

THE STANDARD MANUAL OF AMATEUR

RADIO COMMUNICATION

7012

CDHTHN.

IN U.SiA. PROPER

P UBLISHED BY THE AMERICAN KRADIO RELAY LE/AGUE

$+$

$1 / 4$
1 1:
A.

3
6
6
1
1
1

FIXED CONDENSER (See Footnote 1)

variable or adjustable CONDENSER
A- Single - section B-Split-stator (See footnote 2)
 AIR-CORE INDUCTOR A- Fixed coil or rif. choke B- Coil with fixed tap C -Coil with variable tap (small circles indicate plug:ondjack or binding -post terminals)

IRON-CORE INDUCTOR OR CHOKE

A-AIR-CORE TRANSFORMER OR INDUCTIVELY-COUPLED COILS (Arrow used only if coupling is variable)
B-LINK-COUPLED COILS

VARIABLE RESISTOR. POTENTIOMETER, VOLTAGE DIVIDER, RHEOSTAT, ETC.

electrical heater element

TERMINALS with appropriate labels

switches
A- S.PS.T. C- D.P.S.T.
B- S.P.D.T. D-Rotary Multipoint

MICROPHONES
A-Single button D. Dynamic
B -Double.butlon E - Velocity C-Condenser F.Crystal headphones

LOUDSPEAKER

BUZZER

A-Normally-open B-Normally-closed

VIBRATORS
A- Non-rectifying B-Self-rectitying

(with ${ }^{*}=$ proper
identification - V, MA, etc.)

DIODE VACUUM TUBE

TRIODE VACUUM TUBE
multigrid vacuum tube The grids are usually numbered, G, being that closest to the cathode

ELECTRON-RAY CATHODE-RAY
TUBE TARGET TUBE DEFLECTING ANODES PLATES

A- Panel or dial B-Illuminating

Neon bulbar voltage regulator
(YR)TUBE

CRYSTALS
${ }^{1}$ Where it is necessary or desirable to identify the electrodes, the curved ilene, represents the outside electrode (marked "outside foil," "ground," etc.) in fixed paper- and ceramic-dielcetric condensers, and the negative electrode in electrolytic condensers.
2 In the modern symbol, the curved line indicates the moving element (rotor pies) in variable and adjustable airor mica-dielectric condensers.

In the case of switches, jacks, relays, etc., only the basic combinations are shot' . Any combination of these symhols may be assembled as required, following the elementary forms shown.

TWENTY-FOURTH EDITION

$$
1947
$$

The Hadis

Amntenros

Hanolbool:

by the
HEADQUARTERS STAFF OF THE AMERICAN
RADIO RELAY LEAGUE

published by
THE AMERICAN RADIO RELAY LEAGUE, INC.
West Hartford 7, Connecticut
U.S.A.

This work is Publication No. 6 of The Radio Amateur's Library, published by the League. All rights reserved. No part of this work may be reproduced in any form except by written permission of the pullisher. All rights of translation are reserved. Printed in U. S. A.

Twenty-广ourth Edition

Firat Printing, Dccember, 194G, 75.000 copies
(Of the previous iwenty-three editions, $1,598,250$
copies were published.)

Toreword

Twenty-one years ago - in 1926 - the first edition of The Radio Amateur's Handbook was presented to the amateur world. Produced by the amatcur's own organization, the American Radio Relay League, and written with the needs of the practical amateur constantly in mind, its publication was engerly greeted by the radio enthusiasts of that dav. Subsequent editions have earned ever-increasing acceptance not only by amateurs but by all segments of the radio world, from students to engineers, servicemen to operators.
This wide dependence on the Handbook, evidenced by a total printing of over a million and a half copics, primarily is founded on its practical utility, its trentment of radio communication problems in terms of how-to-do-it rather than by abstract discussion and abstruse formulas.
But there is another factor as well: dealing with a fast-moving and progressive scionce, sweeping and virtually continuous modification has been a feature of the Handbookalways with the objective of presenting the soundest and best aspects of current practice rather than the merely new and novel. Its annual rewriting is a major task of the headquarters group of the League, participated in by skilled and experienced amateurs well acquainted with the practical problems in the art.
In contrast to most publications of a comparable nature, the Handbook is printed in the format of the League's monthly magazine, QST. This, together with extensive and usefullyappropriate catalog advertising by manufacturers producing equipment for the radio anateur, makes it possible to distribute for a very modest charge a work which in volume of subject matter and profusity of illustration surpasses most available radio texts selling for several times its price.

When war came to this nation it was discovered by the military and other agencies that the Handbook was precisely what was needed to help make practical radiomen for the Army and Navy and to help those who were training themselves for wartime radio work. Not only was the Handbook used as a text or reference in many training programs, but it also provided source data for many service-written special courses. During the war years the training aspects have been given increasing emphasis - not, however, to the detriment of other long-established features, but rather by increasing the size and scope of the book.

With the constant editorial problem before us of gearing each year's edition to the needs of amateur radio of that year, as we perceive them, it has seemed best to leave intact in this edition the entire section on principles and design factors, large as that portion of the book grew during the war years. During this early postwar period there are many new people coming into amateur radio who need sound guidance, and it is a commonplace among practising amateurs that we all grew so rusty during the war that we have forgotten many of even the simple and fundamental things in radio. The preservation of this material in a connected and related manner seems to our staff to be. the best possible way of presenting it during this transition period. The section of the book dealing with the construction of equipment, on the other hand, has been thoroughly revised in terms of postwar practires and postwar components. Many new picces of apparatus, employing the best known amateur technique, have been designed and built for this year's edition, and proved by thorough testing, so that we are confident that other amateurs will find them reliable guides in their constructional projects.

A word about the reference system: It will be noted that each chapter is divided into sections and that these are numbered serially within each chapter. The number takes the form of two digits or groups separated by a hyphen. The first figure is the chapter number, the second the section number within the chapter. Cross-references in the text take such a form as (§4-7), for example, which means that the subject referred to will be found discussed in Chapter Four, Section 7. Throughout the book, illustrations are serially numbered within each chapter. Thus Fig. 1107 can be readily identified as the seventh illustration in Chapter Eleven. There is a carefully-prepared index at the rear of the book.

To a long-established reputation of indispensability in the amateur station of prewar days the Handbook now has added a proud record of participation in the national war effort. With the opening of the new postwar era in amateur communication, we earnestly hope that the present edition will succeed in bringing as much assistance and inspiration to a mateurs and would-be amateurs as have its predecessors.

Kenneth B. Warver
Managing Secretary, A.R.R.L.
West Hartrord, Conn.
December, 1946

INTRODUCTION

Frontispiece 2
The Amateur's Code 8
Chapter I • Amateur Radio 9
PRINCIPLES and DESIGN
Chapter II • Fundamentals 13
Chapter III • Vacuum Tubes 60
Chapter IV • R.-F. Power Generation 94
Chapter V•Radiotelephony 117
Chapter VI • Keying 137
Chapter VII • Receiver Principles and Design 142
Chapter VIII • Power Supply 175
Chapter IX • Wave Propagation 188
Chapter X • Antenna Systems 194
EQUIPMENT CONSTRUCTION
Chapter XI • Workshop Practice 234
Chapter XII - Receiver Construction 239
Chapter XIII • Transmitter Construction 255
Chapter XIV • Modulation Equipment 312
Chapier XV • V.H.F. Receivers 329
Chapter XVI • V.H.F. Transmitters 347
Chapter XV'II • V.H.F. Antennas 375
Chapter XVIII • Emergency and Portable 383
Chapter XIX • Measurements and Measuring Equipment 393
GENERAL
Chapter XX • Vacuum-Tube Characteristies and Miscellaneous Data 411
Chapter XXI • Radio Operating 460
International Amateur Prefixes 469
Index 470

THE AMATEUR'S CODE

- ONE •

The Amateur is Gentlemanly . . . He never knowingly uses the air for his own amusement in such a way as to lessen. the pleasure of others. He abides by the pledges given by the ARRL in his behalf to the public and the Government.

- TWO •

The Amateur is Loyal . . . He owes his amatcur radio to the American Radio Relay Leaguc, and he offers it his unswerving loyalty.

- THREE •

The Amateur is Progressive... He keeps his station abreast of science. It is built well and efficiently. His operating practice is elean and regular.

- FOUR •

The Amateur is Friendly . . . Slow and patient sending when requested, friendly advice and counsel to the beginner, kindly assistance and coöperation for the broadcast listener; these are marks of the amateur spirit.

- FIVE•

The Amateur is Balanced... Radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school, or his community.

- SIX•

The Amateur is Patriotic . . . His knowledge and his station are always ready for the service of his country and his community.

Countless thousands of persons all over the world have enjoyed the thrills and plcasures of amateur radio. This is a bricf account of how it grew into the magnificentlyuseful institution it is today.

Amateur radio is as old as the art itself. There werc amateurs before the present century. Shortly after the late Marconi astounded the world with his experiments proving that wircless telcgraph messages actually could be sent, "amateurs" werc attempting to duplicate his results. But amateur radio actually began when private citizens discovered this means for personal communication with others, and set about learning cnough about "wircless" to build home-made stations. Its subsequent development may be divided into two phases, the period before 1917 and the ycars between that war and December 7, 1941. Plus, of course, the new phasc now opening.

Amatcur radio of pre-World War I bore little resemblance to radio as we know it today, except in principle. Transmitting and receiving equipment was of a type now long obsoletc. No U. S. amateur had cver heard a foreign one nor had any foreigner ever reported an Anerican signal. The oceans were an impenctrable wall. Cross-country communication could be accomplished only by relays. "Short waves" meant 200 meters; the entire spectrum below that was a vast silence undisturbed by any signals. By 1912, however, there were numerous Government and commercial stations and hundreds of amateurs; regulation was needed; and laws, licenses and wavelength specifications for the various services appeared.
"Amatcurs? . . . Oh, ycs. . . . Well, stick 'em on 200 meters and below; they'll never get out of their backyards with that."

But as the years rolled on, amateurs found out how, and DX jumped from local to $500-$ mile and even occasional 1,000 -mile two-way contucts. Because all long-distance messages had to be relayed, relaying developed into a fine art - an ability that was to prove invaluable when the Government suddenly called hundreds of skilled amateurs into war service in 1917. Meanwhile U. S. amateurs began to wonder if there were amateurs in other countries across the seas and if, some day, we might not span the Atlantic on 200 meters.

Most important of all, this period witnessed the birth of the American Radio Relay League, the amateur radio organization whose name was to be virtually synonymous with subsequent amateur progress and short-wave development. Conccived and: formed by the famous inventor, the late Hiram Percy Maxim, ARRL was formally launched in early 1914. It
had just begun to cxert its full force in anmateur activitics when the United States declared war in 1917, and by that act sounded the knell for amateur radio for the next two and a half years. There were then over 6,000 amateurs. Over 4,000 of them served in the armed forces during that war.

Today, few amatcurs rcalize that World War I not only marked the close of the first phase of amateur development but came very near marking its end for all time. The fate of amateur radio was in the balance in the days immediately following the signing of the Armistice. The Government, having had a taste of supreme authority over communications in wartime, was more than half inclined to keep it. The war had not been ended a month before Congress was considering legislation that would have made it impossible for the amateur radio of old ever to be resumed. ARRI's President Maxim rushed to Washington, pleaded, argued, and the bill was defeated. But there was still no amateur radio: the war ban continued. Repeated representations to Washington met only with silence. . . . The Learue's offices had been closed for a year and a half, its records stored away. Most of the former amateurs had gone into service: many of them would never come back. Would those returning be interested in such things as amateur radio? Mr. Maxim, determined to find out, called a meeting of the old board of directors. The situation was discouraging: amateur radio still banned by law, former members scattered, no organization, no membership, no funds. But those fow determined men finunced the publication of a notice to all the former amateurs that could be located, hircel Kenneth 13. Warner as the League's first paid secretary, floated a bond issue among old League meinbers to obtain money for immediate running expenses, bought the magazine $Q S T$ to be the Learue's official organ, started activities, and dunned officialdom until the wartine ban was lifted and amateur radio resumed again, on October 1, 1919. There was a headlong rush to get back on the air.

From the start, amateur radio took on new aspects. Wartime necels had stimulated technical development. Vacuum tubes were being used both for receiving and trunsmitting. Amateurs immediately adapted the new gear to 200 -meter work. Ranges promptly increased and it became possible to bridge the continent with but one intermediate relay.

As DX became 1,000, then 1,500 and then 2,000 miles, amateurs began to dream of transAtlantic work. Could they get across? In December, 1921 , in what has been called the
greatest sporting event of all time, ARRL sent abroad an cxpert amateur, Paul F. Godley, 2 ZE , with the best receiving equipment available. Tests were run, and thirty American stations were heard in Europe. In 1922 another trans-Atlantic test was carried out and 315 American calls were logged by European amateurs and one French and two British stations were heard on this side.

Everything now was centered on one objective: two-way amateur communication across the Atlantic! It must be possible - but somehow it couldn't quite be donc. More power? Many already were using the legal maximum. Better receivers". They had superheterodynes. Another wavelength? What about those undisturbed wavelengths below 200 meters? The engineering world thought they were worthless - but they had said that about 200 meters. So, in 1922, tests between Hartford and Boston were made on 130 meters with encouraging results. Early in 1923, ARRI-sponsored tests on wavelengths down to 90 meters were successful. Reports inclicated that as the wavelength dropped the results were better. A growing excitement began to spread through amateur ranks.

Finally, in November, 1923, after some months of carcful prcparation, two-way amateur trans-Atlantic communication was accomplished, when Schnell, 1MO, and Reinartz, 1XAM (now W9UZ and W3IBZ, respectively) worked for several hours with Deloy, 8AB, in France, with all three stations on 110 meters! Additional stations dropped down to 100 meters and found that they, too, could casily work two-way across the Atlantic. The exodus from the 200 -meter region had started. The "short-wave" era had begun!

By 1924 dozens of commercial companies had rushed stations into the 100 -meter region. Chaos threatened, until the first of a series of national and international radio conferences partitioned off various bands of frequencies for the different services. Although thought still centered around 100 meters, League officials at the first of these conferences, in 1924, wisely obtained amateur bands not only at 80 meters but at 40, 20, 10 and even 5 meters.

Eighty meters proved so successful that "forty" was given a try, and QSOs with Australia, New Zcaland and South Africa soon became commonplace. Then how about 20 meters? This new band revealed entirely unexpected possibilities when IXAM worked 6TS on the West Coast, direct, at high noon. The dream of amateur radio - daylight DX! was finally true.
From then until "Pearl Harbor," when U.S. amateurs were again closed down "for the duration," amateur radio thrilled with a scries of unparalleled accomplishments. Countries all over the world came on the air, and the world total of amateurs passed the 100,000 mark. . . . ARRL representatives deliberated with the representatives of twenty-two other
nations in Paris in 1925 where, on April 17th, the International Amateur Radio Union was formed - a federation of national amateur radio societies. . . . The League began issuing certificates to those who could prove they had worked all six continents. By 1941 over five thousand WAC certificates had been issued!

Amateur radio is a grand and glorious hobby but this fact alone would hardly merit such wholehearted support as was given it by our Government at international conferences. There are other reasons. One of these is a thorough appreciation by the Army and Navy of the value of the amateur as a source of skilled radio personncl in time of war. Another asset is best described as "public scrvice."

About 4,000 amateurs had contributed their skill and ability in '17-'18. After the war it was only natural that cordial relations should prevail between the Army and Navy and the amateur. These relations strengthened in the next few years and, in gradual steps, grew into cooperative activities which resulted, in 1925, in the establishment of the Naval Communications Reserve and the Army-Amateur Radio System. In World War II thousands of amateurs in the Naval Reserve were called to active duty, where they served with distinction, while many other thousands served in the Army, Air Forces, Coast Guard and Marine Corps. Altogether, more than 25,000 radio amateurs served in the armed forces of the United States. Other thousands were engaged in vital civilian electronic research, development and manufacturing.

The "public service" record of the amateur is a brilliant tribute to his work. These activities can be roughly divided into two classes, expeditions and emergencies. Amateur cooperation with expeditions began in ' 23 when a Lcague member, Don Mix, 1TS, of Bristol, Conn. (now assistant technical editor of QST), accompanied MacMillan to the Arctic on the schooner Bowdoin with an amateur station. Amateurs in Canada and the United States provided the home contacts. The success of this venture was such that other explorers followed suit. During subsequent years a total of perhaps two hundred voyages and expeditions were assisted by amateur radio, and for many years no expedition has taken the field without such plans.

Since 1913 amateur radio has been the principal, and in many cases the only, means of outside communication in several hundred storm, flood and earthquake emergencies in this country. The 1936 eastern states flood, the 1937 Ohio River Valley flood, and the Southern California flood and Long Island-New England hurricane disaster in ' 38 called for the amateur's greatest emergency effort. In these disasters and many others - tornadoes, sleet storms, forest fires, blizzards - amateurs played a major rôle in the relief work and earned wide commendation for their resource-
fulness in effecting communication where all other means had failed. During 1938 ARRL inaugurated a new emergency-preparedness program, registering personnel and equipment in its Emergency Corps and putting into effect a comprehensive program of coöperation with the Red Cross.

Throughout these many years the amateur was careful not to slight experimental development in the enthusiasm incident to international DX. The experimenter was constantly at work on ever-higher frequencies, devising improved apparatus, and learning how to cram several stations where previously there was roons for only one! In particular, the amateur pressed on to the development of the very high frequencies and his experience with five meters is especially representative of his initiative and resourcefulness and his ability to make the most of what is at hand. In 1924, first amateur experiments in the vicinity of 56 Mc . indicated that band to be practically worthless for DX. Nonetheless, great "short-haul" activity eventually came about in the band and new gear was developed to meet its special problems. Beginning in 1934 a series of investigations by the brilliant expcrimenter, Ross Hull (later QST's editor), developed the theory of v.r.f. wave-bending in the lower atmosphere and led amateurs to the attainment of better distances; while occasional manifestations of ionospheric propagation, with still greater distances, gave the band uniquely-erratic performance. By Pcarl Harbor thousands of a mateurs were spending much of their time on this and the next higher band, many having worked hundreds of stations at distances up to several thousand miles - transcontinental 5metcr DX had been accomplished! It is a tribute to these indefatigable amateurs that today's concept of v.h.f. propagation was developed largely through amateur research.

The amateur is constantly in the forefront of technical progress. Many amateur developments have come to represent valuable contributions to the art. The complete record would fill a book! From the ARRL's own laboratory in 1932 came James Lamb's "single-signal" superheterodyne - - the world's most advanced high-frequency radiotelegraph receiver - and, in 1936, the "noise-silencer" circuit for superhetcrodynes. During the war, thousands of skilled amateurs contributed their knowledge to the development of secret radio devices, both in Government and private laboratories. Equally as important, the prewar technical progress by amateurs provided the keystone for the development of modern military communications equipment.

Emergency relief, expedition contact, experimental work and countless instances of other forms of public scrvice - rendered, as they always have been and always will bc, without hope or expectation of material reward - made amateur radio an integral part of our peacetime national life. The importance
of amateur participation in the armed forces and in other aspects of national defense have emphasized more strongly than ever that amateur radio is vital to our national existence.

(1) The American Radio Relay League

The ARRL is today not only the spokesman for amateur radio in this country but it is the largest a mateur organization in the world. It is strictly of, by and for amateurs, is noncommercial and has no stockholders. The members of the League are the owners of the ARRL and QST.

The League is organized to represent the amateur in legislative matters. It is pledged to promote interest in two-way amateur communication and experimentation. It is interested in the relaying of messages by amateur radio. It is concerned with the advancement of the radio art. It stands for the maintenance of fraternalism and a high standard of conduct. One of its principal purposes is to keep amateur activities so well conducted that the amateur will continue to justify his existence.

The operating territory of ARRL is divided into fourteen U. S. and six Canadian divisions. The affairs of the League are managed by a Board of Directors. One director is elected every two years by the membership of each U. S. division, and a Canadian General Manager is elected every two years by the Canadian membership. These directors then choose the president and vice-president, who are also members of the Board. The managing secretary, treasurer and communications manager are appointed by the Board.

ARRL owns and publishes the monthly magazinc, QST. Acting as a bulletin of the League's organized activities, QST also serves as a mediunn for the exchange of ideas and fosters amateur spirit. Its technical articles are renowned. It has grown to be the "amatcur's bible," as well as one of the foremost radio magazincs in the world. Membership dues include a subscription to QST.

ARRL maintains a model headquarters amateur station, known as the Hiram Percy Maxim Memorial Station, in Newington, Conn. Its call is W1AW, the call held by Mr. Maxim until his death and later transferred to the ARRL station by a special FCC action. Separate transmitters of maximum legal power on each amateur band have permitted the station to be heard regularly all over the world.

Among its other activities the League maintains, at its headquarters offices in West Hartford, Conn., a Communications Department concerned with the operating activities of League members. A large field organization is headed by a Section Communications Manager in each of the country's seventy-one sections. There are appointments for qualified members as Official Relay Station or Official 'Phone Station for traffic-handling; as Official Observer for monitoring frequencies and the quality of signals; as Route Manager and
'Phone Activities Manager for the establishment of trunk lines and networks; as Emergency Coördinator for the promotion of amateur preparedness to cope with natural disasters. Mimeographed bulletins keep appointees informed of the latest developments. Special activities and contests promote operating skill and thereby add to the ability of amateur radio to function "in the public interest, convenience and necessity." A special section is reserved each month in $Q S T$ for amateur news from every section of the country.

© Amateur Licensing in the United States

The Communications Act lodges in the Federal Communications Commission authority to classify and license radio stations and to prescribe regulations for their operation. Pursuant to the law, FCC has issued detailed regulations for the amateur service.

A radio anateur is a duly authorized person interested in radio technique solely with a personal aim and without pecuniary interest. Amateur operator licenses are given to U. S. eitizens who pass an examination on operation and apparatus and on the provisions of law and regulations affecting amateurs, and who demonstrate ability to send and receive code at 13 words per minute. Station licenses are granted only to licensed operators and permit communication between such stations for amateur purposes, i.e., for personal noncommercial ains flowing from an interest in radio technique. An amateur station may not be used for matcrial compensation of any sort nor for broadcasting. Narrow bands of frequencies are allocated exclusively for use by amateur stations. Transmissions may be on any frequency within the assigned bands. All the frequencies may be used for c.w. telegraphy and some are availablo for radio-telephony by any amateur, while others are reserved for radiotelephone use by persons having at least a year's experience and who pass the exarnination for a Class A license. The input to the final stage of amateur stations is limited to 1,000 watts and on frequencies below 60 Mc . must be adequatelyfiltered direct current. Emissions must be free from spurious radiations. The licensee must provide for measurement of the transmitter frequency and establish a procedure for checking it regularly. A complete log of station operation must be maintained, with specified data. The station license also authorizes the holder to operate portable and portable-mobile stations on certain frequencies, subject to further regulations. An amateur station may be operated only by an amateur operator licensee, but any licensed amateur operator may operate any amateur station. All radio licensees are subject to penalties for violation of regulations.

Amaleur licenses are issued entirely froe of charge. They can be issued only to citizens but that is the only limitation, and they are given without regard to age or physical condition to anyone who successfully completes the examination. When you are able to copy 13 words per minute, have studied basic transmitter theory and are familiar with the law and amateur regulations, you are ready to give serious thought to securing the Government amatenr licenses which are issued you, after examination at a local district office, through FCC at Washington. A complete up-to-the-minute discussion of license requirements, and a study guide for those preparing for the examination, are to be found in an ARRL publication, The Ratio Amateur's License Manual, available from the American Radio Relay League, West Hartford 7, Conn., for 25¢, postpaid.

(1. The Amateur Bands

During 1946, FCC announced its final determination of postwar frequency allocations above 25 Mc., with certain alterations and additions to prewar amateur frequencies. Similarly the Commission announced proposed allocations below 25 Mc ., these still being under consideration as this is written in the late summer of 1946. The final recommendations for the region below 25 Mc . will then be subject to further consideration at the next international conference.

Meanwhile, as of our press date, the following are the postwar amateur bands:

The future of the prewar amateur band at 1.75 Mc. has not been cletermined as of this date but, at the lcast, it is expected that the amateur, along with other services, will be given nonexelusive rights in the frequencies $1750-1800 \mathrm{ke}$. for the maintenance of emergency networks and necessary tests and drills incident thereto. There is also a pending proposal for a new amateur band at 21 Mc . but this will not likely be made available until after the agreement of the next world conference.

It should be carefully noted that as of this writing the 420 Me. band has not yet been opened in its entirety to amateur use, being still partly in use by other services as a result of the war. Moreover, the portion of each band available for 'phone operation is customarily varied from time to time in accordance with changes in amateur operational habits. In such respects each amateur. should keep hinself currently informed by consulting QST or by writing ARRL for latest information.

Tundamentals

C 2-1 Fundamentals of a Radio System

The basis of radio communication is the transmission of electromagnetic waves through space. The production of suitable waves constitutes radio transmission, and their detection, or conversion at a distant point into the intelligence put into them at the originating point, is radio reception. There are several distinct processes involved in the complete chain. At the transmitting point, it is necessary first to generate power in such form that when it is applied to an appropriate radintor, called the antenna, it will be sent off into space in electromagnetic waves. The message to be conveyed must be superimposed on that power by suitable means, a process called modulation.

As the waves spread outward from the transmitter they rapidly becone weaker, so at the receiving point an antenna is again used to abstract as much energy as possible from them as they pass. The wave energy is transformed into an electric current which is then amplified, or increased in amplitude, to a suitable value. Then the modulation is changed back into the form it originally had at the transmitter. Thus the message becornes intelligible.

Since all these processes are performed by electrical means, a knowledge of the basic principles of electricity is necessary to understand them. These essential principles are the subject of the present chapter.

(1. 2-2 The Nature of Electricity

Electrons - All matter - solids, liquids and gases - is made up of fundamental units called molecules. The molecule, the smallest subdivision of a substance retaining all its characteristic properties, is constructed of atoms of the elements comprising the substance.

Atoins in turn are made up of particles, or charges, of electricity, and atoms differ from each other chiefly in the number and arrangement of these charges. The atom has a nucleus containing both "positive" and "negative" charges, with the positive predominating so that the nature of the nucleus is positive. The charges in the nucleus are closely bound together. Exterior to the nucleus are negative charges - electrons - some of which are not so closely bound and can be made to leave the vicinity of the nucleus without too much urging. These clectrons whirl around the nucleus like the planets around the sun, and their orbits are not random paths but geometricallyregular ones determined by the charges on the
nucleus and the number of electrons. Ordinarily the atom is electrically neutral, the outer negative clectrons balancing the positive nucleus, but when something disturbs this balance electrical activity becomes evident, and it is the study of what happens in this unbalanced condition that makes up electrical theory.

Electrons are exceedingly small particles so small that many billions of them must act together before measurable electrical effects are observed.

Insulators and conductors - Materials which will readily give up an electron are called conductors, while those in which all the electrons are firmly bound in the atom are called insulators. Most metals are good conductors, as are also acid or salt solutions. Among the insulators are such substances as wood, hard rubber, bakelite, quartz, glass, porcelain, textiles, and many other non-metallic materials.

Resistance - No substance is a perfect conductor - a "perfect" conductor would be one in which an electron could be detached from the atom without the expenditure of energy - and there is also no such thing as a perfect insulator. The measure of the difficulty in moving an electron by electrical means is called resistance. Good conductors have low resistance, good insulators very high resistance. Between the two are materials which are neither good conductors nor good insulators, but they are nonetheless useful since there is often need for intermediate values of resistance in electrical circuits.

Conduction - Under the influence of a suitable force - that is, an electric field electrons tend to move. If the substance is one in which electrons can be detached from atoms as explained above, these electrons will move through the substance. This is the process of conduction, and the moving electrons constitute an electric current. The intensity of the current depends upon the amount of force exerted on the electrons, and also upon the resistance of the material through which they are moving.

Strictly speaking, this description applies only to conduction through solid substances. However, conduction in liquids and gases, although different in detail, is similar in principle. These cases are treated later in chapter.

Circuits - A circuit is simply a complete path along which electrons ean transmit their charges. There will normally be a source of energy (a battery, for instanec) and a load or portion of the cireuit where the current is made to do work. There must be an unbroken path
through which the electrons can move, with the source of energy acting as an electron pump and sending them around the circuit. The circuit is said to be open when no charges can move, because of a break in the path. It is closed when no break exists - when switches are closed and all connections are made.

(1. 2-3 Stafic Electricity

The electric charge - Many materials that have a high resistance can be made to acquire a charge (surplus or deficiency of electrons) by mechanical means, such as friction. The familiar crackling when a hard-rubber comb is run through hair on a dry winter day is an example of an electric charge generated by friction. Objects can have either a surplus or a deficiency of electrons - a surphus of electrons is called a negative charge; a lack of them is called a positive charge. The kind of charge is called its polarity. A negatively charged object is frequently called a negative pole, while a positively charged object similarly is called a positive pole.

Attraction and repulsion - Unlike charges (one positive, one negative) exert an attraction on each other. This can be demonstrated by giving charges of opposite polarity to two very light, well-insulated conductors, such as bits of metal foil suspended from dry thread (Fig. 201). Pith balls covered with foil frequently are used in this experiment.

When the two charged objects are brought close together, it will be observed that they will be attracted to each other. If the charges are equal and the charged bodies are permitted to touch, the surplus electrons on the negatively charged object will transfer to the positively charged object (i.e., the one deficient in electrons) and the two charges will neutralize,

Fig. 201 - Attraction and repulsion of charged objects, as demonstrated by the faniliar pith-ball experiment.
leaving both bodies uncharged. If the charges are not equal, the weaker charge neutralizes an equal amount of the stronger when the two bodies touch, upon which the excess of the stronger charge distributes itself over both. Both bodies then have charges of the same polarity, and a force of repulsion is exercised between them. Consequently, the bits of foil tend to spring away from each other. Unlike charges attract, like charges repel.

Electrostatic field - From the foregoing it is evident that an electric charge can exert a force through the space surrounding the charged object. The region in which this force is exerted is considered to be pervaded by an
clectrostatic field, this concept of a field being adopted to explain the "action at a distance" of the charge. The field is pictured as consisting of lines of force originating on the charge and

Fin. 202 - I, ines of force from a charged object extend outward ratially. Athouph only two diniensions are shown, the field extends in all directions from the charge, and should be visualized in three dimensions.
spreading in all directions, finally terminating on other charges of opposite polarity. These other charges may be a very large distance away. The number of lines of force per unit area is, however, a measure of the intensity of the field.

The gencral picture of a charged object in isolated space is shown in Fig. 202. This is an idealized situation, since in practice the charged object could not be completely isolated. The presence of other charges, or simply of insulators or conductors, in the vicinity will greatly change the configuration of the field. The direction of the field, as indicated by the arrowheads, is away from a positively charged object; if the charge were negative, the direction would be toward the eharge.

It should be understood that the field picture as represented above is merely a convenient nethod of explaining observed effeets, and is not to be taken too literally. The electric force does not consist of separate lines like strings or rods; instead, it completely pervades the medium through which the force is exerted. With this understanding in mind, it is convenient to talk of lines of force and to measure the field intensity in terms of number of lines per unit area.

The intensity of the field dies away with distance from the eharged objeet in a manmer determined by its shape and the circumstances of its surroundings. In the case of an isolated charge at a point (an infinitesimally small object), the field strength is inversely proportional to the square of the distance. However, this relationship is not true in many other cases; in some important practical applications the field intensity is inversely proportional to the distance involved, and not to its square.

Electrostatic induction- If a pierc of conducting material is brought near a charged object, the field will exert a force on the electrons of the metal so that those free to move will doso. If the object is positively charged. as indicated in Fig. 203, the free electrons will move toward the end of the conductor nearest the charged boly, leaving a deficiency of electrons at the other end. Hence, one end of the

Électrical and Radio Jundamentals 15

conductor becomes negatively charged while the other end has an equal positive charge. The lines of force from the charged body terminate on the conductor, where sufficient electrons accumulate to provide an electric intensity equal and opposite to that of the field at that point. Because of this effect, the electrostatic field inside the conductor is completely neutralized by the induced charge; in other words, the field does not penetrate the conductor. In radio work this prinaiple provides the means by which electrostatic fields may be excluded from regions where they are not wanted.

Charges induecd in a conductor as shown in Fig. 203-A are held in existence by the field from the charged object. On taking the conductor out of the field the electrons will redistribute themselves so that the charges disappear. However, if the conductor is connected to the earth through a wire while under the influence of the field, as shown in Fig. 203-13, the induced positive charge will tend to move as far as possible from the source of the field (that is, electrons will flow from the earth to the conductor). If the grounding wire is then removed, the conductor will be left with an excess of electrons and will have acquired a "permanent" charge - permanent, that is, so long as the conductor is well enough insulated to prevent the charge from escaping to earth or to other objects. The polarity of the induced charge always is opposite to the polarity of the charge which set up the original field.

Energy in the electrostatic field- The expenditure of energy is necessary to place an electrical charge upon an object and thus establish an electrostatic field. Once the field is established and is constant, no further expenditure of energy is required. The energy supplied to establish the field is stored in the field; thus the field represents potential energy (that is, energy available for use). The potential energy is acquired in the same way that potential energy is given any object (a 10pound weight, for instance) when it is lifted against the gravitational pull of the earth. If

Fig. 203 - Electrostatic induction. The field from the positively cbarged body attracts clectrons, whieb accumulate to form a negative cbarye. The opposite end of the conductor consequently acquires a positive ebarge. This charge may be "drained off" to earth as shown at B.
the weight is allowed to drop, its potential energy is changed into the energy of motion. Similarly, if the electrostatic field is made to disappear its potential energy is transformed into a movement of electrons; in other words, into an electric current.

The potential energy of the lifted weight is measured by its weight and the distance it is lifted; that is, by the work done in lifting it. Similarly, the potential energy (called simply potential) of the electrostatic field at any point is measured by the work done in moving a charge of specified value to that point, against the repulsion of the field. In practice, absolute potential is of less interest than the difference of potential between two points in the field.

Potential difference - If two objects are charged differently, a potential difference exists between them. Potential difference is measured by an electrical unit called the volt. The greater the potential difference, the higher (numerically) the voltage. This voltage exerts an electrical pressure or force as explained above, and is often called clectromotive force or, simply, e.m.f. It is not necessary to have unlike charges in order to have a difference of potential; both, for instance, may be negative, so long as one charge is more intense than the other. From the viewpoint of the stronger charge, the weaker one appears to be positive in such a case, since it has a smaller number of excess electrons; in other words, its relative polarity is positive. The greater the potential difference, the more intense is the electrostatic field between the two charged objects.

Capacity - More work must be done in moving a given charge against the repulsion of a strong field than against a weak one; hence, potential is proportional to the strength of the field. In turn, field strength is proportional to the charge or quantity of electricity on the charged object, so that potential also is proportional to charge. By inserting a suitable constant, the proportionality can be changed to an equality:

$$
Q=C E
$$

where Q is the quantity of charge, E is the potential, and C is a constant depending upon the charged object (usually a conductor) and its surroundings and is called the capacity of the object. Capacity is the ratio of quantity of charge to the potential resulting from it, or

$$
C=\frac{Q}{E}
$$

When Q is in coulombs and E in volts, C is measured in farads. A conductor has a capacity of one farad when the addition of one coulomb to its charge raises its potential by one volt.

The farad is much too large a unit for practical purposes. In radio work, the microfarad (one millionth of a farad) and the micromicrofarad (one millionth of a microfarad) are the units most frequently used. They are abbreviated $\mu f d$. and $\mu \mu f d$., respectively.

The capacity of a conductor in air depends upon its size and shape. A given charge on a small conductor results in a more intense electrostatic field in its vicinity than the same charge on a larger conductor. This is because the charge distributes itself over the surface, hence its density (the quantity of electricity per unit area) is smaller on the larger conductor. Consequently, the potential of the larger conductor is smaller, for the same amount of charge. In other words, its capacity is greater because a greater charge is required to raise its potential by the same amount.

Condensers - If a grounded conductor, A (Fig. 204), is brought near a second conductor, B, which is charged, the former will acquire a charge by electrostatic induction. Since the charge on A is opposite in polarity to that on B, the field set up by the induced charge on A will oppose the original field set up by the charge on B, hence the potential of B will be lowered. Because of this, more charge must be placed on B to raise its potential to its original value; in other words, its capacity has been increased by the presence of the second conductor. The combination of the two conductors separated by a diclectric is ealled a condenser.

The capacity of a condenser depends upon the areas of the conductors, as before, and also becomes greater as the distance between the conductors is decreased, since, with a fixed amount of charge, the potential difference between them decreases as they are moved closer together.

Fig. 204 - The principle of the condenser.
If insulating or dielectric material other than air is inserted between the conductors, it is found that the potential difference is lowered still more - that is, there is a further increase in capacity. This lowering of the potential difference is considered to be the result of polarization of the dielectric. By this it is meant that the molecules of the substance tend to be distorted under the influence of the electrostatic field in such a way that the negative charges within the molecule are drawn toward the positively charged conductor, leaving the other end of the molecule with a positive charge facing the negatively charged conductor. Since the electrons are firmly bound in the atoms of the dielectric, there is no flow of current and the total charge on each atom is still zero, but there is a tendency toward separation which causes a reaction on the electrostatic field. The dielectrie of a charged condenser thus is under mechanical stress, and if the potential difference between the plates of the condenser is
great enough the dielectric may break down mechanically and electrically.

The ratio of the capacity of a condenser with a given dielectric material between its plates to the capacity of the same condenser with air as a dielectric is called the specific inductive capacity of the dielectric, or, probably more commonly, the dielectric constant. Strictly speaking, the comparison should be made to empty space (i.e., a vacuum) rather than to air, but the dielectric constant of air is so nearly that of a vacuum that the practical difference is negligible. A table of dielectric constants is given in Chapter Twenty.

Condensers have many uses in electrical and radio circuits, all based on their ability to store energy in the electric field when a potential difference or voltage is caused to exist between the plates - energy which later can be released to perform useful functions.

Fig. 205 - A simple condenser, consisting of two metal plates separated by dielectric material.

1. 2-4 The Electric Current

Conduction in metals - When a difference of potential is maintained between the ends of a metallic conductor, there is a continuous drift of electrons through the conductor toward the end having a positive potential (relative polarity positive). This electron drift constitutes an electric current through the metal (§2-2). The speed with which the electron movement is established is very nearly the speed of light ($300,000,000$ meters, or approximately 186,000 miles, per second), so that the current is said to travel at nearly the speed of light. By this it is meant that the time interval between the application of the electromotive force and the flow of current in all parts of a circuit, even one extending over hundreds of miles, is negligible. However, the individual electrons do not move at anything approaching such a speed. The situation is similar to that existing when a mechanical force is transmitted by means of a rigid rod. A force applied to one end of the rod is transmitted practically instantaneously to the other end, even though the rod itself moves relatively slowly or not at all.

The magnitude of the electric current is the rate at which electricity is moved past a point in the circuit. If the rate is constant, then the current is equal to the quantity of electricity moved past a given point in some selected time interval. That is,

$$
I=\frac{Q}{t}
$$

where I is the intensity or magnitude of the current, Q is the quantity of electricity, and t is the time. If Q is in coulombs and t in seconds, the unit for I is called the ampere. One ampere of current is equal to one coulomb of electricity moving or "flowing" past a given point in a circuit in one second.

The currents used by different electrical devices vary greatly in magnitude. The current which flows in an ordinary 60 -watt lamp, for instance, is about one-half ampere, the current in an electric iron is about 5 amperes, and that in a radio tube may be as low as 0.001 ampere.

When a current flows through a metallic conductor there is no visible or chemical effect on the conductor. The only physical effect is the heat developed ($\S 2-2$) as the result of energy loss in the conductor. Under normal conditions the rate at which heat is generated and that at which it is radiated by the conductor will quickly reach equilibrium. However, if the heat is developed at a more rapid rate than it can be radiated, the temperature will continue to rise until the conductor burns or melts.
Experimental measurements have shown that the current which flows in a given metallic conductor is directly proportional to the applied e.m.f., so long as the temperature of the conductor is held constant. There is no e.m.f. so small but that some current will flow as a result of its application to a metallic conductor.

Fig. 206 - Illustrating conduction through a gas at low pressure. Positive ions are attracted to the negative electrode, while elcetrons are attracted to the positive electrode. 'l'his takes place only after the gas is ionized.

Gaseous conduction - In any gas or mixture of gases (such as air, for example) there are always some free electrons - that is, electrons not attached to an atom - and also some atoms lacking an electron. Thus there are both positively and negatively charged particles in the gas, as well as many neutral atoms. An atom lacking an electron is called a positive ion, while the free elcctron is called a negative ion. The term ion is, in fact, applied to any elemental particle which has an electric charge.
If the gas is in an electric field, the free electrons will be attracted toward the source of positive potential and the positive ions will be attracted toward the source of negative potential. If the gas is at atmospheric pressure neither particle can travel very far before meeting an ion of the opposite kind, when the two combine to form a neutral atom. Since a neutral atom is not affected by the electric field, there is no flow of current through the gas.

However, if the gas is enclosed in a glass container in which two separate metal pieces called electrodes are sealed, and the gas pressure is then reduced by pumping out most of the gas, a different set of conditions results. At low pressure there is a comparatively large distance between each atom, and when an electric field is established by applying a difference of potential to the electrodes the ions can travel a considerable distance before meeting another ion or atom. The farther the ion travels the greater the velocity it acquires, since the effect of the field is to accelerate its motion. If the field is strong enough the ions will acquire such velocity that when one happens to collide with a neutral atom the force of the collision will knock an electron out of the atom, so that this atom also becomes ionized. The process is cumulative, and the freed electrons are attracted to the positive electrode while the positive ions are attracted to the negative electrode. This movement of charged particles constitutes an electric current through the gas.
Since an ion must acquire a certain velocity before it can knock an electron out of a neutral atom, a definite field strength is required before conduction can take place in a gas. That is, a certain value of potential difference, called the ionizing potential, must be applied to the electrodes. If less voltage is applied, the gas does not ionize and the current is negligible. On the other hand, once the gas is ionized an increase in potential does not have much effect on the current, since the ions already have sufficient velocity to maintain the ionization. The ionizing potential required depends upon the kind of gas and the pressure. Ionization is usually accompanied by a colored glow, different gases having diff crent characteristic colors.
Current flow in liquids - A very large number of chemical compounds have the peculiar characteristic that, when they are put into solution, the component parts become ionized. For example, common table salt (sodium chloride), each molecule of which is made up of one atom of sodium and one of chlorine, will, when put into water, break down into a sodium ion (positive, with one electron deficient) and a chlorine ion (negative, with one excess electron). This can only occur so long as the salt is in solution - take away the

Fig. 207 - Electrolytic conduction. When an e.m.f. is applied to the electrodes, negative ions are attracted to the positively charged plate and positive ions to the negatively eharged plate. The hattery, which is the source of the e.m.f., is indicated by its customary symbol.
water and the ions are recombined into the neutral sodium chloride. This spontaneous dissociation in solution is another form of ionization. If two wires with a difference of potential between them are placed in the solution, the negative wire will attract the positive sodium ions while the positive wire will attract the negative ehlorine ions and an electric current will flow through the solution. When the ions reach the wires the electron surplus or deficiency will be remedied, and a neutral atom will be formed.

In this process, the water is decomposed into its gaseous constituents, hydrogen and oxygen. The energy used up in decomposing the water and in moving the ions is supplied by the source of potential difference. The energy used in decomposing the water is equivalent to an opposing e.m.f., of the orrler of a volt or tivo. If this constant "back voltage" is subtracted from the applied voltage, it is found that the current flowing through a given solution, or electrolyte, is proportional to the difference between the two voltages.

Current flow in racuum - If a suitable metallic conductor is heated to a high temperature in a vacuum, e.ectrons will be emitted from the surface. The electrons are freed from this filament or cathode because it has been

Fig. 208 - Conduction by thermionic emission in a vacuum tube. One battery is used only to heat the filament to a temperature where it will emit electrons. The other battery places a potential on the plate which is positive with respect to the filament, and as a result the electrons are attracted to the plate. The electron flow from filament to plate completes the circuit.
heated to a temperature that gives them sufficient energy of motion to allow them to break away from the surface. The process is called thermionic electron emission. Now, if a metal plate is placed in the vacuum and given a positive charge with respect to the cathode, this plate or anode will attract a number of the electrons that surround the cathode. The passage of the electrons from cathode to anode constitutes an electric current. All thermionic vacuum tubes depend for their operation on the emission of electrons from a hot cathode.

Since the electrons emitted from the hot cathode are negatively charged, it is cvident that they will be attracted to the plate only when the latter is at a positive potential with respect to the cathode. If the plate is negatively charged with respect to the cathode the electrons will be repelled back to the cathode, hence no current will flow through the vacuum. Consequently, a thermionic vacuum tube conducts current in one direction only. When the plate is positive, it is found that (if the poten-
tial is not too large) the current increases with an increase in potential difference between the plate and cathode. However, the relationship between current and applied voltage is not a simple one. If the voltage is made large enough all the electrons emitted by the cathode will be drawn to the plate, and a further increase in voltage therefore cannot cause a further increase in current. The nuinber of electrons emitted by the cathode depends npon the temperature of the cathode and the material of which it is constructed.
Direction of current flow - Use was being made of electricity for a long time before its electronic nature was understood. While it is now clear that current flow is a drift of negative electrical charges or electrons toward a source of positive potential, in the era preceding the electron theory it was assumed that the current flowed from the point of higher positive potential to a point of lower (i.e., less positive or more negative) potential. While this assumption turned out to be wholly wrong, it is still customary to speak of current as flowing "from positive to negative" in many applications. The practice often causes confusion, but this distinction between "current" flow and "electron" flow often must be taken into account. If electron flow is sperifically mentioned there can be, of course, no doubt as to the meaning; but when the direction of current flow is specified, it may be taken, by convention, as being opposite to the dircetion of electron movement.

Primary cells - If two electrodes of dissimilar metals are immersed in an electrolyte, it is found that a small difference of potential exists between the electrodes. Such a combination is called a cell. If the two electrodes are conneeted together by a conductor external to the cell, an electric current will flow between them. In such a cell, chemical energy is converted into electrical energy. The difference of potential arises as a result of the fact that material from one or both of the electrodes goes into solution in the electrolyte, and in the process ions are formed in the vicinity of the electrodes. The electrodes acquire charges because of the electric field associated with the charged ions. The difference of potential between the clectrodes is principally a function of the metals used, and is more or less independent of the kind of electrolyte or the size of the cell.

When current is supplied to an external circuit, two principal effects occur within the cell. The negative electrode (negative as viewed from outside the cell) loses weight as its material is used up in furnishing energy, and hydrogen bubbles form on the positive electrode. Since the gas bubbles are non-conducting, their accumulation tends to reduce the effective area of the positive electrode, and conscquently reduces the current. The effect is cumulative, and eventually the electrode will be completely covered and no further eurrent can flow. This effeet is called polarization. If the bubbles are

Electrical and Radio Fundamentals 19

removed, or prevented from forming by chemical means, polarization is reduced and current can flow as long as there is material in the negative electrode to furnish the energy. A chemical which prevents the formation of hydrogen bubbles in a cell is called a depolarizer.

In addition to polarization effects, a cell has a certain amount of internal resistance because of the resistance of the electrodes and the electrolyte and the contart resistance between the electrodes and electrolyte. The internal resistance depends upon the materials used and the size and electrode spacing of the cell. Large cells with the electrodes close together will have smaller internal resistance than small cells made of the same materials.

A collection of cells connected together is called a battery. The term battery also is applied (although incorrectly) to a single cell.

Dry cells - The most familiar form of primary cell is the dry cell. Like the elementary type of cell just described, it has a liquid electrolyte, but the liquid is mixed with other materials to form a paste. The cell therefore can be used in any position and handled as though it actually were dry.

Fig. 209 - Construction of a dry cell.
The construction of an ordinary dry cell is shown in Fig. 209. The container is the negative electrode and is made of zinc. Next to it is a section of blotting material saturated with the electrolyte, a solution of sal ammoniac. The positive electrode is a carbon rod, and the space between it and the blotting paper is filled with a mixture of carbon, nuanganese dioxide (the depolarizer) and the electrolyte. The top is filled with sealing compound to prevent evaporation, since the cell will not work when the electrolyte drys out. The e.m.f. of a dry cell is about 1.5 volts.

Dry cells are made in various sizes, depending upon the current which they will be called upon to furnish. The construction frequently varies from that shown in Fig. 209, although in general the basic materials are the same in all dry cells. Batteries of small cells are assembled together as a unit for furnishing plate current for the vacuum tubes used in portable receiving sets; such " B " batteries, as they are called, can supply a current of a few hundredths of an ampere continnously. Larger cells, such as the common "No. 6" cell, can deliver currents of a fraction of an ampere con-
tinuously, or currents of several amperes for very short periods of time. The total a mount of energy delivered by a dry cell is larger when the cell is used only intermittently, as compared with continuous use. The cell will deteriorate even without use, and should be put into service within a year or so from the time it is manufactured. The period during which it is usable (without having been put in service) is known as the "shelf life" of the cell or battery.

Secondary cells - The types of cells just described are known as primary cells, because the electrical energy is obtained directly from chemical energy. In some types of cells the chemical actions are reversible; that is, forcing a current through the cell, in the opposite direction to the current flow when the cell is delivering electrical energy, causes just the reverse chemical action. This tends to restore the cell to its original condition, and electrical energy is transformed into chemical energy. The process is called charging the cell. A cell which must first be charged before it can deliver electrical energy is called a secondary cell.

A sinuple form of secondary cell can be made by immersing two lead electrodes in a dilute solution of sulphuric acid. If a current is forced through the cell, the surface of the electrode which is connected to the positive terminal of the charging e.m.f. will be changed to lead peroxide and the surface of the electrode connected to the negative terminal will be changed to spongy lead. After a period of charging the charging source can be disconnected, and the cell will be found to have an e.m.f. of about 2.1 volts. It will furnish a small current to an external circuit for a period of time. This discharge of electrical energy is accompanied by chemical action which forms lead sulphate on both electrodes. When the lead peroxide and spongy lead are converted to lead sulphate there is no longer a difference of potential, since both electrodes are now the same material, and the cell is completely discharged.

The lead storage battery - The most common form of secondary cell is the lead storage cell. The common storage battery for automobile starting consists of three such cells connected together electrically and ussembled in a single container. The principle of operation is similar to that just described, but the construction of the cell is considerably more complicated. To obtain large currents it is necessary to use electrodes having a great deal of surface area and to put them as close together as possible. The electrodes are made in the form of rectangular flat plates, consisting of a latticework or grid of lead or an alloy of lead. The interstices of the latticework are filled with a paste of lead oxide. The electrolyte is a solution of sulphuric acid in water. When the cell is charged, the lead oxide in the positive plate is converted to lead peroxide and that in the negative plate to spongy lead. To obtain high current capacity, a cell consists of a number of positive plates, all connected together,
and a number of negative plates likewise connected together. They are arranged as shown in Fig. 210, with alternate negative and positive plates kept fron touching by means of thin separators of insulating material, generally treated wood or perforated hard rubber. The separators preferably should be porous, so that the electrolyte can pass through them freely; thus they do not impede the passage of current from one plate to the next. There is always one extra negative plate in such an assembly, because the active material in the positive plate expands when the cell is being charged and if all the expansion took place on one side the plate would be distorted out of shape.

The e.m.f. of a fully charged storage cell is about 2.1 volts. When the e.m.f. drops to about 1.75 volts on discharge, the cell is considered to be completely discharged. Discharge beyond this limit may result in the formation of so much lead sulphate on the plates that the cell cannot be recharged, since lead sulphate is an insulator. During the charging process water in the electrolyte is used up, with the result that the sulphuric acid solution becomes more eoncentrated. The higher concentration inereases the specific gravity of the solution, so that the speeifie grivity may be used to indicate the state of the battery with respect to charge. In the ordinary lead storage cell the solution is such that a specifie gravity of 1.2 N 5 to 1.300 indicates a fully charged cell, while a discharged cell is indicated by a specific gravity of 1.150 to 1.175 . The specifie gravity can be measured by means of a hydrometer, shown in Fig. 211. For use with portable batteries, the hydrometer usually consists of a glass tube fitted with a syringe so that some of the electrolyte can be drawn from the cell into the tube. The hydrometer float is a smaller glass tube, air-tight and partly filled with shot to make it sink into the solution. The lower the specific gravity of the solution, the farther the float sinks into it. A graduated seale on the float shows the specific gravity directly, being read at the level of the solution.

Storage cells are rated in amperc-hour capacity, based on the number of amperes which ean be furnished continuously for a stated period of time. For example, the cell may have a rating of 100 ampere-hours at an 8 -hour discharge

Fig. 210 - Details of typical lead storage-battery construction.
rate. This means that the cell will deliver 100/8 or 12.5 amperes continuously for 8 hours after having been fully charged. The ampere-hour capacity of a cell will vary with the discharge rate, becoming smaller as the rated time of discharge is made shorter. It also depends upon the size of the plates and their number. In automobile-type batteries the dimensions of the plates are fairly well standardized, so that the ampere-hour capacity is chiefly determined by the number of plates in a cell. It is, therefore, common practice to speak of "11-plate," "15-plate," etc., batteries as an indication of the battery capacity.

Lead storage batteries must be kept fully charged if they are to stay in good condition. If a discharged battery is left standing idle,

Fig. 211 - The hydrometer, a device with a calibrated scale for measuring the specific gravity of the electrolyte, used to determine the state of cliarge of a lead storage battery.
lead sulphate will form on the plates and eventually the battery will be useless. When the battery is being charged, hydrogen bubbles are given off by the electrolyte which, in bursting at the surface, throw out fine drops of the electrolyte. This is called "gassing." The sulphuric-acid solution spray from gassing will attack many materials, and consequently care must be used to see that it is not permitted to fall on near-by objects. It should also be wiped off the battery itself.

A lead battery may be charged at its nominal discharge rate; i.e., a 100-ampere-hour battery, 8-hour rating, can be charged at $100 / 8$, or 12.5 amperes. The charging voltage required is slightly more than the output voltage of the cell. The preferred nethod is to charge, at the full rate until the cells start to "gas" freely, after which the charging rate should be dropped to about half its initial value until the battery is fully charged, as indicated by the hydrometer reading. Alternatively, the battery may be charged from a constant-potential source (about 2.3 volts per cell), when the rise of terminal voltage of the battery as it accumulates a eharge will automatically "taper" the charging rate.

The solution in a lead storage battery will freeze at a temperature of about zero degrees Fahrenheit when the battery is discharged, but a fully chargod battery will not freeze until the temperature reaches about 90 degrees below zero. Keeping the battery

Fif. 212 - Series, parallel, and series-parallel connection of cells. Series conncetion increases the total voltape without changing current caparity; parallel connertion increases current capacity without increasing voltage.
charged therofore is the best wily to insure against damage by freozing.

Cells in. series and parallel - For proper operation, many electrical devices require higher voltage or current than can be obtained from a single cell. If greater voltaige is needed, cells may be connected in serics, as shown in Fig. $212-A$. The negative terminal of one cell is connecter to the positive terminal of the next, so that the total e.m.f. of the battery is equal to the sum of the e.m.f.s of the individual cells. For radio purposes, batteries of 45 and 90 volts or more are built up in this way from 1.5 -volt dry cells. An automobile storage battery consists of three lead storage cells in series, totalling 6.3 volts - or, in round figures, 6 volts. The eurrent which may be taken safely from a battery composed of cells in series is the same as that which may be taken safely from one cell alone; since the sume current flows throngh all cells, the eurrent capacity is unehanged.

When the device or load to whith the battery is to be connected requires more current than can be taken safely from a single cell, the cells may be connected in parallel, as shown in Fig. 212-B. In this case the total current is the sum of the eurrents contributed by the individual cells, each contributing the same amount if the cells are all alike. When cells are connected in parallel it is essential that the e.m.f.s all be the same, since if one cell generated a larger voltage than the others it would force eurrent through the other cells in the reverse direction and thus would take most, if not all, of the load. Also, if one cell has a lower terminal voltage than the others it will take current from the others rather than carrying its fair share.

Cells may be connected in series-parallel, as in Fig. 212-C, to increase both the voltage and the current-carrying capacity of the battery.

© 2-5 Electromagnetism

The magnetic field - Everyone is familiar with the fact that a bar or horseshoe magnet will attract small pieces of iron. Just as in the case of electrostatic attraction ($\$ 2-3$) the concept of a field, in this case a field of magnetic forco, is adopted to explain the magnetic action. The field is visualized as being made up of lines of magnetic force, the number of which per unit area determines the field strength. As in the case of the electrostatic field, the lines of force do not have physical existence but simply represent a eonvenient way of describing the properties of the force.
Magnetic attraction and repulsion - The forces exerted by the magnetic field are analogous to electrostatic forces. Corresponding to positive and negative electric charges, it is found that there are two kinds of magnetic poles. Instead of being called "positive" and "negative," however, the magnetic poles are called "north" (N) and "south" (S) poles. These names arise from the fact that, when a magnetized steel rod is freely suspended, it will turn into such a position that one end points toward the north. The end which points north is called the "north-seeking," or simply the "north," pole.

Unlike electric lines of force, which termi. nate on charges of opposite polarity ($\$ 2-3$). magnetic lines of force are closed upon themselves. This is illustrated by the field about a bar magnet, as shown in Fig. 213-A. The lines extend through the magnet, the direction being taken from S to N inside the magnet and from N to S outside the magnet. If similar poles of two magnets are brought near each other, there is a force of repulsion between them, while dissimilar poles are attracted when brought elose together. As in the case of electric charges, like poles repel, unlike poles attract.

Fig. 21.3 - (A) The field about a bar mapnet. The magnetic lines of force are continuous, part of the path being inside the magnet and part outside. (B) Cutting a mapnet produces two magnets, each complete with \mathbf{N} and S poles. With the magnets in the positions shown, some of the lines of force are common to botb magnets.

If a bar magnet is cut in half, as in Fig. 213-B, it is found that the cut ends also are poles, of opposite kind to the original poles on the same piece. Such cutting can be continued indefinitely, and, no matter how small the pieces are made, there are always two opposite poles associated with each piece. In other words, a single magnetic pole cannot exist alone; it must always be associated with a pole of the opposite kind.
To explain this property of a magnet, it is considered that each molecule of a magnetic substance is itself a miniature magnet. If the material is not magnetized, the molecules are in random positions and the total magnetic effect is zero since there are just as many molecules tending to set up a magnetic field in one direction as there are others tending to set up a field in the opposite direction. When the substance becomes magnetized, however, the molecules are aligned so that most or all of the N poles of the molecular magncts are turned toward one end of the material while the S poles point toward the other end.
Magnetic induction - When an unmagnetized piere of iron is brought into the field of a magnet, its molecules tend to align themselves as described in the preceding paragraph. If one end of the iron is near the N pole of the magnet, the S poles of the molecules will turn toward that end and an S pole is said to be induced in the iron. An N pole will appear at the opposite end. Because of the attraction between opposite poles, the iron will be drawn toward the magnet. Since the iron has become a magnet under the influence of the field, it also possesses the property of attracting other pieces of iron.
When the magnetic field is removed, the molecules may or may not resume their random positions. If the material is soft iron the marnetism disappears quite rapidly when the field is removed, but in some types of steel the molecules are slow to resume their random positions and such materials will retain magnetism for a long time. A magnet which loses its magnetism quickly when there is no external magnetizing force is called a temporary magnet, while one which retains its magnetism for a long time is called a permanent magnet. The tendency to retain magnetism is called retentivity. The process of destroying magnetism can be hastened by heating, which increases the motion of the molecules within the substance, as well as by mechanical shock, which also tends to disturb the molecular alignment.
Electric current and the magnetic field Experiment shows that a moving electron generates a magnetic field of exactly the same nature as that existing about a permanent magnet. Since a moving electron, or group of electrons moving together, constitutes an electric current, it follows that the flow of current is accompanied by the creation of a magnetic field. When the conductor is a wire the magnetic lines of force are in the form of concentric

Fig. 214 - Whenever electric current passes through a wire, magnetic lines of force are set up, in the form of concentric circles, at right angles to the wire, and a magnetic field is said to exist around the wire. The direction of this field is controlled by the direction of current flow, and can be traced by means of a small compass.
circles around it and lie in planes at right angles to it, as shown in Fig. 214. The direction of this field is controlled by the direction of current flow.

There is an easily remembered method for finding the relative directions of the current and of the magnetic field it sets up. Imagine the fingers of the right hand curled about the wire, with the thumb extended along the wire in the direction of current flow (the conventional direction, from positive to negative, not the direction of electron movement). Then the fingers will be found to point in the direction of the magnetic field; that is, from N to S.

Magnetomotive force - The force which causes the magnetic field is called magnetomotive force, abbreviated m.m.f. It corresponds to electromotive force or e.m.f. in the electric circuit. The greater the magnetomotive force, the stronger the magnetic field; that is, the larger the number of magnetic lines per unit area. Magnetomotive force is proportional to the current flowing. When the wire carrying the current is formed into a coil so that the magnetic flux will be concentrated instead of being spread over a large area, the ni.m.f. also is proportional to the number of turns in the coil. Consequently magnetomotive force can be expresscd in terms of the product of current and turns, and the ampere-turn, as this product is called, is in fact the common unit of magnetomotive force. The same magnetizing effect can be secured with a great many turns and a weak current or with a few turns and a strong current. For example, if 10 amperes flow in one turn of wire, the magnctizing effect is 10 am-perc-turns. If there is one ampere flowing in 10 turns of wire, the magnetomotive force also is 10 ampereturns.
The magnetic circuit-Since magnetic lines of force are always closed upon themselves, it is possible to draw an analogy between the magnetic circuit and the ordinary electrical circuit. The electrical circuit also must be closed so that a complete path is provided around which the electrons or current can flow. However, there is no insulator for the magnetic field, so that the magnetic circuit is always complete even though no magnetic material (such as iron) may be present.

The number of lines of magnetic force, or $f u x$, is equivalent in the magnetic circuit to current in the electric circuit. However, it is

Electrical and Radio Fundamentals 23

usual practice to express the strength of the field in terms of the number of lines per unit area, or flux density. The unit of flux density is the gauss, which is equal to one line per square centimeter, but the terms "lines per square centimeter" or "lines per square inch" are commonly used instead.

Corresponding to resistance in the electric circuit is the tendency to obstruct the passage of magnetic flux, which is called reluctance. The reluctance of good magnetic materials, such as iron and steel, is quite low.

The permcability of a material is the ratio of the flux which would be set up in a closed magnetie path or circuit of the material to the flux that would exist in a path of the same dimensions in air, the same m.m.f. being used in both cases. The permeability of air is assigned the value 1 . The perneability of steels of various types varies from about 50 to several thousand, depending upon the materials alloyed with the steel. Very high permeabilities are attaned in certain special magnetic materials, such is "permalloy," which is an alloy of iron and nickel.

The permeability of magnetic materials depends upon the density of magnetic flux in the material. At very high flux densities the permeability is less than its value at low or moderate flux densities. This is because the flux in magnetic materials is proportional to the applied m.m.f. only over a limited range. As the m.m.f. increases more and more of the molecular magnets within the material become aligned, until eventually a point is reached where a very great increase in m.m.f. is required to cause a relatively small increase in flux. This is called magnetic saturation. In this region of saturation the permeability decreases, since the ratio between the number of lines in the material and the number in air, for the same m.m.f., is smaller than when the flux density is below the saturation point.

Energy in the magnetic field-Like the electrostatic field (§2-3), the magnetic field represents potential energy. Consequently the expenditure of energy is necessary to set up a magnetic field, but onee the field has been established and remains constant no further energy is consumed in maintaining it. If by some means the field is caused to disappear, the stored-up magnetic energy is converted to energy in some other form. In other words the energy undergoes a transformation when the magnetic field is changing, being stored in the field when the field strength is increasing and being released from the field when the field strength is decreasing.

When a magnetic field is set up by a current flowing in a wire or coil, a certain amount of energy is used initially in bringing the field into existence. Thereafter the current must continue to flow, if the field is to be maintained at steady strength, but no expenditure of energy is required for this purpose. (There will be a steady energy loss in the circuit, but only
because of the resistance of the wire.) If the current stops the energy of the field is transformed back into electrical energy, tending to keep the current flowing. The amount of energy stored and subsequently released depends upon the strength of the field, which in turn depends upon the intensity of the eurrent and the circuit conditions; i.e., it depends upon the relationship between field strength and current in the circuit.

Induced voltage - Since a magnetic field is set up by an electric current, it is not surprising to find that, in turn, a magnetic field can cause a current to flow in a elosed electrical circuit. That is, an e.m.f. can be induced in a wire in a magnetic field. However, since a change in the field is required for energy transformation, an e.m.f. will be induced only when there is a change in the field with respect to the wire.

This change may be an actual change in the field strength or may be caused by relative motion of the field and wire; e.g., a moving field and a stationary wire, or a moving wire and a stationary field. It is convenient to consider this induced e.m.f. as resulting from the wire's "eutting through" the lines of force of the field. The strength of the e.in.f. so induced is proportional to the rate of eutting of the lines of force.

If the conductor is moving parallel with the lines of force in a field, no voltage is induced since no lines are cut. Maximum eutting results when the conductor moves through the field in such a way that both its longer di= mension and direction of motion are perpendicular to the lines of force, as shown in Fig. 215. When the conductor is stationary and the field strength varies, the induced voltage results from the alternate increase and decrease in the number of lines of force cutting the wire as the m.m.f. varies in intensity.

Fig. 215 - Showing bow e.m.f.isinduced in a conductor moving through a stationary magnetic field, cutting the lines of force. Conversely, a current sent tbrough the coinductor in the same direction by means of an external e.m.f. will eause the conductor to move downward.

Lenz's Law - When a voltage is induced and current flows in a conductor moving in a magnetic field, energy of motion is transforined into electrical energy. That is, mechanical work is done in moving the conductor when an induced eurrent flows in it. If this were not so the induced voltage would be creating electrical energy, in violation of the fundamental principle of physies that energy can neither be created nor destroyed but only transformed.

It is found, therefore, that the flow of current creates an opposing magnetic force tending to stop the movement of the wire. The statement of this principle is known as Lenz's Law: "In all cases of electromagnetic induction, the induced currents have such a direction that their reaction tends to stop the motion which produces them."

Motor principle - The fact that current flowing in a conductor moving through a magnetic field tends to oppose the motion indicates that current sent through a stationary conductor in a magnetic field would tend to set the conductor in motion. Such is the case. If moving the conductor through the field in the direction indicated in Fig. 215 causes a current to fow as shown, then, if the conductor is stationary and an e.m.f. is applied to send a current through the concluctor in the same direction, the conductor will tend to move across the field in the opposite direction.

This principle is used in the electric motor. The same rotating machine frequently may be used either as a generator or motor; as a generator it is turned mechanically to cause an induced e.m.f., and as a motor electric current through it eanses mechanical motion.

Self-induction - When an e.m.f. is applied to a wire or coil, current begins to flow and a magnetic field is created. Just before closing the circuit there was no field; just after closing it the field exists. Consecuently, at the instant of closing the rircuit the rate of change of the field is very rapid. Since the wire or coil carrying the current is a conductor in a changing field, an e.m.f. will be induced in the wire. This induced voltage is the e.m.f. of self-induction, so called because it results from the current flowing in the wire itself.

By the principle of conservation of energy (and Lenz's Law), the polarity of the induced voltage inust be such as to oppose the applied voltage; that is, the induced voltage must tend to send current through the circuit in the direction opposite to that of the current caused by the applied voltage. At the instant of closing the circuit the field changes at such a rate that the induced voltage equals the applied voltage (it cannot exceed the applied voltage, because

Fig. 216 - When the conducting wire is coiled, the individual magnetic fields of each turn are in such a direction as to produce a field similar to that of a bar magnet. The schematic symbols for inductance are shown at the right. The symbol at the left in the top row indicates an iron-core inductance; at the right, air eore. Variable inductances are shown in the hot tom row.
then it would be supplying energy to the source of applied e.in.f.), but after a short interval the rate of change of the field no longer is so rapid and the induced voltage decreases. Thus the current flowing is very small at first when the applied and induced e.m.f.s are about equal, but rises as the induced voltage becomes smaller. The process is cumulative, the current eventually reaching a final value determined only by the resistance in the cirenit.

In forcing current through the cireuit against the pressure of the induced or "back" voltaye, work is done. The total amount of work done during the time that the current is rising to its final value is equal to the amount of energy stored in the magnetic field, neglecting heat losses in the wire itself. As explaned before, no further energy is put into the field once the current becomes steady. However, if the circuit is opened and current flow cansed by the applied e.m.f. ceases, the field collapses. The rate of change of field strength is very great in this case, and a voltage is again intuced in the coil or wirc. This voltage causes a current flow in the same direction as that of the applied e.m.f., since energy is now being restored to the circuit. The energy usually is dissipated in the spark which occurs when such a circuit is opened. Since the field collapses very rapidly when the switch is opened, the induced e.m.f. at such a time can be cxtremely high.

Inductance - As explained above, the strength of the self-induced voltage is proportional to the rate of change of the fiehl. However, it is also apparent from the foregoing that the voltage also depends upon the properties of the circuit, since, if a number of similar conductors are in the same varying fied, the sume voltage will be induced in each. By rombining the conductors properly, the total induced voltage in such a cinse will be the sum of the voltages induced in each wire. Also, the rate of change of field strength depends upon the strength of the field set up by a given amount of current flowing in the wire or coil, and this in turn depends upon the ampere-turns, permeability, length and cross-section of the magnetic path, etc.

For a given eircuit, however, the field strength will be determined by the current, and the rate of change of the field consequently will be determined by the rate of change of current. Hence, it is possible to rroup all of these other factors into one quantity, a property of the circuit. This property is called inductance. When this is done, the equation giving the value of the induced voltage becomes:

> Induced voltage
> $\quad=L \times$ rate of change of current
where L is the value of indutance in the circuit.

Inductance is a property associated with all circuits, although in many cases it may be so small in comparison to other circuit properties (such as resistance) that no error results from neglecting it. The inductance of a straight wire

Electrical and Radio Jundamentals 25

increases with the length of the wire and decleases with increasing wire diameter. The inductance of such a wire is small, however. For a given length of wire, mueh greater inductance can be secured by winding the wire into a coil so that the total flux from the wire is concentrated into a small space and the flux density correspondingly increased. The unit of inductance is the henry. A circuit or coil has an inductance of one henry if an e.m.f. of one volt is induced when the corrent changes at the rate of one ampere per second. In radio work it is frequently convenient to use smaller units; those commonly used are the millihenry (one thousandtla of a henry) and the microhenry (one millionth of a henry).

It will be recognized that the relationship between inductance and the magnetic field is similar to that between capacity and the electrostatic field. The greater the inductance, the greater the amount of energy stored in the magnetic field for a given amount of current; the greater the capacity, the greater the momount of energy stored in the electrostatic field for a given voltage.

The inductance of a coil of wire depends upon the number of turns, the cross-sectional dimensions of the eoil, and the length of the winding. It also clepends upon the permeability of the material on which the coil is wound, or core. Formulas for computing the inductance of air-core eoils of the type commonly used in radio work, are given in Chapter Twenty.

Mutual indhctance - If two coils are arranged with their axes coinciding, as shown in Fig. 217, a current sent through Coil 1 will cause a magnetic field which cuts Coil 2. Consequently, an e.m.f. will be induced in Coil 2 whenever the field strength is changing. This induced e.n.f. is similar to the e.m.f. of selfinduction; that is,

> Induced e.m.f.
> $\quad=M \times$ rate of change of current
where M is a quantity called the mutwalinductance of the two coils. The mutual inductance may be large or small, depending upon the self-inductances of the coils and the proportion of the total flux set up by one coil which cuts the turns of the other coil. If all the flux set up by one coil cuts all the turns of the other coil the mutual inductince has its maximum possible value, while if only a small part of the flux set up by one coil cuts the turns of the other the mutual inductance may be relatively small. Two coils having mutual inductance are said to be coupled.

The degree of coupling expresses the ratio of artual mutual inductance to the maximum possible value. Coils which have nearly the maximum possible mutual inductance are said to be closely, or tightly, coupled. while if the mutual inductance is relatively small the coils are said to be loosely coupled. The degree of coupling depends upon the physical spacing between the coils and how they are placed with

Fig. 217 - Mutual inductance. When the switch, S, is closed current flows through coil No. I, setting up a maynetic field which induces an e.m.f. in the turns of coil No. 2.

respect to each other. Maximum coupling exists when they have a common axis, as shown in Fig. 217, and are as close together as possible.

If two coils having mutual indurtance are connected in the same cireuit, the directions of the respective magnetic fields may be such as to add or oppose. In the former case the mutual incluctance is said to be "positive"; in the latter case, "negative" Positive inutual induetance in such a circuit means that the total incluctance is greater than the sirm of the two individual indurtances, while neyative inductance means that the total inductance is less than the sum of the two individual inductaners. The mutual inductance maty be made either positive or negative simply by reversing the comections to one of the coils.

(1) 2-6 Fundamental Relafions

Direct current - A current which always flows in the same clirection through a circuit is called a direct current, frequently abbreviated d.c. Current flow eansed hy batteries, for example, is direct current One terminal of each cell is always positive and the other always negative, hence electrons are attracted only in the one direction around the circuit. To make the current change direction, the eonnections to the battery terminals nust be reversed.

Work, enerty and pourer - When a quantity of electricity is moved from a point of one potential to a point at a second potential, work is donc. The work clone is the product of the quantity of electricity and the difference of potential through which it is moved; that is,

$$
W=Q E
$$

In the practical system of units, with Q in coulombs and E in volts, the unit of work is called the joule. Energy, which is the capacity for cloing work, is measured in the same units.

Since $I=Q / t$ when the current is constant (§2-1), $Q=I t$. Substituting for Q in the equation above gives

$$
W=E I t
$$

where E is in volts, I in amperes, and t in seconds. One ampere flowing through a difference of potential of one volt for one second does one joule of work. Power is the time rate at which work is done, so that, if the work is done at a uniform rate, dividing the equation by t will give the electrical power:

$$
P=E I
$$

The unit of electrical power is the watt.

In practical work, the term "joule" is seldom used for the unit of work or energy. The more common name is watt-second (one joule is equal to one watt applied for one second). The watt-second is a relatively small unit; a larger one, the watt-hour (one watt of power applied for' one hour) is more frequently used. Again, for some purposes the watt is too small a unit, and the kilowatt (1000 watis) is used instead. A still larger energy unit is the kilowatt-hour, the meaning of which is easily interpreted.

Fractional and multiple units - As illustrated by the examples in the preceding paragraph, it is frequently convenient to change the value of a unit so that it will not be necessary to use very large or very small numbers. As applied to electrical units, the practice is to add a prefix to the name of the fundamental unit to indicate whother the modified unit is larger or smaller. The common prefixes are micro (one millionth), milli (one thousandth), kilo (one thousand) and mega (one million). Thus, a microvolt is one millionth of a volt, a milliampere is one thousandth of an ampere, a kilovolt is one thousand volts, and so on.

Unless there is some indication to the contrary, it should be assumed that, whenever a formula is given in terms of unprefixed letters (E, I, P, R, etc.), the fundamental units are meant. If the quantities to be substituted in the equation are given in fractional or multiple units, conversion to the fundamental units is necessary before the equation can be used.

Olim's Law - In any metallic conductor, the current which flows is directly proportional to the applied electromotive force. This relationship, known as Ohm's Law, can be written

$$
E=R I
$$

where E is the c.m.f., I is the current, and R is a constant, depending on the conductor, called the resistance of the conductor. By definition, a conductor has one unit of resistance when an applied e.m.f. of one volt causes a current of one ampere to How. The unit of resistance is called the ohm.

Ohm's Law does not apply to all types of conduction, particularly to conduction through gases and in a vacuum. The law is of very great importance, however, because practically all electrical circuits use metallic conduction.

By transposing the equation, the following equally useful forms are obtained:

$$
R=\frac{E}{I} \quad I=\frac{E}{R}
$$

The three equations state that, in a circuit to which Ohm's Law applies, the voltage across the circuit is equal to the current multiplied by the resistance; the resistance of the circuit is equal to the voltage divided by the current; and the current in the circuit is equal to the voltage divided by the resistance.
Resistance and resistivity - The resistance of a conductor is determined by the material of which it is made and its temperature, and is
directly proportional to the length of the conductor (that is, the length of the path of the current through the conductor) and inversely proportional to the area through which the current flows. If the temperature is constant,

$$
R=k \frac{L}{A}
$$

where R is the resistance, k is a constant depending upon the material of which the conductor is made, L is the length and A the arca. For the purpose of giving a specific value to k, L is taken as one centimeter and A as one square centimeter (a cube of the material measuring one centimeter on a side); k is then the resistance in ohms of such a cube at a specified temperature. It is called the specific resistance or resisticity of the material. If the resistivity is known, the resistance of any conductor of known length and uniform crosssection readily can be determined by the formula above. The length must be in centimeters and the area in square centimeters.
The relationships given above are true only for unidirectional (direct) currents and lowfrequency alternating currents. Modifications must be made when the current reverses its direction many times each second (§ 2-8).

Conductance and conductivity - The reciprocal of resistance is called conductance, and has the opposite properties to resistance. The lower the resistance of a circuit, the higher is the conductance, and vice versa. The symbol of conductance is G, and the relationship to resistance is

$$
G=\frac{1}{R} \quad R=\frac{1}{G}
$$

The unit of conductance is called the mho. A circuit or conductor which has a resistence of one ohm has a conductance of one mho. By substituting $1 / G$ for R in Ohm's Law,

$$
G=\frac{I}{E} \quad I=E G \quad E=\frac{I}{G}
$$

The reciprocal of resistivity is called the specific conductance or conductivity of a material, and is measured in mhos per centimeter cube. It is frequently useful to know the relative conductivity of different materials. This is usually expressed in per cent conductivity, the conductivity of annealed copper being taken as 100 per cent. A table of per cent conductivities is given in Chapter Twenty.

Poucer used in resistance- If two conductors of different resistances have the same current flowing through them, then by Ohm's Law the conductor with the larger resistance will have a greater difference of potential across its terminals. Consequently, more energy is supplied to the larger resistance, since in a given period of time the same amount of electricity is moved through a greater potential difference. The energy appears in the form of heat in the conductor. With a steady current, the heat will raise the temperature of the con-

Electrical and Radio Jundamentals 27

Fig. 218 - Two common types of fixed resistors. The wire-wound type is used for dissipating power of the order of 5 watts or more. "Pigtail" resistors, usually inade of carbon or other resistance material in the form of a molded rod or as a thin coating on an insulating tube, rather than being wound with wire, are small in size but do not sufely dissipate much power. Schematic symbols for fixed and variable resistors are shown at lower right.
ductor until a balance is reached between the heat generated and that radiated to the surrounding air or otherwise carried away.
Since $P^{\prime}=E I$, sulstituting for E the appropriate form of Ohm's Law ($E=1 R$) gives

$$
P=I^{2} R
$$

and making a similar substitution for I gives

$$
P=\frac{E^{2}}{R}
$$

That is, the power used in heating a resistance (or dissipated in the resistance) is proportional to the square of the voltage applied or to the square of the current flowing. In these formulas P is in watts, E in volts and I in amperes.

Further transposition of the equations gives the following forms, useful when the resistance and power are known:

$$
E=\sqrt{P R} \quad I=\sqrt{\frac{P}{R}}
$$

Unless the cireuit containing the resistance is being used for the specific purpose of generating heat, the power used in heating a resistance is generally considered as a loss. However, there are very many applications in radio eircuits where, despite the loss of power, a useful purpose is served by introdncing resistance deliberately. Resistances made to specified values and provided with connecting terminals are called resistors. They are frequently wound on ceramic or other heat-resisting tubing with wire having high resistivity.
Temperalure coefficient of resistanceThe resistance of most pure metals increases with an increase in temperature. The resistance of a wire at any temperature is given by

$$
R=R_{0}(1+a t)
$$

where R is the required resistance, R_{0} the resistance at $0^{\circ} \mathrm{C}$. (temperature of melting ice), t is the temperature (Centigrade), and a is the temperature coefficient of resistance. For copper, a is about 0.004 ; that is, starting at $0^{\circ} \mathrm{C}$., the resistance increases 0.4 per cent per degree above zero.

Temperature coefficient of resistance becomes of importance when conductors operate at high temperatures. In the case of resistors used in electrical and radio circuits, the heat developed by current fow may raise the temperature of the resistance wire to several hundred degrecs F. Thus the resistance at operating temperatures can be very much higher than the resistance at room temperature. Consequently such resistors are wound with wire which has a low temperature coefficient of resistance, so that the resistance will be more nearly constant under all conditions.
Resistances in series - When two or more resistances are connected so that the same current flows through each in turn, as shown in Fig. 219, they are said to be connected in series. Then, by Ohm's Law,

$$
\begin{aligned}
& E_{1}=I R_{1} \\
& E_{2}=I R_{2} \\
& E_{3}=I R_{3}
\end{aligned}
$$

etc., where the subscripts $1,2,3$ indicate the first, second and third resistor, and the voltages E_{1}, E_{2} and E_{3} are the voltages appearing across the terminals of the respective resistors. Adding the three voltages gives the total voltage across the three resistors:

$$
\begin{gathered}
E=E_{1}+E_{2}+E_{3}=I R_{1}+I R_{2}+I R_{3}= \\
I\left(R_{1}+R_{2}+R_{3}\right)=I R
\end{gathered}
$$

Fig. 219-Resistances in series.

That is, the voltage across the resistors in series is equal to the current multiplied by the sum of the individual resistances. In the above equation, R, which denotes this sum, may be called the equivalent resistance or total resistance. The equivalent resistance of a number of resistors connected in series is, therefore, equal to the sum of the values of the individual resistors.
Resistances in parallel - When a number of resistances are connected so that. the snmo voltage is applied to all, as shown in Fig. 220,

Fig. 220 - Resistances in parallel.
they are said to be connected in parallel. By Ohm's Law,

$$
I_{1}=\frac{E}{R_{1}} \quad I_{2}=\frac{E}{R_{2}} \quad I_{3}=\frac{E}{R_{3}}
$$

so that the total current, I, which is the sum
of the currents in the individual resistors, is

$$
\begin{aligned}
I= & I_{1}+I_{2}+I_{3}=\frac{E}{R_{1}}+\frac{E}{R_{2}}+\frac{E}{R_{3}}= \\
& E\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)=E \frac{1}{R}
\end{aligned}
$$

where R is the equivalent resistance - i.e., the resistance through which the same total current would flow if such a resistance were substituted for the three shown. Therefore,

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

That is, the reciprocal of the equivalent resistance of a number of resistances in parallel is equal to the sum of the reciprocals of the individual resistances. Since the reciprocal of resistance is conductance,

$$
G=G_{1}+G_{2}+G_{3}
$$

where G is the total conductance and G_{1}, G_{2}, G_{3}, ete., are the inclividual conductances in parallel.

To obtain R instead of its reciprocal the equation above may be inverted, so that

$$
R=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}
$$

The number of terms in the denominator of this equation will, of course, be equal to the actual number of resistors in parallel.

For the special case of only two resistances in parallel, the equation reduces to

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Series-parallel connection of resistors is shown in Fig. 221. When circuits of this type are encountered the equivalent or total resistance can be found by first adding the series resistances in each group, then treating each group as a single resistor so that the formula for resistors in parallel can be used.

Fif. 221 - Series-parallel connection of resistances. Voltage and current relationships are given at the right.

Voltage dividers and potentiometersSince the same current flows throngh resistors connected in series, it follows from Ohm's Law that the voltage (termed voltage drop) ncross each resistor of a series-connected group is proportional to its resistance. Thus, in Fig. $222-\mathrm{A}$, the voltage E_{1} across R_{1} is equal to the applied voltage, E, multiplied by the ratio of
R_{1} to the total resistance, or

$$
E_{1}=\frac{R_{1}}{R_{1}+R_{2}+R_{3}} \cdot E
$$

Similarly, the voltage, E_{2}, is equal to

$$
\frac{R_{1}+R_{2}}{R_{1}+R_{2}+R_{3}} \cdot E
$$

Such an arrangement is called a voltage divider, since it provides a means for obtaining smatler voltages from a source of fixed voltage. When current is drawn from the divider at the various tap points the above relations are no longer strictly true, for then the same current does not flow in all parts of the divider. Design data for such cases are given in § $\mathrm{S}-10$.

Fig. 222 - Voltage divider (A) and potentiometer (B).
A similar arrangement is shown in Fig. $222-B$, where the resistor, R, is equipped with a sliding tap for fine adjustment. Such a variable resistor is frequently called a potentiometer.

Inductances in series and parallel-As explained in § 2-5, inductance determines the voltage induced when the current changes at a given rate. That is, $E=L \times$ rate of ehange of current. This resembles Ohm's Law, if L corresponds to R and the rate of change of current to I. Thus, by reasoning similar to that used in the ease of resistors, it can be slown that, for inductances in series.

$$
L=L_{1}+L_{2}+L_{3}
$$

and for inductances in parallel,

$$
L=\frac{1}{\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}}
$$

where the number of terms in either equation is determined by the actual number of inductances connected in series or parallel.

These equations do not hold if there is mutual inductance ($\$ 2-5$) between the coils.

Condensers in series and parallel - When a number of condensers are in parallel, as in Fig. 223-A, the same e.m.f. is applied to all. Consequently, the quantity of electricity stored in each is in proportion to its capacity. The total quantity stored is the sum of the quantities in the individual condensers:
$Q=Q_{1}+Q_{2}+Q_{3}=C_{1} E+C_{2} E+C_{3} E=$

$$
\left(C_{1}+C_{2}+C_{3}\right) E=C E
$$

where C is the equivalent capacity. The equivalent eapacity of condensers in parallel is equal to the sum of the individual capacities.

Fig. 223 - Condensers in parallel (A) and in series (B).
When condensers are connected in series, as in Fig. 223-B, the application of an e.m.f. to the circuit causes a certain quantity of electricity to accumulate on the top plate of C_{1}. By electrostatic induction, an equal charge of opposite polarity (negative in the illustration) appears on the bottom plate of C_{1}. and, since the lower plate of C_{1} and the upper plate of C_{2} are connerted together, this must leave an equal positive charge on the upper plate of C_{2}. This, in turn, causes the lower plate of C_{2} to assume an equal negative charge, and so on down to the plate connected to the negative terminal of the source of e.m.f. In uther words the same quantity of electricity is placed on each condenser, and this is equal to the total quantity stored. The voltage across each condenser will depend upon its capacity, and the sum of these voltages must equal the applied voltage. Thus,

$$
\begin{gathered}
E=E_{1}+E_{2}+E_{3}=\frac{Q}{C_{1}}+\frac{Q}{C_{2}}+\frac{Q}{C_{3}}= \\
Q\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}\right)=\frac{Q}{C^{\prime}}
\end{gathered}
$$

where C is the equivalent capacity. This leads to an expression similar to that for resistances in parallel:

$$
C=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}}
$$

where the number of terms in the denominator should be the same as the actual number of condensers in series.

Time constant- When a condenser and resistor are connected in series with a source of e.m.f., such as a battery, the initial flow of current into the condenser is limited by the resistance, so that a longer period of time is required to complete the charging of the con-

Fig. 224The $R L$ and $R C$ eireuits at the left, togetber with the eurves of currentamplitude vs. time, show how the current in a cireuit eombining resistance with inductance or eapreitytakes a finite period of time to reachasteadystatevalue.
denser than would be the case without the resistor. Likewise; when the condenser is discharged through a resistor a measurable period of time is taken for the current flow to reach a negligible value. In the case of either charge or discharge the time required is proportional to the capacity and resistance, the product of which is called the time constant of the circuit. If C is in farads and R in ohms, or C in microfarads and R in megohms, the product gives the time in seconds required for the voltage across a discharging condenser to drop to $1 . e$, or approximately 37 per cent of its original value. (The constant e is the base of the natural series of logarithins.)

Fig. 225 - Iocft - 'lhe d'Arsonval or moving-coil meter for d.c. eurrent measurenient. Current flowing throuph the rotatable coil in the field of the permanent magnet cuuses a force to act on the coil, tending to turn it. The turning tendency is eountcracted by springs (not shown) so that the amount of movement is proportional to the value of the current in the coil. Right - In the simpler noving-iron-vane type, a light-weight soft-iron plunger is attraeted by current flowing in a fixed coil. As the plunger noves the pointer to which it is linked ulso moves, until the magnetic force in the coil is halanced by the spiral spring restraining the planger movement.

In a circuit containing inductance and resistance in series, the effect of the resistance is to shorten the period required for the chrrent to reach its final value ($\$ 2-5$) after an e.m.f. is applied to the circuit. The time constant of such a circuit is equal to L / R, where L is in henrys and R in ohms. It gives the time in seconds required for the current to reach $1-1 / e$, or approximately 63 per cent of its final steidy value when a constant voltage is applied.

By proper application to associated circuits and devices such as vacuum tubes, it is possible by suitable selection of time constant to create almost any desired wave or pube shape. This is of practical importance in many circuit applications in amateur transmission and reception, as in electronic keyers, allomatic volume control, resistance-caparity filters and remote control. Apart from these applications, many of the techniques employed in television and specialized electronic devices are based on this principle.

Measuring instruments - Instruments for measuring d.c. current and voltage make use of the force acting on a coil carrying current in a magnetic field (§2-5), produced by a permanent magnet, to move a pointer along a calibrated scale. The magnetic field may be produced by a permanent magnet acting upon a moving coil, or by a fixed coil acting upon a moving iron vane or plunger. Chapter J Jwo

The first type of instrument, based on what is known as the d'Arsonval moving-coil movement, is shown at the left in Fig. 225. The mov-ing-iron vane instrument shown at the right is less accurate and requires higher energizing current, making it relatively insensitive as compared to the moving-coil type. Only the cherper measuring instruments available to amateurs are based on this principle.

Voltage Measurement

Current Measurement
Fig. 226-Circuit connections for measuring current and voltage. The shunt rexistor is used for inerasasing the value of the current which the instrument can measure, by providing an alternate path through which some of the courrent can flow. The series multiplisr limits the curcent when the instrument is used to measure voltage.

In such instruments the current required for full-scale deflection of the pointer varics from several milliamperes to a few microamperes, according to the sensitivity required. If the instrument is to read high currents, it is - shunted (paralleled) by a low resistance through which most of the current flows, leaving only enough flowing through the instrument to give a full-scale deflection corresponding to the total current flowing through both meter and shunt. An instrument which reads microamperes is called a microammeter or galvanometer; one calibrated in milliamperes is called a milliammeter; one calibrated in amperes is an ammeter. A volt meter is simply a millinmmeter with a high resistance in series so that the current will be limited to a suitable value when the instrument is connected across a voltage source; it is calibrated in terms of the voltage which must appear across the terminals to cause a given value of current to flow. The series resistance is called a multiplier. A wattmeter is a combination voltmeter and ammeter in which the pointer deflection is proportional to the power in the circuit.

An ammeter or milliammeter is connected in series with the circuit in which current is being measured, so that the current flows through the instrument. A voltmeter is connected in parallel with the circuit.

(1) 2-7 Alternafing Current

Description - An alternating current is one which periodically reverses its direction of flow. In addition to this alternate change in direction, usually the amount or amplitude of the current also varies continually during the period when the current is flowing in one direction. These variations are aecompanied by corresponding variations in the magnetic field set up by the current, and it is this feature which makes the alternating current so useful. By means of the varying field, energy may be
continually transferred (by induction) from one circuit to another without direct connes-tion, and the voltage may be changed in the process. Neither of these is possible with direct current because, except for brief periods when the circuit is closed or opened, the field accompanying a steady direct current is unchanging, and hence there is no way of inducing an e.m.f. except by moving a conductor through the field (\$2-5).

Alternating currents may be generated in several ways. Rotating electrical machines (a.c. generators or alternators) are used for (leveloping large amounts of power when the rate of reversal is relatively slow. However. such maclimes are not suitable for producing emrrents which reverse direction thousands or millions of times each second. The thermionic vacuum tube is used for this purpose, as described in Chapter Three.

The simplest form of alternating current (or voltage) is shown graphically in Jig. 227. This chart shows that the current starts at zero value, buiks up to a maximum in one direstion, comes back down to zero, builds up to a maximum in the opposite direction and comes back to zero. The curve follows the sine law and is known as a sime urue, because of the wavelike nature of the curve which results when sine values are ploted on rectangular coürdinates as a function of angle or time.

Frequency - The romplete wave shown in Fig. 227 is called a cycle, and the length of time required to complete one cycle is called the period. Each half of the cyrle, during which the current is flowing in one direction, although its strength is varying, is known as all alteration. The number of cycles the wive goes through each second of time is called the frequency. In ratio work, where frequencies are extremely large, it is convenient to use two other mits, kilocycles per second (cyrles persecond $\div 1000$) and megracycles per second (cycles per second $\div 1,000,000$). These are usually abbreviated ke. and Mc, respectively. Occasionally these abbreviations are written kes. and Mes. to indicate "kilocycles per second" and " megacycles per second" rather than simply "kilocycles" and "megacycles," but it. is understood that "per second" is meant when the shorter forms are used.

Fig. 227 - Sine wave of alternating current or voltage.

Elcactrical and Kadio Jundamentals 31

Electrical degrees - If we take a fixed point on the periphery of a revolving wheel, we find that at the end of each revolution, or cycle, the point has come back to its original starting place. Its position at any instant can be expressed in terms of the angle between two lines, one drawn from the center of the wheel to the point at the instant of time considered, the other drawn from the wheel center to the starting point. In making one complete revolution the point has travelled througl 360 degrees, a half revolution 180 degrees, a quarter revolution 30 degrees, and so on. The periodic wave of alternating current may be treated similarly, one complete cycle equalling one revolution or 360 degrees, one alternation (half cycle) 180 degrees, and so on. With the cycle divided up in this way, the sine curve simply means that the value of current at any instant is proportional to the sine of the angle which corresponds to the particular fraction of the cycle considered.
The concept of angle is universally used in alternating currents. Generally, it is expressed in the fund:mental form, using the radian rather than the degree as a unit, whence a cycle is equal to 2π radians, or a half cycle to π radians. The expression $2 \pi f$, for which the symbol ω is often used, simply means electrical degrees per eycle times frequency, and is called the angular velocity. It gives the total number of eiectrical radians passed through by a current of given frequency in one second.
Peak, instantaneous, effective and arerage ralues - The highest value of current or voltage during the tine when the current is flowing in one direction is called the maximum or peak value. For the sine wave, the peak has the same absolute value on both the positive and negative halves of the cycle. This is not necessarily true of waves having shapes other than the true sine form.

The value of eurrent or voltage existing at any particular point of time in the cycle is called the instantaneous value. The instant for which a particular value is to be found can be specified in terms of time (fraction of the period) or of angle.

Since both the voltage and current are swinging continuously between their positive maximum and negative maxinum values, it might be wondered how one can speak of so many amperes of alternating current when the value is changing continuously. The problem is simplified in practical work by considering that an alternating current has an effective value of one ampere when it produces heat, in flowing through a given resistance, at the same average rate as one ampere of continuous direct current flowing through the same resistance. This effective value is the square root of the mean of all of the instantaneous current values squared. In the case of the sine-wave form,

$$
E_{\mathrm{eff}}=\sqrt{1 / 2 E_{\max }^{2}}
$$

For this reason, the effective value of an alter-
nating current or voltage is also known as the root-mean-squarc, or r.m.s., value. Hence, the effective value is the square root of $1 / 2$, or 0.707 , times the maximum value.

In a purely a.c. circuit the average current over a whole cycle must be zero, because if the average current on, say, the positive half of the cycle were greater than the average on the negative half, there would be a net current flow in the positive direction. This would correspond to a direct (although intermittent) current, and hence must be excluded because a purely alternating current was assumed. The "average" value of an alternating current is defined as the average current during the part of the cycle when the current is flowing in one direction only. It is of particular importance when alternating current is changed to direct current by the methods considered in later chapters. For a sine wave, the average value is equal to 0.636 of the peak value.

In the sine wave the three voltage values, peak, effcetive and average, are related to each other as follows:

$$
\begin{aligned}
& E_{\max }=E_{\text {off }} \times 1.414=E_{\text {ave }} \times 1.57 \\
& E_{\text {eff }}=E_{\text {max }} \times 0.707=E_{\text {ave }} \times 1.11 \\
& E_{\text {ave }}=E_{\text {max }} \times 0.636=E_{\text {iff }} \times 0.9
\end{aligned}
$$

The relationships for current are equivalent to those given above for voltage.

Plase - As the next few paragraphs will show, the current and voltage in an alternat-ing-current circuit may not pass through their maximum and minimum values at the same time, even though both are sine waves of the same frequency. The time at which a particular part of the cycle (such as the positive peak) occurs is called the phase of the wave. If two waves are not exactly in step there is a phase difference between them. The phase difference can be expressed in terms of the actual difference in time between the two instants at which the two waves reach corresponding parts of their cycles, but it is generally more convenient to measure it in angular units. A phase difference of 90 degrees, for example, menns that one wave reaches its maximum value one-quarter cycle before the other wave reaches its maximum value in the same direction.

The phase relationships between two currents (or two voltages) of the same frequency are defined in the same way. When two such currents are combined the resultant is a single current of the same frequency, but having an instantancous amplitude equal to the algebraic sum of the amplitudes of the two components at the same instant. The amplitude of the resultant current hence is determined by the phase relationship between the two currents before combination. Thus if the two currents are exactly in phase, the maximum value of the resultant will be the numerical sum of the maximum values of the individual currents; if they are 180 degrees out of phase, one reaches its positive maximum at the instant the other reaches its negative maximum, hence the resultant current is the difference between the
two. In the latter case, if the two currents have the same amplitude the resultant current is zero.
Current, voltage and power in an inductunce - When alternating current flows through an inductance, the continually varying magnetic field causes the continuous generation of an c.m.f. of self-induction (§2-5). The induced voltage at any instant is proportional. to the rate int which the current is changing at that instant. If the current is a sine wave, it can be shown thint the rate of change is greatest when the current is passing through zero and least when the current is maximum. For this reason, the induced voltage is maximum when the current is zero and zero when the current is maximum. The direction or polarity of the induced voltage is such as to tend to sustain the current flow when the current is decreasing and to prevent it from flowing when the current is increasing ($\$ 2-5$). As a result, the induced voltage in an inductance lags 90 degrees behind the current.

By Lenz's Law, the induced voltage must always oppose the applied voltage; that is, the induced and applied voltages must he in phase opposition, or 180 degrees out of phase. Consequently, the applied voltage leads the current by 90 degrees. Or, using the voltage as a reference, the current in an incluctance lags 90 degrees, or one-quarter eycle, behind the voltage. These relationships are shown in Fig. 228.

When the current is Increasing in either direction, energy is being stored in the magnetic field. At such times the voltage has the same polarity as the current, so that the product of the two, which gives the instantaneous power fed to the inductance, is positive. When the current is decreasing energy is being restored to the circuit and the applied voltage has the opposite polarity, so that the product of current and voltage is negative. This is also shown in Fig. 228. Positive power means power taken from the source (i.e., the source of the applied e.m.f.), while negative power means power returned to the source. Power is alternately taken and given back in each quarter cycle, and, since the amount given back is the same as that taken, the average power in an inductance is zero when considering a whole cycle. In a practical inductance the wire will have some resistance, so that some of the power supplied will be consumed in heating the wire, but if the resistance of the circuit is small compared to the inductance the power
consumption is very small compared to the power which is alternately stored and returned.

Current, voltage and power in a condenser - When an alternating voltage is appiled to a condenser, the condenser acquires a charge while the voltage is rising and loses its charge while the voltage is decreasing. The quantity of elect.ricity stored in the condenser at any instant is proportional to the voltage across its terminals at that instant ($Q=C E^{\prime}$). Since current is the rate of transfer of quantity of electricity, the current flowing into the condenser (when it is being charged) or out of it (when it is discharging) consequently will be proportional to the rate of ehange of the applied voltage. If the voltage is a sme wave, its rate of change will be greatest when passing through zero and least when the voltage is maximum. As a result. the current flowing into or out of the condenser is greatest when the voltage is passing through zero and least when the voltage reaches its peak value.

This relationslip is shown in Fig. 229. Whenever the voltage is rising (in either direction) the current flow is in the same direction as the applied voltage. When the voltage is decreasing and the condenser is discharging, the current flows in the opposite direction. The energy stored in the condenser on the charging part of the cyrle is restored to the circuit on the discharge part, and the total energy consumed in a whole cycle therefore is zero. A condenser operating on a.c. takes no average power from the source, except for such artual energy losses as may occur as the result of heating of the dielectric ($\$ 2-3$). The energy loss in air condensers used in radio circuits is negligibly small except at extremely high frequencies.

As shown by Fig. 229, the phase relationship between current flow and applied voltage is such that the current leads the voltage by 90 degrees. This is just the opposite to the inductance case.

Fig. 229 - Voltage, current and powcr relations in an alternating-current circuit consisting of rapacity only.

Current, voltage and power in resistance - In a circuit containing resistance only there are no energy storage effects, and consequently the current and voltage are in phase. The current therefore always flows in the same direction as the applied voltage, and, since the power is always positive, there is continual power

Electrical and Radio Jundamentals 33

dissipation in the resistance. The relationships are shown in Fig. 230.

Strictly speaking, no circuit can have resistance only, because the flow of current always is accompanied by the creation of a magnetic field and every conductor also has a certain amount of capacity. Whether or not such residual inductance and capacity are large enough to require consideration is determined by the frequency at which the circuit is to operate.

The a.c. spectrum - Alternating currents of different frequencies have different properties and are useful in a varicty of ways. For the transmission of power to light homes, run motors and perform familiar everyday tasks by electrical means, low frequencies are most suitable. Frequencies of 25, 50 and 60 cycles are in common use, the latter being most widely used in this country. The range of frequencies between about 15 and 15,000 cycles is known as the audio-frequency range, because when frequencies of this order are converted from a.c. into air vibrations, as by a loudspeaker or telephone receiver, they are distinguishable as sounds having a tone pitch proportional to the frequency. 15,000 cycles (15 kiloFrequencies above 15,000 cycles (1) canse at frequencies of this order it is possible to convert electrical energy into radio waves which can be radiated over long distances.

For convenience in reference, the following classifications for radio frequencies have been recommended by an international technical conference and are now increasingly in use:
10 to 30 kilocycles
30 to 300 kilocycles
300 to 3000 kilocycles
3 to 30 megacycles
30 to 300 megacycles
300 to 3000 megacycles
3000 to 30,000 megacycles

Very-low frequencies
Low frequencies
Medium frequencies
High frequencies
Very-high frequencies
Ultrahigh frequencies
Superhigh frequencies
Until recently, other terminology was used; for example, the region above 30 megacycles formerly was cousidered the "ultrahigh" frequencies.

Waveform, harmonics - The sine wave is not only the simplest but for many purposes is the most desirable waveform. Many other waveforms are met in practice, however, and they may differ considerably from the simple sine case. It is possible to show by analysis that any such waveform can be resolved into a number of components of differing frequencies and amplitudes, but related in frequency in such a way that all are integer multiples of
the lowest frequency present. The lowest frequency is called the fundamental, and the multiple frequencies are called harmonics. Thus a wave may consist of fundamental, 3rd, 5th, and 7th harmonics, meaning, if the fundamental frequency is say 100 cycles, that frequencies of 300,500 and 700 cycles also are present in the wave.
Fig. 231 shows how a fundamental and a second harmonic might combine to form a nonsinusoidal wave. An infinite number of waveforms could be obtained from the combination of two such waves, since the shape of the combined wave will depend upon the amplitude and phase of the two component waves.
The square wave, also shown in Fig. 231, consists of a fundanental and an infinite number of harmonies. This type of wave is useful in a variety of applications.

© 2-8 Ohm's Law for Alternating Currents

Resistance - Since current and voltage are always in phase through a resistance, the instantaneous relations for al.c. are equivalent to those in d.c. circuits. By definition, the effective units of current and voltage for a.c. are made equal to those for d.c. in resistive cireuits ($\S 2-7$). Therefore the various formulas expressing Ohm's Law for d.c. circuits apply without any change to a.e. eircuits containing resistance only, or for purely resistive parts of complex a.c. circuits. See § 2-6.
In applying the formulas, it must be remembered that consistent units must be used. For example, if the instantaneous value of current is used in finding voltage or power, the voltage found will be the instantaneous voltage and the power will be the instantaneous power. Likewise, if the effective value is used for one quantity in the formula, the unknown will be expressed in effective value. Unless otherwise indicated, the effective value of eurrent or voltage is always understood to be meant when reference is made to "current" or "voltage."

Reactance -

 In the preceding section it was shown that energy-storage effects in inductance and capacitance cause a phase difference to exist between the applied voltage and the cur-

Fig. 2.31-Combination of a fundamental and second harmonic with the amplitude and phase relationships shown gives the non-sinusoidal resultant. The scuare wave, below, contains an infinite numher of harmonics.
rent that flows as a result. Because of this, Ohm's Law cannot be applied in its entirety to a.c. circuits containing inductance and/or capacitance, particularly for the calculation of power consumed. However, the amplitude of the current that flows in such circuits is directly proportional to the voltage applied, just as it is in purely resistive circuits. In other words, both inductance and capacity offer opposition to current flow, and this opposition can be measured in ohms just as it is in the case of resistance. But the opposition is called reactance to indicate that it does not consume power and thereby distinguish it from resistance.

Ohm's Jaw formulas extended to include reactance are quite similar to the formulas for resistive circuits:

$$
I=\frac{E}{\bar{X}} \quad E=X I \quad X=\frac{E}{I}
$$

where X is the symbol for reactance.
Reactance differs from resistance in another respect - its value, for a given amount of inductance or capacity, varies with the frequency of the current flowing, whereas resistance is not inherently affected by frequency. However, the reactance of a given inductance or capacity is constant for all values of applied voltage so long as the frequency is constant.

Inductive reactance - When alternating current flows through an inductance it must take just the right value to make the induced voltage equal the applied voltage (§2-7). Since the induced voltage is equal to the inductance multiplied by the rate of change of the current, it is evident that the larger the value of inductance considered, the smaller the rate of current change required to induce a given voltage. If the frequency is fixed, the rate at which the alternating current changes is simply proportional to the amplitude of the current. Hence a small current will suffice if the inductance is large, while a large current will be required if the inductance is small, assuming that the applied voltage is the same in both cases. In other words, the reactance of an inductance is directly proportional to the value of the inductance, at a fixed frequency.

However, the rate of change of current is proportional to frequency as well as to amplitude, because the greater the number of cycles per second the more rapidly the current goes through its regular variations. Consequently, increasing the frequency will have the same effect as increasing the amplitude of the current insofar as the induced voltage is concerned; or, to put it another way, if the frequency is increased the amplitude may be decreased in the same proportion to maintain the same induced voltage in a given inductance. Smaller current amplitude through a fixed value of inductance means that the reactance is higher, so it is apparent that the reactance of an inductance increases with increasing frequency.

Thus three factors, inductance, current amplitude, and frequency (angular velocity) de-
termine the induced voltage. Combining them, we have, for sine-wave current,

$$
E=2 \pi f L I, \text { or } \frac{E}{I}=2 \pi f L
$$

Since $X=E / I$, then

$$
X_{L}=2 \pi f L
$$

where the subscript L indicates that the reactance is inductive.

The fundamental units (ohms, cycles, henrys) must be used in the above equation, or appropriate factors inserted if other units are employed. If inductance is in millihenrys, the frequency should be stated in kilocycles; if inductance is in microhenrys, the frequency should be given in megacycles, to bring the answer in ohms.

Capacitive reactance - The quantity of electricity stored in a condenser depends upon the capacity and the applied voltage ($Q=C E$), and if losses are negligible the same quantity of electricity is taken out of the condenser on discharge. Current must flow into the condenser to charge it, and must flow out of it to discharge it; the value of the current is the rate at which the quantity of electricity is put into the condenser or taken out ($\S 2-4$). When an a.c. voltage is applied to a condenser the alternate movement of a quantity of electricity to charge and discharge it as the applied voltage rises and falls and reverses polarity, constitutes current flow "through" the condenser.

The amplitude of the current at any instant is proportional to the rate of change of the voltage at that instant; the greater the rate of change the faster the given quantity of electricity is moved. The amplitude is also proportional to the capacitance of the condenser, since a larger capacitance will take a larger quantity of electricity at a given voltage. Since the rate of change of voltage is proportional to the amplitude of the voltage and its frequency, then for a sine-wave voltage

$$
I=2 \pi f C E, \text { or } \frac{E}{I}=\frac{1}{2 \pi f C}
$$

Since $X=E / I$, then

$$
X_{C}=\frac{1}{2 \pi f C}
$$

where the subscript C indicates that the reactance is capacitive. Capacitive reactance is inversely proportional to capacity and to the applied frequency. For a given value of capacity, the reactance decreases as the frequency increases.

Fundamental units (farads, cycles per second) must be used in the right-hand side of the equation to obtain the reactance in ohms. Conversion factors must be used if the frequency and capacity are in units other than cycles and farads. If C is in microfarads and f in megacycles, the conversion factors cancel.

Impedance - In any series circuit the same current flows through all parts of the circuit. If a resistance and inductance are connected in series to form an a.c, circuit they both carry

Electrical and Radio Fundamentals 35

the same current, but the voltage across the resistance is in phase with the current while the voltage across the inductance leads the current by 90 degrees. In a d.c. circuit with resistances in series, the applied voltage is equal to the sum of the voltages across the individual resistances ($\$ 2-6$). This is also true of the a.c. circuit with resistance and inductance in series if the instantaneous voltages are added algebraically to find the instantaneous value of applied voltage. But, because of the phase difference between the two voltages, the maximum value of the applied voltage will not be the sum of the maximum values of the two voltages, so that the effective values cannot be added directly. The same considerations hold in the case of resistance and capacity in series.

In either case the total voltage is given by the following expressions:

$$
E^{2}=E^{2} x+E^{2}{ }_{R}, \text { or } E=\sqrt{E^{2} R+E^{2} x}
$$

where E_{X} indicates the voltage across the reactance, which may be either inductive or capacitive, and E_{R} is the voltage across the resistance.

Since $E_{R}=I R$ and $E_{X}=I X$, substitution gives

$$
E=I \sqrt{R^{2}+X^{2}}, \text { or } \frac{E}{I}=\sqrt{R^{2}+X^{2}}
$$

E / I is called the impedance of the circuit and is designated by the letter Z. Hence,

$$
Z=\sqrt{R^{2}+X^{2}}
$$

The impedance determines the voltage which must be applied to the circuit to cause a given current to flow. The unit of impedance is, therefore, the ohm, just as in the case of resistance and reactance, which also deterinine the ratio of voltage to current. Ohm's Lav for alternating current circuits then becomes

$$
I=\frac{E}{Z} ; Z=\frac{E}{I} ; E=I Z
$$

It should be noted that the equivalent Ohm's Law relatiunship for power in a d.c. circuit does not apply directly in the case of an a.c. circuit where Z replaces R. As will be explained, the power factor of the circuit must be taken into consideration.

In summary, impedance is a generalized quantity applying to a.c. or d.c. circuits, simple or complex. In a d.c. circuit or in an a.c. circuit containing resistance only, the phase angle is zero (current and voltage are in phase) and the impedance is equal to the resistance.

In an a.c. circuit containing reactance only the phase angle is 90 degrees, with current lagging the voltage if the reactance is inductive and current leading the voltage if the reactance is eapacitive. In either case, the impedance is equal to the reactance.
In an a.c. circuit containing both resistance and reactance the phase angle may have any
value between zero and 90 degrees, with the current lagging the voltage if the reactance is inductive and leading the voltage if the reactance is capacitive. The value of impedance, in ohms, may be found from the equation given above.

Power is consumed in a circuit only when the current flow produced by the applied voltage is less than 90 degrees out of phase with that voltage. Power consumption decreases from maximum with in-phase conditions to zero at a 90-degree phase difference.

Series circuits uith L, C and R - When inductance, capacity and resistance all are in series in an a.c. circuit, the voltage relations are a combination of the separate cases just considered. The voltage across each element will be proportional to the resistance or reactance of that element, since the current is the same through all. The voltages across the inductance and capacity are 180 degrees out of phase, since one leads the current by 90 degrees and the other lags the current by 90 degrees. This means that the two voltages tend to cancel; in fact, if the voltage across only the inductance and capacity in series is considered (leaving out the resistance), the total voltage is the difference between the two voltages.

The total reactance in a series circuit is, therefore, the difference between the individual inductive and capacitive reactances; or

$$
X=X_{L}-X_{C}
$$

If more than one inductance element is present in the circuit, the total inductive reactance is the sum of the individual reactances; similarly, the same is true for capacitive reactances. Inductive reactance is conventionally taken as "positive" (+) in sign and capacitive reactance as "negative" (-). With this eonvention, algebraic addition of all the reactances in a series circuit gives the total reactance of the circuit.

Parallel circuits with L, C and R - The equivalent resistance of a number of resistances in parallel in an a.c. circuit is found by the same rules as in the case of d.c. circuits (§2-6). Parallel reatances of the same kind have an equivalent reactance given by a similar rule:

$$
X=\frac{1}{\frac{1}{X_{1}}+\frac{1}{X_{2}}+\frac{1}{X_{3}}} \ldots . .
$$

This formula applies to reactances of the same sign; it cannot be used if both inductive and capacitive reactance are in parallel.

When both resistance and renctance are in parallel the same voltage is applied to both, but the current in the resistance branch will not be in phase with the current in the reactive branch. The phase difference will be 90 degrees if each branch contains only resistance or only reactance, so that the total current may be found by a rule similar to that used for finding
the total voltage in a series circuit. That is,

$$
I=\sqrt{I \dot{Z}+I_{X}^{2}}
$$

The impedance of the circuit is equal to E / I, so

$$
Z=\frac{E}{\sqrt{I_{R}^{2}+I_{X}^{2}}}
$$

By assuming some convenient value for the applied voltage and then solving for the currents in the resistance and reactance, the values so found may be substituted in this equation to find the impedance of the circuit.

The formulas above may be used for either inductive or capacitive reactance. When inductive reactance and catpacitive reactance are in parallel, the current through the inductance is 180 degrees out of phase with the current through the condenser, hence the total current is the difference between the two currents. This difference may be substituted for I_{X} in the above equations.

It is of interest to note that, since the total current flowing in a circuit containing inductive and capacitive reactance in parallel is the difference between the currents in the two branches, the impedance of such a parallel combination always is larger than the reactance of either brancli alone. Any resistance which also nuay be in parallel is unaffected, since the current taken by the resistance is determined solely by the applied voltage.

With series-parallel circuits the solution becomes considerably more complicated, since the phase relationships in any parallel branch may not be either 90 degrees or zero. However, the majority of parallel circuits used in radio work can be solved by the rather simple approximate methods described in § 2-10.

Power factor - The power dissipated in an a.c. circuit containing both resistance and reactance is consumed entirely in the resistance, hence is equal to $I^{2} R$. However, the reactance is also effective in determining the current or voltage in the circuit, even though it consumes no energy. Hence the product of volts times amperes (which gives the power consumed in d.e. circuits) for the whole circuit may be several times the actual power used up. The ratio of power dissipated (watts) to the volt-ampere product is called the power factor of the circuit, or

$$
\text { Power factor }=\frac{\text { Watts }}{\text { Volt-amperes }}
$$

Distributed capacity and inductance-

 It should not be thought that the reactance of coils becomes infinitely high as the frequency is increased to a high value and, likewise, that the reactance of condensers becomes infinitely low at high frequencies. All coils have some capacity between turns, and the reactance of this capacity can become low enough at some high frequencies to tend to cancel the high reactance of the coil. Likewise, the leads and plates of condensers will have considerable inductance at very high frequencies, which willtend to offset the capacitive reactance of the condernser itself. For these reasons, coils constructed for high-frequency use must be designed to have low "distributed" capacity. Similarly, condensers must be made with short, heavy leads so that they will have low self-inductance.

Units and instruments - The units used in a.c. circuits may be divided or multiplied to give convenient numerical values to different orders of magnitude, just as in d.c. circuits (§ 2-6). Because the rapidly reversing current is accompanied by similar reversals in the magnetic field, instruments used for measurement of d.c. (§ 2-6) will not operate on a.c.

At low frequencies suitable instruments can be constructed by making the current produce botli magnetic fields, one by means of a fixed coil and the other by the moving coil. Instruments having movements of this kind are variously known as dynamometer, electrodytamometer and electrodynamic types.

Another type of instrument suitable for -measuring alternating current is less expensive in construction and therefore more widely used. This is the repulsion-type moving-iron a.c. ammeter shown in Fig. 232. Fundamentally, the movement is based on the same principle as the inexpensive moving-iron-vane meter for d.c. shown in Fig. 225. In the repulsion-type instrument current flowing through the stationary coil magnetizes two iron vanes, one

Fig. 232 - Ammeter based on a repulsiontype moving-iron movement used for a.c. measurements.
fixed and the other attached to the movable pointer shaft. Inasmuch as the two vanes are in the same plane and magnetized by the same source, the magnetic effect upon them by the current through the coil will be identical regardless of its polarity. When the two vanes are magnetized they repel each other (§ 2-2) and the movable vane moves away from the fixed vane, causing the pointer to travel along the scale. The degree of travel is controlled by a spring which brings the pointer to rest at a point where the electrical and mechanical forces balance, and returns the pointer to zero on the scale when current flow ceases.

Such instruments are used for measurement of either current or voltage. However, when employed for voltage measurement by the use of high-resistance series multipliers, the minimum current drain required by such instruments because of their inherent insensitivity is so great that excessive load is placed upon the measurement source. For this reason, in radio work it is more commion practice to convert the a.c. voltage to d.c. by means of a
copper-oxide or vacuum-tube rectifier and then measure the resulting indication on a d.c. instrument, as described in § 2-6.

At radio frequencies instruments of the type described above are inaccurate because of distributed capacity and other effects, and the only reliable type of direct-reading instrument is the thermocouple ammeter or milliammeter. This is a power-operated device consisting of a resistance wire heated by the flow of r.f. current through it, to which is attached a thermocouple or pair of wires of dissimilar metals joined together and possessing the property of developing a small d.c. voltage between the terminals when heated. This voltage, which is proportional to the heat applied to the couple, is used to operate a d.c. instrument of ordinary design.

(1) 2-9 The Transformer

Principles -It has been shown in the preceding sections that, when an alternating voltage is applied to an inductance, the flow of alternating current through the coil causes an induced e.m.f. which is opposed to the applied e.m.f. The induced e.m.f. results from the varying magnetic field accompanying the flow of alternating current. If a second coil is brought into the same field, a similar e.m.f. likewise will be induced in this coil. This indueed e.m.f. may be used to force a current through a wire, resistance or other electrical device connected to the terminals of the second coil.

Two coils operating in this way are said to be coupled, and the pair of coils constitutes a transformer. The coil connected to the source of energy is called the primary coil, and the other is called the secondary coil. Energy may be taken from the secondary, being transferred from the primary through the medium of the varying magnetic field.
Types of transformers - The usefulness of the transformer lies in the fact that energy can be transferred from one circuit to another without direct connection, and in the process can be readily changed from one voltage level to another. Thus, if a device to be operated requires, for example, 120 volts and only a $440-$ volt source is available, a transformer can be used to change the source voltage to that required. The transformer, of course, can be used only on a.c., since no voltage will be induced in the secondary if the magnetic field is not changing. If d.c. is applied to the primary of a transformer, a voltage will be induced in the secondary only at the instant of elosing or opening the primary circuit, since it is only at these times that the field is changing.

As shown in Fig. 233, the primary and secondary coils of a transformer may be wound on a core of magnetic material. This increases the inductance of the coils so that a relatively small number of turns may be used to induce a given value of voltage with a small current. A closed core (one having a continuous magnetic path) such as that shown in Fig. 233
also tends to insure that practically all of the field set up by the current in the primary coil will cut the turns of the secondary coil. However, the core introduces a power loss because of hysteresis, an effect which occurs because the iron tends to retain its magnetism, and hence requires the expenditure of energy to overcome this residual magnetism every time the alternating current reverses in direction, and because of eddy currents, or currents induced in the core by the varying magnetic field.

SYMBOLS
Fig. 233 - The transformer. Power is transferred from the primary coil to the secondary hy means of the magnetic field. The upper symbol at right indicates an ironcore transformer, the lower one an air-core transforner.

Core losses increase with frequency to such an extent that they become excessive at radio frequencies if a transformer is wound on the type of core used for power and audio frequencies. Transformers for use at radio frequencies either are wound on non-magnetic material ("air core") or on special cores made of powdered iron particles held in an insulating binder. In the latter case the core is not used as a means of carrying the magnetic field from the primary to the secondary, but simply to give a larger inductance with a fixed number of turns. In radio-frequency transformers relatively little of the magnetic flux set up by the primary cuts the turns of the secondary. The discussion in this sertion is confined to lowfrequency iron-core transformers, where practically all of the primary flux cuts the secondary. Radio-frequency transformers are considered in § 2-10.

Voltage and turns ratio - For a given varying magnetic field, the voltage induced in a coil in the field will be proportional to the number of turns on the coil. If the two coils of a transformer are in the same field, it follows that the induced voltages will be proportional to the number of turns on each coil. In the case of the primary, or coil connected to the source of power, the induced voltage is practically equal to, and opposes, the applied voltage. Hence, for all practical purposes,

$$
E_{s}=\frac{n_{s}}{n_{p}} E_{p}
$$

where E_{s} is the secondary voltage, E_{p} is the primary voltage, and n_{s} and n_{p} are the number of turns on the secondary and primary, respectively. The ratio n_{s} / n_{p} is called the turns ratio of the transformer.

This relationship is true only when all the flux set up by the primary current cuts all the turns of the secondary. If some of the magnetic flux follows a path which does not make it cut the secondary turns then the secondary voltage is less than given by this formula, since this reduces the number of lines of force (and thus reduces the effective strength of the magnetic field affecting the secondary) by causing the rate of change of flux to be less in the secondary than in the primary. In general, the equation can be used only when both coils are wound on a closed core of high permeability, so that practically all of the flux can be confined to definite paths.

Effect of secondary current - The primary current which has been discussed above is usually called the magnetizing current of the transformer. Like the current in any inductance, it lags the applied voltage by 90 degrees, neglecting the small energy losses in the resistance of the primary coil and in the iron core.

When current is drawn from the secondary winding, the secondary current sets up a magnetic field of its own in the core. The phase relationslip between this field and that caused by the magnetizing current will depend upon the phase relationship between current and voltage in the secondary circuit. In every case there will be an effect upon the original field. To maintain the induced primary voltage equal to the applied voltage, however, the original field must be maintained. Consequently, the primary current must change in such a way that the effect of the field set up by the secondary current is completely canceled. This is accomplished when the primary draws additional current that sets up a field exactly equal to the field set up by the secondary current, but which opposes the secondary field. The additional primary current is thus 180 degrees out of phase with the secondary current.

In rough calculations on transformers it is convenient to neglect the magnetizing current and to assume that the primary current is caused entirely by the secondary load. This is justifiable, because in any well-designed transformer the magnetizing current is quite small in comparison to the load current when the latter is near the rated value.

For the fields set up by the primary and secondary load currents to be equal, the number of ampere turns in the primary must equal the number of ampere turns in the secondary. That is,

$$
n_{\mathrm{a}} I_{\mathrm{a}}=n_{p} I_{p}
$$

Hence,

$$
I_{p}=\frac{n_{s}}{n_{p}} I_{\mathrm{s}}
$$

The load current in the primary for a given load current in the secondary is proportional to the turns ratio, secondary to primary. This is the opposite of the voltage relationships.

If the magnetizing current is neglected, the phase relationship between current and voltage
in the primary circuit will be identical with that existing between the secondary current and voltage. This is because the applied voltage and induced voltage are 180 degrees out of phase, and the primary current and secondary current likewise are 180 degrees out of phase.

Energy relationships; efficiency: - A transformer cannot create energy; it can only transfer and transform it. Hence, the power taken from the secondary cannot exceed that taken by the primary from the source of applied e.m. f . Since there is always some power loss in the resistance of the coils and in the iron core, the power taken from the source always will exceed that taken from the secondary. Thus,

$$
P_{0}=n P_{i}
$$

where P_{0} is the power taken from the secondary, P_{i} is the power input to the primary, and n is a factor which always is less than 1 . It is called the efficiency of the transformer and is usually expressed as a percentage. The efficiency of small power transformers such as are used in radio receivers and transmitters may vary between about 60 per cent and 90 per cent, depending mpon the size and design.

Leakage reactance - In a practical transformer not all of the magnetic flux is common to both windings, although in well-designed transformers the amount of flux which cuts one coil and not the other is only a small percentage of the total flux. This leakage flux acts in the same way as flux about any coil which is not coupled to another coil; that is, it gives rise to self-induction. Consequently, there is a small amount of leakage inductance associated with both windings of the transformer, but not comnion to them. Leakage inductance acts in exactly the same way as an equivalent amount of ordinary inductance inserted in series with the circuit. It has, therefore, a certain reactance, depending upon the amount of inductance and the frequency. This reactance is called leakage reactance.

In the primary the practical effect of leakage reactance is equivalent to a reduction in applied voltage, since the primary current flowing through the leakage reactance causes a voltage drop. This voltage drop increases with increasing primary current, hence it increases as more current is drawn from the secondary. The induced voltage consequently decreases, since the applied voltage (which the induced voltage must equal in the primary) has been effectively reduced. The secondary induced voltage also decreases proportionately. When current flows in the secondary circuit the secondary leakage reactance causes an additional voltage drop, which results in a further reduction in the voltage available from the secondary terminals. Thus, the greater the secondary current, the smaller the secondary terminal voltage becomes. The resistance of the primary and secondary windings of the transformer also causes voltage drops when current is flowing, and, although these voltage

Electrical and Radio Fundamentals 39

drops are not in phase with those caused by leakage reactance, together they result in a lower secondary voltage under load than is indicated by the turns ratio of the transformer.

Fig. 234 - The equivalent circuit of a transformer ineludes the effects of leakage inductance and resistance of both prinary and secondary windings. 'Ihe resistance R_{c} is an equivalent resistance representing the constant core losses. Since these are comparatively small, their effect may be neglected in many approximate caleulations.

At power frequencies (60 cycles) the voltage at the secondary, with a reasonably well-designed transformer, should not drop more than about 10 per cent under load. The drop in voltage may be considerably more than this in a transformer operating at audio frequencies, however, since the leakage reactance in a transformer increases directly with the frequency.

Impedance ratio - In an ideal transformer having no losses or leakage reactance, the primary and secondary volt-amperes are equal; that is,

$$
E_{p} I_{n}=E_{s} I_{s}
$$

On this assumption, and by making use of the relationships between voltage, current and turns ratio previously given, it can be shown that

$$
\frac{E_{p}}{I_{p}}=\frac{E_{4}}{I_{s}}\left(\frac{n_{p}}{n_{t}}\right)^{2}
$$

Since $Z=E / I, E_{\mathrm{a}} / I_{s}$ is the impedance of the load on the secondary circuit, and E_{p} / I_{p} is the impedance of the loarted transformer as viewed from the line. The equation states that the impedance presented by the primary of the transformer to the line, or source of power, is equal to the secondary load impedance multiplied by the square of the primary-to-secondary turns ratio. This primary impedance is called tho reflected imprdance or reflected load. The reflected impedance will have the same phase angle as the secondary load impedance, as previously explained. If the secondary load is resistive only, then the input terminals of the transformer primary will appear to the source of e.m.f. as a pure resistance.

In practice there is always some leakage reactance and power loss in the transformer, so that the relationship above does not hold exactly. However, it gives results which are adequate for many practical cases. The impedance ratio of the transformer consequently is considered to be equal to the square of the turns ratio, both ratios being taken from the same winding to the other.
Impedance matching - Many devices require a specific value of load resistance (or impedance) for optimum operation. The re-
sistance of the actual load which is to dissipate the power may differ widely from this value, hence the transformer, with its impedancetransforming properties, is frequently called upon to clange the actual load to the desired value. This is called impedance matching. From the preceding paragraph,

$$
\frac{n_{a}}{n_{p}}=\sqrt{\frac{Z_{x}}{Z_{p}}}
$$

where n_{s} / n_{p} is the required secondary-toprimary turns ratio, Z_{0} is the impedance of the actual load, and Z_{p} is the impedance required for optimum operation of the device delivering the power.

Transformer construction - Transformers are generally built so that flux leakage is minimized insofar as possible. The magnetic path is laid out so that it is as short as possible, since this reduces its reluctance and hence the number of ampere-turns required for a given flux density, and also tends to minimize flux leakage. I'wo core shapes are in common use, as shown in Pig. 235. In the shell type both windings are placed on the inner leg, while in the core type the primary and secondary windings may be placed on separate legs, if desired. This is sometimes done when it is necessary to minimize capacity effects between the primary and secondary, or when there is a large difference of potential between primary and secondary.

Core material for small transformers is usually silicon steel, called "transformer iron." The core is built up of thin sheets, called laminations, insulated from each other (by a thin coating of shellac, for example) to prevent the flow of eddy currents which are induced in the iron at right angles to the direction of the field. If allowed to flow, these eddy currents would cause considerable loss of energy in overcoming the resistance of the core material. The separate laminations are overlapped, to make the magnetic path as continuous as possible and thus reduce leakage.

The number of turns required on the primary for a given applied e.m.f. is determined by the maximum permissible flux density in the

CORE TYPE
Fig. 235 - Two common types of transformer constriction. Core picces are interlcaved to provide a continuous magnetic path with as low reluctance as possible.
type of core material used, the frequency, and the magnetomotive force required to force the flux through the iron. As a rough indication, windings of small power transformers frequently have about two turns per volt for a core of 1 square inch cross-section and a magnetic path 10 or 12 inches in length. A longer path or smaller cross section would require more turns per volt, and vice versa.

In most transformers the coils are wound in layers, with a thin shect of paper insulation between each layer. Thicker insulation is used between separate coils and between the coils and the core.

In power transformers distributed capacity in the windings is of little consequence, but in audio-frequency transformers it may cause undesired resonance effects (see § $2-10$ for a discussion of resomance). High-grade audio transformers often have special types of windings designed to minimize distributed capacity.

The autotransformer - The transformer principle can be utilized with only one winding instead of two, as shown in Fig. 236; the principles just discussed apply equally well. The autotransformer has the advantage that, since

Fig. 236 - The auto-transformer is hased on the transformer principle. hut uses only one winding. The line and loud currents in the common winding (A) flow in opposite directions, so that the resultant current is the difference between them. The voltage across \mathbf{A} is proportional to the turns ratio.
the line and load currents are out of phase, the section of the winding common to both circuits carries less current than the remainder of the coil. This advantage is not very marked unless the primary and secondary voltages do not differ very greatly, while it is frequently disadvantageous to have a direct connection between primary and secondary circuits. For these reasons, application of the autotransformer is usually limited to boosting or reducing the line voltage by a relatively small amount for purposes of voltage correction.

(1) 2-10 Resonant Circuifs

Principle of resonance - It has been shown (§2-8) that the inductive reactance of a coil and the capacitive reactance of a condenser are oppositely affected by frequency. In any series combination of inductance and capacitance, therefore, there is one particular frequency for which the inductive and capacitive reactances are equal. Since these two reactances cancel each| other, the net reactance in the circuit becomes zero, leaving only the resistance to impede the flow of current. The frequency at which this occurs is known as the resonant frequency of the circuit and the circuit is said to be in resonance at that frequency, or tuned to that frequency.

Series circuits - The frequency at which a series circuit is resonant is that for which $X_{L}=X_{C}$. Substituting the formulas for inductive and capacitive reactance ($\S 2-8$) gives

$$
2 \pi f L=\frac{1}{2 \pi f C}
$$

Solving this equation for frequency gives

$$
=\frac{1}{2 \pi \sqrt{L C}}
$$

This equation is in the fundamental units cycles per second, henrys and farads - and so, if fractional or multiple units are used, the appropriate factors must be inserted to change them to the fundamental units. A formula in units commonly used in radio circuits is

$$
f=\frac{1}{2 \pi \sqrt{\bar{L} C}} \times 10^{6}
$$

where f is the frequency in kilocycles per second, 2π is $6.28, L$ is the inductance in microheurys ($\mu \mathrm{h}$.), and C is the capacitance in micromicrofarads ($\mu \mu \mathrm{fd}$.).

The resistance that may be present does not enter into the formula for resonant frequency.

When a constant a.c. voltage of variable frequency is applied, as shown in Fig. 237-A, the current fiowing through such a circuit will be maximum at the resonant frequency. The magnitude of the current at resonance will be determined by the resistance in the circuit. The curves of Fig. 237 illustrate this, curve a being for low resistance and curves b and c being for increasingly greater resistances.

In the circuits used at radio frequencies the reactance of either the coil or condenser at resonance is usually several times as large as the resistance of the circuit, although the net reactance is zero. As the applied frequency departs from resonance, say on the low-frequency side, the reactance of the condenser increases and that of the inductance decreases, so that the net reactance (which is the difference between the two) increases rather rapidly. When it becomes several times as high as the resistance, it becomes the chief factor in determining the amount of current flowing. Hence, for circuits having the same values of inductance and capacity but varying amounts of resistance, the resonance curves tend to coincide at fre-

Fig. 237 - Characteristics of series-resonant and par-allel-resonant circuits with variations in resistance, R -

Electrical and Radio Fundamentals 41

quencies somewhat removed from resonance. The three curves in the figure show this tendency.

Parallel circuits - The parallel-resonant circuit is illustrated in Fig. 237-B. This circuit also contains inductance, capacitance and resistance in series, but the voltage is applied in parallel with the combination instead of in series with it as in A. As explained in connection with parallel inductance and capacity ($\S 2-8$), the total current through such a combination is less than the current flowing in the branch having the smaller reactance. If the currents through the inductive and capacitive branches are equal in amplitude and exactly 180 degrees out of phase, the total current, called the line current, will be zero no matter how large the individual branch currents may be. The impedance ($Z=E / I$) of such a circuit, viewed from its parallel terminals, would be infinite. In practice the two currents will not be exactly 180 degrees out of phase, because there is always some resistance in one or both branches. This resistance makes the phase relationship between current and voltage less than 90 degrees in the branch containing it, hence the phase difference between the currents in the two branches is less than 180 degrees and the two currents will not cancel completely. However, the line current may be very small if the resistance is small compared to the reactance, and thus the parallel impedance at resonance may be very high.

As the applied frequency is increased or deereased from the resonant frequency, the reactance of one branch decreases and that of the other branch increases. The branch with the smaller reactance takes a larger current, if the applied voltage is constant, and that with the larger reactance takes a smaller current. As a result, the difference between the two currents becomes larger as the frequency is moved farther from resonance. Since the line eurrent is the difference between the two currents, the current increases when the frequency moves away from resonance; in other words, the parallel impedance of the circuit decreases.
The variation of parallel impedance of a parallel-resonant circuit with frequency is illustrated by the same curves of Fig. 237 that show the variation in current with frequency for the series-resonant circuit. The parallel impedance at resonance increases as the series resistance is made smaller.

In the ease of parallel cireuits, resonance may be defined in three ways: the condition which gives maximum impedance, that whieh gives a power factor of 1 (impedance purely resistive), or (as in series circuits) when the inductive and eapacitive reactances are equal. If the resistance is low, the resonant frequencies obtained on the three bases are practically identical. This condition usually is satisfied in radio work, so that the resonant frequency of a parallel circuit is generally computed by the series-resonance formula given above.

Resistance at high frequencies - When current flows in a conductor a magnetic field is set up inside the conductor as well as externally. When the current is alternating, the internal magnetic field induces a voltage inside the conductor which opposes the applied voltage and becomes larger as the center of the conductor is approached. As a result, the current is forced to distribute itself so that the greater proportion flows near the surface and less near the center. This is known as skin effect.

Skin effect is negligible at low frequencies, but increases with increasing frequency to such an extent that at radio frequencies the major portion of the current flows near the surface. In the u.h.f. range, all the current may be concentrated within one or two thousandths of an inch of the surface, so that for all practical purposes the current flows entirely on the surface.

Since little current flows in the interior of a conductor at radio frequencies, the effect is the same as though the eurrent were flowing in a thin conducting tube. This is the same as reducing the cross-sectional area of the conductor, which increases its resistance. Consequently skin effect increases the resistance of a solid conductor as compared to its value for d.c. and low-frequency a.c.

Low resistance at radio frequencies can be achieved by using conductors with large surface area. Since the inner part of the conductor does not carry current, thin-walled tubing may be used for coils equally as well as solid wire of the same diameter.

In the case of inductance coils, the magnetic field close to the wire causes the current to tend to concentrate in the part of the conductor where the field is weakest, again causing an effective decrease in the conductor size and raising the resistance. These effects, plus the effects of stray currents flowing through the distributed capacity (\$2-8) between turns, raise the effective resistance of a coil at radio frequencies to many times the d.c. resistance of the wire.

Sharpness of resonance- As the internal series resistance is increased the resonance curves become "flatter" for frequencies near the resonance frequency, as shown in Fig. 237. The relative sharpness of the resonance curve near resonance frequency is a measure of the sharpness of tuning or selectivity (ability to diseriminate between voltages of different frequencies) in such circuits. This is an important consideration in tuned cireuits for radio work.

Flywheel effect; Q - A resonant cireuit may be compared to a flywheel in its behavior. Just as such a wheel will continue to revolve after it is no longer driven, so also will oscillations of electrical energy continue in a resonant circuit after the source of power is removed. The flywheel continues to revolve because of its stored mechanical energy; current flow continues in a resonant cireuit by virtue of the energy stored in the magnetic field of the coil and the electric field of the condenser. When
the applied power is shut off the energy surges back and forth between the coil and condenser, being first stored in the field of one, then released in the form of current flow, and then restored in the field of the other. Since there is always resistance present some of the energy is lost as heat in the resistance during each of these oscillations of energy, and eventually all the energy is so dissipated. The length of time the oscillations will continue is proportional to the ratio of the energy stored to that dissipated in each cycle of the oscillation. This ratio is called the Q (quality factor) of the circuit.

Since energy is stored by either the inductance or capacity and may be dissipated in either the inductive or capacitive branch of the circuit, a Q can be established for either the inductance or capacity alone as well as for the entire circuit. It can be shown that the energy stored is proportional to the reactance and that the energy dissipated is proportional to the resistance, so that, for either inductance or capacity associated with resistance,

$$
Q=\frac{X}{R}
$$

This relationship is useful in a variety of circuit problems.

In resonant circuits at frequencies below about 28 Mc . the internal resistance is almost wholly in the coil; the condenser resistance may be neglected. Consequently, the Q of the circuit as a whole is determined by the Q of the coil. Coils for use at frequencies below the very-high-frequency region may have Q s ranging from 100 to several hundred, depending upon their size and construction.

The sharpness of resonance of a tuned circuit is directly proportional to the Q of the circuit. As an indication of the effect of Q, the current in a series circuit drops to a little less than half its resonance value when the applied frequency is changed by an amount equal to $1 / Q$ times the resonant frequency. The parallel impedance of a parallel circuit similarly decreases with change in frequency. For example, in a circuit having a Q of 100 , changing the applied frequency by $1 / 100 t h$ of the resonant frequency will decrease the parallel impedance to less than half its value at resonance.

Damping, decrement - The rate at which current dies down in amplitude in a resonant circuit after the source of power has been removed is called the decrement or damping of the circuit. A circuit with high decrement (low Q) is said to be highly damped; one with low decrement (high Q) is lightly damped.

Voltage rise - When a voltage of the resonant frequency is inserted in series in a resonant circuit, the voltage which appears across either the coil or condenser is considerably higher than the applied voltage. This is because the current in the circuit is limited only by the actual resistance of the coil-condenser combination in the circuit, and bence may have a relatively high value; however, the same
current flows through the high reactances of the coil and condenser, and consequently causes large voltage drops (§ 2-8). As explained above, the reactances are of opposite types and hence the voltages are opposite in phase, so that the net voltage around the circuit is only that which is applied. The ratio of the reactive voltage to the applied voltage is proportional to the ratio of reactance to resistance, which is the Q of the circuit. Hence, the voltage across either the coil or condenser is equal to Q times the voltage inserted in series with the circuit.

If, for example, the inductive reactance of a circuit is 200 ohms, the capacitive reactance is 200 ohms, the resistance 5 ohms, and the applied voltage is 50 , the two reactances cancel and there will be but the 5 ohms of pure resistance to limit the current flow. Thus the current will be $50 / 5$, or 10 amperes. The voltage developed across either the coil or the condenser will be equal to its reactance times the current, or $200 \times 10=2000$ volts.

The ratio of reactive voltage to applied voltage is equal to the ratio of the reactance of the coil or the condenser to the resistance. Since the latter ratio equals the Q of the circuit, the reactive voltage equals the applied voltage times the $Q(200 / 5$ or $40 \times 50=2000$ volts).

Parallel-resonant circuit impedanceThe parallel-resonant eircuit offers pure resistance (its resonant impedance) between its terminals because the line current is practically in phase with the applied voltage. At frequencies off resonance the current increases through the branch having the lower reactance (and vice versa) so that the circuit becomes reactive, and the resistive component of the impedance decreases as shown in Fig. 238.

If the circuit Q is 10 or more, the parallel impedance at resonance is given by the formula

$$
Z_{r}=X^{2} / R=X Q
$$

where X is the reactance of either the coil or the condenser and R is the internal resistance.
Q of loaded circuits - In many applications, particularly in receiving, the only power dissipated is that lost in the resistance of the resonant circuit itself. Hence the coil should be designed to have as high Q as possible. Since, within limits, increasing the number of turns raises the reactance faster than it raises the

Fig. 238 - The impedance of a parallel-resonant resistance circuit is shown here separated into its reactance and resistance components. The parallel resistance of the circuit is equal to the parallel impedance at resonance.

Electrical and Radio Jundamentals 43

resistance, coils for such purposes are made with relatively large inductance for the frequency under consideration.
On the other hand, when the circuit delivers energy to a load, as in the case of the resonant circuits used in transmitters, the energy eonsumed in the circuit itself is usually negligible compared with that consumed by the load. The equivalent of such a circuit can be represented as shown in Fig. 239-A, where the parallel resistor represents the load to which power is delivered. If the power dissipated in the load is greater by 10 times or more than the power lost in the coil and condenser, the parallel impedance of the resonant circuit alone will be so high compared to the resistance of the load that the latter may be considered to determine the impedance of the combined circuit. (The parallel impedance of the tuned circuit alone is resistive at resonance, so that the impedance of the combined circuit may be calculated from
(A)

(B)

Fig. 239 - The equivalent circuit of a resonant cireuit delivering power to a load. The resistor R represents the load resistance. At (B) the load is tapped across part of L, which by transformer action is equivalent to using a higber load resistanec across the whole circuit.
the formula for resistances in parallel. If one of two resistances in parallel has 10 times the resistance of the other, the resultant resistance is practically equal to the smaller resistance.) The error will be small, therefore, if the losses in the tuned circuit alone are neglected. Then, since $Z=X Q$, the Q of a circuit loaded with a resistive impedance is

$$
Q=\frac{Z}{X}
$$

where Z is the load resistance connected across the circuit and X is the reactance of either the coil or condenser. Hence, for a given parallel impedance, the effective Q of the circuit including the load is inversely proportional to the reactance of either the coil or the condenser. A circuit loaded with a relatively low resistance (a few thousand ohms) must therefore have a large capacity and relatively small induetance to have reasonably high Q.

From the above it is evident that connecting a resistance in parallel with a resonant circuit decreases the impedance of the circuit. However, the reactances in the circuit are unchanged, hence the reduction in impedance is equivalent to a reduction in the Q of the circuit. The same reduction in impedance also could be brought about by increasing the series resistance of the circuit. The equivalent series resistance introduced in a resonant circuit by an actual resistance connected in parallel is that value of resistance which, if added in series with the coil and condenser, would decrease the circuit Q to the same value it has when the parallel resistance is connected.

When the resistance of the resonant circuit alone can be neglected, the equivalent resistance is

$$
R=\frac{X^{2}}{Z}
$$

the symbols having the same meaning as in the formula above.

The effect of a load of given resistance on the Q of the circuit can be changed by connecting the load across only part of the cireuit. The most common method of accomplishing this is by tapping the load across part of the coil, as shown in Fig. 239-B. The smaller the portion of the eoil across which the load is tapped, the less the loading on the circuit; in other words, tapping the load "down" is equivalent to connecting a higher value of load resistance across the whole cireuit. This is similar in principle to impedance transformation with an iron-core transformer (§ 2-9). However, in the high-frequency resonant circuit the impedance ratio does not vary exactly as the square of the turn ratio, because all the magnetic flus lines do not cut every turn of the coil. A desired reflected impedance usually must be obtained by experimental adjustment.

L/C ratio- The formula for resonant frequency of a eircuit shows that the same frequency always will be obt:ined so long as the product of L and C is constant. Within this limitation, it is evident that L can be large and C small, L small and C large, etc. The relation between the two for a fixed frequency is called the L / C ratio. A high-C pircuit is one which has more capacity than "normal" for the frequency; a low-C circuit one which has less than normal capacity. These terms depend to a considerable extent upon the particular applieation considered, and have no exact numerical meaning.

LC constants - As pointed out in the preceding paragraph, the product of inductance and capacity is constant for any given frequency. It is frequently convenient to use the numerical value of the $L C$ constant when a number of calculations have to be made involving different L / C ratios for the same frequency. The constant for any frequency is given by the following equation:

$$
L C=\frac{25330}{f^{2}}
$$

where L is in microhenrys, C in micromicrofarads, and f is in megacyeles.

4. 2-11 Coupled Circuits

Energy transfer; loading - Two circuits are said to be coupled when energy can be transferred from one to the other. The circuit delivering energy is called the primary circuit; that receiving energy is called the secondary circuit. The energy may be practically all dissipated in the secondary circuit itself, as in receiver circuits, or the secondary may simply act as a medium through which the energy is transferred to a load resistance where it does
work. In the latter case, the coupled eircuits may act as a radio-frequency impedancematching device (§2-9) where the matching can be accomplished by adjusting the loading on the secondary ($\$ 2-10$) and by varying the coupling between the primary and secondary.

Fig. 240 - Basic methods of circuit coupling.
Coupling by a common circuit element One method of coupling between two resonant circuits is to have some type of circuit element common to both circuits. The three variations of this type of coupling (often called direct coupling) shown at A, B and C of Fig. 240, utilize a common inductance, capacity and resistance, respectively. Current circulating in one $L C$ branch flows through the common element (L_{c}, C_{c}, or R_{c}) and the voltage developed across this element causes current to flow in the other $L C$ branch. The degree of coupling between the two circuits becomes greater as the reactance (or resistance) of the common element is increased in comparison to the remaining reactances in the two branches.
If both circuits are resonant to the same frequency, as is usually the case, the common impedance - reactance or resistance - required for maximum energy transfer is generally quite small compared to the other reaetances in the circuits.

Capacity coupling - The circuit at D shows electrostatic coupling between two resonant circuits. The coupling increases as the capacity of C_{c} is made greater (reactance of C_{c} is decreased). When two resonant circuits are coupled by this means, the capacity required
for maximum energy transfer is quite small if the Q of the secondary circuit is at all high. For example, if the parallel impedance of the secondary circuit is 100,000 ohms, the reactance of the coupling condenser need not be lower than 10,000 ohms or so for ample coupling. The corresponding capacity required is only a few micromicrofarads at high frequencies.
Inductive coupling - Fig. 240-E illustrates inductive coupling, or eoupling by means of the magnetic field. A circuit of this type resembles the iron-core transformer ($\$ 2-9$) but, because only a small percentage of the flux lines set up by one coil cut the turns of the other coil, the simple relationships between turns ratio, voltage ratio and impedance ratio in the iron-core transformer do not hold. To determine the operation of such circuits, it is necessary to take account of the mutual inductance ($\$ 2-5$) between the coils.
Link coupling - A variation of inductive coupling, called link coupling, is shown in Fig. 241. This gives the effect of inductive coupling between two coils which may be so separated that they have no mutual inductance; the link may be considered simply as a means of providing the mutual inductance. Because mutual inductance between coil and link is involved at each end of the link, the total mutual inductance between two link-coupled circuits cannot be made as great as when normal inductive coupling is used. In practice, however, this ordinarily is not disadvantageous. Link coupling frequently is convenient in the design of equipment where inductive coupling would be impracticable for constructional reasons.

The link coils generally have few turns compared to the resonant-circuit coils, since the coefficient of coupling is relatively independent of the number of turns on either coil.
Coefficient of coupling - The degree of coupling between two coils is a function of their mutual inductance and self-inductances:

$$
k=\frac{M}{\sqrt{L_{1} L_{2}}}
$$

where k is called the coefficient of coupling. It is often expressed as a percentage. The coefficient of coupling cannot be greater than 1 , and generally is much smaller in resonant circuits.
Inductively coupled circuits - Three types of circuits with inductive coupling are in general use. As shown in Fig. 242, one type has a tuned-secondary circuit with an untunedprimary coil, the second a tuned-primary circuit and untuned-secondary coil, and the third uses tuned circuits in both the primary and

Fig. 241 - Link coupling. The mutual inductances at both ends of the link are equivalent to mutual inductance between the tuned circuits, and serve the same purposc.

Fig. 242 - Types of inductively coupled circuits. In A and B , one circuit is tumed, the other untuned. C shows the method of coupling between two tuned eircuits.
secondary. The circuit at A is frequently used in receivers for coupling between amplifier tubes when the tuning of the circuit must be varied to respond to signals of different frequencies. Circuit B is used principally in transmitters, for coupling a radio-frequency amplifier to a resistive load. Circuit C is used for fixed-frequency amplification in receivers. The same circuit also is used in transmitters for transferring power to a load which has both reactance and resistance.

If the coupling between the primary and secondary is "tight" (coefficient of coupling large), the effect of inductive coupling in circuits A and B, Fig. 242, is much the same as though the circuit having the untuned coil were tapped on the tuned circuit ($\$ 2-10$). Thus any resistance in the circuit to which the untuned coil is connected is coupled into the tuned circuit in proportion to the mutual inductance. This is equivalent to an increase in the series resistance of the tuned circuit, and its Q and selectivity are reduced ($\$ 2-10$). The higher the coefficient of coupling, the lower the Q for a given value of resistance in the coupled circuit. These circuits may be used for impedance matching by adjustment of the coupling and of the number of turns in the untuned coil.

If the circuit to which the untuned coil is connected has reactance, a certain amount of reactance will be "coupled in" to the tuned circuit depending upon the amount of reactance present and the degree of coupling. The chief effect of this coupled reactance is to require readjustment of the tuning when the coupling is increased, if the tuned circuit has first been adjusted to resonance under conditions of very loose coupling.

Coupled resonant circuits - The effect of a tuned-secondary circuit on a tuned primary is somewhat more complicated than in the simpler circuits just described. When the secondary is tuned to resonance with the applied frequency, its impedance is resistive only. If the primary also is tuned to resonance, the eurrent
flowing in the secondary circuit (caused by the induced voltage) will, in turn, induce a voltage in the primary which is oppositc in phase to the voltage acting in series in the primary circuit. This opposing voltage reduces the effective primary voltage, and thus causes a reduction in primary current. Since ile actual voltage applied in the primary circuit has not changed, the reduction in current can be looked upon as being caused by an increase in the resistance of the primary circuit. That is, the effect of coupling a resonant secondary to the primary is to increase the primary resistance. The resistance under consideration is the series resistance of the primary circuit, not the parallel impedance or resistance. The parallel resistance decreases, since the increase in series resistance reduces the Q of the primary circuit.

If the secondary circuit is not tuned to resonance, the voltage induced back in the primary by the secondary current will not be exactly out of phase with the voltage acting in the primary; in effect, reactance is coupled into the primary circuit. If the applied frequency is fixed and the secondary cireuit tuning is being varied, this means that the primary circuit will have to be retuned to resonance each time the secondary tuning is changed.

If the two circuits are initially tuned to resonance at a given frequency and then the applied frequency is varied, both circuits become reactive at all frequencies off resonance, Under these conditions, the reactance coupled into the primary by the secondary retunes the primary circuit to a new resonant frequency. Thus, at some frequency off resonance, the primary current will be maximum, while at the actual resonant frequency the current will be smaller because of the resistance coupled. in from the secondary at resonance. There is a point of maximum primary current both above and below the true resonant frequency.

These effects are almost negligible with very "loose" coupling (coefficient of coupling very small), but increase rapidly as the coupling increases. Because of them, the selectivity of a pair of coupled resonant circuits can be varied over a considerable range simply by changing the coupling between them. Typical curves showing the variation of selectivity are shown in Fig. 243, lettered in order of increasing co-

Fig. 243 - Showing the effect on the output voltage from the secondary circuit of changing the coeffieient of coupling hetween two resonant eircuits independently tuned to the same frequency. The input voltage is held constant in amplitude while the frequency is varied.
efficient of coupling. At loose coupling, A, the voltage across the secondary circuit (induced voltage multiplied by the Q of the secondary circuit) is less than the maximum possible because the induced voltage is small with loose coupling. As the coupling increases the seeondary voltage also increases, until critical coupling, B, is reached. At still eloser coupling the effeet of the primary current "humps" causes the secondary voltage to show somewhat similar humps, while when the coupling is further increased the frequency separation of the humps becomes greater. Resonance curves such as those at C and D are called "flattopped," because the output voltage is substantially constant over an appreciable frequency range.

Critical coupling - It will be observed that maximum secondary voltage is obtained in the curve at B in Fig. 243. With tighter coupling the resonance curve tends to be double-peaked, but in no case is such a peak higher than that shown for curve B. The coupling at which the secondary voltage is maximum is known as critical coupling. With this coupling the resistance coupled into the primary circuit is equal to the resistance of the primary itself, corresponding to the condition of matched impedances. Hence, the energy transfer is maximum at critical coupling. The over-all selectivity of the coupled circuits at critical coupling is intermediate between that obtainable with loose coupling and tight coupling. At very loose coupling, the selectivity of the system is very nearly equal to the product of the selectivities of the two circuits taken separately; that is, the effective Q of the circuit is equal to the product of the $Q s$ of the primary and secondary.

Effect of circuit Q - Critical coupling is a function of the $Q s$ of the two circuits taken independently. A higher coefficient of coupling is required to reach critical coupling when the Qs are low; if the Qs are high, as in receiving applications, a coupling coefficient of a few per cent may give critical eoupling.

With loaded circuits it is not impossible for the Q to reach such low values that critical coupling cannot be obtained even with the highest practicable coefficient of coupling (coils as close physically as possible). In such case the only way to secure sufficient coupling is to increase the Q of one or both of the coupled circuits. Thls ean be done cither by decreasing the L / C ratio or by tapping the load down on the secondary coil ($\S 2-10$). One or the other of these methods often must be used with link coupling, because the maximum coefficient of coupling between two coils seldom runs higher than 50 or 60 per cent and the net coefficient is approximately equal to the products of the coefficients at each end of the link. If the load resistance is known beforehand, the circuits may be designed for a Q in the vicinity of 10 or so with assurance that sufficient coupling will be available; if unknown, the proper $Q s$ can be determined by experiment.

Shielding - Frequently it is necessary to prevent coupling between two circuits which, for constructional reasons, must be physically near each other. Capacitive coupling may readily be prevented by enclosing one or both of the circuits in grounded low-resistance metallic containers, called shields. The electrostatic field from the circuit components does not penetrate the shield, because the lines of force are short-circuited ($\S 2-3$). A metallic plate called a bafle shield, inserted between two components, may suffice to prevent electrostatic coupling between them, since very little of the field tends to bend around such a shield if it is large enough to make the components invisible to each other.

Similar metallic shielding is used at radio frequencies to prevent magnetic coupling. In this case the magnetic field induces a current (eddy current) in the shield, which in turn sets up its own magnetic field opposing the original field ($\S 2-5$). The induced current is proportional to the frequency and also to the conductivity of the shield, hence the shielding effect increases with frequency and with the conductivity and thickness of the shielding material. A closed shield is required for good magnetic shielding; in some cases separate shields, one about each coil, may be required. The baffle shield is rather ineffective for magnetic shielding, although it will give partial shielding if placed at right angles to the axes of, as well as between, the two coils to be shielded from each other.

Cancellation of part of the field of the coil reduces its inductance, and, since some energy is dissipated in the shield, the effective resistance of the coil is raised as well. Hence the Q of the coil is reduced. The effect of shielding on coil Q and inductance becomes less as the distance between the coil and shield is increased. The losses also decrease with an increase in the conductivity of the shield material. Copper and aluminum are satisfactory materials. The Q and inductance will not be greatly reduced if the spacing between the sides of the coil and the shield is at least half the coil diameter, and is not less than the coil diameter at the ends of the eoil.

At audio frequencies the shielding container should be made of magnetic material, preferably of high permeability ($\$ 2-5$), to provido a low-reluctance path for the external flux about the coil to be shielded. A nonmagnetic shield is quite ineffectual at these low frequencies since the induced current is small.

Filters - By suitable choice of circuit elements a coupling system may be designed to pass, without undue attenuation, all frequencies below and reject all frequencies above a certain value, called the cut-off frequency. Such a coupling system is called a filter, and in the above case is known as a low-pass filter.

If frequencies above the cut-off frequency are passed and those below attenuated, the filter is a high-pass filter. Simple filter circuits of both

Electrical and Radio Iundamentals 47

Fig. 244 - Basie forms of filter networks. Typical frequency response curves for each type are shown at the right.
types are shown in Fig. 244, along with typical frequency-response curves. The fundamental circuit, from which more complex filters are constructed, is the L-section. Fig. 244 also show's π-section and T-section filters, both constructed from the basic L-section.

A band-pass filter; also shown in Fig. 244, is a combination of high- and low-pass filter elements designed to pass without attenuation all frequencies between two selected eut-off frequencies, and to attenuate all frequencies outside these limits. The group of frequencies which is passed by the filter is called the passband. Two resonant cireuits with greater than eritical coupling represent a common form of band-pass filter.

In curves of Fig. 244, A shows the attenuation at high frequencies of a single-section lowpass filter with high- Q components; B illustrates the extremely sharp eut-off obtainable with a more elaborate three-scetion filter. Curve C is that of a high-pass section having high Q, comparable to A. D shows the attenuation by a less-efficient section having some resistance in the inductance branch. Curves E, F and G illustrate various band-pass characteristics, E being a low-Q narrow-band filter, F a high- Q narrow-band, and G a wide-band high- Q two-section filter.
Filter circuits are frequently encountered both in low-frequency and r.f. applications. The proportions of L and C for proper operation depend upon the load resistance connected aeross the output terminals, L being larger and C smaller as the load resistance is increased. The type of section does not affect the attenuation curve, provided the input and output resistances are correct. In a symmetrical filter the input and output impedances must be equal to the impedance for which the filter is designed. Assuming these relationships, the
Fig. 245 - L-scction and π-secFig. 245 - L-scction and π-sec-
tion resistance-capacity filter circuits (left) and curves showing the attenuation in db . for three different RC products at various frequencies in the audio-frequency range.

when a voltage drop aetually is required. The time constant, $R C$, (§ 2-6) must be large compared to the time of one eycle of the lowest frequency to be attenuated. In determining the time constant, the resistance of the load must be included as well as that in the filter itself.

Fig. 2.46 - l Bridge circuits utilizing resistance, inductance and capacity arms, both alore and in combination.

Bridge circuils - A bridge circuit is a device primarily used in making measurements of resistance, reactance or impedance ($\$ 2-8$), and frequency, althourh bridges also have other applications in radio circuits.

The fundamental form is shown in Fig. 246-A. It consists of four resistances (called arms) connected in series-parallel to a source of voltage, E, with a sensitive galvanometer, M, connected between the junctions of the series-connected pairs. When the equation

$$
\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}
$$

is satisfied there is no potential difference between points A and B, since the drop across R_{2} equals that across R_{1} and the drop across R_{1} equals that across R_{3}. Under these conditions the bridge is said to be balanced, and no current flows through M. If R_{3} is an unknown resistance and R_{4} is a variable known resistance, R_{3} can be found from the following equation after R_{+}has been adjusted to balance the bridge (null indication on M):

$$
R_{3}=\frac{R_{1}}{R_{2}} R_{4}
$$

R_{1} and R_{2} are knorn as the ratio arms of the bridge; the ratio of their resistances is usually adjustable (frequently in steps of $1,10,100$, etc.), so that a single variable resistor, R_{4}, can serve as a standard for measuring widely different values of unknown resistance.

Bridges similarly can be formed with arms containing capacity or inductance, and with combinations of either with resistanee. Typical simple arrangements are shown in Fig. 246. For measurements involving alternating current the bridge must not introduce phase shifts which will destroy the balance, hence similar impedances should be used in each branch, as shown in Fig. 246, and the Qs of the coils and condensers should be the same. When bridges are used at audio frequencies, a telephone headset is a suitable null indicator. The bridges at E and F are commonly used in r.f. neutralizing circuits ($\S 4-7$); the voltage from the source, $E_{a c}$, is balaneed out al X.

© 2-12-A Linear Circuits

Standing waves - If an electrical impulse is started along a wire, it will travel at approximately the speed of light until it reaches the end. If the end of the wire is open circuited, the impulse will be reflected at this point and will travel back again. When a high-frequency alternating voltage is applied to the wire a current will flow toward the open end, and reflection will occur continuously. If the wire is long enough so that time comparable to a half cycle or more is required for current to travel to the open end, the phase relations between the reflected current and outgoing current will vary along the wire. At one point the two currents will be 180° out of phase and at another in phase, with intermediate values between. Assuming negligible losses, the resultant current along the wire, as measured by a current-indicating instrument such as a thermo-couple ammeter, will vary in amplitude from zero to a maximum value. Such a variation is called a standing wave. The voltage along the wire also goes through standing waves, reaching its maximum value where the current is minimum and vice versa.

When the wire is cut to such a length that the current traverses it in one direction in exactly the time of one-half cycle, a single standing wave will occur along the wire and the wire is said to be resonant to the applied frequency. Although the inductance and capacity are distributed along the wire rather than being concentrated in a coil and condenser, such a wire is in many ways equivalent to an ordinary resonant circuit.

Frequency and wavelength - It is possible to describe the constants of such line circuits in terms of inductance and capacitance, but it is more convenient to give them simply in terms of fundamental resonant frequency or of length. Since the velocity at which the current travels is 300,000 kilometers (186,000 miles) per second, the wavelength, or distance the current will travel in the time of one cycle, is

$$
\lambda=\frac{300,000}{f_{k c .}}
$$

where λ is the wavelength in meters and $f_{k c}$. is the frequency in kilocycles.

Fig. 247 - Standing-wave current distribution on a wire operating as an oscillatory circuit, at the fundamental, second harmonic and third harmonic frequencies.

Harmonic resonance - Although a coilcondenser combination having lumped constants (capacitance and inductance) resonates only at one frequency, circuits such as antennas which contain distributed constants resonate readily at frequencies which are very nearly integral multiples of the fundamental frequency. These frequencies are, therefore, in harmonic relationship to the fundamental frequency, and hence are referred to as harmonics ($\$ 2-7$). In radio practice the fundamental itself is called the first harmonic, the frequency twice the fundamental is called the second harmonic, and so on.

Fig. 247 illustrates the distribution of current on a wire for fundamental, second and third harmonic excitation. There is one point of maximum current with fundamental operation, two when operation is at the second harmonie, and three at the third harmonie; the number of eurrent maxima corresponds to the order of the harmonic and the number of standing waves on the wire. As noted in the figure, the points of maximum eurrent are ealled anti-nodes (also known as "loops") and the points of zero current are called nodes.

In the case of the harmonic current curves, the half-wave curves are drawn alternately above and below the reference line to indieate that the phase of the current reverses in each half wavelength. In other words, if current in one half-wave section is flowing to the right, for example, the current in the adjacent halfwave section will be flowing to the left. However, when the current is measured with an r.f. ammeter there will simply be a maximum indication at the center of each half-wave section, since the ammeter cannot indicate phase.

Radiation resistarce - Since a line eircuit has distributed-inductance and eapacity, cur-

Fig. 248 - Standing wave and instantaneous current (shown by the arrows) iu a folded resonant-line circuit.
rent flow eauses storage of energy in magnetic and electrostatic fields ($\$ 2-3,2-5$). As the fields travel outward from the wire at the speed of light, some of the energy escapes from the circuit in the form of electromagnetic waves; that is, energy is radiated from the wire. Such a wire is, in fact, an antenna. Since the energy radiated by the line or antenna represents a loss, insofar as the line is concerned, the loss of energy can be considered to take place in an equivalent resistance. The value of the equivalent resistance is found from the ordinary Ohm's Law formulta. $R=P / I^{2}$, where P is the power radiated and I is the current in the wire. R, the equivalent resistance, is called radiation resistance.

Two-conductor lines - The effective resistance of a resonant straight wire is fairly high, because a large proportion of the power supplied to such a wire is radiated. In many cases it is necessary to transfer power from one point to another with the least possible loss for example, from a transmitter to a radiating antenna which may be located some distance away. If the line is folded so that there are two conductors instead of one, as shown in Fig. 248, the eurrents in adjacent sections of the two wires are flowing in opposite directions, consequently the fields set up by the two oppose each other and there is very little radiation.

The quarter-wave folded line in Fig. 248 has a total length of one-half wavelength, hence is resonant to the frequency corresponding to its length. Since the current is large and the voltage is low at the elosed end, the impedance at this point is quite low. On the other hand, the

Fig. 249 - A quarter-wave coaxial-line resonaut circuit.
voltage is high and the current is very low at the open end, so at this point the impedance is higl. These properties of a quarter-wave twoeonductor line have applications to be deseribed later.

A folded line also may be constructed in the form of two coaxial or concentric conductors, as shown in Fig. 249. In effect, this line is directly comparable with the parallel conductor line, except that one conductor may be said to have been rotated around the other in a complete circle. The coaxial line has even lower radiation resistance than the folded-wire line, since the outer conductor acts as a shield. Standing waves exist but are confined to the outside of the inner conductor and the inside of the outer conductor, since skin effect prevents the currents from penetrating to the other sides. Thus such a line will have no radio-frequency potentials on its exposed surfaces, and no radiation can occur. Because of the low radiution resistance and the relatively large
conducting surfaces, such self-enclosed resonant lines can be made to have much higher $Q s$ than are attainable with coils and condensers. They are most applicable at very high frequencies (very short wavelengths) (§2-7), where the dimensions are small.

A modified form of construction for coaxial lines is the "trough" line in which a tubular inner conductor is enclosed within a rectangular sheet-metal box or trough, usually left open on one side to facilitate tapping or other adjustments. The absence of shielding on one side does not affect the performance materially, and the simplicity of construction is an advantage.

The term transmission line is generally applied to all lines whether they are actually used as a means for transferring radio-frequency power between two points or whether they are used as replacements for coil-and-condenser resonant circuits. The lines shown in Figs. 248 and 249 are "short" lines of the type frequently used for the latter purpose. For transferring power the line may be many wavelengths long, depending upon the distance over which the power is to be transmitted. Furthermore, a line used for this purpose is not necessarily resonant; in fact, it may be desirable to avoid resonance effects entirely.

If a transmission line could be made infinitely long, power would simply travel along it until it was entirely dissipated in the resistance of the line; there would be nothing to reflect it and standing waves would not exist. Such a line would present a constant impedance in the form of a pure resistance to an input at any frequency, and hence would show no resonance

Fig. 250 - Cbaracteristic impedance of uniform lines.
effects. Practically, the characteristics of an in-finitely-long line can be simulated by terminating a line of finite length in a load resistance equal to the characteristic impedance of the line. This and other general properties of transmission lines are discussed in the following paragraphs.

Characteristic impedance - The characteristic impedance of a transmission line, also known as the surge impedance, is defined as that impedance which a long line would present to an electrical impulse induced in the line. In an idenl line having no resistance it is equal to the square root of the ratio of inductance to capacity per unit length of the line.

The characteristic impedance of air-insulated transmission lines may be calculated from the following formulas:

Parallel-conductor line:

$$
\begin{equation*}
Z=276 \log \frac{b}{a} \tag{5}
\end{equation*}
$$

where 2 is the surge impedance, b the spacing, center to center, and a the radius of the conductor. The quantities b and a must be measured in the same units (inches, cm., etc.).
Coaxial or concentric line:

$$
\begin{equation*}
Z=198 \log \frac{b}{a} \tag{6}
\end{equation*}
$$

where Z again is the surge impedance. In this case, b is the inside diameter (not radius) of the outer conductor and a is the outside diameter of the inner conductor. The formula is true for lines having air as the dielectric, and approximately so with ceramic insulators so spaced that the major part of the insulation is air.

The surge impedance for both parallel and conxial lines using various sizes of conductors is given in chart form in Fig. 250.

When a solid insulating material is used between the conductors, the increase in line capacity causes the impedance to decrease by the factor $1 / \sqrt{K}$, where K is the dielectric constant of the insulating material.

Although two-conductor lines have lower radiation, a single-conductor line can be used for transferring power if it is terminated in its characteristic impedance. Under such circumstances the current in the line will be small, and since radiation is proportional to current the radiation also will be small. The characteristic impedance of a single-wire transmission line varies with conductor size, height above ground, and orientation with respect to ground. An average figure is about $500 . \mathrm{ohms}$.

Standing-wave ratio - The lengths of transmission lines used at radio frequencies are of the same order as the operating wavelengths, and therefore standing waves of current and voltage may appear on the line. The ratio of current (or voltage) at a loop to the value at a node (standing-wave ratio) depends upon the ratio of the resistance of the load connected to the output end of the line (its termination) to the characteristic imped-

Electrical and Radio Fundamentals 51

ance of the line itself. That is,

$$
\begin{equation*}
\text { Standing-wave ratio }=\frac{Z_{s}}{Z_{t}} \text { or } \frac{Z_{t}}{Z_{t}} \tag{7}
\end{equation*}
$$

where $Z_{\text {a }}$ is the characteristic impedance of the line and Z_{t} is the terminating resistance. Z_{t} is generally called an impedance, although it must be non-reactive and therefore must correspond to a pure resistance for the line to operate as described. For example, this means that if the load or termination is an antenna, it must be resonant at the operating frequency.

The formula is given in two ways because it is customary to put the larger number in the numerator, so that the ratio will not be fractional. As an example, a 600 -ohm line terminated in a resistance of 70 ohms will have a standing wave ratio of $600 / 70$, or 8.57 . The ratio on a 70 -ohm line terminated in a resistance of 600 ohms would be the same. Thus, if the current as mensured at a node is $0.1 \mathrm{am}-$ pere, the current at a loop will be 0.857 ampere.

A line terminated in a resistance equal to its characteristic impedance is equivalent to an infinitely long line; consequently there is no reflection, and no standing waves will appear. The standing wave ratio therefore is 1 . The input end of such a line appears as a pure resistance of a value equal to the characteristic impedance of the line.

Electrical length - The electrical length of a line is not exactly the same as its physical length for reasons corresponding to the end effects in antennas ($\$ 10-2$). Spacers used to separate the conductors have dielectric constants larger than that of air, so that the waves do not travel quite as fast along a line as they would in air. The lengths of electrical quarter waves of various types of lines can be calculated from the formula

$$
\operatorname{Length}(\text { feet })=\frac{246 \times V}{F_{\tau} \tau q .(M c .)}
$$

where V depends upon the type of line. For lines of ordinary construction, V is as follows:

Reactance, resistance, impedance - The input end of a line may show reactance as well as resistance, and the values of these quantities will depend upon the nature of the load at the output end, the electrical length of the line, and the line characteristic impedance. The reactance and resistance are important in determining the method of coupling to the source of power. Assuming that the load at the output end of the line is purely resistive, a line less than a quarter wavelength long electrically will show inductive reactance at its input terminals when the output termination is less than the characteristic impedance, and capaci-

Fig. 251 - Input reactive characteristics of resistanceterminated transmission lines as a function of line length.
tive reactance when the termination is higher than the characteristic impedance. If the line is more than a quarter wave but less than a half wave long, the reverse conditions exist. These properties are shown in Fig. 251. With still longer lengths, the reactance characteristics reverse in ench succeeding quarter wavelength. The input impedance is purely resistive if the line is an exact multiple of a quarter wave in length. The reactance at intermediate lengths is higher the greater the standing-wave ratio, being zero for a ratio of 1 .

Whether lines are classified as resonant or nonresonant depends upon the standing-wave ratio. If the ratio is near 1 , the line is said to be nonresonant, and reactive effects will be small even when the line length is not an exact multiple of a quarter wavelength. If the standingwave ratio is large, the input reactance must be canceled or "tuned out" unless the line is resonant - i.e., a multiple of a quarter wavelength.
Impedance transformation - Regardless of the standing-wave ratio, the input impedance of a line a half-wave long electrically will be equal to the impedance connected at its outputend; the same thing is true of a line any integral multiple of a half-wave in length. Such a line can be considered to be a one-to-one transformer. However, if the line is a quarterwave (or an odd multiple of a quarter-wave) long, the input impedance will be equal to

$$
Z_{i}=\frac{Z_{s}^{2}}{Z_{t}}
$$

where Z_{s} is the characteristic impedance of the line and Z_{t} the impedance connected to the output end. That is, a quarter-wave section of line will match two impedances, Z_{i} and Z_{t}, provided its characteristic impedance, $Z_{s} ;$ is equal to the geometric mean of the two impedances. A quarter-wave line may, therefore, be used as an impedance transformer. By suitable selection of constants, a wide range of impedancematching values can be obtnined.
Since the impedance measured between the two conductors anywhere along the line will vary between the two end values, a quarterwave line short-circuited at the output end can be used as a linear transformer with an adjustable impedance ratio. For best operation,

Fig. 252 - Efruivalent coupling circuits for parallelline, coaxial-line and conventional resonant circuits.
the two terminating impedances must be of the same order of maynitude. However, a series of quarter-wave sections can be used to obtain a step-by-step match of two terminal impedances efficiently if they are widely different.

Impedance-matching or transformation with transmission-line sections may also be offected by taps on quarter-wave resonant lines employed as coupling circuits in the same manner as conventional coil-condenser circuits. The equivalent relationships between parallel-line, coaxial-line and coil-and-condenser circuits for this purpose are shown in Fig. 252.

Other impedance-matching arrangements employ the use of matching stubs or equivalent sections so arranged so as to balance out the reactive component introduced by the coupled circuit. These are employed primarily in connection with antenna feed systems and are described in detail in § 10-8.

Transmission lines as circuit elements Sections of transmission lines, together with combinations of such sections, can be used to simulate practically any electrical circuit property. Transmission lines can be used as resistance, inductance and capacity, as well as for resonant circuits, impedance-matching transformers, filters, and even as insulators.

When a short-circuited quarter-wavelength line is connected between a "hot" circuit and ground, the input end offers an extremely high resistive impedance. In other words, the transmission line is virtually an insulator. Insulating lines of this sort are commonly employed in ultrahigh frequency work. Such insulators can be used to provide a d.c. path between the r.f. conductor and chassis, and at the same time effectively block the flow of r.f. current.

A transmission line terminated in its characteristic impedance affords a pure resistance at high frequencies, and so may be used as a non-reactive resistor. Unterminated lines afford a variety of reactive properties. Lengths of short-circuited line less than a quarter wavelength represent pure inductive reactance, while open-circuited lines have pure capacitive reactance.

Thus the former can be used in lieu of r.f. chokes, while the latter can serve as by-pass condensers.

The reactive characteristics of open- and closed-end lines are summarized in Fig. 253.
Resonant lines as tuned circuits-In resonant circuits as employed at the lower frequencies it is possible to consider each of the reactance components as a separate entity. A coil is used to provide the required inductance and a condenser is connected across it to provide the necessary capacity. The fact that the coil has a certain amount of self-capacity of its own, as well as some resistance, while the condenser also possesses a small self-inductance, can usually be disregarded.

At the very-high and ultrahigh frequencies, however, it is no longer possible to separate these components. The connecting leads which, at lower frequencies, would serve merely to join the condenser to the coil now may have more inductance than the coil itself. The required inductance coil may be no more than a single turn of wire, yet even this single turn may have dimensions comparable to a wavelength at the operating frequency. Thus the energy in the field surrounding the "coil," may in part be radiated. At a sufficiently high frequency the loss by radiation may represent a major portion of the total energy in the circuit. Since energy which cannot be utilized as intended is wasted, regardless of whether it is consumed as heat by the resistance of the wire or simply radiated into space, the effect is as though the resistance of the tuned circuit were greatly increased and its Q greatly reduced.

For this reason, it is common practice to utilize resonant sections of transmission line as tuned circuits at frequencies above 100 Mc . A quarter-wavelength line, or any odd multiple thereof, shorted at one end and open at the other, exhibits large standing waves. When a voltage of the frequency at which such a line is resonant is applied to the open end, the response is very similar to that of a parallel resonant circuit; it will have very high input impedance at resonance and a large current flowing at the short-circuited end.

Fig. 253 - Open and closed transmission lines as circuit elements.

Electrical and Radio Fundamentals 53

The action of a resonant quarter-wavelength line can be compared with that of a coil-andcondenser combination whose constants have been adjusted to resonance at a corresponding frequency. Around the point of resonance, in fact, the line will display very nearly the same characteristics as those of the tuned circuit. The equivalent relationships are shown in Fig. 253. At frequencies off resonance the line displays qualities comparable to the inductive and capacitive reactances of the coil and condenser circuit, although the exact relationships involved are somewhat different. For all practical purposes, however, sections of resonant wire or transmission line can be used in much the same manner as coils or condensers.

In v.h.f. circuits operating above 300 Mc ., the spacing between conductors becomes an appreciable fraction of a wavelength. To keep the radiation loss as small as possible the parallel conductors should not be spaced farther apart than 10 per cent of the wavelength, center to center. On the other hand, the spacing of large-diameter conductors should not be reduced to much less twice the diameter because of what is known as the proximity effect, whereby another form of loss is introduced through eddy currents set up by the adjacent fields. Bechuse the cancellation is no longer complete, radiation from an open line becomes so great that the Q is greatly reduced. Consequently, at these frequencies coaxial lines must be used. The coaxial line is advantageous at the lower frequencies, as well, but because it is more complicated to construct and adjustments are more difficult the open type of line is generally favored at these frequencies.

Transmission-line filter networks - The same general equations can be applied to any type of electrical network whether it be an actual section of transmission line, a combination of lumped-circuit elements, or a combination of transmission-line elements. Ordinary electric filters (\$ 2-11) at lower frequencies use combinations of coils and condensers, but conventional circuit elements cannot be used at extremely high frequencies. However, combinations of transmission-line sentions or combinations of transmission lines and parallelplate condensers may be used for the elements of very-high-frequency filter networks, instead.

Construction - Practical information concerning the construction of transmission lines for such specific uses as feeding antennas and as resonant circuits in radio transmitters will be found in the constructional chapters of this Handbook. Certain basic considerations applicable in general to resonant lines used as circuit elements may be considered here, however.

While either parallel-line or coaxial sections may be used, the latter are preferred for higherfrequency operation. Representative methods for adjusting the length of such lines to resonance are shown in Fig. 254. At the left, a sliding shorting disc is used to reduee the effective length of the line by altering the position of
the short circuit. In the center, the same effect is accomplished by using a telescoping tube in the end of the inner conductor to vary its length and thereby the effective length of the

Fig. 254 - Methods of tuning coaxial resonant lines.
line. At the right, two possible methods of mounting parallel plate condensers, used to tune a "foreshortened" line to resonance, are illustrated. The arrangement with the loading capacity at the open end of the line has the greatest tuning effect per unit of capacity; the alternative method, which is equivalent to "tapping" the condenser down on the line, has less effect on the Q of the circuit. Lines with capacity "loading" of the sort illustrated will be shorter, physically, than an unloaded line resonant at the same frequency.

The short-circuiting disc at the end of the line must be designed to make perfect electrical contact. The voltage is a minimum at this end of the line; therefore, it will not break down some of the thinnest insulating films. Usually a soldered connection or a tight clamp is used to secure good contact. When the length of line must be readily adjustable, the shorting plug is provided with spring collars which make contact on the inner and outer conductors at some distance away from the shorting plug at a point where the voltage is sufficient to break down the film between the collar and conductor.

Two methods of tuning parallel-conductor lines are shown in Fig. 255. The sliding shortcircuiting strap can be tightened by means of screws and nuts to make good electrical contact. The parallel-plate condenser in the second drawing may be placed anywhere along the line, the tuning effect becoming less as the condenser is located nearer the shorted end

Fig. 255 - Mcthods of tuning paralleltype resonant lines.

of the line. Although a low-capacity variable condenser of ordinary construction ean be used, the circular-plate type shown is symmetrical and thus does not unbalance the line. It also has the further advantage that no insulating material is required.

Fig. 256 - Evolution of a wave guide from a two-wire transmission line.

A second point of difference is that the apparent length of a wave along the direction of propagation through a guide always is greater than that of a wave of the same frequency in free space, whereas the wavelength along a twoconductor transmission line is the same as the free-space wave-length (when the insulation between the wires is air).

Operating principles of wave guidesAnalysis of wave-guide operation is based on the assumption that the guide material is a perfect conductor of electricity. Typical distributions of electric and magnetic fields in a rectangular guide are shown in Fig. 257. It will be observed that the intensity of the electric field is greatest at the center along the x dimension, diminishing to zero at the end walls. The latter is a neressary condition, since any electric field parallel to the walls at the surface would cause an infinite current to flow in a perfect eonductor. This represents an impossible situation.

Zero electric field at the end walls will result if the wave is considered to consist of two separate waves moving in zig-zag fashion down the guide, reflected back and forth from the end walls as shown in Fig. 258. Just at the walls, the positive crest of one wave meets the negative crest of the other, giving complete cancellation of the electric fields. The angle of reflection at which this cancellation occurs depends upon the width x of the guide and the length of the waves; Fig. 258-A illustrates the

Fig. 257 - Field distribution in a rectangular wave guide. The $\mathrm{TE}_{1,0}$ mode of propagation is depicted.

Electrical and Radio Fundamentals 55

case of a wave considerably shorter than the cut-off wavelength, while B shows a longer wave. When the wavelength equals the cut-off value, the two waves simply bounce back and forth bet ween the walls and no energy is transmitted through the guide.

The two waves travel with the speed of light, but since they do not travel in a straight line the energy does not travel through the guide as rapidly as it does in space. A further conse-
-___ positive crest
----- - negative crest

Fig. 258 - Reflection of two component waves in a rectangular guide. $\lambda=$ wavelength in space, $\lambda g=$ wavelength in guidc. Direction of wave motion is perpendicular to the wave front (crests) as shown by the arrows.
quence of the repented reflections is that the points of maximum intensity or wave crests are separated more along the line of propagation in the guide than they are in the two separate waves. In other words, the wavelength in the guide is greater than the free-space wavelength. This is also shown in Fig. 258.

Modes of propagation - Fig. 257 represents a relatively simple distribution of the electric and magnetic fields. There is in general an infinite number of ways in whieh the fields can arrange themselves in a guide so long as there is no upper limit to the frequency to be transmitted. Eash field configuration is called a mode. All modes may be separated into two general groups. One group, designated $T M$ (transverse magnctic), las the magnetic field entirely transverse to the direction of propagation, but has a component of electric field in that direction. The other type, designated TE (transverse electric) has the electric field entirely transverse, but has a component of magnetic field in the direction of propagation. TM waves are sometines ealled E waves, and TE waves are sometimes called H waves, but the TM and TE designations are preferred.

The particular mode of transmission is identified by the group letters followed by two subscript numerals; for example, $\mathrm{TE}_{1,0}$, $\mathrm{TM}_{1,1}$, etc. The number of possible modes increases with frequency for a given size of guide. There is only one possible mode (called the dominant mode) for the lowest frequency that can be transmitted. The dominant mode is the one generally used in practical work.

Wave-guide dimensions - In the rectangular guide the critical dimension is x in Fig. 256; this dimension must be more than $1 / 2$ wavelength at the lowest frequency to be transmitted. In practice, the y dimension usu-
ally is made about equal to $1 / 2 x$ to avoid the possibility of operation at other than the dominant mode.

Other cross-sectional shapes than the rectangle can be used, the most important being the circular pipe. Much the same considerations apply as in the rectangular case.

Wavelength formulas for rectangular and circular guides are given in the following table, where x is the width of a rectangular guide and r is the radius of a circular guide. All figures are in terms of the dominant mode.

Carity resonators - At low and medium radio frequencies resonant circuits usually are composed of "humped" constants of L and C; that is, the inductance is concentrated in a coil and the capacity concentrated in a condenser. However, as the frequeney is increased coils and condensers must be reduced to impracticably small physical dimensions. Up to a certain point this difficulty may be overcome by using linear circuits ($\$ 2-12-13$) but even these fail at extremely high frequencies. Another kind of circuit particularly applicable at wavelengths of the order of centimeters is the cavity resonator, which may be looked upon as a section of a wave guide with the dimensions chosen so that waves of a given length can be maintained inside.

The derivation of one type of cavity resonator from an ordinary $L C$ circuit is shown in Fig. 259. As in the case of the wave-guide derivation, this picture must be accepted with some rescrvations, and for the same reasons.

Considering that even a straight piece of wire has appreciable inductance at very-high frequencies, it may be seen in Fig. 259-A and -B that a direct short across a two-plate condenser with air dielectric is the equivalent of a tuned circuit with a typical coiled inductance. With two wires between the plates, as shown in Fig. 259-C, the circuit may be thought of as

(E)

Fig. 259 - Steps in the derivation of a cavity resonator from a couventioual coil-and-coudenser tuned circuit.
a resonant-line section. For d.e. or even low frequency r.f., this line would appear as a shor t across the two condenser plates. At the ultrahigh frequencies, however, as shown in Fig. 252 , such a section of line a quarter-wavelength long would appear as an open circuit when viewed from one of the plates with respeet to the other end of the section.

Increasing the number of parallel wires between the plates of the condenser would have no effect on the equivalent circuit, as slown at D. Eventually, the closed figure at E will be developed. Since each wire which is added in D is like connecting inductances in parallel, the total inductance aeross the condenser becomes increasingly smaller as the solid form is approached, and the resonant frequency of the figure therefore becomes higher.

If energy from some v.h.f. source now is introduced into the cavity in a manner such as that shown at F, the circuit will respond like any equivalent coil-condenser tank circuit at its resonant frequency. A cavity resonator may therefore be used as a u.h.f. tuning element, along with a vacuum tube of suitable design, to form the main components of an oscillator circuit which will be capable of functioning at frequencies considerably beyond the maximum limits possible when conventional tubes, coils and condensers are employed.

Fig. 260 - Forms of cavity resonators.
Other shapes than the cylinder mity be used as resonators, among thein the rectangular box, the sphere, and the sphere with re-entrant cones, as shown in Fig. 260. The resonant frequency depends upon the dimensions of the cavity and the mode of oscillation of the waves (comparable to the transmission modes in a wave guide). For the lewest modes the resonant wavelengt has are as follows:

Cylinder.	$2.61 r$
Square hos.	1.41l
Sphere.	2.28 r
Sphere with re-entrant cones	4 r

The resonant wavelengths of the cylinder and square box are independent of the height when the height is less than a half wavelength. In other modes of oscillation the height must be a multiple of a half wavelength as measured inside the cavity. Fig. 259-F shows how a cylindrical cavity can be tuned when operating
in such a mode. Other tuning methods include placing adjustable tuning paddles or "slugs" inside the cavity so that the standing-wave pattern of the electric and magnetic fields can be varied.

A form of envity resonator in wide practical use is the re-entrant eylindrical type shown in Fig. 261. It is useful in connection with vac-

Fig. 261 - Re-cntrant eylindrical cavity resonator.
uum-tube oscillators of the types described for u.h.f. use in Chapter Three. In construction it resembles a concentric line elosed at both ends with capacity loading at the top, but the actual mode of oscillation may cliffer considerably from that occurring in conxial lines. The resonant frequency of such a cavity depends upon the dianeters of the two eylinders and the distance d between the ends of the inner and outer cylinders.

Compared to ordinary resonant circuits, eavity resonators have extremely high Q. A value of Q of the order of 1000 or more is readily obtainable, and Q values of several thousand can readily be seeured with good design and construction.

Coupling to wave guides and cavity resonators - linergy may be introduced into or abstracted from a wave gilide or resonator by means of either the electric or magnetic field. The energy transfer frequently is through a coaxial line, two methods for coupling to which are shown in Fig. 262. The probe shown at A is simply a short extension of the inner conductor of the coaxial line, so oriented that it is parallel to the electric lines of force. The loop shown at B is arranged so that it encloses some of the magnetic lines of force. The point at which maximum coupling will be seeured depends upon the particular noole of propagation in the guide or cavity; the coupling will be maximum when the coupling device is in the most intense field.

Fig. 262 - Coupling to wave guides and resonators.
Coupling can be varied by turning either the probe or loop through a 90 -degree angle. When the probe is perpendicular to the electric lines the coupling will be minimum; similarly, when the plane of the loop is parallel to the magnetic lines the coupling will have its least possible value.

Electrical and Radio Fundamentals 57

C. 2-12-C Lumped-Constant Circuits

'V.l.f. resonator circuits - At the veryhigh frequencies the low values of L and C required make ordinary coils and condensers impracticable, while linear circuits offer mechanital difficulties in making tuning adjustments over a wide-frequency range.

To overcome these difficulties, special high- Q lumped-constant circuits have been developed in which connections from the "condenser" to the "coil" are an inherent part of the structure. Integral design minimizes both resistance and inductance and increases the C / L ratio.

The simplest of these circuits is based on the use of dises combining half-turn inductance loops with semi-circular condenser plates. By connecting several of these half-turn coils in parallel, the effective inductance is reduced to a value appreciably below that for a single turn. Tuning is accomplished by interleaving grounded rotor plates between the turns. Buth by shielding action and short-circuited-turn effect, these further reduce the inductance.

Another type of high- C circuit is a singleturn toroid, commonly termed the "hat" resonator. Two copper shells with wide, flat "brims" are mounted facing each other on an axially aligned copper rod. The capacity in the circuit is that between the wide shells, while the central rod comprises the inductance.

Fif. 263 - Coneentriccylinder or "pot"type tank for v.h.f. The equivalent circuit diagram is also shown. Connections are made to the terninalls murh ed T. For maximum Q the ratio of b to c should be between 3 and 5 .

"Pot"-type tank circuits - The lumpedconstant concentric-element tank in Fig. 263, commonly referred to as the "pot" circuit, is equivalent to a very short coaxial line (no linear dimension should exceed $1 / 20$ th wavelength), loaded by a large integral capacity.

The inductance is supplied by the copper rod, A. The capacity is provided by the concentric cylinders, B and C, plus the capacity between the plates at the bottoms of the cylinders.

Approximate values of capacity and inductance for tank circuits of the "pot" type can be determined by the following:

$$
\begin{aligned}
& L=0.0117 \log \frac{b}{c} \mu \mathrm{~h} . \\
& C=\left(\frac{0.6225 d}{\log \frac{a}{b}}\right)+\left(\frac{0.1775 b^{2}}{e}\right) \mu \mu \mathrm{fd}
\end{aligned}
$$

where the symbols are as indicated in Fig. 263, and all dimensions are in inches. The lefthand term for capacity applies to the concentric cylinders, B and C, while the second term gives the capacity between the bottom plates.
"Butterfly" circuits - The tank circuits described in the preceding section are primarily fixed-frequency devices. The "butterfly" circuits shown in Fig. 264 are capable of being tuned over an exceptionally wide range,

Fig. 264 - "Butterfly" tank circuits for v.h.f., showing front and sross-section vicws and the cquivalent circuit.
while still having high Q and rensonable physical dimensions. The circuit at A is derived from a conventional balanced-type variable condenser. The inductance is in the wide circular band connecting the stator plates. At its minimum setting the rotor plate fills the opening of the loop, reducing the inductance to a minimum. Connections are made to points 1 and 2. This basic structure eliminates all connecting leads and avoids all sliding or wiping electrical contacts to a rotating member. A disadvantage is that the electrical midpoint shifts from point 3 to point 3^{\prime} as the rotor is turned. Constant magnetic coupling may be obtained by a coupling loop located at point 4 , however.

In the modification shown at D , two sectoral stators are spaced 180 degrees, thereby achieving the electrical symmetry required to permit tapping for balanced operation. Connections to the circuit should be made at points 1 and 2 and it may be tapped at points 3 and 3^{\prime}, which are the electrical midpoints. Where magnetic coupling is employed, points 4 and 4' are suitable locations for coupling links.

The capacity of any butterfly circuit may be computed by the standard formula for parallelplate condensers given in Chapter 20. The maximum inductance can be obtained approximately by finding the inductance of a full ring of the same diameter and multiplying the result by a factor of 0.17 . The ratio of minimum to maximum inductance varies between 1.5 and 4 with usual construction.

Any number of butterfly sections may be connected in parallel. In practice, units of four to eight plates prove most satisfactory. The ring and stator may either be made in one piece or with separate sectoral stator plates and spacing rings assembled with machine screws.

C 2-12-D Piezoelectric Crystals

Piezoelectricity - Properly. ground plates or bars of quartz and certain other crystalline materials, such as Rochelle salts, show a mechanical strain when subjected to an electric charge and, conversely, a difference in potential between two faces when subjected to mechanical stress. The relationslip between mechanical force and electrical stress under such conditions is known as the piezoclectric effect. The charges appearing on the crystal as a result of mechanical force applied to the crystal, or of mechanical vibration of the crystal itself, are terned piezoelectricity.

Piezoelectric crystals may be employed as devices either for changing mechanical energy to electrical energy or for changing electrical energy to mechanical energy. In the former category are such devices as crystal microphones and phonograph pickups; in the latter, crystal headphones, crystal loud-speakers and crystal recording heads.

A properly cut crystal is a mechanical vibrator electrically equivalent to a series-resonant circuit of very high Q, and so can be also used for many of the purposes for which ordinary resonant circuits are used. 'The resonant frequency depends upon shape, thickness, length and cut.

Natural quartz crystals are usually in the form of a hexagonal prism terminated at one or both ends by a six-sided pyramid. Joining the vertices of these pyramidal ends, and perpendicular to the plane of the hexagonal cross section, is the optical or Z axis. The three electrical or X axes lie in a plane perpendicular to the optical axis and passing through opposite corners of the hexagon. The three mechanical or Y axes lie in the same plane but perpendicularly to the sides of the hexagon.

Active plates cut from a raw crystal at various angles to its optical, electrical and mechanical axes have differing characteristics as to thickness, frequency-temperature coefficient, power-handling capabilities, etc. The basic cuts are designated X and Y after their respective axes, but a variety of specialized cuts, such as the AT, are in more common use.

Frequency-thickness ratio - At frequencies above about 500 kc . the thickness of the crystal is the principal frequency-determining factor, the other dimensions being of relatively minor importance. Thickness and frequency are related by a constant, K, such that

$$
f=\frac{K}{t}
$$

where f is the frequency in megacycles and t the thickness of the crystal in mils. For the X-cut, $K=112.6$; Y-cut, $K=77.0 ;$ AT-cut, $K=66.2$, BT-cut, $K=97.3$.

At frequencies above about 10 Mc . the erystal becomes very thin and correspondingly fragile, so that crystals seldom are manufactured for fundamental operation above this
frequency, Direct crystal control on 14 and 28 Mc. is secured by use of "harmonic" crystads, which are ground to be active oscillators when excited at a harmonic (usually the third).

Temperature coefficient of frequencyThe resonant frequency of a crystal varies with temperature, the variation depending upon the type of cut. The frequency change is usually expressed as a coefficient relating the number of cycles of frequency change per megacycle per ${ }^{\circ} \mathrm{C}$. It may be either positive (increasing frequeney with increasing temperature) or negative (decreasing frequency with increasing temperature). X-cut crystals have a negative coefficient of 15 to 25 cycles $/ \mathrm{Mc} . /{ }^{\circ} \mathrm{C}$. The coefficient of Y-cut crystals may vary from - 20 cycles/Mc. $/{ }^{\circ} \mathrm{C}$. to +100 cycles $/ \mathrm{Mc} . /{ }^{\circ} \mathrm{C}$.

Variations in frequency caused by temperature changes can be minimized by proper cutting of the plate. By orienting the plate through various angles in relation to its optical, electrical and mechanical axes, a compensatory relationship can be derived between the dimensions of the plate, its density, and its elastic constants - the components responsible for the temperature coefficient.

The AT cut is the type perhaps most extensively used for transmitter frequency control. This plate can be ground to almost any frequency between 300 and 5000 kc . Its complement, the $\mathrm{B}^{\prime} \mathrm{T}$ cut, is used for frequencies within the range 4500 to $10,000 \mathrm{kc}$.

For frequencies below 500 kc ., CT and DT shear-type cuts have been developed which depend not upon thickness but on length and width for determining frequency. Plates of the CT and DT type vibrating at a harmonic mode are designated ET or FT cuts.

The low-drift types described above show a zero temperature coefficient through only a few degrees of charge. Another type of cut, the G'T, will drift less than 1 cycle/Mc. $/{ }^{\circ} \mathrm{C}$. over a temperature change of $100^{\circ} \mathrm{C}$. In this plate a face shear vibration is changed into two longitudinal vibrations coupled together. At a certain ratio of length to width one mode

Fig. 265 - Modes of vilration for various crystal cuts. A - Fundamental (ahove) and harmonic (bclow) of the AT and B'T cuts. B - The GT cut. C- C'I and DT cuts (above) and ET and FT cuts (below), 1) - NT eut.

Electrical and Radio Jundamentals 59

Fig. 266 - Frequency change in parts per million ve. variation in temperature in ${ }^{\circ} \mathrm{C}$. for various erystal cuts.
has a zero temperature coefficient, making it especially useful as a frequency standard. The MT cut, which also vibrates longitudinally, can be used from 50 to 100 kc . The NT crystal is a flexurally vibrating cut having a low temperature coefficient in the range from 4 to 50 ke. MT and NT cuts are useful for phasemodulated f.m. transmitters.

© 2-13 Miscellaneous Circuit Details

Combined a.c. and d.c. - There are many practical instances of simultaneous flow of alternating and direct currents in a circuit. When this occurs there is a pulsating current, and it is said that an alternating current is superimposed on a direct eurrent. As shown in Fig. 267, the maximum value is equal to the d.c. value plus the a.c. maximum, while the minimum value (on the negative a.c. peak) is the difference between the d.e. and the maximum a.c. values. The average value ($\$ 2-7$) of the current is simply equal to the direct-current component alone. The effective value (§2-7) of the combination is equal to the square root of the sum of the effective a.c. squared and the d.e. squared:

$$
I=\sqrt{I_{a c}^{2}+I_{d \epsilon}^{2}}
$$

where $I_{a c}$ is the effective value of the a.c. component, I is the effective value of the combination, and $I_{d c}$ is the average (d.c.) value of the combination.

Beats - If two or more alternating currents of different frequencies are present in a normal circuit they will have no particular effect upon one another and can be separated again by the proper selective circuits. However, if two (or more) alternating currents of different frequencies are present in an element having unilateral or one-way current flow properties, not unly will the two original frequencies be present in the output but also currents having frequencies equal to the sum, and difference, of the original frequencies. These sum and difference frequencies are called the beat frequencies. For example, if frequencies of 2000 and 3000 kc . are present in a normal circuit only those two frequencies exist, but if they are passed through a
unilateral element there will be present in the output not only the two original frequencies of 2000 and 3000 kc . but also currents of 1000 $(3000-2000)$ and $5000(3000+2000) \mathrm{kc}$. Suitable circuits can be used to select the desired beat frequency. The human ear has unilateral characteristics and is, therefore, capable of hearing audible beat frequencies. Electronic devices of this nature are called mixers, converters, and detectors.
$\boldsymbol{B y}$-passing - In combined circuits, it is frequently necessary to provide a low-impedance path for a.c. around, for instance, a source of d.c. voltage. This can be done by using a bypass condenser, which will not pass direct current but will readily permit the flow of alternating current. The capacity of the condenser should be of such value that its reactance is low (of the order of $1 / 10$ th or less) compared to the a.c. impedance of the devire being bypassed. The lower the reactance, the more effectively will the alternating current be confined to the desired path.
Similarly, alternating eurrent can be prevented from flowing through a direct-current circuit to which it may be connected by inserting an inductance of high reactance (called a choke coil) between the two circuits. This will permit the direct current to flow without hindrance, since the resistance of the choke coil may be made quite low, but will effectively prevent the alternating current from flowing where it is not wanted.
If both r.f and low-frequency (audio or power) currents are present in a circuit, they may be confined to desired paths by similar means, since an inductance of high reactance for radio frequencies will have negligible reactance at low frequencies, while a condenser of low reactance at radio frequencies will have high reactance at low frequencies.

Grourts - The term "ground" is frequently encountered in discussions of circuits. Normally it means the voltage reference point

Fig. 267 - Pulsating currext, composed of an alternating current or volt. age superimposed on a steady direct current or voltage.

in the circuit. There may or may not be an actual connection to earth, but it is understood that a point in the circuit said to be at ground potential could be connected to earth without disturbing the operation of the circuit in any way. In direct-current circuits, the negative side generally is grounded. The ground symbol in circuit diagrams is used for convenience in indicating common connections between various parts of the circuit, as through a metal chassis, and, with respect to actual ground, usually has the meaning indicated above.

Tacuиm Tubes

C. 3-1 Diodes

Rectification- Practically all of the vacuum tubes used in radio work depend upon thermionic conduction ($\$ 2-4$) for their operation. The simplest type of vacuum tube is that shown in Fig. 301. It has two elements, at cathode and a plate, and is called a diode. When heated by the "A" battery the cathode ernits electrons, which are attracted to the plate if the plate is at a positive potential with respect to the cathode.

Because of the nature of thermionic conduction, the tube is a conductor in one dircction only. If a source of alternating voltage is connected between the cathode and plate, then electrons will flow only on the positive halfcycles of alternating voltage; there will be no electron flow during the half cycle when the plate is negative with respect to the cathode. Thus the tube can be used as a rectifier, to change alternating current to pulsating direct current. This alternating current can be anything from the 60 -cycle kind to the highest radio frequencies.
Rectification finds its chief applications in detecting radio signals and in power supplies. These are treated in Chapters Seven and Eight, respectively.

Characteristic curves - The performance of the tube can be reduced to easily understood terms by making use of tube characteristic curves. A typical characteristic curve for a diode is shown at the right, in Fig. 301. It shows the current flowing between plate and cathode with different d.c. voltages applied between the clements. The curve of Fig. 301 shows that, with fixed cathode temperature, the plate current increases as the voltage between cathode and plate is raised. For an actual tube the values of plate current and plate voltage would be plotted along their respective axes.
The power consumed in the tube is the product of the plate voltage multiplied by the plate current, just as in any d.c. circuit. In a vacuum tube this power is dissipated in heat developed in the plate and radiated to the bulb.

Fig. 301 - The diode or two-element tube and a typieal characteristic curve showing plate current vs. voltage.

Space charge - With the cathode temperature fixed the total number of electrons emitted is always the same, regardless of the plate voltage. Fig. 301 shows, however, that less plate current will flow at low plate voltages than when the plate voltage is large. With low plate voltage, only those electrons nearest the plate are attracted to the plate. The electrons in the space near the cathode, being themselves negatively charged, tend to repel the similarly charged electrons leaving the cathode surface and cause them to fall back on the cathode. This is called the space-charge effect. As the plate voltage is raised more and more electrons are attracted to the plate, until finally the space charge effect is completely overcome. When this occurs all the electrons emitted by the cathode are attracted to the plate, and a further increase in plate voltage can cause no further increase in plate current. This condition is called saturation.

4. 3-2 Triodes

Grid control - If a third element, called the control grid, or simply the grid, is inserted between the cathode and plate of the diode, the space-charge effect can be controlled. The tube then becomes a triode (three-element tube) and is useful for more things than rectification. The grid is usually in the form of an open spiral or mesh of fine wire. If the grid is connected externally to the cathode so that it is at the same potential as the catliode, and a steady voltage from a d.c. supply is then applicd between the cathode and plate (the positive of the " B " supply is always connected to the plate), there will be a constant flow of electrons from cathode to plate through the openings of the grid, much as in the diode. However, if the grid is given a positive potential with respect to the cathode, the space charge will be partially neutralized and there will be an increase in plate current. If the grid is made negative with respect to the cathode, the space charge will be reinforced and the current will decrease.
This effect of grid voltage can be shown by curves in which plate current is plotted against grid voltage. At any given value of grid voltage the plate current will still depend upon the plate voltagc, so if complete information about the tube is to be secured it is necessary to plot a series of curves taken with various values of plate voltage. Such a set of grid voltage vs. plate current curves, typical of a small receiving triode, is shown in Fig. 303.
So long as the grid has a negative potential with respect to the cathode, electrons emittod

Fig. 302 - Illustrat ing the construction of an clementary triode vacuum tule, showing the filament, grid (with an end view of the grid wires) and plate. The relative dennity of the space charge is indi. cated roughly by the dot density. Battery symbols follow those of the usual schematic diagrams, while the schematic tube symbol is shown at the right.

by the cathode are repelled ($\$ 2-3$) from the grid, with the result that no current flows to the grid. Hence, under these conditions, the grid consumes no power. However, when the grid becomes positive with respect to the cathode, electrons are attracted to it, and a current flows to the grid; when this grid current flows, power is dissipated in the grid circuit.

In addition to the set of curves showing the relationship between grid voltage and plate current at various fixed values of plate voltage, two other sets of curves may be plotted to show the characteristics of a triode. These are the plate voltage vs. plate current characteristic, which shows the relationship between plate voltage and plate current for various fixed values of grid voltage, and the constant-current characteristic, which shows the relationship between plate voltage and grid voltage for various fixed values of plate current.

Amplification - The grid evidently acts as a valve to control the flow of plate current, and it is found that it has a much greater effect on plate current flow than does the plate voltage; that is, a small change in grid voltage is just as effective in bringing about a given change in plate current as is a large clange in plate voltage.

The fact that a small voltage acting on the grid is equivalent to a large voltage acting on the plate indicates the possibility of amplification with the triode tube; that is, the generation of a large voltage by a small one, or the generation of a relatively large amount of power from a small amount. The many uses of the electronic tube nearly all are based upon this amplifying feature. The amplified power or voltage output from the tube is obtained, not from the tube itself, but from the source of e.m.f. connected between its plate and cathode. The tube simply controls the power from this source, changing it to the desired form.

To utilize the controlled power, a device for consuming it, or for transferring it to another circuit, must be connected in the plate circuit, since no particularly useful purpose would be served in having the current merely flow through the tube and the source of e.m.f. Such a device is called the load, and may be cither a resistance or an impedance. The term "impedance" is frequently used even though the load may be purely resistive.

Amplification factor - The relative effect of the grid and plate voltages on the plate current is measured by the amplification factor of the tube, usually represented by the Greek letter μ. Amplification factor is defined as the ratio of the change in plate voltage required to produce a given change in plate current to the change in grid voltage recpuired to produce the same plate-current change. Strictly speaking, very small changes in both grid and plate voltage must be used in determining the amplification factor, because the curves showing the relationship between plate voltage and plate current, and between grid voltage and plate current, are not perfectly straight, especially if the plate current is nearly zero. This indicates that the amplification factor varies at different points along the curves, and different values will be obtained as larger or smaller voltage differences are taken for the purpose of calculating it. The expression for amplification factor can be written:

$$
\mu=\frac{\Delta E_{p}}{\Delta E_{g}}
$$

where ΔE_{p} indicates a very small change in plate voltage and ΔE_{0} is the change in grid voltage producing the same plate current change. The symbol Δ (the Greek letter delia) indicates a small increment, or small change.

The amplification factor is simply a ratio, and has no unit.
Plate resistance - Since only a limited amount of plate current flows when a givern voltage is applied between plate and cathode, it is evident that the plate-cathode circuit of the tube has resistance. However, there is no simple relationship between plate voltage and plate current, so that in general the plate circuit of the tube does not follow Ohın's Law. Under a given set of conditions the application of a given plate voltage will cause a certain plate current to flow, and if the plate voltage is divided by the plate current a "resistance" value will be obtained which frectuently is called the "d.c. resistance" of the tube. This "d.c. resistance" will be different for every value of plate voltage and also for different values of grid voltage, since the plate current also depends upon the grid voltage when the plate voltage is fixed.

In applications of the vacuum tube, it is more

Fig. 303 - Grid voltage vs. plate current curves at various fixed values of plate voltage (E_{b}) for a typical small triode. Characteristic curves of this type can he taken by varying the battery voltages in the circuit at tbe right.
important to know how the plate current changes with a change in plate voltage than it is to know the relationship between the actual values of plate current and plate voltage. The relationship between plate-current change and plate-voltage change determines the a.c. plate resistance of the tube. This resistance, which usually is designated τ_{p}, is significant when there is an a.c. component in the plate current. It can be found from the plate voltage vs. plate current characteristic curves. That is,

$$
r_{p}=\frac{\Delta E_{p}}{\Delta I_{p}}
$$

where ΔE_{p} is a small change in plate voltage and ΔI_{p} the corresponding small change in plate current, the grid voltage being fixed.

Plate resistance is expressed in ohms, since it is the ratio of voltage to current. The value of plate resistance will, in general, change with the particular voltages applied to the plate and grid. It depends as well upon the structure of the tube; low- μ tubes have relatively low plate resistance and high $-\mu$ tubes havc high plate resistance.

Transconductance - The effect of grid voltage upon plate current is expressed hy the grid-plate transconductance of the tube. Transconductance is a general term giving the relationship between the voltage applied to one electrode and the current which flows, as a result, in a second electrode. As in the previous two cases, it is defined as the change in current through the second electrode caused by a change in voltage on the first. Thus the gridplate transconductance, commonly called the mutual conductance, is

$$
g_{m}=\frac{\Delta I_{p}}{\Delta E_{p}}
$$

where g_{m} is the mutual conductance, ΔI_{p} the change in plate current, and ΔE_{g} the change in grid voltage, the plate voltage being fixed. As before, the sign Δ indicates that the changes must be small. Transconductance is measured in mhos, since it is the ratio of current to voltage. The unit usually employed in connection with vacuum tubes is the micromho (one millionth of a mho), because the conductances are small. By combining with the two preceding formulas, it can be shown that $g_{m}=\mu / \tau_{p}$.

The mutual conductance of a tube is a rough indication of its merit as an amplifier, since it

Fig. 304 - Plate voltage vs. plate current curves at various fixed values of negative grid voltage for the same triode as that used to obtain the curves in Fig. 303.
includes the effects of both amplification factor and plate resistance. Its value varies with the voltages applied to the plate and grid. With the plate voltage fixed, the mutual conductance decreases when the grid is made increasingly negative with respect to the cathode. This characteristic frequently can be used to advantage in the control of amplification, since the amount of amplification can be varied over wide limits simply by adjusting the value of a steady voltage applied to the grid.

Static and dynamic curves - Curves of the type shown in Figs. 301 and 303 are called static curves. They show the current which flows when various voltages are applied directly to the tube electrodes. Another useful set of static curves is the "plate family," or plate voltage vs. plate current characteristic. A typical set of curves of this type is shown in Fig. 304.

A curve showing the relationship between grid voltage and plate current when a load resistance is connected in the plate circuit is called a dynamic characteristic curve. Such a curve includes the effect of the load resistance, and hence is more indicative of the performance of the tube as an amplifier. With a fixed value of plate-supply voltage the actual value of voltage between the plate and cathode of the tube will depend upon the amount of plate current flowing, since the plate current also flows through the load resistance and therefore results in a voltage drop which must be subtracted from the plate-supply voltage. The dynamic curve includes the effect of this voltage drop. Consequently, the plate current always is lower, for a given value of grid bias and plate-supply voltage, with the load resistance in the circuit than it is without it.

Representative dynamic characteristics are shown in Fig. 305. These were taken with the same type of tube whose static curves are shown in Fig. 303. Different curves would be obtained with different values of plate-supply voltage, E_{b}; this set is for a plate-supply voltage of 300 volts. Note that increasing the value of the load resistance reduces the plate current at a given bias voltage, and also that the curves are straighter with the higher values of load resistance. Zero plate current always occurs at the same value of negative grid bias, since at zero plate current there is no voltage drop in the load resistance and the full supply voltage is applied to the plate.

Fig. 306 shows how the plate current responds to an alternating voltage (signal) applied to the grid. If the plate current is to have the same waveshape as that of the signal, it is necessary to confine the operation to the straight section of the curve. To do this, it is necessary to select an operating point near the middle of the straight portion; this operating point is determined by the fixed voltage (bias) applied to the grid. The alternating signal voltage then adds to or subtracts from the grid bias, depending upon whether the instantane-
ous signal voltage is negative or positive with respect to the cathode, and causes a corresponding variation in plate current. The maximum departure of instantaneous grid voltage or plate current from the operating point is called the swing. The varying plate current flows through the ioad resistance, causing a varying voltage drop which constitutes the useful output voltage of the tube.

The point at which the plate current is reduced to zero is called the cut-off point. The value of negative grid voltage at which cut-off occurs depends upon the amplification factor of the tube and the plate voltage. It is approximately equal to the plate-supply voltage divided by the amplification factor.
Interelectrode capacilies - Any pair of elements in a tube forms a mininture condenser (§2-3), and, although the capacities of these condensers may be only a few micromicrofarads or less, they must frequently be taken into account in vacuum-tube circuits. The capacity from grid to plate (grid-plate capacity) has an important effect in many applications. In triodes, the other copacities are the gridcathode and plati-cuthode. In multi-element tubes (§3-6), similar capacities exist between these and other electrodes. With screen-grid tubes, the terms "input" and "output" capacity mean, respectively, the capacity measured from grid to all other elements connected together and from plate to all other elements connected together. The same terms are used with triodes but are not so easily defined, since the effective capacities existing depend upon the operating conditions (§3-3).

Tube ratings - Specifications of suitable operating voltages and currents are called tube ratings. Ratings include proper values for filament or heater voltage and current, plate voltage and current, and similar operating sperifications for other elements. An important rating in power tubes is the maximum safc plate dissipation, or the maximum power that can be dissipated continuously in heat on the plate(§3-1).

C 3-3 Amplification

Principles - The operation of a simple amplifier, which was described briefly in the preceding section, is shown in more detail in Fig. 307. The load in the plate circuit is the resistor, R_{p}. For the sake of example, it is assumed that the plate-supply voltage is 300 volts, the negative grid bias is 5 volts, and the plate current at this bias when R_{p} is 50,000 ohms is 2 milliamperes (0.002 ampere). If no signal is applied to the grid circuit, the voltage drop in the load resistor is $50,000 \times 0.002$, or 100 volts, leaving 200 volts between the plate and cathode.

If a sine-wave signal having a peak value of 2 volts is applied in series with the bias voltage in the grid circuit, the instantancous voltage at the grid will swing to -3 volts at the instant the signal reaches its positive peak and to -7 volts at the instant the signal reaches its negative peak. The maximum plate current
will occur at the instant the grid voltage is -3 volts and, as shown by the graph, will have a valne of 2.65 milliamperes. The minimum plate current occurs at the instant the grid voltage is -7 volts, and has a value of 1.35

Fig. 305 - Dynamic characteristics of a small triode with various load resistances from 5,000 to 100,000 obms.
ma. At intermediate values of grid voltage, intermediate plate-current values will occur. The instantaneous voltage between the plate and cathode of the tube also is shown on the graph. When the plate current is maximum the instantaneous voltage drop in R_{p} is $50,000 \times$ 0.00265 or 132.5 volts, and when the plate current is minimum the instantaneous voltage drop in R_{p} is $50,000 \times 0.00135$ or 67.5 volts. The actual voltage between plate and cathode is therefore the difference between the platesupply voltage, 300 volts, and these voltage drops in the load resistance, or 167.5 and 232.5 volts, respectively.

The varying plate voltage is an a.c. voltage superimposed ($\$ 2-13$) on the steady platecathode voltage of 200 volts, which was previuusly determined for no-signal conditions. The pak value of this a.c. output voltage is the difference between either the maximum or minimum plate-cathode voltage and the nosignal value of 200 volts. In the illustration this difference is $232.5-200$ or $200-167.5$, or 32.5 volts. Since the grid signal voltage has a peak value of 2 volts, the voltage amplification ratio of the amplifier is $32.5 / 2$ or 16.25 . That is, approximately 16 times as much volt-

Fig. 306 - Behavior of the plate current of a vacuum tube in responsc to an alternating signal voltage superimposed on a steady negative grid voltage or bias.

Fis. 307 - Amplifier operation. When the plate current varies in response to the sigual applied to the grid, a varying voltage drop appears arross the load, R_{p}, as shown by the dashed curve, $E_{p} . I_{P}$ is the plate current.
age will be obtained from the plate circuit as is applied to the grid circuit.

It will be oliserved that only the alternating plate and grid voltages enter into the calculation of the amplification ratio. The d.c. plate and grid voltages are of course essential to the operation of the tube, since they set the operating point, but otherwise their presence may be ignored. This being the case, it is possible to show that the tube can be replaced by an equivalent generator which has an internal resistance equal to the a.c. plate resistance of the tube ($\$ 3-2$) at the operating point chosen and which generates a voltage equal to the amplification factor of the tube multiplied by the signal voltage applied to the grid. The equivalerit generator, together with the load resistance, R_{p}, is shown in Fig. 308. This simplification enables ready calculation of the amplification. If the generated voltage is μE_{0}, then the same cirrent flows through r_{p} and R_{p}, and hence the voltage drop across R_{p}, whieh is the useful output voltage, is

$$
E_{o}=\mu E_{q} \frac{R_{p}}{r_{p}+R_{p}}
$$

since R_{p} and r_{p} together constitute a voltage divider (§ 2-6). The voltage-amplification ratio is given by the output voltage divided by the input voltage, hence dividing the above expression by E_{a} gives the following formula for the amplification of the tube:

$$
\text { Amplification }=\frac{\mu R_{p}}{r_{p}+R_{p}}
$$

This expression shows that, to obtain a large voltage-amplification ratio, it is necessary to make the plate load resistance, R_{p}, large compared to the plate resistance, r_{p}, of the tube. The maximuni possible amplification, obtained When R_{p} is infinitely larger than r_{p}, is equal to the μ^{r} of the tube. A tube with a large value of μ will, in general, give more voltage amplification thun one with a medinm or low value. However, the advantage of the high μ is less than might be expected, because a high- μ tube usually also has a correspondingly high value of r_{n}, so that a high value of load resistance must be used to realize an appreciable part of
the possible amplification. This in turn not only requires the use of high values of plate-supply voltage, but has some further disadvantages to be described later.

Amplifiers in whieh the voltage output, rather than the power output, is the primary consideration are called voltage amplifiers.

Power in grid circuit - In the operation depicted in Fig. 306, the grid is alwnys negative with respect to the cathode. If the peak signal voltage is larger than the bias voltage, the grid will be positive with respect to the cathode during part of the signal cycle. Grid current will flow during this time, and the signal source will be called upon to furnish power during the period while grid current is flowing. In many cases the signal source is not capable of furnishing appreciable power, so that care must be taken to avoid "driving the grid positive."

When dealing with small signals the source of signal voltage frequently has high internal resistance, so that a considerable voltage drop oceurs in the source itself whenever it is called upon to furnish grid current. Since this voltage drop occurs only during part of the cycle, the voltage applied to the grid undergoes a change in waveshape because of the current flow. This is shown in Fig. 309, where a sine-wave signal is generated but, because of the internal resistance of the source, is distorted at the grid of the tube during the time when grid current flows.

If the internal resistance of the signal source is low, so that the internal voltage drop is negligible when current flows, this distortion does not occur. With such a souree, it is possible to operate over a greater portion of the amplifier characteristic.

Ifarmonic distortion - If the operation of the tube is not confined to a straight or linear portion of the dynamic characteristic, the waveshape of the output voltage will not be exactly the same as that of the signal voltage. This is shown in Fig. 310, where the operating point is selected so that the signal voltage swings into the curved part of the characteristic. While the upper half-cycle of plate current reproduces the sine-wave shape of the positive half-cycle of signal voltage, the lower half-cycle of plate current is considerably distorted and bears little resemblance to the upper half-cycle of plate current.

As explained in § 2-7, a non-sinusoidal waveshape can be resolved into a number of sinewave components or harmonies which are integral multiples of the lowest frequency present. Consequently, this type of distortion is known as harmonic distortion. Distortion re-

Fig. 308 - Equivalent circuit of the vaenumtube amplificr. The tuhe is replaced by an equivalent penerator having an internal resistance equal to the a.c. plate resistance of the vacuum tube.
sulting from grid-current flow, described in the preceding paragraph, also is harmonic distortion. Harmonic distortion from either or both causes may arise in the same amplifier.

Harmonic distortion may or may not be tolerable in an amplifier. At audio frequencies it is desirable to keep harmonic distortion to a minimum, but radio-frequency amplifiers are frequently operated in such a way that the r. f. wave is greatly distorted.

Frequency distortion - Another type of distortion, known as frequency distortion, occurs when the amplification varies with the frequency of the a.c. voltage applied to the grid circuit of the amplifier. It is not necessarily accompanied by harmonic distortion. It can be shown by a frequency-response curve or graph in which the relative amplification is plotted against frequency over the frequency range of interest.
Resistance-coupled amplifiers - An amplifier with a resistance load is known as a "resistance-coupled" amplifier. This type of amplifier is widely used for amplification at audio frequencies. A simplified circuit is shown in Fig. 311, where the amplifier is coupled to a following tube. Since all the power output of a resistance-coupled amplifier is consumed in the load resistor such amplifiers are used almost wholly for voltage amplification, usually working into still another amplifier.

A single amplifier is called a stage of amplification, and a number of amplifier stages in suceession are said to be in cascade.

The purpose of the coupling condenser, C_{a}, is to transfer to the grid of the following tube the a.c. voltage developed across R_{p}, and to prevent the d.c. plato voltage on tube A from being applied to the grid of tube B. The grid resistor, R_{θ}, transfers the bias voltage to the grid of tube B and prevents short-cireuiting the a.e. voltage through the bias battery. Since no grid current flows, there is no d.c. voltage drop in R_{g}; consequently the full bias voltage is applied to the grid. In order to obtain the maxi-

Fig. 309 - Distortion of applied signal because of gridcurrent flow. With the operating point at 3 volts negative bias, grid current will flow as shown by the curve whenever the applied signal voltage is more than 3 volts positive. If there is appreciable internal resistance, as indicated in the second drawing, there will he a voltage drop in the resistance whencver current is flowing but not during the period when no current flows. The signal will reach the grid unchanged so long as the instantaneous voltuge is Iess than 3 volta positive, but the voltage at the grid will be less than the instantaneous voltage when the latter is above this figure. The shape of the negative half-cycle is unaltered.

Fig. 310 - Harmonic distortion resulting from chnire of an operating point on the curved part of the tuthe characteristic. The lower half-cycle of plate current denes not have the same shape as the grid voltuge causing it.
mum a:c. voltage at the grid of tube B the reactance of the coupling condenser must be small compared to the resistance of R_{0}, so that most of the voltage will appear across R_{0} rather than across C_{c}. Also, the resistance of R_{0} must be large compared to R_{p} beeause, so far as the a.c. voltage developed in R_{p} is concernecl, R_{σ} is in parallel with R_{p} and therefore is just as much a part of R_{p} as though it were connected directly in parallel with it. (The impedance of the plate-supply battery is assumed to be negligible, so that there is no a.c. voltage drop between the lower end of R_{p} and the common connection between the two tubes.) In practice the maximum usable value of R_{g} is limited to from 0.5 to about 2 megohms, depending upon the characteristies of the tube with which it is associated. If the value is made too high, stray electrons collecting on the grid may not "leak off" back to the eathode rapidly enough to prevent the accumulation of a negative charge on the grid. This is equivalent to an increase in the negative grid bias, and hence to a shift in the operating point.

The equivalent circuit of the amplifier now includes C_{c}, R_{o}, and a shunt capacity, C_{s}, which represents the input capacity of tube B and the plate-cathode capacity of tube A, together with such stray capacity as exists in the circuit. The reactance of C_{s} will depend upou the frequency of the voltage being amplified, and, since C_{s} is in parallel with R_{p} and R_{p}, it also becomes part of the load inipedance for the amplifier. At low frequencies - below 1000 cycles or so - the reactance of C usually is so high that it has practically no effect on the amplification, but, since the reactance decreases at higher frequencies, it is found that the amplification drops off rapidly when the reactance of C_{s} becomes comparable to the resistance of R_{p} and R_{0} in parallel. To maintain the amplification at hirh frequencies, it is necessary that R_{p} be relatively small if C_{n} is large, or that C_{s} be small if R_{p} is large.

Under the best conditions, in practice C, will be of the order of $15 \mu \mu \mathrm{fd}$. or more, while it is
possible for it to reach values as ligh as a few hundred $\mu \mu \mathrm{fd}$. The larger values are encountered when tube B is a high- μ triode, as described in a later paragraph. Even with a low value of shunt capacity, the shunt reactance

Fig. 311 - 'lypical resistance-coupled amplifier circuits.
will decrease to a comparatively low value at the upper limit of the audio-frequency range; a shunting capacity of $20 \mu \mu \mathrm{fl} .$, for example, represents a reactance of about 0.5 megohm at 15,000 cycles, and hence is of the same order as R_{p} for the type of tubes with which such a low value of capacity would be associated. In order to secure the same amplification at high as at low frequencies, therefore, it is necessary to sucrifice low-frequency amplification by reducing the value of R_{p} to the point where the reactance of C_{s} at the highest frequency of interest is considerably larger than R_{p}.

At radio frequencies the reactance of C_{s} becomes so low that the amount of amplification it is possible to realize is negligible compared to that which can be obtained in the audiofrequency range. The resistance-coupled amplifier, therefore, is used principally for audiofrequency work.

Impedance-coupled amplifiers - If either the plate resistor or grid resistor (or both) in the amplifier deseribed in the preceding paragraph is replaced by an inductance, the amplifier is said to be impedance-coupled. The inductance or impedance is commonly sulostituted for the plate load resistor, so that the usual circuit for such an annplifier is as given in Fig. 312.

Considering the operation of the tube from the standpoint of the equivalent circuit of Fig. 30s, it is evident that a voltage drop would exist across a reactance of suitable value substituted for the indicated load resistance, R_{p}, so long as the output of the generator is alternating current. From the physical standpoint, any change in the current flowing through the inductance in Fig. 312 would cause a selfinduced e.m.f. having a value proportional to the rate of change of current and to the inductance of the coil. Consequently, if an a.c. signal voltage is applied to the grid of the tube, the resultant variations in plate current cause a corresponding a.c. voltage to appear across
the coil terminals. This induced voltage is the useful output voltage of the tube.

The a mplitude of the output voltage can be calculated, knowing the μ and plate resistance of the tube and the impedance of the load, in much the same way as in the case of resistance coupling, except that the equation must be modified to take account of the fact that the phase relationship between current and voltage is not the same in an impedance as it is in a resistance. In practice, the plate load inductance is shunted by the tube and stray capacities of the circuit as well as by its own distributed capacity. Since the greatest amplification will be secured when the load impedance is as high as possible, the coil usually is made to have sufficient inductance so that, in combination with these shunting capacities, the circuit as a whole will be parallel-resonant at some frequency near the middle of the audio-frequency range. Under these conditions the load impedince has its highest possible value, and is approximately resistive rather than reactive.

The equation for amplification with resistance coupling shows that, when R_{p} is several times the plate resistance, τ_{p}, a further increase in R_{p} results in comparatively little increase in amplification. The load circuit of an imped-ance-coupled amplifier usually has an inmpedance value quite high in comparison to the plate resistance of the tube with which it is used, so that the load impedance can vary over a considerable range without much effect on the amplification. This gives the impedancecoupled amplifier an amplification vs. frequency characteristic which is fairly "flat" - that is, the amplification is practically eonstant with changes in frequency - over a considerable portion of the audio-frequency range. However, the performance of the impedance-coupled amplifier is not as good in this respect as that of a well-designed resistance-coupled amplifier.

If the impedance of the load circuit is high compared to the plate resistance of the tube, which will be the case if the tube is a low- μ triode and normal inductance values (a few hundred henrys) are used in the plate eircuit,

Fig. 312 - Imprdance-coupled amplifier.
the amplification in the optimum frequency range will be practically equal to the μ of the tube. At lower frequencies the impedance decreases because of the decreasing reactance of the coil, while at higher frequencies the impedance again decreases because of the decreasing reactance of the shunt capacities. Thus the amplification drops off at both ends of the range, usually more rapidly than with resistance coupling.

The frequency-response characteristic of the impedance-coupled amplifier depends considerably upon the plate resistance of the tube. If impedance coupling is used with tubes of very high plate resistance, the response will be markedly greater at the resonant frequency than at frequencies either higher or lower.

Impedance coupling can be used at radio frequencies, since the inductance can be adjusted to resonate with the shunt capacities at practically any desired frequency.

Transformer-coupled amplifiers - The coupling impedance in Fig. 312 may be replaced by a transformer, connected as shown in Fig. 313. A.c. voltage is developed across the primary of the transformer in the same way as in the case of impedance coupling. The secondary of the transformer serves as a means for transferring the voltage to the grid of the following tube, and if the secondary has more turns than the primary the voltage across the secondary terminals will, in general, be larger than the voltage across the primary terminals.
As in the case of impedance coupling, the effective capacity shunting the primary of an audio-frequency transformer usually caluses the primary circuit to be parallel-resonant at some frequency in the middle of the audiofrequency range. At the medium audio frequencies, therefore, the voltage across the primary is practically equal to the applied grid voltage multiplied by the μ of the tube. The voltage across the secondary will be the primary voltage multiplied by the secondary-toprimary turns ratio of the transformer, so that the total voltage amplification is μ tines the turns ratio. The amplification at low frequencies depends upon the ratio of the primary reactance to the plate resistance of the tuhe, as in the case of impedance-coupled amplificrs.

At some high frequency, usually in the range $5000-10,000$ cycles with ordinary transformers, the leakage inductance ($\$ 2-8$) of the secondary becomes serics resonant with the effective capacity shunting the secondary. At and near this resonant frequency the resonant rise in voltage may increase the amplification considerably, giving rise to a "peak" in the frequency-response curve of the amplifier. At frequencies above this resonance point amplification decreases rapidly, because as the reactance of the shunting capacity decreases it tends to act more and more as a short circuit across the secondary of the transformer. The relative height of the high-frequency peak depends principally upon the effective resistance of the secondary circuit. This effective resistance includes the actual resistance of the secondary coil and the "reflected" (§ 2-3) plate resistance of the tube, this resistance being in parallel with the primary of the transformer. Consequently, the height of the peak is affected by the tube with which the transformer is used. The peak can be reduced by connecting a 0.25 to 1 megohm resistor across the transformer sceondary. While this helps to flatten the fre-
quency response curve, it also reduces the amplification at medium and low frequencies.

Transformer coupling is most suitable for triodes of low or medium μ and having medium values of plate resistance. This is because the primary inductince required for good amplifiration at low frequencies is proportional to the plate resistance of the tube with which the transformer is to be used, and in practice it is difficult to obtain high primary inductance, a large secondary-to-primary turns ratio ("stepup ratio"), and low distributed capacity in the windings all at the same time. Inereasing the primary inductance usually means that the turns ratio must be reduced, because the increase in distributed calpacity as the coils are made larger tends to bring the resonant peak down to a relatively low frequency unless the secondary inductance is decreased to compensate for the increase in c:rpacity. The step-up ratio seldom is nore than 3 to 1 in transformers designed for good frequency response.

Fis. 313 - 'Transformer-coupled amplitior.
Transfurmer coupling can be used at radio frequencies if the transformers are properly designed for the purpose. In such transformers either the primary or secondary (or both) is made resonant at the frequency to be used, so that maximum amplification will be secured.
${ }^{\text {Ph}}$ hase relations in plate and grid circuits - When the exciting voltage on the gricl has its maximum positive instantaneous value, the plate current also is maximum ($\$ 3-2$), so that the voltage drop across the resistance connected in the plate circuit of a resistancecoupled amplifier likewise has its greatest value. The actual instantaneous voltage between plate and cathode is therefore minimum at the same instant, because it is equal to the d.c. supply voltage (which is unvarying) minus the voltage drop across the load resistance. When the signal voltage is at its negative peak the plate current has its least value, with the result that the voltage drop in the load resistance is less than at any other part of the cycle. At this instant, therefore, the voltage between plate and cathode is maximum.

These variations in plate-cathode voltage constitute the a.c. output of the tube, superimposed on the mean or no-signal plate-cathode voltage. Since the alternating plate-cathode voltage is decreasing when the instantaneous grid voltage is increasing (becoming more positive with respect to the cathode), the output voltage is less than the mean value, or negative, when the signal voltage is positive. Likewise, when the signal voltage is negative the output voltage is positive, or greater than
the mean value. In other words, the alternating plate voltage is 180 degrees out of phase with the alternating grid voltage. Thus there is a phase reversal through the amplifier. The relationslips should become clear from the behavior of the signal voltage and E_{p} in Fig. 307.
The same phase relationship between signal and output voltages holds when the amplifier is impedance- or transformer-coupled, in the frequency region where the load acts like a parallel-resonant circuit. However, if the load is reactive the phase relationship is not exactly 180 degrees but depends upon the kind of reactance present and the relative amounts of reactance and resistance. (This is true also of the resistance-coupled amplifier at low frequencics where the reactance of the coupling condenser affects the amplification, or at high frequencies where the reactance of the shunting capacities becomes important.) Since the reactance varies with the applied signal froquency, the phase relationship between signal voltage and output voltage depends upon the frequency in such cases.
Input capacity and resistance - When an alternating voltage is applied between the grid and cathode of an amplifier tube, an alternating current flows through the small condenser formed by these elements ($\$ 3-2$) just as it would in any other condenser. Similarly, an alternating current also flows in the condenser formed by the grid and plate, since there is an alternating difference of potential between these elements. When the tube is amplifying, the alternating plate voltage and signal voltage are effectively applied in series across the gridplate condenser, as indicated in Fig. 314. As described in the preceding paragraph, in the resistance-coupled amplifier the two voltages are out of phase with respect to the cathode, but inspection of the circuit shows that they are in phase so far as the grid-plate condenser is concerned. Consequently, the voltage applied to the grid-plate capacity is the sum of the alternating grid and plate voltages, or $E_{\rho}+E_{p}$. Since E_{p} is equal to $A \times E_{\theta}$, where A is the voltage amplification of the tube and circuit, the a.c. voltage between the grid and plate is $E_{0}(1+A)$. The current, I, flowing in the grid-plate capacity is $E_{\sigma}(1+A)$ divided by the reactance of the grid-plate condenser, and thus is proportional to the grid-plate capacity.
The signal voltage must help in causing this relatively large current to flow, and, since the reactance as viewed from the input circuit

Fig. 314- The n.c. voltage appearing between the grid and plate of the amplifier is the sum of the signal voltage and the output voltage, as sbown by this siraplified circuil. Inetantancous polarities are indicated.
is $X_{g}=E_{g} / I$, the input reactance becomes smaller as the current becomes larger. That is, the effective input capacity of the amplifier is increased when the tube is amplifying. From the above, the increase in input capacity is approximately proportional to the voltage amplification of the circuit and to the grid-plate capacity of the tube. The total input capacity is the sum of the grid-cathode capacity and this additional effective capacity. The total input capacity of an amplifier may reach values ranging from 50 to a few hundred micromicrofarads, if the voltage amplification is high and the grid-plate capacity relatively large. Both usually are true in a high $-\mu$ triode.

When the load is reactive the a.c. grid and plate voltages still act in series across the gridplate condenser, but since they are not exactly 180 degrees out of phase with respect to the cathode they are not exactly in phase with respect to the grid-plate capacity. The lack of exact phase rclationship indicates that resistance as well as capacity is introduced into the input circuit. Analysis shows that, when the reactance of the load circuit is capacitive, the resistance component is positive - that is, it represents a loss of power in the input circuit - and that when the load circuit has inductive reactance the resistance component is negative. Negative resistance indicates that power is being supplied to the grid circuit from the plate.

Feed-back- If some of the amplified energy in the plate circuit of an amplifier is coupled back into the grid circuit, the amplifier is said to have fecd-back. If the voltage fed from the plate circuit to the grid circuit is in such phase that, when it is added to the signal voltage already existing, the sum of the two voltages is larger than the original signal voltage, the fced-back is said to be positive. Positive feed-back usually is called regeneration. If regeneration exists in a circuit the total amplification is increased because the feed-back increases the amplitude of the signal at the grid and this larger signal is amplified in the same ratio, giving a greater output voltage than would exist if the signal voltage alone were present in the grid circuit. Many types of circuits can be used to secure positive feedback. A simple one is shown in Fig. 315. The feed-back coil, L, a third winding on the gridcircuit transformer, is connected in series with the primary of the transformer in the plate circuit, so that some of the amplified voltage appears across its terminals. This induces a voltage in the secondary, S, of the grid-circuit transformer which, if the winding directions of the two coils are correct, will increase the value of signal voltage applied to the grid.

Positive feed-back is accompanied by a tendency to give maximum amplification at only one frequency, since the feed-back voltage will tend to be highest at the frequency at which the original amplification is greatest. It therefore increases the selectivity of the ampliGer, and hence is used chiefly where high gain
and sharpness of resonance both are wanted.
If the phase of the voltage fed back to the grid circuit is such that the sum of the feedback voltage and the original signal voltage is less than the latter alone, the feed-back is said to be negative. Nepative feed-back frequently is called cegeneration. In this case the total amplification is decreased, since the grid signal has been made smaller, and hence the amplified output voltage is smaller for a given original signal than it would be without feed-back.
The amount of voltage fed back will depend upon the actual amplification of the tube and circuit, and if the amplification ratio tends to change, as it may at the extreme high or low frequencies in the audio-frequency range, the feed-back voltage will be reduced when the amplification decrenses. For example, suppose that an amplifier has a voltage gain of 20 and that it is delivering an output voltage of 50 volts. Without feed-back, the grid signal voltage required to prochece 50 volts output is $50 / 20$ or 2.5 volts. But suppose that 10 per cent of the output voltage (5 volts) is fed back to the grid circuit in opposite phase to the applied grid voltage. Then, since it is still necessary to have a 2.5 -volt signal to produce 50 volts output, the applied voltage must be $2.5+5$ or 7.5 volts. Now suppose that at some other frequency the voltage gain drops to 10 . Then for the same 50 -volt output a 5 volt signal is required, but since the feed-back voltage is still 5 volts the total required signal is now 10 volts. With feed-back the gain in the first case was $50 / 7.5$ volts or 6.66 and in the second case $50 / 10$ or 5 , the gain in the second case being 75 per cent as ligh as in the first. Without feed-back the gain in the second case was 50 per cent as high as in the first. The effect of feed-back therefore is to make the resultant gain more uniform, despite the tendency of the amplifier itself to discriminate against certain frequencies.

Negative feed-back also tends to decrease harmonic distortion arising in the plate circuit of the amplifier. This distortion is present in the amplified output voltage, but not in the original signal voltage applied to the grid. The voltage fed back to the grid circuit contains the distortion but in opposite phase to the distortion components in the plate circuit, hence the two tend to cancel each other. For similar reasons, the over-all amplification is less dependent upon the value of load impedance used in the plate circuit; in fact, if a large :umount of negative feed-back is used in an amplifier it is even possible to substitute tubes of rather widely different characteristics without much effect on the over-all performance.

Both positive and negative feed-back may be applied over several stages of an amplifier, rather than being applied directly from the plate circuit to the grid circuit of a single stage.

Power amplification - In the types of amplifiers previously described, the chief considoration was that of securing as much voltage
gain as possible within the permissible limits of harmonic distortion and frequency response characteristic. Such amplifiers are principally used to furnish an amplified signal voltage, which in turn can be supplied to a succeeding amplifier. If the succeeding amplifier is operated in such a way that its grid is never driven positive with respect to its cathode, grid current does not flow, and hence the power requirements are negligibly small. However, if an amplifier is used to actuate some power-consuming device, such as a loudspeaker or a succeeding amplifier in which it is permissible to drive the grid into the positive region, the primary consideration is that of obtaining the maximum power output consistent with the permissible distortion. In such a case the volt age at which the power is secured is of little consequence, since a transformer may be used to change the voltage to any desired value, within reasonable limits. Hence, the voltage gain of a power amplifier is of little import:nce.

In power-amplifier operation the grid may or may not be driven into the positive region, depending upon the particular application. The present discussion will be confined to the triode amplifier operating without grid current; other types are considered in § 3-4. The principles upon which such a power amplifier operates are practically identical with those already described. The chief differences between a voltage amplifier and a power amplifier lie in the selection of tubes and in the choice of the value of load resistance. As previously described, if voltage gain is the primary consideration the load resistance should be as large as possible in comparison to the plate resistance of the tube. It can be shown that, in any electrical circuit, maximum power output is secured when the resistance of the load is made equal to the interual resistanee of the source of power. This is true whether the power source is a battery, a generator or a vacuum tube. In the case of the vacuum tube the internal resistance is the plate resistance of the tube, so that for maximum power output the load resistance should be made equal to the plate resistance. However, when the tube is operated with so low a value of load resistance there is considerable harmonic distortion, and optimum power output, representing an acceptable compromise between distortion and the power obtainable, is secured when the load resistance is approximately twice the plate resistance.

Fip. 315-An elementary form of feed-back circuit. The feed-back may be either positive or negative, depending upon how the coil L is connected in the circuit. This type of circuit illustrateg the principle of feed-back, but it is not practical for use in an actual andio-frequency amplifier.

IUwer-amplifer circuits - The plate or output circuit of a power amplifier alnost invariably is transformer-coupled to the powerconsuming device or lond with which it is associated. This is because the impedance of the desired load seldom is the proper value for obtaining optimum power output from the amplifier. Consequently; the load innedance must be changed to a value suitable for the plate circuit of the amplifier tube. This can be done by the use of transformers, as described in §2-9.

Fig. 316 - An elementary power-amplifier circuit in whirh the power-consuming load is coupled to the plate circuit through an impedance-matching transformer.

A basie power-amplifier circuit is shorn in Fig. 316. So long as the amplifier is operated entirely in the negative-grid region and no grid current flows, any of the previously deseribed types of coupling may he used between the grid of the power amplifier and the preceding amplifier. If there is no preceding amplifier, the method of coupling will depend principally on the characteristics of the source of the signal.

In Fig. 316 the load is represented as a resistance. An actual loid niay liave a reactance as well as a resistance component, but only the resistance will consume power (\$2-8).

Pacer amplification ratio - The ratio of a.e. output power to the a.e. power consumed in the grid circuit (driving power) is called the power amplificution ratio or simply power amplificaion of the amplifier. If the amplifier operates without grid current the a.c. power consumed in the grid cirenit is negligibly small, so that the power amplification ratio of such an amplifier is extremely large. With other types of operation the power amplification ratio may be relatively small, as described in §3-4.

Plate efficiency - The ratio of a.c. output power to the d.c. power supplied to the plate circuit is called the plate efficiency of the amplifier. It is expressed as a percentage:

$$
\% \text { plate efficiency }=\frac{P_{o}}{E I} \times 100
$$

where P_{0} is the a.c. out put power, E the plate voltage and I the plate current, the latter two being d.c. values.

The plate efficiency of amplifiers designed for minimum distortion and a high power amplification ratio (operation without grid current) is relatively low - of the order of 15 to 30 per cent. For mininnum distortion the operation must be confined to the region where the waveshape of the alternating plate current is substantially identical with that of the signal on the grid, and, as previously explained, this recuirement ean be met only by limiting the
plate-current variations (that is, the alternating component of plate current) to the straight portion of the dynamic grid voltage vs. plate current characteristic. Since with a given load resistance the power output is proportional to the square of the alternating component of plate current, it follows that limiting the platecurrent variation also limits the power output in comparison to the d.c. plate power input.

Higher plate efficiency can be secured by increasing the alternating component of plate current, but this is accompanied by increased distortion. Special types of amplifiers have been devised to compensate for this distortion, as described in the next section. In some applications, as in r.f. power amplification, the fact that the signal applied to the grid is greatly distorted is of no consequence, so that such amplifiers can have high plate efficiency.
Power sensitirity - The ratio of a.c. power output to alternating grid voltage is called the power sensitivity of an amplifier. It provides a convenient measure for comparing power tubes, especially those designed for audio-frequency amplification where the operation is to be without grid current, since it expresses the relationship between power output and the amount of signal voltage required to produce the power.

The term power sensitivity also is used in connection with radio-frequency power amplifiers, in which case it has the same meaning as power amplification ratio. A tube which delivers its rated output power with a relatively small amount of power consumed in the grid circuit is said to have high power sensitivity.

Parallel operation - When it is necessary to obtain more power output than one tube is capable of giving, two or more tubes may be connected in parallel. In this case the similar elements in all tubes are connected together. This method is shown in Fig. 317 for a trans-former-coupled amplifier. The power output of a parallel stage will be in proportion to the number of tubes used; the exciting voltage required, however, is the same as for one tube.

If the amplifier operates in such a way as to consume power in the grid circuit, the grid power required also is in proportion to the number of tubes used.

Push-pull operation-An increase in power output ean be secured by comnecting two tubes in push-pull, the grids and plates of the two tubes being connected to opposite ends of the circuit as shown in Fig. 317. A "balanced" circuit, in which the cathorle returns are made to the midpoint of the input and output devices, is necessary with pushpull operation. At any instant the ends of the secondary winding of the input transformer, T_{1}, will be at opposite potentials with respect to the cathode connection, so that the grid of one tube is swung positive at the same instant that the grid of the other is swung negative. Hence, in any push-pull-connected stage the voltages and currents of one tube are out of phase with those of the other tube. The
plate current of one tube is rising while the plate eurrent of the other is falling, hence the name "push-pull." In push-pull operation the even-harmonic (second, fourth, etc.) distortion is cancelled in the symmetrical plate circuit. so that for the same power output the distortion, will be less than with parallel operation.
The exciting voltage measured between the two grids must be twice that required for one tube. If the grids consume power, the driving power for the push-pull stage is twice that taken by either tule alone.

The decibel - The ratio of the power levels at two points in a circuit such as an amplifier can be expressed in terms of a unit called the decibel, abbreviated $d b$. The number of decibels is 10 times the logarithm of the power ratio, or

$$
\mathrm{db} .=10 \log \frac{P_{1}}{P_{2}}
$$

The decibel is a particularly useful unit because it is logarithmic, and thus corresponds to the response of the human ear to sounds of varying loudness. One decibel is approximately the power ratio required to make a just noticeable difference in sound intensity. Within wide limits, changing the power by a given ratio produces the same apparent change in loudness regardless of the power level; thus if the power is cloubled the incrense is 3 db ., or three steps of intensity; if it is doubled again the increase is again 3 db ., or three further distinguishable steps. Successive amplifications expressed in decibels can be added to obtain the over-all amplification.

A power loss also can be expressed in decibels. A decrease in power is indicated by a minus sign (e.g., -7 db .), and an increase in power by a plus sign (e.g., +4 db .). Negative and positive quantities ean be added numerically. Zero db. indicates the reference power level, or a power ratio of 1 .

Applications of amplification - The major uses of vacuum-tube amplifiers in radio work are for amplifying at audio and radio frequencies ($\$ 2-\overline{7}$). The audio-frequency amplifier general!y if used to amplify without dis-

Fig. 317 - Parallel and push-pull a.f. amplifier circuits.
crimination at all frequencies in a wide range (say from 100 to 3000 cycles for voice communication), and therefore is associated with nonresonant or untuned cireuits which offer a uniform load over the desired range. The radio-frequency amplifier, on the other hand, generaly is used to amplify selectively at a single radio frequency, or over a small band of frequencirs at most, and therefore is associated with resonant eircuits tunable to the desired frequency.

An audio-frequency amplifier nay be considered a brond-band amplifier: most radiofrequency amplifiers are designed to have relatively narrow bandwidths.
In audio circuits the power tube or output tube in the last stage usually is designed to deliver a considerahle amount of audio power, while requiring but negligible power from the input or exciting signal. To get the alternating voltage (grid suring) reçuired for the grid of such a tube, voltage amplifiers are used ennploying high- μ tubes which greatly increase the voltage amplitude of the signal. Voltage amplifiers are used in the radin-frequency stages of receivers as well as in audioamplifiers; power amplifiers are used in the radio-frequency stages of transmitters.

[3-4 Classes of Amplifiers

Reason for classification - It is convonient to divide amplifiers into grouns areording to the work they are intended to perform, as related to the operating eonditions neressary to aecomplish the purpose. This makes identification casy and obviates the necessity for giving a detailed clescription of the operation when specific operating data are not required.

Class A-An amplifirer operated as shown in Fig. 306 or 307, in which the output waveshape is a faithful reproduction of the input waveshape, is known as a Class- 4 amplifier.

As generally used, the grid of a Class-A amplifier never is driven positive with respect to the cathode by the exciting signal, and never is driven so far negative that plate-current cut-off is reached. The plate current is constant both with and without grid excitation. The chief characteristics of the Class-A amplifier are low distortion, relatluely low puwer output for a given size of tube, and a high power-amplification ratio. The plate effieiency is relatively low ($\S 3-3$).

Class-A power amplifiers find application as output amplifiers in audio systems and as drivers for Class-B power amplifiers. Class-A voltage amplifiers are found in the stages preceding the power stage or stages in such applications, and as r.f. amplifiers in receivers.

Class \boldsymbol{B} - The Class- B amplifier is primarily one in which the output current, or alternating component of the plate current, is proportional to the amplitude of the exciting grid voltage. Since power is proportional to the square of the current, the power output of a Class-B amplifier is proportional to the square of the exciting grid voltage.

In Class- 13 service the grid bias is set so that the plate current is relitively low without grid excitation; the exciting signal amplitude is made such that the entire linear nortion of the characteristic is used. Fig. 318 illustrates operation with the tube biased practically to cutoff. In this condition plate current flows only luring the positive half-rycle of excitation. No whate current flows during the negrative halfrycle. The shape of the plate eurrent pulse is essentially the same as that of the positive swing of the signal voltage. Since the plate current is driven up toward the saturation point, it is usually necessary for the grid to be driven positive with respect to the cathode during part of the grid swing. Grid current. flows, therefore, and the driving source must. farnish power to supply the grid losses.

Class-13 amplifiers are characterized by medium power output, medium plate efficiency (50 to 60 per cent at maximum signal), and a moderate ratio of power amplification. At radio frequencies they are used as linear amplifiers to raise the output power level in radiotelephone transmitters after modulation.

For Class-B audio-frequency amplification two tubes must be used, thé second tube working alternately with the first so that both halves of the cycle will be present in the ontput. A typical method of achieving this is shown in Fig. 319. The signal is fed to a transformer, T_{1}, whose secondary is divided into two equal parts, with the tube grids connecter to the outer terminals and the grid bias fed in at the center. A transformer, T_{s}, with a similarly divided primary, is eommected to the plates of the tubes. When the signal voltage in the upper half of T_{1} is positive with respect the the center

Fig. 319 - Showing how the outputs of the two tubes in push-pull are corabined in the Class-B audio amplifier.
connection (conter tap), the upper tube draws plate current while the lower tube is idle; when the lower half of T_{1} becomes positive, the lower tube draws plate current while the upper tube is idle. The voltages induced in the primary of T_{2} combine in the secondary to produce an amplified reproduction of the signal.

Class $A B$ - The similarity between the Class-A B amplifier, Fig. 319, and the ordinary push-pull circuit (Fig. 317) will be noted. Actually, the only difference lies in the method of operation. If the bias is adjusted so that the tubes draw a moderate value of plate current with no signal, the amplifier will operate Class Λ at low signal voltages and more nearly Class B at high signal voltages. This method gives low distortion at moderate signal levels and high plate efficiency at high signal levels. making possible the use of relatively small tubes in audio power amplifiers.

A further distinction ean be made between amplifiers which draw grid current and those whith do not. The Clnss- $A B_{1}$ amplifier draws no grid eurrent and thus consumes no power from the driving source. The Cluss- $A B$. amplitier draws gride eurrent at higher signal levels, and power must be supplied to its grid circuit.

Class C - The Class-C amplifier is one operated so that the alternating eomponent of the plate current is directly proportional to the plate voltage. The output power is therefore proportional to the square of the plate voltage. Other characteristics inherent to Class-C operation are high plate efficiency, high power output, and relatively low power amplification.

The grid bias is set at a value at least twice that required for plate-current cut-off without excitation. Thus plate current flows during only a fraction of the positive excitation cyele. The exciting signal should be of sufficient amplitude to drive the plate current to the saturation point, as shown in Fig. 320. Since the grid must be driven far into the positive region to cause saturation, considerable numbers of electrons are attracted to the grid at the peak of the cycle, robbing the plate of some that it would normally attract. This causes the droop at the upper bend of the chararteristic, and also may canse the plate-current pulse to be indented at the top. The output wave-form is badly distorted, but at radio frequencies the distortion is largely eliminated by the flywheel effect of the tuned output circuit.

(4 3-5 Cathodes; Grid Bias

Types of cathodes - There are two general types of cathodes. known as directly heated and indirectly heated. In the former the heating current is passed directly through the electronemitting material usually a fine wire or filament. In the latter the electrons are enitted from a sleeve or thimble raised to the proper temperat ure by an elect rically-separate heating element as shown in Fig. 321.
Directly-heated or filament-type cathodes may be of pare tungsten, tungsten having : small amount of thorimen dissolved in it. or tungsten coated with rare carths (oxide-conted type). The latter give the largest amomet of electron emission per watt of heating power. Thoriated tungsten filaments are intermediate in electron-emitting efficiency, and are nsed universally in smell and medium-power transmitting tubes. Indirectly-heated cathodes are invariably of the oxide-coated type.

When direetly-heated cathodes are opreated on alternating current, the cyelie variation of current causes the plate current of the tube to vary at the supply-frequency rate, producing hum in the output. Hun from this sourece is eliminated in the indirectly heated eathode. This type is also known as the equi-polential eathode since all of it is at the same potential. in contrast to the directly heated filament where a voltage drop oecurs along the wire.

The source of filament power for a directly heated cathode - battery or transformer necessarily is directly comnected to the tube circuit. With an indirectly heated eathode the source of heating power can be entirely independent of the tube circuit.

The operating temperature of a thoriated tungsten filament is fairly critical, and the specified filament voltage should be maintained within a few per cent. These filaments. as well as oxide-coated cathodes, eventually "lose emission": that is. the emission effiriency of the cathode decreases until sufficieut electron emission for atisfactory tube operation cannot be obtained withont raising the rathoole temperature to an unsale value.

Fig. 321 - T'ypers of cathode construction. Directly heated cathodcB or filament are shown at A, B, and C . The inverted \checkmark filament is used in small receiving tubes, the M in both receiving and tranemitting tubes. The apiral filament is a transmitting tube type. The andirectly heated cathodes at D and E show two types of heater construction, one a twisted loop and the other hunched heater wires. Boti types tend to cancel thmagnetic fieldas sct up by the currens through the heater.

Cathode circuits; filament center tapWhen a filament-type cathode is heated by a.c., hum can be minimized by making the two ends of the filament have equal and opposite potentials with respect to a center point, usually grounded ($\$ 2-13$), to which the gtid and

Fig. 322 - Filament transformer center-tap eonncetions.
plate retarn circuits are comected. The filament transformer winding may be center-tapped for this purpose, as shown in Fig. 322-A. With an untapped winding, a center-tapped resistor of 10 to 50 ohms is used, as at B. The by-puss condensers, C_{1} and C_{2}, are used in r.f. circuit. to avoid having the r.f. current flow through the trinsformer or resistor.

The heater supply for tubes with indirectly heated eathodes sometimes is center-tapped for the same purpose; more frequently, however. one side of the heater is grounded.

Methods of obtcining grid bins - Grid bias maty be obtained from a source of voltage especially provided for that purpose, such as a battery or other type of d.c. power supply. This is indicated in Fig. 323-A. A second methocl, utilizing a cathode resistor, is shown at 13 ; d.e. plate current flowing through the resistor causes a voltage drop which, with the commentions shown, has the right polarity to hias the grid negatively with respect to the eathode. The value of the resistor is determined by the bias required and the plate current which flows at that value of bias, as found from the tulo characteristic curves; with the voltage and enrrent known, the resistance ean be determined by Ohm's Law ($\$^{2-6}$):

$$
R_{\mathrm{c}}=\frac{E \times 1000}{I_{\mathrm{e}}}
$$

where $\mathcal{R}_{r}=$ gathode bias resistor in ohms
$E=$ desired bias voltage
$I_{\mathrm{c}}=$ total d.c. cathode current in milliamperes.
If the tube is a multi-clement type, the sereenand suppressor-grid currents should be added to the plate current to obtain the total cathode eurrent. The control-grid current also should be included if the control grid is driven positive.

The a.c. component of plate current flowing through the cathode resistor will cause an a.c. voltage drop which gives negative feed-back (83-3) into the grid circuit, and thus reduces the amplification. To prevent this, the resistor usually is by-passed ($\left(2-13\right.$), C_{c} being the cathode by-pass condenser. To be effective, the reactance of the by-pass condenser must be imall compared to R_{c} at the frequency being
amplified. This condition generally is satisfied if the reactance is 10 percent or less of the cathode resistance. In audio-frequency amplifiers, the lowest frequency at which full amplification must be secured sliould be used in calculatime the required capacity.

Fig. 323 - The threve bavic methols of ohtaining grid bias. Λ, fixed bials; B, cathode lias; C, grid-leak bias.

A third biasing method is by use of a grid leak, R_{G} in Fig. $323-C$. This requires that the exciting voltinge be positive with respect to the eathode during part of the cyele, so that grid eurrent will flow. The flow of grid current through the grid leak causes a voltage drop across the resistor, which gives the grid a negative bias. The time constant ($\$ 2-6$) of the grid leak and grid condenser should be large in comparison to the time of one cycle of the exriting voltage, so that the grid bias will be substantially constant and will not follow the variations in a.c. grid valtage. For grid-leak bias,

$$
R_{v}=\frac{E \times 1000}{I_{0}}
$$

where R_{g} is the grid-leak resistance in ohms, E the desired bias voltage and I_{g} the d.e. grid current in ma.

For two tubes operated in push-pull or parallel with a common cathode- or grid-leak resistor, the required resistance becomes onehalf that for a single tube. In push-pull Class-A circuits operating at audio frequencies, it is unnecessary to hy-pass the cathode resistor. In this case the a.c. component of cathode current in one tube is out of phase with the a.c. component in the other, so that the two cancel earch other.

The rhmice of a bitsing method depends upon the type of operation. Fixed bias usually is required where the d.c. plate eurrent of the amplifier: varies in operation, as in Class- B audio-frequency :mplifiers; if rathode bias is used the bias voltage would vary with the
plate current. Since the plate current of a Class-A amplifier is constant with or withuut signal, such amplifiers almost invariably have cathode bias. Grid-leak bias cannot be used with amplifiers operated so that the grid is always negative with respect to the cathode, since in such a case there is no grid current and hence no voltage drop in the grid leak. Gridleak bias is chiefly used for r.f. power amplifiers and for certain types of detectors. In power amplifiers, a combination of two or even all three types of bias may be used on one tube.

1. 3-6-A Multi-Grid Tubes

Radio-frequency amplification - As described in $\$ 3-4$, the reactances of the grid-tocathode and plate-to-rathode capacities (together with unavoidable stray (apacities) in a vacuum tube become very low at frequencies higher than the audio-frequency range. As a resuld, ordinary resistance, intpedance or transformer coupling cannot be used at radio frequencies because these rupacities act is howreactance by-passes across the input and output circuits. Hence the total impedance in either the plate or the grid eircuit is 1.00 low for appreciable voltage to be developed.

This situation can be overcome by using resonant circuits as impedances for radiofrequency amplifieation. As described in § 2-10, the parallel impedance of a resonant circuit can reach quite high values when the Q is high. Values of parallel-resonant impodance suitable for effective amplification are readily obtainable with reasonably well-designed circuits. The tube and stray capacities become part. of the tuning capacity and this are made ton serve a usefil purpose. However, the circuits have maximum impedance at the resonant frequency only, hence the amplification will decrease at frequencies somewhat removed from resonance. Thus a radio-frequency amplifier must be designed for a speeific: frequency.

An elementary cireuit illustrating the principles of r.f. amplification is shown in Fig. 32.t. The grid circuit, $L_{1} C_{1}$, and the plate circuit, $L_{2} C_{2}$, must be tuned to the same frequency for naximum amplification. But if the plate cireuit is tuned slightly to the ligh-frecpuency side of resonance it will show inductive reactance, and as described in § 3-3 energy will be transferred from the plate circuit to the grid circuit under such conditions. If enough energy is transferred the tube will generate a self-sustaining r.f. current, in which case it is said to be oscillating. When oscillation commences the circuit ceases to amplify incoming signals, since it is generating a signal of its

Fig. 324 - Elementary radio-frequency amplifier.
own. Unfortunately, it is almost impossible to prevent such oscillation in a simple triode amplifier such as is shown in Fig. 324.

Special "nautralizing" circuits (§ 4-7) have been devised to prevent oscillation with triode amplifiers, but most of these are more suitable for use in transmitting applications, where the amplifier does not have to be tunable over a wide range of frequencies, than in receivers. However, oscillation can be avoided by using a circuit in which the feed-back is negative rather than positive, as indicated in the next paragraph.

Grounded-grid amplifier-In the eireuit, of Fig. 325 the grid of the tube is connected to ground and the rathode is connected to the

Fig. 325 - Gromnded-gril anplifier circuit.
high-potential side of the input resonant circuit, reversing the usual connections. The output circuit is connected in the customary way between plate and grouncl. Since the alternating component of plate current must, flow through the tuned input circuit to return to the cathode there is feed-back from the plate to the grid circuit, but it is negative rather than positive feed-back. Hence this coupling between the two circuits will not cause oscillation.

However, it is still possible for the cirenit to oscillate if there is capaeity coupling between the plate and cathode. The grounded grid prevents this coupling by acting as a shield between the other two elements (\$2-11). The circuit is most successful with tubes having very low plate-to-cathode capacity. It is used principally at ultra-high frequencies (where the screen-grid tubes described in the next. paragraph become ineffective as amplifiers: with tubes designed especially for the purpose.

The r.f. chokes in the cathode circuit are used to isolate the heater from ground and thus eliminate the effect of the capacity between cathode and heater. This capacity tends to short-circuit the tuned input circuit and thus prevents the amplifier from operating properly.

Screen-grid tubes - The grid-plate capacity can be eliminated, or at least reduced to a negligible value, by inserting a second grid between the control grid and the plate as indicated in Fig. 326. The second grid, called the scrcen grid or shield grid, acts as an electrostatic shield ($\$ 2-11$) between the control grid and plate. It is made in the form of a grid or coarse screen rather than as a solid metal sheet, so that electrons can pass through it to the
plate; a solid shield would entirely prevent the flow of plate current. The screen grid is connected to the cathode through a by-pass condenser, which has low impedance at the radio frequency being amplified. The electric lines of force from the plate terminate on the screen grid, very little of the field getting through to the control grid; similarly, the field set up by the control grid does not penetrate past the screen grid. Thus there is no common field between the control grid and plate; hence no eapacity between these two tube elcments.

Since the clectric field from the plate does not penetrate into the region occupied by the control grid, which is the region in which most of the space charge is concentrated, the plate is unable to exert an attraction upon the clectrons in this region. Consequently, the plate voltage eannot control the flow of plate current as it does in a triode. In order to get electrons to the plate, it is necessary to apply a positive potential (with respect to the cathode) to the screen. The screen then attracts clectrons much as does the plate in a triode tube. In traveling toward the sereen the elestrons acquire volocity, so that most of them shoot between the screen wires into the field from the plate. Those that pass through and are attracted to the plate constitute the plate current of the tube. A certain proportion do strike the sercen, however, with the result that some current also flows to the sereen grid. The screen current will be low compared to the plate current in a tetrode, or four-element tube, however.

