27 TH EDITION + 1950

THE STANDARD MANUAL OF AMATEUR

RADIO COMMUNICATION

$\$ 2.00$

PUBLISHED BY THE AMERICAN RADIO RELAY LEAGUE

SCHEMATIC SYMBOLS USED IN CIRCUIT DIAGRAMS

${ }^{1}$ Where it is necessary or desiralle to identify the elertrollw. the curved element represents the outside clectrode (marked "outside foil," "ground," ete.) in fixed paper-amd ceramie-dielectric condensers, and the negatice clectrode in electrolytic condensers.
2 In the modern symbol, the eurved line indieates the moving elenent (rotor plates) in variable and adjustable air= or mica-dielectric condensers.

In the ease of switches, jacks, relays, ctc, only the basic combinations are shown. Any combination of these symbols may be asmembled as requiret. following the elementary forms shown.

By the

HEADQUARTERS STAFF
of the
American Radio Relay League

West Hartford, Connecticut, U.S.A.

1950

Twenty-Seventh Edition

COPYRIGHT 1950 BY

THE AMERICAN RADIO RELAY LEAGUE, INC

Copyright secured under the Pon-Americon Convention

Internotional Copyright secured

This work is Publication No. 6 of The Radio Amateur's Librory, published by the Leogue. Alf rights reserved. No part of this work may be reproduced in any form except by writsen permission of the publisher. All rights of tronslotion are reserved. Printed in U. S. A.

Quadon reservados todos los derachos

Twentr-Seventh Edition

THE RUMFORD PRESS
CONCORD, NEW HAMPSHIRE, U. S. A.

Foreword

This twontroseventh edition of The Radio Amatenr's /landlook is the batest of a sories extending over twenty-four vars of continuous puthlication, a period during which the total circulation has climbed to well over two million. The immediate and enthusiastic acerptance of the first edition by the radio amateurs of 1926 has been matched by continuing popularity throughout the intervening vears - a popularity based on the Ilaudbook's pactical utility, its treatment of radio communication problems in terms of how-to-do-it, and its long-established poliey of prosenting the soundest and best aspects of current amateur practice rather than morely the new and novel. These same features have won for the I/amdook universal acerptance in other segments of the technical radio world - engineering, educating, servieing, operating - even though the hook is written primarily for the radio amateur. Its preparation and production is the work of the headquarters staff of the amateur's own organization, the American Radio Relay League.

The current edition reflects the changes that have taken place in the technical practices of amateur radio during the past year. Of major conmern to amateurs in practically all the larger centers of population is the problem of interference with television recoption, a subject that is treated cextensively in this edition. liquipment that is designed to be as harmoniefree as possible is featured in the chapter on construction of transmitters, and new material on harmonic reduction has been included in the antennat chapter. The growing importance of single-sideband telephony has resulted in an incrase in the space devoted to this subject. The chapter on measuring equipment has been expanded, in line with the widespread interest in - and necessity for - reliable measurements at both low and high frequencies. A considerable amount of new equipment is incorporated in the chapters covering the very-high and ultra-high frequencies. And as always, the tube tables have beren revised to incorporate the new tubes that have appeared during the year.

Those to whom the Mambook has for years been an indispensable companion are well aware of it, but for new readers it is worth pointing out that in contrast to most publications of a comparable nature, the //andbook is printed in the convenient format of the league's monthly magazins, QST'. This, together with extensive and usefully-appropriate catalog advertising by reputable manufacturers producing equipment for radio amateurs, makes it possible to distribute for a very modest eharge a work which in volume of subject matter and profusion of illustration surpasses most available radio texts selling for several times its price.

It is sincerely hoped that this new edition will succeed in bringing as much assistance and inspiration to amateurs and newcomors to the hobby as have its many predecessors.

A. I. Budiong:
Secretary, A.R.R.L.

West Hartford, Comm. December, 1949

CONTRNTS

Frontispiece 2
The Amateur's Code 8
Chapter 1.......Amateur Radio 9
Chapter 2......Electrical Laws and Circuits 17
Chapter 3......Vacuum-Tube Principles 59
Chapter 4......High-Frequency Communication 79
Chapter 5......High-Frequency Receivers 85
Chapter 6......High-Frequency Transmitters 140
Chapter 7......Power Supplies 225
Chapter 8......Keying and Break-In 250
Chapter 9......Radiotelephony 260
Chapter 10...... Antennas and Transmission Lines 316
Chapter 11...... About V.H.F. 381
Chapter 12......V.H.F. Receivers 386
Chapter 13......V.H.F. Transmitters 411
Chapter 14......V.H.F. Antennas 441
Chapter 15......U.H.F. and Microwaves 451
Chapter 16.......Measuring Equipment 467
Chapter 17...... Assembling a Station 499
Chapter 18...... The Amateur's Workshop 506
Chapter 19...... Eliminating Broadcast Interference 513
Chapter 20...... Operating a Station 522
Chapter 21...... . Message Handling 528
Chapter 22...... Emergency Communication 531
Chapter 23...... ARRL Operating Organization 533
Chapter 24.......Miscellaneous Data 539
Chapter 25...... Vacuum-Tube Data 554
Index 606

THE

AMATEUR'S CODE

ONETHE AMATEUR IS GENTLEMANLY . . . He never knowingly uses the air for his own amusement in such a way as to lessen the pleasure of others. He abides by the pledges given by the ARRL in his behalf to the public and the Government.

TWOTHE AMATEUR IS LOYAL . . . He owes his amateur radio to the American Radio Relay League, and he offers it his unswerving loyalty.

THREE
 THE AMATEUR IS PROGRESSIVE . . . He keeps his station abreast of science. It is built well and efficiently. His operating practice is clean and regular.

$1 \int$ THE AMATEUR IS FRIENDLY ... Slow and pa-
counsel to the beginner, kindly assistance and coöperation for
the broadcast listener; these are marks of the amateur spirit.

TTV THE AMATEUR IS BALANCED... Radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school, or his community.

ST THE AMATEUR IS PATRIOTIC... His knowledge and his station are always ready for the service of his country and his community.

- Paul M. Segal

Amateur Radio

Amateur radio is a sodentifie hobloy, a means of gaining personal skill in the fascinating art of electronices and an opportunity to communicate with fellow citizens by private shortwave radio. thattered over the globe are more than 100,000 amateur radio operators who perform a serviee defined in international law as one of "self training, intercommunication and technical investigations carried on by . . . duly authorized persons interested in radio techmique solely with a personal aim and without pecuniary interest."

From a humble beginning at the turn of the century, amateur radio has grown to become an established institution. Today the Ameriean followers of amateur radio number 80,000 , a group of trained commmicators from whose ranks will come the protessional commonications specialists and executives of tomorrowjust as many of today's radio leaders were first attrated to radio by their early interest in amateur radio communication. A powerful and prosperous organization now provides a bond between amateurs and protects their interests; an internationally-respected magazine is published solely for their benefit. The Army and Navy seek the cooperation of the amateur in developing communications reserves. Amateur radio supports a manufacturing industry which, by the very demands of amateurs for the latest and best equipment, is always up-to-date in its designs and production terhmiques - in itself a national asset. Amateurs have won the gratitude of the nation for thair heroie performanes in times of natural disaster. 'lirough their organization, amateurs have cooperative working agreements with such agoneies as the United Nations and the Red Cross. Amateur radio is, indeed, a magnifiecntly useful institution.

Although as old as the art of radio itself, amateur radio did not always enjoy such prestige. Its first enthusiasts were private citizens of an experimental turn of mind whose imaginations went wild when Mareoni first proved that messuges actually could be sent by wireless. They set about learning enough about the new scientific marvel to buidd homemade stations. $13 y 1912$ there were numerous Government and commercial stations, and hundreds of amateurs; regulation was needed, so laws, licenves and wavelengt h specifications for the various services appeared. There was then no amatcur organization nor spokesman.

The official viewpoint toward amateurs was somothing like this:
"Amateurs? . . Oh, yes. . . Well, stick 'em on 200 meters and below; they'll never get out of their backyards with that."

But as the years rolled on, amateurs found out how, and D$) \mathrm{X}$ (distance) jumped from local to a00-mile and even oceasional 1,000 -mile twoway contacts. Because all long-distance messages had to be relayed, relaying developed into a fine art - an ability that was to prove invaluable when the Government suddenly called hundreds of skilled amateurs into war serviee in 1917. Meanwhile U. S. amateurs began to wonder if there were amateurs in other countries across the seas and if, some day, we might not span the Atlantic on 200 meters.

Most important of all, this period witnersed the birth of the Amorican Radio Relay Lemue, the amateur radio organization whose name was to be virtually synonymous with subsequent amateur progress and short-wave development. Conceived and formed by the famous inventor, the late lliram Perey Maxim, ARIRI, was formally launehed in carly 1914 . It had just begun to exert its full force in amateur activities when the United States declared war in 1917, and by that act sounded the knell for amateur radio for the next two and a half yars. There were then over 6000 amateurs. Ovir 4000 of them served in the armed forces during that war.

Today, few amateurs realize that World

HIRAM PERCY MAXIM
President ARRI., 1914-1936

War I not only markod the close of the first phase of amateur development but came very near marking its end for all time. The fate of amateur radio was in the balance in the days immediately following the signing of the Armistice. The Gowormment, having had a taste of supreme authority over communications in wartime, was more than half inclined to keep it. The war had not been ended a month before Congress was considering legislation that would have made it impossible for the amatur radio of old ever to be resumed. ARRRL's President Maxim rushed to Washington, pleaded, argued, and the bill was defeated. But there was still no amateur radio; the war ban continued. Reperated representations to Washington met only with silence. The League's otfices had been elosed for a year and a half, its records stored away. Most of the former amateurs had gone into service; many of them would never come back. Would those returning be interested in such things as amateur ratio? Mr. Maxim, determined to find out, called a meeting of the old Board of Directors. The situation was discouraging: amateur radio still banned by law, former members scattored, no organization, no memburship, no fumuls. l3ut those few determined men financed the publication of a notice to all the former amateurs that could be located, hired Kenneth B. Warner as the Lague's first paid secretary, floated a bond issue among old League members to obtain moncy for immerliate running expenses, bought the magazine QST to be the League's official organ, started activities, and dunned officialdom until the wartime ban was lifted and amateur radio resumed again, on October 1, 1919. There was a headlong rush by amateurs to get back on the air. (iangway for King Spark! Manufact urers were hard put to supply radio apparatus fast enough. Each night saw additional dozens of stations crashing out over the air. Interference? It was bedlam!

But it was an era of progress. Wartime needs had stimulated technical development. Vacuum tubes were being used both for receiving and transmitting. Amateurs immediately adapted the new goar to 200 -metor work. Ranges promptly increased and it became possible to bridge the continent with but one intermediate relay.

TRANS-ATLANTICS

As DN became 1000, then 1500 and then 2000 miles, amateurs began to dream of transAtlantic work. Could they get across? In December, 1921, AIRRI sent abroad an expert amateur, Paul F. Godley, 2ZE, with the best receiving equipment available. Tests were run, and thirly American stations were heard in Europe. In 1922 another trans-Atlantic test was carried out and 315 American calls were logged by European amateurs and one French and two British stations were heard on this side.

Everything now was centered on one objective: two-way amateur communication across the Atlantic! It must be possible - but somehow it couldn't quite be done. More power? Many already were using the legal maximum. Better receivers? They had superheterodynes. Another wavelength? What about those undisturbed wavelengths below 200 moters:' The enginerering world thought they were worthless - but they had sad that about 200 meters. So, in 1922, tests between Hartford and Boston were made on 130 meters with encouraging results. Early in 1923, ARLRL-sponsored tests on wavelengths down to 90 meters were successful. Reports indicated that as the wavelength dropped the results were better. A growing excitement began to spread through amateur ranks.

Finally, in November, 1923, after some months of careful preparation, two-way amateur trans-Atlantic communication was accomplished, when Schnell, 1MO, and Reinartz, INAM now WOUZ and WBRB, respectively) worked, for several hours with Deloy, 8A13, in France, with all three stations on 110 meters! Additional stations dropped down to 100 meters and found that they, too. could aasily work two-way across the Atlantic. The exodus from the 200 -meter region had started. The "short-wave" era had begun!

By 1924 dozens of commercial companies had rushed stations into the 100 -meter region. Chaos threatened, until the first of a series of national and international radio conferences partitioned off various bands of frequencies for the different services. Although thought still centered around 100 meters, League officials at the first of these frequency-determining conferences, in 1924, wisely obtained amateur bands not only at 80 meters but at 40, 20, 10 and even 5 meters.

Eighty meters proved so successful that "forty" was given a try, and QSOs with Australia, New Zealand and South Africa soon berame commonplace. Then how about 20 meters.' This new band revealed entirely unexperted possibilities when 1NAM worked 6TS on the West Coast, direct, at high noon. The dream of amateur radio - daylight DX! was finally true.

From then until "Pearl Harbor," when U. S. amateurs were again closed down "for the duration," amateur radio thrilled with a series of unparalleled accomplishments. Countries all over the world came on the air, and the world total of amateurs passed the 100,000 mark. . . . ARRL representatives deliberated with the representatives of twenty-two other nations in Paris in 1925 where, on April 17th, the International Amateur Radio Union was formed - a federation of national amateur radio societies. . . . The League began issuing certificates to those who could prove they had worked all six continents. More than seven thousand amateurs have been awarded W:IC certificates.

- PUBLIC SERVICE

Amateur radio is a grand and glorious hobby but this fact alone would hardly marit such wholehoarted support as is given it by our Govermmont at international conferences. There are other reasons. One of these is a thorough appreciation by the Army and Navy of the value of the amateur as a souree of skilled radio persomel in time of war. Another asset is best described as "publie service."

About 4000 amateurs had contributed their skill and ability in '17-'18. After the war it was only natural that cordial relations should prevail between the Army and Navy and the amateur. These relations strengthened in the next few yoars and, in gradual steps, grow into cooperative activities which resulted. in 192\%. in the establishment of the Naval Communicattions Reserve and the Army-Amateur Radio System (now the Military Amatcur Radio system). In World War II thousands of amateurs in the Naval Rescrve were called to ano tive duty, where they served with distinction, while many other thousands served in the Army, Air Foreens, Coast Guated and Marine Corps. Alugether, more than 25.000 randio amateurs served in the armed forees of the United States. Other thousands were chgared in vital civilian clectronic research, development and manulaturing. They also organized and manned the War Fmergency Radioservice, the communications section of OCl).

The "public-service" record of the amateur is a brilliant tribute to his work. These activities can be roughly divided into two classes, expeditions and emergencies. Amateur coopreration with expeditions began in 1923 when a League member, Don Mix, 1 Th, of Bristol, Comm. (now assistant technical editor of $Q, \stackrel{T}{ }$), aceompanied Macalillan to the Aretic on the schooner boudoin with an amateur station. Amateurs in Canada and the ['s.s. provided the home contacts. The sucerss of this venture was such that other explorers followed suit. During subsequent vars a total of perhaps two hunIred voyages and expeditions were assisted by amateur radio, and for many yoars no expedition has taken the field without such plans.

Since 1913 amateur radio has been the principal, and in many cases the only, means of outside communication in several humdrod storm, flood and carthquake emergoneios in this country. The 1936 castern states flood. the 1937 (Mio) River Valley food, the southorn California flood and Long Island-New Fingland hurricane disastor in 1938, and the FloridaGulf Cobst hurricanes of 1947 called for the amateur's greatest emorgency effort. In these disasters and many others - Lornadoes, slect storms, forest fires, blizzards - amatours played a major rolle in the rolief work and carned wide commendation for their resourcefulness in efforting communication where all other means had failed. During 1938 ARRL inaugurated a new emergeney-preparedness
program, registering personnel and equipment in its Emergency Corps and putting into offect a comprehensive program of coöperation with the Red Cross, and in 1!47 a National Fmorgoney Cogrdinator was appointed to full-time duty at Ieague headquarters.

TECHNICAL DEVELOPMENTS

Throughout these many yoars the amateur was carcful not to slight experimental development in the enthusiasm incident to international DN゙. Tine exprimenter was constantly at work on ever-higher frequencies, devising improved apparatus, and loarning how to cram several stations where previousty there was room for only one! In particular, the amateur pressed on to the development of the very high frequencies and his experience with five meters is especially representative of his initiative and resourcefulness and his ability to make the most of what is at hand. In 1924, first, amateur experiments in the vicinity of $5(\mathrm{Na}$. indicated that band to be practically worthless for DS. Nonetheless. great "short-haul" activity eventually came about in the band and new gear was developed to meet its speeial prohlems. Beginning in 1934 a series of investigations by the brilliant experimenter, Ross Hull (Iater QsTseditor). developed the theory of v.lif. wave-bending in the lower atmosphore and led amateurs to the attamment of better distances: while occasional manifustations of ionospheric propagation, with still greater distances, gave the band uniquely erratie performance. By Pearl Harbor thoustnds of amateurs were spending much of their time on this and the noxt higher band many having worked hundreds of stations at distances up to several thousand miles. Transeontinental (imeter DN is now a commonplace occurrence; even the oreans hato beren bridged! It is a tribute to those imbofatigable amateurs that today's concept of v.h.f. propagation was developed largely through amateur rescarch.

The amatene is constantly in the forefront of technical progress. His ineessant curiosity, his cagerness to try anything new, are two reasons. Another is that ever-growing amateur radio continually overerowds its frequency assignments, spurring amateurs to the development and adoption of new techniques to pormit the

A corner of the A RRL laboratory .
aceommodation of more stations. For examples, amateurs turned from spark to c.w., designed more seloctive receivers, adopted erystal eontrol and pure d.c. power supplies. from the ARRL's own laboratory in 1932 came James lamb's "single-signal" superheterodyne - the world's most advanced high-frequency radiotelegraph receiver and, in 1936, the "noise-silencer" cireuit. Amateurs are now turning to speech "clippers" to reduce bandwidths of 'phone transmissions and investigating " single-sideband suppressed-earriar" systems which promise to halve the spectrum spaee required by a voice-morlulated signal.

During the recent war, thousands of skilled amatuurs contributed their knowledge to the devolopment of secret radio devieres, both in Government and private lahoratories. Equally as important, the prewar technical progress by amateurs provided the kevstone for the development of modern military communications equipment. Perhaps more important today than individual contributions to the art is the mass conporation of the amateur body in Govermment projects such as propagation studies: cach participating amateur station is in reality a separate fied laboratory from which reports are made for correlation and analysis.

Emergency relief, expedition contact. experimental work and countless instances of other forms of public service - rendered, as they always have been and always will be, without hope or expectation of material reward - made amateur radio an integral part of our peacetime national life. The importance of amateur participation in the armed fores and in other aspects of national defense have emphasized more strongly than ever that amateur radio is vital to our national existence.

- THE AMERICAN RADIO RELAY LEAGUE

The ARIRL is today not moly the spokesman for amateur radio in this country but it is the largest amateur organization in the worled. It is strictly of, by and for amateurs, is noncommercial and has no stoekholders. The momhers of the League are the owners of the AIRIRL and Q, ST.

The League is organized to represent the amateur in legislative matters. It is pledged to promote interest in two-way amateur communication and experimentation. It is interested in the relaying of messages by amateur radio. It is concerned with the advancement of the radio art. It stands for the maintenance of fraternalism and a high standard of conduct.

One of the league's prineipal purposes is to keep amateur activities so well conducted that the amateur will continue to justify his existence. Amateur radio offers its followers countless pleasures and unerding satisfaction. It also calls for the shouldering of responsi-

The operating room at W'AW".
bilities - the maintenance of high stamdards. a eomperative loyatty to the traditions of amateur radio, a dedication to its ideals and principles, so that the institution of amateru radio may continue to operate" "in the public interest, convenience and necessity."

The operating territory of AlkRL is divided into fifteen V . S. and five Cathadian divisions. The affairs of the Learue are managed by a Board of Directors. One director is elected every two years by the membership of each U. S. division, and a Canadian (ieneral Manager is elerted every two vears by the Canadian membership. These directors then choose the president and viee-president. who are also members of the Board. The managing secretary, treasurer and eommanications manager are appointed by the Board. The directors, as representatives of the amateurs in their divisions, meet ammally to examine current amateur problems and formmate ARRL policies thereon.

ARRR owns and publishes the monthly magazine, QS'T. Aeting as a bulletin of the League's organized aetivities, Qs'T also sorves as a medium for the exchange of ideas and fosters amateur spirit. Its technical articles are renowned. It has grown to be the "amatemr's bible." as woll as one of the foremost radio magazines in the world. Membership dues include a subseription to QST.

ARRL, maintains a model headquarters amateur station, known as the lliram Perey Maxim Memorial station, in Newington, Comn. Its call is W1AW, the call held by Mr. Maxim until his death and later transferred to the league station by a special lPCC aetion. Separate tramsmitters of maximum legal power on each amateur band have permitted the station to be heard regulaty all over the world. More important, IV AI iW transmits on regular sehedules bulletins of general interest to amateurs, conducts code practice as a training feature, and engages in two-way work on all popular bands with as many amateurs as time permits.

At the headquarters of the Ieague in West Hartford, Conn.. is a well-equipped laboratory to assist staff members in preparation of technical material for $Q S T$ and the Ratio Amateur's Mandbook. Among its other activities, the League maintains a Communica-
tions bepard nent eoncerned with the operating artivities of lague members, A large fied organization is heded be a sortion Communirations Manager in eath of the League's seventyotwo sertions. There are appointments for qualified members as Official Relay Station or Official 'Phone station for tratfic handling: as Official Observer for monitoring frequencios and the quatity of signals: as Route Manager and 'lhone detivities Manager for the establishment of trunk lines and networks; as Emergency Coordinat or for the promotion of amateur preparedness to cope with natural disasters; and as Official Experimental station for those pioneering the frequencies above 50 Me. Mimeographed bulletins keep appointees informed of the latest developments. special activities and contests promote operating skill. A special section is reserved each month in QST for amateur news from every section of the country.

AMATEUR LICENSING IN THE UNITED STATES

The Communications Aet longes in the Ferleral Communications Commission atutority to dassify and license radio stations and to preseribe regulations for their operation. Pursuant to the law. FCC has issued detailed regulations for the amaterur service.

A radio amaterur is a duly authorized person interested in radio technique solly with a personal aim and without peeuniary interest. Amateur operator liconses are given to U. S. citizens who pass an cxamination on operation and apparatus and on the provisions of law and regulations affecting amateurs, and who demonstrate ability to send and receive code at 13 worls per minute. Station licenses are granted only to licensed operators and permit communication between such stations for amateur purposes. i.e., for personal noneommoreial aims flowing from an interest in radio technique. An amateur station may not be used for material eompernation of any sort nor for broadcasting. Narrow bands of frequencies are allocated exclusivoly for use by amateur stations. Transmissions may be on any frequency within the assigned bands. All the frequencies may be used for c.w. telegraphy and some are available for radiotelephony by any amateur, while others are reserved for radiotelephone use by persons having at least a year's experience and who pass the examination for a Class A license. The input to the final stage of annateur stations is limited to 1000 watts and on frequencies below 60 Mc , must be adequatelyfiltered direct current. Emissions must be free from spurious radiations. The licensee must provide for measurement of the transmitter frequency and establish a procedure for checking it regularly. A complete log of station operation must be maintained, with specified data. The station license also authorizes the holder to operate portable and mobile stations on
rertain frequencies, subjeet to further regulations, . In anateur station may be operated only by an amateur operator licensee, but any lienned amateur operator may operate any amateur station. All radio licensees are subject to penalties for violation of regulations.

Amateur licenses are issued entirely free of charge. They can be issued only to citizens but that is the only limitation, and they are given without regard to age or physical condition to anyone who successfully completes the examination. When you are able to copy 13 words per minute, have studied basic transmitter theory and are familiar with the law and amateur regulations, you are ready to give serious thought to securing the Government amateur licenses which are issued you, after examination at a local district office or examining points in most of our larger cities, through FCC at Washington. A complete up-to-theminute discussion of license requirements, and a study guide for those preparing for the examination, are to be found in an ARRL, publication, The Rudio Amuteur's Lirense Moneml, available from the Imeriean Radio Relay League, West Hartford 7, Conn., for 25 e, postpaid.

LEARNING THE CODE

In starting to learn the code, you should consifer it simply another means of conveying intormation. The spoken word is one method,

A didah	N dahdit
B dahdididit	O dahdahdah
C dahdidahdit	P didahdahdit
D dabdidit	Q dahdahdidah
E dit	R didahdit
F dididahdit	\mathbf{S} dididit
G dahdahdit	T dah
H didididit	U dididah
I didit	V didididah
J didahdahdah	W didahdah
K dahdidah	X dahdididah
L didahdidit	Y dahdidahdah
M dahdah	2 dahdahdidit
1 didahdahdahdah	6 dahdidididit
2 dididahdahdah	7 dahdahdididit
3 didididahdah	8 dahdahdahdidit
4 dididididah	9 dahdahdahdahdit
5 dididididit	0 dahdahdahdahdah

Period: didahdidahdidah. Comma: dahdahdididahdah. Question mark: dididahdahdidit. Error:didididididididit. Doubledash:dahdidididah. Wait: didahdididit. End of message: didahdidahdit. Invitation to transmit: dahdidah. Eind of work: didididahdidah. Fraction bar: dahdididahdit.
Fig. I-I - The Continental (International Morse) code.
the printed page another, and typewriting and shorthand are additional exanples. Learning the code is as easy - or as difficult - as learning to type.

The important thing in beginning to study code is to think of it as a language of sound, never as combinations of dots and dashes. It is easy to "speak" code equivalents by using "dit" and "duh," so that A would be "didmh" (the "t" is dropped in such combinations). The sound "di" should be staccato; a code character such as " 5 " should sound like a machinegun burst: dididididit! Stress cach "Aah" equally; they are underlined or italiered in this text because they should be slightly aecented and drawn out.

Take a lew characters at a time. learn them thoroughly in diduh language before going on to new ones. If someone who is familiar with code can be found to "send" to you, either by whistling or by means of a buzzer or code oseillator, enlist his coüperation, Learn the code by listening to it. Don't think about sueed to start; the first requirement is to learn the characters to the point where you can recognize each of them without hesitation. Concentrate on any difficult letters.

- ACQUIRING SPEED BY BUZZER PRACTICE

Regular practice periods will devolop code proficiency. Two people can learn the code together, sending to each other by means of a buzzer-and-key outfit. An alvantage of this system is that it develops sending ability, too. for the person doing the roceiving will be quick to ariticize uneven or indistinct sending. If possible get an experiened operator for the first few sessions to leam how well-sent characters should sound.

Fither the buzzer set shown in Figs. 1-2 and 1-3 or the audio oseillator deseribed will give satisfactory results as a pratice set. The battery-operated audio owillator in Figs. 1-4 and $1-5$ is easy to construct and is effective. If nothing is heard in the headphones when the

Fig. 1.2 - The headphones are connceted across the coils of the buzzer, with a condenser in series. If the value shown gives an exressively loud signal, it may be reduced to $470 \mu \mu \mathrm{fd}$. or $220 \mu \mu \mathrm{fd}$.

Fig. 1..7- 'The enver of the buzzer unit has been removed in this view of the luazer code-practice set.
key is depressed, reverse the leads going to cillor transformer winding (do not reverse both windings).

With a practice set ready. send single letters at first. When each character can be read quickly follow this by slow sending of complete words and sentences. Lave the material sent at a rate slighty faster than you can copy easily; this speeds up your mind. Write down each letter you recognize. Do not try to write down the dots and dathes; write down letters. Don't stop to compare the sounds of different letters, or think tool long about a letter or word that has been missed. (Goright on to the mext one. or each "miss" will cause you to lose several chatacters. If you exercise a little patience you will soon be getting revery character. When you can receive 13 words a minute (65 hetters a minute), have the sender tramsmit code groups rather than English text. This will prevent you from recognizing a word "on the way" and filling it in before you've really listened to the letters themselves.

After you have acquired reasomable proficiency, concentrate on the less common characters, as well as the mumerals and punetuation. These prove the downfall of many applicants taking the code examination.

LEARNING BY LISTENING

dis som as youl can, listorn on a real communi(ations reecerer (with beat oscillator) and have the fun of learning by listening. W1.IW eomblucts practice transmissions Mondays, Werdnesdays and Fridays, 9 to 35 w , p.m., and Tucsdays-Thussdays, 15 to 3: w.p.m., starting at (9:30 r.m. ES'T. In addition, the ()flicial BalIrims, also sent from $W^{\circ} 1.1 W$, give added pramLice at 15 and $25 \mathrm{w}, \mathrm{p}, \mathrm{m}$. See the Operating News section amouncements of the $W 1 \mathrm{AW}$ operating sehedule, and Code Proficiency lewogram notes, in the latest eopy of QST'. Practise until vou can matil in what you have ropied over the air on Whal's monthly "qualifying run" to get a lij-word-per-minute (ode Proficioncy Cortificate or a sticker for advanced spereds.

Fif. 1-4-Wiring diagram ol at simple varuam-fuhe andio-frequerney osiollator for use as a conle-practice set.

USING A KEY

The correot way to grasp the key is important. The knob) of the key shoulal be about eighteen inches from the adge of the operating table and about on a line with the oporator's right shoulder, allowing room for the elbow to rest on the table. A table about thirty inches in height is best. The spring tension of the key varies with different operators, I failly hoavy spring at the start is desirables. The back adjustmont of the key should be changed until there is a vertical movement of about onesixteenth inch at the knob, After an operator las mastored the ase of the hand key the tonsion should be ehanged amd can be redued to the mininum spring tension that will eatuse the key to open immonlately when the pressure is reloased. Nore spring tension than necossary catuses the expenditure of unneressary energy, The eontacts should be spaced by the rear screw on the key only and not by allowing play in the side screws, which are provided merely for aligning the contact points. These side serews should be serowed up to a setting which prevents appreciable side phay, but not adjusted so tightly that binding is a aused. The gap betweon the eontacts should alwaty be at least a thirty-second of an inch, since toofinely spaced contacts will cultivate a norvous styho of sending which is highly undesirable, On the other hand. too-wide spacing (much over one-sixterenth inch) may result in unduly heavy or " muddy" sembing.
I) o not hold the key tightly. Iat the hand rest lightly on the key. The thumb should be against the left side of the knob. The first and

Fig. I-5-I ayout of the audio-oseillator conle-practice set. All parts maty he mounted on a wouden hasehoard. approximately $\overline{2}$ by 7 inches in size.
second fingers should be bent a little. They should hold the middle and right sides of the knob, respectively. The fingers are partly on top and partly over the side of the knob. The other two fingers should be free of the key. Fig. 1-6 shows the correct way to hold a key.

A wrist motion should be used in sending. The whole arm should not be used. One should not send "nervously" but with a steady flexing of the wrist. The grasp on the key should be firm, but not tight, or jerky seneling will result. None of the museles should be tense but they should all be under control. The arm should rost lightly on the operating table with the wrist held above the table. An up-anddown motion without any sideway action is best. The fingers should never leave the key knob.

Good sending may seem easier than receiving, but don't be dereived. A beginner should not attempt to send fast. K'eep your transmitting spered down to your receiving speed, and bend your efforts to sending reell. Do not try to speed thing: up too soon. A slow, even rate of

Fif. I.6-This sketeh illustrates the eorrect prosition of the hand and fingers for good sending with a telegraph key.
sencling is the mark of a good operator. Speed will come with time alone. Lave special types of keys alone until you have mastered the knaek of handing the standard key. Beeause radio transmissions are seldom free from interference, a "heavior" style of sending is best to devedop for radio work. A rugged, heavy key will help in developing this characteristic.

To become expert in transmitting good code, after you have thoroughly learned each letter and numeral and can both send and copy letters without howitation, your best practiee is to listen to eommercial automatie-tape stations. Perfoctly-sent code can be accomplished only by a machine, and you want to get fixed in your mind, indelibly, the correct formation of each and every code charactor and in particular the associated spaces, One of the best methods for deriving this aseceration is to find a commereial or other tape station sending at about your matimum receiving spered. Notice the formation of arch letter, the spaces left between lettors and words, and the proportion in lengt of dits to dahs. Listen to the transmissions as you would at a musical coneert, concentrating on assimilating every detail. The spaces between words may seem exaggerated, simply because you have probably been running yours together. A score of other details where the ato-
matic transmission is differont than yuurs will very likely show up in the same text. From all this you will learn where your own faults lie and be able to correct them.

THE AMATEUR BANDS

Amateurs are assigned bands of frequencies at approximate oetave intervals throughout the spectrum. Like assignments to all services, they are subject to modification to fit the changing picture of world communications needs.

In the adjoining table is a summary of the U. S. amateur bands on which operation is permitted as of our press date. Figures are megacyeles. A0 means an unmodulated carrier, A1 means c.w. telegraphy, A 2 is m.c.w., A3 is AM 'phone, At is facsimile, A5 is telovision, NFM designates narrow-band frequency- or phasemodulated radiotelephony, and FM means frequency modulation, 'phone (including NFM) or telegraphy. In addition, amateurs are assigned portions of the band 1800-2000 kc., subject to certain power and geographical restrictions, as shown in the table below.
The 1947 International Radio Conference resulted in certain planned changes in present bands which may become effective some time in 1950 . They are: a reduction in the 20 -meter band to make it thenceforth $14,000-1+350 \mathrm{kc}$., and anew band $21,000-21,450 \mathrm{kr}$. Further, in late 1949 there appeared to be sulstantial agreement between FCC and the amateur

body on the desirability of certain additional changes in domestic regulations, among which are the extension of the Fo-meler Class A 'phone band to read $3800-4000 \mathrm{ke}$. and extension of SFM privileges throughout thr $50-\mathrm{Me}$, band. Because of the possibility of such changes each amateur should keep himself currently informed by consulting QS'T or by writing ARLRI, for latest information.
(1) 1800 to 2000 and 2000 to 2050 ke . Vse of this hand by amateur radio stations is restricted as follows:
(i) 1800 to 2000 ke . T:4 of this hand is on a shared hasis with the Loran system of radio navigation. In any particular area the Loran system of radio navigation operates either on $18: 00$ or 1950 kc ., the band occupjed being $1800-1900$ or $1900-2000 \mathrm{kc}$. The ambent service may use in any area whichever bands, 1800-1825 and 1875-1900 ke., or $1900-1925$ and $1975-2000$ ke.. are not required for Loran in that area, in accordance with the following limitations and conditions:
(a) Mississippi River to Fast Coswt (V. S. (except Florida and states bordering (ialf of Mexico) : 1800 to 1825 kc . and 1875 to 1000 ke., using type A-1 or A-3 emission. Power input to the plate circuit of the tube or tubes supplying power to the antenna shall not exceed 500 watts day, 200 watts night.
(b) Mississippi River to West Coast C. S, (except states bordering Gulf of Mexico): 1900 to 1425 ke. and 1975 to 2000 ke. using type A-1 or A-3 emission. Power input to the plate circuit of the tube or tubes supplying power to the antenna shall not execed 500 watts day, 200 watts night, except in the sitate of Washington where daytime power is limited to 200 watts and night-time power to 50 watts.
(c) Florida and states bordering (Gulf of Mexico: 1800 to $18: 5 \mathrm{jk}$, and 1875 to 1900 ke.. using type A-1 or A-3 mission. Power input to the plate cireuit of the tube or
tules supplying power to the antenma shall not exceed 200 watts day, no operation at night.
(d) Puerto Rico and Virgin Islands 1900 to 1925 ke . and 1975 to 2000 ke , using tyre A-1 or A-3 eutission. Power input to the plate circuit of the tube or tubes supplying buwer to the antenna shall not exced 500 watts day, 50 watts night.
(e) Hawaiian lslands: 1900 to 1925 kc ., and 1975 to 2000 ke, using type A-1 or A-3 enission. Power input to the plate cirmit of the thbe or tubes supplying power to the anterna shall not exceed 500 watts day, sor watts night.
(f) The use of these frequencies hy stations in the Amateur Sersice shall not cause harmful interference to the Loran system of radio navigation. If an amateur station causes such interforonce, the station li censue shall, as directed by the Commission, immediately cease operation on the frequencies involved.
(6) The use of these frequencies by the A mateur Service shall not be a bar to expansion of the radio navigation (Ioran) serviee. and such use, and the limitations and conditions of such use as set forth above. shall be considered temporary in the sense that they shall remain subjeet to cancellation or to revivion, in whole or in part, without hearing, whenever the Commission shall deem steh eancellation or revision to be necessary or desirable in the light of the priority within this band of the loran system of radio navigation.

Electrical Laws and Circuits

Everyone knows that radio is electrical in nature, and it is taken for granted that to know anything about the operation of radio equipment you have first to know something about electricity and clectrical circuits. The amount of clectrical knowledge you need in amateur radio depends on how far you delve into the technicalities of the various types of transmitters, receivers and measuring equipment that amateurs use. If you're just getting started you do not need very much, but as you progress yon will find that you will acquire, more or less unconseiously, a great deal of basie information. That is, you will if you
make a conscientious effort to understand and analyze the things that you observe in using radio gear.

The purpose of this chapter is to provide the answers to many questions about circuits that will come up in the course of building and operating an amateur station. It is intended as a practical reference section rather than a course in "theory." You can study it consecutively if you wish, of course. However, it should be even more valuable to you in showing how everyday problems can be solved when the occasion to solve them arises.

Fundamentals

ELECTRIC AND MAGNETIC FIELDS

At the bottom of everything in electricity and radio is a field. Although a field is not too easy to visualize, we need to have some appreciation of what it is if electrical effects are to be understood. When something occurs at one point in space because something else happened at another peint, with no visible means by which the "cause" can be related to the "effect," we say the two events are comected by a "field." It does not matter whether or not the field is "real" - that is, whether it is something physical although, like air, invisible. '1'he important point is that the distant effects are predictable, and it is convenient to attribute them to properties of a field. The fields with which we are concerned are the electric and magnetic, and the combination of the two called the electromagnetic field.

A field has two inmortant propertics, intensity (maguitule) and direction. That is, the field exerts a force on an object immersed in it; intensity measures the amount of force exerted while direction tells the direction in which the object on which the force is exerted will tend to move. An electrically-charged object in an electric field will be acted on by a force that will tend to move it in a direction determined by the direction of the field. Similarly, a magnet in a magnetic field will be subject to a force. Everyone has seen demonstrations of
magnetic fields with pocket magnets, so intensity and direction are not hard to grasp.
A "static" field is one that is fixed in space. Such a field can be set up by a stationary electric charge (electrostatic field) or by a stationary magnet (magnetostatic field). But if either an clectric or magnetic field is moving in space or changing in intensity, the motion or change sets up the other kind of field. That is, a changing electric field sets up a magnetic field, and a changing magnetic field generates an electric field. This interrelationship between magnetic and electric fields makes possible such things as the electromagnet and the electric motor. It also makes possible the electromagnetic waves by which radio communication is carried on, for such waves are simply traveling fields in which the energy is alternately handed back and forth between the electric and magnetic fields.

Lines of Force

We need, obviously, some way to compare the intensity and direction of different fields. This is done by picturing the field as made up of lines of force, or flux lines. 'These are purely imaginary threads that show, by the direction in which they lie, the direction the object on which the force is excrted will move. The number of lines in a chosen cross section of the field is a measure of the intensity of the forec. The number of lines per square inch, or per square centimeter, is called the flux density.

- ELECTRICITY AND THE ELECTRIC CURRENT

Electrical effects are caused by extremely small particles of electricity called electrons. Everything physical is built up of atoms, particles so small that they cannot be seen oven through the most powerful mieroscope. But the atom in turn consists of still smaller particles - several different kinds of them. One type of particle is the electron. An ordinary atom consists of a central core, called the nucleus, around which one or more electrons circulate somewhat as the earth and other plancts circulate around the sun. Both the nucleus and the electrons are electrical, but the kind of plectrioity assuciated with the nucleus is called positive and that associated with the electrons is called negative.

The important fact about these two "opposite" kinds of electricity is that they are strongly attracted to each other. Also, there is a strong force of repulsion between two charges (a collection of electrified particles is called a charge) of the same kind. The positive nucleus and the negative electrons are attracted to each other, but two electrons will be repelled from each other and so will two muclei. The fact that an atom contains both positive and negaltive charges makes it tend to stay toget her as a unit; in a normal atom the positive charge on the auclens is exactly batanced by the total of the negative charges on the eleetrons. It is possible, though, for an atom to lose one of its electrons; when that happens the atom has a little less negative charge than it should or, to put it another way, it has a net positive charge. Such an atom is said to be ionized, and in this case the atom is a positive ion. If an atom picks up an extra electron, as it sometimes does, it has a net negative charge and is called a negative ion. A positive ion will attract any stray electron in the vicinity, including the extra one that may be attached to a nearby negative ion. In this way it is conveniently possible for electrons to travel from atom to atom, and when sueh movement oecurs on a measurable scale (millions or billions of cleetrons moving) we have a detectable electric current.

Conductors and Insulators

The movement of elections can take place in a solid, a liquid, or a gas. In liquids and gases, positive and negative ions, as well, are free to move when attracted electrically, but in solids only the electrons move. However, movement of electrons or ions is not possible in all substances. Atoms of some materials, notably metals and acids, will give up an electron readily, but atoms of other materials will not part with any of their electrons even when the electric force is extremely strong. Materials in which electrons or ions can be moved with relative ease are called conductors, while those that refuse to permit such movement are
called nonconductors or insulators. The following listing shows how some common materials divide between the conductor and insulator classifications:

Conductors	Insulators
Metals	Dry Air
Curbon	Wood
Acids	Porrelain
	Textiles
	Glass
	Rubber
	Resins
Electromotive Force	

The electric force (called electromotive force, and abbreviated e.m.f.) that canses current flow may be developed in several ways. The action of eertain chemical solutions on dissimilar metals sets up an e.m.f.; such a combination is called a cell, and a group of cells forms an electric battery. The amount of current that such cells can carry is limited, and in the course of current flow one of the metals is caten away. The amount of electrical energy that ean be taken from a bat tery consequently is rather small. Where a large amount of energy is needed it is usually furnished by an electrie generator, which develops it.s e.m.f. by a combination of magnetic and meelanieal means. large generaturs in power houses supply the energy that is distributed to homes and factories.

In picturing current flow it is natural to think of a single, constant force causing the electrons to move. When this is so, the elec-
(A)

(B)

Fig. 2-1 - Threc types of current flow. A - direct current; B - inturmittent ilice't enrrent; C - alternating eurrent.
trons always move in the same direction through a path or circuit made up of conductors connected together in a continuous chain. Such a current is called a direct current, abbreviated d.c. It is the type of current furnished by batteries and by certain types of generators. However, it is also possible - and desirable as well - to have an e.m.f. that periodically reverses. With this kind of e.m.f. the current flows first in one direction through the circuit and then in the other. Such an e.m.f. is called an alternating e.m.f., and the current is called an alternating current (abbreviated a.c.). The reversals (alternations) maty occur at any rate from a few per second up to several billion per second. Two reversals make a cycle; in one cycle the force acts first in one direction, then in the other, and then returns to the first direction. The number of cyoles in one second is called the frequency of the alternating current.

Direct and Alternating Currents

The difference between direct current and alternating current is shown in Fig. 2-1. In these graphs the horizontal axis measures time, inereasing toward the right away from the vertical axis. The vertical axis represents the amplitude or size of the eurrent, increasing in either the up or down direction away from the horizontal axis. If the graph is above the horizontal axis the current is flowing in one direction through the circuit (indicated by the + sign) and if it is below the horizontal axis the current is flowing in the reverse direction through the circuit (indicated by the - sign). Fig. 2-1 A shows that, if we close the circuit that is, make the path for the current complete - at the time indicated by X, the current instantly takes the amplitude indicated by the height A. After that, the current continues at the same amplitude as time goes on. This is an ordinaty direct current.

In Fig. 2-1B, the current starts flowing with the amplitude .1 at time X, continues at that amplitude until time Y and then instantly ceases. After an interval $V Z /$ the current again begins to flow and the same sort of start-indstop performance is repeated. This is an intermittent direct current. We could get it by alternately elosing and opening a switch in the circuit. It is a direct current because the direction of current flow does not change; the graph is always on the + side of the horizontal axis.

In Fig. 2-1C the current starts at zero, increases in amplitude as time goes on until it reaches the amplitude A_{1} while flowing in the + direction, then decreases until it drops to zero amplitude once more. At that time (X) the direction of the current flow reverses; this is indicated by the fact that the next part of the graph is helow the axis. As time goes on the amplitude increases, with the current now flowing in the - direction, until it reaches amplitude A_{2}. Then the amplitude decreases until finally it drops to zero (Y^{\prime}) and the direc-

Fig. 2.2-A rumplex waveform. A findamental (top) and atoond harmonice (center) added together, print ly peint at wach instant, result in the waveform shown at the boblom. When the two components have the same polarity at a selected instant, the resulant is the simple sum of the two. When they have opposite polarities, the resultant is the difference: if the negative-polarity conspronent is larger, the resultant is negative at that instant.
tion reverses once more. This is an alternating current.

Waveforms

The graph of the alternating current is what is known as a sine wave. Sine-wave alternating current is the simplest - but not the only kind. Notice that the variations in amplitude are quite regular and that the "negative" half-rycle or alternation is exactly like the "positive" half-cycle except for the reversal of direction. The variations in many a.c. waves are not so smooth, nor is one half-cycle necessarily just like the preceding one in shape. However, these more complex waves actually can be shown to be the sum of two or more sine waves of frequencies that are exact integral (whole-number) multiples of some lower frequency. The lowest frequency is called the fundamental frequency, and the higher frequencies (2 times, 3 times the fundamental frequency, and so on) are called harmonics.

Fig. 2-2 shows how a fundamental and a second harmonic (twice the fundamental) might add to form a complex wave. A little thought will show that simply by changing the relative amplitudes of the two waves, as well as the times at which they pass through zero amplitude, an infinite number of waveshapes can be constructed from just a fundamental and second harmonic. Waves that are still more emplex can he constructed if more than two harmonies are used.

Electrical Units

The unit of electromotive force is called the volt. An ordinary flashlight cell generates an
e.m.f. of about 1.5 volts. The e.m.f. commonly supplied for domestic lighting and powes is 11.5 volts, usually a.c. having a frequency of 60 cycles per second. The voltages used in radio receiving and transmitting circuits range from a few volts (usually a.c.) for filament heating to as high as a few thousand d.c. volts for the operation of power tubes.

The flow of electric current is measured in amperes. One ampere is equivalent to the movement of many billions of electrons past a point in the circuit in one second. Currents in the neighborhood of an ampere are required for heating the filaments of small power tubes. The direct currents used in amateur radio equipment, usually are not so large, and it is customary to measure such currents in milliamperes. One milliampere is equal to one onethousandth of an ampere, or 1000 milliamperes equals one ampere.

In assigning a value to an alternating current or voltage, it is necessary to take into account the difference between direct and alternating currents. A "d.c. ampere" is a measure of a stealy current, but the "a.c. ampere" must measure a current that is continually varying in amplitude and periodically reversing direction. 'To put the two on the same basis, an a.c. ampere is defined as the amount of current that will cause the same heating effect (see later section) as one ampere of steady direct current. For a sine-wave alternating current, this effective (or r.m.s.) value is equal to the maximum amplit ude of the current (A_{1} or A_{2} in Fig. 2-1C) multiolied by 0.707. The instantaneous value of an alternating current is the value that the current measures at any selected instant in the cycle.

If all the instantaneous values in a sinewave alternating current are averaged over a half-cycle, the resulting figure is the average value of the alternating current. It is equal to 0.636 times the maximum amplitude. The average value is useful in connection with rectifier systems, as described in a later chapter.

These definitions of units apply to a.c. voltage as well as to current.

FREQUENCY AND
 WAVELENGTH

Frequency Spectrum

The electrical energy supplied for household use usually has a frequency of 60 cycles per second. Frequencies ranging from about 15 to 15,000 cycles per second are called audio frequencies, because the vibrations of air particles that our ears recognize as sounds occur at the same rate. Audio frequencies (abbreviated a.f.) are used to actuate loudspeakers and thus create sound waves.

Frequencies above about 15,000 cycles are called radio frequencies (r.f.) because they are
useful in radio transmission. Frequencies all the way up to and beyond $10,000,000,000$ cycles have been used for radio purposes. At radio frequencies the numbers become so large that it becomes convenient to use a larger unit than the cycle. 'Two such units in everyday use are the kilocycle, which is equal to 1000 creles and is abbreviated kc., and the megacycle, which is equal to $1,000,000$ cycles or 1,000 kilocycles and is abbreviated Mc. The accompanying table shows how to convert frequencies expressed in one unit into frequencies in another unit.

The various radio frequencies are divided off into elassifications for ready identification. These classifications, listed below, constitute the frequency spectrum so far as it extends for radio purposes at the present time.

Frequency	Classification	Abbreviation
10 to 30 kc .	Very-low frequencies	v.l.f.
30 to 300 kc .	Low frequencies	l.f.
300 to 3000 kc .	Medium frequencies	II.f.
3 to 30 Mc .	High frequencies	h.f.
30 to 300 Mc .	Very-high frequencies	v.h.f.
300 to 3000 Mc .	ITrahish frepumetes	u.h.f.
3000 to 30,000 Mc.	superhich frequencies	s.h.f.

Wavelength

We said carlicr that radio waves are traveling fields of electric and magnetic force. These fields travel at great speed - so great that, so far as we can observe, "cause" and "effect" are simultaneous. Nevertheless, it does take a definite amount of time for the effect of a field set up at one point to be felt at a point some distance away.

Radio waves travel at the same speed as light - $3(0,000,000$ meters or about 186,000 miles a second. They are always set up by a radio-frequency current flowing in a circuit, because the rapidly-changing current sets up a magnetic field that changes in the same way, and the varying magnetic field in turn sets up a varying elcetric field. And whenever this happens, the two fields move outward at the speed of light.

Suppose our r.f. current has a frequency of $3,000,000$ cycles per second. The fields, then, will go through complete reversals (one cycle) in $1 / 3,000,000$ second. In that saune period of time the fields - that is, the wave - will move $300,000,000 / 3,000,000$ meters, or 100 meters. (The meter is the unit of length commonly used in all sciences. We could use miles, feet, or inches, though, if those units were more convenient.) By the time the wave has moved that distance the next cycle has begun and a new wave has started out. The first wave, in other words, covers a distance of 100 meters before the begimning of the next, and so on. This distance is the "length" of the wave, or wavelength.

The longer the time of one cycle - that is, the lower the frequency - the greater the distance occupied by each wave and hence the longer the wavelength. The relationship be-
tween wavelength and frequency is shown by the formula

$$
\lambda=\frac{300,000}{f}
$$

where $\lambda=$ Wavelength in meters
$f=$ l'requency in kilocycles
01

$$
\lambda=\frac{300}{f}
$$

wherc $\lambda=$ Wavelength in meters
$f=$ Frequency in megacycles

Example: The was velength corresponding to a
frequency of 3650 kilocycles is

$$
\lambda=\frac{300,000}{36: 50}=8: .2 \text { meters }
$$

Most of our dealings are with frequency, if for no other reason than that it can be measured much more accurately than wavelength. However, we cannot ignore wavelength; it enters into the calculation of the size of "linear" circuits such ats antennts.

Resistance

The ease with which we can force an electric current through a conductor varies with the material, shape and dimensions of the eonductor. (iiven two conductors of the same size and shape, but of different materials, the amount of current that will flow when a given e.m.f. is applied to the conductor will be found to vary with what is called the resistance of the material. The lower the resistance, the greater the current for a given value of e.m.f.

Resistance is measured in ohms. A circuit has a resistance of one ohm when an applied e.m.f. of one volt causes a current of one ampere to flow. 'The resistivity of a material is the resistance, in ohms, of a cube of the material measuring one centimeter on each edge. One of the best conductors is copper, which is why this metal is so widely used in electrical circuits. It is frequently convenient, in making resistance calculations, to compare the resistance of the material under consideration with that of a copper conductor of the same size and shape; Table 2-I gives the ratio of the rexistivity of the material to that of copper.

The longer the path through which the current flows the higher the resistance of that conduetor. For direct current and low-frequency alternating currents (up to a few thousand cycles per second) the resistance is iwersely proportional to the cross-scctional area of the path the current must travel; that is, given two conductors of the same material and having the same length, but differing in crosssectional area, the onc with the larger area will have the lower resistance.

Resistance of Wires

It is readily possible to combine all these statements about resistance in a single formula that would enable us to calculate the resistance of conductors of any size, shape and material. llowever, in most practical cases the problem will be to determine the resistance of a round wire of given diameter and length - or its. opposite: finding a suitable size and length of wire to supply a desired amount of resistance. such problems can be easily solved with the help, of the information in the copper-wire table in Chapter Twenty-Four. This table gives the resistance, in ohms per thousand feet, of each standard wire size.

Fxample: Suppose a resistance of 3.5 ohms is needed and some No. 28 wire is on hand. The wire table in Chapter 24 shows that No. 28 haw resistance of 66.17 ohms per thousand feet. Nince the desired resistance is 3.5 ohms, the length of wire required will be

$$
\frac{3.5}{66.17} \times 1000=52.89 \text { feet. }
$$

Or, suppose that the resistance of the wire in the circuit must not exeeed 0.05 ohm and that the length of wire required for making the connections totals 14 feet. Then

$$
\frac{14}{1000} \times R=0.0 .5 \text { ohm }
$$

where h is the maximum allowable resistance in ohms ber thousand feet. Rearranging the formula gives

$$
R=\frac{0.05 \times 1000}{14}=3.57 \text { ohms } / 1000 \mathrm{ft}
$$

Reference to the wire table shows that No. 15 is the smallest size having a resistanee less than this value.
When the wire is not copper, the resistance values given in the wire table in Chapter Twenty-Four should be multiplied by the ratios given in Table 2-1 to obtain the resistance.

