solid block of ropere which ascists in heat di-xipation. At extremely high frequencies operation is impored by subdividing the anode structure into, from \& t.o 16 or more segments, the resoman eavitus for each anoude compled by shot- of eritioal dimensions to the common cathode region, as in lig. 371.

The efliciency of multi-styment magnetrons reaches 65 or 70 per cent. Sot ted-mode magnetrons with four segments function up to $30,000 \mathrm{Mc}$. (1 cm .) delivering up to 100 watts at efficiencies greater than 50 per cent. Using larger multiples of anodes and highor-order modes, performance man be ntamed at 0.2 om

R.-7. Power Ceneration

(1) 4-1 Transmitter Requirements

General requiremonts - Tu minimize interference when a large number of stations must work in one frequency bund, the power output of a transmitter must be as stable in frequency and as free fom spurions rablituions as the state of the ant permits. The steady r.f. out put, called the chrier ($\mathrm{S}_{\mathrm{s}} \mathrm{j}-1$), must be free from ampliturle variations attributable to ripple from the plate power supply (s 8-4) or other causes, its frequency should be unafferted by variations in supply voltages or inadvertent changes in rirenit romstants, and there should be no ratiation on other than the intended frequeney. The degrem to which these requirements ran be met depends upon the operating frequency.

Design principles - The clesign of the transmiter depents on the output frequence. the required powno untput and the tove of operation (c.w. telegraphy of "phome). For r. W. operation at low fower on medium-high frequencios (up to 7 Mc . orsos), asimplarystad uscillator cireuit ean meot the requimements satisfatorily. However, the stathe power motput whel can be taken from an oscillator is limited, so that for higher power the watlator is used simply as a fredueney-ontrolling flement, the power being raised to the disired level by means of amplifiers. The requisite frequeney stability an be obtaince only when the oscillator is operated on relatively low frequencies, so that for output frequencies up to about 60 Me , it is neressiry to indrease the uscillator frequency by multipliation (harmonic generation - $8-3$), which usustly is done at fairly low puwer levels and before the finad amplifieation. An amplifier which delivers power on the frequency appled to its grid cirfonit is known as a straight amplifier; one which gives harmonic out put is known as a frequency multiplier. An amplifior used primepally to isolate the frequency-montrolling usillator from the effects of changes in land or other variations in following amplifior stages is called a buffer amplifier. A complete transmitter therefore may consist of an osillator followed by one or more buffer amplifiers, frequenery multipliers and straight amplifiors, the number being determined by the output frequence and power in relation to the oseillator frequeney and power. 'lhe last amplifier is: called the fimal amplifier, and the stages up to the last eomprise the exiter. Tramsmitters usually are designed to work in a momber of frequene y hands so that means for ehanging freguency in har-
monic steps usually is provided, generally by meaths of plag-in indurtances.

The gencral method of designing a transmitter is to deride upon the power output and the highest output frequency required, and also the number of bands in which the transmitter is to operate. The hatter usually will determine the oscillator frequency, since it is general pratetice to set the weriliator on the lowest frequeney band to be used. The ascillatom frequeney soldom is higher than 7 Mc . exerpt in some portable installations where tubes and power must be consorved. A suitable tube (or pair of tubes) should be sedered for the final amplifier, and the required grid driving power defermined from the tube manfactureres data. This sets the power required from the preeceding stage. From this point the same process is followed batk to the oseilator, including frequency multipleation wherever neressary. The selection of a suitabla tube complement reguiers a knowledge of the operating charatoristics of the varions types of amplifiers and uscillators. Thase are disurased in the following soctions.

Abowe 100 Me. amd highor frefurneses these methous of tramsmitter design trad to berome rather cumbersome, berathe of the menessity for a larga number of frequone multiplier stames. However, in this fregueney region less severe stability rocuirements are imposed befatuse the tramsmission range i, limited ($\$ 9-5$) and the possibility of interference to othor commanication is redured. Simple ascillatom tramsmitters, withont frequence multiplication or buffer amplifrors, atre widely used.

Tucumm tubes - The type of tube used in the tramsmitter has an important effere on the rireuit design. Tubes of high power sensitivity (s.3-3) such as pentodes and beam tetrodes givelarger power amplification ratios per stage than do triodes, hence fower tubes and stages may be used to obtain the same output power. On the other hand triodes have cortain operating advantages, such as simplor power supply circuits and relativoly simpler adjustment for modulation ($\$ 5-3$), and in addition are considerably less expensive for the same power output rating. Comsequently it is usually more coonomical to use triodes as output amplifiers, even though an cxtra low-power amplifier stage may be necessary.

At frequencies in the region of 50 Me. and above it is necessary to select tubes designed particularly for operation at ver-high frequencies, sinee tubes built primarily for lower frequencies may work poorly or not at all.

11 4-2 Self-Controlled Oscillators

Adrantages and disadrantages - The chief advantage of a self-rontrolled oscillator is that the frequency of osaillation is determined by the constants of the tuned circuit, and honce readily ain bo sot to any desired value. However, extreme rare in design and adjustment are (ssential to secure satisfactory frequeney stability ($\$ 3-7$). Since frequency stability is genorally poorer as the lood on the oscillator is increased, the self-controlled oscillator should be used purely to eontrol frequency and not for the purpose of obtaining appreciable power coutput in transmitters intended for working below 60 Me .

Oscillator circuits - The inherent stability of all of the oscillator eireuits despribed in § $3-7$ is about the stme, since stability is more a function of choide of proper circuit values and of adjustment than of the method by which feed-back is obtained. However, some circuits are more convonient to use than others, partieularty from the stindpoint of feed-back adjustment, mechanical considerations (whether the tuning comlenser rotor plates can be grounded or not, ete.), and uniform output over a consideralole frequelior ramge. In all simple rireaits the power output must be taken from the frepurney-motermining tank rirenit. which means that, aside from the offrent of loading on frequency stability. the following amplifier stage ran react on the oscillater and catuse a change in the fremuener.

Factors influencing stability - The causes of froquener instability and the necessary remedial strps havo been discussed in \$3-7. These apply to all ascillators. In the ase of the electron-coupled osoillator the ratio of pate to sereen voltage has marked effert on the stability with changer in supply voltage: the optimum ratio is wenerally of the order of $3: 1$, but should be dotermined experimentally for eath case. Since the cathode is athove ground potential, moans should be taken to reduce the effeets of heater-to-rathode capacitance or loakinge which, hy allowing a small a.c. voltage from the lacater supply to develop between cathode and ground, mayy ause modulation ($\$ 5$-1) at the supply frequency.
fig. 901 - Elec. tron-coupled os. cillator circuit. \boldsymbol{R}_{1} hould he 100,006) ohmes or more the erid condenser 100 $\mu \mu \mathrm{f} \|$, and the other fixed iondensers 0.002 to $0.1 \mu \mathrm{fl}$.

This effect, which is wisully apprectable onls at 14 Mc . and higher, may he reduced by by-passing the heater as in lig. 401 or by of erating the heater at the same r.f. potential as the cathode. The latter masy be aromplishod by the wiring arrangement shown in Fig. $40:$.

Tank-circuit \boldsymbol{Q} - The most important single factor in determining frequency stability is the ? of the osrillator tank cireuit. The effoctive Q must he as high as possible for bext stability. Since ascillation is acemmaniod by grid-current flow the grid-cathode cireuit
Fis. A0卫—Mrthod of opratinir the heater at cathoder. r. motential in an wetron-womped 0^{-} cillator. I.a should hate the same number of turns. as the cathode sertion of L_{1} and shomld berecomy coupled (breferably int: terwomal) (imulenior C: may be 0.01 to $11.1 \mu \mathrm{fil}$.

constitutes a resistance load of appremiable proportions, the offective resistance being low ellough to be the determining factor in establishing the effertive parallel impedance of the tank circuit. Consequently, if the ends of the tank are eonnected to plate and grid, as is usual, : high effoctive Q can be obtained only by decreasiug the I. (ratio and making the inherent restistame in the tank as low as possible. The tank resistance can be decreasol by using low-loss insulation and by winding the eoil with large wire. With ordinary const metion, the optimum tank capaceity is of the order

The effective circhit Q can be raised by increasing the resistance of the grid cirenit and thas deoreaving the loadiag. "lhis can be accomplished through reducing the ascillator grid carrent, which may be acomplinhed by using minimum leed-back for stable oseillation, phas a high value of grid-leak weistance.

A high- $($ tank circuit can also be obtained with a higher L (' ratio by "tapping down" the tube (romections on the tank ($82-10$). This is advantageous in that a coil with higher inherent Q (an be used; also, the circulating r.f. curront in the tank direuit is redured so that drift from coil hoating is dereased. Howevor. under some comditions parasitic oseillations may le set up (

Plata supply-Since the oscillator frequency will be affected to some extent by changes in plate-supply voltage, it is neeessary that the latter be free from ripple ($(\mathrm{s}-\mathrm{t}$) which would cause frequency variations at the ripplefrequency rate (jriqumey modulation). It is advantareous to use a voltage-stabilized power supply (\$ S-S). Since the oscillator usually is opreated at low voltage amd current, VR-t ype gaseons regulatur tubes are quite suitable.

Pouer lerel - The selfecontrolled ascillator should he dexigned purely for frequency rontrol and mot to give appreciable powor out put, hence small tubes of the recoising type may be used. "The powor input ordinarily is not more than a watt or two, subsequent buffer amplifiors being used to increase the powor to the desired level. The use of recriving tubes is advantageous mechanically, since the small clements are less susceptible to vibration and
usually are securely braced to the onvelope of the tube.

Oscillator adjustment - The adjustment of an oscillator consists principally in obsoring the design principles outlined in the prereeling paragraphs. Frequency stability should be checked with the aid of a stable receiver. An anxiliary crsstal oscillator may be asod as a standard for checking dynamic stability and drift, the selferontrolled oscillator being adjusted to approximately the same irequency so that an audio-frequeney beat (§ 2-13) can be obtained. If it is possible to vary the oscillator plate voltage (an adjustable resistor of 50,000 or 100,000 ohns in sories with the plate supply lead will give considerable variation). the rhange in frequency with change in plate voltage may be observed and the operating conditions variad until minimum frequen'y shift results. The principal factors affecting dynamic stability will be the tank circuit, $L^{\prime} C^{\prime}$ ratio, the grid-leak resistance, and the amount of feerl-bitek. In the electron-coupled circuit the later may be aljusted by changing the cathode tap on the tank coil; critical adjustment is required for untimuna stability.

Drift may be cheeked by allowing the osrillator to operate continucusly from a cold start, the frequency change being observed at regular intervals. Drift may he minimized by using less than the rated power input to the plate of the tube, by construction which prevents tube heat from reaching the tank circuit elements, and by use of large wire in the tank coil to reduce temperaf ure rise from internal heating.

In the electron-coupled owillator having a tuned plate cirmit (Fig. $3: 34$), resonance at the fundamental and harmonic frequencies of the oscillator portion of the the will be indieated by a decrease in plate curmot as the phate tank condenser is varied, "This "dip" is less marked at the fundamental than on harmonics.

C. 4-3 Crystal Control

Characteristics - Piezoclectric crystals (§ $2-12-\mathrm{D}$) are widely used for controlling the frequency of transmitting oscillators, beause the extremely high Q of the crystal and the necesarity loose conpling between it and the

Fig. 403 - Triode ery-tal oscillator. The tank comAnser, $\left(5\right.$, mas be a 100 - μ fd. varialle, with I_{9} promertioned so that the tank will tunc whe thestal frequen'y. Cis should be 0.001 aff. ur larger. The grid leah. h_{1}. will vary with the ty ine of tube: hien $-\mu$ tule tahe values of 9500 to 10.000 ohtus, while medium and low $-\mu$ teres take values of 10.16010 io 2 i .000 ohms. A small llashizht bull or $r f$ millianmeter ($\$ t-3$) mav be insered at $\boldsymbol{\lambda}$.
oscillator tube make the frefuency stability of a crystal-controlled oscillator very high.

The ability to adhere closely to a known frequency is the outstanding characteristic of a crystal oseillator. This also is a disadvantage, in that a different crystal is reduired for each frequency on which the transmitter is to operate.

Pouer limitations - The temperature of a crystal depends not only on the tenuprature of its surroundings but also on the pwwer it must dissipate while oscillating, since power dissipation causes heating (s 2-6, 2-8). Consequently, the crystal temperature in operation may be considerably above that of the surrounding air. To minimize heating and frequeney drift (§3-7), the power dissipated inust be kept to a ininimum.

If the crystal is made to oscillate too strongly, as when it is used in an oscillator circuit with high plate voltage and excessive feed-back, the anmplitude of the mechamical vibration will become great cnough to crack or muncture the quartz. An indication of the vibration anplitude (and power dissipated) ean be obtained by comnecting an r.f. current-indicating device of suitable range in series with the rystal. Stue r.f.crystal currents range from 50 to 200 nilliamperes, depending upon the type of ervisal cut. A flashlight bulb or dial light of equivalent current rating makes a good current indicator. By choosing a bulb of lower rating than the current specified by the manufacturer as safe for the particular type of crystal uent, the bulb will serve as a fuse, burning out before a current dangerous to the crystal is reached. The $60-\mathrm{ma}$. and $100-\mathrm{ma}$. bulbs may be used for this purpose.

Crystal mountings - To make use of the crystal, it must be mounted betwern two metal electrodes. There are two types of mountings, one laving a small air-gap between the top plate and the crystal and the other mantaining both plates in contact with the crystal. It is essential that the surfaces of the metal plates in contact with the crystal be perfectly flat. In the air-gap type of holder, the frequency of oscillation depends to some extent upon the size of the gap. By using a holder having a top plate with closely adjustable spacing, a controllable frequency variation can be obtained. A suitable $3 . \overline{5}-$ Mc crystal will oscillate without great variation in power output over a range of about 5 ke . K-and Y-cut crystals are not generally suitable for this type of operation; they have a tendency to "jump" in frequency with different air gaps.

A holder having a heary metal bottom plate with a large surfare exposed to the air is advantagenus in that it radiates quickly the heat generated in the erystal, thereby reducing temperature effects. Different plate sizes, pressures, etc., will cause slight changes in frequancy, so that if a crystal is being ground to an exact frequency it should be tested in the same holder and in the same oseillator cirruit with which it will be used in the transmitter

Fia. 101 - Tetrnde or pentode crystal nscillator. Typiral values: $C_{1} .100 \mu \mu \mathrm{ft} .$, with I. wound to suit frequency: $C_{2}, C_{3}, 0.001$ ${ }_{\mu}$ fil. or largar: C. 0.01 ${ }_{\mu} \mathrm{fl}$.: H_{1}. $10,0(0)$ to 50.0) 0 utinn = (value de. termined by trial); $R_{2}, 250$ to 100 ohms.

[1 4-4 Crystal Oscillators

Triode oscillators - The triode ervstal oscillator circuit ($\$ 3-7$) is shown in l'ig. 403. The limit of plate voltage that can be used without endangering the crystal is about 250 volts. With the r.f. erysial current limited to a safe value of ibout 100 m is, the power output obtainable is about 5 watts. The oscillation frequency is dependent to some extent on the plate tank tuning, becanse of the rhange in input capacity with changes in effertive amplification (\$3-3).

Tetrode and pentorle oscillators-Since the power output of a erystal oscillator is limited by the permissible r.f. crystal curent ($\$ 4-3$), it is advantageous to use an oscillator tube of high power sensitivity (s 3-3) such ats a pentode or beam tetrode ($\$ 3-5$). Thus for a given crystal voltage or rarront more power output may be obtained than with the triode oscillator, or for a given ontput the erystal voltage will be lower, thereby reducing erystal heating. In addition, tank-eireuit tuning and loading react less on the arstal irequency because of the lower grid-plate caparity (s:3-3).

Fig. 404 shows a typiral pentode or tetrode oscillator cirmit. Pentode and tetrode tubes originally designed for andio power work are excellent crystal-osidlator tubes. The sereen voltage is generally of the order of hali the plate voltage for optimum operation. Smatl tubes rated at 2.50 volts for atudio work may bo operated with 300 volts on the plate and 100-125 on the screen as crystal oreillators. The sereen is at ground potential for r.f. and has no part in the operation of the cirmit other than to set the operating characteristies of the tube. The larger beam tubes mav he operated at 400 to 500 volts on the plate and 250 on the sereen for maximum output.

Pentode oscillators operating at 250 to 300 volts will give 4 or 5 watts oufput under normal conditions. Beam-type tubes such as the 6 L 6 and 807 will give $1 \overline{5}$ watts or more at maximum plate voltage.

The grid-plate caparity may be too low to give sufficient feed-bark, particularly at the lower frequencies, in which rase a feed-back condenser, Cs, may be required. Its capacity should be the lowest value which will givestable oscillation; lor $2 \mu \mu \mathrm{fd}$ is qenerally sulfient. l^{2} and C_{4} may be omitted. connecting the cathode directly to gromed, if plate voltage is limited to 250 volts. C_{5} (ii needed) may be formed by two metal plates \%-ineh square spaced $1 / 4$ inch. If the tube has a suppressor
grid, it should be grounded. I indicates where a flashlight bulb may be inserted ($\$ 4-3$).

Circuit consfants - 'Typical values for grid-leak resintances and by-pass condensers are given in Fige. 40:3 and 404. Since the crystal is the frequener-dotermining element, the Q of the plate tank cimuit has a relatively minor affect on the wesillator frequeney. A ? of 12 ($\$ 4-8$) is satisfactory fur a verage conditions, but some departure irmm this figure will not greatly affect the performance of the oscillator.

Aljustmont of crvistal oscillators - The tuning characteristics and prowelure to be followed in duning are esemtially the same for triode, tetrode or pentode erystal osceilaturs. Using a plate milliammeter as an indicator of oscillation ($0-100$ ma. d.e. moter will have a mple range for all low-power owillators), the plate curront will be found to be steady when the circuit is it the non-os-illating state, but will dip when the phate condonser is tuned through renonance at the erystal frequency. Fig. 40:5 is typieal of the behavier of plate mitrent as the tank comdenser raparity is wariod. An r.f. indicator, surh as a small meon bult touched to the plate end of the tank eail, will show a maximum indication at mint A. However, when the astillator is doliveriner power to a load it is best to operate in the remion $B-C$ sime the oscillator will he more stable and there is les likelihood that :a slight rhange in loasfing will throw the cirenit ont of osallation, which is likely to happen when operation is teo near the critieal point, d. The ergstal emrent also is lower in the $B-C$ region,

When power is taken from the aseflator the dip in pate current is less pronomed, as indicated by the dotted curve. Ther greator the power witput, the emaller tha dip, in plate eurrent. If the load is made too great, oseillations will not start. Iotading in adju-t bey varying the roupling to the load circuit (\$2-11).

Fig. 105- Curves show. in:̈ d.e plate rurrent vs. plate-cirroit tuming in a erystal oceillator, both with and without hoad. 'I heser curve apply equally to the triode, teitrode ar pentode arystal osailator.

The greater the loading, the sualler the voltage fed back to the grid cireuit for excitation purposes. This means that the r.f. voltage aeros the erystal also will be reduced under load. hence there is luse rrystal heating when the oscillator is delivering power than when it is unloarled.

Frailure of a erystal circuit to oseillate may be calused by any of the following:

1) Dirty, chipped or fractured ers-tal.
2) Imperfect or unclean holder surfaces.
3) Foo tight coupling to load.
4) Plate tank circuit not tuning correctls.
b) Insufficient feed-bark capacity.

Fig. 106- Pieran os. rillater cirruit. \boldsymbol{R}_{1} is 25.0010 to 50,0100 ohms. K_{2} is 10010 ohme: R_{3}, 75.010) ohens for a 6 Fb ; C. $1,0.0101$ to 10,01 $\mu \mathrm{fll}$; C_{3} and $C_{4}, 0.01 \mu \mathrm{fd}$. Fion values of coz and C.s, sie text.

Pierce oscillator - This cimeut. Fig. 406. is equivalent 10 the ult randion circuit ($\stackrel{3}{5}-7$), with the cerstal replacing the tumed eimuit. Although the output is small. it has the advantage that no tuning controls are required. The circuit requires capacitive coupling to a following stage. The amount of feed-back is determined by the eondenser, for, its eaparity must be determined by experiment, usual values being betwern a0 and $150 \mu \mu \mathrm{fo}$. To sustain oscillation, the net reactance ($\$ 2-8$) of the Hate-cathode circuit must be capacitive; this condition is mot son long as the inductance of the r.f. choke, fogether with the inductance of any coils associated with the input circuit of the following stage and the tuhe and stray capacities, forms a circuit tuned to a lower frequency than that of the crestal.

Tubes sueh as the trionde 60° a and pentode GF6 are suitable for use in this circuit. (When a triode is wised the sereen-boltage dropping resistor, R_{3}, and by-pass comdenser. C_{4}, in Fig. 406 should, of course, be omitted.) The applied pate voltagr should not exeed 30n. to prevent erystal fracture. The apacity of the outputcompling comdenser, C, should be aljusted bexperiment so that the oscillator is not werloaded; usually $100 \mu \mu \mathrm{fl}$. is a satisfactory value.

4. 4-5 Harmonic-Generating Crystal Oscillators

Tri-tel oscillator - The Tri-tet ascillator circuit is shown in lig. 407. In this eireuit the soreen grid is operated at ground potential and the eathole at an r.f. protential above ground. The screon-grid acts as the anole of a triode crestal oseillator, while the phate or output circuit is tumed to the oscillator frequency or, for harmonic output, to a multiple of it.

Besides giving hammone output, the Tri-tet rirenit has the "buffering" feature of electroncompling between ervisal and output circuits ($54-2$). This makes the erystal frequeney less susceptible to changes in loading or tuning, and hencer improves the stability.

If the output circuit is to be tumed to the same frequency as the restal, a tube having low grid-plate raparity (s $3-2,3-5$) must be used. Otherwise there may be exossive ferdbate with consequent danger of fraturing the ervstal. The eathode tank eireuit. L_{1} (${ }_{1}$, is not tumed to the frequeney of the ervisith, but to a comsiderably higher lrembeney. lierommended values for \dot{L}_{1} are given undar the diagram. C_{1} should be set to as near minimum caparity as is consistent with good output. This reduces the crystal voltage.

With pentode-type tubes having separate suppressor counections, the supprosisor may be either conneeted diredy to ground or operated at about 50 volts positive. The latter method will give somewhat higher output.

With transmitting pentodes or beam tubes operated at 500 volts on the plate an output of 15 watts can be obtained on the fundamental and nearly as much on the second harmonie.

Grid-plate oscillator-In the grid-plate oscillator, Fig. 408, the revstal is commerted betweongrid and gromed and the cathode tuned circuit. (so and $R F C=$, is tuned to a frequency fower than that of the erystal. This rireuit gives high output on the fundamental erestal frequency with low erystal current. 'The out put on even harmonic: (2 nd, 4 th, ete.) is not so great as that obtainable with the Tri-tet, but on odd harmonics (Brd, 5th, ete.) the output is appreciably better.

If harmonic output is not neoded, C_{2} may be a fixed catpacity of $100 \mu \mu \mathrm{fd}$. The cathode coil, $R F C^{\prime}$ may be a 2 , 5 -mh. Woke, since the inductance is not aritical.

Output power of 15 to 20 watts at the crystal fumdamental may he obtained with a tube such as the $6 \mathrm{LGG}(\mathrm{a}$ at plate and sereen voltages of 400 and 250 , respectivels.

Tuming and uljustment - The tuning procedure fur the 'Tri-tet onscillator is as follows: With the wathode tank condenser at about threo-quarters soale turn the phate tank condenser butil there is a sharp dip in plate cur-

 or bram tetroles (B), Ci and C_{2} are 200- $2 \mu \mathrm{fd}$, variable
 their value are mot critical. R_{1}. 31,2001 (1) 1000.0106 whme. R_{2} should be 400 ohms for 400 - or 500 -wolt opration. The following -pecitications for the cathode eoils. L_{1}, are hased on a diameter of 11_{2} inches and a lenyth of 1 inch: turns should be spared eventy to fill the repuired length: for $1 . \bar{\sigma}-\mathrm{Me}$. erystal, 32 turns: 3.5 Mc., 10 turns \vec{i} Me., o turns. The screen should be operated at 250 wolts
 should be used only for stcomi-harmonic outpul. A liashlisht buth may ber incorted at the puint marhed $\(\$ \mid-3)$. The L / C ratioin the plate tank, $L_{2} C_{2}$, should be such that the caparity in use is $\overline{5}$ to $100 \mu \mu$ fil, for fundanumal output and about $25 \mu \mu$ fid. for sceond-harmonic output,

Figs 108 - Crideplate erystal ow illator cireuit. In the cathoule cireuit, R/: i- a $-3 . \overline{3}-\mathrm{ml}$, r.f. choke. Other comstants are the same as in Fif. 407, A eryatat-rurrent indicator may be insorted at the pmint marked X ($\$ 4-3$).
rent, indicating that the phate circuit is in resomance. The erystal should be oseillating contimususly, regardless of the setting of the plate condenser. siet the plate condenser so that plate current is minimum. The lead circuit may then be compled and adjusted so that the uscillator delivers power. The minimum plate current will rise: it may be neressar.: to rectune the plate condenser when the load is coupled to bring the plate rurrent to a new minimum. Fig. fo9 shows the typical behavior of plate current with plate-condenser tuming.

After the plate circuit is :adjusted and the oseillator is delivering power, the cathode condenser should be readjusted to whatain optimum power output. The setting should be as far toward the lew-eriparity cond of the seale as is consistent with gocold output: it may, in fact. be desirable to sarrifice a little output if so doing lowers the current therogh the erystal and thes reduces heating.
For harmonie output the plate tank cireuit is tuned to the harmonic insteat of the fundamental of the crystal frequency. A plate-current dip will oecur at the harmonic. If the cathode condenser is: : idjusted for maximum output at the harmonic, this andastment will usually serve for the fumdamemal ats well. The erystal should be cherked for excessive heating,
the most effective remedy being to lower plate and/or sereen voltage or to redued the loading. Maximum r.f. voltage across the ryst $\$$ in developed at maximum luad, so heating should be cherked with the load coupled.

When a fixed cathode combenser is used in the grid-plate orerillat or the plate tank cercuit is simply resomated, as indinated by the platecurrent dip, to the fundanentat or a harmonie of the output frequency, loading being adjusted to give optiman power ontput. If the variable cathode condenser is used, it should be set to give, by whervation, the maximum power oulput consistent with sate erystal current. The variable condenser is usoful chiefly in increasing the output on the third and higher harmonies; for fundamental operation, the cathorle caparity is not aritical and the fixed condenser may be used.

Fig. 409 - Curves -how in\# Ner. plate current ve plate-condenser tunine. footh with and withoni fade for the 'liri-fet oriblator. 'The selline for minimum wate varrat may shift with loading.

C. 4-6 Interstage Coupling

Requirementes- The purpose of the interstage couphing sytem is to transfor, with as little emergy lows ats pasible, the prower doveloped in the plate circuit of ene tube (the driver) to the grid circuit of the following amplifier tube or frecuency multiplier. The circuits in practical use are based on the fumdamental coupling arrangements describecl in \& 2-11. In the process of power transer, impedance transformation ($2-3$) frechently is neecosary so that the proper exciting voltage and current will be available at the grid of the driven tube.

Fig. 110-Direct- or capacity-roupled driver and amplifier stazes. The coupling capacity may be from $50 \mu \mu \mathrm{fd}$.
 plate fred to the driver and scrios arid feed to the amplifier may be substituted in any of these circuits ($\$ 3-7$).

Caparim coupliag - Tig. 110 shows several types of capacitive coupling. In each case, C is the compling condenser. The coupling condenser serves also as a blocking condenser ($(2-13)$ to isolate the d.e. plate voltage of the driver from the grid of the :mplifier. The circuits of C and D) are preferable when a balanced simeuit is used in the output of the driver; instead of both tubes being in parallel arross one side. the whtput capacity of the driver tube and the input capacity of the amplifier are arross opposite sides of the tank circuit, hareby meserving a better circuit balance. The circuits of E and F are designed for coupling to a push-pull stage.

In ., , P, E and F, excitation is adjusted by moving the tatp on the coil to provide atn optimum impedance match. In E and F , the two grid taps should be maintained equidistant from the center-tap on the coil.

While eapactive eoupling is simplest from the viewpoint of robstruction, it has cortain disadvantages. The input eapacity of the amplifier is shunted ancess at last a portion of the driver tank eoil. When added to the output capacity of the driver tube this additional ear pacity may be sumbicmit, in many canes, to prevent use of a desirabar $L C$ maioin cireuits for frequencies abowe about 7 Mc .

Link compling - At the higher frecquencies it is advantageous in reducing the effects of tube caparatios on tho I. C ratio to use separate tank rimots: for the driver plate and amplifer grid, coupling the two circuits by means of a link (s 2-11). This mothod of empling also has some construetional advantages, in that separate parts of the transmiter maty be comstrueted as sepmate mits without the neressity for ruming loner load at hirh r,f. potential.

Fig. 411 -- link compling betwecu driver and amplifire.

Circuits for link coupling are shown in Fig. 411. 'Ihe coupling ordinarily is by a turn or two of wire closely coupled to the tank inductance at a point of low r.f. potential, such as the conter of the coil of a balanced tank eircuit or the "ground" end of the coil in a single-ended circuit. The link line usually consists of two dasely spaced parallel wires; occasionally the wires are twisted tugether, but this usually causes undue los:es at high frequencies.

It is advisable to have some means of varying the compling between link and tank coils. The link coil maty be arranged to be swung in relation to the tank coil or, when it comsists of a large turn around the outside of the tank coil, may be split into two parts which can be pulled apart or clused somewhat in the fashon of a patir of caliperts. If the tank coils are wound on forms, the link may be wound close to the main euil.

With fixed coils, some adjustment of coupling usually can be ohtained by varsing the number of turns on the link. In general, the proper number of turns for the link must be found by experiment.

(1) 4-7 R.F. Power-Amplifier Circuits

Teirode and pentode amplifiers - When the input and output dircuits of an r.f. amplifier tube are tumed to the same frequeney it will owiblate as a tuned-grid tuned-plate oscillator, unless some monns is provided to elimimate the effects of fool-back through the plate-to-grid capacity of the tube ($\$ 3-5$). In all tramsmitting r.f. tetodes and pentodes, this (apacity is rochuced to a satisfactory degree by the internal shiclding between grid and plate provided by thesereen. Tetrodes and pentodes
 (if(i), ete.) are not suffeiently well screoned for n:co as ref. amplifiors without employing suitable means for mallifying the effect of the gridplate catumits.

Typical circuits of tetrole and pentode r.f. amplifiers are shown in Fig. 412. The high power sensitivity ($\$ 3-3$) of pentodes and tetrodes, makes them prone to self-oscillate with very small values of fed-back voltare, however, so that particular care must be used fu prevent feed-back by means external to the tube it:self. 'This calls for adequate isolation of plate and grid tank cireuits to prevent undesired magnetic or eaparity coupling between them. The requisite isolation con be secured either by kophing the eireuits well separated and monintine the coils so that magnetic coupling is minimized, or by the use of interstage shirlding (s 2-11).

Triode amplifiers - The feed-back through the wrid-plate eapacity of a triode cannot be diminated, and thereiore special cirenit means c:lled weutralization must be used to prevent oscillation. A properly neutralized triode amplitier then behaves as though it were operating at very low frequencies. Where the grid-plate caparity feed-b:ark is nogligible (§ 3-3).

Radio- Irequency Power Generation 101

SINGLE-TUBE OR DARALLEL

Fig. 112 - Typieal tetrole-pentode r.f. amplifier circuits. $C_{1}-0.01 \mu \mathrm{fil}$. $C_{2}-0.001 \mu \mathrm{fd} . \mathrm{C}_{3}-\mathrm{L}$ - Sce $\$+4.8$. In circuits for tetrodes, the suppersor-grid connection and its associated by-pass condenser are omitted.

Neutralization - Neutralization amounts to taking some of the radio-frequency current from the output or input circuit of the annplifier and introducing it into the other circuit in such a way that it effectively cancels the current flowing through the grid-plate capacity of the tube, thus rendering it impossible for the tube to supply its own excitation. For comphete neutratization of the amplifier, the two currents must be opposite in phase ($(2-7$) and equal in amplitude.

The out-of-phase current (or voltage) can be obtained quite readily by using a balanced tank circuit for cither grid or plate, taking the neutralizing voltage from the end of the tank opposite that to which the grid or plate is connceted. The :mplitude of the neutralizing voltage can be regulated by means of a small condenser, the neutralizing condenser, having the same order of capacity as the grid-plate capacity of the tube. Circuits in which the neutralizing voltage is obtained from a balanced grid tank and fed to the plate through the neutralizing condenser are grid-neutralized cireuits, while if the neutralizing voltage is obtained from a balanced phate tank and fed to the grid the circuit is platc-neutralized.
flate-neutralized circuits - The circuits for plate neutralization are shown in Fig. 413 at A, B and C . In A , voltage induced in the extension of the tank coil is fed back to the grid through the neutralizing comlenser, C_{n}, to balance the voltage appearing between grid and phate. In this cireuit, the eapacity required at C_{n} increases as the tank eoil extension is made smaller; in general, neutralization is satisfactory over only a small range of frequencies since the coupling between the two sections of the tank coil will vary with the amount of capacity in use at C.

In B the tank coil is center-tapped to give equal voltages on cither side of the center tap, the tank condenser being across the whole coil. The neutralizing capacity is approximately equal to the grin-plate capacity of the tube, in this case. A disalvantage of the circuit, when used with the single tank condenser shown, is that the rotor of the condenser is above ground potential, and hence small capacity changes caused ly bringing the hand near the tuning control (hand capacity) canse detuning. In general, neutralization is complete at only one

Fig. 113 - Neutralized triode amplifier circuits. Plate neutralization is shown in A, B and C, while D, E and F show types of grid ne'utralization. Either capacitive or link coupling may be used with the circuits of A, 1 a or C .

frequency since the plate-cathode eapacity of the tube is across only half the tank coil; also, it is dilicult to sceure an exact center-tap). Both of these factors cause unbalance, which in turn canses the voltages across the two halves of the coil to differ when the frequency is changed.

The circuit of C also uses a conter-tapped tank circuit, the voltage division being secured by use of a halanced (split-stator) tank condenser, the two condenser sections being identical. C_{n} is approximately equal to the gridplate capacity of the tube. In this circuit the upper section of the tank eondenser is in parallel with the output caparity of the tube, hence the eireuit can be completely neutralized at only one setting of the tank condenser unless a

Fig. 114-Compro. sating for unhalance in the sing!e-tulue newtrali»in" eirruit. (oz, the balancing conden. sur, has a maximum capacity sumewhat larper than the output caparity of the tuhe.
compensating capacity (Fig. 414) is connected arross the bwer sertion. It is adjusted so the noulmalizing condenser need not be changed when fregnemey is shifted. In pratetice, if the atpanity in une in the tank circuit is large compared to the pate-cathode capacity the unbalthumg effect is not serious.

Grid-meutralized circuits- Typical circuits emploving grid neutralization are shown in I'ig. 413 at 1), F and F. The principle of batancing out the feed-back voltage is the same as in plate neutratization. Ifowever, in these eirwhits the neutralizing woltare may be either in phase or out of phase with the exeitation voltage on the gride sible of the input tank direnit depending upon whet her the tank is divided by me:ms of a batanered combenser or at tapped eroil. ('ircuits suld as those at I) and $1 \therefore$, neut ralized by ordinary prowedure (described below), will be regenerative when the plate voltage is appheal: the rirenit at F will be dexenerative. In addition the nomal mbalaneing effeces previously desuibed are present, so that grid neatralizing is loss satiadatory than the plate method.

Imbuctive neutralization - With this type of neutralization, inchative enupling botwern the grid and plate cirruits is provided in such a
way that the voltage induced in the grid coil by magnetic coupling from the phate coil opposes the voltage fed back through the grid-plate caparity of the tube. A representative circuit arrangement, using a coupling link to provide the mutual indurtance ($\$ 2-11$), is shown in Fig. 415 -A. The link eoils are of ont or two turns coupled to the groumeded rinds of the tank coils. Neut ralization is adjustad by moving the link coils in relation to the tank roils. Peversal of connections to one coil may be required for proper phasing. Ordinary inhurtive coupling betwern the two coils also could be used. hut it is less convenient. Inductive mentralization is complete only at one freguency since the effective mutual inductance changes to some extent with tuning, but is useful in rases where the grid-phate caparity of the tube is very small and suitable circuit balance eannot be obtained by using nontralizing condensers.

Another form of noutralization, known as "eoil" or "shunt" noutralization, is shown at 13. Its operation is based on making the inductance of L_{n} :wheh that, together with the griblplate capacity of the tube, it resonates at the operating frequency. C_{2} is murely a plate-voltage hocking rondenser. If the Q of the eoil is sufliciently high. the paratlel resonant impedince between grid and plate is murh higher than the grid-cathode cirenit impedance. Because the serstem is difficult to adjust and functions satisfactorily only at one frequenery, it is used chiefly in fixed-freguency transmitters. The variation in Fig. +1t-C is insoful for v.h.f. In this arrangement the coil is replaced by a parallel line. the effective length of which is adjusted until it is resonant when loaded by the erid-phate capateity.

Push-pull neatralization - With pushpull circuits two neut malizing rondonsers are used, as shown in F'ir. 416 . In these circuits, the grid-plate caparities of the tubes and the neutratizing capacitios form a capacity bridge ($\$ 2-11$) which is independent of the gride and plate tank circuits. The neutralizing capacities are approximately the same as the tube gridphate capacitios. With clectrablly similar tubes and symmetrical construction (stray caparities to ground equal on both sides of the rireuit.), the neutralization is eomplote and independent of frequenc: A circuit using a balanced condenser, ats at B, is prefered, since it is an aid in obtaining good circuit balance.

Frequoncy pffects - The effects of slight dissymmetry in a neutralized circuit herome more important as the frequency is raised, and may be sufiaciat at the very-high frequencies (or even lower) to prevent good neutralization. At these frequencies the inductanees and stray rapacities of even short leads berome important elements in the circuit. while input loading efferts (\$7-6) may make it impossible to get proper phasing, particularly in single-tube circuits. In surh cases the use of a push-pull amplifier, with its Leneral frcedom from the $^{\text {a }}$ effects of dissymmetry, is not only much to be prefered but may be the only type of circuit which can be satisfactorily neutralized.

Noutralizing comdensers - $1 n$ most cases the neutalizing voltage will be equall to the r.f. voltage between the plate and grid of the

Fig. 416-" -ross-neotralized" push-pull r.f. amplifier circuits. Fither caparitive or link coupling may be used.
 $C_{1}-0.01 \mu \mathrm{fd}$.
C_{2} - 0.001 fft , or larger.
tube, so that for perfert balance the capacity required in the neutralizing condenser theoretically will be equal to the grid-plate caparity. If, in the circuits having tapped tank coils, the tap is more than half the total number of turns from the plate end of the coil, the required neutralizing rapacity will increase approximately in proportion to the relative number of turns in the two sections of the coil.

With tubes having grid and plate connections brought out through the bulb, a condenser having at about half-seale or less a capacity equal to the grid-plate capacity of the tube should be chosen. If the grid and plate leads are brought through a common base the capacity needed is greater. because the tube socket and its associated wiring adds some capacity to the actual interelement capacities.

When two or more tubes are connected in parallm, the neutralizing caparity required will be in proportion to the number of tubes.

The voltage rating of neutralizing condensers must at least equal the r.f. voltage across the condenser plus the sum of the d.e. plate voltage and the grid-bias voltage.

Neutralizing procolure - The procedure in neutralizing is essentially the same for all tubes and circuits. The filament of the tube should be lighted and excitation from the preceding stage fed to the grid circuit. There should be no plate voltage on the amplifier.

The grid-eiteuit millismmeter makes a good neutralizing indicator. If the circuit is not completely neutralized. tuning of the plate tank eircuit through resonance will change the t uning of the grid circuit and affert its lowding, eausing a change in the rectified d.e. grid curront. The setting of the neutralizing condenser which leaves the grid current unaffected as the plate tank is thmed through resomane is the emreot one. If the circuit is wut of nentralization, the grid current will drop pereeptibly as the phate tank is tumed thromble resonamere. As the point of nentralization is approsached, by adjasting the noutraliang eapacity in small steps the dip in grid curent as the plate condenser is swing through resomane will becone less and hess pronomaned. until, at exant neutrabzation, there will be no dip at all. Further chamge of the uentralizing eapacity in the same directions will bring the grid-curront dip bate. The nentralizing eondenser shombed aboss be adjusted with a screwdriver of insulating material to avoid hand-caparity effects.

Adjustment of the noutralizing condenser may affect the tuning of the grid tank or driver plate tank, so both circuits should be retuned each time a change is made in mentralizing capacity. In neutralizing a push-pull amplifier the neutralizing condensers should be adjusted together, step by step, keeping their capacities as equal as possible.

With single-ended (eircuits havingsplit-stator neutralizing, the behavior of the grid meter will depend somowhat upon the type of tube used. If the tube output capacity is not great enough to upset the balance, the action of the meter will be the same as in other circuits. With high-capacity tubes, however, the meter usually will show a gradual rise and fall as the plate tank is tuned through resonance, reaching a maximum right at resonance when the circuit is properly neutralized.

When an amplifier is not neutralized a neon bulb touched to the plate of the amplifier tube or to the plate side of the tuning condenser will glow when the tank eirenit is tuned through resonance, providing the driver has sufliciont power. The glow will disappear when the amplifier is neutralized. However, touching the neon bulb, to such an ungrounded point in the circuit may introduce enough stray capacity to untalame the circuit slightly, thus upsetting the nout ralizing.

Fig. 417- Inverted amplifire. The number of turns at I.shonld be adjusted by experiment to give optimum grid exeitation. By-pasi condeuser \mathcal{C} is $0.001 \mu \mathrm{fd}$. or larger

A flashlight bulb connected in series with a single-turn loop of wire 212 or 3 inches in diametor, with the loop coupled to the tank coil, also will serve as a neutralizing indicator. Caparitive unbalance can be aroded by coupling the loop to the low-potential part of the tank coil.
Incomplete neutralization - If a setting of the neutralizing condenser can be found which gives ninimum r.f. current in the plate tank circuit without completely climinating it, there may be magnetic or caparity coupling between the input and out put circuits external to the tube itself. short leads in neutralizing circuits are highly desirathle, and the input and output indurtanes should be so plated with respect to each other that magnetic coupling is minimized. I'sually this requires that the axes of the coils mist be at right angles to each other. In some cases it may he necessary to shield the input and output circuits from each other. Magnetic coupling can be detected by discomerting the plate tank from the remainder of the circuit and testing for r.f. in it (by means of the flashlight lamp and loop) as the tank condenser is tuned through resonaluce. The driver stage must be operating while this is done, of comse.

With single-ended amplifiers there are many stray eaparities left uncompensated for in the neutralizing process. With burge tubes, especially those having relatively high interelectrode eapacities, these commonly neglected stray capacities can prevent perfect neutralization. Symmetrical arrangement of a push-pull stage is ahout the only way to ohtatin practically perfect balanee throughint the amplifier.
The neutralization of tuhes with extremely low grid-phate rapacite, wheh as the 6LG, is often dificult, since it frequently happens that the wiring itself will intronduce sulficient capacity between the right points to "overneutralize" the grid-plate capacity. The use of a neutralizing condenser only ageravates the comblition. Inductive or fink neutralization, as shown in Fig. 415, has been used successfully with such tubes.

The inverted amplifier - The circuit of Fig. 417 avoids the necessity for neutralization by operating the control grid of the tube at ground potential, thus mating it serve as a whield betwern the input and coutput cirenits. It is particularty uerful with tubes of low grid-plate capacity, which are difficult to neutralize by ordinary methods. Excitation is ap-
plied between grid and cathode through the coupling coil. L; since this coil is common to both the plate and grid circuits the amplifier is degencrative with the circuit constants normally used, hence more exeitation voltage and power are required for a given output than is the case with a neutralized amplifier. The tube used must have low plate-cathode caparity (of the order of 1 m $\mu \mathrm{fd}$. or less) since larger values will give sufficient feed-back to permit it to oscillate, the circuit then becoming the ultraudion ($\$ 3-7$). Tubes having sufficiently low plate-eathode capacity (audio pentodes, for example) can be used without danger of oscillation at frequencies up to perhaps 30 Mc . or so.

1. 4-8 Power Amplifier Operation

Efficioncy-An r.f. power amplifier is usually operated Class-C (\$3-4) to obtain a reasonably high value of plate efficiency ($\$ 3-3$). The higher the plate efficieney the higher the power input that can be applied to the tube without exceeding the plate dissipation rating (\$3-2), up to the limits of other tube ratings (plate voltage and plate current). Plate efficiencies of the order of 7 as per cent are readity obtainable at frequencies up to the $30-50$ - Me. region. The oner-all efliciency of the amplifier will be lower hy the power lost in the tank and compling circuite, so that the actual eflicioney is less than the plate efficiency.

Operating angle - The operating angle is the proportionate part of the exciting gridvoltage cycle ($\$ 2-7$) during which plate current flows, as shown in Fig. 418. For Class-C operation, it is usually in the vicinity of 120-150) degrecs. With other uperating considerations, this angle results in an optimum relationship betwem plate efficiency and grid driving power.

Load imperlance - The load impedance (§3-3) for an r.f. power amplifier is adjusted, by tuning the plate tank circuit to resonance, to represent a pure resistance at the operating frequency ($\$ 2-10$). Its value, which usinally is in the neightorhood of a few thousand ohms, is

Fig. 118 - Instantanmons woltages and currents in a Class.C amplifier operating under optimum conditions.
adjusted by varying the loading on the tank circuit, closer coupling to the load giving lower values of load resistance and vice versa (§2-11). The load may be either the grid circuit of a following stage or the antenna circuit.
For highest efliciency the value of load resistance should be relatively high, but if only limited excitation voltage is available greater power output will be secured by using a lower value of load resistance. The latter adjustment is accompanied by a decrease in phate efficiency. The optimum load resistance is that which, for the maximum permissible peak plate current, auses the ninimum instantimeous plate voltage (Fig. 418) to be equal to the maximum instantanerus grid voltage required to caluse the peak plate current to flow; this gives the optimum ratio of plate efliciency to required grid driving power.
R.f. grid voltage and grid bias - For must tubes optimum operating conditions result when the minimum instantaneous plate voltage is 10 to 20 per cent of the d.e. plate voltage, so that the maximum instantaneous positive grid voltage must be approximately the same figure. Since plate current starts flowing when the instantancous voltage reaches the cut-off value (s 3-3), thed.e. grid voltage must be considerably hisher than cut-off to contine the operating angle to 1 no degrees or less (with grid hias at cut-off, the angle would be 1 so dogrees:). For an angle of 120 degrees, the .f. grid voltage must rearh 50 per cent of its peak value ($(\stackrel{y}{2}-\boldsymbol{\text {) }}$) at the cut-off point. The corresponding figure for an angle of 150 degrees is 25 per cent. I Ience, the operating bias required is the cut-off value plus 25 to 50 per cent of the peak r.f. grid voltage. These relations are shown in Fig. 41s. The grid bias should be at least twice cut-off if the amplifier is to be plate modulated, so that the operating angle will be not less than 1 sil degrees when the plate voltage rises to twiee the steady d.c. value ($5 ;-3$). Becaluse of their relat tively high amplification factors, with most modern tubes (lass-C operation recuires eonsiderably more than twice cut-off bias to make the operating angle fall in the region mentioned above. Suitable operating comditions are usually given in the data aceompanying the type of tube used.

Cirid bias may be secured either from a bias source (fixed lias), a grid leak (\$3-6) of suitable value, or from a rombination of both. When a bias supuly is used, its voltage regulation should be taken into consideration (S S-9).

Dricing power - As indicated in Fig, H1s, grid current flows only during a small portion of the peak of the ref. grid voltage cecte. The power consumed in the grid cireuit therefore is approximately equal to the peak r.f. grid woltage multiplied by the averare rectified grid current as read by a d.e. milliammetor. The peak r.f. grid voltage, if not included in the tube manufacturer's oparating data, ean be estimated roughly bey adding 10 to 20 per cent of the plate voltage to the operating grial bias.
assuming the operating conditions are as described above.

At frequencies up to 30 Mc . or so, the grid losses are practically entirely those resulting from gridecurrent flow. At the verv-high frequencies, however, dielactric losese in the ghass envelope and base materials beome appreciable, together with losies caused by transittime offects ($7-t i$), and may nocersitate supplying several times the driving power indicated above. At any frequency, the driving stage should be capable of a power output two to three times the power it is expected the grid cireuit of the amplifier will ennsume. This is neresary beatuse loses in the tank and coupling (ircuits must also be supplied, and also to provide reatonatbly gond regulation of the r.f. grid voltage. Cood voltage regulation (see § 8-1 for gemeral definition) insures that the waveform of the exeitation voltage will not be distorted becaluse of the changing load on the driver during the r.f. cycle.

Grial imperlance - Daring most of the r.f. grid-woltage evele no grid current is flowing. as

Fis. 11" - Chart bowing tank capacitims reguired for a of İ with varion ration of plate voltage to

 dividad by four. In circuit- (:, I), F., I, J and K, the capacity of earh saction of the split-stator andenarer may tre ome-half that shown hy the graph. The valtars given by the granh hombi be ned for circuits A amd 15 .
indicated in Fig. 418, hence the grid impedance is: infinite. During the peak of the cycle, however, the impedance may drop to very low values (of the order of 1000 ohms), depending upon the type of tuhe. Both the minimum and average values of grid impedance depend to a ronsiderable extent on the amplification factor of the tube, being lower with tubes having large amplification factors.

Theaverage grid impedance is equal to E^{2} / P, where E is the r.m.s. ($\$ 2-7$) value of r.f. grid voltage and P is the grid driving power. l'nder optimum operating conditions, values of average grid impedance ranging from 2000 ohms for high- μ tubes to four or five times as much for low- μ types are representative. Values in the vicinity of 4000 to 5000 ,hms are typical of modern triodes with amplification factors of 20 to 30 .
because of the large change in impedance during the cerle, it is necessary that the tank corruit ascoriated with the amplifier grid have fairly high (). This is essential to provide sufficient torage mapacity so that the voltage regulation over the cyale will be good. The requisite O maty be obtatined hy aljusting the L/C ratio or by tapping the gride circait across onty bart of the tank (\$ $4-6$).

Tank-rircuit 0 - Besides serving as a means for transforming the actual load resistance to the reduired value of plate load impedance for the tube, the plate tank circuit also should suppress the harmonies present in the tube output as a result of the non-simusoidal plate current ($\$ 2-7,3-3$). For satisfactory harmonic suppression, a Q of 12 or more (with the circuit fully loaded) is desirable. A Q of this order also is helpful from the standpoint of securing adequate coupling to the lowd or antemna circuit (\$2-11). The proper Q can be obtained by suitable selection of $L_{i}^{\prime} C$ ratio in relation to the optimum plate load resistance for the tube (\$2-10).

For a Class-C amplifier operated under optimuni conditions as described above, the plate load impedance is approximately proportional to the ratio of d.c. plate voltage to d.e. plate current. lior a given effective Q the tank capacity required at a given frequency will be inversely proportional to the parallel resistance (\$2-10), so that it will also be inversely proportional to the plate-voltage/plate-current ratio.

The tank capacity reguired on various amateur bands for a Q of 12 is shown in Fig. 119 as a function of this ratio. The capacity given is for single-ended tank circuits, as shown in Fig. 420 at A and 13 . When a balanced tank circuit is used the total tank capacity required is reduced to one-fourth this value, because the tube is connected across only half the eircuit (s $2-4)$. Thus. if the plate-voltage phate-current ratio calls for a capacity of $200 \mu \mu \mathrm{fd}$, in a singleended circuit at the desired frequence, onty 50 $\mu \mu \mathrm{fd}$. would be needed in a babaced cirenit. If a split-stator or halamed tank eomdenser is used each section should have a capacity of $100 \mu \mu \mathrm{fl}$., the total capacity of the two in series being $50 \quad \mu \mu \mathrm{fd}$. These are "in use" capacities; not simply the rated maximum capacity of the condenser. Jarger values may be used with an incrase in the effective ().

To reduce energy loss in the tank circuit, the inherent Q of the coil and condenser should be high. Since transmitting coils usually have Qs ranging from 100 to several hundred, the tank transfer efficiency generatly is 90 per rent or more. An muduly large ${ }^{(1 / L} / L$ ratio is not advisable since it will result in large circulating r.f. tank current and hence relatively large losses in the tank, with a eonsequent reduction in the power available for the land.

Tank constants - When the eaparity necessary for a Q of 12 has been determined from Fig. 419 , the indurtance reduired to resontate at the given frequency can be found by means

Fia 120 - In circuit: 1. B. C, D and E. the peak whage E will he approximately egnal to the d.e. plate voltage

of the formula in §2-10. Alternatively, the required number of turns on coils of various construction can be found from the charts of Figs, 421 and 122.

Fig. 421 is for coils wound on receiving-type forms having a diancter of $1 / \frac{1}{2}$ inches and ceramic forms having a diameter of $13 / 4$ inches and winding length of 3 inches. Such coils would be suitable for oscillator and buffer stages where the power is not over 50 watts, In all cascs, the mumber of turns given must be wound to fit the length indieated and the turns should be evenly spaced.

Fig. 422 gives data on coils wound on trans-mitting-type ceramic forms. In the case of the smallest form, extra curves are given for double spacing (winding turns in alternate groover). This is sometimes advis:able in the celse of $14-$ and 28 -Mr. coils when only a few turns are required. In all other cases, the specified number of turns should be wound in the grooves; without any additional spaceing.

Ratings of components - The peak voltage to be expected between the plates of a tank condenser depends upon the arrangement of the tank cireuit as well as the d.e. plate voltage. Peak voltage maly be determined from Fig. 420 , which shows all of the commonly used tankeircuit arrangements. These estimates assume that the amplifier is fully loaded; the voltage will rise considerably should the amplifier be

Fig. 421-Coil-winding data for receiving-type forms, diameter $I^{\prime} z$ inches. Curve A - winding length, 1 inch; Curve 13 - winding length, I_{2}, inches; Curse C - winding lonmth, 2 inches. Curve C is alsos suitable for coils womm on 13 -inch diameter tramsmitting. type ceramie forms with 3 inches of winding length.
operated without load. The figures include a reasonable factor of safety.
The condenser plate spacing required to withitand any particular voltage will vary with the construction. Most manufacturers specify peak-voltage ratings in describing their condensers.
Plate or sereen hy-pass condensers of 0.001 $\mu \mathrm{fd}$. should be satisfactory for frequencies as low as 1.7 Mc. Cathode-resistor and filament by-passes in r.f. circuits should be not less than $0.01 \mu \mathrm{fd}$. Fixed condensers used for these pur-

Fig. f2g - Coil-windin! data for reramic tran-mit. ting-tye forms. (.urne A-coramir form 21.2 ind
 samer as A, bat with turns womed in alternate prosco...
 32 growers. 7.1 turns per ind. approsimatels: Curn
 5.85 turns per inelt. appoximatels: (itrue F^{-0} - coramic
 Coils may he wotud with either No. 12 or No. 11 wirt.
poses shomld have voltage ratings 25 to 50 per cent greater that the maximum d.c. or ato. voltage arross them.
Interstage coupling comdensers should have voitage ratinges an te 100 per rent greater than the sum of the driver plate and amplifier gridbiasing voltages.

C. 4-9 Adjustment of Power Amplifiers

Excilation - The effertivenese of adjustments to the coupling between the driver plate and amplifier grid circuits can be gatuged by the relative values of amplifier rectified grid courreat and driver phate current, the objere bexing to obtain maximum grid current with minimnm driver loading. The amplifier grid circuit rerresents the load on the driver stige and the average grid impedance must therefore be transformed to the value for optimum driver operation ($5-8$).
With eapacrity coupling, either the driver plate or amplifier grid must be tapped down on the driver tank coil, as shown in Fig. 410 at A and 13, unless the grid impedance is appmaxmately the right value for the driver plateload, when it will be satisfactory to connect both elements to the end of the tank. If the grid innpedance is lower than the required driver plate load, Fig. 410-A is used; if higher, fig. $410-13$. In either case, the coupling which gives the desired grid current with minimum driver lowding should be deternined experimentally by moving the tap. Should both plate and grid be connected to the end of the cirenit it i : sometimes possible to control the loading, when the grid impedance is low, by varying the caparity of the couphing condenser, C", but this method is not altugether satisfactory since it is simply an expedient to prevent driver overloading without giving suitable impedtare matching.

In push-pull circuits the method of adjustment is similar, except that the taps should be kept symmetrically located with respect to the center of the tank circuit.

With link coupling, Fig. +11, the object of adjustment is the same. The two tanks are first tuned to resonance, as indieated by maximum grid current, and the compling adjusted by means of the links ($\$+6$) to give maximum grid current with minimum driver plate current. This usually will suffee to load the driver to its rated output, provided the driver plate and amplifier grid tank cireuits have reasonable values of Q. If the Q of one or both of the rircuits is too low, it inaly not be possible to load the driver fully with any adjust ment of link tums or coupling at either tank. In such a rase, the $Q s$ of the tank circuits must be increased to the point where adequate coupling is secured. If the driver plate tank is derigned to havea Q of 12 , the difficulty almost invariably is in the amplifier grid tank. The (o ram be increased to a suitable value either by atlustment of the L / C ratio or by tapping the load across part of the coil (\$2-10),

Whatever the type of coupling, a preliminary adjustment should be made with the proper bias voltage and/or grid leak, but with the amplifier plate voltage off; then the amplifior should be earefully neutralized. After neutralization the driver-amplifier coupling should be readjusted for optimum power transfer, after which plate voltage may be applied and the amplifier plate circuit adjusted to resonance and coupled to its load. Under actual operating conditions the grid current decreases below the value obtained without phate voltage on the amplifier and the effertive grid impedance rises, hence the final adjustment is to re-check the coupling to take eare of this shift.

With recommended bias, the grid current obtained before plate voltare is applied to the amplifier should be 2: to :30 per rent higher than the value required for uperating conditions. If this value is not obtained, and the driver plate input is up to rated value, the reason may be either improper matching of the amplifier grid to the driver plate or simply insufficient power output from the driver torake care of atl losses. Driver operating voltages should be checked to assure they are up to rated values. If batteries are used for bias and are mol strietly fresh, they should be replaced, since batteries which have been in use for some time often develop high internal resistance which effectively acts as additional grid-leak resistance. If a rectified a.c, bias supply is used, the bleeder or voltagr-divider resistanees should be checked to make certain that low arid current is not caused beg greater crid-circuit resistance than is recommended. In this comnertion it is helpful to measure the actual hias when grid current is flowing, by means of a high-resistance d.e. voltmeter, There is also the possibility of loss of filament emission of the amplifier tube, cither from prolonged serv-
ice or from operating the filament under or over the rated voltage.

Plato tuming - In preliminary tuning, it is desirable to use low plate voltage to avoid possible damage to the tube. With excitation and plate voltage applied, rotate the plate tank condenser until the plate current dips. Then set the condenser at the minimum plate-current point (resonance). When the resonance point has been found, the plate voltage may be increased to its normal value.

With adequate excitation, the off-resonance plate current of a triode amplifier may be two or more times the normal operating value. With screen-grid tubes the off-resonance plate current may not be much higher than the normal operating value, since the plate current is principally deterinined by the sercen rather than the plate voltage.

Under reasonably efficient operating conditions the minimum plate current with the amplifier unloaded will be a small iraction of the rated plate current for the tube (usually a fifth or less), since with no load the parallel impedaner of the tank circuit is high. If the excitation is low the "dip" will not be very marked, but with arlequate excitation the plate current at resonance without loading will be just high enough so that the d.c. plate power input supplies all the losses in the tube and circuit. As an indication of probable efficiency, the minimum plate current value should not be taken too seriously, because without load the d of the circuit is high and the tank eurrent relatively large. When the amplifier is delivering power to a load, the circulating current drops considerable and the tank loseses correspondingly decrease. High minimum unloaded phate curreut is chiofly en-

Fig. 423-I Mieal hehavior of t.e. flate vurrent vs. tuning rapacity in the plate circuit of an amplifier. countered at $25^{\circ} \mathrm{Mc}$. and above, where tank losses are higher and the tank L / C ratio is usually lower than normal because of irreducible tube capacities. The effect is particularly noticeable with sereen-grid tubes, which have relatively high output capacity, Because of the derrease in tank r.f. current with loading, however, the actual efficiency under load is reasonably good.

With the load (antenna or following amplifier grid (circuit) connected, the coupling between plate tank and load should be adjusted to make the tube take rated plate current, keeping the tank always tuned to resonance. As the output coupling is increased the minimum plate current. also will increase, about as shown in Fig. 423. Simultaneously the tuning becomes less sharp, because of the increase in effective resistance of the tank. If the load circuit simulates a resistance, the resonance setting of the
tank condenser will be practically unchanged with looding; this is generally the case, since the load circuit usually is also tuned to resonance. A reactive load (such as an antenna or feeder system not tumed exactly to resonance) may cause the tank condenser setting to change with loading, since reactance as well as resistance is coupled into the tank ($\$ 2-11$).

Power output - As a check on the operation of an amplifier, its power output may be measured by the use of a load of known resistance, coupled to the amplifier output as shown in Fig. 424. At A a thermommeter, M, and a noninductive (ordinary wire-womnd resistors are not satisfactory) resistance, R, are comected across a coil of a few turns compled to the amplifier tank coil. The higher the resistance of R, the greater the number of turns required in the coupling coil. A resistor used in this way is generally called a "dummy antenna," since its use permits the transmitter to be adjusted withont actually radiating power. The loading may readily be adjusted hy varying the coupling between the two coils, so that the amplifier draws rated plate current when tuned to resonance. The power output is then calculated from Ohm's Law:

$$
P(\text { watts })=I^{2} R
$$

where I is the current indicated by the thermoammeter and R is the resistance of the noninductive resistor. Apecial resistance units are available for this purpose, ranging irom 73 to 600 ohms (simulating antenna and transmis-sion-line impelances) at power ratings up to 100 watts. For higher powers, the units may be connected in series-parallel. The moter soale required for any experted value of power wutput may also be determined from Ohm's Law:

$$
I=\sqrt{\frac{P}{R}}
$$

Incandescent light bulbs can be used to replace the special resistor and thermoammoter. The lamp should be equipped with a pair of leads, preferably soldered to the terminals on the lamp base. The compling should be varied until the greatest brilliance is obtained for a given plate input. In using lamps as dummy antennas a size corresponding to the expected power output should be selected, so that the lamp will operate near its normal brilliancy. Then, when the adjustments have been conipleted, an approximation of the power output can be obtained by comparing the bright ness of the lamp with the brightness of one of similar power rating in a 115 -volt socket.

The circuit of Fig. 424-13 is for resistors or lamps of relatively high resistance. In using this circuit, care should be taken to avoid atcidental contaet with the plate tank when the power is on. This danger is avoided by circuit C , in which a separate tank circuit, LC, tuned to the operating frequency, is coupled to the plate tank circuit. The loading is adjusted by varying the number of turns aeross which the
dummy antenna is connected on L and by changing the coupling between the two coils. With push-pull amplifiers, the dummy antenna should be tapped equally on either side of the center of the tank when the circuit of Fig. $424-\mathrm{B}$ is used.

Harmonic suppression - The most important step in the elimination of harmonic radiation ($54-8,2-12$) is to uso an output tank circuit having a Q of 12 or more. Borond this it is clesirable to aroid any comsiberable amount of ower-expitation of a (lass-() amplifier, since excitation in exeress of that required for normal Class-C operation further distorts the phatecurrent pulse and increases the harmonic content in the out put of the amplifier even though the proper tank (t is used. If the antenna system in nse will aterept harmonic frecquencies they will be radiated when distortion is present, and consernently the anteman couplingsystem preforably should be selected with harmonie transfor in mind (10 ($)-6$)

Harmonie content ran be redued to some extent by pereventing disturtion of the r.f. grid-voltage wawe-hape. This an be done by using agrial tank cirenit with high effective Q. Jink coupling betwen the driver and final amplifier are helpful, sinee the two tank citcuits provide more attenuation than one at the harmonic fregumbirs. Ifowner, the advantafes of link coupling in this resperet maty be nullified unless the Q of the gride tank is high enough to give goon voltage regulation, which minimizes harmonir transler and thus prevents distortion in the grid cirmit.

The stray capacity betwern the antema coupling coil and the tank coil may be sufficient to couple harmonic energy into the antema system. This coupling may be eliminated by the use of electrostatic shichling (Faraday shield) between the two roils, l.ig. 425 shows the construction of such a shield, while Fig. 426 illustrates the mamer in whish it is installed. The construmion hown in Fis, $42 \overline{3}$ provents current flow in the shied, which would oceur if the wires formed closed cireuits sinee the shield is in the magnetio fildel of the tank coil.

 antomna" rircuil fror checking powaromput and making oprorating adjustments under lanal without apmying [ower to the adtual antenna.

Fip. 425 - The Faraday elec. trostatieshicdd for eliminuting capacitive transfer of harmamic rures. It is matr uf paralle-1 comdur tors, insulated from card othere except at one end where all arr joined, Stiff wire or small dianueter rod may be used, spared about the diameter of the wire or remb. The shield should be lareer than the diameter of the cuil.

Should this occur, there would be magnetic shiclding as well as electrostatic; in addition, there would be a power lows in the shield.

Improper operation - Inexact noutralization or stray coupling between plate and grid circuits may rewit in regeneration. This effect is most evident with bow excitation, when the anplifier will show at sudden increane in output when the plate tank circuit is tuned slightly to the high-frequency side of resonathe. It is acompanied by a pronounced increase in grid current.
Selforecillation is apt to oerur with tubes of high power sonsitivity, such as the r.f. pentodes and tetrodes. In weat of either regeneration or oscillation, circuit compmonts should be arranged so that these in the plate circuit are well isolated from thase of the grid circuit. Plate and grid leads should be made as short as possible and the seren should be by-passed as close to the surket terminal to possible. A rylindrical shichl surrounding the lower portion of the tube up to the lower edre of the plate is sometimes required.
"Double ressmance," or two tuning spotion the plate-tank comdenser, one giving minimum phate current and the other maximum pawer output, may orrur when the tank circuit Q is too low ($\$ 2-10$). A similar offect also orcurs at times with screcth-grid amplifiers when the sereen-veltage regalation ($\$ 8-1$) is poor, as when the soreen is supplied through a dropping resistor. The sereen woltage dereases with a derrease in plate current, bealluse the sareen purrent increases under the same conditions. Thus the mininum plate-current point causes the sereron woltage, and hener the power out put, to be less than when a slightly higher plate current is drawn.
A phenomenon known as "grid emission" may orcur when the amplifier tube is operated at higher than rated power dissipation on either the plate or grial. It is particularly likely to oecur with tube having oxideremated eathodes, wach at the indirectly heated typer. It is caused by the grid rearhing a temperature high enough to cause chectron emiswion ($\$ 2-4$). The electrons so emitted are attrareded to the plate, further increasing the power input and heating, so that grid cmiswon is characterized by gradually increasing phate current and heat which eventually will ruin the tube if the power is not removed. Grid emission can be prevented by operating the tube within its ratings.

(1) 4-10 Parasitic Oscillations

Description - If the circuit eonditions in an oseillator or amplifier are such that selfoscillation exists at some frembency other than that desired, the spurious ascillation is termed parasilic. The energy required to maintain a parasitic oscillation is wasted insoffar as useful output is concerned, hence an oscillator or amplifier having parasitios will operate at reduced effiriener. In addition, its behavior at the "perating frequency often will be erratio. Parasitie oscillations maty be either higher or lower in frequency than theoperating frequeney.

The parasitic oscillation usually starts the instant plate voltage is applied. or, when the amplifier is biased beyond cut off, at the instant excitation is applicsl. In the latter case, the oscillation frequently will he self-wastaining after the excitation has been removed. At other times the oscillation may not be solf-sustaining, becoming active only in the presence of excitation. It may be apparent ouly by the production of ahmormal key rlicke ($(6-1$) over a wide frefuency range, or hy the presence of spurinus side-hands ($85-2$) with 'phome modulation.

Low-frequency parasilics - Parasitic oscillations at low frequencies (usually $\mathbf{3 0 0} \mathrm{kc}$ or less) are of the tunemplate tunci-grid type, the tuned circuits being formed by r.f. chokes and associated by-pass and coupling condensers, with the regular tank tuning condensers having only a minor effect on the oscillation. The operating-frequency tank coil has negligible inductance for surh low frequencies and may be short-rircuited without afferting the oscillations, The osecillations do not orcur when no r.f. chokes are used, honce whenever possible in scrics-fed circuits such chokes should be omitted. With single-ended amplifiers, it is usually possible to armang the circuit so that eit her the grid or plate circuit needs no choke. In push-pull stages having chokes in both plate and grid cirenits. it is helpful to connect an unby-passed grid leak from the choke to the bias supply or ground, thus placing the resistance in the parasitic circuit and tending to prevent oxcillation. When the driver phate circuit has parallel feed and the amplifier grid cirenit series feed ($\$ 3-7$) this type of discillation camot oecur if mo choke is used in the series gride eirenit, sine the gred is gromaded through the tank roil for the paravitic freguener.
Parasitics near operating froquency - In circuits, utilizing a tap on the plate tank wil toestablish a ground for a balaned neutralizing circuit, such as Fig. 413-B, a parasitic oscillation may be set up if the amplifier grid is tapped down on the grid (or driver plate) tank circuit for adjustment of driver-amplifier conpling ($\$$ t-6). In this rase the turns between grid and ground and between plate and ground form, with the stray and ot her eapacities present, a t.p.t.g. circuit ($\mathbf{\$ 3 - 7}$) which oscillater at a frequency somewhat higher than the nominal operating frequency. Such an oscillation can

Radio- Irequency Power Generation 111

be prevented by dieponsing with the taps in either the plate or grid circuit. Balancing the phate circuit hy metns of a split-stator condenser (Fig. 413-C) is recommombed.

Very-hish-frequency parusitics-Parasities in the wh.f. region are likely to occur with any amplifier having a balanced tank cirruit, particularly when associated with neutralizing rommertions. The parasitic resomant circuit, formed by the leads commerting the various components, may be of cither the t.p.t.g. or the ultraudion tape.

The frequenry of such oscillations may be determined by connecting a tuned circuit in series with the grid load to the tube. A variable condenser (50 or $100 \mu \mu \mathrm{fd}$.) may be used, in conjunction with three or four self-supporting turns of heavy wire wound into a coil an inchor so in diameter. With the amplifier oscillating at the parasitic frequency, the condenser is slowly tuned through its range untiloseillations cease. If this point is not found on the first trial, the turns of the cobil may be spread apart or a turn removed and the process repeated. The use of such a tumed circuit as a trap is an almost certain remedy if the frequency can be determined, and introduces little if any loss at the operating frequency.

An alternative cure, which is feasible when the oscillation is of the t.p.t.g. typre, is to detune the parasitic circuit in either the phate or grid circuit. Since this type of oseillation oceurs most frequently with push-pull anıplifiers, it may often be cured by making the grid and plate leads to their respective tank circuits of considerably different length. Similar considerations apply to neutralizing ronnections in push-pull circuits. The extra wire length may be coiled up in the form of a so-called "choke," which in this case is simply additional inductance for detuning the parasitic circuit.

Tosting for parasific oscillations - An amplifier always should be tested for parasitic oscillations before being considered ready for service. The preferable methon is first to neutralize the amplifier, then apply suflicient fixed bias to permit a moderate value of plate current to flow without excitation. (The plate current should not be large enough to caluse the power input to exreed the rated plate dissipation of the tube.) If the amplifier is free from self-starting parasities. the phate current will remain steady as the tank condensers are varied; also, there will be no grid current and a neon bulb, toushed wither to the plate or grid will show no glow. Fixtreme care mast bo

 are requicel with a plo-homil or hadanoal tanh circait.
used not to let the hand come into contact with any metal parts of the transmitter when using the neon bulb.

If any of these effects are present, the frequency of the parasitia must first be determined. If r.f. chokes are used in both the plate

Fig. 427 - Freguency-multiplying circuits, A is for trindes, usid cither singly or in parallill. "lue push. push domhler is shownat IS. Ans tspe ef compling may be used between the grid circiat and the driser. C_{1} should lee $0.01 \mu \mathrm{fil}$. or larger; $\mathrm{C}_{2}, 0.001 \mu \mathrm{Cd}$, or larger.
and grid circuits, one of them should be shortcircuited to determine if the oseillation is at a low frequency; if so, it maty be climinated by the methods outlined above. If the test indicates that the parasitic is not a low-frequency oscillation, the gridtrap deseribedabove shombd be tried for the wh.f. type. The type which occurs near the operating frequeney will not exist undess the plate and grid tank adile are both tapped, hence may be climinated from consideration if this is not the eave in the eircuit used. When such an owillation is present its existence can be dotered hy moving the grid tap to inclade the whole tank rircuit, whereupon the osallation will case.

Some indication of the frequency of the parasitic can be obtained from the color of the glow in the neon bulb. Usually it will be yellowish with low-frequency oscillations and violet with v.h.f. oscillations.

If the amplifier is stable under the conditions described above, excitation should be applied and then removed to asertain if a selfsustaining oseillation is set ap with excitation. If the plate current dows not roturn to the previous value when the exeitation is cut off, the same tests should be applied to determine the parasitic frequeney.

As a fimal terst, the transmitter shombl be put on the air and a mear-be rerever lemed over

any off-frequency signals associated with the radiation. Parasities usually can be recognized by their poor stability as contrasted to the normal harmonics of the signal. Which will have the same stahility as the fumdamental signal as well as the usual harmonie relationship. Harmonics should be quite weak compared to the output at the fumdemental frequeney, whereas parasitic oscillations may have considerable stremgth.

C 4-11 Frequency Multiplication

Cirruits-A frerueney multiplier is an anoplifior having its plate tank eircuit tuned to a multiple (harmonic) of the freducucy appleed to its grid. The difference betwern a straight amplifier ($\$+1$) and a frequencer multiplier is in the way in which it is operated, rather than in the cirenit. However, since the grid and plate tank circuits are tuned to difforent frequeneies a triode frequeney multiplier will mot self-aseillatr. henee does not need neutralization. A typioal cireuit armangement is shown in Jig. d27-A. For sercen-grid multipliers, the eireuit is the same as in Fig. +1.2-A. F meder usual conditions the phate efficiency of a freepueney multiplicer drups aft rapidly with ath increase in the number of times the frequenery is multiplied. For this reason most multipliers are used as frequency doublers, giving second harmonic output.

A special circuit for frequency doubling ("push-push" doubler) is shown in Fig. 427-13. The grids of the tubes are in push-pull and the phates in parallel, thus the phate tank reroives two pulses of plate current for earh cycte of exeitation fremones. The rireut is smimate that of a full-w:arerotifier (s 8 -B), where the output ripple frequency is twice the appled frequenes.
lush-pull amplifiers are suitable for feeGucney multiplasation at odd harmonice, particularly the thind, but they are unsuited to even-hatmonir mattiplication beraluse the even hamonios are largely halaneed out in the push-pull tank viruit (s) 3 -3).

Operating conditions and circuit comstants - 「oobtaingood effarioney the operating angle at the harmonic frequency must be 1s0 degrees or less, preforably in the vieinity of $150-120$ dumere ($5(-x$). In a doubler, this mosas that flate curment should flow during only half this anghe of fundamental frequency((nneequently the r.f. grid voltaze, operating hias, and grid driving power must he increasid considerably theyond the values obtaining for unrmal Class-C amplitication. For comparable plate efliciency the bias will ordinarily be four to five times the normal Class-C bias, and the r.f. grid roltage must be considerably larger to drive the tube to the same peak plate current. Since the plate and grid current pulses under these conditions have the same peak amplitudes but only half the time churation as in a straight amplifier, the average d.c. values shoukd be one-half those for mormal ('lass-(:
operation. That is, a tube operated in this way will have the same plate efficiency as a Class-C amplifier but can be operated at only half the plate input, so that the output power also is halved. The driving power required usually is about twice that necessary with stratightthrough amplification to obtain the same plate eflicieney.

Greater output ean be secured by using a larger operating angle (lower grid bits) or a lowor plate load resistanme, to increase the plate current: but this is acompanied by a derrease in rffirioncy. Since operation of the tube as described in the preceding par:uraph is below its maximum phate dissipation rating, the derereased efficiency watally can be tolerated in the interests of socuring more power ontput. In pratice, an efliciency of 40 to 50 per cent is about aberage.

The tank cirenit should have reasonably high Q (12 i satislactory) to give good output voltage regulation (s $4-9$), since a platerument pulse becurs only onec for every two ceveles of the output frequency. A low- Q eirenit (high L / C ratio) is holppul chiefly when the operating angle is greater than 1 so degrees at the seeond harmonir. Such a tank circuit will have relatively high impedance to the fundamentalfrequency compronent of plate current which is prosent with large operating angles, and thus will aid in reducing the average d.c. plate current.

The gridimpedance of a frecueney multiplier is considerably higher than that of a straghtthrough amplifier, beratuse of the high bitus voltage. The average imperlance can be calculated as previously described (s $4-s$). The $L_{\text {' }}$ C ratio of the grid tank circuit may be higher, therefore, for a given (?. Often it is advantageons to use a fairly high ratio, since a large r.f. voltage must be developed between grid and cathonlo. However, it must not be made too high (o) too low) to permit adequate (ompling betwern the grid tank circuit and the preceding driver statge.

It may prove necessary to step up the driver output voltage toobtain suflicient r.f. grid voltage for the doublar; this can be done by tapping the driver plate on its tank cireuit, when capacity coupling is used, or by similar tapping down or the use of a higher C / L ratio in the driver phate tank when the stages are link(a)uplod (S-1-6).

Tubes for froquency multiplicationThere is no essential difference between tubes of various characteristics in their performanee as frequency doublers. Tubes having high amplification factors will require somewhat less bias for equivalent operation but the grid driving power needed is almost independent of the μ, assuming tubes of otherwise similar construction and characteristics. Pentodes and tetrodes will, as in normal amplifier operation, require less driving power than triodes for eflicient doubling, although more power will be needed than for straight amplification.

(A)

(B)
 cirenit as need in f.l.f. wetillators. The tank, shema in cross-rection, is made of ernomentic clomed of linders.

(1) 4-12 Very-High-Frequency Oscillators

Mish- Circuils wilh lumpod comstamlsTo obtatin reasonably hish effective Q when a low resistance is comected arross the tank riment, it is norcesary to we a high C e ration and a tank of inherontly high o (s 2-10), At low freguencies the inherent of of any walldexigued cirenit will be high mough so that, it may be neglected in comparison to the effortive (d when loadod, so that no sperial procautions have to the taken with repert to the resistance of wile and combensers. It the veryhigh frequencios these internal resistanes are too latere to bre ignored hawerer.

Remuction of the L C' ratio will not increase the cffective (! maless the internal re-intance of the tank ran be made very small. This resisiance can be reduced by we of large conducting surfaces amb climination of radiation. In su-h cases spectal lumped-constant tank cireutes (\$2-12) are used. The owillator shown in fige. t28-A uses a "pot"-type tank in the tiokler circuit (s 3-7), with the ferd-hark roil in the grid circuit; this indurtance is the wire l) in the diagram. Output is taken from the tank by means of a hatirpin compline lomp.

Fir. $42 \mathrm{~s}-\mathrm{B}$ arresponds to the shunt-fed Hartley circuit Such a tank also may be used in the ultraudion circuit. A variable condenaer may be connected across the tank for tuniner, although the ? may be reduced if a considerable portion of the tank r.f. eurrent flows through it.

Linear Circuits - A quarter-wave or halfwave line either of the parallel-conductor open type or of the coavial type, is equivalent to a
 tank cireuit ($\$ 3-7$) in an oweillator.

The resonant line is usually constructed of thin-walled copper tubing, rather than wire. since this reduces resistance and provides a mechanically stable circuit, partiendarly at the lower frequencies. At frequencies above 100 Mc. flat copper strip conductor of cquisalent cros-section may be usel for parallel-line circuits with comparable efficiency. Frequency can be changed by moving a shorting bar or combenser to rhange the effective line length.
or ber educing its length and loading it to resonance by comerting a low-caparity variable condenser across the upen end of the line. The added capacity makes it neessary to shomen the line ronsiderably for a given frequency. This, together with the additional lows in the condenser, canses a derresse in U. Thesedtïerts will be less if the condenser is commerted down on the line. Tapping down aloo gives greater bambsurad effect (\$7-7).

At very high fropuracies an arderpate gromal connection for the cathole cirenit becomes a problem beramer of the imluctance of the cathode lead. Suroial tubos are available
(A)

(B)

(C)

(D)

(E)

with two or there eathork leals (s) 3-fi): comneeted in parallel, these reduce the afferetive inductanere. With ordinary plobes, coils maty be insered in the filament erereuit to eombpelsate for the efferts of the internal inductance. The effective length of the filament ritruit shoula br one-half wavelength, to bring the athode filament to the same potential as the shorted ends of the tank lines. The alded indurtance reguired must be determined by experiment, the eoils being adjusted for optimmon ability and power ont put.

Another mothed is to kere: thened line in the
 elentrimal hometh of the bime plase that oi the
filament is one-half wavelength. A convenient arrangement is the ase of a consial (or trongh) line with an initial length of abont ${ }^{3}$ waver lengeth. A shorting dise in the form of a movable phuger equipperl with an extension hamdle may be provided for e:ase of adjustment. With filament-tyme tubes ond surla line will be required for each filament leand. In the case of cathode-type thite only one lime is neressary, the eathoule amd one side of the filament being romencted to the onter comductor and the other filament commertion heing made he an insulated lad roming through at hollows-tubing imere conductor. The return leat should be by-passed where it amerges from the line.

The antemma or other loud may be connereded through blow king remdensers dirent to the line (the correet point being determined experimentally. Altamatively, a hair-pin couphing link or. in the case of an oscillator-amplifier system, direet indurtive compling to the grid line of the amplifior may the used.

For highat-frequency operation separate lines must be used for carh cleretrode - grial. plate and eathente. This places all of the interalentrome eaparities in sories redacing the loanding offert. Still higher fredurnoies ann he reached be using domble-lead tubes (Fig. 429-E), in whirh catse the leads forman integral part of the lime amb the isterelectonle capacitios are divided between the two quatter-wils sections.

Parallel-line oscillators- TYpiral parallelline ostillator cirenits are shown in lity. 429. In A. a showting combenare (whish maty be eithor a fixal blowking romdension of at small variable Which will prowide a limetred thangerange) is usad 10 bridge the line at the voltage nome; the fredpenter wan also be changed by sliding the shorting combenser aldme the line.

The eincuit at 18 climinates the ned for a hacking eomtenser at the voltage note, where the fif. current reathes its maximum value. An r.i. choke maty be inserted hotwon the
 eiremit anso ran be resomated oither by a variable comblemer, f, ar bey aliding bar as indicatod by the dashed lime.
 The gral and platio feol connertions are mate at aodal proints on the line. As indieated on the diagram, these do nut oreme at the physical center of the line beremase of the laterling effeect of the tube. In watice the position of the taps, as well as the owor-all length of the line. are aldusted to ahtam maximum hride eament. Laing this rircuit, a 9.5 :scom or a 9002 (an be made to csallate up to 600 or 700 Me .
lig. 420-D is a variation of the above prefcrable for ase with tubse having grid and plate terminals at opposite mals of the en-
 with donlobe-leal tubes. Los attain high output at the maximmo oneating fermendy the clesirable arrangement is tor llse two he more
 this. with the limes antherent ellal to wht. circuits at the very-high frefurbeise motonly ats a moins to serve more power outpat hat atsa for heltor rimut semmetrs. In ahdition. Whe interelectronde capacities af the push-pmll tubes are in series ateross the point of rommetinn to the tank rirenit. hemer have lese caparity-lumb

Fig. $4: 3$ (oshows typucal push-phll rirouits of
 same rirenit - the topetine type (s:3-7). The grisl line is usually opromat ats the frequmbercontrolling rimuit, since it is mot associsitad with the lowd and henere its (? "an he kept hiogh. The same adjustment consilurations apply as in the cace of singlo-tube uscillators. (irid $t: a p s$ in particular shoulal be tapped down ats far as possible, to impore the fremurney stability.

In Fig. 4:30-A, a conventional foil-ind -anndenser tamk is used in the phate cirruit where the lower Q does mot hate so great an effere on frequency stability. For maximmo efficieney the rase of a limear ontput ciberit is deximable at the higher frepmeneios, howner. This is shown at 13 , and at © with isolating r.f. chokes in the filament eireuit.

Fig. 4:30-I) shows a purli-pull arillator having tumed platw amp cathmo liness. the cathode rix-lit being thmed with a funter-wave line Which cont wos expitatiom and, to some extent, tuming. The grids are commeted together and grounded thromeh the grid loask, l_{1} : ordinamily no by-pass combenser is noeded across R_{b}. 'This; circtait gives gome power output at very-high frequencies, but is mot esperially stable tuless the plates are tapped down on the plate tamk eirenit to aroid too great a reduction in 2 . Tapping on the cathode line is not feasiblo for merhanical reacons. With ordinary tabes this oscillator is capable of hagher-frequency oferattion than the convontional t.x.1.p. type, and it has bern fomm partioularly ardinl on $2 \cdot 2 \mathrm{Ma}$.

The symmetrical rirenit at E is proforable above 200 Mc. Conviat or equivalent lites may be used instead of r.f. chokes in the filat ment circuits for whathigh-frequeney aperation. With this modification, and (assuming the use of double-leal tubes) by the addition of quarter-wave sertions at each end, this circait may be romsiderod opuivalent to the conter seretion of a double limear owallator as discussed in commetion with lig. te! (1).

(A)

Fig. 432 - simcial uhb.f. coaxial-line oscillators.

Coaxinl-line circuits - At frequencies in the nerighbormond of 300 Mr . the matiation loss (\$2-12) from open lines preatly reduces the Q.
 conces an apprediahle frateton of a wavelengit. Consequently. these frequencies amblyigher conxial lines. in which the field is comfined inside the line so that rudiation is megligible, are used. A further advantage is that the outside of the line is "rohl"; that is, no r.f. potentiats devolop botween points on the outer surface. While the coaxial line is also advantageons at lower frequencis, it is more compliated to const ruct amd adjust than pamalled lines.

For ease of comstruetion, the conaial line somotimes is modifiod into a "tromelt," in which the cross-sertion of the outer eonductor is in the shape of a suluare U, one side being left open for tapping amd aldustmont of the inner condurtor. Some radiation takes place with this type of construction, although not so mumh ans with open lines.

The eomventional comiat-line oscillator abcuits shown in Fir. 431 illastrate the appliot tion of two hasia ribuits:- the Hartley and the t.g.t.p. - to both cathode-type and filamentary tubes. The tube loads the line, as previously described: hence the actual length is always shorter than a quarter wavelength. The length can he adjusted by a short-circuiting sliding phunger, a close-fitting low-resistance eontact being necessary to aroid losses. The inner conductor may also have a short tight-

(C)

(D)

Fig. 431 - Single-tule v.h.f. coaxial-fine meillaturs. A and Bue Fartley circnits: Cand D are t.g.t.p. cifuivalents.

the ends of the outer conductor in earh line constitute one plate of the condenser; a grounded metal sheet serves as the other plate.

Push-pull coaxial-line oscilla-tors- The push-pull circuits of Fig. 433 employ the same basic elements as the arrangements previonsly described. At A, a halfwave open-erided line is used in the grid cirenit, the grids of the tuber being "tapped" down on the line by compling them indurtively through a small balanced loop running inside the outer conductor. A conventional parallel line is nised in the phate circuit, with the eathodes balanced to ground by means of closed half-wave lines.
fitting extension tube which is slid in or out to change the effective conductor length.
The t.g.t.p. cirenits are somewhat easier to adjust and lowd as well as to construct. but are not as satisfactory from the stamdpoint of freguency stability became of reaction on the frecquency-controling grid line by the tuaing of the output circuit. The grid tap, should be as far down on the line as will permit reliable oscillation under load. Vnder some ronditions the adlition of a small adjustable feed-back caparity between grid and plate not only permits: a lower tap location hut also increases the upper fresuctacy fimit ohtainable by advanding the phase of the grid exritation to compensate partially for transit-time lag in the tube.

In the Hartley cirenit at A, an output tap is provided on the inner conductor. At B indinctive output coupling by means of a half-turn "hairpin" is shown: loading can be changed to some extent by varying its position.
Fig. 432 shows two types of conxial-line oscillator circuits desizned particularly for operation near the upper fregneney limits for negative-grid tubes. The rircuit at A, with quarter-wave grid and plate lines and a halfwave firament line. is convenient for use with single-lead tubes such as the 9 汤 and $316-\mathrm{A}$. With the three lines arranged in the form of a triangle. so that their inner conductors at tach directly to the tube terninals for mininum lead length, this oseillator will function satisfactorily up to $700-800 \mathrm{Me}$.

The circuit of Fig. 432-B is dexigned to take naximum advantage of the u.h.f. capabilities of double-lead and ring-electrode tube types. Interelectrode caparitios are divided between each pair of grid and phate lines, and separate parallel-resonant filament lines complate the isol:ation. Frequencies as high as 1500-1700 Me. have been attained with this arrangement.

The b-pass condensers shown in the two eircuits of Fig. 432 are made of copper plates insulated by sheet mica. Flanges soldered to

The cathode lines may be small-diameter copmer tubing. folded to conservespace, through which rubher-insulated wire is run for the return circuit. These lines may be shiehted from the plate line by ruming them underneath the chassis or separated by a shielding partition.
A folded half-wave grid line is used at 13 . The ropper-tubing inure conductor is bent into the shape of a U. The onter conductor maty be either a syuare-section double trough of sheet copper or two short sections of pipe soldered to a rertangular box of sheet copper which forms the "clowed" end. Where even more comp:art construction is required, the dimensions of the grid lite may be still further reduced by using sections of folled coaxial line (\$ 2-12) A conventional coil-and-condenser output circuit is shown: at the comparatively low frequemes where this type of construction womld be advant:grons in the internst of compactness, such an output circhit should be satisfactory.
The arrangement at C has certain modifications which make it particularly suitable for use with higher-powered tubes. The quarterwave rapacity-loaded ronvial line in the grid circuit is of relatively larqu dimensions and consequently hats high (Q. Coupling to the tube grids, which is made very lonse to prozerve the Q of the line, is by means of twin hairpin loops. The inductance of the shunt choke coils, L_{4}, is adjusted for maximum grid current.

To minimize radiation loss and preserve circuit symmetry. a coasial line is used in the plate tank circuit. If desired this line may be tuned by a balamed split-itator condenser of the type which has the rotor comertion at the center, comected across the plate terninals.
Parallel resonant circuits in the filament leals, tumed to resomance at the operating frequency by the variable condensers, C_{1}, isolate the filanent from ground. The fixed by-pass condensers must have low reactance at the operating frequency. The filament coils, which are in parallel for r.f., are of copper tubing.

Radiotelephony

C 5-1 Modulation

The carrier - The steady radio-frequeney power generator by transmitting circuits cannot alone result in the transmission of an intelligible message to a receiving point. The continuous wave from the transmitter itself serves only as a "carrier" for the message; the intelligence is conveyed by modulation (a change) of the carrion. In radiotelephony, this modulation reproducers electrically the sounds it is intended to convey in a form which can be correctly interpreted or demorlulaterl at the receiving end.

Sound and alternating rarromts-Soumds are caused by vibrations of air particles. The pitch of the sound depends upon the rate of vibration; the more rapid the vibration, the higher the pitch. Most sounds consist of comphlox combinations of vibrations of differing rates or frequencies: the human voice, for instance, generates frequmeios from about 100 cycles per second to several thotisind per secoud. The problem of transmitting speech by radio, therefore is one of varying the rif. carrier in a way which corresponds to the air-particle vibrations. The first step in doing this is to change the sound vibrations into alternating electrical currents of the same frequency and relative intensity: the electromechanical device which achieves this translation is tho microphone. These athio-frectustary currents then may be amplified and used to vars or modulate the normally steady ref. output of the transmitter.

Methods of modulation - The carrier may be made to vary in accordance with the speech current by using the current to change the phase (\$2-7), frequency or amplitude of the carrier. Amplitude modulation of a constantfrequency carrier is by far the most common system, and is used exclusively on all frequentdies below the very-high-frequency region ($\mathrm{s}^{2-7 \text {). Frequency modulation of a constant- }}$ amplitude carrier, which has special charadeteristics which make its use desirable under certain conditions, is used to a considerable extent on the very-high frequencies. Phase modulation, which is closely related to froquency modulation, has had little or no direct application in practical communisation.

Other specialized varieties of modulation, developed for other applications of radio transmission, have been proposed for voice communication. Thus far none of these has achieved practical utilization, however.

© 5-2 Amplitude Modulation

Carrier requirements - For proper amplitube modulation, the carrier should be completely free from inherent amplitude variations such as might be caused by insufficient filtering of a reetifict-a.c. power supply (S太-t). It is also essential that the carrier frequency be entire unaffected by the application of modulation. If modulating the amplitude of the carrier also causes a change in the carrier frequency the sigil wobbles back and forth with the modulation, introducing distortion and widening the channel taken by the signal. This causes ummenssary interference to her transmissions. In practice, this undesirable frefuericy modulation is prevented by applying the modulation to an ref. amplifier stage which is isolated from the froguener-controlling oscillator by a "buffer" amplifier. Amplitude modulation of an oscillator almost always is accompanied by frequency modulation. lauder existing regulations it is permitted. therefore, only on frequencies above 112 Mr ., beratuse the
(A)

(B)

Fig. $\mathbf{3} 11$ - Graphical representation of (A) carrier un. modulated, (B) modulated 50%, (C) modulated 100%.
problem of interference is less aeute in this region than on lower frequencies.

Percentage of modulation - In the ampli-tude-modulation systrm the audible output at the receiver depends entirely upon the amount of variation - termed depth of moduletion - in the rarrier wave, and not upon the strength of the arrior alone. It is desimable therefore to whtain the largest permissible variations in the earrier wave. This condition is reached when the sarrier anplitude during modulation is at times reduced to zaro and at other timas increased to twiee its ummodulated value. such a wave is said to be fully modulated, ar 100 per cont modulated. Any desired degrec of modulation can be expressed as apercentage, using the ummodulated carrier as a base. Fig. iol shows, at A, an unmohulated carrier wave; at 13 , the same wave mombated 50 per cent, and at (C, the wave with 100 per cont modulation, using a sine-wave (\$2-7) modulating signal. The outline of the modulated r.f. wave is called the modulatime metope.

The pereentage noodulation can be foumed by dividing either Y or Z by X and multiplying the result by 100 . If the modulating signal is not symmetrical, the Larger of the two (Y^{\prime} or Z) should be used.

Power in modulated ware- The amplitude values eorrespond to current or voltage, so that the drawings may be taken to represient instantancous values of rither. Since power varies as the square of either the current or voltage (so long as the resistance in the eircuit is unchanged), at the peak of the modulation up-swing the instantaneous power in the wave of Fig. 501-(; is four times the ummodulated carride power. At the peak of the down-swing the power is zero, since the amplitude is zero. With a sine-wave modulating signal, the arerage power in a 100 per cont modulated wave is one and one-half times the unmodulated carrier power; that is, the power output of the transmitter increases 50 per enent with 100 per cent modulation.

Fig. 502 - An overmodulaterl r.f. carrier wave.

Limearity - Tip to the limit of 100 per cent modulation, the amplitude of the carrier shombd follow fathfully the amplitude variations of the mondalating signal. When the modnatated r.f. amplifier is incapable of monting this comdition, it is sad to be "on-limer. The ampliferer may not, for instanco, be capable of quadrupling its power outpat at thr mak of 100 per cent modalation. A nom-linear modulated amplifier causes distortion of the modulation envelope.

Morlulation characteristir - A graph showing the relationship betwern r.f. amplitude amd instantameous modulating voltage is eallend the monlulation chuructoristic of the modulated amplifier. This graph shoud be a straight line (liacar) bretwern the limits of zaro and twice carrier amplituld. ('urvature of the line betwern these limits indicates non-linearity in the :mplifier.

Mordalation rapabilits - The momblation capability of the tramsmitter is the maximum pererntage of modulation that is possible without objectionabld distortion from nonlimearity. The maximum rapability is, of course, 100 per cent. The mudalation capability shomld be as high as possible, so that the most offertive signal ran be tramsmitted for a given rarrier powar.

Oremmodmlation - If the earrier is modulated more than 100 per cent, a comdition surh
 the peak amplitude exceed twier the carrier amplitule, but actually there may be a considerable period daring whirh the output is entirely cat off. The modulated wabe is therefore distorted (s:-i:;), with the result that harmonises of the abdin modulatimg frequency appear. The carrior should nover be modubated more than 100 per cent.

Sidebands - The combining of the audio frequency with the r.f. carricer is essentially a hoterodyne process, and therefore gives rise to beat frequeneies requal to the sum and differcner of the a.f. and r.f. frequencies involved ($\$ 2-13$). Therefore, for earh andio frequeney appearing in the modulating signal, two new radio frequencios appear, one equal to the earriar frequeney phis the audio frequency, the other equal to the carrior mimus the audio frequency. These now freducneies are called side frequoncios, since they appar on each side of the carricr, and the groups of side frequencios represonting a band or gromp of modulation frecquencies are called sidebmeds. Hence a mombatated signal oreupies a group of radio frequencines, or channel, rather than a single frequency as in the case of the mmodulated earrier. The chanmel width is twice the highest modulation frequener.

Too areommodate the laresest number of transmittere in a given part of the r.f. speetrum it is apparent that the ehamel width should be as smatl as possible. On the other hand it is necessary, for spech tramsmission of reasonably good quality, to use modulating
frequencies up to a minimum of about 3000 or 4000 reves. 'This calls for a chammel width of 6 tos kilocyales.
spurions sidehands - IBesides the normal sidebands rectured by spereh fremumones, unwated sidebands may be gotmated by the transmitter. Phese usually lie outside the nornally required chamed, and hence eause it to be wider without inereasing the useful modulation. By increasing the chammel widh. these spurious sidebathed cause unneressary interferenee to uther tramsmitters. The quality of transmission also is adversely affected when spurious sidebands are generated.

The chief causes of spurions sidehands are harmonio distortion in the atudinsystem, avermodulation, umocessary frequaney nodulation, and lack of linearity in the modulated r.f. system.

Types of ampliturle modnlation - The most widely used type of amplitude-modulation system is that in which the modulating signal is applied in the pate cirent of a radiofrequencs power anaplifior (plate momblation). In a secomd type the audio signa! is applicel to at control-grid (grid-bits modulution). A third system. imsolving variation of both plate and grid voltages, is called molhode momblutions.

1. 5-3 Plate Modulation

Transformer compling - ln Jier. Fol is is shown the most withly used system of plate modulation. A balaneod (push-pull Class-A, (lass-AB or (lass-13) mablulator is trams-former-coupled to the plate cirenit of the modulated r.f. amplifier. The audin-frecumey powergenerated in the morlulator pate cirenit is eombined with the d.e. perwer in the modu-lated-amplifier phaterireuit ber transfar through the roupling transformer, $\%$. For 100 per rent modulation the andio-frepurney ontput of the modulator and the turns ration of the empuling transformer mast be surh that the voltage at the plate of the modulated amplifier varions between zeroand twier the d.e. operating plate voltage, thus causing corresponding variations in the amplitude of the r.f. output.

Morlalator power - The average power output of the modulated stame must inerease 50 per cont for 100 pror cont momblation (so that the modulator must saply the the modulated r.f. stage atudio power equall to 50 per cent of the d.c. phate input. For cexample, if the d.e. plate power imput to the r.f. stage is 100 watte, the sine-wave andio power output of the modulator must be 50 watts.

Modnlating impedurne; linearity- The modulnting impelence. or load resistance presented to the modulator by the modulated r.f. amplifier, is equal to

$$
\frac{I_{b}^{\prime}}{I_{p}} \times 1000
$$

where l_{b} is the d.e. plate voltage and I_{p} the d.e. pate current in milliamperes, both me:surod withont modulation.

Since the power output of the r.f. amplifier must vary as the square of the plate voltago (the r.f. voltage must be proportional to the applied plate voltage in order for the modulation to be lincar, the amplifier must operate under (${ }^{\circ}$ lass-(conditions ($\$ 3-4$). The linearity then depends upon having suflicient gride expitation and proper bias, and upon the adjustmont of rireuit constants to the proper values ($\mathrm{s}+\mathrm{t}$).

Fig. 50.3 - Plate modulation of a Clas--C \mathbf{r} r.f. amplifire. The r.f. whate by-pass rondernare, C., in the amplifier stana shoud hase high reactance at andio frequencios. A capacity of 0.002 pfid. or less usually is satisfactory.

Poner in specoch wares - The eomplex waveform of a speceh sound tramsated into alternating eurrent does not contain ats much power, on the average, as there is in a pure tone or sine wave of the same peak ($\$ 2-\overline{4})$ amplitude. That is, with speech waveforms the ratio of peak to average amplitude is higher than in the sine wave. For this reason, the previous statement that the power output of the transmitter increases ion per cent with 100 per rent modulation, while true for tone modulation, is mot true for sueech. ()n the average, spech waveforms will rontain obly about half as much powor as a sine wave, both having the same peak amplitude. The average power output of the transmitter therefore increases only about 25 per rent with 100 per cont speech modulation. Howover, the instrentemerns power output must ruadruple on the patak of 100 per cent modulation (S:-2) regardless of the modulating waveform. Therefore the peak output power caparity of the transmitter must be the same for any type of modulating signal.

Adjustment of plate-modulutod amplifors: - The general operating conditions for C'lass-C operation have been described (\$3-4, 4-S). The grid bias and grid current required for plate modulation usually are given in the operating data supplied by the tube manufacturer; in general, the bias should be such as to give an operating angle (s $4-\mathrm{N})$ of about 120 degrees at marrier plate voltagr, and the exeitation shesuld be sutfiefont to maintain the plate efficieney constant when the plate volt-
age is varied over the range from zero to twice the d.c. phate voltage applied to the amplitier. For best lincarity. the grid bias should be ohtained partly from a fixed source of about the cut-off vahue, supplemented by grid-loak bias to supply the remaincher of the required operating bias.

The maxinum permissible d.e pate power input for 100 prer cont modulation is twiee the sine-wave amblio-frequency peser output of the modulator. This input is obtaimed by varyinse the loading on the amplifier (kerpinie its tank cireuit tuned to resonatur() until the produrt of de plate voltage and plate rurrent is the dosired power. 'The modulating impedance under these conditions will be the proper value for the modulator, if the proprer output-transformer tums ratio (\$ ロ-9) i: ued.

Neutralization, when trimbs are u*al, should be as nearly profect as possible, since regeneration may ause nom-linearity. The amplifier also should be free from parasitic oscillations ($\$ 4-10$).

Although the efferfire value: (:3-7) of power input increases with modulation, as deseribad above, the arcumb plate input to a platomodulated amplifier does not change, sime e each incrase in pate voltage and plate current is balaneed by an equivalent deerestere in voltage and eurrent. Consoguently tha d.e. plate current to a properly iumblabad amphiner is always constant, with or withont modulation.

Screen-srid amplifiers - Sicren-grial tubess of the pentode or beam tetronde type ean be used as (lass-(: plate-modulated amplifiers provided the modulation is ampied ten both the plate and screm uril. The method of fooding the serem grid with the necessary d.e and nodulation voltago is shown i:1 lior. 501. 'The dropping resistor, R, should be of the proper value to apply normal d.e. voltage to the sereon under stearly carrier romblitions. Its value can be calculated by taking the difference between phate and srroen voltages and dividing it by the rated sereer current.

The modutating impedance is found by dividing the d.r. pate voltage be the sum of the plate and sermen currents. The phate voltage

Fig. 50.1 - Plate and sereen momblation of a Class.C. r.f. amplifier using a pentode tube The plate and sermen

multiplied he the sum of the two eurrents is the power-input figme which is used as the basis for determining the audio power required from the modulator.

Cholie couplinu- In lig. 505 is shown the circuit of the choke-coupled system of plate modulation. The plate power for the modulater tuber and modulated amplifier is furnished from a common swurer through the mudulation choke, L, which hats high impedance for audio frequrneies. The moluhatoroperates as a power amphitior with the plate circuit of the r.f. andplifer as its load, the aurlin output of the modulator heing superimposed on the cl.c. power supplieal to the amplitior. For 100 per cent modnlation, the amdio voltage amplian to the r.f. :mplifier plate cirenit across the choke, L, must hatce a praks value cqual to the d.e. velt:age on the ntululated amplifier. Toultain this without distortion the r.i. amplifier mast be oproated at a d.e. plate voltage less than the

Firs 50: - Chuohe ecoupleql phate monhutation.
modelator hate voltage the extent of the voltage difference being determined by the tope of madnlator tabe used. The necerssiry drop in voltage is providel be the resistor, \dot{R}_{1}, which is br-pasiond for andio frequencies by the bypase mothoser. (i.

This trine of modnlation suldom is used (xecept in very low-juwer portable sets, beCatus al situratube (lass-A (83-4) modulator is wrambebl. Theoblput of a Class-A modulator is very low compared to that ohtamable from a pair of tube of the same size operated (lass 13 , homen only at small amount of r.f. puwer can be momblated.

Absorption morlulation-Ahmorntion or "-lus." modulation, in its baride form the oldest and simplent method oi ali, recontly has been moved for wide-bamd modulation such. ats (alowitiom at uhtaligh frequencies. In the sreten thown in lize 506 , the nodulating tubes are comected to the antenna foed line thongh a guamer-wave stub line located a quarter-wavolength from the tramsmitar tank circuit. With mon modulation (i.e., no rondue-

tion through the mondalaing whes the stuth appeats as a short cirenit arrore the lime and little or mon wer rearhes the amema. When modalatilus coltage is applied to the grids of the modutator tubes, however. their commetance servers to incrase the offertive impuatane of the quarter-wate shant, permitiang a proportionate amont of enerey 10 reach the an!penna. At maximum modalation the stab approtchas an open cimat, allowint maximam r.f. output to the athemina.

(1) 5-4 Grid-Bias Modulation

fiarait - liar. \quad out is the diagram of a typical armandame for Erid-bias modulation. In this systrm, the socondary of an atudinfrecquency output tanaformer, the primary of which is ermuected in the plate eireuit of the modulator tubte, is comocted in sorios with the grid-bias supply for the modnlated amplifier. The andio follage thas introlued varies the grid bias, and thus the power output of the ref. stage, when suitable operating eombitions are chensen. The ref. stater is operated as a Class-C: amplifier, with the d.c. grid bias considerably hegond mut-off.

Opernhinis principles - In this system the plate voltage is constant, and the inepaso in power mutput with modulation is obtained by making the plate current and plate elfiedeney vary with the modulating sianal. F'or 100 gere cent modulation, both phate current and efficiency must, at the peak of the modalation upswing, be twise their carrier values, so that the peak power will be four times the carrier power. Since the peak eflicioney in pratetienhle cireuits is of the order of 70 to 80 per cent. the carmer efficiency ordinarily camot rexemed abont 35 to 40 per rent. For a given rit. fube the earrier ourput is about one-fourth the power obtainahbe from the same tube phatemodulated. (irid bias, r.f. excitation, plate doading and the addio voltage in series with the grid must he ardmeted to give a linear modubation characteristide.

Vordulator poterer - Ninee the increase in average carrier power with modulation is socurcel by vareing the plate efficiency and lie. plate input of the amplifier, the modulator need supply only such power losses as may be oreasioned by ammerting it in the eride circuit. These are quite small, hence a modulator capable of only a few watts output will
suffice for transmitters of considerable power. Since the load on the mochulator varies over the a.f. corle as the rectified grid current of the modulated amplifier chamges, the modulator should have good voltage resulation (S J-6).

Grid-bids somere - The change in bias voltage with modulation causes the rectified grid curent of the amplifier alko to vary, the r.f. excitation being fixell. If the bias source hits appreciable resistance, the change in grill current also will ciuse a change in hias in a direction oprosite to that caused by the modulation. It is necessary, therefore, to use a grid-bias sourer having low resistance, so that these biat variations will be nogligible. Battery bits is satisfactory. If a rectifiod ace has supply is used, the tye having regulated output (s-9) :-hould be choson. (irid-lakik bias for a grid-mondulated amplifier is unsatisfactory, and its use should not be attomped.

Driereresulation - Theload on the driving stage varies with monlulation, and a linear mondulation characteristic may not beobtained if the ref. voltage from the driver does unt stay constant with ehamges in lond briver remalation cability to manatain eonstant output voltage with changes in load may be improved by using a driving stage hateige two or there times the power nat put meessary for exeitation of the amplifier (this is somerwhat loss than the power refuired for ordinary (lase- (: operattion), and be diseipating the extra power in a comstant load such as a resistor. The load variations are thereby redued in proportion to the totalload.
tijustment of arid-bins morlulated amplifiers - This type of amplifier should be adjusted with the aid of an nseillowenpe, to obtain optimum operating ronditions. The oseilloserne should be emblemeded ats deseribed it so-10, the wedge pattern being preferable. A tone sourer for molndating the thammiter will be ernemient. The fixed grid hias shombl
 The d.e. imput to the amplitior, assuming 33

Fig. 507-Grid-lian modulation of a (llas-. C: amplifire. The r.f. grid by-pase combanter, (: hubld haw high reactance at andio frequencies ($(1.002$ ufll. or leo-).
per ent carrier efficieney, will be $1 \frac{112}{2}$ times the phate dissipation rating of the tube or tubes used in the mondulated stage. The plate eurrent for this input (in milliamperes, $1000 I^{\prime} / E$, where l 'is the power and E the d.c. plate woltage) must be determined. Apply r.f. exatiation

Fig. 508 - Suppreseareqrid modulation of an r.f. amb plifiar using a perntonde.type tube 'The suppressor-grid r.f. by-pais: conderieer, C, should be 0.002μ fd. or less
and. without modulation. adjust the plate loading to give the reduired phate eurrent (keeping the phate tank cirenit tumed to resonance). Next. apply modulation and increase the modulating signal until the momalation chatactoristic shows murvature (8 (5)-10). This probably will weour well below 100 per erat modnation, indieating that the phate efficioncy is tow high. Increase the plate loading and reduec the exritation to mantain the same phate courent; then apply modulation and cheek the कhatateristia again. Continue this process until the wharemistic is linear from the axis to twice the marior amplitude. It is advantageons to ase the maximum permissible plate voltage on the tube, sine it is usually easier to ohtain a more lincar characteristic with high phate voltage and low rurrent (carsior monditions) than with relatively low plate voltage amd high plate current.

The amplifier can be adjusted without an oscillosenpe by determining the plate current as desoribed above, then setting the bias to the cut-olf value (or slightly beyomd) for the d.e. pate voltage used and applying maxintam excitation. Adjust the plate loading, kereping the tank circuit at resumaner, until the amplifier draws twice the carrier plate current, aml note the antenna current. Derrease the excitation until the output and plate current just start to drop. 'Then increas the bias, leaving the exeitation and plate loading unchanged, until the phate current drops to the proper carrier value. The antenma eurrent should be just half the previous value; if it is larger, try somewhat more loading and loss exeitation; if smaller, less loading and more excitation. Repeat until the antemna current drops to half its maximum value when the phate current is biased down to the carrier value. Cuder these conditions the amplifier should modulate properly, provided the plate supply has good voltage regulation ($\S 8-1$) so that the
plate voltage is practically the same at both values of phate current during the initial testing. The der plate current should be substantially constant with or withunt mondalation (s.j-:').
suppressor momlulation - 'The cirenit :urrangement for suppressor-grid mohatation of a pentode tube is shown in Fig. 50s. 'lhe operating prineiples are the same as for grib-bias modulation. However, the r.f. excitation ame modulatang sigmals are applied to separato grids, whinh gives thespstem a simplor operating trehnique since best adjustment for proper exedation requirements and proper mochatating circuit requirements arremerer less independent. The carrier plate efferieney is approximately the same as for grial-bias modulation, and the molalator power requirements are similarly small. With tubes having suitable suppresor-grid chamateristice, linear modulattion up to pratically loo por cent ran be ohtamed with negligible distartion.

The metherl of arljustment is essentially the same as that deseribed in the preeceding paragraph. Apply normal wextation and bias to the eontrel grid and, with the suppressur hias at zern or the positive value recommembed for e.w. telegraph operation with the partieular tube uscol, adjust the plate lavding to whtain twice the carrior pate current (on the basis of 33 per cent camper cfliciency). Then apply suffiricut negative hise to the suppressor to bring the plate current to the carmer value, leaving the fording umehanged. simultameously, the antenna durent alsw shoudd drop to half its maxinum bahue. The amplifier is then reaty for mondation. Should the phate emrent not follow the antemna curent in the sime proportion when the suppressor bias is mate negative, the leading and exeitation should be readjusted to make them coineide.

(C) 5-5 Cathode Modulation

Circuit - 'The fundamental circuit for eathode wr "erntertap" modulation is shown in Fig, $50!3$. This type of modulation is a com-

Fip. 509 - Cathond, nuodulation of a Clats-C. r.f. anplifier. The srid and plater r.f. by-pass combinsers, C, should low o.me $\mu \mathrm{fd}$, or lose (for high a,f. reatance).
bination of the plate and grid-bias methods, and permits a carior cfficieney midway between the two. The aludin power is introduced in the eathode cireuit, and both grid bias and plate voltage vary during modulation.

The cathode ciferit of the modulated stage must be independent of other stages in the transmitur: that is, when filament-type tubes are modulated they most he supplied from a separate filament trameformer. The filament by-pass comdensors should not be larger than about $0.002 \mu \mathrm{fd}$. to a a ond hy-passing the atudiofrequency modutation.

Operatins principles - Berause part of the modulation is by the grid-hises method, the plate efficieney of the modulated amplifier must vary during modulation. The carrier efliciency therefore must be lower than the eflicioncy at the modulation peak. The required reduetion in camior afieieney deponds upon the proportion of grid modulation to plate modulation: the higher the pereentage of plate modulation. the higher the permissible carrier efferenty, and vier versa. The atudio power required from the modulator also varies with the pereentage of phate mordulation, being greater as this perefotage is increased.

The way in whieh the various guantitios varre is ilhstrated be the rurves of lig. Jlo. In these curves the performanere of the cath-ode-modnlated r.f. amplifior is plotted in terms of the tube ratings for plate-mondulated telephons, with the perentage of plate molnlation as a base. Ls the pereontage of plate modulation is docreasod, it is assumed that the ervid-bias mondulation is increased to make the ever-all pereentage of muhulation reach 100 per ent. The limiting condition, tol per cent plate modulation and mo grid-hias mondalation, is at the right (A) ; pare grid-hines modulation is repersented by the left-hand ordinate (13 and (').

Asamexampie, assume that 10 per cent plate modulation is to be used. Then the modntated r.f. amplifier must he adjusted for at carrier plate ellicieney of sti per cent, the permisithle plate input will be dij per cent of the ratings. of the same tube with pure phate modulation, the power ontpht will be fs per eent of the rated ourput of the 1 ube with phate modalation, and the andio power required from the modnlator will be 20 per rent of the d.e. input to the mudulated amplifier.

Modralatins impodaner 'The modulating impedance of a rathodr-modulated amplifier is approximately cupal to

$$
m \frac{I_{b}}{I_{b}}
$$

where m is the perrentage of plate modulation expresed as a dowimal. R 解, is the plate voltage and t_{b} the phate corrent of the moshlated rif. anplifier. This figure for the modulating impor dance is used in the same way ats the eorresponding figure for pure plate modulation, in
determining the proper modulator operating conditions (§ $\begin{gathered}\text { o-6 } \\ \text {) }\end{gathered}$

Conditions for limearity - R.f. excitation requirements for the eathode-modulated amplifier are midway between those for plate modulation and grid-bias modulation. More excitation is required as the pereontage of plate modulation is inereased. (irid bias should be considerably beyond cut-off; fixed bias from a supply having good voltage regulation ($\$ N-9$) is preferred, especiatly when the percontage of plate modulation is snall and the amplifier is operating more nearly tike a gridbias modulated stage. At the higher pereentages of plate modulation a combination of fixed and grid-leak bias can be used, sinee the variation in rectified grid current is smaller. The grid leak should be by-pasied for abdio frequencies. The percentage of grid modulation may be remulated by choiee of a suitable tap on the modulation transformer soendary.

fig. B/t - (iathonde-mondulation jerformather rarves,

$W_{\text {in }}$ - D.c. plate input watts in terms of pereentige of plate-mordulation rating:
Wo- Carrier output watts in per cent of plate-modulation rating (hased on plate efferemey of -5.5%). Wa - Audio power in per cent of d.c. watts input. N_{D} - Plate cfliciency of the amplificr in percentage.

Aljustment of cathode-modulatod am-

 plifiers - In most respects, the adjustinent procedure is similar to that for grid-bias modulation ($\$ \mathbf{5}-4$). The critical adjustments are those of antenna loading, grid bias, and cexeitation. The proportion of grid-hias to plate modulation will determine the operating conditions.Adjust ments should be made with the aid of an oseilloscope ($85-10$). With propor antemma loading and excitation, the normal wedgeshaped pattern will be obtained at 100 per cent modulation. As in the case of grid-hias modulation. foo-light antennat loading will ranse flatwhing of the upward-peaks of motulation (indicating downward modulation), ats also will tow-high excitation (si-10). The cathote current will bo pratetally constant with or without modulation when the proper operating conditions have been established (\$5-3).

(1) 5-6 Class-B Modulators

Modulator tubes - In the case of plate modulation, the relatively large audio power needed ($\$ 5-3$) practically dietates the use of a Class-B ($\$ 3-4$) modulator, since the power can be obtained most economically with this type of amplitier. A typical circuit is given in Fig. 511. A pair of tubes nust be chosen whioh is capable of delivering sine-wave a udio power equal to half the d.e. input to the modulated Class-C amplifier. It is sometimes convenient to use tubes which will operate at the same plate voltage as that applied to the Class-(; stage, since one power supply of adequate current eapacity may then suffice for both stages. Available components do not always permit this, however, and bettor wer-all performance and economy may result from the use of separate power supplics.

F゙ig. 511 - Class-B audio monlutatur and driver eircuit.
Matching to loud-In fiving Class-B ratings on power tubes, mantiafturers specify the plate-to-plate load impedance (\$3-3) into which the tubes must operate to deliver the rated audio power output. This load impedance seldom is the same as the monhlating impedance (s.0-3) of the ("lass-(: r.f. stage, so that a mateh must be brought about by adjaning the turns ratio of the coupling transformer. The required turns ratio, minary to secondary, is

$$
\sqrt{\frac{Z_{p}}{Z_{n}}}
$$

where Z_{m} is the ('lass-C' modulating impedanee and Z_{p} is the phate-to-phate load impedance specified for the ('lass-B tubos.

Commereial ('lass-13 output transformers usually :are rated to work betweren spoceitiod primary and secondary impedanees and are designed for speceife (liass-B tubes. In surh a case, the turns ratio rat be found by substituting the given imperatuces in the formalat above. Many transforners are provided with primary and secomdary taps, so that various turns ratios can be obtained to meet the requirements of various the eombinatioms.

Dririns pouter-(Cuss-B anplifiers are driven into the gridecurront remion, so that power is consumed in the grid circuit (s, $3-3$). The preceding stage (driver) must be capable of supplying this power at the required poak andio-frequency grid-to-grid voltage. Both of these quantities are given in the manufactur-
er's tube ratings. The grids of the Class-B tubes represent a variuble load resistance over the audio-frequency cyele, since the grid current does not increase dircetly with the grid voltage. To prevent distortion, therefore, it is neeressary to have a driving source which has good regulution - that is, which will maintain the waveform of the sigual without distortion even though the load varies. This can be brought about by using a driver capable of delivering two or there times the actual power consumed by the Class-Is grids, and by using an input coipling transformer having a turns ratio giving the largest step-down in the voltage betwen the driwer plate or plates and the Class-13 grids that will permit obtaining the specilied wrid-to-grid at.f. voltage.

Driter contling - A Class-A or Class-AB (§3-4) driver is used to excite a Class-B stage. Tubes for the driver proforably should be triodes having low plate resistance, since these will have the best regulation. Having chosen a tube or tubes rapable of ample power output from tube chata sliects, the peak output voltage will be, tuproximately,

$$
E_{o}=1.4 \sqrt{P R}
$$

Where ${ }^{\prime}$ ' is the power output and R the load resistance. The input trinsformer ratio, primary to secondary, will be

$\frac{E_{0}}{E_{\theta}}$

where E_{o} is as given above and E_{g} is the peak grid-to-grid voltage required by the modulator tubes.

Commercial transformers momally are designed for sperific driver-modulator combinations, and usually aro adjustod to give as good driver regulation as the eomditions will permit.

Grial bias - Modrrn (lass-B audio tubes are intended for opration without fixed bias. This lussens the variable grid-circuit loading effect and eliminates the need for a grid-bias supply.

When a grid-bias supply is required, it must have low intrmal pesistance so that the flow of grid current with excitation of the (lass-B tubes dokes mot canse a continual shift in the actual grid bias and thus eause distortion. Batteries or a regulated bias supply (\$8-9) should be used.

Plute supply - The plate supply for a Class-Is modulator should be sulliciently well filtered (S s-3) to prevent hum modulation of the r.f. stage (s) $\overline{5}-2$). An additional requirement is that the output condenser of the supply shouid have low reactance ($\$ 2-8$) at 100 cyeles or less compared to the load into which eath tube is worinur, which is one-funth the phatr-to-plate lowd rexistance. A $1-\mu \mathrm{fl}$. output condenser with a lomoteolt sipply, or a $2-\mu$ fol condenser with a 2000 -volt supply, usually will be satisfactory. With othor plate voltages, condenser values should be in inverse proportion to the plate voltage.

Orerexcitation - When a ('lass-13 amplifier is overdriven in an attempt to secure more than the rated power, distortion in the output waveshape increases mapidy. The high-frequency harmonies whieh result from the distortion ($83-3$) modulate the tramsmitar, produring spurions sidebands ($5-2$) whish readily can cause serious interference over a band of frequeticies several times the chammel width required for specech. This may happen even though the transmitter is not being overmodulated, as in the case where the modulator is incapable of delivering the power requirod to modulate the transmitter fullys, of when the Class-C amplifier is mot adjusted to give the proper modulating impedanere (s $\overline{3}-3$).

The tubes used in the (lass-B modulator should be capable of somewhat more than the power output nominally requifed (O) pre cent of the d.c. input to the modulated amplifier) to take care of lusers in the output transormer. These usually run from 10 per eent to 20 per cent of the tube ontput. In addition, the Class-C amplifier should be adjustod to give the proper modnlating imperimare and the correct outurt transformere turns ratha shomad be used. surh high-fregrence hammonies ans maty be generated in these circumstanese can be reduced by connerting rombensers andoss the primary and secomdary of the ontput transformer (about 0.002 $\mu \mathrm{fd}$. in the arerage ease), to form. with the transiomer lakage indantance (s 2-9) a low-pats filter (\$2-11) which cuts off just above the matimum audio froquency required for speech tramsmission (about 4000 (eveles). The condenser voltage ratings should be adequate for the peak a.f. voltages appearing ateross them.

Operation without load-Excitation should never be applied to a Class-l motulator until after the Chass-C amplifier is turned on and is chawing the value of plate carrent required to present the rited lamito the modnlator. With no load to ahmorb the power, the primary impedance of the trimsformer rises to a high value and excessive audio voltages are developed aeross it - fremuently high enough to break down the transformer insulation. If the modulator is to be tested scparately from the transmitter, a load resistane of the same value as the modulating impedanere, and capable of dissipating the full power output of the modulator, should be eomnected across the transformer seeondary.

[1 5-7 Low-Level Modulators

Selection of tubes - Modulator: for gridbias and suppressor modulation ran be smatl audio power tubes. since the andio power required usually is small. A triode such as the 2 A 3 is preferable becanse of its low plate resistance, but pentodes will work satisfactorily.

Matching to load-Since the ordinary Class-A receiving power tube will develop about 200 to 250 peak volts in its plate circuit, which is ample for most low-level modulator
applications, a $1: 1$ coupling transformer is generally used, If more voltage is required, a step-up ratio must be provided in the transformer. It is usual practice to load the primary of the output-coupling transformer with a resistance equal to or slightly higher than the rated load resistane for the tube, to stabilize the voltage output and thus improve the regulations. This is indicated in Fig. 507 .

c. 5-8 Microphones

Sonsiticity - The herl of a miorophone is its clecetrical output for a given speech intensity input. Level varies greatly with microphones of lifferent basic types, and also varies between different models of the same type. The output is also greatly dependent on the character of the individual roiere (that is, the audio frequencies present in the voice and the distance of the speaker's lips from the mierophome, decreasing atpproximately as the sabare of the distance. Hemere, only apmoximate values based on averares of "homat" sucaking buices can be attompterl. The values given in the following paragraphas are based on elose talking; that is, with the mierophone less tham an ineh from the spatier's lips.

Frequenes respenser - The frequeney respornis or fidelit! of a micorophone is its relative ability to convert sommels of different frequencies into alternating current. With fixed sound intensity at the midrophone, the electrical output may vary considerably as the sound frequency is varied. For understamdable speed tranmission only a limited frequeney range is necressary, and natural-sombling suereh can be obtained if the output of the microphome does not vary more that a few decibels (s.3-3) at any frequency within a ramge of about 200 cycles to 4000 cereles. When the variation expressed in terms of decibels is small bet ween two frequency limits, the microphone is satd to be the hetwern those limits.

Carbon microphomes - liis. 512-A and 13 show connections for single- and doublobutton earbon microphones, with a rheostat inchuded in earl circuit for atjusting the button current to the correct value as sperifiad with each microphone. The single-thetton mi(rophone eonsists of a metal diaphragm plated agatinst an insulating eup containing loosely macked earbon grammes (microphone buthon). Current from a battery flows thengh the granules, the diaphangm being one connertion and the metal back-phate the other. The primary of at transormer is connerted in sopies with the battery and microphome. As the diaphragm vibrates its pressure on the granules alternately inwreases and dereases, causing a correspond-
 the circuit, sime the promure rhathes the resistance of the mass of grammles. The resulting change in the current flowing through the transformer primary causes an alternating voltage, of corresponding frequency and intensity, to be set up in the transformer see-
ondary (\$2-9). The doublebutton type is similar but with two buttons in pash-pull.

Good quality single-button carbon mierophones give outputs ranging from 0.1 to 0.3 Volt arross 50 to 100 ohms; that is, across the primary winding of the mierophone transformer. With the step-up) of the transformer, a peak voltage of between 3 and 10 volts across 100,000 ohms or so ean be assumed availathe at the ervid of the first tube. The usual button current is 50 to 100 mat.

The level of gomed-cuality double-button microphones is comsiderably less, ranging from 0.02 volt to 0.07 volt across 200 ohms. With this tepe of microphone and the asual pushpull input transfurmer, a peak voltage of 0.4 to O. 5 achoss 100,000 ohme or so can be assumed availathe at the dirst suech-amplifier grial. The button current with this type of microphone

Crvesal mierophonos - The input circuit for a piezoclectuic or arystal type of microphone is shown in Fig. sie-F The dement in this tepe consists of a pair of loucholle salts erystals comented together, with phated elevtrodes. In the mone sensitive tweres. the erystal is mechanically wopled tora diapharm. Sound Waves actuating the diaphragm ealnse the erystal to vibrate mechanieally and, bevperooelactio adion (\$2-10), to generato a earresponding alternating voltage betwern the olectrodes, which are commeded to the grid cirenit of a vacumatube amplifier. as shown. The ervistal type reduires no separate source of current or voltage.

Althongh the level of erystal mirrophones varies with different models, an ont put of 0.01 to $0.0:$, volt is represintative for rommunication types. The level is affected by the In ugeth of the cable commerting the mierophome to the first amplifier stage: the above figure is for lengethe of 6 or 7 feet. The frequeney dharacteristio is umafforted by the rable, bat the load resistance (amplifiou wrid resistor) dons affert it, the lower frequeneies bemig itternuated as the shant rasistance becomos loss. A
grid-resistor value of 1 mexrehm or more shamblat
 ohms being a customary figure.

Condenser mirrophionses - 'The comelenser mierophote of Fig. $312-C$ comsists of a 1 woplate catparity, with one platestationary. The othor, which is separated from the dirst by about a thousambla of an inch, is a thin metal mombrane serving as a diaphrarm. This condenore is rommerted in serters with a resistor amd a d.e. Foltane solure. When the diapheagm vibrates, the whate in capacily eatuses a smatl eharging curvent to flow throurh the circuit. The resulting andio voltape which appears arrose the resistor is fod to the grid of the tube throngh the compling comberneer.

The ont put of comdensar mierophones varies with diffornt monkls, the high-quality tye being about omo-humdroith to one-diftioth as sensitive as the donble-button earbon microphone. The first perobtamplifier stave must be built into the misoophomes, sinere the cap:e of : connecting ablbe would impatir both out put and frequeney range.

Frlerity amd dynamir mirrophomes - In a velucity of "ribleon" micerophome, the elomont ated mem bey the somad waves is a thin armatated metaliic ribhom sheproded betwern the poles of a mannet. When vilorating, the ribben ruts the limes of fore between the puhes, fisst in one direction and then the othere, thas gromeating an atternatimg voltage. The movement of the riblum is monertiona! to the Volocity of the sumb-omergiaed alir partiches.
 high impedamos and bw impedance, the former being nsed in most applications. A high-impedane mierophome abla be diredty comnected

 Low-impulatme miopophones are msed when at
 be employed. In surh al rase the output of the mierophone is coupled to the first amplified stare through a suitable step-ny transformer, as shown in Fig. 512-D.

The level of the velocity microphone is atwout 0.0.3 to 0.0.0. wolt. This figure :upplies directly to the high-impedane type, and to the low-inurdance type when the voltage is measured across the eoupling transformer secomdary.

The dynamic miernphone somowhat resembles a dynamie tome speaker in principle. A light-weight woice woil is rigidly attacheol to a diaphagm, the coil being placeil betwern the poles of a permanent magnot. Somod cathes the diaphragm to vibrate, thas moving the coil back and forth between the magnet poles and generating an altormating voltage the frequency of which is propertional to the frequency of the impinging somd and the amplitude proportional to the somal pressure. The dynamic microphome nsually is built with high-impedance output, suitable fur working directly into the grid of an amplifier tube. If the commecting cable must be unustally long a low-impedane type should be used, with a step-up transformer at the end of the cable. A small permanent-matget speaker can be used as a dynamic microphone, althongh the fidelity is mot an good as is ohtatimble with a properly designed microphome.

(1) 5-9 The Speech Amplifier

Mescription - The function of the sperech amplifier is to buile up the weak microphone voltage to a value sulficient to excrite the mondulator to the required output. It may have from one to several stages. The last stake nearly always must deliver a certain amount of andio power, experially when it is used to excite a Class-13 modulator. Sipereh amplifiers for grid-bias moclulation usnally cond in a powar stage which alson funetions as the modulator.

The sperch amplifior frequently is built as a unit separate from the modulator, and in such a case may be providod with a stop-down transformer designed to worl into a low impedance. such as ? 3 or $\overline{50} 00$ whins (tubcotoline transformer). Whan this is done, al ster-up input transformer intended to work betwern the same impulance and the mendulater grids (linc-to-grid transformer) is provided in the mextulator eirenit. The line which commerte the two transformors may be made of any comvenient length.

Cieneral design considerations - The last stage of the spereh amplifice must be selected on the basis of the power output required from it; for instance, the power necessary to drive a (lass- B modulator ($\$ 5-6$). It may be either single-meded or pusil-pull ($\$ 3-3$, the lateor generally being preferable because of the higher power output and lower harmonic distortion. Push-pull amplifiers may be either Class A, Class AB1 or Class AB2 (S S-4), as the power requirements dietate. If a (lans-A or $A B_{1}$ amplifier is used. the preceding stages atl may be voltage amplifiers, but when a (lassAB2 amplifier is used the stage immediately. preceding it must be capable of furnishing the power consumed by its grids at full output.

The requirements in this ease are much the same as those which must be met by a driver for a Class-B stage (5 o-t $)$, but thr actual power neded is considerably smaller and usually can be supplied by one or two small recoiving triodes. All lower-level speech ant plifier stages invariably are worked purely as voltage amplifiers.
The minimum amplifieation which must be provided thead of the last stage is comal to the peak audio-fregueney prid woltage required by the last stage for full output (peak grid-to-grid voltage in the case of a push-pull stage), divided by the output voltage of the microphone or sicondary of the microphone transfurmer if one is used ($\$ 5-5$). The peak a.f. grid voltage required by the output tube or tubes is equal to the dee. grid biats in the case of a single-tube Clasi-A amplifier, and approximately twiee the grid bias for a pushpull C lass-A stage. The requisite information for (lass-AB B_{1} and $A B_{2}$ amplifiors can be ob) tained from the manufacturer's data on the type considered. If the gain is not ohtainable in one stage, several stages must be fised in cascade. When the output stage is "perated Clas: Al_{2}, due allowance must be mate for the fart that the next-to-the-last stage must deliver power as well as voltage. In such cases, suitable driver combinations usually are recommended by manufacturers of tubes and interstage transformers. The coupling transfurmer must be designed especially for the purpmes.

The total gain proviled by a multi-stage amplifier is equal to the promluet of the individual stager gains. For example, when three stages are used, the first having a gain of 100 , the serend 20 and the third $1 \overline{3}$, the total gain is $100 \times 20 \times 1 \overline{5}$, or 30,000 . It is good practice to provide two or three times the minimum required gain in dexigning the sprech amplificr. This will insure having ample gain available to cope with varving conditims.

Whon the gain must be fairly high, as when a crystal microphone is used, the sperh amplifier frequently has four stages, including the power output stage. The first generally is a pentode, berause of the high gain attainable with this type of tube. The second and third stagus usually are triodes, the third frequently having two tubes in push-pull when it drives a Class-AB2 output stage. Two pentode stages seldom are used conserutively, because of the difficulty of getting stathe operation when the gain per stage is wery high. With earhon mierophones less amplification is needed :und hence the pentode first stage usually is omitten, one or two triode stages being ample to obtain full output from the power stage.
Stase gain and coltase ontput - In voltage amplifiers, the stage guin is the ratio of a.c. output voltage to a.e. voltage applied to the grid. It will vary with the applied andio frequency, but for speech the variation should be small over the range of $100-1000$ cycles. This condition is rasily met in practice.

The output voltage is the maximum value Which can be taken from the plate circuit without distortion. It is usually expressed in terms of the peak value of the a.e. wave ($82-\overline{4}$), since this vabue is independent of the wavefurm. The prak output voltage usually is of interest only when the stage drives a power amplifier, since only in this case is the stage called upon to work near its maxinum capabilities. Low-level stages very seldom are worked near their full capacity, hence harmonie distortion is negligible and the voltage gain of the stage is the primary consideration.

Fig. 513 - Re-intame-conuled valtane amplifure cirruits. A, pentode: B. Irionto. Desiznations are as follows:
(1 - Cathode by-pa=e condenser.
$1: 2$ - Ilate hy-pass sonderners.
(:3- Cutput coupling combiname (hlorking condenser).
(iq - Srurn by-pase romblenser.
R_{1} - Cathonde resistor.
$\mathrm{K}_{2}-\mathrm{C}$ © ind resistor.
liz-Plate resistor.
li_{4} - Vext-mage grill mesi-fur.
K_{5} - Ilate decompling resintor.
Ro-Sereen resistor.
Values for sutable tulus are given in Chapter Fonrtern.
Revisfatrer coupling - Resistamee eoupling generally is used in voltage amplitior stages. It is relatively inexpensive, gond frequeney response ean be secured, and there is little danger of hum pick-up from stray magnetic fields associated with heater wiring. It is the only tope of coupling suitable for the output rircuits of pentodes and high- μ triodes, since with transformers as sufficiently high loarl impedance ($(: 3-3$) ammot be ohtained without considerable frembency distortion. 'Pypial cir' ruits are given in Fig. 513 and design data in \$3-6.

Transformer coupling - Transformer cou-

 pling botwern stages ordinarily is used only when power is to be transferred (in such a case resistance coupling is rury inetlicient , or when it is necessary to couple between a singleended and a push-pull stage. Triodes having an amplification factor of 20 or less are used in transformer-coupled voltage amplifiers.Representative circuits for coupling singleended to push-pull stages are shown in Fig. 514. That at A uses a emmbination of resistance and transformer coupling, and may be used for exciting the gride of a class-A or $A B_{1}$ following stage. The revistance coupling is used to keep the d.c. phate current from flowing through the transformor primary, thereby preventing a reduction in primary inductance below its nocurrent value ($\mathrm{S} \mathrm{x}-\mathrm{t}$). This improves the lowfrequeney recpon*e. With low- μ triorles (6 C 5 , 6J5, ete.), the gain is equal to that with resistatnce coupling multiplied by the secondary-toprimary turns ratio of the transformer.

In 13 the transformer primary is in series with the plate of the thbe, and thas must carry the tube plate current. When the following amplifier operates without grid current, the voltage gain of the stage is practically equal to the μ of the tube multiplied by the transformer ratio. This circuit also is suitable for transforring power (within the rapabilities of the tube) as in the case of a following Class-Alse stage used as a driver for a Class-B modulator.

Gain control - The over-all gain of the amplifier may be ehanged to suit the output level of the mierophone, which will vary with voice intensity and distane of the speaker from the microphone, by varying the proportion of a.e. voltage applied to the grid of one of the stages.

The gain-entrol potentiometer should be near the input end of the amplifier, so that there will be no danger of owerlobding the stages ahead of the gain eontrol. With carbon microphones the gain control may be plated directly aross the microphone transformer scoondary, but with othor types the gain eontrol usually will affect the frequency response of the mierophone when commented direetly aeross it. The control therefore usually is placed in the gride eirenit of the second stage.

Fig. 51. - Transformer-coupled anmbifier circuits for driving a push-pull amplificr. I is fur resistance-transformer couplinq: 13 , for transformer compling. Designations correspond to those in Fiz. 513. In A. values can be taken from 'Table I. In B, the cathode resistor is calculated from the rated plate current and grid bias as given for the particular type of tube used (\$ 3-6).

Fig. 515-. Phase-inworter cireuit for resistanceroupled pash-pull output. With a doubloretriode tube (such as the $0 . \mathrm{N}_{3}$) the following values are typical: $\mathrm{K}_{1}, \mathrm{R}_{4}, \mathrm{~K}_{5}-0.5$ megohm. $\mathrm{K}_{2}, \mathrm{R}_{3}-0.1$ mequhm. $\mathrm{K}_{6}-1500$ ohme. $\quad(.1,(i 2-0.1 \mu \mathrm{fd}$. K_{4} should loe tapped as doseribed in the text. The voltage gain of a stage using these constants is 22 .

Phase inversion - Push-pull output may be socured with resistance coupling by using an extra tube, as shown in Fig. 515 . There is a phase shift of 1 so degrees through any normally operating resistanec-coupled stage ($\$ 3-3$), and the extra tube is used purely to provicle this phase shift without additional gain. The outputs of the two tubes are then added toprovide push-pull excitation for the following amplifier. The tap on R_{4} is aldusted to make l_{1} and I_{2} give equal voltage outputs so that balanced excitation is applied to the grids of the following stage. 'The mathode resistor, R_{f}, commonly is left un-bypassed sinee this temds to help balance the cirenit. For convenience, double-triode tubes frequently are used as phase inverters.

Output limiting - It is desirable to modulate as heavily as possible without overmodulating, yet it is difficult to speak into the microphone at a eonstant intensity. To maintain reasonably constant output from the modulator in spite of variations in speech intensity, it is possible to use automatic gain control which follows the arerage (not instantaneous) variations in spreech amplitude. This is aecomplished by rectifying and filtoring ($\S 8-2, k-3$) some of the audio output and applying the rectified and filtored d.c. to a control electrode in an carly stage in the amplifier.

Fï. $5 / 6$ - Sperch amplifier output-limiting circuit. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-0.1-\mu \mathrm{fi}, \mathrm{K}_{1} . \mathrm{K}_{2}, \mathrm{~K}_{3}-0.25$ megohm. $\mathrm{R}_{4}-25,000$-ohm pot. $\mathrm{K}_{5}-0.1 \mathrm{megohm}$. I - Sretext.

A practical eircuit for this purpose is shown in Fig. 516. The rectifier must be conneeted, through the transformer, to a tube capable of delivering some power output (a small part of
the output of the penwer stage may be used) or else a separate amplifier for the rectifier cireuit alone may have its grid comected in parallel with that of the last voltage amplifier. Resistor R_{4} in series with R_{5} arross the plate supply provides variable bias on the rectifier plates, so that the limiting action can be dolayed until a desired mierophone input level is reached. $R_{2}, R_{3}, C_{2}, C_{3}$, and C_{4} form the filter (\$ 2-11), and the output of the rectifier is eonnected to the suppressor grid of the pentode first stage of the speech amplifier.

A step-down transomer with a turns ratio such as to give about 50 volts when its primary is connected to the wut put cirenit of the power stage should be used. A half-wave rectifier may be used instead of the full-wave circuit shown, althourh satisfactory filtering will be more difficult to achieve.

Noise - It is important that the noise level in a specch amplifior be low compared to the level of the desired signall. Noise in the speech amplifier is caused chiefly hy hum, which may be the result of insufficient power-supply filtering or may be introduced into the grid circuit of a tube by magnetic or electrostatic means from heater wiring. The plate voltage for the amplifier should be free from ripple ($\$ 8-4$), particularly the voltage applied to the lowlevel stages. A two-section condenser-input filter ($\$ \mathrm{~s}-\mathrm{F})$ usually is satisfartory. The decoupling eircuits mentioned in the preceding paragraphs also are helpful in reducing platesupply hum.

Hum from heater wiring may be reduced by kerping the wiring woll away from ungrounded components or wiring, particularly in the vieinity of the grid of the first tube. Complete shiclding of the mierophone jack is advisable, and when tubes with grid caps instead of the single-ended types are used the caps and the exposed wiring to them should be shielded. Heater wiring preferably should run in the corners of a metal chassis, to reduce the magnetic field. A ground should le made either on one side of the heater circuit or to the center-tap of the heator winding. The shells of metal tubes should be grounded; glass tubes require separato shields, especially when used in low-level stages. Heater connections to the tube sockets should be kept as far as possible from the plate and grifl prongs, and the heater wiring to the sockets should be kept close to the chatssis. A conncetion to a good ground (such as a cold water pipe) also is advisable. The speceh amplifier always should be construeted on a netal chassis, with all ground connections made directly to the metal chassis.

When the power supply is mounted on the same chassis with the specch amplifier, the power transformer and filter chokes should be well separated from audio transformers in the amplifier proper to reduce magnetic coupling, which would cause hum and raise the residual noise level.

© 5-10 Checking 'Phone Transmiłter Operation

Molulation percentage - The most reliable method of determining percentage of modulation is by means of the cathode-ray oseilloscope ($\$ 3-9$). The oscilloscope qives a direct picture of the modulated output of the tramsmitter, and he its use the waveform errors inherent in other types of meusurements are eliminated.

Two types of ascilloserpe patterns may be obtained, known as the "wave envelope" and "trapezoid." The former shows the shape of the nodulation en velope ($5:-2$) directly, while the latter in effect plots the modulation charaeteristic (8:5-2) of the modulated stage on the rathode-ray tube screen. To obtain the wave-envelope pattern, the ase illoscope must have a horizontal swopp eircuit. The trapezoidal pattern requires only the oscilloscope, the sweep circuit being supplid by the transmitter itself. Fig. 517 shows methods of eounceting the oscilloscope to the transmitter for both types of patterns. The oscilloseope connections for the wave-envelope pattern, Fig. 517-A, are usually simpler than those for the trapezoidal figure. The vertical-deflection phates are coupled to the amplifier tank coil or an antema coil by means of a piek-up coil of a few turns connected to the aseilloseope through a twisted-pair line. The position of the pick-up coil is varied until a carrior pattorn, Fig. 518-I3, of suitable hoight is ohtained. The sweep voltage should be aljusted to make the width of the pattern somewhat more thatn half the diamerer of the sereen. It is frequently helpful in eliminating r.f. harmonics from the pattern to commert a resonant circuit, tuned to the operating frequency, between the vertieal deflection plates, using link coupling between this and the transmitter tank circuit.

Fig. 517- Mathols of monecting an matilosenpe to the montulated r.f. amplifire for cheching modulation.

With the application of voice modulation, a rapidly ehanging pattern of varying height will be obtained. When the maximum height of this pattern is just twice that of the carrier alone, the wave is being modulated 100 per cent ($\$ 5-2$). This is illustrated loy Fig. 518-1), where the point X represcuts the sweep line (reference line) alone, 5% is the carrior height, and $P^{\prime} Q$ is the maximum height of the modulated wave. If the height is greater than the distance $P(Q$, as illustrated in E, the wave is overmodulated in the upward direction. Overmodialation in the downward direction is indicated by a gap in the pattern at the reference axis, where a single bright line appears on the screen. Overmodulation in either direetion may take place even when the modulation in the other direation is less than 100 per cent. Assuning that the modulation is symmetrical, however, any modulation pereontage ran be measured directly from the sereen he mensuring the maximun hoight with modulation and the height of the carrier alone: calling these two heights h_{1} and h_{2} respertively, the modulation percentage is

$$
\frac{h_{1}-h_{2}}{h_{2}} \times 100
$$

Connections for the trapezoidal pattern are shown in Fig. 517-13. The vortiral plates are similarly coupled to the transmitter tank circuit through a pick-up loop; the tuned input eircuit to the oscilloseope may also be used. The horizontal plates are coupled to the output of the modulator through a voltage divider ($\$ 2-(i)$. $R_{1} h_{2}$, the resist:ance of R_{2}. being variable to permit adjustmont of the audio voltage to a suitable value to give a satisfactory horizontal swrep on the screen. R_{2} may be a 0.2 i -mogohm volume control resistor. The value of h_{1} will depend upon the audio output voltage of the modulator. This: voltage is equal to $\sqrt{ } P^{\prime} h$, where I^{\prime} is the audio power output of the morlulator and R is the modulating impedance of the modulated r.f. amplifier. In the case of grid-bias modulation with a $1: 1$ output transformer, it will be satisfactory to assume that the a.e. output voltage of the modulator is equal to $0.7 E$ for a single tube or $1.4 F$ for a push-pull stage, where E is the d.e. plate voltage on the modulator. If the transformer ratio is other than $1: 1$, the voltage so calculated should be multiplied by the actual secondary-to-primary turns ratio.

The total resistance of R_{1} and R_{2} in sories should be 0.25 megohm for every 150 volts of modulator out put : for example, if the modulator output voltage is 600 , the total resistance should be four ($6(00,150)$ times 0.25 megohm, or 1 megohm. Then. with 0.25 megohm at R_{2}, R_{1} should be 0.75 megohm. The blocking condenser, $($ ', should be $0.1 \mu \mathrm{fd}$ or more. and its voltage rating should be greater than the maximum voltage in the circuit. With plate modulation, this is 1 wire the d.e. boltage applied to the plate of the modulated amplifier.

Fif. $5 / 8$ - Waweonvelope and traprondal patterns encomered umber different conditions of modulation.

The trapezoidal patterns are shown in Fig. 518 at lito J, each alongsite the corresponding wave-envelope pattern. With no signal, only the cathode-ray spot appears on the sereen. When the ummodulated corrier is applied, a vertieal line appears; the longth of the line should be adjusted, by means of the piek-up coil coupling, to a convenient value. When the carrier is modalated, the wedge-shaped pattern appars; the higher the modulation percentage, the wider and more pointed the wedge hecomes. At 100 per cent modulation it just makes a point on the axis, X, at one end, and the height, $P($, at the other end is equal to twiee the carrier heirnt, $Y Z$. Overmodnation in the upward direction is indicated by inereased height over $I^{\prime}(Q$, and in the downward direction by an extonsion along the axis X at the pointed end. The modulation percentage may be found by mestaring the modulated and ummodulated carrier heights, in the same way as with the wave-envelope pattern.

Von-symmetrical unceforms - In voice waveforms the average maximum amplitude in one direction from the axis frequently is greater than in the wther direction, although
the average energy on both sides is the same. For this reason the percentage of modulation in the "up" direction frequently differs from that in the "down" direction. With a given voice and microphone, this difference in modulation percentage is usually always in the same direction. Nince overmodulation in the downward direction canses more out-of-chamel interference than overmodalation upward hecanse of the steeper wavefront ($\$ 1-1$), it is advisable to "phase" the modulation so that the side of the voice waveform having the larger excursions causes the instantaneous carrier power to increase and the smaller excursions to cause a power decrease. This reduces the likelihoud of overmodulation on the "down" peak. The direction of the larger excursions can readily be found by carefinl observation of the usilloscope pattern. The phase can be reversed by reversing the conncetions of one winding of any transformer in the speech amplifier or mothator.

Modulation monitoring - While it is desirable to modnate as fully as possible, 100 per eent modulation shomad not be expereade particularly in the downward direction, beanse harmonie distortion will be introduced and the channel width inereased (\$5-2), thus catusing unnecessary interference to other stations. The oscilloscope may be used to provide a continuous wherk on the modulation, but simpler indicators may be used for the purpose, once calibrated. Λ convenient indicator, when a Class-13 modulator ($\$ 5-6$) is usod, is the plate milliammeter in the Class-B stage, since plate current fluctuates with the voire intensity. Lsing the oscilloscope, determine the gain-control setting and voice intensity which gives 100 per cent modulation on voice peaks, and simultaneously observe the maximum Class-B plate-milliammeter reading on the peaks. When this maximmm reading is obtained, it will suffice in regular operation to adjust the gain so that it is not exceeded.

A sensitive rectifier-type voltmeter (eopperoxide type) also can be used for modulation monitoring. It should be ronnected across the output circuit of an audio driver stage where the power level is a few watts, and similarly calibrated against the oscilloscope to deternine the reading which represents 100 per cent modulation.

The plate milliammeter of the modulated r.f. stage may also be used as an indicator of overmodulation, since the average plate current is constant (sis-3, $5-4$, , $)-\overline{5})$ when the amplifier is linear, the reading will be the sane with or without modulation. When the amplifier is overmodulated, especially in the downward direction, the operation is no longer linear and the average plate current will change. A flicker of the pointer may therefore be taken as an indication of owernodulation or non-linearity. Honever, it is possible that the average plate current will remain constant with eonsiderable overmodulation
under some operating conditions, so that an indicator of this trpe is not wholly reliable unless it has been checked previously against an oscillosrope.

Linearit. - The lincarity (\$5-2) of a modulated amplifier may readily be checked with the oscillosoope. The trapozoidal pattern is more casily interpreted than the wave envelope pattern, and less a axiliary equipment is required. The comections are the same as for measuring modulation percentage (Fig. i517). If the amplifier is perfectly linear, the sloping sides of the trapezoid will be perfectly straight from the point at the axis up to at least 100 per cent modulation in the upward direction. Nonlinearity will be shown by curvature of the sides. Curvature near the point, extending the point farther along the axis than would occur with straight sides, indicates that the out put power does not decrease rapidly enough in this region; it may also he caused by imperfect neutralization (a push-pull amplifier is recommended because better neutralization is possible than with single-ended amplifiers) or by r.f. leakage from the exciter through the final stage. The latter condition can be cherked by removing the plate voltage from the modulated stage, when the carrier should disappear, leaving only the beam pot remaining on the sereen (Fig. $\quad 1 \mathrm{~s}-\mathrm{F}$). If a small vertical line remains, the amplifier should be re-neutralized; if this does not climinate the line. it is an indication that r.f. is being pieked up from lower-power stages, either ber coupling through the final tank or via the oscilloscope pick-up loop.

Inward eurvature at the large end of the pattern is caused by improper operating conditions of the modulated amplifier, usually improper bias or insufficient excitation, or both, with pate modulation. In grid-bias and

 and improper adjustment: for wriblhias or rathode modulation. The pattern whained with a correctls adjusted amplifier is shown at A. "The other drawings indicate non-lincar modulation from typical causes.
cathode-modulated systems, the has, exritation and plate loading are not correctly proportioned when such curvature ofcurs, usually berause the amplifier has been adjusted to have too-high carrier efficieney without modulation ($\$ 5-4,5-5$).

For the wave-envelope pattern, it is necessary to have a linear horizontal-sweep circuit in the oscilloscope and a source of sine-wave audio signal voltage (such as an tudio oscillator or signal generator) which can be synchronized with the sweep circuit. The linearity can be judged by comparing the wave euvelope with a true sine wave. Distortion in theandio circuits will affect the pattern in this alse (surh distortion has no effect on the trapezoidal pattern, which shows the modulation characteristic of the r.f. amplifier alone), and it is also rearlily possible to misjudge the shape of the modulation envelope, so that the wave envelope is less useful than the trapezoid for checking linearity of the modulated amplifier.

Fig. 519 shows typical patterns of both types. The cause of the distortion is indirated for grid-bias and suppressor modulation. "lhe patterns at A, although not truly linear, are representative of properly operated grid-bias modulation systems. Better linearity can be obtained with plate modulation of a Class-C amplifier.

Faulty patherns - The drawings of Figs. 518 and 519 show what is normally to be expected in the way of pattern shapes when the oscilloscope is used to check modulation. If the actual patterns differ considerably from those shown, it is probable that the pattern is faulty rather than the transmitter. It is important that only r.f. from the modulated stage be coupled to the ascilhomope, and then only to the vertical plates. The effeet of stray r.f. from other stages in the transmitter has been mentioned in the preceding paragraph. If r.f. is present also on the horizontal plates, the pattern will lean to one side instead of being upright. If the oscilloseope cannot be moved to a spot where the unwanted piek-up disappears, a small by-pass condenser (10 $\mu \mu \mathrm{fd}$.) should be connected across the horizontal pilates as close to the cathode-ray tube as possible. An r.f. rhoke (2.i) mh. or smaller) may also be connerted in series with the ungrounded horizontal plate.
"Fohded" trapezoidal patterns occur when the audio sweep voltage is taken from some point in the audio system other than that Where the a.f. power is applied to the modulated stage. Such patterns are catused by a phase difference between the sweep voltage and the modulating voltage. The commections should always be as shown in Fig. ह17-IB.

Plate-rurrent shifi - As montioned above, the d.e. plate current of a modulated amplifier will be the same with and without modulation so long as the amplifier operation is perfectly linear and other conditions remain unchanged. This also assumes that the modulator is work-
ing within its capabilities. Because there is usually some curvature of the modulation characteristic with grid-bias modulation there is normally a slight upward change in plate current of a stage so modulated, but this occurs only at high modulation percentages and is barely detectable under the usual conditions of voice modulation.

With plate modulation, a downward shift in plate current may indicate one or more of the following:

1) Insufficient excitation to the modulated r.f. amplifier.
2) Insufficient grid bias on the modulated stage.
3) Wrong load resistance for the Class-C r.f. amplifier.
4) Insufficient output capacity in the filter of the modulated-amplifier plate supply.
5) Heavy overloading of the Class-C r.f. amplifier tube or tubes.

Any of the following may cause an upward shift in plate current:

1) Overmodulation (excessive audio power, audio gain too great).
2) Incomplete neutralization of the modulated amplifier.
3) Parasitic oscillation in the modulated amplifier.
When a common plate supply is used for both a Class-B (or Class-AB) nodulator and a modulated r.f. amplifier, the plate current of the latter may "kick" downward because of poor power-supply voltage regulation (§8-1) with the varying additional load of the modulator on the supply. The same effect may occur with high-power transmitters because of poor regulation of the a.c. supply mains, even when a separate power-supply unit is used for the Class-B modulator. Either condition may be detected by measuring the plate voltage applied to the modulated stage; in addition, poor line regulation also may be detected by observing if there is any downward shift in filament or line voltage.

With grid-bias modulation, any of the following may be the cause of a plate current shift greater than the normal mentioned above:

Downward kick: Too much r.f. excitation; insufficient operating bias; distortion in modulator or speeeh amplifier; too-high resistance in bias supply; insufficient output capacity in plate-supply filter to modulated amplifier; amplifier plate circuit not loaded heavily enough; plate-circuit efficiency too high under carrier conditions.

Upward kick: Overmodulation (excessive audio voltage); distortion in audio system; regeneration because of incomplete neutralization; operating grid bias too high.

A downward kick in plate current will accompany an oscilloscope pattern like that of Fig. 519-B; the pattern with an upward kick will look like Fig. 519-A, with the shaded
portion extending farther to the right and above the carrier, for the "wedge" pattern.

Noise and hum on carrier - These may be detected by listening to the signal on a receiver sufficiently removed from the transmitter to avoid overloading. The hum level should be low compared to the voice at 100 per cent modulation. Ilum may rome either from the speech amplifier and modulator or from the r,f. section of the transmitter. IIum from the r.f. section can be detected by completely shutting off the modulator; if hum remains when this is done, the power-supply filters for one or more of the r.f. stages have insufficient smoothing (\& 8-4). With a hum-free carrier, hum introduced by the modulator can be checked by turning on the modulator but leaving the speech amplifier off; power-supply filtering is the likely source of such hum. If carrier and modulator are both clean, connect the speech amplifier and observe the increase in hum level. If the hum disappears with the gain control at minimum, the hum is being introduced in the stage or stages preceding the gain control. The microphone also may piek up hum, a condition which can be checked by removing the microphone from the rircuit but leaving the first speech-amplifier grid circuit otherwise unchanged. A good ground on the microphone and speech system usually is essential to hum-free operation.

Hum can be checked with the oscilloscope, where it appears as modulation on the carrier in the same way as the normal modulation. While the percentage usually is rather small, if the carrier shows modulation with no speech input hum is the likely cause. The various parts of the transmitter may be checked through as deseribed above.

Spurious sidebands - A superheterodyne receiver having a crystal filter ($\$ 7-8,7-11$) is needed for checking spurious sidebands outside the normal communication channel ($\S 5-2$). The r.f. input to the receiver must be kept low enough, by removing the antenna or by adequate separation from the transmitter, to avoid overloading and consequent spurious receiver responses ($\$ 7-8$). With the crystal filter in its sharpest position and the beat oscillator turned on, tune through the region outside the normal chimmel limits (3 to 4 kilocycles each side of the carrier) while another person talks into the mierophone. Spurious sidebands will be observed as intermittent beat notes coinciding with voice peaks, or, in bad cases of distortion or overmodulation, as "clicks" or crackles well away from the carrier frequency. Sidebands more than 4 kilocycles from the carricr should be of negligible strength in a property modulated 'phone transmitter. The causes are owermodulation or non-linear operation (s)-3).

R,f. in sperech amplifier - A small amount of r.f. current in the speech amplifier - particularly in the first stage, which is most susceptible to such r.f. pick-up - will cause over-
loading and distortion in the low-level stages, Frequently also there is a regenerative effect which causes an audio-frequency oscillation or "howl" to be set up in the audio system. In such cases the gain control cannot be advanced very far before the howl builds up, even though the amplifier may be perfectly stable when the r.f. section of the transmitter is not turned on.

Complete shielding of the mirrophonc, mierophone cord, ind speech amplifier are neeessary to prevent r.f. pick-up, and a ground comnection separate from that to which the transmitter is connected is advisable. Unsymmetrical or eapacity coupling to the antonna (single-wire feed, feeders tapped on final tank circuit, etc.) may be responsible in that these systems sometimes cause the tramsmitter chassis to take an r.f. potential above ground. Inductive coupling to a two-wire transmission line is advisable. This antenna dffeet can be checked by disconnecting the antonna and dissipating the power in a dummy amema ($\$+-9$), when it usually will be fomm that the r.f. feed-bach disappears. If it does not, the speech amplifier and microphone shielding are at fault.

10-11 Frequency Modulation

principles - In frequency modulation the carrier amplitude is constant and the output frequency of the transmitter is made to vary abont the carrier or mean frequency at a rate corresponding to the audio frequencies of the speech currents. The extent to which the frequency changes in one direction from the unmodulated or carrier frequency is called the frequency deviation. It corresponds to the change of carrior amplitude in the amplitudemodulation system (s.)-2). Deviation is usually expressed in kilocycles, and is cqual to the difference between the carrier frequency and wither the highest or lowest frequency reached by the carrier in its excursions with modulation. There is no modulation percentage, in the usual sensc; with suitable cireuit design the deviation may be made as large as desired without encountering any effeet equivalent toovermodulation in the amplitudemodulated system.

fig. 520 - Triangular spectrum showing the noise response in an f.m. receiver compared with amplitude modulation. Deviation ratios of 1 and 5 are shown.

Deviation ralio- The ratio of the maximum frequency deviation to the audio frequency of the modulation is called the deviation ratio. It also is called the modulation index. Unless otherwise sperified, it is laken as the ratio of the maximum frepuener devittion (1) the highest atudio frequency to be tramsmited.

Advantuges of $f . m$. The chief advantige of frequeney modulation over amplitude modulation is noise reduetion at the receiver. All electrical noises in the radio spertrum, including those originating in the receiver, are r.f. oscillations which viry in amplitude, this variation causing the noise response in ampli-tude-modulation reacivers. If the recedver does not respond to amplitude variations but only to frequency changes, noise can affert it only by eausing a phase shift whirh appears as frequency modulation on the signal. The offeret of such frequency modulation by the mose can be made small by making the frequency change (deviation) in the signal large.

A second advantage is that the power required for modulation is inconsequential, since there is no power variation in the modulated output of the transmitter.

Triangular spectrum - The way in which noise is redued by a large deviation ratio is illustrated by lig. :20. In this figure the nose is assumed to be evonly distributed over the chamel used, an assumption which is almost alvays true. It is also assumed that audio frequencies above 4000 (eycles (4 kr .) are mot necessary to voide communication, and that the audio system in the receiver has no response above this frequencs. When, if in :mplitude modulation recoiver is used and its seloertivity is such that there is no attenuation of sidebands (\$5-2) below to00 recles, the moise components of all frequencies within the channel will produce equal response when they beat with a carricr centered in the channel. The response under these conditions is shown by the line $D C$.

In the f.m. receiver the output amplitude is proportional to the frequency deviation, and noisc components in the channel can be considered to frequeney-modulate the steady carrier with a deviation proportional to the difference betworn the actual frequency of the component and the frequency of the catrier. and also to give :un audio-frequency beat of the same frequency difference. 'This leads to a rising response chatrieteristic, such as the line U(', where the noise :mplitude is proportional to the audio beat frequence. The average noise power output is proportional to the square root of the sum of the squares of all the amplitude values ($\$ 2-7$), so that the mise power with frequener modalation having a deviation ratio of 1 is only one-thind that with amplitude modulation, or an improvement of t.75 db.

If the deviation ratio is increased to 5 , the noise response is represented by the line $O F$. since only frequencies up to fook eycles are reproduced in the ontput, however, the antible
noise is confined to the triangle $O A B$. These relations hold only when the carrier is strong compared to the noise. For rereption of stations with weak signal strength, the signal-tonoise ratiois better with a deviation ratio of 1 .

Linerrity - A transmitter in which frequeney deviation is dirertly proportional to the amplitude of the modulating signal is said to be linear. It is essential also that the carrier amplitude remain comitant under modulation. which in turn requires that the transmitter thmed circuits, as woll as the antemm, have brodd mough response to handle without discrimination the entire range of andio frequenries transmitted. 'This raquirement is easily met under ordinary conditions.

जidebanls - In frequency modulation there is a seriore of sidebamds on cither side of the rarrier frequeney for each audio-frequency component in the modulation. In addition to the usual sum and difforence frequencies ($\$ 5-2$) there are also beats at hamonies of the fundamental mombating frequeney, even though the latter may be a pure tone. This aecurs becanse of the neerssity for mantaming the proper phase relationships between the carrier and videbands to keep the power out put eonstant. Hence, a frequener-modulated signal inherently orrupies a wider ehamel than an amplitade-modulated signal. Beramse of the neressity for conserving spare in the wasu commanication spertrum. the use of f.m. by amaterurs is emfined to the wery-high frequencies in the region atowe 28 Me.

The number of sidelonds for a single modulating frequency increases with the frequenes deviation. When the deviation ratio is of the order of : s the sidebands berond the maximum frequeney deviation ate usually negligible, so that the channel required is approximately twice the frequency deviation.

C. 5-12 Methods of Frequency Modulation

Requirements and methorls - At present there are no fixed standards of frequency deviation in amateur work. Since a deviation ratio of 5 is considered high enough in any case, the maximum deviation necessary is 15 to 20 ke . for an upper audio-frequenç limit of 3000 or 4000 cycles ($5-2$), or a chamnel width of 30 to 40 ke . The permissible deviation is determined by the receiver ($\$ 7-18$), since deviation beyond the limits of the receiver pass-band causes distortion, If the tramsmitter is designed to be linear ($5-11$) with at deviation of about 15 ke., it can be used at alower deviation ratio simply by reducing the gain in the sporh amplifier. Therebe it can be made to conform to the requirements of the rereiver in use.

The several possible mothods of frequency modulationinclude mechanival motulation (for instance, varying condenser phate spacing in accordance with voiee vibrations), initial phasershift modulation whioh later is tramsformed into frequency mondalation, and direet
frequency modulation of an oscillator by electronic means. The latter, in the form of the re-actance-tube modulator, is the simplest system.

Fig. $5 \geq 1$ - Reactance modulator circuit usinq a olat tube.
 $\mathrm{C}_{3}-8-\mu \mathrm{fd}$. electrolytic (a.f. by-pass) in parallel with $0.01-\mu \mathrm{fd}$. paper (r.f. by-pass).
C_{4} - $0.01 \mu \mathrm{fol}$. L_{i} - (herillatur tank imbutance. $\mathrm{H}_{1}-50,000$ ohms. $\quad \mathrm{R}_{2}, \mathrm{R}_{3}-0.5$ mur"ulim.
$\mathrm{K}_{3}-30,000$ ohms. $\mathrm{K}_{4}-300$ ohtms.
The reactance modinlator - The reactance modulator consists of a vacuum tube connected to the r.f. tank eircuit of an oseillator in such a way as to act as a variable inductance or capacity, of a value dependent upon the instantaneous a.f. voltage applied to its grid. Fig. 521 is a representative cireuit. The control grid circuit of the 6 L 7 tube is emmected amos: the small capacity, C_{1}, which is in sorios with the resistor, R_{1}, across the oscillator tank (ircuit. Any type of occillator circuit ($83-7$) may be used. R_{1} is large compared to thereatance (§2-8) of C_{1}, so the r.f. current through $R_{1} C_{1}$ will be practically in phase (\$2-7) with the r.f. voltage apparing at the terminals of the tank circuit. Howevor, the voltagn across (C_{1} will lag the current by 90 degrees ($\$ 2-8$). The r.f. eurrent in the plate cireuit of the 6 L 7 will be in phase with the grid voltage (3 3-3). and consequently is 90 degress behind the current through (C_{1}, or 90 degrees behind the r.f. tank voltage. This lagging current is drawn through the oscillator tank, giving the same effect as though an inductance were connected across the tink (in an inductance the current lags the voltage by 90 (legrees - \& 2-8). The frequency increases in proportion to the lagging plate current of the modulator, as determined by the a.f. voltage applied to the No. 3 grid of the 6L 7 : hence the oseillator frequency varies with the audios signal voltage.

If, on the other hand, C_{1} and R_{1} are reversed and the reactance of C_{1} is mavle large compared to the resistance of R_{1} the r.f. current in the $6 \mathrm{~L}, 7$ phate cireuit will lead the oscillator tank r.f. voltage making the reactance caparitive rather than inductive.

Other circuit arrangements to produre the same effert may be employed. It is convenient to use a tube (such as the (iL, 7) in which the ref. and a.f. voltages can be applied to separate control grids; however, both voltages may be applied to the same grid provided precantions are taken to prevent r.f. from flowing in the external audio (ircuit, and vice versa (\$2-13).

The modulated oscillator usually is operated on a relatively low frequence, so that a high
order of carrier stability can be scrured. Frequency multipliers are used to raise the frequency to the final frequency desired. The frequency deviation increases with the number of times the initial frequeney is multiplied; for instance, if the oscillator is operated on 7 Mc. and the output frequency is to be 112 Mc., an oscillator frequency deviation of 1000 cycles will be raised to $\mathbf{1 0 , 0 0 0}$ cycles at the output frequency.

Design considerations - The sensitivity of the modulator (frequency change per unit change in grid voltage) increases when C_{1} is made smaller, for a fixed value of R_{1}, and also increases with an increase in L / C ratio in the oscillat or tank circnit. Since the carrier stability of the oscillator depends on the $L / 6$: ratio ($\$ 3-7$), it is desirable to use the highest tank caparity which will permit the desired deviation to be secured while kecping within the limits of linear operation. When the circuit of fig. 521 is used in comnertion with a $7-\mathrm{Mc}$. oscillator, a linear deviation of 2000 cycles above and below the carrier frequency can be secured when the oscillator tank caparity is approximately $200 \mu \mu \mathrm{fd}$. A peak a.f. input of two volts is required for full deviation. At 56 Mc. the maximum deviation would be 8×2000, or 16 kc .

Since a change in any of the voltages on the modulator tube will camse a change in r.f. plate current, and consequently a frequency change, it is advisable to use a regulated plate power supply for both modulator and osedilator. At the low woltares nard ($2: 00$ volts), the required stabilization can be sorured by means of gaseous regulator tubes ($\$ 8-8$).

Spereh amplification- The speech amplifier preceding the modulator foilows ordinary design (sis-9), except that no powor is required from it and the a.f. woltagetaken by the modulator grid usually is smatl - not more than 10 or 15 volt $\stackrel{0}{ }$ e even with large modulator tubes. Because of these modest requirenents, only a few :peech-amplifier stages are neded; a twostage amplifier consisting of a pentude followed by a triode, botll resistance-conpled, will suffice for erystal microphones (s 5-8).
R.f.amplifier stages - The frequency multiplier and output stages following the modulated oscillator mily be designed and adjusted in accordance with ordinary principhes. No sperial excitation requirements are imposed, since the amplitude of the out put is constant, Enough frequeney multiplication must be used to give the desired maximum deviation at the final frequener: this depends upon the maximum linear deviation avalable from the modulator-oseillator. All stages in the transmitter should be tuned to resonance, and careful nentralization (\$ $+\mathbf{f}$) of any st ruight amplifier stages is necessary to provent r.f. phase shifts which might cause distortion.

Checking operafion - The two quantities to be checked in the f.m. transmitter are linearity and frequency deviation. With a modulator
of the type shown in Fig. 521, both the r.f. and a.f. voltages are small enough to make the operation Class A (\$3-4), so that the plate current of the modulator is constant so long as operation is over the linear portions of the No. 1 and No. 3 grid characteristics. Hence, non-linearity will be indicated by a change in plate current as the a.f. modulating voltage is increased. The distortion will be within aceeptable limits, with the tube and constants given in Fig. 521, when the plate current does not ehange more than 5 per cent with signal.

Non-linearity is accompanied by a shift in the carrier frequency, so it also can be checked by means of a selective receiver such as one with a crystal filtor ($\mathbf{\$ - 1 1) \text { . A tone source is }}$ convenient for the test. Set the receiver for high selectivity, switch on the heat oscillator, and tune to the owillator carrier frequency. (The elieck does not need to be made at the output frequen'y and the oscillator frequency usually is more convenient. since it will fall within the thming range of a communications receiver.) Tnerease the modnlating signal until a definite shift in carrier frequeney is observed; this indicates the point at which non-linearity starts. The morlulating signal should be kept below the level at which carrier shift is observed, for minimum distortion.

A sclective recciver also can be used to check frequency deviation, again at the oscillator frequency. A source of tone of known frequency is required, preferably a contimously variable calibrated audio oscillator or signal generator. Tune in the carrier as described above, using the beat oscillator and high selectivity, and adjust the modulating signal to the maximum level at which linear operation is secured. Starting with the lowest frequency available, slowly raise the tone frequency while listening closely to the carrier beat note. As the tone frequency is raised the beat note first will decrase in intensity, then disappear entirely at a definite frequency, and finally come back and increase in intensity as the tone frequency is raised still more. The frequency at which the beat note disappears, multiplied by 2.4 , is the frequency deviation at that level of modnlating signal; for example, if the beat note disappears with an soo-cycle tone. the deviation is $2.4 \times$ 800 , or 1920 cycles. The deviation at the output frequency is the oscillator deviation multiplied by the number of times the frequency is multiplied; in this example, if the ascillator is on 7 Mc. and the output on 56 Mc., the final deviation is 1920×8, or 15.36 kc .

The output of the transmitter can be checked for amplitude modulation by observing the antenna current. It should not change from the unmodulated carrier value when the transmitter is modulated. Where there is no antenna anmeter in the transmitter, a flashlight lamp and loop can be coupled to the final tank coil to serve as a current indicator. If the carrier amplitude is constant, the lamp brilliance will not change with modulation.

(1. 6-1 Keying Principles and Characteristics

Requirements - The keying of a trathsmitter can be considered satisfactory if the method employed reduces the power output to zero when the key is open, or "up," and permits full power to reach the antenna when the key is closed, or "down." Furthermore, the keying system should accomplish this without producing keving transients or "clicks," which cause interference with other amateur stations and with local broadeast reception, and the keying process should not affect the frequency of the emitted wave.

Back-wave - l'rom various causes, some energy may get through to the antenna during keying spaces. The effert then is as though the dots and dashes were only louder portions of a continuous carrier; in some cases, in fart, the back-ware, or signad heard during the keying spaces, may serem to ln_{n} almost as loud as the keyed signal. Inder these conditions the keying is hard to read. A pronounced backwave often results when the amplifier stage feeding the antenna is keved: it may lie present beause of ineomplete neutralization ($\$ 4-7$) of the final stage, allowing some energy to get to the antenna through the grid-plate capacity of the tube, or because of magnetic coupling between antenna coupling coils and one of the low-power stages.

A baek-wave also may be radiated if the keying system does not reduce the input to the keyed stage to zero during keying spaces. This trouble will not occur in keying systems which cut off the plate voltage when the key is open, but may be present in grid-blocking systoms (§ 6-3) if the blocking voltage is not great enough and in power-supply primary keying systems ($\$ 6-3$) if only the final-stage powersupply primary is keved.

Keying wareform and sidebands- 1 keyed c.w. signal ran be eonsidered equivalent to a modulated signal (§ $5-1$), exerpt that, in-

Fig. 6 (ol - Extremes of possible keying wave-hapers A, rectangular characters; 13 , sint-wave characters.
stead of being modnlated by simusoidal waves and their hamonics, it is modulated by a rectangular wave, as in Fig. 601-A. If it were modulated by a sindadid wave of single frequeney, as in Fig. 601-B, the only sidethands would be those equal to the carrier frequency plus and minus the modulation frequency ($\$ 5-2$), A keving speed of 30 words per minute, sending sinusoidal dots, would give sidebands only 20 eycles either side of the carriar. However, when harmonies are present in the modulation the sidebands will extend out on both sides of the signal as far as the frequency of the highest harmonic. The rectangular wave form contains an infinite number of hamonies of the keving frequency, su a carrier modulated by truly rectangular dets would have sidebands covering the entire spertrum. Actually, the high-ordor hamomies arr eliminated herause of the selectivity of the thed rireuits (§ 2-10) in the transmitter, but there still is enough encrgy in the hower harmonics to extend the sidebamds comiderably. Comsidered from another viewpint, whenever a pulse of current has a steop) irmet (or hack) high frequencies are certain to be present. If the pulse can be slowed down, or cansed to lag, throngh a suitable filter cirenit. the highest-order harmonies are filtered out.

Key clicks - Beranse the high-order harmonies exist only during the brief interval when the keying eharacter is started or ended (when the amplitude of the keying wave is building upor (lying down), theireffectsoutside the normal commomiaration chamel are observed as pulses of vory short duration. These pulses are called key rlicks.

Tests have shown that practically all operators profer to copy a signtal which is "solid" on the "make" enid of rach dot or dash; i.e., one that does not build up too slowly but just slowly enough to have a slight cliek when the key is cosed. The same tests indicate that the mosit pleasing and least difficult signal to copes, partioularly at high spoods, is one that has a fairly soft "break" characteristic; i.c., one that has practically no click as the key is opened. A signal with heavy clicks on both naske and break is diflicult to eopy at high speeds (and also causes considerable interference), but if it is too "soft" the dots and dashes will tend to run together. It is redatively simple to adjust the keving of a transmitter so that for all normal hand speeds (15 to 40 w.p.m.) the readability will be satisfactory while the keving still will not cause interferrenep to rexeption of wther signals near the frequener of the transmitter.

Break-in keying - In code transmission, there are definite intervals, between dots and datshes and betweon words, when no power is being radiated he the transmitter. It is possible, therefore, to allow the recciver to operate continuously and thus be capable of receiving incoming signals during the keying intervals.

Fip. 6, - - A, Show platekrying; B, serecn prid heyinp. Oncillator circuits are shown iil both cases, but the same kesing methods can be used withamplifier cirenits.

This prate ice facilitates commmatation, becatuse the receiving operator can signal the tramsmitting operator, by holding down the key of his tramsmitter, whonever he has fatiled to copy part of the message, and thus obtatin a repetition of the part that is missing without waiting until the end of the message. 'This is ealled brenk-in operation.

Frequency stability - lieving should have no effect upon the output frecuancy of a properly designed and adjusted tralusmitter. However, in many instances keying will cause a "chirp," or small frequency change, at the instant of closing or opening the kev, which makes the signal difficult to read. Multistage transmittors keyed in a stage subsequent to the oscillator usually are free from this condition, unless the keying causes line-voltage changes which in turn affect the frequency of the ascillator. When the oscillator is keyed for break-in operation, special rare must be taken to insure that the signal does not have keying chirps.

Selecting the stage to key-1t is advantageous from an operating standpoint to design the c.w. transmitter for break-in oporation. In ordinary rases this dietates that the oscillator be keyed, since a continuously rumning oscillator will create interference in the receiver and thus prevent break-in operation on or near the transmitter frequency. On the other hand, it is casier to avoid a chirpy signal by keying a buffer or amplifier stage. In either rase, the tubes following the keyed stage must be provided with suflicient fixed bias to limit the plate currents to safe values when the key is up and the tubes are not being excited ($\$ 8-9$). Complete cut-off reduces the possibility of a batc-wave if a stage other than the oseillator is keyed, but the keying waveform is not as well preserved and some clicks can be introcluced rien though the keyed stage itsolf produces.
no relicks. It is a good general rule to bias the tubes so that they draw a ker-up plate current equal to about 5 per cent of the normal keydown value.

Keyed poucer - The puwer broken by the key is an important comsideration, bobli from the standpoint of saffety for the operator and that of arcing at the key contants. lieying the oscillator or a low-power stage is favoratile in both respects. The uso of a kering relay is highly reommemderl when a high-power circuit is keyed.

(1. 6-2 Keying Circuits

Plate-circuit keving - Any stage of the transmitter catn be keyed by opening and closing the plate power cirruit. Two methods are shown in Fig. 60?. In A the key is in sories with the negative lead from the plate power supply to the keved stage. It rould also be placed in the positive lead, although this is to be awoided whenever possible berause the key is necessarily at the phate voltage above ground, and there is danger of shock unless a keying relay is used.

Fig. 602-13 shows the key in the screensupply lead of an electron-coupled oscillator. This ean be considered to be a variation of plate keving.

Both thopate andsercen-grid kevingeireuits, A and 13 of lig. 602 . respond wroll in the use of ker-rlick filters, amb are particularly suitable for we with erystal and self-eontrolled oseillators which are operated at low plate voltage and mower input.

Pouer-supply keving - I variation of pate keving, in which the hoving is intrmbered in the priwer-wuplysistemiticelf. mather than in

 ary unit of the tobe used in recesior puwer supplies, and is used in compunction with the full-wawe rectifier tube to develop hias sollage for the oride of the highvoltape rectifiers. R_{1} limits the lead on the hias supply
 value. C_{1} may be 0.1μ fid or latere. δ and C eonstitute the smoothing filter for the high-woltaye supply in looth circuits. Blows direct he: inge of the transformer primary.
the connections between the power supply and transmitter, is illustrated by the diagrams in Fig. 603.

Fig. 603-A shows the use of grid-controlled rectifier tubes (s 3-5) in the power supply. Keying is acomplished hy aphlying suitable bias to the grids to rut off phate current flow when the key is open, and by removing the bias when the key is rlosed. Ninee in pratetice this circuit is used only with high-powered highvoltage supplies, a well-insulated keying relay is a meresity.

Direct keying of the primary of the plate power transformer for the keyed stage or stages is shown in Fig. 603-H. This and the method at A inherently have a keving lag because of the time constant ($\$ 2-6$) of the smoothing filter. If enough filter is provided to reduce ripple to a low percentage ($\$ S-$ - $)$ the lag ($\$ 6-1$) is too great to permit crisp keving at speeds above about 2is worts per minute, although this type of kering is very affective in eliminating key clicks. A single-section plate-supply filter ($\$ 8$-(6) is about the most claborate type that can be wed if a reasomathy grood keving characteristic is to be achicered.

 infe resiator, should have a value of about 50,000 ohms. C_{1} may have a rapacity of 0.1 to 1 fil., depording upon the keying chararteristic drsired. K_{2} also depends on the performaner chararterintic dosired, valnes being of the order of 5000 to 10,000 ohms in most cases.

Blocked-grid keving - Keving may be accomplished by applying suflicient negative bias voltage to a eontrol or suppressor grid to cut off plate current flow when the key is open, and by removing this blocking bias when the key is closed. The blocking hias voltage must be sufficient to overcome the r.f. grid voltage, in the case where the bias is applied to the control grid, and hence must be considerably higher than the nominal cut-off value for the tube at the operating cl.c. plate voltage. The fundamental cireuits are shown in Fig. 604.

In both rircuits the key is connected in series with a resistor, R_{1}, which limits the current drain on the blocking-bias source when the key is closed. $R_{2} r_{1}$ is a resistance-capacity filter ($\$ 2-11$) for controlling the lag on make and break of the key circuit. The lag increases as the time constant (\$2-6) of this circuit is made larger. Nince grid current flows through R_{2} when the key is closed in lig. 60.1-A, additional
operating bias is developed, hence somewhat less bias is needed from the regular bias supply. The operating and blocking biases can be obtained from the same supply, if desired, by

Fig. 605 - Center-tap and cathode keving. 'The condensers. (:, are r.f. by-pass condensers. 'Their capacity is not critical, values of 0.001 to $0.01 \mu \mathrm{fd}$. ordinarily being used.
utilizing suitable taps on a voltage divider ($\$ 8-10$). For circuits in which no fixed bias is: used R_{2} can be the regular grid leak (\$3-6) for the stage.

With blocked-grid keying a rolatively small direct current is broken as compared to other systems. Thus any sparking at the key is roduced. The keying charateristic (lag) readily can be controlled by a suitable choice of valuc: for C_{1} and R_{2}.

Cathorle heving - Opening the d.c. circuits of both plate and grid simultaneously is called cathole keying. It is usually called couter-top keying with a directly heated filament-type tube, since in this case the key is placed in the filament-transformer center-tap lead. Typieal circuits for this type of keying are shown in Fig. 605.

Cathode keying results in loss sparking at the key contacts, for the same plate power, as compared with keying in the plate-supply lead. When used with an oscillator it does not respond as readily to key-click filtering (\$ (j-3) as does plate keving, but there is little difference in this respect breween the two systems when an amplifier is keyed.

C. 6-3 Key-Click Reduction

R.f. filters - A spark at the kry contacts, even though minute, will cause a damped oseillation to be set up in the keying circuit which may modulate the transmitter output or may simply be radiated by the wiring in the keying cirenit. Interference from the latter source is usually confined to the immediate vicinity of the transmitter, and is similar in nature and effects to the click which is frequently heard in a recciver when an electric light is turned on or off. It can be minimized by isolating the key from the wiring by means of a low-pass filter (§ 2-11), which usually consists of an r.f. choke in each key lead, placed as close as possible to the key, and by-passed on the key-ing-line side by a condenser, as shown in Fig. 606. Suitable values must be determined by experiment. Choke values may range from 2.5 to 80 millihenrys, and condenser capacities from 0.001 to $0.1 \mu \mathrm{fd}$.

This type of r.f. filter is required in nearly every keying installation, in addition to the
lag circuits which are discussed in the next paragraph.

Lag circuits - A filtor used to give a desired shape to the keying chamacter, to climinate unnecessary sidebands and comsequent interference, is called a lug circuit. In one form, suitable for the circuits of Figs. 602 and 605, it consists of a condenser aceross the key terminals and an inductance in sories with one of the leads. This is shown in Fig. diot. The optimum values of eapacity and inductance must be found by exporiment, but are not esperially critical. If a high-voltage luw-current circuit is being keyed a small condenser and large inductance will be neeressary, while if a lowvoltage high-current cireuit is keyed the capacity required will be high and the inductance

Fig. 606-R.f. filter used for climinating the effecto of sparking at keve contacts. Suitahle values for best result $=$ with individual tram-mittera munt le dotermine ed hy experiment. Values for RI'C ringe from :-. 5 to 801 millihenrios and for (: from 0.0 ol to $0.1 \mu \mathrm{fd}$.
small. lor example, a 300 -volt b -mat. circuit will require about 30 henrys and $0.0: 5 \mu$ fi., while a 300 -volt 50 -ma. cireuit needs about 1 henry and 0.is pfol. For any given circuit and fixed values of current and voltage, increasing the induetance will reduce the clicks on "make" and inereasing the capacity will reduce the clicks on "broak."

Blocked-grid keying is adjusted hy changing the values of resistors and romblonsers in the circuit. In Fig. 60t, the click on "make" is reduced by inereasing the capacity of $(1$, and the click on break is redued hy inereasing ('z and/or R_{2}. The values required for individual installations will vary with the amount of blockiag voltage and the grid current. The constants given in lig. 60 f will serve as a first approximation.

Tube keving - A tube keyor is a convenient adjunct to the transmitter, because it allows the keying charactrristic to be adjusted casily without neressitating condenser and incluctance values which may not be readily available. It uses the plate resistance of a tube (or tubes in parallol to replace the key in a plate or cathode circuit, the kever tube (or tubes) being keyed by the blucked-grid method ($56-2$). A trpical circuit is shown in Fig. 60N. l'ype 45 tubes are suitable because of their low plate resistance and consequent small voltage drop between phate and cathode. When a tube kever is used to roplace the key in a plate or cathode circuit. the power output of the stage will be somewhat redueed because of the voltage drop across the keyer tube, but this can be compensated for by a slight increase in the supply voltane. The use of a tube kever makes the key itself entirely safe to handle, sime the high resistance in series with the key and blucking woltage prevents possible danger of shook through contact with highvoltage cirruits.

1. 6-4 Checking Transmitter Keying

clicks - Transmitter keving can be checked by listening to the signal on a superheterodyone receiver. The antenna should be disconnected, so that the receiver does not overload, and, if necessary, the r.f. gain may be reduced as well. Listening with the beat oscillator and a.v.e. off, the keying should be adjusted so that a slight elick is heard as the key is closed but practically none can be heard when the key is released. When the keying constants have becon allusted to mert this condition, the clicks will be about optimum for all normal amateur work. If the clicks are too pronounced, they will cause interforence with other amateur transmissions, and possibly to nearby broadeast recoivers.

Chirps - Keying chirps (instability) may be checked by tuning in the signal or one of its harmonics on the highest frequency range of the receiver and listening with the b.f.o. on and the a.v.c. off. The gain should be sufficiont to give moderate signal strongth, but it should be low enough to preelude the possibility of overloading. Adjust the tuning to give a low-frequency beat note and key the transmitter. Any ehirp introduced by the keying adjustment will be readily apparent. Listening to a harmonic will magnify the offeret of any instability by the order of the harmonic, and thas make it more perceptible.

Oscillator heying - "he keving of an amplifier is relatively staightforward and requires no special treatment, but a few additional pre-
Fip. 607- Tage cirnit used for shaping the keving character to eliminate umecersary sidehamds. Artual values for any given rircuit mume bedetermined hy experiment, and mas range from \& to 30 henries for I, and from 0.115 to $0 . \overline{5} \mu \mathrm{fd}$. for C, depending on the keyed current.

cautions will be foumd necessary with oweillator keying. Any oseillator, either self-excited or crestal, will key well if it will osidlate at low plate voltages (of the order of one or two volts) and if its change in frequency with plate-voltage change is nexligible. A erystal oscillator will usillate at low phate voltages if a regenerative type of circuit such as the 'lri-tet or gridplate (s.t-i) is used and if an r.f. choke is connorted in sories with the grid leak, to reduce loading on the crystal. Crestal oscillators of this type qenerally are free from chirp unless there is a redatively large air-gap between the crystal and top plate of the crystal holder, as is the case with a variable-frecuency erystal set at the high-frequency end of its range.
Self-controlled oscillators can be made to meet the same requirements by using a high ($) L$ ratio in the tank circuit, low plate and sereen ciurrents, and judicious feed-back adjustment ($\$ 3-7$). A self-controlled oscillator intended to be keyed should be designed for good keying rather than inaximum output.

Stages follouing keving - When a keying filter is being adjusted, the stages following the keyed tube should be made inoperative by removing the plate voltage. This facilitates monitoring the keying without the introduction of additional effects. The following stages should then be added, one at a time, checking the keying after cach addition. An increase in click intensity (for the same carricr strength) indicates that the clicks are being added in the stages following the one being keyed. The fixed bias on such stages should be sufficient to reduce the idling plate current (no excitation) to a low value, but not to zero. Linder these conditions, any instability or tendency toward parasitic oscillations, either of which can adversely affect the keying characteristic, usually will evidence itself.
Monitoring of keying - Most operators find a keving monitor helpful in developing and maint:ining a good "fist," especially if a "bug" or semi-automatic key is used. While several type: have been devised, the most popular consists of an audio osiellator the output of which is coupled to the receiver loud speaker or headphones, and which is keyed simultaneously with the transmitter. Fig. 609 shows the cirruit diagram of a simple keyingmonitor oscillater. The plate voltage, ats well as the heater voltare, is supplied by a 6.3 -volt filament transformer. One section of the 6Fsci dual trionde is used as the rectifier to supply d.c. for the plate of the second section, which is used as the oscillator. A change in the value of h_{1} will alter the output tone. The output terminal labeled (ind should be connected directly to the rereiver chassis, while P_{1} should be commerted to the "hot" side of the headphones. Shunting of the 'phones by the oscilLator may callise some loss of volume on rereived signals, unless the compling capacity, S_{3}, is made suffieiently small. Itowever, the capac-

Fig. 608-Vacunm-tube kever circuit. The voltaze drep across the tuhe- will he approximately 90 volts with the two Type 45 tulies shown, when the keved current is 100 milliamperes. Nure tubers can be commected in parallel to reduce the drop, Sugaested values are as follows: $\mathrm{C}_{1}-2-\mu \mathrm{fl} .600$ volt paper.
(2-0.003- 2 fll, mica.
C3-0.0105- $\mu \mathrm{fl}$. mica.
$R_{1}-0.25$ meqohm. 2 watt.
$\mathrm{R}_{2}-50,000$ ohms, 10 watt.
$\mathrm{K}_{3}, \mathrm{R}_{4}-5$ meythans, $1 / 2$ watt.
$\mathbf{R}_{5}-0.5$ merohm, $1 / 2$ watt.
$\mathrm{Sw}_{w_{1}}$, Sw2-1-cirenit 3 -position rotary switch.
I_{1} - Power transformer, 325 volt: rach side of centertap, with 5 -volt and 2.5 -volt filanent windings.
A wider range of lag adjustment can be obtained hy using additional resintors and condenmers. Supgestur values of rapacity, in addition to C_{2} and C_{3}, are 0.001 and 0.002μ fil. Resistors in addition to R_{2} condd be 2,2,3 and 5 negohms. More swith positions will ber required,

Fig. 609 - Circnit diagram of a k cesing monitor of the audionomeilatar type, with selforontained power supply $C_{1}-25-\mu \mathrm{fd}$. 2. 5 -volt electrolytic. C: $-250-\mu \mu$ fl. mica. (is - Approximately $0.01 \mu \mathrm{fl}$. (see text). $\mathrm{R}_{1}-0.15$ meqohm, ! 2 watt.
$R_{2}-$ Approximately 0.1 niryohm, 1 watt (-retext). ' l_{1} - 6.3-volt 1 -ampere filament transformer.
' I_{2} - Small audio transformer, interstage ty pe.
ity should be made large enough to provide good tramsfer of the oscillator signal.

If the tranmitter oscillator is keved for break-in, the keving terminals of the oscillator may be comected in parallel with those of the transmitter. With cathode keving, terminals 1 and 2 will he comected aross the key, with terminal 2 going to the ground side of the key. With blocked-grid keving, terminals 2 and 3 go to the key and a ressistance of 0.1 megohm or so is inserted in serits with terminal 3.

Electronic keys - S'everal electronic circuits have been devised for produring automatic dots and dashes. A typical example is shown in Fig. (110). The values provide for a maximum speed of ($60 \mathrm{w} . \mathrm{p} . \mathrm{m}$. with a 300 -volt supply. R_{1} and R_{2} should be of the same type and ganged to form the speed control. To adjust for proper operation, ground the right cathode and adjust R_{7} until the left plate current is zero. Do the same thing with the sections reversed, biasing the right section to cut-off temporarily. Adjust R_{5} until the plate voltages are equal. Return the eircuit to normal and cherk the average plate voltages with the key on the "dot" side. If they are unegual, aljust a fixed resistor connected in series with R_{1} or R until they are equal. On dashes, the plate voltage of the right section should drop one-third and that of the left section should inerease by one-third. Adjust the size of C_{3} until this condition is met. (See QST' for March, 194.4.)

Fig. 610 - A multivilirator-tgpe elentronic key. $C_{1}, C_{2}-0.005-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{3}-0.01-\mu \mathrm{fd}$. 700 volt paper.
$\mathrm{C}_{4}-0.01-\mu \mathrm{ff}$.. allproximately.
H_{1}, H_{2} - 2-megohm varialile (sec text).
$\mathrm{H}_{3}, \mathrm{R}_{4}-50,000$ ohms, 1/2 watt.
1hs - 3000) ohms (err resistancor equal tor rr sistance of Ry),
$\mathrm{K}_{6}-0.25$ megohtu. $1 / 2$ watt.
$\mathrm{R}_{7}-75,000$ ohms, $\frac{12}{2}$ watt.
Ry-Sensitive rolay (liby).

C 7-1 Elements of Receiving Systems

Basic requirmmonts - The purpose of a radio receiving system is to abstract energy from masing radio waves and convert it into a form which convers the intelligence contained in the tramsmitted signat. The receiver also must he able to solect a desired signal and eliminate those not wanted. The fundamental processes involved are those of amplification and detertion.

Detaction - The high frequencies used for radio signaling are well beyond the audiofrequency range ($3-7$), and therefore eannot be used to actuate a londspeaker direetly. Neither can they be used to operate other devies, such as relays, by means of which a message might be transmitted. The process of converting a modulated radio-frequency wave to a usable low frequency, called detection or demodulation, is essentially that of rectification ($\$ 3-1$). The modulated carrier ($\$ 5-1$) is thereby converted to a unidirectional enrent, the amplitude of which will vary at the same rate as the inodudation. These low-frequency variations are readily amplified, and can be applied to the headphones, loudspeaker or other form of electromechanical devite.

Cocle signals - The chots and dashes of code (c.w.) tramsmissions are rectified as described, but in themselves can produce no audible tone in the headphones or loudspaker because they are of constant amplitude. For aural reception it is necessary t o introduce a second radio frequency, differing from the signal frequeney by a suitable atulio frequenery, into the detector circuit to produce an audible beat ($\$ 2-13$). The frequency difference, and hence the beat note, is generally of the order of 500 to 1000 cycles, since these tones are within the range of optimum response of both the ear and the headset. If the source of the second radio frequency is a separate oscillator, the system is known as hetcrod!ur recoption: if the detector itsolf is made to oscillate and produce the serond frequency, it is known as an autodyme detector:

Implification - To build up weak signals to usable output level, nodern receivers employ considerahbe amplification - often of the order of humbreds of thousands of times. Amplifiers are used at the freduency of the incoming signal ($r . f$. amplifiors), after detection ($a \cdot f$. amplitiers), and, in superheterodyne receivers, at one or more intermediate radio frequencies (i.f. amplifiers). R.f. and i.f. amplifiers practically always employ tuned circuits.

Types of receicers - Reccivers may vary in complexity from a simple detector with no amplification to multi-tube arrangements having amplification at several different radio frequencies as well at at atio frequency. A regenerative detertor ($\$ 7-4$) with or without audio-frequency amplification ($\$ 7-5$) is known as a regenerative receiner; if the dotector is preceded by one or more tuned r.f. amplifier stages ($\$ 7-6$), the combination is known as a $t . r$.f. (tuned radio frequency) receiver. The superheterodyne recciver ($\$ 7-8$) (mploys r.f. amplification at a fixed intermediate freguency as well as at the frequency of the signal itself, the latter being converted by the heterodyne process to the intermediate fropuency.

At very-high frequencies the superregenerative detector ($\$ 7-\frac{1}{2}$), usually with audio amplifiration, is used in the superregenerative receirer or superregenerator, providing large amplifieation of weak signals with siumbe circuit arrangements.

11 7-2 Receiver Characteristics

Sensitivity - Sensitivity is defined as the strength of the signal (usuatlly expressed in microvolts) which must be applied to the input terminals of the receiver to produce a specified audio-frequency power output at the loudspeaker or headphones (s $7-5$). It is a measure of the amplification or gain of the rereiver.

Fig. 301 -Splectivity surve of a modern superhet erodyne recciver. Relative responee is photed against deviations above and below the resomance freduenc: The seale at the left is in terms of voltaye ratios; the corresponding decibel steps are shown at the right.

Reccieer Principles and $D_{\text {esign }}$

Signal-to-noise ratio- Fvery receiver generates some moise of a hiss-like character, and signals weaker than the noise cannot be separated from it no matter how much amplification is used. This relation between moise and a weak signal is expressed by the term signal-onoise rato. It tan be defined in various ways. one simple way being to give it as the ratio of signal power coutput to noise outpat from the recerber at a perified value of modulated carrier coltare applied to the input terminals.

The hiss-like moise mentioned above is inherent in the circuits and tubes of the receiver, and its amplitude depends upon the selectivity of the recoiver. The greater the selertivity the smaller the mose, ather things being equal ($\$ \mathrm{i}-\mathrm{fi}$). In addition to inherent receiver noise, atmospheric electricity (natural "static") and electrical devices in the vicinity of the receiver alsa cause mise which adversely affects the signal-to-noise ratio.
Selecticity - Solectivity is the ability of a receiver to diseriminate against signals of frequencies differing from that of the desired signal. The ower-ill selectivity will depend upon the selectivity of the individual tuned circuits and the mumber of such circuits.
The selectivity of a receiver is shown graphieally by drawiug a curve which gives the ratio of signal strength required at various frequencies off resmance to the signal strength at resonance, to give romstant output. A resomance curw of this type (taken on a typical com-munisations-t yw superhotormlye receiver) is shown in Fig. Got. The bernl-midth is the width of the resonance curve (in eycles or kilocycles) of a receiver at a specified ratio: in lig. 701. the band-widths are indicated for rations of response of 2 and 10 ("' 2 times down" and "10 times down").
Selectivity for simals within a few kilocyeles of the desired-signal frequency is called irljo-cent-channol selpertivity, to distinguish it from the discrimination against signals considerably removed from the desired frequeney.
stability-The statility of a receiver is its ability to give constant output, over a period of time, from a signal of constant strength and frequeney. Primarily, it means the ability to stay tuned to a given signal. However, a receiver which at some settings of its controls has a tendency to break into osicillation, or "howl," also is said to be unstable.

The stability of a receiver is affected principally by temperature variations, supply-voltage changes, and constructional features of a mechanical nature.

Fidelity-Fidelity is the relative ahility of the receiver to reproduce in its output the modulation (keying, 'phone, etc.) carried by the incoming signal. For exact reprobluetion the band-width must be great conough to accommodate the highest mudulation frequency transmitted, and the relative amplitudes of the various frequency components within the band must not te changed in the output.

Fig. 702 - Simplified and practical diode detector cirruits. A, the elenemtary halfowave diode detertor: B, a practical circuit, with r.f. filtering and audio output coupling; C, full-wave diode detector, with output coupling indicated. The circuit, $L_{2} \mathrm{C}, \mathrm{i}$, is tuned to the sipnal frequeney; typical values for C_{2} and R_{1} in A and $1 B$ are

 ohms. Cis is $0.1 \mu \mathrm{ft}$. and R_{3} may be 0.5 to 1 menohm.

C 7-3 Detectors

Characteristics - The important characteristios of a detector are its sensitivity, fidelity or linearity, resistance or impedance, and sig-nal-handling capability.

Detector sensitivity is the ratio of audiofroquency output to radio-fregurney input. Linerarity is a measure of the ability of the detector to reproduce, as an andio frequenery, the exale form of the modulation on the incoming signal. The resistunce or impedtuer of the detector is important in rircuit design, since a relatively low resistance mons that power is consumed in the detector. The signalharrulling camathiling me:us the ability of the detector to accept signals of a specified amplitude without overhoading.

Diode detectors - The simplest detector is the diode rectifier. Circuits for both half-wave and full-wave ($\$ \mathrm{~s}$-3) diodes are given in Fig. 702. The simplified half-wave circuit at $70:-\mathrm{A}$ includes the r.f. tuned cirenit, $L_{2} \mathrm{C}_{1}$, a coupling coil, L_{1}, from whicll the r.f. energy is fed to L_{2} ('1, and the diode. D, witlo its load resistance, R_{1}, and by-pass condenser. (9. The flow of rectified r.f. current through h_{1} camses a d.e. voltage to develop aross its terminals, and this voltage varies with the moxfulation on the signal. The - and + signs show the polarity of the voltage. The variation in amplitude of the r.f. signal with mudulation causes corresponding variations in the value of the d.e. woltage arross R_{1}. The load resistor. R_{1}. usually

Fig. 03 - Diagrams whowing the detertion process.
has a rather high vatue of resistance, so that a fairly large voltage will develop from a small rectified-rurrent flow.

The progress of the signal through the detector or rectifier is shown in figg. Tols. A tepical modulated signal as it exists in the tuned circuit is shown at A. When applied to the rectifier tube current flows from phate to cathode only during the part of the r.f. cyrle when the plate is positive with respect to the cathode, so that the output of the rectifier consists of half-cycles of r.f. still modulated as in the original signal. These eurrent "pulses" flow in the load rireuit eomprised of R_{1} and C_{2}, the resistance of R_{1} and the eapatity of C_{2} being so proportioned that C charges to the peak value of the rectilied voltage on each pulse and retains enough charge between putses so that the voltage anross R_{1} is smonthed out, as shown in (.) ('2 thus acts as alter for the radio-frequency component of the output of the rectifier, leaving a d.c. component which varios in the same way as the molalation on the original sigual. When this varying d.c. voltage is applied to a following amplitier through a coupling condenser (6 in liig. $702-\mathrm{B}$), only the rarialions in voltage are transferred, so that the final output signal is a.c.. as shown in 1 .

In the circuit at $7(0)-B, h_{1}$ and C_{2} have been divided for the purpose of providing a more effertive filter for r.f. It is important to prevent the apparance of any ref. voltage in the output of the detector. hecause it may cause overloading of a succeeding amplifier tube. The audiofrequency variations ean be transferred to auother circuit through a ronpling condenser, C_{4} in Fig. 702, to a load resistor, R_{3}, which usually is a "potentiometer" ($\$ 8-10$) so that the volume can be adjusted to a desired level.

The full-wave diode cireuit at $702-C$ differs in operation from the half-wavecircuit only in that both halves of the r.f. eveleare utilized. The fultwave eircuit has the advantage that very little r.f. voltage appears arross the load resistor, R_{1},
because the midpoint of L_{2} is at the same potential as the rathode or "ground" for r.f.

The reactance of C_{2} must be smatl compared to the resistance of R_{1} at the radio frequency being rectified, but at audio frequencies must be relatively large compared to $R_{1}(5-5,2-13)$. This comdition is satisfied by the values shown. If the caparity of $C 2$ is too large, response at the higher andio frequencies will be lowered.

Compared with other detectors, the sensitivity of the diode is low. Nince the diode consumes power, the Q of the tuned circuit is reduced, bringing about a reduction in selectivity $(\$ 2-10)$. The lincarity is rood, however, and the signal-handling capability is high.

Grid-leak detectors - The grid-leak detector is a combination diode rectifier and audio-frequency amplifier. In the rircuit of Fig. 704-A, the grid corresponds to the dinde phate and the rectifying action is exactly the same as just desmiberl. The d.c. voltage from rectified-eurrent flow through the grid leak, R_{1}, biases the grid negatively with respect to cathode, and the audio-frequency variations in voltage across R_{1} are amplified through the tube just as in a normal a.f. amplifier. In the plate circuit, R_{2} is the plate load resistance ($\$ 3-3$) and (' 3 is a her-pass condenser to elim-

Fig. 70.4 - Grid-leak dethetor cirenits, A, trinde; B, pentode. A tetrode may he used in the circuit of B by nequeting the suppressor-quid combertion. Transformer conpling may be substituted for resistance coupling in A, or a high-inductance chote may replace the plate revistor in B. $L_{1} C_{1}$ is a cricuit tuned to the signal frequency. 'lhe zrid leak, K_{1}, mas he connected directly from yrid tocathode instrad of acroses the grid condenser as shown. The operation with either connertion will be the same. Representative values for components are:

Componrnt	Circuit 1	Circuit 13
C_{2}	$100102.50 \mu \mu \mathrm{fil}$.	$100110250 \mu \mu \mathrm{fl}$.
C3	0.001 to $0.002 \mu \mathrm{ft}$.	$25010.500 \mu \mu \mathrm{fid}$.
C4	$0.1 \mu \mathrm{fd}$.	$0.1 \mu \mathrm{fd}$.
C5		$0.5 \mu \mathrm{fd}$. or larmer.
R1	1 w, 2 megoluns.	1 10.5 megohtus.
1 Lz	50.000 ohms.	1010.0100 to 2.51 .000 chams.
H_{3}		50.0000 , 1 hans.
R_{4}		20,000 ،hame.
'1'	Audiotranmformer.	
L		500-hepry choke.

The plate voltaye in A should be aloont 50 volt for best sensitivity. In B, the sereen voltase should lio about 30 volts and the plate voltage from 100 to 2.20 .

$R_{\text {eceiver }} P_{\text {rinciples and }} D_{\text {esign }} \quad 145$

inate r.f. in the output cireuit. C'4 is the output coupling rondenser. With a triode, the load resistor, R_{2}, may be replaced by an audio transformer, T, in which case ('4 is not used.

Since audio amplification is added to rectification, the grid-lak detcetor has considerably greater sensitivity than the diode. The sensitivity can be further increased by using a screcn-grid tube instead of a triode, as at 704-13. The operation is equivalent to that of the triode circuit. The screan by-pass cont-
 2-13) for both radio and audio frequencies. lís and R_{4} constitute a voltage divider ($\$(N-10)$ from the pate supply to furnish the proper d.c. voltage to the screen. In both eircuits, C? must have low r.f. reactance and high a.f. reactance compared to the resistance of K_{1}; the same applies to ('3 with respert to l_{2}.

Because of the high phate resistance of the screen-grid tube ($\$ 3-5$), transformer coupling from the plate circuit of a sereen-grid detector is not satisfactory. An impedance (L in Fig. 704-B) can be used in phace of a resistor, with a gain in sensitivity because a high value of load impedance can be developed with little loss of plate voltage as compared to the woltage drop through a resistor. The coupling coil, L_{2}, for a seren-grid detertor shomald have an inductance of the order of 300 to 500 henres.

The sensitivity of the grid-leak detector is higher than that of any other type. Like the diode, it "lowds" the tumed cirenit and reduess its selectivity. The linearity is rather poor, and the signal-handling rapability is limited.

Plate delectors - The plate detector is arranged so that rectification of the r.f. signal takes place in the pate circuit of the tube, as contrasted to the grid rectification just deseribed, suffirient negative bias is applied to the grid to bring the plate current nearly to the cut-off point, so that the application of a signal to the grid circuit causes an increase in average plate current. The aworge piate current follows the changes in signal amplitude in a fashion similar to the rectified current in a diode Ietector.

Circuits for triodes and pentodes are given in Fig. 70.3. C_{3} is the plate br-pass condenser, R_{1} is the eathode resistor which provides the operating grid bias ($\$ 3-6$), and (2 is a by-pass for both radio and audio frequencies across R_{1} ($\$ 2-13$). R_{2} is the plate load resistance ($\$ 3-3$), across which a voltage appears as a result of the rectifying action described above. C_{4} is the output coupling condenser. In the pentode circuit at $I 3, R_{3}$ and R_{4} form a voitage divider to supply the proper potential (about 30 volts) to the screen, and C_{5} is a by-pass combenser between sereen and cathode. ("s musit have low reactance for both radio and tudio frequencies.

In general, transformer coupling from the plate circuit of a plate detector is not satisfartory, because the plate impedance even of a trionde is very high when the bias is set near the phate-current cut-off proint (83-2, 3-3). Im-

 pentode. Ther inght cirmit, l_{1} (i, is tmed to the singal frequenes. lippidal value for the other constants are

Compourt	\% Circuit 1	Circtit 11
C:2	$0.5 \mu \mathrm{fl}$. or liarger.	0.5 ufl. eir larmer.
C_{3}	$0.001100 .002 \mu \mathrm{fld}$.	25010.500 m 20 fd .
Ca_{4}	$0.1 \mu \mathrm{fI}$.	$0.1 \mu \mathrm{fd}$.
(is		$0.5{ }^{\text {aful }}$ ur lierger.
H_{1}		10, 1900 to 20,600 ohati-
H_{2}	50,000 to L00,000 whme.	
R_{3}		50.00110 (1).10.
R_{4}		20,000 uhan=

Plate voltages from loo in 250 volts may law umetl. Effectise screon volage in 3 shoulal be abous 30 veits.
pedance coupling maty lie used in phace of the rexistance coupling shown in Fig. 70B. The sameorder of inductance in required as with the screen-grid detector dewribed previonsly.

The phate detector is more sonsitive than the diode since there is some amplifying action in the tube, but less so than the grid-leak detector. It will handie comsiderably larger signals than the grid-leak deteretor, but is not quite so tolerant in this respect as the diode. Lincarity, with the self-biased circuits shown, is good. Up to the wiorlead point the detector takes no power from the tuned eireuit, and so does not affect its Q and selectivity ($\$ 2-10$).

Infinite-impedance detector - The circuit of Fig, Tot combines the high signal-handling eapabilities of the diode detector with low distortion (good linearity), and, like the plate detector, does not load the tumed circuit to which it is comnected. The circuit resomblos that of the pate detector, execpt that the load resistance, R_{1}, is connected between cathonde and ground and thus is common to both grial and plate circuits, giving negative feed-hack for the andio frequencios. The cathode resistor is by-passed for r.f. (C_{1}) but not for andio ($\$ 2-13$), while the plate cirenit is by-pasied to gronnd for both audio and radio frequencies. R_{2} forms, with ("3, an $R C^{\prime}$ filter ($\$ 2-11$) to isolate the plate from the " 13 " supply at a.f.

The phate current is very low at no signal, inereasing with signal as in the case of the plate detector. The voltage drop across h_{1} similarly increases with sigath hecause of the
inmeased plate rorrent. Breanse of this and the fact that the intial drop across R_{1} is large, the grid ramme be driven positive with respert to the cathoule hey the signal, hence no grid current can be drawn.

Fig. For- The intinite-impedaner limear detectar. The input rircuit, logei, is tumed to the sipual frequenes. Ty pinal waco for the wher constants are:

 A tuln having a medinm amplificatien fartor (about

C 7-4 Regenerative Detectors

Circuits- By prowiding controllable r.f. feed-hack or regeneration (\$3-3) in a trionde or pentode detector cirevit, the incoming signal can be amplitiod many times, thereby greatly increasing the smitivity of the detector Regencration atho incrases the effective Q of the cirmit, and home increases the solectivity $(\$ 2-10)$ by virtue of the fact that the maximum regencation amplification takes place only at the frempury to which the circuit is tuned. The gridleak tepe of detector is most suitable for the purpose. Wxeept for the regemeative combertion, the circuit values are identical whith these previonsty deseribed for this type of duthethe and the same considerations andy. The amome of reweneration must be controliabor, because maximum regenerative amplifieation is seenred at the eritical point whore the rirenit is just alout to ossillate ($\$ 3-\overline{\text { o }}$) : and the eritical point in turn depends upon circuit comditions, which may vary with the fregurnes to which the deterter is tuned.
lig. कut whe the cirenits of regenerative detectors of varions types. The cirenit of A is for a trisele tube, with a variable by-pass comdenser, ('z, in the phate cirruit to control regeneration. When the rapacity is small the thbe dues not reqenerate, but as it inereases toward maximan its reactance ($\mathbf{s} \mathbf{s}-\mathbf{z}$) becomes smaller until a rritical value is reached where there is sufficient ferd-back to callse oscillation. If L_{2} and L_{0} are wound end-to-end in the same direction. the phate comnection is to the outwide of the phate or "tickler" coil, L_{3}, when the grid comaretion is to the outside of L_{2}.

The rirenit of B is for a sareen-grid tube, reLemeration bethg controlled by adjustment of the seremen-grid voltage. The tiekler, L_{3}, is in the plate circuit. The portion of the control resintor between the rotating eontact and gromul is be-passed by a large condenser (19.) μ ith. or more) to filter out weratching noise when the arm is rotated ($2-11$). The feend
back is adjusted by varying the number of turns on L_{3} or the coupling ($\$ 2-11$) bet ween L_{2} and L_{3}, until the tube junt goes into bisillation at a screen voltage of approximately 30 wolts.
Circuit C is identical with 13 in principle of operation, except that the wsillating circuit is of the Hartley type ($\mathbf{3} \mathbf{3}-\overline{7}$). Since the surven and plate are in paralled for r.f. in this circuit, only al small amount of "tickler" - that is, relatively few turns betwern the athorde tap and ground - is required for orcillation.

Aljustment for smooth regeneration The ideal regeneration control would permit the detector to go into and out of oxillation smoothly, would have no effect on the frequency of oscillation, and would give the same value of regeneration regardless of frequency and the loading on the circuit. In practies, the effects of loading, particularly the hading that occurs when the detectur circuit is compled to an antenma, are diftientt to weremme. Likewise, the regeneration is affectal by the frequeney to which the grid cirenit is tumed.

In all circuits it is best to wimb the tickler at the gromed or cathese eme of the gride coil, and to ure as few turns on the tickler as will allow the detector to uscillate easily over the whole tuning range at the phate (and sorem, if a pentode) whltage which gives maximum sensitivity. Shorld the tuhe break into owerillation suddenly as the regencration control is advanced making a click, the "fmeration ofton can be made smowther hy changing the pridleak resistance to a higher or lower value. The wrong grid leak phas tow-high phate athl sereen woltage are the most freguent fanses of lack of smoothers in woing into nescilation.

Anteman coupling- if the netector is coupled to an antema, slight changes in the antemat comstants (as when the wire swings in a brecere) affert the frefuency of the ascillations generated, aml thereb the beat frequeney when c.w. signals are being reecived. The tighter the antemat coupling is made, the greater will be the feed-back required or the higher will he the woltage neerssary to make the detector ascillate. The antenna coupling should be the maximum that will :allow the detector to go intn oscillation moothly with the correct voltages on the tube. If raparity coupling ($\$ 2-11$) to the grid end of the coil is used, only a very smatl amonnt of caparity will be needed to couple to the antemat. Increasing the caparity increases the eompling.