Secondary emission-When an electron traveling at appreciable velocity through a tube strikes the plate it dislodges other electrons. These "splash" from the plate into the

Fig. 326 - Representative arrangement of elements in a sercen-grid tuloc, with front part of plate and sereengrid ent away. The screen grid usually is nuade longer than either the control grid or plate, so that the shielding will be as effective as possible. In this drawing the control grid connection is made through a cap on the top of the tube, thus climinating the capacity which would exist between the plate and grid lead wires if hoth passed through the hase. Some nodern tuhes which have both leads going through the hase use special shielding and construction to eliminate capacity. Symhols for pentode and tetrode tubes: 11 , heater; \dot{C}, cathode; C, control grid; P, plate; S, sereen grid; Sup., suppressor grid.
interelement space, a phenomenon called secondary emission. In a triode ordinarily operated with the grid negative with respect to cathode, secondary electrons are repelled back into the plate and cause no disturbance. In the screcn-grid tube, however, the positively eharged scrcen attracts the secondary electrons, causing a reverse current to flow between screen and plate. The effect is particularly marked when the plate and sereen potentials are ncarly equal, which may be the case during the part of the a.c. cycle when the instantaneous plate current is large and the plate voltage low (§ 3-3).

Pentode tubes - To overcome the effects of secondary emission, a third grid, called the suppressor grid, may be inserted between the screen and plate. This grid, which is connected directly to the cathode, repels the relatively low-velocity secondary electrons. They are driven back to the plate without appreciably obstructing the regular plate-current flow.

Although the screen grid in cither the tetrode or pentode greatly reduces the influence of the plate upon plate-current flow, it is quite obvious that the control grid still can control the plate current in essentially the same way that it clocs in a triode, since the control grid is still in the space-charge region. Consequently, the grid-plate transconductance (or mutual conductance) of a tetrode or pentode will be of the same order of value as in a trinde of corresponding structure. On the other hand, since the plate voltage has very little effect on the plate-current flow, both the amplification factor and plate resistance of a pentode or tetrode are very high, as is apparent from the definitions of these constants (§3-2). In small receiving pentodes the amplification factor is of the order of 1000 or higher, while the plate resistance may be from 0.5 to 1 or more megohms. Because of the high plate resistance, the actual voltage amplification possible with a pentode is very much less than the large amplification factor might indicate. In resistancecoupled audio-frequency amplifiers, voltage amplification or gain of 100 to 200 is typical.

A typical set of characteristic curves for a small pentode is shown in Fig. 327. That the plate voltage has little effect on the plate current is indicated by the fact that the eurves are practically horizontal one the plate voltage is

Fig. 327 Plate voltage vs. plate cur. rent curves for a small receiving pentode. Screcn-arid voltage, E_{8}, is 100 volis and suppressorgrid voltage, $E_{s u p}$ is zero.

Fig. 328Curves showing the relationship hetwren mutual conductance vs. nogativegrid hiasfortwo -mall receiving pentoides, one heing a sharb rut. off type and the othirr a vari-ahlo-дtype.
high enough to prevent the electruns in the space between the screen grid and the plate from being attracted back to the screen. The plate potential at which this occurs is less than the screen potential, because the electrons entering the space have considerable velocity and hence tend to move away from the screen despite the fact that it has a positive charge.
In addition to their applications as radiofrequency amplifiers, pentode or tetrode sereen grid tubes also can be constructed for audiofrequency power amplification. In tubes designed for this purpose the shielding effect of the screen grid is not so important; the chief function of the screen is to serve as an accelerator of the electrons, so that large values of plate current can be drawn at relatively low plate voltages. Such tubes have quite high power sensitivity (§3-4) compared to triodes of the same power output, because the amplification factor of an equivalent triode has to be made quite low in order to secure the same plate current at the same plate voltage. Because of the low μ, the triode requires a relatively large signal voltage for full output, hence has low power sensitivity. The harmonic distortion is somewhat greater with pentodes and tetrodes than with triodes, however.

Variable-mu and sharp cut-off tubes Receiving screen-grid tetrodes and pentodes for radio-frequency voltage amplification are made in two types, known as sharp cut-off and variable- μ or "super-control" types. In the sharp cut-off type the amplification factor is pratically constant regardless of grid bias, while in the variable- μ type the amplification factor decreases as the negative bias is increased. The purpose of this design is to permit the tube to handle large signal voltages without distortion in circuits in which grid-bias control is used to vary the mutual conductance, and hence the amplification.

The way in which mutual conductance varies with grid bias in two typical small receiving pentodes, similar except in that one is a sharp cut-off type and the other a variable- μ type, is shown in Fig. 328. Obviously, the variable $-\mu$ type can handle a much larger signal voltage without swinging beyond either the point of zero grid bias or of plate-current cut-
off (zero mutual conductance), if the bias is properly chosen.

Beam tubes - A "beam"-type tube is a tetrode with grids so constructed as to form the electrons traveling to the plate into concentrated beams, resulting in higher plate efficiency and power sensitivity. Suitable design also overcomes the effects of secondary emission without the necessity for a suppressor grid. Tubes constructed on the beam principle are used in receivers as both r.f. and audio amplifiers, and are built in larger sizes for transmitting circuits.

Fif. 329 - I'entorle r.f. amplifier circuit. $I_{1} C_{1}$ and $L_{2} C_{2}$ are tuned to the same frequency. R_{3} is the cathode resistor, by-passed for r.f. by $C_{3} . R_{2}$ is the screen voltagedropping resistor, hy-passed by C.s. Cs is the plate by-pass.

C 3-6-B Pentode Amplifiers

R.F. amplification - A fundamental cirouit for radio-frequency amplifiration with a pentode tube is shown in Fig. 329. The grid and plate circuits may be tuned to the same frequency, thus obtaining maximum anplification, without danger of oscillation provided there is no feed-back coupling between the tuned circuits themselves. Practical variations of this circuit and their application to receivers are discussed in § 7-6 and \$7-11.
A.F. amplification-Recciving-type pentodes frequently are used as voltage amplifiers for audio frequencies, using the circuit shown in basic form in Fig. 330. In this application they are capable of much higher voltage gain than can be obtained from triodes, and have the advantage that since there is no coupling from plate to grid there is no increase in input capacity with amplification (§3-3). For the latter reason it is possible to obtain high gain, in resistance-coupled amplifiors, at ronsiderably higher frequencies than is possible with a triode.

The discussion of amplification in §3-3 applies equally to pentodes and triodes, with the exception that the plate resistance of a pentode is so high that the amplification is

Fig. 330 - Typical pentode audio-frequenry amplitier.
usually considered to be proportional to the plate load resistance alone. For maximum voltage gain, R_{n} should have as high resistance as possible without causing too great a voltage drop. Values range from 0.1 to 0.5 megohm. The value of R_{c} depends upon R_{p}, which principally determines the plate current.Values for the screen resistor, R_{n}, may vary from 0.25 to 2 megohms. A screen by-pass condenser $\left(C_{s}\right)$ of $0.1 \mu \mathrm{fd}$. will be adequate in most cases.
Table I in Chapter Fourteen shows suitable values for the more popular types of amplifier tubes. The calculated stage gain and peak undistorted output voltage also are given.
Plate and screcn voltage - Since the d.c. plate current flows through any resistance placed in the plate circuit of a tube as a load or coupling medium (§ 3-3), the actual voltage at the plate is less than the supply voltage by the voltage drop across the total resistance.

With transformer coupling this effect is not ordinarily of grent importance, because the inductance of the transformer primary provides a high-impedance load at audio frequencies, while the d.c. resistance of the winding causes only a small drop in d.c. plate voltage.

In a resistance-coupled or parallel-fed stage the operating voltage is less than the supply voltage by the dron through the load resistur, R_{p}. Thus, in Fig. $331-\mathrm{A}, E_{p}=E_{b}-\left(I_{p} \times R_{p}\right)$.

Sereen voltage is determined in the same way, using the screen current, I_{s} to ealculate the drop anross the screen dropping resistor, R_{a}.

Fig. 331 - Calculation of plate and acreen voltages.
In Fig. 331-B both plate and screen current flows through a common filter resistor, so that both currents must be added in calculating the voltage drop across R_{f}. Thus

$$
\begin{aligned}
& E_{p}=E_{b}-\left(I_{p}+I_{s}\right)\left(R_{1}\right)-I_{p} R_{p} \\
& E_{s}=E_{b}-\left(I_{p}+I_{s}\right)\left(R_{1}\right)-I_{s} R_{s} .
\end{aligned}
$$

In Fig. 331-C, the screen voltage, E_{s}, is obtained from a tap on a voltage divider consisting of R_{n} and R_{b}. Assume a value of bleeder eurrent, I_{b} (§8-4). Then $R_{b}=E_{s} / I_{b}$, where E_{s} is the rated screen voltage. The total current, $I_{s r}$, is the sum of I_{b} and I_{s}. The voltage across $R_{\text {s }}$, is the difference between the supply voltage and E_{1}. Hence $R_{\mathrm{a}}=\left(E_{b}-E_{;}\right) / I_{\mathrm{r}}$. E_{p} is determined as above.

The resistance-capacity filter ($\$ 2-11$) in Fig. 332, $C_{f} R_{f}$, is a decouplinj circuit which isolates the stage from the power supply, to eliminate unwanted coupling between stages through the common impediance of the power
supply. Althourh shown in connection with a triode amplifier in the diagram, the same type of filter is used with pentodes.

Wide-band amplifiers - Amplification of audio frequencies, which extend from about 50 to 15,000 rycles, presents no particularly difficult problems so long as the design points discussed in § 3-3 are observed. However, for amplifying signals such as television signals or pulses having a time duration of only a few millionthe of a serond it is necessary to extend the frequency response of the amplifier well beyond the audio frequency range - and even well into the mediam radio-frecuency range. At the same time it is frequently necessary to extend the lourr frequency limit of the amplifier as well. This extension of range is made possible by the use of compensating eircuits.

Low-frequency compensation - While the amplitude response of a resistame-coupled amplifier usually is satisfactory at low frequencies. the phase angle introduced by the out put coupling condenser and the next-stane grid resistor is sufficient to prevent proper reproduction of low-frequency :quare waves unless very large values are employed. Yet surdi

Fis. 332 - Decoupling in a resistance-coupled amplificr. large values increase the shunt caparity to ground, introduce grid-current. diffoculties in the following stage, and may even induce relaxation oscillations (motorbosating).

The effect of the time constant of $C_{G 2} R_{G 2}$, Fig. 333, may he compensated for by proper design of the amplifier plate circuit. The design equation is $C_{F} R_{P}{ }_{P}=C_{G 2} R_{G 2}$ provided the resistance of the decoupling resistor, R_{F}, is at least 10 times the reactance of C_{F} at the lowest frequency to be amplified.

High-frequency compensation - It was brought out in $\S \dot{3}-3$ that the capacities shunting the plate load resistor are responsible for loss of amplification at the high frequencies in a resistance-coupled amplifier. If the plate load resistor is made low enough in value, the effect of the shunting caparities will be minimized and the upper frequency range will be extended, but at the expense of gain at the lower frequencies. Reducing the plate load resistance to a value low enough to extend the range of uniform anmplification to a few megacycles nould be impractical with ordinary tubes, since there would be little or no voltage gain, but it is quite practicable with special high-transcondurtance pentodes such as the $6 \mathrm{AC7}$ and 6 AG . These tubes will give voltage gains of 10 to 15 with plate load resistances as low as a few thousand ohms.

A further extension of high frequency response can be secured by special compensating circuits. The most widely-used method is the shunt-peaking circuit, with a resonating (peak-

Fig. 3.33 - Wide-band frequency-compensated amplifier.
ing) inductance in parallel with the circuit capacity, as shown in Fig. 333. By resonance effects this raises the impedance to an extent and over a frequency range determined by the Q of the circuit consisting of L, R_{P} and C_{t}. Since R_{p} is relatively large for a resonant cirenit, the Q is fuirly low and the resonance curve is quite broad. This is desirable for an amplifier intended for wide-band applications. The devign valucs of L and R_{P} are based on the shumt capacity, C_{t}, and the maximum required frequency, $f_{\text {mas }} C_{t}$ can be estinuated by adiding 3 t.o $5 \mu \mu$ fl. (for socket and wiring) to the sum of the tube input and output capacities.

The reactance of L is made one-half the reactance of C_{t} at $f_{\max }$. Phis is equivalent to making the resonant frequency between L and C_{t} equal to 1.41 times $f_{\text {max }}$.

Simplified design equations for shunt peaking compensation are as follows:

$$
\begin{aligned}
R_{P} & =\frac{1}{2 \pi f_{m a x} C_{t}} \\
L & =0.5 C_{t} R_{p}^{2}
\end{aligned}
$$

Typical values of h_{P} are from 2000 to 10,000 ohms; of L, from 25 to $100 \mu \mathrm{~h}$.

Cathode follower - The cathode-coupler or cathode follower shown in Fig. 334, differs from a conventional amplifier in that output is taken from the cathode circuit rather than from the plate. 'Whe circuit is applicable wherever matching to a low value of load impedance (fifty to several hundred ohms) is required and the use of a transformer is impracticable, as in wide-band amplifiers. Herause the cathode follower is inherently degenerative, it is particularly useful wherever equalized frequency response and minimum phase shift are important. Power amplification coniparable to that of an equivalent plate-coupled stage may be secured, but the voltage gain is always less than unity.

Fig. 3.34 - Cathode follower or inverted amplifier circuits. A, direct-coupled output; C, resistance-capacity couphing to load. R_{c} is the usual catbode-bias resistor.

C 3-6-C Special-Purpose Tubes

Multi-purpose types - A number of combination types of tubes have been constructed to perform multiple funetions, particularly in receiver circuits. For the most part these are multi-unit tubes made up of individual tube element structures, combined in a single bulb for compactness and economy. Amung the simplest are full-wave rectifiers, combining two diodes in one envelope, and twin triodes, consisting of two triodes in one bulb for Class-B audio amplification. More complex types include duplex-diode triodes, duplexdiode pentodes, converters and mixers (for superheterodyne reccivers), combination power tubes and rectifiers, and so on. In many cases the nature can be identificd by the name.
Mercury-vapor rectifiers - For a given value of piate current, the power lost in a diocle rectifier ($\S 3-1$) will be lessened if it is possible to decrease the plate-cathode voltage at which the current is obtained. If a small amount of mercury is put in the tube, the mercury will vaporize when the cathode is heated, and, further, will ionize ($(2-4$) when plate voltage is applied. The positive ions neutralize the space charge and reduce the plate-cathode voltage drop to a practically constant value of about 15 volts, regardless of the value of plate current. Since this voltage drop is smaller than can be attained with purely thermionic conduction, there is less power loss in the rectifier. Voltage drop is constant despite variations in load eurrent. Mercury-vapor tubes are widely used in rectifiers built to deliver large power outputs.

Grid-control rectifiers - If a grid is inserted in a mercury-vapor rectifier it is found that with sufficient negative grid bias it is possible to prevent plate current from flowing, but only if the bias is present before plate voltage is applied. If the bias is lowered to the point where plate current can flow, the mercury vapor will ionize and the grid will lose control of plate current, since the space charge disappears when ionization occurs. It can assume control again only after the plate voltage is reduced below the ionizing potential. The same phenomenon also occurs in triodes filled with ather gases which ionize at low pressure. Grid-control rectifiers or thyratrons find considerable application in "electronie switeling."

(c) 3-7-A Oscillators

Self-oscillation - An amplificr tube can be made to generate a sustained radio-frequency current ($\S 3-6-\mathrm{A}$) because more energy is developed in the plate circuit than is required in the grid circuit. If enough energy is fed bark from the plate to the grid, the feed-back process becomes independent of any applied signal voltage. The tube supplies its own grid excitation and continuous oscillations are generated. The actual energy required to overcome the grid losses is, in the end, taken from the d.c. plate supply.

The process of oscillation may also be considered from the standpoint of negutive resistance. As previously described ($\$ 3-3$), positive feed-back is equivalent to shunting a negative resistance across the input circuit of the tube. When the value of negative resistance becomes lower than the positive resistance of the circuit (if the circuit is parallel resonant the positive resistance wili be the resonant impedance of the circuit) the net resistance is negative, indicating that the circuit can be looked upon as a source of energy. Such a source is capable of maintaining a constant voltage which can be amplified by the tube. The actual energy, of course, comes from the plate circuit of the tube, so that the two viewpoints are equivalent.

A circuit having the property of generating contimuous oscillations is called an oscillutor. It is not necessary to apply external cxritation to such a circuit, since any random variation in current will be amplificd to cause oscillation. The frequency of oscillation will be that at which the feed-back voltage has the proper phase and amplitude. Where resonant circuits are associated with oscillators, the oscillation frecfucney is very nearly that of the tuned circuit.

Excitation and bias - The excitation voltage required depends upon the characteristics of the tube and the losses in the grid circuit. In practically all oscillators the grid is driven positive during part of the cyclc. so that power is consumed in the grid circuit (\$3-2). This power nust be supplied from the plate circuit. With insufficient excitation, the tube will not oscillate; with over-cxcitation, the grid losses (power consumed in the grid circuit) will be excessive.

Oscillators customarily are grid-leak biased (§3-5). This takes advantage of the grid-current flow and gives better operation, the bias adjusting itself to the excitation voltage.

Tank circuit - The resonant circuit associated with the oscillator is commonly called the tank circuit, a name derived from the storage of energy associated with a resonant circuit ($\$ 2-10$). The term is applied to any resonant circuit in transmitting applications, whether in an oscillator or in an amplifier.

Plate efficiency - The plate efficiency (§ 3-3) of an oscillator depends upon the load resistance, excitation and other operatiing factors. Usually it is around 50 per cent. It is not as high as in an amplifier, since the oseillator must supply its own grid losses. Thesc may represent 10 to 20 per cent of the output power.

Poucr output - The power output of an oscillator is the useful a.c. power consumed in any load connccted to the oscillator. The load may be coupled as deseribed in § 2-11.

Frequency stability - The frequency stability of an oscillator is its ability to maintain constant frequency. The more important factors which may cause a change in frequency are (1) temperature, (2) plate voltage, (3) loading, (4) mechanical variations of circuit elements. Temperature changes will cause vacuum-tube
elements to expand or contract slightly, thus causing variations in the interelectrode capacities (§3-2). Since these are unavoidably part of the tuned circuit, the frequency will change correspondingly. Temperature changes in the coil or condenser will alter their inductance or capacity slightly, again causing a shift in the resonant frequency. These effects are relatively slow in operation, and the frequency change caused by them is called drift.

Lond variutions act in much the same way as plate voltage variations. A temperature change in the load may also result in drift.

Plate-voltiuge variations will cause a corresponding instantancous shift in frequency; this type of frequency shift is called dynamic instalility. Dymamic instability can be reduced by using a tuned circuit of high effective Q. Since the tube and load represent a relatively low resistance in parallel with the circuit, this means that a low L / C ratio ("high- C ") must be used ($\S(2-10)$ and that the circuit should be lightly loaded. Dynamie stability also can be improved by using a high value of grid leak, which gives high grid bias and raises the effective resistance of the tube as seen by the tank circuit, and by using relatively high plate voltage and low plate current. Drift can be minimized by keeping the d.c. input low for the size of tube, by using coils of large wire to prevent undue temperature rise, and by providing good ventilation to carry off heat rapidly. A low L / C ratio in the tank circuit is desirable, because the interelectrode capacity variations have proportionately less effect on the frequency when shunted by a large condenser.

Mechanical variations, usually caused by vibration, cause changes in inductance and/ or eapacity which in turn cause the frequency to "wobble" in step with the vibration.

Mechanical instability can be minimized by using well-designed components and by insulating the osrillator from mechinical vibration.

4. 3-7-B Feed-Back Oscillators

Magnetic faed-back - One form of feedback is by electromagnetic coupling hetween plate (output) and grid (input) circuits. Two
(A)
(B)

fig. 335 -- Two trpee of oscilla. tor circuits with magnetic feedLack. A, grid tichler; E, Hartley- representative eircuits of this type are shown in Fig. 335. That at A is called the tickler eircuit. The amplified current flowing in the "tickler," L_{2}, induces a voltage in L_{1} in the proper phase when both coils are wound in the same direction and connected as shown in the
diagram. The feed-back can be adjusted by adjusting the coupling between L_{1} and L_{2}.

The Harlley circuit, B , is similar in principle. There is only one coil, but it is divided so that part of it is in the plate circuit and part in the grid circuit. The magnetic coupling between the two sections provides the fced-back, which can be adjusted by moving the tap on the coil.

Capacity fecd-back - The feed-back can also be obtained through capacity coupling, as shown in Fig. 336 . In A, the Colpitts circuit, the voltage across the resonant circuit is divided, by means of the series condensers, into two parts. The instantaneous voltages at the ends of the circuit are opposite in polarity with respect to the cathode, hence in the right phase to sustain oscillation. The tumed-grid tunedplate circuit at B utilizes the grid-plate capacity of the tube to provide feed-baek coupling. There should be no magnetic coupling between the two
 tuned-circuit coils. Feed-bitck can be adjusted by vatrying the tuning of either the grid or plate circuit. The circuit with the higher (Q (\$ 2-10) determines the frequency of 0 scillation. The plate circuit must be tuned to a slighty higher frequency than the grid circuit. so that it will have inductive reactance and hence give positive feedback (§3-3). The amount of detuning is so small it is customary to assume that the circuits are tuned to the same frecuuency.

The ultraudion circuit at \mathbf{C} is equivalent to the Colpitts, with the voltage division for oscillation brought about through the grid-tofilament and plate-to-filament capacities of the tube. In this and in the Colpitts circuit, the feedback can be controlled by varying the ratio of the two eapacities. In the ultrandion circuit, this can be done by connecting a small variable condenser between grid and cathode. Feedback decreases with increasing capacity.

The electron-coupled oscillator - The effects of loading and coupling to the next stage can be greatly reduced by use of the electron-coupled circuit, in which a screen-grid tube ($(3-5)$ is so connected that its screen grid is used as a plate, in conjunction with the control grid and cathode, in an ordinary triode oscillator circuit. The sereen is operate!
at ground r.f. potential (§2-13) to aot as a shield between the actual plate and the cathode and control grid; the latter two elements therefore roust be above ground potential. The out-

Fig. 337 - Eilectron-coupled waillator circuit.
put is taken from the plate circuit. Under these conditions the capacity coupling (§2-II) between the plate and other ungrounded tube elements is quite small, hence the output power is secured almost entirely by variations in the plate current caused by the varying potentials on the grid and cathode. Since in a screen-grid tube the plate voltage has a relatively small effect on the plate current, the reaction on the oscillator frequency for different conditions of loading is small.

A Hartley eircuit is used in the frequencydetermining portion of the oscillator shown in Fig. 337, where $L_{1} C_{1}$ is the oscillator tank cireuit. The screen is grounded for r.f. through a by-pass condenser ($\$ 2-13$), but has the usual d.c. potential. The cathode connection is made to a tap on the tank coil to provide feed-back. The resonant plate circuit, $L_{2} C_{2}$, is tuned either to the oscillation frequency or to a harmonic. Untuned output coupling also may be used; the output voltage and power are considerably lower, but better isolation between ossilhator and amplifier is secured.

If the oscillator tube is a pentode having :an external suppressor connection the suppressor grid should be grounded. This provides additional internal shielding and further isolates the plate from the frequency-determining circuit.

Frarkino oscillator - The Franklin oscillator oironit of Fig. 338, popular abroad, has characteristics similar to the e.c.o. A high-gain feed-back amplifier is very loosely coupled to a tank circuit, $L C$, via two condensers, C_{2} and C_{2}, of citremely small capacity. So weak is the coupling that the tube circuit has negligible effect upon the frequency-controlling tank.

Fig. 338 - Franklin master-obcillator circuit. $\mathrm{C}_{1}, \mathrm{C}_{2}$ - Approximately 1 to 2 n $\mu \mathrm{fd}$. (adjustable). $C_{2}-0.001 \cdot \mu \mathrm{fd}$.
$\mathrm{K}_{\mathrm{s}} . \mathrm{R}_{\mathrm{R}}-50,000$ ohms.

Crystal oscillators - Since a properly cut quartz crystal is equivalent to a high- Q tuned circuit ($\$ 2-10$), it may be substituted for a conventional tuned circuit in an oscillator to control the frequency of uscillation. A simple crystal oscillator circuit is shown in Fig. 339. It is similar to the tuned-plate tuncd-grid circuit except that a erystal is substituted for the resonant grid circuit. Detailed information on crystal oscillators is given in Chapter Four.

Series and parallel feed- A circuit such as the tiekler circuit of Fig. $335-\mathrm{A}$ is said to be series fed because the source of plate voltage and the r.f. plate circuit (the tickler coil) are connected in series; hence the d.e. plate current flows through the coil to the plate. A by-pass (\$2-13) condenser, C_{t}, is connected across the plate supply to shunt the r.f. current around the power source. Other examples of series mate feed are shown in Figs. 336-13 and 337.

In some cases the souree of plate power nust be conneeted in parallel with the tuned circuit to provide a direet-current path to the plate. This is illustrated in Fig. 3:35-ES, where it would be impossible to feed the plate current through the coil because there is a direct connection between the coil and cathode. Hence the voltage is applied to the plate through a radio-frequency choke, which prevents the r.f. current

Fit, 339 - Simple crystal oscillator circuit. Many variations of this basic circuit are used in practice.

from flowing to the plate supply and thus short-circuiting the oscillator. The blocking condenser, C_{b}, provides a low-impedance path for radio-frequency current fow but is an open circuit for direct current ($\$ 2-13$). Other examples of parallel feed are shown in Figs. 336-A and $3: 3 i$-C.

Valuess for the r.f. chokes, by-pass and blocking condensers shown will be determined by the considerations outlined in § 2-13.

C. 3-7-C Negative Resistance Oscillators

Negative-resistance oscillations - In addition to its ability to simulate negative resistance by feed-back ($\$ 3-7-A$), a vacuum tube can in itself be made to show wegative resistance by a number of arrangements of electrode potentials. W'hen a tube so operated is connected to a parallel-resonant circuit, oscillation will be established if the negative resistance is less than the parallel impedance of the resonant circuit. Typical oscillator circuits are shown in Fig. 340.

The circuit of Fig. $340-\mathrm{A}$ is that of the dynatron oscillator, which functions because of the secondary emission from the plate oo curring in certain types of screen-grid tetrodes. The simplest but also the least stable of the negative-resistance or two-terminal oscillators,
it makes use of the fact that the plate current of a sereen-grid tetrode decresses when the plate voltage is increased at certain values of screen voltage, giving a negative plate-resistance characteristic.

In the nerative-transoonductance or tranisitron circuit shown in Fig. 3.40-13, negative resistance is produced by virtue of the fact that, if the suppressor grid of a pentode is given negative bias, electrons which normally would piss through to the plate are turned bitck to the screcn, thus increasing the screen current and reversing normal tube action (§3-2). The negative resistance prochuced between the screen and suppressor grids is sufliciently low so that ordinary tuned circuits will oscillite readily up to 1.5 Mc . or so.

11 3-7-D Other Types of Oscillators

Resistance-capacity tuming - It is possible to replace the $L C$ resonant circuit in an oscillator by a resistance-capacity rombination having an appropriate time ronstant. in which case $S=1 / 2 \pi R C$. Moreover, by varying cilher R or C the circuit cim be fimen over a wide

Fig. $3: 11$ - Resistane-caparity rescillators. A, phasc-shift. B, negative Feed hack. range in the sime manner as an $L C$ rircuit.

The two more common circults of this type areshown in F i g . 341. The singlestage $R C$ tumed oscillator: at A has a three-section phaseshifting network connected between oulput and input, so arranged that just enongh sigmal is. led back 180^{2} out of phase at the desired frequmory 10 sustain oscillation. By careful feed-back ioljnstment. excellent sine-w:me form with good frequency stability may be obtained.

The two-tube $R C$-tuned circuit at B is derived from a two-stage cascade resistancecoupled amplifier with pentode tubes, the second tube constituting the phase-shifting element supplying a regenerative signal to the adjustable C, C_{1} and R_{1} combination at the desired frequency, while at all other frequencies the circuit is degenerative.

Phase-shift oscillators are most useful at audio frequencies, although they can be made to operate up to about. 50 kc .

Relaxation oscillators - There is another basic category of oscillators, the rcla.cation type, in which the oscillation frequency is controlled not by a resonant circuit but by the reciprocating change of a current or voltage through the charging or clischarging of a condenser when a certain critical value is reached. Relaxation oscillation requires, first,
a means for charging a condenser (or other reactive clement.) at a uniform rate and, second, means for rapidly discharging this condenser once al predetermined voltage has been built up across it. The action is characterized by a period of rapid change or instability followed by a period of relative quiescence or stability during which the

Fig. 342 - Typical relaxation oscillators. A, "dynatron"-type pentode circuit. B, high-Frequency pentode cirenit. C, suncgging oscillator. stored-up energy transferred or otherwise dissipated in the circuit.

Relaxation oscillators have high harmonic content (nonsinusoidal output) and are inherently unstable, permitting ready synchronization with an external controlling voltage.

In the circuit of Fig. 342-A, the operation is based on the reversed screen-current or dynatron characteristic of a pentode tube, the frequency being determined by the rate at which the feed-back condenser, C, discharges through the tube. Apart from the frequencycontrolling mechanism, this circuit resembles that of the transitron oscillator (Fig. 340-B).

The alternative pentode cireuit at 13 has the frequency-controlling clements, C and R, in the plate circuit. It is capable of operation at frequencies up to several hundred kilucyeles, and affords greater control of wave form.

Operation of the squegging oscillator at \mathbf{C} is based on the tendency of any oseillator with excessive feed-back to produce relatively lowfrequency intermittent oscillations, controlled by the rate of charge and discharge of L_{2}, C and K through the tube grid resistance, if the time constant of the combination is large compared to the normal period of oscillation.

The most versatile relaxation oscillator circuit of all, shown in Fig. 343, is known as the multivibrator. Two tubes are used with resistance eoupling, the output of one tube being fed to the input circuit of the other. The frequency of the resulting oscillation is determined by the time constants ($\$ 2-6$) of the resistance-calacity combinations. The principle of oscillation is that of alternately switehing eonduction from one tube to the other, with one grid at cut-off and the other at zero bias, so that eontinuous oseillation is maintained, the second tube being necessary to obtain the proper phase relationship ($\$ 3-3$) for oseillation when the energy is fed back.

Although the multivibrator is a very unstable oscillat.or, its freguency can be controlled readily by a small signal of steady frequeney introdured into the circuit. This phenomenon is called loching or synchronization. The output waveshape of the multivibrator is highly distorted, hence has high harmonic content ($\$ 2-7$). A usciul feature is that the multivibrator can be locked at its fundamental frequency by a frequency corresponding to one of its higler harmonics (the tenth harmonie is frequently used), and thus the circuit can be used as a frequency divider.

C. 3-8 Cathode-Ray Tubes

Principles - The cathode-ray tube is a vaeum tube in which the electrons emitted from a hot cathode are first incelerated to give them considerable velocity, then formed into a beam, and finally allowed to strike a special translucent screen which fluoresces, or gives off light at the point where the beam strikes. A narrow beam of moving electrons is analogous to a wire carrying current ($\$ 2-4$) and, as in the wire is areombunied by electrostatic and electromagnetic fields. Hence the berm can be moved laterally, or deflected, by electric or
magnetic fields. Such fields exert a force on the beam in much the same way as on charged bodies or on wires carrying current (§ 2-3, 2-5).

Since the cathode-ray beam consists only of moving electrons, its weight and inertia are negligibly small. For this reason, it can be made tu folluw instantly the variations in periodically changing fields even at radio frequencies.

Electron gun - The electrode arrangement which forms the electrons into a beam is called the clcctron gun. In the simple tube structure shown in Fig. 3.t. the gum comsists of the rathorle. grid, and anodes Nus. I and 2. The intensity of the eleetron beam is regulated by the grid in the same waty as in an ordinary tube ($\$ 3-2$). Anode No. I is operated at a positive potential with respert to the eathode, thus arceleratinir the electrons which pass through the

Fig. 3.33-Thentul. tivibrator, or re. laxation oseillator. grid. and is provided with small apertures thenough which the electron stream passes. On emerging from the apertures the electrons are traveling in practically parallel stritight-line paths. The eleetrostatic fields set up by the potentials on anode No. 1 and anode No. 2 form an electron lens system, comparable to an optical lens, which makes the electron paths converge to a point at the fluorescent sureen in much the same way that a glass lens takes parallel rays of light and brings them to a point focus. Fochsing of the electron beam is accomplished by varying the potentials on the anodes. the potential in turn determining the strengt h of the field. The potential on anode No. 2 is usually fixed, while that on anode No. 1 is varied to bring the beam into focus. Anode No. 1 is, therefore, called the focusing ele elrote.

Sharpest focus is obtained when the electrons of the beam have high velocity, so that relatively high d.c. potentials are common with cathode-ray tubes. However, the current required is small, so that the power consumption is negligible. A second grid may be placed between the contrul grid and ainide No. 1 , for additional acceleration of the electrons.

Fig. 3.44 - Typical eonstruction for a modern cathode-ray tube of the electrostatic-deflection type. The envelope is mande of glass, with the fluorescent screen at one end. Leads for the high-voltage anode, the deflection plates, and other electrodes are insulated low-capacity conductors carried inside the envelope to the base.

Fig. 34: - - Spot diaprants showing the powitinn of the cathode-ray beam on the fluoreacent rereen for differrnt deflector potentials. A - Both deflectors at zero potential. B-Positive potential on riebt horizontal deflector. C- Positive potential on upper vertical defector. D, E, F, G - Equal positive potentials on adjacent platen.

Methods of deflection - When focused. the betm from the gun produces only a small spot on the screen, is clescribed above. However, if after leaving the gun the beam is deflected by either magnetic or electrostatic fields, the spot will move across the screen in accordance with the force exerted on the beam. If the motion is rapid, the path of the spot (trace) appears as a continuous line.

Electrostatic deflection, the type generally used in the smaller tubes, is produced by doflecting plates. Two sets of plates are placed at right angles to each other, as indicated in Fig. 344. The ficlds are created by applying suitable voltages between the two plates of each pair. Usually one plate of each pailir is connected to anode No. 2, to establish the polarities (§2-3) of the vertical and horizontal ficlels with respect to the beam and to each other.

Tubes for magnetic defiection use the samo type of electron gun, but have no deflection plates. Instend, the deflecting fields are set up by means of eoils corresponcling to the plates used in tubes having electrostatic deflection. The coils are external to the tube, as shown in Fig. 3 ± 6, but are mounted close to the glass envelope in the relative positions occupied by electrostatic deflection plates. Coils A_{1} and A_{2} are eonnected so their ficlds aid and their axes are on the same line through the tube. Coils B_{1} and B_{2} likewise are connected with fields riding and are aligned along the same axis through the tube, but perpendicularly to the $A_{1} A_{2}$ axis.

Fluorescent screcns - The fluorescent screen materials used have varying characteristics, according to the type of work for which the tube is intended. The spot color is grcen, white, yellow or blue, depending upon the screen material. The persistence of the screen is the time duration of the after-glow which exists when the excitation of the electron beam is removeri. Äreens arc classified as long-,

Fig- 346 - A cathode-ray tube with mamertic deflec. tion. The gun is the same as in the clectrontatic-dcflection tube shown in Fig. 344, but the beam is deflected by magnetic instcad of electric fields. Actual deflection coils fit closely to the nock of the tubc, so that the ficld will be as strong as possible for a given coil current.
medium- and short-persistence types. Small tubes for oscilloscope use usually have mediumpersistence screens of grecnish fluorescence.

Tube circuits - A representative cathoderay tuhe circuit with electrostatic cleflection is shown in Fig. 347. One plate of each pair of deflecting plates is connected to anode No. 2. Since the voltages required normally are rather high, the positive terminal of the supply is usually grounded ($\$ 2-13$) so that the common deflection plates will be at ground potential. This places the cathode and other clements at high potentials above ground, hence these elements must be well insulated. The various electrode voltages are obtained from a voltace divider (§ 2-6) across the high-voltage d.e. supply. R_{3} is a variable divider or "potentiometer" for adjusting the negative bias on the control grid and therehy varying the heam rurrent; it is called the intensity or hrightuess control. The focus, or sharpness of the luminous spot formed on the screen by the heam, is controlled by R_{2}, which ehanges the ratio of the anode No. 2 and anode No. 1 voltages. The focusing and intensity controls interlock to some extent, and the sharpest focus is obtained by keeping the beam current low.

Deflecting voltages for the plates are applied to the terminals marked "vertical" and "horizontal." R_{4} and R_{5} drain off any accumulation of charge on the deflecting plates. Lsually some provision is made to place an adjustable d.c. voltage on each set of plates, so that the spot can be "centered" when stray electrostatic or magnetic fields are present; the adjustable d.c. voltage neutralizes the effect of such fields.

The tube is mounted so that one set of plates produces a horizontal line when a varying voltage is applied to it, while the other set of plates produces a vertical line under similar conditions. They are called, respectively, the "horizontal" and "vertical" plates, but which set of actual plates produces which line is simply a matter of how the tube is mounted. It is usually necessary to provide a mounting which can be rotated to some extent, so that the lines will actually be horizontal and vertical.

Power supply - The d.c. voltage required for operation of the tube may vary from 800 volts for the miniature type (1 -inch diameter screen) to several thousand volts for the larger tubes. The current, however, is very small, so that the power required likewise is small. Because of the low current drain, a power supply with half-wave rectification ($88-3$) and a single $0.5-$ to $2-\mu \mathrm{fd}$. filter condenser is satisfactory.

© 3-9 The Oscilloscope

Description - An oscilloscope is essentially a cathode-ray tube in the basic circuit of Fig. 347, but with provision for supplying a suitable deflection voltage on one set of plates (ordiuarily those giving horizontal inflection). The deflection voltage is the time base or sucep. Oscilloscopes frequently are also equipped with vacuum-tube amplifiers for increasing the amplitude of small a.c. voltages to values suitable for application to the deflecting plates. These amplifiers ordinarily are limited to operation in the audio- or video-frequency range.

Formation of patterns - When perionlically varying voltages are applied to the two sets of deflecting plates, the path traced by the fluorescent spot forms a pattern which is stationary so long as the amplitude and phase relationships of the voltages remain unchanged. Fig. 348 shows how such patterns are formed. The horizontal sweep voltage is assumed to have the "sawtonth" waveshape indicated; with no voltage applied to the vertical plates the trace simply sweens from left to right across the screen along the horizontal axis $X-X^{\prime}$ until the instant I is reached, when it reverses direction and returns to the starting point. The sine-wave voltage applied to the vertical plates sinilarly would trace a line along the axis $Y-Y^{\prime}$ in the absence of any deflecting voltage on the horizontal plates. However, when both voltages are present the position of the spot at any instant depends upon the voltages on both sets of plates at that instant. Thus at time B the horizontal voltage has moved the spot a short distance to the right and the vertical voltage has similarly moved it upward, so that it reaches the actual position B^{\prime} on the screen. The resulting trace is easily followed from the other indicated positions, which are taken at equal time intervals.

Fig. 347 - Cathode-ray tale eircuit. Typical values for a 3 .inch (scrcen-diameter) tube sueh as the 3AP1/906: $\mathrm{R}_{4}, \mathrm{R}_{5}-1$ to 10 menohms.
$\mathrm{R}_{2}-0.2$ megohm. $\mathrm{K}_{3}-20.0100$ ohnis.
$\mathrm{R}_{1}-0.5$ megohm.

Types of stoceps - A sawtooth sweep-voltage waveshape, such as is shown in Figs. 348 and 350 is called a linear sweep, beenuse the deflection in the horizontal direction is directly proportional to time. If the sweep) were perfect the "fly-back" time, or time taken for the spot to return from the end ($I I$) to the beginning (I or A) of the horizontal trace, would be zero, so that the line $H I$ would be perpendicular to the axis $Y-Y^{\prime}$. Although the fly-back time cannot be made zero in practicable sweep-voltage generators it can be made quite small in comparison to the time of the desired trace $A H$, at least at most frequencies within the audio range. The fly-back time is somewhat exaggerated in Fig. 345, to show its effect on the pattern. The line $H^{\prime} I^{\prime}$ is called the return trace; with a linear sweep it is less brilliant than the pattern, because the spot is moving much more rapidly during the fly-back time than during the time of the main trace. If the fly-back time is short enough, the return trace will be invisible.

The linear sweep has the advantage that it shows the shape of the wave applied to the vertical plates in the same way in which it is usually represented graphically ($\$ 2-7$). If the time of one cycle of the a.c. voltage applied to the vertical plates is a fraction of the time taken to sweep horizontally across the screen, several cycles of the vertical or signal voltage will appear in the pattern. The shape of only the last cycle (or the last few cycles, depending upon the number in the pattern and the characteristics of the sweep) to appear will be affected by the fly-back in such a case.

Although the linear sweep generally is most useful, other sweep waveshapes may be desirable for certain purposes. The shape of the pattern obtained, with a given signal waveshape on the vertical plates, obviously will depend upon the shape of the horizontal sweep voltage. If the horizontal sweep is sinusoidal, the main and return sweeps each occupy the same time and the somt moves faster horizontally in the
center or the pattern than it does at the ends. If two sinusoidal voltages of the same frequency are applied simultaneously to both sets of plates, the resulting pattern may be a straight line, an ellipse or a circle, depending upon the

Fig. 349 - A linear-sweep oseillator using a gas triode. $\mathrm{C}_{1}-0.001$ to $0.25 \mu \mathrm{fd}$.
$\mathrm{C}_{2}-0.5 \mu \mathrm{fd}$.
$\mathrm{R}_{1}-0.3$ to 1.5 megohms.
$\mathrm{R}_{2}-2000$ ohms.
$\mathrm{R}_{3}-0.25$ megohm. $\mathrm{C}_{3}-0.1 \mu \mathrm{fd}$.
$\mathrm{R}_{5}-0.1$ megohm.
The " 13 " supply should deliver 300 volts. C_{1} and R_{1} are proportioned in give a suitable sweep frequency; the hifher the time constant ($\$ 2-6$), the lower the frequency. R_{4} limits grid-current flow during the deionizing perind, when positive ions are attracted to the ncgative grid.
amplitude and phase relationships. If the frequencies are harmonically related (§2-7) a stationary pattern will result, but if one frequency is not an exact harmonic of the other the pattern will show continuous motion. This is also the case when a linear sweep circuit is used; the sweep frequency and the frequency under observation must be harmonically related or the pattern will not be stationary.

The sweep gencrator does not ordinarily function as a self-controlled oscillator but rather as an externally controlled or synchronized oscillator which supplies voltage of the required waveform at the same frequency as the signal under study, or a sub-multiple thereof.

Sweep circuits - A simusoidal sweep is ensiest to obtain, since it is possible to apply a.c. voltage from the power line, either directly or through a suitable transformer, to the horizontal plates. A variable voltage divider or potentiometer may be used to regulate the width of the horizontal trace.

A typical circuit for a linear sweep generator is shown in Fig. 349. The tube is a gas triode or grid-control rectifier (\$3-6-C). The striking or breakdown voltage, which is the plate voltage at which the tube ionizes or fires and starts conducting, is determined by the grid bias.

Fig. 350 Condenser charging eurves showing how a sawtooth wave is produced by a gascous-tube linear swcep oscillator.

When plate voltage, E_{b}, is applied, tho condenser, \mathcal{C}_{1}, acquires a charge through R_{1}. As shown in Fig. 350, the charging voltage rises relatively slowly, as shown by the solid line, until the breakdown or flashing point, V_{f}, is
reached. Then the condenser discharges rapidly through the comparatively low plate-cathode resistance of the tube. When the voltage drops to a value too low to maintain plate-current flow, E_{a}, the ionization is extinguished and C_{1} once more charges through R_{1}. If R_{1} is large enough, the voltage across C, rises linearly with time, t_{1}, up to the breakdown point. This linear voltage change is used for the sweep, being applied to the cathode-ray tube plates through C_{2}. The fly-back time, t_{2}, is the time required for discharge through the tube; to kecp this time small, the resistance during discharge nust be low.

To obtain a stationary pattern, the "sawtooth'" rate is controlled by varying C_{1} and R_{1} and synchronized by introducing some of the voltage being observed on the vertical plates into the grid circuit of the $88 \pm$ tube. This voltage "triggers" the tube into operation in synchronisno with the signal frequency. Synchronization will occur so long as the signal frequency is nearly the same as, or a multiple of, the sweep frequency, provided the circuit constants and the amplitude of the synchronizing voltage are properly adjusted.

The upper frequency limit of gaseous-tube sweep oscillators is in the vienity of 50,000 cycles, even with the nost careful design, hecause of the fly-back time limitations imposed by the gaseous content of the tube.

Fig. 351 - Pentode-tube high-speed swecp penprator. $\mathrm{C}-0.001$ to 0.1
$\mathrm{C}_{1}, \mathrm{C}_{\mathrm{C}} \mu \mathrm{fd}$.
$\mathrm{C}_{3}-1.0$ fd
R-25,000 olims to 5 megohins.
$\mathrm{R}_{1}-0.5$ negohm variable.
$\mathrm{R}_{2}-0.1$ incogolun.
$\mathrm{H}_{3}-25,000$ olmus.
To attain a higher-frequency sweep, a "hard"-tube oscillator such as that shown in Fig. 351 must be used. This circuit may be recognized as being similar to that of the pentode relaxation oscillator of Fig. 342-13. With suitable constants it is capable of an upper frequency limit of 100 to 200 kc . or more. If a tube is used which has a high ratio of plate current to screen current, the screen voltare will rise to a very high value during the plate discharge and thus aid in reducing the fly-back tine.

A variety of waveshapes may be obtained from this circuit, ranging from the sawtooth or triangular waves which occur at the plate to the rectangular waveform of the screen-grid voltage. The plate-circuit waveforms are those most often employed for oscilloscope work.
The sweep rate is controlled by R and C, but it is influenced also by the value of $R_{2} . R_{3}$ determines the output waveshape by regulating the ratio of charge to discharge tinc, thus determining the part of the cycle occupied by the rectangular-shaped screen-voltage wave.
The blocking-tube oscillator in Fig. 352 is also capable of high-frequency operation,
chiefly beeause the oscillator portion generates a very short, sharp pulse which charges C almost instantaneously. Because of its superiority in this respect, this circuit has received considerable applieation in television work. Its operation is distinguished from that of the squegging oscillator (Fig. 342-C) in that the intermittent high-frequency oscillations are almost instantly blocked as the bias built up by the grid-leak and conclenser, C and R, goes far beyond cut-off. With suitable constants, the build-up time for this blocking bias can be limited to a single high-frequency cycle, resulting in a very short, abrupt pulse of plate current (I_{p}). Becanse of the large time constant of C and R, the discharge tine is very much slower. Until the charge again leaks off through R, the circuit is paralyzed. When C is diseharged, the eyele repeats.
L_{1} and L_{2} are tightly coupled and designed to be self-resomant at perhaps ten times the maximum sweep frequency.

In the practical form, shown in Fig. 35'2, the blocking uscillator itself is the left-hand section of the dual triode. The second triode section is used as a discharge tuhe, the rate of diseharge being eontrolled by the $C_{2} R_{1}$ combination. By giving this combination the proper time constant, the outpnt wave can be made to have almost any desired form. R exercises limited control over the frequency range, while the value of L_{1} determines the output amplitude.

Vacunm-tube switching circuits - In contrast to time-base circuits which deliver recurrent output impulses, certain applications in oscilloscope and other electronic work call for what are termed vacuum-tube or electronic switching cireuits.

A keying circuit is a non-locking electronic switeh which closes (or opens) a circuit when a control voltage is applied and returns the circuit to mormal when the control voltage is removed. The keying voltage is usually applied as control-grid bias, although sereen- and suppressor-grid voltage also are employed.

A rigger circuit, also called a flip-flop circuit, may also be operated in this manner, but more strictly it is a type of locking or holding odentronic switeh, wherein a second impulse is required to restore the circuit. After the

 charge tube, with chararteristic waveforms at the right.

C-0.0n1-0.01-4fd. mica. $\mathrm{R}-0.25$ megohm variable. CI, C: $0.005-0.5 \mu \mathrm{fd}$. $\mathrm{R}_{1}-0.1-2$ megohm. $\mathrm{L}_{1}, \mathrm{~L} 2$ - See text.

Fig. 353 - Typical vacuum-tube trigger eircuits.
initiating control pulse the circuit remains closed, despite removis of the control voltage, until a seeond releasing impulse is received. Circuits in which values of current or voltage change abruptly from one stable condition to another at some critical value of voltage or resistance, and then change back abruptly at a different critical value of the controlling voltage or resistance, are used for this purpose.

Fig. 35.3-A shows the basice pentode form of trigger circuit. In this circuit d.c. coupling between the screen and suppressor grids causes the suppressor voltage to change with screen voltaige. With a high value of resistance in series with the screen, abrupt changes in these currents occur when the supply voltages or the screen-circuit resistance are varied. For example, by proper choice of voltage and circuit constants the plate current correspunding to a given value of screen current may be made zero. Triggering inpulses nay be introduced in series with any of the electrodes, but the control grid is the most sensitive. The values of the supply voltages are not critical, but the proper relation must be maintained between them.

In the two-tube trigger circuit of Fig. 353-B, a positive impulse applied to the grid of the first tube will increase its plate current. This causes an increased voltage drop across R_{3}, which in turn makes the bias on the second tube more negative. Consequently the plate current of the second tube decreases, decreasing the voltage drop across R_{4}. This makes the grid bias on the first tube more positive, causing a further increase in the plate current of this tube and a resultant further decrease in the plate current of the second tube. The process continues until the second tube is cut off, when only the first tube takes current. This condition will continue until a negative pulse is applied to the first grid, or a positive pulse to the second grid, when the action will be reversed. The initial operating point is established by the variable tap on the cathode resistor, R_{7}.

(1) 3-10 Pulse Technique

In pulse transmission and reception (§1-4), specialized means are employed to generate and shape characteristic pulses on the transmiting end and to recreate and interpret these pulses on the receiving end. One is a process of waveshaping and injection; the other of separation and selection. Certain basic circuit elements are common to both; elementary exainples of such circuits will be diseussed in this section.

Waveshaping - The primary waveforms employed in pulse transmission, apart from the basie sine wave, are the rectangular wave (from narrow pulse to square wave). trapezoidal wave. triangular wave (from isosecles to right-angle sawtooth), exponcntial and sawtooth waves.

The nonsinusoidal waveforms obtainable from certain oscillators, particularly those of the relaxation type, approximate the general shapes reduired. To trim such waves to thr ideal form required, auxiliary waveshaping cir-

 diole eclipping action. The waveforme at the upier riphit illustrate, progressively, the sinmadal input wave, the positive peak clipped by the diode parallel limiter (A), and the nequtive peak cliperd by the diode series limiter (B). 'These are performed jointly in the double-diode parallel limiter (C) and doulile-diode series limiter (D).
cuits are employed. The basic categories are (1) limiter circuits, which utilize the voltagelimiting action of vacuum tubes, and (2) peaking circuits, which employ $R($ ((or $L($ ') timeconstant circuits.

Fig. 35. shows the use of biased-diude limiters in clipping a sine wave to create a enusire or trapezoidal waveshape by limiting action.

The diode parallel limiter at A does not limit the output until the input voltage attains a value more positive than that of the negative biasing voltage applied in series

with R_{1}. In the diode serises limiter at B, conduction can orcur only when the input is more positive than the bissing voltage inserted in series with R_{1}. Thus there con be no increase in output during the most negative period of the eycle. The series limiter produres a more squarely clipped wave than the parallel type. The operation of cither type ean be reversed by reversing the diode connections and the polarity of the biasing voltage.

In the dubble-diode paralle liniter at ('. the left-hand diode removes positive peaks while that at the right clips the negative. The degree of limiting is adjusted by varying the fixed bias hy means of R : and R_{4}. The double series limiter at. D functions in a similar manner but is more eritical of adjust ment.
Triode limiters may be operated at cut-ofti or at saturation. In Fig. 355, the tube is biased near the center of its ehtortuteristic. When the simbil voltage goes negative, at cut-off phate current casas to flow and the botlom of the sine wave is clipped. On the positive patak the plate current is limited by saturation athd the top of the sinc eurve is solutred off. The input signal should be 20 or 20 limes the grid bias for the sine wate to be squared off sharply.

Limiter circuits may also be employed for generating other typer ol pulves. If the tube in Fig. 305 is biased beyond eut-off and a rondenser is comected between plate and gromed. a positive rectangular pulse applied to the grid will produce a sawtowth wave. During the interval between pulses the emblenser is charged in a relatively slow linear rate through R_{4}. The sharp front of the posilive pulse on the grid eauses plate curvent to flow, and the condenser discharges rapidy through the tube. A triangular wat weshape con be obtained by rodueing the bias to zero and applying nemalive pulses to the grid. Botween pulses phate curent
will flow, but each negative pulse biases the tube beyond cut-off, making it nonconducting. The condenser charges through R_{4} for the duration of the pulse, then discharges through R_{4}. The result is a symmetrical triangular pulse.

Pailse selection - Pulse selectivity is based on the following characteristics: (1) polarity: (2) amplitude; (3) shape; and (4) durntion (including both " mark" and "space" intervals).

The diode separator functions much like the diode limiters of Fig. 3i54, except that the action is reversed. Selection by polarity is based on the unilateral conductivity of the diode rectifier. and requirns nuly that the diode be so con-

Fig. 357 - Cutesf hisom triode amplitude seprarator. $\mathrm{C}_{1}-0.1 \mu \mathrm{fd} . \quad \mathrm{K}_{1}-1$ mogohm. $\quad \mathrm{K}_{3}-50,000$ ohins. $\mathrm{C}_{2}--0.5 \mu \mathrm{fd} . \quad \mathrm{I}_{2}-2001$ (rhms. $\quad \mathrm{K}_{4}-25,000$ olmms.
nerem as to pase positive or neyative pulses, as desired. For amplitude separation the diode is so biased that only pulses having an amplitude cxaceding the bias roltage will be passed.

The same rewnblance applies in the case of triode amplitude separators. In the cut-off separatur of Fig. 357, the grid normally is biased beyoul cut-afi. When a positive voltage of sufficient amplitude is applied, plate current flows. There will be no response to voltages of lisser amplitude, or ta negative pulses.

Fig. 358 - \%ern-hias or positivegrid liniter-separator.

$\mathrm{C}_{1}-0.1 \mu \mathrm{fr}$.
$\mathrm{C}_{2}-\dot{\text { U.... }} \mu \mathrm{mil}$.
li. $\mathrm{H}_{2}-1$ megolm.
13, . N.! minghm

The positive-grid or blocket-grid scparator, Fig. 35s, operales at saturation and is characterized by a serics resistor in the grid circuit. Positive pulses drive the tube into the positivegrid region, where grid-current flow inereases bias and limits plate-current to a steady value regardless of signal level. Since this circuit passes only negative pulses, it is sclective as to polarity.

Differentiation and integration- If the front of a rectangular wave is applied to an $K C$ circuit with series capacity and shunt resistance, as in Fig. 350, the voltage across the load resistor will cqual the applied voltage at the instant of application. Then, as the condenser acquires charge the voltage across the resistor will decrease exponentially (§2-6). If the time

Fig. 3.54 - With square wave iuput, the voltage wave. shapes actoss R and C reapectively in an $R C$ circuit have the shapes shown. Note the variation in waveshapes for different time constants. (Time constant yalues given are in terms of fractions of the period of the input wave.)
constant of the circuit is very small, the charging period will be very short. Thus the voltage across the desistor will have the shape of a short pulse, sharply peaked at the front.

Following this initial pulse, no current flows through the resistor because the condenser is charged to the maximum voltage of the applied square wave. Hence the voltage across the resistor is zero so long as the input voltage is unchanging. At the trailing edge of the input wove the process is repeated, except that the resultant pulse has the opposito polarity since the condenser is now discharging.

By altering the steepness of either the ascending or descending slopes of the input wave the amplitude of the output pulse can be controlled. This is the principle upon which pulse selection by waveshape is based, as illustrated in Fig. 360. A steep front produces a sharp pulse having an amplitude equal to the applied voltage, while a sloping front produces a pulse of correspondingly greater length and lesser amplitude. For sharp pulses the time constant must be considerably shorter than one-half cycle of the input wave. With a longer time constant the charging period becomes correspondingly longer, while retaining a logarithmic shape, and approaches the duration and form of the wave. Such a network is called a differentiating circuit.

In a circuit, with the resistor in series and the condenser in shunt, also shown in Fig. 359, the action is such that with a very short time constant the output wave resembles that of the input except for a slight curvature at the beginning because of the exponential charging characteristic. The amplitude is, however, greatly reduced because of the voltage ilvider effect of the reactance-resistance combination. Increasing the time constant to a value comparable to the duration of the constant-amplitude portion of the input ware increases the amplitude but accontuates also both the ascending and descending slopes of the wave.

Increasing the time constant to a value very long compared with tho base of the input wave, results in what is called an integrating circuit. In this circuit discrimination or selection is

Fig. 360 - Pralse selcction hased on the discriminating action of a differentiating circuit with
 inputs of different wavefront shapes. Typical input waves are shown above and the resulting output palses below.
based on the duration or frequency of the input wave. For example, if a series of short pulses is applied, the energy stored in the condenser by each individual pulse will be small and will be discharged before the next pulse arrives. If, however, a series of pulses with longer bases and shorter intervals is applied, only a portion of the energy from

Fig. 361-Sectiomal view of the "lighthousc" tube's construction. Close electrode spacing reduces transin time while the disc electrode ronneetions reduce lead inductance. each pulse will be discharged before the next begins charging. Energy is therefore acernmulated on the condenser until a predetermined amplitude is established. 'Thus long-base pulses can be separated from shorter pulses.

(1 3-11 V.H.F. and U.H.F. Tubes

Negative-grid tubes - At very ligh frequencies, interelectrode crpacities and the inductance of internal leads determine the highest possible frequency to which a vacumm tube can be tuned. The tube usually will not oscillate up to this limit, however, because of dielectrie losses, grid emission, and "transittime" effects. In low-frequency operation, the actual time of flight of electrons between the cathode and the anode is negligible in relation to the duration of the cycle. At 1000 ke ., for example, transit time of 0.001 mierosecond, which is typic:al of conventional tubes, is only $1 / 1000$ cyele. But at 100 Mc ., this same transit. time represents $1 / 10$ of a cycle, and a full cycle at 1000 Mr. These limiting factors establish about 3000 Mc . as the upper frequency limit for negative-grid tubes.

With tubes of ordinary construction, the upper limit of oscillation is about 150 Mc . For higher frequencies, v.l.f. tubes of special construction are used.

Fig. 362 - Schenatic crosisection of the or-bital-beam secondaryelectron multiplier tulie. 'lhe "acurn" and "doorknob" types and the special v.h.f. "niniature" tubes, in which the grid-cathode spacing is made as little as 0.005 inch, are capable of operation up to about 700-800 Mc. T'he norinal frequency limit is around (j00 Me., although out.put may be obtained up to 800 Mc .
Very low interelectrode enpacities and lead inductance have been achicved in the newer tubes of modified eonstruction. In multiple-
lead types the electrodes are provided with up to three sepurate leads which, when connected in parallel, have considerably reduced effective inductance. In double-lead types the plate and grid elements are supported by heave single wires which run entirely through the envelope, providing terminals at either end of the bulb. When a resonant circuit is conneeted to cach pair of leads, the shonting capacity divides between the two circuits. With lincir circuits the leads become a pirt of the line and have distributed rather than lumped constants. Radiation loss is minimized and the offore of the transit time is redueed. In "lighthouse" tubes or megatrons the plate, grid and cathode are assembled in parallel planes, as shown in Fig. 361, instead of coaxially. The uniform coplanar electrode design and dise-seal terminals permit very low interelectrode eapacities.

In the orbital-beam tube, Figs. 362, a small electrode structure is used in combination with a secondary-electron emiter to raise the effertive transconductance. Electrons emilted from the cathode, K_{1}, are aceclerated through the control grid, G_{1}, by a posilive grid, G_{2}, and

Fig. 363 - Schematic of the inductive output amplifier.
enter a radial electrostatic ficld astablished by the cylindrioal electrodes, J_{1} :und J_{2}, eansing the clectrons to move in a circular path and driving them against the secondary-emitter electrode, K_{2}. About ten secondary clectrons are emitted for cach primary electron; thans the ultimate electron flow to the plate, l ', is considerably greater than the original current emitted. As a result, hirh over-all transconductance (15,000 at 500 Mc . in an experinental tube) is obtained without increasing transittime losses or internal eaparilies.

Inductive output ampifier- In the induc-tive-output tube shown in Fig. 363 a highvelocity electron beam is intensity-modulited by the eontrol rrid (yrid No. 1). Alter being accelerated and focused by the combined action of the first and seeond lenses in the masnetic circuit and the sleeve electrodes (grids

Fif. 36. - Simple form of rylintrical-grid veloeitymodulated tube with retarding-field collector and conxial-line output circuit, nsed as a superheterodyne hight-freumen'y oscillator or as a superregenerative dettetor. Similar tubes can also be used as r.f. amplifirri and fregurncy converters in the $5-50-\mathrm{crn}$. region.

No. 2 and 3), the beam moves past a small aperture in the "dimpled sphere" cavity resonator. The potential difference across this gap slows down the electrons and thereby eatuses the resonant eavity to absorb power from the beam. Electrons passing through the structure are decelerated by a suppressor electrode (grid No. 4) before reaching the final anode or collector. The control-grid strueture gives sharp cout-off aud large transeonductence, while the high aceclerating potentials and small apertures result in very short transit time and consequently low input conductance. The in-ductive-output tube is useful for widc-band operation above 500 Mc., giving effieiencies of 25 p)er cent or better.

Velocity modulation - In negative-grid operation the potential on the grid tends to reduce the electron velocity during the more negative half of the oscillation eycle, while on the other half eycle the jositive potential on the grid serves to accolerate them. Thus the electrons tend to separate into groups, those leaving the cathode during the negative half eycle being collectively slowed down, while those leaving on the positive half are accelerated. After passing into the grid-plate space only a part of the electron strea follows the oriminal form of the oscillation cycle, the remainder traveling to the plate at differing velocitics. Since these contribute nothing to the power output at the operating frequency, the efficiency is reduced in proportion to the variation in velocit y, the output becoming zero when the transit time approaches a half cyele.

This effect, such a disadvantage in conventional tubes, is an advantage in velocity-modulated tubes in that the input signal voltage on the grid is used to change the velocity of the electrons in a constant-current electron beam, rather than to vary the intensity of a constant velocity current flow as in ordinary tubes.

A simple form of velocity-modulation oscillator tube is shown in Fig. 364. Electrons emitted from the eathode are accelerated through a negatively biased eylindrical grid by a constant positive voltage applied to a
slecve clectrode, shown in heavy lines. This electrode, which is the velocity-modulation control grid, consists of two hollow tubes, with a small space at each end between the inner tube, through which the electron beam passes, and the clises at the ends of the larger tube portion. With r.f. voltage applied across these gaps, which are small compared to the distance traveled by the electrons in one half cycle, electrons entering the tube will be accelerated on positive half cycles and decclerated on the negative half eycles. The length of the tube is made equal to the distance covered by the electrons in one-half cyele, so that the eleetrons will be further accelerated or decelerated as they leave the tube.

As the beam appronehes the eollector electrode, which is at nearly zero potential, the electrons are retarded, brought to rest., and ultimately turned back by the attraction of the positive sleeve clectrode. The colleetor electrode is, thereforc, also termed a reflector. The point at which clectrons are returned depends on their velocity. Thus the velocity modulation is again translated into current modulation.

Velocity-modulated tubes operate satisfactorily up to 6000 Mc . (5 cm .) and higher, with outputs of 100 watts or more.

The klystron - In the klystron velocitymodulated tube, the clectrons emitted by the cathode are aceelerated or retarded during their passage through an clectric field established by two grids in a eavity resonator, or rhumbatron, called the "buncher." The highfrequency electric field between the grids is parallel to the electron stream. This field aecelerates the electrons at one moment and retards them at another, in aceordance with the variations of the r.f. voltaige applied.

Fig. 365 - Circuit diagram of the klystron oscillator, showing the fecd-back loop coupling the frecuency-controlling rhumbatrous and the outpit loop in the catcher.

The resulting velocity-modulated beam travels through a field-free "drift space," where the slowly moving electrons are gradually overtaken by the faster ones. The electrons emerg-

ing from the pair of grids therefore are separated into groups or bunched along the direction of motion. The velocity-modulated electron stream is passed to a "catcher" rhumbatron, and as the beam passes through two parallel grids, the r.f. current created by the bunching of the electron beam indures an r.f. voltage between the grids. The catcher cavity is made resonimt at the frequency of the velocity-modulated electron beam, so that an oscillating field is set up within it by the passage of the electron bunches through the grid aperture.

If a feed-back loup is provided between the two rhunbatrons, as shown in Fig. 365, oscillittions will oecur. The resonant frequency depends on the electrode voltages and on the shape of the cavities, and maly be adjusted by varying the supply voltage and altering the diniensions of the rhumbatrons. The bunched bean eurrent is rieh in harmonies, but the output waveform is remarkably pure because the high Q of the catcher rhumbatron suppresses the unwanted harmonics.

Positive-grid electron oscillators - A triode in which the grid rather than the plate is positive with respect to the eathode will oscillate at frequencies higher than those at which transit-time effects cause the tube to be inoperative as a normal negative-grid oscillator. Oscillators of the positive-grid type are known as "brakefield" or "electron transittime" oscillators. Successful performance is most readily achieved with tube structures having cylindrical grids and plates.

This type of operation makes use of the transit time of electrons from the cathode to the grid and plate rcgions. Electrons emitted by the cathode are accelerated toward the positive grid, some striking it and some passing througl. Those thit pass through are repelled by the negative plate and turn around, passing between the grid wires once more. In the process, the electrons induce a.c. voltages in the grid at a frequency depending upon the transit time. Sone electrons may pass back and forth between the grid wires several times, while others may strike the grid after a single round trip. Those which remain free in the tube for several oscillations lose energy, but those which make only one trip gain energy. However. since
the former are free for a longer time there is a net transfer of energy which can be used to maintain oscillations.

In this type of oscillator, shown in Fig. 366, the frequency is controlled primarily by the grid voltage and the tube element spacing. The resonant circuit must be tuned to approximately the oscillation frequency for maximum output.

Positive-grid oscillators can be operated at frequencies up to $10,000 \mathrm{Mc}$. (3 cm.), but the efficiency is usually only 2 or 3 per cent. Since most of the power is dissipated in the grid, the tube is not capable of clelivering nuch power.

Magnetrons - A magnetron is fundinnentally a diode with cylindrical electrodes plateed in a uniform magnetic field with the lines of electromagnetic force parallel to the elements. The simple cylindrical magnetron consists of a filamentary cathode surrounded by a concentric cylindrical anode. In the more efficient split-anode maguetron the eylinder is divided longitudinally:

Magnetron oscillators are operated in two different ways. Electrically the circuits are similar, the difference being in the relation between electron transit time and the frequency of oscillation.
In the negative-resistance or dynation type of magnetron oscillitor, the element dimensions and anode voltage are such that the transit time is short compared with the period of the oscillation frequency. Electrons omitted from the cathode are driven towards both halves of the anode. If the potentials of the two halves are umerpal, the effect of the magnetie field is such that the majority of the electrons travel to that. half of the anode which is at the lower potential. In other words, a derrease in the potential of either half of the anode results; in an increase in the clectron current flowing to that half. The maguctron consequently exhibits negative-resistame characteristies (§3-7). Negative-resistance maguctron uscilhators are useful between 100 and 1000 Mc . Linder the best operating conditions efficioncios of 20 to 25 per cent may be obtaincel. Since the power loss in the t.ube appears as heat in the anode, where it is readily dissipated, relatively large power-landling capacity can be obtained.

Fig. 367 - Conventionul mapnetrons, with equivalent schematic symbols at the right. A, simple cylindrical magnetron. B, split-anode weqativeresistage watgetron.

In the transit-time magnetron the frequency is determined primarily by its dimensions and by the electric and magnetic field intensities rather than by the tuning of the tank circuits. The efficiency is much better than that of a positive-grid oscillator and good power output can be obtained even on the superhighs.

In a nonoscillating magnetron with a weak magnetic field, electrons traveling from the eathode to the anode move almost radially, their trajectories being bent only slightly by the magnetic field. With increased magnetic field the electrons tend to spiral around the filament, their radial component of velocity being much smaller than the angular component. Under critical conditions of magnetic field strength, a cloud of electrons rotates about the filament. It extends up to the anode but does not actually reach it.

The nature of these electron trajectorics is shown in Fig. 368. Cases A, B, and C correspond to the non-oscillating condition. For a

Fig. 368 - Electron trajoctorics for increasing values of magnetie field atrength, H. Below is shown the corresponding eurve of plate eurrent, I. Oscillations commence when H reaches a critical value, H_{c}; progressively higher order modes of oscillation oceur heyoad this point.
small magnetic ficld (A) the trajectory is bent slightly near the anode. This bending increases for a higher magnetic field (B) and the electron moves through quite a large angle near the anode before reaching it, signifying a large increase of space charge near the anode. For a strong magnetic field (C) electrons start radially from the cathode but are soon bent and curl about the filament in the form of a long spiral before reaching the anode. This means a very long transit time and a very large space charge in the whole region where the spiraling takes place. Under critical conditions (D), no current flows to the anode and no electron is able to move from cathode to a node. but a large space charge still exists between the cathode and anode. The spiraling becomes a set of concentric circles, and the entire space-charge distribution rotates about the filament.

Figs. $368-\mathrm{E},-\mathrm{F}$ and -G depiet higher order (harmonic-type) modes of operation in which the space charge oscillates not only symmetrically but in transverse directions contrasting to the vibrations of the fundamental.

In a transit-time magnetron oscillator the intensity of the magnetic field is adjusted so that, under static conditions, electrons leaving the cathode move in curved pathe which just

Fig. 369 - U.I.f. magnetron circuits. A, split-anodedspe. B, four-anode type with opposite clectrodes paralleled.
fail to reach the anode. All electrons are therefore deflected back to the eathode, and the anode current is zero. When an alternsting voltage is applied between the two halves of the anode, causing the potentials of these halves to vary about their average positive values, the conditions in the tube become analogous to those in a positive-grid oscillator. If the period of the alternating voltage is mude equal to the time required for an electron to make one complete rotation in the magnetic field, the a.c. component of the mode voltage reverses direction twice with ench electron rotation. sume electrons will lose energy to the electric field. with the result that they are unable to reach the eathode and continue to rotate about it. Meanwhile other clectrons gain energy from the field and are returned to the cathode. Since those electrons which lose energy remain in the interelectrode spaee longer than those which gain energy, the net effect is a transfer of energy from the electrons to the electric field. This energy can be applied to sustain oscillations in a resonant transmission line connected bet ween the two halves of the anode.

Split-anode magnetrons for u.h.f. are constructed with a cavity resonator built into the tube structure, as illustrated in Fig. 370. The assembly is a solid block of copper which assists in heat dissipation. At extremely high frequencies operation is improved by subdividing the anode structure into from 4 to 16 or nore segments. the resonant cavities for each anode coupled by slots of eritical dimensions to the common cathode region, as in Fig. 371.

The efficiency of multi-segment magnetrons reaches 65 or 70 per cent. Slotted-anode magnetrons with four segments function up to $30,000 \mathrm{Mc}$. (1 cm .) delivering up to 100 watts at efficiencies greater than 50 per cent. Using larger multiples of anodes and higher-order modes, performance can be attained at 0.2 cm .

R.-7. Power Generation

(1. 4-1 Transmifter Requirements

General requirements - To mininize interference when a large number of stations must work in one frequency bind, the power output of a transmitter must be as stable in frequency and as free from spurious radiations as the state of the art permits. The steady r.f. output, called the carrier ($\$ 5-1$), must be free from amplitude variations attributable to ripple from the plate power supply ($\$ 8-4$) or other causes, its frequency should be unaffected by variations in supply voltages or inadvertent changes in eircuit constants, and there should be no radiation on other than the intended frequency. The degree to which these requirements can be met depends upon the operating frequency.

Design principles - The design of the transnitter depends on the output frequenc: y, the required power output and the type of operation (c.w. telegraphy or 'phone). For c.w. operation at low power on mediun-high frequencies (up to 7 Mc. or so), a simple erystal oscillator circuit can meet the requirements satisfactorily. However, the stable power output which ean be taken from an ascillator is limited, so that for higher power the aseilation is used simply as a frequency-controlling eleinent, the power being raised to the desired level by means of amplifiers. The requisite frequency stability can be obtained unly when the oscillator is operated on relatively low frequencies, so that for output frequencies up to about 60 Mc . it is necessary to increase the oscillator frequency by multiplication (harmonic generation - §3-3), which usually is done at fairly low power levels and before the fimal amplification. An anplifier which delivers power on the frequency applied to its grid circuit is known as a straight amplifier; one which gives.harmonic output is known as a frequency multiplier. An amplifier used principally to isolate the frequency-controlling oscillator from the effects of changes in load or other variations in following amplifier stages is called a buffer amplifier. A complete transmitter therefore may consist of an oscillator followed by one or more buffer amplifiers, frequency multipliers and straight amplifiers, the number being determined by the output frequency and power in relation to the oscillator frequency and power. The last amplifier is called the final amplifier, and the stages up to the last comprise the exciter. Transmitters usually are designed to work in a number of frequency bands so that means for changing frequency in har-
monic steps usually is provided, generally by means of plug-in incluctances.

The general method of designing a transmitter is to decide upon the power output and the highest output frequency required, and also the number of bands in which the transmitter is to operate. The latter usually will determine the oscillator frequency, since it is general practice to set the oscillator on the lowest frequency band to be used. The oscillator frequency seldom is higher than 7 Mc . except in some portable installations where tubes and power must be conserved. A suitable tube (or pair of tubes) should be selected for the final amplifier, and the required grid driving power determined from the tube manufacturer's data. This sets the power required from the preceding statge. From this point the same process is followed back to the oscillator, including frequency multiplication wherever neeessary. The selection of a suitable tube complement requires a knowledge of the operating characteristies of the various types of amplifiers and oscillators. These are discussed in the following seetions.
Above 100 Me , and higher frequencies these methods of transmitter design tend to berome rather cumbersome, beealuse of the necessity for a large number of frequency multiplier stages. However, in this frequency region less severe stability requirements are imposed beenuse the transmission range is limited ($\$ 9-5$) and the possibility of interference to other eommunication is reduced. Simple uscillator transmitters, without frequency multiplication or buffer amplifiers, are widely used.

Facuum tubes - The type of tube used in the transmitter has an important effect on the circuit design. Tubes of high power sensitivity ($\$ 3-3$) such as pentodes and beam tetrodes give larger power amplification ratios per stage than do triodes, lience fewer tubes and stages may be used to obtain the same output power. On the other hand triodes have certain operating advantages, such as simpler power supply circuits and relatively simpler adjustment for modulation ($\$ 5-3$), and in addition are considerably less expensive for the same power output rating. Consequently it is usually more economical to use triodes as output amplifiers, even though an extra low-power amplifier stage may be necessary.

At frequencies in the region of 50 Mc . and above it is necessary to select tubes designed particularly for operation at very-high frequencies, since tubes built primarily for lower frequencies may work poorly or not at all.

(4 4-2 Self-Controlled Oscillators

Advantages and disadvantages - The chief advantage of a self-controlled osciliator is that the frequency of oscillation is determined by the constants of the tuned circuit, and hence readily can be set to any desired value. However, extreme care in design and adjustment are essential to secure satisfactory frequency stability (\$3-7). Since frequency stability is generally poorer as the load on the oscillator is increased, the self-controlled oscillator should be used purely to control frequency and not for the purpose of obtaining appreciable power output in transmitters intended for working below 60 Mc .

Oscillator circuits - The inherent stability of all of the oscillator circuits described in §3-7 is about the same, since stability is more a function of choice of proper circuit values and of adjustment than of the method by which feed-back is ohtained. However, some circuits are more convenient to use than others, particularly from the standpoint of feed-back adjustment, mechanical considerations (whether the tuning condenser rotor plates can be grounded or not, etc.), and uniform output over a considerable frequency range. In all simple circuits the power output must be taken from the frequency-determining tank circuit, which means that, aside from the effert of loading on frequency stability, the following amplificr stage can react on the oscillator and cause a change in the frequeney.

Factors influencing stability - The causes of frequency instability and the neccssary remedial steps have been discussed in §3-7. These apuly to all oscillators. In the case of the electron-coupled oscillator the ratio of plate to screen voltage has marked effect on the stability with changes in supply voltage; the optimum ratio is generally of the order of $3: 1$, but should be determined experimentally for each case. Since the cathode is above ground potential, means should be talsen to reduce the effects of heater-to-cathode capacitance or leak:uge which, by allowing a small ace vultage fram the heater supply to develop between cathode and ground, may cause modulation (\$5-1) at the supply frequency.

Fig. 401 - Elec-tron-coupled oscillator circuit. R_{1} should be 100,000 oluns or more, the grid condenser 100 $\mu \mu \mathrm{fd}$. and the other fised condensers 0.002 to $0.1 \mu \mathrm{fd}$.

This effect, which is usually appreciable only at 14 Mc. and higher, may be reduced by by-passing the heater as in Fig. 401 or by operating the heater at the same r.f. potential as the cathode. The latter may be accomplished by the wiring arrangement shown in Fig. 402.

Tank-circuit Q - The most important single factor in determining frequency stability is the Q of the oscillator tank circuit. The effective Q must be as high as possible for best stability. Since oscillation is acoompanied by grid-current flow the grid-cathode circuit

Fig. 402 - Method of opratine the heater at cathode r.f. potential in an electroneoupled oneillator. L_{2} should have the same number of turns as the cathote section of I. 1 and should be closacly coupled (preferably interwound). (Condenier C nay be 0.01 to $0.1 \mu \mathrm{fl}$.

constitutes a resistance load of appreciable proportions, the effective resistance being low enough to be the determining factor in establishing the effective parallel impedance of the tank circuit. Consequently, if the ends of the tank are connected to plate and grid, as is usuall, a high effective Q can be obtained only by decreasing the L / C ratio and making the inherent resistance in the tank as low as possible. The tank resistance can be decreased by using low-loss insulation and by winding the coil with large wire. With ortinary construetion, the optimum tank capacity is of the order of 500 to $1000 \mu \mu \mathrm{fl}$. at a frequency of 3.5 Mc .

The effective circuit Q can be raised by increasing the resistance of the grid circuit and thus decreasing the loading. This can be accomplished through reducing the oseillator grid current, which maty be aceomplished by using minimum feed-back for stable oscillation, plas a high vahe of grit-leak resistance.

A high- Q tank circuit can also be obtained with a higher $L^{\prime} C$ ratio by "tapping down" the tube connctions on the tank ($\$ 2-10$). This is advantageous in that a coil with higher inherent Q can he used; also, the circulating r.f. current in the tank circuit is reduced so that drift from coil heating is decreased. However, under some conditions parasitic oscillations may be set up ($+4-10)$.

Plate supply-Since the oscillator frequency will be affected to some extent by changes la plate-supply voltago, it is noressary that the latter be free from ripple (§ 8-4) which would cause frequency variations at the ripplefrequency rate (jrequency modulation). It is advantageous to usc a voltage-stabilized power supply (§ S-8). Since the oscillator usually is operated at low voltage and current, VR-type gaseous regulator tubes are quite suitable.

Power level - The self-controlled oscillator should be designed purely for frequency control and not to give appreciable power output, hence small tubes of the receiving type may be used. The power input ordinarily is not more than a watt or two, subsequent buffer amplifiers being used to increase the power to the desired level. The use of receiving tubes is advantageous mechanically, since the small elements are less susceptible to vibration and
usually are securely bruced to the envelope of the tube.

Oscillator adjustment - The adjustment of an oscillator consists principally in observing the design principles outlined in the preceding paragraphs. Frequency stability should be checked with the aid of a stable receiver. An auxiliary crystal-oscillator may be used as a standard for checking dynamic stability and drift, the self-controlled oscillator being adjusted to approximately the same frequency so that an audio-frequency beat ($\$ 2-13$) can be obtained. If it is possible to vary the oscillator plate voltage (an adjustable resistor of 50,000 or 100,000 ohms in series with the plate supply lead will give considerable variation). the change in frequency with change in plate voltage may be observed and the operating conditions varied until minimun frequency shift results. The principal factors affecting dynamic stability will be the tank circuit, L / C ratio, the grid-lenk resistance, and the amount of feed-birk. In the electron-coupled circuit the latter may be adjusted by changing the eathode tap on the tank coil; ratical adjustment is required for optimum stability.

Drift may be cheeked by allowing the osrillator to operate continuously from a cold start, the frequency change being observed at regular intervals. Drift may be minimized by using less than the rated power input to the plate of the tube, by construction which prevents tube heat from reaching the tank circuit elements, and by use of large wirs in the tank coil t. reduce temperature rise from internal heating.

In the electron-coupled oscillator having a tuned plate circuit (Fig. 33.4), resonance at the fundamental and harnonic frequencies of the oscillator portion of the tube will be indicated by a decrease in plate current as the plate tank condenser is varied. This "dip" is less marked at the fundamental than on harmonics.

(4.4-3 Crystal Control

Characteristics - Piezoelectric crystals (§ $2-12-\mathrm{D}$) are widely used for controlling the frequency of transmitting oscillators, because the extremely high Q of the erystal and the necessarily lonse coupling between it and the

Fig. 403 - Triode cryital oscillator. The tank condenser, C_{1}, may be a $100-\mu \mu \mathrm{fd}$. variable, with L_{1} proportioned so that the tank will tune to the crystal fropuency. C_{2} should be $0.001 \mu \mathrm{fd}$. or larger. The grid leak, h_{1}, will vary with the type of tube: high- μ tubes take values of 2500 to 10,000 ohms, while medium and low- μ types 3 take values of 10,000 to 25,000 ohms. A small flashiight bulb or r.f. milliammeter (\$4-3) may be inserted at X.
oscillator tube make the frequency stability of a crystal-controlled oscillator very high.

The ability to adhere closely to a known frequency is the outstanding characteristic of a crystal oscillator. This also is a disadvantage, in that a different crystal is required for each froquency un which the transinitter is to operate.

Power limitations - The temperature of a crystal depends not only on the temperature of its surroundings but also on the power it must dissipnte while oscillating, since power. dissipation causes heating (\$2-6, 2-8). Consequently, the crystal temperature in operation may be considerably above that of the surrounding air. To minimize heating and frequency drift (§3-7), the power dissipated must be kept to a minimum.

If the crystal is made to oscillate ton strongly, as when it is used in an osciliator circuit with high plate voltage and excessive feed-back, the amplitude of the mechanical vibration will become great enough to crark or puncture the quartz. An indication of the vibration anmplitude (and power dissipated) can be obtained by connecting an r.f. current-indicating device of suitable range in series with the crystal. Safe r.f. crystal currents range from 50 to 200 milliamperes, depending upon the type of crystal eut. A flashlight bulb or dial light of equivalent current rating makes a good current indicator. By chonsing a bulb of lower rating than the current specified by the manufarturer as safe for the particular type of erystal used, the bulb will serve as a fuse, burning out bedore a current dangerous to the crystal is reached. The $60-\mathrm{ma}$. and $100-\mathrm{ma}$. bulbs may be used for this purpose.

Crystal mountings - To make use of the crystal, it must be mounted between two metal electrodes. There are two types of mountings, one having a small air-gap between the top plate and the crystal and the other maintaining both plates in contact with the crystal. It is essential that the surfaces of the metal plates in contact with the crystal be perfertly flat. In the air-gap type of holder, the frequency of oscillation depends to some extent upon the size of the gap. By using : holder having a top plate with closely adjustable spacing, a controllable frequency variation can be obtained. A suitable 3.j-Me. crystal will oscillate without great variation in power output over a range of about 5 kc . X- and Y'cut cry'stals are not generally suitable for this type of operation; they have a tendency to "jump" in frequency with different air gaps.

A holder having a heavy metal bottom plate with a large surface exposed to the air is advantageous in that it radiates quickly the heat generated in the crystal, thereby reducing temperature effects. Different plate sizes, pressures, ete., will cause slight changes in frequency, so that if a crystal is being ground to an exact frequency it should be tested in the same holder and in the same oscillator circuit with which it will be used in the transmitter.

Fig. 40.4 - Tetrode or pentode crystal oscillator. Typical values: $C_{1}, 100 \mu \mu \mathrm{fd}$., with L wound to suit frequency; $C_{2}, C_{3}, 0.001$ ${ }_{\mu} \mathrm{fd}$. or larger; $\mathrm{C}_{4}, 0.01$ $\mu \mathrm{fd}$.; R_{1}, 10,000 to 50,000 ohms (valuedetermined by trial); $R_{2}, 250$ to 400 ohms.

C. 4-4 Crystal Oscillators

Triode oscillators - The triode crystal osrillator circuit ($\$ 3-7$) is shown in Fig. 403. The limit of plate voltage that can bc used without endangering the crystal is about 250 volts. With the r.f. erystal current limited to a safe value of about 100 ma ., the power output obtainable is about 5 watts. The oscillation frequency is dependent to some extent on the plate tank tuning, because of the change in input capacity with changes in effective amplification (§ 3-3).

Tetrode and pentode oscillators - Since the power output of a crystal oscillator is limited by the permissible r.f. crystal current ($\$ 4-3$), it is advantageous to use an oscillator tube of high power sensitivity (\$ 3-3) such as a pentode or beam tetrode ($\$ 3-\overline{5}$). Thus for a given crystal voltage or current more power output may be obtained than with the triode oscillator, or for a given output the crystal voltage will be lower, thereby reducing crystal heating. In addition, tank-circuit tuning and loading react less on the crystal frequency because of the lower grid-plate capacity (§ 3-3).

Fig. 404 shows a typical pentode or tetrode oscillator circuit. Pentode and tetrode tubes originally designed for audio power work are excellent crystal-oscillator tubes. The screen voltage is generally of the order of half the plate voltage for optimum operation. Small tubes rated at 250 volts for audio work may be operated with 300 volts on the plate and 100-125 on the screen as crystal oscillators. The screen is at ground potential for i.f. and has no part in the operation of the circuit other than to set the operating characteristics of the tube. The larger beam tubes may be operated at 400 to 500 volts on the plate and 250 on the screen for maximum output.

Pentode oscillators operating at 250 to 300 volts will give 4 or 5 watts output under normal conditions. Beam-type tubes such as the 6L6 and 807 will give 15 watts or more at maximum plate voltage.

The grid-plate capacity may be too low to give sufficient feed-back, particularly at the lower frequencies, in which ease a feed-back condenser, C_{s}, may be required. Its capacity should be the lowest value which will pive stable oscillation; 1 or $2 \mu \mu \mathrm{fd}$. is generally sufficient. R_{2} and C_{4} may be omitted, connecting the cathode directly to ground, if plate voltage is limited to 250 volts. C_{5} (if needed) may be formed by two metal plates $1 / 2$-inch square spaced $1 / 4$ inch. If the tube has a suppressor
grid, it should be grounded. X indicates where a flashlight bulb may be inserted ($\$ 4-3$).

Circuit constants-Typical valucs for grid-leak resistances and by-pass condensers are given in Figs. 403 and 404. Since the crystal is the frequency-determining element, the Q of the plate tank circuit has a relatively minor effect on the oscillator frequency. A Ω of $12(\S 4-8)$ is satisfactory for average conditions, but some departure from this figure will not greatly affect the performance of the oscillator.

Adjustment of crystal oscillators - The tuning characteristics and procerlure to be followed in tuning are essentially the same for triode, tetrode or pentode crystal oscillators. Using a plate milliammeter as an indicator of oscillation (a $0-100 \mathrm{ma}$. d.e. meter will have ample range for all low-power oscillators), the plate current will be found to be steady when the circuit is in the non-nseillating state, but will dip when the plate condenser is tuned through resonance at the crystal frequency. Fig. 405 is typical of the behavior of plate current as the tank condenser capacity is varied. An r.f. indicator, such as a small neon bulb touched to the plate end of the tank coil, will show a maximum indication at point A. However, when the oscillator is delivering power to a load it is best to operate in the region $B-C$ since the oscillator will be more stable and there is less likelihood that a slight clange in loading will throw the circuit out of oscillation, which is likely to happen when operation is to near the critical point, A. The crystal current also is lower in the $B-C$ region.
When power is takea from the oscillator the dip in plate current is less pronounced, as indicated by the dotted curve. The greater the power output, the smaller the dip in plate current. If the load is made too great, oscillations will not start. Loading is adjusted by varying the coupling to the load circuit ($\$ 2-11$).

Fig. 405- Curves showing d.c. plate current vs. plate-circuit tuning in a crystal oscillator, both with and without load. These curves apply equally to the triode, tetrode or pentode crystal oscillator.

The greater the loading, the smaller the voltage fed back to the grid circuit for excitation purposes. This means that the r.f. voltage across the crystal also will be reduced under load, hence there is less crystal heating when the oscillator is delivering power than when it. is unloaded.

Failure of a crystal circuit to oscillate may be caused by any of the following:

1) Dirty, chipped or fractured crystal.
2) Imperfect or unclean holder surfaces.
3) Too tight coupling to load.
4) Plate tank circuit not tuning correctly.
5) Insufficient feed-back capacity.

Fip. 106- Fierce oscillator circuit. R_{1} is 25,000 to 50,000 obms. R_{2} is 1000 ohnis; R_{3}, 75,000 ohnis for a 6 F 6 ; $C_{1}, 0.001$ to $0.01 \mu \mathrm{fd}$; C_{3} and $C_{4}, 0.01 \mu \mathrm{fd}$. For values of C_{2} and C_{5}, sec text.

Pierce oscillator-This eircuit, Fig. 406, is equivalent to the ultraudion cireuit ($\$ 3-7$), with the erystal replacing the tuned circuit. Although the output is small, it lias the advantage that no tuning controls are required. The circuit requires capacitive coupling to a following stage. The amount of feed-back is determined by the condenser, C_{2}; its capacity must be determined by experiment, usual values being between 50 and $150 \mu \mu \mathrm{fd}$. To sustain oscillation, the net reactance ($\S 2-8$) of the plate-cathode circuit must be capacitive; this condition is met so long as the inductance of the r.f. choke, together with the inductance of any coils associated with the input circuit of the following stage and the tube and stray capacities, forms a circuit tuned to a lower frequency than that of the crystal.

Tubes such as the triode 6C5 and pentode 6 F 6 are suitable for use in this circuit. (When a triode is used the screen-voltage dropping resistor, R_{3}, and by-pass condenser, C_{4}, in Fig. 406 should, of course, be onitted.) The applied plate voltage should not exceed 300 , to prevent crystal fracture. The capacity of the outputcoupling condenser, C_{5}, should be adjusted by experiment so that the oscillator is not overloaded; usually $100 \mu \mu \mathrm{fl}$. is a satisfactory value.

4. 4-5 Harmonic-Generating Crystal Oscillators

Tri-tet oscillator - The Tri-tet oscillator circuit is shown in Fig. 407. In this circuit the screen grid is operated at ground potential and the cathode at an r.f. potential above ground. The screen-grid acts as the anode of a triode crystal oscillator, while the plate or output circuit is tuned to the oscillator frequency or, for harmonic output, to a multiple of it.

Besides giving harmonic output, the Tri-tet circuit has the "buffering" feature of electroncoupling between crystal and output circuits (§4-2). This makes the crystal frequency less susceptible to changes in loading or tuning, and hence inproves the stability.

If the output circuit is to be tuned to the same frequency as the crystal, a tube having low grid-plate capacity ($\$ 3-2,3-5$) must be used. Otherwise there may be excessive feedback with consecuent danger of fracturing the crystal. The cathode tank circuit, $L_{1} C_{1}$, is not tuned to the frequeney of the crystal, but to a considerably higher frequency. Recommended values for L_{1} are given under the diagran. C_{1} should be set to as near minimum capacity as is eonsistent with good output. This reduces the crystal voltage.

With pontodc-type tubes having separate suppressor connections, the suppressor may be either connected directly to ground or operated at about 50 volts positive. The latter method will give somewhat higher output.

With transmitting pentodes or beam tubes operated at 500 volts on the plate an output of 15 watts can be obtained on the fundamental and nearly as much on the second harmonic.

Grid-plate oscillator-In the grid-plate oscillator, F'ig. 408, the crystal is connected between grid and gronnd and the cathode tuned circuit, C_{2} and $R F C$, is tuned to a frequency lower than that of the crystal. This circuit gives high output on the fundamental crystal frequency with low crystal current. The output on even harmonics (2nd, 4th, etc.) is not so great as that obtainable with the Tri-tet, but on odd harmonics (3rd, 5th, etc.) the output is appreciably better.

If harmonic output is not needed, C_{2} may he a fixed capacity of $100 \mu \mu \mathrm{fc}$. The cathode coil, $R F^{\prime} C$, may be a $2.5-\mathrm{mh}$. choke, since the inductance is not critical.

Output power of 15 to 20 watts at the crystal fundanental may be obtained with a tube such as the 6LGG at plate and screen voltages of 400 and 250 , respectively.

Tuning and adjustment - The tuning procedure for the Tri-tet oscillator is as follows: With the cathode tank condenser at about three-quartors scale turn the plate tank condenser until there is a sharp dip in plate cur-

Fig. 407 - Tri-tet oscillator circuit, using pentodes (A) or bean tetrodes (13). C_{1} and C_{2} are $200-\mu \mu \mathrm{fd}$. variable condensers. $C_{3}, C_{4}, C_{5}, C_{6}$, may be 0.001 to $0.01 \mu \mathrm{Fd}$.; their values are not critical. $R_{1}, 20,000$ to 100,000 ohms. R_{2} should be 400 ohms for 400 or 500 -volt operation. 'The following specifications for the eathode coils, L_{1}, are hased on a diameter of $11 / 2$ inches and a length of 1 inch; turns should be spaced cvenly to fill the required length: for $1.75-\mathrm{Mc}$. erystal, 32 turns; 3.5 Mc., 10 turns; 7 Me., 6 turns. The sereen should be operated at 250 volts or less. Audio beam tetrodes such as the 6L6 and 6L6G should be used only for second-harmonic output. A liashlight hulb may he inserted at the point marked X ($\$ 4$-3). The L / C ratioin the plate tank, $L_{2} C_{2}$, should be such that the capacity in use is 75 to $100 \mu \mu \mathrm{fd}$. for fundamental output and about $25 \mu \mu \mathrm{fd}$. for second-harmonic output.

Fig. 408 - Grid-plate crystal oscillator circuit. In the cathode circnit, $R F C$ is a $2.5-\mathrm{mh}$. r.f. choke. Other constants are the same as in Fig. 407. A erystal-current indicator may be inserted at the point marked \boldsymbol{X} (§4-3).
rent, indicating that the plate circuit is in resonance. The crystal should be oscillating continuously, regardless of the setting of the plate condenser. Set the plate condenser so that plate current is minimum. The load circuit may then be coupled and adjusted so that the oscillator delivers power. The minimum plate current will rise; it may be neeessary to retune the platecondenser when the load is conpled to bring the plate current to a new minimum. Fig. 409 shows the typical behavior of plate current with plate-condenser tuning.

After the plate circuit is adjusted and the oscillator is delivering power, the eathode condenser should be readjusted to obtain optimum power output. The setting should be as far toward the Iow-capacity end of the scale as is consistent with good output; it may, in fact, be desirable to sacrifiec a little output if so doing lowers the current through the crystal and thus reduces leating.

For harmonic output the plate tank circuit is tuned to the harmonic instead of the fundamental of the crystal frequency. A plate-current dip will occur at the harmonic. If the cathode condenser is adjusted for maximum output at the harmonic, this adjustment will usually serve for the fumbamental as well. The crystal should be checked for excessive heating,
the most effective remedy being to lower plate and/or screen voltage or to reduce the loading. Maximum r.f. voltage across the crystal is developed at maximum load, so heating should be checked with the load coupled.

When a fixed cathode condenser is used in the grid-plate oscillator the plate tank circuit is sinply resunated, as indicated by the platecurrent dip, to the fundamental or a harmonic of the output frequency, loading being adjusted to give optimum power output. If the variable cathode condenser is used, it should be set to give, by observation, the maximum power output consistent with safe crystal current. The variable condenser is useful chicfly in increasing the output on the third and higher harmonics; for fundamental operation, the cathode capacity is not critical and the fixed condenser may be used.

Fig. 109 - Curves showing d.ce, plate current ve. plate-condenser tuning, hoth with and without load, for the Tri-tot oscillator. The setting for mininum Mate current may shift with loading.

(1) 4-6 Interstage Coupling

Requirements - 'The purpose of the interstage coupling system is to transfer, with as little energy loss as possible, the power developed in the plate circuit of one tube (the driver) to the grid circuit of the following amplifier tube or frequency multiplier. The circuits in practical use are based on the fundamental coupling arrangements described in $\S 2-11$. In the process of power transfer, impedance transformation (§2-9) frequently is necessary so that the proper exciting voltage and current will be available at the grid of the driven tube.

Fig. 110 - Dircet- or capacity-roupled driver and amplifice stapes. The conpling capacity may be from $50 \mu \mu \mathrm{fd}$. to $0.002 \mu \mathrm{fd}$.; it is not critical execpt where tapping the coils for control of excitation is not possille. Parallel plate fecd to the driver and series grid feed to the amplificr nay le substituted in any of these circuits ($\$ 3.7$).

Caparily coupling - Fig. 410 shows several types of capacitive coupling. In each case, C is the coupling eondenser. The coupling condenser serves also is a blocking condenser ($(2-13)$ to isolute the d.c. plate voltage of the driver from the grid of the amplifier. The circuits of C and D are preferable when a balanced circuit is used in the output of the driver; instead of both tubes being in parallel across one side, the output capacity of the driver tube and the input capacity of the amplifier are across opposite sides of the tank circuit, thereby preserving a hetter circuit balance. The circuits of E and F are designed for coupling to a push-pull stage.

In A, B, E and F, excitation is adjusted by moving the tap on the coil to provide an optimum impedance match. In E and F, the two grid taps should be maintained equidistant from the center-tap on the coil.

While capacitive coupling is simplest from the viewpoint of construction, it hats certain disadvantages. The input capacity of the arnplifier is shunted across at least a portion of the driver tank coil. When added to the output capacity of the driver tube, this additional capacity may be sufficient, in many cases, to prevent use of a desirable L ' \because ratio in circuits for frequencies above about 7 Mc .

Link coupling - At the higher frequencies it is advantageous in reducing the effect.s of tube capacities on the L ' C ratio to use separate tank circuits for the driver plate and amplifier grid, coupling the two circuits by means of a link (\$2-11). This method of coupling also has some constructional advantages, in that separate parts of the transmitter may be constructed as separate units without the necessity for running long leads at high r.f. potential.

Fig. 411 - Link coupling between driver and amplifirs.

Circuits for link coupling are shown in Fig. 411. The coupling ordinarily is by a turn or two of wire closely coupled to the tank inductance at a point of low r.f. potential, such as the center of the coil of a balanced tank circuit or the "ground" end of the coil in a single-ended circuit. The link line usually consists of two closely spaced parallel wires; occasionally the wires are twisted together, but this usually causes undue losses at high frequencies.

It is advisable to have some means of varying the coupling between link and tank coils. The link coil may be arranged to be swung in relation to the tank coil or, when it consists of a large turn around the outside of the tank coil, may be split into two parts which cun be pulled apart or closed somewhat in the fashion of a pair of calipers. If the tank coils are wound on forms, the link may be wound close to the main coil.

With fixed coils, some adjustment of coupling usually can be obtained by varying the number of turns on the link. In general, the proper number of turns for the link must be found by experiment.

(1) 4-7 R.F. Power-Amplifier Circuits

Tetrode und pentode amplifiers - When the input and output cireuits of an r.f. amplifier tube are tuned to the same frequency it will oscillate us a tuned-grid tuned-plate oscillator, unless some means is provided to eliminate the effects of feed-back through the plate-to-grid capacity of the tube (§3-5). In all transmitting r.f. tetrodes and pentodes, this capacity is reduced to a satisfactory degree by the internal shielding between grid and plate provided by the screen. Tetrodes and pentodes designed for audio use (such as the $6 \mathrm{~L} 6,6 \mathrm{~V}^{\circ} 6$, 6 F6, etc.) are not sufficiently well screened for use as r.f. amplifiers without employing suitable means for nullifying the effect of the gridplate capacity.

Typical circuits of tetrode and pentude r.f. amplifiers are shown in Fig. 412. The high power sensitivity ($\$ 3-3$) of pentodes and tetrodes, makes them prone to self-oscillate with very small values of feed-back voltage, however, so that particular care must be used to prevent feed-back by means external to the tube itself. This calls for adequate isolation of plate and grid tank circuits to prevent undesired magnetic or capacity coupling between them. The requisite isolation can be secured either by keeping the circuits well separated and monnting the coils so that magnetic roupling is minimized, or by the use of interstage shielding (§ 2-11).

Triode amplifiers - The feed-back through the grid-plate capacity of a triode cannot be eliminated, and therefore special circuit means called neutralization must be used to prevent oscillation. A properly neutralized triode amplifier then behaves as though it were operating at very low frequencies, where the grid-plate caparity feed-back is negligible (§ 3-3).

single-tube or parallel

PUSH-pULL
Fig. 412 - Typieal tetrode-pentode r.f. amplifier circuits. $C_{1}-0.01 \mu \mathrm{fd} . C_{2}-0.001 \mu \mathrm{fd} . C_{3} . L-S e c ~ \$ 4-8$. In circuits for tetrodes, the suppressor-grid connection and its associated by-pass condeuser are omitted.

Neutralization - Neutralization amounts to taking sonie of the radio-frequency current from the output or input circuit of the amplifier and introducing it into the other circuit in such a way that it effectively cancels the current flowing through the grid-plate capacity of the tube, thus rendering it impossible for the tube to supply its own excitation. For complete neutralization of the amplifier, the two currents must be opposite in phase ($(2-7$) and equal in amplitude.

The out-of-phase current (or voltage) can be obtained quite readily by using a balanced tank circuit for either grid or plate, taking the neutralizing voltage from the end of the tank opposite that to which the grid or plate is comected. The amplitude of the neutralizing voltage can be regulated by means of a small condenser, the neutralizing condenser, having the same order of capacity as the grid-plate capacity of the tube. Circuits in which the neutralizing voltage is obtained from a balanced grid tank and fed to the plate through the neutralizing condenser are grid-neutralized circuits, while if the neutralizing voltage is obtained from a balanced plate tank and fed to the grid the circuit is plate-neutralized.

Plate-neutralized circuits - The circuits for plate neutralization are shown in Fig. 413 at A, B and C. In A, voltage induced in the extension of the tank coil is fed back to the grid through the neutralizing condenser, C_{n}, to balance the voltage appearing between grid and plate. In this circuit, the capacity required at C_{n} increases as the tank coil extension is made smaller; in general, neutralization is satisfactory over only a sinali range of frequencies since the coupling between the two sections of the tank coil will vary with the amount of capacity in use at C.

In B the tank coil is center-tapped to give equal voltages on either side of the center tap, the tank condenser being across the whole coil. The neutralizing capacity is approximately equal to the grid-plate capacity of the tube, in this case. A cisadvantage of the circuit, when used with the single tank condenser shown, is that the rotor of the condenser is above ground potential, and hence small capacity changes caused by bringing the land near the tuning control (hand capacity) cause detuning. In general, neutralization is complete at only one

Fig. 413 - Neutralized triode amplifier eircuits. Plate neutralizatiou is sbown in Λ, B and C, while D, E and F show types of mrid nentralization. Either capacitive or link coupling may be used with the circuits of A; B or C,

frequency since the plate-cathode capacity of the tube is across only half the tank coil; also, it is difficult to secure an exact center-tap. Both of these factors cause unbalance, which in turn causes the voltares across the two halves of the eoil to differ when the frequency is changed.
The circuit of C also uses a center-tapped tank circuit, the voltage division being secured by use of a balanced (split-stator) tank condenser, the two condenser sections being identical. C_{n} is approximately equal to the gridplate capacity of the tube. In this circuit the upper section of the tank condenser is in parallel with the output capacity of the tube, hence the circuit can be completely neutralized at only one setting of the tank condenser unless a

Fig. 414-Compensating for unbalance in the sinpletube nentralizing dircuit. C_{r}, the balancing condenser, has a maximum caparity somewhat laryer than the outmit capacity of the tube.
eompensating capacity (Fig. 414) is eonnected across the lower sertion. It is adjusted so the nentralizing condensor need not be changed when frequence is shifterl. In practice, if the eapacity in use in the tank circuit is large conmpared to the plate-cathode eapacity the unbalancing effect is not serious.

Grid-neutralized circuits - Typical circuits employing grid neutralization are shown in Fig. 413 at I), Es and F. The principle of balancing out the feed-back voltage is the same as in plate neutralization. However, in these circuits the neutralizing voltage may be either in phase or out of phate with the excitation voltage on the grid side of the input tank circuit depending upon whet her the tank is divided by means of a balanced condenser or a tapped coil. Circuits such as those at D and E, neutralized by ordinary procedure (described below), will be regenerative when the plate voltage is applied; the circuic at F will be alegenerative. In addition the normal unbalancing effects previously deseribed are prosent, so that grid neutralizing is less satisfactory than the plate method.

Inductire nentralization - With this type of neutralization, indurtive coupling between the grid and phate circuits is provided in such a
way that the voltage indured in the grid coil by magnetic coupling from the plate coil opposes the voltage fed back through the grid-plate capacity of the tube. A representative circuit arrangement, using a coupling link to provide the mutual inductance ($\$ 2-11$), is shown in Fig. 415-A. The link coils are of one or two turns coupled to the grounded ends of the timk coils. Neutralization is arljusterl by moving the link coils in relation to the tank coils. Reversal of connections to one coil may be required for proper phasing. Ordinary inductive coupling between the two coils also could be used, but it is les convenient. Inductive nentralization is complete only at one frequeney since the effective mutual inductance changes to some extent with tuning, but is usoful in conses where the grid-plate caparity of the tube is very small and suitable circuit balance c:annot be obtaned by using neutralizing condensars.

Another form of neutralization, known as "coil" or "shunt" neutralization, is shown at 13. Its operation is hased on making the indurtance of L_{n} such that, torether with the gridplate caparity of the tube, it resonates at the operating frequency. C, is merely a plate-voltage blocking condenser. If the Q of the roil is sufficiently high, the parallel resomant impedance between grid and phate is much higher than the grid-cathode rireuit impedatoce. lecause the strstem is difficult to adjust and functions satisfactorily only at one frequency it is used chiefly in fived-freduency transmitters. The variation in Fig. 411-C is issful for v.h.f. In this arrangement the coil is replaced by a parallel line, the effective length of which is adjusted until it is resonant when louled by the aricl-plate eapurity.

Pash-pall neutralizalion - With pushpull circuits two nentralizing condensers are used, as shown in Fig. 416 . In thesecircuits, the grid-plate capacities of the tubes and the neutralizing capacities form a capacity bridge (§ 2-11) which is independent of the grid and plate tank circuits. The neutrolizing capacitics are approximately the same as the tube gridplate capacities. With electrically similar tubes and symmetrical construction (straty capacitios to ground equal on both sides of the cirenit), the neutralization is conmplete and independent of frequency. A eireuit using a balanced condenser, as at 13 , is preferred, since it is an aid in obtaining good circuit beilance.

Frequency effects - The effects of slight dissemmetry in a neutralized circuit become more important as the frequency is raised, and may be sufficient at the very-high frequenejes (or even lower) to prevent good nentralization. At these frequencies the inductances and stri:uy capacities of even short leads become important elements in the circuit, while input loading effects ($\$ 7-6$) may make it impossible to get proper phasing, particularly in single-tube circuits. In such caves the use of a push-pull amplifier, with its general freedon from the effects of dissymmetry, is not only much to be proferred but may be the only type of circuit which can be satisfactorily neutralized.

Neutralizing condensers - In most cases the neutralizing voltage will be equal to the r.f. voltage between the plate and grid of the

Fif. 416 - "C (ross-neutralized" push-pull r.f. amplifier circuits. Either capacitive or link compling may be used. C-L-Sce $8+8$. C_{n} - Neur ralizing condensers. $C_{1}-0.01 \mu \mathrm{fd}$. $C_{2}-0.001 \mu$ fd. or larger.
tube, so that for perfect balance the capacity reduired in the neutralizing condenser theoretically will be equal to the grid-plate capacity. If, in the circuits having tapped tank coils, the tap is more than half the total number of turns from the plate end of the coil, the required neutralizing capacity will increase approximately in proportion to the relative number of turns in the two sections of the coil.

With tubes having grid and plate connections brought out through the bulb, a condenser laving at about half-scale or less a capacity equal to the grid-plate capacity of the tube should be chosen. If the grid and plate leads are brought through a common base the capacity needed is greater, because the tube socket and its associated riring adds some capacity to the actual interelement capacities.

When two or nore tubes are conneeted in parallel, the neutralizing capacity required will be in proportion to the number of tubes.

The voltage rating of ncutralizing condensers must at least cqual the r.f. voltage across the condenser plus the sum of the d.e. plate voltage and the grid-bias voltage.

Neutralizing procedure - The procedure in neutralizing is essentially the same for all tubes and circuits. The filament of the tube should be lighted and excitation from the preceding stage fed to the grid circuit. There should be no plate voltage on the amplifier.

The grid-circuit milliammeter makes a good neutralizing indicator. If the circuit is not completely neutralized, tuning of the plate tank circuit through resonnnce will change the tuning of the grid circuit and affect its loading, causing a change in the rectified d.c. grid current. The setting of the neutralizing eondenser which leaves the grid current unaffected as the plate tank is tuned through resonance is the correct one. If the circuit is out of nentralization, the grid current will drop perceptibly as the plate tank is tumed through resonance. As the point of neutralization is approached, by adjusting the neutralizing capacity in sniall steps the dip in grid current as the plate condenser is swong through resonane will become less and less pronounced, until, at exact neutrilization, there will be no dip at all. Further change of the neutralizing raparity in the sume direction will bring the grid-current dip back. The neutralizing condenser should alw:sys be adjusted with a screwdriver of insulating material to avoid hand-capacity effects.

Adjustment of the neutralizing condenser may affect the tuning of the grid tank or driver plate tank, so both circuits sloould be retuned each time a change is made in neutralizing capacity. In neutralizing a push-pull amplifier the neutralizing condensers should be adjusted together, step by step, keeping their capacities as equal as possible.

With single-ended circuits having split-stator neutralizing, the behavior of the grid meter will depend somewhat upon the type of tube used. If the tube output capacity is not great enougl to upset the balance, the action of the meter will be the same as in other circuits. With high-capacity tubes, however, the meter usually will show a gradual rise and fall as the plate tank is tuned through resonance, reaching a maximum right at resonance when the circuit is properly neutralized.

When an amplifier is not neutralized a neon bulb touched to the plate of the amplifier tube or to the plate side of the tuning condenser will glow when the tank circuit is tuned through resonance, providing the driver has sufficient power. The glow will disappear when the amplifier is neutralized. However, touching the neon bulb to such an ungrounded point in the circuit may introduce enough stray capacity to unbalance the circuit slightly, thus upsetting the neutralizing.

Figs. 41% - laworted amplifirr. Thu number of turns at L ahould be aljusted by experiment to pive optimum prid excitation. By-pass condenser C is $0.001 \mu \mathrm{ffl}$. or Iarger

A flashlight bulb connected in serics with a single-turn loop of wire 2% or 3 inches in diameter, with the loop coupled to the tank coil, also will serve as a neutralizing indicator. Capacitive unbalance can be avoided by coupling the loop to the low-potential part of the tank coil.

Incomplete neutralization - If a setting of the neutralizing condenser can be found which gives minimum r.f. current in the plate tank circuit without completely eliminating it, there may be magnetic or capacity coupling between the input and output circuits external to the tube itself. short leads in nentralizing circuits are highly desirable, and the input and output inductances should be so placed with respect to each other that magnetic eoropling is minimized. Usually this requires that the axes of the coils must be at right angles to each other. In some cases it may be necessary to shield the input and output circuits from cach other. Magnetic coupling ean be detected by discomecting the plate tank from the remaincler of the circuit and testing for r.f. in it (by means of the flashlight lamp and loop) as the tank condenser is tuned through resonance. The driver stage must be operating while this is done, of course.

With single-cuded anplifiers there are many stray capacities left uneomponsated for in the neutralizing process. With large tubes, especially those having relatively high interelectrode eapacitics, these conumonly neglected stray eapacities can prevent perfect neutralization. Symmetrical arrangement of a push-pull stage is about the only waty to obtain practically perfect balance throughout the amplifier.

The neutralization of tubes with extremely low grid-plate capacity, such as the 6L6, is often diffecult, since it frequently happens that the wiring itself will introduce sufficient capacity between the right points to "overneutralize" the grid-plate capacity. The use of a neutralizing condenser only aggravates the condition. Inductive or link neutralization, as shown in Fig. 415, has been used successfully with such tubes.

The inverted amplifier - The circuit of Fig. 417 avoids the necessity for neutralization by operating the control grid of the tube at ground potential, thus making it serve as a shicld hetween the input and nut put circuits. It is parti-ularly useful with tubes of low grid-plate capacity, which are difficult to neutralize by ordinary methods. Fxcitation is ap-
plied between grid and eathode througl the coupling coil, L; since this coil is common to both the plate and grid circuits the amplifier is degenerative with the circuit constants normally used, hence more excitation voltage and power are required for a given out put than is the case with a neutralized amplifier. The tube used must have low plate-cathode capacity (of the order of $1 \mu \mu \mathrm{fd}$. or less) since larger values will give sufficient feed-back to permit it to oscillate, the circuit then beooming the ultraudion (§ 3-7). Tubes having sufficiently low plate-cathode capacity (audio pentodes, for example) ean be used without danger of oscillation at frequencies up to perhaps 30 Me . or so.

(4 4-8 Power Amplifier Operation

Effiriency - An r.f. power amplifier is usually operated Class-C (\$3-4) to obtain a reasonably high value of plate efficieney (§3-3). The higher the plate efficiency the higher the power input that ean be applied to the tube without exceeding the plate dissipation rating (§ 3-2), up to the limits of other tube ratings (plate voltage and plate current). Plate efficiencies of the order of 7 i per cent are readily obtainable at frequencies up to the $30-50-\mathrm{Mc}$. region. The orm-rill efliciency of the amplifier will he lower by the power lost in the tank and coupling circuits, so that the actual efficiency is less than the plate efficiency.

Operating angle - The operating angle is the proportionate part of the exciting yridvoltage cycle (\$2-7) during which plate courrent flows, as shown in Fig. 418. For Class-C operation, it is usually in the vicinity of 120-1:50 degrees. With other operating considerations, this angle results in an optimum relationship hetween plate efficiency and grid driving power.

Lond impedance - The load impedance ($\$ 3-3$) for an r.f. power amplifier is adjusted, by tuning the plate tank circuit to resonance, to represent a pure resistance at the operating frequency ($\$ 2-10$). Its value, which usually is in the neighborhood of a few thousand ohms, is

Fig. 418 - Instantaneons voltages and currents in a Class-C amplifier operating under optinum conditions.

Radio- Irequency Power $_{\text {Generation }} 105$

adjusted by varying the loading on the tank circuit, closer coupling to the load giving lower values of load resistance and vice versa (§ 2-11). The load may be either the grid circuit of a following stage or the antenna circuit.

For highest efficiency the value of load resistance shuuld be relativoly high, hut if only limited excitation voltage is available greater power output will be secured by using a lower value of load resistance. The latter adjustment is accompanied by a decrease in plate efficiency. The optinum load resistance is that which, for the maximum permissible peak plate current, causes the minimum instantaneous plate voltage (lig. 41S) to be equal to the maximum instantaneous grid voltage required to cause the peak plate current to flow; this gives the optimum ratio of plate efliciency to required grid driving power.
R.f. grid coltage and grid bias - For most tubes optimum operating conditions result when the minimum instantancous plate voltage is 10 to 20 per cent of the $\mathrm{d}_{\mathrm{s}} \mathrm{c}$. plate voltage, so that the maximum instantancons positive grid voltage must be approximately the same figure. Since plate current starts flowing when the instantaneons voltage reaches the eut-off value ($\$ 3-2$), the d.c. grid voltage mast be considerably higher than eat-off to confine the operating angle to 150 degrees or less (with grid bias at cut-off, the angle would be 180 degreess). For an angle of $1: 20$ degrees, the r.f. gricl voltage must reach 00 per cent of its peak value ($\S 2-7$) at the cut-off point. The eorresponding figure for an angle of 150 degrees is 25 per cent. Hence, the operating bias required is the cut-off value plus $2 \overline{5}$ to 50 per cent of the peak r.f. grid voltage. These relations are shown in Fig. 418. The grid bias should be at least twice cut-off if the amplifier is to be plate modulated, so that the operating angle will be not less than 180 degrees when the plate voltage rises to twiee the steady d.c. value (\$ 5-3). Because of their relatively high amplification factors, with most modern tubes Class-C operation requires considerably more than twice cut-off bias to make the operating angle fall in the region mentioned above. Suitable operating conditions are usually given in the data actompanying the type of tube used.

Grid bias may be secured either from a bias source (fixed bias), a grid leak (§ 3-6) of suitable value, or from a combination of both. When a bias supply is used, its voltage regulation should be taken into consideration (88-9).
Driving pouer - As indicated in Fig. 418, grid current flows only during a small portion of the peak of the r.f. grid voltage cycle. The power consumed in the grid circuit therefore is approximately equal to the peak r.f. grid voltage multiplied by the average rectified grid current as read by a d.c. milliammeter. The peak r.f. grid voltage, if not included in the tube manufacturer's operating data, can be estimated roughly by adding 10 to 20 per cent of the plate voltage to the operating grid bias,
assuming the operating conditions are as deseribed above.

At frequencies up to 30 Mc . or so, the grid losses are practically entirely those resulting from grid-current flow. At the very-high frequencies, however, dielectric losses in the glass envelope and base materials become appreciable, together with losses caused by transittime effects ($\$ 7$ - 6), and may necessitate supplying several times the driving power indicated above. At any frequency, the driving stage should be capable of a power output. two to three times the power it is expected the grid circuit of the amplifier will consume. This is necessary because losses in the tank and coupling circuits must also be supplied, and also to provide reasonably good regulation of the r.f. grid voltage. Good voltage regulation (see § 8-1 for general definition) insures that the waveform of the excitaion voltage will not be distorted because of the ehanging load on the driver during the r.f. cycle.

Grid impedance - During must of the r.f. grid-voltage cycle no grid current is flowiug, as

Fig. 419 - Chart showing tank capheities required for a (1 of with varions ratins of plate voltage to plate current, for varione frequencies. In circuits F, G, H (P ig. 420), the capacities shown in the graph atas we divided by four. In circuits C, D, E, I, J and K, ti:e capacity of each section of the split-stator condensen may be one-half that shown loy the graph. The valuer given by the graph should be used for cireuits I and C .
indicated in Fig. 418, hence the grid impedance is infinite. During the peak of the cycle, however, the impedance may drop to very low values (of the order of 1000 ch m s), depending upon the type of tube. Botlo the ninimum and average values of grid impedance depend to a considerable extent on the amplification factor of the tube, being lower with tubes having large amplification factors.

The average grid impedance is equal to E^{2} / P, where E is the r.m.s. (§ 2-7) value of r.f. grid voltage and P is the grid driving power. Under optimum operating conditions, values of average grid impedance ranging from 2000 ohms for high- μ tubes to four or five times as much for low- μ types are represcntative. Values in the vicinity of 4000 to 5000 ohms are typical of modern triodes witl annplification factors of 20 to 30 .

Because of the large change in impedance during the cycle, it is necessary that the tank circuit associated with the amplifier grid have fairly ligh Q. This is essential to provide sufficient storage capacity so that the voltage regulation over the cycle will be good. The requisite Q may be obtined by adjusting the L / C ratio or by tapping the grid circuit across only part of the tank ($\$ 4-6$).

Tank-circuit Q - luesides serving as a means for transforming the actual load resistance to the required value of plate load impedance for the tube, the plate tank circuit also should suppress the harmonies present in the tube output as a result of the nom-sinusoidal plate current (§ 2-7, 3-3). For satisfactory harmonic suppression, a Q of 12 or more (with the circuit fully loaded) is desirable. A Q of this order also is helpful from the standpoint of securing adequate coupling to the load or antemma circuit ($\$ 2-11$). The proper Q can be obtained by suitable selection of L / C ratio in relation to the optimum plate load resistance for the tube ($\$ 2-10$).

For a Class-C amplifier operatcd under optimum conditions as describcd above, the plate load impedance is approximately proportional to the ratio of d.c. plate voltage to d.c. plate current. For a given effective Q the tank caparity required at a given frequency will be inversely proportional to the parallel rosistance ($\$ 2-10$), so that it will also be inversely proportional to the plate-voltage/plate-current ratio.

The tank capacity required on various amateur bands for a Q of 12 is shown in Fig. 419 as a function of this ratio. The capacity given is for single-ended tank circuits, as shown in lig. 420 at A and B. When a balaneed tink rirenit is used the total tank capacity required is reduced to one-fourth this value, bectuse the tube is connected across only half the circuit ($(\$ 2-9)$. Thus. if the plate-voltage/plate-current ratio calls for a capacity of $200 \mu \mu \mathrm{fd}$, in a singleended circuit at the clesired freduency, only 50 $\mu \mu \mathrm{fd}$. would be needed in a balanced circuit. If a split-stator or balanced tank condenser is used each section should have a raparity of $100 \mu \mu \mathrm{fd}$., the total capacity of the two in series being $50 \mu \mu \mathrm{fl}$. These are "in use" capacities: not simply the rated maximum capacity of the condenser. Larger values may be used with an increase in the effective Q.

To reduce energy loss in the tank circuit, the inherent Q of the coil and condenser should be high. Since transmitting coils usually have $Q s$ ranging from 100 to several hundred, the tank transfer efficiency generally is 90 per cont or more. An unduly large C/L ratio is mot alvisable since it will result in large circulating r.f. tank current and hence relatively large losses in the tank, with a consequent reduction in the power available for the load.

Tank constants - When the capacity necessary for a Q of 12 has been determined from Fig. 419, the inductance requiled to resonate at the given frequency can be found by means

Fip. 420 - In circuits A, B, C, D and E, the peak voltage E will he approximately equal to the dar. plate voltage applied for c.w. or twice this value for "phone. In circuits $\mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{J}$ and K . F; will he twice the hi, plate voltage for esw. or four times the plate voltage for phone. The circuit is assumed to be fully louded. Tubers in parallel in any of the circuits will not affect the peak voltape. Circuits A, C, E, F, G and H rectuire that the tank comilenser be insulated from chassis or ground and that it be provided with a suitably insulated shaft coupling for tuaing.

Radio-Irequency $P_{\text {ower }} \mathcal{G}_{\text {eneration }} 107$

of the formula in $\$ 2-10$. Alternatively, the required mumber of turns on coils of various construction can be found from the charts of Figs. 421 and 422 .
fig. 421 is for crils wound on receiving-type forms having a diameter of $11 / 2$ inches and ceramic forms having a diameter of $13 / 4$ inches and winding length of 3 inches. Such coils would be suitable for oscillator and buffer stages where the power is not over 50 watts. In all cases, the number of turns given must be wound to fit the length indicated and the turns should be evenly spaced.

Fig. 422 gives data on coils wound on trans-mitting-type ceramic forms. In the case of the smallest form, extra curves are given for double spacing (winding turns in alternate grooves). This is sometimes advisable in the cane of $1 \pm$ - and $28-M c$. coils when only a few turns are reduired. In all other cases, the specified number of turns should be wound in the grooves without any additional spacing.
Ratings of components - The peak voltage to be experted between the plates of a tank condenser depends upon the arrangement of the tank circuit as wrell is the d.e. plate voltage. Peak voltage may be determined from Fig. 420, which shows all of the commonly used tankcircuit arrangements. Thene estimates assume that the amplifier is fully loaded; the voltage will rise considerably should the amplifier be

Fig. 421 - Coil-winding data for recciving-type forms, diameter $1 \frac{1}{2}$ inehers. Curve A - winding length, 1 inch; (iurve B - winding lenpth. 1 ! 2 inches; Curvo C-winding lmuth, 2 inches. Curve C is also suitable for coils wound on $13 / 4$-inch dianneter iransmittingtype ceramic forms with 3 inches of winding length.
operated without load. The figures include a reasonable factor of safety.

The condenser plate spacing required to withstand any particular voltage will vary with the constriction. Most manufacturers specify jeak-voltage ratings in describing their condensers.

Plate or screen by-pass condensers of 0.001 $\mu \mathrm{fd}$. should be satisfactory for frequencies as low as 1.7 Mc . (athode-resistor and filament by-passes in r.f. circuits should be not less than $0.01 \mu \mathrm{fd}$. Fixed condensers used for these pur-

Fig. 122 - Coil-winding data for ceramic transmit. ting-type forms. Curve A - ceramic form $21 /$-inch effective diameter, 26 growes, 7 par inch; Curve $13-$ same as A, but with turns wound in alternate gronves: Curve C - ceranic form $2 \overline{1} / 8$-inch effective diameter 32 gronves, 7.1 turns per inelh, approsimately; Curve D-cerantic form 4 -inch effertive diameter. 28 grooves 5.85 turns per inch, approximately: Curve E- reramic formi $\overline{5}$-inch effective diametor, 26 growes. 7 prer inch. Coils may be wound with either No. 12 or No. 14 wire
poses should have voltage ratings 25 to 50 per cent greater than the maximum d.c. or a.c. voltage arross them.

Interstage coupling condensers should have voltage ratings 50 to 100 per cent greater than the sum of the driver plate and amplifier gridbiasing voltages.

4. 4-9 Adjustment of Power Amplifiers

Excilation - The effectiveness of adjustments to the coupling between the driver plate and amplifier grid circuits can be gauged by the relative values of amplifier rectified grid current and driver plate current, the object being to obtain maximum grid current with minimum driver loading. The amplifier grid circuit represents the load on the driver stage, and the average grid impedance must therefore be transformed to the value for optimum driver operation (§ 4-8).

With capacity coupling, either the driver plate or amplifier grid nuust be tapped down on the driver tank coil, as shown in lig. 410 at A and B, unless the grid impedance is approximately the right value for the driver plate load, when it will be satisfactory to comect both elements to the end of the tank. If the grid impedance is lower than the required driver plate load, Fig. 410-A is used; if higher, Fig. 410-B. In either case, the coupling which gives the desired grid current with minimum driver loading shoukd be determined experimentally by moving the tap. Should both plate and grid be connected to the end of the circuit it is sometimes possible to control the loading, when the grid impedance is low, by varying the capacity of the coupling condenser, C, but this method is not altogether satisfactory since it is simply an expedient to prevent driver overloading without giving suitable impedance matching.

In push-pull circuils the method of adjustment is similar, except that the taps should he kept symmetrically loeated with respect to the center of the taink cirenit.

With link coupling, Fig. 411, the object of adjustrnent is the sume. The two tanks are first tuned to resonance, as indicated by manimum grid current, and the coupling adjusted by means of the links ($\$ 4-(\mathrm{i})$ to give maximum grid current with minimum driver plate current. This usually will suffice to load the driver to its rated output, provided the driver plate and anplifier grid tank circuits have reasonable values of Q. If the Q of one or both of the cirmuits is too low, it may not be possible to load the driver fully with any adjustment of link thurns or coupling at either tank. In such a rase, the Qs of the tank circuits must be increased to the point where adequate soupling is secured. If the driver plate tank is designed to have a Q of 12 , the difficulty almost invariably is in the amplifier arid tank. The (o ran be increased to a suitable value either by adjustment of the L / C ratio or by tapping the load across part of the roil (\$2-10).

Whatever the type of coupling, a preliminary adjustment should be made with the proper bias voltage and/or grid leak, but with the amplifier plate voltage off; then the amplifier should be carefully neutralized. After neutralization the driver-amplifier coupling should be readjusted for optimum power transfer, after which plate voltage may be applied and the amplifier plate circuit arljusted to resonance and coupled to its loarl. Ender actual operating conditions the grid current decreases below the value obtained without plate voltage on the amplifier and the effective \quad rrid impedance rises, hener the final adjustment is to re-check the coupling to take rare of this shift.

With recommenderl bias, the grid current oht:ained hefore plate voltage is applied to the amplifier should be 2.5 to 30 per cent higher than the value required for operating conditions. If this value is not obtained, and the driver plate input is up to rated value, the reason may be either improper matching of the amplifier grid to the driver plate or simply insufficient power output from the driver to take care of all losses. Driver operating voltages should be checked to assure they are up to rated values. If batteries are used for bias and are not strictly fresh, they should be replaced, since batteries which have been in use for some time often develop high internal resistance which effectively acts as additional grid-leak resistance. If a rectified a.r. bias supply is used, the bleeder or voltage-divider resistances should be checked to make cortain that low grid current is not caused by greater grid-circuit resistance than is recommended. In this connection it is helpful to neasure the actual bias when grid current is flowing, by means of a high-resistance di.c. voltmeter. There is also the possibility of loss of filament emission of the amplifier tube, either from prolonged serv-
ice or from operating the filament, under or over the rated voltage.

Plate tuning - In preliminary t.mning, it is desirable to use low plate voltage to avoid possible damage to the tube. With excitation and plate voltage applied, rotate the plate tank condenser until the plate current dips. Then set the condenser at the minimum plate-current point (resonance). When the resonance point has been found, the plate voltage may be increased to its normal value.

With adequate excitation, the off-resonance plate current of a triode amplifier may be two or more times the normal operating value. With sereen-grid tubes the off-resonance plate current may not be much higher than the normal operating value, since the plate current is principally determined by the screen rather than the plate voltage.

Under reasonably efficient operating condlitions the minimum plate current with the amplifier unloaded will he a sinall fraction of the rated plate eurrent for the tuhe (usually a fifth or less), since with no load the parallel impedance of the tank circuit is ligh. If the excitation is low the "dip" will not be very marked, but with adequate excitation the plate current at resonance without loading will be just high enough so that the d.e. plate power input supplies all the losses in the tube and rircuit. As an indication of mobable efficiency, the minimum plate current value should not be taken too seriously, because without load the Q of the eirenit is high and the tank current relatively large. When the amplifier is delivering power to a load, the sirculating current drops considerably and the tank losses eorrespondingly denrease. High minimum unloaded plate current is chicfly encountered at 25 Mc. and above, where tank losses are higher and the tank L / C ratio is usually lower than normal because of irreducible tube capacities. The effect is particularly noticeable with screen-grid tubes, which have relatively high output caparity. Because of the decrease in tank r.f. current with londing, however, the actual efficiency under load is reasonably good.

With the load (antenna or following amplifier grid circuit) connected, the coupling between plate tank and load should be adjusted to make the tube take rated plate current, keeping the tank always tuned to resonance. As the output coupling is increased the minimum plate current also will increase, about as shown in Fig. 423. Simultaneously the tuning becomes less sharp, because of the increase in effective resistance of the tank. If the load circuit simulates a resistance, the resonance setting of the

Radio- Irequency $P_{\text {ower }}$ Generation 109

tank condenser will be practically unehanged with loading; this is generally the case, since the load circuit usually is also tuned to resonance. A reactive load (such as an antenna or feeder system not tuned exactly to resonance) may cause the tank condenser setting to change with loading, since reactance as well as resistance is coupled into the tank (\$2-11).

Power output-As a check on the operation of an amplifier, its power output may be measured by the use of a load of known resistance, coupled to the amplifier output as shown in Fig. 424. At A a thermoammeter, $1 I$, and a noninductive (ordinary wire-wound resistors are not satisfactory) resistance, R, are connected across a coil of a few turns coupled to the amplifier tank coil. The higher the resistance of R, the greater the number of turns required in the coupling coil. A resistor used in this way is generally called a "dummy antenna," since its use permits the transmitter to be adjusted without actually radiating power. The loading may readily be adjusted hy varying the coupling between the two coils, so that the amplifier draws rated plate current when tuned to resonance. The power output is then calculated from Ohm's Law:

$$
P(\text { watts })=I^{2} R
$$

where I is the eurrent indicated by the thermoainmeter and R is the resistance of the noninductive resistor. Special resistance units are available for this purpose, ranging from 73 to 600 ohms (simulating antenna and transmis-sion-line impedances) at power ratings up to 100 watts. For higher powers, the units may be connented in series-parallel. The meter suale required for any expected value of power output. may also be determined from Ohm's Law:

$$
I=\sqrt{\frac{P}{R}}
$$

Incandescent light bulbs can be used to replace the special resistor and thermoammeter. The lamp should be equipped with a pair of leads, preferably soldered to the terminals on the lamp base. The coupling should he varied until the greatest brilliance is obtained for a given plate input. In using lamps as dummy antennas a size corresponding to the expected power output should be selected, so that the lamp will operate near its normal brilliancy, Then, when the adjustments have been completed, an approximation of the power output can be obtained by comparing the brightness of the lamp with the brightness of one of similar power rating in a 115 -volt socket.

The circuit of Fig. 424-B is for resistors or lamps of relatively high resistance. In using this circuit, care should be taken to avoid ac'cidental contact with the plate tank when the power is on. This danger is avoided by circuit C, in which a separate tank circuit, $L C$, tuned to the operating frequency, is coupled to the plate tank circuit. The loading is adjusted by varying the number of turns across which the
dummy antenna is connected on L and by changing the coupling between the two coils. With push-pull amplifiers, the dummy antenna should be tapped equally on either side of the center of the tank when the circuit of Fig. 424-B is used.

Harnonic suppression- The most important step in the elimination of harmonic radiation ($\$ 4-8,2-12$) is to use an output tank circuit having a Q of 12 or more. Beyond this it is desirable to avoid any considerable amount of over-excitation of a Class-C amplifier, since excitation in excess of that required for normal Class-C operation further distorts the platecurrent pulse and increases the harmonic content in the output of the amplifier even though the proper tank Q is used. If the antenna system in use will accept harmonic frequencies they will he radiated when distortion is present, and consequently the antenna coupling system preferably should be selected with harmonic transfer in mind (\$10-6).

Harmonic content ran be reduced to some extent by preventing distortion of the r.f. grid-voltage waveshape. This can be done by using a grid tank circuit with high effective Q. Link coupling between the driver and final anplifier are helpful, since the two tank circuits provide more attenuation than one at the harmonis frequencies. However, the arlvantages of link coupling in this respect may be nullified unless the Q of the grid tank is high enough to give grood voltage regulation, which minimizes harmonir transter and thus prevents distortion in the grid cirenit.

The stray eapacity hetween the antenna coupling coil and the tank coil may be sufficient to couple harmonic energy into the antenna system. This coupling may be eliminated by the use of elentrostatic shielding (Faraday shield) between the two coils. Fig. 425 shows the construction of such a shicld, while Fig. 420 illustrates the manner in whieh it is installed. The ronstruction shown in Fig. 425 prevents current flow in the shield, which would occur if the wires formed closed circuits since the shield is in the magnetic field of the tank coil.

Fig. 424- " Dummy antenna" cireuits for checking power ontput and making operating adjustmente under load without applying power to the actual antenna.

Fig. 425 - The Faraday electrostatic shield for eliminating caparitive transfer of harmonic energy. It is made of parallel conductors, insulated from each other except at one end where all are joined. Stiff wire or small diameter rod may be used, spaced about the diameter of the wire or rod. The shield should be laryer than the diameter of the coil.

Should this occur, there would be magnetic shielding as well as electrostatic; in addition, there would be a power loss in the shield.

Improper operation - Inexact neutralization or stray coupling between plate and grid circuits may result in regeneration. This effect is most evident with low excitation, when the amplifier will show a sudden increase in output when the plate tank circuit is tuncd slightly to the high-frequency side of resonanre. It is accompanied by a pronounced increase in grid current.

Self-oscillation is apt to occur with tubes of high power sensitivity, such as the r.f. pentodes and tetrodes. In event of either regeneration or oseillation, circuit components should be arranged so that those in the plate circuit are well isolated from those of the grid circuit. Plate and grid leads should be made as short as possible and the screen should be by-passed as close to the socket terininal as possible. A cylindrical shield surrounding the lower portion of the tube up to the lower edge of the plate is sometimes required.
"Double resonance," or two tuning spots on the plate-tank condenser, one giving minimum plate current and the other maximum power output, may occur when the tank circuit Q is too low (82-10). A similar effect also occurs at times with screen-grid amplifiers when the screen-voltage regulation ($\S 8-1$) is poor, as when the screen is supplicd through a dropping resistor. The screen voltage decrenses with a decrease in plate current, because the screen current increases under the same conditions. Thus the minimum plate-current point causes the screen voltage, and hence the power output, to be less than when a slightly higher plate current is drawn.

A phenomenon known as "grid emission" may oceur when the amplifier tube is operated at higher than rated power dissipation on either the plate or grid. It is particularly likely to occur with tubes having oxide-coated eathodes, such as the indirectly heated types. It is caused by the grid reaching a temperature high enough to cause electron emission ($\$ 2-4$). The electrons so enitted are attracted to the plate, further increasing the power input and heating, so that grid emission is characterized by gradually increasing plate current and heat whieh eventually will ruin the tube if the power is not removed. Grid emission can be prevented by operating the tube within its ratings.

1. 4-10 Parasitic Oscillations

Doscription - If the circult conditions in an oscillator or amplificr are such that selfoscillation exists at some frequency other than that desired, the spurious oscillation is termed parasitic. The energy required to maintain a parasitic oscillation is wasted insofar as useful output is concerned, hence an oscillator or amplifier having parasitics will operate at reduced efficiency. In addition, its behavior at the operating frequency often will be erratic, Parasitic oscillations may be either ligher or lower in frequency than the operating frequeney.
The parasitic oscillation usually starts the instant plate voltage is applied, or, when the amplifier is biased beyond cut-off, at the instant excitation is applied. In the latter case, the oscillation frequently will be self-sustaining after the excitation has been removed. At other times the oscillation may not be self-sustaining, becoming active only in the presence of excitation. It may be apparent only by the production of abnormal key clicks ($\$ 6-1$) over a wide frequency range, or by the presence of spurious side-bands (§5-2) with 'phone modulation,

Low-frequency parasitics - Parasitic oscillations at low frequencies (usually 500 kc . or less) :tre of the tuned-plate tuned-grid type, the tuned circuits being formed by r.f. chokes and associated by-pass and coupling condensers, with the regular tank tuning condensers having only a minor effect on the oscillation. The operating-frequency tank coil has negligible inductance for such low frequencies and may be short-circuited without affecting the oscillations. The oscillations do not oecur when no r.f. chokes are used, hence whenever possible in series-fed circuits such chokes should be omitted. With single-ended amplifiers, it is usually possible to arrange the circuit so that either the grid or plate circuit needs no choke. In push-pull stages having chokes in both plate and grid circuits, it is helpful to connect an unby-passed grid leak from the choke to the bias supply or ground, thus placing the resistance in the parasitic circuit and tending to prevent oscillation, When the driver plate circuit has parallel feed and the amplifier grid circuit series feed (§3-7) this type of oscillation cannot occur if no eloke is used in the series grid circuit, since the grid is grounded through the tank coil for the parasitic frequeney.

Parasitics near operating frequency-In circuits utilizing a tap on the plate tank coil to establish a ground for a balaneed neutralizing circuit, such as Fig. 413-B, a parasitic oscillation may be set up if the amplifier grid is tapped down on the grid (or driver plate) tank circuit for adjustment of driver-amplifier coupling (§4-6). In this case the turns between grid and ground and between plate and ground form, with the stray and other capacities present, a t.p.t.g. circuit (§3-7) which oscillates at a frequency somewhat higher than the nominal operating frequency. Such an oscillation can
be prevented by dispensing with the taps in either the plate or grid circuit. Balancing the plate circuit by means of a split-stator condenser (Fig. 413-C) is recommended.

Very-high-frequency parasitics - Parasitics in the v.h.f. region are likely to occur with any amplifier having a balanced tank cireuit, particularly when associated with neutralizing connections. The parasitic resonant cireuit, formed by the leads connecting the various components, may be of either the t.p.t.g. or the ultraudion type.

The frequency of such oscillations may be determined by connecting a tuned circuit in series with the grid lead to the tube. A variable condenser (50 or $100 \mu \mu \mathrm{fd}$.) may be used, in conjunction with three or four self-supporting turns of heavy wire wound into a coil an inch or so in diameter. With the amplifier oscillating at the parasitic frequency, the condenser is slowly tuned through its range until oscillations cease. If this point is not found on the first trial, the turns of the coil may be spread apart or a turn removed and the process repeated. The use of such a tuned circuit as a trap is an almost certain remedy if the frequency can be determined, and introduces little if any loss at the operating frequency.
An alternative cure, which is feasible when the oscillation is of the t.p.t.g. type, is to detune the parasitic circuit in either the plate or grid circuit. Since this type of oscillation occurs most frequently with push-pull amplifiers, it may often be cured by making the grid and plate leads to their respective tank circuits of considerably different length. Similar considerations apply to neutralizing connections in push-pull circuits. The extra wire length may be coiled up in the form of a so-called "choke," which in this case is simply additional inductance for detuning the parasitic circuit.
Testing for parasitic oscillations - An amplifier always should be tested for parasitic oscillations before being considered ready for service. The preferable method is first to neutralize the amplifier, then apply sufficient fixed bias to permit a moderate value of plate eurrent to flow without excitation. (The plate current should not be large onough to rause the power input to exceed the rated plate dissipation of the tube.) If the amplifice is free from self-starting parasities, the plate current will remain steady as the tank condensers are varied; also, there will be no grid current and a neon bulb touched either to the plate or grid will show no glow. Extreme care must be

Fig. 426 - Metliods of using Faraday shields. ' Two are required with a push-pull or balauced tank circuit.
used not to let the hand come into contact with any metal parts of the transmitter when using the neon bulb.

If any of these effects are present, the frequency of the parasitic must first be determined. If r.f, chokes are used in both the plate

Fig. 427 - Frequency-multiplying circuits, A is for triodes, used either singly or in parallel. The pushpush doubler is shown at i3. Any type of coupling may he used between the grid circuit and the driver. C_{1} should le $0.01 \mu \mathrm{fd}$. or larger; $\mathrm{C}_{2}, 0.001 \mu \mathrm{fd}$, or larger.
and grid eircuits, one of them should be shortcircuited to determinc if the oscillation is at a low frequency; if so, it may be eliminated by the methods outlined above. If the test indicates that the parasitic is not a low-frequency oscillation, the grid trap cleseribed above should be tried for the v.h.f. type. The type which oceurs near the operating frequency will not exist unless the plate and grid tank coils are both tapped, hence may be eliminated from consideration if this is not the case in the circuit used. When such an oscillation is present its existence can be detected by moving the grid tap to include the whole tank circuit, whereupon the oscillation will cease.

Some indication of the frequency of the parasitie can be obtained from the color of the glow in the neon bulb. Usually it will be yellowish with low-frequency oscillations and violet with v.h.f. oscillations.

If the amplifier is stable under the conditions described above, excitation should be applied and then removed to ascertain if a selfsustaining oscillation is set up with excitation. If the plate current does not return to the previous value when the excitation is eut off, the same tests slould be applied to determine the parasitic frequency.

As a final test, the transmitter should be put on the air and a near-by receiver tuned over as wide a frequency range as possible, to locate
any off-frequency signals associated with the radiatum. Parasitics usually can be recognized by their poor stability as contrasted to the normal harmonics of the signal, which mill have the same stability as the fundamental signal as well as the usual harmonic relationship. Harmonies should be quite weak compared to the outpout at the fundamental frequency, whereas parasitic oscillations may have considerable strength.

(4 4-11 Frequency Multiplication

Circuils - A frequency multiplier is an amplifier having its plate tank circuit tuned to a multiple (harmonic) of the frequency applied to its grid. The difference between a straight amplifier (§ 4-1) and a frequency multiplier is in the way in which it is operated, rather than in the eircuit. However, sinee the grid and plate tank circnits are tuned to different frequencies a triode frequeney nultiplier will not self-oscillate, henee does not need neutralization. A typical circuit arrangement is shown in Fig, 427-A. For screen-grid multipliers, the cireuit is the same as in Fig. 412-A. Under usual conditions the plate effieiency of a fruquency multiplior drups off rapidly with an inerrase in the number of times the frequeney is multiplied. For this reason most multipliers are used as frequency doublers, giving second harmonic output.
A special circuit for frequency donbling ("push-push" clonbler") is shown in Fig. 427-13. The grids of the tubes are in push-pull and the plates in parallel, thus the plate tank receives two pulses of plate current for each cycle of excitation frequency. The circuit is similar to that of a full-wave rectifier ($\$ 8-3$), where the output ripple frequency is twice the applied frecpuency.

Push-pull amplifiers are suitable for frequency multiplication at oded harmoniss. particularly the third, but they are unsuited to even-harmonic multiplication because the even harmonics are largely balanced out in the push-pull tank circuit (\$3-3).

Operating contilions and circuit constants - To obtain good efficiency the operating angle at the harmonic frequency must be 180 degrees or less, preferably in the vicinity of $150-120$ degrees ($\S 4-8$). In a doubler, this means that plate current should flow during only half this angle of fundamental frequency. Consequently the r.f. grid voltage, operating bias, and grid driving power must be increased considerably beyond the values obtaining for normal Class-C amplification. For comparable plate efliciency the bias mill ordinarily be four to five times the normal Class-C bias, and the r.f. grid voltage must be considerably larger to drive the tube to the same poak plate current. Since the plate and grid current pulses under these conditions have the same peak amplitudes but only half the time duration as in a straight amplifier, the average d.e. values should be one-half those for normal Class-C
operation. That is, a tube operated in this way will have the same plate efficiency as a Class-C amplifier but can be operated at only half the plate input, so that the output power also is halved. The driving power required usually is about twice that necessary with straightthrough amplification to obtain the same plate efficiency.

Greater ontput can be secured by using a larger operating angle (lower grid bias) or a lower plate load resistance, to increasc the plate current; but this is accompanied by a decrease in efficiency. Since operation of the tube as described in the preceding paragraph is below its maximum plate dissipation rating, the clerreased efficiency usually can be tolerated in the interests of securing nore power output. In practice, an effiriency of 40 to 50 per cent is about average.

The tank circuit should have reasonably high Q (12 is satisfactory) to give good output voltage regulation (\$4-9), since a plate-current pulse orcurs only one for every two rycles of the output frequency. A low-Q eireuit (high L / C ratio) is helpful chiefly when the operating angle is greater than 180 degrees at the second harmonic. Sueh a tank cireuit will have relat tively high impedance to the fundamentalfrequency component of plate current which is present with large operating angles, and thus will aid in reducing the average d.c: plate current.

The grid impedance of a frequency multiplior is considerably higher than that of a straightthrough amplifier, because of the high bias voltage. The average impedance can be caleulated as previously described ($\$ 4-8$). The L / C ratio of the grid tank circnit may be higher, therefore, for a given Q. Often it is advantageous to use a fairly high ratio, since a large r.f. voltage nust be developed between prid and cathode. However, it must not be made too high (Q too low) to permit adequate coupling between the grid tank circuit and the preceding driver stitge.

It may prove necessary to step up the driver output voltage to obtain sufficient r.f. grid voltage for the doubler; this can be done by tapping the driver plate on its tank circuit, when capacity eonpling is used, or by similar tapping down or the use of a higher C / L ratio in the driver plate tank when the stages are linkcoupled (§4-6).

Tubes for frequency multiplicationThere is no essential difference between tubes of various characteristies in their performance as frequeney doublers. Tubes having high amplification factors will require somewhat less bias for equivalent operation but the grid driving power needed is almost independent of the μ, assuming tubes of otherwise similar construction and characteristics. Pentodes and tetrodes will, as in normal amplifier operation, require less driving power than triodes for efficient doubling, although more power will be needed than for straight amplification.

(A)

(B)
 circuit as uned in v.h.f. oscillators. The tank, shown in crosis-section, is made of concentric closed eylinders.

4 4-12 Very-High-Frequency Oscillators

High-Q circuits with humped constantsTo ubtain reasonably high effective Q when a low resistance is connected across the tank circuit, it is necessary to use a high C, L ration and a tank of inherently high Q (\$2-10). At low frequencies the iuherent Q of :ny wolldesigned circuit will be high enough so that it may be neglected in comparison to the effec:tive Q when loaded, so that no sperial procantions have to be taken witl respect to the resistance of codils and eondensers. At the veryhigh frequencies these internal resistunces are too large to be ignored. however.

Reduction of the $L^{\prime}($ ratio will not increase the effective () unless the internal resistance of the tank c:an be made very small. This resistance can be reduced by use of large conducting surfaces and elimination of radiation. In such cases special lomped-constant tank circuits (\$2-12) are used. The oscillator shown in Fis. 428-A uses a "pot"-type tank in the ticklor circuit (\$3-7), with the feed-back coil in the grid (ircuit; this inductance is the wire l) in the diagram. Output is taken from the tank by means of a hairpin coupling loop.

Fig. $423-13$ correspunds to the shunt-fed Hartley eirenit. Such a tank also may be used in the ultraudion circuit. A variable condenser may be connected acruss the tank for tuning, although the Q mity be reduced if a considerable portion of the tank r.f. current flows through it.

Lincar Circuits - A quarter-wave or halfwave line, either of the parallel-conductor open type or of the coaxial type, is equivalent to a resonant circ-nit (\$2-12) and can be used as the tank circuit ((8-7) in an oscillator.

The resonant line is usually constructed of thin-walled copper tubing, rather than wire, since this reduces resistance and provides a mechanically stable circuit, particularly at the lower frequencies. At frequencies above 100 Mc. flat eopper strip conductor of equivalent eross-section may be used for parallel-line circuits with comparable efficiency. Frequency can be changed by moving a shorting bar or condenser to change the effective line length.
or by reducing its length and loading it to resonance by comecting a low-cupacity variable condenser across the open end of the line. The added capacity makes it necessary to shorten the line considerably for a given frequency. This. together with the additional loss in the condenser, causes a decrease in Q. These effects will be less if the condenser is eonnected down on the line. Tapping down also gives greater bandspread eflect (\$7-7).

At very high frequencies an adequate ground connection for the cathode circuit beromes a problem berause of the inductance of the cathode lead. Special tubes are available
(A)

(B)

(E)

Fig. 429 - Typical sinfle-tube parallel-line ozcillators. Constants and applications are disenssed in the text.

Fig. 430-Push-pull parallel-line oscillator circuits.
with two or three cathode leads (\$3-6); connected in parallel, these reduce the effective inductance. With ordinary tubes, coils may be inserted in the filament circuit to compensate for the effects of the internal inductance. The effective length of the filament circuit should be one-half wavelength, to bring the cathode filament to the same potential as the shorted erids of the.tank lines. The added induct:mere required must be determined by experiment, the eroils bering adjusted for optimum stability and power output.

Another method is to use: at tuned line in the filament cireuit, aldjust ing its length so that the electrical length of the line plus that of the
filament is one-linlf wavelength. A eonvenient arrangement is the use of a coaxial (or trough) line with an initial lengeth of abont. 3 , wavelength. A shorting dise in the form of a movable plunger equipped with an extension handle may be provided for case of adjustment. With filment-type tubes one wuch line will be reguired for each filament lead. In the case of cathode-type tubes only one line is necessary, the cathode and one side of the filament being connerted to the outer conductor and the other filament connection being made by on insulated lead ruming through a hollow-tubing imer conductor. The return lead should be by-passed where it emerges from the line.

The antenna or other load may be connected through blocking condensers direct to the line (the correct point being determined experimentally). Altematively, a hair-pin coupling link or, in the case of an oscilator-amplifier system, direct inductive coupling to the grid line of the amplifier may be used.
For highest-frecuency operation separate lines nust be used for each clectrode - grid, plate and eathocle. This places all of the interclectrode enparities in series, reducing the loading effeet. Still higher frequencies can be reached by using double-lead tubes(Fig.429-E), in which case the leats form an integral part of the line and the interelectrode capacities are divided hetween the two quarter-wave sections.

Parallel-line oscillators - Typical parallelline oscillator cirenits are shown in Fig. 429. In A. a shorting condenser (which may be either a fixed blocking rondenser or a small variable which will provide a limited tuning range) is used to bridge the line at the voltage node; the frequency can also be changed by sliding the shorting condenser atong the line.
The circuit at B climinates the need for a blocking condenser at the voltage node, where the r.f. current reaches its maximum value. An r.f. choke maty be inserted between the grid and the associated grid resistor, R. This circuit also can be resonated either by a variable condenser, C, or by a sliding bar as indicated by the dashed line.
Fig. 429-C uses a half-wave open-ended line. The grid and plate feed connections are made at nodnl points on the line. As indirated on the diagram, these do not oceur at the physical center of the line because of the loading effect of the tube. In practice, the position of the taps, as well as the over-all length of the line, are adjusted to obtain maxinum grid current. Using this circuit, a 955 acorn or a 9002 can be made to oscillate up to 600 or 700 Mc .

Fig. 429-D is a variation of the above prefcrable for use with tubes having grid and plate torminals :at apposite ends of the envelupe. The rirenit of Fig. 429-J's is most useful with double-lead tubes. Tos att:ain high untput at the anaximm onarating fropurnes, the desirable arrangement is to use two or more double-lead tubres, each in at circuit such as this, with the lines comnected end to end.

Radio- $^{\text {Irequency }}$ Power Generation 115

Push-pull parallel-line oscillators - It is often advantageous to use push-pull oscillator circuits at the very-high frequencies, not only as a means to secure more power output but also for better circuit symmetry. In addition, the interelectrode capacities of the push-pull tubes are in series anves the puint of ammetion to the tank circuit, hence have less capacity-loarling effect than is experiencerl with al single tube.

Fig. 430 shows typical push-pull circuits of this type. Figs. 4:30-A, -13 and -C all employ the same circuit - the t.p.t.g. type (\$3-7). The grid line is usually operated as the frequenccontrolling circuit, since it is not associtaded with the load and henee its Q can be kept high. The same adjustment considerations apply as in the ease of single-tube oscillators. Grid taps in particular should be tapped down as far as possible, to improve the frequency stability.

In Fig. 430-A, a conventional eoril-and-comdenser tank is used in the plate circuit where the lower Q dons not have so great an effect on frequency stability. For maximum efficiency the use of a linear output circuit is de irable at the higher frequencies, however. 'Whis is shown at B, and at C with isolinting r.f. chokes in the filament circuit.

Fig. 430-D shows a push-pull oscillator having tumed plate and eathode lines, the cathode circuit being tumed with a quarter-wave line which controls excitation and, to some extent, tuning. The grids are comected torrother and grounded through the grid leak, R_{j}; ordinarily no by-pass condenser is needed across R_{1}. This circuit gives good power output at very-high freguencies, but is not especially stable unless the plates are tapped down on the plate tank circuit to avoid too great a reduction in Q. Tapping on the enthode line is not feasible for mechanical reasons. With ordinary tubes this oscillator is capable of higher-frequency oper:ttion than the conventional t.g.t.p. type, and it has been found particularly useful on 224 Me.

The symmetrical circuit at E is preferable above 200 Me . Coaxial or equivalent lines may be used instead of r.f. chokes in the filament circuits for ultrahigh-frequeney operation. With this modification, and (assuining the use of double-lead tubes) by the addition of quarter-wave sections at each end, this circuit may be considered equivalent to the center section of a double linear owillator as discussed in comnection with Fig. 429-E.

(B)

Fis. 4.32 - Special u.h.f. coarial-line oscillators.

Coaxial-line circuits - At frequencies in the neighborhond of 300 Me . the radiation loss ($\$ 2-12$) from open lines groatly redures the Q, beanase the conductor sparing unavoidably becomes an appreciable fraction of a wavelength. Consequently, these frequencies and higher coasial lines, in which the field is confined insite the line so that radiation is negligible, are used. A further advantage is that the outside of the line is "colel"; that is, no r.f. potentials develop between points on the outer surface. While the conxial line is also advantageous at lower frequencies, it is more complicated to construct and adjust than parallel lines.

For case of construction, the coaxial line sometinces is modified into a "trough," in which the cross-section of the outer conductor is in the shape of a square U, one side being left open for tapping and adjustment of the inner conductor. Some radiation takes place with this type of eonstruction, although not so much as with open lines.

The ennventional coaxial-line oscillator circuits shown in Fig. 431 illustrate the applieation of two basie rircuits - the Hartley and the t.g.t.p. - to both cathode-type and filamentary tubes. The tube loads the line, as previously clescribed; hence the actual length is always shorter than a quarter wavelength. The length can be adjusted by a short-circuiting sliding plunger, a close-fitting low-resistance contact being necessary to avoid losses. The inner conductor may also have a short tight-

(C)

(D)

Fig. 431 - Single-tube v.li.f. coaxial-line oscillators. Aand Buse Martley circnitg; C and D are t.g.t.p. ecquivalents.

the ends of the outer conductor in earll line constitute one plate of the condenser; a grounded metal shect gerves as the other plate.
Push-pull coaxial-line oscillators - The push-pull circuits of Fig. 433 employ the same basic elements as the arrangements previously described. At A, a halfwave open-ended line is used in the grid cireuit, the grids of the tubes being "tapped" down on the line by coupling them inductively through a small balaneed loop ruuning inside the outer conductor. A conventional parallel line is used in the plate circuit, with the cathodes balaneed to ground hy mems of closed half-wave lines.
fitting extension tube which is slid in or out to change the effective conductor length.

The t.g.t.p. circuits are somewhat easier to adjust and load as well as to construct, but are not as satisfactory from the standpoint of frequency stability because of reaction on the frequeney-controlling grid line by the tuming of the output eircuit. The grid tap slould be as far down on the line as will pernit reliable oscillation under load. Under some conditions the addition of a small adjustable feed-back capacity between grid and plate not ouly permits a lover tap location but also increases the upper frequency limit obtainable by advancing the phase of the grid excitation to compensate partially for transit-time lag in the tube.
In the Hartley circuit at A, an output tap is provided on the inner conductor. At B inductive output coupling by means of a half-turn "laairpin" is shown; loading can be changed to some extent by varying its position.

Fig. 432 shows two types of coaxial-line oseillator circuits designed particularly for operation near the upper frequency limits for negative-grid tubes. The rircuit at A, with quarter-wave grid and plate lines and a halfwave filament line, is convenient for use with single-lead tubes such as the 955 and $316-\mathrm{A}$. With the three lines arranged in the form of a triangle, so that their inner conductors attach directly to the tube terminals for minimum lead length, this oscillator will function satisfactorily up to $700-800 \mathrm{Mc}$.
The circuit of Fig. 432-B is designed to take maximum advantage of the u.h.f. capabilities of double-lead and ring-electrode tube types. Interelectrode capacities are divided between each pair of grid and plate lines, and separate parallel-resonant filament lines complete the isolation. Frequencies as high as 1500-1700 Me. have been attained with this arrangement.
The by-pass condensers shown in the two rircuits of Fig. 432 are made of copper plates insulated by sheet mica. Flanges soldered to

The rathode lines may be small-diameter copper tubing, folded to conserve space, through which rubber-insulated wire is run for the return circuit. These lines may be shielded from the plate line by running them underneath the chassis or separated by a shielding partition.

A folded half-wave grid line is used at 13 . The copper-tubing inner conductor is bent into the shape of a U. The outer conductor miay be either at scunare-sertion double trough of shent copper or two short sections of pipe soldered to a rectangular box of sheet copper which forms the "elosed" end. Where even more compact construction is required, the dimensions of the grid line maty be still further reduced by using sections of folded conxial line ($\$ 2-12$). A conventimal coil-and-condenser output circuit is shown; at the comparatively low frequencies where this type of construction would be advantalgeous in the interest of compactness. such an output circuit slould be satisfactory.

The arrangement at C has certain modifieations which make it particularly suitable for use with higher-powered tubes. The quarterwave eapacity-loaded eonvial line in the grid circuit is of relativaly large dimensions and conseguently has high Q. Coupling to the tube grids. which is made very loose to preserve the Q of the line, is by means of t win hairpin loops. The inductance of the shunt ehoke coils, L_{1}, is adjusted for maxinum grid eurrent.

To minimize radiation loss and preserve cireuit symmetry, a coaxial line is used in the plate tank circuit. If desired this line may be tuned by a balanced split-stator condenser of the type which has the rotor connection at the center, connected across the plate terminals.

Parallel resonant circuits in the filament leads, tuned to resonance at the operating frequency by the variable condensers, C_{1}, isolate the filament from ground. The fixed by-pass condensers must have low reactance at the operating frequency. The filament coils, which are in parallel for r.f., are of copper tubing.

Radiotelephony

C 5-1 Modulation

The currier - The steady radio-frequeney power generated by transmitting circuits cannot alone result in the transmission of an intelligible message to a receiving point. The contimuous wave from the transmitter itself serves only as a "earrier" for the message; the intelligence is eonvryed by modulation (a elange) of the earricr. In radiotelephony, this morlulation reproduces electrically the sounds it is intended to conver in a form which can be correctly interpreted or clemorlulated at the receiving end.

Sound and alternnting currents - Sounds are caused by vibrations of air particles. The pitch of the sound depends upon the rate of vibration; the more rapid the vibration, the higher the piteh. Most sounds eomsist of complex combinations of vibrations of differing rates or frequencies: the human vojec, for instance, generatos frequencios from about 100 eyoles per second to several thousand per second. The problem of transmitting speech by radio, therefore, is one of varving the r.l. carrier in a way which corresponds to the air-partiche vibrations. The first step in doing this is to change the sound vibrations into alternating electrical currents of the same frequener and relative intensity: the electromochanical device which achieves this trimslation is the microphone. These auliu-frequency currents then may be amplified and used to vary or modulate the normally steady r.f. output of the transmitter.

Melhods of modulation - The carrier may be made to vary in accordance with the speech current by using the current to change the phise (§ 2-7), freguency or amplitude of the earrier. Amplitude modulation of a constantfrequency earrier is by far the most common system, and is used exrlusively on all frequencies below the very-high-frequency region (§2-7). Frequency modulation of a constantamplitude carrier, which has special characteristies which make its use desirable under certain conditions, is used to a considerable extent on the very-high frequencies. Phase modulation, which is closely relited to frequency modulation, has had little or no direct application in practical communication.

Other specialized varieties of modulation, developed for other applications of radio transmission, have been proposed for voice communication. Thus far none of these has achieved practical utilization, however.

4 5-2 Amplitude Modulakion

Carrier requirements - For proper amplitude modulation, the carrice should be eompletcly free from inherent a mplitude variations such as might he eaused by insufficient filtering of a rectified-a.c. power supply ($88-4$). It is also essential that the earrier frequency be entirely unaffected by the application of modulation. If modulating the amplitude of the carrier also eanses a change in the carrier frequeney the signal wobbles back and forth with the modulation, introduring disturtion and widening the channel taken by the signal. This causes unnecessary interference to other transmissions. In practice, this undesirable frequencey modulation is prevented by applying the modulation to an r.f. amplifier stage which is isolated from the frequeney-controlling oscillator by a "buffer" amplifier. Amplitude modulation of an oscillator almost always is arcompanied by frequeney modulation. Under existing regulations it is permitted, therefore, only on frerfuencies aloove 112 Mc .. bec:anse the
(A)

(B)

Fig. 501 - Graphical representation of (A) carricr unmodulated, (B) modulated 50%, (C) modulated 100%.
problem of interference is less acute in this region than on lower frequencies.

Percentage of modulation - In the ampli-tude-modulation system the audible output at the reeciver depends entirely upon the amount of variation - termed drpth of morlulation - in the carrier wave, and not upon the strength of the carrier alone. It is desirable therefore to obtain the largest permissible variations in the carrier wave. This condition is reached when the earrier amplitude cluring modulation is at times reduced to zero ancl at other times increased to twice its unmodulated value. Such a wave is said to be fully morlulated, or 100 per cent modulnted. Any desired degree of modulation can be expressed as a percentage, using the unmodulated carrier as a base. Fig. 501 shows, at A, an anmodulated carrier wave; at B, the same wave modulated 50 per cent, and at C , the wave with 100 per cent modulation, using a sinc-wave (§ 2-7) modulating signal. The outline of the modulated r.f. wave is called the modulation envelope.

The pereentage modulation can be found by dividing eithor Y or Z by X and multiplying the result by 100 . If the modulating signal is not symmetrical, the larger of the two (Y or Z) should be used.

Pouer in modulated wave - The amplitude values correspond to current or voltage, so that the drawings may be taken to represent instantancous values of cither. Since power varies as the square of either the current or voltage (so long as the resistance in the circuit is unchanged), at the peak of the modulation up-swing the instantaneous power in the wave of Fig. 501-C is four times the unmorlulated carrier power. At the peak of the down-swing the power is zero, since the amplitude is zero. With a sine-wave modulating signal, the auerage power in a 100 per cent modulated wave is one and one-half times the unmodulated carrier power; that is, the power output of the transmitter increases 50 per cent with 100 per cent modulation.

Fig. 502 - An overmodulated r.f. carricr wave.

Linearity - Up to the limit of 100 per cent modulation, the amplitude of the carrier should follow faithfully the amplitude variations of the modulating signal. When the modulated r.f. anplifier is incapable of meeting this eondition, it is said to be non-linerer. The amplifier may not, for instance, be capablo of quadrupling its power output at the peak of 100 per cent modulation. A non-linear modulated amplifier causes distortion of the modulation envelope.

Modulation characteristic - A graph showing the relationship between r.f. amplitude and instantanoons modulating voltage is called the modulation churnctoristic of the modulated amplifier. This graph should be a straight line (lincar) between the limits of zero and twice carrier amplitude. ('urvature of the line between these limits indieates non-linearity in the amplifier.

Modirlation. caprabilits - The modulation capability of the transmitter is the maximum pereentage of modulation that is possible without objectionable distortion from nonlinearity. The maxinum capability is, of eourse, 100 per cent. The modulation catpability should be as high as possible, so that the most effective signal can be transmitted for a given earrier power.

Overmodulation - If the earrier is modulated more than 100 per cent, at condition such as is shown in Fig. 502 oceurs. N゙ot only does the peak amplitude exceed twice the carrier amplitude, but actually there may be a considerable period during which the output is entirely cut off. The modulated wave is therefore distorted ($\$ 33: 3$), with the result that harmonies of the audio modulating frequeney appear. The carrier should never be modulated more than 100 per cent.

Sidebands - The combining of the audio frequency with the r.f. carrier is essentially a heterodyne process, and therefore gives rise to beat frequencies equal to the sum and differenec of the a.f. and r.f. frequencies involved (82-13). Therefore, for cach audio frequency appearing in the morlulating signal, two new radio frequencies appar, one equal to the carrior frequency plus the audio frequency, the other equal to the carrier minus the anulio frequeney. These new frequencies are called side frequencies, since they apperar on each side of the carrier, and the groups of side frequencies representing a band or group of modulation frequencies are called sidebands. Hence a modulated signal occupies a group of radio frequencies, or channel, rather than a single frequency as in the case of the unmodulated carrier. The channel width is twice the highest modulation froquency.

To accommodate the largest number of transmitters in a given part of the r.f. spectrum it is apparent that the rhannel width should be as small as possible. On the other hand it is necessary, for speech transmission of reasonably good quality, to use nodulating
frequencies up to a minimum of about 3000 or 4000 eycles. J'his calls for a channel width of 6 to 8 kilocycles.

Spurious sidebands - Besides the normal sidebands required by spech frequencies, unwanted sideloands may be generated by the transmittor. These usually lie outaide the normally required channel, and lonce cause it to be wider without increasing the useful modulation. By increasing the channel width, these spurious sidebands cause unnecessary interference to other transmitters. The quality of trimsmission also is adversely affected when spurious sidebands are generated.

The chief, causes of spurious sidebands are harmonic distortion in the audio system, overmodulation, unnecessary frequency modulation, and lack of linearity in the modulated r.f. system.

Types of amplitule modulation - The most widely used type of amplitude-modulation system is that in which the modulating signal is applied in the plate circuit of a radiofrequency power amplifier (plate modulution). In a second type the audio signal is applied to a control-grid (grid-bins modulation). A third system, involving variation of both plate and grid voltages, is called cathode modulation.

[5-3 Plate Modulation

Transformer coupling - In Fig. 503 is slown the most widely used system of plate modulation. A halanced (pushi-pull Class-A, Class-AB or Class-13) modulator is trans-former-coupled to the plate circuit of the modulated r.f. amplifier. The audio-frequency power generated in the modulator plate circuit is combined with the d.e. power in the modu-lated-amplifier plate circuit by transfor through the coupling transformer, T. For 100 per cent modulation the audio-frequency output of the modulator and the turns ratio of the coupling transformer nust be such that the voltage at the plate of the modulated amplifier varies between zero and twiee the d.c. operating plate voltage, thus eausing corresponding variations in the amplitude of the r.f. output.

Modulator power - The average power output of the modulated stage nust inorones 50 per cent for 100 per cent modulation ($\$ 5-2$), so that the modulat or must supply to the modulated r.f. stage audio power ergual to 50 per cent of the d.c. plate input. For example, if the d.c. plate power input to the r.f. stage is 100 watts, the sine-wave audio power output of the modulator must be 50 watts.

Modulating impedance; linearity - The modulating impedance, or load resistance presented to the modulator by the modulated r.f. amplifier, is equal to

$$
\frac{E_{b}}{I_{p}} \times 1000
$$

where E_{s} is the d.c. plate voltage and I_{p} the d.c. plate current in milliamperes, both measured without modulation.

Since the power output of the r.f. amplifier must vary as the square of the plate voltage (the r.f. voltage must be proportional to the applied plate voltage) in order for the modulation to be linear, the amplifier must operate under (lass-C conditions ($\$ 3-4$). The linearity then depends upon having sufficient grid excitation and proper bias, and upon the adjustment of circuit constants to the proper values (§4-8).

Fig. 503 - Plate modulation of a Class-C r.f. amplifier. The r.f. phate by-pass condenser, C, in the amplifier stage should have high reactance at andio frectuencies. A capacity of $0.002 \mu \mathrm{fd}$. or less usually is satisfactory.

Pouer in specch wares - The complex waveform of a speech sound translated into alternating current does not contain as much power, on the average, as there is in a pure tone or sine wave of the same peak ($\S 2-7$) amplitude. That is, with speech waveforms the ratio of peak to average amplitude is higher than in the sine wave. For this reason, the previous statement that the power output of the transmitter increases 50 per cent with 100 per cent modulation, while true for tone modulation, is not true for speech. On the average, speech waveforms will contain only about half as much power as a sine wave, both having the same peak amplitude. The average power output of the trunsmitter therefore increases anly ahout. 25 ner cent with 100 per cent speech modulation. However, the instantaneous power output must quadruple on the peak of 100 per cent modulation ($\$ 5-2$) regardless of the modulating waveform. Therefore, the peak output power capacity of the transmitter must be the same for any type of nodulating signal.
Adjustment of plate-modulated amplifiers - The general operating conditions for Class-C operation have been described (§ 3-4, 4-8). The grid bias and gricl current required for plate modulation usually are given in the operating data supplied by the tube manufacturer; in general, the bias should be such as to give an operating angle ($\$ t-s$) of about 120 degrees at carrier plate voltage, and the excitation should be sufficient to maintain the plate efficiency constant when the plate volt-
age is varied over the range from zaro to twire the d.e. plate voltage applied to the amplifier. For best linearity, the grid bias should bo obtained partly from a fixed souree of about the cut-off value, supplemented by grid-leak bias to supply the remainder of the required operating bias.

The maximum permissible d.c. plate power input for 100 per cent modulation is twice the sine-wave audio-frecuency power out put of the modulator. This input is obtamed by varyiner the loading on the amplifier (keoping its tank circuit tuned to resonance) until the product of d.c. plate voltage and plate current is the desired power. The modulating impedance under these conditions will be the proper value for the modulator, if the proper output-transformer turns ratio (\$2-9) is used.

Neutralization, when triodes arr used, should be as nearly perfect as possible, since regeneration may eause non-linearity. The amplifier also should be free from parasitic oscillations (8 4-10).

Although the rffectice value ($\$ 2-7$) of power input increases with modulation, as deseribed above, the arcoup plate input to a platemodulated amplifier does not change, since each increase in plate voltace and plate rurrent is balanced by an equivalont decreatse in voltage and current. Consequently, the d.e. plate current to a properly modulited :maplifier is always constant, with or without. morlulation.

Screen-grid amplifiers - sorecn-grid tubss of the pentode or beam tetrode type can be used as Class-C plate-modulated amplifiers provided the modulation is applied to both the plate and scroen grid. The method of feeding the sereen grid with the neesessury d.c. and modulation voltage is shown in Fig. 50.4. The dropping resistor, R, should be of the proper value to apply normal d.e. voltige to the screen under steady carricr conditions. Its value can be ealculated by taking the difference between plate and sereen voltages and dividing it by the rated screnn current.

The modulating impedance is found by dividing the d.e. plate voltage by the sum of the plate and screen currents. The plate voltage

Fig. 504 - Plate and screcn nodulation ef a Classer. r.f. amplificr usiog a pentode tubn. The plate and screen r.f. by-pass condcasers, C_{1} and C_{2}. should have high reactance at all adio frequencics $(0.002 \mu \mathrm{fd}$. or lese.
multipuled by the sum of the twe currents is the power-input figure which is used as the basis for determining the audio power required from the modulator.

Cholie coupling - In Fig. 505 is shown the circuit of the choke-coupled system of plate modulation. The plate power for the modulator tube and modulated amplifier is furnished from a common source through the modulation choke, L, which has high impedance for atulio frequcneies. The modulator aperates as a power amplifier with the plate circuit of the r.f. amplifior as its loud, the andio output of the modulator heing superimposed on the d.c. power supplied to the amplifier. For 100 per eent modulation, the audio voltage applied to the r.f. amplifier plate cireuit across the choke, L, mast have a peak value equal to the d.e. voltage on the moslulated amplifier. To obtain this without distortion the r.f. amplifier must be operated at a d.c. plate voltage less than the

Fig. 505 - Choke-courled plate modulation.
modulater plate voltage, the ratent of the voltage difference being doterminod by the type of modulitor tube used. The neeessary drop in voltage is provided by the resistor, R_{1}, which is by-passed for audio frecuencies by the bypass combenser. C_{1}.

This type of morlulation seldom is used except in very low-power portable sets, because a singlo-tube (lans-A ($\$ 3-4$) modulator is required. The output of a Class-A modnlator is very low compared to that obtainable from a pair of tubes of the same size operated C'lass 13, hence only a small amount of r.f. power can be modulated.

Absorption modulation - Absorption or "loss" modulation. in its basic form the oldest and simplest method of all, recently has been revived for wide-band modulation (such as television: at ultrahigh frequencies. In the Erstem shown in Fig. 506, the modulating tubes are connected to the antenna feed line through a quarter-wave stub line, located a quarter-wavelength from the transmitter tank dircuit. Wib no modulation (i.e., no conduc-

tion through the modulating tubes) the stub appears as a short cirruit across the line and little or no power reaches the antenna. When modulating voltage is applied to the grids of the nodulator tubes, however, their conductance serves to increase the effective impedance of the quarter-wave shunt, permitting a proportinnate amonnt of energy to reach the antema. At maximum modulation the stub approaches an open cirruit, allowing maximum r.f. output to the antemual.

© 5-4 Grid-Bias Modulation

Circuit - Fig, 507 is the diagram of a typical arrougemont for grid-bias moclulation. In this systerm, the secomelary of an atudinfrequency output transformer, the primary of which is eomneeted in the plate circuit of the modulator tube, is comected in series with the grid-bias supply fur the modulated amplifier. The audio voltage thus introduced varies the grid bias, and thus the power nutput of the r.f. stage, when suitable oprerating eonditions are elorsen. The r.f. stige is operated as a Class-C: amplifier, with the d.e. grid bias considerably beyond cut-off.

Opcrating principles - ln this system the plate voltage is constant, and the increase in power output with modulation is obtained by making the plate current and plate efficiency vary with the modulating signal. For 100 per cent modulation, both plate current and efficiency must, at the peak of the modulation upswing, bo twioo their carrier values, so that the peak power will be four times the carrier power. Since the peak efficiency in practicable circuits is of the order of 70 to 80 per cent, the carrier efficiency ordinarily cannot exceed about 35 to 40 per cent. Fol a given r.f. tube, the carrier output is about one-fourth the power obtainable from the same tube plate-morlulated. Cirid bias, r.f. excitation, plate loading and the audio voltage in series with the grid must be adjusted t. give a linear modulation characteristic.

Modulator power - Since the inerease in average earrier power with modulation is secured by varying the plate officiency and d.e. plate input of the amplifier, the modulator need supply only such power losses as may be occasioned by connecting it in the grid circuit. These are quite small, hence a modulator capable of only a few watts output will
suffice for transmitters of considerable power. Since the load on the modulator varies over the a.f. cycle as the rectified grid current of the modulated auplifier changes, the modulator should have good voltage regulation (§ $5-6$).

Grid-bias source - The change in bias valtage with modulation eauses the rectified grid current of the amplifier also to vary, the r.f. excitation bring fixed. If the bias source has appreciable resistance, the change in grid current also will cause a change in hias in a direction opposite to that caused by the modulation. It is necessary, therefore, to use a grid-bias source having low resistance, so that these bias variations will be negligible. Battery hias is satisfactory. If a rectified a.e. bias supply is used, the type having regulated output ($\mathrm{S} S-9$) should be chosen. (irid-leak bias for a grid-modulated amplifier is unsatisfactory, and its use should not be attempted.

Driver resultion - The load on the driving stage varies with modulation, and a linear modulation characteristic may not beobtained if the r.f. voltage from the driver does not stay const:ant with changes in load. Driver regulaition (ability to maintain constant output voltage with changes in load) may be improved by using a driving stage having two or three times the power output necessary for excitation of the amplifier (this is somewhat less than the power recquired for ordinary Class-C; operation), and by dissipating the extra power in a constant hoad such as a resistor. The load variations are theroby redueed in proportion to the total lond.
ifljustment of grid-bias morlulated amplifiers - This type of amplifier should be adjusted with the aid of an uscillosenpe, to obtain optinum operating conditions. The oscilloseope should be connceted as described in $\$ 5-10$, the wodge pattern being preferable. A tone source for morlulating the transmitter. will he convenient. The fixel grid bias should be $t w o$ or three times the cut-off value ($\$ 3-2$). The d.c. input to the amplifier, assuming $3: 3$

Fig. 507 - Grid-hias modulation of a Class-C amplifier. The r.f. grid by-pass condenser, C, should have high reactance at audio frequencies ($0.002 u \mathrm{fd}$. or lrss).
per cent carrier efficiency, will be $11 / 2$ times the plate dissipation rating of the tube or tubes used in the modulated stage. The plate current for this input (in milliamperes, $1000 P / E$, where P is the porer and E the d.c. plate voltage) must be determined. Apply r.f. excitation

Fig. 508 - Suppresoreqrid modulation of an r.f. amplifier using a puntode-type tube. The suppressor-grid r.f. by-pass condenser, C, should be $0.002 \mu \mathrm{fd}$. or less
and, without modulation, adjust the plate loading to give the required plate current (keeping the plate tank circuit tuned to resonance). N"ext, apply modulation and increase the modulating signal until the modulation characteristic: shows curvature ($\$ 5-10$). This probalbly will oceur well below 100 per cent modulation, indicating that the plate efficieney is too high. Increase the plate loading and reduce the excitation to maintain the same plate current; then apply modulation and check the characteristic again. Continue this process until the characteristie is linear from the axis to twice the earrier amplitude. It is advantageous to use the inaximum permissible plate voltage on the tube, since it is usually ensier to obtain a more linear characteristie with high plate voltage and low eurrent (carricr conditions) than with relatively low plate voltage and high plate eurrent.

The amplifier can be adjusted without an oscilloseope by determining the plate current as deseribed above, then setting the bias to the cut-off value (or slightly beyond) for the d.e. plate voltage used and applying maximum excitation. Adjust the plate loading, keeping the tank circuit at resonance, until the amplifier draws twice the carrier plate current, and note the antenna current. Decrease the excitation until the output and plate current just start to drop. Then increase the bias, leaving the excitation and plate loading unchanged, until the plate current drops to the proper earrier value. The antenna current should be just half the previous value; if it is larger, try somewhat more loading and less excitation; if smaller, less loading and more excitation. Repeat until the antenna eurrent drops to half its maximum value when the plate current is biased down to the earrier value. Under these eonditions the amplifier should modulate properly, provided the plate supply has good voltage regulation ($(8-1$) so that the
plate voltage is practically the same at both ralues of plate current during the initial testing. The d.e. plate current should be substantially constant with or without modulation (\$5-3).

Suppressor modulation - The circuit arrangement for suppressor-grid modulation of a pentode tube is shown in Fig. 508 . The operating principles are the same as for grid-bias modulation. Ifowever, the r.f. exeitation and modulating signals are applied to separate grids, which gives the system a simpler operating teehnique since best adjust ment for proper excitation requirements and proper modulating circuit requirements are more or less independent. The carrier plate cfficioncy is approximately the same as for grid-bias mochulation, and the morlulator powrer requirements are similarly small. With tubes having suitable suppressor-grid characteristies, linear modulation up to practically 100 per cent can be obtained with negligible distortion.

The method of adjustment is cssentially the same as that deseribed in the preceding paragraph. Apply normal ceitation and bias to the control grid and, with the suppressor bias at zero or the positive value recommended for e.w. telegraph operation with the particular tube used, adjust the plate loading to obtain twice the carrier plate current (on the basis of 33 per cent marier efficiency). Then apply sufficient negative bias tol the suppressor to bring the plate current to the carriar value, leaving the loading umehanged. Simultaneously, the antenna current also should drop to half its maximum value. The amplifier is then ready for modulation. Should the plate current not follow the antema current in the same proportion when the suppressor hias is made negative, the loading and exceitation should be readjusted to make them eoincide.

(1 5-5 Cathode Modulation

Circuil- The fundamental eireuit for cathode or "ecnter-tap" modulation is shown in Fig. 509. This type of moclulation is a com-

Fig. 509 - Cathonde medulation of a Class-C r.f. amplifier. The grid and plate r.f. hy-pass condensers, C : should be $0.002 \mu \mathrm{fl}$. or less (for high a.f. reactance).
bination of the plate and grid-bias methods, and permits a carrier efficiency midway between the two. The audio power is introduced in the cathode circuit, and both grid bias and plate voltage vary during modulation.

The cathode circuit of the modulated stage must be independent of other stages in the transmitter; that is, when filament-type tubes are modulated they must be supplied from a separate filament transformer. The filament by-pass condensers should not be larger than about $0.002 \mu \mathrm{fd}$., to avoid by-passing the audiofrequency modulation.

Operating principles - Because part of the modulation is by the grid-bias method, the plate efficiency of the modulated amplifier must vary during modulation. The carrier efficiency therefore must be lower than the efficiency at the modulation penk. The required reduction in carrier efliciency depends upon the proportion of grid modulation to plate modulation; the higher the percentage of plate modulation, the higher the permissible carrier efficiency, and vice versa. The audio power required from the modulator also varies with the pereentage of plate modulation, being greater as this pereontage is increased.

The way in which the various quantities vary is illustrated by the curves of Fig. 510. In thrse eurves the performance of the cath-ode-modulated r.f. amplifier is plotted in terns of the tube ratings for plate-modulated telephony, with the pereentage of plate modulation as a base. As the pereentage of plate modulation is decreased, it is assumed that the grid-bias modulation is increased to make the over-all percentage of modulation reach 100 per cent. The limiting condition, 100 per cent plate modnkation and no gridi-bias morlulation, is at the right (A); pure grid-bias modulation is represented by the left-hand ordinate (b and (3).

As an cximple, assume that 40 per cent plate modulation is to be used. Then the modulated r.f. amplifier must be adjusted for a carrier plate efficiency of 56 per cent, the permissible plate input will be tis per cent of the ratings of the same tube with pure plate modulation, the power ouipul will le 18 per eent of the rated output of the tube with plate modulation, and the andio power required from the modulator will be 20 per cent of the d.c. input to the nodulated amplifier.
Modulating impedance - The modulating inpedance of a cathore-modulated amplifier is approximately equal to

$$
m \frac{F_{b}}{I_{b}}
$$

where m is the percentage of plate modulation expressed as a decimal, E_{b}, is the plate voltage and I_{b} the plate current of the modulated r.f. anplifier. This figure for the modulating impedance is used in the same way as the corresponding figure for pure plate modulation, in
determining the proper modulator operating conditions (§5-6).

Conditions for linearity-R.f. excitation requirements for the cathode-modulated amplifier are midway between those for plate modulation and grid-bias modulation. More excitation is required as the percentage of plate modulation is increased. Grid bias should be considerably beyond cut-off; fixed bias from a supply having good voltage regulation ($88-9$) is preferred, especially when the percentage of plate modulation is small and the amplifier is operating more nearly like a grid. bias modulated stage. At the higher percentages of plate modulation a combination of fixed and grid-leak bias can be used, since the variation in reetified grid current is smaller. The grid leak should be by-passed for audio frequencies. The percentage of grid modulation may be regulated by choice of a suitable tap on the modulation transformer secondary.

Fif. 510 - Cathmle-modulation performance corves, in terms of peromitape of plate nodulation ploted against percentage of Class-C telephong tube ratings. $W_{\text {in }}$ - D.c. plate input watts in terms of percentage of plate:modulation rating.
Wo - Carrier output watts in per ecent of plate-modula. tion rating (based on plate efficieney of 77.5%). W_{a} - Audio power in per cent of d.c. watts input. \mathbf{N}_{p} - Plate efficiency of the amplifier in perceutage.

Aljustment of cathode-modulated amplifiers - In most respects, the adjustment procedure is similar to that for grid-bias mudulation (§5-4). The critical adjustments are those of antenna loading, grid bias, and excitation. The proportion of grid-bias to plate modulation will determine the operating conditions.

Adjustments should be made with the aid of an oscilloscope ($\S 5-10$). With proper antenna loading and exeitation, the normal wedgeshaped pattern will be obtained at 100 per cent modulation. As in the case of grid-bias modulation. too-light antenna loading will cause flattening of the upward-peaks of modulation (indicating downward modulation), as also will too-high excitation ($\S 5-10$). The cathode current will be practically constant with or without modulation when the proper operating conditions have been established (§5-3).

C 5-6 Class-B Modulators

Modulator tubes - In the case of plate modulation, the relatively large audio power needed ($\$ 5-3$) practically dictates the use of a Class-B ($\$ 3-4$) modulator, since the power can be obtained most economically with this type of amplifier. A typieal circuit is given in Fig. 511. A pair of tubes must be chosen which is capable of delivering sine-wave audio power equal to half the d.c. input to the modulated Class-C amplifier. It is sometimes convenient to use tubes which will operate at the same plate voltage as that applied to the Class-C stage, since one power supply of adequate current capacity may then suffice for both stages. Available components do not always permit this, however, and better over-all performance and economy may result from the use of separate power supplies.

Fig. 511 - Class-B audio mudulator and driser circuit.
Matching to load-In giving Class-B ratings on power tubes, manufacturers specify the plate-to-plate load impedance (\$3-3) into which the tubes must operate to deliver the rated audio power output. This load impedance seldom is the same as the modulating impedance ($\$ 5-3$) of the Class-C r.f. stage, so that a match must be brought about by adjusting the turns ratio of the coupling transformer. The required turns ratio, primary to secondary, is

$$
\sqrt{\frac{Z_{p}}{Z_{m}}}
$$

where Z_{n} is the Class-C modulating impedance and Z_{p} is the plate-to-plate load impedance specified for the Class-B tubes.

Commercial Class-B output transformers usually are rated to work between speeified primary and secondary impedances and are designed for speeific Class-13 tubrs. In such a case, the turns ratio can be found by substituting the given impedances in the formula above. Many transformers are provided with primary and secondary taps, so that various turns ratios can be obtained to meet the requirements of various tube combinations.

Driving power-Class-B amplifiers are driven into the grid-current region, so that power is consumed in the grid circuit ($\$ 3-3$). The preceding stage (elricer) must be capable of supplying this power at the required peak audio-frequency grid-to-grid voltage. Both of these quantities are given in the minufictur-
er's tube ratings. The grids of the Class-B tubes represent a variable luad resistance over the audio-frequency cycle, since the grid current does not inerease directly with the grid voltage. To prevent distortion, therefore, it is necessary to have a driving source which has good regulution - that is, which will maintain the waveform of the signal without distortion even though the load varies. This can be brought about by using a driver capable of delivering two or three times the actual power consumed by the Class-13 grids, and by using an input coupling transformer having a turns ratio giving the largest step-down in the voltage between the driver plate or plates and the Class-B grids that will permit obtaining the specified grid-to-grid a.f. voltage.

Driver coupling - A Class-A or Class-AB ($\$ 3-4$) driver is used to excite a Class-B stage. Tubes for the driver preferably should be triodes having low plate resistance, since these will have the best regulation. Having chosen a tube or tubes capable of ample power output from tube data sheets, the peak output voltage will be, approxinately,

$$
E_{0}=1.4 \sqrt{P R}
$$

where P is the power output and R the load resistance. The input transformer ratio, primary to secondary, will be

$$
\frac{E_{o}}{E_{0}}
$$

where E_{o} is as given abuve and E_{0} is the peak grid-to-grid voltage required by the modulator tubes.

Comnercial transformers normally are designed for specific driver-modulator combinations, and usually are adjusted to give as good driver regulation as the conditions will permit.

Grid bias - Modern Class-B audio tubes are intended for operation without fixed bias. This lessens the variable gritl-circuit loading effect and eliminates the need for a grid-bias supply.

When a grid-bias supply is required, it must have low internal resistance so that the flow of grid current with excitation of the Class-B tubes does not cause a continual shift in the actual grid bias and thus cause distortion. Batterics or a regulated bias supply (§ 8-9) should be used.

Plate supply - The plate supply for a Class-13 modulator should be sufficiently well filtered ($\$ s-3$) to prevent hum modulation of the r.f. stage (\$ 5-2). An additional requirement is that the output condenser of the supply should have low reactance ($\$ 2-8$) at 100 cycles or less compared to the load into which each tube is working, which is one-fourth the plate-to-plate load resistance. A $4-\mu \mathrm{fd}$. output condenser with a 1000 -rolt supply, or a $2-\mu \mathrm{fd}$. condenser with a 2000 -volt supply, usually will be satisfactory. With other plate voltages, condenser values should be in inverse proportion $\mathrm{t} \boldsymbol{1}$ the plate voltage.

Orerexcitation - When a (Slass- B amplifier is overdriven in an attempt to secure more than the rated power, distortion in the output waveshape incroases rapidiy. The high-frequency harmonics which result from the distortion (§3-3) modulate the transmitter, producing spurious sidebancis (s $\overline{0}-2$) which readily can cause serious interference over a band of frequencies several times the chanmel wirlth required for speech. This may happen even though the transmitter is not being overmodulated, as in the case where the muclulator is incapable of delivering the power required to modulate the transmitter fully, or when the Class-C amplifier is not adjusted to give the proper modulating impedanco (\$5-3).

The tubes used in the (lass-13 modulator should be capable of somewhat more than the power output nominally required (50 per cent of the d.e. input to the modalated amplifier) to take care of losses in the output transformer. These usually run from 10 per cent to 20 per cent of the tube output. In addition, the Class-C amplifier shoulal be adjusted to give the proper modulating impedance and the correct ontput transformer turns ratio should be used. Such high-frequency harmonies as may be generated in these rircumstances can be reduced by connecting comlensens acruss the primary and secondary of the output transformer (about $0.002 \mu \mathrm{fd}$. in the average case), to form, with the transformer leakage inductance ($\$ 2-9$) a low-pass filter ($\$ 2-11$) which cuts off just above the maximmon audio frequency required for speech transmission (about 4000 cyeles). The condenser voltage ratings should be adequate for the peak a.f. voltages appearing across them.

Operation without load-Excitation should never be applied to a Class-B modulator until ufter the Class-C amplifier is turned on and is drawing the value of plate current required to present the rated load to the modulator. With no load to absorb the power, the primary impedance of the transiomer rises to a high value and excessive audio voltages are developed across it - frequently high enough to break down the transformer insulation. If the modulator is to be tested separately from the transmitter, a load resistance of the same value as the modulating impedance, and capable of dissipating the full power output of the modulator, should be conmected across the transformer secondary.

4. 5-7 Low-Level Modulators

Selection of tubes - Modulators for gridbias and suppressor modulation can be small audio power tubes, since the audio power required usually is small. A triode such as the $2 A 3$ is preferable because of its low plate resistance, but pentodes will work satisfactorily.

Matching to load-Since the ordinary Class-A receiving power tube will develop about 200 to 250 peak volts in its plate circuit, which is ample for most low-level modulator
applications, a $1: 1$ coupling transformer is generally used. If more voltage is required, a step-up ratio must be provided in the transformer. It is usual practice to load the primary of the output-coupling transformer with a resistance equal to or slightly higher than the rated load resistance for the tube, to stabilize the voltage output and thus improve the regulation. 'Ihis is indicated in Fig. 507.

4 5-8 Microphones

Sensitirity - The level of a microphone is its electricul output for a given speech intensity input. Level varies greatly with mierophones of different busic types, and also varies between different models of the same type. The output is also greatly dependent on the character of the individual voice (that is, the audio frequencies present in the voice) and the distance of the speaker's lips from the nicrophone, decreasing approximately as the square of the distance. Hence, only approximate values based on averages of "normal" speaking voices can be attempted. The values given in the following paragraphs are based on elose talking; that is, with the microphone less than an inch from the speaker's lips.

Frequency response - The frequency response or fidelity of a microphone is its relative ability to convert sounds of different frequencies into alternating current. With fixed souml intensity at the microphone, the electrical output may vary considerably as the sound frequency is varied. For understandable speech transmission only a limited frequency range is necessary, and natural-sounding speech can be obtained if the output of the microphone does not vary more than a fow decibels (§3-3) at any frequency within a range of about 200 cycles to 4000 cycles. When the variation expressed in terms of decibels is small between two frequency limits, the microphone is said to be flat between those limits.

Carbon microphones - Fig. 512-A and B show comections for single- and doublebutton carbon microphones, with a rheostat included in each circuit for adjusting the button current to the correct value as specified with each microphone. The single-button microphone consists of a metal diaphragm placed ag:ainst an insulating cup containing loosely parked carbon granules (microphone button). Current from a battery flows through the granules, the diaphragm being one connection and the metal batek-plate the other. 'Ihe prinury of a transformer is connected in series with the battery and mierophone. As the diaphragm vibrates its pressure on the granules alternately increases and decreases, causing a corresponding increase and decrease of current flow through the circuit, since the prossure changes the resistance of the inass of granules. The resulting change in the current flowing through the transformer primary causes an alternating voltage, of corresponding frequency and intensity, to be set up in the transformer sec-
ondary ($\S 2-9$). The double-button type is similar, but with two buttons in push-pull.

Good quality single-button carbon microphones give outputs ranging from 0.1 to 0.3 volt across 50 to 100 ohms; that is, across the primary winding of the microphone transformer. With the step-up of the transformer, a peak voltage of between 3 and 10 volts across 100,000 ohms or so can be assumed available at the grid of the first tube. The usual button current is 50 to 100 ma .

The level of good-quality double-button microphones is considerably less, ranging from 0.02 volt to 0.07 volt across 200 ohms. With this type of microphone and the usual pushpull input transformer, a peak voltage of 0.4 to 0.5 across 100,000 ohms or so enn be assumed available at the first speceh-amplifier grid. The button eurrent with this type of microphone ranges from 5 to 50 ma. per button.

Crystal microphones - The input circuit for a piezoelectric or crystal type of microphone is shown in Fig. 512-T. The clement in this type consists of a pair of Rochelle salts erystals cemented together, with plated electrodes. In the more sensitive types, the crystal is mechinuically coupled to a diaphragm. Sound waves actuating the diaphragm cause the crystal to vibrate mechanically and, by piezoclectric atetion (\$2-10), to generate a corresponding alternating voltage between the electrodes, which are connected to the srid cireuit of a vacumm-tube amplifier, as shown. The crystal type requires no separate source of current or voltage.

Although the level of erystal mierophones varies with different models, an output of 0.01 to 0.03 volt is representative for communication types. The level is affecterl by the length of the cable connecting the mierophone to the first amplifier stage; the above figure is for length of 6 or 7 feet. The frequency characteristic is unaffected by the cable, but the load resistance (amplifier grid resistor) does affect it, the lower frequencies being attenuated as the shunt resistance becomes less. A
grid-resistor value of 1 megolim or more should be used for reasonably flat response, 5 megohnus being a customary figure.

Condenser microphones - The condenser microphone of Fig. 512-C consists of a twoplate caparity, with one plate stationary. The other, which is separated from the first by about a thons:udth of an inch, is a thin metal membrane serving as a diaphragm. This condenser is connceted in serics with a resistor and a d.e. voltage somree. When the diaphragm vibrates, the clange in capacity canses a small charging current to flow through the circuit. The resulting audio voltage which appears across the resistor is fed to the grid of the tube through the coupling condenser.

The output of condenser microphones varics with different models, the high-quality type being about one-hundredth to one-fiftieth as sensitive as the couble-button earbon microphone. The first speceh-amplifier stare must be built into the microphone, since the capaeity of a comecting cable would impair both output and frequency range.

Velocity and dynamic microphones - In a velocity or "ribbon" microphone, the element acted upon by the sound waves is a thin corrugated metallic: ribbon suspended between the poles of a mannet. When vibrating, the ribbon cuts the lines of force between the poles, first in one direction and then the other, thus generating an alternating voltage. The movement of the ribbon is proportional to the velocity of the souncl-energi\%ed air particles. Velocity mierophones are built in two types, high impedince and low impedince, the former being used in most applications. A high-impedance microphone can be directly connected to the grid of an amplifier tube, shunted by a resistance of 0.5 to 5 megohms (Fig. 512-1:). Low-impedanee mirrophones are used when a long connecting cable (75 fect or more) must be employed. In such a case the output of the microphone is coupled to the first amplifier stage through a suitable step-up transformer, as shown in Fig. 512-D.

Fig. 512 - Spech input circuits of five commonly ased types of microphones. A, single-huttom carbon; B,

The level of the velocity microphone is about 0.03 to 0.05 volt. This figure applies direetly to the high-impodance type, and to the low-impedance type when the voltage is measured across the coupling transformer secondary.

The dynamie microphone somewhat resembles a dynumic loud speaker in principle. A light-weight voice coil is rigidly attached to a diaphragm, the coil being placed between the poles of a permanent magnet. Sound causes the diaphragm to vibrate, thus moving the coil back and forth between the magnet poles and generating an alternating voltage the frequency of which is proportional to the frequency of the impinging sound and the ainplitude proportional to the souncl pressure. The dynamic microphone usually is built with high-impedance output, suitable for working directly into the grid of an amplifier tube. If the connecting cable must be unusually long a low-impedance type should be nsed, with a step-up transformer at the end of the cable. A small permanent-magnet speaker can be used as a dynamic microphone, although the ficlelity is not as good as is obtainable with a properly designed mierophone.

4. 5-9 The Speech Amplifier

Description - The function of the speech amplifier is to build up the weak nierophone voltage to a value sufficient to excite the molulator to the required output. It may have from one to several stages. The last stage nearly always must deliver a certain amount of audio power, especially when it is used to excite a Class-B modulator. Speech amplifiers for grid-bias modulation usually end in a power stage which also functions as the modulator.

The speceh amplifier frequently is built as a unit separate from the modulator, and in such a ease may be provided with a step-down transformer designed to work into a low impedance, such as 200 or 500 ohms (tube-toline transformar). When this is done, a step-up input transformer intended to work between the same impedance and the modulator grids (line-to-grid transformer) is provided in the modulator circuit. The line which connects the two transformers may be made of any cunvenient length.

Genernl design considerations - The last stage of the speech amplifier must be selected on the basis of the power output required from it; for instance, the power necessary to drive a Class-B modulator ($\$ 5-6$). It may be either single-ended or push-pull (§3-3), the latter generally being preferable becausc of the higher power output and lower harmonie distortion. Push-pull amplifiers may be either Class A, Class AB_{1} or Class AB_{2} ($\$ 3-1$), as the power requirements dictate. If a Class-A or AB_{1} amplifier is used, the preceding stages all may be voltage amplifiers, but when a ClassAB_{2} amplifier is used the stage inmediately preceding it must be eapable of furnishing the power consumed by its grids at full output.

The requirements in this case are much the same as those which must be met by a driver for a Class-B stage ($\$ 5-6$), but the aetual power needed is considerably sinaller and usually can be supplied by one or two small receiving triodes. Nll lower-level speech amplifier stages invariably are worked purely as voltage amplifiers.

The minimum amplification which must be provided ahead of the last stage is equal to the peak audio-frequency grid voltage required by the last stage for full output (peak grid-to-grid voltage in the case of a push-pull stage), divided by the output voltage of the microphone or sccondary of the microphone transformer if one is used ($\$ 5-8$). The peak a.f. grid voltage required by the output tube or tubes is equal to the d.c. grid bias in the case of a single-tube Class-A amplifier, and approximately twice the grid bias for a pushpull Class- Λ stage. The requisite information for Class- $A B_{1}$ and $A B_{2}$ amplifiers can be obtained from the manufacturer's data on the type considered. If the gain is not obtainable in one stage, several stages must be used in cascade. When the output stage is operated Class AB_{2}, due allowance nust be made for the fact that the next-to-the-last stage nust deliver ponver as well as voltage. In such eases, suitable driver combinations usually are reeommended by manufacturers of tubes and interstage transformers. The coupling transformer must be designed especially for the purpose.

The total gain provided by a multi-stage amplifier is equal to the product of the individual stage gains. For example, when three stages are used, the first having a gain of 100 , the second 20 and the third 15, the total gain is $100 \times 20 \times 15$, or 30,000 . It is good practice to provide two or three times the minimum required gain in designing the speceh amplifier. This will insure having ample gain available to eope with varying eonditions.

When the gain must be fairly high, as when a erystal mierophone is used, the speech amplifier frequently has four stages, including the power output stage. The first generally is a pentode, beeause of the high gain attainable with this type of tubo. The socond and third stages usually are triodes, the third frequently having two tubes in push-pull when it drives a Class- AB_{2} output stage. Two pentode stages seldoin are used consecutively, because of the difficulty of getting stable operation when the gain per stage is very high. With earbon mierophones less amplification is needed and hence the pentode first stage usually is omitted, one or two triode stages being ample to obtain full output from the power stage.

Stage gain and voltage output - In voltage amplifiers, the stage gain is the ratio of a.e. output voltage to a.c. voltage applied to the grid. It will vary with the applied audio frequency, but for speeeh the variation should be small over the range of $100-4000$ eyeles. This condition is casily met in practice.

The output voltage is the maximum value which can be taken from the plate circuit without distortion. It is usually expressed in t.erms of the peak value of the a.c. wave ($(2-7$), since this value is independent of the waveform. The peak output voltage usually is of interest only when the stage drives a power amplifier, since only in this case is the stage called upon to work near its maximum capabilities. Low-level stages very seldom are worked near their full capacity, hence harmonic distortion is negligible and the voltage gain of the stage is the primary ennsideration.

Fip. 513 - Resistaner-coupled voltape amplifire circuita. A, pentode: B, triode. Deriprations are as follows: C_{1} - Cathode by-pass condenser.
C_{2} - Plate by-pass condenser.
(2) 二 Output coupling condenser (blocking condenser).
C_{4} - Screen by-pass condenser.
H_{1} - Cathode resistor.
K_{2} - Grid resistor.
H_{3} - Plate resistor.
R_{1} - Nirst-stage grid resistor.
K_{5} - Plate decoupling resistor.
R_{6} - Screen resistor.
Values for suitable tubes are given in Chapter Fourteen.
Resistance coupling - Resistance coupling generally is used in voltage amplifier stages. It is relatively inexpensive, good frequency response can be secured, and there is little danger of hum pick-up from stray maguetic fields associated with heater wiring. It is the only type of coupling suitable for the output circuits of pentodes and high- μ triodes, since with transformers a sufficiently high load impedance ($\$ 3-3$) cannot be obtained without considerable frequency distortion. Typical circuits are given in Fig. 513 and design data in § 3-6.

Transformer coupling - Transformer coupling between stages ordinarily is used only when power is to be transferred (in such a case resistance coupling is very inefficient), or when it is necessary to couple between a singleended and a push-pull stage. Triodes having an amplification factor of 20 or less are used in transformer-coupled voltage amplifiers.

Representative circuits for coupling singleended to push-pull stages are shown in Fig. 514. That at A uses a combination of resistance and transformer coupling, and may be used for exciting the grids of a Class- A or $A R_{1}$ following stage. The resistance coupling is used to keep the d.e. plate current from flowing through the transformer primary, thereby preventing a reduction in primary inductance below its nocurrent value (si-i). This improves the lowfrequency response. With low- μ triodes (6C5, $6 J 5$, etc.) , the gain i: equal to that with resistance coupling multiplied by the secondary-toprimary turns ratio of the transformer.

In B the transformer primary is in series with the plate of the tube, and thus must carry the tube plate curront. When the following amplifier operates without gricl eurrent, the voltage gain of the stage is practically equal to the μ of the tuhe multiplied by the transformer ratio. This circuit also is suitable for transferring power (within the capabilities of the tube) as in the ease of a following (lass-AB3 stage used as a driver fur a Class-B modnlator.

Gain control - The over-all gain of the amplifier may be changed to suit the output level of the microphone, which will vary with voiee intensity and distance of the speaker from the microphone, by varying the proportion of a.c. voltage applied to the grid of one of the stages.

The gain-eontrol potentiometer should be near the input end of the amplifier, so that there will be no danger of overloading the stages ahead of the gain control. With earbon mierophones the gain control may be placed directly across the microphone transformer secondary, but with other types the gain eontrol usually will affect the frequency response of the microphone when connected directly across it. The control therefore usually is placed in the grid circuit of the second stage.

Fig. 514-Transformer-roupled amplifier circuits for driving a push-pull annfificr. A is for resistance.transformer coupliny: 13, for transformer coupling. Designations correspond to thase in Fin. 513. In A, values can be taken from Table I. In B, the cathode resistor is calculated from the rated plate eurrent and grid bias as given for the purticular type of tube used (§ 3-6).

Fig. 5lis- Phasc-imserter circuit for resistanemenuHed parh-pull output. With a double-triode tube (such as the $6 \mathrm{~N}^{-1}$) the following values are typical: $\mathrm{H}_{1}, \mathrm{R}_{4}, \mathrm{R}_{5}-0.5$ megohm. $\mathrm{R}_{2}, \mathrm{~K}_{3}-0.1 \mathrm{mepohm}$. $\mathrm{R}_{\mathrm{B}}-1500$ ohmis. $\mathrm{C}_{1}, \mathrm{C}_{2}-0.1 \mu \mathrm{fd}$.
R_{4} should be tapped as described in the text. The voltage gain of a ptage uxing these enontants is 22.

Phase inversion - Push-pull nutput may be secured with resistance coupling hy using an extra tube. as shown in Fig. ils. There is a phase shift of 180 degrees through any normally oporating resistance-coupled stare ($\$ 3-3$), and the extra tube is used purely to provide this phase shift without additional gain. The outputs of the two tubes are then added to provide push-pull excitation for the following amplifier. The tap on R_{4} is adjusted to make F_{1} and V_{2} give equal voltage outputs so that balanced excitation is applied to the grids of the following stage. The cathode resistor, Rif, commonly is left un-bypassed since this tends to help balance the circuit. For eonvenience, double-triode tubes frequently are used as phase inverters.

Output limiting - It is desirable to modulate as heavily as possible without overmodulating, yet it is difficult to speak into the mierophone at a constant intensity. To maintain reasonably constant output from the modulator in spite of variations in speech intensity, it is nossible to use automatic gain control which follows the arerage (not instantaneous) variations in sperech amplitude. This is aecomplished by rectifying and filtering ($\S 8-2,8-3$) some of the andio output and applying the rectified and filtered d.e. to a control electrode in an early stage in the amplifier.

Fig. 5lf-Specth amplifier output-limiting eircuit. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-0.1-\mu \mathrm{fl} . \mathrm{h}, \mathrm{h}_{2}, \mathrm{R}_{3}-0.25$ mepohm. $\mathrm{K}_{4}-25,000$ ohna pot. $\mathrm{K}_{5}-0.1$ nerpuhm. $\mathrm{T}-\mathrm{S}_{\mathrm{re}}$ text.

A practical circuit for this purpose is shown in Fig. 516. The rectifier must be connected, through the transformer, to a tube capable of delivering some power output (a small part of
the output of the power stage may be used) or else a separate amplificy for the rectifier circuit alone may have its gricl connected in parallel with that of the last voltage amplifier. Resistor R_{4} in series with R_{5} across the plate supply provides variable bias on the rectifier plates, se that the limiting action can be delayed until a desired microphome input level is reached. $R_{2}, R_{3}, C_{2}, C_{3}$ and C_{4} form the filter ($\$ 2-11$), and the output of the rectifier is connected to the suppressor grid of the pentode first stage of the speech amplifier.

A step-down transformer with a turns ratio such as to give about, 50 volts when its primary is connected to the output circuit of the power stage should be used. A half-rave rectifier may be used instead of the full-wave circuit shown, although satisfactory filtering will be more difficult to achieve.

Noise - It is important that the noise level in a speceh amplifier be low compared to the level of the desired signal. Waise in the speech amplifier is cunsed chiefly by hum, which may be the result of insufficient. power-supply filtering or may be introduced into the grid cireuit of a tube hy magnetio or electrostatic means from heater wiring. The plate voltage for the amplifier should be free from ripple ($\$ S-4$), particularly the voltage applied to the lowlevel stages. A two-section condenser-input filter (§ S-5) usually is satisfactory. The decoupling circuits mentioned in the preeeding paragraphs also are helpful in reducing platesupply hum.

Hum from heater wiring may be redued by keeping the wiring well away from ungrounded components or wiring, particularly in the vieinity of the grid of the first tube. Complete shiclding of the microphone jack is advisable, and when tubes with grid caps instead of the single-ended types are used the caps and the exposed wiring to them shoulel be shielded. Heater wiring preferably sloould run in the eorners of a metal chassis, to reduce the magnetic field. A ground should be made either on one side of the heater circuit or to the center-tap of the heater winding. The shells of metal tubes should be grounded; glass tubes require separate shields, especially when used in low-level stages. Heater connections to the tube sockets should be kept as far as possible from the plate and grid prongs, and the heater wiring to the sockets should be kept close to the chassis. A connection to a good ground (such as a cold water pipe) also is advisable. The speech amplifier always should be constructed on a metal chassis, with all ground connections made directly to the metal chassis.

When the power supply is mounted on the same chassis with the speceh amplifier, the power transformer and filter chokes should be well separated from audio transformers in the amplifier proper to reduce mannetic coupling, which would cause hum and raise the residual noise level.

C 5-10 Checking 'Phone Transmitter Operation

Modulation percontage - The most reliable method of determining percentage of modulation is by mears of the cathode-ray oscilloscope (§3-9). The oscilloscope gives a direct picture of the modulated output of the transinitter, and by its use the waveform errors inherent in other types of measurements are eliminated.

Two types of oscilloseope patterns may be obtained, known as the "wave envelope" and "trapezoid." The former shows the shape of the modulation envelope ($\$ 5-2$) directly, while the latter in effect plots the modulation characteristic ($\$ 5-2$) of the modulated stage on the cathode-ray tube screen. To obtain the wave-envelope pattern, the oscilloseope must have a horizontal sweep circuit. The trapezoidal pattern requires only the oscilloseope, the sweep circuit being supplied by the transmitter itself. Fig. 517 shows methods of connecting the oseilloscope to the transmitter for both types of patterns. The oscilloscope connections for the wave-envelope pattern, Fig. in17-A, are usually simpler than those for the trapezoidal figure. The vertical-cleflection plates are coupled to the amplifier tank eoil or an antenna coil by means of a pick-up coil of a few turns eonnected to the oscilloscope through a twisted-prir line. The position of the pick-up eoil is varied until a carrier pattern, Fig. $518-13$, of suitable leight is obtained. The sweep voltage should be adjusted to make the widtl of the pattern somewhat more than half the diameter of the screen. It is frequently helpful in eliminating r.f. harmonics from the pattern to connect a resonant circuit, tuned to the operating frequency, between the vertical deflection plates, using link coupling between this and the transmitter tank circuit.

Fig. 517-Mrthods of connecting an oscilloscone to the modulated r.f. amplifier for checking modulation.

With the application of voice modulation, a rapidly changing pattern of varying height will be obtained. When the maximum height of this pattern is just twice that of the carrier alone, the wave is being modulated 100 per cent ($\$ 5-2$). This is illustrated by Fig. 518-D, where the point X represents the sweep line (reference line) alone, $Y Z$ is the carrier height, and $P Q$ is the maximum height of the modulated wave. If the height is greater than the distance $P Q$, as illustrated in E, the wave is overmodulated in the upward direction. Overmodulation in the downward direction is indicated by a gap in the pattern at the reference axis, where a single bright line appears on the screen. Overmodulation in either direction may take place even when the modulation in the other direction is less than 100 per cent. Assuming that the modulation is symmetrical, however, any modulation percentage can be measured directly from the screen by measuring the maximum height with modulation and the height of the earrier alone; calling these two heights h_{1} and h_{2} respectively, the modulation percentage is

$$
\frac{h_{1}-h_{2}}{h_{2}} \times 100
$$

Connections for the trapezoidal pattern are shown in Fig. 517-B. The vertical plates are similarly coupled to the transinitter tank circuit through a pick-up loop; the tuned in-. put circuit to the oscilloscope may also be used. The horizontal plates are coupled to the output of the modulator through a voltage divider (§ 2-6), $R_{1} R_{2}$, the resistance of R_{2} being variable to permit adjustment of the audio voltage to a suitable value to give a satisfactory horizontal sweep on the serem. R_{2} may be a 0.2 -megohm volume eontrol resistor. The value of R_{1} will depend upon the audio output voltage of the modulator. This voltage is equal to $\sqrt{ } \bar{P} R$, where P is the audio power output of the modulator and R is the modulating impedance of the modulated r.f. amplifier. In the case of grid-bias modulation with a $1: 1$ output transformer, it will be satisfactory to assume that the a.c. output voltage of the modulator is equal to $0.7 E$ for a single tube or $1.4 E$ for a push-pull stage, where E is the d.c. plate voltage on the modulator. If the transformer ratio is other than $1: 1$, the voltage so calculated should be multiplied hy the actual secondary-to-primary turns ratio.

The total resistance of R_{1} and R_{2} in seric: should be 0.25 megohm for every 150 volts of modulator output; for example, if the modulator output voltage is 600 , the total resistance should be four ($600 / 150$) times 0.25 megohm, or 1 megohm. Then, with 0.25 megohm at R_{2}, R_{1} should be 0.75 megohm. The blocking condenser, C, should be $0.1 \mu \mathrm{fd}$ or more, and its voltage rating should be greater than the maximum voltage in the circuit. With plate modulation, this is twice the d.c. voltage applied to the plate of the modnlated amplifier.

Fig. 518 - Wave-rnvelope and trapezoidal patterns encomitered under difterent conditions of modulation.

The trapezoidal patterns are shown in Fig. 518 at F to J , each alongside the corresponding wave-envelope pattern. With no signal, only the cathode-ray spot appears on the screen. When the unmodulated carrier is applied, a vertical line appears; the length of the line should be adjusted, by means of the pick-up coil coupling, to a convenient value. When the carior is modulated, the werige-shaned pattern appears; the higher the modulation percentage, the wider and more pointed the wedge becomes. At 100 per cent modulation it just makes a point on the axis, X, at one end, and the height, $P Q$, at the other end is equal to twice the carrier height, YZ. Overmodulation in the upward direction is indicated by increased height over $P Q$, and in the downward direction by an extension along the axis X at the pointed end. The modulation percentage may be found by measuring the modulated and unmodulated carrier heights, in the same way as with the wave-envelope pattern.

Non-symmetrical waveforms - In voice waveforms the average maximum amplitude in one direction from the axis frequently is greater than in the other direction, although
the average energy on both sides is the same. For this reason the percentage of modulation in the "up" direction frequently differs from that in the "down" direction. With a given voice and microphone, this difference in modulation percentage is usually always in the same direction. Since overmodulation in the downwhrd direction eauses more out-of-channel interference than overmodulation upward because of the steeper wavefront ($\$(6-1)$, it is advisable to "phase" the modulation so that the side of the voice waveform having the larger excursions causes the instantaneous carrier power to increase and the smaller excursions to cause a power decrease. This reduces the likelihood of overmodulation on the "down" peak. The direction of the larger excursions can readily be found by carelul observation of the oscilloscope pattern. The phase can be reversed by reversing the connections of one winding of any transformer in the speech amplifier or modulator.

Mochulation monitoring - While it is desirable to modulate as fully as possible, 100 per cent modulation should not be exceeded, particularly in the downward direction, because harmonic distortion will be introduced tud the channel width increased (§5-2), thus causing unnecessary interference to other stations. The oscilloscope may be used to provide a continuous check on the modulation, but simpler indirators may be used for the purpose, once calibrated. A convenient indicator, when a Class-I3 modulator ($\$ 5-6$) is used, is the plate milliammeter in the Class- B stage, since plate current fluctuates with the voice intensity. Using the oscilloscope, determine the gain-control setting and voice intensity which gives 100 per cent modulation on voice peaks, and simultaneously observe the maximum Class-B plate-milliammeter roading on the peaks. When this maximum reading is obtained, it will suffice in regular operation to adjust the gain so that it is not execeded.

A sensitive rectifier-type voltmeter (copperoxide type) also can be used for modulation monitoring. It should be connected across the output circuit of an audio driver stage where the power level is a few watts, and similarly calibrated against the oscillostope to detormine the reading which represents 100 per cent modulation.

The plate milliammeter of the modulated r.f. stage may also be used as an indicator of overmodulation. Since the average plate current is constant ($\$ 5-3,5-4,5-5$) when the amplifier is linear, the reading will be the same with or without modulation. When the amplifier is overmodulated, especially in the downward direction, the operation is no longer linear and the average plate current will change. A flicker of the pointer may therefore be taken as an indication of overmodulation or non-linearity. However, it is possible that the average plate current will remain constant with considerable overmodulation
under some operating conditions, so that an indicator of this type is not wholly reliable unless it las been checked previously against an oscilloscope.

Linearity - The lincarity (\$ 5-2) of a modulated amplifer may readily be checked with the oscilloscope. The trapezoidal pattern is more casily interpreted than the wave envelope pattern, and less anxiliary cquipment is required. The connections are the same as for measuring modulation percentage (Fig. 517). If the amplifier is perfectly linear, the sloping sides of the trapezoid will be perfectly straight from the point at the axis up to at least 100 per cent modulation in the upward direction. Nonlinearity will be shown by curvature of the sides. Curvature near the point, extending the point farther along the axis than would occur with straight sides, indicates that the output power does not decrease rapidly enough in this region; it maty also be caused by imperfect neutralization (a push-pull amplifier is recommencled because better neutralization is possible than with single-ended amplifiers) or by r.f. leakage from the exciter through the final stage. The latter condition can be checked by removing the plate voltage from the modulated stage, when the carrier should disappear, leaving only the bean spot vemaining on the sereen (Fig. 518-F). If a small vertical line remains, the amplifier should be re-neutralized: if this does not eliminate the line, it, is an indication that r.f. is being pieked up from lower-power stages, either by coupling through the final tank or via the oscilloscope piek-up loop.

Inward eurvature at the large end of the pattern is caused by improper operating conditions of the molulated amplifier, usually improper bias or insufficient excitation, or both, with plate modulation. In grid-biats and

(c)

Fig. 519 - - (tarilloserppe pathens represemting profer and impruper aljusuments for prid-hias or cathonde modulation, Ther pathern obtained with a eorreetl; atljusted amplilier is shown at A. 'The other drawing indieate non-iinear modulation from typiral causers.
cathode-modulated systens, the bias, excitation and plate loading are not correctly proportioned when such curvature occurs, usually becuuse the amplifier has been adjusted to have too-high carrier efficiency without modulation ($\$ 5-4,5-5$).

For the wave-envelope pattern, it is necessary to have a linear horizontal-sweep circuit in the oseilloscope and a source of sine-wave audio signal voltage (such as an andio oscillator ur signal generator) which can be synchronized with the sweep circuit. The linearity can be judged by comparing the wave envelope with a true sine wave. Distortion in theatudio circuits will affect the pattern in this case (such distortion has no effect on the trapezoidal pattern, which shows the modulation characteristic of the r.f. amplifier alone), and it is also readily possible to misjudge the shape of the moclulation envelope, so that the wave envelope is less useful than the trapezoid for cheeking linearity of the modulated amplifier.

Fig. 519 shows typieal patterns of buth types. The cause of the disturtion is indieated for grid-bias and suppressor modulation. 'The patterns at A, although not truly lincar, are representative of properly operated grid-bias modulation systems. Better linearity can be obtained with plate modulation of a Class-C amplifier.

Faulty palterns - The drawings of Figs. 518 and 519 show what is nomally to be expected in the way of pattern shapes when the oscilloseope is used to check modulation. If the actual patterns differ considerably from those shown, it is probable that the pattern is faulty rather than the transmitter. It is important that only r.f. from the modulated stage be coupled to the oseilloseoper, and then only to the vertical phates. The effect of stray r.f. from other stages in the tranmitter has been mentioned in the preceding paragraph. If r.f. is present also on the horizontal plates, the pattern will lean to one side instead of being upright. If the oscilluscope cannot be moved to a spot where the unwanted pick-up disappears, a small by-pass condenser (10 $\mu \mu \mathrm{fd}$.) should be connected aeross the horizontal plates as close to the eathoderay tube as possible. An r.f. choke ($2 . \overline{5}$ mh. or smaller) may also be connerted in series with the ungrounded horizontal plate.
"Folded" trapezoidal patterts oceur when the audio sweep voltage is taken from some point in the audio system wher than that where the a.f. power is applied to the modulated stage. Such patterns are caused by a phise difference betwern the sweep voltage and the modulating voltage. The comections shouk alway be as shown in Fig. 517-13.
Plate-current shift - As nentioned above, the d.c. plate current of a modulated amplifier will be the same with and without modulation so long as the amplifier operation is perfectly linear and ot her conditions remain unchanged. This also assumes that the modulaterer is work-
ing within its capabilities. Because there is usually some curvature of the modulation characteristic with grid-bias modulation there is normally a slight upward change in plate current of a stage so modulated, but this occurs only at high modulation percentages and is barely defectable under the usual conditions of voice modulation.

With plate modulation, a downward shift in plate current may indicate one or more of the following:

1) Insufficient excitation to the modulated r.f. amplifier.
2) Insufficient grid bias on the modulated stage.
3) Wrong luad resistance for the Class-C r.f. anmplifier.
4) Insufficient output capacity in the filter of the modulated-amplifier plate supply.
5) Heavy overloading of the Class-C r.f. amplifier tube or tubes.
Any of the following may cause an upward shift in plate current:
6) Overmodulation (excessive audio power, audio gain too great).
7) Incomplete neutralization of the modulated amplifier.
8) Parasitic oscillation in the modulated nnplifier.
When a common plate supply is used for both a Class-B (or Class-AB) modulator and a modulated r.f. amplifier, the plate current of the latter may "kick" downward because of poor power-supply voltage regulation ($(8-1$) with the varying additional load of the modulator on the supply. The same effect may occur with high-power transmitters because of poor regulation of the a.c. supply mains, even when a separate power-supply unit is used for the Class-B modulator. Either condition may be detected by measuring the plate voltage applied to the modulated stage; in addition, poor line regulation allso may be detected by observing if there is any downward shift in filament or line voltage.
With grid-bias modulation, any of the following dauy be the cause of a plate rurrent shift greater than the normal mentioned above -

Downward kick: Too much r.f. excitation; insufficient operating bias; distortion in modulator or speech amplifier; too-high resistance in bias supply; insufficient output capacity in plate-supply filter to modulated amplifier; anplifier plate circuit not loaded heavily enough; plate-circuit efficiency too high under carrier conditions.

Upward kick: Overmodulation (excessive audio voltage); distortion in audio system; regeneration because of incomplete neutralization; operating grid bias too high.
A downward kick in plate eurrent will accompany an oscilluscope pattern like that of Fig. 519-13; the pattern with an upward kick will look like Fig. 519-A, with the shaded
portion extending farther to the right and above the carrier, for the "wedge" pattern.

Noise and hum on carrier - These may be detected by listening to the signal on a receiver sufficiently removed from the transmitter to avoid overloading. The hum level should be low compared to the voice at 100 per cent modulation. Ilum may come cither from the speech amplifier and modulator or from the r.f. section of the transmitter. Hum from the r.f. section can be detected by completely shatting off the modulator; if hum remains when this is done, the power-supply filters for one or more of the r.f. stages have insufficient smoothing ($\$ 8$-4). With a hum-free carrier, hum introduced by the modulator can be checked by turning on the modulator but leaving the speech amplifier off; power-supply filtering is the likely source of such hum. If carrier and modulator are buth clean, connect the speech amplifier and ubserve the increase in hum level. If the hum disappears with the gain control at minimum, the hum is being introduced in the stage or stages preceding the gain control. The microphone also may pick up hum, a condition which can be checked by removing the microphone from the circuit but leaving the first speceli-amplificr grid circuit otherwise unchanged. A good ground on the microphone and speech system usually is essential to hum-free operation.

Hum can be checked with the oscilloscope, where it appears as modulation on the carrier in the sanme way as the normal modulation. While the percentage usually is rather small, if the carrier shows modulation with no speech input hum is the likely cause. The various parts of the transmitter may be checked through as described above.

Spurious sidebands - A superheterodyne receiver having a crystal filter (\$7-S, 7-11) is needed for checking spurious sidebands outside the normal communication chanmel (§ $5-2$). The r.f. input to the receiver must be kept low enough, by removing the antenna or by adequate separation from the transmitter, to a void overloading and consequent spurious receiver responses ($\$ 7-8$). With the crystal filter in its sharpest position and the beat oscillator turned on, tune through the region outside the normal channel linits (3 to 4 kilocy cles each side of the carrier) while another person talks into the microphone. Spurious sidebands will be observed as intermittent beat notes coinciding with voice peaks, or, in bad cases of distortion or overmodulation, as "clicks" or crackles well away from the carrier frequency. Sidebands more than 4 kilocycles from the carrier should be of negligible strength in a properly modulated 'phone transmitter. The eauses are overmodulation or non-linear operation (§ 5-3).
R.f. in speech amplifier - A small a mount of r.f. current in the speech amplifier - particularly in the first stage, which is most susceptible to such r.f. pich-up - will cause over-
loading and distortion in the low-level stages. Frequently also there is a regenerative effect which causes an audio-frequency oscillation or "howl" to be set up in the audio system. In such cases the gain control cannot be advanced very far before the howl builds up, even though the amplifier may be perfectly stable when the r.f. section of the transmitter is not turned on.

Complete shiclding of the microphone, microphone cord, and speech amplifier are necessary to prevent r.f. pick-up, and a ground connection separate from that to which the transmitter is connected is advisable. Unsymmetrical or capacity coupling to the antenna (single-wire feed, feeders tapped on final tank circuit, etc.) may be responsible in that these systems sometimes cause the transmitter chassis to take an r.f. potential above ground. Inductive coupling to a two-wire transmission line is advisable. This antenna effect cun be checked by disconnecting the antenna and dissipating the power in a dummy antenna ($\$ 4-9$), when it usually will be found that the r.f. feed-back disappears. If it does not, the speech amplifier and microphone shielding are at fault.

© 5-11 Frequency Modulation

Principles - In frequency modulation the carricr amplitude is constant and the output frequency of the transmitter is made to vary about the carrier or mean frequency at a rate corresponding to the audio frequencies of the speech currents. The extent to which the frequency changes in one direction from the unmodulated or carrier frequency is called the frequency deviation. It corresponds to the rhange of carrier amplitude in the amplitudemodulation system (§5-2). Deviation is usually expressed in kilocycles, and is equal to the difference between the carrier frequency and either the highest or lowest frequency reached by the carrier in its excursions with modulation. There is no modulation percentage, in the usual sense; with suitable circuit design the deviation may be made as large as desired without encountering any effect equivalent to overmodulation in the amplitudemodulated system.

Fig. 520-Triangular spectrum showing the noige reaponse in an f.m. receiver compared with amplitude modulation. Deviation ratios of 1 and 5 are shown.

Deviation ratio - Tho ratio of ble maximum frequency deviation to the audio frequency of the modulation is called the deviation ratio. It also is called the modulation index. Unless otherwise specified, it is taken as the ratio of the maxinum frequency deviation to the highest audio frequency to be transmitted.

Advantages of f.m. - The chief advantage of frequency modulation over amplitude modulation is noise reduction at the receiver. All electrical noises in the radio spectrum, including those originating in the receiver, are r.f. oscillations which vary in amplitude, this variation causing the noise response in ampli-tude-modulation receivers. If the receiver does not respond to amplitude variations but only to frequency changes, noise can affect it only by causing a phase shift which appears as frequency modulation on the signal. The effert of such frequency modulation by the noise can be made small by making the frequency change (deviation) in the signal large.

A second advantage is that the puwer required for modulation is inconsequential, since there is no power variation in the modulated output of the transmitter.

Triangular spectram - The way in which noise is reduced by a large deviation ratio is illustrated by Fig. 520. In this figure the noise is assumed to be evenly distributed over the channel used, an assumption which is almost always true. It is aks assumed that audio frequencies above 4000 cycles (4 kc .) are not necessary to voice communication, and that the audio system in the recoiver has no response above this frequency. Then, if an amplitude modulation receiver is used and its selectivity is such that there is no attemmation of sidebands ($\$ 5-2$) bolow 4000 cycler, the moise components of all frequencies within the channel will produce equal response when they beat with a carrier centered in the channel. The response under these conditions is shown by the line $D C$.

In the f.m. receiver the output amplitude is proportional to the frequency deviation, and noise components in the channel can be considered to frequency-modulate the steady carrier with a deviation proportional to the difference between the actual frequency of the component and the frequency of the carrier, and also to give an audio-frequency beat of the same frequency difference. 'Ihis leads to a rising response characteristic, such as the line $O C$, where the noise amplitude is proportional to the audio beat frequeney. The average noise power output is proportional to the square root of the sum of the squares of all the amplitude values ($\$ 2-7$), so that the noise power with frequency modulation having a deviation ratio of 1 is only one-third that with amplitude modulation, or an improvement of 4.75 db .

If the deviation ratio is increased to 5 , the noise response is represented by the line $O F$. Since only frequencies up to 4000 cycles are reproduced in the untput, however, the audible
noise is confined to the triangle $O A B$. These relations hold only when the carrier is strong compared to the noise. For reception of stations with weak signal strength, the signal-tonoise ratio is better with a deviation ratio of 1.

Linearily - A transmitier in which frequency deviation is directiy propurtional to the amplitude of the modulating signal is said to be linear. It is essential also that the carrier amplitude remain constant under modulation. which in turn requires that the transinitter tuncd circuits, as well as the antenna, have broad enough response to handle without discrimination the entire range of audio frequencies transmitted. This recpuirement is easily met under ordinary conditions.
.iidebards - In frequency modulation there is a series of sidebands on either side of the carrier frequency for each andio-frequency component in the modulation. In addition to the usual sum and difference frequencies ($\S 5-2$) there arc also beats at harmonics of the fundamental modulating frequency, even though the latter may be a pure tone. This occurs because of the neressity for maintaining the proper phase relationships between the rarrier and sidebands to kerp the power output constant. Hence, a frequency-modulated signal inherently ocrupies a wider channel than an amplitule-modulated signal. Because of the neressity for ronserving space in the usual communication spectrum, the use of f.m. by amateurs is confined to the very-high frequencies in the region above 28 Mc .

The number of sidelands for a single modulating frequency increases with the frequency deviation. When the deviation ratio is of the order of 5 tile sidehands beyond the maximum frequency deviation are usually negligible, so that the channel required is approximately twice the frequency deviation.

C. 5-12 Methods of Frequency Modulation

Requirements and methorls - At present there are no fixed standards of frequency deviation in amateur work. Since a deviation ratio of 5 is considered high enough in any case, the maximum deviation necessary is 15 to 20 kc . for an upper aldio-frequeney limit of 3000 or 4000 cycles ($\$ 5-2$), or a channel width of 30 to 40 kc . The permissible deviation is determined by the receiver ($\$ 7-18$), since deviation beyond the limits of the receiver pass-band causes distortion. If the transmitter is designed to be linear ($\$ 5-11$) witl a deviation of about 15 kc ., it can be used at a lower deviation ratio simply by reducing the gain in the speech amplifier. Thereby it can be made to conform to the requirements of the receiver in use.

The several possible methods of frequency modulationinclude mechanical modulation (for instance, varying condenser plate spacing in accordance with voice vibrations), initial phase-shift modulation which later is transformed into frequency modulation, and direct
frequency modulation of an oscillator by electronic means. The latter, in the form of the re-actance-tube modulator, is the simplest system.

Fig. 521 - Reactance modulator circuit using a 6L: inhe. C - Tank capacity. $\mathrm{C}_{1}-3-10 \mu \mu \mathrm{fil} . \mathrm{C}_{2}-9.0 \mu_{\mu} \mathrm{fl}$. $\mathrm{C}_{3}-8$ - $\mu \mathrm{fd}$. electrolytic (a.f. hy-pass) in parallel with $0.01-\mu$ fd. paper (r.f. by-pass).
$\mathrm{C}_{4}-0.01 \mu \mathrm{fd} \quad \mathrm{L}-\mathrm{O}_{\mathrm{se}} \mathrm{illator}$ tank inductance. $\mathrm{R}_{1}-50,000$ ohme. $\quad \mathrm{R}_{2}, \mathrm{R}_{5}-0.5$ megohn. $\mathrm{H}_{3}-30,000$ olims. $\quad \mathbf{R}_{4}-300$ ohnis.

The reactance modulator - The reactance modulator consists of a vacuum tube connected to the r.f. tank circuit of an oscillator in such a way as to act as a variable inductance or capacity, of a value dependent upon the instantaneous a.f. voltage applied to its grid. Fig. 521 is a representative circuit. The control grid circuit of the 6 L 7 tube is connected across the small capacity, C_{1}, whieh is in series with the resistor, R_{1}, across the oscillator tank eircuit. Any type of oscillator circuit (\$3-7) may be used. R_{1} is large compared to the reactance (§2-8) of C_{1}, so the r.f. current through $R_{1} C_{1}$ will be practically in phase ($\$ 2-7$) with the r.f. voltage appearing at the terminals of the tank circuit. However, the voltage across C_{1} will lag the current by 90 degrees ($\$ 2-8$). The r.f. current in the plate cireuit of the 6L, 7 will be in phase with the grid voltage ($\$ 3-3$), and consequently is 90 degrees behind the current through C_{1}, or 90 degrees belind the r.f. tank voltage. This lagging current is drawn through the oseillator tank, giving the same effect as though an inductance were connected across the tank (in on inductance the current lags the voltage by 90 degrees - § 2-8). The frequency increases in proportion to the lagging plate current of the modulator, as determined by the a.f. voltage applied to the No. 3 grid uf the 6L7; henoo the oecillator freanency varies with the audio signal voltage.

If, on the other hand, C_{1} and R_{1} are reversed and the reactance of C_{1} is made large compared to the resistance of R_{1} the r.f. current in the 6 L 7 plate cireuit will lead the oscillator tank r.f. voltage, making the reactance capacitive rather than inductive.

Other circuit arrangements to produce the same effect may be employed. It is convenient to use a tube (such as the 6LT) in which the r.f. and a.f. voltages can be applied to separate control grids; however, both voltages may be applied to the same grid provided precautions are taken to prevent r.f. from flowing in the external audio cireuit, and vice versa (§2-13).

The modulated oscillator usually is operated on a relatively low frequency, so that a high
order of carricr stability can be secured. Frequency multipliers are used to raise the frequency to the final frequency desired. The frequency deviation increases with the number of times the initial frequency is multiplied; for instance, if the oscillator is operated on 7 Mc . and the output frequency is to be 112 Mc., an oscillator frequency deviation of 1000 cycles will be raised to 16,000 cycles at the output frequency.
Design considerations -- The sensitivity of the modulator (frequency change per unit change in grid voltage) increases when C_{1} is made smaller, for a fixed value of R_{1}, and also increases with an increase in L / C ratio in the oscillator tank cireuit. Since the carrier stability of the oscillator depends on the L / C ratio (§3-7), it is desirable to use the highest tank capacity which will permit the desired deviation to be secured while leeping within the limits of linear operation. When the circuit of Fig. 521 is used in connection with a 7-Mc. oscillator, a linear deviation of 2000 cycles above and below the carrior frequency can be secured when the oscillator tank capacity is approximately $200 \mu \mu i d$. a peak a.f. input of two volts is required for full deviation. At 56 Mc. the maximum deviation would be 8×2000, or 16 kc .
Since a change in any of the voltages on the modulator tube will cause a change in r.f. plate current, and consequently a frequency change, it is advisable to use a regulated plate power supply for both nodulator and oscillator. At the low voltages used (250 volts), the required stabilization can be secured by means of gaseous regulator tubes ($\$ 8-8$).

Speech amplification - The speech amplifier preceding the modulator follows ordinary design ($\$ 5-9$), except that, no power is required from it and the a.f. voltage taken by the modulator grid usually is small - not more than 10 or 15 volts, even with large modulator tubes. Because of these modest requircments, only a few spech-anyplifier stages are needed; a twostage amplifier consisting of a pent ode followed by a triode, both resistance-coupled, will suffice for crystal microphones ($8.5-8$).
R.f.amplifier stages - The frequrncy multiplier and output stages following the modulated oscillator may be designed and adjusted in accordance with ordinary principles. No specinl excitation requirements are imposed, since the amplitude of the output is constant. Enough frequency multiplication must be used to give the clesired maximum deviation at the fimal frequency: this depends upon the maximum linear deviation available from the modulator-oscillator. All stages in the transmitter should be tuned to resonance, and eareful neutralization (\$4-7) of any straight amplifier stages is necessary to prevent r.f. phase shifts which might cause distortion.

Checking operation - The two quantities to be checked in the f.m. transmitter are linearity and frequency deviation. With a modulator
of the type shown in Fig. 521, both the r.f. and a.f. voltages are small enough to make the operation Class A ($\$ 3-4$), so that the plate current of the molulator is constant so long as operation is over the linear portions of the No. 1 and No. 3 grid characteristics. Hence, non-linearity will be indicated by a change in plate current as the a.f. modulating voltage is increased. The distortion will be within acceptable limits, with the tube and constants given in Fig. 521, when the plate current does not change more than 5 per cent with signal.

Non-linearity is accompanied by a shift in the carrier frequency, so it also can be checked by means of a selective receiver such as one with a crystal filter ($\$ 7-11$). A tone source is convenient for the test. Set the receiver for high selectivity, switch on the beat oscillator, and tune to the oscillator carrier frequency. (The check does not need to be made at the output frequency and the oscillator frequency usually is more convenient, since it will fall within the tuning range of a communications receiver.) Increase the modulating signal until a definite shift in carrier frequency is observed; this indicates the point at which non-linearity starts. The modulating signal should be kept below the level at which carrier shift is observed, for minimum distortion.

A selective recciver also can be used to check frequency deviation, again at the oscillator frequency. A source of tone of known frequency is required, preferably a continuously variable calibrated audio oscillator or signal generator. Tune in the carrier as described above, using the beat oscillator and high selectivity, and adjust the modulating signal to the maximum level at whirh linear operation is secured. Starting with the lowest frequency available, slowly raise the tone frequency while listening closely to the carrier beat note. As the tone frequency is raised the beat note first will decrease in intensity, then disappear entirely at a definite frequency, and finally come back and increase in intensity as the tone frequency is raised still more. The frequency at which the beat note disappears, multiplied by 2.4 , is the frequency deviation at that level of modulating signal; for example, if the beat note disappears with an 800 -cycle tone, the deviation is $2.4 \times$ 800, or 1920 cycles. The deviation at the output frequency is the oscillato: deviation multiplied by the number of times the frequency is multiplied; in this example, if the oscillator is on 7 Mc . and the output on 56 Mc ., the final deviation is 1920×8, or 15.36 kc .

The output of the transmitter can be checked for amplitude modulation by observing the antenna current. It should not change from the unmodulated carrier value when the transmitter is modulated. Where there is no antenna ammeter in the transmitter, a flashlight lamp and loop can be coupled to the final tank coil to serve as a current indicator. If the carrier amplitude is constant, the lamp brilliance will not change with modulation.

C. 6-1 Keying Principles and Characteristics

Requirements - The keying of a transmitter cun be considered satisfactory if the method employed reduces the power output to zero when the key is open, or "up," and permits full power to reach the antenna when the key is closed, or "down." Furthermore, the keying system should accomplish this without producing keying transients or "clicks." which cause interference with other amateur stations and with local broadcast reception, and the beying process should not affect the frequoncy of the emitted wave.

Back-wave - From various causes, some energy may get through to the antenna during keying spaces. The effect then is as though the dots and dashes were only louder portions of a continuous carricr; in some cases, in fact, the back-wanc, or signal heard cluring the keying spaces, may scem to be almost as loud as the keyed signal. Under these conditions the keying is hard to read. A pronounced backwave often results when the amplifier stage feeding the antenma is keyed; it may be present because of incomplete neutralization (§4-7) of the final stage, allowing some energy to get to the antenna through the grid-plate capacity of the tube, or because of magnetic coupling between antenna coupling coils and one of the low-power stages.

A back-wave also may be radiated if the keying system does not reduce the input to the keyed stage to zero during keying spaces. This trouble will not oceur in keying systems which cut off the plate voltage when the key is open, but may be present in grid-blocking systems ($\S 6-3$) if the blocking voltage is not great oneugh and in power-supply primary keying systens ($(6-3$) if only the final-stage powersupply primary is keyed.

Keying waveform and sidebunds-A keyed c.w. signal can be considered equivalent to a modulated signal ($\$ \mathrm{j}$-1), except that, in-

Fig. 601 - Extrence of possible keying waveshapes A, rectangular characters; H. sine-wave characters.
stead of Poing morlulated by sinusoidal waves and their larmonic:, it is modulated by a rectangular wave, as in Fig. 601-1. If it were modulated by a sinusoidal wave of single frequency, as in Fig. 601-B, the only sidebands would be those equal to the carrier frequency plus and minus the modulation frequency (§5-2). A keying speed of 50 words per minute, sending sinusoidal dots, would give sidebands only 20 eycles either side of the carrier. However, when harmonies are present in the modulation the sidebands will extend out on both sides of the signal as far as the frequency of the highest harmonic. The rectangular wave form contains an infinite number of harmonics of the keving frequency, so a carrier modulated by truly rectangular dots would have sidebands covering the entire spectrum. Actually, the bigh-order harmonics are eliminated because of the selectivity of the tuned rireuits ($\$ 2-10$) in the trinsmitter, but there still is enough enerey in the lower harmonies to extend the sidehants considerably. Consiclered from another viewpoint, whenever.a pulse of current has a stecp front (or back) ligh frcquencies are certain to be present. If the pulse can be slowed down, or caused to lag, through a suitable filter circuit, the highest-order harmonics are filtered out.

Key clichs - Because the high-order harmonics exist only during the brief interval when the keying character is started or ended (when the ampliturle of the keying wave is building up or dying downj, their effects outside the normal communication channel are ohserved is pulses of very short duration, These pulses are called licy clicks.

Tests have shown that practically all operators prefer to copy a signal which is "solid" on the "make" end of each dot or dash; i.e., ono that dues not build up too slowly but just slowly enough to have a slight click when the bey is elosed. The same tests indicate that the most pleasing and least difficult signal to copy, particularly at high speeds, is one that has a fairly soft "break" charaeteristic; i.e., one that has practically no click as the key is opened. A signal with heavy clicks on both make and break is difficult to copy at high speeds (and also causes considerable interference), but if it is too "soft" the dots and dashes will tend to run together. It is relatively simple to adjust the keying of a transmitter so that for all normal hand speeds (15 to 40 w.p.m.) the readability will be satisfactory while the keving still will not cause interference to reception of other signals near the frequeney of the transmitter.

Break-in keying - In code transmission, there are definite intervals, between dots and dashes and between words, when no power is being radiated by the transmitter. It is possible, therefore, to allow the receiver to operate continuously and thus be capable of receiving incoming signals during the keying intervals.

Fin. $612--\mathrm{A}$, shows plate keying; B, screen grid kerying. Oscillator circuits are shown in both cases, but the same keying methods can be used with amplifier circuits.

Ihis practice facilitates commmication, because the receiving operator can sigual the transmitting operator, by holding down the key of his transmitter, whenever he has failed to copy part of the message, and thus obtain a repetition of the part that is missing without waiting until the end of the message. This is called break-in operation.
Frequency stability - Keying should have no effect upon the output frequency of a properly designed and adjusted transmitter. Howver, in many instances keying will cause a "chirp," or small frequency change, at the instant of closing or opening the key, which makes the signal difficult to read. Multistage transmitters keyed in a stage subsequent to the oscillator usually are free from this condition, unless the keying causes line-voltage changes which in turn affect the frequency of the oscillator. When the oscillator is keyed for break-in operation, special care must be taken to insure that the signal does not have keying chirps.

Selecting the stage to key - It is advantageous from an operating standpoint to design the c.w. transmitter for break-in operation. In ordinary cases this dictates that the oseillator be keyed, since a continuously running oscillator will create interference in the receiver and thus prevent break-in operation on or near the transmitter frequency. On the other hand, it is easier to avoid a chirpy signal by keying a buffer or amplifier stage. In either case, the tubes following the keyed stage must be provided with sufficient fixed bias to limit the plate currents to safe values when the key is up and the tubes are not being excited ($\S 8-9$). Complete cut-off reduces the possibility of a back-wave if a stage other than the oscillator is keyed, but the keying waveform is not as well preserved and some clicks can be introduced even though the keyed stage itself produces
no clicks. It is a good general rule to biats the tubes so that they draw a key-up plate current equal to about 5 per cent of the normal keydown value.

Keyed power - The power broken by the key is an inportant consideration, both from the standpoint of safety for the operator and that of arcing at the key contacts. Keying the oscillator or a low-power stage is favorable in both respects. The use of a keying relay is highly recommended when a higl-power circuit is keyed.

(4. 6-2 Keying Circuits

Plate-circuit keying - Any stage of the transmitter can be keyed by opening and elosing the plate power circuit. Two methods are shown in Fig. 602. In A the key is in series with the negative lead from the plate power supply to the keyed stage. It could also be placed in the positive lead, although this is to be avoided whenever posible because the key is necessarily at the plate voltage above ground, and there is danger of shock unless a keying relay is used.

Fig. 602-B shows the key in the screensupply lead of an electron-coupled oscillator. This can be considered to be a variation of plate keying.

Both the plate and screen-grid keying circuits. A and B of Fig. 602, respond well to the use of key-click filters, and are particularly suitable for use with crystal and self-controlled ospillators which are operated at low plate voltage and power input.

Power-supply heying - A variation of plate keying, in which the keving is introduced in the power-supplysystemitself, rather than in

Fig. 603 - Power-supply kering. Grid-control roctifiers are used in A. Transformer T is a small multiple-sceondary unit of the type used in receiver power supplics. and is used iu conjunction with the full-wave rectifier tube to develop bias voltage for the grids of the highvoltage rectifiers. R_{1} limits the load on the bias supply when the keying relay is closed; 50,000 ohme is a suitable value. C_{1} may be $0.1 \mu \mathrm{fd}$. or larger. L and C consritute the umoothing filter for the high-roltage supply in both eircuits. B shows direct keying of the transformer primary.
the connections between the power supply and transmitter, is illustrated by the diagrams in Fig. 603.

Fig. 603-A slows the use of grid-controlled rectificr tubes (§3-5) in the power supply. Keying is accomplished by applying suitable bias to the grids to eut off plate current flow when the key is open, and by removing the bias when the key is closed. Since in practice this circuit is used only with high-powered highvoltage supplies, a well-insulated keying rclay is a necessity.

Direct keying of the primary of the plate power transformer for the keyed stage or stages is shown in Fig. 603-B. This and the method at A inherently have a keying lag because of the time constunt. (§ 2-6) of the smoothing filter. If enough filter is provided to reduce ripple to a low percentage ($\$ 8-4$) the lag ($\$ 6-1$) is too great to permit crisp keying at speeds above about 25 words per minute, although this type of keying is very effective in eliminating key clicks. A single-section plate-supply filter ($\$$ S-6) is about the most elaborate type that can be used if a reasonably good keying characteristir is to be achicved.

Fig. 604 - Blocked-grid keying. R_{1}, the current-limiting resistor, should have a value of about 50,000 ohms. C_{1} may have a capheity of 0.1 to $1 \mu \mathrm{fd}$., depending upon the kesing characteristic ilesired, R_{2} also depends on the performane characteristic desired, values being of the order of 5000 to 10,000 ohms in most cases.

Blocked-grid keying - Kcying may be accomplished by applying sufficient negative bias voltage to a control or suppressor grid to cut off plate current flow when the key is open, and by removing this blocking bias when the key is closed. The blocking bins voltage must be sufficient to overcome the r.f. grid voltage, in the case where the bias is applied to the control grid, and hence must be considerably higher than the nominal cut-off value for the tube at the operating d.c. plate voltage. The fundamental circuits are shown in Fig. 604.

In both circuits the key is connected in series with a resistor, R_{1}, which limits the current drain on the blocking-bias source when the key is closed. $R_{2} C_{1}$ is a resistance-capacity filter ($\$ 2-11$) for controlling the lag on make and break of the key circuit. The lag increases as the time constant (§ 2-6) of this circuit is made larger. Since grid current flows through R_{2} when the key is closed in Fig. 604-A, additional
operating bias is developed, hence somewhat less bias is needed from the regular bias supply. The operating and blocking biases can be obtained from the same supply, if desired, by

Fit. 605 - Center-tap and cathode keying. The conden. sers, C, are r.f. by-pass condensers. Their eapacity is not critical, values of 0.001 to $0.01 \mu \mathrm{fd}$. ordinarily being used.
utilizing suitable taps on a voltage divider ($\S 8-10$). For circuits in which no fixed bias is used R_{2} can be the regular grid leak (§3-6) for the stage.

With blocked-grid keying a relatively small direct current is broken as compared to other systems. Thus any sparking at the key is reduced. The keying characteristic (lag) readily can be controlled by a suitable choice of values for C_{1} and R_{2}.

Cathode keying - Opening the d.c. circuits of both plate and grid simultaneously is called cathode keying. It is usually called center-tap keying with a directly heated filament-type tube, since in this case the key is placed in the filament-transformer center-tap lead. Typical circuits for this type of keying are shown in Fig. 605.

Cathode keying results in less sparking at the key contacts, for the same plate power, as compared with keying in the plate-supply lead. When used with an oscillator it does not respond as readily to key-click filtering (§ 6-3) as does plate keying, but there is little difference in this respect between the two systems when an amplifier is keyed.

© 6-3 Key-Click Reduction

$\boldsymbol{R} . f$. filters - A spark at the key contacts, even though minute, will cause a damped oscillation to be set up in the keying circuit which may modulate the transmitter output or may simply be radiated by the wiring in the keying circuit. Interference from the latter source is usually confined to the immediate vicinity of the transmitter, and is similar in nature and effects to the click which is frequently heard in a receiver when an electric light is turned on or off. It can be minimized by isolating the key from the wiring by means of a low-pass filter (§ 2-11), which usually consists of an r.f. choke in each key lead, placed as close as possible to the key, and by-passed on the key-ing-line side by a condenser, as shown in Fig. 606. Suitable values must be determined by experiment. Choke values may range from 2.5 to 80 millihenrys, and condenser capacities from 0.001 to $0.1 \mu \mathrm{fd}$.

This type of r.f. filter is required in nearly every keying installation, in addition to the
lag circuits which are discussed in the next paragraph.

Lag circuits - A filter used to give a desired shape to the keying character, to climinate unnecessary sidebands and consequent interference, is called a lag circuil. In one form, suitable for the circuits of Figs. 602 and 605, it consists of a condenser across the key terminals and an inductance in series with one of the leads. This is shown in Fig. 607. The optimum values of capacity and inductance must be found by experiment, but are not especially critical. If a high-voltage low-eurrent circuit is boing keyed a small condenser and large inductance will be necessary, while if a lowvoltage high-current circuit is keyed the capacity required will be high and the inductance

Fig. 006 - IR.f. filter used for chiminating the efferts of sparking at key eontacto. Suitalle values for liest result - with individual tramsmitters must be detormined by experiment. Values for RIVC rande from 2.5 to 80 millihenries and for C from 0.001 to $0.1 \mu \mathrm{fd}$.
small. For example, a 300-volt (f-ma. circuit will require about 30 henrys and $0.05 \mu \mathrm{fd}$. while a 300 -volt 50 -ma. eireuit needs about 1 henry and 0.j $\mu \mathrm{fd}$. lor any given circuit and fixed values of current and voltage, increasing the indurtance will reduce the clieks on "make" and increasing the caparity will reduce the clicks on "break."

Blocked-grid keying is adjusted by changing the values of resistors and condensers in the circuit. In Fig. 604, the click on "make" is redueed by increasing the capacity of C_{1}, and the elick on break is reduced $b y$ increasing C_{1} and/or R_{2}. The values required for individual installations will vary with the amount of blocking voltade and the grid current. The constante given in Fig. 604 will serve as a first approximation.

Trube keving - A tube keyer is a convenient adjunct to the transmitter, because it allows the keying characteristic to be adjusted easily without necessitating condenser and inductance values which may not be readily available. It uses the plate resistance of a tube (or tubes in parallel) to replace the key in a plate or cathode circuit, the kryer tube (or tubes) being keyed by the blocked-grid method (\$6-2). A typical eircuit is shown in Fig. 60S. Type 45 tubes are suitable because of their low plate resistance and consectuent sinall voltage drop between plate and cathode. When a tube keyer is used to replace the key in a plate or enthode cireuit, the power output of the stage will be somewhat reduced because of the voltage drop across the keyer tube, but this can be compensated for by a slight inerease in the supply voltage. The use of a tube keyer makes the key itself entirely safe to handle, since the high resistance in series with the key and blocking voltage prevents possible danger of shock through contact with highvoltage circuits.

C 6-4 Checking Transmitter Keying

Clichs - Transmitter krying can be checked by listening to the signal on a superheterodyne receiver. The antenna should be disconnected, so that the receiver does not overload, and, if necessary, the r.f. gain may be reduced as well. Listening with the beat oscillator and a.v.c. off, the keying should be adjusted so that a slight eliek is heard as the key is closed but practically none can he heard when the key is released. When the keying constants have heen adjusted to meet this condition, the clicks will be about optimum for all normal anateur work. If the clicks are ton pronounced, they will cause interference with other amateur transmissions, and possibly to nearby broadeast recrivers.

Chirps - Keying chirps (instahility) may be checked by tuning in the signal or one of its harmonics on the highest frequency range of the receiver and listening with the b.f.o. on and the a.v.c. off. The gain should be sufficient to give moderate signal strength, but it should be low enough to preclude the possibility of overloading. Adjust the tuning to give a low-frequency beat note and key the transmitter. Any chirp introduced by the keving adjustment will be readily apparent. listening to a harmonic will magnify the effect of any instability by the order of the harmonic, and thus make it more perceptible.

Oscillator lieying - The keying of an amplifier is relatively straightforward and requires no special treatment, but a few additional pre-

Fig. 607- Lag circuit used for shaping the keying character to eliminate ummecessary sidebands. Actual valucs for any given eirenit wise be determined by experiment, and mas ranpe from 1 to 30 henries for J, and from 0.05 to 0.5μ fil. for C, depending on the keycd current.

calutions will be found necessary with oscillator leying. Any oscillator, either self-excited or crystal, will key well if it will oscilhate at low plate voltages (of the order of one or two volts) and if its change in frequency with plate-voltage change is negligible. A crestal oscillator will oscillate at low plate voltages if a regenerative type of circuit such as the Tri-tet or gridplate ($\$ 4-5$) is used and if an r.f. choke is connerted in series with the grid leak, to reduce loading on the crystal. Crystal oscillators of this type generally are free from chirp unless there is a relatively large air-gap between the crystal and top plate of the crystal holder, as is the case with a variable-frequency crystal set at the high-frequency end of its range.

Sclf-controlled oseillators can be made to meet the same requirements by using a high C $/ L L$ ratio in the tank circuit, low plate and screen currents, and judicious feed-back adjustment ($\$ 3-7$). A self-controlled oscillator intended to be keyed should be designed for good keying rather than maximum output.

Stages following keying - When a keying filter is being adjusted, the stages following the keyed tube should be made inoperative by removing the plate voltage. This facilitates monitoring the keying without the introduction of additional effects. The following stages slould then be added, one at a tine, checking the keying after cach addition. An increase in click intensity (for the same carrier strength) indicates that the clicks are being added in the stages following the one being keyed. The fixed bias on such stages should be sufficient to reduce the idling plate current (no excitation) to a low value, but not to zero. Under these conditions, any instability or tendency toward parasitic oscillations, either of which can adverscly affict the keying charaeteristic, usually will evidence itself.
Monitoring of keying - Most operators find a keying monitor helpful in developing and maintaining a good "fist," especially if a "bug" or semi-automatic key is used. While several types have been devised, the most pepular consists of an audio oscillator the output of which is coupled to the receiver loud speaker or headphones, and which is keyed simultaneonsly with the transmitter. Fig. 609 shows the cirruit diagram of a simple keyingmonitor ossillator. The plate voltage, as well as the heater voltage, is supplied by a 6.3 -volt filament transformer. One section of the 61% (idual trionde is used as the rectifier to sup)ply d.e. for the plate of the second section, which is used as the oscillator. A change in the value of R_{1} will alter the output tone. The output terminall labeled Gnd should be comected directly to the recciver chassis, while P_{1} should be comnected to the "hot" side of the headphones. Shunting of the 'phones by the oscilLator may cause some loss of volume on recoived siguals, unless the coupling capacity: C_{3}, is made sufficiently small. Fowever, the capac-

Fif. 608 - Vacuum-tuhe keyer circuit. The voltaue drup iuross the tuhes will be aproximately 90 volts with the two 'lype 45 tuhes shown, when the keyed curreat is 100 milliamperes. Mure tubes can be connected in parallel to reduce the dror. Sugsested values are as fulluws:
C_{1} - 2- $\mu \mathrm{fl}$. 600-volt paper.
($2-0.003-\mu \mathrm{fll}$. mica.
$\mathrm{C}_{3}-0.005-\mu \mathrm{ff}$. iniea.
$\mathrm{R}_{1}-0.25$ megohm. 2 watt.
$\mathrm{R}_{2}-50,000$ ohms, 10 watt.
$\mathrm{R}_{3}, \mathrm{R}_{4}-5$ meguhms, $1 / 2$ watt.
$\mathrm{R}_{5}-0.5$ megohm, $1 / 2$ watt.
Sw1, Swz - 1 -rircuit 3 -position rotary switch.
I_{1} - Power transformer, 325 volts each side of renturtap, with 5 -volt and 2.5 -volt filament windings.
A wider range of lar adjustment cau he obtained by nising additional resistors and condensers. Suggesterl values of capacity, in addition to C_{2} and C_{3}, are 0.00 ! and 0.002μ fd. Resistors in addition to R_{2} could be $2,2,3$ and 5 megobmas. More switch positions will be required.

Fig. 609 - Ciranit diaram of a keying monitur uf the andis-tme:illuter tye, with self-contained power supply
$\mathrm{C}_{1}-2.5-\mu \mathrm{fll} .25$-volt clectrolytic.
$\mathrm{C}_{2}-2.30-\mu \mu \mathrm{fl}$. mica.
C_{3} - Approximately 0.01 ر ff . (see tevt).
$\mathrm{K}_{1}-0.1 \overline{\mathrm{~J}}$ mepohm,! wath.

${ }^{+}{ }^{2}$ - 6.3 -volt 1 -ampere filament tratislarmer.
Γ_{2} - Small audio transformer, interstage type.
ity should be made large enough to provide good transfer of the oscillator signal.

If the transmitter oseillator is keyed for break-in, the keving terminals of the oseillator may be connected in parallel with those of the transmitter. With cathode keying, terminals 1 and 2 will he connected across the key, with terminal 2 going to the ground side of the key. With blocked-grid keping, terminals 2 and 3 go to the key and a resistance of 0.1 megohm or so is inserted in serio., with terminal 3 .

Electronic kevs - Screral electronic cireuits have been devised for producing automatic dots and dashes. A typical example is shown in Fig. 610. The valuce provide for a maximum speed of $60 \mathrm{w} . \mathrm{p} . \mathrm{m}$. with a 300 -volt supply. R_{I} and R_{2} should be of the same type and ganged to form the speed control. To adjust for proper operation, ground the right cathode and adjust R_{7} until the left plate current is zcro. Do the same thing with the sections reversed, biasing the right section to cut-off temporarily. Adjust h_{j} until the plate voltages are equal. Ieturn the cirenit to normal and check the average plate voltages with the key on the "dot" side. If they are unccuarl, adjust a fixed resistor connected in scrics with R_{1} or $R 2$ until they are equal. On dashes, the plate voltalye of the right seetion should drop one-third and that of the left section shouldi increase by one-third. Adjust the size of C_{3} until this condition is met. (Sce QS'T for March, 194.4.)

Fis. $610-$ - ian! !ivihrutor-type clectronie key. $\mathrm{C}_{1}, \mathrm{C}_{2}-0.005-\mu \mathrm{f}$. . mica.
$\mathrm{C}_{3}-0.0 \mathrm{I}-\mu \mathrm{fIJ} .400$ volt paprer.
$\mathrm{C}_{4}-0.01$ - $\mu \mathrm{ffl}$, an proximatels.
$R_{1}, \quad \mathrm{I}_{2}-2$-megohm variable (sec text).
$R_{a}, R_{4}-50,000$ olims, 1/3 watt.
$\mathrm{K}_{\mathrm{s}}-3000$ ohme for resistanc." equal in r. sistan* \quad il Ry).
$R_{6}-0.25$ meguhm, $1 / 2$ watt.
$\mathrm{I}_{7}-75,000$ oshms, 16 watt.
Ry-Sensitive relay (Ehy).

C 7-1 Elements of Receiving Systems

Basic requirements - The purpose of a radio receiving system is to abstract energy from passing radio waves and convert it into a form which eonveys the intelligence contained in the transmitted signal. The receiver also nust be able to select a desired signal and climinate those not wanted. The fundanental processes involved are those of amplification and detertion.

Detection - The high frequencies used for radio signaling are well beyond the audiofrequency range ($\$ 2-7$), and therefore cannot be used to actuate a loudspeaker directly. Neither ean they he used to operate other devices, such as relays, by means of which a message might be transmitted. The process of converting a modulated radio-frequency wave to a usable low frequenry, called detection or demodulation, is essentially that of rectification ($\$ 3-1$). The modulated carrier ($\$ 5-1$) is thereby converted to a undirectional current, the amplitude of which will vary at the same rate as the modnation. These low-frequency variations are readily amplified, and can be applied to the headphones, loudspeaker or other form of electromechanical device.

Corle signals - The dots and dashes of code (c.w.) transmissions are rectified as described, but in themselves can produce no audible tone in the headphones or loudspeaker because they are of constant amplitude. Por aural reception it is necessary to introduce a sceond radio frecuency, differing from the signal frequency by a suitable audio frequency, into the detector circuit to produce an audible beat (§2-13). The frequency difference, and hence the beat unte, is generally of the order of 500 to 1000 cycles, since these tones are within the range of optimun response of both the ear and the healset. If the source of the second radio frequency is a separate oscillator, the system is known as heterorlyne reception; if the detector itself is made to oscillate and produce the second frequency, it is known as an autodyne detector.