Example: If the wire in the first example were iron instead of copper the length required for 3.5 ohnss would be

$$
\frac{3.5}{66.17 \times 5.6 . \%} \times 1000=9.35 \text { feet. }
$$

Temperature Effects

The resistance of a conductor changes with its temperature. . Nthough it is seldom necessary to consider temperature in making the

TABLE 2-I	
Relative Resistivity of Metals	
Material	Resistivity Compared to Copper
Aluminum (pure).	1.70
Brass.	3.57
C'adminm	5.26
(hromitum.	1.52
(oppler (hard-drawn)	1.12
(oupher (anmealed).	1.00
Iron (purs)	5.65
Ifatl. .	14.3
Nickel. 6.25 to 8.33
Phosphor Bronze	2.78
silver......	0.94
tin.	7.70
Zinc.	3.54

resistance calculations required in amateur work, it is well to know that the resistance of practically all metallic conductors increases with increasing temperature. Carbon, however, acts in the opposite way; its resistance decrenses when its temperature rises. The temperature effect is important when it is necessary to maintain a constant resistance under atl conditions. sipecial materials that have little or no change in resistance over a wide temporature range are used in that case.

Resistors

Revistance has important uses in electrical and radio circuits. A "packange" of resistance made up into a single unit is called a resistor. Resistors having the same resistance value may be considerably different in size and construction. 'l'he flow of current through resistance causes the conduetor to become heated; the higher the resistance and the harger the current, the greater the amount of heat developed. Consequently, high-resistance resistors intended for earrying large currents must be physically lange so the heat can be radiated quickly to the surrounding air. If the resistor does not get rid of its heat quickly it might reach a temperature that would cause it to melt or burn. Types of resistors used in radio circuits are shown in the photograph.

Conductance

The reciprocal of resistance (that is, $1 / R$) is called conductance. It is usually reprosented by the symbol G, and the higher its value the greater the eonductivity of the cireuit. A circuit having large conductance has low resistance, and vice versa. In radio work the term is used chiefly in conneetion with vacuum-tube characteristics. The unit of conductanee is the mho. A resistance of one ohin has a conduetanee of one mho, a resistance of 1000 ohins has at conductance of 0.001 mho , and so on. A unit frequently used in connection with vatcuum tubes is the micromho, or one-millionth of a mho. It is the conductance of a resistance of one megohm.

Fig. 2-3- A simple circuit consisting of a battery and resistor.

OHM'S LAW

The simplest form of electric circuit is a battery with a resistance commeted to its terminals, as shown by the symbols in Fig. 2-3. A complete circuit must have an umbroken path so current can flow out of the battery, through the apparatus connected to it, and back into the battery. 'The circuit is broken, or open, if a connection is removed at any point. . switch is a device for making and breaking eomections and thereby closing or opening the eircuit, either allowing current to flow or preventing it from flowing.

The values of eurrent, voltage and resistance in a eircuit are by no means independent of each other. The relationship between them is known as Ohm's Law. It can be stated as follows: 'The current flowing in a circuit is directly proportional to the applied e.m.f. and inversely proportional to the resistance. Lxpressed is an equation, it is

$$
I \text { (amperes) }=\frac{E(\text { volts })}{R(\text { (ohms })}
$$

The equation above gives the value of current when the voltage and resistance are knewn. It may be transposed so that any of the three quantities masy be found when the other two are known:

$$
E=I R
$$

(that is, the voltage aeting is equal to the current in amperes multiplied by the resistance in ohms) and

$$
R=\frac{E}{I}
$$

(or, the resistance of the eircuit is equal to the applied voltage divided by the current).

All three forms of the equation are used almost constantly in radio work. It must be

Ty yow of resintors med in ralion equipnown. 'Ihase in the frarexromol with wire loads are carlon typers, ranging in *ige from lawath at the left to 2 walta at the right. The larger resistor: He resi-tance wire wound on ceramitulec: sizes shewn range from 5 watt to lof watts. Three are the adjustathe type, using a sliding contact on an exposed section of the resistame winding.
remembered that the quantities are in volls, ohms and amperes; other units cannot be used in the equations without first being converted. For example, if the current is in milliamperes it must be changed to the equivalent fraction of an ampere before the value can be substituted in the equations.

Trable 2-ll shows how to eonvert between the various units in common use The prefixas attached to the basir-unit name indicate the nature of the unit. These prefixes are:
micro - one-millionth (abbreviated μ)
milli - one-t housamith (abbreviated m)
kilo - one thousand (abbreviated $/$)
mega - one million (abbreviated M)
For example, one microvolt is one-millionth of a volt, and one megohm is $1,000,000$ ohms. There are therefore $1,000,000$ microvolts in one volt, and 0.0000001 megohm in one ohm.

The following examples illustrate the use of Ohm's Law:

The current flowing in a resistanere of 20,000 ohms is 150 millianmeres. What is the voltage? since the voltage is to be found, the equation to use is $E=I R$. The current must first be converted from milliamperes to amperes, and reference to the table shows that to do so it is necessary to divide ly 1000. Therefore,

$$
E=\frac{1.50}{1(100)} \times 20.000=30000 \text { volts }
$$

When a soltage of 1 in is applied to a circuit the eurrent is measured at 2.5 amperes. What is the resistance of the cireuit? In this case R is the unknown, so

$$
R=\frac{E}{1}=\frac{150}{2.5}=60 \text { ohms }
$$

No conversion was necessary becallse the voltare and enrrent were given in volts and amperes. How muth current will flow if $\mathbf{2 5 0}$ volts is tupflied to a $50(00$-ohm resistor? Since I is unknown,

$$
I=\frac{E}{R}=\frac{2.00}{\sin 0}=0.0 .5 \text { ampere }
$$

Milliampere units would be nore eonvenient for the current, and $0.05 \mathrm{amp} . \times 1000=50 \mathrm{mil}-$ liamperes.

SERIES AND PARALLEL RESISTANCES

Very few atetual eleetric circuits are as simple as the illustration in the preceding section. Commonly, resistances are found connected in a variety of ways. The two fundamental methods of connecting resistances are shown in Fig. 2-4. In the upper drawing, the current flows from the source of e.m.f. (in the direetion shown by the arrow, let us say) down through the first resistance, R_{1}, then through the second, R_{2}, and then batek to the source. These resistors are connected in series. The current everywhere in the circuit has the same value.

In the lower drawing the current flows to the common connection point at the top of the two resistors and then divides, one part of it Howing through R_{1} and the other through R_{2}. At the lower connection point these two currents again combine; the total is the same as the current that flowed into the upper common connection. In this ease the two resistors are eonnected in parallel.

TABLE 2-11 Conversion Values for Fractional and Multiple Units			
To change from	To	Divide by	Multiply by
C"nits	Micro-units Milli-units Kilo-units Mega-units	$\begin{gathered} 1000 \\ 1,010,000 \end{gathered}$	$\begin{gathered} 1,000,000 \\ 1000 \end{gathered}$
Micro-units	Milli-units Units	$\begin{gathered} 1000 \\ 1,0(6,0,00 \end{gathered}$	
Milli-muts	Mis(0)-1ntits Cuits	1010	1000
Kilo-units	Units Mega-units	1000	1000
Mega-unit:	('nits Kilo-units		$\begin{gathered} 1,000,(000 \\ 1000) \end{gathered}$

Resistors in Series

When a eircuit has a number of resistances connected in series, the total resistance of the eircuit is the sum of the individual resistances. If these are numbered R_{1}, R_{2}, R_{3}, etc., then

$$
R(\text { total })=R_{1}+R_{2}+R_{3}+R_{4}+\ldots .
$$

where the dots indicate that as many resistors as necessary thay he added.

Example: Suppose that three resistors aro comneted to a somre of e.m.f. as shown in Fig. $2-5$, The e.m,f, is 2.00 volts, h_{1} is intol ohms, R_{2} is 20,000 ohms, and R_{3} is $\mathbf{w o 0} 0$ ohms. Thic total resistanee is then

$$
\begin{aligned}
R=K_{1}+R_{2} & \left.+R_{3}=\operatorname{in00}\right)+20,000+5000 \\
& =33,000 \text { olans }
\end{aligned}
$$

The eurrent flowing in the circuit is then

$$
I=\frac{E}{R}=\frac{2.50}{33,000}=0.007 .57 \mathrm{amp} .=7.57 \mathrm{ma}
$$

(We need not carry calculations beyond three significant fipures, and often two will suffice becanse the acearacy of measurements is seldom better than a few per cent.)

Voltage Drop

Ohm's Law applies to rny prort of a circuit as well as to the whole circuit. Although the current is the same in all three of the resistances in the example, the total voltage divides

Fig. 2-4-- Resistors connceted in series and in parallel.
\approx

among them. The voltage appearing across each resistor can be found from Ohm's Law.

Example: If the voltage across R_{1} (Fig. 2-5) is called E_{1}, that across R_{2} is called E_{2}, and that across R_{3} is called E_{3}, then

$$
\begin{aligned}
& E_{1}=I R_{1}=0.00757 \times 5000=37.9 \text { volts } \\
& E_{2}=I R_{2}=0.00757 \times 20,000=151,4 \text { volts } \\
& E_{3}=I R_{3}=0.00757 \times 8000=60.6 \text { volts }
\end{aligned}
$$

The total voltage must equal the sum of the individual voltuge drops:

$$
\begin{aligned}
E=E_{1}+E_{2}+E_{3}=37.9+151.4 & +60.6 \\
& =249.9 \text { volts }
\end{aligned}
$$

The answer would have been more nearly exact if the current had been calculated to more decimal places, but as explained above a very high order of accuracy is not necessary.
In a simple series circuit like that in Fig. 2-5, the voltage drop across each resistance can be calculated very simply, if only the drop and not the current is wanted. The drop across each resistor is proportional to the ratio of the individual resistance to the tolal resistance. Thus

$$
\begin{aligned}
& E_{1}=\frac{R_{1}}{R_{1}+R_{2}+R_{3}} \times 250 \\
& =\frac{5000}{3000+20,000+8000}=\frac{5000}{33,000} \times 2.50 \\
& =37.8 \text { volts }
\end{aligned} \quad \begin{aligned}
E_{2}=\frac{20,000}{33,000} \times 250=151.5 \text { volts }
\end{aligned} \quad \begin{aligned}
& E_{3}=\frac{8000}{33,000} \times 250=60.5 \text { volts }
\end{aligned}
$$

Fig. 2.5-An example of reaistors in series. The solution of the circuit is worked out in the text.

In problems such as this considerable time and trouble can be saved, when the current is small enough to be expressed in milliamperes, if the resistance is expressed in kilohms rather than ohms. When resistance in kilohms is substituted directly in Ohm's Law the current will be in milliamperes if the e.m.f. is in volts.

Example: Since 5000 ohms $=5$ kilohms, 20,000 ohms $=20$ kilohms, and 8000 ohms $=8$ kilohms, the equations above become

$$
\begin{aligned}
I & =\frac{E}{R}=\frac{2.50}{33}=7.57 \mathrm{ma} . \\
E_{1} & =I R_{1}=7.57 \times 5=37.9 \text { volts } \\
E_{2} & =I R_{2}=7.57 \times 20=1.51 .4 \text { volts } \\
E_{3} & =I R_{3}=7.57 \times 8=60.6 \text { volts }
\end{aligned}
$$

Resistors in Parallel

In a circuit with resistances in parallel, the total resistance is less than that of the lowest value of resistance present. This is because the total current is always greater than the current in any individual resistor. The formula for: finding the total resistance of resistances in parallel is

$$
R=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+\cdots \cdot}
$$

Fig. 2.6 - An example of resistors in parallel. The solution is worked out in the text.
where the dots again indicate that any number of resistors can be combined by the same method. For only two resistances in parallel (a very common case) the formula is

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Fxasule: If a inin-ohm resistor is paralleled with one of 1200 ohms, the total resistance is

$$
\begin{aligned}
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{500 \times 1200}{500+12100}= & \frac{600,000}{1700} \\
& =353 \text { ohtus }
\end{aligned}
$$

It is probably easier to solve practical problems by a different method than the "reciprocal of reciprocals" formula. Suppose the three resistors of the previous example are conneeted in parallel as shown in Fig. 2-6. The same e.m.f., 2.50 volts, is applied to all three of the resistors. The current in each can be found from Ohm's Law as shown below, I_{1} being the current through R_{1}, I_{2} the current through R_{2} and I_{3} the current through R_{3}.

For convenjence, the resistance will be expressed in kilohms so the current will be in milliamperes.

$$
\begin{aligned}
& I_{1}=\frac{E}{R_{1}}=\frac{250}{5}=50 \mathrm{ma} \\
& I_{2}=\frac{E^{\prime}}{R_{2}}=\frac{350}{20}=12.5 \mathrm{ma} \\
& I_{3}=\frac{E}{R_{3}}=\frac{350}{8}=31.25 \mathrm{ma}
\end{aligned}
$$

The total current is
$I=I_{1}+I_{2}+I_{3}=50+12.5+31.25$

$$
=93.75 \mathrm{ma}_{2}
$$

The total resistance of the circuit is therefore

$$
R=\frac{E}{I}=\frac{250}{93.75}=2.66 \text { kilohms }(=2660 \mathrm{ol} \mathrm{~mm})
$$

Resistors in Series-Parallel

An actual circuit may have resistances both in parallel and in series. To illustrate, we use the same three resistances again, but now connected as in Fig. 2-7. The method of solving such a circuit is as follows: Consider R_{2} and R_{3} in parallel as though they formed a single resistor. Find their equivalent resistance. Then this resistance in series with R_{1} forms a simple

Fig. 2.7 - An example of resistors in series-parallel. The solution is worked out in the text.
series circuit, as shown at the right in Fig. 2-7.

> Example: The first step is to find the equiralent resistance of R_{2} and R_{3}. From the formula for two resistances in parallel,
$R_{\text {eq. }}=\frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{20 \times 8}{20+8}=\frac{160}{28}$
$=5.71$ kilohms
The total resistance in the circuit is thm $K=R_{1}+R_{\text {p.1. }}=5+5.71$ kilohns
$=10.71$ kitohms
The current is

$$
I=\frac{\boldsymbol{E}}{\boldsymbol{R}}=\frac{2.50}{10.71}=23.4 \mathrm{~ms}
$$

The voltage drops across R_{1} athd $R_{\text {r.j. }}$ are $E_{1}=I R_{1}=23.4 \times \overline{5}=117$ volts $E_{2}=I R_{\text {eq. }}=23.4 \times 5.71=133$ volts with sufficient accuracy. These total 230 volts, thus checking the calculations so far, berause the sum of the voltare drops mist equal the total voltage. Since E_{2} appears across both R_{2} and R3.

$$
\begin{aligned}
& I_{2}=\frac{E_{2}}{R_{2}}=\frac{133}{20}=6.7 .3 \mathrm{ma} . \\
& I_{3}=\frac{E_{2}}{R_{3}}=\frac{133}{\mathrm{~s}}=16.63 \mathrm{~m} .3 .
\end{aligned}
$$

where $I_{2}=$ Current through R_{2}
$I_{3}=$ Current through R_{3}
The total is 23.35 ma., which cherhs rlowely enough with 23.4 ma., the current through the whole circuit.
There is a general rule for handling such complex cireuits: Reduce the various resistances in paradlel or series in parts of the circuit to equivalent resistances that then can be handled ats single resistances in a simpler circuit. Eventuatly this process will lead to a simple series or parallel circuit from which the current and voltage drops can be calculated. Once these are known, Ohm's Law ean be applied to each part of the circuit to determine currents and voltage drops in individual resistances.

- POWER AND ENERGY

Power - the rate of doing work - is equal to voltage multiplied by current. The unit of electrical power, called the watt, is equal to one volt multiplied by one ampere. The equation for power therefore is

$$
P=E I
$$

where $I^{\prime}=$ Power in walts $E=$ E..m.f. in volts $I=$ Current in amperes
Common fractional and multiple units for power are the millizatt, one one-thousandth of a wat t, and the kilowalt, or one thousand watts.

$$
\begin{aligned}
& \text { Example: The plate voltage on a transmitting } \\
& \text { vacuum tube is } 2000 \text { volts and the plate current } \\
& \text { is } 350 \text { milliamperes, (The current must be } \\
& \text { changed to amperes before substitution in the } \\
& \text { formula, and so is } 0.35 \text { amp.) Then } \\
& \qquad P=E I=2000 \times 0.35=700 \text { watts }
\end{aligned}
$$

By substituting the Ohm's Law equivalents for E and I, the following formulas are obtained for power:

$$
\begin{aligned}
& P=\frac{E^{2}}{R} \\
& P=I^{2} R
\end{aligned}
$$

These formulas are useful in power calculations when the resistance and either the current or voltage (but not both) are known.

Example: How much power will be used up in a 4000 -ohm resistor if the voltage applied to it is 200 volts? From the erplation

$$
P=\frac{E^{2}}{R}=\frac{(200)^{2}}{40000}=\frac{40,000}{40(1)}=10 \text { watts }
$$

Or, suppose a current of 20 milliamperes flows through a 300 -ohm resistor. Then
$P=I^{2} R=(0.02)^{2} \times 300=0.0004 \times 300$
$=0.12$ watt
Note that the current wis changed from milliamperes to amperes before substitution in the formula.
Electrical power in a resistance is turned into heat. The greater the bower the more rapidly the heat is generated. We said carlier that if a resistor is to hande considerable power it must be large in size and must be const ructed in surh a way that the heat will be carried off rapidly by the suromading air. This prevents the temperature of the resistor from rising to a dangerous point. Resistors for radio work are made in many sizes, the smallest being rated to "dissipate" (or carry safely) about $1 / 4$ watt. The largest resistors used in amateur equipment will dissipate about 100 watts.

However, electrical power is not always turned into heat. The power used in ruming a motor, for example, is converted to mechanical motion. The power supplied to a radio transmitter is largely converted into radio waves. Power applied to a loudspeaker is changed into somnd waves. Nevertheless, every electrical device has some resistance, so a part of the power supplied to it is dissipated in that resistance and hence appears as heat even though the major part of the power may be converted to another form.

Efficiency

In deviees such as motors and vacuum tubes, the object is to obtain power in some other form than heat. Therefore power used in heating is considered to be a loss, because it is not the useful power. The efficiency of a device is the useful power output (in its converted form) divided by the power input to the device. In a vacuum-tube transmitter, for example, the object is to convert power from a d.c. sourec into a.c. power at some radio frequency. The ratio of the r.f. power output to the d.c. input is the efficiency of the tube. That is,

$$
E f f .=\frac{P_{o}}{P_{\mathrm{i}}}
$$

where $E f f$. = Efficiency (as a decimal)
$P_{o}=$ Power output (wattsi)
$I_{\mathrm{i}}=$ Power input (watts)
Example: If the d.c. input to the tube is 100 watts and the r.f. power output is 60 watts, the efficiency is

$$
E J_{0}=\frac{P_{11}}{P_{\mathrm{i}}}=\frac{t(0)}{100}=0.6
$$

Efficirncy is usnally expressed as a percentage; that is, it tells what per cent of the input power will be avalable as useful output. The efliciene ${ }^{-}$ in the above example is 60 per cent.

If a resistor is used purely for generating heat - as in ar electric heater or cooker - its efficiency is practically 100 per cent, hectuse all of the power input is converted into the desired form of power output. However, generating heat is usually not the desired end when resistors are used in radio equipment. The power losses in them are tolerated because very often a resistor performs a function that could not be conveniently or economically performed by any other device.

Energy

In residences, the power company's bill is for electric energy, not for power. What you pay for is the work that electricity does for you, not the rate at which that work is dome.

Electrical work is equal to power multiplied by time; the common unit is the watt-hour, which means that a power of one watt has been used for one hour. That is,

$$
W=P T
$$

where $W=$ Energy in watt-hours
$P=$ Power in watts
$T^{\prime}=$ Time in hours
Other energy units are the kilowatt-hour and the watt-second. These units should be selfexplanatory.

Encrgy units are sedtom used in amateur practice, but it is obvious that a small amonnt of power used for a long time can eventually result in a "power" bill that is just as large as though a large amomet of power had boon used for a very short time.

Capacitance and Condensers

Suppose two flat metal plates are placed close to each other (but not touching) as shown in Fig. 2-8. Normally, the phates will be electrically "neutral"; that is, the number of electrons in each plate will just balanee the number of atomic nuclei and there will be no electric charge.

Now suppose that the plates are connected to a battery through a switch, as shown. At the instant the switeh is closed, electrons will be attracted from the upper plate to the positive terminal of the battery, and the same number will be repelled into the lower plate from the negative battery terminal. This electron movement will continue until enough clect rons move into one plate and out of the other to make the c.m.f. between them the same as the e.m.f. of the battery. (That this must be so should be fairly obvious. The plates are conductors, and when they are comected to the battery, the battery voltage must appear between them.)

Fig. 2-8- A simple condenser.

If the switeh is opened after the plates have been charged, the top plate is left with a deficieney of eleetrons and the bottom plate with an excess. In other words, the plates remain charged despite the fact that the battery no longer is connected. They remain charged because with the switch open there is nowhere for the electrons to go. However, if a wire is touched between the two plates (short-circuiting them) the excess electrons on the bottom plate will flow through the wire to the upper plate, thus restoring electrical neutrality to looth plates. The plates have then been discharged.

The two plates constitute an electrical condenser, and from the discussion above it should be clear that a condenser possesses the property of storing clectricity. It should also be elear that during the time the electrons are moving - that is, while the condenser is being charged or discharged - a current is flowing in the circuit even though the circuit is "broken" by the gap between the condenser plates. However, the current flows only during the time of charge and discharge, and this time is usually very short. There can be no continnous flow of direct eurrent through a condenser.

The charge or quantity of electricity that ean be placed on a condenser when a given voltage is applied depends on its capacitance or capacity. The larger the plate area and the smatler the sparing between the plates the

TABLE 2-III		
Dielectric Constants and Breakdown Voltages		
Material	Dielectric Constant	Puncture Vollage*
Air	1.0	19. K-22.8
Aswinaty diga	5.7	240
Bakelite (barer-hase)	$3.5-5.5$	6.50-750
Bakclite (mira-filled)	5-6	47\%-600
(clluloid	4-16	
(cellulose acetate	6-8	$300-1000$
Fiber	5-7.5	150-180)
1-ormica	4.6-4.9	450
(ilass (wiudow)	7.6-8	2(0)-250
(ilass (photographie)	7.5	
(${ }^{\text {lass (lyrex) }}$	4.2-4.9	335
lucite	$2.5-3$	480-500
Mica	2.5-8	
Miea (clear India)	6.4-7.5	600-1500
Mycalex	7.4	250
l'aper	2.0-2.6	1250
Polvethylene	2.3-2.4	1000
Polystyrene	2.4-2.9	500)-2500
Porcelain	$6.9-7.5$	40-100
Kubter (hard)	--3.5	450
Steatite (low-loss)	4.4	150-315
Wood (dry oak)	2.5-6.8	

Fig. 2.9 - A multiple-plate conlenser. Nternale faltes are rommected together.
greater the capacitance. The capacitance also depends upon the kind of insulating material between the phates; it is smallest with air insulation, but substitution of other insulating materials for air may increase the capacitance of a condenser many times. The ratio of the capacitance of a condenser with some material other than air between the plates, to the arpacitance of the same condenser with air insulation, is called the specific inductive capacity or dielectric constant of that particular insulating material. The material itself is called a dielectric. The dielectric constants of a number of materials commonly used as diclectrics in condensers are given in Table $2-1$ II. If a sheet of photographic glass is sub)slituted for air betwern the plates of a condenser, for example, the caparitance of the condenser will be increasiod 7.5 times.

Units

The fundamental unit of capacitance is the farad, but this unit is much too large for practical work. Capacitance is usually measured in microfarads (abhreviated $\mu \mathrm{fd}$.) or micromicrofarads ($\mu \mu \mathrm{fd}$.). The nuicrofarad is one-millionth of a faral, and the micromicroftarad is one-millionth of a microfarad. Condensers nearly always have more than two phates, the alternate plates being connected together to form two sets as shown in Fig. 2-9. This makes it powsible to attain a farly large capacitance in a small space as compared to a two-phate condenser, since several plates of smaller individual area can be stacked to form the equisatent of a single large plate of the same total area. Also, all plates, except the two on the ends, are
exposed to plates of the other group on both sides, and so are twiee ats effective in increasing the eapacitance.

Tha formula for caleulating the capacitanco of a combenser is:

$$
\left(^{\prime}=0.224 \frac{K .1}{d}(n-1)\right.
$$

where $C=$ Capacitance in $\mu \mu \mathrm{fd}$.
$K=$ Dielectric constant of material thetween plates
$A=$ Area of one side of one plate in square inches
$d=$ scparation of plate surfaces in inches
$n=$ Number of plates
If the plates in one group do not have the same area as the plates in the other, use the area of the smaller plates.

$$
\begin{aligned}
& \text { Example: I " variable" condenser has } 7 \text { semi- } \\
& \text { circular plates on its rotor, the diameter of the } \\
& \text { seminircle being } 2 \text { inches. The stator has } 6 \text { rec- } \\
& \text { tangular whates, with a semidirenar ent-out to } \\
& \text { clear the rotor shaft, but otherwise large enough } \\
& \text { to face the entire area of a rotor plate. The diam- } \\
& \text { eter of the cut-out is } 1 / 2 \text { inch, The distance be- } \\
& \text { tween the adjacent surfaces of rotor and stator } \\
& \text { plates is } 1 / 8 \text { inch. The dielectric is air. What is } \\
& \text { the eapacitance of the condenser with the plater } \\
& \text { fully mushed? } \\
& \text { In this casp, the "effective" area is the areat } \\
& \text { of the rotor mate minus the area of the cut-out } \\
& \text { in the stator plate. 'She' area of either semicirele } \\
& \text { is } \pi r^{2} / 2 \text {, where } r \text { is the radius. The area of the } \\
& \text { rotor blate is } \pi / 2 \text {, or } 1 . i 5 \text { sfuare inches (the } \\
& \text { rallus is } 1 \text { inch). The arest of the eut-ont is } \\
& \pi\left({ }^{1} f\right)^{2} / 2=\pi / 32=0.10 \text { sthare inch, ajproxi- } \\
& \text { mately, The "effertive" area is thorafore } 1.057- \\
& 0.10=1.47 \text { square inches. The capacitance is } \\
& \text { therefore } \\
& C=0.224 \frac{K .1}{d}(n-1)=0.224 \frac{1 \times 1.47}{0.12 \overline{5}}(13-1) \\
& =0.224 \times 11.76 \times 12=31.6 \mu \mu \mathrm{fd} .
\end{aligned}
$$

(The answer is only appoximate, because of the difficulty of accurate measurement, plus a "fringing" effect at the elges of the plates that makes the actual capacitance a little higher,)
The usefulness of a condenser in electrical circuits lies in the fact that it can be eharged

Fixal amd variable condensers. The hootom row incholes, left to right. a ligh-voltage mica fixed comenterer, a tubular clectrolstic, tubular pajeer, two sizes of "mostage-stanlo" micas, a small ceramie tyme (lempenature vompensating), atn adjustuble condenser with ceramic insulation (for neutralizing in tramsmitters), a "button" ceramic comlenser, and an adjustable "paddink" condenser. Four sizes of variable condensers are shown in the second row. The twopate condenser with the micrometer adjustment is ured in tranmitura. The mondenser enclosed in the motal case is a high. voltage paper type wad in powerasuply filters.

with electricity at one time and then discharged at a later time. In other words, it is capable of storing electrical energy that can be released later when it is needed; it is an "electrical reservoir."

Condensers in Radio

-The types of condensers used in radio work differ considerably in physical size, construction, and capacitance. Some representative types are shown in the photograph. In "variable" condensers (almost always constructed with air for the dielectric) one set of plates is made movable with respect to the other set so that the capaeitance can be varied. "Fixed" condensers - that is, having fixed capacitance - also can be made with metal plates and with air as the dielectric, but usually are constructed from plates of metal foil with a thin solid or liguid dielectric sandwiched in between, so that a relatively large capacitance can be secured in a small unit. The solid dielectrics commonly used are mica and paper. An example of a liquid dielectric is mineral oil, but it is seldom used by itself in present-day condensers. The "electrotytic" condenser uses aluminum-foil plates with a semiliquid conducting chemical compound between them; the actual dielectric is a very thin film of insulating material that "forms" on one set of plates through electrochemical action when a d.c. voltage is applied to the condenser. The capacitance obtained with a given plate area in an electrolytic condenser is very large, compared with condensers having other dielectries, beeause the film is so extremely thin - much less than any thickness that is practicable with a solid dielectric.

Voltage Breakdown

When a high voltage is applied to the plates of a condenser, a considerable force is exerted on the electrons and nuclei of the dielectric. Because the dielectric is an insulator the electrons do not become detached from atoms the way they do in conductors. However, if the foree is great enough the dielectric will "break down'; usually it will puncture and may char (if it is solid) and permit current to flow. The breakdown voltage depends upon the kind and thickness of the dielectric, as shown in the table. It is not directly proportional to the thickness; that is, doubling the thickness does not quite double the breakdown voltage. If the dielectric is air or any other gas, breakdown is evidenced by a spark or arc between the plates, but if the voltage is removed the are ceases and the condenser is ready for use again. Breakdown will occur at a lower voltage between pointed or sharp-edged surfaces than between rounded and polished surfaces; consequently, the breakdown voltage between metal plates of given spacing in air can be increased by buffing the edges of the plates.

Since the dielectric must be thick to withstand high voltages, and since the thicker the
diclectric the smaller the capacitance for a given plate area, a high-voltage condenser must have more plate area than a low-voltage condenser of the same capacitance. Highvoltage high-capacitance condensers are physically large. The breakdown voltage of paperdielectric condensers can be increased by saturating the paper with a special insulating oil and by immersing the condenser in oil. Electrolytic condensers can stand 400 to 500 volts before the dielectric film breaks down.

Condensers in series and Parallel

The terms "parallel" and "series" when used with reference to condensers have the same circuit meaning as with resistanees. When

a number of condensers are connected in paralkel , as in Fig. 2-10, the total capacitance of the group is equal to the suin of the individual capacitances, so

$$
C(\text { total })=C_{1}+C_{2}+C_{3}+C_{4}+
$$

However, if two or more condensers are ronnected in series, as in the second drawing, the total capacitance is less than that of the smallest condenser in the group. The rule for finding the capacitance of a number of seriesconnected condensers is the same as that for finding the resistance of a number of parallelconnected resistors. That is,

$$
C(\text { total })=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\frac{1}{C_{4}}}+\ldots \ldots .
$$

and, for only two condensers in series,

$$
C(\text { total })=\frac{C_{1} C_{2}}{C_{1}+C_{2}}
$$

The same units must be used throughout; that is, all capacitances must be expressed in either $\mu \mathrm{fd}$. or $\mu \mu \mathrm{fd}$.; you cannot use both units in the same equation.

Condensers are connected in parallel to obtain a larger total capacitance than is available in one unit. The largest voltage that can be applied safely to a group of condensers in parallel
is the voltage that can be applied safely to the condenser having the lowest voltage rating.

When condensers are connected in series, the applied voltage is divided up among the various eondensers; the situation is much the same as when resistors are in series and there is a voltage drop arross each. However, the voltage that appears across cach condenser of a group connected in series is in inverse proportion to its capacitance, as compared with the caparitance of the whole group.

$$
\begin{aligned}
& \text { Example: Three condensers having capaci- } \\
& \text { tances of } 1 \text {, } 2 \text { and } 4 \mu \mathrm{ffl} \text {, respectivels, are con- } \\
& \text { nerted in series as shown in lig, 2-11. The total } \\
& \text { 'aparitance is } \\
& \begin{array}{r}
C=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}}=\frac{1}{\frac{1}{1}+\frac{1}{2}+\frac{1}{4}}=\frac{1}{7}=\frac{4}{7} \\
\\
=0.571 \mu \mathrm{fd} .
\end{array}
\end{aligned}
$$

The roltage across each condenser is proportional to the total canaritance divided by the capacitance of the condenser in quastion, so the voltage arross C_{1} is

$$
E_{1}=\frac{0.571}{1} \times 2000=1142 \text { volts }
$$

Similarly, the voltages across C_{2} and C_{3} are

$$
\begin{aligned}
& E_{2}=\frac{0.571}{2} \times 2000=571 \text { volts } \\
& E_{3}=\frac{0.571}{4} \times 2000=286 \mathrm{volts}
\end{aligned}
$$

totaling apmoximately 2000 volto, the applied voltage.

Fig. 2-11 - An example of condensers connected in series. The solution to this arrangement is worked ont in the text.

Condensers are frequently connected in series to enable the group to withstand a larger voltage (at the expense of decreased total capacitanee) than any individual condenser is rated to stand. One very common application of this arrangement is in the filter circuits of high-voltage power supplies. However, as shown by the previous example, the applied voltage does not divide equally among the condensers (except when all the capacitances are the same) so care must be taken to see that the voltage rating of no condenser in the group is exceeded. It does no good, for example, to connect a condenser in series with another if the capacitance of the second is many times as great as the first; nearly all of the voltage still will appear across the condenser having the smaller capacitance.

Inductance

It is possible to show that the flow of current through a conductor is accompanied by magnetie effectri; a compass needle brought near the conductor, for example, will be deflected from its normal north-south position. The stronger the current, the more pronounced is the magnetic effect. The current, in other words, sets up a magnetic field.

If a wire conductor is formed into a coil, the same current will set up a stronger magnetic field than it will if the wire is straight. Also, if the wire is wound around an iron or steel "core" the field will be still stronger. The relationship between the strength of the field and the intensity of the current causing it is expressed by the inductance of the conductor or coil. If the same current flows through two coils, for example, and it is found that the magnetic field set up by one coil is twiee as strong as that set up by the other, the first coil has twice as much inductance as the second. Inductance is a property of the conductor or coil and is determined by its shape and dimensions. The unit of inductance (corresponding to the ohm for resistance and the farad for capaeitance) is the henry.

If the current through a conductor or coil is made to vary in intensity, it is found that an e.m.f. will appear arross the terminals of the conductor or coil. This e.m.f. is entirely separate from the e.m.f. that is causing the current
to flow. The strength of this "induced" e.m.f. becomes greater, the greater the intensity of the magnetic field and the more rapidly the current (and hence the field) is made to vary. Since the intensity of the magnetic field depends upon the inductance, the induced voltage (for a given current intensity and rate of variation) is proportional to the inductance of the conductor or coil.

The fact that an e.m.f. is "induced" accounts for the name "inductance"-- or "self-inductance" as it is sometimes called. The induced e.m.f. tends to send a current through the circuit in the opposite direction to the current that flows because of the external e.m.f. so long as the latter current is increasing. However, if the current caused by the applied e.m.f. decreases, the induced e.m.f. tends to send current through the circuit in the same direction as the current from the applied e.m.f. The effect of inductance, therefore, is to oppose any change in the current flowing in the circuit, regardless of the nature of the change. It accomplishes this by storing energy in its magnetic field when the current in the circuit is being inereased, and by releasing the stored energy whon the current is being deereased. The effect is the same as the mechanical inertia that prevents an automobile from instantly coming up to speed when the accelerator pedal is pressed, and that prevents it from coming to
an instant stop when the bakes ape applied.
The values of inductance used in radio equipment vary over a wide range. Induetance of several henrys is required in power-supply (ireuits (sere chapter on Power supply) and to obtain such values of inductane it is meressary (1) use coils of many turns wound on iron cores. In radio-frequency arequts, the inductance values used will be measured in millihenrys (a millihenry is one one-thousandth of a henry) at low frequencies, and in microhenrys (one oncmillionth of a herry) at medium frequencies and higher. Athough eoils for ratio frequeneies may be wound on special iron cores (ordinary iron is not suitable) most r.f. coils mate and used by amateurs are the "air-core" type; that is, wound on an insulating form comasisting of nonmagnetic material.

Inductance Formula

The inductance of air-cote roils may be cateulated from the formula

$$
L(\mu \mathrm{h.})=\frac{0.2 u^{2} n^{2}}{3 a+9 b+10 \mathrm{c}}
$$

where $L=$ Inductance in microhenrys
$n=$ Average diameter of eoil in inches
$b=$ Length of winding in inches
$c=$ Radial depth of winding in inches
$n=$ Number of turns
The notation is explained in Fig. 2-12. The quantity c may be meglected if the coil only has one layor of wire.

$$
\begin{aligned}
& \text { Example: Assume a coil baving 35 turns of } \\
& \text { No, } 30 \text { d.s.c, wire on a form } 1.5 \text { inches in dian- } \\
& \text { - ter (onsulting the wire table (Chapter 24), } 35 \\
& \text { turns of No. } 30 \text { d.s.c. will oceluse } 0.5 \text { inch. There- } \\
& \text { fore, } a=1 . \overline{5}, b=0 . \overline{3}, n=3.3 \text {, and } \\
& L=\frac{0.2 \times(1.5)^{2} \times(3,5)^{2}}{(3 \times 1.5)+(9 \times(0.5)}=01.25 \mu \mathrm{~h} .
\end{aligned}
$$

To calculate the number of turns of a singlelayer coil for a required value of inductance:

$$
N=\sqrt{\frac{3 n+9 b}{0.2 n^{2}} \times L}
$$

Example: Suppose an inductance of 10 microhenrys is rembired. The form on which the coil is to be wound has a diameter of one inch and is long enomgh to acoommodate acoil lengito of 114 inelies. Then $a=1, b=1.25$, and $L=10$, substituting.

$$
\begin{aligned}
N= & \frac{(3 \times 1)}{0.2 \times 19 \times 1.25)} \times 10 \\
= & \sqrt{\frac{14.25}{0.2} \times 10}=\sqrt{712.5} \\
& =2(3.6 \text { turns. }
\end{aligned}
$$

A 27-111rn coil would he close enongh to the reruired value of inductance, in pratical work. Sine the roil will be 1.25 inelos long, the number of thrns fur ineh will be $27 / 1.25=21 . t^{2}$, (Consulting the wire table, we find that No. 18 enatholed wire (or ans statler size) "atn be msed. We oheain the proper indurtane by winding the rempited mmber of turns on the form and then adjusitige the sparing bet wern the turns to natie a uniformly-spated coil 1.25 inches long.
Fivery eonductor has induetance, even though the conductor is not formed into a coil. The inductance of a short length of straight wire is small - but it may not be noghigible, becalse if the current through it changes its intensity rapidly enough the induced voltage may be apprectiable. This will be the case in even a few inches of wire when an alternating current having a frequency of the order of 100 Itc. is flowing. However. at much lower frequencies the inductaner of the same wire could be left out of any caleulations becatuse the indueed voltage would be negligibly small.

Inductance caile for mower and ratio
 at the upher teft are "rhokes" for pawer-upply filters. The three pie". womal crils at the lowerr rizht are used as cloches in radio-frequency cireuits. The other cails are for r.f. tuthed circuits ranking in pewer from 25 watts to a kilowatt.

IRON-CORE COILS

We mentioned earlier that the inductance of a coil wound on an iron core is much greater than the inductance of the same coil wound on a nonmagnetic core. As a crude analogy, iron has a much lower "resistance" to the magnetic force than nonferrous materials, just as metals have murh lower resistaner to the flow of eleetric current than nommetallic substances.

Permeability

For example, suppose that the coil in Fig. $2-13$ is wound of an iron cole having a crosssectional area of 2 square inches. When a certain curront is sent through the coil it is found that there are 80,000 lines of force in the core. Since the area is 2 square inches, the flux density is 40,000 lines per square inch. Now suppose that the iron core is removed and the same current is maintained in the coil, and that the flux density without the iron core is found to be 50 lines per square inch. The ratio of the flux density with the given core material to the flux density (with the same coil and same current) with an air core is called the permeability of the material. In this case the permeability of the iron is $40,000 / 50=800$. The inductance of the coil is increased 800 times by inserting the iron core, therefore.

The permeability of a magnetic material is not constant, unfortunately, hut varies with the flux density. . It low flux densities (or with an air core) increasing the current through the coil will cause a proportionate increase in flux. For example, if there are 2000 lines per square inch at a given current, cloubling the current will inerease the flux density to 4000 lines per square inch. But this camnot be carricd on indefinitely; at some value of flux density, deproding upon the kind of iron, it will be found that doubling the current only increases the flux density loy, say, 10 per cont, At very high flux densities, incroasing the current may cause no appreciable change in the flux at all. When this is so, the iron is said to be saturated. "Saturation" causes a rapid decrease in permeability, because it decreases the ratio of flux lines to those obtainable with the same current and an air core. Obviously, the inductance of an iron-core coil is highly dependent upon the current flowing in the coil. In an air-core coil, the inductance is independent of current hecause air doos not "saturate."

In amateur work, iron-core coils such as the onc sketched in Fig. 2-i3 are used chiefly in power-supply equipment. They usually have direct current flowing through the winding, and the variation in inductance with current is usually undesirable, It may be overcome by kerping the flux density below the saturation point of the iron. This is done by cutting the core so that there is a small "air gap," as inticated by the dashed lines. The magnetic "resistance" introduced by such a gap is so large

- even though the gap is only a small fraction of an inch - compared with that of the iron that the gap, rather than the iron, controls the flux density. This naturally reduces the inductance compared to what it would be without the air gap - but only for small currents. It actually results in a higher inductance when the current is large; furthermore, the inductance is practically constant regardless of the value of the current. Further information on the construction of such inductance coils will be found in the chapter on Power Supply.

Eddy Currents and Hysteresis

When alternating current flows through a coil wound on an iron core the magnetic flux in the core goes through variations in intensity and direetion that correspond to the variations in the alternating current. Variations in a magnetic field cause an e.m.f. to be induced, as previously explained, and since iron is a conductor a current will flow in the core. Such currents (called eddy currents) represent a waste of power because they flow through the resistance of the iron and thus cause heating. Eddycurrent losses can be reduced by laminating the core; that is, by cutting it into thin strips. These strips or laminations must be insulated from each other by painting them with some insulating material such as varnish or shellace.

There is also another type of energy loss in an iron core: the iron tends to resist any change in its magnetic state, so a rapidlychanging current such as a.c. is forced continually to supply energy to the iron to overcome this "inertia." Losses of this sort are called hysteresis losses.

Didely-cument and hysteresis losses in iron increase rapidly as the frequency of the altornating current is increased. For this reason, we can use ordinary iron cores only at power and audio frequencies - up to, say, 15.000 cycles. Even so, a very good grade of iron or steel is necessary if the core is to perform well at the higher audio frequencies. Iron cores of this type are completely useless at radio frequencies.

For radio-frequency work, the losses in iron cores can be reduced to a satisfactory figure by grinding the iron into a powder and then mixing it with a "hinder" of insulating material in such a way that the individual iron particles are insulated from each other. By this means cores can be made that will function satisfac-

Fip. 2-I3-Typical construrtion of an iron-core coil. The small air gap prevents magnetie saturation of the iron and increases the inductance at high currents.
torily even through the v.h.f. range - that is, at frequencies up to perhaps 100 Mc . Because a large part of the magnetic path is through a nonmagnetic material, the permeability of the iron is low compared to the values obtained at power-supply frequencies. The core is usually in the form of a "slug" or cylinder which fits inside the insulating form on which the coil is wound. Despite the fact that, with this construction, the major portion of the magnetic path for the flux is in the air surrounding the coil, the slug is quite effective in increasing the roil inductance. By pushing the slug in and out of the coil the inductance can be varied over a considerable range.

INDUCTANCES IN SERIES AND PARALLEL

When two or more inductance coils (or inductors, as they are frequently called) are connected in series (Fig. 2-14, left) the total inductance is equal to the sum of the individual inductanees, proviled the coils are sufficirntly separated so that no coil is in the magnetic fioll of another. That is,

$$
I_{\text {total }}=L_{1}+L_{2}+I_{3}+L_{4}+\ldots \ldots
$$

If inductances are comected in parallel (Fig. 2-14, right), the total inductance is

$$
L_{\text {total }}=\frac{1}{\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}+\frac{1}{L_{4}}}+\ldots \ldots .
$$

and for two induetances in parallel,

$$
L=\frac{L_{1} L_{2}}{L_{1}+I_{2}}
$$

Thus the rules for combining inductances in series and parallel are the same as for resistances, if the coils are far enough apart so that rach is unaffected by another's magnetic field. When this is not so the formulas given above cannot be used.

In calculating the total inductance of a comhination of iron-core coils to be used in a d.c. circuit, it must be remembered that the inductance of each coil may change with the amount of current that flows through it. With air-core coils there is no such change.

Although there is frequent occasion to combine resistances or capacitances in series or
parallel in amateur work, there is relatively little necessity for such combinations of inductances - or rather, the cases that do arise in practice seldom require calculations.

MUTUAL INDUCTANCE

If two coils are arranged with their axes on the same line, as shown in Fig. 2-15, a current sent through Coil 1 will cause a magnetic field which "cuts" Coil 2. Consequently, an e.m.f. will be induced in Coil 2 whenever the field strength is changing. This induced e.m.f. is similar to the e.m.f. of self-induction, but since it appears in the second coil because of current flowing in the first, it is a " mutual" effect and

Fig. 2-15 - Mutnal inductance. When the switeh, S, is closed current flows through eonil No. l, setting ip) a magnetic fiell that induces an e.m.f. in the turns of coil No. 2.
results from the mutual inductance between the two coils.

Mutual inductance may be large or smatl. depending upon the self-inductanes of the eoils and the proportion of the flux set up by one coil that cuts the turns of the other coil. If all the flux set up by one coil cuts all the turns of the other coil the mutual inductance has its maximum possible value. If only a small part of the flux set up by one coil cuts the turns of the other the mutual inductance is relatively small. Two coils having mutual inductance are said to be coupled.

The ratio of actual mutual inductance to the maximum possible value that could be ohtained with two given coils is called the coefficient of coupling betwern the coils. Coils that have nearly the maximum possible mutual inductance are said to be closely, or tightly, coupled, but if the mutual inductance is relatively small the coils are said to be loosely coupled. The degree of coupling depends upon the physical spacing between the coils and how they are placed with respeet to each other. Maximum coupling exists when they have a common axis, as shown in Fig. 2-15, and are as close together as possible. The coupling is least when the coils are far apart or are placed so their axes are at right angles.

The maximum possible coefficient of cou-
pling is 1 . This value is closely approached only when the two coils are wound on a closed iron core. The coefficient with air-core coils may run as high as 0.6 or 0.7 if one coil is wound over the other, but will be much less if the two coils are separated.

If two coils having mutual inductance are connected to the same source of current, the magnetic field of one coil can either aid or oppose the field of the other. In the former case
the mutual inductance is said to be "positive"; in the latter case, "negative." Positive mutual inductance means that the total inductance is greater than the sum of the two individual inductances. Negative mutual inductance means that the total inductance is less than the sum of the two individual inductances. The mutual inductance may be made either positive or negative simply by reversing the connections to one of the coils.

Time Constant

Both inductance and capacitance possess the property of storing energy - inductance stores magnetic energy and capacitance stores clectrical energy. In the case of inductance. electrical energy is converted into magnetic energy when the current through the inductance is increasing, and the magnetic energy is converted back into electrical energy (and thereby restored to the circuit) when the current is decreasing. It is this alternate storing and releasing of energy that makes inductance oppose a change in the current through it. The self-induced e.m.f. is the means by which energy is put into and taken out of the magnetic field.

In the case of capacitance, energy is stored in the condenser (actually in the electric field between the plates) whenever the voltage applied to the condenser is increasing, and restored to the circuit when the applied voltage is decreasing. That is, current flows into the condenser in the first case, and out of the condenser in the second.

Capacitance and Resistance

In Fig. 2-16A a battery having an e.m.f., E, a switch, S, a resistor, R, and condenser, C, are connected in series. Suppose for the moment that R has zero resistance - in other words, is short-circuited - and also that there is no other resistance in the circuit. If S is now closed, condenser C will charge instantly to the battery voltage; that is, the electrons that constitute the charge redistribute themselves in a time interval so small that it can be considered to be zero. As soon as the condenser is fully charged the current flow stops completely. But since the condenser became fully charged in zero time, the current during the instantaneous charge must have been very large; mathemati-

Fig. 2.16 - Schematics illustrating the time constant of an $R C$ circuit.
cally, it would be infinitely large if the time actually was zero - this regardless of the actual number of electrons that moved. At the instant of closing the switch, therefore, the condenser can be considered to have a "resistance" of zero, a resistance that becomes an open circuit the instant the charge is complete.

If a finite value of resistance, R, is put into the circuit the condenser no longer can be charged instantaneously. If the condenser is initially uncharged, it will have zero "resistance" at the instant S is closed, but now the amount of current that can flow is limited by R. The infinitely-large current required to charge the condenser in zero time cannot flow through R, because even with C considered as a short-circuit the current in the circuit as a whole will be determined by Ohm's Law. If the battery e.m.f. is 100 volts, for example, and R is 10 ohms, the maximum current that can flow with C short-circuited is 10 amperes. Even this much current can flow only at the very instant the switch is closed. As soon as any current flows, condenser C begins to acquire a charge, which means that the voltare across the condenser plates rises. Since the upper plate (in Fig. $2-16 \mathrm{~A}$) will be positive and the lower negative, the voltage on the rondenser tends to send a current through the circuit in the opposite direction to the current from the battery. The voltage on the condenser, in other words, opposes the battery voltage. Immediately after the switch is closed, therefore, the current drops below its initial Ohm's Law value, and as the condenser continues to acquire charge and its potential rises, the current becomes smaller and smaller.

The length of time required to complete the charging process depends upon the capacitance of the condenser and the resistance in the circuit. More time is taken if either of these quantities is made larger. Theoretically, the charging process is never really finished, but practically the current eventually drops to a value that is smaller than anything that can be measured. The time constant of such a circuit is the length of time, in seconds, required for the voltage across the condenser to reach 63 per cent of the applied e.m.f. (this figc.re is chosen for mathematical reasons). The voltage

Fig. 2-17 - How the voltage across a condenser rises, with time, when a condenier is charged through a resistor. The lower curve shows the way in which the voltage deereascs across the condenser terminals on disharging through the same resistor.
across the condenser rises logarithmically, as shown by Fig. 2-17.

The formula for time constant is

$$
T=C R
$$

where $T=$ Time constant in seconds $C=$ Capacitance in farads $R=$ Resistance in ohms
If C is in microfarads and R in megohms, the time constant also is in seconds. The latter units usually are more convenient.

$$
\begin{aligned}
& \text { Example: The time constant of a } 2-\mu i d . \text { con- } \\
& \text { denser and a } 250,000 \text {-ohm resistor is } \\
& \qquad T=C R=2 \times 0.25=0.5 \text { second }
\end{aligned}
$$

If the applied e.m.f. is 1000 volts. the voltage across the condenser plates will be 630 volts at the end of $1 / 2$ second.

If a charged condenser is discharged through a resistor, as indicated in Fig. 2-1613, the same time constant applies. If there were no resistance, the condenser would discharge instontly when s was closed, and for instantaneous discharge the eurrent would have to be infinitely large. However, if R is present the current eannot exeeed the value given by Ohm's Law, where E is the voltage to which the condenser is charged and R is the resistance. since R limits the current flow, the condenser voltage cannot instantly go to zero, but it will decrease just as rapidly as the condenser can rid itself of its charge through R. When the condenser is discharging through a resistance, the time eonstant (calculated in the same way as above) is the time (in seconds) that it takes for the condenser to lose 63 per cent of its
voltage; that is, for the voltage to drop to 37 per cent of its initial value.

> Example: If the condenser of the example ahove is charged to 1000 volts, it will discharge to 370 volts in $1 / 2$ second through the $250,000-$ ohm resistor.

Inductance and Resistance

A comparable situation exists when resistance and inductance are in series. In Fig. 2.18, first consider L to have no resistance (which would be impossible, since the conductor of which it is composed always hats resistance) and also assume that R is zero. Then closing A would tend to send a current through the circuit. However, the instantancous transition from no current to a finite value, however small, represents a very rapid change in current, and a back e.m.f. is developed by the self-inductance of L that is practically equal and opposite to the applied e.m.f. The result is that the initial current is very small. However, the back e.m.f. depends upon the change in current and would cease to offer opposition if the current did not continue to increase. With no resistance in the circuit (which would lead to an infinitely-large current, by Ohm's Law) the current would increase forever, always inereasing just fast enough to keep the e.m.f. of self-induction equal to the applied e.m.f. Since such a circuit never would "settle down," the time constant of an inductive circuit without resistance is infinitely long.

When resistance is in series, Ohm's Law sets a limit to the value that the current can reach. In such a circuit the current is small at first, just as in our hypothetical case without resistance. But as the current inereases the voltage drop across R becomes larger. The back e.m.f. generated in L has only to equal the difference between E and the drop across R, because that difference is the voltage actually applied to L. This difference becomes smaller as the current approaches the final Ohm's Law value. Theoretically, the back e.m.f. never quite disappears (that is, the current never quite reaches the Ohm's Law value) but practically it becomes unmeasurable after a time. The difference between the actual current and the Ohm's Law value also becomes undetectable. The time required for this to occur is greater the larger the value of L, and is shorter the larger R is made. The time constant of an inductive eircuit is the time in seconds required for the current to reach 63 per eent of its final value. The formula is,

Fig. 2-18 - Time constant of an I / R rircuit.

$$
T=\frac{L}{R}
$$

where $T=$ Time constant in seconds
$L=$ Inductance in henrys
$R=$ Resistance in ohms
The resistance of the wire in a coil acts as though it were in series with the inductance.

$$
\begin{aligned}
& \text { Example: A coil having an inductance of } 20 \\
& \text { henrys and a resistance of } 100 \text { ohms has a time } \\
& \text { constant of } \\
& \qquad T=\frac{L}{R}=\frac{20}{100}=0.2 \text { second }
\end{aligned}
$$

if there is no other resistance in the circuit. If a d.c. e.mn.f. of 10 volts is applied to such a coil, the final current, by Ohm's Law, is

$$
I=\frac{E}{R}=\frac{10}{100}=0.1 \mathrm{amp} . \text { or } 100 \mathrm{ma}
$$

The current wonld rise from zero to 63 milliamperes in 0.2 second after closing the switch.
An induetor cannot be discharged in the same way as a condenser, because the magnetic field disappears as soon as current flow ceases. Opening S does not leave the inductor "charged." The energy stored in the magnetic field instantly returns to the circuit when S is opened. The rapid disappearance of the
field causes a very large voltage to be induced in the coil - ordinarily many times larger than the voltage applied, because the induced voltage is proportional to the speed with which the field changes. The common result of opening the switch in a circuit such as the one shown is that a spark or arc forms at the switch contacts at the instant of opening. If the inductance is large and the current in the circuit is high, a great deal of energy is released in a very short period of time. It is not at all unusual for the switch contaets to burn or melt under such circumstances.
"Filter" circuits used in power-supply equipment represent an excellent example of the application of the $C R$ or L / R time constant to practical work, although calculations of the type illustrated above are seldom necessary with such circuits. An understanding of the principles also is necessary in numerous special devices that are coming into widespread use in amateur stations, such as electronic keys, shaping of keying characteristics by vacuum tubes, and timing devices and control circuits. The time constants of eircuits are also important in such applications as automatic gain control and noise limiters.