At frequencies where the antenna system is resonant the absorption of energy from the oscillating detector circuit will be greater, with the consequence that more regencration is needed. In extreme cases it may not he passible to make the detector wisillate with nurmal voltages, eaming su-callen "dead spots." The remedy for this is to lowem the anteman conpling to the point which permits nomat ascillattion and smooth regeneration centrol.

Body capacily-A regencrative deteetior oreasionally show a tendmey to change fre-
quency slightly as the hand is moved near the dial. This eondition (bod!y capacity) ran be caused by poor design of the receiver, or by the antemas if the detector is coupled directly to it. If haly capsacity is present when the antemat is diseomereted, it can be eliminated by better shedding, and somotimes by r.f. filtering of the phome leads. Body capacity which is present only when the antemna is connerted is cansed hy resonance effects in the antenna, which tend to caluse a portion of a standing wave (S9-12) of r.f. voltage to appear on the ground lead and thas raise the whole detertor cireuit above ground potential. A good, short ground comnection should be made to the receiver and the length of the antema varied clectrically (hy adding a small coil or variable comdenser in the antenma lead) until the effort is minimizad. loosening the coupling to the antenna circuit also will help.

Hum - Hum at the power-supply frequency may be present in a regenerative detector, especially when it is used in an oscillating condition for cow, reception, even though the plate supply itsolf is free from ripple ($\$ 8-4$). The hum may result from the use of a.c. on the tube heater, but effects of this type normally are troublesome only when the circuit of Fig. 707-C is used, and then only at $1+\mathrm{Mr}_{\mathrm{c}}$. and higher frequencies. Commecting me side of the heater supply to ground, or grounding the center-tap of the heater transformer winding, is good practice to reduce hum, and the heater wiring should be kept as far as possible from the r.f. circuits.

House wiring, if of the "open" type, will have a rather extensive electrostatic field which may rause hum if the detector tube, grid lead, and grid condenser and leak are not electrostatically shielded. This type of hum is easily rerognizathe beratise of its rather high pitch, a result of harmoniss (8-7) in the power-supply system. The hum is caused by a species of grid modulation (s $\overline{\mathrm{s}}-4$).
Antemma resoname efferts frequently cause a hum of the same nature as that just deseribed which is most intense at the various resonance points. and hence varies with tuning. For this reason it is called tumable hum. It is prone to occur with a reetified a.c. plate supply ($\$ \mathrm{~s}-1$) when a stamling wave effert of the type described in the preceding paragraph oceurs, and is associated with the non-linearity of the rectifier tube in the plate supply. Elimination of antenna resomane effects as described and be-passing the rectifier plates to cathode (using by-pass condensers of the order of $0.001 \mu \mathrm{fl})$.u :ually will cure it.

Tuning - Fur c.iv. reception, the regeneration control is advanced until the detector breaks into a "hiss," which indicates that the detector is owillating. Further advancing the regeneration control after the detector starts oscillating will result in a slight decrease in the strength of the hiss. indicating that the sensitivity of the detector is decreasing.

The proper adjustment of the regeneration control for best reception of c.w. signals is where the detector just :tats tomsillate, when it will he found that r.w. signals rabl be tumed in and will give a tone with eath signal depernding on the setting of the tuming control. As the receiver is tumed throurh at signal the tone first will be heard ats a very high piteh. then will gon down through "zerobeat " (the region where the frequencies of the incoming sighal and the osrillating detector are so mealy alike that the differene or beat is less that the lowest atatibur tone) and rise agatin on the other side, finatly disappearing at a very high pitels. This hehatom is shown in Fig. 70s. It will be fonnd that a low-pit ched beat-note cammot be obtained from a strong signal berause the deteretor "pulls in" or "blocks"; that is, the sigmal tende wome rol the detector in such a way that the latter osieillates at the sigmal fremuency, despite the fact that the circuit may not be funch examety to resonance. This phenomenon, commonly observed when an wailator is complent to at source of a.c. voltage of apposimately the

Fif. 707 - Triode and pentode resenerative delector circuits. 'The input circuit, L_{2} Gi, is tumed to the -iqnal frequeney. Ihe prid condenser, A_{2}, should have a value of about 100 m fif. in all cirevits: the grid leak. R_{1}, may range in value from I to 5 meqohm-. 'lhe tichler coil, L_{3}, ordinarily will have from 10 to 25 prer cent of the number of turns on $/ .2$; in C , the cathode tap is about 10 per cent of the number of turns on J_{2} almon eronnd. Regeneration control condenser C_{3} in A shoulel have a maximum capacity of $100 \mu \mu \mathrm{fd}$. or more: by-pas- comdensers Co in 13 and C are likewise $1010_{\mu \mu \mathrm{f}} \mathrm{l}$. (C is ordi-
 $R_{3}, 50,000$ to 100,000 ohms. L_{4} in 13 ($I_{\text {est }}$ in ($)$ is a 500 . henry inductance, C is $0.1 \mu \mathrm{fd}$. in both direnits. T_{i} in A is a ronventional audio transformer for compline from the plate of a tube to a following prid. $R / P C$ is 2.5 mh. In A, the plate voltage should be almut 50 volt - for best sensitivity. Pentode circuits require about 30 volts on the screen; plate voltage may be 100 to 250 volts.

Fig, 708 - Is the tuming dial of a receiver is turned path a cow, signal, the brat-note varies from a high tome down through "zero heat" (no andible frequency differance) and hach up to a hiph tome, as shown ai A, B and C. The eurve is a zraphical representation of the action.
 mot heard because of the limitations of the andio system.
frequency at which the oscillator is operating, is called "locting-in"; the more stahle of the two frequencies assumes control over the other. " Blocking" usually ran be corrected hy advancing the rageneration control until the brat-mote wecurs agaim. If the regenerative detector is preceded by an r.f. amplifier stage, the blocking can be climinated be reducing the gain of the r.f. stage. If the detector is coupled to an antenna, the borking condition can be climinated by adsanding the regeneration contrul or loosening the antema coupling.
'The point just after the recciver starts oscillating is the nost sensitive condition for c.w. rewoption. Further advancing the regencration control makes the receiver less prone to blocking by strong signals, hut also less capable of recolving weak signals.

If the receiver is in the wailating condition and a 'phone signal is tuned in, a steady andible beat-mote will result. While it is possible to listen to 'phone if the receiver can be tuned to exalet \%ero beat, it is more satisfactory to reduce the regencration to the point just before the receiver goes into oscillation. This is also the most sensitive operating point.

Superregeneration - The limit to which ordinary regencrative amplifieation can be rarried is the point at which owillations commonee, since at that point further amplification "eases. The suberrgemerutive detector overcomes this limitation by introduring into the delector circuit an alternating voltage of a frequency somowhat above the audible range (of the order of 20 to 200 kilocyctes), in such a way as to vary the detertor's operating point ($\$ 3-3$). As a consequence of the introduction of this quench or interruption frequency, the detector can ascillate only when the varying operating point is in a region suitable for the production of oscillations. Because the oscillations are constantly being interrupted, the regencration can be greatly increased, and the amplified signal will buidd up to tremendous proportions. A one-tube superragenerative de-
tertor is eapable of an inherent sensitivity approaching the thermad-agitation noise level of the tumed eireuit, and may have an antenna input sensitivity of two mierovolts or better.

Becaluse of its inherent charanteristies, the superregenerative circuit is suitable only for the reecption of modulated signals, and operates best on the very-high frequencies. Typical superreqenerative circuits for the veryhigh frequencies are shown in Fig. 709.

The basic regenerative deteetor circuit is the ultraudion oscillator ($\$ 3-7$). In Fig. 709-A the quench frequency is obtained from a soparatc oscillator and introduced into the plate circuit of the detector. The quench oseillator, operating at a low radio frequency, alternately allows oscillations to build up in the regenerative circuit and then causes them to die out. In the absence of a siynal, the thormal agitation noise in the input circuit produces the voltage that initiates the buidd-up process. However. When an incoming signal provides the initiating pulse, it has the effect of advaneing the starting time of the oscillations. This causes the area within the cuvelope to increase, as indicated in Fig. 710-C.

If regeneration in an ordinary regenerative circuit is carried suffieiently far. the circuit will break into a low-frequency oscillation simultaneonsly with that at the operating radio frequency. This low-frequency oscillation has nuch the same quenching effect as that from a separate oscillator. hener a cirmuit so oporated is ralled a self-quenching superregrenerative detector. The frequency of the quench oseillation deprods upon the forel-back and upon the time constant of the grid leak and condenser, the oseillation being a "blocking" or "squegging" in which the grid acemmulates a strong negrative charge which doer nut leak off rapidly enough through the grid leak to prevent a relatively slow variation of the operating point.

Fig. T09 - (A) Superregentrative detector circuit using a separate quench oscillator. (13) Sclf-quenched superreqenerative detector circuit. I.zCi is tuncd to the signal freduency. I'ypical values for other components are: C2 $-50 \mu \mu \mathrm{fd}$. $\quad \mathrm{K}_{4}-\mathbf{- 5 0 , 0 0 0}$ obme.
(.3-500 $\mu_{\mu} \mathrm{fd}$.
$(\mathrm{C}-0.1 \mu \mathrm{fil}$.
Tl-Audio transformer, plate-to-prid type.
$\mathrm{C}=0.001-0.005 \mu \mathrm{fd}$. KFC : - R.f. chooke, value de.
$R_{1}-2.10$ merohms.
$\mathrm{R}_{2}-50.000$ ohms.
R_{3} - 50.000 -ohna juter. tiometer.
pending upon frequency. Small low-capacity chokes are required for v.h.f. operation.

(D)

Fig. 710 - R.f. oseillation envolopes in a selfequenched superregenerative detertor. Withont signal (A at left) oseillations are completely quenched after earh period, resuming in random phase depending on momentary noise voltages. At right, when the initiating pulses are supplied hy a received sipnal the starting time of the oscillations is advanced cansing the huild-mp period to bepin before damping is eomplete. This advance is proportional to the carrier amplitude when modulated (${ }^{(3)}$). Since the buiding-ap period varies in accordance with modulation (C), when these wave trains are reetified the average rectified current is proportional to the amplitude of the sipnal. Amplitule modulation is therefore r produced as an aulio wave in the output circuit (1)).

The greater the difference between the quenching and signal frequencies the greater the amplification, beratuse the signal then has a longer priod in which to build up during the nonquenching half-cyele when the resistance of the circuit is negative. This ratio should not excered a certain limit, however, for during the quenched or nonregenerative intervals the input selectivity is merely that of the () of the tuned cireuit alone. The optimum quench frequency is in the neighborhood of 150 kc . for the $60-\mathrm{Mc}$. band and 250 kc . for 112 Mc .

The superregenerative detector has relatively little selectivity as compared to a regular regenerative detector, but diseriminates against noise such as ignition interferrence. It also has marked a.v.c. action, strong signals being amplified much less than weak signals.

Adjustment of superregenerative detectors - Because of the greater amplification, the hiss noise when a superregenerative deteetor goes into oscillation is much stronger than with the ordinary regenerative detector. The most sensitive condition is at the point where the hiss first becomes marked. When a signal is tuned in, the hiss will disappear to a degree which depends upon the signal strength.

Lack of hiss indicates insufficient feed-bark at the signal frequency, or inadequate quench voltage. Antenna loading effects will cause dead spots which are similar to those in regenerative detectors and can be overcome by the same methods. The self-quenching detector may require critical adjustment of the grid leak and grid condenser values for smooth operation, since these determine the frequency and amplitude of the quench voltage.

(1. 7-5 Audio-Frequency Amplifiers

General - The ordinary detector does not produce very much audio-frecurenes power output - usually not enough to give satisfactory sound volume, even in headphone reception. Consequently, audio-frequence amplifiers are used after the detoctor to increase the power level. One amplifior usually is sufficient for headphones, but two stages generally are used where the recciver is to operate a lomatspeaker, A few milliwatts of a.f. power is sufficient for headphones, but a loudspeaker requires a watt or more for good room volume.

In all except battery-operated receivers, the negative grid bias of audio amplifiers usually is secured from the voltage drop, in a cathode resistor ($\$ 3-6$). The eathoule resistor must he bypassed by a condenser having low reactance at the lowest audio frequency to be amplified, compared to the resistance of the cathode resistor (10 per cent or less) ($\$ 2-\infty, 2-13$). In battery-operated receivers, a separate gridbias battery generally is used.

Headset and voltaze amplifiers- The circuits shown in Fig. 711 are typical of those used for voltage amplification and for providing sufficient power for operation of headphones (§ 3-3). Triodes usutally are proferred to pentodes becanse they are better suited to working into an audio transformer or headset, the input impedances of which are of the order of 20,000 ohms.

In these circuits, R_{2} is the cathode bias resistor and C_{1} the cathode by-pass condenser. The grid resistor, R_{1}, gives volume control action ($\$ 5-9$). Its value ordinatily is from 0.25 to 1 megohm. C_{2} is the input coupling condenser, already discussed under dotectors: it is, in fact, identical to C_{4} in Figs. 704 and 705, if the amplifier is coupled to a detertor.

Poneer amplifiers - A popular type of power amplifier is the single pentote, operated Class A or $A B$; the rircuit diagram is given in Fig. 711-A. The grid resistor, R_{1}, may be a potentiometer for volume control, as shown at

Fig. 311 - Audio amplifier circuits used for voltage amplitication and to provide power for hoalphone out. put. The tubes are operated as Class-A amplifiers ($\$ 3 \cdot 1$).
R_{1} in Fig. 711. The output transformer, T, should have a turns ratio (\$2-9) suitable for the loudspeaker used; many of the small loudspakers now a vailable are furnished complete with output transformer.

When greater volume is needed, a pair of pentodes or tetrodes may be eomnected in push-pull (\$3-3), as shown in Fig. 712-13. Transformer coupling to the voltage-amplifier stage is the simplest method of ohtaining pushpull input for the amplifier grids. The interstage transormer, T_{1}, has a conter-tapped secondary with a secondary-to-primary turns ratio of about 2 to 1 . An output transformer, T_{2}, with a center-tapped primary must be used. No by-pass rondenser is neaded aross the cathode resistor, R, since the a.f. current does not flow through the resistor as it does in single-tube circuits ($\$ 3-3$).

Tone conirol - A tone control is a device for changing the freguency response (8-3) of an atudio amplifier; usually it is simply a method for reducing high-frequency response. This is helpfulin reducing hissing and crackling noises without disturbing the intelligibility of the signal. R_{4} and ('s, in fig. 711-D, together form an effective tone control of this type. The maximum effeet is serured When the resistance of R_{4} is entirely out of the eircuit, leaving ${ }^{*}$ a connerted directly between grid and ground. R_{4} should be large compared to the reartance of $\left(\begin{array}{l}\text { (} \\ (\$ 2-8) \\ \text { so } \\ \text { shat then }\end{array}\right.$ resistance is all in cireuit the effecet of $C, 4$ on the frequency response is negligible.

Headphonesand loudspeakers-Twotypes of headphones are in general use, the magnetic and crysinl types. They are shown in crosssection in Fig. 713. In the magnetic type the signal is applied to a roil or pair of coils having a great many turns of fine wire wound on a permanent magnet. (Heatphones having one coil are known as the "single-pole" type, while those having two roils, as shown in Fig. 713, are ralled "domble-pole.") A thin circular diaphragm of iron is placed clowe to

Fig. 712 - Poweroutput audio amplifier circuits. Fi. ther Class A or AB amplification (\$3-1) may be nsed.
the open ends of the magnet. It is tightly clamped by the earpiece assembly around its circumference, and the conter is drawn toward the permanent magnet under some tension. When an alternating current flows through the windings the fiedd sot up by the current alternately adds and opposes the steady field of the permanent magnet, so that the diaphragm alternately is drawn nearer to abd allowed to spring farther away from the mannet. Its motion sots the air into correspomdine vibration. Although the d.e. resistane of the eroils may be of the order of 2000 ohms, the a.e. impedance of a matgetic type headset will be of the order of 20,000 ohms at 1000 eyeles.

In the erystal headphone, two piezonelectric crystals ($\$ 2-10$) of Ruchelle salts are cemented toget her in such a way that the pair tents to be bent in one direction when a voltage of a certain polstrity is applied and to bend in the other direction when the polarity is reversod. The crystal unit is rigidly mounted to the earpiese, with the free end coupled to a diaphramm. When an alternating voltage is applied, the altornate bending as the polarity of the applied voltage reverses makes the diaphragm vibrate back and forth. The impedance is several times that of the magnetic type.

Mannetic-type headsets tend ta give maximum response at frequencies of the order of 500 to 1000 (ycles, with a considerahle reduction of response (for constant applicd voltage) at frequencies both above and below this region. The crystal type has a "flatter" frequenceresponse curve, and is partionlarly good at reproducing the higher audio frequencies. The peaked response curve of the magnetic type is advantageous in code reception, since it tends to reduce interference from signals having beat toncs lying outside the region of maximum response, while the crystal type is botter for the reception of voice and music. Magnetio healsets can be used in circuits in which d.e. is flowing, such as the plate circuit of a vacuam tube, providing the current is not too large to be carried safely by the wire in the coils: the limit is a few milliamperes. Crystal headsets must be used only on a.e. (since a stoady d.c. voltage will damage the (ervstal unit), and consequently must be coupled to the tube through a device, such as a condensor, which isolates the d.c. voltage but permits the passage of an alternating current.

The most common type of loudspeaker is the dynamic type, shown in cross-section in Fig. 713. The signal is applied to a small coil (the voice coil) which is free to move in the gap between the ends of a magnet. The magnet is made in the form of a cylindrical coil slightly smaller than the form on which the voice coil is wound, with the magnetie circuit completed through a pole piece which fits around the outside of the voice eoil leaving just enough clearance for free movement of the coil. The path of the flux through the magnet is as shown by the dotted lines in the figure.

Fig. 713 - Headphone and londspeaher construetion.
The voide coil is supported so that it is free to move along its axis but not $i n$ othor directions, and is fastenced to a diber or paper romical diaphragm. When current is sont through the eoil it moves in a direction determined by the polarity of the eurrent ($82-5$), amd thus moves back and forth when an alternating voltage is applied. The motion is transmitted hy the diaphrigm to the air, setting up sound waves.

The type of spaker shown in lige. 713 obtains its fixed magnetic field by electromagnetie me:ns, direct current being sent through the field coil fur this purpose. Other types use permanent magnets to replace the electromagnet, and hence do mot require a source of d.e. power, The woure reils of dynamic speakers have few turns and therefore low impedance, values of 3 to 15 ohms being representative.

[f 7-6 Radio-Frequency Amplifiers

Circuits - Although there may he variations in detail, practically all r.f. amplifiors conform to the basic circuit shown in Fig. 714. A sereen-grid tube, usually a pentode, is used, since a triode will oseillate when its grid and plate circuits are tumed to the same frequency (§ 3-5). The amplifier operates Class A, without grid current ($\$ 3-4$). The tuned grid circuit, $L_{1} C_{1}$, is coupled through L_{2} to the antenna (or, in some cases, to a preeding stag(). R_{1} and C_{2} are the cathode bias rusistor and by-pass condenser, C_{3} is the sereen by-pass condenser, and R_{2} is the sereen dropping resistor. L_{3} is the primary of the output transformer (\& 2-11), tightly coupled to L_{4}, which, with C_{5}, wonstitutes the tuned circuit feading the dotertor or following amplifier. The input and output circuits. $L_{1} C_{1}^{+}$and $L_{i} C_{3}$, are both tuned to the signal frequency.

Shielding - The screen-grid construction of the :amplifier tule prevents feed-back (\$3-3) from plate to grid inside the tube, but in addi-
tion it is necessary to precent transfer of cinergy from the plate circuit to the grid ceirenit external to the tute. This is accomplished by enelosing the coils in grounded shiclding cont:iners and by keeping the plate and grid leads well separated. With "single-ended" tubes. care in laying out the wiring to ohtain the maximum possible physical separation between phate and grid leads is necessary to prevent capacity coupling.

The slield around a coil will reduce the inductance and Q of the coil $(\mathbb{s}-11)$ to an extent which depends upon the shielding material and the distance it is placed from the cril. Adjustments therefore must be made with the shield in phace.
$B y$-passing - In addition to shiclding, good by-passing ($\$ 2-13$) is imperative. This is not simply a matter of choosing the proper type and capacity of by-pass condenser. Short sepurute leads from C_{3} and C_{4} to cathode or ground are a prime necessity. At the higher radio frequencies even an inch of wire will have enough induct:ance to provide feed-bark coupling, and hence cause oscillation, if the wire happens to be common to both the plate and grid circuits.

Gain control - The gain of an r.f. amplifier usually is varied by varying the grid bias. This method works best with variable- μ type tubes ($\$ 3-5$), hence this type usually is found in r.f. amplifiers. In Fig. 714, R_{3} and R_{4} comprise the gain-control circuit. R_{3} is the eontrol resistor ($\$ 3-6$) and R_{4} a dropping resistor of such value as to make the voltage across the outside terminals of R_{3} about $\bar{i} 0$ volts ($s k-10$). The gain is maximum with the variable arm on R_{3} all the way to the left (grounded), and minimum at the right. R_{3} could simply be placed in series with R_{1}, omitting R_{4} contirely, but the range of control with this connection is limited because it depends on the cathode current alone.

In a multi-tube receiver the gain of several stages may be variod simultameonsly, a single eontrol suffieing for all. The lower ends of the several cathode resisturs $\left(l_{1}\right)$ are then connected together and to the movable eontaret on R_{3} in Fig. 714.

Circuit values - The value of the cathode resistor, R_{1}, should be calculated for the minimum recommended bias for the tube used. The raparities of C_{2}, C_{3} and C_{4} must be such that the reartance is low at radio frequencios: this condition is casily met by using ($0.01-\mu \mathrm{ft}$. condensers at communication frequencies. or 0.001 to 0.002 mica units at very-high fre-

Fig. Flf- Basic circuit of a tunted radiss-frofurmey amplifier. Component values are discussed in the trat.
quencies up to 112 Me . ha_{2} is found by taking the difference betwern the recommended plate atnd sareen voltages, then substituting this and the rated sereen current in Ohm's Law (\$2-6). R_{3} must be selected on the basis of the number of tubes to be controlled: a resistor must be chosen which is capable of carrying, at its lowresist:ance end, the sum of all the tube currents plus the bleeder current. A resistor of suitable current-ratrying rapacity heing found, the bleder current necessiry to produce a drop through it of alout 50 volts man be calculated by Ohm's Law. The same formula will give R_{4}, using the plate voltage less 50 volts for E and the bheder current previously found for I.

The constants of the tuned circuits will depend upon the frequency range, or band, to be coverod. A fairly high $L_{/} C$ ratio (\$2-10) should be used on earh band; this is limited, lowever, by the irreducible minimum capacities. To an allowance of 10 to $20 \mu \mu \mathrm{fd}$. for tube and stray capacities should be added the minimum caparity of the tuning condenser.

If the input circuit of the amplifier is connected to an antenna, the coupling coil. L_{2}, should he adjusted to provide critical coupling ($\S 2-11$) betwren the antemna and grid circuit. This will give maximum enorgy transfor. 'The turns ration of L_{1} 'Lowill depend upon the frequenes, the tepe of tube used, the Q of the cunded circuit and the constants of the antemma system, and in general is hest detomined experimentally. The solectivity will increase as the coupling is reduced helow this "optimum" value, a consideration which it is well to keep in mind if seloctivity is of more importance than maxinnem rain.

The output-circuit coupling depends upon the phate resistance ($\$ 3-2$) of the tube, the input resistance of the succeeding stage, and the Q of the tuned circuit, L_{4} C'5. L_{3} usually is coupled as closely as possible to L_{4} (avoiding the neressity for an adtitional tuning condenser arross L_{3}) and the energy transfer is maximum when L_{3} has $2 / 3$ to $4 / 5$ as many turns as L_{4}, with ordinary receiving pentodes.

Tube and circuit noise - In any conductor electrons will he moving in random directions simultancously and, as a result, small irregular voltages are developed arross the eonductor torminats. The voltage is larger the greater the resistance of the conductor and the highor its temperature. This is known as the thormalagitution effert, and it produces a hiss-like noise voltafe distributed uniformly throughout the radio-frequeney spectrum. The thermatagitation noise voltage appearing across the lerminals of a tuned circuit will be the same as in a resistor of a value equal to the parallel impedance ($\stackrel{\Sigma}{2}-10$) of the tuned circuit, even though the actual circuit resistance is low. Honce, the higher the (ℓ of the circuit, the greater the thermal anitation noise.

Another component of hiss noise is developed in the tube because the rain of electrons on the plate is not entirely uniform. Simall ir-
regularities caused by gas in the tube also contribute to the effect. Tube noise varies with the type of tube: in general, the higher the cathode current and the lower the inutual conductance of the tube, the more internal noise it will gencrate.

To obtain the best signal-to-noise ratio, the signal must be made as large as possible at the grid of the tube, which means that the antenna compling must he adjusted to that end and also that the Q of the grid thned circuit must be high. A tube with low inherent noise obviously should be chosen. In an amplifier having good signal-to-noise ratio, the thermal-agitation noise will be greater than the tube noise. This can easily be checked by disconnecting the antemna so that no outside noise is being introchuced into the receiver, then grounding the grid through : $0.01-\mu \mathrm{id}$. condenser and observing whether there is a decrease in noise. If there is no change the tuthe noise is greatly predominant, indicating a poor signal-tonoise ratio in the stage. The test is valid only if there is no regeneration in the amplifier. The signal-to-noise ratio will decrease as the frequency is rased, berause it becomes increasingly diflicult to obtain a tuned circuit of hish effective Q (8 7-7).

The first stage of the receiver is the important one from the standpoint of signal-to-noise ratio. Noise generated in the second and subsequent stages, while comparable in magnitude to that generated in the first, is masked by the amplified uoise and signal from the first stage. After the second stage, further contributions by tubes and rirenits to the total noise are inconsequential in any normal receiver.

Tube input resistance - At high radio frequencies the tube may eonsume power from the tumed grid rireuit, even though the grid is not driven positive by the signal. Above 7 Mc all tubes "load" the tuned circuit to some extent, the amount of loading varying with the type of tube. This effert comes about because of the transit time necossary for electrons to travel from the eathode to the grid beeomes comparable to the time of one r.f. cercle, and becaluse of the degrnerative effert ($(3-3)$ of the athode lead induetanere. It becomes more pronomoced as the frepumer is incroasod. Certain types of tubes maty have an input resistancer of only a few thomsand ohms at 28 Mc . and as little as a few hundred ohms at very-high frequencios. The input resistance of the same tubes at 7 Mc. and lower frequencies may be so high as to be considered infinite.

This imput-londing effect is in addition to the normal derrease in the Q of the tuned circuit alone, because of increased losses in the coil and condenser at the highor frequencies. Thus the selectivity and gain of the circuit both are affected adversely by increasing frequency.

Comparisom of tribes - At 7 Mc , and lower frequencies, the sigmal-to-moise ratio, gain, and selectivity of an r.f.-amplifier stage are sufficiently high with any of the standard receiving

Receiver Principles and Design 153

tubes. At 14 Mc. and higher, however, this is no longer true, and the choice of a tube must. be based on several conflicting considerations.

Gain is highest with high mutual-conductance pentodes, the 6AB7 and 6AC7 being examples of this type. These tubes also develop, less noise thin any of the others. The inputloading effect is greatest with them, however, so that selectivity is decreased and the tumedcireuit gain is lowered.

Pentoles, such as the 6K7, 6.J7 and corresponding types in glass, have lesser inputloading effects at high frequencies, moderate gain, and relatively high inherent noise.
"Acorn" and equivalent miniature pentodes are excellent from the input-loading standpoint; gain is about the same as with standard types, and the inherent noise is somewhat lower.

Where selectivity is paramount the acorns are best, the standard pentodesiserond, and the 6A137-6AC'7 types worst. On signal-to-noise ratio the latter tubes are first, arorns are second and standard pentodes third. The same order of precedence holds for over-all gain.

At aff Mc. the standard types are usable, but acorns are rapable of better performanes because of lesser loading. The 954 and 956 and the corresponding types. 9001 and 9003, are examples of trpes satisfactory for r.f. amplifcation at 100 Mc . and higher.

C. 7-7 Tuning and Band-Changing Methods

Band-changing - The resonant circuits which are tumed to the frequency of the incoming signal constitute a special problem in the design of amateur receivers, since the amateur frequency assignments consist of groups or bands of frequencies at widely spaced intervals. The same L (' combination cannot be used for, say, l-t Mc. to $3 . \overline{5} \mathrm{Mc}$., beeause of the impracticable maximum-minimum capacity ratio required, and also because the tuning would be excessively critical with such a large frequency range. It is necessary, therefore, to provide a means for changing the circuit constants for various frequency bands. As a matter of convenience the same tuning condenser usually is retained, but new coils are inserted in the circuit for each band.

There are two favorite methods of changing inductances. Onc is to use a switch having an appropriate number of contacts, which connects the desired coil and disconnects the others. The second is to use coils wound on forms with contacts (usually pins) which can be plugged in and removed from a socket.

Bandspreading - The tuning range of a given coil and variable condenser will depend upon the inductance of the roil and the change in tuning capacity. For ease of tuning, it is desirable to adjust the tuning range so that practically the whole dial scale is oceupied by the band in use. This is called bandspreading. Because of the varying widths of the bands, special tuning methods must be devised to give
the correct maximumminimum caparity ratio on each hand. Several of these methods are shown in Fig. 715.

In A, a small bandspread condenser, C_{1} (15) to $25 \mu \mu \mathrm{fd}$. maximum capacity), is used in parallel with a condenser, C_{2}, which is usually large enough (140 to $175 \mu \mu \mathrm{fl}$.) to cover a 2-to-1 frequency range. The setting of C_{2} will deterinine the minimum capacity of the rireuit, and the maximum capacity for bandspread tuning will be the maximum capte-

(B)

(c)

Fif. 71.5 - Fssentials of the three hasie bandspread tuming systems. it y of C_{1} plus the setting of C_{2}. The inductance of the roil can be adjusted so that the maximum-minimum ratio will give adequate bandsproad. In practicable circuits it is almost impossible, beramse of the non-harmonie relation of the various bands, to get full bandspread on all bands with the same pair of condensers, especially when the coils are wound to give contimons freghency coverage on C_{2}, which is variously called the barutselling or main-tuning condenser. ('2 must be reset carch time the band is changed.

The method shown at 13 makes use of condensers in series. The tuning comdenser, C_{1}, may have a maximum eapacity of 100 ($\mu \mathrm{fd}$. or more. The minimum caparity is determined principally by the setting of C_{3}, which usually has low capacity, and the maximum capacity by the setting of C_{2}, which is of the oreler of 25 to $50 \mu \mu \mathrm{fl}$. This method is capable of close adjustment to practically any devired degre of bandspread. Either C_{2} and C_{3} must be adjusted for each band or separate pre-adjusted condensers must be switched in.

The circuit at C also gives complete spread on each band. C_{1}, the bandspread condenser, maty have any convenient value of capacity; $50 \mu \mu \mathrm{fd}$. is satisfactory. C_{2} may be used for contimuous frequency coverage ("gemeral coverage") and as a band-setting eomdenser. The effertive maximum-minimum capacity ratio depends upon the capacity of C and the point at which C_{1} is tapped on the coil. The neatrer the tap to the bottom of the coil, the greater the bandspread, and vice versal. lor a given coil and tap, the bandspread will be groater if C_{2} is set at larger capacity. Co may be mounted in the plug-in coil form and pre-set, if desired. This requires a separate condenser for each band, but eliminates the necessity for resetting C_{2} each time the band is changed.

Ganged tuning - The tuning rondensers of the several r.f. circuits may be coupled together mechanically and operated by a single control. However, this operating eonvenience involves more complicated construction, both
electrically and mechanically. It becomes neeessary to make the various eireuits track that is, tune to the same frequency at each setting of the tuming control.

True tracking can be obtained only when the inductance, tuning eondensers, and cireuit mininum and maximum rapacities are identical in all "gangrel" stages. A small trimmer or padding condenser may be eomected across the coil, so that variations in minimum capacity can be compensated. The fundamental rircuit is shown in Fig. 716, where re is the trimmer and C_{2} the tuning condenser. The use of the trimmer neressarily increases the minimum rireuit caparity, but it is a neressity for satisfactory tracking. Mided eondensers having maximum capacities of 15 to $30 \mu \mu \mathrm{fl}$, are commonly usid.

The same mothods are applied to bandspread circuits which must be tracked. The circuits are identical with those of Fig. 71%. If both general-owerage and bandspread tuming are to the available, an additional trimmer condenser must be connected across the coil in each rircuit shown. If omly amateur-hand tuning is desired, however, then ('s in l'ig, $715-\mathrm{B}$, and r_{2} in Fir, 715-C serve as trimmers.

Fig. 76 - Showing the use of a trimmer rondenser, to sel the minimum cirenit capacity in order torbitain true tracking for gang-tuning.

The roil indactance ran be adjusted by starting with a larger mumber of turns than necessary and remmeing a turn or frartion ol a turn at a time until the circuits track satisfactorily. An altormative method, provided the inductance is reasonably close to the correet value initially, is to make the coil so that the last turn is variable with respeet to the whole coil, or to use a single short-circuited turn the prosition of which can be varied with respert to the coil. The application of these methods is shown in Fig. 717.
I.h.f. circuits - buterelectrode caparities are practically constant for a given tube romatidless of the operating frequency, and the same is approximately true of stray circuit capacities. Hence, at very-high frequencies these rat pacitios beome an increasingly larger part of the usable tuning caparity, and reasomably high L/C ratios ($82-10$) are more difficult to serure as the frequency is raised. Because of this irreducible minimum caparity, standard types of tubes cannut be tuned to frequencies higher than about 200 Mc , even when the inductance in the rircuit is simply that of a straight wire between the tube clements.

Along with these caparity effects, the input loading ($\$ 7-6$) increases rapidly at very-high frequencies, so that ordinary tumed cironits have very low effective (s) when connected to the grid circuit of a tube. The effect is still furthor aggravated by the fact that losses in the tumed circuit itself are higher, causing a

Fig. 715- Mrthods of wijusting the induetance for ganying. The half turn in A can lue moved on that its magnetic field either aids or opposes the tield of the coil. 'Ithe shorted leno in 33 is not commerted tw the coil, but oprerates hy induction. It will have werfect on the coil inductance when the plame of the lowp is garallel to the axi of the coil, and will pive maximum reduetion of the coil inductance when perpendicular to the coil axis.
still further redurtion in O. For these reasoms, the frequenry limit at which an r.f. amplifier will give any gain is in the vicinity of cit Me. with standard tubes. At higher froquencies there will be a loss, instead of amplifioation. This eondition can be mitigated somowhat by taking steps to improve the effertive Q of the circuit, either by tapping the grid down on the coil, :s shown in litg. Tls- 1 , or by using a lower L C ratio ($\because \geq-10$). The () of the tuned circuit alone can be greatly improwed by using a linear cirenit (\$2-12), which when properly constructed will pive (os much higher thatn those attainable at lower frequencios with comentional coils and condersers. The concentric type of line, Fig. $718-\mathrm{B}$, is best both from the standpoint of Q and of adaptability to nonsymmetrimal rircuits such as are tred in receivers. since the capacity and resistance loading effects of the tube are still present, the O of such a circuit will be destroyed if the gridcathote ciratit of the tube is commeted direetly arross it. Hence, tapping down on the line, as shown, is necessary.

Very-high-frequency amplifiers employ tubes of the a corn or miniaturetype. which hatwe the loast loading affeet ats well as low intereloctrode rapacities, The smaller loading effert means higher infut resistance, and. for al given loaded Q of the tumed eirenit, a higher voltage is depoloped between the grid and cathode. Tham the amplification of the stace is higher and the noise level lower.

A concentric cirenit may be thand be varying the length of the inner conductor (usiatly by using elose-fitting tuther, one stiding inside the othor) or by connecting an ordinary tuning eondenser arross the line. Tapping the condenser down, as shown in Fig. 718-13, gives a bandspread offoct, whirh is advantareous. It also helps to keep the Q of the circuit higher than it would be with the condenser conneoted directly aross the open end of the line, since at very-high frequencies most condensers have losses which eannot be neglected.

Ordinary bakelite-hased reediving-tyotubes will fumetion quite satisfactorily as oscillators
and superregenerative detectors at frequencies where r.f. amplification is impossible with standard tubes (as in the 112Me. bund), since tube losses are compensated for by energy taken from the power supply. Ordinary coil and condenser circuits are practicable with such tubes at 112 Mr . At higher frequencies, however, the special v.h.f. tubes are essential.

Fig. il' Block diagram of the basic elements of the sujn-rheterodyne

[1 7-8 The Superheterodyne

Principles - In the superhetrorlyne, or superhat, receiver the frequency of the incoming signal is changed to a mew ratio frequency, the intrrmediale frequenc!! (i.f.), then amplified, and finally deterted. The frequency is changed by mana of the hoterodyne process ($\$ 7-1$), the ontput of an aljustable local oseillator (the h.f. werillutor) being combined with the incoming signat in a miver or roncerler stage (lirst intortor) to produre a beat frequeney equal to the intermediate indquency.
lig. 719 gives the assemials of the superheterodyme in block form. C.w. signals are made andible bey helerorlyning the signal at the seeond detector be the brat-frequemey oscillator (b,i.o.) or beat ascillator, set to differ from the i.f. Wey a suitable audio frequency.

As a numerical extmple, assume that an intermediate frequency of 45 kc . is chosen and that the incoming signal is on 7000 ke . Then the h.f. oseillator freguency may be set to 7455 kc ., in order that the beat frequency (74:5) minus 7000) will be 4.55 ke . The h.f. oscillator also could be set to 6545 kc ., which will give the same frequency difference. To protuce an andible e.w. sigual of, say, 1000 cycles at the seerond detector, the beat asciltator would be set to either fint ke. or 4 tit ke.

Characteristics - The frequency-conversion proeress promits r.f. amplification at a relatively low froquency. Thus high selectivity can be ohtained, and this solectivity is constant regardless of the signal frequency. I Iigher gain alson is possible at the luwer frequency. The semarate oseillators can be designed for

Fis. :18-Circuits of improved Q for very-high frequencies. A. reduring tuhe loading by tapping down on the resonant circuit; B , use of a coneentric line circuit, with the tube simitarly tapped down. The line shonld be a cuarter-wave long, electrically; because of the additional shum caparity represemted by the tute, the physical length will be somewhat less than given by the formula (s 10-5). In general, this reduction in length will be greater the hipher the grid tap on the inner oonductor. The coupling turn should be parallel to the axis of the line and must be insulated from the onter conductor.
stability, and, since the h.f. oscillator is working at a frequency eonsiderably removed from the signal frequency, its stability is practically unaffected by the incoming signal.
Images - Each h.f. oscillator frequeney will cause i.f. response at two signal frequencies, one higher and one lower than the oscillator frequency. If the asoillator is set to 745 s kc . to respond to a $7000-\mathrm{kr}$, signal, for ex:mple, it will respund also to a signal on $\boldsymbol{T} 910 \mathrm{ke}$., which likewise pives a 45%-kr. beat. The undesired signal of the two is called the imnge.

The radio-froquency circuits of the rereiver (those used before the frequency is converted to the i.f.) normally are thed to the desired signal, so that the selectivity of the circuits redurcos the response to the image signal. If the desired sigmal and image have equal strengths at the input terminals of the receiver, the ratio of the receiver voltage output from the desired signal to that from the image is called the signal-to-image ratio, or image ratio.

The image ratioderpends upon the selectivity of the r.f. tuned circuits preceding the mixer tube. Also, the higher the intermediate frequency, the higher the image ratio, since raising the i.f. increases the frequency separation betwoen the signal and the imatge and planes the latter farther awsy from the peedk of the resornance eurve ($\$ 2-10$) of the signal-frequency input circuits.

Other spurious responses - In addition to images, other signals to which the recoiver is not ostensibly tuned may be heard. Harmonirs of the high-frequency oscillator may beat with signals far removed from the desired frequency to produce output at the intermediate frequency; such spurious responses can be reduced by adequate selectivity before the mixer stage, and by using sulficient shielding to prevent signal pick-up by any means other than the antema. When a strong signal is recoived, the harnonics ($\$ 2-7$) generated by rectifieation in the second detector may, by stray coupling, be introduced into the r.f. or mixer cirunit and converted to the intermediate frequeney, to go through the receiver in the same way as an ordinary signal. These "birdies" appear as a heterodyne beat on the desired signal, and are principally bothersome when the frequenes of the incoming signal is not greatly different from the intermediate frcquency. The cure is proper circuit isolation amd shielding.

Harmonies of the beat oscillator also may be converted in similar fashion and amplified through the recciver; these responses can be redured by shielding the beat oscillator and operating it at low output level.

The double superheterolyne - At high and very-high frequencies it is diffieult to secure an alequate image ratio when the intermediate frequency is of the order of 455 ke . To reduce image response the signal frequently is converted first to a rather high (1500,5000 , or even 10.000 ke .) intermediate frequency, and then - sometimes after further amplification - reconverted to a lower i.f. where higher adjacent-rhammed selertivity can be obtained. Such a receiver is called a double superheterodyne.

(1) 7-9 Frequency Converters

Characteristics - The first detector or miser resmbles an ordinary detector. A circuit tuned to the intermediate frequency is placed in the plate circuit of the mixer, so that the highest possible i.f. voltage will be developed. The signal- and oscillator-frequency voltages appearing in the plate circuit are bypassed to gromed, since they are not wanted in the ont put. The i.f. tuned circuit should have low impedance for these frequencies, a condition easily met if they do not approach the intermediate frequency.

Tia. 720 - Mixer or converter circuits, A, grid injection with a pentode plate detertor; 13 and C, separate injection circuits for converter tubes. Circuit values are:

(iomponth	Circtit A	Circuit B	Circuit C
$\mathrm{Cl}_{1} \mathrm{C}_{2}, \mathrm{C}_{3}$	0.01-0.1 $\mu \mathrm{fd}$.	0.01-0.1 $\mu \mathrm{fll}$.	0.01-0.1 $\mu \mathrm{ff}$.
Ci_{4}		50-1(6) μ /fil.	50-100 $\mu \mu \mathrm{fd}$.
l_{1} -	10,000 chans.	300 chams.	500 chmam.
$\mathrm{H}_{2}-$	0.1 merohim.	50.0100 , hame.	15,000 whima.
R:	50,000 ohims.	50,000 ohme.	50,000 ohme.

lhate voltage should be 2.00 in all eiretits. If a 0 AB or $6.1\left(:-1\right.$ tube in used in Circuit A, R_{t} should be 500 ohme.

The conversion efficicncy of the mixer is the ratio of i.f. output voltage from the plate circuit to r.f. signal voltage applied to the grid. High conversion efficiency is desirable. The mixer tube noise also should be low if a good signal-to-noise ratio is wanted, particularly if the mixer is the first tube in the receiver.

The mixer should not require too much r.f. power from the h.f. oscillator, since it may be difficult to supply the power and yet maintain good oscillator stability ($\S 3-7$). Also, the conversion efficiency should not depend too critically on the oscillator voltage (that is, a small change in oscillator output should not change the gain), since it is difficult to maintain constant output over a wide frequency range.

A change in oscillator frequency caused by tuning of the mixer grid circuit is called pulling. If the mixer and oscillator could be cormpletely isolated, mixer tuning would have no effect on the oscillator frequency; but in practice this is a difficult condition to attain. Pulling should be minimized, because the stability of the whole receiver depends critically upon the stability of the h.f. oscillator. Pulling decreases with separation of the signal and h.f. oscillator frequencies, being less with high i.f.s.

Circuits - Typical frequency-eonversion circuits are given in Fig. 720. The variations are chiefly in the way in which the wsillator voltage is introduced. In Fig. $720-A$, the screengrid pentode functions as a plate detector; the oncillator is capacity-conpled to the grid of the tube, in parallel with the tuned input circuit. Inductive coupling may be used instead. The conversion gain and input selectivity generally are good, so long as the sum of the two voltages (signal and oscillator) impressed on the mixer grid does not exreed the grid bias. It is desirable to make the oscillator voltage as high as possible without exccerling this limitation. The oscillator power required is negligible.

A pentagrid-converter tube is used in the circuit at B. Although intended for combination oscillator-miser use, this type of tube usually will give more satisfactory performance when used in conjunction with a separate oscillator, the output of which is coupled in as shown. The circuit gives good conversion efficiency, and, because of the electron coupling, aftords desirable isolation hetween the mixer and uscillator circuits. A small amount of power is required from the oscillator.

Circuit C is for the 6 L .7 mixer tube. The osfillator voltage can vary over a considerable range without affecting the conversion gain. There are no critical adjustments, and the oscillator-mixer isolation is good. The oscillator must supply somewhat more power than in B.

A more stable receiver generally results, particularly at the higher frequencies, when separate tubes are used for the mixer and oseillator. Practically the same number of circuit components is required whether or not a combination tube is used, so that there is little difference from the cost standpoint.

Tubes for frequency conversion - Any sharp, cut-off pentode may be used in the circuit of Fig. 720-A. The 6AB7 and 6 AC 7 give high conversion gain and excellent signal-to-noise ratio - comparable, in fact, to the gain and signal-to-noise ratio obtainable with r.f. amplifiers -and in these respects are far superior to any other tubes used as mixers, particularly between 14 and 100 Mc. However, this type of tube loals the eirenit more (87-6) and thus decreases the selertivity.
The 65 L is a good tube for the circuit at B ; its oscillator plate commection may be ignored. The 6SA7 also is excellent in this circuit, although it has no anode grid (No. 2 grid, in the diagram). In addition to these two types, any pentagrid converter tuhe may be used.
V.h.f. and I.h.f. converters.-At froquencies above the $30-\mathrm{Mc}$. region the performance of the special mixer and converter tuhes employed on the lower frequencies falls off because of greatly reduced input resistance which. by loading the tuned cirenit connected to the tube and thus reducing its Q. lowers the signal-to-noise ratio. However, the high-transermductance pentodes such as the 6AC 7 and 6 A 137 will perform fairly effertively in the eireuit of Fig. 720-A up to 100 Me , or so.
Above about 100 Mc , the loading effert. in addition to the relatively large input caparity which limits the amount of inductance that cam be used in the tuned circuit, makes these tubes markedly interior to the special high-frequency pentodes such as the 9000 and acorn series. The latter perform sucerssfully up to 400 Mc .

At still higher frequencies - or, for that matter, anywhere above 200 Mc - other types of converters are proferred. At these frequencies triode mixers, when operated as plate-rectifier detectors in suitable circuits, give the least moise and maximum conversion transconductance.

Fig, 721-A shows the elementary circuit for a single triode with cathode oscillator-voltage injection. In such an arrangement the eathode connection usinally terminates (with as short a lead as possible) in a small link near the oscillator tank, ohe end of which is grounded. Alternatively, direct capacity-eoupled grid injection may be used in an arrangement similar to that of Fig. 720-A, C_{4} being a very small coupling comdenser of perhaps 1 or 2 upfl. often merely the free end of the coupling lead placed within the field of the oscillator eoil or near the oscillator tube plate or grid.

The balanced triode erircuit of Fig. 721-B affords the added advantages of symmetry to ground and complete cancellation of both the received-signal and osicilator voltages in the plate circuit. This serves further to improve the signal/noise ratio as well as to stabilize operation. For optimum performance the os-cillator-voltage input should be carefully adjusted. by means of the coupling between the two coils, to give maximum convert er gain. The balanced converter circuit is most frequently
used with miniature dual trioles such as the (iJ6, with which it performs effectively up to (000 Mr . or higher. The oxcillator may be operated either on its fundamental or a harmonic. At frequencies above 200 Mc. coaxial or "trough"-line circuits are chiefly usiod.

At still higher frequeneises converters emploving conventional tubes are inferior to other, basisally different types, including highly specialized versions of velority-monhlation tubes of various types. These techniques, however, are beyond the scope of the present treatment; information concerning practical tubes and circuis is largely held confidential by the military servies.
For amateur work on these higher frecquencies the use of sperial small u.h.f. diodes with

 mixer with "rparat" oscillater tuhe: B. halanced squarelaw miver using a dual trimpe tube with push-pull input circuit. I and Care thated the signal frequences. (.1-100- $\mu \mathrm{ffl}$, , vilured mica.
$\left(C_{2}-0.00 .5-\mu \mu \mathrm{fd}\right.$.
$R_{1}-10,000-50,000$ ohms.
extremoly close eldment spacing as converters is a logical solution. Crystal detectors have also been used extensively becamse of their ready availability and indremendence of frequency limitations, ('rystal detertors are not susceptible to the transit time limitations of electronic tubes. silieon is the most popular material for such applications: the erystals are ground to minute dimensions and permanently mounted in fixed miniature holders with thagsten contacts. Fig. $72=-\mathrm{A}$ shows a 1 ypical crystal mixer circuit with indurtive eoupling to a triode osciltator (95a or 9002).
lecaluse stability of a revstal detector can be achieved only at the expense of sensitivity. diode detertors are pefermen up to the limit of frequency at which they wa be made to function. Dionles have the firether advantare that they will function as mixers by using a hammonic of the oscillator voltage, making porsible the use of conventional triode weillat tors for receivers operating up to the 2000-2If.

 the oreillatur cirenit. L and C are tuned to the signal freflerney: 1 . and (B the oseillator frequency.
(: $0_{1}-30$) $\mu \mu \mathrm{fol}$. micat trinmer.

(i- $0.015-\mu \mu \mathrm{fl}$.
k_{1} - Sl, oun ohma (matallized carlon).
$R_{2}-5010020.000$ nhms.
region or higher. While opreration of the osrillatur on a lumdameatal is the more efficient mothed. the lese in comversion afficieney dons:
 oprathon prosided the oseillator ingut is sultirient tor atabli-h : dimle current of 0.2 to 0.5 mal. Jionte mixars are consideratbly more tol(rant as momme ourillator voltage and other -irenit conditions than the crystal type.
in thr riscuit of Fig. 720-13 the eathonle
 fumbamental, (${ }^{+}$is being made large enough so that it is effectively a eathode by-pass condemser for the signal frequencer.

(1) 7-10 The High-Frequency Oscillator

Hesisn considerations - Stability of the reroiver (s $\mathbf{7}-2$) is dependent chiefly upon the stability of the h.f. oscillator, and partieular fare should be given this part of the receiver. The frequeney of oscillation should be insensitive to whanges in voltage, loading, and me--hanimal shock. Thermal efferts (slow change in fremushey bocanse of tuthe or circuit heating) should be minmized. These ends can be atfatned hy the ane of gowd insulating materials and eircuit components, suitable electrical design. and careful mechanical construction.

In aldition, the asollator must be capable of furnishing sufficient r.f. voltage and power for the particular mixer eirenit chosen, at all frequoncies within the range of the receiver, and its harmonic output should be as low as fussible to reduce spurious response ($\$ 7-8$).

It is desirable to make the L. C ratio in the oscillator tuned circuit low (high-('), since this results in increased stability (S3-7). P'articular eare should be taken to insure that no part of the oscillator circuit can vibrate mechanically. This calls for short leads and "solid" mechanical construction. The chatssis and panel material should the heave and rigid enough so that pressure on the tuming dial will not cause torsion and a shift in the frequency. Care in merhanical construction is well repaid by increased frequeney stability.

Circuits - Several oscillator circuits are shown in Fig. 723 . The point at which output voltage is taken for the mixer is indieated in earh case by X or Y. Circuits A and I will give about the same results, and require only one coil. However, in these two circuits the cathode is above ground pentential for r.f., which often is a canse of ham modatation of the oscillator ontput at 1.4 Mr. and higher frequencies when bis-volt heator tubes are used. Hum usually is not bothersome with 2. .i-volt tuhes, mor, of course, with tuhes which are heated hy diroct currat. The eirenit of Fig. 72:3-C overomes hum, since the cathode is

 grid grounded-phate aseillator: IS, triome proumded.
 Couplineptothemixermay hetakenfromponts \backslash and . In A and B, coupling from) will reduce pulling offerts, but Eivers less whate than from l : this type is best adapted to mixer circuits with wall owillator-voltage requirements. Typical values for componeats are at follows:

	Circuil At	Ciircuit 15	Cirruit C
C_{1}	$100 \mu \mu \mathrm{fid}$,	$1016 \mu \mu \mathrm{ffl}$.	100) $\mu \mu \mathrm{fol}$.
C_{2} -	$0.1 \mu \mathrm{fl}$,	$0.1 \mu \mathrm{fil}$.	$0.1 \mu \mathrm{fd}$.
C3 -	$0.1 \mu \mathrm{fl}$.		
K_{1}	50.0601 chans.	50.1010 ahmes.	50,000 whans.
H2--	50, ver ulims.	10.000 to	10,01010

The plate-mupply voltape should lne 250 whts. In circuits K and C, R_{2} is used to drop the suphlv voltage to 100-150 volts: it may be onitted if voltape is oltained from a voltage divider in the power tupply (\$8-10).
grounded. The two-coil arrangement is advantageous in construction, since the feed-back adjustment (altering the number of turns on L_{2} or the coupling thetwen L_{1} and L_{2}) is simple merhanisally:

Bewides the use of a farly high C / L ratio in the tumed circuit, it is neressary to adjust the feed-bark to obtain optimum results. Too much feed-batck will raluse the ascillator to "squag," or operate at several frequencies simult aneously ($5-1$) : tow lit tle feed-hack will canse the output to be low. In the tapped-anil circuits (A, B), the feed-back is increased by moving the tap toward the grid and of the roil; in C, by increasing the mumber of turns on L_{2} or be moving L_{2} claser to L_{1}.

The oscillator plate voltage should be as low as is comsistent with adequate output. Jow plate woltage will ratise reduced tube heating and thereby reduce frequency drift. The oscillator and mixer circuits should be well isolated, preferably by shielding, since coupling other than by the means intended may result in pulling.

To avoid plate-voltage changes which may cause the oscillator frequence to change, it is good practice to use a voltage-regulated plate supply cmploying a gaverots VIR tube (\$8-8).

Tracking - For gathred tuning, there must be a comstant differenere in frequency between the oscillater and mixer wireuits. This dillerence must he exatoly aqual to the intormediate frequemey (s $7-8$).

Tratking methonls for covering a wide frequeney range, suitable for general-owage receivers, are shown in Jig. 724. The tracking caparcity, C_{5}, commonly consists of two condensers in parallel, a fised one of somewhat less camacity than the value needed and a smaller variable in paralled to allow for adjustment to the exact proper value. In practiere, the trimmer, C_{4}, is first sot for the high-freguency end of the tuning range, and then the tracking condenser is set for the low-frequency end. The tracking capacity hecomes larger as the percentage difference between the ascillator and signal frequencios becomes snaller (that is, as the signal frepueney hecomes higher). Typical circuit values are given in the tables under Jig, 724.

In amateur-band receivers, tracking is simplified by choosing a bandspread circuit which gives practically st raight-line-frequeney tuning (equal frequency chature for cath dial division), and then adjusting the oseillator and miser tuned dircuits so that both covor the same total number of kiloryeles. For example, if the i.f. is 455 ke and the mixer circuit tunes from 7000 t.o 7300 kc . between two given points on the diall, then the awillator must tune from 745 to 7ajo ke. between the same two dial readings. With the bandspread arrangement of Fig. 715 -(', the thaning will be practically straight-line-frequency if the raparity atetually in use at C_{2} is not too small; the same is true of 715 - A if $(1,1$ is small mompared to (o.

[17-11 The Intermediate-Frequency Amplifier

Choice of frequency - The selection of an intermediate frequency is a compromise between various conflicting factors. The lower the i.f. the higher the sollectivity and gain, hut a low i.f. brings the image nearer the desired signal and hence docroseses the image ratio (s $7-\mathrm{S}$). A low i.f. alou inmerese pulling of the oscillatom frequency (s $\overline{-}-4$). ()n the other hamb. a high i.f. is beneficial to both image rationami pulling, but the selectivity and gain aro lowered. The difference in gatin is least important.

An i.f. of the order of fin kre gives goul selectivity and is sattisfactory from the stamdpoint of image ration ame meillator pulling at frequencies up to 7 Ma. The image ratio is poor at 14 Me . When the mixer is enmereted to the antenma, but adounate when there is a

Fir. 724-Converterarenit traching mothouds. Fol.

 capacitance, including C_{a} or C_{4}, being 30 to $3.3 \mu \mu \mathrm{fl}$.

'luning IRatmp	I. 1	1.2	18
1. -1.10	51) μ h.	$111{ }_{\mu} \mathrm{h}$.	$0.1011: 3$ aril.
3.7-7.5 M6.	$11 . \mu \mathrm{h}$.	$12.2 \mu \mathrm{~h}$.	11.10120 .20
$7-1511 \%$		$3 \mu h_{3}$.	11.017.
14-30 Ms.	$0.8 \mu \mathrm{~h}$,	$0.78 \mu \mathrm{~h}$	Stras H-ad

Approximate values for fiso to 46 -he., i.f.s with a
 mum, minimum including (3 and C_{4} being 10 to $00 \mu \mathrm{ffl}$.

Toning Range	I.	I. 3	1.
0.5-1.5 Mc.			
1,5-4 Mc.	$3: \mu \mathrm{h} .$	ㄹ.; μ h.	$0.0011 \mathrm{I} . \mathrm{m} \mu \mathrm{fl}$.
4-10 Mc . $10-25 \mathrm{Mc}$.	$4.5 \mu 1 .$	$4 \mu h_{1} .$	
10-25 Mc.	$0.8 \mu \mathrm{~h}$.	$0.75 \mu \mathrm{~h}$.	Nome usied

tumed r.f. amplifier between antenna and mixer. At 28 Mr. and on the vere-high frequenfics, the image ratio is very poor unless several r.f. stages are used. Ahowe 14 Mc.. pulling is likely to be bad unless very loose coupling can be used between mixer and oseillator.

With an i.f. of about 1600 ke . satisfactory image ratios can he semumal on $14,2 \mathrm{~s}$ and 5 b Mr., and pulling can he reluced to negligible proportions. Howerer, the i.f. selectivity is monsiderably lower. so that more tunced eirruits must be used to increase the selectivity. For very-high frequencies, including 28 Mc., the best solution is to use a double superhet-
 image reduction (5 and 10 Mr . are frequently usad) and a lower one for gain and solectivity.

In choosing an i.f. it is wise to avoid frequencies on which there is considerable activity by the various radio services, sinee such signals nay be picked up directly on the i.f. wiring. The frequencies mentioned are fairly free of such interference.

Fidelity, sideband cutting - As described in si-2, momalation of a rarrier causes the generation of sideband frofuencies numerically copual to the e:rrior frequency plus and minus the highest modulation frequency present. If thereceiver is to give a faithful reproduction of mordulation which contains, for instance, andio frequencies up to do00 recles, it must be capabe of amplifyitg equally all frequencies contained in a band extending from soon aycles above to sono acles below the earicr frequency. In a superheterolyoe, where all carrier frequencies are changed to the fixed intermediate frequener, this means that the i.f. amplifier should amplify equally well all frequencies within that hand. In other words, the amplification must be uniform over a band 10 ke . wide. with the i.f. at its conter. The signalfrequency eimnits usually do not have emough wer-all splectivity to affect materially the "adjacent chamel's selertivity (\$7-2), so that only the i.f. anmplifiremectivity nerd be considered.

A 10-ke. Wand is eonsidered sufficient for reasonably fathful reprotuction of music, hut much narrower bamb-widths can be used for communieation work where intelligibility rather than fidelity is the primary objective.

Fif. 25 - 7 proal intermerliate-froquency amplifier virenit for a =umerheterodyme rewiver, lhepresentative values for components are as fillows:
(1 - 11.1μ fil, at $1.5 \mathrm{kc} \cdot ; 0.01 \mu \mathrm{ld}$, at 1600 kc - and higher. ($2-0.01 \mu \mathrm{ft}$.
($3, \mathrm{C}, \mathrm{C}, \mathrm{s}-10.1 \mu \mathrm{fd}$ at $45.5 \mathrm{kc}, 0,01 \mu \mathrm{fd}$. above 1600 ke . $\mathrm{R}_{1}-300$ ohms.
k_{2} - 0.1 mequim.
R_{3} - 2000 ohms.
$\mathrm{h}_{\mathrm{i}}-0.25$ megohm.

If the selectivity is too great to permit uniform amplifieation over the band of frequencies ocropied by the modulated signal, the higher modulating frequencies are attenuated as compared to the lower freruencies: that is, the upper-frequency sidebands are "cut." While sideband cutting reduces fidelity, it is frequently preferable to sacrifice naturalness of reproduction in favor of greater selectivity.

The selectivity of an i.f. amplifier, and hence the tendency to cut sidebands, increases with the number of amplifier stages and also is greater the lower the intermediate freduency. From the standpoint of communication, sideband cutting is not serious with two-stage amplifiers at frecuencies as low as 4ñ kc.

Circuits - I.f. amplifiers usually consist of one or two stages. Two stages at 455 kc . give all the gain usable, in view of the minimum receiver noise level, and also give suitable selectivity for good-quality'phone rereption.

A typical circuit arrangement is shown in Fig. 705. A scoond stage would simply duplicate the circuit of the first. In principle, the i.f. amplifier is the same ats the tuned r.f. amplifier (s 7 -(i). llowever, since a fixed froguency is used, the primary as well as the seromdary of the coupling transformer is tumed, giving higher selectivity than is ohtainable with a closoly coupled untuned primary. The eathode resistor, R_{1}, is connected to a gain control circuit of the type previously described (s $7-6$) ; usually both stages, if two are used, are controlled by a single variable resistor. The decompling resistor, $R_{3}(\$ 2-11)$, helps isolate the amplifier, and thus prevents stray feed-back. C_{2} and R_{4} are part of the antomatise volumecontrol circuit ($\$ 7-13$); if no a.v.c. is used, the lower end of the i.f. transformer secondary is simply connerted to groumd.

In a two-stage amplifier the screen grids of both stages may be fed from a common supply, cither throurh a resistor (R_{2}) as shown, the screens being eonnected in parallel, or from a voltage divider (\$ $\$-10$) across the plate supply. Separate serean woltage-dropping resistors are preferable for preventing undesired coupling between stages.

When two stages are used the high gain will tend to cause instability and oscillation, so that good shielding, by-passing, and careful circuit arrangement to prevent st ray coupling, with exposed r.f. leads well separated, is necessary.
I.f. transformers - The tumed circuits of i.f. amplifiers are built up as transformer units monsisting of a metal-shichl container in which the coils and tuning eomlensers are mounted. Both air-core and powdered-iron-core uni-vorsal-wound coils are used, the latter having somewhat higher (ss and, hence, greater selectivity and gain per unit. In mniversal windings the coil is wound in la yers with earh turn travarsing the length of the roil, back and forth, rather than being wound perpendicular to the axis as in ordinary single-layer coils. In a straight multi-layer winding, the turns on ad-

$R_{\text {eceiver }} P_{\text {rinciples and }} D_{\text {esign }}$

jarent layers at the edpes of the coil have : rather large potential difference between them as compared to the difference between any two adjarent turns in the same layer: hence at fairly large capacity current can flow between layers. Cniversal winding, with its "eris:crossed" turns, tends to avoid building up surh potential differences, and hence reduces dis-tributch-raparity $\begin{gathered}\text { (ffects } \\ (\$ 2-8)\end{gathered}$

Variable tuming eondensers are of the midget type, air-dielectrie comdensers being proferathe: beeanse their caparity is practically unafferted hy changes in temperature and hamidity. I ron-
 inductane (promeabilitytuning), in wheh case stability emparable to that of variable airfondenser tuming rean be ohtained by use of hiph-stability fixed mien emdensers. such st:tbility is of great importance. since a cirenit whose frequener "drifts" with time event ually will be tuned tu a difierent frequeney than the other riveuits, thereby reducing the gain and selertivity of the amplifer. Typical i.f. tramsformer construction is shown in Fig. 720.

Besides the type of i.f. transformer shown in Fig. \quad :26, sperial units to give desired splentivity (harateteristios are avalable. For higher than ordinary adjacout-channel splectivity (7 - -2) friplr-tumed transformers. with a third tumed dirnut inserted betwern the input and output windiags, are nsed. The anergy is transfermed from the input to the cutpat windinge vis this trdior! winding, thus adding its seleretivity to the wor-atl selectivity of the transformer.
 obtained. These usuatly are provided with a third (untumed) winding which can he conneeted to a resistor, therche losding the tumed rircuits amd dererasing the (! and selectivity (S - - 10) to bromben the selectivity rurve. The variation in solentivity is brought abont bo switching the resistor in amd out of the rirenit. Another method is to bary the compling hetween primary and sorondary, overempling being used to broaden the selertivity rurve and undereompling to sharpen it (s $2-11$).

Solertivits- The over-all selectivity of the i.f. amplifier will depend on the frequeney and the number of stages. The following figures are indieative of the band-widths ($5-2-2$) to be expected with good-quality transformers in amplifiers so monstructed as to keepregeneration to a mininulu:

	Band-quidth in kilocyrles		
	2 timrs dourer	10 times dimen	1011 tmes 1/6\%"
One stage, tin lac. (air core)	8. 7	17.9	32.8
	4.3	111.3	20.4
Twostages, tinite. (irmu core)	$\underline{2.9}$	6.1	10.*
Twostages, liwn ke.	11.10	17.0. 5	27.4
	25, 心	46.0	100.11

Tubes for i.f, amplifiers - Variable- μ pentodes (\$ 3-5) are almost invariably used in i.f. anplifier stages, since grid-bias gain control ($\$ 7-6$) is practically always applied to the i.f. amplifier. Tubes with high plate resistanee will

AIR TUNED

PERMEABILITV TUNED

 ison. (aik are supported on insulating tubing or (in the air-tuned ty (w) ofl wax-impregnated woodern dowes. The whicld in the air-tuned trameformer prewents capacity coupling between the tuning condensers. In the permeahility-tumed transformer the cores consist of timely divided irm particles supported in an insulating binder. formed into colindrical "pluge" "The tuming capactity is fixed, and the inductanes of the coils arr sarid by moving the irom phos in and ont.
have least affect on the selectivity of the amplifior, and those with high mutual conductance will give greatest matn. The chorere of i.f. tubes hats prartioblly no effect on the signal-to-noise ratio, siner this is determined by the preceding mixer and r.f. amplifier (if the latter is used).

When single-coded tubes (s:3-i) are used, care shombl he aken to keep the plate and grid feads wed separated. With these thbes it is advisable to mount the sereen bepass aondemeer direftly on the bottom of the socket, roms-wise botwen the phate and grid pins, to provide additional shielding. The nutside fenil of the eondenser should be emoneeted to groumd.
. Single-signal effect - In heterodyne e.w. reereption with a superhetemone receiver, the beat ospillator is set to give a suitable audiofrequeney beat note when the incoming signal is converted to the intermediate frequency. For example, the beat oseillator maty be set to 45f ke . (the i.f. being 45 5 ke .) to give a 1000 cycle beat mote. Now, if an interfering signal apenars at 457 ke . it will also be heterodyned by the beat oseillator to produce a 1000 -cycle beat. This aulio-frequenc! image corresponds to the high-frequeney images already diseussed (s $7-8$). It "an be reduced by providing enough i.f. selectivity. sine the image signal is off the preak of the i.f. resonance eurve.

When this is done, tuning through a piven signal will show a strong response at the desired beat note on one side of zero beat only. instoad of the two beat notes on either side of zero heat whateristic of less-selective reception; heure the name, "single-signal" reception.

The necessary selectivity is difficult to obtain with non-regenerative amplifiers using ordinary tuned eirenit: unless a very low intermediate frequeney or a large mumber of circuits is used. In pratice it is secured either by regenerative amplification or by a crystal filter.

Regeneralion - Regeneration an be used to give a pronommed single-signal effeet, parm ticularly when the i.f. is foj kr. wr lwor. The resmather curve of an i,f. stage at (ritical regenoration (just befow the rsillating point) is extremely shatp, a band-with of 1 ke at 10 times down and $\overline{0}$ ke at 100 times down being
 intage of a given signal thas ran bereduced big

Regemeration is easily intrudued into an i.f. ampliter by providing a smad amount of rapacity rompling between grid and plate. Bringing a shot longth of wire, connected to the grid, into the vicinity of the plate lead usualty will sutfice. Tha feed-hatek may be controlled bey the regular cathode-rexistor gain control. When the i.f. is regenerative, it is preferable to operate the tube at reduced gain (high hisa) and depend on regeneration to bringr up the signal st rengrth. This prevonts overlanding and increases selloctivity.

The higher selectivity with regeneration redures the wer-all mopmone to moser qemeraterl in the carlier stagen of the recoiber, jutas as dees high soloctivity prombered by other means, and therefore improses the signal-tomonise ratio. The disadsantage is that the regenomative gath varios widh sigual strementh, being hess on strong signals, and the seleotivity varies aromedingly.

Crustal fillers - The most satisfactory method of ohtaining hish selertivity is be the
 tive filter in the i.i. amplitier (s $2-10$). Compared to a good thood direnit, the (! of such a crystal is extremely high, The dimensions of the crystal are made sum that it is resonantat the desired intermediath frequenes. It is then

Fig, 72:- Graphical repesentation of single-sipual selectivity. The shatell area indicates the overall band-width, or region in which respmoe is ohtainable.

Fig. 727 gives a typica! crystal-filter resonance curve. For single-signal reception, the audio-frequoncy image ran be reduced by a factor of 1000 or more. Besides pratically eliminating the a f. imane. the high selertivity of the erystal filter provides great discrimination against :ignals very close to the desired signal in frepuency, and, hereducing the bandwidth, radnees the response of the reeedver to noise both from sourees external to the remerer and in the ref. stages of the receiber itself.

Crystal filter circuils: phasing-Several ervatal filtor cireuits are shown in Fig. Jos. Those at A and 13 are practically identical in performanee, although differing in details. The ersstal is commerted in a bridge circuit (s 2-11). with the secondary side of T_{1}, the input transformer, balanoed to ground either through a pair of eomdensers, $C-C$, (A) or bey a center-tap on the secondary, $L_{2}(B)$. The bridie is completed by the crystal, X, and the phasing condenser, Ce, which hats a maximum rapacity somewhat higher than the capaeity of the erystal in its holder. When ('2 is set to balance the ervetal-holder caparity. the resonamer curve of the erestal circuit is practically symmetreal: the crostal ants as a sorios-resonant cirmit of very high () amd thus allows signals of the de-
 the output transformer. Without ('2, the hodder caparity (with the erystal acting as: diolectric) would pass signals of undosired fremuencies.

The phasing eontrol has an additional function besides neutralization of the ervatal-holder capacity. The holder rap:city beromes a part of the covstal circuit aml ralluses it to ant as a parallel-tumed resonant direnit at a fremueney slightly higher than its series-resomant frequener. Signals at the parallel-resomat frequener thas are prevented from reathing the output circuit. The phasing control, hy varying the effert of the holder capacity, permits shifting the paralled-resonant frequency wor at considerable range, providing adjustable reiowtion of interfering signals. The effert of reportion is illustrated in Fig. $\quad=7$, where the addo image is reduced, by proper sotting of the phasing control, far below the value that would be expected if the resonance curve were symmetrical.

Iariable selectivily-In circuits such as A and B, lig. $\because=2$, variable selectivity is ohtained by adjustment of the variable input impedance, which is effectivoly in series with the crystal resonator. This is accomplishod by varying ('i (the velectirity coutrol), which tunes the hatamed secomdary circuit of T_{1}. When the secomdary is tunol to i.i. resomane the parallen impedance of the Las? combination is maximum and is purely resistive ($\$ 2-10$). since the serondary circuit is center-tapped, appoximately one-fourth of this rosistive intpedance is in series with the erystal through C 3 and L_{4}. This lowers the (? of the reystal cirenit amd makes its solertivity minimum. At the same time, the voltage applied to the crystal circuit is maximum.

When the input cirenit is detuned from the (rystal resonant frequency the resistance component of the input impedance decreases, and so does the total parallel impedance. Accordingly, the selectivity of the crystal cireuit becomes higher and the applied voltage falls off. At first the resistance decreases faster than the applied voltage, with the result that the e.w. output from the filter iurreases as the selectivity is ineroased. The output falls off gradually as the input cireuit is detuned further from resonance, however, and the selectivity beromes still higher.

In the circuits of A and B in Fig. 728, the minimum selectivity is still much greater than that of a normal two-stage 45 -kc. amplifier and it is desirable to provide a wider range of selectivity, particularly for 'phone reception. A circuit which does this is shown at lig. 7:8-C. The principle of operation is similar, but a much higher value of resistance can be introduced in the erystal circuit to reduce the selectivity. The output tuned eirenit, $L_{3} C_{3}$, must have high (2 . A compensated condenser is used at ('2 (phasing) to maintain circuit balance, so that the phasing eontrol does not affect the resonant frequency. The out put wireuit functions as a voltage divider in such a way that the amplitude of the earrier delivered to the next prid does not vary appreciably with the selectivity setting. The variable resistor, l, maly consist of a series of separate fixed resistors selected by a tap switch.

C. 7-12 The Second Defector and Beat Oscillator

Detector circuits - The second detector of a superhetorodyne recoiver performs the same function as the detector in the simple recriver, but usually oporates at a highor input level because of the relative! great ref. amplification. Therefore, the ability to handle large signals without distortion is preferable to high sinsitivity. Plate detection is used to some extent, hat the diode detector is most popular. It is especially adapted to furnishing automatic gain or volume control (\$7-13). The basic circuits are as described in \$7-3. although in many cases the diode elements are incorporated in a multi-purperse tube which contains an amplifier section in addition to the diode mit.

The beat oscillator - Any standard oveillator circuit ($\$ 3-\overline{6}$) may be used for the beat oscillator. special beat-oseillator transformers are avatiable, usually consisting of a tapped coil with adjustable tuning; these are most conveniontly used with cireuits such as those shown at lig. $723-\mathrm{A}$ and -13, with the output taken from Y. A variable condenser of about $2 \bar{j}-\mu \mu \mathrm{fl}$. (aparity may the connered between eathode and ground to provide fine adjust ment. The beat oscillator usually is coupled to the second-detector tuned eireuit through a fixed combenser of a fow $\mu \mu \mathrm{fd}$. capacity.

The beat oscillator should be well shiclded, to prevent coupling to any part of the circuit
exeept the second detector and to prevent its harmonics from getting into the front and of the receriver and being amplified like regular signals. To this end, the plate voltage should be as low as is consistent with sufficient audiofrequency output. If the leat asidlator output is too low, strong signals will not give a proportionately strong atudio response.

An uscillating secom detector may be used to give the audio beat wote, but, sinere the deteretor must be detuned from the i.f., the selectivity and signal strength will be redued, while blocking ($\$ 7-1$) will be pronorumed berathse of the high signal level at the secomal detertor.

(1. 7-13 Automatic Volume Control

Principles - Lustomatice regulation of the gain of the rerofver in inverse propertion to the signal strougth is a mreat advantage, especially in 'phone reception, simere temls to kecp the output level of the reerever comstant regardless of input signal strength. It is readily acommohishod in superheterodyne reorivers by using the avrage rertified d.e. woltage, developed by the reedived sigmal aross a resistance in a detector circuit ($\$ 7-3$) , to vary the bita on the r.f. and i.f. amplifier tubes.

Fig. Fisg-Crystal filter circoita wh three t:res. All wise variable hambondth, with C havine the preatest range of arlertivits. 'Ilmeir operation is discussed in the text. suitahle cirenit values are as follows: (imenil,$~ T_{1}$, -pecial i.f. input transformer with hizh-inductance primary, I_{1}, closely compled to tumed weomdary, $L a ; C_{2}$,
 10- to $1 . \overline{-}-\mu \mathrm{ffl}$. (maw) variahle: ($3,50-\mu \mu \mathrm{fd}$. trimmer; I.3C4, i.f. tumed circoit, with I.3 tapped to mateh erystalcircuit impedance. In circuit B. $\%$ is the same a- in circuit A except that the serondary is center-tapped; Ci is $100-\mu \mu \mathrm{fd}$. variable: Ca. (and Can same as lor circuit A; $I_{3} L_{4}$ is a transformer with primars, l_{4}, correpondin! to tap on 1.3 in A. In circuit ($1, T_{1}$ is a sperial i.f. inwit transformer with tund primary and low-impe-

 $\mu \mu \mathrm{fd}$. maximum (rapacity tach side; $L_{3} \mathrm{C}_{3}$, high-d) i.f. tumed circuit; R, 0 to 3 (in) ohms (erlectivity control).

Since this voltage is proportional to the average amplitude of the signal, the gain is reduced as the signal strength becomes greater. The control will be more complete as the number of stages to which the a.v.e. bius is applied is incroased. Control of at least two stages is advisable.

Circuits - A trpical cireuit using a dionletriode type tube as a combined a v.e. rectitior, detector and first amdio amplifier is shown in Fig. 729. One plate of the dionle section of the tube is used for signal detection and the other for a.v.c. rectifiration. The a.v.c. diode plate is fed from the detertor diode through the small coupling condenser, C_{3}. A negative bias voltage resulting from the flow of rectified carrier current is developed across R_{4}, the diode load resistor. This negative biasis:applied to the grids of the cont molled stages throngh the filter-
 s_{1} is closed the :t, we line is groumded, therebs removing thr atse. biats from the amplifier without disturbing the deterton cireuit.

It does not matter which of the two diode plates is selected for adio and which for ans. Frequently the two mates are comected together and used as a combined detector and as.e. retifier, 'lhis could be done in Fig. $7: 29$. The a.v.e. filter and line would eonnert tor the junction of R_{2} and C_{2}, while ('3 and R_{4} womld be omitted from the cirruit.

Delayed a.c.e. - In Fig. 729 the andio diode return is made directly to the eathode and the a.v.e. diode return to gromed. This plates negative bias on the a.v.e. diode equal to the d.e. drop throngh the athonde resistar tal wht or t wo a and thas dela!s the application of a.v.e voltage to the amplitier grids, since no rectifieation takes plare its the a, ver. diode eirenit until the earrier amplitude is large enough to overome the bias. Without this delay the a.v.c. Wond start working even with a very snatl signal. This is undesirable. becuase the full amplifieation of the recoiver then could not be realized nn weak signats. In the andio diode circuit this fixed bias would satuse distortion, and must be avoided: lence, the return is made direetly to the cathode.

Time constamt - The time constant (of the resistor-xombenser ambinations in the a. Vre. circuit is an impurtant part of the - - : tem. It mast be high cmough an that the modulation on the signal is completely filtered from
the d.e. output, leaving only an average d.c. component which follows the relatively slow carrier variations with fading. Audio-frequency variations in the a.v.e. voltage applied to the amplifier grids would reduce the percentage of modulation on the ineoming signal, and in practice, would cause frequence distortion. On the other hand, the time constant must not be too great or the a.v.e. would be unable to follow rapid fading. The capacity and resistathe values inclicated in Fig. 729 will give a time constant which is satisfactory for high-frequenre reception.

Signal-strength and tuning indicatorsA useful accessory to the receiver is an indicator which will show relative signal strength. Not only is it an aid in giving reports to transmitting stations, but it is helpfulalso in aligning the receiver eiranits, in conjunction with a test owillator or other steady signal.

Thred types of indicators :are shown in Fig. 730. That at A uses anclectron-ray tube (S 3 3-i) , several types of whid are at ailathe. The grid of the triode secetion usuatly is commerted to the a.s.ce line. The particular type of tube used depends upen the voltage available for its grid; where the at.v.e. voltage is large, a remote cut-olf type (fin or 6ND) should be usiod in preference to the more sensitive sharp cut-off type (6E5).

In B, a milliammoter is conneeted in series with the d.e. plate lead to one or more r.f. and i.f. tubes. the gride of which are rontrolled by alv.c. voltage since the phate curreat of such thbes varies with the strength of the incoming shand. the metor will indiater relative signal intensity and may be calibrated in "s'" points. The scale range of the meter should be ehosen to fit the number of tuber in use: the maximum piate current of the arerage remote cutoffir.f. pentode is from 7 to 10 milliamperes. The shant renistor, R, enables sutting the plate current to the full-siale value ("zero adjustment"). With this system the ordinary meter reads downwards from full sate with increasing signal stremgth, which is the reverse of normal printer movemont (clockwise with increasing reading). Sipectal instruments in Which the zero-rarent pasition of the pminter is oh the right-hand siele of the seale are used in combererial receivers.

The systemat C uses a $0-1$ mat, milliammeter in a bridge cirenit, arranged so that the

Fig. 729 - Automatic volnme control cirnit using a dual-diode-triode ac a combined a.v.e. revtifier, serond detector and first andin-frequency amplifier.
$\mathrm{K}_{1}-10.2 \mathrm{in}$ mothin.
$\mathrm{R}_{2}-50.000$ to $2.51,000$ ohms.
$\mathrm{R}_{3}-2000$ ohms.
$R_{4}-2$ to i mofohms.
$\mathrm{R}_{\mathrm{s}}-0.5$ to 1 monolm .
$\mathrm{K}_{0}, \mathrm{~K}_{-}, \mathrm{R}_{x}, \mathrm{~K}_{y}-0.25$ mepohm.
$\mathrm{K}_{10}-0.5$-mo'gohm variahle.

1.4 - $0.1 \mu \mathrm{fol}$.
($\mathrm{n}, \mathrm{Cif}, \mathrm{G}=0.01 \mu \mathrm{fo}$.
(in, ($5=0.01$ to $0.1{ }_{\mu} \mathrm{ff}$.

meter reading and the signal strength inerease together. The current through the branch containing R_{1} should be approximately equal to the current through that containing R_{2}. In some manufactured receivers this is bronght abont by draining the sereen voltage-divider current and the current to the screcns of three r.f. pentodes (r.f. and i.f. stages) through R, the sum of these current: being about equal to the maximum plate corrent of one a.v.e- erontrolled tube. Typieal valurs for this type of cireuit are given. The sensitivity ran be increased by increasing the resistance of h_{1}, R_{2} and R_{3}. The initial setting is made with the manmal gain control set near maximum, when R_{3} shomid be adjusted to make the meter read zero with no signal.

C. 7-14 Preselection

Purpose - Prucelection is added signal-frequency selectivity inomporated before the mixer stage is reached. An r.f. amplifier preceding the mixer generally is called a preselector, its purpose, in part at loast, tering to discrininate in fawo of the signal against the image. The preselector may consist of one or moreref. amplifier stages. When its tuning control is ganged with those of the mixer and uscillater, its cirenite most track with the mixer circuit.

The circuit is the same as discossed carlier (§ 7-6). An external preselector stare may be used with roceivers having inadequate imare ratios. In this rase it is bailt as a separate unit, often with a tuned output circuit which gives a further improvement in selectivity. The output rirenit usually is link-coupled $(82-11)$ to the receiver.

Signal uoise ratio- An r.f. :mplifier will have a better signal-to-moise ratio (\& $7-2$) than a miser becaluse the gain is higher and becaluse the mixer-tube clectrode arrabgement results in higher intermal tuke moise than dones the ordinary pentode struture. Hence, a preselector is advantageous in increasing the signal-to-noise ratio over that obtamable when the mixer is fed dirertly from the antemma.

Image suppression - The image ratios (§7-8) obtamable at frequencies up to and including 7 Me, with a single preselector stage are high enough, when the intermediate freunency is 450 ke , sor that for all prate tad pmo poses there is mo appreciable imare response. Average imare ratios one 14 Mr and as Me. are 50 0 -75 and 10-15, respectively. This is the overall selectivity of the r.f, and mixar thmed circuits. A second preselector stage, adding another tuned circuit, will increase the ratios to se veral hundredat 14 Me. and to 30-40 at 28 Me.

On very-high frequencies. it is impracticable to attempt to secure a good image ratio with a $455-\mathrm{kc}$. i.f. (bood performance can be secured ouly by using a hich i.f. or a double superheterodyne ($\$ 7-8$) with a high-frequency first i.f.

Regeneration - Requmeration may be used in a preselector stage to increase both gain and selertivity. Stine it use makes tuming more

ation is seldom employed except at 14 Mc . and abowe, where adequate image suppression is difficult to obtain with non-regenerativerireuits. The same disadvantages exist as in the case of a regenerative i.f. amplifier ($\$ 7-11$). The effect of regencration is roughly equivalent to adding another non-regenerative preselector stage.

Fïs. 730-Tuning indirator or "S"-mencre circuits for suprhet receivers. A. wectron-ray indicator; B. platecurrent meter for tubers on a.v.e; 6 , bridge circuit for a.vere-ontrolled tuber. In 13 , resi-tor R should hatre a maximum resistance several times that of the milliammeter. In (.. representative value for the compornin are: $R_{1}, 250$ ohms; $R_{2}, 350$ ohms; $R_{3}, 100(1)$-ohm variahle.

Regeneration may be introdured by the same method as used in regenerative i.f. amplifiers ($\mathbf{S} 7-11$). The manual gain control of the stage will serve as a volume control.

Regeneration in a preselertor does not improwe the signal-to-noise ratio, sine the tube noise is fod batek to the grid wirenit along with the signal to add to the thermal-agitation nome originally present. This moise also is amplified.

11 7-15 Noise Reduction

Types of moise - In addlition to tuhe and rircuit noise ($\$ \mathbf{T}-\mathrm{ti}$), much of the noise interference experienced in reception of high-frequoncy signals is cansed by domostir clectrical equipment and by automobile innition systems. The interference is of two types in its efferts. The first is the "hiss" type, consisting of overlapping pulses similar in nature to the receiver moisc. It is largely reduced by high selectivity in the rowiver, experially for code recoption. 'The second is the "pistol-stuot" or "madhine-gun" tspe, ronsisting of splarated impulses of high amplitude. "Ther "hiss"

Fip. 731 - Audio ourput-wirmit amplitude-limiting noite-reduring vircuits for c.w. roception.
$\mathrm{C}_{1}-1.25 \mu \mathrm{frl}$.
$\mathrm{Ci}_{2}-0.01 \mu \mathrm{Cl}$.
C.3 - 5 fel.
$\mathrm{R}_{1}-0.5 \mathrm{~m}$ mohm.
$R_{2}-2(10)$ ohmm.
R_{3} S0,006-ohm potentiometer.
'T - Tittunt transformer.
1, 1.- 1-heory choke.
 mutator sparking in d.e. and series-wnmal a.c. motors, while the "shor' typeresults from separated wark discharges (a.d. power leaks, switeh and key clicks, ignition sparks, and the like).

Impulse moise - Impmase moise, bectuse of the extremely short duration of the pulases as compared to the time between them, must have high pabse amplitwle to contatin murh arerage energy. Hence, motise of this type strong emough to canse mumh intorfereme wenerally has an instantaneous amplitub num hisher than that of the signal being reeoved. The general principle of devies intemded to redure such moise is that of allowing the sirnal amplitude to pass thrmarh the remerer unsfferted, but making the rereiver imperative for amplitudes greater than that of the sisnal. The greater the amplitade of the pulse compared to its time of daration the more sucessitul the mose rembefons. sime more of the abstituent enorgy ran br supprusiont.

In passiag through selective recoiver cirmits, the time duration of the impulses is increased. bercause of the (or flywhel effect (s 2-10) of the eirenits. Henere, the more selectivity ahead of the mist-redacimg dexice, the more dificult it beromes to secure good moses suppression.

Ambiolimiting - A considerable degrer of noise reduction in corle rereption can be anomplished by ampliode-limiting arrangements applied to the amolio mutput rirenit of a reeniver. sumblimitars alsumanatan the signal (nitput nearly ronstant with fading. Diagrams: of trpisal ohtput-limiter cirenits are shown in Fig. 731. ('imuit A empluys a triode tube operated at rehared phate voltage (appowimately 10 volts), so that it saturates at a low signal lavel. The arrangement of 13 has better limiting ehameteristios. A pentombe andio tube is operated at reduced sereen voltage (33) volts or sob). so that the cutput power remains paratically constath wer at grid exeltation-voltage range of more thatn 100 to 1 . These outputlimiter sereme are simple, and adaptable to most receivers. However, they canmot prowent noise patk: from orertanding previnus dirents.

Second-detector circuits - The rircuit of Fig. 73: "chops" moise peaks at the second detector of : superlet receiver by means of a biased diode, which beromes non-romdurting above a predetermined signal level. The andio ontput of the detertor must pass through the diode to the grid of the amplifier tabe. The diade normally wonld be non-ronducting with the conmertions shown were it not for the fate that it is riven fusitive hias foom a 30-volt
source throngh the adjustable potentiometer, R_{3}. Resistor: h_{1} and h_{2} must be fairly large in value to provent loss of andio signal.

The audio signal from the detector ean be considered to modulate ($\%$-1) the steady diode current, and conduction will take place so long as the diode plate is positive with respert to the eathorde. When the signal is sufficiently large to wing the cathode positive with respert to the plate, however, eonduction reases. and that purtion of the signal is cut off from the atulio amplitier. The point at which rut-off oreurs can be solerted by adjustment of R_{3}. By settinis $R_{3}=10$ that the signal just passes through the "valve," noise pulses higher in amplitude thatn the signal will be rut off. The circuit of ligg $732-A$, using an intinite-impedance detertor ($7-3$), gives a positive voltage on recelilication. When the rectitied voltage is negative, as it is from the usual diode detector (58-3. the rimuit amangenent shown in Fig. 7ex2-13 must be used.

An audio signal of about ten volts is required for gond limiting action. When a beat oseillator is wised for ew. reereption the b.for voltage shomld be small, so that ineoming moise will not hate a strang arbiar to heat agatust and so prolume larere athen ontput.

A sommbletertor mose-limiting circuit which alutomatically adjusts itself to the received ramion level is shown in Fig. 733. The diode lond rimuit (s $7-3$) consists of $h_{6}, R_{-}, \mathrm{R}_{8}$ (shmuted by the bightresistance andio volume (ontrol, R_{9}) and h_{5}^{\prime} in series. The cathode of the tiN: mose limiter is tapped on the load resistor at a point such that the average rectified ramier voltare (nogative) at its grid is approximately twice the merative voltage at the eathode, both masured with roference to gromad. A filtor network, $R_{1} C_{1}$, is inserted in the gride direnit, so that the athdia modulation on the eamier domes not reath the grid: henee. the grid putential is mantamed at substantially the reetifed earrier voltage atome. The rathonde, howerer, is frece to follow the modulation, and when the mostulation is 100 per cent the peak rathonde woltage will just equal the steady grid voltane.

At all modulation perentages below 100 per eent the wrid is becrative with resperet to cathwhe amd current canmut flow in the tiNo platerathode cirruit. A noise pulse exreeding the peak voltane which represents 100 per cent modnation will, however, make the grid positive with rospert to rathode. The relatively
 shunts the high-resistame audio output cireuit,
effertively short-circuiting it, so that there is practically no response for the duration of the peak over the 100 por rent modulation limit.
R_{5} is used to make the noise-limiting tube more sensitive by aplying to the pate an audio voltage out of phase with the cathode voltage, so that, at the instant the grid geos positive with respert to cathorle, the highest positive potential also is applend to the plate. thas further lowning the effertive platerathode resistance.
I.f. moine silemerer - In the rirenit shmw in Fig. 7:3t, mise pulsen are made to dearease the pain of an i.f. stage momentarily and thes silence the recoiver for the daration of the pulse. Any mise boltage in excess of the desired signal's maximum i.f. voltage is taken off at the grid of the i.f. amplifier, amplified he the noise amplifier stage athd rectified he the fullwave diode noise rectifier. The nowe cirenits are tund to the i.f. The rectified monse voltage is applied as a pube of negative bias to the No. 3 grid of the 61,7 i.f. amplifier, whelly or partially disabling this stage for the duration of the individual mose pulse. depentheng on the amplitude of the moise voltage. The masise amplifier-rectifier circuit is hiased bey means of the "threshold eontrol." $R 2$, so that reedifiration will mot start until the nowse voltage exereds the dexired-signal amplitude. With automatie volume rombol the as.e. voltage can be applied to the prid of the mose amplifier. to atugment this threwhod bian. This system improsed the signal-tomosise ratios some 30 db . (power ratio of lomo) with hatry ignition interferemer, ratising the signal-fo-moise ratio from - 10 (1). without the siloberer to $+20 \mathrm{~d} h$. with the silaneer in a typical instance.

Fis. 732 - Series-valur nomes-limiter rireuits. A. as used with an intinite-imbedane detecter: R, with a diwle detector. Typical values for eomponents are an follows:
$\mathrm{K}_{1}-0.95$ meqohm.
$\mathrm{K}_{2}-50,0000$ ohms.
$\mathrm{K}_{3}-10,000$-ohms.
$K_{4}-20.000$ to 0 (0, 100 ohms. (i) - 230 $\mu \mu \mathrm{f}$).
C. $2 .(3-0,1 \mu \mathrm{fil}$.

All other diode-rirenit eonstants in I are conterntional.

Fin, 2.33 - Automatic moise-limiter for superheterodenes.
1-I.f. transformer with a halaneal semomelary for worhing intos a lionle rertifier.

 $R_{5}-30,1000$ ahmi.

The switch shoulif be mometed elose to the cirenit cle

('irenit values are nomal for i.f. amplifiers (s $7-11$, exerpt an indicated. The manerectifier tramoformer, T_{1}, has an untumed seromdary chosly coupled to the primary amd rentertaphed for full-wabe redtification. The contertap reetifier (\$8-3) is used to redure the possibility of r.f. foed-hack into the i.f. amplifier (noise-silencer) starer. The time ronstant (s. 2-6)
 bermall. to prevent disabling the moistrailencer stage for a longer perion that the duration of the mevise pulse. Theref. rhoke, RFr', must be effertive at the intermediate frertmener.

Adequate shielding and isalation of tha noiseamplifer amb reatiler aronits from the noisesibarer stage mast the provided to prevent porable selforarillation and instability. This rirenit should be applied to the first i.f. stare of the reeceiver, before the high-selentivity rirruits are reathed. (n the other hathl, it is most effertive when the sigual and nowe tovels are fairly high (meaning one or two r.f. stages before the mixer) sime neveral volts mast be obtained from the mose rectifier for good siloncing.

C. 7-16 Operating Superheterodyne Receivers

Cite reccption - For making combe signals andible, the beat wedilator shombla he so to a freguency slightly different from the intermodiate frequency (s $7-\checkmark$). To aldust the beatwailator frequency, first tune in a moderately Weak lat steady ararior with the bat ancillator turned off. Aljust the receiver tuning for maximumsignalstrengthas andicatod he maximum hiss. Then turn on the heat asidlator and andjest its frepurney (leaving the recelver tuning unchanged to give a suitable beat mote. The beat oseillater neod not subserguently be toushed, except for oreasional cheeking to make ertain the frequency has not drifted from the
initial setting. The h.f.a. maty be set on cither the high- or how-imenteme sule of zero beat.

The use of acs.e. (s $\overline{-1}-13$) is mot generally satisfactory in \subset ew. reception bemase the reeriver pain rises in the spaces between the dots and dashes, giving an increase in noise in the same intervals, and beratuse the rectified beatematillator voltage in the semond detertor circuit also operates the a.vere rireuit. This gives a constant reduction in gain and provents utilization of the full sensitivits of the receiver. Hemere the gain preferahly should the mathatly adjusted to give suitable: andio-freduener output.

Fo avoid overlowding in the i.f. cireuits. it is msually better to rontrol the i.f. and r.f. gain almd kerp the athen matn at a fixed vabue than to nes the alf. gain rentrol :ts a volume eontrol atml loave the ref. gan fixed at its highest level.

Tumins with the revstal filler - If the recoiver is equipped with a crestal filter the tuning instructions in the preceding paragraph still apply, but more care must be used both in the initial adjustment of the beat nscillator and in tuming. The beat oscillator is set as described abuse. hut with the erystal filter in operation and allusted to its sharpe:t position. if variathle seloetivity is awalable. The initial adjustment should be made with the phasing contral
s-ill int the intermodiatermithom. After it is completed. the heat uedilatar -humbld be left set and the receiver tumed tu the other side of zero beat (atudio-frequenery imane) wh the same carrior to give a beat bote of the same tone. This beat will be considerably waker than the first, and may be "phased out" almost completely by careful adjust ment of the phasing control. This is the adjustment for normal operation; it will be foumd that one side of zero leat hax practically disappeared leaving maximum response on the desired side.

An interfering signal hating a beat mote differing from that of the at. image atin be

Fig. $\mathbf{3}$.3. - I.f. noise-silencing wircuit. The plate suphly
 (1 - $51-250$ a fid. (use smallest valuc porible without r.f. feellback).
(2 - in $\mu \mu \mathrm{fd}$. $\quad \mathrm{R}_{2}-.000$-ohm variable.
$\mathrm{C}_{3}-0.1{ }_{\mu} \mathrm{fd} . \quad \mathrm{R}_{3}-20,0$ on ohm -
$k_{1}-10.1$ megohm. $K_{4} K_{5}-0.1$ megohm.
φ_{1} - Suecial i.f. tran-former for nowise rectifier.
similarly phased ont, powided its earrior frequeney is mot too mear the desirmd carrier.
bepending upon the filter dexign, maxinam selertivity may cause the dots and dashes to lengthen out so that they semm to "run together." This, plas the fact that tuning is quite eritical with extremely high solectivity, may make it desirable to use somewhat less seldetivity in ordinary operation. However, it must be emphasized that, to realize the benefits of the aryetal filter in rembeding interference it is mocessary to do all thaimg with it in the circuit. Its erlectivity is an high that it is athmet impossible to fimd the dereired station quirkly. shomed the filter be switahed in only when interference is present.
-Phone reception - ln reception of 'phone signals the mormal promedure is to set the raf. and i.f. gatin at maximum, switeh on the a.v.e., and use the andin satin control for sotting the volume. This insures maximum effectiveness of the asere setem in compensating for fading and maintaining constant audio output on either strong or weak signats. (On oreasion a streng sigmal chose to the freguebey of a weaker desired =tation may take control of the ave.e., in whelh ratse the weaker station will pracliatlly disatyear beratwo at the redued gain. In this rase better roception may rosult if the aces. is swithed off, beiner the mamal r.f. gain conteol to set the gaill at a mint which proberst-"horking" bẹ the stronkor signal.

A crestal filtor will domach toward relucing interference in 'phome sereption. Although the high selectivity cuts sidebands (s $\mathbf{-}-11$) and thereby roduces the addiountput, especially at the higher abulin frequencios, it is possible to ust quite high selectivity without destroying intelligibility even though the "quality" of the transmiswion maty sutier. As in the case of cow. reception. it is advisable to do all tuming with the filter in the rireuit. Variable-selectivity filters permit a chono of selectisity to suit intorference conditions.

An undesired carrier elose in frequency to a deseded earrier will laterodyne with it to produme a beat note equal to the frequency difforence. such a heterodyone can be reduced by adjust ment of the phatsing cont rol in the erystal filter. It ramoot be prewentod in a "straight" sumphoterorlyne having no arystal filter.

A tone control often will be of help in reducing the effects of high-pitehed heterodynes,
 off the higher andiufrequencies. This, like sideband cutting with high selectivity, causes some reduction in maturalness.
spurious responses - Spurions responses can be recognized without a great deal of diffeculty. Often it is possible to identify :n imare by the nature of the transmitting station, if the frequency asignments applying to the frequency to which the reariver is tuned are known. However, an image also can be rerognized by its behavior with tuning. If the signal eauses a heterodyme beat mote with the
desired signal and is antually on the same frequency, the beat note will not change as the receiver is tuned through the signal; but if the interfering signal is an image, the beat will vary in pitch as the receiver is tunet. The beat oscillator in the receiver must be turned off for this test. I'sing a crystal filter with the beat oscillator on, an image will pata on the side of zero beat opposite that on which the desired signal praks.

Harmonic response can be recognized by the "tuming rate," or movement of the tuning diad reguired to give a sperified chanter in treat mote. Signals getting into the i.f. via high-fremuenes oxidlator harmonies tume more rapidy dero dial mowement) through a givels change in beat note than do signals received by tormal means.

Harmonics of the beat osidhator can be recognized dey the tuning rate of the beat-nserillat or pitch control. I smaller mownent of the rontrol will suffice for a given change in beat nete than is necessary with logitimate signals.

C 7-17 Servicing Superheterodyne Receivers

Troubleshooting - Two basic methods are employet. One is the "point-by-point" system of statie analysis. requiring ehicfly a nultirang. wolt-ohnt-milliammeter. Beginning at the power trand former, the onerating voltages at eacla point in the cirenit are meatsured. Abmornally low on high waltaris, or the absence of indiration at at given point in the circuit, presmathle indiate a defertive component at that point. The analy wis may. then be completed with the aid of the ohmmeter: ime a litte deduction, combine with repair or replaterment of usorviceatle compertents.

An alternative methent, ommomly emplayent by profersional radio rervemen, is that of "dynamis" or "hhamm" analywis. The principle is that of applying a thest signal to the r.f. input and tracing it it are-by-stage through the recerver. Ther.f.and i.f. stages are chowked by tunced amplifiers foeding a linear detector which operates :m indirater such as vartumtube voltmeter. ellectron-rasy woltheter. or athode-ray tube. A probe on the end of : shielded lead with a very small comdenser $(1-2 \mu \mu \mathrm{fd}$) in series is used to piek un the signal in the output of ang stage, and the cuned amplifiers are adjusted to the frequences of the stage. Thas the presence or absence of the signal at any point in the rewiver may be determined at well ats the rolation level.
I.f. aliznment-A calibraton signal pernerator or test ancillator is a practical neressity y for initial alignment of an i.f. amplifier. Some means for measuring the ont put of the receiver also is nected. If the werever has a thering meter, its indications wist serve for this purpose. Alternatively, if the signal generator is of the modulated type, an arr. output meter (high-resistance voltmeter with copper-exidrectifier) can be conmeted :uross the primary of the output tramernam, on from the phatw in
the last autio amplifice through a $0.1-\mu \mathrm{k}$. blocking condenser (\$2-13) to the receiver chassis. The intensity of sound from the loudspeaker can be judged be car. it no output moter is availathe but this method is not as a welurate as these using instruments.

The procedure is as follows: The test oscillator is adjusted to the desired intermediate frequeney, and the "hot" or ungrounded output lead is clipped on the grid terminal of the last i.f. amplifier tube. The gromeded lead is comected to the receiver chassis. The trimmer condensers of the transformer feeding the serond detertor are then allunted for maximum signal output. The hat lead from the generator is next cliphed on the grid of the next-tolast i.f. tube and the second from lawt i.f. transformer is hrought into alignment by adjusting its trimmers for maximum output. This provess is continued, working back from the second detector, until all of the i.f. tramsformers have beth aligned. It will be necessary to redues the output of the signal generator as more of the i.f. amplifier is hromght into use, beeanse the increased gain otherwise may came overloading and consequent inatecurate results. It is desirable always to use the minimum signal strength whinh gives useful ont pat readings.

The i.f. trambormer in the pate wireuit of the mixer is aligned with the signal-generator output lead comeneted to the mixer grid. Siner the thaed "irchit feeding the mixer grid is tumed to a considerably higher fequeney, it raln efferetively short-cireuit the signal-generat.er output, and therefore it may be arecessary tor diswomed thin armit. Withtmas having a
 simply remating the grid clip form the tube app.

If the thning imbirator is used as an output meter the :aric. should be on; if the :udhaontput metheed is used, the :avere shated be off. The beat maidlator should be wif in cither case.

If the i.f. anplifier hase a crestal filter, the filter should be switwhed ont. Alignment is then carried out as duscribed atowe, setting the signal gencrator as chosly at possible to the frequency uf the erystal. After alighment, the reystal sloudd be swit ched in and the oseillator frequency vatiol hack and forth ower a small range either side of the reystal trequener to find it: exact frequency, which will be indicated hy an sharp rise in output. Leaving the sigual gemerator set on the crystal peak. the i.f. trimmers may be realigned for maximum output. The neressary readjust ment should be small. The signal generator frepueney should be cherked frequently, to make sure it has not drifted from the "rystal peak.

A modulated signal is not of mucl value for aligning as rystal-filter i.f. amplifier, since the high selectivity cuts sidebands and the result. may be inacrirate if the andio output of the receiver is used as a eritarion of alignment.
 formers maty be aligued by rat, witug a weak

peak. Switels on the beat oneillator, adjust to at suitable tones, athl align the transformers for maximum andio output.

An amplifier which is only slightly out of alignmont. as at result of normal drift from temperature, humidity or aging effects, can be realigned by using any stomby signal, such ats a lowal bromdeasting statima, is lieu of a test ascillator. Allow the receiver to warm up thorbughty 'all henur or son, tume in the signal as ustall, alld "touch up" the i.f. trimmers.
R.f. whammont - The objertive in aligning the rif. eirmits in a gang-tuned reeriver is to sewure adequate tracking over each tuning rathe. ' The adjustment may be carried out with a test waillator of suitable frequeney range, we eren on moise or such signals as maty he heard. First set the tuning dial at the highfrequeney end of the range in use. Then set the test wisibater to the frequeme indiated by the recoover dial. The test-ovillator output may tre commered to the antemna terminals of the recobrer for this tent. Adjust the maillater trimmer arondenser in the recerver to give maximum repponse on the tost-asidlator signal, then reat the receiver dial to the low-frequrney end of the range. Set the test-omitlator frequener near the frequeney indicated by the remeror dial and carefully thane the test asobllater until its signal is heard in the receiver. if the frequener of the signal as imdieated be the test-asilatar calibration is higher than that indicated by the recomor dial, more inductanee (ow morn eapsaty in the tratking condenser) is neded in the recerver asedtator cirenit: if the frequeley is lower, les inductance (less tratking (alparity) is required in the recomer aseil-
 metas bar varine the indurtane of the coils:

 sarious himd- of minaliznmeat: the lower row shows the
 commmateationsels perefors with all tram-formers

 shirta dunut praindy matill. B, at the tom, a lireadband f.m, rewiow eurve taken after alimment bis the
 carve -hom-the imposemont after carefal visual alionment. (.. the pathern of a medimmoselectisity rereiver with transformers misalipnod symmetrically on cither side of remoname (top): below, the same i.f. currendy aligned hut with the test one illatur thamed slightly off fre-

or the capsury of the trateking condenser, to permit aligning the recober tuning with the dial calibration. Set the test aseillator to the frequeney indieated he the reweiver dial, and then adjust the tracking capacity or induetance of the receiver oweillator coil to obtain maximum response. After making this adjustment. recheet the high-frequeney cond of the seale as previously described, It may be neecssary to go back and forth betworen the ads of the range several times before the proper combination of inductande abd caparity is seroured. In many rases. hettor wer-all tracking will result if frequencies near but not actaally at the ends of the turing range are sellected, instead of taking the extreme dial settings.

After the waiflator range is properly adjusted, sot the receiver and test oscilhator to the high-frequency end of the range. Adjust the mixer trimmer condenser for maximum hiss or signal, then the r.f. trimmers. Reset the tuning diad and test ascillator to tho low-frequency end of the range, and repeat: if the cirenits are properly dexigned, no change in trimmer settinges shombl he neressary. If it is neressare to incerase the trimmer eaparity in any eiredit, it indirates that more inductane is needed; if less capacity resonates the dircuit, less indactance is repuired.

Tratcking addem is perfort throughunt a tuning range. so that a therk of alignment at internmeliate pronts in the range mas show it to be slightly off. Nommally the gain variation from this callse will be small, however, and it will sufliee to bring the cirmite into line at both ends of the ramge. If most reception is in a particulan part of the range, such as an anateur band. the rirvuits maty be aligned for maximum pertormanoe in that region. cuen though the combs of the fregurney range as at whole ntay he slightle out of alignment.

Vismal alisnmeni - Nare atecurate and effecient alignment of recoiver circuits may be performed with the aid of a visubl curve-tracer or "wohtulatar" which thates out the response rurse visually on a cathoderay oscilloscope. This is acomoplished hy msing a special signal generator in whith the oseillator freguence is varied over a suitable range at a low andio rate. The horiznital swerp of the ascillaseope is syblarmized with the rate of variation of the test frembener. so that the horizontal deflection is a function of iresumete. "the reetified output of the seromel detertor is connerted to the rertiral deflection wates of the weilloscope. The spot on the sereen therefore trames a curve propertional to the receiver response in terms of the instantathens value of the osrillator frombenes. This wimal response curvo, which may be that of the entire receiver or of any stage", is contmually visible as at whole. Thus the effect of ans adjustment of the cireuits may be ohserved mush more rapidly than is possible with an ordinary signal generator and ontput meter, partiablaty in the case of wide-band i.f. rireuits.

(A)

(B)

(C)

Fif. 7.36 - A, a typical single-trace response curve of a salective hiph-fidelity i.f. swatem. B, pattorn of the amplifier in i matr highly repenerative, illastrating instability. C, double trace of a single orereonjled i.f. stage with the return trace diajlaced. A similar "hnee" lowated lower an the skirts would indicate requeration.

Apparatus and methods for obtaining visual curve traces are described in Chapter Ninetern. The simplest arrangement is that which embploys a reactance-tube modulated oseillator operating on 1000 ke , the output of which is combined with that from an ummolulatod variabletuming ref. osrillator in a miver tutur, to provide a heterodyned signal at the derirad center frequency.

Either "double trace" and "single trame" patterns mas be usod. The domble trace pattern is obtained by applying a triamgular sweep to the f.m. oseillator at a frequene $\begin{gathered}\text { half }\end{gathered}$ that of the sawtooth sweep on the horizontal plates of the cathode-ray tubs. The retarn sweep produces a reversed pattorn superimposed on the first, and is useful for checking symmetry and frequeney calibration. The single-trace pattern shows the same two oppo-site-sequence resonance rurves, but with the second curve displaced by a half erece of the andio sweep frequency. It is useful in displaying irregularities in the pattern which might be obscured by superposition of the traces.

The alignment procedure follows that deseribed for the oseillator-output-meter methond. Assuming a diote serond detertor, rum a shielded lead to the vertieal input terminals of the oseilloseope from the "high" side of the diode load resistor - wimally the andio volume control. With a triode biased detertor, the bias resistor and by-pass eondenser cireuit should be opened and the vertion torminad romected to the cathode of the detector tube across a $0.5-\mathrm{mogohm}$ leak to grommal, bypassed with a 2.0 - $-\mu$ mit. condenser. The phate load shonld be shorted out. This, will make the resonance patterns appear upside down, but does not change their interpretation.

The r.f. output from the mixer should connect directly to the grid of the lats i.f. tube. Add the i.f. frequeney to 1000 kr , :m set the momodulated signal generator to this froquency. For exanple, if the i.f. is 465 ke ., s.t the a.m. signal generator to 14 tij ke. At the usual bandwidth of 30 kr ., the signal at the grid of the last i.f. stage will swing from tion lie. to 480 kc . and back. If the signal genemator is set to the exact i.f., a double-trace pattern shonld appear on the sereen. Center this pattern with the ascilloseope sweep vernier. Adjust the i.f. trimmers until these peaks eonimeide. For single-traceanalysis, theoseilloseoperwoep frequeney should be reduced one half.

To align the moxt i.f. stage, move the r.f. output lead to the grid of the tube and adjust the next i.f. transformer. It nay be neressary to readjust the output transformer after this gheration. When atigning triphethued or highfidality i.f. rifousts, it is most important that, the peaks in the double pattern comeide and hawe ne:arly equal amplinath.
 the variadn-trequency sighal gemerator shomad be set to a fregherery whirh. hes aldition to 1000 kr , produres the deximed rab sighal frequeney As eath stage is : idted. the output leved mast ber reduced to kerep the pattern on
 signal shombl be lased to owerome lexal interferenee, Adjnst theref. trimmers for maximmon Frotical amplitme of the pattern, ats with an outpat meter. Dial calibration ran be cherked by selling the lest areillator on frefuldey

(A)

(B)

(C)

 frequency side. (:, with loy on high fropurney side.

Oscillation in r.f. or i.f. amplifiers - Osrillation in hish-frenuener amplifior and mixer rimuits mas be witumed hy sumats on "hirdies" as the tuming is varime or by complete lack of amdible outpat if the aseilation is strong emongh to raller the as, s.estom to
 can be attised beg pen commertions in the rom-
 combenser rotors. Imadequate in deteretive besphes condensers in rathonle, plate and sereen-
 some (atese it may be advisable to provide a -hided between the staters of pre-r.f. amplitier and tirst-detertor gamged thang combensers, in addition to the wishat tabe and haterstage shimble ing. A metal tuhe with an umgrommed theil will athee trouble. Improper sorern-prial wolt-

 for sum instability.

Oseillation in the i.f. cirenits is independent of high-frequency tuming, amd is: indir:ated by a contimuons squeal which appears when the gain is advanced with the e.w. beat ascillator on. It ran realt from similar deforte in i.f. amplifier cirenits. Inadequate cathorde hepatso capacitance is a common canse of surf osciltation, An additional her-pass comblenser of 0.1 to $0.25 \mu \mathrm{f}$. unnally will remedy the trouble. Similar treatment atu be applied to the sereengrid and phate hy-pass filters of i.f. stages.

Instability - "Birdies" or a mushy hiss occurring with tuning of the high-frequency oscillator may indicate that the oscillator is "squegging" or oscillating simultaneously at high and low frequencies ($\$ 7-4$). This may be caused by a defective tube, too-high oscillator plate or screen-grid voltage, excessive feedback, or too-high grid-leak resistance.

A varying beat note in c.w. reception indicates instability in either the h.f. oscillator or beat oscillator, watly the former. The stability of the beat oscillator can be checked by introducing a signal of intermediate frequency (from a test oscillator) into the i.f. amplifier; if the beat note is unstable, the trouble is in the beat oscillator. Poor comnections or defective parts are the likely cause. Instability in the high-frequency oscillator nay be the result of poor circuit design ($\$ 7-10$), loose connections, defective tubes or circuit components, or poor voltage regulation in the oscillator plate and/or sercen supply circuits. Mixer pulling of the oscillator circuit ($\$ 7-9$) also will cause the beat-note to "ehirp" on strong c.w. signals because the oscillator load ehanges slightly.

In 'phone reception with a.v.c., a peculiar type of instability ("motorboating') may appear if the h.f. oscillator frequency is sensitive to changes in plate voltage. As the a.v.c. voltage rises the electrode currents of the controlled tutes decrease, derreasing the load on the power supply and causing its output voltage to rise. Since this increases the voltage applied to the oscillator, its frequency changes correspondingly, throwing the signal off the peak of the i.f, resonance curve and reducing the a.v.ce voltage, thus tending to restore the original conditions. The process then repeats itself, at a rate determined by the signal strength and the time constant of the power-supply circuits. 'lhhis effert is most pronounced with high i.f. selectivity, as when a crystal filter is used, and can be rared by making the oscillator relatively insonsitive to voltage changes and by regulating the plate voltage supply ($\$ 7-10$).

C.7-18 Reception of FrequencyModulated Signals

F.m. reccivers - A frequency-modulation receiver differs in circuit design from one designed for amplitude modulation chiefly in the arrangement used for detecting the signal. Detectors for amplitude-modulated signals do not respond to frequency modulation. It is also necessary, for full realization of the noise-reducing benefits of the f.m. system, that the signal applied to the detector be completely free from amplitude modnation. In practice, this is attained by preventing the signal from rising above a given amplitude by means of a limiter ($\$ 3-10,7-15$). Since the weakest signal must be amplitude-limited, high gain must be provided ahead of the limiter; the superheterodyne type of circuit almost invariably is used to provide the necessary gain.

The r.f. and i.f. stages in a superheterodyne for f.m. reception are practically identical in circuit arrangement with those in an a.m. receiver. since the use of $\mathrm{f} . \mathrm{m}$. is confined to the very-high frequencies (athove 28 Mc .) a high intermediate frequency is employed, usually between 4 and 5 Mr. This not only reduees image response but atso provides the greater band-width necessary to accommodate wideband frecuency-modulated signals.

Recnicer requiremerts - The primary requirements are sufficient r.f. and i.f. gain to "saturate" the limiter even with a weak signal, sufficient band-width ($\$ 7-2$) to accommodate the full frequency deviation either side of the carrier frequency without undue attenuation at the edges of the band, a limiter circuit whieh functions properly on both rapid and slow variations in amplitude, and a detector which gives a linear relationship between frequency deviation and amplitude output. The audio circuits are the same as in other receivers ($\$ 7-5$), except that in communications-type receivers it is desirable to cut off the upper audio range by a low-pass filter ($\$ 2-11$) because higher-frequency noise components have the greatest amplitude in an f.m. receiver.

The limifer - Limiter cireuits generally are of the plate-saturation type ($\$ \overline{7}-15)$, where low plate and screen voltage are used to limit the plate-current flow at high signal amplitudes. Fig. 738-A is a typical circuit. The tube is selfbiased (§ 3-(i) by a grid leak, R_{1}, and condenser, $C_{1} . R_{2}, R_{3}$ and R_{4} form a voltage divider
Fig. 738 - F.m. limiter cireuits. A, single-tube platesaturation limiter; 3 , cascade limiter. Typical values are:

$R_{\text {eceiver }} P_{\text {rinciples and }} D_{\text {esign }}$
 173

(s 8-10) which puts the desired voltages on the screen and plate. The lower the roltages the lower the signal level at which limiting oceurs. but the r.f. output voltage of the limiter also is lower. C_{2} and C_{3} are the plate and sereen by-pass condensers, of conventional value for the intermediate frequency used. The time (onstant ($\$ 2-6$) of $R_{1} C_{1}$ determines the behavior of the limiter with respect to rapid and slow amplitude variations. For best "peration on impulse noise ($\$ 7-15$) the time constant should be small, but at toc-small time constant limits, the range of signal strengthe the limiter ran handle without departing from the con-at:ment-utpat condition. A larger time constant is better in this respere but is not so effective for rapid variations. Compromise constants are shown in lig. 738.

The caswade limiter, Fig. 738-18, overomes this by making the time constant in the first gride circuit suitable for effective operation on impulse noise, and that in the serond grid (C_{s}, R_{6}) optimum for at wide range of input signal strengths. This results, in addition, in more constant output over a very wide range of input signal amplitudes beranse the voltage at the grid of the second stame alroady is martially amplitude-limited. Resistance eouphing ($R_{5} C_{4}^{\prime} R_{6}$) is used for simplicity and to prewn mawanted regompation, additional gain at this point being anneressaty:

The rectified woltape developed across R_{1} in rither circuit may be applied to the i.f. amplifier for a.v.c. (\$ 7-1:3).

Discriminator circuits and operationThe f.m. detertor commonly is called a discriminator, becanse of its ability to diseriminate between frernency deviations above and those below the "arrier frequency.

A rectifier connerted to an ordinary tuned (irruit adjusted so that the signal frequence: falls on one side of the response curve constifutes an clementary diseriminator, becanse the reetifier output will vary with a change in the currier frequenc:. If two such circuits are used with a balanced rectifier, one tuned above and the other below the signal frequency, amplitude variations are balaned out and the combined rectified current is proportional to the frequency deviation.

The cirenit most widely used is the "series" or center-tuned diseriminator shown in Fig. 7:39-A A special i.f. coupling transformer is used between the limiter and detector. Its secondary, L_{1}, is center-tapped and is connected back to the plate side of the primary circuit, which otherwise is conventional. C_{4} is the tuning condenser. The load circuits of the two diode rectifiess ($R_{1} C_{1}^{\prime} R_{2} C_{2}$) are connerterd in series; constants are the same as in ordinary. diode detector circuits ($\$ 7-3$). Audio output is taken from across the two load resistanere

The primary and secondary circuits are both adjusted to resoname in the center of the i.f. pats-band. The voltage applied to the rectifiers consists of two components, that induced in the

Fig: F" Fim. di-r riminator cironit- luberth cirenits typical values for (i, and (iz are low $\mu \mu \mathrm{fl}$. each: K_{1} and
 depending upon the intermediate frequen $y=$ KF' Cobould be of a type de-signed for the i.f. in une ($2 . \bar{i}$ mh. is satisfactory for i.f.s of 1 to 5 Mc .). In either eircuit the ground may be ruowed from the lower end of C_{2} to the junction of C_{1} and C_{2}, for push-pull andio output.
secondary by the inductive eoupling and that fed to the center of the secondary through C_{2}. The phase rolations between the two are such that at resmance the rectified load carrents are equal in amplitude but flow in opposite directions through R_{1} and R_{2}, hence the net. voltage arosos the terminals marked "andio ontput" is zero. When the "arrier deviates from resonatue the induced semondary curent pither lags ar leade, depending upon whether the deviation is to the high- or low-frequeney side, and this phase shift ramses the indured current to ewmbine with that fed through 's in surh a way that one dionde gets more voltage than the other whon the fregnemy is below resonance, white the second diode gets the larger voltage when the frequency is higher than resmance. The woltage appearing atross the output terminals is the difference between the two diode woltages. Thus a chararteristio like that of Fir. 710 results, where the net. rectified output voltage hat opposite polarity for frequmbits on cither side of resonance, and up to a certain print beromes areater in amplitude as the frequency deviation is greater. The straight-line portion of the curve is the useful detector characteristic. The separation between the peaks which mark the ends of the linear portion of the curve depemds upon the Qs of the primary and secondary circuits and the degree of compling. The separation becomes greater with low (2. :and close coupling. The circuit ordinarily is designed so that the peaks fall just outside the limits of the pass-bant, thus utilizing most of the straight portion of the curve sine the andio ontput is propertional to the change in d.e. voltage with de vi:ation. it is ardvantareoms for maximum out.jut
 down to the minimum rature meressary for a linear chamateristic.

A second type of diseriminator is shown in Fig. 739-B. Two secondary cireuits are nsed. one tumed above the center frequency of the i.f. pasis-band and the other below. They are coupled equally to the primary. whirh is tuned to the center frequency. As the carriar fre-

Fig. $\mathbf{7 1 0}$ - Chararteristic of a typical fom. detector. 'The vertical axis represtats the voltape developed anrowe the load resistor at: the fropuerocy varis's from the exact resonance freducney. This detector wombd lomdla f.m, sipnals up th a bamd-witth of l.inhr. owr the limar portion of the corve.
quenery lewiates the wollates induced in the secondarios will chamge in amplituld the larger voltage apheating acoses the soondary being nearer resmanme with the instantaneous frequence. The detertion eharateristie is similar to that of the enter-tumed diseriminator. The peak separation is determinerl by the (Qs of the ciremits. the coelficient of coupling, and the tuning of the seromdarios. High (Qs: and loose coupling atre repuired for close poak sepatration.

A simple self-quenched superregenterative rereiver may be used as a frepueney detentor if it is tmad so that the arrion frequeney falls along the slepe of the resoname rave fiwo such deterters. aft-tumed on either side of the rarrier. masy be wod in push-pull. An altorma-
 tive stage ats a lirst i.f. amplitior at 7 . A Me.. following a comvartor mit, prowides high gain and limear respense with relatimely liew stages.
F.m. receiaer alisnment-Aligmment of f.m. reerivers uptothe limiter is carried ont ats deseribed in si-17. Fion whtpul measurement, : 0 - 1 milliammetor ar 0 . 000 microammetar shomald the combereded in series with the limiter grid resistur (h_{1} in Fig. 7iss) at the grounded emb: or, if the vollage drop :toross A_{1} is used for a.v.e amd the recoiver is provited with a
 used as an output meter, An areumately ralibrated signal genorator or test oscillator is desimable, sinere the i.f. should be aligned to be as sommetriablas posibible: that is, the output reading should be the same for any two tost oscillator settings the same number of kiloreves above on below resoname. It is not noeasary to have unitum response over the whole hand to be receivel, althomb the output at the edges of the band (limit of deviation (s. $5-11$) of the tramsmitted signals) shombl mot be less than 2-) per ceat of the voltage at resomane. In commanications work, a band-width of 30 ke, ur less (1 a ke or less deviat iom is commonly used. Output readings should be taken with the osrillator set at intervals of a fow kiloceres rither side of resomance up to the bend limits.

After the i.f. (and fromt-end) aligmment, the limiter operatian should be chereked. This can be done by tempmonily diseonnereting C_{3}, if the discriminator circuit of Fig. 7:39-A is used, diseonnerting h_{1}^{\prime} and C_{1} on the eathode side. and insorting the milliammeter or mieroammeter in series with ho at the grounded end. This converts the diseriminater to an ordinary
diode rectifier. Varying the signal-generator frequency over the channel, with the dis(riminator transformer adjusted to resonanee. should show no change in output (at the handwidths used for communications purpenes) as indicated by the rectified current rad be the meter. At this point various phate and sereon voltages can be tried on the limiter tube or tubes, to determine the set of conditions whirh gives maximum output with adequate limiting (no change in reatified current).

When the limitor has been checked the diseriminator comnertions ean be restored, leaving the meter connerted in series with h_{1}. Provision shomal be made for reversing the commertions to the moter terminals, to take care of the reversal in polarity of the net rectified current. Set the signal gencrator to the eonter freduener of the band and adjust the diseriminator transformer trimmer condensers to resonance, which will be indieated by zero roctified current. Then sot the test ascillator at the deviation limit (center frequeney, and mote the meter readine. Reverse the moter terminals and sot the test owallator at the deviation limit on the other side. The two readings should be the same. If they are not, thery am he mate so by a slight adjust ment of the primary trimmor. This will necessitate reehocking the response at resohance to make sure it is still zero. (ienerally, the socombary trimmer will chafly affeet the zero-response frequency, while the primary trimmer will have must affect on the symmetry of the disariminator peaks. A detector curve haviag satisfactory linearity ran be whtained by cut-and-try alyustment of both trimmers.

Fia. 7\% - Oadil. loneopu patterns in f.m. i.f. alignment. A-l.f, amplifier rasponsc.B— Over-all charac teristid through the f.ill. detertur.

(A)

(B)

A visual curve tramer is paticulaty advantapeons in aligning the wide-band i.f. amplifiers of f.m. rercivers. The i.f. is first aligned with the diseriminator "irenit converted intoral alm. diade detector, ats deseribed above, the pattern appearing as in Fig. 741-A. The over-all whatacteristic, including the f.m. detectur, is shown in Fig. 711-13.

Tuning and operation - An f.m. recciver gives greatest noive redurtion when the carrier is tuncd exartly to the center of the receiver pass-haml and to the paint of zero response in the diseriminator. Becanse of the decrease in noise, this perint is realily remgnized.

When an amplitude-mondulated signal is tumed in its nudulation pratically disappear: at exact resonance, only those nonsymmetrical modulation components which may he present being detected. If the signal is to one side or the other of resonance, howe ver, it is capable of cansing interference to an f.m. signal.

Power
 Supply

1. 8-1 Power-Supply Requirements

Filament supply - lixecpt for tubes designed for battery operation, the filaments or heaters of vacuum tubes used in both transmitters and receivers are universally operated on alternating current obtained from the power line through a step-down tramsormer ($\$ 2-9$) delivering a secondary voltage equal to the rated voltage of the tubes used. The transformer should be designed to carry the current taken by the number of tubes which may be connected in parallel (\$2-6) arross it. The filament or heater transformer generally is center-tapped, to provide a balanced circuit for eliminating hum (\$3-6).
for mediun- and high-power r.f. stages of transmitters, and for high-power audio stages, it is desirable to use a separate filament transformer for each section of the transmitter, instathed near the tube sockets. This avomids the necessity for abommally large wires to carry the total filament current for all stages without appreciable voltage drop. Maintenance of rated filament voltage is highly important, especially with thoriated-filament tuber, since under-or over-voltage may reduce filament life.

Plate supply - Direct current must be used for the plates of tubes, since any variation in pate current arising from power-supply causes will be superimposed on the signal being received or transmitted, giving an undesirable type of modulation ($\$ 5-1$) if the variations occur at an adio-frequency ($\$ 2-7$) rate. Unvarving direct current is called pure d.c., to distinguish it from current which may be unidirectional but of pulsating character. The use of pure d.e. on the plates of transmitting tubes is required by FCC regulations on all frequen(ies below 60 Mc .

Sources of plate power - D.c. plate power is usuatly oftained from rectified and filtered altermating carrent, but in low-power and portable installations may be secured from batterics. Dry hatteries may be used for very low-power portable equipment, but in many cases a storage battery is used as the primary power source, in conjunction with an interrupter giving pulsating d.c. which is applied to the primary of a step-up) transformer (s.s-10).

Rectified-a.c. supplies-Since the powerline voltage ordinarily is 115 or 230 volts, a step-up transformer ($\$ 2-9$) is used to obtain the desired voltage for the pates of the tubes in the equipment. The allemating secondary current is changed to unidirectional curront he means of diode reetifier tubes is:3-1) and
then passed through an inductanco-eapacity filter (\$2-11) to the load circuit. The lame resisiance in ohms is equal to the d.c. output voltage of the power supply divided by the current in amperes (Ohm's Law, $\$ 2-6$).

Voltage rogulation - Since there is always some resistance in power-supply circuits, and sinee the filter normally dopends to a considerable extent upon the energy storage of inductance and eapacity ($\$ 2-3,2-5$), the output voltage will depend upon the current drain on the supply. The chathge in output voltage with change in load current is called the roltage regulation. It is expressised as a percentage:

$$
\% \text { Regulation }=\frac{100\left(E_{1}-E_{2}\right)}{E_{2}}
$$

where E_{1} is the no-load voltage (no current in the load circuit) and $E=0$ the full-load voltage (rated current in load circuit).

1. 8-2 Rectifiers

Purpose and ralings-A rectifier is a device which will conduct current only in one direction. The diode tube ($\$ 3-1$) is used atmost exclusively for rectification in d.e. pewer supplies used with radio equipment. 'The important characteristics of tubes used as powersupply rectifiers are the voltage drop between plate and rathode at rated eurrent, the maximum permissible inverse peak voltage, and the permissible peak phate current.

Voltage drop - l'ube voltage drop depends upon the type of tube In vacumbetrpe rectifiers it increases with the current flowing beratuse of spare-tharge rffect ($\$ 3-1$), but can be minimized by using very small spacing bet ween plate and cathode as is done in some rectifiers for receiver power supplies. Nercury-vapur rectifiers ($\$ 3-5$) have a constant drop of about 15 volts, regardess of current. This is murh smaller than the voltage drops encountered in vucuum-trpe rectifier:-

Imerse peak coltage - This is the maxinum voltage developed between the plate amd cathode of the rectifier when the tube is mot condurting; i.e., when the plate is negative with respect to the cathode.

Peak plate current - This is the maximum instantancomes eurrent through the rectifier. It can never besmaller than the load current in ordinary circuits, and may be several times higher.

Operation of mercury-zupor rectifiers Because of its constant voltage drop, the mer-cury-vapor rectifier is more susceptible to damage than the vacuman trpe. With the latter, the increas in valtage drop tends to
limit current flow on heavy overloads, but the mercury-vapor rectifier does not have this limiting action and the cathode may be damaged under similar conditions.

In mercury-vapor rectifiers a phenomenon known as "are-back," or breakdown of the mercury vapor and conduction in the opposite direction to normal, oecurs at high inverse peak voltages, hence such tubes always should be operated within their inverse-peak voltage ratings. Arc-back akso may occur if the cathode temperature is below normal; therefore the heater or filament voltage should be checked to make sure that the rated voltage is applied. This eheck should be made at the tube socket, to avoid errors caused by voltage drop in the leads. For the same reason, the cathode should be allowed to come up to its final temperature before plate voltage is applied; the time required for this is of the order of 15 to 30 seeonds. When a tube is first installed, or is put into service after a long period of idlenese, the cathode should he heated for a period of 10 minutes or so before application of plate voltage.

(1. 8-3 Rectifier Circuits

Half-uave rectifiers - The simple diode rectifier (§3-1) is called a half-wave rectifier, because it can pass only half of each cycle of alternating current. Its circuit is shown in Fig. 801-A. At the top of the figure is a representation of the applied ace voltage, with positive and negative alternations (\$2-7) marked.

(B)

When the plate is positive with respect to cathode, plate current flows through the load as indicated in the drawing at the right, but when the plate is negative with respect to cathode no current flows. This is indicated by the gaps in the output drawing. The output current is unidirectional but pulsating.

In this circuit the inverse peak voltage is equal to the maximum transformer voltage, which in the case of a sine wave is 1.41 times the r.m.s. voltage ($\$ 2-7$).

Full-uave center-tap rectifier - Fig. 801B shows the "full-wave center-tap" rectifier circuit, so called because both halves of the a.c. cycle are rectified and because the transformer secondary winding must consist of two equal parts with a conmection brought out from the center. When the upper end of the winding is positive, current can flow through rectifier No. 1 to the load; this current can not pass through rectifier ぶo. 2 because its cathode is positive with respect to its plate. The circuit is completed through the transformer center-tap. When the polarity reverses the upperend of the winding is negative and no current can flow through No. 1, but the lower end is positive and therefore No. 2 passes current to the load, the return connection again being the center-tap. The resulting waveshape is shown at the right.

Since the two rectifiers are working alternately in this circuit, each half of the transformer secondary must be wound to deliver the full-load voltage; hence the total voltage across the transformer terminals is twice that required with the half-waver rectifier. Assuming negligible voltage drop in the particular rectifier which may be conducting at any instant, the inverse peak voltage on the other rectifier is equal to the maximum voltage between the outside terminals of the transformer. In the case of a sine wave, this is 1.41 times the total secondary r.m.s, voltage (§ 2-7).

Because energy is delivered to the load at twice the average rate as in the case of a halfwave rectifier, each tube carries only half the load current.

The bridge rectifier - The "bridge" type of full-wave rectifier is shown in Fig. 801-C: Its operation is as follows: When the upper rnd of the winding is positive, current can flow through No. 2 to the load but not through Ň. 1. On the return circuit, current flows through No. 3 by way of the lower end of the transformer winding. When the polarity reverses and the lower end of the winding becomes positive, current flows through No. 4 and the load and through No. 1 by way of the upper side of the transformer. The output waveshape is shown at the right.

The inverse peak voltage is equal to the maximum transformer voltage, or 1.41 times the r.m.s. secondary voltage in the case of a sine wave (§ 2-7). Energy is delivered to the load at the same average rate as in the case of the full-wave center-tap rectifier, each pair of tubes in series carrying half the load current.

C 8-4 Filters

Purpose of filter - As shown in Fig. 801, the output of a rectifier is pulsating d.e., which would be unsuitable for most racuum-tube: applications (\$8-1). A filter is used to smooth out the pulsations so that practically unvarying direct current flows through the load circuit. The filter utilizes the energy-storage properties of inductance and caparity (\$ $2-3$, $2-5$), by virtue of which energy stored in eles: tromagnetic and electrostatic fields when the voltage and current are rising is restored to the circuit when the voltage and curvent fall, thus filling in the "gals" or "valless" in the rectified out put.

Ripple coltage and frequenc.v-The pulsations in the output of the rectifier can be considered to be caused by an alternating current superimposed on a steady direct current (82-13). Viewed from this standpoint, the filter may be comsidered to consist of bepass condensers which short-cirecuit the a.e. while not interfering with the flow of d.e., and chokes or inductances which permit d.e. to flow through them but which have high reactance for the a.e. (\$2-13). The altemating eomponent is called the ripple. The effectiveness of the filter may be measured by the per cent ripple, which is the r.m.s. value of the a.c. ripple voltage expressed as a percontape of the dee output voltage. With an effertive filter, the ripple percentage will be low. Five per cent ripple is considered satisfactory for cow. transmitters, but lower values (of the order of 0.25 per ecut are ueressary for hum-free spereh transmission and for recover plate wuphics.

The ripple frequency depends upon the line frequency and the type of rectifier. In general, it consists of a fundamental plus a series of harmonics ($\$ 2-7$), the latter being relatively unimportant since the fund:amental is hardest. to smooth out. With a half-wave rectifier, the fundamental is cqual to the line frequency; with a full-wave rectifier. the fundamental is equal to twier the line frequency, or 120 rycles in the case of a fol-cycle supply.

Types of filters - Inductance-capacity filters are of the luw-pass type ($\$ 2-11$), insing series indurtances and shant eapacitanero. Practical filters are identified as condenserinput and choke-imput, depending upon whet her a capacity or inductance is used an the first element in the filter. Resistance-caparity filters ($\$ 2-11$) :are used in applications where the eurent is wry low and the voltage drop in the resistor can be tolerated.

Bleeder resistance - Since the condensers in a filter will retain their charge for a monsiderable time after power is removed (provided the load circuit is open at the time), it is good practice to eonnect a resistor across the output. of the filter to discharge the condensers when the power supply is not in use. The resistance usually is high enough so that only a relatively. small peremotage of the total rutput current is consumed in it during nomal operation.

Components - Filter condensers are made in several different types. Electrolytic condenser's, which are available for woltages up th about 800 , crmbine high capacity with small size, since the dielectric is an extremely thin film of oxide on aluminum foil. Condensers for higher voltages unually are made with a dielectric of thin paper impregnated with oil. The working rollage of a condenser is the voltage which it will withstand continuously.

Filterer chokes or inductances are wound on iron cores, with a small gap in the eore to prevent magnetic saturation of the irom at high current. When the iron beromes saturated its, permeability (\$2-5) decreases, comsequent! the inductance also decreases. Despite the airgap, the inductance of a choke usually varies to some extent with the direct current fowing in the winding: hence it is neressary to specify the inductance at the current which the choke is intended to carry. It: inductance with litte or bodirect current flowing in the winding may be emmiderably higher than the land value.

C. 8-5 Condenser-Input Filters

Ripple voltage - The convertional con-denser-input filter is shown in Fig. 802 -A. No simple formulas are available for computing
(A)

Fife. griz - Gundener-rinput filter circuits.
the ripple voltage, but it will be wimaller as both eaparity and inductance are made larger. Aderuate sumothing for transmitting purposes cam be secured by using 4 to $8 \mu \mathrm{fd}$ at C_{1}^{\prime} and C_{2} and 20 to 30 henrys at L_{1}, for full-wave rectifiers with 120)-cyrle ripple ($\$ 8-4$). A higher ratio of inductance to capacity may be used at higher loud resistances ($88-1$).

For receivers, as shown in Fig. 802-13, an aulditimal choke, L_{2}, and condenser. (33, of the same approxinate values, are hed to give additional smoothing. In surh supplies the three wmensers generally are $8 \mu \mathrm{fd}$. earth atthough the input conderiser, (1 t sometimes is reduced to $4 \mu \mathrm{ff}$. Inductances of 10 to 20 henrys each will give satisfartory filtering with these capacity values.
For ripple frequacies other than 120 cycles, the inductance and capacity values should be multiplied by the ratio $120, F$, where F is the atetual ripple frequency.

The bleder resistance, R, should be chosen to draw 10 per cent or less of the rated output current of the supply. Its value is equal t" Inme'l, where E 'is the out put voltage :ad I the blecaler current in milliampers.

Rectifier peak rurrent - The ratio of rectifier peak current to average load current is high with a condenser-input filter. Small rectifier tubes designed for low-voltage supplies (type 80, etc.) generally carry load-current ratings based on the use of condenserinput filters. With rectifiers for higher power, surh as the $866,860-$ A, the losd current should not exceed 25 per rent of the rated peak plate current for one tube when a full-wave rectifier is used, or one-eighth the half-wave rating.

Output coltage - The d.e. output voltage from a condenser-input supply will, with light toads or no load, approaed the peak transformer voltage. 'lhis is 1.41 times the r.m.s. voltage ($\$ 2-7$) of the transformer secondary, in the care of Figs. $801-\mathrm{A}$ and C , or 1.41 times the voltage from the center-tap to one end of the secondary in Fig. sol-B. At heavy loads, it may decrease to the arerage value of secondary voltage or ahout 90 per cent of the ram.s. voltage, or even less. l3ocause of this wide ramge of output voltage with load current, the voltage regulation ($\$ 8-1$) is inherently poor.

The out put voltage obtainable from a given supply camot readily be calculated, since it depends critically upon the load current and filter constants. I'nder average conditions it will be approximately equal to or somewhat less than the r.m.s. voltage between the centertap and one end of the secondary in the fullwave center-tap rectifier circuit (\$8-3).

Ratings of componemts - Because the output voltage may rise to the peak transformer voltage at light loads, the condensers should have a working-voltage rating (s 8-1) at least as high and proferahly somewhat higher, as a salety factor. Thas, in the case of a center-tan rectifier having a transformer delivering 500 volts each side of the ronter-tap, the minimum safe condenser voltage rating will be 5:0 X 1.41 or 775 volts. An 800 -volt, or preferably a 1000-volt. condenser should be used. Filter chokes should have the inductance sperified at full-lnad current, and must have insulation between the winding and the core atequate to withstand the maximum output voltage.

14 8-6 Choke-Input Filters

Ripple rolroge - The cirruit of a singlescetion choke-input filter is shown in Fig. so3-A. For 120 -e? elde ripple, atose approximation of the ripple to ber experted at the output of the filter is given by the formala:
where L is in henrys and C in μ fol. The product, $L C$, must be equal to or greater than 20 to reduee the ripple to 5 per cent or less. This figure represents, in most cases, the economical limit for the single-section filter. Smaller percentages of ripple usually are more ceonomically obtained with the fworsertion filter of Fig.

803-13. The ripple percentage (120-cycle ripple) with this arrangement is given by the formula:

$$
\left.\begin{array}{l}
\text { Two } \\
\text { Sertion } \\
\text { Filter }
\end{array}\right\} \text {, }
$$

For a ripple of 0.25 per cent or less, the denominator should be 2600 or greater.

These formulas can be used for other ripple frequencies by multiplying each inductance and capacity value in the filter by the ratio 120 F , where f is the atual ripple frequency.

The distribution of inductance and capacity in the filter will be determined by the value of input-choke inductance required (next paragraph), and the permissible a.c. output impedaner. If the supply is intended for use with an audio-frequency amplifier. the reactance (\$2-8) of the last filter conclenser should be small (20) per rent or lesis) compared to the other a.f. resistance or impedance in the cirruit, usually the tube plate resistance and load resistance ($83-2,3-3$). On the basis of a lower a.f. limit of 100 areles for speech amplification (the output capacity (last filter capacity) of the filter is 4 to $太 \mu \mathrm{fd}$, the higher value being used for the lower tube and load resistances.

The input cholie - The rectilier peak current and the power-supply voltage regulation depend almost entirely upon the inductance of the input choke in relation to the load resistance ($\$ 8-1$). The function of the choke is to raise the ratio of average to peak current (by its energy storage), and to prevent the d.e. output voltage from rising above the average value ($\$ 2-7$) of the a.c. voltage applied to the rectifier. For both purposes, its impedance (s 2-8) to the flow of the a.e. component ($\$ 8-4$) must be high.
'The value of imput-choke inductance which prevents the d.e. output voltage from rising abowe the average of the rectified ace. wave is the crifical iulurtance. For 120-cocle ripule, it is given by the approximate formula:

$$
L_{\text {crit. }}=\frac{\text { Load resistance (ohms) }}{1000}
$$

For other ripule frequencios, the inductance required will be the above value multiplied by the ratio of 120 to the actual ripple frequenc y.

With induetance values less than critical. the d.c. output voltage will rise because the filter tends to act as a condenser-input filter ($\$ 8-5$). With rritical indurtance. the peak
plate current of one tube in a center-tap rectifier will be appoximately 10 per cent higher than the d.e. load current taken from the supply.

An indurtance of twice the critical value is ralled the opmimum value. This value gives a further redurtion in the ratio of peak to avorage plate current, and represents the puint at which further increas: in inductance does now
 aderistics.

Suinging choles - The formula for eritiral inductance indieates that the inductance required varies widely with the land resistance. In the aree where there is no load exept the beeder (s $8-4$) on the power supply, the eritiral indurtance required is, highest: : much lower values are satisfactory when the full-load current is being delivered. Since the inductance of a choke toms to rise :ts the direct current flowing thrmugh it is derreased (s-4). it is possible to offert an economy in materials by designing the choke to have a "swinging" characteristio surh that it has the required aritical inductance value with the bleder load only, and about the optimum induetance value at full load. If the bleater resistance is 20.000 ohms and the full-lowd rexistane (including the blewder is 2500 ohms, a choke which wings: from 20 hemrys to is henry: wier the full outputeurent range will fulfill the requirements.

Kesonamere - laesonathere efteets in the series circuit across the output of the rectifier which is furmed be the first choke (L_{1}) and first filter condenser (σ ' 1) must be avoided, since the ripple voltage would buide up to large values (\$2-10). This not m!y is the opposite action to that for which the filter is intended, but also may eatase exessivo roctifior peak rurrents and thormally high inverse peak poltages. For full-wave reetification the ripple freguency will be 120 cyeles for a tionecle supply ($\$ 8-1$) and resonatme will oredur when the product of choke inductance in henrys times condenser capacity in miorofarads is equal to 1.77. The corresponding figure for ioferele supply (100 -evele ripple freduency is 2. i 3 , and
 13.5. At least twice thesc products should be used to ensure against resmance effects.

Output coltana - Provided the inputehoke inductane is at letst the eritical value, the output voltage may be calculated quite closely by the equation:

$$
E_{0}=0.9 E_{1}-\frac{\left(l_{1}+I_{L}\right)}{1000} \frac{\left(R_{1}+R_{2}\right)}{10}-E_{r}
$$

where E_{o} is the out put voltage; b_{t} is the r.m.s. voltage applied to the rectifier (r.m... voltage between center-tap and one end of the seondary in the ease of the conter-tap rectifier); I_{b} and I_{L} are the bleoder and lotad currents, respectively, in milliamperes; R_{1} and R_{2} are the resistances of the first and second filter chokes: and $l:$, is the drop betwen rectifier phate and cathode (S8-2). These voltage drops are shown in Fig. 80.f.

At no load I_{L} is zoro, hence the no-load voltage may be caleulated on the basis of bleeder current only. The voltage regulation may be determined from the no-load and fullload voltages (s s-1).

Fig. 80.4 - Voltage drops in the pewaronpply cirain.
Ratinss of compononts - Because of better voltage regulation, filter condensers are subjected to smaller variations in d.e. voltage than in the condemer-inuut filter ($8-5$). However, it is advisable to use condensers rated for the peak transformer voitige in case the bleeder resistor shoukd burn out when there is no external load on the power suplly. suce the voltage then will rise to the satue maximum value as with a condenser-input filter.

The input choke may be of the winging type, the required no-load and full-load induetance values being caleulated as deseribed above. 'The second choke (smonthing chuke) should have constant induetaner with varying d.e. load currents. Values of 10 to 20 hentres ordinarily are used. Simee chokes usually are plaed in the positive leads. the megative being gromoded, the windingr should be insulated from the core to withetand the full d.e. output voltage of the supply.

C. 8-7 The Plate Transformer

Ontpat coltage - The output voltage of the plate transfurmer depemblan the required d.e. load voltage and the treme of reetifier circuit. With rondenser-input filters, the r.m.s. secondary voltage usually is made equal to or slightly more than the dic. output voltage, allowing for voltage drope in the rectifier tubes and filter chokes as well as in the transformer itself. The full-wave eenter-tap rectifior requires a transformer giving this voltage each side of the serondary center-tap ($88-3$).

With a choke-input filter the required r.m.s. secondary voltage (each vide of conter-tap for a center-tap rectifier) can be calculated by the equation:

$$
E_{t}=1.1\left[E_{o}+\frac{I\left(R_{1}+R_{2}\right)}{1000}+E_{r}\right]
$$

where E_{0} is the required d.c. output voltage, I is the load current (inchuding border current) in milliampores, k_{1} and h_{2} are the resistames of the filter chokes, and $\stackrel{F}{i}$ is the voltage drop in the rectifier. E_{t} is the full-Lowal r.m.s. (\$ 2-7) serondary voltage: the open-rireuit voltage usually will the is to 10 per ecnt higher.

Wolt-ampere rating - The volt-anıere rating ($\$ 2-8$) of the transformer depends upon the type of filter (condenser or choke input).

With a condenser-input filter the heating effere in the semmetary is higher because of the high ratio of peak to average current. consequently the volt-amperes consumed by the transiommer may be several times the watts delivered to the load. With a choke-input filter, provided the input choke has at least the critioal inductance (8 - 8), the semmdary wolt-amperes ran becalculated quite clowedy by the equation:

$$
\text { Sece V.A. }=0.00075 \mathrm{I} \mathrm{l}
$$

Where E is the total r.m.s. voltage of the serwhlary (between the outside ends in the case of a center-tapped winding) and / is the d.e. output eurrent in milliamperes (load current phas bleeder current). 'lhe primary voltamperes will be 10 to 20 pereent higher beratise of transformer lossces.

C. 8-8 Voltage Stabilization

Gaseous regulator tubes - There is frequent meed for mantaming the voltage applied (1) a low-voltage low-current dir"uit (wich as the oserllator in a superhet receiver or the fre-quemer- eontrolling weillator in a tramsmitter) at a practically comstant value. regartleses of the voltage regulation of the perwer supply or sariations in load current. In suth applicit-
 (IR150-30, (0te) dan be usod to good advantane. The voltage drop ancoss such tuhes is constant over a moderately wide current range. The first number in the tube designafion indicates the terminal voltage, the second the maximum permissible tube current.

The fumbamental eircuit for a gasenus regulator is shown in Fig. 805-A. The tube is contnectod in sories with a limiting resistor, h_{1}, across a somere of voltage which must be higher than the starting voltare, or voltage required for ionization of the gas in the tabe. The starting voltatse is about 30 per ceat higher than the operating woltange. The loat is connered in parallel with tho tube. For stable weration, a minimum tube (rurrent of $\overline{5}$ to 10 mat is required. The maximmon permissible eurrent with most typeris 30 mat.; consequently, the load current camot exceed 20 to 2.5 mas. if the voltage is to be stabilized over a range from zero to maximum load current.

The value of the limiting resistor must lie between that which just permits minimum tube current to flow and that which just pa-- wos the maximum permissible tuhe current when there is no latad current. The latter value is generally wed. It is given by the equation:

$$
R=\frac{1000\left(E_{x}-E_{r}^{*}\right)}{I}
$$

where R is the limiting resistance in ohms, E_{s} is the voltage of the source arross whith the tube and resintor are commerted. Er is ther rated voltage drop across the regulator tube, and I is the maximum tube current in milliamperes (usually 30 mal .).

Fig. sos-l shows how two tubes may he

Fig. 80.j Voltapmabilizing cirenits using V'l tubes.
used in series to give a higher regulated voltara thatn is abtamable with one and alses to give two values of rexulated voltage. The lintiting resistor may be calculated as above, using the sum of the voltage drops across the two tubes for lir. $^{\text {since the upper tube must carry }}$ nowe current than the lower, the load connewted to the low-voltage tap must take small current. The total current taken by the loads on both the high and low taps should not excoed 20 t. 25 milliampures.

Voltage regulation of the order of 1 per cent (an be ohtained with rircuits of this type.

Electronic vollage regulation - A voltage regulator cireuit suitable for higher voltages atal currents thata the gaseous tubes, and also having the feature that the output voltage can be varied ower a rather wide range, is shown inforg. soti. A hightgain whatame amplifier tube (s 3-3), usually a sharp cut-uffípentorle (\ddagger 3-i) is comnected in such a way that a small change in the wutput voltage of the power supply caluses a wange in grid bias, and thereby a corrosonding change in plate current. Its phate current flows through a resistor $\left(R_{5}\right)$, the voltage drop arrose which is used to bias a second tube - the "roqulator" tube - whose platecathode vircuit is connceted in series with the load circuit. The regulator tube therefore functions as an atomatically variable series resistor. Whould the outpuit voltage increase slighty the bias on the control tuber will beenme more pasitive, causing the plate current of the eontrol tube to increase and the drop across H_{s} to increase correspondingly. The bias on the regulator tube therefore beromes more negative and the effective resistance of the regulator tube increases, causing the terminal voltage to drop. A decrease in output voltage caluse the reverse action. The time lag in the antion of the system is nerligible, and with proure cirruit constants the output voltage (ean he hold within a fraction of a per cent throughont the useful range of load currents and over a whde range of supply voltages.

An escontial in this system is the use of a constant-voltage bias source for the control tube. The voltage change which appears at the grid of the tube i the difference between a fixed negative bias and it positive voltage Which is taken from the voltage divider across the output. To get the most effective control, the negative bias must not vary with plate current. The most satisfactory type of bias is a dry battery of 45 to 90 volt:; but a gaseous recrulator tube (1'IR75-30) or a neon bulb of the type without a resistur in the base may be used

Pourer Supply

instearl. If the gas tebe or neon bulb is wed, a negative-resistance type of oscillation ($8: 3-7$) may take place at audio frequencies or higher. in which case a condenser of $0.1 \mu \mathrm{fd}$. or more should be connected across the tube. A similar rondenser between the control-tube grid and rathode also is frequently helpful in this respect.

The variable resistor, R_{3}, is used to adjust the bias on the control tube to the proper operating value. It alsu serves as an output voltage control, setting the value of regulated voltage within the existing operating limits.

The maximum output voltage obtainable is equal to the power-supply voltage minus the minimum drop through the regulator tube. This drop is of the order of 50 volts with the tubes ordinarily used. 'Ther maximum enment adso is limited by the regulator tube; 100 milliamperes is a safo value for the 2A3. Two or more regulator tubes may be connected in parallel to increase the curront-morying caparity, with no whange in the cireuit.

C 8-9 Bias Supplies

Requirements - A bias supply is not called upen to deliver current to a load cirenit, but -imply to furnish a fixed grid voltage to set the operating point of a tube (S3-3). However, in most appliations it is nevertheless true that current flows through the bias supply, berame such supplies are used ehiefly in connection with power amplifiers of the Class-B and (lass-C type, where grid-current flow is a feature of operation ($83-4$). In circuit dexign a bias supply resembles the rectificd-a.e plate supply (§8-1), having a transformer-rectifierfilter system employing similar eircuits. Bias supplies may be classified in two types, those furnishing only protective hias, intended to prevent excessive plate curront flow in a power tube in ease of loss of grid leat bias ($\$ 3-6$) from excitation failure, and those which furnish the artual opfating bias for the tubes. In the former type, voltage regulation ($88-1$) is relatively unimportant; in the latter it mas be of considerable importance.

Fig. 806 - Filectronic woltape requlator. The regulator tube is ordinarily a 2.3 or a number of them in parallel. the control tube a 6.57 or similar type. The filament transformer for the renulator tube must be insulated for the plate voltape, and cannot supply currint to other tubes whe 7 a filament-ty pe regulator tube is uised. Typical values $K_{1}, 10,000$ olmins: $R_{2}, 2.5,100$ ohms; $R_{3}, 10,000-$ whm pote itioueter; R_{f}, 50 oh whs: $R_{s .} 0.5$ mezohm.

In geteral, a bias supply should have wellfiltered d.c. output, esperially if it furnishes the operating bias for the stage, since ripple voltage may modulate the signal on the grid of the amplifier tube ($\$ 5-1$). Condenser-input filters are generally used, since the regulation of the supply is not a function of the filter. The constants given in \$ s-5 are applicable.

Foltage regulation - A bias supply must always have a blecder resistance (\$8-4) connected arross its output terminals, to provide a d.e. path from grid to cathode of the tube being biased. Although the grid eireuit takes no current from the supply, grid current flows through the bleder resistor and the voltage aceros the resistor therofore varies with grid current. This variation in voltage is practically independent of the bias-supply design unless sperial voltageregulating means are used.

Fig. 807 - Supply for furni-hin: protertive has to a meneramplifier. "the transformer, T, should furnish peak wolage at least equal to the protective hia- required.

Protertice bias - This type of biats supply is designod to give an output voltage sufficient to bias the tube to which it is applied at or near the plate-current cut-uff point (\$3-2). A typical circuit is given in Fig. 807. The resistance, R_{1}, is the grid-leak resistor (\$3-6) for the amplifier tube with which the supply is used, and the normal operating bias is developed by the flow of grid eurrent through this resistor. R_{2} is comnected in series with R_{1} across the output of the supply, to reduce the voltage ateross h_{1}, when there is no gridecurrent flow, to the cut-off value for the tube being biased. The value of R, is given by the formula:

$$
R_{2}=\frac{E_{1}-F_{c}}{E_{e}} \times R_{1}
$$

Where E_{t} is the output voltage of the supply with R_{2} and R_{1} in series as it load, E_{e} is the cut-off bias, and h_{1} is as described athove.

When such a supply is used with a Class-C amplifier, the voltage across R_{1} from gridcurrent flow will normally be higher than that from the bias supply itself, since the latter is adjusted to cut-off while the operating bias will be twice cut-off or higher ($\$ 3-4$). In some cases the grid-leak voltage may even exceed the peak output voltage of the transformer (1.41 times half the total secondary voltage, in the rircuit shown). The filter condensers in surh a bias supply must, therefore, be rated to stand the maximum operating bias voltage on the Class-C amplifier, if this voltage exceeds the nominal output voltage of the supply.

Voltage stabilization - When the bias supply furnishes operating rather than simply protective bias, the value of bias voltage
should be as constant as possible even when the grid current of the biased tube viarios. I simple method of improving hias foltage regulation is to make the bleeder resistane low enough su that the durrent through it from the supply is several times the maximum grid (rurrent to be experted. By this methes. the percentage variation in courront is reduced. This method reguires, heoworro that a comsielerable amount of pewer be dissipated in the berder. Which in turn calls for a relatively large power transformor and filter choke.
liass-voltage variation may also be redued by means of a regulator tube, as shown in lig. 808. "Ihe regulator tube usually is a triode having a plate-current rating adequate to carry the experted grid current. It is cathude-biatod

Fig. 808 - Automatic voltaperergnator for hiamsul. plies. For brat opreration the thbe" neal shombld ler one havinü hiph mutual conturtame (53×2).

(\$3-6) by the revistor. R_{1}, which is of the orter of several hundred thollsathd whas or a fow meghnmes. at that with no griderment the tube is biased practieally to cut-off. Beramse of this high resistance, the grid current will flaw through the plate resistance of the regulator tube, which is comparatively low, rather than through R_{1} and $h_{2}:$ hence the voltage from the supply, across h_{1} and the cathode-plate circuit of the rogulator tube in series. "ata be eonsidered eonstant. The bias voltage is equat to the voltage across the tube aldme. When grid eurrent flows, the voltage across the tube will tend to incrense: hene the drop acrose h_{1} dereases, lowering the bias on the reenalator and reduring its pater resistance. This. in turn. reduces the tube voltage drop, and the bias voltage temds to remain constant over a fairly wide range of grid current values.

At low bias voltages it may be neessary to use a number of tubes in paralled to get sulficient variation of plate rasitathe for good regulating action. '1he bias supply must furnish the reguired bias voltage plus the voltage required to bias the regulater tube to cut-alf, considering the output biats voltage as the plate voltage applied to the regulator: 'lhe curvent taken from the bits supply is newlivibie. Re may be tapped to provide a range of bias volt, ages to mert different tube requiremonts.

Multistage bias supplies - Wherr several power amplifier tubes are to be biatod irom a single supply, the various bias eireuits must be isolated hy some means. If the grid currents of all stages should flow thrungh a single bleeder resistor. a variation in grid current in one stage would rhange the hias on all, a condition which would interfore with effertive adjustment and operation of the transmitter.

When protective hias is to be furnished several stages, the circuit arrangement of lig.

Fïr. 809- Isolat. ing circuit for mul. tiple lias -nppls.

809, using rertifier tubse to iselate the individe ual grid-leaks of the various stages, maty be employed. In the diagram, two type So rectifiers are used to furnish biss to four stages. Wach pair of resistors ($h_{1} h_{2}$) constitutes a soparate bleder acosos the bias supply. h_{1} is the grid-leak for the biased stage; $h 2$ is a droppiag resistor to adjust the voltage arross R_{1} to the rut-off valuc (without grid-earrent flow for the biased tube. The values of l_{1} and Re: may be calculated as deseribed in the paragraph on protective hias. In this case, the hias supply should be designed to hase inherently good voltage regulation: i.e., a choke-input filter with appropriate filter and bleceder constant: (8 S-6 $)$ shonld be used, the blooder being separate from those assoriated with the reertitier tubes. When the voltage across $R_{1} R_{2}$ rises because of grid-current flow through R_{1}, the lnad on the supply will vary (hence the necessity for good voltage romulation in the supply). but there is no interaction of gritl earrents in the separate bleders boramse the reetifiers can pass current only in one direction.

When a singer supply is to furnish operating bias for soveral stapes, a soparate regulatortube circuit (Fig. Sos) may be used for each one. Individual voltages for the various stages can be obtained by appropriate tap) on R.

Well-regulated bias for soveral stages may be obtainced by the use of gasculas regulator tubes. when the voltage and current ratings of the tubes permit their use. Jhis is shown in Fig. S10. A single tube or two or more in series (:an be used to give the dowirnd bias-voltage drop; the bias supply voltage must be high anough to provide starting voltage for the tuthes in series. R_{1} is the protertive resistance (s, S-S) ; its value should be calculated for mininum stable tube current. The maximum grid current that ean be handled is 201025 milliamperes with available reendator tubes.

Fig. 810 - Lise of V1R tuber tu stabilize bias voltage.

C. 8-10 Miscellaneous Power-Supply Circuits

Joltage ditiders - A voltage divider is a resistor comnerted arros: a sourer of voltaine and tapped at apropriate puint: (s 2-ti). Since the voltare at any tap depends upon the arreat drawn from the tap). the boltage reanglation (s 8 - 1 is inturemty poor. Hence a voht age divider is best suited to applioations where the curente drawnare eon-tant, or whemerepa-
 to compensate for woltage variations at the taps.

A typieal voltage-divider arrangement is shown in Fig. 811, The torminal voltage is E, and two taps are provided to give lower volt-
 tively. The smaller the resistame betwoen tape in proportion to the total rexistance. the smatler the voltane betwern the taps. For comvenienese the vollage divider in the figure is considered to be mate up) of separato resiotances, R_{1}, $h_{2}, l_{s,}$ betwoen taps. A_{1} varries only the bereder raremt. A_{1}, A_{2} ratries I_{1} in
 late the resistanes required, a bleeder current,

Ib, must he asommed: genemally it is low rompared to the total losal cumbert (10 per erent or so). Then the required walues ran be calloulated as shown holow. / beins in amperes.

The mothod may be extended to any dosired number of tap゙, exch resistance semton being ralculatoel hẹ Ohn's Laiw (ơ 2-6i) using the voltage drop aceross it adm the fotal rarreat through it. The perwer diseipated by each seretion maty be calleulated by multiplying $/$ and $f:$

Transformorless plate supplies - The lise voltage is reatified directly. without a step-un power transformer. for eertain applications (surh as some types of rexivers) wher the low voltage so ohtamed is satisfactorys. A simple power supply of this variens. often called the
 thbes for this parpese have heaters werating
 $7(0)$ or 115 volts), whieh cith be rombected atoros the a.c. line in series with wher tube filaments and/or a rexistor, R. of suitable salue to linait the amrent to the rated value for the tubes.

The half-wave cireuit shown has a fundamental ripple frequency equal to the line irequency ($8-4$) and henee requires mone inductance and capacity in the filter for a given ripple peremtage ($8-5$) than the full-wave rectifier. A condensor-input filter generally is used. The input condenser shomlal be at least
16μ fal and preferably 32 or 410 fil. to keep the outpat woltage high and toinupove voltage regulation. Frequently a second filtar seetion ($\$ 8-$ - $)$ is sumbient to protide smouthing.

No gromm commetion ean be used on the power supply umbes the gromaded side of the power lime is commected to the grommed side of the supply Rerefivers using ath a.e.-d.e. supply watlly are srommed through atow va-
 cironiting the line shombld the line plug be inserted in the sorket the wrong was.

Voltase multiplier circaits - lramsommerless voltaige multiplier rimults make it pressible to obtain ale. voltares higher than the line voltatre without using step-ap transformers. By abternately chatsing twe or more comblensers to the prak line voltage and allowing them to discharge in -rmes. the tatal output voltage beomes the sum of the voltages appearing acress the individual ondenters. 'lohe required switehing operation is performed athtomatioally be diode reatifer futhes asoritated with the eomdensers.

A half-wame voltage doubler is shown in
 of the lower dionde is positive the tuhe passes curment. Whasins fit to a voltage equal to the peak line woltage lese the tube drop. When the lime polatity reverses at the and of the hatf cere the voltage resulting from the charge in C_{1} is ahded to the line woltage, the upper diode me:awhile similarly ehatring $\because 2$. F. howerer,

Fis. 813- Woltate montiplier eirmias. A. halfowave woltage doubler. H. fullowab doubler, (., tripler. 1). guadrupler. Dual diade romition bubeo mas ber uad.

 the requlation under lead for voltage-multiplaner cirenit.
gius discharging into the lowl resistanme as soon as the upper diode beeonnes comblative. For this reasill, the ontput is somewhat hest than twiec the line peak veltary. A- with ans
 spouds to the line freerumars.

The full-wave voltate douhler at B is more popular than the half-wive type. One dinde charges C when the mandity betwern its phate and cathode in positive while the nther seetion charges (e when the line wharity reverses Thas cach rondenser is chatseal soparately to the same d.e. voltare, and the two discharge in scries into the duad irenit. 'I he ripple irequeney with the fall-wave doubler is twien the line froquener (si-1) The votiage requation is inheremtly porm and depando eritially mon the

 shown in lite. sll.
 four diodes in a fill-wave doubler amd batiwave reetifer combination The ripple ferghene? is that of the lime as in a hali-wave cirerat. beranse of the unbatane ad artanement, but the whtput valatere of the combintion in vers nearly three times the line voltage, and the rennlation is better than in other voltage mut

 -haming the sum of the aremmalated roltagen in the assoniated erndemsers mio the filter ithput. The ghistrupher is hes means the ultimate limit in voltage multiplication. Practical power supplies have beren built usiner up to twelve doubler stages in series.

In the rimuit. of Fing. s13. Cin should have a

 filter comedersers mats, however. Withstand the preak tutal ontput voltage - tiou volts in the case of the tripler and (i00) for the quadrupler.

So direat ground eas be used on ans of these supplifes or on assuriated equipment. If an rit.

parity should be smatl ((0.0a μ fil.), sime it is in shunt from phate to cathode of one rectifier.

Duplex plate supplies - In sume cases it may be advantageons conomically to obtain two plate-supply voltage from a single power supply, making one ur more of the components servea double purpore (ireuits of this type are shown in l"ins. 815 and sth.

In lig. X15, a bridge rectifier is used to obtain the full transformer voltage, while a connection is alab brought out from the conter-tap to obtain a second voltage corresponding to half the total transurmer secondary voltage. The sum of the curreats drawn from the two taps should mot exered the dee ratings of the rectifier tube and transformer. lilter values for cach taj are computed aporately ($\$ 8-t j$).

loig. 816 shows low at thanformer with multiple secondury taps may he used to obtain both high and low voltages simultamemsly. A separate full-wave reetifier is used at each tap. The filter ehokes are plated in the common megative hand. but separate filtor eondensers are remuired. The sum of the rurrente drawn from tach tap must ant exeed the transormer rating. and the dhokos molst be rated to darry the tutal lowd curront. Sian bleeder rexistamee stould hate a value ith what loot times the maximum rated imbuctance in honrys of the swingity chater, L_{1}, lon best rexulation (\$ 8 - f).

Fit 8/0-- t'ower supply in which a eingle transformer and ant ef cheohenatro. for twodifferent output voltages

Rerfifiers in parallel - Varuum-type rectifiers may be combected in parallel (plate to pate and cathode to cathode) for higher cur-fant-ratrying capaldy with no (irenit rhanges.

When in roury-vapur rectifiers are commeded in parallad, slight differences in tube charareterintins maty make one iunize at at slightly lower vultage than the other. Since the ignition voltage is highor than the operating voltage the first tulge to ionize varries the whole luad, as the voltage drop is then too low to ignite the surond tuber This cath be prevented by romarat-
ing 50- to 100-ohm resisturs in series with cath plate, thereby insuring that a high-emough voltage for ignition will he avalable.

Vibrator power supplies - The vibrator type of power supply fonsists of a speriat stepup transformer combined with a vibrating interrupter (eibratur). When the unit is comnteted to a storage battery. plate power is obtamed by passing curment from the battery thenugh the primary of the transformer. The rirent is made and revorinl rapidly hy the viloratur montacts. intormphat the cument at regular intor-
 induces a voltage in the serombary (s 2-b). Whe: resulting squ:trewabe der pulse in ther primary of the transormer catust an ahernatimg bultage to be developere in the ereomlary. This high-voltage ald. in that is reftitiod, wither by: vamum-tube rectitier or hy an additiomal synchronizad pair of vibeator contacts. The rectified output is pulsating d.r.. whirh masy be filtered by ordinary mo:ms (\$-it). Ther smonthing filter can be a single-sertion affar, but the filuer output rapacity shouh be faidy latge $16 ; 10: 3 \mu \mathrm{fd}$.

Fig. sit shows the wo typer of rireuits. It
 for, When the hathery is disommerome the
 touehing neilher. On elosing the hathere airmit the magne reil pulls the rewd into rontan
 through the lowien hatf of the fransformer primary wimding. simultanemsly, the magne coil is short-rifonited, demergizing it and the reed swings back. Inemian carrios the reed into contact with the upper point, cansing curcont to flow through the upere hall of the trath:former primary. The utaghe wil :grain is mcrgized. amd the erolu repeats it self.

The swhehronous circuit of Fig. S17-B is provided with an extra mair of contacte which rectify the semmary matpat of the tramsformer, thas climinating the noed for as spatrate rectifior tube. The secondary renter-tap furnishes the positive output terminal when the relative polaritios of primary and secomdary windings atre correot. The proper ecomertions may be eletermined by experiment.

The buffer combenser, (on arrose the tran*former secondary ahoots tha surges which occur on hraking the emreme, when the mannotic field collapses practically instantanmonty and houce canses very high voltages to hio indued in the serondary (s.2-s). Without this rondenser exeseive eparking owors at the vibrator comtarts, shortening the vibuatom life.

 denser should he rated at lison to 2000 volt: d.c. The exact raparity is aritieal, and should be determined experimentally. The optimum value is that which results in least battery eurrent for a given rectified d.e. output from the supply. In practice the value ran be determined be observing the degree of vibratos
sbatking as the rapacity is changen. Whan her system is operating properly there should be practiacally no sparking at the vibrator contarts. A 5000 -ohm resision in series with C_{2} will limit the seromdary current to a safe value should the eondenser fail.

A more exart rhere on the operation can be secured with an nadiloseope having a linear swefp rirenit which ran be swohronized with the vibrator". 'lhes vertical plates shomld be conboreded arress the ont-ide embs of the transformar minary winding to shrow the input boltape wamehape. Fig. sis-(shows an idoalizadtrare of the optimum waverorm when the buffrr rabacity is atigustod th 以ive proper uperation therengent the life of the vibertar. The horizontal lines in the trace repreant the voltage during the time the vibratere contarts are chased. which should be apporosimately 90 per rent of the total time. When the rontate are open the trace shombl he partly tilted and partly vertiad. the tilted part being 60 per eent of the total conmerting trace. The owillaseope will show reatily the effeet of the buffer ceaparity on the pererontate of tilt. In ant tasl patterns the
 Breanse al the resistaner drop in the battery fenls ats the emremt hulle up through the primary imlutallo (Fig. sls-l)).
sparking at thr vibratar contarts ranser r.f. interferenre ("hash," whirh ran be distinLushod from hum is it- hatsh, sharper piteh) when hed with a rereoter. 'Ior minimize this, r.f. fiture ame incorporatod, cansisting of $R F^{\prime} C_{1}$ and ('1, in the hattery rimenit and $R F^{\prime} C_{2}$ with C_{3} in the d.e. output cirenit. (is is asually from 0.5 to $1 \mu \mathrm{ld} .$. a F 0 -volt rating being adequate. RFC, consists of about in) turns of No. 12 or So. 14 womel to about halfineh diameter, large wire benge requied to cary the rather heare beatary rurrint without molue loses of

for alomuate. hat ii there is prosistemt tomble with hash it may be benefieial to experiment with other sizes. 13 :ank-wound chokes are mome compact and give higher inductane for at given resistance. In the semondary filter, Camy be of the order of 0.01 to $0.1 \mu \mathrm{fl}$, and $R F^{\prime}(2,2 a-5-$ millihenry r.f. choke of ordinary design.

A $100-\mu \mu \mathrm{fil}$ mica condenser, connerted from the persitive output lead to the "hot" side

 interrupter arm moses aseros for the mext halfecerle.
 formor primary) with eorrect buffar caparits. (., prate-

 from voltate drop in the jrimary when the arombary load is commeded. wot from fands oprations.

Fanty uperation i imdiated in trateres. throngh II:
 taken for "homocing" of comtactah. The" orponite comdi-
 *)

 "skippur" af worn-ant or miandjnited sibrator, with in-

 Gand If usatly call for replarement of the sibratur.
of the "A" battery. may be helpfut in returing hatioh in certain prwer supplies. A thial is newe it sary to see whether or hat it is repluived. It should be momated risht at the out put oncket.

Litually as important as the hath filter is thornagh shiddines of the power suphle and its commeting lembs, inere even a small pire of wine or metal will radiate chongh r.f. we:lase interberence in a ansitive receriwer

Testing in comeretion with hath dimination should be carriod out with the supply operatinus a rewiver. Sime the imteremence usathy is pieked up, we the reaciving antema lawd by radiation from the supply itself and from the
 and batare as bar from the rewiver :as the ewnneeting cables will permit. Thare or four fowt should be ample. The mierephene ond likewise should the kern away from the supply amblate.

The power supply shand be built on a metal chassix, with all mishiclded parts inderneath. A bottom plate to complete the shiodine is and
 and the metal shell of the tube all shomblow grounded to the chaseis. If a glanstate is nand it shoult be rembered in at thlme shied. The bat wery lead shomld be cemply twisted, since these lead are mone likely to radiat hash han any othor part of a wedl-shiodided supply. Experimentimg wit theferent valmex in the hash filters should come after radiation from the battery lead has been reduced to a minimm. Shielding the leads is not particulaty helpout.
time-coltage adjustment-In some localities the lime voltage may vary considerably frem the nominal 1 bis volts as the load on the power sytem changes. Siner it is desirable to uperate tube equipment, partioularly filaments and heaters, at constant coltage for maximum Life, a means of adjusting the line voltage to the rated value is dewirable. This ean be acemo plished ber the rireuit shown in Frirs. 819, utilizing at step-rown transformer with a tapped secondary commetral as ath athotratsformer (s.2-9). Thar semondary preforably should be tapped in steps of two or three volts, and Shabld hawe sulferiont thtal boltage to eompernate for the widest variations ancount ered. Depmodine upon the end of the serondary to which the lime is conneded, the voldage to the hand ran be made either higher ar lower than the line voltage. A secondary winding (apable of carring five amperes will serwe for loads up to 500 volt-amperes on a 11 b-volt line.

Fis. 819-1.inn-woltage comperesation bey a lapuel step-rtown antotransormar.

[1. 8-11 - Emergency Power Supply

Irv batheries-1)ry-rell batteries are ideal for converghe rowiver and low-power tramsmithor supplies berathe ther provide steady, pure, dien current. Their disadrantages are woight. high cost, amd limited rument capability, la : addition. hary will lase their power evern when wot in use if allowed la stand idlle for perionk of : yatar or mora, Thic make thom unecoummian if now had more or less cont inurnasly.

T:sble I in ('haphor righteen sive sorvice lite
 current drains, hased on intermittent service simulating typioal operation. The continuousserviee life will be somowhat greater at very low durrent drains and from wne-half to twothirds the intermittent life at higher deains.

The soret of lomg hattory life at normal current drains lies in intermittent operation. The duration "f "on" periods should bereduced to a minimum. The nore frequent the rests given a dry-cell battery. the longer it will last. As an example. one stambard type will last 50 per cent longro if it is oprated for perinals of one minnete, with fivemimmte rest intervals, in 2thour intermitemt apration tham if it is operated contimmots for four hours per dals, althongh the an thal energy consumption in the 24-lunar perind is the same in buth cases.

- Horase batheries - The mont universally accoptable solf-contained power source is the storage hattery. It has high initial capacity and can he rectargenl. an that its effertive life is practically indefinite. It can be used to provide filament or heater power directly, and plate power through assuciated devies such as vibrator-trmaformers, dynamotors and genemotors, and a.e. converters. For emergency
work a storage battery is a particularly eonvenient power source, since such batteries are universally available. In a serious emergency it is possible to obtain ti-volt storage batteriess so long as there are antomobiles to borrow them from, and for this reasom the b-volt storage battery makes an exedlent unit aronnd which to design a low-powered emorreney station.

For maximum reficichey and usefulness the power drain on the storage battery should not exeed 15 or 20 amperes from the ordinary 100- or 120-ampere-hour (j-volt battery. Heary connerting loats should be used to minimize the voltage drop: similarly, heavy-duty lowresistance switeles are required.
librutor poucer supplies - Fior portable or mobile work, the most common souree wi power for buth filaments and plates is the bivolt automobile-type storage battery. Filaments may be hated directly from the battery, while phate power is obtained by passing current from the haterey through the primary of a suitable transformer, intermptang at regnlarintervals and rectifying the serondary output ($-2-5$) proviling outputs as hish ats 400 volts at 200 mat The high-voltare filter aremit nsually is identieal with that of an equivalent power somere uporating from the a.e. line (S 8-is). Noise suppression filters, sorving to minimize r.f. intoriownor cansed hy the vitrattor, are incorporated in mamatiotured units.

Although vibrator supplies are ordinarily used witla 6 -colt thbes, their use with 2 -volt tubes is quite possible provided additional filament filtration is incorporated. This filter may consist of a small low-resistance iron-core filler choke or the voice-coil winding of aspeaker transformer. The field coil of a loudspeaker designed to operate on 4 bolts at the total filament current of the receriver may be used. The filaments are then conmerted in parallel, as usual, and plaed in series with this winding across the 6 -volt battery. In both 6 - and 2 -volt receivers. "hash" (an be rednerd by heavily by-passing the battery at the vibratar supply terminals. using fixed combersers of 0.25 to 1 $\mu \mathrm{ff}$. capanity or more, and by inchuding an ref. choke of heavy wire in the battery lead near the eondenser. Noise will be minimized if a simghe ground, consisting of a short, heave (\%p) strap, in used. Thorough shidding of the vibrator also will contribute to the noise reduction.

Table 11 in ('hatpher F:̈xhtern lists stamdand commerebal vibratur -upplies suitabla for mee as emergency or portable power sourers. Those mits which indele a ham filtor are indiated. The vibrator supphes used whth athomobile receivers are satisfichory for remeder aphliattions and for use with tramsmitters where the power requirements are small.

The efficienty of vibrator packs runs between about 60 to 75 per reent.

Dynamotors aral senomotors - A denamotor is a domble-armature high-voltage pent arator, the additional winding serving :sa driving motor. Dymamotors usually are up-
rraterl from 6 -, 12 - or 32 -volt storage batteries, athe deliver from 300 to 1000 volts or more.

The genemotor is a refinement of the dynamotor, designed especially for automobile receiver, sound truck and similar applieations. It has good regulation and efficiencer, combined with economy of operation. Standard models of genomotors have ratings rabsing from 13: volts at 30 ma. to 300 volts at 200 ma. or 500 volte at 200 ma, (ree Tibble Ill in ('hapter l:ighterot.) The momal efliciency avorages aroume so per cemb, ineresting to better than 60 per cont in the higher-power anits. The voltage rexulation of a genemotor is romparable to that of well-designed ate. supplies.

Sucerssful operation of dynamotors and gememmors requires heary, dired leads. meehamiaal isolation to reduce vibratiom, and thorough r.f. and ripple filtration. 'lhe shafts and bearinges should be thoronghly. "run in" before regudar operation is attempted. and thereafter the temsion of the beatrings shond be cherked oceasionally.

In monnting the genemotor, the support should be in the form of rubber mometing blewks, or equivalento to present the tramsmission of vibration tawhathically. "The frame of the gencmotor shonhl bo grounded through a heabe flexible commertor. The brushes on the high-woltage emel of the shaft should be bypassed with 0.002-pfd. mita condensers to : common point on the wememotor frame, preferably to a point insithe the end rover close to the brush hoders. Short leads are essentiad. It maty prowe desirable to shied the rutire unit. or evon to remove the unit to a distance of three or four feet from the recociver.

When the genmentor is used for recoiving. a filter shombl be used similar to that deseribed for vihatior supplics. A $0.01-\mu$ fd. (600)-volt (d.e.) paprex condemser shombl the eommerted in shant actoss the outpat of the gencmotor. fol-
 high-voltage latal. From this print the output shomlal be rum themsh a " brate forere" smonthing filter using t- to S-plid. Nertrolytic romdensers with a lio- or 3 ()-henry choke having low d.r. resistame.
A.c.-d.e. comerters - In some instances it is dexirable to utilize existing equipment buitt for 115 -volt a.r. operation. Ton operate surh equipment with any of the power sources outlined abowe would require a considerable amount of rebuiding. 'lhis can be obwiated by using a rotary converter capable of changing the der. from fi-. 12 - or 32 -volt batteries to 110-volt 60-crule a.r. Such converter units are built te deliver output ranging from 40 to 300 watts.

The eonversion effieience of these units averages about 50 per cent. In appearance andoperation they are similar to genemotors of equivalent rating. The wer-all adidenery of the eonverter will be lower, however, beranse of losess in the ate re retifior-filter cirmits :and the neressity for comverting hater:as well asplate power.

Wave Propagation

(1) 9-1 Characteristics of Radio Waves

Relation to other forms of rallation Radio waves differ from othor forms of elpetromagnetie radiation principally in the wrder of their wavelength, which ranges from approximately 30,000 meters to a small fration of a coutimeter: i.e., their irequeney rankes between about 10 kc : amd $1,000,000 \mathrm{Me}$. They travel at the same velocity as light waves (about $300.000,0140$ matars per secomblatioe space) and can be similarly reflected, refractod and diffranted.

The total enorgy in a radio wave is evonly divided between traveling electrostatic and electromagnetic fiedds. 'The lines of force of these fielde are at right angles to earh other in a plane perpembicular to the direction of travel, as shown in Fig. 901 .

Polarization - The polarization of a ration wave is taken as the direction of the liness of force in the chectrostatic field. If the plame of this field is perpendiealar to the carth, the wave is satel to be berlicolly pelarizald if it is parallel to the earth. the wave is harizomblly polarized. The longer waves, when traveling along the ground. msatally mathatin their polatri\%ation in the same plan as was generated at the antemat, The polarization of shater waves may be altered during travel, however, and sometames will vary quite rapidly.

Reflection - Radio waves maty be refleeted from :any sharply defined discontinuity of suitable characteristies and dimensions encountered in the medium in which they are traveling. Ans comdur-or (or any insulator having at diclectric com-tant differing from that

Pig. 901 - Kepre-untation of electrestalio and rliotromagnetic lines of foree in a radio ware. Arrows indivate instantaneons directions of the field- for a wave traveling toward the reador. Keversing the dirertion af one set of lines would reverse the direction of |ramel.
of the medium) offers such a discontinuity if its dimenowns are at least comparable to the wavelength. The surfice of the earth and the boundaries betwoen ionospheric layers are examples of such dispontinuities. Objects as small as an airplane, a tree or even a man's body will readily reflect the shorter waves.

Refraction - As in the ease of light, a radio wave is bent when it moves obliquely into any medimm having a different refractive index from that of the medium whirh it heaves, sines the velocity of propagation or travel diffors in the turo mediums, that part of the wave front which enters first travels faster or slawer than the part whed enters fatst, and so the wave front is turned or refrateted (asually downward in the vertical plate). Pefration may take place in either the innosphere (innized upper atmosphere) or the (roposphere (lower at mosphere).

Diffrarion - When a wave grazes the edge of an object in passing, it tends to be hent amound that edge. This efferet, called diffracdion. resalts in at diversion of part of the energy of those waves which mormally follow a straight or lime-ol-sight path, so that they may bereroived at some distanue helow the summit wi an obstruttion, or around its edges.

Typers of unces - According to the altitude of the paths along which they are propargated, radio waves may be clasiflied as iunospheric warrs, tropesphoric ureves or grownd waves

The ionospheric ware (sometimes called the "sky wave,") is that part of the total radiation which is directed toward the ionosphere. Depronding upon variable eonditions in that region, as well as upon wavelength (or fre(queney), the ionospheric wave maty or may not he returmed to carth by the effect: of refraction and reflection.

The tropospherie wave is that part of the fotal ratiation which whergenes roftaction and reflection in regions of abmut change oi dieleetric constant in the tropusphere, such as the boundaries botwern air matses of differing temperatare and mosisture eontent.

The groumd wate is that part of the total radiation which is directly affereded by the presence of the earth and its surface features. The ground wave has two components. One is the suriace wave, which is an earth-guided wave, and the other is the space wace (not to be confused with the ionospheric or "sky wave"). The spalee wave is itseli the resultant of troo compments - the direct were and the gromme retherdel uace, as shown in Fig. 902.

Fig. 902 -- Sturwing huw both direct and reflectad wava may the received simultamomis in v.lif. tran-mionom.

C 9-2 Ionospheric Propagation

The ionosphere - (immuniation betwen distant points by means of radio waves of frequencies ranging between 3 and 30 M (. depends principally upon the ionospherie wave. Upon lating the transmitting antemna, this wave travels upward from the earth's surface at such an angle that it would continue out into space were it.s path not bent sufficiently to bring it back to earth. The modimm whish causes such bending is the ionowhere a rexion in the upper atmosphere, abowe a height of about 60 miles. where free ions and rlectrons exist in sufficient quantity to eanse at rhange in the refraction index. This condition is theliemel to be the affact of ultawiolet raliation from the sum. The iomosphere is not a single remion but is composed of a series of lavers of varcing dernsities of ionization owrorring at different heights. Each lager emosist: of a central region of relatively dense jonization whioh tapers off in internsity both above and below.

Kefraction, absorption and reflertionFor a given density of ionization, the degree of refraction becomes less as the wavelength brcomes shorter (or as the frequene y increases). The bending therefore is less at high than at low frequencis? and if the frequmber is raisal to a sufficitently high value, a point is fintally reached where the refractive bending becomon ton slight to bring the wave bank to earth, ceren though it may enter the imized bayer along a path which mathes a very small angle with the boundary of the bonospleare.

The greater the density of ionization, the greater the bending at any given fromuenes. Thus, with an increase in ionization, the minimum wavelength which e:a be bent sufficiontly for long-distance communication is lessenad and the maximum usable frequency is increasicel.

The wave noeressarily loses some of its energy int traveling through the ionosphome this alosorption loss incroasing with watelength and alse with ionization densites. L'nusually hizh ionization, esperially in the lower strata of the ionosphere, maty cause complete absorption of the wave energy.

In addition to refraction, reflection may take. place at the lower houndary of an ionized layer if it is sharply defined: i.e., if there is ath appreciable elange in ionization within a relatively short interval of travel. For waves appronching the layer at or near the perpendicular, the change in ionization must take place within a difference in height comparabhe to a wavelength; hemere. iomosphorir reflertion is more apt to orrur at linger wavelengths (lower frequeneie:-

Critial frequency - When the frequency is sufficiently low, a wave sont vertically upward to the ionosphere will be bent sharply chough to causir it to return to the transmitting point. The highest frequency at which such roflextion can ocrint. for agiven state of the ionosphere, is called the critical jraquenery. Although the eritical frequmey masy serve as an index of tramsmission conditions, it is not the highest useful frequeney, since other wates of the same: frequency which enter the iomophere at angles smaller than 90 degrees (less than vertical) will be bent sufficiently tor return to carth. The marimun wsable frequency, for waves leaving the earth at very small angles to the horizontal, is in the vicinity of three times the eritieal frequenry.

Besides being direetly observable, the critical fremuency is of more practical interest than the ionization density because it includes the offects of absorption as well as refraction.

Firlual heisht - Although an ionospherie: laser is a regiona of comsiderable depth it is convonient to asign to it a definite hoight. called the eirtual height. This is the height from which a simple roflection would give the same effore as the gradual refraction whieh actually takes place, as illustrated in Fig. 903. The wave traveling upward is bent batck over a path having an appreciable radias of turning. and a moasurable intersal of time is comsumed in the turning provers. The virtual height is the height of a triangle formed :ts shown, hating equal sides of a tental length proportionat to the time taken for the wave to travel from T to R.

Normal structure of the ionosphere-

 The lowest normally usiful layer is ralled the E laver. The average height of the region of masimum jomization is about 70 miles. The ionization density is meatest aromad local nown; the layer is only wotkly ionized at night, when it is not exposed to the sun's radiation. The air at this height is sufficienty denst so that free ions and electrons very quickly meet and recombine.The second principal layer is the F layer, which has a height of about 175 miles at night. At this altitude the air is so thin that recombination of ions and chertrons takes place very slowly, inamuch as partieles rath travel relatively great distatues before meeting. The ionizationd decresases atter sumbown, reaching : numimmen junt brime sumber. In the daytime

the F layer splits into two parts, the F_{1} and F_{2} layers, with aremge virtual heights of, resperetively, 140 miles and 200 miles. These layers: are most highly ionized at abont lucal noon, and merge again at sunset into the f layer.

Cyrlir eariations in the ionosphere since ionization depends upen ult aviolet radiation. conditions in the iomophere vare with changes in the smes radiation. In addition to the daily varialion, seasomal changes result in higher eritical mequencies in the E hayer in summere averagimg about \& Me . as agamat a winter ayerage of 3 Mr . The F laver shows little variation, the critial frequene? being of the order of 4 (1) $\overline{5}) M\left(\right.$ in the evening. 'lhe F_{1} layer. Which has a critical frequency near is Ma. in summer. nsablly dis:appears entirely in winter. 'the critioal frequandios for the F_{2} are highest in winter (11 to 12 Me.) and lowest in summer (aromm 7 Mc .). "the virtual height of the $F_{2} l_{1}$ ber, whinh is aboun 185 miles in winter, averages 250 miles in summer.

Satsmal tramition promets orrar in spring and fall. when inospherin conditions are fonnd highly vatiable.

There are at least two wher rexular exoles in ionization. One surh eyelir perion rovers 28 days, which comesponds with the period of the suin's rotation. Fur a short time in eath 2 s-day cyole. fansmisson combitons beath a peak.
 drop ob: lower lovel, and then a slow builating up fo hae next peak. 'lho 2s-day reve is partientarly evident in the 14 -amd 2 s - Ale amaten batnts.

The longest rexlo yot ohserved covers about 11 years. comrespomding to a smimar evele of sumpor ativity. The effoct of this reve is to shift apmad on downward the values of the aritiosl frequenmos for $F=$ and F 'o-layer transmissim. The rritical frepuencios are highest during sumspot maximat and lumest during sumspot minimas. It is cluring the poriod of minimmm sumsont ativity when homedistance transmissions werur on the bwor frequemes. At such times the 28- Mre. hand is soldom useful for I)X work, while the 1.-Mc. hand performs well in the daytime but is mot ordinarily useful at night. Tho most recont sumsuent manimum is considnad to have ownurel in 1938 .

D/agnetic storms amd othor disturbances

companied by disturbances in the iomosphere. when the layers apparmatly break up and expand. There is usually also an increase in absurption daring such a period. Radio tramemission is poor and there is a drop in critical frequencies so that lower frequencies must be Heal for commanication. A storm may last for several days.

Imustailly high ionization in the region of the atmosphere below the normal inowshere may increase absompion to sum an extent that sky-wave tamsmission becomes impossible on high frequencies. I'he lenglh of such a disturb)ance may be several homes, with a grambal falling off of transmission conditions at the heginning and an equally gradual bulding upat the and of the period. Fadeouts, similar to the shove in effect, are callsed beg sudden disturb)ames on the sun. 'They are characterized by very rapid iomization, with shy-wave transmission disappearing almosi instantly, ocrur moly in daytight, and do mot last as long as the firs trpe of absorptiom.

Magneticestorms fropuently are acrompanied be untrual aturoral displays ereating:mionized "rumam" in the polar revions which can act as a reflector of radio wares. Auroral reflecetion is werasionally wherved at frequeneios as high as (6) Mr.

Sporadic E-layer ionization- (arasionally scatterod patebes or chombs of relatively dense ionization appear at heights approximately the same as that of the E later. The uffert is to raise the eritian frequener to a value perhaps twide that which is returned from any of the regular liverss by normal refraction. Distames of aboult son to 12.00 mikes maty be covered at inf Mr . if the iomized elond is situated midway betwern tramsmitter and receiver, or is of any very considerable extent. This offect. while infreduchtly observed in winter, is prevalent during the fate spring and early summer, with no apmarent correlattion of the eondition with the time of day.

The presonce of sparadic- E refraction on the 1.1- and :2s-Mc. bands is indieated by an ahnormatly short distance befween the tramsmitter and the point where the wave first is roturned to varth as when. bor example 1tMr. signats from a transmitter only 100 miles distant may arrive with an intensity usually atsoniated witl distances ol this order on 7 and 3.5 Mc .

Fig. 90. - Refraction of ohs wases, showiny the critical wave angle and the skip zone. Waves leaving the tranmitter al angles abowe the critioal (ereater than A) are not lowt noweh to be returned to earth. A- the angle is increanch, the wavereturn io) earth at increasingly greater distancre.

Ware anglo-Ther smallor the angle at which a wate learos the rath. the lese will be the bonding reguired in the ionowhere to bring it hack and, in wemeral. the gratare the distance betwen the peint where it leaves the earth and that at which it returns. Thise is shown in Figr. ©ni. The wotieal angle which the wave makes with at tanernt to the earth is called the "rate magh or angle of remtinfime.

Ship elistance - singe ormater bombing is required to return the wabe to earth when the wase angle is high, at the higher frement cies the refraction frequently is mot emongh to give the requimel bending umbess the wave angle is smather than an wotain ander called the erifical ande. This is illostrated in fig. Gul. where waves al angles of A or less mive nseful vignals while waves sent at higher angles penetrate the laser and are not moterned. The distane betwern T and R_{1} is. therefore the shortest posible distanme mer which rentmunieation by normal ionospheric refratetion can the arcomplished.

The areat betwern the emel of the wafoll ground wate and the begimning of intowherie wave rumption is called the shife zome. The extent of skip gome depends upon the frequenere athe the state of the immespere, and is greater the higher the transmitting frequene and the lower the aritioal frequenary. Skip distamere depernels also mon the height of the layer in wheh the refraction takes plate, the higher layers wiving langre skip distames for the same wawe turle. Wave angles at the transmitting and rowiving pointe are ushally. althourfe not alwatw approximately the same for : Iny given wave bath.

It is realily pescilhe for the ionowpheric wate to pase thronarl the bityer athe be rafracted batek fo earth from tha* $F_{2} F_{1}$ or F_{2} layers. This is becianse the ritionl frequenems are higher in the latter laneres, wh that a sigmold too high in frequentey to in foturned bey the E layer eall still wime biack from whe of the others. depending upon the time of day and the exist
 and the fremeney. it is sometimes possible to carrs on rommunication via ather the E or $F_{1}-F_{2}$ luser on the same frequencor.

Mullihop transmission- On returning $^{\text {m }}$ to the earth the wave can bereflected upwatd and trame agation the iomosphere. There it may once more be refractod, and again butht back to asth. This prowes may be repated sereval timus. Multihop moparation of this nature is memesery for tramomission over great distances berather of the limiter hoights of the
 the lewest nsefial wase anders (of the order of a
 heing aborbed rapidly at hish frequmeres ber being in contact with the aideta) the maximum ono-hop distanme is about lent miles for rafraco tion from the E laser and around esuo mikes for the F_{2} laver. However, ground loseses absorb) some of the energe from the wave on cath re-
flertion (the amount of the lose varying with the trpe of ground and bring le:nst for weflection from aral water). Thas, when the distance permits. it is forter to hase one hop mather than several. since the maltiple reflertions int rowne losses which are higher thath those athed by the iomosphere alome.

Fadiag - Two or mure patte of the wave mas follow slightly differnit pathe in tracioling to the recenving point. in which raze the differmere in math lengthes will canse a phase differeme to exith hotwern the wave component: at the rercivims alatomat. The fied strength theremore maty have any sahn betwern the mameric:al sum of the componats (when they aro all in phase) and zern (when there are only two eomponents and they are eximply out of plase). Since the patherenare from time to time. this callses a sariation in signal strength called furfing. Fiading (:an alsa resollt from the rembination of single-hop and mutti-hop waves, of the ambination of a semmel wave with ath ionowherid or tromepharia wawe.
 fading thear the limiting distance of the groumd wase hetter reception hoing whtainal at both shorter and longer distamene whore man rombponant or the other is romeshlorahly stmaner. Fistling maty the raphat of slow, the former type usually mesialting from rapilly chatmeng comil tions in the iomosphere. the latter oremothes When transmasion romditions are relativels stable.

It frembently womes that tramsmission comditions are different for winces of :lightly different frequencies. an that in the rase nif wire-

 the earriar amd varions sidn-bathe compmonentmas hot be proparated in the same relatione atmplitudes and phases thes hasl at that tramsmitter. This offert, kmewn :s serefine judimg. catusis surveredistortion of the sigual.

C. 9-3 Tropospheric Propagation

 mosphere wate propagstion is afferterl by the changes in raftative imdex betwon difforing air masers. 1 mase of air handrenk of miles in area maty remain alt res wer ohe region motil it beromes affered bẹ the =ultane lemperature and hamidity ehatmetaristia of hatl region. Ferentatly being moved ont beg the fomes of atmospherit aironlationt. Whe mates mas trated over regions quite different frma it = origin and rotain for some time its uriginal ehamateristime. When it meats a dis-imilar an mass, the lighter. warmer and drier mase owernms the heatior. codd, moist mass ereathos a bumdars betwem the fworalled a frome. This fromt, which represents at lisentinmity in the didedrice comstant of the tropespheres meres tor refram and reflew
 same manmer as the ionowherid lavers, hat at lesser heights amd more restrived andes. As a result frequenmes above 50 Ma , are rellumed to
rarth at distames considerably beyond the range of ground-wave propagation, sometimes up to 400 miles.

Tempernture intersions - The temperature of the Jwor atmosphere normally deremses at a constant rate with increasing height. When for any reason the normat variation or lapse rate of approximately $3^{3} \mathrm{~F}$. per 1000 feet of elevation is altered. a 1 rmperather ine r siom is satd to take place. The resulting -hange in the dielcetrie monstathe of the ate masese affordon rames reflertion athe reftaction similar to that in the iombsphere.

TYpes of inwersom wher than the d!mamir type described in the preerding paragraph in--lude the subsideno inversiom, ramed by the sinking of an air mass wheh has been beated by conpression; the meturnal intersion. bromgh about by the raphad eoolines of -urface atir after
 hy the heating of air above at clond layer by reflection of the sun's rays from the uppers - we face of the domals. Rafraction amd reflection of v.h.i. waves are hronght alome also. although 10 a lesser degrer. ber the preander of shar, ramsitions in the water-tapore content of the
 aisting when the :ar is "mormal" and when at fomper:ther inversion is prosent.

C 9-4 Ground-Wave Propagation

Surfuce ume - The surfare wave is contimumely in eromater with the surfare of the earth and, in cosse where the distamer of transmission makes the enerature of the earth a factor, extends its range hey diffraction. The surface wate is pramteally independont of wosmat and day :and night effects at frequencies abowe 1500 ke .

The surtace wate must he vertiestly polarizod beramse the elometrotatic fied of a hurizontally polarized wave would be shont-cirenited hy the ground, which acts as a condureor at the frequencies for whid the surface wave is of most interest.
The wave indures a murrent in the groumd in travoling along its surfiame. If tha groumd

Fig. 905 - Illustrating the effect of a imperature incersion in estending the ratme of v.h.f. signals.
were : perfert monductor there would be no loss of enorge. but artual ground has appreciable resistance, so that the current flow (anses some chergy dissipation. This loss must he supplind by the wave which is correspondingly weakond. Hence, the transmitting range depends upon the grmund waracteristices. Beranowea water is a gond moductor, the range will he greater over the wean than over land. The lasese inere:se with fresuleney, so that the surfare wame is rapmally attonatated at high
 importance. esopt in purely loc:al commmanation. The rathere at frequencies in the virinity of : Mr. is oi the ardar of 2010 miles wer avoruge land and pertaps two wr the times as far oxer seat water. for a modiam-power tramsmittor (ono watts or sor) using a good :mbonat. At higher frequencies the range trops off ratpidly.

Space unde - In the v.h.f. protion of the spertrum (above 30 Mc.) the henting of the water in the normal ionosphere is so shight that the iomospherie wave (s) (3-2) is not ordinarily useful for communiation. The range of the sumate wave alsu is extremely limited, : stated abowe. Hemere nurmal vi.f.f. transmission is by means of the space wate in which the direct-atw component travels directly from the transmitter to the recenver throngh the: atmoephare along : lime-of-sight path.

Part of the space wiwe strikes the groumd betwern the tramsmitter and receiver and is weflectad upwatal al a dight anghe as was shown in Fig. 90:2. The affert of this ground-re, fected ware, which is out of phase with the direct wave is to roduce the hes fied strengethat the reoceiving paint. Than degres of ramedtation depends upon the herights of the tramsmitting and merejoing :athonts abowe the print of reflection. the ground lowses when refleetion takis: matere and the frequende - the canendtamon deretasing with an inerease in any of theses.

The entry lost in gromed absorption by a wave traveling "fose to the gromed deereases bery rapilly with its hoight in toms of wavefongthe abowe the gromed. A i h.f. dire wave, therefore, can be relatively rlose (in physical hoight) to the ground without suffering the absorption effect: which would uccur at the same phesie:al height: with longer wate-hengths.

Vormal rofroction - There is normally sonle Mange in the refrative index of the air with hoight athove gromat. its nature being - Hoh : : to mase tho wave to bend slightly toward: the wromml. Where curvature of the fatroh must he monsiblerent, this has the offect wit hongthening the distanes wor which it is persible tor tramemit a dirent wate. It is conbunent tu consider the effert of this "normal refratetion" as "quivalent to an increase in the earth's radlus. in determining the antenna heights necessary to provide a clear path for the wave. The equivalent radius, taking refraction into account, is $4 / 3$ the actual radins.

Fig. 906 - Chart for determining line-of wight diatance for v.h.f. transmisuion. 'The whind lime inclutes chlert of refraction, while the dotted line is the optical distance.

Range rs. height-Since the direct wave travels in practically n straight line the maximum signal strength ran be obtained only when there is an mobstructed atmospherie path betwern the transmitter and recever. This means that antemas should be sufficiently elevated to provide such a path. On long pathe the curvature of the earth, as well as the intervening terrain, must be taken into accoment.

The height required to provide a elear lineof-night path over level terrain from an elevated transmitting point to a receiving point on the surface, not ineluding the effect of refraction, is

$$
h=\frac{\lambda^{2}}{1.51}
$$

where h is the height of the transmitting antema in feet and d the distance in miles. Conversely, the line-of-sight distance in miles for a given height in feet is determined by

$$
d=1.23 \sqrt{h}
$$

Taking refraction into account, this equation becomes

$$
d=1.11 \^{\prime} h
$$

Fig. 906 gives the answer direetly when either value is known.

When transmitter and recoiver both are elevated, the maximum dirert-wave distane to ground level can be determined separately for each. Adding the two distances thas obtained will give the maximmm distance by which ther am be separated for direct-wave communication. This is shown in Fig. 907 .

(9-5 Optimum Wave Angles

One of the requirements in high-frequency radio transmission is to send a wave to the ionosphere in such a way that it will have the best chance of being returned to carth. This is chiefly a matter of the angle at which the wave enters the layer, ath hough in some cases polarization may be of importance. Furthermore, the desirable conditions maty change considerably with frequency.

The desirable conditions for waves of different frequencies can be summarized as follows, in terms of the various amateur bands:
I.a.) Me. - Low-angle radiation is indicaled for the longer distances. High-angle radiation may cause fading toward the limit of the ground-wave signal, beatuse the downcoming waves add in random phase to the ground wave. Vertical polarization is to be preferred.
3.3 Mc. - Waves at all angles of radiation usually will be reflected, so that no energy is lost by high-angle madiation. However, the lower-angle waves will, in general, give the greatest distances. Polarization on this band is not of great importance.

7 Mc. - Under most conditions, angles of radiation up to about 4.) dangees will be returned to earth; during the sumspol maximum still higher angles are urofnt. It is hest to concentrate the radiation below to degrees. Polarization is not important, exeppt that losses probably will be hisher with vertical polarization.

14 Mc. - For long-distance transmission, most of the energy should be coneentrated at angles below about 20 degrees. Higher angles are useful for comparatively short distances (300-400 miles), although 30 degrees is about the maxmum usoful angle. Aside from the probable hirher losses with vertical polarization, the polarization may be of any type.

28 Mc . - Angles of 10 degrees or less are most useful. As in the case of 11 Mc., polarization is not important.

56 Mc . - The lowesi possible angle of radiation is most useful for all types of transmission. Vertical polarization has been chicfly used for line-of-sight and lower at monphere transmission, although horizontal polarization may be slightly better for long distances. In any event; the same polarization should be used at both transmitter and receiver.

Higher frequencies - As in the ease of 56 Mr. either horizontal or vertieal polarization may be used, so long ats the same type is employed at both ends of the cirreuit.

Fig. 907 - Mrthod of determining total line-nf-sight di-tance whon beit transmiter and receiver are ele. vatel, hased on Iig. P\% Since only earth curvature is taken into account in Fig. Wob, irregularities in the ground between the transmitting and receiving points must be considnerd when computing each actual path.

Antenna Systems

(10-1 Antenna Properties

Wave propagation and antenna desian For most effective transmission, the propagation characteristies of the frequeney under eonsideration must be given due consideration in selecting the type of antenna to use. These have been discussed in Chapter Nine. On some frequencies the angle of radiation and polarization may be of relatively little importance: on others they may be all-important. On a given frequenes, the particular type of antemna best suited for long-disiance transmission may not be as good for shoster-range work as would a different type.

The important properties of an antenna or antenna system are its polarization, angle of radiation, impedance, and directivity.

Polarization - The polarization of Ω straight-wire antema is its position with respect to the carth. That is, a vertieal wire transmits vertioally polarized waves and a horizontal antenna generates horizontally polarized waves (s 9-1). The wave from an antenna in a slanting position contatins both vertical and horizontal components.

Angle of radiation - The wave angle (\$9-4) at which an :ntenna radiates beot is determined by its polarization, height atowe ground, and the nature of the ground. Radiation is mot all at whe woll-defined angle, but rather is dispersed wer a more or less large angular region, depending upon the trpe of antema. The amgle is measured in a vertical plane with respert to a tangent to the earth at the tramsmitting point.

Impedence - The impedance (\$2-8) of the antenna at any point is the ratio of voltage to current at that point. It is important in connoction with feeding power to the antemat, since it constitutes the luad represented by the antenna.

Directirity - All antemats radiate more power in certain direetions than in others. This "haracteristic, called directivith, must be considered in three dimensions, since directivity exist: in the vertion plame as well as in the horizontal plane. 'Thus, the dirertivity of the antenna will affert the wave angle as well as the artual ermpass directions in which maximum transmission takes place.

Current - 'The field strength produced by an antenna is prepentional to the current flowing in it. When there are sanding waves on an antenua, the parts of the wire carrying the higher current have the greatest radiating affeet.

Pouer gain - The ratio of power required to produce a given fied strength, with a "romparison" antonna, to the power reguired to produce the same field st rength with a sperified type of antemma is called the power gain of the latter antemna. The field is measured in the optimmm direction of the antemna under test. The comparison antenna almost always is a half-wave antema at the same height and having the same polarization as the antenna under consideration. Power gain usually is expressed in dowibuls (§ 3-3).

[10-2 The Half-Wave Antenna

Physical and electrical lengith-The fundamental form of antema is a single wire whose length is approximately equal to half the transmitting wavelength. It is the unit from which many more complex forms of antemnas are eonstructed. It is variously known as a hati-wave dipole, half-urace doublet, or Ifertz anteranta.

The length of a half wave in spate is:

$$
\begin{equation*}
\text { Length }(\text { fret })=\frac{4,92}{\text { Freq. }(.1 / c)} \tag{1}
\end{equation*}
$$

The antual lougth of a half-wave antenna will not be exactly equal to the half wave in space, but depends upon the thickness of the condurtor in relation to the wavelongth as shown in lig. 1001, where K is a factor that mast be multiplied by the half wavelength in froce spare to obtain the resonant antenna length. An additional shortening effect oceurs with wire antemats supported by insulators at the ends hecause of the capacitance added to the system by the insulators (ond effect). Under average contitions the following formula is sufferently acelurate for wire antennes at frequencios up to 30 Me.:

$$
\begin{align*}
& \text { Length of half-une anterna (imol) }= \\
& \qquad \frac{492 \times 0.95}{1 \text { freq. }(1 / c)}=\frac{105}{\text { Fraq. }(.1 / c)} \tag{2}
\end{align*}
$$

Shore 30 Me . the formulas below should be uscod, particularly for antemnas constructed from lood or tubing. The factor K is taken from Fig. 1001.

Length of half-urave anterna (fert) $=$

$$
\begin{align*}
& \frac{492 \times h}{\text { Freq. (.Mc.) }} \tag{3}\\
& \text { or length (imrhes) }=\frac{\text { asm. }}{\text { Fieq. }} \frac{\times K}{(. / / c .)} \tag{1}
\end{align*}
$$

Current and collage distribution - When power is fed to such an antenna the current and
voltage vary along its length (\$ 2-12-A). The current is maximum at the center and nearly zero at the ends, while the opposite

lig. 1001 - I:ffert of antemma diancter on length for halfowave resmaner, shown a- a multiplying factur, K. to be applied to the free-spare half wavelengh (Liquation 1). The effert of condurtor diameter on the im. pedanee measured at the center als, io shown.
is true of the r.f. voltagre "The enrent does not actually reach zern at the current noles ($\$ 2-12-A$), because of the end effect; similarly, the voltage is not zero at its node be cause of the resistance of the antemat, which consists of both the r.f. resistance of the wire (ohmic resistance) and the radiation resistance (${ }^{2}-12$ A). lesually the ohmice resistanere of a half-wave antenna is small enough, in comparison with the radiation resistance, to the neglected for all practical purposes.

Impedance - The radiation rosistanne of an infinitely thin half-wave antemna in free space - that is, sufficiently removed from surroumding objecets so that they do not affect the antemat's rhatacteristics - is 73 ohms approximately. The value under pratidal conditions is commonly taken to be in the neighborhood of 70 ohms. It is pure resistanee and is measured at the center of the antennat. The imperanee is minimum at the eenter, where it is equal to the radiation resistance, and increases toward the ends. The actual value at, the ends will depend on a number of factors, such as the heright, the physiral eomstruetion, and the position with respect to ground.

Conductor size - The impedance of the antenna also depends upon the diameter of the conductor in relation to the wavelength, as shown in Fig, 1001. If the diameter of the conductor is made large. the eatpacitame per unit lengt h increases and the induetance per unit, tength decreases. Sine the radiation desistance is affected relatively little, the decreased $L / /{ }^{\prime}$ ratio causes the Q of the antenna to decrease. no that the resonance curve becomes less sharp. Hence, the antenna is capable of working over a wide frequenery range. This effect is greater as the diameter is increased, and is a property of some importance at the very-high frequencies where the wavelength is small.

Radiation churacteristics - The ratiation from a half-wave antenna is not uniform in all direetions but varies with the angle with respect to the axis of the wire. It is most
intense in direetions at right-angles to the wire and zero along the direction of the wire itself, with intermediate values at intermediate angles. This is whow by the sketch of Fig. 1002, which represents the radiation pattern in free space. The relative intensity of radiation is proportional to the length of a line drawn from the conter of the figure to the perimeter. If the antema is vertical, ts shown in the figure, then the fied strength ($\$ 9-1$) will be uniform in all horizontal direetions: if the antemna is horizontal, the relative field strongth will depend upon the dirertion of the recelving point with respeet to the dirertion of the antema wire.

C. 10-3 Ground Effects

Reflertion - When the antemna is near the groumd the free-space pattern of Fig. 1002 is modified by reflection of radiated waves from the ground, so that the aetual pattern is the resultant of the frec-spare pattern and gromal reflections, This resultant is dependent upon the height of the antenma, its position or orientation with rospect to the surfare of the ground, and the electrical waracteristics of the ground. The reflected waves may be in suel phase relationship to the diroctly-radiated waves that the two completely reminome each other, or the phase rolationship maty be such that complete cancellation takers place. All intermediate values also are posible. 'Thus, the efferet of a perfertly-reflecting ground is such that the original free-spare fied at rength may be multiplied by a factor which has a maximum value of 2 , for complete reinforcement, and having all intermediate values to zero, for complete ramerlation. These reflections only affeet the radiation pattern in the vertical pane - that is, in directions upward from the carth's surface - and not in the horizontal plane, or the usual geographiral direations.

Fig. 1003 shows how the maltiplying factor varies with the vertial angle for several representative heights for horizontal antemms. As the height is increased the angle at which complete reinforemont takes place is lowered, until for a height equal to one watelength it occurs at a vertical angle of 15 degrees. At still greater heights. not shown on the chart, the first maximum will werour at still smaller angles.

When the half-wase antenna is vertion the maximum and minimum points in the curves of Fig. 100:3 exchange proitions, so that the

Fig. 1002 - The frec--prace radiation pateren of a half wave antema. The antenna is thown in the vertical position. This is a eross-section of the solid paturn de. seribed by the fipure when rotated on its vertical asis. The "doughmut"form of the solid pattern can be more" "asily vi-nalized by imaginin" the drawing glued to a riece of cardhoard, with a short lensth of wire fastened on it torepresent the antenna. l'wirling the wire will give a visual representation of the solid radiation pattern.
nulls become maxima, and vire versa. In this case, the height is taken as the distance from ground to the center of the antenna.
Radiation angle - The vertical angle, or angle of radiation, is of primary importance, especially at the higher frequencies (s 9-2,9-4). It is advantageous, therefore, to erect the an-

Fig. 1003 - Effect of pround on radiation of horizontal antennas at vertical angles for four antoma heiphts. This chart is based on perfectly-conducting groumd.
tenna at a height which will take advantage of ground reflection in such a way as to reintore the spare radiation at the most desirable angle. Since low radiation tugles usually are desirable, this generally means that the antenna should be high - at least $1 / 2$ wavelength at 14 Mc ., and preforably $3 / 4$ or 1 wavelength; at least 1 wavelength, and preferably higher, at 28 Mc. and the very-high frequencies. The phesical height required for a given height in wavelengths decreases as the frequency is increased, so that good heights are not impracticable; a half wavelength at 14 Mc , is only 35 feot, approximately, while the same height represents a full wavelength it 28 Mc . At 7 Mc . and lower frequencies the higher radiation angles are offective, so that again a reatsonable antenma height is not difficult of attainment. Heights between 35 and 70 fect are suitable for all bands, the higher figures generally being preferable where circunstances permit their use.

Imperfect ground - Fig. 1003 is hased on ground laving perfect conductivity, whereas the actual earth is not a perfect conductor. The principal effect of actual ground is to make the curves inarmurate at the lowest angles; appreciable high-frequency radiation at angles smaller than a few degrecs is practically impossible to obtain at hoights of less than several W:avelengths. Above 15 degrees, however, the curves are accurate enough for all practical purposes, and may be taken as indicative of the sort of result to be expected at angles between 5 and 15 degrees.

The effective ground plane - that is, the plane from which ground reflections can be
considered to take place - seldom is the actual surface of the ground but is a fow feet below it, depending upon the character of the soil.

Impedance - Wives which are reflected directly upward from the ground induce a current in the antenna in passing, and, depending on the antenna height, the phase relationship of this induced current to the original current may be such as cither to increase or decrease the total current in the antema. For the same power input to the antenna, an increase in current is equivalent to a decrease in impedance, and vice versa. Hence, the impedance of the antenna varies with height. The theoretieal curve of variation of radiation resistance for an antenna above perfectlyreflocting ground is shown in Fig. 100.4. The impedance approaches the frec-space value as the height becomes large, but at low heights may differ considerably from it.