Amplification - To buikl up weak signals to usable output level, modern receivers employ considerable amplification - often of the order of hundreds of thousands of times. Amplifiers are used at the frequency of the incoming signal (r.f. amplificrs), after detection (a.f. amplifiers), and, in superheterodyne receivers, at one or more internediate radio frequencies (i.f. amplifiers). R.f. and i.f. amplifiers practically always employ tuned circuits.

Types of receirers - Rescivers may vary in complexity from a simple detector with no amplification to multi-tube arraugements having amplifieation at several different radio frequencies as well as at audio frequency. A regenerative retector ($\$ 7-4$) with or without audio-frequency amplification ($87-5$) is known as a regenerative receiver; if the detector is preceded by one or more t.uned r.f. amplifier stages (§7-6), the combination is known as a t.r.f. (tuned radio frequency) receiver. The superheterodyne receiver (§ 7-8) employs r.f. amplification at a fixed intermediate frequency as well as at the frequency of the signal itself, the latter being converted by the heterodyne process to the intermediate frequeney.

At very-high frequencies the superregenerative detector (§ 7-4), usually with audio amplification, is used in the superrgenerative receiver or superregenerator, providing large amplification of weak signals with simple circuit arrangements.

C. 7-2 Receiver Characteristics

Sensitivity - Sensitivity is defined as the strength of the signal (usually expressed in microvolts) which must be applied to the input terminals of the recciver to produce a specified audio-frequency power output at the loudspeaker or headphones (\$7-5). It is a measure of the amplification or gain of the recciver.

Fig. 701 - Selectivity curve of a modern euperhet. erodyne receiver. Relative response is plotted against deviations above and below the resonance frequency. The scale at the left is in terms of voltage ratios; the corresponding decibel steps are shown at the right.

$R_{\text {eceiver }} P_{\text {rinciples and }} D_{\text {esigi }} 143$

Signal-to-noise ratio - Every receiver generates some noise of a hiss-like character, and signals weaker than the noise cannot be separated from it no matter how much amplification is used. This relation between noise and a weak signel is expressed by the term signal-ionoise ratio. It can be defined in various ways, one simple way being to give it as the ratio of signal power output to noise output from the receiver at a specified value of modulated carrier voltage applied to the input terminals.

The hiss-like noise mentioned above is inherent in the circuits and tubes of the receiver, and its amplitude depends upon the selectivity of the receiver. The greater the selectivity the smatler the noise, other things being equal (§ 7-6). In addition to inherent receiver noise, atmospheric electricity (natural "static") and" electrical devices in the vicinity of the receiver also cause noise which adversely affects the signal-to-noise ratio.

Selecticity - Selectivity is the ability of a receiver to discriminate against signals of frequencies differing from that of the desired signal. The over-all selectivity will depend upon the selectivity of the individual tuned circuits and the number of such circuits.

The selectivity of a receiver is shown graphically by drawing a curve which gives the ratio of signal strength required at various frequencies off resonamte to the signal strength at resonance, to give constant output. A resonance curve of this type (taken on a typical com-munications-type superheterodyne receiver) is shown in Fig. 701. The band-wilth is the width of the resunatnce curve (in cyeles or kilocycles) of a receiver at a specified ratio; in Fig. 701, the band-widths are indicated for ratios of response of 2 and 10 ("2 times down" and "10 times down").

Selectivity for signals within a few kilocycles of the desired-signal frequency is called ailja-cent-channel selectivity, to distinguish it from the discrimination against signals considerably removed from the desired frequency.

Stability - The stability of a receiver is its ability to give constant output, over a period of time, from a signal of constant strength and frequency. Pitimarily, it manne tho ability to stay tuned to a given signal. However, a receiver which at some settings of its controls has a tendency to break into oscillation, or "howl," also is said to be unstable.

The stability of a receiver is affected principally by temperature variations, supply-voltage changes, and constructional features of a mechanical nature.

Fidelity - Fidelity is the relative ability of the receiver to reproduce in its output the modulation (keying, 'phone, etc.) carried by the incoming signal. For exact reproduction the band-width must be great enough to accommodate the highest modulation frequency transmitted, and the relative amplitudes of the various frequency components within the band must not be changed in the output.

(A)
(C)

Fig. 702 - Simplifed and practical diode detector circuits. A, the elementary half-wave diode detertor; B, a practical circuit, with r.f. filtering and andio output coupling; C, full-wave diode detector, with output coupling indicated. The circuit, $L_{2} C_{1}$, is tumed to the sipual frectuency; typical values for C_{2} and K_{1} in A and B are $250{ }_{\mu \mu \mathrm{fd}}$. and 250,000 olims, respectivel: : in I , $C: 2$ and C. are $100 \mu \mu \mathrm{fl}$. carh; $R_{1}, 50,000$ ohms; and $R_{2}, 2.00,000$ olins. $C a$ is $0.1 \mu \mathrm{fd}$. and R_{3} may be 0.5 to 1 megohm.

[1 7-3 Detectors

Characteristics - The important characteristics of a detector are its sensitivity, fidelity or linearity, resistance or impedance, and sig-nal-handling capability.

Detector sensiticity is the ratio of andiofrequency output to radio-frequency input. Linearity is a measure of the ability of the detector to reproduce, as an andio frequency, the exact form of the modnlation on the incoming signal. The resistance or impedance of the detector is important in cireuit design, since a relatively low resistance means that power is consumed in the detector. The signalhardling capability means the ability of the detector to accept signals of a specified amplitude without overloading.

Diode detectors - The simplest cletector is the diode rectifier. Circuits for both half-wave and full-wave (\$8-3) diodes are given in Fig. 702. The simplified hali-wave circuit at 702-A includes the r.f. tuned circuit, $L_{2} C_{1}$, a coupling coil, L_{1}, from which the r.f. energy is fed to $L_{2} C_{1}$, and the diode, D, with its load resistance, R_{1}, and by-pass condenser, C_{2}. The flow of rectified r.f. current through R_{1} causes a d.c. voltage to develop across its terminals, and this voltage varies with the modulation on the signal. The - and + signs show the polarity of the voltage. The variation in amplitude of the r.f. signal with modulation causes corresponding variations in the value of the d.c. voltage across R_{1}. The load resistor. R_{1}, usually

Fig, 003 -- Diagrams showing the detection process.
has a rather high value of resistance, so that a fairly large voltage will develop from a small rectified-current flow.

The progress of the signal through the detector or rectifier is shown in ligg. 703. A typical modulated signal as it exists in the tuned circuit is shown at A. When applied to the rectifier tube. current flows from plate to cathode only during the part of the r.f. cycle when the plate is positive with respect to the cathode, so that the output of the reetifier consists of half-cyeles of r.f. still modulated as in the original signal. These current "pulses" flow in the load circuit comprised of R_{1} and C_{2}, the resistance of R_{1} and the capacity of C_{2} being so proportioned that C_{2} charges to the peak value of the rectified voltage on each pulse and retains enourh charge between pulses so that the voltage :uross h_{1} is smoothed out, as shown in C. $C 2$ thas acts as a filter for the radio-frequency component of the output of the rectifier, leaving a d.e. component which varies in the same way ats the modulation on the original signal. When this varring d.e. voltage is applied to a following amplifier through a coupling condenser (C_{4} in lig. 702-B), only the variations in voltage are transferred, so that the final output signal is a.e., as shown in D.

In the circuit at $702-B, R_{1}$ and C_{2} have been divided for the purpose of providing a more effective filter for r.f. It is important to prevent the appearance of any r.f. voltage in the output of the detector, because it may cause overloading of a succeding amplifice tube. The audiofrequency variations can be transferred to another circuit through a eoupling condenser, C_{4} in Fig. 70 , to a lond resistur, R_{3}, which usually is a "potentiometer" ($\$ 8-10$) so that the volume can be adjusted to a desired level.

The full-wave diode circuit at 702-C differs in operation from the half-wavecircuit only in that hoth halves of the r.f.cyele are utilized. The fullwave rireuit has the advantage that very little r.f. voltage appears across the load resistor, K_{1},
because the midpoint or L_{2} is at the same potential as the cathode. or "ground" for r.f.

The reactance of C_{2} must be small compared to the resistance of R_{1} at the radio frequency being rectified, but at audio frequencies nust be relatively large compared to $R_{1}(s, 2-S, 2-13)$. This condition is satisfied by the values shown. If the capacity of C_{2} is too large, response at the higher audio frequencies will he lowered.

Compared with other detectors, the sensitivity of the diode is low. Since the diode consumes power, the Q of the tuned circuit is reduced, bringing about a reduction in selectivity ($\$ 2-10$). The linearity is good, however, and the signal-handling capability is high.

Grid-leak detectors - The grid-leak detector is a combination diode rectifier and audio-frequency amplifier. In the circuit of Fig. $704-\mathrm{A}$, the grid corresponds to the diode plate and the rectifying action is cxactly the same as just described. The d.c. voltage from rectified-current flow through the grid leak, R_{1}, biases the grid negatively with respect to cathode, and the audio-frequency variations in voltage across P_{1} are amplificd through the tube just as in a normal a.f. amplifier. In the plate circuit, R_{2} is the plate load resistance ($\$ 3-3$) and C_{3} is a by-phes condenser to elim-

Fig. 704-Gridaleak detector cirnits, A, trinde; B, pentode. A tetrode may be used in the cireuit of B by neglecting the suppresear-erid comatetion. Transformer coupling may be substituted for resistance coupling in A, or a hiph-inductance choke may replace the plate: resistor in 13. $L_{1} C_{i}$ is a circhit tuned to the signal frequence. The grid leak, K_{1}, may be comected directly from grid to cathoele instead of across the eriel condensor as shown. The operation with cither connertion will be the same. Representative values for compunents are:

Component	Circuit 4	Cirmit ${ }^{\text {P }}$
C 2	100 to $250 \mu \mu \mathrm{fd}$.	1ult $1,0200 \mu \mu \mathrm{fal}$,
C_{3}	0.001 to $0.002 \mu \mathrm{fd}$.	250 (1) 500 mefd.
C_{4}	$0.1 \mu \mathrm{fd}$.	$0.1 \mu \mathrm{fl}$.
Cs		U. 5μ fil. or larzer.
\mathbf{R}_{1}	1 แ12 mezohnas.	1205 mequhtim.
R 2	50,000 ulime.	100.00020280 .000 whate.
R3		50.1100 ohtrue.
R_{4}		20,000 chme.
'T	Audio transformer.	
L		500-benry choko.

The plate voliage in A shoold be about 50 volts for hest sensitivity. In B, the sereen voltage should be about 30 volts and the plate voltage from 100 to 2.50.

Receiver $P_{\text {rinciples and }} D_{\text {esign }} 145$

inate r.f. in the output circuit. C_{4} is the output coupling condenser. With a triode, the load resistor, R_{2}, may be replaced by an audio transformer, T, in which case C_{4} is not used.

Since andio amplification is added to rectification, the grid-leak detector has considerably greater sensitivity than the diode. The sensitivity can be further increased by using a screen-grid tube instead of a triode, ats at 704-B. The operation is equivalent to that of the triode circuit. The screen by-pass eondenser, C_{j}, should have low reactance ($\$ 2-8$, 2-13) for both radio and audio frequencies. R_{3} and R_{4} constitute a voltage divider ($\$ 8-10$) from the plate supply to furnish the proper d.c. voltage to the screen. In both circuits, C_{2} must have low r.f. reactance and high a.f. reactance compared to the resistance of R_{1}; the same applies to C_{3} with respect to R_{2}.

Because of the high plate resistance of the screen-grid tube (\$3-5), transformer coupling from the plate circuit of a screen-grid detector is not satisfactory. An impedance (L in Fig. 704-13) can be used in place of a resistor, with a gain in sensitivity because a high value of load impedance can be developed with little loss of plate voltage as compared to the voltage drop through a resistor. The coupling coil, L_{2}, for a screen-grid detector should have an inductance of the order of 300 to 300 henrys.

The sensitivity of the grid-leak detector is higher than that of any other type. Like the diode, it "loads" the tuned circuit and reduces its selectivity. The linearity is rather poor, and the signal-handling capability is limited.

Plate detectors - The plate detector is arranged so that rectification of the r.f. signal takes place in the plate circuit of the tube, as contrasted to the grid rectification just described. Aufficient negative bias is applied to the grid to bring the plate current nearly to the cut-off point, so that the application of a signal to the grid circuit causes an increase in average plate current. The average plate current follows the changes in signal anmplitude in a fashion similar to the rectified current in a diode detector.

Circuits for triodes and pentodes are given in Pig. 705. C_{3} is the plate by-pasis cundensor, R_{1} is the cathode resistor which provides the operating grid bias ($\S 3-6$), and C_{2} is a by-pass for both radio and audio frequencies across R_{1} ($\S 2-13$). R_{2} is the plate load resistance ($\$ 3-3$), across which a voltage appears as a result of the rectifying action described above. C_{4} is the output coupling condenser. In the pentode circuit at B, R_{3} and R_{4} form a voltage divider. to supply the proper potential (about 30 volts) to the screen, and C_{5} is a by-pass condenser between screen and cathode. C_{5} must have low reactance for both radio and audio frequencies.

In general, transformer coupling from the plate circuit of a plate detector is not satisfactory, because the plate impedance even of a triode is very high when the bias is set near the plate-current cut-off point (\$3-2, 3-3). Inn-

Fig. 705 - Circuits for plate detection. A, triode; B, pentode. 'lher input cirenit, $L_{1} C_{1}$, is tuned to the simal frequency. 'lypical values for the oilier cunstinta art:

Comparien	at Circuit A	Circuit I]
C_{2}	0.3 ful. or larger.	$0.5 \mu \mathrm{fd}$. or largir.
C3	$0.0101100 .002 \mu \mathrm{fd}$.	250 to $500 \mu \mu \mathrm{fl}$.
C_{4}	$0.1 \mu \mathrm{fl}$.	$0.1 \mu \mathrm{fd}$.
C5		$0.5 \mu \mathrm{fl}$. or larzer.
IR_{1}	25,000 to 150,000 shmes.	10.000 io 20,000 olims.
H_{2}	50,000 to 100,000 uhme.	101,000 to 250,000 olama.
H_{3}		50,0i0 olums.
R_{4}		20,000 ulims.

Plate voltages from 100 to 250 volts may be used. Elfective screen voltage in B should be ahout 30 volts.
pedance coupling niav be used in place of the resistance coupling shown in Fig. 705. The same orcler of inductance is required as with the screen-grid detector described previously.

The plate detector is more sensitive than the diode since there is some amplifying action in the tube, but less so than the grid-leak detector. It will hamele considerably larger signals than the grid-leak detector, but is not quite so tolerant in this respect as the diode. Linearity, with the self-biased circuits shown, is good. U_{P}, to the overload point the detector takes no power from the tuned circuit, and so does not allect its Q and selectivity ($\$ 2-10$).

Infinite-impedunce detector-The circuit of Fig. 706 combines the high signal-handling eapmbilities of the diode detector with low distortion (good linearity'), sud, like the plate detector, does not load tho tumed eircuit to which it is connected. The circuit resenables that of the plate detector, except that the load resistance, R_{1}, is connected between cathode and ground and thus is common to both grid and plate circuits, giving negative feed-back for the audio frequencies. The cathode resistor is by-passed for r.f. $\left(C_{1}\right)$ but not for audio (§ $2-13$), while the plate circuit is by-ptssed to ground for botla audio and radio frequencies. R_{2} forms, with C_{3}, an $R C$ filter ($\$ 2-11$) to isolate the plate from the " B " supply at a.f.

The plate current is very low at no signal, increasing with signal as in the case of the plate detector. The voltage drop across B_{1} similarly increases with signah because of the
increased plate current. Because of this and tho fact that the initial drop across R_{1} is large, the grid camnot be driven positive with respect to the cathode by the sigmal, hence no grid current can be drawn.

Fig. Fos - The infinite-innpedance lincar detector. The input circuit, $L .2(i$, , is tumed to the signal fre'quency. l^{\prime} ? pical values for the other constants are: $C_{2}-250 \mu \mu \mathrm{fl} . \quad \mathrm{R}_{1}-0.15$ merpohme.

(:4-0.1 $\mu \mathrm{fil}$. R3.-0.25-megohme volume control. A tube having a medium amplification factor (about 20) should be used. Plate voltage should be 250 volts.

[1 7-4 Regenerative Detectors

Circuils-By providing controllable r.f. feed-back or regeneration (\$3-3) in a triode or pentode detector circuit, the incoming signal can be amplified many times, thereby greatly increasing the sensitivity of the detector. Regeneration also increases the effective Q of the circuit, and hence increases the selectivity (\$2-10) by virtue of the fact that the maxinum regenerative amplification takes place only at the frequency to which the circuit is tuned. The grid-leak type of detector is most suitable for the purpose. Except for the refenerative connertion, the circuit values are identical with those previously described for this type of detector, and the sume considera1.ions apply' 'The anount of regeneration must be controllable, because maximum regenerative amplification is secured at the critical point where the circuit is just about to oscillate ($\$ 3-7$) and the critical point in turn depends upon circuit conditions, which may vary with the frequency to which the detector is tuned.

Fig. 707 shows the circuits of regenerative detectors of various types. The circuit of A is for a triode tube, with a variable by-pass condenser, C_{3}, in the plate circuit to control regeneration. When the capacity is small the tube does not regenerate, but as it increases toward maximum its reactance ($\$ 2-8$) becomes smaller until a critical value is reached where there is suficicant feed-back to cause oscillation. If L_{2} and $L_{0_{3}}$ are wound end-to-end in the same direction, the plate connertion is to the outside of the plate or "tickler" coil, L_{3}, when the grid connection is to the outside of L_{2}.

The circuit of B is for a screen-grid tube, regeneration being controlled by adjustment of the screen-grid voltage. The tickler, L_{3}, is in the plate circuit. The portion of the control resistor between the rotating contact and ground is by-passed by a large condenser ($0.5 \mu \mathrm{fd}$. or more) to filter out scratching noise when the arm is rotated (§ 2-11). The feed-
book is adjusted by varying the number of turns on L_{3} or the coupling (\$2-11) between L_{2} and L_{3}, until the tube just goes into oscillation at a screen voltage of approximately 30 volts.

Circuit C is identical with B in principle of operation, except that the oscillating circuit is of the Hartley type ($\$ 3-\overline{\text { }}$). Wince the screen and plate are in parallel for r.f. in this circuit, only a small amount of "tickler" - that is, relatively few turns between the cathode tap) and ground - is required for osciliation.

Adjustment for smooth regenerution The ideal regeneration control would permit the detector to go into and out of oscillation smoothly, would have no effect on the frequency of oscillation, and would give the same value of regencration regardless of frequency and the loading on the circuit. In practice, the effects of loading, particularly the loading that occurs when the detector circuit is coupled to an antennal, are difficult to overcome. Likewise, the regencration is afferted by the frequency to which the grid circuit is thmed.

In all circuits it is best to wind the tickler at the ground or cathode end of the grid coil, and to use as few turns on the tickler as will alluw the detector to oscillate casily orer the whole tuning range at the plate (and sereen, if a pentode) voltage which gives maximum sensitivity. Should the tube break into oscillation suddenly as the regeneration control is advanced, making a click, the operation often can be made smoother by changing the gridleak resistance to a higher or lower value. The wrong grid leak plus too-high plate and srreen voltage are the most frequent causes of lack of smoothness in going into oscillation.

Aruenna coupling - If the detector is coupled to an antemat, slight changes in the antennal constants (as when the wire swings in a breeze) affect the frequency of the oscillations generated, and thereby the beat frequency when c.w. signals are being received. The tighter the antenna coupling is made, the greater will be the feed-back recuired or the higher will be the voltilge necessary to make the detector oscillate. The antema coupling should be the maximum that will allow the detector to go into oscillation smoothly with the correct voltages on the tube. If capacity: coupling ($\$ 2-11$) to the grid end of the coil is used, only a very small amount of capacity will be needed to couple to the antenna. Increasing the capacity increases the coupling.

At frequencies where the antenna system is resonant the absorption of energy from the oscillating detector circuit will be greater, with the consequence that more regeneration is needed. In extreme cases it may not be possible to make the detector oscillate with normal voltages, causing so-called "dead spots." The remedy for this is to loosen the antenna coupling to the point which perinits normal oscillation and smooth regeneration control.

Body capacity - A regenerative detector uccasionally shows a tendency to change fre-
quency slightity as the hand is moved near the dial. This condition (body capacity) can be caused by poor design of the receiver, or by the antenna if the detector is coupled directly to it. If body capacity is present when the antenna is disconnected, it can be eliminated by better shielding, ind sometimes by r.f. filtering of the 'phone leads. Body capacity which is present only when the antenna is connected is caused by resonance effects in the antenna, which tend to cause a portion of a standing wave ($\$ 2-12$) of r.f. voltage to appear on the gromel lead and thus raise the whole detector circuit above ground potential. A good, short ground connection should be matde to the receiver and the length of the antema varied electrically (by adding a small coil or variable condenser in the antenna lead) until the effect is mininized. Loosening the coupling to the antenna circuit also will help.
IItum - Hum at the power-supply frequency may be present in a regenerative detector, especially when it is used in an oscillating condition for c.w. reception, even though the plate supply itself is free from ripple ($\$ 8-4$). The hum may result from the use of a.c. on the tube heater, but effects of this type normally are troublesome only when the circuit of Fig. 707-C is used, and then only at $1+\mathrm{Mc}$. and higher frequencies. Comerting one side of the heater supply to ground, or grounding the center-tap of the henter transformer winding, is good practice to reduce hum, and the heater wiring should be kept as far as possible from the r.f. circuits.

House wiring, if of the "open" type, will have a rather extensive electrostatic field which may cause hum if the detector tube, grid lead, and gricl condenser and leak are not electrostatically shielded. This type of hum is ensily recognizable because of its rather high pitch, a result of harmonics ($\$ 2-7$) in the power-supply system. The hum is caused by a species of grid modulation (§ 5-4).
Antenna resonance effccts frequently cause a hum of the same nature as that just described which is most intense at the various resomance points, and hence varies with tuning. For this reason it is called tunable hum. It is prone to occur with a rectified a.c. plate supply ($8 \mathrm{~S}-1$) when a standing wave effect of the type described in the preceding paragraph occurs, and is associated with the non-linearity of the rectifier tube in the plate supply. Elimination of antenna resonance effects as described and br-passing the rectifier plates to cathode (using by-pass condensers of the order of $0.001 \mu \mathrm{fd}$.) usually will cure it.
Tuning - For c.w. reception, the regeneration control is advanced until the detector breaks into a "liss," which indicates that the detector is oscillating. Further advancing the regeneration control after the detector starts oscillating will result in a slight deorease in the strength of the hiss. indicating that the sensitivity of the detector is decreasing.

The proper adjustment of the regencration control for best reccption of c.w. signals is where the detector just starts to oscillate, when it will be found that c.w. signals can be tuned in and will give a tone with each signal depending on the setting of the tuning control. As the receiver is tuned through a signal the tone first. will be heard as a very high pitch, then will go down through "zero beat" (the region where the frequencies of the incoming signal and the oscillating detector are so nearly alike that the difference or beat is less than the lowest audible tone) and rise again on the other side, finally: disappearing at a very high pitch. This behatwior is shown in Fig. 70S. It will he found that a low-pitched beat-note camot be ohtained from a strong signal because the detector "pulls in" or "blocks"; that is, the signal tends to control the detector in such a way that the latter oscillates at the signal frequency, despite the fact that the circuit may not be tuned exactly to resonance. This phenomenom, commonly observed when an oscillator is coupled to a source of a.c. voltage of approximately the

Fig. 707 - Triode and pentode regenerative detector eircuits. The input circuit, $L_{2} C_{1}$, is tuned to the signal frequency. The grid condenser, C_{2}, should have a value of about $100 \mu \mu \mathrm{fd}$. in all circuits; the qrid leak, R_{1}, may range in value from 1 to 5 mepohme. The tickler coil, L_{3}, ordinarily will have from 10 to 25 per cent of the number of turns on L_{2}; in C, the cathode tap is aloout 10 per cent of the number of turns on L_{2} abore ground. Regeneration control condenser C_{3} in Λ should have a maximum capacity of $100 \mu \mu \mathrm{fd}$. or nore; hy-pass comdensers C_{3} in B and C are likewise $100 \mu \mu \mathrm{fl}$. C_{3} is ordinarily $1 \mu \mathrm{fd}$. or more; R_{2}, a 50,000 -ohme potentiometır; $R_{3}, 50,000$ to 100,000 ohms. L_{4} in B (L_{3} in C) is, a $500-$ heary inductance, C_{4} is $0.1 \mu \mathrm{fd}$. in both circuits. T_{1} in A is a conventional audio transformer for coupling from the plate of a tube to a following grid. $R F C$ is 2.5 mh . In A, the plate voltage sbould be about 50 volts for best sensitivity. Pentode circuits require about 30 volts on the screen; plate voltage mas be 100 to 250 volta.

Fig. 708 - As the tuning dial of a recciver is turned phat a co.. sisnal, the heat-note varies from a high phene duwn throuph "zuro heat" (no audihle frequency difference) and back up to a high tunc, as shown ai A, B and C. 'The curve is a graphical representation of the action. The beut existe past 8000 or 10,000 eycles but usually is not heard becanse of the limitations of the audio system.
frequency at which the oscillator is operating, is called "locking-in"; the more stable of the two frequencies assumes control over the other: "Blacking" usually can be corrected by advancing the regeneration control until the heat-note occurs arain. If the rerenerative detector is preceded by an r.f. amplifier stage, the blocking can be climinaterl by reducing the fain of the r.f.stage. If the detector is coupled to an antenna, the blorking condition can be climinated by advancing the regeneration control or loosening the antenna coupling.

The point just after the receiver starts oscillating is the most sensitive condition for c.w. reception. Firther advancing the regeneration eontrol makes the receiver less prone to blocking hy strong signals, but also less capable of receiving weak signals,

If the reeciver is in the oscellating condition and a'phone signal is tuned in, a steady audible beat-note will result. While it is possible to listen to phone if the receiver ean be tumed to exact zero beat, it is more satisfactory to reduce the regeneration to the point just before the receiver goes into oscillation. This is also the most sensitive operating point.

Superregeneration - Tbe limit to which ordinary regenerative amplification can be carried is the point at which oscillations commence, since at that point further amplification ceases. The superregeneration detector overcomes this limitation by introducing into the detector circuit an alternating voltage of a frequency somewhat ahove the audible range (of the order of 20 to 200 kilocycles), in such a way as to vary the detector's operating point ($\$ 3-3$). As a consecpuence of the introduction of this quench or intirruption frequency, the detector can uscilate only when the varying operating point is in a region suitable for the production of oscillations. Because the oscillations are constantly being interrupted, the regeneration can be greatly increased, and the amplified signal will build up to tremendous proportions. A one-tube superregenerative de-
tector is capable of an inherent sensitivity approaching the thermal-agitation noise level of the tuned circuit, and nay have an antemma input sensitivity of two nicrovolts or better.

Because of its inherent characteristics, the superregenerative circuit is suitable only for the reception of modulated signals, and opcrates best on the very-high frequencies. Typieal superregenerative circuits for the veryhigh frequencies are shown in Fig. 709.

The basic regenerative detector circuit is the ultraudion oscillator ($\$ 3-\bar{\pi}$). In Fig. 703-A the quench frequency is obtained from a separate oscillator and introduced into the plate circuit of the detector. The quench oscillator. operating at a low radio frequency, alternately allows oscillations to build up in the regenerative circuit and then causes them to die out. In the absence of a signal, the thermal agitation noise in the input circuit produces the voltage that initiates the build-up process. However, when an incoming signal provides the initinting pulse, it has the effect of advancing the starting time of the oxcillations. This causes the area within the envelope to increase, as indicated in Fig. 710-(\%

If regeneration in an ordinary regenerative circuit is carried sufficiently far, the circuit will break into a low-frequency oscillation simultaneously with that at the operating radio frequency. This low-freruency oseillation has much the same quenching effert as that from a separate oscillator, henee a circuit su operated is called a self-quenching superregenerative detector. The frequency of the quench osciliation depends upon the feel-back and upon the time constant of the grid leak and condenser, the oscillation being a "blocking" or "squegging" in which the grid accumulates a strong negative charge which doos not leak off rapidly enough through the grid lo:ak to prevent a relittively slow variation of the operating point.

Fig. 709 - (A) Superrepenerative detertor circuit using a separate quench oxillate:- (b) Sulfonuenched superrepenerative detector circuit. 1.2% is tuned to the signal frequency. Typical values fur uther components are: $\mathrm{C}_{2}-50{ }_{\mu} \mu \mathrm{ffl}$. $\quad \mathrm{R}_{4}$ - ir$)_{0} 000$ ohms. C_{3} - $500 \mu \mu \mathrm{fd} . \quad \mathrm{T}_{1}$ - Audiotransformer, $\mathrm{C}_{4}-0.1 \mu \mathrm{fd}$.
$\mathrm{C}_{5}-0.001-0.005 \mu \mathrm{fd}$.
R_{1} - 2 -10 megohins.
$\mathrm{R}_{2}-50,000$ ohns.
$R_{3}-50,000$ ohmu poten-
RFC - R.f. choke, value depending upon frequen. cy. Sinall low capacity chokes are required for v.b.f. operation.
(A)

(B)

(D)

Fig. 710 - M.f. oscillation ervelopes in a self-quenclued superregenerative detcetor. Without signal (A at left) oscillations are completely quenched after each period, resuming in randon phase depending on momentary noise voltages. At right, when the initiating pulses are supplied hy a received signal the starting tine of the oscillations is advanced causing the buildonp period to bepin before danping is complete. This advanee is proportional to the carrier amplitude when modnlated (B). Since the buildiny-up period varies in aceordince with modulution (C), when these wave trains are rectified the average rectified currmit is proportional to the amplitude of the signal. Amplitude modulation is therefore reproduced its an audio wave in the output circuit (D).

The greater the difference between the quenehing and signal frequencies the greator the amplification, because the signal then has a longer period in which to build up during the nonquenching half-cycle when the resistance of the circuit is negative. This ratio should not exceed a certain limit, however, for during the quenched or nonregenerative intervals the input selectivity is merely that of the Q of the tuned circuit alone. The optimum quench frequency is in the neighborhood of 150 kc . for the $60-\mathrm{Mc}$. band and 250 kc . for 112 Mc .

The superredenerative detector has relatively little selectivity as compared to a regular regenerative detector, but discriminates against noise such as ignition interference. It also has marked a.v.c. action, strong signals being amplified much less than weak signals.
ddjustmont of superregenerative eletectors - Because of the greater amplitication, the hiss noise when a superregenerative detector goes into oscillation is much stronger than with the ordinary regenerative detector. The most sensitive condition is at the point where the hiss first becomes marked. When a signal is tuned in, the hiss will disappear to a degree which depends upon the signal strength.

Lack of hiss indicates insufficient feed-back at the signal frequency, or inadequate quench voltage. Antenna loading effects will cause dead spots which are similar to those in regenerative detectors and can be overcome by the same methods. The self-rquenching detector may require critical adjustment of the grid leak and grid condonser values for smooth operation, since these determine the frequency and amplitude of the quench voltage.

(1) 7-5 Audio-Frequency Amplifiers

General - The ordinary detector does not produce very much audio-frequency power output - usually not enough to give satisficetory sound volume, even in headphone reception. Consequently, audio-frequency amplifiers are used after the cletector to increase the power level. One amplifier usualiy is sufficient for headphones, but two stages generally are used where the recciver is to operate a loudspeaker. A few milliwatts of a.f. power is sufficient for headphones, but a loudspeaker requires a watt or more for good rom volume.

In all except battery-operated receivers, the negative grid bias of audio amplifiers usually is seeured from the voltage drop in a cathode resistor (§ 3-6). The cathode resistor must be bypassed by a condenser having low reactance at the lowest audio frequency to be amplified, compared to the resistance of the cathode resistor (10 per cent or less) ($82-8,2-13$). In battery-nperated receivers, a separate gridbias battery generally is used.

Inealset and voltage amplifiers- The cireuits shown in Fig. 711 are typical of those used for voltage amplification and for providing sufficient power for operation of headplones (§ 3-3). Triodes usually are preferred to pentodes because they are better suited to working into an audio transformer or headset, the input inpedances of which are of the order of 20,000 olims.

In these circuits, R_{2} is the catlode bias resistor and C_{1} the cathode by-pass condenser. The grid resistor, R_{1}, gives volume control action ($\S 5-0$). Its value ordinarily is from 0.25 to 1 megohm. C_{2} is the input coupling condenser, already discussed under detectors; it is, in fact, illentical to C_{4} in Figs. 704 and 705, if the amplifier is coupled to a detector.

Pouer amplifiers-A popular type of power amplifier is the single pentode, operated Class A or $A B$; the circuit diagram is given in Fig. 711-A. The grid resistor, R_{1}, may be a potentiometer for volume control, as shown at

Fig. 711 - Audio amplifier circuits nsed for voltage amplification and to provide power for headphone output. The tubes are operated as Class-A amplifiers (§ 3-4).
R_{1} in Fig. 711. The output transformer, T, should have a turns ratio (§ 2-9) suitable for the loudspeaker used; many of the small loudspeakers now available are furnished complete with output transformer.

When greater volume is needed, a pair of pentodes or tetrodes may be connected in push-pull (§3-3), as shown in Fig. 712-B. Transformer coupling to the voltage-amplifier stage is the simplest method of obtaining pushpull input for the amplifier grids. The interstage transformer, T_{1}, has a center-tapped secondary with a secondary-to-primary turns ratio of about 2 to 1. An output transformer, T_{2}, witha center-tapped primary must be used. No by-pass condenser is needed arross the cathode resistor, R, since the a.f. current does not flow through the resistor as it does in single-tube circuits (\$3-3).

Tone control - A tone control is a device for changing the frequency response (§3-3) of an audio amplifier; usually it is simply a nethod for reducing high-frequency response. This is helpful in reducing hissing and crackling noises without disturbing the intelligibility of the signal. R_{4} and C_{4}, in Fig. 711-D, together form an effective tone control of this type. The maximum effect is secured when the resistance of R_{4} is entirely out of the rircuit, leaving C_{4} comected directly between grid and ground. R_{4} should be large compared to the reactance of $C_{4}(\S 2-8)$ so that when its resistance is all in circuit the effect of C_{4} on the frequency response is negligible.

Headphones andloudspeakers-Two types of headphones are in general use, the magnetic and crystal types. They are shown in crosssection in Fig. 713. In the magnetic type the signal is applied to a coil or pair of coils having a great many turns of fine wire wound on a permanent magnet. (Headphones having one coil are known as the "single-pole" type, while those having two coils, as shown in Fig. 713, are called "double-pole.") A thin circular diaphragn of iron is placed close to

Fig. 712 - Power-output audio amplifier circuits. Ei. ther Class A or AB amplification (83-4) may be used.
the open ends of the magnet. It is tightly clamped by the earpiece assembly around its circumference, and the center is drawn toward the permanent magnet under some tension. When an alternating current flows through the windings the field set up by the current alternately aids and opposes the steady field of the permanent magnet, so that the diaphragm alternately is drawn nearer to and allowed to spring farther away from the magnet. Its motion sets the air into corresponding vibration. Although the d.c. resistance of the coils may be of the order of 2000 ohms, the a.c. impedance of a magnetic type headset will be of the order of 20,000 ohms at 1000 cycles.

In the crystal headphone, two piczoelectric: crystals ($\$ 2-10$) of Rochelle salts are cemented together in such a way that the pair tends to be bent in one direction when a voltage of a certain polarity is applied and to bend in the other direction when the polarity is reversed. The crystal unit is rigidly mounted to the earpiece, with the free end coupled to a diaphragm. When an alternating voltage is applied, the alternate bending as the polarity of the applied voltage reverses makes the diaphragm vibrate back and forth. The impedance is several times that of the magnetic type.

Magnetic-type headsets tend to give maximum response at frequencies of the order of 500 to 1000 cycles, with a considerable reduction of response (for constant applied voltage) at frequencies both above and below this region. The crystal type has a "flatter" fre-quency-response curve, and is particularly good at reproducing the higher audio frequencies. The peaked response curve of the magnetic type is advantageous in code reception, since it tends to reluce interference from signals having beat tones lying outside the region of maximum response, while the erystal type is better for the reception of voice and music. Magnetic headsets can be used in circuits in which d.c. is flowing, such as the plate circuit of a vacuum tube, providing the current is not too large to be carried safely by the wirc in the coils; the limit is a few milliamperes. Crystal headsets must be used only on a.c. (since a steady d.c. voltage will damage the crystal unit), and consequently must be coupled to the tube through a device, such as a conclenser, which isolates the d.c. voltage but permits the passage of an alternating current.

The most common type of loudspeaker is the dynamic type, shown in cross-section in Fig. 713. The signal is applied to a small coil (the voice coil) which is free to move in the gap between the ends of a magnet. The magnet is made in the form of a cylindrical coil slightly smaller than the form on which the voice coil is wound, with the magnetic circuit completed through a pole piece which fits around the outside of the voice coil leaving just enough clearance for free movement of the coil. The path of the flux through the magnet is as shown by the dotted lines in the figure.

Fig. 713 - lleadphone and loudspeaker construction.
The voice coil is supportel so that it is free to move along its axis but not in other directions, and is fastened to a fiber or paper conical diaphragm. When current is sent through the coil it moves in a direction determined by the polarity of the current ($\$ 2-5$), and thus moves back and forth when an alternating voltage is applied. The motion is transmitted by the diaphragm to the air, setting up sound waves.

The type of speaker shown in Fig. 713 obtains its fixed magnetic field by electromagnetic means, direct current being sent through the field coil for this purpose. Other types use permanent magnets to replace the electromagnet, and hence do not require a source of d.c. power. The voice coils of dynamic speakers have few turns and therefore low impedance, values of 3 to 15 ulims being representative.

[7-6 Radio-Frequency Amplifiers

Circuits - Although there may be variations in detail, practically all r.f. amplifiers eonform to the basic circuit shown in Fig. 714. A screen-grid tube, usually a pentode, is used, since a triode will uscillate when its grid and plate circuits are tuned to the same frequency ($\$ 3-5$). The amplifier operates Class A, without grid current ($\$ 3-4$). The tuned grid circuit, $L_{1} C_{1}$, is coupled through L_{2} to the antenna (or, in some cases, to a preceding stage). R_{1} and C_{2} are the cathode bias resistor and by-pass condenser, C_{3} is the sereen by-pass condenser, and R_{2} is the screen dropping resistor. L_{3} is the primary of the output transformer ($\S 2-11$), tightly coupled to L_{4}, which, with C_{5}, constitutes the tuned circuit feeding the detector or following amplifier. The input and output circuits, $L_{1} C_{1}$ and $L_{4} C_{5}$, are botll tuned to the signal frequency.

Shielding - The screen-grid construction of the amplifier tube prevents feed-back ($\S 3-3$) from plate to grid inside the tube, but in addi-
tion it is necessury to prevent transfer of energy from the plate circuit to the grid circuit external to the tube. This is accomplished by enclosing the coils in grounded shielding containers and by keeping the plate and grid leads well separated. With "single-ended" tubes, care in laying out the wiring to obtain the maximum possible physical separation between plate and grid leads is necessary to prevent capacity coupling.
The shield around a coil will reduce the inductance and Q of the coil ($\$ 2-11$) to an extent which depends upon the shielding material and the distance it is placed from the coil. Adjustments therefore must be made with the shield in place.

By-passing - In addition to shielding, good by-passing ($\$ 2-13$) is imperative. This is not simply a matter of choosing the proper type and capacity of by-pass condenser. Short scparate leads from C_{3} and C_{4} to cathode or ground are a prime necessity. At the higher radio frequencies even an inch of wire will have enough inductance to provide feed-back coupling, and hence cause oscillation, if the wire happens to be common to both the plate and grid circuits.

Gain control - The gain of an r.f. amplifier usually is varied by varying the grid bias. This method works best with variable- μ type tubes ($(3-i$-i), hence this type usually is found in r.f. amplifiers. In Fig. 714, R_{3} and R_{4} comprise the gain-control eircuit. R_{3} is the control resistor ($\S 3-6$) and R_{4} a dropping resistor of such value as to make the voltage across the outside terminals of K_{3} about 50 volts ($\$ \mathrm{~S}-10$). The gain is maximum with the variable arm on F_{3} all the way to the left (grounded), and minimum at the right. R_{3} could simply be placed in series with R_{1}, omitting R_{4} entirely, but the range of control with this connection is limited because it depends on the cathode current alone.

In a multi-tube receiver the gain of several stages may be varied simultancously, a single control sufficing for all. The lower ends of the several cathode resistors $\left(R_{1}\right)$ are then connected together and to the movable contact on R_{3} in Fig. 714.

Circuit values - The value of the cathode resistor, R_{1}, should be callemlated foi the minimum recommended bias for the tube used. The capacities of C_{2}, C_{3} and C_{4} must be such that the reactance is low at radio frequencies; this condition is easily met by using $0.01-\mu$ fil. condensers at communication frequencies. or 0.001 to 0.002 mica units at very-high fre-

Fig. 714-Basic circuit of a tuned radio-frequency umplifier. Cumponent values are dincussed in the teat.
quencies up to $112 \mathrm{Mc} . R_{2}$ is found by taking the difference between the recommended plate and screen voltages, then substituting this and the rated screen current in Ohm's Law (§ 2-6). R_{3} must be selected on the basis of the number of tubes to be controlled; a resistor must be chosen which is capable of carrying, at its lowresistance end, the sum of all the tube currents plus the bleeder current. A resistor of suitable current-carrying capacity being found, the bleeder current necessary to produce a drop through it of about 50 volts can be calculated by Ohm's Latw. The same formula will give R_{4}, using the plate voltage less 50 volts for E and the bleeder current previously found for I.

The constants of the tuned circuits will depend upon the frequenry range, or band, to be rovered. A fairly high L / C ratio ($\$ 2-10$) should be used on each hand; this is limited, however, by the irreducible minimum capacities. 'lo an allowance of 10 to $20 \mu \mu \mathrm{fd}$. for tube and stray capacitics should be added the minimum capacity of the tuning condenser.

If the input circuit of the amplifier is connected to an nntenna, the coupling coil, L_{2}, should be adjusted to provide critical coupling ($\$ 2-11$) between the antenna and grid circuit. This will give maximum energy transfer. The turns ratio of L_{1} / L_{2} will depend upon the frequency, the type of tube used, the Q of the funed circuit and the constants of the antenna system, and in general is best determined experimentally. The sclectivity will increase as the coupling is reduced below this "optimum" value, a consideration which it is well to keep in mind if selectivity is of more importance than maxinum gain.

The output-circuit coupling depends upon the plate resistance ($\$ 3-2$) of the tube, the input resistance of the succeeding stage, and the Q of the tuned circuit, $L_{4} C_{5} . L_{3}$ usually is coupled as clusely as possible to L_{4} (avoriding the necessity for an additional tuning condenser across L_{3}) and the energy transfer is maximum when L_{3} has $2 / 3$ to $4 / 5$ as many turns as L_{4}, with ordinary receiving pentodes.

Tube and circuit noise - In any conductor electrons will be moving in random directions simultaneously and, as a result, small irregular voltages are developed across the conductor terminals. The voltage is larger the greater the resistance of the conductor and the higher its temperature. This is known as the thermalagitation effect, and it produces a hiss-like noise voltage distributed uniformly throughout the radio-frequency spectrum. The thermalagitation noise voltage appearing across the terminals of a tuned circuit will be the same as in a resistor of a value equal to the parallel impedance ($\$ 2-10$) of the tuned circuit, even though the actual circuit resistance is low. Hence, the higher the Q of the circuit, the greater the thermal agitation noise.

Another component of hiss noise is developed in the tube because the rain of electrons on the plate is not entirely uniform. Smatl ir-
regularitics caused by gas in the tube alsa contribute to the effect. Tube noise varies with the type of tube; in general, the higher the cathode current and the lower the mutual conductance of the tube, the more internal noise it will generate.

To obtain the best signal-to-noise ratio, the signal must be made as large as possible at the grid of the tube, which means that the antenna coupling must be adjusted to that end and also that the Q of the grid tuned circuit must be high. A tube with low inherent noise obviously should be chosen. In an amplifier having good signal-to-noise ratio, the thermal-agitation noise will be greater than the tube noise. This can easily be checked by disconnecting the antenna so that no outside noise is being introduced into the receiver, then grounding the grid through a $0.01-\mu \mathrm{fd}$. condenser and observing whether there is a decrease in noise. If there is no change the tube noise is greatly predominant, indicating a poor signal-tonoise ratio in the stage. The test is valid only if there is no regeneration in the amplifier. The signal-fo-noise ratio will decrease as the frequency is raised, because it becomes increasingly difficult to obtain a tuned circuit of high effective Q (§ 7-7).

The first stage of the receiver is the important one from the standpoint of signal-to-noise ratio. Noise generated in the second and subsequent stages, while comparable in magnitude to that generated in the first, is masked by the amplified noise and signal from the first stage. After the second stage, further contributions by tulees and circuits to the total noise are inconsequential in any norinal recciver.

Tube input resistance - At high radio frequencies the tube may consume power from the tuned grid circuit, even though the grid is not driven positive by the signal. Above 7 Mc . all tubes "load" the tuned circuit to some extent, the amount of loading varying with the type of tube. This effect comes about because of the transit time necessary for electrons to travel from the cathode to the grid becomes comparable to the time of one r.f. cycle, and because of the degenerative effect ($(3-3)$ of the cathode lead inductance. It becomes more pronounced as the frequency is increased. Certain types of tubes may have an input resistance of only a few thousand ohnis at 28 Mc . and as little as a frw hundred ohms at very-high frequencies. The input resistance of the same tubes at 7 Mc . and lower frequencies may be so high as to be considered infinite.

This input-loading effect is in addition to the normal decrease in the Q of the tuned circuit alone, because of increased losses in the coil and condenser at the higher frequencies. Thus the selectivity and gain of the circuit both are affected adversely by increasing frequency.

Comparison of tubes - 1 t 7 Mc . and lower frequencies, the signal-to-noise ratio, gain, and selectivity of an r.f.-amplifier stage are sufficiently high with any of the standard receiving
tubes. At 14 Mc . and higher, however, this is no longer true, and the choice of a tube must be based on several conflicting considerations.
Gain is highest with high mutual-conductance pentodes, the 6AB7 and 6AC7 being examples of this type. These tubes also develop less noise than any of the others. The inputloading effect is greatest with them, however, so that selectivity is decreased and the tunedcircuit gain is lowered.
Pentodes, such as the 6K77, 6.17 and corresponding types in glass, have lesser inputloading effects at high frequencies, moderate gain, and relatively high inherent noise.
"Acorn" and equivalent miniature pentodes are excellent from the input-loading standpoint; gain is about the same as with standard types, and the inherent noise is somewhat lower.

Where selectivity is paramount the acorns are best, the standard pentodes second, and the $6 \mathrm{AB7}-\mathrm{GAC7}$ types worst. On signal-to-noise ratio the latter tubes are first, acorns are second and standard pentodes third. The same order of precedence holds for over-all gain.

At 56 Mc . the standard types are usable, but acorns are capable of better performance because of lesser loading. The 954 and 956 and the eorresponding types, 9001 and 9003 , are examples of types satisfactory for r.f. amplification at 100 Mc . and higher.

(1) 7-7 Tuning and Band-Changing Methods

Band-changing - The resonant circuits which are tuned to the frequency of the incoming signal constitute a special problem in the design of amatcur receivers, since the amateur frequency assignments consist of groups or bands of frecuencies at widely spaced intervals. The same $L C$ combination cannot be used for, say, $1+\mathrm{Me}$. to 3.5 Mc ., because of the impracticable maximum-minimum capacity ratio required, and also because the tuning would be excessively critical with such a large frequeney range. It is necessary, therefore, to provide a means for changing the circuit constants for various freguency bands. As n matter of convenience the same tuning condenser usually is retained, but new coils are inserted in the circuit for each band.

There are two favorite methods of changing inductances. One is to use a switch having an appropriate number of contacts, which connects the desired coil and disconnects the others. The second is to use coils wound on forms with contacts (usually pins) which can be plugged in and removed from a socket.

Bandspreading - The tuning range of a given coil and variable condenser will depend upon the inductance of the coil and the change in tuning capacity. For ease of tuning, it is desirable to adjust the tuning range so that practically the whole dial scale is occupied by the band in use. This is called bandspreading. Because of the varying widths of the bands, special tuning methods must be devised to give
the correct maximumminimum capacity ratio on each band. Several of these methods are shown in Fig. 715.

In A, a small bandspread condenser, C_{1} (15 to $25 \mu \mu \mathrm{fd}$. maximum capacity), is used in parallel with a condenser, C_{2}, which is usually large enough (140 to $175 \mu \mu \mathrm{fd}$.) to cover a 2 -to- 1 frequency range. The setting of C_{2} will determine the minimum capacity of the circuit, and the maximum capacity for bandspread tuning will be the maximum capacity of C_{1} plus the setting of C_{2}. The inductance of the coil can be adjusted so that the maximum-minimum ratio will give adequate bandspread. In practicable circuits it is almost impossible, because of the non-harmonic relation of the various bands, to get full bandspread on all bands with the same pair of condensers, especially when the coils are wound to give continuous frequency coverage on C_{2}, which is variously called the baudsetting or main-tuning condenser. C_{2} nust be reset each time the band is changed.

The method shown at B makes use of condensers in serics. The tuning condenser, C_{1}, may have a maximum capacity of $100 \mu \mathrm{ff}$. or more. The minimum capacity is determined principally by the setting of C_{3}, which usually has low capacity, and the maximum capacity by the setting of C_{2}, which is of the order of 25 to $50 \mu \mu \mathrm{fi}$. This method is capable of close adjustment to practieally any desired degree of bandspread. Fither C_{2} and C_{3} must be adjusted for each band or separate pre-adjusted condensers must be switched in.

The circuit at C also gives complete spread on each band. C_{1}, the bandspread condenser, may have any convenient value of capacity; $50 \mu \mu \mathrm{fd}$. is satisfactory. C_{2} may be used for continuuus freqiiency coverage ("general anverage") and as a band-setting condenser. The effective maximum-minimum capacity ratio depends upon the capacity of C_{2} and the point at which C_{1} is tapped on the coil. The nearer the tap to the bottom of the coil, the greater the bandspread, and vice versa. For a given coil and tap, the bandspread will be greater if C_{2} is set at larger capacity. C_{2} may be mounted in the plug-in coil form and pro-set, if desired. This requires a separate condenser for each band, but climinates the necessity for resetting C_{2} each time the band is changed.

Ganged tuning - The tuning condensers of the several r.f. circuits may be coupled together mechanically and operated by a single control. However, this operating convenience involves more domplicated construction, both
rectrically and mechanically. It becomes necessary to make the various circuits track that is, tune to the same frequency at each setting of the tuning control.

True tracking can be obtained only when the inductance, tuning condensers, and circuit minimum and maximum capacities are identical in all "ganged" stages. A small trimmer or padding conclenser may be connected across the coil, so that variations in minimum capacity can be compensated. The fundamental circuit is shown in Fig. 716, where ('I is the trimmer and C_{2} the tuning condenser. The use of the trimmer necossarily increases the minimum circuit eapacity, but. it is a necessity for satisfactory tracking. Midget condensers having maximum capacitics of 15 to $30 \mu \mu \mathrm{~d}$. are commonly used.

The same methods are applied to bandspread circuits which must be tracked. The circuits are identical with those of Fig. 715. If both general-coverage and bandspread tuning are to be available, an additional trimmer condenser must be connected across the coil in each circuit shown. If only amateur-band tuning is desired, however, then C_{3} in Fig. 71i-13, and C_{2} in Fig. 71 in-C serve as trimmers.

Fig. 716-Showing the use of a trinmer condenser, to set the minimum rircuit rapurity in order to ohtain truc racking for gang-tuning.

The coil indurtance ran be adjusted by starting with a larger number of turns than necessary and removing a turn or fraction of a turn at a time until the circuits track satisfactorily. An alternative mothod, provided the inductance is reasonably rlose to the eorrect value initially, is to make the coil so that the last turn is variable with respeet to the whole coil, or to use a single short-circuited turn the position of which can be varied with respect to the coil. The application of these methods is shown in Fig. 717.
V.h.f. circuits - Intrrelectrode capacities are practically constant for a given thbe regardless of the operating frequency, and the same is approximately true of stray circuit capacities. Hence, at very-high frequencies these capacities become an increasingly larger part of the usable tuning eapacity, and reasonably high L / C ratios ($\S 2-10$) are more difficult to secure as the frequency is raised. Because of this irreducible minimum caparity, standard types of tubes cannot be tuned to frequencies higher than about 200 Mc . even when the inductance in the circuit is simply that of a straight wire between the tube elements.

Along with these eaparity effects, the input loading (§7-6) increases rapidly at very-high frequencies, so that ordinary tuned circuits have very low effective Qs when connected to the grid circuit of a tube. The effect is still further aggravated by the fact that losses in the tuned circuit itself are higher, causing a

Fig. 717- Methods of aldjusting the inductance for ganging. The half turn in Λ can he moved so that its magnexic firld either aids or opposes the field of the coil. The shorted loop in R is not connected to the coil, hut operates by induction. It will have no effect on the coil inductance when the plane of the loop is parallel to the axis of the coil, and will give maximum reduction of the coil inductance when perpendicular to the coil axis.
still further reduction in Q. For these reasons, the frepuency limit at which an r.f. amplifier will give any gain is in the vicinity of 60 Mc . with standard tubes. At higher frequencies there will be a loss, instead of amplifiration. This condition can be mitigated somewhat by taking steps to improwe the effective Q of the circuit, either by tapping the grid down on the coil, as shown in Fig. 718-A, or by using a lower $L i C$ ratio ($\$ 2-10$). The () of the tuned circuit alone can be greatly improved by using a linear circuit ($\$ 2-12$), which when properly constructed will give Q s much higher thain those attaimable at lower frequencies with conventional coils and condensers. The concentric type of line, Fig. $718-\mathrm{B}$, is best both from the standpoint of Q and of adaptability to nonsymmetrical circuits such as are used in receivers. since the enparity and resistance loading effects of the tube are still present, the Q of such a circuit will be destroyed if the gridcathode circuit of the tube is connected directly across it. Henee, tapping down on the line, as shown, is neressary:

Very-high-frequency amplifiers employ tubes of the acorn or miniature type. which have the least loading effect as well as low interelectrode capacitics. The smaller loading effert means higher input resistance, and. for a given loarled Q of the tuned circuit, a higher voltage is developed between the grid and eathede. Thus the amplification of the stage is higher and the noise level lower.

A concentric eircuit may be tumed by varying the length of the inner conductor (usually by using close-fitting tubes, one sliding insido the other) or by connecting an ordinary tuning condenser across the line. Tapping the condenser clown, as shown in Fig. 718-B, give: a banclspread effect., which is advantageous. It also helps to keep the Q of the circuit higher than it would be with the eondenser connected directly across the open end of the line. since at very-high frequencies most condensers: have losses which cannot be neglected.

Ordinary bakelite-based receiving-type tubes will function quite satisfactorily as oscillators
and superregenerative detectors at frequencies where r.f. amplification is impossible with standard tubes (as in the 112Mc. band), since tube losses are compensated for by energy taken from the power supply. Ordinary coil and condenser circuits are practicable with such tubes at 112 Mc . At higher frequencies, however, the special v.h.f. tubes are essential.

Fig. 719-- Block diagram of the basic elenents of the superbeterodyne

4. 7-8 The Superheterodyne

Principles:- In the superhetcrolyne, or superhet, receiver the frequency of the incoming signal is changed to a new radio frequency, the intermediate frequenc! (i.f.), then amplified, and finally detected. The frequency is changed by metas of the haterodyne process ($\$ 7-1$), the output of an adjustable local oscillator (the h.f. oscillatur) being combined with the incoming signal in a mixer or converter stage (first detector) to produce a beat frequency equal to the intermediate frequency.
Fig. 719 gives the essentials of the superheterodyne in block form. C.w. signals are made audible by heterodyning the signal at the second detector by the beat-frequency oscillator (b.f.o.) or beat oscillutor, set to differ from the i.f. by a suitable audio frequency.

As a numerical example, assume that an intermediate frequency of 455 kc . is chosen and that the inconing signal is on 7000 kc . Then the h.f. oscillator frequency may be set to 7455 kc., in order that the beat frequency (7455 minus 7000) will be 455 kc . The h.f. oscillator also could be set to 6545 kc ., which will give the same frecuency difference. To produce an audible c.w. signal of, say, 1000 cycles at the second detector, the beat oscillator would be set to either 454 kc . or 45 j kc .
Characteristics - The frequency-conversion process permits r.f. amplification at a relatively low frequency. Thus high selectivity can be oltained, and this selectivity is constant regardless of the signal frequency. Higher gain alse is possible at the lower frequence. The separate oscillators can be designed for

Fig. 718 - Circuits of improved Q for very high frequencies. A, reduciug tube loading by tapping down on the resonant circuit; B , usc of a concentric-line circuit, with the tuhe similarly tapped down. The line should be a quarter-wave long, electrically; hecause of the additional shunt capacity represented by the tube, the physical length will be somewhat less than given by the formula (\$10-5). In general, this reduction in length will be greater the hiyher the grid tap on the inner conductor. The coupling turn should be parallel to the axis of the linc and must be insulated fron the outer conductor.
stability, and, since the li.f. oscillator is working at a frequency considerably removed from the signal frequency, its stability is practically unaffected by the incoming signal.

Images - Each h.f. oseillator frec fuency will eause i.f. response at two signal frequencies, one higher and one lower than the oscillator frequency. If the oscillator is set to 7455 kc . to respond to a $7000-\mathrm{kc}$. sigual, for example, it will respond alsu to a signal on 7910 kc , which likewise gives a $455-\mathrm{kc}$. beat. The undesired signal of the two is called the imuge.

The radio-frequency circuits of the receiver (those used before the frequency is converted to the i.f.) normally are tuned to the desired signal, so that the selectivity of the circuits reduces the response to the image signal. If the desired signal and image have equal strengths at the input terminals of the receiver, the ratio of the receiver voltage output from the desired signal to that from the image is called the signal-to-image rutio, or image ratio.

The image ratio depends upon the selectivity of the r.f. tuned circuits preceding the mixer tube. Also, the higher the intermediate frequency, the higher the image ratio, since raising the i.f. increases the frequency separation between the signal and the image and places the latter farther away from the peak of the resionance curve ($\$ 2-10$) of the signal-frequenty input circuits.

Other spurious responses - In addition to images, other signals to which the receiver is not ostensibly tuned may be heard. Harmonics of the high-frequency oscillator may beat with signule far removed from the desired frequency to produce output at the intermediate irequency; such spurious responses can be reduced by adequate selectivity befure the mixer stage, and by using sufficient shielding to prevent signal pick-up by any means other than the antenna. When a strong signal is received, the harmonics ($\$ 2-\overline{7}$) generated by rectification in the second deteotor may, by stray coupling, be introduced into the r.f. or mixer cirouit and oonverted to the intermediate frequency, to go through the receiver in the same way as an ordinary signal. These "birdies" appear as a heterodyne beat on the desired signal, and are principally bothersome when the frequency of the incoming signal is not greatly different from the intermediate frequency. The cure is proper circuit isolation and shiclding.

Harmonies of the beat oseillator also may be converted in similar fashion and amplified through the receiver; these responses can be reduced by shielding the beat oseillator and operating it at low output level.

The double superheterodyne - At high and very-high frequencies it is diffieult to secure an adequate image ratio when the intermediate frequency is of the order of 455 kc . To reduce inage response the signal frequently is converted first to a rather high (1500, 5000, or even $10,000 \mathrm{ke}$.) intermediate frequeney, and then - sometimes after further amplification - reconverted to a lower i.f. where higher adjacent-channel selectivity can be obtained. Such a receiver is called a double superheterodyne.

4.7-9 Frequency Converters

Characteristics - The first detector or mixer resembles an ordinary detector. A circuit tuned to the intermediate frequency is placed in the phate circuit of the mixer, so that the highest possible i.f. voltage will be developed. The signal- and oscillator-frequency voltages appearing in the plate circuit are bypassed to ground, since they are not wanted in the output. The i.f. tuned circuit should lave low impedance for these frequencies, a condition easily met if they do not approach the intermediate frequency.

Fig. 720 - Mixer or converter cirelits. A, grid injection with a pentode plate detector; B and C , separate injection circuits for converter tubes. Circuit values are:

Component		Circuit A	Circuiz B

Plate voltage should he 250 in all circuite, If a 6 AB3 or G: iC. \quad tulie is used in Circuit A, h_{1} should be 500 ohms.

The conversion efficicucy of the mixer is the ratio of i.f. output voltage from the plate circuit to r.f. signal voltage applied to the grid. High conversion effieiency is desirable. The mixer tube noise also should be low if a good signal-to-noise ratio is wanted particularly if the mixer is the first tube in the receiver.

The mixer should not require too much r.f. power from the h.f. oseillator, since it may be difficult to supply the power and yet maintain good oscillator stability (§3-7). Also, the conversion efficieney should not depend too eritically on the oscillator voltage (that is, a small change in oseillator output should not change the gain), since it is difficult to maintain constant output over a wide frequeney range.

A change in oscillator frequeney caused by tuning of the mixer grid circuit is called pulling. If the mixer and oscillator could be completely isolated, nixer tuning would have no effect on the oscillator frequency; but in practice this is a difficult condition to attain. Pulling should be minimized, because the stability of the whole receiver depends critically upon the stability of the h.f. oscillator. Pulling decreases with scparation of the signal and h.f. oscillator frequencies, being less with high i.f.s.

Circuits - Typieal frequency-conversion circuits are given in Fig. 720. The variations are chiefly in the way in which the oscillator voltage is introduced. In Fig. $720-\mathrm{A}$, the screengrid pentode functions as a plate detector; the oscillator is eapacity-coupled to the grid of the tube, in parallel with the tuned input cireuit. Inductive coupling may be used instead. The conversion gain and input selectivity generally are good, so long as the sum of the two voltages (signal and oseillator) impressed on the mixer grid does not exceed the grid bias. It is desirable to make the oscillator voltage as high as possible without exceeding this limitation. The oscillator power required is negligible.

A pentagrid-converter tube is used in the circuit at B. Although intended for combination oscillator-mixer use, this type of tube usually will give more satisfactory performance when used in conjunction with a separate oscillator, the output of which is coupled in as shown. The circuit gives good conversion effieiency, and, because of the electron coupling, affords desirable isolation between the mixer and oseillator circuits. A small amount of power is required from the oseillator.

Circuit C is for the 6 L 7 mixer tube. The oscillator voltage can vary over a considerable range without affecting the conversion gain. There are no eritieal adjustments, and the oscillator-mixer isolation is good. The oscillator must supply somewhat more power than in B.

A more stable receiver generally results, particularly at the higher frequencies, when separate tubes are used for the miser and oscillator. Practically the same number of circuit components is required whether or not a combination tube is used, so that there is little difference from the cost standpoint.
'iubes for frequency conversion - Any sharp cut-off pentode may be used in the circuit of Fig. 720-A. The 6AB7 and 6AC7 give high conversion gain and excellent signal-to-noise ratio - comparable, in fact, to the gain and signal-to-noise ratio obtainable with r.f. anplifiers - and in these respocts are far superior to any other tubes used as mixers, particularly between 14 and 100 Mc . However, this type of tube loads the circuit more ($\$ 7-6$) and thus decreases the selectivity.
The 6 KS is a good tube for the circuit at B ; its oscillator plate connection may be ignored. The 6SAT also is excellent in this circuit, although it has no anode grid (No. 2 grid, in the diagram). In addition to these two types, any pentagrid converter tube may be used.
V.h.f. and U.h.f. converters.-At frequencies above the $30-\mathrm{Ne}$. region the performance of the special mixer and converter tubes enployed on the lower frecuencies falls off because of greatly reduced input resistance which, by loading the tuned circuit connected to the tube and thus reducing its Q, lowers the signal-to-noise ratio. However, the high-transernductance pentodes such as the 6AC7 and 6AB7 will perform f:irly effectively in the circuit of Fig. 720-A up to 100 Me . or so.
Above about 100 Me . the loading effect, in addition to the relatively large input capacity which limiss the anount of inductance that can be used in the tuned circuit, makes these tubes markedly inferior th the special high-frequency pentodes such as the 9000 and acorn series. The latter perform suceessfully up to 400 Mc .
At still higher frequencies - or, for that matter, anywhere above 200 Mc . - other types of converters are preferred. At these frequencies triode mixers, when operated as plate-rectifier detectors in suitable circuits, give the least noise and maximum conversion transconductance.

Fig. 721-A shows the elementary circuit for a single triode with cathode oscillator-voltage injection. In such an arrangement the cathode connection usually terminates (with as short a lead as possible) in a small link near the oscillator tank, one end of which is grounded. Alternatively, direct capacit y-coupiced grid injee. tion may be used in an arrangement sinilar to that of Fig. $720-\mathrm{A}, C_{4}$ being a very small coupling condenser of perhaps 1 or $2 \mu \mu \mathrm{fd}$. often merely the free end of the coupling lead placed within the field of the oscillator coil or near the oscillator tube plate or grid.

The balanced triode circuit of Fig. 721-13 affords the added advantages of symmetry to ground and complete cancellation of both the received-signal and oscillator voltages in the plate circuit. This serves further to improve the signal/noise ratio as well as to stabilize operation. For optimum performance the os-cillator-voltage input should be carefully adjusted, by neans of the coupling between the two coils, to give maximum converter gain. The balanced ronverter circtit is most frequently
used with miniature dual triodes such as the 6J6, with which it performs effectively up to 600 Mc . or higher. The oscillator may be operated either on its fundamental or a harmonic. At frequencies above 200 Mc . coaxial or "trough"-line circuits are chiefly used.

At still higher frequencies converters employing conventional tubes are infenior to other, basically different types, including highly specialized versions of velocity-modulation tubes of various types. These techniques, however, are beyond the scope of the present treatment; information concerning practical tubes and circuits is largely held confidential by the military services.

For amateur work on these higher frequencies the use of special small u.h.f. diodes with

Fig. 7 IO1 - Y.h.f. frequency converter cirruits. A, triode nixer with separate oseillator tube; 13, halanced simarelaw nixer using a dual triode tube with poshthonll in. put circuit. L and C are tured to the signal frequency. $\mathrm{C}_{2}-100-\mu \mu \mathrm{fd}$. silvered mica.
$\mathrm{C}_{2}-0.005-\mu \mu \mathrm{fl}$.
R_{1} - $10,000 \cdot 50,000$ ohmes.
extremely close element sparing as converters is a logical solution. Crystal detectors have also been used extensively beeanse of their ready availability and independence of frequancy limitations. Crystal detectors are not susecptible to the transit tine linitations of electronic tubes. Silicon is the most popular material for such applications; the crystals are ground to minute dimensions and permanently mounted in fixed miniature holders with tongsten contacts. Fig. 722-A shows a typicall crystal mixer circuit with inductive coupling to a triode oscillator (955 or 9002).

Because stability of a crystal detector can be achieved only at the expense of sensitivity, diode detectors are preferred up to the limit of frequency at which they can be made to function. Diodes have the further advantage that they will function as mixers by using a harmonic of the usciflator voltage, making posisible the use of conventional triode wscillattors for reveivers operating up to the $2000-\mathrm{Mc}$.

 tal-dethetor mixer with an induetively coupled iriohe waillator; 13 , diode mixer with cathode link coupling to the oncillatur cirenit. L and C are tuned to the sigual frepurne: : In and (: to the oscillator frequencs.
(i) - 3-30- $\mu \mu \mathrm{fd}$. mica trimnner.
($\because=2-3-\mu \mu$ fil. silvered micas.
$1: 3-10 \cdot \mu \mu \mathrm{fil}$. silvered nitica.
$\mathrm{C}_{4}-0.00 \mathrm{~S}_{2} \cdot \mu \mu \mathrm{ful}$.
$\mathrm{K}_{1}-50,000$ ohmen (metallized carbon).
$\mathrm{IR}_{2}-5010-20,000$ olums.
recion or higher. While operation of the oscillator on a fundamental is the more efficient method, the less in conversion efficieney does not exceed 2 to 1 even with third harmonic operation provided the oscillator input is sufirient to establish a diode current of 0.2 to 0.5 mit. Diode mixers are considerably more tolcrant as comererns oscillator voltage and other circuit conditions than the crystal type.

In the circuit of Fig. 722-B the cathode tuned circuit, $L_{0} C_{u}$, is tuned to the oscillator fundmmental. C_{0} is being made large enough so that it is effectively a cathode by-pass condenser for the signal frequency.

(7-10 The High-Frequency Oscillator

Design considerations - Stability of the receiver ($\$ 7-2$) is dependent chiefly upon the stability of the h.f. oscillator, and particular rare should be given this part of the receiver. The frequency of oscillation should be insensitive to changes in voltage, loading, and mechanical shock. Thermal effects (slow change in frequency because of tube or circuit heating) should be minimized. These ends can be attained by the use of good insulating materials and circuit components, suitable electrical design, and careful mechanical construction.

In addition, the oscillator must be capable of furnishing sufficient r.f. voltage and power for the particular mixer circuit chosen, at all frequencies within the range of the receiver, and its harmonic output should be as low as pussible to redure spurious response (\$7-8).

It is desirable to make the $L_{/}(C$ ratio in the oscillator tuned circuit low (high-C'), since this results in increased stability (\$3-7). Particular care should be taken to insure that no part of the oscillator circuit can vibrate mechanically. This calls for short leads and "solid" mechanical construction. The chassis and panel material should be heavy and rigid enough so that pressure on the tuning dial will not cause torsion and a shift in the frequency. Care in mechanical construction is well repaid by increased frequency stability.

Circuits - Several oscillator circuits are shown in Fig. 723. The point at which output voltage is taken for the mixer is indicated in earch case by X or Y. Circuits A and 13 will give about the same results, and recquire only one coil. However, in these two circuits the cathode is above ground potential for r.f., which often is a cause of hum modulation of the oscillator output at 14 Mc . and higher frequencies when 6.3 -volt heater tubes are used. Hum usually is not bothersome with 2.5 -volt tubes, nor, of course, with tubes which are heated by direct current. The circuit of Fig. 723-C overcomes hum, since the cathode is

Fig. 723 - High-frequency orillator circuits. A, wrecogrid grounded-plate oscillator; B, triode groundedplate oscillator; (:, triode oscillator with tickler circuit. Coupling to themixermay he takenfrom points. X and Y^{\prime}. In A and B, coupling from Y will reduce pulling effects, hut gives leas voltage than front X; this type is hest adaped to mixer circuits with small oscillator-voltage requiremonts. Typical values for components are as follows:

	Circtit A	Circuit B	Circuit C
C_{1} -	$100 \mu \mu \mathrm{fd}$.	$100 \mu \mu \mathrm{fd}$.	$100 \mu \mu \mathrm{fd}$.
C_{2} -	$0.1 \mu \mathrm{fd}$,	$0.1 \mu \mathrm{fd}$.	$0.1 \mu \mathrm{fu}$.
C_{3}	$0.1 \mu \mathrm{fd}$.		
n_{1} -	50,000 ohms.	50,000 ohme.	50,000 ohmes.
$\mathrm{K}_{2}-$	50,000 ohmes.	10,000 to	10,000 20
		25,000 ohrue.	25,000 ohnes.

'Ihe plate-supply roltage should be 250 volts. In circuits B and C, R_{2} is used to drop the supply voltage to $100-150$ voles; it inay be onnited if voltane is olitained from a voltipe divider in the powar supply ($\$ 8-10$).
grounded. The two-coil arrangenent is advantagcous in construction, since the feed-back adjustment (altering the number of turns on L_{2} or the coupling between L_{1} and L_{2}) is simple mechanically.

Besides the use of a fairly high C / L ratio in the tuned circuit, it is necessary to adjust the feed-back to obtain optimum results. Too mucll feed-bark will cause the oscillator to "squeg," or operate at several frequencies simult: meonsly ($\$ 7-4$); too little feed-back will cause the output to be low. In the tapped-coil rircuits (A, B), the feed-bark is increased by moving the tap toward the grid end of the coil; in C, by increasing the number of turns on L_{2} or by moving L_{2} closer to L_{1}.

The oscillator plate voltage should be as low as is consistent with adequate output. Low plate voltage will cause reduced tube heating and thereby reduce frequency drift. The oscillator and mixer circuits should be well isolated, preferably by shielding, since coupling other than by the means intended may result in pulling.
To avoid plate-voltage ehanges which may cause the oscillator frequency to change, it is good practice to use a voltage-regulated plate supply employing a gascous VR tube (\$8-8).
Tracking - For ganged tuning, there must be a cons/and differcnce in frequericy between the oscillator and mixer circuits. This difference must be exartly equal to the intermediate frequener (\$7-8).
Tracking methods for covering a wide frequency range, suitable for general-coverage receivers, are shown in Fig. 724. The tracking capacity; C_{5}, commonly consists of two condensers in parillel, a fixed one of somewhat less caparity than the value needed and a smaller variable in parallel to allow for adjustment to the exact proper value. In practice, the trimmer, C_{4}, is lirst set for the high-frequeney end of the tuning range, and then the tracking condenser is set for the low-frequency end. The tracking capacity becomes larger as the percentage difference between the oscillator and signal frequencies becomes smaller (that is, as the signal frequency becomes higher). TYpical circuic values aie given in the tahles under Fig. 724.
In amateur-band receivers, tracking is simplified by choosing a bandspread circuit which gives practically straight-line-frequency tuning (equal frequency change for each dial division), and then adjusting the oscillator and miser tuned eircuits so that both cover the same total number of kilocycles. For example, if the i.f. is 455 kc . and the miser circuit tunes from 7000 to 7300 kc . between two given points on the dial, then the oscillator must tune from 7455 to 7755 kc . between the same two dial readings. With the bandspread arrangement of Fig. $715-\mathrm{C}$, the tuning will be practically straight-line-frequency if the capacity actually in use at C_{2} is not ton small; the same is true of $715-\mathrm{A}$ if C_{1} is small compared to C_{2}.

[7-11 The Intermediate-Frequency Amplifier

Choice of frequency - The selection of an intermediate frequency is a compromise between various conflicting factors. The lower the i.f. the higher the selectivity and gain, but a low i.f. brings the inage nearer the desirnd signal and hence decreases the image ratin (87-8). A low i.f. also increases pulling of the oscillator frequency (s $\bar{i}-9)$. On the other hand. a high i.f. is loeneficial to both image ratio and pulling, but the selectivity and gain are lowered. The difference in gain is least important.

An i.f. of the order of 45 je. gives good selectivity and is satisfactory from the standpoint of image ratio and oscillator pulling at frequencies up to 7 Mc . The image ratio is: poor at 14 Mc. when the mixer is connected t, the antenna, but adequate when there is a

Fif. 724-Converter-rircuit trachiny methods. Following are approximate circuit values for 4.50. to 46.5 kc . i.f.s, with tuning ranges of approximatery $2 .[5-10-1$ and Ce having $140 \mu \mu \mathrm{ff}$. maximum, and the total minimum capacitance, including C_{3} or C_{4}, being 30 to $35 \mu \mu \mathrm{fd}$.

Tuning Range	I_{1}	$\mathrm{I}, 2$	18
1.7-4 Mc.	50) l .	40 mh.	0.0013 Pfd.
$3.7-7.5 \mathrm{Mr}$.	$1.4 \mu \mathrm{~h}$.	12.9 mh.	0.0023 yful .
7-15 Mc.	$3.5 \mu \mathrm{l}$.	$3 \mu \mathrm{~h}$.	0.010 .45 .5 fll .
14-30 Mr.	$0.8 \mu \mathrm{~h}$.	$0.88 \mu \mathrm{~h}$.	Nome userl

Approximate values for $450-10465 \mathrm{he}$, i.f.s with a 2.5-to. 1 tuning rantre, C_{1} and C_{2} being $350 \cdot \mu \mu \mathrm{fl}$, naximum, minimum including C_{3} and C_{4} being 40 to $50 \mu \mu \mathrm{fel}$.

Tuning Range	I. ${ }^{1}$	I. 3	C_{6}
$0.5-1.5 \mathrm{Mc}$.	$240 \mu \mathrm{~h}$.	$1.30 \mu \mathrm{~h}$.	42.3 m 41.
1.5-4 Mc.	$32 \mu \mathrm{~h}$.	$25 \mu \mathrm{~h}$.	$0.00115 \mu \mathrm{fl}$.
4-10 Mc.	$4.5 \mu \mathrm{~h}$.	$4 \mu \mathrm{~h}$.	$0.0028 \mu \mathrm{fl}$.
10-25 Mc.	$0.8 \mu \mathrm{~h}$.	$0.65 \mu \mathrm{~h}$.	None nael

tuned r.f. amplifier between antenna and miser. At 28 Mc. and on the very-high frequencies, the image ratio is very poor unless screral r.f. stages are used. Above 14 Mc., pulling is likely to be bad unless very lonse coupling can he used between mixer and oscillator.

With an i.f. of about 1600 ke , satisfactory image ratios can be secured on 14,28 and 50 Mc., and pulling can be reduced to negligible proportions. However, the i.f. selectivity is considerably lower. so that more tuned cirruits must he used to increase the selectivity. For very-high frequencies, including 28 Mc ., the best solution is to use a double superhetcrodyne (§7-8). choosing one high i.f. for image reduction (5 and 10 Mc . are frcquently used) and a lower one for gain and selcetivity.
In choosing an i.f. it is wise to aroid frequencies on which there is considerable activity by the various radio services, since such signals may be picked up directly on the i.f. wiring. The frequencies montioned are fairly free of such interference.

Fidelity, silleband cuming - As described in $\$ 5-2$, modulation of a carrier causes the generation of sideband frequencies numerically equal to the carrier frequency plus and mimus the higliest modulation frequency present. If the recciver is to give a faithful reproduction of modulation which contains, for instance, audio frequencies up to 5000 cycles, it must be capable of amplifying equally all frequencies contained in a band extending from 5000 cycles above to 5000 cycles below the carrier frequency. In a supcrheterodyne, where all carrier frequenries are changed to the fixed intermediate frequency, this means that the i.f. amplifier should amplify equally well all frequencies within that band. In other words, the amplificalion must be uniform over a bancl 10 ke. wide, with the i.f. at its center. The signalfrequency circuits usually do not have enough over-all sclectivity" to affect materially the "adjacent channel" selectivity (\$7-2), so that only the i.f. amplifier selectivity need be considered.

A 10-kc. band is considered sufficient for reasonably faithful reproclurtion of music, but much narrower band-widths ran be used for communication work where intelligibility rather than fidelity is the primary objective.

Fig. 725- Typiral intermerliate-frequeney amplifirr circuit fnr a surerheterodyne rewiver. Representative values for components are as follows:
 $\mathrm{C}_{2}-0.01 \mu \mathrm{fl}$.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.1 \mu \mathrm{fd}$, at $455 \mathrm{kc}: 0.01 \mu \mathrm{fd}$. above 1600 kr . $\mathrm{R}_{1}-300$ ohnıs. $\quad \mathrm{R}_{3}-2000$ ohms.
$\mathrm{H}_{2}-0.1$ megohm. $\quad \mathrm{h}_{1}-0.25$ megohm.

If the selectivity is tow great. t.o permit uniform amplification over the band of frequencies occupied by the modulated signal, the higher modulating frequencies are attenuated as compared to the lower frequencies: that is, the upper-frequency sidehands are "cut." While sidehand cutting reduces fidelity, it is frequently preferable to sacrifice maturalness of reproduction in favor of greater selectivity.

The selectivity of an i.f. anplifier, and hence the tendency to cut sidebands, increases with the number of amplifier stages and also is greater the lower the intermediate frequency. From the standpoint of communication, sideband cutting is not serious with two-stage amplifiers at frequencies as low as 455 ke .

Circuits - I.f. amplifiers usually consist of one or two stages. Two stages at 455 le. give all the gain usable, in view of the minimum recciver noise level, and also give suitable selectivity for good-quality 'phone reception.

A typical circuit arrangement is shown in Fig. 725. A second stage would simply duplicate the circuit of the first. In principle, the i.f. amplificr is the same as the tuned r.f. amplifier (\$7-(i). However, since a fixed freruency is used, the primary as well as the serondary of the coupling transformer is tumed, giving higher selectivity than is ohtainable with a closely coupled untuned primary. The eathode resistor, R_{1}, is connected to is main control circuit of the type previously descrileed (s $7-6$); usually both stages, if two are used, are controlled by a single variable resistor. The decoupling resistor, R_{3} (§2-11), helps isolate the amplifier, and thus prevents stray feed-hack. C_{2} and R_{4} are part of the antomatic volumecontrol circuit ($\$ 7-1.3$); if no a.v.c. is used, the lower end of the i.f. transformer secondary is simply connected to ground.

In a two-stage amplifier the sereen grids of both stages may be fed from a common supply, either through a resistor $\left(R_{2}\right)$ as shown, the screens being connected in parallel, or from a voltage divider ($\$ S-10$) across the plate supply. Separate screen voltaye-dropping resistors are preferable for preventing undesired coupling between stages.

When two stages are used the high gain will tend to cause instability and osciliation, so that good shielding, by-passing, and careful circuit arrangement to prevent stray coupling, with exposed r.f. leads well separated, is necessary.
I.f. transformers - The tumed circuits of i.f. amplifiers are built up as transformer units consisting of a metal-shield container in which the coils and tuning condensers are mounted. Both air-eore and powdered-iron-core uni-versal-wound coils are used, the latter having somewhat higher (as and, hence, greater selectivity and gain per unit. In universal windings the coil is woumd in layers with each turn traversing the length of the coil, back and forth, rather than being wound perpendicular to the axis as in ordinary single-layer coils. In a straight multi-layer winding. the turns on ad-

$R_{\text {eceiver }} P_{\text {rinciples and }} D_{\text {esign }}$

jacent layers at the edges of the coil have a rather large potential difference between them as compared to the difference between any two adjacent turns in the same layer; hence a fairly large capacity current can flow between layers. Vniversal winding, with its "crisscrossed" turns, tends to avoid buiiding up such potential differences, and hence reduces dis-tributed-capacity effects (§ 2-8).

Variable tuning condensers are of the midget type, air-dielectric condensers being preferable because their capacity is practically unaffected by changes in temperature and humidity. Ironcore transformers may be tuned by varying the inductance (permeability tuning), in which case stability comparable to that of variable aircondenser tuning can be obtained by use of higl-stability fixed mica condensers. Such stability is of great importance, since a circuit whose frequency "drifts" with time eventually will be tuned to a different frequency than the other circuits, thereby reducing the gain and selectivity of the amplifier. Typical i.f. transformer construction is shown in Fig. 726.

Besides the type of i.f. transformer shown in Fig. 726, special units to give desired selectivity characteristics are available. For higher than ordinary adjacent-channel selectivity (§7-2) triple-tuned transformers, with a third tuned circuit inserted between the input and output windings, are used. The energy is transferred from the input to the output windings via this tertiary winding, thus adding its selectivity to the over-all selectivity of the transformer. Variable-selectivity transformers also can be obtained. These usually are provided with a third (untuned) winding which can be conneeted to a resistor, thereby loading the tuned circuits and decreasing the Q and selectivity ($82-10$) to broaden the selectivity curve. The variation in selectivity is brought about by switching the resistor in and out of the circuit. Another method is to vary the coupling between primary and secondary, overcoupling being used to broaden the selectivity curve and undercoupling to sharpen it ($\S 2-11$).

Selectivity - The over-all selectivity of the i.f. amplifier will depend on the frequency and the number of stages. The following figures are indicative of the band-widths ($\$ 7-2$) to be expected with good-quality transformers in amplifiers so constructed as to keep regeneration to a minimum:

	Band-width in kilocycles		
Intermediate frcquency	2 times down	10 times down	100 times down
Onestage, 4055 kc . (air core).	8.7	17.8	32.3
One stage, $4 \overline{5} 5 \mathrm{kc}$, (iron core)	4.3	10.3	20.4
Twostages, 455 kc . (iron core)	2.9	6.4	10.8
Two stages, 1000 kc .	11.0	16.6	27.4
Two stages, 5000 kc.	25.8	46.0	100.0

Tubes for i.f. amplifiers - Variable- μ pentodes ($\$ 3-5$) are almost invariably used in i.f. amplifier stages, since grid-bias gain control ($\S 7-6$) is practically always applied to the i.f. amplifier. Tubes with high plate resistance will

AIR TUNED

Fig. 726 - lepresentative i.f. transformer construction. Coils are supported on insulating tubing or (in the air-tuned type) on wax-impregnated wooden dowels. T'be sbield in the air-tuned transformer prevents capacity coupling between the tuning condensers. In the permeability-tuned transformer the cores consist of finely divided iron partieles supported in an insulating binder, formed into cylindrical "plugs." The tuning capacity is fixed, and the inductances of the coils are varied by moving the iron plugs in and out.
have least effect on the selectivity of the amplifier, and those with high mutual conductance will give greatest gain. The choice of i.f. tubes has practically no effect on the signal-to-noise ratio, since this is determined by the preceding mixer and r.f. amplifier (if the latter is used).

When single-ended tubes ($\$ 3-5$) are used, care should be taken to keep the plate and grid leads well separated. With these tubes it is advisable to mount the screen by-pass condenser directly on the bottom of the socket, cross-wise between the plate and grid pins, to provide additional shielding. The outside foil of the condenser should be connected to ground.

Single-signal effect - In heterodyne c.w. reception with a superheterodyne receiver, the beat oscillator is set to give a suitable audiofrequency beat note when the incoming signal is converted to the intermediate frequency. For example, the beat oscillator may be set to 456 kc . (the i.f. being 455 kc .) to give a $1000-$ cycle beat note. Now, if an interfering signal appears at 457 kc ., it will also be heterodyned by the beai oscillatur to produce a 1000 -cycle beat. This audio-frequency image corresponds to the high-frequency images already discussed (§ 7-8). It can be reduced by providing enough i.f. selectivity, since the image signal is off the peak of the i.f. resonance curve.

When this is done, tuning through a given signal will show a strong response at the desired beat note on one side of zero beat only, instead of the two beat notes on either side of zero beat characteristic of less-selective reception; hence the name, "single-signal" reception.

The necessary selectivity is difficult to obtain with non-regenerative amplifiers using ordinary tuned circuits unless a very low intermediate frequency or a large number of circuits is used. In practice it is secured either by regenerative amplification or by a crystal filter.

Regeneration - Regenoration can be used to give a pronommed single-signal effect, particularly when the i.f. is -155 kr. or luwer. The resonane curve of an i.f. stage at eritical regeneration (just below the oseillating point) is extremely sharp, a baud-width of 1 kc . at 10 times down and 5 be. at 100 times down being obtanable in one stage. The audio-frequency image of a given signal thas san be recluced by a factor of nearly 100 for a 1000 -cycle beat note (image 2000 eycles from resomance).

Regeneration is easily introduced into an i.f. amplifier by providing a small amount of caparity conpling between grid and plate. Bringing a short length of wire, connected to the grid, into the ricinity of the plate lead usually will sullice. The feed-bark maty be controlled by the regnlar rathode-resistor gain control. When the i.f. is rememrative, it is preforable to operate the tube at reduced gain (high bias) and depend on regeneration to bring up the signal strength. This prevents overlonding and inerenses selectivity.

The higher selectivity with regeneration reduces the over-all response to noise generated in the carlier stages of the receiver. just as does high selectivity produced by other means, and therefore improves the signal-to-noise ratio. The disadvantage is that the regenerative gain varies with sigual strength, being less on strong signals, and the selectivity varios ancordingly.

Crystal filters - The must satisfactory methuel of obtaining high selectivity is by the use of a piezorlectric quartz erystal as a selective filter in the i.f. amplifier ($\$ 2-10$). Compared to a good tuned cireuit, the (l of such a crystal is extremely high. The dimensions of the crystal are mude such that it is resonant at the desired intermediato frequeney. It is then used as a selective coupler between i.f. stages.

Fig. 727-Graphical representation of single-signal selectivity. The shaded area indieater the overall band-width, or region in which response is obtainable.

Fig. 727 gives a typical crystal-filter resonance curve. For single-signal reception, the audio-frequency image can be reduced by a factor of 1000 or more. Besides practically eliminating the a.f. imbigre the high selectivity of the crystal filter provides great discrimination against signals very close to the desired signal in frequeney, and, by reduring the bandwidth, reduces the response of the receiver to noise both from sources external to the receiver and in the r.f. stages of the receiver itself.

Cristal filter circuits; phasing - Several crystal filter circuits are shown in Fig. 728. Those at A and B are practically identieal in performance, although differing in details. The erystal is connected in a bridge circuit (\$2-11), with the secondary side of T_{1}, the input transformer, balanced to ground either through a pair of condensers, $C-C,(A)$ or hy a center-tap on the secondary, L_{2} (13). The bridge is completed by the erystal, X, and the phasing condenser, C_{2}, which has a maximum capacity somewhat higher than the capacity of the erystal in its holder. When Cot is set to balance the crystal-holder capacity, the resonance rurve of the crystal circuit is practically symmetrical; the crystal acts as a series-resonant circuit of very high Q and thus allows signals of the desired frequency to be fed through C_{3} to $L_{3} L_{4}$, the output transformer. Without C_{2}^{\prime}, the holder capacity (with the crystal acting as a dielectric) would pass signals of undesired frequencies.

The phasing control has an additional function besides neatralization of the erystal-holder capacity. The holder capacity becomes a part of the crystal circuit ind comses it to act as a parallel-tuned resonant cireuit at a frequency slightly higher than its series-resonant frequency. Signals at the paralle!-resonant frequency thus are prevented from rearhing the output circuit. The phasing eontrol, by varying the effect of the holder eapacity, permits shifting the parallel-resonant frequency uver a consiclerable range, providing adjustable rejection of interfering signals. The effert of rejection is illustrated in lig. 727, where the audio image is reduced, by proper setting of the phasing control, far below the value that would be expected if the resonance curve were symmetrical.

Fariable selectirity - In circuit.s such as A and B, Fig. 728, variable selectivity is obtained by adjustment of the variable input impedance, which is effectively in serics with the crystal resonator. This is accomplished by varying C_{1} (the selectivity comtrol), which tunes the balanced secondary circuit of T_{1}. When the secondary is tuned to i.f. resontmee the parallel impedtance of the $L_{2} C_{1}$ combination is maximum and is purely resistive ($\$ 2-10$). Since the secondary circuit is center-tapped, approximately one-fourth of this resistive impedance is in series with the crystal through C_{3} and L_{4}. This lowers the Q of the rrystal circuit and makes its selectivity minimum. At the same time, the voltage applied to the crystal circuit is maximum.

When the input circuit is detuned from the crystal resonant frequency the resistance component of the input impedance decreases, and so does the total parallel impedance. Accordingly, the selectivity of the crystal circuit becomes higher and the applied voltage falls off. At first the resistance decreases faster than the applied voltage, with the result that the c.w. output from the filter incrasises as the selectivity is increased. The output falls off gradually as the input circuit is detuned further from resonance, however, and the selectivity becomes still higher.

In the eircuits of A and B in Fig. 728, the minimum selectivity is still much greater than that of a normal two-stage 455 -kc. amplifier and it is desirable to provide a wider range of selectivity, particularly for 'phone reception. A circuit which does this is shown at Fig. 728-C. The principle of operation is similar, but a much higher value of resistance can be introduced in the erystal circuit to reduce the selentivity. The output tuned circuit, $L_{3} C_{3}$, must have high Q. A compensated conclenser is used at C_{2} (phasing) to maint:ain cireuit balance, so that the phasing control does not affect the resonant frequency. The output circuit functions as a voltage divider in such a way that the amplitude of the carrier delivered to the next grid does not vary appreciably with the selectivity setting. The variable resistor, R, may consist of a series of separate fixed resistors selected by a tap switch.

C 7-12 The Second Defector and Beat Oscillator

Detector circuits - The sccond detector of a superheterodyne receiver performs the same function as the detector in the simple receiver, but usually operates at a higher inpur level because of the relatively great r.f. amplification. Therefore, the ability to handle large signals without distortion is preferable to high sensitivity. Plate detection is used to some extent, but the diode detector is most popular. It is especially adapted to furnishing automatic gain or volume control ($\$ 7-13$). The basic circuits are as described in $\$ 7-3$, although in many cases the diode elements are incorporated in a multi-purpose tube which contains an amplifier section in addition to the diode unit.

The beat oscillator - Any standard oscillator circuit (§3-7) may be used for the beat oscillator. Special beat-oscillator transformers are available, usually consisting of a tapped coil with ardjustable tuning; these are most conveniently used with circuits such as those shown at Fig. $723-\mathrm{A}$ and - B, with the output taken from Y. A variable condenser of about $25-\mu \mu \mathrm{fl}$. capacity may be connected between cathode and ground to provide fine adjustment. The beat oseillator ustailly is coupled to the second-detector tuned circuit through a fixed condenser of a few $\mu \mu \mathrm{fu}$. capacity.
The beat oscillator should be well shielded, to prevent coupling to any part of the circuit
except the second detector and to prevent its harmonics from gettinug into the front end of the receiver and being amplified like regular signals. To this end, the plate voltage slould be as low as is consistent with sulficient audiofrequency output. If the beat osecilator output is ton low, strong sign:als will not give a proportionately strong audio response.

An oscillating serond deteetor may be used to give the audio beat note, but, since the detector must be detuned from the i.f., the selectivity and signal strength will be redneed, while blocking ($7-4$) will he pronounced because of the high signal level at the second detector.

C 7-13 Automatic Volume Control

Principles - Automatic regulation of the gain of the receiver in inverse proportion to the signal strength is a great advantige, especially in 'phone reecption, since it tends to keep the output level of the receiver constant regardless of input signal strength. It is readily accomplished in superheterodyne receivers by using the average rectified d.c. voltage, developed by the received signal across a resistance in a detector circuit (\$7-3), to vary the bias on the r.f. and i.f. amplifier tubes.

Fig. 728 - Crystal filter circuits of threc types. AII give variable hand-width, with C having the greatest range of selectivity. 'lheir operation is disenssed in the text. Guitable circuit values are as follows: Cirenit Λ, T_{1}, special i.f. input transformer with hiph-induetance primary, I_{1}, elosely coupled to tuned secondary, $L_{2} ; C_{1}$, $50-\mu \mu \mathrm{ft}$. variable; C, each $100-\mu \mu \mathrm{fd}$. fixed (mica); C2, 10 - to $15-\mu \mu \mathrm{fll}$. (max.) variahle; $\mathrm{C}_{3}, 50-\mu \mu \mathrm{fd}$. trinmer; $J_{3} C_{4}$, i.f. tunced circuit, with L_{3} tapped to mateh crystalcircuit impedance. In circuit $13, T_{1}$ is the same as in circuit A except that the secondary is center-tapped; C_{1} is $100-\mu \mu \mathrm{fd}$. variahle; C_{2}, C_{3} and C_{4}, same as for cirenit $\mathrm{A}_{;}, L_{3} L_{4}$ is a transformer with primary, l_{4}, corresponding to tap on I_{3} in A. In cirenit C, T_{1} is a special i.f. input transformer with tuned primary and low-impedance secondary; C, cach $10\left(1-\mu \mu \mathrm{fd}\right.$. fixed (mica); C_{2}, opposed stator phasing condenser, approximately 8 $\mu \mu \mathrm{fl}$ L maximum capacity each side; $L_{3} C_{3}$, high-Q i.f. tuned circuit; $R, 0$ to 3000 olms (selectivity control).

Since this voltage is proportional to the average amplitude of the signal, the gain is reduced as the signal strength becomes greater. The control will be more complete as the number of stages to which the a.v.c. bias is applied is increased. Control of at least two stages is advisable.

Circuits - A typical circuit using a diodetriode type tube as a combined a.v.c. rectifier, detector and first audio amplifier is shown in Fig. 729. One plate of the diode section of the tube is used for signal detection and the other for a.v.c. rectification. The a.v.c. diode plate is fed from the detector diode through the small coupling condenser, C_{3}. A negative bias voltage resulting from the flow of rectified carrier current is developed across R_{4}, the diode load resistor. This negative bias is applied to the grids of the controlled stages through the filtering resistors ($\$ 2-11$) $, R_{5}, R_{6}, R_{7}$ and R_{8}. When S_{1} is closed the a.v.c. line is grounded, thereby removing the a.v.c. bias from the amplifier without disturbing the detector circuit.

It does not matter which of the two diode plates is selected for audio and which for a.v.c. Frequently the two plates are connected together and used as a combined detector and a.v.c. rectifier. This could be done in Fig. 729. The a.v.c. filter and line would connect to the junction of R_{2} and C_{2}, while C_{3} and R_{4} would be omitted from the circuit.

Delayed a.v.c. - In Fig. 729 the audio diode return is made directly to the cathode and the a.v.c. diode return to ground. This places negative bias on the a.v.c. diode equal to the d.c. drop through the cathode resistor (a volt or two) and thus delays the application of a.v.c. voltage to the amplificr grids, since no rectification takes place in the a.v.c. diode circuit until the carrier amplitude is large enough to overcome the bias. Without this delay the a.v.c. would start working even with a very small signal. This is undesirable, because the full amplification of the recciver then could not be realized on weak signals. In the audio diode circuit this fixed bias would cause distortion, and must be avoided; hence, the return is made directly to the cathode.

Time constant - The time constant (§2-6) of the resistor-condenser combinations in the a.v.c. circuit is an important part of the system. It must be high enough so that the modulation on the signal is completely filtered from
the d.c. output, leaving only an average d.c. component which follows the relatively slow carrier variations with fading. Audio-frequency variations in the a.v.c. voltage applied to the amplifier grids would reduce the percentage of modulation on the incoming signal, and in practice would cause frequency distortion. On the other hand, the time constant must not be too great or the a.v.c. would be unable to follow rapid fading. The capacity and resistance values indicated in Fig. 729 will give a time constant which is satisfactory for high-frequency reception.

Signal-strength and turning indicatorsA useful accessory to the receiver is an indicator which will show relative signal strength. Not only is it an aid in giving reports to transmitting stations, but it is helpful also in aligning the receiver circuits, in conjunction with a test oscillator or other steady signal.

Three types of indicators are shown in Fig. 730. That at A uses an electron-ray tube (§ $3-5$), several types of which are available. The grid of the triode section usually is connected to the a.v.c. line. The particular type of tube used depends upon the voltage available for its grid; where the a.v.c. voltage is large, a remote cut-off type (6 G 5 or 6 N 5) should be used in preference to the more sensitive sharp cut-off type (6E5).

In B , a milliammeter is connected in series with the d.c. plate lead to one or more r.f. and i.f. tubes, the grids of which are controlled by a.v.c. voltage. Since the plate current of such tubes varies with the strength of the incoming signal, the meter will indicate relative signal intensity and may be calibrated in " S " points. The scale range of the meter should be chosen to fit the number of tubes in use; the maximum plate current of the average remote cutoff r.f. pentode is from 7 to 10 milliamperes. The shunt resistor, R, enables setting the plate current to the full-scale value ("zero adjustment"). With this system the ordinary meter reads downwards from full scale with increasing signal strength, which is the reverse of normal pointer movement (clockwise with increasing reading). Special instruments in which the zero-current position of the pointeris on the right-hand side of the scale are used in commercial receivers.

The system at C uses a $0-1$ ma. milliammeter in a bridge circuit, arranged so that the

Fig. 729 - Automatic volume enntrol circuit using a dual-dinde-triode as a combined a.v.e. rectifier, second detector and first audio-frequency amplificr.
$\mathrm{R}_{1}-0.25$ megolim.
R_{2} - 50,000 to 250,000 ohms.
$\mathrm{R}_{3}-2000$ obmes.
$\mathrm{R}_{\mathrm{A}}-2$ to 5 meqohms.
$\mathrm{R}_{5}-0.5$ to 1 megohim.
$\mathrm{R}_{6}, \mathrm{R}_{7}, \mathrm{R}_{\mathrm{s}}, \mathrm{R}_{9}-0.25$ mezolm.
$\mathrm{R}_{10}-0.5$-megohm variable.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-100 \mu \mu \mathrm{fd}$.
$\mathrm{C}_{4}-\mathrm{C}_{2} \mathrm{C}_{2} \mathrm{fd}$.
$\mathrm{C}_{6}, \mathrm{C}_{6}, \mathrm{C}_{7}-0.01 \mu \mathrm{fd}$.
$\mathrm{C}_{\mathrm{B}}, \mathrm{C}_{9}-0.01$ to $0.1 \mu \mathrm{fd}$.
$\mathrm{C}_{10}-5$ to 10 - $\mu \mathrm{fd}$. electrolytic. $\mathrm{C}_{11}-250 \mu \mu \mathrm{fd}$.

meter reading and the signal strength increase together: The current through the branch containing R_{1} should be approximately equal to the current through that containing R_{2}. In some manufactured receivers this is brought about by draining the screen voltage-divider current and the current to the screens of three r.f. pentodes (r.f. and i.f. stages) through R_{2}, the sum of these currents being about equal to the maximum plate current of one a.v.c.-controlled tube. Typical values for this type of circuit are given. The sensitivity can be increased by increasing the resistance of R_{1}, R_{2} and R_{3}. The initial setting is made with the manual gain control set near maximum, when R_{3} should be adjusted to make the meter read zero with no signal.

© 7-14 Preselection

Purpose - Preselection is added signal-frequency selectivity incorporated before the mixer stage is reached. An r.f. amplifier preceding the mixer generally is colled a preselcctor, its purpose, in part at least, being to discriminate in favor of the signal against the image. The preselector may consist of one or more r.f. amplifier stages. When its tuning control is ganged with those of the mixer and oscillator, its circuits must track with the mixer circuit.
The circuit is the same as discussed earlier (§ 7-6). An external preselector stage may be used with receivers having inadequate image ratios. In this case it is built as a separate unit, often with a tuned output circuit which gives a further improvement in selectivity. The output circuit usually is link-coupled (§ 2-11) to the receiver.
Signal/noise ratio - An r.f. amplifier will have a better signal-to-noise ratio (§ 7-2) than a mixer because the gain is higher and because the mixer-tube electrode arrangement results in higher internal tube noise than does the ordinary pentode structure. Hence, a preselector is advantageous in increasing the signal-to-noise ratio over that obtainable when the mixer is fed directly from the antenna.
Image suppression - The image ratios (§7-8) obtainable at frequencies up to and including 7 Mc . with a single preselector stage are high enough, when the intermediate frequency is 455 kc ., so that for all practical purposes there is no appreciable image response. Average image ratios on 14 Mc . and 2 S Mc . are $50-75$ and $10-15$, respectively. This is the overall selectivity of the r.f. and mixer tuned circuits. A second preselector stage, adding another tuned circuit, will increase the ratios to several hundred at 14 Mc . and to $30-40$ at 28 Mc .

On very-high frequencies, it is impracticable to attempt to secure a good image ratio with a $455-\mathrm{kc}$. i.f. Good performance can be secured only by using a high i.f. or a double superheterodyne ($\$ 7-8$) with a high-frequency first i.f.

Regeneration- Regeneration may be used in a preselector stage to incrense both gain and selectivity. Since its use makes tuning more criticaland increases ganging problems, regener-
ation is seldom employed except at 14 Mc . and above, where adequate image suppression is difficult to obtain with non-regenerative circuits. The same disadvantages exist as in the case of a regenerative i.f. amplifier (§ 7-11). The effect of regeneration is roughly equivalent to adding another non-regenerative preselector stage.

Fig. 730 - Tuning indicator or "S"-meter circuits for auperhet receivers. A, electron-ray indicator; B, platr. current mefer for tubes on a.v.c.; C, brilye circuit for a.v.c.--controlled tube. In B, resistor R should bave a maximum resistance several tines that of the milliarnmeter. In C, representativc values for the componemts are: $R_{1}, 250$ ohms; $R_{2}, 350$ ohms; $R_{3}, 1000$-obm variable.

Regeneration may be introduced by the same method as used in regenerative i.f. amplifiers ($\$ 7-11$). The manual gain control of the stage will serve as a volume control.
Regeneration in a preselector cloes not improve the signal-to-noise ratio, since the tube noise is fed back to the grid circuit along with the signal to add to the thermal-agitation noise originally present. This noise also is amplified.

© 7-15 Noise Reduction

Types of noise - In addition to tube and circuit noise ($87-6$), much of the noise interference experienced in reception of high-frequency signals is caused by domestic electrical equipment and by automobile ignition systems. The interference is of two types in its effects. The first is the "hiss" type, consisting of overlapping pulses similar in nature to the receiver noise. It is largely reduced by high selectivity in the receiver, especially for code reception. The second is the "pistol-shot" or "machine-gun" type, consisting of separated impulses of high amplitude. The "hiss"

Fip. 731 - Audin output-circuit amplitude-limiting noise-reducing circuits for c.w. reception.
$\mathrm{C}_{1}-0.25 \mu \mathrm{ff}$.
$\mathrm{C}_{2}-0.01 \mu \mathrm{fi}$.
C $8-5 \mu \mathrm{fd}$.
h_{1} - 0.5 meenhm.
$\mathrm{H}_{2}-2000$ ohims.

T- Ontput transformer.
$\mathrm{l}_{1}-1.5$ henry choke.
type of interference minally is cansed by comnutator sparking in d.e. and series-wound a.c. moters, while the " shot." type results from separated spark discharges (a.c. power leaks, switeh and key clicks, ignition sparks, and the like).

Impulse noise - Impulse noise, beciuse of the extremely short duration of the pulses as compared to the time between them, must have high pulse amplitude to contain much average energy. Hence, noise of this type strong enough to caise much interference gencrally has an instant:neous amplitude much higher than that of the signal being received. The general principle of deviees intended to reduce such noise is that of allowing the signal amplitude to pass through the receiver moffected, but making the receiver inoperative for amplitucles greater than that of the signal. The greater the amplitude of the pulse compared to its time of duration the more successful the noise reduction, since more of the constituent energy can be supprosicel.

In passing through selective receiver circuits, the time duration of the impulses is increased, beeause of the () or flywheel effect ($\$ 2-10$) of the circuits. Hence, the more selectivity ahead of the noise-reducing device, the more diffieult it becomes to secure gool noise surpression.

Audio limiting - A considerable degree of noise reduction in code reception cun be aeromplished by amplitude-limiting arrangements applied to the audio output circuit of a receiver. Such limiters also maintain the signal output nearly constant with fading. Diaurams of typical outpht-limiter circuits are shown in Fig. 7i31. (irenit A employs a triode tube operated at reduced plate voltage (approximately 10 volts), so that it saturates at a low signal level. The arrangencent of 13 has better limiting characteristion. A pentode andio tuhe is operated at reduced sereen voltage (35 volts or so), so that the output power remains practically eonstant over a grid excitation-voltage range of more than 100 to 1 . These outphetlimiter sustems are simple, and adaptable to most reccivers. However, they cannot prevent noise peaks from overlonding previous circuits.

Second-tetertor circuits - The circuit of Fig. 732 "chops" noise peaks at the second detector of a superhet receiver by monns of a biased diode, which becomes non-combucting above a predetermined signal level. The atudio output of the deteretor mast pass through the diode to the grid of the amplifier tube. 'The diode normally would be non-combating with the connections shown were it not for the fact that it is given positive bias from a 30 -volt
source through the adjustable potentiometer, R_{3}. Resistors R_{1} and R_{2} must be fairly large in value to prevent loss of audio signal.

The andio signal from the detector can be considered to modulate ($\$ 5-1$) the steady diode current, and courluction will take place so long as the diode plate is positive with respert to the eathode. When the signal is sufficiently large to swing the cathode positive with respect to the plate, however, conduction ceases, and that portion of the signal is cut off from the audio amplifier. The point at which cut-onf ocenrs can be seleeted by adjustment of R_{3}. By setting l_{3} so that the signal just passes throngh the "valve," noise pulses higher in ampliturle than the signal will be cut off. The cirenit of Fig 7:32-A, using an infinite-impedance detector ($\$ 7-3$), gives a positive voltage on rectification. When the rectified voltage is negative, as it is from the usual diode detector ($\$ 7-3$), the cireuit arrangement shown in Fig. $732-13$ must be usecl.

An audio signal of about ten volts is required for good limiting action. When a beat oscillator is used for c.w. reception the b.f.o. voltage should be small, so that incoming noise will not have a strong carricr to beat against and so produce large audio output.

A second-detector noise-limiting circuit which automatically aljusts itself to the received carricr level is shown in Fig. 733. The diode loud circuit $(\$ 7-3)$ consists of R_{6}, R_{7}, R_{8} (shumted by the high-resistance andio volume control, $l_{2.4}$) and l_{s} in series. The cathode of the Gitr noise limiter is tapped on the load resistor at a point such that the average rectified carrier voltage (negative) at its grid is approximately twice the megative voltage at the cathode, both measured with reference to ground. A filter network, $R_{1} C_{1}$, is inserted in the grid circuit, so that the audio modulation on the earrier does not reach the grid: hence, the grid potential is maintained at substantially the rectified carrier voltage alone. The athode, lowever, is free to follow the modulation, and when the modulation is 100 per cent the peak cathode volt:uge will just equal the steady grid voltage.

At all modulation percentages below 100 per cont the grid is nerative with respect to cathwhe and current c:anme flow in the 6.57 plateathode circuit. A moise palse exceeding the peak voltage whith reprosents 100 per cent modalation will, however, make the grid positive with respect to rathode. The relatively low plate-cathode resistance of the 6 N7 then shunts the high-resistancea audio output circuit,

Receiver $P_{\text {rinciples and }} D_{\text {esign }} 167$

effectively short-circuiting it, so that there is practically no response for the duration of the penk over the 100 per cent modulation limit.
R_{5} is used to make the noisc-limiting tube more sensitive by applying to the plate an audio voltage wut of plitue with the cathode voltage, so that, at the instant the grid goes positive with respect to cathode, the highest positive potential also is applied to the plate, thus further lowering the effective plate-cathode resistance.
I.f. noise silencer - In the circuit shown in Fig. 734, noise pulses are made to decrease the gain of an i.f. stage momentarily and thus silence the receiver for the duration of the pulse. Any noise voltage in rxcess of the desired signal's maximum i.f. voltage is talien off at the grid of the i.f. anplifier, amplified by the noise amplifier stage, and rectifiod by the fallwave diode noise rectificr. The noise circuits are tuned to the i.f. The rectified noise voltage is applied as a pulse of negative bias to the No. 3 grid of the 6 L 7 i.f. amplifier, wholly or partially disabling this stage for the duration of the individual noise pulse, depending on the amplitude of the noise volt:uge. The noise amplifier-rectifier circuit is biased by means of the "threshold control," F_{2}, so that rectification will not start until the nosise voltage exceds the desired-signal amplitude. With automatic volume control the a.v.c. voluge can be applied to the grid of the unise amplifier, to augment this thronhold bits. This system improved the simal-to-noise ratio some 30 db . (power ratio of 1000) with heavy ignition interference, raising the signal-tis-noise ratio from -10 (lb. without the silencer to +20 db . with the silencer in a typical instance.

Fig. 732 -Suries-valve noise-limiter circuits. A, as used with an infinite-impedance detector; 13 , with a diode detector. 'Tyinal values for components are as follows:
$\mathrm{R}_{1}-0.25$ megohm.
$\mathrm{R}_{2}-50,000$ ohms.
$\mathrm{H}_{3}-10,000$-ohmes.
. $\quad C_{2}, C_{3}-0.1 \mu \mathrm{fd}$.
All other diode-circuit constants in \mathbf{B} are conventional.

Fig. 733 - Automatie notse limiter for superheterodynes.
T - I.f. transformer wih a halaned secomdary for working into a diosde reetifier.
$\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}-1$ megohm. \quad ($1-0.1-\mu \mathrm{ff}$, paper.
l_{4} - 1 -megohm variable. $\quad \mathrm{C}_{2}, \mathrm{C}_{3}-(0,0.5-\mu \mathrm{ffl}$. papher.
$12_{5}-250,000$ olum*
$l_{a}, R_{s}-100,000$ ohms. $C_{0}-0.001-\mu$ fis 2 mica (for $\mathrm{K}_{7}-25,000$ ohms. r.f. filtering, if Sw - S.jns.l. topple (on-off switeli). neverle).
The switch should he mounted close to the circuit elements and controlled he an extension shalt if neressary.

Circuit values are normal for i.f. amplifiers ($\$ 7-11$), except as indicated. The noise-rectifier transformer, T_{1}, has an untuned secondary closely coupled to the primary and centertapped for full-wave reatification. The centertap rectifier ($\$ \mathrm{~S}-3$) is used to redure the possibility of r, f. feed-bark into the i.f. amplifier (noise-silencer) stage. The tine constant (§ 2-6) of the noise-rectifier load rireuit., $l_{1} C^{\prime}{ }_{1} C_{2}$, must be small. to prevent disobling the noise-silencer stage for a longer period than the dumation of the noise pulse. The r.f. choke, $R F C$, must be effective at the intermediate frequency.

Aderfuate shielding and isolation of the noiseamplifier and rectifier circuits from the noisesilencer stage must be provided to prevent possible self-oscillation and instability. This circuit should be applied to the first i.f. stage of the receiver, before the high-selectivity circuits are reached. On the other hand, it is most effective when the signal and nowse levels are fairly high (meaning one or two r.f. stages before the mixer) since several volts must be obtained from the noise rectifier for good silencing.

[. 7-16 Operating Superhełerodyne Receivers

C.u. reccption - For making oode signals audible, the beat oscillator should be set to a frequency slightly different from the intermediate frequency ($\$ 7-8$). To adjust the beatoscillator frecuency, first tune in a noderately weak butstendy earrier with the beat oscillator turned off. Adjust the receiver tuning for maximumsignalstrength, asindicated by maximum hiss. Then turn on the beat oscillator and adjust its frequency (leaving the receiver tuning unchanged) to give a suitable beat note. The beat oscillator need not subsequently be touched, except for occasional checking to make certain the frequency has not drifted from the
initial setting. The b.f.o. may be set on either the high- or low-frecuency side of zero beat.

The use of a.v.c. ($\$ 7-13$) is not generally satisfactory in e.w. reception because the receiver gain rises in the spaces between the dots and dashes, giving an increase in noise in the same intervals, and because the rectified beat-oscillator voltage in the second detector circuit also operates the a.v.c. circuit. This gives a constant reduction in gain and prevents utilization of the full sensitivity of the receiver. Hence, the gain preferably should be manually adjusted to give suitable audio-frequency output.

To avoid overloading in the i.f. circuits, it is usually better to control the i.f. sud r.f. gain and keep the audio gain at a fixed value than to use the a.f. gain control as a volume control and leave the r.f. gain fixed at its highest level.

Tuning uith the crystal filter - If the receiver is equipped with a crystal filter the tuning instructions in the preceding paragraph still apply, but more care must be used both in the initial adjustment of the heat oseillator and in tuning. The beat oscillator is set as described above, but with the crystal filter in operation and adjusted to its sharpest position, if variable selectivity is available. The initial adjustment should be made with the phasing control ($\$ 7-11$) in the intermediate position. After it is completed, the beat oscillator should be left set and the receiver tuned to the other side of zero beat (audio-frequency inage) on the same earrier to give a beat note of the same tone. This beat will be considerably weaker than the first, and may be "phased out" almost completely by eareful adjustment of the phasing control. This is the adjustment for normal operation; it will be found that one side of zero beat has practically disappeared, leaving maximum response on the desired side.

An interfering signal having a beat note differing from that of the a.f. image can be

Fig. 734-I.f. noise-silencing circuit. The plate supply should be 250 volis. I'ypical values for components are: $\mathrm{C}_{1}-50-250 \mu \mu \mathrm{fd}$. (use smallest value possible without r.f. feedback).
$\mathrm{C}_{2}-50{ }_{\mu \mu \mathrm{dd}} \quad \mathrm{R}_{2}-5000$ - olim variable.
$\mathrm{C}_{3}-0.1 \mu \mathrm{fl} . \quad \mathrm{Ki}_{3}-20,000$ ohms.
$R_{1}-0.1$ meqohm. $\quad R_{4}, R_{5}-0.1$ megohm.
${ }^{\prime} \Gamma_{1}$ - Special i.f. transformer for noise rectifier.
similarly phased out, provided its carrier frequency is not too near the desired carrier.

Depending upon the filter design, maximum selectivity may cunse the dots and dashes to lengthen out so that they seem to "run together." This, plus the fact that tuning is quite critical with extremely high selectivity, may make it desirable to nse somewhat less selectivity in ordinary operation. However, it must be emphasized that, to realize the benefits of the crystal filter in reducing interference, it is necessary to do all tuning with it in the circuit. Its selectivity is so high that it is almost impossible to find the desired station quickly, should the filter be switched in only when interference is present.
'Phone reception. - In reception of 'phone signals, the normal procedure is to set the r.f. and i.f. gain at maximum, switch on the a.v.c., and use the audio gain control for setting the volnme. This insures maximum effectiveness of the a.v.c. system in compensating for fading and maintaining constant audio output on either strong or weak signals. On occasion a strong signal close to the frequency of a weaker desired station may take control of the a.v.c., in which case the weaker station will practirally disappear beeause of the reduced gain. In this case better reception may result if the a.v.c. is switched off, using the manual r.f. gain control to set the gain at a point which prevents "blocking" by the stronger signal.

A crystal filter will do much toward reducing interference in 'phone reception. Although the high selectivity cuts sidebands (§7-11) and thereby reduces the audio output, especially at the higher andio frequencies, it is possible to use quite high selectivity without destroying intelligilility even thongh the " puality" of the transmission may suffer. As in the case of c.w. reception, it is advisable to do all tuning with the filter in the circuit. Variable-selectivity filters pernit a choice of selectivity to suit interference conditions.

An undesired carrier close in frequency to a desired carrier will heterodyne with it to produee a beat note equal to the frequency difference. Such a heterodyne can be reduced by adjustment of the phasing control in the crystal filter. It cannot be prevented in a "straight" superheterody ne having no crystal filter.

A tone control of ten will be of help in reducing the effects of high-pitched heterodynes, sideband splatter ($\$ 5-2$) and noise, by cutting off the higher andio frequencies. This, like sideband cutting with high selectivity, causes some reduction in naturalness.

Spurious responses - Spurious responses ean be reconnized withont a great deal of difficulty. Often it is possible to identify an inage by the nature of the transmitting station, if the frequency assignments applying to the frequency to which the receiver is tuned are known. However, an image also can be recognized by its behavior with tuning. If the signal causes a heterodyne beat note with the
desired signal and is actually on the same frequency, the beat note will not change as the receiver is tuned through the signal; but if the interfering signal is an image, the beat will vary in pitch as the receiver is tuned. The beat oscillator in the receiver must be turned off for this test. Using a crystal filter with the beat oscillator on, an image will peak on the side of zero beat opposite that on which the desired signal peaks.
Harmonic response can be recognized by the "tuning rate," or movement of the tuning dial required to give a specified clange in beat note. Signals getting into the i.f. via high-frequency oscillator harmonics tune more rapidly (less dial movenent) through a given change in beat note than do signals received by normal means.

Harmonies of the beat oseillator can be recognized by the tuning rate of the beat-oscillator pitch control. A smaller movement of the control will suffice for a given change in beat note than is necessary with legitimate signals.

10 7-17 Servicing Superheterodyne Receivers

Troubleshooting - Two basic methods are employed. Onc is the "point-by-point" system of static analysis, requiring chicfly a multirange volt-ohm-milliammeter. Beginning at the power transformer, the operating voltages at each point in the cirruit are mensured. Abnormally low or high voltages, or the absence of indication at a given point in the circuit, presumably indicate a defective component at that point. The analysis may then be completed with the aid of the olimmeter and a little deduction, ending with repair or replacement of unservierable components.
An alternative method, commonly employed by professional radio servicemen, is that of "dynanic" or "channel" analysis. The principle is that of applying a test signal to the r.f. input and tracing it stage-by-stage through the receiver. The r.f. and i.f. stages are checked by tuned amplifiers feeding a linear detector which operates an indicator sum as vacuumtube voltmeter, electron-ray voltmeter, or cathode-ray tube. A probe on the end of a shiclded leard with a very small enndenser (1-2 $\mu \mu \mathrm{fd}$.) in series is used to piek up the signal in the output of any stage, and the tuned amplifiers are adjusted to the frequency of the stage. Thus the presence or absence of the signal at any point in the receiver may be determined, as well as the relative level.
I.f. alignment - A calibrated signal generator or test oscillator is a practical necessity for initial alignment of an i.f. amplifier. Some means for measuring the output of the receiver also is needed. If the receiver has a tuning meter, its indications will serve for this purpose. Alternatively, if the sigmal generator is of the modulaterl type, an a.e. output meter (high-resistance voltmeter with copper-oxide rectifier) can be commected across the primary of the output transformer, or from the plate of
the last audio anplifier through a $0.1-\mu \mathrm{fd}$. blocking condenser ($\$ 2-13$) to the receiver chassis. The intensity of sound from the loudspeaker can be judged by ear, if no output meter is available, but this method is not as accurate as those using instruments.

The procedure is as follows: The test oscillator is adjusted to the desired intermediate frequency, and the "lot" or ungrounded output lead is clipped on the grid terminal of the last i.f. amplificr tube. The grounded lead is connected to the receiver chassis. The trimmer condensers of the transformer feeding the second detector are then adjusted for maximum signal output. The hot lead from the generator is next clipped on the gricl of the next-to-last i.f. tube, and the second from last i.f. transformer is brought into alignment by adjusting its trimmers for maximum ontput. This process is continued, working back from the second detector, until all of the i.f. transformers lave been aligned. It will be necessary to reduce the output of the signal generator as more of the i.f. amplifier is brought into use, because the increased gan otherwise may cause overloading and consecpuent inaccurate results. It is desirable always to use the minimum signal strength which gives useful output readings.

The i.f. transformer in the plate circuit of the mixer is aligned with the signal-generator output lead connected to the mixer grid. Since the tuned circuit feeding the mixer grid is tuned to a considerably ligher frequency, it can effectively short-eircuit the signal-generator output, and therefore it may be necessary to diseonneet this cirenit. With tubes having a top grid-cap connection, this can be done by simply renseving the gride clip from the tube cap.

If the tuning indicator is used as an output meter the a.v.c. shomld be on; if the audiooutput method is used, the a.v.c. should be off. The beat oseillator should be off in either case.

If the i.f. amplifier lats a crystal filter, the filter should be switshed out. Alignment is then carried out as described above, setting the signal generator as closely ats possible to the frequency of the erystal. After alignment, the crystal should be switched in and the oscillator frequency varied back and forth over a small range either side of the orystel frequency to find its exact frequency, which will be indicated by a sharp rise in output. Leaving the signal generator set on the crystal peak, the i.f. trimmers may be realigned for maximum output. The necessary readjustment should be small. The signal generator frequeney should be checked frequently, to make sure it has not drifted from the erystal peak.

A modulated signal is not of much value for aligning a crystal-filter i.f. amplifier, since the high selectivity ents sidebands and the results may be inacenrate if the andio output of the recciver is used as a criterion of aligmment. Larking an a.v.c. thming meter the transformers may be aligned hy ear, using a weak unmodulated signal adjusted to the erystal
peak. Switch on the beat oscillatior, arljust to a suitable tone, and align the transformers for maximum andio output.

An amplifier which is only slightly out of alignment, as a result of normal drift from temperature, hamidity or aging efferts, ran be realigned by using any steady signal, such as a local broadeasting station, in lieu of a test oscillator. dllow the receiver to warm up thoroughly (an hour or so), tume in the signal as usual, and "tonch up" the i.f. trimmers.
R.f. alignment - The objactive in aligning the r.f. circuits in a gang-tuned receiver is to secure adoquate tracking over earh tuning range. The adjustment may be carried out with a test escillator of suitable frequency range, or even on noise or such signals als may be heard. First set the tuning dial at the highfrecquency eud of the range in use. Then set the test oscillator to the frequency indicated by the receiver dial. The test-oseillator output may be connerted to the antenna terminals of the receiver for this test. Adjust the oscillator trimmer condenser in the receiver to give maximum response on the test-oseillator signal, then riset the reciver dial to the low-frequency end of the range. Set the test-oscillator frequency near the frequency indirated by the reseiver dial and carelully tune the test oscillator until its signal is heard in the receiver. If the frequency of the signal as indicated by the test-oscillator calibration is higher than that indicated by the receiver dial, more inductance (or more (apacity in the tracking condenser) is needed in the receiver oscillator circuit; if the frequency is lower, less inductince (less tracking capacity) is recuured in the receiser oscillator. Alost conmorcial receivers provide some means for varying the indurtanees of the edils

(ir the capacity of the tracking condenser, to permit aligning the receiver tuning with the dial calibration. Set the test oscillator to the frequency indicated by the receiver dial, and then adjust the tracking caparity or inductance of the recciver oscillator eoil to obtain maximum response. After making this adjustment, recheck the high-frequency end of the seale as proviously described. It maty lo necessary to go back and forth betwen the ends of the range several times before the proper combination of inductance and capacity is secured. In many cases. better over-all tracking will result if frequencies near but not actually at the ends of the turing range are selected, instead of taking the extreme dial settings.

After the oscillator range is properly adjusted, set, the receiver and test, oscillator to the high-frepucney end of the range. Adjust the mixer trimmer condenser for maximum hiss or signal, then the r.f. trimmers. Reset the tuning dial and test oscillator to the low-frequency encl of the r:ange, and repeat; if the circuits are properly designed, no change in trimmer settinge should be neodsary. If it is necessary to increase the trimmer raparity in any cireait, it indicates that more inductance is nceded; if less cupacity resonales the cireuit, less inductance is repuired.

Tracking selam is perfect throughout a tuning range, so, that a eheck of alignment at intermediate points in the range mary show it to be slightly off. Normally the gain variation from this cause will be small, however, and it will suffice to bring the circuits into line at both ends of the range. If most reception is in a particular part of the range, such as an amatenr band, the circuits maty be aligned for maximum performance in that region, even though the ends of the frequency range as a whole may he slightly out of alignment.

Visual alignment - More aceurate and efficient aligmment of receiver circuits may be performed with the aid of a visual rurve-tracer or "wobbulator" which traces out the response eurve visually ou a cathode-rivy oscilloscope. This is aceomplished by using a sperial signal generator in which the oxcillator frequency is varied over a suitable range at a low audio rate. The horizontal sweep of the oscilloscope is synchronized with the rate of variation of the tost frequency, so that the horizontal deflection is a function of frefuency. The rectified output of the second delector is connected to the vertical deflection plates of the oscilloscope. The spot on the screen therefore traces a curve proportional to the receiver response in terms of the instantancous value of the osrillator frequency. This visual response curve, which maty be thith of the entire receiver or of any stage, is contimally visible as a whole. Thus the offoret of any aldjnstment of the circuits maty be ohserved marh more rapidly than is possible with an ordinary signal generator and output meter, particularly in the rase of wide-Inand i.f. (ircuits.

(A)

(B)

(C)

Fig. 736 - A, a tyinal single-trace respunse curve of a selective hiph-filelity i.f. system. B, pattern of the amplifier in A made hiphly re;nencrative, illastrating instahility: C, double trace of a single overcoupled i.f. stage with the return trace displaeed. A similar "knee" loeated lower on the skirts would indicate regeneration.

Apparatus and methods for obtaining visual

 curve traces are described in Chapter Nineteen. The simplest arrangement is that which employs a reactance-tube modulated owcillator operating on 1000 lec., the output of which is combined with that from an ummodulated variable-t-uning ref. osseillator in a mixer tube, to provide a heterodyned signad at the desired center freguency.Either "double trace" and "single trace" patterns may be used. The double trace pattern is obtained by applying a triangular sweep to the f.m. oscillator at a frepueney hatl that of the sawthoth sweep on the horizontal plates of the eathode-ray tube. The return sweep produres a reverserl patienn superimposed on the first, and is useful for checking symmetry and frequency ralihation. The single-trace pattern shows the same two oppo-site-sequence resonance curver, but with the second curve displaced by a half eycle of the andio sweep frequenery. It is useful in displatying irregularities in the pattern which might be obscured by superposition of the traces.

The alignment procedure follows that deseribed for the oscillator-nutput-meter method. Assuming a diode second detector, run a shielded lead to the vertical input terminals of the oscilloseope from the "high" side of the diode load resistor - ustarlly the andio volume control. With a triode biased detector, the bias resistor and by-pass condenser circuit should be opened and the vertical terminal connected to the cathode of the detector tube across a 0.5 -megohm leak to ground, bypassed with a $250-\mu \mu \mathrm{fd}$. condenser. The mate load should be shorted out. This will make the resonance patterns appear upside down, but does not change their interpretation.

The r.f. outpht from the mixer should conneet directly to the grid of the last i.f. tabe. Add the i.f. frequency to 1000 lie. and set the unmodulated signal generator to this frequency. For example, if the i.f. is 465 kc ., set the a.m. signal generator to $1+605$ ke. At the usual bandwidth of 30 ke , the signal at the grid of the last i.f. stage will swing from 450 ke . to 480 kc . and back. If the signal generator is set to the exact i.f., a double-trace pattern should appear on the screen. Center this pattern with the oscilloscope sweep vernier. Adjust the i.f.trimmers until these peaks eoincide. For single-trace analysis, the oscilloscope sweep frequency slould be reduced one half.

To align the next i.f. stage, move the r.f. output lead to the grid of the tube and adjust the next i.f. transformer. It may be neressiny to realjust the output transformer after this operation. When aligning triple-tuned ar highfidelity i.f. circuits, it is most important that the peaks in the double pattern coincide and have nearly equal amplitude.

To align the r.f. and mixer input eirenits, the variable-frefucney signial generator should be set to a frecquency which. by addition to 1000 ke., produres the desired r.f. signal frequency. As each stauge is added, the output level must be reduced to keep the patitern on the screen. 'To a void overloading, only enough signal shonlal be used to orerome local interference. Aljust the r.f. trimmers for maximum vertical amplitude of the pattern, as with an output meter. Dial calibration can be cheeked by setting the test oscillator on frequency and aljusting the h.f. oseillator trimmer in the reseiver to ernter the pattern on the worme

 restal filter (uade at a very low relubition rate). Λ, crysal in "hroad" pusition, phasing control at center. 13. phasing control set to plate the rejectinn shot on lowfrefueney side. C, with shot on hiehtifrequene side.

Oscillation in r.f. or i.f. amplifiers - Oscillation in high-frequeney amplifier and mixer circuits maty be evidenced bẹ spucals or "birdies" as the tuning is varied, or by complete lack of audible output it the oscillation is strong enough to canse the a.s.e. sysitem to reduce the recoiver gatin drastically. (V)cillation can be caused by pror connertions in the common ground circuits, esperially to the tuningcondenser rotors. Inadecpate or defective bypass condensers in cathode, plate and sercengrid circuits also can couse such oscillation. In some cases it maty be advisable to provide a shield between the stators of pre-r.f. amplifier and first-detantor gengerl tuning condensers, in addition to the usual tube and interstage shiede ing. A metal tube with an ungrounded shell will cause trouble. Improper sereen-grid voltage, resulting from a shorted or too-low sereengrid series resistor, also may be responsible for such instability.

Oscillation in the i.f. circuits is independent of high-frequency tuning, and is indicated by a eontinuous squeal which appears when the gain is advanced with the c.w. beat oscillator on. It can result from similar defects in i.f. amplifier circuits. Inadequate cathode by-pass capacitance is a common cause of such oscillation. An additional by-pass condenser of 0.1 to $0.25 \mu \mathrm{fl}$. usually will remedy the trouble. Similar treatment can be applicd to the sereengrid and plate by-pass filters of i.f. stages.

Instability - "Birdies" or a mushy hiss occurring with tuning of the high-frequency oscillator may indicate that the oscillator is "squegging" or oscillating simultaneously at high and low frequencies ($\$ 7-4$). This may be caused by a defective tube, too-high oscillator plate or screen-grid voltage, excessive feedback, or too-high grid-leak resistance.

A varying beat note in c.w. reception indicates instability in either the h.f. oscillator or beat oscilhator, usually the former. The stability of the beat oscillator can be checked by introducing a signal of intermediate frequency (from a test oscillator) into the i.f. amplifier; if the beat note is unstable, the trouble is in the beat oscillator. Poor connections or defective parts are the likely cause. Instability in the high-frequency oscillator may be the result of poor circuit design (§7-10), loose comections, defective tubes or circuit components, or poor voltage regulation in the oscillator plate and/or screen supply cireuits. Mixer pulling of the oscillator circuit (§7-9) also will cause the beat-note to "chirp" on strong c.w. signals because the oscillator load changes slightly.

In 'phone reception with a.v.c., a peculiar type of instability (" motorboating") may appear if the h.f. oscillator frequency is sensitive to changes in plate voltage. As the a.v.c. voltage rises the electrode currents of the controlled tubes decrease, decreasing the load on the power supply and causing its output voltage to rise. Since this increases the voltage applied to the oscillator, its frequency changes correspondingly, throwing the signal off the peak of the i.f. resonance curve and reducing the a.v.c. voltage, thus tending to restore the original conditions. The process then repeats itself, at a rate determined by the signal strength and the time constant of the power-supply circuits. This effect is most pronounced with high i.f. selectivity, as when a crystal filter is used, and can becured by making the oscillator relatively insensitive to voltage changes and by regulating the plate voltage supply ($\$ 7-10$).

C 7-18 Reception of FrequencyModulated Signals

F.m. receivers - A frequency-modulation receiver differs in circuit design from one designed for amplitude modulation chiefly in the arrangement used for detecting the signal. Detectors for amplitude-modulated signals do not respond to frequency modulation. It is also necessary, for full realization of the noise-reducing benefits of the f.m. system, that the signal applied to the detector be completely free from amplitude modulation. In practice, this is attained by preventing the signal from rising above a given anplitude by means of a limiter (§ 3-10, 7-15). Since the weakest signal must be amplitude-limited, high gain must be provided ahead of the liniter; the superheterodyne type of circuit almost invariably is used to pruvide the necessary gain.

The r.f. and i.f. stages in a superheterodyne for f.m. reception are practically identical in circuit arrangement with those in an a.m. receiver. Since the use of $f . n$. is confined to the very-high frequencies (above 28 Mc .) a high intermediate frequency is employed, usually between 4 and 5 Mc . This not only reduces image response but also provides the greater band-width necessary to accommodate wideband frequency-modulated signals.

Receiver requirements - The primary requirements are sufficient r.f. and i.f. gain to "saturate" the limiter even with a weak signal, sufficient band-width (§7-2) to accommodate the full frequency deviation either side of the carrier frequency without undue attenuation at the edges of the band, a limiter circuit which functions properly on both rapid and slow variations in amplitude, and a detector which gives a linear relationship between frequency deviation and amplitule output. The audio circuits are the same as in other receivers ($\$ 7-5$), except that in communications-type receivers it is desirable to cut off the upper audio range by a low-pass filter (§2-11) because higher-frequency noise components have the greatest amplitude in an f.m. receiver.

The limiter - Iimiter circuits generally are of the plate-saturation type ($\$ 7-15$), where low plate and screen voltage are used to limit the plate-current flow at high signal amplitudes. Fig. 738-A is a typical circuit. The tube is selfbiased ($\$ 3-6$) by a grid leak, R_{1}, and condenser, $C_{1} . R_{2}, R_{3}$ and R_{4} form a voltage divider

Fig. 738 - F.nı. limiter circuitg. A, single-tube platesuturation limiter; \mathbf{B}, cascade limiter. ' I ypical values are:

	Circuit A	Circuiz B
$\mathrm{C}_{1}-$	$100 \mu \mu \mathrm{fd}$.	$100{ }_{\mu \mu \mathrm{fd}}$
$\mathrm{C}_{2}, \mathrm{C}_{3}-$	$0.1 \mu \mathrm{fd}$.	$0.1 \mu \mathrm{fd}$.
$\mathrm{C}_{4}-$		$250 \mu \mu \mathrm{fd}$.
$\mathrm{R}_{1}-$	0.1 megohm.	50.000 ohms.
$\mathrm{R}_{2}-$	2000 ohms.	2000 ohms.
$\mathrm{R}_{3}-$	50,000 ohms.	50,000 ohms.
$\mathrm{R}_{4}-$	$0-50,000$ ohms.	$0-50,000$ ohms.
$\mathrm{R}_{5}-$		4000 ohms.
$\mathrm{R}_{0}-$		0.2 megohm.

Plate-supply voltage is 250 in both circuits.

Receierer Priniciples and $^{D_{\text {seign }}} 173$

($\delta 8-10$) which puts the desired voltages on the screen and plate. The lower the voltages the lower the signal level at which limiting oceurs, but the r.f. output voltage of the limiter also is lower. C_{2} and C_{3} are the plate and screen by-pass condensers, of conventional value for the intermediate frequency used. The time constant ($\$ 2-6$) of $R_{1} C_{1}$ determines the behavior of the limiter with respect to rapid and slow amplitude variations. For best operation on impulse noise ($\$ 7-15$) the time constant should be small, but a too-small time constant linits the range of signal strengths the limiter can handle without departing from the con-stant-output condition. A larger time constant is better in this respect but is not so effective for rapid variations. Compromise constants are shown in Fig. 738.

The cascade limiter, Fig. 738-B, overcomes this by making the time constant in the first grid circuit suitable for effective operation on impulse noise, and that in the second grid ($C_{4} R_{6}$) optimum for a wide range of input signal strengths. This results, in addition, in more constant output over a very wide range of input signal amplitudes because the voltage at the grid of the second stage already is partially amplitude-limited. Resistance coupling ($R_{5} C_{4} R_{6}$) is used for simplicity and to prevent unwanted regencration, additional gain at this point being unnecessary.
The rectified voltage developed across R_{1} in either circuit may be applied to the i.f. amplifier for a.v.c. (§ 7-13).

Discriminator circuits and operationThe f.m. detector commonly is called a discriminator, because of its ability to discriminate between frequency deviations above and those below the carrier frequency.

A rectifier connected to an ordinary tuned circuit adjusted so that the signal frequency falls on one side of the response curve constitutes an elementary discriminator, because the rectifier output will vary with a change in the carrier frequency. If two such circuits are used with a balanced rectifier, one tuned above and the other below the signal frequency, amplitude variations are balanced out and the combined rectified current is propertional to the frequency deviation.
The circuit most widely used is the "series" or center-tuned discriminator shown in Fig. 739-A. A special i.f. coupling transformer is used between the limiter and detector. Its secondary, L_{1}, is center-tapped and is connected back to the plate side of the primary circuit, which otherwise is conventional. C_{4} is the tuning condenser. The load circuits of the two diode rectifiers ($R_{1} C_{1} R_{2} C_{2}$) are connected in series; constants are the same as in ordinary diode detector circuits (§7-3). Audio output is taken from across the two load resistances.
The primary and secondary circuits are both adjusted to resonance in the center of the i.f. pass-band. The voltage applied to the rectifiers consists of two components, that induced in the

Fig. 739 - F.m. discriminator circuits. In both circuits typical values for C_{1} and C_{2} arc $100{ }_{\mu \mu f i d . ~ e a c h ; ~} R_{1}$ and $R_{2}, 0.1$ nic gobm each. C_{3} in A is approximately $50 \mu \mu \mathrm{fd}$. depending upon the intermediate frequency; $R F C$ should be of a type designed for the i.f. in use (2.5 mh , is aatisfactory for i.f.s of 4 to 5 Mc .). In cither circuit the ground may be moved from the lower end of C_{2} to the junction of C_{1} and C_{2}, for pusb-pull audio output.
secondary by the inductive coupling and that fed to the center of the secondary through C_{2}. The phase relations between the two are such that at resonance the rectified load currents are equal in amplitude but flow in opposite directions through R_{1} and R_{2}, hence the net voltage across the terminals marked "audio output" is zero. When the carrier deviates from resonance the induced secondary current either lags or leads, depending upon whether the deviation is to the high- or low-frequency side, and this phase shift causes the induced current to combine with that fed through C_{2} in such a way that one diode gets more voltage than the other when the frequency is below resonance, while the second diode gets the larger voltage when the frequency is higher than resonance. The voltage appearing across the output terminals is the difference between the two diode voltages. Thus a characteristic like that of Fig. 740 results, where the net rectified output voltage has opposite polarity for frequencies on either side of resonance, and up to a certain point becomes greater in amplitude as the frequency deviation is greater. The straight-line portion of the curve is the useful detector characteristic. The separation between the peaks which mark the ends of the linear portion of the curve depends upon the Qs of the primary and secondary circuits and the degree of coupling. The separation bocomes greater with low $Q s$ and close coupling. The circuit ordinarily is designed so that the peaks fall just outside the limits of the pass-band, thus utilizing most of the straight portion of the curve. Since the audio output is proportional to the change in d.c. voltage with deviation, it is advantageous for maximum output to keep the frequency separation between peaks down to the minimum value necessary for a linear characteristic.

A second type of discriminator is shown in Fig. 739-B. Two secondary circuits are used, one tuned above the center frequency of the i.f. pass-band and the other below. They are coupled equally to the primary, which is tuned to the center frequency. As the carrier fre-

Pis. 7.17 - Chararter: ixfic of a typiral f.nu. detergor. "The vortical anis represernts the valiapo developed acrose the load resistur as the froqueney varies from the exact resonance frequency. This detector would handle frm, signals up (1) : band-withle of 150) kc. over the linear portion of the curve.
quency deviates the voltages induced in the secondarics will chame in amplitude, the larger voltage appearing across the secondary being nearer resonance with the instintameons frequency. The detection chararteristic is similar to that of the center-tuned diseriminator. The peak separation is determined by the Q_{s} of the circuits, the coefficient of coupling, and the tuning of the secondaries. ITigh (as and loose coupling are reduired for elose peak separation.

A simple self-quenched superregenerative receiver may be used as a frequency detector if it is tumed so that the carrier fremeney falls along the slope of the resonance curve. Two such detectors, off-tumed on cither side of the carrier, may be used in pash-pull. An alternative arrangement emphying a superregenerative stage as a first i.f. amplifier at 7.5 M (e., following a converter unit, provides high gain and lincar response with relatively few stages.
F.mu. receiver alignment - Aligmment of f.m. receivers up to the limiter is arried out as described in $\$ 7-17$. lior output measurement, a $0-1$ millimmeter or $0-500$ mierommmeter should be connected in sories with the limiter grid resistor (l_{1} in Fige 738) at the grounded end; or, if the voltage drop arross R_{1} is used for a.v.e. and the receiver is provided with a tuning meter ($\$ 7-13$), the tuning meter may be used as an output meter. An aceurately calibrated signal generator or test uscillator is desirable, since the i.f. should be aligned to be as symmetricell as possible; that is, the output reading should be the same for any two test oscillator settings the same number of kilocycles above or below resontuce. It is not necessary to have uniform response over the whole band to be reecived, although the output at the edges of the band (limit of deviation ($\$ 5-11$) of the transmitted signals) should not be less than $2 \bar{j}$ per cent of the voltage at resonance. In communications work, a band-width of 30 kc . or less (15 ke. or less deviation) is commonly used. Output readings should be taken with the oscillator set at intervals of a few kilocycles cither side of resonance up to the band limits.

After the i.f. (and front-end) aligmment, the limiter operation should be checked. This can be done by temporarily disconnecting C_{3}, if the diseriminator ciresuit of liig. 739-A is used, disconnecting R_{1} :und C_{1} on the cathode side, and inserting the milliammeter or microammeter in series with R_{2} at the grounded end. This converts the diseriminator to an ordinary
dinde rootificr. Varying the signal-generator frcquency over the channel, with the diseriminator transformer adjusted to resonance, should show no change in output (at the bandwidths used for communications purposes) as indicated by the rectified current read by the meter. At this point various plate and sereen voltages ean be tried on the liniter tube or tubes, to determine the set of conditions which gives maximum output with adequate limiting (no change in rectified current).

When the limiter has been checked the discriminator connections can be restored, leaving the meter connected in series with R_{1}. Provision should be made for reversing the connections to the meter terminals, to take care of the reversal in polarity of the net rectified current. Set the sigmal generator to the center frequency of the band and adjust the discriminator transforner trimmer condensers to resonanec, which will be indieated by zero rectified current. Then set the test ossillator at the deviation limit ($\$ 5-11$) on one side of the center frequeney, and note the meter reading. Reverse the meter terminals and set the test oscillator at the deviation limit on the other side. The two readings should be the same. If they are not, they can be made so by a slight adjustment of the primary trimmer. This will necessitate rechecking the response at resonance to make sure it is still zero. Cienorally, the secondary trimmer will chicfly affect the zero-response frequency, while the primary trimmer will have most cffect on the symmetry of the discriminator pataks. A detector curve having satisfactory line:rity can be obtained by cut-and-try adjustment of hoth trimmers.

Fig. 741 - Oscilloseope patterns in f.m. i.f. alipmment. A-I.f. anplifier responsc. 3 -Over-all chararteristie through the fim. detector.

(A)

(B)

A visual curve tracer is particularly advantageous in aligning the wide-bind i.f. amplifiers of f.m. receivers. The i.f. is first aligned with the diseriminator circuit converted into an a.m. diode detector, as deseribed above, the pattern appearing as in lig. 711-A. The over-all characteristie. including the f.n. detector, is shown in Fig. 741-13.

Tunting and operation - An f.m. receiver gives greatest noise reduction when the earrier is tuned exactly to the center of the recosver pass-band and to the point of zero response in the discriminator. Becaluse of the decrease in noise, this point is readily recornized.

When an amplitude-modulated signal is tuned in its nodulation practically disappears at exact resonance, only those nonsymmetrical modulation components which may be present being deterted. If the signal is to one side or the other of resonance, however, it is capable of causing interforence to an f.m. signal.

C 8-1 Power-Supply Requirements

Filament supply - Except for tubes designed for battery operation, the filaments or heaters of vacuum tubes used in both transmiters and receivers are universally operated on alternating current obtained from the power line through it step-down transformer (\$ 2-3) delivering a secondary voltage equal to the rated voltage of the tubes used. The transformer should be desmid to carry the current taken by the number of tubes which may be connected in parallel ($\$ 2-6$) across it. The filament or heater transformer generally is center-tapped, to provide a balanced circuit for eliminating hum (\$3-6).
for medium- and high-power ref. stages of transmitters, and for high-power audio stages, it is desirable to use a separate filament transformer for each section of the transmitter, installed near the tube sockets. This avoids the necessity for abnormally large wires to carry the total filament current for all stages without. appreciable voltage drop. Maintenance of rated filament voltage is highly important, especially with thoriated-filament tubes, since nader- or over-voltage may reduce filament life.

Plate supply - Direct current must be used for the plates of tubes, since any variation in plate current arising from power-supply causes will be superimposed on the signal being redeceived or transmitted, giving an undesirable type of modulation ($\$ 5.5$) if the variations occur at an audio-frequency (\$2-7) rate. Unvarying direct current is called pure dee., to distinguish it from current which may be unidirectional but of pulsating character. The use of pure dec. on the plates of transmitting tubes is requires by FCC regulations on all frequencries below 60 Mc .

Sources of plate power - Dec. plate power is usually obtained from rectified and filtered alternating current, but in low-power and portable installations may be secured from batteries. Dry batteries may be used for very low-power portable equipment, but in many cases a storage battery is used as the primary power source, in conjunction with an interraptor giving pulsating dec. which is applied to the primary of a step-up) transformer (sN-10).

Rertified-ac. supplies - Since the powerline voltage ordinarily is 115 or 230 volts, a step-up transformer (s 2-9, is used to obtain the desired voltage for the plates of the tubes in the equipment, The alternating serombary current is changed to midirechomal current by means of diode rectifier tubes ($\$ 3-1$), and
then parsed through an inductance-capacity filter (\$2-11) to the load circuit. The load resisiance in ohms is equal to the dec. output voltage of the power supply divided by the current in amperes (Ohm's Law, § 2-6).

Voltage regulation - Since there is always some resistance in power-supply circuits, and since the filter normally depends to a considerable extent upon the energy storage of inductame and capacity ($\$ 2-3,2-5$), the output voltage will depend upon the current drain on the supply. The change in output voltage with change in load current is called the voltage regulation. It is expressed as a percentage:

$$
\% \text { Regulation }=\frac{100\left(E_{1}-E_{2}\right)}{H_{2}}
$$

where E_{1} is the no-lnad voltage (nom current in the load eirenic) and E_{2} the full -had voltage (rated current in load circuit).

(1) 8-2 Rectifiers

Purpose and ratings - A rectifier is a device which will conduct current only in one direction. The diode tube ($\$ 3-1$) is used almost exclusively for rectification in dee. power supplies used with radio equipment. The inportent characteristics of tubes used as powersupply rectifiers are the voltage drop between plate and cathode at rated current, the maximum permissible inverse peak voltage, and the permissible peak plate current.

Voltage drop - 'lube voltage drop depends upon the type of tube. In vacuum-type rectifirs it increases with the current flowing because of space-charge effect ($\$ 3-1$), but, can be minimized by using very small spacing between plate and cathode as is done in some rectifiers for receiver power supplies. Merenry-vapor rectificies ($\$ 3-5$) have o constant drown of about 15 volts, regardless of current. This is much smaller than the voltage drops encountered in vacuum-tyje rectifiers.

Inverse peal voltage - This is the maximum voltage developed between the plate and cathode of the rectifier when the tube is not conducting; ie., when the plate is negative with respect to the cathode.

Peak plate current - This is the maximum instantutumes current through the rectifier. It can never be smaller than the low current in ordiary circuits, and may be several times higher.

Operation of merrurv-iapor rectifiersl3ecanse of its constant voltage drop, the mar-cury-rapor rectifier is more susceptible to damage than the vacuum type. With the latter, the increase in voltage drop tends to
limit current flow on heavy overloads, but the mercury-vapor rectifier does not have this limiting action and the cathode may be damaged under similar conditions.

In mercury-vapor rectifiers a phenomenon known as "arc-back," or breakdown of the mercury vapor and conduction in the opposite direction to normal, occurs at high inverse peak voltages, hence such tubes always should be operated within their inverse-peak voltage ratings. Arc-back also may occur if the cathode temperature is below normal; therefore the heater or filament voltage should be checked to make sure that the rated voltage is applied. This check should be made at the tube socket, to avoid errors caused by voltage drop in the leads. For the same reason, the cathode should be allowed to come up to its final temperature before plate voltage is applied; the time required for this is of the order of 15 to 30 seconds. When a tube is first installed, or is put into service after a long period of idleness, the eathode should be heated for a period of 10 minutes or so before application of plate voltage.

C 8-3 Rectifier Circuits

Half-wave rectifiers - The simple diode rectifier (§3-1) is called a half-wave rectifier, because it can pass only half of each cycle of alternating current. Its circuit is shown in Fig. 801-A. At the top of the figure is a representation of the applied a.c. voltage, with positive and negative alternations (§2-7) marked.

Fig. 801 - Fundamental vacuum-tuhe rectifer circuite.

When the plate is positive with respect to cathode, plate current flows through the load as indicated in the drawing at the right, but when the plate is negative with respect to cathode no current flows. This is indicated by the gaps in the output drawing. The output current is unidirectional but pulsating.

In this circuit the inverse peak voltage is equal to the maximum transformer voltage, which in the case of a sine wave is 1.41 times the r.m.s. voltage ($\$ 2-7$).

Full-wave center-tap rectifier - Fig. 801B shows the "full-wave center-tap" rectifier circuit, so called becruse both halves of the a.c. cycle are rectified and because the transformer secondary winding must consist of two equal parts with a connection brought out from the center. When the upper end of the winding is positive, current can flow through rectifier No. 1 to the load; this current cannot pass through rectifier No. 2 because its cathode is positive with respect to its plate. The circuit is completed through the transformer center-tap. When the polarity reverses the upperend of the winding is negative and no current can flow through No. 1, but the lower end is positive and therefore No. 2 passes current to the load, the return connection again being the center-tap. The resulting waveshape is shown at the right.

Since the two rectifiers are working alternately in this circuit, each half of the transformer secondary must be wound to deliver the full-load voltage; hence the total voltage across the transformer terminals is twice that required with the half-wave rectifier. Assuming negligible voltage drop in the particular rectifier which may be conducting at any instant, the inverse peak voltage on the other rectifier is equal to the maximum voltage between the outside terminals of the transformer. In the case of a sine wave, this is 1.41 times the total secondary r.m.s. voltage (§2-7).

Because energy is delivered to the load at twice the average rate as in the case of a halfwave rectifier, each tube carries only half the load current.

The bridge rectifier - The "bridge" type of full-wave rectifier is shown in Fig. 801-C. Its operation is as follows: When the upper end of the winding is positive, current can flow through No. 2 to the load but not through No. 1. On the return circuit, current flows through No. 3 by way of the lower end of the transformer winding. When the polarity reverses and the lower end of the winding beeomes positive, current flows through No. 4 and the load and throngh No. 1 by way of the upper side of the transformer. The output waveshape is shown at the right.

The inverse peak voltage is equal to the maximum transformer voltage, or 1.41 times the r.m.s. secondary voltage in the case of a sine wave (§2-7). Energy is delivered to the load at the same average rate as in the case of the full-wave center-tap rectifier, each pair of tubes in series carrying half the load current.

Power Supply

177

(1) 8-4 Filters

Purpose of filter - As shown in Fig. 801, the output of a rectifier is pulsating d.c., which would be unsuitable for most vacuum-tube applications ($\$ 8-1$). A filter is used to smooth out the pulsations so that practically unvarying direct current flows through the load circuit. The filter utilizes the energy-storage properties of inductance and capacity (§ 2-3, $2-5$), by virtue of which energy stored in electromagnetic and electrostatic fields when the voltage and current are rising is restored to the circuit when the voltage and current fall, thus filling in the "gaps" or "valleys" in the rectified output.

Ripple voltage and frequency - The pulsations in the output of the rectifier can be considered to be caused by an alternating current superimposed on a stendy direct current ((2-13). Viewed from this standpoint, the filter may be considered to consist of bypass condensers which short-circuit the a.c. while not interfering with the flow of d.c., and chokes or inductances which permit d.c. to flow through them but which have high reactance for the a.c. ($\$ 2-13$). The alternating component is called the ripple. The effectiveness of the filter may be measured by the per cent ripple, which is the r.m.s. value of the a.c. ripple voltage expressed as a percentage of the d.c. output voltage. With an effective filter, the ripple percentage will be low. Five per centripple is considered satisfactory for c.w. transmitters, but lower values (of the order of 0.25 per cent) are necessary fur hum-free speech transmission and for receiver plate supplies.

The ripple frequency depends upon the line frequency and the type of rectifier. In general, it consists of a fundamental plus a series of harmonics ($\$ 2-7$), the latter being relatively unimportant since the fundamental is hardest to smooth out. With a half-wave rectifier, the fundamental is equal to the line frequency; with a full-wave rectifier, the fundamental is equal to twice the line frequency, or 120 cycles in the case of a 60 -cycle supply.

Types of filters - Inductance-capacity filters are of the low-pass type (§ 2-11), using series Inductunces and ohunt capacitances. Practical filters are identified as condenserinput and choke-input, depending upon whether a capacity or inductance is used as the first element in the filter. Resistance-capacity filters (§2-11) are used in applications where the current is very low and the voltage drop in the resistor can be tolerated.

Bleeder resistance - Since the condensers in a filter will retain their charge for a considerable time after power is removed (provided the load circuit is open at the time), it is good practice to connect a resistor across the output of the filter to discharge the condensers when the power supply is not in use. The resistance usually is high enough so that only a relatively small percentage of the total output current is consumed in it during normal operation.

Components - Filter condensers are made in several different types. Electrolytic condensers, which are available for voltages up to about 800 , combine high capacity with small size, since the dielectric is an extremely thin film of oxide on aluminum foil. Condensers for higher voltages usually are made with a dielectric of thin paper impregnated with oil. The working vollage of a condenser is the voltage which it will withstand continuously.

Filter chokes or inductances are wound on iron corcs, with a small gap in the core to prevent magnetic saturation of the iron at high currents. When the iron becomes saturated its permeability ($\S 2-5$) decreases, consequently the inductance also decreases. Despite the airgap, the inductance of a ehoke usually varies to some extent with the direct current flowing in the winding; hence it is necessary to specify the inductance at the current which the choke is intended to carry. Its inductance with little or no direct current flowing in the winding may be considerably higher than the load value.

C. 8-5 Condenser-Input Filters

Ripple voltage - The conventional con-denser-input filter is shown in Fig. 802-A. No simple formulas are available for computing

Fig. 802 - Condenser-input filter circuits.
the ripple voltage, but it will be smaller as both capacity and inductance are made larger. Adequate smoothing for transmitting purposes can be secured by using 4 to $8 \mu \mathrm{fd}$. at C_{1} and C_{2} and 20 to 30 henrys at L_{1}, for full-wave rectifiers with 120-cycle ripple (§8-4). A higher ratio of inductance to capacity may be used at higher load resistances ($\S 8-1$).

For receivers, as shown in Fig. 802-B, an additional choke, L_{2}, and condenser, C_{3}, of the same approximate values, are used to give additional snoothing. In such supplies the three condensers generally are $8 \mu \mathrm{fd}$. each, although the input condenser, C_{1}, sometimes is reduced to $4 \mu \mathrm{fd}$. Inductances of 10 to 20 henrys each will give satisfactory filtering with these capacity values.

For ripple frequencies other than 120 cycles, the inductance and capacity values should be multiplied by the ratio $120 / F$, where F is the actual ripple frequency:

The bleeder resistance, R, should be chosen to clraw 10 per cent or less of the rated output current of the supply. Its value is equal to $1000 E / I$, where E is the output voltage and I the bleeder current in milliamperes.

Rectifier peak current - The ratio of rectifier peak current to average load current is high with a condenser-input filter. Small rectifier tubes designed for low-voltage supplies (type 80, ete.) generally carry loadd-current ratings based on the use of condenserinput filters. With rectifiers for higher power, such as the $866 / 860-A$, the load current should not exceed 25 per cent of the rated peak plate current for one tube when a full-wave rectifier is used, or one-eighth the half-wase rating.

Output volense - The d.c. out.put voltage from a condenser-input.supply will, with light loads or no load, approach the peak transformer voltage. This is 1.41 times the r.mis. voltage (\$2-7) of the transformer secondary, in the case of Figs. 801-A and C, or 1.41 times the voltage from the center-tap to one end of the secondary in Fig. S01-13. At heavy Ioals, it may decrease to the arerage value of secondary voltage or about 30 per cent of the r.m.s. woltage, or ceren less. Because of this wide range of output voltage with load current, the voltage regulation (\$ S-1) is inherently poor.

The output voltage obtainable from a given supply cannot readily be calculated, since it depends critically upon the load current and filter constants. Under average conditions it will be approximately equal to or somewhat less than the r.m.s. voltage botween the contertap and one end of the secondary in the fullwave center-tap reetifier cireuit. (s $8-3$).

Ratings of componomis - Berause the output voltage maty rise to the peak transformer voltage at light loads, the condensers should have a working-voltage rating (\$8-4) at least as high and preferably somewhat higher, as at safety factor. Thus, in the case of a center-tap rectifier having a transformer delivering jō volts each side of the center-tap, the minimum safe condenser voltange rating will be bin 0 1.41 or 775 volth. An 800 -volt, or preferably a 1000-volt, condenser should be used. Filter chokes should have the inductance specified at full-load current, and must have insulation between the winding and the core adequate to withstand the maximum output voltage.

C 8-6 Choke-Input Filters

Ripple voltase - The circuit of a singlesection choke-input filter is shown in Fig. 803-A. For 120-cycle ripple, a cleso approximation of the ripple to be experted at the output of the filter is given by the formula:
where L is in henrys and C in μ fil. The product,
 duce the ripple to is per cont. or lews. This figure represents, in most cases, the conomical limit, for the single-section filter. Smaller proentages of ripple usually are more ecomomiadly obtained with the two-section filter of Fig.

803-13, The ripple percentage (120-cycle ripple) with this arrangement is given by the formula:

$$
\left.\begin{array}{l}
\text { Two } \\
\text { Section } \\
\text { Filter }
\end{array}\right\} \% \text { Ripple }=\frac{650}{L_{1} L_{2}\left(C_{1}+C_{2}\right)^{2}}
$$

For a ripple of 0.25 per cent or less, the denominator should be 2600 or greater.

These formulas can be used for other ripple frequencies by multiplying ctoch inductance and cipacity value in the filter by the ratio 120: F, where F is the actual ripple frequency.

The distribution of inductance and capacity in the filter will be determined by the value of input-choke indurtance required (next paratgraph), and the permissible a.c. output impedance. If the supply is intended for use with an audio-frequency amplifier, the reactance ($\$ 2-8$) of the last filter condenser should be small (20 per (ent or less) compared to the other a.f. resistance or imperance in the circuit, usually the tube plate resistance and load resistance (si3-2, 3-3). On the basis of a lower a.f. limit of 100 eycles for specech amplification ($\$ 5-9$), this condition is usually satisfied when the output caparity (last filter capicity) of the filter is 4 to $s \mu \mathrm{fd}$., the higher value being used for the lower tube and load resistances.

The inpma chole - The rectifier peak current and the power-supply voltage regulation depend almost entirely upon the inductance of the input choke in relation to the load resistance ($\$ 8-1$). The function of the choke is to raise the ratio of averare to peak current (by its energy storage), and to prevent the d.e. output voltage from rising above the average value ($\$ 2-7$) of the a.c. voltage applied to the rectifier. For both purposes, its impedance ($\$ 2-8$) to the flow of the a.c. component ($\$ 8-4$) must be high.

The value of input-choke inductance which prevents the d.e. output voltage from rising above the average of the rectified a.c. wave is the critical inductance. For 120 -cele ripple, it is given by the approximate formula:

$$
L_{\text {crit. }}=\frac{\text { Load resistance (ohms) }}{1000}
$$

For ot her ripule frequencies, the inductance recuiared will be the above value multiplied by the ration of 120 to the actual riphle frequeney,

With induetance values less than eritioal. the d.e. output. voltage will rise becaluse the filter tends to act as a comdenser-input filter ($\$ 8-5$). With eritical indurtane, the peak
plate current of one tube in a center-tap rectifier will be approximately 10 per cent higher thatn the d.e. load eurrent taken from the supply.
An inductance of twiee the critical value is called the optimum value. This value gives a further reduetion in the ratio of peak to average plate current, and represent:; the point at. which further increase in inductance does not give correspondingly improved operating characteristies.

Swinging chokes - The formula for critical inductance indicates that the inductance required varies widely with the load resistance. In the case where there is no load except the bleeder ($\$ 8-4$) on the power supply, the critical inductance required is highost; much lower values are satisfactory when the full-load current is being delivered. Since the inductance of a choke tends to rise as the direct current flowing through it is decreased ($\$ 8-4$). it is possible to effect an economy in materials by designing the choke to have a "swinging" characteristic such that it has the required eritical inductanes value with the bleeder load only, and about the optimumi inductance value at full load. If the bleeder resistance is 20,000 ohms and the full-hoad resistance (including the blevert is 2500 ohms, a choke which swings from 20 henrys to 5 henrys over the full outputcurrent range will fulfill the requirencents.

Resonance - Resonance effectos in the series cireuit across the output of the rectifier which is formed by the first choke (L_{1}) and first filter condenser (C_{1}) must be avoided, since the ripple voltage would huild up to large values ($\$ 2-10$). This not only is the opposite action to that for which the filter is intended, but also may cause exccssive rectifier peak currents and abmomally high inverse peak voltages. For full-wave rectification the ripple frequency will be 120 cycles for a 60 -cyele supply ($\$ 8-4$), and resonance will wecur when the product of choke inductance in henrys times condenser caparity in microfarads is equal to 1.77. The corresponding figure for 50 -cycle supply (100 -syele ripple frequency) is 2.53 , and for 25 -cycle supply (50-cycle ripple frequeney), 13.5. At least twice these products should be used to ensure against resonance effects.

Output voltage - Provided the inputchoke inductance is at least the critical value, the output voltage may be calculated quite closely by the equation:

$$
E_{o}=0.9 E_{t}-\frac{\left(I_{b}+I_{L}\right)\left(R_{1}+R_{2}\right)}{1000}-E_{r}
$$

where E_{0} is the output voltage; E_{t} is the r.m.s. voltage applied to the rectifier (r.m.s. voltage between center-tap and one end of the secondary in the case of the center-tap rectifier); I_{b} and I_{f}, are the bleeder and load currents, respectively, in milliamperes; R_{1} and R_{2} are the resistances of the first and second filter chokes; and E_{r} is the drop between rectifier plate and cathode (§ 8-2). These voltage drops are shown in Fig. 804.

At no load I_{L} is zero, hence the no-load voltage may be calculated on the basis of bleeder eurrent only. The voltage regulation may be determined from the no-load and fullload voltages (\$8-1).

Fig. 804 - Voltage drops in the power-supply circuit.
Ratings of components - Because of better voltage regulation, filter condensers are subjected to smaller variations in d.c. voltage than in the condenser-input filter ($\$ 8$-5). However, it is advisable to use condensers rated for the peak transformer voltage in case the bleeder resistor should burn out when there is no external lowd on the power supply, since the voltage then will rise to the same maximum value ns with a condenser-input filter.
The input choke may be of the swinging type, the required no-load and full-load inductanee values being calculated as described above. The second choke (smootling choke) should have constant inductance with varying d.c. load currents. Valucs of 10 to 20 henrys ordinarily are used. Since chokes usually are placed in the positive leads, the negative being grounded, the windings should be insulated from the eore to withstand the full d.c. output voltage of the supply.

(1) 8-7 The Plate Transformer

Oulput coltage - The output voltage of the plate transformer depends upon the required d.c. load voltage and the type of rectifier circuit. With condenser-input filters, the r.m.s. secondary voltage usually is made equal to or slightly more than the d.c. output voltage, allowing for voltage drops in the rectifier tubes and filter chokes as well as in the transformer itself. The full-wave center-tap rectifier requires a transformer giving this voltage earh side of the secondary center-tap (\$ 8-3).

With a choke-input filter, the required r.mis. secondary voltage (each side of center-tap for a center-tap rectifier) can be calculated by the equation:

$$
E_{t}=1.1\left[E_{0}+\frac{I\left(R_{1}+R_{2}\right)}{1000}+E_{r}\right]
$$

where E_{o} is the required d.c. output voltage, I is the load current (including bleeder eurrent) in milliamperes, R_{1} andi R_{2} are the resistances of the filter chokes, and E_{r} is the voltage drop in the rectifier. E_{t} is the full-load r.m.s. (§ 2-7) secondary voltage; the open-circuit voltage usually will be 5 to 10 per eent higher.

Volt-ampere rating - The volt-ampere rating (§2-8) of the transforner depends upon the type of filter (condenser or choke input).

With a condenser-input filter the heating effect in the secondary is higher because of the ligh ratio of peak to average current, consequently the volt-amperes consumed by the transformer may be several times the watts delivered to the load. With a choke-input filter, provided the input choke has at least the critical inductance ($\$ 8-6$), the secondary volt-amperes can be calculated quite closely by the equation:

$$
\text { Sec. V.A. }=0.00075 E I
$$

where E is the total r.m.s. voltage of the secondary (between the outside ends in the case of a center-tapped winding) and I is the d.c. output current in milliamperes (load current plus bleeder current). The primary volta mperes will be 10 to 20 per cent higher because of transformer losses.

C. 8-8 Voltage Stabilization

Gaseous regulator tubes - There is frequent need for maintaining the voltage applied to a low-voltage low-current circuit (such as the oscillator in a superhet receiver or the fre-quency-controlling oscillator in a transmitter) at a practically constant value, regardless of the voltage regulation of the power supply or variations in load current. In such applications, gaseous regulator tubes (VR105-30, VR150-30, etc.) can be used to good advantage. The voltage drop across such tubes is constant over a moderately wide current range. The first number in the tube designation indicates the terminal voltage, the second the maximum permissible tube current.

The fundamental circuit for a gaseous regulator is shown in Fig. 805-A. The tube is connected in series with a limiting resistor, R_{1}, across a source of voltage which must be higher than the starting voltage, or voltage required for ionization of the gas in the tube. The starting voltage is about 30 per cent higher than the operating voltage. The load is connected in parallel with the tube. For stable operation, a minimum tube current of 5 to 10 ma. is required. The maximum permissible current with most types is 30 ma. ; consequently, the load current cannot exceed 20 to $2 \overline{5} \mathrm{ma}$. if the voltage is to be stabilized over a range from zero to maximum load current.

The value of the limiting resistor must lie between that which just permits minimum tube current to flow and that which just passes the maximum permissible tube current when there is no load current. The latter value is generally used. It is given by the equation:

$$
R=\frac{1000\left(E_{s}-E_{\square}\right)}{I}
$$

where R is the limiting resistance in ohms, E_{1} is the voltage of the source across which the tube and resistor are connected, E_{r} is the rated voltage drop across the regulator tube, and I is the maximum tube current in milliamperes (usually 30 ma .).

Fig. 805-B shows how two tubes may be

Fig. 805 - Voltage-stabilizing circuits using VR tubcs.
used in series to give a higher regulated voltage than is obtainable with one, and also to give two values of regulated voltage. The limiting resistor may be calculated as above, using the sum of the voltage drops across the two tubes for $E_{\text {r }}$. Since the upper tube must carry more current than the lower, the load connected to the low-voltage tap must take small current. The total current taken by the loads on both the high and low taps should not exceed 20 to 25 milliamperes.

Voltage regulation of the order of 1 per cent can be obtained with circuits of this type.

Electronic voltage regulation - A voltage regulator circuit suitable for higher voltages and currents than the gaseous tubes, and also having the feature that the output voltage can be varied over a rather wide range, is shown in Fig. 806. A high-gain voltage amplifier tube (§ $3-3$), usually a sharp cut-off pentode (§ 3-5) is connected in such a way that a small change in the output voltage of the power supply causes a change in grid bias, and thereby a corresponding change in plate current. Its plate current flows through a resistor (R_{5}), the voltage drop across which is used to bias a second tube - the "regulator" tube - whose platecathode circuit is connected in series with the load circuit. The regulator tube therefore functions as an automatically variable series resistor. Should the output voltage increase slightly the bius on the control tube will become more positive, causing the plate current of the control tube to increase and the drop across R_{5} to increase correspondingly. The bias on the regulator tube therefore becomes more negative and the effective resistance of the regulator tube increases, causing the terminal voltage to drop. A decrease in output voltage causes the reverse action. The time lag in the action of the system is negligible, and with proper circuit constants the output voltage can be held within a fraction of a per cent throughout the uscful range of load currents and over a wide range of supply voltages.

An essential in this system is the use of a constant-voltage bias source for the control tube. The voltage change which appears at the grid of the tube is the difference between a fixed negative bias and a positive voltage which is taken from the voltage divider across the output. To get the most effective control, the negative bias must not vary with plate current. The most satisfactory type of bias is a dry battery of 45 to 90 volts, but a gaseous regulator tube (VR75-30) or a neon bulb of the type without a resistor in the base may be used
instead. If the gas tube or neon bulb is used, a negative-resistance type of oscillation (§3-7) may take place at audio frequencies or higher, in which case a condenser of $0.1 \mu \mathrm{fd}$. or more should be connected across the tube. A similar condenser between the control-tube grid and cathode also is frequently helpful in this respect.

The variable resistor, R_{3}, is used to adjust the bias on the control tube to the proper operating value. It also serves as an output voltage control, setting the value of regulated voltage within the existing operating limits.

The maximum output voltage obtainable is equal to the power-supply voltage minus the minimum drop through the regulator tube. This drop is of the order of 50 volts with the tubes ordinarily used. The maximum current also is limited by the regulator tube; 100 milliamperes is a safe value for the 2A3. Two or more regulator tubes may be connected in parallel to increase the current-carrying capacity, with no clange in the circuit.

(1) 8-9 Bias Supplies

Requirements - A bias supply is not called upon to deliver current to a load circuit, but simply to furnish a fixcd grid voltage to set the operating point of a tube ($\$ 3-3$). However, in most applications it is neverthcless true that current flows through the bias supply, because such supplies are used chiefly in connection with power amplifiers of the Class-B and Class-C type, where grid-current flow is a feature of operation ($\S 3-4$). In circuit design a bias supply resembles the rectified-a.c. plate supply (§8-1), having a transformer-rectifierfilter system employing similar circuits. Bias supplies may be classified in two types, those furnishing only protective bias, intended to prevent excessive plate current flow in a power tube in case of loss of grid leak bias (\$3-6) from excitation failure, and those which furnish the actual operating bias for the tubes. In the former type, voltage regulation (§8-1) is relatively unimportant; in the latter it may be of considerable importance.

Fig. 806 - Electronic voltage regulator. The regulator tube is orlinarily a 2 A 3 or a number of them in parallel, the control tube a 6SJ7 or similar type. The filament transformer for the regulator tube must be insulated for the plate voltage, and cannot supply current to other tubes when a filament-type regulator tube is used. Typical values: $R_{1}, 10,000$ obms; $R_{2}, 25,000$ ohms; $R_{3}, 10,000-$ obn1 potentiometer; $R_{4}, 5000$ ohms; $R_{5}, 0.5$ megobm.

In general, a bias supply should have wellfiltered d.c. output, especially if it furnishes the operating bias for the stage, since ripple voltage may modulate the signal on the grid of the amplifier tube ($\$ 5-1$). Condenser-input filters are generally used, since the regulation of the supply is not a function of the filter. The constants given in § 8-5 are appiicable.

Voltage regulation - A bias supply must always have a bleeder resistance ($\$ 8-4$) connected across its output terminals, to provide a d.c. path from grid to cathode of the tube being biased. Although the grid circuit takes no current from the supply, grid current flows through the bleeder resistor and the voltage across the resistor therefore varies with grid current. This variation in voltage is practically independent of the bias-supply design unless special voltage-regulating means are used.

Fig. 807 - Supply for furnishing protective bias to a power amplifer. The transformer, T, should furnish peak voltage at least equal to the protective bias required.

Protective bias - This type of bias supply is designed to give an output voltage sufficient to bias the tube to which it is applied at or near the plate-current cut-off point (§3-2). A typical circuit is given in Fig. 807. The resistance, R_{1}, is the grid-leak resistor (§3-6) for the amplifier tube with which the supply is used, and the normal operating bias is developed by the flow of grid current through this resistor. R_{2} is connected in series with R_{1} across the output of the supply, to reduce the voltage across R_{1}, when there is no grid-current flow, to the cut-off value for the tube being biased. The value of R_{2} is given by the formula:

$$
R_{2}=\frac{E_{t}-E_{c}}{E_{c}} \times R_{1}
$$

where E_{1} is the output voltage of the supply with R_{2} and R_{1} in series as a load, E_{c} is the cut-ufl bixis, and R_{1} is as described above.

When such a supply is used with a Class-C amplifier, the voltage across R_{1} from gridcurrent flow will normally be higher than that from the bias supply itself, since the latter is adjusted to cut-off while the operating bias will be twice cut-off or higher ($\$ 3-4$). In some cases the grid-leak voltage may even exceed the peak output voltage of the transformer (1.41 times half the total secondary voltage, in the circuit shown). The filter condensers in such a bias supply must, therefore, be rated to stand the maximum operating bias voltage on the Class-C amplifier, if this voltage exceeds the nominal output voltage of the supply.

Voltage stabilization - When the bias supply furnishes operating rather than simply protective bias, the value of bias voltage
should be as enmstant wa possible even when the grid current of the biased tube varies. A simple nethod of improving hias voltage regulation is to make the blealer resistance low enough so that the current through it from the supply is several times the maximum grid current to be experted. Thy this mesans, the percentage variation in current is reduced. 'l'his method requires, howerer, that a considerable amount of power be dissipated in the bleeder, which in turn ealls for a relatively large power transformer and filter choke.

Bias-voltage variation may also be reduced by means of a regulator tube, as shown in Fig. 808. The regulator tube usually is a triode having a plate-current rating adequate to carry the expected grid current. It is cathode-biased

Fig. 808 - Aulomatio voltage resulator for hias supplies. For hest operation the twhe used should be one having lizh mutual conductance ($\$ 3 \cdot 2$).

(§3-6) by the resistor, R_{1}, which is of the order of several hundred thousand ohms or a few megohns, so that with no grid current the tube is biased practically to cut-off. Because of this high resistance, the grid current will flow through the plate resistance of the regulator tube, which is comparatively low, rather than through R_{1} and R_{2}; hence the voltage from the supply, across R_{1} and the cathode-phate circuit of the regulator tube in series, can be considered constant. The bias voltage is equal to the voltage arross the tube alone. When grid current flows, the voltage across the tube will tend to increase; hence the drop across P_{1} decreases, lowering the bias on the regulator and reducing its plate resistance. This. in turn, reduces the tube voltage drop, and the bias voltage tends to remain constant over a fairly wide range of grid current values.

At low bias voltages it may be necessary to use a number of tubes in parallel to get sufficient variation of plate resislance for good regulating action. The bias supply must furnish the required bias voltage plus the voltage required to bias the regulator tube to cut-r)ff, considering the output bias voltage as the plate voltage applied to the regulator. The current taken from the bias supply is negligible. R.a may be tapped to provide a range of hias voltages to macet different tube requirements.

Multistage bias supplies - Where several power amplifier tubes are to be binserl from a single supply, the various bias circuits must be isolated by some means. If the grid eurrents of all stages should flow through a single bleeder resistor a variation in mrid current in one stage nould change the bias on all, a condition which would interfere with effective adjustment and operation of the transmitter.

When protective bias is to be furnished several stages, the circuit arrangement of Fig.

Fig. 809 - $\mathrm{T}_{\text {solat }}$ ing circuit for multiple bias supply.

809, using rectifier tubes to isolate the individual grid-leaks of the various stages, mily be employed. In the diaromm, two type 80 rectifiers are used to furnish bias to four statges. İach pair of resistors ($R_{1} R_{2}$) constitutes a separate bleder across the bias supply. h_{1} is the grid-leak for the biased stage; h_{2} is : droppiag resistor t o idjust the voltage acros. R_{1} to the cut-off value (without grid-current flow) for the biased tube. The values of R_{1} and l_{2} may be calculated as described in the paragraph on protective bias. In this case, the bias supply should be dexigned to have inherently good voltage regulation: i.e., : choke-input filter with appropriate filter and blealer constants (\$8-6) should be used, the bloder being separate from those associated with the rectifier tubes. When the voltage atross $R_{1} R_{2}$ rises bectuse of grid-current flow through R_{1}, the load on the supply will vary (hence the neressity for good voltage regulation in the supply), but there is no interation of grid currents in the separate blecders beciuse the reetifiors can pass comrent only in one direction.

When a single supply is to fumish operating bitas for several stages, a separate regulatortube circuit. (Fig. 808) may he used for each one. Individual voltages for the various stages an be obtained by appropriate taps on R_{2}.

Well-regulated bias for several stages may be obtained by the use of gaseous regulator tubes. when the voltage and current rattings of the tubes permit their use. This is shown in Fig. 810. A single tube or two or more in series carn be used to give the desired bias-voltage drop; the bias supply voltare must be hirh enough to provide starting voltage for the tubes in series. R_{1} is the protective resistance ($\$ 8-8$) ; its value should be calculated for mininum stable tube current. The maximum grid current that can be handed is 20 to 25 milliamperes with availatble regulator tubes.

Fig. 810 - Use of VR tubes to stabilize bias voltage.

(1) 8-10 Miscellaneous Power-Supply Circuits

Voliage diciders - A voltage divider is a resistor connected across a source of voltage and tapped at appropriate points (\$2-6). Since the voltage at any tap depends upon the eurrent drawn from the tap, the voltage regulation (\$ S-1) is inherently poor. Hence, a voltage divider is bost suiterl to applieations where the currents drawn are constant. or where soparate voltage-regulating cireuts (s 8-8) are used to compensate for voltage variations at the taps.

A typical voltage-divider arrangement is shown in Fig. S11. The terminal voltage is E ', and two taps are provided to give lower voltages, b_{1} and E_{2}, at currents I_{1} and $/ 2$ respectively. The smaller the resistince between taps in proportion to the total resistance, the smaller the voltane between the taps. For convenience, the voltage divinler in the figure is considered to be mide up of separate resistances, R_{1}, R_{2}, R_{3}, botween taps. R_{1} curries only the bleder current, l_{b}. l_{2} carries l_{1} in addition to l_{1}; h_{3} a earrios I_{2}. I_{1} alld h_{1}. To calculate the resistances required, a bleeder current,

Fis. 81l-lypical voltatedivider ircuit.

$$
\begin{aligned}
& R_{1}=\frac{E_{1}}{I_{b}} \\
& R_{2}=\frac{F_{2}}{I_{4}}-E_{1} \\
& R_{3}=\frac{I}{I_{1}}+\frac{-I}{I_{1}}+\overline{I_{2}}
\end{aligned}
$$

I_{b}, must be assumed; generally it is low compared to the total lowd eurrent (10 per cont or so). Then the repuiral values ean be ealendated as shown below, I beoing in amperes.

The method may be extended to any desired number of taps, each resistance seretion being calculateol by Ohm's Law (\$2-6) using the voltage drop across it and the total current through it. The power dissipated by each seetion may be calculated by multiplying I and E.

Transformerless plate supplies - The line voltage is rectified directly, without a step-up power transformer, for certain applications (such as some types of recolvess) where the low voltage so obtained is sattisfactory. A simple power supply of this varioty. often called the "a.e.-d.e." type, is shown in Fig. S12. Rectifior tubes for this purpose have heaters operatines at relatively high voltages ($12.6,2 \overline{5}, 3 \overline{5}, 4 \overline{5}, 50$, 70 or 115 volts), which can be emnerted ancros: the a.c. line in series with other tube filaments and/or a resistor. R, of suitahle value to limit the current to the rated value for the tubes.
The: half-wave eireuit shown has a fundamental ripple frequency equal to the line froquenes ($\$ 8-4$) and hence rectuires more inductance and caparity in the filter for at given ripple perrentage ($\$ 8-$ - $)$ than the full-wave rectifier. A condensor-input filter generally is used. The input condenser should be at least
$16 \mu \mathrm{fd}$. and preferably 32 or $40 \mu \mathrm{fd}$., to keep the output veltage high and to inprove voltage regulation. lirequently th second filter section (\$ S-5) is sufficient to provide smoothing.

Fis. 812 - Trameformerlesulate suphly with half-wave rectifier. Wher filanumts are connected in series with R.

No ground connection can be used on the power supply unloss the grounded side of the power line is commected to the grounded side of the supply. Receivers using an a.c.-d.c. supply usually are grounded through a low capacity (0.0; μ fil.) condenser. to :ivoid shortcirruiting the line shouled the line plug be inserted in the socket the wrong way.

Ioltage multiplier circuils - Transformerless voltage multiplier cireuits make it possible to obtain al.c. voltages higher than the line voltage without using step-up transformers. By alternately whang two or more condensers to the peak line voltage and allowing them to clischarge in series. the total output voltage beromes the sum of the voltioges appearing atcross the individual condensers. The required switehing operation is performed automatieally by diode rectifir tubes associated with the condensers.

A half-wise voltage doubler is shown in Fig. 81:3-A. In this cireuit when the plate of the lower dione is positive the tube passes current, charging C_{1} to a voltare equal to the peak line voltage less the tube drop. When the line polarity reverses at the end of the half cevele the voltage rewniting from the charge in \dot{C}_{1} is added to the line voltage, the upper diode momwhile similarly whaging (?2. C?, howover, does not receive its full charge because it be-

Pris. 813 - Voltand multiplier rirruils. A, halfovave soltape doublar. I3. lall-wawe doubler. ($:$, tripler. I), tuadrupler. Dual diode rectifior tubes maty be used.

Fig. 814 - Curvis showing the d.c. output voltage and the regulation under load for voltage-multiplier circuits.
gins discharging into the lond resistance as soon as the upper diode becomes conductive. For this reason, the output is somewhat less than twice the line peak voltage. As with any half-wave rectifier, the ripple frequency corresponds to the line frequency.

The full-wave voltace doubler at B is more popular than the half-wave type. One diode charges C_{1} when the polarity between its plate and cathode is positive while the other section charges C_{2} when the line polarity reverses. Thus each condenser is chargerl separately to the same d.c. voltage, and the two discharge in series into the load circuit. The ripple frequency with the full-wave doubler is twice the line frequency ($\$ 8-4$). The voltage regulation is inherently poor and depends critically upon the caparities of C_{1} and C_{2}, being better as these capacities are made larger. A typical supply with $16 \mu \mathrm{fl}$. at C_{1} and C_{2} will have an output voltage of approximately 300 at light loads, as shown in Fig. 814.

The voltage tripler in Fig. S13-C comprises four diodes in a full-wave doubler and hatfwave rectifier combination. The ripple frequency is that of the line as in a half-wave circuit, because of the unbalanced arrangement, but the output voltage of the combination is very nearly three times the line voltage, and the regulation is better than in other voltage multiplier arrangements, as shown in Fig. 814.

Fig. $813-\mathrm{D}$ is a voltage quadrupler with two half-wave doublers connected in series, discharging the sum of the accumulated voltages in the associated condensers into the filter input. The quadrupler is by no means the ultimate limit in voltage multiplication. Practical power supplies have been built using up to twelve doubler stages in series.

In the circuits of Fig. 81:3, C_{2} should have a working voltage rating of 350 volts and C_{1} of 250 volts for a 115 -volt line. Their caparities should be at least $16 \mu \mathrm{fd}$. each. Subsequent filter condensers must, however, withstand the peak total output voltage - 450 volts in the case of the tripler and 600 for the quadrupler.

No direct ground can be used on any of these supplies or on associated equipment. If an r.f. ground is made through a condenser the ca-
pacity should he small ($0.05 \mu \mathrm{fd}$.), since it is in shunt from plate to cathode of one rectifier.

Duplex plate supplies - In some cases it may be advantageous economically to obtain two plate-supply voltages from a single power supply, making one or more of the components serve a double purpose. Circuits of this type are shown in Figs. 815 and 816.

In Fig. 815, a bridge rectifier is used to obtain the full transformer voltage, while a connection is also brought out from the center-tap to obtain a second voltage corresponding to half the total transformer secondary voltage. The sum of the currents drawn from the two taps should not exceed the d.c. ratings of the rectifier tubes and transformer. Filter values for each tap are eomputed separately (8 8-6).

Fig. 816 shows how a trinnformer with multiple secondary taps may be used to obtain both high and low voltages simultancously. A separate full-wave rectifier is used at each tap. The filter chokes are placed in the common negative lead, but separate filter condensers are required. The sum of the currents drawn from each tap must not exceed the transformer rating, and the chokes must be rated to carry the total load eurrent. Each bleeder resistance should have a value in ohns 1000 times the maximum rated inductance in henrys of the swinging choke, L_{1}, for best regulation (§8-6).

Fif, 816 - Power supply in which a single transformer and set of chokes serve for two different outpnt voltages.

Rectifiers in parallel - Vacuum-type rectifiers may be connected in parallel (plate to plate and cathode to cathode) for higher cur-rent-carrying capacity with no cireuit changes.

Whan mercury-vapor rectifiers ore eonnected in parallel, slight differences in tube characteristics may make one ionize at a slightly lower voltage than the other. Since the ignition voltage is higher than the operating voltage the first tube to ionize carries the whole load, as the voltage drop is then too low to ignite the second tube. This can be prevented by connect-
ing 50- to 100 -ohm resistors in series with each plate, thereby insuring that a high-enough voltage for ignition will be available.

Vibrator pouer supplies-The vibrator type of power supply consists of a special stcpup transformer combined with a vibrating interrupter (nibrator). When the nuit is connected to a storage battery, plate power is obtained by passing current from the battery through the primary of the transformer. The circuit is made and reversed rapidly by the vibrator contacts, interrupting the current at regular intervals to give a changing nagnetic field which induces a voltage in the secondary ($\$ 2-5$). The resulting square-wave d.e. pulses in the primary of the transformer cause an alternating voltage to be developed in the secondary. This high-voltage a.c. in turn is rectified, either by a vacuum-tube rectifier or by an additional synchronized pair of vibrator contacts. The rectified output is pulsating d.c., which may be filtered by ordinary means (s 8-5). The smoothing filter can be a single-section affair, but the filter output capacity should be fairly large 16 to $32 \mu \mathrm{fd}$.

Fig. 817 shows the two types of circuits. At A is shown the nonsynchronows type of vibrator. When the bittery is discomnected the reed is midway between the two contacts, touching neither. On closing the battery circuit the magnet cosil pulls the reed into contact with one contact point, eausing current to flow through the lower half of the transformer primary winding. Simultaneously, the magnet coil is short-circuited, deenergizing it, and the reed swings back. Inertia carries the reed into contact with the upper point, eausing current to flow through the ulper hall of the transformer primary. The magnet coil again is energized, and the cycle repeats itself.

The synchronous circuit of Fig. 817-13 is provided with an extra pair of contacts which rectify the secondary ontput of the transformer, thus eliminating the need for a separate rectifier tube. The secondary center-tap furnishes the positive output terminal when the relative polarities of primary and secondary windinge are rnrrert. The proper connections may be determined by experiment.

The buffer condenser, C_{2}, across the transformer secondary absorbs the surges which occur on breaking the current, when the magnetic field collapses practically instantancously and hence causes very high voltages to be induced in the secondary ($\$ 2-5$). Without this condenser excessive sparking occurs at the vibrator contacts, shortening the vibrator life. Correct values usually lie between 0.005 and $0.03 \mu \mathrm{fd}$. and for $250-300$-volt supplies the condenser should be rated at 1500 to 2000 volts d.c. The exact capacity is critical, and should be determined experimentally. The optimum value is that which results in least battery current for a given rectified d.e. output from the supply. In practice the value can be determined by observing the degree of vibrator
sparking as the capacity is changed. When the system is operating properly there should be pracetically no sparking at the vibrator contacts. A 5000-olm resistor in series with C_{2} will limit the secondary emrent to a safe value should the condenser fail.

A more exact check on the operation enn be secured with an oscilloscope having a linear sweep circuit which can be synchronized with the vibrator. The vertical plates should be connected across the outside ends of the transformer primary winding to show the input voltage waveshape. Fig. 818-C shows an idealized trace of the optimum waveform when the buffer capacity is adjusted to give proper operation throughout the life of the vibrator. The horizontal lines in the trice represent the voltage during the time the vibrator contacts are closed, which should be approximately 90 per cent of the total time. When the contacts are open the trace should be partly tilted and partly vertical, the tilted part being 60 per cent of the total connecting trace. The oscilloscope will show readily the effect of the buffer capacity on the percentage of tilt. In actual patterns the horizontial sections are likely to droop somewhat berause of the resistance drop in the battery leads as the current builds up through the primary inductance (Fig. 818-D).

Sparking at the vibrator contacts causes r.f. interference ("hash," which can be distinguished from hum by its harsh, sharper pitch) when used with a receiver. To minimize this, r.f. filters are incorporatod. consisting of RFC and C_{1}, in the battery circuit and $R F^{\prime} C_{2}$ with C_{3} in the d.c. output circuit. C_{1} is usually from 0.5 to $1 \mu \mathrm{fd}$., a 50 -volt rating being adequate. $R F C_{1}$ consists of about 50 turns of No. 12 or No. 14 wound to about half-inch diameter, large wire being required to carry the rather heavy battery current without undue loss of voltige. A choke of these specifications should

Fig. 817 - Masic types of vibrator power-supply circuits.
be adequate, but if there is persistent trouble with hash it may be beneficial to experiment with other sizes. Bank-wound chokes are more compact and give higher inductance for a given resistance. In the secondary filter, C_{3} may be of the order of 0.01 to $0.1 \mu \mathrm{fd}$., and $R F C_{2}$ a 2.5millihenry r.f. choke of ordinary design.

A $100-\mu \mu \mathrm{fd}$. mica condenser, connected from the positive output lead to the "hot" side

Fig. 818 - $\mathrm{Characteristic}^{\text {e }}$ vibator was eforms ats view od on the owcillosurpe. A, ideal theoretical trace fur resistive load; current how stops instantly when vibrator emontacts open and resumes apposimately 1 mirrusicend later (for standard $11 . \bar{o}$ - ryde viliration frequeney) after interrupter arm moves acrows for the next halfocyele. B, ideal practical wavefurm for inductive load (transformer primary) with correct huffer capacity. C, practical approximation of B for loaded nomsynheromen sibrator. I), satisfactory mactical trate fur *umbumen (self-rectifying) vibrator under load; the peato result from voltanc drop in the primary when the secondary load is connectod, wot from faulty oparation.
Faulty operation is indieated in traces E thromgh II: E, effect of insufficient huffering capacity (not to be mistaken for "hommenn" of comtacts). "The oppoxite condi-tion-excessive buffuring capacity - is indieated hy slow build-np with rounded enrthers, "-qurially on "open." 1 , overclosure caused by thosmall buffer rombensir (same comelition as in E) with vibratur moloaded. (B, "skipping" of worn-ont or misadjusted vibrator, with interrupter making poor contat on one side. IV, "lonuneing" resulting from wornont contarts or slupisill recd. G and II usually call for replacement of the sibrater.
of the " A " battery, may be helpful in reducing hash in certain power supplies. A trial is neecssary to see whether or not it is required. It should be monnted right. at the ontput sorket.

Equally as important as the hash filter is thorough shiclding of the power supply and its connecting leads, since even a small piece of wire or metal will radiate enough r.f. to c:ase interference in a sensitive reeciver.

Testing in connection with hash climination should be carried out with the supply operating a receiver. Since the interference usually is picked up on the recesiving antennit leads by radiation from the supply itself and from the battery leads. it is advisable to kerp the supply and battery as far from the receiver as the connecting cables will permit. 'Thres or four feed should be ample. The midrophone cord likewise should be kept away from the supply and leads.

The power supply should be built on it metal chassis, with all unshielded parts underneath. A bottom plate to complete the shichling iv advisable. The transformer case, vibrator cover and the metal shell of the tube all should be grounded to the chassis. If a glass tube is used it should be enclosed in a tube shield. The battery leads should be evenly twisted, since these leads are nore likely to radiate hash than any other part of a well-shichled supply. Experimenting with different values in the hash filters should come after radiation from the battery leads has been reduced to a minimum. Shielding the leads is not particularly helpful.

Line-voltage adjustment - In some loralitices the line voltage may rary eonsiderably from the nominal 115 volts as the load on the power system changes. Since it is desirable to uperate tube equipment, partirularly filaments and heaters, at constant voltage for maximum life, a means of adjusting the line voltage to the rated value is desirable. 'lhis con be aceompished by the circuit shown in Jig. S19, utilizing a step-lown transformer with a tapped secondary connected as an antotransformer (\& 2-9). 'The secondary preferably should be tapped in steps of two or three volts, and shonkl have sufficient total voltage to compensale for the widest variations encountered. Depending upon the end of the secondary to which the line is comnerterd, the voltage to the hoad can be made cither highor or lower than the line voltare. A secondary winding capable of carrying five amperes will serve for loads up to 500 volt-amperes on a $11 \overline{\mathrm{j}}$-volt line.

Fig. 819- I.ine-voltaqe compunsation hy a taphed stepodown autotransformer.

C 8-11 - Emergency Power Supply

Dry batteries - Dry-cell batterics are ideal for emergency reciver and low-power transmiltor supplies bereanse they provide sterady, pure, direct current. Their disadvantages are woight, high cost amd limited current capability. In addition, they will hase their power even when not in use if allowed to stand idle for periods of a year or more This makes them unecomomical if not used more or less contimumbly.

Table I in Chapter bighteen gives servine life of representative lypes of hatteries for various current drains, based on intermittent service simulating typical operation. 'The contimousservice life will be somewhat greater at very low current drains and from one half to twothirds the intermitent life at higher drains.

The secret of long bittery life at normal current drains lies in intermittent operation. The duration of "on" periods should be reduced to a minimum. The more frequent the rests given a dry-cell battery, the longer it will last. As an example, one stand:urd type will last 50 per cent longer if it is operated for periods of one minute, with five-minute rest intervals, in $24-$ hour internittent operation than if it is operated continuously for four hours per day, although the artual energy consumption in the 2.4-hour perion is the same in both cases.

Storage batteries - The most universally acceptable self-contained power source is the storage battery. It has high initial capacity and can be rechargel, so that its effective life is practically indefinite. It can be used to provide filament or heater power directly, and plate power througl associated devices such as vibrator-transformers, dynamotors and genemotors, and a.c. converters. For emergency
work a storage battery is a particularly convenient power source, since such batteries are universally available. In a serious energency it is possible to obtain 6 -volt storago batterites so long as there are automobiles to horrow them from, and for this reason the b-volt. storage battery makes an exerellent unit. aromed which to design a low-powered emerroncy station.

For maximum efliciency and usefulness the power drain on the storage battery should not exceed 15 or 20 ampures from the ordinary 100-nr 120-ampere-hour 6-volt battery. Heary connecting leads should be used to minimize the voltage drup; similarly, heavy-duty lowresistance switches are required.

Jibrutor power supplies - For portable or mobile work, the most common souree of power for both filaments and plates is the $;$ volt automobile-trpe storage hattery, Filaments maty be heated directly from the battery, while plate power is obtained by passing current from the battery through the primary of a suitable transformer, interrupting it at. regular intervals and reetifying the serondary output (s 2-i) providing outputs as high as 400 volts at 200 ma. The high-voltage filter circuit misually is incntical with that of an equivalent power sonce operating from the a.c. line ($\$ 8$-i) . Noise suppression fillers, serving to minimize r.f. interference coused by the vibrat.or, are incorporated in mamufartured units.

Although vibrator supplies are ordinarily used with (j-volt tubes, their use with 2 -volt tubes is quite possible provided additional filamont filtration is incorporated. This filter may consist, of a small low-resistance iron-core filter choke or the voice-coil winding of a speaker transiormer. The field coil of a loudspraker dosigned to operate on 4 wolts at the total filament current of the receiver may be used. The filaments are then connected in parallel, as usual, and placed in serics with this winding across the 6 -volt battery. In both 6-and 2 -volt receivers, "hash" can be reduced by heavily by-passing the battery at the vibrator supply terminals, using fixed condensers of 0.25 to 1 $\mu \mathrm{fd}$. eapacity or more, aud by including an r.f. choke of leative wird in tho hat tary lead near the condenser. Noise will be minimized if a single ground, consisting of a short, henvy copper strap, is used. Thorough shichding of the vibrator also will contribute to the noise reduction.

Table II in Chapter lighocen lists standard commercial vibrator supplies suitable for use as emergency or portable power soures. Those units which include a hum filter are indicated. The vibrator supplies used with automobile receivers are satisfactory for receiver applicitions and for use with transmiteters where the power requiremonts are small.

The efficienoy of vibrator packs rums between about (60 t.e 75 per rent.

Dynumofors and wenemotors- A dynamotor is a double-armature high-voltatre generator, the additional winding serving as a driving notor. Dynamotors usually are op-
erated from 6-, 12 - or 32 -volt storage batteries, and deliver from 300 to 1000 volts or more.

The genemotor is a refinement of the dynamotor, designed especially for automobile recciver, sound truck and similar applications. It has good regulation and efficiency, combined with economy of nperation. Standard models of genemotors have ratings ranging from 135 volts at 30 ma. to 300 volts at 200 ma , or 500 volts at 200 mat. (See 'l'ible III in Chapter Eighteen.) The nommal efficiency averages around 50 per cent, inereasing to better than 60 per cent in the higher-power units. The voltare regulation of a genemotor is comparable to that of well-designed a.c. supplies.

Successfal operation of dynamotors and gencmotors requires heavy, direct leasls, mechania;al isolation to reduce vibration, and thorongh r.f. and ripple filtration, The shafts and bearings should be thoroughly "run in" before resular operation is attempted, and thereafter the tension of the beariugs should be checkell occasionally.

In mounting the genemotor, the support should be in the form of rubber mounting blocks, or equivalent, to prevent the transmission of vibration mechanically. The frame of the genemotor should be grounded through a heavy flexible connector. 'The brushes on the high-voltage end of the shaft should be bypased with $0.002-\mu \mathrm{fd}$. nica condensers to a commons point on the genenotor frame, prefarably to a print inside the end cover close to the brush holders. Short leads are essential. It may prove desirable to shield the entire unit. or even to remove the unit to a distance of three or four fect from the receiver.

When the genemotor is used for receiving, a filter should be used similar to that deseribed for vibator supplies. A $0.01-\mu \mathrm{fd}$, (600 -volt (d.e.) paper condenser should be connected in shmit arross the output of the genemotor, followed by a $2 . \overline{\mathrm{o}}$-mh. r.f. choke in the positive high-voitalge lead. From this point the output should be run through a "brute force" smoothing filter using $4-t_{0}$ S- $\mu \mathrm{fil}$. electrolytic condensers with a 15 or 30 -henry choke having low d.c. resistance.
A.c.-d.c. cunciriors - In snmn instances it is desirable to utilize existing equipment built for $11 \overline{5}$-volt a.c. operation. To operate such equipment with any of the power sources outlined above would require a considerable amount of rebuikling. This can be obviated by using a rotary converter capable of changing the d.e. from $6-, 12$ - or 32 -volt batteries to 110-volt 60-cycle a.c. Such converter units arre build to deliver output ranging from 40 to 300 watt.s.

The eonversion efficienc:y of these units averages about 50 per cent. In :upearance and operation they are similar to genemotors of equivalent rating. 'The over-atl elficiency' of the converter will be lower, however, because of losses in the a.c. rectifier-filter circuits and the necessity for converting heater as well as plate power.

Wave
 Propagation

(1. 9-1 Characteristics of Radio Waves

Relation to other forms of radiation Radio waves differ from other forms of electromagnetic radiation prineipally in the order of their wavelength, which ranges from approximately 30,000 meters to a small fraction of a centimeter; i.c., their frequency ranges between about 10 kc . and $1,000,000 \mathrm{Mc}$. They travel at the same velocity as light waves (about $300,000,000$ meters per second in free space) and can be similarly reflected, refracted and diffiracted.

The total energy in a radio wave is cvenly divided between traveling electrostatic and electromagnetic fields. The lines of force of these fields are at right angles to each other in a plane perpendicular to the direction of travel, as shown in Fig. 901.

Polarization - The polarization of a radio wave is taken as the direction of the lines of force in the electrostatic field. If the plane of this field is perpendicular to the earth, the wave is said to be vertically polarized; if it is parallel to the earth, the wave is horizonially polarized. The longer waves, when traveling along the ground, usually maintain their polarization in the same plane as was generated at the antenna. The polarization of shorter waves may be altered during travel, however, and sometimes will vary quite rapidly.

Reflection - Radio waves may be reflected from any sharply defined discontinuity of suitable characteristies and dimensions encountered in the medium in which they are traveling. Any conductor (or any insulator having a dielectric constant differing from that

Fig. 901-Representation of elcetrostatic and electromagnetic lines of force in a radio wave. Arrows indicate instantaneous directions of the fields for a wave traveling toward the reader. Reversing the direction of one set of lines would reverse the direction of travel.
of the medium) offers such a discontinuity if its dimensions are at least comparable to the wavelength. The surface of the earth and the boundaries between ionospheric layers are examples of such discontinuities. Objects as small as an airplane, a trec or even a man's body will readily reflect the shorter waves.

Refraction - As in the case of light, a radio wave is bent when it moves obliquely into any medium having a different refractive index from that of the medium which it leaves. Since the velocity of propagation or travel differs in the two mediums, that part of the wave front which enters first travels faster or slower thatn the part which enters last, and so the wave front is turned or refracted (usually downward in the vertical plane). Refraction may take place in either the ionosphere (ionized upper atmosphere) or the troposphere (lower atmosphere).

Diffraction - When a wave grazes the edge of an object in passing, it tends to be bent around that edge. This effect, called diffraction, results in a diversion of part of the energy of those waves which normally follow a straight or line-of-sight path, so that they may be received at some distance below the summit of an obstruction, or around its edges.

Types of waves - According to the altitude of the paths along which they are propagated, radio waves may be classified as ionospheric waves, tropospheric waves or ground waves

The ionospheric wave (sometimes called the "sky wave,") is that part of the total radiation which is directed toward the ionospherc. Depending upon variable conditions in that region, as well as upon wavelength (or frequency), the ionospheric wave may or may not be returned to earth by the effects of refraction and reflection.

The tropospheric wave is that part of the total radiation which undergoes refraction and reflection in regions of abrupt change of dielectric constant in the tropusphere, such as the boundaries between air masses of differing temperature and moisture content.

The ground wave is that part of the total radiation which is directly affected by the presence of the earth and its surface features. The grourd wave has two components. One is the surface wave, which is an cartl-guided wave, and the other is the space ware (not to be confused with the ionospheric or "sky wave"). The space wave is itself the resultant of two components - the direct wave and the groundreflected wave, as shown in Fig. 902.

Fig. 902 - Showing how both direct and reflected waves may be received simultaneously in v.h.f. transmission.

[1 9-2 Ionospheric Propagation

The ionosphere-Communication between distant points by means of radio waves of frequencies ranging between 3 and 30 Mc . depends principally upon the ionospheric wave. Upon leaving the transmitting antenna, this wave travels upward from the earth's surface at such an angle that it would continue out into space were its path not bent sufficiently to bring it back to earth. The medium which causes such bending is the ionosphere, a region in the upper atmosphere, above a height of about 60 miles, where free ions and electrons exist in sufficient quantity to cause a change in the refractive index. This condition is believed to be the effect of ultraviolet radiation from the sun. The ionosphere is not a single region but is composed of a series of layers of varying densities of ionization occurring at different heights. Each layer consists of a central region of relatively dense ionization which tapers off in intensity both above and below.

Refraction, absorption and reflectionFor a given density of ionization, the degree of refraction becomes less as the wavelength becomes shorter (or as the frequency increases). The bending therefore is less at high than at low frequencies, and if the frequency is raised to a sufficiently high value, a point is finally reached where the refractive bending becomes too slight to bring the wave back to earth, even though it may enter the ionized layer along a path which makes a very small angle with the boundary of the ionosphere.

The greater the density of ionization, the greater the bending at any given frequency. Thus, with an increase in ionization, the minimum wavelength which can be bent sufficiently for long-distance communication is lessened and the maximum usable frequency is increased.

The wave necessarily loses some of its energy in traveling through the ionosphere, this absorption loss increasing with wavelength and also with ionization density. Unusually high ionization, especially in the lower strata of the ionosphere, may cause complete absorption of the wave energy.

In addition to refraction, reflection may take place at the lower boundary of an ionized layer if it is sharply defined; i.e., if there is an appreciable change in ionization within a relatively short interval of travel. For waves approaching the layer at or near the perpendicular, the change in ionization must take place within a difference in height comparable to a wavelength; hence, ionospheric reflection is more apt to occur at longer wavelengths (lower frequencies).

Critical frequency - When the frequency is sufficiently low, a wave sent vertically upward to the ionosphere will be bent sharply enough to cause it to return to the transmitting point. The highest frequency at which such refleetion can occur, for a given state of the ionosphere, is called the critical frequency. Although the critical frequency may serve as an index of transmission conditions, it is not the highest useful frequency, since other waves of the same frequency which enter the ionosphere at angles smaller than 90 degrees (less than vertical) will be bent suffieiently to return to earth. The maximum usable frequency, for waves leaving the earth at very small angles to the horizontal, is in the vicinity of three times the critical frequency.

Besides being directly observable, the critical frequency is of more practical interest than the ionization density because it inchides the effects of absorption as well as refraction.

Virtual height - Although an ionospheric layer is a region of considerable depth it is convenient to assign to it a definite height, called the virtual height. This is the height from which a simple reflection would give the same effect as the gradual refraction which actually takes place, as illustrated in Fig. 903. The wave traveling upward is bent back over a path having an appreciable radius of turning, and a measurable interval of time is consumed in the turning process. The virtual height is the height of a triangle formed as shown, having equal sides of a total length proportional to the time taken for the wave to travel from T to R.
Normal structure of the ionosphereThe lowest normally useful layer is called the E layer. The average height of the region of maximum ionization is about 70 miles. The ionization density is greatest around local noon; the layer is only weakly ionized at night, when it is not exposed to the sun's radiation. The air at this height is suffieiently dense so that free ions and electrons very quirkly meet and recombine.

The second principal layer is the F layer, which has a height of about 175 miles at night. At this altitude the air is so thin that recombination of ions and electrons takes place very slowly, inasmuch as particles can travel relatively great distances before meeting. The ionization decreases after sundown, reaching a minimum just before sunrise. In the daytime

Fig. 903 - Showing bending in the ionosphere and the echo or reflection method of determining virtual beight.
the F layer splits into two parts, the F_{1} and F_{2} layers, with average virtunl heights of, respectively, 140 miles and 200 miles. These layers are most highly ionized at about local noon, and morge again at sunset into the F layer.

Cyclic variations in the ionospluereSince ionization depencs upon ultraviolet radiation, conditions in the ionosphere vary with changes in the sun's radiation. In adelition to the daly variation, scasonal changes result in higher critiral frequencies in the E layer in summer, averaging about 4 Mc . as against a winter average of 3 Mc . The F layer shows little variation, the critical frequency being of the order of 4 to 5 Mc . in the cvening. The F_{1} layer, which has a critical frequenc'y near 5 Mc . in summer, usually disappears entirely in winter. The critiral frequencies for the l_{2} are highest in winter (11 to 12 Me .) and lowest in summer (around 7 Mc .). The virtual height of the F_{2} layer, which is about 185 miles in winter, averages 2 j 0 miles in summer.

Scasonal trinsition periods occur in spring and fall, when ionospheric conditions are found highly variable.

There are at least two other regular eycles in ionization. One such eyclic period covers 28 days, which eorresponds with the period of the sum's rotation. For a short time in each 28-day cycle, transmission conditions rearh a peak. Usually this pank is followed by a fairly rapiel clrop to a lower level, and then a slow building up to the next peak. The 28 -day eycle is particularly evident in the 1-1- and $28-\mathrm{Mc}$. amaten bands.

The longest cyele yet observed eovers about 11 years, corresponding to a similar cycle of sunspot activity. The effect of this eycle is to shift upward or downward the values of the critical frequencies for F^{\prime} - and F_{2}-hyer transmission. The eritical frequencies are highest during sunspot maxima and lowest during sunspot minima. It is during the period of minimum sumspot activity when long-distance transmissions oceur on the lower frequencies. At such times the $28-\mathrm{Me}$. band is seldom useful for DX work, while the 14 -Me. band performs well in the daytime but is not ordinarily useful at night. The most recent sunspot maximum is considered to have oceurred in 1938.

Magnetic storms and other disturbances - Unusual disturbances in the earth's magnetic field (magnetic storms) usually are ac-
companicd by disturbances in the ionosphere, when the layers apparendy break up and expand. There is usually also an inerease in absorption during such a period. Radio transmission is poor and there is a drop in critical frequencies so that lower frecuencies must be used for communication. A storm may last for several days.

Unusually high ionization in the region of the atmosphere below the normal ionosphere may increase absorption to such an extent that sliy-wave transmission beromes impossible on high frequencies. The length of sueh a disturbance may be scveral hours, with a gradual falling off of transmission conditions at the beginning and an equally gradual buileling up at the. and of the period. Fadeouts, similar to the above in effect, are caused by sudden disturbances on the sun. They are chatracterized by very rapid ionization, with sky-w:ave transmission disappearing almost instantly, orcur only in daylight, and do not last as long as the first type of absorption.

Magnetic storms frequently are accompanied by unusual auroral displays, creating an ionized "curtain" in the polar regions which can act as a reflector of radio waves. Auroral reflection is occasionally observed at frequencies as high as 60 Mc .

Sporadic E-layer ionization - Ocensionally scattered patches or clouds of relatively clense ionization appear at heights approximately the same as that of the E layer. The effert is to raise the eritical frequeney to a valuc perhaps twice that which is returned from any of the regular layers by normal refraction. Distanees of about 500 to 1250 miles may be covered at $5 t \mathrm{Mc}$. if the ionized cloud is situated midway between transmitter and receiver, or is of any very considerable extent. This effect, while infrequently observed in winter, is prevalent during the late spring and carly summer, with no apparent correlation of the condition with the time of day.
The presence of sporadic- E refuaction on the 14- and 28 -Mc. bands is indicated loy an alsnormally short distance between the transmitter and the point where the wave first is returned to earth as when, for example, 14Me. signals from a transmitter only 100 miles distant may arrive with an intensity usually assoriated with distances of this order on 7 and 3.5 Mc.

Fis. 904 - Refraction of sky waves, sliowing the critical wave angle and the ship zonc. Waves leaving the transmitter at angles above the rritieal (greater than A) are not bent enough to be returned tu carth. As the angle is increasen, the waver return to "arth at increasingly greater distancen.

Wave angle - The smaller the angle at which a wave leaves the earth, the less will be the bending required in the ionosphere to bring it back and, in general, the greater the distance between the point where it leaves the carth and that at whieh it returns. This is shown in Fig. Gut. The verical angle which the wave makes with a tangent to the earth is called the warc angle or angle of radiation.

Skip distance - Since greater bending is required to return the wave to earth when the wave angle is high, at the higher frequencies the refraction frequently is not enough to give the required bending unless the wave angle is smaller than a certain angle called the critical anyle. This is ilhustrated in Fig. 904, where waves at angles of A or less give useful signals while waths sent at higher angles penctrate the layer and are not returned. The distance botwen T and R_{1} is, therefore, the shortest possible distanee over which eommunication by normal ionospheric refraction ean be accomplished.

The area between the end of the useful ground wave and the beginning of ionospherie wave reception is ealled the ship zonc. The extent of skip rone depends upon the frequency and the state of the ionosphere, and is greater the higher the transmitting frequency and the lower the eritical frequency. Skip distance depends also upon the height of the layer in which the refraction takes place, the higher layers giving longer skip distances for the same wave angle. Wave angles at the transmitting and receiving points are usually, although not always, approximately the same for any given wave path.

It is readily possible for the ionospherie wave to pass through the E layer and be refracted back to earth from the F, F_{1} or F_{2} layers. This is becanse the eritical frequencies are higher in the latter layers, so that a signal too high in frequency to be retarned by the E layer can still come back from one of the others, depending upon the time of day and the existing eonditions. Depending upon the wave angle and the frequency, it is sometimes possible to carry on communication via either the E or $F_{1}-F_{2}$ layers on the same frequency.

Multihop transmission - On returning to the earth the wave can be reflected upward and travel again to the ionosphere. There it maly onee more be refracted, and again bent back to earth. This process may be repented several times. Multihop propagation of this nature is nocessary for transmission over great distances lecause of the limited heights of the layers and the eurvature of the earth, since at the lowest useful wave angles (of the order of a few degrees, waves at lower angles generally being ahsorbed rapidly at high frequencies by being in contact with the earth) the maximum one-hop distanee is about 1250 miles for refraction from the E layer and around 2500 miles for the P_{2}^{\prime} hayer. However, ground losses absorb some of the energy from the wive on eateh re-
flection (the amount of the loss varying with the type of ground and being least for reflection from sea water). Thus, when the distance permits, it is better to have one hop rather than several, since the multiple reflections introduce losses which are higher than those caused by the ionosphere alone.

Fading - Two or more parts of the wave may follow slightly different pathis in traveling to the receiving point, in which case the difference in path lengths will cause a phatse difference to exist between the wave components at the recoiving antenna. The fied strength therefore may have any value between the numerical sum of the eomponents (when they are all in phase) and zero (when there are only two components and they are exactly out of phase). Since the paths change from time to time. this causes a variation in signal strength ealled foding. Fading can also result from the combination of single-hop and multi-hop waves, or the combination of a ground wave with an ionospheric or tropospheric wave. Such a condition gives rise to an area of severe fading near the limiting distance of the ground wave, better reception being ohtained at looth shorter and longer distances where one component or the other is considerably stronger. Fading may be rapid or slow, the former type usually resulting from rapidly changing conditions in the ionosphere, the latter occurring when transmission conditions are relatively stable.

It frequently occurs that transmission conditions are different for waves of slightly different frequencies, so that in the ease of voicemodulated transmission, involving side-bands differing slightly from the carrier in frequeney, the carrier and various side-band components may not be propagated in the same relative amplitudes and phatses they had at the transmitter. This effect, known is sclective fading, eauses severe distortion of the signal.

(1) 9-3 Tropospheric Propagation

Air masses and fronts - In the lower atmosphere wave propagation is affected by the changes in refractive index between differing air massers. A miss uf air humdereds of mitos in area may remain at rest over one region intil it becomes affected by the surface temperat ure and humidity characteristis of that region. Eventually being moved on by the forces of atmospheric circulation, the mass may travel over regions quite different from its origin and retain for some time its original characteristics. When it incets a dissimilar air mass, the lighter, warmer and drier mass overrms the heavier, cold, moist mass creating a boundary between the t wo called a front. This front, which represents a diseontinuity in the dielectric constant of the troposphere, serves to refract and reflect the higher-frequency radio waves in much the same manner as the ionospheric layers, but at lesser heights and more restricted angles. As a result frequencies above 50 Me . are returned to
earth at distances considerably beyond the range of ground-wave propagation, sometimes up to 400 miles.

Temperature inversions - The temperatare of the lower atmosphere normally decreases at a constant rate with increasing height. When for any reason the normal variaion or lapse rate of approximately $3^{\circ} \mathrm{F}$. per 1000 feet of elevation is altered, a temperature inversion is said to take place. The resulting change in the dielectric constants of the air masses affected causes reflection and refracdion similar to that in the ionosphere.

Types of inversion other than the dynamic type described in the preceding paragraph inclaude the subsidence inversion, caused by the sinking of an air mass which has been heated by compression; the nocturnal inversion, brought about by the rapid cooling of surface air after sunset; and the cloud-layer inversion, caused by the heating of air above a cloud layer by reflection of the sun's rays from the upper surface of the clouds. Refraction and reflection of v.h.f, waves are brought about also, although to a lesser degree, by the presence of sharp transitions in the water-vapor content of the at mosphere. Fig. 905 illustrates the conditions existing when the air is "normal" and when a temperature inversion is present.

11 9-4 Ground-Wave Propagation

Surface wave - The surface wave is continuously in contact with the surface of the earth and, in cases where the distance of transmission makes the curvature of the earth a factor, extends its range by diffraction. The surface wave is practically independent of seasonal and day and night effects at ferequencies above 1500 kc .

The surface wave must be vertically polarizod because the electrostatic field of a horizontally polarized wave would be short-circuited by the ground, which acts as a conductor at the frequencies for which the surface wave is of most interest.

The wave induces a current in the ground in traveling along its surface. If the ground

Fig. 905 -Illustrating the effect of a temperature inversion in extending the range of v.h.f. signals.
were a perfect conductor there would be no loss of energy, but actual ground has appreciable resistance, so that the current flow causes some energy dissipation. This loss must be supplied by the wave which is correspondingly weakened. Hence, the transmitting range defends upon the ground characteristics. Because sea water is a good conductor, the range will be greater over the ocean than over land. The losses increase with frequency, so that the surface wave is rapidly attenuated at high frequencies and above about 2 Mc . is of little importance, except in purely local communicaton. The range at frequencies in the vicinity of 2 Mc . is of the order of 200 miles over average land and perhaps two or three times as far over sea water, for a medium-power transmitter (500 watts or so) using a good antenna. At higher frequencies the range drops off rapidly.

Space wave - In the v.h.f. portion of the spectrum (above 30 Mc .) the bending of the waves in the normal ionosphere is so slight that the ionospheric wave ($\$ 9-2$) is not ordinarily useful for communication. The range of the surface wave also is extremely limited, as stated above. Hence, normal v.h.f. transmission is by means of the space wave in which the direct-wave component travels directly from the transmitter to the receiver through the atmosphere along a line-of-sight path.

Part of the space wave strikes the ground between the transmitter and receiver and is reflected upward at a slight angle, as was shown in Fig. 902. The effect of this ground-reflected wave, which is out of phase with the direct wave, is to reduce the net field strength at the receiving point. The degree of cancellation depends upon the heights of the transmitting and receiving antennas above the point of reflection, the ground losses when reflection takes place, and the frequency - the canelation decreasing with an increase in any of these.

The energy lost in ground absorption by a wave traveling close to the ground decreases very rapidly with its height in terms of wavelengths above the ground. A v.h.f. direct wave, therefore, can be relatively close (in physical height) to the ground without suffering the absorption effects which would occur at the same physical heights with longer wave-lengths.

Normal refraction -There is normally some change in the refractive index of the air with height above ground, its nature being such as to cause the wave to bend slightly towards the ground. Where curvature of the earth must be considered, this has the effect of lengthening the distance over which it is possible to transmit a direct wave. It is convenient to consider the effect of this "normal refraction" as equivalent to an increase in the earth's radius, in determining the antenna heights necessary to provide a clear path for the wave. The equivalent radius, taking refraction into account, is $4 / 3$ the actual radius.

Fig. 906- Chart for determining line onfaipht distance for v.h.f. transmission. 'The solid line inchudes effect of refraction, while the doted line is the optical distance.

Range rs. height - Since the direct wave travels in practically a straight line, the maximum signal strength can be obtained only when there is an unobstructed atmospherie path between the transmitter and receiver. This means that antemnas should be sufficiently clevated to provide such a path. On long paths the curvature of the earth, as well as the intervening terrain, must be taken into account.

The height required to provide a elear line-of-sight path over level terrain from an elevated transmitting point to a receiving point on the surface, not including the effect of refraction, is

$$
h=\frac{d^{2}}{1.51}
$$

where h is the height of the transmitting antenna in feet and d the distance in miles. Conversely, the line-of-sight distance in miles for a given height in feet is determined by

$$
d=1.23 \sqrt{h}
$$

Taking refraction into account, this equation becomes

$$
d=1.41 \sqrt{h}
$$

Fig. 906 gives the answer directly when either value is known.

When transmitter and receiver both are elevated, the maximum direct-wave distance to ground level can be determined separately for cach. Adding the two distances thus obtained will give the maximum distance by which they can be separated for direct-wave communication. This is shown in Fig. 907.

4. 9-5 Optimum Wave Angles

One of the requirements in high-frequency radio transmission is to send a wave to the ionosphere in such a way that it will have the best chance of being returned to earth. This is chicfly a matter of the angle at which the wave enters the layer, although in some cases polarization may be of importance. Furthermore, the desirable conditions may change considerably with frequency.

The desirable conditions for waves of different frequencies can be summarized as follows, in terms of the various amateur bands:
1.7. Mc. - Low-angle radiation is indieated for the longer distances. High-angle radiation may cause fading toward the limit of the ground-wave signal, because the downcoming waves add in random phase to the ground wave. Vertical polarization is to be preferred.
3.5 Mc. - Waves at all angles of radiation usually will be reflected, so that no energy is lost by high-angle radiation. However, the lower-angle waves will, in general, give the greatest distances. Polarization on this band is not of great importance.

7 Me. - Under most conditions, angles of radiation up to about 45 degrees will be returned to earth; during the sunspot maximum still higher angles are useful. It is best to concentrate the radiation below 45 degrees. Polarization is not important, exrept that losses probably will be higher with vertical polarization.
14 Mc. - For long-distance transmission, most of the energy should be concentrated at angles below about 20 degrees. Higher angles are useful for comparatively short distances (300-400 milcs), although 30 degrees is about the maximum useful angle. Aside from the probable higher losses with vertical polarization, the polarization may be of any type.
28 Mc . - Angles of 10 degrees or less are most useful. As in the case of 14 Mc., polarization is not important.

56 Mc . - The lowest possible angle of radiation is most useful for all types of transmission. Vertical polarization has been chiefly used for line-of-sight and lower atmosphere transmission, although horizontal polarization may be slightly better for long distances. In any event, the same polarization should be used at both transmitter and recciver.

Higher frequencies - As in the case of 56 Mc. either horizontal or vertical polarization may be used, so long as the same type is employed at both ends of the circuit.

Fic. 907 - Method of determining total line-ofsight distance when hoth transinitter and receiver are elevated, hased on Fig. 906. Since only carth curvature is taken into account in Fig. 906, irregularities in the ground hetween the transmitting and receiving points must be considered when computing each actual path.

Antenna Systems

C. 10-1 Antenna Properties

Wave propagation and antenna design For most effective transmission, the propagation characteristics of the frequency under consideration must be given due consideration in selenting the type of antenna to usc. These have been discussed in Chapter Nine. On some frequencies the angle of radiation and polarization may be of relatively little importance; on others they may be all-important. On a given frequency, the particular type of antenna best suited for long-distance transmission may not be as good for shorter-range work as would a different type.

The important properties of an antenna or antenna system are its polarization, angle of radiation, impedance, and directivity.

Polarization - The polarization of a straight-wire antenna is its position with respect to the earth. That is, a vertical wire transmits vertirally polarized waves and a horizontal antenma generates horizontally polarized waves (\$9-1). The wave from an antenna in a slanting position contains both vertical and horizontal components.

Angle of radiation - 'The wave angle (§9-4) at which an antenna radiates best is determined by its polarization, height above ground, and the nature of the ground. Radiation is not all at one well-defined angle, but rather is dispersed over a more or less large angular region, depending upon the type of antenna. The angle is measured in a vertical plane with respect to a tangent to the earth at the transinitting point.

Impedance - The impedance ($\$ 2-8$) of the antenna at any point is the ratio of voltage to current at that point. It is important in connection with feeding power to the antenna, since it constitutes the load represented by the antenna.

Directivity - All antennas radiate more power in certain directions than in others. This characteristic, called direcivity, must be eonsidered in three dimensions, since directivity exists in the vertiral plane as well as in the horizontal plane. Thus, the directivity of the antenna will affect the wave angle as well as the actual compass directions in which maximum transmission takes place.

Current - The field strength produced by an antenira is proportional to the current flowing in it. When there are standing waves on an antenna, the parts of the wire carrying the higher current have the greatest radiating effect.

Power gain - The ratio of power required to produce a given field strength, with a "comparison" antenna, to the power required to produce the same field strength with a specified type of antenna is called the power gain of the latter antenna. The field is measured in the optimum direction of the antenna under test. The comparison antenna almost always is a half-wave antenna at the same height and having the same polarization as the antenna under consideration. Power gain usually is expressed in decibels (§3-3).

(1) 10-2 The Half-Wave Anfenna

Physical and electrical length - The fundamental form of antenna is a single wire whose length is approximately equal to half the transmitting wavelength. It is the unit from which many more complex forms of antennas are constructed. It is variously known as a half-wave dipole, half-wave doublet, or Hertz antenna.

The length of a half wave in space is:

$$
\begin{equation*}
\text { Length }(f c e t)=\frac{492}{\text { Freq. }(M c .)} \tag{1}
\end{equation*}
$$

The actual length of a half-wave antenna will not be exactly equal to the half wave in space, but depends upon the thickness of the conductor in relation to the wavelength as shown in Fig. 1001, where K is a factor that must be multiplied by the half wavelength in free space to obtain the resonant antenna length. An additional shortening effect occurs with wire antennas supported by insulators at the ends because of the capacitance added to the system by the insulators (end effect). Under average conditions the following formula is sufficiently accurate for wire antennas at frequencies up to 30 Me .:

Length of half-wave antenna (feet) $=$

$$
\begin{equation*}
\frac{492 \times 0.95}{\text { Freq. }(M c .)}=\frac{468}{\text { Freq. (Mc.) }} \tag{2}
\end{equation*}
$$

Above 30 Mc . the formulas below should be used, particularly for antennas constructed from rod or tubing. The factor K is taken from Fig. 1001.

$$
\begin{gather*}
\text { Length of half-wave antenna }(f e e t)= \\
\frac{f 92 \times K}{\text { Freq. }(M c .)} \tag{3}\\
\text { or length (inches) }=\frac{5905 \times K}{\text { Freq. }(M c .)} \tag{4}
\end{gather*}
$$

Current and voltage distribution - When power is fed to such an antenna the current and
voltage vary along its length (§ 2-12-A). The current is maximum at the center and nearly zero at the ends, while the opposite

Fig. 1001 - Effect of antenna diameter on length for half-wave resonance, shown as a multiplying factor, K, to be applied to the free-space half wavelength (Equation 1). The effect of conductor diameter on the impedance measured at the center also is slown.
is true of the r.f. voltage. The current does not actually reach zero at the current nodes ($\delta 2-12-\mathrm{A}$), because of the end effect; similarly, the voltage is not zero at its node because of the resistance of the antenna, which consists of both the r.f. resistance of the wire (ohmic resistance) and the radiation resistance ($\$ 2-12-\mathrm{A}$). Usually the ohmic resistance of a half-wave antenna is small enough, in comparison with the radiation resistance, to be neglected for all practical purposes.

Impedance - The radiation resistance of an infinitely thin half-wave antenna in free space - that is, sufficiently removed from surrounding objects so that they do not affeet the antenna's characteristics - is 73 ohms, approximately. The value under practical conditions is commonly taken to be in the neighborhood of 70 ohms. It is pure resistance, and is measured at the center of the antenna. The impedance is minimum at the center, where it is equal to the radiation resistance, and increases toward the ends. The actual value at the ends will depend on a number of factors, such as the height, the physical construction, and the posilion with respect to ground.
Conductor size - The impedance of the antenna also depends upon the diameter of the conductor in relation to the wavelength, as shown in Fig. 1001. If the diameter of the conductor is made large, the capacitance per unit length increases and the inductance per unit length decreases. Since the radiation resistance is affected relatively little, the decreased L / C ratio causes the Q of the antenna to decrease, so that the resonance curve becomes less sharp. Hence, the antenna is capable of working over a wide frequency range. This effect is greater as the diameter is increased, and is a property of some importance at the very-high frequencies where the wavelength is small.
Radiation characteristics - The radiation from a half-wave antenna is not uniform in all directions but varies with the angle with respect to the axis of the wire. It is most
intense in directions at right-angles to the wire and zero along the direction of the wire itself, with intermediate values at intermediate angles. This is shown by the sketch of Fig. 1002, which represents the radiation pattern in free space. The relative intensity of radiation is proportional to the length of a line drawn from the center of the figure to the perimeter. If the antenna is vertical, as shown in the figure, then the field strength ($\S 9-1$) will be uniform in all horizontal directions; if the antenna is horizontal, the relative field strength will depend upon the direction of the receiving point with respect to the direction of the antenna wire.

(1. 10-3 Ground Effects

Reflection - When the antenna is near the ground the frec-space pattern of Fig. 1002 is modified by reflection of radiated waves from the ground, so that the actual pattern is the resultant of the frec-space pattern and ground reflections. This resultant is dependent upon the height of the antenna, its position or orientation with respect to the surface of the ground, and the electrical characteristics of the ground. The reflected waves may be in such phase relationship to the directly-radiated waves that the two completely reinforce each other, or the phase relationship may be such that complete cancellation takes place. All intermediate values aliso are possible. Thus, the effect of a perfectly-reflecting ground is such that the original free-space field strength may be multiplied by a factor which has a maximum value of 2 , for complete reinforeement, and having all internediate valucs to zero, for complete cancellation. These reflections only affect the radiation pattern in the vertical plane - that is, in directions upward from the earth's surface - and not in the horizontal plane, or the usual geographical directions.

Fig. 1003 shows how the multiplying factor varies with the vertical angle for several representative heights for horizontal antennas. As the height is increased the angle at which complete reinforcement takes place is lowered, until for a height equal to one wavelength it occurs at a vertical angle of 15 degrees. At still greater heights, not shown on the chart, the first maximum will occur at still smaller angles.

When the half-wave antenua is vertical the maximum and minimum points in the curves of Fig. 1003 exchange positions, so that the

Fig. 1002 - The frec-space radiation pattern of a halfwave antenna. The antenna is shown in the vertical position. This is a cross-scetion of the solid pattern described hy the figure when rotated on its vertical axis. The "doughnut" form of the solid pattern can he more easily visualized by imagining the drawing glued to a piece of cardhoard, with a short Iength of wire fastened on it to represent the antennu. Twirling the wire will give a visual representation of the solid radiation pattern.
nulls become muxima, and vice versa. In this case, the height is taken as the distance from ground to the center of the antenna.

Radiation angle - The vertical angle, or angle of radiation, is of primary importance, especially at the higher frequencies (\$9-2, 9-4). It is advantageous, therefore, to erect the an-

Fig. 1003 - Effect of gromud on radiation of horizontal antennas at vertical angles for four antenna heirhts. This chart is based on perfectly-conducting ground.
tenna at a height which will take advantage of ground reflection in such a way as to reinforce the space radiation at the most desirable angle. Since low radiation angles usually are desirable, this generally means that the antenna should be high - at least $1 / 2$ wavelength at 14 Mc., and preferably $3 / 4$ or 1 wavelength; at least 1 wavelength, and preferably higher, at 28 Mc. and the very-high frequencies. The physical height required for a given height in wavelengths decreases as the frequency is increased, so that good heights are not impracticable; a half wavelength at 14 Mc . is only 35 feet, approximately, while the same height represents a full wavelength at 28 Mc . At 7 Mc . and lower frequencies the higher radiation angles are effective, so that again a reasomable antenna height is not difficult of attainment. Heirhts between 35 and 70 feet are suitable for all bands, the higher figures generally being preferable where circumstances permit their use.

Imperfect ground - Fig. 1003 is based on ground having perfect conductivity, whereas the actual earth is not a perfect conductor. The principal effect of actual ground is to make the curves inaccurate at the lowest angles; appreciable high-frequency radiation at angles smaller than a few degrees is practically impossible to obtain at heights of less than several Wavelengths. Above 15 degrees, however, the curves are accurate enough for all practical purposes, and may be taken as indicative of the sort of result to be expected at angles between 5 and 15 degrees.

The effective ground plane - that is, the plane from which ground reflections can be
considered to take place - seldom is the actual surface of the ground but is a few fect below it, depending upon the character of the soil.

Impedance - Waves which are reflected directly upward from the ground induce a current in the antenna in passing, and, depending on the antenna height, the phase relationship of this induced current to the original current may be such as either to increase or decrease the total current in the antenna. For the same power input to the antenna, an increase in current is equivalent to a decrease in impedanee, and viee versa. Hence, the impedance of the antenna varies with height. The theoretical curve of variation of radiation resistance for an antenna above perfectlyreflecting ground is shown in Fig. 1004. The impedance approaches the frec-space value as the height becomes large, but at low heights may differ considerably from it.
$\dot{C h o i c e}$ of polarization - Polarization of the transmitting antema is generally unimportant on frequencies between 3.5 and 30 Mc . However, the question of whether the antenna should be installed in a horizontal or vertical position deserves consideration for other reasons. A vertical half-wave antenna will radiate cqually well in all horizontal directions, so that it is substantially nondirectional, in the usual sense of the word. If installed horizontally, however, the antenna will tend to show directional effects, and will radiate best in the direction at right angles, or broadside, to the wire. The radiation in such a case will be least in the direction toward which the wire points. This can be readily seen by imagining that Fig. 1002 is lying on the ground, and that the pattern is looked at from above.

The vertical angle of radiation also will be affected by the position of the antenna. If it were not for ground losses at high frequencies, the vertical half-wave antenna would be preferred beratuse it would concentrate the radiation horizontally. In practice, however. at high frequencies both types work about alike at low angles.

Fig. 100.4 - Throretical curve of variation of radiation resistance for a half-wave horizontal antenna, as a function of height in wavelength above perfectly-refecting ground.

Effective radiation patterns - In determining the radiation pattern it is necessary to consider radiation in both the horizontal and vertical planes. When the half-wave antenna is vertical, the vertical angle of radiation chosen does not affect the shape of the horizontal pattern, but only its relative amplitude. When the antenna is horizonlal, huwever, buth the shape and amplitude are dependent upon the angle of radiation chosen.

Fig. 1005 - lllustrating the importance of vertical angle of radiation in determining antenna directional effects. Ground reflection is neplected in this drawing of the frec-space ficld pattern of a horizontal antenna.

Fig. 1005 illustrates this point. The "freespace" pattern of the horizontal antenna shown is a section cut vertically through the solid pattern. In the direction $O A$, horizontally along the wire axis, the radiation is zero, At some vertical angle, however, represented by the line $O B$, the radiation is appreciable, despite the fact that this line runs in the same geographical direction as $O A$. At some higher angle, $O C$, the radiation, still in the same geographical direction, is still more intense. The effective radiation pattern therefore depends upon whicl angle of radiation is most useful, and for long-distance transmission is dependent upon the conditions existing in the ionosphere. These conditions may vary not only from day to day and hour to hour, but even from minute to minute. Obviously, then, the effective direc-

Fig. 1006 - Horizontal pattern of a horizontal halfwave antenna at three vertical radiation angles. The solid line is relative radiation at 15 degrees. Dotted lines show deviation from the 15 -degree pattern for angles of 9 and 30 degrees. The patterns are useful for shape only, since the amplitude will depend upon the height of the antenna above ground and the vertical angle considered. The patterns for all threc angles have been proportioned to the same seale, hut this does not mean that the maxinum amplitudes necessarily will be the same. The arrow indicates the direction of the horizontal antenna wire.
tivity of the antenna will change along with transmission conditions

At very-high frequencies, where only extremely low angles are useful for any but sporadic- E transmission ($\$ 9-2$), the effective radiation pattern of the antenna approaches the free-space pattern. A horizontal antenna therefore shows more marked directive effects than it does at lower frequencies, on which high radiation angles are effective.

Theoretical horizontal-directivity patterns for half-wave horizontal antennas at vertical angles of 9,15 , and 30 degrees (representing average useful angles at 28,14 and 7 Mc . respectively) are given in Fig. 1006. At intermediate angles the values in the affected regions also will be intermediate. Relative field strengths are plotted on a decibel scale (§3-3), so that they represent as nearly as possible the actual aural effect at the receiving station.

© 10-4 Applying Power to the Antenna

Direct excitation - When power is transferred directly from the source to the radiating antenna, the antenna is said to be directly excited. While almost any coupling method (§2-11) may be used, those most commonly employed are shown in Fig. 1007. Power usually is fed to the antenna at either a current or voltage loop ($\$ 10-2$). If power is fed at a current loop, the coupling method is called current feed; if at a voltage loop, the method is called voliage feed.

Fis. 1007 - Methods of directly exciting the half-wave antenna. A, current feed, serics tuning; B, voltage feed, capacity coupling; C, voltage feed, with an inductively-coupledantenna tank. In A, the coupling circuit is not included in the effective clectrical length of the antennasystem proper.

Current feed - This method is shown in Fig 1007-A. The antenna is cutat the center and a small coil coupled to the output tank circuit of the transmitter, with adjustable coupling so that the transmitter loading can be controlled. Since the addition of the coil "loads" the antenna, or increases its effective length because of the additional inductance, the series condensers, C_{1} and C_{2}, are used to provide electrical means for reducing the length to its original unloaded value; in other words, their capacitive reactance serves to cancel the effect of the inductive reactance of the coil ($\$ 2-10$).

Voltage feed - In Fig. 1007, at B and C the power is introduced into the antenna at a point of high voltage. In B, the end of the antenna is coupled to the output tank circuit
through a small condenser, C; in C , a separate tank circuit, connected directly to the antenna, is used. This tank is tuned to the transmitter frequency, and should be grounded at one end or at the center of the coil, as shown.
Adjustment of coupling - Methods of tuning and adjustment of direct-feed systems correspond to those used with transmission lines, which are discussed in § 10-6.

Disadvantages of direct excitation- Direct excitation seldom is used except on the lowest amateur frequencies, because it involves bringing the antenna proper into the operating room and hence into close relationship with the house and electric wiring. This usually means that some of the power is wasted in heating poor conductors in the field of the antenna. Also, it often means that the shape of the antenna must be distorted, so that the expected directional effects are not realized, and likewise that the height will be limited. For these reasons, in high-frequency work practically all amateurs use transmission lines or feeder systems, which permit placing the antenna in a desirable location.

(4) 10-5 Transmission Lines

Requirements-A transmission line (§2-12-A) is used to transfer power, with a minimum of loss, from the transmitter to the antenna from which the power is to be radiated. At radio frequencies, where every wire carrying r.f. current tends to radiate energy in the form of electromagnetie waves, special design is necessary to minimize radiation and thus cause as much of the power as possible to be delivered to the receiving end of the line.

Radiation can be minimized by using a line in which the current is low, and by using two conductors carrying currents of equal magnitudes but opposite phase so that the fields about the conductors cancel each other. For good cancellation of radiation, the two conductors should be kept parallel and quite close to each other.

Types - The most common form of transmission line consists of two parallel wires, maintained at a fixed spacing of two to six inches by insulating spacers or spreaders placed at suitable intervals (open-wire line). A second type consists of insulated wires twisted together to form a flexible line, without spacers (twisted-pair line). A third has the parallel wires maintained at a fixed spacing of a half inch or less by molding them in a flexible tape of low-loss insulating material. Another type of line has a wire inside of and coaxial with a tubing outer conductor, separated from the outer conductor by insulating spacers or "beads" at regular intervals (coaxial or concentric line). A variation of this type uses solid but flexible insulating material to fill the space between the inner and outer conductors, the latter usually being made of metal braid rather than of solid tubing, so that the line will be flexible. Still another type of line uses only a
single wire, without a second conductor (singlewire feeder); in this type, radiation is minimized by keeping the line current low.

Spacing of open-wire lines - The spacing between the wires of an open-wire line should be small in comparison to the operating wavelength, to prevent appreciable radiation. It is impracticable to make the spacing of an openwire line very small, however, because when the wires swing with respect to each other in a wind the line constants (§ $2-12-\mathrm{A}$) will vary, and thus cause a variation in tuning or loading on the transmitter. It is also desirable to use as few insulating spacers as possible, to keep the weight of the line to a minimum. In practice, a spacing of about six inches is used for 14 Mc . and lower bands, with four- and two-inch spacings being common on very-high frequencies.

Electrical length - The electrical length of a transmission line may be quite different from its physical length, because waves travel more slowly along a transmission line than they do in space. The difference is small in the case of air-insulated lines, but is considerable in lines having solid dielectries. The ratio of the physical length of a line one electrical wavelength long to a wavelength in space is called the velocity factor of the line. A line with a velocity factor of 0.65 , for example, will have an electrical length of 10 meters (space wavelength) when it is 6.5 meters long.

Table I gives velocity factors for various types of lines in common use. This factor must always be used in calculating the length of a solid-dielectrie line used, for instance, as a quarter-wave matching section as described later in this chapter. The physical length of a quarter-wave line is

$$
\begin{gather*}
\text { Length of quarter-wave line } \begin{array}{c}
\text { in feet } \\
\text { or }
\end{array}=\frac{246 \times V}{\text { Freq. }(M c .)} \tag{5}\\
\begin{array}{c}
\text { Length of quarter-wave line } \\
\text { in inches }
\end{array}
\end{gather*}=\frac{2950 \times V}{\text { Freq. }(M c .)}
$$

where V is the velocity factor given in Table I.
Balance to ground - For maximum can-. cellation of the fields about the two wires, it is neeessary that the currents be equal in amplitude and opposite in phase. Should the capacity or inductance per unit length in one wire differ from that in the other, this condition eannot be fulfilled. Insofar as the line itself is concerned, the two wires will have identical characteristics only when the two have exactly the same physical relationships to ground and to other objects in the vicinity. Thus, the line should be symmetrically constructed and the two wires should be at the same height. Line unbalance can be minimized by keeping the line as far above the ground and as far from other object's as possible.

To overcome unbalance the line sometimes is transposed, which means that the positions of the wires are interchanged at regular intervals. This procedure is nore helpful on long

TABLE I Trangmishion-Line Velocity Factors and Attentation								
Type of line	Velocity Fartor V'	** Altenuation. dl. $/ 100 \mathrm{ft}$.; Mc.						Capacitance per font $\mu \mu \mathrm{fd}$.
		3.5	7	14	28	30	144	
Open-wire, 4UU to 600 ohms	U.975	Ũ.ử	0.005	0.07	U. 1	U. 13	0.25	
Parallel-tubint	$0.95{ }^{*}$	***						
Coaxinl, air-insulated	0.85*	0.2	0.28	0.42	0.55	0.7	1.4	
RG-8/U (53 nlıns)	0.66	0.28	0.42	0.64	1.0	1.4	2.6	29.5
RCo-58/U (593 ohms)	066	0.53	0.8	1.2	1.9	2.7	5.1	28.5
R(3-11/U (75. olims)	0615	0.27	0.41	0.61	0.92	1.3	2.4	20.5
Twin-Lead. 300 uhnis	0.82	0.18	0.3	0.5	0.84	1.3	2.8	5. 8
Twin-Lead, 1:50 ohms	077	0.2	0.35	0.6	1.0	1.6	3.5	10
Twin-Lead. 75 ohns	068	0.35	0.64	1.1	1.9	3.0	6.8	19
Transmittine " Γ witIead, 75 ohms	0 \% 1	0.29	049	0.52	1.4	2.1	4.8	
Kabber-insulated twisted-pair or conxial ****	$\begin{aligned} & 056 \\ & 0 \mathrm{to} \\ & 0 \mathrm{ta} \end{aligned}$	096	1.6	2.5	4.2	62	13	
* Average figurws for air-insulated lines taking into account efter of insulating spaters. ** For lines terminated in characteristic impedance. *** Iassus lwet ween open-wire line and air-insulated conxial cable. Actual loss with both open-wire :und parallej-tubing lines is higher than listed because of radiation, especially at hisher frequencies. **** Approximate figures for good-quality rubber insulation.								

than on short lines, and need not be resorted to for lines less than a wavelength long.

Resonart ard nonresonant lines - Lines are classified as resonant or nonresonant, depending upon the standing-wave ratio. If the ratio is near 1 , the line is said to be nonresonant. IReactive effects will be small, and consequently no special tuning provisions need ordinarily be made for canceling them even when the line length is not an exact multiple of a quarter witvelength. Such a line must be terminated in its characteristic impedance (§ $2-12-\mathrm{A}$). If the standing-wave ratio is fairly

Fig. 1008 - Effect of standing-wave ratio on line loss. 'The power-loss ration piven by the curve, multiplied by the power that would be lost in the same line if perfectly mutched, gives the atual power lost in the line when standing waves are present.
large, the input reactance must be caneeled or "tuned out" unless the line is a multiple of a quarter wavelength and resonant.

Losses - There are threc ways by which power may be lost in a transmission line: by radiation, by heating of the conductors ($I^{2} R$ loss), and by heating of the dielectric, if any. Loss by radiation will occur if the line is unbalanced and, particularly with open-wire lines, may greatly exceed the heat losses. It can be reduced to a minimum by terminating the line in a balanced load and by symmetrical, uniform construction.

Heat losses in both the conductor and the dielectric increase with frequency. Conductor losses also are greater the lower the characteristic impedance of the line, because a higher current flows in a low-impedance line for a given power input. The converse is true of dielectric losses becatuse these increase with the voltage, which is greater on high-impedance lines. The dielectric loss in air-insulated lines is negligible (the only loss is in the insulating spacers) and such lines operate at high efficiency when radation losses are low. In solid-dielectric lines inost of the loss is in the dielectric, the conductor losses being small.

Fig. 1009 - Chart showing the characteristic impedance of typical spaced-conductor parallel transmission ןines. Tubing sizes given are for outside diameters.

It is convenient to express the loss in a transmission line in decibels per unit length, since the loss in db . is directly proportional to the line length. Losses in various types of lines operated without standing waves (that is, terminated in a resistive load equal to the characteristic impedance of the line) are given in Table I. In these figures the radiation loss is assumed to be negligible. When there are standing waves on the line the power loss increases as shown in Fig. 1008.

The losses in air-insulated lines may increase
considerably when the line is wet or the spacers become dirty. Moisture may also cause a change in the characteristic impedance of parallel-wire lines with solid dielectric.

Fig. 1010-Chart showing characteristic impedance obtained with various air-insulated concentric lines.

C 10-6 Coupling to Transmission Lines

Requirements - The coupling system between a transmitter and the input end of a transmission line must provide means for adjusting the load on the transmitter to the proper value (impedance matching), and for tuning out any reactive component that may be present ($\$ 2-9,2-10,2-11$). The resistance and reactance considered are those present at the input end of the line, and hence have nothing to do with the antenna itself except insofar as the antenna load may affect the operation of the line.

Untuned coil - One of the simplest systems, shown in Fig. 1011-A, uses a coil of a few turns tightly coupled to the plate tank coil. Since no provision is made for tuning, this system is suitable only for nonresonant lines which show practically no reactance at the input end. Loading on the transmitter may be varied by varying the coupling between the tank inductance and the pick-up coil, as it is frequently called, or by changing the number of turns on the pick-up coil. A slight amount of reactance is coupled into the tank circuit by the pick-up coil, since the flux leakage (§ 2-11) is high, so that some slight retuning of the plate tank condenser may be necessary when the load is connected.

Taps on tank circuit - A method suitable for use with open-wire lines is shown in Fig. 1011-B, where the line is tapped on a balanced tank circuit with taps equidistant from the center or ground point. This symmetry is necessary to maintain line balance to ground ($\$ 10-5$). Loading is increased by moving the taps outward from the center. Any reactance present may be tuned out by readjustment of
the plate tank condenser, but this method is not suitable for large values of reactance and therefore direct tapping is best confined to use with nonresonant lines.

Adjustment of untuned systems - Adjustment of either of the above systems is quite simple. Starting with loose coupling, apply power to the transmitter, and adjust the plate tank condenser for minimum plate current. If the current is less than the desired load value, increase the coupling and again resonate the plate condenser. Continue until the desired plate current is obtained, always keeping the plate tank condenser at the setting which gives minimum current.

Pi-section coupling - A coupling system which is electrically equivalent to tapping on the tank circuit, but using a capacitance voltage divider in the plate tank circuit for the purpose, is shown in Fig. 1011-C. Since one side of the condenser across which the line is connected is grounded, some unbalance will be introduced into the transmission line. This method is used chiefly with low-power portable sets, because it is readily adjustable to meet a fairly wide range of impedance values. A single-ended amplifier, using either a screengrid tube or a grid-neutralized triode ($\$ 4-7$), is required, since the plate tank circuit is not balanced. Coupling is adjusted by varying C_{1}, reresonating the circuit each time by means of C_{2} until the desired amplifier plate current is obtained. In general, the coupling will increase as C_{1} is made smaller with respect to C_{2}. Relatively large-capacity condensers are required to give a suitable impedance-matching range while maintaining resonance.

Pi-section filter - The coupling circuit shown in Fig. 1011-D is a low-pass filter capable of coupling between a fairly wide range of impedances. The method of adjustinent is as follows: First, with the filter disconnected from the transmitter tank, tune the transinitter tank to resonance, as evidenced by minimum plate current. Then, with trial settings of the clips on L_{1} and L_{2} (few turns for high frequencies, more for lower), tap the input clips on the final tank coil at points equidistant from the center, so that about half the coil is included between them. A balanced tank circuit must be used. Set C_{2} at about half scale, apply power, and rapidly rotate C_{1} until the plate current drops to minimum. If this minimum is not the desired full-load plate current, try a new setting of C_{2} and repeat. If, for all settings of C_{2}, the plate current is too high or too low, try new settings of the taps on L_{1} and L_{2}, and also of the taps on the transmitter tank. Do not touch the tank condenser during these adjustments.

With some lengths of resonant lines, particularly those which are not exact multiples of a quarter wavelength, it may be difficult to get proper loading with the pi-section coupler. Usually antennas of these lengths also will be difficult to feed with other systems of coupling. In such cases. the proper output loading often

201

Fig. 1011-Methods of coupling the transmitter outp
and adjustment are discussed in the text. The couplin
isolate the transmitter plate voltage from the antenna
being satisfactory valucs, but their voltage rating sho
can be obtained by varying the L / C ratio of
the filter over a considerably wider range than is necessary for normal loads.

Scries tuning - When the inputimpedance of the line is low, the coupling method shown in Fig. 1011-E may be used. This system, known as series tuning, places the coupling coil, tuning condensers and load all in series, and is particularly suitable for use with resonant lines when a current loop appears at the input end. As shown, two tuning condensers are used, to keep the line balanced to ground. However, one will suffice, the other end of the line being connected directly to the end of L_{1}.

The tuning procedure with series tuning is as follows: With C_{1} and C_{2} at minimum capacitance, couple the antenna coil, L_{1}, loosely to the transmitter out put tank coil, and observe the plate current. Then increase C_{1} and C_{2} simultaneously until a setting is reached which gives maximum plate current, indicating that the antenna system is in resonance with the transmitting frequency. Readjust the plate tank condenser to minimum plate current. This is necessary because tuning the antenna circuit will have some effect on the tuning of the plate tank. The new minimum plate current will be higher than with the antenna system detuned, but should still be well below the rated value for the tube or tubes. Increase the coupling between L_{1} and L_{2} by a small amount, readjust C_{1} and C_{2} for maximum plate current, and again set the plate tank condenser to minimum. Continue this process until the minimum plate current is equal to the rated plate current for the amplifier. Always use the degree of coupling between L_{1} and L_{2} which will just bring the amplifier plate current to rated
value when C_{1} and C_{2} pass through resonance.
Parallel tuning - When the line has high input impedance, the use of parallel tuning, as shown in Fig. 1011-F, is required. Here the coupling coil, tuning condenser and line all are in parallel, the load represented by the line being directly across the tuned coupling circuit.

If the line is nonreactive, the coupling circuit will be tuned independently to the transmitter frequency; line reactance can be compensated for by tuning of C_{1} and, if necessary, adjustment of L_{1} by means of taps. Parallel tuning is suited to resonant lines when a voltage loop appears at the input end.

The tuning procedure is quite similar to that with series tuning. Find the value of coupling between L_{1} and L_{2} which will bring the plate current to the desired value as C_{1} is tuned through resonance. Again, a slight readjustment of the amplifier tank condenser may be necessary to compensate for the effect of coupled reactance.

Link coupling - Where tuning of the circuit connected to the line is necessary or desirable, it is possible to separate physically the line-tuning apparatus and the plate tank circuit by means of link coupling (§2-11). This is often convenient from a constructional standpoint, and has the advantage that there will be somewhat less harmonic transfer to the antenna, since stray capacity coupling is lessened with the smaller link coils.

Figs. 1011-G and H show a method which can be considered to be a variation of Fig. 1011-B. The first (G) is suitable for use with a single-ended plate tank, the second (H) for a balanced tank. The auxiliary tank on which the transmission line is tapped may have ad-
justable inductance as well as capacitance, to provide a wide range of reactance variation for compensating for line reactance. The center of the auxiliary tank inductance may be grounded, if desired. The link windings should be placed at the grounded parts of the coils, to reduce capacitance coupling and consequent harmonic transfer. With this inductively-coupled system, the loading on the auxiliary tank circuit increases as the tups are moved outward from the center, but, since this decreases the Q of the circuit, the coupling to the plate tank simultaneously decreases (§ 2-11). Hence, a compromise adjustment giving proper loading must be found in practice. Loading also may be varied by changing the coupling between one link winding and its associated tank coil; either tank may be used for this purpose. When the auxiliary tank is properly tuned to compensate for line reactance, the plate-tank tuning will be practically the same as with no load; hence, the plate tank condenser need be readjusted only slightly to compensate for the small reactance introduced by the link.

With some antenna systems and line lengths it may be difficult to make these perform simultaneously the functions of compensating for the input reactance of the line and matching the input resistance of the line to the transmitter. In such cases it will be hard to find a definite resonance point when tuning the antenna tank circuit, and it may also be impossible to load the amplifier to normal plate current. This condition frequently is aecompanied by excessive heating of parts of the antenna tank coil. It may be overcome by separately tuning out the line reactance as shown in Fig. 1012. The tuning procedure is as follows: First, with the feeder taps disconnected and with very loose coupling between the two tank circuits, tune the antenna tank to resonance as indicated by a rise in plate current. Then attach the feeder taps, keeping them quite close together, and note whether the antenna tank condenser capacitance has to be increased or decreased to reresonate the circuit. If the capacitance has to be decreased,

(A)

(B)

Fig. 1012 - Use of auxiliary coil (L) or condenser (C) to tune out line input reactance with the link-coupled circuits of Figs. 1011-G and H.
use Fig. 1012-A; if increased, use circuit B. Adjust the auxiliary inductance (L) or capacitance (C) to the value which permits tapping the line on the antenna tank coil without changing the tuning of this circuit. The spread between the taps may then be adjusted as described above to give normal loading. Values of auxiliary inductance and capacitance required must be determined experimentally.

Link coupling also may be used with series tuning, as shown in Fig. 1011-I. The coupling between one link and its associated coil may be made variable, to give the same effect as changing the coupling between the plate tank and antenna coils in the ordinary system. The tuning procedure is the same as described above for series tuning. In the case of singleended tank circuits the input link is coupled to the grounded end of the tank coil, as in Fig. 1011-G.

Circuit values - The values of inductance and eapacity to use in the antenna coupling system will depend upon the transmitting frequency, but are not particularly critical. With series tuning (Figs. 1011-E, I), the coil may consist of a few turns of the same construction as is used in the final tank; average values will run from one or two turns at very-high frequencies to perhaps 10 or 12 at 3.5 Mc . The number of turns preferably should be adjustable so that the inductance can be changed should it not be possible to reach resonance with the condensers used. The series condensers should have a maximum capacitance of 250 or 350 $\mu \mu \mathrm{fd}$. at the lower frequencies; the same values will serve even at 28 Mc., although $100 \mu \mu \mathrm{fd}$. will be ample for this and the $14-\mathrm{Mc}$. band. Still smaller condensers can be used at veryhigh frequencies. Since series tuning is used at a low-voltage point in the feeder system, the plate spacing of the condensers does not have to be large. Ordinary receiving-ty pe condensers are large enough for plate voltages up to 1000 , and the smaller transmitting condensers have high-enough voltage ratings for higher-power applications. In high-power radiotelephone transmitters it may be necessary to use condensers having a plate spacing of approximately 0.15 to 0.2 inch.

In parallel-tuned circuits (F, G, H) the antenna coil and condenser should be approximately the same as those used in the final tank circuit. The antenna tank circuit must be capable of being tuned independently to the transmitting frequency, and, if possible, provision should be made for tapping the coil, so that the L / C ratio can be varied to the optimum value (§2-11) as determined experimentally.

In Fig. 1011-D, C_{1} and C_{2} may be 100 to 250 $\mu \mu \mathrm{fd}$. each, the higher-capacitance values being used for lower-frequency operation (3.5 Mc . and lower). Plate spacing should be, in general, at least half that of the final-amplifier tank condenser. For operation up to $14 \mathrm{Mc} ., L_{1}$ and L_{2} each may consist of 12 turns, $21 / 2$ inches in diameter, spaeed to occupy 3 inches

Antenna Systems

length, and tapped every three turns. Approximate settings are 9 turns for 3.5 Me., 6 turns for 7 Me ., and 3 turns for 14 Me . The coils may be wound with No. 14 or No. 12 wire. This method of coupling is very seldom used at very-high frequencies.

IIarmonic reduction - It is important to prevent harmonics in the output of the transmitter from being transferred to the antenna system. Harmonics are readily fed to the antenna system by coupling methods which require a connection to the plate tank circuit, either direct or through condensers, as in 13 , C and D, Fig. 1011. Harmonic transfer is much less likely with inductively-coupled systems, particularly when a separate tuning system is provided at the input end of the line as in $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$, and I.

In induetively-coupled systems, care must be taken to prevent stray capacitance coupling between coils. Link coils always should be coupled at a point of ground potential ($\$ 2-13$) on the plate tank eoil, as also should series- and parallel-tuned coils (E and F), when possible. The effect of stray capacitance can be reduced by grounding (to the amplifier chassis) the center of the coupling coil in Fig. 1011-E and F , and by similarly grounding one side of the coupling coil at the amplifier end in (G, H, and I. Capacitance coupling can be practically eliminated by the use of a Furaday shield (\$4-9) between the plate-tank and antenna coils.

Fig. 1013 - Malf-wave antennas fed from resonant lines. A and 13 are end-feed systems for usc with quarter- and half-wave lines; C and D are center-ferd systems. The current distribution is shown for all four cases, arrows indicating the instantancous direction of current flow.

© 10-7 Resonant Lines

Two-wire lines - Beeause of its simplicity of adjustment and flexibility with respect to the frequency range over which an antenna system will operate, the resonant line is widely used with simple antenna systems. Because resonant lines operate with relatively high standing-wave ratios, lines with air dielectric are to be preferied for this purpose in view of their low losses ($\$ 10-5$). However, if the line is short - say less than 100 feet - lines having low-loss solid diclectric (polyethylenc) such as 300 -ohm "Twin-Lead" can be used without unduc loss at frequencies below 30 Mc .

Connection to antenna - A resonant line is usually - in fact, practically always - connected to the antenna at either a current or voltage loop. This is advantageous, especially when the antenna is to be operated at harmonic frequencies, since it simplifies the problem of cieterinining the coupling system to be used at the input end of the line.

IIalf-wave antenna with resonant line It is often helpful to look upon the resonant line simply as an antenna folded back on itself. Such a line may be any whole-number multiple of a quarter wave in length; in other words, any total wire length which will aecommodate a whole number of standing waves. (The "length" of a two-wire line is, however, always taken as the length of one of the wires.)

Quarter- and lalf-wave resonant lines feeding half-wave antennas are shown in Fig. 1013. The current distribution on both antenna and line is indicated. It will be noted that the quarter-wave line has maximum current at one end and minimum current at the other, determined by the point of connection to the antenna. The half-wave line, however, has the same current (and voltage) values at both ends.

If a quarter-wave line is connected to the end of an antenna, as shown in Fig. 1013-A, then at the transmitter end of the line the current is high and the voltage low (low impedance), so that series tuning ($\$ 10-6$) can be used. Should the line be a half-wave long, as at 1013-B, current will be minimum and voltage maximum (high impedance) at the transmitter end of the line, just as'it is at the end of the antenna. Parallel tuning therefore is required ($\S 10-6$). The line could be coupled to a balanced final tank through small condensers, as in Fig. 1011-13, but the inductively-coupled circuit is preferable. An end-fed antenna with resonant fecders, as in 1013-A and B, is known as the "Zeppelin" or "Zepp" antenna.

The line also may be inserted at the eenter of the antenna at the maximum-current point. Quarter- and lanlf-wave lines used in this way are shown at Fig. 1013-C and D. In C, the antenna end of the line is at a high-current lowvoltage point ($\$ 10-2$); lience, at the transmitter end the current is low and the voltage high. Parallel tuning therefore is used. The halfwave line at D has high current and low voltage at both ends, so that series tuning is used at the transmitter end.

The four arrangements shown in Fig. 1013 are thoroughly-useful antenna systems, and are shown in more practical form in Fig. 1014. In each case the antenma is a half wavelength long, the exact length being ealculated from Equations 2, 3 or 4 ($\$ 10-2$). The line length should be an integral multiple of a quarter wavelength and may be calculated from Equations 5 and 6 ($\$ 10-5$), the result being multiplied by any whole number which gives a total leng theonvenient for reaching from the antenna to the transmitter. If there is an odd number of quar-

Fig. 101.4 - Practical half-wave antenna systens using resonantline feed. In the center-feed systems, the antenna lengit, X, does not inciude the length of the insulator at the center. Line lenpth is measured from the antenna to the tuning apparatus; leads in the latter should be hept short enouph so their effect can be neglected. The use of two r.f. anmeters, M, as shown is helpful for balancing feeder currents; however, one meter is sufficient to enable tuning for maximuni output, and may be transferred from one feeder to the other, if desired. The systems at (A) and (C) arc for fecders an orld numbicr of quarter waves in length; (B) and (D) are for feeders a ruultiple of a half wavelentth. The detailed drawines shown here correspond clectrically to the ele-mentary-schomatic bulf-wave antenna systems shown in Fig. 1013.

ter waves on the line in the case of the end-fed antenna, series tuning should be used at the transmitter end; if an even number of quarter waves, then parallel tuning should be used. With the center-fed antenna the reverse is true.