Alternating Currents

PHASE

You cannot really understand alternating currents until you have a clear picture of phase. Essentially it means "time," or the time interval between the instant when one thing occurs and the instant when a second related thing takes place. As a homely example, when a baseball pitcher throws the ball to the catcher there is a definite interval, represented by the time of flight of the ball, between the act of throwing and the act of catching. The throwing and catching are therefore "out of phase" because they do not occur at exactly the same time.

Time differences are measured in seconds, minutes, hours, and so on. In the baseball example the ball might be in the air two seconds, in which case it could be said that the throwing and catching were out of phase by two seconds. However, simply saying that two events are out of phase does not tell us which one occurred first. To give this information, the later event is said to lag the first in phase, while the one that occurs first is said to lead. Thus, throwing the ball "leads" the catch by two seconds, or the catch "lags" the throw by two seconds.

In a.c. circuits the current amplitude changes continuously, so the concept of phase or time obviously has utility whenever it becomes necessary to specify the value of the current at a particular instant. Phase can be measured
in the ordinary time units, such as the second, but there is a more convenient method: since each a.c. cycle occupies exactly the same amount of time as every other cycle of the same frequency, we can use the cycle itself as the time unit. When this is done it does not matter whether one cycle lasts for a sixtieth of a second or for a millionth of a second so long ass all the cycles are the same. In other words, using the cycle as the time unit makes the specification or measurement of phase independent of the frequency of the current, so long as only one frequency is under consideration at a time. If there are two or more frequencies, the measurement of phase has to be modified just as the measurements of two lengths must be reconciled if one is given in feet and the other in meters.

Fig. 2-19 - An a.c. cycle is divided off into 360 degrees that are nsed as a measnre of time or phase.

The time interval or "phase difference" under consideration usually will be less than one cycle. Phase difference could be measured in decimal parts of a cycle, but for many reasons it is more convenient to divide the cycle into 360 parts or degrees. A phase degree is therefore $1 / 360$ of a cycle. (The reason for this choice of unit is this: In a sine-wave alternating current, the value of the current at any instant is proportional to the sine of the angle that corresponds to the number of degrees \rightarrow that is, length of time - from the time the cycle began. There is of course no actual "angle" associated with an alternating current.) Fig. 2-19 should help make this method of measurement clear.

Measuring Phase

In a steady alternating current cach cycle is exactly like the preceding one. To compare the phase of two currents of the same frequency, we measure between corresponding parts of cycles of the two currents, This is shown in Fig. 2-20. The current labeled A leads the one marked 13 by 45 degrees, since A 's cycles begin 45 degrees sooner in time. (It is equally correct to say that B lags A by 45 degrees.) 'The amplitudes of the individual currents do not affect their relative phases - current l ' is shown as having smaller amplitude than A. Regardless of the amplitudes, the lagging current always would begin its cycle (the start of the cycle is considered to be the point at which it is passing through zero and starting to increase in the positive direction) the same number of degrees after the current that leads begins its cycle.

Fig. 2-20 - When two waves of the same frequency start their cycles at slightly different times, the time difference or phase difference is measured in degrees. In this drawing wave B starts 45 degrees (one-eighth cycle) later than wave A, and so lags 45 (legrees lochind A.

Two important special cases are shown in Fig. 2-21. In the upper drawing B lags 90 degrees behind A; that is, its cycle begins just one-quarter cycle later than that of A. When one wave is passing through zero, the other is just at its maximum point. Note that (using A as a reference) in the first quarter cycle A is positive and K is negative; in the second quarter cycle both A and B are positive, but one is decreasing while the other is increasing; in the third quarter cycle \boldsymbol{A} is negative while B is positive; and in the last quarter cycle buth are negative.

In the lower drawing A and B are 180 degrees out of phase. In this case it does not matter which one we consider to lead or lag. B is always positive while A is negative, and vice versa. The two waves are thus completely out of phase.

Fig. 2-21 - Two important special cases of phase difference. In the upper drawing, the phase difference lietween A and B is 90 desrees; in the lower drawing the phase difference is 180 degree..

The waves shown in Figs. 2-20 and 2-21 could represent current, voltage, or both. A and B might be two currents in separate circuits, or A might represent voltage while B represented current in the same circuit. If A and B represent two currents in the same circuit (or two voltages in the same circuit) the actual current (or voltage) would take a single value at any instant. This value would equal the sum of the two at that instant. (We must take into account the fact that the sum of positive and negative values is actually equal to the difference between them.) The resultant current (or voltage) also is a sine wave, because adding any numbre of sine waves of the same frequency always results in a sine wave also of the same frequeney.

REACTANCE

The discussion of capacitance and inductance earlier in this chapter was confined to cases where only d.c. voltages were applied. To understand what happens in a condenser or inductance when an a.c. voltage is applied, it is necessary to become acquainted with a fundamental definition of electric current (as contrasted to the physical description of current given earlier). By definition, the amplitude of an electric current is the rate at which electric charge is moved past a point in a circuit. If a large quantity of charge moves past the observing point in a given time, the current is large; if the quantity is small in the same amount of time, the current is small.

Alternating Current in Condensers

The quantity of charge that can be placed on a condenser of given capacitance is propor-
tional to the voltage applied to the condenser. As we explained carlier, the condenser becomes charged instanlly if there is no resistance in the circuit. Suppose a sine-wave a.c. voltage is applied to a condenser in a circuit containing no resistance, as indicated in Fig. 2-22. For convenience, the first half-cycle of the applied voltage is divided into eight equal time intervals. In the period $O A$, the voltage increases from zero to 38 volts; at the end of this period the condenser is charged to that voltage. In the next interval the voltage increases to 71 volts; that is, 33 volts additional. In this second interval a smaller quantity of charge has been added than in the first interval, because the voltage rise during the second interval was smaller. Consequently the average current during the second interval is smaller than during the first. In the third interval, $B C$, the voltage rises from 71 to 92 volts, an increase of 21 volts. This is less than the voltage increase during the second interval, so the quantity of electricity added to the charge during the third interval is less than the quantity added during the second. In other words, the average current during the third interval is still smaller. In the fourth interval, $C D$, the voltage increases only 8 volts; the charge added is smaller than in any preceding interval and therefore the current also is smaller. By dividing the first quarter cycle into a very large number of intervals it could be shown that the current charging the condenser has the shape of a sine wave, just as the applied voltage does. But the current is largest at the beginning of the cycle and becomes zero at the maximum value of the voltage (the condenser cannot be charged to a higher voltage than the maximum applied, so no furt her (current can flow) so there is a phase difference of 90 degrees between the voltage and current. During the first quarter cycle of the applied voltage the current is flowing in the normal way through the circuit, since the condenser is being charged. Hence the current is positive during this first quarter cycle, as indicated by the dashed line in Fig. 2-22.

In the second quarter cycle - that is, in the time from D to H, the voltage applied to the

Fig. 2-22 - Voltage and current phase relationships when an alternating voltage is applied to a rondenser.
condenser decreases. During this time the condenser loses the charge it acquired during the first quarter cyele. Applying the same reasoning, it is plain that the current is small from D to E and continues to increase during each succeeding interval. However, the current is flowing against the applied voltage because the condenser is discharging into the circuit. Hence the current is negative during this quarter cycle.

The third and fourth quarter cycles repeat the events of the first and second, respectively, with this difference - the polarity of the applied voltage has reversed, and the current changes to correspond. In other words, an alternating current flows through a condenser when an a.c. voltage is applied to it. As shown by Fig. 2-22, the current starts its cycle 90 degrees before the voltage, so the current in a condenser leads the applied mollage by 90 degrees.

Capacitive Reactance

Remembering the definition of current as given at the beginning of this section, as well as the mechanism of current flow described above, it should be plain that the more rapid the voltage rise the larger the current, because a rapid change in voltage means a rapid transfer of charge into or out of the condenser. The rapidity with which the voltage changes depends upon two things: (1) the amplitude of the voltage (the greater the maximuin value, the faster the voltage must rise from zero to reach that maximum in the time of one-quarter cycle if the frequency is fixed); (2) the frequency (the higher the frequency, the more rapidly the voltage goes through its changes in a given time if the maximum amplitude is fixed). Also. the amplitude of the current depends upon the capacitance of the condenser, because the larger the capacitance the greater the amount of charge transferred during a given change in voltage.

The fact that the current flowing through a condenser is directly proportional to the applied a.c. voltage is extremely important. It is exactly what Ohm's Law says about the flow of direct current in a resistive circuit, and so leads us to the conclusion that Ohm's Law may be applied to an alternating-current circuit containing a condenser. Of course, a condenser does not offer "resistance" to the flow of alternating current, because the condenser does not consume power as a resistor does. It merely stores energy in one part of the cycle and returns it to the circuit in the next part. Furthermore, the larger the capacitance the larger the current; this is just the opposite of what we expect with resistance. And finally, the "opposition" offered by a condenser to alternating current depends on the frequency of that current. But with a given capacitance and a given frequency, the condenser follows Ohm's Law on a.c.

Since the upposition effect of a condenser is not resistance, it is called by another name, reactance. But because reactance holds back current flow in a similar fashion to resistance, the unit of reactance also is the ohm. The reactance of a condenser is

$$
X_{\mathrm{C}}=\frac{1}{2 \pi f C}
$$

where $X_{\mathrm{c}}=$ Condenser reactance in ohms
$f=$ Frequency in cyeles per second
$C=$ Capacitance in farads
$\pi=3.14$
The fundamental units (cycles per second, farads) are too large for practical use in radio eircuits. However, if the capacitance is in microfarads and the frequency is in megacycles, the reactance will come out in ohms in the formula.

$$
\begin{aligned}
& \text { Example: The reactance of a condenser of } 470 \\
& \mu \mu \mathrm{fd}(0.00047 \mu \mathrm{fd} \text {, at a frequency of } 7150 \mathrm{kc} \text {. } \\
& (7.15 \mathrm{Mc} .) \text { is } \\
& X=\frac{1}{2 \pi f C}=\frac{1}{6.28 \times 7.15 \times 0.00047}=47.4 \mathrm{ohms} \\
& \text { Inductive Reactance }
\end{aligned}
$$

In the case of an alternating voltage applied to a circuit containing only inductance, with no resistance, it must be remembered that in such a resistanceless circuit the current always changes just rapidly enough to induce a back e.m.f. that equals and opposes the applied voltage. In Fig. 2-23, the cycle is again divided off into equal intervals. Assuming that the current has a maximum value of 1 ampere, the instantancous current at the end of each interval will be as shown. The value of the induced voltage is proportional to the rate at which the current changes. It is therefore greatest in the intervals $0 . A$ and $G H$ and least in the intervals ('D) and' $D E$. The induced voltage actually is a sine wave (if the current is a sine wave) as shown by the dashed curve. The applied voltage, because it is always equal to and opposed by the induced voltage, is equal to and 180 degrees out of phase with the induced

Fig. 2.23 - Phase relationships between voltage and current when an alternating voltage is applied to au inductance.
voltage, as shown by the second dashed curve. The result, therefore, is that the current flowing in an inductance is 90 degrees out of phase with the applied voltage, and lags behind the applied voltage. This is just the opposite of the condenser case.

Just enough current will flow in an inductance to induce an e.m.f. that just equals the applied e.m.f. Since the value of the indueed c.m.f. is proportional to the rate at which the current changes, and this rate of change is in turn proportional to the frequency of the current, it should be clear that a small current changing rapidly (that is, at a high frequency) can generate a large back e.m.f. in a given inductance just as well as a large current changing slowly (low frequency). Consequently, the current that flows through a given inductance will decrease as the frequency is raised, if the applied e.m.f. is held constant. However, with both frequency and inductance fixed, the current will be larger when the applied voltage is increased, because the necessary rate of change in the current to induce the required back e.m.f. can only be obtained by having a greater total current flow under such circumstances. Again, when the applied voltage and frequency are fixed, the value of current required is less, as the inductance is made larger, because the induced e.m.f. also is proportional to inductance.

Just as in the capacitance case, the key point here is that - with the frequency and inductance fixed - an increase in the applied a.c. voltage causes a proportionate increase in the current. This is Ohm's Law again - and, again, the opposition effect is similar to, but not identical to, resistance. It is called inductive reactance and, like capacitive reactance, is measured in ohms. There is no energy loss in inductive reactance; the energy is stored in the magnetic field in one quarter cycle and then returned to the circuit in the next.

The formula for inductive reactance is

$$
X_{\mathrm{L}}=2 \pi f L
$$

where $X_{\mathrm{L}}=$ Inductive reactance in ohms $f=$ Frequency in cycles per second $L=$ Inductance in hemrys $\pi=3.14$
Example: The reactance of a coil having an inductance of 8 henrys, at a frepuency of 120 cycles, is
$X_{L}=2 \pi f L=6.28 \times 120 \times 8=6029$ ohms
In radio-frequency circuits the inductance values usually are small and the frequencies are large. If the inductance is expressed in millihenrys and the frequency in kilocycles, the conversion factors for the two units eancel, and the formula for reactance may be used without first converting to fundamental units. Similarly, no conversion is necessaly if the inductance is in microhenrys and the frequency is in megacycles.

Example: The reartance of a 15 -microhenry coil at a frequency of 14 Mc. is
$X_{\mathrm{L}}=2 \pi f h=6.28 \times 14 \times 15=1319$ ohms

Ohm's Law for Reactance

Ohm's Law for an a.c. circuit containing only reactance is

$$
\begin{aligned}
I & =\frac{E}{X} \\
E & =I X \\
X & =\frac{E}{I}
\end{aligned}
$$

where $E=$ E.m.f. in volts
$I=$ Current in amperes
$X=$ Reactance in ohms
The reactance may be either inductive or capacitive.

$$
\begin{aligned}
& \text { Example: If a current of } 2 \text { amperes is flowing } \\
& \text { through the conlenser of the previous example } \\
& \text { (reactance }=47.4 \text { ohms) at } 7150 \mathrm{kc} \text {., the volt- } \\
& \text { age drop) across the condenser is } \\
& \qquad E=I X=2 \times 47.4=94.8 \text { volts } \\
& \text { If } 400 \text { volts at } 120 \text { cycles is applied to the } 8 \text { - } \\
& \text { henry inductance of the previous example, the } \\
& \text { current through the coil will be }
\end{aligned}
$$

$$
I=\frac{E}{X}=\frac{400}{6029}=0.0663 \mathrm{amp} .(66.3 \mathrm{ma} .)
$$

These examples show that there is nothing complicated about using Ohm's Law for a reactive a.c. circuit. The question naturally arises, though, as to what to do when the circuit consists of an inductance in series with a capacitance. In such a case the same current flows through both reactances. However, the voltage across the coil leats the current by 90 degrees, and the voltage across the condenser lags behind the current by 90 degrees. The coil and condenser voltages therefore are 180 degrees out of phase.

A simple circuit of this type is shown in Fig. 2-24. The same figure also shows the current (heavy line) and the voltage drops across the inductance (E_{L}) and capacitance (E_{C}). It is assumed that X_{L} is larger than X_{C} and so has a larger voltage drop. Since the two voltages are completely out of phase the total voltage (E_{AC}) is equal to the difference between them. This is shown in the drawing as E_{L} E_{C}. Notice that, because E_{L} is larger than E_{C}, the resultant voltage is exactly in phase with E_{L}. In other words, the circuit as a whole simply acts as though it were an inductance an inductance of smaller value than the actual inductance present, since the effect of the actual inductive reactance is reduced by the capacitive reactance in series with it. If $\boldsymbol{X}_{\mathrm{C}}$ is larger than X_{L}, the arrangement will behave like a capacitance - again of smaller reactance than the actual capacitive reactance present in the circuit.

The "equivalent" or total reactance of any circuit containing inductive and capacitive reactances in series is equal to $X_{L}-X_{C}$. If

Fig. 2-24-Current and voltages in a circuit having inductive and capacitive reactances in series.
there are several coils and condensers in series, we simply add up all the inductive reactances, then add up all the capacitive reactances, and then subtract the latter from the former. It is customary to call inductive reactance "positive" and capacitive reactance "negative." If the equivalent or net reactance is positive, the voltage leads the current by 90 degrees; if the net reactance is negative, the voltage lags the current by 90 degrees.

Reactive Power

A curious feature of the drawing in Fig. $2-24$ is that the voltage drop across the coil is larger than the voltage applied to the circuit. At first glance this might seem to be an impossible condition. But it is not; the reason is that neither the coil nor condenser consumes power. Actually, when energy is being stored in the coil's magnetic field, energy is being returned to the circuit from the condenser's electric field, and vice versa. This stored energy is responsible for the fact that the voltages across react ances in series can be larger than the voltage applied to them.

It will be recalled that in a resistance the flow of current causes heating and a power loss equal to $I^{2} R$. The power in a reactance is equal to $I^{2} X$, but is not a "loss"; it is simply power that is transferred back and forth between the field and the circuit but not used up in heating anything. In the quarter cycle when the current and voltage in a reactance both have the same polarity, energy is stored in the field; in the quarter cycle when the current and voltage have opposite polarity the energy is returned to the circuit. To distinguish this "nondissipated" power from the power which is actually consumed, the unit of reactive power is called the volt-ampere instead of the watt, Reactive power is sometimes called "wattless" power.

- IMPEDANCE

Although resistance, inductive reactance and capacitive reactance all are measured in ohms, the fact that they all are measured by the same unit does not indicate that they can be combined indiseriminately. Reactance does not absorb energy; resistance docs. Voltage and current are in phase in resistance, but differ in phase by a quarter cycle in reactance. Furthermore, in inductive reactance the voltage leads the current, while in capacitive reactance the current leads the voltage. All these things must be taken into account when reactance and resistance are combined together in a circuit.

Fig. 2-25 - Resistance and induetive reartance connected in series.

In the simple circuit shown in Fig. 2-25, for example, it is not possible simply to add the rosistance and reactance together to obtain a quantity that will indicate the opposition offered by the combination to the flow of current. Inasmuch as both resistance and reactance are present, the total effect can obviously be neither wholly one nor the other. In circuits containing both reactance and resistance the opposition effect is called impedance. The unit of impedance is also the ohm.

If the inductance in Fig. 2-25 were shortcircuited, only the resistance would remain and the circuit would simply have a resistance of 75 ohms. In such a case the current and voltage would be in phase. On the other hand, if the resistance were short-circuited the circuit simply would have a reactance of 100 ohms, and the current would lag behind the voltage by one-quarter cycle or 90 degrees. When both are in the rircuit, it would be expected that the impedance would be greater than either the resistance or reactance. It might also be expected that the current would be neither in phase with the voltage nor lagging 90 degrees behind it, but would be somewhere between the complete in-phase and the $90-$ degree phase conditions. Both things are true. The larger the reactance compared with the resistance, the more nearly the phase angle approaches 90 degrees; the larger the resistance compared to the reactance, the more nearly the current approaches the condition of being in phase with the voltage.

It can be shown that resistance and reactance can be combined in the same way that a right-angled triangle is constructed, if the re-
sistance is laid off to proper scale as the base of the triangle and the reactance is laid off as the altitude to the same scale. This is also indicated in Fig. 2-25. When this is done the hypotenuse of the triangle represents the impedanee of the circuit, to the same scale, and the angle between Z and R (usually called θ and so indicated in the drawing) is equal to the phase angle between the applied e.m.f. and the current. It is unnecessary, of course, actually to draw such a triangle when impedance is to be calculated; by geometry,

$$
Z=\sqrt{R^{2}+X^{2}}
$$

In the case shown in the drawing,

$$
Z=\sqrt{(\overline{75})^{2}}+\overline{(100)^{2}}=\sqrt{\prime \sqrt{5,625}}=125 \text { olums. }
$$

The phase angle can be found from simple trigonometry. Its talugent is equal to X / R; in this case $X / R=100 / 75=1.33$. From trigonometric tables it can be determined that the angle having a tangent equal to 1.33 is approximately 53 degrees. Fortunately, in ordinary amateur work it is seldom necessary to give much consideration to the phase angle because in most practical cases the angle will either be nearly zero (current and voltage in phave) or close to 90 degrees (current and voltage approximately a quarter cycte out of phase).

A circuit containing resistance and capacitance in series (Fig. 2-26) can be treated in the same way. That is, the impertance is

$$
Z=\sqrt{R^{2}+N^{2}}
$$

and the phase angle again is the angle whose tangent is equal to X / K. It must be remembered, however, that in this case the current leads the applied e.m.f., while in the resistanceinductance case it lags behind the voltage.

In neither case is the impedance of the circuit equal to the simple arithmetical sum of the resistance and reactance. With $R=75$ ohms and $X_{\mathrm{L}}=100$ ohms, simple addition would give 175 ohms while the actual impedance is 125 ohms. However, if either X or R is very small compared to the other (say, $1 / 10$ or less) the impedance is very nearly equal to the larger of the two quantities. For example, if $R=1$ ohm and $X=10 \mathrm{ohms}$,

$$
\begin{aligned}
Z=\sqrt{R^{2}+X^{2}} & =\sqrt{(1)^{2}+(10)^{2}} \\
& =\sqrt{101}=10.05 \text { ohms }
\end{aligned}
$$

Hence if either X or R is at least 10 times as large as the other, the error in assuming that the impedance is equal to the larger of the two will not execed $1 / 2$ of 1 per cent, which is

Fig. 2-26-Re.

usually negligible. This fact is frequently useful.

In working with impedance, remember that one of its components is reactance and that the reactance of a given coil or condenser changes with the applied frequency. Therefore, impedance also changes with frequency. The change in impedance as the frequency is changed may be very slow if the resistance is considerably larger than the reactance. However, if the impedance is mostly reactance a change in frequency will cause the impedance to change practically as rapidly as the reactance itself changes.

Ohm's Law for Impedance

Since impedance is made up of resistance and reactance, Ohm's Law can be applied to circuits containing impedance just as readily as to circuits having resistance or reactance only. The formulas are

$$
\begin{aligned}
I & =\frac{E}{Z} \\
E & =I Z \\
Z & =\frac{E}{I}
\end{aligned}
$$

where $E=$ IE.m.f. in volts
$I=$ Current in amperes
$Z=I m p e d a n c e$ in ohms
Example: Assume that the e.m.f. applied to the cireuit of Fig. $2-25$ is 250 volts. Then

$$
I=\frac{E}{Z}=\frac{250}{125}=2 \text { amperest }
$$

The same ctrrent is flowing in both R and X_{L}, and Ohm's Law as applied to either of these quantities says that the voltage drop across R should equal $I R$ and the voltage drop across X_{L} should efual $I \mathrm{~N}_{\mathrm{L}}$. Substituting,

$$
\begin{aligned}
E_{\mathrm{R}}=I R & =2 \times 75=1.50 \text { volts } \\
E_{\mathrm{x}_{\mathrm{L}}} & =I \mathrm{~N}_{\mathrm{L}}=2 \times 100=200 \text { volts }
\end{aligned}
$$

The arithmetical sma of these voltages is preater than the applied voltage. However, the actual

Fig. 2.27 - Voltage drops around the circuit of Fig, 2.2.). Because of the phase relationships, the applied voltage is less than the arithmetical sum of the drops across the resistor and inductor.
sum of the two when the phase relationship is taken into account is equal to 250 volts r.m.s., as shown by Fig. 2-27, where the instantaneous values are addel throughout the cycle. Whenever resistance and reactance are in series, the individual voltage drops always add up, arithmetically, to more than the applied voltage. There is nothing fictitious about these voltage drops; they can be measured readily by suitable instruments. It is simply an illustration of the importance of phase in a.c. circuits.

A more complex series circuit, containing resistance, inductive reactance and capacitive reactance, is shown in Fig. 2-28. In this case it is necessary to take into account the fact that the phase angles between current and voltage differ in all three elements. Since it is a series circuit, the current is the same throughout. Considering first just the inductance and

Fig. 2-28 - Resistance, inductive reactance, and capacitive reactance in series.
capacitance and neglecting the resistance, the phase rolationships are the same as in Fig. 2-24. The net reactance in Fig. 2-28 is
$X_{\mathrm{L}}-X_{\mathrm{C}}=150-50=100$ ohms (inductive)
Since the series reactances can be lumped into one equivalent reactance, it is easy to find the impedance of the circuit by the rules previously given. The impedance of a circuit containing resistance, inductance and capacitance in series is

$$
Z=\sqrt{R^{2}+\left(X_{\mathrm{L}}-X_{c}\right)^{2}}
$$

Bxample: In the circuit of Fig. 2-28, the inmpedance is

$$
\begin{aligned}
Z & =\sqrt{R^{2}+\left(X_{\mathrm{L}}-x_{\mathrm{c}}\right)^{2}} \\
= & \sqrt{(20)^{2}+(150-50)^{2}}=\sqrt{(20)^{2}+(100)^{2}} \\
& =\sqrt{10,400}=102 \mathrm{ohms}
\end{aligned}
$$

The phase angle can be found from X / R, where $X=X_{L}-X c$.

Parallel Circuits

Suppose that a resistor, condenser and coil are connected in parallel as shown in lig. 2-29 and an a.e, voltage is applied to the combination. In any one branch, the current will be unchanged if 'one or both of the other two branches is disconnected, so long as the applied voltage remains unchanged. For example, I_{L}, the current through the inductance, will not change if both R and C are removed (although the total current, I, will change). Thus the current in each branch can be calculated quite simply by the Ohm's Law

Fig. 2-29-Resistance, inductance and capacitance in parallel. Instruments connerted as shown will read the total current, I, and the individual currents in the three branches of the circuit.
formulas given in the preceding sections, if the voltage and reactance or resistance are known. The total current, I, is the sum of the currents through all three branches - not the arithmetical sum, but the sum when phase is taken into account.

The currents through the various branches will be as shown in Fig. 2-30, assuming for purposes of illustration that X_{L} is smaller than X_{C} and that X_{C} is smaller than R, thus making I_{L} larger than I_{C}, and I_{C} larger than I_{R}. The current through C leads the voltage by 90 degrees and the current through L lags the voltage by 90 degrees, so these two currents are 180 degrees out of phase. As shown at E, the total reactive current is the difference between I_{C} and I_{L}. This resultant current lags the voltage by 90 degrees, because I_{L} is larger than I_{C}. When the reactive current is added to $I_{\mathbf{R}}$, the total current, I, is as shown at F. It can be seen that I lags the applied voltage by an angle smaller than 90 degrees and that the total current, while less than the simple sum (neglecting phase) of the three branch currents, is larger than the current through R alone.

The impedance looking into the parallel circuit from the source of voltage is equal to the applied voltage divided by the total or "line" current, I. In the case illustrated, I is greater than I_{R}, so the impedance of the circuit is less than the resistance of R. How much less depends upon the net reactive current flowing through L and C in parallel. If X_{L} and X_{C} are very nearly equal the net reactive current will be quite small because it is equal to the difference between two nearly equal currents. In such a case the impedance of the circuit will be almost the same as the resistance of R alone. On the other hand, if X_{L} and X_{C} are quite different the net reactive current can be relatively large and the total current also will be appreciably larger than I_{r}. In such a case the circuit impedance will be lower than the resistance of R alone.

The calculation of the impedance of parallel circuits is somewhat complicated. Fortunately, calculations are not necessary in most amateur work except in a special - and simple - case treated in a later section of this chapter.

Power Factor

In the circuit of lig. 2-25 an applied e.m.f. of 250 volts results in a current of 2 ainperes.

If tho circuit were purely resistive (containing no reactance) this would mean a power dissipation of $250 \times 2=500$ watts. However, the circuit actually consists of resistance and reactance, and only the resistance consumes power. The power in the resistance is

$$
P=I^{2} R=(2)^{2} \times 75=300 \text { watts }
$$

This is the actual power consumed by the circuit as compared to the apparent power input of 500 watts. The ratio of the power consumed to the apparent power is called the power factor of the circuit, and in the case used as an example would be $300 / 500=0.6$. Power factor is frequently expressed as a percentage; in this case, the power factor would be 60 per cent.
"Real" or dissipated power is measured in watts; apparent power, to distinguish it from real power, is measured in volt-amperes (just like the "wattless" power in a reactance). It is simply the product of volts and amperes and has no direct relationship to the power actually used up or dissipated unless the power factor of the circuit is known. The power factor of a purely resistive circuit is 100 per cent or 1 , while the power factor of a pure reactance is zero. In this illustration, the reactive power is
$V^{\prime} A($ volt-amperes $)=I^{2} X=(2)^{2} \times 100$
$=400$ volt-amperes.

Fig. 2.30-Phase relationships between branch currents and applied voltage for the circuit of Fig. 2.29. The total current through L and C in parallel ($/ \mathrm{L}+/ \mathrm{C}$) and the total current in the entire circuit (I) also are shown.

Complex Waves

It was pointed out early in this chapter that a complex wave (a "nonsinusoidal" wave) can be resolved into a fundamental frequency and a series of harmonic frequencies. When such a complex voltage wave is applied to a circuit containing reactance, the current through the circuit will not have the same waveshape as the applied voltage. This is because the reactance of a coil and condenser depend upon the applied frequency. For the second-harmonic component of a complex wave, the reactance of the coil is twice and the reactance of the condenser one-half their values at the fundamental frequency; for the third harmonic the coil reactance is three times and the condenser reactance one-third, and so on.
Just what happens to the current waveshape depends upon the values of resistance and
reactance involved and how the circuit is arranged. In a simple circuit with resistance and inductive reactance in series, the amplitudes of the harmonics will be reduced because the inductive reactance increases in proportion to frequency. When a condenser and resistance are in series, on the other hand, the harmonics are likely to be accentuated because the corr denser reactance becomes lower as the frequency is raised. When both inductive and capacitive reactance are present the shape of the current wave can be altered in a variety of ways, depending upon the circuit and the "constants," or values of L, C and R, selected.

This property of nonuniform behavior with respect to fundamental and harmonics is an extremely useful one. It is the basis of "filtering," or the suppression of undesired frequencies in favor of a single desired frequency or group of such frequencies.

Transformers

It has been shown in the preceding sections that, when an alternating voltage is applied to an inductance, an e.m.f. is induced by the varying magnetic field accompanying the flow of alternating current. If a second coil is brought into the same field, a similar e.m.f. likewise will be induced in this coil. This induced e.m.f. may be used to force a current through a wire, resistance or other electrical device connected to the terminals of the second coil.

Two coils operating in this way are said to be coupled, and the pair of coils constitutes a transformer. The coil connected to the suurce of energy is called the primary coil, and the other is called the secondary coil.

Types of Transformers

The usefulness of the transformer lies in the faet that electrical energy can be transferred from one circuit to another without direct connection, and in the process can be readily changed from one voltage level to another. Thus, if a device to be operated requires, for example, 115 volts and only a 440 -volt source is available, a transformer can be used to change the source voltage to that required. The transformer, of course, can be used only on a.c., since no voltage will be induced in the secondary if the magnetic field is not changing. If d.c. is applied to the primary of a transformer, a voltage will be induced in the secondary only at the instant of closing or opening the primary circuit, since it is only at these times that the field is changing.

As shown in Fig. 2-31, the primary and secondary coils of a transformer may be wound on a core of magnetic material. This increases the inductance of the eoils so that a relatively small number of turns may be used to induce
a given value of voltage with a small current. A closed core (one having a continuous maynetic path) such as that shown in Fig. 2-31 also tends to insure that practically all of the field set up by the current in the primary coil will cut the turns of the secondary coil. However, the core introduces a power loss because of hysteresis and eddy currents so this type of construction is practicable only at power and audio frequencies. The discussion in this section is confined to transformers operating at such frequencies.

Voltage and Turns Ratio

For a given varying magnetic field, the voltage induced in a coil in the field will be proportional to the number of turns on the coil. If the two coils of a transformer are in the same field (which is the case when both are wound on the same closed core) it follows that the induced voltages will be proportional to the number of turns on each coil. In the case of the primary, or coil connected to the source of power, the induced voltage is practi-

SYMBOLS
Fig. 2-31 - The transformer. Power is transferred from the primary coil to the secondary by means of the magnetic field. The upper symbol at right indicates an ironcore transformer, the lower one an air-core transformer.
cally equal to, and opposes, the applied voltage. Hence, for all practical purposes,

$$
E_{\mathrm{s}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} E_{\mathrm{p}}
$$

where $E_{\mathrm{s}}=$ Secondary voltage
$E_{\mathrm{p}}=$ Primary voltage
$n_{s}=$ Number of turns on secondary

- $n_{\mathrm{p}}=$ Number of turns on primary

The ratio n_{s} / n_{p} is called the turns ratio of the transformer.

$$
\begin{aligned}
& \text { Example: A transformer has a primary of } 400 \\
& \text { turns and a secondary of } 2800 \text { turns, and } 115 \\
& \text { volts is applied to the primary. The secondary } \\
& \text { voltage will be } \\
& \qquad \begin{aligned}
E_{\mathrm{s}}=\frac{n_{4}}{n_{0}} E_{\mathrm{p}}=\frac{2800}{400} \times 115=7 \times 115 \\
=805 \text { volts }
\end{aligned}
\end{aligned}
$$

Also, if 805 volts is applierl to the 2800-turn winding (which then becomes the primary) the output voltage from the 400 -turn winding will be 115 volts.

Fither winding of a transformer can be used as the primary, providing the winding has enough turns to induce a voltage equal to the apulied voltage without requiring an excessive current flow,

Effect of Secondary Current

The current that flows in the primary when no current is taken from the secondary is called the magnetizing current of the transformer. In any properly-designed transformer the primary inductance will be so large that the magnetizing eurrent will be quite small. The power consumed by the transformer when the secondary is "open" - that is, not delivering power is only the amount necessary to supply the losses in the iron core and in the resistance of the wire of which the primary is wound.

When current is drawn from the secondary winding, the secondary current sets up a magnetic field of its own in the core. The field from the secondary current always reduces the strength of the original field. But if the induced voltage in the primary is to equal the applied voltage, the original field must be maintained. Consequently, the primary current must change in such a way that the effect of the field set up by the secondary current is completely canceled. This is accomplished when the primary draws additional current that sets. up a field exactly equal to the field set up by the secondary current, but which opposes the secondary field. The additional primary current is thus 180 degrees out of phase with the secondary current.

In practical calculations on transformers it is convenient to neglect the magnetizing current and to assume that the primary current is caused entirely by the secondary load. This is justifiable because the magnetizing current should be very small in comparison with the load current when the latter is near the rated value.

If the magnetic fields set up by the primary and secondary eurrents are to be equal, the primary current multiplied by the primary
turns must equal the secondary current multiplied by the secondary turns. From this it follows that the primary current will be equal to the secondary current maltiplied by the turns ratio, secondary to primary, or

$$
I_{\mathrm{p}}=\frac{n_{\mathrm{x}}}{n_{\mathrm{p}}} I_{\mathrm{s}}
$$

where $I_{\mathrm{p}}=$ Primary current
$I_{\mathrm{s}}=$ Secondary current
$n_{\mathrm{p}}=$ Number of turns on primary
$n_{s}=$ Number of turns on secondary
Example: Suppose that the secondary of the transformer in the previons example is delivering a current of 0.2 ampere to a load. Then the primary current will be
$I_{\mathrm{p}}=\frac{n_{4}}{n_{\mathrm{p}}} I_{\mathrm{s}}=\frac{2800}{400} \times 0.2=7 \times 0.2=1.4 \mathrm{amp}$.
Although the seconlary vollage is higher than the primary voltage, the secondary current is lover than the primary eurrent, and by the same ratio.

Power Relationships; Efficiency

A transformer cannot create power; it can only transfer and transform it. Hence, the power taken from the secondary cannot exceed that taken by the primary from the source of applied e.m.f. There is always some power loss in the resistance of the coils and in the iron core, so in all practical cases the power taken from the source will exceed that taken from the secondary. Thus,

$$
P_{o}=n P_{i}
$$

where $P_{0}=$ Power output from secondary
$P_{i}=$ Power input to primary
$n=$ Efficiency factor
The efficiency, n, always is less than 1 . It is usually expressed as a percentage; if n is 0.65 , for instance, the efficiency is 65 per cent.

$$
\begin{aligned}
& \text { Example: A transformer has an efficiency of } \\
& 85 \% \text { at its full-load output of } 150 \text { watts. The } \\
& \text { power input to the primary at full secondary } \\
& \text { load will be } \\
& \qquad P_{\mathrm{i}}=\frac{P_{0}}{n}=\frac{150}{0.85}=176.5 \text { watts }
\end{aligned}
$$

The efficiency of a transformer is usually by design - highest at the normal power output for which it is rated. The efficiency decreases with either lower or higher outputs. On the other hand, the losses in the transformer are relatively small at low output but increase as more power is taken. The amount of power that the transformer can handle is determined

Fig. 2-32 - The equivalent cirenit of a transformer inchides the effects of leakage inductance and resistance of both primary and secondary windings. The resistance $R \mathrm{c}$ is an equivalent resistance representing the constant core losses. Since these are comparatively small, their offect may be neglected in many approximate calculations.
by its own losses, because these heat the wire and core and raise the operating temperature. There is a limit to the temperature rise that can be tolerated, because too-high temperature either will melt the wire or break down the insulation between turns. A transformer always can be operated at reluced output even though the efliciency is low, because the actual loss also will be low under such conditions.

The full-load efficiency of small power transformers such as are used in radio receivers and transmitters usually lies between about 60 per cent and 90 per cent, depending upon the size and design.

Leakage Reactance

In a practical transformer not all of the magnetic flux is common to both windings, although in well-designed transformers the amount of flux that "cuts" one coil and not the other is only a small percentage of the total flux. This leakage flux acts in the same way as flux about any coil that is not coupled to another coil; that is, it causes an e.m.f. of selfinduction. Consequently, there are small amounts of leakage inductance associated with both windings of the transformer, but not common to them. Leakage inductance acts in exactly the same way as an equivalent amount of ordinary inductance inserted in series with the circuit. It has, therefore, a certain reactance, depending upon the amount of leakage inductance and the frequency. This reactance is called leakage reactance.

In the primary, the current flowing through the leakage reactance causes a voltage drop. This voltage drop increases with increasing primary current, hence it increases as more current is drawn from the secondary. The induced voltage consequently decreases, because the applied voltage has been reduced by the voltage drop in the primary leakage reactance. The secondary induced voltage also decreases proportionately.

When current flows in the secondary circuit the secondary leakage reactance causes an additional voltage drop that further reduces the voltage available from the secondary terminals. Thus, the greater the secondary current, the smaller the secondary terminal voltage becomes. The resistances of the primary and secondary windings of the transformer also cause voltage drops when current is flowing; although these voltage drops are not in phase with those caused by leakage reactance, together they result in a lower secondary voltage under load than is indicated by the turns ratio of the transformer.

At power frequencies (60 cycles) the voltage at the secondary, with a reasonably welldesigned transformer, should not drop more than about 10 per cent from open-circuit conditions to full load. The drop in voltage may be considerably more than this in a transformer operating at audio frequencies because the
leakage reactance increases directly with the frequency.

Impedance Ratio

In an ideal transformer - one without losses or leakage reactance - the following relationship is true:

$$
Z_{\mathrm{p}}=Z_{\mathrm{B}} N^{2}
$$

where $Z_{\mathrm{p}}=$ Impedance of primary as viewed from source of power
$Z_{\mathrm{B}}=$ Impedance of load connected to secondary
$N=$ Turns ratio, primary to secondary
That is, a load of any given impedance connected to the seconlary of the transformer will be changed to a different value "looking into" the primary from the source of power. The amount of impedance transformation is proportional to the square of the primary-tosecondary turns ratio.

Example: A transformer has a primary-tosecondary turns ratio of 0.6 (primary has $6 / 10$ as inany turns as the secondary) and a load of 3000 ohms is connected to the secondary. The impedance looking into the primary then will be

$$
\begin{gathered}
Z_{\mathrm{p}}=Z_{\mathrm{s}} N^{2}=3000 \times(0.6)^{2}=3000 \times 0.36 \\
=1080 \text { ohns }
\end{gathered}
$$

By choosing the proper turns ratio, the impedance of a fixed load can be transformed to any desired value, within practical limits. The transformed or "reflected" impedance has the same phase angle as the actual load impedance; if the load is a pure resistance the load presented by the primary to the source of power also will be a pure resistance.

The above relationship is sufficiently accurate in practice to give quite adequate results, even though it is based on an "ideal" transformer. Aside from the normal design requirements of reasonably low internal losses and low leakage reactance, the only other requirement to be met is that the primary have enough inductance to operate with low magnetizing current at the voltage applied to the primary Despite a common - but mistaken - impression, a transformer operating with

Fig. 2.33 - Two common types of transformer construction. Core pieces are interleaved to provide a continuous magnetic path with as low reluctance as possible.
a load does not, "have" an impodance; the primary impedance - as it looks to the source of power - is determined by the load conneeted to the secondary and by the turns ratio. If the characteristics of the transformer have an appreciable effect on the impedance presented to the power source, the transformer is either poorly designed or is not suited to the voltage applied to it. Most transformers will operate quite well at voltages from slightly above to well below the design figure.

Impedance Matching

Many devices require a specific value of load resistance (or impedance) for optimum operation. The resistance of the actual load that is to dissipate the power may differ widely from this value; so the transformer is frequently called upon to transform the actual load into one of the desired value. This is called impedance matching. From the preceding,

$$
N=\sqrt{\frac{Z_{\mathrm{s}}}{Z_{\mathrm{p}}}}
$$

where $N=$ Required turns ratio, secondary to primary
$Z_{\mathrm{B}}=$ Impedance of load connected to secondary
$Z_{p}=$ Impedance required
Example: A vacuum-tube a.f. amplifier requires a load of 5000 ohtns for optimum performance, and is to be connected to a loudspeaker having an impedance of 10 ohms. The turns ratio, secondary to primary, required in the coupling transformer is

$$
N=\sqrt{\frac{Z_{\mathrm{s}}}{Z_{\mathrm{p}}}}=\sqrt{\frac{10}{5000}}=\sqrt{\frac{1}{500}}=\frac{1}{22.4}
$$

The primary therefore must have 22.4 times as many turns as the secondary.
Impedance matching means, in general, adjusting the load impedance - by means of a transformer or otherwise - to a desired value. However, there is also another meaning. It is possible to show that any source of power will have its maximum possible output when the impedance of the load is equal to the internal impedance of the source. The impedance of the source is said to be "matched" under this condition. However, the efficiency is only 50 per cent in such a case; just as much power is: used up in the source as is delivered to the load. Because of the poor efficiency, this type of impedance matching is limited to cases where only a small amount of power is available. Getting the most power output may be more important than efficiency in such a case.

Transformer Construction

Transformers usually are designed so that the magnetic path around the core is as short as possible. A short magnetic path means that the transformer will operate with fewer turns, for a given applied voltage, than if the path were long. It also helps to reduce flux leakage and therefore minimizes leakage reactance. The number of turns required also is affected by the

Fig. 2-34-'The autotrans former is based on the transformer principle, but uses: only one winding. The litre and load currents in the common winding (A) flow in opposite directions, so that the resultant current is the difference between them. The voltage across A is proportional to the turns ratio. cross-sectional area of the core. Transformer design data will be found in Chapter Seven.

Two core shapes are in common use, as: shown in Fig. 2-33. In the shell type both: windings are placed on the inner leg, while in the core type the primary and secondary windings may be placed on separate legs, if desired. This is sometimes done when it is necessary to minimize capacity effects between the primary and secondary, or when one of the windings must operate at very high voltage.

Core material for small transformers is usually silicon steel, called "transformer iron." The core is built up of laminations, insulated from each other (by a thin coating of shellac, for example) to prevent the flow of eddy currents. The laminations overlap at the ends to make the magnetic path as continuous as possible and thus reduce flux leakage.

The number of turns required on the primary for a given applied e.in.f. is determined by the type of core material used, the maximum permissible flux density, and the frequency. As a rough indication, windings of small power transformers frequently have about six to eight turns per volt on a core of 1 -squareinch cross section and have a magnetic path 10 or 12 inches in length. A longer path or smaller cross section requires more turns per volt, and vice versa.

In most transformers the coils are wound in layers, with a thin sheet of paper insulation between each layer. Thicker insulation is used between coils and between coils and core.

Autotransformers

The transformer principle can be utilized with only one winding instead of two, as shown in Fig. 2-34; the principles just discussed apply equally well. A one-winding transformer is called an autotransformer. The current in the common section (A) of the winding is the difference between the line (primary) and the load (secondary) currents, since these currents are out of phase. Hence if the line and load currents are nearly equal the common section of the winding may be wound with comparatively small wire.

This advantage of the autotransformer is of practical value only when the primary (line) and secondary (load) voltages are not very different. On the other hand, it is frequently undesirable to have a direct connection between the primary and secondary circuits. For these reasons the autotransformer is used chiefly for boosting or reducing power-line voltage by relatively small amounts.

Radio-Frequency Circuits

RESONANCE
Fig. 2-35 shows a resistor, condenser and coil connected in series with a source of alternating current. Assume that the frequency can be varied over a wide range and that, at any frequency, the voltage of the source always has the same value.

At some low frequency the condenser reactance will be much larger than the resistance of R, and the inductive reactance will be small compared with either the reactance of C or the

Fig. $2.35-1$ series circuit containing L, C and R is "resonant" at the applied freguency when the reactance of C is equal to the reactance of L.
resistance of R. (The resistance, R, is assumed to be the same at all frequencies.) On the other hand, at some very high frequency the reactance of C will be very small and the reactance of L will be very large. In the low-frequency case the amount of current that can flow will be determined practically entirely by the reactance of C; since X_{C} is large at the low frequency, the current will be small. In the highfrequency case the amount of current that can flow will be determined almost wholly by the reactance of $L ; X_{1}$ is large at the high frequency so the current is again small.

Now condenser reactance decreases as the frequency is raised, but inductive reactance increases with frequency. At some frequency, therefore, the reactances of C and L will be equal. At that frequency the voltage drop across the coil equals the voltage drop across the condenser, and since the two drops are 180 degrees out of phase they cancel each other completely. At that frequency the amount of current flow is determined wholly by the resistance, R. Also, at that frequency the current has its largest possible value (remember that we assumed the source voltage to be constant regardless of frequency). A series circuit in which the inductive and capacitive reactances are equal is said to be resonant; or, to be "in resonance" or "in tune" at the frequency for which the reactances are equal.

Resonance is not peculiar to radio-frequency circuits alone. It can occur at any a.c. frequency, including power-line frequencies. However, resonant circuits are used principally at radio frequencies; in fact, at those frequencies the circuits used almost always are resonant.

Resonant Frequency

The frequency at which a series circuit is resonant is that for which $X_{L}=X_{C}$. Substituting the formulas for inductive and capacitive reactance gives

$$
f=\frac{1}{2 \pi \sqrt{L \bar{C}}}
$$

where $f=$ Frequency in cycles per second
$L=$ Inductance in henrys
$C=$ Capacitance in farads
$\pi=3.14$
These units are inconveniently large for radiofrequency circuits. A formula using more appropriate units is

$$
f=\frac{10^{6}}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in kilocycles (kc.)
$L=$ Inductance in microhenrys ($\mu \mathrm{h}$.)
$C=$ Capacitance in micromicrofarads ($\mu \mu \mathrm{fd}$.)
$\pi=3.14$
Example: The resonant frequency of a series circuit containing a $5-\mu \mathrm{h}$. coil and a $35-\mu \mu \mathrm{fd}$. condenser is

$$
\begin{aligned}
f=\frac{10^{6}}{2 \pi \sqrt{L C}} & =\frac{10^{6}}{6.28 \times \sqrt{5 \times 3.5}} \\
& =\frac{10^{6}}{6.28 \times 13.2}=\frac{10^{6}}{83}=12,050 \mathrm{kc}
\end{aligned}
$$

The formula for resonant frequency is not affected by the resistance in the circuit.

Resonance Curves

If a plot is drawn of the current flowing in the circuit of Fig. 2-35 as the frequency is varied (the applied voltage being constant) it would look like one of the curves in Fig. 2-36. At frequencies very much higher than the resonant frequency the current is limited by the inductive reactance; the condenser and resistor have only a negligible part. At frequencies very much lower than resonance the condenser limits the current, the resistor and inductance playing very little part. Exactly at resonance the current is limited only by the resistance; the smaller the resistance the larger the resonant current. The shape of the resonance curve at frequencics near resonance is determined by the ratio of reactance to resistance at the particular frequency considered. If the reactance of either the eoil or condenser is of the same order of magnitude as the resistance, the current decreases rather slowly as the frequency is moved in either direction away from resonance. Such a curve is said to be broad. On the other hand, if the reactance is considerably larger than the resistance the current decreases rapidly as the

PER CENT CHANGE FROM RESONANT FREQUENCV
Fig. 2.36 - Current in a series-resonant circuit with various values of series resistance. The values are arbitrary and would not apply to all circuits, but represent a typical case. It is assumed that the reactances (at the resonant frequency) are 1000 ohms (minimmm $\varphi=10$), Note that at frequencies at least plas or mimus ten per cent away from the resonant frequeney the current is substantially unaffeeted by the resistance in the cirenit.
frequency moves away from resontule and the circuit is said to be sharp. Curves of differing sharpness are shown in Fig. 2-36. A sharp circuit will respond a great deal more readily to the resonant frequency than to frequencies quite close to resonance; a broad circuit will respond almost equally well to a group or band of frequencies centering around the resonant frequency.

Both types of resonance curves are useful. A sharp circuit gives good selectivity - the ability to select one desired fregucncy and discriminate against others. A broad circuit is used when the apparatus must give about the same response over a band of frequencies rather than to a single frequency alone.

Q

Most diagrams of resonant circuits show only inductance and capacitance; no resistance is indicated. Nevertheless, resistance is always present. At frequencies up to perhaps 30 Mc . this resistance is mostly in the wire of the coil. Above this frequency conergy loss in the condenser (principally in the solid dielectric which must be used to form an insulating alpport for the condenser plates) becomes apareciable. This energy loss is rquivalent to resistance. When maximum sharphess or selectivity is needed the object of design is to reduce the inherent resistance to the lowest possible value.

We mentioned above that the sharpness of the resonance curve is determined by the ratio of reactance to resistance. The value of the
reardance of oither the eoil ur condenser at the resonant fruquency, divided by the resistance in the circuit, is called the Q (quality factor) of the circuit, or

$$
Q=\frac{X}{R}
$$

where $Q=$ Quality factor
$X=$ Reactance of either coil or (on, denser, in ohms
$R=$ Resistance in ohms
Example: The coil and condenser in a series circuit each have a reactance of 350 ohms at the resonant frequencs. The resistance is 5 ohms. Then the Q is

$$
Q=\frac{X}{h}=\frac{350}{5}=70
$$

Since the same current flows in R that flows in X, the Q of the circuit also is the ratio of the reactive power to the "real" power, or power dissipated in the resistance. The term "volt-ampere-to-watt" ratio or, when the power is large, "kva.-to-kw. ratio," therefore is sometimes used instead of " Q." To put it another way, the higher the Q, the greater the amount of energy stored in the circuit as compared with the energy lost or used up in each rycle.

The effect of Q on the sharpness of resonance of a circuit is shown by the curves of Fig. $2-37$. In these curves the frequency change is shown in percentage above and below the resonant frequency. Q_{s} of $10,20,50$ and 100 are shown; these values cover much of the range commonly used in radio work.

Fig. 2-37 - Current in series-resonant circuits having different Qs. In this graph the eurrent at resonance is assumed to be the same in all cases. The lower the Q, the more slowly the current decreass as the applied frequency is moved away from resonance.

Abstract

Voltage Rise When a voltage of the resonant frequency is inserted in series in a resonant circuit, the voltage that appears across either the coil or condenser is considerably higher than the applied voltage. The current in the circuit is limited only by the actual resistance of the coil-condenser combination in the circuit and may have a relatively high value; however, the same current flows through the high reactances of the coil and condenser and causes large voltage drops. (As explained above, the reactances are of opposite types and hence the voltages ase opposite in phase, so the net voltage around the circuil is only that which is applied.) The ratio of the reactive voltage to the applied voltage is equal to the ratio of reactanee to resistance. This ratio is the Q of the circuit. Therefore, the voltage across either the coil or condenser is equal to Q times the voltage inserted in series with the circuit. Vxample: The inductive reactance of a circuit is 200 olims, the capacitive reactance is 200 ohms, the resistance is ohms, and the applied voltage is .50 . The two reactances rancel and there will be but ; ohms of pure resistance to limit the current How. Thus the current will be $50 / 5$, or 10 amperes. The voltage developed across either the coil or the condenser will be equal to its reactance times the current, or $200 \times 10=2000$ volts. An alternate method: The Q of the circuit is $N / R=200 / 5=40$. The reactive voltare is equal to Q times the applied voltare, or $40 \times 50=2000$ volts,

Parallel Resonance

When a variable-frequency source of constant voltage is applied to a parallel circuit of the type shown in Fig. 2-38 there is a resonance effect similar to that in a series circuit. However, in this case the current (measured at the point indicated) is smallest at the frequency for which the coil and condenser reactances are equal. At that frequency the current through L is exactly canceled by the out-of-phase current through C, as explained in an earlier section, so that only the current taken by R flows in the line. At frequencies below resonance the current through L is larger than that through 8 , because the reactance of L is

Fig. 2-38-Circuit illustrating parallel resonance.
smaller and that of C higher at low frequencies; there is only partial cancellation of the two reactive currents and the line current therefore is larger than the current taken by R alone. At frequencies abole resonance the situation is reversed and more current flows through C than through L, so the line current again increases. The current at resonance, being deter-
mined wholly by R, will be small if R is large and large if R is small.