Choice of polarization - Polarization of the transmitting antenna is generally unimportant on frequencies between 3.5 and 30 Mc. However, the question of whether the antenna should be installed in a horizontal or vertical position deserves consideration for other reasons: A vertical half-wave antenna will radiate equally well in all horizontal directions, so that it is substantially nondirectional, in the usual sense of the word. If installed horizontally, however, the antenna will tend to show directional efferts, and will radiate best in the direction at right angles, or broadside, to the wire. The radiation in such a case will be least in the direction toward which the wire points. This can be readily seen by imagining that Fig. 1002 is lying on the ground, and that the pattern is looked at from above.

The vertical angle of radiation also will be afferted by the position of the antemna. If it were not for gromind losses at high frequencies, the vertical half-wave antenna would be preferred because it would concentrate the radiation horizontally. In practice. however. at high frequencies both typers work about alike at low angles.

Fia. 100.1 - Theoretical curve of variation of radiation resistanee for a halfowave horizontal antenna, as a function of heipht in wavelength alove perfectly-reflecting ground.

Effective radiation patterns - In determining the radiation pattern it is necessary to consider radiation in both the horizontal and vertical planes. When the half-wave antenna is vertical, the vertical angle of radiation chosen does not affect the shape of the horizontal pattern, but only its relative amplituld. When the antenna is horizontal, however, both the shape and amplitule are dependent upon the angle of radiation chosen.

Fig. 1005 - Illustratine the in portane of vertieal ande of radiation in determining an. tenna directional efferts, (iround reflection is meglected in this drawink of the fres-spact field pattern of a horizontal antema.

Fig. 1005 illustrates this point. The "frecspace" pattern of the horizontal antenna shown is a section cut vertically through the solid pattern. In the direction $O \dot{A}$, horizontally along the wire axis, the radiation is zero. At some vertical angle, however, represented by the line $1 / B$, the radiation is appreciable, despite the fart that this line runs in the some geographical direction as O.A. At some higher angle, Of', the radiation, still in the same geographical direction, is still more intense. The effective radiation pattern therefore depends upon which angle of radiation is most useful, and for long-distance transmission is dependent upon the conditions existing in the iomosphere. These conditions may vary not only from day to day and hour to hour, but even from minute to minute. Ohviously, then, the effective direc-

Fig. 1006 - IIorizontal pattern of a horizontal halfwave antema at there vertieal radiation antes. 'The solid line is relative radiation at 1.3 desrees. Dotted lines show deviation from the li-elegree pattern for andes of 9 and 30 de grew. The paterns are use ful for shapre only. sinee the amplitude will depend upon the height of the antema above ground and the vertical angle considered. The patterns for all three angles have been proportioned to the same scale, but this does not mean that the maximum amplitudes necessarily will he the same. The arrow indicates the direction of the horizontal antenna wire.
tivity of the antema will change along with transmission conditions

At very-high freguncies, where only extremely low angles are useful for any but sporadic-E transmission (\$9-2), the effective radiation pattern of the antema approaches the frec-space patern. A harizontal antema therefore shows more maked directive effects than it does at lower frequencies, on which high radiation angles are effective.

Theoretical horizontal-direetivity patterns for half-wave horizontal antemats at vertical angle: of 9,15 , and 30 deurese (representing average useful angles at 28 , 14 and 7 Mr . respectively) are given in Fig. 1006. At intermediate angles the values in the affered regions also will be intermediate. Redative field strength: are ploted on a decibol scale ($\$ 3-3$), so that they represent as unemly as possible the actual aural effect at the receiving station.

(C) 10-4 Applying Power to the Antenna

Direct excitation - Whon power is transferred direetly from the source to the rathating antenna, the antennat is satid to be directly excited. While almost any eoupling method ($\mathbf{S}^{2}-11$) may be used, those most commonly employed are shown in l"ig. 1007. Dower usually is fed to the antemat at wither an current or voltage hoop (\$10-2). If power is fed at a carrent loon, the coupling methond is called courent feol; if at a voltage loop, the mothod is called mollage fred.

Fing 100 a - Medhods of dircotly rexting the half-wave antenna, $\boldsymbol{\lambda}$, current ferd, weriestuning: IS. voltame fect, captacts rouplinus C', whtare frod. with an imdurtively erompledantonnal tark. In A, the rompling cirout is not incladerel in the rforme Mer-lical langeh of the allowna-tistomproper.

Current feed - This method is shown in Fig 1007-A. The antenna is cut at the center and a small coil coupled to the output tank circuit of the tramsmitter, with adjustable cou pling so that the tramimitter loading ean be controlled. Fince the athlition of the coil "loads" the antemna. or incrases its efloctive length berame of the additional inductance. the series comelensers. ('i aml ' 2 , ate used to provide electral meams for redueing the length to its origimal unlowded value: in other words, their caparitivereactancererves to cancel the effect of the inductive reactance of the coil (s.2-10).

Foltage feed - In Fig. 1007, at B and C the power is introduced into the antemmat a point of high voltage. In B, the end of the anteman is coupled to the output tank cireuit
through a small eondenzer, \mathbf{r}^{\prime}; in C. a separate tank rireuit. comerted dirertly tor the antemna, is used. This tank is tuned to the transmitter frequency, and should be grounded at one end or at the center of the coil, as shown.

Adjustmont of coupling - Methods of tuning and adjastmont of direct-feed systems correspund to those used with transmission lines, which are discusised in $\$ 10$-6.
Disadrantages of diroct excitation-1)irect excitation saldon is used except on the lowest amateur frepumeies, hecanse it involves bringing the antenna proper into the operating room and hence into close relationship with the honse and electrie wiring. This asually means that some of the power is wasted in heating poor comductors in the field of the atmtemma. Also, it oftern means that the shape of the anternat must be distorted, so that the experted directional offert are mot realizen, and likewise that the height will be limited. For these reasons, in high-freguency work prawtically all amateurs use tramsmision lines or feeder sy:tems, whirh permit placing the antemna in a desirable lucation.

(10-5 Transmission Lines

Requirements- 1 transmission line (\$2-12-A) isused totranster powior, with a minimum of loss. from the transmither to the antemma from whith the pewer is to be radiated. At radiofrequencias, whereavery wire earryingr.f. current tends to radiate energy in the form of electromatgetio waves, special design is neressary to minimize radiation and thas rathee : much of the power as posible to be delivered to the receiving end of the line.

Radiation can he minimized by using a line in which the current is low, and be using two conductors carrying corrents of equal magnitudes but opposite phase so that the fields about the condurtors cancel sach other. For good cancellation of radiation, the two condurfors should be kept parallel and quite close to eich other.

Types - The most common form of transmisism line (onsists of two parallel wires, mathtaned at a fixed sparing of two to six inches hey insulating sumers or preaders placed at suitabla intervals (open-mire linel. A scoond lyperomsist: of insulated wires twisted together to form a flexible line. without spacers (twisted-pmir lines). I third has the paralled wires matintaned at at fixed spacing of a hati inch or less be moding them in a flexible tape of low-los: insulating material. Another type of line has at wire inside of and cosxial with a tubing outer mondactor. separsted from the outer romductor her insulating spacers or "beads" at regular intervats comxial or conrembic lime). A variation of this type uses solid hut flexible insulatiner material to fill the space. between the inner and outer comblactors. the latter usually hoing made of metal braid rather that of solid tuhing. so that the line will be flexible. sitl anomber iype of lime nses only:
single wire, without a serond ronductor (singlewire feraler): in this tres. radiation is minimized be kerping the line current low.

Spacing of open-uire lines - The spacing between the wires of an open-wire line should be small in comparison to the operating wavelength, to prevent appreciable radiation. It is impracticable to make the spacing of an openwire line very small. however. beeanse when the wires swing with resperet to each other in at wind the line constath: (\$2-12-1) will vary and thas cather at variation in tuning or lomding on the transmitter. It is also desirable to use as few insulating sumers as possible, to keep the wright of the line to a minimum. In practiee. a spacing of about six inches is used for 14 Mc. and lowerhands. With four-and two-inch sparings heing common on very-high trequencies.

Elecerical lensish - The alectrical length of at tranmission line may he quite different from ite phosical kength. heratuse waves travel more sowly along a tramsmision line than they do in spare. 'The differener is small in the case of air-insulated lines. that is considerable in lines having sold dicleetrics, The ratio of the phersical length of a line one ehectrical wavelength long to a wavelongth in pate is called the eelocit! factor of the line. A line with a velocity factor of 0.6 , for example, will have an electrical length of 10 melers (space wavelength) when it is fi.s meters long.

Table I give velomity fachors for various types of lines in common use. This fartor must alwats be need in ablobating the length of a soldedieloctrie line used, for instance, as a quarter-wave matching seretion ats described later in this chapter. The physical length of a quatror-wave line is
or

where ${ }^{5}$ is the velocity factor given in Table I.
Balance to ground - For maximum rancellation of the fieds about the two wires, it is nerasary that the rurrents be equal in amplitude and opposite in phases. Should the capacity or inductance per unit length in one wire differ from that in the other, this condition canmet he fulfilled. Insofar as the line itself is concerned. the two wires will have identical chatacteristies only when the two have exatety the same pherioul relationships to pround and to other objects in the vicinity. Thus, the line should be symmetrically comstructed and the two wires should be at the same height. Line unbalance ran be minimized by kerping the line as far above the ground and as far from other objects as possible.

To overome unbalaner the line sometimes. is transposed, which mosths that the positions of the wires are interehanged at regnlar intervals. This procedure is mome helpfal on long

TABLE I Transmishon-lone Velocity Fiactors and Attencathon								
Trpe ni line	I'encity Fortor	** Ittenuation. dl./1'n) ft.; Mc						Cupacitance per font $\mu \mu / d$.
		53	γ		25		14	
Opert-wire, 400 to 600 olunis	$0.97 \%^{\prime \prime}$	00.3	005	001	1		:	
l'aralkel-tubinu	065^{*}	***						
Coaxial, air-insula	0 sis*	$0:$	0	042	5.5			
18(i-\%/L' (33 whms)	() titis	0.	0.4:	061	10	14	\bigcirc;	295
R(i-ix/ / (3 \% ohma)	0 tit	0.33	0 \%	12	3		1	\because
以6-11/4 (\%) (ohms	0.6 ib	027	0.41	0611	0 (192)	13	4	;
T'win-Lewad, 300 ohms	0×2	018	03	05	0.8	$1: 3$	$\because 8$	58
Twin-T.ead. 1.50 whms	0 \%	0:	\%.)	06	0	1	3.5	
Twim-Lead, is ohtus	0 tin	$0{ }^{-1}$		11	19	30	;	
Transmittine TwinI.eted. 75 ohims	031	0.3	104	0.			13	
Rubluer-insulated twistex)-pair or coaxial ".e"	$\begin{array}{cc} 0.54 \\ 10 & 0 \\ 10 & 8.5 \end{array}$	$0: 16$	1.10	$\because 5$	19			
* A werage figures for air-insulated lines takitag into acmont offer of insalating sparers. rablation, mperially at higher frepurneits. **** Appreximate figures for qoonl-quality rulaber incalation.								

than onshort lines. and nowd not be resorted to for lines less than a wavelongth long.

Resonant and nonresonant lines- Lincs are classificd as resonant or nonresonamt, depending upon the standing-wave ratio. If the ratio is near 1 , the line is said to be nonresonant. Reactive effects will be small, and consequently no special tuming provisions need ordinarily be made for canceling them even when the line length is not an exact multiple of a quarter wavelongth. Suh a line must be terminated in its characteristic impedance (\$2-12-. $)$). If the standing-wate ratio is fairly

Fig. 1008 - liffort of stamding-wave ratio on line loss. The power-fons ration given ly the rurve, multiplied hy the power that weuld her lest in the same line if perfertly matehed, gives the artual mower lost in the line when atanding wasemare present.
large. the input reactance mast he cancelad or "tuner out" unless the lime is a multiple of at quarter wavelengh and resunant.

Losses - There are thred ways by which power may be lost in a transmission line: by radiation, by heating of the conductors ($I^{2} R$ loss). and by heating of the diolectrice if any. Loss by radiation will ocerar if the line is unbalaned and, partioularly with open-wire lines. may greally exceed the heat losses. It ran be redued to a minimum by terminating the line in a batanced bad and by symmetrical. aniform construction.

Heat losses in buth the eomeluetor and the diclectrie increase with froquence. Compluctor lossos also are greater the lower the charateristie impedance of the line because a higher current flows in a low-imperdance line for a given powor input. The converse is true of dielactric losises because these increase with the voltage. which is greater on high-impodaner lines. The dieleetric loss in air-insulated lines is nergigible (the onty loss is in the insulating spacers) and such lines operate at high eflicioney when radation losses are low. In solid-dieleceride lines most of hhe loss is it the dielertrie, the conduetor losees being small.

Fig. 1009- Chart showing the charatteristic impodance of typiral spaced-monductor parallel transmission fines. Tubing sizes given are for outside diameters,

It is convenient to express the loss in a ransmission line in decibels per unit length. since the loss in db . is directly proportional to the line length. Losses in various types of lines operated without standing waves (that is. terminater in a resistive load equal to the characteristic impedance of the line) are given in Table I. In these figures the radiation loses is assumed to be nogligible. When there are standing waves on the line the power loss in"reases as shown in Fig, 1008.

The loses in ar-insulated lines may increase
considerably when the line is wet or the spacers become dirty. Moisture may also catuse a change in the characteristic impedance of parallel-wire lines with sulid dielectric.

Fig. 16/0-Chart showing whameristic imperlance obtained with sarime air-in-ulated eoneentrie lines.

© 10-6 Coupling to Transmission Lines

Requirements - The coupling system betweon a transmitter and the input end of a transmission line must provide means for adjusting the load on the transmiter to the proper value (imperdance matching), and for tuning out any reactive component that may be present (\$2-9, 2-10, 2-11). The resistiance and reactance comsidered are thuse present at the input end of the lime, and home have mothing to do with the antema iterelf except insofar as the antenna load may affect the operation of the line.

Lintunod roil - One of the simplest sustems, shown in Fig. 1011-A, uses a roil of a few turns tightly coupled to the plate tank coil. Since bo provision is made for tuning, this sustem is suitable mbly for nonresonant lines which show pratically no reactance at the input end. Loading on the transmiter may be variod by varying the coupling between the tank inductance and the pick-up coil, as it is frequently adled, or by changing the number of turn: on the piek-up coil. A slight amount of reactance is coupled into the tank circuit by the pick-up roil, since the flux leakige (§ 2-11) is high, so that some slight retuning of the plate tank eondensor may be necessary when the land is connerted.

Tups on tank rircuit - A method suitable for use with open-wire lines is shown in Fig. 1011-13, where the line is tapped on a balaned tank circuit with taps equidistant from the center or ground point. 'lhis symmetry is neressary to maintain line balance to ground ($\$ 10-5$). Loading is increased by moving the taps outward from the center, Any reabeance present may be tumed out by radjustment of
the plate tank condenser, but this method is not suitable for large values of reactance and therefore direct tapping is best confined to use with nonresonant lines.

Adjustment of untuned srstems - Adjustment of cither of the above systems is quite simple. Starting with loose coupling, apply power to the transmitter, and adjust the plate tank condenser for minimum plate current. If the current is less than the desired lnad value, increase the coupling and again resonate the phate condenser. Continue until the desired plate current is obtained, always keeping the plate tank condenser at the setting which gives minimum current.
\boldsymbol{r}-spction coupling - A coupling system which is electrically equivalent to tapping on the tank circuit, but using a capacitance voltage divider in the plate tank cireuit for the purpose, is shown in Fig. 1011-C'. Since one side of the condenser across which the line is connected is grounded, some unbalance will be introdured into the transmission line. This method is used chiefly with low-power portable sets, hecause it is readily adjustable to meet a fairly wide range of impedance values. A single-ended amplifier, using either a sercengrid tuhe or a grid-meutralized triode (s 4-7), is required, since the plate tank circuit is not balanced. Coupling is adjusted by varying ('s, reresonating the circuit cach time by means of ('2 until the desired amplifier plate current is obtained. In general, the coupling will increase as ('1 is made smaller with respect to ('2. Relatively large-eapacity condensers are required to give a suitable impedance-matthing range while maintaining resonance.

Pi-section filtor - The coupling circuit shown in Fig. 1011-I) is a low-pass filter capable of coupling between a fairly wide rango of impedances. The method of adjustment is as follows: lirst, with the filter disconnerted from the transmitter tank, tume the transmit ter tank to resonance, as evidenced by minimum plate current. Then, with trial settings of the clips on L_{1} and L_{2} (few turns for high frequencies, more for lower), tap, the input elipes on the final tank coil at points equidistant from the center, so that about half the coil is included between them. A balaneed tank circuit must be used. Set C_{2} at about half scale, apply power, and rapidly rotate C_{1} until the plate current drops to minimum. If this minimum is not the desired full-load plate current, try a new setting of C_{2} and repeat. If, for all settings of C_{2}, the plate current is too high or too low, try new settings of the taps on L_{1} and L_{2}, and also of the tap: on the transmitter tank. Do not touch the tank condenser during these adjustments.

With some lengths of resonant lines, particularly those which are not exaet multiples of a quarter wavelength, it may be difficult to get proper lating with the pi-section coupler, ["sually antennas of these lengths also will be difficult to feed with other systems of eoupling. In such eases, the proper sutput loading often

Fig. 1011- Methods of coupling the transmiter output to the transmission line Aphication, circuit values and adjustment are discussed in the text. The couphing, condensera, C, are fixed bonchine condensers used to
 being satisfactory values, but their voltage rating should at least equal the phate whatio on the final stage:
can be obtained by varying the L / C ratio of the filter over a considerably wider range than is necersary for nomal loads.

Seriestuning - When the input impedance of the line is low, the coupling method shown in Fig. 1011-E may be used. This system, known as series tuning, places the coupling coil, tuning condensers and load all in series, and is partirularly suitable for use with resonant lines when a current loop appears at the input end. As shown, two tuning condensers are used, to keep the line halanced to ground. However, one will suffice, the other end of the line being connected directly to the end of L_{1}.

The tuning procedure with sories tuning is as follows: With C_{1} and C_{2} at minimum capacitance, couple the antenna coil. L_{1}, loosely to the transmitter output tank coil, and observe the plate current. Then increase C_{1} and ('2 simultaneously until a setting is reached which gives maximum plate current, indicating that the anterna system is in resonance with the transmitting frequency. Realjust the plate tank condenser to minimum plate current. This is necessary because tuning the antenna circuit will have some effect on the tuning of the plate tank. The new minimum plate current will be higher than with the anteana system detuned, but should still be well below the rated value for the tube or tubes. Increase the coupling between L_{1} and L_{2} by a small amount, readjust C_{1} and C_{2} for maximum plate current, and again set the plate tank condenser to minimum. Continue this process until the minimum plate current is equal to the rated plate current for the amplifier. Always use the degree of coupling between L_{1} and L_{2} which will just bring the amplifier plate current to rated
value when C_{1} and Copass through resonampe.
Parallel tuming - When the line has high input impedance, the use of parallel tuning, as shown in lif. 1011-F, is reduired. Here the coupling eod, tuning condenser and line all are in paraliel, the low represented by the line being directly actoss the funed compling cirouit.

It the line is monemelive the coupling circuit will be tuned independently to the transmitter frequence; line reactance can be compensated for hy thang of ('1 and, if necessatry, adjustment of L_{1} by means of taps. Farablel tuming is suited to resonam lines when a voltage lomp appears at the input end.

The tuning procedure is quite similar to that with series funing. Find the value of coupling betwern L_{1} and L_{2} which will bring the plate cument to the dosired value as r_{1} is tuned through rewnance, Again. a slight readjustment of the amplifice tank combenser may be necessary to compensate for the effect of coupled raactance.

Link coupling - Where tuning of the cirruit connected to the line is necessary or desirable, it is possible to separate physically the line-tuning apparatus and the plate tank circuit by means of link coupling (s2-11). This is often convenient from a constructional standpoint, and hats the advantage that there will be somewhat less hamonic transfer to the antemat, sime stray rapacity coupling is lessened with the smaller link coils.

Figs. 1011-G and II show a method which can be considered to be a variation of Fig. 1011-B. The first (G) is suitable for use with a single-ended plate tank, the serond (H) for a balanced tank. The auxiliary tank on which the transmission line is tapped may have ad-
justable inductance as wroll as rapacitance, to provide a wide range of reactance variation for compensating for line reactance. The center of the auxiliary tank inductance may be grounded, if dexired. The link windings should be plated at the grounded parts of the mils. to reduce rapacitance coupling and consequent harmonic transfer. With this indurtively-ewupled system, the loading on the auxiliary tank circuit inarcases as the taps are moved outward from the renter, but, since this deareases the Q of the rircuit, the coupling to the plate tank simultaneously decroases (\$2-11). Itencr, a compromise adjustment giving proper loading must be found in pratice. Loading also may be varied by changing the coupling betwern one link winding and its associated tank coil: sither tank may be used for this purpose. When the auxiliary tank is proporly tuned to compensate for line rarctance, the phate-tank tuming will be pratically the same as with no load; hence, the plate tank condenser noed he readjusted only slightly to compensate for the small reactanee introduced by the link.

With some antemna systems and line lengt hs it may be diflicult to make these perform simultaneously the functions of compernsating for the input reactance of the line and matehing the input resistamer of the line to the transmittor. In such cates it will be hared to find a definite resonance point when tuning the antemmank rimuit, and it may also be impossible to load the amplifier to normal phate current. This condition froquently is a commpaniod by excessive hoating of parts of the antemas tank coil. It may he overome by separately tuning out the line reactance as shown in Fig. 1012. The tuning proweduce is as follows: First, with the feeder taps disconnected and with very loosc coupling between the two tank cireuits, tume the antema tank to resonance as indicated by a rise in plate current. Then attach the feeder taps, kerping them quite dose govether and note whether the antenna lank condenser capacitance has to be increased or decreased to reresonate the cirenit. If the rapaciame has to be decreased,

(A)

(B)

Fig. 1012 - I'se of ansiliary coil (L) or condenser (C) 1.0 tune out line input reactance with the link-rupled rircuits of Figa. 1011-G and H.
use Fig. 1012-A; if increased, use cireuit 13 . Adjust the anxiliary inductance (L) or capacitance (C) to the value which permits tapping the line on the antema tank coil without changing the tuning of this circuit. The spread between the taps may then be adjusted as deseribed above to give normal loading. Values of atuxiliary inductance and capacitance required must be determinced experimentally.
link coupling also may be used with sories tuning, as shown in Fig. 1011-I. The eoupling between one link and its associated coil may be made variable, to give the same effert as changing the roupling between the plate tank and antenna coils in the ordinary system. The tuming procedure is the same as deseribed above for series tuming. In the case of singleended tank rirenits the input link is coupled to the grommed end of the tank coil, as in Fig. 1011-G.

Circuit calues - The values of inductance and caparity to use in the antemma coupling system will depend upon the transmitting frequenes, but are not particularly eritical. With series tuning (Figs. 1011-E, I), the coil may consist of a fow tarns of the same construction as is used in the fimal tank; average values will run from one or two turns at very-high frequeneies loperhap: 10 or 12 at 3.5 Ac . The number of turns preferably should be adjustable so that the inductance cin be changed should it not be possible to reath resonance with the condensers used. The sories condensers should have a maximum rapacitance of 250 or 350 $\mu \mu$ fle at the lower freduencies: the same values will sorve even at 28 Mc.. although $100 \mu \mu \mathrm{fa}$. will be ample for this and the $14-\mathrm{Mc}$. hand. Still smaller comelensers can be used at veryhigh frequencies. Since serios tuning is used at a low-voltare point in the forelar system, the plate spacing of the comdensers does not have to be large. Ordinary receiving-t ype condensers are large enough for plate voltages up to 1000 , and the smaller transmitting condensers have high-enough voltage ratings for higher-power applications. In high-power radiotelephone transmitters it maty be neevesary to use condensers having a plate spacing of approximately 0.15 to 0.2 inch.

In parallel-tuned circuits (F, G, H) the antenna coil and condenser should be approximately the same as those used in the final tank circuit. The antenna tank circuit must be capable of being tuned independently to the transmitting frequeney, and, if possible, provision should be made for tapping the coil, so that the $L C$ ratio can be varied to the optimum value (\$2-11) as determined experimentally.

In Fig. $1011-\mathrm{D}, C_{1}$ and C_{2} may be 100 to 250 $\mu \mu \mathrm{fd}$. each, the higher-capacitance values being used for lower-frequency operation (3.5 Mc . and lower). Plate spacing should be, in general, at least half that of the final-amplifier tank condenser. For operation up to $14 \mathrm{Mc} ., L_{1}$ and L_{2} earh may consist of 12 turns, $2 \frac{1}{2}$ inches in diameter, spaced to occupy 3 inches
length, and tapped every three turns. A pproximate settings are 9 turns for 3.5 Me., 6 turns for 7 Mc., and 3 turns for 14 Me. The eoils may be woum with N゙o. 14 or No. 12 wire. This method of coupling is very seldom used at very-high frequencies.

IIarmonic reduction - It is important to prewent harmonies in the output of the transmitter from leeing transerred to the antemna systerm. Harmonics are readily fed to the antenna systom by coupling mothods whith reguire a comede fion to the plate tank cireuit, cither dirert or through condenser's, ats in 13 , ('and 1). Fig. 1011. Harmonic transfor is much less likely with inductively-eoupled systems. particularly when a separate tuning system is provided at the input end of the line as in E, F, G, II. and I.
In inductively-coupledsystems, eare must be taken to prevent stray caparitance coupling betwern eoth. Link coils always should be coupted at a point of ground potential (s 2-1;) on the plate tank eoil. as also should serties- and paralledtumed coils (F and F), when posible. The effeet of stray capacitance can be reduced hy grounding (to the amplifier (hassis) the renter of the roupling coil in Fig. 1011-F and F. and by similarly groumding one side of the coupling roil at the amplifier cond in (i. H. and 1. Capaciatuer roupling can be practioally eliminated by the use of a Faraday shidd (st-9) between the phate-tank and antoman moils.

Fig. 101:3- Ilalf-waseantennas fed from resonant linms. A and B are emd-feed systems for use with quarter-and half-wave lines: (and I) are ernter-feed systems. The current distribution is shown for all four canes, arrows indicating the instantancous direction of current flow.

C. 10-7 Resonant Lines

Tuo-wire lines - Berause of its simplicity of adjustment and flexibility with respert to the frequency range over which an antenna system will operate, the resonant line is widely used with simple antenna systems. Because resonant lines operate with relatively high standing-wave ratios, lines with air dichectrid are to be proferred for this purpose in view of their bow losses ($\$ 10-5$). However, if the line is short - say less than 100 icot - limes having low-loss solid dielectric (polyethylene) such as 300-ohm "Twin-Lead" can be used without. undue loss at frequencies below 30 Mr .

Connection to antenna - A resomant line is usually - in fact, practically alway - connected to the antenna at either a current or voltage loop. This is advantageous, esperially when the antenna is to be operated at harmonic frequencies, since it simplifies the problem of determining the coupling system to be used at the input end of the line.

Inalf-uace amtonna with resomant lineIt is often lielpful to look upon the resonant line simply as an antema folded bate on itself. Such a line may be any whole-number multiple of a quarter wave in length; in other words, any total wire length which will accommodate a whole mumber of standing waves. (The "length" of a two-wire line is. howerer, always taken as the length of one of the wires.)

Quarter- and half-wave resomant lines feeding half-wave antemata are shown in Fig. 1013. The current distribution on both antenna and line is indicated. It will be noted that the quarter-wave line has maximum current at one end and minimum eurrent at the other, determined by the point of connection to the antemat The half-wave line, however, has the same curront (and voltage) values at both ends.

If a quarter-wave line is comerted to the end of an antenna, as shown in Fig. 101:3-A, then at the tramimitter and of the line the eurrent is high and the voltage low (low impedance), so that series tuning ($\$ 10-t i$) can be used. Should the line be a half-wave long, as at 101:3-13, current will be minimum and voltage maximum (high impedance) at the transmitter end of the line, just as it is at the end of the antenna. Parallel tuning therefore is required (\$10-6). The line rould be coupled to a balanced final tank through small condensers, as in Fig. 1011-13, but the inductively-coupled circuit is preferable. An end-fed antenna with resumat feeders, as in 101:3-A and B, is known as the "Zeppelin" or " "/epp" antenna.

The line also may be insorted at the center of the antenna at the maximum-current point. Quarter-and hali-wave lines used in this way are shown at Fig. 1013-C and D. In C, the antenna end of the line is at a high-current lowvoltare point ($\$ 10-2$); hence, at the transmitter end the current is low and the voltage high. Parallel tuning theretore is used. The halfwave line at D) has high current and low voltage at both ends, so that series tuning is used at the transmitter end.

The four arrangements shown in Fig. 1013 are thoroughly-useful antenna systems, and are shown in more practical form in Fig. 1014. In each case the antemna is a half wavelength long, the exact length being calculated from Equations 2, 3 or $+(\$ 10-2)$. The line length should be an integral multiple of a quarter wavelength and may be calculated from liquations 5 and $6(\$ 10-5)$, the result being multiplied by any whole number which gives a totallengt eomvenient for reaching from the antenna to the transmitter. If there is an orll number of quar-

Fig. 107.1-I'ractical half-wave antenna systoms using resonantline fred. In the wentur-feed systems, the anterna longth. J, does not indude the lengh of the insulator at the renter. line length is measured from the antinna to the tuning apraratus: leads in the latter should lie hept short emongly so their effect can he nogloceded. The use of twor.f. ammetore. W, as shown is helpful for babancing feder eurratis: low wor, one metor is sufficient tomalle toming for maximum ontfut, and may he transferred from one fireder to the other, if desired. The systems at (A) and (C) are for feeders an odd number of quarter waves in Iengeth: (B) and (D) are for feeders a multiple of a balf wavelenth. The detailen drawinge shown here correspond clectrically to the che mentary-schematic half-wave ane tema systems shown in Fig. 1013.

ter waves on the lime in the case of the end-fed antenna, series tuning should be used at the transmitere end; if an cren number of guarter waves, then parallel tuning should the used. With the center-fed antmma the reverse is trut.

Practical line lensths - ln general, it is best to nee line lengthe that are integral multiples of a quarter wavelength. Intermediate lengths will give intermediate impedance values and will show reatance ($82-12-\mathrm{A}$) as well. The tuning apparatus is capable of compensating for reactance. but it may be difficult to get suitatble transmitter loading becaluse simple series and parallel tunine are suitable for only low and high impedances, respertively, and neither will perform well with impedances of the order of a few hundred ohms. Such values of impedance may reduce the Q of the coupling eircuit to a point where adequate coupling eamot be ohtancel (s-11). However, some departure from the ideal length is possible even as much as $2: 5$ per cent of a quarter wave in many vases - without undue difficulty in
tuning and coupling. In such cases the type of tuning to use, whether series or parallel, will depend on whether the feeder length is nearer an odd number of quarter waves or nearer in even number, as well as on the point at which the feeder is connected to the antenna - at the end or in the center.
I.ine current - The feeder current as read by the r.f. ammeters is useful for tuning purposes only; the absolute value is of little importance. When series tuning is used the current will be high, but very little current will be indicated in a parallel-tuned system. This is because of the current distribution on the freders, as shown by Fig. 1013. With a given antenna and tuming system, of course, the greatest power will be delivered to the antenna when the readings are highest. However, shouth the feeder length be changed no useful conclusions can be drawn from comparison between the new and old readings. For this reason, any indieator which registers the relative intensity of r.f. current can be used for tuning purposes. Many amateurs, in fact, use

Fig. 1015 - Illustrating the effect on feder balance of incorrect antenna length for various types of antenna systems. In end feed sy-tims, the furrent mininum shifts above or below the feeder junction, unbalaucing the line. With center feed, incorrect antema length does not unbalance the transmission line as it does with end feed.
flashlight or dial lamps for this purpose instead of meters. Such lamps are inexpensive indicators, and, when shunted by short lengths of wire so that considerable current can be passed without danger of burn-out, will serve very well even with high-power transmitters.

Antonna lensth and line operation Insolar as the operation of the antennat itself is concerned, departures of a few per cent from the exact lengt hor resonance are of negligible consequence. However such inateraraces may influence the behavior of the feeder system, and as a result may have an adverse effert on the operation of the system ats a whole. "this is true particularly of end-fed antemas, such as are shown in ligs. 1014-d and 13 .

For example, Jig. 1015- A hows the current distribution on the half-wave antenna and quarter-wave fecder when the antema length is correct." At the junction of the "live" feeder and the antenna the current is minimum, so that the currents in the two feeder wires are equal at all corresponding points along their length. When the antematis too long, as in B, the current minimum occurs at a point on the antenna proper, so that at the top of the live feeder there is already appreciable current flowing, whereas at the top of the "dead" feeder the current must be zero. As a result the feder currents are not balanced, and some power will be radiated from the line. In C, the antenna is too short, bringing the current minimum to a point on the live feeder, so that again the currents are umbalanced. The more serious the umbaliance, the greater the radiation from the line.

If the antenna is fed at the center the undesirable effects of incorred antenma length balance out, so that the line operates properly under all conditions. This is shown in Fig. 1015 at D, Eand F. So long as the two hatves of the antenma are of equal length the distribution of current on the feeders will be symmetrical, so that no unbalance exists even for antenna leugths considerably removed from the correct value.

In the interests of reducing tarliation from the transmission line, therefore, feeding the conter of the antenna system is preforable to feeding at the end. Strictly spaking. end-fed systems of the type shown in Fig, 1014 at A and 13 cannot be truly balanced beatuse the current at the end of the wire conmected to the antema is finite, though smatl, while the current at the end of the open wire is zero.

C. 10-8 Nonresonant Lines

Requirements - The advantages of nonresonant trammission lines - minimum losses, and elimination of the necessity for tuning make the use of this type of line attractive. The chief disadrantage of the nonresonant line, aside from the necossity for more care in initial adjustment, is that when "matehed" to the ordinary antenna the mateh is perfect only for
one frequency, or at most for a small band of frequencies on either side of the frequency for which the matching is done. Except for a few special systems, such an antemna is unsuitable for work on more than one amatieur band.

Adjustment of a nonresonant line is simply a process of adjusting the terminating resistance to match the chameteristic impedance of the line. To aceomplish this the antenna itself must be resonant at the selected frequency, and the line must then be conneeted to it in sueh a way that the antenna impedance as looked at by the line is the right value. The matehing may be done by connecting the line at the proper spot along the antemata, by inserting an impedance-tramsforming device between the antenna and line. or by using a line having an impedance equal to the center impedance of the antema.

An impedance mismatch of several per cent is of litule consequence so far as power transfer to the antennat is concerncal. It is relatively easy to get the standing-ware ratio down to 2 or $\dot{3}$ to 1 , a perfectly satisfactory condition in practice. Of considerably greater importance is the necessity for getting the currents in the two wires balanced, both as to amplitude and phase. If the eurrents are not the same at corresponding points on adjacent wires and the loops and nodes do not also oceur at corresponding points, there will be considerable radiation loss. Perfect balance can be brought about only be perfect symmetry in the line, particularly with respect to ground. This symmetry should extend to the coupling apparatus at the transmitter. An electrostatic shield between the line and the transmitter coupling coils of ten will be of value in preventing capacitance unbalance, and at the same time will reduce harmonic radiation.

In the following discussion of ways in which different types of lines may be matehed to the antenna, a half-wave antenma is used as an example. Other types of antennas may be

Fip. 1016 -Single-wire feed -ystem.
treated hy the same methods, making due allowance for the order of impedance that appears at the end of the line when more elaborate systems are used.

Single-uire feed - In the single-wire feed system, the return circuit is through the ground. There will be no standing waves on the feeder when its characteristic impedance is matched by the impedance of the antenna at the connection point. The principal dimen-
sions (Fig. 1016) are the length of the antenna. 1 , and the distance. D. from the exact eenter of the antenna to the point at which the fereler is attached. The antema length maty be calculated from Equation 2 ($\$ 10-2$). The distance D depends upon the diameter of the feeder wire sinee this diameter determines its chatacteristic impedance. For No. 14 wire D is equal to the antemat kength multiphed be 0.139 ; for No. 12 wire the factor is 0.133 .

In constructing an antenna system of this tope, the feeder must run straght away from the antenna (at a right angle) for a distance of at least ono-third the length of the antenna. Otherwise the field of the antema will affert the feeder and ratwo faulty operation. There should be no sharp bends in the feeder wire at any moint.

(B)

Fig. 101: - Methens of coupting the fereder to the tranmitter in a single-wire feed system, (ircuits are shown for hoth singlerended and balanced tank circuite.

With the couplitg systom shown in Fig. 1017-A, the process of adjust ment is as follows: Starting at the gromed peint on the tank coil. the tap is moved toward the plate end until the amplifior draws a he rated plate courent. The plate tank condenser should be readjusted each time the tap is changed. to bring the plate current bark to minimum, 'lhe amplifier is loaded properly when' this "mininum" value is equal to the rated emrent. 'lhe romdenser. (', in the feeder is for the purpose of insulating the antenna system from the high-voltage plate supply when sories phate feed is used. It should have a voltage rating somewhat higher that that of the phate supple Almost any capacitance greater than ono μ mid. will he sativactory. The condemior is unnecessary, of course, if parallel plate ford is used.

Indurtive coupling to the output cireuit is shown in Fig. 1017-13. 'lhe antemnatank cireuit should tunc to resonance at the operating frequency, and the loading is adjusted by varying the eorupling between the two tanks, both being kept tuncd to resonance.

Regardless of the tepe of coupling emplored. a grood ground comnection is cesemtial with this systen. Single-wire ferd works best over moist ground, and comparatively poorly over rock and sand.

Tursted-pair feed - A two-wire line contposed of twisted rubber-covered wires or closespaed parallel wires with polvelhylene insula-

Fip. 1018 - Half wave antenta center fed by a twisted. pair line. F° anning (B) compensates for line impedance.
tion can be constructed to have a surge impedance approximately equal to the 70 -ohm impedance at the center of the antematitself. thus permitting conmerting the line to the antemat as shown in Fig. 1018. Ans diserepance which may exist betwern line and anterna imperdance can be compensated for by a slight faming of the line where it commerts to the two hatres of the antemma, as indicated at B in Fig. 1018. The twisted-pair line is a eomemient tope to use, since it is easy to install and the r.f, wolt"ge on it is low becatuse of the low impedanere.

The antema should be one-half wavelongth long for the frequency of operation, as determined by the formulas ($810-2$). The amount of "fanning" (dimension B) will depend upon the kind of cable used: the required spacing usuatly will ber between 6 and 18 inches. It may be chorked by insarting ammoters in each antema leg at the junction of the leeder and antema; the value of B which gives the largest current is eorrent. Altarnatively, the system may be operated continuobsly for a time with fairly high ref. power input, after which the fender may he inspected by toueh) for hot spots. These indieate the presence of standing waves. and the fanning should be adjusted until the es are climinated or minimized. Eateh log of the feeder forming the triangle at the antenna should he equal in length to dimension B.

Compling between the pansmitter and the transmission line is ordinarily arcomplished by the untuned coil method shown in Fig. 1011-A (\$10-6).

Concentric-line feed - A concentric transmission line can be constructed to have a surge impedance cqual to the 70 -ohm impedance at the contor of a half-wave antenna. Such a line can be eomented directly to the erenter of the antenna, therefore, forming the system shown in Fig. 1019.

Fik. 1019 - Half wave antenna centerfed by a concentric transmission line of 70 ohms surge impedance.

An air-insulated concentric line will have a surge impedance of 70 ohms when the inside diameter of the outer conductor is approximately 3.2 times the outside diameter of the inner conductor. This condition can be fulfilled by using standard $5 / 16$-inch (outside diameter) copper tubing for the outer conductor and No. 14 wire for the inner. Ceramic insulating spacers are available commercially for this combination. Flexible solid coaxial cable having the requisite impedance for connection to the center of the anterna also is available.

The operation of such an antema system is similar to that of the twisted-pair system just described, and the same transmitter coupling arrangements may be used (\$10-(6).

The euter conductor of the line may be grounded, if desired. The feeder system is slightly unbalanced, because the inner and outer conductors do not have the same capacitance to ground. Although the line itsilf, being shielded, cannot radiate, an "antenma" current can flow on the outside of the shicld conter conductor) and the cable therefore may berome part of the radiating system. The magnitude of this current will depend upon the length of the cable and will be greatest when the length is surch as to be resonant, in conjunction with the antenma itself, at the operating frequency. The current can be reduced by grounding the shichd (with a very short lead) at any point an odd number of quarter wavelengths from the point of comection to the antema.

Delta matching transformer - Because of the extremely close spacing required, it is impracticable to construct an open-wire transmission line which will have a surge impedance low enough to work directly into the center of a half-wave antenna. Such wire lines usually have impedances between 400 and 700 ohms, 600 ohms being a widele-nsed value. It is necessary, therefore, to we other means for matching the line to the antenna.
One method of matching is illustrated by the system shown in Fig. 1020. The matching section, E, is "fanned" to have a gradually increasing impedaner so that its impedance at the antenna end will be equal to the impedance of the antenna section, r, while the impedance

Fig. 1020 - Delta-matched antenna systen. The dimeneions C, D, and E are found by formulas given in the text. It is important that the matching section, E, conse straight away from the antenna withont any limds.
at the lower end matches that of a practicable transmission line.

The antenna length, L, the feeder clearance, E, the spacing between centers of the feeder wires, D, and the coupling length, C, are the important dimensions of this system. The system must be designed for exact impedance values as well as frequency values, and the dimensions therefore are fairly critioal.

The length of the antenna is figured from Equation 2 ($\$ 10-2$). The length of section C is computed by the formula:

$$
C(\text { feet })=\frac{118}{\text { Freq. (A/c. })}
$$

The feeder clearance, E, is found from the equation:

$$
E^{\prime}(\text { feet })=\frac{148}{\text { Freq. }(\text { Mc. })}
$$

The atove equations are for wire antemas and for feeders having a characteristid impedance of 600 ohms and will not apply to feeders of any other impedance. The proper feeder spacing for a 600 -ohm transmission line is computed to a sufficiontly close approximation by the following formula:

$$
D=75 \times d
$$

where l) is the distance betwern the centers of the ferder wires and d is the diameter of the wire. If the wire diameter is in inches the spacing also will be in inches, and if the wire diameter is in millimeters the spacing also will be in millimeters.

Mothods of eoupling to the transmitter are discussed in s 10-(; those shown in Figs. 1011C. I). (iand H bring suitable.

Fig, 102 - The "Q" antenna using a suarter-wawim-pedance-unatching section with clue espared conductors.
" O "-section transformer - The impedance of a twowire line of ordinary construction (400 to 600 ohms) an be matrhed to the impedance of the center of a half-wave antenna by utilizing the impedance-transforming properties of a quarter-wave line ($\$ 10-\overline{5}$). The matching section must have low surge impedance and therefore is commonly constructed of large-diameter conductors such as aluminum or copper tubing, with fairly close spacing. This system is known as the "Q" antenna. It is shown in Fig. 1021. The important dimensions are the length of the antenna,
the length of the matching section, B, the spacing between the two conductors of the matching section, C, and the impedance of the untuned transmission line connected to the lower end of the matching section.

The required surge impedance for the matching section is

$$
Z_{0}=\sqrt{Z_{1} Z_{2}}
$$

where Z_{1} is the input impedance and Z_{2} the ontput inpedance. Thus a quarter-w:ue section matching a 600 ohm line to the center of a half-wave antema (72 ohms) should have a surge impedance of 208 ohms. The spacings between conductors of varions sizes of tubing and wire for different surge impedances are given in graphical form in Fig. 1009. With $1 / 2$-inch tubing, the spacing should be $1 . \overline{5}$ inches for an impedance of 208 ohms.

The length of the matching section, B, should be equal to a quarter wavelength, and is given by Equation ${ }^{5}$ ($\$ 10-$ in). The length of the antenna can be calculated from Equation 2 ($810-2$).

This system has the advantage of the simplicity of adjust ment of the twisted-pair feeder system and at the same time the superior insulation of an open-wire system. Figs. 1011-B, D, G and H ($\$ 10-6$) represent suitable methods of eoupling to the transmitter.

Linear transformers - Fig. 1022 shows two methods of coupling a nonresonant line to a half-wave antema through a quarterwave linear transformer or matching section. In the case of the center-fed antenna, the free end of the matching sectiom, B, is open (high impedance) since the other end is connected to a low-impedance point on the antenma. With the end-fed anterna, the free end of the matching section is closed through a shorting bar or link; this end of the section has low impedance, since the other end is connected to a high-impedance point on the antenna.

Fig. 1022 - Half-wave antema sustems with quarter. waveopen-wirelinearimpedauce-matching transformers.

When the connection between the matching section and the antenna is unbalanced, as in the end-fod system, it is important that the antenna be the right length for the operating frequency if a good match is to be obtained ($\$ 10-7$). The balanced center-fed system is less critical in this respect. The shorting-har method of tuming the center-fed system to resonance may be used if the matching section is extended to a half wavelength, bringing a current loop, at the free end.

In the center-fed system. the antenna and matching section should be cut to lengths found from the equations in $\$ 10-2$ and $\$ 10-5$. Any necessary on-the-ground adjustment can be made by adding to or clipping off the open ends of the matehing section. In the end-fed system the matching section ean be adjusted by making the line a little longer than necessary and adjusting the system to resonance by moving the shorting link up and down. Resonance can be determined by exciting the antenna at the proper frequency from a tentporary antenna near by and measuring the current in the shorting bar by a low-range r.f. ammeter or galvanometer using one of the deviees of this type deseribed in the ehapter on mesisurements. The position of the har should be adjusted for maximum curront reading. This shouhd be done before the transmission line is attached to the matching section.

The position of the line taps will depend upon the imperdance of the line as well as on the antenna impedance at the point of connection. The procedure is to take a trial point, apply power to the transmitter. and then cherk the transmission line for standing waves. This can be done by measuring the current in. or voltage along. the wires. At any one position atong the line the eurrents in the two wires should be identical. Readings taken at intervals of a quarter wavelength will indirate whether or not staming waves are present.

It will not usually be possible to ohtain complete elimination of standing waves when the matching stub is exartly resomant, but the line taps should be adjusted for the smallest obtainable standing-wave ratio. Then a further "touching up" of the matehing-stub tuming will eliminate the remaining standing wave, provided the adjustments are carefully made. The stub must be readjusted. because when resonant it exhibits some reactance as well as resistance at all points except at the ends, and a slight lengthening or shortening of the stub) is necessary to tune out this reactance.

Since the line impedance is ordinarily between 500 and 600 ohms, the sime methods of coupling may be used between the transmitter and the line as are recommended for the deltamatching system and the " Q " matching transformer.

Matching stubs - The operation of the quarter-wave matching transformer of Fig. 1022 may be considered from another - and more general - viewpoint. Suppose that sec-
tion C is looked upon simply as a continuation of the transmission line. Then the "free" end of the transformer becomes a "stub" line, shunting a section of the main transmission line. From this viewpoint, matching the line to the antenna becomes a matter of selecting the right type and length of stub and attaching it to the proper spot along the line.

Referring to Fig. 1023. at any distance (X) from the antema, the line will have an impalance which maty be considered to be made up) of reactance (either indurtive or (alpacitive) and resistance. in parallel. The reative component can be eliminated by shanting the line at distance λ from the antema with another reactance equal in value hot opposite in sign to the reactance presented by the line at that point. If distance x^{\prime} is such that the line presents an indurtive reactance, a corresponding shunting capacitive reactance will be required.

Fig. Mes3 - Vhen antrma and transmis-ion dine differ in impedance, they mas be matehed by a thert leneth of transmission lint. Y, calleol a $=$ luh). Ibetermination of the critical dimensions, X and 1 , for proper matching depends on whether the stuh is open or closed at the end.

The required compensating reactance may be supplied by shunting the line with a stub) cut to proper length, Y. With the reactances canceled only a pure resistance remains as a termination for the remainder of the line between the sending end and the stub, and this resistance can be adjusted to matech the characteristic impedance of the line by adjusting the distance X.

Distances X and Y may be determined experimentally, but since their values are interdependent the cut-and-try method is somewhat laborious. If the standing-wave ratio and the positions of the current lomps and nodes can be measured, the length and position of the stub can be found from Figs. 1024 and 1025.

Although the standing-wave ratio cam be measured in terms of either current or voltage, measurement of current usutally is more convenient. (If the measurements are made with a current-squared galvanometer an appropriate correction must be mate, since soale readings with this type of meter are proportional to power.) With the antemna comected to the line but with the stub disconnected. the r.f. meter should be moved along the line from the antenna toward the sending end until a current loop or node is found. Its location should be marked and the value of the current

Fig. lö.t - Craph for determining mestion and longth of a shorted stub. Jinemions may be converted tolinear units after values lave been taken from the graph.
recorded. Then the meter should be moved along toward the sending end until the next loop or node is located (if the first was a loop the second will be a node, and vire versal, and the eurrent at this point recorded. As a erosscheck for wavelongh, the distance between a loop and node should be $1 / 4$ wavelength. The standing-wave ratio is the ratio of current at a hop to carrent at a mode.

One the standing-wave ratio is known, the longth and position of the stub, in terms of wavelength, ran be fomed direelly from Figs. 1024 and 102.5 . The wavelength in feet for any frequency can be foumd from Equation 1 (10-2).

Methods of coupling to the line shown in Figs. 1011 -IS. D). (i and II (\$10-6) can be used.

Fig. 1025-Graph for determihing position and length of an open atab. Dimensions maty be converted to linear units after values have been taken from the graph.

Measuring standing tares - Equipment for measuring the standing-wave ratio along the tramsmission line is described in the ehapter on measurements. At frequencies below 30 megacyeles the thermomilliammeter probably is the most reliable instrument and the easiest to use. The absolute value of the current in the line is not important; the ratio between the maximum and minimum curents is what is reguired.

When the standing-wave ratio is low it may be difficult to determine the exact location of a node or loop since the current changes rather slowly at these points. In such a case the following procedure may be adopted: Measure
the minimum current, then choose a somewhat higher value and locate two points on either side of the minimum at which the current equals the chosen value. For example, if the minimum current is 0.1 ampere, a value of 0.1) ampere might be chosen and the meter moved first to one side and then the other of the minimum point until two spots are found where the reading is 0.15 ampere. Then the node will be just half-way between these two points and may be determined very easily by measuring the distance. The same method may be used to locate a current loop with more exactness than by trying to locate the actual point of maximum current. In this case of course, a value of current slightly lower than the maximum value should be chosen.

A crystal-detector probe pick-up measures maximum and minimum voltage rather than current. The standing-wave ratio may be measured in terms of voltage equally as well as in terms of current. However, in using the rharts for the matehing stub system it must be kept in mind that a voltage loop occurs at the same point as a current node, and vice versa.

(10-9 Long-Wire Antennas

Definition - An antenna will be resomant so long as an integral number of standing waves of current and voltage ean exist alomg its length; in other words, so long as its length is some integral multiple of a half wavelength. When the antema is more than a half wave long it usually is called a long-wire antenna, or a harmonir antenma.

Current and voltage distribution - l’ig. 1026 shows the current and voltage distribu-

Fig. 1026 - Standing-wave current and voltage disuri. bution along an antenna when it is operated at various harmonies of its fundamental resonant frequency,
tion along a wire operating at its fundamental frequency (where its length is equal to a half wavelength) and at its scoond, third and fourth harmonics. For example, if the fundamental frequency of the antermat is 7 Mc ., the current and voltage distribution will be as shown at A. The same antema excited at 14 Mr. would have current and voltage distribution as shown at B. At 21 Mc ., the third harmonie of 7 Mc ., the current and voltage distribution would be as in ('; and at 28 Mc., the fourth harmonie, as in D. The number of the harmonic is the number of half waves contained in the antenna at the partieular operating frequency.

The polarity of current or voltage in each standing wave is opposite to that in the adjacrot standing waves. This is shown in the figure by drawing the current and voltage curves sucressively above and below the antenna (taken as a zero reference line), to indicate that the polarity reverses when the aurent or voltage goes through zero. Currents flowing in the same direction are in phase; in opposite directions, out of phase.

It is evident that one antenna may be used for hamonically-related frequencies, such as the various amateur bands. The long-wire or harmonie antomat is the basis of multiband operation with one antemna.

Physical lengths - The length of a longwire antema is not an exaet multiple of that of a half-wave antenna because the end effects (S10-2) 口perate only on the and sections of the antenna: in other parts of the wire these efferts are absent, and the wire length is approximately that of an equivalent portion of the wave in spater. The formula for the length of a long-wire antemat, therefore, is

$$
\begin{equation*}
\text { Len!th }(f+e t)=\frac{\therefore!(.1-0.0 i j)}{\text { Freq. (Mc. })} \tag{7}
\end{equation*}
$$

where N is the number of hatf waves on the antemat From this, it is apparent that an anteman cut as a half wave for a given frequeney will beslightly off reonaner at exactly twiee that frequence (on the second harmonic) berause of the different behavior of end effects when there is more than one standing wave on the antema. The rfeet is not very important "xeept for a poxible unbatance in the feeder
 radiation from the feeder in end-fed systems.

Impedance and pouer gain - The radiation resistance as measured at a current loop) beomes larger as the antema length is increased. Also, a long-wire antenna radiates more power in its most favorable direction than does a half-wave antema in its most favorable direction. This power gain is secured at the expense of radiation in other directions. Fig. 1027 shows how the radiation resistance and the power in the lobe of maximum radiation vary with the antenna length.

Fig, 1027 - Curse A show- vatiation in ratliation ra. sistance with attoma length. lins. B how- powne in lobes of maximum radiation for long-wira anternats as a ratio to the maximum radiation fura lalf-wave antema.

Directional characteristics - . As the wire is mate longer in terms of the number of hate wavelengths, the dirertional effects change. Instead of the "doughnut" pattern of the half-wave antema, the directional characteristie splits up into "lobes" whell make various angles with the wire, In general, as the length of the wire is inereased the direction in which maximum radiation oweurs temeds to approarh the line of the antemat itself

Fig. 1028 - Ilori\%ontal pattorns of radiation from a full-uate antenna. The solid line shows the pattern for a vertical angle of 15 degrees: dotted lines show deviation from the 1 bedegree pattern at 9 and 30 degrew. All three patterns are drawn to the same relatise scale: actual amplitude will degend wont the height of the antenna.

Fig. 1020 - llorizontal pattern= of radiation from an antema three hulferowes long. 'The solid line shows the pattern for a vertical angle of 15 deprees; dotted lines show deviation from the lisedegree pattern at 9 and 30 depres. Minor lobre cosincide for all three angles.

Directional charateristics for antemas one wavelength, three half-wavelengths, and two wavelengt has long are given in figs. 1028, 1029 and 1030, for three vertional angles of radiation. Note that, as the wire length increases, the radiation along the line of the antenna becomes more ponounced. Sill longer antennas can be considered to have practically "end-on" directional characteristics, even at the lower radiation angles.

Fig. 1030-Horizontal patterns of radiation from an antenna tico curylenghs long. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degrees. 'The minor lobes eoineide for all three angles.

Methods of feeding - In a long-wire antenna, the currents: in adjacent half-wave sections inust be out of phase, as shown in Fig. 1026 and Fig. 1031. The feeder sestem must not upset this phave relationship. This requirement is met by feeding the antema at either end or at any current loop. A twowire feeder camnot be inserted at it current nold, however, because this invariably brings the currents in two adjarent half-wave sections in phase: if the phase in one section could be reversed, then the current: in the feeders necessarily would have to he in phase and the feeder radiation would not be canceled out.

Either resonant or nomresonat feeders may be used. With the latter, the systems employing a matching section ($\$ 10-8$) are best. The nonresonant line may be tapperd on the matching section, as in Fig. 1022, or a " Q "type section, Fig. 1021, may be employed. In such case, Fig. 1032 give the required surge impedance for the matching sertion. It can also be ealculated as deseribei in \$10-8 from the radiation resistance data in Fig. 1027.

Methods of roupling the line to the tramsmitter are the same as described in $\$ 10-6$ for the particular type of line used.

Fig. 1031 - Current di-tribution and fied points for long-wire antrunas. A 3, wave antema is used as an illustration. With two-w ire feed, the line may he conneeted at the erul of the antema or at any current loop (but net at a current note) for harmonic operation.

Fig. 10.32 - Refuired surpe impedance of quarter-wave matehing sections for radiators of varions length. Carve A is for a tranmis-sion-line impedance of 40 ohms, curve 13 is for 470 ohms, curve C for 580 ohms and curve I) for 600 ohms. Dimensions for matching sections of the required impedance are obtained from lig. 1009.

(10-10 Multiband Antennas

Principles - As suggested in the preceding section, the same antema may be used for several hands by operating it on harmonies When this is done it is necessary to use resonant freders, since the impedance matching for nonresonant feeder operation can be accomplished only at one frequence unlers means are provided for changing the length of a matching section and shifting the point at which the feeder is attached to it. A matching section which is only a quarter wavelength long at one frequency will be a half wavilength long at twice that frequency, and n on; and changing the length of the wires, cuen by switching, is so inconvenient as to be impracticable.

Furthermowe, the current loops shift to a new position on the antenaa when it is operated on harmonis's, furt her complicating the fied situation. It is for this reason that a hali-wave antoma which is center fed ber a rubber-insulated hine is pradically usedess for harmonic operation; on all wen harmonies there is a voltage maximum orcurring right at the ferd point, and the resultant impedance mismatech is so bad that there is a large standing-waye ratio and consegumty high losese arise in the rubher dielectrie. It is aliso wise not to athompt to use a halli-wave antematrenter ferl with coaxial cable, even the type using polyet hylune didwetric. on its harmonies. Highor-impedaner solid-diele et ric lines such as 300-ohm Twin-Leal may be used, however. provided the power does not exceed a few humbed watts.

When the same antenna is used for work in soveral bands, it must be realized that the directional characteristic will vary with the band in use.

Simple systems - Any of the antenna arrangements shown in $\$ 10-7$ may be used for multiband operation by making the antenna a half wave long at the lowest frequeney to be used. The feeders should the a guarter wave long (electrical length), or some multiple of a quarter wawe, at the same frequency. Typical examples, together with the type of tuning to be used, are given in Table 11. The figures given represent a compromise designed to pive satisfactory operation on all the bands comsidered taking into ateount the change in reguired length ats the order of the harmonic goes up.
. center-fed half-wave antenna will not operate as a long wire on harmonies. berame of the phase rewersal at the feeders previously mentioned (\$10-9). On the second harmonic the two antenna sections are each a half wave long, and, since the currents are in phase, the directional characteristic is different from that of a full-wave antenna ceren though the wrer-all lungth is the same. On the fourth harmonic each section is a full

TMBLE: II
Muttosind Resonant-Line Feg INtionis

Antrnint Lenglh (fi.)	Fersher Lentuh * $(f t$.	Mand	Tvpe of Tinning
With cull ferd: 120		4-Ve. jhume	s+rifs
136	67		serifs parallel parallel parallel
$13+$	67	$\begin{gathered} 3 . \overline{2} \text { Wr. c., } \\ =\text { We. } \end{gathered}$	serisprarallel
67			strien paraillel marallel
With center feed $13:$	67		parallel parahtl parallel parallel
67.5	$3 \cdot 1$	$\begin{array}{cc}7 & 11 \% \\ 11 & 110 \\ 28 & 110 .\end{array}$	parallal parallal parallel
Thar antennaldnäthe eiven represent rempromise's for harmonin oprabion berane of dilletent and efferets on different bants. 'Ithe IBo-foot rind-fed antema is sligholy lone for 3.5 Ma., but will work well in the rewion which quadruples into the 1t-Me. bamd (3.200-3000 $\mathrm{he} \cdot$.). Bands not listed are not recommended for the partioular antema. 'lobe cen-ter-fed systems are lase critical as to lengh. On harmonics. the emed-fed and center-frd antent nas will not have the same directional characteristics, azeplained in the text.			

wave long. and again, because of the direstion of eurrent flow, the system will ner operate as a two-wamolength antemma. It should not be assumed that thene sustems are not effective ratiators: it simply means that the directional chatacteristic will not be that of a long wire having the same over-all kength. Rather, it will resemble the characteristic of one side of the antemat, although not neressarily having the same exaet form.

Antennas with a fow other types of ferd systems may be nocrated on harmonies for the higher-frequency batwh, although their performance is somewhat impaired. The singlewire fed anterna (\$ 10-8) may be wed in this way: the feeder and antema will not he matched exactly on harmonics, with the result that standing waves will appear on the feeder, but the system as a whole will radiate. A better match will be obtained if the point of connetion of the feeder to the antemnat is made exactly one-third the wer-all antema length from one emd. While this disiggrees slightly with the figures given for a half-wave antemat, it has been found to work better on the harmonic frequencies.

The " Q " antenna system ($\$ 10-\$$) also ean be sperated on harmonies, but the line cannot operate as a nomresonant line except at the fundamental frequency of the antenna. For harmonic operation the line must be tuned, and therefore the feeder length is important. The tuning system will depend upon the number of quarter waves on the line, including the "(Q" hars. The concentric-line fed antenna ($\$ 10-8$) may be used rin hammones, if the eoncentric line is air-insulated. Its operation on harmonies is similar to that of the "(2." This antenma is not recommended for multiband operation with a solid-dielectrie line. however.

The delta-mat trh system (\$ 10-8) enn be used on harmonies, althourh some standing waves will appar on the line. For that matter. any antemas system can be used on hamonic frequencies by tying the fecters together at the tramsmiter end and feeding the system as a single wire by means of a tuned circuit coupled to the transmitter.

A simple antema system without feeders, usefulfor operation on five binde. is shown in F'ig. 1033. On all bands from 3.5 Me. upward it opromes as an end-fed antenna - half wave on 3.5 Me., long wire on the other hinds. On 1.75 Mc. it isonly a quarter wate in length, and must he worked agimist ground. On thishand, sinee it is fed at a high-current point, series tuning (s 10-6) must be used.

Antennas for restricted space- If the space arailable for the antemat is not large enough to acommodate the length necessary for a half wave at the lowe frequency to be used, quite satisfartory operation can be secured by using a shorter antenna and making up the missing langth in the feeder system. The antenna itself may be as short as a quarter wavelength and still radiate failly well, although of comrse it will not be as effective as one a half wave hong. Severtheless. wheh a system is useful where operation on the desired band otherwise would be impossible.

Fig. 1033 - A simple antemba essum for five amatrur bands. 'The antema is voltane fed un 3.5. 7,14 and 28 St. . working on the fundamental. serend. fourth and cighh harmonice, requecivel. For 1.75 We, the system is a guarter-wase promude it antema, in which case series tuning must be used. The antema wire should be bept well in the clear and should hre as high as posibiber. If the ferneth of the antenna is increased to approximat:ly 260 fret, voltage feed ran be used on all five hands.

Resonant feeders are a pactioal nocessity with such an antema x shem, and a center-fed antenna will give best all-around performance. With end fred the feeder currents become badly unbalaneed and since lengths midway betwern those requiring series or parallel tuning ordinarily must be used to bring the entire system tw remance, compling to the transmitter often becomes diflicult.

With center feed practically any convenient length of antema can be wied, if the feeder length is adjusted to aerommodate at least one half-wave around the whole sertem. Typical caves are shown in Fig. 1034, whe for

Fig. 10.34 - (iurrent divtribution on hort antennats. 'lhose at the left are too short for fumdamental operafion. one (1) having an wer-atl lengrth of one quartore "ave; the ather (0) being longer but mot a half wase long. Thesesysteme mas be used wherever spate torrat a full half-wave antema is not available. The corrent distribution for secemd-harmonie operationi is -hown at the right of cach fipure (B and I)). In A amel ($:$, the total length around the symem is a half wave at the fundamental. In 13 amd 1 , the over-all lengrh is a fall ware. Arrows show the instantaneons direction of current flow.
an antema having a length of one quaterwave (A) and the other for an antenna somewhat longer (C) but still not a half wave long. Current distribution is shown for both fumdamental and second harmonie. From the points marked X, resonant feeders any conveniont number of quater waves in length may be extended to the operating room. The sum of the distances on earh wire from X to the antenna end must cqual a half wave. It is suffiriently arcurate to use Equation 2 ($\$ 10-2$) in calculating this length. Note that $X-\lambda$ is a high-eurrent point on the se shortened antennas, corresponding to the eenter of a half-wave antema. It is :abor apharent that the antema at A is a half-wave antema on the mext higherfrequency hand (is).
A practical antema of this type can be made as shown in Jig. 1035. Table III gives a few
recommended lengths. Remembering the preceding discussion, however, the antenna can be made any convenient kength, porided the feeder is considered to "begin" at $X-X$ " and the line Iength is adjusted accordingly.
Bent antennas - Since the field strength at a distance is proportional to the current in the antema, the high-current part of a half-wave antema (the renter guarter wave, approximately) does most of the radiating ($\$ 10-1$). Advantage can be taken of this fact when the spare arailatble does not permit erecting an anterna a hallf wavelong. In this case the ends maty be bent, eitlar horizontally or vertically, \therefore of that the total length cquals a half wave, even thongh the straightaway horizontal length may be as short as a quarter wave.

TABLE III				
Aniיnna Leength (ft.)	$\begin{aligned} & \text { Fererer } \\ & \text { Lernph } \\ & \text { (fi.) } \end{aligned}$	Bund	Type of Tuning	
100	38	$\begin{aligned} 3.5 & W_{c} \\ 7 & W_{c} \\ 14 & H_{c} \\ 28 & \mathrm{He}_{6} \end{aligned}$	parallel serics series series or parallel	
67.5	34			
. 10	13		parallel \|aralle	parallol
33	51	$\begin{array}{r} 7 M_{0} \\ 1 M_{c} \\ 28 \end{array}$	paralle\| parallel paraliel	
33	31	$\begin{array}{r} 7 \mathrm{Mc} \\ 19 \\ 28 \mathrm{Mc} \\ 28 \end{array}$	parallel suries paralle!	

The umeration is illustrated in Fig. 10365. Such an :atoma will be a somewhat better radiator than the arrangement of fig. $103 \cdot 4-\mathrm{A}$ on the lowest frepuency, but is not sio desirable for multiband operation because the end phay an increasingly important part as the frequency is raised. The performance of the system in such a case is difficult to prediet,

especially if the ends are wertical (the mond convenient arrangement) bereas of the complex combination of horizontal and vertical polarization which results as well as the dissimilar diree ional charar-

Fise. 10.36 - F'olded arrangement for hermened antemas. 'The toral laneth is a half wase not including the forlera. The horizomalpart is made as long a-cemenient and the endedropped dowa to mathe up the requiredtenglt. "The ends mat te hemt hach on themerlies like fredies zo cancol radiation partially. 'The horizomtal section should lor at loast a quarler wawe long.

[10-11 Long-Wire Directive Arrays

The " P " antenna-It haw been emphasized that, as the antenna length is inereased, the lube of ma rimum radiat iom mathes a move tulute angle with the wire (\$10-9). Two suth wires may be combined in the form of a horizontal " 1 " "o that the main lobes from each wire will eemtorectakny: line bisecting the angle between the wires. This inerease both gain and directivits, since the lobes in dirertions wher tham along the bisector cancel to a greater or heseme extent. The horizontal " V " antema therefore tramsmit.s best in either direction (is bidirectional) along a line bisecting the " 5 " made by the two wires. The power gain depends upon the benth of the wires. Provided the necessary space is available, the " V " is a simple antemna to build amd operate. It aall also be used om harmonics. so that it is suitable for multiband work. The "V" antemba is shewn in Fig. 10:37.

 two long wirs in surl a way that rach reinforers the radiation from the other. The important quamitite are the lenget of rach leg and the angle betmeen the legs.

Fig. 1038 shows the dimensions that should be foilowed for :ll optimum dexign to obtain maximum power gain for different-sizal " V " autennts. The longer system- give good performance in mult iband operation. Angle \propto is approximately equal to twiee the angle of maximum radiation for a single wire equal in length to one sitle of the "V."
The wave angle referred to in Fis. 10.38 is the vertical angle of maximum radiation (\$ $10-1$). Tilting the whole horizontal phane of the "V" will tend to increase the low-angl-

 the collosed angle lebween sithes is. the longth of the wires.
madiat ion off the low end and decrease it off the high end.
The gain inctrase with the length of the wires, but is not cxacely wiee the pain for a single lone wire as givein in Fig. 1027. In the longer lengthe the gatin will be somewhat increased, beraluse of mutnal compling bet ween the wires. 1 ".". right wavelong he on a leg. for instance. will have a gain of about 12 db . ower at half-wate antema, wheras twier the gatil of : -ingle S-wavelength wire would be ouly : 1 proximately 9 dt.

The (two wires of the " 1 " must be fed out of phave, for correct operation. A resonant line nay simply be attached to the cnds, as shown in Fig. Nu37. Alternatively, a quarter-wave matching sertion may be employed and the antema fent through a nonresonant line ($\$ 10-8$). If the antenna wires are made multiples of a half wave in length (use Ecpuation 7 in $810-9$, for computing the length), the matching ecetion will be clowed at the free end

The rhombic antenna - The horizontal rhombir or "diamond" alatennal is shown in big. 1039. Like the " 5 ." it requires a good deal of space for erection, but it is capable of giving excellemt gain and directivity. It also can be used for multiband "peration. In the terminated form show in Fig. 1039, it operates like a nenresomant tranmission line, without standing waves, and is undireetional. It may also be wed without the terminating resistor, in which wase there are tanding waves on the wire and the antema is bidirectional.

The important quantities influencing the design of the rhombic antenna are shown in Fig. 1039. While several design methods may be used, the one mont applicable to the conditions existing in anatrur work is the so-called "compromise" methent. The chart of Fig. 1040 gives devign information based on a given length and wave angle to determine the

Fig. 1039-- The horizontal rhombic or diamond antenna, trmi. nated. Important design dimensions are indicated; details in text.

The same design details apply to the unterminated rhombic as to the terminated type. When used without a terminating resistor, the system is bidirectional. Resonant fieders are preferable for the unterminated thombic, A nonrevonant line may bee used by incorporating a matching section at the antemn:t, hut is not readily adaptable to multiband work.

Rhombic antennas will give a power gain of 81012 dt . or more for log lengths of two to four wavelengeths, when construated aceording to the charts given. In general, the larger the antennat, the greater the power gain.
remaining optimum dimensions for best operation. Curves for valurs of length of 2,3 and 4 wavelengths are shown, and any intermediate values may be interpolated.

Withalluther dimensions correct, an increase in length causes an increase in power grain and a slight reduction in wave angle. An increase in height also canses a reduction in wave angle and an increase in power gain, but not to the same extent as a proportionato increase in length. For mutiband work, it is satisfactory to design the rhombic antemat on the hasis of 14-Mc, operation. which will permit work from the $7-t_{0}$ the 2 s - Me bands as well.

A value of son ohms is correct for the terminating resistor for any properly-emstructed rhombic, and the sestem behaver as a pure revistive load under this comdition. The terninating resistor mutst be cepable of atoly dissipating one-halif the power output foo (liminate the rear pattern) and should be noninductive, such a resistor may be made up from a carton or graphite rod or from a long S00-ohm transmission line using resistance wire. If the carton roe or a similar form of lumped resistanee is used. the devier should be suitably protected from weather effects. i.e., it should be covered with a good asphaltie compound and sealed in a small lightweight box or fiber tube. suitable nonreactive terminating resistors are also a vailable commercially.
For feerling the antemna, the antenna impedance will be matelned by an 800 -olm line. which maty be constructed from No. 16 wire spaced 20 inchers or from Nor. 18 wire spared 16 inches. The soo-ohm line is somewhat ungainly to install, howewer, and may be replaced by an ordinary 600 -ohm line with only a negligible mismatch. Alternatively, a matching section may be installed between the antema terminals and a low-impedance line. However, when such an arrangement is used, it will be necessary to change the match-ing-section constants for each different band on which operation is contemplated.

Fip. 1040-Compromise-methond design chart for rhombic antemas of varimus leglengthe and waveangles. The followint examples illustrate the use of the chart:
(1) Civen:

Lenpth (1) = Wavinumbs.
Wesired wase angle $(\Delta)=20^{\circ}$.
To Find: 11,4 .
Method:
Draw vertical line throuph point a ($L=2$ wavelenuthes) and point bun aherisal ($\Delta=20^{\circ}$). Read angle of tilt (क) for point a and height (II) from intersection of line ab at bivint eon curve 1 .
Result:
$\Phi=611.5^{\circ}$.
$11=0.73$ wavelength.
(2) Civen:
I.ength $(L)=3$ wavelongths.

Anele of tilt (4) $=68^{\circ}$.
To Find: H, \pm.
Merhod:
Draw a sertical line from print d on curve $L=3$ wavelengthe at $4=78^{\circ}$. Rad intersertion of this line on curse $1 /$ (pmint e) for heptht. and intersection at point f on the abecisca for 1.
Result:
$\begin{aligned} H & =0.56 \\ \Delta & =26.0^{\circ} \text { wavelength } .\end{aligned}$

(10-12 Directive Arrays with Driven Elements

Principles - By combining individual halfwave antennas into an array with suitable spacing between the antennas (called elements)
and feeding power to them simultaneously; it is possible to make the radiated fields from the individual elements add in a favored direction, thus increasing the field strength in that direction as compared to that produced hy one antenna element alone. In other directions the fields will more or less oppose each other, giving a reduction in field strength. Thus a power gain in the desired direction is secured at the expense of a power reduction in other elirections.

Besides the spacing between elements, the instantaneous direction of current flow (phase) in individual elements determines the directivity and power gain. There are several methods of arranging the elemonts. If they are strung end to end, so that all lie on the same straight line, the clements are said to be collinear. If they are paralled and all lying in the same plane, the elements are said to be broadsine when the phane of the current is the same in all, and end-fire when the currents are not in phase. Elements which receive power from the transmitter through the transmission line are called driven doments.

The power gain of a directive system increases with the number of elmaents. The proportionality between gain and number of clements is not simple. however. The gain depends upon the effert which the spating and phasing has upon the radiation resistance of the elements, as well as upon their mumber.

Collinear arrays-Simple forms of eollinear arrays, with the curreat distribution, are shomo in Fig. 1041. The two-element array at A is popularly known as "two half waves in phase." It will be recognized as simply a center-fed antenna operated at its second harmonie. The way in which the number of elements mat be extended for incrased directivity and gain is shown in lig. 10+1-B. Nute that quarter-wave tramsmission lines are used betwern cach element; these give the reversal in phase nerossary to make the currents in individual antenna elements all flow in the same direction at the same instant. Another way of looking at it is to consider that the whole system is a long wire, with alternate half-wave sections folded so that they do not radiate. Any phase-reversing section may be used as a quarter-wave matrhing sertion for attaching a monrowomit feeder (\$ 10-8), or a resonant transmission line may be substituted for any of the quarter-wave sections, Also, the antenna may be end fed by any of the systems previously deveribed ($10-7,10-8$), or any

Fig. 1011 - Collinear half-wave antennas in phisat.' The system at A is penerally known as "two half waves in phase." B is an extension of the sostem: in theory the numiler of elements may be carrid on indefinitely, hut practical consideration* usually limit the elements tu four.

Chapler. $\mathrm{T}_{\text {en }}$

TABLE V

 Elemfits (Matif.Wabe Spacivis)

No. of e/tments	Gain
2	4 dl .
3	5.5 db .
4	$\div \mathrm{d} \mathrm{l} .$
5	$8 \mathrm{dt} .$
6	

Fig. /0f2-Broalside array using parallel half-wave elements. Srows indicate the direction of current flow. 'I'ranspoation of the feeders is meersary to bring the antennat currents in phase. tny ramonable momber of elements may be mised. The array is bidiceetional. with maxinum radiation "hroad-ide" or purpendicular to the antema phante (perpendicularly through this page).
while the vertical pattern is sharpened, giving low-angle radiation.

Broadside arrays may be fod either by rewonant transmission lines ($\$ 10-7$) or through quarterwave matching sections amd nonresonant lines ($\$ 10-8$). ln Fig. 1042 , mote the "erossing over" of the feders, which is neressary to bring the dements in proper phase relationship.

Fig. 1013 -- Gain ws. -paring for two paralifi half-waw dement-rombined as cithor liroadsicle or "nd-fire arrats.

Combined broadside and collinear arrass

- Broadside and collinear arrays may be combined to give both horizontal and vertimal directivity, as well as additional gain. 'The general plan of constructing such antemas ishown in Fig. 1044. The lower angle of radiation resulting from stacking elements in the vertical phane is desirable at the higher froquencies. In general, doubling the number of elements in an array by stacking will mise the gain from 2 to 4 d b., depending upen whether vertical or horizontal elements are used -- that is. whether the stacked clements are of the broadside or collinear type.

Fig. 10. 4 - Combination broadside and collinear arras. A. with wertieal eloments: 13 , with horizomtal elements. Both arrass yive low-anple radiation. I'wo or more sections may be waed. The qain in dh. will be cqual. approximately, to the sum of the qain for one set of liratadside elements ('Iable V) plus the pain of one act of collinear elements (l'able [J). F'or example, in a earh broadside -rt has four edements (Fain 7 db.) and each collinear set two rements (qain 1.8 db.), giving a total qain of 8.8 d 1 B . In 3. wach broadside set has two elements (nain I dh.) and each collinear set three elements (Hain 3.3 dh.), making the total pain 3.3 db. "the rexalt is not sirictly acourate. becaune of mutual eonpling betwern the elements, that is gome enough for practioal purposes.

The arrays in Fig. 1044 are shown fed from one cod, but this is not especially desirable in the cave of large arrays. Better distribution of energy betwern elements, and hence better all-around performance, will result when the fecders are attarhed as nearly as possible to the renter of the array. Thus, in the S-element array at A, the feeder: conld be introduced at the middle of the transmission line between the second and third set of elements. in which case the connecting line would not be transposed. Alternatively, the antenna could be ronstructed with the transpositions as shown and the feeder connected between the adjacent ends of fither the socond or third pair of collinear clements.

A four-element array of the general type shown in Fig. 1044-B, known as the "lazy II" antemat has been quite frequently used. This arrangement is shown, with the feed point indiratet, in Fig. 10 tis.

 collinmar array. popmarly hnowin a* tha* "lazy H" antemnat. A fierel guarterewave tuht may be uered
 line. or resonant feodere may be attanderd at the painu

Encl-fire arrays - Fig. 10.46 shows :t pair of paralled half-wave elements with curventbut of phase. This is known as an end-fire array.
because it radiates best along the line of the antennas, as shown.

The end-fire arraly may be used either vertically or horizontally (elcments at the same height), and is well adapted to amateur wrok hecause it gives maximam gain with relatively close rement staring. Fig. 1043 shows how the gain varies with sacing. End-fire elements may be combined with additional collinear and

Fig. IO.fo - End-fire arrals- wing parallel hatf wave elements. The elements are shown with half-wate pareing to illustrate ferder connerions. In brantiore, clower spatings are devirable, as shown by Fig. 1013. Wirection of naximum radiation is shown by the large arrows.
brombide element: to give a further increase in gain and directivity.

Either resomant or monresonant lines may be used with this type of array. Nomresonant lines preferably are matched to the antemma through a quarter-wawe matehing sortion $\$ 10-8$).

Cherking phasing - 1•igs. 10.44 and 10.46 illustrate a point in comnection with feroling it phased antenna system which sometimes is confusing. In Fig. 10-46. When the tramsmission line is comnerted ats at A there is no arrssover in the line oonnerting the twon antenats, but when the transmission lime is connerterl to the erenter of the connerting line the arosover bocomes merosary (3). This is borathe in Is the two hatlves of the connecting line are simply branches of the same line. In wher

words, even thenush the romberting line in B is a hall wave in length, it. is not actually a half-wave line bat two quarter-uare lines in parallel. 'The same thing is true of the untransposed line of Fig. 10.t. Note that, under these conditions, the antenna elements are in phase when the line is mot transposed, and out of phase when the transposition is made. The opposite is the ease when the half-wave line simply joins two antoma elements and does not have the ferd line commeded to its: center, as: in Fois. 10ti?.

Adjustment of arrays - With arrays of the topes just desribed, using half-wave spacing between eldements, it will usually suffice to make the length of each eloment that given be the equation for a half-wave anternat in 8 (0-2, while the half-wave phasing lines betwern the parallel elements can be calculated from the formula:
$\begin{aligned} & \text { Length of half- } \\ & \text { wore line }(\text { fert })\end{aligned}=\frac{49 ? \times 0.975}{\text { Pirq. }(1 / c)}=\frac{180}{\text { Freq. (1/c. })}$
The sparing betwern clements can be made equal to the length of the phasing line. No sureial aljustments of lint on element length or spacing are needed, provided the formulas aro follow od carefully.

With collincar arrays of the type shown in Fig. 10t1-li, the same formula maty be ased for the etoment length while the lengh of the quarmerwaw phasing section can be foumb from the following formula:

$$
\begin{aligned}
& \text { Length "f quarter-ware }=\frac{\therefore!!}{\text { lineq. (fiel) }} \begin{array}{l}
\text { lMc. })
\end{array}
\end{aligned}
$$

If the array is fed at its eenter it should not be nocossary fo make any particular adjusiments. although. if desired, the whele sortem can be rosenated he commeding an rif. ammeder in the shorting link on rearh phasing sortion and mosing tha link back and forth to find the matimum current position. This refimement is hatdly neressary in practioe however, so long as all eloments arr the same length and the system is symmetriath.
Fig. 10.47 - Simple directive-antema systoms. I is a twotelement end-fire array: 13 is the sante array with center feed. whirl permits isaf of the array on the second harmenir. where it hevome- a fowr-element array with quarter-wane spacing, (i i a four edement mod-lire array "ith's-was"-paring, Wis a mimple I wo-सlement broadside array using coxtemhed in-pha-e antemate ("extended double-Zep,"). 'The wain of I and 13 is alighty ower 4 dh. On the serond harmonia, B will give about is ilh, gain. With C. the Lain is approximately 6 dh., and with 1), approximately $\mathrm{B}^{\mathrm{d}} \mathrm{db}$. In A, B and (., the phasing line contributes abont $1 / I 6$ wavelength to the transmission line: when B is weal on the second harmonic, this contribution is in wavelength. Alternatively, the antemat ends may be bent to meet the transmision line, in which case cach feederis ximply connerted to one amtema. In I), peints '. $^{-}$) indicate a quarter-wave point high current) and $\mathrm{X}-\mathrm{J}$ a half-wase point (hiph volt. ate). 'The line may be extended in multiples of quarter "ands if resomant ferders are to le used. A, B, and (: may be shmernded on wonden apreaders the plane

Simple arrays - Several simple dirertive antenna systems using driven elements have achiced rather wide use among amateurs. Four of these systems are shown m Fig. 1017. Tuned leeders are assumed in all cases; however, a materhing section ($\$ 10-8$) readily can he substituted if a monresomant transmission line is preferred. Dimensions given are in tems of wavelength: actual lengthe can be calculated from the equations in $\leqslant 10-2$ for the antema and from the equation above for the resonant transmission line of matching section. In cases where the transmision-line proper connects to the midpoint of a phasing line. only half the length of the latter should be added to the line to find the quarter-wave point.
At A and B are t wo-dement end-fire arramemente using ofose sparing. They are electrically equivalent; the only difference is in the method of comereting the feeders. B may also be used as a four-element array on the second hatrmonie, although the spacing is mot quite optimum (Fg. 10.13) for surd operation.

A chose-spared four-clement array is shown at C. It will give about 2 db . mure gain than the two-clement arras.

The antenna at D, commonly known as the "extended double Zepp," is designed to take adrantage of the greater gain posible with collinear antemats having greater than halfwave renter-to-conter spacing, but without introduring foed complications: The elements are made longer than a half wave in order to bring the about. The gain is 3 dh, over a single half-wave antenna. and the hrodside directivity is quite sharp.

The antennas of A and B may be mounted either horizontally or verticalliy; horizontal suspension (with the eloments in a phane parallel to the ground) is recommended, sunce this tends to give low-angle radiation without an unduly sharp, horzontal pattern. Thus these systruns are useful for woverage over a wide horizontal angle. The system at C, when mounted horizontally, will have a sharger horizontal pattern than the two-rlement arrays.

C 10-13 Directive Arrays with Parasitic Elements

Parasitic excitation - The antemna arrays described in $\$ 10-12$ are bedirectional: that is, they will radiate in directions both to the "front" and to the "batek" of the antemas sestem. If radiation is wanted in only one direction (for instance. north only, instead of northsouth), it is necessary to use different element arrangements. In mist of these arrangements the additional elements receive power by induction or radiation from the driven element, generally called the "antemna," and reradiate it in the proper phase relationship to ashieve the desired effect. These elements are cathed parasitic elements, as contrasted to the driven clements wher receive power directly from the transmitter through the transmision line.

The parasitic element is called a director
when it reinforces radiation on a line pointing to it from the antema, and a reflector when the reverse is the case. Whether the parasitic element is a director or reflector depends upon the parasitic clement tuning (which usially is adjnsted he changing its length) and particularly when the element ts self-resonant, upon the sparing between it and the antenna.

Gain vs.spacing - The gain of an antennareflector or an antenna-director combination varies chicfly with the spuring between the elements. The way in which gain varies with spacing is shown in Fig. 10t8, for the eperial case of soli-resmath paracitic elements. This chart alow shows how the attemation to the "rar" varies with sparing. The same spacing does not the essarily give both maximum forward gain and maximum backward attemation. Backward attenuation is dowirable when the antema is used for recelving, since it greatly reduces interference coming from the opponite direstion to the dexired signal.

Element lengehs - The :untenta length is given hy the firmulas in : 10-2. The director and reflector lengethe must be detemmed experimentally for maximum performance. The preferable methed is to aim the antenna at a receiver a mile or more distant and have an ohserwer check the signal strength (on the reeevere "s" meter) white the reflector or director is adjusted a few inchew at a time until the hength which gives maximum signal is found. The attennation may be similarly checked, the length being adjusted for minimum signal. In general for hest front-to-back ratio the length of a direetor will he about 4 per cent less than that of the antenna. The reflector will be about 5 per cent longer than the antemat.
simple systems: the rotary beram - Four practical combinations of antemat, reflector and director elements are shown in Fig. 1019. Spacings which give maximum gain or maximum firont-to-back ratio (ratio of pewer radiated in the desired direction to power radiated in the opposite direction may be taken from lig. 10 is. In the chart, the front-to-thack ratio in db. will be the sum of gain and attenuation at the same spacing.

Systens of this type are popular for rotarybeam antennas. where the entire antenma sistem is rotated, te permit its cain and directivity to the utilized for any compas: direction. Thes mas be mounted cither horizontally (with the plane comtaning the clements parallel to the carth) or vertio:ally.

Arrays using more than one parasitic element, surh as these shown at C and D in Fig. 1049, will give more gain and direetivity than is indiwated for a single reffector and direetor be the eurves of Fig. 10-4s. The gain with a properly-adjusted threcomoment array (antomna, directur and reflector) will be \bar{j} to 7 dh, over a half-wave antema, Somewhat higher gain still can be secured bey adding a second director to the system, making a four-element array: The front-to-back ratio is correspond-

Fip. 10.18 - Gain rs. demment spacing or an antonna and one parasitice eldment. 'like relirence print, 0 dlb.. is the fiell strengit from a halfowave antema alone. The preatest gain is in dirmetion A at -pading. of $\mathrm{l}_{\mathrm{s}} \mathrm{s}$ s than 0.14 wavelengh, and in direction B at wrater sparings. The front-to-hack ratios is the differerice in dh. betweren curves A and B. Variation in radiation resistance of the driven element aloo is shown. These curves are for aselfresonant parasitid firment. At mo-l - parings the gain as a reflector can be increased by slisht lengthening of the parasitice element: the sain as a dirertor eatn be increased by shortening. This also improves the front-to-bach ratio.
ingly improved as the number of elements is increased.

The elements in close-spaced (lass than onequarter wavelength element sparing) armas preferably should be made of tuhing of onehalf to one-inch dianteter. A conductor of large diameter not only has less ohmic re-

Fig. 1049 - llalfowave antennas with parasilic ples ments. A , with director: B , with rellector: C , with both director and reflector: D, two dieceters and one rellector, Gain is approximately as shown by Fiz . 1018. in the fir t two casers, and depends upen the spaciong and longth of the parasitic element. In the threes and four eforment arrays a reflector sparinge of 0.13 wavelongth will give slightly morr gain than 0.1 -wavelength spacing. Arrow's show the direction of maximum radiation.
sistance but also has lower Q; both these factors are important in close-spaced arrays because the imperdance of the driven element usually is quite low eompared to that of a single half-wave dipole. With 3 - and 4 -element arrays the radiation resistance of the driven elemont may be as low as 6 or 8 ohms, so that ohmic losses in the cotiductor can consume an appreciable fraction of the power. Low radiation resistance means that the antennt will work over only a small frequency range without retuning unless large-diameter conductors are used. In addition, the antenna elements should be rigid beratuse if they are free to move with respect to each other, the array will tend to show detuning atfects under wimly conditions.

Feoding close-spared arrass - While any of the usual mothonds of feed maty be applied to the driven element of a parasitie array, the fart that, with close sparing, the radiation resistance as measured at the center of the driven element drops to a very low value makes some systems more desirable than others. The preferred mothods are shown in Fig. 1050. Resonant focder: are not reconmended for lengths greater than a half wavelength.

The quarter- or half-wave matching stubs shown at A and 13 in Fig. 1050 preferably should be ronstructed of tubing with rather close spacing, in the manner of the "()" section. This lowers the impedance of the matehing section and makes the position of the line taps somewhat less diffirult to determine accurately. The line adjustment should be made only with the parasitic elements in place, and after the correet element lengths hiwe been determined, it should be checked to compensate for chames likely to occur beeatuse of element tuning. The procedure is the same as that deseribed in $\$ 10-8$.

The concentric-line matching section at C will work with fair acruracy into a close-spared parasitic array of 2,3 or 4 elements without necessity for adjustment. The line is used as an impedance-inverting transformer, and, if its characteristir inupedance is 70 ohms, it will give an exact match to a 6000 -ohm line when the resistance at the termination is about 8.5 ohms. Over a range of 5 to 15 ohms the mismateh, and therefore the standing-wate ratio, will be less than 2 to 1 . The length of the quarter-wave section may be calculated from Equation 5 ($\$ 10-\mathrm{B})$.

The delta mateling transformer shown at D is probably easier to install, mechanically, than any of tho others. The positions of the taps (elimension a) must he determined experimentally, along with the length, b, by cherling the standing-ware ration on the line as adjustments are made. Dimension b should be about 1 s per cont longer than a.

The srstem shown at E ("T" match) resembles the delta match in principles of operation. It has the advantage lhat, with close sacing between the two paralled conductors.

Fif. (10 O - Krommended methode of fredine the Triven antenma element in close-spaed parazitio arras as. The parasitic clements are not shown. 1. quarter-wate open stub; 13 , half-wave closed shab: (B, womentrie-line quarter-wave matehing section: D, delta matrhing transformer: $F_{\text {. ". }}$ "" matching transformer. Adjustment details are discossed in the text.
line ratiation from the matehing sertion is negligible whereas radiation from a delat maty be considerable. It is adjusted ber moving the shorting bars, kerping them equidistant from the conter, until there are no standing, waves on the line. The matching seetion may be mate of the same type of conductor used for the driven clement and spaced a few inches from it.

The "folded dipole" shown in Fig, 1051 maty be used as the driven clement of a close-spared parasitie array to serure an imperance ster-up to the transmission line and also to broaden the resonanee curve of the antenna. The folded dipole ronsists of two or more half-wave antemas connected together at the ends with the feeder comected to the center of only one of the antennas. The spacing between the parallel antennas should be smatl -- of the order of the spacing used between wires of a transmission line. 'The rurem in the sestem divides in approximate propertion to the areas

Firs. 1051 - Varions forms of folded dipole. In cath
 any lown -tartines with the tran-mineion-line terminals -hould equal one wavelenght twier the length given by the appropriate formula, in viow of coneluetor tiameter, in §lo-2) so that the lengtis of the connecting liars at the ends are inchuded.
of the romduchos, resultinte in an impedance *(0) similar comduetors (cytal areas) the impedance step-up is to 1 : if there are three similar romblactore ow if the ome not rommered to the transmission line hat twion the diameter of the other) the step-up is 9 to $1:$ if the ration of the arrats is 3 to 1 the step-up is 16 to 1 , and so wn. Thus if a 3 -romductor hipole a all conducfors the samb diandere is used as the driven
 *entor impedaner of apmoximately of ohms is multiplion by 9 amolaprotes as apmoximately T2 , ohms at the input trminals, sueh at syotem
 line with mondelitomal means for matehing.
*harpmess of resonance - Pakk performance of a matielemont parasitic array deperds upon proper phasing or taning of the clemunts, whidh an be exate for one frequence only. In the rase of close-spaced arratse. which beranse of the low radiation resistance biublly are quite sharp-tuning, the freduency range over which optimum results can the seroured is only of the order of 1 or 2 per cent of the resonant frequeney, of up to about $\operatorname{son} \mathrm{ke}$. at 2s Mr. Howeror, the antennal can be made to work satisiactorily over a wider frequency ratage by adjusting the director or dirertors to pive inaximmang atin at the highest freglumey to be rovered. and be adjusting the refleretor to gibe optimum gatin at the lowest freducney, This sarifies some gain at all frequencias but mantains more unitorm gall over al wider frecturncy range.

As mentioned in the proceding patagraphes the we of largediameter comehetors will broaden the rexponse rurve of an army be-
 This canses the raterances of the edements to change rather slowly with frequenes, with the result that the tuning stays near the optinum wer a considerably wider frequency range than is the case with wire conductors.

Combinationarrass - It is possible to combine parasitia dements with driven elements to form arrays composed of collinear driven and parasitie eloments and combination broadside-coblinear-parasitie elements. Thus two or more collinear eloments might be provided with a collisear reflector or director set,
one parasitic element to each driven element. Or both directors and reflectors might be used. A broadside-collinear array could be treated in the same fashion.

When combination arrays are built up, a rough approximation of the gain to be expected may be obtained by adding the gains for each type of combination. Thas the gain of two broadside sets of four collinear arrays with a set of reflectors, one bohind cach eloment, at quarter-wive spateing for the parasitio elements, woulal be estimated ats follows: From Table I^{5}, the gatin of four collinear clements is: 4.5 db . with half-wave wacing: from Fig. 10.4.3 or Table V, the gain of two broad wide dement: at half-wave spacing is 4.0 db . from Fig. 1048. the gain of a parasitic reflector at quartor-wate spacing is 4.5 db . The total gain is then the
 that using two sets of elements in broadside is equivalent to using two dements, so far as gain is concerned; similarly with sets of reflectors, as against one antemata and one reflector. The actual gain of the combination array will depend, in pratice, upon the way in which the power is distributed betworn the various elements and upon the effect which mutual coupling between clements has upon the radiation resistance of the array, and may be sommhat higher or luwer than the estimate.

A great many directive antenna combinations ran be worked out ber rombining elements aecording to these principles.

(1) Receiving Antennas

Nearly all of the properties possessed by an antemat as a radiator aloo apply when it is used for reception. (Burent and voltage distribution, impedanere resistame and directional characteristices are the same in a reerefing antemata af it wore used as a tramsmitting antenna. This reciprocal hehation maknempo sible the design of at roereiving antroma of optimum performance besiod oft the same considerations that have been discussed for transmitting antembis.

The simplest reveiving antenna is a wire of random length. The longer the wire, the more energy it abstracts from the wave. Because of the high sensitivity of modern receivers, a large antenma is mot necessary for picking up signals at good strength. An indoor wire only 15 to 20 fert long will surve at fropuencies below the \cdot. h, f, range, although a longer wire outdoors is better.

The use of a tumed antoman impores the operation of the reariver, however, heanse the signal strength is raised more in proportion to the stray moises pioked up than is the case with wires of rambon length. sine the transmitting antenna heually is given the best location, it can also be expertad to sorve best for receiving. This is esperitlly the when a directive intenna is used. since the directional offects and power gain of directive transmitting antennas are the same for receiving as for
transmitting. A change-over switch or relay. comnected in the antenna leads, can be used to transfer the connections from the receiver to the trinsmitter.

In selecting a directional receiving antenna it is preferable to choose a trpe which gives very little response in all but the desired direction (small minor lobes). This is even more important than high gain in the desired direction, because the cumulative response to noise and unwinted-signal interference in the smaller lobes may ofliset the advantage of increased desired-signal gain.

© Antenna Construction

The use of good materials in the antemna system is important since the antennal is exposed to wind and weather. To kepp elertrical losses low, the wires in the antoman and feeder systom must have good comductivity and the insulators must have low dielectric loss and surface leakage, particularly when wet.

For short antemas, No. 14 gatuge hard-drawn enameled copper wire is a satisfactory conductor. lour long antennas and directive arrave, No. 14 or No. 12 enameled copper-clad steel wire shonld be used. It is best to make feeders of ordinary soft-drawn No. 14 or No. 12 enameled copper wire, since hard-drawn or copperclad steel wire is difficult to hiunde unless it iss under considerable tension at all times. The wires shoukl be all in one pirce: where a joint cannot the avoided, it should be carefully soldered.

In building a resonant two-wire feeder, the spacer insulation should be of as good quality as in the antema insulators proper. For this reason, good ceramic spacers are advisable. Wooden dowels boiled in paraffin may be used with untuned lines. but their use is not recommended for tumed lines. The wooden dowels can be attached to the feeder wires by drilling small holes and binding them to the feeders with wire.

At points of maximum voltage insulation is most important, and Perex glass, Isolantite or stantite insulators with long leakage paths are recommended for the antema. Glazed porcelatu abo is satisfactory. Insulators should be cleamed one or twice a yoar, especially if they are subjected to much smoke and soot.

In most eases poles or masts are desirable to lift the antenna clear of surrounding buildinges, although in some locations the antenna will be sufficiently in the clear when strung from one chimney to another or from a chimney to a tree. Small trees usually are not satisfactory as points of suspension for the antenna becanse of their movement in windy weather. If the antema is strung from a point near the center of the trunk of a large tree, this difficulty is not so serious. Where the antemat wire must be strung from one of the smather branches, it is best to tie apulley firmly tor the branch and run a rope through the pulley to the antenna, with the other end of the rope attached to a counterweight near the gromed.

Pivoted to rotate

ALTERNATIVE METHOD OF SUSPENSION

Fig. 1052 - Some suggested antrma s:strms. A Simple lidirectimal rotatable condfire array u-ing 1/6-wave facting betwern out of phate elements. Sutable for eitirer 11 or 28 Me. and can be rotatod by hand. It can alao be su-proded from the hataral hodinis another antennal at angerted in the lowerdrawing. B -
 tenna and feeder. The junction X at the center is made by opening one conductor of the antema section and solderimp th the feeder leade. The joint may be made mechanieatly firm by heating the dielectrie with a soldering iron, using ivera bits of dielectric for a good bond. C - An end-fire array for wa where face is limited. The ende of the two half-wave elements are folded to meet at an in-ulator in the erenter. 'The antenna may le made still shorter by incrating the pacing: spacings np to $1 / 4$ wa clength may be uizel!. 1) - Pipe. assembly threc-rlement beam ("plumber- delight")
with folded-dipele driven element. Beranse all three clement - are at the same r.f. potential at their eenters it is posible to join them etectrically as well as mechanically with ue cflect on the performance. Provision is made for adjusting the eloment lengthe for optimum performane at a piven frequency ($\$ 10-13$). $\mathrm{E}:-\mathrm{An}^{2}$ (atonown of the folding prine iple shown in C. The collimear in-phate chements give alditional gain and directivity. f:- lind-fire arriy with extended double Zaphs. This antenna should give a gain of alont 7 db, in the direction perpendicular to the line of the antenna. $\dot{\theta}-$ An 8 orlement array combining broadside, end-fire and collinear elements. The gain of an antenna of thistype is about 10 dt . 'This antemataben can be used at half the freguene: for which it is designed. It - (sing two halfwave antemas at rizht angles to changedirection. With the three ferders indiated, either antematalone ean be fed as a $\neq \mathrm{c}$ phand will radiate le-t perpendicular to its

direction. By feeding the two together, leaving the third feeder wire idle, the mptimum direction is the bisector of the angle between the wires. This system is most usefulat high freduencics such as 14 Mc. and atbowe.

In these drawings, wavelengit dimensions on conductors refer to lengths calcalated for the conductor size as described in $\$ 10-2$. Dimensims between elements are free-space dimensions.
The feeders to the various directive systems in A, C, E, F and G must be tuned if used as shown. For one-band operation, matching stubs ($(10-8$) may be attached to the feeflers if a matched line is desired.

The counterweight will keep the tension on the antenna wire reasonably constant even when the branches sway or the rope tightens and stretches with varying climatic conditions.

(1) "A"-Frame Mast

The simple and inexpensive mast shown in Fig. 10.\% is satisfactory for heights up to 35) or 40 feet. ('lear, sound lumber should be selected. The completed mast may be protected by two or three conts of house paint.

If the mast is to be erected on the ground, a couple of stakes should be driven to keep the bottom froms slipping and it may then be "walked up" by a pair of helpers. If it is to go on a roof, first stand it up against the side of the building and then hoist it from the roof, keeping it vertical. The whole assombly is light enough for two men to perform the eomplete operation - lifting the mast, carrying it to its permanent berth and fastening the guys with the mast vertical all the while. It is entirely practicable, therefore to ereet this type of mast on any small, flat area of roof.

I3y using 2×3 or $2 \times 4 \mathrm{~s}$, the height may be extended up to about 50 fect. The 2×2 is too flexible to be satisfactory at surch heights.

Fíg. 10.53 - D.etail= of a simple 40 -foot "A". framme mat suitable for erevion in locations where space is limited.

I. Simple 40-Foot Mast

The mast shown in Fig. 1054 is relatively strong, easy to ronstruct, readily dismantled, and eosts very little. like the " A " frame, it is suitable for heights of the order of 40 feet.

The top section is a single 2×3, bolted at the botton between a pair of $2 \times 3 \mathrm{~s}$ with an overlap of about two foct. The lower section thus has two legs spaced the width of the narrow side of a 2×3. At the bottom the two
legs are bolted to a length of 2×4 which is set in the ground. A short length of 2×3 iplaced between the two logs about half way up the bottom section, to maintain the spacing.

The two back guys at the top pull against the antemna, while the three lower gnys prevent burkling at the center of the pole.

The 2×1 sedtion should be set in the gromad so that it faces the proper direction, and then made vertical by lining it up with a pumb bob. The holes for the foltas should be drilied beforehame. With the lower seretion laid on the ground, bolt A stosuld be slipped in plare through the there pieres of wood ame tightened just emough so that the seretion can turn freely on the boit. Then the toperetion may be bolted

TOP Guvs

Fif. 105.1-A simplo anil sturdy mast for hevighte in the vicinity wf the feet, pivoted at the bate for casy crowtion. The heright can
 or more b: usin! 2 x is insubal of 2×3.
in plare and the mast purhed up, using a ladder or another 20 -foot 2×3 for the johb. Is the mast goes up, the slack in the guys ran be taken unso that the whole st ructure is in some measure continually supperted. When the mast is vertioal. bolt \dot{b} should be sliphed in place athd both A and B tiontened. The lower guys ean then be given a final tightoning. leaving those at the top a little latel until the antentat is pulled un, when they -hould be adjusted to pull the topl sertion inter line.

["T"-Section Mast

A type of mast suitable for heights up to about so fect is shown in ligr. 105. The mast is built up by butting 2×4 or 2×6 timbers edgewise against a second 2×4, as shown at A, with alternating joints in the edgewise and

flatwise sections. The construction can be carried out to geater lengeths simply by contimuing the $2(0$-foot sertions. Longer or shorter sections may be used. if more convenient.
The method of malling the joints is shown at C. Quarter-ineh or ${ }^{3} 16$-inch iron, $1 \frac{1}{2}$ to 2 inches wide, is recommoniod for the straps, with ! inch bults to hold the bieces tongether. One belt should be run through the pieces midway between juints, to provide additional rigidity.

Althengh there are many wass in which sueh a mast can be serured at the base, the "cradle" illustrated at I) has many advantages. Heavy timbers set firmly in the ground, spaced far enough apart so tho hate of the mast will pass between them, hold a lave carriage bolt or steel bar which serves as a hearing. This bolt woes through a hole in the mast so that it is pivoted at the bottom.
Inalf of the guys can be puta in plare and tightened up bro fore the masi leaves the grouml. Four sets of guys should be used, one in front, one directly in the rear, and two on each side at right angles to the direction in whith the matst will face. A set of guys should be used at eath of the joints in the edgewise sections, the buy wires boing wappod around the pole for added strenght.

For heights up to 00 foet, 2×1-inch members may be used throughout. For greater heights, use $2 \times$ (is for the edgewise scetions; 2×4-inch pieces will do for the flat seetions.

Fig. 1056 - This type of mast may be carried to a height of fifty feet or morr. \obsy wires are required.

Lattice towers built of wood should be assembled with brass screws and casein glue, rather than with nails which work loose in a short time. A tower constructed in this manner will give trouble-free service if treated with a coat of paint every year.

In painting outside structures, use pure white lead, thimed with three parts of pare linsed oil to one part of turpentine, for the first coat on now wood. The we of a drior is not recommended if the paint will posibly dry without it, since it may callse the paint in peel after a short time. For the scomel and hird coats pure white lead thimed only with pure linseed oil is recommended. Plenty of tinue for drying should be allowed between coats. White paint will last fifty per cent longer than any colored paint.

(1) Guys and Guy Anchors

For masts or poles up to about 50 feet, No. 12 iron wire is a satisfactory guy-wire material. Heavier wire or stranded cable may be used for taller poldes or poles installed in locations where the wind velority is high.

More than three guy wires in any one set usually are umneressary. If a horizontal antenna is to be supported, two guy wires in the top set will be sufficient in most cases. These should rum to the rear of the mast about 100 degrees apart to ofiset the pull of the antemana. Intermediate guys should be used in sels of three, one rmming in a direction opposite to that of the antenna, while the other iwo are spaced 120 degrees either side. This leaves: a clear space under the antema. The guy wires should te adjusted to pull the pole slighty back from vertical before the antenma is hoisted so that when the antenna is pulled up tight the masit will be straight.

Whon raising a mast which is big cmough to tax the facilities available, it is some advantage to know nearly exactly the length of the guys. Those on the side on which the pole is lying can then be fastened temporarily to the ane hors beforehand. which assures that when the pohe is raised. those holding opposite ghys will be able to pull it into nearly vertical position with no dinger of its getting out of control. The guy lengths can be figured by the rightingledtriangle rule that "the sum of the squares of the two sides is equal to the squatre of the hypotenuse." In other words, the dist ance from the base of the pole to the anchor should the moasured and squared. To this should be adoued the square of the pole length to the point where the guy is fastemed. The square root of this sum will be the length of the guy.

Guy wires should be broken up by statan insulators. to a void the possibility of resonamee at the transmitting frequency. Common practice is to insert an insulator near the top of each guy, within a few feet of the pole atul then rut each section of wire between the insulators to a length which will not be resonant cither on the fundamental or har-
monics. An insulator every 25 feet will be satisfactory for frequencies up to 30 Me . The insulators should be of the "egg" type with the insulating material under compression, so that the guy will not part if the insulator breaks.

Twisting guy wires onto "egg" insulators may be a tedious job if the guy wires are long and of large gauge. The simple time- and fingersaving device shown in ligg. 1057 cim be made

Fig. 1057 - Using a lever for twisting heavy guy wircs.
from a piece of heary iron or steel by drilling a hole about twice the diameter of the guy wire about a half inch from one end of the piece. The wire is passed through the insulator, given a single turn by hand, and then held with a pair of pliers at the point shown in the sketch. By passing the wire through the hole in the iron and rotating the iron as shown, the wire may be quickly and neatly twisted.

Giny wires may be anchored to a tree or building when they happen to be in eonvenient spots. For small poles, a 6 -foot length of 1 -inch pipe driven into the ground at in angle will suflice. Additional bracing will be provided by using two pipes, as shown in Fig. 1058.

Fig. 1058 - lipe gny anchors. Gne pipe is sufficient for small masts, but two installed as slown will provide the additional strength required for the larger poles.

(1) Halyards and Pulleys

Halyards or ropes and pulleys are important items in the antema-supporting system. Particular attention should be directed toward the choice of a pulley and haly:ards for a high mast since replacement, once the mast is in position, may be a major undertaking if not entirely impossible.

Galvanized-iron pulleys will have a life of only a year or so. Especially for coastal-area installitions, marine-type pulleys with hardwood blocks and bronze wheels and bearings should be used.

An arrangement which has certain advantages over a pulley when a mast is used is
shown in Fig. 1059. In case the rope breaks, it may be possible to replace it by heaving a line over the brass rod, making it unneressary to climb or lower the pole.

Fis. 1059 - This device is much easier than a pulley to "rethread" when the rope break :.

For short antennas and temporary installations, heavy clothesline or window sath cord may be used. However, for more permanent jobs, $3 / 3$-inch or $1 / 2$-inch waterproof hemp rope should be used. Even this should be replated about once a year to insure against breakage.

Nylon rope, used during the war as glider tow rope, is, of course, one of the best materials for halyards, since it is weatherproof and hats extremely long life.

It is arlvisable to carry the pulley rope back up to the top in "endless" fashion in the manner of a flag hoist so that if the antenna breaks close to the pole, there will be a mosans for pulling the hoisting rope back down.

(1) Bringing the Antenna or Transmission Line into the Station

The antenna or transmission line should be anchored to the outside wall of the building, as shown in Fig. 1060, to remove strain from the lead-in insulators. Holes cut through the walls of the building and fitted with feed-through insulators are undoubtedly the best means of bringing the line into the station. The holes should have plenty of air clearance about the conducting rod, especially when using tuned lines which develop high voltares. Probathy the best place to go through the watls is the trimming board at the top or bottom of a win-

Fig. 1060 - A - Anchoring feeders takes the strain from fredthrough insulators or window plass. 13-Going throuph a fulllength serern. a cleat is fastened to the frame of the serernon the inside. Clearanee holes are cut in the cleat and also in the sereen.
dow frame which provides flat surfaces for lead-in insulators. Cement or rubber gaskets may be used to waterproof the exposed joints.

Whare such a procedure is not permissible, the window itself usually offers the best opportunity. One satisfactory mothod is to drill holes in the glass near the top of the upper sash. If the rhass is replaced by plate glass, a st ronger job will result. Plate glass may be ohtained from automobile junk yards and drilled before parcing in the frame. The glass it.alf provides insulation and the transmission line may be fastenced to bolts fitting the holes. Rubber gaskets will render the holes waterprow. The lower sash should be provided with stops to prevent dantige when it is raised. If the winclow has a full-length serven, the seheme shown in Fig. 1060-13 maty be usod.

Fif. 106I - An antemalead. in panel may ler placed over the tor sash or under the lower sash of a window. Sealing the overlapping joint will hiflp make it weatherproof.
As a less permanent methocl, the window may be raised from the bottom or howered from the top to permit insurtion of a board which carries the feed-through insulators. This lead-in arrangement can be made weatherproof by making an overlapping joint hetween the hoard and window sash. as shown in Fig. 1061, and covering the opening hetween sashes with a sheet of soft rubber from a discarded inner tube.

© Lightning Protection

An ungrounded radio antenna, particularly if large and well clevated, is a lightning hazard. When grounded, it provides in measure of protection. Thercfore, prounding switches or lightning arresters should be provided. Examples of construction of low-loss arresters are shown in Fig. 1062. It A, the arrester electrodes are mounted by means of stand-off insulators on a fireproof asbestos board. At B, the clectrodes are enclosed in a standard steel outlet box. The gaps should be made as small as possible without danger of breakdown daring operation. Lightning-arrester systems require the best ground connection obtainable.

The most positive protection is to ground the antenna system when it is not in use; grounded flexible wires provided with clips for connection to

Fig. 1062 - Low-loss lightning arresters for transmitters.
the fereder wires may be used. The ground lead should le shert and run, if posibhe dieretly to a driven pipe or water pipe where it enters the ground outside the buideling.

C. Antenna Switching

It is often desirable, particularly in DA work, to use the same antemna for transmitting and receiving. 'lhis requires switching of antenna from transmitter to recoiver. Onc of two general systems may be employed. In the
first, the transmitter and receiver each are provided with an antema tumer, and the antenna transmission line is switched from one to the other. In the second system, one antenna tuner is provided for each antenna and the switch is in the low-impedane coupding line. Several typiral arrangemonts are shown in Fig. 10033. Frequently relays with low-capacity contacts are substituted for switches.

C Rotary-Beam Construction

It is a distinet alvantage to be able to shift the direetion of a heam :antema at will, thas seruming the benofits of power gain and directivity in any dexired compass direction. A fisorite method of doing this is to construct the antennas so that it can be rotated in the horizontal plane. Obvinusls, the use of such rotatable antemnans is limited to the higher frequencios - 14 Ma and above - and to the simpler anteman eloment combinations if the structure si\%e is to be kept within practicable bounds. For the 1 !-and 2s-Me, bathis such antemats newally eonsist of two to four clements: and are of the parasitic-array type deseribed earlier in this whapter. At 50 Mc. and higher it beromes possible to use more elaborate arrass becathev of the shorter wavelength and thas obtain at ill higher getin. Antemats for these batak are dearribed in (hapher Soventem.

The problems in rotary-beam construction ate those of provialing at sutable merhamieal support for the antemuat chements, furnishing a means of motation, and attaching the transmision line su that it dous not interfere with the rentation ol the sestem.

ELemonts - Tho amtemna dements usually are made of metal tabing so that they will be at la:ost partially : wi-supporting, thus simplifying the supporting structure. The large di-

 lines with separate anternatmers or low impedance lines. B - For a woltawe fed antema. C - For a tuned line with a single antennat tumer. W) - For a woltage-fed antema with a Eingle therer, F: - For two tuned line antennas with a tuner for each antwna or for two low-impedance lines. F - Fior combinations of several two-wire lines.

polarization, primarily because less height is recpuired to clear surromoding obstructions when all the antenna dements are in the horizontal plane. This is important at 14 and 28 Me. where the clemente are fairly long.

An casily-0 onst ructed supporting frame for a horizontal array is shown in Fig, Iofit. It may be made of 1×2-iuch lumber, proferably wak, for the center seetions B, r, and $l)$. The outer arms. E, and rossumares. may be of white pine or eypress. The iquare block, A, at the center supports the whole structure and may be compled to the pold bey any convenient means that permits rotation. The hearing shown in Fig. 1068, for 'xample, maty casily be modified for the parpose Altomatively.
 zontal rotary beame. Madre chicfly of $1 \times 2 \prime$ woml strip, it is atrong yet lixhtwcisht. Autemna demento are supported on stand-off insulators on the armo. $F \cdot$. The length of tha 11 scetions will depend apon the elanent sparink, while the length of the Ese setime amb the op:ching between the 1 acetions should le $1 / 1$ to the theng of the antenna flements.
ameter of the eonductor is bemeficial also in reduring resistance. Which beeomos an important consideration when close-spaced aloments are used.

Wural tubes often are used for the chements. and thin-walled cormgaled stod lubes with copmer coating also are atalable for this purpose. The choments fromently are construed of sections of telescoping tubing, making lengeth adjustments for tuming quite ems. Electricians: thin-wallent romduit alloo is suitable for rotary-beam elements.

If steel clements atre used, special preautions should be taken to prevent rusting. Even copperemated stael does not stand up indefinitely, since the coating usually is too thin. The elements should be coated bould inside and out with slow-drying ahminum maint. For coating the inside. a suray gun maty be usol. or the paint may be pumed in one and while rotating the tubing. The excess paint may be calught as it comes out the bothom end and poured through agatin until it is cortain that the contire insite wall has been eovered. The ends should then be pharged up with forks sealed with glyptal varnish.

Supports - The supporting framework for a rotary beam usually is made of wond, using as light weight ronsturtiont as is eomsistent with the required strength, (iemerally, the frame is not required to hold much werght, hat it must be extensive enough so that the antennat elements ran be supported near enough to their ends to prevent reorsive sag, and it must have sufficient strengrth to stand up undor the masimum winf in the lnerility. The dorign of then tramon will fapend shisty an tho. size of the anterna clementes, whether they and mounted horizontally or vertically, and the mothod to be used for rotating the antemat.

The general preforenoe is for horizontal
the blowk may be firmbly fastemed to the pele and the latter rotated in bearings affixed to the side of the house.

Anther type of construction is shown in
 This mothod. suitable for 2s- Mc be bams, uses, a sertion of ordinary livder as the main support, with erosspieces to hold the tubing antonna elements. Fig. 1066 also indieates : meenombef adjusting the lengt he of the parasitie elomonts and bringing the transmission line down through the supporting pole from a delta match. The latter is esperially adapted to construction in whieh the pole rather that the iramework alone is rotated.

The problem of feoling a parasitic array is semewhat simplified if the eloments are mondmed vertiadly, since in such a case it is not necessary to rotate the driven element but only to rotate the parasitic elements around it. Thas no sperial provision need be made for maintaining ematact to the feeders through a comphate rotation. A suitable method of construction is shown in Fig. lofs.

Fic. /mos - A ladder-supported 3-rlement 28- Mc. beam. It is mononted on a pipe mast that projeets through a bearing in the roof and is torned from the atticoperating room. (Il lilik in August, 19io, OST.)

Fig. Do6i - Top-view drawing of the ladder support and monted remonts. lengthe of director and reficertor are adjusted hy means of the shortinis liars on the small stubsat the center. The drawing alsos shows at nuethol for pulling off the wires of a delta matelt and ferding 300 -ohm 'lwin-Lead transmission line through the pipe support.

Feder ronnccions - For heams which rotate only 180 degrees, it is relatively simple to bring off feoders by making a short suction of the fereder, just where it leaves the rotating member, of flexible wire. Bhough slate should be loft so that there is no danger of breaking or 1 wisting. Stops should be placerd on the rotating shaft of the antemma so that the fooders camot "wind up." This mothod also (an be used with anternats which rotate the full 360 degrees. but again a stop is neeressary to avoid jamming the fereders.

For continuous rotation, the sliding contact is simple and, when properly built, guite pracficable. Fig. 10 ti 9 shows (wo mothods of making sliding contacts. The chief points to kerp in mind are that the contant surfaces should be wide enough to take care of woble in the rotating shaft, and that the contact. surfaces shomld be kept cloan. Spring contacts are essential, and an "umbrella" or other scheme for kerping rain oft the contacts is a desirathe addition. Sliding contacts proferably shouhe be used with nomresonant upen lines where the impedance is of the order of 500 to 600 ohms (s) that the eurrent is low.

The possibility of poor commetions in sliding
contacts can be avoided by using inductive coupling at the antenna, with one roil rotating on the antenna and the other fixed in position, the two coils being arrangod so that the coupling does not change when the antemat is rotated. Such an arrangement is shown in Fig. 1070, alapted to and antemas system in which the pole itsilf rotates. A quarter-wave fecter system is connected to a tuned pirk-up circuit whose inductance is coupled to a link. In the drawing. the link coil comnects to a twisted-pair transmission line, but any type of line such as flexible coaxial cable (an be used. The rircuit would be adjusted in the same way as any link-

Fig. 1068 - A practical verticalalenment rotatable array for $28.11 e^{\circ}$ 'lhe driven antuma is fixed and the reflector and director clements, parasitically exeited, rotate arsund it. Close-spaced elemernts may be used if desired.
(roupled eircuit, and the number of turns in the link should be varied to give proper loading on the transmitter. The rotating coupling circuit of course lunes to the transmitting frequency. 'I'he whole thing is equivalunt to a link-coupled antenma tumer mounted on the pole, using a paralleltuned tank at the end of a quarter-wave line to center fered the antenna. To maintain constant coupling, the 1 wo coils should be quite rigid and the pole should rotate without wobble. The

Fig. 1069 - Tdras in sliding contacts for rotatable antema feeder conneetion to permit contimums rolation. The browd bearing surfaces tihecare of any wobble in the rotating mast or driving shaft.
two coils might be made a part of the upper bearing assembly holding the rotating pole in position.

Other variations of the inductive-coupled system can be worked out. The tuned cireuit might, for instance, be placed at the end of a 600 -ohm line, and a one-turn link used to couple directly to the center of the antenna, if the construction of the rotary member permits. In this case the coupling can be varied by changing the $L^{\prime} C^{\prime}$ ratio in the tunced circuit. For mechanical strength the coils proferably should be made of copper tubing. Well braced with insulating strips to keep them rigid.

Fig. 1070 - One method of transmission line-intema system eoupling which eliminates sliding contart. The low-impedance line is link-coupled to a tuned line.

Rofafion- It is convenient to use a motor to rotate the beam, but it is not always neeessary, experially if a rope and pulley armangement such as that shown in Fig. 1068 can be brought into the operating room. If the polv can be mounted near a window in the operating room, hand rotation of the beam will work out quite well. If the use of a rope and pulleys is impracticable, motor drive is about the only altemative. The speed of rotation should not be too great - 1 or 2 r.p.m. is abuut right. This reguires a considerable gear reduction from the usual 1750r.p.m. speed of small induction molows: a large reduction is advantageous beenuse the gear train will prevent the beam from tuming in weathervane fashion in a wind. The ordinary structure does not reriuire a great deal of power for motation at slow speed, and a 3/s-h.p. motor will be ample. Even small series motors of the sewing-mateline type will develop enough power to turn a 28 - Mc. beam at slow speed. If possible, a reversible motor should be used so it will not be newessary to go through ne:nly 360 degrees to bring the beam batek to a dirertion only slightly different, but in the opposite direction of rotation, to the direction to whieh it may be pointed at the moment. In cases where the pole is stationary and only the supporting framework rotates it will be necessary to mount the motor and gear train in a housing on top of the pole, but if the pole rotate's the motor can usually be installed in at mone ate ersible location.

Parts from junked automolikes often provido gear trains and bearings for rotating the antemata. Rear adess, in partieular, can readily be shapted to the purpose. Driving motors and gear housings will stand the weather better if given a coat of aluminum paint followed by two coats of enamel and a coat of glyptal varnish. Even commereial units will last longer if treated with glyptal varnish.

Lead-sheathed twin-conductor cable is recommended for power wiring to the motor to prevent r.f. pick-up. It will also reduce "hash" if a saries-wound motor is used. With such motors it is wise to install r.f. filters at the motor terminals as an additional precaution against interference to recention, sinee it is usual practice to determitu the proper direction for the beam by rotating it while listroning to the station it is desired to work and serting it at the point that grives maximum signal strength.

Chapler Eleven

$W_{\text {orrkshop }} P_{\text {ractice }}$

CTools

While an easior, and perhaps a botter, joh, can be done with a greater variety of tools: avaibable. by takiner a little thought amd care it is possible to turn out a fine pieco of equipment with only a few of the rommon hand tonls. A list of toms which will be indispensable in the comstruetion of radio equipment will be found on this page. With these torils it should be pessible to perform stly of the required oprations in preparing panels and metal chatsis for assembly and wiring. A frw additional tools will make certain operations easiore so it is a grood idea for the amatrut who does comstructionsl work to add to his suply of tomls from time to time. Tlhe following list will bo found helpful in making a selection:

Bench vise, timeh jatws.
Tin shears, lo-inch, for cutting thin shect metal.
'louper reamer, 's-inch, for enlarging small holes.
I'aper reamor, l-inch. for mbarging holes.
('onntersink for brace.
('arpenter's plane, is to lotinch, for wodworking.
Carpenter's saw, cross-cut.
Motor-driven emery whed for grinding.
Long-shank serewidriver with serew-holding clip for tight platers.
Sot of "spintite" socket wrenches for hex nuts.
Set of small flat open-end wrenches for hex nuts.
Wond chisel, I zinch.
Cold chisel, ' z -inch.
Wing dividers, δ-inch, for soribing vireles.
sot of manhinc-serew taps and dies.
Folding rule fi-foot.
Dusting brush.
Sowerad of the pieces of light womborking mathinery, often sodd in hardware stores and mail-order rotail stomes are juleal for amaterner radio work, eperially the drill prese grinding head, band :and arecular saws. and jomer. Although mot rasentiah. there ato dowirable should sou be in a prsition to adquire them.

c. Care of Tools

The proper care of tonls is not alone a matter of pride to a good workman. He also reatizes the energy which mas be saved and the amorance which may he atombed be the possession of well-kept sharp-adged took. A few
minuters spent now and then with the oil stone or emery whorel will mantain the fine atting edges of knives, drills, chisele, ete.

Drills should be sharpened at frequent intervals so that erindine is kept at a minimum eatela time. This makes it easior to maintain the rather ritionl surface angles required for best cotting with least wear. Ocensional wil-stoning of the cutting edges of a drill or reamer will extond the time between grindings. stoned enttimg edges also will stand more feed and speed.

The soldering iron ran be kept in grood condition be kerping the tip well timed with swher and not allowing it tor run at full voltage for long perions when it is not being used. Alter cach protiod of use, the tip should be remosed and cleaned of any seale which may have arcumblated. An wxidized tip may be rleaned by dipping it in sal ammonian while hoot and then wiping it doan with a ras. If the tip beromes pitted. it should be filed until smooth and hright, and then tianced by dipping it in somber.

All town shombl be wiped oerasionally with an aily cloth to prevent rust.

INDISPENSABIE TOOLS

Jatu-nnse pliers. fi-iuch.

sratell awl ur willur for mathing fines.

 proferable.
Filectric solderisur iron, 100 watts.
11arlos:aw: 12-inch hladers.

H:ammer, loald घलен, 1-ll, head.
Hexucy hife.
land-ibek or other mtanighterder.

Pair of -moll Corlamps for hoddang work.
l.arna, warme fat file.

 half-rommet, trianmatar.
Inalle. partiatarly 1, -inth and Nos, 18, 2S, 33, 42 and 5u.

Mminu-wrisht machate oil.

(1. Useful Materials

small storks of rarisus miseollaneous materiats will be reguimed in construeting ratio apparatus, most of which are avalable from hardwate or radio supply stores. A representative list fullows:
$1 / 2 \times 1 / 16$-inch brass strip for brackets, cte. (half-hard for bonding).
$1 /$-inch square bras rod or $!\times 12 \times 1 / 16-$ inch angle brass for corner joints.
1/4-inch diamoter round brass rod for shaft extensions.
Machine screws: Romud-head and flat-hmad, with nuts to fit, Most weful sizos: 4 -3fi, (i-32 and $8-32$, in longths from 1_{1}^{\prime} iurh to 112 inches. (Nickel-phated iron will be found satisfactory exerpt in strong r.f. fields, where brass shombl be used.
Bakelite and hard-rublere suraps.
Soldering lugs, patmel bearings, rubber grommets. torminal-lug wiring strips, var-nished-cambrie insulating tubing.

Machine serews, mits. washers, sohlering lugs, cte., are most reasonably purchased in quantities of a gross.

1. Chassis Construction

With a few essential tools and proper proredure, it will he found that buiding radio grar on a metal chassis is no more of a chore than building with wool, and it more satisfoetory joh results.

The placing of components on the chassis is shown quite rlearly in the photographs in this Mambooli, Aside from rertain esential dimensions, which usually are givenin the text, exact dophication is mot neressary.

Murla tromble and energy ran be sabed by spording sufficirnt time in plaming the job. When all details are worked ont beforohand the actual construction is greatly simplified.

Cover the top, of the chassis with a pierer of wrappiner paper or, preferably, cross-section paper, folding the edges down owre the sides of the chassis and fostening with adherive tape. Then assemble the mats to be monated on top of the ehassis and move them abmen until a satisfactory arrammement has bern found, kereping in mind any barte whirh are to be monated underneath, so that interferences in mounting may be avoided. Place rondensers and other parts with shafts extending through the panel first, and arrange them so that the controls will form the desired pattern on the pandel. Be wire to line up the shafts squarely with the rhassis front. Looate any partition shields and panel brackets next, and then the tube somets and any other parts, marking the mountinu-hole eenters of each accurately on the papior. Watch out for condensers whose thafts are off center and do not line up with the momoting holes. Do nest forget to mark the centors of socket holes and holes for leads under i.f. transformers, etc., as well as holes for wiring leads.

By means of the square lines indicating accurately the centers of shalts should be extended to the front of the ehassis and marked on the panel at the chassis line, the pand being fastened on temporarily. The hole centers may then be punched in the chassis with the center punch. After drilling, the parts which re-

 denmer shafte, rtc. If the sigatre is atjustable, the ernd of the soale shomhe the set flush with the face of the licat.
quire momitis materneath may be lomated and the momenting holes drilled, making sure by miat that no interferences exist with parts momeded on top. Mombing holes along the front oige of the ehassis should be transforred to the panel, be unce arsan fasteming the panel to the chatsis and marking it from the rear.

Next, monnt on the dassis the condensers and any other parts with shafte extending to the panel, and measure anemately the height of the renter of earh shaft above the chassis, as illustrated in Fir. 1101 . The herizontal displacement of shafts having already beron marked on the chassis line on the panel, the verticat displacement can be metanted from this Line. The shaft cerberes maty um he marked on the back of the panel, and the holos drilled. Holdes for any other panel equipment coming abowe the chassis line may then be marked and driberl, and the remainder of the apparatus mounted.

1. Cutting and Bending Sheet Metal

If a shert of metal is too large to be eut conveniently with a hacks:w, it maty be marked with saratehes as deep as possible along the line of the eut on buth sidese of the sheet and then damped in at vise and worked batk and forth until the sheet breaks at the line. Don not ratry the bending so far that the break begins to weaken: otherwise the edge of the sheet may beoome bent. A pair of iron hars or pieces of heavy angle stock, as long or longer than the width of the sheet. to hold it in the vise will make the job easior. C-rlamps may be used to keep the bars from spreading at the ends. The rough edges may be smonthed up with a file or by plating a large piece of emery rloth or sandpaper on a flat surface and running the edge of the metal back and forth over the sheet.

Bonds may be made similarly. The sheet should be scratched on both sides, but not so deeply as to cause it to break.

© Drilling and Cutting Holes

When drilling holes in metal with a hand drill it is important that the centers first be located with a center punch, so that the drill point will not "walk" away from the center when starting the hole. Care should be taken
not to use too much pressure with small drills. which bend or break easily. When the drill starts to break through, special care must be used. Often it is an advantage to shift a twospeed drill to low gear at this point. Holes more than $1 / 4$-inch in diameter may be started with a smaller drilland reamed out with the larger drill.

The chuck on the usual type of hand drill is limited to $1 / 4$-inch drills. Although it is rather tedious, the $1 /$-inch hole may be filed out to larger diameters with round files. Another method possible with limited tools is to drill a series of small holes with the hand drill along the inside of the diameter of the large hole, placing the holes as close together as possible. The center may then be knocked out with a cold chisel and the edges smoothed up with a file. Tiper reamers which fit into the carpenter's brace will make the job easior. A large rattail file clamped in the brace makes a very good reamer for holes up to the diameter of the file, if the file is revolved counterelorkwise.

For socket holes and other large round holes, an adjustable cutter designed for the purpose may be used in the brace. '1 'he euter should be kept well-sharpened. Occasional application of machine oil in the cutting yroove will help. The cutter first should be tried out on a block of wood, to make sure that it is set for the correct diameter. Probably the most convenient device for eutting socket holes is the sockethole punch. The best type is that which works by turning a take-up screw with a wreneh.

Fig. 1102 - To cut rectangular holes in a chassis, corner holes may be filiod out as shown in the shaded portion of 13 , making it mosihle to start the hacksaw blade along the cutting line. A shows how a singleended bandle may be constructed for a hacksaw blade.

Square or rectangular holes may be cut out by making a row of small holes as previously described, bue is more casily done by drilling a $\frac{1}{2}$-inch hole inside cach corncr, as illustrated in Fig. 1102, and using these holes for starting and turning the hacksaw. The sock-et-hole punch also may be of considerable assistance in cutting out large rectangular openings.

The burrs or rough edges which usually
result after drilling or cutting holes may be removed with a file, or sometimes more conveniently with a sharp knife or chisel. It is a good idea to keep an old wood chisel sharpened and available for this purpose. A burr reamer will also be useful.

(1. Twist Drills

Twist drills are made of either high-speed stecl or carbon stecl. The latter type is more common and will usually be supplied unless sperifie request is made for high-speed drills. The rarbon drill will suffice for most ordinary equipment construction work and costs less than the high-speed type.

While twist drills are available in a number of sizes those listed in bold-faced type below

NUMIBERED DRILL SIZES
$\left.\begin{array}{cccc} & & & \text { Wrillcd for } \\ \text { Diameler } \\ (\text { mils }\end{array}\right)$

[^1]will be the drills most eommonly used in construction of amateur radio equipment. It is usually desirable to purchase several of each of the commonly-used sizes rather than a quantity of odd sizes, most of which will be used infrequently, if at all.

© Cutting Threads

Brass rod may be threaded, or the damaged threads of a screw repaired, by the use of die.s. Holes of suitable size (see drill chart) may be threaded for screws by means of taps. Taps and dies are obtainable in all standard marchinescrew sizes. A set usually comsists of taps and dies for $4-36,6-32.8-32,10-32$ and $1.4-20$ sizes, with a holder suitable for use with either tap or die. The die may be started easily by first filing a sharp taper or bevel on the end of the red. In tapping a hole, extreme care should be used to prevent breaking the tap. The tap should be kept at right angles to the surface of the material, and rotation should be reversed a revolution or two whenever the tap begins to turn hard. With eare, holes can be tapped rapidly by clamping the tap in the chuck of the hand drill and using slow speed. Machine oil applied to the tap usually makes cutting easier and sticking less troublesome.

[Crackle Finish

Wood or metal parts can be given a crackle finish by applying one conat of clear Dueo or Tri-Seal and allowing it to dry over night. A coat of Kem-Art Metal Finish is then sprayed or applied thickly with a brush, taking care that the brush marks do not show. This should be allowed to dry for two or three hours and the part should then be baked in the kitchen oven at 215 degrees for one-and-one-half hours. This will produce a regular (ommerrial joh. This finish, which comes in several different colors, is made by Sherwin-Williams Paint Co.

© Cleaning and Finishing Metal

Parts made of aluminum can be cleaned up and given a satin finish, after all holes have been drilled, by placing them in a solution of lye for one-half to three-quarters of an hour. Three or four tablespoonfuls of lye should be used to each gallon of water. If more than one piece is treated in the same bath, each piece should be separated from the others so as to expose all surfaces to the solution. Overlapping of pieces may result in spots or stains.

[Wiring

A popular type of wire for receivers and low-power transmitters is that known as "push-back" wire. It comes in sizes No. 16. 18, 20, etc., which are sufficiently large for all power circuits except filament. The insulating covering, which is sufficient for circuits where voltages do not exceed 400 or 500 , can be pushed back a few inches at the end, naking

WRONG WAV
Fig. 1103 - Right and wrong methonds of lacing cable. With the right way the leading line is pinehed under rath turn and will not hosen if a break oceurs in the lacing.
cutting of the insulation unnecessary when making a connection. Filament wiring should be dome with sufficiently large conduetors to carry the required current without appreciable voltage drop (see Copper Wire Table. Chapter Twenty). labber-covered honse-wire sizes Nis. It to No. 10 are suitable for heravy-rurrent tramsmitting tubes, while No. 18 to No. 14 flexible wire is satisfactory for receivers and low-drain transmitting tubes where the total length of the leads is not excessive.
still bare wire sometimes catled bus wire or bus bar, is. most favored for the high r.f.-potential wiring of transmitters and, where practieable, in receivers. It comes in sizes No. It and No. 12 and is usually tin-dipped. sioftdrawn antenna wire also may be used. Kinks or bends can be removed by stretching 10 or 15 feet of the wire and then cutting it intos small usable lengths.

The insulation covering power wiring which is to carry high transmitter voltages should be appropriate for the voltage involved. Wire with rubber and varnished cambric covering, similar to ignition cable is available from radio parts dealers. The smaler sizes have sufficient insulation to be safe at 1000 to 1500 volts, white the more heavily insulated types should be used for voltages above 1500 .

It is usually advisable to do the power-supply wiring first. The leads should be bunched tugether as much as possible and kept down chese to the surface of the chassis. The lacing of power wiring in cable form not only improves its appearance but also strengthens the wiring. Fig. 1103 shows the correct way of lacing cabled wires. When done correctly the leading line is held tightly pinched in place after tension has been removed, and therefore does not lowsen readily. When the wrong method is used the turns will loosen up as soon as tension is removed.

Chassis holes for wires should be lined with r uhber grommets which fit the hole, to prevent chafing of the insulation. In cases where powersupply leads have several branches, it is often ronvenient to use fiber lerminal strips as anchorages. These strips also form handy mounting: for wire-terminal resistors, etr. When any particular unit is provided with a nut or thumbscrew terminal, soldering-lug wire terminals to fit are useful.

High-voltage wiring should have exposed points kept at a minimum and those which cannot be avoided rendered as inaccessible as possible to accidental contact.

© Soldering

The secret of good soldering is in allowing time for the joint, as well as the solder, to attain sufficient temperature. Enough heat should be apphed so that the solder will melt when it comes in contact with the wires being joined, without touching the solder to the iron.

Wartime solder, which is still with us, has a much smaller ratio of tin to lead, requires considerably more heat, and its use makes it especially important that the iron be kept clean at all times. More care must be exereised in making the joint berause this solder docs not flow as readily, and also has a tendency to crystallize.

Soldering paste, if of the noneorroding type, is extremely helpful when used correctly. In general, it should not be used for radio work except when necessary. The joint should first be warmed slightly and the soldering paste applied with a piece of wire. Only the bit of paste which melts from the warmith of the joint should be used. If the soldering iron is elean it will be possible with one hand to pick up a drop of solder on the tip of the iron which can be applied to the joint, while the ot her hand is used to hold the eonnecting wires together. The use of excessive soldering paste canses the paste to spread over the surface of adjacent insulation, causing leakage or breakdown of the insulation. Exept where absolutely necessary sodder should never be depended upon for the mechanical strength of the joint; the wire should be wrapped around the terminals or clamped with soldering terminals.

Do not attempt to make ground connections to a eadmium-phated chassis by soldering to the surfare of the chassis, since the phating may be loosened by the heat and later fall off, breaking the connection. Drill a hole in the chassis and solder the wire in the hole.

[. Construction Notes

I.ockwashers should be used under nuts to prevent loosening with use, particularly when mounting tuhe sockets or plug-in eoil receptacles subject to frequent strain.

If a control shaft must be extended or insulated, a flexible shaft coupling with adequate insulation should be used. Satisfactory support for the shaft extension can be provided by means of a metal panel bearing made for the purpose. Never use pancl bearings of the nonmetal type unless the condenser shaft is grounded. The meial bearing should be connerted to the chassis with a uire or grounding strip. This prevents any possible danger of shock.

The standard way of mounting toggle switches is with the switch "On" when the lever is in the upward position.

Variable condensers and resistors, having one-hole mountings, should be firmly fastened using the sperial lockwashers provided for shaft nuts.

The use of fiber washers between ceramic insulation and metal batackots, sorews or nuts will prevent the ceramic parts from breaking.

(Coil Winding

Dimensions for erils for the varions units deseribed in the construetional chapters are given under the cireuit diagrams. Where no wire size is given, the prwer is sufficiently low to permit use of any available size within reason.

Unless a close-wound winding is definitely sperified the number of turns indicated should be spated out to fill the sperified lemgth on the form. The length should be marked on the form and holes drilked opposite the pins to which the ends of the winding are to connect. Serape one end of the wire and pass it through the lower hole in the form tos the pin to which the bottom end of the winding is to connect, and solder this end fart. I'uroll a length of wire approximately sufficient for the winding, and (lamp, the spool in a vise so it will not turn. The wire should be pulled out straight and the winding started by turning the form in the hands and walking toward the vise. A fail tension should be kept on the wire at all times. The spacing can be judged by eve, lif, as the winding progresses, it beoomes evident that the sparing is going to be incorreet to fill the required length, the winding can be started over again with a difterest spacing. If the spacing is only slightly ofï, the winding may be finished, the top end fastened, and the spacing corrected by pushing each turn. When complete, the turns should be fastrod in place with roil cemont. After a litte practice, the job of determining the correct sparing will not be difficult.

Sometimes it is neressary to adjust the number of turns on a eoil experimentally. The easiest way to do this is to bring a wire up from one of the pins, extending it through a hole in the form for a half inch or son. The end of the winding may then be soldered to this extension rather than to the pin itwelf. and the muisance of repeatedly fishing the wire through the pin avoided until the correct size of the winding has been determined.

- Coil Cement

Duco eement, obtaimable universally at hardware, stationery or $\overline{\mathrm{j}}$-and-10-cent stores, is satisfactory for fastening coil turns. For small coils. a bettor-fooking job will result if it is thinned out with acetone (amyl acetate), sometimes referred to as baniana oil. If desired, the solution may be mate thin enough to permit application with a brush.

Special low-loss coil "dopes" are available, including some with a polystyrene base.

Receicer Construction

C A Two-Tube Superheterodyne Receiver

Althongh all the :dvantages of the superhet-erodync-type receiver amont be secured without going to rather chaborate multitube circuits, it is possible to use the superhet principle to overcome nust of the disadrantages of the sinple regemerative remeiver. These are chicfly the necossity for ritical aldjustment of the regencration control with thming, antemat "dead spots." lack of stability (both in the detector circuit itsolf and berause of slight changes in frequemey when the antema swings with the wind), and blocking. or the tendency for strong signals to pull the deteretor into zerobeat. These effeets an be largely eliminated by making the menementive detedor operate on a lixed low frequency and designing it for maximum stability. The incoming signal is then converted to the fixed detector frequency before being detected.

A twothbe roceiver operating on this prin(afle is shown in Figes. 1201 to 120;

The circuit diagram is given in Fig. 1202. A $6 \mathrm{~K}^{\circ} 8$ is used to convert the frequenery of the ineoming signal to the fixed or intermediate frequency, and the two triote seetions of at (6N八7 serve ats the remomative detector and audio amplifier respectively. $L_{1} C_{1}$ is the r.f. rireuit, tumed to the signal, and L_{2} is the anwhat roupliag coil. C^{\prime}; is a by-pass contenser arress the loj-wolt battery used to bias the signal grid of the GKx. 'The highefreeruency

 dyae receiver. 'llue pand i- cout from a hert of $1 / 8$-inch aluminum. It is 6 incher hish and 8 inderes wide. The controls along the lontom, from left to rialit, are mixer tuning, weillator padder and i.f. rewemeration. "Ihe " $B^{\prime \prime}$ switeh is to the left of the thaning dial.

Fig. 1202 - Cirmit diagram of the two-tube superheteronlyne receiwer.
$C_{1}, C_{2}, C_{3}-100-\mu \mu \mathrm{fd}$. variatble (Millen 19100).
Cit - $1 . i-\mu \mu \mathrm{fl}$. variable (Willen 20015).
(5 - $2 \cdot 10-\mu \mu \mathrm{fl}$. silvered mica.

C: $-0.005-\mu \mathrm{fd}$. mira.
C., $\mathrm{C} 9-100-\mu \mu \mathrm{fl}$ mira.
$11_{1}-47,0100$ ohms, $1 / 2$ watt.
$\mathrm{h}_{2}-1$ merohm, $1 / 2$ watt.
$L_{1}, L_{2}, L_{3}, L_{4}$ - see mil table.
L5-5.5 turn No. 30 d.a.... dnce-wound on $3 / 4$-inch diam. form (National PliP-2); indnctance 40 uh.
$\mathrm{L}_{6}-18$ turn: No. 30 d.*.e., close-wound on same form as 1.5 ; see lïg. 12013.
$13_{1}-1.5$-volt bias hattery.
J_{1} - Opren-circuit jack.
1RIC-2.5-mh. r.f. chome.
S—s.pr.t. togale switch.
T_{1}-Interstage andio tratisformer (Stancor A-t205).
$\mathrm{T}_{2}-6.3$ volt filamem transformer.
wrillator tank circuit is $L_{3} \mathrm{C}_{3} \mathrm{f}_{4}^{\prime}$, with C_{3} for band-setting and C_{4} for bandspread.

The i.f. tuned cireuit (or regenerative detecetor circuit) is L_{5} ('5. This must be a high-C circuit if stability better than that of an ordinary regenerative detceter is to be secured. The frequency to which it is tuned should be in the vieinity of 1600 kc . L_{a}^{2} and its tirkler coil. L_{6}, are wound on a small form, and L_{5} is tuned by a fixed mica condenser of the low-dritt type. Since these condensers are rated with a capacity toleranee of $\overline{5}$ per cent. it is sufliciant to wind L_{5} as speceified under Firs. 1203. The resulting resonant frequency will be in the correct region. No manual buning is necessary, and therefore the frequency of this cireuit need not be adjusted. ('2 is the regenorationcontrol condenser, isolated from the d.c. supply hy the choke, RF' . Only enough turns need be used on I of to make the detector oweillate readily when C_{2} is at half capacity or more.

The second section of the 6 SN 7 is trans-

240

Chapter Jwelve

Fis． 1203 －Hon the coils for the twotulne sumer－ heterondye recojer are wommad．In both eases both windings are in the same direetion．In the race of the i．f．coil at the left．He top eme of the unfer winding，l．ts， is connerted to（：3 and I＇in 3 of the 6 N 8 swehet．the
 upper ond of tha lower winding，$L_{\text {fi }}$ ，is commerted to the stator of fand the lower end of hagoes to lin 2 on the 6SVOCO sochet．

In the cate of the flus－in roils．the coil sooketa and phas－in form bares are wired ao that the upper end of La connecte to the stator of（izs the lawer cull of this windiner to the chasis，the uprer end of the lower wind－
 the ok 8 sonet．When the woil is phagerd into the mixer stane，the upper eme of the wop winding shonld go to the stater of Ci，the lower end to C：－and the hiasing battery， the npere emd of the lower wincling tu the ehasit and the lower end of the botom winding to the antenna terminal．
former－compled to the detector．The grid is biased by the same hattery that furnishes bias for the 6だs．

Looking at the top of the chassis from in front，the rif．or input circuit is at the left． with（＇a below the chasesis and $L_{1} L_{20}$ just behind it．The 6 lis is directly to the rear of the coil． The h．if oseillator padding condenser．（＇3． undermeath，the socket for $L_{3} L_{4}$ and the fisis 7 are in line at the center of the chassis．At the right．underneath the audio transformer．T_{1} ，is the i．f．requmeration－control condenser，C＇2．Tha bandspread tuning condenser．（＇f．is mounted on the panel with its shalt 3^{7} x inches from the bottom colge of the pancl．The audio trans－ former should be set back far enough so that there will be sufficient space for the bearing for the vernier kmob of the National＇rype（i dial． The＂ 3 ＂switch， \boldsymbol{S} ，is to the left of the dist．

A pair al terminals set in the left－hand edre of the chaseis provides connerelons for an－ temna and gromm，while anothor pair at the rear are for the＂ 13 ＂－battery connections．The antema and $13+$ temminals must he insulated from the chassis，A fack in the right－hand side is provided for headphones and 11．5 volts a．e． for the hater transformer．Te，is pluged in at the rear．The jack is insulated from the chassis by means of fiber washers．T2 is placed under the chassis nowe the headphone jack．

Referring to the bottom view of Fig．120．）． the biasing hattery is to the left below C_{1} ．It is a pen－light flashlight eell sodeded betwern the coil－soeket terminal and ground．Immediately below it is the by－pass eondonser，（＂－（＇6 is soldered between the socket terminal for L_{4}

TWO－TUBE SLPERIIET COIL DATA

1.1 ar 1.3		I． 2 or f ． 4
A． 90 turns Do． 30 wound	s．c．，dose－	20 turns lis， 30 d．s．c．
B． 60 turns No． 20 werund	d．s．e．，elose－	
C． 45 turns No． 22 wembl	s．e．e．rlose－	$15 \mathrm{turus} \mathrm{Nor.0} \mathrm{\%} \mathrm{d.s.c}$.
1）． $2+$ turns Nio． 2 lohig	$\text { un. } 1 \text { 's in in. }$	15 turns Mo． 26 d．s．c．
F．， 20 turns No． lusu：	m．， $11 / 8 \mathrm{in}$ ．	15 turns No． 20 d．s．c．
Frremerney hanme	Cuilnt liols	2 （＇nilat 1．3－1．4
1700 to 3：（0）ks，	A	13
3000 tes 5.00 kc ．	B	C
5 （0） $\mathrm{ta} 10,000 \mathrm{kc}$ ．	C	1）
9500 to $14,500 \mathrm{kc}$ ．	E	1）

and gromul．The r．f．choke is supported at one cond by a small fiber lur strip）and soldered to （＇2 at the other．The i．f．transformer，$L_{5} L_{6}$ ，is betwern the two tube sockets．L_{5} is connected betwern the proper tube－socket torminals and （＇s is soldered across these same terminals．C_{9} is fastened direetly betwern the two tube sock－ ets and（＇s between the 6 h 人 socket and the proper terminal of the socket for L_{3} ．Clearance holes are drilled in the chassis for wiring to the switeh，to the stator teminal of Ca and the gride eap of the $f i=8$ ．The rotor terminal of C_{4} is erounded to the panel by a lug fastened un－ der one of the monnting pillars．Two holes also are provided for the leads to T_{1} ．
（＇oils for the recedver are wound on Millen shidded $\frac{1}{2}$－inch diameter forms，Type $7+001$ ， which are provided with slug－type inductance trimmers．

The method of winding is indicated in Fig． 1203 ；if the connections to the circuit are made as shown，there will be no trouble in obtaining the necossary weillation．Both coils on each form should be wound in the same direction．

Adjustment－＇To test the receiver，first

Fig．I2（If－A back of panel viow of the twotube super－ heterodyne receiver．The chassis is $7 \times 7 \times 2$ inches．

Fig. 1205 - Bottom view of the two-tube superheterodyne receiver. The i.f. coil is between the two tube sockets noar the rear of the chassis. 'Jhe transformer to the ripht is the filament tranaformer.
change in beat-note as the r.f. tuning is varied by mexans of (" will be observed on the highest-frequency range, but it is not serious in the region of resonance with the incoming signal frequency.

The receiver will respond to signals either 1600 ke. low or or 1600 kc . higher than the oscillator frequeney. The umwanted response is discriminated against by the seloetivity of the r.f. circuit. On the three lower-fieguency ranges, when it is possible to find two tuning spots on C_{1} at which incoming noise peaks up, the lowerfrequency peak is the right one. The oseillator frequency is 1600 ke , higher
try ont the i.f. cireait. Comeet the filament and " 13 " supplies and place both tubes in their sockets. Put a high-frequencer coil in the r.f. socket, but do not insert a coil in the oseillator socket. The only test whirh need be made is to see if the detector oscillates properly. Advance C_{2} from minimum rapacity until the detertor goos into osidilation, which will be indicated by a soft hiss. 'This should oecour at around half seale on the condenser. If it does not oreur, check the eoil ($L_{5} L_{6}$) connections and winding direction and, if these seem right, add a few turns to the tiekler, L_{6}. If the detector oscillates with vory law capacity at Co, it will be alvisable to tako a few turns off L_{6} until oscillation starts at about midseale.

After the i.f. has been checked. plug in an oscillator coil for a range on which signals are likely to be heard at the time. The $5400-10$,-000-ke. range is usually a good one. The eoils are arranged so that a minimum numbor is needed, even though two are used at a time. With Coil (in the r.f. socket and D in the oscillator circuit, set C_{1} at about half scale and turn C_{3} slowly around midscale uncil a signal is heard. Then tune C_{L} for maximum volume. Should no signals be heard, the probability is that the oscillator section of the 6 kS eonverter tube is not working, in which case the same method of testing is used as described above for the i.f. detector - chock wiring, direction of windings of coils, and finally, add turns to the tickler, L_{4}, if necessary.

The same oscillator coil, D, is used for two frequency ranges. This is possible because the oscillator frequency is placed on the low-frequency side of the signal on the higher range. This gives somewhat greater stability at the highest-frequency range. Some pulling - a
than that of the incoming signal on these three ranges and 1600 kc . lower on the fourth range. The induetance of the coils to lit the desired ramges can be adjusted by means of the trimming slug in the eoil forms.

The regeneration control may be set to give desired sensitivity and left alone while tuming; only when an exceptionally strong signal is eneountered is it necessary to advance it more to keep the detector in oscillation. It should be set just on the edge of oscillation for 'phone reception.

The " 13 "-battery current is between 4 and 5 ma., so that a standard 45 -volt block will last hundreds of hours.

(1) A Three-Tube General-Coverage and Bandspread Superheterodyne

A superhet receiver of simple construction, having a wide frequency range for general listening-in as well as full bandspread for amateur-hand reception, is shown in Figs. 1206 to 1210 . The circuit uses only three tuhes and gives continuous frequency coverage from about 75 kc . (1000 meters) to 60 Mc . (5 meters). The receiver is intemed for operation from either a 6.3 -volt transformor or 6 -volt battery for heater supply, and a 90 -volt " B " battery delivering 15 ma. for plate supply.

The circuit diagram is given in Fig. 1207. A 6 K 8 is used as a combined oscillator-mixer followed by a GSK7 i.f. amplifier. The intermediate frequency is 1600 kc ., a frequency which reduces image response on the higher frequencies and simplifies the design for lowfrequency operation in the region below the broadeast band. One section of the 6C8G double triode is used as a second detector and the other section as a beat-frequency oscillator.

 a.c. or d.e. heater operation and for gu-rolt "B". battery plate supply.
for the BCs(i is just in front of T_{3}. The triode seetion in which the grid is bought out to the top (atp is the obe which is used for the beat owillator.

The ref. sertion has bern arrangen for fhort latals 16 litoor high-fremberse uperation. The there suekets armoned ansty warether int the cruter are form lation right. the wailator-and
 the miser-moil sorfert. . Ill are memented abme the chasxis hy mo:ans of momatine pillatrs. so that practically all r.f. leatds are above derk. 'The oweillator arid hatk. h_{1}. atal the highfrequeney athomblig-pase eon-
 direetly on the socket before it is intatled. son also shomd the osembator prid mondenser. ('i. which can be sean extending to the ledt toward the werillatorenil worked in lig. 120s. Powersurply commertions shomald be

Ton simplify comstraction, the antenma :nd
 tenta tuming contron. C_{1}, maty be heal as a volume control by dethatas from resonatace.
 higher than the sigmal on frequencice up to $\overline{5}$ Me: above a Me. the oseilhator is lifo ke. lower than the signal.

The parte arrangement is shown in the photographs of Figs 1208 and 1200 . The miser thuing mondenser, f_{1}, is at the right. The bathepread aseitator tuming comblemser. (s. is in the renter. controlled by the Naitional lype A 3^{1}-anch dial, and the bandset condehiser. Cor is at the laft.
leforming to the top view, Fige 120s, the i.f. -ection is along the rear endere with T_{1} at the right. Next is the sumbed for the siskit, then T_{2}. and fintily T_{3} at the extreme left. The socket
soldured to the bikis surket prongs before the soreter is mounted.
 are motanted diredty on the whasis. (sz is bela from the patmel be muathe of at satall bracket mathe from metal strip, bent sot that the condenser shat litus up with the dial couplinge I bathe shidd mate of ahaminum sepatates the oscillator ath mixar sections.

The first step in putting the receiver into operation is to align the i.f. amplifier. This should proferably be done with the aid of a tost useillator. bat if one is mot arailable the eiruits may be alignad on hiss or moise. The beat wicillator can also be used to furnish a signal for alignment. Further information on alignment
 heterolene.

$\mathrm{C}_{2}-1$ lo-mpfl. sarialilt (llammarlond V(. .1 IV. V).
C3-35-д fil. variahie (Hatrmarlund IIF ain).
Ca_{1} - (O-rillator phatder: we coil tally.
(\therefore - O.I-mil. napre

(:- 2- $11-\mu \mu$ fil. micat.
(… Cio- 10.01-ufil. pitper.
(il - i-pld. clectrolytic. 50 will-.

K. - İ.(200 ohma, I watt.

 (Willen oflol).
'l's - loom-ke, os-illator trallsformer (liillen o.sl6is). $\mathrm{S}_{1} . \mathrm{S}_{2}-\therefore \mathrm{B}, \mathrm{a}$ t. toggle switeh.

Fig. 1208 - A plan view of the three-tube superheterodyne with the coik and tulnes removed. The chassis meanures $3{ }^{3} 2 \times 91 / 2 \times$ $11 / 2$ inches and the pancl size is $10 \frac{1}{2} \times 6$ inches.
may be found in Chapter Seven.
The coils are wound as shown in Fig. 1210. A complete set of specifications is given in the woil table. Ordinaty winding are used for atil aseillator conls, and tor all moner euils for frequencies above 1600 kc . Below 1600 ke., readily available r.f. chokess are used for the tumed rireuits. For the broadeast band and the 600-750-
meter ship-to-shore chanmels, the mixer roil is a llammarlund $2.5-m h$. r.f. choke, with the pies tapped as shown in lig. 1210. The grid end and the intermediate tap are connected to machine sarews mounted noar the top of the eoil form, and a flexible lead is brought out from the grid pin in the eoil form to be fas-

trined to either lead as desired. Mixer coils for the two lowest-frequency ranges are constructed as shown. The antoma winding in cach catse is a coil taken from an old 4 (ia)-ke. i.f. transformer, having an inductance of about 1 millihenry. The induetanee is not critieal and a pie from a $2 . \bar{y}$-mh. Whoke may be used instead.

COHL DATA FOR THE THIREETLBE SUPERHETEROHYNE

Ranve	T'urus					C4
	L_{1}	L_{2}	L_{3}	L_{4}	Las Tap	
A-76-154 kc.	30 mb .	1 mh .)				
166-300 kc.	8 ни.	1 mi. $\}$	65	12	Top	$300 \mu \mu \mathrm{~d}$.
400-15(\%) kr.	2.5 mh.*	*				- μ S.
$\mathrm{B}-1.6$ to 3.2 Mc. (160) meters).	\%	10	42	11	T(1)	
	32	8	27	$!$	Tット	$100 \mu \mu(\mathrm{l}$.
$\mathrm{D}-5.4$ to 10.0 M $\mathrm{I}_{\text {c }}$. (40 meters)	18	8	-2		12	$0.00: \mu\{11 .$
$\mathrm{E}-9.51018 .0 . \mathrm{Mc}$. (20) moters)	10	8	12	31/2	6	$400 \mu \mu \mathrm{fl}$.
$\mathbf{F}-1.50$ in 30 Mc . $(10$ meters)	6	4	i	$\because 1 / 2$	$21 / 2$	$400 \mu \mu \mathrm{fil} \text {. }$
G-30 ${ }^{\text {d }}$ (6) Mr. (5) megurs)	3	3	$31 / 2$	1		$300 \mu \mu \mathrm{fil}$.

[^2]

With the i.f. aligned, the miser grid and oscillator coils for a band can be plugged in. C_{3} should be set near minimum capacity and C_{2} tuned from minimum capacity until a signal is heard. Then C_{1} is adjusted for maximum signal strength. If C_{2} is set at the high-

Fif. 1209 - Below the chassis of the three-tulue recaiver. The r.f. thoke is mounted near thi oscillator coil socket to keep the r.f. leads short. In the i.f. stage, care shonld be takin to keep the plate and urid leads from the i.f. transformer short and well separated. A four-wire cable is used for power-supply connections. The headphone tip jacks may be seen near the upper right-hand corper,

OSCILLATOR

TOP OF SOCKET VIEWS

LOW-FREQUENCY MIXER COILS
Fig. 1210 - How the coils for the three-tube super heterodyne are constricted. Ont the hand-wound oseillator and mixer eoils, all windings are in the same direetion.
frequency end of an amateur band, further

Fif. 1211 - The modified three-tube superheterodyne recriver with the audio-amplifier stage added for loudspeaker operation.

On the broarleast band, the tuning range is such that, with C_{2} set at 1500 kc ., the entire band will be covered on C_{3}. It is necessary, however, to change the tap on the miver eoil to make the antenna circuit cover the entire band. Only one oscillator coil is needed for the range from 75 to 1500 kc , but a series of coils is needed to cover the same range in the mixer circuit.

Fin. 1212 - Circuit diagram of the single-tube pentode audio-amplificr stage which may be added for loudnueaker operation of the threetulue sumerheterodyne. Fivept as noted helow, the values for components correspend to those beariny the same desipnations in lig. 1207.
(11 - 0.1- ffl . papr.
(it5-2.5- $\mu \mathrm{fd}$. electroly tir. 50 velts.
R_{6} - 0.12 megohm, ${ }^{1} 2$ watt.
R_{7} - 0.5 m mpohm wolume control.
$\mathrm{R}_{8}-100$ ohms, I watt.
J-Closed-cirevit jack.
tuning should be done with C_{3}, and the band should be found to cover about seventy-five per cent of the dial. C_{3} can of course be used for handspread tuning ontside as well as inside the amateur bands. It is convenient to calibrate the rociver, using a homemade paper seate for the purpose as shown in Fig. 1206. Calibration points may be taken from incoming signals whose frequencies are known, from a calibrated test oseillator, or from the harmonics of a 100-ke. oscillator, as described in Chapter Nineleen. The mixer calibration need be only approximate, since tuning of the mixer circuit has little effect on the oscillator frequency. It is sufficient to make a calibration which ensures that the mixer is tuned to the desired signal rather than to an image.

Fig. 1213 - The additional parts for the andin stage can be identified in this subchassis view of the modified three-tube receiver.

Fig 1214 - Circuit diagram of a power supply suitable for small receivers.
$\mathrm{C}_{1}, \mathrm{C}_{2}-8$ - or $16-\mu \mathrm{fd}$, electrolytic, 450 volts. $\mathrm{R}_{\mathrm{i}}-5000$ ohms, 10 watts, wire-wound.
L_{1} - Standard replacement type filler choke, 15 to 30 henries at 70 ma .
$\mathrm{S}_{1}-\mathrm{S}_{\text {.p.s.t. toggle switeh. }}$
' I_{1} - Standard replarement-type power tranaformer with 6.3 -volt, 5 -volt, and 6001 wolt center-tapied windings, 70 ma. d.c. ontput rating.

Adiling an andio stage to the three-tube superheterodyne - The three-tube receiver just described is designed for headphone operation, but readily can be converted to a fourtube set for use with a 'speaker. For this purpose a 6 F 6 pentode can be added to the wiruuit diagram, as shown in Fig. 1212. Figs. 1211 and 1213 show the receiver when completed.

For the purpose of driving the aludio stage, resistance coupling is used from the plate of the second detector to the grid of the 6F6. A volume control is used for the grid resistor of the 6F6, and a jack is installed in the seeond-detector plate circuit so that a headphone plug may be inserted. The volume control, R_{-}, should be of the midget type so that it will fit in the chassis; it is installed with its shaft projecting under the tuning dial. In the bottom view, Fig. 1213, the 616 socket is in the upper left corner, along with the cathode resistor and by-pass condenser, R_{8} and C_{15}. The coupling condenser, C_{14}, and the plate resistor, R_{6}, are mounted on an insulated lug strip near the volume control.

The 6 F 6 will require a plate supply of 250 volts at about 40 milliamperes. This may be taken from a regular power pack, and a fivewire connection cable is used to provide an extra lead for the purpose. The first three tubes may be operated from a " 13 " hattery, as before. Alternatively, the power supply may be constructed with a tap giving 90 or 100 volts for these tubes, the tap being connerted to the
proper wire in the connection rable. For best performance, the output voltage should be regulated by a Vli-105 regulator tube. A suitable power supply is shown in Fig. 1214.

The primary winding of the 'speaker output transformer always should be comected in the plate circuit of the Gift. Operation without the plate circuit closed is likely to damage the sereen grid. Any 'speaker having a transformer with a primary impedanere of 7000 ohms will be satisfactory; a permanent-magnet dynamic is convenient, since no field supply for the 'speaker is necessary.

Power supply - Components for the a.c. power supply of Fig. 1214 may be mounted on a $7 \times 7 \times 2$-inch steel chassis or a baseboard made of wood. The placement of parts is not important. If the sterel chassis is userd, the smaller components may be mounted underneath. The voltage of the filament winding should, of course, cormespond to the rated heater voltage of the tuibes usiod, unless a separate heater transformer is used.

(1. An Amateur-Band Eight-Tube Receiver

A receiver with good mechanimal and electrical stability. variable selectivity through the use of a regenerative i.f, amplifier, good a.v.c. and gatin-control whateleristies an andio noise limiter, and aldequate audio for loudspeaker reception is shown in Figs. 1215, 1217

Fig. 1215 - An amatcurband eight-tube receiver. The haohs on the left control audio volume (upper) and h.f.o. pitch, and the two on the right handle r.f. and i.f, gain (upper) and i.f. regeneration, The knob to the left of the lirge tuning hnol, is firco tened 10 the MAN. A.I.C.-B.F.O switch, and the one on the right is for the antenna trimmer. The togyle switeh under the dial throws high nepative bias on the r.f. stage during transmision periods.

and 1218. As can be seen from the circuit in Fir. 1216, a 6sG7 pentode is used for the tumed r.f. stage ahoad of the GK8 converter. An antenna compunsator, Cit $_{4}$, controlled from the panel, allows one to trim up the r.f, stage When using difierent antemnas that might modify the tracking. The cathode bias resistor of the r.f. stage is made as low as possible consistent with the tube ratings, to keep the grin :and hemoe the signal-ta-monse ration of the stage high. The aspilator portion of the 6 lis mixer is tumed to the high-frequeney side of the signal exeept on the 2S- Me. hand, the usiat rastom nowadays in rommunications re-
 of higher capacity than the ral. and mixer tuning conderners: in the interest of better oscillator stability.

The i.f. amplifier is tumed to 45 F ke, and the first stage is made regemerative he soldering a short lengeth of wire to the plate terminal of the socket and rumbing it mear the grid terminal, as indieated by Ca in the diagram. Remeneration is controlled be reducing the grain of the tube. and $R_{\text {as }}$ a variable mathode-biats control, serves this function. The seremel i.f. stage uses it 6К7. selacted heramso high gran is mot nemesstry at this puint.

Nanual gain-ent rol voltane is applied to the r.f. and second i.f. stages. It is not applied to

Fig. 1216- (iirnit diarram of the pisht-tube receiver.

${ }_{\mu} \mu \mathrm{fl}$. "eramic.
C. $\mathbf{C l} 11-15-\mu \mu \mathrm{fl}$. midect variable (Vational (1 I- 1.5).
C. $15-\mu \mu \mathrm{fil}$. midgrt varialile (IIammarlund (IF-M).
 C20, Ciz1. C2n. 123.
 (isc. (0.01- $\mu \mathrm{fl}$. mia: a .

Cis-3- $-\mu \mu \mathrm{fil}$. erramic (10) and $2-\quad$ in parallell).
Cif. Csin. Cisz-10N- $\mu \mathrm{ff}$ f . mica.
 variable (attional ($11-3,5)$ 。
(3 - $2500-\mu \mu \mathrm{fd}$. mirat.
 volts.
Ca4-0.1- mft . paprer. 200 volts.
 etectrolytio.
C_{3} - 0.1 - fd d. napre, 400 volts.
$\mathrm{C}_{3.3}-35-\mu \mu \mathrm{fd}$. mideret varialle (Hammarlumd (1F-35).
Cri, Cra-Sce text.
 megohim.
$R_{2}-68$ olime.
$\mathrm{R}_{3}, \mathrm{R}_{14}-33.000$ ohms.
$\mathrm{h}_{4}, \mathrm{R}_{5}, \mathrm{R}_{\mathrm{f}}, \mathrm{M}_{\mathrm{s}}, \mathrm{H}_{\mathrm{o}}, \mathrm{H}_{13}$, $R_{15}, k_{19}, R_{19}, R_{24}$, $\mathrm{R}_{21}-4$;,000 ohms.
R_{12} - 200llorohm wire. wond potentiomreter.
R_{1} - - 330 olmes.
 mevohm.
Res. Ros - 1 , 1.5 meqolim.

14s-1.0-merohm carbon potentiomcter.
R2\% - 2.5.0010-ohm varlon pubentioncter.
$1_{31}-1 \% 0$ whame, 1 watt.

13:3-0.i meqohm.
All reoitors 吘 watt unlace otherwise noted.
]. throush I_{6} - sec table.
J_{1} - Clowidraranit wlophome jach.
s_{1} - Sp.d. . to
Sat-b-C Chrefole 3 . position wafer - witeh (Cemeralat 950^{-}).
$\mathrm{T}_{1}, \mathrm{~T}_{2}-4.50 \mathrm{kc}$. interstage i.f. transformer, permeability tuned (Millen 61156).
T_{3} - dob t -ke diode transformer, permeability tuncd (Millen 6.4.451).
$\mathrm{T}_{4}-456 \mathrm{kc}$. b.f.o. assembly, permeability tuned (Milled 65456).
the mixer because it might pull the oseillator frequency, and it is not tied in with the first i.f. amphetier beramse it would interlack with the regeneration control used for contrulling the selectivity. However, the a.v.e. voltage is applied to the ref. and both i.f. stages, with the result that the soloctivity of the regemerative stage deereanis with loud signals and gives a measure of automatic seloctivity rombon, Using andegatiovaltage power suphly for the mantall gatin cont mol is mone expmentathan the familiar eathode contral. but it allows a wite range of control with less dissipation in the components. The :t.v.e. is of the delaved type, the a.v.e. diode fome biased about 1 l' wolts by the cathode resistor of the diode-tionde de-terotor-audiostare.

The secone-datertor-and-first-andion is the usual diodr-triode combinationt and uses a
 limiter, and is left in the cireuit all of the time. As is common with this type of eirent it hat* little or no elleect when the lofine is on, hat it is of considerable latpotw phenere remeption on that bands where antomolifle ignition is a fatotor. The constructor ean satisfy himself on its operation when turst hailding ther rewiver and working on it wht of the case. By leaving ond end of the 1×34 flosting and tomehing it to the proper point in tha cirenit. a morked drop in ignition noive will be motrl.

The b.f.o. is caparity-roupled to the detector by solfering ome end of an insulated wire to the avere dionle plate and wrapping sereresl turns of the wime aromed the bif.o, grid la:d. This caparity is dexignated C"as in the diagram. The wire was commeted to the a.vere diode plate lead for wiriner conveniane - the ar.ver
 voltage without apmoriable attenuation.

Headphone ontput is obtained from the
plate circuit of the GSQ7 at J_{1}, and loudspaker output is available from the 6FG amdio-amplifier stage. High-impedanee or erystal headphones are rewommernded for maximum hotadphone output.

The rereiver is built on an aluminum chassis
 Millen toosab lial is used fortming. 'Tlere chasis is made of $\frac{1}{16}$-imeh-h hicks stomb, bent into :

 at the re:tr and $1 / 8$ inch lowe at the font. The reat wige is reinfored with a piowe of : ${ }^{3}$ sinch squate dumat rod that is tapped for serows through the bettom of the rabinel. further to add to the strongh of the strueture when finally asembled. The varions eomperments that are common to the fiont lip of the chatsis and the pand are nsed to tie the two togrelher.

The shiclal panel used to mond the antemat compensator womberser is alsomate of binch aluminum with a "s-inch lip on the side for momating. Patt of the lip must be cht allaty lo char wires amd mount hag patios on some sorkets. se it is adrisable (1) prat in the patmel ather most of the assombly and wiring have been completed. Fhexiblu complinges and haterlite rod couple the condenser to the pand bushing.

The thre tuning combensers are momed on individual brackers of $1 / 1$-inch alumimum. The
 with ! 2-inch lips. A cover of thin alhminumnot shown in the photograph: - sides over the condanier ascembly to dres up the top viow a bit. The dust cover is mot meressary for the satisfortory opreration of the rewerer.

Ceramir sockets are used for the phan-in coils and the ref. amplifier, converter and b.for. tubes. Wiea condensers ware used throughout the recoser for ber-ptsing wherever leasible. becanse they lend themsolves well to compact

Fig. 1217 - This: view of the risht-tate receiver han-i- shows tho mountins of the" tuming cembethers and the phatement of mowt of the large "omponents. The there shimblad phus-in roil amembliess rath be aron to the left of the tinning kanc. The bん8 cumbelier in the t.ino on the left nearst the panel.
'The antomat terminalxtrip. pewar-ximply pluy: hocadoleme jatrk and juraher terminals are momented wh the rear (forckround in this vien) of the chassis.

construction. Paper condensers could be used in the i.f. amplifier but they would crowd things a bit more,

In wiring the receiver, small tie-points were used wherever necessary to support the odd ends of resistors and condensers, and rubber grommets were used wherever wires run through the chassis, with the exception of the tuning-condenser leads. The latter leads, being of No. 14 wire, are self-supporting through the $5 / 16$-inch clearance holes and do not require grommets. The same heavy wire was used for the grid and plate leads of the r.f. stage and the plate lead of the oscillator, to reduce the inductance in these leads. The tuning condensers are grounded back at the coil sockets and not above the chassis as might be the tendency. Screen, cathode and phate by-pass condensers are grounded at a single point for any tube wherever possible, although C C_{2} is grounded at the r.f.-coil socket, C_{8} is grounded at the converter-coil socket, and (${ }^{1} 13$ is returned at the oscillator-coil socket. The plate and $B+$ leads from T_{1} are brought bark to the convorter socket through shield braid, and C_{21} is returned to ground at the converter socket.

The b.f.o. piteh condenser, $C_{3 x}$, is insulated from the chassis and panel by fiber washers, and the rotor is connected back to the tube socket by braid that shiclds the stator lead. This is done to reduce radiation from the b.f.o. which might get in at the front end of the i.f. amplifier.

The coils are wound on Millen 74001 per-meability-tuned coil forms, according to the coil talle. Series condensers are mounted inside the forms on all bands execpt the 80 -meter range, where no condenser is required and the tuning condenser is jumped directly to the grid end of the coils. In building the coils, the washors are first drilled for the leads and then cemented to the form with Duco or other cement. The bottom washer is cemented close

COIL DATA FOR THE EIGIIT-TUBE SLPERIIETERODINE

Coil	S.5Mc.	$7 . M c$.	$14 . M C$.	$28 M c$.
L_{1}	15 t	9 t	6 t	4 t
$L_{2,}, L_{4}$	76 t	33 t	19 t	8 t
$C_{1,} C_{9}$	short	$27 \mu \mu \mathrm{fd}$.	$15 \mu \mu \mathrm{fd}$.	$20 \mu \mu \mathrm{fd}$.
L_{3}	25 t	11 t	7 t	4 t
L_{5}	10 t	8 t	4 t	2 t
L_{0}	47 t	32 t	14 t	6 t
C_{14}	short	$42 \mu \mu \mathrm{fd}$.	$27 \mu \mu \mathrm{fd}$.	$51 \mu \mu \mathrm{fd}$.

All coils wound on Millen 74001 forms, closewound. 3.5-Mc, coils wound with No. 30 enam,; 7 Mc. coils wound with No. 30 d.s.c.; 14-and 28-Mc. coils wound with No, 30 d.s.c, on primaries and ticklers and No. 24 enam. on secondaries. C_{14} for 7 -Mc. range made by connecting 27 -and $15-\mu \mu \mathrm{fd}$. comdensers in parallel. C_{1}, C_{9} and C_{14} Erie Ceramicons mounted in coil form.
to the terminal pins, leaving just enough room to get the soldering iron in to fasten the coil ends and to leave room for the series condenser. The large coils, L_{2}, L_{4} and L_{6}, were wound first in every case, and then a layer of polystyrene Scotch Tape wrapped over the coil, after which the smaller winding was put on and the ends of the windings soldered in place. Since for maximum range of adjustment it is dewirable to allow the powdered-iron slug to be fully withdrawn from the coil, keeping the coils at the base end of the form allows the iron slug to travel out at the other end, under which condition the adjusting screw on the slug projects the least. To secure the wires after winding, drops of cement should be placed on them where they feed through the polystyrene washers.

If a signal generator is available, it can be used to align the i.f. amplifier on 455 kc . in the usual manner. If one is not available, the coupling at $C_{c l}$ can be increased to the point where the i.f. stage oscillates readily and the b,fo. transformer is then tuned until a beat

Fig. 1218 - The mica by-pass condensers used throughout the r.f. and i.f. stagea are grouped aronnd the sockets of their respective tubes. 'liepuints are used wherever necessary to support small resistors and condensers. 'The anteona trimmer condenser is mounted on a bracket which also serves as shielding between the mixer- and r.f.ccoil socketn, and it is offset to allow access to the trimmer screws on the coil forms. The plate and $13+$ leads from the firal I.f. transfmuer. T, are run in shielded Iraid, as are the leads from the b.f.o. pitchcontrol condenser and the volume control.
note is heard. The other transformers can then be aligned until the signal is loudest, after which ('c1 should be decreased until the i.f. oscillates with the regeneration control, R_{12}, about 5 degrees from maximum. The trimmers on T_{1} then should be tuned to require maximum advancing of the regeneration control for oscillation, with a sot value of ('ri. When properly tuncel. the oscillation froqueney of the i.f. stage and the frequency for maximum gain in the regenerative condition, will be the same.
With a set of coils in the front end, set the tuning dial near the high-frequency end and tune in a strong signat or marker with the adjustment serew on the oseillator coil. The converter and r.f. coils can then be peaked, with the antenna compensator set at about half capacitance. Then tune to the other end of the band and see if you have enough bandspread. If the bandspread is inadequate. it mosins that C_{14} is 100 large, and it should be reduced by using a smaller size of condenser or a combination that gives slightly less apaciance. The tracking of the converter and r.f. coils can be checked by repeaking the position of the shags in the roils at the low-frequener and. If the converter or r.f. cont tuning shag has to be advanced farther into the coil (to increase the incluctance) it indicates that ('gor ('t should be larger. Tracking by the method deseribed is at best a compromise, although to all intents and purposes the loss from some slight misalignment is completcly unimportant. Another method would be to tap the tuning condensers on the eoil in the familiar handspreading manner, but this requires considerable time and pationce. Iowever, with the series condensers as used in this receiver, the tuning curve is more crowded at the high-frequeney ond of a range than at the low, and this would be reduced somewhat by the taperd-eoil mothod of bandspread.

The adjust ment of L_{5} can be mate if deremed necessary, by lifting the cathode end of l_{i} and inserting at $0-1$ milliammeter. If the tickler eoil has the right number of turns, the current will be from 0.15 to 0,2 mat, and it won't change: appreciably over the band. . Whthough suth a grid-current work io a fine point and not mally necessary, it is a simple way to determine that the oseillator furtian is workine. since the cold conds of L_{5} and L_{6} are at the same end of the form - the plug rad - and this neressitates winding the two coils in oppositr directions.

Some trouble may be experienced with oscillation in the r.f. stage at 28 Me. However. a grounding strap of spring brass mounted under one of the serews holding the mixer-toil socket to ground the shield when the eoil is plugged in will nomatly (elear up the trouble. Inadequate coupling to the antoma will also let the r.f. stage oscillate under some tuning conditions, and close coupling is highly recommended for stability in this stage and also for best signal response. A 10 -ohm resistor from
L_{2} to the grid of the GSG7 will also do the trick.

It will be found that the over-all gain of the recoiver is quite high on the lower-frequency bands. requiring that the r.f. gain be eut down to prevent overloading on strong signals. For c.w. reception, the regeneration control is advanced to the point just below oscillation and the b.f.o. is detuned slightly to give the familiar single-signal effect. For'phone reeeption, N_{2} is switehed to A.V.C. and volumecontrol adjustmonts made with the audio control, R_{26}. If desired, the regeneration control can be adranced until the i.f. is oscillating weakly, and then a hotorodyne will be ohtained on weak carriers. making them casy to spot. Strong carriers will pull the i.f. out of oscillation because the developed a.v.c. voltage reduces the gain, and hence a simple form of automatic solectivity control is obtained. If it is considered desirable to reduce the i.f. gain when switched to the A. V. (C. position, the regeneration control can be used for this purpose. The MAN. position permits manual gaincontrol operation with the b.f.o. off.

The switeh S_{1} is used for recoive-transmit and throws about 40 volts negative on the grid of the first r.f. stage.

Pouer supply - A power supply suitable for the cight-tube recriver is shown in Figs. 1219 and 1220 . An idea of the parts arrangemont ran beobtained from Fig. 1219, although there is nothing critical about this portion of the reeceiver. If one wantsaneat-hokingstation with no hose power supplies in sight, the power supply can be built into one comer of the loudspaker ciabinet.

Fig. l: 14 - Power supply for the right-tuthe recriver. 'I'worectifer a are required lecoanse a separate supply is insorporated for gain-rontrol purposes. The filter chohe and the negativeromply filter enmbensers are monnted under the chassis. At the rear of the chassis is the sochet for the powor cable.

Fig. 1220 - Power-supply wiring diagram.
$\mathrm{Ci}_{1}, \mathrm{C}_{2}-16-\mu \mathrm{fd} .450$-valt electrolytic. $\mathrm{Ci}_{3}, \mathrm{C}_{4}-8-\mu \mathrm{fl}$. i.50-whle electrolytie.
K_{1} - 500 ohms, 10 watte, wire-womd.
$R_{2}=5(100)$ olmas. 10 watt-, wirrewommat.
$R_{3}-0.1$ megohm. I watt, composition.
I.t - 30-henry llo-mat, filter clahe (Stancor C.1001).
$\mathrm{I}_{1}-3 \overline{50} 0-0-3 \overline{5} 0$ volts. 90 mat: $\overline{5}$ valts at 3 amp., 0.3 volts at $3 . \overline{3}$ amp.

(1. A Band-Pass Converter for 14, 28 and 50 Mc .

To extend the frequency range of a communications rempere a ronverter can be used. to convert from the signal frequemey to that of the reerever. surh a converter is shown in Figs. 1221, 122:3, 122t amb1225, which will give rocreption in the $14-28$ and 50-Mce. hands with any rerever eapable of ming to 7.3 Mr . To simplify comstuction, the r.f. stages are fixedfumed and only the loral osallator is tumed when rumning terose a hand. The band-width of the r.f. stages is sullicient to aceept any signal over an amateur hand widhout noticeable attomation. The broad-hameding is obtained by luading the circuits with resistors to reduce the Q, using a minimum of eapacity for the same reavon, and then "stagering" the dirruits: i.e., tuning them to slightly different freguencies so that the resultant pass band is broad and nearly flat within the required range. The inpur cirenit. from the antenna. mast be broad, and this can only be obatimed hey heary ernpling to the antenna. This condition coincides with the condition for best signal transíor.

As cin be seon from the wining diagram in

Fig. 1222, the only tuning controls in the r.f. stages are the powdered-iron slugs of the enils. These are used to resonate the coils with the circuit rapacitios to the signal frequency. The louding resistors P_{3} and $P_{\text {ti }}$ are usod tobroaden the rireats. The phate and soreen voltages are the same on earh ref. amplifier the to redure the number of by-pass condensers, and filtor mesistors are used to prevent over-all ferd-hack through the common power lead. Another possible sotuce of wer-all feed-back is the heator eineuit. and in this comverter the "hot" heater lead to the input stage was mut in shied brad to reduee the possibility of fect-back.

The oscillator is a straight phate-tickler type using a 60 , and it is coupled to the miver through a caparity shown as dot ted lines in the diagram. Actualty the coupling caparion consists of a short lengtly of wire nome the grid of the miver tube.

The output frequency is 7.3 Mc. approximately. and this is the frepuency to which (${ }_{11} L_{5}$ is thmed. If a frequency slighlly bolow 7.0 Mc. is used there is a possibility that the fourth harmonic of the receiver high-frequency oscillator will find its way into the converter when operating in the -2 - We, band, resulting in a constant signal that has only nuisance value. A low-impedance shielded lime feeds the 7.3-Me. output into the commenications reverver. The communications rerover farnishes the Heressary selectivity,

The wathorde bias of the second r.f. amplitier is variad by the sain contrab. Ping to avoial blocking by strong signals, The "sendereroive" switeh. x_{1}. is used to turn off the ronverter during tramsmission perionts. The
 gain conmol mad is used tu turn wif the power to the comberter.

The power suphly is regulated, using the miniature erquivalent of the VR-10. a and the stabilized 10.5 volts is fed to all stages.

The r.f. stages and mixor are buith as a separate unit on a strip of alumi-

Fig, I22I - A 28. Mr, eonverter that use fixed-taned r.l., staqes amb thus eliminates the ganging ..prob. bem. The knol, at left is for the "sendreceive" switch. and the riwhthand knol is for Lain control.

Fig. IEX2- (irruit diagram of the band-panseonworar.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}, \mathrm{C}_{7}, \mathrm{C}_{\mathrm{s}}, \mathrm{C}_{16}-0.001-\mu \mathrm{fl}$. postage--tamp

R: - 1.11 masedin.

R_{12} - 12.01 chme. 10 walta, wire-wound.

All resixtorn ${ }^{2}$, watt miness otherwise specified.
L_{1}-La- see coil table.

and 1 1/4 Inches high, and is bolled to the silde of the steed rhassife and lo the top. A small strip of bakelite. supported atwey from the side
 the pumer-supply end of the fillor resistors R_{2},
 holes in the bakeline and then wrapard around the strip hefore buing sulthered logather.
$\mathrm{C}_{3}, \mathrm{C}_{6}$ - Inor, $\mu \mathrm{ff}$. postage-stamp mica.
$\mathrm{C}_{9}-0.01-\mu \mathrm{ld}$. miaa.

 additional rapacity momoted in lo. I. form. See coil table.
 with mite stadur flater remowd

$R_{2}, R_{s, ~} R_{1 t}, R_{15}-2.0$ ohms.
num, to furnish at chassis in which the groumds are mone remtain thatl l!ey wollhl be on a black-rearkled siem chassis. and it alsor maties a well-shidhled amplitior whern monnted on thesterel chatsins. The sheol chascis is as shatamd $7 \times 11 \times 2$-inch aflair. I pamal isumod to sup-
 melal worls on the stom rhassis the panel is
supported aw:y feom the chasis beamaluminumbrateket on one side and by two of the screws that fatson the dial to the panel. Holles in the chassis allow arocess to the funing slurs of the ref. coils.

The tuning condensarer is monnted on at stuall alaminum bracket fasemed to the whassis by two sarews alme to the condenser bey the shaft bushine. This results in a rigial mount. thest rombrimber ransidiorahly to the murehamiatal stathility aif the wisciltator.

The cons luction of the aluminlly chatall is ar月arent from $\mathrm{Fi}_{\mathrm{g}} .1221$. It is is inchosion widn

Fig. 1223 - Inother view of the converter showing the r.f. sub. chassis. Note the loracket on the tuning comdenser, 1 -ad to avoid hachla=h.

252

Fik．122．4－The straightforward ar． rangement of the r．f．components is shown in this view of the subehamis． The straisht side is screwed to the side of the chassis．

In the heater circuits of the miniature tubes， Pin 4 is grounded to a lug under the nut fasten－ ing the socket，and Pin 3 is the＂hot＂heater lead．In the case of the input $6 A K \overline{0}$ ，the hot heater lead was led back in shield braid，and the braid was groumed at the lug grounding Pin 4，and to lugs at wo other points along the way．＇lhese latter Jugs are under the nuts fas－ tening the sockets for L_{3} and the output coil， $L_{5} L_{\text {fi }}$.

The cathode and seroon／plate by－pats con－ densers are grounded to luge under nuts hodd－ ing the sockets of their respective phate coils． Since it doesn＇t matler where the cathode re－ sistors are grounded，they are returned to lugs under the coil sockets ahead of them．l＇ins 1 and 2 of the coil sockets are grounded to the lugs just mentioned，the No． 3 pins of the coil sorkets for L_{3}, L_{f} and L_{5} go to the plates of their respective tubes，and the No． 4 pins of the same sockets are connected to the sereen pins on the tube sockets．The grid condensers， C_{3} and C_{6} ，are tied from Pin 7 on the coil sorkets to the grid pins on the tube sorkets．

The oscillator and power－supply wiring on the stecel chassis is eonventional，with the ex－ erption of the oscillat or coupling eondenser． \mathbf{A} small National TPB bushing is mounted on the ehassis where it will be parallel to the lead on the grid side of R ．．This bushing is con－ nected to the stator of C_{14} and the＂hot＂side of L_{7} by a heavy wire，and coupling is obtained by the capacity botween this bushing and the grid lead of the minor stage．The output cable from L_{C} is a length of $\mathrm{R}(-\overline{0} 9 / \mathrm{U} 70-\mathrm{ohm}$ cable．
a discharge will be obtained inside the tube，since the free pin projects inside the tube envelope and acts as an anode．

The eoils for the converter are wound on Niflen $7-1001$ tuned plug－in coil forms．The coils are started on the form about $1 / 8$ inch above the lower limit of travel of the iron slug． I_{n} the case of L_{3} and L_{4} ，one end of the wind－ ing is connnerted to Pin 4 and the other to 1＇in 7．A jumper is then run from Pin 7 to Pin 3．This jumper has the effect of tapping down the plate on the coil，since the jumper has some reactance at these frequencies．In the case of the oseillator coil，the padding condenser，C_{13} ， is mounted inside the coil，although it could be mounted on the coil socket．The tickler，L_{8} ，is wound on the form away from the slug end． The mixer out put capacitor，C_{10} ，is mounted on the socket．All coils are securely fastened with coil dope，and this is particularly important in the case of the oscillator coil assembly，to in－ sure long－time stability．

After the wiring has been completed and checked，the osoillator should be cheoked first． Put a voltmeter across R_{14} and see if the volt－ age increases slightly when the grid of the os－ cillator tube is touched．If it does，it shows that the circuit is oscillating，and the coil can be tuned to frequency with the iron slug．

Couple the output of the converter to a communications receiver on 7.3 Mc．and ad－ just the slug of L_{5} for maxinum noise in the recesver，with power to the converter and the converter gain control at minimum．Some kind of signal will be needed with which to establish the oscillator frequency accurately，and this

COII DATA FOI THE BAVD－PASS CONVERTER

Coil	14．Mc．	2S Mc．	5）Mc．
L_{1}	13 t．No． 26 d．c．c．	8 t．犬゙o． 26 d．c．c．	5 t．No． 26 d．e．c．
L．	3.7 （．No．2fd．c．e．	23 t．N゙o． 24 d．e．c．	8 t．No． 24 d．c．c．spared wire diam．
L_{3}, L_{4}		\＄1／2 t．No． $2 \pm$ d．c．c．	5 t．No．24 d．e．c．sbated twice wire diam．
L_{5}	37 t．No． 26 enam．	same	Satle
L_{6}	9 t．No． 26 enam．	siame	Silne
L_{7}	4 t．No．24d．c．c．	7 t．No． 20 enam．	2 t．Ňo． 24 d．c．c．spaced wire diam．
$L{ }_{8}$	sunaed to orcupy lí inch 3 t ．No． 26 d．e．c．	3 t．ズo， 26 d．c．c．	2 t．Ňo． $2 \pm$ d．c．c．
C_{13}	$150 \mu \mu \mathrm{fd}$ ．	$27 \mu \mu \mathrm{fd}$ ．	$2: 2 \mu \mathrm{fd}$ ．

L_{1} wound over groumd end of L_{2} ，tape insulation．$I_{\text {s }}$ spared from L_{7} by washer thickness．All coils close－wound unless otherwise specified．All coils wound on Millen 74001 mermeatility－tuned forms．

Fis. $1225-$ A view underneath the rhassis shows the polystyrone hushing used to eonple from the osicilator to the mixer. The panelis mountod away from the ehasis to simplify mounting of the dial. 'The tuning screws of the r.f. coil ean be seen projecting through holes in the chassis.
signal can be a harmonic from the station transmitter or a test generator. For 28-Mc. alignment, set the signal source at about 28.5 Me. and the tuning clial at $3 \overline{5}$ and adjust the slug on the oscillator coil until the signal is heard. Short the input of the receiver with a carbon resistor equal in value to the impedance of the antenna line. Having established the tuning range - and checking it at other points if a vailable - peak I_{2}, L_{3} and L_{4} on noise. Tuning across the band, the output noise should peak near the center of the range and fall off slightly at cither end. By increasing the inductance of L_{4} - rumning the slug in -and decreasing the inductance of L_{3}, it will be pos-
sible to get practically uniform noise output over the entire range. It will be found that L_{2} tunes very broadly when loaded by the resistor or the antenna, and its resonance should be checked with this load disconnected, to make certain that the coil can be made to tune through resonance. A sharp increase in the noise will serve as an indication, and it may be found necessary to retard the gain control for this test, to prevent oscillation in the r.f. stages.

If any queer burbles or sudden peaks of noise are encountered, it indicates regeneration in the r.f. stages. If this is encountered, the r.f. stages can be worked on while removed from the chassis, since there will be enough stray oscillator output to the mixer to reeeive signals, and the various plate- and heater-supply leads can be investigated with a $0.001-\mu \mathrm{fd}$. miea condenser until the source of feed-baek is found. Poor grounds can also give trouble.

Under normal conditions. the gain of the communications receiver following the converter will have to be reduced considerably, since the gain of the converter runs around 40 db. It will be found to require very little antenna for normal piek-up, but in order to give it every break it should be used with the best antenna available. Some experiment with the input coupling may be neecssary if a tuned antenna is used, but this might be only a tumed circuit with a link line running to the converter input.

(1) An Audio Noise Limiter

If one is bothered by ignition and other pulse-t pe noise on the higher frequencies, the addlition of a noise limiter to the output of the receiver will result in improved reception and will allow the reception of some weak signals that might otherwise be lost. The limiter shown in Fig. 1226 is plugged in to the receiver 'phone jack and the headphones are plugged into the limiter, so that no work on the receiver is required. The limiter will also keop the strength of e.w. signals at a constant comfortable level and will do much to relieve

Fig. 1226-A crystal-diode noise limiter for une hetween receiver and headjuhomes. Built in a 4 by 4 by 2 inch box, it contains the limiter erystals, bias cells, headphome jack, and on-off switeh, and is provided with a eord and plug to connect to the receiver beadphonc output.
Although primarily intended for cow. revepitisa, tho limiter aloo is highly effective on 'phone signals when the aulio volume level is properly set and the r.f. gain is automatically controlled.

Chapter Twelve

Fip. 1307-Practical dipper cireuit for healphomereception.

$$
\begin{aligned}
& \mathrm{h}_{1} \text { - Single-cirenit jack. } \mathrm{R}_{1}-15,10 \mu \mathrm{~m} \text { ohms, } \mathrm{I}_{2} \text { watt. } \\
& \mathrm{Si}_{1}-\mathrm{Sip}, \mathrm{~s}, \mathrm{t} \text { togyle. }
\end{aligned}
$$

the operating fatigue rowalting from long hours of listoning to crackles, key elicks, blocking signals and the like.

As and be sern from the wiring diagram in Fig. 1227. wo 1N3! arstal diodes, imdividtally biased by 1 6-volt dry cells are used to short-circuit any signal eoming through the phone circuit that has an amplitude greater than about 3 wolte, peak-te-peak. I lence if the atudio gath of the reroiver is adjusted to give a signal of this amplitude - comfortable headphone volume - nomis praks of greater amplitude will be short-eircuited and not hearel in the heatphones. i 6.12 .5 twin diode can be substituted for the two 1×3.4 erystals, but a heater supply will be redured and it is generally mere convenient to build the limiter as shown. No current is drawn from the 1 wo colls used for hias, and they will last their shell life.

The limiter ran be built in a $4 \times 4 \times 2$-ineh rabinet, ats shown in Fig. 12\%. By removing the two sides of the cabinet, afl of the components an be monnted in the frame. The two dry eedls can be taped together and then heled in pare by heaty leads soldered to them, or sperial elips can be made of spring brass. The two 1×34 ervalal diales are best mounted on tie-points, and the pigtails of the diodes should be held in a pair of long-nose phiers while soldering to them, because ton mush heat from the soldaring iron may decrease the effertiveness of the erysial. The pliers cumduct the heat away that might otherwise reath the crystal.

c. An Antenna-Coupling Unit for Receiving

It will often be found advantageous on the 14- and 28-Me. bands to tune (ar mateh) the rewiving antena ied line to the reever, in order to get the most out of the anterna. A compart unit for this purpose is shown in Fig. 122s. The witing diagram, Fig. 1220, shows that the unit is a simple pi-sertion coupler. By proper selection of the condenser and imbuctance values, a match can he obtained over a wide range of values. It ran be placed close to the reeciver and left conneeted all of the time, simee it will have little or no effect on the lower frequencies. A short lengh

Fig. 1328 - Rear view of the antematompling unit. The two abile can be sed directly below the two condensers.
of 300 -ohm Twin-tead is comvenient for connecting the eoupler to the rexiver.

The antenna coupler is built in a $3 \times 4 \times 5$ inch metal cabinet. All of the eomponents execpt the two pairs of terminats ame monted on one pancl. The eondensers are monnted off the panel by the spacers furnished with the condensers, and a clearance hold for the shatt prevents any short-circuit to the pinel. The coils, wound on N:ational PRl)-2 polystyrene forms, are fastened to the pancl with brass sorevs and the coils should be wound on the coils as far as posible away from the mounting ent. If this still leaves the coil emts within $\frac{1}{6}$ inch of the pand, the forms should te spated away from the panel by Natimal XP-6 buttons. The switch should be wired so that the

Fig. 1229 - Circuit diagram of the coupling unit.

 diamerer polyalyrune form, tapmed at 212.6^{1} 2 and $11 \frac{1}{2}$ turns.
$S_{1}-2$-circuit 5 -poition single-section ceramic wafer switch (Mallory 173 C).
switching sequence puts in. in earh coil. 0
 turns. All of the wiring, with the exception of the imput and output lerminals, can be done with the pancl remused frum the hox.

The unit is adjusted for maximum signal by switching to different coil positions and adjusting (') and ('2. It will not be noeessary to retrim the condensers exeept when going from one end of a band to the other, and when the unit is not in use, as on 7 and 3.5 Me., the coils should be switehed out of the circuit and the condensers set at minimum.

$T_{\text {ransmilter }}$

 ConstructionIN the desoriptions of apparatus to follow, mot only the electrical specifications but also the manularturer's mame and type mumber have been given for most eomponents. 'l'his is for the comvenienee of the builder who may wish tw make an exact copy of some piece of equipment. However, it should be understoned that a eomponent of different manufacture. provided it is of ernivalent qutatity and has the same electrical specifieations, may be substituted in most cases.

© A Beginner's Transmitter

Gne of the simplest satisfaedory transmillers for ameateur we is shown in the pholographes of Fige. 1301 and 1303. The cireuit diagram appears in Fig. 1302. The amamoment enmsists of a Piare ervstal asoilhator raparitancecoupled to an output statur which mas be used either as a sitaight amplifier at the erestal frequeney or as a freegemey dombler to deliver output at twior the erystal frefurners. This combination has the alduatage over a simple oscillator transmitar in that the andiltator is isolated from the efferets of tunine and loading.
 equivalents. may he used in aither the oseitfator or amplifier with only a slight difforenore in performance at the supplied plale voltage.

By the use of the proper coil al $/ .1$, output
 erysal or at 7 or 14 Mr. with a 7 - Ma . .rystal. The :mplifier input is not tumed so that nentralization of the output stage is mmeressary. Co provides regeneration: its vabue should not depart appremably firm that ruenified. The output tank rirenit is in the form of a pi-sertion filter which makes it possible to use the tranmitter witle a wide variety of antemba systems.

Parallol plate ferd is used in the output stage to remove pate voltare from the tuning comdensers and the coil. Plate vollage for the osciltator is reduced by the series resistor, R s. while serern voltage is ohtained from the voltage divider made up of h^{2} and R_{3}. In the amplifier sestion. the sereen vollage is ohtained from the scomed voltage divibor comsisting of $R_{f_{i}}$ and $h_{\text {r }}$. Grid hias for the medilatar is obtained from the grid leak, R, alome, while a combination ol rathode resistar (R_{i}) :and grid leak (R_{1}) is useal for the amplifier. A fio-mata disl lamp serves as a mosmane indiator in tuming up the tramsmitter.

Conspruction - The whasis of frame is made entirely from lattiee strip. 158 inches wide and $1 / 4$ inch thick. Thesketh ol Fig. 1304 shows how the strips are fastened together with 1 -itwh wire brads. The 1 !-ind spaciner botween the top strips is apmopritte for

Fig. 1301 - The commote beqinner* 1 ran-. mitter. In the r.f. unit in the foreqromm. Ieft to right. are the iprong sochet for the pewerphag.owtal anch. rt:- for the erystal, o... cillator tube and anplifier twhe, and the output tanh comdenscres. C9 and Cio, with the coil L_{1} in betwern.
On the poweresupply chassis at the rear are the filter elowe l.s. the 'J ype at' reיtitine then and dier pern: transformer. The filter comberant. (in athl Gia, and the blower resistor, $R_{9,}$ are umder. neath. The her-rick filter is to the right.

256

Fip. 1302 - Circuit diagram of the beginner's transmitter and power supply.
$\mathrm{C}_{1}, \mathrm{C}_{3}-0.001-\mu \mathrm{fd}$. mira.
$C_{2}, \mathrm{C}_{5}-100-\mu \mu \mathrm{fl}$. mica.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{6} \mathrm{C}_{7}-\mathbf{0 . 0 1 - \mu \mathrm { fd }}$. paper.
$\mathrm{C}_{9}, \mathrm{C}_{10}-250-\mu \mathrm{ff}$. varialle (National TMS 250).
$\mathrm{C}_{11}, \mathrm{C}_{12}-16 . \mu \mathrm{fil}$. $47 \overline{\mathrm{~J}}$-volt elec. trolytir.
$\mathrm{C}_{13}-1-\mu \mathrm{fil}$. f(00-wolt maner.
Cit - $0.5{ }_{\mu}$ fil. 100 -volt paper.
$\mathrm{R}_{1}, \mathrm{R}_{3}-47,000$ olme, 1 watt.
$\mathrm{R}_{2}, \mathrm{R}_{6}-0.1$ megohm, 1 watt.
$h_{4}-22,000$ ohnns, $1 / 2$ watt.
$\mathrm{R}_{5}, \mathrm{R}_{10}-330$ ohms, 1 natt.
$\mathrm{R}_{7}, \mathrm{R}_{\mathrm{s}}-15,000$ ohms, 2 watts.
$R_{\theta}-20,000$ ohms, wire-wound, 10 watts.
$\mathrm{L}_{1}-3.5$ Mc.: 32 turns No. 20 d s.c., $11 / 2$-inch diam, rlose-wound. -7 Mc.: 20 turns No. 20 enam., $11 / 2$-inch diam., $11 / 2$ inches long.

- 14 Me:: 10 turns No. 18 enam., $1 / 2$-inch diam., 1 inch lous.
 coils nay be substituted.)
L_{2} - Filter choke, 10 hy., 130 ma. (itancor C-2303).
I_{1} - 60 -ma. dial lamp.
$\mathrm{P}_{1}-5$-prong chassis-mounting male plug.
$\mathrm{P}_{2}-5$-prong female cable plug.
$\mathrm{l}_{3}^{2}-$ A.c. Lincocord plug.

' 1 - Power transformer: 350 volts each side of center: 5 v., 3 amp.; 6.3 v.i 4.5 amp . (Stancor P-408ii).
$\mathrm{V}_{1}, \mathrm{~V}_{2}-6 \mathrm{~K}, 61.6,6 \mathrm{~F} 6$ or glass equivalents.
V_{3} - Type 80 rectifier.

Millen sockets, but it can be changed to suit sockets of other dimensions, of course.

The completed chassis was given a couple of coats of grey Duco. The sockets are fastened in place by means of small wood screws and are orientated so that most-convenient comections may be made. The power-plug socket has its metal-ring key to the left, the oscillator tube socket key is to the right, the amplifier tube socket toward the front and the coil socket toward the left.

All wiring is done underneath. The ground wire is a piece of No. 14 bare wire which runs the length of the chassis from the No. 4 prong on the power-supply socket to the rotor of C_{10}.

To this wire all ground commections shown in the diagram are made. Connections to by-pass condensurs and r.f. chokes should be as short as possible, the by-pass condensers being conneeted to the nearest point on the ground wire. A pair of fiber lug strips provide anchorage for resistors and r.f. chokes. "Hot" r.f. leads (those from the plates and control grids of the tubes and the commections between the tuning condensers and the coil) should be short and direct instead of going around rightangle bends. The output terminals are a pair of Fahnestock clips fastened to the two sides of C_{n}.

Homemade coils may be constructed by

Fig. 1303-Bottom view of the beginner's transmitter. The bypaas condensers, r.f. chokes and resistors are urouped around the tulue sockets. The ground wire mentioned in the text runs along the top edpe of the lower chassis strip. The indicator lamp, $I_{\text {, }}$ is wired in che $B+$ line just below the amplifier plate r.f.choke. It
 is placed underneath the chassis where it ean be viewed from above through the oprening between the chassis strips. The r.f. choke to the right is in the amplifier and the one to the left is in the oseillator circuit.
winding them. acrording to the dimensions given under Fig. 1302, on Hammarlund $11 / 2$-inch diametar i-prong coil forms. Those shown in the photograph ste the B \& W J Lis suryies. The link winding is not usod.

Inexpensive components are used in the power supply. The transormer is a broadcast-receiver replane ment trpe as are the filtur components. The whesis: is similar to that wised for the transmitter, the only difference being in the length $91 / 2$ inches instead of 151 gh inches. The filler condensers, and the bleoder resistor. Ra. are plamed undorneath.

The ker-cliel filter is a sparate mait assembled on a small piere of 'a-inch wood. Ther connecting loads and the leads to the kery shoukd be short if the filtor is to be affoctive. The side of the filter comereded to power-phes Pin 5 should be connected to the frame of the key.

Adjustment - The transmitter should first be tumed up, without the anteman connected. It should be remembered that onty the second harmonice of arestals betwern 3 Boto athd 3650 kc . and betwern 7000 and 7200 ke are useful in the higher-frequency amaterur hambs. With a suitable crwat and roil plugen in, the power supply maty be phagend in and the key closed after atlowing time for the heaters of the tubes to come up to tempertame. The indicator lamp, should glow brighty when the key is closed. setting ('10 at about hatf cetpacitance, ('9 should be :uljusted as J_{1} is watehed for a dip in illumination. If this dip rammot be found anywhere within the range of ('9, another setting of ('io should be tried. As som ans the dip has been fomme the antemat maty be: connected, and the tuning process repraterd as before. With the antenna eonnertent the dip at resonance will toot be so pronouncerl. In fact, when the amplifior is loaded property. the dip should be just moticeable - just chough to indicate that tha output circuil is tumed to resonance. The proper loating point may be found by adjusing ('onat several fixed seting.s. and rotating C.9 through its range for cath setting of Co. As the proper point is approached, the rapacitance of r_{10} shoulal be adjusted in smaller stopr. In most cases the loading will increase as the caparitance sotting of C_{10} is decreased. Noar maximum loading, the adjustment is fairly critical. With antennas of certain dimensions, it may be nerossary to shorterirenit afew turne on L_{1} to ohtain maximum loading in the $3.5-$. Mc. band with the $\mathrm{B} \& \mathrm{~W}$ coil.

While the best antenma within the limits ol cost and space should be usid, the output circuit provides means of ferding power into a
wire of random length; it is not nocessary that its length be a mulaphe of a half wavelengith. With the power supply deseribud, an output of about 10 watts shombl be prosilide at the erestal fundamontal; and is on (i) watts when tho output stage is used as a frequency doubher. If a milliammeter is connereded in series with the key, it should show a mealing of about 20 mat. with the amplifier tumed to resonance and unloaded at the crystal fundamental amd about, 40 ma . when doubling. Lowded, the plate current should tun belwern 70 athd 80 mat With a powrorsupply voltage of 350. the secilator plate voltage shoulal be 170, the oseilator sreren voltage 90 and the amplifier sereen woltage 220 with the amplifier loaded and tuned to resonance.

(1) A Self-Contained 60-watt Transmitter for 3 Bands

The diagram of Fig. 1307 shows the rireuit of a simple two-stage transmitter. The rig, shown in Fig. 1:305. is conclosed in a cabimet, complete with power supply and antenna tuncr.

A (ivogre Trito semillator drives an sot output stage divectly with simple eapacitive coupling. Any omo of tom rystals maty be solected from the fromt of the panel by the erystal switw. x_{1}. I pair of terminals also is provided at the ruar for VFO conneetion. Bands are changed by means of a system of plug-in coils.

The oscillator cirenit operates with cither 3.5- or 7-Me. erystals. In cither case, oscillator output may be obtained at the erystal fundatmontal frequency or its second harmonic. While the output stage may be used as a frequency dombler with lair eflicioney, this sort, of operation is not recommended unkess the unit is to be used as an exciter for a following amplifier.

Parallel plate ford is usod in both stages to pormit mounting the tuning condensers, $f 2$ and ('3. directly on the metal chassis without insulation. The v.luif. chone $R F^{\prime} C_{2}$ and the sereen resistor, R-, are neecssary to suppress h.f. parasitic oscillations.

Fig. $1305-\mathrm{A}$ two. stage low-power transmitter for three bands. I'o either side of the nilliammeter are the osciltator and amplitier plate-tuning controls. Along the bottom are the crystal switch, the plate-voltage switch, the meter switch, the key jack and the antenna tuning control.

The s.p.d.t. toggle switch, S_{2}, makes it possible either to key both staress simultancously for break-in work on the lower frequencies, or the output stage alone at $14-$ Mc. frequencies where oscillator keving ehirp may become noticeable. The unit includes a link-coupled antenna tuner, $L_{4} C_{4}$.

The self-contained power supply is built around an inexpensive multiwinding transformer, T_{1}. The separate filament transformer, T_{2}, makes it possible to cut off the plate voltage without turuing off the heaters of the tubes. A condenser-input filter is used to boost the output voltage to 600 under load. Voltage for the plate of the oscillator and the screen of the 807 is kept from soaring when the key is open by a pair of voltage-regulator tuhes. This oporating voltage of 250 is dropped to 150 volts. for the sereen of the 6 V 6 GT by the series resistor, R_{3}.

The milliammeter may be switched to read oscillator plate current and 807 grid or plate current by the double-gang switeh, S_{3}, which connects the meter across the shunting resistors, R_{4}, R_{6} and R_{8}, R_{4} and R_{8} are adjusted to inultiply the $10-\mathrm{mit}$. basic meter-scale reading by 10 and 20 , making the full-scale reading 100 and 200 ma. respectively when checking plate currents, while the resistance of R_{6} is sufficiently high to have negrigible effect upon the meter reading when measuring the grid current of the amplifier.

Construction - Reference should be made to the photographs of Figs. 1305 through 1310 for constructional details. The transmitter is built on a $10 \times 14 \times 3$-inch chassis which fits a standard $9 \times 15 \times 10 \frac{3}{4}$-inch cabinet. The r.f. section oceupies the front half of the chassis, while the power-supply components are lined $u p$ at the rear.

All tube and coil sockets are submounted. The cathode coil. L_{1}, roquiros a 4-prong soeket; octals are needed for the GV6GT, the oscillator plate eoil, L_{2}, the rectifier and the two VR tubes; L_{3} and L_{4} require 5 -prong sockets.

The oscillator and amplifier groups are separated by a small bathe shield cut from sheet aluminum. It is 4 inches high and 5 inches long and has a cut-out in front for the meler. It is spaced 8 inches in from the right-hand end of the chassis. The line of ten Millen erystal

Fig. 1306- The oscillator section of the low-power transmitter, showing the line of crystal sockets, the cathode coil, the shiclded plate coil and the 6V6GT.

Fis. 1.30^{-}(:ireuit diagram of the 3-bind lows-power transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{8}-100$ - μ ffl. misa.
$\mathrm{C}_{\mathrm{x}}-\mathrm{C} 100 \cdot \mu \mu \mathrm{fd}$. mica (ser t.vit).
C_{2} - $50-\mu \mu \mathrm{fd}$ variabla (Natanal ST-.00)
C_{2} - 22- $\mu \mu \mathrm{fl}$ mica (wer tevt)
$\mathrm{C}_{3} \mathrm{C}_{4}-1,50-\mu \mathrm{ffl}$ variathe ($\mathrm{National} \mathrm{ST}-150$).
$\mathrm{C}_{5}, \mathrm{Cf}_{6}$, E - $11.01-\mu \mathrm{fl}$. paper.
$\mathrm{C}_{7}, \mathrm{C}_{10}-0.001-\mu \mathrm{fl}$. mical.
$\mathrm{C}_{41}, \mathrm{C}_{12}$ - 4 . $\mu \mathrm{ff}$) low(O-solt paper.
$\mathrm{R}_{1}-220$ ohms, 1 watt.
$\mathrm{R}_{2}-47,000$ ohms, $\frac{1}{2}$ watt.
R_{3} - 40,000 ohme. 3 watt:.
$R_{4}-100 \cdot \mathrm{mat}$ meters shant (see text)
$\mathrm{R}_{5}-15.0100 \mathrm{oh}$ oms. 1 watt.
$\mathrm{R}_{6}-17$ ohms, $1 / 2$ watt.
$187-47$ ohms 11 watt.
$\mathrm{R}_{8}-200$-ma, meter shant (ace text).
$\mathrm{R}_{9}-50,0 \% 0$ whins. 2.5 walt 5 .
\mathbf{R}_{10} - 10,0000 ohtus. 2.5 watt
L_{1} - Oscillator wathorle
14 (3.-Mc. crystals) - 11 turns No. 22 d.e.r., 1. inch diam.. "'s inch leng. lot-mpfil. mica, C, conmected in parallel.
13 (6 -Me. crystals) - 10 turns No. 22 d.e.c., 1. inch diann., シs ineh long.
L_{2}-Osrillator plate
21 (3.5 $\mathbf{~ 1 1 . .) - 8 0 ~ t u r n s ~ N o . ~} 26$ d.s.c., $1 / 2$-inch diam., dose-wound, co connected in parallicl.
 close-wound.
$2 \mathrm{C}-(14 \mathrm{Mr})$.25 turns No. 18 d.c.c., 16 -inels diam., 1 y inches long-
sockets is placed ats rlose to the left-hand edge of the chassis as possible. Wach of these requires two charance holes and a mountingscrew hole between.

Alongside the ervatal row aro the GrogT oscillator tube and its cathode coil, L_{-1}. Followed by the plate coil. L_{23}, and the osillator tuning condenser, ('2. Thr latter is mounted directly on the chassis tis inches from the left-hand edge. The escillator grid athe pate rhokes are monnted underneath.

On the other side of the batle shided are the 807 with its plate-circuit choke and booking condenser, (${ }_{10}$, the output tank condenser and

L3 - Amplifier plate
 inches long (13 \& W JFISB0 with 16 turns remosed). 3-turn link.
3 B (5 Mc)-18 turn 1 16-inch diam., 13 inches lonen (BN W JI:I IO). Oturn link.
3C ($1.1 \mathrm{H}_{4} 1-12$ turns 112 imell diam., 2 inches long ($B \mathbb{X}$ W JI: $: \geq 20)$. 2 -tarn link.
L_{4} - Antemba coil
 leng, 3-turn variable link at ember (B \& W

 long. 3-turn link at center (B \& W jVit(0).
$4(: 14 \mathrm{Mr})-$.11 turns $1^{3} \frac{1}{4}$-inch diam. $21 /$ inches lomg. 3-turn link at centur (B \& W JVizo).
15 - 6 herry $1 \overline{2}$-ma, filter choke.
1-6.3-volt signal lamp.
J_{1} - Cilowed-circuit jach.
111-0-10 ma. metur.
RFC, - - i-min r.f. choke.

s_{1} - 11-pmint tap witelo, ceramic insulation.
$S_{2}-S_{\text {p.d.t. togyl }}$
3 - Domble-tank 3 -position rotary witeh.