Practical line lengehs - In general, it is best to use line length: that are integral multiples of a quarter wavolength. Intermediate lengths will give intermediate impedance values and will show reactance (§ 2-12-A) as well. The tuning apparatus is capable of compensating for reactance, but it maty be difficult to get suitable transmitter loading because simple series and parallel tuning are suitable for only low and high impedances, respectively, and neither will perform well with impedances of the order of a few hundred ohms. Such values of impedance may reduce the Q of the coupling circuit to a point where adequate coupling cannot be obtained ($\$ 2-11$). However, some departure from the ideal length is possible even as much as 25 per cent of a quarter wave in many coses - without undue difficulty in
tuning and coupling. In such cases the type of tuning to use, whether series or parallel, will depend on whether the fecder length is nearer an odd number of quarter waves or nearer an even number, as well as on the point at whieh the feeder is connected to the antenna - at the end or in the center.

Line current. - 'rhe feeder current as rend by the r.f. ammeters is useful for tuning purposes only; the absolute value is of little importance. When series tuning is used the current will be high, but very little current will be indicated in a parallel-tuned system. This iss because of the current distribution on the feeders, as shown by Fig. 1013. With a given antemna and tuning system, of course, the greatest power will be delivered to the antenna when the readings are highest. However, should the feeder length be changed no useful conclusions can be drawn from comparison between the new and old readings. For this reason, any indicator which registers the relative intensity of r.f. current can be used for tuning purposes. Many imateurs, in fact, use

Fig. 1015 - Illustrating the effect on fecder balance of incorrect antenna length for various types of antenna systems. In end-feed systems, the current minimum shifts above or below the feeder junction, unbalancing the line. With center feed, incorrect antenna length does not unbalance the transmission line as it does with cnd feed.
flashlight or dial lamps for this purpose instead of meters. Such lamps are incxpensive indicators, and, when shunted by short lengths of wire so that considerable current can be passed without danger of burn-out, will serve very well even with high-power transmitters.

Antenna length and line operationInsofar as the operation of the antenna itself is concerned, departures of a few per cent from the exact length for resonance are of negligible consequence. Howcyer such inatecuracies may influence the belhavior of the feeder system, and as a result may have an adverse effect on the operation of the system as a whole. This, is true particularly of end-fed antennas, such as are shown in Figs. 1014-A and B.

Fur example, Fig. $1015-\mathrm{A}$ slows the current distribution on the half-wave antenna and quarter-wave feeder when the antema length is correct. At the junction of the "live" feeder and the antenna the current is minimum, so that the currents in the two feeder wires are equal at all correspording points along their length. When the antemna is too long, as in B, the current minimum occurs at a point on the antenna proper, so that at the top of the live feeder there is already appreciable current flowing, wherens at the top of the "dead" feeder the current must be zero. As a result the feeder currents are not balanced, and some power will be radiated from the line. In C, the antenna is too short, bringing the current minimum to a point on the live fceder, so that again the currents are unbalanced. The more serious the unbalance, the greater the radintion from the line.

If the antenna is fed at the center the undesirable effeets of incorrect antenna length balance out, so that the line operates properly under all conditions. This is shown in Fig. 1015 at D, E and F. So long as the two halves of the antenna are of equal length the distribution of current on the feeders will be symmetrical, so that no unbalance exists evon for antenna lengt ths considerably removed from the correct value.

In the interests of redueing radiation from the transmission line, thercfore, feeding at the center of the antenna system is preferable to feeding at the end. Strictly speaking, end-fed systems of the type shown in Fig. 1014 at A and B cannot be truly balanced because the current at the end of the wire connected to the antenna is finite, though small, whilc the current at the end of the open wire is zero.

© 10-8 Nonresonant Lines

Requirements - The advantages of nonresonant transmission lines - minimum losses, and elimination of the necessity for tuning make the use of this type of line attractive. The chief disadvantage of the nonresonant line, asido from the necessity for more care in initial adjustment, is that when "matched" to the ordinary antenna the mateh is perfect only for
one frequency, or at most for a small band of frequencies on cither side of the frequency for which the matching is done. Except for a few special systems, such an antenna is unsuitable for work on more than one amateur band.

Adjustment of a nonresonant line is simply a process of adjusting the terminating resistance to match the characteristic impedance of the line. To accomplish this the antenna itself must be resomant at the selected frequency, and the line must then be connected to it in such a way that the antenna impedance as looked at by the line is the right value. The matching may be done by connecting the line at the proper spot along the antenna, by inserting an impedance-transforming device between the antenna and line, or by using a line laving an impedance equal to the center impedance of the antenna.

An impedance mismatch of several per cent is of little consequence so far as power trausfer to the antenna is concerned. It is relatively easy to get the standing-wave ratio down to 2 or 3 to 1 , a perfectly satisfactory condition in practice. Of considerably greater importance is the necossity for getting the currents in the two wires balanced, both as to amplitude and phase. If the currents are not the same at corresponding points on adjacent wires and the loops and nodes do not also occur at corresponding points, there will be considerable radiation loss. Perfect balance can be brought about only by perfect symmetry in the line, particularly with respect to ground. This symmetry should extend to the coupling apparatus at the transmitter. An electrostatic shield between the linc and the transmitter coupling coils often will be of value in preventing capacitance unbalance, and at the same time will reduce harmonic radiation.
In the following discussion of ways in which different types of lines may be matched to the antenna, a half-wave antenna is used as an example. Other types of antennas may be

Fig. 1016 -Single-wire feed system.
treated by the same methods, making due allowance for the order of impedance that appears at the end of the line when more elaborate systems are used.

Single-wire feed - In the single-wire feed system, the return circuit is through the ground. There will be no standing waves on the feeder when its characteristic impedance is matched by the impedance of the antenna at the connection point. The principal dimen-
sions (Fig. 1016) are the length of the antenna, L, and the distance, D, from the exact center of the antenna to the point at which the feeder is attached. The antenna length may be calculated from Equation 2 ($\$ 10-2$). The distance D depends upon the diameter of the feeder wire, since this diameter determines its characteristic impedance. For No. 14 wire D is equal to the antenna length multiplied by 0.139 ; for No. 12 wire the factor is 0.133 .

In constructing an antenna system of this type, the feeder must run straight away from the antenna (at a right angle) for a distance of at least one-third the length of the antenna. Otherwise the field of the antenna will affect the feeder and cause faulty operation. There should be no sharp bends in the fceder wire at any puint.

(B)

Fig. 1017 - Methorls of coupling the fecder to the transmitter in a single-wire feed system. Circuits are shown for both single-ended and balanced tank cireuits.

With the coupling system shown in Fig. 1017-A, the process of adjustment is as follows: Starting at the ground point on the tank coil, the tap is moved toward the plate end until the amplifier draws the rated plate current. The plate tank condenser should be readjusted each time the tap is ehanged, to bring the plate current back to minimum. The amplifier is loaded properly when this "minimum" value is equal to the rated current. 'lhe condenser, C, in the feeder is for the purpose of insulating the antenna system from the high-voltage plate supply when series plate feed is used. It should have a voltage rating sonewhat higher than that of the plate supply. Almost any capacitance greater than $500 \mu \mu \mathrm{fd}$. will be satisfactory. The condenser is unnecessary, of course, if parallel plate feed is used.

Inductive coupling to the output circuit is shown in Fig. 1017-B. The antenna tank circuit should tune to resonance at the operating frequency, and the loading is adjusted by varying the coupling between the two tanks, both being kept tuned to resonance.

Regardless of the type of coupling employed, a good ground connection is essential with this system. Single-wire feed works best over moist ground, and comparatively poorly over rock and sand.

Tuisted-pair feed - A two-wire line composed of $t w i s t e d$ rubber-covered wires or closespaced parallel wires with polyethylene insula-

Fig. 1018 - Half-wave antenna center fed by a twistedpair line. Fanning (B) eompensates for line impedance.
tion can be constructed to have a surge impedance approximately equal to the 70 -ohm impedance at the center of the antenna itself, thus permitting connecting the line to the antenna as shown in Fig. 1018. Any discrepancy which may exist between line and antenna impedance can be compensated for by a slight fanning of the line where it comnects to the two halves of the antenna, as indicated at B in Fig. 1018. The twisted-pair line is a convenient type to use, since it is casy to install and the r.f. voltage on it is low because of the low impedance.

The antenna should be one-half wavelength long for the frequency of operation, as determined by the formulas ($\$ 10-2$). The amount of "fanning" (dimension B) will depend upon the kind of cable used; the required spacing usually will be between 6 and 18 inches. It may be checked by inserting ammeters in each antenna leg at the junction of the feeder and antenna; the value of B which gives the largest current is correct. Alternatively, the system may be operated continuously for a time with fairly high r.f. power input, after which the feeder may be inspected (by touch) for hot spots. These indicate the presence of standing waves, and the fanning should be adjusted until they are eliminated or minimized. Each leg of the feeder forming the triangle at the antenna should be equal in lengtll to dimension B.

Coupling between the transmitter and the transmission line is ordinarily aceomplished by the untuned coil method shown in Fig. 1011-A (§ 10-6).

Concentric-linefeed - A concentric transmission line can be constructed to have a surge impedanec equal to the 70 -ohm impedance at the center of a half-wave antenna. Such a line can be connected directly to the center of the antenna, therefore, forming the system shown in Fig. 1019.

Fig. 1019 - Half-wave antenna centerfed by a concentric transmission line of 70 ohms surge impedance.

An air-insulated concentric line will have a surge impedance of 70 ohms when the inside diameter of the outer conductor is approximately 3.2 times the outside diameter of the inner conductor. This condition can be fulfilled by using standard $5 / 16$-inch (outside diameter) copper tubing for the outer conductor and No. 14 wire for the inner. Ceramic insulating spacers are available commercially for this combination. Flexible solid coaxial cable having the requisite impedance for connection to the center of the antenna also is available.

The operation of such an antenna system is similar to that of the twisted-pair system just described, and the same transmitter coupling arrangements may be used ($\$ 10-6$).

The outer conductor of the line may be grounded, if desired. The feeder system is slightly unbalanced, because the inner and outer conductors do not have the same capacitance to ground. Although the line itself, being shielded, cannot radiate, an "antenna" current can flow on the outside of the shield (outer conductor) and the cable therefore may become part of the radiating system. The magnitude of this current will depend upon the length of the cable and will be greatest when the length is such as to be resonant, in conjunction with the antenna itself, at the operating frequency. The current can be reduced by grounding the shield (with a very short lead) at any point an odd number of quarter wavelengths from the point of connection to the antenna.

Delta matching transformer - Because of the extremely close spacing required, it is impracticable to construct an open-wire transmission line which will have a surge impedance low enough to work directly into the center of a half-wave antenna. Such wire lines usually have impedances between 400 and 700 ohms, 600 ohms being a widely-used value. It is necessary, therefore, to use other means for matching the line to the antenna.

One method of matching is illustrated by the system shown in Fig. 1020. The matching section, E, is "fanned" to have a gradually increasing impedance so that its impedance at the antenna end will be equal to the impedance of the antenna section, C, while the inpedance

Fig. 1020 - Delta-matched antenna system. The dimensions C, D, and E are found by formulas given in the text. It is important that the matching section, E, come straight away from the antenna without any bends.
at the lower end matches that of a practicable transmission line.

The antenna length, L, the feeder clearance, E, the spacing between centers of the feeder wires, D, and the coupling length, C, are the important dimensions of this system. The system must be designed for exact impedance values as well as frequency values, and the dimensions therefore are fairly critical.

The length of the antenna is figured from Equation 2 ($\S 10-2$). The length of section C is computed by the formula:

$$
C(f e e t)=\frac{118}{F_{I} e q .(M c .)}
$$

The feeder clearance, E, is found from the equation:

$$
E(f c e t)=\frac{148}{F_{r e q} .(M c .)}
$$

The above equations are for wire antennas and for feeders having a characteristic impedance of 600 ohms and will not apply to feeders of any other impedance. The proper feeder spacing for a 600 -ohm transmission line is computed to a sufficiently close approximation by the following formula:

$$
D=75 \times d
$$

where D is the distance between the centers of the feeder wires and d is the diameter of the wire. If the wire dianeter is in inches the spacing also will be in inches, and if the wire diameter is in millimeters the spacing also will be in millimeters.

Methods of coupling to the transmitter are discussed in §10-6, those shown in Figs. 1011$\mathrm{C}, \mathrm{D}, \mathrm{G}$ and H being suitable.

Fig. 1021 - The "Q" antenna, using a quarter-waveim-pedance-matching section with close-spaced conductors.
" Q "-section transformer - The impedance of a two-wire line of ordinary constriction (400 to 600 ohms) can be matched to the impedance of the center of a half-wave antenna by utilizing the impedance-transforming properties of a quarter-wave line ($\$ 10-5$). The matching section must have low surge impedance and therefore is commonly constructed of large-diameter conductors such as aluminum or copper tubing, with fairly close spacing. This system is known as the " Q " antenna. It is shown in Fig. 1021. The important dimensions are the length of the antenna,
the length of the matching section, B, the spacing between the two conductors of the matching section, C, and the impedance of the untuned transmission line connected to the lower end of the mateling section.

The required surge impedance for the matching section is

$$
Z_{\mathrm{s}}=\sqrt{Z_{1} Z_{2}}
$$

where Z_{1} is the input impedance and Z_{2} the output impedaner. Thus a quarter-wave section matching a 600 -ohm line to the center of a half-wave antenna (72 ohms) should have a surge impedance of 208 ohms. The spacings between conductors of various sizes of tubing and wire for different surge impedances are given in graphical form m Fig. 1009. With $1 / 2$-inch tubing, the spacing should be 1.5 inches for an impedance of 208 ohms.

The length of the matching section, B, should be equal to a quarter wavelength, and is given by Equation 5 ($\$ 10-5$). The length of the antenna can be calculated from Equation 2 ($\$ 10-2$).

This system has the advantage of the simplicity of adjustment of the twisted-pair feeder system and at the same time the superior insulation of an open-wire system. Figs. 1011-B, D. G and H (§ $10-6$) represent suitable methods of coupling to the transmitter.

Linear transformers - Fig. 1022 shows two methods of coupling a nonresonant line to a half-wave antenna through a quarterwave linear transformer or matching section. In the catse of the center-fed antenna, the free end of the matching section, B, is open (high impedance) since the other end is connected to a low-impedance point on the antenna. With the end-fed antenna, the free end of the matching section is closed through a shorting bar or link; this end of the section has low impedince, since the other end is connected to a high-imperdance point on the antemme.

Fig. 1022 - Half-wave antenna systems with quarter. wave open-wirelinearimpedance-matching transformers.

When the connection between the matching section and the antenma is unbalanced, as in the end-fed system, it is important that the antenna be the right length for the operating frequency if a good match is to be obtained ($\S 10-7$). The balanced center-fed system is less critical in this respect. The shorting-bar method of tuning the center-fed system to resonance may be used if the matching section is extended to Ω half wavelength, bringing a current lonp at the frec end.

In the center-fed system, the antenna and matching section should be cut to lengths found from the equations in § 10-2 and \& 10-5. Any necessary on-the-ground adjustment ran be made by adding to or clipping off the open ends of the matching section. In the end-fed system the matching section can be adjusted by making the line a little longer than necessary and adjusting the system to resonance by moving the shorting link up and down. Resonance can be determined by exciting the antenna at the proper frequency from a temporary antenna near by and measuring the current in the shorting bar by a low-range r.f. ammeter or galvanometer using one of the deviens of this type deseribed in the chapter on measurements. The position of the bar should be adjusted for maximum current realing. This shonld be done before the transmission line is attached to the matching section.

The position of the line taps will depend upon the impedance of the line as well as on the antenna impedance at the point of comection. The procedure is to take a trial point, apply power to the transmitter, and then eheck the transmission line for standing waves. This can be done by measuring the current in, or voltage along, the wires. At any one position alung the line the enrrents in the two wires should be identical. Readings taken at intervals of a quarter wavelengtl will indicate whether or not standing waves are present.

It will not usually be possible to obtain complete elimination of standing waves when the inatching stub is exactly resonant, but the line taps should be adjusted for the smallest obtainable standing-wave ratio. Then a further "touching up" of the matching-stub tuning will eliminate the remaining standing wave, proviled the adjustments are carefully made. The stub must be radjusted, because when resonant it exhibits sume reactance as well as resistance at all points except at the ends, and a slight lengthening or shortening of the stub is necessary to tume out this reactance.

Since the line imperlante is ordinarily between 500 and 600 ohms, the same methods of coupling may be used between the tramsmitien and the line as are recommended for the deltamatching system and the "Q" matching transformer.

Matching stubs - The operation of the quarter-wave mateling transformer of Fig. 1022 may be considered from another - and more general - viewpoint. Suppose that sec-
tion C is looked upon simply as a continuation of the transmission line. Then the "free" end of the transformer becomes a "stub" line, shunting a section of the main transmission line. From this viewpoint, matching the line to the antenina becomes a inatter of selecting the right type and length of stub and attaching it tu the proper spot along the line.

Referring to Fig. 1023, at any distance (X) from the antenna, the line will have an impedance which may be considered to be made up of reactance (either inductive or capacitive) and resistance, in parallel. The reactive component can be eliminated ly shunting the line at distance X from the antenna with another reactance equal in value bat opposite in sign to the reactance presented by the line at that point. If distance X is such that the line presents an induetive reactance, a corresponding shunting caparitive reactance will be required.

Fig. 102.3 - When antenna and transmissien line differ in innpedance, they may be matehed by a shert length of transmission line, 1 , called a stuh. Determination of the critical dimensions, X and \bar{X}, for proper matehin depends on whether the stub is open or closed at the end.

The required compensating reactance may be supplied by shunting the line with a stub cut to proper length, Y. With the reactances canceled only a pure resistance remains as a termination for the remainder of the line between the sending end and the stub, and this resistance can be adjusted to matech the characteristic impedance of the line by adjusting the distance X.

Distances X and Y may be determined experimentally, but since their values are interdependent the cut-ind-try method is somewhat laborious. If the standing-wave ratio and the positions of the entrent loups and nodes can be measured, the length and position of the stub can be found from Figs. 1024 and 1025.

Although the standing-wave ratio can be mensured in terms of either eurrent or voltage, measurement of current usually is more convenient. (If the measurements are made with a current-squared galvanometer an appropriate correction must be made, since scale readings with this type of meter are proportional to power.) With the antenna connected to the line but with the stub disconnected, the r.f. meter should be moved along the line from the antenna toward the sending end until a current loop or node is found. Its location should be marked and the value of the current

fig. 1024 - Graph for deterinining position and length of a shorted stub. Dimensions may be converted to lnear units after values have been taken from the graph.
reeorded. Then the meter shonld be moved along toward the sending end until the next loop or node is located (if the first was a loop the second will be a node, and vice versa), and the current at this point recorded. As a crosscheck for wavelength, the distance between a loop and node should be $1 / 4$ wavelength. The standing-wave ratio is the ratio of current at a loop to current at a node.

Once the standing-wave ratio is known, the length and position of the stub, in terms of wavelength, can be found directly from Figs. 1024 and 1025. The wavelength in feet for any frequency can be found from Equation 1 (§10-2).

Methods of coupling to the line slown in ligs. $1011-\mathrm{I}, \mathrm{D}, \mathrm{G}$ and $\mathrm{H}(\$ 10-6)$ cim be used.

Fig. 1025 - Graph for determining position and length of an open stub. Dimcnsions may be converted to linear units after values have been taken from the graph.

Measuring standing waves - Equipment for measuring the standing-wave ratio along the transmission line is described in the chapter on measurements. At frequencies below 30 megacycles the thermomilliammeter probably is the most reliable instrument and the casiest to use. The absolute value of the current in the line is not important; the ratio between the maximum and minimum currents is what is required.

When the standing-wave ratio is low it may be difficult to determine the exact location of a node or loop since the current changes rather slowly at these points. In such a case the following procedure may be adopted: Measure
the minimum current, then choose a somewhat higher value and locate two points on either side of the minimum at which the current equals the chosen value. For example, if the minimum current is 0.1 ampere, a value of 0.15 ampere might be chosen and the meter moved first to one side and then the other of the minimum point until two spots are found where the reading is 0.15 ampere. Then the node will be just half-way between these two points and may be determined very easily by measuring the distance. The same method may be used to locate a current loop with more exactness than by trying to locate the actual point of maximum current. In this case, of course, a value of current slightly lower than the maximum value should be chosen.

A crystal-detector probe pick-up measures maximum and minimum voltage rather than current. The standing-wave ratio may be measured in terms of voltage equally as well as in terms of current. However, in using the charts for the matching stub system it must be kept in mind that a voltage loop occurs at the same point as a current node, and vice versa.

C. 10-9 Long-Wire Antennas

Definition - An antenna will be resonant so lung as an integral number of standing waves of current and voltage can exist along its length; in other words, so long as its length is some integral multiple of a half wavelength. When the antenna is more than a half wave long it usually is called a long-wire antenna, or a harmonic antenna.

Current and voltage distribution - Fig. 1026 shows the current and voltage distribu-

B

C

D

Fig. 1026 - Standing-wave current and voltage distribution along an antenna when it is operated at various harmonics of its fundamental resonant frequency.
tion along a wire operating at its fundamental frequency (where its length is equal to a half wavelength) and at its second, third and fourth larmonics. For example, if the fundamental frequency of the antenna is 7 Mc ., the current and voltage distribution will be as shown at A. The same antenna excited at 14 Mc. would have current and voltage distribution as shown at B. At 21 Mc., the third harmonic of 7 Mc ., the current and voltage distribution would be as in C; and at 28 Mc., the fourth harmonic, as in D . The number of the harmonic is the number of half waves contained in the antenna at the particular operating frequency.

The polarity of current or voltage in each standing wave is opposite to that in the adjacent standing waves. This is shown in the figure by drawing the current and voltage curves successively above and below the antenna (taken as a zero reference line), to indicate that the polarity reverses when the current or voltage goes through zero. Currents flowing in the same direction are in phase; in opposite directions, out of phase.

It is evident that one antenna may be used for harmonically-related frequencies, such as the various amateur bands. The long-wire or harmonic antenna is the basis of multiband operation with one antenna.

Physical lengths - The length of a longwire antenma is not an exact multiple of that of a half-wave antenna because the end effects ($\$ 10-2$) operate only on the end sections of the antenna; in other parts of the wire these effeets are absent, and the wire length is approximately that of an equivalent portion of the wave in space. The formula for the length of a long-wire antenna, therefore, is

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{\{0 \geqslant(N-0.0 .5)}{\text { Freq. }(M c .)} \tag{7}
\end{equation*}
$$

where N is the number of half waves on the antenna. From this, it is apparent that an antenna cut as a half wave for a given frequency will be slightly off resonance at exactly twice that frequency (on the second harmonic) because of the different behavior of end effects when there is more than one standing wave on the antenna. The effect is not very important except for a possible umbalance in the feeder systern ($\$ 10-7$), which may result in some radiation from the feeder in end-fed systems.

Impedance and power gain - The radiation resistance as measured at a current loop becomes larger as the antenna length is increased. Also, a long-wire antenna radiates more power in its most favorable direction than does a half-wave antenna in its most favorable direction. This power gain is secured at the expense of radiation in other directions. Fig. 1027 shows how the radiation resistance and the power in the lobe of maximum radiation vary with the antenna length.

Antenna Systems

Fig. 1027 - Curve A shows variation in radiation resistance with antenna length. Curve B shows power in lobes of masimum radiation for long-wire antennas as a ratio to the maximum radiation for a half-wave antenna.

Directional characteristics - As the wire is made longer in terms of the number of half wavelengths, the directional effects change. Instead of the "doughnut" pattern of the half-wave antenna, the directional characteristic splits up into "lobes" which make various angles with the wire. In general, as the length of the wire is increased the direction in which maximum radiation oceurs tends to approach the line of the antenna itself.

Fig. 1028 - Horizontal patterns of radiation from a full-zeave antenna. 'The solid line shows the pattern for a vertical anple of 15 deyrees; dot ted lines show deviation from the 15 -degree pattern at 9 and 30 degrees. All three patterns are drawn to the same relative scale: actual amplitudes will depend upon the height of the antenna.

Fig. 1029 - Morizontal patterns of ralliation from an antenna three half-warss long. The solid line shows the pattern for a vertical angle of 15 deprees; dotted lines show deviation fron the 15 -depree patiern at 9 and 30 degrees. Minor lobes coincide for all three angles.

Directional characteristics for antenmas one wavelength, three half-wavelengths, and two wavelengths long are given in Figs. 1028, 1029 and 1030, for three vertical angles of radiation. Note that, as the wire length increases, the radiation along the line of the antenna becomes more pronounced. Still longer antennas can be considered to have practically "end-on" directional characteristics, even at the lower radiation angles.

Fig. 1030 - Horizontal patterns of radiation from an antenna two uarelengths long. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degrec pattern at 9 and 30 degrees. The minor lobes coincide for all three angles.

Methods of feeding - In a long-wire antenna, the eurrents in adjacent half-wave sections must be uut of phase, as shown in Fig. 1026 and Fig. 1031. The feeder system must not upset this phase relationship. This requirenient is met by feeding the antenua at either end or at any current loop. A two-wire feeder cannot be inserted at a current node, however, because this invariably brings the currents in two adjacent half-wave sections in phase; if the phase in one section could be reversed, then the currents in the feeders necessarily would have to be in phase and the feeder radiation would not be canceled out.

Either resonant or nonresonant feeders may be used. With the latter, the systems employing a matching section ($\$ 10-8$) are best. The nonresonant line may be tapped on the natehing section, as in Fig. 1022, or a " Q "type section, Fig. 1021, may be employed. In such case, Fig. 1032 gives the required surge impedance for the matching section. It can also be calculated as deseribed in \& 10-8 from the radiation resistance data in Fig. 1027.

Methods of eoupling the line to the transmitter are the same as described in § $10-6$ for the particular type of line used.

Fig. 1031 - Carrant distribution and feed points for long-wire antumas. A $3 / 2$-wave anterma is used as an illustration. With two-wire feed, the line may be connected at the end of the anterina or at any current loon (but not at a current node) for harmonic operation.

Fig. 1032 - Required surge impedance of quarter-wave matehing sections for radiators of various lengthe. Curve A is for a transmis-sion-line impedance of 440 ohms, curve B is for 470 ohms, curve C for 580 ohnis and curve D for 600 ohms. Diniensions for mateling sections of the required impedance are ohtained from Fig. 1009.

© 10-10 Multiband Antennas

Principles - As suggested in the preceding section, the same antenna may be used for several bands by operating it on harmonics When this is done it is necessary to use resonant feeders, since the impednce matching for nonresonant feeder operation can be accomplished only at one frequency unless means are provided for changing the length of a matching section and shifting the point at which the feeder is attached to it. A matebing section which is only a quarter wavelength long at one frequency will be a half wavelength long at twice that frequency, and so on; and changing the length of the wires, even by switching, is so inconvenient as to be impracticable.

Furthermore, the current loops shift to a new position on the antenna when it is operated on harnomics, further complirating the feed situation. It is for this reason that a half-wave antenna which is center fed by a rubber-insulated line is practically useless for harmonie operation; on all even harmonies there is a voltage maximum occurring right at the feed point, and the resultant impedance mismatech is so bad that there is a large standing-wave ratio and consequently high losses arise in the rubber diclectric. It is also wise not to attempt to use a half-wave antenna center fed with coasial cable, even the type using polyethylene dielertric. on its harmonics. Higher-impedance solid-dielectric lines such as 300 -ohm Twin-Lead may be used, however, provided the power does not exceed a few hundred watts.

When the same antenna is used for work in several bands, it must be realized that the directional characteristic will vary with the band in use.

Simple systems - Any of the antenna arrangements shown in § 10-7 may be used for multiband operation by making the antenna a half wave long at the lowest frequency to be used. The feeders should be a quarter wave long (electrieal length), or some multiple of a quarter wave, at the same frequency. Typical examples, together with the type of tuning to be used, are given in Table II. The firures given represent a compromise designed to give satisfactory operation on all the bands considered, taking into account the change in required length as the order of the barmonic goes up.

A center-fed half-wave antenna will not operate as a long wire on harmonics, because of the phase reversal at the feeders previously mentioned ($\$ 10-9$). On the second harmonie the two antenna sections are each a half wave long, and, since the currents are in phase, the directional characteristic is different irom that of a full-wave antenna even though the over-all length is the same. On the fourth harmonic each section is a full

TABLE II Muitiband Resonant-Line Fed Anteninas			
Antenna Length (fi.)	$\begin{gathered} \text { Feeder } \\ L_{\text {Length }} \\ (f t .) \end{gathered}$	Band	Type of Tuning
With end feed:	60	4-Me. 'phone	series
136	67	$\begin{aligned} & 3.5-\mathrm{Mc.} . \mathrm{c} . \\ & 7 \mathrm{Mc} . \\ & 14 \mathrm{Mc} . \\ & 28 \mathrm{Mc} . \end{aligned}$	series parallel parallel paralle]
134	67	$\begin{aligned} & \text { 3.5-Mc. c.w. } \\ & 7 \mathrm{Mc} . \end{aligned}$	scries parallel
67	33	7 Mc 14 Mc 28 Mc .	scries parallel parallel
With centor feed: 137	67		$\underset{\substack{\text { marallel } \\ \text { parallel }}}{\text { nal }}$ paralle! parallel
67.5	34	7 Mc. 14 Mc 28 Mc.	parallel parallel parallel
The antenna lengths given represent enmpromises for harmonic operation because of different end effects on different hands. The 136 -foot end-fed antenna is sliphtly long for 3.5 Mc ., but will work well in the repion which quadruples into the 14-Mc. band ($3500-3600 \mathrm{kc}$.). Bands not listed are not recommended for tiec particular antenna. The cen-ter-fed systems are less critical as to Ienpth. On harmonies, the end-fed and center-fed antennas will not have the same directional characteristies, as explained in the text.			

wave long, and, again, because of the direction of current flow, the system will not operate as a two-wavelength antenna. It should not be assumed that these systems are not effective radiators; it simply means that the directional characteristic will not be that of a long wire having the same over-all length. Rather, it will resemble the characteristic of one side of the antenna, although not necessarily having the same exact form.

Antennas with a few other types of feed systems may be operated on harmonics for the higher-frequency bands, although their performance is somewhat impaired. The singlewire fed antenna ($\$ 10-8$) may be used in this way; the feeder and antenna will not be matched exactly on harmonics, with the result that standing waves will appear on the feeder, but the system as a whole will radiate. A better match will be obtained if the point of connection of the feeder to the antenna is made exactly one-third the over-all antenna length from one end. While this disagrees slightly with the figures given for a half-wave antenna, it has bcen found to work better on the harmonic frequencies.

The " Q " antenna system ($\S 10-8$) also can be operated on harmonics, but the line cannot operate as a nonresonant line except at the fundamental frequency of the antenna. For harmonic operation the line must be tuned, and therefore the feeder length is inportant. The tuning system will depend upon the number of quarter waves on the line, including the " Q " bars. The concentric-line fed antenna ($\$ 10-8$) may be used on harmonies, if the concentric: line is air-insulated. Its operation on harmonies is similar to that of the " Q ." This antenna is not recommended for multiband operation with a solid-dielectric line, however.

The delta-match system ($\$ 10-8$) can be used on harmonies, although some standing waves will appear on the line. For that matter, any antenna system can be used on harmonic frequencies by tying the feeders together at the transmitter end and feeding the system as a single wire by means of a tuned circuit coupled to the transmitter.

A simple antenna system without feeders, useful for operation on five bands, is shown in Fig. 1033. On all bands from 3.i Mc. upward it operates as an end-fed antenna - half wave on 3.5 Mr ., long wire on the other bamels, On 1.75 Me . it is only a quarter wave in length, and must be worked against. ground. On this band, since it is fed at a high-current point, series tuning ($\$ 10-6$) must be used.

Antennas for restricted space - If the space available for the antenna is not large enough to accommodate the length necessary for a half wave at the lowest frequency to be used, quite satisfactory operation can be secured by using a shorter antenma and making up the missing length in the feeder system. The antenna itself may be as short as a quarter wavelength and still radiate fairly well, although of course it will not be as effective as one a half wave long. Nevertheless, such a system is useful where operation on the desired band otherwise would be impossible.

Fig. 10.33 - A simple antenna system for five amatenr hands. The antenna is voltage fed on $3.5,7,14$ and 28 Mc , working on the fundanmental, sccond, fourth and eighth harmonies, respectively. For 1.75 Mc . the system is a quarter-wave grounded antenna, in which case serics tuning must be used. The antenna wire sbould be kept well in the clear and shonld be as high as possible If the length of the antenna is increased to approximately 260 feet, voltage feed can be used on all. five bunds.

Resonant feeders are a practical necessity with such an antenna system, and a center-fed antenna will give best all-around performance. With end feed the feeder currents become badly unbalanced and, since lengths midvay betreen those requiring series or parallel tuning ordinarily must be used to bring the entire system to resoannce, roupling to the transmitter often becomes difficult.

With center feed practically any convenient length of antenna can be used, if the fecder length is adjusted to aceommodate at least one half-wave around the whole system. Typical cases are shown in Fig. 1034, one for

Fig. 1034 - Current distribution on short antennas. Those at the left are too short for fundamental operation, one (A) having an over-all length of one quarterwave; the other (C) being longer but not a half wave Iong. These systems mity he used wherever spaee to crect a full half-wave antenna is not available. The enrrent distribution for second-harmonic operation is shown at the right of each figure (B and D). In A and C, the tutal length around the system is a half wave at the fundamental. In B and D, the over-all length is a full wave. Arrows show the instantancous direction of current flow.
an antenna having a length of one quarterwave (A) and the other for an antema somewhat longer (C) but still not a half wave long. Current distribution is shown for both fundamental and second harmonic. From the points marked X, resonant feeders any convenient number of quarter waves in length maly be extended to the operating roon. The sum of the distances on eith wire from X to the antenna end must equal a half wave. It is sufficiently accurate to use Equation 2 ($\$ 10-2$) in calculating this length. Nute that $X-X$ is a high-current point on these shortened antennas, corresponding to the center of a half-wave antenna. It is also apparent that the antenna at A is a half-wave antenna on the next higherfrequency band (B).

A practical antenna of this type can be made as shown in Fig. 1035. Table III gives a few
recommended lengths. Remembering the preceding discussion, however, the antenna can be made any convenient length, provided the feeder is considered to "begin" at $X-X$ and the line length is adjusted accordingly.

Bentantennas - Since the field strength at a distance is proportional to the current in the antenna, the high-current part of a half-wave antenna (the center quarter wave, approximately) does most of the radiating ($\$ 10-1$). Advantage can be taken of this fact when the space available does not permit erecting an antenna a half wave long. In this case the ends may be bent, either horizontally or vertically, so that the total length equals a half wave, even though the straightaway horizontal length may be as short as a quarter wave.

TABLE III Antenna and Fieder Lengtis for Sifort Multiband Antennas, Centier lied			
Antenna Length (ft.)	Freder Length (fl.)	Rand	Tippe of Tiuning
100	38		parallel serics serics series or parallel
67.5	34		series parallel parallel paralle
50	43	$\begin{array}{r} 7 \mathrm{Mc}, \\ 14 \mathrm{Mc} . \\ 28 \mathrm{Mc} . \end{array}$	parallel parallel parallel
33	51	$\begin{array}{r} 7 \mathrm{Mc} . \\ 14 \mathrm{Mc.} \\ 28 \mathrm{Mc.} \end{array}$	parallel parallel parallel
33	31	$\begin{array}{r} 7 \mathrm{Mc} . \\ 14 \mathrm{Mc} . \\ 28 \mathrm{Mc} \end{array}$	parallel series parallel

The operation is illustrated in Fig. 1036. Such an antenna will be a somewhat better radiator than the arrangement of Fig. 1034-A on the lowest frequency, but is not so desirable for multiband operation because the ends play an increasingly important part as the frequency is raised. The performance of the system in such a case is difficult to predict,

Fig. 1035 - Practical arrangenent of a slortencd antenna. The total length, $A+B+B+A$, should be a half wavelength for the lowest-frerquency hand, usually 3.5 Mc . Sec Table III for lengths and tuning data.
especially if the ends are vertical (the most convenient arrangement), because of the complex combination of horizontal and vertical polarization which results as well as the dissimilar directional characteristies.

Fig. 1036 - Folded arrangement for shortened antennas. The total lengtb is a half wave, not ineluding the feeders. The horizontal part is made as long as convenient and the ends dropped down to make up the required length. The ends may be bent back on themselves like feeders to cancel radiation partially. The horizontal section should be at least a quarter wave long.

C 10-11 Long-WireDirective Arrays

The " V "' antenna-It has been ennphasized that, as the antenna length is increased, the lobe of maximum radiation makes a more acute angle with the wire ($\$ 10-9$). Two such wires may be combined in the form of a horizontal " V " so that the main lobes from each wire will reinforce along a line bisecting the angle between the wires. This increases both gain and directivity, sinee the lobes in directions other than along the bisector cancel to a greater or lesser extent. The horizontal "V" antenna therefore transmits best in either direction (is bidirectional) along a line bisecting the " V " made by the two wires. The power gain depends upon the length of the wires. Provided the necessary space is available, the " V " is a simple antenna to build and operate. It can also be used on harmonics, so that it is suitable for multiband work. The " V" antenna is shown in Fig. 1037.

Fig. 1037 - The " V " antenna, made by eombining two long wires in such a way that each reinforees the radiation from the other. The important quantitics are the length of each leg and the angle between the legs.

Fig. 1038 shows the dimensions that should be followed for an optimum design to obtain maximum power gain for different-sized " V " antennas. The longer systems give good performance in multiband operation. Angle \propto is approximately equal to twice the angle of maximum radiation for a single wire equal in length to one side of the "V."

The wave angle referred to in Fig. 1038 is the vertical angle of maximum radiation ($\S 10-1$). Tilting the whole horizontal plane of the "V" will tend to incroase the low-angle

Fig. 1038 - Design chart for horizontal "V" antennas, giving the enclosed angle between sides es, the length of the wires.
radiation off the low end and decrease it off the high end.

The gain increases with the length of the wires, but is not exactly twiee the gain for a single long wire as given in Fig. 1027. In the longer lengths the gain will be somewhat increased, because of mutual coupling between the wires. A "V" eight wavelengths on a leg, for instance, will have a gain of about 12 db . over a half-wave antenna. whereas twice the gain of a single 8 -wavelength wire would be only approximately 9 db .

The two wires of the " V " must be fed out of phase, for correct operation. A resonant line may simply be attached to the ends, as shown in Fig. 1037. Alternatively, a quarter-wave matching section may be employed and the antenna fed through a nonresonant line ($\$ 10-8$). If the antenna wires are made multiples of a half wave in length (use Equation 7 in $\S 10-9$, for computing the length), the matching section will be closed at the free end.

The rhombic antenna- The horizontal rhombic or "diamond" antema is shown in Fig. 1039. Like the " V," it requires a good deal of space for erection, but it is capable of giving excellent gain and directivity. It also can be used for multiband operation. In the terminated form shown in Fig. 1039, it operates like a nonresonant transmission line, without standing waves, and is unidirectional. It may also be used without the terminating resistor, in which ense there are standing waves on the wires and the antenna is bidirectional.

The important quantities influencing the design of the rhombic antenna are shown in Fig. 1039. While several design methods may be used, the one most applicable to the conditions existing in amateur work is the so-called "compromise" method. The chart of Fig. 1040 gives design information based on a given length and wave angle to determine the

Fig. 10.39 - The lonizontal rhombic or diamond antenna, terminated, lmportant desidn dimensions are indicated; details in text.

The same design details apply to the unterminated rhombic as to the terminated type. When used without a terminating resistor, the system is bidirectional. Resonant feeders are preferable for the unterminated rhombic. A nomresonant line may be used by incorporating a matching section at the antenna, but is not rearlily adaptable to multiband work.

Rhombic antennas will give a power gain of 8 to 12 db . or more for leg lengths of two to four wavelengths, when construeted aceording to the clarts given. In general, the larger the antenna, the greater the power gain.
remaining optimum dimensions for best operation. Curves for values of length of 2, 3 and 4 wavelengths are shorn, and any intermediate values may be interpolited.

With all other dimensions correct, an increase in length causes an increase in power gain and a slight reduction in wave angle. An increase in height alio canses a reduction in wave angle and an increase in power gain, but not to the same extent as a proportionate increace in length. For multiband worl, it is satistactory to design the rhombic antenna on the basis of 14-Mc. operation. which will permit work from the 7 - to the 28 -Me. bands as well.
A value of 800 ohms is correct for the terminating resistor for any properly-comstructed rlombie, and the system behaves as a pure resistive load under this condition. The terminating resistor must be capable of safely dissipating one-half the power output (to climinate the rear pattern), and should be noninductive. Such a resistor may be matle up from a carbon or graphite rod or from a long soo-ohm transmission line using resistance: wire. If the carbon rod or at similar form of lumped resistance is used, the device should be suitahly protected from weather effects, i.e., it should be covered with a grod asphaltic compound and staled in a small lightweight bow or fiber tube. Suitable nonreactive terminating resistors are also available commercially.

For feeding the antema. the antenna impedance will be matched by an $800-0$ hm line, which may be constructed from No. 16 wire spared 20 inches or from No. 18 wire spaced 16 inches. The 800 -ohm line is somewhat ungainly to install, however, and may the replaced by an ordinary 600 -ohm line with only a nerligible mismatch. Alternatively, a matching section may be installed between the antenna terminals and a low-impedance line. However, when such an arrangement is used, it will be necessary to change the match-ing-section constants for each different band on which operation is contemplated.

Fig. 1040 - Compromise-method lesifn chart for rhomhic antemnas of varions leg lengths and wave angles. The following examples illustrate the use of the chart:
(1) Given:

Length $(L)=2$ waviengits. Drsired wave angle (Δ) $=20^{\circ}$.
Tor Find: $I I$, \ddagger.
Method:
Draw vertical line thrnuph point a ($L=2$ wavelengths) and point h on alsecissal $\left(\Delta=20^{\circ}\right.$). lead angle of tils ($\$$) for moint a and height ($I I$) from intersection of line ab at point c on curve $I I$.
Hesult:
$\Phi=60.5^{\circ}$.
$I=0.73$ wavelength .
(2) Given:

Length (L) = 3 wavelenpths.
Angle of tilt $(\Phi)=70^{\circ}$.
「o Find: H, Δ.

Metind:

Draw a vertical line from point d on curve $L=3$ wavelengths at $\Phi=78^{\circ}$. Read intersection of this line on curve $I I$ (point e) for height, and intersection at point f on the abscissa for 1 .
Reault:
$H=0.56$ wavelength.
$\Delta=26.6^{\circ}$.

© 10-12 Directive Arrays with Driven Elements

Principles - By combining individual halfwave antennas into an array with suitable spacing between the antennas (called elements)
and feeding power to them simultaneously, it is possible to make the radiated fields from the individual elements add in a favored direction, thus increasing the field strength in that direction as compared to that produced by one antenna element alone. In other directions the fields will more or less oppose each other, giving a reduction in field strength. Thus a power gain in the desired direction is secured at the expense of a power reduction in other directions.

Besides the spacing between elements, the instantaneous direction of current flow (phase) in individual elements determines the directivity and power gain. There are several methods of arranging the elements. If they are strung end to end, so that all lie on the same straight line, the elements are said to be collinear. If they are parallel and all lying in the same plane, the elements are said to be broadside when the plase of the current is the same in all, and end-fire when the currents are not in phase. Elements which receive power from the transmitter through the transmission line are called driven elements.

The power gain of a directive system increases with the number of elements. The proportionality between gain and number of elements is not simple, however. The gain depends upon the effect which the spacing and phasing has upon the radiation resistance of the elements, as well as upon their number.

Collinear arrays - Simple forms of collinear arrays, with the current distribution, are shown in Fig. 1041. The two-element array at A is popularly known as "two half waves in phase." It will be recognized as simply a center-fed antenna operated at its second harmonic. The way in which the number of elements may be extended for increased directivity and gain is shown in Fig. 1041-B. Note that quarter-wave transmission lines are used between each element; these give the reversal in phase necessary to make the currents in individual antenna elements all flow in the same direction at the same instant. Another way of looking at it is to consider that the whole system is a long wire, with alternate half-wave sections folded so that they do not radiate. Any phase-reversing section may be used as a quarter-wave matching section for attaching a nonresonant feeder ($\$ 10-8$), or a resonant transmission line may be substituted for any of the quarter-wave sections. Also, the antenna may be end fed by any of the systems previously described ($\$ 10-7,10-8$), or any

TABLE IV Theoretical Gain of Collinear Malf-Wave Antennas					
Snacing betreen centers of adjacent half waves	Numbler of half waves in arrav ve, gain in $\boldsymbol{d h}$,				
	2	3	4	5	6
1/2 Wave	1.8	3.3	. 4.5	5.3	6.2
$3 / 4$ Wave	3.2	4.8	6.0	7.0	7.8

element may be center fed. It is best to feed at the center of the array, so that the energy will be distributed as uniformly as possible among the elements.

The gain and directivity depend upon the number of elements and their spacing, center-to-center. This is shown by Table IV. Although $3 / 4$-wave spacing gives greater gain, it is difficult to construct a suitable phasereversing system when the ends of the antenna elements are widely separated. For this reason, the half-wave spacing is most generally used in actual practice.

Collinear arrays may be mounted either horizontally or vertically. Horizontal mounting gives increased horizontal directivity, while the vertical directivity remains the same as for a single element at the same height. Vertical mounting gives the same horizontal pattern as a single element, but concentrates the radiation at low angles. It is seldom practicable to use more than two elements vertically at frequencies below 14 Mc . because of the excessive height required.

Broadside arrays - Parallel antenna elements with currents in phase nay be conbined as shown in Fig. 1042 to form a broadside array, so named because the direction of maximum radiation is broadside to the plane containing the antennas. Again the gain and directivity depend upon the number of elements and the spacing, the gain for different spacings being shown in Fig. 1043. Half-whe spacing generally is used, since it simplifies the problem of feeding the system when the array has more than two elements. Table V gives theoretical gain as a function of the number of elements with half-wave spacing.

Broadside arrays may be suspended either with the elements all vertical or with them horizontal and one above the other (stacked). In the former case the horizontal pattern becomes quite sharp, while the vertical pattern is the same as that of one element alone. If the array is suspended horizontally, the horizontal pattern is equivalent to that of one element

Fip. 1041 - Collinear half-wave antennas in phase. The system at A is generally known as "two half waves in phase." B is an extension of the system; in theory the number of elements may be carried on indefinitely, but practical considerations usually limit the elements to four.

Fig. 10.12 - Broadside array using parallel half-wave elements. Arrows indieate the direction of current flow. Transponition of the feeders is necessary to bring the antenna currents in phase. Any reasonahle momber of elements may be used. The array is bidirectional, with maxinum radiation "broadsite" or perpendicular to the antema plane (perpendicularly through this page).
while the vertical pattern is sharpened, giving low-angle radiation.

Broadside arrays niny be fed either by resonant transnission lines ($\$ 10-7$) or through quarter-wave matehing sections and nonresonant lines ($\$ 10-8$). In Fig. 1042, note the "crossing over" of the feeders, which is necessary to bring the elements in proper phase relationship.

Fig. 10.13 - Gain es. spacing for two paralld half-wave elements combined as cither broadside or end-fire arrays.

Combined broadside and collinear arrays

 - Broadside and collinear array's may be combined to give both horizontal and vertical directivity, as well as additional gain. The general plan of constructing such antennas is shown in Fig. 1044. The lower angle of radiation resulting from stacking elements in the vertical plane is desirable at the higher frequencies. In general, doubling the number of elements in an array by stacking will raise the gain from 2 to 4 db ., depending upon whether vertical or horizontal elements are used - that is, whether the stacked elements are of the broadside or collinear type.

Fig. 1044 - Comhination broadside and enllinear arrays. Λ, with vertical elements; 13 , with horizontal elements. Both arrays pive low-angle radiation. Two or more seetions muy he used. The gain in db. will be equal, approximately, to the sum of the gain for one set of broadkide elements (Table V) plus the gain of one set of collinear elements (Table IV). For example, in A caeh broadside set has fonr elements (pain 7 db .) and eaeh collinear set two elenents (gain 1.8 db .), giving a total gain of 8.8 db . $\mathrm{I}_{1} \mathrm{~B}$, each broadside set has two elements (gain 4 db .) and each collinear set three elements (gain 3.3 db .), making the total gain 7.3 db . The result is not strietly aceurate, becanse of mutual conpling between the elements, but is good enough for practical purposes.

The arrays in Fig. 1044 are shown fed from one end, but this is not especially desirable in the case of large arrays. Better distribution of energy between elements, and hence better all-around performance, will result when the feeders are attached as nearly as possible to the center of the array. Thus, in the 8 -element array at A, the feeders could be introduced at the middle of the transmission line between the second and third set of elements, in which case the connecting line would not he transposed. Alternatively, the antenna could be constructed with the transpositions as shown and the feeder connected between the adjacent ends of either the second or third pair of collinear elements.

A four-element array of the general type shown in Fig. 1044-B, known as the "lazy H" antenna, has been quite frequently used. This arrangement is shown, with the feed point indicated. in Fig. $10+5$.

feed
Fig. 10.45 - A four-element onnthination bradside: collinear array, popularly known as the "lazy II" antenna. A closed quarter-wave stibb may be used at the feed point to mateh into a 600 -ohm transmission line, or resonant feeders nay be attached at the point indicated. The gain over a half-wave antenna is 5 to 6 dh .

End-fire arrays - Fig. 1046 shows a pair of parallel half-wave elements with currents out of phase. This is known as an end-fire array,
because it radiates best along the line of the antennas, as shown.

The end-fire array may be used either vertically or horizontally (elements at the same height), and is well adapted to amateur work because it gives maximum gain with relatively close element spacing. Fig. 1043 shows how the gain varies with spacing. End-fire elements may be combined with additional collinear and

Fig. 1046 - End-fire arrays nsing parallel half-wave elenients. 'I he clements are shown with half-wave spacing to illnstrate fecder connections. In practice, closer spucings are desirable, as shown by Fig. 1013. Direction of maximum radiation is shown by the large arrows.
broadside elements to give a further increase in gain and directivity.

Either resonant or nonresonant lines may be used with this type of array. Nonresonant lines preferably are matched to the antenna through. a quarter-wave matching section ($\$ 10-8$).

Checking phasing - Figs. 1044 and 1046 illustrate a point in connection with feeding a phased antenna system which sometimes is confusing. In Fig. 1046, when the transmission line is connected as at A there is no crossover in the line connecting the two antennas, but when the transmission line is connected to the center of the connecting line the ernssover becomes necessary (B). This is because in B the two halves of the connecting line are simply branches of the same line. In other

words, even though the connecting line in B is a half wave in length, it is not actually a half-wave line but two quarter-wave lines in parallel. The same thing is true of the untransposed line of Fig. 1044. Note that, under these conditions, the antenna elements are in phase when the line is not transposed, and out of phase when the transposition is made. The opposite is the case when the half-wave line simply joins two antenna elements and does not have the feed line connected to its center, as in Fig. 1042.

Adjustment of arrays - With arrays of the types just described, using half-wave spacing between elements, it will usually suffice to make the length of each element that given by the equation for a half-wave antenna in § $10-2$, while the half-wave phasing lines between the parallel elements can be calculated from the formula:
$\begin{aligned} & \text { Length of half- } \\ & \text { wave line }(\text { feet })\end{aligned}=\frac{4.92 \times 0.975}{\text { Freq. (MIc.) }}=\frac{480}{\text { Freq. (Mc.) }}$
The spacing between elements can be made equal to the length of the phasing line. No special adjustments of line or element length or spacing are needed, provided the formulas are followed carefully.

With collinear arrays of the type shown in Fig. 1041-B, the same formula may be used for the elenient length while the length of the quarter-wave phasing section can be found from the following formula:

$$
\begin{aligned}
& \text { Length of quarter-wave }=\frac{240}{\text { Freq. (Mc.) }} \\
& \text { line (fect) }
\end{aligned}
$$

If the array is fed at its center it should not be necessary to make any particular adjustments, although, if desired, the whole system can be resonated by connecting an r.f. ammeter in the shorting link on each phasing section and moving the link back and forth to find the maximum current position. This refinement is hardly necessary in practice, however, so long as all elements are the same length and the system is symmetrical.
Fig. 1047 - Simple directive-antenna systems. A is a two-clement end-fire array; B is the same array with center feed, which permits use of the array on the second harmonic, where it hecomes a four-element array with quarter-wave spacing. C is a four-element end-fire array with $1 / 8$-wave spacing. D is a simple two-element broadside array using extended in-phase antennas ("extended double-Zepp"). The gain of A and B is slightly over 4 db . On the second harmonic, B will give ahout 5 db . gain. With C, the gain is approximately 6 db ., and with D, approxinately $3 \mathrm{db} . \operatorname{In~} \mathrm{A}, \mathrm{B}$ and C , the phasing line contributcs about $1 / 16$ wavelength to the transmission line; when B is used on the second harmonic, this contribution is $1 / 8$ wavelength. Alternatively, the antenna ends may be bent to mect the transmission linc, in which case each feeder is simply connected to one antenna. In D, points $Y-Y$ indicate a quarter-wave point (high current) and $X-X$ a half-wave point (high voltage). The line may be extended in multiples of quarter waves if resonant fecders are to be used. A, B, and C may be sispended on woollen spreaders. The plane containing the wires should be parallel to the ground.

Simple arrays - Several simple directive antenna systems using driven elements have achieved rather wide use among amateurs. Four of these systenis are shown in Fig. 1047. Tuned feeders are assumed in all cases; however, a matching section ($\$ 10-8$) readily can be substituted if a nonresonant transmission line is preferred. Dimensions given are in terms of wavelength; actual lengthis can be calculated from the cquations in $\$ 10-2$ for the antenna and from the equation above for the resonapt transmission line or matching section. In cases where the tramsmission-line proper connects to the midpoint of a phasing lime. only half the length of the latter should be added to the line to find the quarter-wave point.

At A and B are two-element end-fire arrangements using close sparing. They are electrically equivalent.; the only difference is in the method of connecting the feeders. Is may also be used as a four-clement array on the second harmonie, although the spacing is not quite optimum (Fig. 1043) for surll operation.

A close-spaced four-element array is shown at C. It will give about 2 db . more gain than the two-element array.

The antenna at D , commonly known as the "extended double Zepp," is derigned to take advantage of tho greater gain possible with collinear antennas having greater than halfwave center-to-center spacing, but without introducing feed complications. The elements are made longer than a half wave in order to bring thes about. The gain is 3 db. over a single half-wave antenna, and the broadside directivity is quate sharp.

The antenmas of A and IS may be mounted either horizontally or vertieally; horizontal suspension (with the elements in a plane parallel to the ground) is recommencled, sunce this tends to give low-angle radiation without an unduly sharp horizontal pattern. Thus these systems are useful for coverage over a wide horizontal angle. The systen at C, when mounted horizontally, will have a sharper horizontal pattern than the two-element arrays.

C. 10-13 Directive Arrays with Parasitic Elements

Parasilic excitation - The antenna arrays described in $\$ 10-12$ are budirectional; that is, they will radiate in directions both to the "front" and to the "back" of the antemna system. If radiation is wanted in only one direction (for instance, north only, instead of northsouth), it is necessary to use different element arrangements. In most of these arrangements the additional elements receive power by induction or radiation from the driven element, generally called the "antenna," and reradiate it in the proper phase relationship to achieve the desired effect. These elements are called parasitic elements, as contrasted to the driven elements wheh recrive power directly from the transmitter throurh the transmission line.

The parasitic clement is called a divector
when it reinforees radiation on a line pointing to it from the antenna, and a reflector when the reverse is the case. Whether the parasitic clement is a director or reflector depends upon the parasitic element tuning (which usually is adjusted by changing its length) and, particularly when the element is self-resonant, upon the spacing between it and the antenna.

Gain vs, spacing - The gain of an antennareflector or an antenna-director combination varies chiefly with the spacing between the elements. The way in which gain varies with spaciug is shown in Fig. 1048, for the specind case of self-resonant parasitic elements. This chart also shows how the attenuation to the "rear" varies with sparing. The same spacing does not necessarily give both maximum forward gain and maximum backward attenuation. Backward attenuation is desirable when the antema is used for receiving, since it greatly reduces interference coming from the apposite direction to the desired signal.

Element lengths - The antenna length is given by the formulas in $\$ 10-2$. The director and reflector length: must be determined experimentally for maximum performance. The preferable method is to aim the antenna at a receiver a mile or more distant and have an observer cheek the signal strength (on the receiver " s " meter) while the reflector or director is adjusted a few inches at a time, until the length which gives maximum signal is found. The attenuation may be similarly checked, the length being adjusted for minimum signal. In general, for best front-to-back ratio the length of a director will be about 4 per cent, less than that of the antenma. The reflector will be about 5 per cont longer than the antenna.

Simple systems; the rotary beam - Four practical combinations of antenna, reflector and director elements are shown in Fig. 1049. spacings which give maximum gain or maximum front-to-back ratio (ratio of power radiated in the desired direction to power radiated in the opposite direction) may be taken from Fig. 1048. In the chart, the front-to-back ratio in db. will be the sum of gain and attenuation at the same spacing.

Systems of this type are popular for rotarybeam antenmas, where the entire antenna system is rotated, to permit its gain and directivity to be utilized for any compass direction. They may be mounted cither horizontally (with the plane containing the elements parallel to the eartli) or vertically.

Arrays using more than one parasitic clement, such as those shown at C and D in Fig. 1049, will give more gain and directivity than is indicated for a single reflector and director by the curves of Fig. 1048 . The gain with a properly-adjusted three-element array (antenna, director and reflector) will be 5 to 7 db. over a half-wave antenna. Somewhat higher gain still can be secured by adding a second director to the system, maling a four-element array. The front-to-back ratio is correspond-

Fig. 1048 - Gain is. element spacingi or an antenna and one parasitic element. The reference point, 0 db ., is the field strenyth from a half-wave antema alone. The greatest pain is it direction A at spacings of less than 0.14 wavelenpth, and in direction B at greater sparings. The front-to-back ratio is the diffrenee in dh. between eurves A and B. Variation in radiation resistance of the driven element also in shown. These eurves are for a selfresonant parnsitie element. At most spateings the pain as a reflector can he increased by slipht lengthening of the parasitie element: the rain as a director can be inercased by shortening. 'This also improves the front-to-hack ratio.
ingly improved as the number of elements is increased.

The elements in closo-spaced (less than onequarter wavelength element spacing) arrays preferably should be made of tubing of onehalf to one-inch diameter. A conductor of large diameter not only has less ohmic re-

Fig. 1049 - Half-wave antennus with parasitic elements. A , with director; B , with reflector; C , with hoth director and reflector; D , two dircetors and one reflector. Gain is approximately as slown by Fig. 1048, in the first two eases, and depends upon the spacing and length of the parasitic element. In the three- and four-element arrays a reflector spacing of 0.15 wavelength will give slightly more gain than 0.1 -wavelength spacing. Arrows show the dircetion of maximum radiation.
sistance but also has lower Q; botll these factors are important in close-spaced arrays because the impedance of the driven element usually is quite low compared to that of a single half-wave dipole. With 3 - and 4-element arrays the radiation resistance of the driven element may be as low as 6 or 8 ohms, so that ohmic losses in the conductor can consume an appreciable fraction of the power. Low radiation resistance means that the antenna will work over only a small frequency range without retuning unless large-diameter conductors are used. In addition, the antenna elements should he rigid because if they are free to move with respect to each other, the array will tend to show detuning effects under windy conditions.

Feeding close-spaced arrays - While any of the usual methods of feed may be applied to the driven element of a parasitic array, the fact that, with close spacing, the radiation resistance as measured at the center of the driven element drops to a very low value makes some systems more desirable than others. The preferred methods are shown in Fig. 1050. Resonant feeders are not recommended for lengths greater than a half wavelengtl.

The quarter- or half-wave matching stubs shown at A and B in Fig. 1050 preferably should be constructed of tubing with rather close spacing, in the manner of the " Q " sec-. tion. This lowers the impedince of the mateling section and makes the position of the line taps somewhat less difficult to determine accurately. The line adjustment should be made only with the parasitic elements in place, and after the correct element lengths have been determined, it should be checked to compensate for changes likely to occur because of element tuning. The procedure is the same as that described in $\$ 10-8$.

The concentric-line matching section at C will work with fair aecuracy into a close-spaced parasitic array of 2,3 or 4 elements without necessity for adjustment. The line is used as an impedance-inverting transformer, and, if its characteristic impedance is 70 ohms , it will give an exact match to a 600 -ohm line when the resistance at the termination is about 8.5 ohms. Over a range of 5 to 15 ohms the mismatch, and therefore the standing-wave ratio, will be less than 2 to 1 . The length of the quarter-wave section may be calculated from Equation 5 (§ 10-5).

The delta matching transformer shown at D is probably casier to install, mechanically, than any of the others. The positions of the taps (dimension a) must be determined experimentally, along with the length, b, by checking the standing-wave ratio on the line as arljustments are made. Dimension b should be about 15 per cent longer than a.

The system shown at E (" T " match) resembles the delta match in principles of operation. It has the advantage that, with close spacing between the two parallel conductors,

Fig. 1050 - Recommended methods of feeding the driven antema elenterte in closespaced parasitic arrays. The parasitic elements are not shown, A, quarter-wave open stub; 13, half-wave closed stnb; C, concentriedine quarter-wave matehing section; D, delta matching transformer; E, "I" matching transformer, Adjustment details are discussed in the text.
line radiation from the matching section is negligible whereas radiation from a delta may be considerable. It is adjusted by moving the shorting bars, keeping them equidistant from the center, until there are no standing waves on the line. The matching section may be made of the same type of conductor used for the driven element and spaced a few inches from it.

The "folded dipole" shown in Fig. 1051 may be used as the driven element of a close-spaced parasitic array to secure an impedance step-up to the transmission line and also to broaden the resonance curve of the antenna. The folded dipole consists of two or more half-wave antennas connected together at the ends with the feeder connected to the center of only one of the antennas. The spacing between the parallel antennas should be small - of the order of the spacing used between wires of a transmission line. The current in the system divides in approximate proportion to the areas

Fig. 1051 - Varions forms of folded dipole. In calculating the clement lenkthe, the total lengoh around any loop starting with the transmission-linc terminals should equal one wavelength (twice the length given by the appropriate formula, in view of conductor diameter, in $\$ 10-2$) so that the lengths of the connecting bars at the ents are included.
of the conductors, resulting in an impedance step-up at the input terminals. With two similar conduetors (equal areas) the impedance step-up is 4 to 1 ; if there are three similar conductors (or if the one not connected to the transmission linc has twice the diancter of the other) the step-up is 9 to 1 ; if the ratio of the areas is 3 to 1 the step-up is 16 to 1 , and so on. Thus if a 3 -conduetor dipole (all conductors the same clameter) is used as the driven rlement of a four-element parasitic array the renter impedance of approximately 8 ohms is multiplied by 9 and appears as approximately 72 ohms at the input terminals. Such a system therefore ean be fed directly from a 70 -ohm line with no additional means for matching.

Sharpness of resonance - Peak performance of a multielement parasitie array depends upon proper phasing or tuning of the elements, which can be exact for one frequency only. In the case of close-spaced arrays. which because of the low radiation resistance usually are quite sharp-tuning, the frequency range over which optinum results can be secured is only of the order of 1 or 2 per cent of the resonant frequency, or up to about 500 ke, at 28 Me. However, the antemna can be made to work satisfactorily over a rider frequency range by adjusting the director or directors to give maximum gain at the highest frequency to be covered, and by adjusting the reflector to give optimum gain at the lowest frequency. This sacrifices some gain at all frequencies, but maintains more uniform gain over a wider frequency range.

As mentioned in the preceding paragraphs, the use of large-diameter conductors will broaden the response curve of an array because the larger diameter lowers the Q (\$10-2). This causes the reactances of the elements to change rather slowly with frequency, with the result that the tuning stays near the optimum over a considerably wider frequency range than is the case mith wire conductors.

Combinationarrays - It is possible to combine parasitic clements with driven elements to form arrays composed of collinear driven and parasitic elements and combination broadside-collinear-parasitic elements. Thus two or more collinear elements might be provided with a collinear reflector or director set,
one parasitic element to each driven element. Or both directors and reflectors might be used: A broadside-collinear array could be treated in the same fashion.

When combination arrays are built up, a rough approximation of the gain to be expected may be obtained by adding the gains for earh type of combination. Thus the gain of two broadside sets of four collinear arrays with a set of reflectors, one behind ench element, at quarter-wave spacing for the parasitic elements, would be estimated as follows: From Table IV, the gain of four collinear elements is 4.5 db . with half-wave spacing; from Fig. $10+3$ or Table V, the gain of two broadside elements at half-wave spacing is 4.0 db .; from Fig. 1048, the gain of a parasitic reflector at quarter-wave spacing is 4.5 db . The total gain is then the sum, or 13 db . for the sixteen elements. Note that using two sets of elements in broadside is equivalent to using two elements, so far as gain is concerned; similarly with sets of reflectors, as- against one antenna and one reflector. The actual gain of the combination array will depend, in practice, upon the way in which the power is distributed between the various elements and upon the effect which mutual coupling between elements lias upon the radiation resistance of the array, and may be somewhat higher or lower than the estimate.

A great many directive antenna combinations can be worked out hy combining elements according to these principles.

© Receiving Antennas

Nearly all of the properties possessed by an antemm as a radiator also apply when it is used for reception. Current and voltage distribution, impedance, resistance and directional characteristies are the same in a receiving antenna as if it were used as a transmitting antenna. This reciprocal belavior makes possible the design of a receiving antemna of optimum performance based on the same considerations that have been discussed for transmitting anternas.

The simplest receiving antenna is a wire of random length. The longer the wire, the more energy it abstracts from the wave. Because of the high sensitivity of modern receivers, a large antenna is not necessary for picking up signals at good strength. An indoor wire only 15 to 20 feet long will serve at frequencies below the v.h.f. range, although a longer wire outdoors is better.

The use of a tuned antenna improves the operation of the recciver, however, because the signal strength is raised more in proportion to the stray noises picked up than is the case with wires of random length. Since the transmitting antenna usually is given the best location, it can also be expected to serve best for receiving. This is especially true when a directive antenna is used, since the directional effects and power gain of directive transmitting antennas are the same for receiving as for
transmitting. A change-over switch or relay, connected in the antenna leads, can be used to transfer the connections from the receiver to the transmitter.
In selecting a directional receiving antenna it is preferable to choose a type which gives very little response in all but the desired direction (smali minor lobes). This is even more important than high gain in the desired direction, because the cumulative response to noise and unwanted-signal interference in the smaller lobes may offset the advantage of increased desired-signal gain.

© Antenna Construction

The use of good materials in the antenna system is important since the anterna is exposed to wind and weather. To keep clectrical losses low, the wires in the antemna and feeder system must have good conductivity and the insulators must have low dielectric loss and surface leakage, particularly when wet.

For short antennas, No. 14 gauge hard-drawn enameled copper wire is a satisfactory conductor. For long antennas and directive arrays, No. 14 or No. 12 enameled copper-clad steel wire should be used. It is best to make feeders of ordinary soft-drawn No. 14 or No. 12 enameled copper wire, since hard-drawn or copperclad steel wire is difficult to handle unless it is under considerable tension at all times. The wires should be all in one piece; where a joint cannot be a voided, it should be carefully soldered.
In building a resonant two-wire feeder, the spacer insulation should be of as good quality as in the antenna insulators proper. For this reason, good ceramic spacers are advisable. Wooden dowels boiled in paraffin may be used with untuned lines, but their use is not recommended for tuned lines. The rooden dowels can be attached to the feeder wires by drilling small holes and binding them to the feeders with wire.

At points of maximum voltage insulation is most important, and Pyrex glass, Isolantite or steatite insulators with long leakage paths are recommended for the antenna. Glazed porcelain also is satisfactory. Insulators should be cleaned once or twice a year, especially if they are subjected to much smoke and soot.

In most cases poles or masts are desirable to lift the antenna clear of surrounding buildings, although in some locations the antenna will be sufficiently in the clear when strung from one chimney to another or from a chimney to a tree. Small trees usually are not satisfactory as points of suspension for the antenna because of their movement in windy weather. If the antenna is strung from a point near the center of the trunk of a large tree, this difficulty is not so serious. Where the antenna wire must be strung from one of the smaller branches, it is best to tie Ω pulley firmly to the branch and run a rope through the pulley to the antenna, with the other end of the rope attached to a counterweight near the ground.

ALTERNATIVE METHOD OF SUSPENSION

Fig. 10.52 - Some suggested antenma systems. A Simple bidirectional rotatable end-fire array using t/-wave sparing between out-of-phase clements. Suitahle for either 14 or 28 Mc. and can be rotated by hand. It can also lic suspended from the halyard holding another antenna, as nugested in the lower drawing. BFolded dipole using 300 oohn ' Twin-Leat for both antenna and feeder. The junetion X at the center is made by opening one conductor of the antenna section and soldering to the feeder leads. The joint may be made mechanically firm by heating the dielectric with a soldering iron, using cxtra bits of dielectric for a good bond. C-An end-firc array for use where space is limited. The ends of the two half-wave clements are folded to meet at an insulator in the center. The antenna may be made still shorter by increasing the spacing: spacings up to $1 / 4$ wavelength may he used. $D-1$ lipe. assembly threc-elcment beanu ("plumber's delight")
with folded-dipole driven clement. Because all three elements are at the sane r.f. potential at their centers it is possible to join them clectrically as well as nechanically with roo cffect on the perfornumec. Provision is made for adjusting the element lengths for optimum performanec at a given frequency ($\$ 10-13$). $\mathrm{E}-\mathrm{An}$ extersion of the folding principle shown in C. The collinear in-phase clements give additional gain and directivity. F - End-fire array with extended doulle Zepps. This antenra slowuld give a gain of about 7 dh . in the direction perpendicular to the line of the antenna. G An 8-clement array combining hroadside, end-firc and collinear clements. The sain of an antenna of this type is about 10 db . This antenna also can be used at half the frequeney for which it is designeal. Il - Using two halfwave antennas at right angles to ehange direction. With the three feeders indicated. cither antenna alone can be fed as a Keppand will radiate best perpendicular to its

[^0]The counterweight will keep the tension on the antenna wire reasonably constant even when the branches sway or the rope tightens and stretches with varying elimatic conditions.

© "A"-Frame Mast

The simple and inexpensive mast shown in Fig. $10 \overline{3} 3$ is satisfactory for heights up to 35 or 40 feet. Clear, sound lumber should be arlected. The completed mast may be protected by two or three coats of house paint.

If the mast is to be erected on the ground, a couple of stalkes should be driven to keep the bottom from slipping and it may then be "walked up" by a pair of helpers. If it is to go on a roof, first stand it up against the side of the building and then hoist it from the roof, keeping it vertical. The whole assembly is light enough for two men to perform the complete operation - lifting the nast, carrying it to its permanent berth and fastening the guys with the mast vertical all the while. It is entircly practieable, therefore, to erect this type of mist on any small, flat area of roof.

By using 2×3 s or $2 \times 4 \mathrm{~s}$, the height may be extended up to about 50 feet. The 2×2 is too flexible to be satisfactory at such heights.

Fip. 70.33 - Details of a simple 40 -fout " A ". frame mast suitable for ercetion in locutions where space is limited.

(C) Simple 40-Foot Mast

The mast shown in Fig. 1054 is relatively strong, easy to construct, readily dismantled, and consts very little. Like the " A " frame, it is suitable for heights of the order of 40 feet.

The top section is a single 2×3, bolted at the bottom between a pair of 2×3 s with an overlap of about two feet. The lower section thus las two legs spaced the width of the narrow side of a 2×3. At the bottom the two
legs are bolted to a length of 2×4 which is set in the ground. A slort length of 2×3 is placed between the two legs about half way up the bottom scetion, to maintain the spacing.
The two back guy's at the top pull against the antenna, while the three lower guys prevent buckling at the center of the pole.

The 2×4 section should be set in the ground so that it faces the proper direction, and then made vertical hy lining it up with a plumb bob. The holes for the bolts should be drilled heforhand. With the lower section laid on the ground, bolt 4 should be slipped in place through the three piecess of wood and tightened just enough sen that the section can turn freely on the bolt. Then the toppsection maty he belted

top guys

Fig. 105.4 - A simple and sturdy mast for heiphts in the vicinity of 40 fret , pivoted at the base fur cane crece tion. The heipht can be extemeded tu 50 fert or more hy using $2 x$ 4 s instead of $2 \times 3 \mathrm{~s}$.
in place and the mast pushed un, using a latder or another 20 -foot 2×3 for the joh. As the mast gues up, the slack in the guys ean be taken un so that the whole structure is in some measure eontinually supperted. When the mast is vertical, bolt $i 3$ should be slipped in place and buth A and B tightened. The lower guys can then be given at final tightening, leaving those at the top a little slack until the antenna is pulled up, when they should be aljusted to pull the top seation into line.

(4. "T"-Section Mast

A type of mast suitable for heights up to about so feet is shown in Fig. 1055. The mast is built up by butting 2×4 or 2×6 timbers edgewise against a serond 2×4, as shown at A, with alternating joints in the edgewise and

flat wise sections. The construction can be carried out to greater lengths simply by continuing the 20 -font sections. Lonyer or shorter sections may be used. if more convenient.
The method of making the joints is shown at C. Quarter-inch or ${ }^{3} 10$-inch iron, $1!$ 迫 to 2 inches wide, is recommended for the straps, with 3.6 inch bolts to hold the pieces together. One bolt should be run through the pieces midway between joints. to provide additional rigidity.

Although there are many ways in which sueh a mast can be secured at the base, the "cradle" illustrated at D has many adrantages. Heavy timbers set firmly in the ground, spaced far enough apart so the base of the mast will nass between them, hold a large carriage bolt or steel bar which serves as a bearing. This bolt goos through a hale in the mast so that it is pivoted at the bottom.

Hulf of the guys can be put in place and tightened up before the mast leaves the ground. four sets of guys should le used, one in front, one directly in the rear, and two on cach side at right angles to the direction in which the mast will face. A set of guys should be used at each of the joints in the edgewise sections, the guy wires being wrapped around the pole for added strength.

For leights up to 50 reet, 2×4-inch members may be used throughout. For greater heights, use 2×6 for the edigewise seelions; 2×4-inch pieces will do for the flat sections.

Fig. 1056 - 'This type of mast may be carried to a height of fifty feet or more. No guy wires are required.

Lattice towers built of wood should be assembled with brass screws and casein glue, rather than with nails which work loose in a short time. A lower constructed in this manner will give trouble-free service if treated with a cont of paint every year.

In piunting outside structures, use pure white lead, thinned with three parts of pure linseed oil 10 one part of turpentine, for the first coat on new wood. The use of a drice is not recommended if the puint will possibly dry without it, since it maty canse the paint to peel after a shott time. For the second and third coats pure white lead thinned only with pure linseed oil is recommended. Plenty of time for drying should be allowed between coats. White paint will last fifty per cent longer than any colored paint.

© Guys and Guy Anchors

For masts or poles up to about 50 fect, No. 12 iron wire is a satisfactory guy-wire material. Heavier wire or stranded cable may be used for taller poles or poles installed in locations where the wind veloeity is high.

More than three guy wires in any one set usually are unnecessary. If a hocizontal antemat is to be supported, two ghy wires in the top set will be sufficient in most cases. There should run to the reat of the mast about 100 degrees apart to offset the pull of the antemna. Intermediate guys should be used in sets of three, one running in a direction opposite to that of the antenna, while the other two are spaced 120 degrees cither side. This leaves a clear space under the antemat. The guy wires should be adjusted to pull the pole slightly back from verlical before the antenna is hoisted so that when the antenna is pulled up tight the nast will be st raight.

When raising a mast whieh is big enough to tax the facilities available, it is some advantige to know nearly exactly the length of the grys. Those on the side on which the pole is lying can then be fastened temporarily to the anchors beforehand, which assures that when the pole is raised, hlose holding opposite guys will be able to pull it into nearly vertical position with no danger of its get ting out of control. The guy lengths can be figured by the right-angledtriangle rule that "the sum of the squares of the two sides is equal to the square of the hypotenuse." In other words, the distance from the bise of the prie to the anchor should be measured and squared. To this should be addied the square of the pole length to the point where the guy is fastened. The sumare root of this sum will be the length of the guy.

Guy wires should be broken up by strain insulators, to avoid the possibility of rusonance at the transmitting frequency. Common practice is to insert an insulator near the top of each guy, within a few feet of the pole, and then eut each section of wire between the insulators to a length which will not be resonant cilher on the fundamental or har-
monics. An insulator every 25 feet will he satisfactory for frequencies up to 30 Mc . The insulators should be of the "egg" type with the insulating material under compression, so that the gny will not part if the insulator breaks.

Twisting guy wires onto "egg" insulators may be a tedious job if the guy wires are long and of large gatuge. The simple time- and fingersaving device shown in Fig. 1057 can be made

Fib. 1057 - Using a lever for twisting heavy gay wires.
from a piece of heavy iron or steel by drilling a hole about twice the dianneter of the guy wire about a half inch from one end of the piece. The wire is passed through the insulator, given a single turn by hand, and then held with a pair of pliers at the point shown in the sketel. By passing the wire through the hole in the iron and rotaling the iron as shown, the wire may be quirkly and neatly twisted.

Guy wires may be anchored to a tree or building when they happen to be in convenient spots. For small poles, a 6 -foot length of 1 -inch pipe driven into the ground at an angle will suffice. Additional bracing will be provided by using two pipes, as shown in Fig. 1058.

Fig. 1058 - Pipe guy anchors. (lne pipe is sufficient for small masts, but two installed as shown will provide the additional strength required forthelarger poles.

C. Halyards and Pulleys

Halyards or ropes and pulleys are important items in the antenna-supporting system. Particular attention should be directed toward the choice of a pulley and halyards for a high mast since replacement, once the mast is in position, may be a major undertaking if not entirely inpossible.

Galvinized-iron pulleys will have a life of only a year or so. Lispecially for coastal-area installations, marine-type pulleys with hardwood blocks and bronze wheels and bearings should be used.

An arrangement which has certain advantages over a pulley when a mast is used is

An
 ntenna
 S_{4}

shown in Fig. 1059. In case the rope breaks, it may be possible to replace it by heaving a line over the brass rod, making it unnecessary to climb or lower the pole.

Fig. 1059 - This device is much easicr than a pulley to "rethread" when the rope breaks.

For short antennas and temporary installations, heavy clothesline or window sash rord may be used. However, for more permanent jobs, $3 / 3$-inch or $1 / 2$-inch waterproof hemp rope should be uscol. Even this should be repleced abont onece a vear to insure aganst breakige

Nylon rope, used cluring the war as glider tow rope, is, of course, one of the best materials for halyards, since it is weatherproof and has extremely long life.

It is advisable to carry the pulley rope back up to the top in "endless" fashion in the manner of a flag hoist so that. if the antenna breaks close to the pole, there will be a me:ms for pulling the hoisting rope back down.

© Bringing the Antenna or Transmission Line into the Station

The antenna or transmission line should be anchored to the outside wall of the building, as shown in Fig. 1060, to remove strain from the lead-in insulators. Holes cut through the walls of the building and fitted with feed-through insulators are undoubtedly the best means of bringing the line into the station. The holes should have plenty of air clearance about the conducting rod, especially when using tuned lines which develop high voltages. Probably the best place to go through the walls is the trimming board at the top or bottom of a win-

Fig. 1060 - A - Anchoring feeders takes the strain from feedthrough insulators or window plass. B - Coing through a fulllength sereen, a cleat is fastened to the frame of the sercen on the inside. Clearance holes are cut in the cleat and also in the screen.
dow frame which provides flat surfaces for lead-in insulators. Cement or rubber gaskets may be used to waterproof the exposed joints.

Where such a procedure is not permissible, the window itself usually offers the best opportunity. One satisfactory method is to drill holes in the glass near the top of the upper sash. If the glass is repitaced by plate glass, a stronger job will result. Plate glass may be obtained from automobile junk yards and drilled before placing in the frame. The glass itnelf provides insulation and the transmission line may be fastened to bolts fitting the holes. Rubber gaskets will render the holes waterproof. The lower sash should be provided with stops to prevent damage when it is raised. If the window has a full-length sereen, the seheme shown in Fig. 1060-B maty be used.

Fig. 1061 - An antemaleadin pancel may he placed over the top sash or under the Lower sash of a window. Sealing the overlapping joint will he.lp make it weatherproof.

As a less permanent method, the window may be raised from the bottom or lowered from the top to permit insertion of a board which carries the feed-through insulators. This lead-in arrangement can be made weatherproof by making an overlapping joint betweon the board and window sash, ass shown in Fig. 1061. and covering the opening between sashes with a sheet of soft rubber from a discarded inner tube.

© Lightning Profection

An ungrounded radio antenna, particularly if large and well elevated, is a lightning hazard. When grounded, it provides a measure of protection. Therefore, grounding switches or lightning arresters should be provided. Examples of construction of low-loss arresters are shown in Fig. 1062. At A, the arrester electrodes are mounted by means of stand-off insulators on a fireproof asbestos board. At 13 , the cleretrodes are enclosed in a standard steed outlet box. The gaps should be made as small as possible without danger of breakdown during operation. Lightning-arrester systems require the best ground eonnection obtainable.

The most positive protection is to ground the antenna system when it is not in use; grounded flexible wires provided with elips for connection to

$F \ddot{H}_{\text {s. }}$. 1062 - Low-loss lightning arresters for transmitters.
the feeder wires may be used. The ground lead should be short and run, if possible. direetly to a driven pipe or water pipe where it enters the ground outside the building.

C. Antenna Switching

It is often desirable, partieularly in D.E work, to use the same antenna for transmitting and receiving. This requires switching of antemna from transmitter to receiver. One of two general systems mity be employed. In the
first, the transmitter and receiver each are provided with an antenna tuner, and the antenna transmission line is switched from one to the other. In the second system, une antenna tuner is provided for each antenna and the switch is in the low-impedance coupling line. Several typiral arrangements are shown in Fig. 1063. Frequently relays with low-capacity contacts are substituted for switches.

C. Rotary-Beam Construction

It is a distinct advantage to be able to shift the direetion of a beam antenna at will, thus socuring the bencfits ol power gain and directivity in any desired compass direction. A favorite method of doing this is to construet the antenna so that it can be rotated in the horizontal plane. Obviously, the use of such rotatable antemnas is limitod to the higher frequencies - 14 Me. and above - and to the simpler antemma clement combinations if the structure size is to be kept within practicable bounds. For the 14-and 2S-Mc. bands such anternas usually consist of two to lour clements and are of the parasitie-array type described emrlier in this chapter. At 00 Me. and highor it becomes possible to use more elaborate arrabs because of the shortor wavelength and thus obtain still higher gain. Antemnas for these bands are desribed in Chapter Seventeen.

The problems in rotary-bean construction are those of providing a suitable mechanical support for the antenna clements, furnishing a means of rotation, and attaching the transmission line so that it does not interfere with the rotation of the system.

Elements - The antenna clements usually are made of metal tubing so that they will be at la:ist partially sell-supuorting, thus simplifying the supporting structure. The large di-

Fig. 1063 - Antonnarwitching arrangements for various types of antemas and compling systems. A - For tuncd lines with separate antenna tuncrs or low-impedance lines. B - F'or a voltage-fed antenna. C - For a tumed line with a single antenna tuncr. D - For a voltage-fed antenna with a simple tuncr. E - Fur wo tunedrline antennas with a tuner for each antenna or for two low-impetanec lines. F - For combinations of several two-wire lines.

Fig. 1064 - Fasily-huilt supporting structure for horizontal rotary beams. Nade ehiefly of $1 \times 2^{\prime \prime}$ wood strip, it is strong yet lightweight. Antenna elements are supported on stand-off insulators on the arms, E. The length of the D sections will depend upon the element sparing, while the length of the $l:$ nections and the spacing between the D sections should be $1 / 4$ to $1 / 2$ the length of the antenna elements.
ameter of the conductor is beneficial also in reducing resistance, which becomes an important consideration when close-spaced elements are used.

Dural tubes often are used for the clements, and thin-walled corrugated steel tubes with copper coating also are available for this purpose. The elements frequently are constructed of sections of telescoping tubing, making length adjustments for tuning quite casy. Eleetricians' thin-walled conduit also is suitable for rotary-beam elements.

If steel elements are used, special precautions should be taken to prevent rusting. Even cop-per-coated steel does not stand up indefinitely, since the coating usually is too thin. The elements should be coated both inside and out with slow-drying aluminum paint. For coating the inside, a spray gun may be used, or the paint may be poured in one end while rotating the tubing. The excess paint may be caught as it comes out the bottom end and poured through again until it is certain that the entire inside wall has been covered. The ends should then be plugged up with corks sealed with glyptal varnish.

Supports - The supporting framework for a rotary beam usually is made of wood, using as lightweight construction as is consistent with the required strength. Generally, the frame is not required to holel much weight, but it must be extensive enough so that the antema elements can be supported near enough to their ends to prevent excessive sag, and it must have sufficient strength to stand up under the maximum wind in the locality. The design of the frame will depond chiofly on the size of the antenna elements, whether they are mounted horizontally or vertically, and the method to be used for rotating the antenna.

The general preference is for horizontal
polarization, primarily because less height is required to clear surrounding obstructions when all the antenna elements are in the horizontal plane. This is important at 14 and 28 Mr . where the elements are fairly long.

An easily-constructed supporting frame for a horizontal array is shown in Fig. 1064. It may be made of 1×2-inch lumber, preferably oak, for the center sections B, C, and D. The outer arms. E, and erossbraces, F, may be of white pine or cypress. The square block, A, at the center supports the whole structure and may be coupled to the pole by any convenient
 means that permits rotation. The bearing shown in Fig. 1068, for example, may easily be modified for the purpose. Altermatively, the block may be firmly fastened to the pole and the latter rotated in bearings affixed to the side of the loouse.

Another type of construction is shown in Fig. 1065, with details in Figs. 1060 and 1067. This method, suitable for 28 -Mc. beams, uses a section of ordinary ladder as the main support, with crosspieces to hold the tubing antenna elements. Fig. 1066 also indicates a method of adjusting the lengths of the parasitic elements and bringing the transmission line down through the supporting pole from a delta match. The latter is especially adapted to construction in which the pole rather than the framework alone is rotated.

The problem of feeding a parasitic array is somewhat simplified if the elements are mounted vertically, since in such a case it is not necessary to rotate the driven element but only to rotate the parasitic clements around it. Thus no special provision need be made for maintaining contact to the feeders through a complete rotation. A suitable method of construetion is shown in Fig. 1008.

Fig. 1065 - Aladder-supported 3 -element 28-Mc. beam. It is mounted on a pipe mast that projects through a hearing in the roof and is turned from the attic operating room. (WlMRK in August, 1946, QST.)

Fig. 1066 - Top-view drawing of the ladder support and mounted elements. Lengths of director and reflector arc adjusted by means of the shorting bars on the small stubs at the center. The drawing also slows a method for pulling off the wires of a delta mateh and feeding 300 -ohm Twir-Lead transmission line through the pipe support.

Fecder connections - For beams which rotate only 180 degrees, it is relatively simple to bring off fecders by making a short section of the feeder, just where it leaves the rotating momber, of flexible wire. Einough slack should be left so that there is no danger of breaking or twisting. Stops should be placed on the rotating shaft of the antenna so that the feeders cannot "wind up." This method also can be used with antennas which rotate the full 360 degrees, but again a stop is necessary to avoid janming the feeders.

For continuous rotation, the sliding contact is simple and, when properly built, quite practicable. Fig. 1069 shows two methods of making sliding contacts. The chief points to keep in mind are that the contact surfaces should be wicle enough to take care of wobble in the rotating shaft, and that the contact surfaces should be kept clean. Spring contacts are essential, and an "umbrella" or other scheme for kecping rain off the contacts is a desirable addition. Sliding contacts preferably should be used with nomresonant open lines where the impedance is of the order of 500 to 600 ohms so that the current is low.

The possibility of poor conncetions in sliding
contaets can be avoicled by using inductive coupling at the antenna, with one coil rotating on the antenna and the other fixed in position, the two coils being arranged so that the coupling does not change when the antenna is rotated. Such an arrangement is shown in Fig. 1070, adapted to an antenna system in which the pole itself rotates. A quarter-wave feeder system is connected to a tuned piek-up circuit whose inductance is coupled to a link. In the drawing, the link coil connects to a twisted-pair transmission line, but any type of line such as flexible coaxial cable can be used. The circuit would be adjusted in the same way as any link-

Fip. 1068 - A practical vertical-element rotatable array for 28 Me. The driven anteona is fixed and the reflector and director elements, parasitically excited, rotate aroundit. Close-spaced clements may be used if desired.
coupled circuit, and the number of turns in the link should be varied to give proper loading on the transmitter. The rotating coupling circuit of course tuncs to the transmitting frequency. The whole thing is equivalent to a link-coupled

Fig. 1067 - Detail of clement supports for the ladder beam. antenna tuner mounted on the pole, using a paralleltuned tank at the end of a quarter-wave line to center feed the antenna. To maintain constant coupling, the two coils should be quite rigid and the pole should rotate without wobble. The

Fig. 1069 - Irleas in sliding cootarts for retatalile anterna forder comnection to permit continuous rotation. 'lhe broad bearing surfaces take care of any woble in the rutating mast or driving shaft.
two coils might be made a part of the upper bearing assembly holding the rotating pole in position.

Other variations of the incluctive-coupled system can be worked out. The tumed virenit might, for instance, be placed at the enel of a 600-ohm line, and a one-turn link used to couple directly to the center of the antemna, if the construction of the rotary member permits. In this case the coupling can be varied by changing the $L /($? ratio in the tuned eirenit. For mechanical st rength the coils preferably should be mate of copper tubing, well braced with insulating strips to keep) them rigid.

Fig. 1070 - Onc methon of transmission line-antema system coupling which eliminates sliding contact.. The low-impedance line is link-coupled to a tunted line.

Rolation - It is convenient to use a motor to rotale the beam. but it is not always neressary, especially if a rope and pulley arrangement sueh as that shown in Fiy. 1068 can be brought into tiso oporating room. If the pole can be mounted near a window in the operating room, hand rotation of the beam will work out quite well. If the use of a rope and pulleys is impracticable, motor drive is about the only alternative. The speed of rotation should not be too great - 1 or 2 r.p.m. is about right. This recpuires a considerable genr reduction from the usual $1750-$ r.p.m. speed of small induction motors; a large reduction is advantageous because the gear train will prevent the beam from turning in weathervane fashion in at wind. The ordinary structure does not require a great cleal of power for rotation at slow speed, and a $1 / 8$-h.p. motor will be ample. Even small series motors of the scwing-machine type will devolop enough power to turn a 28-Mc. beam at slow speed. If possible, a reversible motur should be used so it will not, be neeessary to go through nearly 360 degrees to bring the beam back to a direction only slightly different, but in the opposite direction of rotation, to the direction to which it may be pointed at the moment. In cascs where the pole is stationary and only the sumporting framework rotates it will be necessary to mount the motor and gear train in a housing on top of the pole, but if the pole rotates the motor can usually be installed in a more accessible location.
larts from junked automobiles often provide gear trains and bearings for rotating the anterna. Rear axles, in particular, can readily be aldapted to the purpose. Driving motors and gear housings will stand the weather better if given a coat of aluminum paint followed by t.wo coats of enamel and a coat of glyptal vamish. Even commercial units will last longer if troated with glyptal varnish.

Lead-sheathed twin-conductor cable is recommended for power wiring to the motor to prevent r.f. pick-up. It will also reduce "hash" if a series-wound notor is used. With such motors it is wise to install r.f. filters at the motor terminals as an additional precaution agninst interferenee to reception, since it is usual practiee to determine the proper direction for the beam by rotating it while listening to the station it is desired to work and setting it at the point that gives maximum signal strength.

Morkshop Practice

C Tools

While an easirr, and perhaps a better, joh can be done with a greater variety of tools available, by taking a little thought and care it is possible to turn out a fine piece of equipment with only a few of the common hand tools. A list of tools which will be indispensable in the construction of radion equipment will be found on this pagc. With these tools it should be possible to perform any of the required operations in preparing pancls and metal chasis for assembly and wiring. A few additional tools will make certain operations casier, so it is a good idea for the amateur who does constructional work to add to his supply of tools from time to time. The following list will be found helpful in making a selection:

Bench vise, 4-inch jaws.
Tin shears, $10-\mathrm{inch}$, for cutting thin sheet metal.
Taper reamer, $1 / 2$-incl, for enlarging small holes.
Taper reamer, 1 -inch. for onlarging holes.
Countersink for brace.
Carpenter's plane, 8 to 12 -inch, for woodworking.
Carpenter's saw, cross-cut.
Motor-driven emery whel for grinding.
Long-shank serewdriver with serew-holding clip for tight places.
Set of "Spintite" socket wrenches for hex nuts.
Set of small flat open-end wrenches for hex nuts.
Wood chisel, 1 g-inch.
Cold chisel, 1 -inch.
Wing dividers, 8 -inch, for scribing circles.
Set of marchinc-serew tapss and dies.
Folding rule, (i-foot.
Dusting brush.
Se veral of the pieces of light woodworking machinery, often sold in hardware stores and mail-order retail stores, are ideal for amateur radio work, esperially the drill press, prinding head, band and circular saws, and joiner, Although not essemtial, they are desirable should you be in a position to atequire them.

c Care of Tools

The proper care of tools is not alone a matter of pride to a good workman. He also realizes the energy which may be saved and the annoyance whiel may be avoided by the possession of well-kept sharp-edged tuols. A few
minutes spent now and then with the oil stone or emery whecl will maintan the fine cutting edges of knives, drills, chisels, etc.

Drills should be sharpened at frequent intervals so that grinding is kept at a minimum each time. This makes it easier to maintain the rather critical surface angles required for be.st cutting with least wear. Oceasional oil-stoning of the cutting edges of a drill or reamer will extend the time between grindings. Stoned cutting edges also will stand more feed and speed.
The soldering iron can be kept in grood condition by keeping the tip well timed with solder and nat allowing it tos run at full voltage for long periods when it is not being used. After each period of use, the tip should be removed and cleaned of any scale which may have accumulated. An oxidized tip may be cleaned by dipping it in sal tummoniac while hot and then wiping it rean with a rag. If the tip becomes pitted, it should be filed until smooth and bright, and then tinned by dipping it in solder.

All towle should be miped orcasionally with an oily cloth to prevent rust.

indispensable tools

Inongrlose pliers, G-ineh.
Diagomal enting pliers, (b-ineh.
Screwhiver, fito 7 -imoh, f -imoh llamle.
serewdriver it to joinch, goinch bilale.
Soratel awl or seriluy for tharking lines.
('ombination square, 12 -inch, for lasitige out work.
Hand drill, 'finch clunck or larger, 2 -speed tyone nreferable.
filedric suldering irsh, 100 watts.
facksaw, 10-iwh homdes.
(chiter futheh for marking luble centers.
Matmmer, lall jueen, 1-1b, head.
Heary knife.
Yardstick or ollier wrimghterlge.
Carmenter's latace with adjustable hole cutter or sockerehole punclise (see text).
latir of small C-clamps for holding work. Imare, rearse. far file.
Larige romind or ratetail file, $1 / 2$-inch diametor.
Ihree or forr small ind anedium files-flat, round. half-roumel, triamgular.
Drills, particularly !írinch and Nos. 18, 28, 33, 42 and 50 .
Combination ail stome for sharpening tools.
Solder and sthlering paste (noncorroding).
Mediam-weight machine oil.

CUseful Materials

small stocks of various misecllancous materials will be required in constructing radio apparatus, most of which are available from hardware or radio supply stores. A representative list follows:
$1 / 2 \times 1 / 16$-inch brass strip for brackets, etc. (half-hard for bending).
1/-inch square brass rod or $12 \times 1 / 2 \times 1 / 16-$ ineln angle brass for corner joints.
K-inch diameter round brass rod for shaft extensions.
Machine screws: Round-heal and flat-hemat, with muts to fit. Most usicful sizes: 4-36, 6-32 and $8-32$, in lengths from $1 / 4$ inch to 11/2 inches. (Nickel-plated iron will be found satisfactory except in strong r.f. fields, where brass should be used.)
Bakelite and hard-rubber scraps.
Soldering lugs, panel bearings, rubber grommets, terminal-lug wiring strips, vat-nished-cambric insulating tubing.

Machine screws, nuts, washers. soldering lugs, etc., are most reasonably purchased in quantities of a gross.

© Chassis Construction

With a few essential tools and proper procedure, it will be fommed that building radio gear on a metal chassis is no more of a chore than building with wood, and a more satisfactory job results.

The placing of components on the chassis is shown quite clearly in the photomraphs in this Handloook. Aside from rertain essential dimensions, which usually are given in the text, cxact duplication is mot neressary.

Mush trouble and energy an be saved by spending sufficient time in phaning the joh. When all details are worked ont beforehind the actual constraction is greatly simplified.

Cover the top of the chassis with a piece of Wrapping paper or, preferably, cross-section paper, folding the edges down over the sides of the chassis and fastening with adherive tape. Then assemble the parts to be mounted on top of the chassis and move them abont until a satisfactory arrangement has been found, kecping in mind any parts which are to be mounted underneath, so that interferences in mounting may be avoided. Place condensers and other parts with shafts extending through the painel first, and arrange them so that the controls will form the desired pattern on the panel. Be sure to line up the shafts squarely with the chassis front. Locate any partition shields and panel brackets next, and then the tube sockets and any other parts, marking the mounting-hole centers of each accurately on the paper. Watch out for condensers whose shafts are off center and do not line up with the mounting hesles. Do mot forget to mark the centers of socket holes and holes for leads under i.f. trinsformers, etc., as well as holes for wiring leads.

By means of the square, lines indirating accurately the centers of shafts should be cxtended to the front of the chassis and marked on the panel at the chassis line, the panel being fastened on temporarily. The hole centers may then be punched in the chassis with the center punch. After drilling, the parts which re-

Fif. 1101 - Method of measuring the heiphts of cenndernser shafts, ete. If the sfruare is auljustable, the end of the seale should be set flush with the face of the head.
quire mounting underneath may be located and the mounting holes drilled, making sure by trial that no interferences exist with parts mounted on top. Mounting holes along the front edge of the chassis shomld be transforred to the panel, hy once ag:in fastening the panel to the chassis and marking it from the rear.

Next, mount on the chassis the eondensers and any other parts with shafts cxtending to the panel, and measure atecurately the height of the eenter of each shaft abowe the chassis, as illustrated in Fig. 1101. The horizontal displacement of shafts having already been marked on the chassis line on the panel, the vertical displacement can be measured from this line. The shaft ecnters maty now be marked on the back of the panel, and the holes drilled. Holes for any other panel equipment coming above the chassis line maty then be marked and drilled, and the remainder of the apparatus mounted.

(c) Cutting and Bending Sheet Metal

If a sheet of metal is too large to be cut conreniently with a hacksaw, it maly be marked with seratches as deep as possible along the line of the eut on both sides of the sheet and then clamped in a vise and worked batek and forth nutil the sheet breaks at the line. Du, not earry the bending so far that the break begins to waken; otherwise the edge of the sheet maty become bent. A pair of iron bars or pieces of heavy angle stock, as long or longer than the width of the sheret. to hold it in the vise will make the job easier. C-elamps may be used to keep the bars from sproading at the ends. The rongh edges may be smoothed up with a file or by placing a large piece of emery cloth or sandpaper on a fiat surface and running the edge of the metal back and forth over the sheet.

Bends may be made similarly. The sheet should be seratched on both sides, but not so deeply as to cause it to break.

© Drilling and Cutting Holes

When drilling holes in metal with a hand drill it is important that the centers first be located with a center punch, so that the drill point will not "walk" away from the center" when starting the lole. Care should be taken
not to use too much pressure with small drills， which bend or break easily．When the drill starts to break through，special care must be used．Often it is an advantage to shift a two－ speed drill to low gear at this point．Holes more than $1 / 4$－inch in diameter may bestarted with a smaller drill and reamed out with the larger chrill．

The chuck on the usual type of hand drill is limited to $1 / 4$－inch drills．Althourh it is rather tedious，the $1 / 4$－inch hole may be filed out to larger diameters with round files．Another method possible with limited tools is to drill a series of small holes with the hand drill along the inside of the diameter of the large hole， placing the holes as close together as possible． The center may then be knocked out with a cold chisel and the edges smoothed up with a filc．Taper reamers which fit into the carpen－ ter＇s brace will nake the job easicr．A large rat－ tail file clamped in the brace makes a very good reamer for holes up to the diameter of the file， if the file is revolved counterdockwise．

For soeket holes and other large round holes， an adjustable cutter designed for the purpose may be used in the brace．The entter should be kept well－sharpened．Oceasional application of marhine oil in the cutting groove will help．The cutter first should be tried out on a block of wood，to make sure that it is set for the correct diameter．Probably the most convenient device for cutting sorket holes is the socket－ hole punch．The best type is that which works by turning a take－up serew with a mrench．

Fig． 1102 －To cut rertangular holes in a chassis， corner holes may he filed out as shown in the shaded portion of B ，making it possible to start the hacksaw blade along the cutting line．A shows how a single－ ended bandle may be constructed for a hacksaw blade．

Square or rectangular holes may be cut out by making a row of sinall holes as previously described，but is more easily done by drilling a 3 －inch hole inside each corner，as illus－ trated in Fig．1102，and using these holes for starting and turning the hacksaw．The sock－ et－hole punch also may be of considerable， assistance in cutting out large rectangular openings．

The burrs or rough edges which usually
result after drilling or cutting holes may be re－ moved with a file，or sometimes more con－ veniently with a sharp knife or chisel．It is a good idea to keep an old wood chisel sharpened and available for this purpose．A burr reamer will also be useful．

C．Twist Drills

Twist drills are made of either high－speed steel or carbon steel．The latter type is more common and will usually be supplied unless specific recuest is made for high－speed drills． The carbon clrill will suffice for most ordinary equipment construction work and costs less than the high－speed type．

While twist drills are available in a number of sizes those listed in bold－faced type below

NUMIBERED DRILL SIZES

Number	$\begin{aligned} & \text { Diameter } \\ & (\text { mils }) \end{aligned}$	Irill Clear Screw	Drilled for Tapping Iron Stesl or Brass
1	228.0	－	－
2	221.0	12－24	－
3	213.0	－	14－24
4	209.0	12－20	－
5	205.0	－	
6	204.0	－	
7	201.0	－	
8	199.0	－	－
9	196.0	－	
10	193.5	10－32	－
11	191.0	10－24	－
12	189.0	－	－
13	18.5 .0	－	
14	182.0	－	
15	180.0	－	－
16	177.0	－	12－24
17	173.0	－	－
18	169.5	$8-32$	－
19	166.0	－	12－20
20	161.0	－	
21	159.0	－	10－32
22	157.0	－	－
23	154.0	－	－
24	152.0	－	
25	149.5	－	10－24
26	147.0	－	－
27	14.0	－	－
28	140.0	8－32	－
29	136.0	－	8－32
30	128.5	－	－
31	120.0	－	－
32	116.0	－	－
33	113.0	4－36 4－40	－
$3 \pm$	111.0	－	－
35	110.0	二	6－32
36	106.5	－	－
37	10.4 .0	－	－
38	101.3	－	－
39	009.5	3－48	－
40	098.0	－	－
41	096.0	－	－
42	093.5	－	4－36 4－40
43	089.0	2－56	－
44	08650	－	－
45	088.0	－	3－48
46	081.0	－	－
47	178.5	－	－
48	076.0	二	－-46
49 50	073.0 070.0	二	2－46
51	067.0	－	－
52	063.5	－	－
53	050.5	二	二
54	055.0	－	－

[^1]
$W_{\text {orrkshop }} P_{\text {ractice }}$

will be the drills most commonly used in construction of amateur radio equipment. It is usually desirable to purchase several of each of the commonly-used sizes rather than a quantity of odd sizes; most of which will be used infrequently, if at all.

© Cutting Threads

Brass rod may be threaded, or the damaged threads of a screw repaired, by the use of dies. Holes of suitable size (see drill chart) may be threaded for screws by means of taps. Taps and dies are obtainable in all standard machinescrew sizes. A set usually consists of taps and dies for $4-36,6-32,8-32,10-32$ and $14-20$ sizes, with a holder suitable for use with either tap or die. The die may be started easily by first filing a slarp taper or bevel on the end of the rod. In tapping a hole, extreme care should be used to prevent breaking the tap. The tap should be kept at right angles to the surface of the material, and rotation should be reversed a revolution or two whenever the tap begins to turn hard. With care, holes can be tapped rapidly by clamping the tap in the chuck of the hand drill and using slow speed. Machine oil applied to the tap usually makes cutting easier and sticking less troublesome.

(I) Crackle Finish

Wood or metal parts can be given a crackle finish by applying one coat of clear Duco or Tri-Seal and allowing it to dry over night. A coat of Kem-Art Metal Finish is then sprayed or applied thickly with a brush, taking care that the brush marks do not show. This should be allowed to dry for two or three hours and the part should then be baked in the kitchen oven at 215 degrees for one-and-one-half hours. This will produce a regular commercial job. This finish, which comes in several different colors, is made by Sherwin-Williams Paint Co.

(1) Cleaning and Finishing Metal

Parts made of aluminum can be cleaned up and given a satin finisl, after all holes have been drilled, by placing them in a solution of lye for one-half to three-quarters of an hour. Three or four tablespoonfuls of lye should be used to each gallon of water. If more than one piece is treated in the same bath, each piece should be separated from the others so as to expose all surfaces to the solution. Overlapping of pieces may result in spots or stains.

【 Wiring

A popular type of wire for receivers and low-power transmitters is that known as "push-back" wire. It comes in sizes No. 16, 18,20 , etc., which are sufficiently large for all power circuits except filament. The insulating covering, which is sufficient for circuits where voltages do not exceed 400 or 500 , can be pushed back a few inches at the end, making

WRONG WAY
Fig. 1103 - Right and wrong methods of lacing cable. With the right way the leading line is pinched under each turn and will not loosen if a break occurs in the lacing.
cutting of the insulation unnecessary when making a connection. Filament wiring should be done with sufficiently large conductors to carry the required current without appreciable voltage drop (see Copper Wire Table, Chapter Twenty). Rubber-covered house-wire sizes No. 14 to No. 10 are suitable for henvy-current transmitting tubes, while No. 18 to No. 14 flexible wire is satisfactory for receivers and low-drain transmitting tubes where the total length of the leads is not excessive.

Stiff bare wire, sometimes called bus wire or bus bar, is most favored for the high r.f.-potential wiring of transmitters and, where practicable, in receivers. It comes in sizes No. 14 and No. 12 and is usually tin-dipped. Softdrawn antenna wire also may be used. Kinks or bends can be removed by stretching 10 or 15 feet of the wire and then cutting it into small usable lengths.

The insulation covering power wiring which is to carry high transmitter voltages should be appropriate for the voltage involved. Wire with rubber and varnished cambric covering, similar to ignition cable, is available from radio parts dealers. The smaller sizes have sufficient insulation to be safe at 1000 to 1500 volts, while the more heavily insulated types should be used for voltages above 1500 .

It is usually advisable to do the power-supply wiring first. The leads should be bunched together as much as possible and kept down close to the surface of the chassis. The lacing of power wiring in cable form not only improves its appearance but also strengthens the wiring. Fig. 1103 shows the correct way of lacing cabled wires. When done correctly the leading line is held tightly pinched in place after tension has been removed, and therefore does not loosen readily. When the wrong method is used the turns will loosen up as soon as tension is removed.

Chassis loles for wires should be lined with rubber grommets which fit the hole, to prevent chafing of the insulation. In cases where powersupply leads have several branches, it is often convenient to use fiber terminal strips as anchorages. These strips also form handy mountings for wire-terminal resistors, etc. When any particular unit is provided with a nut or thumbscrew terminal, soldering-lug wire terminals to fit are useful.

High-voltage wiring should have exposed points kept at a minimum and those which cannot be avoided rendered as inaccessible as possible to aecidental contact.

© Soldering

The secret of good soldering is in allowing time for the joint, as well as the solder, to attain sufficient temperature. Enough heat should be applied so that the solder will molt when it comes in contact with the wires being joined, without touching the solder to the iron.

Wartime solder, which is still with us, has a much smaller ratio of tin to lead, requires considerably more heat, and its use makes it especially important that the iron be kept clean at all times. More care must be exercised in making the joint because this solder does not flow as readily, and also has a tendency to crystallize.

Soldering paste, if of the noncorroding type, is extremely helpful when used correctly. In gencral, it should not be used for radio work except when necessary. The joint should first be warmed slightly and the soldering paste applied with a piece of wire. Only the bit of paste which melts from the warmth of the joint should be used. If the soldering iron is clean it will be possible with one hand to pick up a drop of solder on the tip of the iron which ean be applied to the joint, while the other hand is used to hold the connecting wires together. 'The use of excessive soldering paste causes the paste to spread over the surface of adjacent insulation, causing leakage or breakdown of the insulation. Except where absolutely necessary, solder should never be depended upon for the mechanical strength of the joint; the wire should be wrapped around the terminals or clamped with soldering terminals.

Do not attempt to make ground connections to a cadmium-plated chassis by soldering to the surface of the chassis, since the plating may be loosened by the heat and later fall off, breaking the connection. Drill a hole in the chassis and solder the wire in the hole.

C. Construction Notes

Lockwashers should be used under nuts to prevent loosening with use, particularly when mounting tube sockets or plug-in coil receptacles subject to frequent strain.

If a control shaft must be extended or insulated, a flexible shaft coupling with adequate insulation should be used. Satisfactory support for the shaft extension can be provided by means of a metal panel bearing made for the purpose. Never use panel bearings of the nonmetal type unless the condenser shaft is grounded. The metal bearing should be connected to the chassis with a uire or grounding strip. This prevents any possible danger of shock.

The standard way of mounting toggle switches is with the switch "On" when the lever is in the upward position.

Variahle condensers and resistors, having one-hole mountings, should be firmly fastened using the special lockwashers provided for shaft nuts.

The use of fiber washers between ceramic insulation and metal brackets, serews or nuts will prevent the ceramic parts from breaking.

© Coil Winding

Dimensions for coils fur the various units described in the constructional chapters are given under the circuit diagrans. Where no wire size is given, the power is sufficiently low to permit use of any available size within reason.

Unless a close-wound winding is clefinitely specified, the number of turns indicated should be spaced out to fill the specified length on the form. The length should be marked on the form and holes drilled opposite the pins to which the ends of the winding are to connect. Scrape one end of the wire and pass it through the lower hole in the form to the pin to which the bottom end of the winding is to comnect, and solder this end fast. Unroll a length of wire approximately sufficient for the winding, and clamp the spool in a vise so it will not turn. The wire should be pulled out straight and the winding started by turning the form in the hands and walking toward the vise. A fair tension should be kept on the wire at all times. The spacing can be judged by eye. If, as the winding progresses, it becomes evident that the spacing is going to be incorrect to fill the required length, the winding ean be started over again with a different spacing. If the spacing is only slightly off, the winding may be finished, the top end fastened, and the spacing corrected by pushing each turn. When complete, the turns should be fastened in phace with coil cement. After a little practice, the job of determining the correct spacing will not be difficult.

Sometimes it is necessary to adjust the number of turns on a coil experimentally. The easiest way to do this is to bring a wire ups from one of the pins, extending it through a hole in the form for a half inch or so. The end of the winding may then be soldered to this extension rather than to the pin itself, and the nuisance of repeatedly fishing the wire through the pin avoided until the correct size of the winding has been detcrmined.

(C Coil Cement

Duco cement, obtainable universally at hardware, stationery or 5 -and-10-cent stores, is satisfactory for fastening coil turns. For small coils, a better-looking job will result if it is thinned out with acetone (amyl acetate), sometimes referred to as banana oil. If desired, the solution may be made thin enough to permit application with a brush.

Special low-loss coil "dopes" are available, including some with a polystyrene base.

Receiver Construction

(1. A Two-Tube Superheterodyne Receiver

Although all the advantages of the superhet-arodyme-type reeoiver canoot be secured without going to rather elaborate multitube circuits, it is possible to use the superhet prineiple to overeme most of the disadvantages of the simple regenorative recoiver. These are chiefly the neressity for rritioal adjustment of the regeneration control with tuming, antenna "dead spots." latok of stability (both in the detector cirenit itself amd beratuse of slight changes in fredueney whon the antemat swings with the wind). and blorking, or the ternleney forstrong signals to pull the detertor into zerobeat. These reffeets can be largely eliminated by making the regenerative delector operate on a fixed low frequeney and dexigning it for maxintum stability. The ineoming signal is then converted to the fixed detector frequeney before being deterted.

A twotube recover operating on this principle is shown in frigs. l201 to 1205.

The circuit diagram is given in Fig. 1202 . A 6 kis is used to comvert the frequency of the incoming signal to the fixed or intermediate frequency, and the two triode sections of a 6*NN serve as the regenerative detector and atudio amplifier respectively. $L_{1} C_{1}^{\prime}$ is the r.f. ricuit, funed to the signal, and L_{2} is the antemman doupling coil. ('s is a by-pass condenser arrosis the la-volt hattery used to bias the signat grid of the Gixs. The high-frequency

[^2]

Fig. 1202 - (irruit diagram of tho: wo-tuhe superIneteronlyne recciver.

($-1-1 . \overline{-\mu} \mathrm{fd}$. variable (Millen 20015).
(5 - $2-110-\mu \mu \mathrm{fl}$. silvered mica.
(6 - 0. $11-\mu \mathrm{fd}$. paper.
($\therefore-0.00 . \overline{-}-\mu \mathrm{fd}$. mica.
($8 . \mathrm{Cg}-100-\mu \mu \mathrm{fl}$, miat.

R2-1 megohm, $1 / 2$ watt.
1.1, I.2, I 3, I $_{4}$-See woil tahle.
1.5- $\overline{5} 5$ turn $=$ ㄴo. 30 d.s.r... clase-wound on $3 / 4-i n \mathrm{~h}$ diam. form (hational I'liF゙-2); inductance to uh.
I.g - 18 turns No. 30 d.w.e, elose-wound on same form as L_{5}; sec Fig. I203.
$1 k_{1}-1.5-v o l t$ bias battery.
1 - Oprn-circuit jack.
RFC - 2.i-mih. r.f. chohe.
S-S.p.s.t. tognle swituh.
'I' - Interstand andio tranformar (Stancor A-1205).
' $\mathrm{I}_{2}-6.3$-volt dilament transformer.
os-illator tank circuit is $L_{-3} \mathrm{C}_{3} \mathrm{C}_{4}$, with C_{3} for band-setting and ('a for bandspread.

The i.f. tuned eireuit (or' reswerative detretor circuit) is $L_{5}\left({ }^{2}\right.$. . This must he a high-C rircuit if stability better than that of an ordinary regenerative detector is to be serured. The frecpuency to which it is tuned shombld be in the vieinity of 1600 ke . L.s and its tickler coil. L_{6}. are wound on a smatl form, and L_{5} is tuned by a fixed mima condenser of the low-drift type. Since these condensers are rated with a capacity toleratace of $\overline{5}$ per cont, it is sulliciont to wind L_{5} as specified under Fio. 1203. The resulting resonant freduteney will be in the correct region. No manual funing is necessary, and therefore the freduence of this circuit need not be arljusted. ('2 is the regenorationcontrol condenser, isolated from the d.e. supply by the choke, RP' Only enourh turns need be used on L_{6} to make the detector osidilate readily when (ra is at half capacity or more.

The second section of the GSN7 is trans-

Fig. 1203- llow the coils for the two-tnter super. heterodyne recoiver are wohnd. In both rases both windings are in the same diremion. In the cease of the i.f. coil at the left, the topend of the upper wimding, $L_{\text {as }}$, is conneroted to (band lin is of the GK8 sonhet, the lower end of L_{5} is commeted to Jin $1 /$ of the 6 h 8 , the upper end of the lower winding, $I_{\text {fig }}$ is conmerted to the stator of C. 2 and the lower and of L_{6} goes to l'in $_{2}$ on the 6SNTMON seket.

In the case of the plag-in coils, the coil sorehets and phag-in form bases are wired so that the upper end of Lo connerts to the stator of (iz, the lower end of this winding to the chasias, the upper eme of the lower wint-
 the ok 8 sorket. II hen the coil is phyged into the miver stage, the upper and of the top winding should go to the stator of Ci, the lower emd to (i- and the hiasing battery, the npper end of thre lower winding to the ehat-ats and the lower end of the botoom winding to the antenna terminal.
former-coupled to the detertor. The grid is biased by the same battery that furnishes bias for the 6 K8.

Looking at the top of the chassis from in front, the r.f. or input cirenit is at the left. with ('i below the chassis and $L_{0} L_{2}$ just behind it. The 6 l 8 8 is directly 10 the rear of the coil. The h.f. osallator padding condenser. (3. underneath, the soeket for $L_{3} L_{4}$ and the $6 \mathrm{Sa}^{-17}$ are in line at the center of the chassis. At the right. underneath the andio transformer. T_{1}, is the i.f. rugenemian-contral combenser. ('e. 'The bandspread tuning condenser. C^{\prime}, is momeded on the pand wilh its shaft $37 / x^{2}$ inches from the bottom edge of the pancl. The audio transformer should be set back far enough so that there will be sufficient space for the bearing for the vernier keoh, of the National 'Type (i dial. The " 13 " swite'h, S, is to the left of the dial.

A par of torminals sed in the lefthand edge of the chassis provides comeretions for antenna and ground. While another pair at the rear are for the "B"-battery eonnections. The antemmand $B+$ terminals must be insulated from the chassis. A jark in the right-hamel side is provided for headphones and 115 volts a.c. for the heater transformer, 7 ? is phagred in at the rear. The jack is insulated from the chassis by means of fiber washers. Te, is placed under the chassis near the headphone jack.

Reforring to the bottom view of Fig. 1205, the biasing bathery is to the lol' below 1 't. It is a pen-light flashlight coll soldered betwern the: coil-socket terminal and ground. Immediately below it is the by-pass condenser, (7 . C_{6} is soldered between the socket terminal for L_{4}

TWO-TCBE: SUPERIETE COII. DATA

I. 1 or $/ .3$	1. 2 or $I .1$
A. 90 turns No. 30 d.s.e., chosewonnd	20 turns So. 30 d.s.c.
B. 6 . turns Fin. 26 d.s.c., closewound	Is turns No. 20 d.s.e.
C. 45 turns No. 22 d.s.c., dosewound	15 turns No. 20 d.s.c.
D. 24 turns So. 29 enam., $1 \frac{1}{8} \mathrm{in}$.	1.5turns No. 26 d.s.c.
E. 20 turns No. 22 enam., $11 / 8 \mathrm{in}$. Jong	1.) turns No. 26 d.s.e.

Frovu пеу Rtn石		Coilat I.3-1/4
1700 to 3-90 ks.	A	B
30 MWO t1 5700 ke .	B	C
$51(0)$ to $10,000 \mathrm{kc}$.	C	1)
9500 to 14.500 kc .	E	D

and ground. The r.f. choke is supported at one end by a small fiber lug strip and soldered to ('2 at the other. The i.f. transformer, $L_{5}^{5} L_{6}$, is between the two tube sockets. L_{5} is connected between the proper tube-socket terminals and ('s is soldered across these same terminals. ('y is fastened directly between the two tube sockets and C_{8} between the 6 k 8 socket and the proper terminal of the socket for L_{3}. Clearance holes are drifled in the chassis for wiring to the switech, to the stator terminal of Ca cind the grid eap of the 6 kis. The rotor terminal of \boldsymbol{c}_{4} is groumed to the panel by a lug fastened under one of the mounting pillars. Two holes also are provided for the leads to T_{1}.

Coils for the recoiver are wound on Millon shiolded $1 / 2$-inch diamoter forms, Type 74001 , Which are provided with slug-type inductance trimmers.

The method of winding is indicated in Fig. 1203 ; if the comections to the rircuit are made as shown, there will be no trouble in obtaining the meressary oscillation. buth coils on each form should be wound in the same direction.

Adjustment - To test the receiver, first

Fig. 120 . - A back of panel view of the two-tube superheterodyne reciver. The chassis is $7 \times 7 \times 2$ inches.

Fig. 1205 - Bottom view of the two-tube superheterodsne receiver. The i.f. coil is hetween the two tube sockets near the rear of the chassis. The transformer to the rizht is the filament transformer.
change in beat-note as the r.f. tuning is varied by means of C_{1} - will be observed on the highest-frequency range, but it is not serious in the region of resonance with the incoming signal frequency.

The recedver will respond to signals either 1600 ke. lower or 1600 ke. higher than the oscillator frequency. The unwanted response is diseriminated against by the selertivity of the ref, circuit. On the threr lower-frequency ranges, when it is possible to find two tuning spots on Cat which incoming noise peaks up, the lowerfrequeney peak is the right one. The oscillator frequency is 1600 ke . higher
try out the i.f. circuit. Connert the filament and "B" supplies and place both tubes in their sockets. Put a high-frequency coil in the r.f. socket, but do not insert a coil in the oscillator socket. The only test which need be made is to see if the detector oscillates properly. Aelvance C_{2} from minimum capacity until the detector goes into wscillation, which will be indicated by a soft hiss. 'lhis should oceur at around half seale on the condenser. If it does not occur, cheek the coil ($L_{5}^{5} L_{6}$) connections and winding dircetion and, if these seem right, add a fow turns to the tickler, L_{6}. If the deteretor oscillates with very low capacity at C_{2}. it will be advisable to take a few turns off L_{6} until oseillation starts att about midseale.

After the i.f. has bern chocked. plug in an oscillator coil for a range on which signals are likely to be heard at the time. The 5.100-10.-$000-\mathrm{kc}$ range is usually a good one. The coils are arranged so that a minimum number is noeded, even though two are used at a time. With Coil C in the r.f. socket and D in the oscillator circuit, set C_{1} at about hali seale and turn C_{3} slowly around midscale until a signal is heard. Then tune C_{1} for maximum volume. Should no signals be heard, the probability is that the oscillator section of the 6l8 converter tube is not working, in which case the same mothod of testing is used as described above for the i.f. detector - check wiring, direction of windings of coils, and finally, add turns to the tickler, L_{4}, if necessary.

The same oscillator coil, D, is used for two frequency ranges. This is possible because the oscillator frequeney is placed on the low-frequency side of the signal on the higher range. This gives somewhat greater stability at the highest-frequeney range. Some pulling - a
than that of the incoming simnal on these three ranges and 1600 ke . lower on the fourth range. The inductance of the coils to hit the desired ranges can be adjusted by means of the trimming slug in the coil forms.

The regeneration control may be set to give desired sensitivity and left alone while tuming; only when an exceptionally strong signal is encountered is it necessary to advance it more to keep the detector in oscillation. It should be set just on the edge of oscillation for 'phone reception.

The " 13 "-hattery current is between 4 and 5 ma., so that a standard $\ddagger 5$-volt block will last hundreds of hours.

© A Three-Tube General-Coverage and Bandspread Superheterodyne

A superhet receiver of simple construction, having a wide frequency range for general listening-in as well as full bandspread for amateur-band reception, is shown in Figs. 1206 ti. 1210 . The circuit uses only three tubes and gives continuous frequency coverage from about $75 \mathrm{kc}$. (4000 meters) to 60 Mc . (5 meters). The recciver is intended for operation from either a 6.3 -volt transformer or 6 -volt battery for heater supply, and a 90 -volt " B " battery delivering 15 ma. for plate supply.

The circuit diagram is given in lig. 1207. A 6 K 8 is used as a combined oscillator-mixer followed by a 6 SK 7 i.f. amplifier. The intermediate frequency is 1600 kc ., a frequency which reduces image response on the higher frequencies and simplifics the design for lowfrequency operation in the region below the broadeast band. One section of the 6C8G double triode is used as a second detector and the other section as a beat-frequency oscillator.

242

Chapter Twelve

Fig．1206－I three－tuhe superheterodyne receiver，designed for wither a．c．or d．c．heater operation and for 90 －volt＂B＂－battery plate supply．
for the dics（i is just in front of T_{3} ．The triode seetion in which the grid is brought out to the top cap is the one which is ured for the beat oscillator．

The r．f．seetion has bern ar－ ranged for short leads th faror high－froquency operation．The three sockets groupod elasily fogether in the eenter arr．from
 sorket，suckel for the 6kS，and
 mounted above the chassis by moths of momoting pillar．so that procticatly all r．t．leath are above dork，The natillator grid leak，R_{3} ，amd the high－ frequemey cathode ber－pass man－ demser，\dot{r}_{6} should be mounted direetly on the sorket brofore it is intitalled．sio alow should the osmbator grid condon－（＇－ which can the sern externling to the：left towatal the ascillator－
 suply connertions shomblat be

To simplify construction，the antemes and oseillator circuits：are separately tumed．＇The an－ tonna tuning control，C_{1} ，maty be used as a volume eontrol bẹ dotming foom resonatme The osmillator circuit，$L_{3} \mathrm{C}_{2} \mathrm{C}_{3}$ ．is tuned $160(0) \mathrm{ke}$ ． higher than the signal on frequencies uptor 5 Me．；above 5 Ma．the oscillator is 1600 ke． lower than the sigual．

The parts arrangement is shown in the photographs of Figs 120s and 1209．The miser tuning condenser，（＇s，is at the right． The bandspered oscilator tuning comenese （＇s．is in the eenter，controlled by the da－ tional Trope A 3^{\prime}－imeh dial，and the band－ set eondenser，（2，is at the left．

Reforring to the top siow，Fige 120s，the i．f． section is along the realr edge，with $\%$ at the right．Next is the socked for the wisko，then We， and finally T_{3} at the extreme left．The sucket
soldered to the tikis sorket prongs belore the sorket is monnted．
 are momend dimetly on the ehatoris．（＇a is held from the pramel bye mans of a small brackete mathe from metal strig，bent an that the ron－ denser shaft lines ap with the dial couphting．A batile shiseld mathe of almanam separates the oscillator amb mixer seetions．

The first step in putting the recciver into operation is to align the i．f．amplifier．This should preferably he done with the aid of a test oseillater．but if one is not available the ciremits mas．be aligneid on hise or moise．The beat awil－ latur can abo be used to furnish a signal for alignment．Fiurther information on alignment

Fis． $1=00^{-}$－ 11 iring diagram for the threetube super－ helarody me．

 marlınil M（：－｜（M）－ 11$)$ ，
 mishlial $110:-1$ i（1）－ 11 ．
 marland IIf－3．5）．
Ca_{4} —Ocillator padaler：see cont table．
（ $\because=1.1-\mu \mathrm{fil}$ ，napur．

（ \because（111－0．01－ 0 fll．batror．
Cis－i－mfil．electrolytic， 50 volt．
 $\mathrm{Ki}_{2}, \mathrm{~K}_{3}-270$ dims，${ }^{1} 2$ watt．

＇lis，le－fown－kc．i．f．transformer （llillen 6ilfil）．
 former（Millen 6．⿹勹口： $\mathrm{S}_{1}, \mathrm{~S}_{2}-5 \mathrm{H} . \mathrm{At}$ ．loggle switeh， RFC－2．is－mh，r．f，choke．

Fig. 1208 - A plan view of the throe-tube superhetcrodyne with the coils and tuhes removed. The chassis measures $5 \frac{1}{2} \times 91 / 2 \times$ 11 in in her and the pallat size is $101 / 2 \times 6$ inehes.
may be found in Chapter Seven.
The enils am womb as shown in Fir. i21U. A comblele set of smerifirations is given in the cull able. Ordinary wimdings are used for all oscillator coils, and for all mixer coils for frequencies atrove 1600 ke. Beiow 1600 kc ., readily available r.f. chokes are used for the tuned circuits. For the broadeast band and the $600-750-$ meter ship-to-shore chamels, the mixer coil is a Hammarlund $2.5-\mathrm{mh}$. r.f. choke, with the pies tapped as shown in Fig. 1210. The grid end and the intermediate tap are connected to machine serews mounted near the top of the eoil form, and a flexible lead is brought out from the grid pin in the coil form to be fas-

tened to either lead as clesired. Mixer coils for the two lowest-frequency ranges are constructed as shown. The antenna winding in each case is a coil taken from an old $465-\mathrm{ke}$. i.f. transformer, having an inductance of about 1 millihenry. The inductance is not critical. and a pie from a $2.5-m h$. choke may be used instead.
(OHL, DITA FOR TIE TIREE-TUBE SUPERUETERODYNE

Range	Turns					C_{4}
	L_{1}	L_{2}	L_{3}	L_{4}	$L_{3} T a p$	
A - 76-154 ke.	30 mh .	1 mh.$)$				
166-360 ke.	8 mh.	1 mh.$\}$	65	12	Top	$300 \mu \mu \mathrm{fd}$.
400-1500 kc.	2.5 mh.*	*				,
B-1.6 to 3.2. Mre. (100 metars)	.in	10	42	11	1rom	75.
$\mathrm{C}-3.0$ to 5.7 M (e. (80 meters)	32	8	$\because 7$	0	Tro	$100 \mu \mu \mathrm{fd}$.
D - 5.4 to 10.01 MI c. (40 meters)	18	8	$\because 2$	9	12	$0.002 \mu \mathrm{fil}$.
$\mathrm{E}-9.5$ to 18.0. Mr (20 meters)	10	8	12	$31 / 2$	6	$400 \mu \mu \mathrm{fil}$.
F-15.0 10:30. Mr: (10 meters)	6	4	1	$21 / 2$	$21 / 2$	$400 \mu \mu \mathrm{fil} .$
$\mathrm{G}-30 \mathrm{to}$ (il) Me. (5 meters)	3	3	$31 / 2$	1	1	$300 \mu \mu \mathrm{fd}$.

 dost-woum with No. 20 enamelal; all other L_{5} and I. coils wound with . No. 18 enameled, spaced to give a lougth of $11 / 2$ inches on a $11 / 2$-inch diameter form (HammarlumishF) except the (; coils, which are space d to a lenerth of

 1.

With the i.f. aligned, the miver grid and oseiltator coils for a band can be plugered in. ('3 should be set near minimum capacity and (2 tuned from minimum rapacity until a signal is heard. Then C_{1} is adjusted for maximum signal strengih. If C_{2} is set at the high-

Fi\&. $1 \times n 9$ - Br -low the chawis of the three-tulbe roviver. The r.f. choke is mounted mar the widilator coil somet to keop the r.f. luad- hort. In the i.f. stage, care should be taken to keri the plate and grid leads from the i.f. transformer short and well separated. A four-wire cable is used for power-supply comnections. The headphone tip jacks may be seen near the upper righthand corner,

LOW-FREQUENCY MIXER COILS
Fig. 1210-How the coils for the three-tube superheterodyne are constructed. On the hand-wound oseillator and mixer coils, all windings are in the same direction.
frequency end of an amateur band, further

Fig. 1211 - The modified three-tube superheterodyne receiver with the audio-amplifier stage added for loudspeaker operation.

On the broadeast band, the tuning range is such that, with C_{2} set at 1500 kc., the entire band will be covered on C_{3}. It is necessary, however, to change the tap on the mixer coil to make the antenna circuit cover the entire band. Only one oscillator coil is needed for the range from 75 to 1500 kc ., but a series of coils is needed to cover the same range in the mixer circuit.

Fig. 1212 - Circuit diagram of the single-tube pentode audio-amplifier stage which may be added for loudspeaker operation of the threetube superheterodyne. Except as noted below, the values for components correspond to those bearing the same designations in Fig. 1207.
$\mathrm{C}_{14}-0.1-\mu \mathrm{fd}$. paper.
$\mathrm{C}_{15}-25-\mu \mathrm{fd}$. electrolytic, 50 volts.
$R_{6}-0.12$ megohm, $1 / 2$ watt.
$\mathrm{R}_{\text {: }}-0 . \overline{\mathrm{m}}$ - meg ghm volume control.
$\mathrm{K}_{8}-400$ ohms, 1 watt.
J - Closed-circuit jack.
tuning should be done with C_{3}, and the band should be found to cover about seventy-five per cent of the dial. C_{3} can of course be used for bandspread tuning outside as well as inside the a mateur bands. It is convenient to calibrate the receiver, using a homemade paper scale for the purpose as shown in Fig. 1206. Calibration points may be taken from incoming signals Whose frequencies are known, from a calibrated test oscillator, or from the harmonics of a $100-\mathrm{kc}$. oscillator, as described in Chapter Nineteen. The mixer calibration need be only approximate, since tuning of the mixer circuit has little effect on the oscillator frequency. It is sufficient to make a calibration which ensures that the mixer is tuned to the desired signal rather than to an image.

Fig. 1213 - The additional parts for the audio stage can be identified in this subchassis view of the modified three-tube receiver.

Fig 1214 - Circuit diagrami of a power supply suitable for small receivers.
$\mathrm{C}_{1}, \mathrm{C}, 2-8$ or $16-\mu \mathrm{fd}$. clectrnlytic, 450 volts. $1 h_{1}-5000$ ohms, 10 watts, wire-wound.
Lat - Standard replacement-type filter ehoke, 15 to 30 herries at 70 ma.
s_{1}-S.p.s.s. toggle switch.
T_{1} - Standard replacementype power transfurmer with 6.3 -wolt, 5 -volt, and 6010 . volt center-tapped windings, 70 ma. d.e. ontput rating.

Adding ant atiolio stage to the threc-atube superheterodyne - The three-tubo reowiver just described is designed for headphone operation, but readily can be converted to a fourtube set for use with a 'speaker. For this purpose a $6 F 6$ pentode can be added to the rirwit diagram, as shown in lig. 1212. Figs. 1211 and 1213 show the receiver when eompleted.

For the purpose of driving the audio stage, resistance coupling is used from the pate of the second detector to the grid of the 6F6. A volume control is used for the grid resistor of the GFG, and a jack is installed in the second-detector plate circuit so that a headphone plug may be inserted. The volume control, R_{7}, should be of the midget type so that it will fit in the chassis; it is installed with its shaft projecting under the tuning dial. In the bottom view, Fig. 1213, the 6 F 6 socket is in the upper left corner, along with the cathode resistor and bepass condenser, R_{s} and $C_{\text {aj }}$. The coupling eondenser, C_{14}, and the plate resistor, R_{6}, are mounted on an insulated lug strip near the volume control.

The 6 F 6 will require a plate supply of 250 volts at about 40 milliamperes. This may be taken from a regular power paek, and a fivewire connection cable is used to provide an extra lead for the purpose. The first three tubes may be operated from a " B " battery, as hefore. Alternatively, the power supply may be constructed with a tap giving 90 or 100 volts for these tubes, the tap being connerted to the
proper wire in the connection eable. For best performance, the output voltage should be regulated by a VR-10: regulator tube. A suitable power supply is shown in Fig. 1214.

The primary winding of the 'speaker output transformer always should be comected in the plate cireuit of the 6F6. Operation without the plate circuit closed is likely to damage the screen grid. Any 'speaker having a transformer with a primary impedanee of 7000 ohms will he satisfactory; a permanebt-magnet dynamic is converient, since no field supply for the 'speaker is necessary.

Pouer supply - Components for the a.e. power supply of Fig. 1214 may be mounted on a $7 \times 7 \times 2$-inch stecl chassis or a baseboard made of wood. The placemont of parts is not important. If the steel chassis is used, the smaller components may be mounted underneath. The voltage of the filament winding should, of course, corropond to the rated heater voltage of the tubes used, unless a separate heater transformer is used.

(1. An Amateur-Band Eight-Tube Receiver

A receiver with good mechanical and electrical stability, variableselectivity through the use of a regenerative i.f. amplifier, good a.v.c. and quall-control characteristias, an audio noise limiter, and adequate atulis for loudspeaker reception is shown in Figs. 1215, 1217

Fig. $1215-\mathrm{An}$ amatenr. band eight-tube receiver. The knobs sa the left erontrol audió valame (appar) and b.f.o. piteh, and the two on the right handle r.f. and i.f. sain (upper) and i,f. regentration, 'The knob to the left of the large tuning knob is fastened in the MAN.. A.V.C.-R.F.O switch. and the one on the ripht in for the antenna trimmor. The togale switrh molar the dial throws high neqative bias on the r.f. stage during transmistion periods.

and 1218 . As can be seen from the circuit in Fig. 1216, a 6SG7 pentode is used for the tuncd r.f. stage ahead of the 6 K 8 converter. An antenna compensator, C_{4}, controlled from the panel, allows one to trim up the r.f. stage when using different antennas that might modify the tracking. The cathode bias resistor of the r.f. stage is made as low as possible consistent with the tube ratings, to keep the gain and hence the signal-to-noise ratio of the stage high. The oscillator portion of the 6IK8 mixer is tuned to the high-frequency side of the signal except on the 28 -Mc. band, the usual custom nowadays in communications receivers. The oscillator tuning condenser, C_{17}, is of higher capacity than the r.f. and mixer tuning condensers, in the interest of better oscillator stability.

The i.f. amplifier is tuned to 455 kc ., and the first stage is made regenerative by soldering a short length of wire to the plate terminal of the socket and running it near the grid terminal, as indicated by C_{cl} in the diagram. Regeneration is controlled by reducing the gain of the tube, and $R_{\text {t }}$. a variable cathode-bias control, serves this function, The second i.f. stage uses a 6K7, seleeted because high gain is not necessary at this point.

Manual gain-control voltage is applied to the r.f. and second i.f. stages. It is not applied to

Fig. 1216 - Circuit diagram of the cight-tube receiver.
$\mathrm{C}_{1}, \mathrm{C}_{2,} \mathrm{C}_{14}$ - Sec tahle.
$\mathrm{C}_{2}, \mathrm{C}_{10}, \mathrm{C}_{12}, \mathrm{C}_{18}-10-$ ${ }_{\mu} \mu \mathrm{fd}$. coramic.
$\mathrm{C}_{3}, \mathrm{C}_{11}-15-\mu \mu \mathrm{frl}$, midget variable (N itional L'M-1.5).
$\mathrm{C}_{4}-15-\mu \mu \mathrm{fd}$ midget variahle (II ammarlund HF-15).
$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{13}, \mathrm{Cin}_{1}$ $\mathrm{C}_{20}, \mathrm{C}_{21}, \mathrm{C}_{22}, \mathrm{C}_{23}$, $\mathrm{C}_{24}, \mathrm{C}_{25}, \mathrm{C}_{2 \mathrm{n}}, \mathrm{C}_{25}$, $\mathrm{C}_{28}, \mathrm{C}_{20}, \mathrm{C}_{39}-$ $0.01-\mu \mathrm{fl}$. mica.
$\mathrm{C}_{15}-37-\mu \mu \mathrm{fl}$. ceramic (10 and 27 in parallel).
$\mathrm{C}_{16}, \mathrm{C}_{30}, \mathrm{C}_{32}-100-\mu \mu \mathrm{fu}$. mica.
$\mathrm{C}_{17}-35-\mu \mu \mathrm{fd}$. midget variable (National UM-35).
$\mathrm{C}_{31}-250-\mu \mathrm{ffd}$. mica.
$\mathrm{C}_{33}-0.05-\mu \mathrm{fu}$. paper, 200 volts.
C_{34} - $0.1-\mu \mathrm{fl}$. paper, 200 volts.
$\mathrm{C}_{35}, \mathrm{C}_{3}$ - $10-\mu \mathrm{fd} .25$-volt electrolytic.
$\mathrm{C}_{36}-0.1-\mu \mathrm{fd}$. paper, 400 volts.
Cas $-3 \bar{\sigma}-\mu \mu \mathrm{fd}$. midget variable (Hammartund IIF-35).
$\mathrm{Cc}_{1}, \mathrm{C}_{\mathrm{c}_{2}}-\mathrm{Sec}$ text.
$\mathrm{R}_{1}, \mathrm{H}_{10}, \mathrm{R}_{16}, \mathrm{R}_{30}-0.1$ megohm.
$\mathrm{R}_{2}-68$ ohms.
$\mathrm{R}_{3}, \mathrm{R}_{14}-33,000$ ohms.
$\mathrm{H}_{4}, \mathrm{R}_{5}, \mathrm{R}_{5}, \mathrm{M}_{8}, \mathrm{H}_{9}, \mathrm{l}_{1_{3}}$ $\mathrm{R}_{15}, \mathrm{R}_{18}, \mathrm{R}_{19}, \mathrm{R}_{20}$, $\mathrm{R}_{21}-47,000$ ohms.
$\mathrm{H}_{7}-220$ ohms.
$R_{11}-180$ olims.
$1_{12}-2000$-ohm wirewound potentiometer.
$\mathrm{R}_{17}-330$ ohms.
$\mathrm{R}_{22}, \mathrm{H}_{23}, \mathrm{~K}_{24}, \mathrm{~K}_{33}-1.0$ megohirn.
$\mathrm{R}_{24}, \mathrm{R}_{28}-0.15$ megohm.
R_{25} - 2700 ohmis.
$\mathrm{R}_{26}-1.0$-megohm carbon potentiometer.
R_{27} - 25,000 -ohm carbon potentiometer.
$\mathrm{K}_{31}-470$ ohirns, 1 watt.
$1_{32}-27,000$ ohms.
$\mathrm{R}_{34}-0.2 \mathrm{megohm}$.
All resistors $1 / 2$ watt unless otherwise noted.
Lt through I_{6} - Sce table.
J_{1} - Closed-circuit tclephone jack.
S_{1}-S.p.d.t. toggle switch.
Sea-b-c - Threc-pole 3position wafer switch (Centralab 2507).
$\mathrm{T}_{1}, \mathrm{~T}_{2}-456$-kc. interstage i.f. transformer, permeability tuned (Millen 64456).
$\mathrm{T}_{3}-456 \mathrm{ke}$. diode transformer, permeability tuned (Millen 64454).
$\mathrm{T}_{4}-456$-ke. b.f.o. assembly, permeability tuned (Millen 65456).

Recciver Construction

the miser because it might pull the oscillator frequency, and it is not tied in with the firsti.f. amplfier because it would interlock with the regeneration control used for controlling the selectivity. However, the a.v.c. voltage is applied to the r.f. and both i.f. stages, with the result that the selentivity of the regenerative stage decreases with loud signals and givers a measure of automatic selectivity control. Using a negative-voltage power supply for the manual gain control is more expensive tham the familiar cathode control, but it allows a wide range of control with less dissipation in the components. The a.v.e. is of the delayed type, the a.v.c. diode being biased about $1 \frac{1}{2}$ volts by the cathode resistor of the diode-tiode de-tector-audio stage.

The scoond-detector-and-first-audio is the usual diode-triode combination and usus a 6SC27. A 1 N 34 erystal diode is used as a noise limiter, and is left in the circuit all of the time. As is common with this tepe of circuit, it hats little or no effect when the b.f.o. is on. but it is of considerable help to 'phone reception on the bands where automobile ignition is a factor. The constructor can satisfy himself on its operation when first building the recesiver and working on it out of the ease. By leaving one end of the 1×34 floating and touching it to the proper point in the circuit, a marked drop in ignition noise will be noted.
The b.f.o. is capacity-coupled to the detector by soldering one end of an insulated wire to the a.v.c. diode plate and wrapping several turns of the wire around the b.f.o. grid lead. This capacity is desiguated $C_{\mathrm{C}_{2}}$ in the diagram. The wire was comnected to the a.v.c. diode plate lead for wiring convenience - the a.v.c. coupling condenser, C_{33}, passing the b.f.o. voltage without appreciable attenuation.

Headphone output is obtained from the
plate circuit of the 6SO7 at J_{1} and loudspeaker output is availatle from the 6 F a audio-amplifier stage. High-impedance or crystal headphones are recommended for maximum headplone out put.

The receiver is built on an aluminum chassis mounted in a Par-Metal CA-20) cabinet and a Millen 10035 dial is used for tuning. The chassis is made of $1 / 16^{- \text {-inch-thick stock, bent into a }}$ " E "-channel, and measures 13 inches wide and 7 盾 inchere deep on the top. It is $33 / 8$ inches deep at the raar and $1 / 8$ inch less at the front. The rear culge is reinforeed with a piece of $3 / s$-inch square dural rod that is tapped for serews through the bottom of the cabinet, further to add to the strength of the structure when finally assembled. The various enmponents that are common to the from lip of the chassis and the pancl are used to tic the two together.

The shield pand used to monnt the antemna compensat or condenser is also made of $1 / 16$-inch aluminum with a 5 - m inch lip on the side for mounting. Part of the lip must be cut away to clear wires and mounting plates on some sockets, so it is advisable to put in the panel after most of the assembly and wiring have been completed. Flexible couplings and bakedite rod couple the condenser to the panel bushing.

The three tuning condensers are mounted on individual brackets of $1 / 16$-inch aluminum. The brackets measure $21 / 2$ inches wide and 19% high, with $1 / 2$-inch lips. A cover of thin aluminum not shown in the photographs - slides over the condenser assembly to dress up the top view a bit. The dust cover is not necessary for the satisfactory operation of the receiver.
Ceramic sockets are used for the plug-in coils and the r.f. amplifier, converter and b.f.o. tubes. Mica condensers were used throughout the receiver for by-passing wherever feasible, because they lend themselves well to compaet

Fig. 1217 - This view of the eight-tube receiver chassis shows the mounting of the tuning condensers and the phacement of most of the large components. The three shielded plug-in asil assemblies ean be seen to the left of the tuning gang. The 6K8 converter is the tule on the left nearest the panel.
The antenna terminal strip, power-supply plug, headphone jack and speaker terminals are nounted on the rear (foreground in this view) of the chassis.

construction. Paper condensers could be used in the i.f. amplifier but they would erowd things a bit more.

In wiring the recoiver, small tie-points were used wherever nocessary to support the odd ends of resistors and condensers, and rubber grommets wre used wherever wires rum through the chassis, with the exception of the tuning-condenser leads. The latter loads, being of No. 14 wirr, are self-supporting through the 516 -inch elearamo holes and do not require grommets, The satme heavy wire was used for the grid and plate leads of the r.f. stage and the plate lead of the oscillator, to reduce the inductance in these leads. The tuning rondensers are groumed back at the coil surkets and not above the chassis as might be the tendency. Screon, cathode and plate by-pass condensers are groumded at a single point for any tube wherever possible, although ('2 is grounded at the r.f.eroil sorket, (${ }^{\circ}$ is groumded at the converter-coil socka, and ('is is retumed at the oseillator-coil somek. The plate and $13+$ lesads from T_{1} are brought back to the converter sorket through shield hraid, and ('2 is returned to ground at the eonverter socket.

The b.f.o. pitch condenser, C3s, is insulated from the chassis and panel by fiber washers, and the rotor is comnected bark to the dube sorket by braid that shidds the stator lead. This is done to reduce radiation from the b, f.o. which might get in at the front end of the i.f. amplifier.

The coils are wound on Millen 74001 per-moability-tuncd coil forms, according to the coil table. Sories comdensers are mounted inside the forms on all bands except the so-meter range, where no condenser is reguired and the tuning eondenser is jumped direetly 10 the grid end of the coils. In building the roils, the washers are first drilled for the leads and then cemented to the form with Duen or other cement. The bottom washer is cemonted close

COII. DATA FOR TIIE EIGIIT-TUBE SLPERIETIERODVNE				
Coil	3.5 Mc .	7 Mc.	14 Mc .	$23.15 c$.
L_{1}	1.5 t	9 t	6 t	4 t
L.2. La_{4}	76 t	33 t	19 t	8 t
$\mathrm{Cl}_{1}, \mathrm{CO}_{9}$	short	$27 \mu \mu \mathrm{fd}$.	$1.5 \mu \mu \mathrm{fld}$.	$20 \mu \mu \mathrm{fd}$.
1.3	2.1	11 t	7 t	4 t
L_{5}	10 t	8 t	4 t	2 t
${ }_{\text {La }}$	47 t	32 t	1.1 t	6 t
Cl_{14}	short	$42 \mu \mu \mathrm{fl}$,	$27 \mu \mu \mathrm{fl}$	$51 \mu \mu$

All enils wound on Nillen 7.1001 forms, close wound, 3,i-Me, coils wound with No. 30 enam, $7-$ Me, coils wound with No. 30 d.s.r.; 1.4-and 2S-Me. coils wound with No, 30 d.ces. on primaries and tieklers and No. 24 enatn, on serondaries, C_{14} for 7-Mr. rante made hy connecting 27 -and $15-\mu \mu \mathrm{fa}$. rombonsers in parallel. C_{1}, C_{9} and C_{4} brie Ceramicons mounted in coil form.
to the torminal pins, leaving just enough room to get the soldering iron in to fasten the coil comband to leave room for the sirtios condenser. The large coils, L_{2}. Latad $L_{\text {ag }}$, were woumb first in overy case, and then a layer of polystyrene siooteh Tape wrapped over the coil, after which the smaller winding was put on and the ends of the windings soldered in place. Since for maximum range of adjustment it is desirable to allow the powdered-iron slug to be fully withdrawn from the coil, keceping the coils at the base end of the form allows the iron slug to travel out at the other end, under which eondition the adjusting screw on the slug projerets the least. To soreure the wires after winding, drops of cement should be placed on them where they feed through the polystyrene washers.

If a signal generator is available, it can be used to align the i.f. amplifier on 455 kc . in the usual manmer. If one is not available, the coupling at C_{c} can be inereased to the point where the i,f. stage oscillates readily and the b.f.o. transformer is then tuned until a beat

> Fig. 1218 - The mica by-pasm condensers used throughout the r.f. and i.f. stages are Hroujed around the woblelis of their w. spective tubes. Jiepeints are used wherever neressary to support small resistors and condensers. 'The antomat trimmer condenser is mounted on al bracket which also serves ats shiclding betwern the mixer- and r.f.eroil sockets, and it is roffert to allow acecoss to the trimmer screws on the coil furms. The plate and $13+$ leads from the first i.f. transformer, Ti, are run in shielded hraid, as are the leads from the b.f.o, pitehcontrol condenser and the volume control.
note is heard. The other transformers ean then be aligned until the signal is loudest, after which ('er should be decreased until the i.f. oscillates with the regeneration control, R_{12}, about \bar{i} degrees from maximum. The trimmers on T_{1} then should be tuned to require maximum advaneing of the regeneration control for oscillation, with a set value of $\mathrm{Ccl}^{\mathrm{c}}$. When properly tuncd, the oscillation frequency of the i.f. stage and the frequency for maximum gain in the regenerative condition, will be the same.

With a set of eoils in the front end, set the tuning dial near the high-frequency end and tune in a strong signal or marker with the adjustment serew on the oseillator coil. The conVerter and r.f. eoils can then be peaked, with the antenna rompensator set at about half capacitance. Then tune to the other end of the band and wee if vou have emough bandspread. If the hanelspread is indequate, it means that (${ }_{14}$ is too large, and it should be reduced by using a smallor size of contenser or a combinat tion that gives slightly less capacitance. The tracking of the convortor and r.f. eoils wan be cherked hy repeaking the position of the slugs in the roils at, the low-frequeney cud. If the eonvertor or r.f. coil tuning slug has to be advanced farther into the coil (to increase the inductance) it indieates that ('y or ('ishould be larger. Tracking by the method described is at best a compromise, although to all intents and purposes the loss from some slight misalignment is completely unimportant. Another method would be too tap the tuning condensers on the coil in the familiar handapreading manner. but this requires eonsiderable time and pationcer. Howover, with the series condensers as used in this recoiver, the tuning curve is more arowded at the high-frecpuency end of a range than at the low, and this would be reduced somewhat by the tapped-coil methor of bandspreard.

The adjustment of L_{5} can be matle. if deemed neessary, by lifting the cathode cond of h_{b} and insorting a $0-1$ milliammeter. If the tickler eoil has the right number of turns. the current will be from 0.15 to 0.2 ma., and it won't shange appreciably ower the hand. Although such a griel-current cheek is a fine point and not really necessary, it is a simple way to determine that the oseillator portion is working, since the cold ends of L_{5} and $L_{f i}$ are at the same cond of the form - the phus end - and this needssitates winding the two eoils in opposite directions.
some trouble may be expericued with oscillation in the r.f. stage at 28 Mc. However, a grounding strap of spring brass mounted under one of the serews holding the mixer-evit socket to ground the shicld when the eoil is plugged in will normally clear up the trouble. Inadequate coupling to the antema will also let the r.f. stage oweillate under some tuning conditions, and close conpling is highly recommended for stability in this stage and also for best signal response. A 10 -ohm resistor from
L_{2} to the grid of the 6SG7 will also do the trick.

It will be found that the over-all gain of the receiver is quite high on the lower-frequency bands, requiring that the r.f. gain be cut down to prevent overloading on strong signals. For c.w. reception, the regrneration control is advanced to the point just below oscillation and the b.f.o. is detuned slightly to give the familiar single-signal effect. For 'phone reception, S_{2} is switched to A.V.C. and volumecontrol adjustments made with the audio control, R_{26}. If desired, the regeneration control ean be advaneed until the i.f. is oseillating weakly, and then a heteroblyne will be obtained on weak carriors, making them easy to spot. Strong carriers will pull the i.f. out of oscillation hecause the developed a.v.e. voltage reduces the gain, and hence a simple form of antomatic selectivity control is obtained. If it is eonsidered desirable to reduer the i.f. gain when switched to the A.V.C. position, the regoneration control can be used for this purpose. The.$W A N$. position permits manual gaincontrol operation with the b.f.o. off.

The switeh x_{1} is used for receive-transmit and throws about 40 volts negative on the grid of the first r.f. stage.

Pocer supply - A pownr supply suitable for the right-tube recoriver is shown in Figs. 1219 and 1220 . An ideat of the parts arrangement, can be obtained from Fig. 1219, atthough there is nothing critical about this portion of the receiver. If one wantsamoat-looking station with no loose power supplies in sight, the powrersupply ean bebuilt into one comer of the loudspeaker cabinet.

Fig. 1219- P'ower supply fur the eight-tube receiver. Two rectifiers are required because a separate suppls is incorporated for wainecomerol purpmis. The filter choke and the negativesupply filter condensers are nounted under the chassis. At the rear of the chassis is the socket for the power cable.

Chapter Jwelve

Fig. 1220 - Power-supply wiring diaHram.
$\mathrm{C}_{1}, \mathrm{C}_{2}-16 \mathrm{mfl}$. din -volt electrolytic. $\mathrm{C}_{3}, \mathrm{C}_{4}-8$ - $\mu \mathrm{fd}$. 5 .0-soll elertrolytic.
$\mathrm{R}_{1}-500$ ohms, 10 watte. wirc-womd.
$R_{2}-5000$ ohms, 10 watts. wire-wound.
$R_{3}-0.1$ megohm. 1 watt, cumpusition.
I, 30 -henry 1111 -mas, filter choke (Stancar C-1001).
$\mathrm{T}_{1}-35(5)-(1)-3.01$ volts. 90 ma.: 5 volts at 3 ampe, 6.3 volts at 3.5 amp .

(1) A Band-Pass Converter for 14, 28 and 50 Mc .

T'o extend the frequeney range of a eommunications rereiver, a comerter can be used, to convert from the signal frequency to that of the rewiver. sum a ronverter is shown in Figs. 1221. 1223, 122 and 1225 , which will give rereption in the $11-$, 2s- and 5othe bands with any recever capable of tuning to 7.3 Me No simplity consiruelion, the r.f. stages are fixedfumed and only the local oscillator is tumed when rumning ancoss a band. The band-width of the ref. stages is suflicient to acerept any signal over an amateur band without noticoable attenuation. The broad-handing is ohtained by loading the circuits with resistors to reduce the Q, using a minimum of copacity for the same reason, and then "staggering" the ritcuits; i.c., tuning them to slightly differnnt frequencies so that the resultant pass band is broad and nearly flat within the required range. The input circuit, from the antemna. must be broad, and this can onty be obtaimed by heary rompling to the antenna. This condition coincides with the rondition for best sigmal transfer.

As can be seen from the wiring diagram in

Fig. 1222, the only tuning controls in the r.f. stages are the powdered-iron slugs of the coils. These are used to resonate the coils with the circuit capacities to the signal frequency. The loading resistors, R_{3} and R_{6} are used to broaden the circuits. The plate and sereen voltages are the same on cach r.f. amplifier tube. to redure the number of by-pass condensers, and filtor resistors are used top prevent over-all feed-back through the eommon power lead. Another possible source of wer-all feed-back is the heater circuit. and in this converter the "hot" heater lead to the input stage was rum in shield braid to reduce the possibility of feed-back.

The oscilator is a straight plate-tickler type using a 6 C t, and it is coupled to the miver through a capacity shown as dotted lines in the diagram. Aetually the coupling caparitor consists of a short length of wire near the grid of the mixar tube.

The output frequency is 7.3 Mc. approximately, and this is the frequency to which ${ }^{\prime}{ }_{11} L_{5}$ is i uned. If a frequencer slightly below 7.0 Ne. is used, there is a pussibility that the fourth harmonic of the receiver high-frequency oscillator will find its way into the convorter when operating in the 2 s-Me. band, resulting in a eonstant signal that has only maisance value A low-impedance shiedded line ferds the $7.3-\mathrm{Mc}$. output into the communications recoiver. The communications receiver furnishes the newersary solectivity.

The eathode bias of the second r.f. amplifier is varied by the gain confrol. $R_{\text {ro }}$ to asod blocking by strong signals. The "sond-reroive" switch. st. is used to turn off the convertor daring transmissiong perionls. The ponfry switeh, غs. is musuted on ther gain control and is usad to turn oft the poser to the converte: .

The power supple is regulated. nצing the miniature erguivalent of the VR-10. , and the stabilized 10.5 volts is fucl 10 atl sages.

The r.f. stages and mixer are built as a separate unit on a strip of alumi-

Fip. 122l-A 28-Me converter that urn- fived-tumed r.f. stages and thes eliminates the ganging problem. The knob at left is for the "semdreceive" switeh, and the right-hand knob is for main control.

Fig. 1222 - (Circuit diasram of the hand-pasi combertar.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4} . \mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{16}-0,001-\mu \mathrm{fl}$, postage - -tamp mica.
$\mathrm{C}_{3}, \mathrm{C}_{6}-106 \mathrm{~m}_{-\mu \mathrm{fd}}$. postage-stamp mica.
$\mathrm{C}_{9}-0.01-\mu \mathrm{fd}$, mica.

C. $\mathrm{C}_{11}, \mathrm{C}_{12}-16-\mu \mathrm{fd}$. 4.51 -volt alectrohtia.
 additional capacity mounted in L : L, form. See coil table.
$\mathrm{C}_{14}-11-\mu \mu \mathrm{fd}$. nidget varialle (IIammarlund $\mathrm{HF}-15$ with ome water plater remendi.
$\mathrm{R}_{1}, \mathrm{R}_{4}-180$ (ohams.
$\mathrm{R}_{2}, \mathrm{R}_{5}, \mathrm{R}_{14}, \mathrm{R}_{15}-270$ ohms.
num. to furnish a chassis in which the grounds are more certain than they would be on a black-crackled stesel chassis, and it also makess a well-shielded amplifier when mounted on the stere chassis. The stereh chaseis is a stamdard $7 \times 11 \times 2$-inch atfair. A panch is med to support the Xiational A(X diat, and to redure metal work on the stere whesis the panel is 13. Re. Rs - \quad (8800) ohmas.
$\mathrm{K}_{1}-1 . \overline{1}$ meguhm:.
R!,-- 1.0 mexohm.
R10-2000-ohm pritentiomeler, wire-wound.

$\mathrm{K}_{13}-\mathrm{il}$, (NO) colims. 1 watt.
All rexistorn ${ }^{12}$ watt mulewa otherwise speridid.
$\mathrm{I}_{1}-\mathrm{L}$ - Ser coil table.

S_{1} —s.p.s. ratary switel.

and $11 / 4$ inches hish, and is bolted 1.0 the side of the sterel chatsis and to the top). 1 small strip of hakelite. suported away from the side by sarows amd small sparers is hed to support the power-supply end of the filter resistors h on R_{5} and $h_{\text {ris. }}$ 'The conds are fed though smatl holes in the bakelite amd then wrapperl around the strip before buine soldered throthere
supported away from the chassis by analuminumbracket on one side and by two of the screws that fastern the dial to the panel. Holes in the chassis, allow arovess to the tuning slugs of the r.f. coils.

The tuning condenser is mounted on a small aluminum bracket fistened to the chassis by two serews and to the condenser be the shaft bushing. This result: in a rigid mount that eombribulas romsiderably Iu the int hational mataility of the oseillator.

The const ruction of the aluminum chanmel is appatent from Fig. 122.1. It is 3 inches wide

Fig. 1223 - Another view of the converter showing the r.f. sul)chassis. Note the bracket on the tuning condenser, $11 \times \mathrm{d}$ to avoid bachlash.

In the heater circuits of the miniature tubes, Pin 4 is grounded to a lug under the nut fastening the socket, and Pin 3 is the "hot" heater lead. In the case of the input GNKi, the hot heater lead was led back in shield braid, and the braid was grounded at the lug grounding Pin 4, and to lugs at two other points along the way. These latter lugs are under the nuts fastening the sockets for L_{3} and the output coil, $L_{5} L_{6}$.

The cathode and sereon/plate by-pass condensers are groumded to luge under nuts holding the sockets of their respective plate eoils. Since it doesn't matter where the cathode resistors are grounded, they are returned to lugs under the roil sockets ahead of them. Pins 1 and 2 of the roil sockets are grounded to the lugs just mentioned, the No. 3 pins of the coil sockets for L_{3}, L_{4} and L_{5} go to the phates of their respective tubes, and the No. 4 pins of the same sockets are conneeted to the screen pins on the tube sockets. The grid condensers, C_{3} and C_{6}^{\prime}, are tied from l'in 7 on the coil sockets to the grid pins on the tube sockets.

The oscillator and power-supply wiring on the strel chassis is conventional, with the exception of the oscillator coupling condenser. A small National TlPB bushing is mounted on the chassis where it will be parallel to the lead on the grid side of R_{7}. This bushing is connected to the stator of C_{14} and the "hot" side of L_{7} by a hoavy wire, and coupling is obtained by the capacity hotween this bushing and the grid lead of the mixer stage. The output cable from L_{6} is a length of RG-59/U 70-ohen cable.

Fig. 1224 - The straightforward arrangement of the r.f. components is shown in this view of the subehassis. The straight side is ecened to the side of the chassis.

If one of the free points on the OB-2 voltage-regulator tube socket is used as a tie-point for (12 and L_{0}, as was done in this case, be sure to clip off the pin on the tube. If this isn't done, a discharge will be obtained inside the tube, since the free pin projects inside the tube envelope and acts as an anode.

The coils for the converter are wound on Millen 74001 tuned plug-in coil forms. The coils are started on the form about $1 / 8$ inch above the lower limit of travel of the iron slug. In the case of L_{3} and L_{4}, one and of the winding is connmeted to l'in 4 and the other to Pin 7. A jumper is then run from lin 7 to Pin 3. This jumper has the effect of tapping down the plate on the coil, since the jumper has some reactance at these frequencies. In the case of the oseillat or coil, the padding condenser, C_{13}, is mounted inside the coil, although it could be mounted on the coil socket. The tickler, $L / 8$, is wound on the form away from the slug end. The miser output capacitor, C_{10}, is mounted on the socket. All coils are securely fastened with coil dope, and this is particularly important in the case of the oscillator coil assembly, to insure long-time stability.

After the wiring has been completed and checked, the oscillator should be checked first. Puta voltmeter across R_{14} and see if the voltage increases slightly when the grid of the oscillat or tube is touched. If it does, it shows that the rireuit is oscillating, and the coil can be tuned to frequency with the iron slug.

Couple the output of the converter to a communications receiver on 7.3 Mc. and adjust the slug of L_{5} for maximum noise in the receiver, with power to the converter and the convorter gain control at minimum. Some kind of signal will be needed with which to establish the oscillator frequency accurately, and this

(OIL DATA FOR TUE BANI)-IPASS CONVERTER

C'oil	$14 . \mathrm{Mc}$.	$28 . \mathrm{Mc}$.	\%) Mc.
L_{1}	13 t. N゚\%. 26 d.c.c.	8 t. No. 26 d.c.c.	5 t. No. 26 d.c.c.
L_{2}	35 t. Nor. 2.1 d.r.c.	23 t. No. $2+1 . \mathrm{c}$.	8 t. No. 24 d.c.c. spaced wire diam.
L_{3}, L_{4}	25 t. N゙o. 21 d.r.c.	81/2 t. No. 24 d.c.c.	5 t No. ${ }^{ \pm}$d d.c.c. spared twice wire diam.
L_{5}	37 t. No. 26 entam.	Same	Sane
L_{0}	9 t . No, 26 entm.	Same	Sime
L_{7}	4 t. No. 2 f d.e.c.	7 t. No. 20 enam.	2 t. No. 2 \& d.c.c. spaced wire diam.
L_{8}	spared to oceupy $1 / 4$ inch 3 t. No. 26 d.e.c.	3 t. No. 26 d.c.c.	2 t. No. 24 d.c.c.
C_{13}	$150 \mu \mu \mathrm{fd}$.	$27 \mu \mu \mathrm{fd}$.	$22^{\mu} \mu \mathrm{id}$.

[^3]

Fig. 1225 - A view mulerneath the chassis shows the polystyrene bushing u*ed to couple from the oscillator to the mixer. 'The panel in monnted away from the chassis to simplify mounting of the dial, The tuming serews of the r.f. coil can be seen projecting through holes in the chassis.
signal can be a harmonic from the station transmitter or a test generator. For 28-Me. aligmment, set the sigmal source at about 28.5 Mc. and the tuning dial at 35 and adjust the slug on the oscillator eoil until the signal is heard. Short the input of the receiver with a carbon resistor equal in value to the impedance of the antenna line. Having established the tuning range - and checking it at other points if available - peak L_{2}, L_{3} and L_{4} on noise. Tuning across the band, the output noise should peak near the center of the range and fall off slightly at either end. By increasing the inductance of L_{4} - running the slug in - and deereasing the inductance of L_{3}, it will be pos-
sible to get practically uniform noise output over the entire range. It will be found that L_{2} tunes very broadly when loaded by the resistor or the antema, and its resonance should be checked with this load disconnected, to make certain that the coil can be made to tune through resonance. A sharp incroase in the noise will sorve as an indication, and it may be found necessary to retard the gain control for this test, to prevent oscillation in the r.f. stages.

If any queer burbles or sudden peaks of noise are encountered, it indieates regeneration in the r.f. stages. If this is cneountered, the r.f. stages ean be worked on while removed from the ehassis, since there will be enough stray oscillator output to the miser to reccive signals, and the various plate- and heater-supply leads can be investigated with a $0.001-\mu$ fd. mica condenser until the source of feed-back is found. Poor grounds can also give trouble.

Under normal conditions, the gain of the communieations receiver following the converter will have to be reduced considerably, since the gain of the converter runs around 40 db. It will be found to rocquire very little antenna for normal pick-up, but in order to give it every break it should be used with the best antenna available. Some experiment with the input coupling may be necessary if a tumed antenna is used, but this might be only a tuned circuit with a link line running to the converter input.

(I) An Audio Noise Limiter

If one is bothered by ignition and other pulsetype noise on the higher frequencies, the addition of a noise limiter to the output of the receriver will result in improved reception and will allow the reception of some weak signals that might otherwise be lost. The limiter shown in Fig. 1226 is pluggerl in to the receiver 'phone jack and the healphones are plugged into the limiter, so that no work on the reeciver is required. The limiter will also kerp the strength of c.w. signals at a constant comfortable level and will do much to relieve

Fig. 1226 - A crystal-dinde noise limiter for use betucen receiver and Leadilimites, Duilt in a 1 by 4 hy $2-$ inch lox, it contains the limiter crystal:, hias celli, headphone jack, and on-off switch, and is provided with a cord and plug to connect to the receiver healphone ontput.

Althongh primarily intended for c.w. reception, the limiter also is highly effective on 'phone signals when the audio, whome level is properly set and the r.f. gain is automatically controlled.

 ecption.

J_{1}-single-circuit jack. $\quad h_{1}-1.5000$ ohmm, !2 watt. S1-S.p.s.t. toggle.
the operating fatigue resulting from long hours of listoning to rackles, key clicks, blocking signals and the like.

As can be seen from the wiring diagram in Fig. 1227, wo $1 \times 3+$ ersstal diodes, individually bitsed by ${ }^{1}$ e-volt dry cells, are used to short-rireuit any signal coming through the phone direuit that has an amplitude greater than about 3 volts, pak-to-peak. Hence if the audio gain of the receiver is adjusted to give a signal of this amplitude - comfortable headphone volume - noise peaks of groater amplitude will be short-rirenited and not heard in the headphones. A $6 . \mathrm{A}_{\mathrm{L}} \mathrm{F}$ twin diode can be substituted for the two 1 Nist crestals, but a hoater supply will be required and it is generally more convenient to build the limiter as shown. No current is drawn from the two cells used for bias, and they will last their shelf life.

The limiter can be built in a $4 \times 4 \times 2$-inch eabinet, as shown in Fig. 1226. By removing the two sides of the cabinet, all of the components can be mounted in the frame. The two dry cells can be taped togother and then held in place by heavy leads soldered to them. or speceial clips can be made of spring brass. The two lN3t erystal diodes are best mounted on tie-points, and the pigtails of the diodes should be held in a pair of long-nose pliers while solfering to them, because too much heat from the soldering iron may derease the effectiveness of the crystal. The pliers conduct the heat aw:y that might otherwise reach the erystal.

(I) An Antenna-Coupling Unit for Receiving

It will often be found advantageous on the 14 - and $28-M c$. bands to tune (or match) the rewiving antenna feed line to the receiver, in order to get the most out of the antenna. A compaet unit for this purpose is shown in Fig. 12%. The wiring diagram, Fig. 1229, shows that the unit is a simple pi-section coupler. By proper selection of the condenser and inductance values, a match can be obtained over a wide range of values. It can be plated close to the recoiver and left connerted all of the time, since it will have little or no offect on the lower frequencies. A short length

Fig. 12:8-Rear view of the antenna-mupling unit. The two evils ean be seen directly below the two emdensers.
of $300-\mathrm{ohm}$ ' T win-Lead is convenient for connecting the eoupler to the receiver.

The antenna coupler is built in a $3 \times 4 \times 5$ inch metal eabinet. All of the eomponents except the two pairs of terminals are mounted on one panel. The condensers are mounted off the panel by the sparers furnished with the rondensers. and a chearaner hole for the shaft prevents any short-circuit to the panel. The coils, wound on National PlRD-2 polrstyrne forms, are fastened to the pand with brass screws and the coils should be wound on the coils as far as possible away from the mounting end. If this still leaves the enil muds within ! 6 inch of the panel, the forms should be spated away from the panel by National Xl'-6 hattons. The switch should be wited so that the

Fig. 1229 - Circuit diagram of the coupling unit.
$\mathrm{C}_{1}, \mathrm{C}_{2}-100-\mu \mu \mathrm{fll}$. midget variable (Millen 29100).
 diameter polytyrue form, tapped at $2 \frac{1}{2} 26$ and 14'́ㅡ́turn-
$\mathrm{S}_{1}-2$-circuit 5 -position single-section ceramie wafer switch (Mallory 1736).
switching sequence puts in, in rach coil. 0
 turns. All of the wiring, with the exeception of the input and output torminals, can be done with the panel removed from the box.

The unit is adjusted for maximum signal by switching to different coil positions and adjusting ('1 and C_{2}. It will not be necessary to retrim the condensers exept when going from one end of a band to the other, and when the wnit is. not in use, as on 7 and 3.5 Me., the coils should be switehed out of the circuit and the condensers set at minimum.

$T_{r a n s m i t t e r ~ C o n s t r u c t i o n ~}$

IS The descriptions of apparatus to follow. not only the clectrical specifications but also the mandarturer's name and type number have berngiven for most components. This is for the comveniene of the buidar who may wish to make an exact ropg of some piece of equipment. However it should be understood that a component of different mamufacture, provided it is of equivalent quality and has the same edectrial specifications, may be substituted in most cases.

C. A Beginner's Transmitter

One of the simplest satisfactory transmithers for amateur use is shown in the photographes of Figig. 1301 athl 1303. Ther rircuit diagram appatre in Fig. 1302. The arrangement comsist s of a Pierer arystal wembator mameatanecoupled to an output stater which maty be used cither as a straight amplifier at the crestal froquenery or :s a frequoney douhler to deliver ouput at twier the erystal frexumers. This combination has the arlantage ower a simple aseillator trammitter in that the aseillator is iselated from the eflects of tuning and loarling.
 cguivalents, may he usod in villur the oscillator or amplifier with moly at shght difference in performane at the suppled phate voltame.

By the use of the proper eoil at $/ .1$ o output
may be obtained at 3.5) or 7 . Mc. with a 3.5 - Ma . erystal or at 7 or 14 Mr , with : 7 -Mr. rerstal. The amplifier input is not tumed so that neutralization of the output stare is umecessary. C_{2} provides regeneration; its value should not depart approciably from that speaified. The output tank circuit is in the form of a pi-section filter which makes it possible to use the 1 ransmitter with a wide variety of antenna systems.

Parallal plate feed is used in the output stare to remove plate voltage from the tuning condensers and the coil. Plate voltage for the ascillator is reduced by the serius resistor. R s. while sereen voltage is obtathed from the voltage divider made up of $R 2$ and R_{3}. In the amplifier seretion, the soreen voltage is obtained from the second voltage divider amsisting of R_{6} and R_{7}. Grid bias for the wicillator is whtained from the wrid leak, R_{1}, alone, while a combination of cathoule resistor (R_{5}) and grid leak (h_{1}) is used for the amplifier. A for-mat. dial lamps sorves as a resonathee indicator in tuning up the tramsimiter.

Comsirmenom - 'lhe chassis. on frame is made entirely from lattioe strip, $1^{5 / 8}$ ind hes
 shows how the strijus are fistemed torether with 1 -ineh wire brads. The $1 \frac{1}{4}$-inch spowing between the lop strips is approprithe for

Figs, 1.301 - The rom. whe hegimer ${ }^{*}$ trann-. mittor. In the r.f. unit in the forerevened. le.ft IT right. are the $\overline{0}$ prongs socket for the pewryplug.ontal anchat. for the ernatal. nicillator tube and amplifier tube. and the output tanh comdens(ris, Co and Cin, with Whe coil $/ .1$ in ber wren.
 chasis at the rear are the filter chanter I. . the Type 80 revtifier fole and the peower transformer. 'The filter condensers. (in and (is, and the bleeder re-istor, Re, atr" underneath. The here-riek fitter is to the right.

Fig. 1.302 - Circuit diagram of the beginner's transmitter and power supply.
$\mathrm{C}_{1}, \mathrm{C}_{8}-0.001 \mu \mathrm{fl}$. miea.
$\mathrm{C}_{2}, \mathrm{C}_{5}-100-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{\mathrm{f}}, \mathrm{C}_{7}-0.01-\mu \mathrm{fd}$. paper.
$\mathrm{C} 9, \mathrm{C}_{10}-250-\mu \mu \mathrm{fd}$. variable ($\mathrm{Na}-$ tional TMA 250).
C_{11}, $\mathrm{C}_{12}-16-\mu \mathrm{fI}$. $4 \div 5$-volt electrolytic.
$\mathrm{C}_{23}-1-\mu \mathrm{ff}$. 400-volt paper.
$\mathrm{C}_{14}-0.5 \mu \mathrm{fd} .400$-volt paper.
$\mathrm{R}_{1}, \mathrm{R}_{3}-47,000$ ohms, 1 watt.
$\mathrm{R}_{2}, \mathrm{~K}_{6}-0.1$ megohm, 1 watt.
$\mathrm{R}_{4}-22,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}, \mathrm{R}_{10}-330$ ohms, 1 watt.
$\mathrm{R}_{7}, \mathrm{R}_{\mathrm{s}}-15,000$ ohms, 2 watts.
$\mathrm{R}_{9}-20,000$ ohme, wire-wound, 10 watts.
$\mathrm{L}_{1}-3.5 \mathrm{Me}: 32$ turns No. 20 d.s.e., $11 / 2$-inch diam., close-wound. - 7 Mc.: 20 turns No. 20 enam., $1 / 1 / 2$-inch diam., $11 / 2$ inches long.

- 14 Mc.: 10 turns No. 18 enam., $1 \frac{1}{2}$-inch diam., 1 ineh long.
(B \& W JEL $80,{ }^{* 10 *}$ or ${ }^{*} 20$ " coils may be substiturnef.)
L_{2} - Filter choke, 10 hy., 130 ma. (Stancor (-2303).
$\mathrm{I}_{1}-60$.ma. dial lamp.
$\mathrm{P}_{1}-5$-prong chassis-mounting male pluz.
$P_{2}-5$-prong female cable plug.
P_{3} - A.c. line-cord pluy.
RFC - $2 . \overline{5}-m h$. r.f. rhoke.
l-Power transformer; 350 volts each side of center; 5 v., 3 amp; 6.3 v., 4.5 amp. (Stancor P-1080).
$\mathrm{I}_{1}, \mathrm{~V}_{2}-6 \mathrm{~K}_{6}, 61.6,6 \mathrm{~F}^{\circ} 6$ or glass equivalents.
V_{3} - 'Yye 80 rectifier.

Millen sockets, but it ean be changed to suit sockets of other dimensions, of course.

The completed chassis was given a couple of coats of grey Duco. The sockets are fastoned in platee by means of small wood screws and are orientated so that most-convenient connections may be made. The power-plug socket has its metal-ring key to the loft, the oscillator tube soeket key is to the right, the amplifier tube socket toward the front and the coil socket toward the left.

All wiring is done underncath. The yround wire is a piece of No. It bare wire which runs the length of the chassis from the No. 4 prong on the power-supply socket to the rotor of C_{10}.

To this wire all ground connections shown in the diagram are made. Connections to by-pass condensers and r.f. chokes should be as short as possible, the by-pass condensers being connected to the nearest point on the ground wire. A pair of fiber lug strips provide anchorage for resistors and r.f. chokes. "Hot" r.f. leads (those from the plates and control grids of the tubes and the connections between the tuning condensers and the coil) should be short and direct instead of going around rightangle bends. The output terminals are a pair of Fahnestock clips fastened to the two sides of C_{10}.

Homemade coils may be constructed by

Fig. 1303- Bottom view of the beginner's transmitter. 'The bypans conilensers, r.f. chokes and resistors are grouphal around the tube sorkets. The ground wire mentioned in the text runs along the top edge of the lower chassix strip. The indicator lamp, I_{1}, is wired in the II + line just below the amplifier plate r.f. choke. It
 is placed underneath the chassis where it can be viewed from above through the opening between the chassis strips. The r.f. choke to the right is in the amplifier and the one to the left is in the oscillator circuit.
winding then, according to the dimensions given under Fig. 1302, on Hammarlund $11 / 2$-inch diameter \bar{i}-prong eoil forms. Those shown in the photograph are the 13 \& ${ }^{1}$ JELA serics. The link winding is not used.

Inexpensive compoment: are used in the power supply. The transformer is : a broadrast-receriver replacement type as are the filter components. The chassis is similar to that used for the transmitter, the only difference being in the length $91 / 2$ inches instuad of $15!\underline{6}$ inches. The filter condensicrs, and the beeder resistor, Ro, are placed undermeath.

The key-click filter is a sopparate unit assembled on a small piece of ${ }^{1}$ i-inch wood. The connecting leads and the leads to the key should be short if the filter is to be affective. The side of the filter comereded to power-plug Pin 5 should be connected to the frame of the key.

Adjastment - The transmitter should first be tuned up without the antenna connected. It should be remembered that only the second harmonie of erystals betwern 3:00 and 3650 kc . and between 7000 and 7200 kc . are useful in the higher-frequency amateur banels. With a suitable crystal and coil plugged in, the power supply may be plagged in and the key closed after allowing time for the heaters of the tubes to come up to temperature. The indieator lamp, should glow brightly when the key is closed. fietting C_{10} at about hallf capacitance, ('s should be aljusted as I_{1} is wateched for a dip in illumination. If this dip cannot be found anywhere within the range of $(9$, another setting of ('11 should be tried. As soon as the dip has been found, the antennal may be connceterd, and the tuning process repeated as before. With the antenna comected the dip at resonance will not be so pronouncerl. In fact, when the amplifier is loaded properly, the dip should be just noticeable - just enough to indicate that the output eircuit is tuned to resonance. The proper loading point may be found by adjusting ('10 at several fixed setings and rotating C_{9} through its range for carch setting of C_{10}. As the proper point is approached, the rapacitance of C_{10} should be adjusted in smalher steps. In most cases the loating will increase as the capacitance setting of (${ }_{10}$ is decreased. Near maximum loading, the adjustment is fuirly critical. With antennas of certain dimensions, it may be necessary to short-circuit a few turns on L_{1} to obtain maximum loading in the $3 . \bar{j}-\mathrm{Me}$. band with the B \& W eoil.

While the best antema within the limits of cost and space should be used, the output circuit provides means of feeding power into a

Fig. 1304 - Shiteh showing the important dimensions of the beginner's transmither chassim. The center lines are numbered as follows: 1 - power plag, 2 crystalsocket, 3 - oscillator-tube socket, 4 - anplifier-tube soeket, 5 - tuning condenser, $C_{9,} 6$ - coil sochet, 7 - coupling complenser, C_{10}.
wire of randon length; it is not necessary that its length be a multiple of a hadf wavelength. With the power supply described an output of about 10 watts should be possible at the crystal fundamental; and 5 or 6 watts when the output stage is used as a frequency doubler. If a milliammeter is connected in series with the key, it should show a reading of about 20 ma . with the amplifier tuned to resonance and unloaded at the crystal fundamental and about 40 mat when doubling. Leraded, the plate current should run between 70 and 80 ma. With a power-supply voltage of 350 , the oseillator plate voltage should be 170, the oseillator screen voltage 90 and the amplifier screen voltage 220 with the amplifier loaded and tuned to resonance.

4. A Self-Contained 60-watt Transmitter for 3 Bands

The diagram of Fig. 1307 shows the circuit of a simple two-stage transmitter. The rig, shown in Fig. 1305, is cnclosed in a cabinet, complete with power supply and antenna tuner.

A GY6GT Tri-tet oscillator drives an 807 output stage directly with simple capacitive coupling. Any one of ten crystals may be selected from the front of the panel by the crystal switch. St. A pair of terminals also is provided at the rear for VFO conncetion. Bands are changed by means of a system of plug-in coils.

The oscillator eircuit operates with either 3.5- or 7-Mc. crystals. In cither case, oscillator output may be obtained at the erystal fundanomtal frequency or its second harmonic. While the output stage may be used as a frequency doubler with fair efficieney, this sort of operation is not recommended unless the unit is to be used as an exciter for a following amplifier.

Parallel plate feed is used in both stages to pernit mounting the tuning condensers, C_{2}^{\prime} and C_{3}. directly on the metal chassis without insulation. The v.h.f. choke $R F C_{2}^{\prime}$ and the screen resistor, R_{i}, are necessary to suppress h.f. parasitic oscillations.

Fig. 1305-A two. stake low-rmwer trang. mitter for three bands. 'To either side of the milliammetur are the oseillator and amplifier plate-tuning rontrols. Along the lottom are tharerysta! switoh, tho plate-volage swith, the mether switeh, the key jack and the antema tuning control.

The s.p.d.t. toggle switch. So. makes it possible either to key both stages simultameously for break-in work on the lower frequencics, or the output stage alone at $14-\mathrm{Mc}$. frequencies where oscillator keying ehirp may become noticeable. The unit includes a link-coupled antenna tuner. $L_{4} \mathrm{C}_{4}$.

The self-contained power supply is built around an incepensive multiwimding transforner, T_{1}. The separate filanent transformer, T_{2}, makes it posisible to cut off the plate vollage without turning off the heaters of the tubes. A condenser-input filter is used to boost the output voltage to 600 under load. Voltage for the plate of the oscillator and the sereen of the 807 is kept from soaring when the key is open by a pair of voltage-regulator tubes. This operating voltage of 250 is dropped to 150 volts for the screen of the 6 V 6 GT by the series resistor, R_{3}.

The millianmeter may be switched to read oscillator plate current and 807 grid or plate current by the double-gang switch, sis, which connects the meter across the shminting resistors, R_{4}, R_{6} and R_{8}. R_{4} and R_{8} are adjusted to multiply the 10 -mat basic meter-scale reading by 10 and 20 , making the full-scale reading 100 and 200 ma. respectively when checking plate currents, while the revistance of R_{6} is sufficiently high to have negligible effect upon the meter reading when measuring the grid current of the amplificr.

Construction-Raference should be mate to the photographs of Figs. 1305 through 1310 for constructional details. The transmitter is built on a $10 \times 14 \times 3$-inch chassis which fits a standard $9 \times 15 \times 103_{4}^{3}$-inch cabinet. The r.f. section occupies the front half of the chassis, while the power-supply components are lined up at the rear.

All tube and coil sockets are submounted. The cathode coil. L_{a}, requires a 4 -prong soeket; octals are needed for the fivicir, the oseillator plate coil, L_{2}, the rectifier and the two VR tubes; L_{3} and L_{4} require $\overline{5}$-prong sockets.

The oscillator and amplifier groups are separated by a small batte shield cut from sheet aluminum. It is 4 inches high and 5 inches long and hats a cut-out in front for the meter. It is spaced 8 inches in from the right-hand end of the chassis. The line of ten Millen erystal

Fig. 1306 - The necillator section of the low-power transmitter, slowing the line of crystal sockets, the catbode coil, the shielded plate coil and the 6V6GI'.

Fig. 1307- Cirenit diagram of the 3-band low-power transmitter.
$\mathrm{C}_{1}, \mathrm{Cs}-100$ - $\mu \mu \mathrm{fl}$. mira.
$\mathrm{C}_{\mathrm{x}}-1001$ - μ fil. mital (sec tert).

$\mathrm{C}_{8}-22-\mu \mu \mathrm{fl}$. miea (see tent).

$\mathrm{C}_{5}, \mathrm{C}_{\mathrm{f}, \mathrm{C}} \mathrm{C}$ - 0.01 - $\mathrm{\mu}$ (d. papor.
$\mathrm{C}_{7}, \mathrm{C}_{10}-0.001-\mu \mathrm{fd}$, micat.
$\mathrm{C}_{11}, \mathrm{C}_{12}-4-\mu \mathrm{fl}$. 10000 -volt paper.
$\mathrm{R}_{1}-220$ ohms, 1 watt.
h_{2} - 47,000 ol 1 me, $1 / 2$ watt.
R_{3} - 40.000 whms, 5 watts.
$\mathrm{K}_{4}-100$-ma. neter whant (sec text).
$\mathrm{R}_{5}-15,000$ ohms, 1 watt.
$\mathrm{R}_{6}-47$ olms, ${ }^{2}$ 2́ watt.
R_{7} - 47 ohans, 1 watt.
$\mathrm{R}_{8}-200$ - mat meter inunt (sectext).
$\mathrm{Rg}-50,000$ ohms, 2.5 watte.
$\mathrm{R}_{10}-10,(000$ olums. 25 watts.
L_{1} - Oncillator rationde
1A ($3.5 \cdot$ Wc. rrystaly) -1.1 turns No. 22 d.c.c., $1-$
 connected in parallel.
1B ($\mathrm{T} . \mathrm{Me}$ erystals) - I 10 turns No. 22 d.c.c., $1-$ inch diam., $\overline{\text { s }}$ inch long.
L_{2} - Oscillator plate
$2 A$ ($3 . \overline{\mathrm{S}} \mathrm{Mc}$.) -80 turns No. 26 d.s.c., 12 -inch diam., close-womal, C_{z} connected in parallel.
2B (7 Me .) - 40 turns No. 24 dice.c., $1 / 2$-inch diam., close-wound.
$2 \mathrm{C}-(14 \mathrm{Mc}$.) 25 turns No. 18 d.c.c., $1 / 2$-inch dian., 138 B iaches long.
sockets is placed as close to the left-hand edge of the chassis as possible. Each of these requires two elearance holes and a mountingserew hole between.

Alongside the crystal row are the 6VGGT oscillator tube and its cathode coil, L_{1}. followed by the plate coil. $I_{2 x}$. and the oseilhator tuning eondenser, C' 2 . The latter is mounted directly on the chassis 45 inches from the left-hand edge. The oseillator grid and plate chokes are mounted underneath.

On the other side of the bafle shied are the 807 with its plate-circuil choke and blocking condenser, C_{10}, the output tank condenser and
I_{3} - Amplifier plate
3 A ($3.5 \mathrm{M}()-$.214 turns $11 / 2$-inch diam., $13 / 8$ inches long (B \& W JELAO with 16 turns removed). 3-turn link.
 long (B \& W JEI 40). 2-turn link.
3C (1 - Mc.) - 12 turns $11 / 2$-inch diam., 2 inches long (3 \& \mathbb{W} JEI.20). 2 -turn link.
L_{4} - Antenma coil
4. (3.5 M(•) - 30 turns 13 -4-inch diam., 2 inches long. 3 -turn variable link at center (B \& W Wlisi) with 5 turns removed from carh end).
$4 \mathrm{~B}(7 \mathrm{M} \cdot$.$) - 24$ turn $\times 13 / 4$-inch diam., $23 / 8$ inches long, 3-turn link at center (B \& N J J 1.40).
$4 \mathrm{C}(11.1 \mathrm{c}$. $)$ - 14 turns $13 / 4$-inctl diamı, $21 /$ inches lone, 3 -turn link at center (B \& W JVi.20).
$I_{5}-6$-henry 1:⿹\zh26灬-ma. filter chake.
I- 6,3 -volt signal lamp.
J_{1} - Chomed-circuit jack.
A.S - (0-10 mal. meter.
$1 \mathrm{FC}-2 . \overline{5}$ min. r.f. choke.
$\mathrm{KFC}-11$ turns No. 20, 5 íc-inch dianı, $3 / 4$ inch long.
$S_{1}-11$-poim tap switch, ecramic insulation.
S_{2} - S.p.d.t. togele.
S_{3} - Donble-rang 3 -position rotary switeh.
S_{4} - S. H .s.t. toygle.
$\mathrm{T}_{1}-600$ volts (arch side of center, 200 ma.: 5 volts, 3 aup. ($\mathrm{E}^{\prime} \mathrm{T}^{-} \mathrm{CS}-41$).

VR - Voltage-regulator tubes - VR-150 and VR-105 types in series to give 255 volts.
coil, C_{3} and L_{3}, and the antenna-coupler coil, L_{4}. The antenna tuning condenser, C_{4}, is mounted under the chassis. The socket for the 807 is spaced as far below the chassis level as possible, without protruding from the bottom, by means of brackets cut from strip metal. The purpose of this is to provide a shield between the input and output sections of the tube. A 17 -inch hole is required to clear the tube envelope. (3 is mounted directly on the chassis with its shaft $43 / 8$ inches from the right-hand end of the chassis to balance the shaft of the oscillator plate-tank condenser.

The antenna tuning condenser, C_{4}, must be

Fig. 1308 - looking into the amplifior end of the 807 . transmitter chasis. The 807 suek et is spared be low the chasais to provide shieding betwen the input and output sections. The eool in the foregromme is in the antemna tuncr, while the one behind it is the amplifier plate tank coil.
insulated from the ehassis. This is done by means of an aluminum angle bracket and a pair of polystyreme feed-through buttoms. The condenser is placed so that its shaft comes $15 / 8$ inches from the end of the chassis to balance the shaft of the erystal switch at the oppowite end. The antenna coil is mounted at right angles to L_{3}.

The meter switeh, S_{3}, is mounted at the renter between the front chare of the ehassis and the bottom part of the so7. The key jack and power switch, x_{1}. are spated erpuadly to either side of the center of the front edge of the chassis.

The power-supply components are placed as close as possible to the rear codge of the chassis, with the transformer T_{1} at the left followiod by the rectifier and voltare-regulator tubas. the input condenser, (${ }^{11}$, the filtor choke. L_{5}, and the output eondenser. A large cut-out is required for the transtormer terminals and if filter eondensers of the type shown are used, holes for the terminals must the provided in addition to the mounting-serew holes. The leads to the filter choke are fod down thromph a grommet-lined hole nest to the choke. The $k \cdot y$ switch, x_{2}, and the antemnaterminals ame noumed in the rear edge of the chassis where the power cord also enters.

Underneath the chassis, the power wiring was done first keeping it bunched and close to the chassis wherever posible. The separate filament transformer, T_{2}, is fastened to the left-hand end of the chassis. By-pass rondensers and r.l. ehokes should be platecd close to the tube terminals to which they connect. The by-pass condensers should be grounded to the
chassis at the nearest available point. The compling and bucking condensers, $C^{\prime}{ }^{\prime}$, C_{8} and (fow, shoulal be well spared from the chassis. The same applies to all r.f. wiring, which should atse be kept short and direct botweon points of connertion. The length of leads to rexistors is not important. In some eaves it may be comberniat lo nise fiber lug ofrips as anchorages or supports for small resistors and r.f. -hokes.

The metol' shunts, R_{4}, R_{f} and R_{s} are momited direetly wn the noter swlteh. R_{4} and R are made from No. 30 magnet wire dpproximatoly 7 feet will be required for K_{s} and it feed lor has before the meter mombed in the pand, it shoutel be conneeted in series with at Brobl bat bery and a variable resisatate of about 500 ohms. A resistor with a slider will serve the parpose if no other is available. The revistathe abould be adjusted motil the meter reads full walc. When the shunting Wire. (-ut to a lenglh of two or three fect more than that rerpired is romeneted across the meter terminals, the readine will drop. The langth of the wire should be adjusted, bit by bit. Antil the reading drops to 1 ma. for h_{4} and to lema. for h, . The wire then may be wound on a smatl form for comparthess. A resisfor of 100 ohms or more makes a good form and its resistance does not affect the calibration of the shunt to any pratical degree.

The link line betwern the output tank circuit and the antemna tuner. and the ronnertions between the lattor and the anternaterminals at the reat. should be made with rigid wire spaced Well away from the chassis and surrounding components.

Coils- The output and antenna tank coils. L_{3} and L_{4}, are of the $13 \&$ W JViL and JVL serias respertively.

Some of these require pruning, as indicated in the coil table, to provile the corrent L / C ratio. The antennatuncr coil, L_{4}, requires an extrap pain of contarts for the tapleads. sinec a center-tap is not required, it may be cat free from the base pin so that this pin maty he used for one of the lap eontarts. The other tip contact is provided by drilling out the tubular rivat at one of the ends of the coil-supporting base strip :and substituting a banana plug as shown in Fig. 1309. A jack for this plug them is mounted in the chassis close to the coil socket

Fig. 1309-The anterma woil for the - - tage transmitter requires the addition of an extra contart which is provided he the bamana plup. To the right is the 3.-. Nle. ow-illator bate coil with the mica padding condenser connected acrose the winding.

Fig. 1310-Buttom view of the low-pwer transmitter, showint the mounting of the 807 somet at the upper ecoster and the location of by-pass condensers, resistors and r.f. chokes. The separate filament transformer is fastenied to the left-hand edge of the chassis. 'The antenna tuming comdenser is in the upper right. hand cormer, suphorted on an aluminum angle bracket which is intulated from the chaswis by polystyrene but. tons.

by drilling out a pair of polysivene butlontype feed-through insulators to fit the jack and setting them in the chassis.

The two cathode coils for L_{1} are wound on Millen 4 -prong 1 -inch forms. The one to be used witl $3.5-$ Me. crystals reguires a $100-\mu \mu \mathrm{fd}$. mica condenser, C_{x}, comneeted across it in aldelition to ('i. This condenser is mounted inside the form so that it is comereted in the eireuit along with the coil when the latter is plugged in,

The oscillator plate coils are wound on Millen octal-base shicdied plag-in forms. If the forms are of the y pe with iron-core slugs, these should be removed. The $3.5-\mathrm{Mc}$. coil requires an extra padding condenser, C_{Z}, of $22 \mu \mu \mathrm{fd}$. This may be a mica condenser soldered across the winding as shown in the photograph of Fig. 1309.

Adjustment-Since the tuning of the cathode tank circuit is fixed, only three circuits, including the anterma cireuit, need adjustnent. The coil table shows which coils should be plugged in to obtain output depending upon the crystal frequency and the output frequency desired. For initial testing it is woll to use a combination giving output in the 3.5 - or 7-Mc. band. Before turning on the power supply, a key connected to a plug should be inserted in the key jack and the key switeh, s. should be thrown to the amplifier-keying side. This will permit the oscillator to operate alone.

COII. 'TABLE-60-WATT RIC;

Xial f.	Outputs.	L_{1}	L_{2}	$t, 3$	L_{4}
3.5 Mr.	3.5 Mc ,	1.4	2.1	3.1	1.4
3.5 Mc .	7 Mc	1.1	213	313	13
7 Mc .	7 Mr .	113	213	$3{ }^{3}$	413
7 Mc .	14 Mc .	1B	2C	3 C	4 C

Where the power plag is inserted, the heaters of the tubes should warm up. The VIR tubes should glow as soon as the power switeh, S_{i}, is closed. If they do not, the resistance of R_{10} should be reduced until they do.

With the high voltage applied and the meter switched to the first position for oscillator plate current, the meter should read between 35 and 50 ma . As C_{2} is adjusted, a point will be found where the plate current dips to a minimum (between 10 ma. and 30 ma. depending upon the frequeney), rising on either side. If L_{2} has been made close to specifications, this resonance point should he found with about 60 per cent of maximum capacitance in use at C_{2} for 3500 kc ., 70 per cent for 7000 ke . and 30 per cent for 14,000 ke. If the plate eireuit is tuned to a harmonie of the crystal frequency, the increase in current cither side of the minimum should be smooth. However, if the plate circuit is tuned to the crystal frequency, the plate current may jump surdenly to a high value when it is tuned to the ligh-capacitance side of the minimum plate-eurrent point. This indicates that the circuit has stopped oscillating. (${ }_{2}$ should be set sufficiontly to the low-capacitance side of the minimum to insure reliable starting of the oscillator when the power is switehed on or when the amplifier is keyed.

When VFO input is used, the cathode tank circuit should be shorted ont. Otherwise the adjustment is the same except that the oscillator plate circuit may be tuned for maximum amplifier grid current at the fundamental as well as at the harmonic.

The amplifier should be tuned up first with the antenna coil out of its socket. With the meter switched to the second position where it roads amplifier grid current, a reading of 3 to 9

Fif. 1311 - Front view of the plug-in coil transmitter-exciter. The crystal-switch honob is at the left, 21 , inches in from the end of the panel, the dial for the buffer elombler tuming condenter next. $41 / 4$ inches in, followed by the meterswiteh hwor. - inclues in from the edere. 'lhe meter is at the center and the output tanh-comdenmer connmil at the right, $41 / 4$ inches: from the end of the patacl.
mat. should he ohtained when the key is alosed. If no grial-rurrent readiner is oblained. it is probable that the owillator stopped when the key was closed. In this case the thaning of the owidlator should be readjusted. In this instance, at kowst, it has frem foumd that best keying is ohtamed when the oseillator phate cireuit is delumed to the low-raparity side of resomance to a point where tho werllator plate current remains monsant with the key open and chacel. 'lhis rofers only' (to amplifier keving when the ossellator plate eireuit is 1 med to the crystal fumbamental. of eoturse. Radings of 5 to 10 ma . or more should be obtained in all cases. The key should mot he held closed for periods longor than neressary to obatan the reading, until the amplitier plate cirenit is funcel to resonnamor.

With the meler switeh thrown to the last position, where it reads amplifier platerement, a rading of 100 mat. or more should be obtained. Is C^{\prime} 's is turned through its range the plate current shoulal dip to a minimum of between 10 and 15 mat. Wioh the L_{3} woils altered as indieated in the coil table, resomanere shomblat oceur at apmonimately 90 per cent for 3.500 kro. 30 per cent for 7 Ne. and 1 is per cent for 14 Mr.

The anternas should now be connected 10 the anternaterminals and the antemat coil phogere in. The adjustable link of the antemat coupler should be swund about hall-way out and the taps should be plawed on the outside tarns of L_{4}. With the key closed. ' A should be swang through its range. It some point the amplifier plate current should increase to a maximum,
dererasing on rither side. Leaving C_{4} at the point where maximum pate current is obtained, ('a should be readjusted for a minimum point which, of course, will be higher than the unlowded minimum sotained before. The adjustments of C_{3}^{\prime} and C_{4} should be juggled around until a point is reachod where any change in r_{3} will ratse an incroase in pate current, while any adjust ment of 't will cause a decrease in plate curment. If the pate curvent at this point is less than the maximum rated bate current for the tubs, the link compling should be chosed up. If it is greater than 100 ma.. the coupling should be reduced. If it is found that the link adjustment is insulficiont to bring the plate current to the desired value, the taps should be moved in a turn at a time, kecping them always equidistant from the ends of the eooll. It shoubl be remembered that the tap aljustments as well as any change in the prosition of the link may atfert the tuning of the amplifier pate circuit, so it should be reluned to obtain minimum plate current as a final adjustment. This minimum should, of enorse, be the rated mate current of 100 ma . when the amplifier is fully loaded. The dip in plate current at resoname naturally will be very slight when the amplifier is operating under full load.

1. A 75-Watt Plug-In Coil Transmitter-Exciter

The compact 75-wat transmittor unit shown in the photographs of Figs, 1311 and 1312 consists of three stages. The eireuit diatgram appears in Fig. 1313. 1 fil6 Pierce crys-

Fip. 1.312 - Botlom view of the rompat \quad a.s.watt transmitter-exriter. "Jhe output tank-aireuit combpoblents are to the l.ff. 'The chasis tu ther rioht in rlivided lys the alumintm shbpathel to which the 80 sockrt. Ch, and the erystal - witrh are: at. tached.

Iranamilter Construction
 263

Fig. 1:313 - Cirenit diagran of the $\overline{3}$-wate plug-in-coil tramsmitter-writer.
$\mathrm{C}_{1}-100-\mu \mathrm{fd}$. variable (Mill m 22 n 00).
$\mathrm{C}_{2}-250-\mu \mu \mathrm{fl}$. variable (Cardwell $\mathrm{XR} \boldsymbol{- 3} \mathbf{- 9} 0 \mathrm{PS}$).
$\mathrm{C}_{3 .} \mathrm{C}_{10}$. C_{14} - $0.00 \mathrm{I}-\mu \mathrm{fd}$, mica.
$\mathrm{C}_{1}, \mathrm{C}_{7}, \mathrm{C}_{11}-10(1)-\mu \mathrm{fd}$. míra.
$\mathrm{C}, \mathrm{C}_{\mathrm{G}}, \mathrm{C}_{s}, \mathrm{C}_{4}, \mathrm{C}_{12}, \mathrm{C}_{13}-0.0047-\mu \mathrm{fl}$. mica.
$\mathrm{R}_{1}, \mathrm{R}_{3}-4 \overline{4}, 000$ ohms, 1 watt.
$R_{2}, R_{4}, R_{i}, R_{1}-0.1$ megohm. 1 watt.
$R_{5,} R_{s}-15,1000$ ohms, 2 watts.
$\mathrm{R}_{6}-330$ ohms, 1 watt.
R_{g} - " 10 time" maltiplier, copper-wire meter shunt (sce text).
$\mathrm{R}_{10}-47$ ohmas, 1 watt.
R_{11} - 17 ohms, carbon, nonindurtive, 1 watt.
R_{12} - "20 times" meter shunt (ece text).
tal oscillator with a crystal-switehing sy:tem drives a GIf buffer-doubler which, in turn. drives an so7 in the output stare, which maty be used cither as a straight amplifier or as a second frequency doubler. The milliammeter may be switehed to read buffer-doubler plate current, amplifier grid current or amplifier plate current. Plate voltage for the oscillator and buffer-doubler stages is obtained from a 250-volt power supply which also provides screen voltage for all tubes through individual volage dividers. The output stage requires a separate 600-10 $750-v o l t$ plate supply. $h^{k} 9 . R_{10}$ and R_{12} are shmests across which the meter is switched. The resistance of h_{10} is high enough to have negligible effere upon the meter reading. R_{9} and R_{12}, however, are of lower resistance to give a scale multiplication of 10 in the case of l_{9} and 20 in the case of $h_{\text {te }}$. Nime the 807 grid current is small, bateries form the thust eonvenicut sutare of biasiag.

Conseruction - The transmitter is built,
 At the left-hand end is a $5 \times 10 \times 3$-inch \cdot hatssis which houses everything excopt the mathut tank cireuit. At the right-hand ond oi the back edge of the chatsis, as shown in lig. 1312. is a vertical row of three Nillen ervatal someets. There is space for two additional somekets if they are dexired. The erystal soelots are followed, from right to loft, by the $6 \mathrm{~V}^{\circ} 6$ oseillator tube, the 6LG buffer-doubler and its tank coil. L_{1}. The coil socket is mounted flush on the motal by cotting clearance holes for the terminals in the chassis. Between the two
$1_{13}-2.30$ ohms, 10 watts.

$1.111 .,-3$ mhy. 13 \& 11 . JEA.IJ.
 turas to tume to hatid).
J - Comernticuahin cumberor.
M. 1 - Milliammeter, 11 - 10 sealle.

tube sorkets is an Amphenol ahble connector for SFO input, and the power cable cuters the chassis at the lefthathe emel. A separate wellinsulated wire is brought out for the plate vollage for the sol.

The upper hatf of the 807 protruies from the left-hand end of the chassis in Fig. 1:312. Its socker is mounted on metal angle pieces faxtume to the batek of the chaswis and the aluminum subpathel which partitions the chansis. By-pass comdeniads, resistoms and r.f.

Fiz. 1311 - I combination powne-*upty unit delivaring 250 or 300 wolt - for ex-iter plate -uphly and th vole of lixed hias. If ilosired, the componemts may be combined for a high-sultage plate supply a singli chassis. The rircnit diagran of the rombination unit is shown in Fig. [315.

$115 \mathrm{~V} . \mathrm{AC}$.
Fig. 1315- Cirrnit diagram of the combination plate, sereen and gridbits power supply in líg. 1314.
$\mathrm{C}_{1}, \mathrm{C}_{2}$ - Scetions of $8-\mu \mathrm{fd} .450-$ volt dual clectrolytic.
Ca - 8- $\mu \mathrm{fl}$. 4.50-volt paper.
Cor - Sime as Co (used mily for 300 -volt output).
$R_{1}-20,000$ nbme 10 watts.
$\mathrm{K}_{2}, \mathrm{R}_{3}-22,000$ olmms, 2 watts.
$R_{1}-15,000$ olms, 2 watts.
l., L., -6-hy. 80-ma. 13\%orlm filter choke ("lhordarion ' $\mathrm{P}-\mathrm{5} \mathrm{C}$ C51).
T-300 volter r.m.s. each side of cemter-tap, 90 maia: 5 volts, 3 amp.; (6.3 volts, 3,5 amp). ('hoordarson 'l'- I31R13).
If desired, the bias branelt may be omittud, as shown in the alternative diagram at B. All values remain as above.
chokes are mounted close to the sockets of the tubes with which they are associated and this wiring is done before inserting the subpancl. The subpanel carries the crystal switch, the buffer-doubler tank condenser, (${ }^{1}$, the plate choke for the 6 L 6 and one of the two angle pieces supporting the 807 socket. The milliammeter and the meter switch are mounter on the front panel with clearance holes cut in the front edge of the chassis. Flexible shaft conuplings conneet the crystal switch and the bufferdoubler tuning condenser with their enntrol knobs. The batek of the left-hand end of the panel (Fig. 1312) is covered witl a sheet of aluminum and the output tank condenser is mounted directly on this. An aluminum bracket, fastened to the panel at one end and to the rear of the condenser at the other, supports the socket for the tank coil, L_{2}, and the link output terminals. The plate r.f. choke and blorking condenser, C_{14}, are just below the 807 in Fig .1312.

The meter-shunting resistors, R_{9} and R_{12}, are wound with No, 30 copper wire, around a small-diameter form. The proper length of wire may be determined by adjusting a variable resistance in serios with 1.5 or 3 volts of battery until it reals full soale amb then shunting various lengths of the No. 30 wire across the meter terminals until the meterreating drops to one-tenth in the case of the 10-times shunt and to one-twentieth of fullseale reading for the 20 -times shunt, remembering that the shorter the shunting wire, the lower the meter will read when shunted.

The adjustment of the transmiter is simply a matter of plugging in the proper coils and erystal for the desired output frequency and tuning the two tank circuits to resonance. In some instances, it may be possible to find two points of resonance, one at the fundamental and wne at the second harmonic, but these can be identified by noting whether the condenser is near maximum or minimum capacitance.

Fig. 13/t, - Cireuit of the pmer supply in Fig. 1317.
$\mathrm{C}_{1}-2$ - ffL 1000.volt paper (Spragne ()T21).
C_{2} - 1 - $\mu \mathrm{fl}$. 1000-volt paper (Sprague OT:11).
$\mathrm{R}-20,000$ olmus. 30 watts.
L_{1} - Input elohe, 6 19 hy., 300 ma., 125 ohms (K minon $\mathrm{T}-5(0)$.
Lz-Smonthing chuke, il liy, $30($ ma, $1 \because 5$ olme (K'enyon $\mathrm{C}-1(66$).
T1 -92.5 or 7.40 volts r.mi.s. cardi side of center-tary. 310 -mal, d.c. (Kenyon] $\mathrm{J}: 0 . \mathrm{i}$).
$\mathrm{T}_{2}-2.5$ volts, 10 amp., 2000 -volt insulation (Kenyon T'-352).
$\mathrm{T}_{3}-6.3$-volt 3 -ampere filament transformer.
V - Type 866 jr. reetifier.

Fig. 131 - - This power-suphly unit delivers cither 620 or 780 volta at full-load current of 260 ma, with 0.4- pererent ripple and regulation of 22 per cent. Voltage is changed by a tap on the plato-tran-fomer primary winding. 'Jhe lilter chosere are at the left and the plate moner tran-former at the risht on the pamel side of the chas-is. The cantype lond-wolt filter eondonsers are at the left in fromt and the rectilier tulien at the ripht, with the reerti. fier filamont transformer in between. All cx. pomed companent terminali are modermeath
 'ihe 2.s.ast lowampere rectifiner filament transformer should have $[0,0$ onowolt insulastion. A 6.3 -volt filament transformer is inchated for heating the filaments of r.f. tubes. This tramformer is momited mondemeath the chasais; its ontput terminal- are brousht ont to a stamdard are, receptarle in the rear. 'Jlie circuit diagram is shown in Fig. 1316.

With a $2.50-$ volt suphly the combined plate and sareen current wi the 6 i (f) should be about 20 mat. When working as atraight amplifier and 30 mat. when operating as a doubler. The maximum plate current of the moloded 807 will vary belween 30 and 60 ma. When the tube is doubling frequency and between 10 and 15 ma. when working as a straight amplifier. When the stage is operated at 7 ato volis, and loaded to a plate eurrent of 100 ma.. the grid eurrout should run at hast 3 ma. as a straight amplifier or 6 ma, as a doubler.

The supply show in Pigs, 1314 and 1315 will provide $2: 50$ volts for the first two stages and bias for the grid of the 807 . The 750 -volt supply shown in ligss 1316 and 1317 may be used for the ontput stage.

1. A Combination Low-Voltage Plate or Screen Supply and Fixed-Bias Pack

Figs. 1314 and 1315 illustrato a combination pack which will deliver 250 or 300 volts, 75 ma., for supplying plate voltage for receivingtube exater stages as well as sereen and fixedbias voltage for a beam-tube driver stage.

The cirenit diagram is shown in Fig, 1315-A. In addition to the ustal full-wave rectifier cireuit employing a Type so tube, a 1 V half-wave rectifier also is comerted across one half of the truasionmer somolary in reverse direction to provide a negative biasing voltage whath is held constant at 75 volts by the VR-7.5 30
regulator tube. With the dropping resistor shown, the regulator tube will pass a grid current of 25 mat. without overload. The 1 V rectifier is inelirectly heated, so that it maty be operated from the same 6.3 -volt winding provided to supply the r.f. hubes in the transmitter.

The output voltage at a normal load current of about 75 ma. can be increased from 250 to about :300 by the addition of an input filter eondenser, C_{4}, the connections for which are shown by dotted lines.

If the bias section is not needed, plate or serern voltage may be uhtained with the simplified cireuit shown in Fig. $1315-\mathrm{B}$, eliminating the bias section.

C. A Low-Power Antenna Tuner for Rack Mounting

In the rack-mounted low-power antenna tumer shown in Fig. 1318, separate series and paratlel comdensers are used. This arrangement, while requiring three variable condensers, has the advantage that no switehing is necessary when changing over from series to parallel tuning. It also makes possible the use of the tumer to cover a considerably wider range of antemmand transmission-line conditions, because the series condensers can be adjusted in conjunction with the parallel comedersel tu shatten then weptrical length of the feeders whenever this is reguired to make

Fig. 1318-A rack-mounting antenna turer for low-power tran-mitters. Git in the ernter. with Gand C_{3} on cither side. Wll of the rompenents are momited directly on the $51 / 4$-ind panel. The variable condensers are moneted on the asembly
 ing pillars whirlt are fastomed to the condenser end phates with mathine screns from which the head- have been removed. small Isolamtite -haft conplingsarented toinsulate the controls. Clips with flexille leat- are prosidert for then eplisertatar corm denser, fi, on that it sectims may he comerted either in parallel or in series to form cither a hish. or low. capacitance tank circuit as required.

Fig: 13/4- ('irenit of the rarkmounting antemnat tundr for we with transmitters having linal amplifiorwhich are operated at hess than 1000 volts on the plate.
 and 21 inders lons. with the variatule link Iocated at the renter. For weria tasing. wie the eroil sperified for the nexthigher froftretw hand, whelt will be approximatels rorert.

 'l'Mh-lo(1-I)) for high voltages romiving type for low voltages (Hammarhand WCI)-Im(1).

 low voltanes (IIammarlund 11 (:-230)
L-B W J Jt.-acrice crilo. Ipromimate dimornions for parallfol tuning for tath hand are as follons: 3.5- Inc. hand - 40 turn- No. 20.

- Vi. hand-2 2 turn- Vo. Io.

11. \18. band-14 turns to. 16.

28-Me. hand - 8 turns No. 16.
parallel tuning effeetive. In addition, the sories condensers also are usefulin that they providea measure of control wer the amplitier loading when parallel thming is neod.

Clips with flexible leandsattachedare provided for the paralle eondenser. f_{1}. so that the seetions may be connected sither in paralled or in series to form either a high- or low-capmaty tank cirenit, as recuired. When the high-C paralled tank is desired. the two stators are rlipped tengether, as shown by the duthed lines in the cirenit diagram of Fig. 1319, and the rotor is connerted th the opposite feeder. When the two sections are comberted in surios. for low-C operation, the break-down waltage is increased.

Below the circuit diagram, Rig. 1319, two sets of variable condensers are suggesterl. The smaller receiving-type eondensers with 0.03inch air gap stoould be satisfactory for lowpower tramsmitters operatine at pate potentials of 400 to 450 volts, whle larger condenscrs with 0.0 lisinch spacing will herernimel for
transmitters using plate voltages up to about 750 or 1000 .

C A Three-Stage 100-Watt Transmitter for Five Bands

The three-stage transmitter shown in Figs. 1320. 1322 and 1323 is designed to use a single 1000 -volt 100 -mat. tube such as the 1623 , 809. 1I Y40, or higher-voltage tubes at reduced ratines, in the output stame.

Reforring to the circuit diagram of Fig. 1321, a 6 L 6 , operating at a plate voltage of 400) but at reduced input, is used in the Tritet oseillator eireuit. A potentioneter in the sereen circuit provides a means of varying the screw voltage and, ullimately, the exeitation to the final amplifier. The $2 \mathrm{E}: 2 \mathrm{z}$ buffer-doubler circuit is caparitively-rmpled to the oscallator. This serond stage makes it possible to obtain excitation for the final amplifier in a third band from a single arystal. oprratoon in the second band heing asailathle by doubling frequency in the oscillator itself. Parallel plate feed is used in the second slage to permit series grid feed to the final amplifier, thereby avoiding the probability of low-freguoney parasitio oscillathons.

The neutralized final amplifier is elrectly eoupled to the drwer stage. C's and L_{5} form a tray for v.h.f. parasitic oscollations.

The meter swit ch, S, shifts the milhammeter to read asellator cathode current, drwer sereen current, driver mathode current, fiablanmplifor grid eurrent and final-amplifier eathode curvent. The individmal filament transformors permit indepondent metoring of the cathode currents of the latst two stages.

Poucer suppls - This transmotter is designed to operate from the combmation 1000volt and $40(0)$ voll pate supply shown in Fuss $132+$ and 1325 . Both fixed hias of 75 volts for the $2 \mathrm{E}_{2} 2 \overline{5}$ and ent-off bias for the final amplifier may he obtained from the unit shown in Figs. 1326 and 1327 . For the 1623 tube, resistors R_{2}

Fis. $1.320-\mathrm{On}_{\mathrm{t}} \mathrm{m}$ of the rhan-is of the loo-watt tran-mitter, the cathode conl. $/ 1$, the 61,6 and the rryatal are in line at the risht-hand end. The 2ras is monmted hori\%untally orl at -matl pamel which aloa providec monnting -pace for the filament and areenby-pascondensers, themopling rondenarrat C_{i} the erid leak. $R_{s,}$, and the grid choke. L_{2} is jutito the laft of the 61.6 athd to the riyht of $\left(2\right.$ umbarmeath. L_{3} isin the renter at rightanLeses to l anall lat and just to the rear of da underneath, 'The 1623 sueket in, submonnted to lower the plate terminal. 'Jhe newtralizing comdenser. dig, is directly in front of the tube. $R F C$ is just to the loft of L_{4}. The two filanefte transformiers are nominted on the rear edge.

Fig. 1321 - Wiring diagram of the threc-stage five-band 100 -watt transmitter for 1000-volt operation.
$\mathrm{C}_{1}-100-\mu \mu \mathrm{fl}$. mica.

$\mathrm{C}_{1}-100 \mu \mathrm{ffl}$. porsection, 0.05 -inch spacing (1lammarlund IIFISD-100-C.).
Cs $\mathrm{C}_{\mathrm{f}}-0.001-\mu \mathrm{fl}$, mica.
C: - $100 \cdot \mu \mu \mathrm{fel}$. mica.
$\mathrm{C}_{8}-6-60-\mu \mu \mathrm{fl}$. mica trimmer (t wo Natimal $\mathrm{M}-30$ s in parallel).

$\mathrm{Cin}_{10}-0.001-\mu \mathrm{fll} .5000$-polt mirat.
$\mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{33}, \mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{10}, \mathrm{C}_{15}, \mathrm{C}_{15}, \mathrm{C}_{19}, \mathrm{C}_{20}-0.01 \mathrm{f} \mu \mathrm{fl}$. рарет.
$\mathrm{R}_{1}-0.1$ megohn, ? 'áwatt.
$\mathrm{H}_{2}-330$ olims, 1 watt.
R_{3} - 20.000 -ohm 10 -watt potentioneter (Mallory l:20.1P).
R_{4} - $2 ., 1000$ olims, 10 watts.
$\mathrm{h}_{3}-1 \overline{5}, 000$ ohms, 1 watt.
$\mathrm{Rr}_{3}-20,000$ ohms, 10 watts.
$\mathrm{K}_{i}-10,000$ colms, 10 watts.
$\mathrm{K}_{\mathrm{x}}, \mathrm{K}_{0}, \mathrm{~K}_{10}, \mathrm{H}_{11}, \mathrm{R}_{12}-22$ ohme, 1 watt.
$\mathrm{L}_{1}-1.75$ - Me. crystals - 32 turns No. 2.4 d.s.e., closewound.
3.5-Mc. rrystals - 9 turns No. 2.2, 1 inch Iong; $100 . \mu \mu \mathrm{fd}$. mica in coil form, connected arrosis winding.
--Mr. crystals - 6 turns No. 29 , 5 sinch long.
All on llammarlund 1 !e-ineh diam, form.
 inclies long, $5 \cdot 1$ hh. (Natiomal AR30, no linh).
and R_{3} should be 6000 ohms and 7000 olimes, respectively.

Tuning - Coils for the desired output frequency, consistent with the erystal frequency, should be plugged in the various stages, bearing in mind that frepuency maty be doubled in the plate circuit of the oscillator and again in the second stage, if desired. It should also be remembered that the sclection of the cathode coil, L_{1}, depends upon the crystal frequency and not necessarily the ontput frequency of the oscillator, the same cathode coil being used for both fundamental and seoondharmonic output from the crystal stipe. Since much better efficiencies can be obtained with the 2 E 25 operating as a straight amplifier, it
$3.5 \mathrm{Ma},-28$ turns, $114 \cdot \mathrm{inch}$ diam., $11{ }^{1} 2$ ineles long, $15 \mu \mathrm{~h}$. (Natimal A R 10 , no link).
7 Mc. - 11 turns, 11 . ineh diam.. 1 ! inches long, 4.12 h. (Aational AliO(0), molink.
 long, 1.25 mli. (National Alelo, no linh).
28 Mc. - 4 turns, 1 -inch diam., $3 \frac{1}{4}$-ineli long,

 $\mu \mu$ fil. fixed air pateler (Cardwedl JI)-80.0)S) is phaced io right-rear rorner of chassis and attached to evil with flexible leads and clips.
3.5 Me. - 32 turns No. $16,2!2$-inch diam. $23 / 4$ inches lonㄷ, $39 \mu \mathrm{~h}$. ($13 \& \mathbb{W}$ BCI 80).
7 Mr. -20 turns No. $1.1,2$-inch diam., $21 / 2$ inches lame, l2 μ li. (B \& W BCL40).
14 Mr. -8 Luras No. 14,2 inel diam., 2 inehes long, $2.5 \cdot \mu \mathrm{~h}$, (13 \& W BCL20). One turn removed from carch end.

- 28 Mc. -4 turns No. 12,9 -ineh diam., 13 inches
 from enels end.

M1. - $0-200$ d.e. meter.

C_{1}, ' l_{2}-Filament transformer, 0.3 volt, 3 amp. (U'して s.s.3).
is aclvisable to a void clonbling in this st.age.
The first two stages should be tested first, with all voltages applied except the plate voltage for the final amplifier. Tuning the oserillator to resonance, with the key elosed, should cause a slight dip in cathode current acompaniod by an abrupt rise in the sereen and cathode current of the second stage. Tuning the 2 E 2 F pate circuit to resonance should produce a grood dip in cathode current. with a simultaneous reading of maximum grid current to the final amplifier.

The amplifier should then be neutralized and tested for parasitic oscillation. The latter is done by shifting the final-amplifier platevoltage lead to the 100 -volt tap and turning

Fig. 1322 -. All montrols for the 100 . walt live-hamd transmitar are below the elansi- level. From left to right, they are the weillator scrien-voltase potentiometer. the asiallator plater tanh combenser, the bufter-alombler Mate-tank cenderi*er, themertor switeh and the final-amplitior plate-tank comblonser. The parmel is of stambard rank width and is $83 / 4$ inches high.
off the bias supply. N"o plate voltage should be applied to the exeiter stages. ('t is then varied through its conire range for several settings of f_{3}. If at any point a change in the final-amplifior cat hode current is observed, ('s should be adjusted to climinate it. During this process, phate voltage should not be applied long enough to cause appreciable heating of the tuhe.

Normal operating voltares may now be rephaced and the final amplifier tumed up in the usual manmor. A plate current of 100 mat will indicate normal loating of the final amplifier. (Plate current will be the difference between grid and cathode curronts under operating conditions.) With all stages tuned and the amplifier loaded mormally, the oscillator rathore current should run botwern 16 and 30 ma., 2 F 25 sween eurrent between of and 11 ma., 2 E 25 cathode current between 45 and 70 ma ., 2 F25 grid voltage botwen 125 and 260 volts. oseilator sereen voltage hotwern 100 and 250 volts, and 2 lies sereen voltage botweon 210 and 250 volts, exact values depending upon whether the stage is operating at the funda? montal or towhling frequency. Excitation should be adjusted to keep the amplifier grid current betwen 20 and 25 mat., when the grid
voltage should measurr 130 to 150 volts. Power output of 6 B 5 to 75 watts should be obtamable on all bands. The oscillator eineuit may be arranged for optional VFO input by shont-cireniting the cathode cirenit.

If the output stage is to be phate-modulated, the plate voltage shouth be redured to 750 . Operating data for watable tubes of other trpes will be foumd in the tables in chatpter Twenty.

A suitable antenma tumer is the one shown in lig. 1318. The larger variable condensers should be used.

1. A Simple Combination Bias Supply

Fir. $1: 32$ f show the eirenit diagram of the simple transformerless bias unit, pictured in Fig. $1: 327$. which maty be used to supply cutoff bias vollages up to 100 volss or so. Through grid-leak action it will also provide the additional oprotating hias voltage required, if the resistor values are correctly proportioned. The eiretit also includes a semm bunch, consisting of h and a VR-75-30 voltage-regubator tube, supplying regulaterl voltage. This braneh may not be perquired in all casces. but will be found convenient in many applications for providing fixed cut-otf or protective hias for a

Fig. 1.32:3- ['marnemath the $8 \times 15 \times 3$-indindiassis. of the [(0)-watl trathsmitter. C. to the risht and Cis in the center are insinlated from the chat-is ley pobstyrcue hubtom ineulatorr. Cit lo low left also is insulated and is sla口ed from the chascis to loring all shafts at the same level. I.eall to the coil- imneediatidy abowe the tank remdeneers paise through large grommeted dearance hokes. Meteroshunt reise. anees are abldered directly to the swited tirminal-. R_{3} at the right is in-ulated from the chaseis by mtruded bakelite wa-lwerThe v.h.f. parasitic trap is suspended in the amplitier grid lead to the left of C. Insulating complings arc required for C_{2} and C_{3}.

Fig. 1321 - (:ircuit diarram of the combination 1000 . and 400 -volt supply for the (010) wat tramsitter.

$\mathrm{R}_{1}-20.10100$ ohms, 7.5 wats.
$\mathrm{R}_{2}-20,000$, whes, 2.5 watts.
 son T•19(:39).
L.2, $\mathrm{l}_{4}-12 . \mathrm{h}_{1}$. smowhing choke, 150 mas. (Thordarson T-19(46).
T_{1} - Hiph-voltave transformor, 10 :- and 5 mm solta

$T_{2}-2.5$ volto, 5 amp. (Thordarsm T. 19F88).

low-power stage imtependent of the main output voltage.
ddjustment - The voltage-divider resistances, R_{2} and R_{3}. are combined in a single resistor with two sliding taps. One of these taps alters the total resistane by sort-rimuiting a portion of the resistance at the negative end, while the other adjusts the cut-off voltage. The method of determining the values of resistance in cach sertion is as follows:

The bias section, R_{2}, is adjusted to equal the recommended grid-leak resistane for the tube or tubes in use. The value of resistance between
the biasing tap and the shortrireuiting tap is determined by the following formula:

$$
R_{3}=\frac{160-E_{\mathrm{ct}}}{E_{\mathrm{to}}} \times R_{2},
$$

Where $E_{\text {cu }}$ is the voltage required for platecurrent cut-off. This value may be dotermined to a close approximation for triodes by dividing the plate voltage by the amplification factor of the tuhe So supplementary grid-leak bias should be used in the stage being supplied by the pack.

The resistance in each section should be first set at the values determined by the formula. The biased amplifier shombd then be turned on, without excitation. If the plate current is not almost completely cut off, or at least reduced to a safe value, the biasing tap should be moved upward (in the negative direction). With the amplifier in operation and drawing rated grid current, the biasing voltage should be ineas-

Fis. 1.326 - Circmit diagram of the transformerless hias supply with voltage-regutated output, shown in Fig. $13: \div$
$C_{1} . C_{2}-16_{1}-\mu \mathrm{fl}$. 4.5)-volt electrolytic.
C.

R - 750 ohms. 10 watts.
$\mathrm{K}_{2}+\mathrm{K}_{3}-1.5000$-0hm 50 -watt wire-womd resistor wilh two :liders.
See text for details of adjustment and operation. L-60-mat. replacement filter whohe.

Fig. 1325-T This power supply makes use of come bination transformer* and a dual filter sy=tom, deliv-- ring lotho volls at le. 7 mat. "ibs don volte at $\frac{15}{}$ a ma or 740 volts and 550 volle imultanconsly, deponding unon the tramsformer selected. The eirenit diamram is given in lita, 132.t. 'lhe f(o)O-volt blaeder rexistor is monnted un the rear colpe of the chassis, with a protertive knard made of a piere ol galvanized ferming material to provtate vemtiation. Millen safely torminals are uad fre the twohigh-voltagetrminalCieramic sonhert s should le Heded for the 8 got jrs. 'IMe chassis moasurn 8×17 $\times 3$ inehes amd the $=$ tand. ard rack panel is 83, inches high.

270

Fig. 1.327 - A transfurmurless conihination hiatupply
 volts or leon for coitedf, A secomel bramelt, comtrolled by a
 for a seeond stage whese zrid current doe-not uxaed 20
 sia, although the compmont = may riasils be fitted into any sware spare on amother powar-mpury chansis. 'The regulated Vletube bramoly may be omitud if not required. The circuit diagramis show in liza. 13:6.
ured, using a high-resistanee volt moter. If the grid voltare $i s$ higher than that reeommemeded in the tube operaling fables. both the hiasing tap and the short-rireuititg titp on the uppor section should be moverd. bit by bit. toward the posilive cond tutil the correct operating bias is obtaimed. "["he hias vollage should then be measured agstin. A final aljustment nay be meossary to agrain arrive at rut-off voltage withont exeitation.

Fig. 1327 shows tho combonernts ascomblad separately on a small chassis. "lohey may'. how-
ever. be combined witl: phate-supply eonmpoment: on at single rhassis, since little additional space will be repuired.

It will be noticed in the circuit diagram that a polarizol plug is used in the line and that the omly ronmertion lefwern the eirenit and the chatsis is through the eondenser, C'3. This is to prevent shat-eirentiting the power limes. should an obdinary plag lne used and be insertad incon'melly in tho sucket. The polarized plas shomhl be connerded so that the mounded side of the power line is eommerted to the positive side of the hias supply.

© A Four-Band 125-Wait Transmifter

Figs. 132 s athl 1330 shom two views of a
 circuit diatritm of Fig. 1329 slomss, it consists of an lifo-11)32 beam letrode will a lwo-stage

 work, or 7 - Ma, ervistals for $7-$, 11-amd 2s-Mc. operation. Whan ilse ontput stage is operated at the erystal fumdamental frequency, the domblor tube athe conl atre removed bom their sockels and a jumpur comberting the grid and plato terminals is insertod in the fulnes surket. To obtain the recpuired (l in tho output tank ciment. the coil is tapment, rather than use the later tank capareitance which would otherwise be herexsarys.

Surios plate forel is used in all stages. Soreon voltare for the 7 (oss is taken from individual vollage dividers. While a seriderosistor is used in the whtpot slate so that it watn be plateserern modulatod if desired. "The oseillator is kerod when the dombler stage is mot in the
 owillathr keying on all bands is desired, the

Fiq. $\quad 1: 328$ -
 tor for 3.5 ta 30 Me. IThe rev-tal "niteh i- lu' the h.fil and thamen mer suiteh is lo the latit of lla meler. 'Thers-tals are
 two !elow menticta torlaclofi in lairs.

Fig. 1329 - Cirenit diagram of the 12. - watt 1 -hant tranmitter.
$\mathrm{C}_{1}-140-\mu \mu \mathrm{fl}$. tc ceiving-type varialile. (Itammarlumb MC-1.40s).
$C_{2}, C_{3}, C_{4}-0.000_{-} \mu \mathrm{fll}$. nima.
$\mathrm{C}_{5}^{2}, \mathrm{C}_{10}-10(1)$ - μ Fil. rieceiving-type variable (IIammarland MC.Lons).

$\mathrm{C}_{\overline{5}}, \mathrm{C}_{9}-0.0101-\mu \mathrm{fl}$, naica.
Cs- 500 - μ fifl. mica.
$\mathrm{C}_{12}, \mathrm{C}_{14}-0.001-\mu \mathrm{fil}, 1200$-wolt micat.
$\mathrm{C}_{3}-100-\mu \mu \mathrm{fd}$. 1500 -volt variable (Niational TMK. 100).
$R_{1}-0.1$ megohm, 1 -watt compmition.
R_{2} - 680 ohms, 1 -watt compe-ition.

R_{4} - $4,0,000$ dums, 1 -wat compreition. (See text.)
$\mathrm{R}_{\mathrm{B}}-\mathrm{l} 0,0100 \mathrm{oh}$ ohs, 1 -watt empmeition.

$\mathrm{R}_{3}-2{ }^{2}(9)$ ohmes. $1-\mathrm{n}$ att compm-ition.

H_{12} - 12.50 m ohms, 20 -watt wire-womm (two 10-watt 2.), (100-ohm resistors in parallel).
H_{13}-Sce Smx .
$\mathrm{h}_{14}-22,000$ ohms, 1 -watt emposition.
 wiro l-inda dianeter, ${ }^{-} \times$inch long.
 l-inch diameter, 1 inela long.

47,000-ohnm grid-loak resistor, R_{4}, should be replated with a 33,000 -olum unit and a tor-volt battery conneded in series betwern the lower end of R_{5} and the keying jack, $/_{2}$. The milliammeter, $M A$, has a seale ol $0-200 \mathrm{ma}$. and can be switehed to read oscillator current doubler current or amplifier grid or plate current. The shunt R_{13} is wound with $\mathcal{N o} .30$ copper wire, using a The lenglh of the wire used in the shant is adjusted to wive a meter-seale multiplieation of two so that the full-seale rowding hemmess 400 ma . when the meter is switched in this position.
$\mathrm{L}_{2}-3.5 \mathrm{Mc}-40$ turns No. 22 d.s.c., 1 -inch diameter, close-wounl.
7 Mc. - 18 turn $;$. No. 20 enam., 1 -inch diameter, $11 / 4$ inches long.
14Mc. - 10 turns ヘ̌a. 20 enam., 1 -inch diameter, ${ }^{3} \frac{1}{4}$ imell long.
L_{3} - TMc. LI Mr. - Same as L_{2}.
$28 \mathrm{Vr},-4$ turns No. 20 conam., 1 -ineh diameter, 1 ² inch loug.
 long (-21 turns removed from 13 \& W BEL-80), tapped at 6 turns from plate end.
7 Mc. - 12 turns 2 indhes diameter, $11 / 4$ inches long (10 turn removed from B \& W BEL-10), tapped at 3 turns from plate cod.
14 Ac. -3 turns 2 inches diancter, 2 inches long (B \& W BFI,-20), tapped at 2 turns from plate crul.
28 Mc. - 3 turns 2 inches diancter, 1 inch long

$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Closed-eirenit jack.
Mi-. $11-200$ d.e. milliammeter.
 (Hammarlinh CHX).

S_{1} - Single-circait 4-poxition cerante rotary switeh.
S. - 'l'wo-carcuit 5 -pusitlun cerainio retery \&witch.

The unit is built on a $7 \times 7 \times 3$-inch chassis. Two octal sockets are mounted at the left-hand end of the chassis to serve as mountings for four crystals. The crystal switch, S_{1}, is mounted underneath centrally between the two sockets. The sockets for L_{1}, L_{2} and L_{3} are linod up along the front edge, while their respertive tuning condensers are placed to the rear underneath. They are insulated from the chatsis by means of small feed-h hrough insulators and the shafts are fitted with insulating couplings. The two tube sockets are just to the rear of the condensers. A refinement which is not strictly necessary at the frequencies at

Fig. \quad 13.30 - Bettimn vis of the (1)32 transmittro. A larminal strip wet in the hark edge of ther hatsis is pro. vided for powere fupply ponncetions. IThe lwo jankx, aloo set in the rear edge, are for the hey.

Which this transmitter operates is the eoppershere ground plate which surrounds the $\overline{\text { o }}$ (5) sockets and to which all r.f. ground comnections are made.

The sockets for the 41332 and the output tank circuit are to the right with the coil socket mounted on top, of the comienser. In mounting the coil, the top plate of the tank condenser is replaced by a strip) of aluminum bent up at one end to form a "J." One of the outside coil jarks passes through a hole in the end of the "J," while a small $16 \times{ }_{3}$-inch cone insulator is used to support the "hot" end of the coil jack har. The tube socket is spaced $1 / 4$ inch below the rhassis to provide clearance for the serews which fasten the tube shiod to the chassis. This shieh is a 2 ! 2 -ineh coil shield cut down so that it comes up 1 名 inches from the chassis, (13 is insulated from the chassis by momiting it on small foedthrough insulators. Care should be used in selecting a well-insalated dial and coupling for this condenser since the shatit carrias the full high vollage.

The driver coils are wound on Nlillen 1-inch diameter forms. The standard lBiblacerbes $13 \& W$ eoils used in the output stage must be altered slightly to provide for the tap. A fifith plug is added at the empty eenter loble. 'The link conneetion, normally near the phate end of the coil. is shifted to this renter plug. while the tap is connected to the plag normally connected to the link.

The power supply shown in Fig. 1315 will provide plate voltage for the 7 ('5s and biasing voltage for the 41)32 if a VR-90 is substituted for the VR-75. The high-voltage supply shown in Fig. 1317 is suitable for the final stage.

The plate current to the erystal oscillator should run around 20 ma. and the doubler plate current about 40 ma . (irid current to the doubler should be about 2 ma. and to the final at least 6 ma. under load.

11. A 100-Watt Output Bandswitching Transmitter or Exciter

The transmitter pictured in Figs. 1331, 1333 and 1344 incorporates bandswitching
ower all baml: from 3.i) to 28 Ne. It comsists of a GVG 'Tri-tot oseillator which gives wither fundamental or second-harmonic butput from a 3.5 - Mr. ceystal, a $6 . .07$ daal-triode frequency maltiplier with its first triode section operating ats a doubler from 7 to $1 .+$ Me. and the seeond soction doubling from 14 to 28 Me., and a final stage with two sots in parallel. Tho Tri-tot cathode coil may be eut in or ont of the cirenit as desired, so that the $6 \mathrm{~V}(6$ may be used as a straight tetrode erestal secilator on vither 3.5 or 7 Mc. Provision is made for erystal switching, six arystal sorkets being includerl, and a soventh switch position is used for external VFO input. The pewer output on all hands is in exeese of 100 watts: when the 807 s are operated at ICAS c.w. belegraph ratings.

The rifruit diagram of the transmitter is given in Fig. 1332. The switching rircuit is so arranged that the srids of unused 6.N7 triode suevions are diseonmented from the preceding stage and grounded; thes exeitation is not applied to idle doubler tubes. Only one eoil iss besed in the $6 \mathrm{~V}^{\circ}(\mathrm{i}$ stare to eover both 3.5 and 7 Mr.; for 3. 3 Mr. an aim padding condenser, (2 , is switched in parallel with the 7-Me tank circuit to coxtend the tuming range to 3.5 Mc .

Conparity roupling betweren stages is used theoughout. The phates of the first three stages are parallel-fed so that the plate tuning condensers can be mounted direetly on the metal chassis. Coupling to the sol grids is through a tap on cach plate roil; this "tapping down" not only provides the proper load for the varions driver stages hut als, helps owercome the aftert on the driver toning ranges of the rather large shunt raparitane resulting from operating the 1 wo hean tetroles in parallel. Series feed is used in the plate circuit of the 807 s , the tank condenser being of the type that is insulated from the chassis. Operating bias for the 807: is obtained from a grid-leak resistor, and the sereen voltage is olbtained through a dropping resistor from the plate supply.

Plate currents of all tubes are read by a 0-100 d.c. milliammeter which can be switehed to any plate cireuit by means of S_{4}. One switeh position is provided for checking the final-
stage grid current. The d.c. eathode returns of both the $6 V 6$ and the 807 s are brought out to terminals so that a choice of keying is offered. If the $6 V^{\circ} 6$ eathode lead is grounded, the amplifier alone may be keyed in the cathode circuit; if the two eathode returns are comected together, the oscillator and amplifier may be keved simultaneously for break-in operation. (The oscillator alone camot be keyed with the 807 cathodes grounded. because without fixed bias on the latter tubes the plate input would be excessive under key-up conditions.)

To prevent parasitic v.h.f. oseillations, small chokes ($R F F^{\prime}{ }_{5}$ and $R F C_{6}$) are connected in the grid leads to the 807 s , and a f -olmm resistor is connected in each sereen lead. These suppressors are mounted as closely as possible to the tube sockets. A parasitic 1 rap, $/{ }_{5} \mathrm{C}_{7}^{\prime}$, is connected in the common plate lead to the 807s. Because of the high power sensitivity of the paralleled 807s and the fact that the grid-phate capacitance is doubled by the parallel connection, the tubes may oscillate in t.p.t.g. fashion at the operating frequency if the amplifier is run with no load on the plate tank. Ilowever, this tendeney toward oseillation disappears with a small load (less than one-fourth rated plate current.) and the amplifier is perfeetly stable under normal loading conditions.

Is shown in Fig. 1333, the amplifier plate eoils are mounted on an aluminum bracket supported by the main chassis. The bracket dimensions are 6^{1}, inches long by 4 inches wide on top, with mounting legs $21 / 2$ inches high. Half-ineh lips bent outward from the bottoms of the legi provide means for mounting to the chassis. The amplifier bandswitch, s's is mounted underneath the coil bracket, with the two switeh wafers spaced out so they are approximately two inches apart. This brings the plate switch section directly under the 28-Mc. tank coil so that the shortest leads can be obtained at the highest frequency. The output
link connection runs from the other switch section (at the front) through a length of 300ohm feeder to terminals on the rear wall of the chassis. Because of the low ralio of plate voltage to plate current, a rather low L / C ratio must be tised in the plate tank dirent to secure a reasonable Q. The standard eoils used are therofore modified to the dimensions given in Fig. 1332. Other types of manufactured eosils (100 -watt rating) may be used if desired, provided turns are taken off to bring the 3.5 - Me. hand near maximum capacitance on the 1jo$\mu \mu \mathrm{fil}$. tank condenser, the 7 -Me. bind at 65 to 70 per cent of maximum, and the $14-\mathrm{Me}$. band to approximately 30 per cent of maximum. The 28 -Me band may tume at nearly minimum eapacitance, since the minimum cireuit capacitance is fairly large.

In the bottom view, Fig. 1334 , the meter switch with its shunting resistors is at the loft. The driver bandswiteh, so, is in the center; the section nearest the panel is for C_{2}, the rotor of the next section goes to the grid of the $1 \cdot t-$ Me: dombler, the rotor of the third sertion to the 2s-Me. doubler, and the rotor of the last seetion to the grits of the 807 s . In this view the right-hand seetion of the 6×7 is the $1 \cdot t-M e$. doubler. (irid and plate hlocking condensers are supported between the tube-sometet terminals and small cermmie pillars which serve as tie-points for r.f. Wiring. The coil taps to the 807 switeh drop though holes in the chassis directly below the proper proners on the coil sockets. The erystal switeh, erystal-holfer assembly, oscillator cathode tumed circuit, and shorting switch, S_{5}, are in the upper lefthand cornor. The erystal sockets (for the new sinall crystals) are mounted in a row on a $11 / 2 \times 3$-inch piece of aluminum secured to the chassis by mounting pillars of square alaminum rod. The spare crystal socket on top of the chassis is for ohl-type reystal holders with 3_{4}-inch pin spacing. In general, chokes and by-pass condensers are groupen as closely as

Fig. 1331 - A 100 -watt output transmitter or exciter with bandswitching over four bands. The output stage uses parallel 307.. (irystal switching, with provision for VIU inpit, and meter switching are: incorporated. I'uning controls, from left to right, are crystal oseil-lator-doubler, JI- IIr. douller, $20-\mathrm{Me}$ den. her, and (large dial) final umplifior, The orys tal switch is at the lower-left corner, driver Itimituritad in than ron. ter, and meter switch at the lower righi. The amplifier bandswitch is alove the meter switch and to the right of the amplifier tuning dial.

Chapter Jhirteen

Fig. 13.32 - - Circuit diagram of the 100.watt hanlawithing transmitter.

C-Sce text.
$\mathrm{C}_{1}-220-\mu \mu \mathrm{Fel}$. mira (momented inside L_{4}).
$\mathrm{C}_{2}-140 \cdot \mu \mu \mathrm{fl}$, air padider.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-100-\mu \mu \mathrm{fl}$. variable (National ST-100).
$\mathrm{C}_{0}-150-\mu \mu \mathrm{fil}$. variable, 0.05 -ineh plate spacing (Hammarhund 11 F13-150-(C).
$\mathrm{C}_{7}-3-30-\mu \mu \mathrm{fd}$. ceramic padder.
$\mathrm{C}_{2}, \mathrm{C}_{19}, \mathrm{C}_{21}-0.00+7$ - $\mu \mathrm{fd}$. mica.
$\mathrm{C}_{9}, \mathrm{C}_{11}, \mathrm{C}_{13}, \mathrm{C}_{16}, \mathrm{C}_{23}-0.01 \cdot \mu \mathrm{fd}$. paper, 600 volts.
$\mathrm{C}_{10}, \mathrm{C}_{14}, \mathrm{C}_{17}-0.01222-\mu \mathrm{Fl}$. nica, 500 volts.
$\mathrm{C}_{12}, \mathrm{C}_{15}, \mathrm{C}_{18}-100$ - guff f , mica.
$\mathrm{C}_{20}-470-\mu \mathrm{ff}$. wica, 2500 volts.
$\mathrm{C}_{22}-0.002 \mathrm{O}-\mu \mathrm{fd}$. miea, 2500 volts.
$\mathrm{R}_{1}-0.1$ megolan, $1 / 2$ watt.
$\mathrm{K}_{2}, \mathrm{R}_{3}-47,000$ ohms, 1 watt.
$\mathrm{R}_{4}-47,000$ nhms, $1 / 2$ watt.
$\mathrm{R}_{5}-22,000$ ohmen, $1 / 2$. watt.
$\mathrm{R}_{0}-12,000$ ohms, 1 watt.
$\mathrm{h}_{7}-25,000$ ohms, 10 watts.
$\mathrm{H}_{8}, \mathrm{H}_{9}-68$ ohms, $1 / 2$ watt.
$R_{10}, R_{11}, R_{12}, R_{13}, R_{14}-25$ ohms, $1 / 2$ watt (R_{14} shunted as described below).
$\mathrm{K}_{15}-470$ olums, 1 watt.
Note: R_{14} is shumted by a lenth of No. 30 copper wire (about 8 or 10 inches) wound around the resistor. The wire length should be adjusted to make the milliammeter read one-fifth its normal value, inereasing the fullscale range to 500 millianiperes.
$\mathrm{L}_{1}-21$ turns No. 18 on l-ineh diam. form, length 1 inch; tapped 15 turns from ground.
$\mathrm{L}_{2}-10$ turne No. 18 on 1 -ineh dian. form, length 1 inch, tapped 7 turns from ground.

Is - 5 turns No. 18 on loinch diam. form, leugth 1 inch: tapped 2 turns from ground.
$\mathrm{L}_{4}-13$ turns No. 18 on 1 -ineh diameter form, length 1 inch.
Ls - 4 turns No. 18 , diann. $3 / 8$ inch, length $5 / 8$ inch, mounted on (C .
$L_{0}-22$ turns No. 20, diam. $11 / 2$ incles, length $13 / 8$ inches. link 3 turns.
$\mathrm{L}_{7}-13$ turns Na_{o}. 16 , diam. $1 \frac{1}{2}$ inehes, length $13 / 8$ inchers. link 3 turns
$\mathrm{L}_{8}-7$ turns No. 16 , diam. $11 / 2$ iuches, lengeth $13 / 8$ inches. link 3 turns.
$L_{0}-4$ turns No. 16, diam. $11 / 2$ inches, length $11 / 2$ inches. Link 3 turns.
Note: L_{1}, L_{2}, L_{3} wound on Millen 15004 formes, L_{4} on
 CIf(10F., CI620F and CI6IOE, respectively, with turns removed to conform to specifications ahove.
$\mathrm{I}_{1}-6.3$-volt pilot lanıp.
J - Coaxial-cable socket (Amphenol).
MA - 0-100 d.c. milliammeter.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}-2 . \overline{\mathrm{s}}$-mh. r.f. claoke (National R-100).
RFC: 2. 5 -nh. r.f. choke (National R-100L).
$\mathrm{RFC}_{4}-2.5$ mhl. r.f. choke (Millen 3-102).
RFCs, $\mathrm{RFC}_{6}-18$ turns No. 20 d.c.c., $1 / 4$-inch diam., close-wound on 1-watt resistor (any high valuc of rexistance may be used).
S_{1} - Ceramic wafer switch, 7 positions.
S_{2} - Four-gang 6 -position ceramic wafer switch (4 positions uscd).
S_{3} - Two-gang 4-position ccramic wafer switch (Maxley $1(6 \mathrm{C}$).
S_{4} - Two-pang 6-position ecramic wafer switch (5 positions used).
$\mathrm{S}_{5}-$ S.p.s.t. toggle switch.

Pis. 1.1.s -- I'un sinw of the 106 -wat batolswitching transmitter. The osorillator athl dom. bler coils are of the plus-in type for crumsenience in nomating and adjuatment. lut do not need to be changerl to cover the frequinty range from 3.5 in : Mc. The rable terminal on the chasio wall at the right is for VFO intput: r.f. outpot tormi-nal- are at the extreme left.

possible about the tube sockets with which they are associated. to keep r.f. leads short. In the 807 circuit. the screen by-pass condenser. C_{20}. is mounted vertically from a small metal angle between the two tube sockets, and all grounds for the cathode, sereen and grid circuits are brought to a common point between the two sockets.

The condenser, C, across only the 7-Mc. 807 tank coil is actually a 1×1-inch piece of copper with a short tab at one end. The tab is soldered to the plate lead from the eril just under the coil bracket and then bent so that the 1×1 portion is parallel to the bracket and separated from it by about $1 / 8$ inch. The eoil by itself resonated with the stray capacitance at 28 Me. and absorbed considerable energy when the transmitter was operating on that band; the small capacitance detunes it and prevents such absorption. It may not be needed with other types of coils or with slightly different
construction.
Preliminary tuning should be done with the plate voltage for the 807 discommeded. Sot \aleph_{2} and S_{3} for $28-\mathrm{Mc}$. outpat, set S_{4} to read oscillator plate eurrent, and close the key, if oscillator keying is being used. With a 3.5-Mc. erystal, make sure S_{5} is open; with a 7-Me. crystal N_{5} should be closed. Rotate C_{3} for a small kick in the plate current that indicates resonance at the crystal harmonic, in the case of the Tri-tet, and for the marked dip in plate current that indicates oscillation with the tetrode oscillator. The current should be in the vicinity of 16 to 18 ma. Switeh the meter to the $14-\mathrm{Me}$. doubler and adjust C_{4} to obtain minimum plate current. This should be about 1.5 ma. Check the 28-Me. doubler plate current similarly; it should be between 25 and 30 ma . at resonance. The final-amplifier grid current should be 7 to 8 ma .

Niest. connert a 70 -ohm dummy antenna or

Fig. 133. - Bottom view of the 100 -watt bandswitching transmitter. The ehassis di-
 \because inches and the parmel of crathle-finimed Masonite) is $8 \% \times 19$ inehes. Piarts layont is Necribed in the text. The $\overline{\text { in }}$ (osole lead is lirought throngh a Millen saflity iorminal, and all other power and key-
 ceranic terminal strip at the rore "The comer". tion between the crystal fwitch and tho VFO input socket is through a short length of RG/58U cable lying in the corner of the chassis.

Fig. 1.3.35-Cirenit diagram of a 250. to 306 -wolt 100 -ma, prwer suppl.

$\mathrm{K}_{1}-20,000$ ohms, 25 watts.
L. 1 , $12-30$-hy. I 10 -ma. filter choke (Stancor (.-1061).
s_{1}, S_{2} - S.p.s.t. toggle switch.
'T1-4.40 volts bach side of center, 130 ma.: v., 3 a.; 6.3 v., 3.5 a.

100-watt lamp to the output terminals, set (${ }_{6}$ n near minimum caparity. and apply plate voltage to the 807 s . Adjust C6 for minimum phate current, which should be about 200 ma . with this load. leardjust the driver eisenits for maximum grid current to the 807 s .

Tuning procedure for other bands is much the same, exerpt that the amplifier camot be loaded to full input on the lower frequencias by either the dummy antennt or lamp. with the links furnished with the coils sperified. In such cases an antemna should be used to load the transmitter after it has been determined that the various states are working properly. On 3.5 Me. (és should be adjusted so that a crystal on 3500 ke . can be made to osillate with (3_{3} set near maximum capacity. (ionerally, C_{2} will be set at approximately full caparity.

The transmitter requires a power supply delivering 60 to 70 ma . at 300 volts for the oscillator and doublers, and one delivering 200 mat. at $7 \overline{0} 0$ volts for the 807 s. The supplies of Figs. 1317 and 1335 are suitable.

(C A Two-Stage High-Power Transmitter

The photographs of Figs. 1336. 1338 and 1339 show a two-stage tramsmitter capable of hameling a powor input of 900 waft: on c. W. of

675 watts on 'phone. The circuit diagram is shown in Fig. 1337. It is a simple arrangement in which a $f \mathrm{f}$, f Tri-tet erystal oscillator drives an Dimae $4-250.1$ in the output stage. either at the ervesal fundamental or at the weond harmonic so that the transmitter will cover two bands with a single erystal of proper frequency without doubling in the output stage. Through the use of plag-in coils and a selcetion of erysfals. the transmitter may be used in all bands between 3.\% Me, and 28 Me. inclusive.

Any one of four crystals may be selected by means of S_{l} althourh more crystal positions may be adderl. R_{4}. R_{5} and R_{6} are metering roxistors across which the milliammeter is switehed to read combined oscillator screen and plate currents, amplifier grid current or amplifier cathode ourrent: R_{5} has sufficient rexistance to have no practical efferet upon the meter reading, but the other shmms which are made from copper wire are adjusted to give a moter-scale multipliation of 10 . making the full-scale rowding $\overline{3} 00 \mathrm{ma}$. The diagram shows both stages keyed simultancously. If amplifier keying only is dexired, R_{1} should be connected t.0 ground instead of to the key torminal.

Construcion - The transmitter is built on a $10 \times 17 \times 3$-inch chassis with a $101 / 2$ -

Pig. 13.36-Irront view of the $4-\frac{0}{2} 0$ A tranmmitter. None the bottom of the patiol. from left tor right, are the contrats fur the oncilatior tuning condenaer, Huermstal switely and the metoringswiad, Thelarge dial in fur the output tank cundeniser.

Fig. 1333^{-}- Cirenit diagram of the two-stage high -mower tran=mitter.
$\mathrm{C}_{1}-100-\mu \mathrm{fd}$. mira

 able (Millen 1.40.0).
$C_{4}, C_{-j}, C_{6}, C_{4}-0.01-\mu \mathrm{fl}$, paprer.
C $_{6}-0,001,-\mu \mathrm{fd}$. mica.

$\mathrm{Ci}_{1}-0.001-\mu \mathrm{fl}$. mica, 10.000 volts.
 volt (GE (;L-IVM).

$\mathrm{K}_{2}-12.0100$ ohm , $1 / 2$ watt.
$\mathrm{H}_{3}-5.000$ ohma. 10 watts.
$R_{4}, \mu_{6}-58$ inclus No. 12 copper wite wound on small. diam. form.
$\mathrm{Rs}_{3}-17$ olms, $1 / 2$ watt.
 diam., clowe-wound. Cis conneted aeros; winding.
inch sfandard rack panel. The mechanical arrangement shown in the photographes should be followed as closely as possible. since upon the pacement of parts may dopend the stability of the amplifier. The owillator-rireuit components are grouped at the left-hand end of the chassis. The Millen erystal sockets are lined

T-Me. rrystal: 12 turn* No. 2. d.a.e., IGm diam., elon-wound.
 diam., 5/8 inh lomg.
 लlase-woumt.
 wontid.
14 Nr.: 9 turns No. 22 diser., I-inch diam., 3 ineh lone.
28 Mr.: 5 turns No. 20 enam., 5 - -inch diam.. $3{ }_{3}$ inch lenir (on Millen Type 15.500 threaded (eramic form).

M- Van motor (Barbrr-Colman Type d Yab 569-1
 III.).

MA - 0-. 0 O milliammeter.
RFO, $\mathrm{BFO}=2.5$ mh, r.f. chooke.

St-d-position ceramic tap witch.
S_{2} - Double-gang 3 -position switch.
up with their centers ${ }^{11}$ in inches in from the rear enge of the chassis in the loft-hand eomer. The sockets for the fild amd the plug-in cathode coil, L_{1}, are in line with their eenters, $3 \frac{1}{2}$ inches from the back edre of the chassis, while the oscillator plate coil is in lime with the 6L6, 6 inches from the rear ellge of the ehassis:

Fip. 13.38-Bottom view show ing the arrangement of parth miadia thac diammio. Mothlited eff has war ardya of the chassis are the oicillator (lefl) and amplifirr (right) yrid whohe. The owillator plate chohe: is above. The emblensicr under the erystal-witht rontrol shaft is ther compling condenter, Giz. The oweillator tuning comdenser, C_{2}, the 6.3-wilt filament transformer and the mitering switeh aro along the froit edge of the chasvis. The ventilatine fan is to the right of the tube sucket.

Fig. I3:3y - Rear view of the two-stage high-power transmitter, showing the vacunm-type padding condenser in place on top of the tank condenser.
and $3^{1 / 2}$ inches from the lefthand end. The crystal switeh is phaed near the 6Lf somet and set at an angle with respect to the edgres of the chassis. It is controlled by a knob at the center by means of a long $1 / 4$-inch shaft, which runs diagonally across the chassis, and a Millen 3900 a all-metal flexible shaft coupling of the "universal-joint" type.

The socket for the $4-250 \mathrm{~A}$ is centered $73 / 4$ inches from the lefthand end of the chassis and 3 inches from the rear edge. It is spaced $11 / 8$ inches below the chassis. on metal pillars so that the base of the tube is shiedded from the plate. A spring contact is fastened to the socket so that the metal ring around the base of the tube will be grounded when the tube is inserted in the sorket. The $4-250 \mathrm{~A}$ requires a small amount of forced-air cooling. This is supplied by a small fan directed at the base of the tube. A bottom plate should be used on the chassis so that the air will be foreod up around the envelope of the tube. The amplifier plate-tank condenser is placed with its shaft $5^{1 / 4}$ iuches in from the righthand edge of the chassis, while the coil hase assembly is elevated on 3inch eone insulator's centered $21 / 2$ inches from the edge. The clips for the padding condenser, ('12, required

Fig. $13.30-1400$.volt 250 -ma. power supply, A $6 \times 1.1 \times 3$-imeh chassis is used, with all wiring, the filament tranformer for the 83 rectifier, and the bleedior resiator monnted leeneath the chassis. 'lhe fuse, pilot lamp, and the on-off switch (not visible in this vien) are mounted on the front chasis wall. A.c. input to the high-voltage transformer and the filament transformer are at the rear of the chassis, as are the safety terminal for the $13+$ output and the binding post for ground connection.
for the 3. $\overline{-}$ - and 7-Mc. Bands, are mounted on top of the condonser on l-inch tubular spacers. A pair of long $6-32$ mounting screws, passing through the spacers, serve to make the connection between the stators: of (' 3 and the terminats of (in. The Ifammarlund CII-500 r.f. choke, $R P C_{2}^{2}$, is monnted alongside the tamk condenser, near the center, with the plate blocking condenser, f_{11}, fastened to the top.

Plate voltage is fed from a Millen safety terminal in the rear odge of the chassis to the botton end of the rill. choke through a Millen 32101 steatite bushing. The hole for the safety terminal should have a clearance of about 1,16 inch around the part which gres through the chassis, to decrease the danger of a voltage break-down at this point. The link output terminals are in the right-rear corner, insulated

the amplifier swrecn-voltage dropping resistor, and to the biasing-voltage source, if one is used; the key jack, filament terminals for the $4-250.1$ including a centertap comnection, a safety terminal for the highvoltage connection, and a male plug for the 11s-voll line to the 6.3 -volt filament transformure and the fan motor.

The rathode conis, L_{1}, are wound on Millen octal-base shiolded forms without tuning slugs. A change in cathode coils is required only with a change in the band in which the crested lies. The enil for use with $3 . \bar{\sigma}-\mathrm{M}$. crestals requires an ahlitional $1000-\mu \mu f$. mical condenser, $C x$, ponnedted across the winding als shown by the dottod lines in Figs 1:337. This andenser is placod inside the plug-in shirld along with the $3 . \overline{5}-\mathrm{Mr}$. coil. Thac $10\left(0-\mu \mu \mathrm{l}\right.$. (:aparitor, C_{1}, which is commeted permanently in the circuit. is sulficiont for use with 7 -and it-Mce crystals. Sinere larger coils are desirable for the plate circuit of the osciltator, the eoils for L_{2} are wound on 1 -inch diameter forms enclosed in Sational Trye l'B-10 plug-in shicld rans. The shibld should be greunded to the rhassis through me of the available pins in the base.

External comections to the unit are indicatod in foge 1337. If boh stages are to be keved as shown. no fixed bias is necessary and all that is required is a grial leak of 5000-ohm 5-watt size. commected across the biasing terminals. This biasing systom will serve also in case only the amplifier is to be keyed. Neying of the iseiltator alone is not recommended because of the affects of soaring sereen voltage, which makes it impossible to cut off plate and seren currents in this mit without exceeding the nomal operation bi:ts. For this reason, it is

Fig. 12.22 - This mower-enpmy unit delivera 2025 or 2480 volte at full-load curront of 450 ma., with ripple of 0.5 per ernt and regulation of 19 pra crati. Voltapes are selected by tap- on the seromiary. W1 ، apoused hollvoltage terminals are cowred with spaghe robber
 Cabs. The rectifier tube are placed anay from the date
 11×19 inches and the ehani-13 $\times 15 \times 2$ inclins The expmed hifh-voltage terminal should be covered with a rubler-tubing slecve. 'The rircuit is shown in Fig_{5}. 1343 .
from the chases on a National FWG polystyrene terminal strip.

Underneath. al the amplifier (and of the chassis, are the meloring switelo, K_{2}, and the 63 -volt filamemt transtomer. In extermal filament tramsomer is reguired for the 4-2.0.d. It should have a rating of of volis. 15 amperes.

Oa the pame. har milliammener is maced to halance the amplifier tuming dial, the metorswiteh knob lo halance that of the oserilator tumbing eombloser. Whate the orvial switch is
 reat edge of the chatsins. from left for right as verwol from the entr, ate a tommat strip hur making connterions to the uxillatur supply,

- frequencer. oscillation will rease Trequenery oxellation white tank
abrunty when the plate thate cirenit is tuned to the highcapaciames side of resonance. For reliable operation this dircuit should be tuned slightle to the low-enapacitame side. When doubling fre(purney this charampristic disappears sio that the phate estrail mas be tuncel to exate resonane where maximum ouphe shond oerur.
Toming the oseillator plate eirenit to resonance shombld result in a spid-current reading Whan the meter is wwitehed to the serond
 pow ar supply.

I. - Input chohe $5-20$ hy., 500 ma., 75 ohn- (Thordarsum 'T'-19(.38).
$\mathrm{L}_{2}-$ Smophink choke 12 hy , 500 ma., 7.5 whms (Therdarmon ${ }^{(1-19(\% 15) .}$
 ma. dic. (Thurdar-on '1'-19P'(8).
$\mathrm{T}_{2}-2.5$ vole, 10 amp.. 10.0 Hot-volt insulation (1 hordarom T-61+33).
The voltase requlation may be improved ly the we of a lower value of hleder oceintaner. $R_{\text {, althouph at }}$ some sacrifice in matmum permissible load darrent. This cirmit is aloo used for the 1.310 -solt supply shown in Fig. 1300.
highly advisable to use an owertoad relay in the plate-supply rircuit of the amplificr, to protert the tube in case the werilator fails to function. The circuit diagram of a suitable lowvoltage supply for the oncillator dolivering 3.00 to 400 voles is shown in Figes. 1340 and 1341. The high-voltage supply of Fige. 1342 and 13.43 may be used for the output stage. The serem voltage-dropping rexistor is not ind luded in the unit heramse of the heat generated. It should the located externally, possithy in the powersupply unit, and should consi-t of two 50 ,000 -olim 160-watt resisturs in parallel.