The resistance R shown in Fig, 2-38 seldom is an actual physical resistor. In most cases it will be an "equivalent" resistance that corresponds to the effect of an actual energy loss in the circuit. This energy loss can be inherent in the coil or condenser, or may represent en-

ergy transferred to a load by means of the resonant circuit. (For example, the resonant circuit may be used for transferring power from a vacuun-tube amplifier to an antenna system.)

Parallel and series resonant circuits are quite alike in some respects. For instance, the circuits given at A and B in Fig. 2-39 will behave identically, when an external voltage is applied, if (1) L and C are the same in both cases; and (2) R_{p} multiplied by R_{s} equals the square of the reactance (at resonance) of either L or C. When these conditions are met the two circuits will have the same Qs. (These statements are approximate, but are quite accurate if the Q is 10 or more.) Now the circuit at A is a series circuit if it is viewed from the "inside" - that is, going around the loop formed by L, C and R - so its Q can be found from the ratio of X to R_{s}.

What this means is that a circuit like that of Fig. 2-39. 1 has an equivalent parallel impedance (at resonance) equal to R_{p}, the relationship between R_{s} and R_{p} being as explained above. Although R_{p}, is not an actual resistor, to the source of voltage the parallelresonant circuit "looks like" a pure resistance of that value. It is "pure" resistance because the coil and condenser currents are 180 degrees out of phase and are equal; thus there is no reactive current. At the resonant frequency, then, the parallel impedance of a resonant circuit is

$$
Z_{\mathrm{r}}=Q X
$$

where $Z_{\mathrm{r}}=$ Resistive impedance at resonance $Q=$ Quality factor
$X=$ Reactance (in ohms) of either the coil or condenser

$$
\begin{aligned}
& \text { Example: The parallel impedance of a circuit } \\
& \text { having a } Q \text { of } 50 \text { and having inductive and ca- } \\
& \text { pacitive reactances of } 300 \text { ohms will be } \\
& \qquad Z_{r}=Q X=50 \times 300=15,000 \text { ohms. }
\end{aligned}
$$

At frequencies off resonance the impedance is no longer purely resistive because the coil and condenser currents are not equal. The offresonant impedance therefore is complex, and
is lower than the resonant impedane for the reasons previously outlined.

The higher the Q of the circuit, the higher the parallel impedance. Curves showing the variation of impedance (with frequency) of a parallel circuit have just the same shape as the curves showing the variation of current with frequency in a series circuit. Fig. 2-40 is a set of such curves.

Q of Loaded Circuits

In many applications of resonant circuits the only power lost is that dissipated in the resistance of the circuit itself. It frequeneries below 30 Mc . most of this resistance is in the coil. Within limits, increasing the number of turns on the coil increases the reactance fastor than ir raises the resistanee, so coils for circuits in which the Q must be high are made with relatively large inductance for the frequency under consideration.

However, when the cireuit delivers energy to a load (as in the case of the resonant circuits used in transmitters) the anergy consumed in the circuit itself is usually negligible compared with that consumed by the load. The equivalent of such a circuit is shown in Fig. 2-41A, where the parallel resistor represents the load to which power is delivered. If the power dissipated in the load is at least ten times as great as the power lost in the coil and condenser, the parallel impedance of the resonant circuit itself will be so high compared with the resistance of the load that for all practical purposes the impedance of the combined circuit is equal to the load resistance. Under these conditions the Q of a parallel-

Fig. 2-4t - Relative impedance of parallel resonant cirruits with different ($/ \mathrm{s}$. These curves are similar to those in Fig, 2-37 for current in a seriea-resonant cirenit. The effect of O on impedance is most marked near the resonant frequency.
rosonant circuit loaded by a resistive impedance is

$$
Q=\frac{Z}{X}
$$

where $Q=$ Quality factor
$Z=$ Parallel load resistance (ohms)
$X=$ Reactance (ohms) of cither the coil or condenser

Example: I resistive load of 3000 ohms is connected arross at resonant circuit in which the inductive and capacitive reactances are each $\because 50$ ohms. The circuit Q is then

$$
Q=\frac{Z}{X}=\frac{3000}{250}=12
$$

Fis. 2-1 - The equivalent circuit of a resonant circuit delivering power to a loacl. The resistor R represents the load resistance. At 13 the load is tapped arross part of l, which by transformer action is equivalent to using a higher load resistance aeross the whole cirenit.

The effective Q of a circuit loaded by a parallel resistanee becomes higher when the reactances of the coil and condenser are decreased. A circuit loaded with a relatively low resistance (a few thousand ohms) must have low-reactance clements (large capacitance and small inductance) to have reasonably high Q.

The effect of a given load resistance on the Q of a circuit can be changed by comnecting the load across only part of the circuit. A common method is to tap the load across part of the coil, as shown in Fig. $2-413$. The smaller the portion of the coil across which the load is tapped, the less the loading on the circuit; in other words, tapping the load "down" is equivalent to connecting a higher value of load resistance across the whole circuit. This is similar in principle to impedinee transformation with an iron-core transformer. In highfrequency resonant circuits the impedance ratio does not vary exactly as the square of the turns ratio, because all the magnetic flux lines do not cut every turn of the coil. A desired reflected impedance usually must be obtained by experimental adjustment.

L/C Ratio

The formula for resonant frequency of a eircuit shows that the same frequency always will be obtained so long as the product of L and C is constant. Within this limitation, it is evident that L can be large and C small, L small and C large, ete. The relation between the two for a fixed frequency is called the L / C ratio. I high-C circuit is one which has more eapacity than "normal" for the frequency; a low-C circuit one which has less than normal capacity. These terms depend to a
considerable extent upon the particular application considered, and have no exact numerical meaning.

LC Constants

As pointed out in the preceding paragraph, the product of inductance and capacity is constant for any given frequency. It is frequently convenient to use the numerical value of the LC constant when a number of calculations have to be made involving different L / C ratios for the same frequency. The constant for any frequency is given by the following equation:

$$
L C=\frac{25,3330}{f^{2}}
$$

where $L=$ Inductance in microhenrys ($\mu \mathrm{h}$.)
(${ }^{\prime}=$ Capacitance in micromicrofarads ($\mu \mu \mathrm{fd}$.)
$f=$ Frequency in megacycles
Example: Find the inductance required to resonate at 36.50 kc , (3.65 Mc .) with capacitances of $25,50,100$, and $500 \mu \mu \mathrm{fd}$. The $L C$ constant is

$$
\begin{gathered}
L C=\frac{25,330}{\left(3 .(6.5)^{2}\right.}=\frac{25,330}{13.35}=1900 \\
\text { With } 25 \mu \mu \mathrm{fd}, L=1900 / C=1900 / 25 \\
=76 \mu \mathrm{~h}, \\
50 \mu \mu \mathrm{fd} . L=1900 / C=1900 / 50 \\
=38 \mu \mathrm{~h} . \\
100 \mu \mu \mathrm{fd} . L=1900 / C=1900 / 100 \\
\\
=19 \mu \mathrm{~h} \\
500 \mu \mu \mathrm{fd}, L=1900 / C=1900 / 500 \\
=3.8 \mu \mathrm{~h} .
\end{gathered}
$$

COUPLED CIRCUITS

Energy Transfer and Loading

Two circuits are coupled when encrgy can be transferred from one to the other. The circuit delivering power is called the primary circuit; the onc receiving power is called the secondary circuit. The power may be practically all dissipated in the secondary circuit itself (this is usually the case in receiver circuits) or the secondary may simply act as a medium through which the power is transferred to a load resistance where it does work. In the latter case, the coupled circuits may act as a radio-frequency impedance-matching device. The matching can be accomplished by adjusting the loading on the secondary and by varying the amount of coupling between the primary and secondary.

A general understanding of coupling methods is essential in amateur work, but there is seldom, if ever, need for calculation of the perfurmance of coupled circuits. Very few radio amateurs have the equipment necessary for measuring the quantities that enter into such calculations. In actual practice, the adjustment of a coupled circuit is a cut-and-try process. Natisfactory results readily can be obtained if the principles are understood.

Fig. 2-42 - Busic methouls of circuit coupling.

Coupling by a Common Circuit Element

One method of coupling between two rcsonant circuits is through a circuit element common to both. The three variations of this type of coupling shown at 1,13 and C of Fig. 2-42, utilize a common inductance, capacitance and resistance, respectively, Current circulating in one $L C$ branch flows through the common element (L_{c}, C_{c}, or R_{c}) and the voltage developed across this element causes current to flow in the other $L C$ branch.

If both circuits are resonant to the same frequency, as is usually the case, the value of impedance - reactance or resistance - required for maximum energy transfer is generally quite small compared to the other reactances in the circuits. The common-circuit-element method of coupling is used only occasionally in amateur apparatus.

Capacitive Coupling

In the circuit at D the coupling increases as the capacitance of C_{c}, the "coupling condenser," is made greater (reactance of C_{0} is decreased). When two resonant circuits are coupled by this means, the capacitance required for maximum energy transfer is quite small if the Q of the secondary circuit is at all high. For example, if the parallel impedance of the secondary circuit is 100,000 ohms, a
reactance of 10,000 ohms or so in the condenser will give ample coupling. The corresponding capacitance required is only a few micromicrofarads at high frequencies.

Inductive Coupling

Fig. 2-42 E shows inductive coupling, or coupling by means of the magnetic field. A circuit of this type resembles the iron-core transformer, but because only a small percentage of the magnetic flux lines set up by one coil cut the turns of the other coil, the simple relationships between turns ratio, voltage ratio and impedance ratio in the iron-core transformer do not hold.

Three common types of inductively-coupled circuits are shown in Fig. $-4 ; 3$. In the first two, only one circuit actually is resonant. The circuit at A is frequently used in receivers for coupling between amplifier tubes when the tuning of the circuit must be varied to respond to signals of different frequencies. Circuit B is used principally in transmitters, for coupling a rudio-frequency amplifier to a resistive load. Circuit C is used for fixed-frequency amplification in receivers. The same circuit also is used in transmitters for transferring power to a load that has both reactance and resistance.

In circuits A and 13 the coupling between the primary and secondary coils usually is "tight" - that is, the coefficient of coupling between the coils is large. With tight coupling either circuit operates much as though the device to which the untuned coil is connected were simply tapped across a corresponding number of turns on the tuned-circuit coil. Any resistance in the circuit to which the untuned coil is connected is coupled into the tuned circuit in proportion to the mutual inductance. This "coupled" resistance increases the effective series resistance of the tuned circuit, thereby lowering its Q and selectivity. If the circuit to which the untuned coil is connected has reactance, a certain amount of reactance will be "coupled in" to the tuned circuit. The coupled ractance makes it necessary to readjust the tuning whenever the coupling is changed, because coupled reactance tunes the circuit just as the actual coil and condenser reactance does.

These circuits may be used for impedance matching by adjusting the mutual inductance between the coils. This can be done by varying the coupling, changing the number of turns in the untuned coil, or both. The parallel impedance of the tuned circuit is affected by the coupled-in resistance in the same way as it would be by a corresponding increase in the actual scries resistance. The larger the value of coupled-in resistance the lower the parallel impedance. By proper choice of the number of turns on the untuned coil, and by adjustment of the coupling, the parallel impedance of the tuned circuit may be adjusted to the value required for the proper operation of the device to which it is connected.

Fig. 2-4.3 - Types of indurtively-ompled circuits. In Λ and B, one cirsuit is tuned, the other untuned. C shows the method of coupling between two tuned eircuits.

Coupled Resonant Circuits

When the primary and secondary circuits are both tuned, as in Fig. $2-43 \mathrm{C}$, the resonance effects in both circuits make the operation somewhat more complicated than in the simpler circuits just considered. Imagine first that the two circuits are not coupled and that each is independently tuned to the resonant frequency. The impedance of each will be purely resistive. If the two are then coupled, the secondary will couple resistance into the primary, causing its parallel impedance to decrease. As the coupling is made greater (without changing the tuning of either circuit) the coupled resistance becomes larger and the parallel impedance of the primary continues to decrease. Also, as the coupling is made tighter the amount of power transferred from the primary to the secondary will increase but only up to a certain point. The power transfer becomes maximum at a "critical" value of coupling, but then decreases if the coupling is tightened beyond the critical point. It critical coupling, the resistance coupled into the primary circuit is equal to the resistance of the primary itself. This represents the matched-impedance condition and gives maximum power transfer.

Critical coupling is a function of the $Q s$ of the two circuits taken independently. A higher coefficient of coupling is required to reach critieal coupling when the Qs are low; if the (Qs are high, as in receiving applications, a coupling coefficient of a few per cent may give critical coupling.

With loaded circuits it is not impossible for the Q to reach such low values that critical coupling cannot be obtained even with the highest practicable coefficient of coupling (coils

Hig. 2-4 - Showing the effect on the output voltage from the secondary circuit of ehanging the coefficient of coupling between two resonant circuits independently tuned to the same frequency. The voltage applied to the primary is held constant in amplitude while the freguency is varied, and the output voltage is measured across the secundary.
as physically close as possible). In such case the only way to secure sufficient eoupling is to inerease the Q of one or both of the coupled circuits. This can be done either by decreasing the L / C ratio or by tapping the load down on the secondary coil. If tine load resistance is known beforehand, the circuits may be designed for a Q in the vicinity of 10 or so with assurance that sufficient coupling will be available; if unknown, the proper Q s can be determined by experiment.

Selectivity

In A and B, Fig. 2-43, only one circuit is tuned and the selectivity curve will be that of a single resonant circuit having the appropriate Q. As stated, the effective Q depends upon the resistance connected to the untuned coil.

In Fig. 2-43C, the selectivity is the same as that of a single tuned circuit having $s Q$ equal to the product of the Qs of the individual circuits - if the coupling is well below critical and both circuits are tuned to resonance. The Qs of the individual circuits are affected by the degree of coupling, because each couples resistance into the other; the tighter the coupling, the lower the individual $Q s$ and therefore the lower the over-all selectivity.

If both circuits are independently tuned to resonance, the over-all selectivity will vary about as shown in Fig. 2-44 as the coupling is varied. At loose coupling, A, the out put voltage (across the secondary circuit) is small and the selectivity is high. As the coupling is increased the secondary voltage also increases until critical coupling, B, is reached. At this point the output voltage at the resonant frequency is maximum but the selectivity is lower than with looser coupling. At still tighter coupling, C, the output voltage at the resonant frequency decreases, but as the frequency is varied either side of resonance it is found that there are two "humps" to the curve, one on either side of resonance. With very tight coupling, D, there is a further decrease in the output voltage at resonance and the "humps." are farther away from the resonant frequency. Resonance curves such as those at C and D
are called flat-topped because the output voltage does not change much over an appreciable band of frequencies.

Note that the off-resonance humps have the same maximum value as the resonant output voltage at critical couphing. These humps are caused by the fact that at frequencies off resonance the secondary circuit is reactive and couples reactance as well ats resistance into the primary. The coupled resistance decreases off resonance and the humps represent a new condition of impedance matching - at a frequency to which the primary is detuned by the coupled-in reactance from the secondary.

When the two circuits are tuned to slightly different frequencies a double-humped resonance curve results even though the coupling is below critical. This is to be expected, because each circuit will respond best to the frequency to which it is tuned. Tuning of this type is called stagger tuning, and often is used when substantially uniform response over a wide band of frequencies is desired.

Link Coupling

A modification of inductive coupling, called link coupling, is shown in lig. $9-4 \%$. This gives the effect of inductive coupling between two coils that have no mutual inductance; the link is simply a means for providing the mutual inductance. The total mutual inductance between two coils coupled by a link cannot be made as great as if the coils themselves were coupled. This is because the coefficient of coupling between air-core coils is considerably less than 1 , and since there are two coupling points the over-all coupling eoeflicient is less than for any peir of coils. In practice this need not be disadvantageous because the power transfer can be made great enough by making the tuned circuits sufficiently high-Q. Link coupling is convenient when ordinary inductive coupling would be impracticable for constructional reasons. It finds wide use in transmitters, for example.

Fig. 2-45 - I.ink conpling. The mutual inductances at both ends of the link are equivalent to mutual inductance between the tuned eireuits, and serve the same purpose.

The link coils usually have a small number of turns compared with the resonant-circuit coils. The number of turns is not greatly important, because the coefficient of coupling is relatively independent of the number of turns: on either coil; it is more important that both link coils should have about the same number of turns. The length of the link between the
coils is not eritical if it is very small compared with the wavelength; if the length becomes an appreciable fraction of a wavelength the link operates more as a transmission line than as a means for providing mutual inductance. In such case it should be treated by the methods described in Chapter Ten.

Piezoelectric Crystals

A number of crystalline substances found in nature have the ability to transform mechanical strain into an electrical charge, and vice versa. This property is known as piezoelectricity. A small plate or bar cut in the proper way from a quartz crystal, for example, and placed between two conducting electrodes, will be mechanically strained when the electrodes are connected to a source of voltage. Converscly, if the crystal is squeezed between two electrodes a voltage will develop between the electrodes.

Piezoelectric crystals can be used to transform mechanical energy into electrical energy, and vice versa. They are used, for example, in microphones and phonograph pick-ups, where mechanical vibrations are transformed into alternating voltages of corresponding frequency. They are also used in headsets and loudspeakers, transforming electrical energy into mechanical vibration. Crystal plates for these purposes are cut from large crystals of Rochellc salts.

Crystalline plates also are mechanical vibrators that have natural frequencies of vibration ranging from a few thousand cycles to several megacycles per second. The vibration frequency depends on the kind of crystal, the way the plate is cut from the natural crystal, and on the dimensions of the plate. Such a crystal is, in fact, the mechanical counterpart of an eleetrical tuned circuit; its resonant frequency is the natural frequency of the mechanical vibration. Because of the piezoelectric effect, the crystal plate can be coupled to an electrical circuit and made to substitute for

Fig. 2-46-Equivalent circuit of a crystal resonator. L, C and R are the electrical equivalents of mechanical properties of the crystal; C_{b} is the capacitance of the electrodes with the crystal plate between them.
a coil-and-condenser resonant circuit. The thing that makes crystals valuable as "resonators" is the fact that they have extremely high Q, ranging from 5 to 10 times the Q s obtainable with $L C$ resonant circuits.

Analogies can be drawn between various mechanical properties of the crystal and the electrical characteristics of a tuned circuit. This leads to an "equivalent circuit" for the crystal. The electrical coupling to the crystal is through the electrodes between which it is sandwiched; these electrodes form, with the crystal as the dielectric, a small condenser like any other condenser constructed of two plates with a dielectric between. The crystal itself is an equivalent to a series-resonant circuit, and together with the capacitance of the electrodes forms the equivalent circuit shown in Fig. 2-46. The equivalent inductance of the crystal is extremely large and the series capacitance, C, is correspondingly low; this is the reason for the high Q of a crystal. The electrode capacitance, C_{h}, is so very large compared with the series capacitance of the crystal that it has only a very small effect on the resonant frequency. It will be realized, also, that because C_{h} is so large compared with C the electrical coupling to the crystal is quite loose.

Crystal plates for use as resonators in radiofrequency circuits are almost always cut from quartz crystals, because quartz is by far the most suitable material for this purpose. (Quartz crystals are used as resonators in receivers, to give highly-selective reception, and as fre-quency-controlling elements in transmitters.

Practical Circuit Details

COMBINED A.C. ĀND D.C.

Most radio circuits are built around vacuum tubes, and it is the nature of these tubes to require direct current (usually at a fairly high voltage) for their operation. They convert the direct current into an alternating current (and sometimes the reverse) at frequencies varying from ones well down in the audio range to well up in the superhigh range. The conversion process almost invariably requires that the direct and alternating currents meet somewhere in the circuit.

In this meeting, the a.c. and d.c. are actually combined into a single current that "pulsates" (at the a.c. frequency) about an average value equal to the direct current. 'This is shown in Fig. 2-47. It is easier, though, to think of them
separately and to consider that the alternating current is superimposed on the direct current. Thus we look upon the actual current as having two components, one d.c. and the other a.c.

If the alternating current is a sine wave, its positive and negative alternations have the same maximum amplitude. When the wave is superimposed on a direct current the latter is alternately increased and decreased by the same amount. There is thus no average change in the direct current. If a d.c. instrument is being used to read the current, the reading will be exactly the same whether or not the sine-wave a.c. is superimposed.

However, there is actually more power in such a combination current than there is in the direct current alone. This is because power

Fig. 2-47-Pulsat. ing current, composed of an alternating current or voltage snperimposed on a steady direct current or voltage.
varies as the square of the instantaneous value of the current, so more power is added to the circuit on the half-cycle of the a.c. wave that increases the instantaneous current than is subtracted on the half-cycle that decreases it. If the peak value of the alternating current is just equal to the direct current, the average power in the circuit is 1.5 times the power in the direct current alone.

In many circuits, also, we may have tiwo alternating currents of different frequencies; for example, an audio frequency and a radio frequency may be combined in the same circuit. The two in turn may be combined with a direct current. In some cases, too, two r.f. currents of widely-different frequencies may be combined in the same circuit.

Series and Parallel Feed

Fig. 2-48 shows in simplified form how d.c. and a.c. may be combined in a vacuum-tube circuit. (The tube is shown only in bare outline; so far as the d.c. is concerned, it can be looked upon as a resistance of rather high value. On the other hand, the tube may be looked upon as the generator of the a.c. The mechanism of tube operation is described in the next chapter.) In this case, we have assumed that the a.c. is at radio frequency, as suggested by the coil-and-condenser tuned circuit. We also assume that r.f. current can easily flow through the d.c. supply; that is, the impedance of the supply at radio frequencies is so small as to be negligible.

In the circuit at the left, the tube, tuned circuit, and d.c. supply all are connected in series. The direct current flows through the r.f. tuned circuit to get to the tube; the r.f. current generated by the tube flows through the d.c. supply to get to the tuned circuit. This is series feed. It works because the impedance of the d.c. supply at radio frequencies is so low that it does not affect the flow of r.f. current, and because the d.c. resistance of the coil is so low that it does not affect the flow of direct current.

In the circuit at the right the direct current does not flow through the r.f. tuned circuit, but instead goes to the tube through a second coil, RFC (radio-frequency choke). Direct current cannot flow through L because a blocking condenser, C, is placed in the circuit to prevent it. (Without C, the d.c. supply would be short-circuited by the low resistance of L.) On the other hand, the r.f. current generated by the tube can easily flow through C to the tuned circuit because the capacitance
of C is intentionally chosen to have low reactance (compared with the impedance of the tuned circuit) at the radio frequency. The r.f. current cannot flow through the d.c. supply because the inductance of $R F C$ is intentionally made so large that it has a very high reactance at the radio frequency. The resistance of $R F^{\prime} C$, however, is too low to have an appreciable effect on the flow of direct current. The two currents are thus in parallel, hence the name parallel feed.

Both types of feed are in use. They may be used for both a.f. and r.f. circuits. In parallel feed there is no d.c. voltage on the a.c. circuit (the blocking condenser prevents that); this is a desirable feature from the viewpoint of safety to the operator, because the voltages applied to tubes - particularly transmitting tubes - are dangerous to human beings. On the other hand, it is somewhat difficult to make an r.f. choke work well over a wide range of frequencies. Series feed is usually preferred, therefore, because it is relatively easy to keep the impedance between the a.c. circuit and the tube low.

By-Passing

In the series-feed circuit just discussed, it was assumed that the d.c. supply had very low impedance at radio frequencies. This is not likely to be true in a practical power supply - if for no other reason than that the normal physical separation between the supply and the r.f. circuit would make it necessary to use rather long connecting wires or leads. At radio frequencies, even a few feet of wire can have fairly large reactance - too large to be considered a really "low-impedance" connection.

To get around this, an actual circuit would be provided with a by-pass condenser, as shown in Fig. 2-49. Condenser C is chosen to have low reactance at the operating frequency, and is installed right in the circuit where it can be wired to the other parts with quite short connecting wires. (The condenser will be an open circuit for the d.c. voltage across which it is connected, of course.) Since condenser C offers a low-impedance path, the r.f. current will tend to flow through it rather than through the d.c. supply; thus the current is confined to a known path rather than one of dubious impedance through the power supply.

Fig. 2.48 - Illustrating series and parallel feed.

To be effective, a by-pass should have very low impedance compared to the impedance of the circuit element around which it is supposed to shunt the current. The reactance of the condenser should not be more than onetenth of the impedance of the by-passed part of the circuit. Very often the latter impedance is not known, in which case it is desirable to use the largest capacitance in the by-pass that circumstances permit. 'To make doubly sure that r.f. current will not flow through a nonr.f. circuit such as a power supply, an r.f. choke may be comected in the lead to the latter, as shown in Fig. 2-49. The choke, having high reactance, will prevent the r.f. from going where it is not wanted and thereby ensure that it goes where it is wanted - i.e., through the by-pass cumbenser.

v
Fig. 2.49-Typical use of a by-pass condenser in a series-feed circuit.

The use of a hy-pass condenser is not confined only to circuits where r.f. is to be kept out of a d.c. source. The same type of bypassing is used when audio frequencies are present in addition to r.f. Because the reactance of a condenser changes with frequency, it is readily possible to choose a capacitance that will represent a very low reactance at radio frequencies but that will have such high reactance at andio frequencies that it is practically an open circuit. I capacitance of 0.001 $\mu \mathrm{fl}$. is practically a short-circuit for r.f., for example, but is almost an open circuit at audio frequencies, (The artual value of eapacitance that is usable will be modified by the impedances eoncerned.)

By-pass condensers also are used in audiofrequency circuits, to carry the audio frequencies around a d.c. supply. In this case a eapateitance of several microfarads is needed if the reactance is to be low enough at the lower andio frequencies.

Distributed Capacitance and Inductance

In the discussions earlier in this chapter it was assumed that a condenser has only capacitance and that a coil has only inductance. ['nfortmately, this is not strictly true. There is always a certain amount of inductance in a conductor of any length, and since a condenser is made up of conductor's it is bound to have a little inductance in addition to its intended capacitance. Aso, there is always capacitance
between two conductors or between parts of the same conductor, and so we find that there is appreciable capacitance between the turns of an inductance coil.

This distributed inductance in a condenser and the distributed capacitance in a coil have important practical effects. Actually, every condenser is a tuned circuit, resonant at the frequency where its capacitance and distributed inductance have the same reactance. The same thing is true of a coil and its distributed capacitance. At frequencies well below these "natural" resonances, the condenser will act like a normal capacitance and the coil will act like a normal inductance. Near the natural resonant points, the coil and condenser act like self-tuned circuits. Above resonance, the condenser acts like an inductance and the coil acts like a condenser. If we want our circuit components to behave properly, they must always be used at frequencies well on the low side of their natural resonances.

Because of these effects, there is a limit to the amount of capacitance that can be used at a given frequency. There is a similar limit to the inductance that can be used. At audio frequencies, capacitances measured in microfarads and inductances measured in henrys are practicable. At low and medium radio frequencies, inductances of a few millihenrys and capacitances of a few thousand micromicrofarads are the largest practicable. At high radio frequencies, usable inductance values drop to a few microhenrys and capacitances to a few hundred micromicrofarads.

Distributed capacitance and inductance are important not only in r.f. tuned circuits, but in by-passing and choking as well. It will be appreciated that a by-pass condenser that actually acts like an inductance, or an r.f. choke that acts like a condenser, camot work as it is intended they should. That is why you will find, in the circuits described later in this Handbook, by-pass condenser capacitances and r.f.-choke inductances that may look rather small-considering that, theoretically, a larger condenser or larger coil should be even more effective at its job.

Grounds

Throughout this book you will find frequent, references to ground and ground potential. When a connection is said to be "grounded" it does not mean that it actually goes to earth (although in many cases such earth comnections are used). What it means, more often, is that an actual carth comnection could be made to that point in the circuit without disturbing the operation of the circuit in any way. The terin also is used to indicate a "common" point in the circuit where power supplies and metallic supports (such as a metal chassis) are electrically tied together. It is customary, for example, to "ground" the negative terminal of a d.c. power supply, and to "ground" the filament or heater power supplies for vacuum
tubes. Since the cathode of a vacuum tube is a junction point for grid and plate voltage, supplies, it is a natural point to "ground." Also, since the various circuits connected to the tube elements have at least one point connected to cathode, these points also are "returned to ground."
"(Ground" is therefore a common reference point in the circuit. In circuit diagrams, it is customary (for the sake of making the diagrams easier to read) to show such common connections by the ground symbol rather than by showing a large number of wires all connected together.
"Ground potential" means that there is no "difference of potential" - that is, no voltage - between the circuit point and the earth. A direct earth connection at such a point would cause no disturbance to the operation of the circuit.

Single-Ended and Balanced Circuits

With reference to ground, a circuit may be either single-ended (unbalanced) or balanced. In a single-ended circuit, one side of the circuit is connected to ground. In a balanced circuit, the electrical milpoint of the circuit is connected to ground, so that the circuit has two ends each at the same voltage "above" ground. A balanced circuit also is called a "symmetrical" circuit.

Typical single-ended and balanced circuits are shown in Fig. 2-50. IR.f. circuits are shown in the upper line, while iron-core transformers (such as are used in power-supply and audio circuits) are shown in the lower line. The r.f. circuits may be balanced either by connecting the center of the coil to ground or by using a "balanced" or "split-stator" condenser that is, one having two identical sets of stator and rotor plates with the rotor plates on the same shaft - and connecting the condenser rotor to ground. in the iron-core transformer, one or both windings may be tapped at the center of the winding to provide the ground connection.

In the single-ended circuit, only one side of the circuit is "hot" - that is, has a voltage that differs from ground potential. In the balanced circuit, both ends are "hot" and the grounded center point is "cold" - that is, at ground potential. The applications of both types of circuits are discussed in later chapters.

Nonlinear Circuits; Beats

The circuits that have been discussed in this chapter are, essentially, ones obeying Ohm's Law. That is, an increase or decrease of the applied voltage causes an exactly proportional increase or decrease in current. (This neglects relatively minor effects such as the temperature rise and consequent change in resistance of conductors with increasing current, etc.) However, many devices (such as vacuum tubes under some conditions of operation) do not obey any such straightforward rules. There may be no current flow at
all with an applied voltage of one polarity, but the current may be large if the polarity of the voltage is reversed. Also, the current may increase with increasing voltage up to a certain point and then stay at a fixed value no matter how much more the voltage is raised. such devices, and the circuits in which they are used, are called nonlinear.

One important result of nonlinearity is the behavior of the circuit when two or more alternating currents of different frequencies are flowing in it. In a normal circuit, the two frequencies will have no particular effect on each other. However, if two (or more) alternating currents of different frequencies are present in a nonlinear circuit, additional currents having frequencies equal to the sum, and difference, of the original frequencies will be set up. These sum and difference frequencies are called the beat frequencies. For example, if frequencies of 2000 and 3000 kc . are present in a normal circuit only those two frequencies exist, but if they are passed through a nonlinear circuit there will be present in the output not only the two original frequencies of 2000 and 3000 kc . but also currents of 1000 $(3000-2000)$ and $5000(3000+2000) \mathrm{kc}$. Suitable circuits can be used to select the desired beat frequency.

Beat frequencies are generated, and used to advantage, in very many radio circuits. For example, all of our modern reception methods are based on the use of beat frequencies.

Shielding

Two circuits that are physically near each other usually will be coupled to each other in some degree even though no coupling is intended. The metallic parts of the two circuits form a small capacitance through which energy can be transferred by means of the electric field. Also, the magnetic field about the coil or wiring of one circuit can couple that circuit to a second through the latter's coil and wiring. In many cases these unwanted couplings must be
prevented if the circuits are to work properly.
Capacitive coupling may readily be prevented by enclosing one or both of the circuits in grounded low-resistance metallic containers, called shields. The electric field from the circuit components does not penetrate the shield, because the lines of force are shortcircuited by the metal. A metallic plate, called a baffle shield, inserted between two components also may suffice to prevent electrostatic coupling between them. Very little of the field tends to bend around such a shield if it is large enough to make the components invisible to each other.

Similar metallic shielding is used at radio frequencies to prevent magnetic coupling. In this case the magnetic field induces a current in the shield; this current in turn sets up its own magnetic field opposing the original field. The amount of current induced is proportional to the frequency and also to the conductivity of the shield; therefore the shielding effect increases with frequency and with the conductivity and thickness of the shielding material.

A closed shield is required for good magnetic shielding; in some cases separate shields, one about each coil, may be required. The baffle shield is rather ineffective for magnetic shielding, although it will give partial shielding if placed at right angles to the axes of, as well as
between, the two coils to be shielded from each other.

Shielding a coil reduces its inductance, because part of its field is canceled. Also, there is always a small amount of resistance in the shield, and there is therefore an energy loss. This loss raises the effective resistance of the coil. The decrease in inductance and increase in resistance lower the Q of the coil. The reduction in inductance and Q will be small if the shield is sufficiently far away from the coil; the spacing between the sides of the coil and the shield should be at least half the coil diameter, and the spacing at the ends of the coil should at least equal the coil diameter. The higher the conductivity of the shield material, the less the effect on the inductance and Q. Copper is the best material, but aluminum is quite satisfactory.

At low (audio) frequencies this type of magnetic shielding does not work, because the current induced in the shield is too small. For good shielding at audio frequencies it is necessary to enclose the coil in a container of highpermeability iron or steel. This provides a much better path for the magnetic flux than air - so much so that most of the stray flux stays in the iron in preference to spreading out in the space around the coil. In this case the shield can be quite close to the coil without harming its performance.

Vacuum-Tube Principles

Present-day methods of radio communication rely heavily on the vacuum tube. The tube is used to generate radio-frequency power, to amplify it in transmitters, to amplify and detect weak radio signals picked up from distant stations, to magnify the human voice, to change alternating current into direct current for power supplies - in fact, to do innumerable things that, without it, could not be done. An understanding of vacuum-tube principles is just as necessary to the radio amateur as an understanding of the circuit principles discussed in Chapter Two.

In this chapter we shall confine ourselves to the fundamentals of vacuum-tube operation. The special circuits and special types of tubes
that find application in amateur radio will be taken up in later chapters.

The operation of vacuum tubes can be predicted mathematically, just as the operation of circuits can be predicted from mathematical formulas. It happens, though, that the amateur rarely has need to perform any calculations in connection with vacuum tubes, other than simple ones having to do with the power supplies for the tube elements. These are straightforward applications of (hm 's law. Tube manufacturers invariably supply sets of data that give optimum operating conditions for their tubes, and thus save any need for calculation. What you need, to get the most out of your tubes, is mostly a picture of how they work.

Diodes and Rectification

CURRENT IN A VACUUM

The outstanding difference between the vacuum tube and most other electrical devices is that the electric current does not flow through a conductor but through empty space - a vacuum. This is only possible when "free" electrons - that is, electrons that are not attached to atoms - are somehow introduced into the vacuum. It will be recalled from Chapter Two that clectrons are particles of negative electricity. Free electrons in an evacuated space therefore can be attracted to a positively-charged object within the same space, or can be repelled by a negatively-charged object. The movement of the electrons under the attraction or repulsion of such charged objects constitutes the current in the vacuum.

The most practical way to introduce a sufficiently-large number of electrons into the evacuated space is by thermionic emission.

Thermionic Emission

If a thin wire or filament is heated to incandescence in a vacuum, electrons near the surface are given enough energy of motion to fly off into the surrounding space. The higher the temperature, the greater the number of electrons emitted. A more general name for the filament is cathode.

If the eathode is the only thing in the vacuum, most of the emitted electrons stay in its immediate vicinity, forming a "cloud" about the cathode. The reason for this is that
the electrons in the space, being negative electricity, form a negative charge (space charge) in the region of the cathode. The negativelycharged space repels those electrons nearest the cathode, tending to make them fall back on it.

Now suppose a second conductor is introduced into the vacuum, but not connected to anything else inside the tube. If this second conductor is given a positive charge with respect to the cathode, electrons in the space will be attracted to the positively-charged conductor. The conductor can be given the requisite charge by connecting a source of e.m.f. between it and the cathode, as indicated in Fig. 3-1. The electrons emitted by the cathode and attracted to the positively-

charged monductor then constitute an electric current, with the circuit completed through the source of e.m.f. In Fig. 3-1 this e.m.f. is supplied by a battery ("B" battery) ; a second battery (" A " battery) is also indicated for heating the cathode or filament to the proper operating temperature.

Fig. 3-1 - Condurtion by thermionic emission in a vacuum tube. Onc hattery is used to heat the filament to a temperature that will cause it to emit electrons. The other battery makes the plate positive with respect to the filament, thercby causing the cmitted electrons to be attracted to the plate. Electrons captured by the plate flow back through the battery to the filament.

The positively-charged conductor is usually a metal plate or cylinder (surrounding the cathode) and is called an anode or plate. Like the other working parts of a tube, it is a tube element or electrode. The tube shown in Fig. 3-1 is a two-element or two-electrode tube, one element being the cathode or filament and the other the anode or plate.

Since electrons are negative electricity, they will be attracted to the plate only when the plate is positive with respect to the cathode. If the plate is given a negative charge, the clectrons will be repelled back to the cathode and no current will flow in the vacuum. The vacuum tube therefore can conduct ouly in one direction.
peratures, by using special cathode materials. One of these is thoriated tungsten, or tungsten in which thorium is dissolved. still greater efficiency is achieved in the oxide-coated cathode, a cathode in which rare-carth oxides form a coating over a metal base.

Although the oxide-coated cathode has much the highest efficiency, it can be used successfully only in tubes that operate at rather low plate voltages. Its use is therefore confined to receiving-type tubes and to the smaller varieties of transmitting tubes. The thoriated filament, on the other hand, will oparate well in high-voltage tubes and is therefore found in most of the transmitting typer used by amateurs.

Plate Current

The number of electrons attracted to the plate depends upon the strength of the positive charge on the plate - that is, on the amount of voltage between the cathode and plate. The electron current - called the plate current - increases as the plate voltage is increased (although the relationship is not the simple proportionality of Ohm's Law). Actually, this statement is true only up to a certain point; if the plate voltage is made high enough, all the electrons emitted by the cathode would be attracted to the plate. Obviously, when this occurs, a further increase in plate voltage cannot cause an increase in plate current.

Fig. 3-3 shows a typical plot of plate current with increasing plate voltage for a two-element tube or diode. A curve of this type can be obtained with the circuit shown, if the plate voltage can be increased in small steps and a current reading taken (by means of the current-indicating instrument -a "milliammeter") at each voltage. The plate current is zero with no plate voltage and the curve rises almost in a straight line until a "saturation point" is reached. This is where the positive

Cathodes

Before electron emission can occur, the cathode must be heated to a high temperature. The only satisfactory way to heat it is by electricity. However, it is not essential that the heating current flow through the actual metal that does the emitting. The filament or heater can be clectrically separate from the emitting cathode, and very many tubes are built that way. Such a cathode is called indirectly heated, while an emitting filament is called directly heated. Fig. 3-2 shows both types in the forms in which they are commonly used.

Obviously, the cathode should emit as many electrons as possible with the least possible heating power. A plain metal cathode is quite inefficient in this respect. Much greater electron emission can be obtained, at relatively low tem-

Fig. 3-2 - Types of rathode construetion. Direrth -hatated cathodes or filaments are shown at A, B, and C. 'The inverted V filanent is used in small receiving tubes, the M in both receiving and transmitting tubes. The spiral filament is a transmittingtube type. The indirectly-heated cathodes at 1) and E show two types of heater construction, one a twisted loop and the other bunched heater wires. Both types tend to eancel the nagnetic fields set up by the current through the heater.

Fig. 3-3 - The diode, or two-element tube, and a typidal ensve showing how the plate current depends upon the voltage applied to the plate.
charge on the plate has completely overcome the space charge and practically all the electrons are going to the plate. At any higher voltages the plate current stays at the same value.

The curve of Fig. 3-3 does not show actual values of plate voltage and plate current, since these will vary with the type of tube. The shape of the curve, however, is typical of all diodes.

The plate voltage multiplied by the plate current is the power input to the tube. In a
is, during the half-cyele when the upper end of the transformer winding is positive. During the negative half-cyrle there is simply a gap in the current flow. This rectified alternating current therefore is an intermittent direct current. (The "humps" in the output current may be smoothed out by a "filter." A filter uses inductance and capacitance to store up energy during the time that current flows through the diode, energy that is then released to the circuit during the period when the diode is nonconducting. Filters of this type are discussed in later chapters.)

The load resistor, R, represents the actual circuit in which the rectified alternating current does work. All tubes work into a load of one type or another; in this respect a tube is much like a generator or transformer. A circuit that did not provide a load for the tube would be like a short-circuit across a transformer; no useful purpose would be accomplished and the only result would be the generation of heat in the transformer. So it is with vacuum tubes; circuit like that of Fig, 3-3 this power is all used in heating the plate. If the power input is large, the plate temperature may rise to a very high value (the plate may become red or even white hot). The heat devoloped in the plate is radiated to the bulb of the tuhe, and in turn radiated by the bulb to the surround-

Fig. 3-4- Rectification in a diode. Current flows only when the plate is mositive with respert to the cathode, so that only halferyeles of current flow through the load resistor, R.
 ing air.

- RECTIFICATION

Nince current can flow through a tube in only one direction, a diode can be used to change alternating current into direct current. It does this by permitting current to flow when the plate is positive with respect to the cathode, but by shutting off current flow when the plate is negative.

Fig. 3-4 shows a representative circuit. Alternating voltane from the secondary of the transformer, T, is applied to the diode tube in series with a load resistor, R. The voltage varies as is usual with a.c., but current flows through the tube and R only when the plate is positive with respect to the cathode - that
they must deliver power to a load in order to serve a useful purpose. Also, to be efficient most of the power must do useful work in the load and not be used in heating the plate of the tube. This means that most of the voltage should appear as a drop across the load rather than as a drop between the plate and cathode of the diode. That is, the "resistance" of the tube should be small compared to the resistance of the load.

Notice that, with the diode connected as shown in Fig. 3-4, the polarity of the voltage drop across the load is such that the end of the load nearest the cathode is positive. If the connections to the diode elements are reversed, the direction of rectified current flow also will be reversed through the load.

Vacuum-Tube Amplifiers

TRIODES

Grid Control

It was shown in Fig. 3-3 that, within the normal operating range of a tube, the plate current will increase when the plate voltage
is increased. The reason why all the electrons are not drawn to the plate when a small positive voltage is placed on it is that the space charge (which is negative) counteracts the effect of the positive charge on the plate. The higher the positive plate voltage, the more

Fig. 3-5 - Construction of an elementary triole vacuum tule, showing the filament, grid (with an end vien of the grid wires) and plate. The relative density of the space charge is indicated roughly by the dot density.
effectively the space charge is overcome.
If a third element - called the control grid, or simply grid - is inserted between the cathode and plate as in Fig. 3-5, it can be used to control the effect of the space charge. If the grid is given a positive voltage with respect to the cathode, the positive charge will tend to neutralize the negative space charge. The result is that, at any selected plate voltage, more electrons will flow to the plate than if the grid were not present. On the other hand, if the grid is made nogative with respect to the cathode the negative charge on the grid will add to the space charge. This will reduce the number of electrons that can reach the plate at any selected plate voltage.

The grid is inserted in the tube to control the space charge and not to attract electrons to itself, so it is made in the form of a wire mesh or spiral. Whectrons then can go through the open spaces in the grid and to the plate.

Characteristic Curves

For any particular tube, the effect of the grid voltage on the plate current can be shown by a set of characteristic curves. A typical set of curves is shown in Fig. 3-6, together with the circuit that is used for getting them. With several fixed values of plate voltage (in these curves, the plate voltage is increased in $50-$ volt steps, starting at 100 volts) the grid voltage is varied in small steps and a plate-current reading taken at each value of grid voltage. The curves show the result. In Fig. 3-6, the grid voltage is varied between zero and 25 volts negative with respect to the cathode. It can be seen that, for cach value of plate voltage, there is a value of negative grid voltage that will reduce the plate current to zero; that is, there is a value of negative grid voltage that will cut off the plate current.

The curves could he extended by making the grid voltage positive as well as negative. The practical effect would be to lengthen each of the curves upward along the same line. However, in some types of operation the grid is
always kept negative with respect to the cathode, and the particular tube used as an illustration happens to be one that normally would be used that way. Whenever the grid is negative, it repels electrons and therefore none of them reaches it; in other words, no current flows in the grid circuit. When the grid is positive, it attracts electrons and a current (grid current) flows, just as current flows to the positive plate. Whenever there is grid current there is an accompanying power loss in the grid circuit, but so long as the grid is negative there is no current and therefore no power is used.

It is obvious that the grid can act as a valve to control the flow of plate current. . Ictually, the grid has a much greater effect on plate current flow than does the plate voltage. A smull change in grid voltage is just as effective in bringing about a given change in plate current as is a large change in plate voltage.

The fact that a small voltage acting on the grid is equivalent to a large voltage acting on the plate indicates the possibility of amplification with the triode tube; that is, the generation of a large voltage by a small one, or the generation of a relatively large amount of power from a small amount. The many uses of the electronic tube nearly all are based upon this a mplifying feature. The amplified power or voltage output from the tuhe is not obtained from the tube itself, but from the source of e.m.f. connected between its plate and cathode. The tube simply controls the power from this source, changing it to the desired form.
"lo utilize the controlled power, a load must be connected in the plate or "out put" circuit, just as in the diode case. The load may be either a resistance or an impedance. The term "impedance" is frequently used even when the load is purely resistive.

Tube Characteristics

The physical construction of a triode determines the relative effectiveness of the grid and plate in controlling the plate current. If a very small change in the grid voltage has just as much effect on the plate current as a very large change in plate voltage, the tube is said

Fig 3-6 - Grid-voltage-ts, plate-current curves at various fixed values of plate voltage (F_{1}) for a typical smaH triode. Characteristic curves of this type can be taken ly varying the battery voltages in the circuit at the right.

VACUUM-TUBE PRINCIPLES

to have a high amplification factor. Amplification factor is commonly designated by the (ireek letter μ. An amplification factor of 20 , for example, means this: if the grid voltage is changed by 1 volt, the effect on the plate current will be the same as when the plate voltage is changed by 20 volts. The amplification factors of triode tubes range from 3 to something of the order of 100 . A high- μ tube is one with an amplification factor of perhaps 30 or more; medium- μ tubes have amplification factors in the approximate range $\$$ to 30 , and low $-\mu$ tubes in the range below 7 or 8 .

It would be natural to think that a tube that has a large μ would be the best amplifier, but such is not necessarily the case. If the μ is high it is difficult for the plate to attract large numbers of electrons. Quite a large change in the plate voltage must be made to effect a given change in plate current. This means that the resistance of the plate-cathode path - that is, the plate resistance - of the tube is high. Since this resistance acts in series with the load, the amount of current that can be made to flow through the load is relatively small. On the other hand, the plate resistance of a low- μ tube is relatively low. Whether or not a high- μ tube is better than one with a low μ depends on the operation we want the tube to perform.

The best all-around indication of the effectiveness of the tube as an amplifier is its transconductance - also called mutual conductance. This characteristic takes account of both amplification factor and plate resistance, and therefore is a sort of figure of merit for the tube. Aetually, transconductance is the change in plate current divided by the change in grid vollage that causes the plate-current change (the plate voltage being fixed at a desired value). Since current divided by voltage is equal to conductance, transeonductance is measured in the unit of conductance, the mho. Practical values of transconductance are very small, so the micromho (one-millionth of a mho) is the commonly-used unit. Different types of tubes have transconductances ranging from a few hundred to several thousand. The higher the transconductance the greater the possible amplification.

AMPLIFICATION

To understand amplification, it is first necessary to become acquainted with a type of graph called the dynamic characteristic. Such a graph, together with the circuit used for obtaining it, is shown in Fig, 3-7. The curves are taken with the plate-supply voltage fixed at the desired operating value. The difference between this circuit and the one shown in Fig. 3-6 is that there is a load resistance connected in series with the plate of the tube in Fig. 3-7, while there is none in Fig. 3-6. Fig.

3-7 thus shows how the plate current will vary, with different grid voltages, when the plate current is made to flow through a load and thus do useful work.

The several curves in Fig. 3-7 are for various values of load resistance. The effect of the amount of load resistance is worth noting. When the resistance is small (as in the case of the 5000 -ohm load) the plate current changes rather rapidly with a given change in grid voltage. If the load resistance is high (as in the 100,000 -ohm curve), the change in plate current for the same grid-voltage change is relatively small, so the curve tends to be straighter.

Going now to Fig. 3-8, we have the same type of curve, but with the circuit arranged so that a source of alternating voltage (signal) is inserted between the grid and the grid battery ("C" battery). The voltage of the grid battery is fixed at -5 volts, and from the curve

Fig, 3-7- Dynamic elaracteristics of a small triode with various load resistances from 5000 to 100,000 ohms.
it is seen that the plate current at this grid voltage is 2 milliamperes. This current flows when the load resistance is 00,000 ohms, as indicated in the circuit diagram. If there is no a.c. signal in the grid circuit, the voltage drop in the load resistor is $50,000 \times 0.002=100$ volts, leaving 200 volts between the plate and cathode.

Now when a sine-wave signal having a peak value of 2 volts is applied in series with the bias voltage in the grid circuit, the instantaneous voltage at the grid will swing to -3 volts at the instant the signal reaches its positive peak, and to -7 volts at the instant the signal reaches its negative peak. The maximum plate current will occur at the instant the grid voltage is -3 volts. As shown by the graph, it will have a value of 2.65 milliamperes. The minimum plate current occurs at the instant the grid voltage is -7 volts, and has a value of 1.35 ma. . It intermediate values of grid voltage, intermediate plate-current values will occur.

The instantaneous voltage between the plate and cathode of the tube also is shown on the

Fig. 3-8-Amplifier operation. When the plate eurrent varies in response to the signal applied to the grid, a varying voltage drop appears across the load, R_{p}, as shown lyy the dashed curve, $E_{\mathrm{p}} . I_{\mathrm{p}}$ is the plate current.
graph. When the plate current is maximum, the instantaneous voltage drop in R_{p} is 50,000 $\times 0.00265=132.5$ volts; when the plate current is minimum the instantaneous voltage drop in R_{p} is $\overline{5} 0,000 \times 0.0013 \overline{3}=67.5$ volts. The actual voltage between plate and cathode is the difference between the plate-supply potential, 300 volts, and the voltage drop in the load resistance. The plate-to-cathode voltage is therefore $167 . \overline{5}$ volts at maximum plate current and $2: 32.5$ volts at minimum plate current.

This varying plate voltage is an a.c. voltage superimposed on the steady plate-cathode potential of 200 volts (as previously determined for no-signal conditions). The peak value of this a.c. output voltage is the difference between either the maximum or minimum platecathode voltage and the no-signal value of 200 volts. In the illustration this difference is $232.5-200$ or $200-167.5$; that is, 32.5 volts in either case. Since the grid signal voltage has a peak value of 2 volts, the voltageamplification ratio of the amplifier is $32.5 / 2$ or 16.25 . That is, approximately 16 times as much voltage is obtained from the plate circuit as is applied to the grid circuit.

One feature of the alternating component of plate voltage is worth special note. As shown by the drawings in Fig. 3-8, the positive swing in the grid signal voltage is accompanied by a downuard swing in the voltage (E_{p}) between the plate and cathode of the tube. Also, when the alternating grid voltage swings in the negative direction, the plate-to-cathode voltage swings to a higher value. In other words, the
alternating component of the plate voltage swings in the negative direction (with reference to the no-signal value of plate-cathode voltage) when the grid swings in the pasitive direction, and vice versa. This means that the alternating component of plate voltage (that is, the amplified signal) is 180 degrees out of phase with the signal voltage on the grid.

Bias

The fixed negative grid voltage (called grid bias) in Fig. 3 -s serves a very useful purpose. In the first place, one of the things we want to do in the type of amplification shown in this drawing is to obtain, from the plate circuit, an alternating voltage that has the same waveshape as the signal voltage applied to the grid. To do so, we must choose an operating point on the struight part of the curve; not only that, the curve must be straight in both directions from the operating point at least far enough to accommodate the maximum value of the signal applied to the grid. If the grid signal swings the phate current back and forth, over a part of the curve that is not straight, as in Fig. 3-9, the shape of the a.c. wave in the plate circuit will not be the same as the shape of the grid-signal wave. In such a case the output waveshape will be distorted.

The second reason for using negative grid bias is this: The grid will not attract electrons - that is, there will be no grid current - if the grid is ahways negative with respect to the cathode. When the grid has a negative bias, any signal whose peak positive voltage does not exceed the fixed neyntive voltage on the grid cannot cause grid current to flow. With no current flow there is no power consumption, so the tube will amplify without taking any power from the signal source. However, if the positive

Fig. 3-9- Harmonic distortion resulting from choice of an operating point on the curved part of the tube characteristic. The lower half-cycle of plate current does not have the same shape as the upper half-cycle,
peak of the signal does exceed the negative bias, current will flow in the grid circuit during the time the grid is positive. While it is perfectly possible to operate the tube in the "positive-grid region," in many cases we do not want the grid to consume power.

Distortion of the output waveshape that results from working over a part of the curve that is not straight (that is, a nonlinear part of the curve) has the effect of transforming a sine-wave grid signal into a more complex waveform. As explained in Chapter Two, a complex wave can be resolved into a fundamental and a series of harmonics. In other words, distortion from nonlinearity causes the generation of harmonic frequencies - frequencies that are not present in the signal applied to the grid. Harmonic distortion is undesirable in most amplifiers, although there are occasions when harmonics are deliberately generated and used. This is particularly so in certain types of r.f. transmitting circuits.

Amplifier Output Circuits

The thing that is wanted from the output circuit of a vacuum-tube amplifier is the alternating component of plate current or plate voltage. The d.c. voltage on the plate of the tube is essential, of course, for the tube's operation. However, it almost invariably would cause difficulties if it were applied, along with the a.c. output voltage, to the load. The output circuits of vacuum tubes are therefore arranged so that the a.c. is transferred to the load but the d.c. is not.