Th-600 volt carli side of center, 200 ma.: 5 volts, 3 amp. (1 ' 1 C $\mathrm{C}-11$).
$\mathrm{T}_{2}-6.3$ volts, 3 amp . (L'TC S--̄̃).
 types in series to give 2.5 wolts.
coil, C_{3} and L_{3}, and the antemat-coupler eoil, L_{4}. The antenna tuning condenser. C_{4}, is nounted under the chassis. The socked for the 807 is spacod as far below the chassis level as possible. without protruding from the bottom, by moans of brackets cut from strip metal. The purpose of this is to provide a shichd between the input and output sections of the tube. A 178 -inch hole is required to clear the tabe envelope. ('s is mounted directly on the chassis wh its shaft t^{5} inches from the right-hand end of the chassis to halance the shaft of the gscillator plate-tank romdenser.

The antenna tuning eondenser, C4, must be

Fís, 7308 - Loohing into the anplifier end of the 80 . transmitter chassis. 'The 30- sueket is -paced below the chasais to provide shichding fertwern the imput atol ant-
 tuner. while the one ledind it is the amplitier flate tank coil.

Breulated from the chassis. This is dome hy means of : 1 ahmimm angle bracket ame a pair
 denser is phaced so that its shaft comes $t^{\text {th }}$ inehe: from the cond of the chassis lo batabee the shatit of the ervelat switeb at the oppm-ju and. The antemas coil is momented at right athgles 10 La .

Tha meter swith, s_{3}, is mounterl at the conter butwern the front edge of the chassis athe the hotlom part of the 80\%. The key jack
 rither sulde of the cemter of the front edere of the (hansis.

The power-supply components are phen as rlose at presiblhe the the rear edge of the ehassis. with the trameformer I_{1} at the left followed hy the rectified atod voltage-regulator tulues. the input condenser, $\mathbf{I}_{\text {no }}$, the filter choke. $L_{\text {a }}$ and the output combenser. A hame cut-ont is reguired for the transformer terminals and if filtor condensers of the tyen shown are nsed. holes for the terminals must be provided in adtition to the monnting-sorew holes. Tha leads to the filter choke are fed dowen thement a prommetlined hole next to the eholie. The key witeh. sio, and the antematerminats are mounted in the rate eden of the whasis where the power comed alsu enters.

Conderneath the ehassis, the power wirine was lome first. kereping it bunched and elane to the chassis wherever possible. The separate filament fationamer T_{2}, is fastened th the lefthand end of the chatsis. ISy-pats combernors and r.f. chokesshould be phaced close 10 the tule torminals to which they conneet. Thu

rhassis at the nearest available point. The (ompling and blocking condensers. C', Cis and fin. shomal be well spaced from the chassis. The same applies to all r.f. wiring, which shomblatso be kept short and direet between point: of connection. The longth of leads to resislors is not important. In some cases it may berenveniont to use fibor lug ships as anchorande or supports for small resistors and r.f. rhokes.

The mond shumts. h_{4}, R_{6} and R_{8}, are momuteal directly on the meter switeh. R_{1} and
 poximatedy $\overline{7}$ fore will be required for R_{8} and 1.6 leed for R_{4}. Before the meter is mounted in the pathel, it should be commeted in serie's with a 3-volt hattery and at variable resistance of about soo ohms. A resistor with a slider will serve the purpuse if mo other is avaibable. 'lha mesistance should be adjusted until the moler reads full scale. When the shunting wire, fut to a lengeth of two or three feet more than that required is eommerted across the moner termiats, the reading will drop. The lenght of the wire should be adjusted, bit by hit. watil the reatine drops to 1 nat. for R_{A} and to ${ }^{\prime}$, man. for R^{\prime}. The wire then may be wound on a suatl form for compactucss. A 1 -watt resistor of 100 ohms or more makes a good form and its resistane does not affee the calibration of the shunt to any practical degrer.

The link lina betwern the output lamk eireuit and the antemat tumer, and the ronnections betwern the lather and the antematominals at the weate should be made with rigid wire spaced Well away from the chassis and surrounding emmponents.

Coils-The output aml antenna tank poils. L_{3} and L_{4}. ate of the 13 \& W JEL and JW, sums respetionly.

Some of these require pruning, as indicated in the rent tather, to proside the arored L / C^{\prime} ratio. The antennathmer eoil. $L_{\text {f }}$ recpuires an extapar of contachs for the tap leads. Since a rontertap is mot reguiped, it may be cut free from the base pin so that this pin may be used for we of the tap combats. The other tap contact is provider by drilling out the tubular rivet at one of the ends of the coil-supporting base strip and sombstituting a hanama plug as stown in Fig. 1309. A jaw for this pluy then is monnted in the chassic duse to the eot sucket

Fia. 7300 - 'The anteana mail for the 2-itage transmitter requires the addition ol an evera contact which is pro-
 waillator , 口ate (onil with the miea padding comdenser (ernterted arros- the winding.

Fig. 1310 - Пniiom virw of the low-pmoner transmitter, shoming the momting of the 807 socket at the upper center and the location of by-pace condensers, resishors and r.f. chokers. 'The sirparate filament tratisformer is fastened to the left-land edtre or the chassis. The antenna turing condernerer is in the unprer rizhthand comer, supported on an aluminum athre bracket which is insin. lated from the chasis by polystyrene but. tons.

by drilling out a pair of polysigrene buttontype feed-through insulators to fit the jack and setting them in the chassis.

The two cathode coils for L_{1} are wound on Millen 4 -prong 1 -inch forms. The one to be used with 3.j-M(e. crystalls recpuires a 100 ($-\mu \mu \mathrm{fl}$. mica condenser, ("x. connected across it in addition to (' 1 . This condensor is moment inside the form so that it is commered in the cireuit along with the coil when the latter is plugged in.

The oscillator plate coils are wound on Millen octal-base shielded plug-in forms. If the forms are of the type with iron-core slugs, these should be removed. The $3 . \overline{5}-\mathrm{Mc}$. coil requires an extra padding condenser, C_{Z}^{\prime}, of $22 \mu \mu \mathrm{fd}$. This may be a mica condenser soldered across the winding as shown in the photograph of Fig. 1309.

Adjustment - Since the tuning of the cathode tank eircuit is fixed, only three eircuits, including the anterna circuit, need adjustment. The coil table shows which coils should be plugged in to obtain output depending upon the crystal frequency and the output frequency desired. For initial testing it is well to use a combination giving output in the $3.5-$ or 7 -Mc. band. Before turning on the power supply, a key conneded to a plug should be inserted in the key jack and the key switch. S_{2}, should be thrown to the amplifier-keying side. This will permit the oscillator to operate alone.

COIL TABLE-60-WATT HIC;

X tal f.	Outpuef.	1.	L_{2}	L. 3	L_{4}
3.5 Mc .	3.5 Mr .	1.4	2.1	31	4.1
3.5 Mc .	7 Mc	1.4	2 H	313	+13
7 Mc .	7 Mc .	113	213	313	+ ${ }^{3}$
7 Mc .	14 Mc .	1B	2C	3 C	4):

When the power plag is inserted, the heaters of the lutnes should warm up. The Vif tubes should ghow as soon as the power switelh, 心. \mathfrak{S}_{4}, closed. If they do not, the resistance of R_{10} should be redued until they do.

With the high voltage applied and the meter switehed to the first position for oseillator phate curvent. the metor should read between 35 and 50 mat. As (${ }_{2}$ is adjusted, a point will be foomd where the plate current dips io a minimum (betwern 10 mat. and 30 ma. depending upon the frecguency), rising on either side. If L_{2} has been made close to specifications, this resonance point should be found with about 60 per cent of maximum capacitance in use at (2 for 3500 $\mathrm{kc} . \mathrm{F}^{70}$ per cent for 7000 kc and 30 per cent for 14.000 ke. If the phate rireuit is tumed to a harmonic of the erystal frecquency, the increase in current either side of the minimum should be smeoth. However, if the plate circuit is tuned to the crystal frequency, the plate current may jump suddenly to a high value when it is tuned to the high-capacitance side of the minimum plate-current point. This indicates that the circuit has stopped oscillating. (2 should be set sufficiently to the low-capacitance side of the minimum to insure reliable starting of the oscillator when the power is switehed on or when the amplifior is keyed.

When Vlㅇ) input is used, the cathode tank circuit should be shorted ont. Otherwise the adjustment is the same exerpt that the oscillator plate circuit may be tuncd for maximum amplifior grid current at the fundamental as well as at the harmonic.

The amplifier should be tumed up first with the antenna coil out of its socket. With the meter switehed to the second position where it reads amplifier grid current, a reading of 3 to 9

Fig. 1.311 - Front view of the plugein eoil transmitier-excitcr. The ervistaloswited knob is at the left, 2^{21} inches in from the end of the pancl, the dial for the buffer-tombler tuning condinner mext. f1/2 inches in, followed bs the meteresmit.l? hurh. Fiowh a iot from the cider. The meter is at the conter aud the output tanh-combenere control at the risht, 4 4 年 ind his from the end of the partet.
mat. shotla be whtamed when the key is rened. If no gridecurent mating is ohtamed. it is probable that the owilkatom stoperd when the key was closed. In his cotse, the tuning of the oscillator should he rawlyusted. In this instance, al least, it has beren foumd that best keying is obtamed when the owillator plate circuit is detumed to the low-capacity side of resonamee to a mint where the wedlator plate earrent remains constant with the ker open athe closed. This rofers moly tomplifier keying when the aserilator phate ciment is tuned to the erystal fumdamental, of course. Rambings of 5 to 10 nas. or more should he obtained in all caties. The key shoulal mot be hedd rlosed for perinde longer than nemesary to oblain the reating. until the amplifier plate circuit is tumed to resumather.

With the meter switeh thrown to the last position. Where it mats amplifier platererurent, a realing of 100 mat. or more should be obtatued. A: r_{3} is tomed though its range the plate "urrent shond dipe to a minimum of betwern 10 ath! ! 5 mat. With the l_{0} a coils altured as indiated in the coil table, resumane shoudal owour at approximatidy 90 per eent for 3.500 Kr.. 30 per cont for 7 Ite, and 15 per cent for 14 Mc .

The antemath should now be commected io the anternat lermanal: and the antenna mothergered in. The adjustable link of the antemat coupler should he swong about hali-way out and the taps should be pared on the outside turns of If. With the key elowed. (tif should be swong through its range. It sombe point the amplifier wate current should increase to a maximum,

Herrasing on dither side. Leaving r_{4} at the mint where maximum plate current is obtained. ('3 should be readiusted for a minimum point which. of course. will be higher than the unloaded minimum obtained before. The atjustments of ('3 and r^{\prime} thould be jurgeded aroumd until a point is reathed where any chamge in r_{3} will catwe an inerease in pate curtont, while any adjusiment of (eq will catuse a deweasie in plate current. If the plate curvent at this point is lass than the maximmo rated pata current for the tube the link coupling shoudd be closed up, If it is greater thath 100 ma.. the coupling should be reduced. If it is found that the link adjustment is insufficient to bring the plate curreat to the desired value, the taps should be: moved in a turn at a time, kerping them always equidistant from the ends of the coil. It shouk be remembered that the tap aljustments as well as any change in the pesition of the link may affeet the tuning of the amplificr plate rircuit, so it should be retuned to obtatin minimum phate current as a final aljustment. This minimum should, of eosure be the rated pate current of low ma. when the amplifier is fully loadod. The dip in plate curront at resonance maturally will be very slight when the amplifier is operating under full load.

© A 75-Watt Plug-In Coil Transmitter-Exciter

The compact 75 -watt transmitter unit shown in the photomraphs of Fioss. 1311 and 1312 consists of three stages. The circuit diagram appoars in Fig. 1313. I 6 V 6 P Perce crys-

Fif. 1.312-Botcom view of the mmpact 7.5 -watt tranimitter-ex--itcr. The output tanh-rirecuis comphonents are to the
 the rishti-divided li, the aluminum - inhpanel to which the 80% socket, Ci. and the revatal -witrly aro at lathend.

$\mathcal{J}_{\text {ransmiller }} \mathcal{C o n s t r u c t i o n ~}$
 263

Fip. 131.3-Circuit diagram of the 75 -watt plug-in-roil transmitter-estiter,
C_{1} - 100 - μ fil variable (Millen nolom

$\mathrm{C}_{3}, \mathrm{C}_{10}, \mathrm{C}_{14}-0.001-\mu \mathrm{fl}$, mica.
$\mathrm{C}_{1}, \mathrm{C}_{\mathrm{i}}, \mathrm{C}_{11}-100$ - $\mu \mathrm{ffol}$, mica.
$\mathrm{C}_{5}, \mathrm{C}_{\mathrm{f}, \mathrm{C}}, \mathrm{C}_{8}, \mathrm{C}_{12}, \mathrm{C}_{13}-0.10 \cdot 17-\mu \mathrm{fd}$, mica.
$\mathrm{R}_{1}, \mathrm{~K}_{3}-17,000$ ohms, 1 watt.
$\mathrm{R}_{2}, \mathrm{R}_{4}, \mathrm{R}_{7}, \mathrm{R}_{\mathrm{t}}-0.1 \mathrm{megoh}$ m. 1 watt.
$\mathrm{R}_{5}, \mathrm{~K}_{\mathrm{s}}-15,000$ olims, 2 watts.
$\mathbf{R r}_{\mathrm{i}}-330$ ohmes, 1 watt.
\mathbf{R}_{9} - "10 times" multiplier, copper-wire meter shant (see text).
R_{10} - 47 chims, 1 watt.
$\mathrm{R}_{11}-47$ ohms, rarbon, noninductive, 1 watt.
$\mathrm{R}_{12}-20$ times" meter shunt (sce text).
tal oscillator with a crystal-switehing system drives a 6 L 6 buffer-doubler which, in 1 urn, drives an 807 in the output stage, which maty be used either as a straight amplifior or as a second frequency doubler. The milliammeter may be switehed to read buffer-doubler plate current, amplifior grid eurrent or amplifier plate current. date voltage for the owillator and hufferdoubler stages is ohtained from a 250-volt powor suphly which also provilles screcn woltage for all tubes through individual voltage dividers. The output stage reguires a separate $600-$ to 750 -volt plate supply. h^{\prime}. R_{1} and R_{12} are shunts across which the moter is switcherd. The resistance of f_{10} is high enomush to have negligible effect upon the meter re:ti-
 sistance to give a scale multiplication of 10 in the case of R_{9} and 20 in the case of R_{12}. Sinme the 807 grid current is small, batteries form the mosta convenient sourer of biasing.

Construction - The transmiter is hatl as a standard rack unit winh a 3 ! ,-ineh pancl. At the left-hand end is a $\overline{5} \times 10 \times 3$-inch chas: sis which houses everyhing except the omput tank circuit. At the right-hand end of the back edge of the chasisis, ats shown in loig. 1312. is a vertical row of thee Millen cryatal some ets. There is space for two additional sockets if they are dosired. The crystal suckets are followed, from right to left, by the jV b oscill:thor tubo, the (6Lif buffer-doubler and its tank coil L_{1}. The eoil socket is mounted flush on tho metal her cutting clearance holes for the terminals in the chassis. Between the two

IA Mr. - 3 alos. (BS W JFIIIS.
 turin- to tune to hand).
J - Conerntricualde comeetor.
MA - Milliammeter. 1 - 10 wale.

tube sorkets is an Amphornol eable comector
 chasesis at the lefthand ral. . 1 sparate wellinsulated wire is brought wat for the plate voltago for the sot.
The upper half of the $\$ 07$ protrudes from the lefthathd emd of the chatsis in Fïr. 1812. Its socket is mounted on motal angle piocess fastomed to the bate of the rhossis and the aluminum suhpancl which partitions the chassis. Br-pase comblemers, resistors and ref.

 fivel bias. If desired. the components may be combined for a high-whiane phate -upply wn a singife fhamis. 'The "irenit diagram of the erombluatiom unit i- - /own in Fig. 131.

Fig. 1315- Circuit diagram of the combination plate, screen and gridbiat power supply in Fig. 1314.
$\mathrm{C}_{1}, \mathrm{C}_{2}$-Sections of 8 - ff . 450volt dual electrolytic.
(3-8. ffl . 450 -volt paper.
C_{4} - Same as C3 (used only for 306 -volt output).

$\mathrm{K}_{2}, \mathrm{~N}_{3}-22.000$ olums, 2 watts.
13:-1.,000 ohms, 2 watts.
l.1. Lz - 6.hy. $80-\mathrm{ma}$. 138 -ohm filter choke (Thordarson T-57(51).
T-300 volts r.m.s. each side of center-tap, 90 ma.: 5 volts, 3 amp: 6.3 volt 3.3 .5 amp . (Thordarson T-13R13).
If desired, the bias branch may be comittol, as shown in the alternative diagram at B . All values remain as above.
chokes are mounted close to the sorkets of the tubes with which they are assuciated and this wiring is done before inserting the subpanel. The subpanel courios the cerystal switeth, the bulfer-doubler tank condenser, (1 , the plate choke for the $6 \mathrm{~L} f$ and one of the two : angle piecess supporing the sot socket. The militummeter and the muttr switeh are mounted on the front pancl with clearance holes cut in the front cdge of the chassis. Flexible shaft couplinge connect the errstalswit ch and the hutferdoubler tuning eondenser with their eontrol knobs. The bark of the left-hated end of the panel (Fig. 1312) is covered with a shoet of aluminum and the output tank condenser is mounted direetly on this. An alaminum hracket, fastened to the panel at one ond and to the rear of the condenser at the other, supports the socket for the tank coil, L_{2} and the link output terminals. The plate r.f. choke and blocking condenser, (${ }_{14}$, are just below the 807 in Fig. 1312.

The meter-shunting resistors, R_{9} and R_{12}, are wound with No. 30 copper wire, around a smatl-diameter form. The proper length of wire mat be determined by adjusting a variable resistance in serits with $1 . \overline{3}$ or 3 volts of hatiery until it reads full seale and then shunting various lengths of the Nio. 30 wire across the meter terminals until the meterrearling drops to one-tenth in the case of the 10-times shunt and to one-twentieth of fullscald reading for the 20 -times shunt, remembering that the shomer the shunting wire, the lower the meter will read when shunted.

The adjust ment of the transmitter is simply a matter of plugering in the proper coils and erystal for the desired output frequeney and tuning the two tank circuits to resonance. In some inslances, it may be possible of find two points of resonance, one at the fundamental and one at the second harmonic. but these can be identified by noting whether the condenser is near maximum or minimum capacitance.

Fig. 1316 - Circuit of the powners supMly in ris. 1317.
 (1゚21)
 O'T:4).
$1 \mathrm{R}-20.000$ dimb-. 30 watts.
L_{1} - lamit alwhe, $(0-14$ hy.. 301 ma.,

I_{2} - Smonthing thoke 11 hy, 3 , 1 mat, I.2. chane Kenyon T. $16(0)$.
 of centertal!. З 3 -mat, d.e.

${ }^{\circ} \%_{2}-2.5$ wits. 10 amp, 20010 -volt in. sulation (henyon T. 352).
T_{3} - 6.3 -volt 3 -ampere filament transformer.

Fig. 131 - This powersupply unit delivers either 620 or 780 volts at full-ioad current of 260 ma, with 0.4 - per-rent ripple and regulation of 22 per cent. Johtage is changed by a tap ont thi, pate-tran-former primary winding. The filter whoses are at the left and the plate bower tran-former at the right on the pand side of the chasis. 'Thes rathetype lomonolt filter comelensers are at the left in front and the rertidier tulees at the right, with the rectifier filament transformer in hetween. All exmond anmponent torminale are molermeath
 The 2.j-volt lo-ampere roctifier filamont transformuer shonld have lli, Hen-volt invilation, A 6.3-volt filament tramoformer is in--luded for hoating the filament- of r.f. tubers. Thise tran-former is monented moderneath the -hasais; its outpat terminals are lorought out If a standard ace, receptade in the rear. The eireuit diagram is shown in Fig. 1316.

With a 250-volt supply, the combincel plate and sereen eurrent of the tiLat should be about 20 ma. When working as a straight amplifier and 30 ma. when operating as a doubler. The maximum plate current of the unloaled sor will vary bet ween 50 and 60 mat. when the tube is doubling frequency and between 10 and 15 ma. when working as a straight amplifier. When the stage is operated at $\overline{6} 0$ volts, and loaded to a plate current of 100 mal., the grid current should ran at least 3 ma. as a straight amplifier or 6 mat as a dombler.
The supply shown in Figs. 1314 and 1315 will provide 250 volts for the first two stages and bias for the grid of the 807. The 7.00-volt supply shown in Figs. 1316 and 1317 may be used for the output stage.

(1) A Combination Low-Voltage Plate or Screen Supply and Fixed-Bias Pack

Figs. 131 tand 1315 illustrate a combination pack which will deliver $2 \overline{0} 0$ or 300 volts. 75 ma., for supplying plate voltare for recervingtube exciter stages as well ass seren and fixedbias vollage for a beam-tube driver stage.
The circuit diagram is shown in Fig. 1:31.5-A. In addition to the usual full-wave rectifice circuit employing a Type 80 tube, a $1 V$ half-n:ave rectifier aliso is connected across one half of the transformer secondary in reverse direction to provide a negative biasing voltage whith is held constant at 7.5 volts by the VR-85 30
regulator tube. With the dropping resistor shown. the regulator tube will pase a grid current of 25 mat. without overload. The iV rectifier is indirectly heated, so that it may be operated from the same 6.3 -volt winding provided to supply the r.f. tubes in the transnitter.

The output voltage at a normal load current of about 75 mat can be increased from 250 to about 300 by the addition of an input filter condenser, C_{4}, the connections for which are shown by donted lines.

If the biss section is not nededed, plate or screen voltage may be ohtained with the simplified circuit shown in Fig. 1310-13, eliminating the hias section.

(I. A Low-Power Antenna Tuner for Rack Mounting

In the rack-mounted low-power antenna tumer shown in lig. 1318, separate series and parallel condensers are used. Thhis arrangement, while requiting three variable condensers, has the alvantage that no switching is necessary when changing over from series to parallel tuning. It also makes possible the use of the tuncr to cover a considerably wider range of antenna and transmission-line conditions, bectuse the series condensers can be adjusted in conjunetion with the parallel condenser to shorten the electrieal length of the feeders whenever this is required to make

Fig. 1318-A rack-mounting antenna tuner for low-power transmitters. G_{i} is in the center, with foand C_{3} no either side. Ill of the commonents are nounted directly on the 51/4-inch pand. The variable condensers are mounted on the asembly rods on National Ty ye (SN-1 in-ulating pillars which are fastoned th the condenser end plates with mardine screws from which the heals have been removed. Stmall I solantitc shaft complings are used toinsilate the controls. (lipe with flevilik. leats are prowided for the split-xtather rondenser, C_{1}, wo that itsiectolomatay, be eomareted sither in barallel or in series to form either a high. or low. capacitance tank eireuit as required.

Fif．1319－（．ircuit of the rack－ mounting anternan tuner for wir with transmitters having final amplifier： which are operated at less than 1000 volts on the plate．

All coils are $1^{7} \neq$ inches in dianteter and $21 / 4$ inches long，with the variable link Ineated at the ernter．For serios tuning，use the coil specified for ther next－higher frequeney band，which will be approximately correet．

 ＇l＇MK－100－1）for hirh voltages：rereiving type for low voltages（Iammarlumd M（：1）．100）．
$\mathrm{C}_{2}, \mathrm{C}_{3}-250$ pufd．， 11,020 －inel spacing（ Dational TMS．250）for high voltages：roceiving type for low voltages（ H ammarlund $31(:-20$ ）．
 for parallel tuning fur ciah tand are as follows：
3．5－Mic．hand－ 40 turn－No． 20 ．
T．Nc．band－21 turn－No． 16.
11－Vle．bame－ 14 turns No． 16.
28－Me．hand－ 8 turns No． 10.
parallel tuning effective．In addition，the series condensers also are useful in that they provide a measure of control wer the amplitier loading when paralled tuning is used．

Clips with illexible leads att atched are provided for the parallel rondenser，C_{1} ，so that the see－ tions may be commetod rither in parallel or in series to form rither a high－or low－caparity tank eircuit，as required．When the high－C parallel tank is desired．the two stators are rlipped together，as shown by the dotted linesin the circuit diagram of Fig．131！9，and the rotor is comnerted to the opposite forlar．When the two sections are commerted is sories for low－C operation，the break－down voltage is inercased．

Below the circuit diagram．Fig．1319，two sets of variable condensers are suggesterl．The smaller receiving－type condensers with 0．03－ inch air gap，whomid be satisfactory for low－ power transmitters operating at blate poten－ tialls of 400 to 400 volts，while larger eondens－ ers with（1，0ti－inch spacing will be reguiter for
transmitters using plate voltages up to about 750 or 1000 ．

11 A Three－Stage 100－Wałf Transmifter for Five Bands

The three－stage transmitter shown in Figs． 1320， 1322 and 1323 is designed to use a single 1000 －volt $100-\mathrm{ma}$ ．tuhe such as the 1623 ， 809．II 40 ，or higher－voltage tubes at reduced ratings，in the output stage．
leferring to the circuit diagram of Fig． 1321．a 616．operating at a plate voltage of 400 but at reduced input，is used in the Tri－ tet oseilator circuit．A potentioneter in the screcn cireuit provides a means of varying the screen voltage and，ultimately，the excitation to the final amplifier．The 21525 buffer－doubler circuit is capacitively－coupled to the oscallator． This second stare makes it possible to ohtain excitation for the final amplifier in a third band from a single erystal，operation in the seeond band bebng available by doubling frequency in the oseillator itself，Parallel plate feed is used in the seeond stage to permit series grid feed to the final amplifier，thereby avoiding the proba－ bility of low－frequency parasitic oscilations．

The noutralazed final amplifier is drectly couphed to the driver stage．C＇s and L_{5} form a trap for v．h．f．parasitic oscmations．

The meter switch．S ，shifts the milhammeter to read osculator cathode current，druver screan curcont，driver cathode current，final－ amplifier srid current and final－amplifier cath－ odr current．The individual filmment trams－ formors permit independent metering of the cathode currents of the last two stages．

Pomer suppls－This transmiter is de－ signed to operatio from the combmation 1000 － volt and 400 －volt plate supply shown in Figs 1324 and 132．5．Both fixed hias of 75 volts for the $2 \mathscr{1}: 25$ and cut－off bias for the final amplifier may be obtained from the unit shown in Figs． 1326 and 1327 ．For the 1623 tube，sesistors R_{2}

Fis． 1.320 －On top of the chats－is of the low－watt tran－mitter，the cathode cenl． 1.1 ，the 61.6 and the rry－tal are in line at the ragh－hand end．The 2 だっ： i－mometed horizontally on a－mall panel whad alow provides mounting －bace for the filandint and spreenby passcondensers， therouplingevmbenser，CA， the grid leak，$R_{5,}$ and the grid choke．I a is just to the Heft of the $6[.6$ and to the rixht of C2undermeath．I． 3 $i s$ in the centen at riphtan－ gles to I_{2} and L_{4} and just （o）the rear of C_{3} under－ neath．The 16,23 socket is submounted to lower the plate terminal．The nea－ tralizing eomdenser， C_{9} ，is directly in front of the tube．RFC 2 is just to the lift of L_{4} ．The two fila－ nuent transformers are mounted on the rear edge．

Fig. 1.321 - Wiring diagramof the three-stage five-band 100 -watt tranemitter for low-velt operation.
$\mathrm{C}_{1}-100$ - $-\mu \mathrm{fll}$. mica.
(2. Ca- $150 \cdot \mu \mu \mathrm{fl}$, variable (National ST-1.0)
C.i- $100 \mu \mu \mathrm{fo}$. per section, 0.0 a -inch spacing (II ammarInnd IIFB1)-100.(:).

(: $:-100-\mu \mu \mathrm{fil}$. misa.
C.s - $6-60$) $-\mu \mathrm{ffl}$. mica trimmer (two National M-30s in parall(1).

$\mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{44}, \mathrm{C}_{15}, \mathrm{C}_{16}, \mathrm{C}_{12}, \mathrm{C}_{15}, \mathrm{C}_{19}, \mathrm{C}_{20}-0.01-4 \mathrm{fd}$, paprer.
$\mathrm{H}_{1}-0.1 \mathrm{mmgh}, 16$ watt.
$\mathrm{H}_{2}-330$ ohme, I watt.
$\mathrm{H}_{3}-20.000$-ohm 10 -watt potentiometer (IIallory F:20MP).
$\mathrm{R}_{1}-2.2(060$ ohms, 10 watt.
R5-- 4 . 180 ohms, 1 watt.
$R_{16},-20.060$ ohms, 10 watt .
$\mathrm{R}_{7}-10,000$ ohm:, 10 watt -
$\mathrm{R}_{4}, \mathrm{R}_{4}, \mathrm{R}_{10} . \mathrm{R}_{11}, \mathrm{R}_{12}-2 \cdot 2$, ohme. 1 watt.
 wound.
3.5-Mc. ©rystal* - 9 turn No. 22. 1 inch lomg; $1001-\mu \mu \mathrm{fd}$. mica in coil form, comnected arrons winding.
 All on Il ammarlumal I 2 -inell diame form:-
 inches long, $54 \mu \mathrm{~h}$. (National AR80, no limh).
and R_{3} should be 6000 ohms and 7000 ohms, respectively.

Tuning - Coils for the dexired output frequency, consistent with the crystal frequency, should be plugged in the varions stages, baining in mind that frequency may be doubled in the plate circuit of the owillator and again in the seroud stage, if desired. It shouhd also be remembered that the seleation of the cathode coil, L_{1}, depends upon the erestal frequency and not necessarily the output frequency of the oscillator, the same cathode coil being used for both fundamental and secondharmonic output from the crystal stage. Sime much better efficiencies can be obtained with the 2 F 2 h operating as a straight amplifier, it

$7 \mathrm{Mc},-11$ turns, ${ }^{1}{ }^{1}$-inch diam., $1 / \frac{1}{4}$ inches fons.

14 Ac. - 8 thris. $11 / \frac{-i n c h}{}$ diam.. $11 \frac{1}{2}$ inches

28 Vr. - 4 turns 1 -inelt diam.. 3_{4}^{4}-ineh lomp, $0.5-\mu h_{1}$. (Natiomal Alis. birne dose molink).

 unfd. fined itir padder ((Carducll JI)-80-(1) is: placed in right-rear cormer of chationis and attached to coil with flexilis. leads and clipe.
 incher lorig, $3^{\prime \prime} \mu \mathrm{H}$. (13 \& 11 B($\mathrm{B}, 80$).
$7 \mathrm{Mr} .-20$ turns Mo. 11. 2-inch diam. 2 ! 2 inches Long. I2 $\mu \mathrm{h}$. (1 A \& IV BCIAC).
1.4 Mi. - 8 turns Nio. 14,2 -inh diam.. 2 iments
 moved from rach and.
 leng, O.: $\mu \mathrm{h}$. (BN W BC:I.10). Onc turn removed from rach and.
 31-01-200 dic. meter. RFC

 T_{1}, ' I_{2}-Filamant transformor, 6.3 volt, 3 amp.

is adrisable to a woid dombling in this stage.
The first two stages should be tested first, with all voltares applied execpt the plate voltage for the fimal amplifier. Tuning the osciltator to resonames, with the key closed. shouhd ranse a slight dip in cathode current aceompanied by an abrupt rise in the sereen and cathorde current of the second stage. Tuning the 2 E 2.5 plate circuit $t 0$ resonance should produre a good dip in cathode current. with a simultaneous reading of maximum grid current to the final amplifiers.

The amplifier should then be noutratized and tested for parasitio oseillation. 'lohe latter is done by shifting the final-amplifier platevoltage lead to the foo-volt tap and turning

Fip. 1322 - All controls for the 100 watt five-band transmitter are below the chasis level. F'rom left to right, they are the oscillator sireen-voltage potentiomector, the ousillator platetank comdenser, the buffer-doubler plate-tank condenser, the meter switch and the final-amplifier plate-tank condenser. The panel is of standard rack width and is $83 / 4$ inahes high.
off the hias supply. No plate voltage should be applind th the exciter stages. ('t is then varied through its entire range for several settings of C_{3}. If at any point a change in the final-amplifier cathote current is observed, C_{8} should be adjusted to eliminate it. During this process, plate voltage should not he applied lofg enough to cause appreciable heating of the tube.

Normal oprating voltares may now be replaced and the final amplifier tuned up in the usual mannner. A plate current of 100 ma . will indicate normal loading of the final amplifier. (Plate current will be the difference between grid and eathole currents under operating com(ditions.) With all whage tuncd and the amplifier loaded nomally, the oscillitor cathode rurrent should run betwere 16 and 30 ma., 2 E25 sereen current between 6 and 11 ma., 2 2525 cathode current between 45 and 70 ma., 2 E 25 grid voltage between 125 and 260 volts. wisillator screon voltage between 100 and 250 volts, and 21:25 sereen voltage betwer 210 and 250 volts. ©xate value's depending upon whether the stage is oprerating at the fundamontal or doubling frequency. Fixcitation should be adjusted to kerp the amplifier grid current between 20 and 25 man., whon the grid
voltage should measure 130 to $1: 00$ volts. Power output of 65 to 75 watts should be obtainable on all bands. The oscillator cireuit may be arranged for optional VFO input by short-circuiting the eathote cirenit.

If the output stage is to be plate-modulated, the plate voltage should tee reduced to 750 . Operating dat:a for suitable tubes of other types will be found in the tables in Clapter Twenty.

A suitable antenna tumer is the one shown in Fir. 1:318. The larger variable condensers should be used.

(1. A Simple Combination Bias Supply

Fig. 1326 shows the circuit diagram of the simple transformerless bias unit, pictured in Fig. 1327, which may be used to supply cut-off bias voltages up to 100 volts or so. Through prid-laak action it will also provide the additional operating bias voltage required, if the resistor values are correctly proportioned. The circuit also includes a soeond branch, consisting of R and a $\backslash 12-75-30$ voltage-regulator tube, supplying regulated voltage. This branch may not be refuired in all eases, but will be found convenient in many applications for providing fixed cutor, or protective bias for a

Fis. 1323-1 Mdermeath
 sis: f the lo0-watt tranomitter. C. to the right and (ia in the center are insullated from the datanis by pals-is rene hutton insufutors. (.4 tu the left alsor is insulated and is slarod from the chassis to bring all shafts at the vame level. I rads to the cuits inmediately alowe the tank condenser pass throngh largegrommetodrlearance tholes. Neter-ahunt resist. ances are sobldered diruoly to the with forminalio. R_{3} at the right in in-ulatod from the chasmis liy extruded hakelite wastarThe s.h.f.parasitic tratis suspendeal in the amplifier grid lead to the left of $\mathrm{C}:$. Insulating couplings are required for C_{2} aml C_{3}.

the biasing tap and the shortcireuiting tap is determined by the following fommula:

$$
R_{3}=\frac{160-E_{\mathrm{cm}}}{E_{\mathrm{co}}} \times R_{2}
$$

Where E :", is the voltade required for platecurrent cut-off. 'I'his value maty be determined to a dose approximation for trindes loy dividing the plate voltage by the amplifiation factor of the tubre. No supplementary grid-leak bias should bo used in the stage being supplied by the pack.
'Ihe resistance in each seetion should be first set at the values determined bey the formula. The hiased amplifier shond then he turned on, without exatation. If tha plate current is not atmest completaly ont off, or at latist reduced to at safe value, the biasing tap should be moved upward (in the nomative direttion). Witl the amplitior in oprration and drawing rated grid current, the binsing voltage should be meas-

Fis. 1326-Cirwit diauram of the tran-formerlos hias surply with woltage-requated output, shown io Fig. $1: 3 \div$
Ci, CO-16-uffo 4in-volt electrolytic.
© - 11,01 - μ fd. pis.
$13-7.510$ chans. 10 watts.
 with two slidere.

L - go-ma, replacement filter chate.

Fig. 1325-This power supply makes nue of remhination transformers and a dual filter evatem, delis. cring 1006 wots at les ma. amd toll volts at ISOma.. or the volt - and che woit--imultaneon=ly, deponding nem the trameformer - - . lectecl. The oirouit diaxam is siman lige. 13:-4, the 1006-woh berder rasi-ator is mounted on the rar adere of the chasain. witha proteretive guard made of a piece of raswanized f.ening materiat to prowide rentilation. Millen zilfits terminals are used for thic twohigh-voltake terminal-, Coramic sochert ohould he used for the Bete jrs. 'The chaseis measures $: \quad \times 1$: $\times 3$ inches and the - tandard rack pratul is $83 / 4$ inches high.

Fig. 1.327 - A tran*formertass combination bia- - onply suitahle for suphling hias for ref. - these repuiring lis voltsor lese for cut-off. A seoond branch, controlled hy at
 for a serond atage whoe arid current does not evered 20
 sis. ahthourfl the rompranent- mat rasily be fitted into ans spare spawe on another power-apphy rhazic, 'Jhe regulated VR-tube branth mat be motited if not required. The eireuit diagram is shom in t"ig. 1306.
ured. using a hightrexistance voltmotor. If the grid voltage is higher than that. 子ecommmended in the dube operatimer tables. both the biasing tap and the short-eirenitian tap on the upper seation should be moved. bit by bit. toward the positive chal whtil the eorreet operating bias is obtained. Tha bias voltage should then be mosasured again. I fimal adjustment mat be moerssaty to arsin arrive all cut-off voltage withont cxobtation.

Fig. $1: 327$ shows the romponemts assembled sopatatrely on a smatl rhatsis, They maty, how-
ever. be rombined with plate-supply components on a sinerle rhassis, since little idditional spatere will be rerguired.

It will be nostioed in the cirouit diagram that a polarized plur is used in the line and that the only connertion betwern the rireuit and the chassis is through the rondenser. C3. This is to prevent short-ciruiting the power line. should an ordinaty plar be usod ambl be inserted incorreety in the sereket. The polarized plese should be eonmoreded so that the grounded siole of the power litut is conneried to the positive side of the biats supply.

(1. A Four-Band 125-Watt Transmitter

Figs. 132 s and 1330 show two views of a simple l25-watt 4 -hathd 1 rathsmitter. Is the

 opreration. Whan the whtput stagn is oprorated at the crystal fumbamental frepuency, the elombler tube and eobil ate removed frome their swokto ath! : jumuser comberoting the wrid and plate lomminals is inserted in the tube socket. To whtain the required $(\alpha$ in the olltput tank circuit. the roill is tapped, ather than wse the large tank c:tpacitance which would otlervise be neocrssaly.

Series plate food is unod in all stages. seromen voltame for the 7 ('Js is lakon from indivilual voltage dividers, while a surres resistor is used in the ontput stare so that it win be platesoroon mondalated ii chosimed. The osoillator is kevol when the donbler stage is not in the coiccuit wherwise the dembler is kered. If wrobllator kesing on atl batnds is desided, the

Fig 13:2 -1 l2-T-walt tran-mitter for $3 \mathbf{B} . \overline{10} 30$ Mr. The ersetal wit.01 is lo thr" latt and the metor -witab i- lo the lath al tha metar. 'logere-tills arre' Nugninl inter the In. t., ilue left in pairs.

Fig. 1329 - Cirenit diagram of the 12.7 watt 1 -hand transmitter.
C_{1} - $1.40-\mu \mu \mathrm{fd}$, receiving-type variab, (Itammarlumal . $1(\mathrm{C}-110 \mathrm{~s})$.

Cs. C C_{10} - $1001-\mu \mu$ fil. rexiving-type variable (Hammarlumd MC-106S).

Ci, Co- $0.001-\mu \mathrm{fd}$ mica.
Cs - $50(1)-\mu \mu \mathrm{fil}$. mira.

Cia- $100-\mu \mu \mathrm{fd}$. 1.500 -vole variable (National TMK. 100).
H_{1} - 0.1 mogohm , 1 watt compoxition.
R_{2} - 0881 ohms. 1 -watt crmponition.

K_{4} - 17,0100 ohms, 1 -watt comporition. (ser text.)
$\mathrm{K}_{6}-10,000$ ohtron-. 1 -watt comporition.
1 R - $1: 0$ ohams. $1-\mathrm{watt}$ comporition.
K_{9} - evell ohms. $1-\mathrm{n}$ att comporition.
R_{11} - 25.06\% ohm- 10 -wat1 wirc-wound.
$\mathrm{K}_{12}-12.5(6)$ rhms, 20-watt wir-wrome (two IO-watt 2-2, mo onhm resiators in parallell.
R_{13} - Sien text.
R_{14} - 22,000 ohms. I-watt commsition.
 wirc, 1 -inch diameter. ${ }^{-}$imblimg.
For Talle crystals-12 turn- \o. 22 doco wire, 1 -inch diameter, 1 inela long.

47,000-ohm grid-leak resistor, R_{q}, should be replaced with a 33.000 -ohm unit and a 4.5 -wolt battery conneeted in serfes betwern the lower end of R_{5} athl the kexing jatel. . In. The milliamneter, MA, has at sale of $0-200 \mathrm{ma}$, and can be switched to read oscillator current. doubler current or amplifier grial or plate comerent. The shunt R_{13} is wound with lo . 30 eopper wire. using a lowatl fiSohm resistor as a form. The length of the wire used in the shunt is adjusted to give a metor-seale multiplication of two so that the full-seale realing beromes 400 ma. when the meter is switehed in this position.
 rlane-wesumal.
7 Mc. - 18 tarn- No. 20 enam., 1 -inch diameter,

1.4 Mc. - 10 turns No. 20 enam. 1 -inch diameter, 3 inch lome.

$28 \mathrm{VC} \cdot-1$ turns No. 20 enam., 1 -inch diameter, 1, inch lone.
IA - 3.5 Mc. - 21 turn= 2 ind hes diameter. $1 \frac{1}{1}$ inches long 21 turns remeved from $13 \mathbb{N} W$ BS:I-80), tapped at otarne from phate end.
 long (10 turn* remoned from B \& W BLEL,-10), tapord at 3 turs- from plate armb.
 (BN W BEL,-201, tapred at 2 turns from plate end.
28 Mr. - 3 turni 2 inches diameter, 1 inch long (B\& W BEL,-10). motap.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Clused wircuit jack.
M1 - $0-2(w)$ d.r. milliammetr.
 (Hammarlund CIIN).
RFCg - l-mh. r.f. elroke (Natiomal R-300).
S_{1} - Single eircuit 1 -pmition erramic rotary switch.
$\mathrm{S}_{2}-$ Two-circuit $\overline{\mathrm{J}}$ position ceramic rotary snitch.

The thit is built on a $7 \times 7 \times 3$-inch chassis. Two ortal sockets are mounted at the left-hand and of the chassis to serve as mountings for four erystals. The reystal switeh. Si, is monuted underneath contrally between the two sockets. The sockets for L_{1}. L_{2} and L_{3} arre lined up atong the front edge, while their respeetive tuning contensers are placed to the rear underneath. They are insulated from the chassis by means of smatl feed-through insulators and the shafts are fitted with insulating couplings. The two tube sockets are just to the rear of the eondensers. A refinement whirh is not strictly nocessary at the frequencies at

Mg. 13:30-Bot. tom view of the $410: 2$ transmitter. A torminal strip sol in the harkerlae of therlat-sis isprovithel for powersupply ronnectionts. The two jar-k-n, alon set in ther ratar e.lge, are for the key

Which this transmittor operates is the eopporsheed ground plate which surmomds the $7(5$ sorkets and to which all rif. ground conneetions are made.

The sorkets for the 41)32 and the output tank eircuit are to the right with the eoil socked mounted on top of the comblenser. In mounting the coil, the top plate of the tank condenser is replated be a strip of aluminum bent up at ouce emd to form a "J.J Onc of the outside eoil jarke passes throurh a hold in the and of the "J." while a smatl $1,{ }^{2} \times{ }^{3}$-inch rone insulator is used to support the "hot" end of the coil jack har. The tube senket is spaced $1 / 4$ inch below the chassis 10 provide rlearance for the serews which fasten the tube shided to the chassis. This shielt is a 2 ! -inch mil wheld (out down so that it comes up) 11,4 inches from the chassis. C_{13} is insulated from the chassis bey momaing it on smatl feodthrough insulators. (are should be used in selecting a well-inxulated dial and eouphing for this combenser sine the shat carries the full high vollawe.

The driver coils are wound on Millen 1 -inch diamoter forms. The standard BEL-series If d W eoils used in the ontput stage mast he altered slightly 10 provide for the tap. A fith plug is added at the empter center hole. 'The link connertion, mormally near the plate end of the coil. is shited to this center phag, white the tap is ronmected to the plag normally conneeded to the link.

The power supply shown in Fig 131.5 will provide plate woltage for the 7 (':s and hiasing woltage for the torse if a VR-90 is substituter for the VR-7. The high-woltagn supply shown in Fige 1317 is sumahbe for the final stage.

The plate current to the erystal useilator should run around 20 mit. and the doubler plate current about 40 mat. (itid curvent to the doubler should be about 2 ma. and to the final at leasi 6 mat. under loat.

C. A 100-Watt Output Bandswitching Transmitter or Exciter

The transmitter pictured in Figs. 1331. 1333 and 1344 incorporates bandswitching
ovar all hands from 3.5 to 28 Me. It consists of a fiV6 Tri-tet oscillator whirh gives either fundamental or serond-hatmonir output from : 3.5-Mr. crestal, a 6ベ7 dual-trinde frequency multipher with its first triohde sereion operating as a donblar from 7 to 14 Mc. and the second serdion doubling from $1+4$ to 28 Mc., and a final stage with two 807: in parallel. The Tri-tet cathode ruil may be cut in or out of the circuit as desired. sat that the dive maty be used as a straight formote ervatal oscillator on either 3.5 or 7 Mr. Provision is mate for arystal switching, six erystal sockets being included. and a seronth switeh position is used for extornal Vro input. The power output on all bands is in excess of 100 watte when the 807s are oprated at IC'As c.w. helegraph ratings.
'Ther cirenit diagram of the tramsmitter is griven in Fig. 1332. The switehing eircuit is so arranged that the grids of unused 6 N 7 triode sections are disconneded from the preceding slage and groumbed: thes exditation is not applied 1o idle doubler tubes. Only one coil is bised in the $6 \backslash 6$ stage to eover both 3.5 and 7 Mr.; Gor 3.5 Me. an air padeling condenser, (?, is switehes in parallel with the $7-\mathrm{Mc}$. tank direuil to exteml the tuming range to 3.5 Mc .

Caparity coupling between slages is used throughout. The plates of the first three stages are patallol-fed so that the plate tuning condenseris can be mounted direetly on the metal chassis. Coupling to the sot grids is through a tap on cach plate roil; this "tapping down" not only proviles the proper load for the various driver stages hat alan holps overcome the effect on the driver tuning ranges of the rather large shant capacitance resulting from operating the 1 wo beam tetroles in parallel. suries fered is used in the plate cirruit of the so7s, the tank condenser being of the type that is insulated from the chassis. Operating bias for the sot: is obtained from a grid-leak resistor, and the sereen voltage i s obtained through a dropping resistor from the plate supply.

Plate rurtents of all tubes are read by a 0-100 d.e. milliammeter which can be swit ched to anv plate cireuit be means of \mathscr{s}_{4}. One switeh position is provided for checking the final-
stage grid current. The d.c. cathode returns of both the 6 V b and the 807 s are brought out to trominals so that a choice of keying is offered. If the 6V6 cathode lead is grounded, the amplifier alone may be leryed in the eathonde circuit; if the two cathode returns are connected together, the oseillator and amplifier may be keyed simultaneously for break-in operation. (The oscillator alome cammot be keved with the 807 cathodes grounded, beabuse without fixed bias on the latter tubes the plate input would be excessive under key-up eonditions.)

To prevent parasitic v.h.f. oseillations, small chokes ($R P P_{5}^{\prime}$ and $R P^{\prime} C_{6}$) :are connected in the grid leads to the 807s, and a 68-ohm resistor is rombected in each sereen lead. These suppressors are mounted as rlosely as possible to the tube sockets. A parasitie trap, $L_{5} C_{7}$, is connected in the eommon plate lead to the 807 s . Because of the high power sensitivity of the paralleled 807s and the fact that the grid-plate capacitance is doubled by the parallel connection, the tubes may oscillate: in t.p.t.g. fashion at the operating frequency if the amplifier is run with no load on the plate tank. Ilowever, this tomdeney toward oscillation disappears with a small load (less than one-fourth rated plate current) and the amplifier is perfectly stable under normal loanling conditions.

Is shown in Fig. 1333, the amplifier plate coils are mounted on an aluminum bracket supported by the main chassis. Thu bracket dimensions are $6!$, inches long by of inches wide on top, with mounting legs $21 / 2$ inches high. Half-inch lips bent outward from the boldoms of the legs provide means for mounting to the chassis. The amplifier bandswiteh. is. is mounted underneath the coil bracket. with the two switeh wafers spaced out so they are approximately two inches apart. This brings the phate switeh section directly under the 2S-Mc. tank coil so that the shortest leads can be obtained at the highest frequency. The output
link conneetion runs from the other switch section (at the front) through a length of 300whm feeder to terminals on the rear wall of the chassis. Becanse of the low ratio of pate voltage to plate current, a rathor low $L /\left({ }^{\text {a }}\right.$ ratio mast br used in the plate tank eircuit to secure a reasonable Q. The stambath eovis used are therefore modified to the dimensions given in Fig. 1332. Other types of mambactared eoils (100-watt rating) may be used if desired. provided turns are taken off to bring the $3.5-\mathrm{Mc}$. band near maximum caparitance on the 150 $\mu \mu$ fil. tank condenser, the 7-Mc. band at 65 to 70 per cent of masimmm, and the $14-\mathrm{M}$ e. band to approximately 30 per cent of maximum. The 2S-Me. band may tume at nearly minimum (${ }^{\text {apmatitance, since the minimum }}$ circait capacitanee is farly large.

In the bottom view, Fig. I3:34, the merer switch with its shunting resisters is at the left. The driver bandswitch. s_{2}, is in the eenter; the section nearest the pancl is for ('2, the rotor of the next section goes to the grisl of the 1 t- Me. donbler, the rotor of the thim section to the 2 s - Me. doubler, and the rotor of the last section to the grids of the 807 s . In this view the right-hated section of the 6. 7 is the $1+$-Me. doubler. Grid and plate bocking eondenser: are supported between the tubresorget terminals and small ceramie pillats which serve as tie-points for ret. wiring. The coil taps to the sor switeh drop through holes in the chassis diructly below the proper prongs on the coil sorkets. The crystal switeh. crystal-hohder assombly, oscillator cathode tuned cireuit, and shorting switch, is, are in the upper lefthand eormer. The erystal sockets (for the new small (rystals) are momited in a row on a $11 / 2 \times 3$-inch piece of aluminum sceured to the chassis by mounting pillars of square aluminum rod. The spare erystal socket on top of the chassis is for old-type reystal holders with 3-ineh pin spacing. In general, chokes and by-pass condoncors are grouped ats closely as

Fig. 1331 - A 100 -watt output transmitter or exciter with hand. switching over four lands. Ther rutput stare nises parallel 800^{2}, Arystal switching, with provision for VPO input. and meter switching are incorporated. T'uning controls, irom lift to rizht, are crystal oscil-lator-doubler, 14-V1. dumbler, 28-Mr, donhlare and (large dial)
 tal switch is at the Inwer-leflemer, driver handwwitch in the erenter, and meter switch at the lower right. 'The amplificr bandswitch is above the meter switch and to the right of the amplifier tuning dial.

C－Sertext．
$\mathrm{C}_{1}-2: 20$－$\mu \mu \mathrm{fl}$ ．mica（monnted in－idle $/ \mathrm{I}_{4}$ ）．
$\mathrm{C}_{2}-14(1-\mu \mu \mathrm{fol}$ ．air padder．

 marlund IIF゙B－150－（：）．
Cis－3－30－$\mu \mu$ fid erramic padiler．
C．, C．t日，C．21－0．010ti－μ ld．mica．

（ $2_{22}-0.0022-\mu \mathrm{fl}$ ．mica， 2500 whis．
$\mathrm{R}_{1}-0.1$ mpohm，关 watt．
$R_{2}, R_{3}-4.1060$ olims， 1 watt．

$\mathrm{K}_{5}-2.9000$ ohm＊ $1 / 2$ watt．
$R_{6}-12,000$ ohms， 1 watt．
$1 \mathrm{R}_{\mathrm{i}}-25,0 \mathrm{k} 0$ ohms， 10 watts．
$\mathrm{K}_{8}, \mathrm{~K}_{3}-68$ ohms． l_{2} watt．
$R_{10}, R_{11}, R_{12}, R_{15}, R_{14}-25$ ohmas， $1 / 2$ watt（ R_{14} shumted as described below）．
$\mathrm{K}_{15}-1 \% 0$ ohmis， 1 watt．
Note：R_{14} is shmoted by a leneth of No． 30 eopper wire（alomit or 10 inchen）womad around the resistor． The wire lengith should he adju－ted to make the milliam． meter read one－fifthits normal valus，inerearing the full－ scale range to $\mathbf{5 0 0}$ milliampers．
$L_{1}-21$ turns No． 18 on 1 －ineh diam．form，length 1 inch：tapped 1.5 turns from ground．
Iz－ 10 turns No． 18 on $]$－inch diam．form，length I inch，tapued ：turns from ground．
J_{at}－ $\mathrm{\sigma}$ qurn－\or． 18 on l－inch diam，form，length 1 incle：tapred 2 turns from ground．
1．i－IB turns No． 18 on 1 －inch diameter form，tength J inch．
 monnted on C．
$L_{6}-22$ turns No．20，diam， $1 / 2$ inches，length $13 / 8$ imehra．link 3 turns．
L．7－13 turn＝No．16，dian，11／2 inchea，length $13 / 8$ inchos．link 3 turn＊
L．s－ 7 turns No．16，diam．11／2 inehes，lemath $13 / 8$ inthers．link 3 turno．
 inches．linh 3 turns．
Note：I．1．I．2．I． 3 wound on Villen 4 fintol forms．L_{4} on

removed to conform to specifications above．
1_{1}－6．3－volt pilot lamp．
J－Coaxial－cablile socket（Amphenol）．
MA－ 1 － 100 d．ce milliammetor．
RFC H_{1} ，RFC：－
RFC．
RFC－－ 3 －mh．r．f．choke（Villen 31102 ）．
RFG，R F（b， 18 turns No． 20 d．c．c．， $1 / 4$－inch diamı， elos－womme on l－watt resistor（any high value of resistance maly be used）．
s_{1}－Ceramio wafer switch，$\overline{7}$ positions．
sa－Fiour－gang t－posilion ccramic wafer switch（4 maition－u＊ed）．
$S_{3}-$ Mon－Hing toposition ceramic wafer switch（lax－ ley 102（）．
s．Two－gal！g 6－position ceramic wafer switch（5 positions used）．
$S_{5} \ldots$ S．p．s．t． 10 ggle switch．

ドiल, 1994 . Jop viow of the 100-watt bintl. awitrinme tranimilter. The avirillator alld dombler coils are of the plag-in type for ronvenience in momoting and adjustment, hat do not matiol to lur rhanmed to cover the frequeney range from 3.5 to 30 Mr. 'The exhle terminal on the chassio wall at the risht is for vero int put; r.f. outhut terminill are at the extreme left.

possible about the tube sockets with which *they are associated, to keep r.f. leads short. In the 807 cireuit. the sereon be-pass combenser. (2n, is mounted vertically from a small metal angle botween the two tube sockets, and all grounds for the cathode, sereen and grid circuits are brought to a common point between the two sockets.

The condenser, C, aeross only the 7-Mc. 807 tank coil is actually a 1×1-inch piece of copper with a short tab at one end. The tab is soldered to the plate lead from the coil just under the coil bracket and then bent so that the 1×1 portion is parallel to the bracket and separated from it by about $1 / 8$ inch. The coil by itself resonated with the stray rapacitance at 28 Me. and absorbed comsiderable energy when the transmitter was operating on that band: the small capacitance defunes it and prevent: such absorption. It may not be needed with other types of coils or with slightly different
construction.
Preliminary tuning should be done with the plate voltaro for the 807 disconnected. Set seg and S_{3} for $2 x-M r$. output, set S_{4} to read oscillator plate current, and close the lecy, if oscillator keying is being used. With a 3.5-Me. crystal, make sure S_{s} is open: with a 7 -Mc. crystal S_{s} should be closed. Rotate for for a small kick in the plate current that indicates resonance at the crastal harmonic, in the case of the Tri-tet, and for the marled dip in plate current that indicates oseillation with the tetrobe osedlater. The rement should be in the vieinity of 16 to 18 ma . Switeh the meter to the $14-M \mathrm{c}$. doubler and adjust C_{4} to obtain minimum plate current. This should be about 15 ma. Check the 2S-Mc. doubler plate current similarly; it should be betwern $2 \overline{5}$ and 30 ma . at resonance. 'The final-amplifier grid current should be 7 to 8 mata

Next, conned a 70 -ohm dummy antenna or

Fig. 133.1-Bottom riew of the l00-watt bandswitching transmitter. The chassis dimencions are $8 \times 17 \times$ 2 melies and the panel (of crackle-linisised Masonit. is $83 / 4 \times 19$ inther. Parts layout is diocrilind in thic text. the Go-volt lead 15 broughi throngh a Millent safity terminal, and all other power ant keying connertions go to a ceramic ternimal strip at the rear. The comnection between the erystal awith and the VHO input socket is through a short length of RG/58U cable lying in the corner of the chassis.

Fig. 13.35-Circoit diasram of a 2.50 - to 300-volt 100 -mat. pewor supls.
(C_{1}, C2-8-4fd. (ow)-volt electroly tice.
$R_{1}-20.000$ whms, 25 watts.
I.1, L2 - 30-hy. Ilo-mat. filter chooke (Stancor C.IOMO).
$\mathrm{S}_{1}, \mathrm{~S}_{2}$ - S.p.s.t. topple switch.
' 1 ' - 4 fil volts calh side of center, 130 ma.: " v., 3 a.; 0.3 v., 3.5 a.

100-watt lamp to the output terminals, set ('6 near minimum capacity: and apply plate voltage to the 807 s. Adjust C^{\prime} 'g for minimum plate current, which should be about 200 mat. with this load. Readjust the driver eireuits for maxinum grid current to the 807:.
Tuning procedure for other hands is much the same, exerpt that the amplifior cannot be baded to full input on the lower frequencies hy rither the dummy antenna or lamp. With the links furnished with the eoils specified. In such cases an antuma should be used to load the transmitter after it has bere determined that the various stages are working properly. On 3.5 Mr., Cos should be adjusted so that a crystal on 3500 ke . can be made to owillate with r_{3} set near maximum capacity, fienerally, f_{2} will be set at approximately full capacity.
The transmitter reguines a power supply delivering 60 to 70 mat. at 300 volts for the 0 scillator and doublers, and whe delisering 200 ma. at 750 wolte for the su7s. The supplies of Figs. 1317 and 13:35 are suitable.

1. A Two-Stage High-Power Transmitter

The photographs of Fixs. 1336. 1338 and 13:3! show a mon-stage hatimiter capable of

675 watts on 'phone. The eireuit diagram is shown in Fig. 1337. It is a simple arrangement in which a (iLf Tri-tet crystal useillator drives an Eimace 4-250A in the output stage, either at the erystal fumbamental or at the second harmonic so that the transmitter will cover two bands with a single erystal of proper frequency without doubling in the output stage. Through the use of phus-in wils and a selection of crystals, the transmittor may be used in all bands between 3.5 Me. and 28 Me. inclusive.

Any one of four crystals may be selocted by meani of S_{1}, although more crystal positions may be added. $R_{4} . R_{5}$ and R_{6} are metering revistors across which the milliammeter is switched to read combined oscillator screen and plate currents, amplifier grid current or amplifier cathode current. R_{5} has sufficient revistane to have no practical effect upon the meter reading, but the other shunts which are made from copper wire are adjusted to give a muter-se: multe mplieation of 10. making the full-seale reading 500 ma. The diagram shows both stages keyed smultumenoly. If amplifier keying only is idesirel, R_{1} should be connected to groum instased of to the key terminal.

Comstruction - The trammiter is built on a $10 \times 17 \times 3$-inch chasis with a $10 \frac{1}{2}-$

Pip. 1336-liromt vicw of the $1: 250$ Atransmitter. Dlowe the botom of the panill. from left to right, are tho contrads for the doscillator thaing reothenotro the ary-tal = witch and the metoring - witain. 'I'helarge - lial i- for the output tank

Fig. 1337 - Circuit diagram of the two-stage high-bower transmitter.
$\mathrm{Cl}_{1}-100{ }_{-\mu \mu \mathrm{ff}}$. mica.
$\mathrm{C}_{2}-100-\mu \mu \mathrm{fi}$. variable (National ST'-100).
$\mathrm{C}_{3}-50-\mu \mu \mathrm{fl}$.-per-section 0.171-inch-plate-spacing variable (Millen 1.10.01).
$\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{8}, \mathrm{C}_{9}-0.01-\mu \mathrm{fd}$. paper.
$\mathrm{C}_{6}-0.001 .5-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{7}-100-\mu \mu \mathrm{fd}$. nica, 5000 volts.
$\mathrm{C}_{10}-0.001$ - ffl mica, 5000 volts.
$\mathrm{C}_{11}-0.001-\mu \mathrm{fd}$. mica, $\mathbf{1 0 . 0 0 0}$ wolts.
 volts (CE (BL-122).
C_{2} - 100- $-\mu$ fid. mica (for $3.5-11 \mathrm{e}$ erystals only).
R_{1} - 2020 ohm 1 , watt.
$11_{2}-47.000$ ohms, $\frac{1}{2}$ watt.
$11_{3}-5,001$ ohms, 10 watts.
$\mathrm{H}_{4}, \mathrm{R}_{6}-58$ inches No. 22 eopper wire wound on small. diam, form.
$\mathrm{R}_{5}-47$ ohms, 㒸 watt.
$\mathrm{L}_{1}-3.5-$ Mc. cryatals: 22 turns No. 22 d.ur., 12 -inch dian, elose-wound. Ca comected acrosis winding.
inch standard rack pandl. The mechanical arrangement shown in the photographs should be followed as chasely as posible, since upon the plarement of parts may depend the stability of the amplifier. The osiditator-cireuit components are grouped at the lefthand end of the chassis. The Millen crystal sockets are lined
 diam., dose-wound.
 dian., $5 / 4$ ineh long.
 dome-wound.
7 Mr.: 20 turns No. 22 d.s.e., 1 -inch diam, closewoumed.
1.1 Mr.: 9 turns No. 22 d.s.e., 1 -inch diam., $3 / 4$ ineh lones.
28 , Me: 5 turns No. 20 anno. 5s-inch diam, "x inch long (on Millen Type 4500 threaded (eramic form).

M - Fan motor (Barler-Cilman TYoe d Yab 560-1 with Type lab, 35-2 2 -inch fan, Rockford, III.).

MA - $10-00$ milliammeter.
RPC, $\mathrm{BFO}_{1} \rightarrow 2.5-$ min. r.f. choke.

$s_{1}-$ - fomition ceramir tap swith
S_{2} - Double-gang 3-position switch.
up with their centers $11 / 2$ inches in from the reare elge of the chasis in the left-hand corner. The sockets for the fild and the plug-in cat hode eoil, L_{1}, are in line with their centers, 3 鮎 inches from the back edge of the chassis, while the oscillator plate coil is in lime with the 6LG, 6 inthes from the reatr edge of the chassis

Fig. 13.38-Botom view show ing the arrangement of parts nuder the chan-io. Mounted off the rear cilne of the chassis are the orcillator (left) and amplificr (rixht) arid chohi... The oscillator phate choke is above. The conderner under the reystal-witoh control shaft is the compling condenser, (iz. the owillator tuning condenser, C_{2}, the 6.3 -wolt filiment transforner and the metcring swiil. air? along the fromt edine of ! 1, chassis, The ventilating fan is to the right of the tube socket.

Chapter Jhirteen

Fig. I3:39- Rear view of the two-stage high-power transmitter, showing the vacuum-type padding condenser in place on top of the tank condenser.
and $3{ }^{12}$ inches from the lofthand mod. The erystal switeh is paced near the 61, socket and set at an angle with respect to the odges of the chassis. It is controlled by a knob at the center by means of a long $1 / 4$-inch shat, which runs diagonally across the chassis, and a Millen 3900\% all-motal flexible shaft coupling of the "universal-joint" type.

The socket for the $4-250 \mathrm{~A}$ is centered $73 / 4$ inches from the left-hand end of the ehassis and 3 inches from the rear edge. It is spated $11 / 8$ inches below the chatssis on metal pillars so that the base of the tube is shielded from the plate. A spring contact is fastened to the soeket so that the motal ring around the base of the tube will be grounded when the tube is inserted in the socket. The $4-250 \mathrm{~A}$ requires a small amount of forced-air cooling. This is supplied by a small fan directed at the base of the tube. A bottom plate should be used on the chassis so that the air will be forced up aroumd the envelope of the tube. 'The amplifier plate-tank condenser is placed with its what st'f inches in from the righthand edge of the chassis, while the coil base assombly is whevated on 3inch robe insulators rentered $21 / 2$ inches from the edge. The clips for the padding condenser, C_{12}, required

Fis. 1340-A 4(6)-polt 250-ma. power sup. ply. A $6 \times 14 \times 3$-inch char-is is used, with all wiring, the filament tran-former for the 83 rectifier, and the blewder raintor mounted beneath the chasis. 'The fu-e, pilot lamp. and the on-off swith (not visible in thic siew) are mounted on the front chat-is wall. A.c. input to the high-voltage transformer and the filament transformer are at the rear of the chassis, as are the safety terminal for the $\mathbf{B}+$ output and the linding post for ground connertion.
for the 3.j- and 7-Mc. bands, are mounted on top) of the condenser on 1-inch tubular spacers. A pair of long 6-32 mounting serews, passing through the spacers, serve to make the connection between the stators of C_{3} and the terminats of ('12. The Hammarlund CII-500 r.f. choke, RP' 2 , is mounted alongside the tank condenser, near the center, with the plate blocking eondenser, (${ }^{11}$, fastened to the top.

Phate voltage is fed from a Millen satety terminal in the rear edge of the chassis to the bottom end of the r.f. choke through a Millen $3 \geqslant 101$ steatite bushing. The hole for the safety terminal should have a clearance of about $1 / 16$ inch around the part which goes through the chassis, to deerease the danger of a voltage brak-down at this point. The link output terminals are in the right-rear corner, insulated

the amplifier srreen-roltage dropping resistor, and to the biasing-voltage source, if one is used: the key jack, filament terminals for the $4-2.30 .1$ inchoding a centertap connection, at safety terminal for the highvoltage connection, and a ruate plug for the $11 \bar{j}$-voll line to the fi.3-volt filament transformer and the fan motor.

The cathode coils, L_{1}, are wound on Millen octal-base shichded forms without tuning slugs. A change in eathote coils is: reguired only with a change in the band in which the crystal lies. The coil for use with 3.5-Me. cryst:al requires an additional $100-\mu \mu \mathrm{fl}$. miora condonser, C_{x}, connerted arooss the winding as shown by the dotted lines in Fig. 1337. This condenser is placed inside the plug-in shidel along with the 3.5-Mr. abil. The $100-\mu \mu \mathrm{f}$. (apateitor, C_{1}, whinh is comnected permanently in the circuit, is suffurient for use with 7 -and $14-\mathrm{Ma}$. orystals. Since larger coils are desirable for the phate circuit of the oscillator, the eoils for L_{2} are wound on 1 -inch diameter forms enclosed in National Trpe P13-10 plug-in shiold cans. The shied shouid be grounded to the chassis throush one of the araitable pins in the base.

Fextrmal connections to the unit are indicated in Fig. 1337. If both stares are to be kered as shown. no fixed hias is mecossary and all that is required is a grid leak of aoon-ohm 5-watt siza, conmeted across the biasing terminals. This biasing system will serve also in caso only the amplifier is to be keyed. Keving of the oscillator alone is not recommended because of the efferts of soaring sereen voltage, which makes it impossible to rat off plate and screen rurvent: in this unit without cexereding the mormal operating biats. For this reason, it is

Fif. 1312 - This power-supply unit deliver 2025 or 2480 volts at full-load curient of $4: 01$ ma.. with ripple of 2.5 per cent and requlation of 19 per cunt. Vithuper are arleated by taps on the secondiary. All exposed highvoltage terminals are cosered with Sipanite pobtwor salety caps and the tube plate terminals with mould d raps. The rectifier tubes are placed away from the plate transformer to avoid induction troubles. The panel is 11×19 inehes and the rhassis $13 \times 11^{\circ} \times 2$ inches. The exposed high-voltage terminal should be covered with a rulher-tubing sleeve. The circuit is shown in Fig. 1343.
from the chassls on a National FWG polystyreme terminal strip.

Linderneath, at the amplifier end of the chassis, are the nuturing switeh, se, and the © 3 -volt filament tatastormer. An external
 It shoukd have a rating of $\overline{5}$ volts. 15 amperes.

On the panel. the milhatmonder is plated to halance the amplifier tumine diat the molerswitch knob, to balance that of the oscillator tunng eondenser. whele the erystal switeh is at the conter, near the bottom edge. Nomg the reat edge of the chassis, from left to right, as vowed from the rear, are a terminal strip for making eomuertions to the oscillator supply,
Fif. 1341 - Schematic diagran of the 400 - volt 2.50 ma. power supply.
$\mathrm{C}_{1}-2-\mu \mathrm{ff}$. 600 -volt oil-filled eapacitor (lerovex Type 609).
$\mathrm{C}_{2}-4$ - $\mu \mathrm{fl}$. 600-volt oil-filled capacitor (Aerovox Type (60).
$\mathrm{R}_{1}-25.000$, dhm -20 watt .

$\mathrm{L}_{2}-$ Smonthing chohe. 20 hy., 225 ma., 120 -ohm d.e. resistance (1 10: 531).
$\mathrm{F}_{1}-2$ amp. fusc (Littelfuse Type 3 1Co), and fuse-

$\mathrm{I}_{1}-110$-wolt ace pilot-lamp-amilowhet asombly,
J_{1} - Pamel-mominis atce receptacle (Amphenol (i) FO).
$\mathrm{P}_{1}, \mathrm{P}_{2}$ - Panclomonating a.c. plag (Amphenol 61 M1).

\mathbf{T}_{1} - Filament tran-former, 5 volts, 4 amp. (Thordarson 1'-6,3FO9).
 of center-tap, 2.50-ma, rating. Filament windings: 5 v. 3 amp,; 0.3 v. 3 amp . c.t.; 6.3 v. 3 amp. e.t. (L'T'C S4日). (

frequency, oscillation will cease abruptly when the plate tank H.v. circuit is tuned to the highcapacitance side of resonance. For reliable operation this circuit should be tuned slightly to the low-rapacitance side. When doulding frefurney this characteristic disappears so that. the plate cirruil may be tuned to exart resonatere where maximum output shomld oceur.

Tuming the oscilator plate cirruit to resonane should result in a gridecurent reading when the moter is switched to the seeond meter-switch position. The reading will vary betwern 30 and 3.) mat. to 50 mat. or more deponding upon the fredurney and whe the the oscillator is doubling frequency or working "itraight through." The potential of the highvoltage supply should be redued during preliminary adjustments. If no other means of reducing the voltage is available a 200 -watt 115 volt lamp may be comneted in serios with the primary winding of the high-voltage transformer. The plate cireuit of the amplifier should be luned to resonance first with the antenna link swung out to the minimumcompling position. The output tank circuit of the amplifier may be coupled through the link coil. wither directly to a properly-terminated low-impedance transmission line, or through an antennat huer surh as the one shown in Figs. 1344 and 1345 to any type of antonna system. With the anterna system connected and the link swung in for maximum coupling, the plate current should increase when the anteman system is tuned through resonance. Every adjustment of the coupling of tuning of the antenna system should always be followed the a readjustmerst of the tuning of the amplifier tank circoit for resoname. As the loading is int creased the pate current at resomance will in rease. The loading may be carried up to the point where the plate current (eathode current, minus grid and screen currents) is 300 mat. at 3000 volts.

C A Wide-Range Antenna Coupler

The photograph of Pig. 13.4 shows the constructional details of a wide-range antema roupler suitable for use with high-power transmitters. Vatous combinations of parallel and

Fiz. 13/t-Wide-range antenna coupler. The unit is asembled on a metal chassis mosaring $10 \times 17 \times 2$ inches, with a panml $83_{4}^{3} \times 19$ inche in size. 'The variable condenser is a polit-stator mit haviog a capacity of $200 \mu_{\mu}$ fid. $p \cdot r$ neetion and 0.0 -inch plate sparing (Johmenn 2(10):I)30). The plug-in rails, wre the B. 太 W I I I , weries. 'lhe r.f. ammeter hats a l-aminer make. If desired, the ooils may be woum with fixel links on stand. ard transmitting coramic forms. The links will have to be provided with flexible leads which ran be phaged into a pair of jacketop insulators monnted nuar the coil jack strip, unless a special momoting is made providing for the seven plug-in comnections required.

Fig. 13.5 - Circuit diarram of the wide-ranme antonna compler for use with the bandawitehing am-
 tuming, hirh C. E: - parallel tank, hw-jmpodance ontput, low C.. F - parallel tank, low-imperdance output, hiph (.. For simple-wire mathehd-impedance foedere, the arrangements of f: or frould he used with a single tap instead of the domblap down. F'or imple woltage fed antmonaz the arrangement of I would be used with the antonta emonerted to the terminal with the ammeter, Ifter the indurtance required for each of the varion- band- haz been determined evperimentally, the comme.
 for each band, tune the condenar for resonance, and adjust the link for toading.
series tuning, with high- and low-C tanks and high- and low-impedance outputs, are available. Diagrams of the various circuit combbinations possible with this arrangement are given in Fig. 13.4.

A separate coil is used for each hand, and the desired connections for sories or parablel tuniner with high or low C, or for low-impedane output with high or low C. are antomatically male when the coil is phuged in. Coil rombertions to the pins for various circuit arrangements are shown in Fig. 134i.

The tuning condenser specified, together with a set of standard plug-in transmitting coils. should cover practically ah coupling conditions likely to be encountered.

Because the switching connections reduire the use of a central pin, a slight alteration in the 13 \& W-coil mounting unit is required. The central link mounting unit should be removed from the jack bar and an extra jack placed in the central hole thus made available. The link assembly should then be mounted on a 2 -inch cone insulator to one side of the jack har.

Correspondingly, the central nut on carh woil plug base must be removed and a Johnson tapped plug, similar to those furnished with the coils, substituted. An extension shaft may then be fitted on the link shaft and a control brought out to a knob on the pancl.

The split-stator tank condenser is mounted
by means of angle brackets on four 1 -ineh conc-type reramie insulators, and an insulated flexible coupling is provided for the shaft.

If desired, the coils may be wound with fixed links on ceramic trimsmitting coil forms. 'Tho links should be provided with flexible leads which coin be plugued into a pair of jacktup insulators mounted near the coil jack strip, unkess a sperial mounting is made providing for sevon comnertions.

The unit ats described shomld be satisfactory for tramsitters operating at a plate voltage of up to 1 but with modulation and somewhat more on c.w. For apprectiably higher voltages, a tank condenser with larger plate spacing should be used.

C A Medium-Power Bandswitching Transmitter

The transmitter illustrated in F"igs. 1346 through 13.51 combines complete bandswitching from 80 moters through 10 meters with moderately high power. it 4-125. beam tetrode is used in the output stage, driven by frequeney-multiplying stages which, berause of the low driving-power requirements of the final, can loaf along at considerably below ratings. The final can be operated at 37 ; watts input for c.w. operation, or 300 watts in 'phone service.

As shown in Fig. 1348, a Pierce crystal oscillator is used. operated at low plate voltage

Fig. 13.16 - Front view of the band. switeling transmitter. The emomerols along the bottom of the pamel are. left to right, the erymal selector switeh, wasillater key jachs, low. power-whe bandwitch, plite-metry witcls and pris. meter xiteh. A bove in the same order, are the tuning controls for the olo. the two ser.tionm of the ol:aind the fillo platr. The こ- 010 dearae hiol, tw the left of the main tuning dial is the excitation (ewiltol. The hnol, betwow the metore controls hamdonitching int the output stage. The plate meter is un the lefl.
(0) permit maximum frequenery stability. Tenmeter output atn br ohtamal with $80-$, 40 -, or even 160 -meter ervisals, and wutput in the 11-meter band can also le ubtatued with suitable cervatals.

The output of the revstal necillator is coupled to the grid of a 6 ive which ate as a cither a straight amplifior or as a doublor. depending upon the lumdamental frequeney of the erystal and the position of the batmatwith. The plate taink coil for this state is tappent, with the entire enil being used when the bandswith is set for So-meter output, and only a portion of it when output at higher frequenemes is desired.

Pate voltage for the fititis droppod to about 360 be R_{10}. 'lhue sereen volage of the tube is made adjustable by means of a 75000 -oshm wire-wound petentiometer. the exertation control, whidh, with the usual dropping resistor, forms a volage divider acruss the pate supply. l3y ehanging the sereen voltage, the output of the tube is adjusted to whatever level is required for adequate drive to the 4-125.

When the bemdewitell is set in either the so-
 jeal to the grid of the sots. Fior 20- and $10-$ meter operation. the output of the ifti is switehed to the grid of the first section of the GN7 frequence multiplier. The 6N7 stages are arranged so that the grid not in use is grounded. For 20-moter operation only the first section of the 6.07 is used while for 10 -meter operation both sections are used operating as doublers from the 40 -meter sutput of the $6 \mathrm{Cl}^{\prime} 6$.

The 807 operates straight through on all frequeneits. In this stage the S0- and 40 -meter ranges are covered by one coil. wound on a reramie form and housed in a shied ato above derek. The 20 - and 10 -moter ranges are covered
by an air-wound coil, the phag-in type boing used solely to permit remosal of the solt tube from its socket. Bandswitehing in the 807 stage is ateomplinhed by a ceramie switeh similar in construetion and contate arrangement to the multiplosection switeh used in the earlior stages, and ganged to it through a right-angle drive mechanism. The screen circuit of the so7 includes a parasitic-suppressing resistor. R_{1}. insurbed ahead of the usual screcon hepatss condenser. Bias for the 807 is ohtabed from two sericesonnected 45 -volt Mini-Max batterius.

With about 425 volts on the plate and 32: on the sirren, the so7 dobivers more than enough drive for the 4-125. final on all bands.

The eineuit of the $4-125.1$ final amplifier is dosigned to permit phate-and-sereen modulation of the tube if 'phone operation is desired. Hence, a screen dropping resistor is used to furnish sereen voltare from the plate supply. It is neressary to denp the sereen vollage to 350 or 400 from whatever potential is used on the plate. Spare limitations do not permit mounting a single 100 -watt resistor inside the chasis, so two $00-$ watt units ate mounted side by side and eonnected in series to obtain the required 100 -watt rating.

Operating bias for the final is obtaned by means of a grid resistor, no fixed bias being required. To keep the sereen voltage from soaring to the full plate-supply valuc under key-up conlitions or in the event of exeitation failure, a 6 Y 6 tube is used as a protective device. The 6Y6 is triode-connected, with its plate connected to the sereen end of the sereen dropping resistor, and its grid connected to the grid side of the grid leak for the $4-125.1$. When excitation is present, about 200 volts of bias is applied to the grid of the 6) 6 from the $I R$ drop arross the
grid resistor - more than enough to keep the tube nonconductive. However, when the key is up, excitation is removed, and the 6Y6 grid is without bias. Thus it draws plate current through the screen dropping resistance. The current drawn, in the neighborhood of 20 or 30 ma., is sufficient to reduce the screen voltage on the $4-125$ A to a very low value. As a result, the final plate current falls to 8 or 10 ma . much bet ter than relatively enormous amounts of fixed bias could do under similar conditions.

Three coils are used in the plate circuit of the final. The first, wound on a ceramic form, is used for $80-$ and 40 -meter operation. A commercial air-wound coil with the plug strip removed is used in the 20 -meter tank. The $10-$ meter coil is made of 14 -inch copper tubing. Bandswitching in the final amplifier is accomplished by a pair of ganged single-pole fourposition switches of the heavy-duty type. Particular care should be taken to insure good insulation in mounting both switches because the r.f. potentials encountered are very high, especially when the final is unloaded during tune-up.

The use of fixed links for output coupling, a mechanical necessity, requires that an antenna tuning unit having a variable link be employed for proper adjustment of loading. The unit described in Figs. 1344 and 1345 will be suitable. The meters are switched across 22 -ohm $1 / 2$-watt resistors by double-pole ceramic switches. Both meters are $0-50-\mathrm{ma}$. range, additional shunts being used to extend the ranges to 100 ma. for the 807 plate circuit
and to 500 ma . for the $4-125 \mathrm{~A}$ cathode. The shunts and the 22 -ohm resistors are mounted on the switch contacts. The shunt for the 807 stage is wound with resistance wire, but if this type of wire is not available a suitable lengih of No. 30 insulated wire may be used. A short length of the latter is all that is required for the shunt for the 4-125A. The metering circuit: are arranged as follows:

Plate meter		
Position	Circuit Read	Scale
$\begin{aligned} & \mathrm{AB} \\ & \mathrm{CD} \\ & \mathrm{EF} \\ & \mathrm{GH} \\ & \mathrm{IJ} \\ & \mathrm{KL} \end{aligned}$	6 F 6 plate and serem 6 V phate and screen 6×7 plate (20 meters) 6. N 7 plate (10 meters) 807 mate 4-120. cathode	50 ma. 50 ma . 50 ma . 50 ma. 100 แ!. 500 ma .
GRID METELR		
Position	Circuit Read	Scale
$\begin{aligned} & \mathrm{MN} \\ & \mathrm{OP} \\ & \mathrm{QR} \\ & \mathrm{ST} \end{aligned}$	807 rontrol grid 807 sureen $4-12.5 \mathrm{~A}$ control grid 4-125.A sereen	50 ma. 50 ma . 50 mat . 50 ma.

The physical layout of the rig is shown in the photographs. The entire transmitter is built on a standard $17 \times 13 \times 4$-inch steel chassis, with a $19 \times 121 / 4$-inch Masonite panel to permit rack mounting. While maximum use of the

Fig. 1.347 - licar view of the handswitching transmitter showing plate. ment of parts mountedabovethe fhas.in. Adequate space for the lator addition of a VFO unit is availalufe in the center of the chassis.

C. C. 2 . Cif - $0.001-\mu \mathrm{ffl}$. mica.
 volt paper.

C:q-110-mpfore reciving variable (Hanmarland IIC. I.(1)-s).

(il, ($: 14$ - 0.0022- $\mu \mathrm{fd}$. mica.
Ci2, Cis - $50-\mu \mu \mathrm{fd}$. receiving variable (Hammarlund N(C.50-5).
(:1, - 0.00)- mff . mira, 1200 volts working.

(2.25- $0.0101-\mu \mathrm{ff}$. misa, $\mathbf{5 1 0 \%}$ volts working.
$\mathrm{C}_{2 \mathrm{i}}$ - $1: 0 \mathrm{O}-\mu \mu \mathrm{fl}$. variable, $0.10-\mathrm{in}$. air gap (Cardwell Х (1.120. C).
$\mathrm{R}_{1}-4.000$ ohms, $1 / 2$ watt.
$\mathrm{H}_{2}-1000$ ohms, $1 / 2$ watt.
$\mathrm{H}_{3}-\mathrm{GR}, \mathbf{0 1 0 \%}$ ohms, ${ }^{1}{ }_{2}$ watt.
 H_{5} - 50,0 ohe ohms, 3 watts (three 0.15 -megoh 1 -watt units in parallel).

Fig. 13:8 - Circuit diagram of the bandswitehing transmitter.
$R_{r_{1}}-0.1$ magohm, ${ }^{1}$ watt.
1:- - S. 000) ohm wire-womed potentiometer.
1s. $\quad \mathbf{F}, 1010$ ohms, 10 watt-
RIM - $1.5,000$ ohms, 10 watts.

R1:3- $5: 500$ ohms, 10 watts.

K心— 68 ohms, $1 / 2$ watt.
Ken - 30.000 ohms, 10 watts.
R_{21} - Veter shunt: soe text.
$R_{2: 8}-20,100$ ohms, 5 watt-
$12,50.0100$, whma. 50 watio, with slider.
K2\% 50.010 olims, 50 watts.
liza - Weter shmmt see text.
 tween ground end and tap: $18 \frac{12}{2}$ turns closewound hetween tap and plate end. Wound on t-inch dianz. furn (1 illen
I_{2} - 11 turne No. $2 \boldsymbol{2}$ d.ac... 1 inch long on l-inch diam. furm (Millen tivich).
 form (Millen 4.0000).
below-ehassis space is required, there is enough space left above deck and on the front patel to permit the subsequent addition of a VFO unit if desired. There is adequate space on the pancl for a National Type ACN dial, and clearance is provided between two of the coil shichls for a shaft to tune the VFO.

The tube line-up. shown in Fig. 13.17. has the 6 F 6 Pieree oveillator located about hatiway back along the right-hand rhassis edge, the 6 V 6 buffer-loubler immediately behind the oscillator, the 6 N 7 frequence multipher to the left of the $6{ }^{\prime} 6$, the $4-125.1$ final in the left foreground, and the 646 screen-protecting tube in the corner, near the front panel. The 80%
driber stage, mounted below the chassis, is visible in Fig. 1351. This view also shows the arrangoment of the bandswitehing system used for the low-power stages. A four-siection ceramic switch is ganged to a similar single-section switch through a Millen right-angle drive mochanism.

The two eeramic switches at the lower loft in the hotlom view are for swithing the meters. The small fan near the submounted socket for the +-125.1 serves the dual purpose of cooling the final-amplifier tube base seals and the sereen dropping resistors. The 807 driver is mounted parallel to the chassis surface in a Millen shicld-and-socket assembly to prevent

$\mathcal{T}_{\text {ransmitter }}$ Construction
 285

$L_{A}-35$ turns No. 20 d.s.c., 16 turns $7 / 8$ inch long between ground end and tap, 19 turns clowwound between tap and plate end. Wound on $11 / 4$-inch diam. ceramic form (National XR-16).
Ls - 7 turns No. 18 bare, 1316 -inch diam., $13 / 8$ inches lonk, tapped 3 turns from ground end. (National AR-16-10E with link and 1 turn of coil re. moved. Link connection on plug-in base used to bring out tap.)
$L_{8}-5$ turns $1 / 4$-inch copper tubing, $11 / 2$-inch i.d., $31 / 8$ inches long.
$\mathrm{L}_{7}-8$ turns No. 14 bare tinned. 2 -inch diam., 2 inches long (B \& W 2013EL with 2 turns removed.)
Ls - 26 turns No. 14 enam. tapped 15 turns from plate end, $3 \frac{1}{2}$ inches long, $21 / 2$ inch diam, eeramic form (National Xll-10A).
$L_{9}-2$ turns No. 14 bare tinned, $21 / 2$-inel diam., wound over end of L_{6} and spaced $1 / 4$ inch from it.
$\mathrm{L}_{10}-2$ turns No. 14 bare tinned, $23 / 2$-inch diam., wound over end of L - and spaced $1 / 4$ inch from it (l'art of $B \mathbb{\&} W 2(B E L$ assembly.)
$\mathrm{L}_{11}-4$ turns No. 14 bare tinned, wound over ground
end of L_{8} and insulated fron it by spaghetti tubing.
$\mathrm{J}_{1} . \mathrm{J}_{2}$ - Closed-cirnuit jack.
$11 \Lambda_{1}, \mathrm{MA}_{2}-0-50$ mat, 2 -inch-sifuare case.
MO1 - Fan-and-motorasatmbiy (Barber-i olman Type Yab $569-1$, with Type Yab $35-2.21$ - ineh fan).
RFC, to RF(:i, inc. - 2.5 -nht. r.f. choke (Millen 3-4102).
S_{1} - j -position single-pole ceramic swith (Centralal) $2501)$.
$\mathrm{S}_{2}-4$-section single-pole 4-position ceramie switeh (Mallory 164-C).
S_{3} - Single-section single pole 4 -position ceramieswitch (Mallory 161-C).
S_{4}, S_{5}-Single pole 4-poxition eramie switch, heavyduty contacts (Ohmite' ${ }^{\top}$ - $50-4$).
S_{0}, S_{7} - Two-section double-pole 6-position ceramic (Centralal, 2.511).
T_{1} - Filament transformer, 6.3 volts, 4 amp. (Stancor P-1019).
T_{2} - Filament transformer, 5 volts, 10 amp . (Stancor P-6135).
feed-back from plate to grid, and a second shield plate runs from the 807 socket to the rear wall of the chassis to prevent stray coupling from the 807 plate circuits to the oscillator and doubler circuits. The crystal selector switch is mounted on a bracket bolted to the right-hand chassis edge, close to the oscillator tube and crystal sockets. The terminal board mounted near the meter switches holds all the plate and sereen dropping resistors. The filament transformers and bias batteries are mounted near the left-hand edre of the chassis. Tuning condensers for the 6V6 and the 6..7 stages are mounted along the front edge of the chassis, while the tuning condenser for the 807
plate circuit is mounted near the rear, belween the 807 plate cap and the grid connection of the $4-125 \mathrm{~A}$. The shaft for this condenser is brought out to the front panel at an angle by means of two National couplings of the "uni-versal-joint" type.

Plate voltage for the low-power stages is brought in through a safety connector mounted on the rear chassis wall near the shield partition. The high voltage is brought in through a similar connector near the $4-125 . \mathrm{A}$ and its screen dropping resistors. Power for the filament transformers and the fan is supplied through a male connector mounted on the left side of the rear chassis wall, with a female
conncetor wired in parallel mounted alongside to permit the 115 -volt source to be transferred elsewhere if desired.

All of the coils in the low-power stages, except that used for the 20 - and 10 -meter ranges in the 807 stage. are mounted above deck in National Type RO shield cans. The location of the three coils and the output links used in the final amplifier is shown in Fig. 1347.

The most important mechanieal consideration in building the transmitter is the proper location and ganging of the bandswitehes for the low-power stages. The usefulness of the rig will be greatly impaired if the switching system becomes balky or develops slippage. Thus any amount of time spent in properly mounting the switches, and the right-angle drive shaft which connects them, is worth while.

Fig. 1349 shows the location of the more important holes to be drilled in the chassis. The holes marked with an asterisk are those involvod in mounting the right-angle drive mechanism, and are critical. The others are less critical and are included only to serve as a guide in construction.

Drill the holes for the posts which support the right-angle drive first. These posts are supplied by the manufacturer, and can be removed to facilitate mounting by releasing the Allen
set-screws. Fxtreme care should be taken to insure that the holes drilled for the posts are lined up at exactly right angles to the front edge of the chassis, otherwise the entire switching system will be askew. After the holes are drilled, insert the posts, tighten them so that they are firm, and slide the drive mechanism on them with the " U "-shaped opening pointing in the direction shown in Fig. 1351.

When certain that the posts are placed correctly and that the gear box will slide on them with ease, remove the two short shafts that hold the bevel gears inside the frame of the drive unit. Replace one of these shafts with a $93 / 4$-inch length of $1 / 4$-inch brass or aluminum shafting. This piece is to be the main drive shaft which runs through the front panel, through the right-angle drive assembly to the single-section bandswiteh S_{3}, which is mounted at the rear of the chassis, near the 807 . The other shaft is replaced by the shaft of the foursection bandswitch, s_{2}. Saw off all but $7 / 8$ inch of this shaft, measuring from the point where the shaft enters the bushing on the front of the switeh. Insert it in the drive mechanism and replace the gear so that it meshes with the gear on the other shaft of the drive.

The rear of the four-section bandswitch should be supported by a bracket made of

Fig. 1.349 - I, ayout of the top surface of the chassis. The holes marked with an asterisk are for mounting the rightangle drive. Others, which are included for the convenience of the constructor, are less eritical and may be rearranged slightly to suit individual needs.
$1 / 8$-inch aluminum. The dimensions of this bracket are shown in Fig. 1350 . The rear section of the bandswitch is held "/s inch away from the bracket by l-inch spacers plus a couple of fiber washers.

The single-section bandswiteh used in conjunction with the 807 stage is supported from the rear as shown in Fig. 1351. The rear of the ceramic switeh wafer should be held about $11 / 8$ inch from the chassis wall by small metal spacers.

After the low-power bandswitching system has bern installod and is operating satisfaetorily, the mounting holes can be drilled for the other parts to be located below deck. The location of these parts is not critical, and can be determined from the photographs.

The fan motor is mounted on one of the brackets supplied with the Millen 807-tube shield-and-bracket assombly, The bracket itself is bolted to the chassis with serews which pass through small rubiber grommets. This mounting. which reduces the amonnt of vibration transferred to the chassis, will he a meressity if the addition of a VE() to this tramsmittor is contemplated. A bottom plate for the chassis, with a fow vontilating holes drilled near the rear of the fan motor, should be usid to insure maximum effertiveness of the fan. Considerable heit is generated within the transmitter, and care must be taken to insure an adequate flow of air around the tube base to avoid cracking the seals.

The socket for the $+12 \overline{5} \mathrm{~A}$ is mounted below the chassis on 16 -inch spacers, small spring contacts, made from shim stock or thin phos-phor-bronze and formed to contact the grounding ring on the base of the tube, are fastemed under the screws that hold the sureket in place. The tube itself is inserted in the sometet through a 23 -inch hole in the chassis, 'lhis arrangement provides the necessary shidhing betwen plate and grid circuits to prevent asidlation.

The final tank assembly is constructed as a single unit, removable from the ehassis, and built entirely on the framework of the tuning condenser. The sto-and-f()-meter coil form is mounted on the rear frame of the condensine, and held away from the frame by $1 / 2$-inch spacers. The 20 - and 10 -metor coils are mounted on brackets made of 'f-ineh polystyrene, and are positioned so that the links are nearest the front panel. The brackets are bolted to the frame of the tuning eondenser. The two hoaveduty switches are also supported by these brackets. The shaft.s of these switches are ganged by an insulated coupling. The enfere tuning-condenser-and-tank-coil assembly is supported by 1 -inch ceramic standoff insulators and " $\mathrm{U}^{\prime \prime}$ "-shaped brackets which provide 1 -inch clearance between the rotor plates of the condenser and the chassis.

The output eonnectors are hanana jarks mounted on a piece of ${ }^{1 / 4}$-inch polystyrene which replaces one of the two Myeatex bars on the tuning condenser. The centers of the jateks

Fig, 1350 - Dimen. sions of the angle bracket used to support the rear of the four. seetion bandswiteh.

are spaced $3 / 4$ inch to fit a standard bimanapluy assombly.

The winding sperifications for the eoils used in the low-pmwer stages are given in Fig. 1348. These coils should be wound and monnted before any of the wiring around the bandswiteh is started, otherwise the eoil loads will be inaceessible. The coil forms used in the (iV6 and 6×7 stages are mounted about $1 / 2$ inch above the chassis by small spacers. The ceramie form used in the so-and-40-meter coil for the 807 is held away from the chassis by small angle brackets. Where it is necessary to rum leads from the erils through the chassis. Millen cer:umic bushings are used. Wiring will be simplified if the bandswitch assombly is removed t.emporatily whila the conneretions around the sockets are made, some of the wiring on the bandswiteh itself can be done while the swit ch is out of the chassis. Ill wiring in the bandswitch ascumbly is dune with No. 16 bare timed wire.

A 3-4inch ceramie feed-through bushing is used to rarry the high-voltage lead through the chassis to the plate connertion of the final tube. The junction of the two serern dropping resistors is mounted on this bushing with a National ($\mathrm{SK}-10$) abnd-off insulator to prevent shorting. The other ends of the sereen resistors are supported by two more of these stand-oths from the rear chassis wall.

The low-power shages can be operated from the supply shown in figs, 1310 and 13311 . The final amplifier is designed for use with 1800 to 2000 volts on its plate, but as much as 2500 volts can be used if only ew. operation is planned. If it is desired to run the final in 'phone sorvice at more than 2000 volts, a tuning condenser with wider spacing between phates will be required. It should also be noted that the 807 stage is designed for operation at no more than 450 volts, as this is more than enough to secure the output required to drive the final. If operation at higher voltage is planned, a larger tuning condenser will be required in this stage.

After checking the wiring carefully, power may be applied to the low-power stages of the transmitter. Turn the excitation control to maximum and set both bandwitehes to the 10 -meter position, one meter switch to the

288

Fig. 1351-Bot. tom view of the chassis of the bandswiteling transmitter showing location of parts and wiring. I'he erystal selectorswitell and the sochets for the $6 \mathrm{H}^{\prime} 6$ oreillator and the $6 \begin{aligned} & 6 \\ & \text { huffer- }\end{aligned}$ doubler are on the right. The ovi sochet is visiblebetween the fonrgectionhandswith and the 807 momet ing brachet. The 6)6 protectivetulve socket, the meterswitches and the terminal board for the plate- and serecn-dropping resistors are in the lower left-hand corner.
position which reads platerambererem courront in the $6 V^{\prime} 6$ stage. and the other to read grid curvent in the 4-125. . Tune the GV0 plate rimeuit to resoname as indicated by a slight dip in the moter reading. Turn the moter switch to read plate current in the 20 -meter seation of the 6N7. The dip in plate current as this stage is tuned to resonance should be pronounced. A similar procedure is followed in tuning the 10 -meter section of the 6×7. Plate current in this stage will be considerably higher than in the 20 -meter section. The dip in plate curront as the 807 plate circuit is resonated should also be pronounced, dropping from about 80 or 90 ma . to 30 or 40 at resonance. Grid current to the final stage should be moasured at this time. If everything is as it should be, there should be at least 10 ma , of grid current. If more than 10 ma. is indicated, batek off the setting of the excitation control until it falls to 10 ma . The control exerted by this potentiometer is not linear, and it may be foumd that there is little or no change in grid current over a considerable portion of the adjustment; in fact, the grid current may increase somewhat at first as the control is backed off. This is an indication that the drive to the 807 grid is excessive, causing its sereen current to rise higher than normal, and reducing the output of that stage.

Once the low-power stages have been adjusted to give the rated amount of grid drive to the $4-125.1$, plate voltage maty be applied to the final. When tuning up, reduced plate voltage is advisable to prevent the tube from being damaged shoudd the final tank coil fail to resonate. A dummy load - a 200 -watt lamp
bulh, for example - should be connected to the output terminals of the transmitter before plate voltage is applied to the final. This is a "must," since the sereen dropping resistance must be adjusted to provide rated sereen voltage with the final loaded. Adjustment under any other condition will be useless. Tune the final tank eircuit to resonance. The plate curvent at this time, with the load eoupled to the final, should not exceed 150 ma . It should be remembered that the meter reads combined phate and sercen current, so the screen current, which can be read on the other meter, must be subtracted from the indicated value to get the true plate current.

If plate current is too high the probable reason is excessive screen voltage. The slider on the screen dropping resistor should be adjusted to apply 350 volts to the screen when the tube is operating at full plate voltage, with rated grid drive, rated screen current, and working at full load. Be sure to remove the plate voltage from the final before adjusting the resistor! If the plate eurrent is excessive after the sereen voltage is set at the right value, decrease the loading on the final, remembering that with a change in loading the screen current changes and therefore the screen voltage will have to be readjusted. Too mudi sereen voltage will result in excessive plate current and consequent overhenting of the plate. Too much grid drive will cause a sharp drop in output because the screen current increases with grid excitation, in turn redueing the sereen voltage. Optimum grid drive can best be determined under act ual on-t he-air conditions, using feeder current as an indication of maximum output.

Operating Voltages \& Currents

in the 4-125A Bandswitching Transmitter.
Conditions of measurement: Transmittertmed for 10 -
 age, 430. Keadings obtained with 20,000 -ohna-jer-volt meter.

Tube	Element	Volts	Ma.
6F6	Plate Screen	$\begin{array}{r} 128 \\ 70 \end{array}$	16
6V6	Plate Screern	$\begin{array}{r} 300 \\ 9 \end{array}$	16
6.N7	Plate 1 Plate 2	$\begin{aligned} & 3.10 \\ & 300 \end{aligned}$	$\begin{aligned} & 12 \\ & 28 \end{aligned}$
807	Plate Screen Grid	$\begin{array}{r} 430 \\ 340 \\ -90 \end{array}$	28 3 $*$
4-125.	Plato Grill Screren	$\begin{array}{r} 2000 \\ -200 \\ 350 \end{array}$	$\begin{array}{r} 150 \\ 10 \\ 30 \end{array}$

Note: Ilate current and surem voltate and riment,

* Less than 1 -ma. grid drive to 807 rerpinal to produce $10-11 \mathrm{a}$, drive to grid of $4-1250$.

Those who plan to use the rig on rew. only may find the use of a fixed serecon supply more satisfactory than the sereen-dropping-resistor method, although means must be provided to remove sereen voltage whenever plate voltag is removed to prevent damage to the tube.

The ancompanying table gives representative voltages and currents measured under operating conditions. Some variation from these figures can be expectod depending upon the actual supply voltages used, but they will serve as a generat indication, useful in checking performance.

The transmitter may be operated with a separate Vro unit as its froquency control by removing the erys-
 feeding the wutput of the: YFO lnfween the: phate pin of tha artillator mooket and ground. Admpate drivo for either 'phone or c.w. operation can be obtained on all hamds with a VFO such as that described in Fig. 1352.

Fig. 1.352 - The complete IFO unit. The oscillator is housed in a splarate combart. ment which is shock-mounted on rabiber grommets. The oscillator tube is on top of the eompartment. 'To the rear are the two 6F6 amplifier tules, the IR wher, the reatifier and the power transformer. In fromt are the stand-by switeh, the powerswiteh, pilot lanp and the two keying jacks. The output terminals are to the right.

It should be noted that this method is satisfactory only in cases where direct coupling will not short-circuit the phate supply. In other cases, the VFO should be coupled through a $0.001-\mu \mathrm{fd}$. bloeking condenser.

(1) A Simple VFO Crystal Substifute

Figs. 1352. 13.54 and 1350 show different virws of a VF() unit with sufficient prowr output to drive the average crystal-oscillator tube. As the circuit diagram of Fig. 1353 shows, it consists of a bisk7 ECO followed by a pair of GFlis as isolating amplifiers. The primary frequeney range covered by the owillator is $3500-4000 \mathrm{kc}$., but this range may be shifted lower to cover 3395-3800 ke. for multiplying to cover the frequencies in the 10 - and $11-$ meter bands by readjustment of the bandsetting condenser, Co. Plate and sereen volages are provided by a small huilt-in voltage-regulated power supply. Only the plate of the output tube is operated at the full power-supply voltage, the voltage of the rest of the plates amd screens being limited to 150 by the VR lubre.

Canstruction - The oscillator portion is constructerl as a sepamate unit in a standard $3 \times 4 \times 5$-inch sterd box. The tuning eondenser. (Y , and the coil form for L_{1} are fastened to the rear wall of the box. C_{1} is coupled to the National Type A.S dial hy a short extension shaft and a flexible coupling. The band-setting air condensicr. ('an mounted against the right sile of the box near the lower rear corner where it. ran he adjusted from the outside with a

$\mathrm{C}_{3}-22(0-\mu \mu \mathrm{fl}$. zero-temp.-cö̈f, mica-
C. $-68-\mu \mu \mathrm{fl}$. zoro-temp.-coéf. mica.

(14. © 15 - 8 -uff. 150 -volt electrolytie.
$R_{1}, R_{2}-17,(1)(N)$ ohm $1 \frac{1}{2}$ watt.
$1 \mathrm{R}_{2}-0.1 \mathrm{mmgehm} \boldsymbol{1}^{1}{ }_{2}$ watt.
$R_{4}-2 \cdot 0$ olmmel watt.
$\mathrm{R}_{\mathrm{s}}-\mathrm{EmO}$ ohme, 25 watts.

Fig. 1.35.3 - Circuit diagram of the simple VFO.
$L_{1}-17$ turns . Xo. 20 enam., 11 s inclaes tong, 1 -iach diam, tapped 5 turns from pround end.
I: - 30 hy., 50 ma. (Stancor C-1003).
$J_{1} \mathrm{I}_{2}$ - Cheed-circuit jack.

 hong polystyrene form wound full with No. 30 d.... wire.
$\mathrm{S}_{1}, \mathrm{~S}_{2}$ - S.e.t.t. toryle swith
T'-310 volt-cach side center, 55 ma.; 5 v., 2 a.; 6.3 v ., $1 / 2$ amp.
serewdriver to set the beginning of the tuning range. The tule is mounted externally on top of the box where it will be well ventilated and where its heat will have minimum elfert upm the tuned dirent. The coupling lad belwern the plate of the oscillator tube athat hare grid of the first 6F\% is made with flexible wire passed through Nationa! TPB polystyrne bushings. one in the useillator compartment and one in the hate ehassis, the rigiel wire which amme with the bushing having first been remowed has waming with a soldering iron. The power and keving hads are brought out in a smidar manner throngh holes lined with rubber grommets. The aseillator box is shorkmounted by metans of long machine sorews al eath romer of the bothom pate. The screws pass through grom-met-lined holes in the top of the 1. hatsis.

The buse chassis is $\overline{3} \times 10 \times 3$ furhes. The two 6F6s are mounted on either site of the chassis immediately bebind the oscillator compartment. ['nderneath, the filter choke

Fig, 135.f — Buttom view of the VFO wnit showing the filter choke and the various r.f. chokes and liy-pass condensers associated with the amplifiers.
is fastened against the side of the chassis in the loft rear near the two filter combensers, (14 and C_{15}. The two plate r.f. chokes, $R P C_{2}$ and $R F_{3}$, are momated near their associated tube sockets. On the front codre are the comtrol switehes, sit for pewer. and sis which is the stathl-hy switch,
 nals in paratled with siz are mounted in the rear
 melay if this is found desirable. The output ter-ninal- are set in the right-hand side.

Adjustment - The resistathe of h^{\prime} should be arbusted experimentally su that the V'R

Fig. 1355 - Bottom view of the oscillator compartment. The tuning condenser and the onil are fastened io the riour wall of the hos, while the air trimmor is monted on the lower end in the photograph. Whe small come insulator supponts the couplang lead to the firsit amplifier stage.
tube is ignited with the kery either closed or open. If the glow disappeats when the ker is closed, the sesistane of H_{5} should be redued. With the diad sel for maximum capacitance of C_{1}, C_{2} should be adjusted with a serewdriver to set the frequency at $3: 00$ ke. 13395 if the ${ }^{\prime} F()$ is to be used for 10-and 11-meter operation), (" shoula then cover the range to 1000 kc . (or 3800 kr .).

Coupling to the ervalal oscillator in most transmitters is simply a matter of ruming a wire from the "hot" output terminal (the terminal connected to the plate of the output tube through (' 13) to the grid of the oscillator tube, and the other output terminal to the chassis of the transmituer. In Tri-tet and gridplate oscillator cireuits, the cathode tanks should be short-sirenited. In triode or tetrode crystal-oscillator circuits using parallel plate feed, it may be necessary to shit to serites feed to prevent low-frequency parasitic oscillation because of the r.f. chokes in both the input and output cireuits. In lierce circuits, the oscillator tube may be fed as a grounded-grita amplifier by eomerting the output terminals of the VFO in series between the eathode and the biasing resistor and by-pass. As an altornative, in this true of circuit, the oseilator tube may be diminated and the VFO fed to the grid of the next tube.
Keying - Best keying characteristios will be obtained by keying the output stage although a second keying jack. It is included for use if break-in operation is necessary, since
the key would be at 150 wolts above ground, a keving relay or varuum-tube keyer should be used hore to awoid the danger of shock. In keying the osedilator, any key-elick-filter lar should be kepe at the minimum required for satisfactory chick suppresion, to avoid chirps. lisually, rif. chokes only at the relay terminals will be sufficient. Is much lag as is desired can be used when keying the output stage, sinee keving at this point does not affect the frequenty.

The oscillator draws 8 ma. in the plate circuit and 3 mas, in the sereen cireuit. 'The plate current of the first amplifier should run about 15 ma. with the oscillator key elosed and 32 ma. when excitation is removerl. The outputstage currents should be 17 ma . with excitation and 25 ma. Without excitation.

(I) A Push-Pull Amplifier for 200 to 500 Watts Input

Figs, 1356,1357 and $13: 9$ show various views of a compact push-pull amplifier using tubes of the 1500 -volt $150-\mathrm{ma}$. class, although

Fig, 1.356 - A general view of the compant 450 -watt push-pull amplifier. showing the front-panel and top. of.cha-sis arrangement. Mounted on a stindard relity rack, the height is only - inches and the depth 9 inches. Grid and plate tank circuits are iso. lated from each other by the douhte shielding partitions. (On the panel are the $0-101 \cdot \mathrm{ma}$ milliammeter, whin his swithed toreadeurrent in alleircuits, the piateotank toming dial, and a chart giving coil and tuming data. The small knob at the left below is the krid. eircuit tuning rontrol, while the ane to the right is for the meter switeh. 'The tube sonkore ars momoted adiaeent to the stator terminals of the plate-tank condenser, C_{2}, in the center, with the neutralizing condensers, between. providing short leads.

Fig. 1337 - All components of the 450-watt pushopull amplifier are as. sombled aromel a small metal chassi= $7 \times 2 \times 9$ inches derp. The partitions are stamdard $612 \times 10-\mathrm{im} h$ in. tirstage shields. "Whe plate tank condenere is moninted on the left-hamil partition. Whe plate tank-owil jark-
 condenser. on sparers which give! 2 indh darance lertween the strip and the partition. Cio is monnted with a small angle bravert on the partition umber the center of Cis. The soneket for the wrid tank eoil is monnted just aboue the ehaz-i line. Willen safits tormmals are ned for the external Jifili-voltage plate and bias conneetions.
the dexign is also suitatho for use with tubes of the 1000 -wolt 100 -mat. (lass. With the lower plate voltage a plato tamk wombenser with a spacing between plates of 0.05 inch, and smaller

tank coi's, may he used.
The cirruit. shown in Fig. 13.58, is quite eonventional, withlink coupling at both input and output. The tuned circuits, $L_{3} C_{6}$ and $L_{4} C_{5}$, are traps important for the prevention of v.h.f. patasitic oscillations. The 100 -ma. meter may be shifted between the grid and cathode circuit: for reating cither grid current or cathode -urrent. When shifted to read cathode current, the meter is shanted by a resistor, h_{2}, which multiplies the scale reading by five. This rovistor is wound with No. 26 coppor wire, the length being determined experimentilly to give the desiren soale multiplication.

Crnstrucion - The mechanieal arrangement shown in the photographs results in a compart unit requiring a minimum of pand space. The tank condensur is mounted on the left-hand partition (Fig. 1357) at a height which brings its shaft down $25 / 8$ inches from the top of the manel. The plate tank-roil jatek hat is momuted centrally with the condenser on spacors which give a $1 / 2$-inch clearance betweon the strip and the partition. C_{10} is momeded with a small angle on the partition umder the conter of C. I.eads from both ends of the rotor shatt are brought to one side of C_{10} for symmetry.

The two tube sockets are mounted in a line through the center of the chassis and at op-

Fig. 13.58- Curenit diasram of the 450.wat push-pmllamplifier.

 marlund HFBD 1 .106.E. .

($\therefore, \therefore, C, 0111-\mu \mathrm{tid}$ mi ma.

R_{1} - $2 \boldsymbol{2}$ ohms, 1 watt.
R_{2} - Meter multiplier revi-tanere for 5-time multiplicatirn. wound with . .o. 20 wire.

 2 durns from $13 \& 11$ coil).
 2 turns from B^{2} \& $\mid 1$ evil).
$1.2-13 太 W$ TCL serics dimenions an follows: **
3.5 Mr. - 26 turns No. 12, $31 / 2$-inch dialli, $41 / 2$ inders lome.
T Ye.- 22 turns No. 12, $21 / 2$-inch diam., $41 / 2$ inches long.
14 Mi. - 10 mrns Vo. $12.21 / 2$ inch diam., $41 / 4$ indera long remon' one turn from each end.
 diam.. 1 ía meln's long. Remove one turn from cach end.
 11 |ow-mata millammoter.

s-2-section 2 -position rotary switch.

[^3]
$\mathcal{I}_{\text {ransmitter }}$ Construction

Fir. 1359 - Bottom view of the 450 watt push-pull amplifier. The grid tank eondenser is momed between the two tube sexhets which are set below the chasuis on brackets. Connections betwern the rondenser termionals and the eoil sorket above pass through grommet-lized holes in the chassis. The partitions provide shiedding between input and ontput tank corils.

posite ends of the plate tank condenser. They are spared about one inch below the chassion long mathine serews. The neut ralizing eondensers are placed between the two tubes, so that the leads from the plate of une tube to the grid of the other are short. The r.f. choke is mounted just above the tank condenser.

The right-hand partition is cut out at the forward edge to clear the meter. This cht-ont can be readily made with a sorket punch and a hacksaw. The sorket for the grid tank roil is mounted 412 inches behind the pancl, just above the chassis line.

The grid tank condonser, C_{1}, is mounted under the chassis without insulation. Large clearance holes, lined with rubber grommets, are drilled for connereting wires which must be run through the chassis or partitions. The para-
sitic trap, are made self-supporting in the pate leads from the tank condenser w the tube eaps. The panel is placed so that the plate tank-condenser shaft comes at the center. The meter switch is mounted to babance the knob controlling C_{1}.

Power supply and excitation -.'The T-40 tubes shown in the photographs operate at a maximum plate voltage of 1500 for c.w. work. For this, the mit shown in Fig. 1360 is suitable. The supply shown in Fig. 13226, minus the VR-tube branch, will provide the biasing woltage required for pate-current cutoff. Roshould have a resistance of 2500 ohms and h_{3} of 1500 ohms. A filament transformer delivering 7.5 volts at 5 amperes also will be required. The exciters of Figs. 1311 or 1331 will furnish adequate drive.

Fir. 1360 - This power supply delivers 1500 or 1250 wolts at a full-Ioad current of 425 ma., with 0.25 -per-cent ripple and regulation of 10 per eent. Soltages are apleted by tapson the transformer serondary. 'llie secondary terminal hoard is covered with a section of sted panel supmoted by brachets fastened undermeath the core elamps and insulating caps are provided for the tule plate terminals. A sperial wafty terminal (Billen) is used for the positive high-volage connection. The panel is. 1016×19 inthes and the ehassis size is $13 \times 16 \times 2$ inches. The circuit fur this supply is shown in lize. 131.3. The following values should be ued:

C_{1}, (2,-4- fil. 2000-volt paper (C-D TJC20140).
K - 20.0100 ohms, 150 watts.
1.1 - $3 / 90$ hy, 5010 ma , $i 5$ ohms (stancor C1405).
$\mathrm{I}_{2}-8$ hy., 500 ma., 75 ohms (Staneor (1415).
' 1 'r - 1820 or 1520 volts r.m.s. cach side of ern-ter-tap. 501)-ma. d.e. (S̀tancor 'Type P61.5).
$\mathrm{T}_{2}-2.5$ whts, 10 amp , 10 . mon.volt insulation (Stancor 'Iype 1'362.).
For a $1(6) 0$-wolt suply, the following values are suguested:
C.1, C2-4- Cl . 1500 -wolt paper (Aerovox 1.30.).

R-30.000 olims, 50 watts
$1_{1}-8 / 30$ hiy. filter imput ehoke, 250 ma.

1.2-15-hy. filter smothing choke, 250 ma . (Staneor (- -1703).
$\mathrm{T}_{1}-1250$ or 1000 volts r.m.s. each side of center-tap, 2.30 ma. (Stancor P.1330).

Fig. 1361 - A link-couplod antenna-tumine unit for use with reonant fred or-tome and medium-power amplifiers, 'Phe inductance. with variable link, is mesumted on the condonser framos. (lips are prowided for ehanging the mumber of turns and for switheng the combeners

Tuming - After ther amplifier has beon noutralized, a test should be made for parasitic osedtation. Ther bias should be reduced until the amplifier draws a phate crument of about 100 mas. without exatation. Wish ('a adjusted to various settings. 's should be variod through
 for any abrupt "hange. duy change will indicate

 the osedlation disappeats. lonless the wiring differs appreciably from the original. complete -unpression will he obtamed with the twor (andensers at full raparity. ('hanging bands should have no effect upon this adjust ment.

With nomal bias replaced, the amplifier chond now be faned up and the exitation adjustad so that a grid cament of 60 mat. is obtaimed with the amplifor fully boted. Frull loading will be indeated when the athomberemerent meter registers 3 seto mat. which indhtes the 60-ma. gride current. Vmber the we anditions the biasing voltage shoold rise to lino volts, drapping to about 70 valt: without oxatation when the plate eument will fall to almost zora.

If the amplitier is to be phate-modnlatert, the plate voltage shonld the redued to 12.30 amd the loading docreased to redure tha plate
 justment will be satisfactory for thi type of operation bat exditation mas be meluced to give a gride eurrent of 40 mat., bringing the total eathode current to $2!0$ mat. The antemat ther shewn in Fig. 13til may he ued.

Operating conditions far tube wf other wharacteristics will be found in Chapter l'wenty.

(1) Antenna Tuner for Medium Power

The antenna there shown in Fig. l:abl will usually be satisfactory for amplition operating at plate voltages not in exeress of 12.00 .

The two eondensers aro mounted from the panel by means of winsulating pillars taken from lational (is-1 insulators, which are fastened to the end patates with small seetions of machine serews from which the heals have been cott. The variable link roil is monnted betwen the two rear ond phates. 'l"he size of the coil is varied be short-circuiting turns, using elips which are attached to the condensers with
flexible loads. As shown hy the circuit diagram, Fig. 1:162, the condensers are connected in parallel when the somond pair of elipse connects: each rotor to the stator of the opposite condenser. The feeders are comected to the two large stand-off insulators monnted on the panel.

(1) A Compact 450-Waft-Push-Pull Amplifier

The photographe of Figs. T363. 136.5 and 1366 show an amplifior designed along the lines of the type of construction often reforeal to as "dish type." This ster of constmetion has many advantages, athough its use nornatly is anfinol to components of moderate physiat dimemeions and woight.

Fis. $1: 3$ K- - Cironit diagram of the link-rompled antruat tuning unit for u-c with medinm-jowar tranmaittrs.

.-100
L_{1} - $2: 2$ rurns \o. 11. diam. $\mathbf{2 n}^{3}$ 亿 inches, length 4 inches (Cote with variabhe link).
I 2 - thrna, rotatiny intide /a.
$\mathrm{A}-\mathrm{R} . \mathrm{f}$. ammetor. $11-\underset{-3}{ }$-ampere range for mediumpower trath-mithers.

The tank mols may be monted so that very litale metal of the normal ratis struture is in the immedi:tte fields of the tank coils - a condition almost impossible ato apporath in the usuat form of romstruction with metal pancls and sidn brackots. Jhig-in roils are mate much mave acocsible for whanging and the direction of "pull" in removing coils is out-

Fig. 136.3 - The thres controls of the 4.50 -wat "dish"wie" amplifior are arranyed symmetrially. The meter swith is at the right, the eontrol for the plate tank condener at the center and the eriderirenit control at the left. The panel which is $83 / \times 19$ inches is fitted with panel bearings for the condenser-shaft extensions. It is fastmed to the chassis by flat-had serews after the bet tom edges of the chassis have been irilled and tapped.

Fig. 1364 - Circuit diagram of the "dish-type" pu-h-pull 150-watt amplifier.
$\mathrm{C}_{1}-100 \mu \mathrm{ffl}$ per section (Itammarlund VCI) 100 M).
 incla spacing.
$\mathrm{C}_{3}, \mathrm{C}_{4}$ - Neutralizing condenser, 10 to $15 \mu \mu \mathrm{fd}$. (IIammarlund $\backslash 1(1)$.
$\mathrm{C}_{5}, \mathrm{C}_{6}-470 . \mu \mathrm{fd}$. 600 - volt mica.
$\mathrm{C}_{-}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}-0.01-\mu \mathrm{fd}$, 600-volt paper.
$\mathrm{C}_{11}-0.002$ - $\mu \mathrm{fl}$. $\mathbf{5 0 0 0}$-wolt mica.
$\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}-221047$ ohns. 2 wate.
$\mathrm{R}_{\mathbf{4}}, \mathrm{R}_{5}, \mathrm{R}_{6}$ - Cathode-current micter -hunts (ief (exvt).
L_{1} - National Al series coile with center link (variablelink type recommended).
Substitute coils may be wound on $1 \frac{1}{2}$-inch diam. form as follows:
ward away from the rack rather than upward into the next rack unit above. Terminals may be mounted so that the wiring between rack units may be made inconspicuous and so that the chances of personal injury from accidental contart with exposed terminats at the rear are greatly reduced. Lastly, this form of construction usually reduces the reguired height of the unit which is a particular advantage in table racks where vertical space is at a premium.

The circuit of the amplifier shown in the diagram of ligg. 1364 is standard in every way except in the method of metering. By means of the two-gang six-position switeh, it is possible to measure the individual grid and cathorle eurrents of each tube as well as total grid or total eathode currents. To accomplish this.
3.5 Mr. - 11 turna. 2 inclumin Inte.

7 Mr. - 2.2 turn*. 2 imelue- lons.

L_{2} - B 心 W Tll series with conter linh
Sub-ritute coils may be wound as follows on 23 不-inch diam, furme:
3.5 Mr. -36 turns. 4 inches long.

7 Mr. - 18 turns. 1 inelu* Ions.
1111 . - 10 turns. 3 inches long.
$28 \mathrm{Wa} .-6$ turni. 3 inches lomg.
$\mathrm{RHC} \mathrm{C}_{1}-2 . \overline{\mathrm{s}}$-mhl r.f. choke.
RFC: - 1-mh. r.f. chohe (Xational 1.51-1).
S-bang (o-position rotary switth (Mallary).
$T_{1}, T_{2}-6.3$ volts, 6 amp.
two small filament tramsformers are used, one for each tube, instead of a single large transformer. The meter is switehed acoss shunting resistances in each circuit to simplify switching. In the eathole circuits, the shunting resistors should be carefully adjusted to provide a scale multiplication of ten, giving a full-scale rearling of 1000 ma .

In doing the r.f. wiring, care should be taken to keep it as symmetrical as possible. In forming the long wires between the neutralizing condensers and the tank-condenser stators, the lengths should be made identical. The wire connecting to the rear condenser stator should go directly in a straight line, while the one going to the front stator section may be bent to make up for the difference in distance be-

Fig. 1365-The grid-circuit components of the "dish-type" 450-watt amplificrare mounted on this side of the partition which is braced by standard 5 -inch triangular brackets. The tank condenser is mounted by means of a screw in the hole which remains when the shield between the stators is removed. The ceramic terminal strip is for all external ronnections axrept for positive high voltape for which a special safety terminal is provided. A large clearame hole should be cut in the chassis for the condenser shaft. The shaft, which should come at the center line of the chassis, should be provided with a fexible insulating roupling.
tween the neutralizing condensers and the two stators. The phate leads to the tubes should be tapped on these long wires at points which will make the wire length between neut ralizing condenser and plate and between tank condenser and plate equal on each side.

The positive high-voltage lead, rum inside the chassis with high-voltage cable, comes up through a feed-through insulator near the plate choke.

The rotors of the grid tank condenser are not grounded, since experience has shown that an amplifier of this type usually neutralizes more readily withont the gromid connertion and excitation usually divides more evenly between the two tubes.

The leads from the neutralizing condensers to the grid terminals are crossed over before they pass through small feed-through prints mounted in the partition. The grid-r.f. chokes are self-supporting between the tube grid terminals and the feed-through points in the chassis. which "arry the biasing leads inside to the individual grid leaks. Filament wires are run through 3-inch holes lined with rubber grommets.

Inside the chassis, the leaks and moter shunting resistances are supported on fiber lug strips. The leads going to the switch should be soldered in place, formed into cables and the other ends comnected to the switch on the panel as the last operation before putting the panel in place.

This amplifier is suitable for use with any of the 1000 -volt $100-\mathrm{ma}$, to 1500 -volt $150-\mathrm{ma}$. triodes. Those shown in the photographs are 812 s .

For 1500 -volt tubes, the power supply shown in Fig. 1360 is suitable for use with this amplifier and bias may he obtained from a unit such as the one shown in Fig. 1327. The biassupply resistor should be adjusted so that the total grid voltage under operating conditions will not be loss than 125 volts without exceeding the inaximum grid-current rating of 25 ma . per tube when the amplifier is loaded to rated plate current.

The amplifier requires a driver delivering 25 to 40 watts. Those of Figs. 1311 and 1331 are suitable.

If the layout and wiring have been followed carefully, no difficulties should be encountered

Fis. 1366 - The plate tankoroil jack strip of the $450-$ watt push-pull anplifier is fastened to the tank-condenser frame with strip-metal lirackets. The atsembly, mounted on $5 / 8$-inch stiandoff inmulators is placed at the center of the chassis a- far to the loft as possible. The eonderver shaft is evtuded at right angles through the boaring in the center of the chassis by means of two Millen 15 -degree shaf joints conneeted together by a short length of bakelite shafting. The sockets for the tubes are subtnounted on the 6×8 inch partition, $31 / 2$ inehers up from the chassis and 1 Is inches from each edse and are orientated so that the plates of the tubes will be in a vertical plane.

Fir. 1367 - Top view of the bandswitehing amplifier. The plate-tank switehing assembly is to the right.
in neutralizing nor with parasities. Both grid and plate currents should check the same within ten per cont.

The meter when switched to road grid current forms a good ncutralizing indicator. Both neutralizing combensers should be kept at equal sottings and adjusted simultaneously until the grid current remains perfectly stoady as the plate tank condenser is tuned through resonance. Neutralizing is alway: done with plate voltage re-
 moved.

A suitable antenna tuner will be found in Figs. 1361 and 1362.

A. A50-Watt Bandswitching Amplifier

Figs. 1367, 1369 and 1370 show the details of a bandswitching push-pull amplifier for the 3.5-, 7-, 14-and 2 - Mc. bands. It is suitable for use with any of the popular 1000- or 1500 -volt 100- to 150-ma. triodes. The tubes shown in the photographs are 812s.

As shown in the circuit diagram of Fig. 1368, all of L_{1} in the grid tank cirenit and all of L_{4} in the plate tank cirruit are used for 3.5 Me. Low-frequenty palders:, ('i in the mrid cirouit and C_{10} in the plate, are switched across the
coils simultaneously. For 7 Mc., the padding condensers are cot out and L_{1} and L_{4} are tapped so that only a portion of each coil is in usie. At 1.4 Me.. the coils L_{2} and L_{3} are used with the padders, while at 28 Me. the same eoils are used without the padders. links for the two coils in each tank circuit are connected in siories.

The components are assombled on a standard 10 -inelh panel. $10 \frac{1}{2}$ inches high. The two tubes. the neutralizing condensers and 10 are mounted on top of a $5 \times 10 \times 3$-inch chassis fastund to the pancl with its conter 7 inches from the left-hand edge and its bottom edge ${ }_{3}$ inch above the lower edge of the pancl. The

Fig, 1368- Circuit diadram of the bandswitehing push-pull amplifier.
$\mathrm{C}_{1}-30-\mu \mu \mathrm{fl}$. variable, 0.0 -inch spacing (Cardwell $\mathrm{L}_{1}-\mathrm{BS} \| 80 \mathrm{BCl}$. tappedat $12 \mathrm{H}_{\mathrm{i}}$ turn fromeach end.
L_{2} - 10 urns No. 1.4 enameled, $1 \frac{1}{4}$-ineh diam., 1 inch long.
La-BS II loTCI.
 turn from cach end.
($3_{3}-3.5-\mu \mu \mathrm{fd}$-per-section variable (Willon 2103:5).
$\mathrm{C}_{4} \mathrm{CO}_{3}-0.01-\mu \mathrm{fd}$, paper.

Cs-0,001- μ fil. 5001 -volt misa,
 65.F).
$\mathrm{C}_{10}-50-\mu \mu \mathrm{fd}$. vacuum capacitor (${ }^{2}$ ype GE GL-HI.38) .

$S_{1}, \Sigma_{2}-4-4$-any 4 -position ceramic rotary switeh (Mallory 10.t-(i).
$\Gamma_{t}-6.3$ volts. 8 amp. (UTC S61).

298

Chapter Jhirteen

Fig. 1.369 - Bottom view of the band. switching amplifier showing the gridcircmit assembly to the right and the plate-circuit gromp (o) the left.
tubes are spaced $51 / 4$ inches, center to contor. and their sockets are submomited and centered 13 inches from the right-hand edge of the chassis as viewed from the rear. L_{2} is wound on a polystyrene form mounted on a National AR eoil-phing trip. Its socket is eentered betworn the tubes and $5 / 8$ inch from the colge of the chassis. $A 5^{3} \frac{1}{4} \times 2$-inch eut-out is made in the out side elge of the chassis to elear the grid handswiteh, S_{1}. A 13 -inch piece of the eut-out is left and bent inward at right angles to provide a mounting for the switch. The coil for L_{1} is removed from its plug strip and transfermed to a Millon phag strip which has the required additional contacts for the 7-Mr. daps. The cut-out is not (ched at the top)
to provide clearance for the terminals of the coil socket.

Inderneath the chassis, C_{9} is monnted vertically on sparers at the eenter, while the grid tuning condonser', (${ }_{3}$, is mounted as close to the inside odge as possible. Leads leetween the lower terminals of the neutralizing condensers and the grid terminals of the tube sockels are fed down through the top of the rhatsis via small feed-through insulators. Link input terminals are mounted on the outside edge of the chassis, near the rear, while 115volt a.c. and biasing connections are made through a rable sueket set in the rear edge. The filament transformer is mounted on the upper right-hand corner of the panel, as

Fig. 1370-- Rear viaw of the liandswitchiug amulifier.

Fig. 1371-A Anell-tuhe hish-nower amplifier for high-voltage inputs up to 500 watts. The staudard rack panel is $121 / 4$ inches high.

viewed from the rear of the unit.
The plate tuning condenser, (${ }_{9}$, is mounted on aluminum-strip brackets fastened to the chassis to bring its shaft $8^{3}-4$ inches from the right-hand edge of the panel (as viewed from the front) and 2 , inches from the top. Aluminum sheet is cut to form end plates for a subassembly which includes the switeh, x_{2}, the two coil sockets, and a mounting for the padder, (${ }^{2} 10$. As viewed from the rear. L_{4} is to the left and L_{3} to the right, Pillar-type comamie insulators form spacers for the mounting angles which support the cartridge-fuse clips in which the varoum-t ype padding condenser, (${ }_{10}$, is mounted. The assembly is spaced from the panel on $1 \frac{1}{4}$-inch cone stand-offs, phaced so that the shaft comes $51 / 2$ inches from the righthand edge of the panel and 2^{3} inches below the top edge. The Millen safety terminal for the high-voltage connection, the link output terminals and the insulating condenser, C_{s},
are fastened to the rear end plate of the assombly. The phate rif, choke is fastemed to the panel hetween the plate tank condenser and the witeh asembly.

For lano-volt operation the plate supply shown in Fig. 1360 is suitable. The same cireuit with the 1000 -volt values is appropriate for lower-voltage tubes. If 1500 -volt tubes are to be used. the exeiter should be rapable of delivering 25 to 30 watts. The units shown in Figs. 1311 and 1331 are suggested. The same exciters, with the sotsonerated at lower voltare if desired, may be used also to drive the smaller tubes. The antenna coupler of Fig. 1361 is suitable for use with cither class of tubes.

C. A Single-Tube 500-Watt Amplifier

A single-tube amplifier which may be operated at inputs up to 500 watts at voltages as high as 3000 is shown in Figs. 1371, 1372 and 137. . The eireuit, shown in Fig. 1373, is strictly

Fip. 1372 - Rear view of the luigh-power single -tube amplilier. The two tank entilensers are mounted, one above the other, in the center of the panel by means of Isolantite pillars from stand-ofl insulators. Four National Type CSS. 2 insulators are used to support the plate tuning condenser, while three T'ype GS-1 insulators are used for the arid tuning coudenser. Insulated flexithle couplings and panel bearings are used on cach shaft tu insulate the controls. One of high lweah dswn volt: age rating should be usel for the plate condenser, and the patrel bearints must be groundert! 'The socket for the grid tank coil is monnted, using insulated spacers and a small metal plate as a basf, on therear cad plate of C_{1}. Metal strips, also fastened to the end plate. support the inputlink terminal strip. The insulating br-pas- condenser, C_{4}, is motuted just to the right of C.

Fig. 1373 - Circuit of the 500 -watt input amplifier.
$\mathrm{C}_{1}-250-\mu \mathrm{fd}$. variable, 0.04 -ind spacing (National 'TVK-250).
C_{2} - $10 \% \mu \mu \mathrm{fl}$. per seetion, 0.1 1-ineh spacing (National TMA-100-1)A).
C:3-Neutratizing condenerer (National $\mathrm{N}(:-$-RON) $)$.
C. 4 - High-voltage condenser, 0.001- μ fil. mica, 12,500volt rating (Cornell-Dubilier 21A-86).
C_{5}, C.f. (:- - $0.61 \mathrm{I}-\mu \mathrm{fd}$. miea.
 inches long, 3-turn link (B \& W JC:L9).
 inches long, 3-turn link (B S $1 \mathbf{N ~ J C I D O}$).
14 Ma. -8 turns Jo. $10,1 \frac{1}{2}$-inch diam., 17 's inches long. 3 turn linh (B © 11 JClion).
 in hetw long. $\mathrm{Z}-\mathrm{turn} \operatorname{link}$ (B \& W JCLIO, 1 turn remened from carli end).

14 Mc - 12 turns No. $12,21 / 2$-inch diam, $41 / 4$ inchos long. 2-turn link (B © II TCLLO 0).
 diam.. 41/2 inches long. 2-turn link (3 \& 11 'TCI.10).
RFCC - 1 -mh. r.f. diokr, 300 ma . (National R-300I mounted on (SS-I insulator).
T- Filament transformer, 5 volts, 8 amp. (Thordarwor (1-191:84).
conventional, with link roupling for both input and output circuits. While a Type 100TH tube
is shown in the photographs, almost any other tube of similar physical size and shape which is designed to operate at plate voltages of 3000 or less may be used in the same circuit arrangement.

Pouer supply and tuning - The plate power supply shown in Fig. 1343 may be used with this unit. Bias may be ohtaned from the unit shown in Fig. 1327. For this purpose, the IR-75-30 bratuch may be omitted and a single resistor of 5000 ohms connected arross the output of the pack, with the hias lead connected to the extreme negative end of the resistor.

Tho 1 ransmittor shown in Fig. 1331 should provide sufficient exeitation.

An amplifier operating at high voltage should always, after neutralizing, be tuned up at reduced plate voltage. This maty be ohtained by connecting a lamp bulb in sories with the primary of the plate transformer. Coupling betwen the expiter and the amplifier should be adjusterl so that the grid current does not excerd 40 to 50 ma. with the amplifier tumed and loaded to the rated plate current of 167 mis. Power output of 225 to 300 watts should be obtainable on all bands at plate voltages from 2000 to 3000 ,

The tube tables in Chapter Twenty sloould be consulted for data on the operation of other tubes suitalle for tase in this amplifier.

C A 1-Kw. Push-Pull Amplifier

The push-pull amplifur shown in the photographs of Figs. 1375. $1: 377$ and 1378, is built around a pair of Vimace 250 T TI triodes. It will handle a full kw, input at a plate voltage of 2000 or less, although the plate tank-condenser spacing is sufficiont for 3000 -volt operation with plate modulation. The driving stage should be capable of delivering approximately 100 watts. The amplifier may be shifted to any

Fig. 13:1-Bottom vic"
 amplitier. In the lower righthand corner of the panel is fastened a chas-is $91 \cdot 2 \times 5 \times 1{ }^{1}$ 2 incho. on whichare mounted. in line, the filament transformer, the tulse socket and the nematrazing combener. I chassi- of similar size to the teft supports the plate tank cril and the outputlink terminals. 1 larke ferd-thromen insulator in the rear edge of this chassis serves as the high- whit age terminal. In wiring the amplifier unit. the importance of well-waced luadz carrving high voltage cannot be tre-sed too greath. It must he remombered that the arcing di-tancers and breah-down capabilities of voltages as high as 3000 are considerably greater than with the lower plate voltages more commonly used by anaiteurs.

fig．137：－F＇ront virw of the kile．
 high amb of abalait lo．inch width．

amatcur band by a system of pluy－in coils．
The circuit，shown in Fig．1376，is standard for a push－pull link－roupled noutralized am－ plifier．The only departure from striet con－ ventionality is the use of the fixed vacumm－ type padding condensior（ C＇9）arross the pate tank eoil when oprerating at 3.5 Me．．A filament transformer is ineluded on the chassis to per－ mit short leads which must carry the high heating current．

The components are mounted on a standard $10 \times 17 \times 3$－inch chas：is．with the 10 －inch side against the panel 10 provide the necessary depth．The B it W＂butterfly＂－type plate tank condenser is mounted on heavy 2－inch stand－off insulators，with its shaft adong the center line of the chassis，and its front mounting feet centered 2 inches from the panel．since its rotor is connected to the ligh－ voltage supply，use of a good insu－ lating shaft coupling is of utmost importanere as a safoty measure． The output tank－coil base assem－ bly，with its adjustable link，is fastened to the two upper－rear stator nuts of the condenser by means of a pair of aluminum angle pieces．Similarly，the clips for the 3.5 Mr．vacuun－1ype padtinge eron－ denser are mounted at the iront of the condenser．Link output ter－ minals are proviled in the form of a pair of large stand－off insulat－ tors fastened to the rear of the pancl near the top．

The neutralizing condensers are special units designed as aceesso－ ries to the tank condenser．Eath consists of a single disk connected to the grids，the rear stator plates of the plate tank condenser serving as the other side of the neutraliz－ ing condenser，for a compact unit．

The by－pans condenser，C^{\prime} ，is loerated under the rear end of the tank condenser and is fastened to the chasis with a small metal angle piece which makes the ground connection．
The sodkets for the $2 . ⿹ 勹 \mathrm{~T}$ TIs are submonted． They are spared 5 inches，center to conter，and t inches in from the rear edge of the chassis． The grid tank condenser is mounted bet ween the tuber with an extension shaft to the front of the parie．The rotor phates are grounded to the chassis，The high－volage line to the plate tank condenser and the plate r．f．choke is brought up through the chassis via a large ecramic feed－through insulator．

Comerneath，the jack bar for the gride coil is centered between the tube sockets．Connec－

Fig．13：6－Circuit diaram of the high－power mah－pull amplifier． $\mathrm{C}_{1}-100 \mu \mu \mathrm{fl}$ ，pre section， $0.0 . \mathrm{B}$－inch sparing（Hammarlund

L－B N II BC：L coils．
12－－B 心 W IIDVI coils．
RIC：－ 1 －mh．r．f．rlowhe（Hammarlund（：H－500）．

302

tions between this coil mounting and the rondenser on top are made through large clearance: holes lined with rubber grommets. Short, direet leads connect the tank circuit to the grid terminals of the tubes.

The filament transformer is mounted directly underneath the plate tank condenser. Since this transformer, as well as the grid coil, protrudes from the underside of the chassis, the chassis is set with its bottom edge 21 , inches above the bottom edge of the panel. The transformer shown in the photographs: and listed under Fig. 1376 , is one designed for rectifier service and has high-voltage insulation. If one with 1 ti00- or 2000 -volt insulation is available if may be substituted, of course. A Millon safety terminal for the positive highvoltage connection, a threcterminal ceramic strip for bias and groumd comnections, ami a male power plug for the $11 \overline{\mathrm{j}}$-volt comection to the filament transformer are set in the rear codge of the chassis. While a pair of insulated terminals in the right-rear corner are for the exeitation input.

Power supply - Fig. 1342 shows the details of a suitable high-voltage plate supply for this amplifier. The biasing unit of Fig. 1327 may be used with an alteration in the voltagedivider resistor in the cireuit diagram of lig. 1326. The total resistanee should be 2000 ohms, 100 watts, with the biasing tap taken off at the center. The transmitter of Fig. 1346 will provide adequate excitation.

Adjustment - When the amplifier is completed and ready for operation, the first step in adjust ment is the neutralization. This may be done with the amplifier set up with all external conmetions made, except for the antenna, but with the high voltage turned off.

Fig. 1377 - "IMe filament transformer and grid coil are mounted underneath the chassis.

With the coils for the desired band plugyed in, the tuning of the grid tank circuit should be adjusted until a grid-current reading is obtained. Then the neutralizing condensers should be adjusted simultancously, hit by bit, keeping the spacing equal. When the amplifier is not neutralized, a dip in grid current will be found as the plate tank combenser is tuned through resonance. The neutratizing condensers should be arljusted until no change in grid current occurs as the plate tank condenser is swung

Fig. 1338 - Rear view of the pushpull 2.0 Til amplifier showing the mounting of the plate tank coil and $3.5 \cdot \mathrm{Mc}$. palding condenser.

Fig. 1.37^{0} - A vacumm-tulic kever. huilt up on a $7 \times$ 9×2-inch rhassis with pawe for four or less keyer tubes and the powne-sipply rectitier. The rexistors and eondensers whirh promber the late are monnted umberneath, controlled liy the hnohs at the right. The jack is for the hey, while terminals at the left are for the kiyed circuit.
through its rangre. This should orcur with the adjustable plates of the nu-utralizing combensers spaced about $13^{\prime} 1_{6}$ inches away from the rear stator phates of the tank combenser.

Although plenty of plate clissipation is available, it is desirabile to do the preliminary tuning amd loading of the amplifiog at reduced plate voltage. Before plate voltage is applical. a grid-current rearling of at least 150 to 200 ma. should be passible. The sutenna link should be swong out to the minimum-coupling position. As soon as plate voluage and cxeritation are applied, the phate tank condensor should be adjusted for minimum plate corront. Grid eurrent sill should be above 1 bo mat. When the excitation is remored, thore should be no imdication of oscillation at any setting of the grid- or phate-tank conolesser.

The output link maty be conneeted direetly to a properly-torminated low-impedance lime. or throurh a link-coupled antenna funer to the feeders of any antenna system. W'ith excitation
and plate power applied, the plate current should increase as the link coupling is tightened and the antennai system tuned to resonance. With each adjustnent of coupling or antenna tuning, the plate tank condenser should be retumed for minimum plate current. The minimum reading will increase as the coupling is tightened wilh the antemna tuned to resonance. The loading may be inereased up to the point where the minimum reading is j00 mat. when the input will be 1 kw. at 2000 volts. With the amplifier loaded, the excitation should be adjusted to about 150 ma. for the two tubes.

(1. A Practical Vacuum-Tube Keyer

Fig. 1379 shows a vacuum-tube kever unit. The diagram is shown in Fig. 13N0. T_{1}, the rectifier, and C_{1} and R_{1} form the powersupply section for producing the blocking voltage necessiry for eutting off the keyer tubes. With only R_{2} in the cireuit and s_{2} in the open position, there will be no lag. is S S_{2} is turned to introluce more capacitance in the circuit, the keving chametoristic is "softened" at both make and break. Adeling resistance by turning S_{1} to the right affects the "break" only.

As mathy fins may be added in parallel as desired. The voltage drop thrumgh a single tube varies from 90 volts at 50 ma. to 52 volts at 20 mai. 'Tubes in parallel will reduce the drop in proportion to the number of tubes. If rated pate voltane is important in the operation of the keyed aireuit, the voltage drop theough the keyer tubes must be taken into secount and the transmitter voltage boosted to compensate for the drop.

If desibed, a greater angle of keving lag can be obtained live using a rotary switeh with more points and additional resistors and condensers. Suggested values of rapacitance in addition to ('2 and C_{3}, are 0.001 and $0.0022 \mu \mathrm{fl}$. From M_{2}, resistors of $2.2,3.3$ and 4.7 megohms may be adiled.

When connecting the output terminals of the keyer to the eirenit to be keyed. care must boused to eommeet the grounded output terminal to the negative side of the keyed eircuit.

Fig. 1380 - Wiring diasram of the practical vacmometuhe keyer unit and power supply shown in Fig. 1379.
$\mathrm{C}_{1}-2-\mu \mathrm{ff}$. 600-volt paper.
(2 - 0.00) $33-\mu$ ful. mira.

$R_{1}-0.22$ megohm, I watt.
$R_{2}-50,000$ ohms, 10 watts.

$$
\mathrm{Ka}_{3}, \mathrm{Ri}_{4}-4.7 \text { mogohms, } 1 \text { watt. }
$$

N: 0. H_{5} mogolim. 1 watt.
$\mathrm{S}_{1}, \mathrm{~S}_{2}-3$-iosition 1 -circnit rotary switch.
${ }^{\prime} \Gamma_{1}-325-0-325$ volts, 5 volts and 2.5 volts (Thordarson T-13R01).

(1. Rack Construction

Most of the units described in the constructional chapters of this Handbook are designed for standard rack mounting. The assembly of a selected group of units to form a complete transmitter is, therefore a relatively simple matter. While standard metal racks are available on the market, many amateurs prefer to build their own less expensively from wood. With care, an excellent substitute can be made.

The plan of a rack of standard dimensions is shown in Fig. 1381. The rack is constructed entirely of 1×2-inch stock of smosth pine. spruce or redwood, with the exerption of the trimming strips, M, N, O and P. since the actual size of standare 1×2 inch stock runs appreciably below these dimensions, a mueh sturdier joh will result if picces are obtained cut to the full dimensions.
The main vertical supporting members of the wooden rack each is comprised of t wo pieces (A and B, and I and J) fastened together at right anghes. Fach pair of these members is fastened together by No. 8 flat-head serews, with heads countersunk.
Before fastening these pairs together, pieces -4 and I should be made exactly the same length and dritled in the proper places for the mounting screws, using a No. 30 drill. The length of pieres A, J, B and I shoutd equal the total height of all panels required for the transmitter plus twice the sum of the thickness and width of the material used. If the dimensions of the stock are exactly 1×2 inches, then 6 inches must be added to the sum of the panel heights. An inspection of the top and bottom of the rate in the drawing will reveal the reavon for this. The first mounting hole should come at a distance of 1 inch plus the sum of the thickness and width of the material from either end of piecess A and J. This distance will be $3{ }^{1}$ inches for stock exactly 1×2 inches. The second hole will come 1' inches from the first, the third $1 / 2$ inch from the second, the fourth $11 / 1$ inches from the third and so on, alternating spacings between $\frac{16}{2}$ inch and $11 / 4$ inches (see detail drawing D, Fig. 1381). All holes should be placed $3 / 8$ inch from the in-

E, forming the base. The length of the pieces D) and G will depend upon space reguirements of the largest power-supply unit which will rest upon it. The verticel members are braced arainst the base by diagonal members C and $I I$. Rear support for heavy units placed above the
side edges of the vertical members.
The two vertical members are fastened together by cross-member K at the top and L at the bottom. These should be of such a length that the inside edges of A and J are exactly $17 / 1 / 2$ inches apart at all points. This will bring the lines of mounting holes $181 / 4$ inches center to center. Lxtending back from the bottoms of the vertical members are pieces G and D connected together by cross-members L, Q and
base may be provided by mounting angles on C and H or by connerting these menbers with cross-braces as shown at F.

To finish off the front of the rack pieces of $1 / 4$-ineh oak strip (M, N, O, P) are fastened around the edges with small-head finishing nails. The heads are set below the surface and the holes plugged with putty or plastie wood.

The top and bottom edges of $1 /$ and 0 should be $1 / 4$ inch from the first mounting holes, and the distance between the inside edges of the vertical strips, N and $P, 191 /$ of inches.
To prevent the screw holes from wearing out when panels are changed frequently, $1 / 2$ $1 / 16$ or $1 / 32$-inch iron or brass strip may be used to back up the vertical members of the frame.
The outside surfaces should be sandpapered thoroughly and given one or two) coats of flat black, sandpapering between coats. A finishing surface of two coats of glossy black "IDuco" is then applied, again sandpapering between coats. It is very important to allow each coat to dry thoroughly before applying the next, or sandpapering.
Since the combined weights of power supplies, modulator equipment, etc., may total to a surprising figure, the rack should be provided with rollers or wheels so that it may be moved about when necessary after the transmitter has been assembled. Ball-bearing roller-skate wheels are suitable for the purpose.
Standard metal chassis are 17 imehes wide. Standard pancls are 19 inches wide and multiples of $13 / 2$ inches high. Panel mounting holes start with the first one $1 / 4$ inch from the edge of the panel, the second $11 / 4$ inches from the first. the third $1 / 2$ inch from the serond. the fourth $11 / 4$ inches from the third, and the distances between holes from there on alternated between $1 / 2$ inch and $11 / 4$ inches. (See detail I), Fig. 1381.) In a panel higher than two or three rack units (13 inches per unit), it is common practice to drill only sufficient holes to provide a secure mounting. All pancl holes should be drilled $3 / 8$ inch in from the edge.

If desired, the rack may be enclosed by completing a framework of one-by-two strip, using $1 / 4$-inch plywood for the panels. The panels may be hinged so that three sides are made
accessible for servicing. If the transmitter is to be operated in an enclosure, provision should be made for a small :mmount of forcel-air ventilation; otherwise the panels should be open while the transmitter is in operation.

©. Metering

Various methods of metering are shown in Fig. 1382. A shows the meters placed in the

Fig. 1.382 - Varinus methods of connecting milliammeter: in grid and plate curremts. A - Hish-voltage metering. \mathbb{B}^{-}- Cathode metering. C - Shant metering.
high-voltage plate and hias circuits. $M A_{1}$ and $M_{2} L_{2}$ are for plate current and $M A_{3}$ and A_{4} for grid current. When more than one stage aperates from the same phate-voltage or biasvoltage supply, each stage may be metered as

Fig. 1383 - Safety panel for meters. The meters are mounted in the usual manner on an insulating suhpanel spared back of a glass-covered opening in the fromt panel. The wlase is fastened in place with metal clamps or tabs, fastened to the front panel with small screws or pins. The from panel is of standard rack size, $19 \times 51 / 4$ inches.

Fig. I.38. - Wethod of switching a single milliammeter to varimer- ireuts with a tworgane -witeh. The control slaft homal be well insulated from theswiteh cometacts, and should lee grommded. "The resistors. R, जhoulal have salues of re-intane tern to twonty times the internal rosistance of the meter: 47 ohms will nsually be satisfartiry.
shown. If this system of metering is used, the meters should be mounted :n that the motere dials are mot arressible to acoidental rontaet with the adjustins serew. Ono method of mounting is shown in Fig. 1383, where the meters are monnted behbud a ghas panel.

When phate milliammeters are to be momated on metal pands, rare mast be taken to see that the insulation is sulicient to withstand the whate voltage. Metal-anse instruments should not be monated on a stomaded motal panel if the differener in potential betwern the meter ford the patrel is to be more than 300 wolts: bakelite-rase instruments can be used under similar rimomstames at voltages up to 1000 . At hisher voltagrs than these an insulating patmet should be used.

The phang of meters at high-voltage points in the riment may be overomme ly the the of the connections shown in Fig. 1382-B and - θ°. The dis:ulvanage of the armamements at B is
that the meter reads total cathode current and the grid and plate currents camot be metered individually. This disadvantage is overcome in C, where the meters are connected across low resistances in the grid- and phate-return circuits. MA: reads grid current and $M_{2} A_{2}$ plate current. The parallel resistors should have a value of not less than 10 to 20 times the resistance of the meter, and should be of sufficient power rating so that there will be mo possibility of resistor bum-ont. If desired, the resistanee values may be adjusted to form a multiplier sombe for the moter (nee (Chapter Ninctent. The same principle is used in the metor-swithing system shown in Fig. 13st.

Meters maty also be shilted from one stage to another by a plug-and-jack system, but this system should not be used unless it is possible to ground the frame of the jack or umless a suitable gatard is prosided around the meter jackes to make persomal eontact with high voltares impossible in normal use of the plug.

Another metoring sistem based upon the use of simple s.pal.t. tuggle switches is shown in the diauram of Fig. 138.3. In each ease provision is made for metering two circuits with : single milliammeter. Grid returns should be made to filament center-tap or cathode rather than to gromed or nowative high voltage. If currents intaded in the meter range are to be measured. the resistors shomal hate a value of about 47 ohms cath. otherwise they should be adjusted to give the desired scale multiplication.

C. Control Circuits

Proper arrangement of pontrols is important if maximum convenience in operation is to be attained. If the tranmitter is to be of farly high power, it is desirable to provide a special service line leading dirertly from the publicutility meter board to the operating room. This line should be run in conduit or 13 N rable, and the eomductors should be of ample size to carry the maximum load without undue voltage drop. 'The line should be terminated with an enclosed entrance switeh, properly fused.

Fig. I.38.5 - Toggle-switch meter switehing. It 1 i- a rircuit for switehing meter from arid to plate circuit of same
 alternative cirenit, similar to the one at B , in which separate filament transformer- permit the use of a common hate supply. R_{1} and R_{2} are y rid-cirnuit meter shme resistors. white R_{i} and R_{4} are the plate-circuit shunt resistors.

Fif. 1386 - A station control system. No high-voltage supply can be turned on until the filamemt switch has been elosed; the high-power plate supply canmot be turned on until the low-power plate-supply swith has been elosed; and modulator power cannot be applied until the final-amplifer plate voltake has been applied. With all switehes excret S_{3} closed, S_{3} serves as the main control switeh. S_{1} - enclosed entrance switch. S_{2} - filament switeh. S ${ }_{3}$ - low phate-voltare and main control switeh, preferably of the purlh-button type which remains cloved only *o long as presure is applical. St hikh plate-roltake switch. S5 - low-power and tunc-ap switch shert-circuiting I_{1}. is modulator phate-voltape switeh. $F \cdot$ fires. It-3-3 - warning lifhts. I_{4} - 100- to 300 -watt voltare-reducing lamp.

Fig. 1386 shows the wiring diagram of a simple control system. It will be noticed that, because the control switches are connerted in series, none of the high-voltage supplies can be turned on until the filament switeh has been closed, and that the high-power plate supply cannot be turned on until the low-power plate-supply switch has been closed. Furthermore, the modulator power cannot be applical until the final-amplifier plate voltage hats been applied. No places a $100-$ to 300 -watt lamp, I_{4}, in series with the primary winding of the high-voltage plate transformer for use during the process of preliminary tuning and for local c.w. work. The final amplifier should first be tuned to resonance at low voltage and s_{5} then clused, short-cireniting the lamp. Experience will determine what the low-voltage plate-current reading should be to have it increase to the full-powor value when X_{5} is closed, so that the proper antenma-coupling and tuning adjustments may be made.

Preferably, S_{s} should be of the nonlocking push-button type which remains closed only so long as pressure is applied. A wit ch of this type provides onc of the simplest and most effertive means of protection against arridents from high voltage. In the form which is usually considered most combenient, it comsists of a switch, located underneath the operating table, which may be operated by presure of the foot. When used in this maner the operator must be in the operating position, well removed from danger, before high voltage can be applied. If desired, $S_{3 A}$ may be wired in parallel on the fromt of the transinitter pancl, so that it can be used while tuning the transmitter. S S ${ }_{3 A}$ alko should be of the pushabutton trje.

In more claborate installations, and in re-mote-control systems where the tramsmitter is located some distance from the operating position, similarly arranged switches maty be used to control relays whose contarts serve to perform the actual switebing at the transmitter.

Two strings of utility outlets, one on eath side of the entrance switch, are provided for
operation of the receiver and sumh accossories as the monitor, lights, electrice clock, soldering iron, ete. Closing the entrance switeh should close those circuits which place the station in readiness for opuation. ste and sk are normally closed and s_{3} is normally open. When A_{1} is closed upon entering the operating room, the tramsmitter filaments are turned on as also is the recoiver, which should be plugged into line No. 2. With sis clowed (as well as $\stackrel{N}{5}$ and $\stackrel{N}{6}_{6}$), $\stackrel{N}{3}^{2}$ performs the job of turning all plate supplics on and off during successive periods of tramsmission and recoption.

All continumaly-umerating aneresories, such as the station clock, slould be plugged into line No. 1. This is so that they will not be turned off when S_{1} is operued. Line No. 1 is of use also for supplying the woldering iron, lights, etc., When it is desired to remove all voltage from the station apparatus by opening S_{1}.

(1) Line-Voltage Adjustment

In rertain communities trouble is sometimes experiencol from flucuations in line voltage. Lisually thee fluctuations are ransed by a variation in the load on the line and, since most of the variation comes at certain fixed times of the day or night, such as the times when lights are turned on and off for the night, they may be taken care of by the use of a manually-operated compensating device. A

Fige. 1387 - Two methods of transformer primary conwol. At the left i- a tapped 1-to-1 transformer with the powibilitios of considerable variation in the secondars output. At the right is indicated a variable transformer or autotransformer (Variac) in series with the transformer primaries.

Fig. $13 B 8$ - With thiv cirnuit, a single adjustment of the tap switch S places the eorrect primary voltage on all transformers in the transmitter. Information on eonstructing a suitable autotransformer at negligible cost is contained in the tevt. 'Ihe' light winding repreaents the regular primary winding of a revamped tran-former, the heavy winding the voltage-adjusting section.
simple arrangement is shomen in Fig. 13si. I toy transformer is used to boost or buck the line voltage as required. Tho transformer should hase a tapped secondary varying between f and 20 volts i_{1} steps of 2 of 3 volts and its secomdary should be capable of carrying the full lowd eurrent of the contire transmiter.

The secombary is commented in sories with the line voluge and, if the phasing ol the windings is corred, the voltage applied to the primarios of the trammiter 1 ramsionmers can be brought up to the rated 115 volts be setting the toytransformer tap switch on the right tap. If the phasing of the two windings of the toy transformer happens to be reversed, the voltage witl be redued instead of increased. 'lhis connection may he used in ases where the line volatge may be above 115 volts. 'l"his mothod is proferable whatg a revistor in the primaty of a power l mastormer since it does not affeet the voltage regulation as seriousty.

Another scheme by which the primary voltage of card transformer in the transmitter maty be adjustod to deliver the desired secondary voltage, with a master control for compensat ing for changes in line voltage, is shown in Fig. 1385 .

This arrangement has the following features:

1) Aljustment of sis to make the volt meter read 10.) volts atutomatically adjusts all primaries to the predetermined correct voltase.
2) The neresity for having all primaries work at the same voltage is eliminated. 'Ihus, 110 volss can be applied to the primary of one transformer, 115 to another, etc.
3) Independent control of the plate transformer is aftorded by the tap swith S. Slos permits power-input control and does not require an extra aututrinsiormer.

C. Grinding Crystals

Crystal blanks, cut to approximate froquency, are available at very reasomatbe prices. With proper equipment and a little care, these blanks can be ground to the derired frecuency. Complete crystal-grinding equipment includes
several components. First necessity is a flat piece of plate glass, about 4 inches square or larger. To hold the erystal flat while grinding a flat "button" (shown in Fig. 1389), also of plate glass, eit her roumd or square, and slightly larger than the erystal, is required. Both pieces maty be obtaned at glats stores. Two grades of abrasive, No. 303 emery for surface grinding and No. 600 Carborundum for elge grinding and bereling are obtainable from hardware stores or optician's supply houses. A small paint brush is handy for mostening the abrasive and spreading it around the lapping plate. To facilitate frequent cheoking of frequency during the grinding procass, the quick-change holder shown in Fig. 1390 is desirable. It consists of an FT2 23 holder with a sliding cover fashoned from sheet metal. Suap, warm water and a toothbrush are used to clean and rinse the arystal. Lintless rloth from an optician's or a clean town can be used for drying.

Fig. 1380 - 'Ther rquipment necessary for grimiling a eryital hlank to fromency. A piece of plate glass and a "hutton" of the same material are esential. The equickchange" ataptation for the erystal holder is a convenience. Nut shown. hat alow ronvenient, are a small paint brash for spreading abrasive and a toothbrush for serubling.

Present-day ceectrodes have raised lands on cach corner, ats shown in Fig. 1391, and the erystal should lie at least halfway across these lands and should not be larger than the electrode. The chectrodes should be cleaned as careiully as the crestal. Before final assembly both crysial and cleotrodes should be handed rarefully by the comers or edges after their last good scrubhing.

How to grind - The actual grimding is done as follows: Spread the 303 abrasive over an area about a half inch square on the lapping plate, wet the brush, mix water into the spot aud spread the abrasive over the lapping plate. Always keep the abrasive moist. Take the button and put a drop of water at its center, and press the dry crystal blank over the drop of water. There should be just enough water in
ria. 1390 -- 'lhe quick-chanke crystal holder with sliding cover.

the drop so that it squeczes out under the edges of the blank. where it is wiped away. Placo the button, blank down, on the emery and put the index finger in the conter of the button. 1 se just cnough pressure to move the buttom in a figure-S pattern. This motion is usd beratare it helps kerep the blank flat.

After arinding through ten or fiftern "8s" the blank should be rechecked for frequency and activits. The blank's artivity is a torm used in erystal making to deseribe how st rongly a erystal will oscillate. This may be indieated hy the magnitude of the dip in the plate current, grid current to the mext stage, or receified grid current in the ervstal oscillator. It is marly impossible to tell how mueh change in frequency will oecour during the grinding of a crystal, because pressure on the button, the amount of abrasive and the are:t of the " 8 " all will vary the frequenery The frequency change probably will be between 200 and 1000 cycles per " 8 ," using a 7-Mc. rrystal. The crestal can be mowed along faster as the op)erator beoomes mone familiar with the terehnique. but for the begimer frequent eherks of ativity are in oreler so that any drop can be corrected.

To grind a crystal sueressfully the activity must be good when the ervestal is ineurht to the desired frequence. There are worral was to raise the activity, dseuming that, with eareful grinding on a flat plate with a flat button, the two faces of the ervisal are parallel, the manor catuse of low activity will be dirt or moist ure on the crystal or electrodes. Before chereking activity the erystal should be serubbed carefully with the toothbrash, using warm water and soap. Wije the ersstal clean and be sure that the electrodes are clean and dry. IT the activity is still down the next thing is to bevel all eight edgres of the crestal. The beveling can be done with cither fine or coasce abrasive, but is usually more effective with the anare. Beveling. incidentally, will also raise the frequenery because of the guartz grotand off during the process.

Although beveling will usually improve the activity another method -and probably the simplest - is to change chectrodes. The land heights on the electrodes have a critical affect on activity. If the eenter of the crystal beromes too high and the lands are so low that the center of the crystal touches the center of the electrodes, the crystal will stop oscillating.

The last step - and the most drastic method
of raising activity - is to colge-grind adjucent edges. This grinding is best done with coarse abrasive and should be followed by a slight bevel to remowe any chips whirh may remain. By cherking the crystal frecquontly, a drop in activity can be correated by the above methouls. If the crystal is gromand too far and goes completoly dead, the frequency may be ton high when the crystal is again reactivated.

C. Building Small Transformers

Power transformers for both filament heating and plate suphly for all transmitting and rectifying tubes are available commercially at reasonable prices, but oreasionally the amateur wishes to build a transformer for some spectal purpose or hats a core from a burned-out transformer on which he wishes to put new witulings.

Most I ramsformers that amateders huild are
 ber of turns neeresary on the 110 -volt winding depends on the kind of iron used in the core and on the cross-sectional ara of the core. silion storel is best and a flux density of about 50.000 lines per square inch can be used. This is the hasis of the table of eross-sedions given.

An areratge value for the number of primary turne to he used is 7.3 turns per volt per spuare inch of couss-sectional area. This relation may be expressed as follows:

$$
\text { So. primary lurns }=\overline{7 .}\left(\frac{E}{.1}\right)
$$

Whore E is the primary voltage and A the numher of sipuare inches of cors-sectional arrat of the core For lio-volt primary transiomers the equation becomes:

$$
\text { No. primary luins }=\frac{125}{1}
$$

When a small transformer is built to hande a cominusus load, the cupper wire in the windings should have an area of 1500 circular mils

Fig. 1392 - Types of transformer cores and their laminations.

Fig. 1393-A monven. ient method of assernbling the windings of a shell-type core. 11 indings can be similarly mounted on corc-type cores, in which case the coils are placed on one of the sidn. Highvaltage corrotype tran-formar- -bunc-tilles- are made with the primary on one core leg and the swondary on the opponite.

for eath ampere carried. (Son Wire Joble in (hapter Twenty.) For intermittent use, 1000 circular mils per ampere is permissible.

The prinary wire size is given in the Transformer Design Talle; the secondary wire size should be chosen aceording to the current to be c:arried, as previously desmbed. The Wire Table in Chapter Twenty shows how many turns of earh wire size can be wound into a square inch of window area, aswming that the turns are wound regulaly and that no insulation is used between havers. The primary winding of a 200 -watt transformer, which hat: 270 turns of No. 17 wire, would ocrupy $270 / 329$ or $0 . x^{2} 2$ spluare inches if wound with double-cotton-covered wire, for example. 'This nakes mo allowatur for a layer of insulation betwern the wimdings (in weneral. it is grod practioe to wind a strip of paper bet ween (ach layer) so that the winding area allowance should be increased if layer insulation is to be used. The figures atso are based on aremate winding such as is done be machines: with hand-winding it is pobable that somewhat more area would be required. An increase of Eo per esolt should take care of both hamelwinding and laver thickness. The area to be laken by the seromdary winding should be estimated, as should also the area likely to be occupied by the insulation between the core and windings and between the primary and scomblary windings themstles. When the butal window area regmired has heren figured allowing a little extra for contingencies -
laminations having the desired leg width and window area should be purchased. It may not be possible to get laminations having exactly the dimensions wanted, in whieh case the nearest size should be chosen. The cross-scetion of the core need not be square but can be reet:angular in shape so long as the core area is great enough. It is easier to wind coils for a core of square cross-section, howe ver.
Transformer cores are of two types "eore" and "hell." In the core 1 ype, the eore is simply a hollow rectangle formed from two "L,"shaped laminations, as shown in Fig. 1392. Shell-type laminations are " E ".- and " 1 "shaped, the transformer windings being placed on the ronter leg. since the magnetic path divides between the outer legs of the "E," these legs are each half the width of the center leg. The cross-sectional area of a shell-typo core is the ross-sertional area of the center lon. 'The shell-type core makes a better transformer than the core type, berause it tends to prownt leakare of the magnetic flus. The wintings are calculated in exactly the same way for booh types.

Fiig. 1393 shows the method of putting the windings on a shedl-1 you core. The primary is usually wound on the inside - next to the core - on a form mate of fiber or several layers of cardhoard. This form should be slighly larger than the core leg on which it is to fit so that it will be an casc matter to slip, in the laminations after the coils are completed and ready for mounting. The torminals are brought out to the sife. After the primary is finished, the secomilaty is wound over it, sevcral layers of insulatinis material lowing pat betwen. If the transinmer is for high voltages. the high-voltage winding should be carefully insulated from the primary and core by a few layers of Empire Choth or lape. A protective covering of hater cardhoard or thin fiber shand he put over the outside of the secondary to protect it from damase and to prevent the corr from rubbing through the insulation. Square-shaped end pieces of fiber or cardboard uswally are provided to protect the sides of the windings and to hod the terminal leads in phace. High-voltage terminal leads should be condoced in Empire ('loth tubing or spaghetti.

After the wimbling are finished the core should be inserted, one lamination at a time.

TRANSFORNER DESIGN TABLE

Input (H’atts)	Frull-load Elliciency	Size of Primaryllire	$\begin{gathered} \text { No. of } \\ \text { Primary Turns } \end{gathered}$	$\begin{gathered} \text { Turns Per } \\ \text { Volt } \end{gathered}$	Cross-Srction Thronith Core
50	75%	23	528	4.81	$13 /{ }^{\prime \prime \prime} \times 114^{\prime \prime \prime}$
75	85%	21	437	3.40	$13 / 8^{\prime \prime} \times 138^{\prime \prime}$
100	90%	20	367	3.3\%	$11 / 2{ }^{\prime \prime} \times 11 / 2^{\prime \prime}$
1.50	90\%	18	313	2.84	$13 / 8^{\prime \prime} \times 1 \times 13 / 8^{\prime \prime}$
200	$90{ }^{\prime \prime}$	17	270	24	$134^{\prime \prime} \times 134^{\prime \prime}$
250	10\%	16	$\because 48$	2.25	17/8" $\times 17 /{ }^{\prime \prime}{ }^{\prime \prime}$
300	90	15	-48	3 B	17/8" ${ }^{\prime \prime} \times 1{ }^{\prime \prime} \times 1 / 8^{\prime \prime}$
400	90°	14	$\underline{3} 96$	1.57 1.66	$21 / 8^{\prime \prime} \times 21 / 8^{\prime \prime}$
500	$95{ }^{\circ} \mathrm{C}$	13	183	1.66 1.33	23/8' $\times 23 / 8^{\prime \prime}$
750	95%	11	146 132	1.33 1.20	21/8" $\times 219^{\prime \prime}$
1000	95%	10	132	1.20	$21 / 2 \prime \prime$ $28 / \prime \times 28 / \prime^{\prime \prime}$
1500	95\%	0	109	0.99	$284^{\prime \prime} \times 28 / 4$

Fig. 1394- Ciore arrangement for filtir chohe coils. The dimensions b and cre for in the FilterChoke Design 'l'able.

Fig. 1392 shows the mothod of building up the core. In the first layer the " E "-shaped laminations are pushed through from one side; the second " E "-shaped lamination is pushed through from the other. The "I"-shaped laminations are used to fill the cond spaces. This method of building up the core cmsires a good magnetic path of low reluctance. All laminations should be insulated from each other to prevent eddy currents from flowing. If there is iron rust or a scale on the core material, that. will serve the purpese very well - ollurwise one side of each piere can be cosated with thin shollac. It is essential that the joints in the core be well made ant be square and even. After the transformer is assemberd, the juints can be hammered up tight using a block of wood between the hammer and the core to prevent damaging the laminations. If the winding form does not fit tighty on the rore, small wooden wedges may be driwen between it and the core to prevent vibration. Transformers built by the amatrur caln be painted with insulating varnish or waxed to make them rigid and moisture-proof. A mixture of molted beeswax and rosin makes a good impregnating mixture. Melted paraftin should mot be used because it has too low a moding point. Double-cotwon-covered wire can be coated with shellac as each layer is put on. Howerer. enameted wire should never be treated with shellac as it may dissolve the chamel and hur the insulation, and it will not dry bereatus the mosisture in the shollae will nor be absorbed by the in-
sulation. Small transformers can be treated with battery compound after they are wound and assembled. Strips of thin paper between layers of small enameled wire are necessary to keep cach tayer even and to give added insulation. Thick paper must be avoided since it kepps in the heat generated in the winding so that the temperature may become dangerously high.

Keep wateh for shorted turns ame layers. If just a single turn should become shorted in the entire winding, the voltage set up in it would cause a heavy current to flow which would burn it up, making the whole transformer useless.
Taps can be taken off as the windings are made if it is desired to have a tremsformer giving several voltages. Taps should be arranged whenever possible so that they come at the ends of the layers.

After leaving the primary windiug connected to the line for several hours it should be only slighty warm. If it draws much current or gets hot there is something wrong. some shortcireuited turns are probably responsible and will continue to cause overheating.

© Building Filter Chokes

Filter choke coils may be either of the core or shell type. The laminations should not be interleaved, a butt joint being used instead. An air pap must be provided at some point in the core circuit to prevent magnetic saturation by the d.c. flowing through the winding.

The accompanying table may be used as an approximate guide in winding choke coils. For the same core size, air gap and ampere turns, the inductanee will vary approximately as the spuare of the number of turns. The arrangement of the core is shown in Fig. 139t and the dimensions b and c in the table refer to this sketch. The core may be built from straight pieces as shown or with "L"-shaped haminations.

FILTER-GIOKE DESIGN TABLE

$\begin{gathered} \text { I. } \\ \text { hy. } \end{gathered}$	Mat.	$\begin{gathered} \text { Sincle } \\ \operatorname{Size} \\ \text { In. } \end{gathered}$	Ciere Len, th h		GapIn.	Hinding Form		Turns	Wire Size	Fect
			Lertis Piere	Nhort liare						
						b	c			
15	50	$1 / 2 \times 1 / 2$	$1 / 2 \times 2.2$	$1 / 2 \times 0.85$	0.0.3.5	1	0.68	9500	3:3	3.000
10	100	$3 / 4 \times 3 / 4$	$3 / 4 \times 2.6$	$3 / 4 \times 0.9$:	0.03	1	0.67	5000	30	22.80
15	100	1×1	1×3.1	1×0.9	0.03.	0.96	0.6 .5	4800	30	23.50
10	2.30	2×2	2×8.2	2×1	0.4	1.0.3	0.68	2000	26	13.30
20	2.30	2×2	2×8.6	2×1.2	0.28	1.43	0.95	4000	26	3820
5	500	2×2	2×3.3	2×1.15	0.17	1.35	0.9	1800	23	1700
10	500	2×2	2×6.2	2×1.5	0.4	2	1.3	3800	23	4100

Chapter. Fourteen

Modulation Equipment

 cially if it is to be used with transmiturs operating below 30 meqaerectes, it should be kipt constantly in mind that wide-range andiofrequency response is meither neersaty not desirable. Speech amplifiers should be deeignod so that the response drops of rapidly abowe athout 3000 cyeles: frequencies athowe this figure are of litte hedp to the receiving operator beranse the selortivity of the modern superheterodyne is such that they are groally attemated when the reereser is tuned to the carrier frequency, but they do calmer unneressary internerence to stat ions working on nearby channels. The epeech equipment deseribed in this chapter is adequate for woud interligitaility in speech transmission, but is intentionally not devigned for "high fiddity:" It has bern designed to give the reguired power output as simply and eromomirally ats possible while still ohserving grod dexign principhes.

C. Arrangement of Components

In many respects the artangement of components is less critiond in audio than in r.f. equipment; neverthodess, certain principles must he observed if difficulties are to be avoided. The sillection of suitable modulation equipment for any of the transmitters in the preceding chapter is not difficult, if the fundamental principles of modulation derieribed in Chapter live are understome. It the transmitter is to be plate-modulated and the power imput to the modulated stare is to be of the order of 100 watts or higher, a Class B modulator invariably will he selected. A pair of modulator tubes of any type capable of the requirel power ontput may be used. The tables in this chapter give the necessary information on the most popular tube types. The drivingpower requiremmits for the mululator stage alko
are given, so that from this point on the speechamplifier tube line-up can be selectol according to the prineiples out lined in Chapter Five.

The apparatus to be described is representafive of current design practice for sperech amplifiration, with mits to provide the various output levels required to drive high- and lowpower (lass 13 modulators. In some casies the power output of these amplifier units will be cufficient to modulate low-power transmitters directly, without additional power amplification. Also. practically any of the speech amplifiers shown can be used to gridmondulate transmitters up to the highest power input permitted in amateur transmitters.
Sperch-amplifier equipment, especially voltage amplificrs, should be comstructed on metal chatsis, with all wiring kept below the chatsis to take advantage of the shielding afforded. Lxposed leals, particularty to the grids of lowlevel high-gain tubes, are likely to piek up hum from the clectrostatic field which usually exists in the vicinity of house wiring. Even with the chassis, additional shiedring of the input circuit of the first tube in a high-gain amplifier usually is necessary. In addition, such rircuits should be separated as much as posihle from power-wpply transformers and chokes and also from andio transformers opcrating at fairly-high power levels. to prevent magnetic coupling to the grid circuit which might cause hum or audio-frequency feed-back.
If a low-level microphone such as the crystal type is used, the microphone, its connceting cable, and the plug or comector by which it is alt tarhed to the specech amplifier, all should be shielded. The microphone and cable usually are constructed with suitable shielding. The cable shield should be comered to the speechamplifier chasisis, and it is advisable - as well as frequently necossary - to connect the

Fis. 1 fol - A 10-watt audio unit complete with power supply. Three dual-tricde tube prosule a tour-4 tase ampificre with (lass is bulbut. Abe of the ropular types of mioro. phones may be used.

Fis. 1402-The lelow-thassis wiring is visible in this virw of the lowatt modulator. The microphone input leads are kept short tw reduce hum per-ut).

chassis to a ground such as a wattor pipe. Heater wiring shombld be kopt as far as posible from grid leads. and either the eenter-tip or one side of the heater-hamformer sumbary winding should be comuretel to the rhassis. In a high-gain anplifier the first tube preferably should be of the type having the grid connetion brought wat to a top) (alp rather than to a base pin. since in the latter type the grid lead is exposiad to the heater leads inside the tube and lome will pick up more hum. With the top-cinp tubes, complete shiclding of the grid lead and grid cap is a necessity.

C A 10-Watt Class-B Modulator for Low-Power Transmitters

A receiving-tube modulator, with : speech amplifier for either erystal or carbon mierophomes, is shown in Figs. 1401-1403, inchusive. It is suitable for modulating tramsmiters of 20 watt-input or less, such as the low-power equipment frequently used on the very-high
frequmenes. Type 6.N7 or GA6 tubes are used throughout in the audio circuits. An inexpensive power supply is included, so that the unit is complete and ready for conncetion t. the transmitter.

Fig. 1403 shows the circuit diagram of the speerh amplifier-modutator. One sertion of the first tube is used the the input amplifier for a erystal mierophone, the other half being a seeonl spech-amplifier stage. Carbon microphones, which need less gain, are transformer-roupled to the seemen section of the first $6 \mathrm{~N} 7 / 6 \mathrm{AG}$. The type of jack shown at J_{2} in the circuit diagram must be installed if a domble-button carbon microphone is to be usel. J_{2} maly be the same as J_{1} if a single-buttom microphone is to be used exchuively.

The gain control is monnested in the grid circuit of the seeond sertion of the first tube, whith is resistance-rompled to the driver. The driver tube hat its two sections connected in paralled.

The modulation transformer specified is

Fig. 1403-Circuit diagram of the complete 10 -watt Class 13 audio modulator system for low-power transmitters.
$\mathrm{C}_{1}, \mathrm{C}_{2}-0.1-\mu \mathrm{fd} .600$-volt paper .
$\mathrm{C}_{3}, \mathrm{C}_{4}-10 \cdot \mu \mathrm{fd}$. 50 -volt electroIytic.
$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{9}, \mathrm{C}_{9}-8-\mu \mathrm{fd} .450-$
volt electrolytic.
$\mathrm{R}_{1}-22$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{~K}_{3}-1000$ ohms, 1 watt.
$\mathrm{R}_{4}, \mathrm{R}_{5}-47,000$ ohms, $1 / 2$ watt.
R_{B}, R_{7} - 0. 22 megohm, ! ${ }_{2}$ watt.
Rs - 1 meg'hm, $1 / 2$ watt.
$\mathrm{R}_{0}-4.7$ megohms, $1 / 2$ watt.
K_{10} - 0.5 -megohm volume control.
$\mathrm{R}_{11}-2.3 .010$ ohms, 10 wats.
L_{1} - Fïter choke, 5 henrys, 200 ma., 80 ohms (Thordarson 'T.6і(:49).
$B_{1} \rightarrow$ Mirrophone battery (seetext).
J_{1} - Oprn-circuit jack for erystal microphone.
J_{2} — 2 - or 3 -eircuit jack for s.l. or d.b. carbon mierophone.
S_{1}-S.p.d.t. toggle swith.
$\mathrm{s}_{2}-\mathrm{S}$ p....t. toggle witeh (see text).
T_{t} - S.b. or d.b. microphone transformer (Stancor A-4351).
T_{2}-Driver tran.former, parallel 646 or 6.v7 plates to 6.16/ 6 V 7 Clase B (Stancor A. 1216).
T_{3} —Oatpht transformer, $616 /$
 load (Stancor A-38.5).
T_{4} - Power transformer, 3:0.0350 volts, 90 ma.: 5 volts at 3 amperes; 6.3 volts at 3.5 amperes.

314 Chapter Jourteen

Fip. 1404- A low-cost speerh-amplifier or low-power modulator unit with a maximmu andio output of $\geqslant 0$ watts. The $6 J^{7}$ is at the left near corner of the chassis, with the 6JS to its right, just above the volume control.
designed to work between the plates of a 6N7 or 6.16 and a 6500 -ohm load; the impedance ratio used will. of course. depend on the load into which the modulator will work. A milliammeter can be connected across the shunt resistor, R_{1}, providel to measure the Class B plate current.
The power supply is of the condenser-input type. l'sing the components sperified, it will deliver 3.50 volts at 99 ma. 1 switeh in the transiormer center-tap lead is used for turning the plate voltage on and off without alfecting the filament supply.

The power transformer is submounted at the left-hand end of the ehassis. Next to it is the filter choke, L_{1}, followed by the rectifier tube and T_{3}, the modulation output tranformer. The driver tube is at the extreme right-hand end, with Te, the driver tratsiormer, behind it. The Class 13 tube is to the rear and in line with the speech-amplifier tube. For convenience in wiring, the audio-tube sockents should be mounted with the filament prongs facing the right-hand end of the chassis.

The plate-voltage switch is on the frost of the chassis toward the left in Fig. 1401. The microphone switch, gain control and microphone jacks are grouped at the right. Power input and output terminals are at the rear.

The bottom-view photograph. Fig. 1402, shows the layout for the empments nomed below the chassis. T_{1} is mounted at the left end. Wiring to the driver-tube socket and the transformer secondaty winding should be completed before the transformer is bolted in place, since it is difficult to reach the conneet ing points with a soldering iron afterwarl. short leads between the gain control, the microphone switch and the tube socket can be obtained by making the gain-control contacts face toward the switch, as shown in the photograph.

The rompart microphone battery (Burgess Type 3.12) will be held securely in place with-
out brackets or clips if it is wedged in between the bottom of the power transformer and the liph on the bottom of the chassis. A 3 -volt battery is sufficient for most carbon microphones, and low current frequently will give better speecla quality. The 110 -volt a.c. and the meter leads (rubber-covorod lamp cord) enter the chassis through rubber grommets. A threecontact terminal atrip is lucated at the right end of the base (left end in the bottom view), One of the contacts on this terminal strip is for an external ground connection and the other two are connerted to the modulation-transformer output winding.

The artual measured power output of the unit is 11 watts, as recorded at the point where distortion just begins to be noticeable. This order of audio power output is ample for modulating a low-power transmitter operating with 20 watts or so input to the final stage.

(1. A 20-Watt Speech Amplifier or Modulator

The amplifier shown in Figs. 1404-1406 will deliver andio power outputs up to 20 watts (from the output transformer secondary) with ample gain for ordinary communications-type erystal microphones. Class AB 6L6s are used in the output stage, preceded by a 6J5 and a 6J7 preamplifier.

The unit is built up on a $5 \times 10 \times 3$-inch chassis, with the parts arranged as shown in the photographs. About the only constructional precaution neressary is to use a short lead from the microphone socket (a jack may be used instead of the screw-on type, if desired), and to shield thoroughly the input circuit to the grid of the 657. This shielding is neressary to reduce hum. In this amplifier, the 6.77 grid resistor, R_{1}, is enclosed along with the input jack in a National Type J-1 jack shield, and a shiched lead is run from the jack shield to the grid of the 6.57. A metal slip-on shield covers the grid cap of the tube.

To realize maximum power output, the " B " supply should be capable of delivering about 145 ma . at 360 volts. A condenser-input sup-

Fig. 1.105 - Bottom view of the 20 watt specech amplifier or modulator chassis. The most important constructional point is complete shielding of the microphone input circuit up to the grid of the 6 J 7 first amplifier.

Fig. 1406 - Cirenit diayram of the low-enst specelh amplifier or modulator capable of power outputs up to 20 watts.
$\mathbf{C}_{1}, \mathrm{C}_{2}-\mathbf{2} 0 . \mu \mathrm{fd}$. 50 -volt eleetroPvtie.
$\mathrm{C}_{3}-0, \mathrm{i}$ ufid 2uo.vole paper. C_{4} - 10.01 - fild. tow-wolt paper. $\mathrm{C}_{5}, \mathrm{C}_{6}-8 \cdot \mu \mathrm{fd}$, 1.50 -wolt dectrolytic.
$\mathrm{R}_{1}-4.7$ merohms, $\frac{1}{2}$ watt. $\mathrm{H}_{2}-1500$ ohms, $1 / 2$ watt.
R_{3} - 1.5 mprohms, $1 / 2$ wath.

$1 \mathrm{a},-15.010$, ohmen 12 watt.
fin- lanexohm volume control.
18. 1.5101 ohma, 1 watt.

R, - EDt ohms, 1010 watt
lig- PMo ohms, 10 watts.
$1 h_{10}-20,000$ ohms, 25 watts.
T_{1} - Inturstage audio transformer, single plate top.p. gridi. ratio 3:1 (Thoriareon' 1.5 A41).
T_{2} - Output transfarmer, upe depending on requirements. 1 multitap transformer ('I hourdarson ' 1 '-19.1144) is shown in photor.
ply of ordinary design (Chapter Fight) may be used, sume the bate current variation is relatively small. The eurrent is appoximately 120 ma . With mo input signal amd 14 m ma. it full output. If an ounplt of 12 or 13 watts will be sulfirient. Ramal P_{10} may he omited and all tuber fed direrols from a "B" supply giving 270 rolts at appoximately 175 mat

The watput transformer shown is a universal modulation type suitable for compline into the plate ciredit of a low-power r.f. :mplifier (input 40 watt: maximam for 100)-per-reat monhlation) for plate modulation. For cathode modulation, the r.f. input power that ran be modulated can be determined from the data in Chapter Five. 'The amplifier may also be used for grid-bias modulation with the translormer specified. If the unit is to be used to drive a Class B modulator, it is recommemded that the Class Is tubes be of the zero-hitas trye rather than at typerequiring fixed bias. I suitable output transformer must be substituted for this parpose: data will be foumb in cat:alogues.

(1) A 40-Wrtt Output Speech Amplifier or Modulator

The 10-w:al amplifier shown in Figs $1407-$ 1409 resembles in many respects the 20 -watt amplifior just described. The first 1 wo stares are in fact, identical in cireuit and construction. Tos obtain the higher output, however, it is necessary to drive the 6 d dis into the grideurrent resion (lass ABsoremation). sothat a driver stage rapable of furnishing sufficient power is required. A pair of transformer-conpled h.J.s in push-pull is used for this purpose, inserted between the single diJ5 stage and the push-pull (iLfos. Decoupling is provided (R_{9} and $\left.C_{i}\right)$ to prevent motorbanting heramse of the hirher aver-all gain of the amplitier.

A 1 i $\times 14 \times 3$-inch chassis is uned for the 40-watt amplifier. The photographes show the arrangoment of parts. As in the rase of the 20-watt unit. (rmplete shielding of the miornphome input refonit is essential. The amplifier has ample gain for erystal microphones.

 (C_{2} - 0.01-mft. foti-wilt papper

 trolvic.
$R_{1}-1 .-$ mequhme, ${ }^{2}$ g watt. $1 \mathrm{R}_{2}-1.800$ ohms, ! 2 watt. $\mathrm{R}_{3}-1.5 \mathrm{mp}$ mhm, ${ }^{2}$ watt.

R_{R} - $-17,000$, وhmm, ${ }^{1} 2$ watl.
R. - l-mentim whame ceentrol.

If: - 1.000 ohms, 1 watt.
Rn -.- .01 olmax. 1 watt.
Ro, 12.0100 ohnms. I watt.
$\mathrm{R}_{1^{4}}-20.01001$ ohmes. 25 wat1-。
$\mathrm{K}_{11}-1.300$ ohms, 10 watts.

to p.p. grids, $3: 1$ ratio

ThordarsmT-3A11).
I_{2} - Driver Iramsformer, p.p. 6J5a to oldos (lass AB2 (lhor-dar=on'T-8.4559).
T_{3} - Output transformer, type depending moredurementa. A moltitap modulation trandeformer ('lhordarson '1-19.1115) is shown.
stituted for the universal modulation transformer shown.

The power supuly should hato goonl bolatage regulation. since the total "l3" curtent varie: from approxinately 110 mat. with no signal to 2(6.) ma. at full output. A heavy-tuty chokeimput plate supply should be used: general design data will he found in Chaptor Eight. Heater requireturonts are 6.3 volts at 3 am-

Fig. 1.10\%-Underneath the chassis of the 40-watt speech amplitier-mondulatur.

This unit may be used to patt-mmalate 80 watts input to an r.f. amplifier. For cathode modulation, the input that van he modalated will depend upon the type of uperation chasen. as described in Chapter löno: with op-per-ent phate eflegency in the r.f. shage for instance. the input may lo of the order of 200 watte. making ath allowance for the small amount of adudio power taken by the grid circuit.

A high-power Class 13 modulator can be driven by the unit : data on suitahle modulator tubes are givern later in this chapter. Zaro-bias tubes should tre used. beratue they prosent a more ennstant load to the fil.fis than do relatively low amplifiestion-factor tubse which require fixed bia* ion (bass B uperation. A suitable ('lass B driver tansformer should be sub-

Fig. 1.110- In all-triode spereh amplifier with ininpull $6 B 40$ output, for driving a Class is amplitior reyniring seven watts or $\left\lvert\, \begin{aligned} & \text { se } \\ & \text { on the grids. 'The end-on eon- }\end{aligned}\right.$ struction permits momeng another similarlyeconstructed unit on the same rack panel.

Modulation Equipment

Fig. 1411 - Bottom view of the all-triode speech amplifier. Wiring is simple and the whole unit is casy to construct.
peres. Bias for the 61.6 stage is most conveniently supplied by a 22.5 -volt "B"-battery block; a small-sized unit will be satisfactory, since no current is drawn.

An all-triode speerh amplifier Triodes are preferable to tatrodes as drivers for Class B modulators
 because their lower plate resistance means better output-voltage regulation and hence less distortion under the varying load presented by the Class B grids. Where an output of 10 watts or less is needed to drive a Class B amplifier, low- μ triodes such as the $2 \mathrm{~A} 3,6 \mathrm{~A} 3$, and 6 B 4 G can be used. The amplifier shown in Figs. 1410 and 1411 uses a pair of 6 B 4 Gs in push-pull, driven by a threestage triode amplifier which provides ample gain for communications-type crystal microphones.

The circuit diagram is given in Fig. 1412. The first stage, a 6SF5, is resistance-coupled to a $6 \mathbf{J} 5$, which in turn is impedance-coupled to a second 6.5. The latter tube is transformercoupled to the 6B4G grids. The combination of impedance- and transformer-coupling keops the stage gain high and restricts the frequency response to the range most useful for voice communication. The volume control is in the grid of the second stage. The circuit is quite straightforward throughout. Bias for the 6 B 4 Gs is obtained from the drop in a resistor (R_{10}) in series with the filament-supply centertap.

The amplifier is built on a $6 \times 14 \times 3$-inch chassis, arranged for end-mounting from a rack pancl. This type of const ruction uses very little panel space and permits mounting another unit such as a power supply or modulator on the same panel. In Fig. 1410 the tube at the left front, just above the microphone jack, is the 6SF. The first 6.5 is at the right, with the gain control on the chassis wall below it. The coupling choke. L_{1}, is behind and between the first two tubes, and is followed, going toward the rear, by the second (6.J, the push-pull coupling transformer, the $6 B+G s$, and the output transformor. The wiring underneath the chassis is shown in Fig. 1411.

The type of output transformer to use will depend upon the grid-to-grid impedance of the Chass B tubes to be driven, and should have the proper turns ratio to work between that impedance and the 5000 ohms plate-to-plate required for optimum operation of the $6 B 4$ (is. The measured output from the transformer secondary is 7 watts. Power requirements of the amplifier are 3 amperes at 6.3 volts and 100 ma. at 300 volts.

Fig. 1.112 - Circuit diagram of the all-triode speech amplifier.
$\mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}_{8}-10-\mu \mathrm{fd} .50$-volt electrolytic.
$\mathrm{C}_{2}-470-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{3}, \mathrm{C}_{9}-8$ - $\mu \mathrm{fil} .450$-volt electrolytic.
$\mathrm{C}_{4}, \mathrm{C}_{6}, \mathrm{C}_{7}-0.0047-\mu \mathrm{fd}$. mica.
R_{1} - 2.2 megohms, $1 / 2$ watt.
R_{2} - 4700 ohms, $1 / 2$ watt.
R_{3} - 0.47 megohm, $1 / 2$ watt.
$\mathrm{R}_{4}-47,000$ ohms, $1 / 2$ watt.
R_{5} - 1 -megohm potentiometer.
R_{6} - 2200 ohms, $1 / 2$ watt.
$\mathrm{R}_{7}-0.22$ megohm, $1 / 2$ watt.
$R_{8}-1500 \mathrm{ohms}, 1 / 2$ watt.
$\mathrm{R}_{9}-10.000$ ohms, 2 watts.
$\mathrm{R}_{10}-1000$ ohms, 10 watts.
$\mathrm{L}_{1}-300$ henrys, 5 ma., 6470 -ohms d.c. resistance (Thordarson T-3CiC36).
J_{1} - Nicrophone connector (Amphenol 7-5-PCIM).
J_{2} - Octal socket, male (Imphenol 86-C18).
RFC: $-2.5-\mathrm{mh}$. r.f, choke.
Th - Interstage transformer, single plate to p.p. grids, 3:1 ratio (Thordarson T.5741).
T_{2} - Variahle-ratio driver transforner (UTC PA. 53AX).

TABLE I－RESISTANCE－COUPLED VOLTAGE－AMPLIFIER DATA
Data are given for a plate supply of 300 volts，departures of as much as 50 per cent from this supply voltage will not materially change the operating conditions or the voltage gain，but the output voltage will be in proportion to the new voltage．Voltage gain is measured at 400 cycles，condenser values given are based on 100 －cycle cut－off．For increased low－frequency response，all condensers may be made larger than specified（cut－off requency in inverse proporigible effect on the performance．
same proportion）．A variation of 10 per cent in the values given has ne＿

	Plate Resistor Megohms	Next－Stage Grid Resistor Megohms	Screen Resister Megohms	Cathade Resisior Ohms	Screen By－pass $\mu \mathrm{fd}$ ．	Cathede By－pass $\mu \mathrm{id}$ ．	Blocking Condenser $\mu \mathrm{fd}$ ．	Output Volis （Peak）${ }^{1}$	Volteng Gain ${ }^{2}$
$\begin{gathered} \text { SC6, 6J7, } 6 W 7 \\ 7 C 7,57 \\ \text { (pentode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.95 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.5 \\ & 0.53 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.07 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.3 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{array}{r} 55 \\ 81 \\ 96 \\ \hline \end{array}$	61 82 98
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	1.16 1.18 1.45	$\begin{aligned} & 1100 \\ & 1900 \\ & 1300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.05 \end{aligned}$	5.5 5.4 5.8	$\begin{aligned} & 0.008 \\ & 0.065 \\ & 0.065 \end{aligned}$	$\begin{array}{r} 81 \\ 104 \\ 110 \\ \hline \end{array}$	$\begin{aligned} & 104 \\ & 140 \\ & 185 \\ & \hline \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.9 \\ & 2.95 \end{aligned}$	$\begin{aligned} & 1700 \\ & 2900 \\ & 2300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.1 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.003 \\ & 0.0025 \end{aligned}$	$\begin{array}{r} 75 \\ 97 \\ 100 \end{array}$	$\begin{aligned} & 161 \\ & 350 \\ & 240 \end{aligned}$
$\begin{gathered} \text { 6C8G } \\ \text { conest1ode } \\ \text { unit) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	二	$\begin{aligned} & 2180 \\ & 9840 \\ & 3950 \end{aligned}$	－	3.93 2.01 1.79	$\begin{aligned} & 0.037 \\ & 0.013 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 55 \\ & 73 \\ & 80 \\ & \hline \end{aligned}$	29 23 25
	0.25	$\begin{aligned} & 0.65 \\ & 0.5 \\ & 1.0 \end{aligned}$	－	4750 6100 7100	二	$\begin{aligned} & 1.29 \\ & 0.96 \\ & 0.77 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.0065 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 64 \\ & 80 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 96 \\ & 97 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	二	$\begin{array}{r} 9000 \\ 11,500 \\ 14,500 \end{array}$	二	$\begin{aligned} & 0.67 \\ & 0.48 \\ & 0.37 \end{aligned}$	$\begin{aligned} & 0.007 \\ & 0.004 \\ & 0.002 \end{aligned}$	67 83 96	$\begin{aligned} & \mathbf{2 7} \\ & 97 \\ & 98 \end{aligned}$
$\begin{gathered} 6 F 5,6 S F 5 \\ 7 \mathrm{~B} 4 \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 1300 \\ & 1600 \\ & 1700 \end{aligned}$	二	5.0 3.7 3.9	$\begin{aligned} & 0.025 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 33 \\ & 43 \\ & 48 \\ & \hline \end{aligned}$	42 49 59
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 2600 \\ & 320 \mathrm{~J} \\ & 3500 \end{aligned}$	二	2.5 9.1 9.0	$\begin{aligned} & 0.01 \\ & 0.007 \\ & 0.004 \end{aligned}$	41 54 63	56 63 67
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 9.0 \end{aligned}$	二	$\begin{aligned} & 4500 \\ & 5400 \\ & 6100 \end{aligned}$	－	1.5 1.2 0.93	$\begin{aligned} & 0.006 \\ & 0.004 \\ & 0.002 \\ & \hline \end{aligned}$	50 62 70	$\begin{aligned} & 65 \\ & 70 \\ & 70 \end{aligned}$
6F9G（one triode）． 6J5，6J5G． 7A4，7N7， 6SN7G Cone triode）	0.05	$\begin{aligned} & 0.05 \\ & 0.1 \\ & 0.95 \end{aligned}$	－	$\begin{aligned} & 1020 \\ & 1270 \\ & 1500 \end{aligned}$	－	3.56 2.96 2.15	$\begin{aligned} & 0.06 \\ & 0.034 \\ & 0.012 \\ & \hline \end{aligned}$	41 51 60	13 14 14
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{aligned} & 1900 \\ & 9440 \\ & 9700 \end{aligned}$	二	2.31 1.42 1.2	0.035 0.0125 0.0065	43 56 64	$\begin{aligned} & 14 \\ & 14 \\ & 14 \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 4590 \\ & 5770 \\ & 6950 \end{aligned}$	二	0.87 0.64 0.54	0.013 0.0075 0.004	46 57 64	$\begin{aligned} & 14 \\ & 14 \\ & 14 \end{aligned}$
$\begin{gathered} \text { 6R7. } 6 \mathrm{FR} 7 \mathrm{G} \\ \hline \end{gathered}$	0.05	$\begin{aligned} & 0.05 \\ & 0.1 \\ & 0.95 \end{aligned}$	二	$\begin{aligned} & 1600 \\ & 2000 \\ & 2400 \\ & \hline \end{aligned}$	二	2.6 2.0 1.6	$\begin{aligned} & 0.055 \\ & 0.03 \\ & 0.015 \end{aligned}$	50 62 71	$\begin{array}{r} 9 \\ 9 \\ 10 \\ \hline \end{array}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 2900 \\ & 3800 \\ & 4400 \end{aligned}$	二	1.4 1.1 1.0	$\begin{aligned} & 0.03 \\ & 0.015 \\ & 0.007 \end{aligned}$	52 68 71	10 10 10
	0.25	$\begin{aligned} & 0.95 \\ & 0.5 \\ & 1.0 \end{aligned}$		$\begin{array}{r} 6300 \\ 8400 \\ 10,600 \end{array}$	－	0.7 0.5 0.44	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.004 \end{aligned}$	54 62 74	10 11 11
$\begin{gathered} \text { 6SC7 } \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{array}{r} 750 \\ 930 \\ 1040 \end{array}$	－	－	$\begin{array}{r} \hline 0.033 \\ 0.014 \\ 0.007 \\ \hline \end{array}$	35 50 54	29 34 36
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 1400 \\ & 1680 \\ & 1840 \\ & \hline \end{aligned}$	二	－	$\begin{aligned} & 0.012 \\ & 0.006 \\ & 0.003 \end{aligned}$	45 55 64 50	39 42 45
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	二－	$\begin{aligned} & 2330 \\ & 2980 \\ & 3980 \end{aligned}$	二	－	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.00 ? \end{aligned}$	50 62 72	45 48 49
3S37	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.31 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 500 \\ & 530 \\ & 590 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.09 \\ & 0.09 \end{aligned}$	$\begin{array}{r} 11.6 \\ 10.9 \\ 9.9 \end{array}$	0.019 0.016 0.007	$\begin{array}{r} 72 \\ 96 \\ 101 \\ \hline \end{array}$	$\begin{array}{r} 67 \\ 98 \\ 104 \end{array}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.89 \\ & 1.10 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 850 \\ & 360 \\ & 910 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.06 \\ & 0.06 \end{aligned}$	8.5 7.4 6.9	$\begin{aligned} & 0.011 \\ & 0.004 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 79 \\ & 88 \\ & 98 \end{aligned}$	139 167 185
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1410 \\ & 1530 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.0 .4 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.8 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 0.004 \\ & 0.002 \\ & 0.0015 \end{aligned}$	$\begin{aligned} & 64 \\ & 79 \\ & 89 \end{aligned}$	$\begin{aligned} & 200 \\ & 238 \\ & 263 \end{aligned}$
$\begin{aligned} & \text { 6527, 6B6G } \\ & 786,2 A 6,75 \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	二	$\begin{aligned} & 1900 \\ & 2200 \\ & 2300 \end{aligned}$	二	4.0 3.5 3.0	$\begin{aligned} & 0.03 \\ & 0.015 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 31 \\ & 41 \\ & 45 \\ & \hline \end{aligned}$	31 39 49
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	二二	$\begin{aligned} & 3300 \\ & 3900 \\ & 4900 \end{aligned}$	－	$\begin{aligned} & 2.7 \\ & 2.0 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 42 \\ & 51 \\ & 60 \end{aligned}$	48 53 56
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 8.0 \end{aligned}$	－	$\begin{aligned} & 5300 \\ & 6100 \\ & 7000 \end{aligned}$	二二	1.6 1.3 1.2	$\begin{aligned} & 0.007 \\ & 0.004 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 47 \\ & 62 \\ & 67 \end{aligned}$	$\begin{aligned} & 58 \\ & 60 \\ & 63 \end{aligned}$

[^4]
Modulation Equipment
 319

TABLE II-CLASS-B MODULATOR DATA

$\begin{aligned} & \text { Class-B } \\ & \text { Tubes (2) } \end{aligned}$	Fil. Volts	Plate Volts	Grid Volts App.	Peak A.F. Grid-to-Grid Voltage	Zero-Sig. ${ }^{1}$ Plate Current Ma.	Max.-Sig. ${ }^{1}$ Plate Current Ma. ${ }^{2}$	Load Res. Plate-to-Plate Ohms	Max.-Sig. Driving Power Watts ${ }^{3}$	Max.-Sig. ${ }^{1}$ Power Output Watt ${ }^{3}$
HY65 ${ }^{\text {5 }}$	6.3	450	-	-	-	125	-	0.4	34
HY31Z4s	6.3	300	0	104	20	100	5,000	1.4	18
815°	6.3	$\begin{aligned} & 400 \\ & 500 \\ & \hline \end{aligned}$	$\begin{array}{r} -15 \\ -15 \\ \hline \end{array}$	60	22 20	$\begin{array}{r} 150 \\ 150 \\ \hline \end{array}$	$\begin{aligned} & 8,000 \\ & 6,200 \end{aligned}$	0.36 0.36	$\begin{aligned} & 42 \\ & 54 \end{aligned}$
HY6L6GX ${ }^{\text { }}$	6.3	$\begin{array}{r}400 \\ 500 \\ \hline\end{array}$	-25 -25	80 80	100 100	$\begin{array}{r} 230 \\ 230 \\ \hline \end{array}$	$\begin{array}{r} 3,800 \\ 4,550 \\ \hline \end{array}$	$\begin{aligned} & 0.35 \\ & 0.6 \end{aligned}$	60
TZ20	7.5	800	0	160	40	136	12,000	1.8	70
HY61/8077	6.3	400	-25	80	100	230	3,800	0.35	60
HY69:	6.3	300	-25	106	60	150	4,000	0.25	30
HY30Z	6.3	$\begin{aligned} & 600 \\ & 750 \\ & 850 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 171 \\ & 167 \\ & 171 \end{aligned}$	$\begin{aligned} & 18 \\ & 29 \\ & 28 \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \\ & 180 \end{aligned}$	$\begin{array}{r} 6,000 \\ 8,000 \\ 10,000 \end{array}$	Note 9 "	$\begin{array}{r} 75 \\ 95 \\ 110 \end{array}$
$807{ }^{10}$	6.3	400	-25	78	100	240	3,200	0.2	55
HK24	6.3	$\begin{array}{r} 1000 \\ 1250 \\ \hline \end{array}$	$\begin{array}{r} -29 \\ -42 \\ \hline \end{array}$	$\begin{array}{r} 248 \\ 256 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 24 \\ & \hline \end{aligned}$	150 136	$\begin{aligned} & 15,000 \\ & 21,200 \end{aligned}$	4.5	105 120
809	6.3	$\begin{array}{r} 500 \\ 750 \\ 1000 \\ \hline \end{array}$	$\begin{array}{r} 0 \\ -4.5 \\ -10 \\ \hline \end{array}$	$\begin{aligned} & 135 \\ & 140 \\ & 156 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & \hline \end{aligned}$	$\begin{array}{r} 5,200 \\ 8,400 \\ 11,600 \end{array}$	$\begin{aligned} & 2.4 \\ & 2.4 \\ & 3.4 \end{aligned}$	60 100 145
HY40Z	7.5	$\begin{array}{r} 750 \\ 850 \\ 1000 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	171 185 185	32 40 45	$\begin{aligned} & 295 \\ & 250 \\ & 250 \end{aligned}$	$\begin{array}{r} 6,000 \\ 7,000 \\ 9,000 \end{array}$	Note 9 "1	$\begin{aligned} & 110 \\ & 155 \\ & 185 \end{aligned}$
811	6.3	$\begin{array}{r} 1250 \\ 1500 \\ \hline \end{array}$	$\begin{array}{r}0 \\ -\quad 9 \\ \hline\end{array}$	140 160	$\begin{aligned} & 48 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 200 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & 15,000 \\ & 18,000 \\ & \hline \end{aligned}$	3.8 4.2	175 225
351	$\begin{aligned} & 5.0 \\ & 60 \\ & 5.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000 \\ & 1250 \\ & 1500 \end{aligned}$	$\begin{array}{r} -29 \\ -30 \\ -40 \\ \hline \end{array}$	-	\square	\square	$\begin{array}{r} 7,200 \\ 9,600 \\ 12,800 \end{array}$	-	150 200 230
IZ40	7.5	$\begin{aligned} & 1000 \\ & 1250 \\ & 1500 \end{aligned}$	0 - 4.5 $-\quad 9$	$\begin{aligned} & 220 \\ & 269 \\ & 265 \end{aligned}$	-	$\begin{aligned} & 280 \\ & 280 \\ & 250 \end{aligned}$	$\begin{array}{r} 7,350 \\ 10,000 \\ 12,000 \end{array}$	$\begin{aligned} & 5.5 \\ & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 175 \\ & 295 \\ & 250 \end{aligned}$
203-A	10	$\begin{array}{r} 1000 \\ 1250 \\ \hline \end{array}$	-35 -45	310 330	26	320 320	6,900 9,000	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 200 \\ & 260 \end{aligned}$
211	10	$\begin{array}{r} 1000 \\ 1250 \\ \hline \end{array}$	$\begin{aligned} & -77 \\ & -100 \\ & \hline \end{aligned}$	$\begin{array}{r} 380 \\ 410 \\ \hline \end{array}$	$\begin{array}{r} 20 \\ 20 \\ \hline \end{array}$	$\begin{array}{r} 320 \\ 320 \end{array}$	6,900 9,000	7.5 8.0	$\begin{aligned} & 200 \\ & 260 \\ & \hline \end{aligned}$
838	10	$\begin{aligned} & 1000 \\ & 1250 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	200 200	$\begin{array}{r} 106 \\ 148 \\ \hline \end{array}$	320 320	6,900 9,000	7.0	$\begin{aligned} & 200 \\ & 260 \\ & \hline \end{aligned}$
HK54	5.0	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \\ & \hline \end{aligned}$	-45 -70 -85	300 360 360	40 24 20	198 180 150	16,800 36,000 40,000	$\begin{aligned} & 5.0 \\ & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 200 \\ & 260 \\ & 275 \end{aligned}$
HY51Z	7.5	$\begin{array}{r} 850 \\ 1000 \\ 1250 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 148 \\ & 170 \\ & 155 \end{aligned}$	$\begin{aligned} & 48 \\ & 60 \\ & 90 \end{aligned}$	$\begin{aligned} & 300 \\ & 350 \\ & 300 \end{aligned}$	$\begin{array}{r} 5,000 \\ 6,000 \\ 10,000 \end{array}$	Note 9 :1 \%	$\begin{aligned} & 160 \\ & 260 \\ & 285 \end{aligned}$
203-Z	10	$\begin{array}{r} 1000 \\ 1250 \\ \hline \end{array}$	$\begin{array}{r} 0 \\ -\quad 4.5 \\ \hline \end{array}$	$\begin{aligned} & 206 \\ & 215 \\ & \hline \end{aligned}$	50 60	350 350	$\begin{array}{r} 6,200 \\ 8,000 \\ \hline \end{array}$	$\begin{aligned} & 6.5 \\ & 6.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 230 \\ & 300 \end{aligned}$
ZB120	10	$\begin{aligned} & 1000 \\ & 1250 \\ & 1500 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ -\quad 9 \\ \hline \end{array}$	190 180 196	70 95 60	310 300 296	$\begin{array}{r} 6,900 \\ 9,000 \\ 11,200 \end{array}$	$\begin{aligned} & 5.0 \\ & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 200 \\ & 245 \\ & 300 \end{aligned}$
8005	10	$\begin{array}{r} 1250 \\ 1500 \\ \hline \end{array}$	-55 -80	$\begin{array}{r} 290 \\ 310 \\ \hline \end{array}$	40 40	320 310	$\begin{array}{r} 8,000 \\ 2,500 \end{array}$	4.0	$\begin{array}{r} 250 \\ 300 \\ \hline \end{array}$
HF100	$\begin{array}{r} 10 \\ \text { to } 11 \\ \hline \end{array}$	$\begin{array}{r} 1500 \\ 1750 \\ \hline \end{array}$	$\begin{array}{r} -52 \\ -62 \\ \hline \end{array}$	$\begin{aligned} & 264 \\ & 324 \\ & \hline \end{aligned}$	50 40	$\begin{array}{r} 270 \\ 270 \\ \hline \end{array}$	$\begin{aligned} & 12,000 \\ & 16,000 \\ & \hline \end{aligned}$	2.0 9.0	$\begin{array}{r} 260 \\ 350 \\ \hline \end{array}$
$\begin{aligned} & \hline 805 \\ & \text { RK57 } \\ & \hline \end{aligned}$	10	$\begin{array}{r} 1250^{\circ} \\ 1500 \\ \hline \end{array}$	$\begin{array}{r}0 \\ -16 \\ \hline\end{array}$	$\begin{array}{r} 235 \\ 280 \\ \hline \end{array}$	$\begin{array}{r}148 \\ \hline 84 \\ \hline\end{array}$	$\begin{array}{r} 400 \\ 400 \\ \hline \end{array}$	$\begin{aligned} & 6,700 \\ & 8,200 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 300 \\ 370 \\ \hline \end{array}$
751	5.0	$\begin{aligned} & 1000 \\ & 1500 \\ & 2000 \end{aligned}$	二	-	-	-	$\begin{array}{r} 6,800 \\ 10,000 \\ 12,500 \end{array}$	-	$\begin{aligned} & 200 \\ & 300 \\ & 400 \end{aligned}$
100TH	$\begin{aligned} & 5.0 \\ & 10 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2500 \\ & 3000 \end{aligned}$	Bias ad	iusted for max under no-s Zero bias up	mum rated plat ignal condition to 1250 r . pla	dissipation te	$\begin{aligned} & 16,000 \\ & 22,000 \\ & 30,000 \end{aligned}$	May be driven by push-puil 6L6s	$\begin{aligned} & 380 \\ & 460 \\ & 500 \end{aligned}$
HD203-A	10	$\begin{array}{r} 1500 \\ 1750 \\ \hline \end{array}$	$\begin{array}{r} -40 \\ -67 \\ \hline \end{array}$	二	36 36	$\begin{array}{r} 425 \\ 425 \\ \hline \end{array}$	$\begin{aligned} & 8,000 \\ & 9,000 \\ & \hline \end{aligned}$	Note 8	400 500
HK254	5.0	$\begin{aligned} & 2000 \\ & 2500 \\ & 3000 \end{aligned}$	$\begin{aligned} & -65 \\ & -80 \\ & -100 \end{aligned}$	$\begin{aligned} & 400 \\ & 490 \\ & 456 \end{aligned}$	50 50 40	$\begin{aligned} & 260 \\ & 248 \\ & 240 \end{aligned}$	$\begin{aligned} & 16,000 \\ & 22,000 \\ & 30,000 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 328 \\ & 418 \\ & 520 \\ & \hline \end{aligned}$
810	10	1500	-30	345	80	500	6,600	12	$51 \overline{0}$

[^5]
320

Fif. 1413 - Class 13 modulator circuit diagrams. Tubes and rircuit considerations are disellssed in the text.

(1. Class-B Modulators

Class 13 modulator circuits are practically identical no matter what the power output of the modulator. The diagrams of Fig. 1413 thercfore will serve for any modulator of this type that the amatcur may elect to build. The triode circuit is given at A and the circuit for tetrodes at 13 . When small tubes with in-directly-heated cathodes are used, the cathode should be connected to ground.

Design considerations for Class B stages are discussed in Chapter Five, and data on the performance of various tubes suitable for the purpose are given in the accompanying tables. Once the requisite audio power output has been determined and a pair of tuhes capable of giving that output selected, an out.put transformer should be secured which will permit matching the rated modulator load impedance to the modulating impedance of the r.f. amplifier. Similarly, a driver transformer should be selected which will properly couple the driver stage to the Class B grids.

The plate power supply for the modulator should have good voltage regulation and must be well filtered. It is particularly important, in the case of a tetrode Class B stage, that the screen-voltage powersupply snurce have excollent regulation, to prevent distortion. The screen voltage should be set as exactly as possible to the recommended value for the tube.

In estimating the output of the modulator, it should be remembered that the figures given in the tables are for the tube output only, and do not include outputtransformer losses. The efficiency of the output transformer will vary with its construction, and may be assumed to be in the vicinity of 80 per cent for the less-expensive units and somewhat higher for higher-priced transformers. To be adequate for modulating the transmitter, therefore, the modulator should have a theoretical power capability about 25-per-cent greater than the aetual power needed for modulation.

The input transformer, T_{1}, may couple directly between the driver tube and the modulator grids or may be designed to work from a low-impedance (200 - or 500 -ohm) line. In the latter case, a tube-to-line output transformer must be used at the output of the driver stage. This type of coupling is recommended only

Fig. 1414- A Class B modulator using 811 s or similar tuhes (right-hand unit) panelmounted with its associated speech amplifier. The latter is the all-triode amplifier shown in Fig. 1410. The Class B output transformer is monnted at the panel end of the chassis for good weight distribution. 'Ihe transformer at the rear is the filament transformer for the Class Is tubes.

Modulation $\mathcal{E}_{\text {quipment }}$

When the driver musi bre at antiderable distane from the molulator. sine the sermed
 losses but also further impars the vollage remulation.

The bias sumpor for the mondulator must hatve
 suitathe source. In cates where the boblag.

 bias supple is rotuired but also beratme the lomding on the driver stage is la:s variathe :and conserfuently distortion in the driver is reduecel.
("ombenser (1 in these diagrams will gitera
 frequence sidebatuls (eplatter) rallsed by distortion in the mombatar or preceding sperethamplifior slages. Vallus in the metightorhomen of 0.002 to 0.00 .5 mith are suitable. Its vollage raling shombl be adoplatle for the pak rollagn arrose the transformer serombary. The plate be-pass comblaner in the modalated amplifior will serve the same purpust.
 consermeton which may be nowd for Class 13 mondulators. The actuai phacontrnt of parts in filling the requirements of any given mat is not critieal.