Adjustment - Ifter the proper coil: for the desired hand have bern plugged in and the crystal switch turned to seleet the proper crystal, the key may be closed with thin lownvoltage supply turned on. but with the highvoltage supply turned off. The combined oscillator plate and screen current at resomance should be bet weon 35 and 75 mal.. deponting upon the erystal frequener and whether or mot the oscillation is doubling frequener. If the oscillator is operating at the erystal fundamental moter-swith position. The reading will vary butwero 30 and 3.5 mat 10, 50 mat or more deperning upen the frequency and whether the wisillator is doubling frogucnes or working "arraight through." The patential of the highvoltage supply should be redured during preliminary adjust ments. If no onther means of reduring the volage is available a 200 -watt $115-$ voll lamp may be conneeted in series with the primary winting of the high-voltage transformer: The plate cireuit of the amplifier should be tuned to resonamer first with the antoma link swong out to the minimumcompling pesition. The untput tank vircuit of the amplitior maty be compled through the link coil, rither directly to at properly-terminated bow-inpalance tramsmission line. or through an antemat han surh as the one show in Figs. $134 \pm$ and 134.0 to any type of antematastem. With the antoma swiem conneeted and the link swhe in for maximum coupling. the phate current should inereas when the antenna system is tune thromeh resonance. Very adjustmeat of the conpling or tuning of the antema system :hould alway be followed by a readjustment of the tuning of the amplifier tank areuit for resonatare As the lowding is inereased the plate current at resonance will increase. The loading may be carried up to the point where the phate current (cathote current, minus grid and sercen currents) is 300 ma. at 3000 vols.

(1) Wide-Range Antenna Coupler

The photograph of Fig. 13.44 shows the constructional details of a wide-range antenna rompler suitable for use with high-power transmitters. larious combinations of parallel and

Fip. 13:11- Vide-range antenna coupler. The unit is assombled on a mutal chatwis, mea-urimy $10 \times 15 \times 2$ incher, with a pand $8^{3}{ }^{3} \times 1^{0}$ inches in sige. The variable comWhaner is a -plit-atator mit having a capactity of 2 on μ fod. per section and 0.07 -inch oblate spating (Johnson 2001s:0)30). The plut-in
 meter hate a 4 -ampere seale. If desired, the coil- may ber wound with tixed link an stiandard mansmitting ceramic forms. The links will hare to be provided with flexible leads which can he plugeed into a pair of jack-top inmatator mentied mear the coil jack strip. unlesis a succial monting is made providing for the seven plug-in connettions required.

Fig. 1345 - Cirenit diagram of the wide-range antenna coupler for use with the bandewitehing am-
 tuning. hich C. E. - marallel tank, low-impolance output. low C. F - parallel tank. low-impedance nutput, hish C.. For single-wire math hed-impedance feeder*, the arrangements of B , or F would he uncel with a single tap insteal of the doulde tap show. For simple voltage. fed amtemat, the arange-

 tions to the coils can be manle permanemt. Then it will he neressary merely to plug in the right coil for cach band, tune the condenser for rewonane, and aljast the link for loading-
serios tuming. with high- and low-C tanks and high- and low-impedance outputs, are available. Diagrams of the various circuit combinations possible with this arrangement are given in Fig. $13+\overline{5}$.

A separate coil is used for each band, and the desired connections for serices or parallel thang with high or low C, or forlow-impedance out put with high or low C, are automatically made when the coil is plugged in. Coil comections to the pins for various circuit arrangements are shown in Fig. 1345.

The tuning condernser specified, together with a set of standard plug-in transmitting coils, should eover practically all coupling conditions likely to be encountered.
Because the switehing connections require the use of a central pin, a slight alteration in the B \& W -coil mounting unit is requirecl. The central link mounting unit should be removed from the jack bar and an extra jack planed in the central hole thus made available. The link assembly should then be monnted on a 2 -inch cone insulator to one side of the j:cck bar.

Correspondingly, the central mut on each coil plug base nust be removed and a Johnson fapped plug, similar to those furnished with the coils, substituted. An extension shaft maty then be fitted on the link shaft and a control brought out to a knob on the panel.

The split-stator tank condenser is mounted
by means of angle brackets on four 1 -inch conc-tyne ceramic insulators, and an insulated flexible coupling is provided for the slaift.

If desired, the coils may be wound with fixed links on ceramic transmitting coil forms. The link: should be provided with flexible leads which can be pluyged intos a pair of jacktop insulators mounted near the coil jack strip, unless a sperial mounting is made providing for seven connertions.

The unit as described should be satisfactory for transinitters operating at a plate voltage of up to 1500 with modulation and somewhat more on c.w. For appreciably higher voltages, a tank condenser with larger plate spacing should be used.

© A Medium-Power Bandswitching Transmitter

The transmitter illustrated in Figs. 1346 through $13 \overline{3} 1$ combines eomplete bandswitching from so meters through 10 meters with moderately high power. A 4-12ă beam tetrode is used in the output stage. driven by frequency-multiplying stages which, because of the low driving-power requirements of the final. can loaf along at considerably below ratings. The final can be operated at 375 watts input for c.w. operation, or 300 watts in 'phone service.

As shown in Fig. 1348, a Pierce crystal oscillator is used, operated at low plate voltage

Fid. 13.36-Front vicu" of the band. switching tranzmitter. The rontrols aloing the botlom of the samel art. left to right. the erystal selertor awitch. nacillator hey jatch*. low. power-sitape hand. switch. patte-mutar switult and grid. metroswitrh. Abeve.in thesame: order, are the tuminge contratilfor the O) H. Her two sere tions of the 6才: and the som plate.
 hnoblo the left of the main tunintr dial is the expitation control. 'Th: haob betweten the meters rontrola hatol-wiluhing in the coutput stame. The phate meter is on the left.
to permit maximum froumey sability. Ternmeter output ran be ohtatued with 80-, 40-, or even 1 bo-metur crestals, and output in the 11-meter hand can also be obtained with suitable crystals.

The output of the crystal ascillator is
 a straight amplifior or :s, a doubler, depernding upon the fumdamental frecurney of the ergatal and the pasition of the bandwitel. The plate tank coil for this stage is tappod, with the entire coil being usod when the hathdwith is set for 80 -meter outpul, and only a portion of it when output at higher frequenobes is desired.

Plate voltage for the 6 F 6 is dropped to about 360 by R_{10}. The sereen voltage of the tube is made adjustable by means of a $\overline{7}$. 0 (6) (oblam wire-wound potentiometer, the exeitation control, which, with the usual dropping resistor, forms a volage divider acyose the plate suphly. By changing the sereen voltane. the output of the tube is adjusted to whaterom level is required for adequate drive to the 4-125.

When the bandwiteh is set in either the soor 40 -meter positions the output of the filtis is fed to the grid of the sot. For 20- and 10 meter operation, the output of the bivi is switehed to the grid of the first seetion of the: 6N7 frequency muliplier. The 6N7 stages are arranged so that the gridnot in use is gromoded. For 20-meter operation only the first seremon of the $6 x^{7} 7$ is used while for 10 -meter operation both sections are used. operating as doublers from the f0-meter output of the bivis.
'The 807 operates straight throush on all frequencies. In this stage the 80- and formeter ranges are eovered ber one coil. wombl on a ceramie form and housed in a shicld ean above deck. The 20 - and 10 -meter ranges are covered
by an air-wound coil, the plug-in 1 ope boing used solely to permit removal of the sot tube from its socket. Bandswiteling in the sot stage is areomplished bey a ceramir switch similar in constrution and contact arrangemont to the multiple-section switch userd in the carlier stages, and gamged to it through a right-angle drive medamism. The sereen cireut of the 807 includes a parasitic-suppressing rosistur, R_{19}. insepted ahoud of the usual sereen hy-pass combenser. Bias for the 807 is obtathed from two wribs-ronnected 4,5-volt Mini-Max batteries.

With about 425 volls on the plate and 325 on the serecn, the 807 weliwers more than enough drive for the 4-12.5 1 final on all bands.

The eireuit of the $\frac{1-12.5}{}$ (final amplifier is designed to permit plate-and-swern modulation of the tube if 'phome operation is desired. Hencre a sereen dropping rexislor is used to furnish sorem voltage from the plate supply. It is necessary to drop the serem volage to 3.90 or 400 from whatever polemtial is used on the plate. Suace limitations do not permit mounting a single 100-walt resistor inside the chassis, sot wo $\overline{0} 0$-wall units are mounterl side by side and conneeted in sorjes to obtain the required 100 -watt rating.

Operating bias for the final is oblamed by monas of a grid resistor, no fixed bias being required. Tonkerp the sereon vollage from noaring to the full plate-supply value muler key-up conditions or in the cevent of exatation failure, a bliti tube in ased as a protertive deviec. The $6 \mathrm{l}^{\circ} 6$ is triode-ronnected, with its plate connected to the sereon end of the screen dropping resistor, and its grid connected to the grid side of the grid hak for the $1-125 . \mathrm{A}$. When excitation is present, about 200 volts of bias is applied to the grid of the $i l^{\circ} 6$ from the $I R$ drop atross the
grid resistor－more than enough to keep the tube noneonductive．However，when the kery is up，exeitation is removed，and the di 6 grid is without bias．Thus it draws plate rurent through the sereen dropping resistanere＇The current drawn．in the neightorhoon of 20 or 30 ma．，is sulficiont to reduce the sereen voltage on the $4-12$ an to a very low value． de a result． the final plate current falls to 8 or 10 ma．－ much bevter than relatively enormons amounts of fixed bias eonald do motar similar conditions．

Thre coils are used in the plate circuit of the final．The first．Wound on a ceramie form， is used for 80－and 40－meter operation． 1 com－ moreral air－wound coil with the plag strip re－ moved is used in the 20 －meter tank．The 10 － moter coil is mado of $\frac{\text { finch copper tubing．}}{}$ Bandwitehing in the final amplifior is acrom－ plished by a pair of ganged single－pole four－ position switehes of the hatery－dute tepe．Par－ ticulat care should be taken to insure good insulation in momoting both swite hes beratmes the ref．potentials emerontered are very high， espectally when the final is unloaded during tune－up．

The use of fixed links for output coupling， a merhanical neorsity requires that an an－ tama tuning unit having a variable link be emplowed for proper adjustment of loading． The unit described in Figs． 13.44 and 13 th will be sulathe．The mefors ate switehed atoss 2？－ohm lewatt resistors by double－pole ceramic switehes．Buth meters are（0－50－ma． range，additional shmots leing used to catemd the ranges to 100 ma．for the sot plate cirenit
and to 500 ma．for the $4-125.1$ rathode．The shonts and the $2 \underline{2}$－ohm resistors are mounted on the switeh contacts．The shant for the 807 stage is wound with rexistane wire but if this： type of wire is not a vailable a suitable lenght of No． 30 insulated wire may be used．I shore length of the latere is ath that is required for the shumt for the $4-12 \mathrm{i}$ ： ．The metering circuits are arranged as follows：

PLATE MEITIX		
Povition	Cimuit head	Scale
$\begin{aligned} & \text { AB } \\ & \text { (H) } \\ & \mathrm{JF} \\ & \text { GII } \\ & \text { IJ } \\ & \text { KH. } \end{aligned}$	GFG wate aml scrent GVifindte and screwn 6．：7 hate（ 10 metors） Sos 川ate 4－120．A andande	50 на． 50 на． 50 ma． 50 ma． 100 ma． 500 мй．
（；RII）Mr：IEH		
Posilion	Cirruit Road	Scale
$\begin{aligned} & M N \\ & \left(O{ }^{\prime}\right. \\ & 2!R \\ & N L^{\prime} \end{aligned}$	```80% rontrol wrid 80% werer-r f-IこSA contmol grid f-I星A wrem,```	50 ма． 50 ma． 50）mit， 50 mt ．

The physical layoul of the rig ts shown in the photographs．The entive tramsmitter is built on a standited $17 \times 13 \times+$－inch steel chassis． with a 19×121－inch Masonite pamel to per－ mit rack mounting．While maximum ase of the

Fig．13．37－Rear view of the bami－ switching tran－mit． ter strming 川are－ ment of parta nomitedabosethe chastis．Adequate space for the latur addition of a VF゙） unit is a vailabla in the renter of the hatsis．

Chapter Jhirteen

1:̈f. 1.348 - Cirenit diagram of the bandswitehing transmitter.
$C_{1}, C_{2}, C_{16}-0.001-\mu \mathrm{fr}$, micat.
$\mathrm{Ci}_{3}, \mathrm{C}_{4}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{15}, \mathrm{C}_{15}, \mathrm{C}_{22}, \mathrm{C}_{23}, \mathrm{C}_{2}-0.01-\mu \mathrm{fl}, 600-$ wolt paper.
$\mathrm{C}_{5}, \mathrm{C}_{\mathrm{x}}, \mathrm{C}_{21}-150-\mu \mathrm{fd}$, mira.
Ch- $1.0-\mu \mu \mathrm{fl}$. receiving variable (Itammarlmad MC -1-10.5).
C10. (:13-100. $\mu \mathrm{\mu fl}$. mica.
$\mathrm{C} \mathrm{Ci}_{1}, \mathrm{CiH}_{1+}-0.0022-\mu \mathrm{ffl}$. mima
C_{12}, (${ }_{15}$ - $50-\mu \mu \mathrm{fd}$. receiving variable (IIammarlimm] M(:-50.5).

(: $20-100-\mu \mu \mathrm{fl}$. receiving variable (N atiomal ST'-100) .
C24-2:20- μ fd. mica, 5000 volts d.e. working.
(25 - $0.00[$ - ffl. mica, 5000 volts worhins.
Cas- $120-\mu \mu \mathrm{fd}$. variable, 0.10 in. air gap (Cardwell X1\%120. XS).
$\mathrm{R}_{1}-15,000$ ohms, $1 / 2$ watt.
$1 R_{2}-1000$ olims, $1 / 2$ watt.
$\mathrm{R}_{3}-68,000$ ohme, 12 watt.
 $\mathrm{R}_{5}-50,000$ ohns, 3 watts (three 0.15 -megohm 1 -watt units in parallel).
$\mathrm{R}_{6}-0.1$ megolum, 1_{2} watt.

R, -- 31000 ohms, 10 watts.
Riso li, 0000 ohnse, 10 watts.

1813 - 7.000 olms, 10 watts.
lig- 5000 ohme, 10 watts.
$\mathrm{l}_{1 \times}-68$ ohms, $1 / 2$ watt.
Riso - 30.11100 ohms, 10 watts.
lien - Wher shumt see tert.
Riza- 201010100 oblmes, 5 watte.
liss-- $\mathbf{3 0} 10100$ ohms. 30 watts, with slider.
1izo-- 50,0100 ohms. 50 watts.
His: - Moler whint: see text.
 wren ground cod and tap: $18!\frac{1}{2}$ turns elosewound hetweren tap and phate end. Wonnd on 1 -inch diam. from (.)illeri 1.5000).
 from (Millen tisf(0)).
$\mathrm{L}_{3}-+1$ turns . No. 20 d.s.r., 1 inch long on 1 -inch diam. form (Millen 45000).
below-chassis space is required, there is enougl space left above deek and on the front panel to permit the subsequent addition of a VFO unit if desired. There is adequate space on the panel for a National Type ACN dial, and clearance is provided between two of the coil shiehds for a shaft to tune the VFO.

The tube line-up. shown in Fig. 1347, has the 6F6 Pierce oscillator located about halfway back along the right-hand chassis edge, the 6 V 6 buffer-doubler immediately behind the oscillator, the 6N7 frequency multipher to the left of the 6V6, the $4-125 \pm$ final in the left foreground, and the $6 Y 6$ sereen-protecting tube in the corner, near the front panel. The 807
driver stage, mounted below the chassis, is visible in Fig. 1351. This view also shows the arrangement of the bandswitehing system used for thalow-power stages. A four-section ceramic switch is ganged to a similar single-section switch through a Millen right-angle drive mechinnism.

The two ceramic switches at the lower left in the bottom view are for switehing the meters. The small fan near the submounted socket for the $4-12 \overline{0}$. ser ses the dual purpose of cooling the final-amplifier tube base seals and the screen dropping resistors. The 807 driver is mounted parallel to the chassis surface in a Millen shield-and-socket assembly to prevent

Transmitter Construction

$\mathrm{L}_{4}-35$ turns No. 20 d.s.c., 16 turns $\overline{8}$ inch long hetween ground cod and tap, IV turns clonewound between tap and plate end. Wound on $11 / 4$-inch diam. ceramie form (National Kli-l 6).
 long, tapped 3 turns from gromed end. (National Allig-lol: with link and 1 turn of coil removed. Link connection on plag-in base used to bring out tap.)
$L_{6}-5$ turns $1 / 4$-inch copper tubing, $1 \frac{1}{2}$-inch $i .1 ., 31 / 8$ inclies long.
$\mathrm{L}_{7}-8$ turns No. 11 hare tiumed, 2 -inch diam., 2 inrhes long ($B \mathbb{N}$ W 2013 F l. with 2 turns removed.)
$L_{8}-26$ turns No. 14 enam. Lapped 15 turns fromplate cnd, $31 / 2$ inches lonir, $2 \nmid$-inch diam. ceramic form (National KR-10A).
Lo - 2 turns No. 14 hare timed, $21 / 2$ inch diam., wonnd over cual of $L_{\text {and }}$ and spaced $1 / 4$ ineh from it.
Lio- 2 turns No. 14 baretinned, 23 - -inchadiam., wound over end of L; and spateral $1 / 4$ inch from it (Part of $13 \& W 2013 E \mathrm{~L}$ assembly.)
L_{11} - 4 tirns No. 14 bare timed, wound over ground
end of $L S$ and insulated from it by spaghetti tubing.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Closed cirenit jark.

S_{1} - 5 -position single-pole ceramie switela (Cemtralab) 2501).
$\mathrm{S}_{2}-4$-section single-pole 4-position ceramic switeh (Mallury 164-C).
S_{3} - Single-scetion single-poled-position ceramien witela (Mallory 161-C).
$\mathrm{S}_{4}, \mathrm{~S}_{5}$-Single pole 4-ponition ceramic switelh, heavyduty contacts (Ohmite '1'-50.1).
$\mathrm{S}_{6}, \mathrm{~S}_{7}$ - Two-section denhbe-pule 6 -pmition earamic (Centralah 2.̄11).
T_{1} - Filament transformer, 6.3 volts, 4 amp. (Stancor P-4019).
$\mathbf{T}_{\mathbf{2}}$ - Filament transformer, 5 volts, 10 amp). (Stancor P-6135).
feed-back from plate to grid, and a second shied plate runs from the SO 7 socket to the rear wall of the chassis to prevent stray coupling from the 807 plate circuits to the oscillator and doubler circuits. The crystal selector switeh is mounted on a bracket bolted to the right-hand chassis edge, close to the oscillator tube and crystal sockets. The terminal board mounted near the meter switches holds all the plate and screen dropping resistors. The filament transformers and hias batteries are mounted near the left-hand edige of the chassis. Tuning condensers for the 6 VG and the 6 N 7 stages are mounted along the front edge of the chassis, while the tuning condenser for the 807
plate circuit is mounterl near the rear. between the 807 plate cap and the grid connection of the $4-12 \overline{5} \mathrm{~A}$. The shaft for this condenser is brought out to the front panel at an angle by means of two National couplings of the "uni-versal-joint" type.

Plate voltage for the low-power stages is brought in through a safety connector mounted on the rear chassis wabl near the shield partition. The high voltage is brought in through a similar connector near the 4-125. 1 and its screen dropping resistors. Power for the filament transformers and the fan is supplied through a male connector mounted on the left side of the rear chassis wall, with a female
connector wired in parallel momed alongside to permit the 115 -volt source to be transferred elsewhere if desired.

All of the coils in the low-power stages, except that used for the 20 - and 10 -meter ranges in the 807 stage, are mounted above deck in National Type RO shield cans. The location of the thres coils and the output links used in the final amplifier is shown in Fig. 13.17.

The most important mechanical consideration in building the transmitter is the proper location and ganging of the bandswitehes for the low-power stages. The usefulness of the rig will be greatly impaired if the switching system becomes balky or develops slippage. Thus any anount of time spent in properly mounting the switches, and the right-angle drive shaft which connects them, is worth while.

Fig. 1349 shows the location of the more important holos to be drilled in the chassis. The holes marked with an asterisk are those involved in mounting the right-angle drive mechanism, and are critical. The others are less critical and are included only to serve as a guide in const ruetion.

Drill the holes for the posts which support, the right-angle drive first. These posts are supplied by the manufactures, and can be removed to facilitate mounting by releasing the Allen
set-screws. Extreme care should be taken to insure that the holes drilled for the posts are lined up at exactly right angles to the front edge of the chassis, otherwise the entire switching system will be askew. After the holes are drilled, insert the posts, lighten them so that they are firm, and slide the drive meehanism on them with the " U "-shaped opening pointing in the direction shown in Fig. 13:1.

When certain that the posts are plated correctly and that the gear box will slide on them with ease, remove the two short shatts that hold the bevel gears inside the frame of the drive unit. Replace one of these shafts with a $93 / 4$-inch length of $1 / 4$-inch brass or aluminum shafting. This piece is to be the main drive shaft which runs through the front panel, through the right-angle drive assembly to the single-section bandswiteh S_{3}, which is mounted at the rear of the chassis, near the 807. The other shaft, is replaced by the shaft of the foursection bandswitch, Sts. Saw off all but $7 / 8$ inch of this shaft, measuring from the point where the shaft enter's the bushing on the front of the switch. Insert it in the drive meehanism and replace the gear so that it meshes with the gear on the other shaft of the drive.

The rear of the fonr-section hamewitch should be supported by a bracket mate of

Fig. 13.49 - Layout of the top surface of the ehassis. The holes marked with an asterisk are for mounting the rightangle drive. Others, which are included for the convenience of the constructor, are less critical and may be rearranged slightly to snit individual needs.
$1 / 8$-inch aluminum. The dimensions of this bracket are shown in Fig. 1350. The rear section of the bandswitch is held $3 / 8$ inch away from the bracket by $1 / 2$-inch spacers plus a couple of fiber washers.
The single-section bandswitch used in conjunction with the 807 stage i.s supported from the rear as shown in Fig. 1351. The rear of the ceramic switeh wafer should be held about. 11/8 inch from the chassis wall by small metal spacers.
After the low-power bandswitching system has been installed and is operating satisfactorily, the mounting holes can be drilled for the other parts to be located below deck. The location of these parts is not critical, and can be determined from the photographs.
The fan motor is mounted on one of the brackets supplied with the Millen 807-tube shirld-and-bracket assembly. The bracket itself is bolted to the chassis with serews which pass through small rubber grommets. This mounting, which reduces the amome of vibration transferred to the chassis, will be a necessity if the addition of a VFO to this transmitter is contemplated. A bot.tom plate for the ehassis, with a few ventilating holes drilled near the rear of the fan motor, should be used to insure maximum effectiveness of the fan. Considerable heat is generated within the transmitter, and care must be taken to insure an adequate flow of air around the tube base to avoid cracking the somls.

The socket for the 4-125. is mounted below the chassis on $1 / 2$-inch spacers. small spring contacts, made from shim stock or thin phos-phor-bronze and formed to contact the grounding ring on the base of the tube, are fastened under the serews that hold the soeket in place. The tule itself is inserted in the soeket through a 23 ., F -inch hole in the chassis. This arrangement. provides the necessary shielding between plate and grid circuits to prevent ossillation.

The fintil tank assembly is construeted as a single unit, removable from the chassis, and built entirely on the framework of the tuning condenser. The 80 -and-40-meter enil form is mounted on the rear frame of the condenser, and held away from the frame by $1 / 2$-ineh spacers. The 20 - and 10 -meter coils are mounted on brackets made of $1 / 4$-inch polystyrene, and are positioned so that the links are nearest the front panel. The braekets are bolted to the frame of the tuning condenser. The two heavy-duty switches are also suppurted by these brackets. The shafts of these switches are ganged by an insulated coupling. The entire tuning-condenser-and-tank-coil assembly is supported by 1 -inch ceramic standoff insulators and " U "-shaped brackets which provide 1 -inch clearance between the rotur plates of the condenser and the chissis.

The output connectors are banana jacks mounted on a picee of 1 -inch polystyrene which replaces one of the two Mycales bars on the tuning condenser. The eenters of the jacks

Fig. 1,350 - Dimensimes of the angle loracket used to surport the rear of the froursection bandswitch.

are spaced $3 / 4$ inch to fit a standard bananaplug assembly.

The winding specifications for the coils used in the low-power stages are given in Fig, 1348. These coils should he wound and mount ed bofore any of the wiring around the bandswiteh is started, otherwise the eosil leads will be inaccessible. The coil forms used in the 6V6 and $6 \mathbb{N} 7$ stages are momnted about $1 / 2$ inch ahove the chassis by small spacers. The ceramic form used in the 80-and-40-meter coil for the 807 is held away from the chassis by small angle brackets. Where it is neeessary to run leads from the coils through the chassis, Millen ceramic bushings are used. Wiring will be simplified if the bandswitch assembly is removed temporarily while the connections around the socket.s are made. Some of the wiring on the bandswitch itwell can be done while the switch is out of the chassis. All wiring in the bandswiteh assembly is done with No. 16 bare tinned wire.

A 3 .inch ceramic feed-through bushing is used to carry the high-voltage lead through the chassis to the plate conneetion of the final tube. The junction of the two wereen dropping resistors is momed on this bushing with a National GS-10 stand-off insulator to prevent shorting. The other ends of the sercen resistors are supported by two more ol these stand-olfs from the rear chassis wall.

The low-power stages ean be operated from the supply shown in Figs. $13+0$ and 1341. The final amplifier is designed for use with 1800 to 2000 volts on its plate, but us much as 2500 volts can be used if only c.w. operation is planned. If it is desired to run the final in 'phone service at more than 2000 volts, a tuning condenser with wider spacing between plates will be required. It should also be noted that the 807 stage is designed for operation at no more than 450 volts, as this is more than enough to secure the output required to drive the final. If operation at higher voltage is planned, a larger tuning condenser will be required in this stage.

After checking the wiring carefully, power may be applied to the low-power stages of the transmitter. Turn the excitation control to maximum and set both bandswitches to the 10 -meter position, one meter switch to the

Fia. \quad :351- Boıtom sirw of the chassic of the handswitching transmit. ter showing location of parts and wiring. 'I'he erystal stelectorswiteliand the nomet- for the G1'6 oscillator and the 6 lo bufferdoubler aro on the right. 'The 6) sochert is visibletortwern the foitsectionhaudzwiteh and the 807 monnting lirachet. 'I'le 616 protectivetuhe suchet, the meterswituliesand the terminal beanal for the pate. and scrern-dropping resintors are in the lowtr left-hamd corner.
position which reads plate-and-sereen current in the $6 V^{\prime} 6$ stage, and the other to read grid current in the $4-125.1$. Tune the $6 V^{\prime} 6$ plate circuit to resonance as indicated by a slight dip in the meter reading. Turn the meter switch to read plate current in the 20 -meter section of the 6N゙7. The dip in plate current as this stage is tuned to resonance should be pronounced. A similar procedure is followed in tuning the 10 -meter section of the 6×7. Plate current in this stage will be considerably higher than in the 20 -meter section. The dip in plate current as the 807 plate circuit is resonated should also he pronounced, dropping from about 80 or 90 mat to 30 or 40 at resonance. Grid current to the final slage should be measured at this time. If evervithing is as it should be, there should be at least 10 ma . of grid current. If more than 10 mat is indieated, back off the setting of the excitation control until it falls to 10 ma . The control exerted by this potentiometer is not linear, and it may be found that there is little or no change in grid current over a considerable portion of the adjustment; in fact, the grid current may increase somewhat at first as the control is backed off. This is an indication that the drive to the 807 grid is excessive, catusing its sereen current 10 rise higher thatn normal, and reducing the output of that stage.

Once the low-power stages have been adjusted to give the rated amount of grid drive to the $4-125 t$, phate volage may be applied to the final. When tuning up. reduced plate voltage is advisable to prevent the tube from being damaged should the fanal tank coil fail to resonate. A dummy load - a 200 -watt lamp)
bulh, for example - should be connerted to the output terminals of the transmitter before plate voltage is applied to the final. This is a "must," since the screen dropping resistance must be adjusted to provide rated screen voltage with the final loaded. Aljust ment under any other condition will be useless. Tune the final tank eircuit to resonance. The plate current at this time, with the load coupled to the final, should not exceed 150 ma . It shoulid be remembered that the meter reads combined plate and screen current, so the sareen current, Which can be read on the other meter, must be subtracted from the indicated value to get the true plate current.

If plate current is too high the probable reason is excessive screen voltage. The slider on the screen dropping resistor should be adjusted to apply 350 volts to the screen when the tube is operating at full plate voltage, with rated grid drive, rated screen current, and working at full load. Be sure to remove the plate voltage from the final before adjusting the resistor! If the plate current is excessive after the sereen voltage is sel at the right value, decrease the loading on the final, remembering that with a change in loading the screen current changes and therefore the screen voltage will have to be readjusted. Too much sereen voltage will result in excessive platecurrent and consequent overheating of the flate. Too much grid drive will cause a sharp drop in output because the screen current increases with grid excitation, in turn reducing the sereen voltage. Optimum grid drive can best be determined under actual on-t he-atir conditions, using feeder current as an indication of maximum output.

Operating Voltages \& Curranta in the 4-125A Bandswitching 'Transmitter.

Conditions of measurement: Transmitter tuned for $10-$ ma. grid drive to $4-125.4,28-\mathrm{Mc}$ c. output. Supply voltage, 430. Readings obtained with 20,000-ohm-per-volt meter.

Tube	Element	Volls	. $1 / \mathrm{a}$.
6F6	Plate Screen	128 70	6
6V6	Plate Screen	360 9	6
6N7	Plate 1 Plate 2	$\begin{aligned} & 3.10 \\ & 300 \end{aligned}$	$\begin{aligned} & 12 \\ & 28 \end{aligned}$
807	Plate Screen Grid	430 340 -90	28 3 $*$
4-125A	Plate Grid Scruen	$\begin{array}{r} 2000 \\ -200 \\ 350 \end{array}$	150 10 30
Note: Plate current and screen voltaze and current, in the $4-12.5 \mathrm{~A}$, are demendent upon external lowding. * Less than $1-\mathrm{ma}$. grid irive to 807 required to produce $10 \% \mathrm{ma}$. drive to grid of $4-125 \mathrm{~A}$.			

Those who plan to use the rig on c.w. only may find the use of a fixed sereen supply more satisfactory than the screcn-dropping-resistor method, although means must be provided to remove sercen voltage whenever plate voltage is removed to prevent damage to the tube.

The accompanying table gives representative voltages and currents measured under operating conditions. Some variation from these figures can be expected depending upon the actual supply voltages used, but they will serve as a general indication, useful in checking performance.

The transmitter may be operated with a separate VFO unit as its frequency eontrol by removing the crys-tab-oscillator tube frum its sockiet and feeding the output of the $V \mathrm{~F}($) hetween the plate pin of the asiollator socket and ground. Adequate drive for either phone or c.w. operation can be obtained on all bands with a VFO such as that described in Fig. 1352.

Fig. 1352 - The complete VYO unit. The oscillator is housed in a separate compartment which is shock-mounted on rubber grommets. The oscillator tube is on top of the compartment. To the rear are the two 6F6 amplifier tubes, the Vll tube, the rectifier and the power transformer. In front are the stand-by switch, the power switeh, pilot lamp and the two keying jacks. The output terminals are to the right.

It should be noted that this method is satisfactory only in cases where direct coupling will not short-circuit the plate supply. In other cases, the VFO should be coupled through a $0.001-\mu \mathrm{fd}$. blocking condenser.

(1) A Simple VFO Crystal Substitute

Figs. 1352, 1354 and 1355 show different views of a VFO unit with sufficient power output to drive the average crystal-oscillator tube. As the circuit diagram of Fig. 1353 shows, it consists of a 6SK7 ECO followed by a pair of 6 F is as isolating amplifiers. The primary frequency range covered by the oscillator is $3500-1000$ ke., but this range may be shifted lowr to cover $3395-3800 \mathrm{kc}$ for nultiplying to cover the frequencies in the 10 - and 11meter bands by readjustment of the bandsetting condenser, C_{2}. Plate and screen voltages are provided by a small built-in voltage-regulated power supply. Only the plate of the output tube is operated at the full power-supply voltage, the voltage of the rest of the plates and sereens being limited to 150 by the VIR tube.

Construction - The oseillator portion is constructed as a separate unit in a standard $3 \times 4 \times 5$-inch steel box. The tuning condenser, C_{1}, and the coil form for L_{1} are fastened to the rear wall of the box. C_{1} is coupled to the National Type AM dial by a short extension shaft and a flexible coupling. The band-setting air condonser, C_{2}, is mounted against the right side of the box near the lower rear corner where it can be adjusted from the outside with a

Fig. 13.5 .3 - (iircuit diagram of the simple VFO.
C_{1} - $100-\mu \mu \mathrm{fd}$. variable (IIanmarlund MC:-100S).
$\mathrm{C}_{2}-75-\mu \mu \mathrm{fl}$. variable (Itammarlund A1'C:5).
C_{3} - 220 - $\mu \mu \mathrm{fd}$. zero-temp.-cö̈f. mica.
$\mathrm{C}_{4}-68-\mu \mu \mathrm{fl}$. zero-t'mp. -croëf. mica.
C.s. Ca, Cin, C.13-100- μ fid. mica.

$R_{1}, R_{2}-47,000$ ohms, $1 / 2$ watt.
$\mathrm{H}_{3}-0.1$ me kohm, $1 / 2$ watt.
$\mathrm{R}_{4}-220$ ohms, 1 watt.
R_{5} - 5000 ohms, 25 watts.
$\mathrm{I}_{1}-15$ turns No. 20 enam., $11 / 8$ inches long, 1 -ineh diam.. tapped 5 turns from ground end.
$\mathrm{I} 2-30 \mathrm{hy}, 50 \mathrm{ma}$. (Stancor C-1003).
$\mathrm{J}_{1} . \mathrm{J}_{2}$ - Closed-circuit jack.
$1 \mathrm{RCO}, \mathrm{RFC}$ - 2.5 -mh. r.f. choke.
LiFi, - Dillen 47002 ($1 / 2$-inch diam. by $21 \frac{1}{2}$ inches long) polystyrenc form wound full with No. 30 d.s.c. wire.
S_{1}, S_{2}-S.p.s.t. toggle switch.
$\mathrm{T}-3.40$ volts cach side center, 55 ma.; $5 \mathrm{v} ., 2$ a.; 6.3 v ., $11 / 2 \mathrm{amp}_{\mathrm{p}}$.
sorewdriver to set the beginning of the tuning range. The tube is mounterl (externally on top of the box where it will be well ventilated and where its heat will have minimum effect upon the funed circuit. The coupling lad between the plate of the oscillator tube and the grid of the first fiPti is made with flexible wire passed through National TP13 polystyrene bushings. one in the owillator compartment and one in the hase chassis, the rigid wire which comes with the bushing having first been removed by warming with a soldering iron. The power and keving leads are brought out in a similar nanner through holes lined with rubber grommets. The oseillator bos is shockmounted by means of long machine screws at each corner of the bottom plate. The screws pass through grom-met-lined holes in the top of the chatsis.

The base chassis is $5 \times 10 \times 3$ inches. The two 6F6s are mounted on either side of the chassis immediately behind the oscillator compartment. U"nderneath, the filter choke

Fig. 1354 - Bottom vicw of the VFO unit showing the filter choke and the various r.f. chokes and by-pass condensers associated with the amplifiers.
is fastened against the side of the chassis in the left rear near the two filter condensers, C_{14} and C_{15}. The two plater.f. chokes, $K P^{\prime} C_{2}$ and $R P^{\prime} C_{3}$, are mounted near their associated tube sockets. On the front edge are the eont rol switches, sis for power, and sig which is the stand-by switeh, 2 cutting off plate voltage to all stares. Terminals in parallel with seare mounted in the rear edge of the chassis to conneet to a send-rerede rolay if this is found desirable. The output terminals are set in the right-hand side.

Adjustment - The resistance of R_{5} should be adjusted experimentally so that the VR

Fig. 1355 - Bottom view of the oscillator compartment. The tuning condenser and the coil are fastened to the rear wall of the bov, while the air trimmer is noounted on the lower end in the photokraph. The small cone insulator supports the coupling lead to the first amplifier stage.
tube is ignited with thos liey eithor closed or open. If the glow disappeatrs when the key is closed, the resistance of R_{5} should be reduced. With the dial set for inaximum capacitance of C_{1}, C_{2} should be adjusted with a screwdriver to set the frequency at 3500 kc. 13395 if the VFO is to be used for 10-and 11-meter operation). ('a should then cover the range to 4000 ke. (or
 3800 kc .) .

Coupling to the crystal oscillator in most transmitters is simply a matter of rumning a wire from the "hot" output terminal (the terminal connected to the plate of the output tube through (('13) to the grid of the ascillator tube, and the other output terminal to the chassis of the transmitter. In Tri-tet and gridplate oscillator cireuits, the cathode tanks should be short-circuited. In triode or tetrode crystal-oscillator circuits using parallel plate feed. it may be necessary to shift to series feed to prevent low-frequency parasitic oscillation because of the r.f. chokes in both the input and output circuits. In Pierce circuits, the osciltator tube may be fed as a grounded-grid amplifier by comerting the output terminals of the VF () in series between the eathode and the biasing resistor and by-pass. As an alternative, in this type of circuit, the oseillator tube may be eliminated and the VFO fed to the grid of the next tube.

Keying - Best keying characteristics will be obtgined by keying the output stage although a second keying jack, J_{1}, is ineluded for use if break-in operation is necessary. Since
the key would be at 150 volts above ground, a keying relity or vaeumm-tube keyer should be used here to avoid the danger of shock. In keving the oscillator, any key-click-filter lag should be kept at the minimum required for satisfactory click suppression, to avoid chirps. Usually, r.f. chokes only at the relay terminals will be sufficient. As much lag as is desired can be used when keying the output stage, since keying at this point does not affect the frequaney.

The oscillator draws 8 ma. in the plate circuit and 3 ma. in the screen circuit. The plate current of the first amplifier should run about 15 ma . with the oseillator key closed and 32 ma. when excitation is removed. The outputstage currents should be 17 ma . with excitation and 25 ma . without excitation.

(1. A Push-Pull Amplifier for 200 to 500 Watts Input

Figs. 1356, 1357 and 1359 show various vioure of a compact push-pull amplifier using tubes of the 1500 -volt $150-\mathrm{ma}$. class, although

Fig. 1.356 - A general view of the compact 450 -watt push-pull amplifier, howing the front-panel and topof - hassis arrangement. Mounted on a statudard relay rack, the height is only 7 inches and the depth 9 inches. Grid and plate tank cireuits are isolated from each other by the double shielding partitions. On the panel are the $0-100$-na. milliarnmeter, which is switched to read eurrent in all eireuits, the plate-tank tuning dial, and a chart giving coil and tumink data. The small knoh at the left below is the gridcircuit tuning control, while the one to the right is for the meter switch. The tube sockets are mounted adjacent to the stator terminals of the plate-tank condenser, C_{2}, in the eenter, with tie noutralizing condensers between, providing short leads.

Pik. 1.3.5 - All components of the 450-watt push-pull amplifier are asscmbled around a small metal ehassis $7 \times 2 \times 9$ inches doer, The partitions are suaniard 6! \times (0)-inch in. terstage shields. The plate tank wondenaer is momemed on the left-hand partition. The plate tankeroil jackbaris monnted centrally, obromito the condenser, on spaters which give $1 / 2$ inch clearance between the strip and the partition. Cio is mounted with a small angle bracket on the partition under the center of C_{2}. The socket for the grid tank coil is mounted just ahove the chassis line. Millen safety terminals are used for the external high-voltage plate and bias connections.
the design is also suitable for use with thbes of the 1000 -volt 100 -mas. dass. With the lower plate voltages a plate tank romdenser with a spacing between plates of 0.0 inch, and smaller

tank coils, may be used.
The circuit, shown in Fig. 135s, is plite conventional, with link coupling at both input and output. The tuned cireuits, $L_{3} C_{6}$ and $L_{4} C_{5}$, are traps important for the prevention of v.h.f. parasitic oscillations. The $100-$ ma. meter may be shifted between the grid and cathode circuits for reading either grid current or cathore current. When shifted to read eathode current, the meter is shunted by a resistor, R_{2}, which multiplics the scalc reading by five. This
 resistor is wound with No. 26 copper wire, the length being determined experimentally to give the desired seale multiplication.

Construction - The mechanical arrangement shown in the photographs results in a compact unit requiring a minimum of panclspace. The tank condenser is mounted on the left-hand partition (Fig. 1357) at a height which bringsits shaft down $25 / 8$ inehes from the top of the panel. The plate tank-coil jack bat is mounted centrally with the condenser on spacers which give a $1 / 2$-inch rlearance between the strip and the partition. C_{10} is monnted with a small angle on the partition under the renter of C_{2}. I.eads from both ends of the rotor shaft are bruught to one side of C_{10} for symmetry.

The two tabe sockets are mounted in a line through the center of tho chassis and at op-
fin. $13: 58$ - Cirenit diamram of the 450-watl mush-pull amplifier.
 marlund I1FAI)-1010-13).
$\mathrm{C}_{2}-100 \mu \mu \mathrm{fd}$. per serction, N.0̈-inch sparing (IIammarlund (1FBHI-10(1-F).
$\mathrm{C}_{3}, \mathrm{C}_{4}$ - Xeutralizing condenser (National NC-800).
$\mathrm{C}_{5}, \mathrm{C}_{6}-3-30-\mu \mathrm{fd}$. mica trimmer (Natienal $\mathrm{M}-30$).
Ci: C C $\mathrm{C}, \mathrm{C}-0.01-\mu \mathrm{fd}$, mica.

$R_{1}-22$ ohms, 1 watt.
K_{2} - Meter multipher resintance for $\overline{5}$-time multiplication, wound with \o. 26 wirc.
 3.5 Mr. -11 turns \o. 20,21 inches loing.

 2 turns from $18 \& \|$ roil).
 2 turns from B \& 1
3.5 Mc . - 26 turns No. 12, $31 / 2$-inch diam., $41 / 2$ inches Tong.
7 Mc.- 22 turns No. $12,21 / 2$-ineh diam., $41 / 2$ inches long.
14 Me, - 10 turns No. 12, 2 $1 / 2$-inch diam., $41 / 4$ inchez long, remove one turn frome each end.
28 31..- + turn*', inch copper tubing, 21 - inch diam., $4 \frac{1}{2}$ inches long. Remove one turn from each end.
I.3. 1.4 - 4 turns No. 14, $/$ - inch diam., $3 / 4$ inch long. Mi lolma milliammeter.
RIVC-1-mh. r.f. clowhe (National R-151U).
$\mathrm{s}-2$-section 2 -position rotary switch.

[^4]Fig. 1.15y - Buttum view of the 1 inn. watt push-pull amplifier. The grid tank condenser is mounted between the two tube sockets which are set below the chassis on brackets. Connections between the condenser terminals and the coil socket above pass through grommet-lined holes in the chassis. The partitions provide sbielding between input and output tank coils.

posite ends of the plate tank condenser. They are spaced about one inch below the chassis on long machine serews. The neutralizing condensers are placed between the two tubes, so that the leads from the plate of one tube to the grid of the other are short. The r.f. choke is mounted just above the tank condenser.

The right-hand partition is cut out at the forward edge to clear the meter. This cut-out can be readily made with a socket punch and a haeksan: The sorket for the grid tank coil is mounted $4 \frac{1}{2}$ inches behind the panel, just above the chassis line.

The grid tank conclenser, C_{1}, is mounted under the chassis without insulation. Large elearance holes, lined with rubber grommets, are drilled for connecting wires which must be run through the chassis or partitions. The para-
sitic traps are made self-supporting in the plate leads from the tank condenser to the tube caps. The panel is placed so that the plate tank-condenser shaft comes at the center. The meter switeh is mounted to balance the knob eontrolling C_{1}.

Pouer supply and excitation --The T-40 tubes shown in the photographs operate at a maximum plate voltage of 1500 for c.w. work. For this, the unit shown in Fig. 1360 is suitable. 'lhe supply shown in Fig. 1326, minus the VR-tube branch, will provide the biasing voltage required for plate-current cutoff. R_{2} should have a resistance of 2500 ohms and R_{3} of 1500 ohms. A filament transformer delivering 7.5 volts at 5 amperes also will be required. The exciters of Figs. 1311 or 1331 will furnish adequate drive.

Fig. 1360 - This power supply delivers 1500 or 1250 volts at a full-load current of 425 ma., with 0.25 -per-cent ripple and regulation of 10 per cent. Voltages are selected by taps on the transformer secondary. The secondary terminal hoard is covered with a section of steel panel supported by brackets fastened underneath the core clamps and insulating eaps are provided for the tube plate terminals. A special safety terminal (Hillen) is used for the positive high-voltage connection. The panel is $101 / 2 \times 19$ inches and the chassis size is $13 \times 17 \times 2$ inches. The circuit for this supply is shown in Fig. 13.13. The following values should be used:

$\mathrm{C}_{1}, \mathrm{C}_{2}-4-\mu \mathrm{fl}$. 2000-volt paper (C-D 'TJU20040).
$\mathrm{R}-20,000$ ohms, 150 watts.
$1.1-5 / 20 \mathrm{hy} ., 500$ ma., 75 ohms (Staneor (1105).
$\mathrm{L}_{2}-8$ hy, 500 ma., 75 ohms (Stancor (C1415).
' I_{1} - 1820 or 1520 volts r.m.s. cach side of cen-ter-tap, 500-ma. d.c. (Stancor Type P6151).
$\mathrm{T}_{2}-2.5$ volts, 10 amp ., 10,000 -volt insulation (Stancor Type l’3日2.).
For a 1000 -volt supply, the following values are sugested:
$\mathrm{C}_{4}, \mathrm{C}_{2}-4-\mu \mathrm{fl}$. 1500 -volt paper (Aerovox 1.005).

R $-30,000$ ohms, 50 watts.
$\mathrm{L}_{1}-8 / 30$-hy. filter imput ehoke, 250 ma . (Stancer ($\therefore 1-02$).
L_{2} - 15 hy . filter smoothing choke, 250 ma . (Stancor (:-1703).
$\mathrm{T}_{1}-1250$ or 1000 volts r.m.s. each side of center-tap, 250 ma (Stancor $^{\prime} \cdot 4130$).
$\mathrm{T}_{2}-2.5$ volts, 10 amp . (Stancor I'3025).

Fig. 1361 - A link -coupled antenna-tuning unit for usp with resonant feed systoms and mediun-power amplifiers. 'The induetance, with variable link, is mounted on the condenser frames. Clips are provided for changing the number of turnm and for switehing the condensers from series to paratlel. The panel is $51 / 4 \times 19$ inehes.

Tuning - After the amplifier has been neutralized, a test should be made for parasitic oscillation. The bias should be reduced until the amplifier draws a plate current of about 100 ma. without exatation. With C1 adjusted to various settings, ('z should be varied through its range and the plate current wate hed elosely for any abrupt change. Any change will indieate oscillation, in which case C_{5} and C_{6} should be adjusted simultameonsly in slight steps until the oscillation disappears. Conless the wiring differs appreciably from the original, complete suppression will be obtained with the two condensers at full caparity. ('hanging bands should have no fffert upon this adjust mont.

With normal bias replaced, the amplifier should now be tumed up and the excitation adjusted so that a wrid eurent of (60 ma , is obtained with the amplifier fully loaded. Full loading will be indicated when the cathode-current meter registers 360 mit., which includes the $60-\mathrm{man}$. grid current. Under these conditions the biasing voltage should rise to 150 volts, dropping to about 70 volts without excitation when the plate current will fall to almost zero.

If the amplifier is to be pate-modulated, the plate voltage should be reduced to $1:-00$ and the loading decreased to reduce the plate
 justment will be satisfactory for this tye of operation but excitation may be redueded to give a grid current of toma, hringing the total cat hode current to 290 mas. The antenna tuner shown in Fig. 1361 maty be used.

Operating conditions for tubes of other eharacteristics will be found in Chapter Twenty.

(1) Antenna Tuner for Medium Power

The antenna tuncr shown in Fire. 1361 will usually be satisfactory for amplifiers operating at plate voltages not in excess of $12 \% 0$.

The two condensers are mounted from the panel by means of insulating pillars taken from National GiS-1 insulators, which are fastened to the end plates with small sections of machine serews from which the heads have been eut. 'lhe variable link coil is mounted between the two rear end phates. The size of the coil is varied by short-circuiting turns, using clips which are attached to the condensers with
flexible leads. As shown by the circuit diagram, Fig. 1362, the condensers are connected in parallel when the second pair of clips connects each rotor to the stator of the opposite condenser. The feeders are connected to the two large st and-off insulators mounted on the panol.

(1) A Compact 450-Watt-Push-Pull Amplifier

The photographs of Figs. 1363, 1365 and 1366 show an timplifier designed along the lines of the type of construction often referred to as "dish type." This style of construction has many advemtages, although its use normally is confined to components of moderate physical dimensions and weight.

Fig. I362-Circuit diagram of the link oroupled antemat tuning unit for use with inedium-power transmitturs.
$\mathrm{C}_{1}, \mathrm{C}_{2}-\mathrm{l} 10 \mathrm{n}-\mu \mu \mathrm{fd}$, variable, 0.07 -ineh spacing (National 1 $1 \times(100)$.
$\mathrm{L}_{1}-22$ turns. Mo. 1 2. Miam. 23 inehes, length 4 inches (Coto with varialle link).
$\mathrm{L}_{2}-\frac{t}{}$ turno, rotating inside $I_{\text {a }}$.
A-R.f. ammetar. $0-7$-ampere range for mediumpower tramimitters.
The tank coils may be mounted so that very little metal of the normal ratek structure is in the immediate fields of the tank eoils - a condition abmost impossible to approach in the usual form of construction with metal panels and side brackets. Plug-in coils are made much more arcossible for changing and the direction of "pull" in removing coils is out-

Fig. 136.3 - The three controls of the 450 -watt "dishtype" amplifier are arranged synmetrically. The meter switeh is at the right, the eontrol for the plate tank condenser at the center and the grid-cireuit control at the left. The panel which is $83 / 4 \times 19$ inches is fitted with pand hearings for the condenser shaft extensions. It is fastened to the chassis by flat-hearl serews after the but tom edges of the ehassis have been drilled and tapped.

Fig. 1364 - Circuit diagram of the "dish-type" push-pull 450 -watt amplifier.
$\mathrm{C}_{1}-100 \mu \mu \mathrm{ffl}$. per section (Hanmarlund MC.D100 M).
$\mathrm{C}_{2}-100 \mu \mu \mathrm{frl}$. per section (Cardwell MT100GD), 0.07inch sparing.
$\mathrm{C}_{3}, \mathrm{C}_{4}-$ Neutralizing condenser, 10 to $15 \mu \mu \mathrm{fd}$. (Hammarlund N10).
$\mathrm{C}_{5}, \mathrm{C}_{6}-470 . \mu \mu \mathrm{fd} .600$-volt mica.
$\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}-0.01-\mu \mathrm{fd} .600$-volt paper.
$\mathrm{C}_{11}-0.002-\mu \mathrm{fd}$. 5000 -volt mica.
$\mathrm{K}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}-22$ to 47 ohms, 2 watts.
$\mathrm{R}_{4}, \mathrm{R}_{5}, \mathrm{R}_{6}$ - Cathode-current meter shunts (see text).
$\mathbf{L}_{1}-$ National AR series coils with center link (variablelink type recommended).
Substitute coils may be wound on $11 / 2$-inel diam. form as follows:
ward away from the rack rather than upward into the next rack unit above. Terminals may be mounted so that the wiring between rack units may be made inconspicuous and so that the chances of personal injury from accidental contact with exposed terminals at the rear are greatly reduced. Lastly, this form of construction usually reduces the required height of the unit which is a particular advantage in table racks where vertical space is at a premium.

The circuit of the amplifier shown in the diagram of Fig. 1364 is standard in every way except in the method of metering. By means of the two-gang six-position switch, it is possible to measure the individual grid and cathorle currents of each tube as well as total grid or total cathode currents. To accomplish this,
3.5 Mc. - 4.4 turns, 2 inehes long.

7 Mr . - 22 turns. 2 inches long.
14 Mc. -10 turns, 11 inches long.
$28 \mathrm{Mc}-6$ turns, 1 t/ inchen long.
$\mathrm{L}_{2}-\mathbb{B} \mathbb{W}$ TI, series with center linhs.
Substitutc coils may be wound as follows ou $21 / 2$-inch dian. forms:
3.5 Me. - -36 turns, 4 inches long.

7 Me. - 18 turns, 4 inches long.
14 Me. - 10 turns, 3 inches long.
28 Mc . - 6 turns, 3 inches long.
$\mathrm{IR} \mathrm{FC}_{1}$ - 2.5-mh. r.f. rhoke.

S—2-gang G-position rotary switel (Mallory).
$T_{1}, T_{2}-6.3$ volts, 6 amp.
two small filament transformers are used, one for each tube, instead of a single large transformer. The meter is switched across shunting rexistances in eath circuit to simplify switching. In the cathode circuits, the shunting resistors should be carefully adjusted to provide a scale imultiplication of ten, giving a full-scale reading of 1000 ma .

In doing the r.f. wiring, care should be taken to keep it as symmetrical as possible. In forming the long wires between the neutralizing condensers and the tank-condenser stators, the lengths should be made identical. The wire connecting to the rear condenser stator should go directly in a straight line, while the one going to the front stator section may be bent to make up for the difference in distance be-

Fig. 1365-The grid-circuit components of the "dish-type" 450-watt amplifier are mounted on this side of the partition which is braced by standard 5 -inch triangular brackets. The tank condenser is mounted by means of a sere" in the hole which remains when the shicld between the stators is removed. The ceramic terminal strip is for all external connec. tions except for positive high voltage for which a special safety terminal is provided. A large clearance hole should be cut in the chassis for the condenser sbaft. The shaft, which should come at the center line of the chassis, should be provided with a flexible insulating coupling.
tween the neutralizing condensers and the two stators. The plate leads to the tubes should be tapped on these long wires at points which will make the wire length between neutralizing condenser and plate and between tank condenser and plate equal on each side.

The positive high-voltage lead, run inside the chassis with high-voltage cable, comes up through a feed-through insulator near the plate choke.

The rotors of the grid tank condenser are not grounded, since experience has shown that an amplifier of this type usually neutralizes more readily without the ground connection and excitation usually divides more evenly between the two tubes.

The leads from the neutralizing condensers to the grid terminals are crossed over before they pass through small feed-through points mounted in the partition. The grid•r.f. chokes are self-supporting between the tube grid terminals and the feed-through points in the chassis which carry the biasing leads inside to the individual grid leaks. Filament wires are run through $3 / 8$-inch holes lined with rubber grommets.

Inside the chassis, the leaks and meter shunting resistances are supported on fiber lug strips. The leads going to the switch should be soldered in place, formed into cables and the other ends connected to the switch on the panel as the last operation before putting the panel in place.

This amplifier is suitable for use with any of the 1000 -volt $100-\mathrm{ma}$. to 1500 -volt $150-\mathrm{ma}$. triodes. Those shown in the photographs are 812 s .

For 1500 -volt tubes, the power supply shown in Fig. 1360 is suitable for use with this amplifier and bias may be obtained from a unit such as the one shown in Fig. 1327. The biassupply resistor should be adjusted so that the total grid voltage under operating conditions will not be leas than 125 volts without exceeding the maximum grid-current rating of 25 ma . per tube when the amplifier is loaded to rated plate current.

The amplifier requires a driver delivering 25 to 40 watts. Those of Figs. 1311 and 1331 are suitable.

If the layout and wiring have been followed carefully, no difficulties should be encountered

Fig. 1366 - The plate tank-coil jack strip of the 450 -wat push-pull amplifier is fastened to the tank-condenser frame with strip-metal hrackets. The assembly, mounted on $5 / 8$-inch standoff insulators is placed at the center of the chassis as far to the left as possible. The condenser shaft is extended at right angles through the bearing in the center of the chassis by means of two Millen 45 -degree shaft joints connected together by a short length of bakelite shafting. The sockets for the tubes are submonnted on the 6×8 inch partition, $31 / 2$ inches up from the chassis and $17 / 8$ inches from each edge and are orientated so that the plates of the tubes will be in a vertical plane.

Fig. 1367 - Top view of the band. switching amplifier. The plater-tank switching assembly is to the right.
in neutralizing nor with parasities. Both grid and plate currents should check the same within ten per cent.

The meter when switehed to read grid current forms a good neutralizing Indicator. Hulh ineutralising oondonrers should be kept at equal settings and adjusted simultaneously until the grid current remains perfeetly steady as the plate tank condenser is tuned through resonance. Neutralizing is always done with plate voltage re-
 moved.

A suitable antenna tuner will be found in Figs. 1361 and 13622.

(1. A 450-Waft Bandswitching Amplifier

Figs. 1367, 1369 and 1370 show the details of a bandswitehing push-pull amplifier for the $3.5-, 7-, 14$ - and $28-\mathrm{Mc}$. bands. It is suitable for use with any of the popular 1000 - or $1500-\mathrm{volt}$ 100 - to $150-\mathrm{ma}$. triodes. The tubes shown in the photographs are 812s.

As shown in the circuit diagram of Fig. 1368, all of L_{1} in the grid tank circuit and all of L_{4} in the plate tank eircuit are used for 3.5 Mc . Low-frequency padders, C_{1} in the grid circuit and C_{10} in the plate, are switched across the
coils simultancously. For 7 Mc., the padding condensers are cut out and L_{1} and L_{4} are tapped so that only a portion of cach coil is in use. At 14 Me. the coils L_{2} and L_{3} are used with the padders, while at 28 Mc. the same coils are used without the padders. Links for the two coils in each tank circuit are connected in suries.

The components are assembled on a standard 19 -inch pancl, $10 \frac{1}{2}$ inches high. The two tubes, the neutralizing condensers and L_{2} are mounted on top of a $5 \times 10 \times 3$-inch chassis fastened to the panel with its econter 7 inches from the left-hand edge and its bottom edge $3 / 4$ inch above the lower edge of the panel. The

Fig. I 368 - Circuit diagram of the handswitching push-pull amplifier.
$\mathrm{C}_{1}-30-\mu \mathrm{fd}$. variable, 0.07 -inch sparing (Cardwell Z:T'30-AS).
$\mathrm{C}_{2}-0.001-\mu \mathrm{fd}$. mica.
(:3-35- μ fud-per-sertion variable (Millen 29935).
$\mathrm{C}_{4} \mathrm{C}_{5}-0.01-\mu \mathrm{fd}$. paper.
(6, $\mathrm{C}-$ - Nentralizing condenser (National $\lambda \mathrm{C}-800$).
Cs - $0.001-\mu \mathrm{fd}$. 5000 -volt mica.
$\mathrm{C}_{9}-\mathbf{6 5}-\mathrm{\mu}_{\mu} \mathrm{ffl}$ - per-section variahle (Ilammarlund 11 FBD. ($6.5 . \mathrm{F})$.
$\mathrm{C}_{10}-50-\mu \mu \mathrm{fd}$, vacuum capacitor ('Type GE GL-1L38).
I. - B \& W 80BCL. tapped at 12 th turn from each end,
$\mathrm{L}_{2}-10$ turns No. 14 enarueled, $1 / 4$-inch diam., I inch long.
$\mathrm{L}_{3}-\mathrm{B} \& \mathbf{W}^{10} \mathrm{TCC}$.
 turn from earh end.
RFC_{1} - 1 -mh. r.f. choke (National R-154U)
$\mathrm{S}_{1}, \mathrm{~S}_{2}$ - 4 -gang 4-position ceramic rotary switch (Mallory 164-C).
$\mathrm{T}_{1}-6.3$ volts, 8 amp . (UTC S61).

298

Chapter Jhirteen

Fig. 1369 - Bottom virw of the band. switching anmplifier showing the grid. circuit assembly to the right and the plate-circuit group to the left.
tubes are spaced $51 / 4$ inches, eenter to center, and their sockets are submounted and centered $13 / 4$ inches from the right-hand edge of the chassis as viewed from the rear. L_{2} is wound on a polystyrenc form mounted on a National AR coil-plug strip. Its socket is centered between the tubes and $5 / 8$ inch from the edge of the chassis. A $53 / 4 \times 2$-inch cut-out is made in the outside edge of the chassis to clear the grid bandswitch, S_{1}. A $13 / 4$-inch piece of the cut-out is left and bont inward at right angles to provide a mounting for the switch. The coil for L_{1} is removed from its plug strip and transferred to a Millon plug strip which has the required additional contacts for the 7-Mc. taps. The eut-out is motehed at the top
to provide clearance for the terminals of the coil socket.

I'nderneath the chassis, C_{9} is mounted vertically on spacers at the center, while the grid tuning condenser, C_{3}. is mounted as close to the inside edge as possible. Leads between the lower terminals of the neutralizing condensers and the grid terminals of the tube sockets are fed down through the top of the chassis via small feed-through insulators. Link input terminals are mounted on the outside edge of the chassis, near the rear, while 115 volt a.c. and hiasing connections are made through a cable socket set in the rear edge. The filament transformer is mounted on the upper right-hand corner of the panel, as

Fig. 1.370 - Rear view of the handswitching ampliticr.

Fig. 13:I-A single-tube high-power amplifier fur high-voltage inputs up to 500 watts. The standard rack panel is $121 / 4$ incbes bigh.

viewed from the rear of the unit.
The plate tuning condenser, C_{9}, is mounted on aluminum-strip brackets fastened to the chassis to bring its shaft $8 \frac{3}{4}$ inches from the right-hand edge of the panel (as viewed from the front) and $21 / 2$ inches from the top. Aluminum sheet is cut to form end plates for a sub)assembly which includes the switeh, κ_{2}, the two coil sockets, and a mounting for the padeler, C_{10}. As viewed from the rear, L_{4} is to the left and L_{3} to the right. lillar-type coramic insulators form spacers for the mounting angles which support the cartrilge-fuse clips in which the vacuum-type parding condenser, C_{10}, is mounted. The assembly is spaced from the pancl on $11 / 4$-inch cone stand-offs, placed so that the shaft comes $51 / 2$ inches from the righthand edge of the panel and $23 / 4$ inches below the top edge. The Millen safety terminal for the high-voltage connection, the link output terminals and the insulating condenser, C_{8},
are fastened to the rear end plate of the assembly. The plate ref, choke is fastened to the panel between the plate tank condenser and the switch assembly.

For 1500 -volt operation the plate supply shown in Fig. 1360 is suitable. The same circuit with the 1000 -volt values is appropriate for lower-voltage tubes. If 1500 -volt tubes are to be used, the exeiter should be eapable of delivering 25 to 30 watts. The units shown in Figs. 1311 and 1331 are suggested. The same exciters. with the 807s operated at lower voltage if desired, may be used also to drive the smaller tubes. The antenna coupler of Fig. 1361 is suitable for use with either class of tubes.

(1) A Single-Tube 500-Watt Amplifier

A single-tube amplifier which may be operated at inputs up to 500 watts at voltages as high as 3000 is shown in Figs. 1371, 1372 :und 1374. The circuit, shown in Fig. 1373, is strictly

Fig. 1.372 - Rear view of the high-power single-tule amplifier. The two tank condensers are mounted, one above the other, in the center of the panel by means of Isolantite pillars from stand-off insulators. Four National Type GS- 2 insulators are used to support the plate tuning condenser, while three Type GS-1 in: sulators are used for the grid tuning condenser. Insulated flexible couplings and panel bearings are used on eacb shaft to insulate the controls. Oue of high break down voltage rating should be used for the plate condenser, and the pame? hearings must be grounded! The socket for the grid tank coil is mounted, using insulated spacers and a small metal plate as a base, on the rear end plate of C_{1}. Metal strips. also fastened to the end plate, support the inputlink terminal strip. The insulating by-pass condenser, C_{4}, is mounted just to the right of C_{2}.

Fig. 1373 - Circuit of the 500 -watt input amplifier.
$\mathrm{C}_{1}-250-\mu \mu \mathrm{fd}$. variable, 0.017 -inch spacing (National TMK-250).
$\mathrm{C}_{2}-100 \mu \mu \mathrm{fd}$. per section, 0.171 -inch spacing (N ational TAA-100-DA).
C_{3} - Vrutralizing condenser (National NC.800).
C_{4} - Ilich-voltage enndenser, $0.001-\mu \mathrm{fd}$. mica, 12,500 volt rating (Cornell-I) ubilicr 21A-80).
$\mathrm{C}_{8}, \mathrm{C}_{\mathrm{f}}$, (: $\mathrm{i}-0.01-\mu \mathrm{fd}$. mica.
$\mathrm{L}_{1}-3.5 \mathrm{Me}$ - 26 turns Yo. $16,11 / 2$-inch diam., $21 / 8$ inches long, 3 -turn link (B \& W JCl.40).
7 Mc . -16 turna No. 16 . $1 \frac{1}{2}$ ineh diam., $17 / 8$ inches long, 3 -turn link (13 \& 11 JC1.20).
14 Me. - 8 turns No. 16 , $11 / 2$ inch diam., $17 / 8$ inches long, 3 turn link (13 \& W JCL.10).
28 Mc. - 6 turns Mo. $16,11 / 2$ ineh diam., $1 / \frac{1}{2}$ inches long. 2-turn link (13 \& W JCLLD, 1 turn removed from cach end).
$\mathrm{L}_{2}-3.5 \mathrm{Me}$ - 26 turn No. $12.31 / 2$-inch diam., $41 / 2$ inches long. 2-turn link (13 \& W TCI 80).
7 Mc. - 22 turns No. $12,21 / 2$ inch diam., $41 / 2$ inches lonk, 2 -turn link (IS \& W TCIA 10).
 inches long, e-turn link (B \& W TCI:20).
23 N1..-6 turns $1 / 3^{-i n c h}$ copper tuline, $21 \frac{1}{2}$-inch diam., $41 / 2$ inches long, 2 -turn link (B W W TCL10).
1RFC - 1 -mh. r.f. choke, 300 ma . (National R-300U mounted on GS-1 insulator).
T-Filament transformer, 5 volts, 8 amp. ("'hordarson T-19F84).
conventional, with link coupling for both input and out put circuits. While a Type 100 TH tube
is shown in the photographs, almost any other tube of similar physical size and slape which is designeal to operate at plate voltages of 3000 or less may be used in the same circuit arrangement.

Power supply and tuning - The plate power supply shown in Fig. 1343 may be used with this unit. Bias may be obtained from the unit shown in Fig. 1327. For this purpose, the VR-75-30 branch may be omitted and a single resistor of 0000 ohms connected across the output of the pack, with the bias lead connected to the extreme negative end of the resistor.

The transmitter shown in Fig. 1331 should provide sufficient excitation.

An amplifier operating at high voltage should always, after neutralizing, be tuned up at reduced plate voltage. This may be obtained by connecting a lamp bulb in series with the primary of the plate transformer. Coupling between the exciter and the amplifier should be adjusted so that the grid current does not exceed 40 to 50 ma. with the amplifier tuned and loaded to the rated plate current of 167 ma. Power output of 225 to 300 watts should be obtainable on all bands at plate voltages from 2000 to 3000 .

The tube tables in Chapter Twenty should be consulted for data on the operation of other tubes suitable for use in this amplifier.

C. A 1-Kw. Push-Pull Amplifier

The push-pull amplifier shown in the photographs of Figs. 1375,1377 and 1378, is built around a pair of Eimace 250TH triodes. It will handle a full kw. input at a plate voltage of 2000 or less, although the plate tank-condenser spacing is sufficient for 3000 -volt operation with plate modulation. The driving stage should be capable of delivering approximately 100 watts. The amplifier may be shifted to any

Fig. 1374- Bot tom view of the single-tube 500 -watt amplifier. In the lower righthand eorner of the panel is fastened a chassis $91 / 2 \times 5 \times 11 / 2$ inches, on which aremonuted, in liese, the filament transformer, the tube socket and the nentralizing condenser. A chassis of similar size to the Ieft support = the plate tank coil and the outputlink terminals. A large feed-throngh insolator in the rear edge of this thassis serves as the high-volt age terminal. In wiring the amplifier unit, the inportance of well-spared leads carrying bigh voltape can not be stressed tookreatly. It must be remembered that the arcing distances and break-down capabilitics of voltages as hinh as 3000 are considerably greater than with the lower plate voltages more commonly used by ana. teurs.

Fig. 1375 - Front view of the kilowat amplifer. Thas Fant! is 21 inchors high and of standard 19 -inch width.

amateur band by a system of plug-in coils.
The circuit, shown in Fig. 1376, is standard for a push-pull link-coupled neutralized amplifier. The only departure from strict conventionality is the use of the fixed vacuumtype padding condenser ($\left(C_{9}\right)$ across the plate tank coil when operating at 3.5 Mc. A filament transformer is included on the chassis to permit short leads which must carry the high heating current.

The components are mounted on a standard $10 \times 17 \times 3$-inch chassis, with the 10 -inch side against the panel to provide the necessary depth. The IS \& W "butterfly"-type plate tank condenser is mounted on heavy 2 -inch stand-off insulators, with its shaft along the center line of the chassis, and its front mounting feet centered 2 inches from the panel. Since its rotor is connected to the highvoltage supply, use of a good insulating shaft coupling is of utmost importance as a safety measure. The output tank-coil base assembly, with its adjustable link, is fastened to the two upper-rear stator nuts of the condenser by means of a pair of aluminum angle pieces. Similarly, the clips for the 3.5 Mc. vacuum-t ype parding condenser are mounted at the front of the condenser. Link oulput terminals are provided in the form of a pair of large stand-off insulators fastened to the rear of the panel near the top.

The neutralizing condensers are special units designed as aceessories to the tank condenser. Each consists of a single disk connected to the grids, the rear stator plates of the plate tank condenser serving as the other side of the neutralizing condenser, for a compact unit.

The by-pass condenser, C_{7}, is located under the rear end of the tank condenser and is fastened to the chassis with a small metal angle piece which makes the ground connection.

The sockets for the 250 Tll s are submounted. They are spaced 5 inches, center to center, and 4 inches in from the rear edge of the chassis. The grid tank condenser is mounted between the tubes with an extension shaft to the front of the pancl. The rotor plates are grounded to the chassis. The high-voltare line to the plate tank condenser and the plate r.f. choke is brought up through the chassis via a large ceranic feed-through insulator.

Undermeath, the jack bar for the grid coil is centered between the tube sockets. Connec-

Fig. 13i6-Circuit diagram of the high-power push-pull amplifier.
$\mathrm{C}_{1}-100 \mu \mu \mathrm{fd}$. per section, 0.0 .5 -ineh spacing (Ilammarlund IIFB1)-100-($)$)

C: $-0.001-\mu \mathrm{fd}$ micat, $\mathbf{1 0 . 0 1 0 0}$ volts.
Cis - $25 \mu \mu \mathrm{fl}$. 16.000 volts (CE CLI22).
$1,-\mathrm{B}$ \& W BCL coils.
L, - B \& W HDVL, crils.
RFC - I-mh. r.f. elioke (ilammarlund CII-500).
$\Gamma-3$ volts, 22 amperes (Stancor $\mathrm{P}^{2}(302$, see text).

302

tions between this coil mounting and the condenser on top are made through large clearance holes lined with rubber grommets, Short, direct leads connect the tank circuit to the grid terminals of the tubes.

The filament transformer is mounted directly underneath the plate tank condenser. Since this transformer, as well as the grid coil, protrudes from the underside of the chassis, the chassis is set with its bottom elge 2 ! inches above the bottom edge of the panel. The transformer shown in the photographs, and listed under Fig. 1376, is one designed for rectifier service and has high-voltage insulation. If one with 1600 - or 2000 -volt insulation is a vailable it. may be substituted, of course. A Millen safety terminal for the positive highvoltage connection, a thrce-terminal ceramic strip for bias and ground conncetions, and a male power plug for the 115 -volt connection to the filament transformer are set in the rear edge of the chassis, while a pair of insulated terminals in the right-rear corner are for the excitation input.

Pouer supply - Fig. 1342 shows the details of a suitable high-voltage plate supply for this amplifier. The biasing unit of Fig. 1327 may be used with an alteration in the voltagedivider resistor in the circuit diagram of Fig. 1326. The total resistance should be 2000 ohms, 100 watts, with the biasing tap taken off at the center. The transmitter of Fig, 1346 will provide adequate excitation,

Adjustment - When the amplifier is completed and ready for operation, the first step in adjustment is the neutralization. This may be done with the amplifier set up with all external comections made, except for the antenna, but with the high voltage turned off.

Fig. 1377 - The filament transfortuer and grid coil are mounted underncath the chassis.

With the coils for the desired band plugged in, the tuning of the grid tank circuit should be adjusted until a gricl-current reading is obtained. Then the neutralizing condensersshould be adjusted simultaneously, bit by bit, keeping the spacing equal. When the amplifier is not neutralized, a dip in grid current will be found as the plate tank condenser is tuned through resonance. The neutralizing condensers should be adjusted until no change in grid eurrent oecurs as the plate tank condenser is swang

Fig. $13: 8$ - Rear view of the push. pull 2.50111 amplifier showing the mounting of the plate tank coil and 3.5-Mc. padding condenser.

Fif. 1379 - A vacuum-tulic keyer, huilt up on a $7 \times$ 9×2-inch chasis with suare for four or less keyer tubes and the power-supply rectifier. The resistors and condensers which produce the lag are mounted underneath, controlled by the knols at the right. The jack is for the key, while terminals at the left are for the keyed circuit.
through its range. This should nceur with the adjustable plates of the neutralizing condensers spaced about $13 / 16$ inches aw:uy from the rear stator plates of the tank rondenser.

Although plenty of plate dissipation is available. it is desirable to do the preliminary tuning and loading of the amplifier at reduced plate voltage. Before plate voltage is applied, a grid-eurrent reading of at least 150 to 200 nag. should be possible. The antenna link should be swung out to the minimum-coupling position. As soon as plate voltage and excitation are applied, the plate tank condenser should be adjusted for mininum plate current. Grid current still should be above 150 ma. When the excitation is removed, there should be no indication of oscillation at any setting of the grid- or plate-tank condenser.

The output link niay be connected directly to a properly-terminated low-impedance line. or thiulloh a link-ronpleal antenna tuner to the feeders of any antenna system. With excitation
and plate power applied. the plate current should increase as the link coupling is tightened and the antenna system tuned to resonance. With each adjustment of coupling or antenna tuning, the plate tank condenser should be retuned for minimum plate current. The minimum reading will incroase as the coupling is tightened with the antenna tuned to resonance. The loading may be increased up to the point where the minimunn reading is 500 nat., when the input will be 1 kw . at 2000 volis. With the amplifier loaded, the excitation should be adjusted to about 150 ma. for the two tubes.

(1) A Practical Vacuum-Tube Keyer

Fig. 1379 shows a vacuun-tube keyer unit. The diagram is shown in Fig. 1380. T_{1}, the rectifier, and C_{1} and R_{1} form the powersupply section for producing the blocking voltage necessary for cutting off the keyer tubes. With only R_{2} in the circuit and s_{2} in the open position, there will be no lag. As S_{2} is turned to introduce more capacitance in the circuit, the keying characteristic is "softened" at both make and break. Adding resistance by turning S_{1} to the right affects the "break" only.

As many 45 s may be added in parallel as desired. The voltage drop through a single tube varies from 90 volts at 50 ma . to 52 volts at 20 ma. Tubes in parallel will reduce the drop in proportion to the number of tubes. If rated plate voltage is important in the operation of the keyed circuit, the voltage drop through the keyer tubes must be taken into aecount and the transmitter voltage boosted to compensate for the drop.

If clesired, a greater angle of keying lag can be obtained by using a rotary switeh with more points and additional resistors and condensers. Suggested values of capacitance in addition to C_{2} and C_{3}, are 0.001 and $0.0022 \mu \mathrm{fd}$. From R_{2}, resistors of $2.2,3.3$ and 4.7 megohms may be adiled.

When connecting the output terminals of the keyer to the cireuit to be keyed, care nust be used to connect the grounded output terminal to the negative side of the licyed gireuit.

Fif. 1380 - Wiring diagram of the practical vacuum-tube keyer unit and power supply shown in Fig. 1379.
$C_{1}-2-\mu \mathrm{fi}$. GOO-volt paper.
$\mathrm{C}_{2}-0.0033-\mu \mathrm{fd}$. nica.

$\mathrm{K}_{1}-0.22$ megohm, 1 watt.
$\mathrm{K}_{2}-50,000$ ohms, 10 watts.
$R_{3_{3}} \mathrm{I}_{4}-4.7$ megohms, 1 watt.
Ihs- 0.47 megohm, I watt.
$\mathrm{S}_{1}, \mathrm{~S}_{2}-3$-position 1 -circuit
$\mathrm{T}_{1}-325-0-325$ volts. 5 volts and 2.5 volts (Thordarson T-13R01).

Chapter Jhirteen

(1. Rack Consiruction

Most of the units described in the constructional chapters of this Handbook are clesigned for standard rack mounting. The assembly of a selected group of units to form a complete transmitter is, therefore, a relatively simple matter. While standard metal racks are available on the market, many amateurs prefer to build their own less expensively from wood. With care, an excellent substitute can be made.

The plan of a rack of standard dimensions is shown in Fig. 1381. The rack is constructed entirely of 1×2-inch stock of smooth pine, spruce or redwood, with the exreption of the trimming strips, M, N, O and P. Since the actual size of standard 1×2 inch stock runs appreciably below these dimensions. a much sturdier joh will result if picees are obtained cut to the full elimensions.

The main vertical support ing members of the wroden rack each is comprised of two pieces (A and B, and I and J) fastened together at right angles. Each pair of these members is fastened together by No. 8 flat-head serews, with heads countersunk.

Before fastening these pairs together, pieces A and J should be made exaetly the same length and drilled in the proper places for the mounting screws, using a No. 30 drill. The length of pieces A, J, B and I should equal the total height of all panels required for the transmitter plus turice the sum of the thickness and width of the material used. If the dimensions of the stock are exactly 1×2 inches, then 6 inches must be added to the sum of the panel heights. An inspection of the top and bottom of the rack in the drawing will reveal the reason for this. The first mounting hole should come at a distance of $1 / 4$ inch plus the sum of the thickness and width of the material from either end of pieces Λ and J. This distance will be $31 / 4$ inches for stock exactly 1×2 inches. The second hole will come $11 / 1$ inches from the first, the third $1 / 2$ inch from the second, the fourth $11 / 4$ inches from the third and so on, alternating spacings between $1 / 2$ inch and 11/4 inches (see detail drawingr D, Fig. 1381). All holes should be placed $3 / 8$ inch from the inchassis.

Fip. 1381 - The standard rack. A - Side view. B - Front view. C - Top virw. D - Itpher right-hand corner detail. E - Panel-and-chassis assembly. F. G, II - Various ty pes of panel brackets. I - Substitute for metal

side edges of the vertical members.
The two vertical members are fastened together by cross-member K at the top and L at. the bottom. These should be of such a length that the inside edges of A and J are exactly $171 / 2$ inches apart at all points. This will bring the lines of mounting holes $181 / 4$ inches center to center. Extending back from the bottoms of the vertical members are pieces G and D connceted together by cross-members L, Q and E, forming the base. The length of the pieces D and G will depend upon space requirements of the largest power-supply unit which will rest upon it. The vertical members are braced arainst the base by diagonal members C and H. Rear support for heavy units placed above the
base may be provided by mounting angles on C and H or by connecting these members with cross-braces as shown at F.

To finish off the front of the rack pieces of $1 / 4$-inch oak $\operatorname{strip}(M, N, O, P)$ are fastened around the edges with small-head finishing nails. The heads are set below the surface and the holes plugged with putty or plastic wood.

The top and bottom edges of M and O should be $1 / 4$ inch from the first mounting holes, and the distance between the inside edges of the vertical strips, N and $P, 191 / 1 \mathrm{~g}$ inches.

To prevent the screw holes from wearing out when panels are changed frequently, $1 / 2 \times$ $1 / 16$ or $1 / 32$-inch iron or brass strip may be used to back up the vertical members of the frame.

The outside surfaces should be sandpapered thoroughly and given one or two coats of flat black, sanclpapering between coats. A finishing surface of two coats of glossy black "Duco" is then applied, again sandpapering between coats. It is very important to allow cach coat to dry thoroughly before applying the next, or sandpapering.

Since the combined weights of power supplies, modulator cquipment, etc., may total to a surprising figure, the rack should be provided with rollers or wheels so that it may be moved about when necessary after the transnitter has been assembled. Ball-bearing roller-skate whecls are suitable for the purpose.

Standard metal chassis are 17 inches wide. Standard panels are 19 inches wide and multiples of $13 / 4$ inches high. Panel mounting holes start with the first one $1 / 4$ inch from the edge of the panel, the second $11 / 4$ inches from the first, the third $1 / 2$ inch from the second, the fourth $11 / 4$ inches from the third, and the distances between holes from there on alternated between $1 / 2$ inch and $11 / 4$ inches. (See dotail D, Fig. 1381.) In a pancl higher than two or three rack units ($13 / 4$ inches per unit), it is common practice to drill only sufficient holes to provide a secure mounting. All pancl holes should be drilled $3 / 8$ inch in from the edge.

If desired, the rack may be enclosed by completing a framework of one-by-two strip, using $1 / 4$-inch plywood for the panels. The panels may be hinged so that three sides are made
accessible for servicing. If the transmitter is to be operated in an enclosure, provision should be made for a small amount of forced-air ventilation; otherwise the panels should be open while the transmitter is in operation.

© Metering

Various methods of metering are shown in Fig. 1382. A shows the meters placed in the

Fip. 1.382 - Varinus methods of connecting millianmeters in grid and plate currents. A- High-voltage metering. $\overline{3}$ — Cathode metering. C - Shunt metering.
high-voltage plate and bias circuits, $M A_{1}$ and $M A_{2}$ are for plate current and $M A_{3}$ and $M A_{4}$ for grid eurrent, When more than one stage operates from the same plate-voltage or biasvoltage supply, each stage may be metered as

SIDE VIEW
Fig. 1383 - Safety pancl for meters. The meters are mounted in the usual manner on an insulating subpanel spaced hack of a glass-covered opening in the front panel. The glass is fastened in place with metal elanys or tabs, fastened to the front panel with small serews or pins. The front panel is of standard rack size, $19 \times 51 / 4$ inches.

Fig. 1384 - Method of switching a single milliammeter to varions circuits with a two-gang switeh. The control shaft should he well insulated from the switch contacts, and should te erounded. The resistors, R, should have values of resistance ten to twenty times the internal rexistance of the meter; 47 ohms will usually be satisfactory.
shown. If this system of metering is used, the meters should be momated so that the meter dials are not accossible to aecidental contact with the adjusting screw. One method of mounting is shown in Fig. 13S3, where the metcrs are mounted behind a rlass panel.

When plate millianumeters are to be mounted on metal panels, care must be taken to sce that the insulation is sufficient to withstand the plate voltare. Metal-case instruments should not be mounted on a grounded inetal panel if the difference in potential between the meter and the panel is to be more than 300 volts; bakelite-case instruments ran be used under similar cireunstances at voltages up to 1000 . At higher voltages than these an insulating panel should be used.

The placing of meters at high-voltage points in the cirnuit may be overcome by the use of the connections shown in Fig. 1382-B and - C. The disadvantage of the arrangements at B is
that the meter reads total cathode current and the grid and plate currents cannot be metered individually. This disadvantage is overcome in C, where the meters are connected across low resistances in the grid- and plate-return circuits. $M A_{1}$ reads grid current and $M A_{2}$ plate current. The parallel resistors should have a value of not less than 10 to 20 times the resistance of the meter, and should be of sufficient power rating so that there will be no possibility of resistor burn-out. If desired, the resistance values may be adjusted to form a multiplier scale for the meter (sec Chapter Nineteen). The sime principle is used in the meter-switehing system shown in Fig. 1384.

Meters may also be shifted from one stage to another by a plug-and-jack system, but this system should not be used unless it is possible to ground the frame of the jack or unless a suitable guard is provided around the meter jacks to make personal contact with high voltages impossible in normal use of the plug.

Another metering system based upon the use of simple s.p.d.t. torgle switehes is shown in the diagram of Fig. 1385. In each case provision is made for metering two circuits with a single milliammeter. Grid returns should be made to filament center-tap or cathode rather than to ground or negative high voltage. If currents included in the meter range are to be measured, the resistors should have a value of about 47 ohms each, otherwise they should be adjusted to give the desired scale multiplication.

(C) Control Circuits

Proper arrangement of controls is important if maximum convenience in operation is to be attained. If the transmitter is to be of fairly high power, it is desirable to provide a special service line leading directly from the publicutility meter board to the operating room. This line should be run in conduit or 13 N rable, and the conductors should be of ample size to carry the maximum load without undue voltage drop. The line should be terminated with an enclosed entrance switch, properly fused.

Fip. 1385 - Toggle-switel meter switching. At A is a circuit for switching meter from grid to plate circuit of same stage. At 1 is a cireuit for switehing grid meter hetween two stages and plate meter between two stages. At C is au alternative circuit, similar to the one at B, in which separate filament transformers permit the use of a eommon plate supply. R_{1} and R_{2} are grid-circuit meter shunt resistore, while R_{3} and R_{4} are the plate-cireuit shunt resistors.

$\mathcal{I}_{\text {ransmitter }}$ Construction

Fig. 1386 - A station control system. No high-voltage supply can le turned on until the filament switch has been closed; the high-power plate supply cannot be turned on until the low-power plate-supply switch has been closed; and modulator power cannot he applied until the final-amplifier plate voltage has been applied. With all switches except S_{3} closed, S_{3} serves as the main control switch. S_{1} - enclosed entrance switch. S_{2}-filament switch. S_{3} - low plate-voltage and main control switch, preferahly of the push-button type which remains closed only so long as pressure is applied. S_{4} - high plate-voltage switch. S_{5} - low-power and tune-up switch short-circuiting I_{4}. S_{6} modulator plate-voltase switch. F - fuses. I_{1-2-3} - warning lights. I_{4} - 100 - to 300 -wat2 voltage-reducing lamp.

Fig. 1386 shows the wiring diagram of a simple control system. It will be noticed that, because the control switches are connected in series, none of the high-voltage supplies can be turned on until the filament switch has been closed, and that the high-power plate supply cannot be turned on until the low-power plate-supply switch has bren elosed. Furthermore, the modulator power cannot be applied until the final-amplifice plate voltage has been applied. Sts places a 100 - to 300 -watt lamp, I_{4}, in series with the primary winding of the high-voltage plate transformer for use during the process of preliminary tuning and for local c.w. work. The final amplifier should first be tuned to resonance at low voltage and S_{5} then closed. short-circuiting the lamp. Experience will determine what the low-voltage plate-current reading should be to have it increase to the full-power value when S_{5} is closed, so that the proper antema-coupling ancl tuning adjustments may be made.
Preferably, S_{3} should be of the nonlocking push-button type whieh remains closed only so long as pressure is applied. A switch of this type provides one of the simplest and most effective means of protection against accidents from high voltage. In the form which is usually considered most convenient, it consists of a switch, located underneath the operating table, which may be operated by pressure of the foot. When used in this manner the operator must be in the operating position, well removed from danger, before high voltage can be applied. If desired, $S_{3 A}$ nay be wired in parallel on the front of the transmitter panel, so that it can be used while tuning the transmitter. $S_{3 A}$ also should be of the push-button type.
In more elaborate installations, and in re-mote-control systems where the transmitter is located some distance from the operating position, similarly arranged switches may be used to control relays whose contacts serve to perform the actual switching at the transmitter.
Two strings of utility outlets, one on each side of the entrance switch, are provided for
operation of the receiver and such accessories as the monitor, lights, electric clock, soldering iron, etc. Closing the entrance switch should close those circuits which place the station in readiness for operation. S_{2} and S_{4} are normally closed and S_{3} is normally open. When S_{1} is closed upon entering the operating room, the transnitter filaments are turned on as also is the receiver, which should be plugged into line No. 2. With S_{4} closed (as well as S_{5} and $\left.S_{6}\right), S_{3}$ performs the job of turning all plate supplies on and off during successive periods of transmission and reception.

All continuously-operating accessories, such as the station chock, should he plugged into line No. 1. This is so that they will not be turned off when S_{1} is opened. Line No. 1 is of use also for supplying the soldering iron, lights, etc., when it is desired to remove all voltage from the station appuratus by opening S_{1}.

© Line-Voltage Adjustment

In certain communities trouble is sometimes experienced from fluctuations in line voltage. Usually these fluctuations are caused by a variation in the load on the line and, since most of the variation comes at certain fixed times of the day or night, such as the times when lights are turned on and off for the night, they may be taken care of by the use of a manually-operated compensating device. A

Fig. 1387 - Two methods of transformer primary control. At the left is a tapped 1 -to- 1 transformer with the possibilities of considerahle variation in the secondary output. At the right is indicated a variable transformer or autotransformer (Variac) in series with the transformer primaries.

Fig. 1388 - With this circuit, a single adjustment of the tap switch is places the correct primary voltage on all transfurmers in the tranamitter. Information on connstructing a suitable atotransformer at mogligible cost is contaned in the text. The light winding represents the regular primary winding of a revamped tran-former, the heavy windiug the voltage-adjusting section.
simple arrangement is shown in Fig. 1387. A toy transformer is used to boost or buck the line voltage as required. The transformor should have a tapped secondary varying between 6 and 20 volts in steps of 2 or 3 volts and its serondary should be capable of carrying the full load current of the entire transmiater.

The secondary is connerted in series with the line voltage and, if the phasing of the windings is correct, the voltage applied to the primatries of the transmitter transformers cim be brought up to the rated 115 volts ${ }^{\circ}$ y setting the tortransformer tap switch on the right tap. If the phasing of the two windings of the toy transformer happens to be reversed, the voltage will be reduced instead of increased. This connection may be used in cases where the line volt age may be above 115 volts. This method is preferable to using a resistor in the primaty of a power tramsormer since it does not affect the voltage regulation as seriously.

Another scheme by which the primary voltage of cach transformer in the transmitter may be adjusted to deliver the desired secondary voltage, with a master control for compensat ing for changes in linc voltage, is shown in Fig. 1388.

This arrangement has the following features:

1) Adjustment of S_{1} to make the voltmeter read 105 volts automatically adjusts all primaries to the predetermined correct voltage.
2) The neressity for having all primaries work at the same voltage is eliminated. Thus, 110 volts can be applied to the primary of one trinsformer, 115 to another, ete.
3) Independent control of the plate transformer is afforded by the tap switch S_{2}. This permits power-input control and does not require an extra autotransformer.

C. Grinding Crystals

Crystal blanks, cut to approximate frequency, are avalable at very reasonable prices. With proper equipment and a little care, these blanks ran be ground to the desired frequency. Complete crystal-grinding equipment includes
several components. First necessity is a flat piece of plate glass, about 4 inches square or larger. To hold the crystal flat while grinding a flat "button" (shown in Fig. 1389), also of plate glass, either round or square, and slightly larger than the erystal, is required. Both pieces may be obtained at glass stores. Two grades of abrasive, Noo, 303 emery for surface grinding and No. 600 Carborundum for edge grinding and beveling are obtainable from hardware stores or optirian's supply houses. A small paint brush is handy for moistening the abrasive and spreading it around the lapping plate. To facilitate frequent checking of frequency during the grinding process, the quick-change holder shown in Fig. 1390 is desirable. It consists of an FT243 holder with a sliding cover fashioned from sheet metal. Soap, warm water and a toothbrush are used to elean and rinse the crystal. Iintless cloth from an optician's or a clean towel can be used for drying.

Fif. 1389 - The eforipment necessary for grinding a crsatal hank on frequency. A piece of plate plass and a "lut ton' of the same material are essential. 'The "quickclange" adaptation for the crystal holder is a convenience. Not shown, lut also eonveniont, are a small paint brush for spreading abrasive and a toothbrush for scrubbing.

Present-day electrodes have raised lands on each corner, as shown in Fig. 1391, and the crystal should lie at least halfway across these lands and should not be larger than the electrode. The electrodes should be cleaned as earefully as the ervstal. Before final assembly both crystal and electrodes should be handled earefully by the corners or edges after their last good scrubbing.

How to grind - The actual grinding is done as follows: Spread the 303 abrasive over an area about a half inch square on the lapping plate, wet the brush, mix water into the spot and spread the abrasive over the lapping plate. Always keep the abrasive moist. Take the button and put a drop of water at its center, and press the dry erystal blank over the drop of water. There should be just enough water in

Fig. 1390 - The quick-change erystal holder with sliding cover.

the drop so that it squeezes out unter the edges of the blank. where it is wiped away. Place the button, blank down, on the cmery and put the index finger in the center of the button. Vise just enough pressure to mowe the button in a figure-8 pattern. This motion is used hecause it helps kecp the blank flat.

After grinding through ton or fifteen " $8 s$ " the blank should be rechecked for frequency and activily. The blank's activity is a term used in erystal making to describe how st rongly a crystal will oreillate. This may be indicated by the magnitude of the dip in the phate current, grid current to the next stage, or rectified grid current in the crystal oscillator. It is nearly impossible to tell how much change in frequency will oecur dhring the grinding of a crystal, because pressure on the button, the amount of abrasive, and the area of the " 8 " all will vary the frequency. The frequency change probably will be betwoen 200 and 1000 cycles per " 8 ," using a 7 -Mc. crystal. The crystal ean be moved along faster as the operator becomes more familiar with the terhnique, but for the beginner frequent checks of activity are in order so that any drop can be corrected.

To grind a crystal suceessfully the activity must be good when the erystal is brought to the desired frequence. There are several ways to raise the aetivity. Assuming that, with earoful grinding on a flat plate with a flat button, the two fares of the erystal are parallel, the major cause of low activity will be dirt or mosisture on the erystal or electrodes. Before checking activity the crystal should be serubbed carefully with the toothbrush, using warm water and soap. Wipe the crystal clean and be sure that the electrodes are clean and dry. If the activity is still down the next thing is to bevel all eight edges of the crystal. The beveling can be done with either fine or coarse abrasive, but is usually more effective with the coarse. Beveling, incidentally, will also raise the frecpuency because of the quartz ground off during the process.

Although beveling will usually improve the activity, another mothod - and probably the simplest - is to change electrodes. The land heights on the electrodes have a critical effect on activity. If the center of the crystal becomes too high and the lands are so low that the center of the crystal touches the center of the electrodes, the crystal will stop oscillating.

The last step - and the most drastic method
of raising activity - is to edge-grind adjacent edges. This grincling is best done with coarse abrasive and should be followed by a slight hevel to remove any chips which may remain. 3y wherking the erystal frequently, a drop in activity can be corrected by the above methods. If the crystal is ground too far and goes rompletely dead, the frequency may be too high when the crystal is again reactivated.

© Building Small Transformers

Power transformers for both filament heating and plate supply for all transmitting and rectifying tubes are available commercially at reasonable prices, but occasionally the amateur wishes to build a transformer for some special purpose or has a core from a burned-ont transformer on which he wishes lo put new windings.

Most transformers that amateurs build are for use on 110-volt 60-cucle supplies. The mumher of turns necessary on the 110 -volt winding depends on the kind of iron used in the core and on the cross-sectional area of the core. Silicon steel is best. and a flux density of about 50,000 lines per square inch can be used. This is the basis of the table of cross-sections given.

An average value for the number of primary turns to be used is 7.5 turns per volt per square ineh of cross-sectional area. This relation may be expressed as follows:

$$
\text { No. primary turns }=7 . i\left(\frac{E}{A}\right)
$$

where E is the primary voltage and A the number of square inches of cross-sectional area of the core. For 110-volt primary transformers the equation becomes:

$$
\text { No. primar! turns }=\frac{825}{.4}
$$

When a small transformer is built to handle a continuous load, the copper wire in the windings should have an area of 1500 circular mils

Fig. 1392 - Types of transformer cores and their laminations.

310

Fif. 1393-A cunvenient method of assembling the windings of a shell-type core. Windinge can be similarly mounted on core-type eores, in which case the coils are placed on one of the sidec. Highvoltase cons-type tranyformers sometinnes are made with the primary on one corc leg and the secondary on the opposite.

for each ampere carried. (See Wire Table in Chapter Twenty.) For intermitent usc, 1000 cireular mils per anperc is permissible.

The primary wire size is given in the Transformer Design Table; the secondary wire size should be chosen according to the current to be carried, as previously described. The Wire Table in Chapter Twenty shows how many turns of each wire size ean be wound into a square inch of window area, assuming that the turns are wound regularly and that no insulation is used between layers. The primary winding of a 200 -watt transformer, which has 270 turns of No. 17 wire, would oceupy $270 / 329$ or 0.82 square inches if wound with double-cotton-covered wire, for example. This makes no allowance for a layer of insulation between the windings (in general, it is good practiee to wind a strip of paper bet ween each layer) so that the winding area allowance should be inereased if layer insulation is to be used. The figures also are based on accurate winding such as is done by machines; with hand-winding it is probable that somewhat more area would be reguired. An increase of 50 per cent should take care of both handwinding and layer thickness. The area to be taken by the secondary winding should be estimated, as should alsin the area likely to be oecupied by the insulation between the core and windings and between the primary and sccondary windings themselves. When the total window area required has been figured allowing a little extra for contingencies -
laminations having the desired leg width and window area should be purchased. It may not be possible to get laminations having exactly the dimensions wanted, in which case the nearest size should be chosen. The cross-section of the core need not be square but can be rectangular in shape so long as the core area is great enough. It is casier to wind coils for a core of square cross-section, however.

Transformer cores are of two types, "core" and "shell." In the core type, the core is simply a hollow rectangle formed from two " L ". shaped laminations, as shown in Fig. 1392. Shell-type laminations are "E"- and "I"shaped, the transiormer windings being placed on the center leg. Since the magnetic path divides between the outer legs of the " E ," these legs are each half the width of the center leg. The cross-sectional area of a shell-type core is the cross-sectional area of the center leg. The shell-type core makes a better transformer than the core type, because it tends to prevent leakage of the magnetic flux. The windings are calculated in exactly the same way for both types.

Fig. 1393 shows the method of putting the windings on a shell-type core. The primary is usually wound on the inside - next to the core - on a form made of fiber or several kayers of cardboard. This form should be slightly larger than the eore leg on which it is to fit so that it will be an casy matter to slip in the laminations after the coils are completed and ready for mounting. The terminals are brought out to the side. After the primary is finished, the secondary is wound over it, sevcral layers of insulating material being put between. If the transformer is for high voltages, the high-voltage winding should be earefully insulated from the primary and core by a few layers of Empire Cloth or tape. A protective covering of heavy cardboard or thin fiber should be put over the outside of the secondary to protect it from damage and to prevent the core from rubbing through the insulation. Square-shaped end pieces of fibor or cardboard usually are provided too protect the sides of the windings and to hold the terminal leads in place. High-voltage terminal leads should be enclosed in Empire Cloth tubing or spaghetti.
After the windings are finished the core should be inserted, one lamination at a time.

TRANSFORMER DESIGN TABLE

Input (Wats)	Full-lood Efliciency	Size of Primary Wire	No. of Primary Turns	$\begin{gathered} \text { Turns Per } \\ \text { Volt } \end{gathered}$	Cross-Section Through Core
50	75\%	23	528	4.80	$13 / 4{ }^{\prime \prime} \times 114^{\prime \prime}$
75	85\%	21	437	3.95	$13 / 8^{\prime \prime} \times 138^{\prime \prime}$
100	90\%	20	367	3.33	$11 / 2^{\prime \prime} \times 11 /^{\prime \prime}$
150	90\%	18	313	2.84	$188^{\prime \prime} \times 188^{\prime \prime}$
200	80\%	17	270	2.45	$18 / 4{ }^{\prime \prime} \times 13 / 4{ }^{\prime \prime}$
250	90\%	16	248	2.25	$17 / 8^{\prime \prime} \times 17 / 8^{\prime \prime}$
300	90\%	15	248	2.25	17/8' $\times 17 / 8^{\prime \prime}$
400	90\%	14	206	1.87	2'1 $\times 2^{\prime \prime}$
500	95\%	13	183	1.66	$21 / 8^{\prime \prime} \times 21 / 8^{\prime \prime}$
750	95\%	11	146	1.33	23/8' ${ }^{\prime \prime} \times 28^{\prime \prime}$
1000	95\%	10	132	1.20	$21 /{ }^{\prime \prime}$ " $\times 216^{\prime \prime}$
1500	85\%	9	109	0.90	$28 / 81 \times 2 /^{\prime \prime}$

Fig. 1392 shows the method of building up the core. In the first layer the " E "-shaped laminations are pushed through from one side; the second " E "-shaped lamination is pushed through from the other. The "I"-shaped laminations are used to fill the end spaces. This method of building up the core ensures a good magnetic path of low reluctance. All laminations should be insulated from each other to prevent eddy currents from flowing. If there is iron rust or a scale on the core material, that will serve the purpose very well - otherwise one side of etch piece can be coated with thin shellac. It is essential that the joints in the core be well made and be square and even. After the transformer is assembled, the joints can be hammered up tiglit using a bloek of wood between the hammer and the eore to prevent damaging the laminations. If the winding form cloes not fit tightly on the core, small wooden wedges may be driven between it and the core to prevent vibration. Transformers built by the amateur can be painted with insulating varnish or waxed to make them rigid and moisture-proof. A mixture of melted beeswax and rosin makes a good impregnating mixture. Melted paraffin should not be used beceuse it has ton low a melting point. Double-cotton-covered wire can be coated with shellac as each layer is put on. However, enameled wire should never be treated with shellae as it may dissolve the enamel and hurt the insulation, and it will not dry because the moisture in the shellae will not be absorbed by the in-
sulation. Small transformers can be treated with battery compound after they are wound and assembled. Strips of thin paper between layers of small enameled wire are necessary to keep each layer even and to give added insulation. Thick paper must be avoided since it keeps in the heat generated in the winding so that the temperature may become dangerously high.
Keep watch for shorterl turns and layers. If just a single turn should become slorted in the entire winding, the voltage set up in it would cause a heavy current to flow which would burn it up, making the whole transformer useless.
Taps can be taken off as the windings are made if it is desired to have a transformer giving several voltages. Taps should be arranged whenever possible so that they come at the ends of the layers.

After leaving the primary winding connected to the line for several hours it should be only slightly warm. If it draws much current or gets hot there is something wrong. Some shortcircuited turns are probably responsible and will continue to cause overheating.

© Building Filter Chokes

Filter choke coils may be either of the core or shell type. The laminations should not be interleaved, a butt joint being used instead. An air gap must be provided at some point in the core circuit to prevent magnetic saturation by the d.c. flowing through the winding.

The accompanying table may be used as an approximate guide in winding choke eoils. For the same core size, air gap and ampere turns, the inductance will vary approximately as the square of the number of turns. The arrangement of the core is shown in Fig. 1394 and the dimensions b and c in the table refer to this sketch. The core may be built from straight pieces as shown or with " L "-shaped laminations.

FILTER-CHOKE DESIGN TABLE

$\underset{\boldsymbol{h} \boldsymbol{L}}{\boldsymbol{L}} .$	Ma.	Stack Size In.	Core Lengith		$\begin{gathered} \text { Gap } \\ \text { In. } \end{gathered}$	Hinding Form		Turris	W'ire Size	Fect
			Itong Piece	Short Piece						
						b	c			
15	50	$1 / 2 \times 1 / 2$	$1 / 2 \times 2.2$	$1 / 2 \times 0.85$	0.035	1	0.68	9500	33	3500
10	100	$3 / 4 \times 3 / 4$	$3 / 4 \times 2.6$	$3 / 4 \times 0.95$	0.03	1	0.67	5000	30	22.50
15	100	1×1	1×3.1	1×0.9	0.0.35	0.96	0.65	4800	30	2550
10	250	2×2	2×5.2	2×1	0.4	1.05	0.68	2000	26	1750
20	250	2×2	2×5.6	2×1.2	0.23	1.43	0.95	4000	26	3820
5	500	2×2	2×5.5	2×1.15	0.17	1.35	0.9	1800	23	1700
10	500	2×2	2×6.2	2×1.5	0.4	2	1.3	3800	23	4100

Chapler 7^{7} ourteen
 - ••••

Modulation Equipment

In bulbing speech equipment, espeeially if it is to be used with transmitters operating below 30 megacycles, it should be kept constantly in mind that wide-range audiofrequency response is neither necessary nor desirable. Speech amplifiers should be designed so that the response drops off rapidly above about 3000 cycles; frequencies above this figure are of little help to the recoiving operator because the selectivity of the modern superheterodyne is such that they are greatly attenuated when the recoiver is tuned to the carrier frequency, but they do canse unneressary interforence to stations working on nearby channels. The speech equipment deseribed in this chapter is adequate for good intelligibility in sperch transmission, but is intentionally not designed for "high fidelity." It has been designed to give the required power output as simply and ecomomically as possible while still ohserving good design principles.

[I Arrangement of Components

In many respects the arrangement of components is less critical in audio than in r.f. equipment; nevertheless, certain principles must be observed if difficulties are to be avoided. The selection of suitable modulation equipment for any of the transmitters in the preceding ehapter is not difficult, if the fundamental principles of modulation described in Chapter Five are understood. If the transmitter is to be plate-modulated and the power input to the modulated stage is to be of the order of 100 watts or higher, a Class 13 modulator invariably will he selected. A pair of modulator tubes of any type capable of the required power output may be used. The tables in this chapter give the necessary information on the most popular tube types. The drivingpower requirements for the modulator stage atso
are given, so that from this point on the speechamplifier tube line-up enn be selected according to the principles outlined in Chapter Five.

The apparatus to be described is representaitive of currout design practice for speech amplification, with units to provide the various output levels required to drive high- and lowpower Class 13 modulators. In some cases the power output of these amplifier units will be sufficient to molulate low-power transmitters directly, without additional power amplification. Also, practically any of the speech amplifiers shown can be used to grid-modulate transmitters up to the highest power input permitted in amateur transmitters.

Speech-amplifier equipment, especially voltage amplifiers, should be constructed on metal chassis, with all wiring kept below the chassis to take advantage of the shichding afforded. Exposed leads, particularly to the grids of lowlevel high-gain tubes, are likely to piek up hum from the electrostatic field which usually exists in the vicinity of house wiring. liven with the chassis, additional shiclding of the input circuit of the first tube in a high-gain amplifier usually is necessary. In addition, such circuits should be separated as much as possible from power-supply transformers and chokes and also from audio transformers operating at fairly-high power levels. to prevent magnetic coupling to the grid circuit which might cause hum or audio-frequency feed-back.

If a low-level mierophone such as the erystal type is used, the microphone, its connecting cable, and the plug or connector by which it is attached to the speech amplifier, all should be shielded. The mierophone and cable usually are constructed with suitable shielding. The cable shield should be connected to the speechamplifier chassis, and it is advisable - as well as frequently necessary - to connect the

Fif. 1401 - A 10 walt audion unit complete with power supply. 'Tlireer dual-triende tubes provide a four stuge amplifier with $\mathrm{Cl}_{\text {ass }} 13$ output. Any of the popular types of microphones may be used.

Modulation Equipment

Fig. 1402 - The below-chassis wiring is visible in this view of the 10 -watt modulator. The mierophone input leads are kept short te peduee hum piok-up.

chassis to a ground such as a water pipe. Heater wiring should be kept as far as possible from grid leads, and either the (enter-tip) or one side of the heater-transformer secondary winding should be connerted to the chassis. In a high-gain amplifier the first tube preferably shonid be of the type having the grid connection brought out io a tup cap rather than to a base pin. since in the latter type the grid lead is exposed to the heater leads inside the tube and hence will pirk up more hum. With the top-eap tubres. complete shielding of the grid lead and grid (:ap is it necessity.

C. A 10-Watt Class-B Modulator for Low-Power Transmitters

A receiving-tube modulator, with a speech amplifier for either crystal or carbon microphones, is shown in Figs. 1401-1403, inclusive. It is suitable for modulating transmitters of 20 watts input or less, such as the low-power equipment frequently used on the very-high
frequencies. Type 6N7 or GAG tubes are used throughout in the audio circuits. In inexpensive power supply is included, so that the unit is complete and ready for connection to the transmitter.

Fig. 140:3 shows the eirenit diagram of the speech amplifier-modulator. One section of the first tube is used as the input amplifier for a crystal microphone, the other half being a second speech-amplifier stage. Carbon microphones, which need less gain, are transformer-coupled to the second section of the first $6 \times 77 / 6 \mathrm{~A} 6$. The type of jack shown at J_{2} in the cireut diagram must be installed if a double-button earbon microphone is to he used. J_{2} may be the same as J_{1} if a single-button microphone is to be used exclusively.

The gain control is conneeted in the grid circuit of the second seetion of the first tube, which is resistance-coupled to the driver. The driver tube has its two sections connected in parallel.

The modulation transformer specified is

Fig. 1403 - Cireuit diagram of the complete 10 -watt Class B audio modulator system for low-power transmitters.
$\mathrm{C}_{1}, \mathrm{C}_{2}-0.1-\mu \mathrm{fd} .600$-volt paper.
$\mathrm{C}_{3}, \mathrm{C}_{4}-10-\mu \mathrm{fd}$. 50 -volt electrolytic.
$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}-8-\mu \mathrm{fd} .450$ volt electrolytic.
$\mathrm{R}_{1}-22$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{R}_{3}-1000$ ohms, 1 watt.
$R_{4}, R_{5}-47,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{\mathrm{b}}, \mathrm{R}_{\mathrm{i}}-\mathbf{- 0 . 2 2}$ megohm, $1 / 2$ watt.
$\mathrm{h}_{8}-1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{9}-4.7$ megohms, $1 / 2$ watt.
$\mathrm{h}_{10}-0.5$-megohm volume control.
$\mathrm{R}_{11}-95,000$ ohms, 10 watts.
L_{1} - Filter choke, $\overline{3}$ henrys, 200 ma., 80 ohms ('Thordarson '1'-67(49).
$B_{1}-$ Mierophone battery (sectext).
J_{1} - Open-circuit jark for erystal microphone.
J_{2}-2- or 3 -cireuit jack for s.b. or d.b. cartoon microphone.
$S_{1}-$ S.p.d.t. togele switch.
$S_{2}-$ S.p.s.t. toggle switch (see text).

T ${ }_{1}$-S.b. or d.b. microphone transformer (Stancor A-4351).
T_{2} —Driver transformer, parallel 6A6 or 6N7 plates to 6A6/ 6N 7 Class B (Staneor A-1216).
$\mathrm{T}_{3}=$ Output transformer, 6.16/ 6N7 Class 13 to 6.500 -ohm load (Stancor A-3845).
T_{4} - Power transformer, 350 -0. 350 volts, 90 ma.; 5 volte at 3 amperes; 6.3 volts at 3.5 amperes.

Fig. 1.00. - A low-rost sperrh-amplifier or low-power modulator unit with a maximum audio output of 20 watts. The $6 \mathrm{~J} / \mathrm{is}$ at the left near corner of the chassis, with the 6 J 5 to its right, just above the volume control.
designed to work between the plates of a 6.N7 or 6 A 6 and a 6500 -ohn load; the impedance ratio used will. of course, depend on the load into which the modulator will work. A milliammeter can be commeted acrosis the shunt resistor, R_{1}, provided to measure the Class B plate current.

The power supply is of the condenser-input type. ling the components specified, it will deliver 350 volts at 90 ma. A switeh in the transformer center-tap lead is used for turning the plate voltage on and off without affecting the filament supply.

The power transformer is submounted at the left-hand end of the chassis. Next to it is the filter choke, L_{1}, followed by the rectifier tube and T_{3}, the modulation output transformer. The driver tube is at the extreme righthand end, with T_{2}, the driver transformer, behind it. The Class B tube is to the rear and in line with the speech-amplifier tube. For convenience in wiring, the audio-tube sorkets should be mounted with the filament prongs facing the right-hand end of the ehassis.

The plate-voltage switch is on the front of the chassis toward the left in Fig. 1401. The microphone switch, gain control and microphone jacks are grouped at the right. Power input and output terminals are at the rear.

The bottom-view photograph, Fig. 1402, shows the layout for the components momed below the chassis. T_{1} is mounted at the left end. Wiring to the driver-tube socket and the transformer secondary winding should be completed before the transformer is bolted in place, since it is difficult to reach the connert ing points with a soldering iron afterward. Short leads between the gain control, the microphone switch and the tube socket can be obtained by making the gain-control contacts face toward the switch, as shown in the photograph.

The compact microphone battery (I3urgess Type 3:2) will be held securely in place with-
out brackets or clips if it is wedged in between the bottom of the power transformer and the lips on the bottom of the chassis. A 3 -volt ballery is sufficient for most carbon microphones, and luw carrent frequenlly will give better speech quality. The 115 -volt a.c. and the meter leads (rulber-covered lamp cord) enter the rhassis throigh ruhher grommets, A threecontact terminal strip is located at the right end of the base (left end in the botiom view). One of the contactis on this terminal strip is for an external ground comection and the other two are connected to the modulation-transformer out put winding.

The actual measured power output of the unit is 11 watts, as recorded at the point where distortion just begins to be noticeable. This order of alldio power output is ample for modulating a low-power transmitter operating with 20 watts or so input to the final stage.

(I. A 20-Watt Speech Amplifier or Modulator

The amplifier shown in Figs. 1404-1406 will deliver audio power outputs up to 20 watts (from the output transformer secondary) with ample gain for ordinary communications-type erystal microphones. Class . 113 6L6s are used in the output stage, preceded by a 6 J 5 and a 6J7 preamplifier.

The unit is built up on a $5 \times 10 \times 3$-inch chassis, with the parts arranged as shown in the photographs. About the only construetional precaution neenssary is to use a short lead from the microphone socket (a jack may be used instead of the screw-on type, if desired), and to shield thoroughly the input eircuit to the grid of the 6.I7. This shielding is necessary to reduce hum. In this amplifier, the 6.57 grid resistur, R_{1}, is enclosed along with the input jack in a National Type J-1 jack shield, and a shielded lead is run from the jack shield to the grid of the 6.57. A metal slip-on shield covers the grid cap of the tube.
To realize maximum power output, the " B " supply should be capable of delivering about $14 \overline{5}$ ma. at 360 volts. A condenser-input sup-

Fig. 1405° - Bottom view of the 20 watt speech amplifier or modulator chassis. The most important constructional point is complete shielding of the microphone input circuit up to the grid of the $6 \mathbf{J} 7$ first amplifier.

Fig. 1406 - Circuit diagram of the low-cost speech amplifier or modalator capable of power ontputs up to 20 watts.
$\mathrm{C}_{1}, \mathrm{C}_{2}-20-\mu \mathrm{fl}$. 50 -volt electrolytic.
$\mathrm{C}_{3}-0 . \mathrm{I}-\mathrm{ufd}$. 200 .volt paper.
C_{4} - $0.01-\mu \mathrm{fd}$. 160 -volt paper .
$\mathrm{C}_{5}, \mathrm{C}_{6}-8-\mu \mathrm{fd} .450$-volt electrolytic.
$\mathrm{R}_{1}-4.7$ megolims, $1 / 2$ watt.
$R_{2}-1500$ ohms, $1 / 2$ watt.
$\mathrm{R}_{3}-1.5$ megohms, $1 / 2$ walt.
$R_{4}-0,2 \cdot 2$ megohm, $1 / 2$ watt.
$\mathrm{R}_{5}-1,0100$ ohm. $1 / 2$ watt.
$R_{6}-1$-merohm volume control.
$\mathrm{K}:-1.5010$ ohms 1 watt.
R_{8} - 2.20 ohms, 10 watts.
$\mathrm{R}_{9}-2000$ ohms, 10 watts.
$\mathrm{R}_{10}-20,000$ ohms, 25 watts.
T_{1} - Interstage audio transformer, single plate to pro. grids, ratin 3:1 ('h'hordarsinn'1-57A41).
T_{2} - Output transformer, type dependingon requirements. A multitap transformer ('I hordarson T-19:114) is shown in photos.
ply of ordinary design (Chapter Eight) may be used, since the plate current variation is relatively small. The current is approximately 120 ma . With no input signal and 145 ma , at full output. If an output of 12 or 13 watts will be sufficient, R_{9} and R_{10} may be omitted and all tubes fed directly from a " 13 " supply giving 270 volts at approximately 175 ma .

The out put transformer shown is a universal modulation type suitable for coupling into the plate circuit of a low-power r.f. amplifier (input 40 wat ts maximum for 100 -per-cent modulation) for plate modulation. For cathode modulation, the r.f. input power that can be modulated can be determined from the data in Chapter Five. The amplifier may also be used for grid-bias modulation with the transformer specified. If the unit is to be used to drive a Class B modulator, it is recommended that the Class B tubes be of the zero-bias type rather than a type requiring fixed bias. A suitable output transformer must be substituted for this purpose: data will be found in catalogues.

C. A 40-Watt Output Speech Amplifier or Modulator

The 40-watt amplifier shown in Figs 14071409 resembles in many rospects the 20 -watt amplifier just described. The first two stages are, in fact. identical in circuit and construction. To obtain the higher output, however, it is necessary to drive the 6Ifis into the gridcurrent region (Class AB2 operation). so that a driver stage capable of furnishing sufficient power is required. A pair of transformer-coupled 6.Jis in push-pull is used for this purpose, inserted between the single 6J5 stage and the push-pull 6Ltis. Decoupling is provided (R_{9} and C_{B}) to prevent motorboating because of the higher over-all gain of the amplifier.

A $6 \times 14 \times 3$-inch chassis is used for the 40 -watt amplifier. The photographs show the arrangement of parts. As in the case of the 20 -watt unit, complete shielding of the microphone input circuit is essential. The a mplifier has ample gain for crystal microphones.

Fig. 1407 - A 40-watt speech amplifice or modulator of inexpensive construction. 'Th 'he $6 J \vec{i}$ and first 6.55 are at the front, near the mieruphone gocket aind volinac witrod, rospectively. T_{1} is behind them, and the pushpull $6 J 5 s$ are at the rear of the chassis luchind $T_{1} . T_{2}$, in the center, the push-pull 61.0 , and T's follow in order to the right.

Chapter Jourteen

Fig. l.108 - Circuit diagram of the Class AB_{2} push-pull 61.6 10 -watt output speech amplifier or modulator.
$\mathrm{C}_{1}-0.1-\mu \mathrm{fd}$. 2001 -volt paper. $\mathrm{C}_{2}-0.01-\mu \mathrm{fd}$. 400 -volt paper. $\mathrm{C}_{3}, \mathrm{C}, 7-20-\mu \mathrm{fil} .50$-volt wetrolytir. $\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}-8-\mu \mathrm{fd} .450$-volt elec. trolytic.
$\mathrm{R}_{1}-4.7$ megnhms, $1 / 2$ watt. R_{2} - 1.500 ohms., $1 / 2$ watt. $\mathrm{R}_{3}-1.5$ negehm, $1 / 2$ watt. $R_{4}-0.22$ megolim, $1 / 2$ watt.

[^5](ThordarsonT-53A41).
T_{2} - Driver transformer, p.p. 6 J 5 s to 61.6 s Class AB2 ('Thordarson' (1-8.1159).
T3-Output transformer, type depending on requirements. A multitap modulation transformer ('Thordarson T-19M15) is showa.

stituted for the universal modulation transformer shown.

The power supply should have good voltage regulation, since the total " 13 " current varies from approsimately 140 ma. with no signal to 265 ma . at full output. A heavy-duty chokeinput plate supply should be used: general design data will be found in Chapter Eight. Heater requiremente are 6.3 volts at 3 am-

Fig. 1.09-Underneath the chassis of the 40 -watt speech amplifier-modutator.

This unit may be used to plate-mombates 80 watts input to an r.f. amplifier. For cathoule modulation, the input that ran be modulated will depend upon the type of operation chosen. as described in Chapter Five; with 55-per-cent plate efficiency in the r.f. stage, for instaner. the input may be of the order of 200 watls. making an allowance for the small amount of audio power taken by the grid circuit.

A high-power (lass B modulator can be driven by the unit; data on suitable modulator tubes are given later in this chapter. Zero-bias tubes should be used, because they present a nore constant load to the GL6s thatn do relattively low amplification-factor tubes which require fixed bias for Class 13 operation. A suitable Class 13 driver transformer should be sub)-

Fig. $1410-$ An all-triode speceh anıplifier with pushpull 6B4G output, for driving a Class B amplifier requiring seven watts or less on the grids. The end on construction permits mounting another similarly-constructed unit on the same rack pancl.

Fig. 1411 - Rottom virw of the all-triode speech amplifier. Wiring is simple and the whole unit is casy to construct.
peres. Bias for the 6I. 6 stage is most conveniently supplied by a 22.5 -volt "B"-battery block; a small-sized mit will be satisfactory, since no current is drawn.

An all-triode speerh amplifier 'I'riodes are preferable to tetrodes as drivers for Class B modulators
 because their lower plate resistance means better output-voltage regulation and hence less distortion under the varying load presented by the Class B grids. Where an output of 10 watts or less is needed to drive a Class B amplifier, low- μ triodes such as the $2: 13,6.13$, and $6134 G$ can be used. The amplifier shown in Figs. 1410 and 1411 uses a pair of 613.4 is in push-pull, driven by a threestage triode amplifier which provides ample gain for communications-type crystal microphones.

The circuit diagram is given in Fig. 1412. The first stage, a $6 \mathrm{Sl}^{\prime} 5$, is resistance-coupled to a 6 J 5 , which in turn is impedance-coupled to a second 6J5. The latter tube is transformercoupled to the 6B4G grids. The combination of impedance- and transformer-coupling keeps the stage gain high and restricts the frequency response to the range most useful for voice communication. The volume control is in the grid of the second stage. The cireuit is quite straightforward throughout. Bias for the 6B4Gs is obtained from the drop in a resistor (R_{10}) in series with the filament-supply centertap.

The amplifier is built on a $6 \times 14 \times 3$-inch chassis, arranged for end-mounting from a rack panel. This type of construetion uses very little panel space and permits mounting another unit such as a power supply or modulator on the same panel. In Fig. $1+10$ the tube at the left front. just above the microphone jack, is the 6sF. The first 6.5 is at the right, with the gain control on the chassis wall helow it. The coupling choke. L_{1}, is behind and between the first two tubes, and is followed, going toward the rear. by the second 6i.5. the push-pull coupling transformer, the 6 blacs, and the output transformer. The wiring underneath the chassis is shown in Fig. 1411.

The type of output transformer to use will depend upon the grid-to-grid impedance of the Class B tubes to be driven, and should have the proper turns ratio to work between that impedance and the 5000 ohms plate-to-plate required for sptimum operation of the 6blitis. The measured output from the transformer secondary is 7 watts. Power requirements of the amplifier are 3 amperes at 6.3 volts and 100 ma . at 300 volts.

Fig. 1,412 - Cireuit diagram of the all-triode speech amplifier.
$\mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}_{8}-10-\mu \mathrm{fd} .50$-volt eleetrolytic.
$\mathrm{C}_{2}-470-\mu \mu \mathrm{fl}$, mica.
$\mathrm{C}_{3}, \mathrm{C}_{9}-8$ - $\mu \mathrm{fd}$. 450 -volt electrolytic.
$\mathrm{C}_{4}, \mathrm{C}_{6}, \mathrm{C}_{7}-0.004^{-}-\mu \mathrm{fd}$. mica.
$\mathrm{R}_{1}-2.2$ megohins, $1 / 2$ watt.
$\mathrm{R}_{2}-4.00 \mathrm{nhms}, 1 / 2$ watt.
R_{3} - 0.1^{7} incgohm, $1 / 2$ watt.
$\mathrm{R}_{4}-17,(\% 0)$ ohms, $1 / 2$ watt.
R_{5} - 1 -megohm potentioneter.
R_{B} - 2900 ohms, $1 / 2$ watt.
$\mathrm{R}_{7}-0.22$ megohm, $1 / 2$ watt.
$R_{8}-1500$ ohms, $1 / 2$ watt.
$\mathrm{K}_{9}-10,000$ ohms, 2 watts.
$\mathrm{h}_{10}-1000$ ohims, 10 watts.
$\mathrm{L}_{1}-300$ henrys, 5 na., 6170 -ohme d.c. resistance (Thordarson $\mathrm{T}-37 \mathrm{C} 36$).
J_{1} - Mierophone connector (Amphenol i5-PCIM).
J_{2} - Octal socket, male (Amphenol 86-CP8).
RHC $-2.5-\mathrm{mh}$. r.f. choke.
T_{1} - Interstage transformer, single plate to p.p. grids, 3:1 ratio (Thordarson "'-58A41).
T_{2} - Variable-ratio driver transformer (UTC PA. 53AX).

TABLE I－RESISTANCE－COUPLED VOLTAGE－AMPLIFIER DATA
Data are given for a plate supply of 300 volts，departures of as much as 50 par cent from this supply voltage will not materlally change the operating conditions or the voltage gain，but the output voltage will be in proportion to the new voltage．Voltage gain is measured at 400 cycles；condenser values given are based on 100 －cycle cut－off．For increased low－frequency response，all condensers may be made larger than specified（cut－off frequency in inverse proportion to condenser values provided all are changed in the same proportion）．A variation of 10 per cent in the values given has negligible effect on the performance．

	Plate Resistor Megohms	Next－Stage Grld Resistor Megohms	Screen Resists r Megohms	Cathede Resistor Ohms	Scrsen By－pass $\mu \mathrm{fd}$ ．	Cathede By－pass $\mu \mathrm{fd}$ ．	Blocking Condenser $\mu \mathrm{fd}$ ．	$\begin{aligned} & \text { Oulput } \\ & \text { Volls } \\ & \text { (Peak)1 } \end{aligned}$	Voltage Gain ${ }^{2}$
$\begin{gathered} \text { 6C6, 6J7, 6W7 } \\ 7 C 7,57 \\ \text { (pentode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.5 \\ & 0.53 \end{aligned}$	$\begin{array}{r} 500 \\ 450 \\ 600 \\ \hline \end{array}$	$\begin{aligned} & 0.07 \\ & 0.07 \\ & 0.06 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.3 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 55 \\ & 81 \\ & 96 \\ & \hline \end{aligned}$	61 89 94
	0.25	0.25 0.5 1.0	1.18 1.18 1.45	$\begin{aligned} & 1100 \\ & 1900 \\ & 1300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.05 \end{aligned}$	5.5 5.4 5.8	$\begin{aligned} & 0.008 \\ & 0.005 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 81 \\ 104 \\ 110 \\ \hline \end{array}$	$\begin{aligned} & 104 \\ & 140 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	2.45 2.9 2.95	$\begin{aligned} & 1700 \\ & 2900 \\ & 9300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.04 \end{aligned}$	$\begin{array}{r} 4.2 \\ 4.1 \\ 4.0 \\ \hline \end{array}$	$\begin{aligned} & 0.005 \\ & 0.003 \\ & 0.0025 \end{aligned}$	$\begin{array}{r} 75 \\ 97 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 161 \\ 350 \\ 240 \\ \hline \end{array}$
$\begin{gathered} \text { 6C8G } \\ \text { (one riode } \\ \text { unit) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	二	$\begin{aligned} & 9120 \\ & 2840 \\ & 3250 \end{aligned}$	—	$\begin{aligned} & 3.93 \\ & 2.01 \\ & 1.79 \end{aligned}$	$\begin{aligned} & 0.037 \\ & 0.013 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 55 \\ & 73 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 29 \\ & 23 \\ & 25 \\ & \hline \end{aligned}$
	0.25	$\begin{aligned} & 0.55 \\ & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4750 \\ & 6100 \\ & 7100 \\ & \hline \end{aligned}$	二	$\begin{aligned} & 1.29 \\ & 0.96 \\ & 0.77 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.0065 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 64 \\ & 80 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 26 \\ & 27 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 9000 \\ 11,500 \\ 14,500 \\ \hline \end{array}$	－	$\begin{aligned} & 0.67 \\ & 0.48 \\ & 0.37 \end{aligned}$	$\begin{aligned} & 0.007 \\ & 0.004 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 67 \\ & 83 \\ & 96 \\ & \hline \end{aligned}$	$\begin{aligned} & 87 \\ & 97 \\ & 98 \\ & \hline \end{aligned}$
$\begin{gathered} 6 F 5,6 S F 5 \\ 7 B 4 \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 1300 \\ & 1800 \\ & 1700 \end{aligned}$	工	5.0 3.7 3.8	$\begin{aligned} & 0.025 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 33 \\ & 43 \\ & 48 \\ & \hline \end{aligned}$	49 49 59
	0.25	0.25 0.5 1.0	二	$\begin{aligned} & 9600 \\ & 3200 \\ & 3500 \end{aligned}$	\square	2.5 2.1 2.0	$\begin{aligned} & 0.01 \\ & 0.007 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 41 \\ & 54 \\ & 63 \\ & \hline \end{aligned}$	56 63 67
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	－	$\begin{aligned} & 4500 \\ & 5400 \\ & 6100 \end{aligned}$	二	1.5 1.8 0.93	$\begin{aligned} & 0.006 \\ & 0.004 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 50 \\ & 62 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \\ & 70 \\ & \hline \end{aligned}$
6F8G（one triode）， 6J5，6J5G， 7A4，7N7， 6SN7G（one triode）	0.05	0.05 0.1 0.25	二	$\begin{aligned} & 1020 \\ & 1970 \\ & 1500 \end{aligned}$	－	3.56 2.96 2.15	$\begin{aligned} & 0.06 \\ & 0.034 \\ & 0.012 \end{aligned}$	$\begin{aligned} & 41 \\ & 51 \\ & 60 . \end{aligned}$	13 14 14
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	\cdots	$\begin{aligned} & 1900 \\ & 9440 \\ & 2700 \\ & \hline \end{aligned}$	－	2.31 1.42 1.2	$\begin{aligned} & 0.035 \\ & 0.0185 \\ & 0.0065 \end{aligned}$	43 56 64	14 14 14
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 4590 \\ & 5770 \\ & 6950 \end{aligned}$	二	0.87 0.64 0.54	$\begin{aligned} & 0.013 \\ & 0.0075 \\ & 0.004 \end{aligned}$	46 57 64	14 14 14
$\begin{gathered} \text { 6R7, } \underset{7 \mathrm{EK}}{6 R} 7 \mathrm{G} \end{gathered}$	0.05	$\begin{aligned} & 0.05 \\ & 0.1 \\ & 0.95 \end{aligned}$	－	$\begin{aligned} & 1600 \\ & 8000 \\ & 2400 \end{aligned}$	－	2.6 2.0 1.6	$\begin{aligned} & 0.055 \\ & 0.03 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 50 \\ & 62 \\ & 71 \end{aligned}$	$\begin{array}{r} 9 \\ 9 \\ 10 \end{array}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{aligned} & 9900 \\ & 3800 \\ & 4400 \end{aligned}$	－	1.4 1.1 1.0	$\begin{aligned} & 0.03 \\ & 0.015 \\ & 0.007 \end{aligned}$	52 68 71	10 10 10
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	二－	$\begin{array}{r} 6300 \\ 8400 \\ 10,600 \\ \hline \end{array}$	二	0.7 0.5 0.44	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.004 \end{aligned}$	54 69 74	10 11 11
$\begin{gathered} \text { 6SC7 } \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \\ & \hline \end{aligned}$		$\begin{array}{r} 750 \\ 930 \\ 1040 \end{array}$	二	－	$\begin{aligned} & 0.033 \\ & 0.014 \\ & 0.007 \\ & \hline \end{aligned}$	35 50 54	29 34 36
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	二	$\begin{aligned} & 1400 \\ & 1680 \\ & 1840 \\ & \hline \end{aligned}$	\square	\square	$\begin{aligned} & 0.012 \\ & 0.006 \\ & 0.003 \end{aligned}$	45 55 64	39 48 45
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	二	2330 9980 3280	二	\square	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \end{aligned}$	50 62 78	45 48 49
6SJ7	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.37 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 500 \\ & 530 \\ & 590 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.09 \\ & 0.09 \end{aligned}$	11.6 10.9 9.9	0.019 0.016 0.007	$\begin{array}{r} 79 \\ 96 \\ 101 \\ \hline \end{array}$	$\begin{array}{r} 67 \\ 98 \\ 104 \end{array}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 1.10 \\ & 1.18 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 850 \\ & 860 \\ & 910 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.06 \\ & 0.06 \end{aligned}$	8.5 7.4 6.9	$\begin{aligned} & 0.011 \\ & 0.004 \\ & 0.003 \end{aligned}$	79 88 98	139 167 185
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	2.0 2.8 2.5	$\begin{aligned} & 1300 \\ & 1410 \\ & 153.0 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.05 \\ & 0.04 \end{aligned}$	6.0 5.8 5.8	0.004 0.002 0.0015	64 79 89	$\begin{aligned} & 200 \\ & 238 \\ & 263 \end{aligned}$
$\begin{aligned} & \text { 6SQ7, 6B6G, } \\ & 786,9 A 6,75 \end{aligned}$	0.1	$\begin{aligned} & \hline 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{aligned} & 1900 \\ & 2800 \\ & 2300 \end{aligned}$	二	4.0 3.5 3.0	$\begin{aligned} & \hline 0.03 \\ & 0.015 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 31 \\ & 41 \\ & 45 \end{aligned}$	31 39 49
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 3300 \\ & 3900 \\ & 4200 \end{aligned}$	二	2.7 2.0 1.8	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 42 \\ & 51 \\ & 60 \\ & \hline \end{aligned}$	48 53 56
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\bar{\square}$	$\begin{aligned} & 5300 \\ & 6100 \\ & 7000 \end{aligned}$	二	$\begin{aligned} & 1.6 \\ & 1.3 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.007 \\ & 0.004 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 47 \\ & 69 \\ & 67 \end{aligned}$	58 60 63

[^6]TABLE II－CLASS－B MODULATOR DATA

Class－B Tubes（2）	Fil． Volts	Plate Volts	Grid Volts App．	Peak A．F． Grid－to－Grid Voltage	Zero－Sig．${ }^{1}$ Plate Current Ma．	Max．－Sig．${ }^{1}$ Plate Current $\mathrm{Ma},{ }^{2}$	Load Res， Plate－to－Plate Ohms	Max．－Sig． Driving Powet Watts ${ }^{2}$	Max．－Sig．${ }^{1}$ Power Output Watls ${ }^{3}$
HY65	6.3	450	\cdots	\cdots	\cdots	125	－	0.4	34
HY3124 ${ }^{\text {b }}$	6.3	300	0	104	20	100	5，000	1.4	18
$815{ }^{6}$	6.3	400 500	$\begin{array}{r}-15 \\ -15 \\ \hline\end{array}$	60 60	29 20	150 150	$\begin{aligned} & 8,000 \\ & 6,200 \\ & \hline \end{aligned}$	0.36 0.36	42
HY6L6GX：	6.3	400 500 800	$\begin{array}{r}-25 \\ -25 \\ \hline\end{array}$	$\begin{aligned} & 80 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{r} 230 \\ 230 \\ \hline \end{array}$	$\begin{array}{r} 3,800 \\ 4,550 \\ \hline \end{array}$	0.35 0.6	60 75
TZ20	7.5	800	0	160	40	136	12，000	1.8	70
HY61／807	6.3	400	－25	80	100	230	3，800	0.35	60
HY095：	0.3	300	－25	106	60	150	4，000	0.25	30
HY30Z	6.3	$\begin{aligned} & 600 \\ & 750 \\ & 850 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 171 \\ & 167 \\ & 171 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \\ & 29 \\ & 98 \\ & \hline \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \\ & 180 \end{aligned}$	$\begin{array}{r} 6,000 \\ 8,000 \\ 10,000 \\ \hline \end{array}$	No．le 9 ＂1 14	$\begin{array}{r} 75 \\ 95 \\ 110 \end{array}$
80710	6.3	400	－25	78	100	240	3，200	0.2	55
HK24	6.3	1000 1250 500	－29	948 956 135	30 24	150 136	$\begin{aligned} & 15,000 \\ & 21,800 \\ & \hline \end{aligned}$	4.5	105 120
809	6.3	$\begin{array}{r} 500 \\ 750 \\ 1000 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ &- 4.5 \\ &-10 \end{aligned}$	$\begin{aligned} & 135 \\ & 140 \\ & 156 \\ & \hline \end{aligned}$	40 40 40	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & \hline \end{aligned}$	$\begin{array}{r} 5,800 \\ 8,400 \\ 11,600 \\ \hline \end{array}$	2.4 2.4 3.4	$\begin{array}{r} 60 \\ 100 \\ 145 \\ \hline \end{array}$
HY40Z	7.5	$\begin{array}{r} 750 \\ 850 \\ 1000 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 171 \\ 185 \\ 185 \\ \hline \end{array}$	$\begin{aligned} & 39 \\ & 40 \\ & 45 \\ & \hline \end{aligned}$	$\begin{array}{r} 925 \\ 950 \\ 950 \\ \hline \end{array}$	$\begin{aligned} & 6,000 \\ & 7,000 \\ & 9,000 \end{aligned}$	Note 9 ＂1	110 155 185
811	6.3	1250	$\begin{array}{r}0 \\ -\quad 9 \\ \hline\end{array}$	140 160	48 20	200 200	15,000 18,000	3.8 4.8	175 925
35 T	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1950 \\ & 1500 \end{aligned}$	-98 -30 -40	－	－	－	$\begin{array}{r} 7,200 \\ 9,600 \\ 19,800 \\ \hline \end{array}$	工	$\begin{array}{r} 150 \\ 150 \\ 900 \\ 230 \\ \hline \end{array}$
TZ40	7.5	$\begin{aligned} & 1000 \\ & 1250 \\ & 1500 \\ & \hline \end{aligned}$	$\begin{array}{r} 0 \\ -\quad 4.5 \\ -\quad 9 \end{array}$	$\begin{aligned} & 220 \\ & 269 \\ & 265 \\ & \hline \end{aligned}$	\bar{Z}	280 280 250	$\begin{array}{r} 7,350 \\ 10,000 \\ 12,000 \end{array}$	5.5 6.0 6.0	175 295 250
203－A	10	1000 1250 1000	$\begin{array}{r}-35 \\ -45 \\ \hline-77\end{array}$	310 330	26 26	320 320	6,900 9,000	110	200 260
211	10	1000 1250 1000	$\begin{array}{r}-77 \\ -100 \\ \hline\end{array}$	380 410	20 80	320 390	6,900 9,000	7.5 8.0	200 260
838	10	$\begin{array}{r}1000 \\ 1250 \\ \hline 1500\end{array}$	0	200 200	$\begin{aligned} & 106 \\ & 148 \\ & \hline \end{aligned}$	$\begin{aligned} & 320 \\ & 320 \end{aligned}$	6,900 9,000	7.0	200 260
HK54 ${ }^{\text { }}$	5.0	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \end{aligned}$	-45 -70 -85	300 360 360	40 24 20	198 180 150	$\begin{aligned} & 16,800 \\ & 36,000 \\ & 40,000 \end{aligned}$	5.0 6.0 5.0	200 260 275
HY51Z	7.5	$\begin{array}{r} 850 \\ 1000 \\ 1250 \\ \hline \end{array}$	0 0 0	$\begin{aligned} & 148 \\ & 170 \\ & 155 \end{aligned}$	48 60 90	$\begin{aligned} & 300 \\ & 350 \\ & 300 \\ & \hline \end{aligned}$	$\begin{array}{r} 5,000 \\ 6,000 \\ 10,000 \\ \hline \end{array}$	Nole 9 ＂	160 280 285
203－Z	10	$\begin{array}{r} 1000 \\ 1950 \\ \hline \end{array}$	$\begin{array}{r} 0 \\ -\quad 4.5 \\ \hline \end{array}$	206 215	50 60	$\begin{array}{r} 350 \\ 350 \end{array}$	$\begin{aligned} & 6,900 \\ & 8,000 \end{aligned}$	6.5 6.75	230 300
Z8120	10	$\begin{aligned} & -1000 \\ & 1250 \\ & 1500 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ -9 \end{array}$	190 180 196	70 95 60	310 300 296	$\begin{array}{r} 6,900 \\ 9,000 \\ 11,200 \end{array}$	5.0 4.0 5.0	200 245 300
8005	10	$\begin{aligned} & 1250 \\ & 1500 \\ & \hline \end{aligned}$	$\begin{array}{r}-55 \\ -80 \\ \hline\end{array}$	290 310	40 40	320 310	8,000 $\mathbf{2 , 5 0 0}$	4.0 4.0	250 300
HF100	$\begin{aligned} & 10 \\ & \text { to } 11 \end{aligned}$	1500 1750 1950	$\begin{array}{r}-52 \\ -62 \\ \hline 0\end{array}$	964 394 935	50 40	$\begin{array}{r}270 \\ 270 \\ \hline\end{array}$	$\begin{aligned} & 12,000 \\ & 16,000 \\ & \hline \end{aligned}$	2.0 9.0	260 350
$\begin{aligned} & 805 \\ & \text { RK5 } \end{aligned}$	10	$\begin{array}{r} 1250 \\ 1500 \\ \hline \end{array}$	$\begin{array}{r}0 \\ -16 \\ \hline\end{array}$	$\begin{array}{r}235 \\ 280 \\ \hline\end{array}$	$\begin{array}{r} 148 \\ 84 \\ \hline \end{array}$	400 400	$\begin{array}{r} 6,700 \\ 8,200 \end{array}$	6.0 7.0	300 370
751	5.0	$\begin{aligned} & 1000 \\ & 1500 \\ & 2000 \\ & \hline \end{aligned}$	二	二	二	二	$\begin{array}{r} 6,800 \\ 10,000 \\ 12,500 \\ \hline \end{array}$	\square	200 300 400
1007H	$\begin{aligned} & 5.0 \\ & \text { i0 } \\ & 5.1 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2500 \\ & 3000 \end{aligned}$	Bias adj	usted for maxin under no－sl Zero bias up	num rated plate snal condition to 1250 r ．pla	dissipation －	$\begin{aligned} & 16,000 \\ & 92,000 \\ & 30,000 \\ & \hline \end{aligned}$	May be diliven by pushupull 6L6s	380 460 500
HD203－A	10	$\begin{array}{r} 1500 \\ 1750 \\ \hline \end{array}$	$\begin{array}{r}-40 \\ -67 \\ \hline\end{array}$	－	36 36	$\begin{array}{r} 485 \\ 425 \\ \hline \end{array}$	$\begin{aligned} & 8,000 \\ & 9,000 \\ & \hline \end{aligned}$	Note 8	400 500
HK254	5.0	$\begin{aligned} & 2000 \\ & 2500 \\ & 3000 \\ & \hline \end{aligned}$	$\begin{aligned} & -65 \\ & -80 \\ & -100 \\ & \hline \end{aligned}$	$\begin{array}{r} 400 \\ 420 \\ 456 \\ \hline \end{array}$	50 50 40	260 248 240	$\begin{aligned} & 16,000 \\ & 29,000 \\ & 30,000 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & 7.0 \end{aligned}$	328 418 520
810	10	1500	－30	345	80	500	6，600	12	510

[^7]

Fig. 1113 - Class 13 modulator circuit diagrams. Tubes and circuit considerations are discussed in the text.

C Class-B Modulators

Class 13 modulator circuits are practically identical no matter what the power output of the modulator. The diagrams of Fig. 1413 therefore will serve for any modulator of this type that the amateur may elect to buikd. The triode cireuit is given at A and the circuit for tetrodes at 13. When small tubes with in-directly-heated cathodes are used, the cathode should be connected to ground.

Design ennsiderations for Class B stages are discussed in Chapter Five, and data on the performance of various tubes suitable for the purpose are given in the accompanying tables. Once the requisite audio power output has been determined and a pair of tubes capable of giving that output selected, an output transformer should be secured which will permit matching the rated modulator load impedance to the modulating impedance of the r.f. amplifier. Similarly, a driver transformer should be selected which will properly couple the driver stage to the Class 13 grids.
The plate power supply for the modulator should have good voltage regulation and must be well filtered. It is particularly important, in the case of a tetrode Class B stage, that the screen-voltage powersupply source have excellent regulation, to prevent distortion. The sereen voltage should be set as exactly as possible to the recommended value for the tube.

In estimating the output of the modulator, it should be remembered that the figures given in the tables are for the tube output only, and do not include outputtransformer losses. The efficiency of the output transformer will vary with its construction. and may be assumed to be in the vicinity of 80 per cent for the less-expensive units and somewhat higher for higher-priced transformers. To he adequate for modulating the transmitter, therefore. the modulator shoukd have a theoretical power capability about 25 -per-cent greater than the actual power needed for modulation.

The input transformer, T_{1}, may couple directly bet ween the driver tube and the modulator grids or may be designed to work from a low-impedance (200 - or 500 -ohm) line. In the latter case, a tube-to-line output transformer must be used at the output of the driver stage. This type of coupling is recommended only

Fip, 1.f7.f-d Class B modulator using 811s or similar tubes (right-hand unit) panelmonnted with its associated speech amplifier. The latter is the all-triode amplifier shown in Fif. 1410. The Class B output transformer is mounted at the panel end of the ehassis for good weight distribution. 'The transformer at the rear is the filament transformer for the Class B tubes.

MVodutation Squipment
 321

 ment for low- and medium-power (J_{a} - -B B
 Fen meal follown the typial circuit diagrams given in tre. 11 is.

When the driver must be al a eomsiderable: distance from the modulator. sine the sereond transformer not only introduces addiaiomal losses but also further impairs the voltage regulation.

The bias soure for the modulator must have very low resistamoo batteries are the most suitable source. In cases where the voltare values are correot, regulator tubes suth as the V゙12-75-30, V1R-10,-30. cte... mity be contoeted arross a tap on an a.c.-operated bias supply to hold the hits voltage steady under griel-current conditions. Gemorally, howerer, zero-biths modulator tubes are proforable not only heratase no bias supply is required but also beratuse the loading on the driver stage is less variable amd consequently distortion in the driser is mduced.

Condonser (' 1 in these diagrams will give a "fone-rontrol" rffeet and filter out highfrequency sidebamd: (splatter) eamsed hy distortion in the modulator or preereding speedeamplifier stages. Values in the meighborhood of 0.002 to 0.005 pid. are sulahle. Its voltage rating should be adeduate for the peak voltage across the transformer seeondary. The plate by-pass condenser in the modulated amplifier will serve the sumie purpose.

The photographo illustrate difforent typers of ronstruction which may be used for Clats: B modulators. The achat phacement of parts in filling the requirements of any given unit is not critical.

C. Increasing Modulation Effectiveness

In 'phone tramsmission communteation is eariod on by means of the modulation sidebands, not the ref. earrier. For matimum effectivencss, therefore. the sidebath power should be as high as posishle. IIowever, modulation in excess of the capability of the tramsmiter lead: to overmodulation "sphat ter," or spurious sidebands lying outside the nomal communiention bandwidth. Besides catwing unnecessary intorforence, overmodutation is contrary fo the FCC regulations governing amat teur phone operation.

Methoels for increasing the offertiveness of the 'phone teransmiter within the limits of mondulation rapability include restrieting the audio-frequency response to those frequencies that contribute most to intelligibility. wise of automatic gatn control in the spereh system, and premmblatation clipping of peaks in the voice waveform.

Fis. 1.416 - A dassis arrankement for a hizher-power Cits:- 13 motulator. Thim unit hai= the filament transfurmer for the tubes monented on the chas-it. Where the input tran-umer is influderl with the wereh ampliber. lese cha-is - bare wild be meeded. "The tubere are blawd nar the war, where the wo. tilation i- gome. 'Tha* plate milliammeter is pros ided with a -mall pathe over the allinating
 dertaily. A l'rostwond patuel was used for thin menlubator: with a mintal panel, the meler whould be momital berlind ylase on a will-in. sulated monnt the meler insulation is not in. tended for whatage abowe a few hundred) or comered in the filament werter-tap tather than in the lizhh-voltage leatd.

Fig. 1417-A tuncd circmit in the audio amplifier will accentuate the freguencies most nseful for voire transmission. This cirenit is best adapted to use with a triode amplifier in the preceding stage, hut can be used with pentodes if a more "peaked" responsc is desired. Values are discussed in the text.

Restricting frequency response - Most of the intelligibility in speech is contained in the frequency range from about. 500 to 3000 cycles per second. On the other hand, the larger part of the powe in specech, especially in male voices, is: in the frequencies below 500 cycles. With ordinary flat-frequency amplification, therefore, a large part of the modulator power output is devoted to reproducing frequencirs that do not contribute materially to understandable speech. By attenuating the frequency response below 400 or 500 cerles the gain can be increased for the higher fremencies without overloading the modulator, thereby considerably inere:sing the effertivencss of the transmitter for communication purposes.

Fig. 1417 shows a simple tuned circuit that can be installed between two speech-amplifier
stages to restrict the frequeney respoifse to the most useful frequencies. The $\dot{L} C$ circuit should be adjusted to resonate at approximately 1000 to 1500 eycles. Representative values would be 10 henrys and $0.001 \mu \mathrm{fol}$. The resoitant frequency can be adjusted either by chang!ng the capacitance of the condenser or by varying the indurtance of the coil by varying the width of the air-gap in the core.
In an ordinatry rexistance-coupled amplifier, the high frequencies can be attenuated by shunting a capacitance from plate to ground or from grid to ground - the common "tonecontrol" circuit ($\$ 7-5$). Low-frequency response can be reduced hy using a small eonpling condenser or low value of grid resistor. If the product of the gride eoupling-condenser capacitance (in microfitrals) hy the grid-leak resistance (in megohmsis) is made equal to about 0.001 the response will drop off considerably below about 500 excles.

Folume compression - It is highly desirable to maintain the modulation at as ligh a level as possible without going into the overmodulation region. Usually the modulation varies over at considerable range as the operator raises or lowers his voice, moves toward or away from the microphone, and so on. If automatic gain eontrol or "volume compression" is incorporated in the spereh amplifier the g:im may be set at a value that gives full moduntion when talking at a low level and

Fig. 1418-Cirruit diagram of the Class-A 243 volume-rompression spereh amplifirr.

[^8]

Fif. 1419 - Inow-level full-wave elipter system. The gain control h_{1} is not recuired if one of the preceding stages has a gain control.
$\mathrm{C}_{1}-10 . \mu \mathrm{fi}$. 25 -wolt electrolytic.

$\mathrm{C}_{4}-25-\mu \mathrm{ffi} .2 .5$-volt electrolytic.
$\mathrm{C}_{5}, \mathrm{C}_{0}-0.1023 \mu \mathrm{fl},{ }_{2} \pm \%$.
$\mathrm{C}_{7}, \mathrm{C}_{8}-0.07 \mu \mathrm{fl},, \pm .5 \%$.
$\mathrm{C}_{9}-0.08 \mu \mathrm{fd} ., \pm 5 \%$.
R_{1} - $0 . \mathrm{i}$-mier. pot., a.f. taper.
$1 \mathrm{R}_{2}$ - 10000 ohms, I wratt.
$\mathrm{K}_{3}-0.15$ megohm, 1 watt.
$\mathrm{R}_{4}-0.22$ megolm, 1 watt.
$\mathrm{I}_{\mathrm{s}}-0.17$ megohm, 1 watt.
the output then will be held at approximately the 100-per-cent modulation level when louder soumds strike the microphone. Automatic gain control is simple in principle; some of the audio output is rectified and filtered to produece a d.e. voltage that varies with the speech amplitude. and this voltage is used to bias a tube in the corly spererh-amplifier stages so that the louder the sound the greater the reduction in ovor-all gsin.

Fig. 1418 is the rircuit diagram of a speceh amplifier with volume compression, suitable for working from a erystal mirrophone and having a power output (6 watts or more, depencting upon the effiriency of the output transformer) sulficient to drive a Class B modulator to an output of about 250 watts. The automatie gain-eontrol cireuit uses a separate amplifier and reetifier combined in one tube, a 68(e7. The reetified output of this circuit is filtered and applied to the $\mathcal{N o} .1$ and 3 grids of a pentagrid amplifier tube, thereby varying its gain in inverse proportion to the signal strength. With proper adjustment, an average increase in modulation level of about 7. db. ann be menurarl withnut excerling 100-per-cent modulation on peaks.

The amplifier proper consists of a 6 J 7 first stage followed by a 6 L 7 amplifier-compressor. The 2 A 3 grids are driven by a 6 N 7 self-balaneing phase inverter. The operation of the 2.13 s is purely Class A, without grid current.

The amount of compression is controlled by the potentiometer, h_{20}, in the grid circuit of the 6SQ7. A switeh, s_{1}, is provided to shortcircuit the rectificd output of the compressor when normal amplification is required.

Adjustment of the compressor control is rather critical. First set R_{20} at zero and adjust the gain control, R_{f}, for full modulation with the particular microphone used. Then advance the compressor control until the ampli-
$1 \mathrm{k},-0.22$ megohm, 1 watt.
$\mathrm{IR}_{7}-390$ ohuns, 2 watts.
$\mathrm{H}_{\mathrm{s}}-1000 \mathrm{ohms},=10 \%, 5$ watts.
$\mathrm{H}_{9}-1000$-ohm pot., a.f. taper, $\pm 10 \%$ (check with ace
curate ohmmeter).
$\mathrm{L}_{1}-30-\mathrm{mh}$. iron-core choke.
$\mathrm{I}_{2}, \mathrm{~L}_{3}-80$-mli. iron-eore clioke.
$\mathrm{L}_{4}-30 \cdot \mathrm{mh}$. iron ecore choke.
$\mathrm{B}_{1}, \mathrm{~B}_{2}-7$! ${ }^{2}$-volt "C" hattery.
' T_{1} - Single-plate-to-p.p..grids, 2:1 or 3:1 ratio.
fier just "cuts off" (output decreasing to a low value) on peaks; when this point is reached, back off the compressor control until the cutoff effect is gone but an obvious decrease in gain follows each peak.

Because of the necessity for filtering out the audio-frequency component in the rectifier output, there will be a slight delay (amounting to a fraction of a second) before the decrease in gain
"catches up" with the peak. This is caused by the time constant of the circuit, and so is unavoidable.

When a satisfactory setting is secured, as . indicated by good speech quality with a definite reduction in gain on peaks, the gain control, P_{6}, should be advanced to give full output with normil operation. Too much volume compression, indicated loy the cut-off effert following each peak, is definitely undesirable, and the object of adjustment of the compressor control should be to use as much compression as possible without danger of overcompression.

Clipter circuit - Sideband power can be greatly increased by cutting off those componerts in the speech wave that have high peak but low arerage amplitude. For distortionless amplification the presence of such peaks requires considerable power capability on the part of the modulator, but this capability cannot be utilized because the ratio of peak to average amplitude is high. Cutting off the peaks decreases this ratio to such an extent that much more effective communication is possible, at some sacrifice in naturalness. The intelligibility is greatly improved when the signal is weak at the receiving station because the greater sideband power "cuts through" noise and interference. As much as 25 db . of relipping is advantageous under such conditions.

The clipping must be done in the speech

Fig. 1.120 - "Builling ont" the modulation transfarmer to form a low-pass lifter to wht off high fremuenem re-
 of enndensers C_{1} and C_{2} must be determined by trial as explained in the tuvt. Mira condensers penerally are required in vicw of the audio voltages present across the trimsformer windings. Capaeitances from 0.001 to 0.006 afd. usually are in the proper range.
amplifier and the elipped output must be passed through a filter 10 eliminate the highfrequency harmonies that result from clipping. The filcer should be of the low-pass type designed to have a cut-off frequency in the vicinity of 3000 to 4000 cycles.
liig. 1419 shows a premodulation clippingr and filter "ircuit, or "elipter." that may be insorted botween two stages in any ordinary spereh amplifier at a point where the level is about 6 volts peak. At this level the elipter will provide about $2 ; \mathrm{i}$ ub, of elipping at the maximum setting. It consists of a 6.5 j amplifier 1 ramsformer-coupled to a pair of oppositelycomnected diodes ($6 . \begin{gathered}\text { (I,i) }) ~ w h i c h ~ s h o r t-c i r c u i t ~\end{gathered}$ the output. of the 6 J 5 above a predetermined lovel. Both positive and nowative poriks are clipped. The resultant signal is fed to the srid of a 6 V amplifior and thence through a dowpatss filteer consisting of $L_{1}, L_{2}, L_{3}, L_{4}, C_{5}, C_{6}$, ${ }^{\circ} ; i_{i} r^{\prime}$ and C_{9}. The output at R_{9} is abumt 4 volts pats for all degrees of elipping. The filtor shown has a cut-off frequency of ap)proximataly 4000 cyches.
linder eonditions of maximum clipping, the poak vollage across the secondary of T_{1} will reach about 200 volts. Ahusky interstage transformer with a well-clamped eore is neressary in order to a void aroustical lamination chatter.
'lhe shment diode elipper shown has: a negligible time constant and holds the perik output voltage to a neqrigible rise as clipping is increased from threshold to 25 d . It is importint that leads between R_{4}. R_{5}, R_{6}, the (iAL L 0 . and the conten grid of the wio be kept short and not cabled with other leads or run tigatiset the chassis, in order to minimize the time constint of the chopper circuit.

The filter illustrated was designed to nse standard valuss of esmamerially-available chokes. The filter capatitance values (an be:t he ubtained hy cheoking with an acourate: capateitance moler or bridge, paralleling f.wo or more capacitors to get the desired value when nercssary. Tubular paper eapacitors have sufficiently high (Q for the purpose, and the better grades will in found to run within 5 per cent of their marked values.

To take full advantage of the elipping
feature the transmitter must be capable of 100-per-cent sime-ware mululation with low distortion. To adjust the system, turn the gain eontrol (R_{1} or other preamplifier control) full on and the clipping level control, R_{5}. full off. Then. using ordinary speech, advance R_{0} until the transmitter shows signs of being modulated at a low level. Listoning on a phone monitor or the station receiver, adjust R_{1} to the highest setting that gives good intelligibility.

Now alvance R_{9} to a position just below the point where splatter is heard when the station receiver dassuming it is a stuperhet with antemmaterminals shorted to ground) is tumed just off the signal. Have another station. proferably mearbs. check for splatter just to be sure. Potentionetor R_{n} then noed not be touchod unless the adjustmonts to the modulated r.l. stage, particularly loading, are altered apprectiably:

If an uscilloseope is available it may be used to check the waveform out of the modulator to asecertain whether the tops of the elipped waves are flat. It may also be used to check the modulation cmelope of the r.f. carrier and determine whether the negative peaks are being clipped in the Class (' stage (negative modulation in excess of 100 per cent). The latter condition is the worst, offender so far as splatter is concerned, particularly with plate moselulation. If the condition exists, it will be neesessary to bate off on R_{9} until it is corrected. Fur further delails see article by W. W. Smith in Fobruary. 1946. 2, TT.

Reduction of high-frequency sidebands İ ven though means may be incorporated in the spererle amplifier to atternuate frequencies above those necessary for intelligible speech. it is still possible for high-frequeney sidebands to be radiated if distortion oceurs in the modulator, or if the transmiter is overmodulated. High frequencies arising as the result of modnlator distortion can be attemuated by 1.he eirenit arrangement shown in Fig. 1420. lhe condensers across the primary and secondary act in eonjunction with the leakage reactance of the transformer windings to form a low-pans filtor having a eut-off frequency determined by the capacitance and the leakage inductance. since the latter will vary with different trameformers it will be necessary to donermine the proper values of capacitane by frial. The voltage ratings of the condensers should be at least as high as the d.c. plate voltage applied to the tube or tubes with which the trinsformer winding is associated.

The condenser values ran be foumd with the aid of an andio-liequency oscilator and omput-voltage measuring device such as a rapperoxide-rootificr voltmoter. For test purposes the audio-frectuency input voltage can be kept low so that the noter range will not be excorded. With the ('lass C r.f. amplifier diseonnected, the meter should be connected across the Class 13 outpot-transformer sec-

Fig. $7.12 l-\mathrm{A}$ nequtive-prak overmmalation indicator. Milliammetra N. 1 may he any low ratige in-trmment (up (0)- (0) mat or ses). "The inverse peak-voltage rating of the redifiar. I, munt lue at leatet edual to the d.r. voltage applied to the plate of the r.f. amplifior. The alternative moter-return cirenit can he naw to indieate modulation in exeess of any desired value below 100 per cent.
ondary and the audio oscillator should be comnereted in plate of the misrophoner. (lf the oscillitor output vollage is too high to permit this. if maly he rut in at a later spereh stara.) With comsiant input voltage vary the frequener while treing diferent values of reaparitance ateross tho prinatry and secondary until values are found that rexult in a ponnonnced drop in onfput abose about 3000 ereme The same metar maty be used for chereking bouh imput and ontput voltages if it is of the multirange type and the oscillator output is applied to a speredtamplifier stage where a leved of a few volts is permissible.

The spuriogls sidobstmets set up by oversmodulation will not be proventod by the *rstem above. 'lhe only way to provent overmodulation is to monifor the tramsmissions contimonsly. with a devier such ats a simple cathoekr-as osrilloseope (by firr the most satisfartory fyo of 'phone moniter' we the
 Overmondalation on nemative peaks is more likely to resubt in spumbus sidebonnds than
positive overmodulation beeause of the sharp hroak that oceurs when the carrior is suddenly cot off and on. The milliammoter in the negatire-peak indicator of Fig. 1421 will show a reading on rabh overmodulation park that rarries the instantaneous voltage on the plate of tha ('lass (; modulated amplifier "below zoro" - that $i s$, merative. 'The rectifier, V, cannot eondurt so long as the nogative half cyele of audio output voltage is less than the d.e. voltare applied to the r.f. tube 'The reetifier tube must be of a type suitable for the ('lass (' plate voltarr cmployed. and its filament transformer must have similarly-rated insulations.

The effertiveness of the monitor is improved if it indicaters at somewhat less than loon-porcont modulation, as it witl then warn of the clangur of ovirmodalation belore it actually oceours. It aan be adjustod to indieate at any desired modulation prerontage by making the metor return to a point on the power-supply bleoder as shown in the altermative diagram. The ber-pass comdensor, (', insures that the full ambio voltare appears acrose the indicator cireuit. The merlulation pereentatge at whirh the system indicates is determined by the ratio of the d.c. soltage between the incter titp and the positive terminal to the totial d.e. voltarge.

C. Frequency Modulation

At the present time the eommon method of frequency modulation is to vary the frequency of the controlling oseillator in the transint ter hy moans of a roactance modnlator. This type of modnlator maty be applicel either to a selfcontrolled of crystal-eontrolled oscillator. In the former case it am produre fairly wideband frequeney modulation in the v.h.f. remion, and of course may be desimnod so that it gives narrow-hand f.m. (in which the desiation ratio is limited for about 0.5. thus giving an f.m.

 It romtains a speceh amplifier and power sup-
 The oseilator cosil is in the ronme shiedel catn in the renter. "Thee coil in the left forecromend is
 and modulatur atre at the right, with the mower suphly along the rear. $1 \div \times 11$-inch $;$ hameis is land

Fig. 1423 - Circuit diarram of the f.m. control unit for use with mormally erystal-controlled v.h.f. transmitters.
C_{1} - 150- $\mu \mathrm{fl}$. silvered (mica for C 21 - Watl 150-volt 8 - $\mu \mathrm{fl}$. electro-
 sF-100).
$\mathrm{C}_{3}-50-\mu \mu \mathrm{fi}$. variable (II ammarhand H1-50).
$\mathrm{C}_{4}-100-\mu \mu \mathrm{fl}$. mica.
C5, Ci2-2 $2=0$ - $\mu \mathrm{fl}$. mica.
($: 6-0 .(0) 1-\mu \mathrm{fl}$. mica.
$\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{13}, \mathrm{C}_{15}, \mathrm{C}_{19}, \mathrm{C}_{20}-$ $0.01-\mu \mathrm{fl}$. paper.
$\mathrm{C}_{11}-3-310-\mu \mu \mathrm{fal}$. micat trimmer.
$\mathrm{C}_{14}, \mathrm{C}_{22}, \mathrm{C}_{23}-8-\mu \mathrm{fd} .4,50-\mathrm{volt}$ electrolytic.
$\mathrm{C}_{16}, \mathrm{C}_{17}-10$ - $\mu \mathrm{fl}$. 2:-volt electro-
$\mathrm{C}_{18}-0.1-\mu \mathrm{fd} .200$-velt paper.
(.21-M lyitic.
$1 \Omega_{1}$ - 0.1 merohm, 1 watt. $\mathrm{R}_{2}-2,200$ ohms, 1 watt. $R_{3}, R_{4}, R_{5}, R_{11}-47,0100$ olums, 1 watt.
$\mathrm{R}_{6,} \mathrm{H}_{4}-3310$ ohums, $1 / 2$ watt.
$R=$, Bin- 0.17 mickohn, $1 / 2$ watt,
R: - 33.300 whms, I watt.
$11_{12}-4.7$ merohms, $1 / 2$ wat1.
11_{13} - 10000 ohms, $1 / 2$ watt.

11_{16} - $0 . \overline{\mathrm{S}}$ masolin volume control.
$K_{1:}$ - 2200 whms, $1 / 2$ watt.
$R_{15}-4,000$ ohms, $3 / 2$ watt.
R_{20} - 0.1 .5 merohm. I watt.
$\mathrm{L}_{1}-7$ Mc: 11 turn No. 18 e., longth ${ }_{4}^{6}$ inch, l-inch diameter, tapped 3 rd turn from pround.
$\mathrm{L}_{2}-14$ Nc.: io turns No. 18 wire on 1 ! in mh liameter form (Hammarlund SWle-4).
 L_{3} - Filerer choke, 10 henrys, 40
RFC.-2.inll. r.f. dunke.

 volts at 2 ampres: 5 volts at 2 amperes. (Thordarson T-13K11).
signal that oceupies substantially mo more channel width than an a.m. signal) on the 28-Me. hamd. With a erystal ascillator, the
reactance morlulator is capable of giving sumficient deviation for narmw-hand f.m. at 28 Mr.

The unit shown in Figs. 1422. 1423 and 1424 is a complete VFO-modulator designed to work into a normally erystab-controlled trathimither using cither 7 -or 14 - Me. (rystals. The r.f. wint put of the unit is internded to be ford through a link to a tumed-ribcuit coil wound on a coil form which substitutes for the erystal holder in the reystal oscillator. This tumed eireuit is resonant at the same frequency ats the wulput tank of the rontrol tunit. Ler's in Fig. 1.123 and can, in fact, bo idontical in constrution.

Fip. 1.12.4-In this hotom view of the f.m. modulator miti, the r.f. weetion is at the right and the audio at the left. The oscillator socket is to the right of the coil socket in the center.

Modulation Equipment

Fig. 1425 - An f.in. frequency-control and modulator unit using reactance modulation of a crystal oseillator.

In lamsmitters using trivele uscillators, or pentode crystal oscillators in whirh the tubses are not well spreened. it is advisable to use the crystal oscillator tube as a doubler rather than as a straight amplifier. If the transmitter usess arystal oscillator operating in the vicinity of 14 Me., for example, the ontput of the unit may be on 7 Me. and the grid circuit of the ex(rystal tube also tunced to 7 Mc. This will avoid difficulty with self-oscillation in the ex-crystal stage. With a pentode osidlator it is possible to work straight through, provided the grid tank substituted for the crystal is tuned woll on the high-frequency side of resonamee, but this procedure is not andvisable since it may make the modulation nonlinear. It is rather important that all circuits in the transmitter be tuned "on the nose" for best performance. Of course, if the erystal tube is a well-seremed transmitting type it can be used as a straight amplifier.

Fig. 1.126 - Circuit diagram of the narrow-band modulator unit with revetalecontrolled oreillator.
$\mathrm{C}_{\mathrm{t}}, \mathrm{C}_{5}, \mathrm{C}_{\mathrm{s}}-5-\mu \mathrm{fd} .50$-wht electrolytic.
$\mathrm{Ci}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{\mathrm{f}}, \mathrm{C}_{9}-0.01-\mu \mathrm{fl}$. paper.
$\mathrm{C}_{7}-5.5-\mu \mu \mathrm{fl}$. ceramic $(3-30-\mu \mu \mathrm{fll}$. trimmer adjusted to same capacitance may be used).
$\mathrm{C}_{19}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{14}-\mathbf{0 . 0 0 1 - \mu \mathrm { fl }}$. mica.
(is3 $3(1)-\mu \mu \mathrm{fl}$. variable.
$\mathrm{C}_{15}-20$ - mfil . 450 -volt elentrolytic.
$\mathrm{C}_{16}-10$ - fd . 450 -volt electrolytic.
$\mathrm{h}_{1}-4.7$ megohms, $1 / 2$ watt.
R_{2} - 1000 ohms, $1 / 2$ watt.
$\mathrm{R}_{3}-0.47$ mepohm, $1 / 2$ watt.
$R_{4}-29,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-0.22$ megohm, $1 / 2$ watt.
H_{6} - 1-megohm volume control.
117 - 1500 ohms, $1 / 2$ watt.

With harmonic-tepe arystal osellators the input fremueney ean be the same as that of the erystal. since the output frequency of the crestal tube is alreaty a hamonic. In the Tri-tet ascillator, the cathode tamk should be shortcircuited; in the types using a cathode impedanoe to provide feed-back, this impedance

Ro, $\mathrm{R}_{12}-0.15$ moquhw, $\frac{1}{2}$ watt.
$\mathrm{R}_{10}-390$ ohms, ${ }^{1}$ watt.
$\mu_{11}-0.1$ mequlm, 1 wat.
$R_{13}-4700$ ohims. 1 watt.

$\mathrm{h}_{15}-22.000$ ohms, 1 watt.
$\mathrm{R}_{18}-\mathrm{j} 0,000$ olmas, 25 watts.
$\mathrm{L}_{1}-56$ turns No. 26 enam., 7 /onnch diam., $13 / 8$ inches long. Link, 8 turns.
$L_{2}-15 h_{\text {enrys }} 80$ ma.
J_{1} - Mierophuncerable sucket.
RFG-2.5-mh. r.f. chuke.

T_{1} - Rerevivertype power transformer: 2.50 to 30 volts cach side c.t. at 70 ma.

328 Chapter Fourteen

Fig. 1.127-Bottom view of the rrystal comtrolled f.m. unit.

The sensitivity of tho modulator is controlled by the setting of Cu. The higher the eapacity of this condenser the smaller the frequency deviation for a given adudio input voltade to the modulator. At maximum sensitivity. with ('u at minimmm capacity, the linear deviation is approximately 1.5 kc with an a.f. input to the momblator grid of 2 volts peak. The aedual deviation at the output frerquency of the transmitter depends upon the amount of frequency multiplication following the modulated oseillator. The naximum linear deviation is approximately 6 kc . at $28 \mathrm{Mc} . .12 \mathrm{kc}$, at 50 Mc ., and 36 kc . at 144 Mc .
also should be shorted. Care should be taken to avoid short-circuiting the grid bias, whether from a cathode resistor or grid leak. In the latter case this usually will mean that a blocking condenser ($470 \mu \mu \mathrm{fd}$. or larger) should be connected between the "hot" end of the grid tank and the grid of the ex-crystal tube, with the grid lead (and choke) connected on the griel side of the condenser. Such a blocking condenser may be incorporated in the plug-in tank. The grid-tank tuning condenser may be a small air padder mounted in the coil form.

Where a suitable power supply and speech amplifier are already available, the lower part of Fig. 1423 can be omitted and only the oscillator, buffer and modulator units need be built. With transformer input, the transformer and gain control should be connected between ground and point A of Fig. 1423, R_{7} being omitted. Any of the conventional methods may be used to couple the modulator to an a vailable speech amplifier, with one precaution - if a high-impedance connection is used, the "hot" lead should be shielded to prevent hum pick-up.

If the transmitter to be used has a selfexcited oseillator, electron-coupled or otherwise, a separate oscillator need not be built. The reactance modulator can be connected directly across the tank circuit of the oscillator.

The circuit constants of the oscillator in the unit pictured are arjusted to cover the frequency range $6000-7425 \mathrm{kc}$. so that the output can be multiplied into the 28 -, 50 - and $144-\mathrm{Ml}$. bands. For 28 - Me. operation a multiplication of 4 is required; for 50 Mc ., a multiplication of 8 ; and for 144 Mc., a multiplication of 24 . The output circuit, $L_{2} C_{3}$, is tunable over the range 12-15 Mc., and thus is adapted to feeding into a transmitter using crystals operating in this range. For replacing crystals operating at half this frequency, L_{2} shoull have 20 turns with all other coil dimensions remaining the same.

Crystat-controlled F, MI. - The frequencycontrol unit shown in ligs. 1425 and 1427 provides reactance-tube modulation of a crystal oscillator, and thus meets the needs of those who want narrow-band frequency modulation with high carrier-frequency stability. The circuit is given in Fig. 1426. With AT-cut crystals it is possible to obtain a deviation of 200 eycles at 3.5 Mr., which when multiplied to 28 Me. gives a deviation of 1600 cycles or a deviation ratio of approximately 0.5 . based on an upper audio-freguency limit of 3000 to 4000 rycles. This order of deviation is sufficient for reception on ordinary communi-cations-type superheterodyne receivers when the receiver is detuned slightly from the carrier frequency. With N - and Y-cut crystals. deviations at the fundamental frequency of approximately 1000 and 2500 cycles, respectively, are obtainable.

The circuit values are rather critical and should be followed closely for optimum results. The plate tank condenser of the erystal oscillator, C_{13}, should be set slightly on the highfrequency side of the minimum plate-current point to obtain optimum modulation. If the condenser is set too near the point of minimum plate current it is possible that the erystal will be swung out of oscillation on voice peaks. The setting that gives maximum stable modulation with good voice quality can be determined by listening to the $28-\mathrm{Mc}$. harmonic from the unit on a regular receiver.

The r.f. output of the unit readily can be coupled into a transmitter having a $3 . \mathrm{j}$-Mc. crystal oscillator by winding a link of a few turns around the plate coil of the transmitter oscillator and removing the regular oscillator tube, the link being connected to the output terminals of the unit shown. 'The crystal-controlled f.m. unit is built on a U-shaped chassis measuring $71 / 2$ by 8 by 3 inches.

V.H.7. Receivers

In its essentials most modern receiving equipment for the 28 - and $50-$-1te. hands differs very little from that used on lower frequencies. The 28 -MLe band serves as the meeting ground between what are ordinarily termed "communications frequencies" and the veryhighs, and it will be found that most of the receivers described in Chapter Twelve are capable of working on 28 Mc . In this chapter are deseribed receivers and converters capable of good performance on 50 Mc . and higher.

Fcderal regulations impose identical requirements on all frequencies below 54 Mc . respecting stability of frequency and, when amplitude mochutation is used, freerlom from frcquency modulation. Thus reccivers for $50-$ Mc. a.m. reception may have the same selectivity as those designed for the lower frequencies. This order of selectivity is not only possible but desirable, since it permits a considerable increase in the number of transmitters which can work in the band without undue interference. High selectivity also aids grently in improving the signal-to-noise ratio, both as concerns noise originating in the recciver itself and in its response to external noise. The effective sensitivity of such a receiver can be made considerably higher than is possible with nonselective receivers.

Receivers for f.m. signals usually are designed with less selectivity, so that they can accommodate the full swing of the transmitter. At least for 28 - and $50-\mathrm{Mc}$. f.m. reception, however, the h.f. oscillator nust le as stable as in a narrow-band a.in. receiver.

The superheterodyne system of reception is used almost universally on frequencies below 54 Mc . because it is the only type that fulfills the stability requirements. A.m. superheterodynes and those for f.m. reception differ only in the i.f. amplifier and second detector, so that a single high-freciuency converter may be used for either a.m. or f.m.
Superhcterodynes for 50 Mc . should have fairly high intermediate frequencies to reduce both image response and oscillator "pulling." For example, a difference between signal and image frequencies of 900 kc . (the difference when the i.f. is 450 kc .) is a very small percentage of the signal frequency; consequently, the response of the r.f. circuits to the image fre-
queney is nearly as great as to the desired signal frequency. To obtain diserimination against the image equal to that obtainable at 3.5 Mc . would require an i.f. 16 times as high, or about 7 Mc . However, the Q of tuned circuits is less at 50 Mc . than it is at the lower frequencies, chiefly because the tube loading is considerably greater, and thus still higher i.f.s are desirable. A practical compromise is reached at about 10 Mc .

To obtain ligh selectivity with a reasonable number of i.f. stages, the double-superheterodyne prineiple is often employed. a $10-\mathrm{Me}$. intermediate frequency, for example, is changed to a second i.f. of perhaps 450 kc . by an additional oscillator-mixer combination.
Few amateurs build complete $50-\mathrm{Mc}$. superheterodyne reccivers. Gencral practice in this band has been to use a conventional communications receiver to landle the i.f. output of a simple $50-\mathrm{Mc}$. frequency converter. Even an all-wave broadeast receiver may be used with excellent results on 50 Mc . by the addition of a relatively simple converter.

The superheterodync type of receiver is finding increased favor for $144-\mathrm{Mc}$. work also, as the occupancy of that band increases. Especially in heavily-populated arcas, stabilization of transmitters and an improvement in the selectivity of receivers are becoming almost mandatory, particularly for those operators who are interested in exploiting the full possibilities of this band. The ideal receiver for present conditions is one having a pass-band of around 100 kc . Greater selectivity is hardly desirable, not only because it will discriminate against transmitters having the slightest instability, but because the receivers themselves are inclined to be somewhat less stable at this freguency. This approach has been used in most of the recent pionecring efforts by amateurs working in the nicrowave field.

A converter working into an f.m. receiver, or into a broad-band i.f. channel designed for cither a.m. or f.m. reception, provides a quite satisfactory means of reception of signals, not only at 144 Mc., but on up through the microwave range.

The simplest type of v.h.f. receiver is the superregenerator, long favored in amateur work. It affords good sensitivity with few
tubes and rlementary circuits. Its disadvantages are lack of selectivity and, if the oseillating detector is coupled to an untenna, a tendency to radiate a signal which may cause interfarence to other receivers. To some extent the lack of velectivity is advantageous, since it makes for casy tuning, and permits reception of all signats within its tuning range. howerer unstable they may be. To reduere radiation. a superegencrative deteretor should be preceded by an r.f. stare. or, if the detector is coupled directly to the antemna. it should be operated at the lowest plate voltage which will permit superregeneration.
lirom a practical aspert. superrewencrative receivers may be divided into two general types. In the first the quetuching voltage is developed by the detector tube functioning as a "self-quenwhed" oscillator. In the serond, a separate oscillator the be bisel to gencrate the quench voltage. Belf-guenched superregenerators have found wide favor in amatedr work. The simpler types are particularly suited for portable equipment, which must be kept as simple as possible. Nany amateurs have "pet" circuits clamed to besuperior to all others, that the probability is that the arrangement of a particular circuit has led to correct operating conditions. Time ipent in minor adjustments will result in a snooth-working receiver.

(1) A 144/235-Mc. Superregenerator

The receiver in Figs. 1501,1502 and 1503 affords exement somsitivity on both 144 and 235. Me. For the amateur who wishes to experiment on these bands. it will provide satisfactory reception at minimum expense. The circuit is the familiar self-guenched superregemerative detector, followed by two stages of audio amplification.

The recover is built on a $7 \times 7 \times 2$-inch chassis. The tuning coudenser is mounted on a metal bracket. cut in the shape of a u to
clear the stator ennmections. The dial is conneeted to the condenser by a flexible bakelite coupling.

The improvised socket for the plug-in coils utilizes contacts obtained from an Amphenol miniature-type tube socket, by the process of squerzing the socket in a vise until the baketite cracks. One contact is soldered to each of the tuning-condenser connertions and a third to a lug supported by ome of the extra holes in the Isolantite base of the condenser. The contants must all be placed at exacoly the same height. so that the plug-in coil will wat properly. The band-set condensor, C_{2}, is mounted by soldering short strips of wire between the lugs and the tuning-rondenser terminals.

The polystyrene tube sucket for the 9002 is mounted on a metal bracket, placed near the tuning condenser so as to allow a very short lead from the condenser to the plate terminal and just enough room between the rotor connection and the grid terminal for the grid condenser. Incater and cathode leads are brought through the chassis in a rubber grommet.

The variable antenna coopling coil, L_{1}, is mounted on a polystyrene rod sumported by a shaft bearing. The rod is prevented from moving axially in the bearing by cementing a fiber w:asher to the shaft and tightening the knob on the other side. The antema coupling loop should be adjusted so that, when rotated, it will just clear the eoils pluged into the socket.

The coils are mount ed on small strips of $1 / 8-$ inch polvityrene (Dillen ()uatz() which have three small holes drilled in them corresponding exactly with the enil socket. Each coil is remented to the strip with Duco cement at the points where the wire passes throurh the base. The No. 18 wire used for the roils will fit smugly in the sockets if the contacts are pinched slightly. The coils are frimmod to fit the bands by spreading or squeezing the turns slighty. The micatrimmer hand-sid condenser

Fig. 1501 - Inft - The panel of the two-lathel superregenerative receiver measures 7 inches square. The k nol, in the upper riwhthand eurner atju-1- antema coupling, while the knob helow the tuning dial controls regeneration. Ripht - A rear view of the two-band superregenerative receiver. The $235-\mathrm{Me}$, plug-in coil is in the foregreund.

Fig. 1502 - Wiring diagram of the superregenerative receiver for 144 and 235 Mc .
$\mathrm{C}_{1}-5-\mu \mu \mathrm{fd}$. midget variable (National UM. $\quad \mathrm{L}_{1}$ - 1 turn No. $14 \mathrm{c} ., 3 / 8$-inch inside diameter.

15,4 plates renoved).
$\mathrm{C}_{2}-3-30-\mu \mathrm{ff}$. mica trimmer.
$\mathrm{C}_{3}-50-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{4}-0.0033-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{5}, \mathrm{C}_{7}-10-\mu \mathrm{fd} .25$-volt electrolytic:
$\mathrm{C}_{6}-0.01-\mu \mathrm{fd} .400$-rolt paper.
$R_{1}-10$ negohms, $1 / 2$ watt.
\mathbf{R}_{2} - 50,000 -ohm wirc-wound variable.
$R_{3}, R_{5}, R_{G}, R_{7}-0.1$ megolm, $1 / 2$ watt. $\mathrm{R}_{4}-2200$ ohms, $1 / 2$ watt.
$R_{8}-470$ ohms, 1 watt.
L_{2} - 144 Mc.: 3 turns No. 18 e., $1 / 2$-inch diameter, spaced over $1 / 4$ inch. Tapped $11 / 4$ turns from plate end.
$235 \mathrm{Mc} \cdot: 2$ turns No. 18 e., $1 / 4$-inch diameter, spaced over $1 / 2$ inch. Tapped at center of coil.
J - Closed-circuit jack.
$\mathrm{RFC}_{1}-25$ turns No. 21 d.c.c., close-wound, $1 / 4$-inch diameter.
R FC_{2} - 8 mh . r.f. chokc.
S-S.p.s.t. toggle switch,
T-Plate-to-grid interstage audio transformer (Thordarson 'T-57A36).
gives some further range of adjustment. In the receiver as described, it is screwed down fairly tightly for the $144-M c$. band and loosened about four revolutions for 235 Mc . In the absence of good marker stations, an absorption frequency meter or a Lecher wire system (described in Chapter Nineteen) may be used for spotting the band limits.

Two factors which will be found to influence sensitivity are the value of C_{4} and the degree of antenna coupling. Values of C_{4} from 0.001 to $0.0047 \mu \mathrm{fd}$. should be tried. The antenna coupling will vary greatly with the setting of L_{1} and the type of antenna used; it is well worth while to tune the antenna circuit and then vary the coupling with the panel control.

Fig. 1503 - Left - A elose-up view of the tuning assembly, showing how the leads from the tuning eondenser to the tube socket have been kept short and how the coil socket is mounted on the tuning condenser. Hidden by the grid condenser (the $50-\mu \mu \mathrm{fd}$. condenser so prominent in the picture), the plate terminal of the tube socket goes to a lug which has been added to the stator of the tuning condenser. Right - The arrangement of parts under the chassis may be seen in this photograph. The 6.J5 socket is at the left and the 6F6 socket is at the right, near the 'speaker terminals. The $8-\mathrm{mh}$. r.f. choke, seen just under the regeneration control at the top center, is supported by tie-strips.

Fig. 1504 - Front view of the 144-Mr. t.r.f. receiver. The pointer knob above the vernier dial tunes the r.f. stage. The small round knobs are for audio volume (lower right) and detector plate-voltage variation. Outside dimensions of the handmade case are $7 \times 51 / 2 \times 4$ inches.

Thight coupling usually will give better results than loose coupling. The coupling can be in(reased almost up to the point where the detertor no longer aswillates, with no ill effects exepet increased radiation.

An audio volume control eoluld be installed in plate of the fised grid resistor, R_{7}, if desired. In the original model of this reeeiver, the value of R_{7} was adjusted until normal loudspeaker output was obtained; this value may be varied to meet any particular requirements.

Though a 9002 detector is shown, a 6 C 4 will work equally well. Socket connections are similar, but some experimentation with different values for R_{1} and C_{4} may be necessary.

© T.R.F. Superregenerative Receiver

The 144-Mc. receiver in Figs. 1504-1508 uses miniature tubes throughout and is intended for either home or portable/nobile use. The r.f. amplifier stage furnishes some additional gain over a straight superregenerative detector, affords freedom from antenna effects, and most important of all - prevents radiation from the receiver. Although the r.f. and detector cireuits are individually tuned. the broad tuning of the r.f. stage makes the receiver essentially a single-dial affair - important in mobile work - and the low-priced miniature tubes permit compact assembly and low current consumption. Heater current is 625 mat at 6.3 volts, and the total plate drain from 135 volts of "B" hattery is less than 10 ma.

The tumed r.f.-amplifier stage uses a 6AK5 pentode which is coupled through C_{5}^{\prime} to the 6 C 4 superregenerative triode detector. This in turn is transformer-coupled to a 6 Ct audio stage which drives the GAK6 output stage. A plate coupling choke, I_{4}, and the coupling condenser C_{12} remove d.e. from the ouput jark, J_{2}. and eliminate the possibility of shortcircuiting the plate supply at this point.

The receiver chassis and partitions are built from pieces of $1 / 16$-inch aluminum held together at the corners with machine serews and strips of $1 / 4$-inch square brass rod. The over-all dimensions are $7 \times: \times 4$ inches - the ehassis: that mosunts the audio componemts is $1 \times \overline{5}$ inches with a $13 / 4$-inch folded lip. To climinate oscillation in the r.f. stage and radiation from

Fig. 1505 - Rear view of the eomplete rerciver. Note that the r.f. stage and superregenerativedetector circuit components are in separate completely enclosed compartments, for elimination of radiation. Miniature tubes are used throughout, for conpactncss and low current consumption.

the detector, completely-separate compartments are used for the r.f. and detector stages. These compartments consist of identical boxes that measure $17 / 8$ inches square and 3 inches long. The tube sockets are mounted on the end plates, and all of the connections to the sockets are made before the boves are completely assembled. The wire between C_{5} and L_{3} runs through two Millen 32150 bushings in the walls of the two shield compartments. This interconnection, the only one except for the power circuits, is made by running separate leads from the condenser and coil through the bushings and then soldering the two ends together after the two units are mounted on the front panel.

The detector tuning condenser, C_{8}, is a regular Cardwell Z

Fig. 1506 - Wiring diagram of the four-tule t.r.f. *uperrequerative receriser. Bobudaries of shided comparton'ont: homsing r.f. and detector stagen are shoma by dotted lines.
C_{1} (is - Split-stator comdenser (Cardwell ZV-5-TS). Seretret.

Cif - $0.002=-\mu \mathrm{fl}$. midyed mica.

Gio. C.12- 0.1 - uld paper.
R_{1} - 1.501 olmas. ${ }^{2}$ natt.

$\mathrm{B}_{\text {: }}-3.3$ mergohms, ${ }^{1} 2$ watt.

 turn-af $1:$ at crold emd.

 R.f. wholing tar, 1 t. from arid ind.

It - Midget andio or filter choke (Incallot?

J. Itandshene or - braher jach

RFO: - Smext

circular plate to tha regular ont-phate rotur. This additimat comstath capardanderarose the cirenit incereases the bandepread and. beranse it decrestases the L-tor- ${ }^{\text {t }}$ ratio. smooths wat the regeneration so that the regeneration control, R_{10}, don's not have to be readjusted within the 144-Me. bind.

The two r.f. chokes, $R F C$, are homemade
affairs wound on l-watt IRC composition resistor: - 0.22 megohm or higher - the insulated type that is ${ }^{1}$ in inth in diamoter and $21 / 32$ inch long. The ends are notehed with a small file or saw, to prevent the ends of the

 tivedetertor compartment-, with back phates removed to show details. "I'm, back, and right side may be removed from either asiemily, providing accessibility despite compact dexigo.

Fig. 1508- Bottom view, whowing audio. compronent arrangenent.
coil wire from slipping after they have beern soldered to the pigtail leads of the resistor. and then a single laver of No. 30 d.s.c. is wound on for a lengeth of 1732 inch. No lacuper or dope shonld be used on the winding becatuse of the increased distributed caparity that will result.

When the receiver is completely wired the first more should be to cherk delector operation. With the 6, KKj in its socker, but with no plate
 or screen voltare applied to it, apply
the plate voltage to the deluetor and check for the eustomary hise. Try the reqeneration control, R_{10}. to dedermine whether the detedor gon's in and out of superregeneration smoothly. Some vatiation in values of R_{3}. R_{4} and C_{6} maty be necessary to attain this cod and some fic'is work better than others in this respect.

Next, the tuning range should be cheerked by means of Leeher wires or an ahsorption-t ype warmeter, With the values given, lit ile. should fall at about so on the diat. with 148.1 c . at around 60 . The position of the r.f. coupling tap on I_{03} will have considerable affect on the resonant frequence of the combination. Its position is not critical, except for its effeeb on the tuming ratige of the detector errenit, but the spacing of the turns in the coil will have to be changed if the position of the tap is materially different from that wisen.

When the detector is fomed to be in the band, the ref. stage may he pht into operation. With :thy of the shideds removed, or with no antuma connected, the GAk5 will probathy oscillate blocking the detector. but this effect will disappear when the 1 wo compartments are completely assembled and an antemnatatached by means of the coavial connector. If the r.f. stage is operating properly there will be slight change in the character of the hiss when the stage is tuncel through revonance. Uwing a sirnal gemerator (the harmmic of any oserillatur which fatls in the 141-Mc. band will do) or the signal of a $1+4-\mathrm{Mr}$, station, there will be a pronounced drop in backeround noise and a slight, change in dial setting of the detector when the r.f. stage is tuned "on the mose." Once the r.f. tuming is adjusted for maximum responat, preferably on a watk ignal near the middle of the band, it may be left at that setting for all except the very weakest signals at either end.

Fip. 1500 - The four-tube 1.11 Me. superheterndyue, dresed up in a modern cahinet. The large dial is ocrillator tuning, and the small dial is for miser tuning. The two hnohs control regeneration (right) and volume (left).

Power-supply filtering and regulation are important facoors in attaining shooth and efficient performance with superesenerative detectors. The power plug mounted on the back of the ehatsis provides at sopatate conneetion (Pin j) for the detector and r.f. $+B$, in order that this may be drawn from a regulated source, such ats a VIR-1̄̄0. The other pin marked " + B" (1'in 4) supples the audio tubes, and the voltare used here need mot be regulated. If "B" batteries are used - and they are highly recommembed for mobile oper-ation- Pins 4 and 5 masy bo conneveded towether in the power sacket on the catble. The use of " $13^{\prime \prime}$ battories in mobile work will mesult in botter semsitisity and more quine operation than will be available with any surt of mobile power supply, vibrator or dyammondor, amd the dram from the car bathery will be negligible during receiving perions. A set of mediumsize " $13^{\prime \prime}$ batteries (133° volts is sulficion lom good "peaker volume) will hast through a yeat or more of normal operation. When batteries are used, the on-ofil switeh, fox-s.3. should be thrown to the "off" pasition when thereceiver is not in use, otherwise there will be a smath continuons drain on the batteries throngh the $R_{10} R_{11}$ blecter.

C. A 144-Mc. Superregenerative Super-heterodyne Receiver

A superheterodyne, using a superregenerative second detector is shown in Figs. 1503, 1510,1511 and 1512. A $6 J 6$ miniature twin triode is used as local oscillator and mixer, and its high transconductance ($5300 \mu \mathrm{mhos}$) and small size make for good performance in the 2 -meter band. The superregenerative second detector is a triode-connested 6 V 6 working at 33 Mc., and this is followed by a GJ5 for headphones and a 6 F6 for loudspeaker operation. The wiring diagram, Fig. 1510 , shows no coupling condenser betwern the oscilator and mixer beeause stray coupling between grid pins at the socket gives adequate injection to the grid-leak biased miser. Λ small coil, L_{4}, is used in the plate circuit of the mixer to resonate in series with C_{5} to the signal frequency, and the resistor, R_{13}, is included to make this resonance a broad one. The condenser C_{5} also tumes the primary, L_{i}, of the i.f. transformer. The i.f. trinnsformer is adjustable only in the secondary cireuit, since with just one stage there is no tuning requirement other than that the primary and secondary be luned to the same frequency. A switeh, S_{1}, removes the
plate voltage from the second detector and following stages during transmission periods, but plate voltage is left on the oscillator (and mixer) to avoid drift. This is an unnecessary refinement, however, since the oscillator drift is considerably less than the bandwidth of the i.f. amplifier.

Inductive tuning of the oscillator circuit is used, by moving a copper vane which acts as a low-resistance shorted turn in the field of the coil. As the vane is moved into the field of the coil, the inductance is reduced. No current flows throngh the insulated shaft supporting the vane, and consequently there is no "jumping" of frequency such as is caused by erratic contact to a condenser rotor

The mixer coil, Les, is wound on a National XR-50 form in which the iron slug has been replaced by a brass one from an AR-2 form. The coil is peaked for the center of the band the tuning is broad - and additional trimming is done with the antenna condenser, C_{1}. Three autenna binding posts are available, so that either series or parallel tuning of L_{1} can be used.

The receiver is lesigned to be mounted in a commercial-type $8 \times 10 \times 8$-iuch cabinet. The pancl, part of the standard cabinet, measures

Fig. 1510 - Wiring diagram of the 144-Me superheterodyne.
$\mathrm{C}_{1}-3.5-\mu \mathrm{fl}$. variahlc (National UM-35).
$\mathrm{C}_{2}-27-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{3}, \mathrm{C}_{5}-10-\mu \mu \mathrm{fll}$. ceramic.
$\mathrm{C}_{4}-10-\mu \mu \mathrm{fd}$. mica or ecramic.
$\mathrm{C}_{6}-4.70-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{7}, \mathrm{C}_{0}-100-\mu \mu \mathrm{fl}$. mica.
$\mathrm{C}_{8}-4-20-\mu \mu \mathrm{fd}$. adjustable coramic (Eric or Centralab). C_{10} - $0.00447-\mu$ ful. mica.
$\mathrm{C}_{11}-0.01-\mu \mathrm{fd}$. 400 -volt paper.
$\mathrm{C}_{12}, \mathrm{C}_{14}-25-\mu \mathrm{fil}$. 25 -volt clectroly tic.
$\mathrm{C}_{13}-0.1-\mu \mathrm{fd} .400$-volt paper.
$\mathrm{C}_{15}-4 . \overline{6}-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{R}_{1}-1.8$ megohins, $1 / 2$ watt.
$\mathrm{R}_{2}-3200$ ohms, $1 / 2$ watt.
R_{3} - 1000 ohmis, $1 / 2$ watt.
$\mathrm{R}_{4}-10$ megohms, $\frac{1}{2}$ watt.
$\mathrm{R}_{\mathrm{s}}-68,000$ ohms, 这 wat1.
$\mathrm{R}_{\mathrm{g}}-50,000$-dhm 2-watt potentioneter, preferahly: wire-wound.
$R_{7}-47,000$ ohms, 1 watt.
$\mathrm{R}_{8}-0.5$-megohm volume control.
$\mathrm{R}_{\mathrm{g}}-2500$ ohms, $1 / 2$ watt.
$\mathrm{R}_{10}, \mathrm{R}_{11}-0.1$ merolim, $1 / 2$ watt.
$\mathrm{R}_{12}-470$ ohms, 1 wat t.
$\mathrm{R}_{13}-1000$ chims. 1 watt ($1 / 4$-inch diam.).
$\mathrm{L}_{1}-2$ turns No. 22 dici.c. wound over ground end of L_{2}.
$\mathrm{L}_{2}-4$ turns $\operatorname{No} .18$ enam. wond on National XR-50 form and spared to occupy $1 / 2$ inch.
$\mathrm{L}_{3}-2$ turris $\mathcal{N o}$. 14 enam., 保-incli i.d., spaced $2 \times$ wire diam.
$L_{4}-5$ turns. No. 18 cnam., spaced to occupy $8 / 8$ inch, wound or R_{13}.
Ls - 9 turns No. 22 cnam., elose-wound.
$\mathrm{L}_{6}-8$ turns $\mathrm{Ni}_{\mathrm{o}} .22$ enam, elose-wound, on same form as L_{5} and spaced "is inela from L_{s}.
J_{1} - Closed-circuit telcphone jack.
$\mathrm{RFC}_{1}-28$ turns No. 30 d.c.c. close-wound on 3 -inch diann. form. Sec iext.
$\mathrm{RFC}_{2}-48$ turns $\mathcal{N o} 22$ enam., elose-wound on $1 / 4$-inch diam. form. Sec vext.
RFC3 - One pie from 4 -pic $2.5-$ mll. ehoke. Sce text. $\mathrm{RFC}_{4}-80$-mhli iron-core r.f. choke (Meisaner 19-6846). S_{1} - S.p.s.t. toggle switch.

Fig. 1511 - A top view of the recriver shom-the construmen of the
 along the harh. from laft toright, are superregenerative second detector, atudio amd outprit.
coupling. Dfter soldering the vane to the compling, the copper i. cut roughty in the form of a starightinewatelonght cundenar rotor plate. It can be 1 fintmeduplater fog givesmedhing re-
 inger. lut this is hardly wesential. By. movitus the batme thas whe coil the thange rance can be incerased, amt vice versat The antemar eondenser. C 1 , in mombed at the rear of the chassis on the hracked fumbished with the condeneser, and a shaft bearine in the front patmel commerts to the condenser through ath extemsion shaft and two flexible compling.
 mexohm resionors. A small notech is filent at math emp of the resistor to keep the wire in plate, and the wires for the chokes are soldered to the leats of the resistor. I 1-watt size is used for
 Lifres is made by momting a single pie fom a 2..i-min t-pier.f. rlooke on a 1 -numghm 1 -watl revistor similar to that had for Rlit ${ }^{\prime}$. The cansest way the remose the pies from the eremmic form on which they come is 10 melt the motal from one emf of the choke with a hol soldering iron and then fore a sharpiof pick or nat down the hoke in the center of the reramie form until the cramic splits. The pies catn then be removed and one monnted on the resisuror with Jues cement.

The i.f. tramsormer is wound on a 8×8 inches. The chassis was bent out of $\frac{1}{16}$-inch aluminum and is 6 ! inches wide and 7 inches derp. A 2^{\prime}-inch lip is bent down at the reat and a $13 / 4$-inch lip is formed at the front. The front bend is malle shorter to anoid the lip at the bot tom of the cabinet. The chassis is held to the pancl be the wo potemiometers (reqeneration and rohune controls) while a 38-inch square dural har bolted to the edre of the 2 备-inch lip pick inptwoserews throurh the bottom of the cabinet to give a rigid strut thes.

Bakelite sockets (Amphend XIP) are usad for the oetal tubes, and the miniature tube socket is the coramic one made by Fhs: A metal shield to match the sumetemborets as a tube lock. The sorket is mommed with lin $\overline{3}$ toward the pand. National FW. 1 binding posts mounted on National XP-f polystyme butbons support the oweflabor eobl, atad allow the coil to be chatared readily for experimental purposes. The antematad londspatiee hats are brought out to similar posis at the rear of the chassis.

The 'i-ind diameter polystyene rod used for the oscillator tuning rame shat is suppurter at the pancl end ber the National 1 M dial and at the other by a pand bushing mounted in atn aluminum bracket. The vane is mate of a piece of thin copper soldered to a brass shaft

National PlaE-3 polyw yerne form. Two ahlitional small holes, 90 degrees apart, are dribled in the furm berwern the two windings. and one lead of r_{6} is suaked through to larmish in support for one emb of the condenser as well as a tic-point, for one cond of $h_{\text {a }}$ and the isolating resistor R_{3}. Auother hole in the form, below L_{5}, is used to support one chid of $R_{1 ;}$ and serve as at thepoint for ('s amel L_{j}.

In wing the receiver, it is convenient to wire the heater cirmats first. On the metal tubes. Pins 1 and 2 are gromuled to lugs fasterned under the serews holding the suckets to the chaswis. (On the miniature socket a jumper goes from Pin 3 to the central shield of the socket and thence wa lan under one of the serews fastoning the sorket to the chassin. on the pin 7 side. Some care should be takern in wiring the r.f. components on the miniature sockit. to insure shary latuls. One cometion of
 be wede Pin ? and the binding post supporting the grid side of L_{3}, and r^{\prime} is mounted from this
 har for the diJd heater ciment mentioned above. A tio-point joins RF' 1 and Ro.

Checking of the recover is best done by starting at the output and woking toward we input. Comnect lieater voltage and high voltage
to cherek the supervenencrativedeleotor operation. Witha spuaker or hambsotemonertert, ghameing the rexamerytion conturol should result in the fit miliar superregeremave hiss. It this peint the 10j volts for the mixer am! oscillator can be connerted, becallas the adjustment of 1 's should be mate with plate vollage on the mixer. Winh the regeneration control ouly slightlv beyond the print where the hiss starts to be hoart, adjust ('y for the point which requires maximum alvancing of R_{6} for oscillation. This briugs $L_{66} \mathrm{C}_{8}$ into resonamer with $L_{55} \mathrm{C}_{5} 5$. If $i t$ is found that the socomd detectur won't oscillate at one very sharp setting of ('y. the compling tretwern L s, and h_{6} is ton tight. In this event the coils should be backed away from cath other. if possible, or die fox lan be detuned slighty: Tha formur prespobre is preferable. The selting of 1 's where the primary cireuit pults the detector out of ewaillation shoulal be quite sharp - if it isn't, the setting isu't right. When the deterobr is oscillating and C_{8} is not set property it is quite likely that the hiss will also contain some unpleasant high-frequeney whisthes, The exact frequeney of the i.f. can be checked on a calibrates com-munications-frequency rereiver if desired, but a frecuency check is not
essential. With the eonstants given the i.f. will be around 33 Me.

Knowing the i.f. makes it a bit easier to actjust the oscillator portion of the 6.JG, because an absorption wavemeter or Lecher wires ran be used to put the oscillator on the right frequence. If one knows the i.f. and has some means of checking the oscillator frequency, the oscillator can be adjusted to give a tuning range from 143 Me . minus the i.f. to 149 Me . minus the i.f. The tuning range is adjusted by spacing the turns of L_{3} and by moving the vane on the shaft. Moving the vane closer to the coil will increase the tuning range but increases the minimum frequency a trifle, and vice versa. If a calibrated 144-Mc. superregenerative recoiver or transmitter is available, it can be used as a signal source and the oseillator funing range can be adjusted without knowing the i.f.

The mixer coil and antenna coupling can be checeded by listening to a weak signal (whose weakness is under your control, however), or to ignition noises, and it will be found that best sensitivity will be obtained with fairly tight coupling.

© V.H.F. Converters

For the amateur who alreaty possesses a communications-type high-frequency receiver or a good all-wave broadeast reeoiver capable of tuning to rither is or 10 Me .. there is no

Fig. 1512 - A view underneath the chassis, showing the arrangement of parts. Note the ceramie trimmer condencer between the
 denser is adjustable from above the chassis. To the left of the ceramic condenser can be scen $R F C_{3}$, the single-pie r.f. choke.
necessity for building a separate v.h.f. recoiver partioulaty for operation on the jo- Ma band. It is not only casior but often more satisfactory to build a vh.f. converter which, in conjunction with the already existing receiver, can be used as a donble superheterodyne. This armanement is particularly successful if the receiver has controllable or broad-band selectivity to permit reception of the less-stable signals on the higher-frequency bands.

The output transformer for such a converter should be designed to tunc to an i.f. of cither 5 or 10 Me . (the higher frequency brinis preferable for operation on bands above 50 Mc .), withatow-impedance secondary. The output from the converter may be coupled through a low-impedance shiclued line to the input circuit of the commmications receiver, in much the same manner as link coupling is used between stages in a transmitter. The r.f. and miver circuits of the receiver must be tumed to the same frequency as the output transformer - 5 or 10 Me . - which then becomes the first i.f. Thereafter the receiver dial remains untouchod, all tuning being done with the converter. The volume control, however, will be the gain control on the receiver into which the converter works. A converter may have its own built-in power supply, but with simpler designs it is often possible to draw the filament and plate voltages from the receiver with which the converter is to be used.

Fig. 1513 - This twotule 50-Me. converter incorperates nes miniature tubes and whatains its power from the rommunisations reaciver with whith it is used. 'I'be toggle switeh at the left cate the filament rircuit whers the umit is not in u-a. The control at the lower right transfirs the antenna from the converter to the recciver for normal reception.
important, experially when the conworter is used in congunction with a highly-selective communiations rereiver. Thus quite satisfictory perfurmathe rat be whtaimed willumb the: Hse of an inf. nomplifur stare. The mew high-transeombuctance miniature perntodes, surh as the $6.1 / 5$, are oxcellent ati mixera, and a fwotube convertor incorporating the 6.\K5 in an apmopriate sitenit will give a dogere of performane formerly obtabable only with more complox designs. Surh a converter is shown in Fixs 15131517. It wats designed by leichatal 11 . Houghton, W1NKb: and was described in detail in ($2 \cdot 6$ Tor Jume, 19-46. Though it was laid out partioularly for use with

(I) A Simple Two-Tube Converter for 50 Mc .

When a high intermediate frequeney is used, image rejection is not a problem, and r.f. seleetivity in the converter is not particulaty
an HRO it may be used efferetively with any communications receiver capable of tuning to 10.5 Ne.

As shown in the sehematic diagram, Fig. 151.t. the oriblator voltage is injoceted at the sereen gride of the mixer tule. The eoupling

Fig. 151 - Cirenit diagram of the 50. Me. converter. $\mathrm{C}_{1}-15-\mu \mu \mathrm{fl}$. fived ceramic, zere, temp, ecoëf. (Eirie NP(0.1).
$\mathrm{C}_{2} \mathrm{C}_{5}-2-\mathrm{G} \mu \mathrm{\mu} \mathrm{f}$. . ©ramic trimmer (Centralab 8:0. 1).
 plate removed).
$\mathrm{C}_{4}-12-\mu \mu \mathrm{fl}$. fixel ceramic, zero temp.-coëf. (Brie NPOA).
$\mathrm{C}_{6}-9-\mu \mu \mathrm{fd}$. variable (National IMA-10 with 1 stator and 1 rotor plate removed).
$\mathrm{C}_{7}, \mathrm{Cs}_{8}, \mathrm{C}_{9}-100-\mu \mu \mathrm{ful}$. misa or ceramic.
$\mathrm{C}_{10}, \mathrm{C}_{12}-47-\mu \mu \mathrm{fl}$. mica or ceramic.
 (10).

$\mathrm{R}_{2}-1.5$ megohms, $1 / 2$ watt.
$\mathrm{R}_{3}-0.17$ megohm, $\frac{1}{2}$ watt.
$\mathrm{l}_{4}-0.1$ mewohm, ! 1 walt.
Ris - 29.000 ohms, $\frac{1}{2}$ watt.
$\mathrm{R}_{6}-10,000$ ohms, 1 watt.
I., to If, inc. - Sire Fig. 1.516.
$1_{1}-6.3$-volt pilent lamp.
S_{1} - t -pole double-throw swith, preforably with ecramic wafers (Ca T Type IIC).
$S_{2}-S_{\text {p }}, \ldots$, t toggle.

V.J.7. Receivers

Fig. 1.515 - Whe r.f. construction of the $50-\mathrm{Mc}$. monverter is shown in this above-chassis view. The 6 C 4 oncillator is at the left and 6 OK 5 mixer at the right on the subehassin. 'The 10.5 Mc. i.f. output coil is in the foreground. Fle ville wround leads are shown connected to their binding ponts in the position normally used for grounded antema systems.
condenser, C_{0}, has sufficient capacitance to act as the $6, \lambda K 5$ screen by-pass condenser as woll. The grid tank circuit, comprised of L_{2} in parallel with C_{1}, C_{2}, and C_{3}, resonates over the operating frequency range, 49.5 to 54.8 megacycles. C_{3} is ganged with the oscillator tuning condenser, C_{6}.

The oseillator operates over a range 10.5 Mc. higher than that of the mixer, and the mixer plate circuit is tuned to this intermediate frequency. With this i.f., the fifth harmonie of the receiver's
 loeal oscillator ($10.955 \times 5=54.775$ Me.) appears just outside the high end of the tuning range, sufficiontly far from the calibrated band so that it does not interfere with normal operation.

Tracking is easily aceomplished over the frequency range moder consideration because the percentage of frequency change is small. starting with two identical tuning condensers (National Type UMA-10), two plates are removed from the one used in the oscillator and one plate from the one in the mixer. Sufficient fixed padding capacilance, using a zero-tem-perature-coefficient ceramic for low over-all temperature drift, is added to give the reduired range. The coil forms used are provided with

Fig. 1517 - A bottom vicw of the converter. S_{t}, the antenna-transfer switch, is at the lower left. Low-impedance antenna leads should be twisted loosely as shown. The threc adjustiug screws for the iron core inductances protrude from the chassis on either side of the power cord.
adjustable cores of high-frequency powdered iron, providing an casily-accessible inductance adjustment. Figs. 1515 and 1517 show the layout of these coils.

The wafer-type switeh S_{1} provides a convenient mo:ans of channcling rither the converter output or a low-frequency antenna into the antenna terminals of the receiver. When the converter is in use both low-frequency antonna terminals are switched to ground, thus minimizing direet recever piek-up at the intermediate frequency. Single-wire or doublet antennas may be used at either high- or lowfrequency inputs.

When operating the receiver over its normal frequency range, the converter filaments may be turned of by means of switeh s.s. This function also could be accomplished by means of an adelitional wafer on s_{1}.

A four-prong-to-four-prong adapter, of the sort used for making tube substitutions, is used

> Fig. $1.516-$ Coil data for the $50-\mathrm{Mc}$. converter.
on the power cord to enable both it and the receiver cord to be plugged into the IIRO powar park simultanconsly. With receivers having intogral power parks a different arrangement would be required, one possibility boing to use a similar plug adapter under one of the power tubes in the receiver, picking up the " 13 " voltare at the screen-grid pin.

1. A Crystal-Controlled Converter for 144 Mc.

While most converters are used in the mannor deseribed above (by leaving the eommunieations reeciver sot at a given intermediate frequency and tuning the convorter over the desired frequeney range), it is quite possible to reverse the procelure, using a fixed-frecureney oscillator in the converter and tuning the reeriver. This approarh is particularly advantageous at 144 Mc. and higher. Where the solectivity of the tuned circuits is such that no adjust ment of the converter circuits is required when the j.f. (in this case usually a broad-hand recoiver) is variod over a four-megacycle range.

Feveral converters employing this principle were described by ('alsin F Hadlock, W1C'TW, m the May. 194ti, issue of Q, WT. The simplest is shown in Figs. 151s. 1519, and 1520. It uses a fiJ6 oserblator-doubler, operating with a 28-Mre crysal. followed by a tict doubler and a 6 AK 5 mixers. The grid eireuit of which is tuned to 1 fit Mc. and coupled to the antema. The phate circuit of the mixer is the input rir(ruit of a rerebiver (see Fir. I5l!) which tumes the range luedwen 30 and $3 t$ Ne 'The eomberter was desigmed for use with the National (One-

Fig. 1518 - 'Top view of the three-tuhe $14+1$ - Mc. convorter using a lometer erstal. Fpace is provided at the right of the mixer for addition of an r.f. stage.

Fig. 1519 - $\mathrm{S} \cdot \mathrm{h}$-matic of the 3 -tube 2 -meter converter, using a 28-Mc. wrotal.
$\mathrm{C}_{6}, \mathrm{C}_{3} \mathrm{C}_{9}-1$ - $10-\mu \mu \mathrm{fd}$. mica.
($2, ~(:-100-\mu \mu \mathrm{fil}$. mica.
(if, © $_{6}-15-\mu \mu \mathrm{fil}_{1}$. (10 to 20) ceramic or mica.*
($5-22-\mu \mu \mathrm{fl}$. (1.5 to 25) ceramic or mica.*
(i, - $2-\mu \mu$ fid, reramic or mica.
(im. C.12-4T- $-\mu \mathrm{ff}$) mira.
l:11-100- $\mu \mathrm{ff}$ d. mica.
Cita - $1.5-\mu_{\mu}$ fil. variable, National UMA-15.
$\mathrm{B}_{\mathrm{t}}-22.000$ कhms, $1 / 2$ watt.
$\mathrm{K}_{2}-1.00$ olms, ${ }^{1}$ watt.
$\mathrm{K}_{3}-0.1$ merohm. $1 \frac{1}{2}$ watt.
$\mathrm{h}_{4}-4700$ ohms, $1 / 2$ watt.
R_{5} - $0.1 \mathrm{mmpohm}, 1 / 2$ watt.
R_{6} - $4000 \mathrm{ohms}, 1 / 2$ watt.
$\mathrm{R}_{7}-0.25$ mex.him, $1 / 2$ watt.
$\mathrm{B}_{5}-0.5$ mew 0 hm, $1 / 2$ watt.
$\mathrm{R}, 9-400$ ohms $1 / 2$ watt.
L_{1} - XR-50 coil form, unkrooved, 11 turns No. 22 enam, close-wound, cinter-tapped.
 pared 19 dia, of wire. cemer-tapped.
 3/32 inch wide, spared 3/32 indh. center-taprod
$\mathrm{L}_{4}-1 \frac{1}{2}$ turns of $\lambda \mathrm{N} .14$ copper wire, $1 / 2$ inch in diameter.

* $\mathrm{C}_{4}, \mathrm{C}_{5}$ andel (if should the s.lowed in value so that plugs are fairly well out from center of coil at resonance.

Ten, a superrenenerative receiver, but it should provide cxerllent results when used with any of seberal a.m.-f.m. reveivers whith are capable of tuming this rauge.

The mokdel shown in Figs. 1518, 1519 and 520 is built on a chassis of fohfod aluminum if $\times 4^{1 / 2} \times 1^{1}$ 亿关 inches in size. Space is left on the chassis fur addition of an ref. stage, if desired. The firs hatif of the $6 . J 6$ is a conventional prode crystal asollator, the seeond half acting ase a doubler, drising a bCt doubher. With the balues shown, the seromed 650 grid will have ahout 20 volts of exeitation. as measured with a high-resistance voltmetor atross R_{3}. The voltage desoloped aremes: R_{5} will be about 25 to
 sulte on the mixer grid twione the r.f imput cireuit is commerod. With the input circuit connected and adjustod to appoximately the middle of the 2 -moter bathe the exetation Solage drops to about 1 soll. which is sutfieient for good conversion with the grid-lak injection shown. A very high-resistance voltmoter should be used for these measurements. A 100 -nicroampere moter with a 0.5 megohm resistor in series is suitable.

 comverter. Vote the lived-tuned tank rircuits momited along the hatek odge of the ehasin. The two short hato at the unbrer left connect to the antenna terminala of a (One-l'en rewiver.

This type of converter. used in conjunction with a superregenerative receiver on 30 Mc. will give a degree of performane on 141 Ne. roughly eomparable to that of the reociver alone on 30 Me , With the One-Ten, it diseriminates against the poorer oscillator signals, but anything which does not swing more than 200 kre or so will be reerived with good quatioy. The added solectivity afforded hy sum an arrangement will add greatly to the effereliveness of any station in a locality where there is appreriahle arivity on $1+4$ Mc.

(1. Mobile Receiving Equipment for 2, 6 and 10 Meters

The high semsitivity. noise rejeetion, and aste. fharateristies of the superregomerative dotertor make it useful in motile operatios. The chiof difleultios inherent in this type of recciver, broadnese of tuning and ratiation of an interforing signal, can be overoome by nsing
at superregenerative stage as the second detertor in a superheterodyne receiver. The i.f.-atmplificr-and-atudio unit shown in Figs. 1521l.i2t was dexigned esperially for mobile operalion. 'Twn convorters, shown in Figs. 1521, 1.i2.:-1529, working with this unit, provide mobile rereption on $2,6,10$, aind 11 meters. 'llue pace a cailable in a particular make of car will influener the form fator of the units, but these are representative designs. The 1 wo convemers, obe for 6-11 meters and one for 2 motors, are intemded for storingepost mounting. while the i.f.-atudio unit is shatped to fit into at glose or radio eompart ment.
litule ferd be said about the i.f. unit, as bere are fow cribical factors and merhaniral layout is relatively umimportant. Onty four thoses are ued: a $6 . A(i, 511-\lambda r$. i.i. amplifier,
 firs athdia amplifier, and 6AKf second andio. Xote that hoth audiostages are transformercoupled. this method hating been used in preterenee to resistance couplinge as cexperience hats shown that the former makes for smooth, quied operation when superegenerative det.ectors are employed.

The input stage of the unit should be well shiclded, not only to prevent oseillation, but to reduce piek-up on 11 Me. When the unit is installed in a car this is not troublesome, but in homb-station work, 11-Mr. interference can berome quite severe, especially during evening hours.

The tuned circuits used in the 11-Me amplifier the superregenerative defector, and as output coupling units in the two converters, are all similar. The coils are wound of No. 22 renameded wire on National XR-i0 eore-tuned forms, the secondary winding occopying the cotite wimding spare. A simple way of secturing the primary is to wrap a haver of seoteh Tape, stioky side oull. amound the ground end of the serondary. The primary wimding will then stick as it is wound on, and holding it in place will he wo problem. I small tab of tape, or
 thror-tuhe coswertor for 6 and 10 metors commertiol to tha- IlNu. i.i. amplilier and andio $\because-l$-m. Tlar. romserorr is mantiol on the sterering pont, whil. the i.f.mit inde-
 partmatit mantion. The owiod abowe the convertor dial is an adiustable-thatm dial light.

Fig. 1522 - Wiring diagram of the i.f. unit using a super-
regenerative second detector and two andio stages.
$\mathrm{C}_{1}, \mathrm{C}_{5}-47-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{2}, \mathrm{C}_{3}-470-\mu \mu \mathrm{fl}$. midget miea.
$\mathrm{C}_{4}, \mathrm{C}_{8}-100-\mu \mu \mathrm{fd}$. midget mica.
$\mathrm{C}_{8}, \mathrm{C}_{7}-0.0068-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{9}, \mathrm{C}_{10}-\mathbf{2 5} \cdot \mu \mathrm{fd}$. 50 -volt electrolytic.
$\mathrm{C}_{11}-0.1-\mu \mathrm{fd} .600 \cdot$ volt tubular.
$\mathrm{R}_{1}-270$ ohms, carbon.
$\mathrm{R}_{2}-10,000$-ohm potentiometer.
$R_{3}-1000$ ohns.
$\mathrm{R}_{4}-4.7$ megohms.
$\mathrm{R}_{5}-50,000$-nhm potentioneter.
$\mathrm{R}_{6}-4 \overline{7}, 000$ ohms, 1 watt.
$\mathrm{R}_{7}-0.25$-megohm potentioneter.
$\mathrm{R}_{8}-2200$ ohms.
$\mathrm{R}_{9}-0.22$ megohm.
$\mathrm{R}_{10}-680$ ohms.
All resistors $1 / 2$-watt type unless otherwise indicated.
household cement, will suffice.
The three-tube converter shown in Figs. 1521,1525 , and 1526 covers the $50-54-\mathrm{Mc}$. and $27-30-\mathrm{Mc}$. ranges by means of plug-in coils. Using the 11-Mc. intermediate frequency, it is possible to cover the two bands with a common oscillator coil, the oscillator running on the low side of the signal frequency for $50-5 \cdot \mathrm{Me}$. and on the high side for 27-30 Mre. It is thus merely necessary to change the mixer and r.f.
$\mathrm{L}_{1}, \mathrm{I}_{2}-22$ turns No. 22 enam., close-wound on National XR-50 form. Jrimary: 3 turns No. 22 cham. close-wound on layer Scotch Tape over ground eud of L_{1}.
Ch_{1}.- Midget filter or audio choke.
J_{1} - Coaxial soeket (Jones S.201).
J_{2} - Octal socket on power cable.
J_{3} - 'Speaker or headphone jack.
$P_{1}-5$-prong plug for converter power, mounted on back of chassis.
P_{2} - Octal plug, mounted on bach of chassis.
$\mathrm{RHC}_{1}-2.5-\mathrm{mh}$. r.f. choke (Natiomal R-100).
$1 \mathrm{FFC}_{2}$ - One "pie" from National R-100, mounted on 1 -watt resistor.
I $\mathrm{F}^{2} \mathrm{C}_{3}-80 \mathrm{mh}$. r.f. choke.
S_{1} - S.p.s.t. toggle switch, bat-handle type.
$\mathrm{S}_{2}-\mathrm{S} . \mathrm{p}$.s.t. switch, mounted on R_{7}.
$\mathrm{T}_{3}, \mathrm{~T}_{2}$ - Midget interstage transformers.
coils when changing bands. Three tubes are used: a $6 . \mathrm{AK} 5$ r.f. amplifier, a 6.4 K 5 mixer, and a 6Ct oscillator.

The converter layout, shown in Fig. 1525, makes some sacrifices in arecssibility for the sake of compactness; however, by planning the construction carefully, the builder should have no trouble in assembling or adjusting the converter. Parts are mounted on an "L"-shaped aluminum chassis, with a cover of the same general shape, making a case which is
 2 inches wide, 3 inches high, and $61 / 2$ inches long.

Ortal sockets for the plug-in coils (Millen 74001 shielded core-tuned forms) are mounted along the top edge, with the corresponding tube sockets projecting from the right side. The oscillator compartment is at the front, nearest the dial - a "must" when flexible couplings are used for ganging. The middle compartment houses the mixer-stage components,

Fig. 1523 - Rear view of the 11 -Mc. i.f.audio unit. The tubes nearest the panel are the i.f. amplifier, left, and the superregenerative detector. 'The octal plug on the back of the chasesis is for the power cable, while the 5 . prong plug connects through auothe: cable to the couverter. 'The toggle switch is the B+ stand-by switch.

Fig. 1524-Bottom view of the i.f.atudio unit, showing arrance. ment of parts. At the upper right, in a partially -shieded compart ment, are the parts comprising the i.f.-amplifier input circuit. In the center are the detector socket and asserciated jairtn. At the left and rear are the audio components.
including the earetuned i.f. output coupling transtorner. Coupling between the oscillator and mixer is obtained by means of a piece of "push-back" wire which is soldered to
 the oscillator tuned circuit and then wrapped around the r.f.-plate or mixer-grid lad. The couplings should be set at the lowest value which will provide maximum signal strength. At the back is the r.f. section, which is provided with a consial input jack for antema connection.

As this converter may be used with conventional i.f. systems, provision was made for incorporating a.v.e. Instead of grounding the grid returns from the r.f. and mixer tubes, these returns are brought out, through resistors R_{1} and R_{5}, to a separate pin on the power-cable socket. The corresponding pin in the i.f. unit is commeeted to ground.

The oscillator circuit is high- C, for maximum stability, the eapacity other than that of the

These are niea trimmers, to which some may raise the objection of instability, but the coil inductance is adjusted so that the trimmers tune nearly wide open, so that small changes in plate spacing have a neghigible effect on the capacity. Tracking is made easy by the ad-justable-inductance feature of the coil forms used.

In putting the eonverter into operation it is best to start by establishing the tuning range of the oscillator, which may be checked with an absorption wavemeter or monitored by a receiver which is capable of tuning from 37 to 43 Me . It is useful to have the receiver capable of tuning in the high end of the ohd f.m. band, so the oscillator may be made to hit 37 Mc. or variable condenser being supplied by a fixed ceramie padder, consisting of $20-\mu \mu \mathrm{fd}$. and 27$\mu \mu \mathrm{fd}$. units in parallel with the tuming condenser. Adjusitable padders are used on the mixer and r.f. circuits to facilitate tracking.

Fig. 1525 - Interior view of the 28. and 50Mc. converter, with cover removed. "lhe mica trimmers are ad. justed through small holes in the chassis cover. The oscillator compartment is at the fromt (right), the miser in the middle, and the r.f. amplifier at the left.

 LM.I5-redured to 2 nator and 2 rotor plates).
$\mathrm{C}_{2}, \mathrm{C}_{4}-3-30-\mu \mu \mathrm{fd}$. mirait trimmer.
 duced to 4 stator and 1 rotor plates).
 mica.
$\mathrm{C}_{10}, \mathrm{C}_{1 \mathrm{~s}}-100-\mu \mu \mathrm{Ff}$, mica.
$\mathrm{C}_{14}-4.7-\mu \mu \mathrm{Fd}$ ceramie.
 lel).
l, , $\mathrm{R}_{5}-0.22$ megolim.

$\mathrm{R}_{4}, \mathrm{R}_{7}-1.0$ megohm.
$\mathrm{R}_{6}-6800$ whms.
$\mathrm{H}_{10}-4 \overline{4}, 000$ ohms. (All resistors $1 / 2$-watl rating.)
so at the low-frequency end of its range. If the inductance of the coil is properly adjusted, 43 Me. (oscillator frequency) will come at the high end. This gives a spread of about 70 divisions for the $50-\mathrm{Mc}$ c. band, and about 50 divisions for 27 to 30 .Ie. If more spread is desired for the 10 -meder bant, a separate oscillator coil for that hand may be made. and additional padder capacitane built into the r.f. and mixer eorils for 10 meters.

Once the oscillator is tuning the desired range, the miser should he put into operation. For test purposes, a temporary primary may be wound on the mixer coil, using two of the spare pins on the coil and sockel for bringing out the leads theret.e. From here on, a signal generator which tunes the desired frequency ranges is useful, but it is not absolutely neeessary. A signal from a VFO, or the harmonics of several erystals, can he mate to serve the same purposis. The signal from the oseillator in a communications receiver can be used also. The sigual sirarce should be fed into the converter, by direct comection to the temporary primary, or by means of a pick-up antemna, and the output of the converter fed into a communications receiver tuned to 11 Me . If the converter is working there will be an appreciable increase in reveriver noise as the plate voltage is applied to the mixer, and this will increase as the mixer grid and plate circuits are resonated.

Tracking is accomplished in the usual way: except that no squecering of turns is required for inductance adjustment. With a signal near the high end of the band, adjust the trimmer,

 long. $51 \mathrm{Mc}: 4$ turns to. 29 ramm, 3 , inth long.

 ing: 2 turns No. 20 "pushobatik," wound at cold end of La.
Lat- Oacillator coil. $2^{1 / 2}$ turns No. 22 cmant, 3 it inch long. Ferdoback winding: 2 turns Na 23 d.ac. interwound herween turas of S_{4}.

J_{2} - 2 -prony suchet on power cable.
$P_{1}-$ Cosasial phig (Jones P'201).
C_{4}, for maximmm signal or nuise. Tunc to near the low end, and recherk the setting of C_{4}. If the trimmer caparity has to be increased, the coil inductance is low; if the caparity has to be decreased the indurtance is ton high. Adjust the coil induct ince be moving the core (moving the core into the coil increases the inductance) and repeat the trimmer-set ting process until the band can be tuned without any readjustment of ("t. When the mixer is functioning properly the same prowedure should be followerl with the r.f. ewil. It is well to note the performane of the mixer alone, as this will serve to determine whether the r.f. stage is performing as it should. There should be a notircable increase in sunsitivity when the r.f. stage is added, but if the miser is functioning correedy it should be possible to get quite good performance with the mixer alone.

It is well to make all eonverter adjustments with a communicalions rewiver serving as the i.f.. as it is difficult to ohserve minor changes when the superregronerative deteetor is used, berause of its strong a.v.e. characteristies. The i.f. system should be peaked at 11 Mc. with a signal generator, and then the converter connected to it for an over-all check. The performance, using the superregencratioe i.f. unit will be somewhat lower that that of the converter-receiver combination, but it should be possible to copy any si,nal on the mobile set-up which is solilly readable when the communieations receiver is used for an i.f. system.

The circuit of the two-tube $14+$ - Mc. converter, shown in Figs. 1527-1529, is similar to the lower-frequency unit, except that the r.f.
stage is omitted for the sake of simplicits. Even without the r,f, stagre, performance well athere that of the better superregembative reedions is obtainable. The 2-ineler romberper
 tor. Beodusce the miser luning is fairly broad, mo attempt was made to manig the tuned circuite and moly the owallatur is 1 umen hog the vormior dial. The miser thang is provided with a frombpancel knob. lut oncered for maximem signal at lat Me.. it an be laft in the same ! band with a neogligible saterifiee in semsitivily.

From the sehematio diagram. Fire. 132 s , it may be seen that the rirouits of the converters are somewhat simitar exerpet for the elimination of the rif. stage. and the use of at cathode-tappord coil in the oseillatur areuit of the $2-$ meter unit. The convorter was originally laid out using a diJf push-push mixer. but due to the diftienty y of obtaming satisfactory performation with this arrangement, it was changed th the G.VK゙. The "butherfy" mange eontlenser used is a hangover from the diJt set-up - an orelinary Trim-Aire, with its stator sawed in half, would do.

All the parts are monated on the front manel. so that the complate unit san tre pemoved from the case intart. seretions of the foblect-over edge of the case werr satwed ont at several points 60 provide spare for cast removal. The osciltalor athal mixer aswombles are momedon on individual sulpatals ul folded alumimum. and most of the wiring ran be done before theor assemblies are fastemed to the front panel. The

Fig. $15: 3$ - Front view of the 114 - Me. converter. The entire unit is contained in a standard $3 \times 4 \times 5$-inch case.
coavial socket for the antenna connertion is monmed on a soparate bracket, and projects through a hole in the batek of the caso.

Injection of oseillator vollage is accomplished in a manner similar to that used in the other converter. cexerpt that a smaller capacity must be used, otherwise the oscillator will "pullout" When the miser cireuit is tuned to resonance. A $4.7-\mu \mu \mathrm{fil}$. ceramic combenser is connected to the hot end of the oscillator tuned eirenit, and the eompling lade is run from this eondenser to the mixer grid leat. By bringing the two tumed arruits closer together. it would be unnecessary to provide athy coupling other than that between the two coils.

$\mathrm{C}_{1}-3-30-\mu \mu \mathrm{fin}$. mica trimmor.
C_{2} - Carduell "butterll " condenser. 1 rotur plate with 1 - Aator plate or cach side, sore trat.
$\mathrm{C}_{3}-\mathbf{2 5}-\mu \mu \mathrm{fil}$. trimmer with screwdriner allostment (Millen 2a023).
C_{4} - Oserillator tuning emblenarer (Willen 20015 reduced to I sator andl rotor flat").

C:- $1-\frac{-\mu}{}$ fid erramic.
$\mathrm{C}_{9}-\mathrm{t}_{1} \mathrm{i}-\mu_{\mu} \mathrm{ff}$. wramic.
C_{10} - i (10- $\mu \mu \mathrm{fil}$, micat midget.
R_{1} - 10.0060 ohms.
$\mathrm{R}_{2}-1.0$ mogohnn.
$\mathrm{K}_{3}-2.0$ ohms.

R:- 10.0601 ohan-
All rex-bore 1 y-watt carlm.
I. - 3 turne No. 12 timped. 3 in inch long. as-inch inside diameter P'rimary: 2 turns 才o, 20 "punhhach" internound at cold emb of $/$. 1 .
 AR-in Form. Coupling winding: 3 turn- Xo. 29 enam. Wrund on laty or of Sotech Tane over cold end of I.2.
 diameror tapped 1 turn from colel end.
J_{1} - Coasial surinat (Jomes - -201).
J_{2} - 5 -pronk acoket on pown rable.
$P_{1}-C o a x i a l$ plug (Jones P-201).

The oscillator tuning condensers C_{3} and C_{4}, are similar mechanically, except that one has a shaft to which is affixed the vernier dial, and the other a screwdriver adjustment. It is important that two similar condensers be used in this arrangement, where the two are mounted at right angles, in order that the stators and rotors line up for direct connection without leads. With the condensers and coil used here, the 144 -Mc. band covers about 50 divisions on the dial, permitting coverage up to 150 Mc. This is useful, as commercial signals are available in this range in many locations, and they are quite helpful in making receiver adjustments and in judging the condition of the band.

To do a completely effective job of mobile operation requires considerable attention to noise reduction. With this sort of receiver, the worst interference comes, not from the car's ignition system, but from the generator. The superregenerative detector provides effective silencing for noise pulses of short duration, such as ignition interference, but its inherent a.v.c. characteristics make it respond to a continuous noise such as the whine of the generator, to the exclusion of any weaker signal. It is for this reason that the use of " B " batteries for receiver plate supply is recommended. There is almost certain to be enough noise from any vibrator or generator plate supply to effect at least a slight reduction in the over-all sensitivity of a recciver of this type.

Several types of reception are possible through variation in the setting of the regeneration control. With the plate voltage on the detector near maximum, the loudest "shush" and widest bandwidth are obtained. This is the setting normally used for $1.4-\mathrm{Mc}$. reception. Barking off the regeneration control reduces the hiss level and sharpens the response, and best all-around reception on 28 or 50 Mc . is usually obtained in this position. Further reduction of the plate voltage results in a whistle being heard as carriers are tuned in, and quite satisfactory c.w. reception is possible at this setting. From here down, the detector is operating in a condition in between superregeneration and straight regeneration for a considerable variation in the plate voltage. It goes into straight oscillation and then out of oscillation entirely as the voltage is reduced nearly to zero. Reception of modulated signals is possible when the detector is operated in a manner similar to that used with regenerative detectors, and "hiss-less" reception is possible at this point. Sensitivity is considerably

Fig. 1529 - Back view of the 2 . meter converter. Two sinilar condensers mounted at right angles comprise the tuning assembly for the oscillator in the 2 -meter converter.
lower, however, giving striking proof of the value of superregeneration as a means of attaining high performance with a few tubes.

(1. F.M. I.F. Amplifiers

As was pointed out carlier in this chapter, an f.m. superheterodyne receiver differs from an a.m. receiver mainly in that the pass-band of the intermediate-frequency amplifier must be wider, and in that a limiter and discriminator are used instead of a second detector. The front end of an f.m. receiver usually follows the conventional pattern, and any v.h.f. converter can be used for the purpose if its output frequency is that of the i.f. amplifier.

The f.m. i.f. amplifier employed with the converter may be either the i.f. amplifier of a standard f.m. broadeast receiver or one built especially for the purpose by the amateur himself.

If the i.f. system of an f.m. broadcast receiver is used, the intermediate frequency should first be determined so that the output of the converter can be designed to tune to this frequency and coupled to the grid of the mixer tube of the receiver. If the output transformer in an existing converter does not tune to the required frequency, it is usually feasible to add or remove enough turns from the coil to enable it to be tuned to the receiver i.f. A change in the h.f. oscillator tuning will also be required.

The use of an f.m. i.f. amplifier of this type, in conjunction with a suitable converter, is highly recommended for reception of modu-lated-oscillator signals such as are common on the $144-\mathrm{Mc}$. and higher-frequency bands. If the received station holds down its modulation to the point where the signal just fills the passband of the i.f. amplifier, best quality and signal-to-noise ratio will be ohtained. Under these conditions weaker signals can be received more intelligibly than with the simpler types of receiving systems, and one's receiving range can be extended considerably.

V.4.7. Jransmitters

Beginning with the v.h.f. region, frequency assignments are no longer in direct harmonic relationship. This fact, coupled with the neeessity for extreme care in seleetion and arrangement of components for low circuit capacitance and minimum lead inductanee, makes it highly desirable to construct separate r.f. equipment for v.h.f. work, rather than attenipt to adapt for v.h.f. use a transmitter designed for the lower frequencies.

Transmitter stability requirements for 50 Mc . are the same as for the lower-frequency bands, and, by careful attention to component placement, a rig may be made to serve well on 50 , 28, and even 14 Mc., but incorporation of 50 Mc. and higher in the usual "all-band" transmitter is not generally feasible.
At 144 Mc . and higher, no restrictions are imposed on transmitter stability, except that the whole emission must be kept within the band limits. This permits the use of modu-lated-oscillator transmitters, and a large proportion of the stations now working on 144 Mc. and above cmploy this simple and economical type of gear. By proper choice of tubes and circuits, crystal control is applicable to 144 Mc. however, and the greatly-increased occupancy of the band in metropolitan areas makes stabilization of at least the higher-powered stations almost mandatory, if the full possibilities of the band are to be realized. Crystal control, or its equivalent, may even be employed on 235 and 420 Mc ., but the use of these frequencies has not reached the point where stabilization is particularly important.
Throughout the v.h.f. and u.h.f. regions, frequency modulation as well as amplitude modulation is permitted by the amateur regulations. The 300 -watt transuitter for 50 and 144 Mc. described in this chapter makes provision for the use of f.m., and any crystal-controlled transmitter can be adapted for f.m. through the addition of a frequency-modulated oscillator to replace the crystal, in the manner described in Chapter Fourteen.
At 420 Mc . and higher, most standard transmitting tubes cannot be employed with any degree of success. Instead, special tubes designed for these frequencies must be employed. Such tubes have extremely close electrode spacing, to reduce transit-time effects, and are constructed with leads having virtually no inductance. Several more-or-less-conventional triode tubes are now available which
will operate with fair efficieney ap to above 500 Mc., and the disk-seal or "lighthouse" variety will function up to about 3000 Mc .
Above about 2000 Mc . the most useful types of tubes are the klystron and magnetron. These are essentially one-band devices, the frequencydetermining circuits being an integral part of the tube itself. Tuning over a small frequency range, such as an amateur band, is possible, usually by warping the cavity employed, but the tubes are not independent of frequency in the conventional sense.
Practically all the recently-opened bands in the ultrahigh and superligh regions have already seen some pioneering activity, and they. offer interesting possibilities to the experimen-tally-inclined.

C. A 40-Watt A.M.-F.M.

50-Mc. Transmitfer

The transmitter shown in Figs. 1601-1603, inclusive, has an output of approximately 40 watts in the $50-\mathrm{Mc}$. band and is so designed that either frequency or amplitude modulation may be used. Aside from power supplies, no auxiliary apparatus is needed for f.m. transmission, since the primary frequency control is a variable-frequency oscillator and a reactance modulator is included in the unil. For amplitude modulation, a modulator having an audio power output of about 30 watts is required.

As an alternative to electron-coupled VFO control, provision also is made for erystal control, using a Tri-tet oscillator. As shown in the circuit diagram, Fig. 1602, the crystal oscillator and e.c. oscillator have a conmmon plate circult, the irequency being doubled in this circuit in both cases. The oscillators are followed by a 6 V 6 doubler, and this in turn drives the final amplifier, an 815.

The tuned circuits are designed to cover a little more than the range required for the $50-\mathrm{Mc}$. band so that the transmitter as shown can be used to drive a power frequency multiplier tripling into the $144-\mathrm{Mc}$. band. The VFO grid circuit tunes from 12 to 13.5 Mc ., the range from 12.5 to 13.5 Mc . being used for the $50-\mathrm{Mc}$. band, and the range from 12 to 12.35 Mc. being available for the $144-\mathrm{Mc}$. band. When crystal control is to be used, frequencies within the appropriate ranges should be selected, since the oscillator portion of the Tri-tet circuit works over the same frequency range as the grid circuit of the VFO. Appropriate
crystals in the 8 -Mc. range may also be used, as the 6AG7 triples effectively.

The common oscillator-plate circuit tunes from 24 to 27 Mc., with the $6 \mathrm{~V}^{6} 6$ doubling to 48 to 54 Me. Either oscillator may be seleeted by means of a switeh, $S_{1 A-B-c ;}$ which closes the cathode circuit of the desired oscillator. To prevent any possibility of accidental frequency modulation when amplitude modulation is being used, a three-position switch is employed, giving a front-panel choice of erystal or VFO control (for a.m. or c.w.) and VFO control with f.m.

Stability under changes in supply voltage is attained by supplying the VFO sereen from a V12-150. This holds the screen voltage at 150 when the plate potential is varied from 150 to 600 volts. The cathode current to the oscillator, measured in J_{2}, remains practically constant when the plate voltage is varied over this wide range, and the total frequency shift is only a few hundred cycles. With variations in plate voltage which would result from even the most severe line-voltage fluctuations, the frequency shift in the oscillator is ouly a few cycles.

Other soures of VFO instability are excessive tube and component heating, variations in circuit capacity due to nonrigid mechanieal design, and interaction because of improper placement of components. In this design, oscillator input is held to less than half the rated plate dissipation of the tube, keeping drift because of heating to a minimum. All circuit components are mounted below the chassis, away from the heat given off by the metal tubes, and in such position as to prevent interaction so far as possible without extensive shielding. A silvered-mica fixed condenser is used in parallel with the grid coil, and rigid components are used throughout. The result of these precautions is a VFO whose stability compares favorably with that of the associated crystal oscillator.

The transmitter is built on a $10 \times 17 \times 3$ inch chassis, with all components execpt tubes, crystal and the final-stage output eircuit mounted below the deck. Viewing the unit from the top front, the microphone transformer and $6 S A 7$ reactance modulator are at the right front, with the VR-150 at the rear, adjacent to the antemna coupling assembly. The crystal, crystal oscillator, and VFO are grouped near the middle of the chassis, with the doubler and final tubes at the left.

The front panel is a standard $83 / 4 \times 19$-inch crackle-finished Masonite unit. The VFO tuning dial is centrally placed, with the oseillator and doubler tuning condensers at the left, and the $a . \operatorname{m} . / \mathrm{f} . \mathrm{m}$. switch and deviation control at the right. The final plate tming knob is above the VFO dial, at the left, and the swinging-link adjustment is at the right. Jacks, from left to right, are J_{4}, J_{3}, J_{2} and J_{1}.

The two wires protruding through the chassis close to the 815 are neutralizing "condensers," labeled ("N1 and $C_{\mathrm{N} 2}$ on the schematie diagram. They consist of two picces of No. 14 enameled wire sohdered to the grid prongs of the $\$ 15$ socket, crossed under the chassis, and brought through the chassis and held in position hy twosmall Isolantite feed-through bushings (Millen 32150).

Adjustment is simple and straightforward. The tuning range of the VFO should be checked first. This may be done with only the two oscillator tubes in place, and the a.m./f.m. switech in the VFO position. The oscillator plate condenser should be tuned for maximum r.f. indication in a neon bulb adjacent to L_{2}, and the frequency cherked in a receiver having a fairly accurate calibration for the region around 12,24 , or 48 Mc .

The size of the VFO grid coil, L_{1}, is extremoly eritical, and if some proning of this coil is to be avoided it would be advisable to make the $50-\mu \mu \mathrm{fl}$. section of C_{10} an adjustable

Fig. 1601 Fromt vien of the Sl). Ale a, m/f. mm . Transmitter, Thes r.f. action of the unit occupie- the left-hand portion of the chan. sis. The CR-150, $6 \mathrm{SA}_{\mathrm{A}} \mathrm{reatance}$ modulator, and microphone transformer are at the right. Note the neutralizingcapacity wires at the left of the 815.

Fis. 1602 - Wiring diagran of a $50-\mathrm{Mc}$ a.m./f.m. transmiter.
$\mathrm{C}_{1}-0.01-\mu \mathrm{fll} .400$ volt paper tubular.
$\mathrm{C}_{2}-0.0011-\mu \mathrm{fl}$. mica.
$\mathrm{C}_{3}-8-\mu \mathrm{fl}$. 45() -volt eletrolytic and $0.005-\mu \mathrm{fd}$. mica in parallel.
$\mathrm{C}_{4}, \mathrm{C}_{19}-470-\mu \mu \mathrm{fl}$ mica.
$\mathrm{C}_{5}, \mathrm{C}_{5}, \mathrm{C}_{4}, \mathrm{C}_{12}, \mathrm{C}_{14}, \mathrm{C}_{16}, \mathrm{C}_{17}, \mathrm{C}_{21}, \mathrm{C}_{22}-0.0022-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{6}-100-\mu \mu \mathrm{fl}$. midpet variable, screwdriver adjustment (Hammarlund AP'C-100).
$\mathrm{C}_{8}-50 . \mu \mu \mathrm{fl}$. variable, "straight-line-frequeneg" type (llammarlund M(:-.0)-3).
C_{10} - 100 ($-\mu \mu \mathrm{fl}$. and $50-\mu \mu \mathrm{fd}$. in parallel (Sickles Silvercap). See text.
$\mathrm{C}_{11}-100-\mu \mu \mathrm{ft}$. mica.
$\mathrm{C}_{13}, \mathrm{C}_{18}-50-\mu \mu \mathrm{fil}$. variable (IIammarlund MC-50-S).
$\mathrm{C}_{15}-47-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{20}-35-\mu \mu \mathrm{fd}$. per section, split stator (1Iammarlund M(CD. $35-\mathrm{MX})$.
$\mathrm{C}_{\mathbf{N}_{1}}, \mathrm{C}_{\mathbf{N} 2}$ - Nentralizing caparity. See text.
R_{1} - 0.5 -meqolum volume enntrol, switeh type.
$\mathrm{R}_{2}-680$ ohms, ${ }^{1} \frac{1}{2}$ watt.
$\mathrm{K}_{3}-47,000$ ohms. 1×2 watt.
$\mathrm{K}_{4}, \mathrm{R}_{6}-0.22$ mogwhin, $1 / 2$ watt.
$\mathrm{R}_{5}-4700$ ohms. ! 2 watt.
$\mathrm{K}_{7}, \mathrm{R}_{0}-0.1$ megnhm. Lo watt.
R_{s} - 5000 ohms. $\overline{5}$ wathes.
$\mathrm{R}_{10}-220$ ohms. I watt.
R_{11} - 15.000 ohms, 1 watt.
$\mathrm{R}_{12}-15,000$ olums, 5 watt.
padder condenser, such as a Hammarlund APC-j0, which can then be adjusted until 12 Me. appears at about 90 on the VFO vernier dial. The high-frequency limit, 13.5 Me., should then come at approximately 10 , giving a spread of about 18 divisions for the 144 -Me. bard and 54 divisions for the 50-Mc. band. Without such a variable condenser, the number of turns on L_{1} must be adjusted by cut-and-try until the proper tuning runge is secured. In either case, the final adjustment of band coverage should be made with the 6SA7 reactance modulator in its socket so that its plate-to-ground capacity will be aeross the tuned circuit.

Operation of the erystal oscillator may next be checked. With a 100 -ma. meter connected
$\mathrm{L}_{1}-8$ turns Vor $^{2} 18$ tinned, 3 -inch diameter, 1 -imeh
 from sronnd emd.
$L_{2}-10$ turns No. 14 e., 1,2 -inch diameter, spaced one diameter, air-wound.
$\mathrm{L}_{\mathrm{a}}-4$ turns No. 14 e., ! ${ }_{2}$-ineh diameter, spaced one diameter. ar-wound.
$\mathrm{L}_{4}-5$ turns earth section, Xo. 14 e., l- S inch diameter. Adjuat spacing for berst emphing. See text.
$\mathrm{L}_{5}-3$ turns each seetion, No. 12 , tinned, $11 / \mathrm{s}^{2}$-inels diameter, spaced one diameter.
$\mathrm{L}_{\mathrm{a}}-2$ turns No . 14 e., 1 -inch diameter, swinging link. Sec photos and ecex.
$L_{7}-35$ turns So. 24 d.c.e., close-wound on 9/16-inch diameter furm (Xational PRE-3).
B_{1} - Mirophune batery (${ }^{\text {(Burgess). }}$
J_{1} - Open-circnit jack.
$\mathrm{J}_{2}, \mathrm{~J}_{3}, \mathrm{~J}_{1}$ - Clnaed-circuil jatk.
RFCi, $\mathrm{RFC}_{2}, \mathrm{RFC}_{4}-2.5-\mathrm{mh}$. r.f. choke (National R-100).
RFC $_{3}-2.5-m h_{1}$ r.f. choke, end-momenting (i)ational R-100-(1).
$S_{1 A-b-g}-3$-powition 3 -contact rotary switch (Matlory).
S_{2} - $\mathrm{S}_{\text {with }}$ on deviation comernl, k_{1}.
T_{1} - Single huttom mierophome tranformer ('Thordar$\sin (1.83 .178$).
$\mathrm{T}_{\mathbf{2}}-6.3$-volt 4-amp. filament transformer.
through J_{2}, andithe a.m./f.m. switch in the "erystal" position, adjust the erystal-oscillator cathode tuning, C_{6}, until the corrent dips sharply, indicating oscillation. This control should be set at the point, which gives the lowest cathode current consistent with ensy crystal starting. Cathode current should be similar for both oscillators - about 20 ma.

The doubler stare may next be tested by installing the GVG and 81.5 tubes, leaving the phate power off the 815 . A meter having $210-$ mit. range should be used to measure the grid current in the 815 , at J_{3}. Whe current should come up to about 6 mas. when the spacing between L_{3} and L_{4} is optimum, though this is more than is actually needed for satisfactory operation of the 815.

Fig. $1003 \rightarrow 1$ mancolinasie view of the .jo- \/e. a.m./f.m. transmitter. At the lower center are the VFO grid coil and atsobiated components. Over these are the erystal :and cathode cirruit for the 0.19:7 ersalal owillator. At the apmer right are the inductivelycoundeld bemblar mite coil and final grid roil. '1'he roil and comblenser at the lower risht eomprise the plate circuit which ixcommon to both oncillators. The dowher pate tuming condenser is at the far right.

Next the position of the ucutralizing wires can be adjusted. The 815 plate tuning condenser, C'no, slowuld be rotated slowly, manawhile watehing the grid current for any variation. The pesition of the neutralizing wires should be adjusted until there is no sign of fluctuation in grid current as the tuming comdenser is rotated. A length of wire extending about one inch above the metal ring on the 815, at a position about $1 / 8$ inch from the class envelope, should be sufficient. If this should be inaderquate small tabs of eopper or brass cam be soldered to the ends of the wires to make additional capacity to the tube phates. The neutralizing caparity is necossary in order to ensure completely stable oprration.

After mentralization, power may be applied to the 815 plater, while noting the cathede current as indieated on a $200-$ mata. meter plugred into J_{4}. The dip at resonanee should hring the current to about 50 mat. with no lowal. A 25watt lamp connected across the swinging link terminals should then give a full-hrilianey indication when the link is aljusted for maximum coupling. This is with 500 volts applied, which should be used only after it has bern determined that evervhling is functioning properly. If trouble is encountered, further tests should be made with reduced voltage to avoid damaging the tube.

When the tramsmitter is put on the air, the full 500 volts at 150 mat may be used for f.m. or c.w. oparation. For plate modulation, the voltage should be reduced to about 400 for maximum tube life, even though the tube plates may show no color at the higher voltage.

For frequency modulation, the 65A7 reartance modulator provides the simplest possible means of obtaining the desired swing in frequencs. It may be operated with a singlebutton microphone plugged into J_{1}, or the modulator may be driven from a speech amplifier and crystal or dynamic microphome. The output of the speech amplifier should then be connected across potentiometer R_{1}, and T_{1} may
be omitted. In either casco. R_{1} serves as a deviation control, the swing becing adjusied to suit the reeriver at the station being worked.

In addition to the filament tramsionmer, Tin, indicated in the circuit diagran, the transmitter reguies two plate power supplies. One for the 815 , shoulal have an sutput of 400 to 500 volts at 175 mat: the other, for the remaining tubes, should deliere 300 volts at approximately 100 milliamperes.

4. 300-Watt Driver-Amplifier for 50 and 144 Mc .

A companion high-power driver-amplifior for the 50)-Me. transmitter deseribed in the preceding soction is shown in Fت̈gs. $160+101607$, inclusive. The amplifier uses a pair of 35-T(a tubes in push-pull while the driver, a frequency tripler used for $1+4 \mathrm{Mr}$, onls: is a single $35-\mathrm{T}$ (F . If oprration on $14 t$ Mre is now desirel the driver may be omitted, in which cese everything to the left of terminals k - β ' in the circuit diagram, Fig. 1606, may be ignored.
Looking at the front-panel view, the two large dials are the plate tuning comtrols for both stages. The small dial at the left contrels the swinging link, the center dial is the grid tuning centrol for the final stage, and the one at the far right is the tripher grid luning control. All parts are mounted well hack from the pancl, and Lucite rods are used for extemsion shafts.
The rear viow shows the general placement of parts. At the left, attachocd to the back of the $7 \times 17 \times 3$-inch chasis, is the jack bar containing terminals $A-A$ and $\left(--C^{\prime}\right.$, into which the link from the exciter is pluged to furnish drive for either the tripler or finai. The tripler grid coil, L_{1}, is just above the link socket. with the plate condenser, ('s, and coil, L_{2}, for this stage between the tube and the front pancl. The link between L_{3} and L_{2} is a plug-in affair, and its socket (which is a mechanical mometing only) is between the tripher plate and final grid condensers. Between the grid tuning comdenser and the final tubes are the ganged neutralizing

Fip. 1604 - Front view of the 300.watt driver-amplifier for $\mathbf{5 0}$ and li4 Mc. 'lhe two large dials are the plate tuning eontrols. 'I'he small dial at the left arljuate the purition of the output eoupling link, the center dial is the
 small dial is the tripler-grid tuninge control. Arrose tlse lower venter are the hlament switeher and grid-turest meter jack.

combenares. These are triple-spared midget condensers mounted back-lo-back with coupled shafts. The final tank condenser is mounted as elosely as porsible to the two tubes at the right. The jark bar for the final pate coil and the homem:tde swinging link assembly are at the far right. All eomponents are mounted as clowe togrether as pessible without being so crowded that tubes camot be removed from the sockets.

When the amplifier is to be need on SO Me. the switeh x_{1} is left open so that the filament of the tripler will not dieht when sis is closed. The link from the ex eiter is plased into terminals ('-(' in the jarel bar, which is a Millen Type fo20:5 eoit sodked. The output of the exciter is thas commered to the link terminats on the final gridecoil sorket. L_{3}. whirh is a National Type $\mathcal{N} 13-16$. The phor-in link is left out of its socket, $B-B$, which is a Millen Type 33002 crystal socket mounted on a small cone stand-off.

For operation on 14t Me., switela S_{1} is dosed, lighting the filament of the tripler tube. The exciter link is inserted at terminals $A-A$ on the link jack bar, coupling the exeiter to the tripler grid coil. L_{1}. The plug-in link which transfors the energy from L_{2} to L_{2} is inserted in its socket, and 1 lf-Als, coils are inserted in the sockets: for $L_{\text {a }}$ and L_{i}.

In order to diminate the st mas capacitanere and imburtane usually meonntered in any
plug-in base, the 144-Mc. coils for L_{3} and L_{4} are mate to plug directly into their respective sockets. The grid coil. being of No. 12 wire, fits the soeket contacts; the plato enil is fitted with pins removed from an old tube base or plug-in coil form. For the same reason, the phag-in link terminals on the L_{3} coil socket are not used for $1-4 \mathrm{Mc}$.

The final-stage plate tank condenser is made from a Cardwell dual nentralizing condenser, which originally had an insulated flexible conpling between the 1 wo rotor sections. This was removed and a wetion of $\frac{1}{\text { dinch brass }}$ rod. tapped for ese thread. Was inserted in its plater. A piere of $1 / 8$-inch thiek hacite was fitted to the bottom of the condenser assombly and serves as a mounting base. The result is a splitstator condenser which has sufliciently wide spacing to eliminate the danger of flash-over, yet is extremely compatet.

There is ratly no neecessity for a plug-in coil at L_{1}, inasmueh as it is never changed, but it was employed to permit the use of at standard commereial unit. Two turns wore removed from one end, making it essemtially an condlinked roil. The same type of coil (National A R-16, 10-C) assembly is used for the $50-\mathrm{Mc}$. coil for I_{-3}. One tum was removed from each fond in this case, a center-linked assembly being needed at this point.

Meters should be provided for reading the (ripler plate, final gricl. and final plate currents,
 unit wi:' Ill. Vc. coila in place. Ill compenent are gromped for minimum latallenght. foreite roblo are uaid for extersion shafte on all tuning erntrol-. Note the phation link betwern the tribler plate woil and the final mrid circuit. Fiovilute linh-, for the final grid- and out jut-empling rirevits, are low-lessi300-ohm line (Imphonol:21-456).

（is－15－μ fol．me，scetion，split stator（ITammarland Hだラ
Cio，CH－Voutralizing condenaers（Caduell Trim－ Arr， 2 plate ${ }^{\text {a }}$ ，triple spacing）．
$\mathrm{C}_{12}-1-\mu \mu \mathrm{fd}$ ．per stotion，split stator（Cardwell Eil）－1－ 1H1）．Ser text．
$\mathrm{R}_{1}-50,010 \mathrm{O}$ olm $\mathrm{m}=10 \mathrm{watts}$ ．
R_{2}－ 30100 olme， 10 watts．
$R_{3}-250$ ohms． 10 watt－．
$\mathrm{I}_{1}-6$ tums Xo． $18.1^{1}{ }_{4}$－ineh diametre， $13 / 16$ inclies lonk，3－turn ernil link（National AK－IG，10－C， with two turns removed from one end）．
 link，li，I， 2 turns No．it e．，carh cond． Plag－in devire is for mechamival mounting emly．
$\mathbf{L}_{3}-50-60$ Ma．－Same as $=1.1$ ，hut with one turn re－ moved from cath end of the orimnat umit．Ilt Mc．-2 turn－．Vo． 12 tinmed，${ }^{3}$－inch diame－ tor，paced ${ }^{2} 2$ ind ${ }^{2}$ ．No plus－in base is used－ coil leads phig directly into socket．
as indicated in the circuit diagram，althourh these metors are not incluted in the unit itsolf． The jack on the front pand is for a meter for moasuring the triphor prid current，and is nor－ mally used only during initial tuning opera－ tions．

The final stage should be qued up on 50 Mc ． first．The exciter link should be plugred into

terminals C－C on the jack bar，and the a o－Mc． coils inserted at L_{3} and L_{4} ．With power on the exeiter but no plate voltage on the amplifier， rotate（＇z for maximum grid current．Set the neutralizing condensers at maximum capacity and rotate C_{12} ．If the fmal－stage plate circuit is capable of being tuned to resonance there will be a promouned dip，in the grid current．

The neutratizing condensers，C_{10} and C_{11} ，should then be adjusted a smatl amount at a time until the dip in grid curremt disappears．Power may then be appliod to the plate circuit． If ever？hing is in order．the dip in plate current at resonamee shoubl bring the plate eurrent down to less

Fis．I6，－I nder－chasin wiow of the 35－TG driver－amplifirer．soparate lilament trandorm－ pre are uned for the two stake．The driver－ tube sorket and the two filament r．f．whoses are at the right．

Fig. 1608 - Altrrnatu tripler - tare to replace the 3.-'l'C shown in Fig. 1606. Components are the same with the following exceptions:
C_{5} - Split-stator midget (Hammarlund IIFD.ISX).
$R_{4}-10,000$ ohims, 10 watts.
$\mathrm{L}_{1}-6$ turns No. $18,11 / 4$-inch diam., 13 í incher long, 3-turn center link. (National AR-16, 10-C, with 1 turn removed from cach end.)
$\mathrm{L}_{2}-2$ turns No. It enam., $5 / 8$-inch diam., centertapped, coupled inductively to L_{3}.
than 50 ma. The amplifier may be loaded up to nearly 300 ma ., at a plate voltage of $1: 500$ an input of 425 watts or more - before the plates of the 35-TGS show more than their normal bright-orange color.

Next, tripler operation should be checked. With the exciter on 48 Mc . and the link inserted in the terminals $A-A$, adjust C_{1} for maximum grid current. This should be around 20 ma. when no plate voltage is applied to the tripler. For initial tests 750 volts is sufficient the maximum voltage should not be used until everything is in order. Apply the plate voltage and tune C_{5} for resonance, which should occur near minimum capacity.

When it has been determined that the output is actually the third harmonic, or 144 Mc., insert the plug-in link at $[3-1$ and the coils for 144 Me . at L_{3} and L_{4}. Repeat the process of checking the final stage as outlined above for 50 II . Some change in the setting of the neutralizing condensers may be required for complete neutralization at 144 Mr . (the setting for this band is much more critical than for

50 Me .), but the adjust ment for 144 will usually be found to be satisfactory for the lower frequency as well.

Tests on 1.44 Mr. should be conducted at a lower voltage than is used for 50 Mc . Lp to 2000 volts may be used at the lower frequency after everything is tuned up, but with the somewhat lower efficiency at 144 Me., 1300 volts is the recommended maximum. Tuning operations should be conducted at not more than 1000 volts. A load should be kept coupled to the final stage when high voltages are used, otherwise the circuit losies at this frequency will caluse sulficient tank-circuit heating to melt soldered connections.

Cirenit loses make the (lip in plate current high (about 100 ma. at 1000 volts) at 144 Me ., but the resonance dip is not a true indication of performance. Lamp loads, too, are unreliable at this frequency. The best test is the color of the tube plates. If the color does ant indicate greater heat than is shown when 150 watts inpat is run with no excitation, then there is no caluse to worry about harming the tubes.

(C. Alternate Tripler Stage Using an 829

A more efficient tripler stage. for use in triving the amplifier on 144 Mc., is shown in Fig. 16i03. It may be used in place of the $35-\mathrm{TG}$ tripler shown in Fig. 1606, or as a source of excitation for any 141 -Mc. amplifier in the medium-power elass. It employs an 829 or 829-B. and uses most of the components of the 35-TG stage it replaces. Best transfer of energy to the amplifier stage is obtained with direct inductive coupling of L_{2} and L_{3}. dispensing with the plug-in link shown in Fig. 1606 .

13y driving the tripler stage very hard it is made to operate at quite good efficiency. the output, with 600 volts on the plates, being nearly 40 watts. Grid current, under load, is about 10 mai. through the 50,000 -ohm grid resistor. At $125-m a$. phate current, the 829 tripler will provile a satisfactory amount of grid drive for the push-pull 3\%-TA final stage.

Fif, 1600 - Rear virw of the 100 -watt $114-31 \mathrm{c}$. transmittar. 'like 815 tripler is at the eenter of the ahiswia, with the two mreecding tripiler stages at the right. The final stage is assymbloot on a subarate "L"-shaped eldassis, to permit subsitution of ant alternatearranyement. Note the very close coupling between the tripler-plate and final-grid tanks.