Three types of coupling are in common use at audio frequencies. These are resistance coupling, impedance coupling, and transformer coupling. They are shown in Fig. 3-10. In all three cases the output is shown coupled to the grid circuit of a subsequent amplifier tube, but the same types of circuits can be used to couple to other devices than tubes.

In the resistance-coupled circuit, the a.c. voltage developed across the plate resistor R_{p} (that is, between the plate and cathode of the tube) is applied to a second resistor, R_{k}, through a coupling condenser, C_{c}. The condenser "blocks off" the voltage on the plate of the first tube and prevents it from being applied to the grid of tube B. The latter tube should have negative grid bias, of course, and this is supplied by the battery shown. No current flows in the grid circuit of tube B and there is therefore no d.c. voltage drop in R_{g}; in other words, the full voltage of the bias battery is applied to the grid of tube B.

The grid resistor, R_{k}, usually has a rather high value (0.5 to 2 megohms). The reactance of the coupling condenser, C_{c}, must be low enough compared to the resistance of R_{g} so that the a.c. voltage drop in C_{c} is negligible at the lowest frequency to be amplified. If R_{g} is at least $0 . \bar{i}$ megohm, a $0.1-\mu \mathrm{fd}$. condenser will be amply large for the usual range of audio frequencies,

Fig. 3-10-Three basic forms of coupling between vacuum-tube amplifiers.

So far as the alternating component of plate voltage is concerned, it will be realized that if the voltage drop in (${ }_{c}$ is negligible then K_{p} and R_{g} are effectively in parallel (although they are quite separate so far as d.c. is concerned). The resultant parallel resistance of the two is therefore the actual load resistance for the tube. That is why R_{k} is made as high in resistance as possible; then it will have the least effect on the load represented by R_{p}.

The impedance-coupled circuit differs from that using resistance coupling only in the substitution of a high-inductance coil (usually several hundred henrys) for the plate resistor. The advantage of using an inductance rather than a resistor is that its impedance is high for alternating currents, but its resistance is relatively low for d.c. (A resistor, of course, has the same resistance for d.c. that it does for a.c.). It thus permits us to obtain a high value of load impedance for a.c., but without an excessive d.c. voltage drop that would use up a good deal of the voltage from the plate supply.

The transformer-coupled amplifier uses a transformer with its primary connected in the
plate circuit of the tube and its secondary connected to the load (in the circuit shown, a following amplifier). There is no direct connection between the two windings, so the plate voltage on tube A is isolated from the grid of tube 13 . The transformer-coupled amplifier has the same advantage as the impedance-coupled circuit with respect to loss of voltage from the plate supply. There is an additional advantage as well: if the secondary has more turns than the primary, the output voltage will be "stepped up" in proportion to the turns ratio.

All three circuits have good points. Resistance coupling is simple, inexpensive, and will give the same amount of amplification or voltage gain - over a wide range of frequencies; it will give substantially the same amplification at any frequency in the audio range, for example Impedance coupling will give somewhat more gain, with the same tube and same plate-supply voltage, than resistance coupling. However, it is not quite so good over a wide frequency range; it tends to "peak," or give maximum gain, over a comparatively narrow band of frequencies. With a good transformer the gain of a transformer-coupled amplifier can be kept, fairly constant over the audio-frequency range. On the other hand, transformer coupling is best suited to triodes

Fig. 3-11 - An elcmentary power-amplificr circuit in which the power-consuming load is coupled to the plate circuit through an impedance-matehing transformer.
having amplification factors of about 10 or less, for the reason that the primary inductance of a practicable transformer cannot be made large enough to work well with a tube having high plate resistance.

An amplifier in which voltage gain is the primary consideration is called a voltage amplifier. Maximum voltage gain is secured when the load resistance or impedance is made as high as possible in comparison with the plate resistance of the tube. In such a case, the major portion of the voltage generated will appear across the load and only a relatively small part will be "lost" in the plate resistance.

Voltage amplifiers belong to a group called Class A amplifiers. A Class A amplifier is one operated so that the waveshape of the output voltage is the same as that of the signal voltage applied to the grid. If a Class A amplifier is biased so that the grid is always negative, even with the largest signal to be handled by the grid, it is called a Class A_{1} amplifier. Voltage
amplifiers are always Class A_{1} amplifiers, and their primary use is in driving a following Class Λ_{1} amplifier.

Power Amplifiers

The end result of any amplification is that the amplified signal does some work. As a familiar example, an audio-frequency amplifier usually drives a loudspeaker that in turn produces sound waves. The greater the amount of a.f. pouer supplied to the 'speaker, the louder the sound it will produce.

In some anplifiers, therefore, power output rather than voltage is the primary consideration. It was mentioned in Chapter 'Two that any source of power will deliver the largest possible output when the resistance of the load is equal to the internal resistance of the source. In the case of a vacuum tube, the "source" resistance is the plate resistance of the tube. Therefore if we want the utmost power from the tube the load resistance should be equal to the plate resistance of the tube. Actually, however, this is not the best operating condition because the use of such a relatively low value of load resistance generally results in more distortion than we want. For this reason the load resistance for a power amplifier usually is two or three times the plate resistance; this represents a good compromise between distortion and power output.

Fig. 3-11 shows an elementary power-amplifier circuit. It is simply a transformer-coupled amplifier with the load connected to the secondary. Although the load is shown as a resistor, it actually would be some device, such as a loudspeaker, that employs the power usefully. The resistance of the actual load is rarely the right value for "matching" the load resistance that the tube wants for optimum power output. Therefore the transformer turns ratio is chosen to reflect the proper value of resistance into the primary. The turns ratio may be either step-up or stepdown, depending on whether the actual load resistance is higher or lower than the load the tube wants.

The power-amplification ratio of an amplifier is the ratio of the power output obtained from the plate circuit to the power required from the a.c. signal in the grid circuit. There is no power lost in the grid circuit of a Class Λ_{1} amplifier, so such an amplifier has an infinitely large power-amplification ratio. However, it i. quite possible to operate a Class A amplifier in such a way that current flows in its grid circuit during at least part of the cycle. In such a case power is used up in the grid circuit and the power amplification ratio is not infinite. I tube operated in this fashion is known as a Class \boldsymbol{A}_{2} amplifier. It is necessary to use a power amplifier to drive a Class Λ_{2} amplifier, because a voltage amplifier cannot deliver power without serious distortion of the waveshape.

Another term used in connection with power

Fig. 3-12 - Parallel and push-pull a.f. amplifier circuits. amplifiers is power sensitivity. In the case of a Class A_{1} amplifier, it means the ratio of power output to the grid signal voltage that causes it. If grid current flows, the term usually means the ratio of plate power output to grid power input.

The a.c. power that is delivered to a load by an amplifier tube has to be paid tor in power taken from the source of plate voltage and current. In fact, there is always more power going into the plate circuit of the tube than is coming out as useful output. The difference between the input and output power is used up in heating the plate of the tube, as explained previously. If we want a great deal of power output, therefore, it is advantageous to make this difference as small as possible. The ratio of useful power output to d.c. plate input is called the plate efficiency. The higher the plate efficiency, the greater the amount of power that can be taken from a tube having a fixed plate-dissipation rating.

Parallel and Push-Pull

When it is necessary to obtain more power output than one tube is capable of giving, two or more similar tubes may be connected in parallel. In this case the similar elements in all tubes are connected together. This method is shown in Fig. 3-12 for a transformer-coupled amplifier. The power output is in proportion to the number of tubes used; the grid signal or "exciting" voltage required, however, is the same as for one tube.

If the amplifier operates in such a way as to consume power in the grid circuit, the grid power required also is in proportion to the number of tubes used.

An increase in power output also can be secured by connecting two tubes in push-pull. In this case the grids and plates of the two tubes are connected to opposite ends of a balanced circuit as shown in Fig. 3-12. At any
instant the ends of the secondary winding of the input transformer, T_{1}, will be at opposite polarity with respect to the cathode connection, so the grid of one tube is swung positive at the same instant that the grid of the other is swung negative. Hence, in any push-pullconnected amplifier the voltages and currents of one tube are out of phase with those of the other tube.

In push-pull operation the even-harmonic (second, fourth, etc.) distortion is balanced out in the plate circuit. This means that for the same power output the distortion will be less than with parallel operation.

The exciting voltage measured between the two grids must be twice that required for one tube. If the grids consume power, the driving power for the push-pull amplifier is twice that taken by either tube alone.

Cascade Amplifiers

It is of course thoroughly possible to take the output of one amplifier and apply it as a signal on the grid of a second amplifier, then take the second amplifier's output and apply it to a third, and so on. Each amplifier is called a stage, and a number of amplifier stages used to increase successively the amplitude of the signal are said to be in cascade.

The number of amplifiers that can be connected in cascade is not unlimited. If the overall amplification becomes too great, there is danger that some of the output voltage will get back into one of the carly stages. This "feedback," discussed in a later section, may make the amplifier unstable and prevent it from functioning as it should.

Class B Amplifiers

Fig. 3-13 shows two tubes connected in a push-pull circuit. If the grid bias is set at the point where (when no signal is applied) the plate current is just cut off, then a signal can cause plate current to flow in either tube only when the signal voltage applied to that particular tube is positive. In the balanced grid circuit, the signal voltages on the grids of the two tubes always have opposite polarities; that is, when the signal swings the instantaneous voltage in the positive direction on the grid of tube A, it is at the same time swinging the grid of tube B more negative. On the next half-cycle the polarities reverse and the grid of tube B is more positive and that of tube A more negative. Since the fixed bias is just at the cut-off point, this means that plate current flows only in one tube at a time.

The graphs show the operation of such an amplifier. The plate current of tube B is drawn inverted to show that it flows in the opposite direction, through the primary of the output transformer, to the plate current of tube A. Thus each half of the output-transformer primary works alternately to induce a halfcycle of voltage in the secondary. In the secondary of T_{2}, the original waveform is re-
stored. This type of operation is called Class B amplification.

The Class B amplifier is considerably more efficient than the Class A amplifier. Furthermore, the d.c. plate current of a Class B amplifier is proportional to the signal voltage on the grids, so the power input is small with small signals. The d.c. plate power input to a Class I amplifier is the same whether the signal is large, small, or absent altogether; therefore the maximum input that can be applied to a Class A amplifier is the rated plate dissipation of the tube or tubes. Two tubes in a Class is amplifier can detiver approximately twelve times as much audio power as the same two tuhes in a Class 1 amplifier.

Fig. 3-13 - Class 13 amplilier operation.
A Class B amplifier usually is operated in such a way as to secure the maximum possible power output. This requires that the grids be driven positive with respect to the cathode during at least part of the cycle, so grid current flows and the grid circuit consumes power. While the power requirements are fairly low (as compared with the power output), the fact that the grids are positive during only purt of the cycle means that the load on the "driver" stage varies in magnitude during the rocle; the effective load resistance is high when the grids are not drawing current and relatively low when they do take current. This must he allowed for when designing the driver.

Certain types of tubes have been designed sperifically for Class 13 service and can be operated without fixed or other form of grid bias ("zero-bias" tubes). The amplification fartor is so high that the plate current is small without signal. Because there is no fixed bias. the grids start drawing current immediately whenever a signal is applied, so the grid-current flow is continuous throunhout the cyele. This makes the load on the driver much more
constant than is the case with tubes of lower μ biased to plate-current cut-off.

Class AB Amplifiers

A Class $A B$ amplifier is one operated midway between Class A and Class B conditions. A Class AB amplifier is a push-pull amplifier with higher bias than would be normal for pure Class 1 operation, but less than the cut-off bias required for Class B. At low signal levels the tubes operate practically as Class A amplifiers, and the plate current is the same with or without signal. It higher signal levels, the plate current of one tube is cut off during part of the negative cycle of the signal applied to its grid, and the plate current of the other tube rises with the signal. The plate current for the whole amplifier also rises above the no-signal level when a large signal is applied.

In a properly-designed Class AB amplifier the distortion is as low as with a Class A stage, but the efficiency and power output are considerably higher than with pure Class A operation. A Class AB amplifier can be operated either with or without driving the grids into the positive region. A Class $A B_{1}$ amplifier is one in which the grids are never positive with respect to the cathode; therefore, no driving power is required - only voltage. A Class $\mathbf{A B}_{2}$ amplifier is one that has gridcurrent flow during part of the cycle, when the applied signal is large; it takes a small amount of driving power. The Class AB_{2} amplifier will deliver somewhat more power (using the same tubes) but the Class $A B_{1}$ amplifier avoids the problem of designing a driver for it that will deliver power, without distortion, into a load of highly-variable resistance.

Class C Amplifiers

Inspection of Fig. :3-13 shows that either of the two tubes actually is working for only half the a.c. cycle and idling during the other half. It is convenient to describe the amount of time during which plate current fows in terms of electrical degrees. In Fig. 3-1:3 each tube hats " 180 -degree" excitation, a half-cycle being equal to 180 degrees. The number of degrees during which plate current flows is called the operating angle of the amplifier. From the descriptions given above, it should be clear that a Class I amplifier has 360 -degree excitation, because plate current flows during the whole cycle. In a Class AB amplifier the operating angle is between 180 and 360 degrees (in each tube) depending on the particular operating conditions chosen. The greater the amount of negative grid bias, the smaller the operating angle becomes.

An operating angle of less than 180 degrees obviously would lead to a considerable amount of distortion, because there is no way for the tube to reproduce even a half-cycle of the signal on its grid. [sing two tubes in pushpull, as in Fig. 3-1:3, would not overcome this
distortion; it would merely put together two distorted half-cycles. An operating angle of less than 180 degrees therefore cannot be used if distortionless output is wanted.

However, in certain types of amplifiers distortion does not matter particularly. One example is an amplifier used to generate r.f. power. The power output of such an amplifier is delivered to a tuned circuit, and it is characteristic of a tuned circuit that it will have a high impedance at the frequency to which it is resonant, but low impedance to all other frequencies. The tuned circuit can be made to have a high impedance at the frequency applied to the grid of the amplifier, thus providing a load of the optimum value for the tube. At harmonics of this fundamental frequency the impedance of the tuned circuit will be low, and thus will be a poor load for the tube for those frequencies set up by distortion; the distortion is "filtered out." The result is that the output voltage and current are practically pure sine waves.

Using an operating angle less than 180 degrees increases the plate efficiency, because it is characteristic of tube operation that the smaller the time during which plate current flows the smaller the amount of power lost in the plate. Also, when the proper angle and other operating conditions are chosen the power output of the amplifier is proportional to the square of the voltage applied to its plate. That is, the amplifier has the linear characteristics of a resistor insofar as its behavior when the plate voltage is varied is concerned. This is an important consideration when the amplifier is to be "modulated," as described in Chapter Nine. Such an amplifier is called a Class C amplifier. In Class C operation the operating angle usually is in the range $120-150$ degrees, and the plate efficiency is 70 to 80 per cent.

- FEED-BACK

As we have shown, there is more energy in the plate circuit of an amplifier than there is in the grid circuit. It is casily possible to take a part of the plate-circuit energy and insert it into the grid circuit. When this is done the amplifier is said to have feed-back.

There are two types of feed-back. If the voltage that is inserted in the grid circuit is 180 degrees out of phase with the signal voltage acting on the grid, the feed-back is called negative, or degenerative. (On the other hand, if the voltage is fed back in phase with the grid signal, the feed-back is called positive, or regenerative. With negative feed-back the voltage that is fed back opposes the signal voltage; this decreases the amplitude of the voltage acting between the grid and cathode. With a smaller signal voltage, of course, the output also is smaller. The effect of negative feed-baek, then, is to reduce the amount of amplification.

Negative Feed-Back

The circuit shown at A in Fig, 3-14 gives degenerative feed-back. Resistor R_{c} is in series with the regular plate resistor, R_{p}, and thus is a part of the load for the tube. Therefore, part of the output voltage will appear across R_{c}. However, R_{c} also is connected in series with the grid circuit, and so the output voltage that appears across R_{c} is in series with the signal voltage. In this circuit, the output voltage across h_{c} opposes the signal voltage and the actual a.c. voltage between the grid and cathode therefore is equal to the difference between the two voltages.

While it would be natural to assume that there could be no point in reducing the amplification by negative feed-back, it does have uses. The greater the a mount of negative feedback (when properly applied) the more independent the amplification becomes of tube characteristics and circuit conditions. This means that the frequency-response characteristic of the amplifier becomes flat - that is, amplification tends to be the same at all frequencies within the range for which the amplifier is designed. Also, any distortion generated in the plate circuit of the tube tends to "buck itself out" when some of the output voltage is fed back to the grid. Amplifiers with negative feed-back are therefore comparatively free of harmonic distortion. These advantages, secured at the expense of voltage amplification, are worth while if the amplifier otherwise has enough gain for its intended use.

The circuit shown at B in Fig. 3-14 can be used to give either negative or positive feedback. In this case the secondary of a transformer is connected back into the grid circuit to insert a desired amount of feed-back voltage. Reversing the terminals of either the

(A)

(B)

Fif. 3-14-Cireuits for producing feed-back. In A, part of the a.c. plate voltage appears across the cathode resistor, R_{c}, and is therefore also applied between grid and cathode. The feed-back is negative in this case. In 13, the voltage that is generated in the secondary of the transformer is inserted in scries in the grid circuit. Feed-back may be either positive or ncgative, depending upon the transformer connections.
primary or secondary of the transformer (but not both windings simultaneously) will reverse the phase of the voltage fed back. Thus either type of feed-back is available.

Positive Feed-Back

Positive feed-back increases the amplification because the fed-back voltage adds to the original signal voltage and the resulting larger voltage on the grid causes a larger output voltage. It has the opposite characteristics to negative feed-back; the amplification tends to be greatest at one frequency (depending upon the particular circuit arrangement) and harmonic distortion is increased. If the energy fed back becomes large enough, a self-sustaining oscillation will be set up at one frequency; in this case all the signal voltage on the grid is supplied from the plate circuit; no external signal is needed. It is not even necessary to have an external signal to start the oscillation; any small irregularity in the plate current and there are always some such irregularities - will be amplified and thus give the oscillation an opportunity to build up. Oscillations obviously would be undesirable in an audiofrequency amplifier, and for that reason (as well as the others mentioned above) positive feed-back is never used in a.f. amplifiers. Positive feed-back finds its use in "oscillators" at both audio and radio frequencies, as described in a subsequent section.

The two circuits shown in Fig. 3-14 are only two of many that can be used to provide feedback. Despite differences in appearance, such circuits are alike in this fundamental energy is fed back from the output circuit to the grid circuit in the proper phase to give the type of feed-back that is wanted.

INTERELECTRODE CAPACITANCES

Each pair of elements in a tube actually forms a small "condenser," with each element acting as a condenser "plate." There are three such capacitances in a triode - that between the grid and cathode, that between the grid and plate, and that between the plate and cathode. The capacitances are very small only a few micromicrofarads at most - but they frequently have a very pronounced effect on the operation of an amplifier circuit.

Input Capacitance

It was explained previously that the a.c. grid voltage and a.c. plate voltage of an amplifier are 180 degrees out of phase, using the cathode of the tube as a reference point. However, these two voltages are in phatse if we go around the circuit from plate to grid as shown in Fig. 3-15. This means that their sum is acting between the grid and plate; that is, across the grid-plate capacitance of the tube. When an a.c. voltage is applied to a condenser, a current flows through the condenser. As viewed from the source of the signal on the grid, this
current is flowing because of the signal voltage.
The larger the current, the lower the effective reactance in the grid circuit. The larger the grid-plate capacitance the larger the current; also, the greater the voltage amplification the larger the current, because this puts more voltage across the grid-plate condenser. The result is that the source of signal "sees" a capacitive reactance that is much smaller than the actual reactance of the capacitance between the grid and cathode.
Since a small reactance is equivalent to a large capacitance, the input capacitance of an amplifier may be many times its actual gridcathode capacitance. In practice, the input capacitance of a triode may be as much as a few hundred micromicrofarads, particularly if the triode has a large amplification factor. Such a capacitance is not negligible, even at audio frequencies, when it is placed in parallel with a resistor of 50,000 ohms or more.

Tube Capacitance at R.F.

At radio frequencies the reactances of the interelectrode capacitances drop to such low values that they must always be taken into account in circuit design. A resistance-coupled amplifier cannot be used at r.f., for example, because the reactances of the interelectrode "condensers" are so low that they, and not the resistors, would be the actual load. Furthermore, they are so low that they practically short-circuit the input and output circuits and thus the tube is unable to a mplify. We get around this at radio frequencies by using tuned circuits for the grid and plate, and making the tube capacitances part of the tuning capacitances. In this way the circuits can have the high impedances necessary for satisfactory anplification.

Fip. 3-15-The a.c. voltage appearing between the grid and plate of the amplifier is the sum of the signal voltage and the output voltage, as shown by this simplified circuit. Instantaneous polarities are indicated.

The grid-plate capacitance is important at radio frequencies because it is, in effect, a coupling condenser between the grid and plate circuits. Since its reactance is relatively low at r.f., it offers a path over which energy can be fed back from the plate to the grid. In practically every case the feed-back is in the right phase and of sufficient amplitude to cause oscillation, so the amplifier becomes useless. Special circuits can be used to prevent feedback but they are, in general, not too satisfac-
tory when used in radio receivers. (They are, however, widely used in transmitters.) A better solution to this problem is found in the use of the screen-grid tube.

Fig. 3-16- Represen. tative arrangement of elements in a screengrid tube, with front part of plate and screen grid cut away. In this drawing the control-grid connection is made through a cap on the top of the tube, thus eliminating the capacitance that nould exist between the plate-and grid-lead wires if both passed through the base. Some modern tubes that have both leads going through the base use special shielding and construction to eliminate interlead capacitance.

- SCREEN-GRID TUBES

The grid-plate capacitance can be eliminated - or at least reduced to a negligible value by inserting a second grid between the control grid and the plate, as indicated in Fig. 3-16. The second grid, called the screen grid, acts as a shield between the control grid and plate. It is made in the form of a grid or coarse screen so that electrons can pass through it; a solid shield would entirely prevent the flow of plate current. The screen grid is usually grounded through a by-pass condenser that has low reactance at the radio frequency being a mplified.

Because of the shielding action of the screen grid, the plate voltage cannot control the flow of plate current as it does in a triode. In order to get electrons to the plate, it is necessary to apply a positive voltage (with respect to the cathode) to the screen. The screen then attracts electrons much as does the plate in a triode tube. In traveling toward the screen the electrons acquire such velocity that most of them shoot between the screen wires and go on to the plate. A certain proportion do strike the screen, however, with the result that some current also flows to the screen-grid circuit of the tube.

A tube having a cathode, control grid, screen grid and plate (four elements) is called a tetrode.

Pentodes

When an electron traveling at appreciable velocity through a tube strikes the plate it dislodges other electrons which "splash" from the
plate into the interelement space. This is called secondary emission. In a triode the negative grid repels the secondary electrons back into the plate and they cause no disturbance. In the screen-grid tube, however, the positivelycharged screen attracts the secondary electrons, causing a reverse current to flow between screen and plate.

To overcome the effects of secondary emission, a third grid, called the suppressor grid, may be inserted between the screen and plate. This grid, which usually is connected directly to the cathode, repels the relatively lowvelocity secondary electrons. They are driven back to the plate without appreciably obstructing the regular plate-current flow. A five-element tube of this type is called a pentode.

Although the screen grid in either the tetrode or pentode greatly reduces the influence of the plate upon plate-current flow, the control grid still can control the plate current in essentially the same way that it does in a triode. Consequently, the grid-plate transconductance (or mutual conductance) of a tetrode or pentode will be of the same order of value as in a triode of corresponding structure. (In the other hand, since the plate voltage has very little effect on the plate-current flow, both the amplification factor and plate resistance of a pentode or tetrode are very high. In small receiving pentodes the amplification factor is of the order of 1000 or higher, while the plate resistance may be from 0.5 to 1 or more inegohms. Because of the high plate resistance, the actual voltage amplification possible with a pentode is very much less than the large amplification factor might indicate. A voltage gain in the vicinity of 50 to 200 is typical of a pentode stage.

Pentode R.F. Amplifier

Fig. 3-17 shows a simplified form of r.f. amplifier circuit, using a pentode tube. IRadiofrequency energy in the small coil coupled to L_{1} is built up in voltage in the tuned circuit, $L_{1} C_{1}$, when $L_{1} C_{1}$ is tuned to resonance with the frequency of the incoming signal. The voltage that appears across $L_{1} C_{1}$ is applied to the grid and cathode of the tube and is amplified by the tube. A second resonant circuit, $L_{2} C_{2}$, is the load for the plate of the tube, its parallel impedance being high because it is tuned to resonance with the frequency applied to the

Fig. 3-17-Simplified pentode r.f.-amplifier circuit. $L_{1} C_{1}$ and $L_{2} C_{2}$ are tuned to the same frequency.
grid. R.f. output can be taken from the coil coupled to L_{2}. The screen-grid voltage is obtained from a tap on the plate battery; most tubes are designed for operation with the screen voltage considerably lower than the plate voltage. In this circuit the batteries are assumed to have low impedance for the r.f. current; in a practical circuit, by-pass condensers would be used to make sure that the impedances of the return paths actually are low enough to be negligible.

In addition to their applications as radiofrequency amplifiers, pentode or tetrode screengrid tubes also can be constructed for audiofrequency power amplification. In tubes designed for this purpose the shielding effect of the screen grid is not so important; the chief function of the screen is to serve as an accelerator of the electrons, so that large values of plate current can be drawn at relatively low plate voltages. Such tubes have quite high power sensitivity compared to triodes of the same power output. Harmonic distortion is somewhat greater with pentodes and tetrodes than with triodes, however.

Variable- μ Tubes

The mutual conductance of a vacuum tube decreases with increasing negative grid bias, assuming that the other electrode voltages are held constant. Since the mutual conductance controls the amount of amplification, it is possible to adjust the gain of the amplifier by adjusting the grid bias. This method of gain control is universally used in radio-frequency amplifiers designed for receivers. Some means of controlling the r.f. gain is essential in a receiver having a number of amplifiers, because

Fig. 3-18-Curves showing the relationship between mutual conductance and negative grid bias for two small receiving pentodes, one a sharp cut-off type and the other a variable- μ type.
of the wide range in the strengths of the ineoming signals.

The ordinary type of tube has what is known as a sharp cut-off characteristic. The mutual conductance decreases at a uniform rate as the negative bias is increased, as shown in Fig. $3-18$. The amount of signal voltage that such a tube can handle without causing distortion is quite limited, and not sufficient to take care of very strong signals. To overcome this, some tubes are made with a variable- μ characteristic (that is, the amplification factor changes with the grid bias), resulting in the type of curve shown in Fig. 3-18. It is evident that the variable- μ tube can handle a much larger signal than the sharp cut-off type before the signal swings either beyond the zero grid-bias point or the plate-current cut-off point.

OTHER TYPES OF AMPLIFIERS

In the amplifier circuits so far discussed, the signal has been applied between the grid and cathode and the amplified output has been taken from the plate-to-cathode circuit. That is, the cathode has been the common point, or meeting point, for the input and output circuits. However, since there are three clements (the screen and suppressor in a pentode ordinarily do not enter directly into the amplifying action) it is possible to use any one of the three as the common point. This leads to two different kinds of amplifiers, commonly called the grounded-grid amplifier (or grid-separation circuit) and the cathode follower.

These two circuits are shown in simplified form in Fig. 3-19. In both circuits the resistor R represents the lodd into which the amplifier works; the actual load may be resistance-capacitance-coupled, transformer-coupled, may be a tuned circuit if the amplifier operates at radio frequencies, and so on. Also, in both circuits the batteries that supply grid bias and plate power are assumed to have such negligible impedance that they do not enter into the operation of the circuits.

Grounded-Grid Amplifier

In the grounded-grid amplifier the input signal is applied between the cathode and grid, and the output is taken between the plate and grid. The grid is thus the common element. The plate current (including the a.c. component) has to flow through the signal source to reach the cathode. Nince this source always has appreciable impedance, the alternating plate current causes a voltage drop that acts between the grid and cathode. Because of the phase relationship between the signal and output voltages, the circuit is degenerative. Also, since the source of signal is in series with the load through the plate-to-cathode resistance of the tube, some of the power in the load is supplied by the signal source. The result is that the signal source is called upon to furnish a considerable amount of power.

The grounded-grid amplifier finds its chief application at v.h.f. and u.h.f., where the more conventional amplifier circuit fails to work properly. With a triode tube designed for

Fig. 3-19 - In the upper circuit, the grid is the junction point between the input and output circuits. In the lower drawing, the plate is the junction. In either case the output is developed in the load resistor, R, and may be coupled to a following amplifier by the usual methods.

this type of operation, an r.f. amplifier can be built that is free from the type of feed-back that causes oscillation. This requires that the grid act as a shield between the cathode and plate, reducing the plate-cathode capacitance to a very low value.

Cathode Follower

The cathode follower uses the plate of the tube as the common element. The input signal is applied between the grid and plate (assuming negligible impedance in the batteries) and the output is taken from between'cathode and plate. This circuit, like the: grounded-grid amplifier, is degenerative. In fact, all of the output voltage is fed back into the input circuit to buck the applied signal. The input signal therefore has to be larger than the output voltage; that is, the cathode follower not only gives no voltage gain but actually results in a loss in voltage. (It can still give just as much power gain as ever, though.)

The cathode follower has two advantages: It has a very high input impedance (impedance between grid and ground - in the customary cathode-follower circuit the plate is at ground for signal voltage); and its output impedance is very low. (The large amount of negative feed-back has the effect of greatly reducing the plate resistance of the tube.) These two characteristics are valuable in an amplifier that must work over a very wide range of frequencies. Also, the high input impedance and low output impedance can be used to obtain an impedance step-down over wide ranges of frequencies that could not possibly be covered by a transformer. The cathode follower is useful both at audio and radio frequencies.

Fig. 3-20 - Filament center-tapping methods for use with directly. heated tubes.

CATHODE CIRCUITS AND GRID BIAS

Most of the equipment used by amateurs is powered by the a.c. line. This includes the filaments or heaters of vacuum tubes. Although supplies for the plate (and sometimes the grid) are usually rectified and filtered to give "pure" d.c. - that is, direct current that is constant and without a superimposed a.c. component - the relatively large currents required by filaments and heaters make a d.c. supply impracticable.

Filament Hum

Alternating current is just as good as direct current from the heating standpoint, but some of the a.c. voltage is likely to get on the grid and cause a low-pitched "a.c. hum" to be superimposed on the output. The voltage can get on the grid either by a direct circuit connection, through the electric field about the heater, or through the magnetic field set up by the current.

Hum troubles are worst with directlyheated cathodes or filaments, because with such cathodes there has to be a direct connection between the source of heating power and the rest of the circuit. The hum can be minimized by either of the connections shown in Fig. 3-20. In both cases the grid- and platereturn circuits are connected to the electrical midpoint (center-tap) of the filament supply. Thus, so far as the grid and plate are concerned, the voltage and current on one side of the filament are balanced by an equal and opposite voltage and current on the other side. This balances out the hum. The balance is never quite perfect, however, so filament-type tubes are never completely hum-free. For this
reason directly-heated filaments are employed for the most part in transmitting power tubes, where the amount of hum introduced is extremely small in comparison to the poweroutput level.

With indirectly-heated cathodes the source of heating power does not introduce hum by a direct connection. The chief problem with such tubes is the magnetic field set up by the heater. Occasionally, also, there is leakage between the heater and cathode; leakage that allows a
small ar. voltage to get to the grid. Both these things are prineipally a matter of tube design. However, it is found in practice that, if hum appears, grounding one side of the heater supply will help to reduce it. Sometimes better results are obtained if the heater supply is center-tappod and the center-tap grounded, as in Fig. 3-20.

Cathode Bias

In the simplified amplifier eircuits discussed in this chapter, grid bias has been supplied by a battery. Ilowever, it is seldom obtained that way in an actual piece of equipment that operates from the power line. Cathode bias is the type commonly used.

The cathode-bias method uses a resistor connected in series with the cathode, as shown at R in Fig. 3-21. The direction of plate-current flow is such that the end of the resistor nearest the cathode is positive. The voltage drop across R therefore places a negative voltage on the grid. This negative bias is obtained from the steady d.c. plate current.

If the alternating component of plate current flows through R when the tube is amplifying, the voltage drop caused by the a.c. will be degenerative (note the similarity between this circuit and that of lig. 3-14.A). To prevent this the resistor is by-passed by a condenser, C, that has very low reactance compared to the resistance of R. The capacitance required at C depends upon the value of R and the frequency being amplified. Depending on the type of tube and the particular kind of operation, R may be between about 250 and 3000 ohms. For good by-passing at the low audio frequencies, (' should be 10 to 50 inicrofarads (electrolytic condensers are used for this purpose). At radio frequencies, capacitances of about $100 \mu \mu \mathrm{fd}$. to $0.1 \mu \mathrm{fd}$. are used; the small values are sufficient at very high frequencies and the largest at low and medium frequencies. In the range 3 to 30 megacyeles a capacitance of $0.01 \mu \mathrm{fd}$. is satisfactory.

The value of cathode resistor can easily be calculated from the known operating conditions of the tube. The proper grid bias and plate current always are specified by the manufacturer. Knowing these, the required resistance can be foum by applying Ohm's Law.

Example: It is found from thbe tables that the tube to be used should have a negative grid bias of 8 volts and that at this bias the plate current will be 12 milliamperes (0.012 amp.). The required cathode resistunce is then

$$
R=\frac{E}{I}=\frac{8}{0.012}=667 \text { ohms. }
$$

The nearest standard value, 6\%0 ohus, would be close enough. The power used in the resistor is

$$
P=E I=8 \times 0.012=0.090 \text { watt. }
$$

A $1 / 4$-watt or $1 / 2$-watt resistor would have ample rating.

The current that flows through R is the totel cathode current. In an ordinary triode

amplifier this is the same as the plate current, but in a screen-grid tube the cathode current is the sum of the plate and sercen currents. Hence these two currents must be added when calculating the value of cathode resistor required for a screen-grid tube.

Example: A receiving pentorle requires 3 volts negative bias. At this bias and the recommended plate and screen voltages, its plate current is 9 ma. and its sereen current is 2 ma . The cathode current is therefore 11 ma . (0.011 amp .). The required resistance is

$$
R=\frac{E}{I}=\frac{3}{0.011}=272 \text { ohnns. }
$$

A 270 -ohm resistor would be satisfactory. The power in the resistor is

$$
P=E I=3 \times 0.011=0.033 \text { watt. }
$$

The cathode-resistor method of biasing is convenient because it avoids the use of batteries or other source of fixed voltage. However, that is not its only advantage: it is also selfregulating, because if the tube characteristics vary slightly from the published values (as they do in practice) the bias will increase if the plate current is slightly high, or deerease if it is slightly low. This tends to hold the plate current at the proper value. For the same reason, the value of the cathode resistance is not highly critical. Cathode bias also avoids any tendency toward unwanted feed-back that might occur when a single fixed-bias source is used to furnish bias for several amplifiers. Even a very small a.c. voltage drop in the impedance of a bias source can cause oscillation (if the feedback is positive) or loss of gain (if the feedback is negative) when the voltage is applied to the first stage of amplification in an amplifier having several stages, simply because the gain in a multistage amplifier is likely to be very large.

The caleulation of the bias resistor in a re-sistance-coupled amplifier is not as easy as the examples above. This is because the actual voltages that should be used on the plate and grid are not ordinarily known. The difficulty is that the voltage drop in the plate resistor causes the actual voltage at the plate of the tube to be considerably less than the platesupply voltage, and the lower plate voltage requires a different value of bias than that given in the published operating conditions for the tube. The proper voltages can be found by a cut-and-try process from the tube characteristic curves. However, representative data for
the tubes commonly used as resistance-coupled amplifiers are given in Chapter Nine, including cathode-resistor values.

Screen Supply

In practical circuits using tetrodes and pentodes the voltage for the screen frequently is taken from the plate supply through a resistor. A typical circuit for an r.f. amplifier is shown in Fig. 3-22. Resistor R is the screen dropping resistor, and C is the screen by-pass condenser. In flowing through R, the screen current causes a voltage drop in R that reduces the plate-supply voltage to the proper value for the sereen. When the plate-supply voltage and the screen current are known, the value of R can be calculated from Ohm's law.

Example: An r.f. receiving pentode has a rated screen current of 2 milliamperes (0.002 amp .) at normal operating conditions. The rated screen voltage is 100 volts, and the plate supply gives 250 volts. To put 100 volts on the sereen, the drop across R inust be equal to the difference between the plate-supply voltage and the screen voltage; that is, $250-100=150$ volts. Then

$$
R=\frac{E}{I}=\frac{150}{(0.002}=75,000 \text { olms. }
$$

The power to be dissipated in the resistor is

$$
P=E I=150 \times 0.002=0,3 \text { watt. }
$$

A $1 / 2$ - or 1 -watt resistor would he satisfactory.
The reactance of the screen by-pass condenser, C, should be low compared with the screen-to-cathode impedance. For radio-frequency applications a capacitance of $0.01 \mu \mathrm{fd}$. is amply large.

In some circuits the screen voltage is obtained from a voltage divider connected across the plate supply. The design of voltage dividers is diseussed in Chapter seven.

SPECIAL TUBE TYPES

Beam Tubes

"Beam tetrodes" are tetrode tubes constructed in such a way that the power sensitivity is very high. Beam tubes are useful as both radio-frequency and audio-frequency power amplifiers, and are available in output ratings from a few watts up to several hundred watts. The grids in a beam tube are so constructed and aligned as to form the electrons traveling to the plate into concentrated beams. This makes it possible to draw large plate currents at relatively low plate voltages, and also reduces the number of electrons that are captured by the screen. Additional design features overcome the effects of secondary emission, so that a suppressor grid is not needed.

Multipurpose Tubes

A number of "combination" tubes is available to perform more than one function, particularly in receiver circuits. For the most part these are simply multiunit tubes made up of individual tube-element structures, combined in a single bulb for compactness and economy.

Among the simplest multipurpose types are full-wave rectifiers, combining two diodes in one envelope, and twin triodes, consisting of two triodes in one bulb. More-complex types include duplex-diode triodes (two diodes and a triode in one structure), duplex-diode pentodes, converters and mixers (for superheterodyne receivers), combination power tubes and rectifiers, and so on.

Mercury-Vapor Rectifiers

For a given value of plate current, the power lost in a diode rectifier will be reduced if it is possible to decrease the voltage drop from plate to cathode. A small amount of mercury in the tube will vaporize when the cathode is heated and, further, will ionize when plate voltage is applied. The positive ions neutralize the space charge and reduce the plate-cathode voltage drop to a practically constant value of about 1 is volts, regardless of the value of plate current.

Fig. 3-22 - Screen-voltage supply for a pentode tube through a dropping resistor, R. The screen by-pass condenser, C, must have low enough reactance to bring the screen to ground potential for the frequency or frequencies being amplified.

Since this voltage drop is smaller than can be attained with purely thermionic conduction, there is less power loss in a mercury-vapor rectifier than in a vacuum rectifier. . Iso, the voltage drop in the tube is constant despite variations in load current. Mercury-vapor tubes are widely used in rectifiers built to deliver large power outputs.

Grid-Control Rectifiers

If a grid is inserted in a mercury-vapor rectifier it is found that, with sufficient negative grid bias, it is possible to prevent plate current from flowing. However, this is true only if the bias is present before plate voltage is applied. If the bias is lowered to the point where plate current can flow, the mercury vapor will ionize and the grid will lose control of plate current, because the space charge disappears when ionization occurs. The grid can assume control again only after the plate voltage is reduced below the ionizing voltage.

The same phenomenon also occurs in triodes filled with other gases that ionize at low pressure. (irid-control rectifiers or thyratrons find considerable application in "electronic switching."

Oscillators

It was mentioned earlier in this chapter that if there is enough positive feed-back in an amplifier circuit, self-sustaining oscillations will be set up. When an amplifier is arranged so that this condition exists it is called an oscillator.

Oscillations normally take place at only one frequency, and a desired frequency of oscillation can be obtained by using a resonant circuit tuned to that frequency. The proper phase for positive feed-back can be obtained quite casily from a single tuned circuit. For example, in Fig. $3-23 A$ the circuit $L C$ is tuned to the desired frequency of oscillation. The coil L is tapped and the cathode of the tube is connected to the tap. The grid and plate are connected to opposite ends of the tuned circuit. There will be a voltage drop across the tuned circuit, a voltage drop that increases progressively along the turns of the coil when viewed from one end. At an instant when the upper end of L is positive, for instance, the lower end is negative. However, the tap on the coil is at an intermediate voltage and so is negative with respect to the upper end of L, and positive with respect to the lower end. Or, viewed from the tap, the upper end of L is positive and the lower end is negative. Therefore the grid and plate ends of the coil are opposite in polarity, or opposite in phase. This is the right phase relationship for positive feed-back.

The amount of feed-hack depends on the position of the tap. If the tap is too close to either end of the coil the circuit will not oscillate. If the tap is too near the grid end the voltage drop is too small to give enough feedback, and if it is too near the plate end the impedance between the cathode and plate is too small to permit good amplification. Maximum feed-back usually is obtained when the tap is somewhere near the center of the coil.

It will be observed that the cireuit of Fig. 3-23.1 is parallel-fed, C_{b}, being the blocking condenser. The value of C_{b}, is not critical so long as its reactance is low at the operating frequency.

Condenser C_{g} is the grid condenser. It and R_{R} (the grid leak) are used for the purpose of obtaining grid bias for the tule. In this (and practically all) oscillator circuits the tube generates its own bias. When the grid end of the tuned circuit is positive with respect to the cathode, the grid attracts electrons from the cathode. These electrons cannot flow through L back to the eathode because Cg "blocks" direct current. They therefore have to flow or "leak" through R_{k} to cathode, and in doing so cause a voltage drop in R_{g} that places a negative bias on the grid. The a mount of bias so developed is equal to the grid current multiplied by the resistance of R_{g} (Ohm's Law). The value of grid-leak resistance required de-
pends upon the kind of tube used and the purpose for which the oscillator is intended. Values range all the way from a few thousand to several hundred thousand ohms. The caparitance of (' ${ }^{2}$ should be large enough to have low reactance at the operating frequency.

The circuit shown at B in Fig. 3-23 uses the voltage drops across two condensers in series in the tuned circuit to supply the feed-back. Other than this, the operation is the same as just deseribed. The feed-back can be varied by varying the ratio of the reactances of C ' 1 and C_{2} (that is, by varying the ratio of their capacitances). To maintain the same oscillation frequency the total capacitonce across L must be constant; this means that every time (${ }_{1}$, for example, is adjusted to change the feedback, ('2 must be adjusted in the opposite sense to return the total capacitance and thereby the frequency to the original value.

Inother type of oscillator, called the tunedplate tuned-grid circuit, is shown in Fig. :3-24. Resonant circuits tuned approximately to the same frequency are connceted between grid and eathode and between plate and cathode. The two coils, L_{1} and L_{2}, are not magneticallycoupled. The feed-back is through the gridplate capacitance of the tube, and will be in the right phase to be positive when the plate circuit, (${ }_{2} L_{2}$, is tuned to a slightly higher frequency than the grid circuit, $L_{1} C_{1}$. The a mount of feed-back can be adjusted by varying the tuning of either circuit. The frequency of oscillation is determined by the tuned circuit that has the higher (). The grid leak and grid condenser have the same functions as in the other circuits. In this case it is convenient

Fig. 3-23-Basie oscillator circuits. Feel-hack voltage is obtained by tapping the grid and cathode across a portion of the tuned cirenit. In the llartley eireuit the tap is on the coil, but in the Colpitts cireuit the voltage is obtained from the drop across a condenser.

Fig. 3-24 - The tuned-plate tuned-grid oseillator.
to use series feed for the plate circuit, so C_{b} is a by-pass condenser to guide the r.f. current a round the plate supply.

Practically all feed-back osciliator circuits (and there is an endless variety of them) are variations of these general types. They differ in details and appearance, and some use two or more tubes to accomplish the purpose. However, the basic feature of all of them is that there is positive feed-back in the proper amplitude to sustain oscillation.

Oscillator Operating Characteristics

As a general rule, oscillators are powergenerating devices. There are exceptions: in some cases the oscillator is used primarity to generate a voltuge that is then applied to an amplifier that does not require power in its grid circuit. This type of oscillator is used principally in certain types of measuring equipment; the oscillators used in transmitters and receivers usually are called upon to deliver some power.

When an oscillator is delivering power to a load, the adjustment for proper feed-back will depend on how heavily the oscillator is loaded. If the feed-back is not large enough - that is, if the grid excitation is too small - a slight change in load may tend to throw the circuit into and out of oscillation. On the other hand, too much feed-back will make the grid current excessively high, with the result that the power loss in the grid circuit is larger than necessary. The oscillator itself supplies this grid power, so excessive feed-back lowers the over-all efficiency because whatever power is used in the grid circuit is not available as useful output.

One of the most important considerations in oscillator design is frequency stability. Almost invariably we want the generated frequency to be as constant as possible. The principal factors that cause a change in frequency are (1) temperature, (2) plate voltage, (3) loading, (4) mechanical variations of circuit elements. Temperature changes will cause vacuum-tube elements to expand or contract slightly, thus causing variations in the interelectrode capacitances. Since these are unavoidably part of the tuned circuit, the frequency will change correspondingly. Temperature changes in the coil or condenser will alter their inductance or capacitance slightly, again causing a shift in the resonant frequency. These effects are relatively slow in operation, and the frequency change caused by them is called drift.

Load variations act in much the same way as plate-voltage variations. A temperature change in the load may also resift in drift.

Plate-voltage variations will cause a corresponding shift in frequency; this type of frequency shift is called dynamic instability. Dynamic instability can be reduced by using a tuned circuit of high effective (Q. Since the tube and load represent a relatively low resistance in parallel with the circuit, this means that a low L / C ratio ("high-C") must be used and that the circuit should be lightly loaded. Dynamic stability also can be improved by using a high value of grid leak; this increases the grid bias and raises the effective resistance of the tube as seen by the tank circuit. Using relatively high plate voltage and low plate current also helps.

Fig. 3-25 - Showing how the r.f. ground on a typical oscillator cireuit (Hartley) may be placed on either the plate (A) or grid (B) instead of the more conventional method of grounding the eathode. I'rovided the proper provisions are made for supplying eathode and plate voltages, the eireuit operation is unchanged by shifting the r.f. ground to any desired point.

Mechanical variations, usually caused by vibration, cause changes in inductance and/ or capacitance that in turn cause the frequency to "wobble" in step with the vibration.

Methods of minimizing frequency variations in oscillators are taken up in detail in later chapters.

Ground Point

In the oscillator circuits shown in Figs. 3-23 and 3-24 the cathode is connected to ground. It is not actually essential that the radiofrequency circuit should be grounded at the cathode; in fact, there are many times when an r.f. ground on some other point in the circuit is desirable. The r.f. ground can be placed at any point so long as proper provisions are made for feeding the supply voltages to the tube elements.

Fig. 3-25 shows the Hartley oircuit with (A) the plate end of the circuit grounded, and (B) the grid end. In A, no r.f. choke is needed in the plate circuit because the plate already is at ground potential and there is no r.f. to choke off. All that is necessary is a by-pass condenser, C_{b}, across the plate supply. Direct current flows to the cathode through the lower part of the tuned-circuit coil, L.
The grounded-grid circuit at B is essentially the same as the circuit in Fig. 3-23A except that the ground point and negative platevoltage connection have been placed at the grid end of the tuned circuit.
One advantage of either type of circuit (the one in Fig. 3-25A is widely used) is that the frame of the tuning condenser can be grounded. With a grounded-cathode oscillator, both ends of the tuned circuit are "hot"; that is, there is an r.f. voltage to ground from both ends of the circuit. When the ordinary type of tuning condenser is used in such a circuit there is a slight change in capacitance when the hand is brought near the tuning shaft for adjustinent of capacitance. This "hand capacitance" or "body capacitance" is annoying because the oscillator frequency changes when the hand is brought near the tuning control. It is overcome by grounding (for r.f.) the condenser shaft and by using a condenser that has a frame with metal end plates.
Tubes having indirectly-heated cathodes are more casily adaptable to circuits grounded at other points than the cathode than are tubes having directly-heated filaments. With the latter tubes special precautions have to be taken to prevent the filament from being bypassed to ground by the capacitance of the filament-heating transformer.

NEGATIVE-RESISTANCE OSCILLATORS

If a tuned circuit could be built without resistance, a small a mount of energy introduced into the circuit would start an oscillation that would continue indefinitely. It would do so because, in a circuit having no power losses, the power never diminishes and therefore is always available to keep the oscillation going. Of course, such a circuit cannot be built.

However, it was explained in Chapter Two that a resonant circuit has a definite value of parallel impedance at resonance, and that that impedance is a pure resistance. If we could connect across the circuit a value of "negative" resistance equal to the parallel resistance of the circuit, the negative resistance would cancel the "positive" (real) resistance of the circuit and we would have a circuit that is, in effect, without resistance.

Fir. 3-26- Negative-resistance oscillator circuits. A, dynatron; 13, transitron.

A negative resistance is one having the opposite characteristics to real or positive resistance. In a negative resistance the current increases when the voltage is decreased, and vice versa. Also, a negative resistance does not consume power; it generates it. Under certain conditions a vacuum tube can be made to operate like a negative resistance, and thus can be connected to a tuned circuit to set up oscillations. Two circuits for doing this are shown in Fig. 3-26.

The circuit at A is called the dynatron oscillator. It functions because of the secondary emission from the plate that occurs in certain types of screen-grid tetrodes. It makes use of the fact that, at certain values of screen voltage, the plate current of a screen-grid tetrode decreases when the plate voltage is increased. This gives a negative plate-resistance characteristic.

In Fig. 3-2613, negative resistance is produced by virtue of the fact that, if the suppressor grid of a pentode is given negative bias, electrons that normally would pass through the suppressor to the plate are turned back to the screen, thus increasing the screen current and reversing normal tube action. The negative resistance produced between the screen and suppressor grids is sufficiently low so that ordinary tuned circuits will oscillate readily up to 15 Mc . or so. This circuit is known as the transitron.

For most amateur applications, negativeresistance oscillators do not have enough advantages to bring them into wide use, Feedback oscillators are generally more adaptable to wide frequency ranges, can generate more power, and are more readily adjusted to meet varying conditions. The transitron oscillator is used occasionally in measuring equipment.

High-Frequency Communication

Much of the appeal of amateur communication on the high frequencies lies in the fact that the results are not always predictable. Transmission conditions on the same frequency vary with the year and even with the time of day. Although these variations usually follow certain established cycles, many peculiar effects can be observed from time to time. Every radio amateur should have some understanding of the known facts about radiowave propagation so that he will stand some chance of interpreting the unusual conditions
when they occur. The observant amateur is in an excellent position to make worth-while contributions to the science, provided he has sufficient background to understand his results. He may develop a new theory of propagation for the very-high frequencies or the microwave region, as did the late Ross llull. By making extensive observations of 56-Mc. conditions over a long-distance path and correlating the results with various weather conditions, Mr. Hull was able to establish the nowaccepted theory of "tropospheric bending."

What To Expect on the Various Amateur Bands

The 1.8 -Mc., or " 160 -meter," band offers reliable working over ranges up to 25 miles or so during daylight. On winter nights, ranges from 1000 to 3000 miles are not impossible. Only small sections of the band are available to amateurs, because of the presence of the loran service in that part of the spectrum. The pulse-t ype interference sometimes caused by loran can be readily eliminated by using an audio limiter in the receiver.

The 3.5-Mc., or " 80 -meter," band is a more useful band during the night than during the daylight hours. In the daytime, one can seldom hear signals from a distance of greater than 100 miles or so, but during the darkness hours distances up to several thousand miles are not unusual, and transoceanic contacts are regularly made during the winter months. During the summer, the static level is high in some parts of the world. The $3.5-\mathrm{Mc}$. band supports the majority of the traffic nets throughout the country, and it is also a great gathering place for "rag-chewers." Low power and simple antennas can be used with good results.

The 7-Mc., or " 40 -meter," band has many of the same characteristics as 3.5 , except that the distances that can be covered during the day and night hours are increased. During daylight, distances up to a thousand miles can be covered under good conditions, and during the dawn and clusk periods in winter it is possible to work stations as far as the other side of the world, the signals following the darkness
path. The winter months are somewhat better than the summer ones. Rag-chewing, traffic handling and INX (working foreign countries) are popular activities on the band, in the order named. Here again antennas are not too important, although results will be improved in proportion to the effectiveness of the antenna system. In general, summer static is much less of a problem than on 80 meters, although it can be serious in the semitropical zones.

The 14 -Mc., or " 20 -meter," band is probably the best one for long-distance work. During portions of the sunspot cycle it is open to some part of the world during practically all of the 24 hours, while at other times it is generally useful only during daylight hours and the dawn and dusk periods. DX activity is paramount, with rag-chewing next. Being less consistent, day by day, traflic handling is not too general, although many long-distance schedules are kept on the band. Effective antennas are more necessary than on the lower frequencies, but many amateurs enjoy excellent results with simple antennas and low power. Automobile ignition and other types of man-made interference begin to be a problem on this band.

The 28-Mc. band is generally considered to be a DX band during the daylight hours and a local rag-chewer's band during the hours of darkness. However, during parts of the sunspot cycle, the band is "open" into the late evening hours for DX communication. The
band is even less consistent than 14 Mc ., but this very fact is what makes it so fascinating for its many followers. It is not unusual for a foreign station to appear suddenly with a loud signal when only U.S. stations, or none at all, are being heard. Iligh-performance antennas are almost a necessity for best results, but
its small dimensions make the rotary beam a popular choice for the band. These antennas can be turned to direct the radiation in the desired direction, and they are used to provide uscful gain on reception as well. A good antenna is far more important on this band than high power.

Characteristics of Radio Waves

Radio waves differ from other forms of electromagnetic radiation (such as light and heat) in the manner in which they are generated and detected and in their wavelength. The wavelength spectrum of radio waver is greater than either heat or light, and ranges from approximately 30,000 meters to a small fraction of a centimeter. This corresponds to a frequency range of about 10 ke . to $1,000,000$ Me. They travel at the same velocity as. light waves (about 186,000 miles per second in free space) and can be reflected. rofracted and diffracted the way light and heat waves can.