© Increasing Modulation Effectiveness

In 'phome lamsmiseion commmateation is carrind on be means bi the modulation simeHamb. mot ther.f. rartior. For maximum aflamtivemess. Huetorere, the siduband power should be as high ats proible. Howerem. modutation in cxeress of the cenpability of the transmitter hambe to avemmodubaion "splatler," or spurious sidebands hying whtside the nommat communication bithdwilth. Bresidex cansing annecessatry interformer, owemotulation is contrat? to the F (C requlations govorning amateur phone opretation.

Mathods for inereasing the cifectivernes of the 'phome latasmitter within the limits of mothathon rapability include forlrimine the athlio-frequency response to those frequene ies that cembrifulte most to imboligitilits. Hee of automatio gatn control in the spurbh stem. and premodulation clipping of peaks in the vaice wavedorm.

 monatiol on the ahomin. Whare the input

 thi-mmblatar: with a melat patnel. the metor

 centoertied in the litament renter-tap rather

Fig, 1.117- A tuned circuit in the audio amplifier will acerntuate the frequencies most useful for wice trans:nission. This circuit is best adapted to use with a triowle amplifier in the proceding stage. but can be used with pentoles if a more "peahed" response is desired. Values are discussed in the text.

Restricting frequency response - Most of the intelligibility in speech is contained in the frequency range from about 500 to 3000 cyrles per second. On the other hand. the larger part of the pouer in speceh, especially in male voices. is in the frequencies below 500 cyeles. With ordinary flat-frequency amplification, therefore, a large part of the modulator power output is devoted to reproducing frequencios that do not contribute materially to understandable specech. By attenuating the froquency response below 400 or 500 areles the gain can be inereased for the higher frequencies without overloading the modulator, thereby considerably increasing the effertiveness of the transmitter for communication purposes.

Fig. $1+17$ shows a simple tuned circuit that can be installed between two speech-amplifier
stages to restrict the frequency response to the most uscful frequencies. The $L C$ circuit should be adjusted to resonate at approximately 1000 to 1500 cycles. Represontative values would be 10 henrys and $0.001 \mu \mathrm{fd}$. The resonant frequency can be adjusted either by changing the capacitance of the condenser or by varying the inductance of the coil by varying the width of the air-gap in the core.

In an ordinary resistanco-coupled amplifier, the high frequencios can be attonuated by shanting a rapacitanco from pate to ground or from grid to gromid - the common "tonecontrol" circuit (5 - - - $)$. Low-frequency response can be reduced by using a small coupling condenser or low value of grid resistor. If the product of the grid coupling-condenser capacitance (in mierofarats) by the grid-leak resistance (in megohms) is made equal to about 0.001 the response will drop off considerably bedow about ano aroles.

Volume rompression - $\mathrm{It}^{\text {it }}$ is highly desirable to maindain the momblation at as high a level as posible without going into the overmodulation region. Esually the moslubation varies over a considerable range as the operator raises or lowers his voior. moves toward or away from the microphone, and so on. If automatic gain control or "wolume eompression" is incorporated in the speech amplifier the gain may be set at a value that gives full nochalation when talking at a low level and

Fir, 1418 - Cirenit diagram of the Class-A 213 volume-omprosion sperh amplifier.

[^6]

Fif. 1119-Iow.level full-wave clipter system. The gain control h_{1} is not required if one of the preceding stages has a gain control.
$\mathrm{C}_{1}-10-\mu \mathrm{fl}$. 25 -volt elcertrolytie.
$\mathrm{C}_{2}, \mathrm{C}_{3}-8$ - $\mu \mathrm{fl}$. fivonalt elentralitio.
$\mathrm{C}_{4}-25-\mu \mathrm{fl}$. 25-volt elentrol tio.
$\mathrm{C}_{5}, \mathrm{C}_{\text {ค }}-0.02 \mathrm{~B} \mu \mathrm{fll}, \mathrm{t} \pm \mathrm{F} \%$.

C9-0.08 $\mu \mathrm{fd} ., \pm 5 \%$.
R_{1} - 0.5-meg, pet., a.f. taper.
$R_{2}-1000$ ohims, I watt.
$\mathrm{K}_{3}-0.15 \mathrm{meg}$ mim, 1 watt.
$\mathrm{R}_{4}-0.22$ megolim, 1 wat.
$\mathrm{H}_{5}-0.17$ megohm, 1 watt.
$\mathrm{Rn}_{\mathrm{n}}-0.29$ megohm, 1 watt.
$\mathrm{R}_{7}-390$ ohms, 2 watt -
$\mathrm{R}_{\mathrm{s}}-\mathrm{I} 000$ ohms, $\pm 10 \%, 5$ watts.
$R_{9}-I 000$-rhm pont., a.f. taper, $\pm 10 \%$ (check with ac. curate ohmmeter).
I_{1} - 30-mh. iron-wore choke.
$\mathrm{I}_{2}, \mathrm{I}_{3}$ - 80-mh. iron octrere chake.
L.4-30.mh. iron-rore rlooke.
$\mathrm{B}_{1}, \mathrm{~B}_{2}-7$ - 2 volt " C " hattery.
' 1 ' - Single-plate-to-p,p,-grids, $2: 1$ or $3: 1$ ratio.
the output then will be held at approximately the 100-per-cent modulation level when louder sounds strike the microphone. Automatic gain control is simple in minciple; some of the audio output is redifiom and filtered to produce a d.e. volatere that varies with the speech amplitude. amd this voltage is used to bias a tube in the carly sperech-amplifier stages so that the lomder the sound the greater the redurtion in over-all main.

Fig. $1+18$ is the direuit diagram of a speesh amplifier with volume compression, suitable for working from a crestal mierophone and having a power output (if watts or more, deperding upen the efliciener of the output transiommer) sufficiont to drive a Class B modulator to an output of about 2.50 watts. The atutomatic gain-control cireuit uses a separate amplifier and reedifier eombined in one tube, a biso7. The reetified output of this cirpoit is filtered and applied to the No. 1 and 3 grid of a pentagrid amplifier tubs, thereby varying its gain in inverse proportion to the signal strength. With proper adjustment, an average increase in modulation level of about 7 db . can be socured without exceeding 100-per-cent modulation on peaks.

The amplifier proper consists of a 6 J 7 first stage followed by a 61.7 amplifier-compressor. The 2.13 grids are driven by a 6×77 self-balancing phase inverter. The operation of the 2 A 3 s is purely Class A, without grid curvent.

The amount of compression is controlled by the potentiomeler, Ron. in the grid circuit of the $6 \mathrm{~S}_{2}\left(27\right.$. A switch, \vec{c}_{1}, is provided to shortcircuit the rectified output of the compressor when normal amplification is required.

Adjustment of the compresior control is rather critical. First set R_{20} at zero and adjust the gain control, R_{6}, for full modulation with the particular microphone used. 'Then advance the compressor control until the ampli-
fier just "cuts off" (output dorreasing to a low value) on peaks; when this point is reached, batk off the eompressor control until the cutoff effect is gone but :an obvious decrease in gain follows eath peak.

Because of the neessity for filtering out the audio-frequency component in the rectifier output, there will be a slight delay (amounting to a fraction of a second) before the decrease in gain "catches up", with the peak. This is caused by the time constant of the circuit, and so is unavoidable.

When a satisfactory setting is secured, as indicated by good speech quality with a dofinite roduction in gain on peaks, the gain control. $R_{\text {fi }}$. should be advanced to give full output with normal oprration. Too much volume compression, indicated by the cut-off effert following each peak, is definitely undesirable, and the object of adjustment of the compressor control should be to use as much compression as possible without danger of overcompression.

Clipter circuit - Sideband power can be greatly increased by cutting off those components in the speech wave that have high peak but low arerage amplitude. For distortionless amplification the presence of such peaks requires considerable power capability on the part of the modulator. but this eapability camnot be utilized because the ratio of peak to average amplitude is high. C'utting off the peaks decreases this ratio to such an extent that much more cffective communication is possible, at some sacrifice in naturalness. The intelligibility is greatly improved when the signal is weak at the receiving station because the greater sideband power "cuts through" noise and interference. As much as 2.5 db . of rlipping is advantageous under such conditions.

The clipping must be done in the sueceh

 tran－former windines．Caparitancos from 0.001 to 0.000 ${ }_{\mu}$ fid．nawally are in the proner ranue．
amplifier and the clipped oulput must be pasied through a filter to climinate the high－ frequeney hamonies that wesult fom elippinge． The filter should be of the low－pass tope derigned to hase a cut－ofi freguency in the vicinity of 3000 10 4000 （．yolss．

Fiar． 1419 shows a promochlation elippingr and filter cireuit，or＂elipher．＂that maty be inserved botwern two shage in any ordinary spereh amplifier at a point where he level is aboul 6 volts pata．At this level the eliptere will provide ahout 2.5 alh．we edipping at the maximum solting．It consisis of a fiJ．ampli－

 the（obthut of the diJ．abowe a predelermined level．Both prositive and megative poaks are rlipued．The rewlant signal is ford bo the wril of ：filf：amplifier athe theroe throngh a low－

 soles prak for all demeres of rlipping．＇lhe filter shown has a cut－ofl fropucuey of ap－

Conder comblitions of maximmen dippiner the mak voltare arome the serombaty of T_{1} will readabant 200 volls．A hasky intrasatre trans－ formur whth a well－blamped cone iv meres－aty in order 10 avoid acomstiond lamination ehatter．

The shme dionte elipper shown hats a megli－ gible time constant amd holds the peak matuat voltage a a mextigible riser as elippling is in－

 the conten grial of the tili be kept shot athl
 whasis．in order to minimize the time constant wh the choprer cirenit．

The filler illustrated was dowioned tor wed standard valum of commeroially－atailahb． rhokes．The filter caparitamer valows cata hest te whamed by cheoling with an atomrall （apacitance melor or hiture paralleling two or hume＂aparitars to ere the dexired value When newesary．Tubular papuer rapacitors havo sufliciontly high Q ion hae mapmore amal the better arales will he fomed horm withan $\overline{5}$ ！er cent of their marked values．

To take full advantage ol the clippingr
feature the transmitter must be capable of 100－pr－cent site－trare molulation with low divontion．To aljust the syotem，farn the gatn conton（ R_{1} or other preamplifee control） Bull on and the dipping lewe control．Ra，full
 bunil the 1 ratimitur shows signs of being modalater ：at ：low leved．Listening on a phome
 the highost sithing that grives grool intelli－ gibility．
 point where splatur is hatal when the sathon rerober asoming it is ：superhet with ath－ terana terminats shontore to groumd）is thated gust off the simnal．Hase another station． proterably nearby．chack for splater just to be sure．Polemtionmerer then meal not tre burched unless the ：whinst ments to the medu－
 appreciably
 to eherek the waveromm out of the modulator to aservain whother the tophs of the clipped Wates atre flat．It maty ako be usad bo chock the mondulation envelope of the r．f．carrice and determane whether the negetive peates are
 monlulation in exees of 100 per cent）．The latter condition is the wotst offender sof far at splather is concerned．particularly with plate monhation．If the eondition exists．it will be
 For furthor details sore articho by W．W．Smith in Fobruary 1916 ．心バた。

Redurtion of hish－fredueney sidelonds－

 Fival though math masy be incorporato in the Fuereh amplifier to at tomate fremberios abowe those menesaly lar intedigible spereh． it is still prosible for hish－frepuchey sidelamds to ber radiatod if dis－arion orours in the mondalator．or if the ramsmilter is orermontu－ latom．High frequencies arising as the result of modulator dixhorion ran be aftematerl by the cireuit artanemmenthon in lig． $1+20$. The comdensers anorms 1 he primary and second－ aty ach in conjunction with the leakage re－ actano of the transionmer windings to form determined bey the apacitane and the leakage imfurlane sime the latter will vary with Affromb tamstormers it will be mecessary to deformine the proper values of capacitame by trial．＇I＇he soltage ratiluse of the comdensers should be at latas as high ：s the d．e．phate voitace applion to the lutno or tuhes with Which the ransumern winderer is asteriaterl．
＇The romltoner vahues ratl ho foumd with

 the kep bow so that the moter range will mut be womeded．With the（lass（＇lif．amplifier disennmeted，the metor should be comberedi across the Class 13 output－transformer sor－

 Dilliammeter $1 / 1$ mave be any low-ratge instramont
 of the reatifiner. J. must be at leant eanal lo the die. voltage appliod to the plate of the r.f. amplifior, 'Ihe;
 mortalation in exesss of any devired value below 100 per cent.
ondary and the aturio oseillator should be ronmeded in place of the microphone. alit the meillator output volatge is low hinh io promit this, it may be cut in at at later spereh stame.) With constant input voltage valy the frequancy while tiving dificont valaes of retpatitance andoss the minaty and semontary hatil values are foumt that result in a promomered drop in output above about 3000 exollos. The same meler maty be usod for cherking both imput and output voltages if it is ol the maltirange type and the ascillalog output is apphed to a sperdh-amplitior stage where a hevel of af fow volts is permiosible.

The spumos sidubatols sot up by owermodulation witl mot le prevented by the xystam above. The only way borevern overmotulation is to monitor the Iramsmissions contintomsly, with a devior such as a simplo
 satisfatory typ of 'phone monitor's or the megativeremak intiontor shown in lig. 1!2l. Overmodulation on nequtive peaks is morn likely ter result in spurions sidebsamb whan
positive avermodulation heratue of the shate herak that oreurs when the carier is sudedenty ath ofl atme one The milliammeter in the negative-peak imbleaton of Fig. $1 \cdot 21$ will show al rasling on cach overmodulation peak that carries the instantaneous voltane on the plate of the (lass (: morlulated amplifier "helow

 cyele of atudo wutpat volate is less than the d.e. voltage applied to the r.if. tube. The rexelifior lube must he af at lype sutable for the (lats: C' plate vollater emplowel. amd its filament transormer must have similaty-rated intivalalion.
 if it inticates at somblowl less than loot-prorcont momblation, :s it will then wath of the danger ol mommotulation before it atually
 desired modulation peremotane ber making the meter return 10 a point on the jower-supply blender as shown in the attermative diagram. The hepose mondenser. I' insumes that the fall andio voltane atperats armos the indieator rirouit. 'lhe mombation proentage at which thr sy: 8 on indicalles is delomine low the ration of the d.e. veltage berwern the meter lap and the positive terminal to the total d.e. voltige.

©. Frequency Modulation

It the pereont time the mommen mothod of frepterney momblation is los vary the frequency of the controlling ascillator in the tramsmilter by means of a reatathee motulator. 'This type
 controlled or arsatal-antrollend oscilator. In the former vase it can produre baily widebathe ireyurner mondatanom in the r.h.i. region, and of conum mater her-agmen an that it gives narmw-hamed f.m. (in which the deviation ratios is limited to alout 0.j. thas giving an f.m.

 It comains an orereh amplitice and pware sup,
 The orellatar woil is in the rembl-loied wan in the remer. Hhe ceil in the lefo forewnat is
 and modulater are at der ripht, will the power
 is ural.

326

Chapter Jourten

Fig. 1423 - Circnit diagram of the f.m. control wit for was with mormally eryatal-controlled v.h.f. transmitters.
 7 Mc.)
$\mathrm{C}_{2}-100-\mu \mu \mathrm{fil}$. variable (National S1. 1001 .
$\mathrm{C}_{3}-50$ - $\mu \mathrm{\mu}$ fol variable (ITammarlund IIに-5(1).
$\mathrm{C}_{4}-100-\mu \mu \mathrm{fl}$. mira.
Cs, C $\mathrm{C}_{2}-22(0, \mu \mathrm{ffl}$. mica.
© 6 - $0,101-\mu \mathrm{fd}$, mica.
$\mathrm{C}_{7}, \mathrm{Cs}_{5}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{33}, \mathrm{C}_{15}, \mathrm{C}_{19}, \mathrm{C}_{20}-$ $0.01-\mu \mathrm{fl}$. paper.
$\mathrm{C}_{11}-3$-311-дцfid. nica trimmer.
 trolytic.
$\mathrm{C}_{16}, \mathrm{C}_{17}-10-\mu \mathrm{fl}$. 2.5 - wolt electroIvtic.
$\mathrm{C}_{18}-0.1$ - ffl . 200-volt paper.

Iytic.
$R_{1}-0,1$ merohm, 1 watt.
K_{2} - 29.0.010 ohms, 1 watt.
$K_{3}, R_{1}, R_{5}, R_{12}-16,060$ ohms, 1 watt.
Rf. li, -330 ohms. $1 / 2$ watt.
$K_{7 .} K_{10}-0.47$ mesehun, $1 / 2$ watt.
18:-33.(MW) ohms, 1 watt.
$11_{12}-4.7$ merohms. $1 / 2$ wat1.

13:-1 merohm, ${ }^{1}$ watt.
$\mathrm{K}_{12}, \mathrm{R}_{14}$ - 11.2 Z menohm, ! watt.

$R_{1 i}-2=010$, h_{m} - $\frac{162}{2}$ watt.
$\mathrm{K}_{1},-47,00 \%$ ohms, $\frac{1}{2}$ watt.

1 la - 0.15 m madm. 1 watt.
$\mathrm{L}_{1}-7$ Mc:: 11 turns №. 18 c., length 3_{i}^{i} indh, 1 -inch diamcter, tapped 3rd turn from groumd.
$\mathrm{L}_{2}-14 \mathrm{Mc}: 10$ turns No. 18 wire on 1 1 -imh diancter form (IIamarlund Sil F-4).
I.ink 3 w 5 turns (not critical).
I_{3} - Hiltar choke, 10 henrys, 40 ma.
RIFC: ——.5-mh. r.f. choke.

$\mathrm{T}_{1}-250.0 .2 .50$ volt -40 ma. 6.3 volts at \because amper"; 5 volts at 2 ampres. (1hordarson 'T-13/211).
signal that occupies sutbstantially no more chamel width than an anm. signal) on the 28-Mr. b:mul. With a crystal acillator, the
reartance modulator is capable of giving suffieient doviation for narrow-b:m! f.m, at 28 Me.

The unit shown in Figs, 1422, 1.123 and 1424 is a complete VFO-modulator designed to work into a normally crystal-controlled transmiller using wither 7- or 14-Mc. crystals. 'The r.f. output of the whit is intended to be fid through a link to a luned-circuit eoil wound on a coil form wherh suhstintow for the erytal bolder in the arystal nsibllator. This tuned circuit is resonant al the same frequency as the output lank of the ematrol unit. $/ \mathrm{z}^{\prime} \mathrm{C}_{3}$ in Fig. 1123 and cant. in fact, be identical in conslruction.

Fig. 1.12.4-In this hottom view of the f.m, modulator unit, the r.f. section is at the riorht and the audio at the left. Ther ossillator socket in to the right of the eoil socket in the center.

Fig. 1425 - An f.m. frequeney -control and morlulator unit using reantance modulation of a crystal oscillator.

In transmitters using triode useillators, or pentode erystal oscillators in which the tubes are not wrell seremed, it is advisable to use the erestal uscillator tube as a doubler rather tham as a straight amplificr. If the transmitter uses a erystal oseillator operating in the vicinity of $1 . t$ Me., for example, the output of the unit maty be on 7 Me. and the grid eireuit of the exervstal tube alse tuned to 7 Mc. This will avoid difficulty with welf-osrillattion in the ex-erystal stage. With a pentode oseilator it is possible to work straight through, provided the grid tank substituted for the erystal is tuned well on the high-irequency side of resonance, but this procedure is not anivisable since it maty make the modulation nonlinear. It is rather important that all dircuits in the transmither be tumed "on the nose" for best performatmer, of erouser, if the arystal tube is a well-sereromed tramsmiting type it can bee used as a stright amplifier.

Fig. 1426 - Circuit diawram of the narrow-band modulator unit with erystalorontrolled oscillator.
$\mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}_{9}-5-\mu \mathrm{fl}$. 50 -valt dertrolvic.

 to same capacitane mav be used).
$\mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{14}-0.001-\mu \mathrm{fd}$ mica.
$\mathrm{C}_{13}-50$ - $\mu \mu \mathrm{ff}$. variable.
$\mathrm{C}_{15}-20-\mu \mathrm{fl} .4 \mathrm{i} 0$-volt mectrolytic.
$\mathrm{C}_{16}-\mathbf{1 0 . \mu \mathrm { fil } .} 450$-wolt electrolytic.
$R_{1}-4.7$ megohms, $1 / 2$ watt.
$\mathrm{R}_{2}-1000$ ohme, le watt.
$\mathrm{R}_{3}-0.17$ megohm, $1 / 2$ watt.
$R_{4}-22,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-0.22$ megohm, $1 / 2$ watt.
$R_{8}-1$-megolim volume control.
$R_{7}-1500$ ohms, $1 / 2$ watt.

16 , 0.1 megohan. 12́ watt.
18. $\mathrm{H}_{12}-0.15$ measom, 伯 watt.
$11_{10}-390$ ohm- ! ${ }^{2}$ watt.
1_{11} - 0.1 megolim, 1 watt.
$1413-1 \% 01$ ohmes, 1 watt.

$\mathrm{R}_{16}-110,016$ chams. 25 watts.
 long. Link. 8 turns.
I. -15 heneys, 00 ma.

T_{1} - Recoivertybe power transfurmer: 2.00 to 30 volts each side c.t. at 70 ma.

Fi九. 1.227-Boltum viw, of the

'Yi., sellativity of the mendulator is cmatrolled ley the sedting of r_{1}. The higher the cambatise of thas romblenser the - mather the in quency deviation for
 ulator. It masimum semsitisite, with ${ }^{\prime \prime}$ at minimum enturity, the limear deviation jo: tphoximatoly 1.5 ke . with all and. Buput tor the monhatan grid of \because solts peak. Thu actual deriation at the output lieduener of the tramsmitter depembe upon the amount of frefucher maltiplic:tion following the monhalated ascillator. The maximum line:r deviatim is appoximately G ke at $2 \mathbb{R}$ Mr., I? kr, at 50 Mc., and 36 ke . at $14+\mathrm{Mc}$.
also should the shorted. Care should be taken to avoid short-circuiting the grial bias, whether from at cathoule resistor or grid leak. In the lather rane this usually will mean that a blowk-
 conneeted bexwem the "how" (and of the grid tank and the grid of the ex-erystal tuber with the grid had (and chake) commed on the grid side of the ermedenser. Such a berking comaldiser may be incopperated in the pluy-in tank. The grid-tank tuning combanser maty ber a smath air padder mounted in the wail form.
Where a suitable power supply and speerh amplifier are already avaibable, the lower part of Fig. 1+233 call tre ominted and only the owillator. buflier and modulater units newd he built. With thansformer input. the transformer and gain comtrol should the commedel belwem gronnd and puint it of Fig. 1423, R_{i}^{\prime}; being omittent. Any of the emmentional methend may be used te comple the modulater to an a a a ailable anerth amplifier. with one peraution-if a high-impedance womeetion is used, the "hot" lead should be shinded to present hum piek-up.
If the tramimiter to bo used has a seifrexited aseilator. abetron-roupled or otherwim. a sparate meillator heed mot be builn. The reactanme modulathr wan bu comentod diverty armos the tank wirnit of the ose illator.
The einuit constante of the oseillator in the unit piomed are aljusted to cower the fre-

 8 : and for $1+1$ Mr., a mathipliantion of ≥ 1. The
 12-15 Mare, and has is :utaped to fereding inte a transmitter using erystals oprotang in this
 this froguracy, L_{2} should hater 20 turns with all other coil dimensions remaining the same.

Crostal-cemtrolled F.M. - The frequencycontrol unit shown in Fiss. 142.; and 1427 provides ratatater-1 ula modulation of a crystal werillator. amil thes metts the needs of those who wam narrow-band frequener moduhation wht high caurier-frequener stability.
 erystals it is priblde to oblain a deviation of 2010 cerdes at 3.5 An .. Which when multiplied
 or a deviation ration ol approximatry $0 . \overline{5}$. based on an upper andio-fremporey limit of
 sulfichat for recoption on ordinary ammani-cations-type superheterome rectivers whon the reweiver is dothen slighly from the
 deriations at the fundamental frequener of approximately 1000 and 2.000 eveles, respectively: are obtainable.

The eirenit values are rather eritical and should be followed elosely for optimum results. The plate tank condenser of the erysat uscilLator, ' 'as slumbld be set slightly on the highfrogurner side of the minimum phate-current print to obtain optimum modulation. If the comberner is set ha, mear the point of minimun plate current it is pesidn that the reve tal will he swang out of oweillation on wiote patks. Thu suling that give maximum stable mondubation with erond raime quality can be de-
 from the unit on at ravalat wember.

The r.f. ounpul of the unit readily can be couphed into a 1 ransmither havine a 3.5 . Me. ry: lal nexillatur be winding a link oi a dew Lurne arome the plate coil of the transmit ter (seillator and removing the mequar weilhator tuhe. Whe link being comerend to the output terminals of the mit thenn. The mextal-controlled fim. unit is baitt on a E -ihaped chassis measuring 7 ! 2 by 8 安 3 inches.

V.4.7. Receivers

 fers very litthe form that used on lower frequencies, The 2x-Mr. hathe sure as the menting groumd belworn what are ordinarily dermed "commmanations frequencies" alld the veryligshs. and it will be foumd that mest of the recomas despribud in Chaptor 'lwelwe are capable of working on $28 . \mathrm{Ma}$. In this chapter
 of grood proformather on of M (athd higher.
lederal regrabations imposi identical requirement: on all frequencios bolow $54 . \mathrm{Me}$, resperting stability of frequenery and. When :mmplade modulation is mede froerdom from frequeney modulation. Thes reectivers lor zoMe. ath. rereplion may have the same seleolivity as those designed for the bower frequencies, This order of selectivity is not only possible but desirable, sime it premits a considerable increase in the mumber of mansmat tors which ean work in the band withont molue intorforence. High selectivity also aids greatly in improving the sigmal-ta-mons ratio, borh as concerns node originating in the remerne itself and in its response to watheal moise. The offective semsitivity of such atreremer rath be made considerably higher than is pessible with nonsededive rearivers.

Reveivers for f.m. simals usually are designed with less solertivily, so that they ban areommodate the full swing of the tramsmittor.
 however, the h.f. wecillator must be as stable as in a marow-hand am, reveder.

The superheleroxyme sustrm of rereption is
 54 Mr . heratre it is the omls trem that fulfills. the shability reruirements. A.m. superhemerodynes and ihose for f.m. reeption dilher only in the i.f. amplifier athe serobd delerotor, so that a single high-irequency comberter maty be used for either atm. or f.m.
 fairly high intermediate freduencos tor rature both image responac and asciltator "pulling, " For examples a diforeno betwern signal athd image frequancies of 900 kr . (the differane when the i.f. is 400 ke .) is a very small prementage of the sighal freduenery: conserpuently the response of the r.f. circuits to the image fre-
 signal frembency. To ahatan diserimination against the image equal to that obtatuable at 3.5 Me, would require an i.f. 16 timmes as high. or about 7 Me . Hawever, the Q of hamed circuits is less at of Me. than it is at the lower
 is considerably grather, amd thus still highor i.f.s are desirable. A praceical compromise is reached at about 10 Mc .

Toobtain high sollootivity with a ravonable number of i.f. stages. the donthe-superhetorndyne primeiphe is often employed. A 10- Wr. intormediate freptuenery for example is chathered to at seromet i.f. of prothaps diol ke, by an welditional oxeillator-mixar combination.

Few amatours builal complete so- Me, supmo hetorodyne reenisers. General practice in this band has bern to use a eonvombonal communications reariver to hamelle: the i.f. output of a simple jo - Me frequency comperter. Evern an all-wase brodmat readiver may be usid with exerllent results on 50 M (0. by the addition of a relatively simple converter:

The suberherorolyne 1 spe of reeniver is find-
 the ocerupaney of that hand increases. lispecially in heavily-populated arras, shabilization of tramsmithers amd an imporement in the seloretivity of rerrivers are beromaing almost mandatory particularly fore those operators Who are interesiod in exploiting the full possibilities of this bomd. The ideal remetber for present comditions is one hat wing a pasi-bathe of around 100 ke . (iroatar sederivity is hardly desirable, not only berause it will diseriminate agamsl transmiters having the slighte:s instahility. hut heratuse the reereivers themselves are inclined to be somewhat less stable at this fremuence. 'This apponeh has been wed in mosi wh the reedent pionderinge cforms by amat telurs working in the miconstare field.
 into a bomathaml i.f. rhammel hexigned for abler asm. or f.an. remptian, provides a quite sati*factory means of reoption of signals, mot only at 11 it Mr.. but on up through the mirrowave ramge.

The simplest type of v ,h.f. reacover is the superregenerator, long favored in atmatemr work. It atfords good sonsitivity with few
tubes and elementary ricuits. Its disadyantages are lack of selectivity and, if the oseillating detertor is roupled to an antemata a tendeney to radiate a signal wheh may canse interfarence to other receivers. To some extent the lack of selectivity is adramtagrous, since it makes for easy tminge and permits reception of all signals within its luning range. however unstable they may be. To redure radiation, a superrequarative dotector shombl be preereded hey an s.f. stage or, if the deleetor is coupled directly to the antemnas. it should be operated at the lowest plate voltage which will permit superren meration.

From a practiral aspert. superegenerative receivers may be diviled into two general types. In the first the quending whate is developed by the derector tube fumetioning as at "sadf-quencerad" oscillator. In the secomb, a separate oscillator tube is wed to semerate the quench voltage. Solf-quenched sumerregenemators have foumd wide favor in amatemr work. The simpler types are particularly sulted for portable equipment. which must be kept as simple as posibible. Many amateurs have "po" cirecuits clamed to besuperior to atl allares. but the probability is that the ammanment of a partienlar circuit has led to comeret operating conditions. Time spent in minor aljustments. will result in a smooth-working receiver.

(1) A $\mathbf{1 4} / \mathbf{2 3 5}$-Mc. Superregenerator

The recoiver in Figs. 1501, 1502 and 150:3 affords excellemt romsitivity on beth 1.41 and 235 Ne. For the amaterur wha wishes to experiment on these bands, it will provide satisfartory reception at minimum expense. The
 gencrative detector, followed by two stages of audio amplification.

The reweiver is built on a $7 \times 7 \times 2$-ium chassis. The tuning eondenser is mounted on a metal bracket. cut in the shape of a U to
clear the stator connections. The dial is conneeted to the condenser by a flexible bakelite coupling.

The improvised socket for the plug-in coils utilize's contacts obtained from an Amphenol miniat ure-type tube socket, by the process of squeczing the socket in a vise until the bakelite cracks. One contact is soldcred to each of the tuning-condenser comedions and a thind to a lug supported by one of the extra holes in the Isolantite base of the comblenser. The contarts must all be plated at exachly the same heright. so that the plus-in coil will sat proproly. The batd-xet comdenser, C_{2}, is mounted by soldering short strips of wire between the lugs and the tuming-rondenser terminals.

The polystyrene tube socket for the 9002 is momuted on a metal bracket, placed near the tuming combenser so as to allow a very short lead from the condenser to the plate terminal and just enough room betwern the rotor conneetion and the grid torminal for the gride condenser. Heator and cathode leads are brought through the chassis in a rubber grommet.

The variable antemat compling coil, L_{1}, is mountod on a polystyene rod supported by a shaft beang. The rod is preemed from moving axially in the bearing by ermenting a fiber washer to the shaft and tightening the knob on the other side. The amema coupling loop shoulal bo adju-ted so that. When rotated, it will just clear the coile plugred into the soeket.

The coils ate monumed on smadl strips of $1 / 8$ inch polysiyrene (allaen (Quart \%()) which have three small holes drilled in them corresponding examtly with the eoil somete. Lath enil is cemented to the strip with Dued cement at the point: where the wire passes through the base. The No. Is wire med for the coils will fit smogy in the sockets if the contats are pinched slightly. The abils are trimmed to fit the hams by spreating on squeroing the turns shahtly. The miratrimmer hath-set condenser

Fip. 1501 - I.oft - The panel of the twohand mperemencrative receiver measures $\overline{\text { a }}$ inches square. The knob in
 Right-A rear view of the two-hand superregenerative receiver. The 235-Mc. plug-in coil is in the foregreund.

Fig. 1502 - Wiring diagram of the superregenerative receiver for 144 and 235 Mc.
$\mathrm{C}_{1}-5-\mu \mu \mathrm{fd}$. midget variable (National UM-
15, 4 plates removed).
$\mathrm{C}_{2}-3-30-\mu \mu \mathrm{fd}$. mica trimiaer.
C_{3} - $50-\mu \mu \mathrm{fl}$. mica.
$\mathrm{C}_{4}-0.0033 \cdot \mu \mathrm{fd}$, mica.
$\mathrm{C}_{5}, \mathrm{C}_{7}-10-\mu \mathrm{fd}$. 25 -volt electrolytic: $\mathrm{C}_{6}-0.01-\mu \mathrm{fd} .400-$ volt paper.
$\mathrm{R}_{1}-10$ megohms, $1 / 2$ watt.
\mathbf{R}_{2} - 50,000 -ohm wire-wound variable.
$R_{3}, R_{5}, \mathrm{R}_{\mathrm{E}}, \mathrm{l}_{7}-0.1$ megohm, $1 / 2$ watt.
\mathbf{R}_{4} - 2200 ohms, $1 / 2$ watt.
$\mathrm{R}_{8}-470$ ohms, 1 watt.
L_{1} - 1 turn No. 14 e., 3 - -ineh inside diameter.
$\mathrm{L}_{2}-144$ Mc.: 3 turne Jo. 18 e.. $1 / 2$ ineh diameter, spaced over $1 / 4$ inch. Tapper $11 / 4$ turns from plate end.
235 Mc.: 2 turns No. 18 e., $1 / 4$-inch diameter, spaced over $1 / 2$ inch. Tapped at center of coil.
J-Closed-cirenit jack.
$\mathrm{RF}_{\mathrm{C}}-25$ turns No. 24 d.c.c., elose-wound, $1 / 4$-inch diameter.
RFC2-8-mh. r.f. choke.
S-S.p.s.t. toggle switch.
T - Plate-to-grid interstage audio transformer (Thordarson T-57A36).
gives some further range of adjustment. In the receiver as described, it is screwed down fairly tightly for the 144-Mc. band and loosened about four revolutions for 235 Mc . In the absence of good marker stations, an absorption frequency meter or a Lecher wire system (described in Chapter Nineteen) may be used for spotting the band limits.

Two factors which will be found to influence sensitivity are the value of C_{4} and the degree of antenna coupling. Values of C_{4} from 0.001 to $0.00 .47 \mu \mathrm{fd}$. should be tried. The antenna coupling will vary greatly with the setting of L_{1} and the type of antenna used; it is well worth while to tune the antenna circuit and then vary the coupling with the panel control.

Fig. 1503 - Left - A close-up view of the tuning assembly, showing how the leads from the tuning condenser to the tube socket have been kept short and how the coil socket is mounted on the tuning condenser. Hidden by the grid condenser (the $50-\mu \mu \mathrm{fd}$. condenser so prominent in the picture), the plate terminal of the tube socket goes to a lug which has been added to the stator of the tuning condenser. Right - The arrangement of parts under the chassis may be seen in this photograph. The 6 J 5 socket is at the left and the 6 F 6 socket is at the right, near the speaker terminals. The $8-\mathrm{mh}$. r.f. choke, seen just under the regeneration control at the top center, is supported by tie-strips.

Chapter Fifteen

Fis. 1.50 .1 - Front view of the 111 Ms. 1.r.f. receiver 'The painter kmolb abos. the vernier dial tume ther rif
 (lower riaht) and Aletertar phate-voltare variationt. (Dut-
 inthes.
 than lower contling. The roupling a:m be inreasend almes mp to the point where the de-
 exapp increaseal rantiation.

In aldide vidume rontrol embld be iacialled
 In 1 hu wiginal madel of this rementer. the value

 (0) med and partioulat fequirements.
 work equatly woll. Stokel sommerlions ato

(T T.R.F. Superregenerative Receiver

 miniature tulas thenghout and is intembed for

 owera straght superverneralive deterotor. affords frecelomt irom athemat difors, ambmost important of all movente radialion

 mohile work and thr bow-priowl miniaturn

 patie conplinge chake. J.a and thar coupliner con-

 Wrether al the corners with mathitu serews and

 oscillation in the r.f. stagn and raliation from

 eomparthont-. for elimination of radiation. Miniatmre
 current comsumption.

tha deterpot. compholely-sparate compartments are usill for theref. and deterotor stages. These comparmonts comsist of ielemacal boxes that thestatre $1^{\prime \prime}$ s inches rutare and 3 inehos Loms. The thbe suckite ate momber on the end plates. amb all of the contmereme to the somets are made before the boxes awe completely as
 throurh 1 wo Millon 32.50 bushimg in the watls of the two shidd eompartments. This intorconnortion, the only whe oxerpt bor the pown
 from the eombunar and moil thenghth the bush-
 after the lwo untits are momated on the front patul.

 detted lineo.
 serevt

G10. 6 iz- 0.1 -uld piner.

Re. R.- R - 10.1 mexthm. ${ }^{1}$ watt.

 lurne of laz al moldend.

 R.f. comphang tap. It from urid ant.

RFG: - Sentort

 regeneration so that the requaration (whten).
 1tt-Mte hamal.

The two r.f. elooke $R F f^{\prime}$, are homemade
affairs wound on 1-wat IRC composition resixtors - 0.22 mexohm or higher - the insulated type that is 'i inch in diameter and $21 / 32$ inch long. The ends :are mothed with a sanall fite or satw. Wresent the ends of the

Fig. 1. 明 (
 to show detail- "Finp. bath, and risht side may be removed from rither asombly, prosiding accessibility despite compart desiwn.

Fig. 1508 - Bottom view, showing audio. component arrangement.
coil wire from slipping after they have been soldered to the pigtail leads of the resistor, and then a single layer of No. 30 d.s.c. is wound on for a length of $17 / 32$ inch. No lacquer or dope should be used on the winding because of the increased distributed capacity that will result.

When the receiver is completely wired the first nove should be to chere detector operation. With the $6.1 K 5$ in its socket, but with no plate or screen voltage applied to it, apply the plate voltage to the detector and cheek for the customary hiss. Try the regeneration control, R_{10}, to determine whether the detector goes in and out of superregeneration smoothly. Some variation in values of R_{3}, R_{4} and f_{6} may be necessary to attain this end, and some 6Cts work better than others in this respeet.

Next, the tuning range should be checked hy means of Lecher wires or an absorption-type wavemeter. With the values qiven, 144 Ne. should fall at about 80 on the dial. with 148 Mc . at around 60 . The position of the r.f. coupling tap on L_{3} will have considerable effect on the resonant frequency of the combination. Its position is not eritical, exeept for its effect on the tuning range of the detector circuit, but the spacing of the turns in the coil will have to be changed if the position of the tap is materially different from that wiven.

When the detector is foumd to be in the band, the ref. stage may be put into operation. With any of the shields removed, or with no antonna connected, the 6AN5 will probably oscillate, blocking the detector, but this effeet will disappear when the two compartments are completely assembled and an antenna at tached by means of the coaxial connector. If the r.f. stage is operating properly there will be slight change in the charactor of the hiss when the stage is tuned through resonance. Using a signal genorator (the harmonic of any oscillator which falls in the $14+$-Mc. band will (lo) or the signal of a 144-.11c, station, there will be a pronounced drop in barkground noise and a slight change in dial setting of the detector when the r.f. stage is tuned "on the nose." Once the r.f. tuning is adjusted for maximum response, preferably on a woak signal near the midetle of the band, it may be left at that setting for all except the very weakest signals at either end.

Fig. 1509 - The four-tube $111 . \mathrm{Mc}$. superheterodyne, dresed up in a modern cahinet. The targe dial is oseillator tuning, and the small dial is for mixer tuning. The two knobs control regeneration (right) and volume (left).

Power-supply filtering and regulation are important factors in attaining smooth and efficient performance with superregenerative detectors. The power plug mounted on the back of the chassis provides a separate connection (P 'in 5) for the detector and r.f. +B , in order that this may be drawn from a regulated source, such as a VR-150. The other pin marked " +13 " (lin 4) supplies the audio tubers, and the voltage used here need not be regulated. If " B " batteries are used - and they are highly recommended for mobile operation - Pins 4 and 5 may be connceted together in the power sucket on the cable. The use of " 13 " batteries in mobile work will result in better sensitivity and more guiet operation than will be available with any sort of mobile power supply, vibrator or dynamotor, and the drain from the car battery will be negligible during receiving perions. A set of mediumbsize " 13 " batteries (135 volts is sufficient for good 'speaker volume) will last through a year or more of normal operation. When batteries are used, the on-off switeh, ${\underset{N}{2}}^{-N_{3}}$, should be thrown to the "off" position when the receiver is not in use, otherwise there will be a small continuous drain on the batteries through the $R_{10}-R_{11}$ bleeder.

(I) 144-Mc. Superregenerative Super-heterodyne Receiver

A superheterorlyne, using a superregenerative seeond detector is shown in Figs. 1509, 1510, 1511 and 1512. A 656 miniature twin triode is used as local oscillator and mixer, and its high transcomductance ($5300 \mu \mathrm{mhos}$) and small size make for good performance in the 2 -meter band. The suporregenerative second detector is a triodo-connerted $6 \mathrm{~V}^{2} 6$ working at 33 Me., and this is followed by a 6.J5 for headphones and a 6 Ft for lomdspeaker operation. The wiring diagram, Fig. 1510, shows no coupling condenser between the oscillator and mixer because stray coupling between grid pins at the sucket gives alequate injection to the grid-leak biased mixer. A small coil, L_{4}, is used in the plate rircuit of the mixer to resonate in series with ('s to the sighal frequency, and the resistor, R_{13}, is included to mate this resonance a broad one. The condenser $f_{\text {a }}$ also tunes the primary, L_{5}, of the i.f. transformer. The i.f. trathiformer is adjustable only in the socondary circuit, since with just one stage there is no tuning requirement wher than that the primary and secondary be tuned to the same frequency. A switch, S_{1}, removes the
plate voltage from the second detector and following stages during transmission periods, but plate voltage is left on the oscillator (and mixer) to avoid (lrift. This is an unnecessary refinement, however, since the oscillator drift is considerably less than the bandwidth of the i.f. amplifier.

Inductive tuning of the oscillator circuit is used, by moving a copper vane which acts as a low-resistance shorted turn in the field of the coil. As the vane is moved into the field of the coil, the inductance is reduced. No current flow: through the insulated shaft supporting the vine, and consequently there is no "jumping" of frequency such as is caused by erratic contact to a condenser rotor

The mixer coil. L2. is wound on a National Ne-s0 form in which the iron slug has been replaced by a brass one from an AR-2 form. The coil is peaked for the center of the band the tuning is broad - and additional trimming is done with the antenna condenser, Ci. Threc antenna binding posts are available, so that either series or parallel tuning of L_{1} can be used.

The redeiver is designed to be mounted in a commercial-type $8 \times 10 \times 8$-inch cabinet. The panel, part of the standard cabinet, measures

Fig. 1510 - Wiring diagram of the 1.14. Me superheterodyne.
$\mathrm{C}_{1}-35-\mu \mu \mathrm{fd}$. variable (National LM-35).
C_{2} - $27-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{3}, \mathrm{C}_{5}-10-\mu$ fil ceramie.
$\mathrm{C}_{4}-10-\mu \mu \mathrm{fd}$. mira or ceramic.
$\mathrm{C}_{6}-470-\mu \mathrm{fol}$. mica.
$\mathrm{C}_{7}, \mathrm{C}_{9}-100-\mu \mu \mathrm{fd}$, mica.
$\mathrm{C}_{8}-4-20-\mu \mu \mathrm{fd}$ adjustable ceranic (Fric or Centralab).
$\mathrm{C}_{10}-0.0147$ - -ffl mica.
$\mathrm{C}_{11}-0.01 \% \mathrm{fII}$. 400 -volt paper.
$\mathrm{C}_{12}, \mathrm{C}_{14}-25-\mu \mathrm{fd} .25$-volt electrolytio.
C_{13} - $0.1-\mu \mathrm{fl}$. 40 o ovolt paper.
$\mathrm{C}_{15}-4 . \overline{\mathrm{T}}-\mu \mathrm{ffl}$. ceramic.
$h_{1}-1.8$ megohms, $1 / 2$ watt.
H_{2} - 8200 ohmes, $1 / 2$ watl.
R_{3} - 1000 olums, $1 / 2$ watt.
$\mathrm{K}_{4}-10$ megohms, $1 / 2$ watt.
$R_{s}-68,000$ chme, 12 watt.
$R_{6}-50,000$ oblim 2-watt potentioneter, preferabl? wire-wommd.
$\mathrm{R}_{7}-47,000$ chms, 1 watt.
$R_{8}-0.5-n e h_{s} h m$ volume control.
$\mathrm{R}_{9}-2500$ ohms, 12 watt.
R_{10}, R_{11} - 0.1 nerolim, $1 / 2$ watt.
R_{12} - $4: 0$ ohms, 1 watt.
$\mathrm{R}_{13}-1000$ chms, 1 watt ($1 / 4-\mathrm{incl} \mathrm{d}_{1}$ diam.).

L_{2} - 4 turns No. 18 enam. wound on Vational XR- 50 form and spaced to orcupy $1 / 2$ inch.
$\mathrm{L}_{3}-2$ turns No . 14 enam., 礼-inch i.d., spaced $2 \times$ wire diam.
$L_{4}-5$ turns No. 18 enam., spaced to occupy $3 / 8$ inch, wound on R_{13}.
L. 5 - 9 turns lo. 22 ، 'nam., close wound.
$\mathrm{L}_{6}-8$ turns No. 22 enam., close-womend, on same form as L_{5} and spared "is ineh from L.s.
J_{t} - Closed-circuit trlephone jark.
RFC 1 - 28 turns No. 30 d.e.c. closc-wound on 3 -ínch diam. form. Sice text.
RFC2-48 turns Xo, 22 enam, close-wound on $1 / 4$-inch diam. form. Serext.
RFC 3 - Onc pie from $4 \cdot$ pie 2.5 -mh. phoke. Ser text.
RFC4-80-mh. ironecore r.f. choke (Mcissner 19-6846).
S 1 -S.p.s.t. toggle switch.

 along the hatch, from le.ft torght, ate superregencative seenod detertor, audis and output.
8×8 inchers. The whasis was hent out of
 7 indes dewe. A 2^{1}-ituch lip is hont denon at the rear and at $13 / 4$-inch lip is formed at the front. The front bend is mate shorter to a void the lipat the buttom of the cabine . The chaceis is held to the pamel be the 1 wo perationmere: (regeneration and volame (ontrols) while at "tinch square dural bar bulted to the alye of

Bakelite someket. (Amphemod MIIP) are usad for the watal tubes and the miniature lube socket is ther ceramie whe made log Vils. A
 tube Inck. The soreket is monulad with lita toward the pand. Cational fiW bimding

 are hrought out to similar posts: at the rear of the chassis.
 for the osellator thaing vane shat is supportul at the pamed end ber the National . . . I dial ame at the other bes a panel hashing monterd in an ahminum brackel. 'Thu vame is mathe of a piece of thin copper soldered to a brass shat
compling. Aflor soldering the vane to the coupling. the eopper is rut roughly

 trimburel aplatar to give something or sumblagratraght-line forpuracy fun-

 -hateris on the bracket humishad wilh the conderase and at shat lowating in 1he fomt pathel rombert: to the cant densw throngh an extonsion shath and two flowihlo mapling.
lifre amd lifor are wound on 1 -

 the wime in plan , and the wires for the "hakes ate sumberd to the leads of the roxistor: I l-w:at si\% is used har

 pir imon a B.e-1nh f-pin r.i. choke on a l-musehm $1-1$:alt resi-lur similar to
 to remme the pine from the erembic firm on whicle they romm is to melt the metal from one end of the ehotie will : hot soduring iron and lhon foner a shatpion piek or mal down the hole in the renter of the ceramis form athil the (eramio splite 'The pins ratn then beremoved athd ome monnted on therexision with I uro rement.

Thar i.f. Irameformer is wornd on at

 in the form butwern the 1 wo wimdings. amd one
 froll for orne emal of the comblomen as well as: a
 rexi-bur lis. Inother hald in the form, below $L_{\mathrm{S}}^{\mathrm{a}}$ is used to suppert one end of $h_{\mathrm{s} \text { a }}$ and serve

In wintur the poreiver, it is commenioms 10 wirn the heator rimentite first. On the metal tubes. Pins 1 and 2 atre groumderl to lags fasmed mbler the surnes holding the somber to the rhas-ic. On the ministhme sorlant at jumper the sonket amb thenere to : lige mather one of the sorows fastoming the somed to the rhassis. on
 wiring the r.i. compon-nts on the mintature

 botwern Pin 2and the hinting pust supporting

Cherking of the reverion is best done bex starting at the outpal :and working toward the input. Connect heater voltage and high voltage
to wherk the superemencmbivedetere

 hion control shomald result in the fat miliar superementrative hiss. At this

 with hathe voltage on the mixar. Wilh the regonmation contmol omly slighle levond the point whore the hise
 point Whirh requires maximum andVallocing of h_{b} for mexilation. 'This

 Won't nesillalle at oum very shatp

 tuned slights. The former procedne is proferathe. 'Ther sellian of r 's where
 oul of wailation shmald tre qutue shatp-if it isnt, the septing isnot right. When the dotarem in waillating amd ('s is mot sel properly. it is quile likely that the hiow will alon romtain some unp lexsetht high-imeduener whisthes. The exat frepurane of the i.f. can be checked on a ratibmaterl eom-
 simen, hut at ferpuracy rhook is not essentiah. With the eanstants given the i.f, witl be around 3:3 Mr.

Knowing the i.i, makes it a bit astier to adjust the waillator porion of the fiJt. beq:ation an abserption waverneter we Lerlact wires ean be uaded to put the wextlatore on the right fro quener. If and knows the i.f. and hats some
 ovidlater can be adjusiod to siver a tuningr rahur from 143 We. mims tho i.f. In 149 Ne:
 sparing the durns of L_{z} and by moving h_{a} e vathe on the shatt. Moving the vane closir to the coil will increase the laminer range bul increatses the minimum frecquency a frifle, and vice wersat. If a calibrated 14-Mr. supermemerative mexiver or transmitter is asailahhe, it can be used as a simbal somere amd dhe wisilator maning range can be adjustod without knowing the i.f.

The mixer eoil ambantoma rompling ean be chocked be listening to a woak signal (whow: wakness is under your entrol, howerort, or 10 iguition moises, and it will be formed that hest sensilivity will be obtamed with fairly tight coupling.

(I) V.H.F. Converters

For the amateur who alroaty presessics a

 of tuning to cither is or 11 Mr.. there is no

 ment of bart

 coramic condenser can be sern $K F C$, the singleopie: r.f. choohe.
neressity for haibling a soparatie rib.f. re-

 armangenem is partiondarly sucoessial it the rerober hat contrellathle or broal-hand selact tivity 10 permil reerollien of the hess-stable sighals wh the highor-frexturney hambs.
 vertor shoulal be dexignod to dume io an i.f. of vither $\overline{5}$ of 10 Mr . the higher frofuener being proferate for uncralion on hames above

 input rimenit of the combunalalions rewiver, in much the stme mamber as link enopling is usid betworn sugere in a tramsumber. The r.f. athl mixer riments of the recerver must be.
 tramsiammer - 5 or 10 Ma . - which then becombs the first i.f. Thereather the receiver dial romains undourhed, all tuning being done with the combertar. Tha vollabe comtrol. however, will he the gatin contorel ont the reabiver inta which the cohvorter works. I comberter maty have it: nwon halt-in power supply, hat with
 filamont and plate voltages from the resedver with which the converter is to be used.

Fig. 1513- This two-tube 50-Mc. converter incorporates new mintature tuhes and ohtains its power from the contmanications reveiver with which it is used. The togyle switrh at the left ents the libament riomit whon the buit it not in use. 'llhe control at the lower rieht transfers the antenna from the converter to the reveiver for normal reception.
important, esperially when the converter is used in conjunction with a highly-selective commanirations rereiver. Thus quite satisfactory performathee can be obdained wathout the use of ath rif. amplitior stage. The new high-transeonductance miniature pern-
 as mixers. and a two-tube converter incorporating the fi. 1 馬 in ath appropriste circuil will give a degree of performance formurly obtainable only with more complex desigus. Such a converter is shown in Firss 151:31517. It was dexigned by lRichard W. I oughton. WINKla and was deseribed in detail in Qs'T for Jume. 1946. 'Though it was laid out partiondarly for use with

C. A Simple Two-Tube Converter for 50 Mc .

When a high intermediate frequency is used, image rejection is not a prohlem. and r.f. seLeetivity in the consorter is mot particularly
an HRO it may be used effertively with any eommunications receiver capable of tuning to 10.5 Mc.

As shown in the schematic diagram, Fig. 1514. the ascilator voltage is injereded at the sereen grid of the miser tube. 'lhe rouphing

Fig. 1514-Circuit diagram of the 50. Ve, comverter. $\mathrm{C}_{1}-15-\mu \mathrm{aff}$. fixed reramic. zere temp.enïf. (Fric \P(O).
$\mathrm{C}_{2}, \mathrm{C}_{5}-2$ ($1-\mu \mu \mathrm{fl}$. ceramic trimmer (Cemtralah : $: 20.1$).
$\mathrm{C}_{3}-11-\mu \mu \mathrm{fd}$. variahle (A ational LMA-10 with I stator plate removed).
C_{4} - $12-\mu \mu \mathrm{fd}$. lixed ceramic. zero temp-coll. (Eric NPOA.
C_{6} - $9-\mu \mu \mathrm{fd}$. variable (National IMA-10 with 1 stator and I rotor plate rathowd).

$\mathrm{C}_{10}, \mathrm{C}_{12}-47-\mu \mu \mathrm{fl}$. misa or ceramic.

R_{1} - GMOM whms, $1 / 2$ watt.
$\mathrm{l}_{2}-1 . \overline{\mathrm{I}}$ megolmes, $1 / \frac{2}{1}$ watt.
$183-0.47$ mequhm, $\frac{1 / 2}{}$ watt.
R_{4} - 0.1 mrgoh , 2 watt.
R_{5} - 2,000 ohms, 12 watt.
$R_{6}-10,100$ ohms. 1 watt.

$1_{1}-6.3$-valt pilot lamp.
S_{1} - 1 -pole double-throw switeh. praferably with ce-

$\mathrm{S}_{2}-\mathrm{S}_{\mathrm{p}} \mathrm{p} . \mathrm{s} . \mathrm{t}$. toggle.

V.J. $7 . R_{\text {eceivers }}$ 339

Fig. 1515 - The r.f. construction of the $50-\mathrm{Mc}$. converter is shown in this above chassis view. The 6 C 4 oseillator is at the left and 0.1 K 5 mixer at the right on the subchassis. The $10.5-\mathrm{Mc}$. i.f. out put coil is in the foreground. Flaxible wrond leads are shown connected to their binding posts in the position normally used for grounded antenna systems.
condenser, C_{9}, has sufficient capacitance to act as the 6AK5 screen by-pass condenser as well. The grid tank circuit, comprised of L_{2} in parallel with C_{1}, C_{2}, and C_{3}, resonates over the operating frequency range, 49.5 to 54.8 megacycles. C_{3} is ganged with the oscillator tuning condenser, C_{6}.

The oscillator operates over a range 10.5 Mc . higher than that of the mixer, and the miser plate vireuit is tuned to this intermediate frequency. With this i.f., the fifth harmonic of the receiver's local oscillator (10.955 $\times 5=54.775$ Mc.) appears just outside the high end of the tuning range, sufficiently far from the calibrated band so that it does not interfere with normal operation.

Tracking is easily accomplished over the frequency range under consideration because the percentage of frequency change is small. starting with two identical tuning condensers (National Type UMA-10), two plates are removed from the one used in the oscillator and one plate from the one in the miver. Sufficient fixed pardding caparitance, using a zero-tem-perature-coefficient ceramic for low over-all temperature drift, is added to give the required range. The coil forms used are provided with

Fig. 1517 - A bottom view of the converter. S_{1}, the antenna-transfer switeh, is at the lower left. low-impedance antenna leads should be twisted loverly as shown. The three adjusting serews for the iron-core inductances protrude from the chassis on either side of the power cord.

adjustable cores of high-frequency powdered iron, providing an easily-areossible inductance adjustment. Figs. 1515 and 1517 show the layout of the'se coils.

The wafer-type switch S_{1} provides a conveniont moans of chamoling either the converter output or a low-frequency antema into the antemna ferminats of the reeriber. When the converter is in use both low-frequency antenna torminats are switched to ground. thas minimizing direre recouver piek-up at the intermediate frepuence singh-wire or doublet antennas may he used at either high- or lowfrequency inputs.

When operating the receiver over its normal frequency range, the conserter filaments may be turned off by meath of switrh si.g. This funcfion also conld be accomplished liy means of an additional wafor on č.

I four-prone-to-four-prong adaptor, of the sort usod for making tule substitutions, is used

R. F.

Fis. I.ilf, Cioil data fur the $50-$ Me. converter.
on the power eord to conable both it and the receiver cood to be plugered into the Hla() power park simulatanonsly. With remetsers having intugral power packs a diftoront atrrangement womblat bre megnital. ome pasibility heing louse as similair phas adapter umber one of the pown tubes in the werover, picking up the "ls" wott:ge al the serern-mid! pin.

(1) A Crystal-Controlled Converter for 144 Mc.

While must romserners are nesel in the man-

 fregueney allel thang the converter over the

 oseillator in the combertar and tuning the reconver. This apprath is particularly adrantagrons: at 111 Me amb higher. where the arlectivity of the tumen arrolits is suth that mo
 whem the i.f. (in hiv ceace uxathy a bomathand
 ramge.

 a filk mixot, the erial cirout of which is
 The plate cirentit of the miver is the input cir-

Fig. 1518-Top vinw of the thre-tula 111. We. com writu-ing a lo-meter ort-tal, spare is prosided at the right of the miser for addition of an r.f. stage.

Fis. 1.51 - Shematic of the 3 -tulw 2 -meter converter.

(\therefore - $2.2-\mu \mu \mathrm{fid}$, coramic or mina.
Cin. C:22-17- μ fiti mi":a.
(.11-1010- μ миf . mica.

Cis - 1.i-pufle variahle. National CMA.15.

liz - 4.01 ohms. ${ }^{1}$ 亿 watt.

$11_{1}-1809$ ohmos 'swatt.
R:- 0.1 magolim. ${ }^{2}$ watt.
18 - $1: 00$ ghme. 1_{2} watt.

13. $-10 . \overline{5}$ misolm, $1 \underline{6}$ watt.

L_{1} - \R..il rail form. unkromed. 11 turns No. 29

 pareol dial of wire. renter-tapmod.

 her.
 arr faidy woll out from eonter of coil at resmance.

Tan, anpertenemerative reaiver, but it should
 of several abo-fim. recoivers whichare capable of thatige his ramer

The modn thown in Fiss. 1518,1519 and 1.500 is buil on a chas-is. of folled alumimm
 the chassis for aldition of an rif. stare. if de--ired. The firs half an the tiJti is a commentional

 a highorexitathe vollumeler across hiz. The boltage devolopud atomelis will be about 25 to 30 solts. The fo ('I dondiar provides about 10 wolte on the mixer srid helore lheret. inpur - irenit is comberod. With the inpur areati
 middle of the 2-metor batal the exeltation shlag. Mons lo aboul l voll, which is sufticient for gend consersion with the grid-he:k minerion shown. I very high-rexistance boltmeter should bre used for these maseurements. A 100)-microampere mever with a 0.5 megohm resistor in series is suitable.

 comvertar. Dotr the fixd-laned tanh dirmits mamated

 a ()ne-l'en receiver.

This type of eonverter. used in conimation
 will give a degren ol prriarmance on $1 / 11 \mathrm{Ma}$. roughly comparathe (o) that of the feecoiver
 nates amanst the poorer ondilator signals. hat anything whinh does but swing more thatn 200 ke . or so will be remoded with wot ghality. The aduled selowivity attorded by aldeh an arrangement will add greaty to the efferemeness of any : antion in a lonatity where hare is appreriatbla achivity on 1 tt Me.

C. Mobile Receiving Equipment for 2, 6 and 10 Meters

The high smativity noise rejerelim, and
 deteretor make it uselul in mubila apreation. 'The chate diftieullace inherent in this lype of reviver, breadncs of tuning and radiatton en an interforing signat, (an be w-
 beron in a : :

 "llu =pare atailable in at partionlar make of eat will influmere the borms lafor of the anits, but

 inge Whike the i.f.-atulion unit is -haperd 10 fil В
litule mend be satid atomu the i.f. mat, ats
 layout is relatively mamportant. Snly four

 coupled. this medhond having been used in

 quier queration when supermencrative dohecors are emplowed.

The inpul - tage of the unit shombl the well shichlal, not enly for provent meillation, but
 installod in : atar this is mot troundeomme, bat in bumb-station work, II-Xt. interforene rata
 humes.

 all similar. The foste are wombl of No. 29
 forms, the serombtry whating orempeing the

 - oromlars. 'Ith primary winting will thers -lick as it i= wommlon, abl holding it in plate will lar no problym. I -matll lat, of tape. or

Fig. 1: : Tl The therefonte combermer for 6 and 10 matare crommernd to the 11. Are. i.f. amblifier amb andia sy-t.m. The romurrier is monateol oll the tererine pox. while ther i,f mit i-d.e.
 partment thenting. The ohfore atwor the comertior dial is an arlintabic-lowam dial lixht.

Fig. 1.522 - Wiring diagram of the i.f. unit using a superregenerative scound detector and two audio stages.
$\mathrm{C}_{1}, \mathrm{C}_{5}$ - $17-\mu \mu \mathrm{fll}$. crramic.
$C_{2}, \mathrm{C}_{3}-4: 11-\mu \mu \mathrm{fl}$. mitget mica.
C.4, Cs - $100(0)-\mu \mathrm{fl}$. midyat mica.
$\mathrm{C}_{\mathrm{C}, \mathrm{C}} \mathrm{C}_{7}-0.0068-\mu \mathrm{fl}$. mica.
$\mathrm{C}_{9}, \mathrm{C}_{10}-5-\mu \mathrm{fif}$. $\mathbf{0}$-volt electrolytic.
C_{11} - $0 . \mathrm{l}-\mu \mathrm{ft}$. (60)-wiolt tubular.
K_{1} - e2.l ohms, cartom.
$\mathrm{H}_{2}-10,1000$-ahm potentiometer.
$\mathrm{R}_{3}-1000$ ohms.
$\mathrm{h}_{4}-4.7$ megohms.
$\mathrm{R}_{5}-50$, 1010 -ohm potentiometer.
$\mathrm{K}_{\mathrm{B}}-4 \mathrm{C}, 006$ ohmm, 1 watt.
$\mathrm{K}_{7}-0.2,5$-megolim potentioneter.
$\mathrm{K}_{8}-2200$ oh m .
$\mathrm{K}_{9}-0.22$ megohm.
$R_{10}-6810$ ohms.
All resisturs $1 / 2$-wate type untess otherwise indicated.
household cement, will suffice.
The three-tube convertur shown in Figs. 1521, 1525 , and 1526 eovers the $50-54-\mathrm{Mc}$ and 27-30-Mc. ranges by means of plug-in coils. Lsing the 11-Mc. intermediate frequency, it is pessible to cover the iwo bands with a common oseillator coil, the oseillator rumnine on the
 and on the high side for $27-30$ Mr. It is thas merely necessary to change the mixer and r.f.

$\mathrm{L}_{1}, \mathrm{l}_{2}-29$ turn- No. 92 enam.. plosewound on Vational XR 00 form. l'rimars: 3 turns No. 2,2 enam. chse-womal on layer Scoth'l'ape aver ground end of L_{1}.
Ch. - Midget filter or atudis choke.
J_{1} - Cansial surket (Iomes - 201).
J_{2} - Oetal socket on power rable.
J_{3} - 'Speaker or headphome jark.
$P_{1}-5$-prong phug for consorter powar, nounted on laack of chatswis.
P_{2} - Octal phag, mounted on bach of chamsis.
R1. $\mathrm{C}_{4}-2.5-\mathrm{mh}$. r.f. choohe (ational 1R-100).
RPGz-Onc "pie" from National R -1 10 , mounted on 1-watt rwi-tor.
131 C. $3-80$-mh. r.f. chokr.
St-S.p,wt. togrgle switch, hat handle type.

' T_{1}, T_{2} - Midget inturatage transformers.
coils when changing bands. Three tubes are used: a 6.1たらr.f. amplifier, a 6ANo mixer, and a (i) oscillator.

The converter lavont, shown in Fig. 1525, makes some sacrifices in arossibility for the sake of eompatmess; however be phaming the construct ion carefully. the builder shombl have no trouble in assembling of adjusting the converter. l'arts are mounted on an "L"-shatped aluminum chassis, with a cover of the same genemal wape, making a case whioh is 2 inches wide, 3 inches high, and $61 / 2$ inchos long.

Ontal sorkits for the plug-in coils (Milten $7-1001$ shiobded eore-tuned forms) are mounted along the top colge, with the corresponding tuhe sockets projeering from the right side. The oseillator compartment is at the front, nearest the dial - a "must" whon flexible couplings are used for ganging. The midile compartment houses the mixer-stage components,

Fig. 152,3 - Rear view of the I1.Mc. i.f.audin unit. The tubes marest the panel are the i.f. amplifier, left, and the superregenerative detector. The oetal plug on the back of the chase is is for the power callle, while the 5 prong plug connects through anothe: cable to the converter. The toggle switch is the B+ stand-by switch.

Fig. 1524-Bottom view of the i.f.-audio unit, showing arrangement of parts. At the upper right, in a par-tially-shiclded compartment, are the parts comprising the i.f.-amplifier input circuit. In the center are the detector áckat and naforiaterd parts. At the left and pear are the audio components.
including the roretuned i.f. output coupling transformer. Coupling between the oscillator and mixer is obtained by means of a piece of "push-back" wire which is soldered to
 the oscillator tuned circuit and then wrapped around the r.f.-plate or mixer-grid lead. The coupling should be set at the lowest value which will provide maximum signal strength. At the back is the r.f. section, which is provided with a coaxial input jack for antenna connection.

As this converter may be used with conventional i.f. systems, provision was made for incorporating a.v.e. Instead of grounding the grid returns from the r.f. and mixer tubes, these returns are brought out, through resistors R_{1} and R_{5}, to a separate pin on the power-cable socket. The eorresponding pin in the i.f. unit is connected to ground.

The oscillator circuit is high-C, for maximum stability, the capacity other than that of the

These are mica trimmers, to which some may raise the objection of instability, but the coil inductance is adjusted so that the trimmers tune nearly wide open, so that small changes in plate spacing have a negligible effect on the capacity. Tracking is made easy by the ad-justable-inductance feature of the coil forms used.

In putting the converter into operation it is best to start by establishing the tuning range of the oscillator, which may be ehecked with an absorption wavemeter or monitored by a receiver which is capable of tuning from 37 to 43 Mc . It is useful to have the receiver capable of tuning in the high end of the old f.m. band, so the oscillator may be made to hit 37 Mc . or variable condenser being supplied by a fixed ceramic padder, consisting of $20-\mu \mu \mathrm{fd}$. and 27 $\mu \mu \mathrm{fd}$. units in parallel with the tuning condenser, Adjustable padders are used on the miser and r.f. cireuits to facilitate tracking.

Fig. 1525 - Interior view of the 28- and 50Mc. converter, with cover removed. The mica trimmers are adjusted through small holes in the ehassia cover. The oseillator compartment is at the front (right). the mixer in the middle, and the r.f. amplifier at the left.

 bile comorrter for 2:- $6.54 \$ 10$.
Ci. A: R.f. and miner tuming comblenare (Vational

 duced to 1 stator and 4 roten platiw.
 mira.

(is - I- - μ lit cramis.
 lell.
$K_{1}, R_{5}-0.22$ menalım.

so at the haw-frequency eme of its range. If the inductance of the coil is propurly admeted, 43 Ale (oscillathe frefurner) will come at the high emd. Thas sivers a sproad of abode 70 divi-
 sions for 27 to 30 Mr . If mone spmad is dexired for the 10-motar bamd, a suparate asiollator coil for that hathd may be matde and additional padder raparitance built into the r.f. and mixar abils for 10 metrers.

Once the aseinattor is funing the dexired range, the mixar should be put into aperation. For lost puposise a lempurary primary may be womd on the mixer coil. using fwo of the spare pins on the eroil and sorker for bringing out the Joads themen. From here ond a signal gencrator which hanes the desimed fregueney ranges is usefial. hat it is not absolutely neressary. I signal from a VFo. or the harmonios of sumad ravials, ran be mate to sirwe the samb purpose. 'Ihe signal from the waillator in a commaniations peediver can be used also. The signat sumte should be fiod into the converter. be dired emmertion to the temponary primary, or by muans of a pick-ap antemat, and the ouphit of the eomserter fod inho a communic:ations recoiver lumed to 11 Mc. If the romberne is working there will be: :th :1p-
 voltage is applied to the mixer, amd this will increase at the mixer grid and plate cirenits are resunatad.

Tratking is accomplished in the usual way. exerept that mo suberoge of turns is requited for inductancu adjustment. With a signal mear the high end of the hand, adjust the trimmer,

 Primars mimilar ta

 flow-hound on \ational Xhe.̈r form. Compling wind-
 Is.

 wound lutw ren turn of l.

J_{2} - S-protis torhet on prower cable.
P_{1} - Consial plag (Jones I^{-201}).
$C_{\text {A }}$, for maximum signal or moss. Tume to neat the low end and reeherk the selting of \boldsymbol{e}^{\prime} a. If the trimmer (atpacily has to be increased, the coil indurdane is low : if the eaparity has to be decereased the imburtance is tom high. Adjust the coil inductance he moving the core (moving the eore into the coil increases the inductanere and repat the trimmer-sething procese until the hand can be tunced without any radigustment of r_{s}. Whan the miver is functioning propery the same procedure shomble to followed with the r.f. coil. It is well to note the perfonmane of the mixer alone, as this will serve to determine whether the r.f. stare is preforming as it should. There should bea noliceable increase in semsibiver when the r.f. slage is adeled, but if the mixer is fumeliont inge correelly it should be possible to wot quite gend performane with the mixer alone

It is well to make all eromerter aloustments With a commundations reoviour soring as the i.f.. as it is differult to oherrer minor changes when the sumpregenerative deterter is used, herathe of its stomer a.v.e. chatacteristices. The j.f. stiom should be praked at 11 Mre. with at signal mencrator, and then the convertar rommerteal to it for an wer-all eherek. The performater using the superemomerative i,f. unit will be sumewhat lower thatn that of the ronvernor-readiar erombination, but it should the pesible of cupy any signal on the mobile: s.l-up which is sulitly readathe when the enmmuniathons reworar is used for an i.f. systom.

The eirenit of the twotube 14t-3c. convertor, shown in Figs. $1527-1529$, is similar to the lower-frequency unit, except that the r.f.
stage is omitted for the salie of simplicity. Fion without the r.f. statge, proformance well above that of the befter sumeremention rewome is ohtainable "lha 2 -memer comberter

 the luned rimuits, athl onte the useitlator is 1 umel hev the cromier dial. The mixer tuming is powidol wita a foblo
 signal al I lif . We.. it c:an be lof in the *ame pusition for boht emds of the hathl with a nerligible sacrifiee in sellilivity.

From the s-hmmatr diagram. Fir. 162s. it mat he seren that the cirvuits of the convertus ate sombehat smitar exapet for the elimination of the ref. stage amd the use of at eatherte-1:thped coil in the werillatur wimpit of the 2motrer mit. The convertor was oriminally latid out usime a diJt push-push

 is contaned in a stambard $3 \times 1 \times$-imeh case. mixere but due to the dibliedty of obtaming satisfatory performance with this
 Tho "butterfly" tuning combener usid is a hangoror from the diJt ert-up - an ondinaty 'Trim-dire, with its statom satwed in hati, would do.

Ill the parts are momed on the front bamel. so that the complete unit ran be remone imon the case intart. Forrions af the folford-over edge of the case were samel out at sexural

 individual sulpande of molded atumimum. and most of the wiring can ler dome before thear assemblies are fastemed to the from patal. 'Thw
coaxial somer for the antemna emmertion is momated on a sparabr bracket, ame projects throurh a hole in the latrk of the case.
 in at matmer similat th that usal in the other eotworter. exerpt that as smaller eaparity must be used. otherwise theros-itlator will "pull wut" when the miser rirenit is tumed tor resonamer.
 the hat cond al the wseillathe thand eireuit. and the eroupling layd is run from this combenser to the mixer getid leat. By hemping the 1 wo faned rimedits claser mgether. it wemble be ummons:ary to provide athe ronthing other that that betwern the two coils.

$\mathrm{C}_{1}-3-30-\mu \mu \mathrm{fil}$. mical trinmor.

 (Millen 2003.).
 to Stathr and I rotor blate

(: $1:-\mu \mu \mathrm{fil}$. ©ramie.
(: $0-\mathrm{I}-$ - $_{\mu} \mathrm{fil}$. мramic.
(in- len- $\mu \mu$ fil. mita midget.
$K_{1}-10.01111$...lem-.
$\mathrm{R}_{2}-1.0$ megohm.
$k_{3}-2.0$ ohms.

 combill.
 diamelor. titpod I thän from cold cond.

D_{1} - Comaial plug (lomes I'e2(1).

The oscillator tuning condensers C_{3} and C_{4}, are similar mechanically. exerpt that one has a shaft to which is affixed the vernier dial, and the other a screwdriver adjustment. It is important that two similar condensers be used in this arrangement, where the two are mounted at right angles, in order that the stators and rotors line up for diecet comection without leads. With the eombensers and coil used here, the $1+4.1-\mathrm{Me}$. band covers about 50 divisions on the dial, permiting coworage up to 150) Me. This is useful, as eommereial signals are avalable in this range in many locations, and they are quite helpful in making receiver atjustneents and in judging the condition of the band.

To do a eompletely effertive job of mobile oporation reguias considerable attention to noise reduction. With this sort of receiver, the worst interference comes, not from the eares ignition system, but from the generator. The supertegenerative detector provides effertive silencing for noise pulses of short daration, such as ignition interlerence, but its inherent a.v.c. characteristics make it respond to a continuous noise such as the whine of the generator, to the exclusion of any weaker signal. It is for this reason that the use of " 13 " batteries for receiver phate supply is reommenderl. There is almost rerratin to be enourh noise from any vibrator or genorator pate supply to effert at least a slight reduction in the over-all sonsitivity of a receiver of this type.

Several types of reception aro possible through variation in the setting of the regeneration eontrol. With the plate voltage on the detector near maximum, the loudest "shush" and widest bamelwidthare obtained. This is the setting normally used for 14.1-Mc. reception. Backing of the regencration control reduces the hiss level and shargens the response, and best all-aroume reception on 2 s or 50 Me, is usually obtained in this position. Further reduction of the phate voltage results in a whistle being heard as carriers are tuned in, and quite satisfactory ew. reception is possible at this setting. From here down. the deteetor is operating in a condition in bewern superregeneration and straight regeneration for a considerable variation in the plate voltage. It goes into straight oscillat tion and then out of oreillation entirely as the voltage is redued nearly to zero. Reception of modulated signals is posible when the detector is operated in a manner similar to that used with regremerative detectors, and "hiss-less" recreption is possible at this point. Sensitivity is considerably

Fig, $1: 29-$ Back view of the 2. meter converter. Two similar condensers mounted at risht angles comprise the tuning a-sembly for the oscillator in the 2 -meter converter.
lower, however, giving striking proof of the value of superregeneration as a means of attaining high performance with a few tubes.

C. F.M. I.F. Amplifiers

As was pointed out earlicr in this chapter, an f.in. superheterodyne receiver differs from an a.m. receiver mainly in that the pass-band of the intermediate-frequency amplifier must be wider, and in that a limiter and discriminator are used insteat of a second detector. The front end of anf.m. receiver usually follows the conventimal pattern, and any v.h.f. converter can be used for the purpose if its output frequeney is that of the i.f. amplifier.

The f.m. i.f. amplifier emplored with the converter may be either the i.f. amplifier of a standard f.m. broadeast recciver or one built especially for the purpose by the amateur himiolf.

If the i.f. sistem of an f.m. broadeast receiver is used, the intermediate frequency should first be detormined so that the output of the converter can be designed 10 tune to this frequency and coupled to the grid of the mixer tube of the receiver. If the output transformer in an existing converter does not tune to the required frequencer, it is usually feasible to add or remove cmongh lurns from the enil to enable it to be tunced to the reeciver i.i. A change in the h.f. oscillator t.mang will also be required.

The use of an f.m. i.f. amplifier of this type, in conjunction with a suitahte converter, is highly recommemded for reccption of modu-lated-oseillator sighats such as are common on the $1+4$ - 1 e. and higher-fregtemey bands, If the rereived station holds down its modulation to the point where the sigual just fills the passband of the i.f. amplifier. best quality and signal-to-noise ratio will be obtained. Under these conditions weaker signads can be received more intelligithy that with the simpler types of receiving syonems. and one's receiving range can be extended considerably.

V.A.7. Jransmilters

Beminang with the rihf. region, freguency assignments are no longer in direct harmonic relationship. This fact, coupled with the neessity for extreme care in selection and arrangement of components for low cireuit capacitance and minimum lead inductance, makes it highly desirable to const ruct separate r.f. equipment for v.h.f. work, rather than attempt to adapt for v.h.f. use a transmitter designed for the lower frequencies.
Transmitter stathility requirements for 00 Me, are the same as for the lower-frequeney bands, and, by careful attention to component plarement, a rig may be mate to serve well on 50, 28, and even I 4 Mc., but incorporation of 50 Me. and higher in the usual "all-band" transmitter is not generally faasible.
At 144 Me and higher, no restrietions are imposed on transmitter stability, exeept that the whole cmission must be kept within the band limits. This permits the use of motu-lated-oscillator transmitters, and a large proportion of the stations now working on 144 Mc. and abowe mploy this simple and economical type of gear. By proper chosice of tubes and circuits, crystal control is appliwable to 144 Me. howerer, and the greatly-inervased oceupancy of the band in metropelitan areas makes stabilization of at least the higher-powered stations almost mandatory. if the full possibilitios of the band are to be realized. Crystal control, or its equivalent, may even be employed on 235 and 420 Me., but the use of these frequencies has not reached the point where stabilization is particularly important.

Throughout the v.h.f. and u.h.f. regions, frequency modulation as well as amplitude morlulation is permitted by the amateur regulations. The 300 -watt transmitter for 50 and 144 Me . described in this chapter makes provision for the use of f.m., and any erystal-controlled transmitter can be adapted for f.m. through the addition of a frequency-modulated uscillator to replace the crystal, in the manner described in Chapter Fourteen.

At 420 Mc . and higher, most standard transmitting tubes cannot be employed with any degree of success. Instead. special tubes designed for these frequencies must be cmployed. Such tubes have extremoly close olectrode spacing. to reduce transit-time effects, and are constructed with leads having virt ually no inductance. Several moneor-less-embentional triode tubes are now arailable which
will operate with fair efficiency up to abowe 500 Mc., and the disk-seal or "lighthouse" variety will function up to about 3000 Mc .

Above about 2000 Mc . the most useful types of tubes are the klystron and magnetron. These are exsentially one-band de vieres, the frequeneydetermining circuits being an integral part of the tube itself. Tuning over a small frequency range, such as an amateur band is possible, usually by warping the cavity employed, but the tubes are not indmendent of frequency in the conventional sense.

Practically all the recently-opened bands in the ultrahigh and superhigh regions have already seen some pionering activity, and they offer interesting possibilities to the experimen-tally-inclined.

C. A 40-Watt A.M.-F.M. 50-Mc. Transmitter

The transmitter shown in Figs. 1601-1603, inclusive, has an output of approximately 40 wats in the 50-Mc. band and is so designed that either frequency or amplitude modulation may be used. Aside from power supplies, no auxiliary apparatus is neceded for f.m. transmission, since the primary frequeney control is a variable-frequency oseillator and a ractance modulator is included in the unit. For amplitude modulation, a modulator having an audio power output of about 30 watt: is required.

As an alternative to cleetron-roupled VFO control, provision also is made for crystal control, using a Tri-tet oscillator. As shown in the circuit diagram, Fig. 1602, the erystal oscillator and e.c. oscillator have a common plate circuit, the frequency being doubled in this circuit in both cases. The oscillators are followed by a 616 doubler, and this in turn drives the final :mplifier, an 815.
The tunded circuits are designed to cower a little more than the range required for the 50-Mc. hand so that the transmitter as shown can be used to drive a power frequeney multiplier tripling into the $144-\mathrm{Mc}$. hand. The VFO grid circuit tunes from 12 to 13.5 Mc ., the range from 12.5 to 13.5 Mr . being used for the $50-\mathrm{Mc}$. band, and the range from 12 to 12.35 Me. being available for the $1+4-\mathrm{Mc}$. band. When crystal control is to be used, frequencies within the appropriate ranges should be seleeted, since the oscillator portion of the Tri-tet eircuit works over the same frequency range as the grid circuit of the VFO. Appropriate
eryatas in the S-Me mage may also to used,

The eommon ascillator-phato rimuil tunes
 fo to it Mr, Fither asillatom may be seleoted by means of a switeh, sis-iser. which cluses the cathode riereat of the desired osidtator. To provent any mosibility of aceidental lrequeney modulation when ampliturle modulation is heing used. a therepositionswitah is.emploged, givine a from1-pathel choice of revial or VFO control (for a.m. or (c.w.) and $V P()$ eontrol with f.m.

Slabilite under change in supply voltare is attained by supplying the V'lo seren fom a VR-150. This hobls the stren voltage at 150 When the plate porential is varied from lato to (iof) volts. The cathombe carment to the oxcillator, motsumed ia I_{2}, remains pratioally constant when the phate woltage in varied uver this
 only a faw humbed eycles. With variations in plate voltage which would mesuld liom eron the most serere line-voltage flamations. the frequeney shaft in the gacillator is only a few eycles.

Ohner sourers of VPO instability are excessive tube and component heating, variations in cireut capacity the to monrigid mechatheral dexign, and interaction lecemse of improprer placcoment of componemts. In this design, asidlator inpat is held bo lese than hati the rated pate discipalion of the tube. Keeping dritt because of heating (ora minimum. Alf cireuit componernts: are nomated below the chassis, atway from the heat given of hy the matal whes. and in such pasition as to provent interamion so far :us presibla without extemsive shiteding. A silvered-mica fixed comdenser is used in paralleld with the grid coil, and rigid components are used thremphout. The rexall of these precanfons is a VFO whose stability rompare fatorably with that of the assurciated reystal uscillator.

The transmitler is built on a $10 \times 17 \times 3$ inch chassis, with all components except tuhes, erestal and the final-stage output eireuit mounted below the derek. Viewing the unit from the lop front, the miderphone transformer and fisiat reactance modulator are at the right front. with the Vli-1.50 at the rear, andacent to the antemnat coupling ascombly. The arysal, rrysal oseillator, and lo are grouped matr the middle of the chassis, with the doubler and final tubes at the left.

The front pand is a standard 8^{3} 年 $\times 19$-inch
 ing dial is remtally placed, with the ose illator and domblar tming condensers at the left, and the a.m. /i, m. switeh amd deviation contod at the right. Fhe final plate taning linob is abowe the V'F() dial, at the left, and the swinging-link aljustment is al the right. Jacks, from left to right, art J_{4}, J_{3}, J_{2} and J_{1}.

The dwo wires protruting through the chassis elose of the slis are neatralizing "eomdensers," labeled ("xi and ('se on the sehematic diarram. Ther consist of two pieeres of No. 1 t entmeded wire soldered to the prid prongs of the vis surkel, erossed umber the ehassis, and brought thromeh the dhasis and held in pasition he two smatl Isolantite feed-through bushinge (Millan 32150).

Adjustment is simple and straight forwatd. The thang range of the $V \mathrm{VFO}^{\prime}$ should be cherked first. This may be done with only the two oscillator tubes in place, and the a.m./f.m. switch in the VFO position. The usillator plate eondenser should be tomed for maximum r.i. intimation in a neon bulb adjarent to 1.2 . and the frequencer ehereked in a reediver having a fably aceurale calibration for the region around 12, 24, or 4 S Me,

The size of the V]o grid mil, L_{1}, is extremely rritionl, and if some proning of this cril is 10 lue amoded it would the advisable 10 make the $\pi(0)-\mu \mu \mathrm{fl}$. section of (in an adjustabla

Fig. 1601 Fromt view of the
 tramsmitter. The r.i. -ection of the unit wroupia-the left-liand portion of thre rhissi* "Ihe IR-IVo, GS 1: reatemere motulatur. amb mierophone fran-former ara at the right, Dote. the mentralizinge -aparity wiremat lhe left of tha :313.

C_{2} - $0 .($ (W) $1-\mu$ fil. mi"a.
$\mathrm{C}_{3}-8-\mu \mathrm{fd}$. lin-volt electrolytie and 0.00. $\mathrm{p}-\mu \mathrm{fI}$. mica in parallel.

 mica.
 (Hammarlund APC.-AOM.
 (IItmmarland M6:-9)- W).
 (ap). sere text.
(:11-1(0)- $\mu \mu \mathrm{fd}$. misa.

(15 - $4-\mu \mu \mathrm{fl}$) mica.
 M(:1)-3.-11).

K_{2} - (os0 oham- 2 watt.
$\mathrm{K}_{3}-1 \mathbf{R}_{0}, 0161$ ohmes. 1 watt.

$\mathrm{K}_{7}, \mathrm{~K}_{9}-11.1$ menohm. 6 natt.
Rs. F 010 , ohme. $\overline{5}$ watta.
K_{10} - $2=20$ oftms. 1 watt.

$\mathrm{H}_{12}-15$, м月) ohms, 5 watts.
paddur combenser, such as a Itammarlund Al'C-50, which can then be adjusted umal 12 Mc. appears at ahout 90 on the VFO verniat dial. The high-frequency limit. 13.5 Ma., should then come at approximately 10. giving a spread of about 18 divisions for the 1 di-Ne. batal and $5 t$ divisioms for the solde. band. Without such a variable comblonser. the manber of turns on I_{1} must be adjustod by cut-and-try until the proper manar ramge is sedurad. In cither case, the fisal adjustment of hand roverage should be made wish the disid rouctance monlulator in its : : rekel so that its plato-to-ground apacity will be acrose the tuned circuit.

Operation of the mystal owiflator may next bo checked. With a 100-mat. moter eommerted

 from stominl atos.
$I_{2}-10$ turn* Do. 11 r.. 1, -inch diameter, spaced one diamelor. airowomad.
 dianteter. airowamod.

Ls - 3 turns each section, Va. 12. timmel, 1!s-inch diameter. -paced onte diametur.
 sereblobos and meve.
 diammer ferm (Dational l'Rlixas).
13_{1} - Vir-rophame hathery (Buareas).

J. I: J.
 18-1101.
 li-lon). ().

 *-1 1-83178).
' $\mathrm{I}_{2}-6.3$-volt tamp. filament transformer.
throush I_{2}, and the a.m. f.m. switch in the "crystal" position, aljust the erystal-watlator cablode tming. (\% mat the current dips
 should be set at the peritt which wives the low-
 starling. (Gataond ramront should be similar for buth wivillators - about 20 that.

The doublar stive mas mext be tenten by installing the dilo amel shis lubes. leaving the phate power uft the stio. A meter having : $10-$
 current in the slis. at, $/ /_{3}$. The current should come up th about 6 mat when the spacing betworn $L_{\text {a }}$ and L_{1} is optimmon, though this is more than is actually momed for satisfactory uperation of the Stis.

Fig. 1603.- I'nuler-rhatshas view of the $50-.11 \mathrm{c}$. a.m. $/ \mathrm{f} . \mathrm{m}$. trancmittor. It the luwer center are the VO grid conl and asswiated components. Over thene are the crystal and rathode rircuit for the 6:10;7 crestal owillator. At the upper risht are the imonetivolycompled doubior phate estil and linal grid coil. The esoil and condenser at the lower righat comprise the phate cirruit which is common to looth wacillators. The doubler plate inning combenser is at the far riflet.

Next, the position of the neutralizing wires can be adjusted. The 81.5 plate tuning comdenser, (20, shouhd be rotated slowly, meanwhile watehing the rrid current for any variation. The position of the neutralizing wines should be adjusted until there is no sign of fluctuation in erid eurrent as the tuning condenser is rotated. A length of wire extending about one inch above the menal ring on the 815, at a position about $1 / \mathrm{s}$ inch from the hhass envelope, should be sulficient. If this should be inaderuatue, small tabs of copper or brass can be soldared to the ends of the wires to make additional capacity to the tube phates. The neutralizing capacity is neerssary in order to ensure completely stable operation.

After neutralization, powor may be appliod to the 815 plates, while moting the cathode rurrent as indicated on a 200 -mate moter plugred into J_{4}. The dip at resonance should bring the current to about 50 mat with no load. A 25watt lamp comected acros the swingine link terminals should then give a full-brilliancy indieation when the link is adgusted for maximum coupling. This is with 500 volts applied, Which should be used only aftor it hats been determined that everything is functioning properly. If trouble is encountered, further tests should be made with reduced voltage to avoid damaging the tube.

When the 1 ransmitter is put on the air, the full 500 volts at 150 mat. may be used for f.m. or enw. operation. For plate morlulation, the voltage should be redued to about fot) for maximum tube life, aren though the tube plates may show no color at the higher voltage.

For frequency molulation, the 65.17 reactance modulator provides the simplest possible means of obtaining the desired swing in frequency. It may be operated with a singlebution microphone plurged into. I_{1}, or the modulator may be driven from a speed amphifier and erystal or dynamic microphone. The output of the speech amplifier should then be connected across potentiometer R_{1}, and T_{1} may
be omitted. In either case. R_{1} serves as a deviation control. the swing being adjusted to suit the recouver at the station being worked.

In addition to the filament transtormer, T_{2}, indicated in the rireuit diagram. the transmitter requires two plate power supplies. One, for the 815 , should have an output of 400 to 500 volts at 175 mat; the other, for the remaining tubses, shombl deliver 300 volts at approximately 100 milliamperes.

(1. 300-Watt Driver-Amplifier for 50 and 144 Mc .

A companion high-power driver-amplifier for the iob-Me transmititer described in the preceding section is shown in Figs. 1604 to 1607 , inclusive. The amplifier uses a pair of $35-\mathrm{PG}$ tuhes in push-pull while the driver, a frequency tripler used for $14+$ Me only, is a single 3 or-T $($. If oproation on 144 Me . is not desired the driver may be omitted, in which case everything to the left of terminals $B-B$ in the cireuit diagram, Fig. l606, may be ignored.
looking at the front-panel viow, the two large dials are the plate tuning controls for both stanes. The small dial at the left controls the swinging link, the center dial is the grid tuning control for the final stage, and the one at the far right is the tripher grid tuning eomtrol. All parts are mounted well back from the pancl, and Lucite rods are used for extension shafts.

The rear view shows the reneral plament of parts. At the left, attached to the back of the $7 \times 17 \times 3$-inch chassis, is the jack har conttining terminals $A-A$ and $C^{\circ}-C^{\prime}$, into which the link from the exciter is plugged to furnish drive for cither the tripler or finai. The tripler grid eoil. L_{1}, is just ahove the link socket, with the plate comdenser, C_{5}, and coil, L_{2}, for this slage between the tube and the front panel. The link between L_{3} and L_{2} is a plug-in affair, and its socket (which is a meehanical mounting only) is between the tripler plate and final grid condensers. Between the grid tuning condenser and the final tubes are the ganged neutralizing

Fig. 1604 - Front view of the 300 .watt driver-amplifier for 50 and 141 Mc, The two larpe dials are the plate tuning controls. The small dial at the left adjusts the position of the output coupling link, the center lial is the yrid tuning ewntand far the firal, and the third small dial is the tripler-grid tunimes control. Acrose the lower venter are the filament switches and gridecurrent meter jack.

condensers. These are triphe-spaned midget condenisers monnted back-to-hack with coupled shafts. The final tank condenser is mounted as closely as possible to the two tubes, at the right. The jack har for the final plate coil and the home made swinging link assombly are at the far right. All compoments are mounted as close together as possible: without beiner so crowded that tubes cannot be removed from the sockets.

When the amplifier is to be used on 50 Me. the switch x_{1} is left open so that the filament of the tripler will not light when x_{2} is closed. The link from the exciter is phared into terminals ('-r' in the jack har, which is a Millen Type 4020.5 coil socket. The output of the exriter is thas eonnected to the link terminals on the final gridecoil socket. L_{3}, which is a National Type X S 3 -16. The plug-in link is left out of its socket. B-I, which is a Millen Type 33002 crystal socket mounted on a small cone stand-off.

For operation on 141 Me., switch S_{1} is rlosed, lighting the filament of the triphor tube. The exciter link is inserted at torminals $A-A$ on the link jack bar, coupling the exciter to the tripler grid coil, L_{-1}. The plug-in link whim transfers the enorgy from L_{2} to L_{2} is insirgled in its socket, and $144-\mathrm{Me}$. coils are inserted in the sockets for L_{3} and L_{1}.

In order to eliminate the stray capacitame and inductance usually encountered in any
plug-in base, the $1+4-$ Mr. coils for L_{3} and L_{4} are made to phus directly into their respective sockets. The grid coil, beine of No. 12 wire. fits the socket contacts; the plate coil is fitted with pins removed from an old tube base or plug-in coil form. For the satme reason, the plug-in link terminals on the L_{3} coil socket are not used for 141 Me .

The final-stage plate tank condenser is made from a Cardwell dual noutralizing condenser, which originally had an insulated flexible coupling between the t wo rotor sections. This was removed and a section of 1 -inch brass rod. tapped for fore therat, was inserted in its phace. A piere of $\frac{1}{8}$-inch thack Lucite was fitted to the bottom of the condenser assembly and serves as a monuming hase. 'Ther result is a splitstator condenser which has sufficiently wide spacing to eliminate the danger of flashover. yet is extrenuly compact.

There is really no neressity for atug-in coil at L_{1}, inasmurh as it is never changed, but it was employed to permit the use of a standard commereial anit. 'lwo turns were removed from one cond. making it resomtially :an endlinked coil. The same type of cosil (National AR-16. 10-C) assembly is usod for the 50-Mc. coil for $L_{\text {as }}$. One turn was remorod from cach cend in this cuse a conter-linked assembly being needed at this point.

Motors should be provided for rowling the tripler plate final srid. and final piate currents,

Fig. 1605 - Hear view of the s.h.f. amplifier unit with lifl. Mc. coil. in parre. $1 / 1$ romponents are grouped for minimum lead longeti. l.urite rods are uxed for extension shafts on all tuning comtrols. Note the plar-in link bet ween the tripler plate coil and the final arid circuit. Flexille links, for the final urid- and output coupling rircuits, are low-loss 300 -ohm line (Amphenol 21-050).

(\%) (
(:- - 15-11F-1.- 1.

 101). Se tev.

 long. S.torn and limh Natmal AR-16, LO.C. with (wo tura- remes.ed from ome cond).

 wail lade plus dirertl? into eroket.
as indicalled in the circuit diagram, althourh
 The fack on the from bathel is for a metar low meaturing the bipher erid corrent, and is normally usad maly during initial thang opera10.n!s.

terminale $r^{\circ} C^{\prime}$ on the jack bar, and the 50-Me. coils insermen at I_{03} and I_{4}. With power on the exciare hat no plate volater on the amplifier. rutate ${ }^{\prime}$ ' for matimmm grid curvont. Sot the nout ralizing combonsers at maximum capacity and mate Cis. If the final-stare plate cireuit is capable of beine tumed lo mesmather there will la a promomod dip in the spial rurent.

The neutmizing romblensers. (:10 and Cus. Shoulal then be aljusiod a -mall amount at at timu umbil thedipin grial curront disapporas. Power mas
 if arervhlithe is in oreler. the dip int Hati rament at reablatioe shomlat bing the phate curvent down to less
 driser-amplifior. Separate filament tran-forme
 tuthe swhel and the two filament rif. Aluchera we at the riglat.

 following exceptom-:

 3-turn contor link. \atienal \li-fto. In.C. with 1 turn momoved from cath and.)
 tapped, couphed imblactively to has.
than io ma. The amplifier may be loaded up to nearly 300 mat., at at plate voltage of 1.500 an input of 125 watts or more - before the phates of the 35-T is show more than their normal bright-oramge color.

Next, 1 ripher operation should he eheceme. With the exciter on tis Me and the limk insorted in the terminals $1-4$, adyust ('iformaximum mrid entent. 'This should be around 20 mat. When mo plate voltare is applied to the fripler. For intitial tex -7.50 volts is sulfioment the maximum voltate shambl not be used until everybling is in order. Apply the plate voltage and tume ("s for resontane, which shouht oceur hear minimum cap:u-ity.

When is has herom detormimed that the ont put is actually the thind hammore or Itt Ma ... insint the phar-in link at l l- l; and the coils for
 rherking the fimal stage as outlined atome lon SO Mre some chathere in the sething of the nerutralizing contrasers maty be required for complote moutalization at $14 t$ Ma. (lhw seltime for this hand is much more reitio:al thent for

50 Me) , but the adjust ment for $1+t$ will usually be foumd to besatistatory for the lower fropuconey as well.

Trests on 14t Dre. should be conducted at a lower voluage than is used for $\overline{3} 0$ De ('p) 00000 volts masy be used at the lower frequencer after evervoliner is tumed up, but whin the : volts is the recommended maximmo. Tuming olverations should be condueted at not more thath 1000 wolte. I load should la kepl comperl to the fimal wage when high voltarew are wode whorwise the direnit losese al this frembency will canse sultement tank-rimuit heating io melt soldered abllombims.

Cirent losine natie the dip it piale carrent high about 100 mat. at 1000 vollz) at 1.14 Dac., but har resonance dip is not atrue indieation of pertomabure. Lamp loads, bon, are unceliable at hlis fremuetery. The hest fext is the colot of the labe plates. If the color does not indicate groater hat that is shown when 150 watte input is run with mexemation, then there is ho cance to wory about harming the tubses.

4. Alternate Tripler Stage Using an 829

A mone dficient tripher stare, for use in driving the amplifier on lyt Me.. is shown in Fior. lews. It maty le used in place of the 3-T-T(; dripher shown in Fig. 160 f , or as a soures of ceritation for any $11+$ - Me amplifire in the moldum-poner clase. It amploys an 829 or E2:-13. aml trise mant of the components of the
 to the amplifer stage is oblainem with direct indurtive compling of l_{g} and L_{3}. dispensing with the plaw-in liak shown in lige. 1606.

By driving the triphrestage vory hard it is made ha operate at gnite gond aticioney, the output, with bito volts on the plates, being
 athout 10 mas. through the so.000-ohm grid resistor. At 120-mat plate courent, the ses triplor will provide a sattiflite ory amount of Erid drive for the phoh-pull 3.5 TY: final stage.
fia. lorm - Ruiar viow

 lar ia at the ionster of the rhat-aia. with the two from
 raglet. 'I'lie dinal witaer in

 mit sulmtitation al att alternallotariaderatmont. Vote
 leotuent the triplior-plate antil fital-grid tash -

Fig. 1610 - Circuit diagram of the 144 Me. erystal-controlled transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-4.7$ - $\mu \mathrm{fd}$. ceramic, 500 volts.
$C_{3}, C_{4}-100-\mu \mu \mathrm{fd}$. mica, 500 volts.
$\mathrm{C}_{5}, \mathrm{C}_{9}, \mathrm{C}_{13}, \mathrm{C}_{15}-0.001-\mu \mathrm{fd}$. mica, 500 volts.
$\mathrm{C}_{6}, \mathrm{C}_{10}-50-\mu \mathrm{fil}$. -per-section variable (Xational STD.50).
$\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{11}, \mathrm{C}_{12}-220-\mu \mu \mathrm{fd}$. mica, 500 volts.
$\mathrm{C}_{44}, \mathrm{C}_{10}$ - $10-\mu \mu \mathrm{fd}$. variable (National CMA-10; See text).
$R_{1}, R_{2}-0.22$ megohm, $1 / 2$ watt.
$\mathrm{K}_{3}-15,000$ ohms, 2 watis.
$\mathrm{M}_{4}, \mathrm{Rs}_{\mathrm{s}}, \mathrm{R}_{12}-220$ olms, 2 wat ts.
$\mathrm{H}_{5}, \mathrm{~K}_{6}, \mathrm{~N}_{9}, \mathrm{H}_{10}-0.1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{\mathrm{r}}-33,000$ ohns, 2 watts.
$R_{11}-10,000$ to 20,000 ohms, 4 watt:.
$\mathrm{R}_{23}-4500$ ohms, I watt.
$\mathrm{R}_{11}-5000$ olims, 5 watts.
$\mathrm{R}_{15}-0.1$ megolim, 2 wats.
$\mathrm{h}_{10}-50(0)$ to 10,000 otuns, 5 or 10 wat1s.
R_{17} - Resistiance equal to grid. meter resistance, if $0-10$ milliammeter is used.
$\mathrm{L}_{1}, \mathrm{~L}_{2}-750 \mu \mathrm{~h}_{1}$. (Sce text).
$\mathrm{L}_{3}-20$ turns No. 22 on 3/2-inch dia. form (National Xis..n0), close-wound, center-tapped.
$\mathrm{L}_{4}-7$ turns No. 16 on $\frac{1 / 2 \text {-inch dia. }}{}$ form, length $5 / 8$ inch, centertapred.
Ls, Is - Sec lígs. 1612 and 1613.
I. 6 - Sectext.

Ls - See text.
MA $A_{1}-0.10$ milliammeter (0.20 ma . may be usell, in which casc h_{17} is not required).
$\mathrm{MA}_{2}-0.300$ milliammeter.
1RFC- 40 turns No. 26 close-wound on $1 / 4$-inch dia. furm.
S_{1} - D.p.d.t. togyle switeh.
$S_{2}-$ S.p.s.t. toggle switch.

(1) A 100-Wat 144-Mc. Transmitter

A crystal-controlled transmitter for 144 Mc. need not be especially complicated, particularly if the rig is designed for one-band operation. Figs. 1609-161.t show a simple easilyconstructed transmitter which is capable of delivering up to 100 watts of power at 144 Me., with only slightly more apparatus than would be required for similar output on a lower frequence. It was designed by Calvin F. Hadlock, W1CTW.

The oscillator stage uses two 6AG7s in push-pull, with a crystal in the range between 5.33 and 5.48 Mc. The plate eircuit is tuned to the third harmonic of the erystal frequeney, driving a pair of 6 LGC is operating as frequency triplers. This stage, in turn, drives an 815 tripler, the output of which is on 144 Mc. The final stage maty be either an $\$ 15$ or an $\$ 29$, and examples of construction are shown for both tubes. Output and efficiency will be considerabiy higher with the 829, and it is somewhat more stable in operation and casier to drive.

By making provision for more than adequate driving power, capacity coupling is permitted
in the exeiter stages, and a nonresonant grid circuit can be used in the final stage, which makes for completely stable operation without neutralization. Similar tank cireuits of novel design (wee Figs. 1612 and 1613) are used in the two 144 -Mc. plate circuits. The grid circuit of the final stage consists of an untuned "U"shaped loop which is tightly coupled to the plate cireuit of the 815 tripler stage. As the resonant frequeney of this grid circuit is much higher than $14 t$ Ne., there is no tendency to oscillation.

The coil and condenser values for the crys-tal-oscillator grid circuit are not particularly critical, but should be adjusted roughly for optimum oscillation. Pie-wound $2.5-\mathrm{mh}$. ehokes night be used for the coils by removing one or two of the pies. The use of the two $4.7-\mu \mu \mathrm{fd}$. condensers connected between the cathode and grid of each 6.\G7 assures strong oscillation, even with sluggish crystals. With the eonstants given, the crystal will alwaysoscillate, regardless of the setting of the various controls.

The plate circuits of the first two stages are tuned with receiving-type split-stator condensers, the rotors of which are grounded. The

Fig．1611－Bottom virw of the 144－Mc．erysial－ controlled transmitter， showing the simplicity of the layont．＇The tho＂t＂． shaped plate tanh are mounted on hlochs of polystyrene．（Dicillator and tripler plate coils are at the left．

coils are wound on ungrooved eoil forms（N゙a－ tional XR－50，with the core remowed）．Any ？ inch diametor form could，of course，be sub－ stituted．Coils are mounted below the chassis， with the tunine condensers above．

The 810^{2} and the 829 phate circuits are male of 1 ， 6 －inch copper strip， $3 / 4$ inch wide and 11 inches long．folded into＂［0＂shape，as shown in Fig． 1612 ．The National［i．MA－10 mondent sers used for tuning these cirents an removed from their Isolantite monnting plates and re－ mounted on the ends of the copperestrip inductances．A National（S－1 Isolantion in－ sulator is fastencal just below the condenser to make the assembly rigid．Connertion th the tube plates is made with short kengths of flexi－ ble copper ribhon $1 / 4 \mathrm{in}$ h wite．

The final gride rircuit is mate of $1 / 16$－inch eop－ porstrip， $1 / 4$ inch wide，bent into a＂U＂whirh is the same width as the plate tank 10 which it is coupled．The grid＂U＂shown is about three inches long．It should be as short as possible and yet provide adequate grid drive when coupled as closely as possible to the tripler plate eircuit．Making kevoral arid＂coils＂in order to attain this end is proferable to using longer tanks and looser coupling，as the smaller the grid tank is，the less tendency there will be for instability in the final stane．

The tramsmitter is monnted on a $17 \times 8 \times 2$－ inch chassis．and is designed for rack mounting， using astandard 83 － 4 －inch pand．The triplerphate circuit i is in the exact remter of the chassis，and is mounted on a smatl rectangle of polystorene which is bolted to the botiom of the chassis． In order to permit the use of alternate ampli－ fier units．a square hole was eut from the chassis top at the point where the amplifier units are mounted，and the two final stages were as－ sembled on chassis of folded aluminum 6 inches high by $71 / 2$ inches wide．If only one amplitur
stage is to be built，it can，of comase be mounted directly on the chasis．An adrantage of the scparate－chassis mothod is that the holes by which it is mounted can be made into slots， permitting the whole assembly to be moved back and forth slighty for adjustment of compling to the tripler stare．

The sereen－supply switch，s．${ }_{2}$ ，provides a safe method for tuning up the transmiter without damaging the 829．With the metor measuring a branch of the cxiciter grid current（lefthand position of s_{t} ．Fig．l fillo），tuning the oscilla－ tor plate circuit for mavimum indication should

Fig，1612 －Jetail photo of the tank circuit used in the 81. and 8こ9 platc rir． enit＊．Wi－ mensions are wiven in $\mathrm{H}_{\mathrm{i}} \mathrm{g}$ ． 1613.

produce about l＇íto 1＇免ma．Tuning the seeond Stage should raise the total reading to about 3 ma．With the grid－meter switeh in the right－ hand position，tuming the tripler plate circuit to resonance shoud produce about 12－ma．final grid current under load，when the coupling between the tripler plate and final grid circuits

Fig．1613－Dimension． al drawing of the 144 ． Mr．tank indurtance le－ fore bending．The nate． rial is in－inch copper strip．

356

Chapter Sixteen

Fig， 161.4 －An atternate amplifer unit tsing an $: 1.7$, which may be substituted for the $82 y$ unit shown in the complete assemily，lig． 160^{4} ．
is atjusted rorrextly．The final－stage plate circuit may then be adjustent and the full screen volage applied．With antenna or dhmmy loal，the output coupling（ L_{∞} is ap－ proximately size of L_{6} ，but of No． 12 entmmed wire）may he adjusted to raise the final plate ＂urent to 20010250 mat．，deproding upon the phate voltage used．The transmiltor is then ready for modulation，which may be suppliod hy any audio unit having $7 \overline{5}$ watts outpul，or the unit may be usel as an exciter，in which case it is capable of driving a timal stage of ato watts or higher mating．

C A Mobile Transmitter for 50 and 28 Mc．

Low over－all hattery drain in mohile opera－ fion is best oltamed through the use of fila－ mont－type tuhes which are lighted only during 1ramsmission periouk．The mohile unit for 6 ， 10，asd 11 motors，shown in Figs．1615－1610， －mplows filament type beam tetrules hamogh－ Out．live 2l：30：are used，as artaloseilator， frectueney multiplior，Class Idriver，and push－ pull（＇lass AB momblatoms．The final stare is a 21025 a the of somewhat larger design，hating Hts plate comberion at the top of the emvelope． Toral filament cumont is only 4.3 amperes，and theme is no drain whatever when the rig is not actually on the ail．

The thasmitor is housed in a crackle－ finished eathinet of mondoph dexign（Par－Matal （SA－2（t2）which may be monnted in bark of the seat in coupe－typ rehicles or in the trunk （ommpatment of sedans．
special attention is patal to rugredmess of consiruction，ath heals heing made as shot and dircet as possible，Nmall compoments are sup－ portud with terminal strips at cach end where possible，and taning controls are equipued with dial lows（National（ol）L）．The meter （a Marion 0－10－mat．seaterl unit）is batek－of－ pancel mountod，with a sheet of Lucite serving ats a proterting wintow．This method of monnting the metere about $1 / 2$ inch in hack of the panel，also providess anowenient methot for illuminating the metor face．Dial hights are mounted at cither sink of the meter，as shown in Figs． 1617 and 1 til9．

By using 100 －$\mu \mu \mathrm{fel}$ ，watiablo condensers for r＇and C_{3} ，the range of the osedilator and mul－ tipher plate ciremits is extemted，so that it is unnecessany to change them coils in changing

Fia lotio－ 1 tyinal Cuatitlation of iloud and 1 ll－mesur mobise Iramsmitur．The suatl allumiman bor at the rixht of the anit lomatis the antuma than⿻日土 …＂r rulay．The wen cmotor and is－starting whay are monnted un－ der the lannl，adjaremt In the ear bathers． 0^{2} p－ eration of the tramemit－ twin inomededentirely los the punt－in－tal： －int．h on the miern－ ；bume．

Fig. 1616 - W iring diakram of the molite rig for 6 and 10 neters.
$\left.\mathrm{C}_{1}-100\right)-\mu \mathrm{ffl}$. midert. $\mathrm{trewdriver-adjustment} \mathrm{type}$ (IIammarlund MP(:-100).
$\mathrm{C}_{2}, \mathrm{C}_{3}-1010$-pufle midget, wiaft type (Hammarlund Hf:101).
 1.5-b)
C_{5} - 0.or!- 䒑fil. mica.
$C_{64}\left(\therefore, C_{4}, C_{11}, C_{12}, C_{13}-1: 0-\mu \mu \mathrm{ft}\right.$. midget mica.

R_{1} - 82.0011 chmos. 1 watt.

R_{4}, Kc. R1s. R_{13}-Sperial -hunts. (Sce text.)
$125-1,01,61010$ ohms. 1 watt.
$\mathrm{K}_{9}-33_{4},(900$ ohms, I watt.
$\mathrm{R}_{11}, \mathrm{~K}_{16}-5000$ ohms, 10 watts.
$h_{14}-10.006$ ohm-, ${ }^{1} \frac{2}{2}$ watt.
1_{15} - $0.5-\mathrm{m}$-mohan ponentimeter.
 l-ineth dia. ferm, windings intorwound.
$\mathrm{L}_{3}-10$ turns No. 12 enam., elose-wound on 1 -ineh dia. form.
bands. Only the erystal and the final plate coil, L_{5}. need be changed. Complote push-to-talk operation is made possible through the use of two relays. Rysutarts the gememotor and applios the filament voltage to the 1 bamsmiter. R!/2 transfers the antemat fom recoiver to teansmilter. Both are controlled bey the switeh on the mierophone, which maty be any single-button type which has a contul switch. The Army T-17-B, now currontly available as government surplus, is shewn with the rig.

The crystal owillator is a Tri-tet, monlified for filament-type tubes. Interwound coils are inserted in the filament leads, and one of these is tuned. The setting of this adjustment is not critical and may be left near maximum capac-
 diat, self-supmorting.
$L_{5}-2836: 10$ turns No. 12 enam.. $11 / 2$ inches long, $1-$ inch inside dial. self-supporting.
50 Mr.: 5 turn No. No. 12 rnam.. 1 inch long, l-inch inside dia., self-xupporting.
$L_{6}-3$ turns on ${ }^{1 / 2,-i n e h}$ polystyrence rod - see text and Wetail pheote.
J_{1} - Sowhet on power cable, is pronk.
\mathbf{J}_{2} - Double-bntton miorophone jack. If T-1/-13 micro. phone is used, a sperial jack designed for this mierophome must be ohtained.
J_{3} - Coavial titting (Amphenol 8.3-1R. Matching plug i <83.7 SPN).
M - 0 (10 -nad. sealed wnit (Marion).
$\mathrm{P}_{1}-\mathrm{Ponwor}$ plug on tranmitter chasiis.
1iF:- 2.5 -mh, r.f. chooke, National K-100.
$\mathrm{l}_{3}, \mathrm{R}_{32}$ - see text.
$\mathrm{S}_{1}, \mathrm{~S}_{2}-\mathrm{S} . \mathrm{p} . \mathrm{A}$, nap swith.
$\mathbf{S}_{3}-2-$-ection - -pusition wafir-type switch.
11 - Single-hutton mirrophone transformer.
"I' - Driver transformer (Stancor A-4:52).
T_{3} - Modulation trandormer (C'TC S.18).
ity for 6.8-, 7 -, and 8.4-Mr. erystals. The ovillator doubles in. its plate circuit at all tincs.

The stage following the oscillator is operated ats a doubler for 27 - and 2 s- Mc. work, and as a tripler for 00 Me. The $2 E: 30$ is an effective frequency multiplier, and there is adequate excitation for the final in cither case. Sereen voltage on the exater stages is stabilized with a miniature voltage-regulator tubr, an 0id. With a screen volage of 150 . the plate input to both 2E:30)s is held to about 6 watts per tube.

The final stage uses a 2 E25, whose top-cap plate connection permits the mounting of the plate circuit above the chassis, well isolated from the other tuned circuits. A small shield,

 ing method of compling to the antemma. 'The coupling coil. womd on a polytyreme rod, is adju-table from the front panel. The pilite coil is mounted by means of G.R. plugs.
cut from an old-siyle tube shield to a length of about one inch, comes up to the bottom of the $21: 25$ plate assembly. These precantions are sufficient to provide completely stable operation without neatralization.

The antenna coupling coil. L_{6}. is wound on a short length of polystrene rod $1, \frac{1}{2}$ inch in diameter, into which is insolted a 1 -inch rod of the same mattrial. This shaft projects through tho front pand, whete a shaft-locking pancl bushing (Bud Pl3-532 hushing, Millon 10061 shatit lock) holds it in the desired position. Coupling is adjusted by pushing or pulling the knob aflixed to the shaft, following which the bushing may be tightoned for permanent setting. The hushing may also be set finger-tight, allowing the coupling to be adtjusted, yot holding it with sullicient firmness to prevent its boing jarred out of position.

Three 2 lis0s are used for the modulator. one as a Class A driver, and two in push-pull as Class AB modulators. . Ill three are triode-
connected. Bias is supplied by a 30 -volt hearingraid battery, which can be tapped st 15 volte by opening up the cardboad case and soldering on a lead at the point where the two 15 -volt sections are joined together. This lead is brought out to the unused terminal on the battery socket and plug.

Metering of all cireuits is provided by a $10-$ ma. meter, a 2-section 5 -position switeh, and a set of shunts. The shunte are made from small 100 -ohm resistors, on which is wound about 7 feet of No. 30 enameled wire. The shants shonh le wound with an excess of wire, the length of which may be reduced until the multiplication of the meter scale is just right. The resistor R_{10} in the final erid circuit is left without a shunt, giving dirut anding on the lo-mat scale for measuring the final eride current.

Fixerpt for the sperch slages, the unit may be tested using 6.3 volts a r. on tho filaments and an a.c. power supply. A storage battery must be used for filamont supply when the sperch equipment is to be tested, as ace on the filaments will produce excessive hum. Initial testing should be carried on with about 200 volts on the tube plates. When operation has ben found to be satisfactory, this may be raised to 300 .

To place the unit in operation set s_{1} to the "on" position, leaving s'e "ofi." With the moter switch in position " 1 ." apply plate voltage and note meter realing. which is the oscillator plate current. This will be about 20 ma.. dipping slightly at resonance as C_{2} is adjusted. Next switch to position "B" and adjust ('3. The dip here may not be as pronounced as in the oscillator, and the final grid current position " C ," 10 -ma. scale, is the best indication of resoname in the preeeding adjustments. This reading should he about $\frac{1}{4}$ ma.. droppiner to 3 mat. under load. With Siz tumed on, the final plate current, position "D." should drop to below 10 mat. at resonance, and coupling of the antemma should raise it to 50 to 60 ma . Modulator phate eurrent will be about 20 man . rising to 60 ma . or more on audio peaks. No motering position is provided for the Class A driver current, hut this should

Fig. 1618- Bottom view of the mobile rig. At the loft center are the interwond coil and tuning condenter which are part of the oscillator filament circuit. Audio components are at the left, with oceillator and maltiplier phate circuits mor the front pantl.

Fig. $16 I^{\prime \prime}$ - The plate rircmit of the final stage of the mobile transmitter is the only r.f. circuit above the chassis. The three tubes at the left are the driver and audio stages, with the oscillator and multiplier tubes directly in back of the meter. The tube to the right of the modulation transformer is the 0, 2 voltage regulator. Chassis size is $7 \times 13 \times 2$ inches.

be approximately 10 mis.
With the coil and combenser values given, it is impossible to get output from the final stage on a wrong frequency, but excitation to the final may be obtained on incorrect harmonics; hence it is advisable to check the frequency of each stage with a calibrated absorption-type wavemeter.

For maximum convenience, the same antenna should be used for both transmission and reception. Antemat change-over is handled with a conventional (j-volt antenna relay which was mounted in a small box made up for the purpose from folded sheet aluminum. Amphenol coaxial fittings, mounted on the sides of the relay box as close to the relay contacts as possible, provide for connection to the transmitter, the receiver, and the antenna by means of coaxial line. The relay case is grounded and only the inner conductor of the coaxial line is switched.

A headlight relay for genemotor starting may be purchased from any auto-accessory store, and this and the genemotor should be mounted as close to the car battery as possible, in order to minimize voltage drop. Battery wiring and filament cables should be as heavy wire as possible, with No. 10 as the minimum.

For actual mobile operation, the quarterwave telescoping "whip" antemna, operating as a Marconi in the manner shown in Fig. 1616, is convenient. Much greater range in stationary operation from high locations may be had with half-wave radiators or multielement arrays, either of which may be arranged for easy on-the-spot assembly. An example of such a portable array for 50 Mc . is shown in Fig. 1711, Chapter Seventeen.

C A 6C4 Oscillator for 144 and 235 Mc.

Figs. 1620 to 1623 , inclusive, show the details of construction of a low-power uscillator using a 6C4, a miniature triode power tube having a plate dissipation rating of 5 watts and designed for use as an oscillator in the
v.h.f. range. At the rated plate input of 300 volts at 25 milliamperes the oscillator develops an r.f. eutput of about 2 watts in the 14.-Mc. band. With minor modifications, to be described later, the oscillator may also be made to work on 235 Mc., with somewhat lower efficiency.

As shown by the diagram, Fig. 1622, the circuit is the ultr:udion with an adjustable feedback condenser, C_{3}, connected between grid and cathode. To reduce frequency modulation when the oscillator is amplitude-modulated, the tuned circuit has a fairly high C / L ratio,

Fip. 1620 - A low-power 144 Me . oscillator using a 6 C 4 v.li,f. miniature triode. With the construction shown, connecting leads in the r.f. circuit are recluced to negligible length. Filament and plate-supply leads are brought through the hottom chassis to a connection strip on the rear lip. The excitation control is adjusted through a hole in the top of the supporting member.

Fif. $1621-1$ view showing the asambly of emmponents of the oc:t 114. We. wosillator. The r.f. chokes are mounted by drilling and tapping the ends of the polyst yreme roil. 'The grid choke is held in place by one of the socket mounting serews.
using a tuning combenser having a fixed as well as a variable section. The condenser moter consists of three cireular plates and two "butterfly" plates. The circular plates rotate between two sets of stators having plates of regular shipe and thus provide a fixed capacity. The butterfly plates rotate between two sets of opposed 90-demeer stator phates, each set consisting of two plates. The assembly (now available as Cardwell Type ER-14-13F/SLA) is mate from a Cardwell lif double condenser, with only the front Isolantite plate used for a mounting. This method of construction results in a split-stator condenser having a minimum of inductance, since the r.f. current flows over the rotor plates without having to traved along the shaft. The plater shapes and details of assembly are shown in 「ig. 1623.

Lead lengths in the circuit are reduced to a minimum by the construetion shown in Firs. 1620 and 1621 . The eutire oscillator assembly is mounted on a piece of 3_{3}^{3}-inelh-thick ahminum bent in the weneral shape of a " l^{\prime}." The mounting is 1% inches wide and the bent-over top portion is 15 s inches deep. The over-all height is $2{ }^{1}$ inches. The hotom lip dimension can be anything convonient so long as enough area is prosided to make a solid mechanical mounting. The thating condenser, C_{1}, is eenttered on the vertical pertion and is mounted on the serews and spacers provided with the condenser. The Loble for the shatt is made amply large so that the condenser rotor is not grounded. The eomdenser is momented so that the two sets of stator plates are at top and bottom.

The tube socket is mounted so that the pate lead ('an drop in as st raight a line as possible to the terminal at the right on the upper stator plates of C_{1}. The grid condenser, C_{2}, is sup-
ported at one end by the grid prong on the tube socket and at the other bey the left-hand terminal on the lower stator plates. The excitation control. Co, has its movable-plate tab bent at a right angle so it can be bolted to the vertical support, and the stationary-plate tab is soldered direetly to the grid prong on the tube socket. The grid choke, grid leak, and plate choke are supported as shown in the photograph. The condenser along the rear edge of the asscoubly is the heater by-patss contenser, C_{4}^{\prime}.

The oscillator assembly is mounted on a 31/ be 3 年-inch aluminum chanmel 3 of an inch deep. A small pancl at the front provides a plate for a tuming dial which drives the condensor shat through an insulated coupling. A dial lock is provided so the comblenser can be locked at a given frecuency setting.

A polystyrene-insulated double binding-post assembly mounted votieally from a small bracket provides out put terminals and a support for the antemat compling coil, Le. The conupling can be varied by berding the soldering lags that support the coil so that L_{2} is moved nearer to or farther away from L_{1}.

The comelenser construetion provides just chourh capacity variation to cover the $1+4-$ 1.18-Mc. band adequately. Beraluse of slight dhferences in the construction of similar tunits, it may be necessary to vary the inductance of L_{1} slightly to bring the band on the dial: this can be done by squenzing the turns toget ther or pulling them apart. The frecuency range can be cherked with Lecher wires or a calibrated absorption wavemeter. (were chapter on fre queury moasurnment.) Final adjust ment of L_{1} should be made alter C_{3} has bern adjusted for optimum ontput from the aseillator. since the sotting of this romdenser hats some efteet on the frequeney of waillation.

To adjust C_{3}. solder two peces of wire about

($2-\mu \mu \mathrm{fi}$. midget misal

$\mathrm{Ci}_{4}-1:-\mu \mu \mathrm{fl}$. midget mica.

L_{1} - turns No. he bire wire; in-ide dianeter "io iowh, lenth l inch: wate-supply tap at center.
$I_{2}-\ddot{O}$ turns So. It chameled; inside diancter ${ }^{3}$ s inch, - light pacing betwern turns.

RFC - 1 -inch winding of No. 24 d .s.c. or mere. on $1 / 4-1$ ned diameter polystyrene rod.

CIRCULAR ROTOR (B)

90-DEGREE STATOR (C)

REGULAR STATOR (D)

ASSEMBLY
 condenser used in the 6 C oscillator.
$3 / 1$ inch long to the terminals of a smatl flashlight lamp or dial light and comnect them to the output terminals. A milliammeter of (0-50 or $0-100$ range should be conmented in the plate-supply lead. Adjust the couphing between L_{2} athed L_{1} for maximum glow in the lamp and then vary the raparity of C_{3} until the best output is ohtamed. C_{3} need not be touched again after the proper setting is determined.

In using the oscillator for transmitting, the coupling between L_{1} and L_{2} should be kept as loose as possibice. paritulaty il the anterena or foeders can swing in a broeze, breanse any change in the antemma direuit will be reflected as a change in the wisillator frequency, In any reant, the roupling should not be increased berond the setting that makes the oweitator phate current 25° milliannerees. It 300 volt. the phata mirrent should be about 20 mal. without thy r.f. load.

F'ur uperation on 235 . Ife it is merelv neressary to remove one rofor dise and ond sot of sutors and replace the eoil with a " b "-shaped inductance similar to that used in the 235-Nc. transcoiver, lëg. 163s.

(C A High-C 144-Mc. Oscillator

The inherent instability of a mombated oscillator - that is, the change in frequency
with the change in plate voltage under modulation - can be markedly reduced if the oscillator tank circuit is made to have as high a C/L ratio as possible. Although this usually entails some sacrifice of power output, the overall effectiveness of the tramsmitter is increased becaluse the radiat ed energy is more nearly on one frequeney. This is a particularly inmortant consideration when sulective receivers are used. In addition. the fact that there is less frequeney modulation also means that there is loss interference to other stations operating in the same band.

A high-C' $144-$ Mc. oscillator is shown in Figs. 1624. 1625, and 1626 . It uses an HY75 tube and a tank cireuit consisting of a low-inductance v.h.f. condenser and a one-turn tank coil of heary conductor. The circuit, shown in lig. 162.), is the ultratulion with a tumed filament circuit to provide control of exatation. The osrillator is mounted on a $3 \times 4 \times$ i-inch box, witl the tube socket mounted below the top by means of pillars so that only the glass bulb is protruding. Tobring the eondenser terminals on the same level as the grid and phate terminals of the tube the condenser is nounted on $5 /$-inch-high books.

The tube sorket is positioned so that the plate (atp of the fabe is near one set of the stator plates of C_{1}. This leaves room to mount the grid comlenser. ros. belwoen the gride cap and the other stator terminal, thus making

Fip. 162.t - I high.C 111 - Mc. oscillator using an IIY75. 'This tyue of oscillator has eonsiderathly less frequency modulation than those using low-(: circuits, conse. quently canses less interference and can be more effec. tively received ou selective receivers.

Fig. 1625 - Cirruit diagram of the high-C 14t-Me. oscillator.
 lund V゚ - -31).
$\mathrm{C}_{2}-47 \cdot \mu \mu \mathrm{fd}$ mideret mic:a.
C - 3-30- 3 fid. ceramic trimmer.

$\mathrm{R}_{1}-4700$ ahma, 1 watt.
L_{1} - I turn of $5 / 32$-inch copper tubing, approximately horse-hoe shate; over-all langh from monnting holsa in luge. $1^{2 / 2}$ imehes: outside diameter at wides point, $13 / 16$ inelnes: phate tap at enoter.

RFC1, RHCz - I inch windine ol on $\frac{1}{4}$-inch dianoter polystyrene rod.
' $\mathrm{P}-6.3$-volt filament transformer.
the leads betwen the tank rimuit and the tube as short as posible. The output compling coil, L_{n}, is soldered to lugs under the binding posts of a two-post ascombly mounted on a 2 ${ }^{6}$-inch Isolandite stand-ulf insulator. A fric-tion-type vernier dial is used to tume the e eircuit, becatase the laming is rather eriticat with the high-(cireuit and beenase the type of condenser used requires this or a similar typu of dial to hold the sotting, since the shat turns on batl bearings. The diat mounts on a small supporting pand with rounded rorners, as shown in the plootographs.

The tumed filtument rircuit consists of L_{3}, L_{4} and C_{3}. L_{3} is wound between the turns of L_{4} wo that the coupling is very tight : thus both filament leads can be tuned by one comdensor. ('3. C'3 is adjusted for maximum output as jualged by the brilliance of a lamp eonnected to the output terminals; it has relatively little effer on the fremaney of osedhation. Oner this adjust mont has bren mate its subling may bo considered permanent exeept for ocrasional recherking.

The inductance of L_{1} should be adjusted so that the low-frequency and of the $1+4-\mathrm{Mr}$. band is reached with C_{2} set as close ats possible to maximum caparity. It is advisable to start with the coil a litthe larger than heressary and cut a little at a time off the ends until the proper induetance is pound. The commedtoms between the coil and the condenser are mate by means of lugs fashioned from tubing ju-t enough larger in diametor than the coil so that the ends of the roil will fit inside. One chel oi each lug is flattened and drilled to fit the antdenser terminals, and the coil is soldered in the unflattened ends.

With a plate input of 350 volts at about 60 milliamperes the power output of the oscillator is approximately 4 watts. When received on a superheterodyne-type recoiver with a beatfrequency oscillator, the carrier will be quite olwan and stable provtded the mechanical construction is rigid. Under modulation, the frequence band occupied is only about a fifth as much as that taken up by a bow-C oseillator operatiod at the same plate voltare. In these days of erowded v.h.f. bamds a high-C transmitter of this type will go a long way toward improving conditions, though it is far from the ultimate.

(1) A Stabilized 144-Mc. Transmitter

In general, a modulated oscillator is not a desirable type of transmitter for use in at band such as 1 4.4 Me, where there is considerable activits. Even when stabilized by the use of a highof tank rimuit this type ol transmitter leaves much to be desired, bectuse thare is still a great deal more frerpuency modulation than is present in a master-osidilator power-amplifier transmitter. In addition, an oscillator coupled to an :untontar is subjert to frequency change whenever the anteman constants change slightly, as they will with changes in weather and with any vibration or swinging of the feeder wires. Besides, an oscillator cannot be modulated 100 per cent without considerable distortion becanse in most casus oscillation cambot be sustamed at plate voltages below 50 to 100 volts. Finally, the chleinery of an ossillator is quite bow compared to the efficiency of a properly-driven amplifier. so that eonsidcrably more power output can be obtained from the same fube when it is used as an amplifier than when it is used as a self-controlled oscillator.

An amplifier driven by an oscillator, al-

Fig. I626-Below-chassis view of the high.C l11-Mc. oscillator. The filament transformer and bibment tuned circuit are monnted inside the hos.

Fig. 1697- A three-stage tranmitter using a $6(\% 1$ master aseillator, $0 C 1$ buffer amplifier. and 815 final amplitier for stabiliad transmision in the 141- ل1r. band, '] he oseillator and buffer are built as a unit on the folded alaminum chassis at the right. The transmitter develops a carrier ontput of about 40 watto.
though more stable than an owillator alone. is still subject to frequency-modulation effects because the change in power input to the amplifier with motulation rauses a change in the grid impedance of the amplifier, and this in tarn reacts on the oscillator to change the frequence. Hence it is dexirable to use at lewast one butfer-amplifier sage betwern the ascillator and amplifier. If this is done it is quile
possible to get satisfactory performance with inexpensive low-power tubes in both oseillator and buffer stages, while if the buffer is omitted it is neressary to use a fairly high-power oscillator. This is berause the coupling between the oscillator and modulated amplifier must be very lonse if the oscillator fredurner is mot tobeaffected by whatever hapmons in the amplifier plate circuit: comseduently the oscillator must develop, much greater power than actually is meeded to drive the amplifier since only a small part of the power ean be utilized with the forore (a)tipling required.

A throw-stage transmittor in which frequency-modulation effects are quite small is shown in Figs. 1627-1630, inclusive. It includes a 6 C 4 oscillator, 6C\% neutralized huffer amplifier, and 815 final amplifier, as shown in the circuit diagram, Fig. 16i2s. The oscillator and buffer awo built as a unit
 inches lone on top, 2 "名 inehers high, and $27 / 8$ inchess deep on the (op. The Stis is mounted on a vertiealahminumplee moswaring $41 / 4$ inches high and 3 inches wide, reinfored by bending side lipe at shown in the photographs. The two sections are assembled on a $6 \times 14 \times 3$-inch rhatsis.

The oseilator circuit and components are identieal with those already described in Qs T

$\mathrm{C}_{1}-3-30-\mu \mu \mathrm{fd}$. trimmer.

$C_{3}, C_{5}-\int_{i}^{-\mu} \mu \mathrm{fl}$. midgel mica.
(a) - Vamathat tuming: sere text.
C_{7} - \rutralizing; ane text.
C 8 - Buffer tuning: see text.
Co, (10- Amplifier neutralizing; see text.
C_{12} - Amplitier thning; see text.
$\mathrm{C}_{14}-100 \mu_{\mu} \mathrm{fl} ., 2500$ volts.
$\mathrm{R}_{1}-29,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}-22,000$ ohnis, $1 / 2$ watt.
$R_{3}-15,000$ ohmes, 1 watt.
$R_{\&}-15,000$ ohms, 10 watts.
I. - 2 turna $\operatorname{Vn} 12$ hare wire: inside diameter ?io inch, lenerth 1 inela: plate-zuphy tap at center.
I.2 - 2 turn No. Il. in-ide diancter $1 / 2$ meh; turns *paced wire dianetor.
$\mathrm{L}_{3}-1$ turns No. 14, insild diameter ${ }^{3} \mathbf{q}^{\text {in }}$ inch, length 1 indh: plate-supply tap al conter.
Lat-2 turns No. 14, in-ide diasmeter $1 / 2$ inch; turns graced diameter uf wire: tapred at enter.
I.s-2 turns No. 12. inside diamettr 1 inch, lengil 1 inch: plate supply tap at ienter.
I.f. - 2 turns Vo. I2, insile diancter 3 , indh.
l FCC_{1}, $\mathrm{RFC}_{2}, \mathrm{RFC}_{3}, \mathrm{RFC}_{4}$ - l-inch winding No. 24 d.a.c. on $1 / 4$-ineh diam, polvstyrene rod.
T_{1} - 6.3-volt 2-amp. filament transformer.

Fig. 1629 - A rear view of the three-stage 114 - Mc, transmiter. The oscillator is at the left, with the buffer amplifier in the center. The 815 final is at the right.
regular panel this rombenser may be "perated by a rightangle drive from the front.

Theoutput termButs are a standame binding-post as\therefore anbly \quad polystoFone. monthted on
 inchers high to bring the compling coil in Proper retation to Ha : amplifier plate labik coil. Ion. ('unt)liag is adluwan loy heroditis L_{a} loward or away from L s.

The plate by-pass eombenser and sereon droppiner resislor
for April, 1946. The construction of the buffer amplifier is quite similar to that of the oseillator. The buffer tuning condenser consists of a rotor having three buttertly plates and two stators each having two 90 -degree plates. The gride circuit of the buffer is self-resonant, the tuning being adjusted by squeezing the turns of the grid eoil L_{2} together, or prying them apart. The buffer neutralizing condenser, C \% mounted directly between the grid of the 6C.t and the lower set of stator plates of C_{s}, is a $3-30-\mu \mu \mathrm{fl}$. trimmer with the movable plate removed and a washer solldered under the head of the adjusting serew. The washer, by rephaeing the movable plate. reduces the caparity of the condenser to a value suitable for neut ralizing the 6Ct. This rapacitor may be convort iently adjusted through the open end of the chassis. Its location is clearly shown in Fig. 1629.

The grid coil of the final amplifier also is resonant with the input capacity of the 81 is, just as the buffer grid circuit is self-resonant. For best operation, the 815 requires neutralization at this frequence. The neutralizing "rondensers," C_{9} and C_{111} in the circuit diagram, are simply pieces of No. 1t wire extemding from the grid of one section of the 815 to the vieinity of the plate of the other section. The wires are crossed at the bottom of the tube socket and go through Millon 32150 hushings in the metal partition. The sereen and fil:ment by-pass contdensers are mounted so that the leads between the socket prongs and the nearest ground peint are as short an possible. This wiring should the done before mounting the partitiont.

The amplifier plate tank cirmit uses a condenser of the same construction as that used in the buffer tank. It is mountend as closely as possible to the plate caps on the 815 , and to preserve circuit symmetry the condenser is tuned from the left-hand edge of the chassis. If the transmitter is to be equipped with a
are mounted umberneath the chassis, as shown in Fig. 1630, together with the filament transformer. Separate powor-supply terminala are provided for the oscillator phate. buffer phate, amplifier grid (terminals $A-A$), amplifierserem, and amplifier plate so that the currents can be measured separately. An external 0-200-ma. milliammeter will serve in making all adjusiments. However, if a meter of lower range is available, it may be used profitably in the low-current circuits.

In putting the transmitter into operation, the first step is to adjust the frequency ramge of the oscillator, using Lecher wires or a ealibrated ahsorption-type wavemeter. This should be done attor C_{1} has been adjusted for maximum output. Then, using loose coupling between the buffer grid eoil. L, and the oscillator tank coil. $L_{\text {: }}$ (the coupling mate be adjusted hy bending L_{2} away from L_{1} on its mounting lugs), adjust L_{2} by changing the turn spacing until the grid circuic is resonant. Rasmance will be indicaled by maximum oscillalor plate current: it ran also be checked by me:suring the voltage across the buffer grial leak, R_{2}, with a high-resistance voltmeter. The maximum voltmeler reating

Fig. I6:30-I'nderneath the chassis of the IH.V1. MOPA $\begin{aligned} \\ \text { ansmitter. The filament tran- former, ampli- }\end{aligned}$ fier plate by-pass condenser, and screen dropping resistor are mounted here.
(about 40 volts) indicates rewomates. The buffer should next be neatralized by varvine the rapacity of e^{\prime} ' until there is no change in the voltage across R when the butfer tank comblenser, (`s. is tumed through rewonance. The point of eorrect moutralization also can be detorminod her coupling as somitive absorption wiswoutor such as is deseribed in the ehapter on trerpurney measmement to the
 reading. With this mothon, care mont he med to avod coupling botwoon the wavenutar and the oscillaton: link compling boturon L_{3} and the wavomotar, with the batter fiar eromgh aw:y so that it dons not give a monding from the oscillator alone. shmal be usiol. Another
 the turn sparibu of the amplifior grid eoil. $L_{\text {a }}$ ta) resomature abl measume the sta grid curment (with mo plate or sereen voltage on the tube) and adjust C': for zero grid current.

After the bufler is nentralized. plate voltare may be applied and C_{s}^{*} adjusted to resomance, as indieated by minimum plate current. If the coupling to the final anplifior is quite lonse, the minimum phate current shomld be apmoximately 17 mat 'The amplifier eride eoil may next be resonated by adusing the pateine between turns) and the roupling incerasid unlil the maximum grid coment is serured. "life what our ront should be t midlamperes or more atme the buffor plate courrem shombl rise to about 2 s mat.

Nout malization of the sis is the next step). If the grid curnent changes when the plate condenser, Cue is tomed through resoblater, the neutralizing wires should be moved draser to or farther away from the thbe pates matil tuming
 condition is reand ed the amplifier is neutralized. Ilate and streen voltage may them he applied. With molnad on the anplifier the phate emrent slould dip to apmoximately (6) ma. at resomatmer Lowting the amplifier to :a natre rurrent of 1.00 ma. should mot e:thes the grin rurrent to drop below atome 3.5 ma. . 1 (t)watt lamp ured ato at dummy lowd should light to practically mormat brightness at this inpul, using at plate-supply voltage of 100.

For greatest stathilite. the compling betworn the owillatan and baffer should be as lowse :t, prosible. It is felter to whtain the rated sts grid curvolit of 3 millismperes bow using tight coupling berweot the butier atil atmplifier atal loner entyplag betworn the oreillatur and bulier then vice vera. With mormal oporation the oso (rillator plate curvent shomht be apt proximately 25 mat, and the butier plate carreat 28 mat.. at 300 volts.

A modulator for the lrathemition should have an audio ouput of $3 . \bar{y}$ Watts, using a eonpling transformer designed to work into a $2.500-\mathrm{ohm}$ load.

C. A 144-Mc. Double Beam-Tetrode Power Amplifier

An amplifirr set-up sutathe for use with domble-beam-tedmole 1 uhes is shown in Figs. 16:31. Wi3: athe 16is:3. The tube in the photogrophs is an 82? , but an 815 of 832 an be used in the same latyout. The omle chamge that might be required would be in the imdurathees of the grid and phate coils. L_{2} and L_{3} : these maty have to be mate shighty smather ar larere in diamefter to mompensatio for the difleremeres in input
 The physical armanement of the eomponents is similar the that used for the sha amplitier indombratad in the therestage transmitter dewribed in at proceding sertion.

Tho amplifier of fig. li333 is built on an alnminum chasis fonmed by bending the long ellowe of a is $\times 10$-inch piree of aluminum to form vortienl lips 3^{\prime} ineh hish, so that the top-of-chassis dihuensions: are $3^{\prime} \frac{2}{2}$ by 10 inches. The tube sorkot is momited on a vertieal aluminum partition mensuring 31 ón mehes high by $3!$ inches wille on the flat fare, with the siles bent as shown in the photographs to provide bracing. The partition is monnted to the chassis by right-angle brackets fastened to the sides. The sorket is momed with the eatherde romection at the tap, the rathote ponge being directly gromaded to the mearest momating serew for the sorket. The heater be-pass eombenser, $C_{\text {bis }}$ is momoted dirertly over the conter of the tube sorket, extending hetwern the baralleled heater pronges at the lootom and the cathonle prong at the top. The semen ho-pass is combected with as short leads as possible hetwern the sereen prong and the nearest sorket monnting sorm.

The grid coil. In, is supported by the grid prongs on the sorket. The two turns of the ewil

$C_{1}-3-30-\mu u l d$. लramie trimmer.
C. (: - Nowtraliziar monlobara; see text.

(
(.

$11_{1}-1.010$ (hmm-. I watt
Hiz - 10.016) whan-. 10 watt=.

 meler molystyrene rod.

366
 Chapter Sixteen

Fig. 1632 - A 144Mc. amplifier using a double beam tetrode. This type of construction is suitable for the 815 and 832 as well as the 829 shown. The vertical partition provides support for the tube as well as shielding between the input and output circuits. Note the neutralizing "condensers" formed by the wires near the tube plates.
are spaced about one-half inch to allow room for the input coupling coil, L_{1}, to be inserted between them. The coupling is adjusted by bending L_{1} into or out of L_{2}. The grid tuning condenser, C_{1}, is mounted between the socket prongs; although the condenser has mica insulation it is used essentially as an air-dielectric condenser since the movable plate does not artually contact the mica at any setting inside the band. The couphng link is soldered to lugs under binding posts on a National FWG strip, the strip being mounted on metal pillars $11 / 2$ inches high to bring the link to the same height as the grid coil.

Although the shielding between the input and output circuits of the tube is sufficiently good so that the circuit will not self-oscillate, tuning of the plate circuit will react on the grid circuit to some extent because the gridplate capacity, although small, is not zero. To eliminate this reaction it is necessary to neutralize the tube. The neutralizing "condensers" are lengths of No. 12 wire soldered to the grid prongs on the socket. The wires are crossed over the socket and then go through small ceramic feed-throughs at the top of the vertical shield, projecting over the tube plates on the other side as shown in Fig. 1633.

Connections between the plate tank condenser, C_{i}, and the tube plate terminals are made by means of small Fahnestock clips soldered to short lengths of flexible wire. The tank coil, L_{3}, is mounted on the same condenser terminals to which the plate clips make connection. The output link, L_{4}, is mounted similarly to the grid link except that the posts are $17 / 8$ inches high. The plate choke, $R P C_{1}$, is mounted vertically on the chassis midway between the plate prongs of the tube, the mounting means being a short machine screw threaded into the end of the polystyrene rod. The "cold" lead of the choke is by-passed by C_{5} underneath the chassis.

Supply connections are made through a 5 -post strip on the rear edge of the chassis. The dotted lines between connections in Fig. 1631 indicate that these connections are normally short-circuited; leads are brought out so that the grid and screen currents can be measured separately.

In adjusting the amplifier, the plate and sereen voltages should be left off and the d.c. grid circuit closed through a milliammeter of $0-25$ or $0-50$ range. The driver should be coupled to the amplifier input circuit through a link (Amphenol Twin-Lead is suitable, because of its constant impedance and low r.f. losses). Use loose coupling between L_{1} and L_{2} at first, and adjust C_{1} to make the grid circuit resonate at the driver frequency, as indicated by maximum grid current. The coupling between L_{1} and L_{2} may then be increased to make the grid current slightly higher than the rated load value for the tube used - approximately 12 ma. for the 829 . If the driver is an oscillator, the coupling between $L_{1}-L_{2}$ should be as loose as possible with proper grid current.

Neutralization can be checked by rotating C_{7} through resonance. A flicker in grid current as C_{7} is rotated indicates that the neutralizing capacity is not correct. The neutralizing wires should be bent in relation to the tube plates until the grid current remains constant when $C_{\text {- }}$ is tuned through resonance. Care should be used to keep the wires symmetrical with respect to the two sections of the tube.

After neutralization, plate and screen voltage may be applied. If possible, the plate voltage should be low at first trial so there will be no danger of overloading the tube. Adjust C_{7} to resonance, as indicated by minimum plate current (this should be measured independently of the screen); with the 829 , the minimum plate current should be in the neighborhood of 80 milliamperes with 400 volts on the plate and no load on the circuit. A dummy load such as a 60 -watt lamp should light to
something near full brilliance when the coupling between L_{3} and L_{4} is adjusted to make the tube draw a plate current of 200 ma . When the loading is set, the grid current should be checked to make sure it is up to the rating for the tube. If it has decreased, the coupling bet ween L_{1} and L_{2} should be increased to bring it back to normal.

Power-supply and modulator requirements will depend upon the particular tube used. For the 829 , the plate supply should have an output voltage of 400 to 500 with a current capacity of 250 milliamperes. With a 400 -volt supply the modulator power required is 50 watts, with an output transformer designed to work into a 1600 -ohm load; with a 500 -volt supply slightly over 60 watts of audio power is needed, the load being 2000 ohms.

© Transceivers

The transceiver is a combination trans-mitter-receiver in which. by suitable switching of d.c. and andio circuits, the same tube and r.f. circuit functions either as a modulated transmitting oscillator or as a superregenerative detector. This makes for extreme compactness and light weight, making the transceiver popular for hand-carried portable equipment. It is a compronise with respect to other features, however. The transceiver can be a source of serious interference, and its efficiency is not equal to that of other types of gear wherein separate tubes and eircuits are used for transmission and reception.

As a matter of good amateur practice the use of transceivers should be confined to very low-power operation - as in "walkie-talkie" or "handie-talkie" equipment - in the 144Mc. band, and to experimental low-power operation in the higher-frequency bands. The use of transceiver-type equipment should be avoided entirely for regular operation on the 144-Mc. band.

©. A Complete 144-Mc. Portable-Mobile Station

The transmitter shown in Figs. 1633 to 1637, inclusive, is designed to be used for portable or mobile operation in conjunction with a vibrator power supply giving 100 ma . at 300 volts. Scparate tubes are used for the r.f. sections of the recciver-transmitter combination. The oscillator is operated at 15 watts input and delivers approximately four watts of power output.

As shown in Fig. 1637, the oscillator uses an HY-75 tube in the ultraudion circuit, using high C to improve the carrier stability and reduce frequency modulation. Coupling between the oscillator and the antenna is by means of a variable link and a short length of coaxial cable connected between the link and the antenna switch, S_{18}. In general, the oscillator circuit is similar to the one shown in Fig. 1625, and additional information on adjustment will be found in the description of that oscillator.

A 6C4 triode tube is used in the superregenerative detector. Fairly high C is used in this circuit because the 6 C 4 superregenerates more smoothly with this arrangement. A variable link, mounted on a polystyrene pillar, is connected to the antenna switch thy means of coaxial cable. The circuit goes into superregeneration with 50 to 60 volts on the plate element, and the resulting low power input causes relatively low receiver radiation.

For transmission, the audio section of the unit employs a single-button carbon microphone working into a 6C5 Class A driver stage, transformer-coupled to a $6 \times 7 \mathrm{G}$ Class 13 modulator. With a 6 -volt battery, the microphone output is more than adequate for full power output from the speech system. The Class B modulator gives higher power efficiency and lower average plate current than a Class A modulator and, as a result, the proportion of

Fig. 16.33-Annther view of the 144-11c. amplifier. The nentralizing wires are crossed over the socket before going throughthe fecd-through in. sulators. The input circuit is designed for link coupling to the driver stage.

Fit. $163.4-1$ fromt view of the complete 111-ve portable-mobile station.
jatcke, J_{2}, J_{3} and J_{1} :ane at the left of the batm! while the 'phone jatel. It. is

 the 'speaker, the asiollathe fredurnersremarol diat athel the deloreor tuning -hat. Bull dials atre equippord wath

 luning controls. A rasaial anternat fatheg is lumatol at the lop of the pand and to the left side of the dial lisht.
 mats be reserved for the athlia seretion is relat tively low. The 6) TG madubes alato-to-phate Lomd resistance of about $1 \mathbf{1 . 0 0 0}$ ohms. 'lhe asrillator. operatiner wibl 300 volte at momal eument, represemts a load imprdather of goto whms so that the primary-to-serondary impedance ratio required in the coupling trathsformer is 2.3 (a) Wiala the tramsommerspor fied a rlose approximation 10 this rallon is secured when the bapsereiferl for mathering 10,000 ohems to 4.000 ohans are used. Tha 18 Yot output is tratisfored from the headphome 'speaker eiment to the oscillatomplate ribuit log means of one sertion of the semberobeswited.

The miserophome wimling of the tramseniber pransformer. \% is operned when the mit is changed ower to thererivine pesition and at serond wimding is eut in to eomplete the cirmit betwern the deteedor athl the 60 driver : atare. With switch sare in the reximo position the atudio output is foul inta the 'suraker. Iloantphones, phassed iato the 'phome jatck, Jin will diseonneet the 'speaker. R_{0} is the reeremeration contrul. The small pading comblemed. ('s. in-
 setting. The loading resistor. R P_{3}. may or may not be reguired. It is used to prevent the howling which frequently is encombtered at erotain settings of the regeneration romblol. If mowe sary, the value of this resistor may be dermased to 22,000 ohms.

The tramsmitar is amelosed in a $6 \times 7 \times$ 10-inch motal cabimet. Wost of the parts are

 shaped chassis was not arabiable abmi as at result, the rolled-ower edges :1 the front of the rabinet must be rut away to allow chearaneo for the chassis. The panel and chassis are fastened therether be the mounting sheves for the regoneration and gain controls and the jacks, as shown in liig. 1636: the miorophone jack, J_{1}, is the one at the right. The regenerat tion control is to the left of J_{1} and the grain control is next in line. The three metering

Fig. $16: 3$ shows tho shassis armagement of the main eomponemes of the unit. The ficio. T_{2} and T_{3} : 1 phat from latit toright along the
 in hatek of Ta and the 'suaker tansionmer, T_{4}, is monturd on the jugs provided in the 'spation dexign. Powar loals are brousht to the formprome phar motuted on the rear wall of the -hasis.
'The r.f. serfion is kept ats (omphet as posionble so short leads can be mathtained. The tuming rondensers. e'tadre are mounted on at chas sis formad from $3 / 32$-inch almminum stome. This chassis is of inches wher hats a : monomting surface at the boftom, and js 3 inchus high. I sertion of the shock. me:twing 1^{1} z inclus wide be 2 inches dewp, is bent orer at the tup to form a monnting plate for the (iCH.

A small terminal block, made from sheet polvestrone is mounted on pacers botwoon the lwor variable combensers; the coavial feredline for the oscillator is morod at this point along with the hot end of the antematink. Lo. The owillator-plate r.f. chose, RFer is monnted at the upper right-hatud onner wit the chasis and the tank roil. L_{1}. has its amos drilled to fit the amdenser beminals on which
 Wenser, and grid latak are all mounted on the f-ind diamoter rod shown at the left of the H1"-a.s. The rod is drilled athd tapped so that it (an be monntod ber matas of the bubr-atocket
 below the whesis hy means of "'s-inch metal spacers.

The detweren enil is moment on the upmer and lower stator-plate terminals at the leit of the combenser. P^{2} is commenterl acrose the same two puints. The ford-back eonlenser, ('3. and
 and mounted betwern the lower statom plate tormital of 6 : and the fube sockel. The rei. Thoke is at the reat-right cornew of the shelf. f^{\prime}, the quench by-pass, is localed betweren the r.f. choke and ground. The antemna coupling

Fig. 1635 - Rear view of the 14f-Ne. trans-mitter-receiver.
mil, I_{-4} is supported by a polystyrone rod which has beon drilled athd tapped for chassis morunting. The deloeder (nad of the cosxial cable is soldered to live open ends of the link at the proints wherether protrude through the rod.

A bottom vicw of the chassis is shown in Fig. 1636. T_{1}, the microphone transformer, is mounted on the rear wall at the right end of the chassis. The 60'5 plate deroupling condenser, Cub rests against the base to the front of T_{1}. ' $_{9}$ and R_{5}, the $6\left(\begin{array}{c}5 \\ \text { a cathode con- }\end{array}\right.$ denser and resistor, ate to the left of the dube socket at the rear of the chassis and the blocking condenser. C_{11}, is in front of the $11 Y^{-75}$ socket. One of the spare pins of the $1\left[\begin{array}{l}-7.5 \\ \hline\end{array}\right.$ socket is used as a tie-point for the connertion botween ('n and wwitch, sis. The filament tuming condenser, C_{4}, is rommeted betwern l'in 2 of the oseillator socket and a soldering lugr which is held in place by one of the tube-sucket mounting nuts.

For mobile work only, the mierophone woltage may be secured by connceting the hot end of the microphone transformer winding to any one of the 6 -volt points inside the chassis. However, if operation with an a.e. supply is contemplated, it is necessary to bring out the translomer lear so that a mierophone battery maty be connected externally. This commertion rath be mate ber connecting the transformer lead through the input plas.
l'late current can be moasured by using a $0-100$ milliammeter fitherd with a plug for the plate jacks. J. J_{3}, J_{3} and J_{4}. The oscillator plate-current reading should be approximately 40 mat. with no antema load commeted

Fig. 16.36 - A bottom view of the complete 14-Mc. portable-noblile nuit.

mohile station.
C_{1}-Split-itator "Imterfly" comenser, $14 \mu \mu \mathrm{fl}$. total (Cardwell k:R-14-31F/SI.).
$\mathrm{C}_{2}-\mathrm{S}_{\mathrm{p}}$ litictator condenser, $6 \mu \mu \mathrm{ft}$. total (Cardwell 1:14-6.131
$\mathrm{C}_{3}, \mathrm{C}_{4}-3-30-\mu \mu \mathrm{fl}$. ceramic trimmer.
$\mathrm{C}_{5}-100-\mu \mu \mathrm{fd}$. midget mica.
\mathbf{C}_{6}, (:- $-1 \overline{1}-\mu \mu$ fil. midget mica.
C: - $0.061 \overline{-\mu \mathrm{fd}}$, mica.

$\mathrm{C}_{11}-0.1 . \mu \mathrm{fd}$. 6%-volt paper.
R_{1} - 4000 ohans, 1 watt.
$\mathrm{R}_{2}-3.3$ merohme, '? watt.
$\mathrm{R}_{3}-1$ - 1001 ohms, 1 watt.
h_{4} - $0 . \overline{\mathrm{T}}$-meryhin volume control.
K_{3} - Jowe ohms, 1 watt.
K_{6} - (0.J-mesedim patentioneter.
$\mathrm{k}_{7}-0.1 \mathrm{~m} \boldsymbol{\mathrm { m }} \mathrm{~m}$, $\mathrm{hm}, 1$ watt.
$\mathrm{L}_{1}-2$ urin of $1 / 8$-inch copper tuhing: incide diameter 5 , inch: turns spaced approximately tio inch fietwern enters: plate tap at wemer.
$1,2-1$ turn Do. 12 bare wire: inside diameter $1 \underline{1}$ ineth. $\mathrm{L}_{3}-3$ turns No. 12 bare wire; inside diameter $\frac{12}{2}$ inch, inside the 14x- Xle. band bofore the actual instatlation in the antomobile is started. In any event, always wherk the frequeney ravefully each time before starting regular operation beratse the antoma loading will allece the frequeney. Also, berause the oscillator has a high-e tumed circuit, a small variation in the solting of ('i will catuse a considherable jump in frequeney. It is wise to wheek the frequency whenerer an adjust ment of any kind is made. Frectuence cherking ran be done with an absorption-trpe frepuency meter, with Lecher wires, or by listening on a calibated recelver.

Testing the detector for superegeneration is a simple matter inasmurh as the superregenerative hiss beromes pataly andible when the circuit goes into operation. It is possible that a component havout slighty different than that of the original model will necessitate some experimentation with the values of R_{2}, C_{7} and C8. Values which provile the smonthest regencration and the greatest sensitivity should be selected. The padding contenser. ('3, should be adjusted so as to allow the tumed cireuit, $C_{2} L_{3}$, to eover the $144-11 \mathrm{c}$. band. An accurate check on the frequenes eoverage can be made by employing any one of the instru-
length 78 inch: plate tap at ernere.
 inch: turns paced diameter of wire.
L5, $\mathrm{L}_{6}-3$ turns No. 18 d.e.c.: inside diameter $1 / 2$ inch. L_{5} interwound with L_{6}, no spacing between turns.
$\mathrm{I}_{1}-6$-volt dial light.
J_{1} - Midget open-circuit jack.
$\mathrm{J}_{2}, \mathrm{~J}_{3}, \mathrm{~J}_{4}, \mathrm{~J}_{5}$ - Midget clesed-circuit jack.
J_{6} - Cousial-rable connector.
P-4-proner male plug.
$1 \mathrm{PC} \mathrm{C}_{1}, \mathrm{RFC}, \mathrm{RFC}_{3}-1$ inch winding of No. 21 d.s.c. or s.e.c. on $1 / 2$-inch rod; rods drilled and tapped for mounting.
Spkr - 3-iuch permanent-magnet dynamic 'speaker.
$S_{A-13-C D}-4$-pole double-throw switeh.
I_{1} - Transceiver transformer ($\mathrm{TC} \mathrm{R}-5,3$).
T_{2} - Interstage audio, single plate to push-pull grids (Thurdarson 'T'-191)(06).
T_{3} - Outsut transformer. 100nonehm primary to

T_{4} - Output transformer, 450 (ochlm primary to voice coil (UTC 1R-59).
ments or methods suggester for calibration of the transmitter frequency.

A 300 -volt $100-\mathrm{ma}$. vibrator-type power supply is recommended for mobile operation. The self-rectifying type is the loast expensive and plates the smallest load on the car battery. However, any supply that will deliver the necessary voltage and current will be quite satisfactory. An ace. supply for testing purposes may also be provided; it should have the same output capabilities as the vibrator supply, and should include a filament transformer desigued to doliver 6.3 volts at 3 to 3.5 amperes.

Lindor normal conditions the phate voltage appliad to the transmitter and andio tubes will be the full power-supply out put voltage minus the small $I R$ drop caused by the audiotransformer windings. The 6C5 draws approximately 10 ma . and has a cathode bias of S to 9 volts. The 6C4, when superregencrating with 50 to 60 volts applied to the plate, will draw less than 1 ma , of plate eurrent.

The antenna can be either a quarter-rave (19 -inch) or a half-wave (39 -inch) rod. Conxial feed can be used with the short antenna and a two-wire tuned transmission line slould be used with the half-wave radiator.

(1) A Simple 235-Mc. Transceiver

The transeciver shown in Figs. 1639, 1640 and 1641 can be used either as a piece of fixedstation equipment or for portable-mobile work. The circuit diagram of the transeeiver is shown in Fig. 1638. The detector-osisillator section of the unit employs a $6 C$ ' + triode in a high-C' circuit similar to the one shown in Fig. 1622.

The audio section of the transceiver consists, of a fid.) driving a 6 V 6 . Wit h the eendreceive switeh in the "send" position the mirrophone circuit is chesed white the audio input windine of T_{1} and the 'speaker winding of T_{2} are disconnceted. The primat ry winding of T_{2} becomes the modulation choke during transmission. Voltage for the

Fig. 16.38 - Circuit diagram of the 2:35-Me. transectiver.

R1, - $2=20$ olms, 1 watt.
Rg - $\mathbf{5 0 , 0 1 0}$-ohm volume control.
$L_{1}-1$ turn of ssz-inch copper tilinig. appresimately horeshoe shape: over-all henuth from mometing holes, thati indt; out ide dianeter at oper enel. 1510 inch; place tap at cemter.
I_{2} - 2 turn* No. 1tor iú; diameter $\overline{\mathrm{j}} \mathrm{i}$ ineh.
$I_{1}-6$ - 8 -volt pilot light.
J- "pen-circnit jack.
$\mathrm{RFC}_{\mathrm{i}}$, $\mathrm{RHG}_{2}-1$-inch winding of Vo. 21 d .s.c. or s.c.e. on $1 / 1$-ind diamer molystyrene rod.
$\mathrm{S}_{1 \mathrm{~A}-\mathrm{Bc} \mathrm{b}}$ - $\mathbf{1}$-pole 2 -pmition witul.
Spkr. - 3-inch permanemt-magnet dynamie speaker. T1 - Transeciver tramsformer.
T2-Output transformer, pentode to voiee eoil.
single-but ton carkon microphone is developed aeross $R_{8,}$, the 220 -ohm resistor in the 6 VG cathode circuit.
The transeciver is housed in a utility rabinct of $5 \times 6 \times 9$ inches. The front cover of the box is used as the panel. Fig. 1639, a front view of the unit. shows the location of the variable controls, antenna terminals. pilot light, mierophone jack and 'speaker. All of these compenents, with exception given to the tuning condenser and dial, are mounted on the panel.
As shown in the rear view, Fig. 1641. the r.f. assembly is mountid on a small "L"-shaperd chassis at the left end of the pancl. This chassis, formed from $1 / 16$-inch aluminum, has a width of 2

Fig. 16,39 - A simple 235. Mr. transeriver. The 'speaker, tuning dial and antenna terminals are shown at the top of the panel. The pilot light, mierophone jack, andio gain entrol, send-receive switch and regeneration enntrols run from left to right arross the botiom of the panel. The swinging-link eontrol is above the regeneration potentiometer. Ventilation holes are drilled in the rear panel.
inches and is 2^{\prime} 't inches high by 2 inchers doep. The layout of this chassis is ialentical to the arrangement shown in Fig. 160 . ('is inodifod somewhat. One set of stator plates and one circular rotor plate are removed to make the total capacitance appropriate for $2: 35 \mathrm{Mc}$.

The swinging antenna link shown at the

end can be tonched with the finger without distuthing the operation of the ascillator. A grid-leak value allowing the smonthest operation shmuld be r-tertad and plato by-pase comdenser vatues betwerm 0.0602 and $0.0017 \mu \mathrm{ffl}$. Shembl be thied.

The inlurtane of the tarcal-riment coil. L_{1}, atould be adjusterl to bring the bathel on the dial hey increasing or Hervasiber the length of the elosed and upen embs. 'The froplowey maty he
 feon. Compling is adjust bug bend-
 to bring the roil nearer tor we farther from L_{1}. The ampline stumblat be atinsten sa that with the swith in the "recence" pasition the aspillator groses into superrequmation smonther if the empuling is too tight it maty not he possible to whtain superregeneration
loft of the tif. sertion powed to be more of at refinement than a neersaty, aml may be replated hy a tightly-conplad fived link. Grind leaks for the 6 (thare moment directly on the
 witput leats for the virenit are cabled ame fed

The ambion sombon, shown at the right in Fig. Iffl, is momed on :m almminum chassis cut froms ! whath stock five inches wide. It has a! e-ineh lip at the front for sermine to the panel amban -inela vertiral member at the ear. A cut-out int the chasisis provides aleatane sume for tha speaker. Wha do. andio-input there is at the left of the andion seretion and the (i)ㅇ output tube is ons line with :uml to the right ol the क. क5.

Iooking at the buttom of the dhasic, Fig. 16.10. the outputtube surket is at the left with the 6.J.) socket monaterlat the watrenter. The transeriver tramsiomer, T_{1}, is at the right and the output tathaformer, \mathscr{F}. can be seen protruling through the chitsisis at the back and centor. The motpility comdenser, C_{7}^{\prime}, rests on the base hetwern the talue
 rondenser, C C. lios aquinst :m! ! pratlel to ther mear wall of the risamis.

 enm of the elamsis wath. An andianay battery mber complatis the divelita from these poibis for the externath power supply.

It is prosiblat that in at patemation latout sume experimentation with r.f. commonent values will be neressary. Dinedive supervewnemation dopends comsiderably on the grint cholie, and the number of tums ased slowald be adjusted so that the collt

Fig. $16 \%-$ An inside view of the $235-$ Mc. transceiver.

(C A Disk-Seal Tube Oscillator for 144, 235 and 420 Mc .

At freguencies above 300 Me . or so tulnes of conventional comstruction will not operate, for the reasons omblimed at the begimming of this
 will function niewdy fowever, in ordinary
and a $1 / 1$-inch hole drilled in the side. Holes we drilled at right :ughes to the lare holes and tapped for $6-32$ sotwrens. The : hole fits ower the plate rap wif the thine, amd the $\frac{1}{4}$-inch hole slides wree the end of the plate res. The reme half of the paralles line is appoximatrex and ineh shorter than the phate

 plished hy the homemade variable condenser mounted at the end of the lines near the tubse.
linear circuits at frecpuencies ap to several hundred moracereles. No sperial tepes of circuit construction (such ass cavity resonators) are required, therefore. When disk-seal tubes are used in the teo-Me band.

Details of construction of a thamsmittor using the $2(11$. for operation in the 141 -, $235-$ and t20-Mc. bands. are wiven in figrs, 1642-1645, inclusive. Lising parallel lines, it is only necessary to change the powition of the slomting bar to obtain output on aby of the three bands. The shorting bar is moved to a proviously-ealibrated point on the limes and Incked, and then any frequeney within the amaterur band is whatined by proper setting of a thang comdenser commeded ardose the limes at the point where they commeet to the tube. The antemat roupling loon is comorened to the shorting har so that the two are moved simultaneomsly.

The rireuit is shown in Fir. 16t2. It will be recomized as the eonventional rirenit used in most 1/t-Me. mar. The only critical compomont in the usit is RF're, the gride choke. There is an optimum value of choke for any one frepuence, with which maximum output will be whtained at that fremurney, but the value shown is a groed compromise for the threce-bamel range of this transuittor. 'The cathote is ahowe emomble by $R P C_{3}$ and $R F_{C}$, but these inchators are net aritical.

The tramsmitter is built rim a $0 x$ 28×1-ime hatat. "ha "eold" emals of the latincth rombe used in the line are supportal be twa pancl buskang: monated in an almminum harket whidh is fastened to the bisetmated. These two patel bushings are of the lowhing type and nata" it a simphe matter to position the rods property. The phate rod is terminated at the plate and in a hole in the plate cap. The plate cap eonsists of a $\frac{1}{2}$-inch lenath of $\frac{3}{4}$-inch diameter brass rod with a 3 s-inch hole drilled in the renter

The erid end of the line is supported by a small polysterene post, and the prid socket is made. by forming a narrow baml of copper aromm! the grid disk of the lighthouse tuhe and tighoening it with a 2 -5 6 machine serew and hut.

The shooting bat for the paralled lines is mate of two locking-type pand bushings sot in a copper strap. These bushings are tightemed just enough to insure good eontact able still allow the biar to slide without too mued efinet. It is imperative, tharefore, that the two rods be smooth alld st mifht, although they can be cither brass rod on brass tubing. The roaxialcable commector for the antomat feed line ambl the antemat lonp, are mounted to a pioce of brg-inch bakelite bolted to the shontang bire. The sutenna hop rides under the lines so that it will not hit the tuming comblenser when the shorting hat is hear the comblenser. The size of the loop maty vary with dilïerent antemats, but it shoulal be atosinf 2 inches long and spaced the same as the lines. The compling ean be increased be bending the loop doser to the lines.

The tuming condenser is of the split-stateor type with the rotor floating. The stator plates consist of twe strips of eopper , ${ }^{16}$ inch wide by. I inch lomge formed in two ares amed soldered to the tuning rods (nede Fig. 1645). The rotor

$\mathrm{KFC}_{1}-\mathrm{I} 3$ turn* Jo. 18 anam., ! 4 -inch diam., clomewomel.
$\mathrm{RFC}_{2}-5$ turns No. 18 cnam., 登-inch diam., spaced
RFC3, RFC_{-1} - R.f. whoke (Ohmite Z-I).

Fig. loft - A close-up view of the tuning condenser of the threc-hand oscillator also shows the details of the sorket mounting and tulue conncetions (IV II)BM).

Oscillation can be determined by using a small neon bulb or a flashlight lamp and loop of wire held close to the lines. Grid cirm rent is also an excellont oscillation indiator. If no oscilhation is obtained, it probably means an inooreect grid choke, and its construetion should be checked or monlitied slightly. 'lo got the best eflariency, paribularly on any anc hami, may require some slight revision in the inductance of the grid choke or in the value of the r.f. br-passe eaparitors, the effect of such changes being cheoked by watching the output as imdicated by a lamp load and the input as indicated hy a mater milliammeter. Tuning up shmulal be done at re-
uses a piece of 3 /inch diameter polystyrene rod through which is drilled : 'i-inch dianeter hole for a bakelite or polystrene shatit. If desired, the solid polystrene wan be replaced by a 3^{3}-inch diancter coil form by cementing a disk of polystyrene to the open end of the coil form.

The rotor plate a " H "-shapedstrip of "oppor one incll spuate, is formed and then eomented to the polystyreneform. I " 1 "'shaped piece is nocessary beramse it wat foumd that at 150 Mc . a celindrical rotor actod as a capmitor plate as it was finst bought near the stator phatas, but as rotation continmed the roter beran to act as a shorted turn in the fiold of the lines. thus comberating the eflee of the adilitionall capacity and limiting the tuning range to only a small frequency variation. 'Two metal brackets with patuel bushings are wed to support the rotor shaft. It is a good ideal to monnt the patmel bushinges in shots rather than the usual clearance holes. so that the shatt ram the moved towath the stator plates until the desired capacity range is obtained.

The tube socket is mounterd on an aluminum bracket which is serewed to the basporate So conneretion is made to the r.f. catheme ronmertion because the osillator was found to work better wor the entire ramge that was:

Forred ventilation must be used on the tabe if anching like the rated maximm input of 20 watts is to be used. ds mush of the plate heat as possible must be rondueded away by the phate rod, and for this reasom the romesetion between plate and rod mast be ata good an possible from a heat as well as an elecetrical standpoint. The foreed rentilation of the plate can hest be ohtamed be the use of a small clectrie fan whose bast is directed at the plate commetion whenever the plate power is applied. A small blower tuln ean he rigend up from stiff cardboard and attanher to the fan.

Fis. If.45 - Constructional and asambly delaitio of the tuming eapacitor for the $1+1,235 / 420-$ Ne. oscillator.
dured platre voltara. :aly around 250 or 300 , at which value the lomedel phate current should 1 run arennel ioto 20 mat, after which the maximam input of 40 ma , at a 00 ol volts can be aphlien if comsibered nomessary.

A good set of Lerher wires or an aceuratelycalibutad absurptom waveneter is cescontial for finding the different amateme hands. Although a wite line is prob:atly the most conveniont for the 144 - and 2:3-Mra, bands, a more rigid line for the $120-\mathrm{ME}$. band ran be mado hy using 1,4-inch rod or tubing, supporting it in the samse matmer that the tuned cironit is supproted for the aseillator. Niter the uscillator has: been calibrated, a cardheat somberathe adhed to the baseboard and the positions marked for the thre amatome bands. The approximate setting: on the shorting bar follow:

```
Inslunme from ron', ! flom
```



```
        l1 inelies 
        Frcguency Range
    138-15% M1*
    21:--4.5"
    415-452 "
```

Considerable care must be exereised in moving the shating bat (amt in removing the tube from its somet beramie of the pussibility of breaking the tube sarals,

Chappter Severnteen

U.4.7. Aulermas

C. Design Factors

While the basie primeiphes of antenna operation are cesentially the same for all frequencies, certain factors peculiar to v.h.f. work call for changes in antemna technidue for the frequencios above 50 megracyeles. Itere the physical size of multiedement irriss is reduced to the point where an antemua system having some gain over a simple dipole is possible in nearly every location, and experimentation with various typers of arrays is an important part of the program of most progressive workers. The importance of high-gain antemmats in v.h.f. work camot be overemphasized. A good antenna systom is often the sole difference between routine operation and outstanding success in this field. l3y no ot her means: (:m so large a return be obtained from a small investment as results from the erection of a rood directionalarray.

Beginning with the 50-Ma. band, the frequency range over which antemmat armas should oprerate effertively is often wider in pereentage than that required of lower-frequency systems; thas groater attention mast be paid to designing arrays for maximam frequency response, possibily to the extent of sacrificing other factors such as high front-tobatek ratio. As the frequency of opration is increased. losses in the tramsmission line rise sharply: hence it beromes more important that the line be matched to the anteman sustem correctly, Because any r.h.f. transhassion line is long, in terms of wivelength, it is often more coffortive to use a high-gain array at relatively low height, rather than to employ a low-gain systrom at great height above ground, particularly if the antema location is not completely shielded by heavy foliage, buildings, or other obstruetions in the $i \mathrm{~m}$ merliate vieinity. This conerpt is in direct contrast to carly notions of what was most desirable in a v.h.f. intenna system. An appreciable clearance above survouding terrain is desirable, but great height is by mo moans so all-important as it was one thought to be. Outstanding vesults have bern obtamed by many v.h.f. Workers, especially on 30 and 141 Me., with antennas not more than 25 to 40 fert above ground.

C. Polarization

Practically all the carly work on frequencies above 30 Mc. Was done with vertical antemas. probably becauso of the somewhat stronger field in the immediate vicinity of a vertical
system. When v.h.f. work was confined to almosit pure line-of-sight distances, the vertical dipole produred a stronger signal at the edge of the working range than did the same antemna turned over to a horizontal position. With the advent of high-gain antemnas and extended operating ranges, horizontal systems began to assume impurtance in v.h.f. work, esperially in parts of the country where a considerable dagree of activity had not already been extablished with verticals.

Numerous tests have shown that there is very litele diffrrence in the effective working range with wither polarization, if the most effeetive element arrangements are used, and the same polarization is emploved at both ende of the path. Vertieal polarization still hats its alherents among bo-Me, enthusiasts and much fine work has been done with vertieal antennas. but an effertive horigontal array is somewhat easier to build and rotate. Simple 2-, 3- or tedement homizontal arrays have proven extremely effective in $50-$ Mc. work, and the postwar era has seen an increase in the use of such arrays which hats amounted to standardization on horizontal polarization.

The pieture is somewhat different when one goes to 114 Me. and highor. At these frequencies, the most effertive vertiral systems (those having two or more half-wave elements, vertioatly starked) are more easily erected than on 50 Me . Important, in considering the polarization question, is the existence of countless $144-\mathrm{Mr}$, mobile stations, whose antennal systems must, of necessit y, be vertical. While horizontal polarization will undoubtedly find increased favor at I 44 Mc . and highor. particularly for point-to-point work in rural aroas, it is probable that vertiral polarization will contimu to dominate this field for some years to come. Under certain conditions, notably a station directly in the shadow of a hill, there maty be a considerable degree of polarization shift. but ordinarily it may be assumerl that best results in $14+4-$ Mc. work will be obtained by matching the polarization of the stations one desires to contact.

C. Impedance Matching

Burause line losses tend to be much higher in v.h.i. antenna systems, it becomes inereasingly important that feed lines be made as nearly "flat" as possible. Transmission lines commonly used in v.h.f. work include the open-wire line of 500 to 600 ohms impedance. usually spaced about two inches; the polye-thylene-insulated flexible lines, available in

300-, 150-. and $72-o h m$ impedaners: and coaxial lines oif at to 90 ohms impedance. These may be matehed to dipole or multielement anlanas liy any of several arrangements dea alled bedow:

The " $\boldsymbol{J}^{\bullet}-$ ["- -d principally as a meanse of fording a stathonar romical radator, arombl which patrasitic clements are motated, the "J" consists of a half-wave verdical radiator fod hy a quatrer-wave matrhing serian, as shown al . , Fing. 1701. The spating between the 1 wo

sides of the matrhing serdion shombl be two inches on less, and the point of altadhment of the feed line will depend on the impedtane of the line usod. The ferder should he shid atong the matehing section until the point is found which grives the be:s operation. The botom of the matehing sertion may be groumbed for lishtnins protertion. A variation of the "J" for we with matial-line fered is shown at 13 in Fig. 1701. The " J " is also useful in mobile applications.

The delfa or "Y" match - Probably the simplest arrangement for teerling a dipole or parasitice array is the bamiliar delta, or " $\mathrm{I}^{\prime \prime}$ " mateh. in which the foeder sysmem is fanned ont and attached to the radiator at a point where the impedaner along the ebement is the stame as that of the line ued. Intormation on firmoing the dimusione of the delta maty be found in Chapter Ten. Chiof weakmess of thedelat is the likelihood of radiation from the mathehing seefion, which may intertare with the effectiveness of a mulliolommont arrasc. It is alsa somewhat anstable merhanically, and quite critieal in adjustment.

The "o" serfion - An difortive arrangement for matrhind an open-wite line to a dipolde. of to the drisen rlement in a 2 - or 3 woment array having wide (0.25 wavelengih of greater) sparing. is 1 le " (!" sectiom (Chat)ter 'lom). This comsiste of a quarter-waye line. usuatly of $\frac{2}{}$-ind or larger tubing, the spacing of which isdetermined by the impedanee at the renter of the arras. The patallel-pipe" "?" sertion is not pratetical for matching multielement
arrays to lines of lower impedanes than about 600 ohms, nor can it be neved effectively with chosespared parasitic armes. The imperdance of the "(Q " section required in these cases is lower than can be obtained using parallel sections of tubing, but a concentric line may be used for this purpose. A quarter-wave ser ion of flexible conatal line of 72 whms impedaner is a convenient arrangement for matching a 300 to 600 -ohm line to the low erontor impedance of a :3- or t-element array. Thue lenght of such a linn will be approximately 6 per cent of a quater wavelengh or

$$
L=\frac{1920}{f_{\mathrm{Mc}}}
$$

Where L is the benglh of the line reduired. in innlow. This fimure takes into arronut the propamaton tactor of the solid-dieloctric coasial line. Fior the line made of parallel pipes, length in inchers is determined by

$$
L=\frac{2 s \times 0}{f_{\mathrm{M}}}
$$

The "TT" mateh - The prineipal disadvantages of the delta stistem wan be wereome through the the of the arrangement shown in Fig. 1712, commonaly eallod the "T" match. It has the sulvantage of providing a means of adjustment (he stiding the elips along the parallel conductors). yet the radiation from the matehing arrangement is fower than with the delta, and its rigrid construetion is more suitable for rotatable arrays. It may be used with coaxial lines of any impedamer. or with the various other forms of trammisson lines up to 300 ohms. The prosition of the elips should, of course be adjestal for maximum loading and minimum standing-wabe ratio. The "T" system is partioularly well suited for use in all-metal "plumbing" "aratys.

The folded dipole - I'robably the most effective meathe of matching a wide rature of line imperances to atmost any sort of patasitic array is the folded dipote (lins. 1702 , 170)3, and 1704). deseribed in Chaptor Tem. I 30towhm line may be wed to feed a teelement array (Fïn. 1703) hy neing bitinch rod or tubing for the fed sertion of the folded dipole and 1 -inch tubing for the parallel seetion. I :3-chement army of the same gemeral construction may be mascheal by using : ${ }^{2}$-inch tubing for the parallel section of the dipole.

The imperanace at the center of the sestem may also be increased bex using threr or more dements in parallel, the conter impedance being inereased approximately as the sfuare of the number of clements used. This applies only if

Fig. 1.0!- 10 tails of the folded dipole.

the elements are all the same conductor size.

(C. Arrays for 50 Mc .

Since the samm basie primiphes apply to all anteman regardens of freyumery. little discusion his givell here of the varions simple dipeles which maty be wed when nondiredtional sy:tems are desired. Dataik of such antembas may be found in Chapter Tren, and the onls monditication neressary for adaptation to use on 50 Mc . or hagher is the redection in length necessary for incerased conductor deameter at these frequmater.

A simple but elfertiw arraty when mares no math hing arrangenent is shown in Fig. 170.5. Its design takes into arcomet the drop in wonter impedance of a half-wave radiator when a parasitice whent is plateal a quarter Wavelength awas. A director demant is hown, as the drop in impodince usings a shathtyshortened parasitic chement is just alout right
 line. The dement longthe are mot extremely rritical in such at simple systom, and the ligures shown may be used with satisfactory of sults.

The importance of broat frequency response in any antema dexigned for v.h.f. work camot be overtooked. Tha disadvantage of all parasitie systems is that they tend to tume quite sharply and thes ano often ofliwe ive over
only a small portion of a given band. One way in which the respomese of a syiten cam be broadamed out is to incrate the sparing between the marasitie clements to somewhat more than the 0.1 or 0.15 wamengeth normally connidered to previde optimum forward gain and highest front-to-back ratio. Sume bemaleming maty alsis be obtained by making the directors slightly shorter and the reflewtor slighty longer that the optimnm value. The fohterd dipule is unerul as the radiator in such :an arma. as its frequeney response is somewhat bumber than other typers of driven edment-

A feremont array fion of Mre, hatime an affertive oprating ramge of about 2 Mr is shown in Figs. 1703 and 1704. It employs a

 matchaty devices are neeted with thi- atrabmellone.
fodded dipole having momumiorm comductor size. Refleetor and first director tres sparond 0.2 wavength from the driven element. while the forward director is epaced 0.25 wavelength. The sparing and element lengths given were derived experimentally, and are these which give optimum forward gain at the expense of some front-to-bark ratio. As the latter quality is mot of great value in oin-.Mr work, it can be negle etted entirely in the tuning procedure for such all armay.

The dimensions given are for peak performance at 50.5 Mr. Fon other frequencios. the length of the folded dipole should be figurect :a rocommended in thap our Ten. Thereflector will then be a per cent louger than the driven eld-

ment, the first director 5 per cent shorter, and the second director 6 per cent shorter. A broadening of the response may be obtained, at a slight sacrifice in forward gain, by adding to the reflector lengt hand subtracting from the director lengthis. For those interested in experimenting with element lengths, slotted extensions may be inserted in the ends of the various elements, other than the dipole, as shown in Fir. 1706. A 3-element array may be built, using the same gemeral dimensions, except that the driven clement, in this case. should have a 3 -inch diameter element in place of the 1 -inch tubing used in the 4 -element system.

Fig. 1ank - Detail drawing of inesets whith may be used in the ends of the elements of a paratitic array to permit aceurate adjustment of element length.

Excellent results in work over distances up to 400 milos are being obratned by 50-Mc. workers using various more-complex directional arrays than the ones deseribed above. The most important factor in such work is the attamment of the lowest possible radiation angle, and this purpose is well served by stacking of elemente, in wither vertical or horizontal systems. The use of two parasitic arrays, one a hali wavelength above the other, fed in phase, provides a gain of 3 db . or more over that of a single array. The system shown in Fig. 1707 is exerllent for rither vertieal or horizontal polarization, as is the "II" array, using four hali-wave elements, with or without parasitic elements.

Fig. Ba^{-}- A double "O" array for 141 Mce, The horizombal pertion of the half wave "ll" acts ats a "0" are tion. math hing the antema impolance to the 300 -ohm line attached at the enter of the array. This array works well in either vertical or horizontal positions.

C. Arrays for 144 Mc.

Any of the above arrangements may, of course, be used for $14 t$ as well as for 50 Mc., but, as two of them are designed for maximum rffectivences in a horizontal position, other designs maty be used more effertively where
vertical polarization is employed. To obtain the lowest radiation angle with vertical systems, these comprising a number of half-wave elements fod in phase are most useful. An important feature of such systems is that they are not so sharp in frequency response as are arrays having two or more parasitic clements in the same plane; consequently, adjustment of even quite complex systems such as the 16 element array shown in Fig. 1708 is not at all critical.

Pathe reflectors are usable at 144 Mc., their size at this frequency being within reason. An interesting possibility in connection with this type of reflector is its use with two different sets of driven elements, one on each side of the reflecting screen A sot of clements arranged for vertical polarization may be used on one sidu, rud a sel of horizontally-polarized eloments on the other. or the plane reflector may be made to serve on two different bands by a similar arrangement of chements for two frequencies, on opposite sides of the reflector. The smeen need not be a solid sheret of metal, or even a close-mesh serem. A sot of wires or rods arranged in back of the driven clements will work almost equally well. The dimensions of the reflector are not critical. For maximum effertiveness, the plane reflector should extend at least if waveleneth beromed the area oceupied by the elements, but roflerting curtains no larger than the suace orecupiod by the reflectors shown in fig. 1708 have been used with good results.

In designing directional arrays having more than one driven element it is advisable to arrange for feeding the array at a central point. A simple (i-demont aray of high performance, inemperating this promple, is shown in Fig. 1707. All the edements may be made of softcoppor tubing, ${ }^{4}$ inch in diameter. The driven elements are comprised of two piones which are bent into two "L""-shaped sections and arranged in the form of athalf-wave "H." The horizontal portion of the "H" is then a double (parter-wave "()" seetion, matehing the impedance of the two radiators to that of the fred line. With the wide spacing used, the position of the parasitic elements is not particularly (ritical, exerpt as it affects the impedance of the system, and the sparing of the elements may be varied to provide the best matrh. The spacing of the horizontal section may be varied for the same purpose. With the dimensions given, a spatcing of ome ineh between centers is abont right for feeding with a 300 -ohm line. The radiation pattern of this array is similar in both horizontal aml vertical planes; thas it will work with equal effectiveness in either position, provided the polarization is the same as that of the stations to be conticeted.

By using a curtain of cight half-wave elements. arranged as shown in Figs. 1708 and 1709, backed up by eight reffectors, a degree of performance can be obtained which is truly

V.14.7.
 Anlennas

Fig. 1 708 - A loeeloment array for 114 Me., showing supporting structure and "rotating merhanism." sash cord wrapped three times around the rise-rrose pulley permits 360 -degree rotation.
outstanding. A gain of as much os 15 db. can be realiged with such an arrangement, effecting an improsement in operating range which could never be obtained by any other mema. such an array is nether dillicult nor expensive to canstrat, ame its performance will morn than ropaty bee bilder for the trouble involved in its consi ruction.

The cumbersome nature of the structure required to support such ath array woutd mathe fos collatatiom bat of the gutesion for a lower frefuentey, but for 144 Me. the outside dimensions are only $1 \frac{1}{2} \times 7!\frac{1}{2} \times 10$ fert, :lnd the supporting frame can lue mate quite light.

The renter pole (a 1 1/2-imoh rug pole 10 feet long) turns in throw bearings which are mounted on braced arms catending out about two feet from a "two by three." which is braced in a vertical position. An improvised pulley made of two pieres of 1×2-inch "furring" notched in the embs :and fastened crisscross fashion near the bottom of the center pole serves as a "rotating meromism." Sash cord wrapped three times around this "pulley" and run over to the window on small pulleys allows the beam to be motated more than 360 degrees before reversal is required. To berep the array from twisting in high winds light sash cords are attached near each end of the supporting structure. These cords are brought through the window near the rotating ropes and are pulled up tight and fastened when the antenna is not in use.

The elentents are of $7 / 16$-ineh soft-aluminum tubing for light weight. To stiffen the structure, and to help to mantain aligmment, inserts were turned down from $\frac{1}{2}$-inch polystyrene rod to fit tightly into the elements at the point where the cross-over or phasing wires are connected. Similar inserts are used for the reflector elements also. The interconnerting plasing sections are of No. 16 wire, spaced about $11 / 2$ inches. The feed line, connected at the center of the system, is Amphenol 21-0.if Twin-Lead, 300 ohms impedance. The impedance at the center of the array is about right for direct commention of the 300 -ohm line, without the neeessity for a matehing section of any kind. It is probably somewhat lower than 300 ohms, actually, and
if a merfect matteh is desired, a " Q " section may be used. The probomance is not ereatly afficted by such a changre, as the standingwave ratio is relatively low with the connection as shown.

The center section of the array may be used without the outside 8 clements. if space is limited, and a simpler array of good performance is desired. The simple "II" with reflectors may also be fed with 300 -ohm line without the mecessity for sperial matehing devieces.

Fig. 1 :09 - Schematic of the radiating portion of the 16 olement lithe array. Reflerturs are omitted for clarity. Radiators are 38 inches long, reflewtor: 40.5 inche\%. (irns-onver or phasing sections are also 40.5 inches long, Reflectors are mounted 17 ineles in back of cach radiator.

(1) Mobile and Portable Antennas

A common type of antenna employed for mobile operation on 50 and 144 Me. is the quarter-wave radiator which is fed with a coasial line. The antenna, which may be a flexible telescoping "fish-pole," is mounted in any of several places on the car. The inner conductor of the coaxial line is connected to
the alltenna, aml the outer eondurtor is grommed to the frame of the ear. Quitu a gomed match may be obtament by this mothon with
 aver. it is wall to providu some means of that-

 ment consist of a variable combenser eontnected betwern the low side of the transmitter roupling emil and gronnd, as shown in fitig. 1710. This comalensor should have a maximum

Fig. RIO- Wethod al ferding riatrorwave mobile

 is an aljuatable linh.
(abluity of 75 to $100 \mu \mu \mathrm{fl}$. for 50 Ma .. amd should ine adjusted for masimum lomaling with the latist rompling to the transmitter. Smme methond al varsing the ronpling to the transmittar shomble movided.

The shert antomat reduired for $1 / 4$ Me. (approximataly 1 ! inchos) promits monating the antemat on the top of the c:ar. sureh an atr-
 rertions. the are bouly atoting as a ground phane. When the antemata is monnted deewhere on the rato it is apt to shan quite matiked dimetional chatrataristies. Becamse of this it is desitable to make perisions for the
 amd remeving.

The best antenna pesible for operation under motile comblitons is not pationlaly afoe-
 mally used in fixerl-station work. To make the mose oi the fine oppormatites for DS work alfombed be emuthos highoaltitude locations which : some sult of collapsible athlomat army which can be asiambled "on the spot." Liveria at sim-

Fiz. 1:/1- A 2 -dement collapwille atray for 50-Mc. portatble use.
ple array like the one shown in Figs. 1711 and 1712 will effect a erreat imprownomt in the operating range of the low-pownerl gear normatly used for monile uperation. This one is devigned for aro-Me. Hsc. but similar armagemonts an be made for other frequencies.

The arrate shown is a 2-4hement systom. comprisul of a radiator whinh is fod with cosaxial
 Which is spaced 0.15 wamelohgth in back of the
 daval thbiner, exopt for the vertioul support, which is 1 -ituch tubing of the same material. A sugented mothod of monnting is shown in Fige 1711 . 1 short lempith of 1×2-inch or lareer wood is bolted to the car hamper. A piaco al ${ }^{3}$ 每-ind dural tobhing is bolterl too this upright, and the 1 -imeh vertizal seretion of the array dips over the top of the : ${ }^{2}$-inch seetion. The arraty is turned by meins of ropes attitched

FiL. 1 :İ - Deqail draning of the
 By. $1: 11$. 111 parts csept the vertical -ugurt. whin is I inch in diamber, are mate of ${ }^{3}$ fonch durahumin tubiner. For rarrying purpow... it is tahorn apart at Proint".": and "B."in-ras of -lotted dural thbins berine ured at Point "t to homd the -rtion- logellaer. All $\cdot x$ twoms ary the same lanath. the dilfremere in chement lonsth lueng provided by the length of the center antions.
to the reflector element. IIeight of the array may be increased over that shown be using a longer wooden support, in whish case it is desirable to use a 2×2 for greater strength. An anchoring pin made from a spiko inserterl in the hottome end of the wooden suppert is helpful to provent tilting of the array. With surh at device embedded in the gromad, the whold assembly will remain rigid, whirh is hempal in the high winds usually emoomered in monn-tain-top lowations. Portabilit.e is prosideal by making the choments in three sections, with the comd seretions atl the same lengeth. The renter seretion of the randiator is (6 inches shomer than that of the restertor.

The led seretim of the "T" mat ching devire is composed of two pieres of 3 在-ineh dural thbing about $1 . t$ inches long. The two sections are hedd torether mochamicatly, but insulated eleetriablly, by at piece of polystyme rod which is tumed down just anough to make a tight fit in the tubing. The immer and outar comblurtors of the comaial line arr fastemed to the two insiale emds of the matchiner sertion. Clige made of spring bronge are used for conneetion hetwoen the radiator and the "T." The position of these should be aljusted for maximum lowding and minimmm standingwave ratio on the line. The ideal for this array
 Kinks, ${ }^{\circ}$ April, 1916. (S.ST, page 14 S .

©. Miscellaneous Antenna Systems

Comial antromas - With the "J" antoman radiation from the matehing sertion and the tramsmission line tents to combine with the radiation from the antenna in such a way as to raise the angle of ralistion. At v.h.i. the lowest possibhe radiation amgle is ossential, and the coaxial antemata shown in Fت̈g. 1713 w:as developed to eliminate forder radiation. The menter condactor of a 70 -ohan concoutric tramsmission line is rxtemted ont-quather wate beyond the and of the line. to ate as the upper hati of a half-wave antemata. The lower half is provided by the duater-w:avesteeve, the uper ehel of which is commerterl to the buter eonductor of the conementre line. The ELerveacte:as a shiedd about the tramsmission line and very littlo current is indued on the outside of the lime by the antelnal firld. The lime is nommesto nant. since its characteristic imperdinme is the same at the ernter imperdater of the hati-wave antemata. The sleove maty be mathe of eoppor or brass tubing of suitabla diameter to dasur the tramsmission lime. The maxial anteman is somberhat diflimalt to construct. but is suprerior to simplers sestems in its performance at low radiation angles.

Culimlrical amtromas - Radiators sum as are bed for television and broad-band fom. ate of interest in amatelur v.h.f. operation breanae they work at high eflicionory without adjust ment theruthont the width of an amateme ham.

At the ver-high frequencies an ordinary di-
pole or equivalent :artemas male of small wire is purely resistive onlv over a very small frecuency range. Its (), and therefore its selestivite: is sufficiont on limit ins optimum pro formance to a namond frequency rather, athl reatjustment of the lengh or hang is raguted for rateh natrow slice of the serelomm. With tumad trathomission limes, the affertive kench of the allocrmat cantoshifiodter romaing the whote systam. However, in the extse oi antennas fod by mateher-impedame lines. any appreriable freopucney chater mo quires an athlal mochamient adjusiment of thresstem. () herwise. ther roulling mismatheh with the line will be sulficiont to rauso signifieant veduetion in power input to the antemna.

Fis. 1.1.3-((inalvial
 innor rondurtur of the 70-ohmentombric line is enmmereted to the quarterewave metal rod which forms the upper hall 10 the anteman.

A properly doximed and convelumed wildeband amtemat, on the other hand. will exhibit very meaty comstant input impedance over several megrarydo.

The simplest methend of ohtaining a broadband chanamoristia is the use of what is formed a "rylimdrical" antrmat. Whis is no move thatn a conventional double in which lare-diameter tubing is usel for the elementis. The use of a relatively targe diameter-folength ration lowers the (f) wh the :mtemas, thas broadening the resoname dhatateristice.

As the diameter-10-longt hatio js increaserl, end effects also inerease. with the result 1 hat the antemat mast be made shomer than a thinWire antenna resmatomg at thesame frequener. The reduction latom may be as murh as 20 per rent with the tuhing sizes commonly used for amaleur antemas al v.h.f.

Come ampmoms - Jrmom the crlimarimal antemat various sperialized forms of brondly res-

Fig. I:It-Comiall hromehand antemas have relatisely romstant impedance oner a wide fromeney ranore. The thre-dinarter "awelengh dipole at left and the quarter-wase sertical with ermmel plane at riwht have the same input impedane - approximately 6.5 ohms. Sheet-metal or spine-t? pe constrution may be used.

Fig. 1715 - Plane shert rellectors for v.h.f, and u.h.f. A shows a parabulic sheet and B a square-corner reflector.
onant radiators have been evolved, including the ellipsome sphoroid, cone, diamond and double diamond. ()f these, the cunical antenmat is perhaps the most interesting. With large angles of rewohation the charameristio intpedance con be reluced to a very low value suitable for extremely wide-band operation. 'The cone may be made upe either of shect metal or of multiple wire spines, as in Fig. 1714.

Plome shoet reflertors - The smatl physical size of v.h.f. ancmana makes practioal many methods not fasible on lower forguencies. For example, a plame flat-sheet reflector may be used with a half-wave dipole, obtaining gains of oto 7 (b). Murh hisher gatins are attainable with a number of stacked dipoles, spared 1/4 or ${ }^{3}$ 年 wavelength apart, and a larger reflecting shect: such an arrangement is called a "billboard" array.
lane reflechone noed not be eonstrueted of solid sheets. Wirw mosh. or a grid of closelyspaced parallel-wire spines, is more easily ereeted and offers lower wind resistance.

Parabolic reflectors - it plane sheet may be formed into the shape of a parabolic curve and used with a driven radiator situated at its foruz, to provide a highly-directive antonna system. If the parabolie reflector is sufficiontly large su that the distance to the focal point is a number of wareldengths. optical conditions are approarhed and the wave across the mouth of the reflector is a plane wave. However, if the reflector is of the same order of dimensions as the oprating wavelength, or less. the driwen radiator is appreciably coupled to the refleeting shert and minor lobes oceur in the patterm. With at aperture of the order of 10 or 20 wavelengths, a bean width of a degrees mat be achicted.

A reflecting paraboloid must be carefully designed and constructed to obtain ideal performance. The antema must he located at the focal point. 'The most desirable focal length of the parabola i:: that which places the radiator along the plane of the mouth: this length is equal to one-half the mouth radius. At other focal distances interference fichld may deform
the paltern or cancel a portion of the radiattion.

Corner reflectors - The "romer" reflector consists of two flat condurding sheets which intersect at a designated angle. The corner reflector antenna is particularly useful at v.h.f. whore struttures one or two watelengthe in maximum dimensions are more practical to build than larger systems.

The phane surfaces are set at an angle of 90 degrees, with the antemna set on a line bisecting this angle. For maximum performance, the distance of the antennat from the vertex should be 0.5 wavelength. but compromise dexigns can be built with closer spacings. The plane surfares need not be solid sheets: spines spated about 0.1 wavelength apart will serve as well. The spines do not have to be connected together eloetrically.

If the driven radiator is situated on a line biscoting the corner angle, as shown in fig. 1715, naximum radiation is in the direction of this line. 'lhere is no focus point for the driven radialor, as with a parabolic reflector, and the radiator can be placed at a varicty of positions along the bisecting line.

Corner angles larger than 90 degrees can be used, with some deerease in gain. A 180-degree "corner" is equivalent to a single flat-sheet reflector. With angles smaller than 90 degrees, the gain theoretically increases as the comer angle is decreased. Howner, to ralize this gain the size of the reflecting sheets must also be inereased.

At a sparing of 0.5 wavelength from the driven dipole to the vertex. the radiation resistance of the driven dipole is approximately twice the radiation resistance of the same dipole in free spare. Sinallar spatings of driven dipole and vertex are practical, but at a slight sachifice in efficieney. The alternative design for the 144-and 50-iIc. square-corner reflector has a dipole-to-vertex spacing of 0.4 wavelength. At this sparing the driven dipole radiation resistance is still somewhat higher than its frec-space value, but is consiterably less than when the spacing is $0 . \overline{\mathrm{j}}$ wavelength.

Emergency and Portable

Emergency self-powered equipment is no longer a nice toy to play with when regular amateur activities pall; it has become the moral obligation of every amateur to be prepared in case of any communications emergency. Large-scale disasters in the past have demonstrated the tremendous value of amateur emergency stations in relaying relief messages when all other communication channels are closed. Aside from the all-important emergency phase, the use of portable equipment has been extended through organized activity in the annual ARRL, "Field Days," and the problem of providing equipment suitable for use in rural districts, where commercial power is not available, has always been with us.

The most vital need for self-powered equipment occurs in comnection with emergency activity, and the basic design of all such equipment should be predicated on emergency use Every amateur, no matter where he may be located, can reasonably expect that sometime he may be called upon to perform emergeney communications duty, and it is his responsibility to the public welfare, to himself, and to amateur radio as a whole to see that he is in some measure prepared.

It is not to be expected that every amateur will prepare himself for an encrgency by having available a complete and separate selfpowered station. although a large number of individuals and club groups do so. Thare is, however, no reason why every amateur camot prepare his station for an emergency by having an emergency power supply ready and a quick means for utilizing all or part of his regular station equipment as an emergency-powered station. The emergenry power supply can he anything from a small vibrator supply and/ or batteries to a large gasoline-driven generator.

© Battery and Vibrator Data

The use of dry batteries, storage batteries and vibrator-transformer packs or genemotors is discussed in Clapter Eight. Table I shows the service which may be expected from stand-ard-brand dry batteries under various load conditions. Various types of manufactured vi-brator-transformer units are listed in Table II, while Table III is a listing of available dynamotors which are suitable for emergency and portable work.

(1. Construction of Vibrator Supplies

Vibrator-type power supplies are not difficult to construct. The tramsiormer usually is a speccial type designed for the purpose, all hough a heavy-duty receiver or low-power transmitter transformer may be pressed into service if it has suitable filament windings which may be connected as the 6 -volt vibnator primary. A supply may be dexigned to operate from a 6 -volt storage battery only, or a dual-prinary transformer or separate transformers may be changeably on either 115 -volt a.c. or 6 -volt d.c.

Typical circuit diagrams are shown in Fig. 1801. The one shown at A is the simplest, although it operates from a $(i$-volt d.e. source only. s_{1} turne the high woltage on and off.
The circuit of B proviles for either 6-volt d.c. or 1 15-volt a.e. opration with a daalprimary transformer. so is the a.c. on-off witeh while $\stackrel{S}{3}_{3}$ switches the heater of the $6 \mathrm{~N}_{\mathrm{i}} \mathrm{r}$ rectifier from the storage battery to the 6.3 -volt winding on the transformer. Filament supply for the transmitter or receiver is switched by shifting the power plug to the correct output socket, X when oprating from a 6 -wolt d.c. source and Y when 115 -volt a.c. input is used.

The circuit of Fig. 1801-C may be used when a duat-primary transfomer is not available. The filter is switehed from one rectifier output to the other by mans of the d.p.d.t. switeh, \aleph_{4}, which also shifts filament eomections from a.c. to d.c. The filter section of the switch could be climinated if desired by comecting the filtering circuit permanently to the output terminals of both rectifiers and removing the unused rectifier tube from its sorket. Similarly, the filament seetion of S_{4} could be dispensed with by providing two output sockets as in the errenit at B. If a separate rectifier filament winding is available $0 . T_{3}$, directly-heated rectifier types may be substituted for the fixis in the a.c. supply. In some cases where the required filament windings are not available, a rectifier of the coldcathode type, such as the 0Z4, which requires no heater voltage, may be used to advantage.

If suitable filament windings are available, a regular a.c. transformer will make an acceptable substitute for a vibrator transformer. If the a.c. transformer has two 6.3 -volt windings, they may be connected in series, their junction

384 Chapter Eighteon

forming the requiter emor-tap. A f.3-volt and a $\overline{\mathrm{J}}$-coll winding maty be used in at stailar manmer even though the jumetion of the two wimbing does not provide an acurate eroter1ap. A Better conter-tap maty be obtamet. if a 2.t-volt winding also is avaibable, since hall of this winding may be conneced in series with the $\overline{\mathrm{g}}$-volt winding to wive 6.2. wolls.
R.l. filters for reducing hash are incorporated in both primatry am! socombary cip-
 paper condetsor dimeoly across the rectitur output, with : $2 . j-m h_{1}$, rif. rhater in sumes abead of the smand hiner filter. In the primary circuit a low-inductance rbake amb hight
 low imperance of the eirchit. A choke of the
 if there is trouble with hash it mase he homeforal
 be lara - No. 12. promathy. or No. 14 as a minimmon. Manulatured dhokes sum as the

 hatl cates of hasho.
'Lhe bewer suphly shmat be bailt on a metal chatsis. with alf unshidded parts modernotth.

Fif. 1801 -Typical vibrator-transformer power-supply circuits. The circuit at A - lowe a simple arranyernent for 6 -volt der. input: the sue at B illustrates the use of a combination tran-fonemer for uperation from cither 6 volt - d.e. or 115 voltio. ance Tlue cercuit of C is similar to that of 18 but use eqparate tran- formers.
$C_{1}-0 .-$ effl panar, in-wolt ratine or higher.

(3 - 0.01-ufil. bow-wolt mapro.

(is- 1010 mulid. mica.

F - I -amprefune.
RFG;

81 - 8 p.t. turyle-bathery switeh.

Sa-spolit topele - rectilier-heater change-over twitch.
s_{4} - D. P.d.t. tosyle-a.c.-d.r. switch.
T_{1} - Vibrator trata-former.
Ta - Sperial vibrator tranformer will 115-wolt and (owalt primarios. ${ }^{(1)}$ eive approximately 300 voltsat 100 -mate d.e. (Stancor P'eloto or equiva(rut).
T_{3} - Ace transfomer, 275 to 300 volts eath side of center-tap, 1010 to 1 IN mata 0.3 .3 olt lilament.

X - Insert a - erice re-istor of -uitable value to drop the ontput voltage to 309 at lom-ma. had, if neres-
 secomad filt r choke may lue used to win adiditional voltage drop as wotl a- more amonthing.
Note - 118 gromid comoctions should be made to a single foint on the chatsis.

A bottom plate to complete the shiduling is alvisabla. Tho transformer case, vibrator case and metal shell of the tube all should be groumbed to the chassis. If a ghass cube is used it shoula! be encluad in a tuhb shiedd. The bathery leats shomble be wenly wisted, since these leate are more likely to radiate hath (hath any other part of a masomably wellshieduled supply. A little care in this resperet usually is mere prolueliow that experimenting with different values in the hash filters. Such exprimmoting shoulal come ailer it has been foumd that radiation from the hads has bewn reduced 10 an absolule minimum, Shiolding the forads is not particularly helphal.
 from lan pexition whatit latd to the "hot" side "ll the "I" hatlory, maty be helpoful in pedneines hash in revtaid powor supplices. A thial is meressary be we wherner or not it is requiral. It slatalal be manaled right on the onturn sterket.
'Tusing fon mothente of elminatind hash shamhle cariod ont with the suphly aperations

 bug ainles will permit. Thane or four forl *hombl he ataple. lime mierophome cord lisewise should be kept away from the supply :und la:uls.

The smonthing filur for battery operation can be a situge-sedion affair, but there will be

Emergency and I Portable $\quad 385$

TABLE I－BATTERY SERVICE HOURS
Estimated to 34 －volt end－point per nominal 45 －volt section．
Based on intermittent use of 3 to 4 hours daily．
（For batteries manufactured in U．S．A．only．）

Manufacturer＇s Type No．		Weight		Current Drain in Ma．											
Burgess	Eveready	Lb．	Oz．	5	10	15	20	25	30	40	50	60	75	100	150
－	386	14	－	2000	1100	690	510	400	320	200	170	130	100	50	30
	486	13	5	1700	880	550	395	300	240	165	125	100	70	45	20
21308	－	12	8	1600	1100	690	490	－	300	200	－	100	－	50	25
	586	12	2	1400	800	530	380	280	185	130	85	60	40	30	14
10308	－	11	4	1300	700	520	350	－	－	130	－	90	－	42	18
	585	8	13	900	450	290	210	130	100	60	45	25	20	11	5
2308	－	8	3	1100	500	330	180	－	100	65	－	34	－	－	－
830	－	2	8	350	170	90	50	－	21	15	－	－	－	－	－
	762	3	3	320	140	81	54	37	27	－	－	－	－	－	－
	482	2	－	320	140	81	54	37	27	－	－	－	－	－	－
A 30	－	2	－	210	80	44	24	－	14	5	－	－	－	－	－
	738	1	2	160	70	30	20	10	7	－	－	－	－	－	－
Z30N	－	1	4	155	70	30	20	15	7.5	－	－	－	－	－	－
	733	－	10	50	20	11	7	5.2	－	－	－	－	－	－	－
W30FL	－	－	11	45	19	12	7	－	3.5	－	－	－	－	－	－
	455	－	8.6	70	20	11	7	5.2	－	－	－	－	－	－	－
$\bar{x} \times 30$	－	－	9	70	20	12	7	－	3.5	－	－	－	－	－	－

${ }^{1}$ Same life figures apply to $467,671 / 2$－volt， 10.5 oz ．
Estimated to 1 －volt end－point per nominal 1.5 －volt unit．Based on intermittent use of 3 to 4
hours per day at room temperature．（For batteries manufactured in U．S．A．only．）

Manufocturer＇s Type No．		Weight		Volt－ age	Current Drain in Ma．											
Burgess	Eveready	Lb．	Oz		30	50	60	120	150	175	180	200	240	250	300	350
	A－1300	8	4	1.25	－	－	－	－	2000	1715	1500	1333	1250	1200	1000	854
－	740	6	12	1.5	－	－	－	－	1400	1200	－	1050	－	775	625	－
－	741^{11}	2	14	1.5	－	－	1100	750	－	－	－	375	300	275	215	175
－	743	2	1	1.5	－	－	750	325	－	－	－	245	－	180	135	110
－	7111	2	2	1．5	－	－	700	320	－	－	200	－	180	－	90	－
－	748	1	6	1.5	－	－	500	325	－	－	155	135	100	95	85	50
8 F	－	2	10	1.5	－	－	$11 \overline{00}$	680	450	－	－	400	－	320	230	190
$4 \mathrm{FA}^{3}$	－	1	4	1.5	－	－	600	350	220	－	－	160	－	110	90	60
－－	A－2300	15	8	2.5	－	－	－	二	2000	1715	1500	1333	1250	1200	1000	854
－	723	T	－	3.0	－	－	240	100	二	－	70	－	40	－	30	－
20F2	－	$\overline{13}$	12	3.0	－	－	－	－	1000	－	－	750	－	700	600	500
9F2H	－	1	6	3.0	600	－	340	130	95	－	－	60	－	42	30	－
$\underline{2 F 9 B B^{4}}$	－	1	5	3.0	600	－	340	130	95	－	－	60	－	42	30	－
F2BP	－	－	12	3.0	340	－	130	45	30	－	－	－	－	－	－	二
G3	－	1	5	4.5	370	－	150	50	35	－	－	－	－	－	－	二
－	746	1	3	4.5	－	200	－	－	－	－	－	－	－	－	－	二
－	718^{6}	3	－	6.0	－	375	－	－	－	－	－	－	－	－	－	－
F4PI	－	1	6	6.0	340	－	130	45	30	－	－	－	－	－	－	－

Same life figures apply to 745，wt． 3 lbs．
 Same life figures apply to 8FL，wt． 2 lbs． 15 oz．

${ }^{3}$ Same life figures apply to 4 F ，wt． 1 lb .5 oz ．
4 F ，wt． 1 lb .5 oz．
If batteries of another make are to be used，locate ones of similar size and
weight on these tables and comparable performance may be expected．
some hum（readily distinguishahle from hash becanse of its deeper pitch）unless the filter outpur capacitance is fairly large－ 16 to 32 e μ id．
A typical example of vibrator－supply con－ struction is shown in the photographs of Figs． 1802 and 1803.

All components in the supply with the ex－ ception of the four－prong outlet socket are mounted on a piece of quarter－ineh tempered Masonite measuring $33 / 4 \times 9$ inchers．This fits into a plywood box having inside dimensions （ $33 / 4 \times 9 \times 5 \frac{1}{2}$ inches）just large enough to
contain the equipment．The Masonite shelf rests on $3 / 4$－inch－square strips， $1 \frac{1}{4}$ inches long， glued to the corners of the box at the bottom． The top and bot tom of the box are removable． To provide shimding and thus reduce hash troubles，the box is covered with thin iron salvaged from $\overline{0}$－quart oil cans．Where the edges bend around the boin to make a joint，the lacquer is rubbed off with steel wool so the pieces make clectrical contact，and the metal is tacked to the plywood with escutcheon pins．

To make sure that the shiclding will be

386

Chapter Eighteon

TABLE II-VIBRATOR SUPPLIES

All inputs 6.3 volts d.c. unless otherwise noted.

1 VP-553 same with tube rectifier.
${ }^{2}$ In weatherprool case. $4201 \mathrm{B2}$ same with tube rectifier. : 180 -cycle vibrator, lightweight. 4204 same without filter. - 601 same withlube rectifier; 602 same except 12 v. d.c. input and tube rectifier; 603 same except 32 v. d.c. input and tube rectifier.
${ }^{3}$ VP- 554 same with tube rectifier, VP-G556 same except 12 v . d.c. input; VP-F5 58 same except 32 v . d.c. input.

- 42000 same with tube rectifier; 4200DF same with tube rectifier and output filter.

551 same with 12 v. d.e. input.
8 Also available without filter.

- 511 same except 12 v. d.c. input.
ic Input 6 v. d.c. or 110 v.a.c., 607 same except 12 v. d.c. or 110 v a.c. input; 608 same except 32 v . d.c. or 110 v . a.c. input; 609 same except 110 v . d.c. of 110 v . a.c. input.

TABLE III-DYNAMOTORS

Manulacturer's Type No.			Input		Output		Weight Lbs.
Carter	Eicor	Pioneer	Volts	Amps.	Volts	Mo.	
210A			6	6.1	200	100	61/2
MA250	1021	E1W279:	6	4.2	250	50	$61 / 2$
251 A		E1W3393	6	7.9	250	100	$61 / 2$
301 A	1061	E2W351 ${ }^{\text {a }}$	6	9.7	300	100	$61 / 2$
315 A	$158{ }^{5}$	E2W243	6	13.4	300	150	77/8
320A		RAOW158:	6	18.2	300	200	$91 / 2$
MA301			6	9	300	100	
351 A			6	10	350	100	61/2
355 A	108	E2W256	6	15	350	150	77/8
359 AR			6	22	350	200	91/2
401 A			6	13	400	100	7/8
		E2W438	6	14.2	400	125	$91 / 4$
415 A	109		6	20	400	150	$77 / 8$
420A			6	23.4	400	200	91/2
425 A		RA1W2019	6	30	400	225	91/2
$\checkmark 450$			5.5	29	400	250	
A430			6	31	400	300	13
		E3W413	6	15	500	100	11
520AS		RA1W189 ${ }^{\circ}$	6	27.4	400	250	-
A 650			6	40	600	250	13
AFS630			6	46.4	600	300	13

'Input current $4.6 \mathrm{amp}$. ; wh. 45/8 Ibs.
Wt. $71 / 2$ los.
Input current 7.5 amp .; wt. $71 / 2 \mathrm{lbs}$. ${ }^{1}$ Wt. 5 lbs.
s Wt. 91/s lbs.
${ }^{6}$ Input current 14 amp.; wt. $53 / 4$ Ibs.
*Wt. 16 lbs.; input current 18 amp .
"Input current 17 amp.
, Wt. $171 / 2 \mathrm{lbs}$.; input current 25 amp .
${ }^{10}$ Input curfent 27 amp.; wt. $171 / 2 \mathrm{lbs}$.

fig. 1802 - A vicw invide a ypical vibratortype mower supply. The reetifier tube is at the upper heft with the tilter choke just bunw. The primary fuse soeket and vibrator are at the right. A symbronons-type vibratur may be substituted for the interrupter type if it is desired to eliminate the rectifier tube.
complete, the top and bottom of the box slide into place from the side, with the metal covering extending out so that it fits tightly under a lip bent over from the metal on the sides. These lips also are cleaned of lacequer to pormit food electrical contact. The general construction should be quite apparent from the photographs. The buttom is provided with rubber foet, and the top has a small knob at each end so that it can be pulled out. This is essential, since the fit is grood and there is no way to get cither the top or bottom off, once on, without having some sort of handle to grip.

1. Charging Storage Batteries

If access to a.ce-oproated chargers is not possible at times between actual use, some form of self-powered charging system is essential.