354
 Chapter Sixteen

Fig. 1610 - Circuit diagram of the 144 -Me. crystal-controlled transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-4.7-\mu \mu \mathrm{fd}$. ceranic, 500
$\mathrm{C}_{3}, \mathrm{C}_{4}-100-\mu \mu \mathrm{fd}$. mica, 500 volts.
C_{5}, C. $\mathrm{C}_{1} \mathrm{C}_{13}, \mathrm{C}_{15}-0.001-\mu \mathrm{fd}$. mica, 500 volts.
$\mathrm{C}_{6}, \mathrm{C}_{10}-50-\mu \mu \mathrm{fd}$-per-section varialle ((C ational STI)-50).
$\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{11}, \mathrm{C}_{12}-220-\mu \mu \mathrm{fl}$. niea, 500 volts.
$\mathrm{C}_{14}, \mathrm{C}_{16}-10-\mu \mu \mathrm{fl}$. variable (Na tional UMA-10; See text).
$\mathrm{R}_{1}, \mathrm{~K}_{2}-0.22$ nregolim, $1 / 2$ watt.
$R_{3}-15,000$ ohmis, 2 watts.
$R_{4}, R_{8}, R_{12}-220$ olmms, 2 watts.
$\mathrm{R}_{\mathrm{s},} \mathrm{K}_{\mathrm{g}}, \mathrm{R}_{\mathrm{g}}, \mathrm{R}_{10}-0.1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{7}-33,000$ ohnss, 2 watts.
$\mathrm{R}_{11}-10,000$ to 20,000 olms, 4 watts.
$\mathrm{R}_{13}-4700$ olims, 1 watt.
M_{14} - 5000 ohmin, 5 watts.
$\mathrm{M}_{15}-0.1$ micgohm, 2 watts.
$1_{16}-5000$ to 10,000 olhns, 5 or 10 watts.
R_{17} - Resistance erpual to gridmeter resistance, if0-10 milliammeter is used.
$\mathrm{I}_{1}, \mathrm{I}_{2}-750 \mu \mathrm{~h}$. (See text).
$\mathrm{L}_{3}-20$ turns No. 2% on $\frac{1}{2}$-inch dia. form (National XR-50), close-wound, eenter-tapped.
$L_{4}-7$ turns No. 16 on $1 / 2$-inch dia. forn, length $5 / 8$ ineh, eentertapped.
$\mathrm{L}_{5}, \mathrm{~L}_{7}$ - See Figs. 1612 and 1613.
L_{6} - See text.
Ls - See text.
Mral -0.10 milliammeter $\mathbf{~} 0.20 \mathrm{ma}$. may be used, in which case $R_{1 ;}$ is not required).
$\mathrm{MA}_{2}-0-300$ milliammeter.
RFC - 40 turns Nin. 26 elose-wound on $1 / 4$-inch dia. form.
S_{1} - D.p.d.t. ingule switeh.
$\mathrm{S}_{2}-$ S.p.s.t. toggle switeh.

(1. A 100-Watt 144-Mc. Transmitter

A crystal-controlled transmitter for 144 Mc. need not be especially complicated, particularly if the rig is designed for one-band operation. Figs. 1609-1614 show a simple easilyconstructed transmitter which is capable of delivering up to 100 watts of power at 144 Mc., with only slightly more apparatus than would be required for similar output on a lower frequency. It was designed by Calvin F. IIadlock, W1CTV.

The oscillator stage uses two 6AG7s in push-pull, with a erystal in the range between 5.33 and 5.48 Ne. The plate circuit is tuned to the third harmonic of the crystal frequency, driving a pair of 6L6Gs operating as frequency triplers. This stage, in turn, drives an 815 tripler, the output of which is on 144 Mc . The final stage may be either an 815 or an 829 , and examples of construction are shown for both tubes. Output and efficiency will be considerably higher with the 829 , and it is somewhat more stable in operation and casier to drive.

By making provision for more than adequate driving power, capacity coupling is permitted
in the exciter stages, and a nonresonant grid cireuit can be used in the final stage, which makes for completely stable operation without neutralization. Similar tank circuits of novel design (see Figs. 1012 and 1613) are used in the two $144-\mathrm{Me}$. plate circuits. The grid circuit of the final stage consists of an untuned " U "shaped loop whieh is tirhtly coupled to the plate cireuit of the 815 tripler stage. As the resonant frequency of this grid circuit is much higher than 144 Me., there is no tendency to oscillation.

The coil and condenser values for the erys-tal-oscillator grid circuit are not particularly critical, but should be adjusted roughly for optimum oseillation. Pie-wound $2.5-\mathrm{mh}$. chokes might be used for the coils by removing one or two of the pies. The use of the two $4.7-\mu \mu \mathrm{fi}$. condensers connected between the cathode and grid of cach 6.1G7 assures strong oscillation, even with sluggish crystals. With the constants given, the crystal will always oscillate, regardless of the setting of the various controls.

The plate circuits of the first two stages are tuned with receiving-type split-stator condensers, the rotors of which are grounded. The

Fig. 1611 - Botton wiew of the 141-Mc. crystal. controlled transmilter, showing the simplicity of the layout. The two "[". shaped plate tank are momed on bloch of polystyrene. Oseillator ani tripler plate coils are at the left.

coils are wound on ungrooved enil forms (National XR-50, with the core removed). Any ! $2-$ inch diameter form could. of eourse, be substituted. Coils are mounted below the chassis, with the tuning condensers above.

The 815 and the 829 pate circuits are mate of $\frac{1}{1}$-inch copper strip). $3 / 4$ inch wide and 11 inches long folded into " C " shatpe, as shown in Fig. 1612. The National UMI-10 condensers used for tuning these circuits are remored from their Isolantite monnting plates and remounted on the ends of the copper-strip inductances. A National GS-1 Isolantite insulator is fastemed just below the condenser to make the assembly rigid. Connertion to the tube plates is made with short lengths of flexible copper rilbon $1 \frac{1}{4}$ inch wide.

The final grid circuit is made of $1 / 10$-inch copperstrip, $1 / 4$ inch wide, bent into a " U " which is the same width as the plate tank to which it is compled. The grid " U '" shown is about three inches long. It should be as short as possible and yet provide adequate grid drive when coupled as closely as possible to the tripler plate circuit. Making several grid "eoils" in order to attain this end is preferable to using longer tanks and looser coupling, as the smaller the grid tank is, the less tendeney there will be for instability in the fimal stage.

The transmitter is mountedona $17 \times 8 \times 2-$ inch chassis, and is designed for rack mounting, usingastandard 83 - - -inch panel. The tripler plate circuit is in the exact center of the chassis, and is mounted on a small reetangle of polystyrene which is bolted to the bottom of the chassis. In order to permit the use of alternate amplifier units, a square hole wats cut from the chassis top at the point where the amplifier units are mounted, and the two final stages were assembled on chassis of folded aluminum 6 inches ligh by $7 \frac{1}{2}$ inches wide. If only one ampliaiser
stage is to be built it can, of course he mounted directly on the chassis. In advantare of the separate-chassis method is that the holes by which it is mounted can be made into slots, permiting the whole assembly to be moved back and forth slightly for adjustment of coupling to the tripler stame.

The sereen-supply switch. Si, provides a safe method for tuning up the transmitler without damaging the 829 . With the metor measuring a branch of the exeiter grid current (left-hand position of S_{1}. Fig. 1610), tuning the oseillator phate circuit for maximum indication should

Fig. 1612

- betail photowf the tank circuit used in the 815 and 829 pate circuit:. Dimensions are piven in Fig . 1613.

produce about 1 ¹ $101 \frac{1}{2}$ ma. Tuning the second stage should raise the total reading to about 3 ma. With the grid-meter switch in the righthand position, tuning the tripler plate circuit to resonance should produce about 12 -ma. final grid current under load, when the coupling between the tripler plate and final grid circuits

Fif. 1613 - Dimensional drawing of the 14. Me. tank inductance lefore bending. The material is m-inch copper strip.

Fig. 1614 - An alternate amplifier unit using an 815. Which may be substituted for the 829 unit shown in the complete assembly, Fig. 1609.
is adjusted correctly. The final-stage plate circuit may then be adjusted and the full screen voltage applied. With antenna or dummy load, the oupput coupling (L_{3} is approximately size of I_{6}, but of No. 12 enameled wire) may be adjusted to raise the final plate current to 200 to 2.50 nal., depending upon the plate voltage used. The transmiter is then ready for modulation, which may be supplied by any audio unit having 75 watis output, or the unit may be used as an exciter, in whieh case it is capable of driving a final stage of 500 watts or ligher rating.

(1) A Mobile Transmitter for 50 and 28 Mc .

Low over-all battery drain in mobile operation is best obtained through the use of fila-ment-type tubes which are lighted only during transmission periods. The mobile unit for 6, 10, and 11 meters, shown in Figs. 1615-1619, employs filament-type beam tetrodes throughout. Five 2F30s are used, as erystal oscillator, frequency multiplier, Class A driver, and pushpull Class AB modulators. The final stage is a 2E25, a tube of somewhat larger design, having its plate comnection at the top of the envelope. Total filament current is only 4.3 amperes, and there is no drain whatever when the rig is not actually on the air.

The transmitter is housed in a cracklefinished cabinet of modern design (Par-Metal CA-202) which may be mounted in back of the seat in coupe-type vehicles or in the trunk romp:utment of selans.
Special attention is paid to ruggedness of construetion, all leads being made as short and direct as possible. Small components are supported with terminal strips at each end where possible, and tuning controls are equipped with dial locks (National ODI). The meter (a Marion 0-10-ma. sealed unit) is back-ofpanel mounted, with a sheet of Lucite serving as a protecting window. This method of mounting the meter, about $1 / 2$ inch in back of the panel, also provides a convenient method for illuminating the meter face. Dial lights are mounted at either side of the neter, as shown in Figs. 1617 and 1619.

By using $100-\mu \mu \mathrm{fd}$. variable condensers for C_{2} and C_{3}. the range of the oscillator and multiplier plate circuits is extended, so that it is unneeessary to change these coils in changing

Fig. I6I5-1 typical installation of the 6 and 10 -meter mohile transmitter. 'The small aluminum tore at the right of the anit houses the antanma dhaizeover relay. The genrmotor and its atarting relav are monsted mo der the hookl. adjacent to the car hatters. Operation of the transmit. tris controlled entirely lyy the pinhth-totatic switch on the mierophane.

Fig. 1616 - Wiring diagram of the mobile rig for 6 and 10 meters.
$\mathrm{C}_{1}-100-\mu \mu \mathrm{fil}$. midmet, serewdriver-adjustment type (Hammarlund A P'C-100).
$\mathrm{C}_{2}, \mathrm{C}_{3}-100-\mu \mathrm{fd}$. midget, shaft tye (Itimmarlund HF-10(1).
C_{4} - $15{ }^{\mu} \mu \mathrm{fd}$., double spaced (Hammarlumd HFA-15-E).
$\mathrm{C}_{5}-\mathbf{0 . 0 0 1 - \mu \mathrm { fd } \text { . mica. }}$
$\mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{0}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{1,3}-4 \mathrm{~d}_{6}(\mathrm{\mu} \mu \mathrm{fd}$. midget mica.
$\mathrm{C}_{8}, \mathrm{C}_{3}-100-\mu \mu \mathrm{fd}$. midset mica.
$\mathrm{R}_{1}-82,000$ ohmes, 1 watt.
$R_{2}, R_{6}-1000$ nhmis, 16 watt.

$11_{5}-150.000$ ohms, 1 watt.
$\mathrm{l}_{9}-33,000$ ohmes, 1 watt.
$\mathbf{R}_{11}, \mathbf{R}_{16}-5000$ ohms, 10 watts.
$\mathrm{R}_{14}-10,000$ ohms, $1 / 2$ watt.
$R_{15}-0.5$-megohm imtentiometer.
$\mathrm{L}_{1}, \mathrm{~L}_{2}-7$ turus each, No. 20 d.e.e., 36 inch long on 1-inch dia. form, windings interwound.
L_{3} - 10 turns No. 12 cnam., close-wound on 1 -inch dia. form.
bands. Only the crystal and the final plate coil, L_{5}, need be changed. Complete push-to-talk operation is made possible though the use of two relays. $R y_{1}$ starts the genemotor and applies the filament voltare to the transmitier. $R y / 2$ transfers the antenna from receiver to transmitter. Both are controlled by the switel on the microplone, which may be any single-button type which has a control switch. The Army T-17-B, now currently available as government surplus, is shown with the rig.

The crystal oscillator is a Tri-tet, modified for filament-type tubes. Interwound coils are inserted in the filament leads, and one of these is tuned. The setting of this adjustment is not critical and may be left near maximum capac-
$L_{4}-6$ turns No. 12 cram., $3 / 4$ inch long, $1 / 2$-inch inside dia, self-supporting.
$\mathrm{L}_{5}-28$ Me: 10 turns No. 12 emam., 1 1/2́ inches Iong, $1-$ innh inside dian, self-supporting.
50 Mr.: 5 turns Xo. 12 enam., 1 inch long, 1 -inch inside dia., self-sumprting.
$\mathrm{L}_{0}-3$ turns ond 1 -inch polystyrene rod - see text and detail pinto.
J_{1} - Sockel in power eable, 5 prons.
\mathbf{J}_{2} - Donble-hutton microplione jack. If T-17-B mirrophone is used, a special jark designed for this mierophone mast be ohtained.
J_{3} - Consial filting (Amphenol 83-1R. Matching plug

M - 0 |uman. scalell unit (Marion).
P_{1} - P'ower plug on transmitter chassin.
RHF(: - 2.5-mh, r.f. chokc, Nitional lR-100.
$\mathrm{R}_{\mathrm{s} 1}, \mathrm{R}, 2$ - sice text.
$\mathrm{S}_{1}, \mathrm{~S}_{2}-S . \mathrm{p}$.s.t. snap switch.
$\mathrm{S}_{3}-2$-section 5 -positinu wafer-type switel.
T_{1} - Single-hutton mierophone transformer.
T_{2} - I river transformer (Stanmer A-4752).
T_{3} - Modulation transformer (L'1'C S-18).
ity for 6.8-, 7-, and 8.4-Mc. crystals. The oscillator doubles in its plate circuit at all tinus.

The stage following the oscillator is operated as a doubler for 27-and 2S-Mc. work, and as a tripler for 50 Mc . The 2 le30 is an effective frequency multiplier, and there is adequate excitation for the final in either case. Screen voliage on the exciter stages is stabilized with. a miniature voltage-regulator tube, an 0.42 . With a screen voltage of 1 j 0 , the plate input to both 2 E 30 s is held to about 0 watts per tube.

The final stage uses a 2 E 25 , whose top-cap plate connection permits the mounting of the plate circuit above the chassis, well isolated from the other tuned circuits. A small shield,

Fig. 1617 - Drtail photo of the 2F.25 final stage, showing method of compling to the antenna, The coupling coil, wound on a polystyrene rod, is adjustalle from the front panel. The plate coil is mounted by means of G.R. plugs.
cut from an old-style tube shich to a length of about one inch, comes up to the bottom of the 2 E 25 plate assembly. These precautions are sufficient to provide completely stable operation without neutralization.
The antenna coupling coil, L_{6}, is wound on a short length of polystyrene rod $1 / 2$ inch in diameter, into which is inserted a $1 / 1$-inch rod of the same material. This shaft projects through the front pancl, where a shaft-locking panel bushing (Bud PB-532 bushing, Millen 10061 shaft loek) holds it in the desired position. Coupling is adjusted by pushing or pulling the knob affixed to the shaft. following which the bushing may be tightened for permanent setting. The bushing may also be set finger-tight, allowing the coupling to be adjusted, yet holding it with suflicient firmness to prevent its being jarred out of position.

Three 2E30s are used for the modulator, one as a Class A driver, and two in push-pull as Class $A B$ modulators. All three are triode-
connceted. Bias is supplied by a 30 -volt hear-ing-aid battery, which can be tapped at 15 volts by opening up the eardboard case and soldering on a lead at the point where tho two 15 -volt sections are joined together. This lead is brought out to the unused terminal on the battery socket and plue.

Metering of all circuits is provided by a 10 ma. meter, a 2 -section 5 -position switch, and a set of shunts. The shunts are made from small 100 -ohm resistors, on which is wound about 7 feet of No. 30 enameled wire. The shunts should be wound with an excess of wire, the length of which may be reduced until the multiplication of the meter scale is just right. The resistor Ron in the final grid eireuit is left without a shunt, biving direct reading on the $10-\mathrm{ma}$. scale for mosasuring the final grid current.

Exrept for the speerh stages, the unit may be testerd using 6.3 volts a.e. on the filaments and an a.e. power supply. A storage battery must be used for filament supply when the speech eduipment is to be tested, as a.c. on the filaments will produce excessive hum. Initial testing should be carried on with about 200 volts on the tube plates. When operation has been found to be satisfactory, this may be raised to 300 .

To place the unit in operation, set S_{1} to the "on" position, leaving s'2 "off." With the meter switch in position " A," apply plate voltage and note meter reading, which is the oscillator plate current. This will be about 20 ma., dipping slightly at resonance as C_{2} is adjustect. Next switch to position " B " and adjust ('3. The dip here may not be as pronounced as in the oscillator, and the final grid current, position " C ," 10 -ma. scale, is the best indication of resonance in the preceding adjustments. This reading shoukd be about 4 ma., dropping to 3 mar. under load. With S_{2} turned on, the final plate current, position "D," should drop to below 10 ma. at resonance, and coupling of the antenna should raise it to 50 to 60 ma. Modulator plate current will be about 20 ma ., rising to 60 ma . or more on audio peaks. No metering pesition is provided for the Class A driver current. but this should

Fic. 1618-Bratrm view of the mobile rig. At the left center are the interwound coil and tuning condenser which are part of the oscillator filament circuit. Audio components are at llee left, with eacillator and multiplier plate circuits near the front panel.

Fig. 1619 - The plate circuit of the final stage of the mobile transmitter is the whly r . . , viruait abave the shat. sis. The three tubes at the left are the driver and audio stages, wath the oscillator and multiplier tubes directly in lack of the meter. The tube to the right of the modulation transformer is the $0: 22$ voltage regulator. Chassis size is $7 \times 13 \times 2$ inches.

be approximately 10 mat .
With the coil and condensor values given, it is impossible to get output from the final stage on a wrong frequency, but excitation to the final may be obtained on ineorrect harmonics; hence it is alvisable to check the frequency of each stage with a calibrated absorption-type wavemeter.

For maximum conveniener, the same antemna should be used for both transmission and reception. Antenna change-over is handed with a conventional 6 -volt antenna relay which was mounted in a small box made up for the purpose from folded sheet aluminum. Amphenol eoraxial fittings, mounted on the sides of the relay box as elose to the relay contacts as possible, provide for comnection to the transmither, the receiver, and the antenat by means of cosxial line. The relay case is grounded and only the inner conductor of the coaxial line is switehed.

A headlight relay for genemotor starting may be purchased from any auto-accossory store, and this and the genemotor should be mounted as close to the car battery as possible, in order to minimize voltage drop. lsattery wiring and filament cables should be as heavy wire as possible, with No. 10 as the minimum.

For actual mobile operation, the quarterwave teleseoping "whip" antenna, operating as a Mareoni in the manner shown in Fig. 161ti, is convenient. Mueh greater range in stationary operation from high locations may be had with half-wave radiators or multielement arrays, either of which may be arranged for easy on-t he-spot assembly. An example of such a portable array for 50 Mc . is shown in Fig. 1711, Chapter Seventeen.

C. A 6C4 Oscillator for 144 and 235 Mc.

Figs. 1620 to 1623, inchusive, show the details of construction of a low-power oscillator using a 6Ct, a miniature triode power tube having a plate dissipation rating of 5 watts and designed for use as an oscillator in the
v.h.f. range, At the rated plate input of 300 volts at 2.5 milliamperes the oscillator develops an r.f. output of about 2 watts in the $14.4-\mathrm{Mc}$. band. With minor modifications, to be deseribed later, the oscillator maty also be made to work on 235 Mc ., with somewhat lower efficiency.

As shown by the diagram, Fig. 1622, the eircuit is the ultraudion with an aldustable feedback condensor, C_{3}, connected between grid and cathode. To redure frequency modulation when the oscillator is amplitude-modulated, the tuned circuit has a fairly high C / L ratio,

Fig. $1620-\mathrm{A}$ low-power 144. Mc. osrillator using a 6C4 v.h.f. niniature trisde. With the construction shown, connectian leads in the r.f. circuit are reduced to negligible lonpth. JFilament and platesupply leads are brought throurh the bot tom chassin to a connection strip on the rear lip. The excitation control is adjusted through a hole in the top of the supporting member.

Fig. 1621 - A view showing the asiemlity of compo. nents of the 6C\& 111-11e, oscillator. The rff. chokes are monnted by drilling and tapping the cods of the polyst yrene rod. 'The grid choke is held in place by one of the socket mounting serews.
using a tuning condenser having a fixed as well as a variable seetion. The condenser motor consists of three circular plates and two "butterfly" plates. The cireular plates rotate between two sets of stators having plates of regular shape and thus provide a fixed capacity. The butterfly plates rotate between two sets of opposed 90 -degree stator plates, each set consisting of two plates. The assembly (now available as Cardwell Type ER-14-BF/ SI_{1}) is made from a Cardwell lif double condenser, with only the front Isolantite plate used for a mounting. This method of construction results in a split-stator condenser having a minimum of inductance, since the r.f. current flows over the rotor plates without having to travel along the shaft. 'The plate shapes and details of assembly are shown in Fig. 1 if23.

Lead lengths in the circuit are reduced to a minimum by the construction shown in Figs. 1620 and 1621 . The cutire oscillator assembly is mounted on a piece of $3 / 32$-inch-thick aluminum bent in the general shape of a " U." The mounting is $1 / 8$ inches wide and the bent-over top portion is $17 / a$ inches deep. The over-ail height is $21 / 4$ inches. The bottom lip dimension can be anything consenient so long as enough area is provided to make a solid mechanical mounting. The tuming condenser, ('s, is centered on the vertical portion and is mounted on the serews and sparers provided with the condenser. The hole for the shaft is mate anply large so that the condenser rotor is not grounded. The condenser is mounted so that the two sets of stator plates are at top and bottom.

The tube socket is mounted so that the plate lead can drop in as straight a line as possible to the terminal at the right on the upper stator plates of C_{1}. The grid condenser, C_{2}, is sup-
ported at one end by the grid prong on the tube sonket and at the other by the left-hand terminal on the lower stator plates. The excitation eontrol, C_{3}, has its movable-plate tab bent at a right angle so it can be bolted to the vortical support, and the stationary-plate tab is soldered directly to the grid prong on the tube socket. The grid choke, grid leak, and plate choke are supported as shown in the photograph. The condenser along the rear edge of the assembly is the heater by-pass condenser, C_{4}.

Tho aseillator assematy is mounted on a $31 / 4$ by $31 / 4$-inch aluminum channel $3 / 4$ of an inch deep. A small panel at the front provides a place for a tuning dial whieh drives the condenser shaft through an insulated coupling. A dial lock is provided so the condenser can be locked at a given frequency setting.

A polystyrene-insulated double binding-post assembly mounted vertically from a small bracket provides output terminals and a support for the antenna coupling coil. L_{2}. The coupling c:an be varied by bending the soldering lugs that support the coil so that L_{2} is moved nearer to or farther away from L_{1}.

The condenser construction provides just enough capacity variation to cover the 144-148-Mc. band adequately. Because of shght differences in the construction of similar units, it may be necessary to vary the inductance of L_{1} slightly to bring the band on the dial: this can be done by squeezing the turns together or pulling them apart. The frequency range can be checked with Lecher wires or a calibrated absorption wavemeter. (Sce chapter on frequency measurement.) Final adjustment of L_{1} should be made after C_{3} has been adjusted for optimum output from the oseillator, since the setting of this condenser has some effect on the frequeney of oscillation.

To adjust C_{3}, solder two pieces of wire about

Fig. $16 \underline{2}$ - (:irrait diauram of the 6 Cl oncillator.
C_{1} - Tuning comenser: ser text and Fig. 16:3.
C: $-1 \overline{-}-\mu \mu$ fil uidget mica.
(3-3-30-puld. crramic trimmer (National M-30).
$\mathrm{C}_{4}-1: 10-\mu \mathrm{fd}$. midget miea.
h_{1} - 23.0 (HO) ohms, $1 / 2$ watt.
L-2 turns 才o. 12 bare wire; inside diameter 9 亿o innl, longth 1 inch: watesupply tap at center.
$1.2-2$ turns No. 14 enameled; inside dianeter $3 / 8$ inch, sifht sparing between turns.
RFC -1 -incl winding of No. 24 d.s.e. or s.c.e. on $1 / 4-1$ neh diameter polystyrene rod.

BUTTERFLY ROTOR (A)

90-DEGREE STATOR (C)

CIRCULAR
ROTOR (B)

REGULAR STATOR (D)

Fig. 1623 - Plate shapes and asombly of C_{1}, the tumind condenser used in the 6 C .4 oscillator.
$3 / 4$ inch long to the terminals of a small flashlight lamp or dial light and connect them to the outpue terminals. A milliammeter of $0-50$ or $0-100$ range should be connerted in the plate-supply lead. Adjust the coupling between L_{2} and L_{1} for maximum glow in the lamp and then vary the eaparity of C_{3} until the best output is obtamod. C_{3} need not be touched again after the proper setting is determined.

In using the oscillator for transmitting, the coupling between L_{1} and L_{2} should be kept as loose as possible, particularly if the antenna or feeders can swing in a breoze, because any change in the antenna circuit will be reflected as a change in the oscillator frequency. In any event, the eoupling should not be increased begumed the suthiog that maletes the nswillator plate current 25 milliamperes. At 300 volts the plate current should be about 20 ma . without any r.f. load.

For operation on $23 \overline{0}$ Me, it is merely necessary to remove one rotor dise and one set of stators and replace the coil with a " U "-shaped inductance similar to that used in the 235-Mc. transec(iver, Fig. 1638.

C. A High-C 144-Mc. Oscillator

The inherent instability of a modulated oscillator - that is, the change in frequency
with the change in plate voltage under modulation - can be markedly reduced if the oscillator tank circuit is made to have as hígh a C / L ratio as possible. Although this usually entails some sacrifice of power output, the overall effectiveness of the transmitter is increased berause the radiated energy is more nearly on one frequency. This is a particularly important consideration when selective receivers are used. In addition. the fact that there is less frequency modulation also means that there is less interference to other stations operating in the same band.

A high-C 144-Mr. oseillator is shown in Figs. 1624, 1625, and 1626 . It uses an HY75 tube and a tank circuit consisting of a low-inductance v.h.f. condenser and a one-turn tank coil of heavy conductor. The circuit, shown in Fig. 162\%, is the ultraudion with a tuned filament circuit to provide control of excitation. The osrillator is mounted on a $3 \times 4 \times$ o-inch box, with the tube socket mounted below the top by means of pillars so that only the glass bulb is protruding. To bring the condenser terminals on the same level as the grid and plate terminals of the tube the condenser is mounted on $5 / 8$-inch-high blocks.

The tube socket is positioned so that the plate cap of the tube is near one set of the stator plates of C_{1}. This leaves room to mount the grid condenser. (2 , betworn the grid cap and the other stator terminal, thus making

Fig. 1624 - A high-C 144-Me. oscillator using an HY75. 'I'his type of oscillator has considerably less frequeney modnlation than those using low-C cirents, eonsequently canses less interference and can be more effectively receised on selective receivers.

Fig. 162.9 - Cirruit diagram of the high.C 14thMr. oscillator.
 lund V(. 361).
$\mathrm{C}_{2}-4 \mathrm{a}$ - $\mu \mathrm{\mu}$ fid. midget mica,
(:3-3-30- $\mu \mathrm{ff}$. wramie trimmer.
(C_{4} - 100 - $\mu \mathrm{ffl}$. midget mica.
$\mathrm{R}_{1}-4$ \% 0 ohmes, 1 watt.
1,1-1 turn of $5 / 32$-inch copper tulines approximatuly horsestion shape: owr-all lengith from monnting holes in lume 13 indhes; ontside diameter at widest mint, $13 / 16$ inches; phate tap at center. L_{2} - 1 turn Xo. 14 enameled; diameter $3 / 4$ im.h.
 "onanl with h_{4}, no- - paring belucen turns.
$\mathrm{RFC}_{1}, \mathrm{RP}_{2}$ - 1 -inch winding of No. 24 d...c. or s.c.c. on $1 / 4$-incla diameter polystyrene rod.
$\mathrm{T}-6.3$-volt filament transformer.
the learls belwoen the tank rimuit and the tube as short as possible. The output coupling coil, L_{2}, is soldered to lugs under the binding posts of a tworpost assombly monted on a $21 / 2$-inch Isolantite stand-off insulator. A fric-tion-t ype verniar dial is used to tume the circuit, because the tuning is rather retional with the high-r eireuit and becalme the type of condenser used requires this w a similar type of dial to hold the setting. sine the shaft turns: on ball beatings. The dial montuts on a small supporting panel with rounded corners, as shown in the photographe.

The tomed filament rircuit eonsists of L_{3}, L_{4} and C_{3}. L_{3} is wound between the turns of L_{4} so that the coupling is very tight: thas both filament leads an be tuned by one combenser. C_{3}. C_{3} is adjusted for maximum output as judged by the brilliance of a lamp connered to the output torminals; it has rolatively little -ffect on the fregtrency of oscillation. Onere this adjustment hats been made its sifling maty be considered permanent except for occasional recherking.

The inductance of L_{1} should be adjusted so that the low-freduency end of the 14-Mr. band is mached with C_{1} set as close as possible to maximum caparity. It is advisable to start with the eoil a little larger than necessary and cut a little at a time off the ends until the proper inductance is found. The connertions betwern the coil and the condenser are made by means of hurs fashioned from tubing just enough larger in diameter than the coil so that the ends of the coil will fit insite. One end of each lug is flattened and drilled to fit the condenser terminals, and the coil is soldered in the unilattened ends.

With a plate input of 350 volts at about 60 milliamperes the power output of the oscillator is approximately 4 watts. When received on a superheterodyne-type receiver with a beatfrequency oscillator, the carrier will be quite clean and stable provided the mechanical construction is rigid. Gnder modulation, the frequency band oecupied is only about a fifth as much as that taken up by a low- C oscillator operated at the same plate voltage. In these days of crowded v.h.f. bands a high-e transmitter of this type will go a long way toward improving conditions, though it is far from the ultimate.

C A Stabilized 144-Mc. Transmitter

In general, a modulated osidilator is not a desirable type of transmitter for use in a band such as 144 Me. Where there is considerable activity. Even when stabilized by the use of a high-C' tamk rircuit this type of tansmittor leaves much to be desimed, berause there is still a great deal more frepuency modulation than is prosent in a master-oseillator power-amplifier transmitter. In addition, an oscillator coupled to an antenna is subject to frequeney change whenever the antemna constantschange slightly, as they will with changes in woather and with any vibration or swinging of the feeder wires. IBesides, an osidlator camot be modulated 100 per cent withont considerable distortion berause in most rases oseillation cannot be sustained at plate voltages below 50 to 100 wolts. Finally, the efficieney of an oserillator is quite low compared to the efficiency of a properly-driven amplifier, so that considerably more power output can be obtained from the same tube when it is used as an amplifier than when it is used as a self-controlled oscillator.

An amplifior driven by an oscillator, al-

Fig. 1626-Below-chassis view of the high-C 14.4-Mc. oscillator. The filament transformer and filament tuned circuit are mounted inside the box.

Fig. 1627 - A threc-stage transmitter using a $6(\%$ master oscillator, $6 \mathrm{C}+$ buffer amplifier and 81.5 final amplifior for stabilized transmission in the 1 1t-ble. band. The oscillator and bulfer are built as a unit on the folded aluminum chassis at the right. Phe transmitter develops a carrier output of about 10 watts.
though more stable that an oseillator alone. is still subject to frequency-modulation efferts because the change in power inport to the amplifier with modulation causes a change in the grid impedance of the amplifier, and this in turn reacts on the oscillator to change the frequency. Hence it is desirable to use at least one buffer-amplifier stage betwern the owillator and amplifier. If this is done it is quite
possible to get satisfactory performance with inexpensive low-power tubes in both oseillator and buffer stages, while if the buffer is omitted it is necersary to use a fairly high-power oscillator. This is hecatase the coupling betwern the oscillator and modulated amplifier must be very loose if the oscillator fredueney is not tobe affeeted by whatever happens in the amplifier plate circuit: deonsequently the oscillator must develop much greater power than actually is needed to drive the amplifier since only a small part of the power can he utilized with the loose coupling required.

I three-stage transmiltor in which frequeney-modulation elfects are quite small is shown in Figs. 1627-1630, inclusive. It includes a 6C4 oscillator, 6($\cdot 4$ neutralized buffer amplifier, and 815 final amplifier. as shown in the cireut diagram. $\because \mathrm{ig}$. 162 s . The oscillator and bufter are built as a unit on a " ${ }^{5}$ "-shaped piece of aluminum $61 / 2$ inches long on top. 2^{3} s' inches high, and $27 / 8$ inches deep on the ton). The 815 is mounted on a vertical aluminum piece measuring $41 / 4$ inches high and 3 inches wide, reinforeed by benting side lips as shown in the photographs. The two sections are assembled on a $6 \times 14 \times 3$-inch chascis.

The oscillator circuit and components are identical with those already deseribed in QST

$\mathrm{C}_{1}-3-30-\mu \mu \mathrm{fd}$. trimmer.
$\mathrm{C}_{2}, \mathrm{C}_{8}, \mathrm{C}_{11}, \mathrm{C}_{13}-470-\mu \mu \mathrm{fd}$, midget mica.
$\mathrm{C}_{3}, \mathrm{C}_{5}-\mathrm{h}$ - $-\mu \mathrm{fd}$, midget mica.
C_{4}-- Oseilatur tuning: see text.
C_{7} - Neutralizing; see text.
C_{8} - Buffer tuning; see text.
C $9, \mathrm{C}_{10}$ - Amplifier nentralizing; see text.
C_{12} - Amplifier tuning; see text.
$\mathrm{C}_{14}-100 \mu \mu \mathrm{fl}$., 2500 volts.
$R_{1}-22,000$ ohms, $1 / 2$ watt.
$\mathrm{H}_{2}-22,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{3}-15,000$ ohms, 1 watt.
$R_{4}-15,000$ ohms, 10 watts.
$\mathrm{L}_{1}-2$ turna No. 12 bare wire: inside diameter 9 ín ineh, lenulh tinch: plate-supply tap at center.
L.a-2 turus No. 14 , in-ide diameter $1 / 2$ inch; turns spaced wire diameter.
$\mathrm{L}_{3}-4$ turns No. 14 , in-ide diameter $3 / 4$ inch, length 1 inch; plate-supply tap at center.
$\mathrm{L}_{4}-2$ turns No. 14 , inside diancter $1 / 2$ inch; turns spaced diameter of wire: tapped at center.
I.s - 2 turns No. 12, inside diameter 1 inch, tength 1 inch; plate supply tap at center.
I. -2 turns No. 12 , inside diameter $3 / 4$ inch.
$\mathrm{RFC}_{3}, \mathrm{RFC}_{2}, \mathrm{RPF}_{3}, \mathrm{RFC}_{4}-\mathrm{I}$-inch winding No. 24 d.s.r. on $1 / 4$-inch diam. polyst yrene rod.
T_{1} - 6.3-volt 2 -amp. filament transformer.

Fig. 1629 - A rear view of the thref-itage 141 Mc. transmitter. The oscillator is at the left, with the buffer amplifier in the center. The 815 final is at the right.
regular panel this condenser may be operated by a rightangle drive from the front.
Theout put terminals are a standard binding-post ass.mbly on polystyrene. monnted on metal post: 2^{3} з inches highto bring the eoupling esil in proper relation to the amplifier plate tanli minl, L, Conpling is adjustod by honding in toward or away irom L_{5}.

The plate by-pass condenser and sereen dropping resistor
for April, 1946. The construction of the buffer amplifier is quite similar to that of the oseillator. The buffer tuning condenser consists of a rotor having three buttertly plates and two stators each having two 90 -derree plates. The grid circuit of the buffer is self-resonant, the tuning being adjusted by squeezing the turns of the grid coil L_{2} together. or prying them apart. The buffer neutralizing condenser, (${ }^{\circ}$ mounted directly between the grid of the $6 \mathrm{C}: 4$ and the lower set of stator plates of C_{8}, is a $3-30-\mu \mu \mathrm{fd}$. trimmer with the movable plati. removed and a washer soldered under the heal of the adjusting serew. The washer, by replacing the movable plate, reduces the capacity of the condenser to a value suitable for neutrali\%ing the 6C4. This capacitor may be conveniently adjusted through the opern end of the chassis. Its location is clearly shown in Fig. 1629.

The grid coil of the final amplifier also is resonant with the input capacity of the 815 , just as the buffer grid circuit is self-resonant. For best operation, the 815 requires neutralization at this frequency. The neutralizing "rondensers," C_{9} and C_{10} in the circuit diagram, are simply pieces of No. 14 wire extending from the grid of one section of the 815 to the vicinity of the plate of the other section. The wires are crossed at the bottom of the tube socket and go through Millen 32150 bushings in the metal partition. The screen and filament by-pass condensers are mounted so that the leads betwern the socket prongs and the nearest yround point are as short as possible. This wiring should be done before mounting the partition.

The amplifier plate tank cireuit uses a condenser of the same construction as that used i:n the buffer tank. It is mounted ats closely as possible to the plate caps on the S15, and to preserve circuit symmetry the condenser is tuned from the left-hand edge of the chassis. If the transmitter is to be equipped with a
are mounted underneath the chassis, as shown in Fig. 16i30, together with the filament transformer. Scparate powor-supply terminals are provided for the oscillator plate, buffer plate, amplifier grid (terminals $A-A$), a mplifier sereen, and amplifier plate so that the currents can be measured separately. An external 0-200-ma. milliammeter will serve in making all adjustments. However, if a meter of lower range is available. it may be used profitably in the low-current rircuits.

In putting the transmitter into operation, the first strp is to adjust the frequency range of the oscillator, using Lecher wires or a calibrated absorption-type wavemeter. This should be done after C_{1} hats been adjusted for maximum output. Then, using loose coupling between the buffer grid coil, L_{2}, and the oscillator tank coil, L_{1} (the coupling may be adjusted by bending L_{2} away from L_{1} on its mounting lugs), adjust L_{2} by changing the turn spacing until the grid circuit is resonant. Resonance will be indicated by maximum oscillator plate current; it can also be checked by measuring the voltage across the buffer grid leak. Re, with a high-resistance voltmeter. The maximum voltmoter reading

Fig. 16.30-Inderneath the chassis of the 11H. Me. MOPA transmitter. The filament transformer, amplifier plate by-pass condenser, and screen dropping resistor are mounted here.
(about 40 volts) indicates resonance. The buffer should next be neutralized by varying the capacity of C_{7} until there is no change in the voltage across R_{2} when the buffer tank condenser, C_{8}, is tuned through resonance. The point of correct neutralization also can be determined by coupling a sensitive absorption wavemeter such as is described in the chapter on frequency measurement to the buffer plate coil, a:id adjusting C_{7} for minimum reading. With this method, care must be used to avoid coupling between the wavemeter and the oscillator: link coupling between L_{3} and the wavemeter, with the latter far enough away so that it does not give a reading from the oscillator alone, should be used. Another method of checking neutralization is to adjust the turn spacing of the ainplifier grid coil, L_{4}, to resonance and measure the 815 grid current (with no plate or screen voltage on the tube) and adjust C_{7} for zero grid current.

After the buffer is neutralized, plate voltage may be applied and C_{8} adjusted to resonance, as indicated by minimum plate current. If the coupling to the final amplifier is quite loose, the minimum plate current should be approximately 17 ma . The amplifier grid coil may next be resonated (by adjusting the spacing between turns) and the coupling increased until the maximum grid eurrent is secured. The grid current should be 4 milliamperes or more and the buffer plate current should rise to about 28 ma .
Neutralization of the 815 is the next step. If the grid current changes when the plate condenser, C_{12}, is tuned through resonance, the neutralizing wires should be moved closer to or farther away from the tube plates until tuning C_{12} has no effect on the grid current. When this condition is reached the amplifier is neutralized. Plate and screen voltage may then be applied. With no load on the amplifier the plate current should dip to approximately 65 ma . at resonance, Loading the amplificr to a plate current of 150 ma . should not cause the grid current to drop below about 3.5 ma . A 40 -watt lamp used as a dummy load should light to practically normal brightness at this input, using a plate-supply voltage of 400.

For greatest stability, the coupling between the oscillator and buffer should be as loose as possible. It is better to obtain the rated 815 grid current of 3 milliamperes by using tight coupling between the buffer and amplifier and loose coupling between the oscillator and buffer than vice versa. With normal operation the oscillator plate current should be approximately 25 ma . and the buffer plate current 28 ma., at 300 volts.

A modulator for the transmitter should have an audio output of 35 watts, using a coupling transformer designed to work into a 2500 -ohm load.

(C. A 144-Mc. Double Beam-Tetrode Power Amplifier

An amplifier set-up suitable for use with dlouble-beam-tctrode tubes is shown in Figs. 1631, 1632 and 1633. The tube in the photographs is an 829 , but an 815 or 832 can be used in the same layout. The only change that might be required would be in the inductances of the grid and plate coils, L_{2} and L_{3}; these may have to be made slightly smaller or larger in diameter to compensate for the differences in input and output capacitances in the various types. The plyssical arrangement of the components is similar to that used for the 815 amplifier incorporated in the three-stage transmitter described in a preceding section.
The amplifier of Fig. 1633.is built on an aluminum chassis formed by bending the long edges of a 5×10-inch piece of aluminum to form vertical lips $3 / 4$ inch high, so that the top-of-chassis dimensions are $31 / 2$ by 10 inches. The tube socket is monnted on a vertical aluminum partition measuring $31 / 2$ mehes high by $31 / 4$ inches wide on the flat face, with the sides bent as shown in the photographs to provide bracing. The partition is mounted to the chassis by right-angle brackets fastened to the sides. The socket is mounted with the cathode connection at the top, the cathode prong being directly grounded to the nearest mounting screw for the socket. The heater by-pass condenser, C_{6}, is mounted directly over the center of the tube socket, extending between the paralleled heater prongs at the bottom and the cathode prong at the top. The screen by-pass is connected with as short leads as possible between the screen prong and the nearest socket mounting screw.

The grid coil, L_{2}, is supported by the grid prongs on the socket. The two turns of the coil

Fip. I6.31 - Circuit of the 829 amplifier for 144 Mc.
$\mathrm{C}_{1}-3-3 \mathrm{C}-\mu \mu \mathrm{fd}$. ceramic trimmer.
$\mathrm{C}_{2}, \mathrm{C}_{3}$ - Neutralizing cortlensers; sec text.
$\mathrm{C}_{4}-500-\mu \mu \mathrm{fd}$. mica, 1000 volts.
$\mathrm{C}_{5}-500-\mu \mu \mathrm{fd}$. mica, 2500 volts.
$\mathrm{C}_{8}-470-\mu \mu \mathrm{fl}$. mica.
C_{7} - Split stator, $15 \mu \mu \mathrm{fd}$. per scction (Cardwell ER-15-AD).
$\mathrm{h}_{1}-4700$ ohms, 1 watt.
$1 R_{2}-10,000$ ohms, 10 watts.
$\mathrm{I}_{1}-2$ turns No. 12 , diameter $1 / 8$ inch.
$\mathrm{L}_{2}-2$ turns No. 12, diancter $1 / 2$ inch, length $1 / 2$ inch.
$\mathrm{L}_{3}-2$ turns No. 12 , diameter $11 / 8$ inches, length 1 inch.
$\mathrm{L}_{4}-2$ turns No. 12 , diameter 1 inch
$\mathrm{RFC} \mathrm{C}_{1}-1$-inch winding of No. 24 d.s.c. ar s.c.c. on $1 / 4$-inch diameter polystyrene rod.

Fip. 16.32-A 144. Mo. amplifier using a double bearn tetrode. This type of construetion is suitable for the 815 and 832 as well as the 829 shown. The vertical partition provides support for the tube as well as shielding between the input and oulput eircuits. Note the nentralizing "eondensers" formed by the wires near the tube plates.
are spaced about one-half inch to allow room for the input coupling coil, L_{1}, to be inserted between them. The coupling is adjusted by bending L_{1} into or out of L_{2}. The grid tuning condenser, C_{1}, is nounted between the socket prongs; although the condenser has mica insulation it is used essentially as an air-dielectric condenser since the movable plate does not actually contact the inica at any setting inside the band. The coupling link is soldered to lugs under binding posts on a National lFWG strip, the strip being mounted on metal pillars $11 / 2$ inches high to bring the link to the same height as the grid coil.

Although the shielding between the input and output circuits of the tube is sufficiently good so that the circuit will not self-oscillate, tuning of the plate circuit will react on the grid circuit to some extent because the gridplate capacity, although small, is not zero. To eliminate this reaction it is necessary to neutralize the tube. The neutralizing "condensers" are lengths of No. 12 wire soldered to the grid prongs on the socket. The wires are crossed over the socket and then go through small ceramic feed-throughs at the top of the vertical shield, projecting over the tube plates on the other side as shown in Fig. 1633.

Connections between the plate tank condenser, C_{7}, and the tube plate terminals are made by means of small Fahnestock clips soldered to short lengths of flexible wire. The tank coil, L_{3}, is mounted on the same condenser terminals to which the plate clips make connection. The output link, L_{4}, is mounted similarly to the grid link except that the posts are $17 / 8$ inches high. The plate choke, $R F C_{1}$, is mounted vertically on the chassis midway between the platc prongs of the tube, the mounting means being a short machine screw threaded into the end of the polystyrene rod. The "cold" lead of the choke is by-passed by C_{5} underneath the chassis.

Supply connections are made through a 5 -post strip on the rear edge of the chassis. The dotted lines between connections in Fig. 1631 indicate that these connections are normally short-circuited; leads are brought out so that the grid and screen currents can be measured separately.

In adjusting the amplifier, the plate and screen voltages should be left off and the d.c. grid circuit closed through a milliammeter of $0-25$ or $0-50$ range. The driver should be coupled to the amplifier input eircuit through a link (Amphenol Twin-Lead is suitable, because of its constant inpedance and low r.f. losses). Use loose coupling between L_{1} and L_{2} at first, and adjust C_{1} to make the grid circuit resonate at the driver frequency, as indicated by maximum grid current. The coupling between L_{1} and L_{2} may then be increased to make the grid current slightly higher than the rated load value for the tube used - approximately 12 ma . for the 829 . If the driver is an oscillator, the coupling between $L_{1}-L_{2}$ should be as loose as possible with proper grid current.

Neutralization can be checked by rotating C_{7} through resonance. A flicker in grid current as C_{7} is rotated indicates that the neutralizing capacity is not correct. The neutralizing wires should be bent in relation to the tube plates until the grid current remains constant when C_{7} is tuned through resonance. Care should be used to keep the wires symmetrical with respect to the two sections of the tube.

After neutralization, plate and screen voltage may be applied. If possible, the plate voltage should be low at first trial so there will be no danger of overloading the tube. Adjust C_{7} to resonance, as indicated by minimum plate current (this should be measured independently of the screen); with the 829 , the minimum plate current should be in the neighborhood of 80 milliamperes with 400 volts on the plate and no load on the circuit. A dummy load such as a 60 -watt lamp should light to
something near full brilliance when the coupling between L_{3} and L_{4} is adjusted to make the tube draw a plate current of 200 ma. When the loading is set, the grid current should be checked to make sure it is up to the rating for the tube. If it has decreased, the coupling between L_{1} and L_{2} should be increased to bring it back to normal.
Power-supply and modulator requirements will depend upon the particular tube used. For the 829, the plate supply should have an output voltage of 400 to 500 with a current capacity of 250 millianperes. With a 400 -volt supply the modulator power required is 50 watts, with an output transformer designed to work into a 1600 -ohm load; with a 500 -volt supply slightly over 60 watts of audio power is needed, the load being 2000 ohms.

© Transceivers

The transceiver is a combination trans-mitter-receiver in which. by suitable switching of d.c. and audio circuits, the same tube and r.f. circuit functions either as a modulated transmitting oscillator or as a superregenerative detector. This makes for extreme compactness and light weight. making the transceiver popular for hand-carried portable equipment. It is a compromise with respect to other features, however. The transceiver can be a source of serious interference, and its efficiency is not equal to that of other types of gear wherein separate tubes and circuits are used for transmission and reception.

As a matter of good amateur practice the use of transceivers slould be confined to very, low-power operation - as in "walkie-talkie" or "handie-talkie" equipment - in the 144Mc. band. and to experimental low-power operation in the higher-frequency. bands. The use of transceiver-type equipment should be avoided entirely for regular operation on the 144-Mc. band.

4. A Complete 144-Mc. Portable-Mobile Station

The transmitter shown in Figs. 1633 to 1637, inelusive, is designed to be used for portable or mobile operation in conjunction with a vibrator power supply giving 100 ma. at 300 volts. Separate tubes are used for the r.f. sections of the receiver-transmitter combination. The oscillator is operated at 15 watts input and delivers approximately four watts of power output.

As shown in Fig. 1637, the oscillator uses an HY-75 tube in the ultraudion circuit, using high C to improve the carrier stability and reduce frequency modulation. Coupling between the oscillator and the antenna is by means of a variable link and a short length of coasial cable connected between the link and the antenna switch, S_{18}. In general, the oscillator circuit. is similar to the one shown in Fig. 1625, and additional information on adjustment will be found in the description of that oscillator.

A 6C4 triode tube is used in the superregenerative detector. Fairly high C is used in this circuit because the 6 C 4 superregenerates more smoothly with this arrangement. A variable link. mounted on a polystyrene pillar, is connected to the antenna switch by means of coaxial cable. The circuit goes into superregeneration with 50 to 60 volts on the plate element, and the resulting low power input causes relatively low receiver radiation.

For transmission, the audio section of the unit employs a single-button carbon microphone working into a 6 C 5 Class A driver stage, transformer-coupled to a 6 Y7G Class B modulator. With a 6 -volt battery, the microphone output is more than adequate for full power output from the speech system. The Class B modulator gives higher power efficiency and lower average plate current than a Class A modulator ancl, as a result, the proportion of

Fig. 1633-Anoiher view of tho 14.f-Mr. amplifier. The neutralizing wires aro eroseed over the socket before going throughthe feed-through insulators. The input circuit is designed for link coupling to the driver stage.

the limited power-supply output current which must be reserved for the audio sertion is relatively low. The 6Y7(arguires a phate-to-phate load resistance of about 14,000 ohms. The oscillator, operating with 300 volts at normal current, represents a load impodance of footo ohms, so that the primary-to-secondary impedance ratio required in the coupling transformer is 2.3 to 1 . With the transformer specified a close approximation to this ratio is serured when the tapss specified for matehing 10,000 ohins to 4500 ohms are used. The $6 \mathrm{l}^{\circ} 7 \mathrm{G}$ output is transferred from the headphone'speaker circuit to the owilator plate cireuit by means of one section of the send-receive switeh.

The microphone wimding of the transcoiver transformer. T_{1}, is oprened when the unit is changed over to the receiving prosition and a second winding is cut in to complete the circuit botween the detector and the f(\%) driver stige. With switeh S_{1} in the receive position the audio outpat is fed into the 'suataker. Headphones, plugered into the 'phone jack, J_{3}, will disconnect the 'speaker. R_{6} is the regeneration control. The small padding eondenser, C_{3}, increases the (' in the cireuit and serves for bandsetting. The loading resistor, R B_{3} may or may not be required. It is used to prevent the howling which frequently is erncountered at certain settings of the regeneration control. If necessary, the value of this resistor may be deereased to 22,000 ohms.

The transmitter is enclosed in a $6 \times 7 \times$ 10 -inch metal cabinet. Most of the parts are mounted on a chassis measuring $112 \times 5!2 \times$ $91 / 2$ inches. Cinfortunately, a 9 -ineh-long " U "shaped chassis was not available and, as a result, the rolled-over edges at the front of the cabinet must be cut away to allow clearance for the chassis. The panel and chassis are fastened together by the mounting sleeves for the regeneration and gelin controls and the jacks, as shown in Fig. 1636; the microphone jack, J_{1}, is the one at the right. The regeneration control is to the left of J_{1} and the gain control is next in line. The three metering

Fif. 16.3 .4 - A fromt view of the complete 1+1.Me. portable-rnobile station.
jacks, J_{2}, J_{3} and J_{4} are at the left of the panel while we thane jack, J_{s} is nexi to the gatin control. From laft to right, along the conter of the pancl are the 'speaker, the oscillator frequencycomtrol dial and the detector tuning dial. Both dials are equipped wilh locks to present frequency shift durins moblle operation. The send-receive switeh knob is centered below the two tuning contmos. A coasial antema fitting is located at the top of the panel and to the left side of the dial light.
Fig. 16:35 shows the chassis arrangement of the main components of the unit. The 6(:). $T T_{2}$, and T_{3} appear from left to right along the rear edge of the chassis. The $6 \mathrm{I}^{7}(x$ is directly in back of T and the 'speaker transformer, T_{4}. is mounted on the lugs provided in the 'speaker design. Powor leads are brought to the fourprong plug mounted on the rear wall of the chassis.

The r.f. section is kept as compact as possible so short leads can be maintained. The tuming condensers, C_{1} and C_{2}, are mounted on a chassis formed from $3 / 32$-inch aluminum stock. This chassis is 4 inches wide. has a $3 / 4$-inch mounting surface at the bottom, and is 3 inches high. A section of the stock, measuring $11 / 2$ inches wide by 2 inehes deep, is bent over at the top to form a mounting plate for the 6C4.

A small terminal block, made from sheet polystyrene, is mounted on spacers between the two variahle contensers; the coaxial feedline for the oscillator is moored at this point along with the hot end of the antenna link, L_{2}. The oscillator-plate r.f. choke, $R F C_{1}$, is mounted at the upper right-hand corner of the chassis and the tank eoil, L_{1}, has its ends drilled to fit the condenser terminals on whieh it mounts. The grid r.f. choke, by-pass condenser, and grid leak are all mounted on the 1/4-inch diameter rod shown at the left of the HY-75. The rod is drilled and tapped so that it can be mounted by means of the tube-socket mounting serew. The II Y-75 socket is mounted below the chassis by means of sj-inch metal spacers.

The detector coil is mounted on the upper and lower stator-plate terminals at the left of the condenser. C_{3} is comnected across the same t wo points. The feed-back condenser, C_{7}, and the grid-leak resistor. i_{2}. are tied in parallel and mounted hetween the lower stator plate terminal of cand the tube socket. The r.f. choke is at the rear-right corner of the shelf. C_{8}, the quench by-pass, is located between the r.f. choke and ground. The antema coupling

Fig. 1635 - Rear view of the 144-Mc. trans-mitter-receiver.
(oil, L_{4}, is supported byapolystyrene rod which has been drilled and tapped for chassis moumting. The detector end of the roatsial cable is soldered to the apronents of the link at the points where they protrudo through the rod.

A botion view of the chassis is shown in Fig. 1636. T_{1}, the microphone transformer, is mounted on the rear wall at the right end of the chassis. The 6C5 plate decoupling condenser, C_{10}, rests against the base to the front of $T_{1} . C_{9}$ and R_{5}, the 6C5 cathode condenser and resistor, are to the left of the tube socket at the rear of the chassis and the blocking condenser, C_{11}, is in front of the IIY-7.) socket. One of the spare pins of the HY-75 socket is used as a tie-point for the connection between C_{11} and switch, $S_{1 c}$. The filament tuning condenser, C_{4}, is connected between l'in 2 of the oscillator socket and a soldering lug which is held in place by one of the tube-socket mounting nuts.

For mobile wark only, the microphone voltage may be secured by connecting the hot end of the microphone transformer winding to any one of the 6 -volt points inside the chassis. However, if operation with an a.c. supply is and with 300 volts on the plate. The antema coupling and tuning should be adjusted to obtain a full-load current of approximately 50 ma., using the loosest antenna coupling which will give the desired plate current.

The modulator plate-current reading should be about 25 ma. without speech and should rise to about 100 ma . on modulation peaks. Under full modulation the plate current of the oscillator will kick downward slightly, because of the lowered oscillator plate voltage caused by the power-supply regulation, as the modulator current increases.

The preliminary testing might well be carried on with a dummy load coupled to the oscillator. This procedure is recommended unless the transmitter frequency has been set contemplated, it is necessary to bring out the transformer lead so that a microphone battery may la eonnected oxtornally. This connertion rem he made by connecting the transformer lead throigh the input plig.

Plate current can be measured by using a $0-100$ milliammeter fitted with a plug for the plate jacks. $J_{2} . J_{3}$ and J_{4}. The oscillator plate-current reading should be approximately 40 ma. with no antenna load comocited

Fig. $1636-\mathrm{A}$ bottom view of the complete 144-Mc. portable-mobile unit.

$\mathrm{C}_{1}-$ Split-xtator $^{\text {"hutterfly" condenser, }} 1 \cdot 4 \mu \mu \mathrm{fd}$. total (Cardwell E1R-I-1-BF/SL.).
C_{2} - Split-stator comdenser, $6 \mu \mu \mathrm{fl}$. total (Cardwell ER-6-13F/S).
$\mathrm{C}_{3}, \mathrm{C}_{1}-3-30-\mu \mu \mathrm{fl}$. ceramic trinmer.
$\mathrm{C}_{5}-100-\mu \mu \mathrm{fd}$. midget micia.
$\mathrm{C}_{\mathrm{\theta}}, \mathrm{C}_{7}-\mathrm{L}_{1}^{-}-\mu \mu \mathrm{fd}$ midget mica.
$\mathrm{C}_{8}-0.0 \mathrm{of} \mathrm{I}^{-\mu \mathrm{fd} \text {. mica. }}$

$\mathrm{C}_{10}-8-\mu \mathrm{fl} .450-\mathrm{volt}$ electrolytic.
$\mathrm{C}_{11}-0.1 \cdot \mu \mathrm{fl} .600$-volt piper.
$\mathrm{R}_{1}-4700$ ohms, 1 watt.
$\mathbf{R}_{\mathbf{2}}-3.3$ megohnes, 12 watt.
$\mathbf{R}_{3}-47,000$ olims, 1 watt.
R_{4} - $0 . i$-megohni volume control.
$\mathrm{R}_{5}-1000$ olims, 1 watt.
$\mathrm{R}_{\mathrm{G}}-0.1$-megohn potentioncter.
$\mathrm{K}_{7}-0.1$ megohm, 1 watt.
$\mathrm{L}_{1}-2$ turns of $1 / 8$-inch copper tubing; inside dianueter 5's inch; turns suaced approximately sio inch hetween conters; plate tap at cumber.
$\mathrm{L}_{2}-1$ turn No. 12 harc wire; inside dianueter $1 / 2$ inclı. $\mathrm{L}_{3}-3$ turns No. 12 lare wirc; inside dianeter $1 / 2$ inch,
inside the 144-Mr. hand before the actual installation in the atomobile is started. In any event, always eheek the frequency carefully ench time before starting regular operation because the antenna loading will affect the frequency. Also, because the oscillator has a high-(' tuned circuit., a small variation in the setting of C_{1} will cause a considerable jump in frequency. It is wise to check the frequency whenever an adjustment of any kind is made. Frequency checking ean be done with an absorption-type frecpuency meter, with Lecher wires, or by listening on a calibrated receiver.

Testing the detector for superregeneration is a simple mater inasmuch as the superregenerative hiss becomes plainly audible when the cireuit goes into operation. It is possible that a component layout slightly different than that of the original model will necessitate some experimentation with the values of R_{2}, C_{7} and C_{8}. Values which provide the smoothest regeneration and the erreatest sensitivity should be selected. The padding condenser, C_{3}, should be adjusted so as to allow the tuned circuit, $\mathrm{C}_{2} L_{3}$, to cover the 144 - Mc. band. An accurate eheck on the frequency coverage can be made by employing any one of the instru-
length 7 Ts inch; plate tap at center.
$L_{4}-2$ turns ${ }^{\circ} \mathrm{O} .18$ enameled n ire; inside diameter $1 / 2$ incli; turns spaced diameter of wire.
$L_{5}, L_{6}-3$ turns No. 18 d.e.c.; inside diancter ${ }^{3}$ inch. L_{5} interwound with L_{0}, no spacing between turns.
$\mathrm{I}_{1}-6$-volt dial light.
J_{1} - Midget open-circuit jack.
$\mathrm{J}_{2}, \mathrm{~J}_{3}, \mathrm{~J}_{4}, \mathrm{I}_{3}$ - Midget closed-circuit jack.
J_{6} - Coasial-cable connector.
$\mathrm{P}-4$-prong malc plug.
RFC_{1}, $\mathrm{HPC} \mathrm{C}_{2}$, $\mathrm{HVC} \mathrm{C}_{3}-1$-inel winding of No .24 d.s.c. or s.c.e. on $1 / 4$-inch rod; rods drilled and tapped for mounting.
Spkr - 3 -inch permanent-mapuct dynamic 'spaker.
$\mathrm{S}_{1 \mathrm{~A}-\mathrm{B}-\mathrm{C} \cdot \mathrm{D}}-4$ - p 倍e doulde-throw switch.
T_{1} - Transceiver transformer (($\mathrm{TC} 1 \mathrm{R}-\mathrm{-} .3$).
T_{2} - Interstage audio, single plate to push-pull grids ('Thordarson T-191)06).
T_{3} - Output transformer, 10,000 -nhn primary to 4.50)-chm secondary ('Thurdarson 1-17A.59).
T_{4} - Output transformer, 4500 -ohm primary to voice coil ($\mathrm{U}^{\prime} \mathrm{T}$ C R-59).
ments or methods suggested for calibration of the transmitter frequency.

A 300 -volt $100-\mathrm{ma}$. vibrator-type power supply is recommended for mobile operation. The self-rectifying type is the least expensive and places the snallest load on the car battery. However, any supply that will deliver the necessary voltage and current will be quite satisfactory. An a.c. supply for testing purposes mity also be provided; it should have the same output capabilitics as the vibmator supply, and should include a filament transformer designed to deliver 6.3 volts at 3 to 3.5 amperes.

Under normal conditions the plate voltage applied to the transmitter and audio tubes will be the full power-supply output voltage minus the small $I R$ clrop caused by the audiotransformer windings. The 6 CD draws approximatcly 10 ma. and has a cathode bias of 8 to 9 volts. The 6C4, when superregenerating with 50 to 60 volts applied to the plate, will draw less than 1 ma. of plate current.

The antenna can be cither a quarter-wave (19-inch) or a half-wave (39-inch) rod. Coaxial feed can be used with the short antenna and a two-wire tuned transmission linc should be used with the half-wave radiator.

(1) A Simple 235-Mc. Transceiver

The transceiver shown in Figs. 1639, 1640 and 1641 can be used either as a piece of fixedstation equipment or for portable-mobile work. The circuit diagram of the transceiver is shown in Fig. 1638. The detector-oscillator sertion of the unit employs a 6 C 't triode in a high-C circuit similar to the one shown in Fig. 1622.

The audio section of the transceiver consists of a 6 J 5 driving a GVG. With the send-" rective switch in the "send" position the microphone circuit is elosed while the audio input winding of T and the speaker winding of T_{2} are disconnected. The primary winding of T_{2} becomes the modulation choke during transmission. Voltage for the

C_{1} - Tuning eondenser; sce text (Cardwell Type ER-$14-\mathrm{BF} / \mathrm{SL})$.
$\mathrm{C}_{2}-47-\mu \mu \mathrm{fd}$. midget mica.
$\mathrm{C}_{3}-3-30-\mu \mu \mathrm{fd}$. ceramic trimmer.
$\mathrm{C}_{4}, \mathrm{C}_{5}-470-\mu \mu \mathrm{fd}$. midg.t mica.
$\mathrm{C}_{\mathrm{A}}, \mathrm{C}_{7}-0.1-\mu \mathrm{fd}$. paper, 100 volts.
$\mathrm{Cs}-25$ to $50 \mu \mathrm{fd}$., clectrolytic, 50 volts.
$\mathrm{R}_{1}-22,000$ ohms, $1 / 2$ watt.
$\mathrm{K}_{2}-4 . \overline{\mathrm{m}}$ megohms, $1 / 2$ watt.
R_{3} - 0.1-megohm volume control.
$\mathrm{K}_{4}-1000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-0.1$ megohm, 1 watt.
$\mathrm{K}_{8}-0.1$ negohm, $1 / 2$ watt.
If: - 470 ohms, 1 watt.
single-button carbon microphone is. developed across R_{8}, the 220 -ohm resistor in the 6 V 6 cathode circuit.

The transceiver is housed in a utility cabinet of $5 \times 6 \times 9$ inches. The front eover of the box is used as the panel. Fig. 1639, a front view of the unit. shows the location of the variable controls, antema terminals, pilot light, microphone jack and 'speraker. All of that componints. with exception given to the tuning condonser and dial, are mounted on the panel.

As chow in the warn view, Fig. 1641, the r.f. assembly is mounted on a small "L"-shaped chassis at the left end oi the pancl. This chassis, formed from $1 / 16$-inch aluminum, has a width of 2

Fig. 16.39 - A simple 235 -Mc. transeciver. The 'speaker, tuning dial and antenna terninals are sbown at the top of the panel. The pilot light, wierophone jack, audio gain control, send-reccive switch and regeneration controls run from left to right across the bottom of the pancl. The swinging-link control is above the regeneration potentiometer. Ventilation holes are drilled in the rear panel.

Fig. If.fo - I bottom vich of the simple transevinor.
end can be touched with the finger without disturbing the operation of theresillator A grid-leak value allowing the smoothest operation should be silected and plate by-mass rondenser values between 0.0022 and $0.00+7 \mu \mathrm{fd}$. should be tried.

The imburtane of the tumel-eirenit ail, L_{1}, should be adjusted to bring the beand ont the dial by indereasing or derressing the length of the rlosed and open ends. 'The frequency may be dheched as deseribed in Chapter Nineteen. Coupling is adjusted by bending the leads of the antemna coil, L_{2}, to bring the coil nearer to or father from L_{1}. The compling should be adjusted so that with the switeh in the "recoive" position the oscillator goes into superregencration smoothly: if the coupling is too tight it may not be possible to obtain superregeneration
left of the r.f. section proved to be more of a refinement than a necessits, and may be replaced by a tightly-coupled fixed link. Grid leaks for the 6C-t are mounted direetly on the send-receive switch contacts and all input and out put leads for the cirmit are cabled and fed to the switeh and the audionertions.

The alldio section, shown at the right in Fig. 16.4, is monnted on an aluminum chassis;
 has a tonch lipat the front for securing to the panel and a 2 -ind vertioal member at the rear. A ent-ont in the chasis provides clearance space for the 'speaker. 'The (i.J) audio-input, tube is at the left of the audio seretion and the 6V6 output iube is on line with and to the right of the (i.J.)

Looking at the bottom of the chatsis, Fig. 16.10, the output-tube sucket is at the left with the ($6 . \mathrm{J}$) soeket monnted at the re:re eenter. Tho transeeiver transformer, T_{1}, is at the right amd the output transformor, T_{2}, can be seen protruding through the chassis at the back and center. The eoupling condenser, $C_{7}{ }_{7}$, rests on the base between the tube sockets and the GV'6 eathode by-pass condenser, C_{8}, lies against and parallel to the rear wall of the chassis. spare tube-socket pins are used to secure resistor tim-points wherever convenient. Heater, ground and plate-voltage leads are tomainatol at : lum strip momited at the molit end of the chassis watl. An owdinary battery cable complotes the cinenit-; from these points to the extormal power supply.

It is possible that in a partwen:ar layout some exprementation with r.f. component values will be neressary. liffective superrgencration depends considerably on the grid choke, and the number of turns used should be adjusted so that the cold

Fig. 1641 - An inside view of the $\mathbf{2 3 5}-\mathrm{Mc}$. transceiver.

(IA Disk-Seal Tube Oscillator for 144, 235 and 420 Mc .

At frequencies above 300 Mc . or so tubes of conventional construction will not operate for the reasons outlined at the beginning of this chapter. The disk-seal or "lighthouse" tubes will function nicely, however, in ordinary
and a $1 / 4$-inch hole drilled in the side. Holes are drilled at right angles to the large holes and tapped for 6-32 setserews. The $3 / 8$-inch hole fits over the plate eap of the tube, and the $1 / 4$-inch hole slides over the end of the plate rod. The grid half of the parallel line is approximately one inch shorter than the plate rod, to provide room for the grid condenser, C_{2}.

Fig. 10.83 - A thre -band oseillator ($14.4,235$ and 430 Mc.) using the 2C44. The shorting bar on the parathel lines is moved to the proper point and locked, and tuning over the band is aceomplished by the homemade variable condenser mounted at the ends of the lines near the tube.
linear circuits at frequencies up to several hundred megacycles. No special types of circuit construction (such as cavity resomators) are required, thorrfore, when disk-seal tubes are used in the $420-M e$ band.

Details of construction of a transmitter using the $2(44$, for operation in the $144-$, 235-, and 420-Me. bands, are given in Figs. 1642-1645, inclusive. Using parallel lines, it is only necessary to change the position of the shorting bar to obtain output on any of the three bands. The shorting bar is moved to a previously-calibrated point on the lines and locked, and then any frequency within the amateur band is obtained by proper setting of a tuning condensor connected across the lines at the point where they connect to the tube. The antema coupling loop is connected to the shorting bar so that the two are moved simultancously.

The circuit is shown in Fig. 1612. It will be recognized as the comventional circuit used in most 144 - Mre gear. The only critical component in the unit is $R F^{\prime} C_{2}$, the grid choke. There is an optimum value of choke for any one frequenev, with which maximum output will be obtained at that frequency, but the value shown is a good compromise for the three-band range of this transmitter. The cathorle is above ground by $R F^{\prime} C_{3}$ and $R F^{\prime} C_{4}$, but these inductors are not critical.

The transmitter is built on a $6 \times$ 28×1-inch board. The "cold" ends of the $1 / 4$-inch rods used in the line are supported by two panel bushings mounted in an aluninum bracket which is fastened to the bascboard. These two panel bushings are of the lorking type and make it a simple matter to position the rods properly. The plate rod is terminated at the plate and in a hole in the plate cap. The plate cap consists of a $1 / 2$-inch length of $3 / 4$-inch diameter brass rod with a $3 / 8$-inch hole drilled in the center

The grid end of the line is supported by a small polystyrene post, and the grid socket is made by forming a narrow band of copper around the grid disk of the lighthouse tube and tightening it with a $2-56$ machine serew and nut.

The shorting bar for the parallel lines is made of two locking-type panel bushings set in a copper stritp. These bushings are tightened just enough to insure good contact and still allow the bar to slide without too much effort. It is imperative, therefore, that the two rods be smooth and straight, although they can be either brass rod or brass tubing. The coaxialcable connector for the antenna feed line and the antenna loop are mounted to a piece of $1 / 16$-inch bakelite bolted to the shorting bar. The antema loop rides under the lines so that it will not hit the tuning condenser when the shorting bar is near the condenser. The size of the loop may vary with different antennas, but it should be about 2 inches long and spaced the same as the lines. The coupling can be increased by bending the loop closer to the lines.

The tuning condenser is of the split-stator type with the rotor floating. The stator plates consist of two strips of copper, $3 / 16$ inch wide by 1 inch long. formed in two ares and soldered to the tuning rods (see Fig. 1645). The rotor

Fig. I6.t2 - Circuit diagram of the threc-band oscillator.
C_{1} - See tent and Fix. 1645.
$\mathrm{C} 2-10-\mu \mu \mathrm{fl}$. ceramic.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-100-\mu \mu \mathrm{fd}$. mica.
$\mathrm{R}_{1}-3300$ ohm:, 1-watt composition.
$\mathrm{RFC}_{1}-13$ turns No. 18 enarn., $1 / 4$-inch diam., closewound.
RFC $_{2}-25$ turns No. 18 enam., $3 / 8-$ inch diam., spaced wire diam.
$\mathrm{RFC}_{3}, \mathrm{RFC}_{4}-$ R.f. choke (Ohmite $\mathrm{T}_{4}-1$).

Fia, Iot - A close-up, view of the tuning combenser of the three-band oseillator also shows the details of the socket monnting and tube conncetions (111)BM1).

Oscillation ran be determined hy using a small neon bulb or a flashlight lamp :und loop of wire hedd close to the lines. Crid current is also an exeellent oscillation indiator. If no oscillation is (obtained, it probably means an incorvert grid choke, and its eonstruttion should be rhecked or monlified slightly. Tlo get the best wheriency, partirularly on any one band, may require some slight rovision in the inductance of the grid choke or in the value of the r.f. by-pass caparitors, the effert of surh changes being checked by watelang the output as indicated by al lamp load and the input as indieated by: a plate milliammeter. Tuning up fombld be done at re-
uses a piece of 3 亿-inch diameter polysterene rod through which is drilled : 1 - -inch diamoter hole for a bakelite or polystyrene shalt. If desired, the solid polystrane ran be replated by a *-inch diameter coil form by cementing a disk of polystyrene to the open end of the coil form.

The rotor plate, a " U "-shaped stripof copper one inch sfutare, is formed and then combented to the polys. yrem form. I " ["- whaped pieec is necessary becanse it was found that at 450 Me . a cylindrical rotor acted as a capacitor phate as it was first brought mear the stator phates, but as rotation eontinued the rotor bergan to art as a shorted turn in the field of the limes. thas counterateting the effer of the additionat eapacity and limiting the tuning tange to only a small frequency variation. Two metal brackets with pand bushings are used bosupport the rotor shaft. It is a good idea to momat the panel bushinges in slots rather than bhe usual clearance holes. so that the shafl ran be moved toward the stator plates until the desired capacity range is obtained.

The tube soeke is mounted on an alumimum bratket which is sorewed to the haseboath. No comertion is made to the r.f. wathode rommertion berause the oserillator was found to work better over the entire range that way.

Foreed ventilation must be used on the thle if anything like the rated maximum input of 20 watts is to be used. As murh of the plate heat as possible must be conducted away by the phate rod, and for this reason the comertion between plate and rod must be as good as possible from a heat as well as an electrical standpoint. The forced ventilation of the platecan best be obtained by the use of a small electric fan whose blast is directed at the plate connection whencver the plate power is applied. A small blower tube can be ringud up from stiff cardboard and attached to the fan.

Fif: Ifit5 - Constructional and assembly details of the tuning capacitor for the $141 / 235 / 120-N 1$ e. oscillator.
duced plate voltagre say aromud 250 or 300 , at which value the landed phate current shomad rom around 15 t 020 ma., alter which the maximum input of 40 ma , at 500 volts can be appliad if consilerad neressary.

A gowed set of Lecher wires or an accuratelycalibrated aborortion wavemeter is essential for finding the different amateur hands. Althourh a wire line is probably the most conveniant for the 144 - and 2:3-Ma bands. a more rigid line for the $420-\mathrm{Mc}$. hathd can be mate by using $1 / 4$-inch rod or tubing, supporting it in the same manner that the tumed circuit is supported for the ascillator. Aiter the oseillator has: been calibrated, a cardboard seale can be added to the baseboard and the persitions marked for the three amatem bands. The approximate settings of the storting bar follow:
Distance from Center of Ilate

14 inches	138-1.52 Mr.
$8{ }^{1 / 4}$	21.5-245
21/2 *	418-452

Considerable care must be cxercised in moving the shorting bar (and in removing the tube from its socket) beealuse of the possibility of breaking the tube seats.

C Design Factors

While the basic principles of antenna operation are essentially the same for all frequencies, certain factors peculiar to v.h.f. work call for changes in antenna technique for the frequencies above 50 megacycles. Here the physical size of multiclement arrays is reduced to the point where an antenna system having some gain over a simple dipole is possible in nearly every location, and experimentation with various types of arrays is an important part of the program of most progressive workers. The importance of high-gain antennas in v.h.f. work cannot be overemphasized. A good antenna system is often the sole difference between routine operation and outstanding success in this field. By no other means can so large a return be obtained from a small investment as results from the erection of a good directional array.

Beginning with the 50-Mc. band, the frequency range over which antenna arrays should operate effectively is often wider in percentage than that required of lower-frequency systems; thus greater attention must be paid to designing arrays for maximum frequency response, possibly to the extent of sacrificing other factors such as high front-toback ratio. As the frequency of operation is increased, losses in the transmission line rise sharply; hence it becomes more important that the line be matched to the antenna system correctly. Because any v.h.f. transmission line is long, in terms of wavelength, it is often more effective to use a high-gain array at relatively low height, rather than to employ a low-gain system at great height above ground, particularly if the anterma location is not completely shiclded by heavy foliage, buikdings, or other obstructions in the $i m$ mediate vicinity. This concept is in direct contrast to carly notions of what was most desirable in a v.h.f. antenna system. An appreciable clearance above surrounding terrain is desirable, but great height is by no means so all-important as it was once thought to be. Outstanding results have been obtained by many v.h.f. workers, especially on 50 and 144 Mc., with antennas not more than 25 to 40 feet above ground.

C. Polarization

Practically all the early work on frequencies above 30 Mc . was done with vertical antennas, probably because of the somewhat stronger field in the immediate vicinity of a vertical
system. When v.h.f. work was confined to almost pure line-of-sight distances, the vertical dipole produced a stronger signal at the edge of the working range than did the same antenna turned over to a horizontal position. With the advent of high-gain antennas and extended operating ranges, horizontal systems began to assume importance in v.h.f. work, especially in parts of the country where a considerable degree of activity had not already been established with verticals.

Numerous tests have shown that there is very little difference in the effective working range with either polarization, if the most effective clement arrangements are used, and the same polarization is employed at both ends of the path. Vertical polarization still has its adherents among 50-XIc. enthusiasts and nuch fine work has been done with vertical antennas, but an effective horizontal array is somewhat casier to builel and rotate. Simple 2-, 3- or 4 -element horizontal arrays have proven extremely effective in 50-Mic. work, and the postwar era has seen an increase in the use of such arrays which has anounted to standardization on horizontal polarization.

The picture is somewhat different when one goes to 144 Mc . and higher. At these frequencies, the most effective vertical systems (those having two or more half-wave clements, vertically stacked) are more casily erected than on 50 Mc . Important, in considering the polarization question, is the existence of countless $144-\mathrm{Mc}$. mobile stations, whose antenna systems must, of necessity, be vertical. While horizontal polarization will undoubtedly find increased favor at 144 Mc . and higher, particularly for point-to-point work in rural areas, it is probable that vertical polarization will continue to dominate this field for some years to come. Uncler certain conditions, notably a station directly in the shadow of a hill, there may be a considerable degree of polarization shift, but ordinarily it may be assumed that best results in $144-\mathrm{Mc}$. work will be obtained by matching the polarization of the stations one desires to contact.

© Impedance Matching

Because line losses tend to be much higher in v.h.f. antenna systems, it becomes increasingly important that feed lines be made as nearly "flat" as possible. Transmission lines commonly used in v.h.f. work include the open-wire line of 500 to 600 ohms impedance, usually spaced about two inches; the polye-thylene-insulated flexible lines, available in
$300-150-$, and 72 -ohm impedances; and coaxial lines of 50 to 90 ohms impedance. These may be matched to dipole or multielement antennas by any of several arrangements detailed below.

The " J " - Used principally as a means of feeding a stationary vertical radiator, around which parasitic elements are rotated, the " J " consists of a half-wave vertical radiator fed by a quarter-wave matching section, as shown at A, Fig. 1701. The spacing between the two

sides of the matching section should be two inches or less, and the point of attachment of the feed line will depend on the impedance of the line used. The feeder should be slid along the matching section until the point is found which gives the best operation. The bottom of the matehing section may be grounded for lightning protection. A variation of the " J " for use with coaxial-line feed is shown at B in Fig. 1701. The " J " is also useful in mobile applications.

The delta or " Y " match - Probably the simplest arrangement for feeding a dipole or parasitic array is the familiar delta, or "Y" mateh, in which the feeder system is fanned out and attached to the radiator at a point where the impedance along the element is the same as that of the line used. Information on figuring the dimensions of the delta may be found in Chapter Ten. Chiof weakness of the delta is the likelihood of radiation from the matching section, which may interfere with the effectiveness of a multielement array. It is also somewhat unstable mechanically, and quite eritical in adjustment.

The " Q " section - An effective arrangement for matching an open-wire line to a dipole, or to the driven element in a 2 - or 3 element array having wide (0.25 wavelength or greater) spacing, is the " Q " section (Chapter Ten). This consists of a quarter-wave line, usually of $1 / 2$-inch or larger tubing, the spacing of which is determined by the impedance at the center of the array. The parallel-pipe " Q " section is not practical for matching multiclement
arrays to lines of lower impedances than about 600 ohms, nor can it be used effectively with close-spaced parasitic arrays. The impedance of the " Q " section required in these cases is lower than can be obtained using parallel sections of tubing, but a concentric line may be used for this purpose. A quarter-wave section of flexible coaxial line of 72 ohms impedance is a convenient arrangement for matching a 300 to 600 -ohm line to the low center impedance of a 3- or 4-elenient array. The length of such a line will be approximately 65 per cent of a quarter wavelength or

$$
L=\frac{1920}{f_{\mathrm{Mc}}}
$$

where L is the length of the line required, in incles. This figure takes into account the propagation factor of the solid-dielectric coaxial line. For the line made of parallel pipes, length in inches is determined by

$$
L=\frac{2880}{f_{\mathrm{Mc}}}
$$

The " T " match - The principal disadvantages of the delta system can be overcome through the use of the arrangement shown in Fig. 1712, commonly called the "T" match. It lias the advantage of providing a means of adjustment (by sliding the clips along the parallel conductors), yet the radiation from the matching arrangement is lower than with the delta, and its rigid construction is more suitable for rotatable arrays. It may be used with coaxial lines of any impedance, or with the various other forms of transmission lines up to 300 ohms. The position of the clips should, of course, be adjusted for maximum loading and minimum standing-wave ratio. The "T" system is particularly well suited for use in all-metal "plumbing" arrays.

The folded dipole - Probably the most effective means of matching a wide range of line impedances to almost any sort of parasitic array is the folded dipole (Figs. 1702, 1703, and 1704), described in Chnpter Ten. A 300 -ohm line may be used to feed a 4-element array (Fig. 1703) by using $1 / 4$-inch rod or tubing for the fed section of the folded dipole and 1 -inch tubing for the parallel section. A 3-element array of the same general construction may be matched by using $3 / 4$-inch tubing for the parallel section of the dipole.

The impedance at the center of the system may also be increased by using three or more elements in parallel, the center impedance being increased approximately as the square of the number of elements used. This applies only if

Fig. 1702 - Details of the folded dipole.

Fig. 1703 - Dimensional drawing of a 4 -element 50. .Me. array. Element length and spariog were derived experimentally for maxinum forward gain at 50.5 Me:
the elements are all the same conductor size.

(C) Arrays for 50 Mc .

Since the same basic principles apply to all antennas regardless of frequency, little discussion is given liere of the varions simple dipoles which may be used when nondirectional systems are desired. Details of such antennas may be found in Clitpter Ten, and the only modification necessary for adaptation to use on 50 Me . or ligher is the reduction in length necessary for increased conductor diameter at these frequencies.

A simple but effertive array which requires no mateling arrangement is shown in Fig. 1705. Its desigin takes into account the drop in center impedance of a half-wive radiator when a parasitic element is placed a quarter wavelength away. A director elenent is shown, as the drop in impeditnee using a slightlyshortened parasitic element is just about right to provide a good match to a 50 -ohm coaxial line. The element lenath are not extremely critical in such a simple system, and the figures shown may be used with satisfactory results.
The importance of broad frequency response in any antenna designed for v.h.f. work cannot be overlooked. The disadvantage of all parasitic systems is that they tend to tune quite sharply, and thas are often effective over
only a small portion of a given band. One way in which the response of a system can be broadenod out is to increase the spacing between the parasitic elements to somewhit more than the 0.1 or 0.15 wavelength normally considered to provide optimum forward gain and highest front-to-back ratio. Some broadening may also be obtained by making the directors slightly shorter and the reflector slightly longer than the optimum value. The folded dipole is useful as the radiator in such an array, as its frecuency response is somewhat brouder than other types of driven elements

A 4 -clement array for 50 Mc . having an effertive operating range of about 2 Me . is shown in Figs. 1703 and 1704. It employs a

Fig. 1705 - A simple 2-element array for 50 Mr . No matching deviees are needed with this arrangement.
folded dipole having nonumiform conductor size. Reflector and first director are spaced 0.2 wavelength from the driven element, while the forward director is spaced 0.25 wavelength. The spacing and element lengths given were derived experimentally, and are those which give optimum forward gain at the expense of some front-to-back ratio. As the latter quality is not of great value in $50-\mathrm{Mc}$. work, it can be neglected entirely in the tuning procedure for such an array.

The dimensions given are for peak performance at 50.5 Mc . For other frequencies, the length of the folded dipole should be figured as reemommended in Chapter Ten. The reflector will then be 5 per cent longer than the driven ele-

Fis. 1704- The 4-elament rotary array for 50 Mc. installed atop a sterl tower. The frame cxtending below the main framowne servers as a rotating device. The array frame is mounted on a pipe flange, to which is fitted a leoglt of pipe which serves as a vertical support.

ment, the first director 5 per cent shorter, and the second director 6 per cent shorter. A broadening of the response may be obtained, at a slight sacrifice in forward gain, by adding to the reflector length and subtracting from the director lengths. For those interested in experimenting with element lengths, slottod extensions mity be inserted in the ends of the various elements, other than the dipole, as shown in Fig. 1706. A 3-element array may be built, using the same gencral dimensions, except that the driven element, in this ease. should have a 3 -inch diameter element in place of the 1 -inch tubing used in the 4 -element system.

Fig. 1706 - Detail drawing of inserts which may be used in the ends of the clements of a parasitic array to permit aceurate adjustment of element lenght.

Excellent results in work over distances up to 400 miles are being obtained by $50-$ Mc. workers using various more-complex directional arrays than the ones described above. The most important factor in such work is the attainment of the lowest possible raliation angle, aud this purpose is wedl served by stacking of elements., in cither vertical or horizontal systems. The use of two parasitie arrays, one a half wavelength above the other, fed in phate, provides a gain of 3 db . or more over that of a single array. The system shown in lig. 1707 is excellent for cither vertical on horizontal polarization, as is the "II" arraty, using lum half-wave elements, with or without parasitic elements.

 izontal frrtion of the half-wave " $1 I^{"}$ acts as a "()" sertion, matrhing the antenma impedance to the 300 -thm line attached at the center of the array. This array works well in either vertical or horizontal positions.

C. Arrays for 144 Mc .

Any of the above arrangements may, of course, be used for $14 t$ as well as for 50 Me . but, as two of them are designed for maximum effectiveness in a horizontal position, other designs mas be used more effectively where
vertical polarization is employed. To obtain the lowest radiation angle with vertical systems, those comprising a number of half-wave elements fed in plase are most useful. An important feature of such systems is that they are not so sharp in frequency response as are arrays having two or more parasitic clements in the same plane; consequently, adjustment of even quite complex systems such as the 16 element array shown in Fig. 1708 is not at all critical.

Plane reflectors are usable at 144 Mc ., their size at this frequency being within reason. An interesting possibility in connection with this type of reflector is its use with two different sets of driven elements, one on each side of the reflecting screen, A set of elements arranged for vertieal polarization may be used on one side, and a set of horizontally-poliarized elements on the other, or the plane reflector may be miade to serve on two different bands by a similar arrangement of elements for two frequencies, on opposite sides of the reflector. The sereen need not be a solid sheet of metal, or even a close-mesh serven. A set of wires or rods arranged in back of the driven elements will work almost equally werl. The dimensions of the reflector are not critical. For maximum effectiveness, the plane reflector slould extend at least 14 wavelensth beyond the area occupied by the elements, but ruffecting curtains no larger than the space orcupied by the reflectors shown in Fig. 1708 have beels used with good results.

In designing directional arrays having more than one driven element it is advisable to arrange for feeding the array at acentral point. A simple 6 -element array of ligh performanec, ineorporating this principls, is shown in Fig. 1707. All the elements. may be made of sof tcopper tubing, $1 / 4$ inch m diameter. The driven elements are comprised of two pieces which are bent into two " U "-shaped sections and arranged in the form of a hallfwave "H." The horizontal portion of the "H" is then a double quarter-wave " Q " section, mateling the impedance of the two radiators to that of the focel line. With the wiele sparing used, the position of the parasitic clements is not particularly critjeal, except as it affects the impedance of the system, and the spacing of the dements may be varied to provide the best mattech. The spacing of the horizontal section may be varied for the same purpose. With the dimensions given, a spacing of one inch betweren centers is about right for feeding with a 300 -ohm line. The radiation pattern of this array is similar in both horizontal and vertical planes; thus it will work with equal effectiveness in either position, provided the polarization is the same as that of the stations to be contacted.

By using a curtain of eight half-wave elements, arranged as shown in Figs. 1708 and 1709, backed up by eight reflectors, a degree of performance can be obtained which is truly

Fig. 1708-A 16-element array for 144 Me., showing supporting structure and "rotating nechaniwm." Sash cord wrapped three times around the crisiseroas pulley permits 360 -d.gree rotation.
outstamding. A gain of as much as 1 : db. can be realized with such an arrangement, efferting an improvement in operating range which could now be obtained by any other means. Such an array is neither diffeult nor expensive to construet, amblite promatme will more than repay the buildor for the trouble involved in its construction.

The siminatalate natare of the structure required to supprit such alt array would make its construction out
 of the question for a lower frequency, but for 144 Mc . the outside dimensions ate only $11 / 2 \times 71 / 2 \times 10$ feet, and the supporting frame can be made quito light.

The center pole (a 116 -inch rug pole 10 feet long) turns in three brarings which are mounted on braced arms extending out about two feet from a "two by three"," which is braced in a vortical position. An improvised pulley made of two pieces of 1×2-inch "furring" notched in the ends and fastened crisseross fashion near the bottom of the center pole serves as a "rotating mechamism." Sash cord wrapped three times around this "pulley" and run over to the window on small pulleys allows the beam to be rotated more than 360 degrees belore reversal is reguired. To kerp the array from twisting in ligh winds light sash cords are attached noar each end of the supporting structure. These cords are brought through the window near the rotating ropes and are pulled un tirlit and fastemed when tho antenna is not in use.

The elements are of $7 / 1$,-inch soft-aluminum tubing for light woight. To stiffon the structure, and to help to maintain alignment, inserts were turned down from $1 / 2$ inch polystyrene rod to fit tigitly into the elements at the point where the cross-over or phasing wires are connected. Similar inserts are used for the reflector elements also. The interconnecting phasing sections are of No. 16 wire, spaced about $1 \frac{1}{2}$ inches. The feed line, connected at the center of the system, is Amphenol 21-056 Twin-Lead, 300 ohms impedance. The impedance at the eenter of the array is about right for direct comection of the 300 -ohm line, without the necessity for a matehing section of any kind. It is probably somewhat lower than 300 whms. actually, and
if a perferet mateh is desired. a " Q " section miny be used. The performance is not greatly aflected by such a change, as the standingwave ratio is relatively low with the connection as shown.

The center section of the array may be used without the outside 8 elements, if space is limited. and a simpler array of good performance is dexired. The simple "HD" with reflectors may also be fed with 300 -ohm line without the nocessity for sperial matching devices.

Fif. 1709 - Schematic of the radiating portion of the 16.ilement 14. Ne. array. Reflectors are omitted for clarity. Radiators are 38 inches long, reflectors 40.3 inches. Cross-over or phasing sections are also 40.5 inches Iong. Reflectors are mounted 17 inches in back of cach radiator.

© Mobile and Portable Antennas

A common type of antema cmployed for mobile operation on 50 and 1.4 Mc . is the quarter-wave radiator which is fed with a co:xial line. The antenna, which may be a flexible telescoping "fish-pole." is mounted in any of several places on the car. The inner conductor of the coaxial line is connected to

380

the antenna, and the outer conductor is grounded to the frame of the car. Quite a good mateh may be obtalled by this method with the so-ohm conaxal line now awilable: however, it is well to provide some means of tuming the system, so that all variables ean be takern eare of. The simplest tuning artange ment consists of a variable condenser eonnected betworn the low side of the transmitter coupling coil and ground, ats shown in ligg. 1710. This condenser should have a maximum

Fig. 1710 - Method of ferding quarter-wave mohile antemas with eoaxial line. Cl should have a maximum capacity of 75 to $100 \mu \mu \mathrm{fd}$. for 28 - and $50-1 \mathrm{lc}$, work. L_{2} is an adjustable link.
caparity of 75 to $100 \mu \mu \mathrm{ffl}$. for 50 Mc .. and should be adjusted for maximum loading with the least coupling to the tramsmittor. Some mothod of varying the coupling to the transmitter should be provided.

The short antemna required for 144 Mc . (approximately 19 inches) permits mounting the antemman the top of the eatr. Such an arrangement provides good eoverage in all directions. the rar bolly acting as a ground plane. When the antenna is mounted elsiwhere on the rar. it is apt to show quite marked directional characteristics. Because of this it is desirable to make provisions for the use of the same antenna for both transmitting and receiving.

The best antema posible for operation under mohile conditions is not particularly effective, ats compared with antemma systems normally used in fixed-station work. To make the most of the fine opportunities for $10 . \mathrm{C}$ work afforded by eountless high-illitude loeations which are accessible by car. it is helpful to have some sort of eollapsible antenna array which can be assembled "on the spot." Even a sim-

Fig. F :ll - A 2-clement collapsible array for $50-\mathrm{Mc}$. portatile use.
ple array like the our shown in Figs. 1711 and 1712 will effect a rreat improvement in the operating range of the low-powered gear normatly used for mobile operation. This one is designed for $50-$ - Ie. use, but similar arrangements can be made for other frequencies.

The array shown is a 2-clement system, comprised of a rarliator which is fed with coasial line by means of a " T " match, and a reflector which is spaced 0.15 wavelength in batek of the driven clement. It is made entiocly of $3 / 4$-ineh dural tubing, execpe for the vertical support, which is 1 -inch tulhing of the same material. A sugerested method of momenting is shown in Fig. 1711. A short length of 1×2-inch or larger wood is bolted to the rar bumper. A piede of $3 / 4$-inch dural tubing is bolted to this upright, and the 1 -inch vertioal sertion of the array slips over the top of the $3 / 4$-inch section. The array is turned by means of ropes attached

Fig. 1712 - Detail drawing of the collapsible shlille, arraly, shown in Fig. 1711. All parts except the vertical atpmort, which is 1 inch in diantser, are made of $\frac{3}{4}-\mathrm{inch}$ duralumin tubing. For earrying purpoxese it is taken apart at Points "A and "B." inserts of sloted dural tubing being ued at Point "A" to holld the sections together. All extensions are the same lenath, the difference in element lenath being provided by the length of the center sections.
to the reflector element. Height of the array may be increased over that shown by using a longer wooden support, in which case it is desirable to use a 2×2 for greater strength. An anchoring pin made from a spike inserted in the bottom end of the wooden support is helpful to prevent tilting of the array. With such a device embedded in the ground, the whole assembly will remanin rigid, which is helpful in the high winds usually encountered in monn-tain-top locations. Portability is provided by making the elements in three sections, with the end sections all the same length. The center section of the radiator is 6 inches shorter than that of the reflector.

The fed section of the " T " matcling device is composed of two pieces of $3 / 4$-inch dural tubing about 14 inches long. The two sections are held together mechanically, but insulated elcetrically, by a piece of polystyrene rod which is turned down just enough to make a tight fit in the tubing. The inner and outer conductors of the coaxial line are fastened to the two inside ends of the natching section. Clips made of spring bronze are used for connection between the radiator and the "T." The position of these should be adjusted for maximum loading and minimum standingwave ratio on the line. The idea for this array was suggested by W7OWX in "Hints and Kinks," April, 1946, QST', page 148.

© Miscellaneous Antenna Systems

Coaxial antennas - With the " J " antenna radiation from the matching section and the transmission line tends to combine with the radiation from the antema in such a way ats to raise the angle of radiation. At v.l.f. the lowest possible radiation angle is essential, and the coaxial antemma shown in Fig. 1713 was developed to climinate feeder radiation. The center conductor of a 70 -ohm concentric transmission line is extended one-quarter wave beyond the end of the line, to act as the upper half of a half-wave antenna. The lower half is provided by the quarter-wave sleeve, the upper end of which is comnected to the outer conductor of the concentric line. The sleeve acts as a shield about the transmission line and very little current is induced on the outside of the line by the antenna fied. The line is nouresonant, since its charateristic impedance is the same as the center impedance of the half-wave antenna. The slecve may be made of copper or brass tubing of suitable diameter to clear the transmission line. The coaxial antenna is somewhat difficult to construct, but is superior to simpler systems in its performance at low radiation angles.
Cylindrical antennas - Radiators such as are nised for television and broad-band f.m. are of interest in amateur v.h.f. operation because they work at high efficiency without adjustment throughout the widh of an amateur band.
At the very-high frequencies an ordinary di-
pole or equivalent :nntenna made of snall wire is purely resistive onlv over a very small frequency range. Its Q, and therefore its selectivity, is sufficient to limit its optimum performance to a narrow frequency range, and readjustment of the length or tuning is required for each narrow slier: of the spectrum. With tuned transmis.sion linces, the effective length of the anterna can be shifted by retuning the whole system. However, in the case of antennas fed by matched-impedance lines, any appreciable frequency change requires an actual meclanical adjustment of the system. Otherwise, the resulting mismatch with the line will be sufficient to cause significant rechuction in power input to the antenna.

A proper bud entenna designed and const ructed widevery nearly constant input impedance over several megarycles.

The simplest method of obtaining a broadband characteristic is the use of what is termed a "cylindrical" antenna. This is no more than a conventional doublet in which large-diameter tubing is used for the elements. The use of a relatively large diameter-to-length ratio lowers the Q of the antenma, thus broadening the resonance characteristic.

As the dianeter-to-length ratio is incrensed, end effects also increase, with the result that the antenna must be made shorter than a thinwire antennaresonating at the same frequency. The reduction factor may be as much as 20 per cent with the tubing sizes commonly used for anmateur antennas at v.h.f.
Cone antennas - From the cylindrical antenaa various specialized forms of broadly res-

Fif. 1714-Conical broad-hand antennas have relatively constant impedance over a wide frequeney ranfe. 'llie threc-cinarter wavelength dipole at left and the quarter-wave vertical with ground plane at right have the same input impedance - approximately 65 olims. Shect-inetal or spine-type construction may be used.

Fig. 1715 - Plane shcet reflectors for v.h.f. and u.h.f. A shows a parabolic sheet and B a squarc-corner reflector.
onant radiators have been evolved, including the ellipsoid, spheroid, cone, diamond and double diamond. Of these, the conical antenna is perhaps the most interesting. With large angles of revolution the characteristic impedance can be reluced to a very low value suitable for extremely wide-band operation. The cone may be made up either of sheet metal or of multiple wire spines, as in Fig. 1714.

Plane sheet reflectors - The small physical size of v.h.f. antennas makes practical many nethods not feasible on lower frequencies. For example, a plane flat-sheet reflector may be used with a half-wave dipole, obtaining gains of 5 to 7 db . Much ligher gains are attainable with a number of stacked dipoles, spaced $1 / 4$ or $3 / 4$ wavelength apart, and a larger reflecting sheet; such an arrangement is called a "billboard" array.

Plane reflectors need not be constructed of solid sheets. Wire mesh, or a grid of closelyspaced parallel-wire spines, is more easily erected and offers lower wind resistance.

Parabolic reflectors - A plane sheet may be formed into the shape of a parabolic curve and used with a driven radiator situated at its focus, to provide a highly-directive antenna system. If the parabolic reflector is sufficiently large so that the distance to the focal point is a number of wavelengths, optical conditions are approanhed and the wave across the mouth of the reflector is a plane wave. However, if the reflector is of the same order of dimensions as the operating wavelength, or less. the driven radiator is appreciably coupled to the reflecting sheet and minor lobes occur in the pattern. With an aperture of the order of 10 or 20 wavelengths, a beam width of $5 \mathrm{de}-$ grees may be achieved.

A reflecting paraboloid must be carefully designed and constructed to obtain ideal performance. The antenna must be located at the focal point. The most desirable focal length of the parabola is that which places the radiator along the plane of the mouth; this length is equal to one-half the mouth radius. At other focal distances interference fields may deform
the pattern or cancel a portion of the radiation.

Corner reflectors - The "corner" reflector consists of two flat conducting sheets which intersect at a designated angle. The corner reffector antenna is particularly useful at v.h.f. where structures one or two wavelengths in maximum dimensions are more practical to build than larger systems.
The plane surfaces are set at an angle of 90 degrees, with the antenna set on a line bisecting this angle. For maximum performance, the distance of the antenna from the vertex should be 0.5 wavelength, but compromise designs can be built with closer spacings. The plane surfaces need not be solid sheets; spines spaced about 0.1 wavelength apart will serve as well. The spines do not have to be connected together electrically.

If the driven radiator is situated on a line bisecting the corner angle, as shown in Fig. 1715, maximum radiation is in the direction of this line. There is no focus point for the driven radiator, as with a parabolic reflector, and the radiator can be placed at a variety of positions along the bisecting line.

Corner angles larger than 00 degrees can be used, with some decrease in gain. A 180 -degree "corner" is equivalent to a single flat-sheet reflector. With angles smaller than 90 degrees, the gain theoretically increases as the corner angle is decreased. However, to realize this gain the size of the reflecting sheets must also be increased.
At a spacing of 0.5 wavelength from the driven dipole to the vertex, the radiation resistance of the driven dipole is approximately twice the radiation resistance of the same dipole in free space. Smaller spacings of driven dipole and vertex are practical, but at a slight sacrifice in efficiency. The alternative design for the 144-and $50-\mathrm{Mc}$. square-corner reflector has a dipole-to-vertex spacing of 0.4 wavelength. At this spacing the driven dipole radiation resistance is still somewhat higher than its free-space value, but is considerably less than when the spacing is 0.5 wavelength.

Cmergency and Portable

Emergency self-powered equipment is no longer a nice toy to play with when regular annateur activities pall; it has become the moral obligation of every amateur to be prepared in ease of any communications emergency. Large-scale disasters in the past have demonstrated the tremendous value of amateur emergency stations in relaying relief messages when all other communieation channels are elosed. Aside from the all-important emergency phase, the use of portable equipment has been extended through organized activity in the annual ARRL "Field Days," and the problem of providing equipment suitable for use in rural distriets, where commercial power is not available, has always been with us.
The most vital need for self-powered equipment oecurs in eonnection with emergency activity, and the basic design of all such equipment should be predicated on emergency use Every amateur, no matter where he may be located, can reasonably expect that sometime he may be called upon to perform emergency communieations duty, and it is his responsibility to the public welfare, to himself, and to amateur radio as a whole to see that he is in some measure prepared.
It is not to be expeeted that every amateur will prepare himself for an emergeney by having available a complete and separate selfpowered station, although a large number of individuals and club groups do so. There is, however, no reason why every amateur cannot prepare his station for an emergeney by having an emergency power supply ready and a quick means for utilizing all or part of his regular station equipment as an emergency-powered station. The emergency power supply can be anything from a small vibrator supply and/ or batteries to a large gasoline-driven generator.

© Battery and Vibrator Data

The use of dry batteries, storage batteries and vibrator-transformer packs or genemotors is discussed in Chapter Eight. Table I shows the serviee which may be expected from stand-ard-brand dry batteries under various load eonditions. Various types of manufactured vi-brator-transformer units are listed in Table II, while Table III is a listing of available dynamotors which are suitable for ennergency and portable work.

C. Construction of Vibrator Supplies

Vibrator-type power supplies are not difficult to construct. The transformer usually is a special type designed for the purpose, although a heavy-duty receiver or low-power transmitter transformer may be pressed into service if it has suitable filament windings which may be connected as the 6 -volt vibrator primary. A supply may be desigued to operate from a 6 -volt storage battery only, or a dual-primary transformer or separate transformers may be changeably on either 115 -volt a.e. or 6 -volt d.e.

Typieal circuit diagrams are shown in Fig. 1801. The one shown at A is the simplest, although it operates from a 6 -volt d.c. source only. S_{1} turns the high voltage on and off.

The circuit of B provides for either 6-volt d.c. or 115 -volt a.c. operation with a dualprimary transformer. S_{2} is the a.e. on-off switch while S_{3} switches the heater of the 6X5 rectifier from the storage battery to the 6.3 -volt winding on the transformer. Filament supply for the transmitter or receiver is switched by shifting the power plug to the correct output socket, X when operating from a 6 -volt d.c. source and Y when 115 -volt a.c. input is used.

The circuit of Fig. 1801-C may be used when a dual-primary transformer is not available. The filter is switched from one reetifier output to the other by means of the d.p.d.t. switch, S_{4}, which also slifts filament connections from a.c. to d.e. The filter section of the switch could be eliminated if desired by conneeting the filtering circuit permanently to the output terminals of both reetifiers and removing the unused rectifier tube from its socket. Similarly, the filament seetion of S_{4} could be dispensed with by providing two output sockets as in the circuit at B. If a separate rectifier filament winding is available o: T_{3}, directly-heated rectifier types may be substituted for the 6X5 in the a.c. supply. In some cases where the required filament windings are not available, a rectifier of the coldcathode type, such as the $0 Z 4$, which requires no heater voltage, may be used to advantage.

If suitable filament windings are available, a regular a.c. transformer will make an acceptable substitute for a vibrator transformer. If the a.c. transformer has two 6.3 -volt windings, they may be connected in series, their junction

forming the required center-tap. A 6.3-volt and a 5 -volt winding nay be used in a similar manner even though the junction of the two windings does not provide an accurate eentertap. A better center-tap may be obtained, if a 2.5 -volt winding also is available, since half of this winding may be connected in series with the 5 -volt winding to give 6.25 volts.
R.f. filters for reducing hash are incorporated in both primary and secondary circuits. The secondary filter consists of a $0.01-\mu$ fil. paper condenser directly across the rectifior output, with a $2 . \bar{j}-\mathrm{mh}$. r.f. choke in series ahead of the smoothing filter. In the primary circuit a low-inductance choke and highrapacitunce condenser are noeded because of the low impedance of the circuit. A choke of the specifieations given shond be adequate. but if there is trouble with hatisht may be berefierial to experiment with other si\%es. The wire shond be large - No. 12, proferably, or No. $1+$ as a minimum. Manufactured chokes such is the Mallory IR Fis3 are more eompact and give higher inductance for a wiven resistance because they are bank-wound. and may be substituted if ohtainable. ('i should be at least $0.5 \mu \mathrm{fd}$.; even more capacitance may help in bad cases of hash.

The power supply should be built on a metal chassis, with all unshichded parts underneath.

Fig. 1801 - Typical vibrator-transformer power-supply cirenits. The cirenit at A shows it simple arrangenent for 6 -volt d.c. input: the one at 13 illustrates the use of a combination transformer for operation from cither 6 volts d.c. or 115 volts. a.c. The cirenit of C is similar to that of B but uses separate transformers.
$\mathrm{C}_{1}-0.5-\mu \mathrm{fd}$. paper, 50 -volt rating or higher.
$\mathrm{C}_{2}-0.005$ to $0.01 \mu \mathrm{fel}$., 1600 volts.
$\mathrm{C}_{3}-0.01-\mu \mathrm{fll}$. 600 -volt paper.
$\mathrm{C}_{4}-8-\mu \mathrm{fl}$. H is $)$-volt electrolytir.
C_{5} - $32-\mu \mathrm{fil}$. 150 -yolt electrolytic.
$\mathrm{C}_{8}-1(10)-\mu \mathrm{fl}$, mica.
$\mathrm{R}_{1}-4000$ ohms, $1 / 2$ or 1 watt.
$\mathrm{L}_{1}-10$ - 12 -henry 100 -ma. filter clioke, not over 100 olims (Stancor C-2303 or equivalent).
F - 15 -ampere fuse.
MFC_{1} - 5.5 turns No. 12 on 1 -inch form, elose-wound. $\mathrm{MFC}-2.5-\mathrm{mh}$. r.f. chohe.
S_{1}-S.p.s.t. toggle - battery switch.
S_{2} - S.p.s.t. toggle - a.c. power switch.
S_{3} - S.p.d.t. tuggle - rectifier-heater change-over switch.
$\mathrm{S}_{4}-\mathrm{D}$. p.d.t. tagg le - a.c.-d.c. switch.
T_{1} - Vilirator tramsormer.
$\mathrm{T}_{2}-$ Special vibrator transformer with 115 -volt and 6 -volt primarics, to give approximately 300 volts at 100-ma. d.e. (Stancor P^{P}-6166 or equivalent).
T_{3} - A.c. transformer, 275 to 300 volts each side of center-tap, 100 to 150 mas: 6.3 -volt filamentVIB - Vibrator unit (Mallory 50(0)P, 29.4, cte.)
\mathbf{X} - Insert a serics resistor of suitalibe value to drop the output voltage to 300 at $100-\mathrm{ma}$. load, if necessary. If transformer gives over 300 volts dee, a secound filter choke may he used to give additional voltage drop as well as more snootling.
Note - Alt ground connectinus should be made to a single point on the chassis.

A bottom plate to complete the shielding is advisable. The transformer case, vibrator case and metal shell of the tube all should be grounded to the chassis. If a glass tube is used it should be enclosed in a tube shield. The battery leads should be evenly twisted, sinee these leads are more likely to radiate hash than any other part of a reasonably wellshielded supply. A little care in this respect usually is more productive than experimenting with different values in the hash filters. Such experimenting should come after it has been found that radiation from the leads has been reduced to an absolute minimum. Shielding the leads is not particularly helpful.

The $100-\mu \mu \mathrm{fd}$. mica condenser, C_{6}, connected from the positive output lead to the "hoot" side of the "A" battery, may be helpful in reducing hash in certain power suppliss. A trial is neeessary to see whenher or not it is recuired. It should be mounted right on the output serkert.

Tosting lor methods of diminating hash should be carried out with the supply operating a recerver. Since the interferenee usually is pickes up on the recopver antenna leads hy radiation from the supply itwelf and the battery leads, it is advisable to kerp the supply and batlery as far from the recorive as the commecting eables will permit. Three or four feet should be ample. The mierophone cord likewise should be kept awny from the supply and keads.

The smowhing filter for battery operation can be a single-section affuir, but there will be

TABLE I－BATIERY SERVICE HOURS
Estimated to 34 －volt end－point per nominal 45 －volt section．
Based on intermittent use of 3 to 4 hours daily．
（For batteries manufactured in U．S．A．only．）

Manufacturet＇s Type No．		Weight		Current Drain in Ma．											
Burgess	Eveready	Lb．	Oz．	5	10	15	20	25	30	40	50	60	75	100	150
－	386	14	－	2000	1100	690	510	400	320	200	170	130	100	50	30
	486	13	5	1700	880	550	395	300	240	165	125	100	70	45	20
21308	48	12	8	1600	． 1100	690	490	－	300	200	－	100	－	50	25
	586	12	2	1400	800	530	380	260	185	130	85	60	40	30	14
10308	－	11	4	1300	700	590	350	－	－	130	－	90	－	42	18
	585	8	13	900	450	290	210	130	100	60	45	25	20	11	5
2308	－	8	3	1100	500	330	180	－	100	65	－	34	－	－	－
B30	－	2	8	350	170	90	50	－	21	15	－	－	－	－	－
	769	3	3	320	140	81	54	37	27	－	－	－	－	－	－
	482	2	－	320	140	81	54	37	27	－	－	－	－	－	一
A30	－	2	－	210	80	44	24	－	14	5	－	－	－	－	－
	738	1	2	160	70	30	20	10	7	－	－	－	－	－	－
Z30N	－	1	4	155	70	30	20	15	7.5	－	－	－	－	－	－
	733	－	10	50	20	11	7	5.2	－	－	－	－	－	－	一
W30FL	－	－	11	45	19	12	7	－	3.5	－	－	－	－	一	－
	4551	－	8.6	70	20	11	7	5.2	－	－	－	－	－	－	－
$\overline{\times 130}$	－	－	9	70	20	12	7	－	3.5	－	－	－	－	－	－

${ }^{1}$ Same life figures apply to $467,671 / 2$－volt， 10.5 oz．
Estimated to 1 －volt end－point per nominal 1．5－volt unit．Based on intermittent use of 3 to 4
hours per day at room temperature．（For batteries manufactured in U．S．A．only．）

Manufacturer＇s Type No．		Weight		Volt－ age	Current Drain in Ma．											
Burgess	Eveready	Lb．	Oz．		30	50	60	120	150	175	180	200	240	250	300	350
	A－1300	8	4	1.25	－	－	－	－	2000	1715	1500	1333	1250	1200	1000	854
－	$\frac{\text { A－1300 }}{740}$	8	$\frac{4}{12}$	1.5	－	－	－	－	1400	1200	－	1050	－	775	625	－
－	740	6	－ 12	1.5	－		1100	750	－	二	－	375	300	275	215	175
－	741^{1}	2	14	1.5	－	－	1750	325	－	二	－	245	－	180	135	110
－	743	2	1	$\frac{1.5}{1.5}$	－	－		320	－	－	200	－	120	－	90	－
－	7111	2	2	1.5	－	－	500	325	－	－	155	135	100	95	85	50
－	742	1	6	1.5	一	－	1100	680	450	－	－	400	－	320	230	190
$8 \mathrm{~F}^{2}$	－	2	10	1.5	－	－	1100	350	220	－	－	160	－	110^{-}	90	60
$4 \mathrm{FA}{ }^{3}$	一	1	4	1．5	－	－	600	350	2000	1715	1500	1333	1250	1200	1000	854
－	A－2300	15	8	2．5．	－	－	240	． 100	－	－	70	－	40	－	30	－
－	723	13	$\overline{12}$	3.0	－	－	2	，	1000	－	－	750	－	700	600	500
20F2	－	13	$\underline{6}$	3.0	600	－	340	130	95	－	－	60	－	42	30	－
$\frac{2 F 2 H}{2 F 2 B P 4}$	－	1	5	3.0	600	－	340	130	95	－	－	60	－	42	30	－
F2BP	－－	－	12	3.0	340	－	130	45	30	－	－	－	－	－	－	－
G3 ${ }^{\text {s }}$	－	1	5	4.5	370	－	150	50	35	－	－	－	－	－	－	－
－	746	1	3	4.5	－	200	－	－	－	－	－	－	－	－	－	
－	718^{8}	3	－	6.0	－	375	－	－	－	－	－	－	－			
F4PI	－	1	6	6.0	340		130	45	30	－	－	－	－	－		

${ }^{1}$ Same life figures apply to 745，wh． 3 lbs．
${ }_{2}$ Same life figures apply to 8FL，wt． 2 lbs． 15 oz.
${ }^{3}$ Some life figures apply to $4 \mathrm{~F}_{\text {，}}$ wt． 1 Ib .5 ox．
${ }^{4}$ Same life figutes apply to 2F4，volts 6 ，wt． 2 lbs． 11 or．
${ }^{4}$ Same life figures apply to GF ，volts $71 / 2$ ，wt． 2 libs． 2 oz ．
5 Same life figures apply to
6 Same life figures apply to 747 ，wt． 3 lbs．
－Same life figures apply to 747，w
used，locate ones of similar size and If batteries of another make are to be used，locate ones of similar size and
weight on these tables and comparable performance may be expected．
some hum（readily distinguishable from hash because of its deeper pitch）unless the filter output capacitance is fairly large－ 16 to $32 \mu \mathrm{fd}$ ．

A typical example of vibrator－supply con－ struction is shown in the photographs of Figs． 1802 and 1803.

All components in the supply with the ex－ ception of the four－prong outlet socket are mounted on a piece of quarter－inch tempered Masonite measuring $33 / 4 \times 9$ inches．This fits into a plywood box having inside dimensions （ $33 / 4 \times 9 \times 51 / 2$ inches）just large enough to
contain the equipment．The Masonite shelf rests on $3 / 4$－inch－square strips， $11 / 4$ inches long， glued to the corners of the box at the bottom． The top and bottom of the box are removable． To provide shielding and thus reduce hash troubles，the box is covered with thin iron salvaged from 5 －quart oil cans．Where the edges bend around the bor to make a joint，the lacquer is rubbed off with steel wool so the pieces nake electrical contact，and the metal is tacked to the plywood with escutcheon pins．

To make sure that the shielding will be

386

Chapter Eighteen

TABLE II-VIBRATOR SUPPLIES

Manufacturer's Type Number					Output		Rectifier	Output Filter
American Television and Radio Co.	Electranic Labs	Hallicrafters	Mallory	Radiart	Volts	Ma.		
VPM-F-7					90	10	Syn,	Yes
			VP-551 ${ }^{1}$		$\begin{aligned} & 125-150- \\ & 175-200 \end{aligned}$	100 max.	SYn.	No
				$4201 \mathrm{~B}^{2}$	250	50	Syn.	Yes
			VP-540		250	60	Syn.	Yes
	-			4204F3	$\begin{gathered} 100-150- \\ 250 \end{gathered}$	$\begin{gathered} 35-40- \\ 60 \end{gathered}$	Syn.	Yes
	605				$\begin{aligned} & 150-200- \\ & 250-275 \\ & \hline \end{aligned}$	$\begin{aligned} & 35-40- \\ & 50-65 \end{aligned}$	Syn.	No
	6044		VP-552 ${ }^{5}$		$\begin{aligned} & 225-250- \\ & 275-300 \end{aligned}$	$\begin{aligned} & 50-65- \\ & 80-100 \end{aligned}$	Syn.	No
				$4201{ }^{\circ}$	$\begin{gathered} 150-200- \\ 250-275- \\ 300 \end{gathered}$	$\begin{aligned} & 35-40- \\ & 50-70- \\ & 100 \end{aligned}$	Syn.	No
	251^{7}				300	100	Tube	Yes
			VP-555		300	200	Tube	Yes
VPM-6 ${ }^{8}$	$311{ }^{\text { }}$				$\begin{aligned} & 250-275- \\ & 300-325 \\ & \hline \end{aligned}$	$\begin{array}{r} 50-75- \\ 100-125 \end{array}$	Tube	Yes
		VP-2			300	170	Tubs	No
		VP.4			320	70	Tuba	No
			VP-557		400	150	Tube	Input cond.
				4202D	$\begin{gathered} 300- \\ 400 \end{gathered}$	$\begin{aligned} & 200- \\ & 150 \end{aligned}$	Tube	Yes
	606^{10}				$\begin{gathered} 325-350- \\ 375-400 \\ \text { and } 110 \text { a.c. } \\ 60 \text { cycle } \end{gathered}$	$\begin{gathered} 125-150- \\ 175-200 \\ 20 \text { watts } \end{gathered}$	Tube	Input condenser

All inputs 6.3 volts d.c. unless otherwise noted.
${ }^{1}$ VP- 553 same with tube rectifier.
2 In weatherprool case. 4201 B 2 same with tube rectifier.
3180-eycle vibrator, lightweight. 4204 same without filter.

- 601 same with tube rectifier; 602 same except 12 v. d.c. input and tube rectifier; 603 same except 32 v . d.c. input and tube rectifier.
rectifer.
VP-5
same with tube rectifier; VP-G556 same except 12 v . d.c. input, VP-F558 same except 32 v. d.e. input.

4200D same with tube rectifier, 4200DF same with tube rectifier and output filter.

551 same with 12 y. d.c. input.
${ }^{8}$ Also available without filter.
, 511 same except 12 v . d.e. input.
${ }^{26}$ Input 6 v . d.c. of 110 v . a.c., 607 same except 12 v . d.c. or 110 v . a.c. input; 608 same except 32 v. d.c. or 110 v . a.c. input, 609 same except 110 v. d.c. or 110 v. a.c. input.

TABLE III-DYNAMOTORS

Manufacturer's Type No.			Input		Output		Weight Lbs.
Carter	Eicor	Pioneer	Volts	Amps.	Volts	Ma.	
210A			6	6.1	200	100	61/2
MA250	102^{2}	E1W272 ${ }^{\text {a }}$	6	4.2	250	50	$61 / 2$
251 A		E1W3393	6	7.9	250	100	61/2
301 A	106^{+}	E2W351 ${ }^{\text {5 }}$	6	9.7	300	100	61/2
315 A	$158{ }^{6}$	E2W 243^{5}	6	13.4	300	150	77/8
320 A		RAOW158 ${ }^{7}$	6	18.2	300	200	91/2
MA301			6	9	300	100	
351 A			6	10	350	100	61/2
355A	108	E2W256 ${ }^{\circ}$	6	15	350	150	77/8
352AR			6	22	350	200	91/2
401 A			6	13	400	100	77/8
		E2W438	6	14.2	400	125	91/4
415A	109^{8}		6	20	400	150	77/8
420 A			6	23.4	400	200	91/2
425A		RA1 W 2019	6	30	400	225	91/2
$\vee 450$			5.5	29	400	250	
A430			6	31	400	300	13
		E3W413	6	15	500	100	11
520 AS		RA1 W18910	6	27.4	400	250	-
A650			6	40	600	250	13
AFS630			6	46.4	600	300	13

[^9]${ }^{5}$ Wt. $91 / 4 \mathrm{lbs}$.
${ }^{8}$ Input current 14 amp.; wt. $53 / 4$ Ibs.
${ }^{7} \mathrm{Wt}, 16 \mathrm{lbs} . ;$ input curtent 18 amp.
${ }^{8}$ Input current 17 amp.
${ }^{3}$ Wt. $171 / 2 \mathrm{lbs}$. input current 25 amp . ${ }^{10}$ Input current $27 \mathrm{amp} . ;$ wt. $17 \frac{1}{2}$ lbs.

Fip. 1802- A view insilf a tspabal vibrator-type power supply. The rectifier tube is. at the upper left with the tibure ehoke just below. The prinary fu-e sorket and vibrator are at the right. A sym-hronous-type vibrator may be substituted for the interrapter type if it is desired to eliminate the rectifier tube.
charged a battery used to power a typical receiver and small transmitter operited from vibrator or menemoror supply in intermittent operation.
(iasoline-driven generators are also available for use in charming (i-vol or larger batteries 'These odinarily are rated at 1.50 or 200 watls. A ${ }^{1} 2-$ or ${ }^{3}{ }^{2}$-h.p. single-r-inder 4 -recle engine is used. which will operate for 12 to 15 hours on a mallon of gasoline.

(C) Gasoline-Engine Driven Generators

For himher-power installations. such as
complete, the top and bottom of the box slide into place from the sile, with the metal covering extending ont so that it fits tightly under a lip bent over from the metal on the sides. These lips also are cleaned of lacquer to permit good electrical rontact. The general construction should be quite apparent from the photographes. The bontom is provided with rubber feet and the top has a smatl knob at each emd so that it (ean bo pulled out. This is essential, since the fit is good and there is no way lo get wither the top or bottom olf, once on, without having some sort of handle to grip.

C Charging Storage Batteries

If access to a.c-operated chargers is not possible at times betwern actual use, some form of self-powered charging system is essential.
for communications control centers charine emergencies. the most practical form of independent power supply is the gasoline-engime driven generator which proviles standard llavolt 60-cerele supply.
such generators are ordinarily rated at a minimum of $2: 50$ or 300 watts. They are atailat ble up 10 two kilowatts, or big enough to handle the highest-power anatemr rig. Most are arranged to charge atomationly an ausiliary 6 - or 12 -volt hattery used in starting. Fitted with self-starters and adequate muthers and filters, they represent a high order of performance and efliciency. Many of the larger nodels are liquid-cooled, and they will operate continuously at full load. Katings of typical ga*engine driven generator units are given in Table IV.

A variant on the generator idea is the use of

This need is ordinarily best met by a gasoline- or winddiven generator. Wat-er-power gencrators have been used, but their dependence on special siroumstaners is obrious, and thes are not available in small sizes.

The wind charger consists of a smatl generator driven by a suitable impeller, monnted to take dulvablatere of the iree energy offered by the wind. The stamdarel type will supply up to 16 amperes to a 6 -volt battery. It will ondinarily keep fully

Fig. 1803 - Hazh and smoothing filter eomponents are monnted in the bottom of the low-voltage vibrator power supply. The 4 -prong outlet sochet is monnted on the si.fe.

TABLE IV-GASOLINE-ENGINE DRIVEN GENERATORS, AIR-COOLED

fan-belt drive. The disadvantage of requiring that the automobile must be running throughout the operating period has not led to general popularity of this idea amongst amateurs. Such generators are similar in construction and capacity to the small gas-driven units.
The home construction of generators of all the above types has been successfully attempted by amateurs at times, although the possession of a consideratle knowledge of clec-tric-motor design is essential. One especially useful possibility is the rewinding of old automobile charging generators, several hundred watts eapacity being obtainable from the largest sizes, Those originally used on the old $4-$ cylinder Dodge cars have been successfully adapted by amateurs. Trade schools will often have their students rewind the ee generators for only the cost of the material, and this possibility is worth investigating.

The output frecuency of an engine-driven generator must fall bitween the relatively narrow limits of 50 to 60 cycles if standard 60 -cycle transformers are to operate efficiently from this source. A 60 -cycle electric clock provides a means of checking the output frequency with a fair degree of accuracy. The clock is connected across the output of the gencrator and the second hand is checked elosely against the second hand of a watch. The speced of the engine is adjusted until the two sceond hands are in synchronism. If a 50 -cycle clock is used to check a (i0-cycle gencrator, it should be remembered that one revolution of the second hand will be made in 50 seconds and the clock will gain 4.8 hours in each $2 t$ hours.

Output voltage should be checked with a voltneter since a standard 115 -volt lamp bulb, which is sometiness used for this purpose, is very inaccurate. Tests have shown that what
appears to be normal brilliance in the lamp may occur at voltages as high as 150 if the eheck is made in bright sunlight.

©. Noise Elimination

Electrical noise which may interfere with receivers operating from engine-driven a.c. gencrators may be reduced or eliminated by taking proper precautions.

The mosit important point is that of grounding the frame of the generator and one side of the output line. The ground lead should be short to be effective, otherwise grounding may actually increase the noise. A water pipe may be used if a short connection can be made near the point where the pipe enters the ground, otherwise a good separate ground should be provided.

The next step is to loosen the brush-holder locks and slowly shift the position of the brushes while checking for noise with the receiver. Usually a puint will be found (almost always different from the factory setting) where there is a marked decrease in noise.

Fig. 1804 - Connections used for eliminating interferener from sas-driven generator plants. C should be 1 $\mu \mathrm{fd}$., 300 wolts, paper, while C_{2} may be 1 ffd. with a voltage rating of twice the d.c. outpat voltage delivered by the gencrator. X indicates an added connection between the slip ring on the grounded side of the line and the generator frame.

From this point on, if necessary, by-pass condensers from various brush holders to the frame, as shown in Fig. 1804, will bring the hash down to within 10 to 15 per cent of its original intensity, if not entirely climinating it. Most of the remaining noise will be reduced still further if the high-power audio stages are cut out and a pair of headphones are connected into the second detector.

© High-Frequency Equipment

The use of high-frequency equipment for the handling of all intracommunity emergency communications is recommended not only for the purpose of limiting the interference range but also because equipment for these frequencies may be built in easily-portable form. Lowpower transceivers and transmitter-receivers in the form of glove-compartment units, walkietalkies and landie-talkies find ready application in this type of work.

Glove-compartnient units and other forms of mobile installations may be operated readily from a vibrator supply or genemotor connected to the car storage battery, although a separate battery is recommended for protracted operating periods, such as in an emergency, to guard against discharging the car battery to the point where it will no longer start the car. The usefulness of a mobile unit in emergencies is apparent, since it constitutes a self-powered installation which may be placed in a strategic location with a minimum loss of time.

Handie-talkies and walkie-talkies, on the other hand have the advantage that they may be brought to points which for one reason or another nay be inaccessible to a car. Handietalkies universally operate from self-contained dry batteries, while the heavier walkie-talkie units may be designed to operate from either dry batteries or a small storage battery of the motorcycle type and a vibrator unit. In some cases, it may be desirable to build the power supply as a separate unit so that the weight whieh must be carried to the scene of an emergency may be distributed between two persons.

Higher-powered transmitters and more elaborate equipment of the type oiten used as permanent station equipment operating from a.c. are desirable as control-station equipment if a suitable source of power is available.

© Portable Equipment - Low-Frequency

The weakest unit in a low-frequency portable or emergency conmunications installation often is the recciver.

An inadequate receiver, with poor selectivity, low sensitivity and insufficient stability, can ruin a QSO cven under favorable conditions. When it is remembered that conditions in portable or emergency operation are often more severe than those at home, with poor antenna facilities, high noise levels, severe interference, etc., the fallacy of attempting to use an inferior portable receiver is apparent.

The best procedure of all is to use the homestation receiver for portable work. Headphones should be used and the output tube removed (if it isn't necessary for headphone operation), but this is no hardship. Headphones are far more satisfactory in such applications than the speaker in any event. This procedure not only ensures the availability of the high-performance receiver so vitally necessary, but the practice that has been obtained by using the receiver at home is invaluable in the specialized operating techniques of portable or emergency work. It takes as much experience to learn to run a receiver properly as it does to drive a car, and the middle of a crisis is no time to gain that experience. Even on lowered plate voltage the home superhet will be better than a makeslift set-up.

If a special portable/emergency receiver is to be built, it should be a superheterodyne. With present-day tubes and components, it is possible to build a simple superheterodyne as cheaply as a t.r.f. receiver, and there is no comparison between the two in performance. The average communications superheterodyne can be operated with storage-battery heater supply and dry-cell or vibrator-pack " B " supply. With the audio power tubes removed from the receiver, the power requirements are not too great. Some of the receivers on the amateur market have provision at the rear of the set for plugging in a d.c. supply, and those which do not can be easily modified by drilling a socket hole at the rear of the receiver and wiring it into the set. When regular a.c. operation is used, a plug in the socket connpletes the circuit.

The design of low-frequency transmitters for emergency, portable and rural transmitters, will depend almost entirely upon the power supply available. Considering possible defects in lastily-improvised radiation systems, etc., it seems unwise to use less than 10 watts input to a power amplifier or 15 watts to an oscillator. However, powers greater than two or threc times these values are not usually necessary, so selection of the power supply will depend almost entirely upon the pocketbook and other resourcus. The 300 -rolt $100-\mathrm{ma}$. vibratir supplies and genemotors represent a nice compromise unless it is possible to step into the 200- or 300 -watt gasoline-driven generator class.

Perhaps the best plan in providing for an emergency and portable transmitter is to utilize the basic exciter unit in the regular station. This not only ensures the availability of a reliable, efficient unit at all time's but means a saving in parts and equipment. It represents no hardship to the permanent station to construct the exciter so it is compact, readily removable and, above all, solidly and dependably assembled. If your present exciter is not adaptable to this usc, plan the new one so it will be. Provision for 6 -volt tubes throughout is essential, with the heater circuit so arranged
that it can be connected to a storage battery without change. A suitable plate supply using a vibrator or genemotor or similar system should be available separately, arranged for ready connection. The best method is to have a socket-and-plug connector assembly, with one plug built into the transmitter and another, wired identically, connected permanently to the emergency supply.

CA Simple Modulator for Portable Work

The circuit diagram of a simple modulator for portable or mobile work is shown in Fig. 1805. In this arrangement the microphone is used directly to drive a pair of 6V6GT modulabors without intermediate speech amplifiers. Such a modulator works surprisingly well to modulate Class C inputs up to 25 watts. The unit requires 75 to 100 ma. at 200 to 300 volts.

Fig, 1805 - Simple modulator for portable and gen-eral-utility work.
$\mathrm{C}_{1}-10-\mu \mathrm{fil}^{2} 25$-volt electrolytic.
R_{1} - 100 ohms. I watt.

T1 -Input transformer ("lhordarson T-83A78).
T_{2} - Output tramisormer (Thordanson 'T-19M13).
Voltage for the single-button carbon microphone is taken from the junction of the two cathode-biasing resistors, R_{1} and R_{2}, thus eliminating the neecssity for bulky microphone batteries. These two resistors could be replaced by a single resistor with a sliding contact. One side of the heater circuit is grounded so that only three power-supply wires are required. The complete unit may be assembled on a small chassis.

C. High-Frequency Antennas

In many cases, particularly at control statons. it will be necessary to use nondirective antennas because of the necessity for working field stations at random points of the compass. At field stations which normally work with only a single control station, however, it may be advantageous to use a simple form of direlive array. The power gain will be worth while in bettering the signals in both directions, and in addition will minimize interference to and from other networks. The simpler forms of antennas described in Chapters Ten and Suvcontemn are quite suitable.

More important, perhaps, than the antenna itself is its location. Every effort should be made to get the antenna well above its sur-
roundings and to provide, whenever possible, a clear path between the control station and the net work stations with which it must communicate. Having a line of sight between antennis will ensure successful communication even though the power is very low and the antenna itself is nothing more than a simple half-wave wire. Where there are intervening obstructions, it will be helpful to use as much height as possible.

Vertical polarization is to be preferred to horizontal, since vertical polarization is better suited to mobile operation. A simple vertical antenna has practically no horizontal directivity, therefore it will work equally well in all directions except for effects attributable to its surroundings and to the terrain over which the signal must travel. The signal strength will be poor if at horizontally-polarized antenna is used to receive a vertically-polarized signal.

A half-wave antenna, two half-waves fed in phasestacked vertically, or an extended doubleRepp, all will be satisfactory, and are very simple types to construct. Design details will be found in Chapter Ton. If the station is to be operated on a fixed frequency, the antenna length should be adjusted for that frequency. If the same antenna is to work on several frequencies, the length had best be chosen midway between the two extremes.

Mobile antennas - It is probable that most networks will have one or more stations installed in cars, for dispatching to points which may le in urgent need of communicaton. The equipment previously described is readily adaptable to car installations; the transceiver, in particular, can be set up with lit the difficulty, and can get its power from the car broadcast receiver, if there is one. This would require only the installation of a suitable power socket in the car receiver, together with a switch to cut the power from the receiver when the transeciver is in use. Antennas suitable for such mobile installations are described in Chapter Seventeen.

For a solid but easily detachable mounting for a mobile antenna, the arrangement shown in Fig. 1806 is suggested. It is held in plate by a panel of wool. cut to the shape of the window, on which the antenna is mounted. By running up the window the panel is held firmly in place. The antenna is of the "J" type. This type of installation places the radiator proper above the roof of the car, and has the advantage that it can be readily removed from the car when not in use or when needed elsewhere. Fig. 1808 shows a folded doublet.

The unit shown is built of 1/4-inch plywood, since the usual thickness of the window glass in cars is lit inch. Run clown the window of the car about halfway, or enough to leave at least a 6 -inch opening, and make a pattern of cardboard using the top edge of the window glass for the guide. Trim the cardboard to this shape, and then push it up in the window and use the edge of the glass to mark the bottom

 ation can be monted batily in the window of a car, allowing the radiator proper to be plated atwer the roof of the vehide. The dimenkions are given in the text.
edge of the pattern. From the pattorn. mark the picce of plywood and cut it out will a saw. Additional small pineces to form stops in the corners are fastemed to the main piece with glue and brads. A piere of plywood about $6 \times 8 \frac{1}{2}$ inches should be fasterned to the large piede at the point where the antenna is to be supported, using glue and brads, and the four stand-off insulators which support the anteman bolted to this piece. If the insulators are not long enough for the antemna to clear the side of the car, they can the raised by wood strips.

Two small strips should be nailed along the inside of the main piece so that they extend down below the edge a fow inches and form, with the outside pieres, a sobe to kerp the assembly in the proper position on the wimhow.

The feeder can be made of flexible rubbercovered wire (ohtained by splitting a lengeth of parallel lamp cord) separated by small plastic or dry-wood spacers. The antenna conds of the wires are soldered to the heads of the large bolts in the uppor stand-off insulators. and the wire is run out through holes in the wood.

The antenna amb matching-section rods are regular automobile whip antennas and are supported on the stand-off insulators by small loop-shaped metal clamps. The shorting bar is made along the same lines, with bars of heavy metal on both sides of the clamp loops.

The length of the half-wave "J" antenna itself should be 38 inches for a frequency of 146 Me. - the center of the two-meter band. Since the length of the matching section should be a quarter wavelength, or 19 inches, the total length of the right-hand element shown in Fig. 1806 should be 57 inches, while the
shorter left-hand element should be 19 inches long. The spacing between clements should be 2 inches. With an open-wire transmission line consisting of two No. 18 wires spated 2 inches, the line should be commeded 5 b indes up from the shorting bar at the bottom of the elements.

The folderd-doublet antemna shown in lige. 1809 is another simple type of antenna which mayy be aldated for mohtile wase esperially where renter-fered is mone convenient. It has the advantages of rather hroad-hand characteristir and moderately-high impertane at the fereding point. It should have an over-all length of 38 inches for 146 Mc .

C. A Car-Roof Antenna

Fig. 1807 shows a sketch of a fitting for a bertical r.h.f. car-roof antemna which provides a gow modhanical arrangement for folding the antemat parallel to the car roof when the antennat is not in use.

The pierest A and B are mate from sections of bras rod $3 / 4$ inch in diamelor. One ent of piece A, which has an over-all hohgh of $3{ }^{1}$ ginches, is turned down for a lempth of 2 inches to the diameter required to fit the inside of the bettom of the tubular antennat. Which is soldered fast. At the other end of piece A is coll a tongue. 1 inch longem ! inch wide :as shown in sketeh.

Piece l h has an Overatl length of 6 inches. Ome and is turned down and threaled with : ${ }^{3}{ }_{4}$ inch die. while a slot. 1 inch deep and 1/ inch widle to fit the tengue of A, is cut in the opposite end. The slotted end is then drilled and tapperd on one side of the slat for a ${ }^{1}$ inch thumbs screw, C. A vertical elongated hole is drilled and filed out in the tongue of piree A, so that, with the thumb screw looscned. A can be lifted up slightly to clear the shoulders of B while the antenna is being folded down. The solid seating of the two pieces. A and r^{\prime}, against cach othere when the antenna is ereded in a vertiarl position provides little opportunity for the joint to work loose under vibration.

The threaded

Fig. 180:-Fecilthremah insulation and fitting: for the folding car-roof mobile anteman. 'The juint himges at Co so that the antenna may le foldeal down parallel to the roof of the car.
shank of piece B passes through a hole in the roof of the car. The polystyrene washers, D and E, provide the necessary insulation. Each is 2 inches in diameter and 1,6 inch thick and has a collar or hub $1 / 4$ inch thick turned on one side to fit the hole in the car roof. The assembly is clamped to the roof of the car by means of the locking nuts either side of $F . F$ is a soldering lug for making the connection to the antenna.

If the assembly is placed near the forward part of the roof, a two-meter half-wave antenna may be folded back at the hinge when not in use without the antenna overhanging the rear of the car.

©. Low-Frequency Emergency Antennas

Any of the simple low-frequency antennas described in Clapter Ten, or modifications of them, should be suitable for low-frequency portable and emergency work. End-fed antennas of the simple voltage-fed or Zepp types probably are the easiest to erect, although a center-fed antenna is more tolerant as to dimensions so long as the entire system ineluding the feeders can be tuned to resonance. With such a center-fed arrangement, the feeders will stay in balance, even though the antenna portion of the system is much less than a half wavelength long.

For portable work at

Fig. 1808 - 'Three-wire folded-doublet anterna for matching a 600 ohm line. The three conductors are connected together at the ends, as indicated. They may be made of wire, rod or tubing, and can lie monnted on stand-off insulators on a wooden support. low frequencies a compact antenna which has been used successfully at 3.5 Mc. consists of about 60 feet of No. 18 enameled wire wound in a spiral around a long bamboo fishing pole. The turns are space-wound over the top 14 feet of the pole and then closewound for about three fect. The remaining length of the pole is left free so that it may be lashed to a tree or other convenient- upright, or simply stuck in the ground when no support is available. The bottom end of the winding is connected through an antenna tuner to ground.

The pi-section antenna coupler described in Chapter Ten is a good device for coupling random lengths of wire to either transmitter or recciver. An antenna of this type may be erected by tying a weight to one end of the wire and tossing it into a tree or over some other possible elevated support.

Transmission lines- At nearly all fixed locations it will be necessary to use a transmission line between the antenna and the radio equipment, since the latter will be indoors
where it is easily accessible while the former will be placed on the roof of the building to secure adequate height. Low-loss coasial or parallel (Twin-Lead) line is convenient for working into the center of a half-wave antenna, and it is readily available on the market today. The alternative is an open-wire line having an impedance of 500 to 600 ohms. It is advisable to keep the spacing between wires small at the higher frequencies; 2-inch spacing is about right, provided the line can be installed fairly rigidly so that it will not swing in a breeze and cause the transmitter frequency to change. This close separation also requires a fairly large number of spacers - at intervals of perhaps three to four feet. On lower frequencies the feeder spacing can be greater.

To make such a line nonresonant it will be necessary to install a matching stub at the antenna. The design and adjustment of such. stubs also is covered in Chapter Ten. As an alternative, a multiwire doublet antenna may be used to couple directly to a line having an impedance of the order of 500 to 600 ohns without special matching provisions. Such an antenna is shown schematically in Fig. 1808. It gives a 9 -to- 1 impedance step-up at the line terminals, hence practically automatic matching to a 600 -olum line, assuming the normal doublet impedance of 70 ohms. In addition, it has a broad resonance characteristic and therefore is well suited to working anywhere in the band.

To avoid the necessity for impedance matching, two-wire lines may be operated as tuned lines if desired. Such operation has been successful with lines up to at least 100 feet long. Since in most cases the coupling device at the transmitter or receiver is a single-turn coil, the simplest method of tuning the line is to adjust the feeder length until the current in the line is maximum when the transmitter is operating on the chosen frequency. A small dial light or flashlight bulb, connected in series with one side of the line right at the transmitter terminals, may be used as a current indicator. The transmission line should be made about four feet longer than necessary, its length being adjusted by cutting off an inch or two at a time until maximum bulb brilliancy is obtained.

From a constructional standpoint it is desirable to use the same antenna for both transmitting and receiving. The change-over switch for this purpose should have low capacity, and preferably should have low-loss insulation. The ordinary type of wafer switch is satisfactory, particularly if it is ceramic insulated. A small porcelain-base d.p.d.t. knife switch also may be used for this purpose. If possible, the antenna switch should be combined mechanically with the power-supply change-over switches for the transmitter and receiver so that all the necessary switching from transmission to reception can be done in one simple operation.

$M_{\text {easurements and }} M_{\text {easuring }}$ Equipment

To comply with FCC regulations it is necessary that the amateur station be equipped to make a few relatively simple measurements. For example, the regulations require that means be available for checking the transmitter frequency to make sure that it is inside the band. This means must be independent of the frequency control of the transmitter itself; it is not enough to depend on, say, the calibration of a crystal in the crystalcontrolled oscillator that drives the transnitter. In addition, it is necessary to make sure that the plate power input to the final stage of the transmitter does not exceed one kilowatt. The regulations also impose certain requirements with respect to plate-supply filtering, stability and purity of the transmited signal, and depth of modulation in the case of 'phone transmission.

In many cases all these measurements oan be made to a satisfactory degree of accuracy with no more auxiliary equipment than the regular station receiver. However, a better job usually can be done by building and calibrating some relatively simple test gear. Too, the progressive annateur is interested in instruments as an aid to better performance.

Methods of making the measurements required in the amateur station will be discussed in this chapter, and design and construction of representative types of the instruments used in making these measurements will be described.

(1. Frequency Measurement

Frequency-measuring equipment can be divided into two broad classes: oscillators of various types generating signals of known frequency that can be compared with the signal whose frequency is unknown, and adjustable resonant circuits.

Instruments in the first classification are the more accurate. Two types are commonly used by amatcurs, the secondary frequency standard and the heterodyne frequency meter. The secondary frequency standard, nearly always crystalcontrolled, usually generates a frequency of 100 kc . and employs a circuit that is rich in harmonic output. As a result, it supplics a series of frequencies, all multiples of 100 kc ., which provides accurate calibration points throughout the communications spectrum. The
more elaborate instruments of this type are provided with frequency dividers (multivibrators) to supply intermediate calibration points; a divisor commonly used is 10 , thus furnishing signals at intervals of 10 kc. when the fundamental frequency is 100 kc .

The heterodyne frequency meter is a varia-ble-frequency oscillator which is calibrated in frequency against a secondary standard or by other means. The oscillator usually is designed to cover the lowest frequency band in which measurements are to be made; measurements then ean be made in higher-frequency bands by using the harmonic output of the oscillator. For example, when the oscillator is set to 3560 kc. its second harmonic is 7120 ke., its fourth harmonic is $14,240 \mathrm{kc}$., and so on. The proper frequency reading is determined by knowing the fundamental frequency of the oscillator and the number of the harmonic which falls in the desired frequency range.

Both the secondary standard and the heterodyne meter arc ordinarily used in conjunction with a receiver, the signals from the instruments being picked up just as though they were from distant stations. In the case of the secondary standard, the frequency of the unknown signal can be determined by locating it between two known $100-\mathrm{kc}$. or $10-\mathrm{kc}$. multiples. With the heterodyne meter, the frequency is measured by adjusting the frequency meter until its signal is at zero-beat with the signal of unknown frequency, after which the frequency can be read from the frequency-meter calibration.

Since the secondary standard operates on a fixed frequency and can be crystal-controlled, its accuracy can be quite ligh. However, it simply establishes a series of known frequencies at regular intervals, and thus auxiliary metliods must be used for determining frequencies between the known points. The series of fixed frequencies, when they mark the edges of a mateur bands (as they do if they are multiples of 100 kc .), is quite sufficient for amateur work because the information that is required is whether or not the transmitter frequency is inside the band limits, rather than the exact frequency itself. On the other hand the heterodyne frequency meter, while capable of giving readings at any point in its calibrated range, is inherently less accurate than the crystal-

WWY scilFDCLES

All th. S. frequeney calibration is hased on the standard frequency transmissions from the National Bureati of Standards standardfrequencystation. WV. Thismation is on the air continuously, day and night. itaradiofrequencies of 5.10 and 1.5 Mc. (and 2.5 Mc. frem 7 P.M. to A. M. FNT with thoreve modalation only) modulated by standard audio frequencies of tho and $H(O)$ eyeles prer smeond, the former corresponding to A above midille \mathbb{C}. In uddition, there is a 0.00 -serond pulse every second. heard as a "tick," which provides an urearate time interval.

The audio frequencionareinterrupted on the hone and every tive mintiten thereafler for one minute lo \&ive Fambern Stardard Time in telenraphie eome and toprovite an interval for eherking r.f. measurements. The station anmouncement is given by voice on the hour and hailf hocir.

The acruramy of allferfueneiesislietler than a part in $10,000.000$. The 1-minute, t-minute, and \bar{s}-minuto intervale marked ly the beqinning and ending of the announcement periods are areviate terapart in LO.(MO, MOM. The beginnings of the periode when the abalio freguent eies are interrupted mark aceurately the hour ard the sucessive s-minnte periosls.
controlled standard because of the lower stahility of the variable-freguency oseillator.

In the atsoure of more elaborate frequencymeasuring equipment, a calibrated receiver may be used to indieate the approximate frequency of the transmitter. If the receiver is woll mate and has good inherent stability a bamelspread dial calibration can be relied upon to within prohaps 0.2 pror cent. For most accurate measurement mavimum response in the recoiver stomble bedermined by means of a carrior-oporated tuning indicator (s-meter), the receiver beat oscillator being turmed off.

When ehereking the transmitter frequency the rewtiving ablemat should Pe discommeried. An that the signal wild mot werlata or "blowe" the reoniver. If the recoiver still blocks without an antonna the fropurney maty be morokid hy turning oll the power amplitier and taning on the oxdillator alous.
theterodyen frequener meter with built-in loo-he. ervial aolibrator -- 'l'he basis of the fietermane frypurne moter is a complelidy--hielted oseillator with a prome frophency cathbration. The oscillatar must be so designed and construbled that it can be accurathely catibratod amd will retain its calibration wer long periox wit time.

The oscillator userl in the frequenery moter must he very stable. Merdaniral comsifurations are most important in its construction. Xo mator how good the instrument may be dectrically, its aecuracy cannot be de-
permed upon if the mechanical eonstruction is flimsy. Inherent frequency stability can be improved by avoiding the use of phenolic compounds and thermoplastics (bakelite, polystyrene, ete.) in the oscillator circuit, enmploying only high-grade ceramies instead. Plug-in coils ordinarily are not acceptable; instrad, a solidy-built and firmly-mounted tunced cireuit should be permanently installed. The oscillator panel and chassis should be as rigid as possible.

A stable uscillator circuit suitable for use in a hetorodyne frequency meter is the electroncoupled cirenit. It is possible to take output from the plate with but negligible dfeet on the frequency of the oscillator. and strong harmonics are generated in the plate eireuit.

The heterodyne frecuency meter shown in Figs. 1901 to 1901, inclusive, combines a number of features that make it suitable for aecurate frequency measurement in the amateur bands from 3.5 to $1+1$ Mc. As shown in the cirenit diagram, Fig. 1903, it consists of a (6.が7 clectron-coupled oscillator followed by a 0.107 amplifier that is used to intensify the highor-frequency harmonics. A second 6sk7 oscillator, using a crystal of the type that operatos at cither 100 or 1000 ke.. provides wherekpoints and a moans for calibration of the frequency meter. A $6.5 L_{\text {a }}$ is incorpurated to amplify the crystal harmonies and to provide a detertor circuit in which the outputs of the erystal and e.e. oscillators ean be mixed for calibration purposes. The detector also enathes dirmet checking of the transmither frequency.

The fundamental tuming range of the leterodyme oscillator is from 3500 to 4000 kc . Isy means of st this range can be changed to $3: 00-3720$ ke., approximately, so that the

Fig. 1901 - Hetorodym fromeney meter with builtin harmomic amplifier, erystal calibrator, and deterlor, usable on ath amatear bands ap to 114 We. Controls alonge the hettom of the pancl are, from left to risht. ersatalomeiliator on-osf switch, $100-1000 \cdot \mathrm{kc}$. crystal alector switch, calibration range switeh, drift compensator, harmonic-amplifier ranke switch, output control, headphone jack. The two outpot terminals are along the right-hand edge.

Measurements and $M_{\text {easuring }} \varepsilon_{q u i p m e n t} 395$

Fis. 1902 - Inside view of the heterodyne frequeney meter, 'Ihe nain tuming eondenser is in the center with the cer, osicilator tube to it-right. The rastal-osidlator tule is at the upier left, and the twin-tronde amplifier-detertor is in line with it at the rear edge (foreground) of the ehassis, the 6ACZ is in the lower-right eorner.

9 inches wide by 516 inches deep by 2 inches high. Half-inch lips are bent along the hottom edges of the walls to make the chassis more rigid. The eathinet into which the metor fits is 10 by 7 by 6 inohs. Ths main thaing own donser, ("s, is mounted on an alumi num bracket above the chassis and the ooil, L_{1}, is similu!! monnton trolow it. The band-setting condenser, ${ }^{\prime}{ }^{\prime}$, is mounted on the ehassis behind the eooil, with its shat protrmding through the chassis for serewdriver adjustment. Trimmer C_{3} is momoted on the panel and is adjusted be a knob underneath the main tuning dial. The eril is shieded from the amplitier seretion by the smatl aluminum bafle shown in Fig. 190-4. The bandepread padeler. ('i, is mounted to the left of the oscillator range switch athd. like ('s. is serewdriver-adjusted from the top of the chassis. Wiring in the ascillator tuned circuit, including the switeh, should be short, direet, and as rigid as possible.

The 100-ke, oscillator trimmer, ('14, does not require frequent adjust ment and is therefore mounted on the rear
cighth harmonie just covers the 28-29.7-1Ic. bamd. This amods bxersively eritical tuning at the higher frequeneies. The main tuning eondenser. ('o, is commeeted across all of L_{1} for the larger range and is comected to a tap on L_{1} for the smaller to increase the bandspreat. Simultameously, an adjustable pathling embdenser. (${ }_{1}$, is switched in so that the oseilator frequency will be exatelle 3500 ke . with C sed at maximum rapacitance regarelles of the switeh position. C_{4} is a fixed parding fondensor to make the circuit fairly highte, and C_{5} is the band-setting condenser. C_{3} is a smald padder adjustable from the panel; its fundion is to permit resetting the oscillator frequency to the calibration eheck-points provided by the crystal oseillator and thus take care of drilt from temperature variations and ot her causes.

The (iAC.7 plate circuit is broadly tumed by means of switehed coils resonating, with the circuit caparitances, at 144,50 and 28 . Me, and thus inereases the harmonic strength on those bands. A radio-frequency choke is comneeted to the fourth switch position: this gives ample signal strength at it Mc and lower frequencies. Potentiometer R_{5} makes it possible to reduce the strength of the signal from the meter to the value desired for measurement purposes.

In the erystal oscillator circuit, S_{2} changes the frequeney from 100 to 1000 kc . or viee versa. In the $100-k c$. position C_{14} is connected across the crystal to provide means for adjusting the frequency to exactly 100 kc .

Is shown in Figs. 1902 and 1904, the frequency meter is built on a chassis folded from a pieee of sheet aluminum, the dimensions being
edge of the chassis, close to the revstal unit. ('if, the plate tuning condenser for 1000 ke., is adjusied from the top of the chassis and is momented to the right of the erystal-osailator socket in Fig. 1904 .

In putting the instrument into oproration. the erystal oscillator should be cheoked first. Conneet it length of wire to the ervestal output terminal from (is) and listen on a reveiver over the range from 3.5 to 5 Me With sig in the 1000-ke. position. signals should appear at 4000 and 5000 ke ., and with sie in the lot-ke. position signals should be heard every 100 ke. Tune in WWV on 5000 kc ., wait for the modulation to go off, and then adjust ('a for zerobeat. This sets the oseilator to preaisely 100 ke. In the 1000 -ke position there may be a difference of a few kilocyeles between the frequeney of 11 WV and the J - Me harmonie, but this is not surious since the 1000 -ke. oseillator is used only as an aid in itlentification of the 100-ke, hatmonies.

To sot the range of the e.c. orsillator, put S_{2} in the 1000 -ke.0position, plug a pair of phones into J_{1}. set S_{2} on the maximum range position (6,2 arross all of L_{1}), and set Conear minimum caparitanere. Adjust C^{\prime} ountil the foolo-ke. harmonic is heared. Then switeh s'e to 100 ke , amd tune ('s toward maximum, counting off five additional $100-\mathrm{ke}$. signals. ('s may then be readjusted to bring the $3500-k c$. marker close to the end of the tuning-dial seale. The $100-\mathrm{kc}$. points may then be marked off on the seate or the reatings recorded. The second tuning range is adjusted by setting C_{2} at 3500 ke , on the first range, then setting S_{1} so that C_{2} is connected to the tap, and adjusting C_{1} (with-
out touching C_{2}) so that the 3500 -ke. marker is brought to the same point on the clial. The second range may be calibrated by the $100-\mathrm{kc}$. points in the same way as the first.

Calibration points may be obtained between the 100 -ke. markers on both ranges by using a receiver as an auxiliary. For example, if the receiver is adjusted to piek up the fifth harmonic of the e.e. oseillator (17.5 to 20 Me .) and the harmonic is beat against $100-\mathrm{kc}$. points from the crystal oscillator in that range, $100-\mathrm{kc}$. intervals on the fifth harmonic will give 20-kc. intervals on the fundamental. With a straightline capacitance condenser at C_{2}, the relationship between dial divisions and frequency is almost linear, and marking off the dial at the proper intervals between aetual calibration points will result in a calibration of sufficient accuracy.

The various amateur bands are covered by the following harmonies: 3.5-4 Me., fundamental; 7-7.3 Mc., 2nd harmonic; 1t-14.4 Me., 4 th; 27.185-27.245 Me., 7 th; 28-29.7 Mc., 8th; 50-54 Mre., 14th; 144-148 Mc., 40th. At lower frequencies a short length of wire connected to the output terminal will give ample signal strength under average conditions, but
in the v.h.f. range eloser coupling - such as running the wire in close proximity to the receiving antenna lead, or actually connecting it to the antenna post through a small fixed condenser - may be neeessary to get a good signal.

With an instrument of this type the edges of amateur bands may be quite aceurately determined, if care is used in setting the 100-kc. oscillator to WWV and equal care is used in setting the e.c. oscillator scale to the $100-\mathrm{kc}$. crystal points. C_{3} may be used for the latter purpose cach time the meter is used, and particularly cluring the first 30 minutes or so of operation when the temperature of the equipment is rising. The accuracy at intermediate points will depend upon the accuracy of the original calibration; it should be possible to read within 0.05 per cent under normal conditions by using the "drift corrector," C_{3}.

Absorption frequency meters - The simplest possible frequeney-measuring device is a resonant circuit, tunable over the desired frequency range and having its tuning dial calibrated in terms of frequency. Such a frequency meter operates by extracting a sinall amount of energy from the oscillating circuit to be

Fig. 1903 - Circuit diagram of the heterodyne frequeney meter.
$\mathrm{C}_{1}, \mathrm{C}_{5}-75-\mu \mu \mathrm{fd}$, variable.
$\mathrm{C}_{2}, \mathrm{C}_{16}-100-\mu \mu \mathrm{fl}$, variable.
$\mathrm{C}_{3} \mathrm{C}_{14}-25-\mu \mu \mathrm{fl}$, variable.
$\mathrm{C}_{4}-220-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{6}, \mathrm{C}_{10}, \mathrm{C}_{13}-100-\mu \mu \mathrm{fl}$, nica.
$\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{15}, \mathrm{C}_{20}, \mathrm{C}_{21}-0.01-\mu \mathrm{fd}$. paper.
$\mathrm{C}_{11}, \mathrm{C}_{19}-4-(0-\mu \mu \mathrm{fil}$. mica.
$\mathrm{C}_{12}-10-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{17}-0.001$ - ffl . mica.
$\mathrm{C}_{18}-47-\mu \mu \mathrm{fd}$. nica,
$\mathrm{R}_{1}, \mathrm{R}_{3} \mathrm{R}_{\theta,} \mathrm{R}_{12}-0.47$ megohm, $1 / 2$ watt.
$\mathrm{R}_{2}-10,000$ oluns, 1 watt.
$\mathrm{R}_{4}-330$ ohims, 1 watt.
$\mathrm{R}_{5}-25,000$-ohm potentioncter.
$\mathrm{R}_{\mathrm{g}}-4.7$ megohms, $1 / 2$ watt.
$\mathrm{R}_{7}-470$ ohms, 1 watt.
$\mathrm{R}_{8}-0.22$ megohm, 1 watt.
R_{10} - 10,000 ohms, I watt.
$\mathrm{H}_{11}-1500$ ohms, I watt.
$\mathrm{R}_{13}, \mathrm{H}_{11}-0.1$ megolim, $1 / 2$ watt.
$\mathrm{L}_{1}-18$ turns No. 18 on 1 -inch form, length $11 / 2$ inches. Citloule tap 5 turns from ground end; band. spread tap 11 turns from ground.
$\mathrm{L}_{2}-2 \cdot 4$ turns No. 18 enam. close-wound on $1 / 4$-inch form.
L_{3} - II turns No. 18 cnam. close wound on $1 / 4 \cdot \mathrm{inch}$ firm.
$\mathrm{L}_{4}-2$ turns No. 16 spaced $1 / 2$ inch, diameter $1 / 4$ inch.
l_{5} - 8 -mh. coil (r.f. choke).
$\mathrm{J}_{6}-1$ pie of 4 -pie 2.5 -mh. т.f. choke.
J_{1} - © pen-circuit jack.
$\mathrm{RFC}_{1}, \mathrm{RFC} \mathrm{C}_{2}-2.5-\mathrm{mh}$. r.f. choke.
$\mathrm{S}_{1}-2$-position 2 -polc ceranic wafer switel.
$\mathrm{S}_{2}-2$-pusition 2 -pole switch (bakclite insulation satisfactory).
S_{3} - S.p.s.t. togele.
$\mathrm{S}_{4}-4$-position 1-pole ceramic wafer switch.
X'I'AL - $100-1000$-ke. crystal unit (Bliley SMC-100).

Fif. 1904 - L'nderneath the rhassis of the heterodyne frequeney meter. The parts layout is discussed in the text.
measured, the frequency then being determined by tuning the frequency-meter circuit to resonance and reading the frequency from the calibrated scale. This method is not catpable of as high accuracy as the heterodyne methods for two reasons: First, the resonance indication is relatively "broad" as compared to the zero-beat of a heterodyne; second, the necessarily close coupling between the frequency meter and the circuit being measured causes some detuning in both circuits, with the result that the calibration of the frequenevmeter circuit depends to some degree on the coupling to the cireuit being measured.

It is necessary to have some means for indicating resonance with an absorption frequeney meter. When such a moter is used for checking a transmitter, the pate current of the tube connected to the circuit being chereked can provide the resonance indication. When the frequeney meter is tumed through resonance the plate current will rise, and if the frequeney meter is loosely coupled to the tank circuit the plate current will simply give a slight upward flicker as the meter is tuned through resonamee. The groatent aoourany is socurbel when the loosest possible coupling is used.

A receiver oscillator may be cherked by tuning in a steady signal and heterodyning it to give a beat note as in ordinary c.w. reception. When the frequency meter is coupled to the oscillator coil and tumed through resonance the beat note: will change. Again, the coupling should be made loose enough so that a justperceptible change in beat note is observed when the meter is tumed through resonance.

Although the absorption-type frequency meter should not be depended upon for aceurate measurement, it is a highly-useful instrument to have in the station even when better frequency-measuring equipment is available. Since it generates no harmonics itself, it will respond only to the frequency to which it is
tuned. It is therefore indispensable for distinguishing between fundamental and various harmonies, and for detecting harmonics and parasitic oseillations. When provided with a sensitive resonance indicator it is also use$f(1)$ for detecting $r . f$. in undesired places such as power wiring, for making rough measurements of field strength in aljustment of antennas, and can likewise be used as a motulation monitor.

An approximate calibration - usually sufficient - may be obtained by eomparison with a calibrated recoiver. The usual receiver dial calibration is sufficiently accurate. A simple oseillator cireuit covering the same range as the frequency meter will be usseful in calibration. Set the receiver to a given frequency. tume the oscillator to zero beat at the same frequency, and adjust the frequency meter to resonance with the oscillator as described above. This gives one calibration point. When a sufficient number of such points has been obtained a graph may be drawn to show frequency $v s$. dial settings on the frequency meter.

A semsitice absorption frequency meter Figs. 1905 to 1907 . inclusive, show an absorption frequency meter or "wavemeter" with a crystal-detector/milliammeter resonance indicator which provides a relatively high degree of sensitivity: As shown in the circuit diagram, Fig. 1906, a pick-up coil coupled to the resonant cireuit is connected in series with a erystal

Fig. 1905 - A sensitive absorption-type frequency meter with a crystal-detertur rectifier and d.c.-miltiammeter indicating circuit. Individual calibration charts nounted directly on each coil form make the meter direct-reading. The topple switch places a $10-\mathrm{ma}$. shumt across the $0-1$ ma. metcr; this range is used for preliminary readings, to avoid burning out meter or erystal. The meter gives indications at several feet from a low-power oscillator.
detector and $0-1$ milliammeter. Plug-in coils are provided so that the unit covers the frequency spectrum from about 1 megacecle to 70 Mc. A switch, $\dot{\text { s }}$, and shumt, R_{1}, are induded so that the meter scale radings ath be increased by a factor of 10 , to reduce danger of overloading the miliammetor when making preliminary measurements. Any type of fixed arystal delector may be used, but the v.h.f. tepes are reoommented when obtainable.

The unit is constructed in a 3 - by 4 - by 5 inch metal box, the milliammeter being mounted on one of the side pancls. The coii socket is on top near one elge, with the tming

Fig. 1906-Indirating fregueney-meter circuit diagram. Cit $-110-\mu \mu$ fid. variable (Ilammarlund $14 \mathrm{FA}-1 / 10-\mathrm{A}$). $\mathrm{C} 2-0.001-\mu \mathrm{fi}$. mica.
$R_{1}-3$-ohm -hunt spe qeneral data on meter shemts, $\mathrm{L}_{1}, \mathrm{~L}_{2}-$ Plut-in coils wound on $11 / 2$-ineh diameter forms:
1)- Fived erystal detertor.
\1A - 0.1 d.c. milliammorr (Triplett Model 321).
S-S.p.s.t. towele switeh.

Frrıpuency Rompe	Wire *ize	L_{1}	Lenth	I. $2^{1,2}$
1.13 .5 Mr.	No. 28 r .	8131	$1^{\prime \prime}{ }^{\prime \prime}$	17-11rns
$\because 810 \mathrm{Mr}$	No. ${ }^{\text {d }} \mathrm{t}$ t.	$3{ }^{-3}$	$1^{5} \times 1$	$11 * *$
$\underline{1} 514 \mathrm{Mc}$	No. $0_{0} 1$.	11^{3}	$1{ }^{\prime \prime}$	6 "
- 5.5 Me	10. 161.	83%	$11 /{ }^{\prime \prime}$	$4 \quad \text { " }$
$22-6 \mathrm{Mc}$.	No. 16%	$23 / 4$	$1^{\prime \prime}$	2 "

[^10]

[^11]condenser just below it inside the case. This arrangement keeps the tumed-circuit leads short. A handle is mounted on the side of the bos opposite the tuming control for convenience in handling. A motal plate, on which an appropriate calibration scale is pasted, is fastuned to each plug-in coil so that the proper calibration atutomatically comes under the knob pointer when the coil is plugred in. The unit may be calibrated as described in the preceding section.

A two- or three-foot rod antemata and heme phone jack may be added to the unit, using the connections shown in Fig. 1909. These additions permit the use of the instrument for firld strength measurements and for monitoring phone transmissions. The rod antenna is not required for ordinary frecpueney measurement, and its use may be undesirable when the frecuencies of individual simultameousty-operating circuits are to be checeked - as in the case of a multistage transmitter with frequency multipliers - berause the abtombatimetases the sonsitivity 10 surh an extent lhat it may be difficult to identify the output of a partienlar circuit.

In addition to the uses mentioned in the preceding section, a moter of this type may be trod for final adjustment of nevoralization in triode r.f. amplifiers when loosely coupled to the plate tank coil.
V.II.F. warmmeter-field stronsth indica-tor-monitor - For operation at very-high frequencies a differont lype of comatraction must be adopted for wavometers of the type desaribed in the preceding section. An instrumont suitablle for the range 100 to 2.00 Me. is shown in Figs. 1908 to 1910, inclusive. Provision is made in this unit for attaching an antemna so relative fold-strength measure-
 paterns. for example) amd the cirenit includes a headphone jack so 'phone transmissions c:m be monitored.

The tuming condenser is a split-stator affair of $25 \mu \mu \mathrm{fd}$. per section. It is momatod to give shom leads to the roil, abel the use of a splitstator condenser results in a low minumm caparity. The indicating deviee includes a pick-up loop loosely couphed to the tuned cireut, a 1 N3t creatal amd a $0-1$ malliammoter. 'lhe hey-pass comelensur, for, furnishes a short r.l. return to the pick-up, loop and avoids any resonanees in this cirenit within the frequency range of the wavemeler. For fied-strenght indication, an antemma se romberted to ont: side: of the piek-up loup and the wavemeter cirenit, $J_{1} C_{1}$, is detuned, resulting in a numsele'ctive indicator.

The wavemeter is built in a 3-by 4 - by iinch metal cabinct, with the tuning condenser, C_{1}, mounted under the lop. The condenser shaft enmes out through a dearance bole in the side. An aluminum plate, $2=3$ ber inches, is bolted on the side to bick up the calibration scale. A polystyrene stripais used to mount the

$M_{\text {easurements and }} M_{\text {easuring }} \mathcal{E}_{\text {quipment }} 399$

Fig. 1018 - 1 combination wasemeter. field-atrensth indicator and phone ynality momitor for the low-2.0. Me. range. The two-thrn coil i - part of the wavemeter portion. and the hairpin lomp provilks piek onp for the 1. 31 crestal hetertor. For field-strengh worh, a hort antema is ronnected to the binding post at the left of the hairpin loop.
two National fiW: bimling posts that hod the coil, L_{1}. The 'phone jack, J_{1}. is momenten on the side of the rase below the tuning knob.

The wavemuter may be ealibrated bey using I oreher wires (sere mext section) in conjunction with a v.h.f, oxpillator. (The oscillator may be a $144-$ or $220-\mathrm{Mc}$ tramsmitter.) Attach a two-

 field --trengeh indicator.
 well Fik-2.: (1).

1.1-90-1810 Me: : turn \o. 12 wire. $1!$-inch diam.,三baced wire diantere.

 sparchy.
J_{1} - Chomed-riwuit whplene jack.
M1:-0-1 milliamm-ter.
XT: - Type
fort lengeth of stiti wire to the andema post
 of dolivering or wathe or so, a moter reading should be obtained several feet from the useitlator. The Lereher wires ean then be very loosely coupled to the oscillator, and as the proper shorting points on the Jecher wires are found, a dip will be observed in the wave-
meter eurrent. If now the tuning knob of the wavemeter is rotated, a sharp dip in wavemeter current will be found, and this point should be marked in pencil on the seale and the frequency, as caleulated from the Lecher wires, should be noted for future ealibration. As a double check on the calibration of the wavemeter, remove the antenatand tune the wavemeter for marimum meter reading. The two points should be identical. If they are not, the pick-up loop is coupled too closely to the tunced circuit of the wavemeter.

Lacher wires - At very-high and ultrahigh freduencies it is possible to determine frequeney he atually measuring the lemgth of the waves gemerated. The measurement is made be observing standing wares on a twowire paralleltransmission limeor"laefher wires." Sucha line shows pronounced resomance efteres, and it is possible to determine quite accurately the current loops (points of maximum current). The distance between two consecutive current loons is equal to one-half wavengeth. Thus the wavelength catn be read divectly in meters (inches $\times 39.37$ if a yardstick is used), or in centimeters for the very-short wavelength:.

The Iecher wire line should be at least a wavelength long - that is, 7 foet or more on 144 Me. - and should be entirely air-insulated except where it is supported at the ends. It may be made of copper tubing or of wires stretched tightly. The sparing between wires should be about one to ono-and-one-half inchers. The positions of the current loops are found by means of a "shorting bar." which is simply a netal sirip, or knife edge which ean be slid along the line 10 vary its effertive length. The

Fig. lolo - A view of the back of the v.h.f. meter, showing the stiff supporting wire for the crystal and by-pass condenser.

400

Fig. 19II - One end of a typical Lecher-wire system. 'The feet at cach end kere, the assembly from tippint over when in use. IThe wires terminate in airplane-type strain insulators at one coml, and at the other in small turnhackles for maintaining tasion. 'The wire is . Io. 16 bare solid copper antenna wire (hard-drawn). 'Ilhe turnhurhles are held in plare hy a 3 , $\times 2$-inch holt through the anchor block. This end of the line is thus short ecircuited; it does not matter whether it is onen or shorted, since the other end is the one eonnected to the pick-ap lenop.

If the measurement is made in inches, the frequency will be

$$
F_{\mathrm{Mi}_{6}}=\frac{5906}{\text { length (inches) }}
$$

If the length is measured in meters,

$$
F_{\mathrm{Mc} .}=\frac{150}{\text { length (neters) }}
$$

In checking a superregenerative receiver, the Lecher wires may be similarly coupled to the receiver coil. In this case the resonance indication may be obtained by setting the receiver just to the point where the hiss is obtatined, then as the bar is slid along the wires a spot will be found where the receiver goes out of oscillation. The dis-
system can be used more conveniently and with greater accuracy if it is buill up in permanent fashion and provided with a shorting bar maintained at right angles to the wires (Fig. 1911). The support may consist of two pieces of "1-by-2" pine fastened together with wood serews to form a "T" girder, this arrangement being used to minimize bending of the wood when the wires are tightened.

A slider holds the shorting bar and acts as a guide to kerp the wire spacing constant. A piece of wood hetd in the hand can be used; it is an easy matter to regulate the pressure so that free movement is secured. A spring deviee may be arranged for the same purpose.

For convenience in measuring lengths direetly in the metric system used for wavelength, the supporting beam may be marked off in decimeter (10-centimeter) units. A 10centimeter transparent scale (obtainable at 5 \& 10 cent stores) may be cemented to the slider, extending out from the front, so that readings ean be taken to the nearest millimeter. The difference between any two readings gives the half wavelength directly.

Making measurements - Resonance indications can be obtained in several different ways. Let us suppose the frequency of a transmitter is to be measured. A convenient and fairly sensitive indicator can be made by soldering the ends of a one-turn loop of wire, of about the same diameter as the transmitifer tank coil, to a low-current flashlight bulb, then coupling the loop to the tank coil to give a moderately-bright glow. A similar coupling loop should be connected to the ends of the Lecher wires and brought near the tank coil. as shown in Fig. 1912. Then the shorting bat should be slid along the wires outward from the transmitter until the lamp gives a sharp dip in brightness. This point should be marked and the shorting bar moved out until a second dip is obtained. Marking the second spot, the distance between the two points can be measured and will be equal to half the wavelength.
tance between two such spots is equal to a half wavelongth.

In either case. the most accurate readings result only when the loosest possible coupling is used between the line and the tank coil. After taking a preliminary reading to find the regions along the line in which resonance occurs, loosen the coupling until the indications are just discernible and repeat the moasurement. Unless this is done the tuning of the line will affect the frequency of the oscillator and inaccurate indications will be obtained. As the coupling is loosened the resonance points will become sharper, which is a further aid to accurate determination of the wavelength.

The shorting bar inust be kept at right angles to the two wires. A slarp edge on the bar is desirable, since it not only helps make good contact but also definitely locates the point of contact.

The accuracy with which frequeney can be moasured by such a system depends principally upon the technique of measurement. The necessity for using very loose coupling to the tramsmitter or receiver has already been mentioned. In addition, careful measurement of the exact clistance between two current loops also is essential. Even if all other sources of error are eliminated, measurements within 0.1 per cent require an accuracy within 1 part in 1000 , or 1 millimeter in one meter, in measuring the distance along the wires. This means that an accurate standard of length is neeessary - a

Fig. 1912 - Coupling a Lecher-wire system to a transmitter tank coil. Typical standing-wave distribution is shewn by the dashed line. 'The distance, l, between the positions of the shorting bar at the current loops equals one-half wavelength.

Measurements and Measuring $\varepsilon_{q u i p m e n t} 401$

good steel tape, for instance - and that care must be used in determining the length exactly.

(C) Signal Monitoring

Every amateur station should make provision for checking the quality of the transmitter output. This requires that some means be available in the station for reproducing the conditions existing at a distant receiving station; that is, for reducing the strength of the signal from the transmitter to such a point that its characteristics can be examined without danger of false indications from overloading the receiving equipment.

The simplest method of checking the quality of c.w. transmissions is to use the regular station receiver. If the receiver is a superheterodyne the process may simply be that of reducing the r.f. gain to minimum and tuning to the transmitter frequency. If distant signals are stable and have "pure d.c." tone in normal reception, then the local transmitter should too, when the receiver gain is reduced to the point where the receiver does not overload. If the signal is too strong with the r.f. gain "off," shorting the antenna input terminals may reduce it to suitable proportions, or the mixer circuit in the receiver may be temporarily detuned to arrive at the same result.

An alternative mothod is to set the receiver on the next lower-frequency band than the one in use, then tune the receiver so that the second harmonic of its oscillator beats with the transmitter signal to produce the intermediate frequency. Higher-order harmonics also may be used for this purpose. With this harmonic method there is ordinarily no danger that the receiver will overload, because the r.f. and miver tuned circuits are so far from resonance with the transmitter frequency. The setting of the tuning dial bears no direct relation to the transinitter frequency under these conditions, since the oscillator harmonic must maintain a constant difference with the transmitter to produce the i.f. beat.

A 'phone signal may be monitored in the same way, provided a headset is used for reecption. Use of a loudspeaker is not usually practicable because the sound output fecds back to the microphone and causes howling. A crystal detector and headset may also be used for the same purpose, as described in preceding sections. In monitoring a 'phone signal the best plan is to have another person speak into the microphone rather than to listen to one's own voice. It is difficult to judge quality when spaking and listening at the same time.

C. Measurement of Current, Voltage and Power

The amateur regulations require that when the power input to the final stage is above 900 watts, means must be provided for measuring the power input. This may be done by measuring the d.c. voltage applied to the final
stage plates and the d.c. current flowing to them. The instruments required are a milliammeter and voltmeter.

Although in lower-power transmitters powerinput measurements are not required, it is nevertheless true that a milliammeter is an almost indispensable instrument in the anateur station. It is invaluable in the adjustment of transmitting amplifier stages; tuning a transmitter without measuring grid and plate currents is like working in the dark. A d.c. voltmeter, although not essential, is useful in conjunction with the milliammeter in determining whether tube ratings are being exceeded or not and thus is helpful in prolonging tube life.

Besides d.e. measurements, it is also well to measure the filament voltages applied to transmitting tubes. Tube performanee is dependent upon proper cathode emission, which in turn depends upon the voltage applied to the filament or heater. Also, the life of some transmitting tubes, particularly the thoriated-tungsten filmment types, is critically dependent upon maintaining the filament voltage within rather close limits. Since most transmitting tube filaments are operated on a.c., an a.c. voltmeter is a worthwhile addition to amateur transmitting equipment.

Adjustment of a transmitter for maximum power output to the antenna or transmission line is facilitated by the use of instruments which measure radio-frequency current. Such instruments, although not aetually cssential, round out the measuring equipment used in transmitter adjustment.
D.c. instruments - D.c. ammetersand voltmeters are basically identical instruments, the difference being in the method of comection. An ammeter is connected in serics with the circuit and measures the current flow. A voltmeter is a milliammeter which measures the current through a high resistance connected across the source to be measured; its calibration is in terins of the voltage drop in the resistance or multiplier.

If a single instrument must be used for measuring widely-different, values of current or voltage, it is advisable to purchase one

which will read, at about 75 per cent of full scale, the smallest value of current or voltage to be measured. Small currents cannot be read with any degree of precision on a high-scale instrument; on the other hand, the range of a low-scalc instrument can be extended as desired to take care of larger valucs. The ranges
of both voltmeters and ammeters can be extended by the use of external resistors, connected in series with the instrument in the case of a voltmeter or in shunt in the case of an ammeter. Fig. 1913 shows at the left the manner in which a shunt is connected to extend the range of an ammeter and at the right the connection of a voltmeter multiplier.

To calculate the value of a shunt or multiplier it is necessary to know the resistance of the meter. If it is desired to extend the range of a volt meter, the value of resistance which must be added in series is given by the formula:

$$
R=R_{\mathrm{n}}(n-1)
$$

where R is the multiplier resistance, R_{m} the resistance of the voltmeter, and n the scale multiplication factor. For example, if the range of a 10 -volt meter is to be extended to 1000 volts, n is equal to $1000 / 10$ or 100 .

If a milliammeter is to be used as a voltmeter, the value of series resistance can be found by Ohm's law:

$$
R=\frac{1000 E}{I}
$$

where E is the desired full-scale voltage and I the full-scale reading of the instrument in milliamperes.

To increase the current range of a milliammeter, the resistance of the shunt is

$$
R=\frac{R_{m}}{n-1}
$$

where the symbols have the same meanings as above.

Homemade milliammeter shunts can be constructed from any of the various special kinds of resistance wire, or from ordinary copper magnet wire if no resistance wire is available. The Copper Wire Table in Chapter Twenty gives the resistance per 1000 feet for various sizes of copper wire. After computing the resistance required, determine the smallest wire size which will carry the full-scale current (at 250 circular mils per ampere). Neasure off enough wire (pulled tight but not stretehed) to provide the required resistance. Accuracy can be checked by cansing enough curcut to How through the meter to make it read fullsale without the shunt; connecting the shont should then give the correct reading on the new full-scale range.

Precision wire-wound resistors used as voltmoter multipliers cannot readily be mate by the amateur because of the much higher resistance required (as high as several megohms). As an economical substitute, standard fixed resistors may be used. Such resistors are supplied in tolcrances of 5,10 or 20 per cent \pm the marked values. By obtaining matched pairs from the dealer's stock, one of which is. for example, 4 per cent low while the other is it per cent high, and using the pairs in parallel or series to obtain the required value of resist-
ance, good accuracy can be obtained at small cost. High-voltage multipliers are preferably made up of several resistors in series; this not only raises the breakdown voltage but tends to average out errors in the individual resistors due to manufacturing tolerances.

When d.c. voltage and current are known, the power in a d.c. circuit can be stated by simple application of Ohm's law: $P=E I$. Thus the voltmeter and ammeter are also the instruments used in measuring d.c. power.

Multirange voltmeters and ohmmeters A combination volumeter-millammeter having various ranges is extremely useful for experimental purposes and for trouble shooting in receivers and transmitters. As a voltmeter such an instrument should have high resistance so that very little current will be drawn in making voltage measurements. A voltmeter taking considerable current will give inaccurate readings when connected across a high-resistance source -as is often the case in various parts of a receiver circuit. For such purposes the instrument should have a resistance of at least 1000 ohms per volt; a $0-1$ milliammeter or $0-500$ microammeter ($0-0.5$ ma.) is the basis of most multirange meters of this type. Nieroanmeters having a range of $0-50 \mu \mathrm{a}$., giving a sensitivity of 20,000 ohms per volt, also are used.

The various current ranges on a multirange instrunent can be obtained by using a number of shunts individually switehed in parallel with the meter. Care should be used to minimize contact resistance in the switch.

It is often necessary to check the value of a resistor or to find the value of an unknown resistance, particularly in receiver servicing. An "ohmmeter" is used for this purpose. The ohmmeter is simply a low-current d.c. volt-

Fif. 1914 - An inexpensive multirange volt-ohm-milliammeter housed in a standard $3 \times 4 \times 5$ metal cabinet. Ranges are marked with number dies, the impression: being filled with white ink. High-voltage test leads are available for use on the 5000 -volt range.

$M_{\text {easurements and }} M_{\text {easuring }} \varepsilon_{q u i p m e n t} 403$

Fig. 1915 - Gircuit of the low-cost 1-0-M.
K_{1} - 2000 -ohm wire-wound variable.
R_{2} - 3000 ohmes, $1 / 2$ watt.
$\mathrm{H}_{3}-100$-ma. shumt, 0.33 ohm (see text).
$\mathrm{R}_{4}-10$-ma. shunt, 3.6 ohans (see (ext).
R_{5} - 40,000 ohms, $1 / 2$ watt.
$\mathrm{R}_{6}-4$ megohms, 4 wath (frur 1-megohm I-watt resistors in scries).
$\mathrm{K}_{7}-0.75$ mepohm, 1 watt (0.5 neesohm and 0.25 megohns, $1 / 2$ watl, in series).
$\mathrm{Ks}_{\mathrm{s}}-0.2$ megohm, $1 / 2$ watt.
$\mathrm{R}_{3}-40.060$ whms, $1 / 2$ watt.
R_{10} - 10, 100 olnns, 1 watt.
$\mathrm{B}-4 . \overline{5}$ vilt: (Burges- $3 \mathbf{3} \mathbf{3} 11$).
MA-0-1 d.e. milliammeter.
S-9-poin! 2-pole switelı (MalloryYasley 3109).

meter provided with a souree of voltage (usually dry eells), the moter and battery being connected in series with the mknown resistance. If a full-scale defleetion is obtained with the connertions to the external resistance shorted, insertion of the resistance under measurement will canse the readiner 10 decrease. The moter scalde wan be calibrated in ohms. When the resistance of the voltmeter is known, the following formula can be applied:

$$
R=\frac{c h_{m}}{E}-R_{\mathrm{m}}
$$

where R is the resistanee under metsurement, E is the voltage read on the meter, c is the series voltage applied, and R_{m} is the internal resistance of the meter.

A combination multirange volt-ohm-milliammeter, reduced to simpte and inexpensive terms, is shown in Figs. 1914 to 191 f , inclusive. Using a $0-1$ milliammeter, the voltmeter hats five ranges at 1000 ohms per volt: 0-10, 50, 250, 1000 and 5000 volts. Curent ranice of $0-1,10$ athd 100 mat. are provided. There are two resistance measurement ranges (three with external battery) a serios range of $0-2 \overline{2} 0,000$ ohms and a shunt ranse of $0-500$ ohms. 'The "high-ohme" scale can be multiplied by 10 if the positive terminal of a 4.5 -volt battery is commeded to the tominal indicated in Fig. 1915, the unknown resistance being annected betwern the negative battery temmal and the negative terminal of the ohmmeter.

For economy, ordinary carbon resistors are used as voltmeter multipliers. These can be obtained with an accuracy within 5 per cent. The $5000-$ volt multiplier is four 1 -watt resistors encased in heavy varnished cambrie tubing to protect against flash-overs. The tubing extends over the positive "5.J" terminal, which is further insulated by a wrapping of friction tape.

The 10-ma. and 100 -mas. shunts are made of ordinary eopper magnet wire wound on short lengeths of $1 / 4$-inch diameter bakelite rod.

Measurings \boldsymbol{I}, and \boldsymbol{C} - The ability to monsure the inductance of erils. the caparitance of condensers, or the pesonant frequenes of a tumed cireuit frecuontly saves time that might otherwise be spent in cut-and-try. A convenient instrument for this purpose is the grid-dip oscillator, which is simply a low-power oscillator equipped with a low-range milliammoter that me:tares the reetified grid current When a resonatht cirenit tumed to the same freduency as the aseillator is coupled to the latlor, the emergy extracted by the coupled eireuit reduees the amount arailable for feedback. with the result that the oxcillator grid current decreases. Comserpuently there is a "dip" in grid current as cither the oscillator or the eircuit under mosarsement is tumed through resoname. The oscillator should be

Fig. 1916 - Interior of low-co-t wolt-olum-aniliammeter. All parts except the internal ohnmeter battery are mounted on the 4×5 inch bakelite panel. The battery $i=$ attarhed to the bottom plate. The voltmeter moltiplier is first assembled on an insulated tie-strip, then wired into the cirenit. The M-shaped object in the rear is the $\overline{5} 000$-volt multiplier - four 1-watt resistors covered with varnished cambric tubing.

Fig. 1917 - The grid-dip meter is built in a 6 by 6 by 6 -inch metal hox. The tuning dial, milliammeter, "A" and "B" switches, and 'phone jack are on the front. The knob on the side controls the grid resistance. Standard plug-in coils are used.
arranged so that its frequency is continuously variable over a wide range, to make it most useful in measuring the resonant frequency of circuits whose constants are unknown or known only approximately.

A grid-dip oscillator is shown in Figs. 1917 to 1920 , inclusive. As shown in the circuit diagram, Fig. 1918, it consists of a "simple oscillator circuit using a dry-cell tube, battery operation being adopted to make the instrument conveniently portable. The frequency range is continuous from 3 to 60 megacycles, using standard midget air-wound plug-in coils. Grid current is measured by a $0-1$ milliammeter, and is adjustable to any convenient value within this range by R_{2}. Separate switches are provided for the plate and filament supplies; by closing S_{1} and leaving S_{2} open the tube acts as a diode rectifier and the instrument thus can be used as an absorption wavemeter. The 'phone jack, J_{1}, also makes it possible to use it as a monitor. For convenience in measuring circuits that may be built into transmitters or
receivers, the pick-up loop shown in Fig. 1917 provides the coupling. The loop is connected to the link on the oscillator coils through a few feet of 150 -ohm Twin-Lead. The instrument may be calibrated by checking its frequency at a number of dial settings on a calibrated receiver.

For measuring inductance, the coil to be measured is connected to a condenser of known capacitance as shown at A in Fig. 1918. A mica condenser may be used as a standard; a $100-\mu \mu \mathrm{fd}$. 5 -per-cent tolerance unit will serve for most purposes. With the unknown coil connected to the standard condenser, the pick-up loop is coupled to the coil and the oscillator frequency adjusted for the grid-current dip, using the loosest coupling that gives a detectable indication. The inductance is then given by the formula

$$
L_{\mu \mathrm{h}}=\frac{25,300}{C_{\mu \mu \mathrm{fd}} f^{2} \mathrm{Mc}}
$$

A calibrated variable condenser is required for measuring capacitance. The circuit used is shown at B in Fig. 1918. The frequency of the circuit, using any convenient coil, is first measured with the unknown capacitance disconnected and the calibrated condenser set near maximum. The unknown is then connected and the calibrated condenser readjusted to resonance. The unknown capacitance is then equal to the difference between the capacitances at the two settings of the calibrated condenser. Obviously only capacitances smaller than the maximum capacitance of the calibrated condenser can be measured by this method. Since high accuracy in capacitance measurement is not ordinarily required, a satisfactory standard is any condenser of the straight-line capacitance type, for which a sufficiently good calibration curve can be constructed by noting the dial divisions at which the plates just start to mesh and are completely meshed, and assuming that the capaci-

Fig. 1918 - Circuit of the grid-dip meter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-0.001-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{3}-100-\mu \mu \mathrm{fl}$ - per -section variable (Hammarlund IIFD-100).
$\mathrm{R}_{1}-4700$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}-25,000$-ohm potentiometer.
L_{1} - Center-tapped coils with center link. National AR-16 series or any equivalent coils may be used.
1.2 - Pick-up loop; one turn No. 14, diameter $11 / 2$ inches.
J_{1} - Closed-circuit jack.
MA- 0.1 milliammeter.
12FC-2.5-mh. r.f. choke.

$\mathrm{S}_{1}, \mathrm{~S}_{2}$-S.p.s.t. toggle switch.

$M_{\text {easurements and }} M_{\text {easuring }} \varepsilon_{\text {quipment }} 405$

Fig. 1919 - Top view of the grid-dip meter. The tuning condenser is mounted on small stand-off insulators primarily to space it suffciently from the side to make room for the dial on the front.
beam, and means should be provided to protect the operator from accidental shock, since the voltages employed with the larger tubes are quite high. In general, the preferable form of construction is to enclose the instrument completely in a metal cabinet. It is good practice to provide an interlock switch which automatically disconnects the high-voltage supply when the cabinet is opened for servicing or other reasons.

In laying out the unit, the cathoderay tube must be placed so that the alternating magnetic field from the power transformer has no effect on the electron beam. The transformer should be mounted directly behind the base of the tube, with the axes of the transformer windings and of the tube on a common line.

It is important that provision be included cither for switching off the electron beam or reducing the spot intensity when no signal voltage is
tance change is linear within those limits. The minimum and maximum capacitance (corresponding closely enough to these condenser settings) can be obtained from the manufacturer's data on the particular condenser used.

C. The Oscilloscope

The cathode-ray oscilloscope is an instrument of great versatility, and in conjunction with the instruments herein described, should be a valuable addition to the practical amateur station. The oscilloscope is useful on d.c., and audio and radio frequencies, and is particularly suited to a.f. and r.f. measurements because, compared to other types of measuring equipment, it introduces relatively little error at such frequencies.

Probably the chief use of the oscilloseope in amateur work is in measuring the percentage modulation in 'phone transmitters and in serving as a continuous monitor of modulation percentage. An oscilloscupe fur this purpose may bo quite aimplo and inexpensive, consisting only of a small eathodr-ray tuhe and an annonoriate power supply. However, by providing amplifiers for the deflection plates and furnishing a linear sweep circuit, the possibilitics of the instrument are greatly extended. It then becomes possiblo, for oxample, to oxsmine audio-frequency waveforms and to check and locate the cause oi distortion in a.f. amplifiers.

Constructional considerctions In building an oscilloscope, care should be taken to see that the tube is shielded from stray electric and magnetic fields which might deflect the

Fig. 1920 - A view from the hottom of the grid-dip meter. The oscillator tuhe is mounted underneath and parallel to the tuning condenser. Batteries are held in place by a metal strip fastened to the cabinct.

R_{3} controls the amplitude of the applied horizontal sweep. R_{1} is the intensity control and R_{2} the focusing control. If needed, a $2.5-\mathrm{mh} .12 \mathrm{j}$-ma. r.f. choke may be connected in series with the lead to the rotor of R_{5} to correct leaning of patterns raused by r.f. coupling.

Fig. 1921 - An oxeilloswope circuit for modulation monitoring.
$C_{1}-0.01-\mu \mathrm{fd}$. 400 -wolt paper.
(:2-0.i- mfd . 800.wolt paper or oil-filled.
(3 - 0.0005- $\mu \mathrm{fl}$. mica.
C. - 0.I- - fid. 600-volt paper.
K_{1} - 50,000 -ohm variable.
R_{2}, R_{5} - 0. $\mathbf{3}$-memotim variahle.
$H_{3}-1$ merohm, 1 watt.
$\mathrm{h}_{4}, \mathrm{R}_{6}-0.5$ megolm, 1 watt.
S_{1} —Spori. togule switrh.
$\mathrm{S}_{2}-S . \mathrm{p}$. $\mathrm{t} . \mathrm{t}$ togale switch.
T-Reqlacement-type transformer: 3.0 wolts, 40 ma.; 5 volts, 3 amperes; 6.3 volts, 2 amperes.
be monnted, togelher with the asioniated reco tifier tube and other eomponemts, in a cabinet made of a standard $3 \times 5 \times 10$-inch siteel chatsis with bottom plate.

This circuit is useful primarily for modulation cherking in radiotelephone transmiturs. Horizontal swopl voltage may be obtained either from an nudio-frequency souree, such as the mondulator stare of the tramsmitter, or from the 60 -cycle a.c. line, ats selected by sig. Using the modulator output for the sweep, the pattern on the sereen will be in the form of a traperoid, as deseribed in Chapter Five.

Fig. 1922 - A simple occilloseope using a 1 -inch tube. The eontrols on the front. from left to right, are "syne Amplitude," pilot light and "F"ine Frequency," Note the small nem tube, used for generating the sweep voltages, to the right of the 65L7. A hood mounts over the 913 and the terminal panel at the rear of the chassis. The controls along the side, from back to front, are "Focus," "Vertical Centering," "Sync-Swcep" and "Vertical Gain."

1 complete oscilloscope - The usefulness of the oseilloseope is conhanced by providing a linear swerep circuit or time base, tugether with amplifiers for the horizontal and vertical de-flection-p)ate signals so that suffiejent voltage will be available at the deflection plates to give a pattern of suitable size. An inexpensive oscilloscope so erguipped is shown in Figs. 1922 to 1925 , inclusive. It uses the 1 -ineh lype 913 tube, but the 2 -inch Type 902 readily can be substituted in the cirenit.

As shomin in Fig. 1923, the high-soltage d.c. is furnished by two gllos connected ats halfwave voltage doublers. One supplies 300 volts positive for the amplifiers and sweep generator, and the other furnishes 300 volts negative for the cathonle-ray tube voltage-divider network. The current drain is 2 ma. from the positive and 0.75 ma. from the megative sumply.

The horizontal swerp generator is a $1 / 25-$ Watt neon bulb (Gencral Electric NE-5i) used in at saw-footh oscillator vircuit. The frequency is determined by R_{21} plus R_{25} and the shunt capacity solocted hy sis. and is variable be- twern 12 and 700 cycles. A synchronizing voltage can be coupled in through (12 and its amplitude adfusted by Res. The "sinne-sweep" witeh, x_{2}, allows five different conditions of sweep athe sunchronization, as follows: (1) axternal synchronization, (2) line syuchronization. (3) internal synchronization. (t) line (sine-wave) swop, and (i) gaternal swerp.

The positive sawtonth from the genarator becomes a negative sawtooth atter :mplification through the horizontal amplifier (one section of a (isLi, $)$, and to make the trane sweep from left to right in the conventional fastuon the rathode-ray tube must be turned so that the No. 1 pin is at the bottom, with pins No. 3 and No. 7 horizontal. Used in this mamer a waveform will appear in the correct polarity when passed through the vertical amplifier but it will be invertod when applied directly to the vertical plates.

The unit is built on a 7-by 7-by $2-$ inch chassis. The ten controls and the pilot light are mounted along the front athd sides, and the two heater transformers are mounted on the back. The external connections are brought to

Fig. 1923 - 11 iring diarram of the 1 -inch oseilloseope. Terminals G_{1} and G_{2} should be connected to chatmis.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{3}-8 . \mu \mathrm{fl}$. 2.50 -volt eleetrolytic.
$\mathrm{C}_{6}, \mathrm{C}-\overline{\mathrm{C}}, \dot{\mathrm{C}}_{\mathrm{S}}, \mathrm{C}_{9}-0.1 \cdot \mu \mathrm{fl}$. 600 - wolt paper.
$\mathrm{C}_{6}, \mathrm{C}_{41}-25 . \mu \mathrm{fl}$. 25 -volt electroly tic.
$\mathrm{C}_{12}-0.001-\mu \mathrm{fl}$. mica.
$\mathrm{C}_{13}-100-\mu \mathrm{ffl}$. mica.
(it $-0.05-\mu \mathrm{fl} .400$-volt paper.
Cis - 0.02- $\mu \mathrm{fd} .400$-volt paper.
$\mathrm{C}_{16}-\mathbf{0 . 0 0 6 - \mu \mathrm { fd }}$ mica.
$\mathrm{C}_{17}-0.002-\mu \mathrm{fd}$. nica.
$11_{1}-10,000$ olmas.
$\mathrm{H}_{2}, \mathrm{H}_{23}-0.2$ meqohm.
$\mathrm{R}_{3}, \mathrm{~K}_{4}-0.1$ mecolim.
$\mathrm{R}_{5}-0.25$-negehm variable, "Focus" control.
 control.
$\mathrm{R}_{7}, \mathrm{R}_{\mathrm{s}}-0.5$ megohm.
 zontal Centering." "Yerical Contering" and "Yertical (ratn" contorls.
$R_{11}, R_{12}, R_{13}-2.0$ unegolms.
R14-50,000 , , woma.
R_{15} - k .0 mictolim.
$\mathrm{H}_{16}, \mathrm{R}_{17}-10.2 .5 \mathrm{~m}$ mohm.
$R_{1}, R_{1: 9}$ - 50100 ahms.
 Gain" control.
$\mathrm{R}_{22}, \mathrm{R}_{24}-3.0$ mesohnis.
$\mathbf{R}_{25}-10.0$ mexulm variable. "Fine Frequence" (9ntrol.
$\mathrm{R}_{26}-0.1$-megohm variable. "Syne Amplitude" control.
All Gixed resistors are $1 / 2$-watt carbon.
$\mathrm{I}_{1}-6.3$-vole pilot lamp.
S_{1} - S.p.s.t. snap switeth mounted on ho.
S_{2} - Two-pole S-position rotary, "sneSweep.
S_{3} - Sincle-phle 5-position rotary. "Coare Frequency,"
$\mathrm{T}_{1}, \mathrm{~T}_{2}-6.3-$ witt 1.0 -anpere heater tran*former.
nine tip jacks on a polystyrene panel which is also mounted on the back of the chassis. Mounting the jacks for connections at the back of the chassis keeps the leads clear of the controls.

The arrangement of the tubes on the chassis can be seen in the photographs. The leats in the swerp generator, amplifier grid cireuits and all heaters should be shielded to minimize a.e. pick-up. Too much pick-up in the swerp cirruit will canse it to synchronize with the line frequeney and produce unstable sweeps at other froquencies. The outputs of the amplifiers are brought out in flexible leads terminated in pin tips which can be plugged into the proper jarks on the terminal pancl, thus making it a simple matter to remove them when working directly into the 'seope deflection phates.

Since one side of the a.e. line is common to the d.e. voltages and (hassis, it is necessiny to know when the chassis is connected to the grounded side of the line. The "Tost" torminal is a means for cherking this, With s_{1} turned to the "Of" position and s_{3} set to "Test," connect the "Test" terminal to an actual groumd or the common of the unit to be tested with the 'seope. If the neon tube glows, the a.c. phys hould be reversal.

Fig. 192f - View showing the arrangement of parts underneath the oscilloseope chasis. The eontrols along the left-hand side, from top to bottom, are "Intensity," "Horizontal Centering," "Coarse Fre. quency" and "Hurizontal Gain," (McCormick, Jan., IYto, (., I.)

408

Chapter Nineteen

The direct sensitivity of the vertical plates is 125 volts/inch and 175 volts/inch for the horizontal. Working through the amplifiers at maximum gain, the vertical sensitivity is 0.3

Fig. 1925 - A sketel of the back of the 'scope, showing the arrangenent of terminals.
volts/inch and 1.1 volts/inch for the horizontal. The a.c. power consumption of the unit is approximately 20 watts.

C. Signal Generałors

Test oscillators - A simple test oscillator for receiver checking and similar uses is shown in Fig. 1926. It uses the electron-coupled oscillator circuit with provision for suppressorgrid a.f. modulation. The output attenuator is a potentiometer so connected as to present a constant input resistanee to the recciver.

For suppressor-grid modulation, apply approximately 10 volis of audio (for 50 -per-ecent modulation), where shown in the diagram.

Fig. 1926 - Eilectron-coupled i.f. test-oscillator circuit diagram.
$\mathrm{C}_{1}-100-\mu \mu \mathrm{fl}$. variahle with $200-\mu \mu \mathrm{fd}$. fixed silvermica zero-drift in parallel.
$\mathrm{C}_{2}-100 . \mu \mu \mathrm{fd}$. midget mira.
$\mathrm{C}_{3}, \mathrm{C}_{4}-250$ - $\mu \mathrm{ffl}$. midget mica.
$\mathrm{C}_{5}-0.005-\mu \mathrm{fl}$. mica.
$\mathrm{C}_{0}-0.1-\mu \mathrm{fd} .400$-volt paper.
$\mathrm{C}_{7}-500-\mu \mathrm{ffl}$. midget mica.
R_{1} - 50,000 ohms, $1 / 2$ watt.
K_{2} - 2000 ohnis, $1 / 2$ watt.
$\mathrm{I}_{3}-20,000$ ohmis, 1 watt.
$\mathrm{h}_{4}-20,000$ ohme, 2 watt.
Is -500 -ohm earhon potentiometer.
$\mathrm{L}-440-510 \mathrm{ke}$.: 140 turns No. 30 enameled, chosewound on $1 \frac{1}{2}$-inch dianeter plag-in form. Cathode tap 35 turns from ground end.
1400-1550 ke.: 42 turns No. 20 d.s.c. tapped 10 turns from gronnd.
4500-5500 kc.: 11 turns No. 18 enameled, turns spaced diameter of wire, tapped 3 turns from ground.
$\mathrm{RFC}_{1}-2.5-\mathrm{ml}$. r.f. ehoke.
$\mathrm{RFC}_{2}-25$-mh. r.f. choke.

The suppressor grid is biased 10 volts negative for modulated use; if an unmodulated signal is desired, the upper terminal may be grounded as indicated. This will increase the output from the oscillator. Conversely, if the output potentiometer does not attenuate the signal sufficiently, additional d.c. negative bias may be applied between the modnlation terminals.
In aligning a receiver it is important that the test signal be prevented from entering circuits where it can cause false indications. This will occur if the signal can enter the receiver by any other means than through the output leads from the test oscillator. The test oscillator must be thoroughly shielded, and the output lead likewise should be a shielded cable with the center wire the "hot" learl. Make all ground returns to a heavy copper strap connected to the cabinct at the output ground terminal. The plug-in coil should be sepmately shielded.

The i.f. ranges of the test oscillator can be calibrated by beating against signals of known frequency in the b.c. band. Frequencies between 465 ke . and 275 kc . can be spotted by using the second harmonic of the oscillator, the remainder of the range to 175 kc . being cheeked by using the third harmonic.

The a.f. modulating source for the test oscillator can be any audio oscillator capable of delivering 10 to 20 volts at the standard receiver-checking frequency of 400 cycles.

A useful audio-oscillator circuit is shown in Fig. 1927. It employs a two-terminal or "transitron" circuit using a pentagrid tube. A frequency of approximately 400 cycles is generated with the tuned-circuit values shown. The frequency may be changed by substituting a different value for C_{1}; several values of capacitance may be arranged to be selected by a switch so that an assortment of frequencies is available.

Fig. 1927 - Simple nepative-resistance andio oscillator. $\mathrm{C}_{1}-0.15-\mu \mathrm{fd}$. 400 -volt paper.
$\mathrm{C}_{2}-0.1-\mu \mathrm{fd} .100$-volt paper.
$\mathrm{C}_{3}-0.25-\mathrm{ff} \mathrm{d}$. 200 -vole paper.
$\mathrm{R}_{1}, \mathrm{H}_{2}-50,000$ ohms, 1 watt.
R_{3} - 50.000 -ohm valume control.
L_{1} - 1.2 -henry choine (Thordarson T-14C6I with iron core removed).
T- Output transformer (interstage audio, 1:3 ratio).

C. Antenna Measurements

Antenna measurements are made for the purpose (a) of securing maxinum transfer of power to the antenns from the transmitter, and (b) of adjusting dircctional antennas to conform with design conditions. Related to measurements of the antenna system proper is

$M_{\text {easurements and }} M_{\text {easuring }} \varepsilon_{q u i p m e n t} 409$

the measurement of transmis-sion-line performance.

Checking the transmission line for standing waves can be done by measuring the current in the wiros, using a devire of the type pictured in Fig. 1928. The hooks (which should be sharp enough to cult through the insulation, if any, on the wires) are placed on ane of the wires, the spacing belween them being adjusted to give a suitahle reading an the meter. It any one position along the line the currents in the two wires should be identiral. Readings taken at intervals of a quarter wavelength will indicate whether or not standing waves are present.

Field-intensity meters - In adjusting antemma systems for naximum radiation and in determining radiation patterns, use is made of field-intensity meters. Fundamentally the field-intensity meter

consists of a small pick-up antenna and an indicating device such as a rectifier and microammeter or a vacuum-tube voltmeter provided with a tuned input circuit. It is used to indicate the relative intensity of the radiation field under actual radiating conditions. It is particularly useful on the very-high frequencies and in adjusting directional antemas. Field-intensity checks should be made at points several wowolongthe distant from the antenna and at heights corresponding with the desired angle of radiation.

The absorption frequency meters shown in Figs. 1905 and 1908 may be used as fieldstrength meters if provided with pick-up antennas. However, it is convenient to have the indicating devire separate from the actual pick-up. This arrangement allows the pick-up unit to be sct up out in the field to pick up radiation from the antenna under test, while the meter unit is near where adjustments are to be made. Antenna adjustment thus beeomes a one-man job. The unit shown in Figs. 19291931, inclusive, is in two sections, one containing the usual tuned circuit, crystal rectifier, and antenna connection, and the other housing a microammeter for registering the rectified current from the crystal. The two units are

Fig. 1929 - Remote-indicating field-strength motor, consisting of an r.f. pick-up and reetifier unit, and a meter unit. The knobon the left side of the meter unit is the switch for the shont. On the pick-upunit the two controls are the bandswiteh (lefit) and tuning. The knob at the right is for the resistor-shorting switeh.
fitted with matching plug and socket. permitting them to be used together. or they may be intercomeroted by means of a cable which can be any length up to several hundred feet. Three coils are used, so that measurements may be made on 28,50 , and 144 Mc . with the snap of a switeh. A resistor is inserted in series with the crystal and meter, to lessen the loading effect on the tuned circuit and to make the response of the crystal more linear with variations in radiated power. As the resistor reduces the sensitivity somewhat, a switch is provided to short it out in case measurements are to be made with extremely low power or at large distances from the transmitting antenna. A

Fig. 1930 - Niring diagram of the remote-indicating field-strength meter.
$\mathrm{C}_{1}-25-\mu \mu \mathrm{fl}$. midget variable.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.0101-\mu \mathrm{fd}$. mica.
R_{1} - 1000 ohms, $1 / 2$ watt.
$\mathrm{R}_{2}-250$ ohms, $1 / 2$ watt.
$\mathrm{L}_{1}-28 . \mathrm{Mr}$. coil -7 turns No. 22 enamel, $1 / 4$ inch long, on $3 / 4$-inch dia. form (Xational PRF.1).
$L_{2}-50-\mathrm{Me}$. coil - 6 turns No. 22 enamel, $1 / 4$ inch long, on 9/16-inch dia. form (National PRE-1).
$\mathrm{L}_{3}-141$ - Me. coil-3 turns No. 18 cnamel, $1 / 4$ inch long, $3 / 8$-inch dia., self-supporting.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Iniversal receptarle, two-pole retainer-ring tyue (Amphenol 61-F).
MA - 0 -100 microammeter (0 - $\mathbf{- 3 0 0}$ microammeter or $0-1$ milliammeter may be used, with reduced sensitivity).
P_{1}, P_{2} - l'olarized plag, two-pole retainer-ring type (Amphenol 61-M1').
$S_{1}-3$-position wafer-type switeh.
$S_{2}, S_{3}-$ S.p.s.t. snap switch.
RFC1, $\mathrm{RFC} \mathrm{C}_{2}-2.5 \mathrm{mh}$. choke ($\mathrm{National} \mathrm{R}-100$).

Fig. 1931 - Inside view of the two units of the remote-indicating field-strength meter.

100-microampere meter is used to wive high sensitivity. and a shunt is available to multiply the range of the meter by three. This shunt is also provided with a switch so that low or high readings ean be taken without making a trip to the pick-up unit. The (rysial is the $1 \mathrm{~N}^{21}$ type. Germaniom erystals (1×34) also may be used with grood results.

The two units are housed in 2 by 4 by 4 -inch steel boxes with front and back romovable. In the pick-up unit all parts cxcept the resistor

The antenna connection is a steatite fredthrough bushing fitted with a "banama pluy" socket. A eonvenient pick-up antemna is made by drilling and tapping a $\frac{1}{}$-inch rod for $6 / 32$ thread to take the threaded end of a banama plug. The length of the antenna will vary the sensilivity of the unit. If messurements are to be made with high power levels, a rod a few inches in length will suffice, but for ordinary work a length of 24 inches or so will be about right.

Vacuum- Tube Characteristics

(a Inductance and Capacity

Inductance (L) - The formula for computing the inductance of air-core coils is:

$$
L=\frac{0.2 a^{2} n^{2}}{3 a+9 b+10 c}{ }^{\mu \mathrm{h}} .
$$

where a is the mean diancter of the coil in inches, b is the length of the winding in inches, c is the radial depth of the winding in inches, and n is the number of turns. The quantity c may be neglected if the coil is a single-layer solenoid.

For example, assume a coil having 35 turns of No. 30 d.s.c. wire on a form 1.5 inches in diameter. Consulting the wire table (page 416), 35 turns of No. 30 d.s.c. will occupy 0.5 inch. Therefore, $a=1.5, b=0.5, n=3 \overline{5}$, and

$$
L=\frac{0.2 \times(1.5)^{2} \times(3.5)^{2}}{(3 \times 1.5)+(3 \times 0.5)}=61.25 \mu \mathrm{~h}
$$

To calculate the number of turns of a singlelayer coil for a required value of inductance:

$$
N=\sqrt{\frac{3 a+9 b}{0.2 a^{2}} \times L}
$$

Straight round wires:

To ealeulate the high-frequency inductance of a straight round wire:

$$
L=0.00508 l\left(2.303 \log _{10} \frac{4 l}{d}-1\right)
$$

$l=$ length in inches
$d=$ diameter in inches
$L=$ inductance in microhenrys
Condenser capacit. (C) - The formula for determining the capacity of a condenser is:

$$
C=0.224 \frac{K A}{d}(n-1) \mu \mu \mathrm{fd} .
$$

where A is the area of one sicle of one plate in square inches, n is the total number of phates, d is the separation between plates in inches, and K is the dielectrie constant ($=1$ for air; see the table on page 415 for values for other materials).

The dielectric constant is the ratio of the capacity of a condenser with a given dielectric to its capacity with air diclectric.

ABBREVIATIONS FOR ELECTRICAL AND RADIO TERMS

Alternating current	a.c.	Medium frequency	m.f.
Anpere (anmeres)	a.	Megarycles (per second)	Mc.
Amplitude noslulation	a.m.	Megohm	Ms
Antenna	ant.	Meter	m .
Audio frequency	a.f.	Mierofarad	$\mu \mathrm{fcl}$.
Centineter	cm.	Miorchenry	${ }_{\mu}{ }^{\text {h }}$
Continuous waves	c.w.	Micromicrofarad	$\mu \mu \mathrm{fl}$.
Cycles per second	c.p.s.	Microvolt	$\mu \mathrm{v}$.
Decibel	db.	Microvolt per meter	$\mu \mathrm{v} / \mathrm{m}$.
Direct current	d.c.	Mierowatt	$\mu \mathrm{W}$.
Electromotive force	e.m.f.	Milliampere	ma.
Frequency	f.	Millivolt	mv.
Frequency modulation	f.m.	Milliwatt	nw.
Ground	gnd.	Modulated continuous waves	m.c.w.
Henry	h .	Ohm	Ω
High frequenry	h.f.	Power	P.
Intermediate frequency	i.f.	Power factor	p.f.
Interrupted continuous waves	i.c.w.	Radio frequency	r.f.
Kilocycles (per second)	kc.	Ultrahigh frequency	u.h.f.
Kilovolt.	kv.	Very-high frequency	v.h.f.
Kilowatt	kw.	Volt (volts)	v.
Magnetomotive force	m.m.f.	Watt (watts)	w.

Chapter Jwerity

© RMA Radio Color Codes

Standard color codes have been adopted by the Radio Manufacturers Association for the ready identification of values and connections for standard components.

RESISTOR-CONDEVSER COLOR CODE

Color	Sionificant l'igure	Decimal Multiplier	Tolerance $(5, i)$	Voltage Rating *
Black	0	1	-	-
Brown	1	10	1*	100
Red	2	100	2*	200
Orange	3	1000	3*	300
Yellow	4	10,000	4*	400
Green	5	100,000	5*	500
Blue	6	1,000,000	6*	600
Violet	7	10,000,000	7*	700
Gray	8	100,000,000	8*	800
White	9	1,(000,000,000	9*	900
Gold	-	0.1	5	1000
Silver	-	0.01	10	2000
No color	-	-	20	500
* Applies to condensers only.				

Mica condensers:

If one row of three colored markers appears on the condenser, the voltage rating is 500 volts and the capacity is expressed to two significant figures, in mieronicrofarads, as follows: First dot on left, first significant figure. Second dot, second significant figure. Third dot, decimal nultiplier.

Example: A condenser has one row of colored markers, as follows: brown, black and brown. Its capacity is $100 \mu \mu \mathrm{fd}$.

When two rows of three colored markers appear on the condenser the top row represents the significant figures, reading from left to right; the bottom row indicates the decimal multiplier, tolerance and voltage rating, reading from right to left. Capacity is in $\mu \mu \mathrm{fd}$.

Example: A condenser has two rows of colored markers, as follows: Top row: left, brown; center, black; right, no color. Bottom row: right, brown; center, green; left, blue. Its ratings are $100 \mu \mu \mathrm{fd} ; \pm 5 \%, 600$ volts.

Tubular condensers:

Two groups of colored bands are used on tubular condensers. Viewed with the wide bands on the right, the wide bands indicate significant figures (from left to right); narrow bands indicate the decimal mulifplier, tolerance and voltage rating, from right to left, respectively.

Resistors:

Values of resistance and tolerances are indieated by colored dots, bands or stripes on the resistor.

Two types of resistors are commonly used, one having radial and the other axial leads. The following illustration shows the two types of resistors and the system of identification.

Radial leads	Axial leads	Color
Body A	Band A	Inticates first sionificont figure.
End B	Band B	Indicales second significant figure.
Band C (or dot)	Band C	Indicates decimal multiplier.
Band D		

I.f. transformers:

Blue - plate lead.
Red - "B" 1 lead.
Green - grid (or diode) lead.
Black - grid (or diode) return.
Note: If the secondary of the i.f.t. is centertapped, the second diode plate lead is green-and-black striped, and black is used for the center-tap lead.

A.f. transformers:

Blue - plate (finish) lead of primary.
Red-"B" + lead (this applies whether the primary is plain or center-tapped).
Brown - plate (start) lead on center-tapped primaries. (Blue may be used for this lead if polarity is not important.)
Green - grid (finish) lead to secondary.
Black-grid return (this applies whether the secondary is plain or (conter-tapped).
Yellow-grid (start) lead on center-tapped secondaries. (Green may be used for this lead if polarity is not important.)
Note: These markings apply also to line-togrid and tube-to-line transformers.

Loudspeaker voice coils:

Green - finish.
Blach - start.

Field coils:

Black and red - start.
Ycllow and red - finish.
Slate and Red - tap (if any).

Power transformers:

1) Primary Leads Black

If tapped:
Common Black
Tap Black and Yellow Striped Finish. Blach and Red Striped
2) High-Voltage Plate WindingRed

Center-Tap... Red and Yellow Striped
3) Rectifier Filament Winding Yellow

Center-Tap. Yellow and Blue Striped
4) Filament Winding No. 1.......... Green Center-Tap. Green and Yellow Striped
5) Filament Winding No. 2......... Brown Center-Tap. Brown and Yellow Striped
6) Filament Winding No. 3 Slate Center-Tap... Slate and Yellow Striped

This chart may be nsed to find the values of inductance and capacity required to resonate at any given frequency in the medium- or high-frequency ranges; or, conversely, to find the frequency to which any given coil-eandenser combination will tune. In the example shown by the dashed lines, a condenser has a mininum capacity of $15 \mu \mu \mathrm{fd}$. and a maximum capacity of $50 \mu \mu \mathrm{fd}$. If it is to be used with a coil of $10-\mu \mathrm{h}$. inductance, what frequency range will be covered? The straight-edge is connected between 10 on the left-hand scale and 15 on the right, giving 13 Mc. as the high-frequency linit. Kceping the straight-edge at 10 on the left-hand scale, the other ead is swung to 50 on the right-hand scale, giving a low-frequency limit of 7.1 Nc . The tuning range would, therefore, he from 7.1 Mc . to I3 Mc., or 7100 kc , to $13,000 \mathrm{kc}$. The center scale also serves to convert frequency to wavelength.

The range of the chart can be extended by multiplying each of the scales by 0.1 or 10 . lu the example above, if the capacitics are 150 and $500 \mu \mu$ fd. and the inductance 100μ., the range becomes approximately 231 to 422 meters or 0.7 to 1.3 Mc . Alternatively, 1.5 to $5 \mu \mu \mathrm{fd}$, and 1 uh . will give a range of approximately 7 I to 130 Mc .
$414 \quad$ Chapter Twonty
INDUCTIVE AND CAPACITIVE REACTANCE VS. FREQUENCY CHART

By use of the chart above, the approximate reactance of any capacity from $1.0 \mu \mu \mathrm{fl}$, to $10 \mu \mathrm{fl}$, at any frequeney
 reetly. Intermediate values can he cetimated hy interpolation. In making interpolations, remumber that the rate of change betwem lines $i=$ lozarithmis. Lse the frequency or reactane scales as a guile in entimating intermediate values on the caparity or inductance seales.

This chart also ean le used to find the approximate resonance frefurncies of $L C$ combinationk. or the frequency to which a given coiland condenser combination will tunc. First locate the respective slanting lines for the capacity and inductance. The point where they interseet, i.e., where the reactances are efinal, is the resonant frequency (projected downward and read on the frequene! seate).

Electrical Conductivity of Metals

R-lofire Temp.Cuen. ${ }^{2}$
Conducticity ${ }^{2}$ of Rasistance

Aluminum (2S; purc)	59	0.0049
Aluminum (alloys):		
Soft-annealed.	45	
Heat-treated.	30-4i	
Brass.	28	0.002-0.007
Cadmium.	19	
Chromium.	55	
Climax	1.83	
Cohalt.	14.3	
Constantin	3.24	$0.0000: 3$
('oppler (hard drawn)	8! . 5	U.004
Copper (annealed)	100	
Everdur.	6	
German Silver (is'i)	5.3	0.00019
Gold.	65	
Iron (pure)	17.7	0.006
Iron (cast) .	2-12	
Iron (wrought).	11.4	

[^12]Rrlative Temp. Corajh. ${ }^{2}$ Cunductiviby ${ }^{1}$ of Resiolunce

Table of Dielectric Characteristics

Dielcclric material	Diefectric constant (K^{\prime})	Power factor					Dielectric strenuth (prnchure rollaye ${ }^{2}$	Volume resiviticity ${ }^{3}$ (ρ)
		00 cycles	1 kc.	1 Mc.	10 Mc.	100 Mc .		
Air (normal pressure)..	1.0						19.8-22.8	
AlSi\ang A196	5. $7-6.3$	2.9		0.21	0.15		240	10^{14}
Aniline forinaldehycle	3-5	1-6					400	
Asphalts.	2.7-3.1		2.3				2;-30	
Bakclite - See Phenol								
Becswax	2.9-3.2							
Casein plasties ${ }^{4}$.	6.1-6.4			5.2-6			165	
Castor oil....	4.3-4.7			7			380	
Celluloid	4-16			5-10				
Ccllulose acetate ${ }^{5}$.	6-8	3-6	4-6	4-6	5.5		300-1010	4.5×10^{10}
Cellurose nitrate ${ }^{6}$.	$4 \cdot 7$			2.8-i			$3(1)-780$	$2-30 \times 10^{10}$
Ccresin wax	2.5-2.6			0.12-0.21				
Cresol formaldehyde	6	10					400	
Dilectene.	3.37					0.33		
Fthyl cellulose	2-2.7	0.7	1.2	1.5			1500	10^{15}
Fiber ..	5-7.5			4.5-5			1500	5×10^{9}
Formiata MF-66.	4.6-4.9		1.5	1.1			450	
(ilass:								
Cobillt. . .	7.3			0.7				
Common window.	7.6-8			1.4			200-250	
Crown	6.2-7		1	$1{ }^{3}$			500	
Electrical.	4-5			0.5			2000	8×10^{14}
Flint.	7-10		0.45	0.4				
Nomex	4.2			0.25		0.28		
Photographic.	7.5			0.8-1				
Ilate. .	0.8-7.6			0.6-0.8				
Pyrex	4.2-4.9		0.5	0.7		0.54	335	10^{14}
Gutta percha	2.5-4.9						200-500	$\therefore \times 10^{14}-10^{15}$
Lucite ${ }^{\text {², }}$.	2.5-3	7	5	1.5-3	1.9		$480-600$	
Melamine formaldehyre	8	16					300	
Nica.	2.5-8	0.2	0.3	0.2-6	0.02			2×10^{17}
Mica (elear India)	15.4-7.5	2	2	2	2		600-1500	
Mycalex.....	7.4			0.18			2.50	10^{13}
Mycalex (British).	6			0.3			350	
Mykroy .	6.5-7			0.1-0.2			630	
Nylon.	3.6			2.2				
Paper...	2.0-2.6						1250	
Parafin wax (solid)	1.9-2.6			0.1-0.3			300	$10^{15}-10^{18}$
Prmaue.	7.21			0.2				
Phenol: ${ }^{\text {S }}$								
Pure.	5			- 1			$400-475$	1.5×10^{12}
Ashestos basc.	7.5			15			90-1:50	
Black molded.	5-5.5			3.5			400-510	
Fabric base.	5-6.5			3.5-11			150-300	
Miea-filled.	5-6			0.8-1			475-600	
Paper base	3.8-5.5			2. 5 -4			6:0-750	$10^{10}-10^{13}$
Yclow. . .	5.3-5.4			$0.36-0.7$			500	
Polyethylene.	2.3-2. 4	0.02	0.02	0.02-0.05			1000	10^{17}
Polyindene.	3	0.04						
Polyisobutylenc	2.4-2.5	0.04-3	0.05				500	10^{16}
I'olystyrene ${ }^{\text {a }}$.	2.4-2.9(2.6)	0.02	0.018	0.02	0.02	0.02	500-2:00	10^{20}
Iorcelain (dry process)	6.2-7.5			$0.7-15$			40-100	5×10^{3}
Porcclain (wet process).	6.5-7			0.6			150	
I'rcsshoard (untreated)..	2.9-4.5						$125-300$	
l'ressboard (onled).	${ }_{3}^{5}$						750	
Quartz (fused). Rubluer (hard) ${ }^{\text {a }}$.	3.5-(3.8)	0.01	0.01		0.01	0.05	200	$10^{14} \cdot 10^{18}$
Rubler (hard) ${ }^{10}$. Shellac.	$\mathrm{2.}_{\text {2-3.5 }}{ }^{\text {(3) }}$			$\begin{gathered} 0.5-1 \\ 0.09 \end{gathered}$			450 900	$\begin{gathered} 10^{12}-10^{15} \\ 10^{16} \end{gathered}$
Steatite: ${ }^{\text {i }}{ }^{\text {* }}$	2.0-4			0.09			900	10^{10}
"Commercial" mrade.	4.9-6.5	0.02	0.2	0.2	0.4	0.5		
"Low-loss" prade.	4.4	0.02	0.2	0.2	0.18	0.13	150-315	$10^{14}-10^{15}$
Titanium dioxide ${ }^{12}$. ${ }^{\text {a }}$	90-170		0.1	0.1				
Urea formaldehyrla ${ }^{13}$	5-7	3-5	2-3	2-4	4		300-5.50	$10^{12}-10^{13}$
Varnished cloth ${ }^{14}$	2-2.5			2-3			440-550	
Vinyl resins. .	4 1			1.4-1.7			400-500	10^{14}
Vitrolex.	6.4			0.3				
Wood (dry onk)	2.5-6.8(3)	.	3.8	4.2				
Woorl (paraflived maple).	4.1						115	

[^13]Catalin, Celeron, Dielecto, Durez, Durite, Formica, Gemstone, II eresite, Indur, Mitkalot, Marblette. Micarta, Opalon, l'rystal. Resinox, Syntlane, Trxtolite, cte. Yellow bakclite is so-called "low-loss" bakelite.
${ }^{9}$ Includes Amphenol 012.A. Distrene. Intelin IN 4.5, Loalin, Lustron, Quartz Q, Rezoglas, Rhodolene MI, IRonilla L, sityraflex, Styron, Trolitul. Victron, stc.
charlex, Antyran Trolitu
11 Soapstone - Alberenc, Alsimaz, Isolantite, Lava, etc.
${ }^{12}$ Rutile. Used in low temperature-cocfficient fixed condensers.
${ }_{14}$ Includes Aldur, Beetle, Plaskon, Pollopas, Prystal, etc.
${ }^{14}$ Includes Empire cloth,

COPPER－WIRE TABLE

Gauoe No． B．\＆S ．	Diam． in Mils ${ }^{1}$	$\begin{gathered} \text { Circular } \\ \text { Mil } \\ \text { Area } \end{gathered}$	Turns per Lincar Inch ${ }^{2}$				Turns per Sguare Inch ${ }^{2}$			Fect per Lb．		$\begin{gathered} \text { Ohms } \\ \text { pcr } \\ 1000 \mathrm{ft} . \\ 25^{\circ} \mathrm{C} . \end{gathered}$	Current Carrying Capacily at$\begin{gathered} 1500 \text { C.M. } \\ \text { per } \\ \text { Amp. }{ }^{3} \end{gathered}$	Diam． in $m m$ ．	Nearest British S．W．G． No．
			Enamel	S．C．C．	$\begin{gathered} \text { D.S.C. } \\ \text { or } \\ S . C . C . \end{gathered}$	D．C．C．	S．C．C．	Enamel S．C．C．	D．C．C．	Bare	D．C．C．				
1	289.3	83690	－	－	－	－	－	－	－	3.947	－	． 1264	55.7	7.348	1
2	257.6	66370	－	－	－	－	－	－	－	4.977	－	． 1593	44.1	6.544	3
3	229.4	52640	－	－	－	－	－	－	－	6.276	－	． 2009	35.0	5.827	4
4	204.3	41740	－	－	－		－	－	－	7.914 9.980	－	． 2533	27.7 22.0	5.189 4.621	7
5	181.9	33100	－	－	－	－	二	－	－	9.980 12.58	－	． 4195	22.0 17.5	4.621	8
6	162.0	26250	－	－	－	－	三	－	－	12.58 15.87	－	． 4028	17.5 13.8	4.665	9
7	144.3	20820	7.6	－	7.4	7.1	－	＿	－	20.01	19.6	． 6405	11.0	3.264	10
8	128.5	16510	7.6	－	8.4		－	－	－	25.23	24.6	． 8077	8.7	2.906	11
9	114.4	13090	8.6 9.6	－	8.2 9.3	7.8 8.9	87.5	84.8	80.0	31.82	30.9	1.018	6.9	2.588	12
10 11	101.9 90.74	10380 8234	9.6 10.7	二	9.3 10.3	8.8 9.8	${ }^{87.5}$	${ }_{105}^{84.8}$	97.5	40.12	38.8	1.284	5.5	2.305	13
12	80.81	6530	12.0	－	11.5	10.9	136	131	121	50.59	48.9	1.619	4.4	2.053	14
13	71.96	5178	13.5	－	12.8	12.0	170	162	150	63.80	61.5	2.042	3.5	1.828	15
14	64.08	4107	15.0	－	14.2	13.8	211	198	183	80.44	77.3	2.575	2.7	1.628	16
15	57.07	3257	16.8	－	15.8	14.7	262	250°	223	101.4	97.3	3.247	2.2	1.450	17
16	50.82	2583	18.9	18.9	17.9	16.4	321	306	271	127.9	119	4.094	1.7	1.291	18
17	45.26	2048	21.2	21.2	19.9	18.1	397	372	329	161.3	150	5.163	1.3	1.150	18
18	40.30	1624	23.6	23.6	22.0	19.8	493	454	399	203.4	188	6.510	1.1	1.024	19
19	35.89	1288	26.4	26.4	24.4	21.8	592	553	479	256.5	237	8.210	． 86	． 9116	20
20	31.96	1022	29.4	29.4	27.0	23.8	775	725	625	323.4	298 370	10.35 13.05	． 68	.8118 .7230	21
21	28.46	810.1	33.1	32.7	29.8	2 C .0	940	895	754 910	407.8	370 461	13.05 16.46	． 54	． 72380	22
22	25.35	642.4	37.0	36.5	34.1	30.0	1150	1070 1300	910 1080	514.2 648.4	461 584	16.46 20.76	． 43	． 64388	23 24
23	22.57	509.5	41.3	40.6	37.6	31.6 35.6	1400 1700	1570	1260	817.7	745	26.17	． 27	． 5106	25
24	20.10	404.0	46.3	35.3	41.5 45.6	35.6	2060	1910	1510	1031	903	33.00	． 21	． 4547	26
25	17.90	－ 320.4	51.7	50.4	45.6	38.6 41.8	2060 2500	2300	1750	1300	1118	41.62	． 17	． 4049	27
26	15.94	254.1	58.0	55.6	50.2	41.8	2500	2300	1750	1639		52.48	． 13	． 3608	29
27	14.20	201.5	64.9	61.5	55.0	45.0	3030	2780	2020 2310	1639 2067	1759	52.48 66.17	． 11	． 3211	30
28	12.64	159.8	72.7	68.6	60.2	48.5	3670	3350	2310	2067	1759	66.17 83.44	． 11	.3211 .2859	31
29	11.26	126.7	81.6	74.8	65.4	51.8	4300	3900 4660	2700 3020	2607 3287	2207	83.44 105.2	． 084	． 2859	31 33
30	10.03	100.5	90.5	83.3	71.5	55.5 59.2	5040 5920	4660 5280	3020	42875	2768	132.7	． 053	． 2268	34
31	8.928	79.70	101	92.0	77.5	59.2	7920	6280	二	5142	3137	167.3	． 042	． 2019	36
32	7.950	63.21	113	101 110	83.6 90.3	62.6 66.3	7060 8120	6250 7360	－	6591	4697	211.0	． 033	． 1798	37
33	7.080	50.13	127	110 120	90.3 97.0	66.3 70.0	8120 9600	7360 8310	－	6591 8310	6168	266.0	． 026	． 1601	38
34	6.305	39.75	143 158	120	${ }^{97.0}$	73.5	10900	8700	－	10480	6737	335.0	． 021	． 142 G	38－39
35	5.615	31.52 25.00	178	143	111	77.0	12200	10700	－	13210	7877	423.0	． 017	． 1270	39－40
36 37	5.000 4.453	25.00 19.83	198	154	118	80.3	－	－	－	16660	9309	533.4	． 013	． 1131	41
38	3.965	15.72	224	166	126	83.6	－	－	－	21010	10666	672.6	． 010	． 1007	42
39	3.531	12.47	248	181	133	86.6	－	－	－	26500	11907	848.1	． 008	． 0897	43
40	3.145	9.88	282	194	140	89.7	－	－	－	33410	14222	1069	． 006	． 0799	44

[^14]
Miscellaneous Data
 417

VACUUM-TUBE CLASSIFIED DATA TABLES AND INDEX

 staodarl receivinf. transmitting amb sperial-murbose varumm tubes. Base diagrams are shown on pages $419-425$. For convenionce in lanating ty pes the index helow lists them in mumerical-alphabetioal order with the pare on which
 than one table it is listed wive.

418

Miscellaneous Data

VACUUM-TUBE BASE DIAGRAMS

The diagrams on the following pages show standard socket connections corresponding to the base designations iven in the colnmn headed "Socket Connections" in the classified tube data tables. Bottom views are shown throughout. Terminal designations are as follows

$\mathrm{A}=$ Anode	$\mathrm{F}=$ Prilament	IS $=$ Internal Shicld	$\mathrm{P}_{1}=$ Starter-Anode	S $=$ Shell
$\mathrm{BP}=$ Bayonet Pin	$\mathrm{G}=$ Grid	K $=$ Cathode	$\mathrm{P}_{\text {bF }}=$ Beam-Form-	TA $=$ Target
$\mathrm{BS}=\mathrm{Basc}$ slecve	$\mathrm{H}=$ Heater	$\mathrm{NC}=$ No Conuce-	ing Plates	- = Gas-Type Tube
$\mathrm{D}=\begin{aligned} & \text { Deflecting } \\ & \text { Plate } \end{aligned}$	$\text { IC }=\underset{\substack{\text { Internal } \\ \text { nection }}}{\text { Con- }}$	$\mathbf{P}=\mathrm{l}^{P} \text { late (Anode) }$	$==\text { Ray.Control }$	$\begin{aligned} & \mathrm{U} \\ & \mathrm{SH}=\text { Unit } \\ & =\text { Internal Shield } \end{aligned}$

Alphabetical subseripts $\mathrm{D}, \mathrm{P}, \mathrm{I}^{\prime}$ and IIX indicate, respectively, diode unit, poutode unit, triode unit or hexode unit in multi-unit types. Subscript M, T or CT indicates filament or healer tap.
Wherever the No. 1 pin of a metal-type tube in 'Table I is shown connected to the shell, the No. 1 pin in the glass (G or GI^{1}) equivalent is connected to in internal shield.

RAA TUBE BASE DIAGRAMS

Bottom views are shown. 'Ierminal designations on sockets are shown above.

$2 D$

AAF

48

40

$4 K$

4 V

5AB

5AK

3G

48B

4 E

4 M

$4 x$

5AL

4AA

4 BJ

4 F

4 P

$4 Y$

5AM

4AC output

Chapter Jwenty

IRMA TUBE BASE DMAGRAMS
Botum views are shown. Terminal designations on sockets are given on page 419.

5」					
	(3) (3):				
		6AZ			
	6 BH				

Miscellaneous $^{D_{a t a}}$

RA TUBE BASE DIAGRAMS
Bottom views are shown. Terminal designations on sockets are given on page 419.

RMA 'TUDE BASF, DIAGRAMS
Bottom views areshown, 'Iterminal designations on sockets are given on page 419.

(3) (2)

$$
\text { (4) (4) } G_{I N}
$$

75

7 ㄴ

7PM

8AU

 88L

8BC

8BN

$$
\begin{aligned}
& \text { 88R }
\end{aligned}
$$

8AJ
G1 (4) (5) 5^{65}

8AL
(3) (5) G_{2}
(2)
BAV

(2) (4) (5) G_{3}

8 CH
(4) (5)

8CK

8 BZ

8 E

8 C
(3):
8 F

Miscellaneous Data

RA 'JUBE BASE DIAGRAMS
Bottom views are shown. T'crminal designations on sockets are given on page 119.

$B K$

8 L

8 N

80

$8 V$

SUPPLEMENTARY BASE DIAGRAMS

FIG .37 (2)

FIG. 36

(3):

FIG.II

FIG. 17

FIG. 32

SUPPLEMENTARY BASE DIAGRAMS
Bottom views are shown. 'Ierminal designations on sockets are: piven on page 419.

SUPPLEMENTARY "T" - GROUP BASE DIAGRAMS

T-3AB

T-4AF

$\mathrm{T}-3 A C$

T-4AG

T-1AB

T-3B

T-4B
(2) (2)
T-4C

T-50C

T-3BC

T-4BD

T-50A

T-508

SUPPLEMENTARY …"- GROUP BASE DIAGRAMS

Bottom viewb are shown. Terminal designations on sockets arc given on page 419.

T-8DB

BASE TYPE - DESIGNATIONS

The type of hase used on each tube listed in the tables is indicated in the base colnma by a Ietter.
The me:ming of cach letter is as follows:

TUBE RATINGS

The data in the classified tube tables are of two kinds, maximum ratings, and typical operating conditions.

Vacuum tubes are designed to be operated within definite maximum (and minimum) ratings. These ratings are the maxinum safe operating voltuges and currents for the electrodes, based on inherent limiting factors such as permissible cathode temperature, emission, and power dissipation in electrodes. In addition to the maximum ratings for each type, performance data are given in the form of typical operating conditions.

In the transmitting-tube tables, maximum ratings for electrole voltage, current and dissipation are given separately from the typical operating conditions for the recommended classes of operation. In the receiving-tube tables, because of space limitations, ratings and operating data are combined. Where only one set of operating conditions appears, the positive electrode voltages shown (plate, sereen, etc.) are, in general, ulso the maximum rated voltages for those electrodes.

The maximum ratings given for each transmitting type apply only when the tube is operated at frequencies up to the specified maximum frequency for full rating as listed in the column so headed. As the frequency is
raised above the specified value, the radiofrequency current, dielectric losses, and hoating effeets inerease rapidly. Most types can be operated above their specified maximum frequency provided the plate voltage and phate input are reduced.

For certain air-cooled transmitting tubes, there are two sets of maximum values, one designated as CCS (Continuous Commereial Service) ratings, the other ICAS (Intermittent Commercial and Amateur Service) ratings. Continuous Commercial Service is defined as that type of service in which long tube life and reliability of performance under continuous operating conditions are the prime consideration. Intermittent Commereiai and Amateur Service is defined to include the many applications where the transmitter design factors of minimum size, light weight, and maximum power output are nore important than long tube life. ICAS ratings are considerably higher than CCS ratings. They permit the handling of greater power, and although such use involves some sacrifiee in tube life, the period over which tubes will continue to give satisfactory performance in intermittent service can be extremely long. Typical operating conditions given in the tables are ICAS ratings when applicable.
 For "G" and "GT" tubes not listed (not having mefal counterparis), see Tables II, VII, VIII and IX.

Type	Name	Sockel Connections	Fil. or Heater		Copacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	ScreenVolts	Screen Current Ma.	Plate Current Mo.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	$\begin{array}{\|c} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{array}$	Power Oulput Watts	Type
			Volts	Amps.	1 n	Out	PlateGrid												
6A8	Pentagrid Converler	8A	6.3	0.3	一	-	-	Osc.-Mixer	250	-3.0	100	3.2	3.3	Anode-grid (No. 2) 250 volts max. thru 20,000-ohms					6 A8
$\begin{aligned} & 6 A B 7 \\ & 1853 \end{aligned}$	Television Amp. Pentode	8 N	6.3	0.45	8	5	0.015	Class-A Amp.	300	-3.0	200	3.2	12.5	700000	5000	3500	-	-	$\begin{aligned} & 6 A B 7 \\ & 1853 \end{aligned}$
$\begin{aligned} & 6 A C 7 \\ & 1852 \\ & \hline \end{aligned}$	Television Amp. Pentodo	8 N	6.3	0.45	11	5	0.015	Class-A Amp.	300	-2.0	150	2.5	10	750000	9000	6750	-	-	$\begin{aligned} & 6 A C 7 \\ & 1852 \\ & \hline \end{aligned}$
8AG7	Video Beam Powar Amp.	8 Y	6.3	0.65	13	7.5	0.06	Class-A Amp.	300	- 3.0	150	7/9	30/30.5	130000	11000	-	10000	3.0	6AG7
6AJ7	Sharp-Cul-Off Pentode	8N	6.3	0.45				Class-A Amp.	300	160*	300	2.5	10	1000000	9000	-			6AJ7
6AK7	Pentode Power Amp.	8 Y	6.3	0.65	13	7.5	0.06	Class-A Amp.	300	- 3	150	7	30	130000	11000	\cdots	10000	3.0	6AK7
6B8	Duplex-Diode Pentode	8E	6.3	0.3	6	9	0.005	Class-A Amp.	250	-3.0	125	2.3	9.0	850000	1125	730	-	-	688
6 65	Triode Detector, Amplifler	60	6.3	0.3	3	11	2	Class-A Amp.	250	- 8.0	-	-	8.0	10000	2000	20	-		$6 \mathrm{C5}$
								Bias Datactor	250	-17.0		-	Plate current odjusted to 0.2 ma . with no signal						
SFS	High- μ Triode	5M	6.3	0.3	5.5	4	2.3	Clas-A Amp.	250	- 1.3	-	-	0.2	66000	1500	100	-	-	SFS
SF6	Pontade Power Amplifier	75	6.3	0.7	-		-	Closs-A Pent.	$\begin{array}{r} 250 \\ 375 \end{array}$	$\begin{array}{r} -16.5 \\ -22.0 \end{array}$	$\begin{aligned} & 250 \\ & 315 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 34 \\ & 42 \end{aligned}$	$\begin{aligned} & 80000 \\ & 75000 \end{aligned}$	$\begin{aligned} & 2500 \\ & 2650 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 7000 \\ & 7000 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	6F6
								Triode Amp. ${ }^{1}$	250	-20.0	-	-	31	2600	2700	7.0	4000	0.85	
								P.P. Pentodes P.P. Triodes ${ }^{\prime}$	$\begin{array}{r} 375 \\ 350 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-26.0 \\ -38.0 \\ \hline \end{array}$	250	2.5	$\begin{aligned} & 17 \\ & 22.5 \end{aligned}$	Power output for 2 fubes of stated load, plate-to-plate			$\begin{array}{r} 10000 \\ 6000 \end{array}$	$\begin{aligned} & 19.0 \\ & 18.0 \\ & \hline \end{aligned}$	
8H6	Twin Dioda	70	6.3	0.3			-	Rectifier	Mox. a.c. vollage per plate $=100$ r.m.s. Max. outpul current 4.0 ma. d.c.										6H6
6.5	Detactor Amplifler Triode	60	6.3	0.3	3.4	3.6	3.4	Class-A Amp.	250	-8.0		-	9	7700	2600	20	-	-	6.5
6.37	Triple-Grid Delector, Amp.	7R	6.3	0.3	7	12	0.005	R.F. Amp.	250	-3.0	100	0.5	2.0	1.5 meg .	1225	1500	-	-	6 J 7
								Bias Delector	250	-4.3	100	Cothode current 0.43 ma .					0.5 meg.		
$6 \mathrm{K7}$	Triple-Grid Variable- μ Amp.	7R	6.3	0.3	7	12	0.005	R.F. Amp.	250	-3.0	125	2.6	10.5	600000	1650	990	--	-	6K7
								Mixer	250	-10.0	100		-	-	Oscillotar peak volls $=7.0$				
6K8	Triode Hexode Converter	8K	6.3	0.3				Converter	250	-3.0	100	6	2.5	Triode	Plate (No.	2) 1	100 volts, 3.8 ma .		6K8
626	Beam Power Amplifier	7 AC	6.3	0.9	-			$\begin{aligned} & \text { Single Tube } \\ & \text { Class A, } \end{aligned}$	$\begin{array}{r} 250 \\ 300 \\ \hline \end{array}$	$\begin{aligned} & 170^{*} \\ & 220^{*} \\ & \hline \end{aligned}$	$\begin{array}{r} 250 \\ 200 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5.4 / 7.2 \\ 3.0 / 4.8 \\ \hline \end{array}$	$\begin{gathered} 75 / 78 \\ 51 / 54.5 \\ \hline \end{gathered}$	-	二		$\begin{array}{r} 2500 \\ 4500 \\ \hline \end{array}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	8 L 6
								Single Tube Class A_{1}	$\begin{array}{r} 250 \\ 350 \\ \hline \end{array}$	$\begin{array}{r} -14.0 \\ -18.0 \end{array}$	$\begin{array}{r} 250 \\ 250 \end{array}$	$\begin{aligned} & 5.0 / 7.3 \\ & 2.5 / 7.0 \end{aligned}$	$\begin{aligned} & 72 / 79 \\ & 54 / 66 \end{aligned}$	$\begin{aligned} & 22500 \\ & 33000 \end{aligned}$	$\begin{aligned} & 6000 \\ & 5200 \end{aligned}$		$\begin{aligned} & 2500 \\ & 4200 \end{aligned}$	$\begin{array}{r} 6.5 \\ 10.8 \end{array}$	
								P.P. Class A_{1}	270	125*	270	11/17	134/145	-	-		5000	18.5	
								P.P. Class A_{1}	$\begin{array}{r} 250 \\ 270 \end{array}$	$\begin{aligned} & -16.0 \\ & -17.5 \end{aligned}$	$\begin{array}{r} 250 \\ 270 \end{array}$	$\begin{aligned} & 10 / 16 \\ & 11 / 17 \end{aligned}$	$\begin{aligned} & 120 / 140 \\ & 134 / 155 \\ & \hline \end{aligned}$	$\begin{aligned} & 24500 \\ & 23500 \end{aligned}$	$\begin{aligned} & 5500 \\ & 5700 \end{aligned}$		$\begin{aligned} & 5000 \\ & 5000 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 17.5 \end{aligned}$	
								P.P. Class $A B_{1}$	360	250*	270	5/17	88/100	Power output for 2 tubes. Load plate-to-plate			9000	24.5	
								P.P. Class $A B_{1}$	360	-22.5	270	5/15	88/132				6600	26.5	
								P.P. Class AB	$\begin{aligned} & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & -18.0 \\ & -22.5 \end{aligned}$	$\begin{array}{r} 225 \\ 270 \\ \hline \end{array}$	$\begin{array}{r} 3.5 / 11 \\ 5 / 16 \\ \hline \end{array}$	$\begin{aligned} & 78 / 142 \\ & 88 / 205 \end{aligned}$				$\begin{aligned} & 6000 \\ & 3800 \end{aligned}$	$\begin{aligned} & 31.0 \\ & 47.0 \end{aligned}$	
6 LT	Pentagrid Mixer Amplifier	71	6.3	0.3	-		-	R.F. Amp.	250	-3.0	100	5.5	5.3	800000	1100	-		-	6 L 7
							-	Mixer	250	-6.0	150	8.3	3.3	Over 1 meg.	Oscillator-grid (No.3) voltage $=-15.0$				
6N7	Twin Triode	8B	6.3	0.8	-			Class-B Amp.	300	0	-	-	35-70	-	-	-	8000	10.0	6N7
607	Duplex-Diode Triode	7V	6.3	0.3	5	3.8	1.4	Triode Amp.	250	- 3.0	-	-	1.1	58000	1200	70	-	-	607
$6 \mathrm{R7}$	Duplex-Diode Triade	7 V	6.3	0.3	4.8	3.8	2.4	Triode Amp.	250	-9.0	-	-	9.5	8500	1900	16	10000	0.28	6R7
657	Triple-Grid Variable μ	7R	6.3	0.15	6.5	10.5	0.005	Class-A Amp.	250	-3.0	100	2.0	8.5	1000000	1750	1750	- -		657
6SA7	Pontagrid Converter	8R:	6.3	0.3				Converter	250	03	100	8.0	3.4	800000	Grid No. 1 Resistor 20000 ohms				6SA7
$65 C 7$	Twin Triode Amplifier	85	6.3	0.3				Closs-A Amp.	250	- 2.0	-	-	2.0	53000	1325	70	-	-	6SC7
6SF5	High- μ Triode	6AB	6.3	0.3	4	3.6	2.4	Closs-A Amp.	250	- 2.0	-	-	0.9	66000	1500	100	-	-	6SF5
6SF7	Diode Variable- μ Pentode	7AZ	6.3	0.3	5.5	6	0.004	Class-A Amp.	250	-1.0	100	3.3	12.4	700000	2050	-	-	\square	65F7
6SG7	Triple-Grid Semi-Variable- μ	8BK	6.3	0.3	8.5	7	0.003	H.F. Amp.	250	- 2.5	150	3.4	9.2	Over 1 meg.	4000			-	6SG7

table I-METAL RECEIVING TUBES-Continued

Type	Name	Socket Connecfions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Volfs } \end{aligned}$	Screen Current Ma.	Plato Current Ma.	PlateResistanceOhms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Wafts	Type
			Volis	Amps.	In	Out	PlateGrid												
65H7	Tripla-Grid Amplifler	8BK	6.3	0.3	8.5	7	0.003	H.F. Amp.	250	- 1.0	150	4.1	10.8	900000	4900	-	-	-	$65 \mathrm{H7}$
6SJ7 4	Triple-Grid Amplifer	8 N	6.3	0.3	6	7	0.005	Class-A Amp.	250	- 3.0	100	0.8	3	1500000	1650	2500			65J7
$65 K 7$	Triple-Grid Variable- μ	8 N	6.3	0.3	6	7	0.003	Closs-A Amp.	250	- 3.0	100	2.4	9.2	800000	2000	1600		-	65K7
6507	Duplex-Diode Triade	80	6.3	0.3	3.6	3.2	1.80	Class-A Amp.	250	- 2.0	-	-	0.8	91000	1100	100		-	6507
6SR7	Duplex-Diode Triode	80	6.3	0.3	3.6	2.8	2.40	Class-A Amp.	250	- 9.0			9.5	8500	1900	16	-	-	6SR7
6 6S7	Triple-Grid Variable- μ	8 N	6.3	0.15	5.5	7.0	0.004	Clas5-A Amp.	250	- 3.0	100	2.0	9.0	1000000	1850				6557
6ST7	Duplex-Diode Triode	80	6.3	0.15	2.8	3	1.50	Class-A Amp.	250	- 9.0		-	9.5	8500	1900	16	-		6517
6SV7	Diode R.F. Pentode	7AZ	6.3	0.3	6.5	6	0.004	Class-A Amp.	250	-1	150	2.8	7.5	800000	3400			-	6SV7
6577	Duplex Diode Triode	80	6.3	0.15	2.6	2.8	1.10	Class-A Amp.	250	-3			1.0	58000	1200	70	-	-	6527
677	Duplex-Diode Triode	7 V	6.3	0.15	1.8	3.1	1.70	Class-A Amp.	250	- 3.0	-	-	1.2	62000	1050	65		-	677
								Class-A Amp.	250	-12.5	250	4.5/7.0	45/47	52000	4100	218	5000	4.5	
6Vs	Beam Power Amplifier	7AC	6.3	0.45	-	-	-		250	-15.0	250	5/13	70/79	60000	3750	-	10000	10.0	6V6
								Clast-AB Amp.	285	-19.0	285	4/13.5	70/92	65000	3600	-	8000	14.0	
1811	Pentode Power Ampliflor	75	6.3	0.7		-	-	Relay Tube					Character	fics same as	6F6				1611
1612	Pentagrid Amplifier	7 T	6.3	0.3	7.5	11	0.001	Class-A Amp.	250	- 3.0	100	6.5	5.3	600000	1100	880	-	-	1612
1620	Triple-Grid Det.-Amp.	7R	6.3	0.3	-	-		Class-A Amp.					Character	fics same as	6.7				1620
1621	Power Amplifer Pentode	75	6.3	0.7	-	-		P.P. Pentodes	300	-30.0	300	6.5/13	38/69	-	-	-	4000	5.0	1621
1621	Power Amplifler Pentode			0.7				P.P. Triodes ${ }^{\text {a }}$	330	500*	-		55/59	-	-	-	5000	2.0	1621
1622	Beam Power Amplifler	7 AC	6.3	0.9	-	-	-	Class-A Amp.	300	-20.0	250	4/10.5	86/125	-	-		4000	10.0	1622
1851	Television Amp. Pentode	7R	6.3	0.45	11.5	5.2	0.02	Class-A Amp.	300	- 2.0	150	2.5	10	750000	9000	6750	-	-	1851

*Cathode resisfor-ohms. $\quad{ }^{2}$ Screen fied to plate.
: For 6 SATGT, use Base Diagram 8AD.
Grid bios-2 volts if separate oscillator excitation is used.
'Also type "6SJ7Y".