The passage of radio energy through space is explained by a concept of traveling electrostatic and electromagnetic waves. The energy is evenly divided between the two types of fields, and the lines of force of these fields are at right angles to each other, in a plane perpendicular to the direction of travel. A simple representation of this is shown in Fig. 4-1.

Polarization

The polarization of a radio wave is taken as the direction of the lines of force in the electrostatic tield. If the plane of this field is perpendicular to the earth, the wave is said to be vertically-polarized; if it is parallel to the earth, the wave is horizontally-polarized. The longer waves, when traveling along the ground, usually maintain their polarization in the same plane as was generated at the antenna. The polarization of shorter waves may be altered during travel, however, and sometimes will vary quite rapidly.

Fig. 4-1 - Repreentation of electrostatie and clectromagnetic lines of force in a rallin wave. Arrows indicate instantaneous directions of the fields for a wave traveling toward the reader. Reversing the dircction of one set of lines would reverse the direction of travel.

Reflection

Radio waves may be reflected from any sharply-defined discontinuity of suitable characteristics and dimensions encountered in the medium in which they are traveling. Any conductor (or any insulator having a dielectric constant differing from that of the medium) offers such a discontinuity if its dimensions arc at least comparable to the wavelength. The surface of the earth and the boundaries between ionospheric layers are examples of such discontinuities. Objeets as small as an airplane, a tree or even a man's body will readily reflect the shorter waves.

Refraction

As in the case of light, a radio wave is bent when it moves obliquely into any medium having a refractive index different from that of the medium it leaves. Since the velocity of propagation differs in the two mediums, that part of the wave front that enters first travels faster if the now medium has a higher velocity of propagation. This tends to swing the wave front around, or "refract" it, in such a manner that the wave is directed in a new direction. If the wave front is one that is traveling obliquely away from the carth, and it encounters a medium with a higher velocity of propagation, the wave will be directed back toward the earth. If the new medium has a lower velocity of propagation, the opposite effect takes place, and the wave is directed away from the earth. Refraction may take place either in the ionosphere (ionized upper atmosphere) or the troposphere (lower atmosphere), or both.

Diffraction

When a wave grazes the edge of an object in passing, it tends to be bent around that edge. This effect, called diffraction, results in a diversion of part of the energy of those waves which normally follow a straight or line-of-sight path, so that they may be received at some distance below the summit of an obstruction, or around its edges.

Types of Waves

. According to the altitude of the paths along which they are propagated, radio waves may be classified as ionospheric waves, tropospheric waves or ground waves.

The ionospheric wave (sometimes called the sky wave), is that part of the total radiation
that is directed toward the ionosphere. Depending upon variable conditions in that region, as well as upon transmitting wavelength, the ionospheric wave may or may not be returned to earth by the effects of refraction and reflection.

The tropospheric wave is that part of the total radiation that undergoes refraction and reflection in regions of abrupt change of dielectric constant in the troposphere, such as the boundaries between air masses of differing temperature and moisture content.
'The ground wave is that part of the total radiation that is directly affected by the presence of the earth and its surface features. The

Fig. 4.2 - Showing how both direct and reflected waves may be received simultaneonsly in v.h.f. transmission.
ground wave has two components. (ne is the surface wave, which is an earth-guided wave, and the other is the space wave (not to be confused with the ionospheric or sky wave), The space wave is itself the resultant of two components - the direct wave and the groundreflected wave, as shown in Fig. 4-2.

Ionospheric Propagation

Communication between distant points by means of radio waves of frequencies ranging between 3 and 30 Mc . depends principally upon the ionospheric wave. [pon leaving the transmitting antenna, this wave travels upward from the earth's surface at such an angle that it would continue out into space were its path not bent sufficiently to bring it back to earth. The inedium that causes such bending is the ionosphere, a region in the upper atmosphere, above a height of about 60 miles, where free ions and electrons exist in sufficient quantity to cause a change in the refractive jndex. This condition is believed to be the effect of ultraviolet radiation from the sun. The tonosphere is not a single region but is composed of a series of layers of varying densities of ionization occurring at different heights. Each layer consists of a central region of relatively dense ionization that tapers off in intensity both above and below.

Refraction, Absorption and Reflection

For a given density of ionization, the degree of refraction becomes less as the wavelength becomes shorter (as the frequency increases). The bending, therefore, is less at high than at low frequencies, and if the frequency is raised to a sufficiently high value, a point is finally reached where the refractive bending becomes too slight to bring the wave back to earth, even though it may enter the ionized layer along a path that makes a very small angle with the boundary of the ionosphere.

The greater the density of ionization, the greater the bending at any given frequency. Thus, with an increase in ionization, the minimum wavelength that can be bent sufficiently for long-distance communication is lessened and the maximum usable frequency is increased.

The wave necessarily loses some of its energy in traveling through the ionosphere, this absorption loss increasing with wavelength and also with ionization density. Unusually high ionization, especially in the lower strata of the ionosphere, may cause complete absorption of the wave energy.

In addition to refraction, reflection may take place at the lower boundary of an ionized layer if it is sharply defined; i.e., if there is an appreciable change in ionization within a relatively short interval of travel. For waves approaching the layer at or near the perpendicular. the change in ionization must take place within a difference in height comparable to a wavelength; hence, ionospheric reflection is more apt to occur at longer wavelengths (lower frequencies).

Critical Frequency

When the frequency is sufficiently low, a wave sent vertically upward to the ionosphere will be bent sharply enough to cause it to return to the transinitting point. The highest frequency at which such reflection can occur, for a given state of the ionosphere, is called the critical frequency. Nthough the critical frequency may serve as an index of transmission conditions, it is not the highest useful frequency, since other waves of a higher frequency that enter the ionosphere at angles smaller than 90 degrees (less than verticad) will be bent sufficiently to return to earth. The maximum usable frequency, for waves leaving the earth at very small angles to the horizontal, is in the vicinity of three times the critical frequency.

Besides being directly observable by special equipment, the critical frequency is of more practical interest than the ionization density because it includes the effects of absorption as well as refraction.

Virtual Height

Athough an ionospheric layer is a region of considerable depth it is convenient to assign to it a definite height, called the virtual height. This is the height from which a simple reflection would give the same effect as the gradual refraction that actually takes place, as illustrated in Fig. 4-3. The wave traveling upward is bent back over a path having an appreciable radius of turning, and a measurable interval of time is consumed in the turning process. The
virtual height is the height of a triangle formed as shown, having equal sides of a total length proportional to the time laken for the wave to travel from T to R.

Normal Structure of the Ionosphere

The lowest normally useful layer is called the E layer. The average height of the region of maximum ionization is about 70 miles. The ionization density is greatest around local noon; the layer is only weakly ionized at night, when it is not exposed to the sun's radiation. The air at this height is sufficiently dense so that free ions and electrons very quickly meet and recombine.

In the daytime there is a still lower ionized area, the D region. The D-region intensity is proportional to the height of the sun and is greatest at noon. Low-frequency waves (so meters) are almost completely absorbed by this layer while it exists, and only the highangle radiation is reflected by the E layer. (Lower-angle rathation travels farther through the D region and is absorbed.)

The second principal layer is the F layer, which has a height of about 175 miles at night. At this altitude the air is so thin that recombination of ions and electrons takes place very slowly, inasmuch as particles can travel relatively great distances before meeting. The ionization decreases after sundown, reaching a minimum just before sunrise. In the daytime the F layer splits into two parts, the F_{1} and F_{2} layers, with average virtual heights of, respectively, 140 miles and ' 200 miles. These layers are most highly ionized at about local noon, and merge again at sunset into the F layer.

Cyclic Variations in the Ionosphere

Since ionization depends upon ultraviolet ra. diation, conditions in the ionosphere vary with changes in the sun's radiation. In addition to the daily variation, seasonal changes result in higher critical frequencies in the E layer in summer, averaging about 4 Mc . as against a winter average of 3 Mc . The F layer shows little variation, the critical frequency being of the order of 4 to 5 Mc . in the evening. The F_{1} layer, which has a critical frequency near 5 Mc . in summer, usually disappears entirely in winter. The critical frequencies for the F_{2} are highest in winter (11 to 12 Mc .) and lowest in

Fig. 4-3-Bending in the ionosphere, and the echo or reflection method of deternining virtual height.
summer (around 7 Mc .). The virtual height of the F_{2} layer, which is about 185 miles in winter, averages 250 miles in summer.

Seasonal transition periods occur in spring and fall, when ionospheric conditions are found highly variable.

There are at least two other regular cycles in ionization. One such cyclic period covers 28 days, which corresponds with the period of the sun's rotation. For a short time in each 28-day cycle, transmission conditions reach a peak. Usually this peak is followed by a fairly rapid drop to a lower level, and then a slow building up to the next peak. The 28 -day cycle is particularly evident in the 14 - and 28 -Mc. amateur bands.

The longest cycle yet observed covers about 11 years, corresponding to a similar cycle of sunspot activity. The effect of this cycle is to shift upward or downward the values of the critical frequencies for F - and F_{2}-layer transmission. The critical frequencies are highest during sunspot maxima and lowest during sunspot minima. It is during the period of minimum sunspot activity when long-distance transmissions occur on the lower frequencies. At such times the $28-\mathrm{Mc}$. band is seldom useful for long-distance work, while the $14-\mathrm{Mc}$. band performs well in the daytime but is not ordinarily useful at night. The most recent sunspot maximum is considered to have occurred in the winter of 1947-48.

Magnetic Storms and Other Disturbances

Unusual disturbances in the earth's magnetic field (magnetic storms) usually are accompanied by disturbances in the ionosphere, when the layers apparently break up and expand. There is usually also an increase in absorption during such a period. Radio transmission is poor and there is a drop in critical frequencies so that lower frequencies must be used for communication. A magnetic storm may last for several days.

Unusually high ionization in the region of the atmosphere below the normal ionosphere may increase absorption to such an extent that sky-wave transmission becomes impossible on high frequencies. The length of such a disturbance may be several hours, with a gradual falling off of transmission conditions at the beginning and an equally gradual building up at the end of the period. Fade-outs, similar to the above in effect, are caused by sudden disturbances on the sun. They are characterized by very rapid ionization, with sky-wave transmission disappearing almost instantly, occur only in daylight, and do not last as long as the first type of absorption.

Magnetic storms frequently are accompanied by unusual auroral displays, creating an ionized "curtain" in the polar regions which can act as a reflector of radio waves. Auroral reflection is occasionally observed at frequencies as high as 54 Mc. It is characterized on 28 Mc. by a flutter on all signals which makes voice work
difficult but not impossible. Directive antennas must be pointed toward the north and not in the direction of the station being worked.

Sporadic-E Layer Ionization

Occasionally scattered patches of clouds of relatively dense ionization appear at heights approximately the same as that of the E layer. The effect is to raise the critical frequency to a value perhaps twice that which is returned from any of the regular layers by normal refraction. Distances of about 500 to 1250 miles may be covered at 50 Mc . if the ionized cloud is situated midway between transmitter and receiver, or is of any very considerable extent. This effect, while infrequently observed in winter, is prevalent during the late spring and early summer, with no apparent correlation of the condition with the time of day.

The presence of sporadic- E refraction on the $14-$ and 28 -Mc. hands is indicated by an abnormally short distance between the transmitter and the point where the wave first is returned to earth as when, for example, 14 Me, signals from a transmitter only 100 miles distant may arrive with an intensity usually associated with distances of this order on 7 and 3.5 Mc .

Scatter

Scatter signals are heard on any band, but are more casily recognizable on the higher frequencies because of the extended skip zone. They are signals reflected from large discontinuities at a distance, such as sharp concentrations of ionization in any of the normal layers, sporadic-E clouds or (rarely) large land objects. They result in one's hearing signals within the normal skip zone. Scatter signals are never very loud, and have a slight flutter characteristic. A further indication of scatter reflection is that, when beam antennas are used to indicate the direction of arrival of the wave, the ray path is not necessarily the direct route but can even be at right angles or in the opposite direction.

Meteor Trails

Another phenomenon generally encountered in the $28-$ Mc. band, but also observed in the 14 - and 50-Mc. bands, is one characterized by sudden bursts of intensity of a signal. These bursts last less than a second, generally, and are caused by reinforced reflection from the ionized trail of a meteor. The meteor, entering the earth's atmosphere at high velocity, heats by friction against the atmosphere and leaves a trail of ionized atmosphere. It takes a finite time for the ionized molecules to recombine, and during this time a small ionized cloud exists. If it is in the ray path of a signal, it may serve to reinforce the signal and cause the
burst in intensity. When the meteor is moving in a direction somewhat parallel to the ray path, it can induce a rising or falling "whistle" on the signal, for a second or so. The effects of bursts and whistles can be observed at any time during the day or night, if there is any marked meteor activity, and during rare "meteor showers" the ionized clouds can serve in almost the same manner that sporadic- E does to make long-distance work possible on 50 Mc .

Wave Angle

The smaller the angle at which a wave leaves the earth, the less will be the bending required in the ionosphere to bring it back and, in general, the greater the distance between the point where it leaves the earth and that at which it returns. This is shown in Fig. 4-4. The vertical angle which the wave makes with a tangent to the earth is called the wave angle or angle of radiation.

Skip Distance

Since greater bending is required to return the wave to earth when the wave angle is high, at the higher frequencies the refraction frequently is not enough to give the required bending unless the wave angle is smaller than a certain angle called the critical angle. This is illustrated in Fig. 4-4, where waves at angles of A or less give useful signals while waves sent at

Fig. 4-1-Refraction of sky waves, showing the critical wave angle and the skip zone. Waves leaving the transmitter at angles above the critical (greater than A) are not bent enough to be returned to earth. As the angle is increased, the waves return to earth at increasingly greater distances.
the same wave angle. Wave angles at the transmitting and receiving points are usually, although not always, approximately the same for any given wave path.

It is readily possible for the ionospheric wave to pass through the E layer and be refracted back to earth from the F, F_{1} or F_{2} layers. This is because the critical frequencies are higher in the latter layers, so that a signal too high in frequency to be returned by the E layer can still come back from one of the others, depending upon the time of day and the existing conditions. Depending upon the wave angle and the frequency, it is sometimes possible to carry on communication via either the E or $F_{1}-F_{2}$ layers on the same frequency.

Multihop Transmission

On returning to the earth the wave can be reflected upward and travel again to the ionosphere. There it may once more be refracted, and again bent back to earth. This process may be repeated several times. Multihop propagation of this nature is necessary for transmission over great distances beeause of the limited heights of the layers and the curvature of the earth, since at the lowest useful wave angles (of the order of a few degrees, waves at lower angles generally being absorbed rapidly at high frequencies by being in contact with the earth) the maximum one-hop distance is about 1250 miles for refraction from the E layer and around 2500 miles for the F_{2} layer. llowever, ground losses absorb some of the energy from the wave on each reflection (the amount of the loss varying with the type of ground and being least for reflection from sea water). Thus, when the distance permits, it is better to have one hop rather than several, sinee the multiple reflections introduce losses that are higher than those caused by the ionosphere alone.

Fading

Two or more parts of the wave may follow slightly different paths in traveling to the receiving point, in which case the difference in path lengths will cause a phase difference to exist between the wave components at the receiving antenna. The field strength therefore may have any value between the numerical sum of the components (when they are all in phase) and zero (when there are only two components and they are exactly out of phase), since the paths change from time to time, this causes a variation in signal strength called fading. Fading can also result from the combi-
nation of single-hop and multihop waves, or the combination of a ground wave with an ionospheric or tropospheric wave. Such a condition gives rise to an area of severe fading near the limiting distance of the ground wave, better reception being obtained at both shorter and longer distances where one component or the other is considerably stronger. Fading may be rapid or slow, the former type usually resulting from rapidly-changing conditions in the ionosphere, the latter occurring when transmission conditions are relatively stable.

It frequently happens that transmission conditions are different for waves of slightly different frequencies, so that in the case of voicemodulated transmission, involving sidebands differing slightly from the carrier in frequency, the carrier and various sidehand components may not be propagated in the same relative amplitudes and phases they had at the transmitter. This effect, known as selective fading, causes severe distortion of the signal.

Tropospheric Propagation

Changes in refractive index of air masses in the lower atmosphere often permit work over greater-than-normal distances on 28 Mc. and higher frequencies. The effect can be observed on 28 Mc ., but it is generally more marked on 50 and 144 Mc. The subject is treated in detail in Chapter Eleven.

PREDICTION CHARTS

The National Bureau of Standards offers prediction charts three months in advance, for use in predicting and studying long-distance communication on the usable frequencies above 3,5 Mc. By means of these charts, it is possible to predict with considerable accuracy the maximum usable frequency that will hold over any path on the earth during a monthly period. The charts are based on ionosphere soundings made at a number of stations throughout the world, coupled with considerable statistical data. The charts are conservative enough to enable the a mat eur to anticipate and plan his best operating times, particularly on the $14-$ and $28-\mathrm{Mc}$. bands. Amateurs who work on 50 Mc . and are interested in the occasional F_{2} "openings" in this band watch the charts with great interest. They can be obtained from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. for 10 cents a copy or $\$ 1.00$ per year on subscription. They are called "CRP'L-D Basic Radio Propagation Predictions,"

CHAPTER 5

High-Frequency Receivers

A good recciver in the amateur station makes the difference between mediocre contarts and solid (2SOs, and its importance cannot be emphasized too much. In the v.h.f. bands that are not too crowded, sensitivity (the ability to bring in weak signals) is the most important factor in a receiver. In the more crowded amateur bands, good sensitivity must be combined with selectivity (the ability to distinguish between signals separated by only a small frequency difference) for hest results and general case of reception. Using only a simple receiver, old and experienced operators can copy signals that would be missed entirely by newer amateurs, but their success is because of their experience and not the receiving equipment. On the other hand, a less-experienced operator can use modern techniques to obtain the same degree of success, provided he understands the operation of his more advanced type of receiver and how to get the most out of it.

A number of signals may be picked up by the receiving antemna, and the receiver must be able to separate them and allow the operator to copy the one he wants. This ability is called "selectivity." To receive weak signals, the receiver must furnish enough amplification to amplify the minute signal power delivered by the antenna up to a useful amount of power that will operate a loudspeaker or set of headphones. Before the amplified signal can operate the 'speaker or 'phones, however, it must be converted to audio-frequency power by the process of detection. The sequence of amplification is not too important - some of the amplification can take place (and usually does) before detection, and some can be used after detection.

There are two major differences between receivers for 'phone reception and for c.w. reception. A 'phone signal has sidebands that
make the signal take up about 6 or 8 kc . in the band, and the audio quality of the received signal is impaired if the passband of the receiver is less than half of this. On the other hand, a c.w. signal occupies only a few hundred cycles at the most, and consequently the passband of a c.w. receiver can be small. In either case, if the passband of the receiver is more than is necessary, signals adjacent to the desired one can be heard, and the selectivity of the receiver is said to be poor. The other difference is that the detection process delivers directly the audio frequencies present as modulation on a 'phone signal, but there is no modulation on a c.w. signal and additional technique is required to make the signal audible. It is necessary to introduce a second radio frequency, differing from the signal frequency by a suitable audio frequency, into the detector circuit to produce an audible beat. The frequency difference, and hence the beat-note, is generally of the order of 300 to 1000 cycles, since these tones are within the range of optimum response of both the ear and the headset. If the source of the second radio frequency is a separate oscillator, the system is known as heterodyne reception; if the detector itself is made to oscillate and produce the second frequency, it is known as an autodyne detector. Modern superheterodyne receivers (described later) generally use a separate oscillator to generate the beat-note. Summing up the two differences, 'phone receivers can't use as much selectivity as c.w. receivers, and c.w. receivers require some kind of beating oscillator to give an audible signal. Broadcast receivers can receive only 'phone signals because no beat oscillator is included. On the other hand, communications receivers include beat oscillators and often some means for varying the selectivity.

Receiver Characteristics

Sensitivity

Confusion exists among some radio men when talking about the "sensitivity" of a receiver. In commercial circles it is defined as
the strength of the signal (in microvolts) at the input of the receiver that is required to produce a specified audio power output at the 'speaker or headphones. This is a perfectlysatisfactory definition for broadcast and com-
munirations receivers oporating below about 20 Me., where general atmospheric and manmade electrical noises normally mask any noise generated by the receiver itself.

Another commercial definition of sensitivity measures the merit of a receiver by defining the sensitivity as the signal at the input of the receiver required to give an audio output some stated amount (generally 10 db .) above the noise output of the receiver. This is a much more useful sensitivity measure for the amateur, since it indicates how well a weak signal will be reproduced and is not merely a measure of the over-all gain, or amplification, of the receiver. However, it is still not an absolute method for comparing two receivers, because the passband width of the receiver plays a large part in the result.

The random motion of the molecules in the antenna and receiver circuits generates small voltages called thermal-agitation noise voltafes, The frequency of this noise is random and the noise exists across the entire radio spectrum. Its amplitude increases with the temperature of the circuits. Only the noise in the antenna and first stage of a receiver is normally significant, since the noise developed in later stages is masked by the amplified noise from the first stage. Since the only noise that is amplified is that which falls within the passband of the receiver, the noise appearing in the output of a receiver is less when the passband is reduced (the effect of the "tone control" of a broadcast receiver). Similar noise is generated by the current flow within the first tube itself; this effect can be combined with the thermal noise and called receiver noise. Since the passband of two receivers plays an important part in the sensitivity measured on a signal-to-noise basis as described in the preceding paragraph, such a sensitivity measurement puts more emphasis on passband width than on the all-important "front-end" design of the recciver.

The limit of a receiver's ability to detect weak signals is the thermal noise generated in the input circuit. Even if a perfect noise-free tube were developed and used throughout the receiver, the limit to reception would be the thermal noise. (Atmospheric-and-man-made noise is a practical limit below 20 Mc ., but we are looking for a measure of comparison of receivers.) The degree to which a receiver approaches this ideal is called the noise figure of the receiver, and it is expressed as the ratio of noise power at the input of the receiver required to increase the noise output of the receiver 3 db . Since the noise power passed by the receiver is dependent on the passband (which is the same for the receiver noise and the noise introduced to the receiver), the figure is one that shows how far the receiver departs from the ideal. The ratio is generally expressed in db., and runs around 6 to 12 db . for a good receiver, although figures of 2 to 4 db . have been obtained with special techniques. Com-

Fig. 5-1 - Typical selectivity curve of a modern superheterolyne receiver. Relative response is plotted against deviations alove and below the resonance frequency. The seale at the left is in terms of voltage ratios, the corresponding decibel steps are shown at the right.
parisons of noise figures can be made by the amateur with simple equipment. (See QST, August, 1949, page 20.)

Selectivity

Selectivity is the ability of a receiver to discriminate against signals of frequencies differing from that of the desired signal. The over-all selectivity will depend upon the selectivity of the individual tuned circuits and the number of such circuits.
"the selectivity of a receiver is shown graphically by drawing a curve that gives the ratio of signal strength required at various frequencies off resonance to the signal strength at resonance, to give constant output. A resonance curve of this type (taken on a typical communications-type superheterodyne receiver) is shown in Fig. 5-1. The bandwidth is the width of the resonance curve (in cycles or kilocycles) of a receiver at a specified ratio; in Fig. 5-1, the bandwidths are indicated for ratios of response of 2 and 10 ("2 times down" and " 10 times down").

A receiver is more selective if the bandwidth (or passband) is less, but the bandwidth must be suffieient to pass the signal and its sidebands if faithful reproduction of the signal is desired. In the crowded amateur bands, it is generally advisable to sacrifice fidelity for selectivity, since the added selectivity reduces adjacent-channel interference and also the noise passed by the receiver. If the selectivity curve has steep sides, it is said to have good skirt selectivity, and this feature is very useful in listening to a weak signal that is adjacent to a strong one. Good skirt selectivity can only be obtained by using a large number of tuned circuits.

Stability

The stability of a receiver is its ability to give constant output, over a period of time, from a signal of constant strength and frequency, and also its ability to remain tuned to a signal under varying conditions of gaincontrol setting, temperature, supply-voltage changes and mechanical shock and distortion. In other words, it means the ability "to stay put" on a given signal. The term "unstable" is also applied to a receiver that breaks into oscillation or a regenerative condition with some settings of its controls that are not specifically intended to control such a condition. This type of instability is sometimes encountered in high-gain amplifiers.

Fidelity

Fidelity is the relative ability of the receiver to reproduce in its output the modulation (keying, voice, etc.) carried loy the incoming signal. For exact reproduction the bandwidth must be great enough to accommodate the carricr and all of the sidebands bofore detection, and all of the frequency components of the modulation after detection. For perfect fidelity, the relative amplitudes of the various components must not be changed by passing through the receiver. However, fidelity plays a very minor rôle in amateur communication, where the important requirement is to transmit intelligence and not "high-fidelity" signals.

Detection and Detectors

Detection is the process of recovering the modulation from a signal. Iny device that is "nonlinear" (i.e., whose output is not exactly proportional to its input) will act as a detector. It can be used as a detector if an impedance for the desired modulation frequency is connected in the output circuit, so that the detector output can develop across this impedance.

Detector sensitivity is the ratio of desired detector output to the input. Detector linearity is a measure of the ability of the detector to reproduce the exact form of the modulation on the incoming signal. The resistance or impedance of the detector is the resistance or impedance it presents to the circuits it is connected to. The input resistance is important in receiver design, since if it is relatively low it means that the detector will consume power, and this power must be furnished by the preceding stage. The signal-handling capability means the ability of the detector to accept signals of a specified amplitude without overloading or distortion.

Diode Detectors

The simplest detector is the diode rectifier. 1 galena, silicon or germanium crystal is an imperfect form of diode (a small current can pass in the reverse direction), and the principle of detection in a crystal is similar to that in a vacuum-tube diode.

Circuits for both half-wave and full-wave diodes are given in Fig. 5-2. The simplified half-wave circuit at $5-2 \mathrm{~A}$ includes the r.f. tuned circuit, $L_{2} C_{1}$, a coupling coil, L_{1}, from which the r.f. energy is fed to $L_{2} C_{1}$, and the diode, D, with its load resistance, R_{1}, and bypass condenser, C_{2}. The flow of rectified r.f. current causes a d.c. voltage to develop across the terminals of R_{1}, and this voltage varies with the modulation on the signal. The - and + signs show the polarity of the voltage. The variation in amplitude of the r.f. signal with
modulation causes corresponding variations in the value of the d.c. voltage across R_{1}. The

Fig. 5.2-Simplified and practical diode detector circuits, I, the rementary half-wave diende detectur; B. a practical circuit, with r.f. filtering and audio outpout coupling: (:, full-wave diole detector, with output coupling indicated. The circuit, $L_{2} C_{1}$, is tuned to the signal fregueney; typical values for C_{2} and R_{1} in A and C are $250 \mu \mu \mathrm{fl}$. and 250,000 ohms, respectively; in B, C_{2} and C_{3} are $100 \mu \mu \mathrm{fd}$. each; $R_{1} .50,000$ ohms; and $R_{2}, 250,0(\mathrm{~m})$ ohms. C_{4} is $0.1 \mu \mathrm{fd}$. and R_{3} may be 0.5 to 1 megohm .
load resistor, R_{1}, usually has a rather high value of resistance, so that a fairly large voltage will develop from a small rectified-current flow.

The progress of the signal through the detector or rectifier is shown in Fig. 5-3. A typical modulated signal as it exists in the tuned circuit is shown at A. When this signal is applied to the rectifier tube, current will flow only during the part of the r.f. cycle when the plate is positive with respect to the cathode, so that the cutput of the rectifier consists of half-cycles of r.f. still modulated as in the original signal. These current pulses flow in the load circuit comprised of R_{1} and C_{2}, the resistance of R_{1} and the capacity of C_{2} being so proportioned that C_{2} charges to the peak value of the rectifled voltage on each pulse and retains enough charge between pulses so that the voltage across R_{1} is smoothed out, as shown in C. C_{2} thus acts as a filter for the radio-frequency component of the output of the rectifier, leaving a d.c. component that varies in the same way as the modulation on the original signal. When this varying d.c. voltage is applied to a following amplifier through a coupling condenser (C_{4} in Fig. 5-213), only the rariations in voltage are transferred, so that the final output signal is a.c., as shown in D.

In the circuit at $5-2 \mathrm{~B}, R_{1}$ and C_{2} have been divided for the purpose of providing a more effective filter for r.f. It is important to prevent the appearance of any r.f. voltage in the output of the detector, because it may cause overloading of a succeeding amplifier tube. The audiofrequency variations can be transferred to another circuit through a coupling condenser, C_{4} in Fig. 5-2B, to a load resistor, R_{3}, which usually is a "potentiometer" so that the volume can be adjusted to a desired level.

Coupling to the potentiometer (gain control) through a condenser also avoids any flow of d.c. through the gain control. The flow of

Fig. 5-3- Diagrams showing the detection process.

Fig. 54-Grill-leak detector cirenits, A, triode; B, pentode. A tetrode may he used in the circuit of is hy neglerting the suppressor-qrid connection. Transformer coupling may be substituted for resistance coupling in A, or a high-inductance choke may replace the plate resistor in B. $L_{1} C_{1}$ is a circuit tuned to the signal frequency. The grid leak, R_{1}, may be comnected directly from prid to cathode instead of across the grid condenser as shown. The operation with cither connection will the the same. Representative values for components are:

Component	Circuis t	Circuit 1
C_{2}	100 to 250) $\mu \mathrm{fd}$.	1(0) to $250{ }_{\mu \mu} \mathrm{fat}$.
Ca	0.001 to $0.002 \mu \mathrm{fd}$.	250 to $300 \mu \mu \mathrm{fld}$.
C_{4}	$0.1 \mu \mathrm{fd}$.	0.1 mfd.
C_{5}		$0.3 \mu \mathrm{fd}$, or larser.
R_{1}	1 to 2 megohms.	$\because 1$ to 5 megohms.
$\mathbf{R 2}_{2}$	50,000 ohns.	- 100,000 to 2500000 ohms.
R_{3}		50,000 ohans.
R_{4}		20,010 ohns.
1.		$300-$ to 500 -henry choke.
RFC	2.5 mhl.	2.5 mh .
' ${ }^{\prime}$	Audio transformer.	

The plate voltage in A should be about 50 volts for best sensitivity. In IB, the screen voltage shomid be about 30 volts and the plate voltage from 100 to 250 .
d.c. through a high-resistance gain control often tends to make the control noisy (scratehy) after a short while.

The full-wave diode circuit at $5-2 \mathrm{C}$ diffors in operation from the half-wave circuit only in that both halves of the r.f. cycle are utilized. The full-wave circuit has the advantage that very little r.f. voltage appears across the load resistor, R_{1}, because the midpoint of L_{2} is at the same potential as the cathode, or "ground" for r.f., and r.f. filtering is easier than in the half-wave circuit.

The reactance of C_{2} must be small compared to the resistance of R_{1} at the radio frequency being rectified, but at audio frequencies must be relatively large compared to R_{1}. This condition is satisfied by the values shown. If the rapacity of C_{2} is too large, response at the higher audio frequencies will be lowered.

Compared with other detectors, the sensitiv-
ity of the diode is low. Since the diode consumes power, the Q of the tuned circuit is reduced, bringing about a reduction in selectivity. The linearity is good, however, and the signal-handling capability is high.

Grid-Leak Detectors

The grid-leak detector is a combination diode rectifier and audio-frequency amplifier. In the circuits of Fig. 5-4, the grid corresponds to the diode plate and the rectifying action is exactly the same as just described. The d.c. voltage from rectified-current flow through the grid leak, R_{1}, biases the grid negatively with respect to cathode, and the audio-frequency variations in voltage across R_{1} are amplified through the tube just as in a normal a.f. amplifier. In the plate circuit, R_{2} is the plate load resistance, C_{3} is a by-pass condenser and $R F^{\prime} C$ an r.f. choke to eliminate r.f. in the output circuit. C_{4} is the output coupling condenser. With a triode, the load resistor, R_{2}, may be replaced by an audio transformer, T, in which case C_{4} is not used.
Since audio amplification is added to rectification, the grid-leak detector has considerably greater sensitivity than the diode. The sensitivity cin be further increased by using a screen-grid tube instead of a triode, as at $5-4 B$. The operation is equivalent to that of the triode circuit. The screen by-pass condenser, C_{5}, should have low reactance for both radio and audio frequencies. R_{3} and R_{4} constitute a voltage divider on the plate supply to furnish the proper d.c. voltage to the screen. In both circuits, C_{2} must have low r.f. reactance and high a.f. reactance compared to the resistance of R_{1}; the same applies to C_{3} with respect to R_{2}. The reactance of $R F C$ will be high for r.f. and low for audio frequencies.

Because of the high plate resistance of the screen-grid tube, transformer coupling from the plate circuit of a screen-grid detector is not satisfactory. An impedance (L in Fig. $\overline{5}-4 \mathrm{~B}$) ean be used in place of a resistor, with a gain in sensitivity because a high value of load impedance can be developed with little loss of plate voltage as compared to the voltage drop through a resistor.

The sensitivity of the grid-leak detector is higher than that of any other type. Like the diode, it "loads" the tuned circuit and reduces its selectivity. The linearity is rather poor, and the signal-handling capability is limited. The signal-handling capability can be improved by reducing R_{1} to 0.1 megohm, but the sensitivity will be decreased. The chief use of the gridleak detector is as a regenerative detector in simple receivers.

Plate Detectors

The plate detector is arranged so that rectification of the r.f. signal takes place in the plate circuit of the tube, as contrasted to the grid rectification just described. Sufficient negative
bias is applied to the grid to bring the plate current nearly to the cut-off point, so that the application of a signal to the grid circuit causes an increase in average plate current. The average plate current follows the changes in signal amplitude in a fashion similar to the rectified current in a diode detector.

Circuits for triodes and pentodes are given in Fig. 5-5. C_{3} is the plate by-pass condenser, and, with $R F^{\prime} C$, prevents r.f. from appearing in the output. R_{1} is the cathode resistor which provides the operating grid bias, and ('2 is a by-pass for both radio and audio frequencies across R_{1}, R_{2} is the plate load resistance across which a voltage appears as a result of the rectifiying action described above. C_{4} is the output coupling condenser. In the pentode circuit at B, R_{3} and R_{4} form a voltage divider to supply the proper potential (about 30 volts) to the screen, and C_{5} is a by-pass condenser between screen and cathode. C_{5} must have low reactance for both radio and andio frequencies.

In general, transformer coupling from the phate circuit of a plate detector is not satisfac. tory, because the plate impedance even of a triode is very high when the bias is set near the plate-current cut-off point. Imperlance coupling may be used in place of the resistance

(A)

(B)

Fig. 5-5 - Circuits for plate detection. A, triode; B, pentole. The input circuit, $I_{1} C_{1}$, is tuned to the signal frequency. Typical values for the other components are:
Component Circuit A Circuit IS

$\mathrm{C}_{2} 0.5 \mu \mathrm{fd}$, or larger.	$0.5 \mu \mathrm{fd}$. or larger.
$\mathrm{C}_{3} 0.001$ to $0.002 \mu \mathrm{fd}$.	250 to $500 \mu \mu \mathrm{fd}$.
$\mathrm{C}_{4} 0.1 \mu \mathrm{fd}$.	$0.1 \mu \mathrm{fd}$.
C_{5}	$0.5 \mu \mathrm{fd}$. or larger.
$\mathrm{K}_{1} 25,000$ to 150,000 ohms.	10,000 to 20,600 ohms.
$\mathrm{R}_{2} 50,000$ to 100,000 ohms.	100,000 to 250,000 ohms.
R_{3}	50,000 ohms.
H_{4}	20,000 ohms.
RPC. 2.5 mh .	2.5 mh .
te voltages from 100 to	250 volts may be used.
ective screen voltage in $3^{\text {s }}$	should be about 30 volts,

coupling slown in Fig. 5-5. The same order of inductance is required as with the pentode grid-lak detector deseribed previously.

The plate detector is more sensitive than the diode since there is some amplifying action in the tube, but less so than the grid-leak detector. It will handle considerably larger signals than the grid-leak detector, but is not quite so tolerant in this respect as the diode. Linearity, with the self-biased circuits shown, is good. Up to the overload point the detector takes no power from the tuned circuit, and so does not affect its Q and selectivity.

Infinite-Impedance Detector

The circuit of Fig. 5-6 combines the high signal-handling capabilities of the diode detector with low distortion (good linearity), and, like the plate detector, does not load the tuned circuit it connects to. The circuit resembles that of the plate detector, except that the load resistance, R_{1}, is connected between cathode and ground and thus is common to both grid and plate circuits, giving negative feed-back for the audio frequencies. The cathode resistor is hy-passed for r.f. (C_{2}) but not for audio, while the plate circuit is by-passed to ground for both audio and radio frequencies. R_{2} forms, with C_{3}, an $R C$ filter to isolate the plate from the " 1 " supply at a.f. An r.f. filter, consisting of a series r.f. choke and a shunt condenser, can be connected between the cathode and C_{4} to eliminate any r.f. that might otherwise appear in the output.

The plate current is very low at no signal, increasing with signal as in the case of the plate detector. The voltage drop across R_{1} similarly increases with signal, because of the increased plate current. Because of this and the fact that the initial drop across R_{1} is large, the grid usually cannot be driven positive with respeet to the cathode by the signal, hence no grid current can be drawn.

REGENERATIVE DETECTORS

l3y providing controllable r.f. feed-back or regencration in a triode or pentode detector circuit, the incoming signal can be amplified many times, thereby greatly increasing the sensitivity of the detector. Regeneration also increases the effective Q of the circuit and increases the selectivity because the maximum regencrative amplification takes place only at the frequency to which the circuit is tunced. The grid-leak type of detector is most suitable for the purpose. Except for the regenerative comnection, the circuit values are inlentical with those previously described for this type of detector, and the same considerations apply. The amount of regeneration must be controllable, becanse maximum regenerative amplification is secured at the critical point where the circuit is just about to oscillate, and the critical point in turn depends upon circuit conditions, which may vary with the
frequency to which the detector is tuned. In the oscillating condition, a regenerative detector can be detuned slightly from an incoming c.w. signal to give autodyne reception.

Fig. 5-7 shows the circuits of regenerative detectors of various types. The circuit of A is for a triode tube, with a variable by-pass condenser, C_{3}, in the plate circuit to control regeneration. When the capacity is small the tube does not regenerate, but as it increases toward maximum its reactance becomes small(or until a critical value is reached where there is sufficient feed-back to cause oscillation. If L_{2} and L_{3} are wound end-to-end in the same direction, the plate connection is to the outside of the plate or "tickler" coil, L_{3}, when the grid connection is to the outside of L_{2}.

The circuit of $5-7 \mathrm{~B}$ is for a pentode tube, regeneration heing controlled by adjustment of the screen-grid voltage. The tickler, L_{3}, is in the plate circuit. The portion of the control resistor between the rotating contact and ground is by-passed by a large condenser (0.5$)^{\mathrm{f}} \mathrm{f}$. or more) to filter out scratching noise when the arm is rotated. The feed-back is adjusted by varying the number of turns on L_{3} or the coupling between L_{2} and L_{3}, until the tube just goes into oscillation at a screen potential of approximately 30 volts.

Fig. 5-6 - The infinite-impedance detector. The input circuit, $L_{2} \mathrm{C}_{1}$, is tuned to the signal frequency. Typical values for the other components are:
$\mathrm{C}_{2}-250 \mu \mu \mathrm{fd} . \quad \mathrm{R}_{1}-0.15$ megohm.
$\mathrm{C}_{3}-0.5 \mu \mathrm{fil} . \quad \mathrm{R}_{2}-25,000$ ohms.
$\mathrm{C}_{4}-0.1 \mu \mathrm{ft} . \quad \mathrm{H}_{3}-0.25$-meqohm volume control. A tube having a medium amplification factor (about 20) should be used. Plate voltage should be 250 volts.

Circuit C is identical with B in principle of operation, except that the oscillating circuit is of the Hartley type. Since the screen and plate are in parallel for r.f. in this circuit, only a small amount of "tickler" - that is, relatively few turns between the cathode tap and ground - is required for oscillation.

Smooth Regeneration Control

The ideal regeneration control would permit the detector to go into and out of oscillation smoothly, would have no effect on the frequency of oscillation, and would give the same value of regeneration regardless of frequency and the loading on the circuit. In practice, the effects of loading, particularly the loading that occurs when the detector circuit is coupled to an antenna, are difficult to overcome. Like-
wise, the regeneration is usually affected by the frequency to which the grid circuit is tuned.

In all circuits it is best to wind the tickier at the ground or cathode end of the grid coil, and to use as few turns on the tickler as will allow the detector to oscillate easily over the whole tuning range at the plate (and screen, if a pentode) voltage that gives maximum sensitivity. Should the tube break into oscillation suddenly as the regeneration control is advanced, making a click, the operation often can be made smoother by changing the gridleak resistance to a higher or lower value. The wrong grid leak plus too-high plate and screen voltage are the most frequent causes of lack of smoothness in going into oscillation.

Antenna Coupling

If the detector is coupled to an antenna, slight changes in the antenna constants (as when the wire swings in a breeze) affect the frequency of the oscillations generated, and thereby the beat frequency when c.w. signals are being received. The tighter the antemna coupling is made, the greater will be the feedback required or the higher will be the voltage necessary to make the detector oscillate. The antenna coupling should be the maximum that will allow the detector to go into oscillation smoothly with the correct voltages on the tube. If capacity coupling to the grid end of the coil is used, generally only a very small amount of capacity will be needed to couple to the antenna. Increasing the capacity increases the coupling.

At frequencies where the antenna system is resonant the absorption of energy from the oscillating detector circuit will be greater, with the consequence that more regeneration is needed. In extreme cases it may not be possible to make the detector oscillate with normal voltages, causing so-called "dead spots." The remedy for this is to loosen the antenna coupling to the point that permits normal oscillation and smooth regeneration control.

Body Capacity

A regenerative detector occasionally shows a tendency to change frequency slightly as the hand is moved near the dial. This condition (body capacity) can be caused by poor design of the receiver, or by the antenna if the detector is coupled directly to it. If body capacity is present when the antenna is disconnected, it can be eliminated by better shielding, and sometimes by r.f. filtering of the 'phone leads. Body capacity that is present only when the antenna is connected is caused by resonance effects in the antenna, which tend to raise the whole detector circuit above ground potential. A good, short ground connection should be made to the receiver and the length of the antenna varied electrically (by adding a small coil or variable condenser in the antenna lead) until the effect is minimized. Loosening the coupling to the antenna circuit also will help.

Hum

Hum at the power-supply frequency may be present in a regenerative detector, especially when it is used in an oscillating condition for c.w. reception, even though the plate supply itself is free from ripple. The hum may result from the use of a.c. on the tube heater, but effects of this type normally are troublesome only when the circuit of Fig. 5-7C' is used,

Fig. 5.7 - 'Triole and pentode regenerative detector circuits. The input cireuit, $L_{2}\left(\mathrm{C}_{1}\right.$, is tuned to the signal frequency. The grid condenser, (2 , should have a value of about $100 \mu \mu \mathrm{fil}$. in all cireuits; the grid leak, K_{1}, may range in value from 1 to 5 megolms. The tickler coil, L3, ordinarily will have from 10 to 25 per cent of the number of turns on L_{2}; in C , the cathode tap is about 10 per cent of the number of turns on L_{2} above ground. Reqenerationemontrol condenser (is in A should have a maximum caparity of $100 \mu \mu \mathrm{fl}$. or more; by-pass condensers C_{3} in 13 and C are likew ian $1000_{\mu \mu f i l} C_{s}$ is ordinarily 1μ fil. or more: R_{2}, a $\mathbf{5 0}, \mathbf{0 N O}$-ohnt potentiometur; $R_{3}, 50,000$ to 100,000 ohms. L_{4} in $13\left(L_{3}\right.$ in ($)$ is a 500 . henry inductance, (4 is 0.1μ fil. in both cirenits. T_{1} in 1 is a conventional andio transformer for eoupling from the plate of a tulue to a following urid. $/ R I^{\prime}($ in 2.5 mh . In A, the plate voltage should be about 50 volts for best sensitivity. Pentode circuits refuire abont 30 volts on the screen; plate potential mas be 100 to 250 volts.

Fig. 5-8 - As the tuning dial of a receiver is turned pust a c.w. signal, the heat-note varies from a high tone down throngh "zero beat" (no andible frecinenes difference) and bach up to a high tone, as shown at A, B and C. The curve is a graphieal representation of the action. The leat exists past 8000 or 10,000 eycles but usually is not heard becanse of the limitations of the andio system.
and then only at 14 Mc. and higher frequencies. Comnecting one side of the heater supply to ground, or grounding the center-tap of the heater-transformer winding, is good practice to reduce hum, and the heater wiring should be kept as far as possible from the r.f. circuits.

IIouse wiring, if of the "open" type, will have a rather extensive electrostatic field which may cause hum if the detector tube, grid lead, and grid condenser and leak are not electrostatically shiehded. This type of hum is easily recognizable because of its rather high pitch (a result of harmonies in the power-supply system).

Antema resonance effects frequently canse a hum of the same nature as that just described which is most intense at the various resonance points, and hence varies with tuning. For this reason it is called tunable hum. 1t is prone to oceur with a rectified-a.e. plate supply, when the receiver is put "above ground" by the antenna, as deseribed in a preceding paragraph. The effect is associated with the nonlinearity of the rectifier tube in the plate supply. Elimination of antenna resonance effects: as described and by-passing the rectifier plates to cathode (using by-pass condensers of the order of $0.001 \mu \mathrm{fd}$.) usually will cure it.

Tuning

For c.w. reception, the regeneration control is advanced until the detector breaks into a "hiss," which indicates that the detector is oscillating. Further advancing the regenera-
tiun control after the detector starts oscillating will result in a slight decrease in the strength of the hiss, indicating that the sensitivity of the detector is decreasing.

The proper adjustment of the regeneration control for best reception of c.w. signals is where the detector just starts to oscillate, when it will be found that c, w. signals can be tuned in and will give a tone with each signal depending on the setting of the tuning control. As the receiver is tuned through a signal the tone first will be heard as a very high pitch, then will go down through "zero beat" (the region where the frequencies of the incoming signal and the oscillating detector are so nearly alike that the difference or heat is less than the lowest audible tone) and rise again on the other side, finally disappearing at a very high pitch. This behavior is shown in Fig. 5-8. It will be found that a low-pitched beat-note cannot be obtained from a strong signal because the detector "pulls in" or "blocks"; that is, the signal tends to control the detector in such a way that the latter oscillates at the signal frequency, despite the fact that the circuit may not be tuned exactly to resonance. This phenomenon, commonly observed when an oseilator is coupled to a source of r.f. voltage of approximately the frequency at which the oscillator is operating, is called "locking-in"; the more stable of the two frequencies assumes control over the other. "Blocking" usually can be corrected by advancing the regeneration control until the beat-note is heard again. If the regenerative detector is preceded by an r.f. amplifier stage, the blocking can be eliminated by reducing the gain of the r.f. stage. If the detector is coupled to an antenna, the blocking condition can be satisfactorily eliminated by advancing the regeneration control or loosening the antenna coupling.

The point just after the detector starts oseillating is the most sensitive condition for c.w. reception. Further advancing the regeneration control makes the receiver less prone to blocking by strong signals, but also less sensitive to weak signals.

If the detector is in the oscillating condition and a 'phone signal is tuned in, a steady audible beat-note will result. While it is possible to listen to 'phone if the receiver can be tuned to exact zero beat, it is more satisfactory to reduce the regeneration to the point just before the receiver goes into oscillation. This is also the most sensitive operating point.

Tuning and Band-Changing Methods

Band-Changing

The resonant circuits that are tuned to the frequency of the incoming signal constitute a special problem in the design of amateur receivers, since the amateur frequency assignments consist of groups or bands of frequencies
at widely-spaced intervals. The same $L C$ comhination cannot be used for, say, 14 Mc . to 3.5 Me., because of the impracticable maximum. minimum capacity ratio required, and also because the tuning would be excessively critical with such a large frequency range. It is necessary, therefore, to provide a means for
(A)

(B)

(C)

Fig. 5-9-Essentials of the three basic bandnipread tuning systems.
ehanging the circuit eonstants for various frequency bands. As a matter of convenience the same tuning condenser usually is retained, but new coils are inserted in the circuit for each band.

One method of changing inductances is to use a switch having an appropriate number of contacts, which connects the desired coil and disconnects the others. Another is to use coils wound on forms with contacts (usually pins) which can be plugged in and removed from a socket.

Bandspreading

The tuning range of a given coil and variable condenser will depend upon the inductance of the coil and the change in tuning capacity. For ease of tuning, it is desirable to adjust the tuning range so that practically the whole dial scale is occupied by the band in use. This is called bandspreading. Because of the varying widths of the bands, special tuning methods must be devised to give the correct maximumminimum capacity ratio on each band. several of these methods are shown in Fig. i-9-9.

In A, a small bandspread condenser, C_{1} (15to $25-\mu \mu \mathrm{fd}$. maximum capacity), is used in parallel with a condenser, C_{2}, which is usually large enough (100 to $140 \mu \mu \mathrm{fd}$.) to cover a $2-\mathrm{to}-1$ frequency range. The setting of C_{2} will determine the minimum capacity of the circuit, and the maximum capacity for bandspread tuning will be the maximum capacity of C_{1} plus the setting of C_{2}. The inductance of the coil can be adjusted so that the maximumminimum ratio will give adequate bandspread. In practicable circuits it is almost impossible, because of the nonharmonic relation of the various bands, to get full bandspread on all bands with the same pair of condensers, especially when the coils are wound to give continuous frequency coverage on C_{2}, which is variously called the band-setting or maintuning condenser. C_{2} must be reset each time the band is changed.

The method shown at B makes use of condensers in series. The tuning condenser, C_{1}, may have a maximum calpacity of $100 \mu \mu \mathrm{fd}$. or more. The minimum capacity is determined principally by the setting of C_{3}, which usually has low capacity, and the maximum capacity by the setting of C_{2}, which is of the order of 25 to $50 \mu \mu \mathrm{fd}$. This method is capable of close adjustment to practically any desired degree of bandspread. Either C_{2} and C_{3} must be adjusted for each band or separate preadjusted condensers must be switched in.

The circuit at \mathbf{C} also gives complete spread on each band. C_{1}, the bandspread condenser, may have any convenient value of capacity; $50 \mu \mu \mathrm{fd}$. is satisfactory. C_{2} may be used for continuous frequency coverage ("general coverage") and as a band-setting condenser. The effective maximum-minimum capacity ratio depends upon the capacity of C_{2} and the point at which C_{1} is tapped on the eoil. The nearer the tap to the bottom of the coil, the greater the bandspread, and vice versa. For a given coil and tap, the bandspread will be greater if C_{2} is set at larger capacity. C_{2} may be mounted in the plug-in coil form and presect, if desired. This requires a separate condenser for each band, but eliminates the necessity for resetting C_{2} each time the band is changed.

Ganged Tuning

The tuning condensers of the several r.f. circuits may be coupled together mechanically and operated by a single control. However, this operating convenience involves more complicated construction, both electrically and meehanically. It becomes necessary to make the various circuits track - that is, tume to the same frequency at each setting of the tuning control.
True tracking can be obtained only when the inductance, tuning condensers, and circuit inductances and ninimum and maximum capacities are identical in all "ganged" stages. A small trimmer or padding condenser may be comnected across the coil, so that variations in minimum capacity can be compensated. The fundamental circuit is shown in Fig. 5-10, where C_{1} is the trimmer and C_{2} the tuning condenser. The use of the trimmer neressa:ily

Fig. 5-10 - Showing the use of a trimmer condenser to set the minimum circuit capacity in order to olbtain true tracking for gang-tuning.
increases the minimum circuit capacity, but it is a necessity for satisfactory tracking. Midget condensers having maximum capacities of 15 to $30 \mu \mu \mathrm{fd}$. are commonly used.
The same methods are applied to bandspread circuits that must be tracked. The eircuits are identieal with those of Fig. 5-9. If both general-coverage and bandspread tuning are to be available, an additional trimmer condenser must be connected across the coil in each circuit shown. If only amateur-band tuning is desired, however, then C ${ }_{3}$ in Fig. $5-9 \mathrm{~B}$, and C_{2} in Fig. $5-9 \mathrm{C}$, serve as trimmers.
The coil inductance can be adjusted by starting with a larger number of turns than necessary and removing a turn or fraction of a turn at a time until the circuits track satisfactorily. An alternative method, provided the inductance is reasonably close to the correct value initially, is to make the coil so that the last turn is variable with respect to the whole

Fig. 5-11 - Methols of adjusting the induetance for ganging. The half-turn in A can be moved so that its mapnetic field either ails or opposes the field of the coil. The shorted loop in B is not connected to the coil, but operates by induction. It will have no effect on the roil indurtance when the axis of the loop is perpendicular to the axis of the coil, and will give maximum reduction of the coil inductance when rotated 90°. The loop can be a solid disk of metal and give exactly the same effert.
coil, or to use a single short-eircuited turn the position of which can be varied with respect to the coil. The application of these methods is shown in Fig. 5-11.

Still another method for trimming the inductance is to use an adjustable brass (or copper) or powdered-iron core. The brass core acts like a single shorted turn, and the inductance of the eoil is decreased as the brass core, or "slug," is moved into the coil. The pow-dered-iron core has the opposite effect, and increases the inductance as it is moved into the coil. The Q of the coil is not affected materially by the use of the brass slug, provided the brass slug has a clean surface or is silverplated. The use of the powdered-iron core, will aotually raise the Q of a coil, provided the iron core is of a type suitable for the frequency in use. Good powdered-iron cores can be obtained for use up to about 50 Mc .

The Superheterodyne

For many years (up to about 1932) practically the only type of receiver to be found in amateur stations consisted of a regenerative detector and one or more stages of audio amplification. Receivers of this type can be made quite sensitive but they are lacking in stability and selectivity, particularly on the higher frequencies. Strong signals block them casily and, in our present crowded bands, they are seldom used except in emergencies. They have been replaced by superheterodyne receivers, generally called "superhets."