This need is ordinarily best met by a gasoline- or winddrivengenerator. Wat-or-power generators have been used. but their depermence on special eircumstanees is olvious, and they are not available in shatall sizors.

The wind whareer consists of a small gernerator driven hy a suitable improler. mounted to lake advantage of the free energy offered by the wind. Tho standard 19pe will supply up to 16 amperes to a 6 -volt battery. It will ordinarily keep fully
for communications control conters during emergencies, the most practical form of independent power supply is the gasoline-engine drivengenerator which provides standard 11.)volt 60-cycle supply.

Such generators are ordmarily rated at a minimum of 2.50 or 300 wat ts. Thay are available up to two kilowatts, or big enough to handle the highest-power amateur rig. Most are arranged to charge automatically an anxiliary 6- or 12 -volt hattery used in starting. Fitted with self-starters and adequate mutlers and filters, they represent a high order of performance and efficioney. Many of the larger models are liquid-cooled. and they will operate contimously at full load. Ratings of typical grasengine driven generator units are given in Table I 5 .

A variant on the generator ieleat is the use of

Fig. 1803 - Hash and smoothing filter components are mounted in the botton of the low-voltage vibrator power supply. The 4 -prong outlet socket is momed on the sid.-

TABLE IV - GASOLINE-ENGINE DRIVEN GENERATORS, AIR-COOLED

fan-lolt drive. The disadvantage of requiring that the automolile must be ruming thenghout the oprating periont has not led to general popularity of this idha amongst amateurs. Such gencratomsare similar in construction and capacity to the small gas-driven units.

The home construction of generators of all the abore typers has been suceresfully attempted by amateurs at times, although the pasisession of a comsiderable knowledge of elec-tric-motor design is essemial. One especially usefui possibility is the rewinding of old automobile charging gemerators, several humdred watts capacity being obtainable from the largest sizes. Thense originally used on the old 4 cylimder Dodge cars have been sucesesfully adapted by anateurs. Trade sehools will often have their students rewind these gemerators for only the cost of the material, and this possibility is worth investigating.

The ouphe fromeney of an engine-driven generator must fall between the relatively natrow limits of 50 to tio cycles if stambard 60-ecele transformers are to operate efficiently from this soures. A 60 -eycle electric clock provides a means of checking the output fremurney with a fair degree of accurace. The elock is connected across the output of the ermerator and the serond hand is checked closely against the serond hand of a watch. The speed of the engine is adjusted until the 1 wo serend hands are in synehronism. If a an-eycle chock is used to check a 60 -eycle generator. it should be remembered that one revolution of the seemed hated will be made in 50 serombls and the chock will gain 4.8 hours in eath 24 hours.

Output voltage should be chackerl with a voltmeter since a siandard 11 in-volt lamp bulb, which is sometimes used for this purpose, is very inacenrate. Tests have shown that what
appears to be normal brilliance in the lamp may occur at voltages as high as 150 if the check is made in tright sunlight.

C Noise Elimination

Electrical nois- which may interfere with receivers operating from engine-driven a.c. gencrators may be reduced or eliminated by taking proper precautions.

The nesest important point is that of grounding the frame of the generator and one side of the output line. The ground lead should be short to be effertive, otherwise grounding may aremally increase the moise. A water pipe may be used if a short comnertion can be made near the point where the pipe enters the gromond. otherwise a good separate ground should be provided.

The next step is to lowsen the brush-holder locks and slowty shift the position of the brushes white checking for noise with the receiver. Usually a point will be found (almost always different from the factory sedting) where there is a marked decrease in nowse.

Fig. IRet - Connertions used for climinating interferne from saz-dris en generator plants. C should be 1 μ fil, $3(1)$ whti-, paper, while Ce may he 1μ fd. with a woltage rating of twice the d.e. output voltage delivered by the generator. X indirates an alded connection hetwern the slip ring on the gromended side of the line and the generator frame.

From this point on, if necessary, by-pass condensers from various brush holders to the frame, as shown in Fig. 1804, will bring the hash down to within 10 to 15 per cent of its original intensity, if not entirely eliminating it. Most of the remaining noise will be reduced still further if the high-power audio stages are cut out and a pair of hoadphones are connected into the second detector.

(1) High-Frequency Equipment

The use of high-frequency equipment for the handling of all intracommunity emergency communications is recommemded not only for the purpose of limiting the interference range but also because cquipment for these frequencies may be built in casily-portable form. fowpower transeeivers and transmitter-recoivers in the form of glove-compartment units, walkietalkies and handie-talkies find ready application in this type of work.

Glove-compartment units and other forms of mobile installations may be operated readily from a vibrator supply or genemutor connected to the car storage battery, although a separate battery is reconmended for prot racted operating periorls, such as in an emergeney, to guard against discharging the car battery to the point where it will no longer start the car. The usefulness of a mobile unit in emergencias is apparent, since it constitute's a self-powored installation which may be placed in a strategic location with a minimum loss of time.

Handie-talkies and walkie-talkies, on the other hand have the advantage that they may be brought to points whirh for one reason or another may be inaccossible to a car. Handietalkies universally operate from solf-contained dry batteries, while the heavior walkie-talkie units may be designed to oprerate from eithor dry batteries or a small storage battery of the motorcyele type and a vibrator unit. In some cases, it may be desirable to build the power supply as a separate mit so that the woight which must be carried to the serne of an emergency may be distributed between two persons.

Higher-powered transmitters and more elaborate equipment of the type often used as permanent station equipment operating from a.c. are desirable as control-station equipment if a suitable source of power is available.

©. Portable Equipment - Low-Frequency

The weakest unit in a low-frequency portable or emergency communications installation often is the receiver.

An inadequate receiver, with poor solectivity, low sensitivity and insufficient stability, can ruin a QSO even under favorable conditions. When it is remembered that conditions in portable or emergency operation are often more severe than those at home, with poor antenta facilities, high noise levels, severe interference, ete., the fallay of attempting to use an inferior portable receiver is apparent.

The best procedure of all is to use the homestation receiver for portable work. Headphones should be used and the output tube removed (if it isn't necessary for headphone operation), but this is no hardship. Headphones are far more satisfactory in such applications than the speaker in any event. This procedure not only ensures the availability of the high-porformance receiver so vitally neecssary, but the practice that has been obtained by using the receiver at home is invaluable in the specialized operating techniques of portable or emergency work. It takes as much experience to learn to run a receiver properly as it does to drive a car, and the middle of a crisis is no time to gain that experience. Even on lowered plate voltage the home superhet will be better than a nakeshift set-up.

If a special portable/emergency receiver is to be built, it should be a superheterodyne. With present-day tubes and components, it is possible to build a sinaple superheterodyne as cheaply as a t.r.f. receiver, and there is no comparison betwern the two in performance. The average eommunications superheterodyne can be operated with stomge-batsery heater supply and dry-cell or vibrator-pack " 13 " supply. With the audio power tubes removed from the reediver, the power requirements are not t.00 great. Some of the receivers on the amateur market have provision at the rear of the set for plugging in a d.e. supply, and those which do not can be casily modified by drilling a socket hole at the rear of the receiver and wiring it into the set. When regular ace, operation is used, a plug in the socket completes the circuit.

The design of low-frequency transmitters for emergency, portable and rural transmitters, will depend almost entirely upon the power supply available. Cunsidering possible defects in hastily-improvised radiation systems, ete., it senms unwise to use less than 10 watts input to a power amplifier or 15 watts to an oscillator. However. powers greater than two or three times these valu's are not usually necessary, so soloction of the power supply will depend almost entirely upon the pocketbook and other resources. The 300 -volt 100-mat, vibrator supplies and genemotors represent a nice compromise unlows it is possible to step into the 200- or 300 -watt gasoline-driven generator class.

Perhaps the best plan in providing for an emorgeney and portable transmiter is to utilize the basic exciter unit in the regular station. This not only ensures the a vailability of a reliable, efficient unit at all times but means a saving in parts and equipment. It represents no hardship to the permanent station to construct the exciter so it is compact, readily removable and, above all, solidly and dependably assembled. If your present exciter is not adaptable to this use, plan the new one so it will be. Provision for 6-volt tubes throughout is essential, with the heater circuit so arranged
that it can be connected to a storage battery without change. A suitable plate supply using a vibrator or genemotor or similar stestem should be available separately, arranged for ready connection. The best methot is to have a socket-and-plug comnector assembly, withone plug built into the transmitter and another, wired identically, connected permanently to the emorgeney supply.

c. A Simple Modulator for Portable Work

The circuit dingram of a simple modulator for portable or mobile work is shown in Fin. 1805 . In this arrangement the microphone is used directly to drive a pair of 6 V beri moduLators without intermediate sperech atmplifiers. Such a modulator works surprisingly well to modulate Class C inputs up to 25 watts. The unit requires 75 to 100 ma at 200 to 300 volts.

Fif. 1805 - Simple moluiator for pertable and gen-eral-utility work.

R_{1} - low whms, 1 satt.
R_{2} - 150 ohms, I watt.

Voltare for the single-buton carbon mierowhoue is taken from the juncion of the two cathode-hiasing resistors, R_{1} athl R_{2}, thus climinating the necossity for bulky mierophone batteries. These two resistors could be replaced by a single resistor with a sliding contact. One side of the heater circuit is grounded so that only three pewer-supply wires are required. The complete unit may be assembled on a small chassis.

(I) High-Frequency Antennas

In many cases, particularly at control stations, it will be necessary to use nonelirective antemas berause of the neressity for working ficld stations at random points of the compas: At fied stations which normally work with only a single control station, howiore, it may be advantageous to use a simple form of direetive array. The power gain will be worth while in bettering the signals in both directions, and in addition will minimize interference to and from other networks. The simpler forms of antermas described in Chapters Ten and seventeren are quite suitable.

More important. perhaps, than the antenma itself is its location. Every effort should be made to get the antenna well above its sur-
roundings and to provide, whenever possible, a clear path between the control station and the network stations with which it must communicate. Having a line of sight between antemas will ensure successful communication evon though the power is very low and the antuna itself is nothing more than a simple half-wave wire. Where there are intervening obstructions, it will be helpful to use as much height as possible.

Vertical pularization is to be preferred to borizontal, since vertical polarization is better suited t.e mobile operation. A simple vertical antenna has pratically no horizontal directivity, therefore it will work equally well in all directions exerpt for effects at tributable to its surroundings and to the termain ower which the signal must travel. The signal strength will be pow il a horizontally-polarized antenna is used to receive a vertically-polarized signal.

A half-wave antemna. wo half-wayes fed in phasestacked bertically, or an extemded doubleZepp, all will be satisfactory, and are very simple types to construct. Design details will be found in Chapter Tern. If the station is to be operated on a fixed frequency, the antenna length should be adjusted for that frequency. If the same antenna is to work on several frequencies. the longth had best be chosen midway betwern the two extremes.

Mobile amfermas - It is probable that most metworks will have one or more stations installod in cars, for dispatching to points which may be in urgent need of communication. The equipment previously deseribed is readily adaptable to (ar installations; the tranceriber, in partieular, can be set up with lithe difliculty. and can get its power from the car broalcast reweiver, if there is one. This Would recquire only the installation of a suitable power sucket in the car receiver, tomether with a switch to cut the power from the receiver when the transeciver is in use. Antennas suitable for such mobile installations are deseribed in ('hapter Seventern.

For a solid but rasily detachable mounting for a mobile antemia, the arrangement shown in Fig. 1806 is suggested. It is held in pace by a panel of wood. cut to the shape of the window, on which the antema is mounted. By rumning up ! he wintow the panel is hedd firmly in place. The antenna is of the "J"tyre. This type of installation plares the radiator proper above the roof of the car, and hats the advantage that it can be readily romoved from the ar when not in usi or when needed elsewhere. Fig. 1808 shows a folded doublat.

The unit shown is built of ! i-inch plywood, since the usual thicknese of the window glass in cars is ${ }^{18}$ inch. Run down the window of the car about halfway. or enough to leave at least a i -inch operning, and make a pattern of cardboard using the top edge of the window glass for the guide. Trim the cardbord to this shape, and then push it up in the window and use the edge of the glass to mark the bottom

Fig. 1806-1"J"-type antenna for 1.11- Va, mobaleoner. ation can be monnted rasily in the window of a rar, allowing the radiator proper to be placed almere the rowf of the whicle. The dimenvions are wiven in the toxt.
edge of the pattern. From the pattern. mark the piece of plywool and cut it out with a saw. Additional small pioces to form stops in the corners are fastemed to the main piece with ghe and brads. A piece of plywood about $i=813$ inches should be fastened to the large piece at the point where the antemat is 10 be supported. using glue and brads, and the four stamboff insulators which support the anternat bohed to this piece. If the insulators are not long cnough for the antenna to claar the side of the car, they can be raised by wood strips.

Two small strips should be nated along the inside of the matin piece so that they exteme down below the edge a faw inchess and form, with the outside pieeres, a yoke to kerp the assembly in the proper position on the wintow.

The feeder can be made of floxible rubbercovered wire (obtained by splitiong a leneth of parallel lamp cord) separated by small plastic or dry-wood spacers. The anternat conds of the wires are soldered to the heads of the large bolts in the upper stand-off insulators, and the wire is run out through boles in the wood.

The antema and matelhing-section rods are regular automobile whip antemnas and are supported on the stand-off insulators by small loop-shaped metal clamps. The shorting har is made along the same lines, with bars of heavy metal on both sides of the clamp loops.

The length of the hali-wave " J " antenna itself should be 38 inches for a frequenery of 146 Mc - the eonter of the two-meter hame. Since the length of the matehing seetion should be a quarter wavelength. or 19 inches, the total length of the right-hand element shown in Fig. 1806 should be :5 inches, while the
shorter left-hand cloment whould be 19 inehes long. The sparing between clements should be 2 inches. With an upen-wire transmission line eonsisting of two No. 18 wires spaced 2 inches. the line should be comerteni 5 thenes up from the shorting har at the bottom of the elements.

The folded-doublot antemma shown in Fis. 1808 is another simple tyon of antennat which maty be adapted for mothile nse experially. where center-fered is more convenient. It has the advantages of rather hood-hamd ehamacteristie and monderately-high imperdame at the foreding print. It should have an over-all length of 3 B inches for 1 fti Me.

- A Car-Roof Antenna

Jig. 1807 shows a sketeh of a fitting for a vertical s.h.i. car-roof anterna which provides a good morhanieal arrangement for folding the antennat patalled to the aur rowf when the antemuat is not in use.

The pieces 1 and l are made from seretions of hrass rod $\frac{3}{4}$ inch indiametrer. Onmendor piece 1. Which has an over-all hength of 31 zinches, is turned down ior a length of 2 inches to the diameter reduired to fit the inside of the bot tom of the tabular antema, which is soldered fast. At the other end of piece A is cut a tongue. 1 iuch long and 1 ifuch wide as shown in sketeh.
liecer B has an wer-all lengrth of 6 inches. Onc and is turned down and threaded with a ${ }^{4}$ inch die. whike a slot. 1 inch derpand 14 inch wide to fit the tongue of A . is cut in the opposite emi. The slotted end is then drilled and lapped on onte side of the slot for a ${ }^{1}$.inch thumb serew, (*. A vertical elongated hole is drilhed and filed out in the tongue of piece A, so that. with the thumb serew looscned, I can be lifted up slightly to rloar tho shoulders of B while the antemat is being folded down. The sulid soating of the two pieces. 1 and ${ }^{\prime}$ '. against cach other when the antomat is erected in a vertical posilion provides little opportunity for the joint to work loose under vibration.

The tareaded

Fig. 1811 - Fred. throurl insulation and fittings for the folding car-roof molile antoma, The joint hinese at ofs, that the antenna may be foldeal down paralled to
the roof of the var.
shank of piece B passes through a hole in the roof of the car. The polystyrene washers, D and E, provide the necessary insulation. Each is: 2 inches in diametor and $\frac{1}{4}$ inch thick and has a collar or hub $\frac{1}{4}$ inch thick turned on one side to fit the hole in the car roof. The assembly is clamped to the roof of the ear by means of the locking nuts either side of $F . F$ is a soldering lug for making the connection to the antenna.

If the assembly is placed near the forward part of the roof, a two-moter half-wave :antemna may be folded back at the hinge when not in use without the antenna overhanging the rear of the car.

d Low-Frequency Emergency Antennas

Any of the simple low-frequency antemas deseribed in Chapter Ten, or modifications of them, should be suitable for low-frequeney portable and emergency work. Fnd-fed anternnas of the simple voltage-fed or Zepp tyens probably are the casiest to crect, although a eenterfed antenna is more tolerant as to dimensions so long as the entire system inclading the feeders can be tuned to resonance. With such a center-fed arrangement, the feeders will stay in balanee, even though the antenna portion of the system is much less than a half wavelength long.

For portable work at

Fig. 1808 - 'Jhree-wire fohled-donblet antemna for matching a (x)O. ohm linc. The three conductors are cont. nered together at the ends, as indicated. 'They may lie made of wire, rod or thbing, and can be nommed on standeofl insulators on a wooden support. low frequencies a compact antenna which has beren used successfully :at 3.5 Mc. consists of about. 60 feet of No. 18 enameled wire wound in a spiral around a long bamboo fishing pole. The turns are space-wound over the top $1+$ feet of the pole and then closewound for about three fect. The remaining length of the pole is left free so that it may be lashed to a tree or other eonvenient upright, or simply stuck in the ground when no support is available. The bottom end of the winding is connceted through an antemna tuner to ground.

The pi-section antemna eoupler deseribod in Chapter ren is a grood device for coupling random lengths of wire to vither transmitter or reorever. An antemna of this type may be crected by tying a weight to one end of the wire and tossing it into a tree or over some ot her possible clevated support.

Transmission lines - At nearly all fixed locations it will be necessary to use a transmission line between the antenna and the radis equipment, since the latter will be indoors
where it is easily accessible while the former will be placed on the roof of the building to secure adecquate height. Low-loss coaxial or paralled (Twin-Lead) line is convenient for working into the center of a half-wave antenna, and it is readily available on the market today. The alternative is an open-wire line having an impedance of 500 to 600 ohms. It is advisable to kerep the spacing betwern wires small at the higher frequencies: 2 -inch spacing is about right, provided the line can be installed fairly rigitly so that it will not swing in a bree\%e and cause the transmitter frequency to change. This close separation also requires a farly large number of spacers - at intervals of perhaps three to four feet. On lower frequencies the feeder spacing can be greater.

To make such a line nonresonant it will be necessary to install a matching stub at the antenna. The design and adjustiment of such stubs also is covered in Chaptor Ten. As an alternative. a multiwire doublet antenna may be used to eouple directly to a line having an imperdance of the order of 500 to 600 ohms without special matching provisions. Such an antenna is shown schematically in Fig. 1808. It gives a 9 -to-1 impedance step-up) at the line torminals, hence practically automatic matching to a 600 -ohm line, assuming the normal doublet impedance of 70 ohms. In addition, it has a broad resonance chatacteristic and therefore is well suited to working anywhere in the band.

To avoid the necessity for impedance matching. two-wire lines maty be operated as tuned limes if desired. Such operation has been successful with lines up to at deast, 100 feet long. Since in most cases the coupling device at the transmitter or receder is a single-turn coil. the simplest me thod of tuning the line is to adjust the ferter length until the current in the line is maximum when the transmitter is operating on the ehosen frequency. A small dial light or flashight bulb, comnected in series with one side of the line right at the transmitter terminals, may be used as a current indicator. The transmission line should be made about four feet longer than neecssary, its length being adjusted by cutting off an inch or two at a time until maximum bulb brilliancy is ol)tained.

From a constructional standpoint it is desirable to use the same antenna for both transmitiing and receiving. The changeover switch for this purpose should have low eapacity, and proferably should have low-loss insulation. The ordinary type of wafor switch is satisfactory, particularly if it is coramic insulated. A small porcelain-inase d.p.d.t. knife switch also may be used for this purpose. If possible, the antemna switch should be combined mechanically with the power-supply change-over switches for the transmitter and receiver so that all the necessary switching from transmission to reception can be done in one simple operation,

Measurements and Measuring Equipment

To comply with FCC regutations it is necossary that the anmateur station be equiperd to make a few relatively simple measurements. For example, the regulations require that means be available for cheeking the transmitter frequency to make sure that it is inside the band. This means must be independent of the frequency eontrol of the transmitter itself: it is not enough to depend on, say, the calibration of a crystal in the crystalcontrolled oseillator that drives the transmitter. In adtition, it is noeressary to make sure that the plate power input to the final stare of the transmitare docs not execed one kilowatt. The regulations also impose eortain requirements with respere to plate-supply filtering, stability and purity of the transmitted signal, and depth of modulation in the case of 'phone transmission.

In many cases all these measurements can be made to a satisfactory degree of atecuracy with no more auxiliary equipment than the regular station recciver. Ifowever, a better job usually can be done hy building and calibrating some relatively simple test gatar. Too, the progressive amateur is intorested in instruments as an aid to better porformance.

Methods of making the mosarements required in the amateur station will be diselussed in this chapter, and design and construction of representative types of the instruments used in making these measurements will be described.

(1) Frequency Measurement

Frequency-measuring equipment can be divided into two broad classes: osellators of various types generating signals of known froquency that can be compared with the signal whose frequency is unknown, and adjustable resonant circuits.

Instruments in the first classification are the more accurate. Two types are commonly used by amateurs, the secombary frequency standard and the heterodyne frequency meter. The seemblary frequency standard, nearly always erystalcontrolled, usually generates a frequency of 100 kc . and employs a circuit that is rich in harmonic output. As a resudt, it supplies a series of frequencies, all multiples of 100 kc .. which provides aceurate calibration points throughout the communications speetrum. The
more elaborate instruments of this type are provided with frecuency dividers multivibrators) to supply intermediate calibration points: a divisor commonly used is 10 , thus furnishing signals at intervals of 10 kc . when the fundamental frequency is 100 kc .

The hoterodyne frequency meter is a varia-ble-frecuency oscillator which is calibrated in frequency against a secondary standard or by other means. The oscillator usually is designed to cover the lowest froquency band in whieh measurements are to be made; monarements then can be made in higher-frequency bands by using the harmonic output of the oscillator. For example, when the owcillator is set to 3 atio ke. its secome harmonic is 7120 ke ., its fourth harmonic is 14.240 kc , and so on. The proper frequency reading is determined by knowing the fundamental frequency of the oscillator and the number of the harmonie which falls in the desired frequency range.

Both the secondary standard and the heterodyne meter are ordinarily used in conjunction with a reeriver, the signals from the instruments being pieked up just as though thoy were from distant stations. In the case of the secondary stamdard, the frequency of the unknownsignal can be determined by locating it between two known 100-ke. or lo-ke. multiples. With the heterodyne metur, the frequeney is measured by adjusting the frocquency meter until its signal is at zero-beat with the signal of unknown irequency, after which the frequency can be read from the frequency-meter calibration.

Since the secondary standard operates on a fixed frequency and can be crystal-controlled, its accuratey can be quite high. Ifowever, it simply establishes a series of known frequencies at regular inturvals, and thus auxiliary mothods must be used for determining frequencies; between the known points. The series of fixed frequencies, when they mark the edges of amateur bands (as they do if they are multiples of 100 ke), is quite sufficient for amateur work because the information that is required is whether or not the transmitter frequency is inside the band limits, rather than the exact frequency itself. On the other hand the hoterodyne frequency meter, while capable of giving readings at any point in its calibrated range, is inherently less aceurate than the erystal-

WHV SCHEDI'LES

All U. S. frequency calibration is hased on the wamdard frequency transminsions from the National Burean of Stamdarde mandardfrequeney wation. WWV. Thisntation in on the air condinuously. day und nimht. its radio frequencies of 5.10 and 15 Mc . (nnd 2.5 Mc . from 7PN, to 9 A.M. Esir with po-eycle mochulation only) modalated by mandard audio frequenciem of tho and toon eyeles per nerond, the former corresponding to A above middle C. It addition. there is a 0.005-second pulse evary second, heard am a "tiek." whidh providen an acerorate time interval.

The andiofrequencies are interrupted on the hourand every five minutes thereafter for one minute to give Eantorn Stamdaral Time in telagraphic cende and toprovide an interval for eherking r.f. measurements. The mation anmonncentent in piven hy voice on the hour and half home.
'The accuraey of ablerequencien is better than a part in 10.000 .000 . The $1-m i n u t e, ~ f$-minute, and 5 -minute intorvalm marked by the beqinning and ending of the annoumement periods are aceurate to a part in $10,000,000$. The beqinninge of the periods when the atadio frequeneien are interrupted mark aceurately the hour and the nuccesnive 5 -minute periods.
controlled standard because of the lower stability of the variable-frequency oscillator.

In the absence of more elaborate frofurneymeaturing equipment, a catibrated receiver may be usid to indicate the approximate frequency of the tramsintter. If the receriver is well made amd hats goud inheremt stability a bandspread dias calibration can ber relied upon to within perthaps 0.2 pur cont. For most accurate mesturement masimum response in the receriber shoulat be determined be means of a carrieroperated tuning indicator (s-meter), the recoiver beat asoillator being turned off.

When rherking the transmitter frequeney the receiving antennas should be diseombered. so that the signal wild not owrload or "honek" the reveriver. If the rereiver still bloeks without an antronat ha iruqueneg maty be chertan by turnitg off the power simplifier and tuning in the asi illatom alome.

Hoterodshe frequenty meter wilh built-in tom-ler rervial ralibrator - The basia of the hetermityme froquene mathe is at romploblyshieldad asoiltator with a prection frequeney ratibration. The werillator must he so desigmed and construeted that it can be acoumately catibrated and will retain its calibration wer long perionls of tinke.

The owillator used in the frequener noter must be very stable. Merbanical considerations are most important in its construction. No matter how good the instrument may be elertrically. its aceuracy camot he de-
pended upon if the mechanical construction is flimsy. Inherent frequency stability can he improved by avoiding the use of phenolic compounds and thermoplastics (baterlite. polystyreme, etc.) in the oscillator circuit, emphoving only high-grade ceramics instad. Plug-in coils ordinarily are not acerpable; instoad, a solidly-built and firmly-mounted thmed rircuit should be permanenty installed. The wicillator panel and chassis should be as rigid :s possible.

A stable ascillator circuit suitable for use in a hoterolyne freguency metar is the electromcoupled circuit. It is pessible to take output from the plate with but megligible effect on the frequency of the oscillator, and strong harmonies are generated in the phate circuit.

The hotrodyne frequency meter shown in Figs. 1901 10 190 t, inclusive, combines a number of features that make it suitable for aceurate frequency measurement in the amateur bands from 3.5 to 114 Mc . As shown in the circuit diagram. Fig. 1903, it eonsists of a 6.SK7 electron-coupled owillator followed by a 6.1c'7 amplifier that is usod to intensify the higher-frequeney harmonies. A second 6SK7 oscillator. using a crystal of the type that operates at either 100 or 1000 ke.. provides cherekpoints and a means for calibration of the frequency meter. A bisla is incorporated to amplify the ers:alal harmonies and to provide a detector cireuit in whieh the outputs of the crystal and e.c. oscillators can be mixed for catibration purposes. The detertor atso enathes direet checking of the transmitter frequency.

The fundamental tuning range of the heterodyne ascillator is from 3.000 to 4000 kc . By moans of x_{1} this range can be changed to 3500.3720 ke., approximately, st that the

Fia. 1901 - Itatromym frequenes mater with built-in harmonie amplitier. ersatal calibrator, and deteretor, usable on all amaterar bands up to $1 / 4$ Na. (imitrols along the hottom of the panel are, from left to right, crystal-tarillator on-off switrh, loki.1000.ke. crystal melertor switeth. calibration range switch, drift eompensator, harmoni-amplifier range wwiteh, output control, headphone jack. 'I'he two output terminals are along the right hand edge.

Fig. 1902 - Inside siaw of the heterondyo freduenes moter. The
 to its right. The ers-tat-astillatur tothe is at the upper left, and the twin-triod amplitiededender is in line with it at the raar edme

9 inches wide by $5!2$ inches deep by 2 inches high. Half-inch lips are bent along the bottom edges of the watle to make the ehtassis more rigid. The cathinet into which the metcrefts is 10 by 7 bev 6 inches. The main tuning condonser. ('o. is mounted on an aluminum bracket abowe the chassis and the coril, L_{1}, is similarly monted bebow it. The hand-selting condenser, ('s. is mounted on the chassis behind the coil. with its shaft protruding through the chassis for serewdriver adjustment. 'Trimmer ('z is mounted on the pand and is adjusted by a knoh, umberneath the main tuning dial. The coil is sholded from the amplifier section by the small aluminum batile shown in Fig. 190.4. The bandspread padeder. (it is mounted to the left of the useillator ramge switch and, like F_{5} is sarewdriver-adjusterd from the top of the chassis. Wiring in the oscilhator haned rircuit. including the switch, should be short, direct, and as rigid as possible.

The 100-ke, oscillator Irimmer. ('1t. docs not require froquent adjustment athe is therefore mounted on the rear
righth harmonic just cowers the 28-29.7-. . Cr . band. This a voids exerswiwe critical tuming at the higher frequencies, The main thaner condenser. Con is commeded amoses all of L_{1} for the latger range and is commeded to a tap on L_{1} for the smatler to increase the bandspread. Simultameously an adjustable padding comdenser. C_{1}, is switched in so that the oseillator frequeney will be exachly 3soon kr. With gex set at maximam capacitance megatdess of the switch posilion. ('s is a fixed padding fondenser to make the circuit fairly hight-f. athd C_{5} is the hand-woting condenser. r_{3} is a smatl padder adjustable from the panel: its fumetion is to permit resedting the ose illator frequence to the calihration check-pointspmovided by the cerstal uscillator and thus take eare of drift from temperature variations and other canses.

The $6,1 C 7$ phate cireuit is broally tumed by means of switched coils resomating. with the rircuit raparitances, at $1+t, 50$ and $28 . M(1 \cdot$, and thus incroases the harmonic strength on those bands, A madefrequeney choke is cont nected to the fourth switch position: this gives ample signal strongth at $1 /$ Ma and lower fre quencies. Potentiometer R_{5} makes it possible to reduce the strength of the signal from the moter to the value desired for measurement purposes.

In the erystal oscillator circuit, S changes the frequency from 100 to 1000 ke. or vice versa. In the 100 -ke position C_{14} is conmered across the crystal to provide means for :udjusthing the frequency to avactly 100 ke .

As shown in Figs. 1902 and 1901 , the frequency moter is built on at chassis folded from a piece of shere aluminum, the dimensions being
edge of the chassis. close to the erystal unit. (ig. the plate tuming condenser for 1000 ke... is adjusted from the top of the chassis and is mounted to the right of the crastal-osesiltator socket in Fig. 190 t.

In putting the inst rument into operation, the resstal oseillator should be ehereked first. Comneet a length of wire to the arystal output terminal (fom (iv) and listurn on a reoriver over the range from 3.5 to 5 Ne. With N. Nin the loon-ke. position, signals should appear at 4000 and joloo ke.. and with sio in the loo-ke, position signals shoubd he heand asery 100 ke . 'Tune in IV WV' on 5000 ke ., wait for the monlulation to go off. and then adjust fis for zerobeat. This sets the ascillator to precisely 100 ke. In the loon-ke, position there maty he a ditference of a fow kiloeveles between the frequeney of WWV and the $\overline{5}$ - Mr. harmonie, but this is not serious since the loon-ke ose illator is used omly as an aid in identifieation of the 100-ke. harmonics.

Ton sot the range of the e.c. oscillator, put Ne in the $1000-k r$, position, plug a pair of "phones into J_{1} set sen the maximum range poxition (C'o arross all of L_{1}) , and sot Con near minimum eaparitance. Adjust C's until the 4000 -ke. harmonic is beard. Then switeh s_{2} to 100 kr . and tunc ('2 toward maximum, robating off five adrlitiontal ton-ke. signals. ('s maty then be readjusiod to bring the 3500-kc. marker close to the end of the tuning-dial scale. The 100 -ke. points may then be marled off on the seale or the readings recorded. The seeond tuning range is : mijusted by setting ("0 at 3.500 kc . on the liost range, then wotting ist so that C_{2} is connected to the lap, and adjusting C_{1} (with-
out tourhing (C_{2}) so that the 3500 -ke. marker is brought to the same point on the dial. The seeond range may he calibrated by the $100-\mathrm{ke}$. points in the same way as the first.

Calibration points may be obtained between the 100 -ke. markers on buth ranges by using a receiver as an auxiliary. For example, if the receiver is adjusted to piek up the fifth harmonic of the e.e. oscillator (17.5 to 20 Me.) and the harmonic is beat against loo-ke. points from the crystal oscillator in that rame, 100-ke. intervals on the fifth harmonic will give 20-ke. intervals on the fundamental. With a straightline capaciance condenser at ('2, the relationship between dial divisions and frequeney is alnost linear, and marking off the dial at the proper intervals between actual calibration points will result in a calibration of sufficient accuracy.

The various amateur bands are covered by the following harmonies: 3.5-1 Me. fundamental; 7-7.3 Me., 2nd harmonic; 14-14.4 Mr., th $; 27.185-27.245 \mathrm{Mc}, 7 \mathrm{th} ; 28-29.7$ Mc., Sth; 50-itt Me., 14th; 144-148 Mr., 40th. At lower frequencies a show length of wire connectod to the out put terminal will give ample signal strength under avarage conditions, but
in the v.h.f. range rloser coupling - surh as running the wire in close proximity to the rocciving antenna lead, or actually connecting it to the antenna post through a small fixed condonser - may be necessary to get a good signal.

With an instrument of this type the elges of amateur bands may be quite accurately determined, if care is used in setting the $100-\mathrm{ke}$. oscillator to WWV and equal care is used in selling the c.e. oscillator scalle to the $100-\mathrm{ke}$. crystal points. (3 may be used for the latter purpose each time the meter is used, and particularly during the first 30 minutes or so of operation when the temperature of the equipment is rising. The accurary at intermodiate points will depend upon the accuracy of the original calibration; it should be possible to read within 0.0 per cent under normal conditions by using the "drift corroctor," ('3.
. 1 bsorption frequenory meters - The simplest possible frequency-moasuring device is a resonant circuit. tunable over the desired frequency range and having its tuning dial calibrated in terms of froquency. Such a frequeney neter operates bextracting a small amount of energy from the oweillating circuit to be

Fit. 1903 - Circuit diakram of the hetrondye frequency meter.

Ci, C: $:_{5}-7-\mu \mu \mathrm{fl}$) variable.
($2, \mathrm{Ci}-1001-\mu \mu \mathrm{fel}$. variable.
($\because: \mathrm{C}_{14}-25-\mu \mu \mathrm{fil}$. variable.
($-4-2=0-\mu \mu \mathrm{fl}$, miea.
(

(12-10- $\mu \mu$ /d. mira.
(:17-0.1101- - fil. mía.
($1 \mathrm{is}-1-\mathrm{F}-\mu \mu \mathrm{fll}$ mica.
$\mathrm{K}_{1}, \mathrm{R}_{3}$. Ro. $\mathrm{K}_{12}-10.1^{-}$mogohm, 1/2 watt.
$1 R_{2}-10.0100$ ohms, 1 watt.
13.4 - 3.30 olms, 1 watt.

1k-2. 1000 -ohm potentiometer.
$1 k_{6}-1.5$ megohims, $\frac{1}{2}$ watt.
$11_{2}-170$ ohms, 1 watt.
$1 \mathrm{k}-0.22$ mexohm, 1 watt.
$K_{10}-10.000$ ohme, 1 watt.
$k_{11}-1500$, 1 ms, 1 watt.
R_{13}. $K_{1 s}-0.1$ megohn, $1 / 2$ watt.
1.1-18 thrns to. 18 on l-imh form, length 1 ! 2 inches. Gathonle tap it turns from ground end; band--pread tap 11 turns from ground.
$1.2-24$ turns No. 18 enam. closc-sobund on $1 / 4$-inch form.
L3-11 turns No. 18 enam. close-wound on $1 / 4$-ineh form.
I.4-2 turns No. 16 spaced $1 / 2$ inch, diameter $1 / 4$ inch.
I. 3 - 8 -mh, coil (r.f. choke).

$J_{1}-O_{n+n-r i r c u i t ~ j a r k . ~}^{\text {a }}$

S. - 2 -pmition 2 -pole coramic wafer switeh.
$\mathrm{S}_{2}-2$-position 2 -pole switeh (hakelite insulation sat$i=$ factory).
$\mathbf{S}_{3}-\mathrm{S}$.p.s.t. toghale.
S4-4-position l-pole ceramic wafer switch.
MrL-100-1000-ke. crystal unit (Bliley SMC-100).

Measurements and Measuring Equipment 397

Fig. 190.4 - Linderneath the thassis of the heterody ne frequeney meter. 'Ihe parts layout is diseumed in the text.
measured, the frequency then being determined by tuning the frequency-meter cireuit to resonance and reading the frequency from the calibrated scale. This method is not eapable of as high aceuracy as the hetorodym. methods for two reasons: First, the resomanom indication is relatively "broad" as compared to the zero-beat of a heterodyne; second. thi nocessarily close colupling betwem the frequency moter and the circuit being measured causes some detuning in both cirenits. with the result that the calibration of the frequenermeter circuit depends to some degree on the coupling to the circuit being meanured.
It is necessary to have some means for indicating resonance with an absorption frequency meter. When such a meter is used for checking a transmitter, the phate curront of the tube eonnceted to the circuit being ehereked can provide the resonance indication. When the frequency meter is tuned through resomanee the plate current will rise, and if the frequency meter is loosely coupled to the tank circuit the plate current will simply give a slight upward flicker as the meter is tuned throngh mannance. The greatest accuracy is socured when the loosest perssil/te coupling is uwol.

A receiver oscillator may be checked by tuning in a steady signal and hotorodyning it to give a beat note as in ordinary e.w. reception. When the frequancy meter is coupled to the oseillator coil and tuned through resonance the beat note will change. Agatin, the coupling should be made loose enough so that a justperceptible change in beat note is obsorved when the meter is tuned through revonance.

Although the absorption-type froguency meter should not be depended upon for aresurate measurement, it is a highly-useful instrument to have in the station reven when better frequency-measuring equipment is available. Since it generates no harmonies itself, it will respond only to the frequency to which it is
tuned. It is therefore indispensable for distinguishing befween fundamental and various harmonics, and for detorting harmonies and parasitic oseillandons. When provided with a sensitive resoname indicator it is also useful for dolocting r.f. in undesired places such as power wiring, for making rough mestememments of fiedel strength in adjustment of antennats, amel ean likewise be used as a modulation monitor.

In approximate calibration - usually sufficient - may be ohtamed by eomparison with a calibrated reerever. The usual recediver dial catibration is sutficiontly arcurate. A simphe ascillator circuit covering the same range as the freguency metor will be useful in calibration. sert the receiver to a given frequency, tume the ospillator to zero beat at the same frequeney, and adjust the frequency moter to resonanee with the oscillator as deseribed above. This gives one catibration point. When a sufficient number of such points has beren obtained a graph maty be drawn to show froquency $v s$. dial settinge on the froduency meter.

A sonsitite absorplion froquenry meter Figs. 190.5 to 1907 , inclusive, show an absorption frefueney meter or "wavemeter" with a erystal-detector/millammeter resonance indieator which provides a relatively high degree of semsitivity, As shown in the ereuit diagram, Fig. 1906, a pick-up coil coupled to the resonant circuit is connected in series with a crystal

Fig. 190.5- I acnsitive absorption-type frequency meter with a crystaledetector roctilier and d.cemilianmetor indicatiner circuit. Jodividual ealihration charts monnted directly on cach coil form make the meter direct ratading. The turgle swith place's a 10 ma, shme across the $0-1$ ma. meter; this range is used for preliminary readings, to anoid harning out meter or crsstal. 'l'he meter qives indications at several fect from a low-power oscillator.
detector and 0-1 milliammeter. Plug-in coils are provided so that the unit covers the frefueney spertrum from about 1 mexarecle to 70 Ma A swithh, s, and shumt. R1. are inCheded so that the meter soale readings can be increased he a factor of 10 . to reduce damger of overlosading the milliammeter when making proliminary measuremonts. Any type of fixed crestal deteetor may be wised, but the v.h.f. trpes are recommended when ohtainable.

The unit is constructed in a 3 - by 4 - by 5 inch metal box, the milliammeter being mounted on one of the side patmels. The coil socket is on tep near one edge. with the tuning

Fïg. Ioro-Indicating frequency-meter circuit diagram. (i--1.40- 1 fid, variatle (Hammarlund HFA-1 $10-\mathrm{A}$). $\mathrm{C}_{2}-0.061-\mu \mathrm{fd}$, mi"a.
$\mathrm{R}_{1}-3$-ohm shumt: sce gencral data on meter shunts.
$\mathrm{L}_{4}, \mathrm{~L}_{2}$ - Plum-in coils wound on 1 léinch diameter forms:
1)-Fixed crystal detector.

MA - 0.1 d.c, milliamumeter (Triphet Model 321). s-S.p,ot tomple swith.

Froquintr Rionge	Wire シize	1.1		$L_{2}{ }^{1,2}$
1.1-3.5 Mr.	No. 28 r,	$813{ }^{3}$	1\%"	15 turus
2.3-80 Mr.	No. $2+1$.	35^{-3}	15×1	11 "
4.5-11 V1.	V1. 20 t .	17^{3}	$1^{\prime \prime}$	6 "
	V13.161.	$8{ }^{3}$	$11 /{ }^{\prime \prime}$	4 "
22-50 Mc.	No. 16 e	231	$1{ }^{\prime \prime}$	$2 \times$

[^7]

Fig. 1907 - Inside the alsorption wavemeter. The tuming condenser and coil socket are momented on the frame of the 3 hy 4 hy $\overline{3}$ hox; remaining parts are fato. tened to one of the removable sides.
condenser just below it inside the case. This arrangement kerps the tuncel-circuit leads short. A handle is mounted on the side of the box opposite the tuning control for convenience in handling. A motal plate, on which an appropriate calibration scale is pasted, is fistened to each pluy-in eoil so that the proper ealibration automatioally comes under the knob pointer when the coil is plugged in. The unit may be calibrated as deseribed in the preceding section.

A two- or three-foot rod antenna and headphone jack may be added to the unit, using the comections shown in Fتig. 1909. These additions permit the use of the instrument for fieldestrength measurements and for monitoring 'phone tranmissions. The rod antemnat is not required for ordinary frequeney meaturement, and its use may be umdowimble when the frequencies of individual simmatamously-operating circuits are to be choeked - as in the case of a multistage iransmiture with frequency multipliers - - berathse the :mmemat increases the sensitivity to such an extent that it may be difficult to identity the output of a particulitr circuit.

In addition to the uses mentioned in the preceding section, a motor of this type may be usid for final adjustmont of moutalization in triode r.f. amplifiers when loosely coupled to the plate tank coil.
V.II.F. wavemetar-field strength indira-tor-monitor - For opuration at vory-high frequencies a different type of construction must be atopted for wavemeters of the type doweribed in the precoding section. An insirument suitable for the range 100 to 250 Me . is shown in Figs. 1908 to 1910, inclusive. Provisum is matle in this unit for attaching an antemat so relative fielt-strength measurements can be made for checking v.h.f. antenma patterns. for example) and low eireuit includes a headphone jack so 'phone tramsmissions ean be monitored.

The tuning contenser is aplit-stator affair of $25 \mu \mu \mathrm{~d}$. per section. It is mountod to wive shore leads to the coil, and the use of a split abator condenser results in a low minimum raparity. The indicating mevier includes a prick-up toop lowsoly coupted to the thand circuit. a 1 N3t crysal amo a $0-1$ milliammeter. The by-pass condensor, for furnishes a short fif. return of the pick-tap lowp and avoids any resonammes in thin vireuit whith the frequence ranse of the wabentor. For fied-strmeth inelicalion, an abtemba is commerted to one side of the piek-up lown and the wavometer rircuit, $L_{1}\left({ }^{\circ} 1\right.$, is detmod, resuhting in a monsolertive imbinator.

The waventow is built in a 3 - by 4 - by $\overline{5}-$ itwh metal cabinet, with the duning condenser. ('1. mounted under the told. The condenser shaft comes out through a clatrance hole in the
 bolted on the side to back up the ratibration scale. A polyestrrene strip is used to mount the

Fig. $10188-$ A combination wavemeter, find-utrensth indicator and "phome quality monitur far the (mb-玉. Me. ramge. The tweetury roil iz part of the waverneter portion, and the hairgin laop proniles pick-ap for the
 antenna is remnected to the himding inst at the fift of the hairpin loop.
two National FiVA himbing posts that huhd the coil, L_{1}. The 'phome jack, J_{1}, is monnted on the side of the case below the tuming knoh.

The wavemetor maty be calibrated by using Lecher wires (ser mext section) in conjunction with a v.h.f. owillator. ("lhe oseillator may be a $144-$ or 220 - Ne transmituer.) Attach a two-

Fig. 1900 - Wirine diagram of the waremotor and Held-nturgth indicator.

($2-100$ - $2 \mu \mathrm{ta}$. midx mica.
 2unord wire diatneter.
 lams. : - - med ap:achas.
 spatine.

MA - 0-1 milhammeter.

foot length of stiff wiee to the entenna post of the watemetor. With an esciltator capable of delivering 5 witts on so, a moter reading should be obtained sormal feet from the owedilator. The Lecher wites rat then be very loosely coupled to the oscillator. and as the proper shorting points on the Lecher wires are found, a dip will be observed in the wave-
meter current. If now the tuning knob of the wavemeter is rotated, a sharp dip in wavemeter current will be foumd. and this point should be marked in pencil on the seate and the frequency, as calculated from the Lecher wires, should be noted for future calibration. As a double eheck on the ralibration of the wavemeter, remove the antenna and tane the wavemeter for maximum mater reading. The two points should be identical. If they are not, the pick-up loop is coupled too closely to the tuned circuit of the wavemeter.

Lerher wires - At very-high and whtathigh frequencies it is possibld for deternine frequency be actually meanaring the length of the waves gemerated. The measumburat is made by observing standing waves on at wowire parallel ransmissiomlineor "I echer wires." Such a lineshows pronomed resonatne offeres. and it is possible to detormine quite aceurately the curront loops (points of maximum current.). The distance between two conserutive curront loops is "equal to one-half wavelongth. Thus the wavelengeth can be read diremtly in meters (inches $\times 39.37$ if a yardstiek is used), or in centimeters for the very-short wavelengths.

The Lecher wire line should be at least a wavelength long - that is, 7 feed or more on 14.4 Mr. - and should be contirely ab-insulated except where it is supported at the chals. It may be made of copper tubing or of wires stretched tightly. The spacing betwon wires should be about one to onf-and-ane-hati imelats. The positions of the current loops are found by means of a "shorting bar." which is simply a metal strip or knife odge which can be slid along law inte to sary its affetive longth. The

Fif. 101: - A view of the bark of the wh.f. metor. showing the stifl supporting wire for the crystal and by-pass condenser.

Fif. 1911- One end of a typical Leehor-wire system. The fort at each end here, the a-mmbly from tipping wer when in use. I'le wires terminate in airbane-tymestrain insulatmes at one end, and at the cother in small turntuchles for maintaining totsion. 'IHe wire is No. 16 hare solid copper antenna wire (hard-drawn). The turnhowhes are helditin plaee by a ${ }^{3}$ fi $\times 2$-ineh balt throurh the amehor hath. 'This end of the line is thus shorterirenited: it dees mot mattor whether it is enor or shorted, siner the other end is the one eroneeted to the piak-ap lamp.

If the measurement is made in inches, the frequency will be

$$
F_{\mathrm{M}}^{\mathrm{co}}=\frac{5906}{\text { length (inches) }}
$$

If the length is measured in meters,

$$
F_{\mathrm{ac} .}=\frac{1.50}{\operatorname{lengh}(\text { meters })}
$$

In cherking a superregenerative reviver, the Leeher wires may be similarly coupled to the receiver coil. In this case the resonance indication may be obtained by setting the reasiver just to the point where the hiss is obtained, then as the bar is slid along the wires a spot will be found where the rowiver goes out of oscillation. The dis-
system can be used more conveniently and with greater aceuraty if it is built up in $\mathrm{p} \times \mathrm{r}-$ manent fashion and provided with a shorting bar mantained at right angles to the wires (Fig. 1911). The support may eonsist of two pieces of "1-by-2" pine fastened toget her with wood screws to form : "T" girder, this arrathgement being used to minimiza bending of the wood when the wires are tightened.

A slider holds the shorting bar tud acts as a guide to keep the wire spacing constant. A piewe of wood held in the hamed ean be used; it is an easy materer to regulate the pressure so that free movement is secured, A spring device may be arranged for the same purpose.

For convenience in masaring lengths direetly in the metrie system used for wavelength, the supporting be:un maty be marked off in decimeter (10 -centimeter) units. A 10centimeter transparent seale (obtainable at 5 \& 10 cent stores) may be cemented to the slider, extending out from the front, so that readings can be taken to the nearest millimeter. The difference bet ween any two readings gives the hadf wavelength direetly.

Making measurements - Resonance indications can be ohtained in several different ways. Let us suppose the frequency of a transmitter is to be measured. A convenient and fairly sensitive indicator can be made by soldering the ends of a onc-turn loop of wire of about the same diameter as the transmitter tank coil, to a low-current flawhight bulb, then coupling the loop to the tank coil to give at moderately-bright glow. A simitar couphing loop should be comnerted to the ends of the Lecher wires and brought near the tank roil. as shown in lig. 1912. Then the shorting lar should be slid along the wires outward from the transmitter until the lamp gives a sharp, dip in brightness. This point should be marken and the shorting har mosed out until a secomd dip is obtained. Marking the second spot. the distance between the two points can be measured and will be equal to half the wavelength.
tander browen two such spots is equal to at half waveleneth.

In either case, the most aceurate readings result only when the loosest possible coupling is used botween the lime and the tank coil. After taking a preliminary reading to find the regions along the line in which resonance occurs. lorsen the roupling matil the indications are just disearnible and repeat the measure mont. Unless this is done the tuning of the line will affect the frequency of the oscillator and inaceurate indications will be obtained. As the coupling is loosened the resonance points will become sharper, which is : further aid to accurate determination of the wavelengtl.

The shorting bar must be kept at right angles (0) the two wires. A sharp colge on the bar is desirable, since it not only helps make good contact but also definitely locates the point of contact.
The accurary with which frequency can be measured by such a sisstem depends principally upon the technique of masarement. The nocessity for using very loose coupling to the (ramsmitter or reeciver has already been mentioned. In addition. careful measurement of the exact distance between two current loops also is essential. Even if all other sources of error are climinated, measurements within 0.1 per cent require an accuracy within 1 part in 1000 , or 1 millimeter in one meter, in measuring the distance along the wires. This means that an arcurate standard of length is necessary - a

Fip. 1912-Coupling a lecher-wire system to a trans. mitter tank coil. l'ypical standing-wave distribution is shown by the dashed lime. The distance, X, between the positions of the shorting har at the current loops equals one-half wavelength.

Measurements and Measuring $\delta_{q u i p m e n t ~} 401$

good steel tape, for instance - and that care must be used in determining the length exaetly.

© Signal Monitoring

Every amateur station should make provision for checking the quality of the transmitter output. This requires that some means be available in the station for reproducing the conditions existing at a distant receiving station; that is, for reducing the strength of the signal from the transmitter to such a point that its characteristics can be examined without danger of false indications from overloading the receiving equipment.

The simplest method of checking the quality of c.r. transmissions is to use the regular station receiver. If the receiver is a superheterodyne the process may simply be that of reducing the r.f. gain to minimum and tuning to the transmitter frequeney. If distant signals are stable and have "pure d.c." tone in normal reception, then the local transmitter should too, when the receiver gain is reduced to the point where the receiver does not overload. If the signal is too strong with the r.f. gain "off," shorting the antenna input terminals may reduce it to suitable proportions, or the mixer circuit in the receiver may be temporarily detuned to arrive at the same result.

An alternative method is to set the receiver on the next lower-frequency band than the one in use, then tune the receiver so that the second harmonic of its oscillator beats with the transmitter signal to produce the intermediate frequency. Higher-order harmonics also may be used for this purpose. With this harmonie method there is ordinarily no danger that the receiver will overload, because the r.f. and mixer tuned circuits are so far from resonance with the transmitter frequeney. The setting of the tuning dial bears no direct rolation to the transmitter frequeney under these conditions, since the oscillator harmonic must maintain a constant difference with the transmitter to produce the i.f. beat.

A 'phone signal may be monitored in the same way, provided a headset is used for reception. Use of a loudspeaker is not usually practicable because the sound output feeds back to the microphone and causes howling. A crystal detector and headset may also be used for the same purpose, as described in preeeding sections. In monitoring a 'phone signal the best plan is to have another person speak into the microphone rather than to listen to one's own voice. It is difficult to judge quality when speaking and listening at the same time.

(1. Measurement of Current, Voltage and Power

The amateur regulations require that when the power input to the final stage is above 900 watts, means must be provided for measuring the power input. This may be done by measuring the d.c. voltage applied to the final
stage plates and the d.e. current flowing to them. The instruments required are a milliammeter and voltmeter.

Although in lower-power transmitters powerinput measurements are not roquired, it is nevertheless true that a milliammeter is an almost indispensable instrument in the amateur station. It is invaluable in the adjustment of transmitting amplifier stages: tuning a transmitter without moasuring grid and plate currents is like working in the dark. A d.r. voltmeter, although not essential, is useful in conjunction with the milliammoter in determining whether tube ratings are being exceeded or not and thus is helpful in prolonging tube life.

Besides d.e. measurements, it is also well to measure the filament voltages applied to transmitting tubes. Tube performance is dependent upon proper cathode emission, which in turn depends upon the voltage applied to the filament or heator. Also, the life of some transmitting tubes, particularly the thoriated-tungsten filament types, is critically dependent upon maintaining the filament voltage within rather close limits. Since most transmitting tube filaments are operated on a.c., an a.c. voltmeter is a worthwhile addition to amateur transmitting equipment.

Adjustment of a transmitter for maximum power output to the antenna or transmission lime is facilitated by the use of instruments which measure radio-frerquency current. Such instruments, although not actually essential, round out the measuring equipment used in transmitter adjust ment.
D.c. instruments - D.c. ammeters and voltmoters are basically identical instruments, the difference being in the method of connection. An ammeter is connected in series with the circuit and measures the current flow. A voltmeter is a milliammeter which measures the current through a ligh resistance connected across the source to be measured; its calibration is in terms of the voltage drop in the resistance or multiplier.

If a single instrument must be used for measuring widely-different values of current or voltage, it is advisable to purchase one

Fig. 1913 How voltmeter multipliers and milliammeter shunts are connerted to extend the range of a d.c. meter.

which will read, at about 75 per cent of full scale, the smallest value of current or voltage to be measured. Small currents cannot be read with any degree of precision on a high-scale instrument; on the other hand, the range of a low-scale instrument can be extended as desired to take care of larger values. The ranges
of both voltmeters and ammeters can be extended by the use of external resistors, connecoted in sorios with the instrumont in the case of a voltmeter or in shunt in the case of :m anmeter. lig. 1913 shows at the left the manner in which a shum is connected to extend the range of an ammeter and at the right the conneetion of a voltmeter multiplier.

To calculate the value of a shunt or multiplior it is necossary to know the resistamer of the melore. If it is desired torextend the range of a voltheter, the value of resistance which must be added in series is given be the formula:

$$
R=R_{\mathrm{m}}(n-1)
$$

where R is the multiplier resistance, $R_{\text {t }}$ the resistance of the voltmeter, and n the sale multiplication factor. For example, if the ramge of a l0-volt meter is to be externded to 1000 volts, n is (equal to 1000 '10 or 100 .

If a milliammeter is to be used as a voltmoter, the value of series resistance can be found by Ohn's law:

$$
R=\frac{1000 E}{I}
$$

where E is the desired full-stale voltage and I the full-scale reading of the instrument in milliamperes.

To incrase the curvent range of a milliammeter, the resistance of the shant i :

$$
R=\frac{R_{10}}{n-1}
$$

Whore the symbols have the same nueanings as above.

Homemarle milliammeter shunts can be eonstrued from any of the various suedial kimbs of resistance wire or from ordinaty emper magne wire if to resistance wire is avalable The Copper Wire Table in Chapter l'wenty gives the resistance per 1000 fone for varions vizes of copper wire. After computing the resistane reguired. determine the smatlest wire size which will earry the: full-scate current (at
 conough wire (pulled tight but not strotehed) (1) provide the required resistance decorary can be chacked by cansing emongh curmot to flow through the meter to make it read fall*ale without the shumt: commerting the shunt should then give the eorreot reading on the new full-scale range.

Precision wire-wound rosistors used as voltmeter multipliers rammot ratily be mate by the amateur berause of the much higher resistancer required as high as aceral megohms). As an monomical substitute, satadard fixed resistors may be used. such resistors are suppled in toleranoes of 5,10 or 20 per cent \pm the marked values. I3y oblaming matcherd pairs from the deater"s stork, one of whieltio. for example, 4 per cent low while the other is 4 per cent high, and using the pairs in paralled or series to obtain the required value of resist-
ance, good accuracy can be obtained at small cost. High-voltage multipliers are preferably made up of sceveral resistors in series; this not only raises the breakdown voltage but tends to arerage out errors in the individual resistors due to manulacturing tolerances.

When d.c. voltage and current are known, the power in ad.c. circuit can be stated by simple application of Ohm's law: $P=E I$. Thus the voltmeter and ammeter are also the instruments used in moasuring d.e. power.

Ifaltirange coltmeters amd ohmmeters -

 A combination voltmeter-millammeter having varions ranges is extremely usoful for experimental purposes and for trouble shooting in recoivers and transmitters. As a voltmeter such an instrument should have high resistaner su that very little current will be drawn in making voltare measurements. A voltmeter taking considerable current will give inacourate roadings when connected across a high-resistance source - as is often the case in various parts of a recuiver circuit. For such purposes the instrumont should have a resistance of at least 1000 ohms per volf; a $0-1$ milliammeter or $0-500$ microammoter ($0-0.5$ ma.) is the basis of most multiange meters of this trpe. Mireammoter: having a range of $0-50 \mu \mathrm{a}$, giving a sensitivity of 20,000 ohms per volt, also are unind.The various current ranges on a multirange instrument can be obtained by using a number of shunts individually switehed in parallel with the meter. Care should he wed to minimize contatet resistance in the switrlh.

It is oftern necessary to check the value of a resistor or to find the value of an unknown resistance, particularly in receiver sorvicing. An "ohmmeter" is used for this purposes. The ohmmeter is simply a low-current d.c. volt-

Fin. 1911 - An inexpensise multirange volt-ohm-milliammeter homed in a tamdard $3 \times 4 \times 5$ metal cabinet. Rankes are marked with number dies, the impressions being filled with white iuk. High-voltage test leads are available for use on the 5000 -volt range.

Measurements and Measuring $\varepsilon_{q u i p m e n t ~} 403$

Fig. 1915-Circuit of the low-cost $\mathrm{V}-\mathrm{O}-\mathrm{M}$.
$\mathrm{R}_{1}-2000$-ohm wire-wound variable.
$1 R_{2}-3000$ ohms, $1 / 2$ watt.
$\mathrm{h}_{3}-100 \mathrm{ma}$. shunt, 0.33 ohm (ore text).
$\mathrm{R}_{4}-10$-ma. shunt, 3.6 ohmis (nece text).
$\mathrm{Rs}_{5}-40$, 0 (0) ohms, 16 watt.
 ohm 1-watt resintors in serien).
$\mathrm{R}_{7}-0 . \overline{\mathrm{T}}$ mesohm, I watt ($0 . \overline{5}$ mesohm and 0.25 megohm, $\%$ watt, in suries).
$\mathrm{R}_{\mathrm{s}}-0.2 \mathrm{~m}$ gohm, $1 / 2$ watt.
$R_{9}-40,(000)$ ohms, $1 / 2$ watt.
$R_{10}-10,0100$ chms, $1 / 2$ watt.
B - 4.5 volts (Burges- 5300) .
MA-0-1 d.c. milliammeter.
S-9-pmint 2 -pole switch (Mallory. Yaxley 3(0)).

meter provided with a source of voltage (usually dry cells), the meter and battery being connerted in series with the unknown resistance. If a full-seale deflection is obtained with the connections to the extermal resistance shorted, insertion of the resistance under measuremont will cause the reading to decrease. The meter sale ran be calibrated in ohms. When the resistamee of the voltmeter is known, the following formula can be applied:

$$
R=\frac{c R_{\ldots}}{E}-R_{\mathrm{m}}
$$

where R is the resistance undar mosasmement, E is the voltage read on the meter, e is the series voltage applied, and R_{m} is the internal resistance of the meter.

A combination mullirange volt-ohnm-miltiammeter, redured to simple and inexpensive terms, is shown in Frigs. 1914 to 1916 , inclusive. Using at (0-1 milliammeter, the voltmeter hats five ranges at 1000 whms per volt: 0-10, 50, 250, 1000 and $\mathbf{2 0 0 0}$ volts. (hurrent ranges of $0-1,10$ and 100 nat : wre provilat There are two resistance measurement ranges three with external battery) a somes range of $0-250,000$ ohms, and a shumt rathere of $0-500$ ohms. The "high-ohms:" scale can be multiplied by 10 it the positive terminal of a 4.j-volt hattery is connerted to the terminal indicaterd in Fig. 1915, the unkmown resistane being comeeted betwern the mation hattery tuminal and the negative terminal of the ohmmeter.

For economy, ordinary carbon resistors are used as voltmeter multiplicrs. These can be obtained with an accuracy within 5 per cent. The 5000volt multiplier is four 1 -watt resistors encased in heavy varnished cambrip tubing to protect against flash-overs. The tubing extends over the positive "ial" terminal. which is further insulated by a wrapping of friction tape.

The 10 -mat. and 100 -mat. shunts are made of ordinary eopper magnet wire wound on short lengths of $\frac{1}{-i n c h}$ diametor bakelite rod.

Meosuring L and \mathbb{C} - The ability to measure the indurtance of coils, the eapacitance of condensers, or the resonant frequency of a tuned cireuit frequently saves time that might otherwise be suont in cut-and-try. A consenient instrument for this purpose is the grid-dip asciltator, which is simply a low-power wsillator equipued with a low-range milliammeter that measures the rectified gride current. When a resomatht rircuit 1 unded to the same freduency ats the oseillator is coupled to the bather, the emergy extracted by the coupled cireuit reduces the amount available for foedhark, with the result that the uscillator grid rument decreases. Consequmbly there is a "dip" in grid current as "ither the oscillator or the circuit umder measurement is tuned throurh resonatmer. The oseillator should be

Fïg. 1916 - Interior of low-cost volt-olm-anilliammeter. All parts except the internal ohmmeter battery are mounted on the 4×5 inch bakelite pancl. The battory is attached to the bottom plate. The woltencter multiplier is fir-t atermbld an an insulated tie-strip, then wired into the circuit. The 11 -shaped ubject in the rear is the 500 -voll multiplier - four l-watt resistors covered with varnished cambric tubing.

Fig. 191\% - 'The grid-dip meter is built in a 6 by 6 by 6 -inch metal bos. The tuning dial, milliammeter, "A" and " B " switehes, and "phone jack are on the front. 'Ihe knoh on the side controls the grid resistance. Standard plug-in coils are used.
arranged so that its frequency is continuously variable over a wide range, to make it mosto useful in measuring the resonant frequency of rircuits whose constants are unknown or known omly approximately.

A grid-dip oscillator is shown in Figs. 1917 to 1920 , inclusive. As shown in the cireuit diagram, Fig. 1918. it ronsists of a simple oscillator circuit using a dry-cell tube, battory operation being adopted to make the instrument conveniently portathle. The frequency range is continuous from 3 to 60 megaryclos, using standard midget air-wound plug-in eoils. Grid current is measured by a $0-1$ milliammeter, and is adjustable to any convenient value within this range hy Ro. Separate switches are provided for the plate and filament supplies; by elosing x_{1} and leaving S_{2} open the tube aets as a diode rectifier and the instrument thus can be used as an absorption wavemeter. The 'phone jark, J_{1}, also makes it possible to use it as a monitor. For convernience in measuring cireuits that may be built into transmitters or
receivers, the pick-up loop shown in Fig. 1917 provides the coupling. The loop is connected to the link on the oscillator coils through a few freet of 150-whm Twin-lead. The instrument may he calibrated by cherking its froquency at a number of dial setting: on a calibrated receiver.

For measuring inductance, the coil 10 be measured is conmerted to a condenser of known capacitance as shown at A in Fig. 1918. A mira condenser nay be used as a standard; a $100-\mu \mu \mathrm{fl}$. a-per-eent tolerance unit will serve for most purposes. With the unknown coil connected to the standard condenser, the pick-uploop is coupled to the coil and the oscillator frequeney adjusted for the grid-current dip, using the loosest coupling that gives a detectable indiration. The inductance is then given by the formula

$$
L_{\mu \mathrm{h}}=\frac{25,300}{C_{\mu \mu \mathrm{fd}}^{\prime} f^{2} \mathrm{Mc}}
$$

A calibrated variable condenser is rerpuired for moasuring caparitance. The circuit used is shown at B in Fig. 1918. The frequency of the cireuit, using any convenient coil. is first measured with the unknown capacitance disconnected and the calibrated condenser set near maximum. The unknown is then connected and the calibrated condenser readjusted to resonance. The unknown capacitance is then equal to the differonce between the capacitances at the two settings of the calibrated condenser. Obviously only caparitances smaller than the maximum capacitance of the calibrated condenser can be measured by this mothod. Since high accuracy in capacitance measurement is not ordinarily required, a satisfactory standard is any condenser of the straight-line capacitance type, for which a sufficiently good calibration curve can be constructed by noting the dial divisions at whieh the plates just start to mesh and are completely meshed, and assuming that the capaci-

Fig. 1918 - (ircuit of the grid-dip, meter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-0.1001-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{3}-100-\mu \mathrm{ff}$-peresertion variable (Hammarlund HFl -106).
$\mathrm{R}_{1}-4700 \mathrm{chm}$, $1 / 2$ wate.
$\mathrm{R}_{2}-25,0011$-whm potontione tar.
1.1 - Center-tapped coils with center link. Va. tional AR-16 acries or any equivalent cuil- may he used.
 inches.
J_{1} - Closed-cireuit jark.
MA - 0.1 milliammeter.
RFC-2.5-min. r.f. choke.
$S_{1}, S_{2}-S_{\text {p.p.s.t. }}$ toggle switch.

(B)

$M_{\text {easurements and }} M_{\text {easuring }} \varepsilon_{q u i p m e n t} 405$

Fig. 1919 - Top view of the grid-dip meter. The tuning condenser is mounted on small stand-off insulators primarily to space it sufticiently from the side to make room for the dial on the front.
tance change is linear within those limits. The minimum and maximum capacitance (corresponding closely enough to these condenser settings) can be obtained from the manufacturer's data on the particular condenser used.

C The Oscilloscope

The cathode-ray oscilloscope is an instrument of great versatility, and in conjunction with the instruments herein described, should be a valuable addition to the practical amateur station. The oscilloseope is useful on d.c., and audio and radio frequencies, and is particularly suited to a.f. and r.f. measurements because, compared to other types of measuring equipment, it introduces relatively little error at such frequencies.

Probably the chief use of the oscillosenpe in manterar work is in measuring the percentage modulation in 'phone transmitters and in serving as a continuous monitor of modulation percontact: An oscilloscope for this purpose may be quite simple and inexpcasive, consisting muly of a small cathode-ray tube and an appropriate power supply. However, by providing amplifiers for the deflection plates and furnishing a lincar swerp circuit, the possibilities of the instrument are greatly extended. It then beeomes possible, for example, to examine audio-frequency waveforms and to check and locate the cause of distortion in a.f. amplifiers.

Constructional considerations -

 In building an oscilloscope, care should be taken to see that the tube is shielded from stray electric and magnetic fields which might deflect thebeam, and means should be proviled to protect the operator from accidental shock, since the voltages employed with the larger tubes are quite high. In gencral, the proferable form of construction is to enclose the instrument completely in a metal cabinct. It is good practice to provide an interlock switch which automatically disconnects the high-voltage supply when the cabinet is opened for servicing or other reasons.

In laying out the unit, the cathoderay tube must be placed so that the alternating magnetic field from the power transformer has no affect on the electron beam. The transformer should be mounted directly behind the base of the tube, with the axes of the transformer windings and of the tube on a common line.

It is important that provision be included either for switching off the electron beam or reducing the spot intensity when no signal voltage is being applied. A thin, bright line or a spot of high intensity will "burn" the tube screen.

If trouble is experienced in obtaining a clean pattern from a high-power transmitter because of r.f. voltage introluced by the 115 -volt line, ey-pass condensers (0.01 or $0.1 \mu \mathrm{fll}$.) should be connected in series across the primary of the power transformer, the common connection between the two being grounded to the case.

A simple oscilloscope - The circuit of a simple cathode-ray oscilloscope is shown in
 tube can be used. The cathode-ray tube may

Fig. 1920-A view from the bottom of the prid-dip meter. The oscillator tule is mounted underncath and parallel to the tuning condenser. Batteries are held in place by a metal strip fastened to the cabinet.

Fif. 1921 - An orcilloscope cireuit for molulation monitoring.
C_{1} - 0.01 - md . 40 n -wolt paper.
C: $: 0.5-\mu \mathrm{fl}$. 800 -volt paper or oil-filled.
($3-0.00 .5 . \mathrm{ufd}$, mica.
(4 - $0.1-\mu \mathrm{fd}$. 600 volt paper.
$\mathrm{H}_{1}-50,000$-ohm variable.
$\mathrm{R}_{2}, \mathrm{R}_{5}-0.5$-mepohm variable.
$\mathrm{K}_{3}-1$ mesohm, I watt.
$\mathrm{K}_{4}, \mathrm{R}_{6}-0.5$ megohm. 1 watt.
s_{1}-S.p.s.t. toggle swith.
S_{2} - S.p.d.t. toggle switeh.
T-Replacement-type tran former: 3.50 wolt.. 10 ma.; 5 volts, 3 anupres; 0.3 volto, 2 ampere".
be mounted, together with the assoriated rertifier tube and other components, in a cabinet mate of a standard $3 \times i \times 10$-inch sted chassis with bottom plate.

This dercuit is usoful primarily for momadation checking in radiotelephone transmitters. Horizontal swerp voltage may be obtamod rither from an audio-frequeney sourer. such as the modulator stage of the tramsmitere or from the 60-cevele as. line, as selected by s. Tring the modulator out put for the sweep, the pattern on the sereen witl be in the form of a traterond, as deseribed in (\%aptor Five.

Fig. 192" - A simple oxcilloseope using a 1 -inch tube. The controls on the fromt. from left to right, are "Syne Amplitude," pilat light and "Fine Frequence". Dote the small neon tube, used for generating the sweep voltages, wo the right of the 6il.7. A hood mountover the 913 and the terminal mand at the rear of the chassis. The controls along the side, from back to front, are "Fowe," "Vertical Centering," "Syne-Sweep" and "Yertical Gain."
R_{3} controls the amplitude of the applied horizontal sweep. R_{1} is the intensity control and R_{2} the foousing control. If needed, a $2.5-\mathrm{mh}$. $12 . \mathrm{j}-\mathrm{ma}$. r.f. choke may be connected in series with the lead to the rotor of R_{5} to correct leaning of patterns calused by r.f. coupling.

1 complete oscilloscope - The usefulness

 of the oscilleseope is entanced by providing a linear sweep circuit or time base, together with amplifiers for the horizontal and vertical de-floction-phate signals so that sufficient voltage will be available at the deflertion plates to give a pattern of suitable size. An inexpensive oseilloserope so equipped is shown in Figs. 1922 to 1925, inclusive. It uses the l-inch Type 913 tube but the 2-inch Type 902 readily can be substituled in the cireuit.As shown in Fig. 192:3, the high-voltage d.c. is furnishod by two 6H6s commected as halfwave voltage doublers. One supplies 300 volts positive for the amplifiers and sweepgenerator, and the other furnishes 300 volts negative for the cathode-ray tuhe woltage--divider network. The current drain is 2 ma. from the positive and 0.75 mat. from the negative supply.

The horizontal swerp wenerator is a $1 / 2$;watt mon bulb, (Ciemeral Filectric NE-gh) used in a saw-lonth oscillat or circuit. The frequency is determined by Res plus R_{25} and the shunt capacity solveted by x_{3}, and is variathle betwern 12 and 700 cycles. A synchroniming voltare can be coupled in through ('re and its amplitude adjusted by Rer. "The "syne-sweep" switch. Xiz, atlows five different conditions of swerp and synchronization. as follows: (1) external synchemi\%ation, (2) line swohronization. (3) internal syburonization, (t) line (sine-witer)

The positive satituoh from the Eern rator beeomes a negative sawtooth atter amplification through the horizuntal amplifier come seetion of a (isLar), and to make the trace sweep from left to right in the conventional lasthion the cathode-ray tube must be turned so that the Cio. 1 pin is at the hotloh, with pins No. 3 and No. 7 horizontal. liaret in this mamber a waveform will appear in the correct polarity when passed through the vertical amplifier but it will be inverted when applied directly to the vertical plates.

The unit is built on a 7 - by 7-by 2inch chassis. The ten controls and the pilot light are mounted along the front and sides, and the two heater transformers are mounted on the bark. The external connections are brought to

$M_{\text {easurements and }} M_{\text {easuring }} \varepsilon_{q u i p m e n t} 407$

Fig. 1923 - Wiring diagram uf the l-inch walloscope. Terminals G_{1} and G_{2} should be connerted the chas-im.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-3$ - fd , $\mathbf{2} 50$.volt electrolytic.
$\mathrm{C}_{6}, \mathrm{C}_{-1}$, Cix, $^{2} \mathrm{C}_{9}-0.1-\mu \mathrm{fd} .600$ - wolt paper.
C_{10}, $\mathrm{C}_{11}-25-\mu \mathrm{fd}$. 2. i -volt electrolytic.
$\mathrm{C}_{12}-0.001-\mu$ ful. miva.
$\mathrm{C}_{13}-100+\mu \mu \mathrm{fd}$. mica.
(it - 0.0.5-pfl. 400-volt paper.
(.15-0.0) $-\mu \mathrm{fd}$. 400 -volt paper.
$\mathrm{C}_{16}-0.006-\mu \mathrm{fd}$. mica.
$\mathrm{Ci}_{1 i}-0.002 \mu \mathrm{fd}$, mica.
$R_{1}-10,000$ olims.
$\mathrm{K}_{2}, \mathrm{~K}_{23}-0.2$ megolim.
$\mathrm{K}_{3}, \mathrm{l}_{4}-0.1$ merohm.
$R_{5}-0.25$-megolim variable, "Focns" control.
$R_{6}-50,000$ whms, vatriahle, "Intonsity" control.
$\mathrm{R}_{7}, \mathrm{Rs}-0.5$ megohm.
$R_{9}, R_{10}, K_{20}-(10$-megohm variable. "Horimontal (ientering." "Vertioal (inntering" and "Vertical (rain" controls.
$\mathrm{R}_{11}, \mathrm{~K}_{12}, \mathrm{R}_{13}-2.0$ megehms.
R_{14} - $\mathbf{5 0} 0.0100$ ohms.
$\mathrm{h}_{15}-1.0 \mathrm{magnhm}$.
Rio, IR:- 0 . $2 . ⿹ 勹$ mexolim.
$\mathrm{K}_{1 \times}, \mathrm{K}_{19}-\mathrm{j} 0100$ ohma,
$\mathrm{R}_{21}-3$-mugohm varialle "IIorizontal Gain" control.
$\mathrm{K}_{22}, \mathrm{R}_{24}-3.0$ merrolums.
$R_{25}-10.0$ niepohm variable. "Fine F'requarnes" control.
K_{26} - 0.1 -megohm variable. "Ayse Amili tude" enntrol.
All fixed resistors are $1 / 2$-watt carhom.
I_{1} - 6.3-volt pilot lamp.
$S_{1}-S . p . s . t$ snap switeln mounted on Ro.
S_{2} - Two-pole S-porition rotars, "EncSweev."
$\mathrm{S}_{3}-$ Single-pole 5 -position rotary. (nar-e Frepuency.
$\mathrm{T}_{1}, \mathrm{~T}_{2}$ - 6.3 -voli 1.0 -ampere heater tran-. former.
nine tip jacks on a polystyrene pane! which is also mounted on the back of the chassis. Mounting the jacks for connections at the back of the ehassis keeps the leads clear of the controls.

The arrangement of the tubes on the chassis can be seren in the photographs. The leads in the sweep generator, amplifior grid circuits and all heaters should he shichded to minimize a.ce pick-up. Ton much pick-up in the swerp cirmit will cause it to synchronize with the line frequency and produce unstable sweeps at other frequencies. The outputs of the amplifiers are brought out in flexible leads terminated in pintips which can be plugered into the proper jacks on the terminal panel, thus making it a simple mattor to remow them when working direetly into the 'scope deflection plates.

Since one site of the acc. line is common to the d.c: voltages and chassis, it is necessary to know when the chassis is connereted to the grounded side of the line. The "Fest" terminal is a means for checking this. With S_{1} turned to the "Off" position and ss set to "Test." conneet the "Test" terminal to an actual ground or the common of the unit to be tested with the 'scope. If the neon tubeglows, the a.c. plug should be reversed.

Fif. 1921 - View howing the arrangement of parts underneath the oscilloseope chatsis, The controls along the left-hand -ide, from top to bottom, are "Intensity," "Horizontal Centering," "(.oarse Frequency" and "Hurizontal Gain." (McCormick, Jan., 1940, (.il.)

The direct sensitivity of the vertical plates is 125 volts/inch and 175 volts/inch for the horizontal. Working through the amplifiers at maximum gain, the vertical sensitivity is 0.9

Fig. 192.5 - A shitelt of the back of the 'seone, showing the arrangement of terminals.
volts/inch and 1.1 volte/inch for the horizontal. 'The ate power consumption of the unit is appoximately 20 watts.

c Signal Generators

Test oscillators - A simple test oscillator for reoeiver cherking and similar uses is shown in lige. 1926. It uses the electron-coupled oscillator circuit with provision for suppressorgrid atf. modnlation. The output attematorer is a potentioneter so commerted as 10 present a constant input resistance to the reediver.

Foor suppressor-grid modulation, apply approximately 10 volte of athlio (for 50-proment. modulationi). Where shown in the diagram.

Fip. 1926 - Filectron-coupled i.f. test-oscillator rircuit diagram.
C_{1} - $\mathbf{1 0 0}-\mu \mathrm{\mu ff}$. variable with $200-\mu_{\mu} \mathrm{fd}$. fixed silvermina zero drift in paralled.
$\mathrm{C}_{2}-1001-\mu \mathrm{fi}$, miderat mica.

Cs - $0.005 \cdot \mu \mathrm{fd}$, mira.
$\mathrm{Ci}_{5}-0.1-\mu \mathrm{fd}$. fol wolt paper.
C: $-501-\mu \mathrm{ffl}$. midert mica.
R_{1} - 50,0100 whens, 15 watt.
R_{2} - 2000 ohms, 12 watt.
$\mathrm{R}_{3}-20,000$ ohme, 1 watt.

L-40-510 kc:: 140 turns Xo. 30 enameled, closewound on $11 / 2-$ inch diameter plug-in form. Cathode tap 35 turns from gromed end.
$1.400-15.50 \mathrm{kc}:$ 42 $_{2}$ turn* No. 20 do.ec. tapped 10 turns from ground.
4.000-5500 kre: 11 turns No. 18 enameled, turns spared diameter of wire, tapped 3 turns from ground.
$1 R \mathrm{FC}_{1}-2.5$-mh. r.f. choke.
$1 \mathrm{FCl}_{2}-25$-mh. r.f. choke.

The suppressor grid is biased 10 volts negative for modulated use; if an unmodulated signal is desired, the upper terminal may be grounded as indicated. This will inerease the output from the oscillator. Conversely, if the output potentiometer does mot attenuate the signal sufficiontly, additional d.e. negative bias may be applied between the molulation terminals.

In aligning a rocoivor it is important, that the test. signal be prevented from entering circuits where it ean cause false indications. 'This will oceur if the signal can enter the reeoiver by any other means than through the output leads from the test oscillator. The test oscillator nust be thoroughly shiclded, and the output lead likewise should be at shielded cable with the center wire the "hot" lead. Make all ground returns to a havy copper strap connected to the cabinet at the output ground terminal. The plus-in coil should be separately shicheded.

The i,f. ranges of the test oscillator can be calibrated by beating against signals of known frodueney in the b.e band. Frequencies betwon 465 ke . and 275 kc . em be spotted by using the second harmonic of the oscillator, the rematinder of the range to 175 ke . being cheerked by using the third harmonic.

The at.f. modulating source for the test ospillatur an be any adudio oscillator capable of delivering 10 to 20 volts at the standard recoiver-eherking frequency of 400 acyes.

A useful atudio-oscillator cireuit is shown in Fig. 1927. It cmploys a two-teminal or "transitron" circuit using a pentagrid tube. A frequeney of approximately 400 eveles is genrrated with the tuned-cireuit values shown. The frepuence maty be changed by substituting a different value for (1 : several values of raparitance may be arranged to be selected by a switeh so that an assortment of frequencies is available.

Fig. 1927-Simplencwative-resistanceadionemeillator.
C_{1} - 0.1.5- $\mu \mathrm{ff}$. 460. wolt paper.
(2)-0.1- Cl d. 100 - volt paper.

$\mathrm{R}_{3} . \mathrm{R}_{2}-50.01010$ ohms, I watt.
$\mathrm{R}_{3}-31,0100$-ohm volume control.
$1_{1}-1.2-h$ nenry chooke (Thordarson T-14C6l with iron core removed).
T - Uutput transformer (interstage audio, 1:3 ratio).

C. Antenna Measurements

Antonna meaxurements are made for the purpose (a) of soruring maximum transfer of power to the antema from the transmitter, and (b) of adjusting directional antemnas to conform with design conditions. Related to measurements of the antenna system proper is

Measurements and $^{M_{e a s u r i n g ~}^{\prime} C_{q u i p m e n t ~}^{\prime \prime} 409}$

the measurement of transmis-sion-line performance.

Checking the fransmission line for standing waves can be done by measuring the current in the wires, using a deviece of the type pietured in Fig lazs. The hooks (which should be sharp enough to cur throught the insulation, if any, on the wires) are plated on one of the
 ming projustad ho sive a suith able reading on the 1 Hetas. At any one position along the line the currents in the two wires should be identical. Reatinges taken at intervals of a quarter wavelength will indicate whether or not standing waves are present.

Field-intensity meters - In adjusting antenna ststems for maximum radiation amd in determining radiation patterns. use is made of field-intensity meters. Fumdamentally the fiedeintensity meter

consists of a small pick-up antenna and an indicating device such as a rectifier and microammeter or a vacuum-tube voltmeter provided with a tuned input circuit. It is used to indicate the relative intensity of the radiation field under actual radiating conditions. It is particularly useful on the very-high frequencies and in adjusting directional antemnas. Field-intensity checks should be mate at points several wavelengths distant from the antenna and at heights corresponding with the desired angle of radiation.

The absorption frequency meters shown in Figs. 1905 and 1908 may be used as ficldstrength meters if provided with piek-up antennas. Howewer, it is convonient to have the indicating device separate from the actual pick-up. This arrangement, allows the piek-up unit to be set up out in the fied to pick up radiation from the antonna under test. while the meter unit is near where adjustments are to be made. Antema adjustment thus becomes a one-nan job. The unit shown in Figs. 19291931. inclusive, is in two sections, one containing the usual tuned cireuit, crystal rectifior. and antenna connection, and the other housing a microammeter for registering the rectified current from the orystal. The two units are

Fig. 1929 - Remote-indicating fieldotrongth meter, consisting of an r.f. pich-np and rectifier unit, and a meter muit. The knoh on the left side of the meter unit is the switoh for the shant. On the piok-up unit the tworemtrols are the hamdaniteh (left) and tuning. 'The knol, at the right is for the resistor-shorting switch.
fitterl with matching pluy and socket permitting them to he used together, of they may be interconnected by moans of a cable which can be any lengoh up to several humded feel. Three coils are used. so that motsumements maty be made on 28, 50, and $1+1 \mathrm{Mr}$. with the smat of a switch. I resistor is insioterd in surfes with the erystal and meter, fo lessen the loading effect on the tumed cireuit and to make the response of the arysal more linear with variations in radiated power. As the resistor redumes the sonsit,jvity somewhat, a switeh is provided to short it out in eate measurements are to be made with extremely low power or at large distances from the transmitting antenna. A

Fig. 1930 - Wiring diagram of the remote-iudicating fied-strength meter.
$C_{1}-25-\mu \mu \mathrm{fa}$. mideret variable.
(.2, $\mathrm{C}_{3}-1$) (011- $\mu \mathrm{fI}$. mica.
h_{1} - lotio ohms, $1 / 2$ watt.
H_{2} - 2.50 ohums, $\frac{1}{2}$ watt.
 leage, on $\frac{3}{4}$-inch diat form (Mational Pler-I).

La-141-M1, coil- 3 turns ho. 18 enamel, $1 / 4$ inch lonk, 3 -inch dia., xelf.xupporting.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - (nivaraal recrptacle, Iwo-pole retainer-ring type (Amphenol ot-F).
MA - 0 -100I microammelor (1 -ino mirroanmeter or O-I milliammeter may be used, with redueed sensitivity).
$\mathrm{P}_{1}, \mathrm{P}_{2}$-Polarized plug, two-pole retainer-ring type (Amphenol 61-M1 ${ }^{\prime}$).
$\therefore 1-3$-ponition walfertype witeh.
$\mathrm{s}_{2}, \mathrm{~S}_{3}-\mathrm{S} . \mathrm{p}, \mathrm{s}$ t. shap switch.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}-2.5 \mathrm{mh}$. choke (National R-100).

Fig. 1931 - Inside view of the two units of the remote-indicating field-strength meter.
shorting switch and connerting plug are mounted on the top panel. promittingeasy wiring of the assembly. The intereonnecting plug and socket are the polarimed type, whin bue prone ont the plug slighty larger Than the wther. The plug will fit as sitalard a.c. outhor, so the intereonmerting cable (ordinary rub-her-covered lamp cord) doubles as a long a.c. extension cord when not in use for its intended purpose.

100-microampere metor is used to give high sensitivity. and a shunt is available to multiply the range of the meter by three. This shunt is also provided with a switch so that low or high readings can be taken without making a trip to the pick-up unit. The crystal is the 1 N21 type. (rermanium crystals (1N31) also may be used with good results.

The two unitw are housed in 2 by 4 by 4 -inch sterl boxes with front and bark removable. In the pick-up unit all parts except the resistor

The antenna conneetion is a steatite feedthrough bushing fitted with a "hanama plug" socket. A convenient pick-up antema is made by drilling and tapping a $\frac{1}{4}$-inch rod for $6 / 32$ thread to take the threaded end of a banana plug. The length of the antenna will vary the sensitivity of the mit. If measurements are to be made with high power levels, a rod a fow inches in lenerth will suffice, but for ordinary work a length of $2 t$ inches or so will be about right.

Vacuum- Tube Characteristics and Miscellaneous Data

(C Inductance and Capacity

Inductance (L) - The formula for conputing the inductance of air-core coils is:

$$
L=\frac{0.2 a^{2} n^{2}}{3 a+9 b+10 c} \mu \mathrm{~h} .
$$

where a is the mean dianeter of the coil in inches, b is the length of the winding in inches, c is the radial depth of the winding in inches, and n is the number of turns. The quantity c may be neglected if the coil is a single-layer solenoid.

For example, assume a coil having 35 turns of No. 30 d.s.e. wire on a form 1.5 inches in diameter. Consulting the wire table (page 416), 35 turns of No. 30 d.s.c. will oceupy $0 . \overline{\text { i }}$ inch. 'Therefore, $a=1.5, b=0.5, n=35$, and

$$
L=\frac{0.2 \times(1.5)^{2} \times(35)^{2}}{(3 \times 1.5)+(9 \times 0.5)}=61.25 \mu \mathrm{~h}
$$

To calculate the number of turns of a singlelayer coil for a required value of inductance:

$$
N=\sqrt{\frac{3 a+9 b}{0.2 a^{2}} \times L}
$$

Struight round wires:

To calculate the high-frequency inductance of a straight round wire:

$$
\begin{aligned}
L & =0.00508 l\left(2.303 \log _{10} \frac{4 l}{d}-1\right) \\
l & =\text { lenth in inches } \\
d & =\text { dinmeter in inches } \\
L & =\text { inductance in microhenrys }
\end{aligned}
$$

Condenser capacily (C) - The formula for determining the eapacity of a condenser is:

$$
C=0.224 \frac{K}{d}(n-1) \mu \mu \mathrm{fd} .
$$

Where A is the area of one side of one plate in square inches, n is the total number of plates, d is the separation between plates in inches, and K is the dielectric constant $(=1$ for air; see the table on page 415 for values for other materials).

The dielectrie constant is the ratio of the caparity of a condenser with a given dielectric to its capacity with air dielectric.

ABBREVIATIONS FOR ELECTRICAL AND RADIO TERMS			
Alternating eurrent	a.c.	Medium frequency	mı.f.
Ampere (amperes)	a.	Meracyeles (per second)	Mc.
Amplitude modulation	it.m.	Megohm	M12
Antenna	ant.	Meter	m.
Audio frequency	a.f.	Microfarad	$\mu \mathrm{fd}$.
Centineter	cm.	Microhenry	$\mu \mathrm{h}$.
Continuous waves	c.w.	Micromicrofarad	$\mu \mu \mathrm{fd}$.
Cycles per second	e.p.s.	Microvolt	$\mu \mathrm{v}$ 。
Decibel	db.	Mirrovolt per meter	$\mu \mathrm{V} / \mathrm{m}$.
Direct current	d.c.	Mierowatt	μw.
Electromotive force	e.m.f.	Milliampere	ma.
Frequency	f.	Millivolt	mv.
Frequency modulation	f.nı.	Milliwatt	mw
Ground	gnd.	Modulated continuous waves	m.c.w.
Henry	h.	Ohm	!
High frequency	h.f.	Power	P.
Intermediate frequency	i.f.	Power factor	p.f.
Interrupted contimuous waves	i.c.w.	Radio frequency	r.f.
Kilocycles (per second)	kc.	C'ltrahigh frequency	u.h.f.
Kilovolt.	kv.	Very-high frequency	v.h.f.
Kilowatt	kw.	Volt (volts)	v.
Magnetomotive force	m.m.f.	Watt (watts)	W.

© RMA Radio Color Codes

Standard color codes have been adopted by the Radio Manufacturers Association for the ready identification of values and comnections for standard components.

RESISTOR-CONDEV:SER COIOR CODE

Color	Siunificant l'ijure	Decimal Multiphirr	Tulerance (i)	Ioultaye Ratin *
Hlack	0	1	-	-
Brown	1	10	1*	100)
Red	2	100	2*	200
Orange	3	1000	3*	301
Yellow	4	10.000	4*	400
Gireen	5	1(00,000)	厄*	8 OH
blue	6	1,0010,001	¢*	(60)
Violet	7	10.000 .000	7 *	760
Gray	8	101,006, 500	8*	800
White	9	1,000,(0x), 0 (1)	!*	!001
Gold	-	0.1	\%	16m
Silver	-	0.01	10	20100
No color	-	-	20	500

Mica condensers:

If one row of threc colored markers appears on the condenser, the voltare rating is son volts and the caparity is expressed to two significant figures, in mieromierofarads. as follows: liost dot on left, first significant firure. Socond dot. second significant figure. 'lhird dot, decimal multiplier.

Example: A condenser has one row of colored markers, as follows: brown, blach and brourn. Its capacity is $100 \mu \mu \mathrm{fl}$.

When two rows of three colored markers apppear on the condenser the top row represonts the significant figures. reading from left 10 right: the bettom row indicates the decimal multiplier. toldance and voltage rating, reading from right to left. Capacity is in $\mu \mu \mathrm{f} d$.

Example: A comdenser has two rows of colored markers, as follows: 'Top row: left, broun; conter. black; right, no color. Bottom row: right, brourn; center. green; left, blue. Its ratings are $100 \mu \mu \mathrm{fl} . ; \pm 5 \%, 600$ volts.

Tubular condensers:

Two groups of colored bands are used on tubular condensers. Viewod with the wide bands on the right, the wide bands indieate significant figures (from left to right); narrow bands indicate the decimal multiplier, tolerance and voltage rating, from right to left, respectively.

Resistors:

Talues of resistance and tolerances are indicated by colored dots, bands or stripes on the resistor.

Two types of resistors are commonly used, one having radial and the other axial leads. The following illustration shows the two types of resistors and the system of identification.

Radial leads	Axial leads	Color
Bod! 1	band A	Iudicates first significant figure.
End B	Band 13	Indicates second sidnificant figure.
$\begin{aligned} & \text { Band } C \\ & \text { (or dot) } \end{aligned}$	Band C	Indicates decimal multiplier.
Band 1)	Band D	Indicates tolcrance in per cent.

I.f. transformers:

Blue - pate lead.
Red - "13"+ lead.
Green - r rid (or diode) lead.
Black - grid (or diode) return.
Note: If the serondary of the i.f.t. is centertapped, the second diode plate lead is green-and-black striped, and black is used for the center-tap lead.

A.f. transformers:

Blue - plate (finish) lead of primary.
Red - "13" + lead (this applies whether the primary is plain or center-tapped).
Brown - plate (start) lead on center-tapped primaries. (Blue may be used for this lead if polarity is not important.)
Giren - grid (finish) lead to secondary.
Blach - grid return (this applies whether the secondary is phain or (enter-tapped).
Yellow-grid (start) lead on eenter-tapped secondarios. (Green may be used for this load if polarity is not important.)
Nore: These markings apply also to line-togrid and tube-to-line transformers.

Loudspeaker roice coils:

Grem - finish.
Black - start.

Field coils:

Black and red - start.
Yellow ard red - finish.
Slate and Red - tap (if any).

Potcer transformers:

1) Primary Leads Black

If tapped:
Common Black T:up. Black and Yellow Striped Finish....... . . Black and Red Striped
2) IIgh-Voltage Plate Winding Red Center-Tap. . . Red and Yellow striped
3) Rectifier Filament Winding Vellow Center-Tap. . Vellow and Blue striped
4) Filament Winding No. 1........... Green Center-Tap. . (ireen and Yellow sitriped
5) l户ilament Winding No. 2......... Brown Center-Tap. Brou'n and Yellow Striped
6) Filament Winding No. 3........... Slate Center-Tap . . Slate and Yellow Striped

This chart may be used to find the values of inductance and capacity required to resonate at any given frequeney in the medinm- or high-frequency ranges; or, conversely, to find the frequency to which any wiven coil-condenser combination will tune. In the example shown by the dashed lines, a condenser has a minimun capacity of 15 pufd. and a maxinum capacity of $50 \mu \mu \mathrm{fd}$. If it is to he used with a coil of $10-\mu \mathrm{h}$. inductance, what frequency range will be covered' 'The straight-edge is connerted between 10 on the left hand seale and 15 on the right, giving 13 Mc , as the high-frequency linit. Kecping the straightedge at 10 on the left-hand scale, the other end is swong to 50 on the right-hand scale, piving a low-frequency limit of 7.1 Me. The tming range would, therefore, be from 7.1 Mc. to 13 Me, or 7100 ke . $\mathrm{ta} 13,000 \mathrm{kc}$. The center sate also serves to convert frefluency to wavelengh.
The range of the chart can be extended by multiplying each of the seales bey 0.1 or 10 . In the example above, if the capacities are 150 and $500 \mu \mu \mathrm{fd}$. and the inductance $100 \mu \mathrm{~h}$, the range becomes approximately 231 t 422 meters or 0.7 to 1.3 Mc . Alternatively, 1.5 to $5 \mu \mu \mathrm{fd}$. and $1 \mu \mathrm{~h}$. will give a range of approximately 71 to I 30 Mc .

INDUCTIVE AND CAPACITIVE REACTANCE VS. FREQUENCY CHART

By use of the chart abowe the approximate reactance of any capacity from $1.0 \mu \mu \mathrm{fl}$, to $10 \mu \mathrm{fl}$. at any fregurney
 recely. Intermediate values can be extimated by interpolation. In making interpolations, remember that the rate of
 values on the capacity or inductance wales.
'Ihis chart alsocan be used to find the' approximate resonanes frequendies of I. Combinations, or the frequeney to which a given eoiland condenser combination will tone. Firwt locate the respertive slanting lines for the capacity and inductance. 'The point where they intorsect, i, where the reactanceare equal, is the resonant frequency (projected downward and read ou the fregurney scate).

Electrical Conductivity of Metals

> R. lative Tomp. Coëffi. Condurticuty ${ }^{2}$ of hosishact

Relative Temp.Cosdf. ${ }^{2}$ Conductivity ${ }^{1}$ of Resistrance

Aluminum (2S; pure) .	59	0.0019
Aluminum (alloys):		
Soft-annealed.	4.i-in	
Heat-reated.	(30-4.)	
Brass.	23	$0.002-0.007$
('admiam.	19	
($\%$ \%romiunt	5.5	
('limax	1.83	
cobatt.	14i.3	
(onstantin	3. 24	
(Ooprer (hatal drawa)	SO. ${ }^{\text {S }}$	0.004
(omper (ammeated)	100	
Fiverdur.	6	
German silver $1 \mathrm{~s}^{\prime}$.	- .3	0.04019
Gold.	6.:	
Iron (pure)	17.7	0.006
Iron (cast)	$\because-12$	
Iron (wrought).	11.4	

[^8]| Lead | 7 | 0.0041 |
| :---: | :---: | :---: |
| Manganin | 3.7 | 0.00002 |
| Mercury | 1.ffi | 0.0 Minso |
| Molytrdenum | 33.2 | $0.0133:$ |
| Mond. | 4 | 0.0019 |
| Nieltrome | 1.4 .5 | 0.06017 |
| Niretel | 12-16 | 0.00 .5 |
| Phowphor Bronze. | 36 | $0 .(4) 4$ |
| Platimun. | 1.5 | |
| Silver | 106 | 0.00.4 |
| Steel | 3-1\% | |
| 'lin | 13 | 0.0012 |
| Thngrven | $\because 8.9$ | 0.1085 |
| \%inc | 28.2 | 0.10035 |
| Tpprarimate relatioms: | | |
| An incruase of 1 in A. W. (i. or B. © S. wire size increases resistance $2 \pi \%$. | | |
| An inerease of 2 increases resistance 60\%. | | |
| An increase of 3 increases resistance 100%. | | |
| An increase of 10 increases resistance 10 tim | | |

Table of Dielectric Characteristics

Dielectric material ${ }^{1}$	Dielectric consfant (H$)$	Power factor					Dielertric strength (muriclure rolleter): ${ }^{2}$	$\begin{aligned} & \text { Volume } \\ & \text { resistivid! }{ }^{3}(\rho) \end{aligned}$
		$\begin{gathered} 60 \\ \text { cucles } \end{gathered}$	1 kc .	1 Mc ,	$10.1 / \mathrm{c}$	100 Me		
Air (normal pressure). .	1.0						19.8.3.2.8	
AlsiMag Alsmi	5. $7-6.3$	2.9		0.21	0.15		210	10^{14}
Aniline formaldehyde	3-5	1-6					400	
Asphalts.	2.7-3.1		2.3				- 2 - 30	
Bakclite - See Phenol Beeswax.	2.0-3.2							
Cascin plastics ${ }^{4}$	fi.1-6. 4			5.2-6			165	
Castor oil.	4.3-4.7			5 7			1650	
Celluloid	$4 \cdot 16$			5-10			Bs0	
Cellulose arctate ${ }^{5}$	ti-8	3-6	4-6	4-6	5.5			
Cellulose nitrate ${ }^{6}$	47			2.8-5			$30(-780$	$\therefore 30 \times 10^{10}$
Ceresin wax.	2.5-2.6			$0.12-0.21$				
Cresol formalidehyde	6	10					400	
Dilcet	3.57					0.33		
Fithyl cellulose	$2-2.7$	0.7	1.2	1.5			1:100	10^{15}
Fiber	5-7.5			4.5-5			150-180	5×10^{3}
Formica MIF-66.	4.6-4.9		1.5	1.1			+150	
Class:								
Cobalt	7.3			0.7				
Common window.	7.6-8			1.4			200-250	
Crown	6. $2-7$		1	13			500	
Eldetrical	4-5			0.5			$20(0)$	8×10^{14}
Flint . .	7-10		0.45	0.4				
Xonex.	4.2			0.25		0.28		
[hotographic	7.5			0.8-1				
Irlate.....	0.8-7.6			0.6-0.8				
P'rrex....	$4.2-4.9$		0.5	0.7		0. 54	33.7	10^{14}
Ginta percha	2. $2-4.4$						210500	$5 \times 10^{14}-10^{15}$
Jurite ${ }^{\text {a }}$	2.-3-3	7	5	1. 5 -3	1.9		480 - y (\%)	
Melamine formaldelyde	8	16					30\%	
Mira....	2. $2-8$	0.2	10.3	$0.2-6$	0.02			2×10^{17}
Mieat (clear India)	6.4-7.5	2	\because	2	2		600-1.50)	- $\times 10^{17}$
Mrealex	7.4			0.18			- \% ${ }^{\text {a }}$	10^{13}
Myealex (British)	6			0.3			3:0	
Mykroy.	6.5-7			0.1-0.2			130	
Pilon.	3.6			2.2				
Paper.	2.0-2.6						1250	
Paraftin wax (solid)	1.9-2.6			0.1-0.3			309	$10^{15}-10^{19}$
Pemque	7.21			0.2				
Phenol: ${ }^{\text {P }}$								
Pure. .	5			1			400-47.5	1.5×10^{12}
Asbestos hase.	7.5			15)			90-150	1.5×10
Black molded.	5-5.5			3.5			400-500)	
Fabric base.	$5-6.5$			3.5-11			150-500	
Mica-filled.	5-6			0.8-1			475-600	
Paper base	3.8-5.5			2.5-4			650)-750	$10^{10}-10^{18}$
Yellow...	3.3-5.4			0.31)-0.7			\%00	
I'ralsethylene	$2.3-2.4$	0.02	0.02	0.02-0.05			$10 \% 0$	10^{17}
lolvindene	3	0.04					,	
$\mathrm{P}^{\text {roly }}$ (sishutylene.	$2.4-2.5$	0.045	0.05				500	10^{16}
I'olvistyrene 9.	$\because .4-2.9(2)$ 6)	0.02	0.018	0.02	0.02	0.02	500) 2500	510^{20}
Poreelain (dry process)	(1.2-5.5)			0.7-15			40) 100	5×10^{8}
Forcdain (wet process).	0.5-7			0.6			150	
l'ressboard (untreated)	$2.9-4.5$						$125-300$	
I'resshoard (oiled)	5						700	
Quartz (fused)	3.5-(3.8)	0.01	0.01	0.015-0.03	0.01	0.05	200	$10^{14 \cdot \cdot 10^{18}}$
Jubher (hard) ${ }^{10}$.	${ }_{2}{ }^{2-3.5}$ (3)			0.5-1			450	$10^{12}-10^{15}$
Shellac . 11	2. 5-4			0.09			900	10^{16}
"Commercial" grade	4.9-6.5	0.02	0.2	0.2	0.4			
"Low-loss" grade. .	4.4	0.02	0.2	0.2	0.18	0.13	150-315	$10^{14}-10^{15}$
Titanium dioxisle ${ }^{12}{ }^{\text {a }}$	90-170		0.1	0.1	1.18	0.13	150-315	$10^{4-10^{15}}$
Lrea formaldehyde ${ }^{13}$.	5-7	3-5	$2-3$	2-4	4		300-550	$10^{12}-10^{13}$
Varnished cloth ${ }^{14}$	$\because-2.5$			2-3			440-5.50	10
Vingl resins	4			1.4-1.7			400-500	10^{14}
Vitrolex.	13.4			0.3				
Wood (dry oak)	2.5-6.8(3)		3.8	4.2				
Wood (paraflined mathle).	4.1						115	

[^9]Catalin, Celeron. Diclecto, Durez, Durite, Formica, Gemstotur. Heresite, Indur, Makabot, Marbletie. Mirarta, Opalon, Frystal, Resinox, symhane, 'Textolite, ete. Yellow bake lite is so-ralled "Iow-lows" hakelise.

9 Includes Amphenol $!13 \mathrm{~A}$, Dixtrene, Intelin IN 45, Loalin, Lust ron, (Quirti: Q. Rezoglas, Rhoumbene M, IRonilla L. strraflex, styron. Trolitul. Victron, ete.

11 Also known as Ebonite.
11 soraptone - Abberine. Alsimat, Isolamite, Iava, etc. 12 Rutile. Lised in low temperature-coefficient fixed condensers.

13 Includes Aldur. Beetle, Plaskon, Pollopas, Prystal, etc. 14 Includes Empire cloth.

COPPER－WIRE TABLE

$\begin{gathered} \text { Gauoc } \\ \text { No. } \\ \text { B. \& S. } \end{gathered}$	$\begin{gathered} \text { Diam. } \\ \text { in } \\ \text { Mils } \end{gathered}$	Circular Mil Area	Turns per Linear Inch ${ }^{2}$				Turns per Square Inch ${ }^{2}$			Feet per Lb．		$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \mathrm{ft} . \\ 25^{\circ} \mathrm{C} . \end{gathered}$	Current Carrying Capacity at $1500 \mathrm{C} . \mathrm{M}$. per Amp．${ }^{3}$	Diam． in mm．	Nearest Mritish ふ． U＇$^{\prime}$ ．G． No．
			Enamel	S．C．C．	$\begin{gathered} \text { D.S.C. } \\ \text { or } \\ \text { S.C.C. } \end{gathered}$	D．C．C．	S．C．C．	Enamel S．C．C．	D．C．C．	Bare	D．C．C．				
	289.3	83690	－	－	－	－．	－	－	－	3.947	－	． 1264	55.7	7.3 .48	1
2	257.6	66.370	－	－	－	－	－	－	－	4.977	－	． 1593	44.1	6.544	3
3	229.4	52640	－	－	－	－	－	－	－	6.276	－	． 2009	35.0	5.827	4
4	204.3	41740	－	－	－	－	－	－	－	7.914 9.980	－	． 25193	27.7 22.0	5.189 4.621	5
5	181.9	33100	－	－		－		－	－	12.58	－	． 4028	17.5	4．115	8
6	162.0	26250	－	－	－	－－	二	－	－	12.58	－	． 5088	13.8	3．665	9
7	144.3	208：30	7.6	－	7.4	$\overline{7.1}$	三－	－	－	20.01	19.6	．6405	11.0	3.264	10
8 9	128.5 114.4	16.510 13090	7.6 8.6	二	7.4 8.2	7.1 7.8	－	－	－	25.23	24.6	． 8077	8.7	2.906	11
9 10	114.4 101.9	10380	8.6 9.6	－	9.3	8.9	87.5	84.8	80.0	31.82	30.9	1.018	6.3	2.588	12
11	90.74	8234	10.7	－	10.3	9.8	110	10.5	97.5	40.12	38.8	1.28 .4	5.5	2.305	13
12	80.81	6.530	12.0	－	11.5	10.9	136	131	121	50.59	48.9	1.619	4.4	2.05 .3 1.8 .88	14
13	71.96	5178	13.5	－	12.8	12.0	170	162 198	150 183	63.80 80.4 .4	61.5 77.3	2．04？ 2.575	3.5 2.7	1.828 1.628	15 16
14	64.08	4107	15.0	－	14.2 15.8	13.8	211	198 2.50	183 223	80.4 .4 101.4	97.3	3.247	2.2	1.450	17
15	57.07	3257 2583	16.8 18.9	－18．9	15.8 17.9	14.8 16.4	202 321	3196	271	127.9	119	4.094	1.7	1.291	18
16	50.82	2583 2048	18.9 21.2	18.9	19.9	18.1	397	372	329	161.3	150	5.163	1.3	1.150	18
17	45.26 40.30	－164	23.6	23.6	22.0	19.8	493	454	399	203.4	188	6.510	1.1	1.024	19
18	40.30 35.89	1288	26.4	26.4	24.4	21.8	592	553	479	256.5	237	8.210	． 86	． 9116	20
20	31.96	1022	29.4	29.4	27.0	23.8	775	725	625	323.4	298	10.35	． 68	． 8118	21
21	28.46	810.1	33.1	32.7	29.8	26.0	940	895	754	407.8	370	13.05	． 54	． 7230	22
22	25.35	642.4	37.0	36.5	34.1	30.0	1150	1070	910	514.2	461	16.46	． 43	． 6438	23
23	22.57	509.5	41.3	40.6	37.6	31.6	1400	1300	1080	648.4	584	20.76	． 3.4	． 5733	24
24	20.10	40.4 .0	46.3	35.3	41.5	3.3 .6	1700	1570	1260	817.7	745	26.17	． 27	． 5106	25
25	17.90	320.4	51.7	50.4	45.6	38.6	2060	1910	1510	1031	903	33.00	． 21	． 4547	26
26	15.94	254.1	58.0	55.6	50.2	41.8	2500	2300	1750	1300	1118	41.62	． 17	． 4049	27
27	14.20	201.5	6.4 .9	61.5	55.0	45.0	3030	2780	2020	1639	1422	52.48	． 13	． 3606	29
28	12.64	159.8	72.7	68.6	60.2	48.5	3670	3350	2310	2067	1759	66.17	． 11	． 3211	30
29	11.26	126.7	81.6	74.8	65.4	51.8	4300	3900	2700	2607	2207	83.44	． 084	． 2859	31
30	10.03	100.5	90.5	83.3	71.5	55.5	5040	4660	3020	3287	2534	105.2	． 067	． 2854	33
31	8.928	79.70	101	92.0	77.5	59.2	5920	5280	－	4145	2768	132.7	．053	． 2268	34 36
32	7.950	63.21	113	101	83.6	62.6	7060 8120	6250 7360	－	5227 6591	3137 4697	167.3 211.0	.042 .033	． 2019	36 37
33	7.080	50.13	127	110 120	90.3 97.0	66.3 70.0	8120 9600	7360 8310	二	6591 8310	6168	211.0 266.0	． 026	． 1601	38
34	6.305	39.75	143	120	${ }^{97} 104$	70.0 73.5	10900	8310 8700	－	10480	6737	335.0	． 021	． 1426	38－39
35	5.615	31.52	$1: 88$ 175	132 143	104 111	73.5 77.0	12200	8700 10700	－	13210	7877	423.0	． 017	． 1270	39－40
36 37	5.000 4.453	25.00 19.83	175 198	143 154	1118	80.3	12200	10700	－	16660	9309	533.4	． 013	． 1131	41
37 38	3.965	15.72	224	166	126	83.6	－	－	－	21010	10666	672.6	． 010	． 1007	42
39	3.531	12.47	248	181	133	86.6	－	－	－	26500	11907	848.1	． 0008	.0897 .0799	43 44
40	3.145	9.88	282	194	140	89.7	－	－	－	33410	14222	1069	． 006	． 0799	44

[^10]
VACUUM-TUBE CLASSIFIED DATA TABLES AND INDEX

 than one table it is listed twice.

VACUUM-TUBE BASE DIAGRAMS

The diagrams on the folloning pages show stamdard sochet conncetions corresponding to the base designations given iu the column headed "Sorket Connections" in the classified tube data tables. Bottom views are shown throughout. Terminal designations are as follows:

A = Anode	$\mathrm{F}=\mathrm{rilament}$	IS $=$ Internal Shiedd	$\mathrm{P}_{1}=$ Startor-Atude
$1 \mathrm{P}=13$ ayonel Pin	$\underline{G}=$ Crid	$\mathbf{K}=$ Cathote	
$1 \mathrm{SS}=\mathrm{Bave}$ she	$\mathrm{H}=1 \mathrm{l}$	$\mathrm{NC}=$	
$\begin{aligned} & 1)=\begin{array}{l} \text { Deflecting } \\ \text { Plate } \end{array} \end{aligned}$	$1 C_{0}^{C}=$ Internal Con-	tion	$\therefore=\text { Rav.Control } \quad 1=0$

Alphabetical subseripts D. P. I' and IIX indicate, reapertively, dionde unit, pentode unit, triode anit or hexode unit in multi-mit types. subseript V1, 'T' or C"I' indirathes filamont or heator tap.
"harever the No. I pin of a metal-tspe tube in Table I is shown eonnected th the shell, the No. I pin in the glass (${ }^{(}$or G1) equivalent is eonneted to an internal shicld.

RMA TLBE BASE HIMCRAMS

Buttom views are shown. lerminal dexignations on suckets are shown above.

2D

48

40

4 K

$4 V$

5AB

5AK

3G

4 AH

$4 E$

4 M

4X

5AC

5AL

4AA

4BJ

$4 F$

$4 P$
 4Y

5AM

4AB
(3) (3) (2)

4BR

46

$4 R$

42

5AP

$4 J$

45A

5AA

Chapter Twenty

RMA TLBE BASF IMACRAMS
Bottom views are sbown. Torminal designationt on suckets are given on page 419 .

(3) (4)

5BO

$5 J$
(3) (3) (3)

GAM

(2) (4)

(2)
$6 B H$

6C
(3) (3)
686

$68 x$

5C
(2) (i)
$S L$
(2) (5)
50

(2) (4) 6AR TWO WAY
MaGMETC DEFLECTIOA Magnetic deflection
$G_{2}(4)$ (5) $G 1$

6BJ

6CA
(3) 6 H

50

SE

$5 Y$
(2):

52

6AF

6 A

6AL

6AS
(3) (3) (5):
(2):(3):
6AV
(2) (3) (
$6 F$
(2) (3) (3)
6 G

$6 B$

68A

6BQ

6 T

6BW

6CB

60

6 E
(6) (3) (3)
$6 J$

6 L

RMA ILBE BASE DIAGRAMS
Bottom viewe are shown. Terminal designations on sockets are given on page 419.

			7AT		7AV
7AW			78	78A	788
78 C					7BJ
				7CC	
		7 CN			

422

Chapter Twenty

RMA TUBE BASE DIAGRAMS
Bottom virws are shown. 'Terminal desiguations on sockets are given on page 419.

$7 J$

(2) (4)

8G
(2) (4)
(3)

RMA TVBE B ISE DIAGRAMS
Bottom views are shown. Terminal designations on sockets are given on page 4.19.

SLPPLFMENTARY BASE DIACHAMS

FIG. 7

FIG.I3

FIG 25
NC(4) FIG 31

FIG. 10

FIG.I6

FIG.II

FIG. 17

(3) (4):
FIG. 32

SUPPLEMENTARY BASE DIAGRAMS
Bottom views are shown. Terminal derignations on sockets are given on page 419.

SUPPLEMWNTARY "T"-GROUP BASE DIAGRAMS

C-4AF

Coseres

(2)
(2):

(2):

T-50A

T-5BB

T-5C

T-5CA

SUPPLKMKN'IARY "I" - GROUP BASW DIAGRAMS

Bottom views are shewn. Terminal designations on seckets are given on page 419 .

T9F

(2)

T-8DB

T-9D

T9G

T9H

B, ASE TYPE-DPSIGNATIONS
The type of base used on each tube listedin the tahles is indicated in the hase column by a letter. 'The meaning of each letter is an follows:

$\mathrm{A}=$ Arorn	M $=$ Meilum
[$3=$ Cilasi buton miniature	$N=$ None or special type
$J=$ Jumbu	1) $=$ Octal
$\mathrm{L}_{1}=$ Lesk-in	$\therefore=$ Small

$W=W a f(r$

TUBE RATINGS

The data in the classified tube tables are of two kinds, maximum ratings, and typical operating conditions.

Vacuum tube's are designed to be operated within definite maximum (and minimum) ratings. These ratings are the maximum safe operating voltages and currents for the chertrodes, based on inherent limiting factors such as permissible eathode temperature, cmission, and power dissipation in electrodes. In addition to the maxinum ratings for each type. performance data are given in the form of typical operating conditions.

In the transmitting-tube tables, maximum ratings for electrode voltage, current and dissipation are given separately from the typical operating conditions for the recommended classes of operation. In the recciving-tube tables, because of space limitations, ratings and operating data are combituod. Where only one set of operating conditions appears, the positive electrode voltages shown (plate, sereen, etc.) are, in general, also the maximum rated voltages for those electrodes.

The maximum ratings given for each transmitting type apply only when the tube is operated at frequencies up to the specified maximum frequency for full rating as listed in the column so headed. Is the frequency is
raised above the specified value, the radiofrequeney current, dielectric losses, and heating effects inerease rapidly. Most types ean be operated ahove their specified maximum freQuency provided the plate voltage and plate imputare reduced.

Fur certain air-cooled transmitting tube's, there are two sets of maximum values, one designated as CCs (Continuous Commercial Serviee) ratings, the other ICAS (Intermittent Commercial and Amateur Sorvice) ratings. Continuons Commercial Serviee is defined as that type of service in which long tube life and reliability of performance under continuous operating conditions are the prime consideration. Intermittent Commereial and Amateur Service is defined to include the many applications where the transmiter design factors of minimum size, light woight, and maximum power output are more important than long tube life. ICAS ratings are considerably higher than $C C S$ ratings. They permit the handling of groater power, and although such use involves some sacrifiee in tube life, the period over which tubes will continue to give satisfactory performance in intermittent service can be extremely long. Typical operating conditions given in the tables are ICAS ratings when applicable.

TABLE I-METAL RECEIVING TUBES

For "G" and "GT" fubes not listed (not having metal counterparts), see Tables II, VII, VIII and IX.

Type	Name	Socket Connecfions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plote Resistonce Ohms	Transconductance Micromhos	Amp. Factor	LoadResistanceOhms	Power Output Watis	Type
			Volts	Amps.	In	Out	PlateGrid												
6 A8	Pentagrid Converter	8 A	6.3	0.3	-	-	-	Osc.-Mixer	250	-3.0	100	3.2	3.3	Anode-grid (No. 2) 250 volts max. thru 20,000-ohms					648
$\begin{aligned} & 6 A B 7 \\ & 1853 \end{aligned}$	Television Amp. Pentode	8 N	6.3	0.45	8	5	0.015	Closs-A Amp.	300	-3.0	200	5.2	12.5	700000	5000	3500	-	-	$\begin{gathered} 6 A B 7 \\ 1853 \end{gathered}$
6AC7 1852	Television Amp. Pentode	8 N	6.3	0.45	11	5	0.015	Class-A Amp.	300	-2.0	150	2.5	10	750000	9000	6750	-	-	$\begin{aligned} & 6 A C 7 \\ & 1852 \end{aligned}$
6AG7	Videc Beom Power Amp.	8 Y	6.3	0.65	13	7.5	0.06	Class-A Amp.	300	- 3.0	150	7/9	30/30.5	130000	11000	-	10000	3.0	6AG7
6 AJ7	Sharp-Cut-Off Pentode	8N	6.3	0.45			-	Class-A Amp.	300	160^{*}	300	2.5	10	1000000	9000	-	-	3.0	6AJ7
GAK7	Pentodn Power Amp.	8 Y	6.3	0.65	13	7.5	0.06	Class-A Amp.	300	-3	150	7	30	130000	11000	- 730	10000	3.0	6AK7
$6 \mathrm{B8}$	Duplex-Diode Pentode	8 E	6.3	0.3	6	9	0.005	Class-A Amp.	250	-3.0	125	2.3	9.0	650000	1125	730	-		$6 \mathrm{B8}$
$6 \mathrm{C5}$	Triode Detector, Amplifer	60	6.3	0.3	3	11	2	Class-A Amp.	250	-8.0		-	8.0	10000	2000	20.	-		$6 \mathrm{C5}$
								Bias Detector	250	-17.0	-	-	Plate current adjusted to 0.2 ma . with no signal						
6 F5	High - μ Triode	5M	6.3	0.3	5.5	4	2.3	Class-A Amp.	250	-1.3	-	-	0.2	66000	1500	100		-	$6 F 5$
6F6	Pentode Power Amplifier	75	6.3	0.7		-	-	Class-A Pent.	$\begin{array}{r} 250 \\ 315 \end{array}$	$\begin{array}{r} -16.5 \\ -22.0 \end{array}$	$\begin{aligned} & 250 \\ & 315 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 34 \\ & 42 \end{aligned}$	$\begin{array}{r} 80000 \\ 75000 \\ \hline \end{array}$	$\begin{aligned} & 2500 \\ & 2650 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 7000 \\ & 7000 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	6F6
								Triode Amp. ${ }^{1}$	250	-20.0	-	-	31	2600	2700	7.0	4000	0.85	
								P.P. Pentodes P.P. Triodes	$\begin{aligned} & 375 \\ & 350 \end{aligned}$	$\begin{array}{\|l\|} \hline-28.0 \\ -38.0 \end{array}$	250	2.5	$\begin{aligned} & 17 \\ & 22.5 \end{aligned}$	Power output for 2 fubes at stated load, plate-to-plate			$\begin{array}{r} 10000 \\ 6000 \\ \hline \end{array}$	$\begin{aligned} & 19.0 \\ & 18.0 \end{aligned}$	
6H6	Twin Diode	70	6.3	0.3		-	-	Rectifier	Max. a.c. voltage per plate $=100 \mathrm{r} . \mathrm{m} . \mathrm{s}$. Max. output current 4.0 ma. d.c.										6H6
6.5	Defector Amplifier Triode	60	6.3	0.3	3.4	3.6	3.4	Class-A Amp.	250	-8.0		-	9	7700	2600	20	-	-	6 J 5
							0.005	R.F. Amp.	250	-3.0	100	0.5	2.0	1.5 meg .	1225	1500	-	-	6 J 7
6.77	Triple-Grid Detector, Amp.	7R	6.3	0.3	7	12		Bias Detecter	250	-4.3	100	Cathode current 0.43 ma .			\cdots		0.5 meg.	-	
$6 \mathrm{K7}$	Triple-Grid Variable- μ Amp.	7 R	6.3	0.3	7	12	0.005	R.F. Amp.	250	- 3.0	125	2.6	10.5	600000	1650	990		-	$6 \mathrm{K7}$
								Mixer	250	-10.0	100	-	-	Triode	Oscillator peak valts $=7.0$				
6 K 8	Triode Hexade Converter	8K	6.3	0.3	-		-	Converter	250	- 3.0	100	6	2.5		Plate (N	No. 2)	100 volts, 3.8 ma.		$6 K 8$
616	Beam Power Amplifier	7AC	6.3	0.9				Single Tube Class A_{1}	$\begin{array}{r} 250 \\ 300 \\ \hline \end{array}$	$\begin{aligned} & 170^{*} \\ & 220^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.4 / 7.2 \\ & 3.0 / 4.6 \\ & \hline \end{aligned}$	$\begin{gathered} 75 / 78 \\ 51 / 54.5 \\ \hline \end{gathered}$	二	-	二	$\begin{aligned} & 2500 \\ & 4500 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	616
								Single Tube Class A_{1}	$\begin{array}{r} 250 \\ \mathbf{3 5 0} \\ \hline \end{array}$	$\begin{array}{r} -14.0 \\ -18.0 \end{array}$	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 5.0 / 7.3 \\ & 2.5 / 7.0 \end{aligned}$	$\begin{aligned} & 72 / 79 \\ & 54 / 66 \\ & \hline \end{aligned}$	$\begin{array}{r} 22500 \\ 33000 \\ \hline \end{array}$	$\begin{aligned} & 6000 \\ & 5200 \\ & \hline \end{aligned}$		$\begin{array}{r} 2500 \\ 4200 \\ \hline \end{array}$	$\begin{array}{r} 6.5 \\ 10.8 \\ \hline \end{array}$	
								P.P. Class A_{1}	270	125*	270	11/17	134/145	-	-		5000	18.5	
								P.P. Class A_{1}	$\begin{array}{r} 250 \\ 270 \\ \hline \end{array}$	$\begin{array}{r} -16.0 \\ -17.5 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 270 \end{aligned}$	$\begin{aligned} & 10 / 16 \\ & 11 / 17 \\ & \hline \end{aligned}$	$\begin{aligned} & 120 / 140 \\ & 134 / 155 \end{aligned}$	$\begin{array}{r} 24500 \\ 23500 \\ \hline \end{array}$	$\begin{aligned} & 5500 \\ & 5700 \end{aligned}$	\square	$\begin{aligned} & 5000 \\ & 5000 \end{aligned}$	$\begin{array}{r} 14.5 \\ 17.5 \\ \hline \end{array}$	
								P.P. Class AB ${ }_{1}$	360	250*	270	5/17	88/100	Power oułput for 2 fubes. Load plate-to-plate			9000	24.5	
								P.P. Class $A B_{1}$	360	-22.5	270	5/15	88/132				6600	26.5	
								P.P. Class AB:	$\begin{aligned} & 360 \\ & 360 \end{aligned}$	$\begin{array}{r} -18.0 \\ -22.5 \end{array}$	$\begin{array}{r} 225 \\ 270 \end{array}$	$\begin{array}{r} 3.5 / 11 \\ 5 / 16 \end{array}$	$\begin{aligned} & 78 / 142 \\ & 88 / 205 \end{aligned}$				$\begin{aligned} & 6000 \\ & 3800 \end{aligned}$	$\begin{aligned} & 31.0 \\ & 47.0 \end{aligned}$	
		71	6.3	0.3				R.F. Amp.	250	-3.0	100	5.5	5.3	800000	1100	-		-	617
617	Pentagrid Mixer Amplifier							Mixer	250	- 6.0	150	8.3	3.3	Over 1 meg.	Oscillator-grid (No.3) valtage $=-15.0$				
6N7	Twin Triode	8 B	6.3	0.8				Class-B Amp.	300	0	-	-	35-70	-	-	-	8000	10.0	6N7
607	Duplex-Diode Triode	7 V	6.3	0.3	5	3.8	1.4	Triode Amp.	250	-3.0	-	-	1.1	58000	1200	70	-	-	607
6R7	Duplex-Diade Triode	7 V	6.3	0.3	4.8	3.8	2.4	Triode Amp.	250	- 9.0		-	9.5	8500	1900	16	10000	0.28	6R7
657	Triple-Grid Variable- μ	7R	6.3	0.15	6.5	10.5	0.005	Class-A Amp.	250	-3.0	100	2.0	8.5	1000000	1750	1750		-	657
6SA7	Pentagrid Converter	8R"	6.3	0.3			-	Converter	250	$0{ }^{3}$	100	8.0	3.4	800000	Grid No. 1 Resistor 20000 ohms				6SAT
6SC7	Twin Triode Amplifier	8 S	6.3	0.3				Class-A Anıp.	250	- 2.0	-	-	2.0	53000	1325	70	-	-	6SC7
6SF5	High- μ Triode	$6 A B$	6.3	0.3	4	3.6	2.4	Class-A Amp.	250	- 2.0	-	-	0.9	66000	1500	100	-	-	6 6F5
6SF7	Diode Variable- μ Pentode	7AZ	6.3	0.3	5.5	6	0.004	Class-A Amp.	250	- 1.0	100	3.3	12.4	700000	2050	-	-	-	6SF7
6SG7	Triple-Grid Semi-Variable- μ	8BK	6.3	0.3	8.5	7	0.003	H.F. Amp.	250	- 2.5	150	3.4	9.2	Over 1 meg.	4000		-	-	6SG7

World Radoमाisony
table I-METAL RECEIVING TUBES-Continued

Type	Name	Socket Connections	Fit. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volls	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resisfance Ohms	Transconduclance Micromhos	Amp. Factor	Load Resistance Ohms	Power Oufput Watts	Type
			Volts	Amps.	In	Out	PlateGrid												
6SH7	Triple-Grid Amplifier	8BK	6.3	0.3	8.5	7	0.003	H.F. Amp.	250	-1.0	150	4.1	10.8	900000	4900		-	-	6SH7
6S.J7 4	Triple-Grid Amplifer	8 N	6.3	0.3	6	7	0.005	Class-A Amp.	250	-3.0	100	0.8	3	1500000	1650	2500			6SJ7
6SK7	Triple-Grid Variable- μ	8N	6.3	0.3	6	7	0.003	Class - A Amp.	250	-3.0	100	2.4	9.2	800000	2000	1600			6SK7
6507	Duplex-Diode Triode	80	6.3	0.3	3.6	3.2	1.80	Class-A Amp.	250	- 2.0		-	0.8	91000	1100	100			6SQ7
6SR7	Duplex-Diode Triode	80	6.3	0.3	3.6	2.8	2.40	Class-A Amp.	250	-9.0	-	-	9.5	8500	1900	16			6SR7
6557	Triple-Grid Variable- μ	8N	6.3	0.15	5.5	7.0	0.004	Class-A Amp.	250	-3.0	100	2.0	9.0	1000000	1850	-			6S57
6ST7	Duplex-Diode Triode	80	6.3	0.15	2.8	3	1.50	Class-A Amp.	250	-9.0			9.5	8500	1900	16		-	6ST7
6SV7	Diode R.F. Pentode	7AZ	6.3	0.3	6.5	6	0.004	Class-A Amp.	250	-1	150	2.8	7.5	800000	3400		-		6SV7
6527	Duplex Diode Triode	80	6.3	0.15	2.6	2.8	1.10	Class-A Amp.	250	- 3	-	-	1.0	58000	1200	70	-	-	6SZ7
677	Duplex-Diode Triode	7 V	6.3	0.15	1.8	3.1	1.70	Class-A Amp.	250	-3.0			1.2	62000	1050	65	-		677
								Class-A Amp.	250	-12.5	250	4.5/7.0	45/47	52000	4100	218	5000	4.5	
6V6	Beam Power Amplifier	7AC	6.3	0.45	-	-	-		250	-15.0	250	5/13	70/79	60000	3750	-	10000	10.0	6V6
								Class-AB Amp.	285	-19.0	285	4/13.5	70/92	65000	3600	-	8000	14.0	
1611	Pentode Power Amplifler	75	6.3	0.7		-		Relay Tube					Character	lics same as	676				1611
1612	Pentagrid Amplifier	71	6.3	0.3	7.5	11	0.001	Class-A Amp.	250	-3.0	100	6.5	5.3	600000	1100	880	-	-	1612
1620	Triple-Grid Dat.-Amp.	78	6.3	0.3		-		Class-A Amp.					Character	fics same as	$6 \mathrm{J7}$				1620
1621	Power Amplifler Pentode	75	6.3	0.7	-	-		P.P. Pentodes	300	-30.0	300	6.5/13	38/69	-	-	-	4000	5.0	
	Power Ampliner Pentode			0.7				P.P. Triodes ${ }^{\text {I }}$	330	500*	-	-	55/59	-	-		5000	2.0	1621
1622	Boam Power Amplifier	7AC	6.3	0.9	-	-		Class-A Amp.	300	-20.0	250	4/10.5	86/125	-	-		4000	10.0	1622
1851	Television Amp. Pentode	7R	6.3	0.45	11.5	5.2	0.02	Class-A Amp.	300	- 2.0	150	2.5	10	750000	9000	6750	-	-	1851

: For 6SATGT, use Base Diagram BAD,
Grid bias-2 volis if separate oscillator excitation is used.
"Also type "6SJ7Y".

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES
(For "G" and "GT'-Type Tubes Not Listed Here, See Equivalent Type in Table 1; Characteristics and Connections Will Be Identical)

Type	Name	Socket Cannections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plato Supply Volls	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Volts } \end{aligned}$	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconduclance Micromhos	Amp. Factor	Load Resisiance Ohms	Power Output Wafts	Type
			Volts	Amps.	In	Out	PlafeGrid												
2 C 22	Triode Amplifer	4AM	6.3	0.3	2.2	0.7	3.60	Class-A Amp.	300	-10.5	-	-	11	6600	3000	20	-	-	$2 \mathrm{C22}$
6A5G	Triode Power Amplifler	$6 T$	6.3	1.0				Class-A Amp.	250	-45.0	-		60	800		4.2	2500	3.75	6A5G
					-		-	P.P. Class AB	325	-68.0			80	-	5250	-	3000	15.0	
								P.P. Class AB	325	850*			80	-		-	5000	10.0	
6AB6G	Direct-Coupled Amplifler	7 AU	6.3	0.5	-	-	-	Class-A Amp.	250	0	Input		5.0	40000	1800	72	8000	3.5	6AB6G
									250	0	Ou	Pput	34						
6AC5G	High- μ Power Amplifer Triode	60	6.3	0.4	-			P.P. Class B	250	0	-	-	5.0	36700	3400	125	10000	8.0	6AC5G
								Dyn.-Coupled	250	-	-	-	32				7000	3.7	
6ACGG	Diract-Coupled Amplifier	7 AU	6.3	1.1	—	-		Class-A Amp.	180	0	Input		7.0	-	3000	54	4000	3.8	6AC6G
						-			180	0	Output		45						
6AD5G	High- μ Triode	60	6.3	0.3	-	-	-	Class-A Amp.	250	-2.0	-		- 0.9		1500	100	-	-	6AD5G
6AD6G	Electron-Ray Tube	7AG	6.3	0.15	-		-	Indicator	100		0 for $90^{\circ} ;-23$ for 135; 45 for 0°. Target current 1.5 ma .								6AD6G
6AD7G	Triode-Pentode	BAY	6.3	0.85	-		-	Triode Amp.	250	-25.0	-	\cdots	4.0	19000	325	6.01	- 7000	3.2	6AD7G
								Pentode Amp.	250	-16.5	250	6.5	34	80000	2500	-			
6AE5G	Triode Amplifier	60	6.3	0.3	-	-		Class-A Amp.	95	-15.0	-	-	7.0	3500	1200	4.2	-	-	6AE5G
6AE6G	Twin-Plate Triode with Single Grid	7AH	6.3	0.15	Remote cul-offShasp cut-off			Class-A Amp.	250	-1.5			6.5	25000	1000	25	-	\square	6AE6C
								Class-A Amp.	250	-1.5			4.5	35000	950	33			

table II-6.3-volt glass tubes with octal bases-Continued

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES—Continued

Type	Name	Socket Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bios	Screen Volls	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Oułput Watts	Type
			Volts	Amps.	In	Out	PlateGrid												
6T6GM	Triple-Grid Amplifer	67	6.3	0.45		-		R.F. Amplifier	250	-1.0	100	2.0	10	1000000	5500	-	-		6T6GM
6U6GT	Beam Power Amplifier	7AC	6.3	0.75		-		Class-A Amplifer	200	-14.0	135	3.0	56	20000	6200	-	3000	5.5	6U6GT
6 676	Triple Grid Variable- μ	7R	6.3	0.3	5	9	. 007	R.F. Amplifier	Characteristics same as Type 606-Table III										607 G
6V7G	Duplex Diode-Triode	7 V	6.3	0.3	2	3.5	1.7	Delector-Amplifier	Characteristics same os Type 85-Table III										6V7G
6W6GT	Beam Power Amplifier	7AC	6.3	1.25			-	Class-A Amplifier	135	- 9.5	135	12.0	61.0		9000	215	2000	3.3	6W6GT
6W7G	Triple-Grid Det. Amplifer	7 R	6.3	0.15	5	8.5	. 007	Class-A Amplifier	250	- 3.0	100	2.0	0.5	1500000	1225	1850	-		6W7G
6X6G	Electron-Ray Tube	7 AL	6.3	0.3				Indicator Tube	250	0 v for $300,2 \mathrm{ma}$. -8 v . for $0^{\circ}, 0 \mathrm{mo}$. Vane grid 125 v .									6X6G
6Y6G	Beom Power Amplifier	7 AC	6.3	1.25	15	8	0.7	Class-A Amplifler	135	-13.5	135	3.0	60.0	9300	7000		2000	3.6	GY6G
6Y7G	Iwin Triode Amplifier	8 B	6.3	0.3				Class-8 Amplifer	Chorocteristics same as Type 79-Table IV										6Y7G
677G	Iwin Triode Amplifier	88	6.3	0.3		-		Class-B Amplifer	180	0		-	8.4	-	-		12000	4.2	6Z7G
627 G	Twin Triode Ampliner							Class-B Amplifar	135	0			6.0	-	-	-	9000	2.5	
717 A	Pentode Amplifer	8BK	6.3	0.175	-	-		Class-A Amplifier	120	- 2.0	120	2.5	7.5	390000	4000	-		-	717 A
1223	Pentode Amplifier	7R	6.3	0.3	-	-	-	Class-A Amplifier	Characteristics same as 6C6-Table IV										1223
1635	Twin Triode Amplifer	8B	6.3	0.6	-	-		Class-B Amplifler	400	0	-	-	10/63	-	-		14000	17	1635
7000	Low-Noise Amplifier	7R	6.3	0.3	-	-		Class-A Amplifier	Characteristics same as Tyoe 6J7-Table I										7000

* Cathode resistor-ohms.

1 Per plate.
${ }^{2}$ Screen tied to plate.
${ }^{3}$ Through 20,000-ohm dropping resistor.
TABLE III-7-VOLT LOCK-IN-BASE TUBES
For other lock-in-base types see Tables VIII, IX, X and XIII

Type	Name	Sockel Connections	Heater		Capacitance $\mu \mu \mathrm{id}$.			Use	Plate Supply Volis	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volls } \end{gathered}$	Screen Current Mo.	Plate Current Mo.	Plate Resistance Ohms	Transcanductance Micromhos	Amp. Factor		Power Outpul Watts	Type
			Volts	Amps.	In	Out	PlateGrid												
.7A4	Triode Amplifler	5AC	7.0	0.32	3.4	3	4	Class-A Amplifier	250	- 8.0	-	-	9.0	7700	2600	20		-	7 A4
745	Beam Power Amplifer	6AA	7.0	0.75			-	Class-A A Amplifer	125	- 9.0	125	3.2/8	37.5/40	17000	6100	-	2700	1.9	7A5
7 AG	Twin Diode	7AJ	7.0	0.16				Rectifier	Max. A.C. valts per plate-150. Max. Output current-10 ma.										7 A 6
7AT	Remote Cut-off Pentode	8 V	7.0	0.32	6	7	. 005	R.F. Amplifier	250	- 3.0	100	2.0	8.6	800000	2000	1600	-	-	7 77
7 AB	Multigrid Converler	8 U	7.0	0.16				Osc.-Mixer	250	- 3.0	100	3.1	3.0	50000	Anode-grid 250 volts max. ${ }^{1}$				7 AB
7AF7	Twin Triade	BAC	6.3	0.3	2.2	1.6	2.3	Class-A Amp.	250	-10		-	9.0	7600	2100	16	-		7 AF7
7AG7	Shorp Cut-off Pentode	Fig. 45	7.0	0.16				Class-A Amp.	250	250*	250	2.0	6.0	750000	4200	-	-	-	74 Cl
784	Hioh- μ Triode	5AC	7.0	0.32	3.6	3.4	1.6	Class-A Amplifier	250	-2.0			0.9	66000	1500	100		-	$7 \mathrm{B4}$
785	Pentode Power Amplifler	6AE	7.0	0.43		-	-	Class-A, Amplifier	250	-18.0	250	5.5/10	32/33	68000	2300	-	7600	3.4	785
786	Duo-Diade Triode	8W	7.0	0.32			-	Class-A Amplifier	250	- 2.0		-	1.0	91000	1100	100	-	-	786
787	Remote Cut-off Pentode	8V	7.0	0.16	5	7	. 005	R.F. Amplifier	250	- 3.0	100	2.0	8.5	700000	1700	1200	-	-	787
788	Pentagrid Converter	8 X	7.0	0.32	-	-	-	Osc.-Mixer	250	- 3.0	100	2.7	3.5	360000	Anade-grid 250 volts max. ${ }^{1}$				7B8
$7 \mathrm{C5}$	Telrade Power Amplifier	6AA	7.0	0.48			-	Class-A, Amplifier	250	-12.5	250	4.5/7	45/47	52000	4100	-	5000	4.5	$7 \mathrm{C5}$
$7 \mathrm{C6}$	Duo-Diode Triode	8W	7.0	0.16	2.4	3	1.4	Class-A Amplifier	250	-1.0		-	1.3	100000	1000	100	-	-	$7 \mathrm{C6}$
767	Pentode Amplifler	8 V	7.0	0.16	5.5	6.5	. 007	R.F. Amplifier	250	- 3.0	100	0.5	2.0	2 meg .	1300	-	-	-	$7 \mathrm{C7}$
707	Triode-Hexode Converter	8AR	7.0	0.48	-	-	-	Osc.-Mixer	250	- 3.0	Triode Plate (No. 3) 150 v. 3.5 ma .								707
7E6	Duo-Diode Triode	8W	7.0	0.32		-	-	Class-A Amplifier	250	-9.0	-	-	9.5	8500	1900	16	-	-	7E6
767	Duo-Diade Pentode	8AE	7.0	0.32	4.6	4.6	. 005	Class-A Amplifier	250	- 3.0	100	1.6	7.5	700000	1300		-	-	7 F 7
787	Twin Triade	BAC	7.0	0.32		-	-	Class-A Amolifier:	250	-2.0		-	2.3	44000	1600	70	-	-	7F7
758	Twin Triode	8BW	6.3	0.30	2.8	1.8	1.2	R.F. Amplifier	250	-2.5	-	-	10.0	10400	5000	-	-	-	758
									180	-1.0			12.0	8500	7000				
$\begin{aligned} & \hline \text { 7G7/ } \\ & 1232 \\ & \hline \end{aligned}$	Triple-Grid Amplifer	8V	7.0	0.48	9	7	. 007	Class-A Amplifer	250	- 2.0	100	2.0	6.0	800000	4500	-	-	-	$\begin{aligned} & 7 \mathrm{G7} / \\ & 1232 \end{aligned}$

TABLE III－7－VOLT LOCK－IN－BASE TUBES－Continued

Type	Name	Socket Connec． tians	Heater		Capacitance $\mu \mu \mathrm{fd}$ ．			Use	Plate Supply Valts	Grid Bias	Screen Valts	Screen Current Ma．	Plate Current Ma ．	Plate Resistance Ohms	Transcan－ ductance Micramhas	Amp． Factar	Laad Resistance Ohms	Pawar Oufput Watts	Type
			Valls	Amps．	In	Out	Plate－ Grid												
$\begin{aligned} & 7 \mathrm{G8} / \\ & 1206 \end{aligned}$	Dual Tetrade	8BV	6.3	0.30	3.4	2.6	0.15	R．F．Amplifier ：	250	－ 2.5	100	0.8	4.5	225000	2100	－	－	－	$\begin{aligned} & 7 G 8 / \\ & 1206 \end{aligned}$
7 H 7	Triple－Grid Semi－Variable－μ	8 V	7.0	0.32	8	7	． 007	R．F．Amplifier	250	-2.5	150	2.5	9.0	1000000	3500	－		－	7H7
737	Triade－Hexode Canverter	BAR	7.0	0.32	－	－	－	Osc．－Mixer	250	－ 3.0	100	2.9	1.3		Triade Plate	250 v ．	Max．${ }^{1}$		7.77
3K7	Dua－Diade High－μ Triade	BBF	7.0	0.32				Class－A Amplifier	250	－ 2.0		－	2.3	44000	1600	70	－－	－	$7 \mathrm{K7}$
717	Triple－Grid Amplifier	8 V	7.0	0.32	8	6.5	． 01	Class－A Amplifer	250	－ 1.5	100	1.5	4.5	100000	3100	Cathade	Resistar 25	50 ahms	717
7N7	Twin Triade	BAC	7.0	0.6		－	－	Class－A Amplifier	250	－8．0	－	－	9.0	7700	2600	20	－	－	7N7
707	Penlagrid Canverler	8AL	7.0	0.32		－		Osc．－Mixer	250	0	100	8.0	3.4	800000	Grid Na，	1 resisi	ar 20000 ah	hms	707
－7R7	Dua－Diade Pentade	8AE	7.0	0.32	5.6	5，3	． 004	Closs－A Amplifer	250	-1.0	100	1.7	5.7	1000000	3200	－	－	－	7R7
－ 7157	Triade Hexade Canverler	8 BL	7.0	0.32		－		Osc．－Mixer	250	－ 2.0	100	2.2	1.7	2000000	Triade	Plate 2	50 v．Max．${ }^{1}$		757
－ 717	Triple－Grid Amplifier	8 V	7.0	0.32	8	7	． 005	Class－A Amplifer	250	－ 1.0	150	4.1	10.8	900000	4900	－	－	－	717
7 V 7	Triple－Grid Amplifer	8 V	7.0	0.48	－	－	－	Class－A Amplifier	300	160＊	150	3.9	9.6	300000	5800	－	－	一一	7V7
7w7	Triple－Grid Variable－m	8BJ	7.0	0.48	－	－	－	Class－A Amplifer	300	－ 2.2	150	3.9	10	300000	5800	－	－		7W7
7×7	Dua－Diade Triade	8BZ	6.3	0.3	－	\square	－	Class－A Amplifier	250	-1.0	－	－	1.9	67000	1500	100	－	——	7×7
1231	Pentade Amplifier	8 V	6.3	0.45	8.5	6.5	． 015	Class－A Amplifer	300	200＊	150	2.5	10	700000	5500	3850	－	－	1231
XXL	Triade Oscillatar	5AC	7.0	0.32	－	－	－	Oscillator	250	－8．0	－	－	8.0	－	2300	20	－	－	XXL

＊Cathade resistar－ahms．
${ }^{1}$ Applied thraugh 20000－ahm drapping resistar．
${ }^{2}$ Each section．
TABLE IV－6．3－VOLT GLASS RECEIVING TUBES

Type	Name	Base	Sackel Cannec－ tians	Fil，ar Heater		Capacitance $\mu \mu \mathrm{fd}$ ．			Use	Plate Supply Valts	Grid Bias	Screen Valts	Screen Current Ma．	Plate Current Ma．	Plate Resistance Ohms	Transcan－ ductance Micramhas	Amp． Factar	Locd Resistance Ohms	Pawer Output Watts	Type
				Valis	Amps．	In	Out	Plote－ Grid												
$\begin{gathered} \hline 2 \mathrm{C21/} \\ 1642 \\ \hline \end{gathered}$	Twin－Triade Amplifer	M．	7BH	6.3	0.6	－	－	－	Class－A Amp．	250	－16．5	\longrightarrow	－	8.3	7600	1375	10.4	－	－	$\begin{aligned} & \hline 2 \mathrm{C21/} \\ & 1642 \\ & \hline \end{aligned}$
									Class－A Amp．	250	－45	－	－	60	800	5250	4.2	2500	3.5	
6A3	Triade Power Amplifier	M．	40	6.3	1.0		－	－	Push－Pull Amp．	$\begin{aligned} & 300 \\ & 300 \\ & \hline \end{aligned}$	$\begin{gathered} -62 \\ 780^{*} \\ \hline \end{gathered}$		$\begin{aligned} & \text { d Bias } \\ & \text { Bias } \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & \hline \end{aligned}$	Power o laad	utput for 2 tu plate－to－plat		$\begin{aligned} & 3000 \\ & 5000 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	6 A3
644	Pentade Pawer Amplifer	M ．	5B	6.3	0.3		－		Class－A Amp．	180	－12．0	180	3.9	22	45500	2200	100	8000	1.4	644
6A6	Twin Triade Amplifer	M．	7B	6.3	0.8	－	－	－	Class－B Amp．	$\begin{array}{r} 250 \\ 300 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	－	－	Pawer	auput is for laad，plate	ane tube at －ta－plate	stated	$\begin{array}{r} 8000 \\ 10000 \end{array}$	$\begin{array}{r} 8.0 \\ 10.0 \end{array}$	6A6
6 64	Pentagrid Canverlar	5.	7 C	6.3	0.3	－	－	－	Canverter	250	－ 3.0	100	2.2	3.5	360000	Anade grid	d（Na， 2	2） 200 valts	max．	$6 A^{6}$
6AB5／6N5	Electran－Ray Tube	5.	6R	6.3	0.15				Indicatar Tube	180	Cut－aff	Grid Bias	$=-12 \mathrm{v}$ ．	0.5		Targel Curren	12 ma ．		．	6AB5／6N5
6AF6G	Electron－Ray Tube Twin Indicalar Type	5.	7AG	6.3	0.15	－	－	－	Indicatar Tube	$\begin{aligned} & 135 \\ & 100 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Roy Con } \\ & \text { Roy Con } \end{aligned}$	ral Voltag ral Voltag	$\begin{aligned} & e=81 \text { for } \\ & e=60 \text { for } \end{aligned}$	$\begin{aligned} & 0^{\circ} \text { Shadaw } \\ & 0^{\circ} \text { Shadow } \end{aligned}$	Angle．Targe Angle．Targe	curren curren	nt 1.5 ma ．		6AF6G
685	Direct－Caupled Pawer Amplifier	M．	6AS	6.3	0.8	－	－	－	Class－A Amp． Push－Pull Amp．	$\begin{aligned} & 300 \\ & 400 \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ -13.0 \\ \hline \end{gathered}$	二－	$\begin{aligned} & 61 \\ & 4.51 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	241000	2400	5	$\begin{aligned} & 7000 \\ & 10000 \end{aligned}$	$20^{4.0}$	685
687	Duplex－Diade Pentade	5.	70	6.3	0.3	3.5	9.5	． 007	$\begin{gathered} \text { Pentode R.F. } \\ \text { Amp. } \end{gathered}$	250	－ 3.0	125	2.3	9.0	650000	1125	730	－	－	687
6C6	Triple－Grid Amplifier	5.	6 F	6.3	0.3	5	6.5	． 007	R．F．Amplifier	250	-3.0	100	0.5	2.0	1500000	1225	1500	－	－	6C6
$6 \mathrm{C7}$	Duplex Diade Triade	5.	7 G	6.3	0.3	－	－	－	Class－A Amp．	250	-9.0	－	－	4.5	－	20	1250	－	－	$6 \mathrm{C7}$
606	Triple－Grid Variable－μ	5.	6 F	6.3	0.3	4.7	6.5	． 007	R．F．Amplifer	250	-3.0	100	2.0	8.2	800000	1600	1280	－	－－	606
607	Triple－Grid Amplifier	5.	7H	6.3	0.3	5.2	6.8	． 01	Class－A Amp．	250	-3.0	100	0.5	2.0	－	1600	1280	－	－－	6D7
6 65	Electran－Ray Tube	5.	6 R	6.3	0.3	－	－	－	Indicatar Tube	250	0	\square	－	0.25		Target Curren	14 ma ．		－	$6 E 5$
6E6	Twin Triade Amplifer	M．	7 B	6.3	0.6	－	\cdots	－	Class－A Amp．	250	－27．5		plate－18		3500	1700	6.0	14000	1.6	6E6
6 67	Triple－Grid Variable－μ	S．	7H	6.3	0.3				R．F．Amplifer				Characte	ristics sam	ne as 6U7 G	－Table II				$6 E 7$

TABLE IV-6.3-VOLT GLASS RECEIVING TUBES-Continued

Type	Name	Base	SocketConnec-fions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	Screen Volis	Screen Current Ma.	Plate Current Mo.	$\begin{gathered} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Transconductance Micromhos	Amp. Foctor	Load Resistance Ohms	Power Oulput Watts	Type
				Voits	Amps.	In	Out	PloteGrid												
	Triode Pentode	s.							Triode Unit Amp.	100	-3.0	-	-	3.5	16000	500	8	-		6F7
6 67				6.3					Pentode Unif Amplifier	250	- 3.0	100	1.5	6.5	850000	1100	900	-		
6U5/6G5	Electron-Ray Tube	S.	6R	6.3	0.3	-	-		Indicator Tube	$\begin{aligned} & 250 \\ & 100 \end{aligned}$	Cut-off Grid Bias =-22 v. Cut-off Grid Bias $=-8$ v.			$\begin{aligned} & 0.24 \\ & 0.19 \end{aligned}$		Target Current 4 ma. Target Current 1 ma.				6U5/6G5
6 H 5	Electron-Ray Tube	S.	6R	6.3	0.3			-	Indicator Tube	Same characteristics as Type 6G5-Circular Patmern										6H5
6SB7Y	Pentagrid Converter	0.	8 R	6.3	0.3	9.6	9.2		Converter	100	- 1	100	10.2	3.6	500000	900			-	6SB7Y
									Converter	250	- 1	100	10	3.8	1000000	950		-	-	
						Osc. Section in 88-108 Mc. Serv.				250	22000 *	12000 \%	12.6/12.5	6.8/6.5	-		-	-	--	
675	Electron-Ray Tube	S.	6R	6.3	0.3		-	-	Indicator Tube	250	Cut-off Grid Bias $=-12 \mathrm{v}$.			0.24	Target Current 4 ma .					6T5
36	Tetrode R.F. Amplifier	S.	5E	6.3	0.3	3.8	9	. 007	R.F. Amplifier	250	- 3.0	90	1.7	3.2	550000	1080	595	-		
37	Triode Datector Amplifier	S.	5 A	6.3	0.3	3.5	2.9	2	Class-A Amp.	250	-18.0		\square	7.5	8400	1100	9.2			37
38	Pentode Power Amplifier	S.	5F	6.3	0.3	3.5	7.5	0.3	Class-A Amp.	250	-25.0	250	3.8	22.0	100000	1200	120	10000	2.5	38
39/44	Variable- μ R.F. Amplifier	S.	5F	6.3	0.3	3.8	10	. 007	R.F. Amplifier	250	- 3.0	90	1.4	5.8	1000000	1050	1050	-	-	39/44
41	Pentode Power Amplifier	s.	6 B	6.3	0.4				Class-A Amp.	250	-18.0	250	5.5	32.0	68000	2200	150	7600	3.4	41
42	Pentode Power Amplifier	M.	68	6.3	0.7				Class-A Amp.	250	-16.5	250	6.5	34.0	100000	2200	220	7000	3.0	4.2
52	2-Grid Triode	M.	Fig. 33	6.3	0.3	-	-		Class-A Preomp. ${ }^{\text {a }}$	110	0	-	\square	43.0	1750	3000	5.2	2000	1.5	
	2-Grid Triode		Fig. 33	6.3	0.3		-		Class-B, 2 tubes ${ }^{5}$	180	0	\square	-	3.0				10000	5.0	52
56AS	Triode Amplifier	5.	5A	6.3	0.4		-	-	Class-A Amp.					haracterist	fics same as					56AS
57 AS	Pentode	S.	6 F	6.3	0.4		-	-	R.F. Amplifier					haracterist	ics same as	57				57AS
58AS	Triple-Grid Variable- μ	S.	6F	6.3	0.4				R.F. Amplifier					haracterist	ics same as					58AS
75	Duplex-Diode Triade	S.	6G	6.3	0.3	1.7	3.8	1.7	Triade Amplifier	250	- 1.35	\square	-	0.4	91000	1100	100	-		75
76	Triode Detector Amplifier	5.	5A	6.3	0.3	3.5	2.5	2.8	Class-A Amp.	250	-13.5		-	5.0	9500	1450	13.8	-		76
77	Tfiple-Grid Detector	5.	6F	6.3	0.3	4.7	11	. 007	R.F. Amplifier	250	- 3.0	100	0.5	2.3	1500000	1250	1500	-		77
78	Triple-Grid Variable- μ	5.	6F	6.3	0.3	4.5	11	. 007	R.F. Amplifier	250	-3.0	100	1.7	7.0	800000	1450	1160	-		78
79	Twin Triode Amplifier	5.	6 H	6.3	0.6			-	Class-B Amp.	250	0	-		Pow	erer output is	far one tube		14000	8.0	79
85	Duplex-Diode Triode	5.	6 G	6.3	0.3	1.5	4.3	1.5	Class-A Amp.	250	-20.0	-	\square	8.0	7500	1100	8.3	20000	0.35	85
85AS	Duplex-Diode Triode	S.	6 G	6.3	0.3				Class-A Amp.	250	- 9.0			5.5	-	1250	20	-	-	85AS
89	Triple-Grid Power Amp.	S.	6 F	6.3	0.4	-			Triode Amp. ${ }^{2}$	250	-31.0	-		32.0	2600	1800	4.7	5500	0.9	
89	Triple-Gria Powar Amp.								Pentode Amp."	250	-25.0	250	5.5	32.0	70000	1800	125	6750	3.4	89
1221	Pentode R.F. Amplifier	5.	6F	6.3	0.3	-		-	Class-A Amp.			Spec	ial non-mic	cophanic.	Characteristics	ics same as	$6 \mathrm{C6}$			1221
$1603{ }^{3}$	Triple-Grid Amplifier	M.	6F	6.3	0.3				Class-A Amp.					aracteristi	cs same as 6	OC6				1603
7700 ?	Triple-Grid Amplifier	5.	6F	6.3	0.3		-		Class-A Amp.					aracteristi	cs same as 6	6C6				7700

TABLE V $\boldsymbol{- 2 . 5 - V O L T}$ RECEIVING TUBES

Type	Name	Base	Socket Connections	-Fil. or Heater		Copacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Valts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Oufpul Watts	Type
				Volts	Amps.	In	Out	PlateGrid												
25/45	Duodiode	M.	50	2.5	1.35				Delector	Al 50 D.C. Volts per plate, cathode ma, $=80$										2S/45
2 A 3	Triode Power Amplifier	M.	4D	2.5	2.5	7.5	5.5	16.5	Class-A Amp.	Characteristics same as Type 6A3, Table IV										2 A 3
245	Pentode Power Amplifier	M.	6 B	2.5	1.75				Class-A Amp.	Characteristics same as Type 42, Table IV										$2 A 5$
$2 A 6$	Duplex-Diode Triode	5.	6G	2.5	0.8	1.7	3.8	1.7	Class-A Amp.	Charocteristics same as Type 75, Table IV										2 A6
$2 A 7$	Pentagrid Converler	5.	7 C	2.5	0.8	-			Osc.-Mixer	Characteristics same as Type 6A7, Table IV										$2 A 7$

TABLE V-2.5-VOLT RECEIVING TUBES-Continued

TABLE VI-2.0-VOLT BATtERY RECEIVING TUBES

Type	Name	Base	Socket Connec. tions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Oufput Wafts	Type
				Volts	Amps.	In	Out	Plate. Grid												
1A4P	Variable- μ Pentode	S.	4M	2.0	0.06	5	11	. 037	R.F. Amplifier	180	-3.0	67.5	0.8	2.3	1000000	750	750	-		IA4P
IA4T	Variable- μ Tetrode	S.	4K	2.0	0.06	5	11	. 037	R.F. Amplifier	180	- 3.0	67.5	0.7	2.3	960000	750	720	-	-	1445
1A6	Pentugrid Converter	S.	6 L	2.0	0.06				Converier	180	- 3.0	67.5	2.4	1.3	500000	Anode grid (No. 2) 180 max. volis				146
184P/951	Pentode R.F. Amplifier	S.	4M	2.0	0.06	5	11	. 007	R.F. Amplifer	$\begin{array}{r} 180 \\ 90 \\ \hline \end{array}$	$\begin{array}{r} -3.0 \\ -\quad 3.0 \\ \hline \end{array}$	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{array}{r} 1500000 \\ 1000000 \\ \hline \end{array}$	$\begin{aligned} & 650 \\ & 600 \\ & \hline \end{aligned}$	$\begin{array}{r} 1000 \\ 550 \\ \hline \end{array}$	-	-	184P/951
185/255	Duplex-Diode Triode	s.	6 M	2.0	0.06	1.6	1.9	3.6	Triode Class-A	135	-3.0	-	-	0.8	35000	575	20	-	-	185/25S
$1 \mathrm{C6}$	Pentagrid Converter	S.	6 L	2.0	0.12	10	10	-	Converter	180	- 3.0	67.5	2.0	1.5	750000	Anode grid (Na, 2) 135 max. valts				IC6
174	Pentode Power Amplifier	M.	5K	2.0	0.12		-		Class-A Amp.	135	- 4.5	135	2.6	8.0	200000	1700	340	16000	0.34	IF4
$1 F 6$	Duplex.-Diode Pentode	S.	6W	2.0	0.6	4	9	. 007	R.F. Amplifier	180	-1.5	67.5	0.6	2.0	1000000	650	650	-		IF6
									A.F. Amplifier	135	-1.0	135	Plate, 0.25 megohm; screen, 1.0 megohm Amp. $=4$							

table VI-2.0-VOLT battery receiving tubes-Continued

Type	Name	Base	Sockef Connections	Filament		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	Screen Volts	Screen Current Ma.	Plate Curtent Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Type
				Volts	Amps.	In	Out	PlateGrid												
15	R.F. Pentode	S.	5F	2.0	0.22	2.3	7.8	0.01	R.F. Amplifier	135	-1.5	67.5	0.3	1.85	800000	750	630			15
19	Iwin-Triode Amplifier	S.	6 C	2.0	0.26	-	-		Class-B Amp.	135	0			-	Load plate-lo-plate			10000	2.1	19
30	Triode Detector Amplifer	S.	4D	2.0	0.06	-	-	-	Class-A Amp.	180	-13.5	-	-	3.1	10300	900	9.3			30
31	Triode Power Amplifier	5.	4D	2.0	0.13	3.5	2.7	5.7	Class-A Amp.	180	-30.0		-	12.3	3600	1050	3.8	5700	0.375	31
32	Tetrode R.F. Amplifier	M .	4K	2.0	0.06	5.3	10.5	. 015	R.F. Amplifier	180	-3.0	67.5	0.4	1.7	1200000	650	780	-	-	32
33	Pentode Power Amplifier	M .	5K	2.0	0.26	8	12	1	Class-A Amp.	180	-18.0	180	5.0	22.0	55000	1700	90	6300	1.4	33
34	Variable- μ Pertode	M .	4M	2.0	0.06	6	11	. 015	R.F. Amplifier	180	- 3.0	67.5	1.0	2.8	1000000	620	620	-		34
49	Dual-Grid Power Amp.	M .	5 C	2.0	0.12		-		Class-A Amp. ${ }^{1}$	135	-20.0			6.0	4175	1125	4.7	11000	0.17	49
	Dua-Gid Power Amp.	M.	sc	2.0	0.12				Class-8 Amp.*	180	0		-	Power outpul for 2 tubes				12000	3.5	
840	R.F. Pentode	5.	5J	2.0	0.13			-	Class-A Amp.	180	- 3.0	67.5	0.7	1.0	1000000	400	400	-		840
950	Pantode Power Amplifer	M .	5K	2.0	0.12	-	-	-	Class-A Amp.	135	-16.5	135	2.0	7.0	100000	1000	100	13500	0.45	950
RK24	Triode Amplifier	M .	40	2.0	0.12	-			Class-A Amp.	180	-13.5		-	8.0	5000	1600	8.0	12000	0.25	RK24
1229	Tetrode R.F. Amplifier	M.	4K	2.0	0.06	-	-	-	Class-A Amp.	Special type 32 for low grid current applications										1229

' Grid No. 2 tied to plate.
:Grids Nos. 1 and 2 tied together.
TABLE VII-2.0-VOLT BATTERY TUBES WITH OCTAL BASES

Type	Name	Socket Connecfions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volts } \end{gathered}$	Screen Current Ma.	Plate Current Ma.		Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Type
			Volts	Amps.	In	Out	Plate- Grid												
1C7G	Pentagrid Converter	72	2.0	0.06	-			Converter	Characteristics same as Type IC6-Table VI										IC7G
105GP	Varioble- μ R.F. Penlode	5 Y	2.0	0.06	5	11	. 007	R.F. Amplifier	Charocteristics same as Type 1A4P-Tabie V1										105GP
105GT	Varioblu $-\mu$ R.F. Tefrode	5R	2.0	0.06		-		R.F. Amplifier	180	-3.0	67.5	0.7	2.2	600000	650				105GT
107G	Pentagrid Converter	72	2.0	0.06			-	Converter	Characteristics same os Type IA6-Table VI										107G
1E5GP	R.F. Amplifier Pentode	5 r	2.0	0.06	5	11	. 007	R.F. Amplifier	Characteristics same as Type 184-Table VI										IE5GP
JE7G	Double Pentode Power Amp.	8 C	2.0	0.24	-		-	Class-A Amplifier	135	-7.5	135	2.0	6.51	220000	1600	350	24000	0.65	1E7G
IF5G	Pentode Power Amplifler	$6 \times$	2.0	0.12	-			Class-A Amplifier	Characteristics same as Type 1F4-Table VI										IF5G
1F7GV:	Duplex-Diode Pentode	7 AD	2.0	0.06	3.8	9.5	0.01	Detector-Amplifier	Charactoristics same as Type IF6-Table VI										IF7GV
1G5G	Pentode Power Amplifler	6 x	2.0	0.12	-	-	-	Class-A Amplifier	135	- 13.5	135	2.5	8.7	160000	1550	250	9000	0.55	1G5G
IH4G	Triode Amplifier	55	2.0	0.06	-	-		Detector-Amplifier	Characteristics same as Type 30-Table VI										1H4G
IH6G	Duplex-Diode Triode	7AA	2.0	0.06	1.6	1.9	3.6	Detector-Amplifier	Characteristics same as Type 185-Table VI										IH6G
1JSG	Pentode Power Amplifier	$6 \times$	2.0	0.12		-		Closs-A Amplifier	135	-16.5	135	2.0	7.0	-	950	100	13500	0.45	1J5G
1 J6G	Twin Triode	7 AB	2.0	0.24				Closs-B Amplifier	Characteristics some as Type 19-Table VI										1J6G
4A6G	Twin Triode	81	2.0	0.12	\square			Class-A, 1 section	90 -1.5 $=$ 90 -1.5 $=$			-	1.1	26600	750	20			
			4.0	0.06				Class-B, 2 sections				-	$1.1{ }^{3}$				8000	1.0	4A6G

${ }^{1}$ Totol current for both sections; no signol.
TABLE VIH-1.5-VOLT FILAMENT DRY-CELL TUBES
See also Table X for Special 1.4 -volf Tubes

Type									also Table X for	Special 1	4-volt	ubes								
	Nume	Base	Socket Connec tions	Fil. or Hater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volls } \end{gathered}$	Screen Current Ma.	Plale Current Ma.	PlateResistonceOhms	Transconductanca Micromhos	Amp. Factor	Lood Resistance Ohms	Power Output M-watts	Type
				Volts	Amps.	In	Out	PlateGrid												
IA5G	Pentode Power Amalifier	0.	$6 \times$	1.4	0.05	-	-	--		93	-4.5	90	0.3	4.0	300000	850	240	25000	115	IA5G
IA7G	Pentagrid Converter	o.	72	1.4	0.05	-		-	Ssc.-Mix er	90	0	45	0.6	0.55	600000	Ano	ode-grid	volis 90		IATG

TABLE VIII- $\mathbf{1 . 5 - \text { VOLT FILAMENT DRY-CELL TUBES - Continued }}$

Type	Name	Base	Sockel Connec tions	Filament		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volfs	Screen Current Ma.	Plate Current Ma.	\qquad	Transconductance Micromhos	Amp. Facior	\qquad	Power Output M-wati	Type
				Volts	Amps.	In	Out	PlafeGrid												
1 AB5	Pentode R.F. Amplifer	0.	58F	1.2	0.05	2.8	4.2	0.25	R.F. Amplifier	90	0	90	0.8	3.5	275000	1100		-	-	1 AB5
										150	-1.5	150	2.0	6.8	125000	1350				
187 G	Pentagria Converler	0.	72	1.4	0.1				Converter	90	0	45	1.3	1.5	350000	Grid No. 1 resistor 200,000 ohms				187 G
188GT	Diode Triode Pentode	0.	8AW	1.4	0.1	-	-	-	Triode Ampliffer Pentode Amp.	$\begin{aligned} & 90 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \\ -6.0 \\ \hline \end{array}$	90	1.4	$\begin{aligned} & 0.15 \\ & 6.3 \end{aligned}$	240000	$\begin{array}{r} 275 \\ 1150 \\ \hline \end{array}$	$=$	14000	210	1B8GT
1C5G	Pentode Power Amplifer	0.	6X	1.4	0.1		-		Class-A, Amp.	90	-7.5	90	1.6	7.5	115000	1550	165	8000	240	1C5G
108GT	Diode Triode Pentode	0.	8AJ	1.4	0.1	-	-	\square	Triode Amp. Pentode Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \\ -9.0 \\ \hline \end{array}$	90	1.0	$\begin{aligned} & 1.1 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 43500 \\ 200000 \\ \hline \end{array}$	$\begin{array}{r} 575 \\ 925 \\ \hline \end{array}$	25	-	二 1	1D8GT
1E4G	Triode Amplifer	0.	55	1.4	0.05	2.4	6	2.40	Class-A Amp.	$\begin{aligned} & 90 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \\ -3.0 \\ \hline \end{array}$	-	-	$\begin{aligned} & 4.5 \\ & 1.5 \end{aligned}$	$\begin{array}{r} 11000 \\ 17000 \\ \hline \end{array}$	$\begin{array}{r} 1325 \\ 825 \\ \hline \end{array}$	$\begin{aligned} & 14.5 \\ & 14 \end{aligned}$	-	-	1E4G
1G4G	Triode Amplifer	0.	55	1.4	0.05	2.2	3.4	2.80	Class-A Amp.	90	-6.0	-	-	2.3	10700	825	8.8		- 1	1G4G
									Class-A Amp.	90	0			1.0	45000	675	30			1G6G
1 G6G	Twin Triode	0.	7AB	1.4	0.1			-	Class-B Amp.	90	0	-	-	1/7	34 volts input per grid			12000	675	
1H5G	Diode High- μ Triode	0.	57	1.4	0.05	1.1	6	1.00	Class-A Amp.	90	0	-	-	0.14	240000	275	65	-		IH5G
11.44	Pentode Power Amplifier	1.	5AD	1.4	0.05				Class-A Amp.	90	Characteristics same as 1A5G									1LA4
ILA6	Pentagrid Converter	t.	7AK	1.4	0.05				Converter	90	0	45	0.6	0.55		Anode Grid Volts 90				1146
1184	Pentode Power Amplifler	1.	5AD	1.4	0.05	-	-		Class-A Amp.	90	-9	90	1.0	5.0	200000	925	-	12000	200	1184
1186	Heplode Convertar	t.	8AX	1.4	0.05	-			Converter	90	0	67.5	2.2	0.4	Grid No. 4-67.5 v., No. 5-0 v.					1186
16C5	Triple-Grid Variable- μ	1.	7AO	1.4	0.05	3.2	7	. 007	R.F. Amplifier	90	0	45	0.2	1.15	1500000	775	-	-		1LC5
1tC6	Pentagrid Converter	t.	7AK	. 1.4	0.05				Convarter	90	0	35 4	0.7	0.75		Anode Grid Volis 45				$1 \mathrm{LC6}$
ILD5	Diode Pentode	L.	6AX	1.4	0.05	3.2	6	0.18	Class-A Amp.	90	0	45	0.1	0.6	950000	600	-			1LD5
1LE3	Triode Amplifier	t.	4AA	1.4	0.05	1.7	3	1.70	Class-A Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\text { \|r } \begin{array}{r} 0 \\ -3 \end{array}$	-	-	$\begin{aligned} & 4.5 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 11200 \\ & 19000 \end{aligned}$	$\begin{array}{r} 1300 \\ 780 \\ \hline \end{array}$	14.5	-	-	1tE3
ILG5	Pentode R.F. Amp.	L.	Fig. 42	1.4	0.05	-	-	-	Class-A Amp.	90	0	45	0.4	1.7	1000000	800		-	-- 1	11 G 5
1LH4	Diode High- μ Triode	1.	5AG	1.4	0.05	1.1	6	1.00	Class-A Amp.	90	0	-	-	0.15	240000	275	65			1LH4
ILN5	Triple-Grid Amplifier	1.	740	1.4	0.05	3.4	8	. 007	Class-A Amp.	90	0	90	0.3	1.2	1500000	750	-	-		11N5
1N5G	Pentode R.F. Amplifer	0.	5 Y	1.4	0.05	3	10	. 007	Class-A Amp.	90	0	90	0.3	1.2	1500000	750	1160	-	- 1	IN5G
1N6G	Diode-Power-Pentode	0.	7AM	1.4	0.05				Class-A Amp.	90	-4.5	90	0.6	3.1	300000	800	-	25000	100	IN6G
1P5G	Triple-Grid Pentode	0.	5 Y	1.4	0.05	3	10	. 007	R.F. Amplifier	90	0	90	0.7	2.3	800000	800	640	-	- 1	IP5G
1Q5G	Tetrode Power Amplifier	0.	6AF	1.4	0.1		-	-	Class-A Amp.	$\begin{aligned} & 85 \\ & 90 \end{aligned}$	$\begin{aligned} & -5.0 \\ & -4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 85 \\ & 90 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.2 \\ & 9.5 \end{aligned}$	$\begin{array}{r} 70000 \\ 75000 \\ \hline \end{array}$	$\begin{aligned} & 1950 \\ & 2100 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 9000 \\ & 8000 \end{aligned}$	$\begin{array}{r} 250 \\ 270 \\ \hline \end{array}$	105G
1R4/1294	U.h.f. Diode	1.	4AN	1.4	0.15	-		-	Rectifier	Max. r.m.s. voltage per plate-30 Max. d.c. output current-340										1R4/1294
15A6GT	R.F. Pentode	0.	6CA	1.4	0.05	5.2	8.6	0.01	R.F. Amplifier	90	0	67.5	0.68	2.45	800000	970	-	-	-	15A6GT
1SB6GT	Diode Pentode	0.	6CB	1.4	0.05	3.2	3	0.25	Class-A Amp.	90	0	67.5	0.38	1.45	700000	665	-	-		15B6GT
									R.C. Amplifer	90	0	90	Screen resistor 5 meg., grid 10 meg.					1 meg.	110^{6}	
1T5GT	Beam Power Amplifier	0.	6AF	1.4	0.05	4.8	8	0.50	Class-A Amp.	90	-6.0	90	1.4	6.5	-	1150	-	14000	170	1T5GT
387/1291	U.h.f. Twin Triode	t.	78 E	1.4	0.22				Class-A Amp.	90	0	\longrightarrow	-	5.2	11350	1850	21	-	- 3	387/1291
1293	U.h.f. Triode	l.	Fig. 2	1.4	0.11	-	-	-	Class-A Amp.	90	0		-	4.7	10750	1300	14	-	- 1	1293
3D6/1299	U.h.f. Teirode	t.	688	1.4	0.22	7.5	6.5	0.30	Class-A Amp.	135	-6	90	0.7	5.7	-	2200	-	13000	0.5	3D6/1299
CK501	Pentode Voltage Amplifler	-1	-- ${ }^{\text { }}$	1.25	0.033		-	-	Class-A Amp.	$\begin{aligned} & 30 \\ & 45 \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \\ -1.25 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 45 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.055 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.28 \\ & \hline \end{aligned}$	$\begin{array}{r} 1000000 \\ 1500000 \\ \hline \end{array}$	$\begin{array}{r} 325 \\ 300 \\ \hline \end{array}$	-	-	-	CK501
CK502	Pentode Output Amplifer	- 1	-- ${ }^{\prime}$	1.25	0.033		-		Class-A Amp.	30	0	30	0.13	0.55	500000	400	-	60000	3	CK 502
CK503	Pentode Output Amplifier	-	-- ${ }^{\text {a }}$	1.25	0.033	-	-	-	Class-A Amp.	30	0	30	0.33	1.5	150000	600	-	20000	6 ?	CK503
CK504	Pentode Output Amplifier	-1	--:	1.25	0.033		-	-	Class-A Amp.	30	-1.25	30	0.09	0.4	500000	350	-	60000	$3{ }^{\text {2 }}$	CK504
CK505	Pentode Voltage Amplifer	-1	-- ${ }^{7}$	$0.625{ }^{5}$	0.03	-	-	-	Class-A Amp.	$\begin{aligned} & 30 \\ & 45 \end{aligned}$	$\begin{array}{\|c} 0 \\ -1.25 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 45 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1100000 \\ & 2000000 \end{aligned}$	$\begin{aligned} & 140 \\ & 150 \end{aligned}$	-	-	-	CK505
CK506	Pentode Output Amplifier	-1	--?	1.25	0.05	-	—	-	Class-A, Amp.	45	-4.5	45	0.4	1.25	120000	500	-	30000	25	CK506
CK507	Pentode Output Amplifer	-1	--:	1.25	0.05		-	-	Class-A, Amp.	45	-2.5	45	0.21	0.6	360000	500	-	50000	12	CK507

TABLE VIII-I.5-VOLT FILAMENT DRY-CELL TUBES—Continued

Type	Name	Base	Sockef Connections	Filament		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Voits } \end{gathered}$	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	LoadResistanceOhm:	Power Output M-walts	Type
				Volts	Amps.	In	Out	PlateGrid												
CKS09	Triode Voltage Amplifler	${ }^{-1}$	- 1	$0.625{ }^{5}$	0.03	-			Class-A Amp.	45	0	-		0.15	150000					
CKS 10	Dual Space-Charge Teirode	- 1	7	0.625 :	0.05				Class-A Amp.	45	0	0.2	200	0.15	150000	160	16	1000000		CK509
CK515BX	Triode Voltage Amplifler	- ${ }^{1}$	--7	0.625 5	0.03			-	Class-A Amp.	45	0		200	80 0 / P	50000	65	32.5			CK5 10
$\begin{array}{r} \text { HY113 } \\ \text { HY123 } \\ \hline \end{array}$	Triode Amplifer	-	$5 \mathrm{~K}^{3}$	1.4	0.07		-	-	Class-A Amp.	45	-4.5	-	-	0.4	25000	160	24	1000000	6.5	CK515BX
HY115 HY145	Pentode Voltage Amplifar	- 1	5K	1.4	0.07	-	-	-	Class-A Amp.	45	-1.5	22.5	0.008	0.03	5200000			4000		HY123
										90	-1.5	45	0.1	0.48	1300000	270	370	-	-	$\begin{aligned} & \mathrm{HY} 115 \\ & \mathrm{HY} 145 \end{aligned}$
HY155	Pentode Power Amplifier	- 1	5K	1.4	0.07			-	Class-A Amp.	$\begin{aligned} & 45 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & -3.0 \\ & -7.5 \end{aligned}$	$\begin{aligned} & 45 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 825000 \\ & 420000 \end{aligned}$	$\begin{aligned} & 310 \\ & 450 \end{aligned}$	$\begin{aligned} & 255 \\ & 190 \end{aligned}$	$\begin{aligned} & 50000 \\ & 28000 \end{aligned}$	$\begin{array}{r} 11.5 \\ 90 \end{array}$	HY 125 HYI55
RK42	Triode Amplifler	5.	4D	1.5	0.6				Class-A Amp.				Characte	slics sam	as Type 30	0-Table VI				RK42
RK43	Twin Triode Amplifer	5.	6C	1.5	0.12				Class-A Amp.	135	-3	-	-	4.5	14500	900	13	-	-	RK43

1 Special miniature peanui base.
With 5 -megohm grid resistor and $0.02-\mu \mathrm{fd}$. grid coupling condenser.
No screen connection.
-Through series resistor, Screen volfage must be at least 10 volts lower than oscillator anode.
${ }^{6}$ Voltage gain.
Connections leads extend from bottom of tube.

TABLE IX-HIGH-VOLTAGE HEATER TUBES

Type	Name	Base	Sockel Connecfions	Heater		Capacilance $\mu \mu \mathrm{fd}$.			Use	Plafe Supply Volts	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volts } \end{gathered}$	Screen Current Ma.	Plate Current Ma .	Plate Resistance Ohms	Tronsconductance Micromhos	Amp. Factor	Load Resistonce Ohms	Power Output Watts	Type
				Volts	Amps.	In	Out	PlateGrid												
12A5	Pentode Power Amplifier	M.	7F	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.3 \\ & 0.6 \\ & \hline \end{aligned}$				Class-A Amp.	$\begin{array}{r} 100 \\ 180 \\ \hline \end{array}$	$\begin{array}{r} -15 \\ -25 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 180 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 / 6.5 \\ & 8 / 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 / 19 \\ & 45 / 48 \end{aligned}$	$\begin{aligned} & 50000 \\ & 35000 \end{aligned}$	1700	-	4500	0.8 3.4	$12 \mathrm{A5}$
12A6	Beam Power Amplifier	0.	7AC	12.6	0.15				Class-A Amp.	250	-12.5	250	3.5	30	70000	3000		7500	3.4	
12 A	Rectifler-Amplifier	M.	7K	12.6	0.3		-	-	Class-A Amp.	135	-13.5	135	2.5	9.0	102000	975	100	13500	3.4	1246
12ABGT	Pentagrid Converter	0.	8 A	12.6	0.15				Converter	Characteristics same as 6A8-Table										1247
12AH7GT	Twin Triode	0.	BBE	12.6	0.15	Each Triode Sect.			Class-A Amp.	180	- 6.5		Chara	7.6	8400	-1900	16			12A8GT
1286M	Diode Triode	0.	Or	12.6	0.15		-	-	Class-A Amp.	250	- 2.0		$\underline{\square}$	0.6	91000	1100	100			12AH7GT
$12 \mathrm{P7ML}$	Pentode Amplifier	0.	8 V	12.6	0.15		-	-	Class-A Amp.	250	- 3.0	100	2.6	9.2	800000	2000	100			1286M
12B8GT	Triade-Peniode	0.	87	12.6	0.3	Triode Section Pentode Section			Closs-A Amp. Class-A Amp.	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & -1 \\ & -3 \end{aligned}$	100	2	0.6	$\begin{aligned} & 73000 \\ & 170000 \end{aligned}$	$\begin{aligned} & 1500 \\ & 2100 \end{aligned}$	110 360	二		12B8GT
12C8	Duplex-Diode Pentode	0.	8 E	12.6	0.15	6	9	. 005	Class-A Amp.	Characteristics same as 6B8-Table I										
12E5GT	Triode Amplifer	0.	60	12.6	0.15	3.4	5.5	2.60	Class-A Amp.											12 C 8
12FSGT	Triode Amplifier	0.	5 M	12.6	0.15	1.9	3.4	2.40	Class-A Amp.	Characteristics same as 6F5-Table 1										12E5GT
12G7G	Duplex-Diode Triode	O.	7 V	12.6	0.15				Class-A Amp.											12F5GT
12H6	Twin Diode	0.	70	12.6	0.15				Rectifior	Characteristics same as 6H6-Table										12G7G
12J5GT	Triode Amplifer	0.	60	12.6	0.15	3.4	3.6	3.40	Class-A Amp.											12H6
12J7GT	Pentode Voltage Amplifier	0.	7R	12.6	0.15				Class-A Amp.	Characteristics same as 6J5-Table I										12J5GT
12K7GT	Remote Cut-off Pentode	0.	7R	12.6	0.15	4.6	12	. 005	R.F. Amplifer	Characteristics same as 6J7-Table I										12 J 7 GT
12K8	Triode Hexode Converter	0.	8K	12.6	0.15			$\underline{\square}$	Converter	Characteristics same as 6 K 8 -Table I										12K7GT
12L8GT	Twin Pentode	0.	8BU	12.6	0.15	5	6	0.70	Class-A, Amp.											12K8
1297GT	Duplex-Diode Triode	0.	7 V	12.6	0.15	2.2	5	1,60	Class-C Amp.	Characleristics same as 607-Table I										12L8GT
12547	Pentogrid Converter	O.	8R	12.6	0.15				Converter											1207GT
$125 C 7$	Twin Triode	0.	85	12.6	0.15				Class-A Amp.	Characteristics same as 6SA7-Table I										12547
12SF5	High - μ Triode	0.	6AB	12.6	0.15	4	3.6	2.40	Class-A Amp.	Characleristics same as 6SF5-Tabie										125 C 7
$125 F 7$	Diode Variable- μ Pentode	0.	7AZ	12.6	0.15	5.5	6.0	. 004	Class-A Amp.	Characteristics same as 6SF7-Table 1										12SF5
$125 \mathrm{G7}$	Triple-Grid Variable- μ	0.	8BK	12.6	0.15	8.5	7.0	. 003	Class-A Amp.	Characteristics same as 6SG7-Table I										12577

table ix -high-voltage heater tubes - Continued

tABLE IX－high－voltage heater tubes－Continued

Type	Name	Base	Sockat Connec－ tions	Heater		Capasitance $\mu \mu \mathrm{fd}$ ．			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma．	Plate Current Ma．	Plate Resistance Ohms	Transcon－ ductance Micromhos	Amp． Factor	Load Resisfance Ohms	Power Outpul Watts	Type
				Volts	Amps．	In	Out	Plate－ Grid												
	Twin Beam－Power Audio					Each Unit Push－Pull ${ }^{3}$			Class－A Amp．	26.5	－ 4.5	26.5	2／5．5	20／20．5	2500	5500		1500	0.2	28A7GT
26A7GT	Amplifler	O．	8	26.5					Class－AB Amp．	26.5	－ 7.0	26.5	2／8．5	19／30				2500：	0.5	
32L7GT	Diode－Beam Tetrode	0.	82	32.5	0.3		－		Class－A Amp．	110	-7.5	110	3	40	15000	6000		2500	1.5	32L7GT
3545	Beam Power Amplifer	1.	$\triangle A A$	35	0.15		－		Class－A，Amp．	110	-7.5	110	3／7	40／41	14000	5800		2500	1.5	35A5
35L．5G	Beom Power Amplifler	0.	7AC	35	0.15	13	9.5	0.80	Class－A，Amp．	110	-7.5	110	3／7	40／41	13800	5800		2500	1.5	35L6G
43	Pentode Power Amplifler	M．	68	25	0.3	8.5	12.5	0.20	Class－A Amp．	95	－15．0	95	4.0	20.0	45000	2000	90	4500	0.90	43
48	Tetrode Power Amplifier	M．	6 A	30	0.4			－	Class－A Amp．	96	－19．0	96	9.0	52.0	－	3800	－	1500	2.0	48
5045	Beam Power Amplifier	1.	6AA	50	0.15			－	Class－A Amp．	110	-7.5	110	4／11	47／50	10000	8200	\cdots	2000	2.2	50A5
50C6GT	Beam Power Amplifier	0.	7AC	50	0.15			－	Class－A，Amp．	135	－13．5	135	3．5／11．5	58／60	9300	7000	－	2000	3.6	50C6GT
50L6GT	Beam Power Amplifier	0.	7 AC	50	0.15			－	Class－A Amp．	110	-7.5	110	4／11	49／50		8200	82	2000	2.2	50l6GT
70ATGT	Diode－Beam Telrade	0.	8AB	70	0.15			－	Class－A Amp．	110	-7.5	110	3.0	40		5800	80	2500	1.5	70A7GT
7017GT	Diade－Beam Tetrade	0.	8AA	70	0.15			－	Class－A1 Amp．	110	－7．5	110	3／6	40／43	15000	7500		2000	1.8	70L7GT
$\begin{aligned} & 117 \mathrm{LGT} / \\ & 117 \mathrm{M} 7 \mathrm{GT} \\ & \hline \end{aligned}$	Rectifer－Amplifer	O．	8AO	117	0.09			－	Class－A Amp．	105	－ 5.2	105	4／5．5	43	17000	5300	－	4000	0.85	$\begin{aligned} & 117 \mathrm{GGT} / \\ & 117 \mathrm{M} 7 \mathrm{GT} \end{aligned}$
117N7GT	Reclifier－Amplifer	0.	8AV	117	0.09			－	Class－A Amp．	100	-6.0	100	5.0	51	16000	7000	－	3000	1.2	117N7GT
117P7GT	Rectifler－Amplifer	0.	BAV	117	0.09				Class－A Amp．	105	－ 5.2	105	4／5．5	43	17050	5300	－	4000	0.85	117P7GT
1284	U．h．l．Pentode	o．	Fig． 4	12.6	0.15				Class－A Amp．	250	－ 3.0	100	2.5	9.0	800000	2000	－			1284
1629	Electron－Ray Tube	0.	6RA	12.6	0.15			－	Indicator Tube				Characteristics same as 6E5－Table IV							1629
1631	Beam Power Amplifier	O．	7 AC	12.6	0.45			－	Class－A Amp．				Choracteristics same as 6Ló－Table I							1631
1632	Beam Power Amplifier	0.	7AC	12.6	0.6	－－		－	Class－A Amp．				Characteristics same as 2516							1632
1633	Twin Triode	O．	8BD	25	0.15			－	Class－A Amp．				Choracteristics same as 6S：N7GT－Table II							1633
1634	Twin Triode	0.	85	12.6	0.15			－	Class－A Amp．				Choracteristics same as 6SC7－Table 1							1634
1644	Twin Pentode	0.	Fig． 7	12.6	0.15	－	－		Class－A Amp．	180	－ 9.0	180	2．8／4．6	13	160000	2150	－	10000	1.0	1644
XXD	Twin Triode	1.	8AC	12.6	0.15		－	－	Class－A Amp．	250	-10	－	－	9.0	－－	2100	16	－	－	XXD
28 D 7	Double Beam Power Amplifler	1.	2B5	28.0	0.4				Class－A ${ }_{2}$ Amp．	28	390＊	28.8	0．7 ${ }^{2}{ }^{2}$	9．0 18.53	－	二－		4000：	0．08 $0.17{ }^{\text {2 }}$	$28 D 7$

＊Cathode resistor－ohms．$\quad \mathbf{1} 6.3$－volt pilat lamp must be connected between pins 6 and 7.
${ }^{2}$ Per section（except heater）－resistance coupled．
${ }^{3}$ P．P．operation－values for both sections，resistance coupled．
${ }^{5}$ Plote to plate．

TABLE X－SPECIAL RECEIVING TUBES

Type	Name	Base	Sockel Connec－ tions	Fil．or Heater		Copocitance $\mu \mu \mathrm{fd}$ ．			Use	Plote Supply Volts	Grid Bias	Screen Volts	Screen Current Ma．	Plate Current Ma．	Plate Resistance Ohms	Transcon－ ductance Misromhos	Amp． Factor	Lood ResistanceOhms	Power Output Wotts	Type
				Volts	Amps．	In	Out	Plate－ Grid												
00．A	Triode Delector	M．	4D	5.0	0.25	3.2	2.0	8.50	Grid Leok Det．	45	－	－	－	1.5	30000	666	20	－	－	00．A
01－A	Triode Detector Amplifier	M．	4D	5.0	0.25		－		Closs－A Amp．	135	－ 9.0	－	－	3.0	10000	800	8.0	－	－	01－A
2 E32	Sub－miniature Pentode	1	－	1.25	0.05				Class－A Amp．	22.5	0	22.5	0.3	0.4	350000	500	－	－	－	2 E 32
		1	－	1.25	0.03				Class－A，Amp．	22.5	0	22.5	0.07	0.27	220000	385	－	150000	0.0012	$2 F 36$
$2 E 36$	Sub－miniafure Pentode	1	－	1.25						45	－1．25	45	0.11	0.45	250000	500	－	100000	0.006	2F36
$2 \mathrm{E42}$	Sub－miniature Diode Pent．	1	－	1.25	0.03				Detector Amp．	22.5	0	22.5	0.12	0.35	250000	375	－	1 meg．	－	2542
$2 \mathrm{G22}$	Sub－mininture Converter	1	二－	1.25	0.05				Converter	22.5	0	22.5	0.3	0.2	500000	60	－	－	－	2G22
		0	8AS		0.1				Closs－A Triode	90	0	－	－	0.15	240000	275	65	－	一－	3A8GT
3ABGT	Diode Trisdo Pentode	O．	8AS	2.8	0.05				Class－A Pentode	90	0	90	0.3	1.2	600000	750		－	－	3ABG7
3B5GT	Beam Power Amplifers	0.	7 AP	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	－	－	－	Elass－A Amp．	67.5	-7.0	67.5	$\begin{aligned} & 0.6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.7 \end{aligned}$	100000	$\begin{aligned} & 1650 \\ & 1500 \end{aligned}$	－	5000	$\begin{aligned} & 0.2 \\ & 0.18 \end{aligned}$	3B5GT

TABLE X-SPECIAL RECEIVING TUBES-Continued

table X-SPECIAL RECEIVING tUBES—Continued

Type	Name	Base	Sockel Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Piale Resistance Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Outp ut Watts	Type
				Volts	Amps.	In	Out	PlateGrid												
EF. 50	High Frequency Penlode Amplifier	L.	Fig. 14	6.3	0.3			-	I.F.-R.F. Amp.	250	150*	250	3.1	10	600000	6300	-	,	-	EF-50
$\begin{aligned} & \text { GL.2C44 } \\ & \text { GL-464A } \\ & \hline \end{aligned}$	U.h.f. Triode	0.	Fig. 17	6.3	0.75	\square	-		Class-A Amp. and Modulator	250	100*	\cdots	-	25.0	-	7000	-	-	-	$\begin{aligned} & \mathrm{GL}-2 \mathrm{C44} \\ & \mathrm{GL}-464 \mathrm{~A} \end{aligned}$
$\begin{aligned} & \text { GI.446A } \\ & \text { GI-448B } \end{aligned}$	U.h.f. Triode	0.	Fig. 19	6.3	0.75	-	-	-	Oscillator, Amp. or Converter	250	200*	-	-	15.0	-	4500	45	—		$\begin{aligned} & \text { GL-446A } \\ & \text { GL-446B } \\ & \hline \end{aligned}$
$\begin{aligned} & 559 \\ & \mathrm{GL}-559 \\ & \hline \end{aligned}$	U.h.f. Diode	0.	Fig. 18	6.3	0.75	—		-	Delector or trans. line switch	5.0	-	-	-	24.0	-	-	-	-		$\begin{aligned} & 559 \\ & \text { GL-559 } \end{aligned}$
M54	Tetrode Power Amplifer	1	-	0.625	0.04			-	Class-A Amp.	30	0	30	0.06	0.5	130000	200	26	35000	0.005	M54
M64	Tetrode Voltage Amplifier	1		0.625	0.02			-	Class-A Amp.	30	0	-	-	0.03	200000	110	25			M64
M74	Tetrode Voltage Amplifier	1	-	0.625	0.02	-	\cdots		Class-A Amp.	30	0	7.0	0.01	0.02	500000	125	70			M74
XXB		1.		$\begin{aligned} & 2.8 / \\ & 1.4 \end{aligned}$	$\begin{aligned} & 0.05 / \\ & 0.10 \end{aligned}$				Converter ${ }^{\text {' }}$	90:	0	-	-	$\begin{array}{r} 4.5 \\ 4.59 \\ \hline \end{array}$	$\begin{aligned} & 11200 \\ & 11200 \end{aligned}$	$\begin{aligned} & 1300 \% \\ & 1300^{\circ} \end{aligned}$	14.5 ?	--	-	XXB
	Frequency Converter	1.	Fig. 9	$\begin{gathered} 3.2 \mathrm{~h} / \\ 1.6 \\ \hline \end{gathered}$	二						- 3	-	-	$\begin{aligned} & 1.4^{\circ} \\ & 1.4 \% \end{aligned}$	$\begin{aligned} & 1900 \\ & 1900^{\circ} \end{aligned}$	$\begin{aligned} & 760 \\ & 760 \end{aligned}$	14.5 =	-	-	
XXFM	Twin-Diode Triode	1.	Fig. 10	6.3	0.3		-	-	Special Delector Amplifier	$250{ }^{\text {a }}$	-1	-	-	1.9	6700	1500	100	-		
										100 *	0	-	-	1.2	85000	1000	85	-	-	XXFM
										100^{3}	-	-	-	4.	-	-	-	-		

- Cathode resistor ohms. INo base; tinned wire leads.

Bom Sections.
${ }^{3}$ Diode plates (A.C. max. volts per plate).

- Max. D.C. output.

Section No. 2 recommended for h.f.o.

- Dry battory operation.

Section No. 1.
${ }_{9} 8$ Amplifier plate.

- Section No. 2.

10 Same as X99. Type V99 is same, but socket connections are 4 E .
:
table XI-Miniature receiving tubes

table Xi－miniature receiving tubes－Continued

Type	Name	Base	Socket Connec－ tions	Fil．or Heotar		Capacitance $\mu \mu \mathrm{fd}$ ．			Use	Plote Supply Volts	Grid Bias	Screen Volts	Screen Current Ma．	Plate Current Ma．	Plate Resistance Ohms	Transcon－ ductance Micromhos	Amp． Factor	Load Resistance Ohms	Power Output Watts	Type
				Volts	Amps．	in	Out	Plate－ Grid												
6 6G5	Fentode R．F．A．．rplifier	B．	780	6.3	0.3	－		－	Class－A Amp．	$\begin{array}{r} 250 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 200^{\circ} \\ & 100^{*} \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 800000 \\ & 300000 \\ & \hline \end{aligned}$	$\begin{aligned} & 5000 \\ & 4750 \end{aligned}$	二	－	－	6AG5
6AJS	U．h．f．Pentode	8.	7PM	6.3	0.175				R．F．Amplifier	28	200＊	28	1.2	3.0	90000	2750	250	－－	－－	6AJ5
									Class．AB Amp．	180	-7.5	75	－	－－	－－	－－	－	28000	1.0	
6 AKS	H．F．Pentode	B．	7BD	6.3	0.175		－		R．F．Amplifier	180	200＊	120	2.4	7.7	690000	5100	3500	－－	－	6AK5
										150	$330 *$	140	2.2	7.0	420000	4300	1800			
										120	200＊	120	2.5	7.5	340000	5000	1700	－－	－	
6AK6	Power Amplifier Pentode	B．	78 K	6.3	0.15	3.6	4.2	0.12	Class－A Amp．	180	－ 9.0	180	2.5	15.0	200000	2300		10000	1.1	6AK
6ALS	U．h．f．Twin Diode	B．	6BT	6.3	0.3	－			Defector											6AL5
6 ANG	Twin Diode	B．	7BJ	6.3	0.2		－	－	Datector	R．m．s．voltage per plate $=75$ volts；d．c．outpuf $=3.5$ ma．with 25000 ohms and $8 \mu \mu$ load； peak current per plate $=10 \mathrm{ma}$ ．；peak inverse voltage $=210$ ．										SANO
6AQ5	Beam Pawer Tetrade	B．	Fig． 38	6.3	0.45	－	－	－	Class－A Amp．	$\begin{array}{r} 180 \\ 250 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline-8.5 \\ -12.5 \\ \hline \end{array}$	$\begin{aligned} & 180 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 29 \\ 45 \\ \hline \end{array}$	$\begin{array}{r} 58000 \\ \mathbf{5 2 0 0 0} \\ \hline \end{array}$	$\begin{array}{r} 3700 \\ 4100 \\ \hline \end{array}$	二－	$\begin{array}{r} 5500 \\ 5000 \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & 4.5 \end{aligned}$	GAQS
6AQ6	Duodiode Hi－mu Triode	B．	7BT	6.3	0.15	1.7	1.5	1.80	Class－A Triode	$\begin{array}{r} 250 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & -3.0 \\ & -1.0 \end{aligned}$	－	—	$\begin{aligned} & 1.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 58000 \\ & 61000 \end{aligned}$	$\begin{aligned} & 1200 \\ & 1150 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	二	二	6 A06
6AS6	Sharp Cut－off Pentode	B．	7 CN	6.3	0.175	4.0	3.0	0.02	Class－A Amp．	120	－ 2	120	3.5	5.5	－	3500	－	－	－	6AS6
GAT6	Duplex Diode Triode	B．	781	6.3	0.3	2.3	1.1	2.10	Class－A Amp．	250	-3			1.0	58000	1200	70	－		6AT6
6AU6	Pentode R．F．Amp．	B．	78K	6.3	0.3	5.5	5.0	． 0035	Class－A Amp．	250	－ 1	150	4.3	10.8	2000000	5200		－	－	6AU6
6BA6	Remote Cut－off Pentode	B．	7CC	6.3	0.3	5.5	5.0	． 0035	Class－A Amp．	250	68＊	100	4.2	11	1500000	4400		－		6BA6
6BD6	Penlode R．F．Amplifler	B．	Fig． 36	6.3	0.3	－	－	－＿	Class－A Amp．	100	－ 1	100	5	13	120000	2350	－	－	\square	6BD6
	Penlode R．F．Amplinar		Fig． 36					－	Class．A Amp．	250	－ 3	100	3.5	9	700000	2000	－	－	－	6BD6
6BE6	Pentagrid Converter	B．	7 CH	6.3	0.3	Osc．	Grid 20	0000！？	Converler	250	-1.5	100	7.1	3.0	1000000	475	－	－	\square	6BE6
$6 \mathrm{C4}$	Triode Amplifler	B．	6BG	6.3	0.15	1.8	1.3	1.60	Class－A Amp．	250	－ 8.5	－		10.5	7700	2200	17	－		$6 \mathrm{C4}$
6.54	U．h．f．Grounded－Grid R．F．Ampliner	B．	780	6.3	0.4	－	－	－	Grounded－Grid Class－A Amp．	$\begin{aligned} & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 200^{\circ} \\ & 100^{*} \end{aligned}$	二	$=$	$\begin{aligned} & 15.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4500 \\ & 5000 \end{aligned}$	$\begin{array}{r} 12000 \\ 11000 \end{array}$	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	－	－	6.54
$6 J 6$	Iwin Triode	B．	7BF	6.3	0.45	－	－	－	Class－A Amp． Mixer，Oscillator	100	50＊	－	－	8.5	7100	5300	38	－	－	6.56
6N4	U．h．f．Triode Amplifier	B．	Fig． 40	6.3	0.2	3.0	1.6	1.10	Class－A R．F． Amplifier	180	－ 3.5	－	－	12.0	－	6000	32	－	－	6N4
12AI6	Duplex Disde Triode	B．	7 BT	12.6	0.15	2.3	1.1	2.10	Class．A Amp．	250	－ 3.0	－	－	1.0	58000	1200	70	－		12AT6
12BA6	Remote Cut－off Pentode	B.	7CC	12.6	0.15	5.5	5.0	． 0035	Class－A Amp．	250	$68 *$	100	4.2	11.0	1500000	4400	－	－	－	12BA6
12B06	Pentode Amplifier	B．	Fig． 36	12.6	0.15	4.3	5.0	． 004	Class－A Amp．	250	－ 3	100	3.5	9.0	700000	2000	－	－		128D6
128 EG	Pentagrid Converter	B．	7 CH	12.6	0.15	Osc．	Grid 20	2000 12	Converter	250	-1.5	100	7.1	3.0	1000000	475	－	$\underline{\square}$	－	12BE6
12BF6	Duodiode Triode	B．	Fig． 37	12.6	0.15	1.8	1.1	2.00	Class－A Amp．	250	－ 9	－	－	9.5	8500	1900	16	－	－	12BF6
5085	Beam Power Amplifer	B．	782	50.0	0.15	13	6.5	0.50	Class－A Amp．	110	－ 7.5	110	4.0	49.0	14000	7500	－	3000	1.9	50B5
9001	Triple－Grid Detector， Amplifier	B．	7PM	6.3	0.15	3.6	3.0	0.01	Closs－A Amp．	250	－ 3.0	100	0.7	2.0	Over 1 meg．	1400	－	－	－	9001
									Mixer	250	－ 5.0	100	Osc．pe	ak voltag	4 volts	550	－	－	－	
9002	Triode Detector， Amplifier，Oscillator	B．	7TM	6.3	0.15	1.2	1.1	1.40	Class－A Amp．	250 90	-7.0 -2.5	－	－	6.3	11400	2200	25	－	－	9002
9003	Triple－Grid Variable－μ	B．							Class－A Amp．	250	2.5 -3.0	100	2.7	6.7	700000	1800	$\underline{+}$	－	－	
9003	R．F．Amplifier	B．	7PM	6.3	0.15	3.6	3.0	0.01	Mixer	250	－10．0	100	Osc．pe	ak voltog	9 volts	600	－	－		9003
$\underline{9006}$	U．h．f．Diode	B．	68H	6.3	0.15	－	－	－－	Detector			Max	a．c．voltag	－270．	Max．d．c．ou	tput current－	－5 ma．			9006

TABLE XII－CONTROL AND REGULATOR TUBES

Type	Name	Base	Sacket Connec－ tions	Cothade	Fil．ar Heater		Use	Peak Anade Valtage	Max． Anade Ma．	Minimum Supply Valtage	Operating Valtage	Operating Mo．	Grid Resistar	Tube Voltage Drap	Type			
					Volts	Amps．												
OA2	Voltage Regulatar	7－pin B．	5BO	Cald	－	－	Valiage Regulatar			185	150							
OB2	Voltage Requlatar	7－pin B．	5BO	Cald		$\underline{\square}$	Valtoge Regulatar	－－	－	133	108	5－30	－	－	OA2			
${ }^{\text {0A4G }}$	Gas Triode Starter－Anode Type	6 －pin 0.	4 V	Cald	－	－	Cald－Cathade Starter－Anade Relay Tube	With 105－120－valt a．c．anade supply，poak starter－anade a．c．valtage is $\mathbf{7 0}$ ， peak r．f．valtage 55．Peak D．C．ma $=100$ ．Average D．C． $\mathrm{ma}=25$							OB2			
1847	Voltage Regulatar	$7-$ pin B．	－	－		－	Valtage Regulatar								OA4G			
1 C 21	Gas Triade Glaw－Discharge Type	6－pin 0.	4 V	Cald	－	－	Relay Tube	125－145	25	666		－	－	73	1 C 21			
2A4G	Gas Triode Grid Type	7－pin 0.	55				Valtage Regulatar		$0.1{ }^{\circ}$	180．				55				
$2 \mathrm{B4}$	Gas Triade Grid Type	7－pin O．	60	Hif．	2.5	2.5	Sweep Circuit Oscillatar	300	300	－－	ー－	－－	－	15	2A4G			
605G		5－pin M．	5 A	Hir．	2.5	1.4				－	－	1.0	0．1－10 ${ }^{\text {\％}}$	19	284			
$2 \mathrm{C4}$	Gas Triade	7－pin B．	－	Fil．	2.5		Caniral Tube	Plate valts $=350$ ；Grij valts $=-50 ;$ Avg．Ma．$=5 ;$ Peak Ma．$=20$ ；Valtage drap $=16$.							605G			
2D21	Gas Terrade	7－pin B．	7 BN	Htr．	6.3	0.6	Grid－Contralled Rectifier								550	500	－	2 D 21
							Relay Tube	400	－	一－					－	1.0 ：		
3 C 23	Gas and Mercury Vapar Grid Type	4－pin M．	3 G	Fil．	2.5	7.0	Grid－Controlled Rectifier	1000	6000	－	500	1500	－4．5 ${ }^{5}$	15	3C23			
6D4	Gas Triade	7－pin B．	5AY	Htr．	6.3	0.25	Contral Tube	Plate valts $=350$ ；Grid valts $=-50 ;$ Avg．Ma．$=25 ;$ Peak Ma．$=100$ ；Valtage drap $=16$.										
17	Mercury Vapar	pin	3G	Fil．	2.5	5.0	Grid－Cantralled Rectifier									6D4		
								2500	2000	－5	1000	250	200－3000	10－24	17			
874	Valtage Regulatar	4－pin M．	4S	－	－	－	Valtage Regulatar	－	－	125	90	10－50	－	－	874			
884	Current Requlatar	Magul	－		－		Current Regulatar	－	－	－	40－60	1.7		－	874			
	Gas Triade Grid Type	6－pin 0.	60	Htr．	6.3	0.6	Sweap Circuit Oscillatar	300	300	－	－	2	25000	－	884			
885		5－pin S．	5A				Grid－Cantralled Rectifiar	350	300	－	－	75	25000	－				
886	Current Regulatar	Magu！	－		2.5	1.4	Same as Type 884		Characteristics same as Type 884						885			
967	Mercury Vapar Triade	4－pin M．	3 G	Fil．	2.5	5.0	Grid－Cantralled Rectifier	2500	500	－ 5	40－60	2.05	－	－	836			
991	Valtage Regulatar	Bayanet	－	－	－	－	Valtage Regulatar	$\underline{-}$	500	－ 87				10－24	967			
1265	Valtage Regulatar	6－pin			－	－	Valtage Regulatar	－		130	$55-60$ 90	2.0 $5-30$	－	－	991			
1266	Valtage Regulator	6－pin 0.	4AJ	Cald	－	－－	Valtage Regulatar	\square	－		70	5－40	－	－	1265			
1267	Gas Triade	6 －pin 0.	4 V	Cald	－	－	Relay Tube		Characteristics same as OA4G					－	1266			
2050	Gas Tetrade	$8 \cdot \mathrm{pin} 0$.	BBA	Hir．	6.3	0.6	Grid－Cantralled Rectifier	650							1267			
2051	Gas Tetrade	8 －pin 0 ．	8BA	Hir．	6.3	0.6	Grid－Cantralied Rectifier	350	375			75	$\frac{0.1-10^{7}}{0.1-10^{7}}$	14	2050			
$\begin{aligned} & 2523 \mathrm{NI} / \\ & 128 \mathrm{AS} \\ & \hline \end{aligned}$	Gas Triade Grid Type	5－pin M．	5A	Htr．	2.5	1.75	Relay Tube	400	300	－	－	1.0	$\frac{0.1-10}{300}$	14	$2051 /$			
KY21	Gas Triade Grid Type	4－pin M．	－	Fil．	2.5	10.0	Grid－Contralled Rectifier	－		－	3000	530			128AS			
RK62	Gas Triode Grid Type	4－pin S．	4 D	Fil．	1.4	0.05	Relay Tube	45	1.5	－	30－45	0．1－1．5	－		KY21			
RM208	Permatran	4－pin M．	－	Fil．	2.5	5.0	Contralled Rectifier ${ }^{\text {P }}$	7500：	1000	－			－	15	RM6208			
RM209	Permatran	4－pin M．	－	Fil．	5.0	10.0	Cantralled Rectifier ${ }^{1}$	7500：	5000	－－		二二	－	15	RM208			
OA3／VR75	Valtage Regulator	6－pin 0.	4AJ	Cold	－	－	Valtage Regulatar	－	－	105	75	5－40	－	15	RM209			
OB3／VR90	Valtage Regulatar	6－pin 0.	4AJ	Caid	－	－	Valtage Regulatar		——	125	95	5－40	ーー	－	OA3／VR75			
OC3／VR 105	Valtage Regulatar	6－pin 0.	4AJ	Cold	－	－	Valtage Regulatar	－	－	135	105	5－40	－		OC3／VR105			
OD3／VR150	Valtage Regulatar	6 －pin 0.	4A」	Cald		－	Valtage Regulatar			185	150	5－40	\cdots	－	OD3／VR150			
KY866	Mercury Vapor Triade	4－pin M．	Fig． 8	Fil．	2.5	5.0	Grid－Cantralled Rectifier	10000	1000	0－150	\cdots		－	－	KY866			

1 Far use as grid－cantralled rectifier ar with external magnetic contral．RM－208 has characteristics of 866, RM－209 of 872

When under cantral peak inverse rating is reduced to 2500.
${ }^{3}$ At 1000 anode valts．
${ }^{1}$ Grid fied to plate．
Paak inverse valtage．
${ }^{6}$ Grid． ${ }^{7}$ Megahms．

TABLE XIII-CATHODE-RAY TUBES AND KINESCOPES

Type	Nome	Socket Connections		ter	Use	Size	Anode No. 2 Voltage	Anode No. 1 Voltoge	Cut-Off Grid Voltage	Grid No. 2 Volfage	Signal. Swing Voltage			Deflection Sensifivity ${ }^{6}$		Anade No. 3 Voltage	Poftern Color	Type
			Volts	Amps.										$\mathrm{D}_{1} \mathrm{D} 2$	$\mathrm{D}_{3} \mathrm{D}_{4}$			
2AP1	Electrostatic Cathode-Ray	118	6.3	0.6	Oscillograph Television	2"	1000	250	- 60	-	-	660	-	0.11	0.13	\square	Green	2AP 1
							500	125	- 30	二-	-			0.22	0.26			
3API/ 906-P1. 4-5-11	Electrostatic Cathode-Ray	7AN	2.5	2.1	Oscillograph	3"'	1500	430	- 50			550	10	0.22	0.23		Green Blue White	$\begin{array}{\|l\|} \hline \text { 3AP1/ } \\ 906-P 1 . \\ 4.5-11 \end{array}$
							1000	285	- 33	-	ー-			0.33	0.35			
							600	170	- 20	-	-			0.55	0.58			
$\begin{aligned} & \text { 3BP1-1 } \\ & 4-11 \end{aligned}$	Electrostatic Cathode-Ray	14A	6.3	0.6	Oscillograph	3"	2000	575	- 60	-	-	550	ـ	0.13	0.17	-	Green	$\begin{aligned} & \text { 3BP1- } \\ & 4.11 \end{aligned}$
							1500	430	- 45	\cdots				0.17	0.23			
3DP 1	Electrostatic Cathode-Ray	Fig. 49	6.3	0.6	Oscillograph	3"	2000	575	- 60		-	550	——	$200{ }^{3}$	$148{ }^{3}$	\square	Graen	3DP 1
							1500	430	- 40	-	-			1503	111^{3}	-		
$\begin{aligned} & \text { 3EP 1/ } \\ & \text { 1806-P1 } \end{aligned}$	Electrostatic Cathode-Ray	11A	6.3	0.6	Oscillograph Television	3"	2000	575	- 60		-	550	——	0.115	0.154	-	Green	$\begin{aligned} & \text { 3EP 1/ } \\ & 1806-\mathrm{PI} \end{aligned}$
							1500	430	- 45					0.153	0.205			
$\begin{aligned} & \text { 3GP1- } \\ & 4.5-11 \end{aligned}$	Electrostatic Cathode-Ray	11A	6.3	0.6	Oscillograph	$3^{\prime \prime}$	1500	350	- 50	-	-	550		0.21	0.24	-	White Green Blue	$\begin{aligned} & 3 G P 1- \\ & 4.5-11 \end{aligned}$
							1000	234	- 33	-				0.32	0.36			
$\begin{aligned} & \text { 3JP } 1- \\ & 2-4-11 \end{aligned}$	Electroslatic Cathode-Ray	14B	6.3	0.6	Oscillograph	3'	2000	575	- 60	--		550		0.13	0.17	4000	Green Blue White	$\begin{array}{\|l\|} 3 J P 1- \\ 2-4-11 \end{array}$
							1500	430	- 45		-			0.17	0.23	3000		
3KPI	Electrostatic Cathode-Ray	11 M	6.3	0.6	Oscillograph	3'	1000	300	- 45	1000	\checkmark	500	-	683	1363	-	Green	3KP1
							2000	600	- 90	2000				52^{3}	$104{ }^{3}$	-		
$\begin{aligned} & \text { 5AP1/ } \\ & 1805-\mathrm{PI} \\ & 5 \mathrm{AP4/} \\ & 1805-\mathrm{P4} \end{aligned}$	Electrostatic Picture Tube	11A	6.3	0.6	Oscillograph Television	5"	2000	575	- 35			500	10	0.17	0.21	-	Graen White	$\begin{array}{\|l\|} \hline \text { 5API/ } \\ 1805-P 1 \\ 5 A P 4 / \\ 1805-P 4 \\ \hline \end{array}$
							1500	430	- 27		-			0.23	0.28	-		
$\begin{aligned} & \text { 5BP1/ } \\ & 1802-\mathrm{P} 1- \\ & 2.4 .5-11 \end{aligned}$	Electrastatic Picture Tube	11A	6.3	0.6	Oscillograph	5"	2000	450	- 40	-	-	500	10	0.3	0.33	——	Green White Blue	$\begin{aligned} & \text { 5BP } 1 / \\ & 1802-P 1- \\ & 2-4-5-11 \end{aligned}$
							1500	337	- 30		-			0.4	0.45			
$\begin{aligned} & 5 C P 1- \\ & 2-4-5-11 \end{aligned}$	Electrostatic Cathoda-Ray	14B	6.3	0.6	Oscillograph Telavision	5"	2000	575	- 60		-	550	-	0.28	0.32	4000	White Green Blue	$\begin{aligned} & 5 C P 1- \\ & 2-4-5-11 \end{aligned}$
							1500	430	- 45		-		-	0.37	0.43	3000		
							2000	575	- 60		-			0.36	0.41	2000		
$\begin{aligned} & \text { 5FP } 1- \\ & 2-4-11 \end{aligned}$	Electromagnetic Cathode-Roy	5AN	6.3	0.6	Oscillograph Television	5'	7000	250	-45		-	-	-	-	-	-	Green White	5FP1-
							4000	250	- 45	-	-		\cdots	-	-		Blue	2-4-11
							2000	425	- 40			500	-	0.3	0.33	\cdots	Green	
5HP4	Elecirostotic Cathode-Ray	11A	6.3	0.6	Osciliograph	5	1500	310	- 30					0.4	0.44	-	White	5HP4
$\begin{aligned} & \text { 5.JP 1-1- } \\ & \text { 2-4-5-1 } \end{aligned}$	Electrostatic Cathoda-Ray	IIE	6.3	0.6	Oscillograph	5"	2000	520	- 75	-	-	500	-	0.25	0.28	4000		5JP1-
							1500	390	- 56	-	-			0.33	0.37	3000	Blue	2-4-5-11
$\begin{aligned} & \text { 5(P) - } \\ & 2-4-5-11 \end{aligned}$	Electrostatic Cathode-Ray	$11 F$	6.3	0.6	Oscillogroph Tolevision	5"	2000	500	- 60	-	-	500	-	0.25	0.28	4000	White Green Blue	
							1500	375	- 45	-	-		-	0.33	0.37	3000		
							1000	250	- 30	-	-		-	0.49	0.56	2000		
$\begin{aligned} & \text { 5MP1 } \\ & 4.5 .11 \end{aligned}$	Electrostatic Cathodo-Ray						1500	375	-- 50	-	-	660	-	0.39	0.42			
		7 AN	2.5	2.1	Oscillogroph	$5 \prime$	1000	250	- 33	-	-	660	\cdots	0.58	0.64		Green Blue	4-5-11
							3000	-	- 90	-	-	1200	-	0.12	0.12	15000	Green White	
2-4-11	Elecirostatic Cathode-Roy	Fig. 34	6.3	0.6	Oscillograph	5	2000	575	- 60	-	-		-	0.18	0.18	10000		2-4-11
5 5P4	Proiection Kinescope	Fiq. 46	6.3	0.6	Television	5"	27000	4900	- 70	200	-	-	-	-	-	-	White	5TP4
7AP4	Electromaqnetic Picture Tube	5AJ	2.5	2.1	Television	$7{ }^{\prime \prime}$	3500	1000	-67.5	-	-	-	2.5	-	-	-	White	7AP4
							7000	250	- 45	-	-						White	7BP1.
2-4-11	Electromagnetic Cathode-Ray	SAN	6.3	0.6	Television	7	4000	250	- 45	-	-						- $\begin{aligned} & \text { Graen } \\ & \text { Blue }\end{aligned}$	2-4-11

Woाl Recio मांक्या

TABLE XIII-CATHODE-RAY TUBES AND KINESCOPES - Continued

Type	Name	Socke ${ }^{\dagger}$ Connecfions	Heater		Use	Size	Anode No. 2 Voltage	Anode No. 1 Voltage	Cut-Öff Grid Voltage	Grid No. 2 Voltage	Signal- Swing Voltage	Max. Input Voltage ${ }^{1}$	$\begin{aligned} & \text { Screen } \\ & \text { Input } \\ & \text { Power } \end{aligned}$	Deflection Sensitivity ${ }^{6}$		Anode No. 3 Voltage	Pattern Calor	Type
			Volts	Amps.										$\mathrm{D}_{1} \mathrm{D}_{2}$	$\mathrm{D}_{3} \mathrm{D}_{4}$			
$\begin{aligned} & 7 \mathrm{CP} 1 / \\ & 1811 \text {-P } 1 \end{aligned}$	Electromagnelic Cathade-Ray	6AZ	6.3	0.6	Oscillograph	$7{ }^{\prime \prime}$	7000	1470	-45	250	-							7CP1/
							4000	840	- 45	250	-						Green	1811-P1
7DP4	Kinescope	Fig. 46	6.3	0.6	Television	7"	6000	1430	-45	250				-	-		White	7DP4
7GP4	Electrostatic Kinescope	Fig. 47	6.3	0.6	Television	$7{ }^{\prime \prime}$	3000	1200	-84	3000				123 ${ }^{3}$	1023		White	7GP4
$\begin{aligned} & \hline 9 A P 4 / \\ & 1804-\mathrm{P4} \\ & \hline \end{aligned}$	Electromagnetic Picture Tube	6AL	2.5	2.1	Television	$9{ }^{\prime \prime}$	7000	1425	- 40	250	25	-	10	-	-	-	White	$\begin{aligned} & 9 A P 4 / \\ & 1804 . P 4 \end{aligned}$
							6000	1225	- 38									
$9 \mathrm{CP4}$	Electromagnetic Piclure Tube	4AF	2.5	2.1	Telavision	$9{ }^{\prime \prime}$	7000	-	-110	-	25		10	-			White	$9 \mathrm{CP4}$
9JP 1 /	Electrostatic-Magnetic Cathode-Ray	8BR	2.5	2.1	Oscillograph	$9{ }^{\prime \prime}$	5000	1570	- 90	-	-	3000	-	0.136		-	Green	$\begin{aligned} & \text { 9JP 1// } \\ & 1809-\mathrm{P} 1 \end{aligned}$
10BP4	Magnetic Kinescope	Fig. 48	6.3	0.6	Television	10"	-	9000	- 45	250			-				-	108P4
12AP4/					Television	12"	7000	1460	- 75	250	25	-	10	-	—		White	$\begin{aligned} & 12 A P 4 / \\ & \text { 1803.P4 } \end{aligned}$
1803-P4	Electromagnetic Piclure Tube	6AL	2.5	2.1			6000	1240										
12CP4	Electromagnetic Picfure Tube	4AF	2.5	2.1	Television	12"	7000	-	-110	-	25		10	-			White	12CP4
12DP4	Electromagnetic Cathode-Ray	5AN	6.3	0.6	Television	12'	7000	250	- 45								White	12DP4
							4000	250	- 45	-	\cdots	-						
902	Electrostatic Cathode-Ray	Fig. 1	6.3	0.6	Oscillograph	$2{ }^{\prime \prime}$	600	150	- 60	-		350	5	0.19	0.22		Grean	902
$903{ }^{5}$	Electromagnelic Cathode-Ray	6AL	2.5	2.1	Oscillograph	$9{ }^{\prime \prime}$	7000	1360	-120	250	-	-	10			-	Green	903
904	Electrostatic-Magnetic Cathode-Ray	Fig. 3	2.5	2.1	Oscillograph	5"	4600	970	- 75	250	-	4000	10	0.09		-	Green	904
905	Electrostatic Cathode-Ray	Fig. 6	2.5	2.1	Oscillograph	5"	2000	450	- 35	-	-	1000	10	0.19	0.23		Grean	905
907	Electrostatic Cathode-Ray	Fig. 6	2.5	2.1	Oscillagraph	$5^{\prime \prime}$	Characteristics same as Type 905							-	\cdots	\square	Blue	907
908	Electrostatic Cathode-Ray	7 AN	2.5	2.1	Oscillograph	$3^{\prime \prime}$	Characteristics same as Type 3AP1/906P1										Blue	908
$909{ }^{\circ}$	Electrostatic Cathade-Ray	Fig. 6	2.5	2.1	Oscillograph	$5^{\prime \prime}$	Characteristics same as Type 905							-	-	\square	Blue	909
910°	Electrostatic Cathode-Ray	7 AN	2.5	2.1	Oscillograph	$3^{\prime \prime}$	Characteristics same as Type 3AP 1/906P1								$\underline{\square}$	-	Blue	910
$911{ }^{\text {3 }}$	Electrostatic Cathode-Ray	7AN	2.5	2.1	Oscillograph	$3^{\prime \prime}$	Characteristics same as Type 3AP 1/906P1							\square	-	-	Green	911
912	Electrostatic Cathode-Ray	Fig. 8	2.5	2.1	Oscillograph	$5^{\prime \prime}$	10000	2000	- 0	250	-	7000	10	0.041	0.051	--	Green	912
913	Electrostatic Cathade-Ray	Fig. 1	6.3	0.6	Osciilograph	1"	500	100	-65	-	-	250	5	0.07	0.10	-	Green	913
914	Electrostatic Cathode-Ray	Fig. 12	2.5	2.1	Oscillograph	$9{ }^{\prime \prime}$	7000	1450	- 50	250	-	3000	10	0.073	0.093	-	Green	914
1800*	Electromagnetic Kinescope	6AL	2.5	2.1	Television	$9{ }^{\prime \prime}$	6000	1250	-75	250	25	-	10		-	-	Yellow	1800
$1801{ }^{3}$	Electromagnetic Kinescope	Fig. 13	2.5	2.1	Television	5"	3000	450	- 35	-	20	-	10	-	-	--	Yellow	1801
2001	Electrostatic Cathode-Roy	Fig. 2	6.3	0.6	Oscillograph	1"				Cho	acteristics	essentially	same os	913				2001.
2002	Electrostatic Cathode-Ray	Fig. 1	6.3	0.6	Oscillograph	$2^{\prime \prime}$	600	120		-	--	--	-	0.16	0.17	--	Green	2002
2005	Electrostatic Cathode-Ray	Fig. $1+$	2.5	2.1	Television	$5^{\prime \prime}$	2000	1000	-35	200	-	-	10	0.5	0.56	-	-	2005
24.XH	Electrostatic Cathode-Ray	Fig. 1	6.3	0.6	Oscilloscope	$2^{\prime \prime}$	600	120	- 60	-	-	-	10	0.14	0.16	-	Blue	24-XH

${ }^{1}$ Between Anode No. 2 and any deflecting plate.
"In mw./sq. cm., max.
${ }^{3}$ D.C. Volts/in.