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES
(For "G" and "GT"-Type Tubes Nat Listed Here, See Equivalent Type in Table I; Charactoristics and Connections Will Be Identical)

Type	Name	Socket Connecfions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plato Supply Volis	Grid Bias	Screen Volis	Screen Curreni Ma.	Plate Current Ma.	$\begin{aligned} & \text { Piate } \\ & \text { Resistance } \\ & \text { Ohms } \end{aligned}$	Transconductance Micromhos	Amp. Faclor	LoadResisfanceOhms	Power Oufpui Watts	$\mathrm{T}_{\boldsymbol{y p} \text { e }}$
			Volts	Amps.	In	Out	Plafe Grid												
$2 \mathrm{C22}$	Triode Amplifer	4AM	6.3	0.3	2.2	0.7	3.60	Class-A Amp.	300	-10.5	-	-	11	6600	3000	20	-	-	2 C 22
6A5G	Triode Power Amplifer	$6 T$	6.3	1.0				Class-A Amp.	250	-45.0	-	-	60	800		4.2	2500	3.75	6A5G
					-		-	P.P. Class AB	325	-68.0	-	-	80	-	5250	-	3000	15.0	
								P.P. Class AB	325	850*	.		80	-		-	5000	10.0	
6AB6G	Direct-Couplod Amplifer	7AU	6.3	0.5				Class-A Amp.	250	0	Input		5.0	40000	1800	72	8000	3.5	6AB6G
									250	0		tput	34						
6AC5G	High- μ Power Amplifler Triode	60	6.3	0.4	-	-	-	P.P. Class B	250	0	-		5.0	36700	3400	125	10000	8.0	6AC5G
								Dyn.-Coupled	250	-			32				7000	3.7	
6ACGG	Dirget-Coupled Amplifier	7 AU	6.3	1.1	-	-		Class-A Amp.	180	0	Input		7.0	-	3000	54	4000	3.8	6AC6G
					-	-			180	0	Output		45						
6AD5G	High- μ Triode	60	6.3	0.3				Ciass-A Amp.	250	-2.0	-	-	0.9		1500	100	-	-	6AD5G
6AD6G	Electran-Ray Tubo	7 AG	6.3	0.15		-		Indicator	100										6ADBG
6AD7G	Triode-Pentode	BAY	6.3	0.85			-	Triade Amp.	250	-25.0	-	-	4.0	19000	325	6.0	-	-	6AD7G
								Pentode Amp.	250	-16.5	250	6.5	34	80000	2500	-	7000	3.2	
6AE5G	Trioda Amplifler	60	6.3	0.3	-	-	-	Class-A Amp.	95	-15.0	-	-	7.0	3500	1200	4.2	-	-	6AE5G
6AE6G	Twin-Plate Triode with SIngle Grid	7 AH	6.3	0.15	Remale cui-off Sharp cut-off			Class-A Amp.	250	-1.5			6.5	25000	1000	25			6AE6G
								Class-A Amp.	250	- 1.5			4.5	35000	950	33			

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES-Continued

Type	Name	Socket Connections	Fil. or Heater		Caparilance $\mu \mu \mathrm{fd}$.			Uso	Plato 5upply Volls	Grid Biens	$\begin{gathered} \text { Screan } \\ \text { Volls } \end{gathered}$	Scraen Currant Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Mieromhos	Amp. Factor	$\begin{gathered} \text { Load } \\ \text { Resisfance } \\ \text { Ohms } \end{gathered}$	Power Outpui Walts	Type
			Valts	Amps.	In	Oul	PlafoGrid												
6AE7GT	Twin-Input Triode	7AX	6.3	0.5				Driver Amplifier	250	-13.5			5.0	9300	1500	14			6AE7GT
6AF5G	Triode Amplifor	60	6.3	0.3				Class-A Amplifier	180	-18.0			7.0		1500	7.4			6AF5G
6AF7G	Twin Electron Ray	BAG	6.3	0.3				Indicator Tube											6AF7G
6AG6G	Power Amplifer Pentode	75	6.3	1.25				Class-A Amplifier	250	- 6.0	250	6.0	32		10000		8500	3.75	6AG6G
6AH5G	Beam Power Amplifier	6AP	6.3	0.9				Class-A Amplifer	350	-18	250			33000	5200		4200	10.8	6AH5G
6AH7GT	Twin Triodo	88E	6.3	0.3				Convertar \& Amp.	250	- 9.0			121	6600	2400	16			6AH7GT
6AL6G	Beam Power Amplifer	SAM	6.3	0.9				Class-A Amplifer	250	-14.0	250	5.0	72	22500	6000		2500	6.5	6AL6G
6AL7GT	Electron-Ray Tube	8CH	6.3	0.15	-			Indicator	Ouler edge of any of the three illuminated areas displaced $1 / 16 \mathrm{In}$. min. oufward with $\dagger \mathbf{5}$ volts to its electrode. Similar inward disp. with - 5 volts. No paftern with - -6 valts grid.										6AL7 GT
6AQ7GT	Duplex Diode Triode	8CK	6.3	0.3	2.3	1.5	2.8	Class-A Amplifier	250				2.3	44000	1600	70			6AQ7GT
6AR6	Beam Power Amp.	6 Ba	6.3	1.2	11	7	0.8	Class-B Amplifior	300	-36	300	4.0	58	22000	4300	95			6AR6
6AR7GT	Diode Triode Rectifier	8CG	6.3	0.3	1.4	1	2	Class-A Amplifer,	250	- 2			1.3	66500	1050	70	-		GAR7GT
6A57G	Low-Mu Twin Triode	8BD	6.3	2.5				D.C. Amplifor	135	250*			125	280	7500	2.1			6A57G
684G	Triode Power Amplifier	55	6.3	1.0				Power Amplifier	Characteristics same as Type 6A3-Table IV								-		6B4G
$6 \mathrm{6CBG}$	Duplex-Diode High- μ Triade	7 V	6.3	0.3	1.7	3.8	1.7	Dotector-Amplifier	Characteristics sama as Type 75-Table IV								-		6B6G
6C8G	Twin Triode	8 BA	6.3	0.3				Amp. 1 Saction	250	- 4.5			3.1	26000	1450	38			6C8G
6DEBG	Pentagrid Converter	8 A	6.3	0.15				Converter	250	- 3.0	100	Cathode current 13.0 Ma .			Anode grid (No. 2) Volts $=250^{3}$				6D8G
6F8G	Triode-Hexade Converter	8 O	6.3	0.3				Osc.-Mixar	250	- 2.0	Triode Plate 150 volts								6E8G
6F8G	Twin Triode	8 G	6.3	0.6				Amplifier	250	- 8.0		-	91	7700	2600	20	-		6F8G
6G6G	Pentode Power Amplifier	75	6.3	0.15				Class-A Amplifer	180	- 9.0	180	2.5	15	175000	2300	400	10000	1.1	
								Class-A Amplifier ${ }^{3}$	180	-12.0				4750	2000	9.5	12000	0.25	G6G
6H4GT	Dioda Rectifar	5 AF	6.3	0.15				Delarlor	100				4.0				-		6H4GT
6H8G	Duo-Diodo High- μ Pentode	8 E	6.3	0.3				Class-A Amplifor	250	- 2.0	100		8.5	650000	2400	-	-		6H8G
6J8G	Triodo Heptode	8 H	6.3	0.3				Converter	250	- 3.0	100	2.8	1.2	Anode-grid (No. 2) 250 volis max. ${ }^{3} 5 \mathrm{ma}$.					¢J8G
6K5GT	High- μ Triode	5 U	6.3	0.3	2.4	3.6	2.0	Class-A Amplifor	250	- 3.0	-		1.1	50000	1400	70	-		6K5GT
6K6G	Pentode Power Amplifier	75	6.3	0.4				Clinss-A Amplifer	Characteristics same as Type 41-Table IV										6K6G
6L5G	Triode Amplifler	60	6.3	0.15				Class-A Amplifler	250	- 9.0		-	8.0		1900	17			615 G
6M6G	Power Amplifer Pentode	75	6.3	1.2				Class-A Amplifor	250	- 6.0	250	4.0	36		9500		7000	4.4	6M6G
6M7G	Triple-Grid Ampliner	7R	6.3	0.3				R.F. Amplifer	250	- 2.5	125	2.8	10.5	900000	3400		-	-	$6 \mathrm{M7G}$
6M8GT	Diode Triode Pentode	8AU	6.3	0.6				Triode Amplifer	100	- 3		-	0.5	91000	1100				
								Pentode Amplifier	100	- 3.0	100	-	8.5	200000	1900				OM8GT
6N6G	Direct-Couplad Amplifler	7 AU	6.3	0.8		7		Power Amplifer		Characterisfics same as Type 6B5-TablelV									6N6G
6P5GT	Triode Amplifier	69	6.3	0.3	3.4	5.5	2.6	Class-A Amplifer	250	-13.5		-	5.0	9500	1450	13.8	-		6P5GT
6P7G	Triode-Pentode	70	6.3	0.3				Class-A Amplifior	Charartaristics same as 6F7-Table IV										6P7G
6P8G	Triode-Hexode Converter	8 K	6.3	0.8				Osc.-Mixer	250	- 2.0	75	1.4	1.5	Triode Plate 100 v. 2.2 ma.					6P8G
696G	Diode-Triode	6Y	6.3	0.15				Class-A Amplifier	250	- 3.0			1.2	-	1050	65	-		606G
6R6G	Pentade Amplifier	6AW	6.3	0.3				Class-A Amplifier	250	3.0	100	1.7	7.0		1450	1160			6R6G
656GT	Triple-Grid Variable- μ	5AK	6.3	0.45				R.F. Amplifer	250	- 2.0	100	3.0	13	350000	4000				656GT
658GT	Triple Diode Triode	BCB	6.3	0.3	1.2	5	2	Class-A Amplifer	250	- 2.0			0.9	91000		100			658 GT
65D7GT	Triple-Grid Semi-Variable- μ	8M	6.3	0.3	9	7.5	. 0035	R.F. Amplifier	250	- 2.0	100	1.9	6.0	1000000	3600				6SD7GT
65E7GT	Triple-Grid Ampllier	8N	6.3	0.3	8	7.5	. 005	R.F. Amplifler	250	- 1.5	100	1.5	4.5	1100000	3400	3750		- 6	65E7GT
65H71	Pentode R.F. Amp.	Fig. 44	6.3	0.3			-	Class-A Amplifer	100	- 1.0	100	2.1	5.3	350000	4000		-		65H7
65L7GT	Twin Triode	8BD	6.3	0.3				Amplifler	250	-1.0	150	4.1	10.8	900000	4900				
65N7GT	Twin Triode	8BD	6.3	0.6				Amplifier	250				2.31	44000	1600	70	-		6517 GT
65U7GTY	Twin Triode	8BD	6.3	0.3				Class-A Amplifier	250	- 2.0	-		2.3	44000	1600	70			65N7GT
													2.3	44000	1600	70	-		65U7GTY

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES-Continued

Type	Name	Socket Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma,	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	$\begin{array}{\|c} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{array}$	Power Output Watts	Type
			Volts	Amps.	In	Out	PlatoGrid												
6T6GM	Triple-Grid Amplifer	6 Z	6.3	0.45				R.F. Amplifior	250	- 1.0	100	2.0	10	1000000	5500	-		-	6T6GM
6U6GT	Baam Power Amplifar	7AC	6.3	0.75				Class-A Amplifer	200	-14.0	135	3.0	56	20000	6200		3000	5.5	6U6GT
6U7G	Triple Grid Variablo- μ	7R	6.3	0.3	5	9	. 007	R.f. Amplifier	Characteristics same as Type 6D6-Tabla III										6U7G
6V7G	Duplex Diode-Triode	7 V	6.3	0.3	2	3.5	1.7	Detector-Amplifer	Characteristics same as Type 85-Toble III										6V7G
6W6GT	Beam Pawar Amplifler	7 AC	6.3	1.25				Class-A Ampliner	135	-9.5	135	12.0	61.0	- 150000	9000	215	2000	3.3	6W6GT
$6 \mathrm{W7G}$	Triple-Grid Det. Amplifier	7R	6.3	0.15	5	8.5	. 007	Class-A Amplifer	250	- 3.0	100	2.0	0.5	1500000	1225	1850			6W7c
$6 \times 6 \mathrm{G}$	Electron-Ray Tube	7AL	6.3	0.3			-	Indicator Tube	250	0 v. for $300^{\circ}, 2 \mathrm{ma},-8 \mathrm{v}$. for 0°, 0 ma . Vana grid 125 v .									6X6G
6Y6G	Beam Power Amplifier	7AC	6.3	1.25	15	8	0.7	Class-A Amplifer	135	-13.5	135	3.0	60.0	9300	7000		2000	3.6	6Y6G
6Y7G	Twin Triode Amplifier	8B	6.3	0.3				Class-B Amplifler	Characteristics same as Type 79-Table IV										6 Y7G
		88	6.3	0.3				Class-B Amplifer	180	0	-	-	8.4		,		12000	4.2	627G
6276	Iwin Triode Ampliter		6.3					Class-B Ampline	135	0			6.0		\cdots		9000	2.5	
717A	Pentode Amplifer	8 BK	6.3	0.175				Class-A Amplifier	120	-2.0	120	2.5	7.5	390000	4000		-		7174
1223	Pentode Amplifier	7 R	6.3	0.3				Class-A Amplifier	Characteristics same as 6C6-Table IV										1223
1635	Twin Triode Amplifier	8 B	6.3	0.6				Class-B Amplifier	400	0	-	-	10/63	-	-	-	14000	17	1635
7000	Low-Noise Amplifier	7 R	6.3	0.3				Class-A Amplifler	Choracteristics same os Type 637-Toble 1										7000

* Cathode resistor-ohms.
${ }^{1}$ Per plate.
25 creen fied to plote.
${ }^{3}$ Through 20,000-ohm dropping resistor.
TABLE III-7-VOLT LOCK-IN-BASE TUBES
For other lock-in-base lypers see Tobles VIII, IX, X and XIII

Type	Name	Sockef Connecfions	Heatar		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Blas	$\begin{gathered} \text { Screon } \\ \text { Volts } \end{gathered}$	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp, Factor		Pawer Outpu Watts	Type
			Volts	Amps.	In	Out	PlafeGrid												
744	Triode Amplifier	5AC	7.0	0.32	3.4	3	4	Class-A Amplifer	250	-8.0			9.0	7700	2600	20			7 74
7 A5	Beam Power Amplifier	6AA	7.0	0.75				Class-A: Amplifer	125	- 9.0	125	3.2/8	37.5/40	17000	6100		2700	1.9	7 A5
7 7A6	Iwin Diode	7AJ	7.0	0.16				Rectifar	Max. A.C. volts per plate-150. Max. Output current-10 ma.										7 AB
$7{ }^{7} 7$	Remote Cut-off Pentode	8 V	7.0	0.32	6	7	. 005	R.F. Amplifier	250	- 3.0	100	2.0	8.6	800000	2000	1600	-	-	747
7 A8	Multigrid Converter	80	7.0	0.16				Osc.-Mixer	250	- 3.0	100	3.1	3.0	50000	Anode-grid 250 volts max. ${ }^{1}$				7A8
7 7AF7	Twin Triode	8AC	6.3	0.3	2.2	1.6	2.3	Class-A Amp.	250	-10			9.0	7600	2100	16			7AF7
7AG7	5harp Cut-off Pantode	Fig. 45	7.0	0.16				Class-A, Amp.	250	250*	250	2.0	6.0	750000	4200				7AG7
784	Hiah- μ Triode	5AC	7.0	0.32	3.6	3.4	1.6	Class-A Ampliflor	250	- 2.0		-	0.9	66000	1500	100	$\overline{7600}$		7B4
785	Pentode Power Amplifier	6AE	7.0	0.43				Class-A, Amplifer	250	-18.0	250	5.5/10	32/33	68000	2300		7600	3.4	785
786	Duo-Diode Triode	8W	7.0	0.32				Class-A Amplifier	250	- 2.0		-	1.0	91000	1100	100			786
787	Remote Cut-off Pentode	8 V	7.0	0.16	5	7	. 005	R.F. Amplifier	250	- 3.0	100	2.0	8.5	700000	1700	1200			787
788	Pentagrid Converter	$8 \times$	7.0	0.32				Osc.-Mixer	250	- 3.0	100	2.7	3.5	360000	Anode-grid 250 volts max. ${ }^{1}$				7 BB
7C5	Tetrode Power Amplifier	6AA	7.0	0.48			-	Closs-A, Amplifier	250	-12.5	250	4.5/7	45/47	52000	4100		5000	4.5	$7 \mathrm{C5}$
$7 \mathrm{C6}$	Duo-Diode Triode	8W	7.0	0.16	2.4	3	1.4	Class-A Amplifer	250	- 1.0		-	1.3	100000	1000	100			7 Cb
767	Pentode Amplifer	8 V	7.0	0.16	5.5	6.5	. 007	R.F. Amplifler	250	- 3.0	100	0.5	2.0	2 meg.	1300		-		$7 \mathrm{C7}$
7D7	Triode-Hexode Converter	8 AR	7.0	0.48				Osc.-Mixer	250	- 3.0	Triode Plate (No. 3) 150 v. 3.5 ma.								707
TE6	Duo-Diade Triode	8W	7.0	0.32			-	Class-A Amplifer	250	- 9.0	-	-	9.5	8500	1900	16			E6
TE7	Duo-Diode Pentode	8AE	7.0	0.32	4.6	4.6	. 005	Class-A Amplifler	250	- 3.0	100	1.6	7.5	700000	1300				7 7F7
787	Twin Triode	8AC	7.0	0.32	-		-	Closs-A Amplifier:	250	- 2.0		-	2.3	44000	1600	70			$7 \mathrm{F7}$
		8BW	6.3	0.30	2.8	1.8	1.2		250	- 2.5			10.0	10400	5000		-		7F8
758	Inin Triode	8BW	6.3	0.30	2.8	1,8	1,2	R.F. Amplifier	180	- 1.0			12.0	8500	7000				
$\begin{aligned} & \hline 7 \mathrm{G7/} \\ & 1232 \\ & \hline \end{aligned}$	Triple-Grid Amplifier	8V	7.0	0.48	9	7	. 007	Ciass-A Amplifier	250	- 2.0	100	2.0	6.0	800000	4500	-	-	-	1232

Type	Name	5ocket Connec－ tions	Heator		Capacitance $\mu \mu \mathrm{fd}$ ．			Use	Plate Supply Volts	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volts } \end{gathered}$	Screen Current Ma．	Plate Current Mo．	Plate Resistance Ohms	Transcon－ ductanco Micromhos	Amp． Factor	Load Resistance Ohms	Power Output Wolts	Typo
			Volls	Amps．	In	Out	Plate－ Grid												
$\begin{array}{r} 768 / \\ -1206 \\ \hline \end{array}$	Dual Tetrode	8BV	6.3	0.30	3.4	2.6	0.15	R．F．Amplifler＊	250	-2.5	100	0.8	4.5	225000	2100	－	－		$7 \mathrm{~GB} /$
7H7	Triple－Grid Semi－Voriable－μ	BV	7.0	0.32	8	7	． 007	R．F．Amplifier	250	－ 2.5	150	2.5	9.0		3500				1206
$7 \frac{17}{7}$	Triode－Hexode Converter	BAR	7.0	0.32	－	－		Osc．－Mixer	250	－ $\mathbf{- 2 . 0}$	100	2.5	9.0	1000000	Triode Plote 250 v．Max．${ }^{\text {a }}$			－	7H7
$7 \mathrm{K7}$	Duo－Diodo High $-\mu$ Triade	8BF	7.0	0.32			－	Class－A Amplifler	250	-2.0	100	2.9	2.3						717
717	Triple－Grid Amplifier	$8 V$	7.0	0.32	8	6.5	． 01	Closs－A Amplifer	250	－ 1.5	100	1.5	4.5	4400000	1600	70		－	7K7
$7 \mathrm{N7}$	Twin Triode	BAC	7.0	0.6	－		－	Class－A Amplifier：	250	－8．0	100	1.5	9.0	7700	2600	Cathode Resistor 250 ohms			717
707	Pentagrid Converter	8AL	7.0	0.32		－	－	Osc．－Mixer	250	0	100	8.0	3.4	$\underline{800000}$	Grid No． 1 resistor 20000 ohms				7N7
7R7	Duo－Diode Pentode	8AE	7.0	0.32	5.6	5.3	． 004	Class－A Amplifer	250	-1.0	100	1.7	3.4	$\underline{1000000}$					707
757	Triode Hexode Converier	8 BL	7.0	0.32			－	Osc．－Mixer	250	－ 2.0	100	2.2	1.7	2000000	Triode Plate 250 v．Max．${ }^{1}$				7R7
－ 7 IV7	Triple－Grid Amplifer	8 V	7.0	0.32	8	7	． 005	Class－A Amplifer	250	-1.0	150	4.1	10.8	900000					757
－$\quad 7 \mathrm{V7}$	Triple－Grid Amplifier	8 V	7.0	0.48			－	Class－A Amplifier	300	160＊	150	3.9	9.6	300000	5800	－		－	717
7W7	Triple－Grid Variable－μ	8 BJ	7.0	0.48	－	－	－	Class－A Amplifier	300	－ 2.2	150	3.9	10	300000	5800		－	－	7V7
7x7	Duo－Diode Triode	8BZ	6.3	0.3		－	－	Class－A Amplifler	250	－ 1.0	－	－	1.9	67000	1500	100			7×7
1231	Pentode Amplifier	8V ${ }^{\text {S }}$	6.3 7.0	0.45	8.5	6.5	． 015	Class－A Amplifier	300	200＊	150°	2.5	10	700000	5500	3850	－	－	1231
	Trode Oscillay	SAC	7.0	0.32				Oscillator	250	－8．0		－	8.0	－	2300	20	－	－	XXL

＊Cathode resistor－ohms．
${ }^{1}$ Applied through 20000－ohm dropping resistor．
2 Each soction．
TABLE IV－6．3－VOLT GLASS RECEIVING TUBES

Typo	Name	Base	Socket Connec－ fions	Fil．or Heater		Capacitance $\mu \mu \mathrm{fd}$ ．			Use	Plate Supply Volts	Grid Blas	ScreenVolis	Screen Current Mo．	Plate Current Ma．	Plate Resistance Ohms	Transcon－ ductance Misromhos	Amp． Factor	$\begin{aligned} & \text { Loed } \\ & \text { Resisfance } \\ & \text { Ohms } \end{aligned}$	$\left\|\begin{array}{l} \text { Power } \\ \text { Output } \\ \text { Watts } \end{array}\right\|$	Type
				Volts	Amps．	In	Out	Plate－ Grid												
$\begin{aligned} & 2 \mathrm{C21/} \\ & 1642 \end{aligned}$	Twin－Triode Amplifier	M．	7BH	6.3	0.6	－	－	－	Class－A Amp．	250	－16．5	－	－	8.3	7600	1375	10．4			
									Closs－A Amp．	250	－45		－	60	800	5250	10.4 4.2	2500		
6 A3	Triode Power Amplifler	M．	4D	6.3	1.0		－	－	Push－Pull Amp．	$\begin{array}{r} 300 \\ 300 \\ \hline \end{array}$	$\begin{gathered} -62 \\ 780^{*} \end{gathered}$		Bias Bias	40	Power o load	output for 2	${ }_{\text {ubes }} 4.2$	2500 3000 5000	$\begin{gathered} 3.5 \\ \hline 15 \end{gathered}$	6 A3
6 64	Pentode Power Amplifier	M．	5B	6.3	0.3				Class－A Amp．	180	－12．0	180	3.9	22	45500	2200	100	8000	1.4	6A4
6 66	Twin Triade Amplifler	M ．	78	6.3	0.8	－	－	－	Class－B Amp．	$\begin{array}{r} 250 \\ 300 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	－	－	Power	ulput is for load，plate	one qube at －fo－plate	stoled	8000 10000	8.9 10.0	6A6
GA7	Pantagrid Convertar	5.	7 C	6.3	0.3			－	Converter	250	-3.0	100	2.2	3.5	360000					
6AB5／6N5	Electron－Ray Tubo	5.	6R	6.3	0.15	－	－		Indicator Tube	180	Cut－off	Grid Bias	－-12 v ．	3.5	360000	Aargel Curren	（ $2 \mathrm{lo}$.2 ma．	200 volts	max．	647
6AF6G	Electron－Ray Tube Twin Indicator Type	S．	7AG	6.3	0.15	－	－	－	Indicatar Tube	$\begin{aligned} & 135 \\ & 100 \end{aligned}$	Cut－of	Ray Con Ray Con	ol Voltag ol Voltag	$\begin{aligned} & =81 \text { for } \\ & =60 \text { for } \end{aligned}$	$\begin{aligned} & 0.5 \text { Shadow } \\ & 0^{\circ} \text { Shadow } \end{aligned}$	Angle．Targe Angle．Targe		$\begin{aligned} & 1.5 \mathrm{ma} . \\ & \text { t } 0.9 \mathrm{ma} . \end{aligned}$	－	6ABE／6N5
6B5	Direct－Coupled Power Amplifier	M．	6 A5	6.3	0.8	－	－	\square	Class－A Amp． Push－Pull Amp．	$\begin{array}{r} 300 \\ 400 \\ \hline \end{array}$	$\begin{gathered} 0 \\ -13.0 \end{gathered}$	二－	$\begin{aligned} & 61 \\ & 4.5 t \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	241000	Angle．Targe	curre	$\begin{gathered} 0.9 \mathrm{ma} . \\ \hline 7000 \\ 10000 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 20^{\circ} \end{aligned}$	685
687	Duplex－Diode Penlode	s．	7D	6.3	0.3	3.5	9.5	． 007	Pentode R．F． Amp．	250	-3.0	125	2.3	9.0	650000	1125	730	－	20	687
$6 \mathrm{6C6}$	Triple－Grid Amplifier	5.	6 F	6.3	0.3	5	6.5	． 007	R．F．Amplifier	250	－ 3.0	100	0.5	2.0	1500000	1225	1500	－	－	6 C 6
$6 \mathrm{CC7}$	Duplex Diode Triode	5.	7 F	6.3	0.3 0.3	4.7	6.5	007	Class－A Amp．	250	－ 9.0	－	－	4.5	－	20	1250	－	－	6C7
6D7	Triple－Grid Amplifer	5.	7H	6.3	0.3	4.7	6.5	． 007	R．F．Amplifier	250	-3.0	100	2.0	8.2	800000	1600	1280	－	二ー	$6 \mathrm{D6}$
6E5	Electron－Ray Tube	5.	6R	6.3	0.3				Indicator Tub	250	－ 3.0	100	0.5	2.0	－	1600	1280	一二	ー－	6D7
6 66	Twin Triode Amplifier	M．	7 B	6.3	0.6				Class－A Amp．	250	－27．5			0.25		arget Curren	4 ma ．		－	6E5
6 67	Triple－Grid Variable－μ	5.	7H	6.3	0.3				R．F．Amplifier				Charact	istics sam	3500	－Table II	6.0	14000	1.6	6E6

TABLE IV-6.3-VOLT GLASS RECEIVING TUBES-Continued

TABLE V-2.5-VOLT RECEIVING TUBES

Type	Name	Base	Socket Connections	Fil. or Heater		Capacilance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{gathered} \text { Scroen } \\ \text { Volfs } \end{gathered}$	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Misromhes	Amp. Factor	Load ResistanceOhms Ohms	Power Outpul Watts	Type
				Volts	Amps.	In	Oul	PlateGrid												
2S/4S	Duodiode	M.	5D	2.5	1.35	-			Detector	At 50 D.C. Volts per plate, cathode ma. $=80$										2S/45
$2 A 3$	Triode Power Amplifier	M.	4D	2.5	2.5	7.5	5.5	16.5	Class-A Amp.	Characteristics same as Type 6A3, Table IV										2 A 3
$2 A 5$	Pentode Power Amplifier	M.	6B	2.5	1.75				Class-A Amp.	Characteristics same as Type 42, Table IV										$2 A 5$
1A6	Duplex-Diode Triode	5.	6 G	2.5	0.8	1.7	3.8	1.7	Class-A Amp.	Characteristics same as Type 75, Table IV										$2 A 6$
$2 A 7$	Pentagrid Converler	5.	7 C	2.5	0.8				Osc.-Mixer	Characteristics same as Type 6A7, Table IV										$2 A 7$

Wonld Redio मांक्य|

TABLE V-2.5-VOLT RECEIVING TUBES-Continued

TABLE VI-2.0-VOLT BATTERY RECEIVING TUBES

Type	Name	Base	Sockel Connecfions	Fil. or Heater		Capacilance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volfs } \end{gathered}$	ScreenCurrent Ma.	Plate Current Ma	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Outpuł Watts	Type
				Volts	Amps.	In	Out	PlateGrid												
1A4P	Variable- μ Pentode	5.	4M	2.0	0.06	5	11	. 007	R.F. Amplifier	180	-3.0	67.5	0.8	2.3	1000000	750	750			1 A 4 P
1 A 4 T	Variable μ Tetrode	5.	4K	2.0	0.06	5	11	. 007	R.F. Amplifer	180	-3.0	67.5	0.7	2.3	960000	750	720	-		1A4T
146	Pentagrid Converter	5.	61	2.0	0.06				Convartar	180	-3.0	67.5	2.4	1.3	500000	Anode gria	(No. 2	180 max.	volts	1A6
184P/951	Pentode R.F. Amplifier	s.	4M	2.0	0.06	5	11	. 007	R.F. Amplifer	$\begin{array}{r} 180 \\ 90 \\ \hline \end{array}$	$\begin{array}{r} \hline-3.0 \\ -\quad 3.0 \\ \hline \end{array}$	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 1500000 \\ 1000000 \\ \hline \end{array}$	$\begin{aligned} & 650 \\ & 600 \end{aligned}$	$\begin{array}{r} 1000 \\ 550 \\ \hline \end{array}$	-	-	184P/951
185/255	Duplex-Diode Triode	S.	6M	2.0	0.06	1.6	1.9	3.6	Triode Class-A	135	- 3.0	-		0.8	35000	575	20	-	-	185/255
1F4	Pentode Power Amplifier	M.	5 K	2.0	0.12	10	10		Convertar	180	-3.0	67.5	2.0	1.5	750000	Anode gri	(No .2	135 max.	volts	$1 \mathrm{C6}$
									Class-A Amp.	135	- 4.5	135	2.6	8.0	200000	1700	340	16000	0.34	$1 F 4$
176	play-Diode Pentode	S.	6W	2.0	0.6	4	9	. 007	A.F. Amplifier	180	-1.5 -1.0	67.5	0.6	2.0	1000000	650	650	mp.		1F6

TABLE VI-2.0-volt battery receiving tubes-Continued

Type	Name	Base	Socket Connections	Filament		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{array}{\|c} \hline \text { Screen } \\ \text { Volts } \end{array}$	Screan Current Ma.	Plate Current Ma.	Plate ResistanceOhms	Transconductance Micromhos	Amp. Factor	Load Resisiance Ohms	Power Oulpui Watys	Type
				Valts	Amps.	In	Out	PlateGrid												
15	R.F. Pentode	S.	5F	2.0	0.22	2.3	7.8	0.01	R.F. Amplifler	135	-1.5	67.5	0.3	1.85	800000	750	600			15
19	Twin-Triode Amplifer	S.	6 C	20	0.26	-	-		Class-B Amp.	135	0		-		Load plate-fo-plate			10000	2.1	19
30	Triode Delector Amplifer	5.	4D	2.0	0.06				Class-A Amp.	180	-13.5			3.1	10300	900	9.3			30
31	Triode Power Amplifer	S.	4D	2.0	0.13	3.5	2.7	5.7	Class-A Amp.	180	-30.0			12.3	3600	1050	3.8	5700	0.375	31
32	Tetrodo R.F. Amplifer	M.	4K	2.0	0.06	5.3	10.5	. 015	R.F. Amplifler	180	- 3.0'	67.5	0.4	1.7	1200000	650	780	-	-	32
33	Pentode Power Amplifler	M.	SK	2.0	0.26	8	12	1	Class-A Amp.	180	-18.0	180	5.0	22.0	55000	1700	90	6000	1.4	33
34	Variable μ Pentode	M.	4M	2.0	0.06	6	11	. 015	R.F. Amplifer	180	- 3.0	67.5	1.0	2.8	1000000	620	620	-		34
									Class-A Amp. ${ }^{\text {d }}$	135	-20.0			6.0	4175	1125	4.7	11000	0.17	49
49	Dual-Grid Power Amp.	M.	5 C	2.0	0.12				Class-B Amp. ${ }^{2}$	180	0		-	Power output for 2 fubes				12000	3.5	
840	R.F. Pentode	S.	53	2.0	0.13				Class-A Amp.	180	-3.0	67.5	0.7	1.0	1000000	400	400	-	-	840
950	Pantode Power Amplifler	M.	5K	1.0	0.12				Class-A Amp.	135	-16.5	135	2.0	7.0	100000	1000	100	13500	0.45	950
RK24	Triode Amplifier	M .	4D	2.0	0.12				Class-A Amp.	180	-13.5		-	8.0	5000	1600	8.0	12000	0.25	RK24
1229	Telrode R.F. Amplifer	M.	4K	2.0	0.06				Class-A Amp.	Spacial type 32 for low grid currant applications										1229

${ }^{1}$ Grid No. 2 tied to plate. $\quad{ }^{2}$ Grids Nos. 1 and 2 ied togethar.
table Vil-2.0-volt battery tubes with octal bases

Type	Name	Socket Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plata Supply Volts	Grid Bias	$\begin{gathered} \text { Screon } \\ \text { Volis } \end{gathered}$	Screen Current Ma.	Plato Current Ma .	$\begin{gathered} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Type
			Volls	Amps.	In	Oul	PlateGrid												
1C7G	Pentagrid Convarter	72	2.0	0.06				Convertar	Characteristics same as Type 1C6-Table VI										1C7G
1 DSGP	Variable- μ R.F. Pentode	5 Y	2.0	0.06	5	11	. 007	R.F. Amplifer	Characteristics same as Type 1A4P-Table VI										105GP
1DSGT	Variable- μ R.F. Tetrode	5R	2.0	0.06				R.F. Amplifer	180	-3.0	67.5	0.7	2.2	600000	650				1D5GT
ID7G	Pantagrid Converter	72	2.0	0.06				Converter	Characteristics same as Type 1A6-Table VI										107G
1E5GP	R.F. Amplifer Pentode	5 Y	2.0	0.06	5	11	. 007	R.F. Amplifier	Characteristics same as Type 184-Table VI										1E5GP
1E7G	Double Pentode Power Amp.	8C	2.0	0.24				Class-A Amplifier	135	-7.5	135	2.01	$6.5{ }^{1}$	220000	1600	350	24000	0.65	1E7G
1F5G	Pentode Power Amplifler	$6 \times$	2.0	0.12				Class-A Amplifier	Characteristics same as Type 1F4-Table VI										1F5G
1F7GV2	Duplex-Diode Pentode	7AD	2.0	0.06	3.8	9.5	0.01	Detector-Amplifier	Characteristics same as Type 1F6-Table VI										1F7GV
1G5G	Pentode Power Amplifler	$6 \times$	2.0	0.12				Class-A Amplifior	135	-13.5	135	2.5	8.7	160000	1550	250	9000	0.55	1G5G
1H4G	Triode Amplifer	55	2.0	0.06				Delector-Amplifier	Characterisfics same as Type 30-Table VI										1H4G
1H6G	Duplex-Diode Triode	7AA	2.0	0.06	1.6	1.9	3.6	Detector-Amplifier	Characteristics same as Type 1B5-Toble VI										1H6G
115G	Pontode Power Amplifler	$6 \times$	2.0	0.12				Class-A Amplifier	135	-16.5	135	2.0	7.0	- -	950	100	13500	0.45	1J5G
1J6G	Twin Triode	7 AB	2.0	0.24				Ciass-B Amplifler	Characteristics same as Type 19-Toble V1										1J6G
		81	2.0	0.12				Clas5-A, 1 section	90	-1.5	-	-	1.1	26600	750	20			4A6G
4A6G	Imin Triode	8	4.0	0.06				Class-B, 2 sections	90	-1.5	-	-	1.13				8000	1.0	

${ }^{1}$ Total current for both sections; no signal.
: Also type \mathbf{G} or $\mathbf{G H}$.
${ }^{3} \mathrm{Max}$. signal plole current $=10.8 \mathrm{Ma}$.
TABLE VIII-1.5-VOLT FILAMENT DRY-CELL TUBES
See also Table X for Special 1.4-volt Tubes

Type	Nama	Bose	Sockat Connac. tions	Fii or Hacter		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	Scraen Valts	Scraen Current Ma.	Plate Current Ma.	Plata Resistance Ohms	Transconductance Micromhos	Amp. Factor	lood Resistance Ohms		Type
				Volts	Amps.	In	Out	PlataGris												
1A5G	Pentode Power Amplifer	0.	6X	1.4	0.05	-		-	Class-A1 Amp.	90	-4.5	90	0.8	4.0	300000	850	240	25000	115	1A5G
IATG	Pentagrid Converter	0.	72	1.4	0.05			一一	Osc.-Mixar	90	0	45	0.6	0.55	600000		ode-grid	d volis 90		1 ATG

TABLE VIII－1．5－VOLT FILAMENT DRY－CELL TUBES—Confinued

Type	Name	Base	Sockel Connec fions	Filament		Capacitance $\mu \mu \mathrm{fd}$ ．			Use	Plate Supply Volts	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Volts } \end{aligned}$	Screen Current Ma．	Plate Current Ma．	Plate Resistance Ohms	Transcon－ ductance Micromhos	Amp． Factor	Load Resistance Ohms	Power Output M－watt	Type
				Volts	Amps．	In	Out	Plate－ Grid												
1 AB5	Pentode R．F．Amplifier	0.	5BF	1.2	0.05	2.8	4.2	0.25	R．F．Amplifier	90	0	90	0.8	3.5	275005	1100		－		$14 B 5$
										150	-1.5	150	2.0	6.8	125000	1350				
1B7G	Pentagriá Converter	0.	72	1.4	0.1	－			Converter	90	0	45	1.3	1.5	350000	Grid No． 1 resistor 200，000 ohms				187G
188GT	Diode Triode Pentode	O．	8AW	1.4	0.1	－			Triode Amplifler Pentade Amp．	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -6.0 \end{gathered}$	90	1.4	$\begin{aligned} & 0.15 \\ & 6.3 \end{aligned}$	$\underline{240000}$	$\begin{array}{r} 275 \\ 1150 \end{array}$	$=$	14000	210	168GT
1C5G	Pentode Power Ampliller	0.	6X	1.4	0.1				Class－A，Amp．	90	－7．5	90	1.6	7.5	115000	1550	165	8000	240	1C5G
1D8GT	Diode Triodo Pentode	0.	8AJ	1.4	0.1	－	－		Triode Amp． Pentodo Amp．	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -9.0 \\ \hline \end{gathered}$	90	1.0	$\begin{aligned} & 1.1 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 43500 \\ 200000 \\ \hline \end{array}$	$\begin{aligned} & \hline 575 \\ & 925 \\ & \hline \end{aligned}$	25	－	二二	1D8GT
1E4G	Triode Ampliflor	0.	55	1.4	0.05	2.4	6	2.40	Class－A Amp．	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -3.0 \end{gathered}$	－	－	$\begin{aligned} & 4.5 \\ & 1.5 \end{aligned}$	$\begin{array}{r} 11000 \\ 17000 \end{array}$	$\begin{array}{r} 1325 \\ 825 \end{array}$	$\begin{aligned} & 14.5 \\ & 14 \end{aligned}$	－	——	1E4G
1G4G	Triode Amplifler	0.	55	1.4	0.05	2.2	3.4	2.80	Class－A Amp．	90	－6．0	\square	－－	2.3	10700	825	8.8	－	－	1G4G
1G6G	Twin Triade	O．	7 AB	1.4	0.1	—	\longrightarrow	\longrightarrow	Class－A Amp．	90	0			1.0	45000	675	30	－	－	1G6G
									Class－B Amp．	90	0	\cdots		1／7	34 valts input per grid			12000	675	
1H5G	Diode High－μ Trioda	0.	52	1.4	0.05	1.1	6	1.00	Class－A Amp．	90	0		一一	0.14	240000	275	65		－	1H5G
1144	Pentode Power Amplifier	L．	5AD	1.4	0.05	－		\longrightarrow	Class－A Amp．	90	Characteristics same as 1A5G									ILA4
ILAG	Pentagrid Converter	1.	7AK	1.4	0.05				Converter	90	0	45	0.6	0.55		Anode Grid Volts 90				ILA6
1184	Pentode Power Amplifler	L．	5AD	1.4	0.05	－	－		Class－A Amp．	90	－9	90	1.0	5.0	200000	925	－	12050	200	ILB4
1LB6	Hoptade Converler	1.	8AX	1.4	0.05				Convertar	90	0	67.5	2.2	0.4	Grid No．4－67．5 v．，No．5－0 v．					1LB6
ILC5	Triple－Grid Variable－μ	L．	7AO	1.4	0.05	3.2	7	． 007	R．F．Amplifier	90	0	45	0.2	1.15	1500000	775				$1 \mathrm{LC5}$
1LC6	Pentagrid Converfer	1.	7AK	1.4	0.05	－			Converter	90	0	35.	0.7	0.75		Anode Grid Volts 45				1LC6
1105	Diode Pentode	1.	6AX	1.4	0.05	3.2	6	0.18	Class－A Amp．	90	0	45	0.1	0.6	950000	600		\square	－	1105
1153	Triode Amplifior	L．	4AA	1.4	0.05	1.7	3	1.70	Class－A Amp．	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{array}{r} 0 \\ -3 \end{array}$		－	$\begin{aligned} & 4.5 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 11200 \\ & 19000 \end{aligned}$	$\begin{array}{r} 1300 \\ 760 \end{array}$	14.5	－	－	1LE3
1LG5	Pentode R．F．Amp．	L．	Fig． 42	1.4	0.05		－		Class－A Amp．	90	0	45	0.4	1.7	1000000	800	－	－	ーー	ILG5
1LH4	Diode High μ Triode	L．	5AG	1.4	0.05	1.1	6	1.00	Class－A Amp．	90	0	－		0.15	240000	275	65	ーー	－	1LH4
1LN5	Triple－Grid Amplifier	L．	7 AO	1.4	0.05	3.4	8	． 007	Class－A Amp．	90	0	90	0.3	1.2	1500000	750	二－	－	ーー	1LN5
1N5G	Pontode R．F．Amplifier	0.	5Y	1.4	0.05	3	10	． 007	Class－A Amp．	90	0	90	0.3	1.2	1500000	750	1160			IN5G
IN6G	Diode－Power－Pentode	0.	7 AM	1.4	0.05			－	Closs－A Amp．	90	－4．5	90	0.6	3.1	300000	800	－二	25000	100	IN6G
1P5G	Triple－Grid Pentode	0.	5Y	1.4	0.05	3	10	． 007	R．F．Amplifier	90	0	90	0.7	2.3	800000	800	640	－	－－	IP5G
1Q5G	Tetrode Power Amplifier	O．	6AF	1.4	0.1			——	Class－A Amp．	$\begin{aligned} & 85 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & -5.0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & 85 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.2 \\ 9.5 \\ \hline \end{array}$	$\begin{array}{r} 70000 \\ 75000 \\ \hline \end{array}$	$\begin{aligned} & 1950 \\ & 2100 \\ & \hline \end{aligned}$	－	$\begin{aligned} & 9000 \\ & 8000 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 270 \end{aligned}$	1Q5G
1R4／1294	U．h．f．Diade	1.	4AH	1.4	0.15	－		－	Rectifier	Max．r．m．s．vollage per plate－30					Max．d．c．output current－ 340μ a．					1R4／1294
1SA6GT	R．F．Pentode	0.	6CA	1.4	0.05	5.2	8.6	0.01	R．F．Amplifier	90	0	67.5	0.68	2.45	800000	970		да．	\square	15A6GT
1SB6GT	Diode Pentade	0.	6CB	1.4	0.05	3.2	3	0.25	Class－A Amp．	90	0	67.5	0.38	1.45	700000	d 10 meg．		\cdots		1SB6GT
115GI									R．C．Amplifer	90	0	90	Screen resistor 5 meg．．grid 10 meg．					1 meg ．	1105	
387／1291	U．h．f．Twin Triode	L．	7BE	$\frac{1.4}{1.4}$	0.05	4.8	8	0.50	Class－A Amp．	90	－6．0	90	1.4	6.5		1150	，	14000	170	175GT
1293	U．h．f．Triode	1.	Fig． 2	1.4	0.11				Class－A Amp．	90	0	－		5.2	11350	1850	21	\cdots	－	387／1291
3D6／1299	U．h．f．Tetrode	L．	68 B	1.4	0.22	7.5	6.5	0.30	Class－A Amp．	135	－6	90	0.7	4.7	10750	1300	14			1293
CK501	Pentode Voltage Amplifier	－1	－	125	0.033					30		30		0.3		2200		13000	0.5	3D6／1299
CK502				1.25	0.033				lass－A Amp．	45	－1．25	45	0.055	0.28	1500000	$\begin{array}{r} 325 \\ 300 \\ \hline \end{array}$		－	－	CK501
CK503	Pentode Output Amplifier	1	－－${ }^{1}$	1.25	0.033	－	－	－	Class－A Amp．	30	0	30	0.13	0.55	500000	400	\cdots	60000	3	CK502
CK504	Pentode Output Amplifier	－1	二－${ }^{-7}$	1.25	0.033			－－	Class－A Amp．	30	0	30	0.33	1.5	150000	600	－	20000	$6{ }^{1}$	CK503
	Pentode Oulput Amplifier	－1	ーー	1.25	0.033				Class－A Amp．	30	－1．25	30	0.09	0.4	500000	350		60000	32	CK 504
CK505	Pentode Voltage Amplifler Pentode Output Amplifier	1	－－${ }^{\text {－}}$	0.625 ：	0.03	－	－－		Class－A Amp．	$\begin{aligned} & 30 \\ & 45 \end{aligned}$	$\begin{array}{r} 0 \\ -1.25 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} 1100000 \\ 2000000 \\ \hline \end{array}$	$\begin{array}{r} 140 \\ 150 \\ \hline \end{array}$	－	——	－	CK505
CK507	Pentode Outpul Amplifier	－1	二－${ }^{\text {－}}$	$\underline{1.25}$	0.05	－	－		Class－A，Amp．	45	－4．5	45	0.4	1.25	120000	500	\cdots	30000	25	CK506
	Peniode Output Amplifier	－1	二ー．	1.25	0.05			－－	Class－A Amp．	45	－2．5	45	0.21	0.6	360000	500		50000	12	CK507

TABLE VIII-1.5-VOLT FILAMENT DRY-CELL TUBES-Continued

Type	Name	Base	Socket Connections	Filameni		Capacitance $\mu \mu \mathrm{fd}$,			Uso	Plale Supply Volts	Grid Bias	$\begin{gathered} \text { Screan } \\ \text { Volts } \end{gathered}$	Screan Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output M-watts	Type
				Volts	Amps.	In	Out	PlateGrid												
CK509	Triode Voltage Amplifer	-1	-- 1	0.625 ${ }^{\text {a }}$	0.03	\cdots	-		Class-A Amp.	45	0	-		0.15	150000	160	16	1000000	-	CK509
CK510	Dual Spare-Charge Tetrode	- 1	--1	0.625:	0.05			-	Class-A Amp.	45	0	0.2	$200 \mu \mu$	$60 \mu \mathrm{rr}$	500000	65	32.5	-	-	CK5 10
CK515BX	Triode Voltage Amplifier	-1	--'	0.625 :	0.03				Class-A Amp.	45	0			0.15	-	160	24	1000000	-	CK515BX
$\begin{aligned} & \text { HY113 } \\ & \text { HY123 } \\ & \hline \end{aligned}$	Triode Amplifier	- ${ }^{1}$	5K ${ }^{3}$	1.4	0.07		-	-	Class-A Amp.	45	-4.5	-	-	0.4	25000	250	6.3	40000	6.5	$\begin{aligned} & \text { HY113 } \\ & \text { HY123 } \end{aligned}$
$\begin{aligned} & \text { HY } 115 \\ & \text { HY } 145 \\ & \hline \end{aligned}$	Pentode Voltage Amplifier	- '	5K	1.4	0.07	-	-	-	Class-A Amp.	$\begin{aligned} & 45 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.5 \\ & -1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.5 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.48 \\ & \hline \end{aligned}$	$\begin{array}{r} \mathbf{5 2 0 0 0 0 0} \\ 1300000 \\ \hline \end{array}$	$\begin{array}{r} 58 \\ 270 \end{array}$	$\begin{aligned} & 300 \\ & 370 \end{aligned}$	-	-	$\begin{aligned} & \text { HY } 115 \\ & \text { HY145 } \end{aligned}$
$\begin{aligned} & \text { HY125 } \\ & \text { HY155 } \\ & \hline \end{aligned}$	Pentode Power Amplifler	- 1	5K	1.4	0.07		-		Class-A Amp.	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{aligned} & -3.0 \\ & -7.5 \end{aligned}$	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{array}{r} 0.9 \\ 2.6 \\ \hline \end{array}$	$\begin{aligned} & 825000 \\ & 420000 \end{aligned}$	$\begin{array}{r} 310 \\ 450 \end{array}$	$\begin{aligned} & 255 \\ & 190 \\ & \hline \end{aligned}$	$\begin{aligned} & 50000 \\ & 28000 \end{aligned}$	$\begin{array}{r} 11.5 \\ 90 \end{array}$	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { HY125 } \\ \text { HY15 } \end{array}$
RK42	Triode Amplifier	S.	4D	1.5	0.6	\cdots		-	Class-A Amp.				Characte	islics sam	e as Type 3	O-Table VI				RK42
RK43	Twin Triode Amplifer	S.	6C	1.5	0.12				Class-A Amp.	135	-3	-	-	4.5	14500	900	13	-	-	RK43

${ }^{1}$ Special miniature paranut base.
3 No screen
${ }^{3}$ No screen connection.

Through series resistor. Screen valtage must be at least conneted in sories for l.4-von
${ }^{5}$ Volfage gain.
ads extend from bottam of tube. Connections are labolod on tube.

TABLE $\mid X$ - HIGH-VOLTAGE HEATER TUBES

Type	Name	Base	Socket Connecfions	Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resislance Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Oufpui Watfs	Type	
				Volts	Amps.	In	Oul	PlateGrid													
12 A 5	Pentode Power Amplifiar	M.	7F	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	-	-	-	Class-A, Amp.	$\begin{array}{r} 100 \\ 180 \end{array}$	$\begin{array}{r} -15 \\ -25 \\ \hline \end{array}$	$\begin{array}{r} 100 \\ 180 \\ \hline \end{array}$	$\begin{aligned} & 3 / 6.5 \\ & 8 / 14 \end{aligned}$	$\begin{aligned} & 17 / 19 \\ & 45 / 48 \end{aligned}$	$\begin{aligned} & 50000 \\ & 35000 \end{aligned}$	$\begin{aligned} & 1700 \\ & 2000 \end{aligned}$		$\begin{aligned} & 4500 \\ & 3300 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 3.4 \end{aligned}$	12A5	
12 A 6	Beam Power Amplifier	0.	7AC	12.6	0.15	-			Class-A Amp.	250	-12.5	250	3.5	30	70000	3000		7500	3.4	12A6	
12A7	Rectifier-Amplifier	M .	7K	12.6	0.3				Class-A Amp.	135	-13.5	135	2.5	9.0	102000	975	100	13500	0.55	12 A 7	
12A8GT	Pentagrid Converter	0.	8 A	12.6	0.15	--			Converter	Characteristics same as 6A8-Table										12A8GT	
12AH7GT	Twin Trioda	0.	8BE	12.6	0.15	Each Triode Sect,			Class-A Amp.	180	- 6.5		-	7.6	8400	1900	16	-		12AH7GT	
12B6M	Diode Triode	0.	6 Y	12.6	0.15		-		Class-A Amp.	250	- 2.0			0.9	91000	1100	100			1286M	
$12 \mathrm{B7ML}$	Pentode Amplifier	0.	8 V	12.6	0.15				Class-A Amp.	250	- 3.0	100	2.6	9.2	800000	2000				$12 \mathrm{B7} \mathrm{ML}$	
12B8GT	Triode-Pentode	0.	87	12.6	0.3	Triode Section Pentode Section			Class-A Amp. Class-A Amp.	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$=1$	100	2	${ }_{8}^{0.6}$	$\begin{array}{r} 73000 \\ 170000 \end{array}$	$\begin{aligned} & 1500 \\ & 2100 \end{aligned}$	$\begin{aligned} & 110 \\ & 360 \end{aligned}$			12B8GT	
$12 \mathrm{C8}$	Duplex-Diode Pentode	0.	8E	12.6	0.15	6	9	. 005	Class-A Amp.	Characteristics same as 6B8-Table I										12C8	
12E5GT	Triode Amplifier	0.	60	12.6	0.15	3.4	5.5	2.60	Class-A Amp.	250	-13.5		-	50		1450	13.8	-		12E5GT	
12F5GT	Triode Amplifler	0.	5M	12.6	0.15	1.9	3.4	2.40	Class-A Amp.	Characteristics same as 6F5-Table I										12F5GT	
12G7G	Duplex-Diode Triode	0.	7 V	12.6	0.15				Class-A Amp.	250	- 3.0		-	-	58000	1200	70	\cdots		12G7G	
12H6	Twin Diode	0.	70	12.6	0.15	-			Rectifier	Characteristics same as 6H6-Table 1										1248	
12 J 5 GT	Triode Amplifler	0.	60	12.6	0.15	3.4	3.6	3.40	Class-A Amp.	Characteristics same as 6J5-Table 1										12J5GT	
$12 \mathrm{J7GT}$	Pentode Voltage Amplifier	0.	7R	12.6	0.15			--	Class-A Amp.	Characteristics same as 6J7-Table I										$12 \mathrm{J7GT}$	
12K7GT	Remote Cut-off Pentode	0.	7R	12.6	0.15	4.6	12	. 005	R.F. Ampliflor	Characteristics same as 6K7-Table I										12K7GT	
12 K 8	Triode Hexode Converter	0.	8K	12.6	0.15			-	Convorter	Characteristics same as 6K8-Table I										12 K 8	
12L8GT	Twin Pentode	O.	8BU	12.6	0.15	5	6	0.70	Class-A, Amp.	180	\|-9,0		189	2.8	13.0	160000	2150		10000	1.0	12L8GT
1207GT	Duplex-Diode Triode	0.	7 V	12.6	0.15	2.2	5	1.60	Class-C Amp.	Characteristics same as 607-Table I										1207 GT	
12547	Penlagrid Converter	0.	8R	12.6	0.15	\square	-	-	Convertar	Characterisfics same as 6SA7-Tablel										12SA7	
$125 C 7$	Twin Triode	0.	85	12.6	0.15		-	ーー	Class-A Amp.	Characteristics same as 6SC7-Table 1										$125 C 7$	
12SF5	High - μ Triode	0.	6AB	12.6	0.15	4	3.6	2.40	Class-A Amp.	Characteristics same as 65F5-Table I										12SF5	
12557	Dlade Variable- μ Pentode	0.	7AZ	12.6	0.15	5.5	6.0	. 004	Class-A Amp.	Characteristics same as 6SF7-Table I										12SF7	
12567	Triple-Grid Variable- μ	0.	8BK	12.6	0.15	8.5	7.0	. 003	Class-A Amp.	Characteristics same as 6SG7-Table I										12SG7	

TABLE IX-HIGH-VOLTAGE HEATER TUBES-Continued

table ix -high-voltage heater tubes-Confinued

Type	Name	Base	5ockel Connectlons	Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate 5upply Volts	Grid Bias	5creen Volfs	5creen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	$\begin{array}{\|c} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{array}$	Power Oułput Watts	Type
				Volts	Amps.	In	Out	PlateGrid												
	Twin Beam-Power Audio					Each Unil Push-Pull ${ }^{3}$			Class-A Amp.	26.5	- 4.5	26.5	2/5.5	20/20.5	2500	5500	-	1500	0.2	26A7GT
26A7GT	Arnplifler	0.	8Bu	26.5	0.6				Class-AB Amp.	26.5	-7.0	26.5	2/8.5	19/30	-	-	\cdots	$2500 \cdot$	0.5	
32L7GT	Diode-Beam Tetrode	0.	8 Z	32.5	0.3		-		Class-A Amp.	110	- 7.5	110	3	40	15000	6000	-	2500	1.5	32L7GT
35A5	Beam Power Amplifler	1.	6AA	35	0.15				Class-A A Amp.	110	-7.5	110	3/7	40/41	14000	5800	-	2500	1.5	35A5
3516G	Beam Power Amplifier	0.	7 AC	35	0.15	13	9.5	0.80	Class-A Amp.	110	- 7.5	110	3/7	40/41	13800	5800		2500	1.5	3516 G
43	Pentode Power Amplifier	M.	6 B	25	0.3	8.5	12.5	0.20	Class-A Amp.	95	-15.0	95	4.0	20.0	45000	2000	90	4500	0.90	43
48	Tefrode Power Amplifer	M.	6 A	30	0.4				Class-A Amp.	96	-19.0	96	9.0	52.0	-	3800		1500	2.0	48
5045	Beam Power Amplifier	L.	OAA	50	0.15				Class-A1 Amp.	110	- 7.5	110	4/11	49/50	10000	8200	-	2000	2.2	5045
50C6GT	Beam Power Amplifier	0.	7AC	50	0.15				Class-A, Amp.	135	-13.5	135	3.5/11.5	58/60	9300	7000	-	2000	3.6	50C6GT
50L6GT	Beam Power Amplifier	0.	7 AC	50	0.15				Class-A Amp.	110	-7.5	110	4/11	49/50	-	8200	82	2000	2.2	50L6GT
7047 GT	Diode-Beam Telrode	0.	8AB 1	70	0.15				Class-A Amp.	110	-7.5	110	3.0	40		5800	80	2500	1.5	70A7GT
70L7GT	Diode-Beam Talrode	0.	8AA	70	0.15				Class-A ${ }_{1}$ Amp.	110	-7.5	110	3/6	40/43	15000	7500		2000	1.8	70L7GT
$11717 \mathrm{GT} /$	Rectifler - Amplifler	0.	8 80	117	0.09				Class-A Amp.	105	- 5.2	105	4/5.5	43	17000	5300	-	4000	0.85	$\begin{array}{\|l\|} \hline 11717 \mathrm{GT} / \\ 117 \mathrm{M} 7 \mathrm{GY} \\ \hline \end{array}$
117N7GT	Rerlifler-Amplifier	0.	8AV	117	0.09				Class-A Amp.	100	- 8.0	100	5.0	51	16000	7000		3000	1.2	117N7GT
117P7GT	Rectinier-Amplifer	0.	8AV	117	0.09				Class-A Amp.	105	- 5.2	105	4/5.5	43	17000	5300		4000	0.85	117P7GT
1284	U,h,f. Pentode	0.	Fig. 4	12.6	0.15				Class-A Amp.	250	- 3.0	100	2.5	9.0	800000	2000		-		1284
1629	Electron-Ray Tube	0.	6RA	12.6	0.15				Indicator Tube				Characteristics same as 6E5-Tabla IV							1629
1631	Beam Power Amplifier	0.	7AC	12.6	0.45				Class-A Amp.				Characteristics same as 616-Table I							1631
1632	Beam Pawer Amplifior	0.	7AC	12.6	0.6				Class-A Amp.				Characterisfics same as 2516							1632
1633	Twin Triode	0.	8BD	25	0.15				Class-A Amp.				Characteristics same as 65N7GT-Table II							1633
1634	Twin Triode	0.	85	12.6	0.15				Class-A Amp.				Characteristics same as 65C7-Tablal							1634
1644	Twin Pentode	0.	Fig. 7	12.6	0.15				Class-A Amp.	180	- 9.0	180	2.8/4.6	13	160000	2150		10000	1.0	1644
XXD	Twin Triode	L.	8AC	12.6	0.15				Class-A Amp.	250	-10		-	9.0	-	2100	16		-	XXD
	Double Beam Power	L.	285	28.0	0.4		-	\square	Class-A2 Amp.	28	390**	$28:$	$0.7{ }^{\text {\% }}$	$9.0{ }^{2}$	-	-		4000:	0.082	28D7
2807	Amplifier	4.	285	28.0							180^{*}	$28{ }^{3}$	1.23	18.53	-	-		$6000 \cdot$	0.175	

* Cathode resistor-ohms.
16.3-volt pilot lamp must be connected between pins 6 and 7.
P.P. oporation-values for both sections, resisiance caupled

2 Per section (except heafer)-resistance coupled.

- Plata to plate.
*Each unit.
table X-special receiving tubes

Type	Name	Base	5ockat Connections	Fil. or Healer		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	5 creen Volis	5craen Currant Ma.	Plafe Current Ma.	PlateResistanceOhms	Transconductance Mieromhos	Amp. Factor		Powar Oulput Watts	Type
				Volts	Amps.	In	Out	PlateGrid												
00-A	Triode Defactor	M.	4D	5.0	0.25	3.2	2.0	8.50	Grid Leak Det.	45	-	-	-	1.5	30000	666	20	-	-	00-A
01.A	Triode Datector Amplifler	M.	4D	5.0	0.25				Class-A Amp.	135	-9.0	-		3.0	10000	800	8.0	-	-	01-A
$2 \mathrm{E32}$	5ub-miniature Pentode	1	-	1.25	0.05				Class-A Amp.	22.5	0	22.5	0.3	0.4	350000	500	-	-	-	2 E 32
									Class-A Amp.	22.5	0	22.5	0.07	0.27	220000	385		150000	0.0012	$2 E 36$
2 E 36	5ub-minialure Pentode	1	-	1.25	0.03				Class-A1 Amp.	45	-1.25	45	0.11	0.45	250000	500		100000	0.006	
$2 \mathrm{E42}$	5ub-miniafure Diode Pent.	1	-	1.25	0.03				Datector Amp.	22.5	0	22.5	0.12	0.35	250000	375	-	1 meg.	-	$2 \mathrm{E42}$
2G22	5ub-minintura Convertar	1	-	1.25	0.05				Converter	22.5	0	22.5	0.3	0.2	500000	60	-	-	-	$2 \mathrm{G22}$
				1.4	0.1	-			Class-A Triode	90	0	-	-	0.15	240000	275	65	-	--	3A8GT
3A8GT	Diode Triode Pentode	0.	8 85	2.8	0.05				Class-A Pentode	90	0	90	0.3	1.2	600000	750		-		3a,G
3B5GT	Beam Power Ampliners	0.	7 AP	$\begin{array}{\|l\|l\|} \hline 1.4 \\ 2.8 \end{array}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	\pm	-	-	Class-A Amp.	67.5	-7.0	67.5	$\begin{aligned} & 0.6 \\ & 0.5 \end{aligned}$	8.0	100000	$\begin{aligned} & 1650 \\ & 1500 \end{aligned}$	-	5000	$\begin{aligned} & 0.2 \\ & 0.18 \end{aligned}$	3B5GT

TABLE X-SPECIAL RECEIVING TUBES—Continued

table X-special receiving tubes-Continued

Type	Name	Base	Sockel Connecfions	Fil. or Heater		Capocitance $\mu \mu \mathrm{fd}$.			Uso	Plate Supply Volis	Grid Bias	$\begin{gathered} \text { Scraen } \\ \text { Volts } \end{gathered}$	Screan Current Ma.	Plato Current Ma.	Plote Resistance Ohms	Transconductance Micromhos	Amp. Faciar	Load Resistance Ohms	Powar Output Wafts	Type
				Volts	Amps.	In	Out	PlafeGrid												
EF-50	High Frequency Pentada Amplifler	L.	Fig. 14	6.3	0.3			-	I.F.-R.F. Amp.	250	150*	250	3.1	10	600000	6300	-	-	-	EF-50
$\begin{aligned} & \text { GL.2C44 } \\ & \text { GL-464A } \\ & \hline \end{aligned}$	U.h.f. Trioda	0.	Fig. 17	6.3	0.75			-	Class-A Amp. and Modulator	250	100*	-	-	25.0	-	7000	-	-	-	$\begin{aligned} & \text { GL-2C44 } \\ & \text { GL-464A } \end{aligned}$
$\begin{aligned} & \hline \text { GL-446A } \\ & \text { GL-446B } \end{aligned}$	U.h.f. Triode	0.	Fig. 19	6.3	0.75				Oscillator, Amp. or Converter	250	200*	-	-	15.0	-	4500	45	-	-	$\begin{aligned} & \text { GL-446A } \\ & \text { GL-446B } \\ & \hline \end{aligned}$
$\begin{aligned} & 559 \\ & \text { GL-559 } \end{aligned}$	U.h.f. Dioda	0.	Fig. 18	6.3	0.75				Defactor or trans. line switch	5.0	-	-	-	24.0	-	-	-	-	\square	$\begin{aligned} & 559 \\ & \text { GL-559 } \end{aligned}$
M54	Tatrode Power Amplifier	1	-	0.625	0.04				Class-A Amp.	30	0	30	0.06	0.5	130000	200	26	35000	0.005	M54
M64	Terrode Voltage Amplifier	1	-	0.625	0.02				Class-A Amp.	30	0		-	0.03	200000	110	25			M64
M74	Tatrode Voltage Amplifier	1	-	0.625	0.02		-		Class-A Amp.	30	0	7.0	0.01	0.02	500000	125	70	-		M74
M74	Twin Trioda				0.05				Convertars	90^{2}	0	-	-	$\begin{aligned} & 4.5^{3} \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 11200 \\ & 11200 \\ & \hline \end{aligned}$	$\begin{aligned} & 1300^{7} \\ & 1300^{9} \\ & \hline \end{aligned}$	14.52	-	-	XXB
XXB	Twin Trioda Frequancy Converter	L.	Fig. 9	$\begin{aligned} & 1.4 \\ & 3.28 \\ & 1.6 \end{aligned}$	$\underline{0}$						- 3	-	-	$1.4{ }^{7}$	$\begin{array}{r} 19000^{\circ} \\ 1900^{\circ} \\ \hline \end{array}$	$\begin{array}{r} 760^{3} \\ 760^{9} \\ \hline \end{array}$	14.5 *	-	-	
XXFM	Twin-Diode Triode	L.	Fig. 10	6.3	0.3			-	Special Detactor Amplifier	$250{ }^{8}$	- 1	-	-	1.9	6700	1500	100	-		XXFM
										100°	0	-	-	1.2	85000	1000	85	-		
										100^{3}	-	-	-	44	-	-				

* Cathode resistor ohms.

No base; tinne ${ }^{3}$ Both Sections. Diode plates (A.C. max. volts per plate).

Max. D.C. output.
Section Na. 2 racommended for h.f.o. - Dry battory operation.
: Section No. 1.
${ }^{3}$ Ampliflar plate.
${ }^{10}$ Same as X99. Type V99 is same,
but socket connections are 4 E .

TABLE XI-MINIATURE RECEIVING TUBES

Typa	Nams	Base	Sockat Connecfions	Fil. or Heatar		Capocitance $\mu \mu \mathrm{Fd}$.			Use	Plafe Supply Volts	Grid Bics	Screen Volis	Screen Current Ma.	Plafe Current Ma.	Plate Resisfance Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Outpui Watts	Type
				Volts	Amps.	In	Out	PlafeGrid												
143	H. F. Diode	B.	5AP	1.4	0.15				Defactor F.M. Discrim.	Max. a.c. volitage per plato-117. Max. output current-0.5 ma										143
114	R.F. Pentode Amplifier	B.	6AR	1.4	0.05	3.6	7.5	. 008	Class-A Amp.	90	0	90	2.0	4.5	350000	1025	d	-	-	114
IR 5	Pentagrid Converter	B.	7AT	1.4	0.05				Convorter	90	0	67.5	3.0	1.7	500000	300	Grid No. 1100000 ohms			IR5
154	Pentagrid Power Amp.	B.	7AV	1.4	0.1				Class-A Amp.	90	- 7.0	67.5	1.4	7.4	100000	1575		8000	0.270	154
155	Diode Pentoda	B.	6AU	1.4	0.05				Class-A Amp.	67.5	0	67.5	0.4	1.6	600000	625				155
									R-Coupled Amp.	90	0	90	Scroen rosistor 3 meg., grid 10 meg.					1 meg .	0.050	
174	Triple-Grid Variable μ	B.	6AR	1.4	0.05	3.6	7.5	0.01	Class-A Amp.	90	0	45	0.65	2.0	800000	750		-		174
$1{ }^{1} 4$	Pentade R.F. Amplifie:	B.	6AR	1.4	0.05	3.6	7.5	. 008	Class-A Amp.	90	0	90	0.45	1.6	1500000	900		-	-	104
145	Diode Pentode	B.	6BW	1.4	0.05				Class-A Amp.	67.5	0	67.5	0.4	1.6	600000	625			-	145
$3 A 4$	Pawer Amplifiar Penlode	B.	7BB	$\begin{aligned} & 1.4 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.2 \\ 0.1 \\ \hline \end{array}$	4.8	4.2	0.20	Class-A Amp.	$\begin{array}{r} 135 \\ 150 \\ \hline \end{array}$	$\begin{aligned} & -7.5 \\ & -8.4 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.2 \\ & \hline \end{aligned}$	$\begin{array}{r} 14.8 \\ 13.3 \\ \hline \end{array}$	$\begin{array}{r} 90000 \\ 100000 \\ \hline \end{array}$	1900	-	8000	$\begin{aligned} & 0.6 \\ & 0.7 \end{aligned}$	3A4
345	H.F. Twin Triade	B.	7 BC	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \end{aligned}$	0.9	1.0	3.20	Class-A Amp.	90	- 2.5	-	-	3.7	8300	1800	15	-	-	$3{ }^{\text {¢ }}$ A5
				1.4	0.1	Parallal Filaments			Class-A Amp.	90	- 4.5	90	2.1	9.5	100000	2150		10000	0.27	304
3Q4	Power Amplifiar Pentode	B.	7BA	2.8	0.05	Seri	Fila	ments					1.7	7.7	120000	2000			0.24	
				1.4	0.1	Parallel Filamonts			Class-A Amp.	90	- 7.0	67.5	1.4	7.4	100000	1575	-	8000	0.27	354
354	Power Amplifler Pentode	B.	7BA	2.8	0.05	Sarias Filaments							1.1	6.1		1425			0.235	
3V4	Pawer Ampliher Pantada	B.	6BX	1.4	0.1	Para	al Fil	aments	Class-A Amp.	90	- 4.5	90	2.1	9.5	100000	2150	-	10000	0.27	3V4
				2.8	0.05	Series Filaments			Closs-A Amp.	90	- 4.5	90	1.7	7.7	120000	2000		10000	0.24	

table Xi-miniature receiving tubes-Continued

table XII－CONTROL AND REGULATOR TUBES

Type	Name	Base	Socke！ Connec－ fions	Cathode	Fil．or Heater		Usa	Peak Anade Voltage	Max． Anode Ma．	Minimum Supply Volfage	Oparafing Voltage	Operating Ma．	Grid Resistor	Tube Vollage Drop	Type	
					Volts	Amps．										
OA2	Voltage Regulafar	7－pin B．	580	Cold	\square	－	Voltage Regutator	－	－	185	150	5－30	－	－	0 A2	
$\bigcirc 82$	Valtage Requiator	7－pin B．	5BO	Cold			Voltage Regulator	－	－	133	108	5－30	－		OB2	
OA4G	Gas Triode Starter－Anode Type	6－pin 0.	4V	Cold	－	－	Cold－Cathode Starter－A noda Relay Tube	With 105－120－vall a．c．anode supply，peak starter－anode a．c．voltage is 70， peak r．f．volfage 55．Peak D．C． $\mathrm{ma}=100$ ．Average D．C． $\mathrm{ma}=25$							OA4G	
1847	Voltage Regulatar	7－pin B．	－		\square	－	Voltage Regulator	－	－	225	82	$\mathbf{1 - 2}$	D．c．ma＝2	－	$1 \mathrm{B47}$	
$1 \mathrm{C21}$	Gas Triade Glow－Discharge Type	6－pin 0.	4V	Cold	－	－	Relay Tube	125－145	25	66%	－		－	73	$1 \mathrm{C21}$	
2A4G	Gas Triode Grid Type	7－pin 0.	55	Fil．	2.5		Vallage Regulator		0.16	180.				55		
$2 \mathrm{B4}$	Gas Triode Grid Type	8－pin 0.	60	Hit．	2.5	2.5	Sweep Circuit Oscillator	300	300	－		－	－	15	2A4G	
605G		5－pin M．	5A	Htr．	2.5	1.4					－	1.0	0．1－10－	19	284	
2 C 4	Gas Triode	7－pin B．	－	Fil．	2.5	－	Control Tube	Plate volts $=350$ ；Grid valts $=-50 ;$ Avg．Ma．$=5$ ；Peak Ma．$=20$ ；Volfage drop $=16$.							6， 2 C4	
2 D 21	Gas Tetrada	7－pin B．	7BN	Htr．	6.3	0.6	Grid－Controlled Ractifler	650	500	－	650	100	0．1－10	8	2D21	
							Relay Tubr	400	－	－	－		1．0：			
$3 \mathrm{C23}$	Gas and Mercury Vapor Grid Type	4－pin M．	3G	Fil．	2.5	7.0	Grid－Controlled Rectifier	1000	6000	－	500	1500	－4．5 ${ }^{\text {5 }}$	15	3 C 23	
6 60	Gas Triade	7－pin B．	5 AY	Htr．	6.3	0.25	Contral Tube	Plate volts $=350$ ；Grid volis $=-50 ;$ Avg．Ma．$=25 ;$ Peak Ma．$=100$ ；Voltage drop $=16$.								
17	Marcury Vapor Triodo	4－pin M．	3G	Fil．	2.5	5.0	Grid－Controlled Rectifier	7500：		2000	－	－	500	200－3000	－	17
								2500	-5^{3}		1000	250	200－3000	10－24		
874	Vollage Regulator	4－pin M．	45	\square	－	－	Voltage Ragulator	－	－	125	90	10－50	－	－	874	
876	Current Reģulator	Mogul				－	Current Regulator	－	二	－	40－60	1.7		－	876	
884	Gas Triode Grid Type	6－pin 0.	60	Hif．	6.3	0.6	Sween Circuit Oscillator	300	300	－	－	2	25000	－	884	
885							Grid－Cantrolled Rectifier	350	300	－	－	75	25000	－		
886	Current Regulator	$\frac{5-p i n ~ S . ~}{\text { Mogul }}$	5 A	Hir．	2.5	1.4	Same as Type 884		Characteristics samo as Type 884						885	
967	Mercury Vapor Triode	4－pin M．	3G	Fil．	2.5	5.0	Current Regulator		－	－	40－60	2.05	－	－	886	
991	Voltage Regulator	Bayonot	－	－	－		Voltage Regulator			87				10－24	967	
1265	Voltage Regulator	6－pin	－－		－	－	Vollage Regulator	－	－	130	90	5－30	－	ーー	991	
1266	Voltage Regulator	6－pin 0.	4AJ	Cold	－	－	Voltage Regulator			130	70	5－40	－	－	1266	
1267	Gas Trioda	6 －pin 0.	4 V	Cold	－		Relay Tube		Charactaristics same as OA4G						1267	
2050	Gas Tetrode	8 －pin 0.	8BA	Hir．	6.3	0.6	Grid－Controlled Ractifier	650	500	－	－－	100	0．1－10 ${ }^{7}$	8	2050	
2051	Gas Tefrode	8 －pin 0.	8BA	Htr．	6.3	0.6	Grid－Cantrollad Rectifier	350	375		－	75	$0.1-10^{7}$	14	2051	
$\begin{aligned} & 2523 \mathrm{NI/} \\ & 128 \mathrm{AS} \\ & \hline \end{aligned}$	Gus Triode Grid Type	5－pin M．	5 A	Htr．	2.5	1.75	Relay Tube	400	300	－	－	1.0	300：	13	$\begin{aligned} & \text { 2523NI/ } \\ & 128 \mathrm{AS} \end{aligned}$	
KY21	Gas Triode Grid Type	4－pin M．		Fil．	2.5	10.0	Grid－Conirolled Rectiflar	－	－	－	3000	500			KY21	
RK62	Gas Triode Grid Type	4－pin 5.	4D	Fil．	1.4	0.05	Relay Tube	45	1.5	－	30－45	0．1－1．5	－	15	RK62	
RM208	Parmatron	4－pin M．	－	Fil．	2.5	5.0	Controlled Rectifier 1	7500：	1000	－	－	－	－	15	RM208	
RM209	Permatran	4－pin M．	－	Fil．	5.0	10.0	Controlled Rectifier＇	7500：	5000	－	－	－	－	15	RM209	
OA3／VR75	Voltage Regulator	6－pin O．	4AJ	Cold	－	－	Voltage Regulator	－	－	105	75	5－40	，ーー	－	OA3／VR75	
OB3／VR90	Voltaqe Regulator	6 －pin 0.	4AJ	Cold	－	－	Voltage Regulator	－		125	90	5－40		－	OB3／VR90	
OC3／VR105	Voltage Regulator	6－pin 0 ．	4AJ	Cold	－	－	Voltage Regulator	－	－	135	105	5－40	一－	－	OC3／VR105	
OD3／VR150	Voltage Regulatar	6－pin O	4AJ	Cold	－ 2		Voltage Regulator	－	－	185	150	5－40	－	一－	OD3／VR150	
KY866	Morcury Vapor Iriodo	4－pin M．	Fig． 8	Fil．	2.5	5.0	Grid－Controlled Rectifier	10000	1000	0－150	－	－	－	－	KY866	
${ }^{1}$ For use os grid－controlled rectifier or with axternal magnetic control．RM－208 has charactaristics of 866，RM－209 of 872.					${ }^{2}$ When under control peak inverse rating is reduced to 2500. ${ }^{3}$ A1 1000 anode volls．					${ }^{4}$ Grid tied to plato． ${ }^{6}$ Peak inverse volinge．		6 Grid． ${ }^{3}$ Megohms．		${ }^{8}$ Grid voltage．		

TABLE XIII-CATHODE-RAY TUBES AND KINESCOPES

Type	Name	Socket Connec fions	Heater		Use	Sixo	Anode No. 2 Volfage	Anode No. 1 Vallage	Cut-Off Grid Voltage	Grid No. 2 Voliago	SignalSwing Voltago		Screen Inpui Power:	Defloction Sensitivily ${ }^{6}$		Anode No. 3 Voltage	Paltern Color	Typo
			Volts	Amps.										$\mathrm{D}_{1} \mathrm{D}=$	$\mathrm{D}_{5} \mathrm{D}_{\mathrm{i}}$			
2AP 1	Electrostatic Cathode-Ray	118	6.3	0.6	Oscillograph Television	2'	1000	250	-60	-	二-	680		0.11	0.13		Groen	2AP 1
							500	125	- 30					0.22	0.26			
$\begin{aligned} & \text { 3AP 1/ } \\ & 906 .{ }^{2} 1- \\ & 4.5 .11 \end{aligned}$	Electrastalic Cathode-Ray	7AN	2.5	2.1	Oscillograph	3"	1500	430	- 50			550	10	0.22	0.23			$\begin{aligned} & \text { 3AP1/ } \\ & 306-P 1-1 \\ & 4-5-11 \end{aligned}$
							1000	285	- 33	.	-			0.33	0.35			
							600	170	- 20		-			0.55	0.58			
$\begin{aligned} & \text { 3BP1- } \\ & 4-11 \end{aligned}$	Electrostatic Cathoda-Ray	14A	6.3	0.6	Oscillograph	3"	2000	575	- 60	-	-	550	-	0.13	0.17		Green	$\begin{aligned} & \text { 38P1. } \\ & 4-11 \end{aligned}$
							1500	430	- 45		-			0.17	0.23			
3DP 1	Electrostatic Cathode-Ray	Fig. 49	6.3	0.6	Oscillograph	3'	2000	575	- 60	-	-	550		200^{3}	1483		Green	3DP 1
							1500	430	- 40	-				1503	111^{3}	-		
$\begin{aligned} & \text { 3EP } 1 / \\ & \text { 1806-P } 1 \end{aligned}$	Electrostafic Cathode-Ray	11A	6.3	0.6	Oscillograph Television	3"	2000	575	- 60	-	-	550	-	0.115	0.154	-	Green	$\begin{aligned} & \text { 3EP 1/ } \\ & 1806-\mathrm{P} 1 \end{aligned}$
							1500	430	- 45	-				0.153	0.205			
$\begin{aligned} & \text { 3GP1- } \\ & 4-5-11 \end{aligned}$	Electrostatic Cathode-Ray	11 A	6.3	0,6	Oscillograph	3"	1500	350	- 50	-	-	550	$-$	0.21	0.24	-	Whito Graen Blue	$\begin{aligned} & 3 G P 1-1 \\ & 4-5-11 \end{aligned}$
							1000	234	- 33					0.32	0.36			
$\begin{aligned} & \text { 3JP 1- } \\ & \text { 2-4-1 } \end{aligned}$	Electraslatic Cathode-Ray	14B	6.3	0.6	Oscillograph	3"	2000	575	- 60	--		550	-	0.13	0.17	4000	Green Blue White	$\begin{aligned} & \text { 3JP } 1-1 \\ & 2-4-11 \end{aligned}$
							1500	430	- 45					0.17	0.23	3000		
3KP1	Electrostatic Cathode-Ray	11 M	6.3	0.6	Oscillograph	3"	1000	300	-45	1000		500	-	68 *	$136{ }^{3}$		Green	3KP 1
							2000	600	- 90	2000				52^{3}	1043			
$\begin{aligned} & 5 A P 1 / \\ & 1805-\mathrm{P} 1 \\ & 5 A P 4 / \\ & 1805-\mathrm{PA} \end{aligned}$	Electrostatic Picture Tube	11 A	6.3	0.6	Osrillograph Television	5"	2000	575	- 35			500	10	0.17	0.21	-	Green White	$\begin{aligned} & \hline 5 A P 1 / \\ & 1805-\mathrm{P} 1 \\ & 5 A \mathrm{~A}^{\prime} \\ & 1 \mathrm{BO5}-\mathrm{P} 4 \\ & \hline \end{aligned}$
							1500	430	- 27					0.23	0.28	-		
$\begin{aligned} & \text { 5BP1/ } \\ & 1802-\mathrm{P1} 1- \\ & 2-4-5-11 \end{aligned}$	Electroslatic Picture Tube	114	6.3	0.6	Oscillograph	5"	2000	450	-40	-	-	500	10	0.3	0.33	-	Green -Whita Blue	$\begin{aligned} & \text { 5BP1/ } \\ & 1802-\mathrm{P} 1- \\ & 2-4-5-11 \end{aligned}$
							1500	337	- 30		-			0.4	0.45			
$\begin{aligned} & 5 \text { CP 1- } \\ & 2-4-5-11 \end{aligned}$	Electroslatic Cathode-Ray	14B	6.3	0.6	Oscillograph Tolevision	5"	2000	575	- 60	-	-	550	-	0.28	0.32	4000	White Green Blue	$\begin{aligned} & 5 \mathrm{CP} 1-1 \\ & 2-4-5-11 \end{aligned}$
							1500	430	- 45	-	-		-	0.37	0.43	3000		
							2000	575	- 60				$\bar{\square}$	0.36	0.41	2000		
$\begin{aligned} & \text { SFP 1- } \\ & 2-4-11 \end{aligned}$	Electromagnefic Cathode-Ray	5AN	6.3	0.6	Oscillograph Television	5'	7000	250	- 45				-	-	-		Green	
							4000	250	- 45				-	-	-		White Blue	2-4-11
5HP1	Electrastatic Cathode-Ray	11A	6.3	0.6	Oscillograph	5"	2000	425	- 40			500		0.3	0.33	-		
5HP4	Electrostain Carhode-Ray	11A	6.3	0.6	Oscilograph		1500	310	- 30			soo		0.4	0.44	-	White	5HP4
$\begin{aligned} & \text { 5JP1- } \\ & \text { 2-4-5-11 } \end{aligned}$	Electrastatic Cathode-Ray	11E	6.3	0.6	Oscillograph	5'	2000	520	- 75	-	-	500	-	0.25	0.28	4000		5.JP1.
							1500	390	- 56	-	-		-	0.33	0.37	3000	Blue	2-4-5-11
$\begin{aligned} & 5(P 1 . \\ & 2-4.5 .11 \end{aligned}$	Electrostatic Cathode-Ray	11F	6.3	0.6	Oscillograph Television	5"	2000	500	- 60	-	\cdots	500	-	0.25	0.28	4000	White Green Blue	$\begin{array}{\|l\|} \text { 5LP } 1- \\ 2-4-5-11 \end{array}$
							1500	375	- 45	-	-		-	0.33	0.37	3000		
							1000	250	- 30	-	-			0.49	0.56	2000		
$\begin{aligned} & \text { 5MP1 } \\ & 4-5-11 \end{aligned}$	Electrostatic Cathode-Ray	7AN	2.5	2.1			1500	375	- 50	-	-		-	0.39	0.42			5MPI-
					Oscillograph	,	1000	250	- 33	-	-	660	-	0.58	0.64			4-5-11
	Elactrostatic Cathaderay	Fig 34	6.3	0.6			3000	-	- 90	-	-	00	\cdots	0.12	0.12	15000		
2-4-11	Electrostanic Cathoda-Ray	Fig. 34	6.3	0.6	Oscillograph	5	2000	575	-60	-	-	1200	-	0.18	0.18	10000	Dlue	2-4-11
STP4	Proiectian Kinescope	Fiq. 46	6.3	0.6	Television	5"	27000	4900	- 70	200	-	-	-	-	-	-	White	5TP4
7 AP4	Elactramagnelic Pieture Tube	5AJ	2.5	2.1	Television	$7 \prime$	3500	1000	-67.5		-	-	2.5	-		-	White	7 AP4
7BP1-	Electromagnetic Cathode-R	5AN	6.3	0.6	Oscillograph	7"	7000	250	- 45		-					-	White	7BPI-
2-4-11	Elactromagna Cahoda-Ray				Television		4000	250	- 45	-	-						Blue	2-4-11

table Xill－CATHODE－RAY tUBES AND KINESCOPES－Continued

Type	Name	5ocket Connec－ tions	Heater		Use	Size	Anode No． 2 Voltage	Anode No． 1 Volfoge	Cul－Off Grid Voltage	Grid No． 2 Voltage	Signol－ 5wing Voltoge	Max． Input Vollage ${ }^{1}$	5 creen Input Power＊	Deflection 5onsitivity ${ }^{6}$		Anode No． 3 Volfage	Patiern Color	Type
			Volts	Amps．										$D_{1} \mathrm{D}_{2}$	$\mathrm{D}_{3} \mathrm{D}_{4}$			
$\begin{aligned} & 7 \mathrm{CP} 1 / \\ & 1811-\mathrm{P} 1 \end{aligned}$	Electromagnetic Cathode－Ray	6AZ	6.3	0.6	Oscillograph	7＂	7000	1470	－45	250	－			\square	－	－	Green	$\begin{aligned} & \text { 7CP1// } \\ & 1811-\mathrm{P} 1 \end{aligned}$
							4000	840	－45	250	－							
7DP4	Kinescope	Fig． 46	6.3	0.6	Television	7＇：	6000	1430	－ 45	250	－	－	－				White	7DP4
7GP4	Electrostatic Kinescope	Fig． 47	6.3	0.6	Television	$7{ }^{\prime \prime}$	3000	1200	－ 84	3000			－	$123{ }^{3}$	1023	－	White	7 GP 4
9AP4／	Elactromagnetic Picfure Tube	6AL	2.5	2.1	Television	$9 \prime$	7000	1425	－ 40	250	25	－	10	－		—	White	$\begin{aligned} & \text { 9AP4/ } \\ & 1804-\mathrm{P} 4 \\ & \hline \end{aligned}$
$9 \mathrm{CP4}$	Electromagnetic Picture Tube	4AF	2.5	2.1	Television	$9{ }^{\prime \prime}$	7000	－	－110	－	25		10				White	$9 \mathrm{CP4}$
9JP1/	Electrostatic－Magnatic Cathode－Ray	8BR	2.5	2.1	Oscillograph	9＇	5000	1570 785	-90 -45	－	－	3000	－	0.136 0.272		－	Green	$\begin{aligned} & 9 \mathrm{JP} 1 / \\ & 1809 . \mathrm{P} 1 \end{aligned}$
$108 P 4$	Magnetic Kinescope	Fig． 48	6.3	0.6	Television	10＂		9000	－ 45	250						\cdots	\cdots	10BP4
12AP4／	Electromagnetic Picture Tube	6AL	2.5	2.1	Telovision	12＂	7000	1460	－ 75	250	25	－	10	－	－	－	While	$\begin{aligned} & 12 A P 4 / \\ & 1803-P 4 \end{aligned}$
$1803-\mathrm{P4}$							6000	1240										
$12 \mathrm{CP4}$	Electramagnetic Picture Tube	4AF	2.5	2.1	Television	12＂	7000		－110	－	25		10	－	－	－	White	12CP4
	Electromagnetic Cathode－Ray	5 AN	6.3	0.6	Television	12＇	7000	250	－ 45	－						－	White	12DP4
12DP4							4000	250	－ 45	－	－	－	－	－	－			
902	Electrostatic Cathode－Ray	Fig． 1	6.3	0.6	Oscillograph	$2^{\prime \prime}$	600	150	－ 60	－	ーー	350	5	0.19	0.22	－	Green	902
$903{ }^{5}$	Elactromagnetic Cathode－Ray	6AL	2.5	2.1	Oscillograph	$9{ }^{\prime \prime}$	7000	1360	－120	250	－	－	10	－	－	－	Green	903
904	Electrostatic－Magnelic Cathode－Ray	Fig． 3	2.5	2.1	Oscillograph	$5^{\prime \prime}$	4600	970	－ 75	250	－－	4000	10	0.09			Green	904
905	Electrostatic Cathoda－Ray	Fig． 6	2.5	2.1	Oscillograph	$5^{\prime \prime}$	2000	450	35	－	－	1000	10	0.19	0.23	－	Green	905
907	Electrostatic Cathode－Ray	Fig． 6	2.5	2.1	Oscillogragh	$5^{\prime \prime}$	Characleristics same as Type 905									－	Blue	907
908	Electrostatic Cathode－Ray	7AN	2.5	2.1	Oscillograph	$3^{\prime \prime}$	Characteristics same as Type 3AP1／906P1							－			Blue	908
9095	Electrostatic Cathode－Ray	Fig． 6	2.5	2.1	Oscillograph	5＂	Characteristics same os Type 905							\cdots		－	Blue	909
910^{5}	Electrostatic Cathode－Ray	TAN	2.5	2.1	Oscillograph	$3^{\prime \prime}$	Characleristics same as Type 3AP1／906P1							－	－	\cdots	Blue	910
9115	Electrostatic Cathode－Ray	7AN	2.5	2.1	Oscillograph	$3^{\prime \prime}$	Characteristics same as Type 3AP1／906P1							－	－		Green	911
912	Electrostatic Cathode－Ray	Fig． 8	2.5	2.1	Oscillograph	$5^{\prime \prime}$	10000	2000	－ 66	250	－	7000	10	0.041	0.051	－	Green	912
913	Electrostatic Cathode－Ray	Fig． 1	6.3	0.6	Oscillograph	$1 \prime$	500	100	－ 65		－	250	5	0.07	0.10	－	Groen	913
914	Electrostatic Cathode－Ray	Fig． 12	2.5	2.1	Oscillagraph	$9{ }^{\prime \prime}$	7000	1450	－ 50	250	－－	3000	10	0.073	0.093	－	Green	914
1800^{5}	Electromagnetic Kinescope	SAL	2.5	2.1	Television	$9{ }^{\prime \prime}$	6000	1250	－ 75	250	25	\cdots	10	－	－	－	Yellow	1800
18018	Electromagnetic Kinescope	Fig． 13	2.5	2.1	Television	$5{ }^{\prime \prime}$	3000	450	－ 35	－	20	－	10	－	－	ーー	Yellow	1801
2001	Electrastatic Cathode－Ray	Fig． 2	6.3	0.6	Oscillograph	$1^{\prime \prime}$				Ch	acteristics	ossentiall	same as	913				2001
2002	Electrostatic Cathode－Ray	Fig． 1	6.3	0.6	Oscillograph	$2{ }^{\prime \prime}$	600	120	－	－	－	－	－	0.16	0.17	－	Graen	2002
2005	Electrostatic Cathode－Ray	Fig． 14	2.5	2.1	Television	$5^{\prime \prime}$	2000	1000	－ 35	200	－	－	10	0.5	0.56	－	－	2005
24－XH	Electrostatic Cathoderay	Fig． 1	6.3	0.6	Oscilloscope	2＇	600	120	－60	\cdots	－	－	10	0.14	0.16	－	Blus	24－XH

${ }^{1}$ Between Anode No． 2 and any deflecting plate．
${ }^{2}$ In mw．／sq．cm．，max．
${ }^{3}$ D．C．Volts／in．
${ }^{4}$ Calhode connected to pin 7.
${ }^{\circ}$ Discontinued．
${ }^{6}$ In mm．／volt d．c．

TABLE XIV－RECTIFIERS—RECEIVING AND TRANSMITTING
See also Table XI－Control and Regulator Tubes

Type No．	Name	Base	Sacket Connec－ fions	Cathode	Fil．ar Heater		Max． A．C． Volfage Per Plefe	D．C． Currant Ma．	Max． Inverse Peak Voltage	Pagk Plate Curren！ Ma	Type
					Valts	Amps．					
BA	Full－Wave Rectifier	4－pin M．	4J	Cold	－	－	350	350	Tube dr	80 v ．	G
BH	Full－Wave Rectifier	4－pin M．	4J	Cold	－	－	350	125	Tube drop	$p 90 \mathrm{v}$ ．	G
BR	Holf－Wave Ractifier	4－pln M．	4H	Cold	－		300	50	Tube dro	p 60 v ．	G
CE－220	Half－Wave Rectifler	4－pin M．	4P	Fil．	2.5	3.0		20	20000	100	HV
OY4	Half－Wave Ractifer	5－pin 0.	4BU	Cold	$\begin{gathered} \text { Cenne } \\ 7 \end{gathered}$	ct Pins nd 8	95	75	300	500	G
074	Full－Wave Rectifier	5－pin 0	4R	Cold			350	30－75	1250	200	G
1	Half－Wave Rectifler	4－pin S．	4G	Hir．	6.3	0.3	350	50	1000	400	MV
1－V	Half－Wave Rectifier	4－pin S．	4G	Hir．	6.3	0.3	350	50	－		HV
1848	Half－Wave Rectifler	7－pin B．		Cold			800	6	2700	50	G
122	Half－Wave Rectifler	7－pin B．	7CB	Fil．	1.5	0.3	7800	2	20000	10	HV
2V3G	Half－Wave Rectifier	6－pin 0.	4AC	Fil．	2.5	5.0		2.0	16500	12	HV
2W3	Half－Wave Rectifler	5－pin 0.	4X	Fil．	2.5	1.5	350	55			HV
2X2／879	Half－Wave Rectifier	4－pin M．	4AB	Fil．	2.5	1.75	4500	7.5			HV
$2 Y 2$	Half－Wave Rectifler	4－pin M．	4AB	Fil．	2.5	1.75	4400	5.0		－	HV
222／G84	Half－Wave Rectifler	4－pin M．	4B	Fil．	2.5	1.5	350	50	－	－	HV
3824	Half－Wave Rectifler	4－ріп M．	T－4A	Fil．	$\begin{aligned} & 5.0 \\ & 2.59 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	——	$\begin{aligned} & 60 \\ & 30 \end{aligned}$	$\begin{aligned} & 20000 \\ & 20000 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \\ & \hline \end{aligned}$	HV
$3 \mathrm{B25}$	Half－Wove Ractifler	4－pin M．	4P	Fil．	2.5	5.0		500	4500	2000	G
$3 \mathrm{B26}$	Half－Wave Rectifor	8 －pin 0.	Fig． 31	Hir．	2.5	4.75	－	20	15000	8000	HV
DR－3B27	Half－Wove Rectifier	4－pin M．	4B	Fil．	2.5	5.0	3000	250	8500	1000	HV
5R4GY	Full－Wave Rectifier	5 －pin 0.	51	Fil．	5.0	2.0	$\begin{aligned} & 900^{4} \\ & 950^{7} \end{aligned}$	$\begin{aligned} & 1504 \\ & 175 \text {, } \end{aligned}$	2800	650	HV
514	Full－Wave Rectifler	5－pin 0.	51	Fil，	5.0	3.0	450	250	1250	800	HV
5U4G	Full－Wave Rectifler	8 －pin 0.	51	Fil．	5.0	3.0	Same as Type 573				HV
5V4G	Full－Wave Rectifior	8 －pin 0.	51	Hir．	5.0	2.0	Same as Type 83V				HV
5W4	Full－Wave Rectifier	5－pin 0.	51	Fil．	5.0	1.5	350	110	1000	－	HV
5×3	Full－Wave Rectifler	4－pin M．	4 C	Fil．	5.0	2.0	1275	30	－	－	HV
5X4G	Full－Wave Rectifler	8－pin 0.	50	Fil．	5.0	3.0	Same as 5Z3				HV
$5 \mathrm{5Y3G}$	Full－Wave Rectifier	5－pin 0.	51	Fil．	5.0	2.0	Same as Type 80				HV
5 Y 4 G	Full－Wave Rectifler	8 －pin 0.	50	Fil．	5.0	2.0	Sáme as Type 80				HV
523	Full－Wave Rectifier	4－pin M．	4C	Fil．	5.0	3.0	500	250	1400	－	HV
524	Full－Wave Raclifier	5 －pin 0.	51	Hir．	5.0	2.0	400	125	1100	－	HV
6W5G	Full－Wave Rectifler	6－pin 0.	65	Htr．	6.3	0.9	350	100	1250	350	HV
6×4	Full－Wave Ractifier	7－pin B．	Fig． 39	Hir．	6.3	0.6	325	70	1250	210	HV
6×5	Full－Wava Rectifler	6－pin 0.	65	Hir．	6.3	0.5	350	75	－	－	HV
6 Y5	Full－Wave Rectifler	6－pin S．	$6 J$	Htr．	6.3	0.8	350	50	－	－	HV
$6 \mathrm{Z3}$	Half－Wave Rectifier	4－pin M．	4G	Fil．	6.3	0.3	350	50	－	－	HV
675	Full－Wave Rectifier	6－pin S．	6 K	Hir．	6.3	0.6	230	60	－	－	HV
67 Y 5 G	Full－Wave Rectifier	6－pin 0 ．	65	Hh．	6.3	0.3	350	35	1000	150	HV
7Y4	Full－Wave Reclifier	8 －pin L．	5AB	Hit．	6.3	0.5	350	60	－	一一	HV
774	Full－Wave Ractiflar	8－pin L．	5AB	Hir．	6.3	0.9	$\begin{aligned} & 4501 \\ & 325 \end{aligned}$	100	1250	300	HV
12 A 7	Rectifler－Pentode	7－pin S．	7K	Hir．	12.6	0.3	125	30	－－	\square	HV
1223	Half－Wave Raclifier	4－pin 5.	4G	Mir．	12.6	0.3	250	60	\cdots	－	HV
$\underline{1275}$	Voltage Doublar	7－pin M．	7 L	Hir．	12.6	0.3	225	60		一一	HV
14 Y 4	Full－Wave Rectifier	8 －pin L．	5AB	Hip．	12.6	0.3	$\begin{aligned} & 4501 \\ & 325: \\ & \hline \end{aligned}$	70	1250	210	HV
1423	Half－Wave Rectifier	4－pin 5.	4G	Htr．	12.6	0.3	250	60	－	－	HV
2547 G	Rectiflar－Pentode	8－pin 0 ．	8 F	Hir．	25	0.3	125	75	－	－	HV
25X6GT	Voltage Daubler	7－pin 0.	70	Hir．	25	0.15	125	60	－	－	HV
25Y4GT	Half－Wave Ractifier	6－pin 0.	5AA	Hip．	25	0.15	125	75	－	－	HV
25 Y5	Voltage Doubler	6 －pin S ．	6E	Hir．	25	0.3	250	85	－	一－	HV
2523	Half－Wave Rectifier	4－pin S．	4G	Hir．	25	0.3	250	50	－	－	HV
2574	Half－Wave Rectifier	6－pin 0.	5AA	Hir．	25	0.3	125	125	－	－	HV
2575	Rectifier－Doubler	6 －pin S．	6E	Hir．	25	0.3	125	100	一－	500	HV
2576	Rectifler－Doublar	7 －pin 0.	79	Hir．	25	0.3	125	100	－	500	HV
2825	Full－Wave Rectifier	8－pin L．	5 AB	Hir．	28	0.24	$\begin{aligned} & 450 \\ & 325 \end{aligned}$	100	－	300	HV
32L7GT	Rectifler－Tetrode	8－pin 0.	82	Hir．	32.5	0.3	125	60	二ー	－	HV
35W4	Half－Wave Ractifier	7－pin B．	589	Hir．	352	0.15	125	$100^{\text {R }}$	330	800	HV
$35 Y 4$	Half－Wave Rectifier	8 －pin 0.	5AL	Hir．	35：	0.15	235	$\begin{gathered} 60 \\ 100 \mathrm{~s} \end{gathered}$	700	600	HV
3573	Half－Wave Rectifier	8 －pin L ．	47	Mir．	35	0.15	250 ：	100	700	600	HV
35Z4GT	Half－Wave Rectifier	6－pin 0.	5AA	Hir．	35	0.15	250	100	700	600	HV
3575 G	Half－Wave Rectifier	$6 . p i n 0$.	6AD	Hir．	35：	0.15	125	$\begin{gathered} 60 \\ 100 \\ \hline \end{gathered}$	－＿－	－	HV
35Z6G	Voltage Doubler	6－pin 0.	70	Hir．	35	0.3	125	110	－	500	HV
40Z5GT	Half－Wave Rectifier	6－pin 0.	6AD	Htr．	40^{2}	0.15	125	$\begin{gathered} 60 \\ 100^{8} \\ \hline \end{gathered}$	－	－	HV
4573	Half－Wave Rectifler	7－pin B．	5AM	Hir．	45	0.075	117	65	350	390	HV

TABLE XIV—RECTIFIERS—RECEIVING AND TRAN5MITTING—Confinued

See also Table XI-Conirol and Regulafor Tubes

Type No.	Name	Base	Socket Connec thons	Cathoda	Fil. or Heater		Max. A.C. Voltage Per Plate	D.C. Outpuf Current Ma.	Max. Inverse Peak Voliage	Peak Plate Curpent Ma.	Type
					Volts	Amps.					
45Z5GT	Half-Wave Rectifler	6-pin 0.	6AD	Hr.	452	0.15	125	$\begin{gathered} 60 \\ 1008 \end{gathered}$	-	-	HV
50Y6GT	Full-Wave Rectifler	7 -pin 0.	70	Hir.	50	0.15	125	85			HV
50Z6G	Voltage Doubler	7-pin 0.	70	Hir.	50	0.3	125	150			HV
5027G	Voltage Doubler	$8 \cdot \mathrm{pin} 0$.	8AN	Hir.	50	0.15	117	65			HV
70A7GT	Rectifler-Tetrode	8-pin 0.	8AB	Hir.	70	0.15	125	60	-	-	HV
70L7GT	Rectifler-Tetrode	8-pin 0.	BAA	Hfr.	70	0.15	117	70		350	HV
72	Half-Wave Rectifer	4-pin M.	4P	Fil.	2.5	3.0		30	20000	150	HV
73	Half-Wave Rectifler	8-pin 0.	4Y	Fil.	2.5	4.5		20	13000	3000	HV
80	Full-Wave Rectifer	4-pin M.	4 C	FiI.	5.0	2.0	$\begin{aligned} & 3504 \\ & 500 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	1400	375	HV
81	Half-Wave Rectifler	4-pin M.	48	Fil.	7.5	1.25	700	85	-	-	HV
82	Full-Wave Reclifler	4-pin M.	4C	Fil.	2.5	3.0	500	125	1400	400	MV
83	Full-Wave Reclifler	4-pin M.	4C	Fil.	5.0	3.0	500	250	1100	800	MV
83-V	Full-Wave Rectifler	4-pin M.	4AD	Hir.	5.0	2.0	400	200	1100		HV
84/6Z4	Fuli-Wave Ractifler	5-pin S.	5D	Hir.	6.3	0.5	350	60	1000	-	HV
$\begin{aligned} & 117 \mathrm{LGT} / \\ & 117 \mathrm{M} 7 \mathrm{GT} \end{aligned}$	Rectiflar-Tetrode	8 -pin 0.	8AO	Hir.	117	0.09	117	75	-	-	HV
117N7GT	Rectifler-Tatrode	8-pin 0.	8 AV	Hir.	117	0.09	117	75	350	450	HV
117P7GT	Rectifier-Tatrode	8 -pin 0.	8 AV	Hir.	117	0.09	117	75	350	450	HV
11723	Half-Wave Rectifler	7-pin B.	4BR	Hir.	117	0.04	117	90	330	-	HV
11724GT	Half-Wava Rectifler	6-pin 0.	5AA	Hir.	117	0.04	117	90	350	-	HV
11726GT	Voliage Daubler	7-pin 0.	70	Hir.	117	0.075	235	60	700	360	HV
217-A	Half-Wave Rectifier	4-pin J.	T-3A	Fil.	10	3.25			3500	600	HV
217-C	Half-Wave Rectifler	4-pin J.	T-3A	Fil.	10	3.25		-	7500	600	HV
$\mathbf{Z 2 2 5}$	Hall-Wave Rectifar	4-pin M.	4P	Fil.	2.5	5.0	-	250	10000	1000	MV
249-B	Half-Wave Rectifier	4-pin M.	Fig. 53	Fil.	2.5	7.5	3180	375	10000	1500	MV
HK253	Half-Wave Rectifler	4-pin J.	T-3A	Fil.	5.0	10		350	10000	1500	HV
$\begin{aligned} & \text { 705A } \\ & \text { RK-705A } \\ & \hline \end{aligned}$	Half-Wave Rectifler	4 -pin W.	T-3AA	Fil.	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	-	$\begin{array}{r} 50 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 35000 \\ 35000 \end{array}$	$\begin{array}{r} 375 \\ 750 \\ \hline \end{array}$	HV
816	Half-Wava Rectifler	4-pin S.	4P	Fil.	2.5	2.0	1750	125	5000	500	MV
836	Half-Wave Reclifler	4-pin M.	4P	Hir.	2.5	5.0			5000	1000	HV
8664/866	Half-Wave Rectifler	4-pin M.	4P	Fil.	2.5	5.0	3500	250	10000	1000	MV
866B	Half-Wave Reclifler	4-pin M.	4P	Fil.	5.0	5.0		-	8500	1000	MV
866 Jr.	Half-Wave Rectifler	4-pin M.	4B	Fil.	2.5	2.5	1250	2503	-	-	MV
HY866 Jr.	Half-Wave Rectifler	4-pin M.	4P	Fil.	2.5	2.5	1750	2503	5000	-	MV
RK866	Half-Wave Reclifler	4-pin M.	4P	Fil.	2.5	5.0	3500	250	10000	1000	MV
871^{10}	Half-Wave Recliflar	4-pin M.	4P	Fil.	2.5	2.0	1750	250	5000	500	MV
878	Half-Wave Reclifler	4-pin M.	4P	Fil.	2.5	5.0	7100	5	20000	-	HV
879	Half -Wave Rectifler	4-pin S.	4P	Fil.	2.5	1.75	2650	7.5	7500	100	HV
872A/872	Half-Wave Rectifiar	4-pin J.	T-3A	Fil.	5.8	7.5		1250	10000	5000	MV
975A	Half-Wave Rectifler	4-pin J.	T-3A	Fil.	5.0	10.0	-	1500	15000	6000	MV
$\begin{aligned} & \text { OZ4A / } \\ & 1003 \\ & \hline \end{aligned}$	Full-Wave Rectifler	5-pin 0.	4R	Cold	-	-	-	110	880	-	G
1005/ CK 1005	Full-Wave Rectifler	8 -pin 0.	T-9F	Fil.	6.3	0.1	-	70	450	-	G
$1006 /$ $\text { CK } 1006$	Full-Wave Rectifler	4-pin M.	4 C	Fil.	1.75	2.25	-	200	1600	-	G
CK 1007	Full-Wave Reclifler	8-pin 0.	T-9G	Fil.	1.0	1.2		110	980	——	G
CK1009/BA	Full-Wave Rectiner	4-pin M.		Cold	-	-		350	1000	-	G
1275	Full-Wave Rectifler	4-pin M.	4C	Fii.	5.0	1.75		Same	as 573		HV
1616	Half-Wave Rectifler	4-pin M.	4P	Fil.	2.5	5.0	-	130	6000	800	HV
$\begin{aligned} & 1641 / \\ & \text { RK60 } \end{aligned}$	Full-Wave Ractifler	4-pin M.	T-4AG	Fil.	5.0	3.0	-	$\begin{array}{r} 50 \\ 250 \end{array}$	$\begin{aligned} & 4500 \\ & 2500 \end{aligned}$	-	HV
1654	Half-Wave Rectifler	7-pin B.	Fig. 41	Fil.	1.4	0.05	2500	1	7000	6	HV
8008	Half-Wave Rectifior	4-pin ${ }^{\text {8 }}$	Fig. 11	Fil.	5.0	7.5	-	1250	10000	5000	MV
8013A	Half-Wave Rectifler	4-pin M.	4P	Fil.	2.5	5.0	-	20	40000	150	HV
8016	Half-Wave Rectifler	6-pin 0.	- 4AC	Fil.	1.25	0.2	-	2.0	10000	7.5	HV
8020	Half-Wave Rectifler	4-pin M.	4P	Fin.	5.0	5.5	10000	100	40000	750	HV
					5.8	6.5	12500	100	40000	750	
RK19	Full-Wave Rectifer	4-pin M.	T-3A	Htr.	7.5	2.5	1250	$200 \cdot$	8500	600	HV
RK21	Half-Wave Rectifler	4-pin M.	4P	Hir.	2.5	4.0	1250	$200 \cdot$	3500	600	HV
RK22	Full-Wave Reclifior	4-pin M.	T-4AG	Hir.	2.5	8.0	1250	2001	3500	600	HV

[^15]TABLE XV-TRIODE TRANSMITTING TUBES

Type	Max. Plate Dissi- pation Watts	Cathode		Max. Plate Voltage	Max. Plate Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrade Capacitarices ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Socket Connecfions	Typical Operation	Plate Voltage	$\left\lvert\, \begin{gathered} \text { Grid } \\ \text { Voltage } \end{gathered}\right.$	Plate Current Ma.		Approx. Grid Driving Powar Watts	Approx. Carrier Outpui Power Watts	Type
		Volss	Amps.					$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { fo } \\ & \text { Plate } \end{aligned}$	$\begin{aligned} & \text { Plate } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$											
958-A	0.6	1.25	0.1	135	7	1.0	12	0.6	2.6	0.8	500	A.	5BD	Class-C Amp.-Oscillator	135	- 20	7	1.0	0.035	0.6	958-A
RK24	1.5	2.0	0.12	180	20	6.0	8.0	3.5	5.5	3.0	125	5.	4D	Class-C Amp.-Oscillatop	180	- 45	16.5	6.0	0.5	2.0	RK24
6J6:	1.5	6.3	0.45	300	30	16	32	2.2	1.6	0.4	250	B.	7BF	Class-C Amp. (Telegraphy)	150	- 10	30	16	0.35	3.5	6 J 6
9002	1.6	6.3	0.15	250	8	2.0	25	1.2	1.4	1.1	250	B.	7TM	Class-C Amp.-Oscillator	180	-35	7	1.5	-	0.5	9002
955	1.6	6.3	0.15	180	8	2.0	25	1.0	1.4	0.6	250	A.	5BC	Class-C Amp.-Oscillator	180	-35	7	1.5	-	0.5	955
HY114B	1.8	1.4	0.155	180	12	3.0	13	1.0	1.3	1.0	300	O.	T-8AC	Class-C Amp.-Oscillator	180	- 30	12	2.0	0.2	$1.4{ }^{3}$	HY114B
														Class-C Amp. Plate-Mod.	180	- 35	12	2.5	0.3	$1.4{ }^{3}$	
3A5:	2.0	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \\ & \hline \end{aligned}$	150	30	5.0	15	0.9	3.2	1.0	40	B.	7BC	Class-C Amp.-Oscillator	150	- 35	30	5.0	0.2	2.2	3 A 5
$6 F 4$	2.0	6.3	0.225	150	20	8.0	17	2.0	1.9	0.6	500	A.	7BR	Class-C Amp.-Oscillator	150	-15	20	7.5	0.2	1.8	$6 F 4$
																550*					
																20001					
HY24	2.0	2.0	0.13	180	20	4.5	9.3	2.7	5.4	2.3				Class-C Amp. (Telegraphy)	180	- 45	20	4.5	0.2	2.7	
								2.7	5.4	2.3	60	S.	4D	Class-C Amp. (Telephony)	180	- 45	20	4.5	0.3	2.5	HY24
RK331.:	2.5	2.0	0.12	250	20	6.0	10.5	3-2	3-2	2.5	60	5.	T-7DA	Class-C Amp.-Oscillator	250	- 60	20	6.0	0.54	3.5	RK33
6N4	3.0	6.3	0.2	180	12	-	32	3.1	2.35	0.55	500	B.	Fig. 40	Class-C Amp.-Oseillator	180	-	-	-	-	-	6N4
HYOJ5GTX	3.5	6.3	0.3	330	20	4.0	20	4.2	3.8	5.0	60	0.	60	Class-C Amp.-Oscillator	330	- 30	20	2.0	0.2	3.5	HY6J5GTX
									3.8	5.0	60	O.	60	Class-C Amp. (Plate Mod.)	250	- 30	20	2.5	0.3	2.5	HY6JSGIX
2C22/7193	3.5	6.3	0.3	500	-	-	20	2.2	3.6	0.7	-	0.	4AM	Class-C Amp. (Telegraphy)		-	-	-	-	-	2C22/7193
HY615	3.5	6.3	0.175	300	20	4.0	20	1.4	1.6	1.2	300	0.	T-8AG	Class-C Amp.-Oscillator	300	- 35	20	2.0	0.4	$4.0{ }^{3}$	HY615
HY-E1148									1.6	1.2	300	O.	T-6AG	Class-C Amp. Plata-Mod.	300	- 35	20	3.0	0.8	3.53	HY-E1148
$\begin{aligned} & \hline \mathrm{GL}-446 \mathrm{~A}{ }^{\prime} \\ & \mathrm{GL}-446 \mathrm{~B}, \\ & \hline \end{aligned}$	3.75	6.3	0.75	400	20	-	45	2.2	1.6	0.02	500	0.	Fig. 19	Class-C Amp.-Oscillator	250	-	-	-	——	-	$\begin{aligned} & G L-446 A \\ & G L-446 B \end{aligned}$
$\begin{aligned} & \text { GL-2C44 } \\ & \text { GL-464A } \end{aligned}$	5.0	6.3	0.75	500	40	-	-	2.7	2.0	0.1	500	O.	Fig. 17	Class-C Amp.-Oscillator	250	-	-	-	-	-	$\begin{aligned} & \mathrm{GL}-2 C 44 \\ & \mathrm{GL}-464 \mathrm{~A} \end{aligned}$
6 C 4	5.0	6.3	0.15	300	25	8.0	17	1.8	1.6	1.3	150	B.	6BG	Class-C Amp.-Oscillator	300	- 27	25	7.0	0.35	5.5	$6 \mathrm{C4}$
1626	5.0	12.6	0.25	250	25	8.0	5.0	3.2	4.4	3.4	30	0.	60	Closs-C Amp.-Oseillator	250	- 70	25	5.0	0.5	4.0	1626
$\begin{aligned} & \text { 2C21/ } \\ & \text { RK33 } \\ & \hline \end{aligned}$	5.0	6.3	0.6	250	40	12	-	1.6	1.6	2.0	-	S.	T-7DA	Class-C Amp.-Oscillator	250	- 60	40	12	1.0	7	$\begin{array}{\|l\|l\|} \hline 2 \mathrm{C} 21 / 9 \\ \text { RK33 } \\ \hline \end{array}$
2 C 40	6.5	6.3	0.75	500	25	-	36	2.1	1.3	0.05	500	0.	Fig. 19	Class-C Amp.-Oscillator	250	- 5	20	0.3	-	0.075	2C40
2 C 43	12	6.3	0.9	500	40	-	48	2.9	1.7	0.05	1250	0.	Fig. 19	Class-C Amp.-Oscillator	470:	-	38^{7}	\square	-	97	$2 \mathrm{C43}$
2C26A	10	6.3	1.10	3500:		-	16.3	2.6	2.8	1.1	250	0.	4BB	Pulse Oscillator	400	- 15	16	-	-	-	2C26A
$\begin{aligned} & \text { 2C34/ } \\ & \text { RK342 } \\ & \hline \end{aligned}$	10	6.3	0.8	300	80	20	13	3.4	2.4	0.5	250	M.	T-7DC	Class-C Amp.-Oscillator	300	- 36	80	20	1.8	16	
205D	14	4.5	1.6	400	50	10	7.2	5.2	4.8					Class-C Amp.-Oscillator	400	-112	45	10	1.5	10	205D
						10	7.2	5.2	4.8	3.3	6	M.	4 D	Class-C Amp. (Plate-Mod.)	350	-144	35	10	1.7	7.1	205D
2 C 25	15	7.0	1.18	450	60	15	8.0	8.0	8.9	3.0	-	M.	4D	Class-C Amp.-Oscillator	450	-100	65	15	3.2	19	2C25
												M.		Class-C Amp. Plate-Mod.	350	-100	50	12	2.2	12	
10Y	15	7.5	1.25	450	65	15	8	4.1	7.0	3.0	-	M.	4D	Class-C Amp.-Oscillator	450	-100	65	15	3.2	19	10Y
							8	4.1	7.0	3.0	-	M.	4D	Class-C Amp. Plate-Mod.	350	-100	50	12	2.2	12	10 r
843	15	2.5	2.5	450	40	7.5	7.7	4.0	4.5	4.0	6	M.	5A	Class-C Amp.-Oscillator	450	-140	30	5.0	1.0	7.5	843
														Class-C Amp. (Plate-Mod.)	350	-150	30	7.0	1.6	5.0	
RK59:	15	6.3	1.0	500	90	25	25	5.0	9.0	1.0	-	M.	T-4D	Class-C Amp.-Oscillator	500	- 60	90	14	1.3	32	RK59
HY75	15	6.3	2.5	450	80	20	10	1.6	3.8	0.6	80	0.	T-8AC	Class-C Amp.-Oscillator	450	- 50	80	12	-	213	HY75
												O.	T-8AC	Class-C Amp. Plate-Mod.	450	- 80	80	12	-	$16{ }^{3}$	

table xv-triode transmitting tubes-Continued

Type	Max. Plate Dissi- pation Watis	Cathode		Max. Plate Voltage	Max. Plate Current Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	Inferelectrode Capacilances ($\mu \mu \mathrm{f} \mathrm{d}_{\mathrm{n}}$)			Max. Freq. Mc. Full Ratings	Base	Socket Connections	Typical Operation	Plate Voltage	Grid Voliage	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Watts	Approx. Carrier Output Power Waits	Type
		Volts	Amps.					$\begin{gathered} \text { Grid } \\ \text { fo } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	Plate to Fil.											
1602	15	7.5	1.25	450	60	15	8.0	4.0	7.0	3.0	6	M.	4D	Class-C Amp. (Telegraphy)	450	-115	55	15	3.3	13	1602
														Class-C Amp. (Telephony)	350	-135	45	15	3.5	8.0	
841	15	7.5	1.25	450	60	20	30	4.0	7.0	3.0	6	M.	4D	Class-C Amp. (Telegraphy)	450	- 34	50	15	1.8	15	841
														Class-C Amp. (Telephony)	350	- 47	50	15	2.0	11	
$\begin{aligned} & 10 \\ & \text { RK } 101 \end{aligned}$	15	7.5	1.25	450	65	15	8.0	3.0	8.0	4.0	-	M.	4D	Class-C Amp. (Telegraphy)	450	- 100	65	15	3.2	19	$\begin{aligned} & 10 \\ & \text { RK } 10 \end{aligned}$
											60			Class-C Amp. (Telephony)	350	- 100	50	12	2.2	12	
RK100 ${ }^{\text {1 }}$	15	6.3	0.9	150	250	100	40	23	19	3.0	-	M.	T-6B	Class-C Oscillator	110	-	80	8.0	-	3.5	RK100
														Class-C Amplifier	110	-	185	40	2.1	12	
TUF-20	20	6.3	2.75	750	75	20	10	1.8	3.6	0.095	250	0.	T-8AC	Class-C Amp.-Oseillator	750	-150	75	20	1.5/2.5	40	TUF-20
1608	20	2.5	2.5	425	95	25	20	8.5	9.0	3.0	45	M.	4D	Class-C Amp. (Telography)	425	- 90	95	20	3.0	27	1608
														Class-C Amp. (Telephony)	350	- 80	85	20	3.0	18	
310	20	7.5	1.25	600	70	15	8.0	4.0	7.0	2.2	6	M.	4D	Class-C Amp. (Telegraphy)	600	-150	65	15	4.0	25	310
														Class-C Amp. (Telephony)	500	-190	55	15	4.5	18	
801-A/801	20	7.5	1.25	600	70	15	8.0	4.5	6.0	1.5	60	M.	4D	Class-C Amp. (Tolegraphy)	600	-150	65	15	4.0	25	801-A /801
														Class-C Amp. (Telephony)	500	-190	55	15	4.5	18	
HY801-A	20	7.5	1.25	600	70	15	8.0	4.5	6.0	1.5	60	M.	4D	Class-C Amp. (Telegraphy)	600	-200	70	15	4.0	30	HY801-A
														Class-C Amp. (Telephony)	500	-200	60	15	4.5	22	
T20	20	7.5	1.75	750	85	25	20	4.9	5.1	0.7	60	M.	3G	Class-C Amp. (Telegraphy)	750	-85	85	18	3.6	44	T20
														Class-C Amp. Plate-Mod.	750	-140	70	15	3.6	38	
T220	20	7.5	1.75	750	85	30	62	5.3	5.0	0.6	60		3G	Class-C Amp. (Telegraphy)	750	- 40	85	28	3.75	44	TZ20
												M.	3 G	Class-C Amp Plate-Mod.	750	-100	70	23	4.8	38	1220
15E	20	5.5	4.2	10000:		-	25	1.4	1.15	0.3	600	N.	T-4AF	Oscillator at 400 Mc .	10000	$4500{ }^{+}$	3	1	-	10000 ${ }^{\text {² }}$	15E
															2000	-130	63	18	4.0	100	
$25 \bar{T}$	25	6.3	3.0	2000	75	25	24	2.7	1.5	0.3	60	M.	3G	Class-C Amp.-Oscillator	1500	- 95	67	13	2.2	75	
															1000	- 70	72	9	1.3	47	
3-25D3															2000	-170	63	17	4.5	100	3-2503
$3 \mathrm{3C24}$	25	6.3	3.0	2000	75	25	23				60	5.	2D	Class-C Amp.-Oscillator	1500	- 110	67	15	3.1	75	$3 \mathrm{3C24}$
24 G								1.7	1.5	0.3					1000	- 80	72	15	2.6	47	24G
3 C 28	25	6.3	3.0	2000	75	25	23	2.1	1.8	0.1	100	5.	Fig. 56	Class-C Amp. Oscillator		Chara	teristics	same as	3 C 24		3 C 28
3 C 34	25	6.3	3.0	2000	75	25	23	2.5	1.7	0.4	60	5.	3G	Class-C Amp. Oscillator		Chara	teristics	same as	3C24		3 C 34
RK111	25	6.3	3.0	750	105	35	20	7.0	7.0			M .	3G	Class-C Amp. (Telegraphy)	750	-120	105	21	3.2	55	RK11
RK1	25	6.3	3.0	750	105	35	20	7.0	7.0	0.9	60	M.	3G	Class-C Amp. Plate-Mod.	600	-120	85	24	3.7	38	RK11
RK12	25	6.3	3.0	750	105	40	100	7.0	7.0	0.9	60	M.	3G	Class-C Amp. (Telegraphy)	750	- 100	105	35	5.2	55	RK12
				750	105	40	100	7.0	7.0	0.9	60	M.	3 G	Class-C Amp. Plate-Mod.	600	-100	85	27	3.8	38	RK12
HK24	25	6.3	3.0	2000	75	30	25	2.5	1.7	0.4	60	5.	3G	Class-C Amp. (Telegraphy)	2000	-140	56	18	4.0	90	HK24
										0.4		s.		Class-C Amp. Plate-Mod.	1500	-145	50	25	5.5	60	NK24
HY25	25	7.5	2.25	800	75	25	55	4.2	4.6	1.0	60	M.	3G	Class-C Amp. (Talegraphy)	750	- 45	75	15	2.0	42	Y25
														Class-C Amp. Plate-Mod.	700	- 45	75	17	5.0	39	,
	30				65	-								Class-C Amp. (Grid, Mod.)	1000	-135	50	4	3.5	20	
8025	20	6.3	1.92	1000	65	20	18	2.7	2.8	0.35	500	M.	4AO	Class-C Amp. (Plate Mod.)	800	- 105	40	10.5	1.4	22	8025
	30				80	20								Class-C Amp. (Tolegraphy)	1000	-90	50	14	1.6	35	
HY30Z	30	6.3	2.25	850	90	25	87	6.0	4.9	1.0	60	M.	T-4BE	Class-C Amp.-Oseillator	850	- 75	90	25	2.5	58	HY30Z
								6.0	4.9	1.0	60	M.	7-48E	Class-C Amp. Plate-Mod.	700	- 75	90	25	3.5	47	HY302
HY31Z: HY1231Z:	30	6.3	3.5	500	150	30	45	5.0	5.5	1.9	60	M.	T-4D	Class-C Amp. (Telegraphy)	500	- 45	150	25	2.5	56	HY312
		12.6	1.7				45	5.0	5.5	1.9	60	m.	T-4D	Class-C Amp. (Telephony)	403	-100	150	30	3.5	45	HY12312

table XV－triode transmitting tubes－Continued

Type	Max． Plate Dissi－ potion Watts	Cathode		Max． Plafe Vollage	Max．Plate Current Ma．	Max． D．C． Grid Current Ma．	Amp． Foctor	Interelectrado Capacitances（ $\mu \mu \mathrm{h}$ d．）			Max． Freq． Mc． Full Retings	Base	Sockel Connec－ fions	Typical Operation	Plate Voltoge	Grid Voltage	Plate Current Ma．		Approx Grid Driving Power Walts	Approx． Carrier Outpul Power Walts	Type
		Volls	Amps．					$\begin{gathered} \text { Grid } \\ \text { lo } \\ \text { fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { fo } \\ & \text { Plate } \end{aligned}$	Plate to Fil．											
														Class－C Amp．（Telegraphy）	450		80	12	一一	7.5	3164
316 A	30	2.0	3.65	450	80	12	6.5	1.2	1.6	0.8	500	N．		Class－C Amp．Plate－Mod．	400	－	80	12		6.5	3164
			2.5				50				60	M．	3G	Cless－C Amp．（Telegraphy）	1000	－ 75	100	25	3.8	75	809
809	30	0.3	2.5	1000	125	－	50	5.7	6.7	0.9	60	M．	3 G	Class－C Amp．Plate－Mod．	750	－60	100	32	4.3	55	
												M．	3G	Class－C Amp．－Osc．llator	1000	－ 90	100	20	3.1	75	1623
1623	30	6.3	2.5	1000	100	25	20	5.7	6.7	0.9	60	M．	3 G	Class－C Amp．Plote－Mod．	750	－125	100	20	4.0	55	
53A	35	5.0	12.5	15000	－	－	35	3.6	1.9	0.4		N．	T－4B	Oscillator at 300 Mc ．		Approx	imately	50 watts	output		53A
	35	7.5	3.25	1250	80	25	15	2.75	2.5	2.75	60	M．	20	Class－C Amp．（Telegraphy）	1250	－ 180	90	18	5.2	85	RK30
RK30	35	7.5	3.25	1250	80	25	15	2.75	2.5	2.75	60	m．	20	Class－C Amp，Plate－Mod．	1000	－200	80	15	4.5	60	
800	35	7.5	3.25	1250	80	25	15	2.75	2.5	2.75	60	M．	2D	Class－C Amp．（Telegraphy）	1250	－175	70	15	4.0	65	800
									2.5	2.75	60			Class－C Amp．Plate－Mod．	1000	－200	70	15	4.0	50	
1628 －	40	3.5	3.25	1000	60	15	23	2.0	2.0	0.4	500	N．	T－4BB	Class－C Amp．－Oscillator	1000	－ 65	50	15	1.7	35	1628
														Class－C Amp．Plata－Mod．	800	－100	40	11	1.6	22	
														Grid－Modulated Amp．	1000	－120	50	3.5	5.0	20	
$\begin{aligned} & 8012 \\ & \text { GL-8012-A } \end{aligned}$	40	6.3	2.0	1000	80	20	18	27	28		500	N.	T－4BB	Class－C Amp．－Oscillator	1000	－ 90	50	14	1.6	35	8012 GL－8012－A
								2.7	2.5					Class－C Amp．Plate－Mod．	800	－105	40	10.5	1.4	22	
								2.7						Grid－Modulated Amp．	1000	－135	50	4.0	3.5	20	
									4.8	1.8	60	M．	3G	Class－C Amp．（Telegraphy）	1250	－160	100	12	2.8	95	RK18
RK18 ${ }^{1}$	40	7.5	3.0	1250	100	40	18	6.0						Class－C Amp．Plate－Mod．	1000	－160	80	13	3.1	64	
RK31	$40{ }^{\circ}$	7.5	3.0		100	35			1.0	2.0		M．	3G	Class－C Amp．（Telegraphy）	1250	－ 80	100	30	3.0	90	RK31
				1250			170	7.0			30			Class－C Amp．Plate－Mod．	1000	－ 80	100	28	3.5	70	
HY40	40	7.5	2.25	1000	125	25	25	6.1	5.6	1.0	60	M．	3G	Class－C Amp．（Telegraphy）	1000	－ 90	125	20	5.0	94	HY40
														Class－C Amp．Plate－Mod．	850	－ 90	125	25	5.0	82	
														Grid－Modulated Amp．	1000	－	125		－	20	
HY40Z	40	7.5	2.6	1000	125	30	80	6.2	6.3	0.8	60	M．	3G	Class－C Amp．（Telegraphy）	1000	－ 27	125	25	5.0	94	HY40Z
														Class－C Amp．Plate－Mod．	850	－ 30	100	30	7.0	82	
														Grid－Modulated Amp．	1000	－	60	－	－	20	
													3G	Class－C Amp．－Oscillator	1500	－140	150	28	9.0	158	T40
140	40	7.5	2.5	1500	150	40	25	4.5	4.8	0.8	60	M．		Class－C Amp．Plate－Mod．	1250	－115	115	20	5.25	104	
													3G	Class－C Amp．－Oscillator	1500	－ 90	150	38	10	165	TZ40
TZ40	40	7.5	2.5	1500	150	45	62	4.8	5.0	0.8	60	M．		Class－C Amp．Plate－Mod．	1250	－ 100	125	30	7.5	116	
HY57	40	6.3	2.25	850	110	25	50	4.9	5.1	1.7	60	M．	3G	Class－C Amp．（Telegraphy）	850	－ 48	110	15	2.5	70	HY57
														Class－C Amp．Plate－Mod．	700	－ 45	90	17	5.0	47	
														Grid－Modulated Amp．	850	－		－	－	20	
756^{1}	40	7.5	2.0	850	110	25	8.0	3.0	7.0	2.7	－	M．	4D	Class－C Amplifier	850	一一	110	25	－	－	756
$830{ }^{1}$	40	10	2.15	750	110	18	8.0	4.9	9.9	2.2				Class－C Amplifler	750	－180	110	18	7.0	55	830
											15	M．	40	Grid－Modulated Amp．	1000	－200	50	2.0	3.0	15	
3－50A4														Class－C Amp．（Telegraphy）	2000	－135	125	45	13	200	$3.50 \bar{A} 4$
351 3－5004	50	5.0	4.0	2000	150	50	39	4.1	1.8	0，3	100	M．	3G	Class－C Amp．Plate Mod．	1500	－120	100	30	5.0	120	3－5004
3－5004 3576								2.5	1.8	0.4	100	M．	20	Grid Modulated Amp．	2000	－400	60	3.0	3.0	50	35 TG
8010－R	50	6.3	2.4	1350	150	20	30	2.3	1.5	0.07	350	N,	－	Class－C Amalifer	－	－	－	－	－	－	8010－R
RK32 ${ }^{1}$	50	7.5	3.25	1250	100	25	11							Class－C Amp．（Telegraphy）	1250	－225	100	14	4.8	90	RK32
					100		11	2.5	3.4	0.7	100	M．	20	Class－C Amp．Plate－Mod．	1000	－310	100	21	8.7	70	

TABLE XV—TRIODE TRANSMITTING TUBES—Continued

Type	Max. Plate Dissipofion Watts	Cathado		Max. Plate Volfoge	$\begin{gathered} \text { Max. } \\ \text { Plate } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Max. D.C. Grid Current Ma.	Amp. Factor	Inlerelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Rafings	Base	Sackel Conner. tions	Typical Operation	Plałe Voltagn	Grid Voltage	Plate Current Ma.		Approx. Grid Driving Power Watts	Approx. Carrier Oułpui Power Walts	Type
		Volts	Amps.					Grid 10 Fil.	Grid to Plate	Plate to Fil.											
RK351	50	7.5	4.0	1500	125	20	9.0	3.5	2.7	0.4	60	M.	2D	Class-C Amp. (Telegraphy)	1500	-250	115	15	5.0	120	RK35
														Class-C Amp. Plate-Mod.	1250	-250	100	14	4.6	93	
														Grid-Modulated Amp.	1500	- 180	37	-	2.0	25	
RK37	50	7.5	4.0	1500	125	35	28	3.5	3.2	0.2	60	M.	2D	Class-C Amp. (Telegraphy)	1500	-130	115	30	7.0	122	RK37
														Class-C Amp. Plate-Mod.	1250	-150	100	23	5.6	90	
														Grid-Modulated Amp.	1500	- 50	50		2.4	26	
$\begin{aligned} & \text { 3-50G2 } \\ & \text { UH50 } \end{aligned}$	50	7.5	3.25	1250	125	25	10.6	2.2	2.6	0.3	60	M.	2D	Class-C Amp. (Telegraphy)	1250	-225	125	20	7.5	115	UH50
														Class-C Amp. Plate-Mod.	1250	-325	125	20	10	115	
														Grid-Modulafed Amp.	1250	-200	60	2.0	3.0	25	
UH51 ${ }^{1}$	50	5.0	6.5	2000	175	25	10.6	2.2	2.3	0.3	60	M.	20	Class-C Amp. (Telography)	2000	-500	150	20	15	225	UH5 1
														Class-C Amp. Plate-Mod.	1500	-400	165	20	15	200	
														Grid-Modulated Amp.	1500	-400	85	2.0	8.0	65	
HK54	50	5.0	5.0	3000	150	30	27	1.9	1.9	0.2	100	M.	20	Class-C Amp. (Telegraphy)	3000	-290	100	25	10	250	HK54
														Class-C Amp. Plate-Mod.	2500	-250	100	20	8.0	210	
														Grid-Modulated Amp.	2000	-150	39	1.5	3.0	28	
HK154 ${ }^{1}$	50	5.0	6.5	1500	175	30	6.7	4.3	5.9	1.1	60	M.	2D	Class-C Amp. (Telegraphy)	1500	-590	167	20	15	200	HK154
														Class-C Amp. Plato-Mod.	1250	-460	170	20	12	162	
														Grid-Modulated Amp.	1500	-450	52	-	5.0	28	
	50	12.6	2.5	2000	200	40	25	4.7	4.6	1.0	60	M.	20	Class-C Amp.-Oscillator	2000	-150	125	25	6.0	200	HK158
HK158														Class-C Amp. Plate-Mod.	2000	-140	105	25	5.0	170	
$\begin{aligned} & \text { WE304A 1 } \\ & \text { 304B } \end{aligned}$	50	7.5	3.25	1250	100	25	11	2.0	2.5	0.7	100	M .	2D	Class-C Amp. (Telearaphy)	1250	-200	100	-	-	85	$\begin{aligned} & \text { WE304A } \\ & \text { 304B } \\ & \hline \end{aligned}$
														Class-C Amp. Plate-Mod.	1000	-180	100	-	-	65	
356A	50	5.0	5.0	1500	120	35	50	2.25	2.75	1.0	60			Class-C Amp. (Telegraphy)	1500	- 60	100	-	-	100	356A
												N.	T-4BD	Class-C Amp. Plate-Mod.	1250	- 100	100	35	-	85	
808	50	7.5	4.0	1500	150	35	47	5.3	2.8	0.15	30			Class-C Amp. (Telography)	1500	-200	125	30	9.5	140	808
												M.	2D	Class-C Amp. Plate-Mod.	1250	-225	100	32	10.5	105	806
														Class-C Amp. (Telegraphy)	1250	-225	90	15	4.5	75	034
834	50	7.5	3.1	1250	100	20	10.5	2.2	2.6	0.6	100	M.	2D	Class-C Amp. Plate-Mod.	1000	-310	90	17.5	6.5	58	034
$841 A^{1}$	50	10	2.0	1250	150	30	14.6	3.5	9.0	2.5	-	M.	3G	Class-C Amplifler	-	-	-	-	-	85	841A
8415W	50	10	2.0	1000	150	30	14.6	-	9.0	-	-	M.	3G	Class-C Amplifer	-	-	$\bar{\square}$	$\bar{\square}$	-	-	8415 W
841sW														Class-C Amp. (Telegraphy)	1500	-170	150	18	6.0	170	T55
T55	55	7.5	3.0	1500	150	40	20	5.0	3.9	1.2	60	M.	3 G	Class-C Amp. Plate-Mod.	1500	-195	125	15	5.0	145	
														Class-C Amp. (Talegraphy)	1500	-113	150	35	8.0	170	811
811	55	6.3	4.0	1500	150	50	160	5.5	5.5	0.6	60	M.	3G	Class-C Amp, Plate-Mod.	1250	-125	125	50	11	120	
														Class-C Amp. (Telography)	1500	-175	150	25	6.5	170	812
812	55	6.3	4.0	1500	150	35	29	5.3	5.3	0.8	60	M.	3 G	Class-C Amp. Plate-Mod.	1250	-125	125	25	6.0	120	
														Class-C Amp. (Telegraphy)	1500	-250	150	31	13	170	
RK51	60	7.5	3.75	1500	150	40	20	6.0	6.0	2.5	60	M .	3 s	Class-C Amp. Plate-Mod.	1250	-200	105	17	4.5	96	RK5 1
RKS														Grid-Modulated Amp.	1500	-130	60	0.4	2.3	128	
			3.75	1500	130	50	170	6.6	12	2.2	60		3G	Class-C Amp. (Telegraphy)	1500	-120	130	40	7.0	135	RK52
RK52	60	7.5	3.75	1500	130	50	170	6.6	12	2.2	60	M.	3G	Class-C Amp. Plate-Mod.	1250	-120	115	47	8.5	102	
$\begin{aligned} & \hline \text { T-60 } \\ & \text { HF60 } \end{aligned}$	60	10	2.5	1600	150	50	20	5.5	5.2	2.5	$\begin{aligned} & 60 \\ & 30 \end{aligned}$	M.	2D	Class-C Amp.-Oscillator	1500	-150	150	50	9.0	100	$\begin{aligned} & \text { T-60 } \\ & \text { HF60 } \end{aligned}$

TABLE XV-TRIODE TRANSMITTING TUBES—Confinued

Type	Max. Plato Dissipation Wafls	Cathode		Max. Plate Voliage	Max.PlateCurrentMa.	Max. D.C. Grid Current Ma.	Amp. Factor	Inlepalectrode Capacilancas ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Sockel Conneefions	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Walts	Approx. Carrier Output Power Watis	Type
		Volts	Amps.					$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plole } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { fil. } \end{gathered}$											
826	60	7.5	4.0	1000	125	40	31	3.7	2.9	1.4	250	N.	T-9A	Class-C Amp.-Ostillator	1000	- 70	125	35	5.8	86	826
														Class-C Amp. Plate-Mod.	800	- 98	94	35	6.2	53	
														Class-B Amp. (Telephony)	1000	- 50	65	8.5	3.7	22	
														Grid-Modulated Amp.	1000	-125	65	9.5	8.2	25	
$\begin{aligned} & 8308 \\ & 9308 \end{aligned}$	60	10	2.0	1000	150	30	25	5.0	11	1.8	15	M.	3G	Class-C Amp.-Oscillator	1000	-110	140	30	7.0	90	$\begin{aligned} & 8308 \\ & 9308 \end{aligned}$
														Class-C Amp. Plate-Mod.	800	-150	95	20	5.0	50	
														Class-B Amp. (Telephony)	1000	- 35	85	6.0	6.0	26	
HY51A HY51B	65	$10^{7.5}$	$\begin{aligned} & 3.5 \\ & 2.25 \end{aligned}$	1000	175	25	25	6.5	7.0	1.1	60	M.	3G	Class-C Amp. (Tolegraphy)	1000	- 75	175	20	7.5	131	HY51A HY51B
														Class-C Amp. Plate-Mod.	1000	-67.5	130	15	7.5	104	
														Grid-Modulated Amp.	1000	-	100	-	-	33	
HY512	65	7.5	3.5	1000	175	35	85	7.9	7.2	0.9	60	M.	T.48E	Class-C Amp. (Telegraphy)	1000	-22.5	175	35	10	131	HY512
														Class-C Amp. Plate-Mod.	1000	- 30	150	35	10	104	
														Grid-Modulated Amp.	1000		100			33	
UH35 1	70	5.0	4.0	1500	150	35	30	1.4	1.6	0.2	60	M.	3G	Class-C Amp. (Talegraphy)	1500	-170	150	30	7.0	170	UH35
														Class-C Amp. Plate-Mod.	1500	-120	100	30	5.0	120	
												J.	T-3AB	Class-C Amp. (Teiegraphy)	1500	-215	130	6.0	3.0	140	V70
V70B	70	10	2.5	1500	140	25	14	5.0	9.0	2.3	-	M.	3G	Class-C Amp. Plate-Mod.	1250	-250	130	6.0	3.0	120	V70B
													T-3AB	Class-C Amp. (Telegraphy)	1000	-110	140	30	7.0	90	V70A
V70C	70	10	2.5	1500	140	20	25	5.0	9.5	2.0	\square	M.	3G	Class-C Amp. Plata-Mod.	800	-150	95	20	5.0	50	V70c
$50{ }^{1}$	75	5.0	6.0	3000	100	30	12	2.0	2.0	0.4	-	M .	2D	Class-C Amplifier	3000	-600	100	25	-	250	501
	75	5.0	6.25	3000	225	40	20	2.7	2.3	0.3	40	M .	20	Class-C Amp. (Telegraphy)	2000	-200	150	32	10	225	$\begin{aligned} & 3.75 A 3 \\ & 75 T H \\ & 3.75 A 2 \\ & 7571 \\ & \hline \end{aligned}$
						35	12	2.6	2.4	0.4				Class-C Amp. (Telegraphy)	2000	-300	150	21	8	225	
HF75	75	10	3.25	2000	120	-	12.5	-	2.0	-	75	M.	2D	Class-C Oscillator-Amp.	2000	-	120		-	150	HF75
	75	7.5	4.15	2000	175	60	20			0.7	60	M	20	Class-C Amp.-Oscillator	2000	-175	150	37	12.7	225	
TW75	75	7.5	4.15	2000	175	60	20	3.35	1.5	0.7	60	m.	20	Class-C Amp. Plate-Mod.	2000	-260	125	32	13.2	198	TW75
$\begin{aligned} & \text { T-100 } \\ & \text { HF100 } \end{aligned}$	75	10	2.0	1500	150	30	23	3.5	4.5	1.4	30	M.	20	Class-C Amp. (Telegraphy)	1500	-200	150	18	6.0	170	$\left\{\begin{array}{c} T-100 \\ H F 100 \end{array}\right.$
														Class-C Amp. Plate-Mod.	1250	-250	110	21	8.0	105	
														Grid-Modulated Amp.	1500	-280	72	1.5	6.0	42	
111H	75	10	2.25	1500	160	-	23	-	4.6	-	25	M.	2D	Class-C Osc.-Amp.	1500	-	160		-	175	111H
Z8120	75	10	2.0	1250	160	40	90	5.3	5.2	3.2	30	J.	4E	Class-C Amp. (Telegraphy)	1250	-135	160	23	5.5	145	ZB120
														Class-C Amp. Plate-Mod.	1000	-150	120	21	5.0	95	
														Grid-Modulated Amp.	1250	-	95	8.0	1.5	45	
3278	75	10.5	10.6	15000	-	-	30	3.4	2.45	0.3	-	N.	T-4AD	-	-	\square	-	-	-	-	327B
									13		6		4E	Class-C Amp. (Telegraphy)	1250	-175	150		-	130	242A
242A	85	10	3.25	1250	150	50	12.5	6.5	13	4.0	6	J.	4 E	Class-C Amp. Plate-Mod.	1000	-160	150	50		100	
	85												$4 E$	Class-C Amp. (Telegraphy)	1250	-500	150		-	125	
284D	85	10	3.25	1250	150	100	4.8	6.0	8.3	5.6	-	J.	4 E	Class-C Amp. Plate-Mod.	1000	-450	150	50	\square	100	284D
812-H	85	6.3	4.0	1750	200	45		5.3	5.3	0.8	30	M.	3G	Class-C Amp. (Telegraphy)	1750	-175	170	26	6.5	225	812-H
							-								1250	-125	125	25	5.0	116	
														Class-C Amp (Plate.Mod)	1500	-125	165	21	6.0	180	
														Class-C Amp. (Plate-Mod.)	1250	-125	125	25	6.0	120	
8005	85	10	3.25	1500	200	45	20	6.4	5.0	1.0	60	M.	3G	Class-C Amp.-Oscillator	1500	-130	200	32	7.5	220	8005
														Class-C Amp. Plate-Mod.	1250	-195	190	28	9.0	170	
														Class-8 Amp. (Telephony)	1500	-80	83	1.0	5.0	45	

table XV-triode transmitting tubes-Continued

Type	Max. Plata Dissipation Watts	Cathode		Max. Plate Vollage	Max. Plafe Ma.	Mars. D.C. Grid Current Ma.	Amp. Factor	Inferelectrode Capacitances ($\mu \mu \mathrm{fl}$.)			Max. Freq. Mc. Full Ratings	Base	Sockel Connecfions	Typical Oporation	Plate Voliage	Grid Voliage	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Powar Watts	Approx. Carrier Oulput Power Watls	Type
		Volis	Amps.					$\begin{aligned} & \text { Grid } \\ & \text { 10 } \\ & \text { Fil. } \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plato } \\ \text { 10 } \\ \text { Fil. } \end{gathered}$											
V-70-D	85	7.5	3.25	1750	200	45	\cdots	4.5	4.5	1.7	30	M.	3 G	Class-C Amp. (Telography)	1750	-100	170	19	3.9	225	V-70-D
															1500	- 90	165	19	3.9	195	
														Class-C Amp. (Plale-Mod.)	1500	- 90	165	19	3.7	185	
															1250	- 72	127	16	2.6	122	
RK36 ${ }^{1}$	100	5.0	8.0	3000	165	35	14	4.5	5.0	1.0	60	M.	2D	Class-C Amp. (Telegraphy)	2000	-360	150	30	15	200	RK36
														Class-C Amp. (Telephony)	2000	-360	150	30	15	200	
														Grid-Modulated Amp.	2000	-270	72	1.0	3.5	42	
														Class-B Amp. (Telephony)	2000	-180	75	3.0	10	50	
RK38 1	100	5.0	8.0	3000	165	40		4.6	4.3	0.9	60	M.	2D	Class-C Amp. (Telegraphy)	2000	-200	160	30	10	225	RK38
														Class-C. Amp. (Telophony)	2000	-200	160	30	10	225	
							-							Grid-Modulated Amp.	2000	-150	80	2.0	5.5	60	
														Class-B Amp. (Telophony)	2000	-100	75	2.0	7.0	55	
$\begin{aligned} & 3-100 A 4 \\ & 100 \mathrm{TH} \end{aligned}$	100	5.0	6.3	3000	225	60	40	2.9	2.0	0.4	40	M.	2D	Class-C Amp. (Telegraphy)	3000	-200	165	51	18	400	$\begin{aligned} & 3.100 \mathrm{A4} \\ & 100 \mathrm{TH} \end{aligned}$
														Class-C Amp. Plale-Mod.	3000	-210	167	45	18	400	
														Class-B Amp. (Telephony)	3000	- 70	50	2.0	5.0	50	
														Grid-Modulated Amp.	3000	-400	70	3.0	7.0	100	
$\begin{aligned} & 3-100 \mathrm{AR} \\ & 100 \mathrm{IL} \end{aligned}$	100	5.0	6.3	3000	225	50	14	2.3	2.0	0.4	40	M.	2D	Class-C Amp. (Telegraphy)	3000	-400	165	30	20	400	$\begin{aligned} & 3-100 A 2 \\ & 100 \mathrm{IL} \end{aligned}$
														Class-C Amp. Plale-Mod.	3000	-600	167	35	18	400	
														Class-B Amp. (Telephony)	3000	-280	50	1.0	5.0	50	
														Grid-Modulated Amp.	3000	-560	60	2.0	7.0	90	
Vi127A	100	5.0	10.4	3000	-	30	15.5	2.7	2.3	0.35	150	N.	T-4B	Class-C Amp.-Oscillator	Characteristics similar to 10014						V127A
227 A	100	10.5	10.7	15000^{3}	-	-	31	3.0	2.2	0.30	-	N.	T-4B	Oscillalor al 200 Mc .	15000	12004	10	3	-	50000^{6}	27 A
327A	100	10.5	10.7	$15000{ }^{3}$	-	-	31	3.4	2.3	0.35	-	N.	T-4AD	Oscillator at 200 Mc .	15000	12004	10	3	-	50000s	327 A
HK254	100	5.0	7.5	4000	200	40	25	3.3	3.4	1.1	50	J.	T-3AC	Class-C Amp. (Telography)	4000	-380	120	35	20	475	HK254
														Class-C Amp. Plale-Mod.	3000	-290	135	40	23	320	
														Class-B Amp. (Telephony)	3000	-125	51	2.0	3.0	54	
														Grid-Modulated Amp.	3000	-	51	3.0	4.0	58	
RK58	100	10	3.25	1250	175	70		8.5	6.5	10.5		J.	T-3AB	Class-C Amp. (Telegraphy)	1250	- 90	150	30	6.0	130	RK58
							\square				-			Class-C Amp. Plate-Mod.	1000	-135	150	50	16	100	
														Class-B Amp. (Telephony)	1250	-	106	15	6.0	42.5	
HF120	100	10	3.25	1250	175		12		10.5	-	20	J.	-	Class-C Amp.-Osciflator	1250	-	175			150	HF120
HF125	100	10	3.25	1500	175	-	25		11.5		30	J.	-	Class-C Amp.-Oscillator	1500	-	175	\cdots		200	HF125
HF140	100	10	3.25	1250	175	-	12		12.5	\cdots	15	J.	\cdots	Class-C Amp.-Oscillator	1250	-	175	-	-	150	HF140
$\begin{aligned} & 203 A \\ & 303 A \end{aligned}$	100	10	3.25	1250	175	60	25	6.5	14.5	5.5	15	J.	45	Class-C Amp. (Telegraphy)	1250	-125	150	25	7.0	130	$\begin{array}{r} 203 A \\ 303 A \end{array}$
														Class-C Amp. (Telephony)	1000	-135	150	50	14	100	
														Class-B Amp. (Telophony)	1250	-45	105	3.0	3.0	42.5	
203H	100	10	3.25	1500	175	60	25	6.5	11.5	1.5	15	J.	T-3AB	Class-C Amp. (Telegraphy)	1500	-200	170	12	3.8	200	203H
														Class-C Amp. (Tolephony)	1250	-160	167	19	5.0	160	
														Class-B Amp. (Telephony)	1500	-48	100	3.0	2.0	52	
$\begin{aligned} & 211 \\ & 311 \\ & 8351 \end{aligned}$	100	10	3.25	1250	175	50	12	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 14.5 \\ 9.25 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$				Class-C Amp. (Telegraphy)	1250	-225	150	18	7.0	130	211
											15	J.	45	Class-C Amp. (Telephony)	1000	-260	150	35	14	100	311
														Class-B Amp. (Telephony)	1250	-100	106	1.0	7.5	42.5	835
														Class-C Amp. (Telegraphy)	1250	-175	150		-	130	
$\begin{aligned} & 242 \mathrm{~B} \\ & 342 \mathrm{~B} \end{aligned}$	100	10	3.25	1250	150	50	12.5	7.0	13.6	6.0	6	J.	4E	Class-C Amp. Plate-Mod.	1000	-160	150	50	-	100	3428
														Class-B Amp. (Telephony)	1250	-80	120		-	50	

TABLE XV-TRIODE TRANSMITTING TUBES - Continued

Type	Max. Plote Dissipation Wafts	Cathode		Max. Plafe Voltage	Max.Plota Current Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	Inferalactrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Sockel Connec tions	Typical Oparation	Plate Volitage	Grid Voltage	Plate Current Ma .		Approx. Grid Driving Power Walts	Approx. Carrier Outpul Power Watts	Type
		Volts	Amps.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \hline \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	Plate to Fil.											
242C	100	10	3.25	1250	150	50	12.5	6.1	13.0	4.7	6	J.	4E	Class-C Amp. (Telegraphy)	1250	-175	150	\cdots		130	242C
														Class-C Amp. Plate-Mod.	1000	-160	150	50		100	
														Class-B Amp. (Talaphony)	1250	- 90	120	-	-	50	
$\begin{aligned} & 261 A \\ & 361 A \end{aligned}$	100	10	3.25	1250	150	50	12	6.5	9.0	4.0	30	J.	4E	Class-C Amp. (Telegraphy)	1250	-175	125	\cdots		100	$261 A$
														Class-C Amp. Plate-Mod.	1000	-160	150	50		100	
														Class-B Amp. (Telephony)	1250	-100	125	-	\square	50	
$\begin{aligned} & 276 A \\ & 376 A \end{aligned}$	100	10	3.0	1250	125	50	12	6.0	9.0	4.0	30	J.	4E	Class-C Amp. (Telegraphy)	1250	-175	125		-	100	$\begin{aligned} & 276 A \\ & 376 A \end{aligned}$
														Class-C Amp. Plate-Mod.	1000	-160	125	50		85	
														Class-B Amp. (Telephony)	1250	-100	125			50	
284B	100	10	3.25	1250	150	100	5.0	4.2	7.4	5.3		J.	T-3AB	Class-C Amp. (Telegraphy)	1250	-500	150	-	-	125	284B
											-			Class-C Amp. Plate-Mod.	1000	-430	150	50		100	
														Class-B Amp. (Telaphony)	1250	-270	120	-	-	50	
295A	100	10	3.25	1250	175	50	25	6.5	14.5	5.5		J.	4E	Class-C Amp. (Telegraphy)	1250	-125	150		-	125	295A
											-			Class-C Amp. Plate-Mod.	1000	-125	150	50	-	100	
														Class-B Amp. (Telaphony)	1250	-75	105	-	-	42.5	
$\begin{array}{r} 838 \\ 938 \end{array}$	100	10	3.25	1250	175	70		6.5	8.0	5.0	30	J.	4E	Class-C Amp. (Telegraphy)	1250	- 90	150	30	6.0	130	$\begin{aligned} & 838 \\ & 938 \\ & \hline \end{aligned}$
							-							Class-C Amp. (Tolephony)	1000	-135	150	60	16	100	
														Class-B Amp. (Telephony)	1250	0	106	15	6.0	42.5	
852	100	10	3.25	3000	150	40	12	1.9	2.6	1.0	30	M.	2D	Class-C Amp. (Telegraphy)	3000	-600	85	15	12	165	852
														Class-C Amp. (Telephony)	2000	-500	67	30	23	75	
														Class-B Amp. (Telephony)	3000	-250	43	0	7.0	40	
8003 .	100	10	3.25	1500	250	50	12	5.8	11.7	3.4	30	J.	T-3AB	Class-C Amp.-Oscillator	1350	- 180	245	35	11	250	8003
														Class-C Amp. Plate-Mod.	1100	-260	200	40	15	167	
														Class-B Amp. (Telephony)	1350	-110	110	1.5	8	50	
$\begin{aligned} & 3 \times 100 \mathrm{~A} 11 \\ & 2 \mathrm{C} 39 \\ & \hline \end{aligned}$	100	6.3	1.1	1000	60	40	100	6.5	1.95	0.03	500	N.	-	"Grid Isolation' Circuit	600	- 35	60	40	5.0	20	$\begin{aligned} & 3 \times 100 \mathrm{A11} \\ & 2 \mathrm{C} 39 \end{aligned}$
$3 \mathrm{C22}$	125	6.3	2.0	1000	150	70	40	4.9	2.4	0.05	500	0.	Fig. 30	Class-C Amp.-Oseillator	1000	-200	150	70		65	$3 \mathrm{C22}$
4 C 36	125	5	7.5	4000	-	-	29	3.2	3.0	0.4	60	J.	Fig. 56	Class-C Amp.-Oscillator			-	-	18	480	4C36
$\begin{aligned} & \text { F-123-A } \\ & \text { DR-123C } \end{aligned}$	125	10	4.0	2000	300	75	14.5	6.5	8.5	3.3		J.	Fig. 26	Class-C Amp. (Telegraphy)	1500	-250	250	30	11	300	$\begin{aligned} & F-123-A \\ & D R-123 C \end{aligned}$
											-			Class-C Amp. Plate-Mod.	1500	-290	160	25	10	200	
														Class-B Amp. (Telephony)	1500	-100	120	1	6	65.5	
RK57/805	125	10	3.25	1500	210	70		6.5	8.0	5.0	30	J.	T-3AB	Class-C Amp. (Telegraphy)	1500	-105	200	40	8.5	215	RK57/805
							-							Class-C Amp. (Telephony)	1250	-160	160	60	16	140	
														Class-B Amp. (Telephony)	1500	- 10	115	15	7.5	57.5	
	125	10	4.5	2500	250	60	25	6.3	6.0	1.3	60	J.	T-3AC	Class-C Amp. (Telegraphy)	2500	-200	240	31	11	475	T125
T125	125	10	4.5	2500	250	60	25	6.3	6.0	1.3	60	J.	T-3AC	Class-C Amp. Plate-Mod.	2000	-215	200	28	10	320	1125
HF130	125	10	3.25	1250	210	-	12.5	-	9.0	-	20	J.	-	Class-C Amp.-Oscillator	1250	-210	-		-	170	HF130
HF150	125	10	3.25	1500	210	-	12.5	-	7.2	-	30	J.	-	Class-C Amp.-Oscillator	1500	-	210		-	200	HF150
HF175	125	10	4.0	2000	250	-	18	-	6.3	-	25	J.	-	Class-C Amp.-Oscillator	2000	-	250	-	-	300	HF175
GL146														Class-C Amp.-Oscillator	1250	-150	180	30	-	150	
	125	10	3.25	1500	200	60	75	7.2	9.2	3.9	15	J.	T-4BG	Class-C Amp. Plate-Mod.	1000	-200	160	40	-	100	GL146
														Class-B Amp. (Telephony)	1250	0	132	-	-	55	
														Class-C Amp.-Oscillator	1250	-150	180	30	-	150	
GL152	125	10	3.25	1500	200	60	25	7.0	8.8	4.0	15	J.	T-4BG	Class-C Amp. Plate-Mod.	1000	-200	160	30	-	100	GL152
														Class-B Amp. (Telephony)	1250	- 40	132	-	\cdots	55	

TABLE XV-Triode transmitting tubes-Continued

Type	Max. Plate Dissi- pation Watts	Cathode		$\begin{gathered} \text { Max. } \\ \text { Plato } \\ \text { Voltage } \end{gathered}$		Max. D.C. Grid Current Ma.	Amp. Factor	Infarelectrode Capacitances ($\mu \mu \mathrm{Fl}$.)			Max. Freq. Mc. Full Ratings	Base	Sockef Connecfions	Typical Operation	Plate Volfage	Grid Voltage	Plate Cuprant Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Watts	Approx. Carrier Outpul Power Watts	Type
		Volis	Amps.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { FiI. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
805	125	10	3.25	1500	210	70	40/60.	8.5	6.5	10.5	30	J.	T-3AB	Class-C Amp. (Telegraphy)	1500	-105	200	40	8.5	215	805
														Class-C Amp, Plate-Mod.	1250	-160	160	60	16	140	
														Class-B Amp. (Telephony)	1500	- 10	115	15	7.5	57.5	
$\begin{aligned} & 3 \times 150 A 3 \\ & 3 \mathrm{C} 37 \\ & \hline \end{aligned}$	150	6.3	2.5	1000	-	-	23	4.2	3.5	0.6	500	N.	-	-	-	-	-	-	-	-	$\begin{aligned} & 3 \times 150 A 3 \\ & 3 \mathrm{C} 37 \end{aligned}$
$150 \mathrm{~T}^{1}$	150	5.0	10	3000	200	50	13	3.0	3.5	0.5	-	J.	T-3AC	Class-C Amp. (Telegraphy)	3000	-600	200	35	-	450	1501
$\begin{aligned} & \hline 3-150 A 3 \\ & 152 \mathrm{TH} \\ & 3.150 \mathrm{AR} \\ & 1521 \mathrm{~L} \\ & \hline \end{aligned}$	150	5/10	$\begin{gathered} 12.51 / \\ 6.25 \end{gathered}$	3000	450	85	20	5.7	4.5	0.8	40	J.	4BC	Class-C Amp. (Telegraphy)	3000	-300	250	70	27	600	$\begin{aligned} & 3.150 \mathrm{~A} 3 \\ & 152 \mathrm{TH} \\ & 3.150 \mathrm{AA} 2 \\ & 152 \mathrm{TL} \end{aligned}$
						75	12	4.5	4.4	0.7				Class-C Amp. (Telegraphy)	3000	-400	250	40	20	600	
TW150	150	10	4.1	3000	200	60	35	3.9	2.0	0.8	-	J.	t-3AC	Class-C Amp.-Oscillator	3000	-170	200	45	17	470	TW150
														Class-C Amp. Plate-Mod.	3000	-260	165	40	17	400	
HK252-L	150	5/10	13/6.5	3000	500	75	10	7.0	5.0	0.4	125	N.	T-4BF	Class-C Amp.-Oscillator	3000	-400	250	30	15	610	
										0.4	125	N.	7-4BF	Class-C Amp. Plate-Mod.	2500	-350	250	35	16	500	HK252-L
HF200 HV18	150	10-11	3.4	2500	200	50	18	5.2	5.8	1.2	20	J.	T-3AC	Class-C Amp. (Telegraphy)	2500	-300	200	18	8.0	380	$\begin{aligned} & \text { HF200 } \\ & \text { HV1 } \end{aligned}$
														Class-C Amp. Plate-Mod.	2000	-350	160	20	9.0	250	
														Class-B Amp. (Telephony)	2500	-140	90		4.0	80	
HD203A	150	10	4.0	2000	250	60	25	-	12	-	15	J.	t-3AB	Class-C Amplifer	-	-	-	-	-	375	HD203A
HF250	150	10.5	4.0	2500	200	-	18	-	5.8	-	20	J.	T-3AC	Class-C Amp.-Oscillator	2500	-	200		-	375	HF250
HK354 HK354	150	5.0	10	4000	300	50	14	4.5	3.8	1.1	30	J.	t-3AC	Class-C Amp. (Telegraphy)	4000	-690	245	50	48	830	$\underset{\mathrm{HK}}{\mathrm{HK} 354 \mathrm{C}}$
														Class-C Amp. Plate-Mod.	3000	-550	210	50	35	525	
														Class-B Amp. (Telephony)	3000	-205	78	2.0	10	82	
														Grid-Modulated Amp.	3000	-400	78	3.0	12	85	
HK354D	150	5.0	10	4000	300	55	22	4.5	3.8	1.1	30	J.	T-3AC	Class-C Amp. (Telegraphy)	3500	-490	240	50	38	690	HK354D
														Class-C Amp. Plale-Mod.	3500	-425	210	55	36	525	
HK354E	150	5.0	10	4000	300	60	35	4.5	3.8	1.1	30	J.	t-3AC	Closs C Amp. (Telegraphy)	3500	-448	240	60	45	690	HK354E
														Class-C Amp. Piate-Mod.	3000	-437	210	60	45	525	
HK354F	150	5.0	10	4000	300	75	50	4.5	3.8	1.1	30	J.	T-3AC	Class-C Amp. (Telegraphy)	3500	-368	250	75	50	720	HK354F
														Class-C Amp. Plate-Mod.	3000	-312	210	75	45	525	HK354F
$\begin{aligned} & 810 \\ & 1627^{1} \end{aligned}$	150	10	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	2250	275	70	36	8.7	4.8	12	30	J.	T-3AC	Class-C Amp: (Telegraphy)	2250	-160	275	40	12	475	$\begin{aligned} & 810 \\ & 1627 \end{aligned}$
														Class-C Amp. Plata-Mod.	1800	-200	250	50	17	335	
														Class-B Amp. (Telephony)	2250	- 70	100	2.0	4.0	75	
														Grid-Modulated Amp.	2250	-140	100	2.0	4.0	75	
8000	150	10	4.5	2250	275	40	16.5	5.0	6.4	3.3	30	J.	T-3AC	Class-C Amp.-Oscillotor	2250	-210	275	25	9.0	475	8000
														Class-C Amp. Plate-Mod.	1800	-320	250	20	8.8	335	
														Class-B Amp. (Telephony)	2250	-145	100	0	5.4	75	
														Grid-Modulated Amp.	2250	-265	100	0	2.5	75	
$\begin{aligned} & \text { RK63 } \\ & \text { RK63A } \end{aligned}$	200	$\begin{aligned} & 5.0 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	3000										Class-C Amp. (Telegraphy)	3000	-200	233	45	17	525	
					250	60	37	2.7	3.3	1.1	-	J.	T-3AC	Clasr-C Amp. Plate-Mod.	2500	-200	205	50	19	405	
													T-3AC	Class-B Amp. (Telephony)	3000	-150	100	1.0	12	100	RK63A
														Grid-Modulated Amb.	3000	-250	100	7.0	12.5	100	
T200	200	10	5.75	2500	350	80	16	9.5	7.9	1.6	30	J.	T-3AC	Class-C Amp. (Telegraphy)	2500	-280	350	54	25	685	
												J.	T-3AC	Class-C Amp. Plate-Mod.	2000	-260	300	54	23	460	1200
F-127-A	200	10	4.0	3000	325	70	38	13	4	13	-	J.	Fig. 26	Class-C Amp. (Telegraphy)	3000	-250	250	47	18	600	F-127-A
													Fig. 26	Class-C Amp. Plata-Mod.	2500	-300	200	58	25.2	420	F-127-A

TABLE XV-TRIODE TRANSMITTING TUBE5 - Continued

Type	Max. Plate Dissipalion Wafts	Cathode		Max. Plafe Voltage		Max. D.C. Grid Current Ma.	Amp. Faclor	Inferalectrode Capacilances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Sockat Connections	Typical Operation	Plata Vollage	$\begin{array}{\|c\|} \text { Grid } \\ \text { Voltage } \end{array}$	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Walis	Approx. Carriar Oułput Power Wans	Type
		Volts	Amps.					Grid Io Fil.	Grid lo Plate	Plate to Fil.											
822											20	J.	$\begin{aligned} & \text { T-3AB } \\ & T-3 A C \end{aligned}$	Class-C Amp. (Telegraphy)	2500	-190	300	51	17	600	$\begin{array}{\|l\|} \hline 822 \\ \hline \mathbf{8 2 2 5} \\ \hline \end{array}$
8225	200	10	4.0	2500	300	60	30	8.5	13.5	2.1	30			Class-C Amp. Plate-Mod.	2000	- 75	250	43	13.7	405	
												J.	T-3AC	Class-C Amp.-Oscillator	2000	-165	275	20	10	400	4 C 32
4 C 32	200	10	4.5	3000	300	60	30	5.5	5.8	1.1	60			Class-C Amp. (Plate-Mod.)	2000	-200	250	20	15	375	
	200	10	5.0			50						N.	Fig. 52	Class-C Amp.-Oscillator	2600	-240	250	45	18	425	GL-592
GL-592	200	10	5.0	3500	250	50	24	3.6	3.3	0.41	110			Class-C Amp. (Plate-Mod.)	2000	-500	250	50			
											80	J.	T-3AC	Class-C Amp. (Telagraphy)	3000	-400	250	28	16	600	$\begin{aligned} & \text { 4C34 } \\ & \text { HF300 } \end{aligned}$
4C34 $H F 300$	200	11-12	4.0	3000	275	60	23	6.0	6.5	1.4				Class-C Amp. Plole-Mod.	2000	-300	250	36	17	385	
											20			Class-B Amp. (Talaphony)	2500	-100	120	0.5	6.0	105	
T814	200	10	40	2500	200	60	12	8.5	12.8	17	30	J.	T-3AB	Class-C Amp. (Telegraphy)	2500	-240	300	30	10	575	T814 HV1 2
HV12											30			Class-C Amp. Plate-Mad.	2000	-370	300	40	20	485	
$\begin{aligned} & \text { T822 } \\ & H V 27 \end{aligned}$	200	10	4.0	2500	300	60	27	8.5	13.5	2.1	30	J.	T-3AB	Closs-C Amp. (Telegraphy)	2500	-175	300	50	15	585	$\begin{aligned} & \text { T822 } \\ & \text { HV27 } \end{aligned}$
														Class-C Amp. Plate-Mod.	2000	-195	250	45	15	400	
														Class-B Amp. (Telephony)	2500	- 95	125	5.0	8.0	110	
806	225	5.0	10	3300	300	50	12.6	6.1	4.2	1.1	30	J.	T-3AC	Class-C Amp. (Telegraphy)	3300	-600	300	40	34	780	806
														Class-C Amp. Plate-Mod.	3000	-670	195	27	24	460	
														Class-B Amp. (Telephony)	3300	-280	102	--	10.3	115	
3-250A4250TH	250	5.0	10.5	4000	350	100	37	5.0	2.9	0.7	40	J.	T-3AC	Class-C Amp. (Telegraphy)	2000	-120	350	100	34	750	$\begin{aligned} & 3-250 A 4 \\ & 250 \mathrm{H} \end{aligned}$
														Class-C Amp. Plate-Mad.	3000	-210	330	75	42	750	
														Class-B Amp. (Telephony)	3000	- 80	125	4.0	15	125	
														Grid-Moduloted Amp.	3000	-160	125	4.5	20	125	
$\begin{aligned} & 3-250 A 2 \\ & \text { 250TL } \end{aligned}$	250	5.0	10.5	4000	350	50	14	3.7	3.1	0.7	40	J.	T-3AC	Class-C Amp. (Telegraphy)	3000	-350	335	45	29	750	$\begin{aligned} & 3-250 \mathrm{A2} \\ & 250 \mathrm{TL} \end{aligned}$
														Class-C Amp. Plate-Mod.	3000	-350	335	45	29	750	
														Class-B Amp. (Talephony)	3000	-225	125	2.0	15	125	
														Grid-Modulated Amp.	3000	-450	125	2.0	15	125	
GL159	250	10	9.6	2000	400	100	20	11	17.6	5.0	15	J.	T-4BG	Class-C Amp.-Osrillator	2000	-200	400	17	6.0	620	GL159
														Class-C Amp. Plate-Mad.	1500	-240	400	23	9.0	450	
														Class-B Amp. (Telephony)	2000	- 90	190		2.5	130	
GL169	250	10	9.6	2000	400	100	85	11.5	19	4.7	15	J.	T-4BG	Class-C Amp.-Oscillator	2000	-100	400	42	10	620	GL169
														Class-C Amp. Plata-Mod.	1500	-100	400	45	10	450	
														Class-B Amp. (Telephony)	2000	- 10	190		3.5	130	
$\begin{aligned} & 204 A \\ & 304 A \end{aligned}$	250	11	3.85	2500	275	80	23	12.5	15	2.3	3	N.	T-1A	Class-C Amp. (Talegraphy)	2500	-200	250	30	15	450	$\begin{aligned} & 204 \mathrm{~A} \\ & 304 \mathrm{a} \end{aligned}$
														Class-C Amp. Platu-Mod.	2000	-250	250	35	20	350	
														Class-B Amp. (Telaphony)	2500	- 70	160		15	100	
308B	250	14	4.0	2250	325	75	8.0	13.6	17.4	9.3	1.5	N.	T-2A	Class-C Amplifler	$\begin{aligned} & 3500 \\ & 2000 \end{aligned}$	$\begin{array}{r} -600 \\ -300 \\ \hline \end{array}$	$\begin{array}{r} 300 \\ 500 \\ \hline \end{array}$	60	-	$\begin{aligned} & 800 \\ & 800 \\ & \hline \end{aligned}$	308B
HK454H	250	5.0	11	5000	375	85	30	4.6	3.4	1.4	100	J.	T-3AC	Class-C Amp. (Telegraphy)	1750	-400	300	-	-	350	HK454H
HK454-L	250	5.0	11	5000	375	60	12	4.6	3.4	1.4	100	J.	T-3AC	Class-C Amp. Plate-Mod.	1250	-320	300	75	-	250	HK454-L
$\begin{aligned} & 212 E \\ & 241 B \\ & 312 E \end{aligned}$	275	14	4.0	3000	350	75	16	14.9	18.8	8.6	1.5	N.	$\begin{aligned} & \mathrm{T}-2 \mathrm{~A} \\ & \mathrm{~T}-2 A \mathrm{~A} \end{aligned}$	Class-B Amp. (Talephony)	1750	-230	215			125	$\begin{aligned} & 212 E \\ & 241 B \\ & 312 E \end{aligned}$
														Class-C Amp. (Telegraphy)	3500	-275	270	60	28	760	
														Class-C Amp. Plate-Mad.	3500	-450	270	45	30	760	
300T ${ }^{1}$	300	8.0	11.5	3500	350	75	16	4.0	4.0	0.6	-	J.	T-3AC	Class-C Amp. (Telography)	2000	-225	300		-	400	300T
HK304-L	300	5/10	26/13	3000	1000	150	10	12	9.0	0.8	-	N.	T-4BF	Class-C Amp. Plate-Mod.	1500	-200	300	75		300	HK304-L
														Class-B Amp. (Telaphony)	2000	-120	300		-	200	8K304-L
527	300	5.5	135.0	$2000{ }^{\text {a }}$	-	-	38	19.0	12.0	1.4	200	N.	T-4B	Oseillatar al 200 Mc .		Approxi	imataly 2	250 wats	output		527

table XV-triode transmitting tubes-Confinued

Type	Max. Plate Dissi - pation Watts	Cathode		$\begin{gathered} \text { Max. } \\ \text { Plate } \\ \text { Volfage } \end{gathered}$	Max.PlateCurrent Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Socket Connecfions	Typical Operation	Plate Valfage	Grid Voliage	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Currenti } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Powar Wafts	Approx. Carrier Oufput Power Wafts	Type
		Volts	Amps.					$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	Plate to Fil.											
HK654	300	7.5	15	4000	600	100	22	6.2	5.5	1.5	20	J.	T-3AC	Class-C Amp. (Telegraphy)	2000	-380	500	75	57	720	HK654
														Class-C Amp. Plate-Mod.	2000	-365	450	110	70	655	
														Class-B Amp. (Telephony)	3500	-137	150	13	13	210	
														Grid-Modulated Amp.	3500	-210	150	15	15	210	
$\begin{aligned} & \hline \text { 3-300A3 } \\ & 304 \mathrm{TH} \\ & 3 \text { 3-300A2 } \\ & \text { 304TL } \\ & \hline \end{aligned}$	300	5/10	25/12.5	3000	900	170	20	13.5	10.2	0.7	40	N.	T-4BF	Class-C Amplifier	1500	-125	667	115	25	700	$3-30043$ 304 TH
						150	12	8.5	. 9.1	0.6	40	N.	T-4BF	Class -C Amplifler	1500	-250	665	90	33	700	$\begin{aligned} & 3-30042 \\ & 304 \mathrm{IL} \end{aligned}$
833 A	300	10	10	3000	500	100	35	12.3	6.3	8.5	30	N.	T-1AB	Class-C Amp. (Telegraphy)	2000	-200	475	65	25	740	833 A
														Class-C Amp. (Toleptiony)	2500	-300	335	75	30	635	
														Class-B Amp. (Talephony)	3000	- 70	150	2.0	10	150	
270A	350	10	4.0	3000	375	75	16	18	21	2.0	7.5	N.	T-1A	Class-C Amp. (Telegraphy)	3000	-375	350	-	-	700	2704
														Class-C Amp. Plate-Mod.	2250	-300	300	80	-	450	
														Class-B Amp. (Telephony)	3000	-180	175	-	-	175	
8491	400	11	5.0	2500	350	Y25	19	17	33.5	3.0	3	N.	T-1A	Class-C Amp. (Telegraphy)	2500	-250	300	20	8.0	560	849
														Class-C Amp. (Telephony)	2000	-300	300	30	14	425	
														Class-B Amp. (Telephony)	2500	-125	216	1.0	12	180	
$831{ }^{1}$	400	11	10	3500	350	75	14.5	3.8	4.0	1.4		N.	T-IAA	Class-C Amp. (Telegraphy)	3500	-400	275	40	30	590	831
											-			Class-C Amp. (Telephony)	3000	-500	200	60	50	360	
														Class-B Amp. (Talephony)	3500	-220	146	-	-	160	

* Cathode resistor in ohms.

Discontinued.
Twin triode. V
Twin triode. Values, excepl interelement capacities,
are for both sections in push-pull.
${ }^{3}$ Output al 112 Mc.
${ }^{4}$ Grid-leak resistor in ohms.
${ }^{5}$ Max. peak volts, plate pulsed.

9 Pulse power output.
${ }^{7}$ Values are for two fubes.

TABLE XVI-TETRODE AND PENTODE TRANSMITTING TUBES

Type	Max. Plate Dissi- pation Watts	Cathode		Max. Plate Voltage	Max. Screen Voltage	Max. Screen Dissipation Watys	Inferelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Socket Con-nections	Typical Operation	Plate Voltage	$\begin{gathered} \text { Screen } \\ \text { Volf- } \\ \text { age } \end{gathered}$		Grid Volt age	Plate Current Ma.	Scpeen Current Ma.	Grid Currant Ma.	Screen Resistor Ohms	Approx. Grid Driving Power Watts	Approx. Carrier Output Power Watts	Type
		Volts	Amps.				$\begin{gathered} \text { Grid } \\ \text { fia } \\ \text { Fii. } \end{gathered}$	$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Plate } \end{gathered}$	$\begin{aligned} & \text { Plate } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$															
344	2.0	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{gathered} 0.2 \\ 0.1 \end{gathered}$	150	135	0.9	4.6	0.2	4.2	10	B.	7BB	Class-C Amp.-Oscillator	150	135	0	- 26	18.3	6.5	0.13	2300	-	1.2	$3 A 4$
HY63 ${ }^{1}$	3.0	$\begin{aligned} & 2.5 \\ & 1.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1125 \\ & 0.225 \end{aligned}$	200	100	0.6	8.0	0.1	8.0	60	0.	T-8DB	Class-C Amp.-Osc.	200	100	-	-22.5	20	4.0	2.0	-	0.1	3.0	HY63
													Closs-C Amp. Plate-Mod.	180	100	-	- 35	15	3.0	2.0	-	0.2	2.0	
RK64:	6.0	6.3	0.5	400	100	3.0	10	0.4	9.0	60	M.	T-5BB	Class-C Amp. (Telegraphy)	400	100	30	- 30	35	10	3.0		0.18	10	RK64
													Class-C Amp. Plate-Mod.	300	-	30	- 30	26	8.0	4.0	30000	0.2	6.0	
1610	6.0	2.5	1.75	400	200	2.0	8.6	1.2	13	20	M.	T-5CA	Class-C Amp.-Oscillatop	400	150		- 50	22.5	7.0	1.5	-	0.1	5.0	1610
RK56	8.0	6.3	0.55	300	300	4.5	10	0.2	9.0	60	M.	T-5BB	Class-C Amp. (Telegraphy)	400	300		- 40	62	12	1.6	-	0.1	12.5	RK56
													Class-C Amp. Plate-Mod.	250	200		- 40	50	10	1.6	2800	0.28	8.5	
$\begin{aligned} & \text { RK23 } \\ & \text { RK25 } \\ & \text { RK25B }{ }^{1} \end{aligned}$	10	$\begin{aligned} & 2.5 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 0.9 \end{aligned}$	500	250	8	10	0.2	10		M.	T-7C	Class-C Amp. (Telegraphy)	500	200	45	- 90	55	38	4.0		0.5	22	$\begin{aligned} & \text { RK23 } \\ & \text { RK } 25 \\ & \text { RK } 258 \end{aligned}$
										-			Class-C Amp. (Telephony)	400	150	0	- 90	43	30	6.0	8300	0.8	13.5	
													Suppressor-Modulated Amp.	500	200	-45	- 90	31	39	4.0	-	0.5	6.0	
1613	10	6.3	0.7	350	275	2.5	8.5	0.5	11.5	45	O.	75	Class-C Amp. (Telegraphy)	350	200	-	- 35	50	10	3.5	20000	0.22	9	1613
													Class-C Amp. Plate-Mod.	275	200		- 35	42	10	2.8	10000	0.16	6.0	

TABLE XVI-TETRODE AND PENTODE TRANSMITTING TUBES—Continued

Type	Max. Flate Dissipallon Wafts	Cathode		Max. Plate Voliage	Max. Screen Volfage	Max. Screen Dissipalion Watts	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	8ase	Sockel Con-nacfions	Typical Oparation	Plate Volfoge	Screen Voll--ge	Suppressor Voltage	Grid Voltage	Plate Current Ma.	Screan Current Mo.	Grid Current Ma.	Screen Resistor Ohms	Approx. Grid Driving Power Watts	Approx. Carrier Outpul Power Watts	Type
		Volts	Amps.				$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { FiI, } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { fo } \\ & \text { Plate } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Plate } \\ \text { Po } \\ \text { Fil. } \end{array}$															
$2 \mathrm{E30}$	10	6.0	0.7	250	250	2.5	10	0.5	4.5	160	8.	Fig. 55	Class-C Amo.-Oscillator	250	250		- 60	55	9.0	0.8		0.07	7.5	2:30
6 F6 6F6G	11	6.3	0.7	375	285		$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{gathered} 13 \\ 6.5 \\ \hline \end{gathered}$	-	0.	7 AC	Class-C Amp.-Oscillator	350	200		- 35	50	10	3.5		0.22	9.0	$\begin{aligned} & 6 F 6 \\ & 6 F 6 G \end{aligned}$
													Class-C Amp. Plate-Mod.	275	200	-	-35	42	10	2.8		0.16	6.0	
$\begin{aligned} & 837 \\ & \text { RK44 } 1 \end{aligned}$	12	12.6	0.7	500	300	8	16	0.2	10	20	M.	T-7C	Class-C Amp. (Telegraphy)	500	200	40	- 70	80	15	4.0	20000	0.4	28	$\begin{aligned} & 837 \\ & \text { RK44 } \end{aligned}$
													Class-C Amp. (Talaphony)	400	140	40	- 40	45	20	5.0	13000	0.3	11	
													Suppressor-Modulated Amp.	500		-65	- 20	30	23	3.5	14000	0.1	5.0	
$2 E 24$	9.0	$6.3{ }^{3}$	0.65	500	200	2.3	8.5	0.11	6.5	125	O.	7 CL	Class-C Amp. Plale-Mod.	400	180		- 45	50	8.0	2.5	27500	0.15	13.5	$2 \mathrm{E24}$
				500	200	2.3								500	180		- 45	54	8.0	2.5	40000	0.16	18.0	
	13.5			600	200	2.5							Class-C Amp. (Telegraphy)	400	200		- 45	75	10.0	3.0	20000	0.19	20	
														600	195		- 50	66	10	3.0	40500	0.21	27	
$2 E 26$	$\begin{array}{r} 13.5 \\ 9.0 \end{array}$	6.3	0.8	$\begin{aligned} & 600 \\ & 500 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.3 \end{aligned}$	13	0.2	7.0	125	0.	7CK	Class-C Amp. (Telegraphy)	400	190		- 30	75	11	3.0	19000	0.12	20	$2 \mathrm{E26}$
														600	185		- 45	66	10	3.0	41500	0.17	27	
													Class-C Amp. (Plate-Mod.)	400	160	-	- 50	50	7.5	2.5	32000		13.5	
														500	180		- 50	54	9.0	2.5	35500		18	
802	13	6.3	0.9	600	250	6.0	12	0.15	8.5	30	M.	T-7C	Class-C Amp. (Telegraphy)	600	250	40	-120	55	16	2.4	22000	0.30	23	802
													Class-C Amp. Plate-Mod.	500	245	40	- 40	40	15	1.5	16300	0.10	12	
													Suppressor-Modulated Amp.	600	250	-45	-100	30	24	5.0	14500	0.6	6.3	
HY6V6GIX	13	6.3	0.5	350	225	2.5	9.5	0.7	9.5	60	0.	7 AC	Class-C Amp.-Oscillator	300	200		- 45	60	7.5	2.5	-	0.3	12	$\begin{aligned} & \text { HY6V6- } \\ & \text { GTX } \end{aligned}$
													Class-C Amp. Plate-Mod.	250	200	-	- 45	60	6.0	2.0	15000	0.4	10	
HY60	15	6.3	0.5	425	225	2.5	10	0.2	8.5	60	M.	T-5BB	Class-C Amp. (Telegraphy)	425	200		-62.5	60	8.5	3.0	-	0.3	18	HY60
													Class-C Amp. Plate-Mod.	325	200	\cdots	- 45	60	7.0	2.5	-	0.2	14	
HY65 ${ }^{1}$	15	6.3	0.85	450	250	4.0	9.1	0.18	7.2	60	0.	T-8DB	Class-C Amp.-Oscillator	450	250		- 45	75	15	3.0	-	0.5	24	HY65
													Class-C Amp. Plate-Mod.	350	200		- 45	63	12	3.0	-	0.5	16	
2 E 25	15	6.0	0.8	450	250	4.0	8.5	0.15	6.7	125	O.	5BJ	Class-C Amp.-Oscillator	450	250		- 45	75	15	3.0		0.4	24	$2 \mathrm{E25}$
													Class-C Amp. (Plate-Mod.)	400	200		- 45	60	12	3.0	-	0.4	16	
306A	15	2.75	2.0	300	300	6.0	13	0.35	13	-	M.	T-5CB	Class-C Amp. (Telephony)	300	180	-	- 50	36	15	3.0	8000		7.0	3064
$\begin{aligned} & \hline 307 A \\ & \text { RK-75 } \end{aligned}$	15	5.5											Class-C Amp. (Telegraphy)	500	250	0	- 35	60	13	1.4	20000	-	20	307 A
			1.0	500	250	6.0	15	0.55	12	-	M.	T-SC	Suppressor-Modulated Amp.	500	200	-50	- 35	40	20	1.5	14000	-	6.0	
													Class-C Amp. (Telegraphy)	500	200		- 65	72	14	2.6	21000	0.18	26	832
$832{ }^{3}$	15	12.6	0.8	500	250	5.0	7.5	0.05	3.8	200	N.	7 BP	Class-C Amp. (Telephony)	425	200		- 60	52	16	2.4	14000	0.15	16	
													Class-C Amp. (Telearaphy)	750	200	-	- 65	48	15	2.8	36500	0.19	26	332 A
832A ${ }^{3}$	15	12.6	0.8	750	250	5.0	7.5	0.05	3.8	200	N.	7BP	Class.C Amp. (Telephony)	600	200		-65	36	16	2.6	25000	0.16	17	
			2.5	500	180	3.0	9.5	0.15	7.5	-	M.	T-5BB	Closs-C Amp. (Telegrophy)	500	175		-125	25	-	5.0	-		9.0	844
844	15	2.5	2.5	500	180	3.0	9.5	0.15	7.5	-	m.	T-SBB	Class-C Amp. (Telephony)	500	150		-100	20	-	-	\cdots	-	4.0	
	15	7.5	2.0	750	175	3.0							Class-C Amp. (Telegraphy)	750	125		- 80	40	-	5.5	-	1.0	16	865
865	15	7.5	2.0	750	175	3.0	8.5	0.1	8.0	15	M.	T-4C	Class-C Amp. (Telephony)	500	125	-	-120	40		9.0	-	2.5	10	865
													Class-C Amp. (Telegraphy)	400	300	-	- 55	75	10.5	5.0	9500	0.36	19.5	1619
1619	15	2.5	2.0	400	300	3.5	10.5	0.35	12.5	45	O.	7 AC	Class-C Amp. Plate-Mod.	325	285	-	- 50	62	7.5	2.8	5000	0.18	13	
254A	20	5.0	3.25	750	175	5.0	4.6	0.1	9.4		M.	T-4C	Class-C Amplifier	750	175		- 90	60	-	-	-	-	25	2544
	21	6.3	0.9	375	300	3.5							Class-C Amp.-Oscillator	375	200	-	- 35	88	9.0	3.5	-	0.18	17	616
616G	21	6.3	0.9	375	300	3.5	11.5	0.9	9.5		0.	7AC	Class-C Amp. Plate-Mod.	325	-		- 70	65	-	9.0	-	0.8	11	
6L6GX	21	6.3	0.9	500	300	3.5	11	1.5	7.0		0.	7AC	Class-C Amp. (Telegraphy)	500	250	-	- 50	90	9.0	2.0	-	0.25	30	6L6GX
8L6GX		6.3											Class-C Amp. Plata-Mod.	325	225	-	- 45	90	9.0	3.0	-	0.25	20	
	21	6.3	0.9	500	300	3.5	11	0.5	7.0	60	0.		Class-C Amp.-Oscillator	500	250	-	- 50	90	9.0	2.0	$\bar{\square}$	0.5	30	HY6L6-
GTX	21	6.3	0.9	500	300	3.5	11	0.5	7.0	60	O.	7AC	Class-C Amp. Plate-Mod.	400	225	-	- 45	90	9.0	3.0	16000	0.8	20	GTX

World Racio माडक्य|

TABLE XVI-TETRODE AND PENTODE TRANSMITTING TUBES—Continued

Type	Max. Plate Dissipation Walls	Cathode		Max. Plate Voltage	Max. Screan Voltage	Max. Screen Dissipalion Walts	Inferslectrode Capmeitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Socket Con-necHions	Typical Operation	Plate Voltcge	$\begin{gathered} \text { Sereen } \\ \text { Volt- } \\ \text { age } \end{gathered}$	Supprossor Voliage	Grid Vollage	Plate Current Ma .	Screen Curtent Ma.	Grid Current Ma.	$\begin{aligned} & \text { Screen } \\ & \text { Resistor } \\ & \text { Ohms } \end{aligned}$	Approx. Grid Driving Power Watts	Approx Carrier Oulput Power Watts	Type
		Volts	Amps.				$\begin{gathered} \hline \text { Gris } \\ 10 \\ \text { Fil. } \end{gathered}$	$\begin{gathered} \text { Grid } \\ \text { fo } \\ \text { Plate } \end{gathered}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$															
T21	21	6.3	0.9	400	300	3.5	13	0.7	12	30	M.	T-6B	Class-C Amp. (Telegraphy)	400	250		- 50	95	8.0	3.0	一一	0.2	25	T21
													Closs-C Amp. Plate-Mod.	350	200		- 45	65	17	5.0	-	0.35	14	
RK49	21	6.3	0.9	400	300	3.5	11.5	1.4	10.6		M.	T-¢B	Class-C Amp. (Tolegraphy)	400	250		- 50	95	8.0	3.0		0.2	25	RK49
													Class-C Amp. (Telephony)	300	200		- 45	60	15	5.0	6700	0.34	12	
1614	21	6.3	0.9	375	300	3.5	10	0.4	12.5	80	0.	7AC	Class-C Amp. (Telegraphy)	375	250		- 40	80	10	2.0	12500	0.1	21	1614
													Class-C Amp. Plate-Mod.	325			-40	70	8.0	2.0	10000	0.1	15	
$\begin{aligned} & \text { RK4111 } \\ & \text { RK39 } \end{aligned}$	25	2.5	2.4	600	300	3.5	13	0.2	10	60	M.	T-5BB	Class-C Amp. (Telegraphy)	600	300		- 90	93	10	3.0	-	0.38	36	$\begin{array}{r} \text { RK41 } \\ \text { RK39 } \\ \hline \end{array}$
		6.3	0.9										Class-C Amp. (Telephony)	475	250		- 50	85	9.0	2.5	25000	0.2	26	
$\begin{aligned} & \hline \text { HY61/ } \\ & 807 \end{aligned}$	25	6.3	0.9	600	300	3.5	11	0.2	7.0	60	M.	T-5BB	Class-C Amp. (Telegraphy)	600	250		- 50	85	9.0	4.0	39000	0.4	40	HYO1/807
													Class-C Amp. (Telephony)	475	250	\square	- 50	100	9.0	3.5	25000	0.2	27	
8153	25	12.6	0.8	500	200	4.0	13.3	0.2	8.5	125	0.	T-8FA	Class-C Amp.-Oscillator	500	200		- 45	150	17	2.5	-	0.13	56	815
		6.3											Class-C Amp. Plate-Mod.	400	175		-45	150	15	3.0	-	0.16	45	
2548	25	7.5	3.25	750	150	5.0	11.2	0.085	5.4		M.	T-4C	Class-C Amplifier	750	150		-135	75		-	-	-	30	254B
1624	25	2.5	2.0	600	300	3.5	11	0.25	7.5	60	M.	T-5DC	Class-C Amp. (Telegraphy)	600	300		-60	90	10	5.0	30000	0.43	35	1624
													Class-C Amp. Plate-Mod.	500	275		- 50	75	9.0	3.3	25000	0.25	24	
RK66	30	6.3	1.5	600	300	3.5	12	0.25	10.5	60	M.	T-5C	Class-C Amp.-Oscillator	600	300		-60	90	11	5.0	-	0.5	40	RK66
													Class-C Amp. Plate-Mod.	500			- 50	75	8.0	3.2	25000	0.23	25	
807	30	6.3	0.9	750	300	3.5	11	0.2	7.0	60	M.	T-5BB	Class-C Amp. (Telegraphy)	750	250		- 50	100	8.0	3.0	-	0.22	50	807
1625	30	12.6	0.45	750	300	3.5	11	0.2	7.0	60	M.	Fig. 29	Class-C Amp. Plate-Mad.	600	275		-90	100	6.5	4.0	-	0.4	42.5	1625
$2 \mathrm{E22}$	30	6.3	1.5	750	250	10	13	0.2	8.0		M.	5J	Class-C Amp.-Oseillator	500	250	22.5	-60	100	16	6.0	15000	0.55	34	$2 \mathrm{E22}$
										-			Class-C Amp.-Oscillator	750	250	22.5	-60	100	16	6.0	30000	0.55	53	
													Suppressor-Modulated Amp.	750	250	-90	-65	55	29	6.5 :	17000	0.6	16.5	
3D23	35	6.3	3.0	-	-	-	6.5	0.2	1.8	250	M	Fig. 54	Class-C Amp. (Telegraphy)	1500	375	-	-300	110	22	15		4.5	130	3D23
TB-35	35	6.3	3.0	-	-	\square	6.5	0.2	1.8	250	M.	Fig. 54	Class-C Amp. (Plate-Mod.)	1000	300	-	-200	85	14	10	-	2.0	60	TB-35
$\begin{aligned} & \text { RK201 } \\ & \text { RK20A } \\ & \text { RK46 } \end{aligned}$	40	$\begin{array}{r} 7.5 \\ 7.5 \\ 12.6 \end{array}$	$\begin{aligned} & 3.0 \\ & 3.25 \\ & 2.5 \end{aligned}$	1250	300	15	14	0.01	12	\square	M.	T-5C	Class-C Amp. (Telegraphy)	1250	300	45	-100	92	36	11.5		1.6	84	$\begin{aligned} & \text { RK } 20 \\ & \text { RK } 20 A \\ & \text { RK } 46 \end{aligned}$
													Class-C Amp. (Telephony)	1000	300	0	-100	75	30	10	23000	1.3	52	
													Suppressor-Modulated Amp.	1250	300	-45	-100	48	44	11.5	-	1.5	21	
													Grid-Modulated Amp.	1250	300	45	-142	40	7.0	1.8	-	1.5	20	
HY69	40	6.3	1.5	600	300	5.0							Class-C Amp.-Oscillator	600	250		-60	100	12.5	4.0	30000	0.25	42	
							15.4	0.23	6.5	60	M.	T-5D	Class-C Amp. Plate-Mod.	600	250		-60	100	12.5	5.0	30000	0.35	42	HY69
													Modulated Doubler	600	200		-300	90	11.5	6.0	35000	2.8	27	
													Class-C Amp. (Telegraphy)	500	200		-45	240	32	12	9300	0.7	83	
829 1, 3	40	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	1.12	500	225	40	14.5	0.1	7.0	200	N.	7BP	Class-C Amp. Plate-Mod.	425	200	-	-60	212	35	11	6400	0.8	63	829
													Grid-Modulated Amp.	500	200	-	- 38	120	10	2.0	-	0.5	23	
													Class-C Amp.-Oscillator	750	200	-	- 55	160	30	12	18300	0.8	87	
$829 \mathrm{~A}^{1,3}$	40	$\left\{\begin{array}{r} 6.3 \\ 12.6 \end{array}\right.$	$\begin{aligned} & 2.25 \\ & 1.12 \end{aligned}$	750	240	7.0	14.4	0.1	7.0	200	N.	7BP	Class-C Amp. Plote-Mod.	600	200	-	- 70	150	30	12	13300	0.9	70	829 A
													Grid-Modulaled Amp.	750	200		- 55	80	5.0	0	-	0.7	24	
	40			750	225	6							Class-C Amp. (Grid Mod.)	750	200		- 55	80	5.0	0	-	0.7	24	
$\begin{aligned} & 82988 \\ & 3 E 293 \end{aligned}$	28	$\begin{array}{r} \mathbf{1 2 . 6} \\ \hline 6.3 \end{array}$	$\begin{aligned} & 1.125 \\ & 2.25 \end{aligned}$	600	225	7	14.5	0.1	7.0	200	N.	7BP	Class-C Amp. (Plate-Mod.)	600	200	-	- 70	150	30	12.0	13300	0.9	70	$\begin{aligned} & 8298 \mathrm{~B} \\ & \mathbf{3 E 2 9} \end{aligned}$
	40			750	225	7							Class-C Amp. (Telegraphy)	750	200		- 55	160	30	12.0	18300	0.8	87	
													Class-C Amp.-Oscillator	750	300		- 70	120	15	4	-	0.25	63	
HY1269	40	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 3.5 \\ & 1.75 \end{aligned}$	750	300	5.0	16.0	0.25	7.5	6	M.	T-5DB	Class-C Amp. Plale-Mod.	600	250		-70	100	12.5	5	35000	0.5	42	HY1269
													Grid-Modulated Amp.	750	300			80		-	-	-	20	
													Class-C Amp. (Telearaphy)	1250	300		- 70	138	14	7.0	-	1.0	120	
RK47	50	10	3.25	1250	300	10	13	0.12	10	-	M.	T-5D	Class-C Amp. Plate-Mod.	900	300	-	-150	120	17.5	6.0	-	1.4	87	RK47
													Grid-Moduialed Amp.	1250	300		- 30	60	2.0	0.9	-	4.0	25	

TABLE XVI-TETRODE AND PENTODE TRANSMITTING TUBES-Continued

Typa	Max. Plate Dissi- pution Walts	Cathode		Max. Plate Voltage	Max. Screen Volfage	Max. Screan Dissi- pation Wafts	Inferelectrode Capacilances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Socke Con-nections	Typical Operation	Plate Voltage	Screen Voltage	5up-pressor Volf age	Grid Volfage	Plata Current Ma .	5creen Currenl Ma.	Grid Current Ma .	5creen Resistor Ohms	Approx. Grid Driving Power Wafts	Approx Carrier Output Power Walts	Type
		Volts	Amps.				Grid to Fil.	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$															
312 A	50	10	2.8	1250	500	20	15.5	0.15	12.3		M.	T-6C	Class.C Amp. (Telegraphy)	1250	300	20	- 55	100	36	5.5	-	0.7	90	312 A
										-			Class-C Amp. Plate-Mod.	1000		40	- 40	95	35	7.0	22000	1.0	65	
													Suppressor-Madulated Amp	1250		-85	- 50	50	42	5.0	22000	0.55	23	
804	50	7.5	3.0	1500	300	15	16	0.01	14.5	15	M.	T-SC	Class-C Amp. (Telegraphy)	1500	300	45	-100	100	35	7.0	34000	1.95	110	804
													Class-C Amp. Plate-Mod.	1250	250	50	-90	75	20	6.0	50000	0.75	65	
													Grid-Modulated Amp.	1500	300	45	-130	50	13.5	3.7	-	1.3	28	
													Suppressor-Modulated Amp	1500	300	-50	-115	50	32	7.0		0.95	28	
$\begin{aligned} & \text { 4D22 } \\ & \text { 4D32 } \end{aligned}$	50	25.2	0.8	750	350	14	28	0.27	13	60	N.	Fig. 50	Class-C Amp. (Telegrophy)	750	300		-100	240	26	12		1.5	135	$\begin{aligned} & \text { 4D22 } \\ & 4 \mathrm{D} 32 \end{aligned}$
		12.6												600	300		-100	215	30	10		1.25	100	
		6.3	3.75									Fig. 51	Class-C Amp, (Plate Mod.)	600	-		-100	220	28	10	10000	1.25	100	
														550		-	-100	175	17	6	15000	0.6	70	
305A	60	10	3.1	1000	200	6	0.5	0.14	5.4		M.	T-4CE	Class-C Amp. (Telegraphy)	1000	200		-200	125	-			-	85	
30sA	60	10	3.1	1000	200	6							Class-C Amp. (Telephony)	800	200		-270	125					70	
HY67	65	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 4.5 \\ & 2.25 \end{aligned}$	1250	300	10		0.19	14.5		M.	T-5DB	Class-C Amp. (Telagraphy)	1250	300		-80	175	22.5	10	-	1.5	152	HY67
							-			-			Class-C Amp. Plate-Mod.	1000	300		-150	145	17.5	14	-	2.0	101	
													Grid-Modulated Amp.	1250	300			78			-	-	32.5	
814	65	10	3.25	1500	300	10	13.5	0.1	13.5	30	M.	T-5D	Class-C Amp. (Telegraphy)	1500	300		-90	150	24	10	50000	1.5	160	81.4
													Closs-C Amp. Plate-Mod.	1250	300		-150	145	20	10	48000	3.2	130	
													Grid-Moduloted Amp.	1500	250		-120	60	3.0	2.5	-	4.2	35	
282A	70	10	3.0	1000	250	5	12.2	0.2	6.8	-	M.	T-4C	Class-C Amp. (Teleqraphy)	1000	150	-	-160	100	--		-	-	33	282A
													Class-C Amp. Plate-Mod.	750	150	-	-180	100	-	50	-	-	50	
$\begin{aligned} & \text { 4E27/ } \\ & 8001 \end{aligned}$	75	5.0	7.5	4000	750	30	12	0.06	6.5	75	J.	1-7CB	Class-C Amp. (Telegraphy)	2000	750		-200	150	18	0.7	300000	0.2	230	$8 \mathrm{E} 27 /$
													Class-C Amp. Plate-Mod.	2000	600	60	-200	100	8	0.6	240000	0.1	200	
													Supprassor-M odulated Amp	2000	500	-300	-130	55	45	3.0	-	0.4	35	
$\begin{aligned} & \text { HK257 } \\ & \text { HK257B } \end{aligned}$	75	5.0	7.5	4000	500	25	13.8	0.04	6.7		J.	T-7CB	Cluss-C Amp. (Telegraphy)	2000	500	60	-200	150	11	6.0	-	1.4	230	$\begin{aligned} & \text { HK257 } \\ & \text { HK257B } \end{aligned}$
										120			Class-C Amp. Plate-Mod.	1800	400	60	-130	135	11	8.0	-	1.7	178	
													Suppressor-Modulated Amp	2000	500	-300	-130	55	27	3.0	-	0.4	35	
828	80	10	3.25	2000	750	23	13.5	0.05	14.5	30	M.	T-5C	Class-C Amp. (Telegraphy)	1500	400	75	-100	180	28	12	40000	2.2	200	828
													Class-C Amp. Plato-Mod.	1250	400	75	-140	160	28	12	30000	2.7	150	
													Grid-Modulated Amp.	1500	400	75	-150	80	4.0	1.3	-	1.3	41	
RK28	100	10	5.0	2000	400	35	15	0.02	15		J.	T-5C	Class-C Amp. (Telegraphy)	2000	400	45	-100	150	55	13	21000	2.0	210	RK28
													Class-C Amp. (Telephony)	1500	400	45	-100	135	52	13	21000	2.0	155	
													Suppres sor-Modulated Amp.	2000	400	-45	-100	85	65	13	-	1.8	60	
													Grid-Modulated Amplifior	2000	400	45	-140	80	20	4.0	-	0.9	75	
RK48 RK48A	100	10											Class-C Amp. (Telegraphy)	2000	400	-	-100	180	40	6.5		1.0	250	
			5,0	2000	400	22	17	0.13	13	-	J.	T-5D	Class-C Amp. (Telephony)	1500	400	-	-100	148	50	6.5	22000	1.0	165	RK48 RK48A
													Grid-Modulated Amplifier	1500	400	--	-145	77	10	1.5	-	1.6	40	
													Class-C Amp. (Telegraphy)	2000	400		- 90	180	15	3.0	107000	0.5	260	
813	100	10	5.0	2000	400	22	16.3	0.2	14	30	J.	Fig. 28	Class-C Amp. (Talephony)	1600	400	-	-130	150	20	6.0	60000	1.2	175	813
													Grid-Modulated Amplifier	2000	400	-	-120	75	3.0		-		50	
													Class-C Amp. (Telegraphy)	1250	175	-	-150	160	-	35	-	10	130	
850	100	10	3.25	1250	175	10	17	0.25	25	15	J.	T-3B	Class-C Amp. (Telephony)	1000	140	-	-100	125	-	40	-	10	65	850
													Grid-Modulated Amplifier	1250	175		-13	110			\cdots	\cdots	40	
860	100	10	3.25	3000	500	10	7.75	0.08	7.5	30	M.	T-4CB	Class-C Amp.-Oscillator	3000	300	\cdots	-150	85	25	15	ーー	7.0	165	86
											M.	T-4CB	Class-C Amp. Plate-Mod.	2000	220	-	-200	85	25	38	100000	17	105	860

table XVI-tetrode and pentode transmitting tubes-Continuad

Type	PAax. Plafe Dissipation Watls	Cathode		Max. Plate Valtage	Max. Screen Volfcge	Max. Screen Dissipation Watls	InterolecitrodaCapacifances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Sackel Can -nections	Typical Operation	Plato Valtago	Screen Volfage	Sup-pressar Volf. age	Grid Valfaga	Plafo Curront Ma.	Screon Curren! Ma.	Grid Current Ma.	Seraon Resisior Ohm:	Approx. Grid Driving Power Watls	Approx. Carrier Oufpu: Power Watts	Type
		Valts	Amps.				$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fiil. } \end{gathered}$	$\begin{gathered} \text { Grid } \\ \text { Plo } \\ \text { Plafe } \end{gathered}$	$\begin{gathered} \text { Plato } \\ \text { to } \\ \text { Fil. } \end{gathered}$															
4-125A	125	5.0	6.2	3000	400	20	10.3	0.03	30	120	N	Fig. 27	Class-C Amp. (Telography)	3000	350	-	-150	167	30	9		2.5	375	4-125A
4-125A	125	5.0		3000	400	20	10.3	0.03	3.0	120			Class-C Amp. Plate-Mod.	2500	350	-	-330	150	30	13	\cdots	6	300	
RK28A	125	10	5.0	2000	400	35	15	0.02	15	-	J.	T-5C	Class-C Amp. (Telegraphy)	2000	400	45	-100	170	60	10	-	1.6	250	RK28A
													Class-C Amp. Plate-Mod.	1500	400	45	-100	135	54	10	18500	1.6	150	
													Grid-Modulated Amp.	2000	400	45	- 55	80	18	2.0	-	0.5	60	
													Suppressor-Modulated Amp.	2000	-	-45	-115	90	52	11.5	30000	1.5	60	
803	125	10	5.0	2000	600	30	17.5	0.15	29	20	J.	T-5C	Class-C Amp. (Telegraphy)	2000	500	40	- 90	160	45	12		2.0	210	803
													Class-C Amp. (Telephony)	1600	500	100	-80	150	20	4.0	20000	4.0	155	
													Suppressor-Modulated Amp.	2000	-	-110	-100	80	48	15	35000	2.5	53	
													Grid-Modulaled Amplifier	2000	600	40	- 80	80	20	4.0	\cdots	2.0	53	
AT-340	150	5	7.0	4000	400	-	9.04	0.19	4.16	120	J.	Fig. 27	Class-C Amp.-Oselllator	3000	400		-500	165	75	-	-	2.4	-	AT-340
RK65	215	5.0	14	3000	500	35	10.5	0.24	4.75	60	J.	T-3BC	Class-C Amp. (Telegraphy)	3000	400	-	-100	240	70	24	30000	6.0	510	RK65
RK65	215	5.0	14	3000	500	35	10.5	0.24	4.75	60	J.	T-3BC	Class-C(Plate \& Screen Mod.)	2500			-150	200	70	22	30000	6.3	380	KK6s
4-250A	250	5.0	14.5	4000	600	50	12.7	0.06	4.5	85	N.	Fig. 27	Class-C Amp. (Telegraphy)	4000	500	-	-250	250	22	13	-	4.1	750	4-250A
														2500	500	\square	-100	325	70	22	-	3.7	562	
861	400	11	10	3500	750	35		0.1	10.5	20		T-1B	Closs-C Amp. (Telegraphy)	3500	500	-	-250	300	40	40	-	30	700	
861	400	11	10	3500	750	35	14.5	0.1	10.5	20	N.	T-18	Class-C Amp. (Telephony)	3000	375	-	-200	200	-	55	70000	35	400	

${ }^{1}$ Discantinued.
2 Triode connection-screen-grid fied to plate.
${ }^{3}$ Dual lube. Values for both sections, in push-pull.

- Terminals 3 and 6 must be connacted togother.
${ }^{5}$ Filament limited ta intermittont operafion.

Chapter Twenty-One

Radio Operating

The object of most radio communieation is the transmission of intelligence from one point to another, accurately and in as short a time as possible. For efficiency in communication, each class of radio service has set up operating methods and procedure best suited to its needs. Operators should not only be expert in transmitting and receiving code or voice signals, but thoroughly familiar with the uniform practices of their service.

© Memorizing the Code

One of the amateur operator-license requirements covers ability to send and receive Continental (International Morse) code at the rate of 13 words per minute.
The serious stadent of code - sending, rereiving, operating practices, copying on the typewriter, etc. - would be best advised to purchase a copy of the ARRL booklet, Learning the Radiotelegraph Code (price, $2 \overline{5}$ cents, postpaid).

A didah	N dahdit
B dahdididit	O dahdahdah
C dahdidahdit	P didahdahdit
D dahdidit	Q dahdahdidah
E dit	R didahdit
F dididahdit	S dididit
G dahdahdit	T dah
H didididit	U dididah
I didit	V didididah
J didahdahdah	W didahdah
K dahdidah	X dahdididah
L didahdidit	Y dahdidahdah
M dahdah	Z dahdahdidit
didahdahdahdnh	6 dahdidididit
2 dididahdahdah	7 dahdahdididit
3 didididahdah	8 dahdahdahdidit
4 dididididah	9 dahdahdahdahdit
dididididit	0 dahdahdahdahdah

Period: didalıdidaldidah. Comma: dahdahdididahdah. Question mark: dididahdahdidi. Error:didididididididi. Double dash: dahdidididah. Wait: didahdididi. End of message: didahdidahdi. Invitation to transmit: dahdidah. End of work: didididahdidah. Fraction bar: dahdididahdi.
Fip. 2101 - The Continental (International Morse) conte.

The first step is to memorize the cocle. The complete Continental alphabet is shown in the table of Fig. 2101. All of the characters should be learned, starting with letters and going on to numerals and punctuation marks. Take a few at a time. Review at intervals all the letters learned up to that time.

Think of the letters in terms of soume rather than their appearance as actual dot-umd-dash combinations. Think of A as the sound "didah" —not as a "dot-dash." Make the sound "di" staccato, allowing stress to fall equally on every "dah." There should never be a space or hesitation between "dits" and "dahs" of the same letter.

If someone who is familiar with code can be found to "send" to you, either by whistling or by means of a buzzer or code oscillator, enlist his coöperation. Learn the code by listening to it.

Don't think about speed to start; the first requirement is to learn every character to the point where you can recognize ench of them without hesitation. Concentrate on any difficult letters until they become as familiar as the rest.

© Acquiring Speed by Buzzer Practice

When the code is thoroughly memorize.l. regular practice periods will develop code proficiency. Two people can learn the code together, sending to each other by means of a buzzer-and-key outfit. An advantage of this system is that it develops sending ability, too. for the person doing the receiving will be quick to criticize uneven or indistinet sending. If possible get an experienced operator for the first few sessions to learn how well-sent characters should sound.
Either the buzzer set shown in Figs. 2102 and 2103 or the audio oscillator described will give satisfactory results as a practice set.

The battery-operated audio oseillator in Figs. 2104 and 2105 is easy to construct and is effective. If nothing is heard in the headphones when the key is depressed, reverse the leats going to either transformer winding (do not reverse both windings).

With a practice set ready, send single letters at first. When each character can be read quickly follow this by slow sending of complete words and sentences. Have the material sent at just a little faster rate than you can copy easily; this speeds up your mind. Write down each letter you recognize. Do not try to write

Fig. 2102 - The headphomes are connerted arross the coils of the buzzer, with a condenser in series. If the value shown gives an exerssively loud signal, it may be reduced to $470 \mu \mu \mathrm{fd}$. or $220 \mu \mu \mathrm{fd}$.
down the dots and dashes; write down letters. Don't stop to compare the sounds of different letters, or think too long about a letter or word that has been missed. (Go right on to the next one, or each "miss" will cause you to lose several characters. If you exercise a little patience you will soon be getting every character. When you can receive 13 words a minute (65 letters a minute), have the sender transmit code groups rather than English text. This will prevent you from recognizing a word "on the way" and filling it in before you've really listened to the letters themselves.

After you have acquired reasonable proficiency, concentrate on the less common characters, as well as the numerals and punctuation. These prove the downfall of many applicants taking the code examination.

Fig. 2103 - The cover of the buzzer unit has been removed in this view of the buzzer code-practice set.

C. Learning by Listening

WIAW conducts practice transmissions nightly Monday through Friday at speeds of $15,20,25,30$ and 35 w.p.m. Such practice tapes start at ten P.m. EST (EDST in summer). In addition, the Official Bulletins, also sent from W1AW, give added practice at 15 and $25 \mathrm{w} . \mathrm{p} . \mathrm{m}$. See the Operating News section announcements of W1AW Operating Schedule,
and Code Profieiency Practice notes, in the latest copy of Qs'T'. Practise until you can send in what you have copied over the air on W1AW's monthly "qualifying run" to get a 15-word-per-minute Code Proficiency Certificate or a sticker for advanced speeds. As soon as you can, listen on a real communications receiver (with beat oscillator) and have the fun of learning by listening.

Fig. 2104-Wiring diagram of a simple vacuum-tube audio-frequency oscillator for use as a code-practice set.

Fig. 2105 - Layout of the andio-oscillator code-practice fet. All parts nay be mounted on a wooden baseboard, approximately 5×7 inches in size.

(I) Using a Key

The correct way to grasp the key is important. The knob of the key should be about cighteen inches from the edge of the operating table and about on a line with the operator's right shoulder, allowing room for the elbow to rest on the table. A table about thirty inches in height is best. The spring tension of the key varies with different operators. A fairly heavy spring at the start is desirable. The back adjustment of the key should be changed until there is a vertical movement of about one-sixteenth inch at the knob. After an operator has mastered the use of the hand key the tension should be changed and can be reduced to the minimum spring tension that will cause the key to open immediately when the pressure is released. More spring tension than necessary causes the expenditure of unnecessary energy. The contacts should be spuced by the rear screw on the key only and not by allowing play in the side screws, which are provided mercly for aligning the contact points. These side screws should be screwed up to a setting which prevents appreciable side play, but not adjusted so tightly that binding is caused. The gap between the contacts should always be at least a thirty-second of an ineh, since too-
finely spaced contacts will cultivate a nervous style of sending which is highly undesirable. On the other hand, too-wide spacing (much over one-sixteenth inch), may result in unduly heavy or " muddy" sending.

Do not hold the key tightly. Let the hand rest lightly on the key. The thumb should be against the left side of the knob. The first and second fingers should be bent a little. They should hold the middle and right sides of the knob, respectively. The fingers are partly on top and partly over the side of the knob. The other two fingers should be free of the key. Fig. 2106 shows the correct way to hold a key.

Fig. 2106 -This sketch illustrates the correct position of the hand and fingers for good sending with a telegraph key.

A wrist motion should be used in sending. The whole arm should not be used. One should not send "nervously" but with a steady flexing of the wrist. The grasp on the key should be firm, but not tight, or jerky sending will result. None of the muscles should be tense but they should all be under control. The arm should rest lightly on the operating table with the wrist held above the table. An up-anddown motion without any sideway action is best. The fingers should never leave the key knob.

Good sending may seem easier than receiving, but don't be deceived. A beginner should not attempt to send fast. Keep your transmitting speed down to your receiving speed, and bend your efforts to sending well. Do not try to speed things up too soon. A slow, even rate of sending is the mark of a good operator. Speed will come with tince alone. Leave special types of keys alone until you have mastered the knack of handling the standard key. Because radio transmissions are seldom free from interference, a "heavier" style of sending is best to develop for radio work. A rugged, heavy key will help in developing this characteristic.

C. General Procedure

Calling - The call signal of the calling station must be inserted at frequent intervals for identification purposes. Repeating the call signal of the called station five times and signing not more than twice (this repeated not more than five times) has proved excellent for telegraph or voice practice (the receiver being kept tuned to the frequency of the called station). The use of a break-in system (c.w.) or push-to-talk (voice) is highly recommended to save time and reduce unnecessary inter-
ference to a minimum. Example:
W6EY W6EY W6EY W6EY WGEY DE W1AW W1AW.
Stations desiring communication with any station may use the signal of inquiry, CQ , in place of the call signal of the station called. The general inquiry call (CQ) should be sent not more than five times without interspersing one's station identification, and the length of repeated ealls is carefully limited in intelligent amateur operating. Too many insertions of one's own call in a CQ will decrease its effectiveness. CQ is not to be used when testing or when the sender is not expecting or looking for an answer. After a $C Q$ the dial should be covered thoroughly for two or three minutes looking for replics. For voice work "Calling any a mateur station"' is considered superior to CQ, one of the attributes of voice operation being the ability to "say it with words."

FCC regulations require all amateur operators to send the cull of the station called or worked and their own call at the beginning and end of each transmission, and in any event at least once each ten minutes during long transmissions. Where break-in is used and exchanges of sequences of 3 minutes or less are taking place, the calls are required (additional to beginning and end) only each ten minutes. "This is" or "from" must be used by voice stations in place of "DE." Portables and mobiles must give their geographical designation after their calls.
Answering a call - The above example, when replying to a call, may be cut down to three (or less) calls, DE, and one or two repetitions of your own call, with further reduction to a one-times-one call when conditions permit during communication. Example:

WGEFC DE W1AW GE OM K (good evening, old man, go ahead.)
Ending signals - After a CQ, a transmission should end with K (invitation to transmit):

CQ CQ (etc.) DE W7BG W7BG K.

After a call to a specific station (contact not yet established) use $\overline{\mathrm{AR}}$:

VE3CAR VE3CAR (etc.) DE WIBDI $\overline{A R}$.
At the end of each transmission during QSO use K :
. . . W5BMI DE W6RBQ K.
At the conclusion of a QSO use $\overline{\mathrm{VA}}$ or $\overline{\mathrm{SK}}$: t $:$. Tnx data ur rig 73 VA W1AW DE W4IP.
If closing station, add CL.
Voice calls - An initial voice call may be made as follows: "Calling any amateur station, this is W 6 BAKER KING YOUNG in Whittier, California. Go ahead."

W1LVQ calls W6BKY: "W6BKY, this is W 1 LEWIS VICTOR QUEEN in Hartford, Connecticut. Go ahead."

W6BKY answers W1LVQ: "W1LVQ from W6BKY" (proceeds with contact).

During the contact as above, transmissions may be ended: "W1LVQ from W6BKY, over."
In concluding a contact: "W1LVQ, this is W 6 BAKER KING YOUNG in Whittier, California, signing off."
If W6BKY is closing his station, he coneludes: ". . . signing off and closing station."

Tuning procedure after CQs - The use of special abbreviations after a CQ call to indicate from what part of the band tuning will start is a valuable aid to the receiving operator in determining frequency to use and how long to call. ARRL recomnends the following abbreviations for this purpose:
HMI - Will start to listen at high-frequency end of band and tune toward middle of band.
MIH - Will start to listen in the middle of the band and tune toward the high-frequency end.
LAI - Will start to listen at low-frequeney end of band and tune toward middle of band.
ML - Will start to listen in the middle of the band and tune toward the lour-frequeney end. Example: If the procedure will be to tune from the middle of the band to the high end, a CQ call should include: By c.w. - CQ DE WGRBQ MH K. By voice - Simply use the words for which the abbreviation MH stands.

Directional CQs - If interested in a particular direction or locality for a contact or message relay, so indicate in your call. A CQ call must be long enough to attract one or more oyerators, but not long enough to cause listeners to tire and tune away from your signal. Examples: CQ W5, CQ DALLAS, CQ WEST.

C. Voice and Telegraph Operation

Radiotelegraph code is used for reliable accurate communication of intelligence, even at great distances. The good operator is noted for his neatness and accuracy of copy. It is desiralle to copy exactly what is sent, If there is any doubt about a letter or word one should query the transmitting operator. Never send R (for OK) until all that has been sent is successfully received (eopied down or understood).
Procedure in telegraph and in radiotelephone operation is sinilar. However, in voice work the operator makes little use of the special abbreviations available for code work, of course, since he may directly speak out their full meaning. Radiotelephony is used by other scrvices nuinly for discussion or commandcontrol purposes. Telegraph operation is generally preferred for message work and extreme DX under difficult conditions.
Repeats - When a few word-groups in conversation or message handling have been missed, a selection of one or more of the following abbreviations are used to ask for a repeat on the parts in doubt:

Abbreviation	Meaning
?AA.	Repeat all after
?AB	Repeat all before.
?AL	Repeat all that has been sent
?BN	Repeat all between. . .and
? WA	Repeat the word after.
?WB	Repart the word before.

The good operator will ask only for what fills are nceded, separating different requests for repetition by using the break sign or double dash ($-\cdots$) between these parts. There is seldom any excuse for repeating a whole message just to get a few lost words.

Another interrogation method is sometimes used, the question signal ($\cdot \cdot-$ - \cdot) being sent between the last word reecived correctly and the first word (or first few words) received after the interruption.

Unusual words should be avoided, in the interest of accuraty, when drafting nessages. When they unavoidably turn up difficult words may be repeated, or repeated and spelled. The operator says "I will repeat" or "I say again" when thus retransmitting a difficult word or expression.

The speed of radiotclephone transmission (with perfect accuracy) depends almost entirely upon the skill of the two operators involved. One must learn to speak at a rate allowing perfect understanding as well as permitting the receiving operator to copy down the message text, if that is necessary. Because of the similarity of many English speceh sounds, the use of alphabetical word lists has been found neeessary. All voice-operated sta-

FOLE IBADIDTELIETPITANE

As a service to all amateurs, the ARRLL Word List printed lerewith has been clevised. A phonetie alphabet or special word list is recommented for use as necded in identifying station calls or difficult words.

The list helps to avoid facetious word combinations. This gives it greatest acceptability to all amateurs.

Use of this standard list is recommended by ARRL. Hipphazard selection of words often results in confusion. A degree of uniformity in use of phonetic words reflects favorably on your individual operating, and on the whole amateur service.

N - NAN゙CY
O - OTTO
- PETER
Q - QUEEN
- ROBERT
- SUSAN
THOMAS
UNiON
- VIC'HOR
W - WILLIA
- R
- ZEBRA

Example: W1EH . . . W 1 EDWARD HENRY.

It is recommended that use of Q -code and special abbreviations be minimized in voice work insofar as possible, and the full expression (with conciseness) be substituted.
tions should use a standard list as needed to identify call signals or unfamiliar expressions.

Using a microphone - Many of the principles for getting operating results are similar to those set down for key operation. However, the ability to phrase clearly and concisely counts. Good push-to-talk technique differs considerably from broadcasting. Where possible, controls or on-off switches should be arranged to pernit fast back-and-forth exchanges. This will help to reduce the length of transmissions, enable us to note quickly when interference comes on a frequency, and will keep brother amateurs from calling us a " monologuist" - an individual who likes to monopolize a clannel and hear himself talk!

USE PUSH-TO-TALKKAND AVOID BEING CALLEDA MONOLOGUIST

Here is a short tabulation of the points of good result-getting technique:

1) Jisten muelı . . . with care. Aroid distructions in your operating room. Tune the band well after cach call.
2) 'lime your cnlls; monitor your own frequency. Call only when a station is free.
3) Make ahort calin, with breaks to listen. Speak clearly, at a steady, modest ratc. Three short calls are better than one long one.
4) Uac push-to-talk technique . . . speak near the microphone. Watch the modulation indicator. Keep local background noise at a minimum.
5) Make notes. Avoid missing points for comment. Jot down tonics to avoid repeats.
6) Talk in connecterl thoughts and phrases. Notes will help avoid mixing up subjects. Insh-to-talk techuique will keep brother amateurs from callink you a monologuist.
7) Speak nazurally. QSOs need not be eut and dried. Make them interesting. Avoid exhibitionism. Use proper operating form to promote efliciency in communication and add respect and prestige for your station.

Voice equivalents to code procedure"Go ahead" or "Over" (K) indicates receipt or further transmission is expected.

Wait, stand by (AS-QRX).
Okay (R) indicates receipt for a correctlytranscribed message, or that transmission was received "solid" with no inissing portions.

Make transmissious through twice (QSZ). Repeat each word twiec.

All After . . . (AA). Repeat all after . . . (word).

All Before . . . (AB). Repeat all before . (word).
Repeat BetweeN . . . and . . . (BN). Repeat between . . . and . . . (words).

Message handling - Each service - commercial, military, amateur - prescribes a message form, but all are generally similar. A message is broadly divicled into four parts: (1) the preamble; (2) the address; (3) the text; (4) the signature. The preamble of all amateur radiograms includes:
a) Number (of this message).
b) Station of origin.
c) Check (number of words in text).
d) Place of origin.
c) Time filed.
f) Date.

Therefore, it might look like this:
Nr 34 w9and 13 chicago ill 450 rat may 12
willlam montgomery
2159 noxi nt nw
washington uc Br
Local embheneve coombinators tave 123 men avaitable for active duty case of emergenct it

BLAKE
This is ohviously the 34 th message (of that day or that month, as the poliey of the station prescribes) from station W9AND. The check is 13. The signal $\overline{B T}$ (double dash) is used to separate the text from address and signature.

Several radiograns may be transmitted in series (QSGG . . .) with the eonsent of the station which is to receive then. As a general rule long radiograms should be transmitted in seetions of approximately filty words, each ending with $\cdots-$ - $(?)$, meaning, "Have you received the message correctly thus far?"

If the first part of a message is received but substantially all of the latter portions lost, the request for the missing parts is simply IRPT TXT AND SIG, meaning, " Repeat text and signature." PBL and ADI may be used similarly for the preamble and address. IRPT ALL or IRPT MSG should not be sent unless nearly all of the messuge is lost.
The service messase - When one station has a message to transmit to another concerning the handling of a previous message, the message is titled "service" and is indicated by "SVC" in the preamble when sent. Such a message may refer to nondelivery, delayed transmission, errors, or to any phase of mes-sage-handling aetivity. Words nay be abbreviated in the text of the service message to conserve time. Do not abbreviate to the point where misumderstanding may arise.

Land-line check - The land-line or "text" count, consisting of count only of the words in the body or text of the message, is probably now most widely used. (The "cable" count covers all words in the address and signature, as well, probably accounting for its unpopularity.) When in the case of a few exceptions to the basic rule in land-line checking, certain words in the address, signature or preamble
are counted, they are known as extran words and all such are so designated in the check right after the total number of worls.

The check includes:

1) All words, figures and letters in the body, and,
2) the following cxtra words:
a) Signature expept the first, when there are more than one (a title with signature does not eobunt extra, but an address following a signatiure does).
b) Words "report delivery," or "rush" in the check.
c) Alternate names and/or street address, and such extras as "personal" or "attention."

Dictionary words in most languages count as one word irrespective of length of the word. In counting figures. a group of five digits or less counts as one word. Bars of division and decimal points may eonstitute one or more of the digits in such a group. It is recommended that, where feasible, words be substituted for figures to reduce the possibility of error in transmission.

C. Net Operation

Amateurs ean add much experience and pleasure to their amateur lives, and substance and aceomplishment to the credit of all amateur radio, when organized into effective interconnection of the cities and towns of a state.

The solection of suitable stations to be invited to work together is important. Operating ability is required. All individuals must be willing to contribute unselfishly to the success of the group objectives, permitting operations to be guided absolutely by the word of the NCS (Net Control Station).
"Break-in" is advantageously employed here - the receiver is kept ruming during transmissions, so that nearly-simultaneous two-way communication is possible.

Briefly, the procedure in net operation is as follows: The NCS calls the net together at a preannounced time and using a predetermined call. Immediately, station nembers of the net reply in alphabetical (or some other predetermined) order, reporting on the NCs's signal strength and stating what traffie is on hand, and for whom. The NCS acknowledges, meranwhile kerping an ancount of all traffic on hame, by stations. He then directs the transfer of messages from one station to another, giving preference to any urgent traffic so indicated at roll call. When all traffic has been distributed and it is apparent there is no further business the NCS will close the net, in most cases maintaining watch on the net frequency for any special traffie which miglit appear. In general the operation of all net stations is conducted for highest efficiency, on the same, or on closely-adjacent frequencies.

Keeping a log-FCC regulations require nearly every radio-communication station to keep a complete operating record or "log," including such datai as times and dates of transmissions, stations contacted, message traffic handled, input power to the transmitter, frequency used, and signature or "sine" of the operator in charge.

Secrecy of correspondence - Provisions in the Communications det make it a miselemeranor (with heavy penalies: to give out information of any sort to any person expept the addressee of a message or his authorized agents. Remember that any addressed point-to-point communication (rall-to-call) is covered by the law. Only when sent after a CQ call or QST (to all amateurs) can a conversa- $^{\text {a }}$ tion or message be used or divalged without the express consent of the uriginator or recipient.

C. Time Systems

While many telegraph and raclio cirenits use local standard (or daylight) time in logkecping and message-handing, international radiocommunication stations and the military services follow the 2 thour system of timekeeping. Greenwich Civil Time (2t-hour system) is based on the time in Greenwieh, Engrand, the city at the 0° meridian. Midnight in Greenwich is represented by 0000; 0600 represents 6 A.m. there; 1200 is noon; 1800 is 6 P.m.: 2400 is agran midnight and the same as 0000 of the next day. The figures must be corrected to each individual time zone. Fastern Standard Time is five hours behind Creenwich, so then 0030 GCT (6:30 A.m. in (rreenwich) would represent 1:30 A.m. EST, for example. As an example of reverse translation, 9:30 A.m. Es'l would be designated in the log as 1430 (ic:T. FDST is fonr hours belind GCT; MDsT, six hours; PDsir, seven.

The military services use simply a 24 -hour clock, based in local time, without correcting to (ireenwieh or any other longitude. The mincipal advantage of this system is the elimination of the necessity for the use of P.m. or A.m. abbreviations. Warlh 15° zono of longitude around the globe is designated by a letter which is sent in messages with the numerals giving the time.

4. ARRL Operating Organization

The purpose of station-huilding is to eommunionte. To assist amateurs to get the most from their communication by :mateur radio ARRL maintains a Communications l')epart. ment with 70 territorial Sections :U.S.A., P.I., Cuba, Canada). A member-elected Section Manager administers appointments and handles correspondence and activity reports (published monthly in $Q S T$) from the active reporting stations in each Section.

All posts in the organization are dedicated to fulfilling certain specified objectives. A high
standard of operation, telegraph or voice, is called for in each "station" appointment. In certain of the activities or station tests, results may be achicved in a week-end or two of operation that are the equivalent of "months" of average amateur work. Organization permits superior results through the mutual coöperation and collaboration of each member of a group. Our ARRIS is a mutual-benefit associalion for the representation of the amateur, striving to add in every way to the effectiveness of the individual station and to increase the pleasure and profit of the menber in his holby.

The following abbreviated descriptions indicate the types of ARRL-SCM appointments that are made with the purpose of each. See pare 6 in any $Q S T$ for the address of your Suction Communications Manager. Every reader of these pages is cordially invited to report his station activities to his SCM for QS'T mention. All who meet the qualifications and will assist in the objectives set down in the ARIRL Constitution, ancl the book Operating an Amateur Radio Station are urged to secure appropriate forms for appointments from the SCM or AIRRL Headquarters and to fully participate in their operating organization.

Leadership and station appointments-

SEC (Section Emergency Coördinator). Promotes and administers Section emergency radio organization.

EC (Emergency Coürdinator). Organizes amateurs of a community or other area for radio emergency service; liaison with officials of agencies served and with representatives of other communication facilities locally.

ORS (Official Relay Station). Traffic service, operates nets and trunk lines.

OPS (Official 'Phonc Station). Voicc-operating, assists in establishing high operating standards.

OES (Official Experimental Station). Experimental operating, collects reports on v.h.f.-u.h.f.-s.h.f. propagation data or contacts; some engage in fax, f.m., tv., ete. experiments.

OBS (Official Broadeasting Station). Transmits ARRL Bulletins to amateurs.

OO (Official Observer). Sends mail (or radios) coöperative notices to amateurs to assist in frequency observance, insure high-quality signals, and prevent FCC trouble for the indivilual or the fraternity.

IR M (Route Manager). Organizes traffic nets and coördinates schedules.

PAM ('Phone Activitics Manager). Organizes activities for OPS.

(I) RST System of Signal Reports

The RST system is an abbreviated method of indicating the main characteristics of a reccived signal, the Readability; Signal Strength. and Tone. The letters RST determine the order of sending the report. In asking for this

> READABILITY
> I- Unreadable
> 2-Barely readabile, oceasional words distinguishable
> 3 - Readable with considerable difficulty
> 4 - Readahle with practically no difficulty
> 5 - Perfectly readable

SIGNAL STRENGTII

1 - Faint - signals barely perceptible
2 - Very weak signals
3 - Weak signals
4-Fair signals
5 - Fairly good signals
6 - Good signals
7 - Moderately strong signals
8 - Strong signals
9 - Extremely strong signals

TONE

1 - Extremely-rough hissing note
2 - Very rough a.c. note, no trace of musicality
3-Rough low-pitehed a.c. note, slightly musical
4-Rather rough a.c. note, moderately musical
5 - Musicaly -mindulated note
6-Modulated note, slight trace of whistle
7 - Near d.c. note, smooth ripple
8 -Good d.c. note, just a trace of ripple
9-Purest d.e. note
(If the note appears to he crystalcontrolled simply add an X after the appropriate number.)

If there is evidence of a chirp, the letter C may be added to so indieate.

Exnmples

By Telegraph: RST 359 ; RST $367 \mathrm{X}:$ RST 498C. The lethers ISST need notbesent, if it in olearly understood that the 13Si' System is being uncd.

By Voice: Say simply, "I ani receiving you Readability . . ((1-5), Strength . . ((1-9)."
form of report, one transmits IRST? or simply QRK:

C Emergency Operating

Onc of the most interesting and practical ficlds for the active amateur, adding to his enjoynent as well as his prestige and record for successful and constructive communication, is that of emergency operating work. Before World War II individual amateurs and groups had scores of recorded instances of participation, handling information of critical value by a mateur radio in sudden emergencies resulting from hurricane, flood, earthquakes, blizzards and other natural and man-made disasters

Radio $O_{\text {perating }}$

that severed wire communication and transportation.
Following World War II, the FCC reopened amateur facilities in a limited manner just one week after V-J Day, to permit the reactivation of the ARRL Emergency Corps and the restoration of the widespread amateur radio capabilities to help local communities and the nation through the wide geographical availability of amateur stations. Even if amateurs do not find radio drills and aetivities pertinent to emergeney preparedness (on 144 Mc. and every low-frequency band) of the greatest interest and pleasure, amateurs should wish to participate in AEC organization and planning in order to continue such FCC approbation and action in their behalf! So every reader who is an amateur is urged to subscribe to the Emergency Corps and participate in every local and national activity in any manner related to emergency preparation!

A communications emergency oceurs whenever normal facilitios are interrupted or overloaded, and may or may not involve general public participation or require FCC reeognition or declaration. A communications emergency need not involve a public relief or welfare emergeney, but the latter eondition usually is accompanied by a communications emergency.

Relief problems of the community at large, official messages from Red Cross, military and civic officials, have alsolute priority in emergency. Radio circuits must carry the important messages first, and when personal-safety messages are permissible, in the judgment of operators in the affected area, it is even then much more profitable to earry the burden of traffic and outgoing messages of safety, rather than requests for investigating safety which cannot be acted upon except at a deferred date.

When FCC declares a condition of general communications emergency, special imateur regulations ($\$ 12.156$) govern absolutely, with the following provisions effective until the Commission declares the emergency encled:

1) No transmissions in the 80 -meter band may bo mado exeopt those reliating to the relief or emergency service. Casual conversation, incidental calling or testing, remarks not pertinent to the construetive handling of the emergency communications, shall be prohibited.
2) Band-edge segments of 25 ke . shall be reserved at all times for (a) emergency calling channels, (b) initial calls from the isolated, (c) first calls initiating dispatch of important priority relief matters. All stations shall, for general communication, shift to other withinband frequencies for carrying on cominunications.
3) Hourly observance of mandatory quiet or listening periods, the first five minutes of each hour. (No calls may lo answered in this period. Only "utmost priority" traffic may continue.)
4) For promulgating the emergency-declaration, and for policing-warning-observing work,

FCC may designate certain amateur stations. Announcements from these stations will be identified by their reference to $\$ 12.156$ by number, and their specification of the date of the FCC's declaration, with statement of the area and nature of the emergency.

Emergency calling frequencies - Regarding QRR, which call is limited to use of isolated stations for first emergency calls, special provisions and methods are necessary to assist the stations under handicap of no commercial power, in remote sections, in getting contact and help.

It is recommended by ARIRL that frequencies at the band edges be utilized for emergeney calls when no general emergency is deelared or in effect. This lends point and specification to builders of emergeney equipment. This spot on all bands is well covered continuously by receivers. It gives hope to the isolated operator that he be heard. All listeners are instrueted to hunt for weak signals on such frequencies, during general emergency, for taking account of the isolated and establishing new important connections.

americar radio relay league EMERCENCYCORPS FOR PUBLIC SERVICE

 This Cartifies that John J. Doe Full-member of the ARRL Emeigency Full ate belowber of the ARRL Emergency Co Yer the event of failure of regular communication facilities due to storms, hloods, and similar odisasters, this omunication fatilities due to He will raio station and services to his country and community. He will coaperate closely in Emergency Corps activities, such as plans ior rendering emergency communications service, and will participale as possible in appropriste preparedness drills and tests.

EMERGENCY COHPS MEMBERSHIP CARD IIave You Got Yours?

ARRL Emergency Corps - The ARRL Emergency Corps (AEC) is dedicated to organization of the amateur radio serviec for top performance in supplying emergency radio communication whenever and wherever needed. The Emergency Corps has been organized and strengthened to insure maximum effectiveness at the same time it provides operating enjoyment for its meinbers.

Emphasis is on radio activity and simulated emergency nets. The organization chart and radio functional diagran will help you to understand the operation of the Corps. V.h.f. is the aecepted medium for local emergency communication. The $144-\mathrm{Me}$. band is recommended for local nets where practicable. II.f.band stations will be recruited for long-haul emergency requirements. Drills and simulated emergency work are the aim in each community. Activity in these will be required to keep in the Full Membership group.

Here is an official activity in which you, as an amateur, will want to participate. If you have an operative station on $144-\mathrm{Mc}$. or other
anateur frequencies, aim to join the ARRI, Emergency Corps. Work closely with the Emergency Coördinator (wherever appointed) and the SC.I.

Why youshould join - Amateur radio must carry forward its rôle of furnishing omergency commmications. Disaster can and dors strike where least, expected! 'To cope with emergency problems wherever they arise, the support of amateurs throughout the mation is required. Publie servior in emergencies is part of the tradition of amateur radio. and substantial justification for the frequency assignments granted by our government. The ARRL Emergency Corps is an important activity.

RADIO FUNCTIONAL DIAGRAM

How to joirt - Application forms are available from your local EC, the local $\Lambda R R I_{-}$ affiliated club, your SCM or from Leaguc headquarters. Onc of thesc forms properly filled out and returned to the address indicated thercon, entitles you to receive a eard certifying membership in the Emergeney Corps. You will then be included in plans for on-the-air tests, drills, and other interesting activitios. Join now! A postal will bring you the application form.

© Operating Activities

Operating in the amateur bands offers many thrills. The" "unexpected" is always around the corner. special activitics arc sponsored by the American Radio Relay League, adding to ham interest and fraternalism.

Within the ARRL field organization there are all-season and quarterly activities. The first Saturday night, each month is set aside: for all ARIRL officials, officers, and directors to get together over the air from their own stations, wherever located. The $3.5-\mathrm{Mc}$. bamed is used and this first. Saturday night is known to the gang as AIRRLL Offeials Nite.

As in all our operating. the idea of having a good time is combined in the ammal Field Day with the more serious thought of preparing ourselves to shoulder the communication load as emergencies turn up and the occasion requires. A premium is placed on the use of cquipment without connection to commercial sources of power.

The Worked All States (WAS) award is made available by ARRL to all a mateurs who have confirmed evidence of contacts with all states from one location - as one example of available certificatc awards. A DN "Century Club" cortificate likewise is given to all amateurs proving contact with 100 countrics in a like manner. Corle Proficiency Certificates are available for submitted copy of aural reenption at 15 to 35 words per minute, provided bona fide "copy" of monthly qualifying runs cheeks.

Progress in proficiency of code reception is shown after the initial test and the ARRL ecrtificate award by a separate dated-and-initialed endorsement. This is arranged for display on the certificate. Every lieensee is invited to go "all out." for our awards by sending in copy transcribed by his personal efforts on one of the qualifying runs. Sec the latest issue of QST for the current schedule of W1AW Qualifying Runs. Get your certificate . . . then the progress awards!

Follow QST cach month for eurrent announcements of special simulated-emergency tests, concerning ARRL Trunk Line operation, A-1 Operator Club, Rar Chewers Club, Old Timers Club, Fielel Dar. International DX and All-Section Swecpstakes competitions, and others.

The booklot. Operating an Amateur Ratio Station is sent gratis on request to Leaguc members, and covers the rulrs for different ARRL A wards as well as the several leadership and station appointments granted amateur: members of the League who are conducting particular types of services in an cxemplary manner. to assist brother amateurs or build the ability of amateur radio to serve the community and the nation. This 19 -page book deals consecutively with Operating Practice, Einergency Communication, Operating Activities, ARRL Field Organization, Leadership Appointments, Station Appointments, Handling Messages, Network Organizing and NCS Duties, Abbreviations, and FCC Regulations, Orders and Miscellany. If you are a League member mail a card for your free copy today.

INTERNATIONAL AMATEUR PREFIXES

To make possible identification of calls heard on the air, the international telecommunications conferences assign to each nation certain alphabetical blocks, from which all classes of stations are assigned prefixes. The following prefixes are used by amateurs.

c	China (used unofficially)
CE	Chile
CM-CO	Cuba
CN	Firench Morneco
CP	Bolivia
CR	Porturuesc colonies: 4, Cape Verde Ids.; 5, Port. Guinea; 6, Angols; 7, Mozanhbique; 8, Port. India; 9, Macho; 10, Timor.
CT	Portugal: 1, Portugal proper; 2, Azores Ids.; 3, Madeira Ids.
CX	Uruguay
D	Germany
EA	Spain and colonies: 1, 2, 3, 4, 5. 7, Spain praper; 6, Balearic Ids.; 8, Canary Ids.; 9, Span. Morocco \& No. Africa.
EI	Eire
EL	Liberia
EP	Iran (Pcrsia)
ES	Fstonia
F	France and enlonies: F3, F8, France proper; FA. Algeria; F138, Madagascar; FD8, Togo; FE8, Cameroons; FF8, Fr. West Africa; FG8, Guadeloupe; FI8, Fr. Indo-China; l-K8, New Caledonia; FL8, Fr. Somaliland; FM8, Martiniquc; FN8. Fr. India; FO8, Fr. Occaniu; FP8, St. lierre \& Miquelon; FQ8, Fr. Equatorial Africa; I'R8, Reunion Ids.; FT4, Tunisia; FU8. New Hehrides; FY8. Fr. Guiana \& Inini.
G	Great Britain except: GI, Northern Ireland; GM. Scotland; GW, Wales.
H.	Hungary
HB	Switzarland
HC	Ecuador
Hil	Haiti
HI	Dominic:an Republic
HJ-IIK	Colombia
HP	Republic of Panama
HR	Honduras
Hs	Siam
HZ	Hedjaz
1	Italy
J	Japan
K	Continental United States of America
KA	Philippinc Ids.
KB-KZ	Territuries and posscsasions of the U.S.: KB6, Baker, Howland, American Phoenix Ids.; KG6, Guam; KHf. Hawaii; KJ6, Johnston Island; KL7, Alaska; KM0, Midway Islands; Kifu, I'uerto litico; KPG, Palmyra Group, Jarvis Id.; KS6, American Samoa; KV4, Virgin Islands; KW6, Wake Group; KZ5, Canal Zonc (Army).
LA	Norway
LU	Argentina
LX	Luxembourg
LY	Lithuanin
LZ	Bulgaria
MX	Manchuria
NY	U.S. Navy yards: NY1-2, Canal Zonc; NY4, Guantanamo, Cuba.
OA	Perı
OH	Finland
OK	Czechoslovakia
ON	Belpium
OQ	Belgian Congo
OX	Grcenland
OY	The Faeroes

O7 D	Denmark
P. \quad N	Netherlands
P.J C	Curacno
PK	Netherlands Indius: 1. 2. 3. Java; 4, Sumatra; 5. Dutch Borneo; 1, Celebes-New Guine:1.
PX A	Andorra
PY P	Brazil
P\% S	Surinam (Neth. (iniana)
SM S	Sweden
Sp P	Poland
ST-Sti E	Egypt: ST, Eryptian Sudan; SU, Egypt proper
SV-SX G	Grecce
TA T	Turkey
TF I	Iccland
TG G	Guatcmala
TI Co	Costa Rica
U-UC U	Union of Sorialistic Sovict Republies: 1-7, Ftiropean; 8. 9, 0, Asiatic. UB, Ukraine; UC. White Russian.
VE C	Canada
VK A	Australia: 2, 3, -5, 6, 8. Aist. proper; 4, Papun Terr.; 7, '1'ısmani:ı; 9. New Guinea Terr.
VO N	Newfoundland and Lalorador
VP to VS B	British colonis's and protectorates: VP', Brit. Homburas; 2, Leeward de Windward Ids.: 3, Brit. Guiana; 4, Prinidad and Tobago; 5. Jamaica and Cayman Ids.; 6, Barbartos; 7, Bahamas; S, Falkland Ifs.; 9, Bernuda; VQ1, Zanzibar; 2, Northern Rhodesia; 3, Tanganyika; 4, Kenya; 5, Uganda; 6, Brit. Sonadiland; 8, Mauritins and Chasos: 9, Scychelles; VR1, Gilbert \& Ellice Ids. and Occan Id.; 2, Tiji Ids.; 3, Fanning Id.; 4, Solomon Ids; 5, Tonga (Friendly) Ids.; 6, Pitcairn Id.; Vs1. Straite Settlements; 2, Federated Malay States; 3, Non-federated Malay States; 4, Brit. North Borneo; 5. Sarawak; 6, Hongkonr; 7. Ceylon; 8, Bahrein Id.; 9, Maldive Ids.
VU B	British India
W C	Continental United States of Amprica
XE M	Mexico
XU	China
XZ !	Burina
YA A	Afghanistan
YI Ir	Iraq
YL L	Latvia
YM F	Fren Cityr of Пanzig
YN N	Nicaragua
YR IR	Roumania
YS E	El Salvador
YT-YU Y	Yugoslavia
YV V	Venczucla
ZA A	Albania
ZB to $\mathrm{ZJ} \quad \mathrm{B}$	British colonies and protcctorates: ZB1, Malta; 2, Gibraltar; ZC1, Transjordania; 2, Cocos Ids.; 3, Christinas Id.; 4, Cyprus; 6, Palestine; ZD1, Sicrra Leone; 2, British Cancroons, Nigoria; 3, Gambia; 4, Gold Const (Brit. Togoland); 6, Nyasaland; 7, St. Helena; 8, Ascension Id.; 9, Tristan da Cunha; ZE1, Southern Rhodesia.
Zİ-ZL-ZM	1 New Zcaland: ZK1, Cook Ids., Zanzibar; ZK2, Niuc; ZL, New Zealand proper; ZM, Brit. Samoa.
ZP	Paraguay
ZS-ZT-ZU	Union of South Africa: ZS1-2, 4-6, South Africa proper; ZS3, Southwest Africa.

pageConxinl Lines $198,206-207$ Concentric Iines 198, 206-207Current Feed.207 197
Dela Mateling Transformer 197
Dircet Excitation
$.2: 32-233$
$.2: 32-233$
Feeder Connestions.
Hirmonic Resonance 49
Impedance
51-52
I, ength. 198-204, 219I ine Current$.204-205$
I, incar 'Transformers. 208
Ionsses. 199-200Opresonant Line
203-205
"Q" Section 207-208
Resistance. . 51
Single-Wirc Fecr $198,205-200$
Standine-Witve Ratio 150-51
Stub Matchang.
203-205
Tuned Transmission Iines. 198-209
Twisten- Pair I Linc
Twisten- Pair I Linc
205-210
205-210
Voltilge Feed
$197-198$
$221-22: 2$
Feading (lose-spaced Arris?s. $222,37(\mathrm{~b}-377,34)$
Folded Doublet. 222,376-377,392
Fres-space Pattern. $195-190$
Guys. 228
Half-Wave 104-193
Hertz Antenna $28-299$
194
Injucdance: $194,195,196,210$
"J"Antenna $223-23: 3$
$3!00-391$
Lazy-HI Antenna 218
Lenjeth. 44,207,220
Sightning Protertion 2:23-230
Long-Wire Antemas $21,3-210$

Masts $226-223$
Measirments. $+11-412$
$390-392$
Multiband Antermas $.212-215$
Parabolic Reflectors 382
Parasitic Elements.
Parasitic Elements. $220-223,317-381$ $220-223,317-381$ 197,211
Patterns, Radiation
Patterns, Radiation
Phisel Arrays. 216-220, 378-37!
Plane Reflector Antennas 382
Polarization. iss, 194, 196
Power Gain. 104, 210, 215, 217, 218, 220, 375
Pulleys $.228-239$
$.207-208$
Radiation Characteristics.19.7
Radiation Resistance $4!$
Reflection, Ground 195
Reficetor. 220,377-38
Restricted S....213-211
Rhombic or Diamond Antennas 215-216
Rotary-Beam Antemnas216-223, 230-233, 377-381
Switchinf S-49
-230
Tilt Angle 21.
Transmission Lines. $198-210,229,23$ $198-210,229,23$
Tuners, Construction of:
Low-I'ower Rack-Monnted Antenna Tuncr. 26:5-260
Vide-Range Antenna Coupler. $2!9 \cdot$
Receiver. 2.5
"V" Antennas. 21:
Very-Hish Frcquency" (sce "Very-ligh Frowurn-
cics) . $37 \mathrm{i}-382$
Voltare Distribution 194-195, 20! $)-210$
Wide-Band Antennas 381
Zcpp Antenna 203
Arc-Back. 176
Arms, Bridge-Cireuit. 48
Arrays, Antenna 15-223, 377-38

Heating Effect.	
Heary.	2.
Hertz Antenn	194-195
Heterodync Frequency Meters	394-396
Heterodyne Reception.	.. 142
High-C Circuit	
Hiph Frequencie	
Hiph-Frequency Compensation	78
Hiph-Frequency Oscillator (Receiver)	58
High-Frequeney Relaxation Oscillator.	82
High-Pass Filters.	47
High-Q Circuits.	113
High-Vacuun Rectifiers	17.
Hiram Percy Maxim Memorial Station	11
Hiss . coise	6i-169
History of Amateur Radio	12
Holes, Drilling and Cuttin	--236
Hollow Wave Guides	-55
High-speed Sweep Circuit.	
Hook-Up Wire	237
Hum.	129, 133, 147
Hydronicter.	. 20
	16-17
Image, A.F	
In:uge, R.F.	15.5
Intike Ratio.	155, 165
Imilse Supyre	
Imperdance.	34-35, 39, 42
Imjediance, Antenna	114-1!66, 210
Imperlance-Coupled.	60-67
Impedance, Gricd	10: 51006
Inperdance Matching	39, 51
Infuedance Ratio, Transformer	
Impedance, Resonant.	12
Impedance, Surge 50
Impedance, Tank.	(1)4-105. 106
Impedance Transfor	.51-52
Impulse Noise	
Incomplete Neutralizat	104
Indicators, Tuning	16-165
Induced Voltage	
Inductance	
Inductance. Capacity and Frequency	13-414
Inductance Design Charts for S.H.F. C	. 414
Inductance, Distributed	
Inductance, Mutual.	
Inductances in Scries und Parallel	8
Inductance Winding	107
Induction	
Induction, Mannetic	
Induction, Sclif-	
Inductive Ciapucity	
Inductive Coupling	4
Inductive Neutralization	102
Inductive-Output Tube	90-91
Inductive Reactance	
Inductively-Coupled Cirenits	15
Infinite Impedance Detertor	
Input Capacity, Tube.	(is
Inyut Choke.	177. 178-179
Input Loading.	152
Injut Rewistance, Tube	(is, 152
Instatrility	7:1-80, 172
Instantaneous Current Yalue	31
Instantaneons Plate Current	175
Instruments:	
A.C.	36
Ammeters	
Atudio-Frequency Signal Generitor	403
D.C.	30. 101-402
Ficld-Intensity Meters	3 3 ! 1.140
Frequenes Meters.	3:11-401
Frequency Standar	3!3-396
Galvanometer	30
Ifecher-Wire Systems.	399-401
Mretering.	305-306
Microammeter	
Milliammeter	
Monitors	305-306
Multimeters	401
Multirange V-O-M	402-403
Ohmuncters	402-403
Oscilloscopes	105-408
	393-401
Signal Generat	
Sween Generator	
Test Oscillators	
Voltmeters.	
Wattmeter	
Insulators	13-1.
Integrating Circuit	
Inter ${ }^{\text {lectrode }}$ Cap	
Interncdiate Frequenty	5\%, 109-163
Internediste-Fraquency Amplifiers	142, 15.9-163
Intermediate-Frequenes Noise	
Intermediate-Frequency Transformers.	160-161

	pagm
International Amateur R	
Interruption Frequency 1 . 18	
Interstage Coupling	99-100
Interstare	
Inverse Peak Voltage	5
Inversion, Cloud-Layer. 192	
Inversion, Dynamic	
Inverion, Nocturna	
Inversion, Phase	
Inversion, Subsidence.	
Inversion, Ternpcrature	192
Inverted Amplifer . i7, 18, 18, 189	
Ionosphere	
Ionospheric Waves . 188, 180-191	
	17
Iron-Core Transforn	
Iron-Vane Meters.	
"J" "Antenna. ${ }_{276}$	
Key Chirns . 13 , 14.140	
Key, Electroni	
Key, How to U	
Keying:	
Back	
Break-In	
Electronic Keys	1.11
Key-Click Reduc	
Blocked Grid	
Cathode or Center-Tau,	93
Grid-Controlled Rectin	139
Plate	
Power Supply	88
Primary	
Screen Grid	88
Tube Kever. 1 ito. 3131	
Waveform	
Monitoring	
Oscillator Reving	
P'uranitic Clicks	
Kilohn.	6
Kilovolt.	
Killowatt.	
Klystron Amplifier. .91-92Klystron Oscillator. .	
Land-Line Cheekk. 4644 -465	
Laws Concerning Amateur Operationi. ${ }^{12}$	
Lazy-H Antenna . ${ }_{\text {21-32 }}$	
Leakage Reactance........................... ${ }^{\text {38-39 }}$ 4f0	
Lecher Wires. .403-404	
License Manual, The Radio tmattur's............. ${ }^{12}$	
Limiter	88
Limiter, FM................................ 172-173	
Limiting, Audio	
Line-Voltige Adjusturent . 186, 304	
Linear Antenna Transformers..................j1, 208-219	
Lines, Two-Conductor.52-533	

B:and.262-265 125-W Powers Amplifiers:

300-i500-W:att Single-Finied. . . .
299-300
quincies - Trinsinilters")
ontrol Circuits.
306-307
Keving (see "Kevink")
ine- Voltage Adjustment 307-308

Iodulation (sce "Modulation" amd "Radiotelepitiony

Rack Construction 94-116 30.3
ansurse Pletric Neyc

Trapezoid Ware....
88
134
liringer (ircuits. .
86
Trimmer Condenser . 154
Triodes Amplifiers . 100 . 100
Triode Crystal Oscillators
「ri-Tet Oscillator .
Troposphere Propagation
. 188
69-172
17-418
10, 30:3
63
Tube Iatings
-53

Tuned R.1: Receiver
Tuned Transmassion Lines. 199, 203-20.5
Tuning Indicators. 1644-1 195
Tuning leceivers.147, 1533-154, 168, 174
Furns 96, 97, 98-99, 107-110

Two- Cerminal Oscillitors. 82

Antenna Systems:
Conxial Anterrra .
Constructional. 381
Directive Arrays Antenna $21.5-223,230-233,377-38$
Field-Strength Meters 2.2.2, 376-377
Folded Dipole
Mobile Antennis 276. 390-391

Polarization
$188,194,196$

Radiation Patterns
PAGE
Transmission Limes. 197,211

Constructional
Receivers:

144/235-Mc.	30-3
144-Mc. T. R.F. Superregenerative	332-3
144-Mc. Supercevencrative Superhe	35-33
F.M. I.F. Amplifer	. 34
50-Mc. ' ${ }^{\text {coso-Tube Converter }}$	338-34
144-Mc. Crystal-Controlled Conve	340-3.

Tra-6- and 10-Meter Mobile
341-3-10
Transceivers:
Complete 144-Mc. Mobile Sitation. 367-370
Simple 235-Mc. Transceiver 3 371-372
Transmitters:
A.M.-F.M. $50-\mathrm{Mc}$. Transmitter 347-350

Disk-Scal-Tube Oscillator for 144,235 and 420 Mc .
.373-374
Double Beam-Tetrode Amplifier 365-369
High-C 1.44-Mc. Oscill:tor 361-35;2
"Lighthouse"-T"ube Oseilla tor. 373-37.4
Mobile 'Transmitter for 50 and 28 Me. . . .35̄6-35!?
50-1.14-Mr. Driver-Amplifier 350-356
140-450-M M Oscillator 373-374
144-Mc. 235-Mc. Oscillator (6C4)359-361
Very Low Frevuency . 33

Vibrator Power Suphlies (Tiable) 386
Virtual Height. $18!$
Visual Alignment. 17 .
Visual-Alignment Simal Cienerator 40 .
Visual-Alumment Signal Generator .
Voice Coil. .
Volt-Ampere....

Voltage Dividers. 28,183
Voltage Drop. $28,42,175$
Voltage Feed for Antennas . 197-198
Vol taze Mensurement 21-30, 402-40.3
Voltage-Multiplier Cirruits . 183-184
$\begin{array}{ll}\text { Voltage, Plate Calenlation . } & 77 \\ \text { Voltage Ratio, Transformer. } & 37\end{array}$
Voltage Ratio, Transformer . itisi, iso, 181
Voltage, Ripple. 177, 178
Voltage Ihise. 42
Voltage. Screen Calculation $\quad 77$
Voltagr-Stabilized Power supplicr. 180-181. 182
Voltmeters.
$29-30,406$
$128,163-164$
W1AW, ARRI, Hq. Station. 11
WiINF ARRI,
11
WAC Certificates . 10
Watt. 25-26

Witt-sccend . 30
Wintmeter. 191

Wive Iropagation . 188-19:
W:ave, Sine. 30
Wive, Sky . 188
Waveform .30, 130-132, 137
W:arelensth. 48
W: Wrelength-Fiequency Conversinn............................... 48
Wavelength Performance. 190
Waveleneths. Amnateur

Waveshape.30, 85, 88, $10-7,117-121$, ifi2
Wareshaping Circuits. 88-8!
Wheatstone Bridge.
Wile-Hand Amplifier.. 48
Wide-Band Antennas . 381

Wire Table. 2378
Wiring Apparatus © . Frontispiect
Word Lists for Accurute 'Transmission
Working Voltage...................................... 177
Workshop Praetice . $3.4-238$
WWV Sehedules.
$23 .-238$
$+\quad 394$
$\underset{X}{X}$.
33-34
y-Cut Crystals. 58
Z... $34-35$

Zero Beat
148
Zero-Bias Limiter . 88
Zepp Feed for Antennas . 203-205

Notes

Jhe
 Catalog Section

In the following pages is a catalog-
file of products of the principal manu-
facturers who serve the short-wave
field. Appearance in these pages is
by invitation-space has been sold
only to those dependable firms whose
established integrity and whose prod-
ucts have met with the approval of
the American Radio Relay League.

INDEX OF MANUFACTURERS * CATALOG SECTION *

 Jhe Radio Amateur's HandbookAireon Manufacturing Carparatian 123Allied Radia Carparatian 90
Altec-Lansing Carparatian 47
American Lava Carparatian. 69
American Phenalic Carparatian 48,49
American Radia Relay League, Inc.$1,2,53-61,138,144,150,151,152$
American Televisian \& Radia Co 146
Amperex Electranic Carparation 97
Astatic Carparatian, The. 78
Barker \& Williamsan. 88,89
Birabach Radia Campany 52
Bliley Electric Campany 46, 47
Brach Manufacturing Carp., L. S 79
Brawning Labarataries, Ine. 21
Burgess Battery Campany 113
Cambridge Thermianic Carparatian 104
Cameradia Campany 126
Condler System 125
Cardwell Mfg. Carp., Allen D. 105
Centralab 66,67
Callins Radia Co. 100-103
Condenser Praducts Co. 142
Cornell-Dubilier Electric Corp 70,71
Deutschmann Corp., Tabe 127
Eitel.McCullough, inc. 28,29
Electric Soldering Iran Co. 74
Electra-Vaice Corparatian 72
Federal Telephone \& Radia Carp. 32
Freed Transformer Campany 115
General Electric Company 95
Hallicrafters Co., The 34-45
Hammarlund Manufacłuring Co. Inc.. The 50, 5 !
Harrisan Radio Company 145
Harvey Radia Campany 136
Harvey Radio Laboratories, Inc. 87
Heintz \& Kaufmari, Ltd 118
Henry Radio Stores. 140
Hewlett. Packard Ca. $130 \quad 131$
Hytron Radio \& Electronics Corp. 108,109
International Resistance Co. 107
Instructograph Company 16
James Knight Co., The 68
Jensen Manufacturing Company 94
Johnson Co., E. F. 134,135
Page Page
Maguire Industries 143
Mallary \& Co., Inc., P. R. 65
Measurements Carparatian 83
Micra-Switch Carparatian 25
Millen Manufacturing Ca., Inc., James 30, 31
Natianal Campany, Inc. 3-24
Newark Electric Campany 96
Ohmite Manufacluring Co. 92,93
Panaramic Radia Carparatian 133
Par-Metal Praducts Carp. 32
Petersen Radia Campany 91
Premax Praducts 139
Radia Carparation af America 76,77
Radia Praduct Sales Campany 48
Radia Shack Carparatian, The 81
Raythean Manufacturing Campany 80, 106
Rek.O.Kut 64
Rider Publishers, Inc., Jahn F. 19
Sams \& Co., Inc., Howard 110
Sangama Electric Campany 26,27
Schottland, Frederick D. 149
Shure Brothers 82
Sigma Instruments 22
SNC Manufacturing Co. 124
Sala Electric Company 112
Solar Capacitor Sales Corp 137
Sprague Products Campany. 73
Standard Transfarmer Corparation 17
Supreme Transmitter Company 62, 63
Sylvania Electric Praducts Co. 84, 85
Trimm, Inc. 98
Tripleft Electrical Instrument Co., The 141
Turner Co., The 33
Ungar Electric Toals 99
United Transformer Corp. 75
Universal Microphone Ca. 111
Valpey Crystal Corp 86
Vibraplex Ca., The 128
Ward Leanard Electric Ca 129
Wirecorder Corparatian 114
Warkshap Assaciates 120

-ONI'AN甘dWOO 1 VNOIIVN

造 8 $004 \cdot 0$ N 0.184%

NATIONAL PRECISION CONDENSERS

The Micrometer dial reads direct to one part in 500. Division lines are approximately $1 / 4^{\prime \prime}$ apart. The dial revolves ten times in covering the tuning range, and the numbers visible through the small windows change every revolution to give consecutive numbering by tens from 0 to 500. The condenser is of extremely rigid construction, with four bearings on the rotor shaft. The drive, at the mid-point of the rotor, is through an enclosed preloaded worm gear with 20 to 1 ratio. Each rotor is individually insulated from the frame, and each has its own individual rotor contact. Stator insulation is Steatite. Plate shape is straight-line frequency when the frequency range is $2: 1$.

PW Condensers are available in 2,3 or 4 sections, in either 160 or 225 mmf per section. Larger capacities cannot be supplied.

A single-section PW condenser with grounded rotor is supplied in capacities of 150, 200,350 and 500 mmf , single spaced, and capacities up to 125 mmf , double spaced.

PW condensers are all with rotor shaft parallel to the panel.

| PW-1R | Single section right | List \mathbf{S} | PW-3R | Double section right; single
 left | List \mathbf{S} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PW-1L | Single section left | List $\mathbf{~}$ | | | |

NPW MODEL with micrometer dial.

Similar to PW models, except that rotor shaft is perpendicular to panel.
NPW-3. Three sections, each 225 mm . List \$

GEAR DRIVE UNITS with micrometer dial

List \$

Uses parts similar to the NPW condenser. Drive shaft perpendicular to panel. One TX-9 coupling supplied.

PW-O

List \$
Uses parts similar to the PW condenser. Drive shaft parallel to panel. Two TX-9 couplings supplied.

MICROMETER DIAL

PW-D

List \$
Identical with the dials used on the condensers and drives above. It revolves ten times in covering the complete range and as there is no gear reduction unit furnished, the driven shoft will revolve ten times, also. The PW-D dial fits a shaft $5 / 16^{\prime \prime}$ in diameter.

NATIONAL RECEIVING CONDENSERS

Capacity	Minimum Capacity	No. of Plates	Air Gap	Length	Catalog Symbol	List
SINGLE BEARING MODELS						
15 Mmf 25 50	$\begin{aligned} & 3 \mathrm{Mmf.} \\ & 3.25 \\ & 3.5 \end{aligned}$	3 4 7	$\begin{aligned} & .018^{\prime \prime \prime} \\ & .018^{\prime \prime} \\ & .018^{\prime \prime} \end{aligned}$	$\begin{aligned} & 13,6^{\prime \prime \prime} \\ & 1,{ }^{\prime \prime \prime} \\ & 13,6^{\prime \prime \prime} \end{aligned}$	$\begin{aligned} & \text { STHS- } 15 \\ & \text { STHS. } 25 \\ & \text { STHS- } 50 \end{aligned}$	\$
DOUBLE BEARING MODELS						
35 Mmf. 50 75 100 140 150 200 250 300 335	6 Mmf. 7 8 9 10 10.5 12.0 13.5 15.0 17.0	$\begin{array}{r} 8 \\ 8 \\ 11 \\ 15 \\ 20 \\ 27 \\ 29 \\ 27 \\ 39 \\ 39 \\ 43 \\ \hline \end{array}$	$.026^{\prime \prime}$ $.026^{\prime \prime}$ $.026^{\prime \prime}$ $.096^{\prime \prime}$ $.096^{\prime \prime}$ $.016^{\prime \prime}$ $.018^{\prime \prime}$ $.018^{\prime \prime}$ $.018^{\prime \prime}$ $.018^{\prime \prime}$			\$
SPLIT STATOR DOUBLE BEARING MODELS						
$\begin{gathered} 50-50 \\ 100-100 \end{gathered}$	$\begin{gathered} 5-5 \\ 5.5-5.5 \end{gathered}$	$\begin{aligned} & 11-11 \\ & 14-14 \end{aligned}$	$\begin{aligned} & .026^{\prime \prime} \\ & .018^{\prime \prime} \end{aligned}$	$\begin{aligned} & 93 /{ }^{9 \prime \prime} \\ & 23 / 4 \end{aligned}$	$\begin{aligned} & \text { STD- } 50 \\ & \text { STHD-100 } \end{aligned}$	\$

The ST Type condenser has Straight-Line Wavelength plates. All double-bearing models have the front bearing insulated to prevent noise. On special order a shaft extension at each end is available, for ganging. On double-bearing single shaft models, the rotor contact is through a constant impedance pigtail. Steatite insulation.
NOTE - Type SS Condensers, having straight-line-capacity plates but otherwise similar to the Type ST, are available. Capacities and Prices same as Type ST.

Capacity	Minimum Capacity	No. of Plates	Air Gap	Length	Catalog Symbol	List
$\begin{aligned} & 15 \mathrm{Mmf} . \\ & 90 \\ & 25 \end{aligned}$	$\begin{aligned} & 7 \mathrm{Mmf} . \\ & 7.5 \\ & 8 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \\ & 9 \end{aligned}$	$\begin{aligned} & .055^{\prime \prime \prime} \\ & .055^{\prime \prime} \\ & .055^{\prime \prime} \end{aligned}$	$\begin{aligned} & 214^{\prime \prime \prime} \\ & 214^{\prime \prime \prime} \\ & 2 / 4^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { SEU. } 15 \\ & \text { SEU. } 20 \\ & \text { SEU. } 25 \end{aligned}$	\$
$\begin{array}{r} 50 \\ 75 \\ 700 \\ 150 \end{array}$	9 10 11.5 13	11 15 90 29	(.096"' ${ }^{\text {(}}$	$\begin{aligned} & 91 / 4^{\prime \prime} \\ & 2,{ }^{\prime \prime \prime} \\ & 214^{\prime \prime} \\ & 93 / 4^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { SE- } 50 \\ & \text { SEE } \\ & \text { SE-100 } \\ & \text { SEE- } 150 \end{aligned}$	
$\begin{aligned} & 900 \\ & 950 \\ & 300 \\ & 335 \end{aligned}$	$\begin{aligned} & 19 \\ & 14 \\ & 16 \\ & 17 \end{aligned}$	29 37 39 39 43	$\begin{aligned} & .018^{\prime \prime \prime} \\ & .018^{\prime \prime} \\ & .018^{\prime \prime} \\ & .018^{\prime \prime} \end{aligned}$	$\begin{aligned} & 21 / 4^{\prime \prime \prime} \\ & 9^{3} \mathbf{n}^{\prime \prime \prime} \\ & 9^{3} / 4^{\prime \prime \prime} \end{aligned}$	$\begin{aligned} & \text { SEH- } 200 \\ & \text { SEH-250 } \\ & \text { SEH-300 } \\ & \text { SEH- } 335 \end{aligned}$	

TYPE SE - All models have two rotor bearings, the front bearing being insulated to prevent noise. A shaft extension at each end, for ganging, is available on special order. On models with single shaft extension, the rutor contact is through a constant impedance pigtail. The SEU models (illustrated) are suitable for high voltages as their plates are thick polished aluminum with rounded edges. Other SE condensers do not have polished edges on the plates. Steatite insulation.

Capacity	Minimum Capacity	No. ol Plates	Length	$\begin{aligned} & \text { Catailog } \\ & \text { Symbol } \end{aligned}$	List
$\begin{aligned} & 150 \mathrm{Mmf} . \\ & 250 \\ & 350 \\ & 500 \\ & 1000 \end{aligned}$	$\begin{aligned} & 9 \mathrm{Mmf} . \\ & 11 \\ & 19 \\ & 16 \\ & 29 \end{aligned}$	$\begin{aligned} & 9 \\ & 15 \\ & 20 \\ & 29 \\ & 58 \end{aligned}$		EMC 150 EMC-250 EMC-350 EMC-500 EMC. 1000	S

TYPE EMC - A general purpose condenser available in large sizes and having Straight-Line wovelength plates. They are similar in construction to the TMC Transmitting condenser, and have high efficiency and rugged frames. Insulation is Steatite, and Peak Voltage Rating is 1000 volts. Same sizes available with straight line capacity plates, type DXC condenser.

TYPE EMC

 STRAIGHT-LINE WAVELENGTH 180 Rotation
NATIONAL MINIATURE CONDENSERS

PSR - See table -

Type PSR condensers are small, compact, lowloss units with silver plating on conducting parts. Their soldered construction makes them particularly suitable for applications where vibration is present. Adjustment is made with a screw driver. Steatite base.
PSE - See table Type PSE condensers are similar to Type PSR, but are provided with a $1 / 4^{\prime \prime}$ diameter shaft extension at each end.

PSL - See table -

Type PSL condensers are similar to Type PSR, but are provided with a rotor shaft lock, so that the rotor can be clamped at any setting.

M-30
 List \$

Type M-30 is a small adjustable mica condenser with a maximum capacity of 30 mmf .
 $1 / 2^{\prime \prime}$. Isolantite base. W. $\mathbf{7 5} .75 \mathrm{~mm}$. List \boldsymbol{s} $\mathrm{W}-100,100 \mathrm{mmf}$. List s

Capacity	Catalog Symbol			List
	mmF.			PSR-25
50	PSE-25	PSL-25	$\mathbf{5}$	
75	PSR-50	PSE-50	PSL-50	
100	PSR-75	PSE-75	PSL-75	
140	PSR-100	PSE-100	PSL-100	
	PSR-140	PSE-140	PSL-140	

Capacity	Minimum Capacity	No. of Platas	Air Gad	$\begin{gathered} \text { Catalog } \\ \text { Symbol } \end{gathered}$	List
15 mmf .	1.5	6	.017"'	UM-15	\$
	2.5	12	.017"'	UM-35	
50	3.5	16 88	.017"',	UM-50	
75 100	3.5 4.5	${ }_{98}$.017"	UM-100	
10 85	1	8	.049",	UM-10D	
25	3	14	. $042^{\prime \prime}$	UMA-25	
BALANCED STATOR MODEL					
25 50	$\frac{2}{5}$	$\begin{aligned} & 4.4 .4 \\ & 8.8 .8 \end{aligned}$	$.017^{\prime \prime}$	UMB-25 UMB-50	\$

Small padding condensershaving very low temperature coefficient. Mounted in an aluminum shield $11 / 4^{\prime \prime}$ in diameter. The UM CONDENSER is designed for ultra high frequency use and is small enough for convenient mounting in PB-10 and RO shield cans. They are particularly useful for tuning receivers, transmitters, and exciters. Shaft extensions at each end of the rotor permit easy ganging when used with one of our flexible couplings. The UMB-25 Condenser is a balanced stator model, two stators act on a single rotor. The UM can be mounted by the angle foot supplied or by bolts and spacers. See table for sizes.