The Superheterodyne Principle

In a superheterodyne receiver, the frequency of the incoming signal is changed to a new radio frequency, the intermediate frequency (ab)breviated "i.f."), then amplified, and finally detected. The frequency is changed by means of the heterodyne process, the output of a tunable oscillator (the high-frequency, or local, oscillator) being combined with the incoming signal in a mixer or converter stage (first detector) to produce a beat frequency equal to the intermediate frequency. The audio-frequency signal is obtained at the second detector. C.w. signals are made audible by autodyne or heterodyne reception at the second detector.

As a numerical example, assume that an intermediate frequency of 45 j kc . is chosen and that the incoming signal is on 7000 ke . Then the high-frequency oscillator frequency may be set to 7455 kc ., in order that the beat frequency (7455 minus 7000) will be 455 kc . The high-frequency oscillator could also be set to 6545 kc , and give the same difference frequency. To produce an audible c.w. signal at the second detector of, say, 1000 cycles, the autodyning or heterodyning oscillator would be set to either 454 or 456 kc .

The frequency-conversion process permits, r.f. amplification at a relatively low frequency, the i.f. High selectivity and gain can be obtained at this frequency, and this selectivity and gain are constant. The separate oscillators can be designed for stability and, since the h.f. oscillator is working at a frequency considerably removed from the signal frequency, its stability is practically unaffected by the incoming signal.

Images

Each h.f. oscillator frequency will cause i.f. response at two signal frequencies, one higher and one lower than the oscillator frequency. If the oscillator is set to 745 kc . to tune to a 7000-kc. signal, for example, the receiver can respond also to a signal on 7910 kc ., which likewise gives a $455-\mathrm{kc}$. beat. The resultant undesired signal of the two frequencies is called the image.

The radio-frequency circuits of the receiver (those used before the frequency is converted to the i.f.) normally are tuncd to the desired signal, so that the selectivity of the circuits reduces or eliminates the response to the image signal. The ratio of the receiver voltage output from the desired signal to that from the image is called the signal-to-image ratio, or image ratio.

The image ratio depends upon the selectivity of the r.f. tuned circuits preceding the mixer tube. Also, the higher the intermediate frequency, the higher the image ratio, since raising the i.f. increases the frequeney separation between the signal and the image and places the latter further away from the resonance peak of the signal-frequency input circuits. Most receiver designs represent a compromise between cconomy (few r.f. stages) and image rejection (large number of r.f. stages).

Other Spurious Responses

In addition to images, other signals to which the receiver is not ostensibly tuned may be heard. Harmonics of the high-frequency oscillator may beat with signals far removed from the desired frequency to produce output at the intermediate frequency; such spurious responses can be reduced by adequate selectivity before the mixer stage, and by using sufficient shielding to prevent signal pick-up by any means other than the antenna. When a strong signal is received, the harmonics generated by rectification in the second detector may, by stray coupling, be introduced into the r.f. or mixer circuit and converted to the intermediate frequency, to go through the receiver in the same way as an ordinary signal. These "birdies" appear as a heterodyne beat on the desired signal, and are principally bothersome when the frequency of the incoming signal is not greatly different from the intermediate frequency. The cure is proper circuit isolation and shielding.

Harmonics of the beat oscillator also may be converted in similar fashion and amplified through the receiver; these responses can be reduced by shielding the beat oscillator and operating it at low output level.

The Double Superheterodyne

At high and very-high frequencies it is difficult to secure an adequate image ratio when the intermediate frequency is of the order of 455 kc . To reduce image response the signal frequently is converted first to a rather high (1500,5000 , or even $10,000 \mathrm{kc}$.) intermediate frequency, and then - sometimes after further amplification - reconverted to a lower i.f. where higher adjacent-channel selectivity can be obtained. Such a receiver is called a double superheterodyne.

FREQUENCY CONVERTERS

The first detector or mixer resembles an ordinary detector. A circuit tuned to the intermediate frequency is placed in the plate circuit of the mixer, to offer a high impedance to the i.f. voltage that is developed. The signaland oscillator-frequency voltages appearing in the plate circuit are by-passed to ground, since they are not wanted in the output. The i.f. tuned circuit should have low impedance for these frequencies, a condition easily met if they do not approach the intermediate frequency.

The conversion efficiency of the mixer is the ratio of i.f. output voltage from the plate circuit to r.f. signal voltage applied to the grid. High conversion efficiency is desirable. The mixer tube noise also should be low if a good signal-to-noise ratio is wanted, particularly if the mixer is the first tube in the receiver.

The mixer should not require too much r.f. power from the h.f. oscillator, since it may be
difficult to supply the power and yet maintain good oscillator stability. Also, the conversion efficiency should not depend too critically on the oscillator voltage (that is, a small change in oscillator output should not change the gain), since it is difficult to maintain constant output over a wide frequency range.

A change in oscillator frequency caused by tuning of the mixer grid circuit is called pulling. If the mixer and oscillator could be completely isolated, mixer tuning would have no effect on the oscillator frequency; but in practice this is a difficult condition to attain. Pulling should be minimized, because the stability of the whole receiver depends critically upon the stability of the h.f. oscillator. Pulling decreases with separation of the signal and h.f.oscillator frequencies, being less with high intermediate frequencies. Another type of pulling is caused by regulation in the power supply. Strong signals cause the supply voltage to change, and this in turn shifts the oscillator frequency.

Circuits

If the first detector and high-frequency oscillator are separate tubes, the first detector is called a "mixer." If the two are combined in one envelope (as is often done for reasons of economy or efficiency), the first detector is called a "converter." In either case the function is the same, however.

Typical mixer circuits are shown in Fig. 5-12. The variations are chiefly in the way in which the oscillator voltage is introduced. In $5-12 \mathrm{~A}$, a pentode functions as a plate detector; the oscillator voltage is capacity-coupled to the grid of the tube through C_{2}. Inductive coupling may be used instead. The conversion gain and input selectivity generally are good, so long as the sum of the two voltages (signal and oscillator) impressed on the mixer grid does not exceed the grid bias. It is desirable to make the oscillator voltage as high as possible without exceeding this limitation. The oscillator power required is negligible. If the signal frequency is only 5 or 10 times the i.f., it may be difficult to develop enough oscillator voltage at the grid (because of the selectivity of the tuned input circuit). However, the circuit is a sensitive one and makes a good mixer, particularly with high- G_{m} tubes like the $6 \mathrm{AC7}$ and 6 AK 5. A good triode also works well in the circuit, and

Fig. 5-12-Typical cireuits for separately-excited mixers. Grid injection of a pentode mixer is shown at A, and separate excitation of a pentagrid converter is given in B. 'lypical values for B will be found in Table 5-I the values below are for the pentode mixer of A.
C_{1} - 10 to $50 \mu \mu \mathrm{fd}$. $\quad \mathrm{l}_{2}$ - 1.0 megohm.
$\mathrm{C}_{2}-5$ to $10 \mu \mu \mathrm{fd} . \quad \mathrm{R}_{3}-0.47$ megohm. $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{3}-0.001{ }_{\mu \mathrm{fd}} \quad \mathrm{K}_{4}-1500$ ohms.
$\mathrm{R}_{1}-6800$ ohms.
Positive supply voltage can be 250 volts with a $6 \mathrm{AC} 7,150$ with a $6 \Lambda \mathrm{~K} 5$.
tubes like the 7Fs (one section), the 6J6 (one section), the 12AT7 (one section), and the 6J4 work well. When a triode is used, care should be taken to see that the signal frequency is short-circuited in the plate circuit, and this is done by mounting the tuning capacitor of the i.f. transformer directly from plate to cathode.

It is difficult to avoid "pulling" in a triode or pentode mixer, however, and a pentagrid converter tube used as a mixer provides much better isolation. A typical circuit is shown in Fig. 5-1213, and tubes like the 6SA7, 7Q7 or 6131:6 are commonly used. The oscillator voltage is introduced into the electron stream of the tube through an "injection" grid. Measurement of the rectified current flowing in R_{2} is used as a check for proper oscillator-voltage amplitude. Tuning of the signal-grid circuit can have little effect on the oscillator frequency because the injection grid is isolated from the signal grid by a screen grid that is at r.f. ground potential. The pentagrid mixer is not quite as sensitive as a triode or pentode mixer, but its splendid isolating characteristics make it a very useful circuit.

Many receivers use pentagrid converters,
and two typical circuits are shown in Fig. $5-13$. The circuit shown in Fig. 5-13A, which is suitable for the 6K8, 7D7, 7.77 or 7S7, is for a "triode-hexode" converter. A triode oscillator tube is mounted in the same envelope with a hexode, and the control grid of the oscillator portion is connected internally to an injection grid in the hexode. The isolation between oscillator and converter tube is reasonably good, and very little pulling results, except on signal frequencies that are quite large compared with the i.f.

The pentagrid-converter circuit shown in Fig. 5-13B can be used with a tube like the 6SA7, 7 Q 7 or 6BE6. Generally the only care necessary is to adjust the feed-back of the oscillator circuit to give the proper oscillator r.f. voltage. This condition is checked by measuring the d.c. current flowing in grid resistor R_{2}.

A more stable receiver generally results, particularly at the higher frequencies, when separate tubes are used for the mixer and oscillator. Practically the same number of circuit components is required whether or not a combination tube is used, so that there is very little difference to be realized from the cost standpoint.

Typical circuit constants for converter tubes are given in Table 5-I. The grid leak referred to is the oscillator grid leak or injection-grid return, R_{2} of Figs. 5-12 and 5-13.

Fig. 5-13- Typical circuits for triode-hexode (A) and pentagrid (B) converters. Values for R_{1}, R_{2} and R_{3} can be found in Table 5-I; others are given helow.
$\begin{array}{ll}\mathrm{C}_{1}-47 \mu \mu \mathrm{fd} . & \mathrm{C}_{3}-0.01 \mu \mathrm{fd} . \\ \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.001 \mu \mathrm{fd} & \mathrm{R}_{4}-1000 \text { ohms, }\end{array}$

THE HIGH-FREQUENCY OSCILLATOR

Stability of the receiver is dependent chiefly upon the stability of the h.f. oscillator, and particular care should be given this part of the receiver. The frequency of oscillation should be insensitive to mechanical shock and changes in voltage and loading. Thermal effects (slow change in frequency beause of tube or circuit heating) should be minimized. They can be reduced by using ceramic instead of bakelito insulation in the r.f. circuits, a large cabinet relative to the chassis (to provide for good radiation of developed heat), minimizing the number of high-wattage resistors in the rerover itself and putting them in the powor supply, and not mounting the oseillator coils and tuning condenser too close to a tube.

Sensitivity to vibration and shock can be a bother, and should be minimized by using good mechanical support for coils and tuning condensers, a heavy chassis, and by not hanging any of the oscillator-cireuit components in the air on long leads. Tie-points should be used wherever necessary to avoid long leads on components in the oscillator cireuits. Stiff long wires used for wiring components are no good if they can vibrate, and stiff short leads are excellent berause they can't be made to vibrate.

Smooth tuning is a great convenience to the operator, and can be obtained by taking pains with the mometing of the dial and tuning condensers. They should have good alignment and no back-lash. If the condensers are mounted off the chassis on posts instead of brackets, it is almost impossible to avoid some back-lash unless the posts have extra-wide bases. The condensers should be selected with good wiping rontacts to the rotor, since with age the rotor contacts can be a source of erratic tuming. All joints in the oscillator tuming circuit should be aurefully soldered, since a loose connection or "rosin joint" can develop trouble that is sometimes hard to locate. The chassis and panel materials should be heavy and rigid enough so that pressure on the tuning dial will not cause torsion and a shift in the frequency. Care in mechanical construction of a recoiver is repaid many times over by increased frequency abibility.

In addition, the oscillator must be capable of furnishing sulficient r.f. voltage and power for the particular mixer circuit chosen, at all frequencies within the range of the receiver, and its harmonic output should be as low as possible to reduce the possibility of spurious: response.
The oscillator plate voltage should be as low as is consistent with adequate output. Low plate voltage will reduce tube heating and thereby lower the frequency drift. The oscillator and mixer circuits should be well isolated, preferably by shietding, since coupling other than by the means intended may result in pulling.

If the h.f.enseillator frequency is affeced he

Fig. 5.14-1ligh-freruency oscilhator circuits. A, penode gronmed-plate oscillator; B, triode groundedphate oscillator; C , triode oscillator with tickler cirenit. Coupling to the mixer may betaken frompoints X and Y. In A and I3, coupling from Y will reduce palling effects, but gives less voltage than from X; this type is best adapted to mixer cireoite with small oscillator-voltage require ments. 'Typical values for romponents are as follows:

	Circuit 1	Circuit B	Circuit C
$\mathrm{C}_{1}-$	$100 \mu \mu \mathrm{fd}$.	$100 \mu \mu \mathrm{fd}$.	$100 \mu \mu \mathrm{fd}$.
$\mathrm{C}_{2}-$	$0.1 \mu \mathrm{fd}$.	$0.1 \mu \mathrm{fd}$.	$0.1 \mu \mathrm{fd}$.
$\mathrm{C}_{3}-$	$0.1 \mu \mathrm{fd}$.		
$\mathrm{R}_{1}-$	47,000 ohms.	47,000 ohms.	47,000 ohms.
$\mathrm{H}_{2}-$	47,000 ohms.	10,000 to	10,000 to
			25,000 ohms.
		25,000 ohms.	

The platesupply voltage should be 250 volts. In circuits IS and C, R_{2} is used to drop the supply voltage to $100-150$ volts; it may be omitted if voltage is ohtained from a voltage divider in the power supply.
changes in plate voltage, it is good practice to use a voltage-regulated plate supply employing a VR tube except, of course, in receivers operated from batteries. Changes in platesupply voltage are caused not only by variafions in the line voltage but by poor regulation in the power supply. When a.v.e. is used, the eontrolled tubes draw less eurrent from the power supply as the signal increases, and this change in power-supply load causes the powersupply voltage to vary if it isn't regulateol. The use of Class AB audio amplification mas also cause severe changes in the power-supply voltage.

Circuits

Several oscillator eircuits are shown in Fig. $5-14$. The point at which output voltage is taken for the mixer is indicated in each case by X or Y. (ireuits A and B will give about the sami resulas, and require only one coil.

However, in these two circuits the cathode is above groumd potential for r.t., which often is a cause of hom modulation of the oscillator output at 14 Mc. and higher frequencies when indirectly-heated-cathode tubes with a.ce. on the heaters are used. The circuit of Fig. 5-14C reduces hum because the cathode is grounded. It is a simple circuit to adjust, and it is also the best circuit to use with filamenttype tubes. With filament-type tubes, the other two cireuits would require r.f. chokes to keep the filament above r.f.groumd.

Besides the use of a fairly high C / L ratio in the tuned cirruit, it is necessary to adjust tho feed-bark to obtain optimum results. Ton much feed-back will catuse the oscillator to "squeg," or operate at several frequencies simultaneously; too little feed-back will cause the output to be low. In the tapped-coil circuits (A, B), the feet-back is increased by moving the tap toward the grid end of the coil. Using the oscillator shown at C, feed-back is obtained by increasing the number of turns on L_{2} or hy moving L_{2} closer to L_{1}.

The Intermediate-Frequency Amplifier

One major advantage of the superhet is that high gain and seleetivity can be obtained by using a good i.f. amplifier. This can be a onestage affair in simple receivers, or two or three stages in the more complex sets.

Choice of Frequency

The selection of an intermediate frequency is a compromise between various conflieting factors. The lower the i.f. the higher the selectivity and gain, but a low i.f. brings the image nearer the desired signal and hence decreases the image ratio. A low i.f. also increases pulling of the osedlator frequency. On the other hand, a high i.f. is beneficial to both image ratio and pulling, but the selectivity and gain are lowcred. The difference in gain is least important.

An i.f. of the order of 455 kc . gives good selectivity and is satisfactory from the standpoint of image ratio and oscillator pulling at frequencies up to 7 Mc . The image ratio is poor at 14 Mc . when the mixer is connected to the antenna, but adequate when there is a tuned r.f. amplifier between antema and mixer. At 28 Mc . and on the very-high frequencies, the image ratio is very poor unless several r.f. stages are used. Above 14 Mc., pulling is likely to be bad unless very loose coupling can be used between miser and oscillator.

With an i.f. of about 1600 kc ., satisfactory image ratios can be secured on 14, 28 and 50 Mc., and pulling can be redured to negligible

Fif. $5-15$ - "Iypical intermediate-frequernes amplifier eircuit for a superheterody ne receiver. Reprementative values for components are as follows:
$\mathrm{C}_{1}-0.1 \mu \mathrm{fd}$. at $455 \mathrm{ke}, ; 0.01 \mu \mathrm{fl}$. at 1600 kc . and higher. $\mathrm{C}_{2}-0.01 \mu \mathrm{fd}$.
 li. H_{2}-se l'able $\overline{\mathrm{j}}$-ll. $\mathrm{H}_{3}-1800$ ohms.

Ths - 0.27 megolim.
proportions. However, the i.f. sclectivity is considerably lower. so that more tuned circuits must be used to increase the selectivity. For frequencies of 28 Mc. and higher, the best solution is to use a double superheterodyne, choosing one high i.f. for image reduction ($\overline{5}$ and 10 Mc . are frequently used) and a lower one for gain and selectivity.

In choosing an i.f. it is wise to aroid frequencies on which there is considerable activity by the various radio services, since such signals may be picked up directly on the i.f. wiring. The frequencies mentioned are fairly free of such interference.

Fidelity; Sideband Cutting

Modulation of a carrier canses the generation of sideband frequencies numerically equal to the carrier frequency plus and minus the highest modulation frequency present. If the receiver is to give a faithful reproduction of modulation that contains, for instance, audio frequencies up to 5000 eycles, it must be capable of amplifying equally all frequencies contained in a band extending from 5000 cycles above to 5000 eycles below the carrier frequency. In a superheterodyne. where all carrier frequencies are changed to the fixed intermediate frequency, this means that the i.f. amplifier should amplify equally well all frequencies within that hand. In other words, the amplification must be uniform over a band 10 kc . wille, with the i.f. at its center. The signalfrequency circuits usually do not have roough over-all setectivity to affect matorially the "adjacent-channel" selectivity, so that only the i.f.-amplifier selertivity need be considered.

A $10-\mathrm{ke}$. band is considered sufficient for reasonably-faithful reproduction of music, but much narrower bandwidths can be used for communication work where intelligibility rather than fidelity is the primary objective. If the selectivity is too great to permit uniform amplification over the band of frequencies occupied by the modulated signal, the higher modulating frequencies are attenuated as compared to the lower frequencies: that is, the upper-trequency sidebands are "cout." Whate sideband cut-
ting reduces fidelity, it is frequently preferable to sacrifice naturalness of reproduction in favor of communications effectiveness.

The selectivity of an i.f. amplifier, and hence the tendency to cut sidebands, increases with the number of amplifier stages and also is greater the lower the intermediate frequency. From the standpoint of communication, sideband cutting is not serious with two-stage amplifiers at frequencies as low as 455 kc .

Circuits

1.f. amplifiers usually consist of one or two stages. At 455 kc . two stages generally give all the gain usable, and also give suitable selectivity for good-quality 'phone reception.

A typical circuit arrangement is shown in Fig. 5-15. A second stage would simply duplicate the circuit of the first. The i.f. amplifier practically always uses a remote cut-off pentode-type tube operated as a Class A amplifier. For maximum selectivity, doubletuned transformers are used for interstage coupling, although single-tuned circuits or transformers with untuned primaries can be used for coupling, with a consequent loss in selectivity. All other things being equal, the selectivity of an i.f. amplifier is proportional to the number of tuned circuits in it. The use of too many high- Q tuned circuits in an amplifier is not generally feasible, however, because of stability problems.

In Fig. 5-15, the gain of the stage is reduced by introducing a negative voltage to the lead marked "to a.v.c." or a positive voltage to R_{1} at the point marked "to manual gain control." In either case, the voltage increase: the bias on the tube and reduces the mutual conductance and hence the gain. When two or more stages are used, these voltages are generally obtained from common sources. The decoupling resistor, R_{3}, helps to isolate the amplifier from the power supply and thus prevents stray feed-back. C_{2} and R_{4} are part of the automatic volume-control circuit (described later); if no a.v.c. is used, the lower end of the i.f.-transformer secondary is simply connected to ground.

TABLE 5-1I Cathode and Screen-Dropping Resiators for R.F. or I.F. Amplifiers				
Tube	Plate Volts	Asreen butts	Cathode R, sister	sicreen Resistor
6.AB7	300		200 ohms	33,000 ohms
6.4 C 7	300		160	62.(0M)
6.15 Ki	180	130	200	27,000)
$6.11^{\circ} 6$	250	150	68	33,000
6B. 46	250	100	68	33,1000
6 J 7	250	100	1200	270,000
6 K 7	250	125	240	47,000
6S(i7	2.50	$1: 5$	68	27,000
6 6si7	250	150	200	47,000
6 SH 7	2.50	150	68	39.010
6SJ7	250	100	820	180,000
6SK7	250	100	270	56,000
7C7/123)	250	100	270	68,000
$7 \mathrm{H7}$	250	150	180	27,000

AIR TUNED
PERMEABILITY TUNED
Fig. 5-16 - Representative i.f.-tranaformer construction. Coils are supported on insulating tubing or (in the air-tuned type) on hax-impregnated wooden dowels. The shield in the air-tuned transformer prevents capacity coupling between the tuning condensers. In the permeability-tuned transformer the rores consist of finely-divided iron particles supported in an insulat. ing binder, formed into cylindrical "plugs." The tuning capacity is fixed, and the inductances of the roils are varied by moving the iron plugs in and out.

In a two-stage amplifier the screen grids of both stages may be fed from a common supply, either through a resistor (R_{2}) as shown, the sereons being connected in parallel, or from a voltage divider across the plate supply. Separate screen voltage-dropping resistors are preferable for preventing undesired coupling between stages.

Typical values of cathode and screen resistors for common tuhes are given in Table 5-II. The 6K゙7, 6Sli7, 6SG7, 6BA6 and 7H7 are recommended for i.f. work.

When two stages are used the high gain will tend to canse instability and oscillation, so that good shielding, by-passing, and careful circuit arrangement to prevent stray coupling, with exposed r.f. leads well separated, are necessary.

I.F. Transformers

The tuned circuits of i.f. amplifiers are built up as transformer units consisting of a metalshield container in which the coils and tuning condensers are mounted. Both air-core and powdered iron-core universal-wound coils are used, the latter having somewhat higher $Q s$ and, hence, greater selectivity and gain per unit. In universal windings the coil is wound in layers with each turn traversing the length of the coil, back and forth, rather than being wound perpendicular to the axis as in ordinary single-layer coils. In a straight multilayer winding, a fairly large capacity can exist between layers. Universal winding, with its "criss-crossed" turns, tends to avoid building up such potential differences, and hence reduces distributed-capacity effects.

Variable tuning condensers are of the midget type, air-dielectric condensers being preferable because their capacity is practically unaffected

Fig. 5.I7-Automatic volume-control circuit using a dual diode-triode as a combined a.v.c, rectifier, second detector and first a.f. amplifier.
$\mathrm{R}_{1}-0.27$ megohm.
$R_{2}-50,000$ to 250,000 ohms.
$\mathbf{R}_{3}-1800$ ohms.
$\mathrm{R}_{4}-2$ to 5 megohms.
$\mathrm{R}_{5}-0.5$ to 1 megohm.
$\mathrm{R}_{6}, \mathrm{R}_{7}, \mathrm{Rs}_{\mathrm{s}}, \mathrm{R}_{9}-0.25$ megohm.
R_{10} - 0.5 -megohm variable.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-100 \mu \mu \mathrm{fd}$.
C $\mathrm{Cl}_{4}-0.1 \mu \mathrm{fl}$.
($\mathrm{C}, \mathrm{C}, \mathrm{C}, \mathrm{C}-0,01 \mu \mathrm{fd}$.
$\mathrm{Ci}_{8} \mathrm{C}_{9}-0,01$ to $0.1 \mu \mathrm{fd}$.
Cio - 5. to $10 \cdot \mu \mathrm{fd}$. electrolytic. (E11-270 $\quad{ }^{2} \mathrm{fd}$.
by changes in temperature and humidity. Ironcore transformers may be tuned by varying the inductance (permeability tuming), in which case stability comparable to that of variable aircondenser tuning can be obtained by use of high-stability fixed mica condensers. Such stability is of great importance, since a circuit whose frequency "drifts" with time eventually will be tuned to a different frequency than the other circuits, thereby reducing the gain and selectivity of the amplifier. Typical i.f.-transformer construction is shown in Fig. 5-16.

Besides the type of i.f. transformer shown in Fig. 5-16, special units to give desired selectivity characteristics are available. For higher-than-ordinary adjacent-channel selectivity triple-tuned transformers, with a third tuned circuit inserted between the input and output windings, are used. The energy is transferred from the input to the output windings via this tertiary winding, thus adding its selectivity to the over-all selectivity of the transformer. Variable-selectivity transformers also can be obtained. These usually are provided with a third (untuned) winding which can be connected to a resistor, thereby loading the tuned circuits and decreasing the Q and selectivity to broaden the selectivity curve. The variation in selectivity is brought about by switching the resistor in and out of the circuit. Another method is to vary the coupling between primary and secondary, overcoupling being used to broaden the selectivity curve.

Selectivity

The over-all selectivity of the i.f. amplifier will depend on the frequency and the number of stages. The following figures are indicative of the bandwidths to be expected with goodquality transformers in amplifiers so constructed as to keep regeneration at a minimum:

Intermediate Frequency	Bandwidth in Kilocycles		
	z times	10 times	100 times
	down	down	down
One stage, 50 kc . (iron core)	0.8	1.4	2.8
Onestage, 455 kc . (air core).	8.7	17.8	32.3
Onestage, 455 ko . (iron core)	4.3	10.3	20.4
Twostagee, 455 kc . (iron core)	2.9	6.4	10.8
Two stages, 1600 kc .	11.0	16.6	27.4
Two stages, 5000 kc .	25.8	46.0	100.0

Tubes for I.F. Amplifiers

Variable- μ (remote cut-off) pentodes are almost invariably used in i.f. amplifier stages, since grid-bias gain control is practically always applied to the i.f. amplifier. Tubes with high plate resistance will have least effect on the selectivity of the amplifier, and those with high mutual conductance will give greatest gain. The choice of i.f. tubes has practically no effect on the signal-to-noise ratio, since this is determined by the preceding mixer and r.f. amplifier (if the latter is used).

When single-ended tubes are used, care should be taken to keep the plate and grid leads well separated. With these tubes it is advisable to mount the screen by-pass condenser directly on the bottom of the socket, crosswise between the plate and grid pins, to provide additional shielding. The outside foil of the condenser should be connected to ground.

O THE SECOND DETECTOR AND BEAT OSCILLATOR

Detector Circuits

The second detector of a superheterodyne receiver with an i.f. amplifier performs the same function as the detector in the simple receiver, but usually operates at a higher input level bccause of the relatively great amplification ahead of it. Therefore, the ability to handle large signals without disturtion is preferable to high sensitivity. Plate detection is used to some extent, but the diode detector is most popular. It is especially adapted to furnishing automatic gain or volume control. The basic circuits have been described, although in many cases the diode elements are incorporated in a multipurpose tube that contains an amplifier section in addition to the diode.

The Beat Oscillator

Any standard oscillator circuit may be used for the beat oscillator required for heterodyne reception. Special beat-oscillat or transformers are available, usually consisting of a tapped coil with adjustable tuning; these are most conveniently used with circuits such as those shown at Fig. 5-14A and B, with the output
taken from Y. it variable condenser of about 25 - $\mu \mu \mathrm{fd}$. capacity may be connected between eathode and ground to provide fine adjustment. The beat oscillator usually is coupled to the second-detector tuned circuit through a fixed condenser of a few $\mu \mu \mathrm{fd}$. capacity.

The beat oscillator should be well shielded, to prevent coupling to any part of the circuit except the second detector and to prevent its harmonies from getting into the front and of the receiver and being amplified with desired signals. To this end, the plate voltage should be as low as is consistent with sufficient audiofrequency output. If the beat-oscillator output is too low, strong signals will not give a proportionately strong andio response.

When an oscillating second detector is used to give the audio beat note, the detector must be detuned from the i.f. by an amount equal to the frequency of the beat note. The selectivity and signal strength will be reduced, while blocking will be pronounced because of the high signal level at the second detector.

AUTOMATIC VOLUME CONTROL

Principles

Automatic regulation of the gain of the receiver in inverse proportion to the signal strength is a great advantage, especially in 'phone reception, since it tends to keep the output level of the receiver constant regardless of input-signal strength. It is readily accomplished in superheterodync receiver: by using the average rectified d.c. voltagr. developed by the received signal across a resistance in a detector eircuit, to vary the bias on the r.f. and i.f. amplifier tubes. Since this voltage is proportional to the average amplitude of the signal, the gain is reduced as the signal strength becomes greater. The control will be more complete as the number of stages to which the a.v.c. bias is applied is increased. Control of at least two stages is advisable.

Circuits

A typical circuit using a diode-triode type tube as a combined a.v.e. rectifier, detertor and first audio amplifier is shown in Fig. $5-17$. One plate of the diode section of the tube is used for signal detection and the other for a.v.c. rectification. The a.v.c. diode plate is fed from the detector diode through the small coupling condenser, C_{3}. A negative bias voltage resulting from the flow of rectified carrier current is developed across R_{4}, the diode load resistor. This negative bias is applied to the grids of the controlled stages through the filtering resistors, R_{5}, R_{6}, R_{7} and R_{8}. When S_{1} is closed the a.v.c. line is grounded, thereby removing the a.v.c. bias from the amplifiers without disturbing the detector circuit.

It does not matter which of the two diode plates is selected for audio and which for a.v.e. Frequently the two plates are connected to-
gether and used as a combined detector and a.v.e. rectifier. This could be done in Fig. 5-17. The a.v.c. filter and line would connect to the junction of R_{2} and C_{2}, while C_{3} and R_{4} would be omitted from the circuit.

Delayed A.V.C.

In Fig. 5-17 the audio-diode return is made directly to the cathode and the a.v.c. diode is returned to ground. This plates negative bias on the a.v.c. diode equal to the d.c. drop through the cathode resistor (a volt or two) and thus delays the application of a.v.e. voltage to the amplifier grids, since no rectification takes place in the a.v.c. diode circuit until the carrier amplitude is large enough to overcome the hias. Without this delay the a.v.c. would start working even with a very small signal. This is undesirable, because the full amplification of the receiver then could not be realized on weak signals. In the audiodiode circuit this fixed bias would cause distortion, and must be aroided; hence, the return is made directly to the cathode.

Time Constant

The time const:ant of the resistor-condenser combinations in the a.v.e. circuit is an important part of the system. It must be high enough so that the modulation on the signal is completely filtered from the d.c. output, leaving only an average d.c. component which follows the relatively slow carrier variations with fading. Audio-frequency variations in the a.v.c. voltage applied to the amplifier grids would reduce the percentage of modulation on the incoming signal, and in practice would cause frequency distortion. On the other hand. the time constant must not be too great or the a.v.c. will be unable to follow rapid fading. The capacitance and resistance values indi(ated in Fig. i-17 will give a time constant that is satisfactory for high-frequency reception.

C. W.

A.v.c. can be used for c.w. reception but the circuit is more complicated. The a.v.c. voltage must be derived from a rectifier that is isolated from the beat-frequency oscillator (otherwise the rectified b.f.o. voltage will reduce the receiver gain even with no signal coming through). This is generally done by using a separate a.v.c. channel connected to an i.f. amplifier stage ahead of the second detector (and b.f.o.). If the i.f. selectivity ahead of the a.v.c. rectifier isn't good, strong adjacent signals will develop a.v.c. voltages that will reduce the receiver gain while listening to weak signals. When clear channels are available, however, c.w. a.v.c. will hold the receiver output constant over a wide range of signal input. A.v.c. systems designed to work on c.w. signals must have fairly long time constants to work with slow-speed sending, and often a selection of time constants is mado availahle.

Fig. 5-18-Delayed a.v.e. is shown at Λ, and amplified and delayed a.v.c. is shown in 13 . The cirenit at B gives excellent a.v.c. action over a wide range, with no impairment of sensitivity for weak signals. For either circuit, typical values are:
$\mathrm{C}_{1}-0.001 \mu \mathrm{fd}$. $\mathrm{C}_{2}-\mathrm{I}(\mathbb{N}) \mu \mu \mathrm{fd}$.
$\underset{R_{3}, R_{4}-R_{2}-1.0 \text { megohm. }}{\substack{R_{1} \\ \text { Voltage divider. }}}$

Amplified A.V.C.

The a.v.c. system shown in Fig. 5-17 will not hold the audio output of the receiver exactly constant, although the variation becomes less as more stages are controlled by the a.v.c. voltage. The variation atso becomes less as the dolay voltage is increased, although there will, of course, be variation in output if the signal intensity is below the delay-voltage level at the a.v.e. restifier. In the rireuit of Fig. 5-17, the

Resintors R_{3} and R_{4} are carefully proportioned to give the desired delay voltage at the cathonde of diode V^{r}. Bleder current of 1 or 2 ma, is ample, and hence the Heeder can be fikured on 1000 or 500 ohms per volt. The delay voltage should be in the vicinity of 3 or 4 for a simple receiver and 20 or 30 in the case of a multitube high-kain affair.
delay voltage is set by the proper operating bias for the triode portion of the tube. However, a separate diode may be used, as shown in F'ig. 5-18A. Since such a system requires a large voltage at the diode, a separate i.f, stage is sometimes used to feed the delayed a.v.c. diode, as in Fig, j-18B. A system like this, sometimes called an amplified a.v.c. system, gives excellent control once the delay voltage is reached, and yet maintains full receiver sonsitivity up to that point.

Noise Reduction

Types of Noise

In addition to tube and circuit noise, much of the noise interference experienced in reception of high-frequency signals is caused by domestic electrical equipment and by automobile ignition systems. The interference is of two types in its effects. The first is the "hiss" type, consisting of overlapping pulses similar in nature to the receiver noise. It is largely reduced by high selcetivity in the receiver, especially for code reception. The second is the "pistol-shot" or "machine-gun" type, consisting of separated impulses of high amplitude. The "hiss" type of interference usually is caused by commutator sparking in d.c. and series-wound a.c. motors, while the "shot" type results from separated spark
diseharges (a.c. power leaks, switch and key (licks, ignition sparks, and the like).

Impulse Noise

Impulse noise, because of the extremely short duration of the pulses as compared with the time between them, must have high pulse amplitude to contain much average energy. Hence, noise of this type strong enough to cause much interference generally has an instantaneous amplitude much higher than that of the signal being received. The general principle of devices intended to reduce such noise is that of allowing the signal amplitude to pass through the receiver unaffected, but making the receiver inoperative for amplitudes greater than that of the signal. The greater the amplitude of the pulse compared with its time
of duration, the more successful the noise redaction, since more of the constituent energy can be suppressed.

In passing throngh selective receiver circuits, the time duration of the impulses is increased, because of the Q or flywhed effect of the circouts. Hence, the more selectivity ahead of the moise-reducing device, the more diflicult it becomes to secure good noise suppression.

Audio Limiting

A considerable degree of noise rednetion in code reception can be acomplished by am-plitude-limiting arrangements applied to the audio-output circuit of a receiver. Such limiters also maintain the signal output nearly constant without fading. These output-limiter systems are simple, and aditptable to most receivers. Ifowever, they cannot prevent noise peaks from overloading previous cirenits.

SECOND-DETECTOR NOISE. LIMITER CIRCUITS

The circuit of Fig. 5-19 "chops" noise peaks at the second detector of a superhet receiver by means of a biased diode, which beeomes nomoonducting above a predetermined signal level. The audio output of the detector must pass through the diode to the grid of the amplifier tube. The diode normally would be noncomdurting with the connections shown were it not for the fact that it is given positive bias from a 30 -volt source through the aljustable potentioncter, R_{3}. Resistors R_{1} and R_{3} must be fairly large in value to prevent loss of audio signal.

The andio signal from the detector can be considered to modulate the steady diode current, and conduction will take place so long as the diode plate is positive with respect to the cathode. When the sigmal is sufficiently large to swing the cathode positive with respeet to the phate, however, conduction ceases, and that portion of the signal is cut off from the andio amplifier. The point at which cut-off occurs can be selected by adjustment of R_{3}. Hy setting R_{3} so that the signal just passes through the "valve," noise pulses higher in amplitude than the signal will be rut off. The circuit of Fig. $5-19 A$, using an infinite-impedance detector, gives a positive voltage on rectification. When the rectified voltage is negative, as it is from the usual diode detector,

Fig. 5-19 - Series-valve noise-liniter circuits, A, as ured with an infinite-impedanee detector; B, with a diode detector. Typical values for componente are as follows: $\mathrm{R}_{1}-0.27$ megohm. $\quad \mathrm{R}_{4}-20,000$ to 50,000 ohms. $1 i_{2}-4 \overline{5}, 000$ olms. $\quad C_{1}-2.0 \mu \mu \mathrm{fd}$. $\mathrm{H}_{3}-10,000$ ohms.
$\mathrm{C}_{2}, \mathrm{C}_{3}-\mathrm{O} . \mathrm{I} \mu \mathrm{ffl}$.
All ofther diodecirenit romitants in B are ronventional,
the eircuit arrangement shown in Fig. is-1913 must be used.

An atudio signal of about ten volts is required for good limiting action. The limiter will work on either e.w. or 'phone signals, but in either case the potentiometer must be set at a point determined by the strength of the incoming signal.

Second-detector noise-limiting circuits that automatically adjust themselves to the receiver carrier level are shown in Fig. 5-20. In either circuit, V_{1} is the usual diole second detector, $R_{1} R_{2}$ is the diode load resistor, and C_{1} is an r.f. by-pass. A negative voltage proportional to the carrier level is developed across C_{2}, and this voltage cannot change rapidly because R_{3} and C_{2} are both large. In the circuit at A, diode V_{2} acts as a conductor for the audio signal up to the point where its anode is negative with respect to the cathode. Noise peaks that exced the maximum carriermodulation level will drive the anode negative instantaneously, and during this time the diode does not conduet. The large time constint of $C_{2} R_{3}$ prevents any rapid change of

Fig. 5-20 - Self-adjusting series (I) and shunt (B) novise limiters. The functions of 11 and I_{2} can be combined in one tube like the 6116 or 6A1.5, or 'Jype IN3.1 crystals can be ased.
(i) $-100 \mu \mu \mathrm{fi}$.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.05 \mu \mathrm{fd}$.
$1 \mathrm{k}_{1}-0.27 \mathrm{meg}$ in $\mathrm{i}: 17,(000$ ohms in 13.
$\mathrm{R}_{2}-0.2 \overline{7}$ meg. in $\mathrm{A}: 0.15$ meg. in B .
$\mathrm{R}_{3}-1.0$ megohm.
$R_{4}-0.82$ meqohm.
this reference voltage. In the cireuit at B, the diode V_{2} is inactive until its cathode voltage exceeds its anode voltage. This condition will obtain under noise peaks and, when it does, the diode V_{2} short-circuits the signal and no voltage is passed on to the audio amplifier. Practical values for the circuit at B will be found in the eight-tube superheterodyne described later in this chapter. Diode rectifiers such as the 6I16 and 6.AI.5, or the 1 N34 germanium erystal diode, can be used for these types of noise limiters. Neither circuit is useful for c.w. reception, but they are both quite effective for 'phone work.

I.F. Noise Silencer

In the oircuit shown in Fig. 5-21, noiso pulses are made to decrease the gain of an i.f. stage momentarily and thus silence the receiver for the duration of the pulse. Any noise voltage in excess of the clesired signal's maximum i.f. voltage is taken off at the grid of the i.f. amplifier, amplified by the noiseamplificr stage, and rectified by the fullwave diode noise rectifier. The noise circuits are tuned to the if. The rectified noise voltage is applied as a pulse of negative bias to the No. 3 grid of the 6 L 7 i.f. amplifier, wholly or partially disabling this stage for the charation of the individual noise pulse, depending on the amplitude of the noise voltage. The noiseamplifier/rectifier circuit is biasel by means of the "threshold control," R_{2}, so that rectifiration will not start until the noise voltage exceeds the desired signal amplitude. With automatic volume control the a.v.c. voltage can be applied to the grid of the noise amplifier, to augment this threshold bias. In a typi-

Fis $5 \cdot 21$ - $1, f$, noise silencing cirevit. The phate supply should be 250 volts, Typical values for components are: $\mathrm{C}_{1}-50-250 \mu \mathrm{fd}$. (use smallest value possible without r.f, feed-back).
$\mathrm{C}_{2}-17 \mu \mu \mathrm{fd}$. $\quad \mathrm{R}_{2}-5000$ ohm varialle.
$\mathrm{C}_{3}-0,1{ }_{\mu} \mathrm{fd}$, $\quad \mathrm{R}_{3}-2 \underline{2}, 000$ ohms.
$\mathrm{R}_{1}, \mathrm{R}_{4}, \mathrm{R}_{5}-0.1$ нucg. RFG:- 20 mh .
T_{1} - Spectial if. ransformer for noiser rectifier.

Fig. 5.22 - Tuning-indicator or S-meter circuits for superhet receivers. A, electron-ray indicator; B, platecurrent meter for tuhes on a.v.c.; C, bridge circuit for a.v.c.-controlled tuhe. In B, resistor R should have a naximum resistance several times that of the milliamineter. In C , representative values for the components are: $R_{1}, 270$ ohms; $R_{2}, 330$ ohms; $R_{3}, 1000$ ohm variable.
cal instance, this system improved the signal-to-noise ratio some 30 db . (power ratio of 1000) with heavy ignition interference, raising the signal-to-noise ratio from -10 db . without the silencer to +20 db . with the silencer.

SIGNAL-STRENGTH AND TUNING INDICATORS

A useful accessory to the receiver is an indicator that will show relative signal st rength. Not only is it an aid in giving reports to transmitting stations, but it is helpful also in aligning the receiver circuits, in conjunction with a test oscillator or other steady signal.

Three types of indicators are shown in Fig.万-22. That at A uses an electron-ray tube, several types of which are available. The grid of the triode section usually is connected to the a.v.c. line. The particular type of tube used depends upon the voltage available for its grid; where the a.v.c. voltage is large, a remote eut-off type ($6 \mathrm{G} 5,6 \mathrm{~N} 5$ or 6 AD 6 G) should be used in preference to the more sensitive sharp cut-off ty'pe ($6 \mathrm{E} \overline{5}$).

In B, a milliammeter is connected in series with the d.c. plate lead to one or more r.f. and i.f, tubes, the gride of which are controlled by: a.v.e. voltage. Since the plate current of sucha
tubes varies with the strength of the incoming signal, the meter will indicate relative signal intensity and may be calibrated in S-points. The scale range of the meter should be chosen to fit the number of tubes in use; the maximum plate current of the average remote cutoff r.f. pentode is from 7 to 10 milliamperes. The shunt resistor, R, enables setting the plate current to the full-scale value ("zero adjustment"). With this system the ordinary meter reads downward from full scate with increasing signal strength, which is the reverse If normal pointer movement (clockwise with increasing reading). Special instruments in which the zero-current position of the pointer is on the right-hand side of the scale are used in commercial receivers.

The system at C uses a $0-1$ milliam. meter in a bridge circuit, arranged so that the meter reading and the signal strength increase together. The current through the branch containing R_{1} should be approximately equal to the current through that containing R_{2}. In some manufactured receivers this is brought about by draining the screen voltage-divider current and the current to the screens of three r.f. pentodes (r.f. and i.f. stages) through R_{2}, the sum of these currents heing about equal to the maximum plate current of one a.v.c.-controlled tube. The sensitivity can be increased by increasing the resistance of R_{1}, R_{2} and R_{3}. The initial setting is made with the manual gain control set near maximum, when R_{3} should be adjusted to make the meter read zero with no signal.

Improving Receiver Selectivity

INTERMEDIATE-FREQUENCY AMPLIFIERS

As mentioned earlier in this chapter, one of the big advantages of the superheterodyne receiver is the improved selectivity that is possible. This selectivity is obtained in the i.f. amplifier, where the tower frequency allows more selectivity per stage than at the higher signal frequency. For 'phone reception, the limit to useful selectivity in the i.f. amplifier is the point where so many of the sidebands are cut that intelligibility is lost, alt hough it is possible to remove completely one full set of sidebands without impairng the quality at all. Maximum receiver selectivity in 'phone reception requires excellent stability in both transmitter and receiver, so that they will both remain "in tune" during the transmission. The limit to useful selectivity in code work is around 50 or 100 cycles for hand-key speeds, but it is difficult to use this much selectivity because it requires remarkable stability in both transmitter and receiver, and to tune in a signal becomes a major problem.

Single-Signal Effect

In heterodyne c.w. reception with a superheterodyne receiver, the beat oscillator is set to give a suitable audio-frequency beat note when the incoming signal is converted to the intermediate frequency. For example, the beat oscillator may be set to $4 \overline{5} 6 \mathrm{kc}$. (the i.f. being $45 \overline{\mathrm{kc}}$.) to give a $1000-\mathrm{cycle}$ beat note. Now, if an interfering signal appears at $45 \mathbf{5} \mathbf{k c}$., or if the receiver is tuned to heterodyne the incoming signal to 457 kc ., it will also be heterodyned by the beat oscillator to produce a 1000 -cycle beat. Hence every signal can be tuned in at two places that will give a 1000 cycle beat (or any other low audio frequency). This audio-frequency image effect can be reduced if the i.f. selectivity is such that
the incoming signal, when heterodyned to 457 kc., is attenuated to a very low level.
When this is done, tuning through a given signal will show a strong response at the desired beat note on one side of zero beat only, instead of the two beat notes on either side of zero beat characteristic of less-selective reception, hence the name: single-signal reception.
The necessary selectivity is difficult to obtain with nonregenerative amplifiers using ordinary tuned circuits unless a very low i.f. or a large number of circuits is used.

Regeneration

Regeneration can be used to give a pronounced single-signal effect, particularly when the i.f. is 45 kc . or lower. The resonance curve of an i.f. stage at critical regeneration (just below the oscillating point) is extremely sharp, a bandwidth of 1 kc . at 10 times down and ${ }^{2} \mathrm{kc}$. at 100 times down being obtainable in one stage. The audio-frequency inage of a given signal thus can be reduced by a factor of nearly 100 for a 1000 -cycle beat note (image 2000 cycles from resonance).

Regeneration is easily introduced into an i.f. amplifier by providing a small amount of capacity coupling between grid and plate. Bringing a short length of wire, connected to the grid, into the vicinity of the plate lead usually will suffice. The feed-back may be controlled by the regular cathode-resistor gain control. When the i.f. is regenerative, it is preferable to operate the tube at reduced gain (high bias) and depend on regeneration to bring up the signal strength. This prevents overloading and increases selectivity.
The higher selectivity with regeneration reduces the over-all response to noise generated in the earlier stages of the receiver, just as does high selectivity produced by other means, and therefore improves the signal-to-noise ratio. The disadvantage is that the regenerative gain
varics with signal strength, being less on strong signals, and the selectivity varies.

Crystal Filters

'The most satisfactory method of obtaining high selectivity is by the use of a piezoelectric quartz crystal as a selective filter in the i.f. amplifier. Compared to a good tuned circuit, the Q of such a crystal is extremely high. The dimensions of the crystal are made such that it is resonant at the desired intermediate frequency. It is then used as a selective coupler between i.f. stages.

Fig, 5-23 gives a typical crystal-filter resonance curve. For single-signal reception, the audio-frequency image can be reduced by a factor of 1000 or more. Besides practically eliminating the a.f. image, the high selectivity of the crystal filter provides great discrimination against signals very close to the desired signal and, by reducing the band-width, roduces the response of the receiver to moise.

Crystal-Filter Circuits; Phasing

Several crystal-filter circuits are shown in Fig. 5-24. Those at A and B are practically identical in performance, although differing in details. The crystal is connected in a bridge circuit, with the secondary side of T_{1}, the input transformer, balanced to ground either through a pair of condensers, $C-C(A)$, or by a centertap on the secondary, $L_{2}(\mathrm{~B})$. The bridge is completed by the crystal and the phasing condenser, C_{2}, which has a maximum capacity somewhat higher than the capacity of the crystal in its holder. When C_{2} is set to balance the crystal-holder capacity, the resonance curve of the crystal circuit is practically symmetrical; the crystal acts as a series-resomant

Fig. 5-23-Graphical representation of single-signal selectivity. The shaded area indicates the over-all bandwidth, or region in which response is obtainable.
circuit of very high Q and thus allows signals of the desired frequency to be fed through C_{3} to $L_{3} L_{4}$, the output transformer. Without C_{2}, the holder capacity (with the crystal acting as a dielectric) would pass undesired signals.

The phasing control has an additional function besides neutralization of the crystal-holder capacity. The holder capacity becomes a part of the crystal circuit and causes it to act as a parallel-tuned resonant circuit at a frequency slightly higher than its series-resonant frequency. Signals at the parallel-resonant frequency thus are prevented from reaching the output circuit. The phasing control, by varying the effect of the holder capacity, permits shifting the parallel-resonant frequency over a considerable range, providing adjustable rejection of interfering signals. The effect of rejection is ilhustrated in Fig. 5-23.

Additional I.F. Selectivity

Most commercial communications receivers do not have sufficient selectivity for amateur use, and their performance can be greatly improved by adding additional selectivity. Oncpopular met hod is to couple a $13 \mathrm{C}-453$ aircraft receiver (war surplus, tuning range 190 to 550 kc.) to the tail end of the $465-\mathrm{ke}$, i.f. amplifior in the communications receiver and use the resultant output of the $\mathrm{BC}-453$. The aireraft receiver uses an 85-kc. i.f. amplifier that is quite sharp -6.5 kc . wide at -60 db . - and it helps tremendously in separating 'phone signals and in backing up crystal filters for improved c.w. reception. (See QST, January, 1948, page 40 .)

If a BC-453 is not available, it is still a simple matter to enjoy the benefits of improved selectivity. It is only necessary to heterodyne to a lower frequency the $465-\mathrm{kc}$. signal existiur in the receiver i.f. amplifier and then recti!y it after passing it through the sharp lowfrequency amplifier. The Hammarlund Company and the J. W. Miller Company both offer jo-ke. transformers for this application.

QST references on high i.f. selectivity inrlude: McLaughlin, "Selectable Single sideband," April, 1948; Githens, "C.W. Receiver," Aug., 1 ! 48.

- RADIO-FREQUENCY AMPLIFIERS

While selectivity to reduce audio-frequency images can be built into the i.f. amplifier, disarimination against radio-frequency images: can only be obtained in circuits ahead of the first detector. These tuned circuits and their assoriated vacuum tubes are called radiofrequency amplifiers. For top performance of a communications receiver on frequencies above 7 Me., it is mandatory that it have one or two stages of r.f. amplification, for image rejection and improved sensitivity.

Heceivers with an i,f, of 455 kc . can be expected to have some r.f. image response at a signal frequency of 14 Mc. and ligher iî only one stare of r.f. amplification is used. (Regen-

Fig. 5-2.t-6 (irstal-filter circuita of thre't types. Nll wive variable trandwidth, with C hasing the greatest range of selectivity. Suitable circuit values are as follows: (iircuit A, T_{1}, special i.f. input transformer with high-inductance primary, L_{1}, closely coupled to tuned secondary, I_{2}; (i), $50-\mu \mu \mathrm{fd}$. variahle: (, each 100 - $\mu \mu \mathrm{fl}$. fived (mica); (.2, 10- to $1.5-\mu \mu \mathrm{fd}$. (max.) variable; C.3, $5\left(0-\mu \mu \mathrm{fd}\right.$, trimmer; $L_{3} \mathrm{C} \cdot 4, \mathrm{i} . \mathrm{f}$. tuned circoit, with $I .3$ tapped to match erystal-circuit impedance. In circuit B, T_{1} is the same as in cirenit I eveept that the secondary is center-tapped; C_{1} is $100-\mu \mu \mathrm{fd}$. variable; C_{2}, C_{3} and C_{4}, same as for circuit $A_{;} I_{2} L_{4}$ is a transformer with primary, L_{4}, corresponding to tap on L_{3} in A. In cirenit C°, T_{1} is a special i.f. input transformer with tuned primary and low-impedance secondary: (., each 100- $\mu \mu \mathrm{fol}$. fixed (mica): (i2, opposed stator phasing condenser, approximately $8-\mu \mu$ fid. maximum capacity each side: $I_{3}\left(C_{3}\right.$, high- O i.f. tuned cireuit; $R, 0$ to 3000 ohms (selectivity control).
they won't oscillate) are often used on the higher frequencies because they introduce less noise. Pentodes are better where maximum image rejection is desired, because they have less loading affect on the circuits.

Feed-Back

Feed-back giving rise to regeneration and oscillation can occur in a single stage or it may appear as an over-all feed-back through several stages that are on the same frequency. To a void feed-back in a single stage, the output must be isolated from the input in every way possible, with the vacuum tube furnishing the only coupling between the two circuits. For example, an oscillation can be obtained in an r.f. or i.f. stage if there is any undue capacitive or inductive coupling betwern output and input circuits, if there is too high an impedance between cathode and ground or screen and ground, or if there is any appreciable impedance through which the grid and plate currents can flow in common. This simply means good shielding of coils and condensers in r.f. and i.f. circuits, the use of good by-pass condensers (mica at 14 Mc . and higher, and with short leads), and returning all by-pass condensers (grid, cathode, plate and sereen) with short leads to one spot on the chassis. If single-ended tubes are used, the sereen or cathode by-pass condenser should be mounted across the socket, to serve as a shicld between grid and phate pins. Less care is required as the frequency is lowered, but in high-impedance circuits, it is sometimes necessary to shield grid and plate leads and to be careful not to run them close together.