+ Cathode connected to pin 7.
${ }^{5}$ Disconlinued.
${ }^{6}$ In mm. /volt d.c.

TABLE XIV－RECTIFIERS—RECEIVING AND TRANSMITTING

See also Table XI－Control and Regulaicr Tubzs

Type No．	Name	Base	Socket Connec－ tions	Cathode	Fil．or Heater		Max． A．C． Voltage Per Plata	D．C． Output Current Ma．	Max． Inverse Peak Voltage	Peak Plate Current Ma．	Typa
					Volfs	Amps．					
BA	Full－Wave Rectifier	4－pin M．	4J	Cold		－	350	350	Tube drop 80 v ．		G
BH	Full－Wave Rectifier	4－pin M．	4J	Cold			350	125	Tube drop 90 v ．		G
BR	Half－Wave Reclifier	4－pin M．	4H	Cold			300	50	Tube drop 60 v ．		G
CE－220	Half－Wave Reclifier	4－pin M．	4P	Fil．	2.5	3.0	－	20	20000	100	HV
OY4	Half－Wave Rectifier	5 －pin 0.	4BU	Cold	Connact Pins 7 and 8		95	75	300	500	G
O24	Full－Wave Rectifier	5－pin 0	4R	Cold	－		350	30－75	1250	200	G
1	Half－Wave Rectifier	4－pin S．	4G	Hir．	6.3	0.3	350	50	1000	400	MV
1－V	Half－Wave Rectifier	4－pin S．	4G	Hir．	6.3	0.3	350	50			HV
$1 \mathrm{B48}$	Half－Wave Rectifier	7 －pin B．		Cold			800	6	2700	50	G
122	Half－Wave Rectifler	7－pin B．	7CB	Fil．	1.5	0.3	7800	2	20000	10	HV
2V3G	Half－Wave Rectifier	6－pin 0.	4AC	Fil．	2.5	5.0		2.0	16500	12	HV
2W3	Half－Wave Rectifier	5－pin 0.	4X	Fil．	2.5	1.5	350	55	－		HV
2X2／879	Half－Wave Rectifier	4－pin M．	4AB	Fil．	2.5	1.75	4500	7.5	－	－	HV
2 Y 2	Half－Wave Rectifler	4－pin M．	4AB	Fil．	2.5	1.75	4400	5.0	－	－	HV
2Z2／G84	Half－Wave Rectifler	4－pin M．	48	Fil．	2.5	1.5	350	50	－	－	HV
3B24	Half－Wave Rectifier	4－pin M ．	T－4A	Fil．	$\begin{aligned} & 5.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	－	$\begin{aligned} & 60 \\ & 30 \end{aligned}$	$\begin{aligned} & 20000 \\ & 20000 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \\ & \hline \end{aligned}$	HV
$3 \mathrm{B25}$	Half－Wave Rectifier	4－pin M．	4P	Fil．	2.5	5.0	－	500	4500	2000	G
$3 \mathrm{B26}$	Half－Wave Rectifier	8－pin 0.	Fig． 31	Hr ．	2.5	4.75	一－	20	15000	8000	HV
DR－3827	Half－Wave Rectifier	4－pin M．	4B	Fil．	2.5	5.0	3000	250	8500	1000	HV
5R4GY	Full－Wave Rectifler	5－pin 0.	$5 T$	Fil．	5.0	2.0	$\begin{aligned} & 9004 \\ & 9507 \end{aligned}$	$\begin{aligned} & 1501 \\ & 1757 \end{aligned}$	2800	650	HV
514	Full－Wave Rectifier	5－pin 0.	57	Fil，	5.0	3.0	450	250	1250	800	HV
5U4G	Full－Wave Rectifier	8－pin 0.	51	Fif．	5.0	3.0	Same as Type 573				HV
5V4G	Full－Wave Ractifier	8－pin 0.	51	Hir．	5.0	2.0	Same as Type 83V				HV
5W4	Full－Wave Rectifier	5－pin 0.	51	Fil．	5.0	1.5	350	110	1000	－	HV
5×3	Full－Wave Reclifier	4－pin M．	4C	Fil．	5.0	2.0	1275	30	－	\square	HV
5×4G	Full－Wave Reclifier	8 －pin O．	50	Fil．	5.0	3.0	Same as 573				HV
5Y3G	Full－Wave Rectifier	5－pin O．	57	Fil．	5.0	2.0	Same as Type 80				HV
5Y4G	Full－Wave Rectitier	8 －pin 0.	50	Fil．	5.0	2.0	Same as Type 80				HV
573	Full－Wave Rectifier	4－pin M．	4 C	Fil．	5.0	3.0	500	250	1400	－	HV
574	Full－Wave Rectifier	5－pin 0 ．	51	Hir．	5.0	2.0	403	125	1100	－	HV
6W5G	Full－Wave Rectifier	6－pin 0.	65	Hrr．	6.3	0.9	350	100	1250	350	HV
6×4	Full－Wave Rectifier	7－pin B．	Fig． 39	Hir．	6.3	0.6	325	70	1250	210	HV
6×5	Full－Wave Rectifier	6－pin O．	65	Hir．	6.3	0.5	350	75	\rightarrow	－－	HV
6 Y 5	Full－Wave Rectifier	6 －pin S．	6.	Hir．	6.3	0.8	350	50	－	－	HV
673	Half－Wave Rectifier	4－pin M．	4G	Fil．	6.3	0.3	350	50	－	－	HV
675	Full－Wave Rectifier	6 －pin 5.	6K	Hrr．	6.3	0.6	230	60	－	－	HV
6ZY5G	Full－Wave Rectifier	6 －pin 0 ．	65	Htr．	6.3	0.3	350	35	1000	150	HV
7 Y 4	Full－Wave Reclifier	8 －pin L．	5AB	Hir．	6.3	0.5	350	60	－－	－	HV
724	Full－Wave Rectifier	8－pin L．	5AB	Hrr．	6.3	0.9	$\begin{aligned} & 4501 \\ & 325: \\ & \hline \end{aligned}$	100	1250	300	HV
12A7	Rectifier－Pentode	7 －pin S，	7K	Hir．	12.6	0.3	125	30	－	－－	HV
1273	Half－Wave Rectifier	4－pin 5 ．	4G	Hir．	12.6	0.3	250	60	一－	一一	HV
1275	Voltage Doubler	7－pin M．	71	Hir．	12.6	0.3	725	60	－	－	HV
14 Y 4	Full－Wave Reclifier	8 －pin 1.	5 AB	Hir．	12.6	0.3	$\begin{aligned} & 4501 \\ & 325! \\ & \hline \end{aligned}$	70	1250	210	HV
1423	Half－Wave Rectifier	4－pin S．	4G	Hir．	12.6	0.3	250	60	一	－	HV
25A7G	Rectifior－Pentade	8－pin O．	8F	Htr．	25	0.3	125	75	－	－	HV
25×6GT	Voltaqe Doubler	7－pin 0.	70	Htr．	25	0.15	125	60	一一	－	HV
25Y4GT	Holf－Wove Rectifier	6 －pin 0.	5AA	Htr．	25	0.15	125	75	一ー	－	HV
$25 Y 5$	Voltare Doubler	6－pin S．	6E	Hir．	25	0.3	250	85	－	－	HV
2573	Half－Wave Rectifier	4－pin S．	4G	Hir．	25	0.3	250	50	－	－	HV
2524	Half．Wave Rectifier	6－pin 0 ．	5AA	Hir，	25	0.3	125	125	－	－	HV
2525	Rectifier－Doubler	8 －pin 5 ．	SE	Hir．	25	0.3	125	100	－	500	HV
2576	Rectifier－Doubler	7 －pin 0.	70	Her．	25	0.3	125	100	－	500	HV
2825	Full－Wave Rectifier	8 －pin 1.	5AB	Hir．	28	0.24	$\begin{aligned} & 450 \text { : } \\ & 325 \end{aligned}$	100	－	300	HV
3217 GT	Rectifier－Tetrade	8 －pin 0.	82	Hir．	32.5	0.3	125	60	二ー	－	HV
35 W 4	Half．Wave Rectifier	7－pin B．	580	Hir．	35.	0.15	125	100：	330	600	HV
35 Y 4	Holf－Wave Reclifier	8－pin 0.	5AL	Hir．	35 ：	0.15	235	$\begin{gathered} 60 \\ 100 \end{gathered}$	700	600	HV
3523	Half－Wove Rectifier	8 －pin 2.	42	Htr．	35	0.15	250	100	700	600	HV
352497	Half－Wave Rectifier	6 －pin 0.	5AA	Hir．	35	0.15	250	100	700	600	HV
3525G	Half－Wave Rectifier	6－pin 0.	6AD	Hir．	35：	0.15	125	$\begin{gathered} 60 \\ 100 \\ \hline \end{gathered}$	－	－	HV
35Z6G	Voltage Daubler	6－pin 0 ．	70	Hir．	35	0.3	125	110	－	500	HV
40Z5GT	Half－Wave Rectifier	O－pin 0.	6AD	Hir．	40^{2}	0.15	125	$\begin{gathered} 60 \\ 100 ? \\ \hline \end{gathered}$	－	－	HV
$45 \mathrm{Z3}$	Half－Wave Rectifier	7－pin B．	5AM	Her．	45	0.075	117	65	350	390	HV

TABLE XIV-RECTIFIERS-RECEIVING AND TRAN3MITTING-Continued
See also Table XI-Conirol and Regulator Tubes

Type No.	Name	Base	Socket Connections	Cathode	Fil. or Heater		Max. A.C. Voltage Per Plate	D.C. Oułput Current Ma .	Max. Inverse Peak Voltage	Peak Plate Current Ma.	Typo
					Volts	Amps.					
45Z5GT	Half-Wave Rectifier	6 -pin 0.	6AD	Hir.	45:	0.15	125	$\begin{gathered} 60 \\ 100 \end{gathered}$	-	-	HV
50Y6GT	Full-Wave Rectifier	7 -pin 0.	70	Htr.	50	0.15	125	85			HV
50Z6G	Valtage Doubler	7-pin 0 .	79	Htr.	50	0.3	125	150			HV
5077G	Voltage Daubler	8 -pin 0.	8 AN	Hir.	50	0.15	117	65	-		HV
7047 GT	Rectifier-Tetrode	8 -pin 0.	8AB	Htr.	70	0.15	$125{ }^{5}$	60		-	HV
7017 GT	Rectifier-Tetrode	8 -pin 0.	8AA	Hit.	70	0.15	117	70	-	350	HV
72	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	3.0		30	20000	150	HV
73	Half-Wave Rectifier	8-pin 0.	4 Y	Fil.	2.5	4.5		20	13000	3000	HV
80	Full-Wave Rectifier	4-pin M.	4 C	Fil.	5.0	2.0	$\begin{array}{r} 3504 \\ 500 \\ \hline \end{array}$	$\begin{array}{r} 125 \\ 125 \\ \hline \end{array}$	1400	375	HV
81	Half-Wave Rectifier	4-pin M.	4B	Fil.	7.5	1.25	700	85	\square	\square	HV
82	Full-Wave Rectifier	4-pin M.	4 C	Fil.	2.5	3.0	500	125	1400	400	MV
83	Full-Wave Rectifier	4-pin M.	4 C	Fil.	5.0	3.0	500	250	1400	800	MV
83-V	Full-Wave Rectifier	4-pin M.	4AD	Hir.	5.0	2.0	400	200	1100	-	HV
$84 / 674$	Full-Wave Rectifier	5-pin S.	50	Hir.	6.3	0.5	350	60	1000		HV
$\begin{aligned} & 117 \mathrm{GGT} / \\ & 117 \mathrm{M} 7 \mathrm{GT} \\ & \hline \end{aligned}$	Rectifier-Tetrode	8-pin 0.	840	Htr.	117	0.09	117	75	-	\square	HV
117N7GT	Rectifler-Tetrode	8-pin 0.	8 AV	Htr.	117	0.09	117	75	350	450	HV
117P7GT	Rectifier-Tetrode	8-pin 0.	8 AV	Hir.	117	0.09	117	75	350	450	HV
11723	Half-Wave Rectifier	7-pin B.	4BR	Htr .	117	0.04	117	90	330	-	HV
11724 GT	Half-Wave Rectifier	6-pin 0.	5AA	Hir.	117	0.04	117	90	350		HV
$11726 G T$	Voltoge Doubler	7-pin 0.	70	Hir.	117	0.075	235	60	700	360	HV
217-A	Half-Wave Rectifier	4-pin J.	T.3A	Fil.	10	3.25		\square	3500	600	HV
217-C	Half-Wave Rectifier	4-pin J.	T-3A	Fil.	10	3.25			7500	600	HV
2225	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	-	250	10000	1000	MV
249-B	Half-Wave Rectifier	4-pin M.	Fig. 53	Fil.	2.5	7.5	3180	375	10000	1500	MV
HK 253	Half-Wave Rectifier	4-pin J.	T-3A	Fil.	5.0	10		350	10000	1500	HV
705A RK-705A	Half-Wave Rectifier	4-pin W.	T-3AA	Fil.	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	二	$\begin{array}{r} 50 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 35000 \\ 35000 \\ \hline \end{array}$	$\begin{aligned} & 375 \\ & 750 \end{aligned}$	HV
816	Half-Wave Rectifier	4-pin S.	4P	Fil.	2.5	2.0	1750	125	5000	500	MV
836	Half-Wave Rectifier	4-pin M.	4P	Htr.	2.5	5.0	17		5000	1000	HV
866A/866	Holf-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	3500	250	10000	1000	MV
866 B	Half-Wave Rectifler	4-pin M.	4P	Fil.	5.0	5.0			8500	1000	MV
866 Jr .	Half-Wave Rectifier	4-pin M.	48	Fil.	2.5	2.5	1250	$250{ }^{3}$	-	\cdots	MV
HY866 Jr.	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	2.5	1750	$250{ }^{3}$	5000	-	MV
RK866	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	3500	250	10000	1000	MV
$871{ }^{10}$	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	2.0	1750	250	5000	500	MV
878	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	7100	5	20000	-	HV
879	Half-Wave Rectifier	4-pin S.	4P	Fil.	2.5	1.75	2650	7.5	7500	100	HV
872A/872	Half-Wave Rectifier	4-pin J.	T-3A	Fil.	5.8	7.5		1250	10000	5000	MV
9754	Half-Wave Rectifier	4-pin J.	T-3A	Fil.	5.0	10.0	-	1500	15000	6000	MV
$\begin{aligned} & \text { OZ4A/ } \\ & 1003 \end{aligned}$	Full-Wave Rectifier	5 -pin 0.	4R	Cold	-	-	-	110	880	-	G
1005/ CK 1005	Full-Wave Rectifier	8 -pin 0.	T-9F	Fil.	6.3	0.1	\square	70	450	-	G
$\begin{aligned} & 1006 / \\ & \text { CK } 1006 \end{aligned}$	Full-Wave Rectifier	4-pin M.	4C	Fil.	1.75	2.25	\longrightarrow	200	1600	-	G
CK 1007	Full-Wave Rectifier	8-pin 0.	T-9G	Fil.	1.0	1.2	-	110	980	-	G
CK 1009/BA	Full-Wave Rectifier	4-pin M.	-	Cald		-	-	350	1000		G
1275	Full-Wave Rectifier	4-pin M.	4C	Fil.	5.0	1.75	Same as 5Z3				HV
1616	Half-Wave Rectifler	4-pin M.	4P	Fil.	2.5	5.0	-	130	6000	800	HV
$\begin{aligned} & 1641 / \\ & \text { RK } 60 \\ & \hline \end{aligned}$	Full-Wave Rectifier	4-pin M.	T-4AG	Fil.	5.0	3.0	-	$\begin{array}{r} 50 \\ 250 \end{array}$	$\begin{aligned} & 4500 \\ & 2500 \end{aligned}$	-	HV
1654	Half-Wave Rectifier	7-pin B.	Fig. 41	Fil.	1.4	0.05	2500	1	7000	6	HV
8008	Half-Wave Rectifier	4-pin ${ }^{6}$	Fig. 11	Fil.	5.0	7.5	-	1250	10000	5000	MV
8013A	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0		20	40000	150	HV
8016	Half-Wave Rectifier	6-pin 0 .	4AC	Fil.	1.25	0.2	\longrightarrow	2.0	10000	7.5	HV
8020	Half-Wave Rectifier	4-pin M.	4P	FH.	5.0	5.5	10000	100	40000	750	HV
					5.8	6.5	12500	100	40000	750	
RK19	Full-Wave Rectifier	4-pin M.	T-3A	Hir.	7.5	2.5	1250	$200:$	8500	600	HV
RK21	Half-Wave Rectifier	4 -pin M.	4P	Hir.	2.5	4.0	1250	$200 \cdot$	3500	600	HV
RK22	Full-Wave Rectifier	4-pin M.	T-4AG	Hir.	2.5	8.0	1250	200:	3500	600	HV

[^11]- Same as 872A /872 except for heavy-duty push-type base.

Filament cannected to pins 2 and 3, plate to tap cap.
${ }^{7}$ Chake input.
Without panel lamp.
${ }^{9}$ Using only one -half of filament.
${ }^{10}$ Discontinued.

TABLE XV-TRIODE TRANSMITTING TUBES

Type	Max. Plate Dissi- pation Watis	Cathode			Max.Plate Currrent Ma .	Max. D.C. Grid Current Ma.	Amp. Factor	Inferelectrode Capacifances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Socket Connections	Typical Operation	Plate Voltage	Grid Voltage	Plałe Current Ma.	D.C.GridCurrent Ma.	Approx. Grid Driving Power Watts	Approx. Carrier Outpui Power Watis	Type
		Volts	Amps.					$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$	Grid to Plate	$\begin{aligned} & \text { Plate } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$											
958-A	0.6	1.25	0.1	135	7	1.0	12	0.6	2.6	0.8	500	A.	5BD	Class-C Amp.-Oscillator	135	- 20	7	1.0	0.035	0.6	958-A
RK24	1.5	2.0	0.12	180	20	6.0	8.0	3.5	5.5	3.0	125	S.	4D	Class-C Amp.-Oseillator	180	- 45	16.5	6.0	0.5	2.0	RK24
616 :	1.5	6.3	0.45	300	30	16	32	2.2	1.6	0.4	250	B.	7BF	Class-C Amp. (Telegraphy)	150	- 10	30	16	0.35	3.5	616
9002	1.6	6.3	0.15	250	8	2.0	25	1.2	1.4	1.1	250	B.	7TM	Class-C Amp.-Oscillator	180	- 35	7	1.5	-	0.5	9002
955	1.6	6.3	0.15	180	8	2.0	25	1.0	1.4	0.6	250	A.	5BC	Class-C Amp.-Oscillator	180	- 35	7	1.5	-	0.5	955
	1.8	1.4	0.155	180	12	3.0	13	1.0	1.3	1.0	300	0.	r-8AC	Class-C Amp.-Oscillator	180	- 30	12	2.0	0.2	$1.4{ }^{3}$	HY114B
HY114B														Class-C Amp. Plate-Mod.	180	- 35	12	2.5	0.3	$1.4{ }^{3}$	
3A5 *	2.0	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \end{aligned}$	150	30	5.0	15	0.9	3.2	1.0	40	B.	7BC	Class-C Amp.-Oscillator	150	- 35	30	5.0	0.2	2.2	345
6 F4	2.0	6.3	0.225	150	20	8.0	17	2.0	1.9	0.6	500	A.	7BR	Class-C Amp.-Oscillator	150	$\begin{array}{\|c\|} \hline 550^{*} \\ \hline 2000^{+} \\ \hline \end{array}$	20	7.5	0.2	1.8	$6 F 4$
HY24	2.0	2.0	0.13	180	20		9.3	2.7	5.4	2.3	60	S.	40	Class-C Amp. (Telegraphy)	180	- 45	20	4.5	0.2	2.7	HY24
						4.5								Class-C Amp. (relephony)	180	-45	20	4.5	0.3	2.5	
RK33 1, 2	2.5	2.0	0.12	250	20	6.0	10.5	3-2	3-2	2.5	60	S.	r-7DA	Class-C Amp.-Oscillator	250	- 60	20	6.0	0.54	3.5	RK33
6N4	3.0	6.3	0.2	180	12	-	32	3.1	2.35	0.55	500	B.	Fig. 40	Class-C Amp.-Oscillator	180	-	-				6N4
					20	4.0	20	4.2	3.8	5.0	60	O.	60	Class-C Amp.-Oscillator	330	- 30	20	2.0	0.2	3.5	HY6J5GTX
HY6J5GTX	3.5	6.3	0.3	330										Class-C Amp. (Plate Mod.)	250	- 30	20	2.5	0.3	2.5	
2C22/7193	3.5	6.3	0.3	500		-	20	2.2	3.6	0.7	-	0.	4AM	Class-C Amp. (Telegraphy)	-				\square		2/7193
	3.5	6.3	0.175	300	20	4.0	20	1.4	1.6	1.2	300	0.	T-8AG	Class-C Amp.-Oscillator	300	- 35	20	2.0	0.4	$4 .{ }^{3}{ }^{3}$	$\begin{array}{\|l\|} \hline \text { HY615 } \\ \text { HY-E1148 } \end{array}$
HY-E1148														Class-C Amp. Plate-Mod.	300	- 35	20		0.8	$3.5{ }^{3}$	
$\begin{aligned} & \text { GL-446A: } \\ & \text { GL-446B } \\ & \hline \end{aligned}$	3.75	6.3	0.75	400	20	-	45	2.2	1.6	0.02	500	0	Fig. 19	Class-C Amp.-Oscillator	250	-	-	-	-	-	$\begin{aligned} & \text { GL-446A } \\ & \text { GL-446B } \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{GL}-2 \mathrm{C44} \\ & \mathrm{GL}-464 A^{\prime} \\ & \hline \end{aligned}$	5.0	6.3	0.75	500	40	-	-	2.7	2.0	0.1	500	0.	Fig. 17	Class-C Amp.-Oscillator	250	-					$\begin{array}{\|c} \text { GL-2C44 } \\ \text { GL-464A } \\ \hline \end{array}$
$6 \mathrm{C4}$	5.0	6.3	0.15	300	25	8.0	17	1.8	1.6	1.3	150	B.	6BG	Class-C Amp.-Oseillator	300	- 27	25	7.0	0.35	5.5	$6 \mathrm{C4}$
1626	5.0	12.6	0.25	250	25	8.0	5.0	3.2	4.4	3.4	30	0.	69	Class-C Amp.-Oscillator	250	- 70	25	5.0	0.5	4.0	1626
$\begin{aligned} & \hline 2 \mathrm{C211/} \\ & \text { RK33 }{ }^{2} \\ & \hline \end{aligned}$	5.0	6.3	0.6	250	40	12		1.6	1.6	2.0		S.	T-7DA	Class-C Amp.-Oscillator	250	- 60	40	12	1.0	7	$\begin{array}{\|l\|l\|} \text { RK2 } \\ \text { RK } 33 \end{array}$
2 C 40	6.5	6.3	0.75	500	25	-	36	2.1	1.3	0.05	500	0.	Fig. 19	Class-C Amp.-Oscillator	250	- 5	20	0.3	-	0.075	2C40
$2 \mathrm{C43}$	12	6.3	0.9	500	40		48	2.9	1.7	0.05	1250	0.	Fig. 19	Class-C Amp.-Oscillator	$470{ }^{7}$		38	-		97	$2 \mathrm{C43}$
2C26A	10	6.3	1.10	3500 ${ }^{\text {s }}$			16.3	2.6	2.8	1.1	250	0.	4BB	Pulse Oscillator	400	- 15	16				2C26A
$\begin{aligned} & \text { 2C34/ } \\ & \text { RK34: } \end{aligned}$	10	6.3	0.8	300	80	20	13	3.4	2.4	0.5	250	M.	T-7DC	Class-C Amp.-Oseillator	300	- 36	80	20	1.8	16	$\begin{aligned} & \text { 2C34/ } \\ & \text { RK34 } \end{aligned}$
205D	14	4.5	1.6	400	50	10	7.2	5.2	4.8	3.3	6	M.	4D	Class-C Amp.-Oscillator	400	-112	45	10	1.5	10 7.1	205D
														Class-C Amp.-Oscillator	450	-100	65	15	3.2	19	2 C 25
2C25	15	7.0	1.18	450	60	15	8.0	6.0	8.9	3.0	-	M.	4D	Class-C Amp. Plate-Mod.	350	-100	50	12	2.2	12	
														Class-C Amp.-Oscillaior	450	-100	65	15	3.2	19	10Y
10Y	15	7.5	1.25	450	65	15	8	4.1	7.0	3.0	-	M.	4D	Class-C Amp. Plate-Mod.	350	-100	50	12	2.2	12	
				450	40		77	4.0	4.5	4.0	6			Class-C Amp.-Oscillator	450	-140	30	5.0	1.0	7.5	843
843	15	2.5	2.5	450	40	7.5	7.7	4.0	4.5	4.0	6	M.	5A	Class-C Amp. (Plate-Mod.)	350	-150	30	7.0	1.6	5.0	
RK592	15	6.3	1.0	500	90	25	25	5.0	9.0	1.0	-	M.	T-4D	Class-C Amp.-Oscillator	500	- 60	90	14	1.3	2	RK59
HY75	15	6.3	2.5	450	80	20	10	1.6	3.8	0.6	60	O.	T-8AC	Class-C Amp. Oscillator	450	-50 -80	80	12	-	21^{3}	HY75
														Class-C Amp. Plate-Mod.	450	- 80	80	12			

TABLE XV-TRIODE TRANSMITTING TUBES-Continued

Type	Max. Plafe Dissi- pation Watts Watts	Cathode		$\begin{gathered} \text { Max. } \\ \text { Plate } \\ \text { Voltage } \end{gathered}$	$\begin{gathered} \text { Max. } \\ \text { Plate } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	$\begin{array}{\|c} \text { Max. } \\ \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{array}$	$\underset{\text { Factor }}{\substack{\text { Amp. }}}$	InteralectrodeCapacitances ($\mu \mu \mathrm{fd}$. .)			Max. Mc. Mc. Fuil Ralings	Base	$\begin{gathered} \text { Socket } \\ \text { Connec } \\ \text { fions } \end{gathered}$	Typical Operation	$\left\lvert\, \begin{aligned} & \text { Plate } \\ & \text { Voltage } \end{aligned}\right.$	$\begin{gathered} \text { Grid } \\ \text { Voltage } \end{gathered}$	$\begin{array}{\|c} \text { Plate } \\ \text { Current } \\ \text { Ma. } \end{array}$	$\begin{array}{\|c} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{array}$	$\left\lvert\, \begin{gathered} \text { Approx. } \\ \text { Grid } \\ \text { Driving } \\ \text { Powar } \\ \text { Potts } \end{gathered}\right.$	Approx Carrier Power Watts	Type
		Volts	Amps.					Grid $\begin{aligned} & \text { 1o } \\ & \text { Fil. } \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	Plate to Fil.											
1602	15	7.5	1.25	450	60	15	8.0	4.0	7.0	3.0			4D	Class-C Amp. (Telegraphy)	450	-115	55	15	3.3	13	1602
						15	8.0	4.0	7.0	3.0	6	M.	4 D	Class-C Amp. (Telephony)	350	-135	45	15	3.5	8.0	
841	15	7.5	. 1.25	450	60	20	30	4.0	7.0	3.0			4D	Class-C Amp. (Telegraphy)	450	- 34	50	15	1.8	15	841
								4.0	7.0	3.0	6	m.	4 D	Class-C Amp. (Telaphony)	350	- 47	50	15	2.0	11	
$\begin{aligned} & 10 \\ & \text { RK10101 } \end{aligned}$	15	7.5	1.25	450	65	15	8.0	3.0	8.0	4.0		M.	4D	Class-C Amp. (Telegraphy)	450	-100	65	15	3.2	19	$\begin{aligned} & 10 \\ & R K ; 0 \end{aligned}$
											60			Class-C Amp. (Telephony)	350	-100	50	12	2.2	12	
RK100:	15	6.3	0.9	150	250	100	40	23	19	3.0	-	M.	T-68	Class-C Oscillator	110	-	80	8.0		3.5	RK100
TUF-20	20	6.3	2.75	750	75	20	10	1.8	3.6					Class-C Amplifier	110	-	185	40	2.1	12	
										0.095	250	M.	T-8AC	Class-C Amp.-Oscillator	750	-150	75	20	1.5/2.5	40	TUF-20
1608	20	2.5	2.5	425	95	25	20	8.5	9.0	3.0	45		4D	Class-C Amp. (Telegraphy)	425	- 90	95	20	3.0	27	1608
310		7.5	1.25									M.	4D	Class-C Amp. (Telephony)	350	-80 -150	85	20	3.0	18	310
	20	7.5	1.25	600	70	15	8.0	4.0	7.0	2.2	6			Class-C Amp. (Telephony)	500	-190	55	15	4.5	18	
801-A/801	20	7.5	1.25	600	70	15	8.0	4.5	6.0	1.5	60	M.	4D	Class-C Amp. (Telegraphy)	600	-150	65	15	4.0	25	801-A/801
								4.5	6.0	1.5	60			Class-C Amp. (Telaphony)	500	-190	55	15	4.5	18	
hybol-A	20	7.5	1.25	600	70	15	8.0	4.5	6.0	1.5	60	M.	4D	Class-C Amp. (Telegraphy)	600	-200	70	15	4.0	30	Hybol-A
									6.0	1.5	60			Class-C Amp. (Telephony)	500	-200	60	15	4.5	22	
T20	20	7.5	1.75	750	85	25	20	4.9	5.1	0.7	60	M.	3 G	Class-C Amp. (Telegraphy)	750	- 85	85	18	3.6	44	T20
														Class-C Amp. Plate-Mod.	750	-140	70	15	3.6	38	
TZ20	20	7.5	1.75	750	85	30	62	5.3	5.0	0.6	60	M.	36	Class-C Amp. (Telegraphy)	750	- 40	85	28	3.75	44	TZ20
T5E	20	5.5	4.2	10000:			25	1.4	115					Class-C Amp Plate-Mod.	750	-100	70	23	4.8	38	
$\begin{aligned} & \text { 3-25A3 } \\ & 25 \mathrm{r} \end{aligned}$	25	6.3	3.0	2000	75	25	24		1.5	0.3	600	N.	T-4AF	Oscillator af 400 Mc .	10000	$4500{ }^{4}$	3	1	-	$1000{ }^{\circ}$	15E
								2.7		0.3	60	M.	3G	Class-C Amp.-Oscillator	2000	-130	63	18	4.0	100	$\begin{aligned} & 3-25 A^{3} \\ & 257^{2} \end{aligned}$
															1500	-95	67	13	2.2	75	
															1000	- 70	72	9	1.3	47	
$\begin{aligned} & 3-25 \mathrm{~B} 33 \\ & 3 \mathrm{C} 24 \end{aligned}$	25	6.3	3.0	2000	75	25	23	2.0	1.6		60	s.	2D	Class-C Amp.-Oscillator	2000	-170	63	17	4.5	100	$\begin{aligned} & 3-25 \mathrm{D} 3 \\ & 3 \mathrm{C24} \\ & 24 \mathrm{G} \\ & \hline \end{aligned}$
346									1.5						1500	-110 -80	67	15	3.1	75	
3 C 28	25	6.3	3.0	2000	75	25	23	2.1	1.8	0.1	100	5.	Fig. 56	Class-C Amp. Oscillator	Characteristics same as 3C24						3 C 28
3 C 34	25	6.3	3.0	2000	75	25	23	2.5	1.7	0.4	60	5.	3 G	Class-C Amp. Oscillator	Characteristics same as 3 C24						3C28 3C34
RK111	25	6.3	3.0	750	105	35	20	7.0	7.0	0.9	60	M.	3G	Class-C Amp. (Telegraphy)	750	-120	105	21	3.2	55	RK11
														Class-C Amp. Plate-Mod.	600	-120	85	24	3.7	38	
RK12	25	6.3	3.0	750	105	40	100	7.0	7.0	0.9	60	M.	3G	Class-C Amp. (Telegraphy)	750	-100	105	35	5.2	55	RK 12
														Class-C Amp. Plate-Mod.	600	-100	85	27	3.8	38	
HK24	25	6.3	3.0	2000	75	30	25	2.5	1.7	0.4	60	s.	3G	Class-C Amp. (Telegraphy)	2000	-140	56	18	4.0	90	HK24
														Class-C Amp. Plate-Mod.	1500	-145	50	25	5.5	60	
HY25	25	7.5	2.25	800	75	25	55	4.2	4.6	1.0	60	M.	3G	Class-C Amp. (Telegraphy)	750	- 45	75	15	2.0	42	HY25
8025		6.3	1.92	1000										Class-C Amp. Plate-Mod.	700	- 45	75	17	5.0	39	
	20				65	20	18	2.7	2.8	0.35	500	M.	4AQ	Class-C Amp. (Grid. Mod.)	1000	-135	50	4	3.5	20	8025
					65	20								Class-C Amp. (Plate Mod.)	800	-105	40	10.5	1.4	22	
	30				80	20								Class-C Amp. (Telegraphy)	1000	-90	50	14	1.6	35	
hY30Z	30	6.3	2.25	850	90	25	87	6.0	4.9	1.0	60	M.	T.48E	Class-C Amp. Oscillator	850	-75	90	25	2.5	58	HY30Z
HY31Z: HY1231Z:	30	6.3	3.5	500	150	30	45	5.0	5.5	1.9				Class-C Amp. Plate-Mod.	700	- 75	90	25	3.5	47	$\begin{aligned} & \text { HY31Z } \\ & \text { HY1231Z } \end{aligned}$
		12.6									60	M.	T-4D	Class-C Amp. (Telegraphy)	500	-45	150	25	2.5	56	
			1.7											Class-C Amp. (Telephony)	400	-100	150	30	3.5	45	

table XV-Triode transmitting tubes-Continued

Type	Max. Plate Dissipotion Watts	Cathode		Max. Plate Voltage	Max. Plate Current Mo.	Max. D.C. Grid Current Mo.	Amp. Factor	Intere!ectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freg. Mc. Full Rotings	Base	Socket Connections	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Watts	Approx. Carrier Output Power Waits	Type	
		Volts	Amps.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$												
316A	30	2.0	3.65	450	80	12	6.5	1.2	1.6	0.8	500	N.	-	Closs-C Amp. (Telegraphy)	450	-	85	12	--	7.5	316A	
														Class-C Amp. Plate-Mod.	400	-	80	12	--	6.5		
809	30	6.3	2.5	1000	125	50		5.7	6.7	0.9	60	M.	3G	Class-C Amp. (Telegraphy)	1000	-75	100	25	3.8	75	809	
								Class-C Amp. Plate-Mod.						750	- 60	100	32	4.3	55			
1623	30	6.3	2.5	1000	100	25	20		5.7	6.7	0.9	60	M.	3G	Class-C Amp.-Oscillator	1000	- 90	100	20	3.1	75	1623
								Class-C Amp. Plate-Mod.							750	-125	100	20	4.0	55		
53A	35	5.0	12.5	15000		-	35	3.6	1.9	0.4		N.	T-4B	Oscillator of 300 Mc .	Approximately 50 watts output						53A	
RK30 ${ }^{1}$	35	7.5	3.25	1250	80	25	15	2.75	2.5	2.75	60	M.	2 D	Class-C Amp. (Telegrophy)	1250	-180	90	18	5.2	85	RK30	
														Class-C Amp. Plate-Mod.	1000	-200	80	15	4.5	60		
800	35	7.5	3.25	1250	80	25	15	2.75	2.5	2.75	60	M.	2D	Class-C Amp. (Telegraphy)	1250	-175	70	15	4.0	65	800	
														Class-C Amp. Plate-Mod.	1000	-200	70	15	4.0	50		
														Class-C Amp.-Os cillator	1000	- 65	50	15	1.7	35		
$1628{ }^{1}$	40	3.5	3.25	1000	60	15	23	2.0	2.0	0.4	500	N.	T.4BB	Class-C Amp. Plate-Mod.	800	-100	40	11	1.6	22	1628	
														Grid-Modulated Amp.	1000	-120	50	3.5	5.0	20		
$\begin{aligned} & 8012 \\ & \text { GL-8012-A } \end{aligned}$	40													Class-C Amp.-Oscillator	1000	- 90	50	14	1.6	35		
		6.3	2.0	1000	80	20	18	2.7	2.8	0.35	500	N.	7-4BB	Class-C Amp. Plate-Mod.	800	-105	40	10.5	1.4	22	$\begin{aligned} & 8012 \\ & G 1 .-8012-A \end{aligned}$	
								2.7	2.5	0.4				Grid-Modulated Amp.	1000	-135	50	4.0	3.5	20		
			3.0	1250	100	40	18	6.0				M.		Class-C Amp. (Telegraphy)	1250	-160	100	12	2.8	95	RK18	
RK18 ${ }^{1}$	40	7.5							4.8	1.8	60		3G	Class-C Amp. Plate-Mod.	1000	-160	80	13	3.1	64		
	40	7.5	3.0	1250	100	35	170							Class-C Amp. (Telegraphy)	1250	- 80	100	30	3.0	90	RK31	
RK31								7.0	1.0	2.0	30	M.	3G	Class-C Amp. Plate-Mod.	1000	- 80	100	28	3.5	70	RK31	
														Class-C Amp. (Talegraphy)	1000	- 90	125	20	5.0	94		
HY40	40	7.5	2.25	1000	125	25	25	6.1	5.6	1.0	60	M.	3G	Class-C Amp. Plate-Mod.	850	-90	125	25	5.0	82	HY40	
														Grid-Modulated Amp.	1000	-	125		-	20		
														Class-C Amp. (Telegraphy)	1000	-27	125	25	5.0	94		
HY40Z	40	7.5	2.6	1000	125	30	80	6.2	6.3	0.8	60	M.	3 G	Class-C Amp. Plate-Mod.	850	- 30	100	30	7.0	82	HY402	
														Grid-Modulated Amp.	1000	-	60		-	20		
														Class-C Amp.-Oscillator	1500	-140	150	28	9.0	158	\$40	
T40	40	7.5	2.5	1500	150	40	25	4.5	4.8	0.8	60	M.	3G	Class-C Amp. Plate-Mod.	1250	-115	115	20	5.25	104	140	
														Class-C Amp.-Oscillotor	1500	-90	150	38	10	165	TZ40	
1240	40	7.5	2.5	1500.	150	45	62	4.8	5.0	0.8	60	M.	3G	Class-C Amp. Plate-Mod.	1250	-100	125	30	7.5	116		
														Class-C Amp. (Telegrophy)	850	-48	110	15	2.5	70		
HY57	40	6.3	2.25	850	110	25	50	4.9	5.1	1.7	60	M.	3G	Class-C Amp. Plate-Mod.	700	- 45	90	17	5.0	47	HY57	
														Grid-Modulased Amp.	850	-	70	-	-	20		
$756{ }^{1}$	40	7.5	2.0	850	110	25	8.0	3.0	7.0	2.7	-	M.	40	Class-C Amplifier	850	-	110	25	--	-	756	
														Class-C Amplifier	750	-180	110	18	7.0	55	830	
8301	40	10	2.15	750	110	18	8.0	4.9	9.9	2.2	15	M.	4D	Grid-Modulated Amp.	1000	-200	50	2.0	3.0	15		
3-50A4														Closs-C Amp. (Telegraphy)	2000	-135	125	45	13	200	3.5044	
355	50	5.0	4.0	2000	150	50	39	4.1	1.8	0.3	100	M.	3G	Class-C Amp. Plate Mod.	1500	-120	100	30	5.0	120	3 35004	
$\begin{aligned} & 3.50 D 4 \\ & 35 \pi G \end{aligned}$								2.5	1.8	0.4	100	M.	2D	Grid Modulated Amp.	2000	-400	60	3.0	3.0	50	35TG	
8010-R	50	6.3	2.4	1350	150	20	30	2.3	1.5	0.07	350	N.	-	Class-C Amolifier	5	-			-	- 9	$8010 \cdot \mathrm{R}$	
														Class-C Amp. (Telearaphy)	1250	-225	100	14	4.8	90	RK32	
RK32 ${ }^{1}$	50	7.5	3.25	1250	100	25	11	2.5	3.4	0.7	100	M.	2D	Class-C Amp. Plate-Mod.	1000	-3i0	100	21	8.7	70		

TABLE XV-TRIODE TRANSMITTING TUBES-Continued

Type	Max. Plate Dissipation Watts	Cathode		Max. Plate Voltage	Max. Plate Current Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{fl}$.)			Max. Freq. Mc. Full Ratings	Base	Socket Connecfions	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Watts	Approx Carrier Output Power Watts	Type
		Volts	Amps.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { fil. } \end{gathered}$	$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Plate } \end{gathered}$	Plate to to											
RK35 ${ }^{\text {- }}$	50	7.5	4.0	1500	125	20	9.0	3.5	2.7	0.4	60	M.	2 D	Class-C Amp. (Telegraphy)	1500	-250	115	15	5.0	120	RK35
														Class-C Amp. Plate-Mod.	1250	-250	100	14	4.6	93	
														Grid-Modulated Amp.	1500	-180	37		2.0	25	
RK37	50	7.5	4.0	1500	125	35	28	3.5	3.2	0.2	60	M.	20	Class-C Amp. (Telegraphy)	1500	-130	115	30	7.0	122	RK37
														Class-C Amp. Plate-Mod.	1250	-150	100	23	5.6	90	
														Grid-Modulated Amp.	1500	- 50	50		2.4	26	
$\begin{aligned} & \text { 3-50G2 } \\ & \text { UH50 } \end{aligned}$	50	7.5	3.25	1250	125	25	10.6	2.2	2.6	0.3	60	M .	2D	Class-C Amp. (Telegraphy)	1250	-225	125	20	7.5	115	UH50
														Class-C Amo. Plate-Mod.	1250	-325	125	20	10	115	
														Grid-Modulated Amp.	1250	-200	60	2.0	3.0	25	
UH51'	50	5.0	6.5	2000	175	25	10.6	2.2	2.3	0.3	60	M .	2D	Class-C Amp. (Telegraphy)	2000	-500	150	20	15	225	UH51
														Closs-C Amp. Plate-Mod.	1500	-400	165	20	15	200	
														Grid-Modulated Amp.	1500	-400	85	2.0	8.0	65	
HK54	50	5.0	5.0	3000	150	30	27	1.9	1.9	0.2	100	M.	2D	Closs-C Amp. (Telegraphy)	3000	-290	100	25	10	250	HK54
														Class-C Amp. Plote-Mod.	2500	-250	100	20	8.0	210	
														Grid-Moduloted Amp.	2000	-150	39	1.5	3.0	28	
HK154 ${ }^{\text {1 }}$	50	5.0	6.5	1500	175	30	6.7	4.3	5.9	1.1	60	M.	20	Class-C Amp. (Telegraphy)	1500	-590	167	20	15	200	HK154
														Class-C Amp. Plate-Mod.	1250	-460	170	20	12	162	
														Grid-Moduloted Amp.	1500	-450	52		5.0	28	
HK158	50	12.6	2.5	2000	200	40	25	4.7	4.6	1.0	60	M.	2D	Class-C Amp.-Oscillator	2000	-150	125	25	6.0	200	HK 158
														Class-C Amp. Plote-Mad.	2000	-140	105	25	5.0	170	
$\begin{aligned} & \text { WE304A 1 } \\ & 3048 \\ & \hline \end{aligned}$	50	7.5	3.25	1250	100	25	11	2.0	2.5	0.7	100	M.	20	Class-C Amp. (Telegraphy)	1250	- 200	100	-		85	$\begin{array}{\|l\|} \hline \text { WE304A } \\ 3048 \\ \hline \end{array}$
														Class-C Amp. Plate-Mad.	1000	-180	100	-	-	65	
356 A	50	5.0	5.0	1500	120	35	50	2.25	2.75	1.0	60	N.	T-48D	Class-C Amp. (Telegraphy)	1500	- 60	100	\cdots	-	100	356A
														Class-C Amp. Plate-Mod.	1250	-100	100	35	-	85	
808	50	7.5	4.0	1500	:50	35	47	5.3	2.8	0.15	30			Class-C Amp. (Teiegraphy)	1500	-200	125	30	9.5	140	808
												M.	2D	Class-C Amp. Plote-Mad.	1250	-225	100	32	10.5	105	808
														Closs-C Amp. (Telegraphy)	1250	-225	90	15	4.5	75	034
834	50	7.5	3.1	1250	100	20	10.5	2.2	2.6	0.6	100	M.	20	Class-C Amp. Plote-Mod.	1000	-310	90	17.5	6.5	58	
84141	50	10	2.0	1250	150	30	14.6	3.5	9.0	2.5	-	M.	3G	Class-C Amplifier	-	-	-	-	-	85	841 A
$8415 W$	50	10	2.0	1000	150	30	14.6	-	9.0	-	-	M .	3G	Class-C Amplifier	-	-	-		-	-	8415 C
						40	20	5.0	3.9	1.2	60			Class-C Amp. (Telegraphy)	1500	-170	150	18	6.0	170	T55
T55	55	7.5	3.0	1500	150	40	20	5.0	3.9	1.2	60	M.	3G	Class-C Amp. Plate-Mod.	1500	-195	125	15	5.0	145	T55
														Class-C Amp. (Telegraphy)	1500	-113	150	35	8.0	170	811
811	55	6.3	4.0	1500	150	so	160	5.5	5.5	0.6	60	M.	3 G	Class-C Amp. Plate-Mod.	1250	-125	125	50	11	120	
														Class-C Amp. (Telegraphy)	1500	-175	150	25	6.5	170	812
812	55	6.3	4.0	1500	150	35	29	5.3	5.3	0.8	60	M.	3 G	Class-C Amp. Plate-Mod.	1250	-125	125	25	6.0	120	
														Closs-C Amp. (Telegraphy)	1500	-250	150	31	13	170	
RK51	60	7.5	3.75	1500	150	40	20	6.0	6.0	2.5	60	M.	35	Class-C Amp. Plate-Mod.	1250	-200	105	17	4.5	96	RK5 1
														Grid-Modulated Amp.	1500	-139	60	0.4	2.3	128	
											60			Class-C Amp. (Telegraphy)	1500	-120	130	40	7.0	135	RK52
RK52	60	7.5	3.75	1500	130	50	170	6.6	12	2.2	60	M.		Class-C Amp. Plate-Mod.	1250	-120	115	47	8.5	102	
$\begin{aligned} & 7-60 \\ & \text { HF60 } \end{aligned}$	60	10	2.5	1600	150	50	20	5.5	5.2	2.5	$\begin{aligned} & 60 \\ & 30 \end{aligned}$	M.	2D	Class-C Amp. - Oscillator	1500	-150	150	50	9.0	100	$\begin{aligned} & \text { T-60 } \\ & \text { HF60 } \end{aligned}$

TABLE XV-TRIODE TRANSMITTING TUBES—Continued

Type	Max. Plate Dissipation Watls	Cathode		Max. Plate Volfage		Max. D.C. Grid Current Ma.	Amp. Factor	Inferelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Socket Connecfions	Typical Operation	Plate Voltage	Grid Voltoge	Plate Current Ma .		Approx Grid Driving Power Watts	Approx. Carrier Output Power Watts	Type
		Volts	Amps.					$\begin{array}{\|c} \hline \text { Grid } \\ \text { to } \\ \text { Fil. } \end{array}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{aligned} & \text { Plate } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$											
826	60	7.5	4.0	1000	125	40	31	3.7	2.9	1.4	250	N.	T-9A	Class-C Amp.-Oscillator	1000	- 70	125	35	5.8	86	826
														Class-C Amp. Plate-Mod.	800	- 98	94	35	6.2	53	
														Class-8 Amp. (Telephony)	1000	- 50	65	8.5	3.7	22	
														Grid-Modulated Amp.	1000	-125	65	9.5	8.2	25	
$\begin{aligned} & 830 \mathrm{~B} \\ & 930 \mathrm{~B} \end{aligned}$	60	10	2.0	1000	150	30	25	5.0	11	1.8	15	M.	3G	Class-C Amp.-Oscillator	1000	-110	140	30	7.0	90	$\begin{aligned} & 830 \mathrm{~B} \\ & 930 \mathrm{~B} \end{aligned}$
														Class-C Amp. Plate-Mod.	800	-150	95	20	5.0	50	
														Class-B Amp. (Telephony)	1000	- 35	85	6.0	6.0	26	
$\begin{aligned} & \text { HY51A } \\ & \text { HY51B } \end{aligned}$	65	$10^{7.5}$	$\begin{aligned} & 3.5 \\ & 2.25 \end{aligned}$	1000	175	25	25	6.5	7.0	1.1	80	M.	3G	Class-C Amp. (Telegrophy)	1000	- 75	175	20	7.5	131	$\begin{aligned} & \text { HY51A } \\ & \text { HY51B } \end{aligned}$
														Class-C Amp. Plate-Mod.	1000	-67.5	130	15	7.5	104	
														Grid-Modulated Amp.	1000	-	100		-	33	
HY512	65	7.5	3.5	1000	175	35	85	7.9	7.2	0.9	60	M.	T-4BE	Class-C Amp. (Telegrophy)	1000	-22.5	175	35	10	131	HY5IZ
														Class-C Amp. Plote-Mod.	1000	- 30	150	35	10	104	
														Grid-Modulated Amp.	1000	-	100	-	-	33	
UH35 ${ }^{\text {2 }}$	70	5.0	4.0	1500	150	35	30	1.4	1.6	0.2	60	M.	3G	Class-C Amp. (Telegraphy)	1500	-170	150	30	7.0	170	UH35
														Class-C Amp. Plate-Mod.	1500	-120	100	30	5.0	120	
												J.	T-3AB	Class-C Amp. (Telegraphy)	1500	-215	130	6.0	3.0	140	V70
V708	70	10	2.5	1500	140	25	14	5.0	9.0	2.3	-	M.	3 G	Class-C Amp. Plate-Mad.	1250	-250	130	6.0	3.0	120	
V70A				1500	140								T-3AB	Class-C Amp. (Telegraphy)	1000	-110	140	30	7.0	90	V70A
V70C	70	10	2.5	1500	140	20	25	5.0	9.5	2.0	-	M.	3G	Class-C Amp. Plate-Mod.	800	-150	95	20	5.0	50	
501 -	75	5.0	6.0	3000	100	30	12	2.0	2.0	0.4	-	M.	2D	Class-C Amplifer	3000	-600	100	25	-	250	501
	75	5.0	6.25	3000	225	40	20	2.7	2.3	0.3	40	M.	2D	Class-C Amp. (Tolegraphy)	2000	-200	150	32	10	225	$\begin{aligned} & 3.75 A 3 \\ & 755 \mathrm{TH} \\ & 3.75 \mathrm{~A} 2 \\ & 75 \mathrm{TL} \end{aligned}$
						35	12	2.6	2.4	0.4				Class-C Amp. (Telegraphy)	2000	-300	150	21	8	225	
HF75	75	10	3.25	2000	120	-	12.5	-	2.0	-	75	M.	2D	Class-C Ostillator-Amp.	2000	-	120	-	-	150	HF75
													2D	Class-C Amp.-Oscillator	2000	-175	150	37	12.7	225	
IW75	75	7.5	4.15	2000	175	60	20	3.35	1.5	0.7	60	M.	2 D	Class-C Amp. Plate-Mod.	2000	-260	125	32	13.2	198	IW75
$\begin{aligned} & \text { T-100 } \\ & \text { HF } 100 \end{aligned}$	75	10	2.0	1500	150	30	23	3.5	4.5	1.4	30	M.	2D	Class-C Amp. (Telegraphy)	1500	-200	150	18	6.0	170	$\begin{aligned} & \text { T- } 100 \\ & \text { HF } 100 \end{aligned}$
														Class-C Amp. Plate-Mod.	1250	-250	110	21	8.0	105	
														Grid-Modulated Amp.	1500	-280	72	1.5	6.0	42	
111H	75	10	2.25	1500	160	-	23		4.6	-	25	M.	2D	Class-C Osc.-Amp.	1500	-	160	-	-	175	111H
ZB120	75	10	2.0	1250	160	40	90	5.3	5.2	3.2	30	J.	4E	Class-C Amp. (Telegraphy)	1250	-135	160	23	5.5	145	2B120
														Class-C Amp. Plate-Mod.	1000	-150	120	21	5.0	95	
														Grid-Modulated Amp.	1250	-	95	8.0	1.5	45	
327 B	75	10.5	10.6	15000	-	-	30	3.4	2.45	0.3	-	N.	T-4AD	-	-	-	-	-	-	-	327B
														Closs-C Amp. (Telegraphy)	1250	-175	150	-	-	130	242A
242A	85	10	3.25	1250	150	50	12.5	6.5	13	4.0	6	J.	45	Class-C Amp. Plate-Mod.	1000	-160	150	50	-	100	
														Class-C Amp. (Telegraphy)	1250	-500	150	-	-	125	284D
284D	85	10	3.25	1250	150	100	4.8	6.0	8.3	5.6	-	J.	4E	Class-C Amp. Plate-Mod.	1000	-450	150	50	-	100	
812-H	85	6.3	4.0	1750	200	45	-	5.3	5.3	0.8	30	M.	3 G		1750	-175	170	26	6.5	225	812-H
														Class-C Amp. (Telegraphy)	1250	-125	125	25	5.0	116	
															1500	-125	165	21	6.0	180	
														Class-C Amp. (Plate-Mad.)	1250	-125	125	25	6.0	120	
8005	85	10	3.25	1500	200	45	20	6.4	5.0	1.0	60	M.	3G	Class-C Amp.-Oscillator	1500	-130	200	32	7.5	220	8005
														Class-C Amp. Plate-Mod.	1250	-175	190	28	9.0	170	
														Class-B Amp. (Telephony)	1500	- 80	83	1.0	5.0	45	

[^12]TABLE XV-TRIODE TRANSMITTING TUBES-Continued

Type	Max. Plate Dissi- pation Watts	Cathode		Max. Plate Voltage		Max. D.C. Grid Current Ma .	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Rafings	Base	Sockef Connecfions	Typical Operation	Plate Volfage	Grid Volfage	Plate Current Ma .	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Walts	Approx. Carrier Oufput Power Wafts	Type
		Volts	Amps.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	Grid to Plate	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
V-70-D	85	7.5	3.25	1750	200	45		4.5	4.5	1.7	30	M.	3G	Class-C Amp. (Telegraphy)	1750	-100	170	19	3.9	225	V-70-D
															1500	- 90	165	19	3.9	195	
														Class-C Amp. (Plote-Mod.)	1500	- 90	165	19	3.7	185	
															1250	- 72	127	16	2.6	122	
RK36 ${ }^{1}$	100	5.0	8.0	3000	165	35	14	4.5	5.0	1.0	60	M.	2D	Class-C Amp. (Telegraphy)	2000	-360	150	30	15	200	RK 36
														Class-C Amp. (Telephony)	2000	-360	150	30	15	200	
														Grid-Modulated Amp.	2000	-270	72	1.0	3.5	42	
														Class-B Amp. (Telephony)	2000	-180	75	3.0	10	50	
RK38 ${ }^{1}$	100	5.0	8.0	3000	165	40		4.6	4.3	0.9	60	M.	2D	Class-C Amp. (Telegraphy)	2000	-200	160	30	10	225	RK38
							-							Class-C Amp. (Talephony)	2000	-200	160	30	10	225	
														Grid-Modulated Amp.	2000	-150	80	2.0	5.5	60	
														Class-B Amp. (Talephony)	2000	-100	75	2.0	7.0	55	
$\begin{aligned} & 3-100 \mathrm{~A} 4 \\ & 100 \mathrm{TH} \end{aligned}$	100	5.0	6.3	3000	225	60	40	2.9	2.0	0.4	40	M.	2D	Class-C Amp. (Telegraphy)	3000	-200	165	51	18	400	$\begin{aligned} & 3.100 \mathrm{A4} \\ & 100 \mathrm{TH} \end{aligned}$
														Class-C Amp. Plate-Mod.	3000	-210	167	45	18	400	
														Class-B Amp. (Telephony)	3000	- 70	50	2.0	5.0	50	
														Grid-Modulated Amp.	3000	-400	70	3.0	7.0	100	
$\begin{aligned} & \text { 3-100A2 } \\ & 100 \mathrm{TL} \end{aligned}$	100	5.0	6.3	3000	225	50	14	2.3	2.0	0.4	40	Ma	2D	Class-C Amp. (Telegraphy)	3000	-400	165	30	20	400	$\begin{aligned} & 3-100 \mathrm{~A} 2 \\ & 100 \mathrm{TL} \end{aligned}$
														Class-C Amp. Plate-Mod.	3000	600	167	35	18	400	
														Class-B Amp. (Telephony)	3000	-280	50	1.0	5.0	50	
														Grid-Moduloted Amp.	3000	-560	60	2.0	7.0	90	
VT127A	100	5.0	10.4	3000		30	15.5	2.7	2.3	0.35	150	N.	T-4B	Class-C Amp.-Oscillator	Characteristics similar to 100TL						VT127A
227A	100	10.5	10.7	$15000{ }^{\text {s }}$	-	\square	31	3.0	2.2	0.30	-	N.	T-4B	Oscillator at 200 Mc .	15000	12004	10	3	-	50000^{6}	227A
327 A	100	10.5	10.7	15000 :	-	-	31	3.4	2.3	0.35	-	N.	T-4AD	Oscillator at 200 Mc .	15000	12004	10	3		50000^{6}	327 A
HK254	100	5.0	7.5	4000	200	40	25	3.3	3.4	1.1	50	J.	T-3AC	Class-C Amp. (Telegraphy)	4000	-380	120	35	20	475	HK254
														Class-C Amp. Plate-Mod.	3000	-290	135	40	23	320	
														Class-B Amp. (Telephony)	3000	-125	51	2.0	3.0	54	
														Grid-Modulated Amp.	3000	-	51	3.0	4.0	58	
RK58	100	10	3.25	1250	175	70		8.5	6.5	10.5		J.	T-3AB	Class-C Amp. (Telegraphy)	1250	-90	150	30	6.0	130	RK58
							-				-			Class-C Amp. Plate-Mod.	1000	-135	150	50	16	100	
														Class-B Amp. (Telephony)	1250	-	106	15	6.0	42.5	
HF120	100	10	3.25	1250	175	-	12	-	10.5	-	20	J.		Class-C Amp.-Oscillator	1250	-	175			150	HF120
HF125	100	10	3.25	1500	175	-	25		11.5		30	J.	-	Class-C Amp.-Oscillator	1500	-	175	-	-	200	HF125
HF140	100	10	3.25	1250	175	-	12	-	12.5	\square	15	J.		Class-C Amp.-Oscillator	1250	-	175			150	MF140
$\begin{aligned} & 203 A \\ & 303 A \end{aligned}$	100	10	3.25	1250	175	80	25	6.5	14.5	5.5	15	J.	4 E	Class-C Amp. (Telegraphy)	1250	-125	150	25	7.0	130	$\begin{aligned} & 203 \mathrm{~A} \\ & 303 \mathrm{~A} \end{aligned}$
														Class-C Amp. (Telephony)	1000	-135	150	50	14	100	
														Class-B Amp. (Telephony)	1250	- 45	105	3.0	3.0	42.5	
203H	100	10	3.25	1500	175	60	25	6.5	11.5	1.5	15	J.	T-3AB	Class-C Amp. (Telegrophy)	1500	-200	170	12	3.8	200	203H
														Class-C Amp. (Telephony)	1250	-160	167	19	5.0	160	
														Class-B Amp. (Telephony)	1500	- 48	100	3.0	2.0	52	
$\begin{aligned} & 211 \\ & 311 \\ & 835 \end{aligned}$	100	10	3.25	1250	175	50	12	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 14.5 \\ 9.25 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$				Class-C Amp. (Telegraphy)	1250	-225	150	18	7.0	130	211
											15	J.	4 E	Class-C Amp. (Telephony)	1000	-260	150	35	14	100	311
														Closs-B Amp. (Telephony)	1250	-100	106	1.0	7.5	42.5	835
														Class-C Amp. (Telegraphy)	1250	-175	150		-	130	
342 B	100	10	3.25	1250	150	50	12.5	7.0	13.6	6.0	6	J.	4 E	Class-C Amp. Plate-Mod.	1000	-160	150	50	-	100	$342 \mathrm{~B}$
														Class-B Amp. (Telephony)	1250	-80	120	-	-	50	

table XV-triode transmitting tubes-Continued

Type	Max. Plate Dissipotion WaHs	Cothode		Max. Plate Voltage	Max. Plate CurrentMa.	Max. D.C. Grid Current Mo.	Amp. Factor	Inferelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Sockef Connections	Typical Operation	Plate Volfage	Grid Volfage	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Watts	Approx. Carrier Output Power Watts	Type
		Volts	Amps.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plate } \\ 10 \\ \text { fil. } \end{gathered}$											
242C	100	10	3.25	1250	150	50	12.5	6.1	13.0	4.7	6	J.	4E	Closs-C Amp. (Telegrophy)	1250	-175	150	-	-	130	242C
														Class-C Amp, Plate-Mod.	1000	-160	150	50		100	
														Class-B Amp. (Telephony)	1250	- 90	120	-	-	50	
$\begin{aligned} & 261 A \\ & 361 A \end{aligned}$	100	10	3.25	1250	150	50	12	6.5	9.0	4.0	30	J.	4E	Class-C Amp. (Telegraphy)	1250	-175	125		-	100	$\begin{aligned} & 261 A \\ & 361 A \end{aligned}$
														Class-C Amp. Plate-Mod.	1000	-160	150	50	-	100	
														Class-B Amp. (Telephony)	1250	-100	125		-	50	
$\begin{aligned} & 276 A \\ & 376 A \end{aligned}$	100	10	3.0	1250	125	50	12	6.0	9.0	4.0	30	J.	4E	Class-C Amp. (Telegraphy)	1250	-175	125	-	-	100	$\begin{aligned} & 276 A \\ & 376 A \end{aligned}$
														Class-C Amp. Plota-Mod.	1000	-160	125	50	-	85	
														Class-B Amp. (Telephony)	1250	-100	125	-	-	50	
284B	100	10	3.25	1250	150	100	5.0	4.2	7.4	5.3		J.	T-3AB	Class-C Amp. (Telegraphy)	1250	- 500	150		-	125	284B
											-			Class-C Amp. Plate-Mod.	1000	-430	150	50		100	
														Class-B Amp. (Telephony)	1250	-270	120	-	-	50	
295A	100	10	3.25	1250	175	50	25	6.5	14.5	5.5		J.	4E	Class-C Amp. (Telegraphy)	1250	-125	150	-		125	295 A
											-			Class-C Amp. Plate-Mod.	1000	-125	150	50	-	100	
														Class-B Amp. (Telephony)	1250	- 75	105		-	42.5	
$\begin{aligned} & 838 \\ & 938 \end{aligned}$	100	10	3.25	1250	175	70		6.5	8.0	5.0	30	J.	4E	Class-C Amp. (Telegraphy)	1250	-90	150	30	6.0	130	$\begin{array}{r} 838 \\ 938 \end{array}$
							-							Class-C Amp. (Telephony)	1000	-135	150	60	16	100	
														Class-B Amp. (Telephony)	1250	0	106	15	6.0	42.5	
852	100	10	3.25	3000	150	40	12	1.9	2.6	1.0	30	M.	20	Class-C Amp. (Telegraphy)	3000	-600	85	15	12	165	852
														Class-C Amp. (Telephony)	2000	-500	67	30	23	75	
														Class-B Amp. (Telephony)	3000	-250	43	0	7.0	40	
8003	100	10	3.25	1500	250	50	12	5.8	11.7	3.4	30	J.	T-3AB	Class-C Amp.-Oscillator	1350	-180	245	35	11	250	
														Class-C Amp. Plate-Mod.	1100	-260	200	40	15	167	8003
														Class-B Amp. (Telephony)	1350	-110	110	1.5	8	50	
3x100A11	100	6.3	1.1	1000	60	40	100	6.5	1.95	0.03	500	N.	-	"Grid Isolation" Circuit	600	- 35	60	40	5.0	20	$\begin{aligned} & 3 \times 100 A 11 \\ & 2 \mathrm{C} 39 \\ & \hline \end{aligned}$
$\frac{2 \mathrm{C} 39}{}$	125	6.3			150	70	40	4.9	2.4	0.05	500	0.	Fig. 30	Class-C Amp.-Oscillator	1030	-200	150	70	-	65	3 C 22
3C22	125	6.3	2.0	1000	150	$\underline{10}$	29	3.9	3.0	0.4	60	J.	Fig. 56	Class-C Amp.-Osciliator	-	--	-	-	18	480	4 C 36
4 C 36	125	5	7.5	4000		75	14.5	3.2	8.5	3.3	60	J.	Fig. 36	Closs-C Amp. (Telegraphy)	1500	-250	250	30	11	300	
$\begin{aligned} & \text { F-123-A } \\ & \text { DR-123C } \end{aligned}$		10	4.0	2000	300			6.5			-	J.	Fig. 26	Class-C Amp. Plate-Mod.	1500	-290	160	25	10	200	$\begin{aligned} & \text { F-123-A } \\ & \text { DR-123C } \end{aligned}$
														Closs-B Amp. (Telephony)	1500	-100	120	1	6	65.5	
RK57/805	125		3.25	1500	210	70			8.0					Class-C Amp. (Telegraphy)	1500	-105	200	40	8.5	215	
		10					-	6.5		5.0	30	J.	T-3AB	Class-C Amp. (Telephony)	1250	-160	160	60	16	140	RK57/805
														Class-B Amp. (Telephony)	1500	- 10	115	15	7.5	57.5	
T125														Class-C Amp. (Telegraphy)	2500	-200	240	31	11	475	1125
	125	10	4.5	2500	250	60	25	6.3	6.0	1.3	60	J.	T-3AC	Class-C Amp. Plote-Mod.	2000	-215	200	28	10	320	
HF130	125	10	3.25	1250	210	\longrightarrow	12.5	-	9.0	-	20	J.	-	Closs-C Amp.-Oscillator	1250	-210	-	-	-	170	HF130
HF150	125	10	3.25	1500	210	-	12.5	-	7.2	-	30	J.	-	Class-C Amp.-Oscillator	1500	-	210	-	-	200	HF150
HF175	125	10	4.0	2000	250	-	18	-	6.3	-	25	J.	-	Class-C Amp.-Oscillator	2000	-	250		-	300	HF175
														Closs-C Amp.-Oscillator	1250	-150	180	30	-	150	
GL146	125	10	3.25	1500	200	60	75	7.2	9.2	3.9	15	J.	T-4BG	Class-C Amp. Plate-Mod.	1000	-200	160	40	\cdots	100	GL146
														Class-B Amp. (Telephony)	1250	0	132	-	-	55	
														Class-C Amp.-Oscillotor	1250	-150	180	30	-	150	
Gl152	125	10	3.25	1500	200	60	25	7.0	8.8	4.0	15	J.	T-4BG	Class-C Amp. Plote-Mod.	1000	-200	160	30	-	100	Gl152
Glıs2	125	10												Class-B Amp. (Telephony)	1250	- 40	132	-	-	55	

WFild Radio मisisioy|

TABLE XV-TRIODE TRANSMITTING TUBES-Continued

Type	Max. Plate Dissipotion Wafts	Cothode		Max. Plato Voltoge		Mox. D.C. Grid Current Ma.	Amp. Factor	Inferelectrode Capocitances ($\mu \mu \mathrm{fd}$.)			Max. Fraq. Mc. Full Roting:	Base	5ocket Connec tions	Typical Operation	Plate Voltage	Grid Voltage	Plole Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Gurrent } \\ \text { Ma. } \end{gathered}$	Approx Grid Driving Power Watts	Approx Carrier Output Power Wotts	Trpe
		Volts	Amps.					Grid to Fir.	Grid to Plate	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { fil. } \end{gathered}$											
805	125	10	3.25	1500	210	70	40/60	8.5	6.5	10.5	30	J.	T-3AB	Class-C Amp. (Teleqraphy)	1500	-105	200	40	8.5	215	805
														Closs-C Amp. Plate-Mod.	1250	-160	160	60	16	140	
														Class-B Amp. (Telephony)	1500	- 10	115	15	7.5	57.5	
$\begin{aligned} & 3 \times 150 A 3 \\ & \text { 3C37 } \end{aligned}$	150	6.3	2.5	1000	-	-	23	4.2	3.5	0.6	500	N.	-	-	-	-	-	-	-	-	$\begin{aligned} & 3 \times 15043 \\ & 3 \mathrm{C} 37 \end{aligned}$
1507	150	5.0	10	3200	220	50	13	3.0	3.5	0.5	-	J.	T.3AC	Class-C Amp. (Telegrophy)	3000	-600	200	35		450	1507
$\begin{aligned} & 3.150 A 3 \\ & 152 \mathrm{TH} \\ & 3.150 \mathrm{~A} 2 \\ & 152 \mathrm{TL} \end{aligned}$	150	5/10	$\begin{gathered} 12.51 / \\ 6.25 \end{gathered}$	3000	450	85	20	5.7	4.5	0.8	40	J.	4BC	Closs-C Amp. (Telegraphy)	3000	-300	250	70	27	600	$\begin{aligned} & 3.150 A 3 \\ & 152 \mathrm{TH} \\ & 3.150 \mathrm{Ha} \\ & 152 \mathrm{TL} \end{aligned}$
						75	12	4.5	4.4	0.7				Class-C Amp. (Telegraphy)	3000	-400	250	40	20	600	
TW150	150	10	4.1	3000	200	60	35	3.9	2.0	0.8	-	J.	T-3AC	Class-C Amp.-Oscillator	3000	-170	200	45	17	470	TW150
														Class-C Amp. Plate-Mod.	3000	-280	165	40	17	400	
HK252.L	150	5/10	13/6.5	3000	500	75	10	7.0	5.0	0.4	125	N.	T-48F	Class-C Amp.-Oscillator	3000	-400	250	30	15	610	
HF200 HV18	150	10-11	3.4										T-4bF	Class-C Amp. Plate.Mod.	2500	-350	250	35	16	500	HK252-L
				2500	200	50	18	5.2	5.8	1.2	20	J.	T-3AC	Class-C Amp. (Telegraphy)	2500	-300	200	18	8.0	380	$\begin{aligned} & \text { HF } 200 \\ & \text { HV18 } \end{aligned}$
														Class-C Amp. Plate-Mod.	2000	-350	160	20	9.0	250	
	150	10												Class-8 Amp. (Telephony)	2500	-140	90	-	4.0	80	
HF250	150	10.5	4.0	2500	250	60	25	-	12	-	15	J.	T-3AB	Class-C Amplifer	-	-	-	-	-	375	HD203A
HF250	150	10.5	4.0	2500	200	-	18	-	5,8	-	20	J.	T-3AC	Class-C Amp,-Oscillator	2500	-	200		\cdots	375	HF250
$\begin{aligned} & \text { HK354 } \\ & \text { HK354C } \end{aligned}$	150	5.0	10	4000	300	50	14	4.5	3.8	1.1	30	J.	t-3AC	Class-C Amp. (Telegraphy)	4000	-690	245	50	48	830	HK354 HK 354C
														Class-C Amp. Plate-Mod.	3000	-550	210	50	35	525	
														Class-8 Amp. (Telephony)	3000	-205	78	2.0	10	82	
														Grid-Moduloted Amp.	3000	-400	78	3.0	12	85	
HK354D	150	5.0	10	4000	300	55	22	4.5	3.8	1.1	30	J.	T-3AC	Class-C Amp. (Telegraphy)	3500	-490	240	50	38	690	HK354D
														Class-C Amp. Plote-Mod.	3500	-425	210	55	36	525	
HK354E	150	5.0	10	4000	300	60	35	4.5	3.8	1.1	30	J.	T-3AC	Closs C Amp. (Telography)	3500	-448	240	60	45	690	
													T-JAC	Class-C Amp, Plote-Mod.	3000	-437	210	60	45	525	HK354E
HK354F	150	5.0	10	4000	300	75	50	4.5	3.8	1.1	30	J.	T-3AC	Class-C Amp. (Telagraphy)	3500	-368	250	75	50	720	
$\begin{aligned} & 810 \\ & 1627 \end{aligned}$													r-3AC	Class-C Amp. Plote-Mod.	3000	-312	210	75	45	525	HK354F
	150	$\begin{gathered} 10 \\ 5.0 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	2250	275	70	36	8.7	4.8	12	30	J.	T-3AC	Class-C Amp. (Talegraphy)	2250	-160	275	40	12	475	$\begin{aligned} & 810 \\ & 1627 \end{aligned}$
														Class-C Amp. Plata-Mod.	1800	-200	250	50	17	335	
														Class-B Amp. (Telephony)	2250	- 70	100	2.0	4.0	75	
														Grid-Modulated Amp.	2250	-140	100	2.0	4.0	75	
8000	150	10	4.5	2250	275	40	16.5	5.0	6.4	3.3	30	J.	T-3AC	Class-C Amp. Oscillator	2250	-210	275	25	9.0	475	8000
														Class-C Amp. Plate-Mod.	1800	-320	250	20	8.8	335	
														Class-B Amp. (Telephony)	2250	-145	100	0	5.4	75	
														Grid-Modulated Amp.	2250	-265	100	0	2.5	75	
$\begin{aligned} & \text { RK63 } \\ & \text { RK63A } \end{aligned}$	200	$\begin{aligned} & 5.0 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	3000	250	60	37	2.7	3.3	1.1		J.	T-3AC	Class-C Amp. (Telegraphy)	3000	-200	233	45	17	525	$\begin{aligned} & \text { RK63 } \\ & \text { RK63A } \end{aligned}$
											-			Class-C Amp. Plate-Mod.	2500	-200	205	50	19	405	
														Class-8 Amp. (Telephony)	3000	-150	100	1.0	12	100	
														Grid-Modulated Amo.	3000	-250	100	7.0	12.5	100	
T200	200	10	5.75	2500	350	80	16	9.5	7.9	1.6	30	J.	t-3AC	Class-C Amp. (Telegraphy)	2500	-280	350	54	25	685	T200
														Closs-C Amp. Plate-Mod.	2000	-280	330	54	23	460	
F.127-A	200	10	4.0	3230	325	70	38	13	4	13	-	J.	Fig. 26	Class-C Amp. (Telegraphy)	3500	-250	250	47	18	690	
													Fig. 26	Class-C Amp. Plate-Mod.	2500	-300	200	58	25.2	420	F-127-A

table XV-triode transmitting tubes-Continued

Type	Mox. Plate Dissipation Watts	Cathode		Max. Plate Voltage		Max. D.C. Grid Current Ma.	Amp. Facior	Interalectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Mox. Freq. Mc. Full Ratings	Base	Sockel Connections	Typical Operation	Plate Volioge	Grid Volfoge	Plate Current Ma		Approx Grid Driving Power Watts	Approx Carrier Output Power Watts	Type
		Volts	Amps.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plote } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
822					300	60	30	8.5	13.5	2.1	20	J.	$\begin{aligned} & \mathrm{T}-3 A B \\ & T-3 A C \end{aligned}$	Class-C Amp. (Telegraphy)	2500	-190	300	51	17	600	$\begin{array}{\|l\|} \hline 822 \\ 8225 \\ \hline \end{array}$
8225	200	10	4.0	2500	300	60	30	8.5	13.5	2.1	30			Class-C Amp. Plate-Mad.	2000	-75	250	43	13.7	405	
										1.1		J.	T-3AC	Class-C Amp.-Oscillator	2000	-165	275	20	10	400	4C32
$4 \mathrm{C32}$	200	10	4.5	3000	300	60	30	5.5	5.8	1.1	60			Closs-C Amp. (Plate-Mod.)	2000	-200	250	20	15	375	
G		10	5.0	3500	250	50	24	3.6	3.3	0.41	110	N.	Fig. 52	Class-C Amp.-Oscillator	2600	-240	250	45	18	425	GL-592
GL-592	200		5.0			50								Class-C Amp. (Plote-Mod.)	2000	-500	250	50	-		
$\begin{aligned} & \text { 4C34 } \\ & \text { HF300 } \end{aligned}$	200	11-12	4.0	3000	275	60	23	8.0	6.5	1.4	60	J.	T-3AC	Class-C Amp. (Telegraphy)	3000	-400	250	28	16	600	$\begin{aligned} & 4 C 34 \\ & \text { HF300 } \end{aligned}$
														Class-C Amp. Plate-Mod.	2000	-300	250	36	17	385	
											20			Class-B Amp. (Telephony)	2500	-100	120	0.5	6.0	105	
T814	200	10	40	2500	200	60	12	8.5	12.8	17	30	J	T-3AB	Class-C Amp. (Telegraphy)	2500	-240	300	30	10	575	T814 HV12
HV12	200	10	4.0	2500	200	60	12	8.5	12.8		30	J.		Class-C Amp. Plate-Mod.	2000	-370	300	40	20	485	
$\begin{aligned} & \text { T822 } \\ & \text { HV27 } \end{aligned}$	200	10	4.0	2500	300	60	27	8.5	13.5	2.1	30	J.	T-3AB	Class-C Amp. (Telegraphy)	2500	-175	300	50	15	585	$\begin{aligned} & \text { T822 } \\ & \text { HV27 } \end{aligned}$
														Class-C Amp. Plate-Mod.	2000	-195	250	45	15	400	
														Class-B Amp. (Telephony)	2500	-95	125	5.0	8.0	110	
806	225	5.0	10	3300	300	50	12.6	6.1	4.2	1.1	30	J.	T.3AC	Class-C Amp. (Telearaphy)	3300	-600	300	40	34	780	806
														Class-C Amp. Plate-Mod.	3000	-670	195	27	24	460	
														Class-B Amp. (Telephony)	3300	-280	102	- -	10.3	115	
$\begin{aligned} & 3-250 \mathrm{AA}^{3} \\ & 250 \mathrm{TH} \end{aligned}$	250	5.0	10.5	4000	350	100	37	5.0	2.9	0.7	40	J.	T-3AC	Clas5-C Amp. (Telegraphy)	2000	-120	350	100	34	750	$\begin{array}{\|l} \mathbf{3 - 2 5 0 A 4} \\ 250 \mathrm{TH} \end{array}$
														Class-C Amp. Plate-Mod.	3000	-210	330	75	42	750	
														Class-B Amp. (Telephory)	3000	- 80	125	4.0	15	125	
														Grid-Madulated Amp,	3000	-160	125	4.5	20	125	
$\begin{aligned} & \text { 3-250A2 } \\ & 250 \mathrm{TL} \end{aligned}$	250	5.0	10.5	4000	350	50	14	3.7	3.1	0.7	40	J.	T-3AC	Class-C Amp. (Telegraphy)	3000	-350	335	45	29	750	$\begin{aligned} & 3.250 \mathrm{A2} \\ & 250 \mathrm{TL} \end{aligned}$
														Closs-C Amp. Plote-Mad.	3000	-350	335	45	29	750	
														Class-B Amp. (Telephony)	3000	-225	125	20	15	125	
														Grid-Moduloted Amp.	3000	-450	125	20	15	125	
GL159	250	10	9.6	2000	400	100	20	11	17.6	5.0	15	J.	T-4BG	Clos5-C Amp.-Oscillator	2000	-200	400	17	6.0	620	GL159
														Class-C Amp. Plate-Mod.	1500	-240	400	23	9.0	450	
														Class-B Amp. (Telephony)	2000	- 90	190		2.5	130	
GL169	250	10	9.6	2000	400	100	85	11.5	19	4.7	15	J.	T-4BG	Closs-C Amp.-Oscillator	2000	-100	400	42	10	620	G1169
														Closs-C Amp. Plote-Mod.	1500	-100	400	45	10	450	
														Closs-B Amp. (Telephony)	2000	- 10	190	-	3.5	130	
$\begin{aligned} & 204 A \\ & 304 A \end{aligned}$	250	11	3.85	2500	275	80	23	12.5	15	2.3	3	N.	T-1A	Closs-C Amp. (Telegraphy)	2500	-200	250	30	15	450	
														Class-C Amp. Plote-Mod.	2000	-250	250	35	20	350	$\begin{aligned} & \text { 204A } \\ & 304 A \end{aligned}$
														Closs-B Amp. (Telephony)	2500	- 70	160	-	15	100	
308B	250	14	4.0	2250	325	75	8.0	13.6	17.4	9.3	1.5	N.	T-2A	Closs-C Amplifier	$\begin{aligned} & 3500 \\ & 2000 \end{aligned}$	$\begin{aligned} & -600 \\ & -300 \end{aligned}$	$\begin{aligned} & 300 \\ & 500 \end{aligned}$	60	-	$\begin{aligned} & 800 \\ & 800 \end{aligned}$	308B
HK454H	250	5.0	11	5000	375	85	30	4.6	3.4	1.4	100	J.	T-3AC	Closs-C Amp. (Telegrophy)	1750	-400	300			350	HK454H
HK 454-1	250	5.0	11	5000	375	60	12	4.6	3.4	1.4	100	J.	T-3AC	Closs-C Amp. Plote-Mod.	1250	-320	300	75	-	250	HK454-L
$\begin{aligned} & 212 \mathrm{E} \\ & 241 \mathrm{~B} \\ & 312 \mathrm{E} \end{aligned}$	275	14	4.0											Closs-B Amp. (Telephony)	1750	-230	215	\square		125	212E
				3000	350	75	16	14.9	18.8	8.6	1.5	N.	$\begin{aligned} & T-2 A \\ & T-2 A A \end{aligned}$	Class-C Amp. (Telegrophy)	3500	-275	270	60	28	760	241B
														Closs-C Amp. Plate-Mod.	3500	-450	270	45	30	760	312 E
3007:	300	8.0	11.5	3500	350	75	16	4.0	4.0	0.6	-	J.	T.3AC	Class-C Amp. (Telegrophy)	2000	-225	300	-	-	400	3007
HK304-L	300	5/10	26/13	3000	1000	150	10	12	9.0	0.8	-	N,	T-4BF	Closs-C Amp. Plate-Mod.	1500	-200	300	75	-	300	HK304-L
HK304-L			26/13											Class-B Amp. (Telephony)	2000	-120	300	-	-	200	
527	300	5.5	135.0	$2000{ }^{\circ}$	-	-	38	19.0	12.0	1.4	200	N .	T-4B	Oscillator of 200 Mc .		Approx	imately 2	250 watts	output		527

TABLE XV－TRIODE TRANSMITTING TUBES－Continued

table XVI－tetrode and pentode transmitting tubes

Type	Max． Piate Dissi－ pation Watts	Cathode		Max． Plate Valt－ age	Max． Screen Valt－ age	Max． Screen Dissi－ pation Watts	Interelectrade Capacitances（ $\mu \mu \mathrm{fd}$ ．）			Max． Freq． Mc． Full Ratings	Base	$\begin{aligned} & \text { Sackef } \\ & \text { Can- } \\ & \text { nec- } \\ & \text { fians } \end{aligned}$	Typical Operatian	Plate Valt－ Oge	Screen Valt－ age	Sup－ pressar Valf－ －ge	Grid Valt－ age	Plate Current Ma．	Screen Current Ma．	Grid Current Ma．	Screen Resistar Ohms	Apprax． Grid Driving Pawer Watts	Apprax． Carrier Output Pawer Watts	Type
		Valts	Amps．				Grid ta Fil．	$\begin{aligned} & \text { Grid } \\ & \text { for } \\ & \text { Plata } \end{aligned}$	$\begin{aligned} & \text { Plate } \\ & \text { to } \\ & \text { fii. } \end{aligned}$															
3 A 4	2.0	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \\ & \hline \end{aligned}$	150	135	0.9	4.8	0.2	4.2	10	B．	78B	Class．C Amp．－Oscillatar	150	135	0	－ 26	18.3	6.5	0.13	2300	－	1.2	3A4
HY63 ${ }^{\text {a }}$	3.0	2.5	0.1125	200	100	0.6	8.0	0.1	8.0	60	0.	T．8DB	Class－C Amp．－Osc．	200	100	－	－22．5	20	4.0	2.0	－－	0.1	3.0	
						0.6	8.0	0.1	8.0	60	0.	T－8D8	Class－C Amp．Plate－Mad．	180	100		－ 35	15	3.0	2.0	－	0.2	2.0	HY63
RK64 ${ }^{1}$	6.0	6.3	0.5	400	100	3.0	10	0.4	9.0	60	M．	T－5BB	Class－C Amp．（Telegraphy）	400	100	30	－ 30	35	10	3.0	一－	0.18	10	
													Class－C Amp．Plate－Mad．	300	－	30	－ 30	26	8.0	4.0	30000	0.2	6.0	RK64
1610	6.0	2.5	1.75	400	200	2.0	8.6	1.2	13	20	M ．	T－5CA	Class－C Amp．－Osciliatar	400	150	－－	－ 50	22.5	7.0	1.5	－	0.1	5.0	1610
RK56	8.0	6.3	0.55	300	300	4.5	10	0.2	9.0	60	M．	T．5BB	Class－C Amp．（Telegraphy）	400	300		－40	62	12	1.6	－	0.1	12.5	
										60	M．	T．	Class－C Amp．Plate－Mad．	250	200	－	－ 40	50	10	1.6	2800	0.28	8.5	K56
RK231		2.5	2.0										Class－C Amp．（Telegranhy）	500	200	45	－ 90	55	38	4.0	－	0.5	22	RK23
RK25B :	10			500	250	8	10	0.2	10	－	M．	T．7C	Class－C Amp．（Telephany）	400	150	0	－90	43	30	6.0	8300	0.8	13.5	RK25
													Suppressar－Madulated Amp．	500	200	－45	－ 90	31	39	4.0	一一	0.5	6.0	RK25B
1613	10	6.3	0.7	350	275	2.5	8.5	0.5	11.5	45	O．	75	Class－C Amp．（Telegraphy）	350	200	－	-35	50	10	3.5	20000	0.22	9	1613
													Class－C Amp．Plate－Mad．	275	200	－	-35	42	10	2.8	10000	0.16	6.0	

TABLE XVI－TETRODE AND PENTODE TRANSMITTING TUBES－Continued

Type	Max． Plate Dissi－ pation Wotts	Cathode		Mox． Plate Volt－ oge	Max． Screen Volt－ age	Max． Screen Dissi－ pation Watts	Interelecirode Capacitances（ $\mu u \mathrm{fd}$ ．）			Max． Freq． Mc． Full Ratings	Base	SocketCon－nec：fions	Typical Operation	Plate Voli－ oge	Screen Volt－ －ge	Sup－ pressor Volt－ age	Grid Volt－ age	Plate Current Ma．	Screen Current Mo．	Grid Currant Mo．	Screen Resistor Ohms	Approx． Grid Driving Power Watts	Approx． Carrier Output Power Watts	Type
		Volis	Amps．				$\begin{aligned} & \text { Grid } \\ & \text { 1o } \\ & \text { FiI. } \end{aligned}$	Grid to Plate	Plate to Fit．															
2 E 30	10	6.0	0.7	250	250	2.5	10	0.5	4.5	160	B．	Fig． 55	Class－C Amb．－Oscillator	250	250		－ 60	55	9.0	0.8		0.07	7.5	2こ30
6F6 6F6G	11	6.3	0.7	375	285	3.75	$\begin{array}{r} 6.5 \\ 8.0 \\ \hline \end{array}$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{gathered} 13 \\ 6.5 \end{gathered}$	－	0.	7 AC	Class－C Amp．－Oscillator	350	200		－ 35	50	10	3.5	－	0.22	9.0	6F6 6F6G
													Class－C Amp．Plate－Mod，	275	200		－ 35	42	10	2.8		0.16	6.0	
	12	12.6	0.7	500	300	8	16	0.2	10	20	M．	T．7C	Class－C Amp．（Telegraphy）	500	200	40	－ 70	80	15	4.0	20000	0.4	28	$\begin{aligned} & 837 \\ & \text { RK44 } \end{aligned}$
$\begin{aligned} & 837 \\ & \text { RK44 1 } \end{aligned}$													Class－C Amp．（Telephony）	400	140	40	－ 40	45	20	5.0	13000	0.3	11	
													Suppressor－Madulated Amp．	500		－65	－ 20	30	23	3.5	14000	0.1	5.0	
2E24	9.0	6.34	0.65				8.5	0.11	6.5	125	0.	7CL	Class－C Amp．Plate－Mod．	400	180		－ 45	50	8.0	2.5	27500	0.15	13.5	2E24
				500	200	2.3								500	180		－ 45	54	8.0	2.5	40000	0.16	18.0	
	13.5												Class－C Amp．（Telegraphy）	400	200		－ 45	75	10.0	3.0	20000	0.19	20	
				600	200	2.5								600	195		－ 50	66	10	3.0	40500	0.21	27	
$2 E 26$	$\begin{array}{r} 13.5 \\ 9.0 \end{array}$	6.3	0.8	$\begin{aligned} & 600 \\ & 500 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.3 \end{aligned}$						7CK	Class－C Amp．（Telegraphy）	400	190	－	－ 30	75	11	3.0	19000	0.12	20	$2 E 26$
							13	0.2	7.0	125	0.			600	185	－	－ 45	66	10	3.0	41500	0.17	27	
													Class－C Amp．（Piate－Mod．）	400	160	－	－ 50	50	7.5	2.5	32000		13.5	
														500	180	－	－ 50	54	9.0	2.5	35500		18	
802	13	6.3	0.9	600	250	6.0	12	0.15	8.5	30	M．	T－7C	Class－C Amb．（Telegraphy）	600	250	40	－120	55	16	2.4	22000	0.30	23	802
													Class－C Amp．Plate－Mod．	500	245	40	－ 40	40	15	1.5	16300	0.10	12	
													Suppressar－Modulated Amp．	600	250	－45	－100	30	24	5.0	14500	0.6	6.3	
HY6Y6－ GTX	13	6.3	0.5	350	225	2.5	9.5	0.7	9.5	60	0.	7 AC	Class－C Amp．－Oscillator	300	200		－ 45	60	7.5	2.5	－ 15000	0.3	12	HY6V6－ GTX
													Class－C Amo．Plate－Mod．	250	200		－ 45	60	6.0	2.0	15000	0.4	10	
HY60	15	6.3	0.5	425	225	2.5	10	0.2	8.5	60	M．	T－5BB	Class－C Amp．（Telegraphy）	425	200	－	－62．5	60	8.5	3.0	－	0.3	18	HY60
													Class－C Amp．Plote－Mod．	325	200	－	－ 45	60	7.0	2.5		0.2	24	
HY65 ${ }^{\text {1 }}$	15	6.3	0.85	450	250	4.0	9.1	0.18	7.2	60	0.	T－8DB	Class－C Amp．－Oscillator	450	250		-45 -45	75	12	3.0	－	0.5	16	HY65
			0.8	450	250	4.0	8.5		6.7	125		5BJ	Class－C Amp．Piate－Mad，	350	250		－ 45	75	15	3.0	－	0.4	24	$2 \mathrm{E25}$
$2 \mathrm{E25}$	15	6.0						0.15			0.		Class－C Amp．（Piate－Mod．）	400	200		－ 45	60	12	3.0	－	0.4	16	
306A	15	2.75	2.0	300	300	6.0	13	0.35	13	－	M．	T－5CB	Class－C Amp．（Telephony）	300	180		－ 50	36	15	3.0	8000		7.0	306A
$\begin{aligned} & \hline 307 \mathrm{~A} \\ & \text { RK-75 } \end{aligned}$	15	5.5	1.0	500	250	6.0	15	0.55	12		M．		Class－C Amp．（Telegraphy）	500	250	0	－ 35	60	13	1.4	20000	－	20	307 A
										－		T－5C	Suppres sor－Modulated Amp．	500	200	－50	－ 35	40	20	1.5	14000	－	6.0	
													Class－C Amp．（Telegraphy）	500	200		－65	72	14	2.6	21000	0.18	26	832
$832{ }^{3}$	15	12.6	0.8	500	250	5.0	7.5	0.05	3.8	200	N．	7BP	Class－C Amp．（Telephony）	425	200		－60	52	16	2.4	14000	0.15	16	
													Class－C Amp．（Teleqraphy）	750	200	－	－65	48	15	2.8	36500	0.19	26	832 A
$832 A^{3}$	15	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 1.0 \\ & 0.8 \end{aligned}$	750	250	5.0	7.5	0.05	3.8	200	N．	7 BP	Class－C Amp．（Telephony）	600	200		－65	36	16	2.6	25000	0.16	17	
													Class－C Amp．（Telegraphy）	500	175		－125	25	－	5.0	－		9.0	844
8441	15	2.5	2.5	500	180	3.0	9.5	0.15	7.5	－	M．	T－5BB	Class－C Amp．（Telephony）	500	150		－100	20	－	－	－	10	4.0	
													Class－C Amp．（Telegraphy）	750	125		－ 80	40	－	5.5	－	1.0	16	865
B65	15	7.5	2,0	750	175	3.0	8.5	0.1	8.0	15	M．	T－4C	Class－C Amp．（Telephony）	500	125	－	－120	40	$\overline{-10.5}$	9.0	9500	2.5	10	
							10.5	0.35	12.5	45	0.		Class－C Amp．（Telegrophy）	400	300	－	－ 55	75	10.5	5.0	9500	0.36	19.5	1619
1619	15	2.5	2.0	400	300	3.5	10.5	0.35	12.5	45	0.	7AC	Class－C Amp．Plate－Mod．	325	285	－	－ 50	62	7.5	2.8	5000	0.18	13	
254A	20	5.0	3.25	750	175	5.0	4.6	0.1	9.4		M．	T－4C	Class－C Amplifier	750	175	－	－ 90	60	－	－	－	－	25	254 A
	21	6.3	0.9	375	300	3.5	10	0.4					Class－C Amp．－Oscillator	375	200	－	－ 35	88	9.0	3.5	－	0.18	17	$\begin{aligned} & 6 L 6 \\ & 6 L 6 G \end{aligned}$
6L6G	21	6.3	0.9	375	300	3.5	11.5	0.9	9.5		0.	TAC	Class－C Amp．Plate－Mod．	325			－ 70	65	－	9.0	－	0.8	11	
				500	300	3.5							Class－C Amp．（Telegraphy）	500	250	－	－ 50	90	9.0	2.0	一一	0.25	30	6L6GX
6L6GX	21	6.3	0.9	500	300	3.5	11	1.5	7.0		0.	7AC	Class－C Amp．Plate－Mad．	325	225		－ 45	90	9.0	3.0	－	0.25	20	
HY6L6													Class－C Amp．－Oscillator	500	250	——	－ 50	90	9.0	2.0	$\overline{16000}$	0.5	30	HY6L6． GIX
GTX	21	6.3	0.9	500	300	3.5	11	0.5	7.0	60	0.	7AC	Class－C Amp．Plate－Mod．	400	225	－	－ 45	90	9.0	3.0	16000	0.8	20	

Wond RadioHisioy

TABE XVI-TETRODE AND PENTODE TRANSMITTING TUBES-Continued

table XVI－tetrode and pentode transmitting tubes－Continued

Type	Max． Plate Dissi－ pation Watts	Cathode		Max． Plate Volt－ oge	Max． Screen Volt－ age	Max． 5 creen Dissi－ pation Wafts	Inferelectrode Capacitances（ $\mu \mu \mathrm{fl}$ ．）			Max． Freq． Mc． Full Ratings	Base	SockerCon－nec－fions	Typical Operation	Plate Volt－ age	$\begin{gathered} 5 \text { creen } \\ \text { Volf- } \\ \text { age } \end{gathered}$	5up－ pressor Volt－ age	Grid Volt． age	Plata Current Ma．	Screen Current Ma．	Grid Current Ma．	Screan Resistor Ohms	Approx． Grid Driving Power Watts	Approx Carrier Output Power Watts	Type
		Volts	Amps．				$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { ta } \\ \text { FiI. } \end{gathered}$															
312A	50	10	2.8	1250	500	20	15.5	0.15	12.3	－	M．	T－6C	Class－C Amp．（Telegraphy）	1250	300	20	-55	100	36	5.5	－	0.7	90	312A
													Class－C Amp．Plate－Mod．	1000	－－	40	－ 40	95	35	7.0	22000	1.0	65	
													Suppressor－Modulated Amp	1250	－	－85	－ 50	50	42	5.0	22000	0.55	23	
804	50	7.5	3.0	1500	300	15	16	0.01	14.5	15	M．	T－5C	Class－C Amp．（Telegraphy）	1500	300	45	－100	100	35	7.0	34000	1.95	110	804
													Class－C Amp．Plate－Mod．	1250	250	50	－ 90	75	20	6.0	50000	0.75	65	
													Grid－Modulated Amp．	1500	300	45	－130	50	13.5	3.7	－	1.3	28	
													Suppressor－Modulated Amp	1500	300	－50	-115	50	32	7.0	－	0.95	28	
$\begin{aligned} & \text { 4D22 } \\ & 4 \mathrm{D} 32 \end{aligned}$	50	25.2		750	350	14	28	0.27	13	60	N．		Class－C Amp．（Telegraphy）	750	300	－	－ 100	240	26	12	－	1.5	135	$\begin{aligned} & \text { 4D22 } \\ & 4 \mathrm{D} 32 \end{aligned}$
		12.6										Fig． 50		600	300	－	－100	215	30	10	－	1.25	100	
												Fig． 51	Class－C Amp．（Plate Mod．）	600	－	－	-100	220	28	10	10000	1.25	100	
		6.3	3.75											550	－	－	－ 100	175	17	6	15000	0.6	70.	
305A	60	10	3.1	1000	200	6	10.5	0.14	5.4		M．	T－4CE	Class－C Amp．（Teleqraphy）	1000	200	－	－200	125	－	－	－	－	85	305 A
										－			Class－C Amp．（Telephony）	800	200	－	－270	125	－－	－－	－－	－	70	
HY67	65	$\begin{gathered} 6.3 \\ 12.6 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 2.25 \end{aligned}$	1250	300	10		0.19	14.5		M．	T－5DB	Class－C Amp．（Telegraphy）	1250	300	－	－ 80	175	22.5	10	－	1.5	152	HY67
							－			－			Class－C Amp．Plate－Mod．	1000	300		150	145	17.5	14	－－	2.0	101	
													Grid－Modulater Amp．	1250	300		－	78	－－	－	－	－	32.5	
814	65	10	3.25	1500	300	10	13.5	0.1	13.5	30	M．	T－5D	Class－C Amp．（Telegraphy）	1500	300	－	－ 90	150	24	10	50000	1.5	160	814
													Class－C Amp．Plote－Mod．	1250	300	－	150	145	20	10	48000	3.2	130	
													Grid－Modulated Amp．	1500	250	－	－120	60	3.0	2.5	－	4.2	35	
232A	70	10	3.0	1000	250	5	12.2	0.2	6.8	－	M．	T－4C	Class－C Amp．（Teleqraphy）	1000	150	－	－ 160	100	－		二－	－－	33	282A
													Class－C Amp．Plate－Mad．	750	150	－	－180	100	－	50	－	－	50	
$\begin{aligned} & \text { 4E27/ } \\ & 8001 \end{aligned}$	75	5.0	7.5	4000	750	30	12	0.06	6.5	75	J．	T－7CB	Class－C Amp．（Telegraphy）	2000	750	－	200	150	18	0.7	300000	0.2	230	$\begin{aligned} & 4827 / / \\ & 8001 \end{aligned}$
													Class－C Amp．Plate－Mod．	2000	600	60	－200	100	8	0.6	240000	0.1	200	
													Suppressor－Modulated Amp	2000	500	－300	－130	55	45	3.0	－－	0.4	35	
$\begin{aligned} & \text { HK257 } \\ & \text { HK257B } \end{aligned}$	75	5.0	7.5	4000	500	25	13.8	0.04	6.7		J．	T－7CB	Class－C Amp．（Teleqraphy）	2000	500	60	－200	150	11	6.0	－	1.4	230	$\begin{aligned} & \text { HK257 } \\ & \text { HK2578 } \end{aligned}$
													Class－C Amp．Plafe－Mod．	1800	400	60	－130	135	11	8.0	一－	1.7	178	
										120			5uppressor－Modulatad Amp	2000	500	－ 300	－130	55	27	3.0	－－	0.4	35	
828	80	10	3.25	2000	750	23	13.5	0.05	14.5	30	M．	T－5C	Class－C Amp．（Telegraphy）	1500	400	75	－100	180	28	12	40000	2.2	200	
													Class－C Amp．Plate－Mod．	1250	400	75	－140	160	28	12	30000	2.7	150	828
													Grid－Modulated Amp．	1500	400	75	－150	80	4.0	1.3	－	1.3	41	
RK28	100	10	5.0										Class－C Amp．（Telegraphy）	2000	400	45	－100	150	55	13	21000	2.0	210	
													Class－C Amp．（Telephony）	1500	400	45	－100	135	52	13	21000	2.0	155	RK28
				2000	400	35	15	0.02	15	－	J．	T－5C	Suppres sor－Modulated Amp．	2000	400	－45	-100	85	65	13	－	1.8	60	
													Grid－Modulated Amplifier	2000	400	45	－140	80	20	4.0	－	0.9	75	
													Class－C Amp．（Telegraphy）	2000	400	－	－100	180	40	6.5	－－	1.0	250	
RK48	100	10	5.0	2000	400	22	17	0.13	13	－	J．	T－5D	Class－C Amp．（Telephany）	1500	400	－	－100	148	50	6.5	22000	1.0	165	RK48A
RK48A													Grid．Modulated Amplifier	1500	400	－－	－145	77	10	1.5	－	1.6	40	
													Class－C Amp．（Telegraphy）	2000	400	－	－90	180	15	3.0	107000	0.5	260	
813	100	10	5.0	2000	400	22	16.3	0.2	14	30	J．	Fig． 28	Class－C Amp．（Telephony）	1600	400	－	－130	150	20	6.0	60000	1.2	175	813
													Grid－Madulated Amplifier	2000	400	－	-120	75	3.0		－	－	50	
													Class－C Amp．（Telegraphy）	1250	175	－	－150	160	－－	35	－	10	130	
850	100	10	3.25	1250	175	10	17	0.25	25	15	J．	T－3B	Class－C Amp．（Telephony）	1000	140	－	－100	125	－	40	－	10	65	850
													Grid－Modulated Amplifier	1250	175	－	－ 13	110	－		－		40	
										30			Class－C Amp．－Oscillator	3000	300	一－	－150	85	25	15	－－	7.0	165	860
860	100	10	3.25	3000	500	10	7.75	0.08	7.5	30	M．	T－4CB	Class－C Amp．Plate－Mad．	2000	220	－	－200	85	25	38	100000	17	105	

World Rediohision
table XVI-tetrode and pentode transmitting tubes-Continued

Type	Max. Plate Dissipation Wafts	Cathode		Max. Plate Volt age	Max. Screen Voltage	Max. Screen Dissipation Watts	Interelectroda Capacilances ($\mu \mu \mathrm{f}$ d.)			Max. Freq. Mc. Full Ratings	Base	SocketCon-nec-tions	Typical Operation	Plato Voltago	Screen Voltage	Suppressor Voltage	Grid Voltage	Plato Cirront Ma.	Sereon Current Ma.	Grid Current Ma.	Sereon Resistor Ohms	Approx. Grid Driving Power Watts	Approx. Carrier Outpu Power Watts	Type
		Volts	Amps.				$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plato } \end{aligned}$	$\begin{aligned} & \text { Plate } \\ & \text { to } \\ & \text { fil. } \end{aligned}$															
4-125A	125	5.0	6.2	3000	400	20	10.3	0.03	3.0	120	N.	Fig. 27	Class-C Amp. (Telogrophy)	3000	350		-150	167	30	9		2.5	375	4-125A
													Class-C Amp. Plate-Mod.	2500	350	-	-330	150	30	13		6	300	
RK28A	125	10	5.0	2000	400	35	15	0.02	15		J.	T-5C	Class-C Amp. (Telegraphy)	2000	400	45	-100	170	80	10	-	1.6	250	RK28A
													Class-C Amp. Plate-Mod.	1500	400	45	-100	135	54	10	18500	1.6	150	
													Grid-Modulated Amp.	2000	400	45	- 55	80	18	2.0	-	0.5	60	
													Suppres sar-Modulated Amp.	2000		-45	-115	90	52	11.5	30000	1.5	60	
803	125	10	5.0	2000	600	30	17.5	0.15	29	20	J.	T-5C	Class-C Amp. (Telegraphy)	2000	500	40	-90	160	45	12		2.0	210	803
													Class-C Amp. (Telephony)	1600	500	100	- 80	150	20	4.0	20000	4.0	155	
													Suppressor-Modulated Amp.	2000	-	-110	-100	80	48	15	35000	2.5	53	
													Grid-Modulated Amplifier	2000	600	40	-80	80	20	4.0	-	2.0	53	
AT-340	150	5	7.0	4000	400		9.04	0.19	4.16	120	J.	Fig. 27	Class-C Amp.-Oscillator	3000	430	-	-530	165	75		-	2.4		AT-340
RK65	215	5.0	14	3000	500	35	10.5	0.24	4.75	60	J.	T.386	Class-C Amp. (Telegraphy)	3000	400	-	- 100	240	70	24	-	6.0	510	
											J.	T.38.	Class-C (Plate \& Screen Mod.)	2500			- 150	200	70	22	30000	6.3	380	RK65
4-250A	250	5.0	14.5	4000	600	50	12.7	0.06	4.5	85	N.	Fig. 27	Class-C Amp. (Telegraphy)	4000	530		-250	250	22	13	-	4.1	750	4-250A
												H. 27	Class-C Amp. (Telegraphy)	2500	500	-	-130	325	70	22	-	3.7	562	4.250 A
881	400	11	10	3500	750	35	14.5	0.1	10.5	20	N.	T-1B	Class-C Amp. (Teleqranhy)	3500	500	\square	-250	330	40	40	-	30	700	
													Class-C Amp. (Telephony)	3000	375	-	-200	200	-	55	70000	35	400	061

${ }^{1}$ Discontinued.
${ }^{3}$ Triode connection-screen-grid tied to plate.
${ }^{3}$ Dual tube. Values for both sections, in push-pull.

- Terminals 3 and 6 must be connected together.
${ }^{6}$ Filo ment limited to intermittent operation.

Chapiter Эwenty-One

Radio Operating

The object of most radio communiration is the transmission of intelligence from one point to another. accurately and in as short a time as possible. For efficiency in communication, each class of radio service has set up operating methods and procedure best suited to its needs. Operators should not only be expert in transmitting and receiving code or voice signals, but thoroughly familiar with the uniform practices of their service.

(I Memorizing the Code

()ne of the a materur operator-license requiremints covers ability 10 send and receive Continental International Morse) code at the rate of 13 words per minute.

The serious student of code - sending, rereliving, operating practices, copying on the typewriter, etc. - would be best advised to purchase a ropy of the ARRL booklet. Learning the Radiotelegraph Code (price, 25 cents, post paid).

The first step is to memorize the coble. The complete Continental alphabet is shown in the table of Fig. 2101. All of the characters should be learned, starting with letters and going on to numerals and punctuation marks. Take a few at a time. Review at intervals all the letters learned up to that time.

Think of the letters in terms of soul rather than their appearance as actual dot-and-dash combinations. Think of A as the sound "didah" — not as a "dot-dash." Make the serum "di" staccato, allowing stress to fall equally on every "th." There should never be a space or hesitation between "dits" and "dahs" of the same letter.

If someone who is familiar with code can be found to "send" to you, cither by whistling or by means of a buzzer or code oscillator. enlist his cooperation. Learn the cole by listening to it.

Don't think about speed to start; the first requirement is to learn every character to the point where you can recognize each of them without hesitation. Concentrate on any dillfieult letters until they become as familiar as the rest.

(1. Acquiring Speed by Buzzer Practice

When the code is thoroughly memorized. regular practice periods will develop code proficiency. Two people can learn the code together, sending to each other by means of a buzzer-and-key outfit. An advantage of this system is that it develops sending ability, too. for the person doing the receiving will be quick to criticize uneven or indistinct sending. If possible get an experienced operator for the first few sessions to learn how well-sent charactors should sound.

Either the buzzer set shown in Figs. 2102 and 2103 or the audio oscillator described will give satisfactory results as a practice set.

The battery-operated audio oscillator in Figs. . 2104 and 210 is easy to construct and is effective. If nothing is heard in the headphones when the key is depressed, reverse the leads going to either transformer winding (do not reverse both windings).

With a practice set ready. send single letters at first. When each character can be read quickly follow this by slow sending of complete words and sentences. Have the material sent at just a little faster rate than you can copy easily; this speeds up your mind. Write down each letter you recognize. Do not try to write

Fig. 2102 - The headphomes are monneted arones :he coils of the buzer, with a rondenare in ereric., If the value shown gises an exer-wively lond signal, it may be reduced to $470 \mu \mu \mathrm{fd}$. or $220 \mu \mu \mathrm{fd}$.
down the dots and dashes; write down letters. Don't stop to compare the sounds of different letters, or think toolong about a letter or word that has beron miserl. (ior right on to the nest one, or eath "miss" will cause you to lose: several characters. If you exareise a lithe patienee you will soon be geting every character. When you can reedive 13 words a minute (65 letters a minute), have the sonder tramsmit code groups rather than linglish text. This will prevent you from recognizing a word "on the way" and filling it in before you ve really listemed to the latere themselver.

After you have acquired reasonable profirienerg concentrate on the lesis common characters, as well as the mumerats and pumetuation. These prove the downfall of many applicants taking the code examination.

Fig. 2103 - The rover of the huzar unit haw heen removed in this view of the buzzer conde-praction set.

C. Learning by Listening

W1AW conducts practire transmissions nighty Monday through Friday at speeds of 15, 20, 25, 30 and 35 w.p.m. Such practice tapesstart at ten r.m. Fi' (EI)N'T in summer). In addition, the Official Bulletins, also sent from W1AW, give added practioe at 1 and 25 w.p.m. See the Oporating Nows section announcements of WIIW Oprorating Sehedule.
and Code Proficiency Practice notes, in the latest copy of Q.'l'. Practise until you can send in what you have copied over the air on W1AW's monthly "qualifying run" to get a 15-word-per-minute Code Proficioney Certificate or a sticker for advanced speods. As soon as you can. liston on a real communications receiver (with beat osillator) and have the fun of learning by listening.

Fif, 210.1 - Wiring diagram of a simple vacuum-tule andio-frequency oscillator for use as a code-practice set.

Fis. $210.5-$ I ayout of the andio-oseillator code-practice set. All parts may le monnted on a wooden baseboard, approsimately 5×7 inches in size.

(I. Using a Key

The comect way to grasp the key is important. The knoh of the key should be about cightern inches from the edge of the operating table and about on a line with the operator's right shoulder, allowing room for the elbow to rest on the table. A tathe about thirty inches in hoisht is best. The spring tension of the kery varies with different operators, A fairly heary spring at the start is desirable. The bark adjust ment of the key should be changed until there is a vertical movement of about one-sixternth ineh at the knob. After an operator has mastered the use of the hand key the tension should be changed and can be reduced to the minimum spring tension that will cause the key to open immediately when the pressure is reloased. More spring tension than necessary canses the expenditure of unnecessary energy. The contarts should be spaced by the rear screw on the key only and not by allowing play in the side screws, which are provided merely for aligning the contact points. These side screws should be screwed up to a setting which prevents appreciable side play, but not adjusted so tightly that binding is caused. The gap between the eontacts should always be at least a thirty-second of an inch, since too-
finely spaced contarts will cultivate a nervous style of smding which is highly undesirable. On the other hathd, too-wide spacing (much over one-sixteenth inch), may result in unduly heaver or "muldy" sending.

Ino not hold the key tightly. Let the hand rest lightly on the key. The thumb should be against the lod side of the knol. The first and second fingerss should be bent a little. They should hold the middle and right sides of the kubh, respertively. The fingers are partly on top and partly wior the side of the knob. The other two fingers should be free of the key. Fig. 2106 shows the corrent way to hold a key.

Fik. 2106 - 'lhim shetell illuatrates the eorrect position of the hand and fingors for goon sending with a telegraph hey.

A wrist motion should be used in sonding. The whole alm shoukl not be used. One should not send " wervously" but with a steady flexing of the wrist. The grasp on the key should be firm. but not tight, or jorky sending will resulf. . None of the muscles should be tonse but they shomblat be under control. The arm should rest lightly on the operating table with the wrist ludd above the table. In up-anddown motion without any sideway action is best. The fingers should never leave the key knob.
(iond simding may serm easier than receciving. but don't be decoved. A beginner should not allomph to sernd fast. Kecp your transmitting spod down to your reeciving speed, and bend your cefforts to semding well. Do not try to spend things up fow soon. I slow, aven rate of sending is the matk of a rood operator. speed will come with time alone. Leave speceial types of keys alome until you have mastered the knack of handling the standart key. Because radio transmissions are seddom free from interference, a "heavier" strle of sombling is best to devedop for radio work. A rugged, heavy k(y will he! $!$) in developing this characteristic.

© General Procedure

Calling-- The call signal of the calling station must be insurted at frequent intervals for identification purposes. Repreating the call signal of the called station five times and signing not more than twice (this repeated not more than five times) has proved excellent for telegraph or voice practice (the receiver being kept tuned to the frequeney of the called station). The use of a break-in sistem (e.w.) or push-to-talk (voice) is highly recommended to save time and reduce unnecessary inter-
ferenee to a minimum. Fxample:
W6EY Wgey W6ey Wgey Wgey de whaw whaw.
Stations desiring communication with any station may use the signal of incuiry, ('Q, in place of the call signal of the station called. The general inquiry call (CQ) should be sent, not more than five times without interspersing one's station identification, and the length of repeated ealls is carefully limitod in intedigent amateur oprrating. Too many insertions of one's own call in a CQ will dererase its effeetiveness. (Q) is not to be used when testing or when the sender is not expecting or looking for an answer. After a ('Q the dial should be covered thoroughly for two or three minutes looking for replies. For voior work "Calling any amateurstation" is considered superior to C(), one of the atitributes of voice operation being the ability to "say it with words."

FCC regulations require all amateur operators to sond the call of the station called or worked and their own call at the beriming and bud of each transmission, and in any event, at last once each ten minutes during long transmissions. Where broak-in is used and exchanges of sequences of 3 minutes or less are taking plare, the calls are required (additional to beginning and end) only each ten minutes. "This is" or "from" must be used by voire stations in place of "I)E." l'ortables and mobile's must give their geographical designation after their calls.

Ansuering a call - The above example, when replying to a call, may be cut down to three (or hess) calls, DE. athene or two repetitions of your own call, with further reduction to a one-times-one call when conditions permit during communication. Example:
WHEFC DE W1AW GE OMI İ (good evening, old man, go ahead.)

Ending signals - After a CQ. a transmission should end with k (invitation to transmit):

CQ CQ (ete.) DE W;BG WTBGK.

After a call to a specifiestation (contact not yet establishod) use $\overline{A R}$:

VEBCAR VHSSAR (ete.) DE WHBIDI $\overline{A R}$.

At the cond of each transmission during QSO use K :

. . . W5B3II DE WORBQ K.

At the conclusion of a QSO use $\overline{V A}$ or $\overline{S K}$: : : . Tnx data ur rig 73 VA W1AW DE W4IP.
If closing station, add CL.
Foicecalls - An initial voice call may be made as follows: "Calling any amateur" station, this is W 6 B.AKER Kİ゚ GOUNG in Whittier, California. (ion ahead."

W1LVQ calls WGBKY: "WGBKY, this is W 1 LEWIS VICTOR QUEEN' in Hartford, Connecticut. Go ahead."

W6BKY answers W1LVQ: "W1LVQ from W6BKY" (proceeds with contact).

During the contact as above，transmissions may be ended：＂WILV（Q from W＇6BKY， over．＂

In concluding a eontact：＂W WVQ，this is W 6 B．AKER K゙N（：YOUN゙G in Whittier， （＇alifornia．signing off，＂

If WGBKY is closing his station，he con－ cludes：＂．．．simning off and closingr station．＂

Tuning procodure after COs－－The use of secial abbreviations after a（Q call to indi－ cate from what part of the hand tuning will start is a valuable aid to the reweving operator in determining frerfuemey to use and how long to call．ARRL，recommends the following ab－ breviations for this purpose：

HIN－Will start to liston at hiphefmquency end of band and tune toward midelle of hatul．

MII－Will start io liston in the middle of the band and tune toward the high－fromeney end．

L．M－Will start to liston at lon－frequency end of band and hane toward midde of batul．

MI，－Will stist to listen in the midhle of the hand and tume toward the low－fremuency mid．Fxample：If the proce－ dure will the to that from the mildte of the batse to the high end，：（＇Q eall shomd inchule：By c．w．－（CQ DF WirR13Q MH K．By voirm－Simpl use the words for which the abbrevittion MII stamls，

Direchional COs－Ii intorested in a par－ ticular dirertion or lowality for a contact or messare relay，so indicate in your call．A（＇） call mast be long chough to attract one or more operators．bat not long robugh to catuse listomers to tire and tume away from vour sig－ nal．Wamples：（C）Wi，C（e DMLI．lS，CQ WIST．

1．Voice and Telegraph Operation

Radiotelegraph code is used for reliable ac－ curate communication of intelligenere even at great distances．The good operator is moted for his nobthess and arouracy of copr．It is de－ sirable to copy exactly what is sent．If there is any doubt about a letter or word one should query the transmitting operator．Never send R（for OK）until all that hes bern sent is suc－ exsesully received（copied down or under－ stood）．

Procedure in telegraph and in radiotele－ phone operation is similar．However，in voice work the operator makes little use of the spe－ cial abbreviations available for code work，of course，since he may direetly speak out their full meaning．Radiotelephony is used by other servies mainly for discussion or command－ control purposes．Telegraph operation is gen－ arally preferred for message work and extreme D．

Reperas－When a few word－groups in fonversation or message handling have been miswed，a sulection of one or more of the fol－ lowing abhereviations are used to ask for a re－ peat on the parts in doubt：

Abbursatiom	Meaning
AA	Relnat all after．
？ A 13	Repreat all lurfore．．．．．．．．．．．．．．．．．．．
？Al．	fiegnat all that has beren sent．．．．．．
：1NN゙．．．入ND	IRepat all burwion．．．and．
？W．A	Repeat the word after．
？WB	Repeat the word before．．

The good operator will ask only for what fills are needed，separating different requests for repetition by using the break sign or double dash（ $-\cdots-$ ）betwern these parts． There is seldom any exeuse for repoating a whole message just to get a fow lost words．

Another interrogation method is sometimes used，the question signal（．．．．．．）being sent between the last word reeoved eorredly and the first word（or first，few words）received at－ ter the interruption．
［nusual words shombl be awomed，in the interest of acourares，when draftimg messalges． When they unavoidably turn up dillicult words may be repeated，or repruted and spelled． The operator says＂I will repat＂or＂I say agatin＂when thus deetranmiting a dillievalt word or expression．

The sped of radiondephone transmission （with perfect areuracy）depends almost en－ tirely upon the shill of the two oprators in－ volved．（One must leam to speak at a rate al－ lowing perfoert understanding as wedl as per－ mitting the refedving operator to ropy down the message text，if that is neressary．Becaluse of the smilarity of matny English sererh sounds．the use of alphatortiral word lists hats been found neressary．．．ll voiceoperated sta－

FADIE IRATDIATELEIPMADNE

As a service to all amatemrs，the ARRL．Word List printed herewith hats heen devised．A phometio alphathet or sperial word list is remomended for use as necoled in identifying station calls or diflicult worls．

The list helps to a roid facentions word combinations．This pives it greatest ate－ ceptability to all ：amath curs．

L＇se of this standard list is recom－ mended by AlkRL．Haphazard selention of words witen results in confusion．A degrer of uniformity in use of phonetie words reflects favorably on your iadi－ vidual operating，and on the whole ama－ teur service．

$$
\begin{aligned}
& \text { NーN゙ANCI } \\
& \begin{array}{l}
\mathrm{O} \text { - OTHO } \\
\mathrm{P} \text { - PHTHR }
\end{array} \\
& \text { Q - (QUFEN } \\
& \text { R- liobBET } \\
& \text { s-slsAN } \\
& \text { T- THOMAS } \\
& \text { し- じぶ10N } \\
& y-v i\left({ }^{2}\right) \mathrm{OH} \\
& \text { W-WILIIAM } \\
& \text { ※-N-RAY } \\
& \text { y-rouci }
\end{aligned}
$$

13－BAKER
Charlar
D－DAlID
F－FRANK
H－H以NRI
I－IbA
－JOHN
L．－LFWIS
Fxample：W1I：II ．．．W 1 VD． WARD HENRY＇．

It is recommended that use of Q－code and special abbreviations be minimized in voice work insoliar as possible，and the full expression（with conciseness）be substituted．
tions should use a standard list as needed to identify call signals or unfamiliar expressions.

Using a microphone - Many of the priticiples for getting operating results are similar to those set down for key operation. However, the ability to phrase clearly and concisely counts. Good push-to-talk technique differs ronsiderably from broadeasting. Where possible, controls or on-off switches should be arranged to permit fast bowk-and-forth exrhanges. This will help to redue the length wi transmissions, emable as to note quickly when interforence conmes on a frequente, and will kerp bother amateurs from ealling us a " monolognist" -- an individual who likes to monopolize a chamel and hear himself talk!

USE PUSH-TO-TALKKAND AVOID BEING CALLED A MONOLOGUIST
Here is a short tabulation of the points of good result-geting terhnigue:

1) I.isten mach . . . with eare. Awod diatractions in sour oparating rown. Tume the band well after ear-h ratl.
2) Time yoar ralls: nomitur your own frequeney. ('all only when at stition is frem.
B) Mahe short ralls. with bratahs to listrn. Sueth chanly, at a steady, mondest rates. Thee short "alls are bettor than one loher one.

 hatkgronnd mise at a minitumu.
3) Make notem. Droid missing points for comment. Jot down tapice to atwoid rejeats.
(i) Tialk in connereted thonghim and phrasera. Notros

 Make then interesting. Arosid exhithitionisal Ise promer
 ard respect and prestige for your station.

Voicr equitalents to codr procedure"(Gorahead" or "Over" (K) indicates receipt or further transmission is expected.

Wiat, st:and by (.LS-QRN).
Okay (R) indicates receipt for a correctlytranseribed message or that transmission wia received "solid" with no missing portims.

Make transmissions through twice (QsZ). Repeat cach word twice.

All After. . AA). Repeat all after word.

All Before . . (AB). Repeat all before (word).
Rupeat BetweeN . . and . . . (i3N). Repeat between . . and . . . (words).

Message handling - Fach serviec -ammereial, military. amateur - prescribes a meseage firm. but all are gencrally similar. A messige is boadly divided into four parts: (1) the preamble: (2) the :udnues: (3) the text; (-4) the sinnalure. The preamble of all amatrue radiograms includes:

> a) Number (of this message).
> b) Alation of origin.
> () ('huek mumber of words in text).
> d) Plan of migin.
> e) Time filed.
> f) Date.

Therefore it might lowk like this:

म.

BL..VKE:

This is ownously the 3 th hamenge fof that day or that momble as the policy of the station perseribes) from wation W9AND. The cherek is 13. Ther signal $\overline{B T}$ (domble dash) is used to separate the foxt fom address and signature.
Several rathegram: may be tramsmitted in series ((2) (i . .) with the consint of the stittion which is to recoive them. As a general rule lang radiograms should be tamamited in sobtions of approximately fitty works each onding with.......(.). meaning. "Have you rereived the message corretly thas far?"
If the first part of a message is received but substantially all of the latter fortions lost, the reques for the missing parts is simply RLPT
 *ighatume." PlBL and ADR bay be used similarly for the pramble: and abdross. R1'T . M1.
 all of the message is lost.

The service messuse - Whern one station has at message to transmit to anomer concerning the handling of a provious message, the message is timend "swriew" and is indicated by "Sh " " in the pramble when sent. Such a meserage may refer to nondelibery, delayed tramsmision, errors, or to any phase of mes-sage-handing andivity. Words may be abbreviated in the text of the service message to (onserve time. Do not abdereviate to the point where misumberstanding may arise.

Lumd-line chech- The land-line or "text" connt. consisting of count only of the words in the budy or text of the message, is probably now most widely used. (The "cable" count covers all words in the alderess and signature, as well. probably aremoming for its unpopularity.) When in the (awn of: : few exceptions to the basice rule in hami-ine checking, certain words in the address. signature or preamble
are rounted, they are known as extra words and all such are so designated in the check right after the total number of words.

The check includes:

1) All words. figures and lotters in the body, and,
2) the following extra words:
a) signature exerept the filst, when there are more than one (at title with signature does not rambertat but an address following as signature doess).
b) Words "report delivery," or "rush" in the eherek.
c) Alternate names and/or streot address, and such extras as "personal" or "attention."

Dictionary words in most languages count as one word irrespertive of length of the word. In counting figures, a group of five digits or less counts as one word. Bars of division and decinal points mas constinute ont or more of the digits in such a group. It is recommemded that, where fasible, words be substituted for figures to redure the possibility of errom in transmission.

II Net Operation

Amateurs can add much experionom and phomene to thoir amatour lives amd substance and arromplishment to the eredit of all amattear radio. when organized inter ellective intereonnection of the rities and towns of at state.

The selaction of suitable stations to be invited to work together is important. Operating ability is required. All individuals must be willing to comtribute unsilfishly to the suceress of the group objeetives permitimg operations to be guidad absolutely by the word of the N(B (Net Control Station).
"Break-in" is advantageously employond here the recoiser is kopt running during transmissions, so that nearly-simultaneons t wo-way eommunication is posible.

I3riefly, the procedure in net operation is as follows: The N(s) calls the net logether at a preannounced time and using a predetermined eall. Immediatery, station mombers of the net reply in alphabetical or some ather predeterminced) ordor, reporting on the N(A゙s sigmal strenglh and stating what traffic is on hand. and for whom. The NCO acknowledges. meanwhile keoping an arrount of all traffer on hathd, by stations. He then direets the transior of inessages from ane station wanwher, giving prefertone to any urgent tatios so indicated at rull eall. When abll traffe hass been distributed and it is apparent there is no further business the NC'S will cluse the net, in most cases maintaining watch on the net frequency for any special traflic which might appear. In general the operation of all net stations is conducted for highest efficiency, on the samm, or on elosedy-adjatern frequencios.

Kerping a log - FC 'C regulations require neady every radio-communcation station to keep a romplete" operating record or "log," including such data as times and dates of tram-missions, stations contacted, message traffic handled, imput power tu the transmitter. froguency used, amd signature or "sine" of the operator in change.

Sererery of corrospondence - Provisions in the ('ommunications: Let matke it a misule-
 formation of any sort to ans person exarot tho addressere of a moseagre of his anthorized agrents. Remember that any addresised poimt-to-point commanication (ealt-lo-call) is covered by the law. Only when somt after a ($(\mathbb{Q}$ call or (2心" (to all amatmars) "an a conversat tion or message be used or divalged withont the experess consent of the originator or recipient.

C Time Systems

 use looal standard for daylight) timu in logkerping and mesage-handling. intornational radiocommunit:alion stations and the military serviecs follow the 2 -home syotem of timekerping, (ireonwidh ('ivil 'lime 2t-hour system) is based on the time in (ireomwirh. Englatnd, the eity at the θ^{2} mernilian. Miduigh in Cireenwirh is represtolled by 0000: 0ti00 represents if ha. there; 1200 is nown; 1800 is is P.M.: $2+00$ is again midnight amb the same ats Oono of the next day. The figures must be correred we each individual time zone. Wastern Standam Time is five hourst thend (iremo winh, so that 0ti30 (i) "T (b:30) s.m. in (ireen-
 amphe. As an example of revorse translation. 9:30 s.m. FixT would be designated in the loge as 1480 (i("T. ED)sT is fond hours behimd

The military services use simply a 2 t-hom clock. hased on lueal time, without correcting to direonvich or any other longitule. Tha principal advantage of this system is the climination of the neeessity for the use of p.m. or A.m. ablerviations. Fath 1.$)^{\circ}$ zone of longitude around the globe is designated by a letter which is sont in messages with the nuneval, giving the time.

© ARRL Operating Organization

The purpese of atation-thaliline is form-
 from their communication bes amatear radio ARKR, maintains: a Commmanations Departnent with 70 territorial section C.is.... PI. Cuba, Canada), i member-elated Section Lanager adininisters appointhents and handles correspondence and ativity reports (published monthly in Q.ST) from the active reporting stations in each section.

All posis in the organization are dedicated to futfilline certatin specified objectives. A high
standard of operation．telegraph or voice，is called for in eath＂station＂appointment．In coratin of the ardivities or station tests．re－ sulta may be achieved in a weok－end or two of operation that are the equivalent of＂monthe＂ of average amatern work．Orgonization permits sumerior result：through the mutual couppera－ tion and collathration of each member of a Lroup．Our ARRI，is a mutual－benefit assucia－ fon for the repmentation of the amatome． －friving to add in（every way to the efterno－ anso of the individual station and to incrase the pleasure and profit of the member in his lanhes．

The following abberviated deseriptions in－
 that are made with the purpose of ateh．Sue pane 6 in any（バT for the address of vour

 report his station activities to his SCDI for （gッ゙T mention．Wll whe meet the guatifications atul will assist in the obseretives set down in the ARRL（＇mostitution，and the book Operating ath Amaten Rodion slation atre urged to sermer apmopriate forms for appointments．from the
 participate in their operating organization．

Inadership and station uppointments－
 motes and shministers sention emergenter radio organization．

EC Pmergeney（obiodinator）．Organizes amateurs of at commonity or other area hor radio emergeney service：liaison with ollocials of agen－ies served and with represonatives of othor（commanionation facilitios loc：athy．
 oprotater nets amd trank lines．
（OP＇S（0）Hicial Phondestation）．Voico－operat－ ing．assists in establishing high operating standamals．

OFA（Official Fxperimental Station）．Fix－ primental operating，collects reports on v．h．f．－u．h．f．－x．h．f．propagation dala or con－ touts：some enguge in fix，f．m．，tw，ete，ex－ periments．
（）BS（Official Broadmasting station）．Trans－ mits ARli，lkulletins to amatours．

 in frequency observance，insure high－quatity signals，and prewnt FCO tronble for the indi－ vilual or the fralemits．

Rall Romte Manamer）．Organizes 1 raflie mets and coserdinatos shemblus．

P．AX PMane Aetivities Manager）．Organ－

C．RST System of Signal Reports

The IAST system is an ahbreviated method of indiating the matin charateristive of are－ wived signal，the Realability．Signad Strength． and Tone．The letters Ras determine the or－ der of sconding the report．In asking for this

READABILTTY

1－Unreadalle－
2 －Barely readatitc，oceasional words distinguishable
3 －Readable with comsiderable diffi－ culty
4－Readadle with practically no diffi－ culty
5 －Perfactly raadabla

sIGMA．S゙TRENGTH

1－Faint－signals barely percepti－ ble
2 －Very weak simuals
3－Weak signals
4－Fair simnals
5 －Fairly yood signals
6－Cooed siznals
7－Moderately strone siznals
8－strong signals
9－Extremely strong signals
TONE
1－Extremely－rough hissing note
2 －Very rough ace．note，no latace of musicality
3－Rouph low－pitched are．note， slighaty musical
4－Rather rough ant．note，moder－ atcly mosical
5 －Masically－modulatod note
6 －Modalated note，slight Irate of whitle
7－Var Il．e note smanth ripple
8－liond d．e．note，just a trace of ripple
9－Purest d．c．mote
（If the note appars to le erystal－ controlled simply add an X after the appropriatt mumber．）

If there is evidence of a chirp．the lether C may be added to so indicatc．

Exampores

By Voice：Sity simply．${ }^{-1}$ anm recrising you Re：dability ．．．（1－：）．Strerteth ．．．（I－9）．＂
form of repont．one trammils lis＇r．＂or simply （21ば，

C．Emergency Operating

 sucecold and construrtive commanicaliont，is that of emeremer operaling work．Before Worlh War II individual amatome amd eroups had scotes of recordod instances of parsioipa－ fom．handlaw information of ritical valuc by
 from hurvicane，food，earhquakes，blizzards and othel natural and msm－made disasters
that severed wire communication and transportation.

Following World War II, the F CC reopened amateur facilities in a limited manner just one week after V-J Day. on promit the reactivation of the . WRIRI, Emersency (oorps and the restomation of the widespreat :matear radio (apabilities to help loeal communities and the mation through the wiale geopraphical avait ability of amatrur stations. Fiven if amatemes do not find radio drills and activities poritnent to emargency preparedness (on 14t Me. and every low-frequency band) of the greatest interest and pleasure, amatems should wish to participate it AEC organization and pamning in order tocontinue such F(: © apmobation ams action in their behalf! so cevery reater who is an amateur is urged to subseribe to the Fimergency ('orps and parlicipate in wery local and national atotivity in any manmer redated to omergency preparation!

A eommunications emergency oreurs whenever nommal fatilitios are interrupted or overloaded, and may or may not involve general
 tion or dorlaration, I communications emergency need not involve a public relief or welfare cmorgenes. but the lathor romdition usually is acoompanied by a communications emorgemer.

Redief problems of the commmity at large. official messages from land Corss. military and rivie ofliciats, have absolute prionity in emergency. Radio rirnils must catry the impertant messages first, and when personal-safory messages are pomissible, in the judgment of operators in the affected area. it is cren then much more profitable to carry the burden of traflic and outgoing messages of safity, rather than rectuests for invesigating saledy which eannot beacted uponexerpt at a delemed date.

When FC' declates a condilion of eromeral communications emmerence, special amateur regulations (12.156) govern aboulutely, with the following provisions afferlive until the Commission doedares the emergeney ended:

1) No thamsmissions in the so-meter band may be made carept those relating to the relief or emergeney servide. Casual conversation, incidental calling or testing, remarks not portinent to the construetive handling of the ernergency fommunications, shatl be prohibited.
2) Band-edge segments of 2.5 ke. shall be reserved at all times for (a) cmorgency calling channels, (b) intitill calls from the isolated, (c) first calls intiating dispatch of impertant priority roliof matters. All stations shatl, for general communcation, shift fother withinband frequencies for carrying on communications.
3) Hourle ohservanere of mandatory guiet or listening periols, the first five minutes of cach hour. (No calls may be answered in this period. Only "utmost priobity" trafte may continue.)
4) For promulgating the emergenev-declarstion, and for policing-warning-observing work,

F(CC may designate certain amateur stations. Announcements from these stations will bo. identified by their reforence to $\$ 12.156$ by number, and their sperification of the date of the FOC's declaration, whith statement of the area and nature of the emergeney.

Emorgency calling froduencies - Regarding QRE, which callislimited to use of isolated stations for first emergency catls. special provisions and mothods are nevessary to assist the stations umber hathedeap of no commereial power. in remote sections, in getting contact and holp.

It is recommomderd be ARLRE, that frequencies at the band edgres be utilized for emergency calls when monernal emergency is deedared or in effeet. This lends point and sperefication to buildors of emergency equipmont. This spot on all hands is woll covered continuonsly by receivers. It gives hope to the iswlated operator that he be heard. All listeners are instructed to hunt for weak signals on such frequencies, during genoral emergency, for taking account of the isolated and establishing new important connections.

ARRL Emergency Corps - The ARIRL Emargoney (mps (AEC) is dedicated to organization of the amateur radio service for top performance in supplying emergency ratio communication whenever and wherever needed. The Limergency Corps has been organized and strengthened to insure maximum effectiveness at the same time it provides operating enjoyment for its members.

Limphasis is on radio activity and simulated emorgency nets. The organization chart and radio functional diagram will help you to understand the operation of the Corps. V.h.f. is the arcopted medium for loeal emergency communication. The 144-Mc, band is recommonded for local nets where practioathe. It fiband stations will be recruited for long-hatul cmergence recuirements. Drills and simalated emorgeney work are the aim in cach community. Ietivity in these will be required to keep in the Full Membership group.

Here is an official artivity in which you, as an amatour, will want to participate. If you have an operative station on 144-Nic. or other

468

amateur frequencies, aim to join the ARRL Emergency Corps. Work closely with the Emergency Coördinator (wherever appointed) and the sCM.

Why you should join - A mateur radio must carry forward its rolle of furnishing emergency communications. Disaster can and does strike where least expected! To cope with emergency problems wherever they arise the suppurt of amateurs throughout the mation is required. Pubtio servier in emergemens is part of the tradition of amateur radio, and substantial justifieation for the frequency assiguments granted by our gowernment. The AlRLL Fmergency Corps is an important activity.

RADIO FUNCTIONAL DIAGRAM

How to join - Application forms are available from your local EC, the local ARRLaffiliated club. your SCM or from League headquarters. One of these forms properly filled out and returned to the address indieated thereon, entiltes you to receive a caral certifying membership in the Fmergeney Corps. Vou will then be incladed in plans for on-therate tests. drills, and other interesting activities. Join now: A postal will bring you the application form.

(1) Operating Activities

Operating in the amateur bands offers many thrills. The "unexperted" is always aroumt the conner. Special activities are sponsored by the American Radio Relay Ioagur, adding to ham interest and fraternalism.

Within the ARRL field organization there are all-season and quarterly activitics. The first Saturday night each month is sot aside for all . $\mathrm{AR}[\mathrm{L}$ L officials, officers, and directors to get together over the air from thoir own stations, wherever located. The 3.j- Me. band is used and this first saturday night is known to the gang as AIRIRL Officials Nite.

As in all our operating. the idea of having a good time is eombined in the anmual Fiold Day with the more serious thought of preparing ourselves to shoulder the communication load as comergencies turn up and the oceasion requires. A premium is placed on the use of equipment without connection to commercial sources of power.

The Worked All States (IVAS) award is made available by ARRL to all amatemrs who have confirmed evidence of contacts with all states from one loration - as one example of available certificate awards. A DN゙ "Century Chub" certifisate likewise is given on all amateurs proving rontact with 100 countries in a like manner. Code Proficiency Certificates arr available for submitted copy of aural recerption at 15 to 35 words per minute, provided boma fide "eopy" of monthly qualifying runs chereks.

Progress in proficiency of code reception is shown after the initial test and the ARLRL certifieate award by a separate dated-and-initialed endorsement. This is arranged for display on the certificate. Every lieense is invited to go "all ont" for our awards by sending in copy transeribed by his personal efforts on one of the qualifying runs. See the latest issue of QNT for the current schedule of W1.AW Qualifying Runs. Get your certificate . . . then the progress awards!

Follow $Q S T$ each month for curront announcements of special simulated-emergency tests, concerning ARIRL Trunk line operation, A-1 Operator Club, Rag (howers Chab, Old Timers Chb, Fiehd Day, International DN and . Ill-Section Swerpstakes eompetitions, and others.

The booklet Operating an Amateur Ratio Station is sent gratis on request to Leagne members. and covers the rules for different A R L L A A wards as woll as the several leadership and station appoint ments granted amateursmembers of the Leatgue who are conducting bartieular types of services in an exemplary manner, to assist brother amateurs or build the ability of amateur radio to serve the eommunity and the nation. This 19-pare book deals: consecutively with Operating Practice. Emergency Communication, Operating Activities, ARIRL Field Organization, Leadership Appointments, Station Appointments, Handling Messages, Network Organizing and NCS Duties, Abbreviations, and FCC Regulations, Orders and Miscellany. If you are a League member mail a card for your free copy today.

INTERNATIONAL AMATEUR PREFIXES

Tomake possible identification of ealls heard on the air，the international telecominu－ nieations conferences assign to cach nation certain alphabetical blocks，from which all elasses of stations are assigned prefixes．The following prefixes are used by amateurs．

C	China（used unofficially）	07	Denmark
（ F ）	Chilo	PA	Netherlands
CM－（：O	Cuba	P．J	Curacao
CN	French Merocen	PK	Netherlands Jmijos：1，2．3，Java；4．Sumatran 5，
CP	Bolivia		Ditch Borteo；6，Celibhs－New（ininma．
C「	Portusilesc colonies：4，Cape Verde Ids．； 5 ，	$P{ }^{\text {P }}$	Andorra
	Port．Guinea；b，Angola；${ }^{2}$ ，Mozambillue； \boldsymbol{s}^{\prime} Port．India；9，Matao；10，Timer．	PY	Brazil
（＇I＇	Portugal：1，Portugal proper；2，Azores Ids．；3，	P＇／	Surimam（Nuth，Guiana）
	Madeira Ids．	S．M	Sweden
$\because \mathrm{C}$	Urumuay	SP	Poland
D）	Germany	$\mathrm{ST}-\mathrm{Sl} \mathrm{S}^{1}$	Egypt：SГ，Emyptian Rudan；SU，Egyot mroper
FiA	Sinain and colonies：1，2，3，4，5，7，Spain proper；	SV－SX	Grecee
	6，Balearie Ids．；8，Canary Ids．；9，Span．．ho rocco \＆No，Africa．	TA	Turkey
Fid	Eire	TF	Iceland
FH，	Lilwria	TG	Guatemala
H1 ${ }^{\circ}$	Iran（1＇0rsia）	TI	Costa Rica
ES	Estonit	$\mathrm{U}-\mathrm{UC}$	Union of Sneialistir Sowiet Republies：1－7，
F	France and eolonies：F3，F8，France proper：FAA， Algeria；F138，Madagascar：FD8，Tomo；F1\％8，		Furopean；8，9，0，Asiutic．I：B，Ukraine：UC： White Rusian．
	Cammroons：FF\％，Fr．West Africa：FG8，	VE	Canada
	Ginaleloupe：FI8，Fir．Indo－China；FK8， New Caledonia；FL8，Fr．Somaliland；FMs，	VK	Austrabia：2，3．5．6，8．Aust，moper：1，Papial Terr．； 7 ，Tasunani：ı：！New Guinea Terr
	Martinique；FN8，Fr．India；FO8，Fr．	VO	Newfoundland and Labrador
	Oceania；1PP8，St．Pierre de Miquelon；FQ8， Ir．Equatorial Africa；FIRS，Remion Ids．； FT4，Tunisia；FI＇8．New Helrides：Fl＇s，Fr， Guiana \＆Inini．	VI＇to V＇S	British rolonies and motertorates：VPl．Brit． Hondur：sx；：2，Jem：ard of Windward Ids．：3． Brit．Guiana；4，＇I＇rinidad and Tohago；5， Jamaina and Chyman Ids． 6 ，Barbados： 7
G	Great Britain exerjt：GI，Northern lreland； GM．Scothand：GW，Wales．		Bahanas；8，Falkiand Ils．；O，Bermuda；VQ1， Zanzihar： 2, Northern IRhodesia；3，Tangath－
HA	Hungary		yikas 4，Kenya；5．Ukandis；6，Brit．Somali－
III3	Swilurrand		land； 8 ．Mauritius and Chamos； 9 ，Srychodles；
H10	Eamalor		VR1，Gilbert of Ellice Inls，and Ocean Id．： 2,
H1I	Haiti		Fiji Ids．：3，Fanning Id．； $\mathbf{1}^{\text {，}}$ Solomon ide： 5，Tonga（Friemdy）Ids．；6，Pitcairn Id．；VSI．
HI	Dominitat Republic		Straits Scttlements；2，Federated Malay
11．J－11 K	Colombia		States：3，Non－federated Malay States：f，
HP	Republic of Panama		Brit．Vorth Borneo；5，Sarawak；6，Hong－
HR	Honduras		kong；7，Ceylon；8，Bahrein Id．；9，Maldive Its．
HS	Sialli	VU	British India
HZ	Herljaz	W	Continental United States of Amprica
1	Italy	XE	Meximo
，	Japan	X ${ }^{\text {d }}$	China
K	Continental United States of America	X\％	Burm
K．A	Philipuine Ids．	A	
K13－K゙Z	Territories and possessions of the［1．S．：KRG， Baker，Howland，American Phoenix Ids，	YI	Iray
	KGis，Guam；KHt，Hawaii：KJt，Johnston	YL	Lativia
	Island；KLAT，Naska；KMti，Midway Islands；	YM	Free City of Danzig
	KP4，I＇uerto Rico：KPb，I＇tmyra Group，	YN	Nicaragua
	Jarvis Id．；K．t，American Samoa；KV4，Vir－	YR	Roumanis
	Zone（Army）．	Ys	El Salvador
1．A	Norway	Y「－YU	Yugoslavia
LU	Argentina	YV	Venczuela
1．X	Luxembiourg	Z．A	Albania
LY	Lithuania	Z 3 to \％J	British colonies and protectorates；ZB1，Malta； 2，Gibraltar；\％C1，Transjordania；2，Cocos Ids．；3．Christınas Id．；4，Cypris；6，Palestine： ZD1，Sierra Leone；2，British Cameroons，
L\％	Bulparia		
MX	I＇s．Navy yards：NY＇－2，Canal Zonc；NY＇4， Guantinamo，Cuba．		
NY			Nigeria：3，Gambia；4，Gold Coast（Brit． Togoland）：6，Nyasaland；7．St．Helena；8，
OA	Peru		Ascension Id，：9，Tristan da Cunha；ZE1，
OH	Finland		southern Rhorlesia．
OK	Czochoslovakia	ZドーZし－Z．	1 New Zealand：\％Ki，Cook lids，Zanzibar；
ON	Belpium		Zh2，Nille；ZL，New Zealand proper；ZM， Brit．Samoa．
OQ	Belpian Congo	ZP	Paraguay
OX	Greenland	ZS－Z19－\％	Union of South Africa：7S1－2，4－6，South
OV	The Fucrocs		Africa proper；7S3，Southwest Afriea．

Index

[^13]

Formulas:	
A. C. Arerage, Effertive and I'	
Amplification \mathbf{F},	
Antenna Length	
Bias-Supply Bleede	
Bridge Balance	
Capacitive Reastin	
Capacity of Condense	
Cathode Bias.	
Characteristic Impedinwe	
Coefficient of Coupli	
Combined A.C. and	
Conluplex	
Conductance	
Critical Indurtanc	
Crystal Frequency	
Desion	
Frequency, 1	
Grid Impedanc	
Impedance.	
Inductance Calculatio	
${ }_{L R}$ Thdime Constant	
Modulation Impelani	
Modulator Transformers, Turns Ratio Mutual Condurtance.	
Ohm's daw (A.C)	
Ohm's Law (D.	
Paralled InymdancePlate Fificiency-	
Plater RevistancPot-1:ank Doik	
Power. ${ }^{\text {Power }}$	
Power Factor.	
RC Tlime Cons	
Reastance. Equivalent	
Respmanre.	
Rhombice	
Ripple	
Serime, Paralle and Soriss-Parallel Capmatics. 28 -24, 3,	
Series, Parallel and Series-Parallel Resistances $27-2 x, 3,3$	
in. 218	
Temperature Coeiticient of hexisiancy	
Time Constant	
Transformer Voll-Anpere Rating. 180	
Transmission-1.ine Length. 1088	
Voltage Divilers........................... ss $_{\text {, }}^{18} 8$	
Voltage-Regulator Limiting Resistor........... 180	
Ware	
Franklin Oscilator	
Frequency Alocations, Amal eur	
Frequency Deviation........................... 131	
Frequency Douhlers. $0_{0} 112$	
Freguency Measuement:	
Absorphion Frepuenry Meters. 396-3988Calibrated Revever	
Calibrated Reveciver with Auviliary Oscilator.... ${ }^{38: 3}$Comparison Methruls.400	
Frequency staudards.	
Heterodyne Frequeny Mimurs. 3 3nt-306	

Notes

The
 Catalog Section

In the following pages is a catalog-
file of products of the principal manu-
facturers who serve the shortwave
field. Appearance in these pages is
by invitation-space has been sold
only to those dependable firms whose
established integrity and whose prod-
ucts have met with the approval of the American Radio Relay League.

INDEX OF MANUFACTURERS * CATALOG SECTION水

Jhe Radio Amateur's Handbook

123
Airean Manufacturing Carparatian
90
Allied Radia Carporation
147
147
Altec-Lansing Corparation
69
69
American Lava Carporation
American Lava Carporation 48,49
American Radio Relay League, Inc. $1,2,53-61,138,144,150,151,152$
American Television \& Radia C 46
Amperex Electranic Corparation. 97
Astatic Corparation, The 78
Barker \& Williamson 88, 89
Birabach Radia Company 52
Bliley Electric Campany 46,47
8rach Manufacturing Carp., L. S 79
Brownina Laborataries, Inc. 121
Burgess Battery Company 13
Cambridae Thermionic Carparation 104
Cameradio Company 26
Condler System 125
Cardwell MIg. Corp., Allen D. 105
Centralab 66,67
Collins Radia Co. 100-103
Condenser Products Co. 1.42
Cornell-Dubilier Electric Coro 70,71
Deutschmonn Carp., Tobe 127
Fitel-McCullough, Inc 28, 29
Electric Soldering Iron Ca. 74
Elec:ro-Voice Carporation 72
Federal Telephane \& Rcio Carp. 32
Freed Transfarmer Company 15
General Electric Company 95
Hallicratters Co., The 3445
Hammarlund Manufacturing Ca . Inc. The . . 50, 5
Harrison Radio Company 145
Harvey Radio Company 136
Harvey Rad'a Laboratories, Inc 87
Heintz \& Kaufmar., Lid 118
Henry Radio Stores. 140
Hewlett-Puckard Co. 130131
Hytron Radio \& Electronics Corp 108, 109
International Resistance Co. 107
Instructograph Company 16
James Knight Co., The 68
Jensen Manufacturing Company 94
Johnson Co., E. F 134,135
Page
Page
PageMaguire Industries143
Mallory \& Ca., Inc., P. R. 65
Measurements Carparation 83
Micra-Switch Carparation 25
Millen Manufacturing Ca., Inc., James 30.31
Natianal Campany, Inc. 3-24
Newark Electric Campany 96
Ohmite Manufacturing Ca 92.93
Panaramic Radia Corparation 133
Par-Metal Praducts Carp 32
Petersen Radia Campany 91
Premax Praducts 139
Radia Carporation of America 76.77
Radia Praduct Sales Company 48
Radio Shack Corporation, The 81
Ravthean Manufaeturing Comnany 80,106
Rek-O-Kuł 64
Rider Publishers, Inc., John ト. 19
Sams \& Co., Inc. Howard 110
Sangamo Electric Company 26, 27
Schottland, Frederick D. 49
Shure Brothers. 82
Sigma Instruments. 22
SNC Manufacturing Co. 124
Sola Electric Campany 112
Solar Capacitor Sales Corp. 137
Sprague Products Campany 73
Standord Transformer Corporation 117
Supreme Transmifter Company. 62,63
Sylvania Electric Products Co. 84,85
Trimm, Inc. 98
Triplett Electrical Instrument Co., The 141
Turner Co., The 33
Ungar Electric Tools. 99
United Transformer Corp. 75
Universol Microphone Co. 111
Volpey Crystal Corp. 86
Vibroplex Co., The 128
Ward Leonard Electric Co. 129
Wirecorder Corooration 14
Workshop Associates. 120

NATIONAL DIALS

The four-inch N and $A D$ Dials have engine divided and die stamped scales respectively. The N Dial has a decimal vernier; the AD Dial employs a pointer. The planetary drive has a ratio of 5 to 1 , and is contained within the body of the dial. 2, 3, 4 or 5 scale. Fits $1 / 4^{\prime \prime}$ shaft. Specify scale.

$$
\begin{aligned}
& N \text { Dial } \text { List } \\
& \mathbf{S} \\
& A D \text { Dial } \text { List }
\end{aligned}
$$

"Velvet Vernier" Dial, Type B, has a compact variable ratio 6 to 1 minimum, 20 to 1 maximum drive that is smooth and trouble free The case is black bakelite. 1 or 5 scale. $4^{\prime \prime}$ diam. Fits $1 /{ }^{\prime \prime}$ shaft. Specify scale.
B Dial
List \$

The original "Velvet Vernier" mechanism is now available in a metal skirted dial $3^{\prime \prime}$ in diameter. The planetary drive has a ratio of 5 to 1 . It is available with 2, 3, 4, 5 or 6 scale and fits $1 / 4^{\prime \prime}$ shaft.

AM Dial

List \$
The BM Dial is a smaller version of the B Dial (described in the opposite column) for use where space is limited. The drive ratio is fixed. Although small in size, the BM Dial has the same smooth action as the larger units. 1 or 5 scale. $3^{\prime \prime}$ diam. Fits 1/f" $^{\prime \prime}$ shaft. Specify Scale.
BM Dial
List \$

INEXPENSIVE DIALS

TYPE R List \$ 15/8" Dio.

TYPE 0

List \$
$31 / 2^{\prime \prime}$ Dio.
TYPE L
List \$
$5^{\prime \prime}$ Dic.

TYPE K List $\$$
31/2" Dic.
TYPE M List \$
$5^{\prime \prime}$ Dic.

FOR INDIVIDUAL CALIBRATING

For experimenters who "build their own" and desire direct calibration. Fine for Freq. Monitors and VFO's.

- Dial bezel size $5^{\prime \prime} \times 71 /{ }^{\prime \prime}$
- Five blank ranges for direct calibration
- Employs Volvel Vernier Drive © 5 to 1 ratio
R Dial scale 3 anly bul marked $10-0 ; O, K, L, M$ scale 2 . All fil $1 / 4^{\prime \prime}$ shafts.

4 kNOBS

HRK (Fits $1 / 4^{\prime \prime}$ shaft)
Hack bakelite knob $2338^{\prime \prime}$ diam.
 able as follows

HRP-P (Fits $1 / 4^{\prime \prime}$ shaft) List $\$$
Black bakelite knob 11/4" long and $1 / 2^{\prime \prime}$ wide. Equipped with pointer.

HRP List $\$$

The Type
HRP knob has
no pointer,
but is other-
wise the same
as the knob
above.

DIAL SCALES			
Stale	Drvisions	Hion	Dirextion of Condenser Rotation for increase of diad reating
1	0.100.0	180°	Eiher
2	0.100	180°	Counter Clockwise
	1000	180°	Clockwise
4	150.3	270°	Clockwise
5 6	$\begin{aligned} & 200.0 \\ & 0.150 \end{aligned}$	3760 ${ }^{3}$	Clockwise Counter Clock

SB (Fits $1 / 4^{\prime \prime}$ shaft)

ACCESSORIES

ODL
A locking device which clamps the rim of $\mathrm{O}, \mathrm{K}, \mathrm{L}$ and M Dials. Brass, nickel plated.

ODD
 List $\$$

Vernier drive for $\mathrm{O}, \mathrm{K}, \mathrm{L}, \mathrm{M}$ or

A nickel plated brass bushing $1 / 2^{\prime \prime}$ diam.

RSL. (Fits $1 / 4^{\prime \prime}$ shaft) List $\$$ Rotor Shaft Lock for TMA, TMC and similar condensers.

The HRT is a new gray plastic tuning knob with chrome plated annearince eircle. The IIRT
 HRT Knob Lisis
The HRS Knobs are a new gray plastic knob with o 1^{3} "" dia. chrome plated skirt. HRS Knobs fit " dia. shalts. Three types are avail-

HRS-1 Knob ON. OFF through 30° rotation Lis1 $\$$ HRS-2 Knob 5-0-5 through 180° rotation
HRS-3 Knob 0.10 through 300° rotation

HRS-1

HRS. 2

NATIONAL PRECISION CONDENSERS

The Micrometer dial reads direct to one part in 500 . Division lines are approximately $1 / 4^{\prime \prime}$ apart. The dial revolves ten times in covering the tuming ranse, and the numbers visible through the small windows change every revolution to give consecutive numberins by tens from 0 to 500. The condenser is of extremely rigid construction, with four bearings on the rotor shaft. The drive, at the mid-point of the rotor, is through an enclosed preloaded worm gear with 20 to 1 ratio. Each rotor is individually insulated from the frame, and each has its own individual rotor contact. Stator insulation is Steatite. Plate shape is straight-line frequency when the frequency range is $2: 1$.

PW Condensers are available in 2,3 or 4 sections, in either 160 or 225 mmf per section. Larger capacities cannot be supplied

A single-section PW condenser with grounded rotor is supplied in capacities of 150, 200, 350 and 500 mmF , single spaced, and capacities up to 125 mmf , double spaced.

PW condensers are all with rotor shaft parallel to the panel.

PW-1R	Single section right	List $\$$	PW-3R	Double section right; single left	List $\mathbf{\$}$
PW-1L	Single section left	List $\$$		PW-3L	Double section left; single
PW-2R	Double section right	List $\$$	List $\mathbf{\$}$		
PW-2L	Double section left	List $\$$		right	
PW-2S	Single section each side	List $\$$	PW-4	Double section each side	List $\$$

NPW MODEL with micrometer dial.

Similar to PW models, except that rotor shaft is perpendicular to panel.
NPW-3. Three sections, each 225 mmF .

GEAR DRIVE UNITS with micrometer dial

NPW-O
List \$
Uses parts similar to the NPW condenser. Drive shaft perpendicular to panel. One TX-9 coupling supplied.

PW-O

List \$

Uses parts similar to the PW condenser. Drive shaft parallel to panel. Two TX-9 couplings supplied.

MICROMETER DIAL

PW-D

List $\$$

Identical with the dials used on the condensers and drives above. It revolves ten times in covering the complete range and as there is no gear reduction unit furnished, the driven shaft will revolve ten times, also. The PW-D dial fits a shaft ${ }^{5} / 6^{\prime \prime}$ in diameter.

NATIONAL RECEIVING CONDENSERS

Capacity	Minimum Capacity	No. of Plates	Air Gap	Lensth	$\begin{aligned} & \text { Catalog } \\ & \text { Symbol } \end{aligned}$	List
SINGLE BEARING MODELS						
$\begin{aligned} & 15 \mathrm{Mmi} . \\ & 95 \\ & 50 \end{aligned}$	$\begin{aligned} & 3 \mathrm{Mmf} . \\ & 3.25 \\ & 3.5 \end{aligned}$	3 4 7	$\begin{aligned} & .018^{\prime \prime \prime} \\ & .018^{\prime \prime} \\ & .018^{\prime \prime} \end{aligned}$	$\begin{aligned} & 13316^{\prime \prime \prime} \\ & 13 / 6^{\prime \prime \prime} \\ & 13 / 6^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { STHS. } 15 \\ & \text { STHS- } 25 \\ & \text { STHS- } 50 \end{aligned}$	s
DOUBLE BEARING MODELS						
35 Mmf. 50 75 100 140 150 200 250 300 335	6 MmI. 7 8 9 10 10.5 12.0 13.5 15.0 17.0	$\begin{array}{r}8 \\ 11 \\ 15 \\ 20 \\ 27 \\ 29 \\ 97 \\ 38 \\ 39 \\ 43 \\ \hline\end{array}$	$.026^{\prime \prime}$ $.026^{\prime \prime}$ $.026^{\prime \prime}$ $.026^{\prime \prime}$ $.026^{\prime \prime}$ $.018^{\prime \prime}$ $.018^{\prime \prime}$ $.018^{\prime \prime}$			\$
SPLIT STATOR DOUBLE BEARING MODELS						
$\begin{gathered} 50-50 \\ 100-100 \end{gathered}$	$\begin{gathered} 5-5 \\ 5.5 \div 5.5 \end{gathered}$	$\begin{aligned} & 11-11 \\ & 14-14 \end{aligned}$	$\begin{aligned} & .026^{\prime \prime \prime} \\ & .018^{\prime \prime} \end{aligned}$	$\begin{aligned} & 2^{23 / 4^{\prime \prime}} \\ & 2^{\prime \prime} 4^{\prime \prime} \end{aligned}$	$\begin{array}{r} \text { STD- } 50 \\ \text { STHD-100 } \end{array}$	\$

The ST Type condenser has Straight-Line Wavalength plates. All double-bearing models have the front bearing insulated to prevent noise. On special order a shaft extension at each end is available, for ganging. On double-bearing single shaft models, the roior contact is through a constant impedance pigtail. Steatite insulation.
NOTE - Type SS Condensers, having straight-line-capacity plates but otherwise similar to the Type ST, are available. Capacities and Prices same as Type ST.

Capacity	Minimum Capacity	No. of Plates	Air Gap	Length	Catalog Symbol	List
$\begin{aligned} & 15 \mathrm{Mmf} . \\ & 80 \\ & 25 \end{aligned}$	7 Mmf. 7.5	$\begin{aligned} & 6 \\ & 7 \\ & 9 \end{aligned}$	$\begin{aligned} & .055^{\prime \prime \prime} \\ & .055^{\prime \prime} \\ & .055^{\prime \prime} \end{aligned}$		$\begin{aligned} & \text { SEU. } 15 \\ & \text { SEU. } 80 \\ & \text { SEU. } 25 \end{aligned}$	5
$\begin{array}{r} 50 \\ 75 \\ 100 \\ 150 \end{array}$	co ${ }_{10}^{11.5}$	11 15 20 29	$\begin{aligned} & .096^{\prime \prime \prime} \\ & .026^{\prime \prime \prime} \\ & .026^{\prime \prime \prime} \end{aligned}$		SE- 50 SE- 75 SE-100 SE-150	
$\begin{aligned} & 200 \\ & 250 \\ & 300 \\ & 335 \end{aligned}$	$\begin{aligned} & 19 \\ & 14 \\ & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & 27 \\ & 39 \\ & 39 \\ & 43 \end{aligned}$	$\begin{aligned} & .018^{\prime \prime \prime} \\ & .018^{\prime \prime \prime} \\ & .018^{\prime \prime \prime} \end{aligned}$		$\begin{aligned} & \text { SEH-200 } \\ & \text { SEH } 950 \\ & \text { SEH }-300 \\ & \text { SEEH-335 } \end{aligned}$	

TYPE SE - All models have two rotor bearings, the front bearing being insulated to prevent noise. A shaft extension at each end, for ganging, is available on special order. On models with single shaft extension, the rotor contact is through a constant impedance pigtail. The SEU models (illustrated) are suitable for high voltages as their plates are thick polished aluminum with rounded edges. Other SE condensers do not have polished edges on the plates. Steatite insulation.

Capacity	Minimum Copacity	No. of Plates	L.ength	Cotalog Symbol	List
$\begin{aligned} & 150 \mathrm{Mmf} . \\ & 250 \\ & 350 \\ & 500 \\ & 1000 \end{aligned}$	9 Mmt 11 18 16 22	$\begin{aligned} & 9 \\ & 15 \\ & 20 \\ & 29 \\ & 58 \end{aligned}$		EMC-150 EMC-250 EMC-350 EMC.500 EMC. 1000	5

TYPE EMC - A general purpose condenser available in large sizes and having Straight-Line wavelength plates. They are similar in construction to the TMC Transmitting condenser, and have high efficiency and rugged frames. Insulation is Steatite, and Peak Voltage Rating is 1000 volts. Same sizes available with straight line capacity plates, type DXC condenser.

NATIONAL MINIATURE CONDENSERS

PSR - See table -

Type PSR condensers are small, compact, lowloss units with silver plating on conducting parts. Their soldered construction makes them particularly suitable for applications where vibration is present. Adjustment is made with a screw driver. Steatite base.

PSE - See table -

Type PSE condensers are similar to Type PSR, but are provided with a $1 / 4^{\prime \prime}$ diameter shaft extension at each end.
PSL - See table Type PSL condensers are similar to Type PSR, but aie provided with a rotor shaft lock, so that the rotor can be clamped at any setting.

M-30

List $\$$
Type M-30 is a small adjustable mica condenser with a maximum capacity of 30 mamf .
 $1 / 2^{\prime \prime}$. Isolantita base. W. $75,75 \mathrm{mmf}$. List $\$$ W. $100,100 \mathrm{mmf}$. List \$

Capocity	Minimura Capacity	No. of Platez	Air Gap	Catalog Symbol	List
15 mmf .	1.5 9.5	6	.017"'	UM-15	5
35 50	2.5	19	.017"'	UM-35	
75	3.5	22	. $017^{\prime \prime}$	UM-75	
100	4.5	28	.017"	UM-100	
10	1	8	.042"1	UM-10D	
25	34	14	.042'	UMA-25	
	BALANCED STATOR MODEL				
25 50	2	4.4 .4 $8.8-8$.017"'	UMB- $\frac{1}{5}$ UMB-50	-

Small padding condensers having very low temperature coefficient. Mounted in an aluminum shield $11 / 4^{\prime \prime}$ in diameter. The UM CONDENSER is designed for ultro high frequency use and is small enough for convenient nounting in PB-10 and RO shield cans. They are particularly useful for tuning receivers, transmitters, and exciters. Shaft extensions at each end of the rotor permit easy ganging when used with one of our flextile couplings. The UMB-25 Condenser is a balanced stator model, two stator; act on a single rotor. The UM can be mounted by the angle foot sup. plied or by bolts and spacers. See table for sizes.

Dimensions: Base $1^{\prime \prime} \times$ 21/4", Mountins holes $5 / 8^{\prime \prime} \times 1233^{\prime \prime}$ ', Axial length $21 / s^{\prime \prime}$ overall.

Plates: Straight line capacity, 180° rotation.

The UM-10D and UMA-25 condensers are double spaced versions of the UM condenser. The UMA-25 is assembled with nuts and bolts so that the eapacity may be reduced if desired.

NATIONAL NEUTRALIZING CONDENSERS

NC-600U
List $\$$
With standofl insulator

NC. 600 List $\$$
Without insulator
For neutralizing low power beam tubes requiring from . 5 to 4 mmf ., and 1500 max. total volts such as the 6L6. The NC-600U is supplied with a GS-10 standoff insulator screwed on one end, which may be removed for pigtail mounting.

STN

List 5

The Type STN has a maximum capacity of 18 mmF . (3000 V), making it suitable for such tubes as the 10 and 45 . It is supplied with two standoff insulators.

NC. 800A
 List $\$$

The NC.800A disk-type neutralizing condenser is suitable fir the RCA-800, 35T, HK-54 and similar tubes. It is equipped with a clamp to lock its setting. The chart below gives capacity and air gap for different settings.

NC. 75

List S
For 75T, 808, 811, 812 \& similar tubes.

NC-150
 List 5

For HK354, RK36, 300T, 852, etc.

NC-500
 List $\$$

For WE-251, 450TH, 450TL, 750 TL , etc.
These larger disk type neutralizing condensers are for the higher powered tubes. Disks are aluminum, insulation steàtite.

NATIONAL TRANSMITTING CONDENSERS

TYPE TMS
is a condenser designed for transmitter use in low power stages. It is compact, rigid, and dependable. Provision has been made for mounting either on the panel, on the chassis, or on two stand-off insulators. Insulation is Steatite. Voltage ratings listed are conservative.

TYPE TMH

features very compact construction, excellent power factor, and aluminum plates $.040^{\prime \prime}$ thick with polished edges. It mounts on the panel or on removable stand-off insulators. Steatite insulators have long leakage path. Stand-offs included in listed price.

Capacity	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	Catalos Symbol	List
SINGLE STATOR MODELS							
50 Mmf .	9	$33 / 4^{\prime \prime}$.085"	3500 v .	15	TMH-50	
75	11	$33 / 4^{\prime \prime}$. $085^{\prime \prime}$	3500 v .	19	TMH. 75	
100	12.5	51/8"	.085"	$3500 \mathrm{v} .$	25	TMH-100	
150	18	$61 \%^{\prime \prime}$. $085^{\prime \prime}$	$3500 \mathrm{v} .$	37	TMH. 150	
		51/8"	. $180^{\prime \prime}$				
DOUBLE STATOR MODELS							
35-35 MmF.	6-6	33/4"	.085"			TMH-35D	
50-50	8-8	$51 / 8^{\prime \prime}$.085"	3500 v .	13-13	TMH-50D	
75-75	11-11	61/2"	.085"	3500 v .	19-19	TMH-75D	

NATIONAL TRANSMITTING CONDENSERS

TYPE TMK

is a new condenser for exciters and low power transmitters. Special provision has been made for mounting AR-16 coils in a swivel plug-in mount on either the top or rear of the condenser, (see page 10). For panel or stand-off mounting: Steatite insulation.

Capacity	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	Catalog Symbol	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
SINGLE STATOR MODELS							
35 MmF .	7.5	$2^{\text {² }} 32^{\prime \prime}$.047"	1500 v .	7	TMK-35	
50	8	$23 / 8^{\prime \prime}$.047"	1500 v .	9	TMK-50	
75	9	211/16 ${ }^{\prime \prime}$.047"	1500 v .	13	TMK-75	
100	10	$3{ }^{\prime \prime}$.047 ${ }^{\prime \prime}$	1500 v .	17	TMK-100	
150	10.5	$35 / 8^{\prime \prime}$ "	.047"	1500 v .	25	TMK-150	
200	11.	$41 / 4{ }^{\prime \prime}$.047"	1500 v .	33	TMK-200	
250	11.5	$47 / 8^{\prime \prime}$.047 ${ }^{\prime \prime}$	1500 v .	41	TMK-250	
DOUBLE STATOR MODELS							
35-35 MmF.	7.5-7.5	$3^{\prime \prime}$.047"	1500v.	7-7	TMK-35D	
$\begin{aligned} & 5 b-35 \\ & 50-50 \end{aligned}$	$8-8$	$35 / 8^{\prime \prime}$.047 ${ }^{\prime \prime}$	1500v.	9-9	TMK-50D	
100-100		41/4"	.047"	1500v.	17-17	TMK-100D	
Swivel Mounting Hardware for AR 16 Coils						SMH	

TYPE TMC

is designed for use in the power stages of transmitters where peak voltages do not exceed 3000 . The frame is extremely rigid and arranged for mounting on panel, chassis or standoff insularors. The plates are aluminum with buffed edges. Insulation is Steatite. The stator in the split stator models is supported at both ends.

Capacity	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	Catalog Symbol	List Price
SINGLE STATOR MODELS							
50 MmF .	10	$3^{\prime \prime}{ }^{\prime \prime}$.077"'	3000 v .			
100	13	31/2",	.077"'	3000 v 3000 v	13	TMC-100	
150	17	$45 / 8^{\prime \prime}$	$.077^{\prime \prime},$	3000 v .	21	TMC-150	
250 300	23 25	$6 \prime \prime$ $63 / 4$ 18	$.077^{\prime \prime} .$	$\begin{aligned} & 3000 \mathrm{v} . \\ & 3000 \mathrm{v} . \end{aligned}$	$\begin{aligned} & 32 \\ & 39 \end{aligned}$	TMC-250 TMC-300	
300	25	63/4"					
DOUBLE STATOR MODELS							
$\begin{aligned} & 50-50 \mathrm{MmF} . \\ & 100-100 \\ & 200-200 \end{aligned}$	$\begin{gathered} 9-9 \\ 11-11 \\ 18.5-18.5 \end{gathered}$	$\begin{aligned} & 45 / 8^{\prime \prime} \\ & 63 / 4^{\prime \prime} \\ & 91 / 4^{\prime \prime} \end{aligned}$	$\begin{aligned} & .077^{\prime \prime} \\ & .077^{\prime \prime} \\ & .077^{\prime \prime} \end{aligned}$	3000v. 3000 v . 3000 v .	$\begin{gathered} 7-7 \\ 13-13 \\ 25-25 \end{gathered}$	TMC-50D TMC-100D TMC-200D	

NATIONAL TRANSMITTING CONDENSERS

TYPE TMA

is a larger model of the popular TMC. The trame is extremely rigid and arranged for mounting on panel, chassis or stand-off insulators. The plates are of heavy aluminum with rounded and buffed edges. Insulation is Steatite located outside of the concentrated field.

Capacity	Minimum Capacity	Lensth	Air Gop	$\begin{gathered} \text { Peak } \\ \text { Voltage } \end{gathered}$	No. of Plates	$\begin{aligned} & \text { Catalog } \\ & \text { Symbol } \end{aligned}$	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
SINGLE STATOR MODELS							
$\begin{aligned} & 300 \mathrm{Mmf} . \\ & 50 \\ & 100 \\ & 150 \\ & 230 \\ & 100 \\ & 150 \\ & 50 \\ & 100 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 15.5 \\ & 19.5 \\ & 29.5 \\ & 33 \\ & 30 \\ & 40.5 \\ & 91.5 \\ & 37.5 \end{aligned}$		$.077^{\prime \prime}$ $.171^{\prime \prime}$ $.171^{\prime \prime}$ $.171^{\prime \prime}$ $.265^{\prime \prime}$. $.855^{\prime \prime}$ $.359^{\prime \prime}$ $.359^{\prime \prime}$	3000 v. 0000 v . 0 6000 v . 6000 v . 9000 v . 18000v.	$\begin{aligned} & 23 \\ & 7 \\ & 15 \\ & 21 \\ & 33 \\ & 23 \\ & 33 \\ & 13 \\ & 25 \end{aligned}$	TMA. 300 TMA-50A TMA-100A TMA-150A TMA-230A TMA.100B TMA-150B TMA-100C	
DOUBLE STATOR MODELS							
$\begin{aligned} & 200-200 \mathrm{MmI} . \\ & 180.180 \\ & 50-50 \\ & 100.100 \\ & 60.60 \\ & 40-40 \end{aligned}$	$\begin{gathered} 15-15 \\ 10.10 \\ 1.5-18.5 \\ 17-17 \\ 19.5-19.5 \\ 18.18 \end{gathered}$		$\begin{aligned} & .077^{\prime \prime} \\ & .140^{\prime \prime} \\ & .155^{\prime \prime} \\ & .155^{\prime \prime}, \\ & .349^{\prime \prime} \\ & .343^{\prime \prime} \end{aligned}$	$\begin{aligned} & 3000 \mathrm{v} . \\ & 4000 \mathrm{v} . \\ & 600 \mathrm{v} . \\ & 6000 \mathrm{v} \\ & 9000 \mathrm{v} . \\ & 18000 \mathrm{v} . \end{aligned}$	$\begin{aligned} & 16-16 \\ & 94 .-94 \\ & 8.8 \\ & 14.14 \\ & 15-15 \\ & 1-11 \end{aligned}$	TMA-200D TMA-180D TMA-500 A TMA-100DA TMA-60DB TMA-400C	

TYPE TML

condenser is a 1 KW job throughout. Steatite insulators, specially treated against moisture absorption, prevent flashovers. A large self-cleaning rotor contact provides high current capacity. Thick capacitor plates, with accurately rounded and polished edges, provide high voltage ratings. Sturdy cast aluminum end frames and dural tie bars permit an unusually rigid structure. Precision end bearings insure smooth turning and permanent alignment of the rotor. End frames are arranged for panel, chassis or stand-off mounlings.

Capacily	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	Catalog Symbol	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
SINGLE STATOR MODELS							
75 Mmf. 150 100 50 245 150 100 75 500 350 250	25 60 45 99 54 45 35 39 23.5 55 45 35		$.719^{\prime \prime}$ $.469^{\prime \prime}$ $.469^{\prime \prime}$ $.459^{\prime \prime}$ $.344^{\prime \prime}$ $.344^{\prime \prime}$ $.344^{\prime \prime}$ $.819^{\prime \prime}$ $.219^{\prime \prime \prime}$ $.219^{\prime \prime}$	$80,000 \mathrm{v}$. $15,000 \mathrm{v}$. $15,000 \mathrm{v}$. $15,000 \mathrm{v}$. $10,000 \mathrm{v}$. $10,000 \mathrm{v}$. $10,000 \mathrm{v}$. $7,500 \mathrm{v}$ $7,500 \mathrm{v}$. $7,500 \mathrm{v}$.	$\begin{aligned} & 17 \\ & 97 \\ & 19 \\ & 9 \\ & 35 \\ & 87 \\ & 15 \\ & 11 \\ & 49 \\ & 33 \\ & 25 \end{aligned}$	TML-75E TML-1500 TML-1000 TML-50D TML-245B+ TML-100B+ TML-75B+ TML-500A+ TML-350A+ IML-250A +	
DOUBLE STATOR MODELS							
$\begin{aligned} & 30-30 \mathrm{MmI} . \\ & 60-60 \\ & 100-100 \\ & 60-60 \\ & 200-200 \\ & 100-100 \end{aligned}$	$\begin{aligned} & 12-12 \\ & 96-26 \\ & 97-27 \\ & 90-90 \\ & 30-30 \\ & 17-17 \end{aligned}$			20,000v. 15,000v. 10,000 v. $10,000 \mathrm{v}$ $7,500 \mathrm{v}$ 7. $7,500 \mathrm{v}$.	$\begin{gathered} 7-7 \\ 11-11 \\ 15-15 \\ 9-9 \\ 91-91 \\ 11-11 \end{gathered}$	TML-30DE TML-600D TML-1000B+ TML-600B+ TML-9000A TML-1000A +	

NATIONAL RF CHOKES

R-100 R-100U

List $\$$ R-100S

List $\$$
List S
These RF chokes are identical elecirically, but differ in mounting provisions. The R-100 employs pigtail leúds: the R-100 has pigtail leads and a standoff insulatior, the R-100S has cotter-pin lug terminals and a stand-off insulator. These chokes are available in $2.5,5$ and 10 millihenry sizes and are rated at 125 milliamperes.

R-300
 List \$
 R-300U
 List \$
 R-300S
 List $\$$

RF chokes R-300, R-300U and $R-300 \mathrm{~S}$ are similar in size to R-100 series but have higher current capacity. The R-300U s provided with a removable stand-off ineulator al one end. The R-300S has non-removable stand-off insulator and cotter-pin lug terminals. triductance values of $0.5,1.0,2.5$ ard 5.0 millihenries are available with a current rating of 300 millamperes. R-300, R-300U and R-300S are identical electricaily.

R-33

List $\$$

The R-33 series chokes are 2-section RF chokes and available in 1, 10, 50 and 100 microhenry sizes. They are rated at 33 milliamperes. The chokes dre wound on a 3 "/" long form and range in diameter up to ${ }^{5} 16$ " maximum diameter.

The R-33G choke is a 2 section 750 microhenry RF choke hermetically sealed in glass with a current rating of 33 milliamperes. The choke body is $7^{\prime \prime}$ long by $3 / 8$ " diameter.

R-159

List 5
For the 80 and 160 meter bands. Inductance $4 \mathrm{~m} . \mathrm{h}$., DC resistance 10 ohms, $D C$ current 600 ma . Coils honeycomb wound on Isolantite core.

R-154
 List $\$$
 R-154U
 List s

For the 20,40 and 80 meter bands. Inductance $1 \mathrm{~m} . \mathrm{h}_{\mathrm{i}}, \mathrm{DC}$ resistance 6 ohms. $D C$ current 600 md . Coils honeycomb wound on Isolantite core. The R-154U does not have the third mounting foot and the small insulator, but is otherwise the same as $\mathrm{R}-154$. See illustration.

R-175

List $\$$

The R-175 Ctrok i; sultabls for parallel-feed as viell as seriss-feed in transmitters with plate supply up to 3000 volis modulated or 4000 volts unmodulated. Unlike conventional chokes, the reactance of the R-175 is high through. out the 10 and 20 meter bands as well as tine 40, 80 and 160 meter bands. Inductance 225 wh, distributed capocity 0.6 mmF ., DC resistance 6 ohms, DC current 800 ma., voltage breakdown to base 12,500 volts.

R-50 RF Choke List S

The R-50 series chokes are 4 -section RF chokes and ovailable in $0.5,1,2.5$, and 10 millihenry sizes. They are rated at 50 milliamperes. The chokes are wound on a $1^{\prime \prime}$ long form and have a maximum diameter of $15 / 32^{\prime \prime}$. The 10 millihenry choke is wound on an iron core.

R-60 RF Choke List \$

The R-60 choke is a high current RF choke (500 milli. amperes) availatle in 2 and 4 microhenry sizes. The choke is $11 / 3^{\prime \prime}$ long by $516^{\prime \prime}$ diameter.

TRANSMITTER COIL FORMS

The Transmitter Coil Forms and Mounting are designed as a group, and mount conveniently on the bars of a TMA condenser. The larger coil form, Type XR-14A, has a winding diameter of $5^{\prime \prime}$, a winding length of $33 / 4^{\prime \prime}$ (30 turns total) and is intended for the 80 meter band. The smaller form, Type XR-10A, has a winding length of $33 / 4^{\prime \prime}$ and a winding diameter of $21 / 2^{\prime \prime}$ (26 turns total). It is intended for the 20 and 40 meter bands.

Either coil form fits the PB-15 plug. For higher frequencies, the plug may be used with a self-supporting coil of copper tubing. The XB-15 Socket may be mounted on breadboards or chassis, as well as on the TMA Condenser.

SINGLE UNITS

XR-10A, Coil Form only XR-14A, Coil Form only PB-15, Plug only
XB-15, Socket only
Llst $\$$

ASSEMBLIES

UR.10A, Assombly (Including smsll Coll Form, Plue und Socket) List $\$$ UR-14A, Assembly (including large Coil Form, Plug and Sorket) List \$

EXCITER COILS AND FORMS - TYPE AR-16 (Air Spaced)

These air-spaced coils are suitable for use in stages where the plate input does not exceed 50 watts and are available in the sizes tabulated below. Capacities listed will resonate the coils at the low freauency end of the band and include all stray circuit capacities. All have separate link coupling coils and all fit the PB-16 Plug and XB-16 Socket.
The XR-16 Coil Form also fits the PB-16 Plug and XB-16 Socker. It has a winding diameter of $11 / 4^{\prime \prime}$ and a winding length of $13 / 4^{\prime \prime}$.

Band	End Link	$\begin{aligned} & \mathrm{Cap}_{\mathrm{ap}} \\ & \mathrm{MmI} \end{aligned}$	$\begin{aligned} & \text { Center } \\ & \text { Link } \end{aligned}$	$\begin{gathered} \text { Cap } \\ \text { Mmb } \end{gathered}$	Swinging Link	$\mathrm{Cap}_{\mathrm{Mmp}}$
6 meter	AR16.6E	25	AR16-6C	25		
20 meter	AR16-90E	26	AR16-20r	26	AR16-90S	25 40
40 meter	AR16-40E	33	AR16-40C	33	AR16-40S	55
80 meter	AR16-80E	37	AR16-80C	37	AR16-80S	60

XR-16, Coil Form only PR-16, Plug-in Base only XB.16, Plug-in Socket only List \$ AR-16, Coils-Any type (see table). Include PB-16 Plug is illustrated Each, List \$

BUFFER COIL FORMS

National Buffer Coil Forms are designed to mount directly on the tie bars of a TMC condenser using the PB-5 Plug and XB-5 Socket. Plug and Socket are of molded R-39.

The two coil forms are of Isolantite, left unglazed to provide a tooth for coil dope. The larger form, Type XR-13, is $1 \frac{3}{4} 4^{\prime \prime}$ in diameter and has a winding length of $2 / 4^{\prime \prime}$. The smaller form, Type XR-13A, is $1^{\prime \prime}$ in diameter and provides a winding length of $23 / 4^{\prime \prime}$. Both forms have holes for mounting and for leads.

SINGLE UNITS
XR-13, Coilform only List s XR-13A, Coil Form only List \$ PB-5, Plug only List S XB-5, Socket only List \$
ASSEMBLIES
UR-13A, Assembly (including small Coil Form, Plug and Socket

List \$
UR-13, Assembly (including large Coil Form, Plug and Socket) List $\$$

FIXED-TUNED EXCITER TANK

PLUG.IN BASE AND SHELD

FIXED TUNED EXCITER TANK

Similar in general construction to National I.F. transformers, this unit has two 25 mmf ., 2000 volt air condensers and an unwound XR-2 coil form.
FXT, without plug-in base
FXTB-5, with 5 prong base
FXTB-6, with 6 prong base

PLUG-IN BASE AND SHIELD

The low-loss R-39 base is ideal for mounting condensers and coils when it is desirable to have them shielded and easily removable. Shield can is $2^{\prime \prime} \times 23 / 8^{\prime \prime} \times 41 / 8^{\prime \prime}$.
PB-10-5, (5 Prong Base \& Shield) PB-10.6, (6 Prong Base \& Shield) PB-10A-5, (5 Prong Base only) PB-10A-6, (6 Prong Base only)

List \$
List $\$$
List $\$$

SAFETY GRID AND PLATE CAPS

National Safety Grid and Plate Caps have a ceramic body which offers protection against accidental contact with high voltage caps on tubes.

SPP-9
List $\$$
Ceramic insulation. Fits 9/16" diameter.
SPP-3
List $\$$
Ceramic insulation. Fits $3 / 8^{\prime \prime}$ diameter.

GRID AND PLATE GRIPS

National Grid and Plate Grips provide a secure and positive contact with the tube cap and yet are released easily by a slight pressure on the ear.
Type 12 , for $9 / 16^{\prime \prime}$ Caps
List $\$$
Type 24, for $3 / 8^{\prime \prime}$ Caps
List $\$$
Type 8, for $1 / 4^{\prime \prime}$ Caps
List $\$$

NATIONAL PARTS

COIL FORMS

XR-1, Four prong, List $\$$ XR-2, without prongs

List $\$$
Molded of R-39, permitting them to be grooved and drilled. Coil form diameter $1^{\prime \prime}$, length $11 / 2^{\prime \prime}$.
XR.3 List $\$$ Molded of R-39. Diameter "16", length 3/4". Without prongs.
XR-4, Four prong, List $\$$ XR-5, Five prong, List $\$$ XR-6, Sixprong, List $\$$ Molded of R-39, permitting them to be grooved and drilled. Coil form diameter $11 / 2^{\prime \prime}$, length $21 / 4^{\prime \prime}$. A special socket is required for the sir. prong form.
XC6C, Special six-prons socket for XR-6 Coil Form, List $\$$

OSCILLATOR COIL OSR List $\$$

A shielded oscillator coil which tunes to 100 KC with .00041 MFd. Two separate inductances, closely coupled. Excellent for interruptionfrequency oscillator in superregenerative receivers.

POLYSTYRENE COIL FORMS

COIL SHIELDS

RZ, coil shield List \$
$73 / 8^{\prime \prime}$ square $\times 4^{\prime \prime}$ high.
RS, coil shield List $\$$ $17 / 6^{\prime \prime} \times 17 / 8^{\prime \prime} \times 3 \frac{1}{2^{\prime \prime}}$ high.
RO, coil shield List $\$$
$2^{\prime \prime} \times 23 / 8^{\prime \prime} \times 41 / 8^{\prime \prime}$ high.
Nationa! coil shields are formed from a single piece of pure aluminum. They are mechanically strong and have ample thickness to mount small parts on the walls.

The RZ, RS and RO coil shields are supplied with two threaded studs extending downward from the open end for attaching to the chassis.
T-78, tube shield complete
List $\$ \$ 20$
National fube shield type T-78 is a three-plece pure aluminum shield suitable for shielding glass tubes with ST-12 bulb, such as the 6C6 and 606 tubes.

RO

JACK SHIELD

JS-1, Jack shield List S For shielding smal! standard jacks mounted behind d panel, or on the ends of extension cords.

H. F. COIL FORMS

Symbol	Outsid. Diameter	Longth	Llst
PRC-1 PRC- 2 PRC- 3		$\begin{aligned} & 3 / 6^{\prime \prime} \\ & 1 / 2 \\ & 3 / 4 \end{aligned}$	\$
$\begin{aligned} & \text { PRD-1 } \\ & \text { PRD- } \end{aligned}$	$\begin{aligned} & 1 / 1{ }^{\prime \prime \prime} \\ & 1 /{ }^{\prime \prime} \end{aligned}$	1/2"	
PRE-1	${ }^{9} 16{ }^{\prime \prime}$	3/"',	
PRE-3	$916{ }^{\prime \prime}$	$9^{\prime \prime}$	
PRF-1		$1{ }^{3}$	

NATIONAL CABINETS

The National Cabinets listed below are the same as those used in National Receivers, except that they are supplied in blank form. They are made of heavy gauge steel, and the paint is unusually well bonded to the metal. Sub-bases and bottom covers are included in the price.

	With	Ftam	Dophr	Lin Pricol
Type C-SW3	93/4"	$7{ }^{\prime \prime}$	$9{ }^{\prime \prime}$	
Type C-NC100	171/4"	$83 / 4^{\prime \prime}$	111/4"	
Type C-HRO	$163 / 4^{\prime \prime}$	$83 / 4^{\prime \prime}$	$10^{\prime \prime}$	
Type C-One-Ten	11"	7"	$71 / 4^{\prime}$	
Type C.SRR	$71 / 2^{\prime \prime}$	$7{ }^{\prime \prime}$	71/2"	

NATIONAL PARTS

IFM

1FG, IF Transformer
 IFH, Discriminator
 List $\$$
 List $\$$

High frequency If transformers, similar in construction to the IFC obove. They sre intended for $F M$ receivers and others requiring a high IF frequency. Frequency is 3 MC. When definite assignment of the bands has been made these transformers will be avalable in ofrequency which gives the minimum images in the FM and television bands.

15 Mc. IF transformers suitable for ultra high frequency superheterodynes. They are made in two models, with and without variable coupling. Approximate stage gain of 10 is obtained with IFJ or IFK Transformer and 6AB7 tube. IFJ, with variable coupling List $\$$
IFK, with fixed coupling List $\$$

I. F. TRANSFORMERS

IFC, Transformer, air core List $\$$
IFCO. Oscillator, dir core
List $\$$
Air dielectric condensers isolated from each other by on aluminum shield. Litz wound coils on a moisture proofed ceramic base. Shield can $41 / \mathrm{Al}^{\prime \prime} \times 23 / 8^{\prime \prime}$ $\times 2^{\prime \prime}$. Avallable for either 175 KC or 450-550 KC. Specify frequency.

IFL, IFM, IFN and IFO transformers operate at 10.7 Mc. and designed for use in AM or FM Superheterodyne receivers. The transformer cans are $13 s^{\prime \prime}$ square and siand $3!/{ }^{\prime \prime}$ above the chassis. Two 6-32 spade bolts are provided for mounting.

The IFL transformer is a 10.7 Mc. FM discriminator transformer suitable for use in conventional FM receiver discriminator circuit and is linear over a band of $\pm 100 \mathrm{Kc}$.

The IFM transformer is a 10.7 Mc. IF transformer with a 150 Kc. bandwidth at 1.5 db attenuation. Approximate stage gain of 30 is obtained with IFM Transformer and 6SG7 tube.

The IFN transformer is a 10.7 Mc. IF transformer with o 100 Kc . pass band at 1.5 db attenuation. Approximate stage gain of 30 is obtained with IFN Transformer and 6SG7 tube.

The IFO transformer is o 10.7 Mc. FM discriminator transformer of the ratio type and is linear over a band of $\pm 100 \mathrm{Kc}$.
IFL FM Discriminator
List \$
IFM IF Transformer List \mathbf{S} IFN IF Transformer List \$
IFO FM Ratio Discriminator List $\$$

CHART FRAME

The National Chart Frame is blanked from one piece of metal, and includes a celluloid sheet to cover the chart. Siza $21 / 4^{\prime \prime} \times 31 / 4^{\prime \prime}$, with sides $1 / 4^{\prime \prime}$ wide.
Type CFA

List $\$$

COIL DOPE

CD-1, $1 / 4$ pint can List $\$$
Liquid Polystyrene Cement is ideal for windings as it will not spoil the properties of the best coil form.

TOUCH-UP PAINT

A high quality air-drying paint that may be applied with a brush. It is especially suited to touching up places on radio equipment where the paint may have become marred through abrasion.

CP-1, gray

List \$ (P-2, black

List $\$$

SPEAKER CABINETS

NDC-8 for $8^{\prime \prime}$ speaker
List $\$$
NDC-10 for $10^{\prime \prime}$ speaker List $\$$
NDC-2 for $10^{\prime \prime}$ speaker List $\$$

These metal speaker cabinets are acoustically correct. They are lined with acoustic felt, and are of welded construction to eliminate rattles. Finish is black wrinkle on NDC-8 and NDC-10. NDC-2 is finished in gray wrinkle to match the NC-2 400 receiver.

NDC- 8

NATIONAL LOW-LOSS SOCKETS AND INSULATOR!

XLA
A low-loss socket for the 6 F 4 and 950 series acorn fubes for frequencies as high as 600 MC . Conventional bypass condensers may be compactly mounted between the contact terminals and the chassis. Low contact resistance, short and direct leads and low and constant inductance are features.

XLA-S

List $\$$
An internal shield fitting the XLA socket and suitable for tubes such as the 956.

XLA-C

List $\$$
This miniature by-pass condenser may be mounted inside the socket, directly below the contact. Capacities of 50 or 100 mmF . dvailable.

XCA List $\$$
A low loss socket for acorn triodes.

XMA

List $\$$
For pentodo acorn tubes, this sockel has built-in by-pass condensers. The base is a copper plate.

XM-10
List $\$$
A heavy duty metal shell socket for lubes having the XU base.

XM. 50
List $\$$
A heavy duty metal shell socket for tubes having the Jumioo 4 -pun base ("firty watrers").

JX. 50
List $\$$
Withoul Standolf Insulators

JX-51

List $\$$

A low loss wafer socket for the 813 and other tubes having the Giant 7 pin base.

HX-100S

List $\$$

With Standoff Insulators
A low loss wafer socket suitable for the type 4-125-A, 4-250-A and other tubes using the Giant 5 -pin base. Shield grounding clips are supplied which mount on the chassis with the socket mounting screws toground the pube shield of three doints. Air holes are provided in the socket to permit forced air cooling.

GS-1, $152^{\prime \prime} \times 1 \frac{3}{8} 8^{08}$
GS-2, $11^{\prime \prime} \times 278^{\prime \prime}$
GS-3, $3^{\prime \prime} \times 27 / 8^{\prime \prime}$
GS-4, 水" ${ }^{\prime \prime} \times 478^{\prime \prime}$
GS-4A, ${ }_{4}^{3}=67 / 8^{\prime \prime}$
Cylindrical low-loss steatite standoff insulators with nickel plated caps and bases.

GSJ, (not illustrated) List $\$$
A special nickel plated iack top threaded to fit the "4" diameter insulators GS-3, GS-4 \& GS-4A.

GS.5, 1 1/4"
List, each s
GS-6, 2"
List, each $\$$
GS-7, $3^{\prime \prime}$
List, each
GS-10, 3"", package of 10 Liss $\$$
These cone type standoff insulators ore of low-loss steatite. They have a tapped hole at each end for mounting.

GS-8, with terminal
List $\$$
GS.9, with jock
List $\$$
These luw-loss sleatise standoff insulators are also useful as lead-through bushings.

HX- 29

List $\$$
A low-loss wafer socket with steatite 832 tubes

XC Series

Sockets

$x \subset-4$
 $\times \mathrm{x} .5$
 $\times \mathrm{x}-6$
 $\times \mathrm{xC} .75$
 XC. 7 L
 XC. 8

National wafer sockets have exceptionally good contacts with high current capacity together with low loss steatite insulation. All tyoes have a locating groove to make fube insertion edsy.

IATIONAL LOW-LOSS SOCKETS AND INSULATORS

FWG
List \$
A Victron terminal strip for high frequency use. The binding posts take banana plugs at the top, and grip wires through hole at the bottom, simultaneously, if desired.

FWH

List \$
The insulators of this terminal assembly are molded R-39 and have serrated bosses that allow the thinnest panel to be gripped firmly, and yet have almple shoulderis. Binding post! same as FWG above.

FWJ

List $\$$
This assembly uses the same insulators as the FWH above, but has jacks. When used with the FWF plus (below), there is no exposed metal when the plug is in place.

FWF

 List \$This molded R - 39 piug has tiwo banana plugs on $3 / 4^{\prime \prime}$, centers and fits FWH or FWJ above. Leads may be brought out through the top or side.

FWA, Post List, each \$ Brass Nickel Plated
FWE, Jack List, each \$ Brass Nickel Plated
FWC, Insulator
List, per pair \$
R-39 Insulation
FWB, Insulator List, each \$
Polystyrene insulation

CIR Series Sockets

Any Type List \$

Type CIR Sockets feature low-loss isolantite or steatite insulation, a contact that grips the tube prong for its entire length, and a metal ring for six position mounting.

AA. 3
A low-loss steatite spreader for 6 inch line spacing. (600 ohms impedance with No. 12 wire.)

AA. 5
 List \$

A low-loss steatite dircrafttype strain insulator
AA. 6
List \$
A general purpose strain insulator of low-loss steatite.

XS-6

List, each \$

A low-loss isolantite bushing for $1 / 2^{\prime \prime}$ holes.
XP-6 Same as above but polysterene.

List, box of ten \$

TPB
List, per dozen \$
A threaded polystyrene bushing with removable 093 conductor moulded in, $1 / 4^{\prime \prime}$ diam., 32 thread.
 XS-8, ($1 / 2^{\prime \prime}$ Hole) List \$
Steatite bushings. Prices include male and female bush. ings with metal fittings.

XS-1, (1" Hole) List \$
XS-2, ($11 / 2^{\prime \prime}$ Hole) List \$
Prices listed are per pair, including metal fittings. Insulation steatite.

XS-3, (23/4" Hole) List \$ XS-4, ($33 / 4^{\prime \prime}$ Hole) List \$
Prices are per pair, including metal fittings. These low-loss stealite bowls are ideal for lead-in purposes at high voltoges.
XS-5, Without Fittings List, each \$
XS-5F, With Fittings
List, per pair \$
These big low-loss bowls have an extremely long leakage path and a $51 / 4$ " flange for bolting in place. Insulation steatite.

NATIONAL PARTS

The SC-1, SC- 2 and SC. 3 are crystal mounting sockets for crystal halder, with mounfing pins spaded $0.500^{\prime \prime}, 0.486^{\prime \prime}$ and $.750^{\prime \prime}$ respeclively and pin dameters of $1 / 16^{\circ}, 33^{2} ?^{\prime \prime}$ and " ${ }^{\prime \prime}$ "respectively. Steatite Insulation. Single 4.36 or 4.40 screw mounting for CS-1 and CS-2; single 6.32 screw mounting for CS. 3.

SC-1	List $\$$
SC-2	List
SC-3	List $\$$

The AR- 2 and AR- 5 coils are high O permeability luned RF coils. The AR- 2 coll tunes from 75 Mc . to 220 Mc. with capacities from 100 to 10 micro-micro farads. The AR-5 coil tunes from 37 Mc . to 110 Mc . with capacities from 100 to 10 micro-micro-larads. The inductive windings supplied may be replaced by other windings as desired to modify the lun. ing range.
AR-2 High Frequency Coil Lists
AR. 5 High Frequancy Coil List $\$$

The X'R-50 coil forms may be wound as desired 10 provide a permeability tuned coll. The form winding length is "11 "10 " and the form winding diameter is ${ }^{1}$, inch. The iron slug is "s "dia. by 1/2"long. XR-50

Liss \$

The XOA Socket is a socket for the Miniature Buiton 7 Pin base fubes. Low loss mica filled bakelite insulation. Mounts with iwo 4-40 serews. Socket contacts extend axially from base of socket.
XOA
List \$

The XOR Socket is the same as the XOA Socket excepl that the contacts extend radially from base of socket. XOR

List $\$$

The XOS tube shield is a two piece shield for the Miniature Button 7 Pin base tubes. The shield is avalable in three sizes corresponding to the $1^{3} 14^{\prime \prime}, 1^{1} 2^{\prime \prime}$ and $2^{\prime \prime}$ tube body heights. The shield contains a spring which centers tube in shield and holds tube and shield hrmlv in niace. The two 4.40 sonde holts serve to mount the XOA or XOR Socket and the XOS tube shield.

XOS-1 For 1 s/i" high tube body Lisis

XOS-2 For $11 / 2$ " high tube body Lisis

XOS-3Fors"hightod, Lis $\$$

NATIONAL SHAFT COUPLINGS

TX-1, Leakage path $1^{\prime \prime}$
List $\$$
TX-9, Leakage path $21,2^{\prime \prime}$.
Flexible couplings with glazed steatite insulation which fit $1 / 4^{\prime \prime}$ shafts.

TX-8

List $\$$
A non-flexible rigid coupling with steatite insulation. $1^{\prime \prime}$ diam. Fits ${ }^{1} 4$ " shaft.

TX-9

List \$

This small insulated flexible coupling provides high electrical efficiency when used to isolate circuits. Insulation is steatite. $1^{5}: "$ diam. Fits $1^{\prime \prime}$ shaft.

TX-10

List 5
A very compact insulated coupling free from backlash. Insuldfion is canvas Bakelite. 11/16" diam. Fits ${ }^{1} 4$ " shaft.

TX-11

List $\$$
The flexible shaft of this coupling connects shafts at angles up to 90 degrees, and eliminates misalignment problems. Fits $1 / 4^{\prime \prime}$ shafts. Length $4!4$

TX-12, Length $4^{5} \leq "$ List $\$$
TX-13, Length 71:" List \$
These couplings use flexible shafting like the TX-11 above, but are also provided with steatite insulators at each end.

NATIONAL HRO-5A1

DESCRIPTION

The development of the National HRO-5A1 Radio Receiver brings the famous HRO series to a new high in receiver performance.
Items characterizing the HRO-5A1 Receiver are as follows: Two R.F. preselector stages; separate mixer and local oscillator fubes; two I.F. stages with a crystal filter employing phasing and selectivity controls; combined second detector AVC and second audio stage; first audio stage; double action limiter stage; audio output stage; C.W. oscillator with pitch control; and a signal strength meter Metal tubes, first used in the HRO-5, are also employed in the HRO.5A1. The Loud Speaker and Power Unit are separate units. The data listed below indicates the versatility and the extremely high standards of performance to be found in the HRO-5A1.

CONTROLS

Main Tuning Dial: AVC Switch: B+ ON-OFF; Audio Gain; R.F. Gain; C.W. Oscillator Pitch Control; Selectivity Control; Phasing Control; S-Meter Switch; Limiter Control.

SPECIFICATIONS

Frequency Range:

The Frequency Range of the HRO-5A1 with the 4 Coil Sets normally supplied is $1.7-30.0 \mathrm{MC}$. Each Coil Set covers the frequencies listed below:

Coil Set

D
C
A

General Coverage Bandspread
$1.7-4.0 \quad 3.5-4.0$ $3.5-7.3 \quad 7.0-7.3$ $7.0-14.4 \quad 14.0-14.4$
$14.0-30.0 \quad 28.0-30.0$

NATIONAL Coil Sets to cover the low frequency range of the receiver are available as follows:
Type J $50-100 \mathrm{KC}$. TypeF 480 - 960 KC .
Type H 100 - 200 KC. Type E 900 - 2050 KC.
Type G $180-430 \mathrm{KC}$.

SELECTIVITY:

	Crystal Filter Out
6 DB.	3.0 KC .
	Crystal Filter In 21
Max. Selectiviv Min. Selectivity	20 DB 200 Cycles 20 DB 6.0 KC.

6.0 KC .

SENSITIVITY:

The sensitivity of the HRO-5A1 is 1 . microvolt or better throughout the normal frequency range.

POWER INPUT:

Using Type 697 Power Pack; 75 watts at 115 volts, 50,60 cycles, 1 phase AC.

POWER OUTPUT:

Maximum output 3 watts. Output with negligible distortion 1.5 watts.

PRICES

Table Model (with rubes \& A,B,C,D coils)
List \$
Rack Model (with fubes \& A, B, C, D coils)
List \$
Table Model MCS Loud Speaker List \$ Rack Model RFSH Loud Speaker List \$ Table Model 697 Power Unit
Rack Model SPLI-697 Power Unit
List \$
List \$

NATIONAL HRO-5C

Description

The HRO-5C is a Deluxe Receiver Installation consisting of an HRO-5A1 Receiver with SPC Unit (power unit, coil container and loud-speaker) in a MRR Table Rack. Chromium-plated appearance strips and side trim strips are included.

The HRO series of receivers is an honored product of the National Company. The HRO-5A1, newest and finest of these receivers, features a number of addifional refinements among which are a new highly efficient noise limiter and a redesigned hexible crystal filter. Circuit revisions have been made to further improve the performance
standards of this outstanding Receiver. For a detailed description of the HRO-5A1 Receiver supplied on the HRO-5C Deluxe Installation, see page 18 in this catalog.
HRO-5A1 Receiver, with fubes and A, B, C, D Coils

List \$
List $\$$

List \$

List $\$$

20

NATIONAL NC-2-40

DESCRIPTION

Designed for the radio amateur, the NC-2-40D series of superheterodyne receivers are also suliable for general communications sarvice in the 490 to $30,000 \mathrm{KC}$. range. Calibrated electrical bandspread tuning is provided for the $80,40,20$, and 10 meter radio amateur bands. Features included are a full vision, easy to read, calibrated dial witho general coverage and 4 bandspread scales, a single tuning and band switching control knob, a stable high frequency oscillator circuit, a fexible crystal filter, a series valve noise limiter and an a'railiary numerical logging dial. These outstanding features plus conventional items such as a signal strength meter, phonograph or high level microphone pickup iack, on automatic volume control circuit, a beat frequency oscillator for CW reception, a tone control, a phones jack, and a 115-230 volt A.C. change-over switch provide the operator with d means for coping with a wide variety of receiving condificns and requirements.

CONTROLS

Band Tuning and Band Switching; RF. Gain Control and Signal Strength Meter Switch; Audio Gain; B+ -ON OFF; Selectivity; Limiter; Tone; CW Oscillator; A.V.C.; Phasing.

SPECIFICATIONS

Frequency Range:

General Coverage:
490 KC . to 30 MC .

Band Spread:

28 to 30 MC
14 to 14.4 MC.
7
3.5 to 7.3 MC.

Selectivity:

Crystal Filter OFF
Voltage Ratio

Nominal Banduridth

ϵ DB
4.0 KC

60 DB
22.0 KC

Crystal Filter In - 20 DB Voltage Ratio
Position

SENSITIVITY

Less than 1 microvolt input produces a 6 DB signal to noise ratio.

POWER INPUT

Approximately 70 watts; either $110-120$ or 220 240 volits $50 / 60$ cycle, 1 Phase A.C. A plug and socket is provided for convenient external battery connection as necessary for battery operation.

POWER OUTPUT

A 10,000 ohm output circuit delivers 8 watts with negligible distortion.

PRICES

$\begin{array}{ll}\text { Rack or Table Model (with tubes) Lissi } \mathbf{\$} \\ \text { Rack or Table Model Speaker } & \text { List } \mathbf{\$}\end{array}$

DESCRIPTION

The National NC-46 is a 105 to 130 Volt AC. DC recelver which provides 3 walts of audio output. The Receiver tunes the Broadcast and Short Wave bands and employs 10 tubes. Electrical bandspread is provided for vernier tuning. The circult consists of a 6 K 8 converter-oscillator slage, two 6SG7 IF stages, 6H6 detector-limiter stage, 6SF7 AVC Amplifier, 6SJ7 CW Oscillator, 6SC7 Audio-Inverter, push-pull audio output stoge with two 25L6GT tubes, and a $25 Z 5$ Rectifier.

CONTROLS

Main Tuning Dial; Bandspread Tuning Dial; Sensitivity Control; Volume Control; Tone Switch; C. W. Oscillator Switch; AVC Switch; Limiter Switch; Band Selector Switch; B+ Switch and Power Switch.