Dimensions: Base $1^{\prime \prime} \times$ $21 / 4^{\prime \prime}$, Mounting holes $5 / 8^{\prime \prime} \times 123 / 32^{\prime \prime}$, Axial length $21 / 8^{\prime \prime}$ overall.
Plates: Straight line capacity, 180° rotation.

The UM-10D and UMA-25 condensers are double spaced versions of the UM condenser. The UMA-25 is assembled with nuts and bolts so that the capacity may be reduced if desired.

NATIONAL NEUTRALIZING CONDENSERS

NC. 600 U
List \$
With stondoff insulator
NC- 600
List \$
Without insulotor
For neutralizing low power beam tubes requiring from .5 to 4 mmf ., and 1500 max. total volts such as the 6L6. The NC-600U is supplied with a GS-10 standoff insulator screwed on one end, which may be removed for pigtail mounting.

STN

List \$
The Type STN has a maximum capacity of 18 mmf . (3000 V), making it suitable for such tubes as the 10 and 45 . It is supplied with two standoff insulators.

NC. 800A
List $\$$
The NC-800A disk-type neutralizing condenser is suitable for the RCA-800, 35T, HK-54 and similar tubes. It is equipped with a clamp to lock its setting. The chart below gives capacity and air gap for different settings.

NC. 75

List $\$$
For 75T, 808, 811, 812 \& similar tubes.

NC-150

List \$

For HK354, RK36, 300T, 859, etc.

NC. 500
 List $\$$

For WE-251, 450TH, 450TL, 750 TL , etc.
These larger disk type neutralizing condensers are for the higher powered tubes. Disks are aluminum, insulation stedtite.

NATIONAL TRANSMITTING CONDENSERS

TYPE TMS

is a condenser designed for transmitter use in low power stages. It is compact, rigid, and dependable. Provision has been made for mounting either on the panel, on the chassis, or on two stand-off insulators. Insulation is Steatite. Voltage ratings listed are conservative.

Capacity	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	Catalog Symbol	List Price
SINGLE STATOR MODELS							
100 Mmf .	9.5	$3^{\prime \prime}$.026"	1000 v .	9	TMS-100	
150	11	$3^{\prime \prime}$.026"	1000 v .	14	TMS-150	
250	13.5	$3^{\prime \prime}$.026"	1000 v .	29	TMS-250	
300	15	$3^{\prime \prime}$.026"	1000v.	27	TMS-300	
35	8	$3^{\prime \prime}$.065"	2000v.	7	TMSA-35	
50	11	$3^{\prime \prime}$.065"	2000 v .	11	TMSA-50	
DOUBLE STATOR MODELS							
50-50 Mmf.	6-6	$3^{\prime \prime}$.026 ${ }^{\prime \prime}$	1000 v .	5-5	TMS-50D	
100-100	7-7	$3^{\prime \prime}$.026 ${ }^{\prime \prime}$	1000v.	9-9	TMS-100D	
50-50	10.5-10.5	$3^{\prime \prime}$.065"	2000v.	11-11	TMSA-50D	

TYPE TMH

features very compact construction, excellent power factor, and aluminum plates . $040^{\prime \prime}$ thick with polished edges. It mounts on the panel or on removable stand-off insulators. Steatite insulators have long leakage path. Stand-offs included in listed price.

Capacity	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	Catalog Symbol	List
SINCLE STATOR MODELS							
50 MmF .	9	$33 / 4{ }^{\prime \prime \prime}$.085"	3500 v .	15	TMH-50	
75 100	11	33/4"	.085"'	3500 v .	19	TMH-75	
100 150	12.5	51/",	.085"	3500 v . 3500 .	25 37	TMH-100	
150 35	11	51/8',	. $180^{\prime \prime}$	6500v.	17	TMH-35A	
DOUBLE STATOR MODELS							
35-35 Mmf.	6-6		.085"		9-9	TMH-35D	
50-50	8-8	51/8"	.085"	3500 v .	13-13	TMH-50D	
75-75	11-11	61/2"	.085"	3500 v .	19-19	TMH-75D	

8

NATIONAL TRANSMITTING CONDENSERS

TYPE TMK

is a new condenser for exciters and low power transmitters. Special provision has been made for mounting AR-16 coils in a swivel plug-in mount on either the top or rear of the condenser, (see page 10). For panel or stand-off mounting: Steatite insulation.

Capacity	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	Catalog Symbol	List Price
SINGLE STATOR MODELS							
35 MmF .	7.5	2732"	.047"',	1500 v .			
50	8	93/8",	.047"	1500 v .	9	TMK-50	
75	9	$2{ }^{11 / 16^{\prime \prime}}$.047"'	1500 v .	13	TMK-75	
100	10	$3{ }^{\prime \prime}{ }^{\prime \prime}$.047 ${ }^{\prime \prime}$	1500 v .	17	TMK-100	
150	10.5	$35 / 8^{\prime \prime}$.047"'	1500 v 1500 v	25 33	TMK-150	
200 250	11 11.5	41/4" ${ }^{\prime \prime}{ }^{\prime \prime} 8^{\prime \prime}$.047"'	1500 v. 1500 v.	33 41	TMK-250	
DOUBLE STATOR MODELS							
			.047"	1500 v .	7-7	TMK-35D	
$50-50$	$8-8$	$35 / 8{ }^{\prime \prime}$. $047^{\prime \prime}$ "	1500 v .	9-9	TMK-50D	
	10-10	$41 / 4{ }^{\prime \prime}$.047"	1500 v .	17-17	TMK-100D	
Swivel Mounting Hardware for AR 16 Coils						SMH	

TYPE TMC

is designed for use in the power stages of transmitters where peak voltages do not exceed 3000 . The frame is extremely rigid and arranged for mounting on panel, chassis or standoff insulators. The plates are aluminum with buffed edges. Insulation is Steatite. The stator in the split stator models is supported at both ends.

Capacily	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	Catalog Symbol	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
SINGLE STATOR MODELS							
	10		.077"'	3000 v .			
100	13	$31 / 2^{\prime \prime}$.077"	3000 v .	13	TMC-100	
150	17	$45 / 8{ }^{\prime \prime}$.077"'	3000 v . 3000 v	11 39	TMC-150	
250 300	23 25	$63 / 4^{\prime \prime}$.077" ${ }^{\prime \prime}$	3000 v . 3000 v .	39	TMC-300	
DOUBLE STATOR MODELS							
	9-9	45/8'	.077"	3000 v .	7-7	TMC-50D	
$100-100$	$11-11$	63/4"	.077"	3000 v .	13-13	TMC.100D	
200-200	18.5-18.5	$91 / 4^{\prime \prime}$.077"		25-25	TMC-200D	

NATIONAL TRANSMITTING CONDENSERS

TYPE TMA

is a larger model of the popular TMC. The trame is extremely rigid and arranged for mounting on panel, chassis or stand-off insulators. The plates are of heavy aluminum with rounded and buffed edges. Insulation is Steatite located outside of the concentrated field.

Cosocity	${ }_{\text {cosem }}^{\text {Minimum }}$	Lonsth	All Gap	Volitese		Cates	$\underset{\text { Price }}{\text { Lige }}$
SINGLE STATOR MODELS							
300 MmF 50 500 150 500 150 50 100 100							
DOUBLE STATOR MODELS							
${ }_{180}^{200.900} \mathrm{Mmf}$. $100-100$ 1000 40.40			$\begin{aligned} & .077^{\prime \prime \prime \prime} \\ & .1455^{\prime \prime \prime} \\ & .355^{\prime \prime \prime} \\ & .343^{\prime \prime} \end{aligned}$		$\begin{aligned} & 16.16 \\ & \hline 8.84 \\ & \hline 84.8 \\ & 15.14 \\ & 15.15 \\ & 17.11 \end{aligned}$		

TYPE TML

condenser is a 1 KW job throughoul. Steatite insulators, specially treated against moisture absorption, prevent flashovers. A large self-cleaning rotor contact provides high current capacity. Thick capacitor plates, with accurately rounded and polished edges, provide high voltage ratings. Sturdy cast aluminum end frames and dural tie bars permit an unusually rigid structure. Precision end bearings insure smooth turning and permanent alignment of the rotor. End frames are arranged for panel, chassis or stand-off mountings.

Capacity	Minimum Capacily	Length	Alt Gap	Peak Voltase	No. of Plates	Catalog Symbol	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
SINGLE STATOR MODELS							
75 Mmf. 150 100 50 945 150 100 75 500 350 250	95 60 45 92 54 45 35 32. 23.5 55 45 35		$.719^{\prime \prime}$ $.469^{\prime \prime}$ $.469^{\prime \prime}$ $.4599^{\prime \prime}$ $.344^{\prime \prime}$ $.344^{\prime \prime}$ $.344^{\prime \prime}$ $.819^{\prime \prime}$ $.219^{\prime \prime}$ $.219^{\prime \prime}$	$\begin{aligned} & 20,000 \mathrm{v} . \\ & 15,000 \mathrm{v} \\ & 15,000 \mathrm{v} \\ & 15,000 \mathrm{v} . \\ & 10,000 \mathrm{v} \\ & 10,000 \mathrm{v} \\ & 10,000 \mathrm{v} \\ & 10,0000 \mathrm{v} \\ & 7,500 \mathrm{v} \\ & 7,500 \mathrm{v} \\ & \hline, 500 \mathrm{v} \end{aligned}$	$\begin{aligned} & 17 \\ & 87 \\ & 19 \\ & 9 \\ & 35 \\ & 21 \\ & 15 \\ & 11 \\ & 49 \\ & 33 \\ & 95 \end{aligned}$	TML-75E TML-150D TML-100D TML-50D TML-945B+ TML-150B+ TML-100B+ TML-500A+ TML-350A+ TML-250A +	
DOUBLE STATOR MODELS							
$\begin{aligned} & 30-30 \mathrm{Mmf} . \\ & 60-60 \\ & 100-100 \\ & 60-60 \\ & 200-900 \\ & 100-100 \end{aligned}$	$\begin{aligned} & 12-19 \\ & 96-26 \\ & 97-27 \\ & 90-20 \\ & 30-30 \\ & 17-17 \end{aligned}$		$.719^{\prime \prime}$ $.469^{\prime \prime}$ $.344^{\prime \prime}$ $.344^{\prime \prime}$ $.819^{\prime \prime}$ $.819^{\prime \prime}$	$\begin{array}{r} 20,000 \mathrm{v} \\ 15,000 \mathrm{v} \\ 10,000 \mathrm{v} \\ 10,000 \mathrm{v} . \\ 7,5000 . \\ 7,500 \mathrm{v} . \end{array}$	$\begin{gathered} 7-7 \\ 1111 \\ 15-15 \\ 9-9 \\ 811-21 \\ 11-11 \end{gathered}$	TML-30DE TML-60DD TML-100DB+ TML-60DB+ TML-2000A+ TML-100DA +	

TRANSMITTER COIL FORMS

The Transmitter Coil Forms and Mounting are designed as a group, and mount conveniently on the bars of a TMA condenser. The larger coil form, Type XR-14A, has a winding diameter of $5^{\prime \prime}$, d winding length of $33 / 4^{\prime \prime}$ (30 turns total) and is intended for the 80 meter band. The smallier form, Type XR-10A, has a winding length of $33 / 4^{\prime \prime}$ and a winding diameter of $21 / 2^{\prime \prime}$ (26 turns total). It is intended for the 20 and 40 meter bands.
Either coil form fits the PB-15 plug. For higher frequencies, the plus may be used with a self-supporting coil of copper tubing. The XB-15 Socket may be mounted on breadboards or chassis, as well as on the TMA Condenser.

SINGLE UNITS

XR-10A , Coil Form only XR-14A, Coil Form only PB-15, Plug only
XB-15, Socket only

ASSEMBLIES

UR-10A, Assembly (including small Coil Form, Plug and Socket) List s
UR-14A, Assembly (including large Coil Form, Plug end Socket) Lists

Lists
List $\$$
List $\$$
List $\$$

END LINK

CENTER LINK

NATIONAL PARTS

BUFFER COIL FORMS

National Buffer Coil Forms are designed to mount directly on the tie bars of a TMC condenser using the PB- 5 Plug and XB- 5 Socket. Plug and Socket are of molded R-39.

The two coil forms are of Isolantite, left unglazed to provide a tooth for coil dope. The larger form, Type XR-13, is $13 / 4^{\prime \prime}$ in diameter and has a winding length of $23 / 4^{\prime \prime}$. The smaller form, Type XR-13A, is $1^{\prime \prime}$ in diameter and provides a winding length of $23 / 4^{\prime \prime}$. Both forms have holes for mounting and for leads.

SINGLE UNITS

XR-13, Coil Form only List $\$$ XR-13A, Coil Form only Lists
PB-5, Plug only Lisis
XB-5, Socket only List $\$$
ASSEMBLIES
UR-13A, Assembly (including smoll Coil Form, Plug and Socket)

List 5
UR-13, Assembly (including large Coil Form, Plug and Socket)

FIXED.TUNED
EXCITER TANK

PLUG-IN BASE AND SHIELD

FIXED TUNED EXCITER TANK

Similar in general construction to National I.F. transformers, this unit has two 25 mmf ., 2000 volt air condensers and an unwound XR-2 coil form.

FXT, without plug-in base
FXTB-5, with 5 prong base
FXTB-6, with 6 prong base

List $\$$
List 5
List \mathbf{S}

PLUG-IN BASE AND SHIELD

The low-loss R-39 base is ideal for mounting condensers and coils when it is desirable to have them shielded and easily removable. Shield can is $2^{\prime \prime} \times 23 / 8^{\prime \prime} \times 41 / 8^{\prime \prime}$.

[^16]List $\$$ List $\$$ List $\$$ List $\$$

SAFETY GRID AND PLATE CAPS

National Safety Grid and Plate Caps have a ceramic body which offers protection against accidental contact with high voltage caps on tubes.
SPP-9
List $\$$
Ceramic insulation. Fits $9 / 16^{\prime \prime}$ diameter.
SPP. 3
List $\$$
Ceramic insulation. Fits $3 / 8^{\prime \prime}$ diameter.

GRID AND PLATE GRIPS

National Grid and Plate Grips provide a secure and positive contact with the tube cap and yet are released easily by a slight pressure on the ear.
Type 12, for 9/16" Caps
List $\$$
Type 24, for $3 / 8^{\prime \prime}$ Caps
List \$
List $\$$

NATIONAL PARTS

COIL FORMS
 XR－1，Four prons，List S XR－2，without prongs List $\$$
 Molded of R－39，permitting them to be grooved and drilled．Coil form diameter $1^{\prime \prime}$ ，length $112^{\prime \prime}$ ．

XR－3 List 5
\qquad
Molded of R－39．Diameter ＂9．6＂，length $3 / 4$＂．Without prongs．
XR－4，Four prong，List 5 $\times R-5$ ，Five prong，Lists 5 XR－6，Six prong，List $\$$ Molded of R－39，permitting them to be grooved and drilled．Coil form diameter $11 / 2^{\prime \prime}$ ，Iength $21 / 4^{\prime \prime}$ ．A special socket is required for the six－ prong form．
XC6C，Special six－prong socket for XR－6 Coil Form，

List $\$$

OSCILLATOR COIL OSR
 List $\$$

A shielded oscillator coil which tunes to 100 KC with .00041 Mfd．Two separate inductances，closely coupled． Excellent for interruption－ frequency oscillator in super－ regenerative receivers．

POLYSTYRENE COIL FORMS

H．F．COIL FORMS

Symbol	$\begin{aligned} & \text { Outside } \\ & \text { Diamoter } \end{aligned}$	Length	List
PRC－1 PRC－ Pr	磻",	$\begin{aligned} & 3 / 2,{ }_{2}^{\prime \prime}, \ldots \end{aligned}$	s
PRC－3	铭"	3／4＂	
PRD 1. PRD－ 2	1／2＂，	1／2＂	
PRE－1	${ }_{\text {\％}}^{1 / 2,}$	3／4，	
Pre－－9 PRE－3		${ }^{1 \prime \prime}$	
PRFF 1 PRF． 9	产，${ }_{4}^{4}$	$3{ }^{34 \prime \prime \prime}$	
		1，4	

COIL SHIELDS

RZ，coil shield List \mathbf{S} $13 / 8^{\prime \prime}$ square $\times 4^{\prime \prime}$ high．
RS，coil shield List \＄ $17 / 6^{\prime \prime} \times 17 / 8^{\prime \prime} \times 31 / 2^{\prime \prime}$ high． RO，coil shield List $\$$ $2^{\prime \prime} \times 23 / 8^{\prime \prime} \times 41 / 8^{\prime \prime}$ high． National coil shields are formed from a single piece of pure aluminum．They are mechanically strong and have ample thickness to mount small parts on the walls．
The RZ，RS and RO coil shields are supplied with two threaded studs extend． ing downward from the open end for attaching to the chas－ sis．
T－78，fube shield complete List $\$$
National fube shield type T－78 is a three－piece pure aluminum shield suitable for shielding glass tubes with ST－12 bulb，such as the 6C6 and 6D6 tubes．

JACK SHIELD

JS－1，Jack shield List 5 For shielding small standard jacks mounted behind a panel，or on the ends of extension cords．

NATIONAL CABINETS

The National Cabinets listed below are the same as those used in National Receivers，except that they are supplied in blank form．They are made of heavy gauge steel，and the paint is un－ usually well bonded to the metal．Sub－bases and bottom covers are included in the price．

	Widh	Hoight	Depith	Liut Price
Type C－SW3	$93 / 4^{\prime \prime}$	$7^{\prime \prime}$	$9^{\prime \prime}$	
Type C－NC100	$171 / 4^{\prime \prime}$	$8^{\prime 3} 4^{\prime \prime}$	$1114^{\prime \prime}$	
Type C－HRO	$163 / 4^{\prime \prime}$	$8^{3} / 4^{\prime \prime}$	$10^{\prime \prime}$	
Type C－One－Ten	$11^{\prime \prime}$	$7^{\prime \prime}$	$71 / 4^{\prime \prime}$	
Type C－SRR	$71 / 2^{\prime \prime}$	$7^{\prime \prime}$	$712^{\prime \prime}$	

NATIONAL PARTS

\author{

1. F. TRANSFORMERS
}

JFC, Transformer, air core List $\$$
JFCO, Oscilldtor, dir core
List \$
Air dielectric condensers isolated from each other by on aluminum shield. Litz wound coils on a moisture proofed ceramic base. Shield can $41 / 8^{\prime \prime} \times 23 / 8^{\prime \prime}$ $\times 2^{\prime \prime}$. Available for either 175 KC or 450-550 KC. Specify frequency.
IFG, If Transformer
List $\$$ IFH, Discriminator List $\$$

High frequency If transformers, similar in construction to the IFC above. They are intended for FM receivers and others requiring o high If frequency. Frequency is 3 MC. When definite assignment of the bands has been made these transformers will be available in ofrequency which gives the minimum images in the FM and television bands.

15 Mc. IF transformers suitable for ultra high frequency superheterodynes. They are made in two models, with and without variable coupling. Approximate stage gain of 10 is obtained with IFJ or IFK Transformer and 6 AB7 tube. IFJ, with variable coupling

List $\$$
IFK, with fixed coupling
List $\$$

IFL, IFM, IFN and IFO transformers operate of 10.7 Mc. and designed for use in AM or FM Superheterodyne receivers. The transformer cans are $138^{\prime \prime}$ square and stand $31 / 8^{\prime \prime}$ above the chassis. Two 6-32 spade bolts are provided for mounting.

The IFL transformer is a 10.7 Mc. FM discriminator transformer suitable for use in conventional FM receiver discriminator circuit and is linear over a band of $\pm 100 \mathrm{Kc}$.

The IFM transformer is a 10.7 Mc. If transformer with d 150 Kc . bandwidth at 1.5 db attenuation. Approximate stage gain of 30 is obtained with IFM Transformer and 6SG7 tube.

The IFN transformer is a 10.7 Mc. IF transformer with a 100 Kc . pass band at 1.5 db attenuation. Approximate stage gain of 30 is obtained with IFN Transformer and 6SG7 fube.

The IFO transformer is a 10.7 Mc. FM discriminator transformer of the ratio type and is linear over a band of $\pm 100 \mathrm{kc}$.
IFL FM Discriminator
List \$
IFM IF Transformer List $\$$
IFN IF Transformer List \$
IFO FM Ratio Discriminator List \$

CHART FRAME

The National Chart Frame is blanked from one piece of metal, and includes a celluloid sheet to cover the chart. Size $21 / 4^{\prime \prime} \times 31 / 4^{\prime \prime}$, with sides $1 / 4^{\prime \prime}$ wide.
Type CFA
List \$

COIL DOPE

CD-1, $1 / 4$ pint can List $\$$
Liquid Polystyrene Cement is ideal for windings as it will not spoil the properties of the best coil form.

TOUCH-UP PAINT

A high quality dir-drying paint that may be applied with a brush. It is especially suited to touching up places on radio equipment where the paint may have become marred through abrasion.
CP-1, gray
List $\$$ CP-2, black

List \$

SPEAKER CABINETS
 NDC-8 for 8" spedker

 List $\$$NDC-10 for $10^{\prime \prime}$ speaker List $\$$
NDC-2 for $10^{\prime \prime}$ speaker List \$

These metal speaker cabinets are acoustically correct. They are lined with acoustic felt, and are of welded construction to eliminate rattles. Finish is black wrinkle on NDC-8 and NDC-10. NDC-2 is finished in gray wrinkle to match the NC-2-40D receiver.

TOUCH-UP PAINT

NATIONAL LOW-LOSS SOCKETS AND INSULATOR

ATIONAL LOW-LOSS SOCKETS AND INSULATORS

FWG

List $\$$ AA-3

A Victron terminal strip for high frequency use. The binding posts take banana plugs at the top, and grip wires through hole at the bottom, simultaneously, if desired.

FWH

List \$
The insulators of this terminal assembly are molded R-39 and have serrated bosses that allow the thinnest panel to be gripped firmly, and yet have ample shoulders. Binding posts same as FWG above.

FWJ

List $\$$
This assembly uses the same insulators as the FWH above, but has jacks. When used with the FWF plug (below), there is no exposed metal when the plug is in place.

FWF

List \$

This molded R-39 plug has two banana plugs on $3 / 4^{\prime \prime}$ centers and fits FWH or FWJ above. Leads may be brought out through the top or side.

FWA Post List, each \$ Brass Nickel Plated
FWE, Jack List, each \$ Brass Nickel Plated

FWC, Insulator List, per pair \$ R-39 Insulation

FWB, Insulator List, each \$ Polystyrene insulation wire.)

AA-5

AA-6

XS-6

CIR Series Sockets

Any Type List \$
Type CIR Sockets leature low-loss isolantite or steatite insulation, a contact that grips the tube prong for its entire length, and a metal ring for six position mounting.

A low-loss steatite spreader for 6 inch line spacing. (600 ohms impedance with No. 12

List \$
A low-loss steatite dircrafttype strain insulator.

List \$
A general purpose strain insulator of low-loss steatite.

List, each \$
A low-loss isolantite bushing for $1 / 2^{\prime \prime}$ holes.

XP-6 Same as above but polysterene.

List, box of ten $\$$

TPB
 List, per dozen $\$$

A threaded polystyrene bushing with removable .093 conductor moulded in, $1 / 4^{\prime \prime}$ diam., 32 thread.

XS-7, ($3 / 8^{\prime \prime}$ Hole) List $\$$ XS-8, ($1 / 2^{\prime \prime}$ Hole) List $\$$
Steatite bushings. Prices include male and female bushings with metal fittings.

XS-1, ($1^{\prime \prime}$ Hole) List \$ XS-2, ($11 / 2^{\prime \prime}$ Hole) List $\$$
Prices listed are per pair, including metal fittings. Insulation steatite.

XS-3, (23/4" Hole) List \$ XS-4, ($33 / 4^{\prime \prime}$ Hole) List \$
Prices are per pair, including metal fittings. These low-loss steatite bowls are ideal for lead-in purposes at high voltdges.
XS-5, Without Fittings
List, each \$
XS-5F, With Fittings

List, per pair \$

These big low-loss bowis have an extremely long leakage path and a $51 / 4^{\prime \prime}$ flange for bolting in place. Insulation steatite.

NATIONAL PARTS

The SC-1, SC-2 and SC-3 are crystal mounting sockets for crystol holders with mounting pins spaced $0.500^{\prime \prime}, 0.486^{\prime \prime}$ and $.750^{\prime \prime}$ respectively and pin diameters of $1 / 16^{\prime \prime}, 3 \mathrm{se}^{\prime \prime}$ and $1 / 8$ " respecilively. Steatite Insulation. Single 4.36 or $4-40$ screw mounting for CS-1 and CS.2; single 6.32 screw mounting for CS-3

SC-1 Lis! $\$$
SC. 2
List $\$$
SC. 3
List $\$$

The AR- 2 and AR-5 coils are high O permesbility tuned RF coils. The AR. 2 coil lunes from 75 Mc . to 220 Mc. with capacities from 100 to 10 micro-micro farads. The AR-5 coil tunes from 37 Mc . to 110 Mc . With capacities from 100 to 10 micro-micro-farads. The inductive windings supplied may be replaced by other windings as desired to modily the tuning range.
AR-2 High Frequency Coil List \$
AR. 5 High Frequency Coil List $\$$

The XR-50 coil forms may be wound as desired 10 provide a permeability tuned coil. The form winding length is "1" " and the form winding diameter is $1 / 2$ inch. The iron slug is 3 s " dia. by $1 / 2^{\prime \prime}$ long.
XR-50
List $\$$

The XOA Sockel is a socket for the Miniature Button 7 Pin bose tubes. Low loss mica filled bakelite insulation. Mounts with two $4-40$ screws. Sockel contacts extend axially from base of socket.
XOA
List $\$$

The XOR Socket is the same os the XOA Sockel except that the contocts extend radially from base of socket. $\times O R$

List \$

The XOS tube shield is o two piece shield for the Minidure Button 7 Pin bise tubes. The shield is ovoilable in three sizes corresponding to the $13_{15 \prime \prime}^{\prime \prime}, 1^{1} 2^{\prime \prime}$ and $2^{\prime \prime}$ tube body heights. The shield contains a spring which centers tube in shield and holds tube and shield hirmly in place. The iwo 4.40 spade bolis serve to mount the XOA or XOR Socket and the XOS tube shield.

XOS-1 For $18 / 6^{\prime \prime}$ high tube body List $\$$

XOS-2 For $1 \% 2^{\prime \prime}$ high tube body List $\$$

XOS-3 For $2^{\prime \prime}$ high body
List \$

NATIONAL SHAFT COUPLINGS

TX-1, Leakage path $1^{\prime \prime}$.

List \$

TX-2, Leakage path $21 / 2^{\prime \prime}$ List $\$$
Flexible couplings with glazed steatite insulation which fit $1 / 4^{\prime \prime}$ shafts.

TX-8

List $\$$
A non-flexible rigid coupling with steatite insulation. $1^{\prime \prime}$ diam. Fits $1 / 4$ " shaft.

TX-9

List $\$$
This small insulated flexible coupling provides high electrical efficiency when used to isolate circuits. Insulation is
 shaft.

TX-10

List $\$$
A very compact insulated coupling free from backlash. Insuldtion is canvas Bakelite. 11/16" diam. Fits $/_{4}$ " shoft.

TX-11

List \$

The lexible shaff of this coupling connects shafts at angles up to 90 degrees, and eliminates misalignment problems. Fits $1 / 4^{\prime \prime}$ shafis. Length $41 /{ }^{\prime \prime}$ ".

TX-12, Length $4^{5} \cdot 8^{\prime \prime}$ List $\$$ TX-13, Length 7!s" List \$ These couplings use flexible shaffing like the TX-11 above, but are also provided with steatite insulators at each end.

NATIONAL HRO-5A1

DESCRIPTION

The development of the National HRO-5A1 Radio Receiver brings the famous HRO series to a new high in receiver performance
Items characterizing the HRO-5A1 Receiver are as follows: Two R.F. preselector stages; separate mixer and local oscillator tubes; two l.F. stages with a crystal filter employing phasing and selectivity controls; combined second detector AVC and second audio stage; first audio stage; double action limiter stage; audio output stage; C.W. oscillator with pitch control; and a signal strength meter Metal tubes, first used in the HRO-5, are also employed in the HRO-5A1. The Loud Speaker and Power Unit are separate units. The data listed below indicates the versatility and the extremely high standards of performance to be found in the HRO-5A1.

CONTROLS

Main Tuning Dial: AVC Switch: B十 ON-OFF; Audio Gain; R.F. Gain; C.W. Oscillator Pitch Control; Selectivity Control; Phasing Control; S-Meter Switch; Limiter Control.

SPECIFICATIONS

Frequency Range:

The Frequency Range of the HRO-5A1 with the 4 Coil Sets normally supplied is $1.7-30.0 \mathrm{MC}$. Each Coil Set covers the frequencies listed below:

Coil Set	General Coverage	Bandspread
D	$1.7-4.0$	$3.5-4.0$
C	$3.5-7.3$	$7.0-7.3$
B	$7.0=14.4$	$14.0-14.4$
A	$14.0-30.0$	$28.0-30.0$

NATIONAL Coil Sets to cover the low frequency range of the receiver are available as follows:
Type J $50-100 \mathrm{KC}$. Type F $480-960 \mathrm{KC}$.
Type H $100-200 \mathrm{KC}$. Type E $900-2050$ KC.
Type G 180 - 430 KC .

SELECTIVITY:

Crystal Filter Out

Voltage Ratio
 6 DB.
 60 DB.

Nominal Bandwidth
3.0 KC .
21.5 KC .

Crystal Filter In
Max. Selectivity 20 DB.
200 Cycles Min. Selectivity 20 DB. 6.0 KC .

SENSITIVITY:

The sensitivity of the HRO-5A1 is 1 . microvolt or better throughout the normal frequency range

POWER INPUT:

Using Type 697 Power Pack; 75 watts at 115 volts, 50,60 cycles, 1 phase AC.

POWER OUTPUT:

Maximum output 3 watts. Output with negligible distortion 1.5 watts.

PRICES

Table Model (with tubes \& A,B,C,D coils)
Rack Model (with tubes \& A, B, C, D coils)
List \$
Table Model MCS Loud Speaker List \$
Rack Model RFSH Loud Speaker
List \$
Table Model 697 Power Unit
List \$
List \$

NATIONAL HRO-5C

Description

The HRO-5C is a Deluxe Receiver Installation consisting of an HRO-5A1 Receiver with SPC Unit (power unit, coil container and loud-speaker) in a MRR Table Rack. Chromium-plated appearance strips and side trim strips are included.
The HRO series of receivers is an honored product of the National Company. The HRO-5A1, newest and finest of these receivers, features a number of additional refinements among which are a new highly efficient noise limiter and a redesigned hexible crystal filter. Circuit revisions have been made to further improve the performance
standards of this outstanding Receiver. For a detailed description of the HRO-5A1 Receiver supplied on the HRO-5C Deluxe Installation, see page 18 in this catalog.
HRO-5A1 Receiver, with fubes and A, B, C, D Coils
SPC Unit Combination
MRR Table Rack $241 / 2^{\prime \prime}$ Panel Capacity
HRO-5C Deluxe Receiver Combination

List \$

List \$
List \$
List \$

20

NATIONAL NC-2-40D

DESCRIPTION

Designed for the radio amateur; the NC-2-40D series of superheterodyne receivers are also suitable for general communications service in the 490 to $30,000 \mathrm{KC}$. range. Calibrated electrical bandspread tuning is provided for the $80,40,20$, and 10 meter radio amateur bands. Features included are a full vision, easy to read, calibrated dial with 6 general coverage and 4 bandspread scales, a single tuning and band switching control knob, a stable high frequency oscillator circuit, a flexible crystal filter, a series valve noise limiter and an auxiliary numerical logging dial. These outstanding features pluis conventional items such as a signal sirengith meter, phonograph or high level microphone pickup iack, an automatic volume control circuit, a beat frequency oscillator for CW reception, a tone control, a phones iack, and a $115-230$ volt A.C. change-over switch provide the operator with a means for coping with a wide variety of receiving conditions and requirements.

CONTROLS

Band Tuning and Band Switching; R.F. Gain Control and Signal Strength Meter Switch; Audio Gain; B+ -ON/OFF; Selectivity; Limiter; Tone; CW Oscillator; A.V.C.; Phasing.

SPECIFICATIONS

Frequency Range:

General Coverage:
490 KC . to 30 MC .

Band Spread:

$$
\begin{aligned}
& 28 \text { to } 30 \\
& 14 \text { MC } \\
& 7 \text { to } 14.4 \mathrm{MC} . \\
& 3.5 \text { to } 7.3 \mathrm{MC} . \\
& \mathrm{MC.}
\end{aligned}
$$

Selectivity:

Crystal Filter OFF
Voltage Ratio

Crystal Filter \ln — 20 DB Voltage Ratio

sition 16.0 KC
2	4.0 KC
3	2.0 KC
4	1.0 KC
	Max. Selectivity 200. Cycles

SENSITIVITY

Less than 1 microvolt input produces a 6 DB signal to noise ratio.

POWER INPUT

Approximately 70 watts; either 110-120 or 220240 volts $50 / 60$ cycle, 1 Phase A.C. A plug and socket is provided for convenient external battery connection as necessary for battery operation.

POWER OUTPUT

A 10,000 ohm output circuit delivers 8 watts with negligible distortion.

PRICES

$\begin{array}{ll}\text { Rack or Table Model (with rubes) List } \mathbf{~} \mathbf{L} \\ \text { Rack or Table Model Speaker } & \text { List } \mathbf{\$}\end{array}$

NATIONAL NC-46

DESCRIPTION

The National NC-46 is a 105 to 130 Volt AC. DC receiver which provides 3 watts of audio output. The Recelver tunes the Broadcast and Short Wave bands and employs 10 tubes. Electrical bandspread is provided for vernier funing. The circuit consists of a 6 K8 converter-oscillator stage, two 6SG7 IF stages, 6 H 6 detector-limiter stage, 6SF7 AVC Amplifier, 6SJ7 CW Oscillator, 6SC7 Audio-Inverter, push-pull audio output stage with two 25LOGT fubes, and a $25 Z 5$ Rectifier.

CONTROLS

Main Tuning Dial; Bandspread Tuning Dial; Sensitivity Control; Volume Control; Tone Switch; C. W. Oscillator Switch; AVC Switch; Limiter Switch; Band Selector Switch; B+ Switch and Power Switch.

TERMINALS

On Rear Panel; Phone Jack; B + Terminals; 8 Ohm Spkr. terminals; Ant. Terminal; Fuse extractor post.

SPECIFICATIONS

Frequency Range:

The Frequency Range of the NC. 46 Receiver is 540 . Kc. to 30 . Mc. covered in four bands.

Band General Coverage

Band Spread

A 115 -30.0 Mc. 28.0-30.0 Mc, 40 dial div. 14 0-14.4 Mc; 56 dial div.

B	4.4	-12.0 Mc	$7.0-73 \mathrm{Mc} ; 50$ dıal div.
C	1.55	-4.6 Mc.	$3.5-4.0 \mathrm{Mc} ; 70$ dial div.
D	$0.540-1.6 \mathrm{Mc}$.		

Sensitivity:

Approximately 5 microvolts input provides a 50 Milliwatt output over the entire range.

Selectivity:

The total bandwidth is approximately 4.5 Kc . at 6 db. down and approximately 70 db . attenuation 10 Kc. off resonance is obtained.

Automatic Volume Control:

The Receiver output with AVC operating varies less than $\pm 4 \mathrm{db}$. with inputs ranging from 10 to 100,000 microvolts.

DIMENSIONS

NC-46 Receiver: $97 / 16^{\prime \prime}$ high by $173 / 8^{\prime \prime}$ wide by $123 / 8^{\prime \prime}$ deep.
Weight 32 lbs .
NC-46TS Speaker: $87 / 8^{\prime \prime}$ high $\times 107 / 16^{\prime \prime}$ wide $\times 71 / 2^{\prime \prime}$ deep.
Weight 8 lbs .

PRICES

NC-46 Table Model Complete with Tubes
NC-46TS Table Model Speaker List $\$$

22

NATIONAL 1-10A RECEIVER

The 1-10A is an improved superregenerative Receiver covering all wave lengths from 1 to 11 meters. The 1-10A is designed for use in both Amateur and Commercial services and the natural advantages inherent in a superregenerative receiver make this one of the simplest and most reliable receivers for use on these wave lengths. This Receiver is suitable for the reception of voice and tone modulated code signals. The 1-10A is supplised in a table mouriting model which through virtue of its compact size can be handily used for portable operations.

The circuit of the 1-10A Receiver employs 4 tubes and consists of one stage of tuned RF, a selfquenching superregenerative detector transformer coupled to a first stage of audio which, in turn, is resistance coupled to a power output stage. Receiver controls are held to a minimum and include Audio Gain, Regeneration, RF Trimmer and Main Tuning Controls. Plug-in coil types are used to tune the frequency range of the Receiver in six funing bands. The location of these coils in the receiver make them readily accessible for interchanging. Tuning is accomplished by a twogang variable capacitor geared to a micrometer dial which reads directly from 0 to 500 and has a linear scale length of approximately 12 feet, requiring ten revolutions to cover any one band. The scale length plus the vernier action of the

Main Dial gives the operator the equivalent of continuous bandspread tuning on all bands.

The 1-10A Receiver is designed for operation from National type 5886 Power Unit, all voltage dividers, etc., being built in so that but one B voltage lead is necessary. The 5886 Power Unit operates on 105-120 volts, 50-60 cps. This Power Unit furnishes 6.3 volts at 1.6 amperes to the heater circuit and 180 volts at 35 milliamperes to the plate and screen circuits. A 3 volt C battery, mounted in the receiver, is used to supply bias to the RF tube. The 1-10A Receiver may be operated from batteries by connecting suitable batteries to the pins of the 4 prong power plug.

Tubes

RF Amplifier	
Detector	954
	955
First Audio	$6 J 5$
	Second Audio

Price List

1-10A Receiver, table model, complete with tubes and 6 sets of plug-in coils.

List \$
5886 Power Unit, 105-120 volt, 50-60 cps.
List $\$$
MCS $8^{\prime \prime}$ PM loud-speaker with impedance matching transformer.

List \$

NATIONAL CRU OSCILLOSCOPE

NATIONAL OSCILLOSCOPES

CRU-P

CRU WITH THE CRU-P PANEL

Description

The CRU Oscilloscope is a compact inexpensive instrument whose capabilities make it outstanding in its field. Amateurs and electronic experimenters will recognize this $2^{\prime \prime}$ scope as an indispensible item of equipment to guarantee the efficient operation of their stations. Put the CRU scope to work in your station and watch it:

Measure Percentage Modulation.
Check distortion, excitation, overmodulation, etc., by the Trapezoidal pattern method.

Monitor RF and Audio circuits continuously while you are on the air.

Test Audio and RF circuits where extreme sensifivity is not required.
The circuit of the CRU is simple yet ample having a self contained power supply and controls for brilliancy and focus, a potentiometer for controlling the amplitude of the horizontal deflection as well as a built-in 60 cycle sweep. Approximately 100 volts dc. will give a $1^{\prime \prime}$ deflection on the CRU screen.

Tubes

Cathode-Ray
 Rectifier
 2AP1-A

NATIONAL POWER

National Power Supplies are specially designed for high frequency receivers, and include efficient filters for RF disturbances as well as for hum frequencies.
686S, Tablemodel (165 V ., 50 MA .), for operation from 6.3 volts $D C$, with vibrator.
SPU-686S Rack Mode!
List \$
List \$

Controls

A.C. ON/OFF: the A.C. line switch.
intensity: A potentiometer controlling the brilliancy of the pattern.
Focus: A potentiometer controlling the clarity of the scope image.
Sweep: A potentiometer controlling the length of the pattern.
"Ext."-' 60 cycle'": A two position switch, which when on "Ext." connects the horizontal deflection plates to the horizontal terminal strip at the rear of the cabinet. In the " 60 cycle" position the 60 cycle A.C. sweep is connected to the horizontal deflection plates.
BSW: A pair of insulated beam switch control terminals permitting connection to a switch or relay so that a trace appears on the screen only during transmission periods.

Prices

CRU-Table Model Oscilloscope, Less tubes

List $\$$

CRU-P Rack Panel and Control Plate (to rack mount CRU Oscilloscope) List $\$$

SUPPLIES

697 Table Model (240V., 70 Ma . and 6.3 V., 3.4 A.), for operation from 115, 230 Volts, 50/60 cps. A.C.
SPU-697 Rack Model List \$
5886 Table Model ($155 \mathrm{~V} ., 50 \mathrm{Ma}$. and 6.3 V ., 2.5 A.) for operation from 115 Volt, $50,60 \mathrm{cps}$. A.C.

List \$

POWER SUPPLIES

MICRO SWITCH

A DIVISION OF FIRST INDUSTRIAL CORPORATION
 Freeport, Illinois

Branch Offices

CHICAGO 6. . 308 W. Washington Streel NEW YORK 17......... . 101 Park Avenue CLEVELAND 3. 4900 Euclid Avenue LOS ANGELES 14... 1709 West 8th Street BOSTON 16......... 126 Newbury Street

The Precise, Small Lightweight, Sensitive Switch for Radio Applications

Micro Switch precision snap-action switches have proved invaluable for applications that call for switching substantial amounts of power by a unir operating in a small space. Micro Switch products are important electrical switching units for electrical mechanisms that make change, package products, control temperatures, heat water, bottle fluids, limit machine tools, record airplane flights, control electronic tubes and perform thousands of other diversified electrical control functions.

MICRO SWITCH Products Meet These Requirements

Small Size . . . No larger than your thumb, the basic, plastic enclosed switch measures $11 / 16^{\prime \prime} \times 27 / 32^{\prime \prime} \times 115 / 16^{\prime \prime}$.
Light Weight . . . With pin-type plunger, the plastic enclosed switch weighs less than one ounce
Lang Life . . . Patented three-bladed beryllium copper spring gives millions of accurate repeat operations.
Small Operating Farce . . . Force required to operate the switch may be as little as one ounce . . . or as much as 60 ounces.
Small Operating Mavement . . . Movement of the operating plunger may be as little as $.0004^{\prime \prime}$.
Good Electrical Capacity . . . Switch is Underwriters' listed and rated at 1200 V.A. at 125 to 460 volts a.c.

A. General Purpose Basic Switch with panel mounting. This "MICRO" basic switch is handy and useful as a door switch, or as a manual or mechanical push button switch. The threaded stem, with two thin brass hex nuts and two steel lock nuts aids adjustable location with respect to the panel. The internal switch mechanism is protected from excessive overtravel by a stop ting located near the tip of the plunger. This type switch proves both handy and useful.
B. The "MICRO" V3-1 Small Precise Switch. For a switch that must perform in small quarters the "MICRO" V3-1 s witch is of a size to meet these requirements. Small but accurate and dependable the V3-1 is provided with two mounting holes, one elongated to provide greater accuracy in locating. Flat bosses on side add to ease of stacking or grouping when requirements demand they be used that way.
C. JV-5 Actuator for use with V3-1 Switch. The JV-5 Auxiliary Actuator with roller is designed for rapid carn or slide actuation of the V3-1 switch. The frame is stainless steel with the oil-impregnated bronze bearing serving as the roller.
D. The "MICRO" V3-12 Switch. Low torque features this switch which can be actuated with 14 ounce-inches-prac. tically a feather touch. Pretravel of the actuating arm is 20° maximum with overtravel 20° minimum. It also features high resistance to shock, and in addition has clean make and break without contact bounce. Being enclosed keeps out dust and dirt and assures trouble-free operation. Time-tested and proved dependability, based on experience gained in making millions of switches, gives users an assurance of treedom from trouble. Actuating wire not furnished.

Choose From

TYPE A

Type 30 Sangamo Tubular Capacitors, molded in a thermo-setting, smooth brown finish plastic material are permanently sealed against moisture resulting in low power factor, long life and successful operation at higher antbient temperatures.

Types C and K plain or silvered mica capacitors, members of the Sangamo quality mica family, insure dependability and life in radio receiver and commercial low voltage applications requiring small capacitance values.

Types A and H fannous bigh guality Sangamo mica capacitors are precision built to provide continuous, dependable service in industrial and transmitting applications for which they are disigned.

SANGAMO HHBCHRIC COMPANY ifnycriyt

26

the Sangamo Line

Ever since SANGAMO revolutionized the manufacture of mica capacitors by molding them in bakelite, our engineers have been continually striving to improve further the operating characteristics of Sangamo Capacitors.

Now, due to the congested condition of amateur bands, capacitors that "stay put," thus eliminating frequency shifts, are more essential than ever before.

The name "Sangamo," synonymous with quality, assures the amateur a greater opportunity of establishing and maintaining those all-important contacts.

Type 40 Capacitors, impregnated in diaclor, a chlorinated dielectric, are ideal for use in high voltage filter applications and power supplies for short wave equipment.

Type 71 Diaclor Impregnated Capacitors, while being compact and tight. are cunstructed to withstand rigorous continued service under all normal conditions.

TYPE 71

Type E Mica Cabacitors are specially designed io provide the anlateur with a low cost, high voltage unit capable of carrying large currents under intermittent operation. They are not recommended for commercial applications.

TYPE E

TYPE 40

PERFORMANCE LEADERS

4-125A

Follow the leaders to 1342 San Mateo Ave., San Bruno, Cali
World Redio Hisfory Export Agents: Frazar and Hanstn, 301 Clay St., San Francisco 11, Calif., U. S.

Hor over a decade，Eimac tubes have led the field in performance－ the acid test of electronic equipment． Ultra－modern Eimac tubes provide maximum power and efficiency for today＇s equipment，and are ready and
waiting for the needs of tomorrow．
These pages contain basic data on many Eimac products．Complete information on any of these world－ famous Eimac tubes is yours for the asking．Write for it today！

EIMAC TRANSMITTING TUBES

EIMAC TUBE TYPES		ELECTRICAL							MECHANICAL				MAX，RATINGS						TUBE PRICE			
		$$	$\begin{aligned} & \dot{\sim} \\ & \dot{\Sigma} \\ & \dot{\Sigma} \\ & \dot{\Sigma} \end{aligned}$				35$\stackrel{5}{2}$$\stackrel{2}{5}$0		$\begin{aligned} & \text { u } \\ & \underset{⿴ 囗}{*} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{2}{2} \\ & \vdots \\ & \vdots \end{aligned}$												
		$\underset{\frac{5}{2}}{5}$																		－		
	25 T		6.3	30	29	16	2.4	04	2500	M8－071	3G	438	143	2000	75			7	25	\＄ 6.00	HR－1	
	3C24	63	30	25	16	18	0.2	2500	M8－071	3G	438	143	2000	75			8	25	6.00	HR－1	HR－1	
	35T	50	40	30	19	40	02	2850	M8－078	3G	55	181	2000	150			15	50	7.00	HR－3		
	35 TG	50	40	30	19	19	02	2850	M8－078	2M	576	181	2000	150			15	50	8.00	HR－3	HR－3	
	UH50	75	325	13	24	22	04		M8－078	2M	70	2.69	1250	125			13	50	15.00	HR－2	HR－2	
	75TH	50	65	20	23	35	025	1150	M8－078	2M	725	281	3000	225			16	75	10.50	HR－3	HR－2	
	75TL	50	65	11	2.3	22	04	3350	M8－078	2M	7.25	281	3000	225			13	75	10.50	HR－3	HR－2	
	2C39＊	63	11		195	65	030	21.000			2.75	126	1000	100.			3	100	30.00			
	100TH	50	62	40	20	29	04	5500	M8－078	2M	7.75	3.19	3000	225			20	100	15.00	HR－6	MR－2	
	100TL	50	65	12	2.3	2.0	0.4	2300	M8－078	2 M	7.75	319	3000	225			15	100	15.00	MR－6	HR－2	
	152TH	5 or 10	13 or 65	20	4.7	7.0	0.5	8300	50008	4 BC	763	2.56	3000	450			30	150	24.00	HR－5	HR	
	152TL	5 or 10	13 or 65	11	50	48	0.8	7150	5000 B	48 C	7.63	256	3000	500			25	150	24.00	HR－5	HR	
	3C37＊	63	24		350	4.25	060	8000			310	150	1000					150	45.00			
	250TH	50	105	37	29	50	07	6650	50018	2 N	1013	381	1000	350			40	250	27.50	HR－6	HR	
n000$\vdots$$\vdots$	250TL	50	10.5	13	35	30	05	2650	50018	2 N	1013	381	4000	350			35	250	27.50	HR－6	HR－3	
	304 TH	5 or 10	26 or 13	20	94	140	10	16.700	50008	4BC	763	356	3000	900			60	300	50.00	HR－7	HR－6	
	304TL	5 or 10	26 or 13	11	100	100	15	16.700	50008	4 BC	763	356	3000	1000			50	300	50.00	HR－7	HR－6	
	450TH	75	120	38	47	81	08	6650	50028	4AQ	1263	513	6000	500			80	450	70.00	HR－8	HR－	
	450TL	75	120	19	50	66	09	6060	50028	4AQ	1263	513	6000	500			65	450	70.00	HR－8	HR－8	
	750TL	75	210	15	45	60	08	3500	50038	4BD	17.0	713	6000	1000			100	750	150.00	HR－8	HR－8	
	1000T	75	160	30	40	60	06	9050	500．18	4 AQ	1263	513	6000	750			80	1000	125.00	HR－9	HR－	
	1500T	75	260	24	70	90	13	10，000	50058	4BD	170	7.13	6000	1250			125	1500	200.00	HR－8	HR－2	
	2000T	100	260	20	90	130	15	11，000	5006B	48 D	17.75	813	6000	1750			150	2000	250.00	HR－8	HR－9	
	3X2500A3＊	75	48	20	20	48	1.2	20，000			90	425	5000	2000			125	2500	165.00			
	4－125A	50	6.2	62	003	103	30	2450	50088		569	272	3000	225	400	30	5	125	25.00	HR－6		
	4－250A	50	145		006	127	45	4000	50088		638	356	4000	350	600	50	5	250	36.00	HR－6		
	$4 \times 500{ }^{\text {＊}}$	50	122		005	111	375	5200			432	257	4000	300	450	30	5	500	85.00			

EIMAC RECTIFIERS

	MERCURY VAPOR RECTIFIERS				high vacuum rectifiers			
	$\begin{gathered} 866 \mathrm{~A} \\ \text { 日66E } \end{gathered}$	$\begin{aligned} & R \times 21 A \\ & (R X-21) \end{aligned}$	$\begin{gathered} 872 \mathrm{~A} \\ 877 \end{gathered}$	$\begin{gathered} \text { KY21A } \\ \text { KY-21 } \\ \text { Grid Control. } \end{gathered}$	100－R	$\begin{aligned} & 2-150 \mathrm{~A} \\ & \text { (152-A } \end{aligned}$	$\begin{aligned} & \hline 2-150 D \\ & (152-R A) \end{aligned}$	250－R
1．Filament Voltage．．．．．．．．．． 2．Filament Current \qquad 3．Peak Inverse Voliage 4．Peak Plate Current 5．Average Plate Current	$\begin{array}{\|c\|} \hline 2.5 \\ 5.0 \text { amperes } \\ 10,000 \\ 1.0 \text { a mperet } \\ .25 \text { amperes } \end{array}$	$\begin{gathered} 25 \\ 10 \text { amperes } \\ 11,000 \\ 3 \text { amperes } \\ .75 \text { amperes } \end{gathered}$	$\begin{gathered} 50 \\ 7.5 \text { amperes } \\ 10,000 \\ 5.0 \text { amper es } \\ 1.25 \text { amperes } \end{gathered}$	$\begin{gathered} 25 \\ 10 \text { amperes } \\ 11.000 \\ 3 \text { amperes } \\ .75 \text { amperes } \end{gathered}$	50 5 40.000 .100 amperes	50 13.0 30.000 $\ldots \ldots \ldots \ldots$.150 amperes	$\begin{gathered} 50 \\ 13.0 \\ 30.000 \\ .150 \text { amperes } \end{gathered}$	$\begin{gathered} 50 \\ 105 \\ 80.000 \\ .250 \text { ampares } \end{gathered}$
Price ．．．．．	\＄175	\＄800	\＄7 50	\＄1000	\＄13 50	\＄1500	\＄15．00	\＄20．00

EIMAC VACUUM CARACITORS

Type	VC6－20	VC12－20	VC25－20	VC50－20	VC6－32	VC12－32	VC25－32	VC50－32
Capacity	6－mmfd	$12-\mathrm{mmfd}$	25－mmid	50－mmfd	$6-\mathrm{mmld}$	$12-\mathrm{mmid}$	$25 . \mathrm{mmfd}$	$50-\mathrm{mmid}$
Rating． RF Pesk	20－KV	20－KV	20－KV	20－KV	32－KV	32－KV	$32-\mathrm{KV}$	32－KV
Price．．	\＄12．00	\＄13 50	\＄16．50	\＄20 00	\＄1400	\＄1600	\＄19．00	\＄22．30

EIMAC DIFFUSION PUMP

HEAT DISSIPATHE CONNEGIORS

Type	Hole Dia．	Price	HR－5	125	$\$.80$
MR－1	.052	$\$ 60$	HR－6	360	.80
HR－2	0625	.60	HR－7	125	160
HR－3	070	60	HR－8	570	160
HR－4	.1015	.80	HR－9	570	300

MILLEN MODERN PARTS

 attractively pachared. moderately pried. and fully enaranterd. 'They have bern de signed with a view toward rass and practioal applieation as well as elficiont performance. Por instance. the terminals are lomated wo ats to provide shortwst posible leads mounting feet are trigned lor easy insertion of serews and sonchet contacts. so that the solder wont rum down inside them and mahe impossible the insertion of the tulue. ete. Thus our sloran. "Designed for Application." Our general catalor is arailable for the ashing either from your farorite parls supply house or direct from the factory.

11000, 12000, 13000, 14000 SHRLHS (ONDEANLKRS . 07 f"air gap is for 3000 , volt weak ratting					
MILIAEN IVPE					
Code	Crapactly per side		Atr Gap	Coltuge Rattng	$\begin{aligned} & \text { Met } \\ & \text { Price } \end{aligned}$
	Max.	Min.			
11035	36	4.6	.07\%'	3000	S6.90
110.50	51	6.5	. 077	3000	7.14
11070 13035	74 3	3.5	.067	31010	7 -80
1:3050	49.5	6.3	. 0178	3000	5.20
13070	71	7.3	. 075	3000	5.88
14200	204	10.7	. 077	3000	14.00
14101	90.5	12.9	.111	6000	12.00
14050 14060	50 60		.171	6000	580
			.26:3	9000	12.00
CONVENTIONAL SINC:					
Code	Capactiy per section		Atr Cind	F1msh on Plates	$\begin{aligned} & \text { Net } \\ & \text { Pifce } \end{aligned}$
	$1 / 1 \mathrm{n}$.	1/as.			
12935	9	37	. $176^{\prime \prime}$	Pollished	54.32
12936	9	37	. 176	Prain	3.930
12.536	6	43	. 078	$\underset{\text { Platin }}{\text { Plain }}$	2.40
12576	9	76	. 076	Prain	3.00
12510	18	101	. $0^{1} 9$	Prain	3.60
12515	18	151	. 07%	Plain	4.31)

CONVENTION゙AL DOUBLENETMON TYME

Code	Capactiy per section		Atr Gap	F'tntsh on Plates	$\begin{aligned} & \text { Net } \\ & \text { Price } \end{aligned}$
	${ }^{\text {A }}$ in.	Max.			
12035	${ }_{6}$	13	.077'	Potished	\$4.32
1:0036	${ }_{7}$	43	.077		3.96
12000	7	9.7	.0) $0 \frac{7}{8}$		3.10
120%	9	${ }_{6} 6$	-10 3	Polishzed	3.61
120\%6	9	76	.197	Platin	5. 40

Code	nexcrtpion	Set Prace
10000	Worm l) rive ["nlt	S1.n)
10001	Drum veter 1)ial-()-1(30	1.8.)
10 (1) 7	1 "*"'Nickel Silver Inst. Diat-1)-100	60
10008	$3{ }^{2}{ }^{\prime \prime \prime}{ }^{\prime \prime}$ Nickel Silver Inst. Jnat-1)-100	1.10
100.30	Dial lack	4
101660	Slaft Lackit or 3 " Shafts	. 36
106,6!	Shatt boch	. 36
10065	Vernier Imive ${ }^{\text {Vnit }}$	36
1.50)!	Neutrul (ontencer 0.7-4.3	. 90
1.0002	Seutral (omblenser (0) 13.5	1.00
1.00123 15006	Neutral (ondenser 1-3-3,	2.90
15096	Neutral (ondenser 2.8 -9.1	3.04
2001.5	Steathe fhra Midget 1.3 mmpdss	7.5
200135		1.00
200.50		1.20
20100	Steatite 1 lira Midget 100 mmfols	1.71)
20920	steatite fira Minget 20 mmfals	1.20
2093.5	Steatite flra Midget 3 mmmat	1.419
210.0 -1100		1.90
21140	*teatite litra Midget 140 mmm x	2.10
21935		1.91
22075	Steatite Midget 7 mmmids	1.32
22100	Steatite Midget 100 mmdd	1.35
22140		1.60
2291.3		1.20
29950	Steatite Midset 30 mmpf in	1.80
23075	Steatite 1 Hual Minget $7 . \mathrm{Sm}_{\text {mad }}$ ber section Si	2.60
23100	Steatite 1 uall Mlaget 106 monfd ber serthon ss	2.50
23925	Steatite 1 ual Miflect 2.5 mond ber sec-	2.2
23050	Steatite Dual Midzet iommith wer sec-	
	tion 1)s	\%
24100	100 mmfd ber section. Sinule spaced	2
2493.3	3.5 mmidd per sertion. Double spaced	2.75
2602.3	4-2 2 dir Padier	196
260.90	4-50 Air Pradder	1.108
26075	4.3-76 Air Padder	1.20
26100	5-97 Air Pauder	1.32
26920	4.5-20Air Padder	1,40
${ }^{2} 6935$	5.5-36 Air Padder	1.501
27030	30 mmid Mica Padder	21
30061		-1, 5
30002 300103	 	. 21
301901		.6.5
31091		-20
31002	Stamoff, $1 / 2 \times 215.1$ molantite	27

DESIGNED for APPLICATION

Code	Description	Nef Jrice
31003	Stamdoff ${ }^{3} \times{ }^{3}$ ．lsulantite	8.30
31004	Standolf，${ }^{3}$ x 34_{2} ，1solantite	$\begin{array}{r} .42 \\ 10 \end{array}$
31011 31012		－101
3101.3		． 27
31014	Cone $-\times 1$ ，stentite	． 42
3101%	Cone $3 \times 1{ }^{\text {c }}$ ，siteatite ${ }^{\text {che }}$	． 40
3：104	Steatite liswhimg for＊＂hole	－35
32101	Meathe fushing for \％＂\％hate	． 30
32102		． 20
32103		－4．
32150		． 0.5
32301	steatite Bushing and hardware lsolantite bushing	1,40
351103		2．3
330614		2
3.3016 .5	5 Pronk socket	．2
330616	6 l＇romb suckel	\cdots
330017	7 Pronur Liarte，Soeket	\cdots
330108	8 Pronly－Meral，	－
330107	13．as（ latilp for 80 ete．	． 31
33103	Crsstal suchet	901）
33110.5	Acorn suchet MuartzQ	．90
33.20	（rssital Fochet	． 6
3：3307	Ancket．Midget mon Serle with Smadd	．0．）
333118	Socket．Nithent thond series less sthela	．18
383n＊		－1．
31010	shteded 10 WH recelving	． 75
3111011		． 36
31101		． 36
31102	Commerctal ty pe 2．． 1111	． 36
31110	［ inlversal alr core ］ramsmatthay	1.10
311.71	Transtuittug（＂boke	1.51
34210		． 61
342\％		－7
34240	Central Purgose klVC 4l	1.25
		1.20
3 S 1 I ！	－steatite Antemma［nsulators	． 30
36001		$\therefore 1$
3600：2	Ceramic Plite cap．＂\％for sol etc．	.21
33061	black 13akelite satety Terminal	－ 40
35104	Funr F＇erminal，Black liakelite	． 610
37202	जritite Plites．Pr．	．30
37211	13Facket	13
37202	Termban Posts．Pr．	． 411
37302	Twal＇erminal，steatite	． 611
37303	Three＂lerminal steatite	． 710
37304	Fomb lerminal．Atentite	－ 11
37305	Five Ferminal，Nteatle	． 911
373116	Stx Terminah，steutite	1.00
37．011	Low I．uss Mlicir lathellte Safety I erninsit	． 3.
34001		．311
3×501	1010 Beads．j， $16^{\prime \prime}$ dta，（eubrtz（\％	． 60
$39+101$	Truly Fexthle Isolant ite	.36
39002	Conventional	． 36
$3!10103$	solid lbrass \} N．P．	21
3，100．5	［nt versal Johnt，Non－Insulated	． 36
$3!5000$	stike Artion	． 36
41） $2(5)$	Shiget Plug	． 24
40305	Intermediate size plug	45
41205	Nloget sorket	．30）
413015	Intermediate slze socket	4.5
43001	QuartzQ blank form and whug	． 90
43011		1．25
43021	Midere coils for each	1.25
\＄：3041	bind．Momited on No． 4120.5	1.25

code	Devcrljuthat	Aet Price
430） 1	Hug．No． 1 at end of conte means	\＄1．25
41000		． 75
41001	Quartz（2 blank form and phug	1.20
44005		1.50
4－1010		1.50
441120		1.50
4.4040	＂100 watt＇colls	1.50
$440 \mathrm{M0}$	for eath band．Mounterd on	1.90
41.81011	Switheing link and sucket	1.75
4.0000	（oil form，1＂da，no p．．low loss mea bisue fllehulle	． 35
45004	（bi）F゙urin．I＂dia． 4 ）．．low loss mica base phernolle	． 45
45005	Coll form．I＂alia． 5 p．，low luss mica base Phemolif：	.45
45.500	Coil Forme＂＊lat．．Nteathe	． 45
46100		.45
47 （1）1		． 10
47002		－1．5
47003		． 35
470101	Coll Form．it dia．（puartzQ	.45
5．5（1） 1		． 45
$5 \times$（）！1		． 50
50001	Pantel Marklug leralemmanata Kit	1.25
543010	Dectaleomanlat kit－Black	1.25
63011		． 60
74110！	Permeability T＇umed shlelded f＇orma	1.85
7406：2	I＇ntuned Shielded liurn	1.50
－1100	（betal lase athl shfeld	75
－70ハ3	＂＊3＂Itash lilter 2．and A	1.00
－ 8 citi	\cdots－kition liash julter 500．1a	1.25 pr ．
37872	＊ $472 \times$ Hash l－itter	1.40 pr ．
9 T 020	lyme lxand W＇ive＇l＇rup	． 90
－ 9040	－me 13athd Wave＇Trap	．90）
7！ 10×1	3 ．inde｜falu！Wrave Trup	－90
79160	1.7 me diand Wave Traj	．90
	． 1 tr Trimmed	
6045.5	450 Dolude AIr core	4.50
（6）4．5．5	4 if interstige（1）AIr（iore	4.50
（11） 459	4 inf Intersiame（2）Air（ure	4.50
（6）．54）	Su00）Interstusc（2）NIF（口re	4.50
（60．0）	5000）1）loxte Air cire	4.50
6，0．54，${ }^{\text {a }}$		4.50
60．0．4		4.50
02161	1600 Interstuge Iran（ore	4.50
$6 \geq 162$		4.50
624．54	4 －in lolute Iront＇ore	4.50
（3）－4．31）	diak lutcinboge trunfone	4.50
6：316：3	160 Itro dir（ore	4.81
6．34．96	4in 13F\％Alr core	4.50
633503		4.00
	Permanhtity Tursed	
6：154	4.56 lowle（2）	2.25
614．6	4.76 Interstage（2）	2.85
6．54：36	4.561310 ）	2.25
70721	Complete set of four wavenneters，In case	4．00）
006131	Hetroll ！wayer	18.00
9060.	Range 2.4 to 4.7 me．Wravemeter	4.51
90606		4.50
90605	1Range 26 to 05 mc Wavemeter	4.50
90608	Hange so to 140 W：avometer	4.50

-FIRST OF ITS KIND IN THE INDUSTRY!

RADIO HAMS: Here's a new component for your sets-a dry-plate rectifier to use in place of the conventional rectifier tube. It will give your radio receivers new performance, instant starting, longer life. In every way, Federal's miniature Selenium Rectifier makes the ideal power supply for all AC-DC sets and it has been adopted as a standard component by many leading radio manufacturers.
Among its many other diversified applications are: -vibrator power supplies, television sets, phonograph combinations, heating tamps, door chimes, electric train accessories, scientific research apparatus, stethoscopic and bacteriological equipment, measuring, intercommunications and electrical musical instruments and other electronic devices.
These rectifiers can be obtained from your dealer or direct from Federal Telephone and Radio Corporation, Newark 1, New Jersey. Price $\$ 1.60$ each net. Send $\$ 12$ for standard package of twelve units. Write to Dept. F1065 for complete technical literature on how to apply rectifiers.

Replacement for these Tubes:

 $\begin{array}{llllllllll}5 V 4 & 5 X 4 & 5 Z 4 & 80 & 1225 & 25 Z 5 & 35 Z 3 & 3526 & 11 / Z 3\end{array}$

Electrical Characteristics:

Federal Telephone and Radio Corporation

In Canada:-Federal Electric Manufacturling Company, Lid., Montreal.
Export Distributorst-International Standard Ilertric Corp. of Broad St., N.Y.C.

THEEIR Omuandioner Faithfully Reproduce Your Complete Messages

These famous microphones, priced within the range of every amateur, amplify all vibrations received by the diaphragm without adding any of the harmonics to assure clear, sharp communications without distortion. You can rely on Turner under all climatic and acoustic conditions.

22X

 $22 D$22X Crystal is tops in performanre. Reproduces clean and sharp. Smart engineering cuts feed-
 back to minimum. Tilting head and removable 7 -foot cable set. Built-in wind-gag permits outdoor operation. Crystal impregnated against moisture. Automatic barometric compensator. Chrome type finish. Level -52 DB. Range 30-7,000 cycles.

22D Dynamic is identical in appearance with 22 X but has high level dynamic cartridge. Dependable indoors or out. Output -54 DB. Range $30-8,000$ cycles. 200 or 500 ohms or high impedance.

Hang it, hold if, use it on desk or floor stands. Hon-D does the job of several mikes. Available os 9 X Crystal, in brushed chrome finish, Leve! -48DB, or 9D Dynamic in brushed chrome or gunmetal. Level $-500 B, 200$ or 500 ohms or hiimpedance.

NEW TURNER

CHALLENGERS

Plus Performonce af Low Cosi

Model CX

Crystal, in rich brushed chrome finish, with 7 foot removable cable set using Ampheno connectors. Level -52 DB. Range 50-7,000

Model CD

Dynamic, same style and finish as CX, with ond finisle 7 , woot cable set. In 200-250 ohms, 500 ohms or hi. impedance. Level - 52 DB. Range 50-7,000 cycles.
 cycles.

Model BD

Dynamic, same finish as

Medel BX

Crystal mike for recording, P.A. and ham work Bronze enamel finish. Level-52 DB. Range 50$\delta, 000$ cycles. An excellent unit. With 7 foot cable.
 B. Works indoors or out. tevel -52 DB. Ronge $50-6,000$ cycles. 200250 ohms, 500 ohms or high impedance with 7 foot cable.

ERE Turner Microphone Catalog with complete information and prices on Turner Microphones. Write for your free copy.

Crystals Licensed Under Patents of The Brush Development Co.

CEDAR RAPIDS, IOWA

Greatest contimoons frequency

* coverage of any communicalions receiver

From 540 ke to 110 Me. AM - FM - CW

In the $\mathrm{Monfol} 5 \mathrm{Sx}-12$ Hailicentertivetin new high ztundard of reeviver performance tand vernatilly. Covering ill frequencies from Stio kilocrciles to 210 mestucycles, the SX-43 coumbina in one iuperbly enzineered unit a topeflight standared and VHF mentrumbeatronso ueiver: 3tundard, ulath-wive und FaS broandeas rective and high fidelity phonograph umplifier.

The trimendoun frequency mange of
 than hox tower belone been avillable in: a recelver of this typt, is made poesifle by the ditvalopment of a new "aplitestator" tuning watem and tho weo of dual linter. mieditite frequency transformers. Receptinn of amplimde mopfalated and continuous pove telegraph signals is provided for throuphaut the entire renge it the SX-12. In addition, a disctiminitor und two limiter etuges are availat ie an bands 5 and 6 (27 to 110 megseycles) 10. permit the reception of freguency modulated signals Misteal reproduction of true ligh fidelity is assured hy in nudio syitem with a reponse curve esentialty flat from 60 to 15,000 cycles and an undintorted autput of cighi wotts
The contruls of the SX-42 are arratuged for maximunt convanience and amplicity of operation, wask tuNikg aind iusidermex knobs are mowited cosxially, focuaing the timing fumetions in as singhe preciaian-built unit, navoswroci and wos umir are located ai either siffe of the main dial. Auxillary Emintale iuch as chrspax pmamsa, skowriviry: etco, are loglally slaced so that thase mons Erequantly uned are in the mout accesithle positions Hallimafters new system of calar coding mikes it positible for the enture family to enjog thir tine recelver. The nosmil control ponituins for mtandard broadeast reception ure indicated ly thy sed dets. while BM ndjustments are in green.

The main tuning knoh is provided whth a prectilion vernier scale which is. eeparatoly illuminated throuph a imnali windore in the ann-plice Luaite main
dal hotsing The main uming dial in chilbrated in mugreycler and is marked with the numbers in the new FMr band of 88 to 108 mereacroles. The bandipmed dial is callbroted far the unnteur 35 T 14, 28, mini50 mesprycle bands An Hdi! Lionil lopging male is provided of this dial for une in olher nimbes The rmall lokking knob mountel conxiully with the main and bundproind zunime lanobs permite ellher to be mfated frecty while nalditig the ather firmly in poaition.

The many new and ingeniouz cictilt features which make pootible the amiaz:Ins veratility of the SX-42 itnm direetly from Hallicrufters long experience in the ósiegn amd prodoction of VHE and UHF commumications equip: ment. The newly developed "rplit-stator" tuntiges system used on the thwee higher hinds provides a for ereater suin per stage that is posstale with older routhode. Each IE tratheformet emtitalint withdingi for both 455 kilocycles and 10,7 megacy cles and the chanesover is accomplinhed a utomatically belween bands 4 and 5 . As bind 4 rums 1030 megacyctes and band 5 siarts at 27 mogercyctes it is rowsible to use elther harrow-banal blatudard communications moblver per:lormshice on wide-hand FM performatacy on the smoteur frequencies froth 28 to 23.7 mpgacycles. A tyme TA4 tube functions as a beat frequency ascillator for CW revention. When the receiver is switehed to FMM, howevtar, this tobo bercomes a direct current armplifier-to operate the EM tuising meter. This meter performe is a mormat eurrier level indicator for AM recupilath. A four pusituan swifch on the paratl arects the denined mosic of operation-PHONO FM, AM ar CW.

1. addition to ite many new festures the SX-43 contitues all of the time-tried
 top models. Freedoni frum "diftt" and maximum stahility aro provided be temperature coppensallon und the use of a typo VR-150 voluige regulutor tube.

A crystal filter circuit combined with variable intermediate frequency channel width offers six different degrees of selectivity on the four lower bands (to 30 megacycles). crystal phasing, cw pitch, sensitivity, and four position tone control for low, med, hi fi, and bass, are all conveniently placed on the front panel as are receive/stand-by, noise limiter, and avc switches.

The beauty and modern functional styling of this new receiver are self evident. Without in any way detracting from the "precision instrument" appearance which characterizes fine communications equipment, Hallicrafters designers have succeeded in creating a receiver which is not out of place in the most luxurious surroundings. The rich deep gray of the panel, satin chrome "airodized" top, and light gray lettering with touches of red and green combine with the precisiontooled controls and light translucent green of the illuminated dials and meter in a harmoniously integrated whole.

Note in closeups at left the compact efficiency of the concentrically mounted main tuning and bandspread controls and the precise, logical grouping of the other dials.

A finishing touch is furnished by the instrument type adjustable base, available as an accessory. By simply turning the knurled rim of the front support the receiver can be tilted to provide an "eye-angle" view of the dials for maximum accuracy and ease of tuning.

Exvirasmamary rersatiliay...
Frocturas ocery hame arants

CONTROLS: BAND SELECTOR, MAIN TUNING, BANDSPREAD, and selective DIAL LOCK, VOLUME and POWER OFF, AVC. NOISE LIMITER, RECEIVE/STANDBY, SELECTIVITY, TONE, SENSITIVITY, CRYSTAL PHASING, RECEPTION, CW PITCH. " S " meter adjustment on rear of chassis.
EXTERNAL CONNECTIONS: Antenna connections for doublet or single wire antenna. Input impedance matches 300 ohm line except on broadcast band which is designed for use with ordinary single wire antenna. Output terminals to match 500 or 5000 ohm speaker. Phone jack on front panel. Phonograph input connector on rear of chassis. Socket for use of external power supply. Reinote standby switch connections provided for in power socket. Power cord and plug.
PHYSICAL CHARACTERISTICS: The Model SX-42 is housed in a steel cabinet of true functional design. Panel and chassis are assembled as a unit and may be removed for servicing or for mounting in a relay rack. Panel is finished in deep gray, top of cabinet is of "airodized" steel finished in satin chrome and swings open on a full length piano hinge for maximum accessibility. Main dial housing is a single piece of Lucite fabricated by an injection molding process. Panel lettering is in light gray with incidental red and green markings for standard AM and FM reception. Dials are a light translucent green and are indirectly illuminated.

FIFTEEN TUBES: $1-6 A G 5$ 1st RF amplifier; 1-6AG5 2nd RF amplifier; 1-7F8 converter: 1-6SK7, 1st IF amplifier; 1-6SG7. 2nd IF amplifier; $1-6 \mathrm{H} 6 \mathrm{AM}$ rectifier and noise limiter; 1-7H7 1st FM limiter amplifier; 1-7H7 2nd FM limiter: 1-6H6 FM discriminator: 1-6SL7 audio inverter; 2-6V6 audio output tubes: 1-7A4 beat frequency oscillator and FM tuning meter amplifier; 1-VR-150 voltage regulator; $1-5 \mathrm{U} 4 \mathrm{G}$ high voltage rectifier.
OPERATING DATA: The standard Model SX-42 is designed for operation on 105-125 volts $50 / 60$ cycle alternating current. The universal Model SX-42U may be operated on 110 , $130,150,220$ or 250 volts, 25 to 60 cycle, alternating current. The standard model draws 0.93 amperes at 117 volts. When operated from batteries through the auxiliary power supply socket it requires 5 amperes at 6 volts DC for heater current and 150 milliamperes at 270 volts DC for plate current. Total battery current when operating from a 6 volt battery and using a vibrapack as a source of plate power is 16 amperes.
DIMENSIONS: Model SX-42. Cabinet only, 20 inches wide by $93 / 4$ inches high by 16 inches deep. Overall. 20 inches wide by $101 / 4$ inches high by 18 inches deep.
WEIGHT: Model SX-42. Receiver only, approximately 52 pounds. Packed for shipment, approximately 65 pounds. Model B-42. Adjustable base, packed for shipment, approxiinately 5 pounds.

SX-42 FEATURES

1. Continuous frequency range - 540 kilocycles to 110 megacycles in six bands.

Band 1-540 to 1620 kilocycles.
Band 2-1.62 to 5 megacycles.
Band 3-5 to 15 megacycles.
Band 4- 15 to 30 megacycles.
Band 5-27 to 55 megacycles.
Band 6-55 to 110 megacycles.
Adequate overlap is provided at the ends of all bands.
2. Wide vision main tuning dial accurately calibrated.
3. Separate electrical bandspread dial calibrated for amateur 3.5, 7, 14, 28, and 50 megacycle bands.
4. Beat frequency oscillator functions throughout entire range of receiver. CW pitch adjustable from panel.
5. Four-position switch selects mode of operation, PHONO, FM, AM, or CW.
6. RECEIVE/STANDBY switch.
7. Series type automatic noise limiter.
8. Push-pull final audio stage delivers over 8 watts with less than 8% harmonic distortion.
9. Audio amplifier response curve is essentially flat from 60 to 15,000 cycles.
10. Red markings for broadcast reception and green nlarkings for $F M$ reception simplify operation for general use.
11. Connections for coordinated operation with Hallicrafters transmitters.
12. Separate SENSITIVITY (RF) and VOLUME (AF) controls.
13. Four-position tone control provides $I . O W$, MED, HI FI. and BASS.
14. Special socket for use of external power supply.
15. High frequency oscillator temperature compensated to reduce drift.
16. "Micro-set" permeability adjusted coils in RF section.
17. AVC switch.
18. "Airodized" steel top provides full ventilation and swings open on full length piano hinge for greatest accessibility.
19. Wide band FM, AM or CW available from 27 to 110 megacycles.
20. Six-position selectivity switch with crystal filter operates on frequencies between 540 kilocycles and 30 megacycles.
21. Combination carrier level meter and FM tuning indicator. BFO tube performs dual function as FM tuning indicator amplifier.
22. New FM band marked with channel numbers in addition to megacycle calibration.
23. Dual intermediate frequency transformers. 455 kilocycle IF for standard operation, 10.7 megacycle IF for VHF and FM operation.
24. "Split-stator" tuning makes possible superior performance in VHF range.
25. Chassis and panel can be removed as a unit for rack mounting.
26. Crystal phasing control.
27. Antenna input impedance matches 300 ohm line.
28. New Hallicrafters Type HA-6 crystal used in crystal filter circuit. Holder of Mycalex, non-hygroscopic and unaffected by temperature.
29. Two limiter stages for maximum quieting on FM .
30. Two tuned RF stages using miniature tubes for superior VHF performance.
31. Phonograph input connections on rear of chassis.
32. Type VR-150 voltage regulator tube provides maximum stability in high frequency oscillator, converter, BFO , and FM tuning meter circuits.
33. MAIN and BANDSPREAD tuning controls and dial lock are mounted coaxially as a single precision-built unit.
34. Main funing knob provided with precision vernier scale, separately illuminated through small window in one-piece Lucite dial housing.

NEW SPNAKERS TO MATCH THE NEW MODEES

The R-4t zrit the 否-45 (the rack mountint vermion of the R-12 represent one of the greatest innovations in speaker design in recent years Thir is the firet epoobrest of ite nies to offer the splendid advantages of the bast reflex primeiple. Now in this sleek, highly functional desigia, matching the new line of Hallicrafters receivert, the bass reflek Ceature is available in a compact speaker that offers m new high quality of reproduction. The speaker size is 8 inches. Two position speitch on from yenel for communications or high fidelity reofption Terminels on rear for 590,600 ohon
 wide
 it price decerer, Nos

This new external " S " meter is available as an accessory and can be easily connected through a special socket on the rear of the receiver chassis. May also be used with other Hallicrafters modelssuch as the $\mathrm{S}-20 \mathrm{R}, \mathrm{S}-18$, etc.

FEATERES

Sane cifolt refintinesis proyt bef rep avalt.
sbia ja un motive aina

1. Ovorull frequincy fing- 3 Wd killocyans

$$
010=2 \cos .
$$

of al buadi main triming alif Lecurstely
calimatit
2. Sofiente electital bamipresil ilial in:
grie fywhelitiang
 trow frout painh!

E. Standixi recuins wow ith.
7. Autimatlie nol - Ilimitun
8. Msaimum autlon odprif-Jh wata
2. Ithernal PM dynumic mealer imfil it iubber shoelh minints
in. Inturavine frim kimadrat, tocrill

1. Connertion Pr ion coordintell operation

2. threeraifion tome spituti.
3. Spocinf merkot permin ion of Eutrinal

InfF vertion.

to'hewcattinifiteim.

The semallonal hew $S-40$ widi the finmat performance glver pronetied in the popular prioe fild is haused in s cubinct af true flunetionil desits - it completrily niw conception of reorive beatity athi xtylibs Full tue is mide of bewly developeat matertals und foctitiquars. Muxithim ventilution is aafuraf by a mulsitude of uny openitge in the upper sectin of the cabinet which also implart i1 smurt and pleandut wppetratice. The xatim top of the Ebinet गrons on \# full longth pitino hinge for confol te accest Lilify. Punel and chansis muy be ramoved fromi the cuhinet ms a unit withuuh difturbing any conumals or cornhetions All controls are slearly identlied und the normal poiltions for ntondard bromisant

* 5 ± 0 to 11700 Itc. $* 5.2751075 .7 \mathrm{Ma}$
 reception arn marked for red, malkisis it eley for she stimie fanily to use this fine receiver

The Noxtel S-40 moorproter mary cireult refinmmenth lind fentuirs nover befare avnilable in thin price class. The RF wetann uses permeakility adjusied "nicro-sert" maductatices, |ralthtical with those in the mout expmenaivo tinllicrafters recrivers. Auturmalic anise limier, Uuatperalare rampenated RE osalliator, beut frequency oscillator, stemrate BF and AE min coutrubs three-moition tone onntrol, keparate electrleal hintippreid, with therin flywhent cuniny und many: other funtures make thes beentiful now receiver an outatending valow.

879^{50}

Amaterr Net

CONTROLS: SENSITIVITY (including "S" meter on/off switch), BAND SELECTOR, VOLUME, TUNING, BANDSPREAD, AVC ON/OFF, CW, AM, NOISE LIMITER ON/ OFF, TONE AC OFF, PITCH CONTROL, STANDBY/RECEIVE.
NINE TUBES: 1-6SG7 RF amplifier; 16SA7 converter; 1-6SK7 1st IF amplifier; 1-6SK7 2nd IF amplifier; 1-6SQ7 2nd detector and 1st audio amplifier: 1-6F6G output audio amplifier; $1-6 \mathrm{H} 6$ automatic noise limiter and gas gate; 1-6J5GT beat frequency oscillator; 1-80 rectifier.
OPERATING DATA: The standard Model S-40 is designed for use on 105-125 volts, 50 to 60 cycle alternating current. The universal Model S-40U can be used on 110, 130, 150, 220
or 250 volts. 25 to 60 cvele, alternating current. The standard model draws .76 amperes at 117 volts. When used with external batteries the heater current is 5 amperes at 6 volts and plate current is 70 milliamperes at 270 volts. If a vibrapack is used for plate supply the total current demand for both plate and heaters is 10 amperes at 6 volts.
DIMENSIONS: Model S-40, Cabinet only, 181,2 inches wide by $81 / 2$ inches high by $9^{-5} 8$ inches deep. Overall, $18 \frac{1}{2}$ inches wide by 9 inches high by 11 inches deep.
WEIGIIT: Model S-40. Receiver only, approximately 28 pounds. Packed for shipment, approximately 33 pounds. Model SM-40. Meter only, approximately $1^{3 / 4}$ pounds. Packed for shipment approximately 3 pounds.

See what you hear with the SKYRIDER PANORAMIC SP-It

thenikentiess new Sterrider Pannormic madatar, Moderi SP-th oficts alt the zivanteser of zeneramic recention ba win wisually comgnet and itlespmture unit, Win this adaptwo connected to a Hallicrafter refociver it is
 \&pertum vialilly and to mailsiat the charscritigtily of radiongrals from jous ous in other trwaruitters.
Tati reew witepter may by unes whith any Recriver
 Ten tisbes

$\$ 39^{50}$
 Amateur Net

FEATURES

1. Overall frequency range - 540 kilocycles to 32 megacycles in 4 bands.

Band $1-540$ to 1650 ke.
Band 2-1.65 to 5 Mc .
Band 3-5 to 14.5 Mc .
Band 4-13.5 to 32 Mc .
Adequate overlap is provided at the ends of all bands.
2. Main tuning dial accurately calibrated.
3. Separate electrical bandnpread dial.
4. Beat frequency oscillator, pitch adjustable from front panel.
5. AM/CW switch. Also turns on automatic volume control in AM position.
6. Standby/receive switch.
7. Automatic noise limiter.
8. Maximum audio output1.6 watts.
9. Internal PM dynamic speaker mounted in top.
10. Controls arranged for maximum ease of operation.
11. 105-125 volt AC/DC for operation. Resistor line cord for $210-250$ volt operation available.
12. Speaker/phones switch.

CONTROLS: SPEAKER/ PHONES, AM/CW, NOISE LIMITER, TUNING, CW PITCH, BAND SELECTOR, VOLUME, BANDSPREAD, RECEIVE/STANDBY.
EXTERNAL CONNECTIONS: Antenna terminals for doublet or single wire antenna. Ground terminal. Tip jacks for headphones. Line cord and plug.
PHYSICAL CHARACTERIS-
TICS: The Model S-38 is housed in a sturdy steel cabinet finished in rich satin black. Speaker grille in top is of airodized steel. Chassis is cadmium plated. Lettering is in light gray and switch knobs are red.

For hams, beginning hames and all artho arant the finest receiver wailable at a low price

The Model S-38 meets the demand for B truly competent commumicalions receiver in the low price field. Styled in the post-war Hailicrafters pattern and incorporating many of the features found in its more expensive brothers, the S-38 offers performance aria appearance far above anything heretofore available in its class. Four tuning bands. CW pitch control adjustable from the front panel, automatic noise limiter, selfcontained P1t dyramnce speaker and "Airodized" steel grille, all mark the S-38 as the new leader amsong imexpen-
sive communications recelvers
The $\mathrm{S}-38$ is an especially fine receiver for younger people just beginning to find the unending fascination offered by radio as a hobby. In addition to beingly a good standby receiver for any amateur, the S-38 has unlimited uses. Its compact functional design, its high performance on both short waves and standard broadcast reception makes it an ideal receiver for use in den or library, in college dormitory, at camp or cottage or in any room around the house wherever a grod extra receiver at a low cost is desireal

SIX TUBES: 1-12SA7 converter; 1-12SK7 IF amplifier; 1-12SQ7 second detector, AVC, first audio amplifier; 1-12SQ7 beat frequency oscillator, automatic noise limiter; 135L6GT second audio amplifier; 1 $-35 Z 5$ GT rectifier.
operating data: The Model S-38 is designed to operate on $105-$ 125 volts AC or DC. A special external resistance line cord can be supplied for operation on 210 to 250 volts AC or DC. Power consumption on 117 volts is 29 wates.
DIMENSIONS: Model S-38. Cabinet only, $127 / 8$ inches wide by 6% inches high by $7 \% / 8$ inches deep. Overall, 12% inches wide by $7^{3 / 8}$ inches high by $85 / 8$ inches deep.
WEIGITT: Model S-38. Receiver only, 11 pounds. Packed for shipment, 13% pounds.

IIT•17

The Model HT-17 offers real Hallicrafters transmitter performance with maximum convenience and economy. No larger than a small receiver and styled to match the postwar Hallicrafters line, this new transmitter provides an honest ten watts of crystal-controlled CW output on the amateur $3.5,7,14,21$, and 28 megacycle bands.

A pi-section matching network is an integral part of the plate circuit and, together with an adjustable link, provides coupling to any type of antenna or permits the HT- 17 to be used as an exciter for a high power final amplifier. The oscillator stage uses a type 6V6-GT tube and is automatically switched to a Tritet circuit when coils for the three higher bands are plugged in. Full output on the 14,21 , and 28 megacycle bands is obtained with 7 megacycle crystals. A type 807 tube is used in the final amplifier, and the self-contained power supply, for $105-125$ volt AC operation, employs a $5 Z 3$ rectifier. Connections are provided for an external modulator. The "airodized" steel top opens on a full length piano hinge for maximum accessibility and ease in changing coils and crystals. A pilot lamp is provided on the front panel for tuning. Coil sets extra.

CONTROLS: PLATE, LOADING, TRANSMIT/STANDBY, METER OSC/PWR AMP, AC ON/OFF (all on front panel). Oscillator plate tuning, Tritet tuning (easily accessible by raising top).
EXTERNAL CONNECTIONS: Antenna terminals for single wire, using pi-section network tuning, or two-wire low impedance line, using link coupling. Ground terminal. Connections for key and external modulator. AC line cord and plug. Special socket for use of external power supply. Fuse.
PHYSICAL CHARACTERISTICS: The Model HT-17 is enclosed in a sturdy steel cabinet with all operating components mounted on a strong cadmium plated chassis. Top is of "Airodized" steel and opens on a full-length piano hinge for maximum accessibility. Dials are of the slide rule type. Finish is rlch satin black. Trim and lettering match the new Hallicrafters receivers.
THREE TUBES: 1 - 6 V6-GT crystal oscillator; 1807 power amplifier; 1-5Z3 rectifier.
OPERATING DATA: The Model HT-17 is designed for operation on $105-125$ volts $50 / 60$ cycle alternating current. Connections are provided for use with external batteries or other emergency power source. When operated on 117 volts the total current is 1.07 amperes (125 watts). Heater current needed for auxiliary power supply operation is 1.35 amperes at 6 volts, plate current is 135 milliamperes at 400 volts. Total demand when used with a vibrapack on six volt battery is 18 amperes. DIMENSIONS: Model HT-17. Cabinet only, 127, inches wide by $6 \% / 8$ inches high by $7 \% / 8$ inches deep. Overall, $127 / 8$ inches wide by $73 / 8$ inches high by 85% inches deep.
WEIGHT: Model HT-17. Transmitter only 21 pounds. Packed for shipment 25 pounds. Coils, packed for shipment, per set, approximately $11 / 2$ pounds.
SM-2 plate milliampere meter. Range 0 to 150 ma . Supplied for quick installation in HT-17 transmitter in place of tuning pilot lamp, at extra cost.

FEATURES

1. Frequency range - amateur bands from 3.5 to 30 megacycles.
2. Power output- 10 watts minimum on all bands
3. Pl-section matching network plus coupling link permits use with any antenna.
4. May be easily coupled to drive a high power finat amptifier
5. "Airodized" steel top for maximum ventilation.
6. Full-length plano hinge permits entire top to swing open for ease in changing coils, crystals.
i. All operating and tuning controls castly accessibie
7. Self-contained power supply for $105-125$ volt 50,60 cycle AC operation.
8. Special socket for use of external auxiliary power supply.
9. Osclliator circulf automatically switched from Pierce to Tritet, on three higher bands.
10. Full output at highest frequency with 7 megacycle crystal.
11. Terminals for connection of external modulator.
12. Panel switch to connect tuning pllot lamp in exciter or ampllfier circuits.
13. New styling harmonizes with Hallicrafters postwar recelvers.
14. Plur-in provision for SM-2 plate milliampere meter.

A variable master oscillator combining excellent stability and ease of operation

Here is another new and welcome addition to the Hallicrafters line, a variable master oscillator. It is specifically designed to provide the amateur operator with a continuously variable exciter unit which is as easy to tune or shift to a new frequency as a modern receiver. Outstanding features never before available in a unit of this kind include excellent stability, negligible frequency drift, voltage regulator and complete simplicity of operation. It is accurately calibrated for the five ham bands. The heart of the unit is the variable master oscillator which employs a 6BA6 tube in an electron coupled circuit with plate and screen voltage regulation. This circuit is scientifically temperature-compensated and is tuned by one section of an air dielectric variable condenser, another section of which tunes the 6V6 frequency multiplier amplifier. Power output of the HT-18 is fed through a six foot 72 ohm coaxial line which may be connected to any commonly used crystal circuit of a transmitter. The RF output at the line end is not less than $21 / 2$ watts and it can thorefore be used to drive a high power class "C" amplifier. For example the unit will provide ample driving power to two 813's which will supply over 500 watts of CW power and about 300 watts of phone carrier.

In addition to variable frequency operation, the Model HT-18 provides for three crystals for spot frequency use. These crystals may be switched into the circuit from the front panel.
CONTROLS: BAND SELECTOR, TUNING, VARIABLE FREQUENCY-CRYSTAL SELECTOR, POWER ON/OFF SWITCH, CARRIER ON/OFF SWITCH, BEAT FREQUENCY SWITCH.
EXTERNAL CONNECTIONS: R-F output terminals. Power line cord, carrier switch terminal connectors for receiver and transmitter control. Shorting type key jacks on front panel.
PHYSICAL CHARACTERISTICS: The cabinet of the Model HT-18 is styled to match the new Hallicrafters models and is finished in rich satin black. Airodized steel top swings open on a full-length piano hinge for maximum accessibility. Panel lettering is light gray and dial scale is green indirectly illuminated.
FIVE TUBES: 1-6BA6 electron coupled oscillator or crystal oscillator; 1-6V6 amplifier or frequency multiplier; 1-VR-105 voltage regulator; 1-VR-150 voltage regulator; 1-5Y3GT power rectifier.
OPERATING DATA: The Model HT-18 is designed for operation on $105-125$ volts $50 / 60$ cycle, alternating current. Crystals used if desired are in the 3.5 megacycle band but are not supplied with unit.

1. Frequency range. Five amateur bands.
2. Wide vision tuning dial accurately calibrated.
3. $21 / 2$ watts measured output at end of 6 foot 72 ohm transmission line.
4. Negligible drift.
5. Scientifically temperature-compensated.
6. Oscillator and amplifier keyed.
7. Built in crystal sockets for spot frequency operation.
8. Two voltage regulators.
9. Complete band switching.
10. Ganged tuning.
11. All coils self-contained, no plug in coils
12. Tubes and circuit components carefully selected for maximum stability.
13. Oscillator operates on lowest frequency range only.
14. Higher frequency bands reached by means of high efficiency frequency multiplier.

Hallicrafters Model HT-9 is an ideal medium power transmitter. Designed for maximum flexibility and convenience. In addition to coils and crystals it requires only a microphone or key, antenna and a source of AC power to go on the air.
Five individual plug-in tuning units and crystals may be accommodated in the exciter section simultaneously. Band switching is easily accomplished by changing one coil in the final amplifier and selecting the desired exciter frequency by means of a panel switch. Exciter units are pre-tuned and the only additional operation needed is a slight adjustment of the final tank tuning capacitor.
Separate meters are provided for the power amplifier plate and grid circuits and a third meter may be switched into either the exciter or modulator cathode circuits. All controls are conveniently arranged on the panel and a safety interlock switch is provided for protection against accidental shock when the cabinet is opened.

A real ham rig Medium power Maximum Ilexibility

${ }^{8} 250^{00}$
Less Coils and Crystals Amateur Net

Woild Racio thistory

FEATURES

1. Frequency range 1500 kilocycles to 18 megacycles and amateur 28 megacycle band.
2. Power output 100 watts on CW, 75 watts on phone.
3. Antenna coil will match any resistive load from 10 to 600 ohms.
4. Maximum ventilation provided by louvers on sides, cutouts at rear.
5. Hinged top permits access to interior for changing coils and crystals.
6. All operating controls on front panel.
7. Self contained power supply for $105-125$ volts, 50/60 cycle AC operation.
8. Input for any medium level, high impedance microphone
9. Metering of cathode current of exciter or modulator, power amplifier grid and power amplifier plate.
10. 100 per cent modulation with low distortion.
11. Carrier hum more than 40 db . below 100% modulation.
12. Frequency response flat within 3 db . from 100 to 5000 cycles.
13. Five operating frequencies may be pre-set in the oscillator and buffer doubler stages and selected at will by means of the band switch.
14. Line fuses mounted on rear of chassis.
15. Convenient table mounting.
16. Rugged construction and oversize components assure dependable operation.

CONTROLS: AUDIO GAIN, (SPEECH AMPLIFIER) OFF/ON, CATHODE CURRENT EXC. MOD., PLATE PWR. ON OFF, FIL. PWR. ON OFF, C.W. PHONE, BAND-SWITCH. TRANSMIT /STANDBY, PLATE TUNING.
METERS: Cathode current, P.A. grid, P.A. plate.

EXTERNAL CONNECTIONS: Antenna terminals. Terminal strip for key. antenna relay, and remote control of receiver. Line cord and plug. Two line fuses. Microphone input connector (on left cnd of cabinet). All connections except microphone are located on rear of chassis.

PHYSICAL CHARACTERISTICS: The

Model HT-9 is constructed on a heavy cadmium plated steel chassis. Cabinet is of steel finished in gray wrinkle enamel and is provided with heavy rubber mounting feet. Ventilating openings in top and sides assure adequate cooling. Interlock switch under lid cuts high voltage supply when cabinet is opened.

TUNING UNITS: Final amplifier coils and exciter tuning units are available for the 1.75. 3.5, 7,14 , and 28 Mc . amateur bands. General coverage coils and units for all frequencies between 1.5 and 18 Mc. may be obtained on special order.

FOURTEEN TUBES: $1-6 L 6$ crystal oscillator (used above 8 Mc . only); 16 L 6 crystal oscillator or doubler: 1-814 final RF amplifier; 1-6SJ7 1st speech amplifier; 1-6J5 2nd speech amplifier; 4-6L6 push-pull parallel modulator slage: 2-5Z3 rectifiers; 1-80 rectifier; 2-866 rectifiers.
OpERATING DATA: The model HT-9 is designed for operation on 105-125 volts. 50,60 cycle alternating current. In normal operation it draws approximately 3.5 amps . (400 w.).
DIMENSIONS: Model HT-9 overall clearance: $291 / 8$ inches wide by $121 / 2$ inches high by 201,2 inches deep.
WEIGHT: Model HT-9 transmitter, 120 pounds. Packed for shipment, 125 pounds.
volous. of kyfone
AVIATION RADIOIELEPHONE

Blilcy rysias

Finst for umateur

 frequenciesType AX2 Units, 80-meter band $\$ 2.80$ Each
Type AX2 Units, 40 -meter band 2.80 Each
Type AX2 Units, 20-meter band 3.95 Each

P ATED CRYSTALS bliley type AX2

We are justly proud of the technical accomplishments represented in the AX2 plated crystal. Its adranced development and pace-setting design again demonstrate Bliley's leadership in the manufacture of crustals for amateur frequencies.

Primary electrodes in the AXZ plated crestal unit consist of a micro-thin metal film which is deposited directly on the major surfaces of the quartz crestal by evaporation under high vacuum. This film exhibits extremely high adhesion to the crystal and can almost be considered as a chemical bond to the quartz.

Secondary electrodes, under spring pressure are used to clamp the crystal in position and to provide a medium for thermal dissipation.

Bliley's pluted crystal gives you better grid curremt stability over a wide temperature range
plus improved frequency stability under high drive conditions.

In addition to the plating feature, the AX2 gives you such famous Bliley qualities as:

- Acid etching to frequency to prevent aging.
- Nameplate calibration accurate to $\pm .002 \%$ at $25^{\circ} \mathrm{C}$ in factory oscillator.
- Temperature stability better than $\pm .02 \%$ between -10° and $+60^{\circ} \mathrm{C}$.
- Activity level tested between $-10^{\circ} \mathrm{C}$ and $+60^{\circ} \mathrm{C}$.
- Solid, stainless steel pins.
- Welded contact between pins and contact plates.
- Nooprene gasket seal.
- Moisture resistant, molded phenolic case and cover.
- Small, compact size permits easy stacking. Two units may be mounted back to back in standard octal socket.
- All nomenclature on top of holder for easy identification.

Not a thing has been overlooked to insure top performance under any conditions encountered in amateur equipment. All our wartime experience is reflected in this new model, engineered specifically for amateur frequencies.

top in TE TENIさ'AL TY

TYPE FM6-S 100 kc.

Primarily for use as a freq. standard. Plated precision crystal, rigidly clamped between resonant pins, provides exceptional electrical and mechanical stability. Frea. is adjustable to exactly 100 kc . at 25° C when unit is used in recommended oscillator circuit. Freq. stability $\pm .005^{\circ}$ at any temp. $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

PRICE \$18.75

TYPE CF3 455 kc.

Single signal filter crystal unit. Exceptionally low holder capacity permits sharp signal discrimination in filter network of general communications receivers. Frequency $45 \overline{\mathrm{j}} \mathrm{kc}$. free from spurious responses within $\pm 7 \mathrm{kc}$.

$$
\text { PRICE } \$ 5.00
$$

TYPE CF6 455 kc .

Single signal filter crystal unit. Frequency 455 kc ., $\pm 5 \mathrm{kc}$. - free from spurious responses within $\pm 7 \mathrm{kc}$. of fundamental. Designed for intermediate frequency filter in general communications receivers.

PRICE $\$ 4.50$

TYPE SMC100 100-1000 kc.

The New Blitey CPO
 CRYSTAL CONTROLLED OSCILLATOR for R R dio Service Technicians

For instant channel selection and frequency accuracy, radio service technicians use this Bliley test instrument. It provides direct crystal control for i-f alignment. Write for descriptive Bulletin 32 .

AMPHENOL "SIGNAL SQUIRTER"
 ROTARY BEAM ANTENNA

Amphenol now offers this world famous rotary beam antenna developed by M. P. Mims, W5BDB. High forward gain, high front to back ratio, a rugged rotary drive system and a simplified direction indicator characterize this fine antenna which has been the standard of comparison for many years. Available for the 10 and 20 meter bands and in a combination covering both bands.

CHHENOD

48

TWIN-LEAD TRANSMISSION LINE

Combining convenience and efficiency, Amphenol
Twin-Lead is the first choice of amateurs for construction of antennas and transmission lines. Type 14-023 Transmitting Twin-Lead, with an impedance of 75 ohms, is the favorite for transmitter applications. Conservatively rated at 1 kw . Three impedance values:- 300 ohms, 150 ohms and

In addition to the three new products described, Amphenol is the world's largest single source of:

COAXIAL CABLES AND CONNECTORS ANTENNAS RADIO COMPONENTS PLASTICS FOR ELECTRONICS

All are available from your distributor. See him tomorrow.

AMPHENOL "EASY-TO-DRILL" CLEAR POLYSTYRENE WINDOW PANE

This clear polystyrene window pane ends the problem of bringing in lead-ins through glass. It is easy to drill and cut to size. Ordinary woodworking tools will do the job. Offering the high dielectric strength of polystyrene, this window pane ends broken glass and drilling through sash. Ordinary putty holds it in place. Available in $12^{\prime \prime} \times 16^{\prime \prime}$ panes of $3 / 32^{\prime \prime}$ thickness. and in other sizes to order.

(11) HAmmarlund (11)

"HQ-129-X"

 AMATEUR RECEIVER

The Hammarlund "HQ-129-X" amateur communications receiver is designed to meet the demands of the most critical amateurs. Its design includes every feature essential to finest performance.

The "HQ-129-X" has a continuous range from . 54 to 31 megacycles in six separately calibrated bands with continuous bandspread throughout the entire range. In addition, the bandspread dial is calibrated for each of the four most important amateur bands $-3.5-4 \mathrm{mc}, 7-7.3 \mathrm{mc}, 14-14.4$ mc and 28-30 mc.

The "HQ-129-X" has the Hammarlund patented variable wide-band crystal filter which works exceptionally well on phone or short wave broadcast signals.

There are many other features: Variable antenna compensator, beat oscillator, voltage regulator, series noise limiter, send-receive switch, automatic volume control, calibrated " S " meter, audio gain control, sensitivity control-plus all that goes into a receiver built by engineers who have spent a lifetime designing commercial communication equipment.

The "HQ-129-X" is available complete in a two-tone gray finish including tubes and a 10 inch P. M. dynamic speaker.
"Ha-129-X".
Amateur Net Price $\$ 168.00$
SC-10-Speaker cabinet finished to match.
Amateur Net Price
5.25

Send for twenty-page technical booklet

"MC" MIDGET CAPACITORS

Ideat variable for high and very high frequency tuning, taboratories, etc. Isolan tite Insulotion. All contacts riveted or soldered. Vibration proof. New improved Hammarlund split type rear bearing, and noiseless wiping contact. Cadmium plated soldered brass plates. Shaft-1/4"

Code

MC-20-5
MC-35-S
MC-50-S
MC-50-M
MC-75-S.
MC-75-M
MC-100-S
MC-100-M
MC-140-S
MC-140-M.
MC-200-M.
MC-250.M
MC-325-M
' M " -Midline Plates.

Capacity
20 mmf .
35 mm 1.
50 mmf.
50 mmf.
80 mm . .
80 mmi.
100 mmf .
100 mmf .
140 mmf .
140 mmf .
200 mmf.
260 mmf .
320 mmf .

List
. $\$ 2.55$
2.65
2.80
2.80
3.00
3.00
3.25
3.25
3.50
3.50
3.80
4.15
4.65

"MTC"' TRANSMITTING CAPACITORS

Compost types. Isolantite insulation. Base or panel mounting. Polished aluminum plates. Stainless steel shaft. Size of 150 mmf . with $.070^{\prime \prime}$ plate spacing only $45 / /^{\prime \prime}$ behind panel. " B " models have rounded plates. "C" types have plain plate edges. Self. cleaning wiping contact.

"VU" UHF CAPACITOR

FLEXIBLE COUPLINGS

These flexible couplings ore designed for both insuloted and non-insulated opplications. The FC.46-S is insuloted for 6000 volts with silicone treoted ceromic, will compensote for consideroble shoft misolignment, but will not give springy action. Overall depth $13 / 16^{\prime \prime}$. diameter $11 / 4^{\prime \prime}$. The FNC.46-S is o non-insuloted coupling for use where insulotion is unnecessory. The general design is the some as the FC.46-S but has a heavy metal body instead of ceramic. Overoll depth $23 / 32^{\prime \prime}$, diometer $11 / 4^{\prime \prime}$

Code
FC-46-5-1nsulated
FNC-46-S - Non-insuloted.

The new butterfly capacitor is designed for use in VHF and UHF opplicotions where the butterfly design is indispens: able. Can be used os a single series unit or as a split stator with grounded rotor. This new butterfly eapacitor is ideal for use in transmitters as well as receivers. Has soldered rotor ond stator ossembly; is plated to resist corrosion; silver plated rotor contact; sleeve type bearing, lowloss ceromic end panel. Approximotely $11 /{ }^{\prime \prime}$ square. Depth behind panel depends on number of plates. Insulated mounting studs prevent rotor from being grounded when mounted to metal.

Code
 BFC- 12
 BFC-25
 BFC. 38

MMF.Cap.per Sec. Series Cap.

"APC" MICRO CAPACITORS

for H.F. and very H.F. For I.F. tuning, rimming R.F. Coils or gang capacitors, general padding, etc. Constant capacity under any condition of temperature or vibration. Size 100 mmf. $17 / 32^{\prime \prime} x$ $1516^{\prime \prime \prime} \times 17 / 32^{\prime \prime}$. Isolantite base. Cadmium plated soldered brass plates.

	Capaciry	
APC-50	50 mmf .	1.7
APC-75	75 mmf	1.
APC-100	100 mm	2.2
APC-140		2.6

"RMC" CAPACITOR

The new "RMC" is designed for applications where strength ond solid construction is as important as electrical design. Its frame consists of 3,32 aluminum end plates reinforced by three horizontal bars or pillars which hold the assembly rigid

Twe assembly rigid.
Two low loss silisone treated cer amic insulated bars support the stator. Beorings are hand-fitted sleeve in the front and single ball thrust in the rear -torque is smooth and uniform. Contact to the rotor is made through a silver-plated beryllium forked spring. Brackets are provided for mounting either side down, or to a front panel with spacing pillars. Voltoge roting- 1000 V .

Code	Capaciry	List
RMC-50.S	$50 . \mathrm{mmf}$.	\$3.75
RMC-100-S	105. mmf.	4.25
RMC-140-5	43.5 mmf .	
	327 mmf.	5.65

BUTTERFLY CAPACITOR

Max.	Min.	Max.	Min.	PRICE
14.5	3.5	7.9	2.2	PROT
27.5	5.0	14.5	3.0	AVAILABLE
40.5	6.3	21.0	3.7	

 List
$\$ 4.75$
6.15
7.10
0.15

6,75
 the finest in radio hardware: Ceramic, Porcelain and Steatite Insulators . . . Antennas . . . HookUp Wires . . . Shielded Microphone Cable and S. J. Cable . . . and other top-quality "Birnbach" products.

Complete Stock At Your Dealer

BIRNBACH RADIO CO., Inc.
 145 HUDSONST. NEW YORK, 13. N. Y.

THE
 OFFICIAL MAGAZINE OF THE AMERICAN RADIO RELAY LEAGUE

QST faithfully and adequately reports each month the rapid development which makes Amateur Radio so intriguing. Edited in the sole interests of the members of The American Radio Relay League, who are its owners, QST treats of equipment and practices and construction and design, and the romance which is part of Amateur Radio, in a direct and analytical style which has made QST famous all over the world. It is essential to the well-being of any radio amateur. QSI goes to every member of The American Radio Relay League and membership costs $\$ 2.50$ in the United States and Possessions, $\$ 3.00$ in the Dominion of Canada, $\$ 4.00$ in all other countries. Elsewhere in this book will be found an application blank for A.R.R.L. membership.

LSI BINDERS

Those who take pride in the appearance of their lay-out and wish to keep their reference file of QST's in a presentable manner, appreciate the QST binder. It is stiff-covered, finished in beaut:ful and practical fabrikoid. Cleverly designed to take each issue as received and hold it firmly without mutilation, it permits removal of any desired issue without disturbing the rest of the file. It accommodates 12 copies of QST. Opens flat at any page of any issue.

With each Binder is furnished a sheet of gold and black gummed labels for years 1928 through 1948. The proper one can be cut from the sheet and pasted in the space provided for it on the back of the binder. The back copies of QST contain the record of development of modern amateur technique. They are invaluable as technical references. Back copies are generally available - list will be sent upon request.

The latest edition of THE RADIO AMATEUR'S HANDBOOK is postwar in content, containing the 2.50 Buckram Bound kind of information which has made the HANDBOOK world-famous. To maintain the

$\$ 2.00$ Paper Bound

 3.00 Buckram Bound Elsewhere high standard of practical usefulness set by previous editions, a new treatment of the constructional sections of the HANDBOOK has been accomplished. The theory and design sections cover every subject encountered in practical radio communication. Completely sectionalized by topics with abundant crossreferencing, and fully indexed. The HANDBOOK continues to be the world's most valuable and widely-used radio book.50c

RADIO CALCULATOR

type A

This colculator is useful for the problems that confront the amoteur every time he builds a new rig or rebuilds an old one ar winds a coil or designs a circuit. It has two scales for physical dimensions of coils tram one-mali luch to five and anehabf inches in diameter and fram ane-auarter to ten inches in length, a frequency scale fram 400 kilocycles through 150 megacycles; a wovelength scole from twa to 600 meters; a capacity scale fram 3 to 1,000 micra-micrafarods: twa inductance scales with a range of from ane micrahenry through 1.500; a turns-per-inch scale ta cover enomeled or single silk covered wire fram 12 ia 35 qouge, double silk or catton covered fram 0 ta 36 and double catton covered from 2 to 36 . Using these scales in the simple manner outlined in the instructions on the back of the colculator, it is possible to solve problems involving frequency in kilocycles, wavelength in meters, inductance in microhenrys ond capacify in microforads, for proctically al! problems thot the amateur will hove in de-signing-from high-powered tronsmitter: down to simple receivers. Gives the direc' reoding answers for these problems with accuracy well within the talerances of practical construction.

OHM'S LAW CALCULATOR

TYPE B

This calculusor has four scales.
A power scale from 10 microwatts thraugh 10 kilowatts.
A resistance scole from . $0 i$ anm througlt 100 wegotians.
A current scale from 1 micraompere through 100 amperes.
A valiage scale from 10 microvalis through 10 kilavalts.

With this cancentroted callection of scoies, colculotions may be made invalving valiage, current, and resistarice, and can be made with a single setting of a dial. The power or voltage or current or resistance in any circuit can be found easilyif any twa ore known. This is a newly-designed Type B Calculator which is more occurate and simpler touse than the justly-lomous original model. It will be faund useful for many calculations which must be made irequently but which are offen confusing if done by ordinary methods. All onswers will be occurate within the tolerances of cammercial equipment.

The stondard sle mentary guide for the prospective amateur. Features equipment which, although simple in construction, conforms in every detail to present practices. The apparatus is of a thoroughly practical type capable of giving long and satisfactory service-while af the same time it can be built at a minimum of expense. The design is such that a high degree of flexibility is secured, making the various units fit into the more elaborate station layouts which inevitably result as the amateur progresses. Complete operating instructions and references to sources of detailed information on licensing procedure ore given.

$25 c$

Postpaid Anywhere

This booklet is designed to train students to handle code skillfully and with precision, both in sending and in receiv-
ing. Employing a novel system of code-learning based on the accepted method of sound conception, it is particularly excellent for the student who does not have the continuous help of on experienced operator or access to a code machine. It is similarly helpful home-study material for members of code classes. Adequate practice material is included for classwork as well as for home-study. There are also helpful data on high-speed operation, typewriter copy, general operating information-and an entire chapter on tone sources for code practice, including the description of a complete code instruction table with practice oscillator.

$25 c$

Postpaid Anywhere

To obtain an amateur operator's license you must pass a government examination. The License Manual tells how to do that-tells what you must do and how to do it. It makes a simple and comparatively easy task of what otherwise might seem difficult. In addition to a large amount of general information, it contains questions and answers such as are asked in the government examinations. If you know the answers to the questions in this book, you can pass the examination without trouble.

$25 c$

50c

A com-

prehensive manual of antenna design and construction, by the headquarters staff of the American Radio Relay League. Eighteen chapters, profusely illustrated. Both the theory and the practice of all types of antennas used by the amateur, from simple doublets to multi-element rotaries, including long wires, rhomboids, vees, phased systems, v.h.f. systems, etc. Feed systems and their adjustment. Construction of masts, lines and rotating mechanisms. The most comprehensive and reliable information ever published on the subject.

STATION OPERATING

 to transmission and reception, and is equally as useful for portable or mobile operation as it is for fixed. The log pages with an equal number of blank pages for notes, six pages of general log information (prefixes, etc.) and a sheet of graph paper are spiral bound, permitting the book to be folded back flat at any pase, requiring only the page size of $81 / 2 \times 11$ on the operating table. In addition, a number sheet, with A.R.R.L. Numbered Texts printed on back, for traffic handlers, is included with each book

is5e per book

OFFICIAL RADIOGRAM FORMS

The radiogram blark is designed to comply with the proper order of transmission. All blocks tor fill-in are properly spaced for use in typewriter. It has a heading that you will like. Radiogram blanks, $81 / 2 \times 71 / 4$, lithographed in green ink, and padded 100 blanks to the pad, 25 c per pad, postpaid.

MESSAGE DELIVERY CARDS

The operating supplies shown on this page have been designed by the A.R.R.L. Communications Department.

Radiogram delivery cards embody the same design as the radiogram blank and are available in two styles - on stamped government postcard, 2c each unstamped, 1c each

MEMBERSHIP

STATIONERY

Members' stationery is standard $81 / 2 \times 11$ bond paper which every member should be proud to use for his radio correspondence. Lithographed on $81 / 2 \times$ 11 paper.

100 Sheets, 50e 250 Sheets, \$1.(1) 500 Sheets, 81.7 .5
POSTPAID

In the January, 1920 issue of QST there appeared an editorial requesting suggestions for the design of an A.R.R.L. emblem - a device whereby every amateur could know his brother amateur when they met, an insignia he could wear proudly wherever he went. There was need for such a device. The post-war boom of amateur radio brought thousands of new amateurs on the air, many of whom were neighbors but did not know each other. In the July, 1920 issue the design was announced - the lamiliar diamond that greets you everywhere in Ham Radio - adopted by the Board of Directors at its annual meeting. It met with universal acceptance and use. For years it has been the unchallenged emblem of amateur radio, found wherever amateurs gathered, a symbol of the traditional greatness of that which we call Amateur Spirit - treasured, revered, idealized.

THE LEAGUE EMBLEM, with both gold border and lettering, and with black enamel background, is available in either pin (with safety clasp) or screw-back button type.

In addition, there are special colors for Communications Department appointees.

- Red enameled background for the SCM.
- Blue enameled background for the ORS of OPS.

THE EMBLEM CUT: A mounted printing electrotype, $5 / 88^{\prime \prime}$ high, for use by members on amateur printed matter, letterheads, cards, etc.

Stationery and Emblems are available only to A.R.R.L. Members.

One of the Most Versatile "Transmitters Yet

Built for the Present -.and the Future

Price $\$ 450.00$ Complete with Tubes and Coils

MODEL AF-IOO

$$
\begin{aligned}
& \text { 6- BAND AMATEUR TRANSMITTER } \\
& 100 \text { WATTS - AM,FM, CW AND ICW }
\end{aligned}
$$

Write for detailed information and Catalog DESIGNERS \& BUILDERS OFBROADCAST STATIONEQUIPMENT, 2.50 WATTS to 50 KW - AM and FM

SUPREME TRANSMITTER CORPORATION
260 WEST ST

COMPLETE COMPACT and \quad INEXPENSIVE!

PREME TRANSMITTER Model AF-100, 6-Band, 100 Walt ufput) Desk Type Transmitter. Embodies All the features ost desired by the majority of the amateurs. Designed to ver the amateur bands most frequently used: $10,11,15$, P. 40 and 80 meters for CW, ICW, AM and FM Phone ansmission. This is the very first transmitter offered to the nateur which has the new feature of Frequency Modulation the band of frequencies assigned for this purpose, namely ?. 185 to 27.455 and 29 to 29.7 megacycles. Model AF-100 continuously tunable throughout the range of each of the nateur bands. A highly stable variable oscillator followed slug-tuned buffer and doubler stages which are ganged to e oscillator dial simplifies the problem of working through
severe $Q R M$ and further enhances the pleasures of easily establishing and retaining OSOs. Band changing is easily accomplished in the exciter by a band selector switch and in the final by the plugging in of a coil for the particular band selected. This unit is one of the simplest to operate-and highly efficient on all bands, for all types of emission.
Front Panel Controls: Oscillator Dial; Final Amplifier Dial; Oscillator Selector Dial; Modulation Selector Dial; Microphone Gain Control; Band Selector Switch; Filament Power Switch; Plate Power Switch; Emission Selector Switch; Standby Control.
Metering: PA Plate Current; PA Grid Current; Modulator Plate Current.

TUBE COMPLEMENT

pe
$-6 A C 7$
$-6 J 5$
$-6 A C 7$
-616
-616

- 616
-616
$-3 D 23$
-807
-6J5
-6SJ7
-866A
-5R4GY

-80

$-6 \times 5 \mathrm{GT}$
—YR 150
$-6 S N 7 G T$

Function
Reoctance Tube Modulator
Yariable Frequency Oscillator
Closs " A " Amplifier or Crystai Oscillator
80 meter Buffer or 40 meter Doubler
20 meter Doubler
15 meter Tripler
10 meter Doubler
Final Amplifier
Class $A B_{2}$ Modulators
Modulator Driver
Speech Amplifier High Yoltage Rectifiers Low Yoltage Rectifier Modulator Rectifier Speech Rectifier Bias Rectifier Yoltoge Regulator Audio Oscillator

OMPACI: 20 73" long, $113 / 4$ " wide, $1833^{\prime \prime}$ deep conomical - Power Consumption: 325 watts.

Frequency Range:
Oulput Power:

Method of Modulation:

Modulation Copabilities:

Inpul Audio Source:

Audio Frequency Response:

Noise Level:

Audio Frequency Distortion: AM-5\% at 85% modulation far 100 watt output
FM- 1.5% at 100% modulation
Frequency Control Elements: Stabilized Yariable Frequency Oscillator or two (2) crystal controlled positions.
Amateur Bands-10, 11, 15, 20, 40, 80 meters
100 wotts on CW, ICW and Frequency Madulation
100 walts Amplitude Madulation
$A M$-High Level Class $A B_{2}$
FM-Reaclance Tube Modulation
AM- 100%
FM- $100 \%= \pm 75$ kilocycles
High Impedance Crystal or Dynamic Microphone. Level 60 DB down

AM— $\pm 2 D B, 200$ to 6000 cps
FM— $\pm 1 D B, 100$ to 7500 cps
AM-Minus 45DB below 100% modulation
FM-Minus 60DB below 100% modulation (土 75 kilocycles)

ELECTRICAL CHARACTERISTICS

MASTBRPRO

The QUALITY Transcription and Recording Equipment
"Master.Pro" M-5 is o beautiful precise fool you will be glad to own. RUG GEDNES S: Fifteen pounds of steel and bronze, chrome plated, assures long wear and the ability to stand up agoinst rough treatment.

"MASTER-PRO" MODEL-V 16" RECORDING TURNTABLE

A precision-constructed instrument, unsurpassed in quality and performance. . . . operating in many of the leading broadcasting stations and educational institutions. Ruggedly constructed and painstakingly assembled for efficient and prolonged service.

SPECIFICATIONS:

14-1b. L-ribbed cast iron chassis. Lathe furned aluminum cast turntable. New specially constructed smooth powerful constant speed motor.
Neoprene idlers.
Blu-gray wrinkle finish

MODEL G-2 16" TRANSCRIPTION TURNTABLE . . . Not shown... Similor to Model V obove. Write for Literature.

QUMLiTV: The "Master-Fro" $\mathrm{M}-5$ is machined to toleronces unheard of in pre-war production. Working surfaces and moving parts are polished to a micro finish to insure velvety smoothness and control in operation.
The "Master-Pro" M-5 is a universal machine that can be readily attached not only to the Master- Pro V Recording furntable, but to any other moke af purntable that has the standard center pin.
Proved by test and performance by experts.
Standord screw cuts 120 line per inch outside-in. Feed screws for 105 or 120 line outside-in or inside-out, substituted at purchoser's request.

"MASTER-PRO' VM-2 RECORDING LEVEL METER

Mounted in an unbreakable, cast oluminum case, the VM-2 Recording Level Meter tokes recording out of the honds of the expert. The dial is scientifically designed, as to angle and to color. It enables the artist to watch the volume of his recording while performing and is readoble up to 25 feet. The possibility of overcutting is reduced to a minimum.
The VM-2 Recording Level Mefer is wired to operate from the output of an vired to operare 15,200 or a 500 Ohm amplifier

COMING NEW ITEMS - SEND NAME - GET ON OUR MAILING LIST NOW

REKORMT RGMPANY

Export Division: MORHAN EXPORT CO. - 458 Broadway, New York 13, N. Y.

Approved Precision Products

The Vibrapack line includes models for input voltages of 6,12 , and 32 volts DC and nominal output voltages from 125 to 400. Models available with switch for four output voltages in 25 -volt stages. Hermetically sealed vibrators. High effi-ciency-low battery drain.

Mallory Transmitting Capacitors

Built with adequate safety factor for long life. Round and square can styles. Available in 20 stock sizes, work ing voltages from 600 to 6,000 .

Vibrapacks* ${ }^{*}$ roride

Dependable Plate Power for Portable Equipment

Mallory Vibrapacks provide economical, efficient and dependable plate power for operating radio receivers, transmitters, PA systems, direction finders and other electronic equipment on vehicles, farms, portable equipment, or wherever commercial AC power is unavailable.
Write for Form E-555 for detail information

Vitreous Enamel Resistors

Mallory fixed and adjustable power resistors provide maximum efficiency in operation with excellent temperature and humidity characteristics. Available in rated capacities from 10 to 200 watts, resistances from 1 to 100,000 ohins.

Ham Band Switches

Ceramic insulation provides low losses at high frequencies. The Mallory Ham Band Switch is rated for use in transmit ter plate circuits using up to 1,000 volis IDC with power up to 100 watts, inclusive.

Plugs
Potentiometers Push Button Switches Rectifiers, Dry Disc Resistors Rheostats

OTHER MAIIORY PRODLCTS INCLLDE:

Attenuators
Battery Chargers
Capacitors, Dry Electrolytic
Capacitors, Paper

Ham Band Switches Jacks
Jack Switches
Knobs
"L" Pad Attenuators
Noise Filters
"TT" Pad Attemuators Variohm* Resistors Vibrators
Vitreous Resistors Volume Controls
*Reg. U.S. Pat. Off.

P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

CENTRALAB RADIOHMS

feature.hard-surfaced materials,

CERAMIC TRIMMERS

patented design and skilled
workmanship. They are
manufactured for long service
under extreme conditions.

...are interchangeable
with air trimmers for most applications and have advantages
in space requirements and mechanical stability.

SELECTOR SWITCHES

. . . have self-cleaning
double-wipe contact jaws,
positive index, adjustable stop and bakelite or steatite insulation

TUBULAR CERAMIC CAPACITORS

. are manufactured for high frequency circuits where the ultimate in stability and retrace characteristics
is essential.

CUSTOM CERAMICS

... at Centralab include
Steatite, Cordierite, Zirconite
and a wide renge of dielectric materials. Available to manufacturers only.

HI-ACCURACY CERAMIC CAPACITORS

. represent a new development
in which the order of accuracy
is suitable for rigid frequency

TONE SWITCHES

. . . include off.on switches, station selectors in intercommunication systems, talk-listen switches and simplified band change switches.

POWER SWITCHES

. . are suitable for transmitters, power supply converters and special industrial and electronic uses. Sections and indexes also available.

LEVER ACTION SWITCHES

. . . are particularly adapted
to broadcasting, receiving. public address, test instruments and industrial uses. They are available in ten combinations.

CERAMIC TRANSMITTING CAPACITORS

feature extremely low power factor, stable retrace characteristics and maximum flashover
commensurate with physical size.

AVAILABLE WHERE
The Nlerh

Further information available in Catalog No. 25 obtainable at your Authorized Centralab Distributor or from the plant at 900 E. Keefe Avenue, Milwaukee 1, Wisconsin.

AVAILABLE WHERE The - Ilraik

Purclity
IS DISPLAYED

FS344 Frequency Standard \$79.50

Precision Quality for the Amateur!

When building your new rig or revamping the old one to conform to the new Ham bands, be sure to use JK "Stabilized" Crystals-the crystals that are so carefully made and so perfectly mounted that you can install them and forget about them. JK "Stabilized" Crystals will stay "right on" at any normal operating temperature, and they're not affected by dust, moisture or vibration. Ask your jobber about JK "Stabilized" Crystals or write direct for our new illustrated folder.
*JK "Stabilized" Crystals are made by the latest known methods of precision crystal manufacture. Our process known as "Stabilizing" absolutely prevents frequency shifts due to aging, either in operation or on the shelf.

JAMES KNIGHTS 'ARadioResearcher Since the Early Days"

The men of the James Knighes Company have grown up with Ham Radio. Because of their work with piezo quartz since it first came into use as a frequency control, they know what is ex. pected of a good Han Crystal. You can depend on JK "Stabilized" Crystals.

LEON A. FABER WGDAX-"AnAc. tive Ham Since 1913°

The JAMES KNIGHTS Co.

SANDWICH ILLINOIS
Sixty Miles Southwest of Chicago

The many AlSiMag insulators in the average rig must meet several different insulation requirements. For that reason, AlSiMag insulators are made of many different technical ceramic compositions. All these compositions are sold under the trade name AlSiMag. Each one has definite electrical and mechanical properties which have been carefully determined. The new Property Chart gives the properties of the more frequently used

AlSiMag compositions. A copy will be sent you free on request.

- All AlSiMag technical ceramics are custom made. Sales are made only to manufacturers or to supply houses. No sales can be made direct to hams. However, the Research Division of American Lava Corporation welcomes sugges. tions or criticisms and is always on the alert for suggestions for improvements in AlSiMag products.

The new AlSiMag Property Chart is conveniently designed so that it can be tacked on the wall, placed under your desk glass or placed in your regular business file. It is easy to
read and makes it easy to find exactly the AlSiMag composition which is best suited for each of your electronic or electrical applications.

TYPE 9: Maulded mica copacitor far r.f. by-pass, grid and plate blacking. Mechanically strang, well. insulated, maisture-resis. tant, with shorl heavy terminals.

TYPE 59: Mica transmil. ter capacitar used as grid, plate blacking, caupling, tank and by-pass appli. cations. In law-lass, white glazed ceromic case and wide-path end terminals.

. . and you radio "hams" know it . . c capacator performance "makes"

 or breaks" the rig. Now that you're getting back on the air you want to stay on it - without a letdown or a break.You make no mistakes when you depend on C-D Capacitors. Cornell-Dubilier has built a name and a reputation that stand for consistently dependable capacitor design and manufacture. And, if uninterrupted pleasure in your hobby depends on capacitor performance, you'll be wise to depend on a high-quality, low-cost product that has enjoyed the loyal choice of wireless and radio amateurs for more than thirty-seven years.
> ask your local c-d distributor for catalog \#195a, containing complete listings of C-D Capacitors for Amateur Equipment, Capacitor Test Instruments and Quietone Interfercnce Filters. Or write direct to Cornell-Dubilier Electric Corporation, South Plainfield, New Jersey.

FIVE MODERN PLANTS•SKILLED PERSONNEL

The better to serve you, Cornell-Dubilier now operates five huge modernly-equipped plants centrally located: at South Plainfield, N. J.; New Bedford, Worcester, and Brookline, Mass., and at Providence, R. I. At each plant skilled capacitor specialists and trained technicians huild C-D Capacitors for many uses, check every process carefully, test and cautiously inspect every capacitor to guarantee perfection.

conillivillir

world's largest manufacturer of

1910

CAREITIOTS

1947

TYPE YAB: Dykanol impregnated and filled, non-inflammable, nonoxidizable and remains unaffected by extensive variations in temperature, humidity or voltage stresses. For by-pass, audio frequency coupling, etc.

TYPETQ: Dykanol transmitting filter capacitor with universal mounting. Designed primarily for amateur low-powerbroadcast and commercialtrans mitters; also

TYPE TJU: Dykanol transmitting filter capacitor, compact, lightweight, furnished with universal mounting clamp, wellinsulated terminals. Hermetically sealed in noncorrosive, steel container.

72

Wrlite for rour copy of

JIIS HELPFUL CATALOG

If you use capacitors or wire-wound resistors of any type, shape, size or style of mounting, write today for your copy of the big Sprague Catalog C306. Lists every type you'll require. Chock full of application data, dimensions, illustrations and other helpful information.

TYPES CR, DT and PC - The new Sprague Trans. misting Types - both filled and impreg. nated with exclusive Sprague KVO (Kilo. Volt-0il) - protected with Lifeguard Ter. minal Caps.
TYPE TC - The lamous Sprague Tubular By-Pass Ca. pacilors - "Nol a failure in a million."
sprague mica capacitors - All types, shapes, sizes for every requirement. Iwice-lested for R.F characteristics.

TYPE UC - The popular, inexpensive cardboard-cased transmifting units.

TYPES TR, SW and DX - High voltage paper and metal tubulars including hermelically-sealed types.
SPRAGUE KOOLOHM RESISTORS - The out. slanding wire-wound resistor development in 20 years. Made with wire insulated BEFORE winding with 1000° C. healproof, moisture-resistant ceramic.

SPRAGUE ATOMS - The midget capacitors for every dry electrolytic need.
TYPE LM - The new universal replacements for any type of direct chassis mounting.
IYPE PTM — Recłangular dry olectrolytics, TYPES UHC and HLV — High.capacily low. vollage łubulars-cardboard or metal can. TYPE EL - The handy prong.type selfmounting midget dry electrolytics.
TYPES PLS, LS, SC, CL and AP - Aluminum can type diys for everiy applicalion.
TYPE RW - Inexpensive, dependable wet electrolylic replacements.
TYPE RC - High-voltage metal container drys.
TYPE BP — The famous "bathtub-slyle" metal encased paper capacitors.
and various others.
SPRAGUE PRODUCTS CO.

SOLDERING IRONS

are widely used in industrial plants throughout the country. They are designed to withstand the strain of continuous service required of factory tools.

SPOT SOLDERING MACHINE

designed for treadle operation for advancement of iron and solder leaving operator's hands free for handling of product.

SOLDERING IRON TEMPERATURE CONTROLS

prevent overheating of soldering irons between soldering operations. Irons do not deteriorate when being used. The idle period causes oxidation and shortens life.

SOLDER POTS

ruggedly constructed pots of various sizes designed for continuous operation and so constructed that they are easily and quickly serviced, should elements have to be replaced.

Write for Catalog

ELECTRIC SOLDERING IRON CO., INC.

2547 West Elm Street
DEEP RIVER, CONNECTICUT

EXPORT DIVISION: 13 EAST 40th STREET, NIEW YORK 1G, N. Yo, CABLES: "ARLAB"

THERER AN

RLA TUBE

RCA POWER TRIODES

RCA MINIATURES

810-Class B or class C. 750 watts input in class C teleg. raphy up to 30 Mc . at 2500 plate volts.
811 -Class B or class C. 220 watts audio output in class B at 1500 plate volts.
812 -Class C r-f amplifier. 225 watts input up to 60 Mc . at 1500 plate volts.
833-A-Class C r-f amplifier. A single tube takes a full KW at comparatively low plate voltage.
8005-Class B or class C. 300 watts input in class C telegraphy up to 60 Mc . at 1500 plate volts.

RCA RECTIFIERS

5R4-GY-Full-wave, high-vacuum type. 250 ma . output of 700 volts.
816 -Half-wave, mercury-vapor type. in full-wove circuit, 250 ma. output at 1500 volts.
866A/866-Half-wave, mercury-vapor type. In full-wave circuit, 500 ma . output at 3100 volts.

RCA DUAL BEAM POWER

815-Class C amplifier. 68 watts input in class C telegraphy up to 150 Mc .
829-B-Class C amplifier. 120 watts input in class C telegraphy up to 200 Mc . and 105 watts up to 250 Mc.

832-A-Class C amplifier. 36 watts input in class C telegraphy up to 200 Mc . and 32 watts up to 200 Mc .

RCA BEAM POWER

807-Oscillator or amplifier 75 watts input in class C telegraphy up to 60 Mc . at 750 plate volts.
813-Class C amplifier. 500 watts $C W$ input up to 30 Mc . at 2250 plate volts. 2E26-Class C amplifier. 40 watts CW input up to 125 Mc . and 30 watts input up to 160 Mc . at 600 plate volts.

3A4-Power amplifier pentode. AF output, 700 milliwatts. RF output, 1.2 watts of 10 Mc .
3A5-HF twin triode. Class C telegraphy, output of about 2 watts at 40 Mc . 6AK5-HF amplifier pentode with sharp cut-off, for frequencies up to 400 Mc .
6J4-UHF amplifier triode. Primarily for use as grounded-grid amplifier up to 500 Mc .
9001 -Detector amplifier pentode with sharp cutoff. For UHF applications.
9002 -UHF triode detector, amplifier, or oscillator in superheterodyne receivers at frequencies up to 500 Mc .

RCA ACORNS

6F4-UHF triode oscillator for frequencies up to 1200 Mc . 954 -UHF pentode detector or amplifier for frequencies up to 430 Mc .
955-UHF triode detector, amplifier or ascillator. For receivers or transmitters up to 600 Mc .
958-A - UHF triode amplifier or oscillator for low-power UHF transceivers.

FOR EVERY AMATEUR SERVIC:

RCA UHF POWER TRIODES

2C43-"Lighthouse" triode. 20 watts input up to 1500 Mc . Useful as keyed or modulated oscillator as high as 3000 Mc .
826-Oscillator, r-f amplifier or frequency multiplier. 50 watts input in class C telegraphy up to 250 Mc .
8025-A-Oscillator, r-f amplifier or frequency multiplier. 50 watts input in class C telegraphy up to 500 Mc .

RCA RECEIVING TYPES

NOW-CW RATINGS ON RCA RECEIVING TUBES

Strictly for the benefit of radio amateurs, Class C CW tiansmitting iatings have been established on the following receiving types: 6AG7, 6AK6, 6AQ5, 6F6, 6L6, 6N7, 6V6-GT and 12AU7.

Detailed information on these new ratings will be found in the October-November 1946 issue of Ham Tips. A copy may be obtained on request.

Have you seen HAM TIPS ? Get a free copy from your local

RCA Tube Distributor

RCA has an amateur type tube for every service, every power and every active band. A few of the most popular types in each classification are listed.

In addition, there are special types, such as voltage regulators, thyratrons, and the well-known receiving types in metal, glass, and miniature.

Your local RCA Tube Distributor has complete technical data on all RCA tube types. Contact him for further information on the types in which you are interested, or write RCA, Commercial Engineering, Section A-1K, Harrison, New Jersey.

TUEE DEPARTMENT

Model D. 104

Model G Stand
FROM away back in 1933, when Astatic introduced Model D-104, the first practical crystal microphone ever developed, veteran amateurs the world over, have long used and enjoyed Astatic microphones Many models with desired voice range characteristics, including new streamlined designs, are now available. For grand performance and long, dependable service . . . it's an "Astatic" . . . every time.

An Outstanding Success!

RC-11 STUDIO CONSOLE

for AM or FM

The Most Versatile Unit of its Kind . . . Easily Controlling Two Studios, Announcer's Booth and Nine Remote and Two Network Lines.

THtion of studio engineers and managers as few items of broadcast equipment ever have!

It provides complete high-fidelity speech-input facilities with all the control, amplifying and monitoring equipment contained in a single compact cabinet. It easily handles any combination of studios, remote lines or turntables - broadcasting and auditioning simultaneously, if desired, through two high quality main amplifier channels. It makes it a simple matter to cue an oncoming program and pre-set the volume while another program is on the air.

Note the sloping front and backward-sloping top panel, giving maximum visibility of controls and an unobstructed view into the studio. Note the telephone-type, lever action, three-position key switches, eliminating nineteen controls.

The beauty of this console, in two-tone metallic tan... the efficient, functional look of it ... will step up the appearance of any studio, yet blend easily with other equipment.

RAYTHEON MANUFACTURING COMPANY
 Broadcast Equipment Division 7517 No. Clark Street, Chicago 26, III.

1. SEVEN built-in pre-amplifiers-more than any other console-making possible 5 microphones and 2 turntables. or 7 microphones, on the air simultaneously.
2. NINE mixer positions-more than any other console-leading to 5 microphones, two turn. tables, one remote line and one network line.
3. NINE remote and two network lines-more than any other console-may be wired perma. nently.
4. TELEPHONE-TYPE lever-action key switches used throughout - the most dependable, trouble-free switches available. No push buttons.
S. FREQUENCY RESPONSE 2 db's from 30 to 15,000 cycles. Ideal speech input system for either AM or FM.
5. DISTORTION less than 1%, from 50 to 10,000 cycles.
6. NOISE LEVEL minus 65 db 's or better. Airplane-type four-way rubber shock mounting eliminates outside noise and operational "clicks."
7. ALL FCC REQUIREMENTS for FM transmission are met.
8. DUAL POWER SUPPLY provides standby circuit instantly available for emergency use.
9. POWER SUPPLY designed for mounting on desk, wall or relay rack.
10. INSTANT ACCESS to all wiring and components. Top hinged panel opens at a touch. Entire cabinet tilts back on sturdy full-length rear hinge.

Hallicrafters
Guardian
Cardwell
Eimac
Hickok
Burgess
Audiodises
IRC
Jenson
Meissner
Ohmite
National
Roytheon
Potter \& Brumfield
Ohmite
Universal
Toylor
Songamo
Ward Leonard
Mallory
H\& H
Belden
Hammarlund
General Electric
Cornell-Dubilier
Brush
Astatic
Hytron
Johnson
Millen
RCA
Shure
Thordorson
UTC
Clarostat
Browning
Mueller
Rider
Simpson
Tobe
Bogen
Bliley
Amphenol
Barker-Williamson
Amperite
Mu-Switch
Aerovox
Advance
Stancor
Abbott
Struthers-Dunn
Triplett
Centralab
Gammarnn
ESICO
Dunco
Dumant
Dialce
Cote
Cetran
Cannon-ball
Brande:
Birnbach
ATR
Arraw
Heintz and Koutman
Koto
Lenk
Pyrex
Recordise
Sigma
Trimm
Turner
Kwikheot
Kester

Standards are only as reliable as the reputation of their maker.
MEASUREMENTS CORPORATION BOONTON•NEW JERSEY

rOR HAMS!..

The SYLVANIA LOCK-IN TUBE

This famous product of Sylvania research is well known for its electrical and mechanical superiority. Special points of merit, of interest to you, are:

Lock-In locating plug . . . also acts as shield between pins.
Short, direct connections . . . fewer welded joints-less loss.
Getter located on top . . shorts eliminated by separation of getter mate. rial from leads.
No top cap connection . . . overhead wires eliminated.
Reduced overall height ... space saving. Stays put in mobile and portable rigs.

THE NEW HIGHFREQUENCY OSCILLATOR

The 6 K 4 cathode type tube - another development of special interest to hams. This high-frequency oscillator, in the new T-3 size, is ideally suited for your use. It's compact, rugged-developed from the famous proximity fuze type tube that was made to be shot from a gun.
6K4 Cathode Type Tube

S IME OUTSTANDING PRODUC S

 of SYLVANIA RESEARCH
The IN34 GERMANIUM CRYSTAL DIODE and 1N35 DUO-DIODE

FEATURES

1. Small size.
2. Elimination of heater supplies. Re. moves possible source of hum.
3. Pigtail construction -can be soldered into place (IN34).
4. Great resistance to vibration and shock.
5. Low forward resist. ance value.
6. Low shunt copacitance (about 3 micro. microfarads for unit mounted in place in circuit).

The 1N34 and 1N35 are ideal for use in lightweight and portable equipment. Fields of application include: field

strength meters, detectors. clippers. discriminators, series noise limiters, demodulators, meter rectifiers.

The LOW-COST, EASY-TO-USE MODULATION MONITOR

Now you can monitor your modulation percentage and speech quality with this new Sylvania Model X-7018 Modulation Meter. Compactly styled. Economical. Of great assistance in complying with FCC regulations on overmodulation. Helps keep your average percentage up between 60% and 90%. Indicates carrier shift.

SEE YOUR SYLVANIA DISTRIBUTOR

ELECTRIC

For every crystal application, VALPEY invariably gives outstanding performance. Select your VALPE' unit from the above chart, or send your specific crystal requirements to VALPEY. In every field where accurate crystal control is the aim invariably it's VALPEY.

Crattomanohip in Cryatals Since I931

For CW Only or CW and FONE Operation

Frequency Renge: 1.7.30 mc.
Power Inputi 130 Watts Phene
175 Watts CW
Fomer Oufpuss 100 Watts Phone
130 Watts CW
Aedio Frequency Tubest GV6 Crystal oscillator 616 Doubler 814 Final amplifier
Auralo Frequency Tubess 6537 Ist Audio amplifier 6SFS 2nd Audio amplifier 6f6 Class B driver
2-807 Class B modulators

The HARVEY

100-T TRANSMITTER

You can get the HARVEY 100-T Tramsinitive for CW eperation only (without Modulator) or complete for radio, telephone and telegraph operation. These therdy, efficient, throroughly dependable units will meety your highest expectations of operating ease and performance.

The HARVEY 100-7 Moddator moy be odded to the 100-7 Jtown oper at goys dime

1Wh minduler 4 reme. giste CV Popneiter cop. elfle of ityixyl cop et 9 bsest?

Restifier Tubes: 2.866 Final amplifier supply
83 V Oscillator-Doubler supply 523 Speest amplifier supply
RK-60 Modulator supply
Powor Saurce: 115 volts 50,60 cycles
Power Drains 730 watls
Microphones Single cell erystal type
Cabine Sizes $201 / 2^{\prime \prime}$ high, $191 / 2^{\prime \prime \prime}$ wide, $13^{\prime} 2^{\prime \prime}$ deop Not Weights 150 Lbs. 68.04 Kilos
Shipping W/elghis 225 Lbs 10206 Kiles

SE The porformonce of rour circuits The HAR-CAM Visual alignment signol Generalor provides the swittest, surest method for the adjustrment and alignment of tuned circuils. With it the comm Pole radio frequen ca presented on an
af any circlit can bation oscillascope sereen. Variations in circuit alignment can be accurately evaluated and necessary hanges made in a matter of seconds.

Write for Bulletins consaining Informalioin on the lateet HARVEY Transmitter developments.

> HARVEYRADIO LABORATORIES, INC.

Wakers of Aarlne Hadio Tolephones, Kogulated Fower Suppiles ond Emergency Communlcoitons Equipment.

2 A "BAND HOPPERS"

B \& W TURRET ASSEMBLIES

 - vasy to inalall - adaplatile 1080. 10. 20. 15 and 10 metar band-. These turets eliminate abooption affacts throngh Her of a moigue switehing assembly which shorts umbed coil.

 eonpling berween lwo leath power inhes or belweon bean powar torbes ithd trioder.
 ended or push-pull lew ponerstaze. Monnted on a positive actionswiteh arranged for panel momming throunh a single 3/8" Howle.

Fipe JTEL - End linhed. undiromed coils.

TVpe B1:L-Center lintod. center tapped coils.
Type IBEL - Lind linked, witipped coils.

B \& W BABY TURRETS - 35-WATTS

 Stords com-truetion and womatal dexien assures permanemt coil alizontment and mavimam cllicien'y with the minimum momber of tubes. Avaitable in forr tepes: BTV straizht untapped: BTCOM - emter tapped: Blil. - end linhed: and BICL - anter linhed. All provide vastly improved liand switching efliciency in low pomer transmithers and exciter - $1: 1 \pm 0 \times$.

ANTENNA INDUCTORS TA AND HDA

Thewe eoils are wonnd with tinned copprer wire for case in tapping feroders and have find contor linhs for conpling to cither fived or varialole linked tinal tanlo cirenits throuzh low

 IIII for power inputs of one hilowalt.

B \& W 3400 SERIES INDUCTORS

 Ilcuibilits. these coils are build with an indivilual intamal center compling, adjustable ower 3 a 0° - permitting precise
 watts. Wailable for 10, 15, 20, 40 and 30 metar hands.

THE MIDGET R-F COILS of dozens of uses

Gondhye to hommande high-frogueney coils:
 structed - and do the joh risht. Vivery diay athat tars. experimentors and equipmemt manafacturers tell an of new applitatione where Miniductore hase

 and for dozane ot otiner burponem.
BNW Whir Womad" comentruction permite small but mturdy mapiortm with the alsolute ininimum of instatatige material in the elertrical fielal. Q fartor is amazainely hiny. Standard Miniductor diannerem are $1 / 2^{\prime \prime} \cdot 5 / 8^{\prime \prime \prime} \cdot 3 / 4^{\prime \prime}$. and $1^{\prime \prime}$. Manh anailahle

BAREDR \& WHMT, TSON 235 FAIRFIELD AVEv, dUPPER DARBY, PA.

"Eauiped by ALLIED"

WpFBS-Tom Atherstone-Denver, Colorado

Equipped by ALLIED. Listen for him on 10 and 20 meter phone.

W5DZ-Colonel W. P. Clarke-Waco, Texas Equipped by ALLIED. Listen for him on 20 and 75 meter phone.

W5SH-Edwin C. Shaw-Fort Worth, Texas Equipped by ALLIED. Listen for him on 10 and 20 meter phone.
ALLIED RADIO
"Equipped by ALLIED" is a famous by-word in the Amateur Radio world. From the early days of 200 meters and spark transmitters to the micro-waves of today, ALLIED-equipped rigs have been writing radio history.
The three post-war stations illustrated here are typical of hundreds of modern Ham Shacks "equipped by ALLIED." Each has its own story-a friendly, personal story, because into each has gone the full interest of ALLIED'S amateurs working with fellowamateurs. There's more to each than just the equipment.
Whether you're starting from "scratch," rebuilding, or newly licensed, you can count on ALLIED . . . where hams understand ham problems...

IN AMATEUR RADIO FOR OVER 25 YEARS

ACCURACY - STABILITY hCTIVITY - HICH OUTPUT DEPENDABLLITY at Low Cost

For years PR Precision Crystals have set performance standards in all types of service . . . amateur, commercial. marine, broad. cast, mobile, police, aircraft. PRs are the foremost choice of amateurs . . . the most critical users of crystals today. PR Crystals have earned this reputation by LOW DRIFT characteristics, less than 2 cycles per MC per degree Centigrade . . . HIGH OUTPUT AND DEPENDABILITY even at highest permissible crystal currents ... ACCURACY within 01 per cent of specified frequency ... HIGH ACTIVITY especially desirable for break-in CW operation . . . X.ray orientation . . CONTAMINATION AND MOISTURE. PROOF through permanent gasket seal . . $1 / 2$-inch pin spacing. Every PR is UNCONDITIONALLY GUARANTEED. Your EXACT FREQUENCY (Integral Kilocycle) AT NO EXTRA COST. See your jobber for PRs. His stock is complete for ALL BANDS. Accept no substitute. - Pelersen Radio Company, 2800 West Braadway, Council Bluffs, Iowa. (Telephone 2760)

COMMERCIAL PR Type Z-1

80 and 40 METERS PR Type Z-2

20 METERS
PR Type Z-3

10 METERS
PR Type Z-5

Frequency range 1.5 to 10.5 MC . De signed for rigors of all types of commercial service. Calibrated .005 per cent of specified frequency. Weight less than $3 / 4$ ounce. Sealed against moisture and contamination. Meets FCC requirements for all types of service.
Rugged. Low drift fundamental oscillators. High activity and power output. Stands up under maximum crystal currents. Stable, long-lasting, permanent. ly sealed........................... $\$ 2.65$ Net
Harmonic osciltator. Low drift. High activity. Can be keyed in most circuits. Stable as fundamental oscillators. Fine for doubling to 10 and 11 meters or "straight through" 20 meter operation. $\$ 3.50 \mathrm{Net}$

Harmonic oscillator for "straight through" mobile operation and for frequency multiplying to VHF. Heavy output in our special circuit..... $\$ 5.00$ Net

Iu Seruice Euerypuhere!.

DUMMY ANTENNA RESISTORS

To check R. F. power. deter. mine transmission line losses, check line to antenna imped. ance match. Helps tune up to peak efficiency. Non-inductive, non-capacitive. constant in resistance. 100 and 250 watt sizes in various resistances.

BROWN DEVIL RESISTORS

Small. extra sturdy. wire wound vitreous enameled resistors for voltage dropping. bias units. bleeders. etc. Proved right in vital installations the world over. 10 and 20 watt sizes in resistances up to 100,000 ohms.

PARASITIC SUPPRESSOR

Small. light. compact non-in. ductive resistor and choke. de. signed to prevent u.h.f. parasitic oscillations which occur in the plate and grid leads of push-pull and parallel tube cir. cuits. Only $13 / 4^{\prime \prime}$ long overall and $5 / 8^{\prime \prime}$ in diameter.

R. F. PLATE CHOKES

Single layer wound on low power factor steatite or bakelite cores, with moistureproof coating. Nine stock sizes for all ham bands from 1.8 mc to 460 mc . Small, high frequency chokes mount by wire leads. Larger sizes mount on brackets. All sizes rated 1000 ma or more.
R. F. POWER LINE CHOKES
Keep R.F. currents from going out over the power line and causing interference with radio receivers. Also used at receivers to stop incoming R.F. interfer ence. 3 stock sizes, rated at 5 , 10 and 20 amperes.

OHMITE Rheostuts*Resistors*Chokes*Switches

 oped by Jensen acoustical research. Driver umits employ the lensen "Annular" diaphraym, clamped at periphery ond center-another exrlunave feature!
COAXIAL Speakers. Now four improved 15° and 12 designs for high-fidelity. extended.range reproduction. High frequency Control provides instant tidelity adjustment to suit program quality and listener preterence. Available in com plete Reproducers.

SPEECH MASTER Reproducers. Designed especially for crisp highly-eflective speech reproduction. Desk., panel., wallmounting types in power ratings for low level and high-level

BASS REFLEX* Reproducers. A complete line of reproducers with speaker installed, or enclosures only in tine furniture or utility styles-all with the smoothly exfended low-frequency range tor which lensen Boss Reflex is justly fomous
 furthes intormation.
(1)

SPEAKER5 ${ }^{\text {with }}$ AlNICO 5

jensen manufacturing company-6611 south laramie, chicago 38 .Illinois. In Canada-Copper Wire Products Lid., 11 king Street West, Toronto
94

...both are included in G.E.'s complete line!

YOUR G-E tube distributor will be glad to give you, on request, a copy of Booklet ETX-19, listing all G-E ham tubes with their prices and ratings. Or write for this booklet-as well as any special circuit information or facts you need about tube applications-direct to Electronics Department, General Electric Company, Schenectady S, New York.

Read G.E.'s "Ham News" regularly, and keep poitad on up.to-the-minute circuit developments. Your distributor hos this publication for you- FREE,

GENERAL ELECTRIC

HAMS for HAMS

 by
LET'S GET THIS STRAIGHT!

What we mean by the slogan on the left is just this: Newark has HAMS in all branches. Being hams, they are naturally FOR HAMS. And they know how to fill all requests BY HAMS. The huge stocks they draw from will fill all the needs OF HAMS in their pursuit of the world's most fascinating hobby.

ONLY ONE WAY TO GET THE LATEST DOPE!

You naturally want to be in on the latest dope in ham merchandise. We keep everyone informed so far as possible by advertising. BUT - magazines go to press long before they appear. And today's fast-moving markets find new products and tremendous surplus bargains coming out between issues. So we publish:

BIG BARGAIN BULLETINS-GET 'EM!

Chock full of real ham values, these are mailed direct to hams who want them and who take a moment to let us know they want them. So drop us a card or fill in the coupon below and paste it on a card. Do it now!

New York City Stores: 115-17 W. 45th St. \& 212 Fulton Sp.

* Always fatt, friendly ham service from all Nowark brancheal

TRIMM

..-HEADSETS

Your next pair of headsets will be a TRIMM. . . Perhaps your station is known 'round the world; the best is none too good; TRIMM Featherweights or Commercials are your choice. Perhaps yours is a more modest rig; TRIMM Professionals, Dependables, " B " or " E " may fill your needs. Or perhaps you're just about to learn code and pennies count. . . You'll want a TRIMM Acme or Rex. Twenty-five years' experience assure the best in each price class.

Built for speedy accurate soldering, this powerful little pencil iron will perform rugged heavy duty jobs as well as those requiring intricate exactness.

No. 536 Pyramid
Check These Points! Tip, made from Tellurium

QUICK HEATING . . . 90 SECONDS LIGHTWEIGHT 3.6 OUNCES HANDY SIZE 7 INCHES SAVES ELECTRICITY . . 20 WATTS Tellurium

No. 538 Chisel Tip, made from Elkaloy A. Tip $1 / \mathrm{B}^{-1}$ dia.

No. 537 Pencil Tip made from Elkaloy A. Tip $1 / 8^{+}$dia.

These 4 INTERCHANGEABLE lips give you a point for each particular job.

SEE YOUR NEAREST RADIO, HARDWARE OR HOBBY DEALER

The Collins $32 \mathrm{~V}-1150$ woft T ansmitter

Medium Power in Small Space

The $32 \mathrm{~V}-1$ is a natural for those who want medium power in a small cabinet. It is complete in one package. All you need to put it on the air are a key or microphone, antenna, and a 115 volt a-c power source. Its convenient size allows either permanent installation or portable use.

The $32 \mathrm{~V}-1$ is rated at 150 watts input on CW or 120 watts on phone. A receiver type cabinet houses the entire unit - power supply, audio, and r-f. All r-f stages except the final are permeability tuned and ganged with the v.f.o. The dial is calibrated directly in frequency. Bandswitching is employed, thus eliminating plug-in coils.

The output network will match impedances of 50 ohms to 600 ohms. Balanced or unbalanced open wire lines and antennas, and concentric
transmission lines, can be used with good efficiency. Other transmission systems can be used with link coupling to the transmitter output.
In brief, here are the features of the $32 \mathrm{~V}-1$:
bandswitching table model
v.f.o. control

150 watts input on CW

120 watts input on phone
$80,40,20,15,11$, 10 meters
push-to-talk
table model
$21^{1 / s^{\prime \prime}} \mathrm{w}, 127 / 16^{\prime \prime} \mathrm{h}$, $13^{7 / 8^{\prime \prime}} \mathrm{d}$
ganged tuning
pi output network clean keying
direct frequency calibration

Designed Specifically for Amateur Radio

Every detail of the 30 K is thoroughly engineered to assure the best performance for amateurs-it is not modified militaty equipment. Operating convenience and reliability are provided in the design and construction. The v.f.o. controlled exciter unit is in a receiver type cabinet that can be set right on the operating desk. Bandswitching in both the exciter unit and the transmitter itself facilitates multi-band operation. Three sets of antenna terminals are provided, with provision for switching antennas.

The speech clipper and low pass audio filter in the speech amplifier enable the operator to maintain a high average modulation, yet keep a narrow signal and prevent overmodulation.

Compare the following features-sec how they fit your desires:
bandswitching
v.f.o. control

500 watts input on CW
375 watts input on phone
100% modulation speech clipper
push-to-talk
smooth, modern styling
clean, sharp keying
$80,40,20,15,11$, 10 meters
break-in operation
115 volts a-c power source

Attractive in appearance, efficient in operation, the 30 K will make a satisfying nucleus for your ham shack.

FOR RESULTS IN AMATEUR RADIO, IT'S...

The Collins 75A Receiver

A New Standard for Amateur Receivers

The 75A was engineered specifically for amateurs. It covers six ham bands, with straight line tuning on all bands. The calibration is accurate to within one kilocycle on 15 meters, and to within two kilocycles on the 11 and 10 meter bands. Double conversion is utilized. The overall stability is within one dial division under all normal operating conditions.

The 75A is permeability tuned. It performs equally well on all amateur bands. Image rejection is a minimum of 50 db on all bands. The thoroughly engineered crystal filter circuit operates smoothly in providing a bandwidth variable in five steps from 4 kc to 200 cps . There is no loss in gain.

Here are some of its many desirable features:
double conversion
straight line tuning
direct frequency calibration
80, 40, 20, 15, 11, 10 meters
50 db image rejection
variable selectivity
high sensitivity self-contained power supply
signal strength meter
permeability tuned receiver disabling circuit
10 db signal to noise ratio
three IF amplifiers very high stability accuratecalibration amplified avc

Know Your Frequency with this v. f. o.

The overall accuracy and stability of the $70 \mathrm{E}-8$ are within 0.015% under all normal operating conditions. That means that you can set it to within $1 / 2 \mathrm{kc}$ of any desired frequency on the 80 meter band, and know that it will stay there.

Sixteen turns of the vernier dial vary the frequency from 1600 kc to 2000 kc . The following table shows the relation between the oscillator frequency and various amateur bands:

Band
(meters)

80
40
20
15
11
10
6
2
$11 / 4$
$3 / 3$

The $70 \mathrm{E}-8$ is permeability tuned. The dial is calibrated directly in frequency up to and including the 10 meter band. 10 volts r-f output are available for use in an exciter, band edge spotter, heterodyne frequency meter, or other applications.

COMPONENTS THAT

I.
c.t.c. TURRET TERMINAL LUGS. Heavily silver plated brass lugs. A short cut to speedy assembly. Firmly anchored to terminal boards by simple swaging operation. Lugs heat quickly, assuring neat, positive wiring. Two soldering spaces. Stocked to fit $1 / 32^{\prime \prime}, 1 / 16^{\prime \prime}, 3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ terminal board thicknesses. Also available with single soldering space.
C.T.c. SPIIT TERMINAL LUGS are being enthusi-
astically received by manufacturers of transformers and ofter potted units that require soldering after porting. A.O50" hole through the lugs makes them idell for this type of application. Perfect for cerminal boards, too, because wiring can be done from top or botom of the board without drilling. Made of brass, heavily silver plated, to fit $3 / 32^{\prime \prime}$ terminal boards.
3. G.T.C. DOUBLE END TERMINAL LUGS. Twin ter. 2. minal posts in a single swaging operation. Perfect electrical contact because both posts are part of the same lug. Neat, positive wiring from either top or bottom. These heavily silver plated brass lugs are stocked to fit $3 / 32^{\prime \prime}$ terminal boards.
4. C.T.C. ALL-SET TERMINAL BOARDS are proving a 4. time-saver in the laboratory and on the assembly line. Just select proper width board and go to work.

All-Set Terminal Boards are made in $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}$ and $3 / 16^{\prime \prime}$ linen bakelite in 4 widths $-1 / 2^{\prime \prime} ; 2^{\prime \prime}$ (lug row spacing $11 / 2^{\prime \prime}$); $21 / 2^{\prime \prime}$ (lug row spacing $2^{\prime \prime}$) and $3^{\prime \prime}$ (lug row spacing $21 / 2^{\prime \prime}$). Fit all standard resistors and condensers. Hoards may be broken in fifths by bending on scribed line or used full length. Available in sets of any of the 4 widths or in any single width in lots of 6 or multiples of 6 .
S.c.t.c. hand pressure swager for quick, firm, - uniform swaging of terminal lugs to terminal boards. Adjustable to fit all thickncsses of boards. Lugs are put in board right side up and may be swaged as far as $17 / 8^{\prime \prime}$ from edge. Adjustable pressure assures uniform swage. Unit pictured swages all C.T.C. standard Turret Lugs. Can be furnished with additional anvils and punches to fit C.T.C. Double End and Split Lugs.
C.T.C. MATHEMATICALLY DIMENSIONED CRYStals. A new C.T.C. development, mathematical dimensioning achieves greater accuracy. It assures consistent performance-guarantees frequency stability, high activity and long life in every C.T.C. Crystal.

WRITE FOR C.T.C. CATALOG NO. 100
It contains complete information on these and other C.T.C. radio and electronic components you should know about. It's yours for the asking.

BUITL TOCARDWELL STANDAROSS

The

for more and better QSOs

Here is a communications receiver that is engineered to satisfy exacting commercial requirements. Yet it is ideal for the anteur who wants better QSOs and more of them. Remember, it is enginecred by Cardwell and built (w) Cardwell standards . . . then read the following outstanding features:

1. Full Turret Type R. F. Section. (Sturdy cast aluminum construction.) 2. Wide Frequency Coverage.
(Range . 54 to 54.0 mes. Basic turret covers. 54 through 40 mcs . in six binds. Fixtra coil strip, supplied on special order, extends range to 5.4 mcs .)
2. Secondory Frequency Standard. (Unique type crystal calibrator provides check points of either 100 or 1000 kcs .) 4. Varioble Selectivity Crystal Filter.
(Choice of 5 degrees of selectivitythree with crystal, two without.)
3. Exceptianal Signal to Naise Ratio (Receiver noise less than 6 db above thermal!)
4. New Type Noise Limiter.
(A really ettective aid in reducing local
ignition interference and similar noises.)
5. Electrical Bond Spread.
(Band spread scales calibrated directly. Arbitrary scale $0-100$ also visible on each setting.)
6. Direct Reading Precision Dials.
(Excellent visibility-pointer travel betder than 10 'f'2 inchius-velver ammath dial action.)
7. Temperoture Campensated Oscillotor.
(Stability is better than 25 parts per million per degree centigrade. V.R. tube maintains maximum freguency st.bility against line voltage fluctuations.)
8. Mechanical Coupling Provisians.
(Control shafts are brought out at rear for linkage to other units such as a transmitter exciter.)
9. Aluminum Unit Construction. (Receiver and power supply combined in one sturdy. lightweight unit $181 / 4^{\prime \prime}$ wide $\times 16^{\prime \prime}$ deep $\times 11^{\prime \prime}$ high. W'eight approximately 70 lbs.)
10. Heavy Duty Speaker.
(Compact tilting unit $9^{1 / 4} /{ }^{\prime \prime}$ wide $\times \mathbf{8}^{1 / 44^{\prime \prime}}$ deep x 11" high for wall or table mounting.)

13. Eight Watts Audio Output.

(1)ush-pull class Alb-with four output impedances. Connections provided for phono-pickup or high leve! microphone input.)
14. 18 Tubes-All Miniature.
15. Threshold Squelch.
16. Ponaramic Adaptor Jack.
17. Rack Mounting Model.
(Will also be available.)

WRITE FOR COMPLETE TECHNICAL BULLETIN

THE ALLEN D. CARDWELL MANUFACTURING CORP.

MAIN OFFICE
97 WHITING STREET
\& FACTORY:
PLAINVILLE, CONN.

NOW AVAILABLE

"... Rayheon

OVER 125 amateur and SPECIAL PURPOSE TUBES!

HIGHLIGHTS OF THE RAYTHEON LINE

QAYTHEON SURMINIATURE TUEAS

trpe mo.	Construction	application	filament			Max.		Capacitances-			TYPE wo.
			Volts	Amps.	Typ			G-p		Output	
CES02AX	Pentode	Output Stage	1.25	0.030	Oxide	45	0.6	14	3.0	5.7	CX302AX
CK503AX	Pentode	Output Stage	1.25	0.030	Oxide	45	0.8	1	3.7	6.3	CK503AX
CRS05AX	Pentode	Voltoge Amplitier	0.625	0.030	Oride	30	0.15	07	2.7	4.4	CX505AX
CRS505AX	Pentode	Outpul Stage	1.25	0.050	Oxide	45	1.25	09	3.5	6.2	CK506AX
CXSIOAX	Double Space Charge Tetrode	Voltage Amplifier	0.625	0.050	Oxide	45	0.06	0.6	2.4	2.1	CK510AX
CR515BX	Triode	Voltage Amplifier	0.625	0.030	Oxide	45	0.15	65	1.5	2.5	CR515BX
CR556AX	Triode	U.H.F. Oscillator	1.25	125	Filament	135	4.0	2.0	1.3	4.0	CX556AX
CR569AX	Pentode	Amplitier	1.25	. 050	Filament	67.5	1.8	. 01	3.3	3.8	CX569AX
CR605CX	Pentode	UHF. Amplifier	6.3	0.2	Heater	120	7.5	0.015	4.4	3.8	CR605CX
CR606BX	Diode	U.H.F. Rectifier	6.3	0.15	Heater	420	,			2.1	CK606BX
Cxsoscx	Triode	Oscillator-Amp.	6.3	0.2	Heater	120	9				Cx608CX
CR619CX	Triode	Oscillator-Amp.	6.3	0.2	Heater	250	4				CR619CX

DAYTHEON TRANSMITTING TUBES

trpe no.	constive. IION	SPECIAL APPLICATIONS	flament		max. volt.		Max Cur.ma.		POWER-WATTS			CAPAC Minfds. G.P	trpe no.
$2 \mathrm{C34}$ RK34	Dual Triode	H.F Oscillator Amp.	6.3	0.8	300		80		10	1.8	16	C.F-	$2 \mathrm{Cl4}$ RK34
RK4D22	Beam Terrode	R-F Oscillator Amp.	$\begin{aligned} & 25.2 \\ & 12.6 \end{aligned}$	$\left.\begin{array}{l} 0.8 \\ 1.6 \end{array}\right\}$	750	350	300	35	50	1.25	100	0.27	RK4D22
RE4D32	Beam Teirode	R.F Oscillator-Amp.	6.3	3.75	750	350	300	35	50	25	100	0.27	R24D32
5D23 RK65	R.F Tetrode	R-F Amplifier	5.0	14.0	3000	500	250	80		15.0	565	0.42	5D23 RK65
R126D22	Tetrode	R-F, A-F Amplifier	5.0	28.5	3500	500	500	165	450	22.0	1000	0.5	RE6D22
RR20A	A-F Pentode	Suppressor Mod.	7.5	3.25	1250	300	92	36	40	1.6	84	0.01	RE20A
RR28A	R-F Pentode	Suppressor Mod.	10.0	50	2000	400	175	60	125	2.2	250	0.02	RR28A
RE38	Triode	R.F. A.F Amplitier	5.0	8.0	3000		160		100	10.0	225	4.3	RE38
RE18A	Beam Tetrode	R-F Oscillator-Amp.	10.0	5.0	2000	400	180	40	100	1.2	250	0.2	RK48A
814 RX47	Beam Tetrode	R-F Oscillator.Amp.	10.0	3.25	1250	300	150	14	50	1.0	120	0.12	814 RK47

RAYTHEON DECTIFIER TUBES

TYPE NO.	Construction		Amph	MAX PEAK INVERE VOLTS	Max peak	aremee	curfage	TrPe mo.
BH	Full Wave-Gas			1.000	400 Ma .	125 Ma .	90	BH
RE3E24	Half Wave-High Vacuum	2.5	3.0 3.0	20.000	- 150 Ma .	30 Mc .		$\overline{\mathrm{R}}$ K3B24
RK3829	Half Wave-High Vacuum	5.0 2.5	3.0 4.75	20.000 16.000	300 Ma 250 Ma	60 Ma . 65 Ma .	130	
RK4B31	Clipper Diode-High Vacuum	5.0	5.25	16,000	25 Ma .	60 Ma .	150	RR3829 RK4B31
RK72	Hali Wave-High Vacuum	2.5	3.0	20,000	150 Ma .	30 Ma .	200	RE72
RK705A	Hali' Wave-High Vacuum	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	35.000 35000	$\begin{aligned} & 375 \mathrm{Ma} \\ & 750 \mathrm{Ma} \end{aligned}$	$\begin{gathered} 50 \mathrm{Ma} \\ 100 \mathrm{Ma} \end{gathered}$		RK705 $\overline{\text { a }}$
RK866A B66	Hall Wave-Mercury	2.5	5.0	10,000	1.0 Amp.	250 Mc .	15	RE866A 866
MX872§/872	Hali Wave-Mercury	5.0	7.5	10.000	5.0 Amp.	1.25 Amp.	10	RK872A 872
1005 CK1005	Full Wave-Gas	6.3	0.1	450	210 Ma .	70 Ma .	20	1005 CR1005
1006 CX 1006	Full Wave-Gas	1.75	2.0	1,600	600 Mc	200 Ma .	20	1005 CX1005
CX1007	Full Wave-Gas	1.0	12	980	-330 Mc.	110 Ma	24	CX1007
CX1012	Full Wave-Gas	1.75	2.0	1.200	900 Ma . 900 Mc	$300^{-} \mathrm{Ma} .$	25 25	CXIO12
1641. $\mathrm{R} \times 6$	Full Wave-High Vacuum	5.0	3.0	4,500	150 Mc	$50^{-} \mathrm{Ma}$.	65	1641 RK60
$5517 /$ CE1013	Half Wave-Gas			2,500	330 Ma .	250 Ma		
	Half Wave--Gas			2,800	50 Ma .	6 Ma .	100	5517 CK1013

DAYTHEON SPECIAL PURPOSE TURES

FREEI Get yaur copy of Ray theon's new "Characteristics Characteristics ing all importont of over 125 of Raytheon's and special purpose omate from your dealer or by writing us direct.

HERES HELPFUL INFORMATION ON I \AA C POWER WIRE WOUNDS!

To guard against the harmful action of atmospheric moisture and corrosion, IRC Fixed and Adjustable Power Wire Wound Resistors have a special cement coating.
This coating is dark and rough, dissipates heat rapidly, does not deteriorate under any reasonable overload. It guards the winding against the inroads of moisture and corrosive action, contains no chemically active ingredients, no salts, to attack the wire. The cement is crack proof, is cured and hardened at low temperature to prevent the temper from being baked out of winding and terminals.
IRC Fixed and Adjustable Power Wire Wound Resistors are wound on tough, non-porous ceramic forms, have extreme mechanical strength. They are available from 10 to 200 watts.
The many cachusioc construction featurer of IRC Vnhume Controls, Rheortats, BT \& BW Resistors, and Prccision W'ive 以'ound Resistors hare marie them the proven fatorite of radio amatenis. IRC manufactures a resistance wnit for cuery bam-rig requiremen.

NEW: RESISTO-GUIDE

- AIDS IN RESISTOR IDENTIFICATIONI

Here's practical aid in resistor range identification. Just turn the three whecls to correspond with the color code and the standard RMA ranke is automatically indicated. 10c at all IRC distributors. resistance unit for every resistance unit for every
ham-rig requirement. It's available at your local IRC Distributor.

FIXED POWER WIRE WOUND RESISTORS
Resistance Range

Type	Wafts	Leingth	Dia.	Ohms.
AB	10	$13 / 4^{\prime \prime}$	$5 / 16^{\prime \prime}$	1 to 25,000
DG	20	$2^{\prime \prime}$	$9 / 16^{\prime \prime}$	11050,000
EP	50	$41 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$	5100.1 meg,
ES	80	$61 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$	5100.1 meg.
HA	100	$61 / 2^{\prime \prime}$	$11 / 8^{\prime \prime}$	25100.1 meg.
HO	200	$101 / 2^{\prime \prime}$	$11 / 8^{\prime \prime}$	25100.1 meg.

ADJUSTABLE POWER WIRE WOUND RESISTORS

Type	Length	Dia.	Resistance Range Ohms
ABA	$13 / 4^{\prime \prime}$	$5 / 16^{\prime \prime}$	1 to 10,000
DHA	$212^{\prime \prime}$	$9 / 16^{\prime \prime}$	1 to 25,000
EPA	$41 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$	5 to 0.1 meg.
ESA	$61 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$	5100.1 meg.
HAA	$61 / 2^{\prime \prime}$	$11 / 4^{\prime \prime}$	100 to 0.1 meg.
HOA	$10^{\prime \prime} 12^{\prime \prime}$	$11 / 8^{\prime \prime}$	100 to 0.1 meg.

HYTRON TRANSMITING COMERCIAL SERVICE RATINGS

REGU. OC3/VRIS OD3/VRISO
LATORS
*Both sections of twin triode. NOTE: Speciol pupersedes ond replaces HY65. TCurren for full wove.
Commercial Engineering Dep . Hytron - oldest manufacturer specializing in radio receiving
For beller reception, it's also Hyiginator of the popular Bantam GT.

$$
\left.\left[\frac{801 A}{801}\right) \times{ }^{6}\right]
$$

To improve upon the HY'75 was not easy. But the new HY'7SA does the trick. Maximum plate current of the HY'75A is increased to 90 ma . Grid-to-plate capacitance is sharply reduced to $2.6 \mu \mu \mathrm{fd}$. An HY'7SA substituted for an $\mathrm{HY}^{\prime} 75$ in a 1.4 f -me quarter-wave line oscillaters raives the resonant frequency by $20-30 \mathrm{mc}$. Efficiency is up; 25% more power output at $1+1 \mathrm{mc}$. How was this accomplished! By a shorter mount, smaller elements, special high-voltage processing of the lava insulators, redesigned wertical bar grid, and zirconium-coated graphite anode. All at mo extra cost to you. Substituted for the HY 75 , the H Y 7SA requires only pruning of the tank circuit and a bigher value of grid resistor. For replacement or new whe equipment, the new HY' 75 A is your logical choice.

HY75A
 IMPROVED VERSION OF HY75 VHF TRIODE

HY75A \quad MMPROVED MERSION OF MY75 VMF TRIODE

$\$ 2.25$
Best illustration of the $2 \mathrm{E} 30^{\prime}$ s versatility is Ed. Tilton's article heginning on puge 31 of QS"' tor June, 19.16. Mr. "Tilton uses the 2830 as crystal oscillator, frequeney multiplace spech amplifier, and class $A B$: modulator. Primorily for mobile and arcraft whe equipment, the 2E30 is an excellent driver for h-f or whf fixed stations. Designed, manufactured, and tested for transmitting, the $2 E 30$ has a husky, instantheating filament and generous maximum plate dissipation (10 wates). It develops high efficiency at only 250 voits plate and screen. Imagine doubling to 1.4 me with 4 watts output and 0.5 watt drive. The minature bulb is compact, has low base losses, lead inductance, and capacitance. 1'un call find ibany wise for the wommisal 2E30-a peanut for size, a power-house for output.

Designed for frequencies beyond the capabilities of the 2E25, the new 5516 plate-modulated delisers usctul power outputs of 21,16 , and 12 watts at 75 ,
 battery drain in mobile and aircraft use. A dish-pan stem gives short leads with low inductance and capacitance. The zirconium-coated plate and specially trated grids permit higher power outputs. Three separate base-pin connections th the filament center tap provide for lowest possible cathode ledd inductance. Excel-

5516 INSTANT-HEATING IGS-MC BEAM AMPLDFIER

$$
2 \mathrm{E} 30 \text { - a peanut for size, a power-house for output. }
$$

2E30

INSTANT-HEATIN MHF MMN. BRAM DRIVER

W'ith this IIY'Q 75 linear oscillator kit, you can he on $1 \frac{1}{4}$ or 2 meters in an hour. Features are: carefully engineered for casily duplicated results, micrometric tuning ($1 \cdot 10-250 \mathrm{mc}$), silver-plated tank, precision-machined shorting har, special filament, grid, and plate chokes, non-inductive coaxal plate blocking condenser, quick band changing, chart for frequency determination, peak performance for HY'7SA or HY75 (useful power output with HY75A is 17.5 W on c.w, 13.5 w on phone), casy fictorial instruction manual.

HY-Q 75
$11 / 4-2$ METER VHF KIT
SEE THESE FIVE NEW HYTRON PRODUCTS AT YOUR JOBBER'S.

ONICS CORP., SA
 EM, MASS.

Be "In the Know" on radio receiver engineering practice

with Рhotofact* Folders

Do you keep up to date on modern receiver design practice? Do you know how engineers in the laboratories of radio manufacturers solve various design problems?

This information, fresh and new as this month's QST, is available to you in Howard W. Sams Radio Photofact Folders. There's no need to wait for year-old compilations of data!

Photofact Folders bring you so much more than ordinary schematics. Complete with clear-cut photographs and technical information that runs from four to twelve pages, they tell you everything you want to know about the latest radios, phonographs, intercommunication systems and power amplifiers. Service engineers find them indispensable because they save up to 50 percent in bench time.

Photofact Folders are published in envelopes containing 30 to 50 folders at $\$ 1.50$ per set. This price includes membership in the Howard W. Sams Institute, which brings you practical answers to questions about receiver servicing, repair, adjustment and maintenance. See Photofact Folders at your favorite radio parts supply house.

In Each Рноtofact Folder You Get -

1. From two to a dozen clear cut photographs of the chassis-completely identifying each component for instantaneous checking or replacement. 2. A keyed reference Parts List giving complete specifications on each component, manufacturer's part number, available replacement type or types, and valuable installation notes. This makes it possible for you to select from your stock or immediately order a part which meets all exacting requirements. 3. A keyed reference alignment procedure for the individual set, with adjustment frequencies and recommended standard connections. 4. Complete voltage analysis of receiver. 5. Complete resistance analysis of receiver. 6. Complete stage gain measurement data. 7. Full page schematic diagram. 8. Dial cord diagram and restringing instructions. 9. Complete disassembly instructions.
*Trade Mark Reg.

UNIVERSAL MICROPHONES

ready to help you pin the meter!

As America's oldest independent manufacturer of microphones, the Universal Microphone Company has always been at the service of radio amateurs everywhere. You
were our first customers "away back when," and we are ready, now and in the future, to help you make your rig pin the meter with a Universal Microphone!

NEW D2O SERIES DYNAMIC MICROPHONES

This postwar model is especially suited for recording, public address, transmitters, or wherever a full-ranged dynamic microphone is desired. It combines modern appearance and rugged stability. The built-in cable connection is easily accessible without interference with the microphone, and "stand and cord" noises are minimized because the internal element is mechanically isolated. The D20 Dynamic Microphone is designed for indoor and ourdoor use with a frequency range of 50 to 8000 cycles. Its special "Micro-Adjust Swivel" assures smooth, easy adjustment and steady, positive positioning anywhere throughout a 60° angle. Finished in satin chrome. Complete with 25^{\prime} low loss cable and detachable connector. Available in models of $50,200,500$, and 40.000 Ohnis. An exceptional value at only $\$ 32.50$.

A HOME RECORDING HEAD OF PROFESSIONAL QUALITY!

Universal's design and engineering skill, long experienced in the manufacture of precision studio recorders, has produced this superior home recording head. It outperforms similar recording heads of magnetic design since it purposely accentuates the high frequency range in amount and degree to compensate for high frequency losses common to home recording records and phonograph circuits. This assures a "sparkling" tone quality. Its sensitivity and impedance are keyed to match stand. ard home recorders, thus eliminating special adjustments. Finished in deep brown enamel. Complete with solder terminals, spring tempered phosphor bronze knife edge, steel attachment plate, mounting screws and long styli set screw. Only \$11.50.

"KD" DYNAMIC MICROPHONE

 This popular low-cost microphone now is available in a new and improved design. Exccllent for home recording, amateur applications. Complete with 10 ft . rubber covered cable. Impedance 40,000 Ohms. Only \$17.75.D61 CONSTANT VELOCITY FREQUENCY RECORD Here's a handy tool for direct checking of response characteristics of phonograph pick-ups. Also for indirect checking of recording heads,
 loud speakers, loud speaker installations, theater sound equipment, public address equipment and audio frequency equipment. Complete with data sheet. Only $\$ 3.00$ each.

OTHER UNIVERSAL MODELS ARE AVAILABLE, including dynamic, velocity, and carbon in standard, hand, communications and cartridge types. For a complete catalog on these as well as Universal Recording Components, see your radio parts distributor or write direct to us.

TYPE 11

SMALL, LOW-COST, SOLA CONSTANT VOLTAGE

 transformers for chassis mountingReliable communications equipment must have stabilized voltage-and the right place to provide for it is in the equipment itself. These three types of Sola Constant Voltage Transformers have been specifically designed for "built-in" applications. They are low in cost and their use will often permit the elimination of other components. For complete information consult Bulletin $34 \mathrm{CV}-102$, available on request.

Catalog Number	Oulput Capacity in VA	Input Volts	Output Volts	Dimensions in Inches					Approx. Shipping Weight	List Price Each
				A	B	C	E	F		
30488	15	95-12.5	6.0	$5{ }^{11} 16$	258	$3^{7} 16$	5		6	\$15.00)
30492	15	95-125	6.3	51116	28.8	3^{315}	$5^{1} 16$		6	15.00
30498	15	95-125	115.0	$5{ }^{116}$	23^{3}	3^{15}	$5{ }^{15}$		6	15.00
30785	17	45-12.5	6.3	5.16	3^{211}	$2^{19}{ }^{19}$	3	2	51%	20.00
30955	17	95-125	115.0	519	$3^{21} 1_{5}$	2^{19}	3	2	512	20.00
301002	15	9.5-12.5	6.3	$5{ }^{16}$	31.	$21 / 4$	3	$11 / 2$	21\%	18.50
301003	15	95-125	115.0	$5{ }^{3} 16$	$31 / 2$	21	3	11,2	2%	18.50

*Condenser supplied as separate unit.

TYPE 2

Catalog Number	Output copociryin VA	InputVolts	Output Volts	Dimensions in Inches					Approx. Shipping Weight	$\begin{aligned} & \text { List } \\ & \text { Price } \\ & \text { Pach } \end{aligned}$
				A	B	c	E	F		
30804	30	995-125	115.0	8^{1110}	416	$4^{3} \times$	$7{ }^{16}$	$2^{3} \times$	12	\$17.00
30805	60	95-125	115.0	$8{ }^{16}$	$4{ }^{16}$	$4^{3 \times 8}$	$8^{1{ }^{16} 6_{6}}$	$2^{3} \times$	13	24.00
30886	120	49-125	115.0	$9{ }^{11_{16}^{16}}$	$4{ }^{3116}$	$4{ }^{3}$	$8 i^{1 / 6}$	$2^{3}{ }_{4}$	17	32.00
30807	250	95-125	115.0	115\%	$6^{15}{ }_{15}$	$55^{5 / 8}$	$31 / 3$	(6)	30	52.00
30M807	250	190-2.90	115.9	115	$6{ }^{\text {bin }}$	5\%	31/4	61,	30	52.00
30808	500	95-125	115.0	1416	6^{1515}	5^{51}	5	61	40	75.00
30M808	500	190-250	115.0	$141 / 2$	6^{1516}	$5{ }^{5}$	5	61	40	75.00

TYPE 3

BURGESS BATTERIES For Hram Operaters

RECOGNIZED BY THEIR STRIPES - REMEMBERED BY THEIR SERVICE

The batteries on this page only illustrate a few of the many popular iypes of Burgess Batteries for Ham Operators. Your local Burgess distributor has fresh stocks for all your needs.

No. 4FA LITTLE SIX—1 1 2 2 volts-replaces one round No. 6 cell. Radio "A" type; is recommended for the filament lighting of vacuum tubes. Size, $41 / 4^{\prime \prime} \times 29 / 16^{\prime \prime} \times 2916 "$. Weight, 1 lb .5 oz.

No. 5308-45 volt "B' battery equipped with insulated junior knobs. Taps at $+22 \frac{1}{2},+45$ volts. Size, $57 / 8^{\prime \prime} \times 436^{\prime \prime} \times 29$ 尔"。 Weight, each - 2 lbs .15 oz .

No. F4BP-A 6 volt, heavy-duty portable battery, designed for Burgess X109 headlight. Contains four F cells connected in series. Screw terminals and brass knurled nuts. Size, $21 / 32^{\prime \prime} \times 2 \frac{1 / 32^{\prime \prime} \times 47 / 32^{\prime \prime} \text {. Weight, } 1}{}$ lb. 6 oz .

No. 2308-A45 volt super-service, standard size radio "B". Designed for receivers with plate current drain of 10 to 15 milliamperes. Size, $718^{\prime \prime} \times 8^{\prime \prime} \times 27 / 8^{\prime \prime}$. Weight, 7 lbs .6 oz .

No. Z30NX 45 volt " B " battery. Improved small size. Adapted to radio, portable receivers and transmitters. Screw terminals. Size, $3^{\prime \prime} \times 17 / 8^{\prime \prime} \times 4^{31} 1^{\prime} 2^{\prime \prime}$. Weight, 1 lb .4 oz .

No. 2F2H-A 3 volt radio " A " battery used with portable radios, amplifiers, and special instruments. Size, $25 / 8^{\prime \prime} \times 25 / 8^{\prime \prime} \times 43 / 8^{\prime \prime}$. Weight, 1 lb .6 oz.

No. W30BPX—45 volts. Extremely small and light in weight. Very suitable for personal transceivers used by amateur clubs and radio stations. Equipped with insulated junior knobs. Size, $17_{32 \prime \prime}^{\prime \prime} \times 2 \frac{21 / 3 " \prime}{\prime \prime} \times 41 / 16^{\prime \prime}$. Weight, 10 oz .

VOTED FIRST CHOICE

IN NATIONAL POLL OF ELECTRONIC ENGINEERS
2 aut of 3. That's the way electronic engineers voted for Burgess Batteries in a recent survey. Use the brand the experts choose...BUY BURGESS!

U'rite For The Name of Your Local Distributor

A Perfected

MARE BGG GRBER AVAILABLE AT LAST!

Here's the Wire Recorder You've Been Waiting For! The result of an intensive 3 -year research and development program, this unit is ready for your adaptation to any radio or amplifier. Record your voice, your favorite radio programs, amateur communications-with perfect fidelity, ready for instantaneous play-back. Plays same recording hundreds of times with no loss in quality-no "needle scratch." Use same wire repeatedly for new recordings by simple, automatic demagnetiz-ing-erase feature. Read specifications and features. Then order YOUR genuine WiRecorder Unit now! Use handy coupon below.

WiRecorder Corporation

Stroh Building, Detroit 26, Michigan

This is my order for the new WiRecorder Unit as described in the Handbook. Enclosed find money order or cerified check for $\$ 89.50$, for prepaid shipment to:

Name

Address \qquad

WiRecorder Features

- Exclusive capstan drive minimizes "wow" or flutter. Wire speed held constant at 2 feet per second.
- High-fidelity response. Flat, $\pm 5 \mathrm{db}$ from 80 to 8000 cycles. Excellent for musical reproduction.
- Full hour of continuous recording on spools only $21 / 2^{\prime \prime}$ in diameter.
- Complete unit, precisionbuilt, only $8^{\prime \prime}$ wide, $7^{\prime \prime}$ high and $7^{\prime \prime}$ deep. Weight, with spools and wire, 9 lbs.
- High-speed rewind. One hour recording rewinds in 8 minutes.
- Patented "Magneflo" clutches guard against wire breakage.
- Automatic stop operates in play-back or rewind. No handling of wire necessary.
- Extra spools and wire available.
- Oilite bearings. Special heavy-duty motor.
- Licensed under Armour patents.

COMPONENTS of Cuality For

 TELEVISION And ELECTRONIC APPLICATIONS

earn
 Code the EASY Way

Beginners, Amateurs and Experts alike recommend the INSTRUCTOGRAPH, to learn code and increase speed.

Learning the INSTRUCTOGRAPH way will give you a decided advantage in qualifying for Amateur or Commercial examinations, and to increase your words per minute to the standard of an expert. The Government uses a machine in giving examinations.

Motor with adjustable speed and spacing of characters on tapes permit a speed range of from 3 to 40 words per minute. A large variety of tapes are available - elementary, words, messages, plain language and coded groups. Also an "Airways" series for those interested in Aviation.

MAY BE PURCHASED OR RENTED

The INSTRUCTOGRAPH is made in several models to suit your purse and all may be purchased on convenient monthly payments if desired. These machines may also be rented on very reasonable terms and if when renting should you decide to buy the equipment the first three months rental may be applied in full on the purchase price.

ACQUIRING THE CODE

It is a well-known fact that practice and practice alone constitutes ninety per cent of the entire effort necessary to "Acquire the Code," or, in other words, learn teleg. raphy either wire or wireless. The Instructograph supplies this ninety per cent. It takes the place of an expert operator in teaching the student. It will send slowly at first, and gradually faster and faster, until one is just naturally copying the fastest sending without conscious effort.

BOOK OF INSTRUCTIONS

Other than the practice afforded by the Instructograph, all that is required is well directed practice instruction, and that is just what the Instructograph's "Book of Instructions' ' does. It supplies the remaining ten per cent necessary to acquire the code. It directs one how to practice to the best advantage, and how to take advantage of the few "short cuts" known to experienced operators, that so materially assists in acquiring the code in the quickest possible time. Therefore, the Instructograph, the tapes, and the book of instructions is everything needed to acquire the code as well as it is possible to acquire it.

MACHINES FOR RENT OR SALE

> ACCOMPLISHES THESE PURPOSES:

FIRST: It teaches you to receive telegraph symbols, words and messages.

SECOND: It teaches you to send perfectly.
THIRD: It increases your speed of sending and receiving after you have learned the code.

With the Instructograph it is not necessary to impose on your friends. It is always ready and waiting for you. You are also free from Q.R.M. experienced in listening through your receiver. This machine is just as valuable to the licensed amateur for increasing his speed as to the beginner who wishes to obtain his amateur license.

Postal Pard will bring full particulars IMMEDIATELY

THE INSTRUCTOGRAPH CO.

mitant the PRODUCTS the PERFORMANCE

BEEN WAITING FOR

$\mathrm{A}^{\text {s }}$S EVER Stancor leads the field. To serve you better in 1947 and to bring you as soon as possible quality products, we step ahead in new plant facilities.

Watch for Stancor's timely releases; they are planned to satisfy your needs . . . keep in mind Stancor's high standard of performance, advanced design and universal application.

These are the things which will become increasingly available to all . . . these are the things that have made Stancor your favorite.

ON STANCOR'S PROGRAM
Transformers and Reactors of all types...Versatile Line of Transmitter Kits, Audio Amplifier Kits, and other Electronic Devices to serve the Discriminating Amateur.

STANCOR

,
 IDER

UNDERSTANDING MICROWAVES

BY VICTOR J. YOUNG. Far thase wha have nat previously considered radia waves shorter than 10 centimeters. Provides toundation for understanding various microwave developprents of past five years.
CHAPTER HEADS: The Ultra High Frequency Cancept; Statianary Charge and Its Field; Magnetastatics; Alternating Cur rent and Lumped Constants; Transmission Lines; Paynting's Vector and Maxwell's Equations; Wave-guides; Resonant Cavi ties: Antennas and Microwave Oscillators; Radar and Communication. Section Two is devated ta descriptians of Micro wave Terms, Ideas and Thearems. Index. 400 Pages-Price $\$ 6.00$

A-C CALCULATION CHARTS
BY R. LORENZEN. Students and engineers will find this book invaluable. Simplifies and speeds wark invalving AC calcula tions. Contains 146 charts. Cavers AC calculatians fram 10 eycles to 1000 megacycles. 160 Pages-Price $\$ 7.50$.

INSIDE THE VACUUM TUBE

BY JOHN F. RIDER. A new appraach and technique that makes its message easy to understand. Here is a solid, elemsntary concept of the theory and aperatian af the basic iypes of vacuum tubes based an the electrastatic field theary. Throughout the entire book, which cavers diodes, triodes, tetrodes, and pentodes, the aim is to present a clear physical picture of exactly what is happening in a vacuum tube, inclusive af the development of characteristic curves of all kinds, and asso ciated laad lines.
A galdmine far the student; a must far the libraries of ervicemen, amateurs and engineers. 425 Pages-Price $\$ 4.50$

THE CATHODE-RAY TUBE AT WORK

BY JOHN F. RIDER. This book presents a camplete explanation af the variaus types of cathode-ray tubes and what rale each element within the device plays in making valtages and currents visible. The anly book of its kind

This volume affers a camplete and elaborate, easy to under stand explanation af the theory af the tube. It is this infarma tion, with many hundreds of typical ascillograms illustrating practical applications, which makes this book so valuable 338 Pages. 450 Ilfustrations-Price $\$ 4.00$.

RIDER MANUALS
FOR RADIO TROUBLE SHOOTING
Unchallenged autharity in the field of ;adia servicing reference baaks. Containing receiver schematics, valtage data, alignmen data, resistance values, chassis layouts and wiring and trimmer connection material they aid in quick location of faults in ailing receivers. Fourteen volumes cover all importont American made receivers issued from 1920 to 1942.
VOLUMES XIV ia VII. EACH VOLUME
$\$ 15.00$

VOLUME VI

11.00

ABRIDGED MANUALS I ta V (1 VOLUME)
17.50

贶CORD GHANGERS AND RECORDERS

AN HOUR A DAY WITH RIDER SERIES

D.C. VOLTAGE DISTRIBUTION IN RADIO RECEIVERS-The appliOhm's law, practically interpreted in terms af haw cir. cuits are emplayed in radia receivers.
ALTERNATING CURRENTS IN RADIO RECEIVERS-An expasition an fundamentals af alternating currents and valtages and where they apperar in receiving system.
RESONANCE AND ALIGNMENT-The importance of the subject in relation to all communication systems, and the clarity of this text, have produced o sale of over 50,000 of this title
AUTOMATIC VOLUME CONTROL-An easy ta understand explanation of haw avc is utilized in radia receivers.

96 Pages each (Illustrated)- $\$ 1.25$ each

The Result of 16 Years of Specialized Publishing

Rider Radio Boaks have been accepted as standard works by members of all branches af the electranic industry. They have warked hand in hand with engineers, technicions, educators and students, civilian and military, far the past sixteen yeors. Place your order fram the descriptians belaw and

Write Taday For Catalog

FREQUENCY MODULATION

One of the most talked of develapments in radia field; details of F.M receiver maintenance and haw it differs fram A.M. 136 Pages- 81 Illustrations $-\$ 200$

SERVICING EY SIGNAL TRACING

Explains appraved system of diagnasing faults in radio receivers and all kinds of communication systems. The method was introduced by the author af the book, John F. Rider. The system has wan endorsement by individuals and associatians the warld aver as well as dividuals and assoriatians the warld aver as well as
technical branches af aur gavernment. 360 Pages- 188 technical branches af aur gavernment. 300

VACUUM TUBE VOLTMETERS

Explains the theory upan which the functianing of the different types of v.t valtmeters is based, and also the practical applications of these instruments. Includes a bibliography consisting af 145 international references. 180 Pages -111 Illustrations $-\$ 2.50$.

THE METER AT WORK

Haw each type af meter works and haw each is used in the field to best advantage. Covers whichevel phose of the subject the reader is interested in 152 Pages138 Illustrations $-\$ 2.00$.

THE OSCILLATOR AT WORK

Shaws haw variaus ascillator circuits functian and methods to imprave their performance. Also describes the r-f and a-f oscillators used as signal saurces. Cavers laboratary test methods, and ather related tests. 256 Pages-167 Illustrations- $\$ 2.50$.

SERVICING RECEIVERS BY MEANS OF

RESISTANCE MEASUREMENT
Discusses series and parallel cambinations of resistances and the distribution of currents and valtages, providing the basis underlying the circuit orrangements used in various types of radia receivers. Also discusses application af resistance measurement ta radia servicing. 203 Pages-94 Illustratians-\$2.00.

AUTOMATIC FREQUENCY CONTROL SYSTEMS
The basic operatian af the discriminatar and Autamatic frequency contral sircuits is explained in great detail in the first part of the book. Descriptians af systems used in cammercial receivers are fully described in the second part af the boak. 144 Pages- 102 Illustratians $-\$ 1.75$.

ALIGNING PHILCO RECEIVERS

1.F. pecks-adiustmant fraquencie:-trimmer and padder locations-camplete and detailed intarmatiun far aligning every Philca madel fram 1929 to 1941. Cavers 9 aligning every hils
VOL I- 1929 to 1936-176 Pages
VOL. II-1937 ta 1941-200 Pages
2.00

RADAR

A non-technical explanatian of the operating principles af Radar. Written sa the persan withaut technical backgraund can understand it. Alsa describes haw the Army, Navy and Air Farces used Radar ta help win the war. 72 Pages-Uniqu* Illustrations $\mathbf{-} \$ 1.00$.

JOHN F. RIDER PUBLISHER, INC.

 \title{
Complete
 \title{ \section*{Complete

 line of

 line of

 A

 A EQUIP M \square

The wartime experience of the Workshop in building precision high-frequency antennas for the Armed Forces provided a back \log of fundamental research and experimental techniques which now is being applied to a complete new line of amateur equipment.

The new antennas are designed specifically for the $2-, 6$, and 10 -meter bands. All of the models have been pur through the most rigorous tests, both electronic and mechanical, to ensure the maximum in performance on the bands specitied. The elements are made of aluminum alloy tubing, sealed on the ends with spherical tips. They are securely mounted in a heavy molded plastic head which gives the whole assembly ample ruggedness to withstand winds of high velocity.

As companion equipment the Workshop mast provides a complete antenna installation designed to operate as a unit. The mast is assembled from 4 -foot units with relescoping joints, readily adaptable to any desired height. Hand rotation is standard equipment, easily adapted to Selsyn or electric moror drive. Workshop antema equipment is available through the better amateur dealers everywhere.

OTHER WORKSHOP ANTENNAS

FM RECEIVING ANTENNAS--directional and non-directional.
television receiving antennas.
alrcraft antennas.
radar antennas.
HIGH-FREQUENCY ANTENNAS for relaying black-andwhite and color television, FM, facsimile, etc.
studio-to-transmitter relay antennas.
police, fire and public utility beacon antennas.

FUNDAMENTAL RESEARCH AND DEVELOPMENT

1. The study of radiation patterns and how they are affected by location and proximity by means of scale models and microwave frequencies.
2. Fundamental measurements on the use of series reactance compensation in coaxial transmission lines and hollow dipoles-information invaluable to the solution of phasing and impedance-marching problems. 3. Investigation of various methods of matching low impedance coaxial transmission lines to high impedance resonant circuits.
3. New measuring techniques for the solution of special antema problems.
4. 2-Meter Beam Antenna Model \#146AB. A high-gain, directional, 6 -element array with two driven elements. Price........... $\$ 19.00$
5. 6-Meter Beam Antenna Model \#32AB. A high-gain, directional, 3-element antenna to be used with Workshop rotating mast equipment. Price.
. $\$ 8.00$
6. 10-Meter Dipole Antenna Model \#29AD.

This bi-directionol antenna is designed to cover the spectrum from 27 mc . to 30 mc . Telescoping eiements adjustable to any length between 130 and 214 inches cover the new 11 -meter band as well. Price
$\$ 6.75$
4. 10-Meter 3-Element Beam Conversion Kir Modal \#29B, to convert the dipole \#29AD to a 3 -element beam. Price.. $\$ 27.50$
5. Antenna Mast Kit Model \#AM. Two sections of 4 -foot mast complete with adiustable mounting brockets, nuts, bolts, etc. A stationary mast to be used with oll Workshop antennas.

$$
\text { Price } \$ 7.25
$$

6. Model \#AM1. Extra 4-foot sections to lengthen the above mast. Price................. $\$ 1.30$
7. Rotating Accessory Kit Model \#AM2, to convert Model \#AM mast to a manually rotated mast, complete with instructions. Price. . $\$ 4.25$

The above are the amateur net prices--slightly higher in the far West. Prices are subject to change without notice.

The WORKSHOP ASSOCIATES, INC.

Thow..a new browning ham frequency meter!

CHECKS XMIR FREQ. IN ANY HAM BAND FROM 3.5 TO 148 MC. ON FM OR AM

This lotest Browning unit designed especiolly for hams - the Model MJ. 9 Frequency Meter - is o high sensitivity fob thot checks your operoting frequencies occurotely if you ploce it neor your xmir, you moy not even need - pickup wire for usoble signols! Con be used for meosuring frequency of remote tronsmitters ond for colibration of receivers within hom bonds or hom band hormonics. Truly o necessity for every modern shock

MODEL MJ-g FREQ. METER

- Direct, frequency-reading dial on seven ham bands.
- .05\% accuracy at all frequencies.
- Audio detection of zero beat.
- Low power consumption.
- All operating controls on front panel.

PLUS MANY OTHER FEATURES. WRITE US FOR LITERATURE.

A NEW BROWNING TUNER! this time for FM-AM

MODEL RJ-12 FM-AM TUNER

- Separate RF and IF systems on both bands.
- One antenna serves both FM and AM.
- Tuning eye shows correct tuning.
- 2-stage cascade limiting on FM.
- Phono position on channel selector switch; phono input connector in back.
- Armstrong circuit employed on FM. PLUS MANY OTHER FEATURES. WRITE US FOR LITERATURE.

FOR HI-FI RECEPTION IN THE NEW FM Band and in standard
BC. BAND

Ask ony old-timer obout the Browning-Droke tuner, ond he'll worm right up with o recito. tion of how much ihot unit meont to him Now put on RJ-12 in your house, and the xyl ond oll the neighbors will decide thot you, ofter oll, ore the king pin of rodio in your community! For here's a hi-fi, hi-sensilivity unit which provides distortion-free reception. Put it in speciol cobinet, desk drawer, shelf - wherever it will look best Or for use with rock-mounted omplifier. Diogrom of HI-FI AMPLIFIER included with every unit

browning
 LABORATORIES, INC. WINCHESTER, MASS.

FOR SENSITIVITY, STURDINESS AND RELIABILITY

SIGMA Instruments, Inc., fully guarantee the performance of any relay they manufacture. You can buy SIGMA relays in confidence knowing they will serve long and well.

Recommended for:

- Exceptionally severe environmental conditions
- Maximum sensitivity
- Minimum input power 0.5 milliwates
- Coil resistance up to $\mathbf{1 8 . 0 0 0}$ ohms.

Critical performance require. ments at a low price in high volume applications. Features of other SIGMA Relays not needed in these applications have been omitted

- Minimum input power 20 milliwatts
- Coil resistance up to $\mathbf{1 4 , 0 0 0}$ ohms.

[^17]
ADAPTABLE

All relays ore obtainable unenclosed or in a variety of enclosures, including hermeti-cally-sealed. Sample orders filled promptly components are on hand to be assembled to your requirements.
SPECIALIZED TYPES AVAILABLE
SIGMA can supply extra sensitivity, DC sensitivity on $A C$ current, time delay, and other special features.

SEND SIGMA YOUR RELAY PROBLEMS FOR COMPETENT SOLUTIONS.

- Mounted in a hermeticallysealed enclosure of cadmiumplated brass. Also available with octal base, type RJO.
- Mounted on a standard 5-pin base and enclosed in an aluminum can.

- Mounted on a standard 5-pin

You Can Depend on This Famous Prime

Aireon Cinaudarraph Speaker for small radios - remarkable fidelity reproduction within a swo-inch cone.

The enviable reputation which Cinaudagraph Speakers have attained for high fidelity, superior performance and ruggedness is deserved through exceptional engineering and production facilities. Cinaudagraph PM Speakers use Alnico 5, the "miracle metal" which gives you four times the performance without size or weight increase. Acceptance of Cinaudagraph Speakers by leading radio manufacturers is assurance of their high fidelity performance.

A complete line of speakers from 2 -inch units for portable radios to 15 -inch models for commercial phonographs and P. A. systems is available. Write us about your speaker requirements.

SLATER, MISSOURI
A Subsidiary of Aireon Manufacturing Corporation

Transformers

Audio - Bias • Chokes • Universal Driver • Filament Universal Modulation • Plate • Power • Output QUALITY is important . . . so is BALANCE

DC Volis $600-750$	$\begin{gathered} D C \text { Amps } \\ 0.2 \end{gathered}$	$\begin{gathered} \text { Plate } \\ 7 P 530 \end{gathered}$	Input Choke 2P148	Filier Cboke 2 P147
600-750	0.3	$\begin{aligned} & 7 P 535 \\ & 7 P 536 \end{aligned}$	$2 P 152$	2P151
1000-1250	0.3	$\begin{aligned} & 7 P 542 \\ & 7 P 543 \end{aligned}$	2 P 152	2P151
1500-1750	0.3	$\begin{aligned} & 7 P 551 \\ & 7 P 552 \\ & \hline \end{aligned}$	21152	2P151
2000-2500	0.3	$\begin{aligned} & 7055^{\circ} \\ & 7\left[358^{\circ}\right. \\ & \hline \end{aligned}$	2 P 152	21151
2000-2500	0.5	$\begin{aligned} & 7 P 563 \\ & 7 P 564 \end{aligned}$	2P156	2P151

* Compound filled continuous duty types

BALANCED FILAMENT COMPONENTS

4P2 26 for 866's or other 2.5 V . (a) 5A Rectifiers
4 P 242 for 872 's or other 5.0 V . (i) 10 A Rectifiers
THE POW'ER SUPPLY IS THE HEART OF THE RIG-COMPLETE IT WITH BALANCED QUALITY SNC TRANSFORMERS FOR GREATER ENJOYMENT!
H"rite for our interesting catalogue giting taluable information and specifications on all the types of transformers you need.

SNC MANUFACTURING COMPANY, INC.
west lake avenue, at lehigh GLENVIEW, ILLINOIS

\qquad TI \qquad $X T$

「Iた
IKII \qquad II \qquad $\mathrm{x} \boldsymbol{x}$ \qquad $\mathbf{C X}=$
124

Code FOR AMATEUR AND
 SENDING RECEIVING
 RADIO OPERATORS

 the Candler way Champion wayORIGINATED BY WALTER H. CANDLER
lot can now bearn code or imereane yur speed and proficiencs with the famous Candler System. C:NDIFH - the System of the Champions, offers you distinctive, srientific methods which can train you to bevome an A-1, expert Amateur or Commer. cial Operator, in less than half the usnal time tahen to master this shill. C.DNDIER trains you from the start, and enables sou to beconte so proficient that you will be able to pase the neverest test- for Amateur or Commercial livense. There is a Candler Course desigued for your particular meda and desires.

PROOF FROM A CHAMPION

Trid MrFinove is the Official Champion Ralio Operator, speed 75.2 n .p.m., won at the sille Cinde
 Tournament, Juls 2 . 1039. Here in what ll orlit Champion DreFIroy has to say: "IV shill and speed are the re-sult of the exdmive, arientifie training Walter Candler gave me. Practice is mecessary, but withont proper training to develop Concentration, Co-orelination and a keen Perceptive Sellae. practice in of little value. Ore likels will practice the wrong way.

SPEED - WITHOUT TENSION AND NERVOUSNESS

If yon are subjem to the nersous tornion and other landivaps su many code operators fact, the (A NOISER System will relieve yon of thim insecurity in your own ahility and make yon sure of yoursilf. In this way you will be free to apply your talente to top nepred and maximum proficiency. A list of CANDI.EAR-t rained opratorm would read like the "Whoin Who" of coske oprration. 'Phe expert opmeratorn who have read hed the top through the training they have obtained from C:A \DI.E.ll is prom in itmelf of the value this Syntem can be boyon. Just menorizing the exmle and mending and receiving doen not make the mkilled radio operator. 'The techaque of fast, accurate teleqraphing and the ability to meet all requirements are the factorn which diatinguish the eximert from the ordinary operator. The CANDIN: offern wot all these. Let this worliderenomed syatem give you the speenl. skill and terlonique you need to free yourself from all hamdicapand cosle problems and prepare wou for ans liorome or wertificate, a higher rating, or a better job with ithreamed finameial returns. And at a price moreamonable it in well within the reach of anyone interented in developing akill athe spered.

SEND FOR THIS FREE BOOK OF FACTS

In a clear, simplified way it tells how many of the CANDLER Code Champions of today reached their goal. Just a postcard will bring this enlightening booklet to you FREE. Send for the CANDLER SYSTEM BOOK OF FACTS right Now

COURSES for BEGINNERS and OPERATORS

CAVIDER offers three dintinctive services to all who are miterented in conde operation:
The sCIENTHFHC: (OHE (OLRSE espromally denigned for the begimer. It teaches the basic acientific principles of coote opration.
The HIGH SIPED TEIEEGR A PHIVG COLRSE intended for operators who desire a hipher w.p.nn. speed or toimprove their skill and overeome handicaps.
The TELEKR 1I'II TOUKII TYPEIVRITIVG COLRSE designed for those who desire to beane prostiatent in touch tysewriting or develop speed in copying comie.

NO EXPENSIVE EQUIPMENT NEEDED

Suecial mental training is the prime requisite in learning conte or developing mpeed and accuracy. CANDIERK. from wide experiences in developing high-speed operatorn is the expert dyntern dexigned to help you in a simple, thorouph and intereating way to get ahead famter and go fariher. Much valaable time is lost when you practice without Much valuable time is lost when vol practice without and atruracy. The CAVDlaER System offers you the SIMPLE, INEXPRXSIE UAY TO SPEED, SKILA. AVD CODE PIROFICIENCY.

NATIONAL HRO-5TA-1 - Net $\$ 274.35$ 697 Power Unit \$20.36 • MCS Speaker \$12
A Receiver, designed for the Amateur, to provide dependable communications, under most severe conditions. New Noise Limiter incorporated. Band spread on all "Ham" Bands-Coverage 1.7 to 30 MC .

HAMMARLUND HQ-129-X \cdot Net $\$ 173.25$ Price Includes Cabinet Speaker
A "Ham" Receiver with the professional touch, providing flexibility of operation. Six bands for easy location of stations. Has all "Ham" features with sensitive and stable performance

hallicrafter SX-42 \quad Net $\$ 250.00$

 R-42 TABLE SPEAKER - Not $\$ 25.00$The 5X-42 has many new and ingenious circuit features. Precision tuning for all AM and FM Broadcast and Amateur Bands. Temperature compensated oscillator. High fidelity phono-amplifier-8 watts. Continuous coverage 540 KC to 110 MC .

CARDWELL MODEL CR-54 RECEIVER RACK MODEL AVAILABLE LATER

This completely new communications receiver uses 18 miniature tubes. Large direct reading precision dials -electrical band spread. New type noise limiter. Variable selectivity crystal filter. Temperature compensated oscillator. Wide coverage- 540 KC to 54 MC, with extra coil strip.

CAMERADIO CO., 963 LIBERTY AVE., PITTSBURGH 22,. PA.

(11) 13

MOLDED OIL-PAPER CAPACITORS

Molded oil paper capacitors, hermetically sealed against moisture, provide dependable service under the conditions which cause repeated paper tubular failure. For r.f. use up to 40 m.c., and for a.f. by-pass, and filter circuits.

Type	Voltage Range		Copacitance Range			Length	Widih	Thickness
AP	120-400	VDC	1000.	10000	Mmfd	11/16"	29/64"	7/32"
DP	120. 600	*	1000-	10000	\%	13/16"	13/16"	19/64"
MP	120.800	0	1000-1	00000	*	$11 / 64 \prime$	41/64"	17/64"
FP	120-1000	1	1000-1	00000	"	$115 / 32^{\prime \prime}$	49/64"	$21 / 64 \prime$
EP	120-1000	4	5000-2	00000	"	$115 / 32^{\prime \prime}$	49/64"	17/64"

OIL-IMPREGNATED FILTER CAPACITORS

"Oil-Mites" for filter and by-pass applications involving high voltages and extremes of temperafure and humidity. Mineral oil impregnant achieves more compact size without impairing performance. Power factor and capacitance are stable through temperatures from - 55 to 185 F . Either upright or inverted mounting is provided by the reversible hold-down bracket.
Voltage range: 100 to 1000 VDC . Capacitance ronge: . 01 to 4.0 Mfd .
"Midget Oil-Mites," to meet small space requirements, incorporate design and structural features which permit these capacitors to be contained in smaller cases than the conventional "Oil-Mites." Seamless metal cases are hermetically sealed, phenolic-insulated solder-lug terminals are leakproof

Voltage range: 100 to 1000 VDC. Capacitance range: Single sections, 01 to 1.0 Mfd . Multiple sections, $2 \times .05,2 \times .10 \mathrm{Mfd}$.

OIL-IMPREGNATED BY-PASS CAPACITORS

Compact "bathtub" design combined with the operating advantagesstability of capacitance and low power factor-of mineral oil-impregnated and oilfilled constructions.

Capocitance ranges:
Single sections: 600 VDC-. 01 to 2.0 Mfd .
$1000 \mathrm{VDC}-.01$ to 1.0 Mfd .

Muttiple	600 VDC	$2 \times .05$	$2 \times .1$	$3 \times .25$	$3 \times .05$	$3 \times .1$	$2 \times .25$
Sections	1000 VDC	$2 \times .05$	$2 \times .1$	$3 \times .25$		$3 \times .1$	$2 \times .25$

TRANSMITTING CAPACITORS

Type TRS for use in filter, transmitting, and timing circuits are designed to handle high transient voltages and temperatures encountered in such service. Impregnated and filled with mineial oil, these units are contained in hermetically sealed steel cases. For convenient mounting, permanently atfached mounting feet, hook hold-down brackets, or adjustabie wrap-around trackets for upright or inverted mounting ore available. The adjustable wrap-around bracket permits mounting with terminals at any desired distance above the mounting surtace.
Copacitance and voltage ronges: 600 to 6000 VDC and .03 ta 50 Mfd .

TELEVISION CAPACITORS

Type VRC capacitors, for employment in television circuits are built to withstand high voltages at high temperatures-a chief consideration in such applications. Typical ratings are:
Type VRC-8011-8000 VDC, 0.1 Mfd .2 insulated terminols
Type VRC-16005-16000 VDC, 0.05 Mfd . 1 terminal insulated,
$\left\{\begin{array}{l}\text { lierminal insulated, } \\ \text { i terminal grounded }\end{array}\right.$
If yourjobbercannot supply these Tobe long-life capacitors, write directly to-

CHOOSE THE WORLD'S MOST POPULAR RADIO TELEGRAPH KEYS

Potterned ofter the "Oriainal" Vibroplex but smaller in size. Copoble of the some high-closs sendina performonce for which that key is internotionally famous Stondord finish-Polished chromium machine ports and block base, $\$ 15.95$. Deluxe finish-Polished chromium machine ports ond bose with jeweled movement, \$19.50.

Another popular Vibroplex key thot is widely used on land, seo and in the air. Incorporates mony odvonced and exelusive features, odding greatly to its sending efficiency and eose of operotion. Standord finishPolished chromium machine ports ond block bose \$13.95. Deluxe finish-Polished chromium machine ports ond bose with ieweled movement, \$17.50.

THE "CHAMPION" VIBROPLEX
A smort, efficient, full-size key for rodio use only Chrome fin= ished machine parts and block erystol bose.
$\$ 9.95$

GENUINE EASY-WORKING

VIBROPLEX

Reg. Trade Marks: Vibroplex, Lighining Bug, Bug

"ORIGINAL" DELUXE MODEL

VIBROPLEX popularity is more than a matter of smart, graceful design, unmatched signal quality and operating dependability. It's the better and safer way of sending . . . it's the easiest way of sending ever devised. No special skill is required. No tiresome effort is involved. No danger of 'glass' arm. SIMPLY PRESS LEVER - VIBROPLEX DOES THE REST.

VIBROPLEX CARRYING

CASE
Plushlined, finished in hond some simuloted block moroceo. Reinforced corners. Flexible leother hondle. Lock and key. Protects key from dust, dirt and moisture. insures sofe keeping when not in use. Prolongs life of key. \$5.50.

No matter which Vibroplex key you choose you can be assured that it will meet whatever demands are made upon it, and in addition give you a lifetime of sending pleasure and satisfaction. Specify model. Remit by money order or registered mail. Write for FREE illustrated catalog.

The "BUC;" Trade Mark indentifies the
Gentine VibroGenuine
plex key.

I's your guaranty of comglote satisfaction. Accept no substitute.

3 Basic Ways to mpeove tне EFFICIENCY AND STABILITY OF YOUR RIG

WARD LEONARD RELAYS

Proper relays have many practical uses in amateur rigs. They provide convenient circuit control and kreater operating efficiency. They help reduce the length of connecting leads, prevent unnecessary transfer of stray or transient currenes to critical parts of the transmitter circuit Devisned and built for rugged service, W'ARD LEONARD Amateur Relays are a ailable from stock in the following types. Antenna Change-Over - Antenna Grounding Band Switching - RE Break-In - Keving - Over load - Vnderload \rightarrow Latch.In - Remote Concrol Safecy - Sensitive - Time Delay.

2

WARD LEONARD RESISTORS
The installation of VITROHM wire-wound resistors insures that exted derformance you want in critical circuits. Whith exclusive features develoned in the W'ARD LEONARD iaboratories . . these resistors meet the most rigid specifications. Fixed resistors are availahle in 8 stock sices from 5 wates to 200 watts. Adiustable resistors, in - stock sizes from 10 watts to 200 watts Wide range of resistance values Strinohm, Discohm, and Plaque resistors are also available.
 3

WARD LEONARD RHEOSTATS
These Vitrohm Ring-Tyne units are widely used as potentiometers or rheovats, for fixed or variable close control, in commercial as well is anateur equipment. Made of highest grade ceramic materiats. Resistance wire is held in olace and protected by special WARD IFOVARD vitreous enamel. Many other features. A a ailable from stock in 25 watt, 50 watt. tol wait aind 150 watt sizes, in wide range of resistance values.

SEND FOR FREE CATALOGS
For helpful data and information, write for Relay Catalog No. D. 111 and for Resistor-Rheostat Catalog No. D-2.

AUTHORIZED DISTRIBUTORS EVERYWHERE

WARD LOMARD RELAYS • RESISTORS • RHEOSTATS

ADAPTABLEFOR EVERYREQUIREMENT

Par-Metal Housings for Electronic Apparatus, offer new features, including beautiful streamlined design rugged construction, and adaptability. Eliminate need for Special Made-to-Order units on many jobs. Par-Metal offers standard ready-fo-use housings for every type of transmitting or receiving apparatus.

Par-Metal offers all the essential equipment needed to build up any sort of a job-from a Small Receiver to a DeLuxe Broadcasting System.

Panoramic Reception enables the operator to see at once a continuous overall picfure of band activity or examine the character of any signal, his own or another's.
Now . . . through the Panadaptor, alert progressive amateurs can enjoy to the full the mony unique advantages possible only with Panoramic Reception as offered by the originator and pioneer of this invaluable new technique.

Consistently, after once using the Panadaptor with lieir rigs, amateur after amateur claim that without Panoramic they'd be at a loss in practically all phases of operation ranging from looking over the bond or spotting replies to their CQs to checking the other fellow's modulation.

TRY PANORAMIC RECEPIION -THEN TRY TO DO WITHOUT IT

Shaws frequency deviation and modulation shoracteristics of FM signals.

Instanily Identifies signals, QRM and QRM-free spots within o band. Measures signal strength of CW and 'phone signals heard thraugh recelver.

* Numerals preceding lelter indicates masimum capacity. Numerals following letter plus two ciphrex inulicates approximatr peak voltake. Second letter "D" indicates two section condenaer.

TUBE SOCKETS

Socket	Base or Typical Tube
123209	Med. 4
123210	1 Pin Basourt
123211	Standard Jumbo 4 pin
123216	Giant 5 pin Beponet
124212	833 A
124213	152 TL .
124214	1500 T 11
124215	2014
120267	9000 series
1202778	Ministure
121235	
121245	Acorn
121265	
$12210!$	829

Sacket	Base or Typical Tube
122217	Small 7 prn
122224	4 pin
122225	5 \%in
122226	${ }^{6}$ pin
122-227	7 pin med.
122228	Uetal
12223.4	KK72
122237	Giant 7 pin
12221.4	Super Jumbio
122817	826
122248	826
122275	Giant ${ }^{\text {5 }}$ pin
124220	899 K

Cat. No.	rube Cav Diameter	Tspe	Cat. No.	Tubr lap Diameter	Typo			
IUBE CAP CONNFCIORS								
119843	. 500	Radiatos Receiver Keceirer	119855	. 566	Safety			
119850	. 250		119856	. 360	With 6', strap			
119851	. 360		119857	. 566	With 6 " strap			
119852	. 360	Salety	133817	(Clamp for 1.165^{\prime} tube Clsinp for 1.275 tube Clatnp for $1.377^{\prime \prime}$ tube				
119853	. 360		133818					
119854	. 566		133820					
COMING SOON-WORTH WAITINC FOR! * The New JOIINSON CABINET LINE. * The New JOHNSON ROTARY BEAM ANTENNA								

COUPLINGS • CHOKES • INDUCTORS • PILOT LIGHTS • CONNECTORS

Cat. No.	1) ${ }^{\text {a meciption }}$			
	Courilincs			
	V	A		B
10: 250	4000	14		14
1042503	4000	11		38
104-251	5000	38		38
104251 A	5000	11		14
10: 251 l	5100	14		38
104252	1000	14		14
104258		14		14
104254	8000	1		14
104-2593	5000	$1 \cdot 4$		14
104-260	2500	14		14
104-261	7500	38		38
104262	5000	14		14
10.4263	2000	14		1,4
Dirmension as mbols: " γ " modulated Peak Voltage, " A " hu i. d. " "B" Znd hub i. d. All insulation steatite.				
	INDUCTORS Tube Suckel " H i-Q"			
			Cap. to ture (murf.)	
230640			24	
230641			33	
230642			37	
$230-643$			71	

Cal. No.
Description
multi-wire connf.ctor receptacies

	No. of Contacts	Connector Type
111614	12	Chansis
111615	12	Cord
111645	7	Chasar
	Plucs	
111617	12	Chassis
111625	12	
111631 111635	7	Cord ${ }^{\text {chas }}$
111680	7 contact pios plate bikt. nutd.	
111682	12 contact pinplate bkt, and. Mig.) ohe for 7 wire conct.	
1116002		
111-6003	Mig. yoke for 7 wire toncti. Mig. yole for 12 wire concts.	
144 1419 14	7 wire cable 12 wire cable Serew base pilot light Choice of jewel colors	
1473101		
147.3081	Bay. bare pilor light	
	Screw la ase panel light Bay. buse panel light	
147-329		

COUPLINGS
R.F.CHOKES

INDUCTORS
OILOT LIGHIS
CONNECTORS

HARVEY'S is ham headquarters

Sonny got started right. Dad has been a Harvey customer since 1927, though he lives miles from New York. When Sonny got his ticket Dad told him to get his gear from Harvey's because he'd get the best, the quickest service, and friendly help and advice on his problems. Dad knows that Harvey's staff is made up of hams who know the ham's problems and can usually come up with a solution. If you live in or near New York, this friendly service is more direct but it can't be more personal.

You'll find Harvey's ad each month in QST and in this space you'll see offerings of unusual value in addition to the stoples of ham radio. Harvey carries large stocks of components in cluding meters, crystals, transmitting fubes and test equipment along with the complete units including all the popular receivers, transmit. ters, frequency meters and other things that add up to a complete ham station. While the supply of surplus material lasts, you'll also find corefully selected surplus items, chosen not be.
cause they can be sold cheaply, but because they can be used in a ham rig, or easily adapted - in other wards, real bargains. Harvey's reputation for reliability hos been growing ever since 1927 and you can be sure of the same prompt, courteous attention if you order by mail, wire, or phone as if you could call and place your order in person. By the way, if you get near Times Square, we're anly a block oway, so drop in and see us.

all types... all tops! SOLAR GAPACITORS

Whether LARGE or SMALL every Solar Capacitor is "Quality Above All".

The complete Solar catalog of mica, paper and electrolytic capacitors
is designed to help you choose the right capacitor for every circuit.

It's FREE.

Gentlemen: Please send me the new Solar Catalog.
Name \qquad
(PLEASE PRINY)
Address

City
Zone No.
State

$$
=\quad y^{\prime}=
$$

\qquad
\qquad
\qquad
\qquad

The Amateur's Bookshelf

A balanced selection of good technical books, additional to the ARRL publications, should be on every amateur's bookshelf. We have arranged, for the convenience of our readers, to handle through the ARRL Book Department those works which we believe to be most useful. Make your selection from the following, add to it from time to time, and acquire the habit of study for improvement. Prices quoted include postage. Please remit with order.

Theory and Principles

BASICRADIO PRINCIPLES, by M. G. Suffern. Elementary radia principles, circuits and campanents described in simple practical lan. guage, without mathematics. 271 pages, illustrated. 1943. $\$ 3.00$

BASIC ELECTRICITY FOR COMMUNICA. TIONS, by W. H. Timbie. A practical treat. ment of the electrical principles which underlie cammunications, circuits and practice. 603 pages, illustrated. 1943 $\$ \mathbf{3 . 5 0}$

PRINCIPLES OF RADIO, by Keith Henney. A medium-level text cavering both electrical and radio fundamientals, particularly written for home study. 549 pages, illustrated. 4 th edition, 1942.

BASIC RADIO, by J. Bartan Haag. A camplete treatment of the circuits used in radio television and electranics apparatus, including p.ta-date applications. 380 pages, illusrated. 1942 $\$ 3.25$

FUNDAMENTALS OF RADIO COMMUNICATIONS, by A. R. Frey. A mare advanced treatment requiring previaus background. Authoritative, clearly written, well organized 393 pages, illustrated. 1944....... $\$ 4.00$

INTRODUCTION TO MICROWAVES, by Siman Rama. A nan-mathematical description of concepts necessory to an understanding of micrawave phenamena, 138 pages, illustrated 1945 $\$ 1.75$

Engineering and Reference

RADIO ENGINEERS' HANDBOOK, by F. E. Termon. Braad scape and detailed treatment make this book serve bath as text and reference hondbaok. 1019 poges, illustrated. 1943.

RADIO ENGINEERING HANDBOOK, Keith Henney, Editar. An autharitative handboak far engineers, with technical data on all fields and aspects of radia, contributed by 23 specialists. 945 poges, illustrated. 1941 $\$ 5.00$

ULTRA-HIGH-FREQUENCY RADIO ENGINEERING, by W. L. Emery. Written for engineering students, this baak pravides an excellent transitian treatment for amateurs. 295 pages, illustroted, $1944 . .$. $\$ 3.25$

COMMUNICATION CIRCUITS, by Ware and Reed. From low-frequency transmission line and network theory, this volume leads the student inta wave guides and advanced u.h.f techniques. 330 poges, illustrated. 2nd edition, 1944.

PRINCIPLES OF ELECTRON TUBES, by H. J. Reich. A condensed but camplete treatment af the theary, characteristics and applications of electran tubes. 398 pages. 1941 . . . \$3.50

COMMUNICATION ENGINEERING, by W. L. Everitt. Camplete treatment of netwark theary, including mathematical onalysis of radia circuits and fube aperation. 727 pages, 411 illustrotions. 1937. $\$ 5.00$

HYPER AND ULTRA-HIGH FREQUENCY ENGINEERING, by Sorbocher and Edsan. A digest of published literoture cavering all phases af technique from 30 Mc . to 10,000 Mc. 644 pages, illustrated. 1943....\$5.50

FIELDS AND WAVES IN MODERN RADIO,

 by Rama and Whinnery. An extensive thearetical treatment af field and wave theary, re quiring a knowledge of engineering mathematics. Revealing and impartont. 502 pages illustroted. 1944. $\$ 5.00$RADIO ENGINEERING, by F. E. Termon. A comprehensive treatment covering all phase af radia cammunication. An oll-araund baak for students and engineers. 813 pages, illustrated. 2nd edition, 1937. $\$ 5.50$

FREQUENCY MODULATION, by August Hund. An advanced engineering text an f.m., presenting bath theary and proctice. 375 pages, illustroted. 1942. $\$ 4.00$

PRINCIPLES OF TELEVISION ENGINEERING, by D. G. Fink. Informotion on the fundamental processes af televisian technique, with design data and descriptions of madern equipment. 541 pages, illustrated. 1940................................ $\$ 5.00$

MICROWAVE TRANSMISSION, by J. C. Sloter. A comprehensive treatment af principles and techniques emplayed in the regian between 300 and 3000 Mc . Far the advanced student or engineer. 309 pages, vanced studeni ar engineer. 309 pages,

Experiments and Measurements

MEASUREMENTS IN RADIO ENGINEERNG by F E Terman. A comprehensive engineering freatment of the measurement probtems encountered in engineering practice, with emphosis on basic principles. 400 pages, illustrated. 1935.

RADIO FREQUENCY ELECTRICAL MEAS

 UREMENTS, by H. A. Brown. A laboratary course in r.f. measurements for communicotions students. Cantains practical information an tudthads 384 papes, illustrated Serond

EXPERIMENTS IN ELECTRONICS AND COMMUNICATION ENGINEERING, by Schulz and Andersan. A labaratary text describing 108 experiments cavering all ospects of radia and electranic fields. 380 pages. 1943............................. $\$ 3.00$

Commercial Equipment and Operating

HOW TO PASS RADIO LICENSE EXAM INATIONS, by C. E. Drew. Gives answers and explonations far the paraphrased ques and explace ions in the FCC study guide, covering all six elements of the commercial examination. 320 pages, illustrated. 2nd edition, 1944..\$\$.00

PRACTICAL RADIO COMMUNICATION, by Nilsan and Harnung. Cavers basic principles and technical requirements in the cammercial fields-braodcosting, palice, aviation and marine cammunication. 927 pages, illus: troted. 2nd edition, 1943.......... \$6.00

THE RADIO MANUAL, by G. E. Sterling. An excellent proctical hondboak, invaluable ta the cammercial and braodcast aperator and engineer. Cavers principles, methods and apparatus of all phases of radia. 666 pages, iliustrated. 2nd edition, 1938.......\$6.00

Miscellaneous

MATHEMATICS ESSENTIAL TO ELEC. TRICITY AND RADIO, by Caake and Orleans. Pravides the essentials of algebra, geametry and triganametry needed ta salve everyday
prablems, with practical examples. 418 poges, illustrated. 1943............\$3.00
PRINCIPLES AND PRACTICE OF RADIO SERVICING, by H. J. Hicks. Receiver circuit
fundamentals and their application to general service proctice. Covers madern testing equip. ment and business principles in servicing. 391 pages, illustrated. 1943.

VER'TICAL ANTENNAS-ELLEMENTS AND MOUNTING ACCESSORIES

PREMAX TUBULAR VERTICAL ANTENNAS, collapsing and fully adjustable, have shown exieptionally effirient, dependable performance under mont serere monditions in anateur, commercial and military installatione. Thes will withatand all ordinary stresses without gus ing, thouph the! should be supported by yuys or standoff insulatore against aboormal wind conditions. Available in heights from $6 . \mathrm{ft}$. 103 3 - ft .. in steel, aluminum or monel.

Wrather Itesisiant Niteral Amtenmas

No.	Description	Ertended Length	Collapsed Lenuth	Base O.D.	Base 1.I).	Wiciuht Each
112-M	2-sec., telescoring	$11^{\prime} 8^{\prime \prime}$	$6^{\prime \prime} 1^{\prime \prime}$.656"	. $556^{\prime \prime}$	$4 \mathrm{llos}$.
318-M	3 -sec., telescoping	$18^{\prime} 3^{\prime \prime}$	$6^{\prime} 2^{\prime \prime}$. $\mathbf{5}^{-5 \prime \prime}$. 705	lbs.
2. $4-31$	4-sec.. telescoping	$29^{\prime \prime} 9^{\prime \prime}$	$6^{\prime} 3^{\prime \prime}$	$1.063^{\prime \prime}$. 963 '	11 \%
130-M	5 -sec., telescoping	$\mathrm{2S}^{\prime} 3^{\prime \prime}$	$6^{\prime} 4^{\prime \prime}$	$1.250^{\prime \prime}$	1.150"	1.5 lis
136-M	6-8ece., telescoping	33'9'	$6^{\prime} 5^{\prime \prime}$	$1.500^{\prime \prime}$	1.400 ${ }^{\prime \prime}$	20 lbs

Corulite Elements

For Hearm

 Arrorys
Light-Weigitt Almminum Antennans

Vo.	Description	Eriended length	Collapsed Length	bam O.D.	Brive I.D.	Wrimh Each
11,106	1-pe., tapered rod	$6^{\prime} 3^{\prime \prime}$	$6^{\prime} 3^{\prime \prime}$.313'		
AI-312	$\underline{p-s e c}$, telescoping	$13^{\prime} 4^{\prime \prime}$	$6^{\prime} 4^{\prime \prime}$. $500{ }^{\prime \prime}$.334"	$1 / 2 \mathrm{lbs}$
AIm.js	3-sec., telescoping	$15^{\prime \prime}{ }^{\prime \prime}$	$6^{\prime} 4^{\prime \prime}$. $5.50{ }^{\prime \prime}$. $5 \backslash 4^{\prime \prime}$	3 lbs.
A1-3:4	4-sce., telescoping	$24^{\prime} 4^{\prime \prime}$	$6^{\prime \prime} 4^{\prime \prime}$	$1.0000^{\prime \prime}$.834"	5 bly
AL-520	5-sec. telescoping	$30^{\prime} 0^{\prime \prime}$	6'5',	1.25011	$1.084^{\prime \prime}$	7 Ibs
AL.335	6 -see., telascoping	$35^{\prime \prime}$	6'5'	$1.500^{\prime \prime}$	$1.310^{\prime \prime}$	12 Ibs.

Mravy-IDity Ahminimm Mants

So.	Description	Frtended Length	Minimum laength	$\begin{aligned} & \text { Bnse } \\ & 0.1) . \end{aligned}$	Bure I.D.	Weight Each
AM-OIT	1-pe. tapered tube	17'9'	$17^{\prime} 9^{\prime \prime}$	$969^{\prime \prime}$	689'	$51 / 2 \mathrm{lbs}$.
. $111-035$	-sec., tapured	$33^{\prime \prime} 0^{\prime \prime}$	$17^{\prime} 9^{\prime \prime}$	$2.0600^{\prime \prime}$	$1.332^{\prime \prime}$	19 lbs

Abstract

Premax Corulite Elements have lieen desifnell to mert the need for light.weight but aturdy elements for use in horizontal arrayn and aimilar applications. They are exceptionadly light in weipha and their ape. cial design provides the necded strengli and rigidits so essential in horizontal types of inNtallations - and at exiremely low cobt.

Cang-Endaring Monal \intomnas

No.	Deseription	Ertended Length	Collapsirid	Bars ().1).		
Mis1-313	2-sec.., telescoping	about 13^{\prime}	$6^{\prime} 9^{\prime \prime}$.6..5		
M.1-119	3-sec., telescoping	abont 19'	$6^{\prime} 9^{\prime \prime}$	$\bigcirc 0^{6}$. $666{ }^{\prime \prime}$	
M, M- $\mathbf{H}^{2} 5$	4-4er, telescoping	about 2.51	$6^{\prime \prime} 9^{\prime \prime}$	"s.')	-9\%	8 \% 1
MM-130	5-sec., telescoping	abrent 30'	$6^{\prime} 9^{\prime \prime}$	$1.0633^{\prime \prime}$.93.5 ${ }^{\prime \prime}$	1311
MM-435	5-sec., telescoping	about 35'	7'8'	$1.063^{\prime \prime}$. $93 . \%^{\prime \prime}$	151

Corimlite Eloments

No.
105-3

 (Premax Corulite Flements sold only in pairs, complete with

Iremax "Jairpin" Tuning Bar)

ANTENNA MAUNTING ACCESSQIRIES

Hage Insulator 'Type 6 for mat rine, tower plat form or roof tops. Lead-thra construction permits antenna connections below roof or deck. Available for $3 / 4^{\prime \prime}$ to $19 / 32^{\prime \prime}$ I.1). tubular masts.

Adsplers to fit Type 1,2 or 6 Base Lasulators. Permits use of tulumar matets from $38^{\prime \prime}$ to $11 / \mathbf{4}^{\prime \prime}$
Bise Inaulator Type 1 - A heict y-duty type with comprension rating up to 10,(\%N) lbs Available in galvanized malleable iron or brime to fit masts fron 3/3" to 19,32" I.D.

Type 8-C Insulated Momiing Clamp for horizontal arrave, verticaln, etc. Cialvanized iron frame with porcelain split bushing. For $5 / 8^{\prime \prime}$ to $1^{\prime \prime}$ O.D. MiaBts.

Type 10-C Insulated Mounting Clamp. Stamped nteel. electroplated frame. porcelain split bushing; light weight for rotary beam and dipole installations. For
$s^{\prime \prime}$ $\mathbf{s}^{\prime \prime}$ to $l^{\prime \prime}$ elements.
Bromze Mounting Clips for horizontal elements or vertical antemag. or for feed and tranemission connection. For $3^{3 / 1 "}, 7 / 8^{\prime \prime}$ or $1^{\prime \prime}$ O.D.
W all bracket of heavy nteel fur monnting vertical antentar on side walls, parapets. etc. Drilled to fit Type 1 and 2 Base Insulators.
'Tlur aperial steel tubius Hsed in these elle ments is a l'reataly dearlopmaent to inaire Hmbmal stiffness amid mirength. Vll liaris are heavily electroplaterl to iasurecorronion reqiatiance and high elactrical combuctivits They are fulls adjumia lle 10 any desired length and a special low-king elarmp assures rigid joints and poritiva elertrical contact tretween sections of the elcoments. A "hairpin" tuning bar provides ease of adjuatment.

Deck Bualing of hrowis wlazed porcelain in palvanized naileat. ble flange which bolts through rubler gatket to roof or deck. Inside diameter $3 / 4^{\prime \prime}$, $11 / 4^{\prime \prime}$ or $1{ }^{3}$ i $^{\prime \prime}$

Tyi" 9-C Ineulated Moming Clamp, a mimple. compact mounting for borizontal elements. verticals, etc. Gatsanized iron frame. prorcelain gylit bushing. Fits "/8", 3/4", 7/8" or $1{ }^{\prime \prime}$ O.D. elements.

Tyue 3 Standoff Insulator for anpporting vertical antennas or for uee in pairs as complete antenna or element mountings. Galvanized iron or brast with poreelatin body. St, les to fit

[^18]
THE HENRY RADIO CREED:

 "Buy on terms milf to give yo y.". the trice and save
 s. int wave receivers term

Give to trade and we wa
 all two foll ont ir and Headquarter Cento Collins equipment. for and

 for your my yob he Ted terr.

HENRY RADIO STORES

211-215 NORTH MAIN STREET BUTLER, MUCPAITI

2331-35 WESTWOOD BOULEVARD iOS ANGELES 25, CALIF.

In Triplett's complete line of instruments you can always find the answer to your amateur and experimental electrical measurement requirements. Panel and portable meters are available in more than 26 case styles - round, square and fan - $2^{\prime \prime}$ to $7^{\prime \prime}$ sizes. Included are voltmeters, ammeters, milliammeters, millivoltmeters, microammeters, thermo ammeters, DB meters, VU meters and electrodynamometer type instruments.

Model 3286 Variable Frequency Exciter

Provides finger-tip frequency control of the four most popular FCC approved amateur frequencies. 3.5-4.0; 2-7.3; 14-14.4; and $28-30 \mathrm{Meg}$ acyclos (10-20-40-80 meter bands). Has provision for one additional band.
The circuit plus voltage regulation and temperature compensated capacity makes this one of the most stable electron coupled exciters yet designed. Also ean be used as a 30 wati C. W. transmitter indopendent of any other equipment.

Model 3266 Frequency Standard A 100 KC crystal controlled oscillator with strong harmonic signals for high frequency measurements.
Bar type crystal, having a temperature coefficient of $\mathbf{3}$ cycles per megocycle per degree centigrade is employed in the crystal oscilator for very high precision.
100 to 200 KC electron coupled variable R.F. oscillator for measurements between the 100 KC crystal marker signals.

\longleftarrow Model 3276 Field Radiation Meter

A small. compact portable field radiation meter with power supply and antenna self contained.
Meter calibrated in db per meter from O to plus 25 with a set adjustment providing a means for measuring losses and as increments in radiation power.
Coils covering ranges 3.4 to $4 ; 7$ to $7.3 ; 14$ to 14.4; and 28 to 30 megacycles are self contained and selected by front panel range selector switch. No coils to plug in or service.

\star

Model 3296 Modulation Monitor
You get maximum efficiency from your transmitter with Model 3296, shown below.
A good monitor enables the nnerator to "SFE" the signal heard by the listener on the other end.
It provides four separate circuits for measuring amplitude modulation: (1) per cent modulation (average); (2) peak flash per cent modulation; (3) carrier shift; (4) audio output for headphones. These methods may be used separately, concurrently, or in any combination. $\boldsymbol{\Downarrow}$

PLASTICON(CPCACITORS

GLASSMIKES

- For low and medium power coupling ond byposs circuits where mica capocitors hove previously been required
- Television and Oscilloscope Circuits
- Vibrator Buffer and Arc Eliminotion
- Geiger Counter and Instrument Capocitars

PLASTICON ASG Silicone-Filled GLASSMIKES

Cat.	Cap.	$\begin{aligned} & \text { Volts } \\ & \text { 1). } \end{aligned}$	Diam. * lengeth	$\begin{aligned} & \text { List } \\ & \text { P'rice } \end{aligned}$	Ciat.	(al)	$\begin{aligned} & \text { Volts } \\ & \text { I). } \end{aligned}$	Diam. \& lemgth	$\begin{aligned} & \text { list } \\ & \text { Price } \end{aligned}$
15 G 4	. 1		$3 / 4 \times 13 / 4$	\$1.95	ASG 27	. 001		19/32 $\times 1.3 / 16$	\$6.50
ASG 5	. 25		$29 / 32 \times 21 / 4$	2.25	ASG 28	. 0002		$19 / 32 \times 13 / 16$	6.95
ISG 6			$13 / 8 \times 23 / 4$	2.60	1SG 29	. 0015	5000	$19 / 32 \times 1916$ $3 / 4 \times 13$	6.95 7.25
ASG 7	. 005		$19 / 32 \times 13 / 16$	\$1.50	1SC:31	. 012		$3 / 4 \times 21 / 4$	8.65
ASG	. 01		19/32 $\times 1.16$	1.60	ASG32	. 15		$13 / 8 \times 2 \times 3 / 4$ $13 / 8 \times 31 / 2$	
ASG ${ }^{\text {a }}$. 02		$19 / 3 / 2 \times 1.3 / 16$	1.70 1.85				$13 / 8 \times 31 / 2$	
ASG 11	. 11	[300	$3 / 4 \times 2 \times 1 / 4$	2.15					
ASG 12	$\stackrel{ }{ } 25$		$29 / 32 \times 23 / 4$	2.50	ISG 37	.11)	7500	29/3) $\times 23 / 4$	9.25
AsG 13	. 002		19/32 $\times 13 / 16$	\$1.90	ASC:39	. 05		$13 / 8 \times 23 / 4$	11.50
\triangle AG 1	. 005		$19 / 32 \times 1.3 / 16$	2.05					
ASG 15	. 01		19/32 $\times 13 / 16$	2.25 2.50	ASG 40	. 00005		19/32 $\times 19 / 16$	5730 750
ASG 16	.02	21000		2.50 2.80 3.80	ASG 41 ASG 46	. 001	10,000	$19 / 32 \times 19,16$ $13 / 8 \times 31 / 2$	$\begin{array}{r}7.50 \\ 15.00 \\ \hline\end{array}$
AsG 18	. 11		$29 / 32 \times 21 / 4$	3.20 3.70					
1sG 19	. 25		$13 / 8 \times 23 / 4$,			29/32	314.50
ASG 20	. 001		19/32 $\times 1.3 / 10$	\$5.15	ASG 4*	. 001	15.900)	29/3: $\times 23 / 4$	14.80
ASG 21	. 0002		$19 / 32 \times 13 / 16$ $19 / 32 \times 13 / 10$	5.25 5.40					
ASG 23	. 01	3100	$19 / 32 \times 19 / 16$	5.60	ASG ${ }^{\text {A }}$	0.0005	20.016	$13 / 8 \times 81 / 2$ $13 / 8 \times 31 / 2$	20.50
ASG 24	. 02		$3 / 4 \times 13 / 4$	5.85					
ASG: 25 ASG 26	.05		$24,33 \times 2$ $13 / 8 \times 2 / 4$	6.15 6.50	ASC 5:	. $00 \% 5$	30,(000)	$13 / 8 \times 31 / 2$	\$22.50

TRANSMITTER Filter Capacitors

Smaller, lighter, more economical, greater safety factor, longer life
PLASTICON AOC-Mineral Oil Filled

Type	Affls.	10,	Dimensions	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
AOCO6C 4	4	(010)	$4^{\prime \prime} \times 2^{\prime \prime} \times 11 / 4^{\prime}$	\$5.28
AOC1M11,	,	1000		4.02
AOCOMM	$\frac{2}{4}$	10		6.44
AOG1M4 LOCiM8	$\stackrel{1}{4}$	1000	+5/8' $\times 3 \mathrm{3} / 4^{\prime \prime} \times 13 / 4^{\prime \prime}$	9.24
10CO2M1	1	2006	$23 / 88^{\prime \prime \prime} \times 2 \times 1.1 / 4^{\prime \prime}$	5.72
AOC2N12	2	20400	${ }^{3} 1 / 2^{\prime \prime} \times 2 \times 21 / 2^{\prime \prime} \times 131 / 10^{\prime \prime}$	6.71 9.24
AOC2M4	4	2000	$31 / 2^{\prime \prime} \times 33 / t^{\prime \prime} \times 13 / 4^{\prime \prime}$	9.24
10C3M1	1	3000		12.10 15.40
AOC3M12	$\frac{7}{1}$	310169 301001		15.40 $\mathbf{2 1 . 2 9}$
AOC3M.			$45 / 8 \times 3 / 4 \times 18$	
AOC4N11	1	4000 4060 4060		27.50 3300
A0C4N12	2	4060	$45 / 8^{\prime \prime} \times 3.3 / 4^{\prime \prime} \times 13 / 4^{\prime \prime}$	
AOC5M1		5000		3300 41.25
AOC5M2	2	5000	$31 / 2^{\prime \prime} \times 33 / 4^{\prime \prime} \times+9 / 16^{\prime \prime}$	41.25
AOC75C1	1	7 SOH	3 $1 / 2^{\prime \prime} \times 3.3 / 4^{\prime \prime \prime} \times+9 / 16^{\prime \prime}$	49.50
AOCi0M1	1	10.000	$4^{\prime \prime} \times 33 / 4^{\prime \prime} \times 49 / 16^{\prime \prime}$	88.00

ORDER FROM YOUR JOBBER

Condenser Products (Xompany CHICACO22, ILIINOIS

142

ANNOUNCING THE NEW...

MEISSNER

To Manufacturers of Products Used in Short-Wave Radio Communication

The Radio Amateur's Handbook is the world's standard reference on the technique of high-frequency radio communication. Now in its twenty-fourth annual edition, it is used universally by radio engineers as well as the thousands of amateurs and experimenters for whom it is published. Year after year, each succeeding edition has sold more widely than its predecessor, until the Handbook now has a worldwide annual distribution in excess of two hundred thousand copies of its English and Spanish editions. To manufacturers whose integrity is established and whose products meet the approval of the American Radio Relay League technical staff, we offer use of space in the Handbook's Catalog-Advertising Section. Testimony to its effectiveness is the large volume of advertising which the Handbook carries each year. It is truly the standard guide for amateur, commercial and government buyers of short-wave radio equipment. Particularly valuable as a medium through which complete data on products can be made easily available to the whole radio engineering and experimenting field, it offers a surprisingly inexpensive method of producing and distributing a creditable catalog, accomplishes its production in the easiest possible manner, and provides adequate distribution and permanent availability imposible to attain by any other means. We solicit inquiries from qualified manufacturers who wish full data for their examination when catalog and advertising plans are under consideration.

ADVEERTINING IDEIPAITTAENT . . .

CURRENT

CONVERSION

WITH ATR QUALITY PRODUCTS

BATTERY ELIMINATORS

For Converting A.C. to D.C. - New Models. Designed for Testing D.C. Electrical Apparatus on Regular A.C. lines. Equipped with Full-Wave Dry Dise Type Rectifier, Assuring Noiseless, Interference-Free Operation and Extreme Long Life and Reliability.

- Eliminates Strarage Batteries and Battery Chargers.
- Operates the Equipment at Maximum Eificiency al All Times.
- Fully Automatic and Fuol-Prouf.

ATR LOW POWER INVERTERS

For Inverting D.C. to A.C. - Another New ATR Model ... Designed for Operating Small A.C. Motors, Electric Razors, and a Host of Other Small A.C. Devices from D.C. Voltage Sources.

ATR STANDARD AND HEAVY DUTY INVERTERS

For Inverting D.C. to A.C. - Specially Designed for Operating A.C. Radios, Television Sets, Amplifiers, Address Systems, and Radio Tes! Equipment fram D.C. Voltages in Vehicles, Ships, Trains, Planes, and in D.C. Districts.

Write for new literature describing the comolete ATR line of Vibrators, Vibrator Power Supplies and Rectifier Power Supplies

AMERICAN TELEVISION \& RADIO CO.
 Manufacturers of Quality Products Since 1931 ST. PAUL, MINNESOTA, U. S. A.

FOR THE FORTUNATE HIGH-FIDELITY BUGS WHO CAN

AFFORD "'PROFESSIONAL'" EQUIPMENT LLTEC LASSIC

604 DUPLEX 15 -Inch OFFERS

SPEAKERS • AMPLIFIERS • TRANSFORMERS

A- 255 AMPLIFIER

TRANSFORMERS
model o04 duplex: Here's the speaker that's the standard of FM studios! The Duplex is a full 2 -way multicellular speaker that reproduces the entire FM range, from 50 to 15,000 cycles, without intermodulation or distortion.
model so3 dia-cone: Follows close at the heels of the Duplex in quality, but easier on your budget. This speaker incorporates all the advantages of a 2 -way multicellular speaker system.
model 600 dia-cone: Typical Altec Lansing high fidelity in a smaller-sized, lower-priced speaker. Manufacturers who design sets for critical ears are selecting this model for their finer combinations.

AMPLIFIERS: A complete line of quality equipment ranging from pre-amplifiers to quarter kilowatt amplifiers. For specific information, write for bulletins on the various sizes and types available.
transformers: Altec Lansing has developed a complete line of transformers, especially designed for high quality use. Input, interstage and output transformers available with a transmission range of $20-20,000$ cycles ($\pm 1 \mathrm{db}$).

-Models 603 and 600 both employ the exclusive Dia-Cone principle, reproducing bigh frequencies and low frequencies from separate diapbragms.

IN RADIO SINCE 1926 NOW TWO LOS ANGELES STORES TO SERVE YOU EVEN BETTER, FASTER

 A new high standord af performance and versality. 540 ering all treq.
ke to 110 me .

NATIONAL NC. 2.400 -neral communications receiver covering 490 ta. $30,000 \mathrm{kc}$ with calibrated electrical 10 bandspread far the 80 , 40,

Recent completion of our new modern burs, servicemen, and quadruples our capacity to serve radio electronics industries. Special note to radio amded in order to render even berr is being constantly expan. service to hams by hams. We wish to thank our legion of satisfied We wish tillding expansion possible.

NEW! ALL FREO ENCY VACUUM TUBE VOITMETER in kit form

LABORATORY PRECISION

Better than $\pm 3 \%$ accuracy on all ranges. Less than 7 uuf input at all fre; quencies.

FULL RANGE

Will measure voltages
from 0.2 to 300 volts at 20 cycles to beyond 200 megacycles.

NEW LOW COST*

Priced at less than half the cost of comparable laboratory instruments.

Build it yourself! That's part of the serious Ham's creed. Build it better? That goes without saying. Here is your opportunity to do both. You get fully illustrated wiring and assembly instructions. Every part you need is included-laced cables-screws-soldering lugs-mounting brackets-all the parts integrated to give you an instrument of which you will be proud to build, own and use.

Conservatively rated parts, engineered into a finished unit assure you an instrument of unquestionable laboratory accuracy. The entire kit is composed of parts chosen or specified to a particular performance requirement.
PRICE \$62.50 FOB New York.
Shipped prepoid if money order or check accompanies order.

The American Radio Relay League

THE American Radio Relay League, Inc., is a noncommercial association of radio amateurs, bonded for the promotion of interest in amateur radio communication and experimentation, for the relaying of messages by radio, for the advancement of the radio art and of the public welfare, for the representation of the radio amateur in legislative matters, and for the maintenance of fraternalism and a high standard of conduct.

It is an incorporated association without capital stock, chartered under the laws of Connecticut. Its affairs are governed by a Board of Directors, elected every two years by the general membership. The officers are elected or appointed by the Directors. The League is non-commercial and no one commercially engaged in the manufacture, sale or rental of radio apparatus is eligible to membership on its board.
"Of, by and for the amateur," it numbers within its ranks practically every worth-while amateur in the nation and has a history of glorious achievement as the standardbearer in amateur affairs.

Inquiries regarding membership are solicited. A bona fide interest in amateur radio is the only essential qualification; ownership of a transmitting station and knowledge of the code are not prerequisite.

Membership Application Blank, \rightarrow

Application for Membership,

Ameirican Radio Relay League

American Radio Refay Leagle. West Harford, Conn., L. S. A.

Being genuinely interested in Amateur Raclio. I herdyy apply for membership in the American Radio Relay l.eague, and enclose $\$ 2 . j 0^{*}$ in payment of one year's dues, $\$ 1.25$ of which is for a subscription to QST for the same period. Please begin my subscription with the
issue

The call of my station is
The class of my operators license is
I belong to the following radio societies

Send my Cerificate of Membership \square or Membership Card \square (indicate which) to the address below:

Name
 muent lout full voting niemibarship in gramted only to liceonsoal radios amateurg of the Unitad siantes and damada. Thoraforag if von have a licemane, pleanse be wire to inalicate it above.

[^19]
To Keaders

WHO ARE ALREADY MEMBERS

HERE IS A FORM for your convenience in expressing to your SCM interest in any Communications Department appointment. Read "Leadership and Station Appointments," Chapter XXI. Select the appointment which best fits your operating interests and qualifications. The SCM will be happy to consider your application for Official Relay Station, Official Experimental Station, Official Phone Station, Official Broadcasting Station, or Official Observer. Appointments as Section Emergency Coordinator, Emergency Coordinator, Phone Activities Manager, and Route Manager also are available to amateurs of proven ability. The SCM is particularly interested to know of your interest in any of the leadership appointments. TWopy this form, or cut it out. Send direct to your Section Communications Manager (address on page 6, each QST). The Communications Department field organization includes the United States and its territories, Canada, Newfoundland, Labrador, Cuba, the Isle of Pines, and the Philippine Islands. Applications from outside these areas cannot be handled.

APPLICATION FOR APPOINTMENT

[^0]: direction. By feeding the two together, learing the third feeder wire idle, the nptimum direction is the bisector of the angle between the wires, This system is most uscfud at high frefuencies surh as ld Me and above.
 In these drawings, wavelength dinensions on conductoris refer to lengthis ealculated for the conductor size as deseribed in §10-2. Dimensions between elements are free -space dimunsions.
 The feeders to the various directive systems in A, C, E, F and G must be tuned if used as shown. For onc-band operation, matching stubs ($(10-8$) may be attached to the feeders if a matehed line is desired.

[^1]: ＊Use one size larger for tapping bakelite and hard rubber．

[^2]: Fia. 1:0 - l'ancl view of the two-tube dye receiver. I he [amel $i=$ cut from a sheet of $1 / 8$-inch alnanimmo. It is 6 incher hish and 8 inches wide. 'l'he controls along the bottom, from left to right, are mixer tuming, oscillator padiler and i.f. requeration, "lhe "13" switel is to the left of the tuning dial.

[^3]: L_{1} woumd over ground end of L_{2}, tape insulation, L_{8} spaced from L_{7} by washer thickness. All coils close-wound unleis otherwise specifed. All coils wound on Millen 74001 permeathility-tuned forms.

[^4]: * All $1 \frac{1 / 2-i n c h ~ d i a m ., ~ 3-t u r n ~ l i n k s . ~}{\text { * }}$
 ** All coils fitted with 2-turn links.

[^5]: R_{5} - 47,000 ohms, ${ }^{1} 2$ watt.
 R_{5} - 1 -megolim volume control.
 $\mathrm{R}_{\mathrm{i}}-1500$ ohms, 1 watt.
 R_{s} - $\overline{\mathrm{i}} 0$ olm s , 1 watt.
 R_{0} - 12,006 ohans, 1 watt.
 $\mathrm{R}_{10} \quad \mathbf{2 0 , 0 0 1}$ ohms, 25 watts.
 $\mathrm{R}_{11}-1500$ ohms, 10 watts.
 T_{1} - Interstage audio, single plate to p.p. grids, $3: 1$ ratio

[^6]: Voltage across next－stage grid resistor at grid－current point．
 At 5 volts r．m．s．output．

[^7]: 2 Values are for both tubes．
 ${ }^{2}$ Sinusoidal signal values，speech values are approximately one－half for tubes biased to approximate cut－off and 80 per cent for zero－bias tubes．
 3Values da not include transformar losses．Somewhat higher power is required of the driver to supply losses and provide good regu－ lation．Input transformer ratios must be chosen to supply required power at specified grid－to－grid voltage with ample reserve for losses and low distortion levels．Drivet stage should have good regulation．
 －Dual tube．Values are for one tube，both sections．
 ＊Instant－heating filament type．
 6 Beam tube．Class AB2．Screen voltage： 125 at 32 ma ．
 ${ }^{7}$ Beam tube．Class $A B_{2}$ ，Scroen voltage： 300.
 5 Can be driven by a pair of $2 A 3$ s in push－pull Class $A B$ at 300 volts with fixed bias．
 ${ }^{2}$ Driver：one or fwo 45 s at 275 volts self－blased -55 velts）
 ${ }_{10}{ }^{2}$ Driver：one or iwo 45 s at 975 volts，self－blased（ -55 volts）．
 ${ }^{10}$ Beam Tube．Class AB2．Screen volíage： 300 at 10 ma ．Effective grid elrcult resistance should not exceed 500 ohms，

[^8]: $\mathrm{C}_{1}, \mathrm{C}_{12}-10-\mu \mathrm{fd}$. 50 -volt electrolyt-
 ic.
 $\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{3}, \mathrm{C}_{61}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{13}-$ $0.1-\mu \mathrm{fd}$, 400-volt paper.
 $\mathrm{C}_{3}, \mathrm{C}_{8}-8$ - fd . 450 -volt clectrolytic.
 $\mathrm{C}_{7}-0.47-\mu \mathrm{fd} .400$-volt paper. $\mathrm{R}_{1}-4.7$ megohms, $\frac{1}{2}$ watt. $\mathrm{K}_{2}, \mathrm{li}_{\mathrm{s}}-1200$ olims, $1 / 2$ watt. $\mathrm{K}_{3}, \mathrm{R}_{7}-2.2$ megohms, $1 / 2$ watt.
 $\mathrm{R}_{4}, \mathrm{~K}_{13}, \mathrm{R}_{22}, \mathrm{R}_{24}-0.47$ megohm, $1 / 2$ watt.
 $R_{s}-47,000$ ohms, $\frac{1}{2}$ watt.
 $\mathrm{R}_{\mathrm{G}}, \mathrm{K}_{20}-0 . \overline{\mathrm{a}}$-megolm variable.
 $\mathrm{Rg}_{9}-0.22$ megohm, 1 watt.
 $\mathrm{R}_{10}, \mathrm{l}_{11}, \mathrm{~K}_{23}-0.1$ megohm, $1 / 2$ watt.
 $R_{12}-10,000$ ohnis, $1 / 2$ watt.
 R_{11} - 1500 ohins, $1 / 2$ watt.
 $\mathrm{R}_{15}, \mathrm{R}_{16}-0.1$ megohm, 1 watt.
 $\mathrm{R}_{17}, \mathrm{~K}_{1 \times}, \mathrm{R}_{19}-0.22$ megohm, $\frac{1}{2}$ watt.
 $\mathrm{R}_{21}-4700$ chuns, 36 watt.
 $1 \mathrm{~K}_{215}-750$ ohms, 10 watt.
 $\mathrm{s}_{1}, \mathrm{~s}_{2}$-S.p.s.t. switeh.
 T_{1} - Output eransfurmer 20 mateh p.p. 2A3s to Cliass 13 grids.
 T_{2} - Filament transformer, 6.3 volts, 2 amperes.
 T_{3} - Filament transformer, 2.5 volts, 5 amperes.

[^9]: ${ }^{1}$ Input current 4.6 amp .; wt. $45 / 8$ lbs.
 Wt. $71 / 2$ lbs.
 ${ }^{3}$ Input current 7.5 amp .; wt. $71 / 2 \mathrm{lbs}$.

[^10]: ${ }^{1}$ (:lose-woumd. No. 30 d.s.e., $1 / 4$ inch from primary.
 2 Sucallse the impedance of individual ervstal detece tors varies considerably, experiment with the namber of turns on L_{2} is nerossary for maximum current intivation. If meter reads backward, reverse erystal eomections.

[^11]: Fif. 1907 - Inside the absorption wavmeter. The tuning condenser and cril socket are mounted on the frame of the 3 by 4 by 5 hox; remaining parts are fastened to one of the removable sides.

[^12]: ${ }^{1}$ At $20^{\circ} \mathrm{C}$., based on copper as $100 .{ }^{2}$ Per ${ }^{\circ} \mathrm{C}$. at $20^{\circ} \mathrm{C}$.

[^13]: 1 Most data taken at $23^{\circ} \mathrm{C}$.
 ${ }^{2}$ Puncture voltage, in volts per mil. Most data applics to relatively thin sections and cannot be multiplied directly to give breakdown for thicker sections without added safety farlor.
 ${ }^{3}$ In ohm-em.
 ${ }^{4}$ Inchules suefh products as Aladdinite, Ameroid, Galalith, I:rinoid, Lactoid. etc.
 ${ }^{5}$ Includes l-ibestas, Lumerith, Nixonitc, Plastacelc Tenite, ete.
 ${ }^{6}$ Includes Amerith, Nitron, Nixonoid, Pyralin, cte.
 7 Methylmethacrylate resin.
 B Phenolaldchyde products include Acrolite, Bakelite,

[^14]: ${ }^{1}$ A mil is $1 / 1000$（one thousandth）of an inch．
 2 The figures riven are approximate only，since the thickness of the insulation varies with different manufacturers．
 ${ }^{3}$ The 1000 C．M．per ampere is equal to the circular－mil area（Column 3）divided by 1000.

[^15]: With input choke of af least 20 henrys.
 : Tapped for pilof lamps.
 ${ }^{2}$ Per pair with choke input.
 Condenser input.
 With 100 ohms min. resistance in series with plate; without series resistor, maximum r.m.s. plate rating is 117 volis.

 B Same as 872A/872 excepl for heavy-duly push-type base.
 Filament connected to pins 2 and 3 , plate to top cap.

 ## ${ }^{7}$ Chake input.

 Withoul panel Iamp.
 Ssing only one-half of flament.
 Discontinued.

[^16]: PB-10-5, (5 Prong Base \& Shield) PB-10.6, (6 Prong Base \& Shield) PB-10A-5, (5 Prong Base only) PB-10A-6, (6 Prong Base only)

[^17]: TYPE 41F
 " $\times 1^{17 / 32 "}$
 $\times 2^{3 / 16^{\prime \prime}}$
 Weigh1:
 $2^{5 / 16} \mathrm{oz}$.

[^18]: Ask your Radio Jobber for Premax Catalog of Antennas and Accessories. He also can supply installation

[^19]: * $\$ 2.50$ in the United States and Possessions. $\$ 3.00$ in the Dominion of Canada, $\$ 4.00$ in all other countries. Foreign remittances must yicld the above amounts in U. S. funds.