TERMINALS

On Rear Panel; Phone Jack; B + Terminals; 8 Ohm Spkr. terminalis; Ant. Terminal; Fuse extractor post.

SPECIFICATIONS

Frequency Range:

The Frequency Range of the NC-46 Receiver is 540. Kc. to 30. Mc. covered in four bands.

Band General Coverage

Band Spread

A 115 -30.0 Mc. 28.0-30.0 Mc, 40 dial div. 14 0-14.4 Mc; 56 dial div.
B \quad 4.4 -12.0 Mc. 7.0-73 Mc; 50 dial div.
C $\quad 1.55-4.6 \mathrm{Mc} .3 .5-4.0 \mathrm{Mc}^{7} 70$ dial div.
0.540-1.6 Mc.

Sensitivity:

Approximately 5 microvolis input provides a 50 Milliwatt output over the entire range.

Selectivity:

The total bandwidth is approximately 4.5 Kc . at o db . down and approximately 70 db . attenuation 10 Kc. off resonance is oblained.

Automatic Volume Control:

The Receiver output with AVC operaling varies less than $\pm 4 \mathrm{db}$. with inputs ranging from 10 to 100,000 microvolts.

DIMENSIONS

NC-46 Receiver: $97 / 16^{\prime \prime}$ hiah by $173 / 8^{\prime \prime}$ wide by $123.8^{\prime \prime}$ deep. Weight 32 lbs.
NC-46TS Speaker: $87,8^{\prime \prime}$ high $\times 107 / 16^{\prime \prime}$ wide $\times 71,2^{\prime \prime}$ deep.
Weight 8 lbs .

PRICES

NC-46 Table Model Complete with Tubes
List $\$$
NC.46TS Table Model Speaker List \$

22

NATIONAL 1-10A RECEIVER

The $1-10 \mathrm{~A}$ is an improved superregenerative Receiver covering all wave lengths from 1 to 11 meters. The $1-10 \mathrm{~A}$ is designed for use in both Amateur and Commercial services and the natural advantages inherent in a superregenerative receiver make this one of the simplest and most reliable receivers for use on these wave lengths. This Receiver is suitable for the reception of voice and tone modulated code signals. The $1-10 \mathrm{~A}$ is supplied in a table mounting model which through virtue of its compact size can be handily used for portable operations.

The circuit of the 1-10A Receiver employs 4 lubes and consists of one stage of tuned RF, a selfquenching superregenerative detector transformer coupled to a first stage of audio which, in turn, is resistance coupled to a power output stage. Receiver controls are held to a minimum and include Audio Gain, Regeneration, RF Trimmer and Main Tuning Controls. Plug-in coil types are used to tune the frequency range of the Receiver in six tuning bands. The location of these coils in the receiver make them readily accessible for interchanging. Tuning is accomplished by a twogang variable capacitor geared to a micrometer dial which reads directly from 0 to 500 and has a linear scale length of approximately 12 feet, requiring ten revolutions to cover any one band. The scale length plus the vernier action of the

Main Dial gives the operator the equivalent of continuous bandspread tuning on all bands.

The 1-10A Receiver is designed for operation From National type 5886 Power Unit, all voltage dividers, etc., being built in so that but one B voltage lead is necessary. The 5886 Power Unit operates on 105-120 volts, $50-60 \mathrm{cps}$. This Power Unit furnishes 6.3 volts at 1.6 amperes to the heater circuit and 180 volts at 35 milliamperes to the plate and screen circuits. A 3 volt C battery, mounted in the receiver, is used to supply bias to the RF tube. The 1-10A Receiver mav be operated from batteries by connecting suitable batteries to the pins of the 4 prons power plug.

Tubes

RF Amplifier	954
Detector	955
First Audio	$6 J 5$
Second Audio	6 V 6

Price List

1-10A Receiver, table model, complete with tubes and 6 sets of plug-in coils.

List \$
5886 Power Unit, 105-120 volt, 50-60 cps.
List $\$$
MCS 8" PM loud-speaker with impedance matching transformer.

List \$

,ATIONAL CRU OSCILLOSCOPE

Description

The CRU Oscilloscope is a compact inexpensive instrument whose capabilities make it outstanding in its field. Amateurs and electronic experimenters will recognize this $2^{\prime \prime}$ scope as an indispensible item of equipment to guarantee the efficient operation of their stations. Put the CRU scope to work in your station and watch it:

Measure Percentage Modulation.
Check distortion, excitation, overmodulation, etc., by the Trapezoidal pattern method.

Monitor RF and Audio circuits continuously while you are on the air.

Test Audio and RF circuits where extreme sensitivity is not required.
The circuit of the CRU is simple yet ample having a self contained power supply and centrols for brilliancy and focus, a potentiometer for controlling the amplitude of the horizontal deflection as well as a built-in 60 cycle sweep. Approximately 100 volts dc. will give a $1^{\prime \prime}$ deflection on the CRU screen.

Tubes

Cathode-Ray
 Rectifier
 2AP1-A
 6×5

CRU WITH THE CRU-P PANEL

Controls

A.C. ON/OFF: the A.C. line switch.

Intensity: A potentiometer controlling the brilliancy of the pattern.
Focus: A potentiometer controlling the clarity of the scope image.
Sweep: A potentiometer controlling the length of the pattern.
"Ext."-" 60 cycle": A two position switch, which when on "Ext." connects the horizontal deflection plates to the horizontal terminal strip at the rear of the cabinet. In the " 60 cycle" position the 60 cycle A.C. sweep is connected to the horizontal deflection plates.
BSW: A pair of insulated beam switch control terminals permitting connection to a switch or relay so that a trace appears on the screen only during transmission periods.

Prices

CRU-Table Model Oscilloscope, Less tubes

List \$

CRU-P Rack Panel and Control Plate (to rack mount CRU Oscilloscope) List \$

NATIONAL POWER SUPPLIES

National Power Supplies are specially designed for high frequency receivers, and include efficient filters for RF disturbances as well as for hum frequencies.
686S, Table model (165 V ., 50 MA .), foroperation from 6.3 volts $D C$, with vibrator.
SPU-686S Rack Mode!
List \$
List \$

697 Table Model $(240 \mathrm{~V}$., 70 Ma . and 6.3 V ., 3.4 A.), for operation from 115230 V olts, $50 / 60$ cps. A.C. List \$ SPU-697 Rack Model List \$
5886 Table Model (155 V ., 50 Ma . and 6.3 V ., 2.5 A.) for operation from $115 \mathrm{Volt}, 5060 \mathrm{cps}$. A.C. List \$

POWER SUPPLIES

MICRO MS SWITCH

a division of first industrial corporation
 Freeport, Illinois

Branch Offices

CHICAGO 6.. 308 W. Washington Street NEW YORK 17. 101 Park Avenue CLEVELAND 3....... . 4900 Euclid Avenue LOS ANGELES 14.. . 1709 West 8th Street BOSTON 16. 126 Newbury Street

The Precise, Small Lightweight, Sensitive Switch for Radio Applications

Micro Switch precision snap-action switches have proved invaluable for applications that call for switching substantial amounts of power by a unit operating in a small space. Micro Switch products are important electrical switching unius for electrical mechanisms that make change, package products. control temperatures, heat water, bottle fluids. limit machine tools, record airplane tights, control electronic tubes and perform thousands of other diversified electrical control functions.

MICRO SWITCH Products
 Meet These Requirements

Small Size . . . No larger than your thumb, the basic, plastic enclosed switch measures $11 / 16^{\prime \prime} \times 27 / 32^{\prime \prime} \times 115 / 16^{\prime \prime}$.
Light Weight . . . With pin-type plunger, the plastic enclosed switch weighs less than one ounce.
Long Life . . . Patented three-bladed beryllium copper spring gives millions of accurate repeat operations.
Small Operating Force . . . Force required to operate the switch may be as little as one ounce \therefore. or as much as 60 ounces.
Small Operating Movement ... Movement of the operating plunger may be as little as .000-in.
Good Electrical Capacity . . . Switch is Underwriters' listed and rated at 1200 V.A. at 125 to 460 volts a.c.

A. General Purpose Basic Switch with panel mounting. This "MICRO" basic switch is handy and useful as a door switch, or as a manual of mechanical push button switch. The threaded stem, with two thin brass hex nuts and two steel lock nuts aids adjustable location with respect to the panel. The internal swith mechanism is protected from excessive over. travel by a stop ring locaced near the tip of the plunger. This rype switch proves both handy and useful.
B. The "MICRO" V3-1 Small Precise Switch. For a switch that must perform in small quarters the "MICRO" V3-1 switch is of a size to meet these requirements. Small but accurate and dependable the V3-1 is provided with two mounting holes, one elongated to provide greater accuracy in locating. Flat bosses on side add to ease of stacking or grouping when requirements demand they be used that way.
C. JV-5 Actuator for use with V3-1 Switch. The JV-S Auxiliary Actuator with roller is designed for rapid cam or slide actuation of the V3-1 switch. The frame is stainless stecl with the oil-impregnated bronze bearing serving as the roller.
D. The "MICRO" V3-12 Switch. Low torque teatures this switch which can be actuated with 14 ounce-inches-practically a feather touch. Pretravel of the actuating arm is 20° maximum with overtraved 20° minimum. It also features high resistance to shock, and in additon has clean make and break without contact bounce. Being enclosed keeps out dust and dirt and assures trouble-free operation. Time-rested and proved dependability, based on experience gained in making millions of switches, gives users an assurance of freedom from trouble. Actuating wire not furnished.

CHOOSE FROM

Type 30 Sangamo Tubutar Capacitors, molded in a thermo-setting, smooth brown finish plastis material ase permanemtly sealed aquanst moisture resulting in low power factor, long tife and suecessful operation at higher am.. bient temperatures.

Types C and K plain or silvered mica caparitors, members of the Sangano quality menca fansily, insure dependahility and life in atdio receiver and commercial low voltage applications requirnas small capacitance values.

Types A and H famous hikh quality Sangano mica capacitors are precision huilt io provide continuous. dependable service in industrial and transmitting applications for whith they are designed.

TYPE A

THE Sangamo Line

Ever since SANGAMO revolutionized the manufacture of mica capacitors by molding them in bakelite, our engineers have been continually striving to improve further the operating characteristics of Sangamo Capacitors.

Now, due to the congested condition of amateur bands, capacitors that "stay put," thus eliminating frequency shifts, are more essential than ever before.

The name "Sangamo," synonymous with quality, assures the amateur a greater opportunity of establishing and maintaining those all-important contacts.

Type 41) Cabsacions, imprepnated in diaclor, a chlorinated dielec. tric, are ideal for use in high voltage filter apmlications and power supplies for short wave cullipment.

Type 71 Diaclor Impresinated Capacitors, while heing compact and light. are constructed to withstand rigorous continued service under all normal conditions.

TYPE 71

Type E Mic:a Capacitors are suecially desinued to urovide the amateur with a low iost. hish voltage unit capable of carryins large currents under intermmitent operation. They are not recommended for commercial abplications.

TYPE E

TYPE 10

SANGANO BhBGTRIC COMPANY Amwor

PRRFORMANCE LEADERS

3 C 24

$35 i$
 357 G

591

Follow the leaders to
1342 San Mareo Ave., San Bruno, Ca
ElIEL-
Export Agents: Frazarant Hansen, 301 Clay St, San Francisco 11, cail..

4
OR over a decade, Eimac tubes have led the field in performancethe acid test of electronic equipment. Ultra-modern Eimac tubes provide maximum power and efficiency for today's equipment, and are ready and
waiting for the needs of tomorrow.
These pages contain basic data on many Eimac products. Complete information on any of these worldfamous Eimac tubes is yours for the asking. Write for it today!

EIMAC TRANSMITTING TUBES

EmAC VACUUM CAPACITORS

Tyot	VC6-20	VC12-20	VC25-20	VC50-20	VC6-32	VC12-32	VC25-32	VC50-32
Capacity	$6-\mathrm{mmfd}$	12-mmfd	$25-\mathrm{mmfd}$	$50-\mathrm{mmfd}$	6-mmld	$12-\mathrm{mmid}$	25-mmid	50-mmfo
Rating RF Peak	20 KV	20-KV	20-KV	$20-\mathrm{KV}$	32-KV	$32-\mathrm{KV}$	$32-\mathrm{KV}$	32-KV
Price.	\$1200	\$13 50	\$16.50	\$20 00	51400	\$1600	\$1900	\$22.50

EIMAC DIFFUSION PUMP

HV-I Diftusion Purne

HEAT DISSIPATING CONNECTORS

Type	Hole Dia	Price	HR-5	T25	\$ 80
HR-1	.052	$\$ 60$	HR-6	360	80
HR-2	0625	.60	HR-7	125	160
HR-3	070	60	HR-8	570	1.60
HR-4	.1015	80	HR-9	570	300

EIMAC VACUUM SWITCHES

TYPE	GENERAL DATA	PRICE
VS-2.	Single pole double throw switch within a high vacuum adajtable for high voltage switching. Contact spacing .015*. Switch will handle R-I potentials as high as 20 Kv . In DC switching will hande approximately 1.5 Amps at 5 Kv .	\$1200
Vs-1.	Same as above except for slightly smaller glass tubulation.	\$1200

MILLEN MODERN

PART
 atractively pachaged．moderately priced．and fully waramterd．Thes hawe heen de－ signed with a vew loward rasy and pradioal application as well as efliciont perform－
 ance．For instance．He terminals are lewated so as to prowide shortest persible teads．
 －older wont mon dewn inside them and mahe impersithe the insertion of the blier．ate． ＂loms our slogan．＂Posignod for Application．＂Our germeral catalog is as ailable for the ashing eilluer from some favorite parts supply honse or direct from the factory．

MITALES ITYPİ					
Code	C＇upactin per side		． 16 riap	hming	pret
	Var．	Min．			
11035	36	4.6	．105：＂	3010	S6．90
11050	W1	6．${ }^{3}$	017	30041	7．14
111170	51	9	． 078	36010 30010	\％ 6
136．00）	19.5	63	0%	\％30）	520
13070	71	73	（1）$\%$	3000	－s．n
14200	204	11.7	．11\％	31610	14.00
11100	（90． 5	12.9	．171	60130	1こ．00
140.0 14060	60		171	G000	1． 7.20
14060			26.0	！ 1000	12.011
Code		， $\mathrm{J}_{4} \mathrm{St}$	いした ぐぐ	－WN Tリ	
	（＂fmetl $1 / 2 n$ 9 9 0 7 9 12 18	ner section	118 find	Flntsh ons Plupes	$\begin{aligned} & \text { Net } \\ & \text { pite } \end{aligned}$
12！335		3			$\begin{gathered} \$+.82 \\ 3.91 \\ 2.41 \\ 2.41 \\ 3.04 \\ 3.61 \\ 4.51 \end{gathered}$
12936		37			
12.336		43			
12.301		\％ 76			
12.10		111			
12515		1.1			
code	Carmethy mer vechan		． 110 crap	ドたnthon Males	مrer
	リ！n．	\} \overline { 1 } \times r			
1203：3	6	43	．07\％＂	Polisicd	\＄4．32
12036	6	43	． 05	Plain	3.90
120.00	7	\％	（1） 6	Polishred	．3．10
120\％．	t	in	．11 $\frac{1}{18}$	Pratiched	\bigcirc
12056	9	if	11：	Plain	$\overline{9} 40$

（ ode	Hesctipution	\Cl？
100010	Worm Drive I nit	＊
100011	1 Prum Seter 13ist－1）－1010	1．引
100618		． 111
1009\％	$33^{\prime \prime}$ Nickel silver lnst．Dial－（1－100	1．011
100.50 1010601		36
111461	Sllaft luek	30
1006\％	＇゙ermer IPive 1＇nit	36
1．0011	－eutral（ molenser 0．7－4．3	（91）
10010	Neutral（ondenser（0，\％－13．5	1.00
1.2103 500017		2.80
150116	Xeutral（ondenser 2．8－9．1	3，10］
2（1）1．］		
200135		I． 010
20000	Steatile ：lra Mideet anmmides	1.201
201100 .0920	 	1.211
20920 20038 -1010	Seatle I 1 ra Mideset 20 mmfd os 	1.20
210501		1.85
21100		1.911
21140	stcathe litra Mlidget $1+0 \mathrm{mmod}$－	2 110
21935		1.111
－	Steatite Mddget 100 mmmfd ：	1.6
29140	stpatte Mldert 190 mmpd －s	1.63
22918		1.211
－		1.50
23075		2.60
23100	Steatite Dual Midget 100 momid her sec－	2.50
23925	tion ID：	2.2 J
23950	Steathe lowat Midret 50 mmfd per wec－ ten 1）：	， 1
$\because 1100$	100 mmid wer ection，shuth－bated	2．
24933	3．tminfd ber section．Double spaced	－
26020	3.2 2．Atr Padder	
26076	4．3－76 Air Padder	1.20
26100	5－97．sir Paduler	1．32
26920	4． $\mathrm{in}^{20} \mathbf{A}$ ir Padder	1.411
26935	5．jo－36 Air Padder	1．51）
23030	31）mmfd M ica Padder	？
3011611	Etundoff，be x live（2uariza	． 31
301010 3011013		
300011	St andoff，x i R．guartze	． 6.5
310191	Slamborf．${ }^{\text {S }}$ At Isobantite	$\because 11$
310002	Standoff． $12 \times \geq 2$ ．Isolantite	$\therefore \%$

JAMES

MILLEN

MFG．CO．，INC． MD дıcount
-FIRST OF ITS KIND IN THE INDUSTRY!
RADIO HAMS: Here's a new component for your sets-a dry-plate rectifier to use in place of the conventional rectifier tube. It will sive your radio receivers new performance, instant starting, longer life. In every way, Federal's miniature Seleniun Rectifier makes the ideal power supply for all AC-DC sets and it has been adopted as a standard component by many leading radio manufacturers.
Among its many other diversified applications are: -vibrator power supplies, television sets, phonograph combinations, heating lamps, door chimes, electric train accessories, scientific research apparatus, stethoscopic and bacteriological equipment, measuring, intercommunications and electrical musical instruments and other electronic devices.
These rectifiers can be obtained from your dealer or direct from Federal Telephone and Radio Corporation, Newark 1. New Jersey, Price $\$ 1.60$ each net. Send $\$ 12$ for standard package of twelve units. Write to Dept. F1065 for complete technical literature on how to apply rectifiers.

Replacement for these Tubes:

$\begin{array}{lrrrrrrrrr}5 T 4 & 5 Z 3 & 5 Y 3 & 6 X 5 & 6 Y 5 & 7 Y 4 & 25 Z 6 & 35 Z 4 & 50 Y 6 & 117 Z 6 \\ 5 \mathrm{U} & 5 \mathrm{Y} 4 & 5 \mathrm{Y} 4 & 0 \mathrm{Z} 4 & 6 Z 5 & 1273 & 35 \mathrm{~W} 4 & 35 \mathrm{Z5} & 50 \mathrm{Z7} & 0 \mathrm{Y}\end{array}$
 $\begin{array}{lllllllll}5 \mathrm{~V} 4 & 5 \mathrm{X} 4 & 5 \mathrm{Z} & 80 & 12 \mathrm{Z5} & 25 \mathrm{S5} & 35 \mathrm{Z3} & 35 \mathrm{Z} 6 & 117 \mathrm{Z} 3\end{array}$

Electrical Characteristics:

Maximum RMS Voltage 130 Volts
Maximum Inverse Voltage 380 Volts
Maximum Peak Current 1200 ma .
Maximum RMS Current 325 ma .
Maximum DC Output : 100 ma .

Approximate Rectifier Drop 5 Volts

Federal Telephone and Radio Corporation

URNEIR Mricrophones

 Faithfully Reproduce Your Complete MessagesThese famous microphones, priced within the range of every amateur, amplify all vibrations received by the diaphragm without adding any of the harmonics to assure clear, sharp communications without distortion. You can rely on Turner under all climatic and acoustic conditions.
 finish of 330 Dynamic adds class to any rig. 90° tilting metal finish.

No. 211 is a Rugged Dynamic utilizing a new type magnet structure and acoustic network. The high frequency range has been extended and the extreme lows have been raised 2 to 4 decibels to compensate for overall deficiencies in loud speaker systems. Unique diaphragm structure results in extremely low harmonic and phase distortion without sacrificing high output level. Tilting head, balonced line output connection. Chrome or gun-

22X
 22D

22 X Crystal is tops in performance. Reproduces clean and sharp. Smart engineering cuts feedback to minimum
Tilting head and removable 7 -foot cable set. Built-in wind-gag permits outdoor operation. Crystal impregnated ogoinst moisture. Automotic borometric compensator. Chrome type finish. Level -52 DB. Range 30-7,000 cycles.

22D Dynomic is identical in oppeoronce with 22x but hos high level dynomic cortridge. Dependable indoors or out. Output -54 DB. Range $30-8,000$ cycles. 200 or 500 ohms or high impedance.

Han-D

NEW TURNER

CHALLENGERS

Plus Performance of Low Cost

Model CX

Crystol, in rich brushed chrome finish, with 7 foot removable cable set using Amphenol connectors. Level -52 D8. Ronge 50-7,000 cycles.

Model BX

Crystal mike for record. ing, P.A. ond hom work. Bronze enomel finish. Level-52 DB. Ronge 506,000 cycles. An excel. lent unit. With 7 fool lent unit. With 7 fool
coble.

Model CD

Oynomic, some style and finish os CX, with removable 7 foot cable set In 200-250 ohms, 500 ohms or hi impedonce. Level -52 DB. Ronge 50-7,000 sycles.

Model BD

Dynomic, some finish os 8 X . Works indoors or out Level -52 DB. Ronge 50-6,000 cycles. 200250 ohms, 500 ohms or high impedonce with 7 foot coble.

FREE
Turner Microphone Catalog with complete information and prices on Turner Microphones. Write for your free copy.

Hong it, hold it, use it on desk or floor stonds. Hon-D does the job of several mikes. Avoiloble as $9 X$ Crystol, in brushed chrome finish, Level-48DB, or 90 Dynomic in brushed chrome or gunmetol. Level -5008, 200 or 500 chms or hiimpedonce.

Crystals Licensed Under Patents of The Brush Development Co:

THE TURNER CO.
 CEDAR RAPIDS, IOWA

coverage of any communicalions receiver

From 510 kc to 110 Mc. AM • FM •CW

In the Model SX-12 Hall crafters sels a now high stindard of recelver pertarmance and weometlity. Covering all frequenuies fram 5 to kilacycles to 110 menracyoles, the SX-42 combines in one superaly venfowered unit a top-ilicht
 celver standard, short-wave and FM broadcant reoriver, and high fodelity phanograph amplifier.
The thembeidous Irequeney rante of the SX- 42 , freater cumituous coverage thant lax ever before beer a vailable th a recelver of tits typer, is mode positiole by then development of a new "plit-itator" tuining sy tem and the tise of dual intermediate frequency tranaformers; Recoption of arrpititude modulated sudd contimuous wiske telegraph siginals is provided for throughoils the entire range of the SX- 42 . In aceithon, adseriminttor atid two limiter stakes are aveilable in liunds. 5 and is (2, to 110 megocycles) to permit thin recorition of frectuphery medulated sigmals Krailcal reptoduchion of true lingh fidelity is netured by an budlo systum with a reaponse curve esertialy flof from 6n to 15,000 eycles and an undistorted output of elght waits

The contruls of the 5X-12 are arrunged for maximum contrinience and simplicity of operation. veas turveg and expospheab knoly arm mounted cotixitlly. foonsing the tuning fumctions is a cumble preciaina brilt in to nownswrest and votume are located at elther ide of the main diat. Auxilury controlly freh as Chymal pliaenk sevilitigy, itic., are logicilly placed ba that those most frequently wed are in the most accesthle positions. Hallicrafters thew system of color coding makes it possible for the entire family (o enjoy this fine meetiver. The mamal runtrof positions for standard broadcast reopstast are m. dicated ly ting red doti while PMF adjusthiente are in groen.

The suivin turinge lawb is proylded with a precinion vernier scale whith is seprorately, illumituled ilivoush is smaill shindow in the ons-flece Luelte main
dial housits. The main tuning dinl is alibrated in megacycles and is marked with the numbers in the new FM band of 88 to 108 meys cycles. The bandspreat dinl is calibrated for the amateur 3,7 14. 28, and 50 megacy cle batids. An addiltiounl loggive eculo is phovitiad on thes dial for use in other ranves. The strill locking knob mounted coavially with the main and bandspread turing kmohs potmits dither to be rotated freely while holding the other firmly in position.
The many hew and ingentiois citcilt features which make possible thr mantine vetwatity of the SX-42 stan thtretly from Hallictaives lons experience in the design and production of VHF and UHF communications equipment. The newly develicped "solit-stator" tuning system used on the thece highor bands provides a far greater main pers stage that is possible with older methods. Each IF trarsfotmer contains windings for both 455 kiloeycles and 10.7 thegacycles and the changeover is acconnolished a cutotnalically between betads 4 and 5. As hatio 4 runs to 30 megacyoles and band 5 siarts al 27 theracycles it is poesitble to lise either harrow-hand istandard communications mpotror performance or wide-band FAt performance on the amateur irequencios from 29 to 29.7 megacycler. A type 7 A 4 tube functionss as a beat fiequelicy oscillator for CW receplion, Whon the revelver is switched in FM, howeser, this tube beopanas a direct currenat amblififer to opertate the EMi tuning meter. This truter peilsforms as a normal carripr fovel indicetar for $A M$ rewhtioh. A four position switeh on the panel selectu the desired thone of operainom-.PHONO, FM, AN or CW.

In eddition io its many new features the SX-42 contireves all of the time-trind advantages charactovittic of Hollicrafters top inodels. Freedom from "drift" and manimum siability are provided by temperature eompeniation and the we of a type Vit-150 valtage rerpiator tube

> Designed to function at a new high peak of high irequency efficiency

A crystal filter circuit combined with variable intermediate frequency channel width offers six different degrees of selectivity on the four lower bands (to 30 megacycles). crystal phasing, cw pitch, sensitivity, and four position tone control for Low, MED, HI FI, and bass, are all conveniently placed on the front panel as are receive stand-by, noise limiter, and ave switches.

The beauty and modern functional styling of this new receiver are self evident. Without in any way detracting from the "precision instrument" appearance which characterizes fine communications equipment, Hallicrafters designers have succeeded in creating a receiver which is not out of place in the most luxurious surroundings. The rich deep gray of the panel, satin chrome "airodized" top, and light gray lettering with touches of red and green combine with the precisiontooled controls and light translucent green of the illuminated dials and meter in a harmoniously integrated whole.

Note in closeups at left the compact efficiency of the concentrically mounted main tuning and bandspread controls and the precise, logical grouping of the otherdials.

A finishing touch is furnished by the instrument type adjustable base, available as an accessory. By simply turning the knurled rim of the front support the receiver can be tilted to provide an "eye-angle" view of the dials for maximum accuracy and ease of tuning.

Exvraoralimary rersatilitg...

Fioularian arergh ham mands

CONTROLS: BAND SELECTQR. MAIN TUNING, BANDSPREAD, and selective DIAL LOCK, VOLUME and POWER OFF, AVC, NOISE LIMITER, RECEIVE/STANDBY, SELECTIVITY, TONE, SENSITIVITY, CRYSTAL PHASING, RECEPTION, CW PITCH. "S" meter adjustment on rear of chassis.
EXTERNAL CONNECTIONS: Antenna connections for doublet or single wire antenna. Input impedance matches 300 ohm line except on broadcast band which is designed for use with ordinary single wire antenna. Output terminals to match 500 or 5000 ohm speaker. Phone jack on front panel. Phonograph input connector on rear of chassis. Socket for use of external power supply. Remote standby switch connections provided for: in power socket. Power cord and plug.
PHYSICAL CHARACTERISTICS: The Mode! SX-42 is housed in a steel cabinet of true functional design. Panel and chassis are assembled as a unit and may be removed for servicing or for mounting in a relay rack. Panel is finished in deep gray. top of cabinet is of "airodized" steel finished in satin chrome and swings open on a full length piano hinge for maximum accessibility. Main dial housing is a single piece of Lucite fabricated by an injection molding process. Panel lettering is in light gray with incidental red and green markings for standard AM and FM reception. Dials are a light translucent green and are indirectly illuminated,

FIFTEEN TUBES: 1-6AG5 1st RF amplifier; 1-6AG5 2nd RF amplifier; 1-7F8 converter: 1-6SK7. 1st IF amplifier; 1-6SG7. 2nd IF amplifier; $1-6 \mathrm{H} 6$ AM rectifier and noise limiter; 1-7H7 1st FM limiter amplifier; 1-7H7 2nd FM limiter: 1-6H6 FM discriminator: $1-6 \mathrm{SL} 7$ audio inverter; $2-6 \mathrm{~V} 6$ audio output tubes: 1-7A4 beat frequency oscillator and FM tuning meter amplifier; 1-VR-150 voltage regulator; $1-5 \mathrm{U} 4 \mathrm{G}$ high voltage rectifier.
OPERATING DATA: The standard Model SX-42 is designed for operation on 105-125 volts $50 / 60$ cycle alternating current. The universal Model SX-42U may be operated on 110. $130,150,220$ or 250 volts, 25 to 60 cycle, alternating current. The standard model draws 0.93 amperes at 117 volts. When operated from batteries through the auxiliary power supply socket it requires 5 amperes at 6 volts DC for heater current and 150 milliamperes at 270 volts DC for plate current. Total battery current when operating from a 6 volt battery and using a vibrapack as a source of plate power is 16 amperes.
DIMENSIONS: Model SX-42. Cabinet only, 20 inches wide by 93,4 inches high by 16 inches deep. Overall. 20 inches wide by $10 \frac{1}{4}$ inches high by 18 inches deep.
WEIGHT: Model SX-42. Receiver only, approximately 52 pounds. Packed for shipment, approximately 65 pounds. Model B-42. Adjustable base, packed for shipment, approximately 5 pounds.

SX-I2 FEATURES

1. Continuous frequency range - 540 kilocycles to 110 megacycles in six bands.

Band 1-540 to 1620 kilocycles.
Band 2-1.62 to 5 megacycles.
Band 3-5 to 15 megacycles.
Band 4-15 to 30 megacycles.
Band 5-27 to 55 megacycles.
Band 6-55 to 110 megacycles.
Adequate overlap is provided at the ends of all bands.
2. Wide vision main tuning dial accurately calibrated.
3. Separate electrical bandspread dial calibrated for amateur 3.5, 7, 14, 28, and 50 megacycle bands.
4. Beat frequency oscillator functions throughout entire range of receiver. CW pitch adjustable from panel.
5. Four-position switch selects mode of operation. PHONO. FM, AM, or CW.
6. RECEIVE/STANDBY switch.
7. Series type automatic noise limiter.
8. Push-pull final audio stage delivers over 8 watts with less than 8 harmonic distortion.
9. Audio amplifier response curve is essentially flat from tio to 15.000 cycles.
10. Red markings for broadcast reception and green markings for FM reception simplify operation for general use.
11. Connections for coordinated operation with Hallicrafters transmitters.
12. Separate SENSITIVITY (RF) and VOLUME (AF) controls.
13. Four-position tone control provides LOW, MED, HI FI, and BASS.
14. Special socket for use of external power supply.
15. High frequency oscillator temperature compensated to reduce drift.
16. "Micro-set" permeability adjusted coils in RF section.
17. AVC switch.
18. "Airodized" stecl top provides full ventilation and swings open on full length piano hinge for greatest accessibility.
19. Wide band FM. AM or CW available from 27 to 110 megacycles.
20. Six-position selectivity switch with crystal filter operates on frequencies hetween 540 kilocycles and 30 megacycles.
21. Combination carrier level meter and FM tuning indicator. BFO tube performs dual function as FM tuning indicator amplifier.
22. New FM band marked with channel numbers in addition to megacycle calibration.
23. Dual intermediate frequency transformers. 455 kilocvele IF for standard operation. 10.7 megacycle IF for VHF and FM operation.
24. "Split-stator" tuning makes possible superior performance in VHF range.
25. Chassis and panel can be removed as a unit for rack mounting.
26. Crystal phasing control.

2\%. Antenna input impedance matches 300 ohm line.
28. New Hallicrafters Type HA-6 crystal used in crystal filter circuit. Holder of Mycalex, non-hygroscopic and unaffected by temperature.
29. Two limiter stages for maximum quieting on FM.
30. Two tuned RF stages using miniature tubes for superior VHF performance.
31. Phonograph input connections on rear of chassis.
32. Type VR-150 voltage regulator tube provides maximum stability in high frequency* oscillator, converter, BFO , and FM tuning meter circuits.
33. MAIN and BANDSPREAD tuning controls and dial lock are mounted coaxially as a single precision-built unit.
34. Main tuning knob provided with precision vernier scale, separately illuminated through small window in one-piece Lucite dial housing.

Maily cipcut refifermentiv hever before avathsble at thice fir ine rlase
a Oncraif frequeluc sange - 506 kiloctcher

Bend 1-540 to 1800 kilocyeles.
Function, heauty combined in anl outstanding value...

Model NM-IO
"S" Meter

This new external " S " meter is available as an accessory and can be easily connected througla a special socket on the rear of the receiver chassis. May also be used with other Hallierafters models such as the S-20R,S-18, etc.

Bun $3-315$ to 15.7 modacreles.
Rethl -15.5 to bi thaner cts.
Adegiste osetlap is proviled at the eatls
of nil bands.
2. Whllo visum moth tution allal ccarately celiticatrat.
3. Schatate finctical tandigiread diat.ifl.
ertia llyw-wei turitit.

form trint pin=1.
5. GW AN swiset.

2. Anzamatie noat limiter.
8. Soutimam avalo outpat-24 watt
5. Telervel phi drumic meaker folld in cuhber shock moumis
10. Mil, marking tor bicandeat zecernion sinulify operation fur peneral use.
11. Cmmections ing cookinates aperntion -ith LIallicoaftre indtenmiters.
15. Seket. SENSITIVIII L\& , and pot.

13. Timestroilion tone contfol.
14. Sperif socket patpitis uag it exremal

15. Hith is çuFney osellatuc Iempenture competisari to milace alif.
16. "Stiom-ve" geramtablits syjustel ouls it $\bar{\sigma} F=c t i o n$.
1\%. At50 afleh

19. S Ehat firm demmattain of Muati SM-6if sinetr.

The sernsational new S- 40 with the finest performance ever presented in the popular price field is housed in a cabinet of true functional design - a romplefely new conception of receiver beauty and styling. Full use is made of thewly developed materials and techniques. Maximum ventilation is assured by a multitude of tiny openings in the upper section of the cabinet which also impart a smart and pleasing appearance. The entite turs of the cabinet opens on a full length piano hinge for complete accessibility. Panel and chassis may be removed from the cabinet as a unit without disturbing any controls or connections. All controls are clearly identified and the normal positions for standard broadeast
reception are marked in red, making it easy for the whole family to use thls fine receiver.

The Model S-40 incorporates many circuit refinements and features never before available in this price class. The RF section uses permeability adjusted "micro-set" inductances, identical with those in the most expensive Hallicrafters receivers. Automatic noise limiter, temperature compensated RF oscillator, beat frequency oscllator, separate $R E$ and AF pain controls, three-position tone control, separate electrical bandspread, with inertia flywheel tuning, and many other features make this beautiful new receiver an outstanding value.

879^{50}

Amateur Net

CONTROLS: SENSITIVITY (including "S" meter on of switch). BAND SELECTOR. VOLUME, TUNING, BANDSPREAD. AVC ON/OFF, CW AM. NOISE LIMITER ON/ OFF. TONE AC OFF, PITCH CONTROL, STANDBY RECEIVE.
NINE TUBES: $1-6 S G 7$ RF amplifier; 16SA7 converter; 1-6SK7 1st IF amplifier; 1-6SKi 2nd IF amplifier: 1-6SQT 2nd detector and 1st audio amplifier: 1-6F6G output audio amplifier: $1-6 \mathrm{H} 6$ automatic noise limiter and gas gate: 1-6J5GT beat frequency oscillator; $1-80$ rectifier.
oplerating data: The standard Model S-40 is designed for use on $105-125$ volts. 50 to 60 cycle alternating current. The universal Model S-40U can be used on 110, 130, 150, 220
or 2.50 volts, 25 to 60 cycle, alternating current. The standard model draws .76 amperes at 117 volts. When used with external batteries the heater current is 5 amperes at 6 volts and plate current is 70 milliamperes at 270 volts. If a vibrapack is used for plate supply the total current demand for both plate and heaters is 10 amperes at 6 volts.
DIMENSIONS: Model S-40. Cabinet only, 18\% inches wide by 81 , inches high by $9 \% 8$ inches deep. Overall. 1812 inches wide by 9 inches high by 11 inches deep.
WEIGIIT: Model S-40. Receiver only, approximately 28 pounds. Packed for shipment, approximately 33 pounds. Model S.M-40. Meter only, approximately $1^{3,}$, pounds. Packed for shipment approximately 3 pounds.

See what you hear with the SKYRIDER PANOR.IMC SP•出

Hallicrafters new Skyrider Patoramic Adapros, Model
$5-41$, uffis all the advastaget of pronoramic reefpirin
in an unusually compaet and inexpensive unit. Witl
this adaptor connected to a Hallicrafters receiver it it
possible to monitor up to 200 kilocycles of the radio
spectrum visually and to analyze the ch cracteristics of
radio signais irom soui uwa ui wh.a hiwisnititers.
This new adyptor may be used with ahy recivis.
having an IF frequency betwern 150 mmi कio Filocycles.
Ten tubes

2 Overntil frequency range - 540 Eilocycles to 32 megegriclen in 4 bands.

Based 1-Ste to 1650 kc . Band 2- 1.65 to 5 Mc . Bane 3- 5 to 14.5 Mc . Whad -13.5 to 32 Mc .
Adequite overiap if prowiled at the ends of all besodi.

1. Mation tuning dial accumaiels calibrated.

1 Separste clectuicel manMpresed dial.
2. Beat frequemey occillator. pitel adjustable froron lonest pravel
5. AM/CW switch. Also Husns obs automatic vol. ume control in AM prosition.
6. Standby/recoive swritch.
\%. Automatic noise limiter.
8. Maximum audic oultrut1.6 watts
9. Internal $P M$ dynamic spealter mounted in top.
19. Controls arranged for unaximum ease of operation.
11. 105-225 volt AC/DC for operation. Resistor line cord for $210-250$ volt operation available.
15. Speekeer/phancet awitcha.

CONTROLS: SPEAKER/ PHONES, AM/CW. NOISE LIMITER, TUNING. CW PITCH, BAND SELECTOR, VOLUME. BANDSPREAD, RECEIVESTANDBY.

EXTERNAL CONNECTIONS:

Antenna terminals for doublet or single wire antenna, Ground terminal. Tip jacks for headphones. Line cord and plug.
PHYSICAL CHARACTERISTICS: The Model S- 38 is housed in a sturdy steel cabinet finished in rich satin black. Speaker grille in top is of airodized steel. Chassis is cadmium plated. Lettering is in light gray and switch knobs are red.

For hams, beginaimg hams and all ublum novent the finest mecelver anallable at low price

The Mordel S-38 meets the demmad for 3 erily compeleal conninuricationa receiver ir the low price İeld. Styled in the post-war Hallierafrers puitera widd lacorporating many of the features found in its more expentive brothach, the S-38 ollers performatace and appeartunce kar above aything heretoforr availimitr lo ito cilast. Pour tuging bomade, CWI pitch control adjustable from the frons panel, automatic noise limiter, selfconrnined PM dynamic speanker and "Airodized" steel grille, all truark the S-38 as the new leader tumon/ inexperi-

Nve conmumications recelvers.
The S 38 is an wiphorislly fine nepoipes for younger ppeople just begianing to fuul the wavading faacination sutesod hy radio he a hobby. In addition to beting a frood stasedby receiver for any ambifur, the $\mathrm{S}-28$ has unlimited uses. Its compert runctional design, its high perfurnauce an hoith shont waves and stardard broadensis resteption makes it an ideal recever for use in dera or library, in college diormitory, at carrup or coltage or in any room around the house wherever a god extinn recaiver of in low const in deaired.

SIX TUBES: 1-12SA7 converter; 1-12SK7 IF amplifier; 1-12SQ7 second detector, AVC, first audio ampliner; 1-12SQ7 beat fiequency oscillator, antomatic noise limiter; 135L6GT second audio amplifier; 1 -35Z5GT rectitier.
OPERATING DATA: The Model S-38 is designed to operate on $105-$ 125 volts AC or DC. A special external resistance line curd caĩ be supplied for operation on 210 to 250 volts AC or DC. Power consumption on 117 volts is 29 watts.
dimensions: Model S-38. Cabinet only, $127 / 8$ inches wide by 678 inches high by $77 / 8$ inches deep. Overall, 12^{7} s inches wide by $73 / 8$ inches high by $85 / 8$ inches deep.
WEIGHT: Model S-38. Receiver only, 11 pounds. Packed for shipment, 13:2 pounds.

The Model HT-17 offers real Hallicrafters transmitter performance with maximum convenience and economy. No larger than a small receiver and styled to match the postwar Hallicrafters line, this new transmitter provides an honest ten watts of crystal-controlled CW output on the amateur $3.5,7,14,21$, and 28 megacycle bands.
A pi-section matching network is an integral part of the plate circuit and, together with an adjustable link, provides coupling to any type of antenna or permits the HT- 17 to be used as an exciter for a high power final amplifier. The oscillator stage uses a type 6V6-GT tube and is automatically switched to a Tritet circuit when coils for the three higher bands are plugged in. Full output on the 14,21 , and 28 megacycle bands is obtained with 7 megacycle crystals. A type 807 tube is used in the final amplifier, and the self-contained power supply, for $105-125$ volt AC operation, employs a $5 Z 3$ rectifier. Connections are provided for an external modulator. The "airodized" steel top opens on a full length piano hinge for maximum accessibility and ease in changing coils and crystals. A pilot lamp is provided on the front panel for tuning. Coil sets extra.

CONTROIS: PLATE, LOADING, TRANSMIT/STANDBY, METER OSC/PWR AMP, AC ON/OFF (all on front panel). Oscillator plate tuning, Tritet tuning (easily accessible by raising top).
ENTERNAL CONNECTIONS: Antenna terminals for single wire, using pi-section network tuning, or two-wire low impedance line, using link coupling. Ground terminal. Connections for key and external modulator. AC line cord and plug. Special socket for use of external power supply. Fuse.
piysical characteristics: The Model HT-17 is enclosed in a sturdy steel cabinet with all operating components mounted on a strong cadmium plated chassis. Top is of "Airodized" steel and opens on a full-length piano hinge for maximum accessibility. Dials are of the slide rule type. Finish is rich satin black. Trim and lettering match the new Hallicrafters receivers
THREE TUBES: 1-6V6-GT crystal oscillator; 1807 power amplifier; 1-5Z3 rectifier.
operating data: The Model HT-17 is designed for operation on 105-125 volts $50 / 60$ cycle alternating current. Connections are provided for use with external batteries or other emergency power source. When operated on 117 volts the total current is 1.07 amperes (125 watts). Heater current needed for auxiliary power supply operation is 1.35 amperes at 6 volts, plate current is 125 milli amperes at 400 volts. Total demand when used with a vibrapack on six volt battery is 18 amperes. DIMENSIONS: Model HT-17. Cabinet only, 127's inches wide by $6^{7} 8$ inches high by 77_{8} inches deep. Overall, ${ }^{127^{7}}$ a inches wide by 7% inches high by $85 / 9$ inches deep.
WEIGHT: Model HT-17. Transmitter only 21 pounds. Packed for shipment 25 pounds. Coils, packed for shipment, per set, approximately $11 / 2$ pounds.
SM-2 plate milliampere meter. Range 0 to 150 ma . Supplied for quick installation in HT-17 transmitter in place of tuning pilot lamp, at extra cost.

FEATURES

1. Frequency range - amateur bands from 3.5 to 30 megacycies.
2. Power output- 10 watts minimum on all bands.
3. Pi-section matching network plus coupling link permits use with any antenna.
4. May be easily coupled to drive a high power final amplifier.
5. "Airodized" steel top for maximum ventilation.
6. Full-length plano hinge permits entire top to swing open for case in changing colls, crystals.
7. All operating and tuning controls easily accessible.
8. Self-contained power supply for $105-125$ volt $50 / 60$ cycle AC operation.
9. Special socket for use of external auxiliary power supply.
10. Oscillator circult automatically switched from Pierce to Tritet, on three higher bands.
11. Full output at highest frequency with 7 megacycle crystal.
12. Terminals for comnection of external modulator.
13. Panel switch to romnect tunlng pllot lamp in exciter or amplifier circuits.
14. New styling harmonizes with Hallicrafters postwar receivers:
15. Plur-in provision for $\mathrm{SM}-2$ plate milliampere meter.

$\$ 7500 \begin{gathered}\text { Amateur Net } \\ \text { (Approximute })\end{gathered}$ (Approximate)

A variable master oscillator combining excellent stability and ease of operation

Here is another new and welcome addition to the Hallicrafters line, a variable master oscillator. It is specifically designed to provide the amateur operator with a continuously variable exciter unit which is as easy to tune or shift to a new frequency as a modern receiver. Outstanding features never before available in a unit of this kind include excellent stability, negligible frequency drift, voltage regulator and complete simplicity of operation. It is accurately calibrated for the five ham bands. The heart of the unit is the variable master oscillator which employs a 6BA6 tube in an electron coupled circuit with plate and screen voltage regulation. This circuit is seientifically temperature-compensated and is tuned by one section of an air dielectric variable condenser, another section of which tunes the 6V6 frequency multiplier amplifier. Power output of the HT-18 is fed through a six foot 72 ohm coaxial line which may be connected to any commonly used crystal circuit of a transmitter. The RF output at the line end is not less than $21 / 2$ watts and it can therefore be used to drive a high power class "C" amplifier. For example the unit will provide ample driving power to two 813 's which will supply over 500 watts of CW power and about 300 watts of phone carrier.

In addition to variable frequency operation, the Model HT-18 provides for three crystals for spot frequency use. These crystals may be switched into the circuit from the front panel.
CONTROLS: BAND SELECTOR, TUNING, VARIABLE FREQUENCY-CRYSTAL SELECTOR, POWER ON/OFF SWITCH, CARRIER ON/OFF SWITCH, BEAT FREQUENCY SWITCH.
ENTERNAL CONNECTIONS: R-F output terminals. Power line cord, carrier switch terminal connectors for receiver and transmitter control. Shorting type key jacks on front panel.
PIIYSICAL CHARACTERISTICS: The cabinet of the Model HT-18 is styled to match the new Hallicrafters models and is furshed in rich Satin black. Airodized steel top swings open on a full-length piano hinge for maximum accessibility. Panel lettering is light gray and dial scale is green indirectly illuminated.
FIVE TUBES: 1-6BA6 electron coupled oscillator or crystal oscillator; 1-6V6 amplifier or frequency multiplier; 1 -VR-105 voltage regulator; $1-\mathrm{VR}-150$ voltage regulator; $1-5 \mathrm{Y} 3 \mathrm{GT}$ power rectifier.
OPERATING DATA: The Model HT-18 is designed for operation on $105-125$ volts $50 / 60$ cycle, alternating current. Crystals used if desired are in the 3.5 megacycle band but are not supplied with unit.

FEATURES

1. Frequency range. Five amateur bands.
2. Wide vision tuning dial accurately calibrated.
3. $21 / 2$ watts measured output at end of 6 foot 72 ohm transmission line.
4. Negligible drift.
5. Scientifically temperature-compensated.
6. Oscillator and amplifier keyed.
7. Built in crystal sockets for spot frequency operation.
8. Two voltage regulators.
9. Complete band switching.
10. Ganged tuning.
11. All coils self-contained, no plug in coils,
12. Tubes and circuit components carefully selected for maximum stability.
13. Oscillator operates on lowest frequency range only.
14. Higher frequency bands reached by means of high efficiency frequency multiplier.

Hallicrafters Model HT-9 is an ideal medium power transmitter. Designed for maximum flexibility and convenience. In addition to coils and crystals it requires only a microphone or key, antenna and a source of AC power to go on the air.
Five individual plug-in tuning units and crystals may be accommodated in the exciter section simultaneously. Band switching is easily accomplished by changing one coil in the final amplifier and selecting the desired exciter frequency by means of a panel switch. Exciter units are pre-tuned and the only additional operation needed is a slight adjustment of the final tank tuning capacitor.
Separate meters are provided for the power amplifier plate and grid circuits and a third meter may be switched into either the exciter or modulator cathode circuits. All controls are conveniently arranged on the panel and a safety interlock switch is provided for protection against accidental shock when the cabinet is opened.

${ }^{\$ 2500}$
Less Coils and Crystals Amateur Net

A real ham rig Medium power Maximum flexibility

FEATURES

1. Frequency range 1500 kilocycles to 18 megacycles and amateur 28 megacycle band.
2. Power output 100 watts on $\mathrm{CW}, 75$ watts on phone.
3. Antenna coil will match any resistive load from 10 to 600 ohms
4. Maximum ventilation provided by louvers on sides, cutouts at rear.
5. Hinged top permits access to interior for changing coils and crustals.
6. All operating controls on front panel.
7. Self contained power supply for 105-125 volts, $50 / 60$ cycle AC operation.
8. Input for any medium level, high impedance microphone
9. Metering of cathode current of exciter or modulator, power amplifier grid and power amplifier plate.
10. 100 per cent modulation with low distortion
11. Carrier hum more than 40 db . below 100% modulation.
12. Frequency response flat within 3 db . from 100 to 5000 cycles.
13. Five operating frequencies may be pre-set in the oscillator and buffer doubler stages and selected at will by means of the band switch.
14. Line fuses mounted on rear of chassis.
15. Convenient table mounting.
16. Rugged construction and oversize components assure dependable operation.

TRANSMITTER

CONTROLS: AUDIO GAIN, (SPEECH AMPLIFIER) OFF/ON, CATHODE CURRENT EXC. MOD., PLATE PWR. ON/OFF, FIL. PWR. ON/OFF, C.W. PHONE, BAND-SWITCH. TRANSMIT /STANDBY, PLATE TUNING.
METERS: Cathode current, P.A. grid, P.A. plate.

EXTERNAL CONNECTIONS: Antemna terminals. Terminal strip for key. antenna relay, and remote control of receiver. Line cord and plug. Two line fuses. Microphone input connector (on left end of cabinet). All connections except microphone are located on rear of chassis.
PHYSICAL CHARACTERISTICS: The Model HT-9 is constructed on a heavy cadmium plated steel chassis. Cabinet is of steel finished in gray wrinkle enamel and is provided with heavy rubber mounting feet. Ventilating openings in top and sides assure adequate cooling. Interlock switch under lid cuts high voltage supply when cabinet is opened.

TUNING UNITS: Final amplifier coils and exciter tuning units are available for the $1.75 .3 .5,7,14$, and 28 Mc . amateur bands. General coverage coils and units for all frequencies between 1.5 and 18 Mc. may be obtained on special order.

FOURTEEN TUBES: 1-6L6 crustal oscillator (used above 8 Mc . only); 16L6 crystal oscillator or doubler: 1-814 final RF amplifier; 1-6SJ7 1st speech amplifier; 1-6J5 2nd speech amplifier; 4-6L6 push-pull parallel modulator stage: $2-5 \mathrm{Z} 3$ rectifiers; $1-80$ rectifier; 2- 866 rectifiers.
OPERATING DATA: The model HT-9 is designed for operation on 105-125 volts, 50,60 evcle alternating current. In normal operation it draws approximately 3.5 amps . (400 w .).
DIMENSIONS: Model HT-9 overall clearance: $291 / 2$ inches wide by $121 / 2$ inches high by $201 / 2$ inches deep.
WEIGHT: Model HT-9 transmitter, 120 pounds. Packed for shipment, 125 pounds.

Blilcy -Rys als

Finat for umatewr frequencies

Type AX2 Units, 80 -meter band $\$ 2.80$ Each
Type AX2 Units, 40 -meter band 2.80 Each
Type AX2 Units, 20 -meter band 3.95 Each

PLATED CRYSTALS

bliley type AX2
plus improted frequency stubilit! under high drive conditions.

In addition to the ploting leature, the AX? gives you such famous Bliley qualities as:

- Acid etching to frequency to prevent aging.
- Nameplate calibration accurate to $\pm .002^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$ in factory oscillator.
- Temperature stability better than $\pm .02$ 'o between -10^{\prime} and $+60^{\circ}$ C.
- Activity level tested between $-10^{\circ} \mathrm{C}$ and $+60^{\circ} \mathrm{C}$.
- Solid, stainless steral pins.
- Welded contact between pins and contact plates.
- Veoprene gaxket seal.
- Moisture resistant, molded phenolic case and cover
- Small, compact sizo permits easy stacking. Tw units may be mounted back to back in standard octal socket.
- All nomenclature on top of holder for easy identifit cation.

Not a thing has been overlooked to insure top performance under any conditions encountered in amateur equipment. All our wartime experi ence is reflected in this new model, engineered specifically for amateur frequencies.

tops in

TYPE FM6-S 100 kc .

Primarily for use as a fred. standard Plated precision erssal, rigidly elamped betweren resonant pins, provides exerptional olectrical and mechanical stability. Freq. is adjustable to exactly looke. at 25 (c when unit is used in recommended oscillator circuit. Fred. stability $\pm .005^{\prime}$, at any temp. 0 (' $1050^{\circ} \mathrm{C}$.

PRICE $\$ 18.75$

TYPE CF3 455 kc

Single signal tilter crystal unit. Exceptionally low holder capacity permits sharp signal discrimination in tilter network of general communications receivers. Frequency $40 \overline{0}$ kc. free from spurious responses within $\pm 7 \mathrm{kc}$.

TYPE CF6 455 kc
Single signal tilor crystal unit. Frequencer 455 ke, $=5$ ke. - free from spurious responses within \rightarrow ikc. of fundamental. Designed for intermediate frequency filter in general communications receivers.

PRICE $\$ 4.50$

TYPE SMC100 100-1000 ke.

Dual frequency erystal provides either 100 kc . or 1000 ke . frequency sourer. When used in recommended oscillator circuit 1000 ke. frequency is within $=205^{\prime}$; at $35^{\circ} \mathrm{C}$ and 100 kc . frequency can be adjusted to zero brat at 25 (Suggested for signal generators used in alignment of radio receivers.

PRICE $\$ 8.75$

The New Elitey GOO

 GRYGTAL GONTROLAFD QSGIMLATOR

 GRYGTAL GONTROLAFD QSGIMLATOR
 for Rudio Service Technicions

For instant channel selection and frequence: accuracy, radio service technicians use thin Biley test instrument. It provides dirnet erystal control for i-f alignment. Write for descriptive Bulletin it.

AMPHENOL "SIGNAL SQUIRTER" ROTARY BEAM ANTENNA

Amphenol now offers this world famous rotary beam antenna developed by M. P. Mims, W5BDB. High forward gain, high front to back ratio, a rugged rotary e^{-} drive system and a simplified direction indicator characterize this fine antenna which has been the standard of comparison for many years. Available for the 10 and 20 meter bands and in a combination covering both bands.

48

TWIN-LEAD TRANSMISSION LINE

Combining convenience and efficiency. Amphenol Twin-Lead is the first choice of amateurs for construction of antennas and transmission lines. Type 14-023 Transmitting Twin-Lead, with an impedance of 75 ohms, is the favorite for transmitter applications. Conservatively rated at 1 kw .

In addition to the three new products described, Amphenol is the world's larges! single source of:

COAXIAL CABLES AND CONNECTORS ANTENNAS RADIO COMPONENTS PLASTICS FOR ELECTRONICS

All are available from your distributor. See him tomorrow.

AMPHENOL "EASY-TO-DRILL" CLEAR POLYSTYRENE WINDOW PANE

This clear polystyrene window pane ends the problem of bringing in lead-ins through glass. It is easy to drill and cut to size. Ordinary woodworking tools will do the job. Offering the high dielectric strength of polystyrene, this window pane ends broken glass and drilling through sash. Ordinary putty holds it in place. Available in $12^{\prime \prime} \times 16^{\prime \prime}$ panes of $3 / 32^{\prime \prime}$ thickness, and in other sizes to order.

(11)
 hammarlund

"HQ-129-X"

AMATEUR

RECEIVER

The Hammarlund "HQ-129-X" amateur communications receiver is designed to meet the demands of the most critical amateurs. Its design includes every feature essential to finest performance.

The " HQ -129-X" has a continuous range from .54 to 31 megacycles in six separately calibrated bands with continuous bandspread throughout the entire range. In addition, the bandspread dial is calibrated for each of the four most important amateur bands-3.5-4 mc, $7-7.3 \mathrm{mc}, 14-14.4$ me and 28-30 me.

The "HQ-129-X" has the Hammarlund patented variable wide-band crystal filter which works exceptiona!ly well on phone or short wave broadcast signals.

There are many other features: Variable antenna compensator, beat oscillator, voltage regulator, series noise limiter, send-receive switch, automatic volume control, calibrated " S " meter, audio gain control, sensitivity control-plus all that goes into a receiver built by engineers who have spent a lifetime designing commercial communication equipment.

The "HQ-129. X " is available complete in a fwo-tone gray finish including tubes and a 10 inch P. M. dynamic speaker.
"HQ-129-X" \qquad Amateur Net Price $\$ \mathbf{1 6 8 . 0 0}$
SC-10—Speaker cabinet finished to match.
Amateur Net Price

SERIES 400 "SUPER-PRO"

Net Price
SPC-400-X • Receiver (Table Model) with P.M. speaker unit only.
$\$ 342.00$
SPR-400-X • Receiver (Rack Model) less speaker. 344. 5 5
SC-46 - Speaker Cabinet only
5.25

The Series 400 Commercial "Super-Pro" receiver covers a new and wider range of frequencies. The SP-400-X model covers from .54 to 30 megacycles taking in all of the standard and short wave broadcast bands as well as amateur bands down to 30 megocycles. The "Super-Pro" has become standard equipment with many engineers in the radio press and broudcast fields. During the recent war, "Super-Pros" were standard equipment in pructically every Army Airways Communications System installation throughout the world. Many letters from the men who operated them attest to the soundness of design and ability to withstand the most gruelling operating conditions.

The "Super-Pro" has continuous variable selectivity from razor-sharp "single-signal" to wide band high fidelity for broadcast reception. This feature together with the high power high fidelity 8 watt audio amplifier makes this an ideal receiver for use in entertainment installations as well as for home use. In addition the SP-400-X has AVC, continuous bandspread, calibrated "S" meter, BFO, noise limiter, send-receive switch, ear phone terminals, phono-input and separate heavy duty power supply.

HAMMARLUND MANUFACTURING CO., INC., 460 W. 34th Street, New York 1, N. Y.

	"MC" MIDGET CAPACITORS Ideal variable for high and very high frequency tuning, laboratories, etc. isolantite insulation. All contacts riveted or soldered. Vibration proof. New improved Hammarlund splir type rear bearing, and noiseless wiping contact. Cadmium plated soldered brass plotes. Shaft-1/4".
Code	Capacity List
MC-20-5.	20 mmf $\$ \mathbf{2 . 5 5}$
MC-35-5	35 mmf.. 2.65
MC-50-5	$50 \mathrm{mmf} . .$. 2.80
MC-50-M.	50 mmf 2.80
MC-75-5.	80 mmf 3.00
MC-75-M.	
MC-100-5	. $100 \mathrm{mmf}. ~ 3.25$
MC-100.M.	. . 100 mmf. 3.25
MC-140-5.	. $140 \mathrm{mmf} . ~ 3.50$
MC-140-M.	. 140 mmf. 3.50
MC-200-M.	$200 \mathrm{mmf.}$. 3.80
MC. $250-\mathrm{M}$.	260 mmf.. 4.15
MC-325-M.	320 mmf.. 4.65
" M " - Midline Plates.	"S"-Straight Line Cap. Plates.

"MTC" TRANSMITTING CAPACITORS

Code	Capacity
MTC-20-B	20 mmf
MTC-100-8.	100 mmf .
MTC-150-C	150 mmf
MTC-250-C	260 mmf
MTC-350-C.	365 mm

FLEXIBLE COUPLINGS
These flexible couplings are designed for bath insulated and non-insuloted applications. The FC-46-S is insuloted for 6000 volts with silicone treated ceramic, will compensate for considerable shoft misolignment, but will not give springy action.
Overall depth 13 16" diameter $11 / 4^{\prime \prime}$. The FNC.46.S is a non-insulated coupling for use where insulation is unnecessorv. The general design is the same os the FC. $46-\mathrm{S}$
but has a heavy metal bady instead of but has a heavy meta bady instead of $11 / 4^{\prime \prime}$.

Code	List
FC-46-5-Insulated.	\$.90
FNC-46-5-Non-insulated.	. 90

Compact types. Isolantite insulation. Base or panel maunting. Polished oluminum plates. Stainless steel shaft. Size of 150 mmf . with $.070^{\prime \prime}$ plate spacing only $45 / /^{\prime \prime}$ behind panel. " B " models have rounded plates. "C" types have plain plate edges. Selfcleaning wiping contact.

The new "RMC" is designed for applications where strength and solid construction is as important as electrical
design. Its frame consists of $32^{\prime \prime}$ aluminum end plates reinforced by three horizontal bars or pillars which hold the assembly rigid.

Two low loss silicone treated ceramic insulated bars support the stotor. frant and single ball thrust in the rear -torque is smooth and uniform. Contoct to the rotor is mode through a
silver-plated beryllium forked spring. Brackets are provided for mounting either side down, or to a front panel with spacina pillars. Voltage rating -1000 V .

Code	Capacity	List
RMC-50-S	50. mmf.	\$3.75
RMC-100-S	105. mmp.	4.25
RMC-140-5	143.5 mmf .	4.50
RMC-325-S	327. mmf.	5.65

"VU" UHF CAPACITOR
The copacitors listed below are available for use by manufacturers, engineers and amoteurs for all types of communications equipment having 500 mc . The many advantages of these new capacitors are of course due to the silent electrical operation made possible through the use of pyrex gloss ba!l bearings.

Elimination of the rotor contost further prectudes the passibility of noise and permits a more symmetrical design of the copacitor itself and consequently allows better circuit layout. Two sets of contacts ore provided, so that the vacuum tube can be mounted on one side and the inductor an the other side of the capacitor. Voltage rating- 700 V .
Code Capacity
VU-20 225 mmt
VU-30
VU-45
.. .31 .5 mmf. .

HAMMARLUND MANUFACTURING CO., INC., 460 W. $34 t h$ Street, New York 1, N. Y.
 the finest in radio hardware: Ceramic, Porcelain and Steatite Insulators . . . Antennas . . . HookUp Wires . . . Shielded Microphone Cable and S. J. Cable . . . and other top-quality "Birnbach" products.

Complete Stock At Your Dealer

52

THE

OFFICIAL MAGAZINE OF THE AMERICAN RADIO RELAY LEAGUE

QST faithfully and adequately reports each month the rapid development which makes Amateur Radio so intriguing. Edited in the sole interests of the members of The American Radio Relay League, who are its owners, QSI treats of equipment and practices and construction and design, and the romance which is part of Amciteur Radio, in a direct and analytical style which has made QST famous all over the world. It is essential to the well-being of any radio amateur. QST goes to every member of The American Radio Relay League and membership costs $\$ 2.50$ in the United States and Possessions, $\$ 3.00$ in the Dominion of Canada, $\$ 4.00$ in all other countries. Elsewhere in this book will be found an application blank for A.R.R.L. membership.

LII BINDERS

Those who take pride in the appearance of their lay-out and wish to keep their reference file of QST's in a presentable manner, appreciate the QST binder. It is stiff-covered, finished in beautiful and practical fabrikoid. Cleverly designed to take each issue as received and hold it firmly without mutilation, it permits removal of any desired issue without disturbing the rest of the file. It accommodates 12 copies of QST. Opens flat at any page of any issue.

With each Binder is furnished a sheet of gold and black gummed labels for years 1928 through 1948. The proper one can be cut from the sheet and pasted in the space provided for it on the back of the binder. The back copies of QST contain the record of development of modern amateur technique. They are invaluable as technical references.
Back copies are generaily available-list will be sent upon request.

RADIO CALCULATOR

TYPE A

This calculator is useful for the problems thot confront the amoteur every lime he builds a new rig or rebuilds an ald one or winds a coil ar designs a circuil. It has iwo scales for physical dimensions of coils from one-half inch to five ond one. holf inches in diometer and from one-guorter to ten inches in length, o frequency scale from 400 kilocycles through 150 megocycles; a wovelength scale from two to 600 meters; o copocity scale from 3 to 1,000 micro-microfarads; two inducionce scales with o ronge of from one microhenry through 1,500; o turns-per-inch scole to cover enomeled or single silk covered wire from 12 to 35 gouge, double silk or cotton covered from 0 to 36 and double cotton covered from 2 to 36 . Using these scales in the simple monner outlined in the instruc
t ions on the back of the colculator, it is possible to solve problems involving frequency in kilocycles, wovelength in meters, inductonce in microhenrys and copacity in microforods, for proctically ol! problems thot the omoteur will hove in de-
signing-from high-powered tronsmitter: down to simple receivers. Gives the direc
reoding onswers for these problems with occurocy well within the toleronces of proctical construction.
$\$ 1.00$
Poslpaid

OHM'S LAW CALCULATOR

TYPE 8

This calculutor has fows scales.
A powet scale from 10 microwatts through 10 kilowotts.
A resistance scale from . 01 ohm through 100 megohms.
A current scale from 1 microompere through 100 amperes.
A voltoge scale from 10 microvolts through 10 kilovolts.

With this concentrated collection of scales, colculations moy be mode involving voltoge, current, ond resistance, ond con be mude with o single setting of a diol. The power or voltoge or current or resistonce in ony circuit con be found easily it ony two ore known. This is onewly-designed Type B Colculotor which is more occur ofe and simpler touse thon the justly-famous originol model. It will be found usefulfor mony calculations which must be mode irequently but which ore often confusing if done by ordinary methods. All answers will
be occurote within the toleronces
of commerciol equipment.

$\$ 1.00$

Postpaid

The standard elementary guide for the prospective amateur. Features equipment which, although simple in construction, conforms in every detail to present practices. The apparatus is of a thoroughly practical type capable of giving long and satisfactory service-while at the same time it can be built at a minimum of expense. The design is such that a high degree of flexibility is secured, making the various units fit into the more elaborate station layouts which inevitably result as the amateur progresses. Complete operating instructions and references to sources of detailed information on licensing procedure are given.

$25 c$

Postpaid Anywhere

To obtain an amateur operator's license you must pass a government examination. The License Manual tells how to do that-tells what you must do and how to do it. It makes a simple and comparatively easy task of what otherwise might seem difficult. In addition to a large amount of general information, it contains questions and answers such as are asked in the government examinations. If you know the answers to the questions in this book, you can pass the examination without trouble.

25 c

Amateurs are noted for their ingenuity in overcoming by clever means the minor and major obstacles they meet in their pursuit of their chosen hobby. An amateur must be resourceful and a good tinkerer. He must be able to make a smail amount of money do a great deal for him. He must frequently be able to utilize the contents of the junk box rather than buy new equipment. Hints and Kinks is a compilation of hundreds of good ideas which amateurs have found helpful. It will return its cost many times in money savings - and it will save hours of time.

A com.

prehensive manual of antenna design and construction, by the headquarters staff of the American Radio Relay League. Eighteen chapters, profusely illustrated. Both the theory and the practice of all types of antennas used by the amateur, from simple doublets to multi-element rotaries, including long wires, rhomboids, vees, phased systems, v.h.f. systems, etc. Feed systems and their adjustment. Construction of masts, lines and rotating mechanisms. The most comprehensive and reliable information ever published on the subject.

50c
Posipaid

STATION OPERATING

As can be seen in the illustration, the log page provides space for all facts pertaining to transmission and reception, and is equally as useful for portable or mobile operation as it is for fixed. The log pages with an equal number of blank pages for notes, six pages of general log information (prefixes, etc.) and a sheet of graph paper are spiral bound, permitting the book to be folded back flat at any page, requiring only the page size of $81 / 2 \times 11$ on the operating table. In addition, a number sheet, with A.R.R.L. Numbered Texts printed on back, for traffic handlers, is included with each book.
:sise per book

OFFICIAL RADIOGRAM FORMS

The radiogram blank is designed to comply with the proper order of transmission. All blocks for fill-in are properly spaced for use in typewriter. It has a heading that you will like. Radiogram blanks, $8 \frac{1}{2} \times 71 / 4$, lithographed in green ink. and padded 100 blanks to the pad, 25 c per pad, postpaid.

MESSAGE DELIVERY CARDS

The operating supplies shown on this page have been designed by the A.R.R.L. Communications

Department:

Radiogram delivery cards embody the same design as the radiogram blank and are available in two styles - on stamped government postcard, $2 c$ each. unstamped, 1 c each.

lies
 MEMBERSHIP

STATIONERY

Members' stationery is standard $81 / 2 \times 11$ bond paper which every member should be proud to use for his radio correspondence. Lithographed on $81 / 2 \times$ 11 paper.

100 Sheets, 50e 250 Sheets, $1 .(1)$ 500 Sheets, \$1.75 POSTPAID

In the January, 1920 issue of QSI there appeared an editorial requesting suggestions for the design of an A.R.R.L. emblem - a device whereby every amateur could know his brother amateur when they met, an insignia he could wear proudly wherever he went. There was need for such a device. The post-war boom of amateur radio brought thousands of new amateurs on the air, many of whom were neighbors but did not know each other. In the July, 1920 issue the design was announced - the familiar diamond that greets you everywhere in Ham Radio - adopted by the Board of Directors at its annual meeting. It met with universal acceptance and use. For years it has been the unchallenged emblem of amateur radio, found wherever amateurs gathered, a symbol of the traditional greatness of that which we call Amateur Spirit - treasured, revered, idealized.

THE LEAGUE EMBLEM, with both gold border and lettering, and with black enamel background, is available in either pin (with safety clasp) or screw-back button type.
In addition, there are special colors for Communica. tions Department appointees.

- Red enameled background for the SCM.
- Blue enameled background for the ORS or OPS.

THE EMBLEM CUT: A mounted printing electrotype, $5 / 4$ high, for use by members on amateur printed matter, letterheads, cards, etc.

Stationery and Emblems are available only to A.R.R.L. Members.

62 "Transmitters Yet

Price $\$ 450.00$ Complete with Tubes and Coils

Built for the Present -. and the
Future

2REME TRANSMITTER Model AF-100, 6-Band, 100 Watt tpul) Desk Type Transmitter. Embodies All the features st desired by the majority of the amareurs. Designed to er the amateur bands most frequently used: $10,11,15$, 40 and 80 meters for CW, ICW, AM and FM Phone ismission. This is the very first transmitter offered to the ateur which has the now feature of Frequency Modulation the band of frequencies assigned for this purpose, namely 185 to 27.455 and 29 to 29.7 megacycles. Model AF-100 :ontinuously tunable throughout the ranga of each of the ateur bands. A highly stable variable oscillator followed slug-tuned buffer and doubler stages which are ganged to oscillator dial simplifies the problem of working through
severe ORM and further enhances the pleasures of easily establishing and retaining OSOs. Band changing is easily accomplished in the exciter by a band selector switch and in the final by the plugging in of a coil for the particular band selected. This unit is one of the simplest to operate-and highly efficient on all bands, for all types of emission.
Front Panel Controls: Oscillator Dial; Final Amplifier Dial; Oscillater Selector Viel; Medularion Selector Dial; Microphone Gain Control, Band Selector Switch; Filament Power Switch; Plate Power Switch; Emission Selector Switch; Standby Control.

Metering: PA Plate Current; PA Grid Current; Modulator Plate Current.

Approved Precision Products

The Vibrapack line includes models for input voltages of 6,12 , and 32 volts DC and nominal output voltages from 125 to 400. Models available with switch for four output voltages in $\mathbf{2 5}$-volt stages. Hermetically sealed vibrators. High eff-ciency-low battery drain.

Vibrapacks* Proride Dependable Plate Power for Portable Equipment

Mallory Vibrapacks provide economical, efficient and dependable plate power for operating radio receivers, transmitters, PA systems, direction finders and other electronic equipment on vehicles, farms, portable equipment. or wherever commercial $A C$ power is unavailable.
Write for lorm E-555 for detail information

Vitrcous Enamel Resistors

Mallory fixed and adjustable power resistors provide maximum efliciency in operation with excellent temperature and homidity characteristis.s. Available in rated caparities from 10 to 200 watts, resistances from 1 to 100,000 ohms.

Ham Band Switches

Ceramic insulation provides low lossers at high frequencies. The Mallory Ham Band Switch is rated for nse in transmitter plate circuits using up to 1,000 volts I)C with power up to 100 watts, inclusive.

OTIIER MALIGRY PRODCCTS IVCLLDE:

Attemators

Battery Chargers
Capacitors, Dry Elcetrolytic
Capacitors, Paper

IIam Band Switches Jacks
Jack Switches
Knols
"L" Pad Attennators
Voise Filters

Plugs
Potentiometers
Push Button Switches
Rectifiers, Dry Dise
Resistors
Rheostats

All Mallory standard parts arailable from Mullory Distributors
"I rite for Catalog
FOR IMPRONED PERFOIRMNCE LSE MIISORY APIPOVED PRECISIOV IPRODLCTS
P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

CENTRALAB RADIOHMS

. feature hard-surfaced materials, patented design and skilled workmanship. They are
manufactured for long service under extreme conditions.

CERAMIC TRIMMERS

...are interchangeable
with air trimmers for most
applications and have advantages
in space requirements and
mechanical stability.

SELECTOR SWITCHES

. . . have self-cleaning
double-wipe contact jaws,
positive index, adjustable stop and
bakelite or steatite insulation

CUSTOM CERAMICS

. . at Centralab include
Steatite, Cordierite, Zirconite and a wide range of dielectric
materials. Available to
manufacturers only.

TUBULAR
 CERAMIC CAPACITORS

. are manufactured for high frequency circuits where the ultimate in stability and retrace characteristics

HI- ACCURACY CERAMIC CAPACITORS
 represent a new development

in which the order of accuracy
is suitable for rigid frequency

TONE SWITCHES

. include off-on switches,
station selectors in inter.
communication systems, talk-listen
switches and simplified band
change switches.

LEVER ACTION SWITCHES

... are particularly adapted
to broadcasting, receiving, public address, test instruments and industrial uses. They are available in ten combinations.

POWER SWITCHES
.. are suitable for transmitters, power supply converters and special industrial and electronic uses. Sections and indexes

CERAMIC TRANSMITTING CAPACITORS

... feature extremely low power
factor, stable retrace characteristics and maximum flashover commensurate with physical size.
available
WHERE

IS DISPLAYED

Further information available in Catalog No. 25 obtainable at your Authorized Centralab Distributor or from the plant at 900 E. Keefe Avenue, Milwaukee l, Wisconsin.

AVAILABLE WHERE
$\mathscr{T}!⿱$ CENT旲 1 LAB

Precision Quality

 for the Amateur!When building your new rig or revamping the old one to conform to the new Ham bands, be sure to use JK "Stabilized" Crystals - the crystals that are so carefully made and so perfectly mounted that you can install them and forget about them. JK "Stabilized" Crystals will stay "right on" at any normal operating temperature, and they're not affected by dust, moisture or vibration. Ask your jobber about JK "Stabilized" Crystals or write direct for our new illustrated folder.
*JK "stabilized" Crystals are made by the latest known methods of precision crystal manufacture. Our process known as "stabilizing" absolutely prevents frequency shifts due to aging, either in operation or on the shelf.

JAMES KNIGHTS "A RadiaResearcher Since the Early Days"

The men of the James Knighs Company have grown up with Ham Radio. Because of their work with piezo quartz since it first came into use as a frequency control. they know what is expected of a good Ham Crustal. You can depend on JK "Stabilized" Crystals.

LEON A. FABER
WوDAX_,"An AC.
five Ham Since $1913^{\prime \prime}$

The JAMES KNIGHTS Co.

SANDWICH ILLINOIS

Sixty Miles Southwest of Chicago

FS344 Frequency Standard $\$ 79.50$

and you radio "hams" know it . . . capacior performance "makes"

 or breaks" the rig. Now that you're getting back on the air you want to stay on it - without a letdown or a break.You make no mistakes when you depend on C-D Capacitors. Cornell-Dubilier has built a name and a reputation that stand for consistently dependable capacitor design and manufacture. And, if uninterrupted pleasure in your hobby depends on capacitor performance, you'll be wise to depend on a high-quality, low-cost product that has enjoyed the loyal choice of wireless and radio amateurs for more than thirty-seven years.
> ask your local c.d distributor for catalog \#195a, containing complete listings of C.D Capacitors for Amateur Equipment, Capacitor Test Instruments and Quietone Interference Filters. Or write direct to Cornell-Dubilier Electric Corporation, South Plainfeld, New Jersey.

FIVE MODERN PLANTS•SKILLED PERSONNEL

The better to serve you, Cornell-Dubilier now operates five huge modernly-equipped plants erntrally located: at South Plainfield, N. J.; New Bedford, Worcester, and Brookline, Mass., and at Providence, R. I. At each plant skilled capacitor specialists and trained technirians build C.D Capacitors fur many uses, check every process carefully, test and cautionsly insnect every capacitor to guarantee perfection.

TYPE YAB: Dykanol Impregnated and filled. non-inflammable, nonoxidizable and remains unaffected by exiensive voriations in temperature, humidily or voltoge stresses. For by-poss, audio frequency coup. ling, etc.

TYPE TJU: Dykanol frans. mitting filter capacitor, compact, lightweight, furnished with universal mounting clamp, well. insulated terminals. Hermetically seoled in non. corrosive, steel confoiner.

TYPE TLA: Inverted Dykonol Filter copacitor of extra high dielectric strength, lower-r.f. resisfance, light weight, high insulotion resistance, and higher voltoge break. down. Hermetically sealed in sturdy aluminum containers.

72

WRITE FOR TOUR GOPY CF

THIS IFMPUL GATALOG

are widely used in industrial plants throughout the country. They are designed to withstand the strain of continuous service required of factory tools.

SPOT SOLDERING MACHINE

designed for treadle operation for advancement of iron and solder leaving operator's hands free for handling of product.

SOLDERING IRON TEMPERATURE CONTROLS

prevent overheating of soldering irons between soldering operations. Irons do not deteriorate when being used. The idle period causes oxidation and shortens life.

SOLDER POTS

ruggedly construcred pots of various sizes designed for continuous operation and so constructed that they are easily and quickly serviced, should elements have to be replaced.

Write for Catalog

ELECTRIC SOLDERING IRON CO., INC.

2547 West Elm Street
DEEP RIVER, CONNECTICUT

Zoremost Manufacturers of Transfornin.
to the ELECTBONIC INDUTR Piniteal Tranaformer losp.

THERES AN

RCA TUB:

RCA POWER TRIODES

RCA MINIATURES

810 -Class B or class C. 750

 watts input in class C telegraphy up to 30 Mc . at 2500 plate volts.811-Class B or class C. 220 watts audio output in class B at 1500 plate volts.
812-Class C r-f amplifier. 225 watts input up to 60 Mc . at 1500 plate volts.
833-A-Class C r-f amplifier. A single tube takes a full KW at comparatively low plate voltage.
8005 -Class B or class C. 300 watts input in class C telegraphy up to 60 Mc . at 1500 plate volts.

RCA RECTIFIERS

5R4-GY-Full-wave, high-vacuum type. 250 ma. output at 700 volts.
816-Half-wave, mercury-vapor type. In full-wave circuit, 250 ma. output at 1500 volts.
866A/866-Half-wave, mercury-vapor type. In full-wave circuit, 500 ma . output at 3100 volts.

RCA DUAL BEAM POWER

 raphy up to 200 Mc . and 105 watts up to 250 Mc.832-A - Class C amplifier. 36 watts input in class C telegraphy up to 200 Mc . and 32 watts up to 200 Mc .

RCA ACORNS

6F4-UHF triode oscillator for frequencies up to 1200 Mc .
954 -UHF pentode detector or amplifier for frequencies up to 430 Mc .
955 -UHF triode detector, amplifier or oscillator. For receivers or transmitters up to 600 Mc .
958-A - UHF triode amplifier or oscillator for low-power UHF transceivers.

FOR EVERY AMAIEDR SERVIC:

RCA UHF POWER TRIODES

2C43-"Lighthouse" triode. 20 watts input up to 1500 Mc . Useful as keyed or modulated oscillator as high as 3000 Mc .
826-Oscillator, r-f amplifier or frequency multiplier. 50 watts input in class C telegraphy up to 250 Mc .
8025-A-Oscillator, r-f amplifier or frequency multiplier. 50 watts input in class C telegraphy up to 500 Mc .

RCA RECEIVING TYPES

NOW-CW RATINGS ON RCA RECEIVING TUBES

Strictly for the benefit of radio amateurs, Class C CW transmitting ratings have been established on the following receiving types: 6AG7, 6AK6, 6AQ5, 6F6, 6L6, 6N7, 6V6-GT and 12AU7.

Detailed information on these new ratings will be found in the October-November 1946 issue of Ham Tips. A copy may be obtained on request.

Have you seen HAM TIPS? Get a free copy from your local RCA Tube Distributor

RCA has an amateur type tube for every service, every power and every active band. A few of the most popular types in each classification are listed.

In addition, there are special types, such as voltage regulators, thyratrons, and the well-known receiving types in metal, glass, and miniature.

Your local RCA Tube Distributor has complete technical data on all RCA tube types. Contact him for further information on the types in which you are interested, or write RCA, Commercial Engineering, Section A-1 K, Harrison, New Jersey.

RCA LABORATORIES, PRINCETON, N. J.
THE FOUNTAINHEAD OF MODERN TUBE DEVELOPMENT IS RCA

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA

HARRISON. N.J.

78

An Outstanding Success!

RC-11 STUDIO CONSOLE

for AM or FM

The Most Versatile Unit of its Kind . . . Easily Controlling Two Studios, Announcer's Booth and Nine Remote and Two Network Lines.

This remarkable Raythcon Console commands the attention of studio engineers and managers as few items of broadcast equipment ever have!

It provides complete high-fidelity speech-input facilities with all the control, amplifying and monitoring equipment contained in a single compact cabinet. It easily handles any combination of studios, remote lines or turntables-broadcasting and auditioning simultaneously, if desired, through two high quality main amplifier channels. It makes it a simple matter to cue an oncoming program and pre-set the volume while another program is on the air.

Note the sloping front and backward-sloping top panel, giving maximum visibility of controls and an unobstructed view into the studio. Note the telephone-type, lever action, three-position key switches, eliminating nineteen controls.

The beauty of this console, in two-tone metallic tan... the efficient, functional look of it ... will step up the appearance of any studio, yet blend easily with other equipment.

RAYTHEON MANUFACTURING COMPANY
 Broadcast Equipment Division 7517 No. Clark Street, Chicago 26, III.

Hallierafters
Guardian
Cardwell
Eimac
Hickok
Burgess
Audiodises
IRC
Jensen
Meissner
Ohmite
National
Raytheon
Potter \& Brumfield
Ohmite
Universal
Taylor
Sangamo
Ward Leonor
Mallory
$\mathrm{H} \% \mathrm{H}$
The RIADDUN General Electric Cornell-Dubilier Brush Astatic
Hytron Johnson Miller
RCA
Share
Thordarson
UTC
Clarostot
Browning
Mueller
Rider
Simpson
Tole
Bogen
Blitey
Amphenol
Barker -Williamson
Amperite
Mu-Switch
Aerovox
Advance
Stancor
Abbott
Struthers-Dunn
Triplets
Centralab
Gammotron
ESICO
Dunce
Dumont
Dialco
Cafe
Citron
Cannonball
Brander
Bernbach
AIR
Arrow
Heinz and Kaufman
Kate
Lank
Pyrex
Recordist
Sigma
Trims
Turner
Kwikheat
Wester WHY do hamshai, and Helsinki sometimes in person?
athens. Shang mail, cable, Shack" by man, 1924 RADIO Amateurs in the far corners BECAUSE SERVICE to made possible amateur and of the world. Of the problems of the products of all the underset enormous stock torturers. Shack customers in world famous man made Radio Shack cesta for you The service that has mande was established build your Cavite and Constant America. Use faster, for less cost.
better higher "Ham Shack a handy aid. Write

 $+$
Your Microphone or Pickup is Here!

"100"

"76B"

LEVER-TYPE

The Unidyne is the most widely publicized microphone for public address. A super-cardioid dynamic that is used where perfect sound reproduction is an absolute must.

High quality carbon microphone specially designed for military and police equipment where ruggedness and dependability are vital factors.

The Stratoliner Dynamic is a rugged microphone with unusually smooth response - good for police transmitters, airports, and industrial paging systems.

The "76B" Lapel is designed for public address, lecturing in large halls, broadcasting from portable transmitters. High quality speech reproduction.

Shure Cartridges are good for replacement of crystal cartridges in current use. Flexible needles, high output voltages. Pin-tip terminals-no soldering necessary.

WRITE FOR CATALOGS 155H AND 156H SHURE BROTHERS, inc.

Microphones and Acoustic Devices 225 W. Huron St., Chicago 10, III. Cable Address: SHUREMICRO

82

OR HAMS!

The SYLVANIA LOCK-IN TUBE

This famous product of Sylvania research is well known for its electrical and mechanical superiority. Special points of merit, of interest to you, are:

Lock-In locating plug . . . also acts as shield between pins.
Short. direct connections . . . fewer welded joints-less loss.
Getter located on top . . . shorts eliminated by separation of getter material from leads.
No top cap connection . . . overhead wires eliminated.
Reduced overall height . . . space saving. Stays put in mobile and portable rigs.

The 6 K 4 cathode type tube-another development of special interest to hams. This high-frequency oscillator, in the new T-3 size, is ideally suited for your use. It's compact, rugged-developed from the famous proximity fuze type tube that was made to be shot from a gun.

SOME OUTS ANDING PRODUC S of SYLLVANA RESEARCH

The IN34 GERMANIUM CRYSTAL DIODE and IN35 DUO-DIODE

FEATURES

1. Smoll size.
2. Elimination of heater supplies. Removes possible source of hum.
3. Pigtoil construction -can be soldered into ploce (1N34).
4. Great resistance to vibration and shock.
5. Low forward resistance value.
6. Low shunt capocitance (obout 3 micro. microforads for unit mounted in plose in circuit).

The 1N34 and 1N35 are ideal for use in lightweight and portable equipment. Fields of application include: field

strength meters, detectors. clippers, discriminators, series noise limiters, demodulators, meter rectifiers.

The LOW-COST, EASY-TO-USE MODULATION MONITOR

Now you can monitor your modulation percentage and speech quality with this new Sylvania Model X-7018 Modulation Meter. Compactly styled. Economical. Of great assistance in complying with FCC regulations on overmodulation. Helps keep your average percentage up between 60% and 90%. Indicates carrier shift.

SEE YOUR SYLVANIA DISTRIBUTOR

$$
\text { ELECTRIC } \overline{0}
$$

INVARIABLY IT'S VALPEY

For every crystal application, VALPEY invariably gives outstanding performance. Select your VALPEY unit from the above chart, or send your specific crystal requirements to VALPEY. In every field where accurate crystal control is the aim invariably it's VALPEY.

Craftrmanditip in Cryotols since 1931

For CW Only or CW and FON Operation

The HARVEY

 100-T TRANSMITTERYou can ot the HARVEY 100.T Transmituer for CW eperatiner only (without Modulator) or complete for radia, triephone and telegraph optition. There tiurdy, effizient, theroughly depardable units will meet your highest expectations of aperating ease and performana

SPECIFICATIONS

Frequency Renge: 1.7-30 me.
Power Input: 130 Wats Phone

175 Watts CW
Power Outputs 100 Watts Phone
130 Watts CW
Radio Frequoncy Tubes: OV Crysial oscillator 616 Doubler 814 Finol amplifier
Audio Frequoncy Tubes: $65 J 7$ Isi Audio amplifier 6SF5 2nd Audio amplifier 6F6 Class B driver
2.807 Class B modulators

Rectifier Tubess 2-866 Final amplifier supply
83 V Oscillator-Doubler supply 573 Speech amplifier supply RK-60 Modulator supply
Power Source: 115 volts 50,60 cycles
Power Droln: 730 watts
Microphones Single cell crystol type
Cobinct Size: $201 / 2^{\prime \prime}$ high, $191 / 2^{\prime \prime}$ wide, $131 / 2^{\prime \prime}$ deep Nof Weight: 150 Lbs. 68.04 Kilet
Shipping Weight: 225 Lbs. 10206 Kilos

SEE The Perfurmance of Your Circuits The HAR-CAM Visual Alignment Signel Generator provides the swiftest, surest meinod for the adjusiment and alignment of tuned circulis. With it the campplete radio frequency resposined on an any circult can be Variations in
oscillos. Vops circuit alignment can be accurately evaluated and necossary hanges ircuit aluated and necossands.
made in a matier of second

Write for Bulletins contoining Information on the lateit HARVEY Transmitter developments.

> HARVEYRADIO LABORATORIES, INC. 436 Concord Ave., Cambridge 38, Mass.

Mehers of Marine Rodlo Telophones, Regulated Dower supplles end Emergency Communleotions Equipment.

STOP TANK CIRCUIT LEAKS
. . with this complete B \& W Coil and Capacitor assembly

BN W T: me (: Variathe Cabaritors pronida fordirect

 luts minimmon. (lifosed stator madions in the -abraiters provide short r-f path. Butterfy rotor Comstrulion permits erobmbling rolor at the e.onter

 watts. Trat votrr Hew ris lar real tatik eircuit eflirinney: IV rite for ratales.

Neufralizing Plates Available in 4 Types B \& W B, T AND HD INDUCTORS

- MINIMUM DIELECTRIC IN THE FIELD OF THE COIL
- fXTREMELY LOW LOS5ES - RUGGED CONSTRUCTION
- EXGELLENT APpeARANCE-LOW cOSt

 in conter fapped monlels wishomi limb: rom limk:

 lappmed mondels witherit link: reotrer limked with rentor lat atad variable linlsed with ronter tap.

 (1) atral (30) moter bithats.

B \& W TVH INDUCTORS
for powers up to 500-watts input

 metro Inatida.

SEE B \& W PRODUCTS AT YOUR JOBBER'S
Write for Complete Amateur Catalog

B \& W TURRET ASSEMBLIES

 rail.

 pewor tobere and trionder

 3 s heole.

Type lbtil. - Vand lialial. whlapred rails.

B \& W BABY TURRETS - 35-WATTS

 switrhing eflicirney in bon power tranmithers and everter saiges.

ANTENNA INDUCTORS TA AND HDA

 tapping hemare and have fivel eonder tinhow for compline to

 HWl har powar input- of abr hilawalt.

B \& W 3400 SERIES INDUCTORS

Prosontine the wtmost in sturdy wombrorion and elownial flavibitity there coils are built will ath individual internal

 wall-. Isatable for 10. 1-7, 20. 10 and 80 melar hands.

THE MIDGET R-F COILS of dozens of uses

 hizh-fr"quaney inf iramaformore and labdirem roile

 irnmandaral 2' orr 3' levorlho.

BAREMR \& whmmamson

"Euwiped by ALLIED"

W申FBS-Tom Atherstone-Denver, Colorado
Equipped by ALLIED. Listen for him on 10 and 20 meter phone.

W5DZ-Calonel W. P. Clarke-Waco, Texas Equipped by ALLIED. Listen for him on 20 and 75 meter phone.

W5SH-Edwin C. Shaw-Fort Worth, Texas Equipped by ALLIED. Listen for him on 10 and 20 mefer phone.
ALLIED RADIO
"Equipped by ALLIED" is a famous by-word in the Anateur Radio world, From the early days of 200 meters and spark transmitters to the micro-waves of today, ALLIED-equipped rigs have been writing radio history.
The three post-war stations illustrated here are typical of hundreds of modern Ham Shacks "equipped by ALLII:D." Each has its own story-a friendly. personal story, because into each has gone the full interest of ALLIED'S amateurs working with fellow amateurs. There's more to each than just the equipment.
Whether you're starting from "scratch," rebuilding, or newly licensed, you can count on ALLIED. . . where hams understand ham problems...

IN AMATEUR RADIO FOR OVER 25 YEARS

ACCURACY - STABILITY ACTIVITY - HICH OUTPUT DEPENDABILITY at Low Cost

For years PR Precision Crystals have set performance standards in all types of service . . . amateur, commercial, marine, broadcast, mobile, police, aircraft. PRs are the foremost choice of amateurs . . . the most critical users of crystals today. PR Crystals have earned this reputation by LOW DRIFT characteristics, less than 2 cycles per MC per degree Centigrade . . . HIGH OUTPUT AND DEPENDABILITY even at highest permissible crystal currents ACCURACY within 01 per cent of specified frequency . . HIGH ACTIVITY especially desirable for break in CW operation X.ray orientation . . CONTAMINATION AND MOISTUREPROOF through permanent gasket seal . . . ${ }^{\frac{1}{2} \text {-inch pin spacing. }}$ Every PR is UNCONDIIIONALLY GUARANTEED. Your EXACT FREQUENCY (lntegral Kilocycle) AT NO EXTRA COST. See your jobber for PRs. His stock is complete for ALL BANDS. Accept no substitute. - Pelersen Fadio Company, 2800 West Broadway. Council Bluffs, Iowa. (Telephone 2760)

COMMERCIAL PR Type Z-1

80 and 40 METERS
PR Type Z-2

20 METERS

PR Type Z-3

10 METERS

PR Type Z-5

Frequency range 1.5 to 10.5 MC . Designed for rigors of all types of commer. cial service. Calibrated .005 per cent of specified frequency. Weight less than 3_{4} ounce. Sealed against moisture and contamination. Meets FCC requirements for all types of service.

Rugged. Low drift fundamental oscillators. High activity and power output. Stands up under maximum crystal cur: rents. Stable, long-lasting, permanent. Iy sealed....................... . . $\$ 2.65$ Net Harmonic oscillator. Low drift. High activity. Can be keyed in most circuits. Stable as fundamental oscillators. Fine for doubling to 10 and 11 meters or "straight through" 20 meter operation. $\$ 3.50$ Net

Harmonic oscillator for "straight through" mobile operation and for frequency multiplying to VHF. Heavy output in our special circuit..... $\$ 5.00$ Net

Io Seruice Eucrywhere!..

DUMMY ANTENNA RESISTORS

To check R. F, power, determine transmission line losses, check line to antenna impedance match. Helps tune up to peak efficienc: Non-inductive, non-capacitive constant in resistance, 100 and 250 watt sizes in various resistances.

BROWN DEVIL RESISTORS

Small, extra sturdy, wire wound vitreous enatueled renistors for voltuge dropping, bias units, blecters. etc. Proved right ill vital installations the norld over. 10 and 20 watt sizes in resistances up to 100.000 ohms.

R. F. PLATE CHOKES

R, F. POWER LINE

 2) CHOKES
PARASITIC SUPPRESSOR

Small. light. compact non-inductive resistor and choke, designed to prevent u.h.f. parasitic oscillations which occur in the plate and grid leads of push-pull and parallel tube circuits. Only $1^{3 / 4} 4^{\prime \prime}$ long overall and $5 / 8$ " in diameter.

CENTER-TAPPED RESISTORS

For use across tube filaments to provide an electrical center for the grid and plate returns. Center tap accurate to plus or minus 10 . Wirewatt (1 watt) and Brown Devil (10 watt) units, in resistances from 10 to 200 ohms.

Single layer wound on low power factor steatite or bakelite cores, with moistureproof coating. Nine stock sizes for all ham bands from 1.8 mc to $\mathbf{4 6 0} \mathrm{mc}$. Small, high frequency chokes mount by wire leads. Larger sizes mount on brackets. Ail sizes rated 1000 ma or more.

OHA I'E Rheostats*Resistors*Chokes*Switches

CLOSE-CONTROL RHEOSTATS

Insure permanenty smooth, close control of communications, electronic and electrical devices. W'idely used in industry and in war equipment. All ceramic, vitreous enam. eled. 25, 50, 75, 100, 150, 225, $300,500,750$ and 1000 wate sizes. Approved Army and Navy types.

For general use where high voltuge inculation is required. Suritable for circuits up to 1 K.W. rating. Used for band changing, meter switching. upped transformer circuits etc. Ceramic construction.

LItTLE DEVIL INDIVIDUALLY MARKED INSULATED COMPOSITION RESISTORS

 fixed resistors each marked with resistance and wattage rating. $1 / 2$ Watt, 1 watt and 2 watt sizes, 10% tolerance. Meet Army-Navy Specification JAN-R-11. Can be used at full wattage rating at $70 \mathrm{C}(158 \mathrm{~F})$ ambient temperature. Dissipate heat rapidly. Low noise leval. Low voltage coefficient. Stocked in standard RMA values from 10 ohms to 22 megohms.

Available only from Ohmite Distributors

Very useful in training schools, in laboratories and in industry. Figures ohms, watts, volts, amperes - quickly, easily. Solves any Ohm's Law problem with one setting of the slide. All values are direct reading. No slide rule knowledge is necessary. Scales on two sides cover the range of currents, resistances, wattages and voltages commonly used in radio and electronic applications. Size only $4^{1 / 8^{\prime \prime}} \times 9^{\prime \prime}$. Send only 10 c in coin to cover handling cost.

HIGH-CURRENT TAP SWITCHES

Compact, all cerannic, multipoint rothry selectors for A.C. use. Silver to silver contacts. Rated at $10.15 .25,50$ and 100 amperes with any number of taps up to 11.12 , 12, 12, and 8 respectively. Single or tandem assemblies.

A compact, low cost unit used in a simple potentioncter circuit as a transmitting element to indicate, remotely, the position of a rotary beam antenna. Used with an 0-1 milliameter.

SEND FOR FREE STOCK CATALOG-Gives helpful information and data on Ohmite stock units for essent:al applications-lists hundreds of stock values. Very handy for quick reference.
 employ the lensen "Annulor" drophraum clomped ct pertphery und center - another exclusive feofure!
COAXIAL Speakers. Now four mproved $15^{\prime \prime}$ and 12 designs for high-fidelity, extended-range reproduction. High. frequency Contiol provides instont fidelity odiustment to suit pragrom quality and insiener preference. Aroilable in com plete Reproducers.

SPEECH MASTER Reproducers. Designed especially for crisp highly.effective sperech reproduction. Desk., panel., woll. mountang types in power rolings for low-level ond high-level applications

BASS REFLEX Reproducers. A complete line of

 reproducers whth speaker instolied, or enclosures only. in fine furnature or utality styles-all with the smoothly extended low frequency range for which Jensen Bass Reflex is justly fomous

SPEAKERS WITH

ALNICO 5

Jensen manufacturing company- 611 south laramie, chicago 38 -ILlinols. In Canada-Copper wire Products Lid., il King Street West, Toronto
94

LET'S GET THIS STRAIGHT!

 by HAMS
OULY ONE WAY TO GET THE LATEST DOPE!

You naturally want to be in on the latest dope in ham merchandise. We keep everyone informed so far as possible by advertising. BUT - magazines go to press long before they appear. And ioday's fast-moving markets find new products and tremendous surplus bargains coming out between issues. So we publish:

BIG BARGAIN BULLETINS -GET 'EM!

Chock full of real ham values, these are mailed direct to hams who want them and who take a moment to let us know they want them. So drop us a card or fill in the coupon below and paste it on a card. Do it now!

* Stop in at Chicago or New York branches to see Newark's famous BARGAIN COUNTERS!

New York City Stores: 115-17 W. 45th St \& 212 Fulton St

* Always fast, friendly ham service from all Newark branchesl

ATHPERER POWER TU:EF

For a quarter century AMPEREX has been closely identified with creative research, l:boratory approach, precision manufacture and helpful service in its chosen fiold - power tutres. This specialized concentration has earned AMPEREX a unique position of leadership.

Make Good Equipment Better With Better AMPEREX Tubes

YOUR PLANS-YOUR PROBLEMS As tube specialists deeply concerned with all modern developments, Amperex engineers are in a position to give you detached advice and information. YOU ARE INVITED to write the Amperex Application Engineering Department for answers to specific questions.

TRIMM

…HEADSETS

Your next pair of headsets will be a TRIMM. . . Perhaps your station is known 'round the world; the best is none too good; TRIMM Featherweights or Commercials are your choice. Perhaps yours is a more modest rig; TRIMM Professionals, Dependables, " B " or " E " may fill your needs. Or perhaps you're just about to learn code and pennies count. . . . You'll want a TRIMM Acme or Rex. Twenty-five years' experience assure the best in each price class.

TRIMM, Inc.
 1770 W. Berteau Ave., Chicago, Ill.

99

The Collins 32V-1 150 waft Transmitter

Medium Power in Small Space

The 32V-1 is a nat ural for those who want medium power in a small cabinet. It is complete in one package. All you need to put it on the air are a key or microphone, antenna, and a 115 volt a-c power source. Its convenient size allows either permanent installation or portable use.

The $32 \mathrm{~V}-1$ is rated at 150 watts input on CW or 120 watts on phone. A receiver type cabinet houses the entire unit - power supply, audio. and r-f. All r-f stages except the final are permeability tuned and ganged with the v.f.o. The dial is calibrated directly in frequency. Bandswitching is employed, thus eliminating plug-in coils.

The output network will match impedances of 50 ohms to 600 ohms. Balanced or unbalanced open wire lines and antennas, and concentric
transmission lines, can be used with good efficiency. Other transmission systems can be used with link coupling to the transmitter output.
In brief, here are the features of the $32 \mathrm{~V}-\mathbf{1}$:
bandswitching table model
v.f.o. control

150 watts input on CW

120 watts input on phone
80, 40, 20, 15, 11 , 10 meters
push-to-talk
$211 \mathrm{~s}^{\prime \prime}$ w, $127 / 16^{\prime \prime} \mathrm{h}$, $13^{3 / /^{\prime \prime}} \mathrm{d}$
ganged tuning
pi output network
clean keying
direct frequency calibration

The Collins 30 K
500 wan Transmitter

Designed Specifically for Amateur Radio

Every detail of the 30 K is thoroughly engineered to assure the best performance for amateurs-it is not modified military equipment. Operating convenience and reliability are provided in the design and construction. The v.f.o. controlled exciter unit is in a receiver type cabinet that can be set right on the operating desk. Bandswitching in hoth the exciter unit and the transmitter itself facilitates multi-band operation. Three sets of antenna terminals are provided, with provision for switching antennas.

The speech clipper and low pass audio filter in the speech amplifier enable the operator to maintain a high average modulation, yet keep a narrow signal and prevent overmodulation.

Compare the following features-sec how they fit your desires:
bandswitching
v.f.o. control

500 watts input on CW
375 walls input on phone
100% modulation speech clipper
push-to-talk
smooth, modern styling
clean, sharp keying
80, 40, 20, 15, 11 , 10 meters
break-in operation
115 volts a-c power source

Attractive in appearance, efficient in operation, the 30 K will make a satisfying nucleus for your ham shack.

The Collins 75A Receiver

A New Standard for Amateur Receivers

The 75A was engineered specifically for anatcurs. It covers six ham bands, with straight line tuning on all bands. The calibration is accurate to within one kilocycle on 15 meters, and to within two kilocycles on the 11 and 10 meter bands. Double conversion is utilized. The overall stability is within one dial division under all normal operating conditions.

The 75 A is permeability tuned. It performs equally well on all amateur bands. Image rejection is a minimum of 50 db on all bands. The thoroughly engineered crystal filter circuit operates smoothly in providing a bandwidth variable in five steps from 4 kc to 200 cps . There is no loss in gain.

Here are some of its many desirable features:
double conversion straight line quning direct frequency calibration
80, 40, 20, 15, 11, 10 meters
50 db image rejec. tion
variable selectivity high sensitivity self-contained power supply
signal strength meter
permeability tuned
receiver disabling circuit
10 db signal to noise ratio
three IF amplifiers very high stability accuratecalibration amplified ave

Know Your Frequency

 with this v. f. o.The overall accuracy and stability of the $70 \mathrm{E}-8$ are within 0.015% under all normal operating conditions. That means that you can set it to within $1 / 2 \mathrm{kc}$ of any desired frequency on the 80 meter band, and know that it will stay there.

Sixteen turns of the vernier dial vary the frequency from 1600 kc to 2000 kc . The following table shows the relation between the oscillator frequency and various amateur bands:

Band (meters)	Freq. (me)	No. of dial divisions	ke^{\prime} dial division
80	$3.5-4.0$	1000	0.5
40	$7.0-7.3$	300	1.0
20	$14.0-14.4$	200	2.0
15	$21.0-21.5$	166	3.0
11	$27.185-27.4 .55$	67.5	4.0
10	$28.0-29.7$	425	4.0
6	$50.0-54.0$	533.3	7.5
2	$144.0-148.0$	200	20.0
$11 / 4$	$220.0 \cdot 225.0$	833.3	30.0
$2 / 3$	420.0 .450 .0	500	60.0

The $70 \mathrm{E}-8$ is permeability tuned. The dial is calibrated directly in frequency up to and including the 10 meter band. 10 volts r-f output are available fire use in an exciter, band edge spotter, heterodyne frequency meter. or other applications.

COLLINS RADIO COMPANY, Cedar Rapids, Iowa

BuIT Ticernowill stawdinis

for more and better QSOs

Here is a communications receiver that is enginecred to satisfy exacting commercial requiremems. Yet it is ideal for the amateur who wants better QSOs and more of them. Remember. it is engineered by Cardwell and bailt to Carduell standards . . . then read the following outstanding features:

1. Full Turret Type R. F. Section. (Sturdy cilst aluminum construction.) 2. Wide Frequency Coverage. (Kange 5 . 1 to 54.0 mcs . Basic turret covers. 5 i through $\mathbf{4} 0 \mathrm{mcs}$, in six bands. Extra coil utrip, supplied on special order, extends range to 54 mes.)
2. Secondary Frequency Standard. ((nique type crysal calibrator provides check points of either 100 or 1000 kcs .) 4. Variable Selectivity Crystal Filter.
(Chosice of 5 degrees of selectivitythree with crystal, two without.)
3. Exceptional Signalio Noise Ratio (Receiver moise less than 6 db above thermal!!
4. New Type Noise Limiter.
(A really ettective aid in reducing local
ignition interfermer and similar noises.) 7. Electrical Band Spread. (Band spread scales calibrated directly. Arbitrary acale 0-100 also visible on each setting.)
5. Direct Reading Precision Dials. (Excellent visibilits-momer tratel better than $10 \frac{1}{2}$ inches-velver smometh dial action.)
6. Temperaiture Compensated Oscillator.
(Srability is berter than 25 parss per mitlion per degree centigrade. V.R. tube matotains maximum frequency stability against line voltage tlucruations.)
7. Mechanical Coupling Provisions.
(Cuncrol shafis are brougite out at rear for linkage to other units such as at eransmiter eaciter.)
8. Aluminum Unit Construction. (Receiver and pouser suppty combined in one scurdy, lightweight unit isi :" wide $x ~ 16 "$ deep $x 11^{2}$ high. Weright approximately ${ }^{\circ} 0$ lbs.)
9. Heavy Duty Speaker.
(Compact tilting unit $91 / 4^{\prime \prime}$ wide $\times x^{1 / 4 "}$ deep a $11^{\prime \prime}$ hygh for wall or table mounting.)
10. Eight Watts Audio Output.
(Push-pull class AB-with four ourpur impedances. Connectoons provided for phonos-pichup or high level microphone input.)
11. 18 Tubes-All Miniature.
12. Threshold Squelch.
13. Panoramic Adaptor Jack.
14. Rack Mounting Model.
(Will also be available.)

WRITE FOR COMPLETE TECHNICAL BULLETIN

THE ALLEN D. CARDWELL MANUFACTURING CORP.

MAIN OFFICE
\& FACTORY:

97 WHITING STREET
PLAINVILLE, CONN.

NOW AVAILABLE

 no. Raytheanover 125 amateur and SPECIAL PURPOSE TUBES!

HIGHLIGHTS OF THE RAYTHEON LINE

BAYIHLON SUCMINIATUAE TUSAS

TYPE no.	construction	application	Filament			$\begin{aligned} & \text { Max } \\ & \text { Mleot } \\ & \text { volut } \end{aligned}$	$\begin{gathered} \text { Mos } \\ \text { Mlote } \\ \text { Cur Ma. } \end{gathered}$	CAPACITANCESMmids.			TYPE No.
			Volts	Amps.	Type			6.P		Outpet	
CX502AX	Pentode	Output Stage	1.25	0.030	Oxide	45	0.6	14	3.0	5.7	CR502AX
CX503AX	Pentode	Output Stage	1.25	0.030	Oxide	45	0.8	1	3.7	6.3	CRS03AX
CES0SAX	Pentode	Voltage Amplifier	0.625	0.030	Oride	30	0.15	07	2.7	4.4	CR505AX
CX506AX	Pentode	Output Stage	1.25	0.050	Onide	45	1.25	. 09	3.5	6.2	CK506AX
CES510AX	Double Space Charge Tetrode	Voltage Amplifier	0.625	0.050	Oxide	45	0.06	0.6	2.4	2.1	CRSIOAX
CRSISEX	Triode	Voltage Amplitier	0.625	0.030	Oride	45	0.15	. 65	1.5	2.5	CRSISBX
CK356AX	Triode	U.H.F. Oscillator	1.25	. 125	Filament	135	4.0	2.0	1.3	4.0	CRS56AX
Crss9AX	Peniode	Amplifier	1.25	. 050	Filament	675	1.8	. 01	3.3	3.8	Cx569AX
CK60scX	Pentode	U.HF. Amplitier	6.3	02	Heater	120	7.5	0.015	4.4	3.8	CK605CX
CR606BX	Diode	U.H.F Rectifier	6.3	0.15	Heater	420				-2.1	CK606BX
CX608CX	Triode	Oscillator-Amp	6.3	0.2	Heater	- 120	9				CR600CX
CR619CX	Trisde	Oscillator Amp	6.3	0.2	Heater	250	4				CK619CX

BAYKEON TRANSMITTINE TUDES

TYPE No.	constauc. IION	SPECIAL APPLICATIONS	filament		max. volt.		max. Cur_ma.			ER-W	Out- put	$\begin{gathered} \text { CAPAC } \\ \text { MmAd } \\ \text { G.F. } \end{gathered}$	TYPE No.
2C34/RE34	Dual Triode	H-F Oscillator-Amp.	6.3	0.8	300		80		10	1.8	16	2.4	2 C 34 RK 34
RE4D22	Beam Terrode	R.F Oscillator-Amp.	$\begin{aligned} & 25.2 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.6 \end{aligned}$	750	350	300	35	50	1.25	100	0.27	RK4D22
FX4D32	Beam Tetrode	R.F Oscillator-Amp	63	3.75	750	350	300	35	50	1.25	100	0.27	RK4D32
5 S 23 RK65	R-F Tetrode	R-F Amplifier	5.0	14.0	3000	500	250	80		15.0	565	0.42	SD23 RR65
RK6D22	Tetrode	R-F. A.F Amplifier	5.0	28.5	3500	500	500	165	450	22.0	1000	0.5	RK6D22
RK20A	R-F Pentode	Suppressor Mod	7.5	3.25	1250	300	92	36	40	1.6	84	0.01	RK20A
R228A	R-F Pentode	Suppressor Mod.	10.0	5.0	2000	400	175	50	125	22	250	0.02	RK28A
RK38	Triode	A-F, A-F Amplifier	5.0	8.0	3000		160		100	10.0	-225	4.3	RE38
RK 48 A	Beam Terrode	R-F Oscillator Amp.	10.0	5.0	2000	400	180	40	100	1.2	250	0.2	RK48A
814 RK47	Beam Tetrode	R-F Oscillator-Amp.	10.0	3.25	1250	300	150	14	50	1.0	120	012	814.RK47

RAYHLON RECTIFIER TURES

TYPE NO.	constaveition	filament		max. PEAK INVERE VOLTS	max. peax CURRENT	average CUREENT D.C.	AVERAGE TUAF ofiop	TYPE NO.
${ }^{\text {BH }}$	Full Wave-Gas			1.000	400 Ma .	125 Ma .	90	BH
RK3b24	Half Wave-High Vacuum	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 20.000 \\ & 20.000 \end{aligned}$	$\begin{aligned} & 150 \mathrm{Ma} . \\ & 300 \mathrm{Ma} \end{aligned}$	30 Ma . 60 Ma		RK3B24
RE3 3 29	Hall Wave--High Vacuum	2.5	4.75	16.000	250 Ma .	$65^{\circ} \mathrm{Ma}$.	130	RE3B29
RK4B31	Clipper Diode-High Vacuum	5.0	5.25	16.000	16 Amp.	60 Ma .	150	RKAB3İ
RK72	Halt Wave-High Vacuum	2.5	3.0	20.000	150 Ma .	30 Mc	200	RE72
RK7058	Hall Wave-High Vacuum	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 35.000 \\ & 35.000 \end{aligned}$	$\begin{aligned} & 375 \mathrm{Ma} \\ & 750 \mathrm{Ma} . \end{aligned}$	$\begin{aligned} & 50 \mathrm{Ma} . \\ & 100 \mathrm{Ma} . \end{aligned}$		RE705A
RK866 ${ }^{\text {/ } / 866}$	Half Wave-Mercury	2.5	5.0	10.000	1.0 Amp	250 Ma	15	RK866A 866
HR872A 872	Hall Wave-Mercury	5.0	7.5	10.000	5.0 Amp	1.25 Amp.	10	RK872A 872
1005 CX1005	Full Wave-Gas	6.3	0.1	450	210 Ma .	70 Ma	20	1005 CE 1005
1006 CR 1006	Full Wave Gas	1.75	2.0	1.600°	600 Ma	200 Ma	20	1006 CE1006
CR1007	Full Wave Gas	1.0	1.2	980	330 Ma .	110 Ma .	24	CE 1007
CE1012	Full Wave-Gas	1.75	2.0	$\begin{aligned} & 1,200 \\ & 1.200 \end{aligned}$	$\begin{aligned} & 900 \mathrm{Ma} . \\ & 900 \mathrm{Ma} . \end{aligned}$	$\begin{aligned} & 300 \mathrm{Ma} \\ & 300 \mathrm{Ma} . \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	CE1012
1F1, RKG0	Full Wave-High Vacuum	5.0	3.0	$\begin{aligned} & 4,500 \\ & 2,500 \end{aligned}$	150 Ma . 330 Ma	50 Ma . 250 Ma	61	1641 rago
$5517{ }^{-1} \mathrm{CxIO13}$	Half Wave-Gas			2.800	50 Ma .	6 Ma .	100	$5317{ }^{\text {Cxi }} 1013$

RAYTHEON SPECIAL PURPOSE TUME

HERE'S HELPFUL INFORMATION ON IBAC POWER WIRE WOUNDS!

FIXED POWER WIRE WOUND RESISTORS

Resistance Ronge
Ohms

AB	10	$13 / \prime^{\prime \prime}$	$5 / 16^{\prime \prime}$	1 to 25,000
DG	20	$2 \prime \prime$	$9 / 16^{\prime \prime}$	1 to 50,000
EP	50	$41 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$	5 to 0.1 meg.
ES	80	$61 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$	5 to 0.1 meg.
HA	100	$61 / 2^{\prime \prime}$	$11 / 8^{\prime \prime}$	25 10 0.1 meg.
HO	200	$101 / 2^{\prime \prime}$	$11 / 8^{\prime \prime}$	25 to 0.1 meg.

ADJUSTABLE POWER WIRE WOUND RESISTORS
Type Length Dio. Resistance Range Ohms
ABA $\quad 13 / 4^{\prime \prime} \quad 5 / 16^{\prime \prime} \quad 1$ to 10,000

DHA 21/2" $1 / 6^{\prime \prime} \quad 1$ to 25,000
EPA $\quad 4^{1 / 2^{\prime \prime}} \quad 3 / 4^{\prime \prime} \quad 5$ to 0.1 meg .
ESA $\quad 61 / 2^{\prime \prime} \quad 3 / 4^{\prime \prime} \quad 5 t 00.1 \mathrm{meg}$.

HAA $\quad 61 / 2^{\prime \prime} \quad 118^{\prime \prime} \quad 100100.1 \mathrm{meg}$.
HOA $101 / 2^{\prime \prime} \quad 11 / 8^{\prime \prime} \quad 100$ to 0.1 meg .

To guard against the harmful action of atmospheric moisture and corrosion, IRC Fixed and Adjustable Power Wire Wound Resistors have a special cement coating.
This coaring is dark and rough, dissipates heat rapidly, does not deteriorate under any reasonable overload. It guards the winding against the inroads of moisture and corrosive action, contains no chemically active ingredients, no salts, to attack the wire. The cement is crack proof, is cured and hardened at low temperature to prevent the eemper from being baked out of winding and terminals.
IRC Fised and Adjustable Power Wire Wound Resistors are wound on tough, non-porous ceramic forms, have extreme mechanical strength. They are available from 10 to 200 watts.
The many exclusive construction features of IRC Volume Contiols, Rheostats, BT \& BW Resistors, and Precision W"ire W'ound Resistors hape made shem the proven favorite of ridio amisteurs. IRC manufactures a resistance wnit for cuery bam-rig requirement.

NEWI RESISTO-GUIDE

- AIDS IN RESISTOR IDENYIFICAYIONI

Here's practical aid in resistor range identification. Just turn the three wheels to coreespond with the color code and the standard RMA range is automatically indicated. loc at dll IRC distributors.

IRC Catalog 50 lists a resistance unit for every ham-rig requirement. It's available at your local IRC Distributor,

Fwe NEW SNE.

To improve upon the $11 Y^{7} 75$ was not easy. Hut the new HY-5A does the trich. Maximum plate current of the HY'5A is incteaned to 90 m.s. Grid-to-plate capacitance is sharply reduced to
 the resonant frequency by $20-30 \mathrm{me}$. Efticiency is up; 25% more power output at 1 .t. me. How Was this accomplished! By a shormer mount, smaller elements, spectal high-woltage pracesomg of

 and a higher value of grid eesistor. For replacement or new whequpment, the new HY75A in your logical choice.

HY75A

IMPROVED VERSION OF HY75 VHF TRIODE
 to grow wath - the 551.4 is efticient at plate potentals thom 000.1250 wolts. Assuchated components, are conomical and still usable as poner is incianced. At conservative CCs ratings, tho 551 in hadle 135 wates chas C mput: d hme 300 wates class B output. One lliog on sut can overdrive at maxmem mput two 5514 , in class C. No cosely protectave fixad bis s necded fort than allpurpose, zoro-bias $551-\mathrm{i}$. Fatures: zatomitum-witad graphate anode, low lam
 (1) pins 2 and 3 , comeniont 4 pen medhum low-lom bace and 7.5 wht falament.

HYTRON
MADE IN IJSA

5314 ECONOMICAL VERSATIE TERO-BIAS TRIODE

Designcel for frequencies beyond the capabilities of the 2F25, the new is10 platemodulated deliver usctul power wutputs of 21,16 and 12 wats at - 4 125. and 165 me rexpectively. No neutralizatom is needed in plaperly donemed citcuits. All electrode potentals mady be appliced simultancously for mommum
 low inductance and capacitance. The arconium-coated plate and yperally theated gide permit higher power outputs. Three separate base-phe winections the the filament center tap provide for lowest powible cathode led inductance. I veel
 $\$ 3.95$ 5516 deal for powering all stages - r-i and at - of your mobile copupment, thus simplifying the spares problem.

5516
INSTANT-HEATING 165 -MC BEAM AMPLIFIER

Best illustration of the 2E30's vetsatility is Fd. Filton's article begimmeng page 31 of QS'T for Junc, 1916. Mr. Tilton uses the 2E30 as crystal oncillaton, fiequeney mutiplicr, spech amplater, and class $A B=$ modulator. Primarly for mobile and ancratt bif equipanent, the $2 F 30$ is en excellent driver for h-f or whf fixed statoms. Designed, manufactured, and tested for transmitting, the 2130 hats a husky. anvantheating filament and generous maximum plate dissipation (10 watts). It develops hugh eaficiency at only 250 volts plate and sereen. Imagine donablong to 1 at me whit
$2 E 30$ INSTANT-HEATING VHF MIN. BEAM DRIVER

With this HY-(Q 75 lincar oscillator kit. You can be on $11^{1 / 4}$ or 2 meters in an hour. Features are: carcfully engincered for cosily duplicated results, micumetrac tuning ($1 \cdot 60-250 \mathrm{mc})$. solver-plated tank, precision-machined shorting bar, specat fiament, grid. and plate choker, nen-inductive coaxial plate blocking condenser, quick band changing. chart for frequency determination, palk performance for HY'75A ir HY'5 (uscful power output with HY75A is 17.5 w on c-w, 13.5 w on phone), casy pictorial instruction manual.

Unassembled $\$ 9.95$ Assembled $\$ 11.95$ (without tube)

Be "In the Know" on radio receiver engineering practice

with Рhotofact* Folders

Do you keep up to date on modern receiver design practict? Do you know how engineers in the laboratories of radio manufacturers solve various design problems?

This information, fresh and new as this month's QST, is available to you in Howard W. Sams Radio Photofact Folders. There's no need to wait for year-old compilations of data!

Photofact Folders bring you so much more than ordinary schematics. Complete with clear-cut photographs and technical information that runs from four to 1 welve pages, they tell you everything you want to know about the latest radios, phonographs, intercommunication systems and power amplifiers. Service engineers find them indispensable because they save up to 50 percent in bench time.

Photofact Folders are published in envelopes containing 30 to 50 folders at $\$ 1.50$ per set. This price includes membership in the Howard W. Sams Institute, which brings you practical answers to questions about receiver servicing, repair, adjustment and maintenance. See Photofact FOLDERS at your favorite radio parts supply house.

In Each Рhotofact Folder You Get -

1. From two 10 a dozen clear cut photographs of the chassis-completely identifying each component for instantaneous checking or replacement. 2. A keyed reference Parts List giving complete specifications on cach component, manufacturer's part number, available replacement type or types, and valuable installation notes. This makes it possible for you to select from your stock or immediately order a part which meets all exacting requirements. 3. A keydd reference alignment procedure for the individual set, with adjustment frequencies and recommended standard connections. 4. Complete voltage analysis of receiver. 5. Complete resistance analysis of receiver. 6. Complete stage gain measurement data. 7. Full page schematic diagram. 8. Dial cord diagram and restringing instructions. 9. Complete disassembly instructions.

UNIVERSAL HuG:UPHOLI

ready to help you pin the meter!

As America's oldest independent manufacturer of microphones, the Universal Microphone Company has always been at the service of radio amateurs everywhere. You
were our first customers "away back when," and we are ready, now and in the future, to help you make your rig pin the meter with a Universal Microphone!

NEW D2O SERIES DYNAMIC MICROPHONES

This postwar model is especially suited for recording, public address, transmitters, or wherever a full-ranged dynamic micro. phone is desired. It combines modern appearance and rugged stability. The built-in cable connection is easily accessible without interference with the microphone, and "stand and cord" noises are minimized because the internal element is mechanically isolated. The D20 Dynamic Microphone is designed for indoor and outdoor use with a frequency range of 50 to 8000 cycles. Its special "Micro-Adjust Swivel" assures smooth, easy adjustment and steady, positive positioning any. where throughout a 6$)^{\circ}$ angle. Finished in satin chrone. Complete with 25^{\prime} low loss cabie and detachable connector. Available in models of $50,200,500$, and 40,000 Ohns. An exceptional value at only 532.50 .

A HOME RECORDING HEAD OF PROFESSIONAL QUALITY!

Universal's design and congineering skill, long experi. enced in the manufacture of precision studio recorders. has produced this superior home recording head. It outperforms similar recording heads of magnetic design since it purposely accentuates the high frequency range in amount and degree to compensate for high frequency losses common to home recording records and phonograph circuits. This assures a "sparkling" tone quality. Its sensitivity and impedance are keyed to match standard home recorders, thus eliminating special adjustments. Finished in deep brown enamel. Complete with solder terminals, spring tempered phosphor bronze knife edge. steel attachment plate, mounting screws and long styli set screw, Only $\$ 11.50$.

"KD" DYNAMIC MICROPHONE

 This popular low-cost microphone now is available in a new and improved design. Excellent for home recording, amateur applications. Complete with 10 ft . rubher covered cable. Impedance 40,000 Ohms. Only \$17.75.
D61 CONSTANT VELOCITY FREQUENCY RECORD

 Here's a handy tool for direct checking of response characteristics of phonograph pick-ups. Also for indirect checking of recording heads,
loud speakers, loud speaker installations, theater sound equipment. public address equipment and audio frequency equipment. Complete with data sheet. Only 53.00 each.

OTHER UNIVERSAL MODELS ARE AVAILABLE, including dynamic, velocity, and carbon in standard, hand, communications and cortridge types, for a complete catalog on these as well as Universal Recording Components, see your radio parts distributor or write direct to us.

TYPE 11

SMALL, LOW-COST, SOLA CONSTANT VOLTAGE

 transformers for chassis mountingReliable communications equipment must have stabilized voltage-and the right place to provide for it is in the equipment itself. These three types of Sola Constant Voltage Transformers have been specifically designed for "built-in" applications. They are low in cost and their use will often permit the elimination of other components. For complete information consult Bulletin 34CV-102, available on request.

TYPE 12

TYPE 1

DIMENSIONS

A: Overall Length B: Overall Widih C: Overall Height
E \& F: Mounting
Dimensions
Prices subject to change withouk notice.
*Condenser supplied as separate unit.

FOR COMMUNICATIONS EQUIPMENT NOW IN SERVICE

Where provision for constant voltage protection has not been made within the equipment itself, these standard Sola Constant Voltage Transformers can be easily installed. They require no supervision or maintenance, are instantaneous in operation and they protect both themselves and the equipment against short-circuit. Other capacities ranging from 10VA to 15KVA fully described in Bulletin 34CV-102, available on request.
TYPE 2

Catalog Number	Output Copacity in $V A$	Input Volts	Output Volts	Dimensions in Inches					Approx Shipping Weight	List Price Each
				A	8	C	E	F		
30804	30	95.125	11.5 .0	$8{ }^{46}$	1110	$4^{3}{ }^{8}$	71. 16	$2^{3} \times$	12	\$17.10
308085	60	95, 12.5	115.0	8	4 is	$4^{3}{ }^{3}$	81 檞	2^{3}	13	24.1010
30806	120	959-125	115.0	9^{11116}	41	$4{ }^{3} 8$	$8{ }^{1 / 15}$	$2^{3} \times$	17	32.00
30807	250	959125	115.0	1158	$6^{1 / 16}$	55^{5}	$3{ }^{1}$	$6{ }^{14}$	30	52.1010
30 M 807	250	190-250	115.0	115	$6^{1 / 15}$	5, ${ }^{5}$	$3{ }^{14}$	614	30	52.10
30808	500	95-125	115.0	1415	$6^{1 / 1}$	55%	5	6^{3}	40	75.00
30 M 808	500	190.250	115.0	14 1/2	$6{ }^{1}$	$5{ }^{5} 8$	5	$6{ }^{1}$	40	\%5.00

TYPE 3

BURGESS BATTERIES Zor Ham Operators
 RECOGNIZED BY THEIR STRIPES - REMEMBERED BY THEIB SERVICE

The batteries on this nage only illustrate a few of the many popular tymes of luargess batierjes for Ham Operators. Your local Burgess distributor has fresh stocks tor all your needs.

No. 4FA LITTLE SIX-1 1 亿 volts-replaces one sound No. 6 cell. Radio "A" type; is recommended for the filament lighting of
 Weight, 1 lb .5 oz .

No. 5308-45 volt " B " battery equipped with insulated junior knobs. Taps at $+22^{\frac{1}{2}},+45$ volts. Size, $5 \frac{7 / 3 \prime}{\prime \prime} \times 43^{\prime \prime \prime} \times 2916^{\prime \prime}$. Weight, each-2 lbs. 15 oz .

No. F4BP-A 6 volt, heavy-duty portable battery, designed for Burgess X109 headlight. Contains four F cells connected in series. Screw terminals and brass knurled nuts. Size, $2 \frac{21}{3} 2^{\prime \prime} \times 2 \frac{21}{3} 2^{\prime \prime} \times 47 / 32^{\prime \prime}$. Weight, 1 Jb. 6 oz .

No. 2308 -A 45 volt super-service, standard size radio " B ". Designed for receivers with plate current drain of 10 to 15 milliamperes. Size, 7 ! $\mathrm{s}^{\prime \prime} \times 8^{\prime \prime} \times 27 / 8^{\prime \prime}$. Weight, 7 lbs .6 oz .

No. Z30NX 45 volt "B" battery. Improved small size. Adapted to radio, portable receivers and transmitters. Screw terminals. Size, $3^{\prime \prime} \times 17 / 8^{\prime \prime} \times 4^{31}$ 弡". Weight, 1 lb .4 oz .

No. 2F2H-A 3 volt radio " A " battery used with portable radios, amplifiers, and special instruments. Size, $25 / 8^{\prime \prime} \times 25 / 8^{\prime \prime} \times 43 / 8^{\prime \prime}$. Weight, 1 lb .6 oz .

No. W30BPX - 45 volts. Extremely small and light in weight. Very suitable for personal transceivers used by amateur clubs and radio stations. Equipped with insulated junior knobs. Size, $1^{1 / 3 z^{\prime \prime}} \times 2 \frac{21 / 32^{\prime \prime}}{} \times 41 / 16^{\prime \prime}$. Weight, 10 oz.

VOTED FIRST CHOICE
 IN NATIONAL POLL OF ELECTRONIC ENGINEERS

2 out of 3! Thats sthe way deccronic c engineers voted for Burgess Batteries in a recent survey. Use the brand the experts choose...BUY BURGESS! II'rite For 'The Name of Your Local Distributor

WiRecorder Corporation

Stroh Building, Datroit 26, Michigan

This is my order for the new WiRecorder Unit as described in the Handbook. Enclosed find money order or certified check for $\$ 89.50$, for prepaid shipment to:

Name

Address

PRODUCT OF
WiRecorder
CORPORATION

COMPONENTS of Zuality For

 TELEVISION And ELLCTRONIC APPLICATIONS

BBMBD

THANSEORMBIS FREED TRANSFORMER CO.. INC. 72H SPRING ST., NEW YORK 12. N. Y.

Learn Code the EASY Way

Beginners, Amateurs and Ex. perts alike recommend the INSTRUCTOGRAPH, to learn code and increase speed.

Learning the INSTRUCTOGRAPH way will give you a decided advantage in qualifying for Amateur or Commercial examinations, and to increase your words per minute to the standard of an expert. The Government uses a machine in giving examinations.
Motor with adjustable speed and spacing of characters on tapes permit a speed range of from 3 to 40 words per minute. A large variety of tapes are available - elementary, words, messages, plain language and coded groups. Also an "Airways" series for those interested in Aviation.

MAY BE PURCHASED OR RENTED

The INSTRUC'IOGRAPH is made in several models to suit your purse and all may be purchased on convenient monthly payments if desired. These machines may also be rented on very reasonable terms and if when renting should you decide to buy the equipment the first three months rental may be applied in full on the purchase price.

ACQUIRING THE CODE

It is a well-known fact that practice and practice alone constitutes ninety per cent of the entire effort necessary to "Acquire the Code," or, in other words, learn teleg. raphy either wire or wireless. The Instructograph supplies this ninety per cent. It takes the place of an expert operator in teaching the student. It will send slowly at first, and gradually faster and faster, until one is just naturally copying the fastest sending without conscious effort.

BOOK OF INSTRUCTIONS

Other than the practice afforded by the Instructograph, all that is required is well directed practice instruction, and that is just what the Instructograph's "Book of Instructions" does. It supplies the remaining ten per cent necessary to acquire the code. It directs one how to practice to the best advantage, and how to take advantage of the few "short cuts" known to experienced operators, that so materially assists in acquiring the code in the quickest possible time. Therefore, the Instructograph, the tapes, and the book of instructions is everything needed to acquire the code as well as it is possible to acquire it.

MACHINES FOR RENT OR SALE

ACCOMPLISHES THESE PURPOSES:

FIRS'T : It teaches you to receive telegraph symbols, words and messages.

SECOND: It teaches you to send perfectly.
THIRD: It increases your speed of sending and receiving after you have learned the code.

With the Instructograph it is not necessary to impose on your friends. It is always ready and waiting for you. You are also free from Q.R.M. experienced in listening through your receiver. This machine is just as valuable to the licensed amateur for increasing his speed as to the beginner who wishes to obtain his amateur license.

Postal eard will bring full particulars IMMEDIATELY

the PLANT PRODUCTS the PERFOR

AS IEVIRR Stancor leads the field. To serve you better in 1947 and to bring you as soon as possible quality products, we step ahead in new plant facilities.

Watch for Stancor's timely releases; they are planned to satisfy your needs . . . keep in mind Stancor's high standard of performance, advanced design and universal application.

These are the things which will become increasingly avaitable to all . . . these are the things that have made Stancor your favorite.

ON STANCOR'S PROGRAM
Transformers and Reactors of all types...Versatile Line of Transmitter Kits, Audio Amplifier Kits, and other Electronic Devices to serve the Discriminating Amateur.

STANCOR

HK-257B

HK-454
THE HK-57 BEAM PENTODE is the first of the new Gammatron transmitting tubes to be introduced in 1947.

This latest addition to the Gammatron line is backed by twenty years of engineering and manufacturing experience with tantalum element tubes.

Gammatrons are known

HK-57

throughout the world for their electrical and mechanical rug. gedness, for their long life, and ability to take it.
Other types, in addition to those listed belor; will be an. nounced soon. Watch for them!

HEINTL and KAUFMAN tid. SOUTH SAN FRANCISCO C ALIFORNIA

TYPE NO.	24	246	54	$57{ }^{*}$	254	2578*	3042	304H	3546	354E	4541	454N	654	8541	854	1054L	1554	2054A
MAX. POWER OUTPUT: Class 'C' R.F.	90	90	250	250	500	400	1220	1220	615	615	900	900	1400	1800	1820	3000	3600	2000
PLATE DISSIPATION: WOtIS	25	25	50	75 50 50	100	$\left(\begin{array}{lll} 125 & (1) \\ 100 & (2) \end{array}\right)$	300	300	150	150	250	250	300	450	450	750	1000	1200
AVERAGE AMPLIFICATION FACIOR	25	25	27	-	25	-	10	19	14	35	14	30	22	14	30	13.5	14.5	10
MAX. RATINGS: Plote Volts Plote M.A. Grid M.A.	$\begin{gathered} 2000 \\ 75 \\ 25 \end{gathered}$	$\begin{gathered} 2000 \\ 75 \\ 25 \end{gathered}$	$\begin{gathered} 3000 \\ 150 \\ 30 \end{gathered}$	$\begin{gathered} 3000 \\ 150 \\ 15 \end{gathered}$	$\begin{gathered} 4000 \\ 225 \\ 40 \end{gathered}$	$\begin{gathered} 4000 \\ 225 \\ 25 \end{gathered}$	$\begin{aligned} & 3000 \\ & 1000 \\ & 150 \end{aligned}$	$\begin{gathered} 3000 \\ 1000 \\ 150 \end{gathered}$	$\begin{gathered} 4000 \\ 300 \\ 60 \end{gathered}$	$\begin{gathered} 4000 \\ 300 \\ 70 \end{gathered}$	$\begin{gathered} 5000 \\ 375 \\ 60 \end{gathered}$	$\begin{gathered} 5000 \\ 375 \\ 85 \end{gathered}$	$\begin{array}{r} 4000 \\ 600 \\ 100 \end{array}$	$\begin{gathered} 6000 \\ 600 \\ 80 \end{gathered}$	$\begin{gathered} 6000 \\ 600 \\ 110 \end{gathered}$	$\begin{aligned} & 6000 \\ & 1000 \\ & 125 \end{aligned}$	$\begin{gathered} 5000 \\ 1000 \\ 250 \end{gathered}$	$\begin{aligned} & 3000 \\ & 800 \\ & 200 \end{aligned}$
MAX. FREQUENCY, Mc. Power Amplifier	200	300	200	200	175	200	175	175	50	50	150	150	50	125	125	100	30	20
INTERELECTRODE CAP: $\begin{aligned} & C \\ & C \\ & \text { C-p.u.u.f. } \\ & \text { C } p-1 \text { u.u.f. } \end{aligned}$	1.7 2.5 0.4	$\begin{aligned} & 1.6 \\ & 1.8 \\ & 0.2 \end{aligned}$	1.8 2.1 0.5	$\left[\begin{array}{c} .049 \\ 7.29 \mathrm{in} \\ 3.13 \text { out } \end{array}\right]$	3.6 3.3 1.0	$\begin{gathered} 0.08 \\ 10.5 \mathrm{In} \\ 4.7 \text { out } \end{gathered}$	$\begin{gathered} 9 \\ 12 \\ 0.8 \end{gathered}$	$\begin{aligned} & 10.5 \\ & 14 \\ & 1.0 \end{aligned}$	3.8 4.5 1.1	3.8 4.5 1.1	3.4 4.6 1.4	$\begin{aligned} & 3.4 \\ & 4.6 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.2 \\ & 1.5 \end{aligned}$	$\begin{gathered} 5 \\ 6 \\ 0.5 \end{gathered}$	$\begin{gathered} 4 \\ 8 \\ 0.5 \end{gathered}$	$\begin{gathered} 5 \\ 8 \\ 0.8 \end{gathered}$	$\begin{gathered} 11 \\ 15.5 \\ 1.2 \end{gathered}$	18 15 7
FILAMENT: Volis . . . Amperes.	6.3 3	6.3	5.0	5.0 5.0	$\begin{aligned} & 5.0 \\ & 7.5 \end{aligned}$	5.0 7.5	$\begin{gathered} 5.10 \\ 26.13 \end{gathered}$	$\begin{gathered} 5.10 \\ 26.13 \end{gathered}$	$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{gathered} 5 \\ 11 \end{gathered}$	1!	7.5 15	7.5 12	7.5	7.5	17	10 22
PHYSICAL: Length, Inches Diameter, Inches Weight, Oz. Base Beom Pentode.	$\begin{gathered} 414 \\ 138 \\ 1: 2 \\ \text { Smol! } \\ \text { UX } \end{gathered}$	$\begin{gathered} 414 \\ 113 \\ 1!2 \\ \text { Small } \\ \text { UX } \end{gathered}$	$\begin{gathered} 51 / \mathrm{ta} \\ 2 \\ 2!2 \\ 5 \text { id. } \\ \mathrm{UX} \end{gathered}$	$\left(\left.\begin{array}{cc} 4 & 1 / 16 \\ 2 & 3 / 8 \\ 2 & 1 / 4 \\ =2 & 47 \\ \text { Johnson } \end{array} \right\rvert\,\right.$	$\begin{gathered} 7 \\ 25_{B} \\ 61_{2} \\ \text { Std. } \\ 50 \\ \text { Wott } \end{gathered}$	$\left\|\begin{array}{cc} 6 & 3 / 16 \\ 2 & 11 / 16 \\ 5 & 1 / 2 \\ \text { Giont } \\ 7 \\ \text { Pin } \end{array}\right\|$			$\begin{gathered} 9 \\ 318 \\ 6!2 \\ \text { sid. } \\ 50 \\ \text { woit } \end{gathered}$	$\begin{gathered} 9 \\ 33 y \\ 6: 2 \\ 5 i d . \\ 50 \\ \text { Watt } \end{gathered}$	$\begin{gathered} 10 \\ 33 \\ 7 \\ \text { sid. } \\ 50 \\ \text { Wott } \end{gathered}$	$\begin{gathered} 10 \\ 33 \\ 7 \\ \text { Std. } \\ 50 \\ \text { Watt } \end{gathered}$	$\begin{gathered} 1016 \\ 3 \mathrm{~s} \\ 14 \\ 5 \mathrm{dd} . \\ 50 \\ \text { Wott } \end{gathered}$	$\begin{gathered} 12: 2 \\ 5 \\ 14 \\ \text { sid. } \\ 50 \\ \text { Watt } \end{gathered}$	$\begin{gathered} 1212 \\ 5 \\ 14 \\ 51 d . \\ 50 \\ \text { woit } \end{gathered}$	$\begin{gathered} 16^{1} \\ 7 \\ 42 \\ \text { John- } \\ \text { son } \\ \# 214 \end{gathered}$	$\begin{gathered} 18 \\ 6 \\ 56 \\ H K \\ 255 \end{gathered}$	$\begin{gathered} 2114 \\ 6 \\ 66 \\ W . E . \\ C 0 . \end{gathered}$

f Type No. 57 tentotive specifications

Rider Radio Publications

UNDERSTANDING MICROWAVES

BY VICTOR J, YOUNG. For those who have not previously considered radio woves shorter than 10 centimeters. Provides foundation for understanding various microwave developments of past five years.
CHAPTER HEADS: The Ulira High Frequency Concept; Sta tionary Charge and Its Field; Magnetostatics; Alternating Current and Lumped Constants; Transmission Lines; Poynting's Vector and Maxwell's Equations; Wave-guides; Resonant Cavities: Antennas and Misrowave Oscillators; Radar and Communication. Section Two is devated to descriptians of Micro. wave Terms, Ideas and Theorems. Index. 400 Pages-Price $\$ 6.00$.

A.C CALCULATION CHARTS

BY R. IORENZEN. Sivdents and engineers will find this book invaluable. Simplifies and speeds wopk invalving $A C$ calculations. Contains 140 charts. Covers AC calculations from 10 cycles to 1000 megacycles. 160 Poges-Price $\$ 7.50$.

INSIDE THE VACUUM TUBE

BY JOHN F. RIDER. A new approach and technique that makes its message easy to understand. Here is a solid, elementary concept af the theary and operation of the basic types of vocuum tubes based on the electro static field theory. Through out the entire boak, which covers diodes, triodes, tetrodes, and pentodes. the aim is to present a cleor physical picture of exactly what is happening in a vacuum tube, inclusive of the develapment of charocteristic curves of all kinds, and associaced load lines.

A goldmine for the sfudent; a must for the librories of servicemen, amateurs and engincers. 425 Pages-Price $\$ 4.50$.

THE CATHODE-RAY TUBE AT WORK

BY JOHN F. RIDER. This book presents a complete explanation of the voriaus types af cathode.ray tubes and what rale eoch element within the device plays in making voltages and cur. renis visible. The only book of its kind
This volume offers a complete and elaborate, easy to under stand explonation of the theory of the tube. It is this informa tion, with many hundreds of typical oscillagrams illustrating proctical applications, which mokes this book so valuable. 338 Pages. 450 Itlustrations-Price $\$ 4.00$

RIDER MANUALS
FOR RADIO TROUBLE SHOOIING
Unchallenged authority in the field of :adio servicing reference books. Containing receiver schematics, valtoge data, alignment data, resistance values, chassis layouts and wiring ond trimmer connection material they aid in quick location of faults in ailing receivers. Fourteen volumes cover all important American made receivers issued from 1920 to 1942 . VOLUMES XIV to VII. EACH VOLUME
$\$ 15.00$ VOLUME VI
11.00

AGRIDGED MANUALS I TO V (1 VOLUME) 17.50

RECORD CHANGERS AND RECORDERS

AN HOUR A DAY WITH RIDER SERIES

D.C. VOLIAGE DISTRIBUTION IN RADIO RECEIVERS-The oppli cations of Ohm's law, practically interpreted in terms af how cir. cuits ore employed in radio receivers.
AITERNATING CURRENTS IN RADIO RECEIVERS-An exposition on fundamentals af ofternating currents and valiages and where they appear in receiving system.
RESONANCE AND ALIGNMENT-The importance of the subiect in relation ta all communicotion systems, and the clarity of this text, have produced a sale of over 50,000 of this title.
AUTOMATIC VOLUME CONTROL-An easy ta understand explanafion of how ave is utilized in radio receivers

95 Pages each (Illustrated)- $\$ 1.25$ each

The Result of 16 Years of Specialized Publishing

Rider Radia Baaks have been accepted as standard warks by members of all branches of the electranic industry. They have warked hand in hand with engineers, technicions, educatars and students, civilian and militory, for the past sixteen years. Place your order fram the descriptions below and

Write Taday Far Catalag

FREQUENCY MODULATION

One af the mast talked-of developments in radia field; details of F-M receiver maintenance and how it differs from A.M. 136 Pages-81 Illustrations- $\mathbf{\$ 2 . 0 0}$.

SERVICING EY SIGNAL TRACING

Explains approved system of diagnosing faults in radio receivers and all kinds af communication systems. The method was introduced by the author of the book, John \mathbf{F}. Rider. The system has won endorsement by in. dividuals and associations the world over as well as technical branches of aur government. 360 Pages-188 lliustrations $-\$ 4.00$. Spanish edition- $\$ 4.00$.

VACUUM TUBE VCLTMETERS

Explains the theary upon which the functioning of the different types of v.t valimeters is based, and also the proctical applications of these instruments. Includes a bibliography consisting of 145 internotional references. roo Pages- 111 Illustrations $\mathbf{\$} \$ 2.50$.

the meter at work

How soch type of meter works and how each is used in the field to best advantage Covers whichever phose of the subject the reader is interested in. 152 Pages138 lllustrations- $\$ 2.00$.

the oscillator at work

Shaws haw various oscillator circuits function and methads ta improve their performance. Also describes the r.f and a.f oscillators used as signal sources. Covers laboratary test methods, and other related tests. 256 Pages-167 Illustrations- $\$ 2.50$.

SERVICING ReCeIVERS by means of
RESISTANCE MEASUREMENT
Discusses series and parallel cambinations of resistances and the distribution of currents and voltages, praviding the basis underlying the circuit arrange. ments used in various types of radio receivers. Alsa discusses application of resistance measurement to radia servicing. 203 Pages- 94 Illustrations- $\mathbf{\$ 2 . 0 0}$.

AUTOMATIC FREQUENCY CONTROL SYSTEMS

The basic operation of the discriminatar and Automatic
Frequency control circuits is explained in great detail in the first part of the book. Descriptions of systems used in commercial receivers are fully described in the sesond part of the book. 144 Poges- 102 Illustrations - $\$ 1.75$.

ALIGNING PHILCO RECEIVERS

1.F. peaks-odjustment frequencies-trimmer and podder locations-complete and detailed information for aligning every Philica model from 1929 to 1941 . Covers $7,000,000$ Receivers.
VOL. 1 - 1929 to 1935- 176 Poges
$\$ 2.00$
VOL. 11-1937 to 1941-200 Pages

RADAR

A non.tectnical explanation of the operating principles of Radar. Written so the person without technical background can understand it. Also describes how the Army, Navy and Air Forces used Radar to help win the war. 72 Pages-Unique lllustrations $-\$ 1.00$.

JOHN F. RIDER PUBLISHER, INC.

 404 FOURTH AVENUE, NEW YORK 16, N. Y.
Complete Line of ANT
 EQUIP CNNA

The wartime experience of the Workshop in huilding precision high-frequency antemas for the Armed Forces provided a hacklog of fundamental research and experimental techniques which now is being applied to a complete new line of amateur equipment.

The new antennas are designed specifically for the 2-, 6-, and 10 -meter bands. All of the models have been put through the most rigorous tests, both electronic and mechanical, to ensure the maximum in performance on the bands specified. The elements are made of aluminurn alloy tuhing, sealed on the ends with spherical tips. They are securely monnted in a heaw molded plastic head which gives the whole assembly ample ruggedness to withstand winds of high velocity.

As companion equipment the Workshop mast provides a complete antenna installation designed to operate as a unit. The mast is assembied from 4 -foot units with telescoping joints, readily adaptable to any desired height. Hand rotation is standard equipment, easily adapted to Selsyn or electric motor drise. Workshop antenna equipment is available through the better amateur dealers everywhere.

OTHER WORKSHOP ANTENNAS

FM RECEIVING ANTENNAS--directional and mon-directional.

TELEVISION RECEIVING ANTENNAS.

AIRCRAFT ANTENNAS.

RADAR ANTENNAS.

HIGH-FREQUENCY ANTENNAS for relaying block-andwhite and color television, FM, focsimile, etc.
STUDIO-TO-TRANSMITTER RELAT ANTENNAS.
POLICE, FIRE ond PUBLIC UTILITY BEACON ANTENNAS.
FUNDAMENTAL RESEARCH AND DEVELOPMENT

1. The study of radiation patterns and how chey are affected by location and proximity by means of scale models and microwave frequencies.
2. Fundamental measurements on the use of series reactance compensation in coaxial transmission lines and hollow difoles-intormation invaluable to the solution of phasing and impedance-ntatching problems. 3. Investigation of varions methods of matching low impedance coraxial cransmission lines to high impedance resonamt circuits.
3. New measuring techniques for the solution of special antema problems.
4. 2-Meter Beam Anfenna Model $\$ 146$ AB. A high-gain, directional, 6 -element array with two driven elements. Price. $\$ 19.00$
5. 6-Meter Beam Antenna Model \#52AB. A high-gain, directional, 3-element antenna to be used with Workshop rotating mast equipment. Price. $\$ 8.00$
6. 10-Meter Dipole Antenna Model \#29AD. This bi-directional antenna is designed to cover the spectrum from 27 mc . to 30 mc . Telescoping elements adjustable to any length between 130 and 214 inches cover the new 11 -meter band as well. Price. $\$ 6.75$
7. 10-Mefer 3-Element Beam Conversion Kir Model $\# 298$, to convert the dipole \#29AD to a 3 -element beam. Price. . $\$ 27.50$
8. Antenna Mast Kit Model AM. Two sections of 4 -foot mast complete with adjustable mounting brackets, nuts, bolts, etc. A stationary mast to be used with all Workshop antennas.

Price........... $\$ 7.25$
6. Model f AMI. Extra 4-foot sections to lengthen the above mast. Price.
$\$ 1.30$
7. Rofating Accessory Kit Model ${ }^{\text {AM2, to }}$ convert Model $\#$ AM mast to a manually rotated mast, complete with instructions. Price... $\$ 4.25$

The above are the amateur net prices--slightly higher in the far West. Prices are subject to change without notice.

The WORKSHOP ASSOCIATES, INC.

Glow..a new browning ham frequency meter!

CheCks xmir freq. in any
HAM BAND FROM 3.5 TO 148
MC. ON FM OR AM

This latest Browning unit designed especially for hams - the Model MJ-9 Frequency Meter - is a high sensitivity job that checks your aperating frequencies accurately if you place it near your xmtr. you moy nol even need - pickup wire for usable signals! Con be used for meosuring frequency of remote transmitters ond for colibrotion of receivers within hom bonds or hom bond hormonics. Truly o necessity for every modern shock

MODEL MJ-g FREQ. METER

- Direct, frequency-reading dial on seven ham bands.
- $.05 \%$ accuracy at all frequencies.
- Audio detection of zero beat.
- Low power consumption.
- All operating controls on front panel.

PLUS MANY OTHER FEATURES. WRITE US FOR LITERATURE.

a NEW BROWNNG TUNER! this time for FM-AM

MODEL RI. 12 FM-AM TUNER

- Separate RF and IF systems on both bands.
- One antenna serves both FM and AM.
- Tuning eye shows correct tuning.
- 2-stage cascade limiting on FM.
- Phono position on channel selector switch; phono input connector in back.
- Armstrong circuit employed on FM. PLUS MANY OTHER FEATURES. WRITE US FOR LITERATURE.

FOR HI-FI RECEPTION IN THE NEW FM BAND AND IN STANDARD

BC. BAND

Ask ony old-timer obout the Browning-Droke funer. ond he'll warm right up with o recitotion of how much thot unit meant to him Now put on RJ. 12 in your house, and the $x y l$ and oll the neighbors will decide thot you. ofter oll, are the king pin of rodio in your community! For here's a hi-fi, hi-sensitivity unit which provides distortion-free reception. Put it in special cabinet, desk drower, shelf - wherever it will look best. Or for use with rock-mounted omplifier. Diogrom of HI-F! AMPLIFIER included with every unit

Browning
 LABORATORIES, INC. WINCHESTER, MASS.

CANADIAN REPRESENTATIVES: MEASUREMENT ENGINEERING GI DUKE STREET, TORONTO, CANADA

SELECT

FOR SENSITIVITY, STURDINESS AND RELIABILITY

SIGMA Instruments, Inc., fully guarantee the performance of any relay they manufacture. You can buy SIGMA relays in confidence knowing they will serve long and well.
Recommended for:
Light weight
High speed
Moderately severe environ.
ment (temperature and vibra.
Moderate sensitivity
millimatts input power 10
Moil resistance up to 14.000
ohms.

In addition to their regular mounts, all series 41 Relays are now available in an octal (8 prong) mount for standard radio sockets.

ADAPTABLE
 All relays are obtainable unenclosed or in a variety of enclosures, including hermeti-cally-sealed. Sample orders filled promptlycomponents are on hand to be assembled to your requirements.
 SPECIALIZED TYPES AVAILABLE
 SIGMA can supply extra sensitivity, DC sensitivity on AC current, time deloy, and other special features.
 SEND SIGMA YOUR RELAY PROBLEMS FOR COMPETENT SOLUTIONS.

Sigma Instruments, rive. Censitive nelaxs 54 CEYLON ST., BOSTON 21, MASS.

You Can Depend on Thisfamous Name

[^14]A Subsidiary of Aireon Manufacruring Corporation

Transformers

 Audio - Bias • Chokes • Universal Driver . Filament Universal Modulation - Plate - Power - Output QUALITY is important . . . so is BALANCE
*Compound filled continuous duty types

BALANCED FILAMENT COMPONENTS

4 P 226 for $866{ }^{\prime}$ s or other 2.5 V , (tt 5A Rectifiers
4 P 242 for 872 's or other 5.0 V . (if 10A Rectifters
THE POWFR SUPPLY' IS THE HEART OF THE RIG—COMPLETE IT WITH BALANCFD QUAIITY' SNC TRANSFORMERS FOR GREATER ENJOYMENT!
U'rite for our interesting cutalogne giting: twhuble information wnd specificutions on all the topes of transformers you need.

SNC MANUFACTURING COMPANY, INC.

West lake avenue, at lehigh GLENVIEW, ILLINOIS

124

CodE
 FOR AMATEUR AND
 the Candler way

 ORIGINATED BY WALTER H. CANDIER

SENDIVG REEEVING

an lathe colde or increase vour swed and proficipney with the famous
 of the (Champions, offers you distinction, seientifie nothods which ran train you to berome ath X.L. expert Amatour or Commerrial Operator. in lese than half the manal time taken to master this shill. (IND) F.K traina yon from the start. and enablees you to berome ac profievent that yom will be able to prase the severest test for Smatemr or (ommmereial lieense. 'There is a Cambler Course desipnod for your partionlar neod-aml doniros.

PROOF FROM A CHAMPION

Tho Vafers is the Official Champion Radio Gurator, Sped 75.2 w-p.m., womat t-heville Conle Tournament, Juls ä 1039. Here in what ll orld Champion WeFtron hav- 10 -as: "113 -hill and -ped are the rombt of the excluate, wientifie training Waller Candler have me. P'ractive is uncestars, but without properer training to develop Conezntration. Co-ordination and a heen Pereeptice Serne. practice ionflitlle value Owe likels will practice the wrong was.

SPEED - WITHOUT TENSION AND NERVOUSNESS

 you of his inmerurity fin your onn ability and mathe vou wire of yourelf. In lhie way vor will he frer (o apply your tallents to top
 "preratoren womld real like the "W hio's Wha" of carle umeration. The evere operator- who have reached the top through the Iraining they have obtained from Cal DDAKA is prom in itmelf of the vallue this syatem can be to ;om. Just menerizing the conle and sembing and receising doees mot make the mhilled radio operabor. The terhmigue of fast, accurate telopraphing and the ability We theet all requirententatare the factora whidh diatinguinh the expert from the ordinary oprerator. The CANDDER System
 nperd whilland techatique yon need to free yournelf from all hamdi-
 tificate, a higher rating. or a bellet jub, whith inveramed finamerial returns. And at a price sar reamonahle it is wall within the reath of mayome interealed in debcloping skill amd maral.

SEND FOR THIS FREE BOOK OF FACTS

In a clear, simplified way it tells how many of the CANDLER Code Champions of today reached their goal. Just a postcard will bring this enlightening booklet to you FREE. Send for the CANDLER SYSTEM BOOK OF FACTS right Now

COURSES for BEGINNERS and OPERATORS

CINID.FR whers thror distinctive services to all who are maremed in contr opratation
 athe bereinner. It teaches the basie seientific primeiplew of corde opration.
 for oprators who deaire a higher w.p.ith. apeet or to improne their shill and overcome handiaps.
 derigned for thome whe desire to become protioient in toseh iscwriting or develon aped in conving come.

NO EXPENSIVE EQUIPMENT NEEDED

surcial mental training is the prime requisite in Itarning
 wide experiences in devploping hiph-apeed operators, is the expert svatem devikned to help you in a simple. thoresegh and interenting wity to get athead faster and go farther.
 underatanding the laws and fundamentals governing oneed and aceurary. The CANDh\&R Symtem wefers yon the
 INI CODE PROHICIANCY.

CANDLER SYSTEM COMPANY
P. O. Box 928, Depl. 10-A -7, Denver 1, Colo., U. S. A. And at 121 Kingsway, London w.c. 2, zngland

NATIONAL HRO-5TA-1 - Nei $\$ 274.35$ 697 Power Unit \$20.36 •MCS Speaker \$12
A Receiver, designed for the Amoteur, to provide dependable communications, under most severe conditions. New Noise limiter incorporated. Band spread on all "Ham" Bands-Coverage 1.7 to 30 MC .

HAMMARLUND HQ-129-X • Net \$173.25

Price Includes Cabinet Speaker

A "Ham" Receiver with the professional touch, providing flexibility of operation. Six bands for easy location of stations. Has all "Ham" features with sensitive and stable performance.

HALLICRAFTER SX-42 Nef\$250.00 R-42 TABLE SPEAKER - Net $\$ 25.00$ The 5×-42 has many new and ingenious circuit features. Precision tuning for all AM and FM Broad. cast and Amateur Bands. Temperature compensated oscillator. High fidelity phono-amplifier-8 watts. Continuous coverage 540 KC to 110 MC .

CARDWELL MODEL CR-54 RECEIVER RACK MODEL AVAILABLE LATER

This completely new communications receiver uses 18 miniature tubes. Large direct reading precision dials -electrical band spread. New type noise limiter. Variable selectivity crystal filter. Temperature compensated oscillator. Wide coverage- 540 KC to 54 MC, with extra coil strip.

CAMERADIO CO., 963 LIBERTY AVE., PITTSBURGH 22,. PA.

126

MOLDED OIL-PAPER CAPACITORS

Molded oil paper capacitors, hermetically sealed against moisture, provide dependable service under the conditions which cause repeoted fuper tuhulor failure. For r.f. use up to 40 m.c., and for a.f. by-pass, and filter circuits.

Type	Volfage Range
AP	$120-400$ VDC
DP	120.800
MP	$120-800$
FP	120.1000
EP	$120-1000$

Capacitance Range		Length
1000. 10000	Mmfd	11/16"
1000. 10000		13/16"
1000-100000	"	$111 / 64^{\prime \prime}$
1000-100000	"	$115 / 32^{\prime \prime}$
5000-200000	-	$115 / 32^{\prime \prime}$

Width	Thickness
$29 / 64^{\prime \prime}$	$7 / 32^{\prime \prime}$
$13 / 16^{\prime \prime}$	$19 / 64^{\prime \prime}$
$41 / 64^{\prime \prime}$	$17 / 64^{\prime \prime}$
$49 / 64^{\prime \prime}$	$21 / 64^{\prime \prime}$
$49 / 64^{\prime \prime}$	$17 / 64^{\prime \prime}$

OIL-IMPREGNATED FILTER CAPACITORS

"Oil-Mites" for filter and by-pass applications involving high voltages and extremes of temperature and humidity. Mineral oil impregnant achieves more compact size without impairing performance. Power factor and capacitance are stable through temperatures from - 55 to 185 F. Either upright or inverted mounting is provided by the reversible hold-down bracket.
Voltage range: 100 ia 1000 VDC. Capacitance range: . 01 to 4.0 Mfd .
"Midget Oil-Mites," to meet small space requirements, incorporate design and structural features which permit these capacitors to be contained in smaller cases than the conventional "Oil-Mites." Seamless metal cases are hermetically sealed, phenolic-insulated solder-lug terminals are leakproof.
Voltage range: 100 ta 1000 VDC. Capacitance range: Single sectians, 01 to 1.0 Mfd . Multiple sections, $2 \times .05,2 \times .10 \mathrm{Mfd}$.

OIL-IMPREGNATED BY-PASS CAPACITORS

Compact "bathtub" design combined with the operating advantagesstability of capacitance and low power factor-of mineral oil-impregnated and oilfilled constructions.
Capacitance ranges:
Single sectionst $600 \mathrm{VDC}-.01$ to 2.0 Mfd .
$1000 \mathrm{VDC}-.01$ to 1.0 Mfd.

Mulitiole	¢00 VDC	2×.05	$2 \times .1$	$3 \times .25$	$3 \times .05$	$3 \times .1$	2×.25	3×.5
Sections	1000 VDC	$2 \times .05$	$2 \times .1$	$3 \times .25$		$3 \times .1$	$2 \times .25$	

TRANSMITTING CAPACITORS

Type TRS for use in filter, transmitting, and timing circuits are designed to handle high transient voltages and temperatures encountered in such service. Impregnated and filled with mineral oil, these units are contained in hermetically sealed steel cases. For convenient mounting, permanently attached mounting feet, hook hold-down brackets, on odjustable wrap around brackets for upright or inverted mounting are available. The adjustable wrap-around bracket permits mounting with terminals at any desired distance above the mounting surface.
Capacitance and voltage ranges: 600 to 6000 VDC and .03 to 50 Mfd .

TELEVISION CAPACITORS

Type VRC capacitors, for employment in television circuits are built to withstand high voltages at high temperatures-a chief consideration in such applica* ns. Typical ratings are:

Type VRC-8011-8000 VDC, 0.1 Mfd .2 insulated terminals
Type VRC-1600S- 16000 VDC, 0.05 Mfd . Iterminal insulated,
I terminal grounded.
If your jobbercannot supply these Tobe long-life capacitors, write directly to-

TOBE DEDTSCHMADИ $c_{\text {cmandion }}$ canton. massaciustits

The Easiest Way of Sending EVER DEVISED

DELUXE
VIBROPLEX KEYS
YEARS AHEAD WITH
PATENTED JEWEL MOVEMENT

Here's the greatest improvement in code sending PATENTED PATENTED JEWEL MOVEMENT feature exclusive with Deluxe Vibroplex keys, that has so completely eliminated tiresome sending effart that it has made sending easier than you ever dreamed sending could be. Polished chromium machine parts and base. Colorful red switch knob, finger and thumb piece. DIE CUT rontacts and main spring. 3, 16 th contacts. Circuit closer, cord and wedge. $\$ 19.50$. Siandard finish-Polished chromium machine parts tund black base, $\$ \mathbf{1 5 . 9 5}$.

Patterned ofter the "Oriainal" Vibroplex but smaller in size. Capable of the same high-class sendina performance for which that key is internationally famous. Standard finish-Polished chromium machine parts and black base, $\$ \mathbf{1 5} 9 \mathbf{5}$. Deluxe finish-Polished chromium machine ports and base with ieweled movement, $\$ 19.50$.
"LIGHTNING bug" Vibroplex

Another popular Vibroplex key that is widely used on land, sea and in the air. Incorporates many advanced and exclusive features, adding greatly to its sending efficiency ond ease of operation. Standard finishPolished chromium machine parts ond black base, $\$ 13.95$. Deluxe finish--Polished chromium machine parts and base with jeweled movement, \$17.50.

THE "CHAMPION" VIBROPLEX

A smart, efficient, full-size key for radio use only. Chrome finished machine parts and black crystal base.
$\$ 9.95$

VIBROPLEX popularity is more than a matter of smart, graceful design, unmatched signal quality and operating dependability. It's the better and safer way of sending . . . it's the easiest way of sending ever devised. No special skill is required. No tiresome effort is involved. No danger of 'glass' arm. SIMPLY PRESS LEVER — VIBROPLEX DOES THE REST.

VIBROPLEX CARRYING

 CASEPlushlined, finished in hond some simulated black morocco. Reinforced corners. Flexible leather handle. Lack and key. Protects key from dust, dirt and moisture. Insures safe keeping when not in use. Prolongs life of key. \$5.50.

No matter which Vibraplex key you choose you can be assured that it will meet whatever demands are made upon it, and in addition give you a lifetime of sending pleasure and satisfaction. Specify madel. Remit by maney order ar registered mail. Write for FREE illustrated catalag.

The "Blic. Trasle Mark identitu the
Comantue Vibroples key.

It": sour guatatity of combplete satisfaction. Necrpt 110
silostitute. THE VIBROPLEX CO., Inc. 833 Broadway • New York 3, N. Y.

[^15]
3 Basic Ways to meroove the EFFICIENCY AND STABILITY OF YOUR RIG

WARD LEONARD RELAYS

Proper relays have many practical uses in anmateur rigs. They provide convenient circuit control and preater operating efficiency, They help reduce the length of connecting leads, prevent unnecessary transfer of stray or transient currents to critical parts of the transmitter circuit Designed and built for rugged service, WARD LEONARD Amareur Relars are available from stock in the following types. Antenna Change-Over - Antenna Grounding Hand Switching - RF Break-In - Keying - Over load - Underload - Latch-In - Remote Control Safety - Sencitive - Time Delay.

3

WARD LEONARD RHEOSTATS
These Vitrohm Keng-Type units are widely used as potentiometers or rheostats, for fived or variable close control, in commercial as well as amateur equipment. Made of highest grade ceramic materials. Resistance wire is held in place and protected by special WARD LEONARD vitreous enamel. Many other features. A vailable from stock in 25 watt, 50 wist 100 watt and 150 watt sizes, in wide range of resistance values.

SEND FOR FREE CATALOGS
For helpful data and information, write for Relay Caralog No. D-111 and for Resistor-Rheostat Catalog No. D. 2.

AUTHORIZED DISTRIBUTORS EVERYWHERE

RELAYS • RESISTORS • RHEOSTATS
 Electric control $\frac{5}{5}$ devices since 1892

WARD LEONARD ELECTRIC CO., Rodio and Electronic Distributor Division, 53K West Jackson Blvd., Chıcago 4, U. S. A.
129

frequency response	stablury	accuracy of CALI. Bration	$\begin{aligned} & \text { PDWER } \\ & \text { OUPUT NMO } \\ & \text { RATED LOAD } \end{aligned}$		luad impedance	$\begin{aligned} & \text { Distorion } \\ & \text { AT HATEO } \\ & \text { Dutput } \end{aligned}$	(HUMLEVEL BELOW	POWER REQUIRE	SI2E
\# d dextele, 20 cos to is kc	* 2%	*2\%	1 malt		500 ohms	Iest thas 1\%	60 st		
± 1 decibel, 20 cos to 15 kc	*2\%	$\pm 2 \%$	1 wat		500 ohns	less lman 1\%:	60 db		
\$1 dectibel 20 cys to 150 kg	+2\%	$\pm 2 \%$.	100 mullumats		1000 utums		co st		
± 1 drectee. 7 cos tuc 70 kc	$\pm 2 \%$	$\pm 2 \%$	100 mil\|umsts		1000 unus		60 ut	$\begin{aligned} & 15 \text { volis } \\ & 50-60 \text { cye } \\ & 500 \text { watte } \end{aligned}$	
	\$2\%	$\pm 2 \%$	100 miltums		1000 ntrus	lass san	cos 0		
\$1 decibel. 6 ems 106 ks	$\pm 2 \%$ or $\$ 1 \%$ Standardization	+26\%	100 unlis.ent		1000 M1ums		60 dh		
\$1 decibel. 20 cos to 20 kc		$\pm 2 \%$	3 walts		600 olnm		60 di		
		$\pm 2 \%$	5 mats		30. 200. 5000.5000 ohnı19	less than is cus to 20 k at rated upput	60 dt below onfput ur 90 dt , bilum tero lerkt whiche.ef is larger		Depin 14^{5} wins. weight 70 los
enerator down 2.0 db al 20 cps *n 10 du at 20 kc at full gutpu meter within $\geq 0.2 \mathrm{ob}$ of $\$ 00 \mathrm{cp}=$ ret. Irum 20 cys to 20 kt	$\pm 25 \text { or } \geq 14,4$ Stenderdization	12\%\%	5 wals	Genert Votin		less man 10 30 at rated vulipul \qquad	60 th below oulput uf 40 ou belon sero leve whichey th is larger		Lenylh 215, Mevith $14 *$, ims weight is lios
		12\%	5 nath		50. 200. 500.5000 witurs			${ }^{50} 50.60$ yc	
voltage		impeoance			miscellanedus characteristics			$\begin{aligned} & \text { POWER } \\ & \text { REOURGE. } \\ & \text { MENTS } \end{aligned}$	SIIE
Outpui 5 velis ititu 1000 onms		Load Nuthes than 1000 otims						30.60 jor cre 100 wath-	
Outbut 5 vults intu 1000 ulth		Luad Not less than 1000 otmin							
Inpuil 1 Inv to Sobv		Input 20.000 othis			$\text { al } 40 \mathrm{db} \text { dum from resulact max srectivity is } 30 \text { cps }$$\text { Dial Calituration Puonls } 6 \text { ? }$				
Max. npuel 100\%		Analyzer Inpu! 20.000 uhms Oeleciur liput shupla tee thut ies than 100.000 ultoms							
Max. Inus 100\%		Analyzer Invu! 20.000 ohms Delectior Inpur shuuld te irut tess then 100.000 olvets							
					 				Sepin 19 ins. Weight 56 ib :
					and do suve a 1 mm. 600 tham lerel)				
Masanum livut $50 \times$		1 Tnow son shmu wio mex grouned							
		not			AC Voltmeter Peak rendingmstrument wall withe ate willage to 3000 mc Uhminter, 0.2 ohnis iw $\$ 00$ tarpuhirs mirenges				
		1 Inout 50.000 utum							
									Lenglh $7^{\prime \prime}$, ins Depth 11^{1} Weight if lus.

DAR-METAL Standard $\begin{aligned} & \text { RACKS, CABINETS } \\ & \text { CHASSIS PANEIS }\end{aligned}$

ADAPTABLE FOR EVERY REQUIREMENT

Par-Metal Housings for Electronic Apparatus, offer new features, including beautiful streamlined design rugged construction, and adaptability. Eliminate need for Special Made-to-Order units on many jobs. Par-Metal offers standard ready-to-use housings for every type af transmitting or receiving apparatus.
Par-Metal offers all the essential equipment needed to build up any sort of a job-from a Small Receiver to a Deluxe Broadcasting System.

PAR-METAL PRODUCTS CORPORATION EXPORT DEPT.
32-62 49th Street, Long Island Cify 3, N. Y.
13 E. 40 St., NYC 16

132

W2NAB looking over the band the Panoramic Way

PANORAMIC RECEPTION

Panoramic Reception enables the operator to see at once a continuous overall picture of band activity or examine the character of any signal, his own or another's.

Now . . . through the Panadaptor, alert progressive amateurs can enjoy to the full the many unique advontages possible only with Ponoramic Reception as offered by the originator and pioneer of this invaluable new technique.

Consistently, alter once using the Panadaptor with their rigs, amateul after amateur claim that without Panoramic they'd be at a loss in practically all phases of operation ranging from looking over the band or spotting replies to their CQs to checking the other fellow's modulation.

Shows frequency devialion ond madulation characteristics of FM signals.

TRY PANORAMIC RECEPTION - THEN TRY TO DO WITHOUT IT

Instantly Identifies signols, ORM and QRM-free spots within obond. Measures signal strength of CW and 'phane signols heard through reseiver.

RADIO CORPORATION
Panotamic.ntw Yome

0
 A PARtiallist of JOHNSON

Cat. Nu.*	l.enyth	Nin. Cap.	(at. No.	Lrigth	Min. Cap.	Cal Vo.	Leneth	Nin, Cap.	Cat. No.	1.rugth	Min. Cap.
250t:20	22532	12	70 ED 30	41532	8	70FD20	32732	7	701H1915	21,2	8
350 E 20	31732	15	100E D30	55, 16	110	100% 20	11116	9	$100 \mathrm{HD})^{15}$	3332	10
50 t 20	11532	19	15UED 30	7116	13	150FD20	6	11	3511D30	413,32	12
35 E 30	11116	8	210ED30	83.8	15	20uFD 20	77 32	14	5011030	6	15
50 E 34	12932	9	50LD is	653	10	د15 D30	42732	8	7J12	416	2.6
70 E30	25,32	9	70F:b 15	7716	12	701 1)30	52332	10	15J12	11 1t	3.3
100E 30	2916	11	juvilisis	4932	15	100t D30	2716	13	25112	18	3.6
$150+30$	3716	11	$35+20$	112	7	${ }_{2} 5 \mathrm{H} 15$	1116	4	50J12	1732	4.9
250130	11516	20	$515+30$	158	8	3-H115	1316	1	75.112	112	6
3501:31)	6716	25	70120	12532	8	50 HIS	1516	4	100 J12	11516	7
35 E 45	$\because 516$	y	100220	211	10	70H15	1532	6	254; 20	2932	1
S0E 15	23132	11	150120	278	12	100 H 15	1716	7	50)(20	1532	5
70E 15	3910	13	2511 ? 11	1332	17	150415	21332	4	81:15	78	36
1001.4^{5}	41732	16	35130	178	8	250415	31312	13	136.45	1532	1.7
1501:15	6332	20	50130	25 Hi	4	25 H 30	2316	7	236; 15	11316	6.1
$2,11+5$	y9 16	32	$711+30$	234	11	35 H 30	21932	8	60.70	11 lt	3.5
$200515 ? 3$	515	10		3 14 32	11	50 H 30	31232	11	120;70	258	6
3001 D) 20	62132	13	150F301	478	18	70H30	41332	13	N125 Nrutralising Max. 11 -Min, 1.1		
50E1)30	13 32	B	50102^{10}	31/2	7	35HD15	111.16	.	$\begin{array}{ll} \mathrm{N} 125 & \mathrm{~N} \\ \mathrm{~N} 250 & \mathrm{~N} \\ \mathrm{~N} 375 & \mathrm{~N} \end{array}$	Nrutralizing Max. 10.6 -Min. 1.1 Neutraliang Max. 10.7 Min. 1.7	
For "C' alit	listings sor	miniotecata				50HD15	23, 32	7			

 condenstr.

COUPLINGS • CHOKES • INDUCTORS • PILOT LIGHTS • CONNECTORS

SEF: ILIISIRATION AT RICIIT

PLUGS A JACKS
RADIO HARDWARE

P9.750 8 -75

INSULATORS

HARVEY' ${ }^{\text {is ham }}$ headquarters

Sonny got started right. Dad has been a Harvey customer since 1927, though he lives miles from New York. When Sonny got his ticket Dad told him to get his gear from Harvey's because he'd get the best, the quickest service, and friendly help and advice on his problems. Dad knows that Harvey's staff is made up of hams who know the ham's problems and can usually come up with a
solution. If you live in or near New York, this friendly service is more direct but it can't be more personal.

HARVEY'S HIT OF THE MONTH

Watch this space in our QST ad each manth. In it you'll find bargains in items yau can really use.

harvey's hamfestival of values

You'll find Harvey's ad each manth in QST and in this space you'll see afferings af unusual value in addition to the staples of ham radio. Haryey carries large stocks af companents in. cluding meters, crystals, transmitting tubes and test equipment along with the camplete units including all the popular receivers, transmitters, frequency meters and ather things that add up to a complete ham statian. While the supply of surplus material lasts, you'll alsa find carefully selected surplus items, chosen not be-
cause they can be sold cheaply, but because they can be used in a ham rig, or easily adapted - in other wards, real bargains. Harvey's reputation for reliability has been growing ever since 1927 and you can be sure af the same prompt, caurteous attentian if you order by mail, wire, ar phone as if you could call and place your order in person. By the way, if you get near Times Square, we're only a block away, so drop in and see us.

103 West 43rd 5t., New York 18, N. Y.

285 MADISON AVE., NEW YORK 17, N. Y.

Gentlemen: Please send me the new Solar Catalog.

Name \qquad
(PLEASE PRINT)
Address \qquad

City \qquad Zone No. \qquad State \qquad

A balanced selection of good technical books, additional to the ARRL publications, should be on every amateur's bookshelf. We have arranged, for the convenience of our readers, to handle through the ARRL Book Department those works which we believe to be most useful. Make your selection from the following, add to it from time to time, and acquire the habit of study for improvement. Prices quoted include postage. Please remit with order.

Theory and Principles

BASIC RADIO PRINCIPLES, by M. G. Suffern. Elementary radio principles, circuits ond components described in simple proctical languoge, without mathematies. 271 poges, illustroted. 1943. $\$ 3.00$

BASIC ELECTRICITY FOR COMMUNICATIONS, by W. H. Timbie. A proctical treatment of the electrical principles which underlie communicotions, circuits ond proctice. 603 poges, illustrated. 1943........... $\$ 3.50$

PRINCIPLES OF RADIO, by Keith Henney. A medium-level text covering both electrical and rodio fundamentols, particularly written for home study. 549 poges, illustrated. 4th edition, 1942.........................53.50

BASIC RADIO, by J. Borton Hoog. A complete treatment of the circuits used in radio television and electronics opporatus, including up-to dote applications. 380 pages, illus troted. 1942..........................33.2s

FUNDAMENTALS OF RADIO COMMUNI.
CATIONS, by A. R. Frey. A more odvonced treatment requiring previous bockground. Authoritotive, clearly written, well organized. 393 pages, illustroted. 1944....... $\$ 4.00$

INTRODUCTION TO MICROWAVES, bY Simon Ramo. A non•mathematical description of concepts necessary to on understonding of microw ove phenomeno. 138 poges, illustroted 1945............................... 1.7 S

Engineering and Reference

RADIO ENGINEERS' HANDBOOK, by F. E. Termon. Broad scope and defailed treotment moke this book serve both as text and reference hondbook. 1019 poges, illustrated. 1943...................... $\$ 6.00$

RADIO ENGINEERING HANDBOOK, Keith

Henney, Editor. An authoritative hondbook for engineers, with technical dato on all fields and aspects of rodio, contributed by 23 specialists. 945 poges, illustrated. 1941 $\$ \mathbf{5 . 0 0}$

ULTRA-NIGH-FREQUENCY RADIO ENGINEERING, by W. L. Emery. Written for engineering students, this book provides on excellent tronsition treatment for omoteurs. 295 pages, illustroted. 1944..........\$3.25

COMMUNICATION CIRCIITS, by Ware and Reed. From low-frequency Ironsmission line and network theory, this volume leads the student into wave guides and advanced u.h.f. techniques. 330 poges, illustroted. 2nd edition 1944.............................. $\$ 3.50$

PRINCIPLES OF ELECTRON TUBES, by H. J. Reich. A condensed but complefe treatment of the theory, characteristics ond opplicotions of electron tubes. 398 poges. $1941 \ldots$. . $\$ 3.50$

COMMUNICATION ENGINEERING, by
W. L Everift. Complete treotment of network theory, including mothematical onalysis of radio circuits and tube operation. 727 pages, 411 illustrations. 1937 $\mathbf{\$ 5 . 0 0}$

HYPER AND ULTRA-HIGH FREQUENCY ENGINEERING, by Sorbocher ond Edson. A digest of published literafure covering oll phases of technique from 30 Mc . to 10,000 Mc. 644 poges, illustrated. 1943.... $\$ 5.50$

FIELDS AND WAVESIN MODERN RADIO, by Romo and Whinnery. An extensive theoreticol treatment of field and wove theory, requiring o knowledge of engineering mathematics. Reveoling and importont. 502 pages, illustrated. 1944 $\$ 5.00$

RADIO ENGINEERING, by F. E. Terman. A comprehensive treatment covering oll phoses of radio communication. An all-oround book for students ond engineers. $8 i 3$ poges, illustrated. 2nd edition, 1937. $\$ \mathbf{5 . 5 0}$

FREQUENCY MODULATION, by August Hund. An odvanced engineering text on f.m. presenting both theory and practice. 375 poges, illustroted. 1942. $\$ 4.00$

PRINCIPLES OF TELEVISION ENGINEERING, by D. G. Fink. Information on the fundamentol processes of television technique, with design dota and descriptions of modern equipment. 541 poges, illustroted. 1940............................... $\$ 5.00$

MICROWAVE TRANSMISSION, by J. C. Slofer. A comprehensive treotment of principles and techniques employed in the region between 300 and 3000 Mc . For the adyanced student or engineer. 309 poges, illustrated. 1942................... $\$ 3.50$

Experiments and Measurements

MEASUREMENTS IN RADIO ENGINEERING, by F.E. Termon. A comprehensive engineering treatment of the measurement problems encountered in engineering proctice, with emphosis on basic principles. 400 pages, itlustroted. 1935.

RADIO FREQUENCY ELECTRICAL MEASUREMENTS, by H. A. Brown. A loboratory course in r.f. measurements for communicotions students. Contains proctical informotion on methods. 384 poges, illustroted. Second

EXPERIMENTS IN ELECTRONICS AND COMMUNICATION ENGINEERING, by Schulz ond Anderson. A loborotory text describing 108 experiments covering oll ospects of radio and electronic fields. 380 pages. 1943............................... $\$ 3.00$

Commercial Equipment and Operating

HOW TO PASS RADIO LICENSE EXAMINATION5, by C. E. Drew. Gives onswers and explonations for the porophrosed questions in the FCC study guide, covering oll six elements of the commercial exominotion. 320 poges, illustroted. 2nd edition, 1944. . \$3.00

PRACTICAL RADIO COMMUNICATION by Nilson ond Hornung. Covers bosic principles and technical requirements in the commercial fields-broadcosting, police, aviotion and marine communication. 927 pages, illustroted. 2nd edition, 1943........... $\$ 6.00$

THE RADIO MANUAL, by G. E. Sterling. An excellent practical hondbook, involuoble to the commercial and broodeast operotor and engineer. Covers principles, methods and opporatus of all phoses of radio. 666 poges. illustrated. 2nd edition, $1938 \$ 6.00$

Miscellaneous

MATHEMATICS ESSENTIAL TO ELEC. TRICITYAND RADIO, by Cooke ond Orleans. Provides the essentiols of olgebro, geometry ond :rigonometry needed to solve everydoy
problems, with proctical examples. 418 poges, illustroted. 1943........... $\$ 3.00$ PRINCIPLES AND PRACTICE OF RADIO SERVICING, by H. J. Hicks. Receiver sircuit
fundomentols ond their opplicotion to generol service proctice. Covers modern testing equipment ond business principles in servicing. 391 poges, illustroted. 1943
. $\mathbf{3 . 5 0}$
the american radio relay league, inc. - West hartford 7, CONNECTICUT
138

VER＇TICAL ANTENNAS－－ELEMENTS AND MOUNTING ACCESSORIES
 performanme under mos severe conditoss：in anateor，commereial and military installations．Thes will withetand all ordinary strases without guying，thongh they should he supported by guys or standoff insulators akainat abmemal wind conditions．Avail．

Sis	Description	Arpembid l. noth	（＇ollopestid Lengh	$\begin{aligned} & 13 \text { is. } \\ & 1, i . \end{aligned}$		H: ivht Riond
．1］． 1045	1－pr．，tapmeyl rent	$i^{\prime}=3$＇	$6^{\prime} 3^{\prime}$	． 313		$1,1 \mathrm{~b}$ ．
A1． 212	2－sere，telescoming	$1 \underbrace{\prime \prime}$	$6^{\prime}{ }^{\prime \prime}$	．3010	． $334^{\prime \prime}$	$1{ }^{2} \mathrm{l}$ lhe．
A1．－il	3－x＋\％．，t－lesemping	13	$6^{\prime \prime} \underline{\prime}^{\prime \prime}$	\％ 30	．${ }^{\prime \prime}$	3 1ts．
A $11 .-3 \geq 1$	t－＂c．e，theseropur．e	219＇	$6{ }^{1}+{ }^{\prime \prime}$	1．04日＂	A31＂	$\overline{3}$ Hs．
11，－5\％	5 －sece teloswerme	$310^{\prime \prime} 0^{\prime \prime}$	$6^{\prime}{ }^{\prime \prime}$	1．251	1.031%	7 lhs．
． $11 .-$－ 3 3 3	（i－sec．，th＇rseopitue	＂3＇s＂	$6^{\prime} \mathrm{j}^{\prime \prime}$	$1.5000^{\prime \prime}$	$1.310^{\prime \prime}$	12 lbs．

		Fistomend	Hintmern	Base		Wright
Y	Imscription	linn the	${ }^{\text {Lenneth }}$			Euch
（19－0）		\％＂，	\％o．	2．960	i，kuc	

No．	lmseription		${ }_{\text {combus }}^{\text {leneth }}$	cisas	Rase	
1719313	w．．terscopius	：lxal 133^{\prime}	\％	（62，${ }^{\text {a }}$	\therefore 浯＂	23.1
M11－199	．telesiopting	athun ！！	＂ 4 ，	Fin	． 16.6 \％，＇，	5
M19－123	－re．trinserpiug	athent $3.3{ }^{\prime}$	$\xrightarrow{\text { a }}$	－10\％＂	\％is？	
11：1－135	．．．trolscortinug	：lhunt 3i＇	7＇s＇	1．003＇3	．93，${ }^{\text {\％}}$	1：\％ibs．

Cornliar Elamanins

Corrulite Vlements

Forr Ibearit ．Irrorts．

Premax Cormbite fite melle－have hion ilo－ wifiled to matt the need for liphteweright hut－birdy elaments for use in burimontal arras．and mimitar ap－ wirations．They aro exceptistatly liyht in ＂eipht and their son－ cial thexipn prosithes the needed wrenyot and ripility so essential in herizantal tyones ar in－ tallatiome－antl at extronely low cosis．

The enverial mient tith． Iny weal int thent are meaten in l＇rellaty Ansolopment to ithare umumal wiffuren and strengeth．All parta are heavily elecropraterl （o ill－arecorranion rewistaner and hiph ele－trical equmberivit Thery are fully adjura－ He to any denired length and a survial losking clamp assures rigid joints and pasitive clectrical contanct la－ tween mertious of the cleomente．A＂hairpin＂ turinge bar prowideat eatre of atljuxtiment．

ANTENNI MAINTING MCOENSARIES

 Ivailable in palvanized matleatble iron or bromate to fit mants from

 dempll for thate the to 18 or hipher mats if puseal or senp－ jurted by mathedofinmatators． 3^{3}＂ lop poost is stamdard but with une of blaphers will fit other ni $\%{ }^{\circ} \mathrm{N}$ ．

 rine tow er plat form or roup fopme． Leall－hres tomstruction promits antenna comectionm firlow，roof ir elech A A ailathle fur ${ }^{3} i^{\prime \prime}$ to

Tope B－C lowalated Vimint－ ing Clamp for horizontal arrays，verticalx．Pe．Gral－ vanized iron rame with poreclain split bumhing．For $8 / 8^{\prime \prime}$ to $\mathbf{l}^{\prime \prime}$ O．D．Mams，

Type 10－c：Inmulaterd Vomant． ink Clamp．Stimped ateri． electroplated frame．porce． lain split besthiar：lipht weikht for rotary bram and dipole installations．For $3 /$ B／$^{\prime \prime}$ to $1^{\prime \prime}$ elements．

Bromze Vouminy Clipe for Anoriznatal elementa or wer． tioal antentas．or for feed and tranminission cennertion．

＂alll Bracket of hatal Irel for manutines vertical ：at－ tranaz onn side wall．pirra－ anto，etto．Drilled to tio ly po 1 and 2 Bane Insulators．

Devek Bumhing of lorown mazed parrerlain in walvanized mallea－ the flange which boles dirouph ruhbier gasket tor rouf or derk． Inside diameter 3 e＂${ }^{\prime \prime}$ ． $1 / 4^{\prime \prime}$ or $134^{\prime \prime}$ 。
 Clamp．a atmple，＂orndiat momming for horizomtal ple－ mente．bertical－．ente．fialsan－ izell irem fratme．［umiolain plit
 $1^{\prime \prime}$ O．W．elements．

＇I＇sur 3 stamboff Inwlatior for subpurtime vertical ammemasor mophortiny versical ambernator
for ume in paire an complete an－ trona or element monnting： Coalvanized irom or brase wilh purcerlain bady．Stblose in lit $1_{2}^{\prime \prime}$（1） $1^{5 / 3 \prime}(1), 1$ ．elements．

Alaphera to fil Time I． 2 or of Bane lamblators．Pirmiten lume of （uhbular masta from $5 / \mathrm{s}^{\prime \prime}$ to $11 / \mathbf{s}^{\prime \prime}$ O．D．

[^16]Pitemax Pitodects

THE HENRY RADIO CREED:

"Buy on terms from to give m elf .. dinmibun on
 service and say

HENRY RADIO STORES

211-215 NORTH MAIN STREET

2331-35 WESTWOOD BOULEVARD LOS ANGELES 25, PALF.

Model 327

Model 0321-T

Model 529

Model 446

In Triplett's complete line of instruments you can always find the answer to your amateur and experimental electrical measurement requirements. Panel and portable meters are available in more than 26 case styles - round, square and fan - 2" to $7^{\prime \prime}$ sizes. Included are voltmeters, ammeters, milliammeters, millivoltmeters, microammeters, thermo ammeters, $D B$ meters, VU meters and electrodynamometer type instruments.

Model 3286 Variable Frequency Exciter

Frovides linger-isp irequency control of the tour most popular FCC approved amateur frequercies. 3.5-4.0, $7-7.3$; $14-14.4$; and $28-30 \mathrm{Meg}$ acycles (10-20-40-80 meter bands). Has provision for one additional sion band.

The circuit plus voltage regulation and temperature compensated capacity makes this one of the most stable electron coupled excitere yet derignen. Mlso can be used as a 30 watt C.W. transmitter independent of any other equipment.

Model 3266 Frequency Standard

 A 100 KC crystal controlled oscillator with strong harmonic sigrals for high trequẹncy measurements.Bar type crystal, having a temperature coefficient of 3 cycles per megocycle per degree centigrade is emdegree in the crystal oscillatorfor very high precision.
100 to 200 KC electerm coupled variable R.F. oscillator for measurements between the 100 KC crystal marker signals.

Model 3296

 Modulation MonitorYou get maximum efficiency from your trans. mitter with Model 3296, shown below.
A good monitor enables the operator to "SEE" the signal heard by the listener on the other end.
It provides four separate circuits for measuring amplitude modulation: (1) per cent modulation (average): (2) peak flash per cent modulation; (3) car* rier shift; (4) audio output for headphones. These methods may be used sepafately, asmiafrantly, erin
any combination.

\leftarrow Model 3276 Field Radiation Meter

A small. compact portable field radiation meter with power supply and antenna self contained.
Meter calibrated in db per meter from 0 to plus 25 with a set adjustment providing a means for measuring losses and as increments in radiation power.
Coils covering ranges 3.4 to $4 ; 7$ to $7.3 ; 14$ to 14.4 ; and 28 to 30 megacycles are self contained and selected by front panel range selector switch. No coils to plug in or scrvice.

PLASTICON CP CAPACITORS

GLASSMIKES

- For low and medium power coupling and bypass circuits where mica capacitors have previously been required
- Television and Oscilloscope Circuits
- Vibrator Buffer and Arc Elimination
- Geiger Counter and Instrument Capacitors

PLASTICON ASG Silicone-Filled GLASSMIKES

Cat.	$\begin{aligned} & \text { Cay, } \\ & \text { Mfil. } \end{aligned}$	$\begin{aligned} & \text { Nolts } \\ & \text { 11. } \end{aligned}$	Diam. \& lerusth	$\begin{aligned} & \text { List } \\ & \text { Prict } \end{aligned}$	$\begin{aligned} & \text { fat. } \\ & \text { so. } \end{aligned}$	$\begin{aligned} & \text { Ciap. } \\ & \text { D1fo. } \end{aligned}$	$\begin{aligned} & \text { Volls. } \\ & \text { in. } \\ & \hline \end{aligned}$		List
NSG 4	$\cdot 1$		$3 / 4 \times 13 / 4$	\$1.95	TSG: 27	.001		$19 / 32 \times 13 / 16$	$\$ 6.50$ 6.70
NSG 5	. 2.5		$29 / 32 \times 21 / 4$ $13 / 8 \times 2 / 4$	2.25 2.60	NSG28	.10010		(19/32 $\times 13 / 16$	6.70 6.95
					.1SG 30	. 11	Sermi	$3 / 4 \times 13 / 4$	7.25
ASG 7	. 005		19/33 $\times 1.3 / 16$	\$1.50	ISG:31	. 113		$13 / 8 \times \frac{1}{2} / 4$	7.65 8.15
ASG ${ }_{\text {ASG }}^{8}$. 01		$19 / 33 \times 1.3 / 16$ $19 / 32 \times 1.3 / 16$	1.60 1.70 1	\SSE 3.3	A1)		$13 / 8 \times 23 / 4$ 1	8.10
ASG 10	0.5	1:00	1 $3 / 4 \times 1 / 4$	1.85					
ASg 11	$\cdot 15$		29/3/4 $\times 2 \times 2 / 4$	2.15					
Asc; 12	25		$29 / 32 \times 23 / 4$	2.50	ASG; 38	. 11	73100	$29 / 32 \times 2 / 4$	9.25
ASG: 13	.04?		17/32 $\times 1.3 / 10$	\$1.90	ASC 39	. 05		$13 / 8 \times 23 / 4$	11.50
ASG 11	. 00.5		$19 / 32 \times 13 / 16$	2.05					
ASC; 15	. 01		10/3: $\times 13 / 16$	2.25	ASG 40	. 01015		19/33 $\times 19,16$	\$730
ASS: 16	.025	2000	$\begin{array}{cc}19 / 32 & \times 19 / 16 \\ 3 / 4 & \times 1.3 / 4\end{array}$	2.50 280 3.20	ASG41	. .1011	11.1006	$19 / 32 \times 19 / 16$ $13 / 8 \times 31 / 2$	7.50 15.00
ASS; ${ }_{18}$. 125		$20 / 32 \times 21 / 4$	3.20 3.70					
Ing 19			$13 / 8 \times 2.1 / 4$	3.7	ASC: 47	00015		$29 / 3!\times 24$	\$14.50
ASG: 20	. 001		19/32 $\times 13 / 16$	\$5.15	ASG 4	.(0)1	15,1411	$29 / 32 \times 23 / 4$	14.80
ASC; 21	.002		$19 / 32 \times 1.3 / 16$ $19 / 3 \geq \times 15$	5.25 5.40					
ASt; 2.3	.01	〈кн)	$19 / 32 \times 1$ i $/ 16$	5.60	ASG 50	. 00015		$168 \times 31 / 2$ 1 $1 / 8$	\$19.50 $\mathbf{2 0 . 5 0}$
ASG: 24	. 0 ?		$3 / 4 \times 13 / 4$	5.85	As(\% 51	0 O1	20.01	1 3/8x $31 / 2$	
ASG: 25	.$^{.05}$			6.50	ASC 52	.0005	30.0001	$13 / 8 \times 31 / 2$	\$22.50

TRANSMITTER Filter Capacitors

Smaller, lighter, more economical, greater safety factor, longer life
PLASTICON AOC-Mineral Oil Filled

$\begin{aligned} & \text { Type } \\ & \text { Nos. } \end{aligned}$	Mfis.	W:	Uimensions	$\begin{aligned} & \text { List } \\ & \text { Priwe } \end{aligned}$
AOCOO6Cit	4	0100		\$5.2x
AOC1M1 10CO132	$\frac{1}{2}$	1160 111010		4.02
$\begin{aligned} & \text { IOCOMA } \\ & \text { locinit } \end{aligned}$	$\frac{1}{4}$	11010		6.44
AOCIM8		11061	+ $5 / 88^{\prime \prime} \times 3.3 / 1^{\prime \prime} \times 13 / 4^{\prime \prime}$	9.24
Aocaiv1	1	$\frac{2009}{}$		5.72
	$\frac{1}{1}$	201001	(1)	6.71 9.26
AOC3M1		3\%(0)	$+^{\prime \prime} \times 3 / 2{ }^{\prime \prime} \times 13 / 160^{\prime \prime}$	12.10
	$\underline{3}$	30410		
AOC:3M4	-		$45 / 8^{\prime \prime} \times 33^{\prime \prime} \times 13 / 4^{\prime \prime}$	
NOC4.111 AOC4M2	2		$\begin{array}{rlllllll} t^{\prime \prime} & \times & 3 / 44^{\prime \prime} & \times & 1 & 1 / 4^{\prime \prime} \end{array}$	$\begin{aligned} & 27.50 \\ & 3300 \end{aligned}$
$\begin{aligned} & \text { Moci5N1 } \\ & \text { AOCi5Ni } \end{aligned}$	2	$\begin{aligned} & 501141 \\ & 50100 \end{aligned}$		$\begin{aligned} & 3300 \\ & 41.25 \end{aligned}$
AOCi75:1	1	7501	A1/2' $\times 3.4 / 4^{\prime \prime} \times+9 / 10^{\prime \prime}$	49.50
. $\mathrm{COC10M1}$	1	10.006	$4^{\prime \prime} \times 33 / 8^{\prime \prime} \times 49 / 10^{\prime \prime}$	88.00

ORDER FROM YOUR JOBBER

Condenser Products
 Compariy
 CHICAGO 22, ILLINOIS

142

ANNOUNCING THE NEW.

MEISSNER

The Number One requirement for the com-
 plete "Ham Shack," this new Meissner Signal Shifter has built in band switching.

No coils to change - 6 -position switch. Normally equipped with five sets of coils for $10,15,20,40$ and 80 meter bands plus a blank strip for any additional new band. All controls placed on front panel. Reduced warmup time... Minimum power output 6 watts on all bands. Choice of built-in or separate power supply. For complete specifications write to the address below.

THORDARSON

TRANSFORMERS

The name Thordarson is your assurance of transformer quality . . . backed by 51 years of outstanding transformer manufacture. For every electronic requirement.

ELECTRONIC DISTRIBUTOR AND INDUSTRIAL SALES DEPARTMENT
 936 N. MICHIGAN AVENUE. CHICAGO 11, ILLINOIS

To Manufacturers of

Products Used in Short-Ware
IGadio Comnnunication

The Radio Amatelr's Havdbook is the world's standard reference on the technigue of high-frequeney radio communication. Now in its twenty-fourth annnal edition, it is used miverally by radio enginecrs as well as the thousands of amateurs and experiment ers for whom it is published. Year after year, cach succeeding edition has sold more widely than its predecessor, moil the llandbook now has a worldwide ammal distribution in excess of two humdred thousand copies of its English and Spanish editions. To mamfacturers whose integrity is established and whose products meet the approval of the American Radio Relay League technical staft, we offer use of space in the Handbook's Catalog- Avertising Section. 'Testimony to its aflertiveness is the large volume of advertising which the Handbook carries each vear. It is truly the standard guide for amatenr, commereial and govermment buyers of short-wave radio equipment. Particularly vahable as a medium through which complete data on products can be made casily available to the whole radio engincering and experimenting ficlal, it offers a surprisingly inevpensive method of producing and distributing a creditable catalog, accomplishes its production in the easiest possible manner, and provides atequate distribution and permanent avaibability imposibibe to attain by any other means. We solicit inguiries from qualified manufacturers who wish finll data for their examination when catalog and advertising plans are under consideration.

ADVEIBTISING; DEIPIBTMENT . . .

American IRadio IRelay Leagne

WEET IIARTFARID 7 , CONNEATICTT

144

CURRENT

CONVERSION

WITH ATR QUALITY PRODUCTS

ATR "A"

BATTERY ELIMINATORS

For Converting A.C. to D.C. - New Models.
Designed for Testing D.C. Electrical Apparatus on Regular A.C. lines. Equipped with Full-Wave Dry Disc Type Rectifier, Assuring Noiseless, Interference-Free Operation and Extreme Long Life and Reliability.

- Eliminates Storage Batteries and Battery Chargers.
- Operates the Equipment at Maximum Efficiency of All Tintes.
- Fully Automatic and Fool-Proof.

ATR LOW POWER INVERTERS

For Inverting D.C. to A.C. - Another New ATR Model ... Designed for Operoting Small A.C. Motors, Electric Rozors, and a Host of Other Small A.C. Devices from D.C. Voltoge Sources.

ATR STANDARD AND HEAVY DUTY INVERTERS

For Inverting D.C. to A.C. - Speciolly Desizned for Operating A.C. Radios, Television Sets, Amplifiers, Address Systems, and Radio Test Equipment from D.C. Voltoges in Vehicles, Ships, Trains, Planes, and in D.C. Districts.

AMERICAN TELEVISION \& RADIO CO. Manufacturers of Quality Products Since 1931 ST. PAUL, MINNESOTA, U. S. A.

FOR THE FORTUNATE HIGH-FIDELITY BUGS WHO CAN

AFFORD "PROFESSIONAL" EQUIPMENT HLTEC LASIDG

604 DUPLEX 15-Inch

A. 255 AMPLIFIER

TRANSFORMERS
model so4 duplex: Here's the speaker that's the standard of FM studios! The Duplex is a full 2-way multicellular speaker that reproduces the entire FM range, from 5 (1 to 15,000 cycles, without intermodulation or distortion.
model 003 dia-cone: Follows close at the heels of the luplex in quality, but easier on your budget. This speaker incorporates all the advantages of a 2 -way multicellular speaker system.

MODEL 600 DIA-CONE: Typical Altec Lansing high fidelity in a smaller-sized, lower-priced speaker. Manufacturers who design sets for critical ears are selecting this model for their finer combinations.

AMPLIFIERS: A complete line of quality equipment ranging from pre-amplifiers to quarter kilowatt amplifiers. For specific information, write for bulletins on the various sizes and types available.
transformers: Altec Lansing has developed a complete line of transformers, especially designed for high quality use. Input, interstage and output transformers available with a transmission range of 20-20,000 cycles ($\pm 1 \mathrm{db}$).

*Models 603 and 600 boib employ the exclustive Dia.Cone principls, reproducing high frequencies and lour frequencies from separate diapbragms.

IN RADIO SINCE 1926 now two los angeles stores to SERVE YOU EVEN BETTER, FASTER

COUNTI YOU'IL FIND THEM ALL AT RADIO Promictis SALES IN

ADVANCE	IRC
AEROVOX	JACKSON
AHRCO	J.F.D.
ALLIANCE	JOHNSON
ALPHA	JONES
AMERICAN	KESTER
BEAUTY	KRAEUTER
AMPHENOL	LENZ
ARRL	LITTELFUSE
ASTATIC	MARION

ASTATIC
ATLAS SOUND
ATR
B \& W
BELDEN
BELL BIRNBACH
Bliley
BOGEN
BRUSH
BUD
BURGESS
CARDWELL CENTRALAR CINAUDA. GRAPH CONTINENTAL
CORNELI DUBLIER CROWE
DRAKE DUMONT EIMAC ELECTRO VOICE ELECTRONIC LABORATORIES ERIE GC General cammunicalians received electrical bandspread tar the 80,40 ,

Recent completion of our new modern building more than quadruples our capacity to serve amateurs, radio electronics industries. amateurs: Our amander even better Special note service to hams by hams. We wish thank our legion of satisfied customer made our building expansion possible.

N/T/ ALL FREUUENCY VACUUM TUBE VOITMEIER in kit farm

LABORATORY PRECISION

Better than $\pm 3 \%$ accuracy on all ranges. Less than 7 uuf input at all frequencies.

FULL RANGE

Will measure voltages from 0.2 to 300 volts at 20 cycles to beyond 200 megacycles.

NEW LOW COST*

Priced at less than half the cost of comparable laboratory instruments.

Build it yourself! That's part of the serious Ham's creed. Build it hetter? That goes without saying. Here is your opportunity to do both. You get fully illustrated wiring and assembly instructions. Every part you need is included-laced cables-screws-soldering lugs-mounting brackets-all the parts in tegrated to give you an instrument of which you will he proud to build. own and use.
Conservatively rated parts, engineered into a finished unit assure you an instrument of unquestionalle laboratory accuracy. The rutire kit is composed of parts chosen or specified to a particular performance requirement.

PRICE \$62.50 FOB New York.

Shipped prepaid if money order or check accompanies order.

The American Radio Relay League

THE: American Radio Relay League. Inc., is a noncommercial association of radio amateurs, bonded for the promotion of interest in amateur radio communication and experimentation, for the relaying of messages by radio, for the advancement of the radio art and of the public welfare, for the representation of the radio amateur in legislative matters, and for the maintendance of fraternalism and a high standard of conduct.

It is an incorporated association without capital stock, chartered under the laws of Connecticut. Its affairs are governed by a Board of Directors, elected every two years by the general membership. The officers are elected or appointed by the Directors. The League is non-commercial and no one commercially engaged in the manufacture, sale or rental of radio apparatus is eligible to membership on its board.
"Of, by and for the amateur," it numbers within its ranks practically every worth-while amateur in the nation and has a history of glorious achievement as the standardbearer in amateur affairs.

Inquiries regarding membership are solicited, A bona file interest in amateur radio is the only essential qualification: ownership of a transmitting station and knowledge of the code are not prerequisite.

- Member: hip Application Blank. \rightarrow

- Hpplication for IMcmbershie,

(ard imfluate which wo the adders below:
N.1114

Abstract

151 WHO ARE ALREADY MEMBERS

HERE IS A FORM for your convenience in expressing to your SCM interest in any Communications Department appointment. Read "Leadership and Station Appisintments," Chapter XXI. Select the appointment which best fits your operating interests and qualifications. The SCM will be happy to consider your application for Offic:al Relay Station, Official Experimental Station, Official Phone Station, Official Broadcasting S'ation, or Official Observer. Appointments as Section Einergency Coordinator, Emergency Coordinator, Phone Activities Manager, and Route Manager also are available to amateurs of proven ability. The SCM is particularly interested to know of your interest in any of the leadership appointments. © Copy this form, or cut it out. Send direct to your Section Communications Manager (address on page 6, each QST). The Communications Department field organizatior: includes the United States and its territories, Canada, Newfoundland, Labrador, Cuba, the Isle of Pines, and the Philippine Islatds. Applications from outside these areas cannot be handled.

APPLICATION FOR APPOINTMENT

To: Section Communications Manager
Section, ARRL

From	Call
Street and Number	\cdots
City	Sounty State
1 am interested in appointment as	

My station is operative in the following bands.
Mc.

My ARRL nembership expires
1 understand that each ARRL appointment raquires annual endorsement, and may be suspended or cancelled af the discretion of the Section Communications Manager for inactivity, lack of interest or failure to report regularly each month. Please send me detailed furns or further information necessary in connection with this application.

Date
Signed

[^0]: ${ }^{1}$ Where it is newesary or desirable to identify the electroles, the curved element represents the outside eleetrode (marked"outside foil," "ground," etc.) in fixed paper- and ceramic-dielectrid condensers, and the negatire electrode in electrolytic condonsers.
 2 ln the modern mombol, the curved line indicates the moving clement (rotor plates) in variable and adjustable airor midadielectrie comdensers.

 In the rase of switehes, jacke, relays, ete, only the basic combinations are shown. Any combination of these symfols may be assembled as required, following the elementary forms shown.

[^1]: *Use one size larger for tapping bakelite and hard rubber.

[^2]: * Sof l"ig. 1210 and text for details. C_{4} is monntrdinvide osrillator milform; spe Fig. 1210. Handerread taps on L_{3}

 with No. 24 enamehed, spued about $1 / 8$ inch from bothons of grid coils, except for $1 \mathrm{~A}-\mathrm{G}$, which is juterwound with I...

[^3]: * All 1 'z-inch diam, 3-turn links.
 ** All coil- litted with 2-turn links.

[^4]: ${ }^{1}$ Voltage across nexl－stage grid resistor at grid－current point．
 ：At 5 volts r．m．s．outpul．

[^5]: 1 Values are for both tubes.
 ${ }^{2}$ Sinusoidal signal values; speech values are approximately one-half for tubes biased to approximate cut-off and 80 per cent for zero-bias tubes.

 Values do not include transformer losses. Somewhat higher power is required of the diver to supply losses and provide good regulation. Input transformer ratios must be chosen to supply required power at specified grid-to-grid voltage with ample reserve for losses and low distortion levels. Driver stage should have sood resulation.

 - Dual tube. Volues are for one tube, both sections.
 ${ }^{4}$ Instant-heating filament type.
 ${ }^{\text {T}}$ Beam tube. Class ABz. Screen voltage: 125 at 32 ma .
 ¿Beam tube. Class AB. Scieen voltage: 300.
 ${ }^{8}$ Can be driven by a pair of $2 A 3$ s in push-pull Class $A B$ at 300 volts with fixed bias.
 ? Driver: one or two 45s at 275 volts, self-biesed (-55 volts).
 ${ }^{\text {t0 }}$ Beam Tube. Class AB2. Scieen voltage: $\mathbf{3 0 0}$ at 10 ma . Effective grid circuit resistance should not exceed 500 ohms.

[^6]: $\mathrm{C}_{1}, \mathrm{C}_{12}-10-\mu \mathrm{fd}$. 50 -volt electrolyt. ic.
 $\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6} . \mathrm{C}_{2}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{13}-$ $0.1-\mu$ fid. 4010 -wolt paper.
 $\mathrm{C}_{3}, \mathrm{C}_{8}-8$ - ff . 450 .volt electrolytic.
 $\mathrm{C}_{7}-0.47-\mu \mathrm{fd}, 400$-volt paper.
 $\mathrm{R}_{1}-4.7$ megohms, $1 / 2$ watt.
 $\mathrm{h}_{2}, \mathrm{R}_{\mathrm{s}}-1200$ ohms, $1 / 2$ watt.
 $K_{3}, K_{7}-2.2$ megohms, $1 / 2$ watt.
 $\mathrm{K}_{1} . \mathrm{H}_{13}, \mathrm{H}_{22} . \mathrm{K}_{24}-0.47$ zegohm,
 ${ }^{1} 2$ watt.
 $\mathrm{R}_{5}-15.000$ ohms. $1 \underline{2}$ watt.
 $\mathrm{R}_{6}, \mathrm{R}_{20}-0.5$ merohm variable.
 $\mathrm{R}_{9}-0.22$ megohm, I watt.
 $\mathrm{K}_{10}, \mathrm{~K}_{11}, \mathrm{R}_{23}-0.1$ megohm, $1 / 2$ watt.
 $R_{12}-10.1000$ ohms, $1 / 2$ watt,
 R_{14} - 1500 ohres, $1 / 2$ watt.
 $\mathrm{R}_{15}, \mathrm{R}_{16}-0.1$ megohm, 1 watt.
 $K_{1}: H_{1}, 1_{13}-0.22$ megohn, 1_{2} watt.
 Jis1 - $4=00$ whers. $1 / 2$ watt.
 $\mu_{2 t}-7.50$ ohms, 10 watts.
 $s_{1} \mathrm{~S}_{2}$ - S.p.,.t, switch.
 J_{1} - Output ramsformer to mateh p.p. $2.13=$ to Class B grids.
 T_{2} - Filament transformer, 6.3 volts, 2 anperes.
 T_{3} - Filament transformer, 2.5 volts, 5 amperes.

[^7]: 1 Chosm-woumd, No. 30 d , s, e.. $\frac{1}{4}$ inch from primary.
 2 Betanse the impedane of indivilual crystal detere tors varies rensiderathy experiment with the number of
 If meter reads bichward, reverse crystal comnections.

[^8]: ${ }^{1}$ At $20^{\circ} \mathrm{C}$. based on empper as $100 .^{2} \mathrm{I}^{\circ} \mathrm{er}{ }^{\circ} \mathrm{C}$. at $20^{\circ} \mathrm{C}$.

[^9]: ${ }_{2}$ Most data taken at $25^{\circ} \mathrm{C}$.
 2 Puncture voltame, in volts jer mil. Nost data apmilies to redatively thin sertions and canmot be moltiplied direrty togire breakdown for thieker sertions without added safoty fartor.
 ${ }^{3}$ In ohm-em.
 ${ }^{4}$ Indurlessur, surdurte as Aladdinite, Ameroid, Galalith, Firinoind. Latetrid. etc.
 5 Incindes Fibestas, Lunerith. Nixonite, Ilastarele. lenite, ete.

 6 Includes Amerith, Nitron, Nixonoid, Pyralin. ete.
 7 Methylmetharryate resin.
 ${ }^{8}$ Phenolaldehyde products inelude Acrolite, Bakelite,

[^10]: A mil is $1 / 1000$（one thousandth）of an inch．
 2 The figures given are approximate only，since the thickness of the insulation varies with different manufacturers
 ${ }^{3}$ The current－carrying capacity at 1000 C．M．per ampere is equal to the circular－mil area（Column 3 ）divided by 1000 ．

[^11]: 1 With input choke of at least 20 henrys.
 ${ }^{2}$ Tapped far pilof lamps.
 3 Per pair with chake input.

 * Candenser input.
 ${ }^{5}$ With 100 ahms min. resistance in series with plate; without series resistar, maximum r.m.s. plate rating is 117 valts.

[^12]: Woidprationison

[^13]: Comvial Tines．
 T．SGE
 Concentric lintes． 1！8．200－30
 current Fed 148，2（0）－207
 1）－lat Mathing Transformer
 207．37
 Direct Fxatitation．
 23－37
 Frwder Comperthas：
 19
 1mpedatue
 0
 Impedathe Transformor
 31－i를

 198－201
 imec curront
 ．201－20．5

 Lasses－
 $1999-210$

 Or．n－Wir．Jinc ．．．．．．．．．．．．．．．．．．．．．．． 0 ．3－20．

 Rッaetanre．．．

 \qquad 147－1！s

 Fublul Dublut Brat．

 lirer－spare I＇attern． $\begin{array}{r}140-1414 \\ \hdashline-88\end{array}$

 Malsards．
 $\therefore 28-2: 3$

 ： $2: 3-2: 3: 3$
 ＂J＂Anternn：t
 371，3：10－3：41

 $191,302,-20$
 lenvelh．．．ro．．．．．．．．．．．
 ．2？！！－ 330

 Matsis．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．2．24－2：
 Mshile．．．．．．．．．．．．．．．．．．．．．．．．．．

 Pratualy l Refloctors ．．．．．．．．．．．．．．．．．．．．．．．．．．

 Phame Reflector Antenmas ．．．．．．．．．．．．．．．．．．．．：
 Ihane Shmet Reflectors
 1ss，19：9， 14 m

 P’ower cian．． 24
 Qulles：．．．
 Radiation Characteristies ．．．．．．．．．．．．．．．．．．． 14.5
 Ratriation Reristance ．．．．．．．．．．．．．．．．．．．．．．．． 1 ．
 lleeriving．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
 Ruflotion，Gromnt ．．．．．．．．．．．．．．．．．－
 K．flector．．．．．．．．．．．．．．．．．．．．．．．．．．．．2et．．n：
 Rewtricted Sbare ．．．．．．．．．．．．．．．．．．．．．．．．． $1: 3-21.4$

 switeling
 ：3：3
 Tilt Ingle
 3

 ＇Iuners．（onstruction of：

 Reverにはr．．．．．．．．．．．．．．．．．
 31

 Widn－13：am！Intemats．．．．．．．．．．．．．．．．．．．．．．．．．．s．
 Zelp！Anteunat ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 203
 Anti－N゙nd．… ．．．．．．．．．．．．．．．．．．．．．．．．．．． 19
 Are－13：rkk．． 171
 Arms．Brialıe－（ incuit ．．．．．．．．．．．．．．．．．．．．．．．．．． 18
 Arrays，Autenna ．．．．．．．．．．．．．．．．．．．．2．2．2－233，3：7－381

[^14]: SLATER, MISSOURI

[^15]: J. E. Albright, President

[^16]: Ask your Radio Jobber for Premax Catalog of Antennas and Accessories．He also can supply you with the Premax Antenna Manual，showing many types of vertical and horizontal