To avoid over-all feed-back in a multistage amplifier, strict attention must be paid to avoid running any part of the output circuit back near the input circuit without first filtering it carefully. Since the signal-carrying parts of the circuit (the "hot" grid and plate leads) can't be filtered, the best design for any multistage amplifier is a straight line, to keep the output as far away from the input as possible. For example, an r.f. amplifier might run along a chassis in a straight line, run into a mixer where the frequency is changed, and then the i.f. amplifier could be run back parallel to the r.f. amplifier, provided there was a very large frequency difference between the r.f. and the i.f. amplifiers. However, to avoid any possible coupling, it would be better to run the i.f. amplifier off at right angles to the r.f.-amplifier line, just to be on the safe side. Good shielding is important in preventing over-all oscillation in high-gain-per-stage anplifiers, but it becomes less important when the stage gain drops to a low value. In a high-gain amplifier, the power leads (including the heater circuit) are common to all stages, and they can provide the over-all coupling if they aren't properly filtered. Good by-passing and the use of series
isolating resistors will generally eliminate any possibility of coupling through the power leads. R.f. chokes, instead of resistors, are used in the heater leads where necessary.

CROSS-MODULATION

Since a one- or two-stage r.f. amplifior will have a passband measured in hundreds of ke . at 14 Me . or higher, strong signals will be amplified through the ref. amplifier even though it is not tuned exactly to them. If these signals are strong enough, their amplified magnitude may be measurable in volts after passing through several r.f. stages. If an undesired signal is strong enough after amplification in the r.f. stages to shift the operating point of a tube (by driving the grid into the positive region), the undesired signal will modulate the desired signal. This effeet is called cross-modulation, and is often encountered in receivers with several r.f. stages that are working at high gain. It is readily detectable as a superimposed modulation on the signal being listemed to, and often the effoct is that a signal can be tuned in at several points. It can be reduced or eliminated by greater solectivity in the antema and r.f. stages (difficult to obtain), the use of variable- μ tubes in the r.f. amplifier, reduced gain in the r.f. amplitier, or redued antemna input to the receiver.

Gain Control

To avoid cross-modulation and other overload effects in the first dotector and r.f. stages, the gain of the r.f. stages is usually mado adjustable. This is aceomplished by using vari-able- μ tubes and varying the d.c. grid bias, either in the grid or cathode circuit. If the gain control is antomatic, as in the case of a.v.c., the bias is controlled in the grid circuit. Manual eontrol of r.f. gain is generally done in the cathode circuit. A typical r.f. amplifior stage with the two types of gain control is shown in fig. y^{-25}

Fï. 5-25- Typical radio-frequency amplifier circuit for a superlsterodyne receiver. Representative values tor compunents are as follows:
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-0.01 \mu \mathrm{fd}$, below $15 \mathrm{Mc} .0 .001 \mu \mathrm{dd}$, at 30 Me.
$\mathrm{R}_{1}, \mathrm{R}_{2}$ - See Table - -Il.
$\mathrm{H}_{3}-1800$ ohns.
K_{4} - 0.2 I mexghm.

Vig. 5.26-Converter-circuit tracking methods. Following are approximate circuit values for 450 - to $465-\mathrm{ke}$. i.f.s, with tuning ranges of approximately $2.15-10$ - 1 and C. 2 having $140-\mu \mu \mathrm{fl}$. maximum. and the total minimumt capacitance, including C_{3} or C_{4}, being 30 to $35 \mu \mu \mathrm{fi}$.

Tuning Range	L_{1}	L_{2}	C_{5}
1.-1-1 M	$30 \mu \mathrm{~h}$.	$40 \mu \mathrm{~h}$.	$0.0013 \mu \mathrm{fl}$.
3.7-7.5 Mc.	$14 \mu \mathrm{~h}$.	$12.2 \mu \mathrm{~h}$.	$0.0022 \mu \mathrm{fd}$.
7-15 Mc.	$3.5 \mu \mathrm{~h}$.	$3 \mu \mathrm{~h}$.	0.0045 ufil,
14-30 110.	$0.8 \mu \mathrm{~h}$.	$0.78 \mu \mathrm{~h}$.	None used

Approximate values for 450 . to 46.5 -he. i.f.s with a
 mum, ninimum including $C a$ and $C 4$ being 40 to $50 \mu \mu \mathrm{fd}$.

Tuning Range	L_{1}	L_{2}	Cb_{5}
0.3-1.5 Mc.	$240 \mu \mathrm{~h}$.	$130 \mu \mathrm{~h}$.	$425 \mu \mathrm{ffd}$.
1.5-1 Mc.	$32 \mu \mathrm{~h}$.	$25 \mu \mathrm{l}$.	0.00115 sfd .
1-10. H	$4.5 \mu \mathrm{~h}$.	${ }_{0}^{4} \mu \mathrm{hr}$.	$0.0028 \mu \mathrm{fd}$.
$10-25 \mathrm{Uc}$.	$0.8 \mu \mathrm{~h}$.	$0.75 \mu \mathrm{~h}$.	Done used

Tracking

In a simple receiver with no r.f. stage, it is no inconvenience to adjust the high-frequency oscillator and the mixer circuit independently, because the mixer tuning is broad and requires little attention over an amateur band. However, when r.f. stages are added ahead of the mixer, the selectivity of the r.f. stages and mixer makes it awkward to use a two-contrul receiver over an entire amateur band, even though the mixer and r.f. stages are ganged and require only one control. Hence most receivers with one or more r.f. stages gang all of the tuming eontrols to give a single-tuning-
control receiver. Obviously there must exist a constant difference in frequency (the i.f.) between the oscillator and the mixer/r.f. circuits, and when this condition is achieved the circuits are said to track.

Tracking methods for covering a wide frequency range, suitable for gencral-coverage receivers, are shown in Fig. - $\mathbf{j}-26$. The tracking capacity, ('s, commonly consists of two condensers in parallel, a fixed one of somewhat less capacity than the value needed and a smaller variable in parallel to allow for adjustment to the exact proper value. In practice, the trimmer, C_{4}, is first set for the high-frequeney end of the tuning range, and then the tracking condenser is set for the low-frequency end. The tracking capacity becomes larger as the percentage difference between the oscillator and signal frequencies becomes smaller (that is, as the signal frequency becomes higher). Typical circuit values are given in the tables
under Fig. 5-26. The coils can be calculated quite closely by using the $A R R L$ Lightning Calculator, but they will have to be trimmed in the circuit for best tracking.
In amateur-band receivers, tracking is simplified by choosing a handspread circuit that gives practically straight-line-frequency tuning (equal frequency change for each dial division). and then adjusting the oscillator and mixer tuned circuits so that both cover the same total number of kilocycles. For example, if the i.f. is 450 kc . and the mixer circuit tunes from 7000 to 7300 kc . between two given points on the dial, then the oscillator must tune from 7455 to 7555 kc . between the same two dial readings. With the bandspread arrangement of Fig. -9 C , the tuning will be practically straight-line-frequency if the capacity actually in use at C_{2} is not too small; the same is true of $5-9 \mathrm{~A}$ if the value of C_{1} is small compared with C_{2}.

Improving Receiver Sensitivity

Early in this chapter it was pointed out that the sensitivity (signal-to-noise ratio) of a receiver on the higher frequencies above 20 Mc . is dependent upon the bandwidtlo of the receiver and the noise eontributed by the "front end" of the receiver. Neglecting the fact that the image rejection is poor', a reroiver with no r.f. stage is generally satisfactory, from a semsitivity point, in the 3.5 - and 7 -Me bands. However, as the frequency is increased and the atmospheric noise becomes less, the alvantage of a good "front end" becomes apparent. Henceat 14 Me. and higher it is worth while to use at least one stage of r.f. amplification ahead of the first detector for best sensitivity as well as image rejection. The multigrid converter tubes have very poor noise figures, and sven the best pentodes and triodes are three or four times noisier when used ats mixers as they are when used as amplifiers.

If the purpose of an r.f. amplifier is to imt prove the receiver noi;e figure at $1-1$ Mc and higher, a high- G_{m} pentode or triode should be used. Among the pentodes, the best tubes are the 6.AC7, 6AK5 and the 6SG7, in the order named. The GAK゙5 takes the lead around 30 Me. The (j.J4, 6Jti, 7 lis and triode-eonnected G.iks are the best of the triodes. For best noise figure, the antenna circuit should be coupled a little heavior than optimum. This condition leads to poor selectivity in the antenna circuit, so it is futile to try to combine best sensitivity with seleotivity in this eireuit.

When a receiver is satisfactory in every respect (stahility and selectivity) except sensitivity on 14 and/or 28 Mc., the best solution for the amateur is to add a preamplifier, a stage or two of r.f. amplification designed expressly to improve the sensitivity. If image rejection is lacking in the receiver, some selertivity should be built into the pre-
amplitier (it is then called a preselector). If, however, the receiver operation is poor on the higher frequencies but is satisfactory on the lower ones, a "converter" is the best solution.
some commercial receivers that appear to lack sensitivity on the higher frequencies can be improved simply by tighter coupling to the antenna. Since the receiver manufacturer has no way to predict the type of antenna that will be used, he generally designs the input for some compromise value, usually around 300 or 400 ohms in the high-frequency ranges. If your antenna matches to something far different from this, the receiver effectiveness can be improved by proper matching. This can be accomplished by changing the antenna to the right value (as determined from the receiver instruction book) or by using a simple matching device as described later in this chapter. Overcoupling the imput circuit will of ten improve sensitivity but it will, of course, always reduce the image-rejection contribution of the antenna circuit.

Commercial receivers can also be "hopped up" by substituting a high- G_{m} tube in the first r.f. stage if one isn't already there. The amateur must be prepared to take the consequencer, however, since the stage may oscillate, or not track without some modification. A simpler solution is to add the "hot" r.f. stage ahead of the receiver.

Regeneration

Regeneration in the r.f. stage of a receiver (where only one stage exists) will often improve the sensitivity because the greater gain it provides serves to mask more completely the first-detector noise, and it also provides a measure of automatie matching to the antenna through tighter coupling. However, accurate ganging beoumes. a problem, berause of the
increfised selectivity of the regenerative r.f. stage, and the receiver almost invariably becomes a two-handed-tuning device. Regeneration should not be overlooked as an expedient, however, and many amateurs have used it with considerable success. High- G_{m} tubes are the best as regenerative amplifiers, and the fred-back should not be controlled by changing the operating voltages (which should be the same as for the tube used in a high-gain amplifier) but by changing the loading or the feod-back roupling. This is tricky and another reason why regeneration is not too widely used.

Gain Control

In a recelver front end designed for best signal-to-noise ratio, it is alvantageous in the reception of weak c.w. signals to eliminate the gain control from the first r.f. stage and allow it to run "wide open" all of the time. If the first stage is controlled along with the i.f. (and other r.f. stages, if any), the signal-to-noise ratio of the receiver will suffer. As the gain is reduced, the G_{m} of the first tube is reluced, and its noise figure becomes higher. In clahorate receiver might well have separate gain controls for the first r.f. stage and for all i.f. stagre.

Extending the Tuning Range

As mentioned earlier, when a receiver duesn't eover a particular frequency range, either in fact or in satisfactory performance, a simple solution is to use a converter. A converter is another "front end" for the receiver, and it is made to tune the proper range or to give the necessary performance. It works into the recciver at some frequency between 1.6 and 10 Mc . and thus forms with the receiver a "triple-detertion" superhet.

There are several different types of converters in vogue at the present time. The commonest type, since it is the oldest, uses a regular tunable oscillator, mixer, and r.f. stages as desired, and works into the receiver at a fixed frequency. I second type uses broadhanded r.f. stages in the r.f. and mixer stages. of the converter, and only the oscillator is tuned. Since the frequency the converter works into is high (7 Mc . or more), little or no trouble with images is experienced, despite the broad-band r.f. stages. A third type of converter uses broad-banded r.f. and output stages and a fixed-frequency oscillator (selfor crystal-controlled). The tuning is done with the receiver the converter is connected to. This is an excellent system if the receiver itself is well shiedded and has no external piek-up of its own. Many war-surplus receivers fall in this category. A fourth type of converter uses a fixed oscillator with ganged mixer and r.f. stages, and requires two-handed tuning, for the r.f. stages and for the receiver. The r.f. tuning is not critical, however, unless there are many stages.

The broad-banded r.f. stages have the advantage that they can be built with short leads, since no tuning capacitors are required and the unit can be tuned initially by trimming the inductances. They are a little more prone to cross-modulation than the gangtuned r.f. stages, however, hecause of the lack of selectivity. The fourth type of converter, although the most difficult to build, is probably the most satisfactory, particularly if :a crystal-controlled high-frequency oscillator is used. It not only has the advantage of the best selectivity and protection against image: and cross-modulation, but the crystal gives it a stability unobtainable with self-controlled oscillators. Amateurs who specialize in operttion on 28 and 50 Mc. often develop good converters for use ahead of conventional communications reccivers, and the extra trouble often pays off in outstanding performance for the station.

While converters can extend the operating range of an existing receiver, their greatesi advantage probably lies in the opportunity they give for getting the best perforinance on any one band. By selecting the best tubes and techniques for any particular band, the amateur is assured of top receiver performance. With separate converters for each of soveral bands, changes can be made in any one without disabling or impairing the receiver performance on another band. The use of converters ahead of the low-frequency receiver is rapidly becoming standard practice on the bands above 14 Mc .

Tuning a Receiver

C.W. Reception

For making code signals audible, the beat oscillator should be set to a frequency slightly different from the intermediate frequency. To adjust the beat-oscillator frequency, first tune in a moderately-weak but steady carrier with the beat oscillator turned off, Adjust the receiver tuning for maximum signal strength,
as indicated by maximum hiss. Then turn on the beat oscillator and adjust its frequency (leaving the receiver tuning unchanged) to give a suitable beat note. The beat oscillator need not subsequently be touched, except for occasional checking to make certain the frequency has not drifted from the initial setting. The b.f.o. may be set on either the high- or low-frequency side of zero beat.

The use of a.v.c. is not generally satisfactory in c.w. reception, except in receivers expressly designed for the purpose, because the rectified beat-oscillator voltage in the second-detector eircuit also operates the a.v.c. circuit. This gives a constant reduction in gain and prevents utilization of the full sensitivity of the receiver. Hence the gain should be manually adjusted to give suitable audio-frequency output.

To avoid overloading in the i.f. circuits, it is usually better to control the i.f. and r.f. gatin and keep the audio gain at a fixed value than to use the a.f. gain control as a volume control and leave the r.f. gain fixed at its highest level, except when there are few loud signals on the band and a low noise level.

Tuning with the Crystal Filter

If the receiver is equipped with a crystal filter the tuning instructions in the preceding paragraph still apply, but more care must be used both in the initial adjustment of the beat oscillator and in tuning. The beat oscillator is set as described above, but with the crystal filter in operation and adjusted to its sharpest position, if variable selectivity is a vailable. The initial adjustment should be made with the phasing control in the intermediate position. After it is completed, the beat oscillator should be left set and the receiver tuned to the other side of zero beat (audio-frequency image) on the same carrier to give a beat note of the same tone. This beat will be considerably weaker than the first, and may be "phased out" almost completely by careful adjustment of the phasing control. This is the adjustment for normal operation; it will be found that one side of zero beat has practically disappeared, leaving maximum response on the desired side.

In interfering signal laving a beat note differing from that of the a.f. image can be similarly phased out, provided its carrier frequency is not too near the desired carrier.

Depending upon the filter design, maximum selectivity may cause the dots and dashes to lengthen out so that they seem to "run together." It must be emphasized that, to realize the benefits of the crystal filter in reducing interference, it is necessary to do all tuning with it in the circuit. Its selectivity is so high that it is often impossible to find the desired station quickly, should the filter be switched in only when interference is present.

'Phone Reception

In reception of 'phone signals, the normal procedure is to set the r.f. and i.f. gain at maximum, switch on the a.v.c., and use the audio gain control for setting the volume. This insures maximum effectiveness of the a.v.c. system in compensating for fading and maintaining constant audio output on either strong or weak signads. On occasion a strong signal close to the frequency of a weaker desired station may take control of the a.v.c., in which
case the weaker station will practically disappear because of the reduced gain. In this case better reception may result if the a.v.c. is switched off, using the manual r.f. gain control to set the gain at a point that prevents. "blocking" by the stronger signal.

A crystal filter will do much toward reducing interference in 'phone reception. Although the high selectivity cuts sidebands and thereby reduces the audio output, especially at the ligher audio frequencies, it is possible to use quite high selectivity without destroying intelligibility even though the "quality" of the trammission may suffer. As in the case of c.w. reception, it is advisable to do all tuning with the filter in the circuit. Variable-seleetivity filters permit a choice of selectivity to suit interference conditions.

An undesired carrier close in frequency to a desired carrier will heterodyne with it to produce a beat note equal to the frequency difference. Such a heterodyne can be reduced by adjustment of the phasing control in the crystal filter. It cannot be prevented in a "straight" superheterodyne having no crystal filter.

A tone control often will be of help in reducing the effects of high-pitched heterodynes, sideband splatter and noise, by cutting of the higher autio frequencies. This, like sideband cutting with high selectivity, causes some reduction in naturalness.

Spurious Responses

Spurious responses can be recognized without a great deal of difficulty. Often it is possible to identify an image by the nature of the transmitting station, if the frequency assignments applying to the frequency to which the receiver is tumed are known. However, an image also can be recognized by its behavior with tuming. If the signal causes a heterodyne beat note with the desired signal and is actually on the same frequency, the beat note will not change as the receiver is tuned through the signal; but if the interfering signal is an image, the beat will vary in pitch as the receiver is tuncd. The beat oscillator in the receiver must be turned off for this test. Using a crystal filter with the beat oscillator on, an image will peak on the side of zero beat opposite that on which the desired signal peaks.

Harmonic response can be recognized by the "tuning rate," or movement of the tuming dial required to give a specified change in beat note. Signals getting into the i.f. via high-frequency oseillator harmonies tune more rapidly (less dial movement) through a given change in beatnote than do signals received by normal means.

Harmonics of the beat oscillator can be recognized by the tuning rate of the beat-oscillator pitch control. A smaller movement of the control will suffice for a given change in beat note than that necessary with legitimate signals. In poorly -shielded receivers it is often possible to find b.f.o. harmonies bedow 2 Mc ., but they should be very weak at higher frequencies.

Narrow-Band Frequency- and Phase-Modulation Reception

FM Reception

In the reception of NFM signals by a normal communications receiver, the a.v.c. is switehed off and the incoming signal is not tuned "on the nose," as indicated by maximum reading of the S-meter, but slightly off to one side or the other. This puts the carrier of the incoming signal on whe side or the other of the i.f. selectivity (haractoristic (sece lig. i)-1). As the frequency of the signal changes batek and forth over a small range with modulation, these variations in frequency are translated to variations in amplitude, and the consequent $A M$ is deteeted in the nommal manner. The signal is tuned in (on one side or the other of maximum carrier strength) until the audio quality appears to be best. The audio output from the signal depends on the slope of the i.f. characteristic and the amount of swing (deviation) of the signal. If the audio is too weak, the transmitting operator should be advised to increase his swing slightly, and if the andio quality is bad ("splashy" and with serious distortion on volume peaks) he should be advised to reduce his swing. Comperation between transmitting and receiving operators is a necessity for best audio quality. The transmitting station should always be advised immediately If at any time his bandwidth exceeds that of an $A M$ signal, since this is a violation of FCC regulations, except in those portions of the bands where wide-band FM is permitted.

If the receiver has a discriminator or other detector designed expressly for F I reception,
the signal is peaked on the receiver (as indicated by maximum S -meter reading or minimum background noise). There is also a spot on (ither side of this tuning condition where atudio is recovered through slope detection, but the signal will not be as loud and the hackground noise will be higher.

PM Reception

Phase-modulated signals an be received in the same way that NFM (narrow-band FM) signals are, exeept that in this case the audio, output will appar to be lacking in "lows," because of the differences in the deviation-ox.andio characteristics of the two systems. This can be remedied to a considerable degree by advancing the tone control of the receiver to the point where more nearly normal sperech output is obtained.

NPM signals can also be received on communications receivers by making use of the crystal filter, in which case there is no need for audio compensation. The erystal filter should be set to the sharpest position and the carrier should be tumed in on the crystal peak, not set off to one side. The phasing condenser should be set not for exact neutralization but to give a rejection notch at some convenient side frequency such as 1000 cycles off resonance. There is considerable attenuation of the side bands with such tuning, but it can readily be overcome by using additional audiog gain. NFM signals received through the erystal filter in this fashion will have a "boomy" characteristic berause the lower frequencies are accentuated.

Reception of Single-Sideband Signals

Single-sideband signals are generally transmitted with little or no carrier, and it is necessary to furnish the carrier at the reeciver before proper reception can be obtained. Because little or no carrier is transmitted, the a.v.c. in the receiver is not useful, and manual variation of the r.f. gain control is required.

A single-sideband signal can be identified by the absence of a strong carrier and by the severe variation of the s-moter at a syllabic rate. When such a signal is eneountered, it should first be peaked with the main tuning dial. (This centers the signal in the i.f. passband.) After this operation, do not touch the main tuning dial. Then set the r.f. gain control at a very low level and switeh off the a.v.c. Increase the audio volume control to maximum, and bring up the rif. gain control until the signal can be heard weakly. Switch on the beat oscillator, and carefully adjust the frequency of the beat oscillator until proper speech is heard. If there is a slight amount of carrier present, it is moly neressary to zero-
beat the oscillator with this weak carrier. It will be noticed that with an incorrect setting of the beat oseillator, the speech will sound high- or low-pitched or even inverted (very garbled), but no trouble will be had in getting the correct setting, once a little experience has been obtained. The use of minimum r.f. gain and maximum audio gain will insure that no distortion (overload) occurs in the receiver.

Another method of receiving single-sideband signals is to reinsert the carrier at the signal frequency. If, for example, you wish to copy a single-sideband signal that is on 3990 ke., you can supply the camier at that frequency (with a small auxiliary oscillator or frequency meter) and leave your receiver in the normal condition for AM reception (a.v.c. on, b.f.o. off). This method of reception is advantageous in "round-table" contacts that include a single-sideband station, because it calls only for careful tuning of the auxiliary oscillator and not of the receiver. Further, only the auxiliary oscillator must be stable.

Servicing Superhet Receivers

I.F. Alignment

A calibrated signal generator or test oscillator is a very useful device for initial alignment of an i.f. amplifier. Some metns for meaturing the output of the receiver is required. If the receiver has a tuning meter, its indications will serve the purpose. Lacking an s-meter, a high-resistance voltmeter or preferably a vacumb-tube voltmeter can be comnected across the serond-detector load resistor, if the second detector is a diode. Alternatively, if the signal generator is a modulated type, an a.c. voltmeter can be comected acrosis the primary of the transformer feeding the 'speaker, or from the plate of the hast audio amplifier through a $0.1-\mu \mathrm{fl}$. blocking condenser to the receiver chassis. Lacking an a.c. voltmeter, the andio output can be judged by ear, although this method is not ats aceurate as the others. If the tuming meter is used as an indication, the a.v.c. of the receiver should be turned $\mathrm{m}_{\text {, but }}$, my other indication requires that it be turned off. Lacking a test oscillator, a steady carrier tuned through the input of the receiver (if the job is one of just touching up the i.f. amplifier) will be suitable. However, with no oscillator and tuming an amplifier for the first time, one's only recourse is to try to peak the i.f. transformers on "noise," a difficult tilsk if the transformers are badly off resonance, as they are apt to be. It would be much better to spend a little time and haywire together a simple oscillator for test purposes.

Initial alignment of a new i.f. amplifier is as follows: The test oscillator is set to the correct frequency, and its output is connected to the grid of the last i.f. amplifier tube and to the chassis. The trimmer condensers of the transformer feeding the second detertor are then adjusted for maximum output, ats shown by the indicating device being used. The oscillator output lead is then clipped on to the grid of the next-to-the-last i.f. amplifier tube, and the second-from-the-last transformer trimmer adjustments are peaked for maximum output. This process is continued, working back from the second detector, until all of the i.f. transformers have been aligned. It will be necessary to reduce the output of the test oscillator as more of the i.f. amplifier is brought into use, because the increased gain is likely to cause overloading and consequent inaccurate adjustments. It is desirable in all cases to use the minimum oscillator signal that will give useful output readings. The i.f. trausformer in the plate circuit of the mixer is aligued with the signal introduced to the grid of the mixer. Since the tuned circuit feeding the mixer grid may have a very low impedance at the i.f., it may be necessary to boost the test generator output or to disconnect the circuit temporarily from the mixer grid.

If the i.f. amplifier las a crystal filter, the filter should first be switched out and the alignment carried out is above, setting the test oscillator as closely as possible to the crystal frequency. When this is completed, the crystal should be switched in and the oseillator frequency varied back and forth over a small range either side of the crystal frequency to find the exact frequency, as indicated by a sharp rise in out put. Leaving the test oscillator set on the crystal peak, the i.f. trimmers should be realigned for maximum output. The necessary readjust ment should be small. The oscillator frequency should be checked frequently to make sure it has not drifted from the crystal peak.
A modulated signal is not of much value for aligning a crystal-filter i.f. amplifier, since the high selectivity cuts sideb:unds and the results. may be inaccurate if the audio output is used as the tuming indication. Lacking the a.v.c. tuning meter, the transformers may be conveniently aligned by ear, using a weak unmodulated signal adjusted to the crystal peak. switch on the beat uscillator, adjust to a suitable cone, and align the i.f. transformers for maximum audio output.

An amplifier that is only slightly out of alignment, as a result of normal drift or aging, can be realigned by using any steady signal, such as a lucal broudeast station, instead of the test uscillator. One's $100-\mathrm{ke}$. standard makes an excellent signal source for "touching up" an i.f. amplifier. Allow the receiver to warm up thoroughly, tume in the signal, and trim the i.f. for maximum output.

If you bouglit your receiver instead of making it, be sure to read the instruction book carefully before attempting to realign the receiver. Most inst ruction books include alignment details, and any little special tricks that are peculiar to that particular type of receiver will also be described.

R.F. Alignment

The objective in aligning the r.f. circuits of a gang-tuned receiver is to secure adequate tracking over each tuning range. The adjustment may be carried out with a test oscillator of suitable frequency range, with harmonics from your $100-\mathrm{kc}$. standard or other known oscillator, or even on noise or such signals as may be heard. First set the tuning dial at the high-frequency end of the range in use. Then set the test oscillator to the frequency indicated by the receiver dial. The test-oscillator output may be connected to the antenna terminals of the receiver for this test. Adjust the oscillator trimmer condenser in the receiver to give maximum response on the test-oscillator signal, then reset the receiver dial to the low-frequency end of the rango. Set the test-oscillator frequency near the fre-
quency indicaled by the receiver dial and carefully tune the test ostillator untll its signal is heard in the receiver. If the frequency of the signal as indicated by the test-oscillator calibration is higher than that indicated by the receiver dial. more inductance (or more capacity in the tracking condenser) is needed in the receiver oseillator circuit; if the freduency is lower, less inductance (less trateking capaeity) is required in the receiver oscillator. Most commercial receivers provide somb. means for varying the inductance of the coils or the capacity of the tracking rondenser, to permit aligning the receiver tuming with the dial calibration. Set the test oseilhator to the frequency indicated by the receiver dial, and then adjust the tracking capacity or inductancer of the receiver uscillator coil to obtain maximum response. After making this aljustment, recheck the high-frequency end of the scale apreviously desmibed. It may be necessary to go back and forth between the ends of the range several times befone the proper eombination of indurtaner and eapacity is secured. In many cases, better over-all tracking will result if frequencies near but not actually at the ends of the tuning range are selected, inst ead of taking the extreme dial sottings.

After the oscillator range is properly adjusted, set the receiver and test oscillator to the high-frequency end of the range, . Idjust the mixer trimmer condenser for maximum hiss or signal, then the r.f. trimmers. Reset the tuming dial and test oscillator to the low-frequenc: end of the range, and repeat; if the circuits are properly designed, no change in trimmer sottings should be necessary. If it is necessary to increase the trimmor capacity in any circuit, it indicates that more inductance is needed: if less capacity resonates the circuit, less inductance is required.

Tracking seldom is perfert throughout a tuning range, so that a check of alignment at intermediate points in the range may show it to be slightly off. Normally the gain variation from this catuse will be small, however, and it will suffice to bring the cireuits intol line at both ends of the range. If most reception is in a particular part of the range, such as an amateur band, the eireuits may be aligned for maximum performane in that region, even though the ends of the frequency range ats a whole may be slightly out of aligmment.

Oscillation in R.F. or I.F. Amplifiers

Osaillation in high-frequency amplifier and mixer circuits may be covidenced by squeals or "birdies" as the tuning is varied, or by comphete lack of andible output if the oscillation is strong enough to caluse the a.v.e. system to reduce the receiver gain dantically, Usidiation can be caused by poor comections in the common ground circuits. Inadequate or defertive by-pass condensers in cathode plate andsereengrid eireuits also can caluse such oseillation. A metal tube with an muronnded shell will cause
trouble. Improper screen-grid voltage, resulting from a shorted or too-low screen-grid series resistor, also may be responsible for such instability.

Oscillation in the i.f. circuits is independent of high-fiequency tuming, and is indieated by a continuous squeal that appears when the gain is advanced with the e.w. beat oscillator on. It ean result from defeets in i.f.-amplifier circuits similar to those above. Inadequate rathode by-pass capacitance is a common cause of such oscillation. An additional by-pas: condensel of 0.1 to $0.25^{\circ} \mu \mathrm{fd}$. often will remedy the trouble. Similar treatment can be applied to the sereen-grid and plate by-pass filters of i.i. stages.

Instability

"Birdies" or a mushy hiss oceurring with thuing of the high-frequency oscillator may indicate that the oscillator is "squegging" or oscillating simultaneously at high and low frequencies. This may be cansed by a defective tube, too-high oscillator plate or screen-grid voltage, excessive feed-back, or too-high gridleak resistance.

I varying heat note in c.w. reception indirates instability in either the h.f, oscillator or beat oscillator, usually the former. The stabilit y of the beat uscillator can be checked by introducing a signal of intermediate frequeney (from a test oscillator) into the i.f. amplifier; if the beat note is unstable, the trouble is in the beat oscillator. Poor connections or defective parts are the likely cause. Instability in the high-frequency oscillator may be the result. of poor circuit design, loose connections, defective tubes or circuit components, or poor voltage regulation in the oscillator plate- and ${ }^{\text {a }}$ or sereen-supply circuits. Mixer pulling of the oscillator circuit also will cause the heat note to "chirp" on strong e,w, signals because the cacillator load chatuges slightly.

In 'phone reception with a.v.e., a peeuliar type of instability (" motorboating") may appear if the h.f.-oseilator frequeney is sensitive to changes in plate voltage. As the a.v.e. voltager rises the electrode currents of the controlled tubes decrease, decrasing the load on the power supply and causing its output voltage to rise. Since this increases the voltage applied to the oscillator, its frequency changes correspondingly, throwing the signal off the peak of the i.f. resomance curve and reducing the a.v.e. voltage, thus tending to restore the original conditions. The process then repeats itself, at a rate determined by the signal strength and the time constant of the power-supply cireuits. This effect is most pronounced with high i.f. selectivity, as when a crystal filter is used, and can becured by making the oscillator relatively insensitive to voltage changes and by regulating the plate-voltage supply. The better receivers use Vh-type tubes to stabilize the oscillator voltage - a defective tube will cause trouble with oscillator instability.

A One-Tube Regenerative Receiver

The receiver shown in Figs. $5-27,5-28,5-29$ and 5 -30 represents close to the minimum requiremonts of a useful short-wave reodver, Under suitable conditions, it is rapable of roreiving signals from many foreign countries. It is an exeellent recoiver for the beginner, berause it is casy to build and the components are not expensive.
section strving as ath audio amplifier to the headphones. I variable antenna-coupling rondensur, (b, minimizes "dead spots" in the toning range that might be catued bey antemareswanterefferts. Two tuning eondensers are used. The band-sot condemiser, \mathbf{C}_{4}, tumes to the dosired frequency band, and the bandspread condenser, $\mathrm{f}_{2} / \mathrm{C}_{3}$, allows the operator to tune slowly through the band. The bandspread comdenser is a dual condenser made from a single midget variable, and on all of the amateur hands cx(eppt 3.5 Me. only the ('3 portion is rommeeled in the cireuit, The 3.n- Mr. coil inchudes a jumper that conmerts for that band. Rengeneration is comtrolled by varving the plate voltage on the deteretor with R_{A}.

The merhanical design is made as simple as persible. Work on the chassis and the front pand can be done with moly a No. 8 drill, at 1 -inch drill, and a round file. "There is no complieated motal work or bernding. "To reduce the panel size, the ktoob on the band-set comdenser overlaps the frietion-driven thaing dial.

The front patal is a 7×7-inch sheet of $1 / 16$-inch aluminum. It carriow the tuning controls, the regeneration adjustmont and the internat-coupling comberner shaft. The sides of the chassis atre suft wood strips, $7 \times 2 \times$. inches. The deek of the chassis is at 7×7-inch shent of $\frac{1}{4}$-inch Presdwood
From the cirenit in Fig. \mathbf{j}-29, it can be ston that the only tube in the reecerer is a 6 SN 7 twin trionde. One section is used as arm generative detector, the other trinde

Fig. 5-28 - Inother view of the one-tulue regenera. tive receiver show how the tube and coil somekets are mosunted. "Tho healphome tips plag inte the two small tip jacks on the rear panel - the set of font marhine serewa and muts is for connertingtor the pow er sulply.

Fig. 5-29 - Wiring diagram of the one-tule regenerative receiver.
C_{1}-I Ilomemade adjustable com. denser. Spe text.
$\mathrm{C}_{2}, \mathrm{C}_{3}$ - - Reworked midget variabl(Millen 21935). See text. $\mathrm{C}_{4}-100$ - μ fill. midget variable (Millen 20100). ($:=100 . \mu \mu \mathrm{fl}$. mica. (\therefore, $1 ; 7-471$ - $\mu \mu \mathrm{ft}$, mica C_{8} - $12-\mu \mathrm{fl}$. I . 0 -valt elertrolytio. (9-10-4fl. 2i-volt efertrolytie.
$1 h_{1}-1.5$ megohms, $1 / 2$ watt.
H_{2} - $0.1 .$, megohm, $1 / 2$ watt.
$\mathrm{R}_{3}-15100$ oluns, $1 / 2$ watt.
R_{4} - $\mathrm{Bll}, 000$-ohm wire-wound po. Intioneter.
$\mathrm{R}_{5}-33,000$ ohms, 1 watt.
HFC_{1} - 3.5 -mh. r.f. choke (National 100t).
l_{1} - Interstage andio transformer (Stimeor A-4?23).
prong eoil socket is on $7 / 8$-inch pillars. The grid leak, R_{1}, and grid eondenser, C_{5}, are located above the derk. The back panel is made of $1 / 4$-inch Presdwood and carries the binding posts. The binding posts are $3 / 4$-inch (i-32 machine serews with suitable nuts and washers, The chassis is assembled with $3 / 4$-inch No. 1 round-head wood serews. Cpon completion, the assembly is given a roat of flat black paint. The front panel is secured to the chassis side members with No. if round-head woot serews.

The bandspread condenser, C_{2} / C_{3}, is made by modifying a Millen 2193 variable eondenser. Itsing a hack-saw bade, the stator bats are carefully eut betwen the eighth and ninth
of sheet copper. One plate is secured to the underside of the deek on a tiepoint. The other plate is carried by a $1 / 4$-inch diameter polystyrene rod. IRotating the shafi swings the moving plate away from the fixed plate and provides a capacity of from 5 to lo.. than $1 \mu \mu \mathrm{fl}$. The polystyrene rod passe: through the front paneland out the back panel. It is secured at the back by a $3 / 4$-inch shaft collar. The panel end carries a tuning knob, and a rubber grommet under slight compression, placed between the knob and the panel, acts as a friction lock. The moving plate is secured to the polystyrone rod by a copperwire hairpin soldered to the plate and fixed into a pair of holes drilled in the rod. A flexible

Fig. 5.30 - This view ull. derneath the one-tuber re: genrrative receivershowsthe arrangement of parts and the construction of the variable antenna-coupling condenser.

All coils wound on Millen 4500 E 1 -inch diameter enil forms. Both L_{1} and L_{2} should be wound in the same direction, with L_{2} closer to the pins of the form. The grid end of l_{1} and the plate end of L_{2} should be on the outside ends of the emils.			
Range	\boldsymbol{L}_{1}	L_{2}	Sep. $\boldsymbol{L}-\boldsymbol{L}_{2}$
$\begin{aligned} & 2.8-6 \mathrm{Mc} . \\ & (80 \text { meters }) \end{aligned}$	25t. No. 20 cmam. chase-wound	4 t. No. 26 enam., elose-wound	8/8 inct
$\begin{aligned} & 5.8-13.5 \mathrm{Mc} . \\ & (40 \text { meters }) \end{aligned}$	1312 t. No. $3=$ mimm, spaced to occupy 5/6inch	114. No. 26 enam., close-wound	${ }^{1} 18$ inch
13.6-30 Mc. (의) and 14 meters)	51 it. No. 22 2 enam., spaced to occupy 5/8inch	13/4t. No. $\because 6$ cnam., close-wound	3/8inct
$\begin{aligned} & 24.3-10 . \mathrm{Mc} . \\ & (10 \text { and } 11 \\ & \text { mineters) } \end{aligned}$	$11 / 2$ t. No. 24 entam. close-wound	13/6 t. No. 26 enam., close-wound	$516 \mathrm{inch}_{1}$

separation between strips is just enough ($1 \frac{1}{4}$ inches) to elear the tube socket and electrolytic condensers, and the leads from the transformer and choke also pass through this opening. Binding posts are made in the same manner as on the receiver, with No. 6 machine screws and suitable nuts and washers.

Although it is satisfactory to mount the power supply on the same table with the reariver, it should be at least one or two feet away, to avoid the possibility of a.c. hum piek-up. For the same reason, the antenna lad should not pass too elose to any a.e. wiring from or to the power supply.

Csing the parts listed in Fig. 5-32 should result in a power supply that gives about 180 volts when connected to the receiver. However, if the $6 S N 7$ in the recoiver appears to run too hot (as tested by touching the tube after the recoiver has beon rumning for \boldsymbol{j} or 10 minutes). the output voltage can be reduced by inereasing the resistance at R_{1} (Fig. ã-32). Adding
lead is soldered to the protruding wire, and the lead passes out through a hole in the side of the chassis to make conneetion to the antemma. Finots in this wire, on either side of the chassis wall, secure the wire firmly in place. The fixed plate is covered with a single layer of cellophane seoteh Tape, to prevent a shor-cirenit when the condenser is positioned at maximum capacity.

All wiring is No. 14 timned copper. Direet lads from the condensers to the roil socket add to the strengt hand rigidity of the receiver. 'The r.f. choke $R F C_{1}$, by-pass condensers, and the andio transformer all are fastened to the underside of the dect.

The power supply for the recoiver, shown in Figs. 5 -31 and 5-32, is simple to assemble because it is built on a wooden chassis. 'l'wo strips of $112 \times$ $3 / 4$-inch wood, 12 inches long, are nailed to two short end piecess. The

Fip. $5.3 I$ - The powar supply for the rigenerative receiver is built on a simple woodern chassis.

Fig. 5 -3: - Cireuit diagram of the power supply for the rcgenerative receiver.
$\mathrm{C}_{1}, \mathrm{C}_{2}-16 . \mu \mathrm{fd}$. 450 -volt electrolytic (Mallory RS.217).
$\mathrm{R}_{1}-20,000$-ohm 10 -watt wire wound.

$I_{1}-115$ - wolt line plug.
$\mathrm{T}_{1}-27.3-(0.25$ volts at 50 ma., 6.3 v , at 2.5 amp.a 5 v . at 2 amp, (Thordar=om $\left.{ }^{2} \because 2=2830\right)$.

5000 or 10,000 ohms in series with R_{1} should do the trick. Or it may be possible to borrow a voltmeter for measuring the output voltage.

The tuning procedure for a regenerative receiver is given carlier in this chapter. Even a short piece of wire hung inside the operating room will serve as an antenna, but for best results an antema from 30 to 75 feet long, strung as high as possible, should be used.

In buying headphones for use with this receiver, one should avoid the "low-impedance" headphones offered in matny of the surplas outlets. While these headsets are excellent when used in the proper circuits, this simple receiver requires the use of "high-impedance" headphones for maximum signal output. (iood, inexpensive headphones of this type man be foum in any radionstore.

An Amateur-Band Eight-Tube Superheterodyne

An advanced type of amateur receiver incorporating one r.f. amplifier stage, variable i.f. selectivity and andio moise limiting is shown in Figs. $\overline{5}-33$, i-3 3 and a-36. As (ant be seen from the circuit in Fig. $\mathrm{j}-34$, a 6 sci7 pentode is used for the tuned r.f. stage ahead of the 6 K 8 converter. An antenna rompensator, (${ }_{4}$, controlled from the panel, allows one to trim up the r .f. stage when using different :utemas that might modify the tracking. The rathode bias resistor of the r.f. stage is made as low as possible consistent with the tube ratings, to keep the gain and hence the signal-ton-mise ratio of the stage high. The oscillator portion of the 6 K 8 mixer is tuned to the highfrequency side of the signal except on the 28 Me. band, the usual custom nowadays in eommunications receivers. The oscillator tuning rondenser, C_{17}, is of higher capancity than the r.f. and mixer toming condensers, in the interest of better ascillator stability.

The i.f amphifier is tuned to tis) ke. and the first stage is made regenerative by soldering a short length of wire to the plate terminal of the sorket and rumning it near the grid terminal, as imdicated by Co, in the diagram. Regeneration is controlled by reducing the gain of the tube. and h_{12}, a variable eathode-bias control. serves this function. The sereond i.f. stage uses a 6K7. selected berause high gain is not neeressalry at this point.

Manual gain-control voltage is applied to the r.f. and second i.f. stages. It is not applied to the mixer because it might pull the oseillator frequeney, and it is not tied in with the first i.f. amplitier because it would interlock with the regendation control used for controlling the selectivity. Howner, the a.ver. voltage is applied to the r.f. and both i.f. stares, with the result that the selectivity of the regenerative
stage decreases with houd signals and gives at measure of automatia selectivity control. Cimg a megative-voltage power supply for the manal gain control is more expensive than the familiar eathode control. but it allows a wide range of eontrol with less dissipation in the components. The a.v.e. is of the delayedtype. the a.v.e. dode being biased about $11 / 2$ volts by the cathode resistor of the diode-triode de-tector-audiostage.

The second-detector-and-first-atudio is the usual diode-triode combination and uses a 6SO67. A 1 N 34 errstal diode is used as a noise limiter, and is left in the erreuit all of the time. As is common with this type of circuit, it has little or morffect when the b.f.o. is on, but it is of considerable help to "phone reception on the batuls where automobile ignition is a fantor. The constructor ean satisfy himself on its operation when first building the reeciver and working on it out of the case. By leaving one end of the 1 N 34 floating and tondling it to the propre point in the cirenit. a marked drop in ignition noise will be noted.

The b.foo. is capacity-coupled to the detector by soldering one emb of an insulated wire to the a.vere diode plate and wrapping several turns of the wire around the b.f.o. grid lead. This caparity is designated $C_{\text {cog }}$ in the dingram. The wire was eommerted to the a.v.e. diode pate lead only for wiring convenione - the a, i.e. eouphing comdenser, ("32, passing the b.for. voltage without introducing apprectable attemation.

Headphome output is obtained from the pate cireuit of the 6 E(27 at J_{1}, and fordspeaker output is awalable from the fiF6 andio-amplifier stage. Ligh-impedanere or orystal headphones arte recommended for maximum headphone wutput.

Fis. 5-3.3 - In amateurbathl aight-tule receiver. 'I'he knohs on the le fi folltred andio wothme (aploer) and h.f.e. pitult.and the (wo on the riyht hamile. r.f. amil i.f. maill (uprer) amil i.f, remoneration. The knob to the liff of the large lmang homb is fio. temed to tha MIN.1.1. (A-B.F.0) switeh and the owe ont the right is for the antembatrimer. I'he togylo switeh utter the dial throws hifh the gative hits on ther r.f. staze olurink (ransmission perionds.

Fig. 5.35-This view of the cight-tube receiver chassis shows the mounting of the tuming condensers and the placement of most of the large componuts. The three shielded plug.in eoil a-...mblides can be sern to the left of the tuming gang. The 6K8 converter is the tube on the left nearest the panel.
The antenna terminal strip, power-supply plus, headphone jack and 'ipeaker terminals are mounted on the rear (foreground in this view) of the chassis.

Construction

The receiver is built on an aluminum chassis mounted in a Par-Metal CA-202 cabinet, and a Millen 10035 dial is used for tuning. The chassis is made of $1 / 16$-inch-thick stock, bent into a " U "-channel, and measures 13 inches wide and $71 / 4$ inches deep on the top. It is $33 / 8$ incher deep at the rear and $1 / 8$ inch less at the front. The rear edge is reinforeed with a piece of $3 / 8$-inch square dural rod that is tapped for serews through the bottom of the cabinet, further to add to the strenglh of the structure when finally assembled. The various components: that are common to the front lip of the ehassis and the panel are used to tie the two together.

The shield panel used to mount the antemarompensator condenser is atso made of $1 / 16$-inch aluminum with a $5 / 8$-inch lip on the side for mounting. Part of the lip must be cut away to elear wires aud mounting plates on some sockets, so it is advisable to put in the panel after most of the assembly and wiring have been completed. Flexible couplings and batselite rod couple the condenser to the panel bushing

The three tuning condensers are mounted on individual brackets of $1 / 16$-inch aluminum. The brackets measure $21 / 2$ inches wide and $19 / 16$ high, with $1 / 2$-inch lips. I cover of thin aluminum not shown in the photographs - slides over the condenser assembly to dress up the top view a bit. The dust cover is not necessary for satisfactory operation of the receiver.

Ceramic sockets are used for the plug-in coils and for the r.f. amplifier, converter and b.f.o. tubes. Mica condensers were used throughout the receiver for by-passing wherever feasible, because they lend themselves well to compact construction. Paper condensers could be used in the i.f. amplifier but they would crowd things a bit more.

In wiring the receliver, small tie-points were used wherever necessary to support the odd ends of resistors and condensers, and rubber grommets were used wherever wires run through the chassis, with the exception of the tuning-condenser leads, The latter leads, being of $\mathcal{N o}, 14$ wire, are self-supporting through the $5 / 16$-inch clearance holes and do not require grommets. The same heavy wire was used for the grid and plate leads of the r.f. stage and the plate lead of the oscillator, to reduce the inductance in these leads. The tuning condensers are grounded back at the coil sockets and not above the chassis as might be the tendency. Sereen, cathode and plate by-pass condensers are grounded at a single point for any tube wherever possible, alt hough (' 2 is grounded at the r.f.-coil sorket, C's is grounded at the converter-coil socket, and C_{13} is returned at the oscillator-coil socket. The plate and B+leads from T_{t} are brought back to the converter socket through shield braid, and C_{21} is returned to ground at the converter socket.

The b.f.o. pitch eondenser, C_{38}, is insulated from the chassis and panel by fiber washers, and the rotor is connected back to the tube socket by braid that shields the stator lead. This is clone to reduce radiation from the b.f.o. which might get in at the front end of the i.f. amplifier.

The coils are wound on Millen 74001 per-meability-tuned coil forms, according to the coil table. Series condensers are mounted inside the forms on all bands except the 80 -meter range, where no condenser is roquired and the tuning condenser is jumped directly to the grid end of the coils. In building the coils, the washers are first drilled for the leads and then cemented to the form with Duco or other cement. The bottom washer is cemented close to the terminal pins, leaving just enough room
to get the soldering iron in to fasten the eoil ends and to leave room for the series condenser. The large coils, L_{2}, L_{4} and L_{6}, were wound first in every case, and then a layer of polystyrene Scotch Tape wrapped over the coil. after which the smaller winding was put on and the ends of the windings soldered in place. Since for maximum range of adjustment it is desirable to allow the powdered-iron slug to be fully withdrawn from the coil, keeping the coils at the base end of the form allows the iron slug to travel out at the other end, under which condition the adjusting serew on the slug projects the least. To secure the wires after winding, drops of cement should be placel on them where they feed through the polystyrne washers.

Alignment

If a signal generator is available, it can be used to align the i.f. amplifier on 45 ke. in the usual manner. If one is not available, the coupling at $C_{C 1}$ can be increased to the point where the i.f. stage oscillates readily and the b.f.o, transformer is then tuned until a beat note is heard. The other transformers can then be aligned until the signal is loudest, after which ('cl should be decreased until the i.f. oscillates with the regeneration control, R_{12}. about 5 degrees from maximum. The trimmers on T_{1} then should be tuned to require maximum advancing of the regeneration control for oscillation, with a set value of ("C1. When properly tuned, the oscillation frequency of the i.f. stage and the frequency for maximum gain in the regenerative condition will be the same.

With a set of coils in the front end, set the tuning dial near the high-frequency end and tune in a strong signal or marker with the adjustment serew on the oscillator coil. The converter and r.f. coils can then be peaked. with the antenna compensator set at about half
capacitance. Then tune to the other end of the band and see if you have enough bandspread. If the bandspread is inadequate, it means that C_{14} is too large, and it should be reduced by using a smaller size of condenser or a combination that gives slightly less capacitance. The tracking of the converter and r.f. coils can be checked by repeaking the position of the slugs in the coils at the low-frequency end. If the converter- or r.f.-coil tuning slugs have to be advanced farther into the coil (to increase the inductance) it indicates that C_{9} or C_{1} should be larger. Tracking by the method described is at best a compromise, although to all intents and purposes the loss from some slight misalignment is completely unimportant. Another method would be to tap the tuning condensers on the coil in the familiar bandspreading manner, but this requires considerable time and patience. However, with the series condensers as used in this receiver, the tuning curve is more crowded at the high-frequency end of a range than at the low, and this would be reduced somewhat by the tapped-coil bandspread.

COIL DATA FOR THE EIGHT-TUBE SUPERHETERODYNE

Coil	$3.5 M c$,	$7 M c$.	$14 M e$.	$28 M c$,
L_{1}	15 t.	9 t.	6 t.	4 t.
L_{2}, L_{4}	76 t.	33 t.	19 t.	8 t.
C_{1}, C_{8}	$3 h o r t$	$27 \mu \mu \mathrm{fd}$,	$15 \mu \mu \mathrm{fd}$.	$20 \mu \mu \mathrm{fd}$.
L_{3}	25 t.	11 t.	7 t.	4 t.
L_{5}	10 t.	8 t.	4 t.	2 t.
L_{6}	47 t.	32 t.	14 t.	6 t.
C_{14}	short	$42 \mu \mu \mathrm{fd}$.	$27 \mu \mu \mathrm{fd}$.	$51 \mu \mu \mathrm{fd}$.

All coils wound on Millen 74001 forms, closewound. $3.5-\mathrm{Mc}$. coils wound with No. 30 enam.; 7 Mc. coils wound with No. 30 d.s.c.; 14-and 28-Mc. coils wound with No. 30 d.s.c. on primaries and ticklers and No, 24 enam. on secondaries. C_{14} for $7-\lambda$ tc, range made by connecting 27 - and $[\bar{j}-\mu \mu \mathrm{fd}$. condensers in parallet, C_{1}, C_{9} and C_{14}, Frie Cerainicons, mounted in roil form.

Fig. 5 -36- The mica by-pass condensers nsed throughout the r.f. and i.f. stakes are uroupad aroumd the sockets of their re. spertive tubes. "!ie. points are used wherever neccssary to support smatl resistors and condensers. The antenna trimmer condenser is monnted on a bracket which also serves as shielding between the mixer- and r.f.-coil swekets, and it is offset to allow access to the trimmer screws on the coil forms. The plate and $13+$ leads from the first i.f, transformer. $T_{1, \text { are rum in shielded }}$ luraid, as are the leads from the b.f.o. pitch. coutrol condenser and the volume rantrol.

Fig. 5.37-Wiring diagram of power supply for the eight-tube receiver.
$\mathrm{C}_{1}, \mathrm{C}_{2}-16-\mu \mathrm{fd} .450$-volt electrolytic. $\mathrm{C}_{3}, \mathrm{C}_{4}-8-\mu \mathrm{fd}, 450$-volt electrolytic. $1 k_{1}-500$ ohms, 10 watts, wire-wound. $R_{2}-5000$ ohms, 10 watts, wire-wound. $R_{3}-0.1$ megohm. 1 watt, composition. I. -30 -henry 110 -ma. filter choke (Stancor C-1001).
' $\mathrm{I}_{1}-350-0-350$ volts, 90 ma.; 5 volts at 3 amp., 6.3 volts at 3.5 amp .

The adjust ment of L_{5} can be made. if dermed necessary, by lifting the cathode end of R_{i} and inserting a $0-1$ milliammeter. If the tiekler coil has the right number of turns, the current will be from 0.15 to 0.2 ma., and it won't change appreciably over the band. Although such a grid-current check is a fine point and not really necessary, it is a simple way to determine that the oseillator portion is working. since the cold ends of L_{5} and L_{6} are at the same end of the form - the plug end - and this necessitates winding the two coils in opposite directions.

Some trouble may be experienced with oscillation in the r.f. stage at 28 Mc. However, a grounding strap of spring brass, mounted under one of the screws holding the mixer-coil socket to ground the shied when the coil is plugged in, will normally clear up the trouble. Inadequate coupling to the antenna will also let the r.f. stage oscillate under some tuning conditions, and close coupling is highly recommended for stability in this stage and also for best signal response. A 10 -ohm resistor from L_{2} to the grid of the 6SG7 will also do the trick.

Fig. 5-38 - Power supply for the eight-tube receiver. 'I'wo rectifiers are required becanse a separate supply is ineorporated for gain eontrol purpoes. 'l'he filter choke and the negative-supply filter condensers are mounted under the rhassis. It the rear of the chaseis is the socket for the power cable.

It will be found that the over-all gain of the receiver is quite high on the lower-frequency hands, requiring that the r.f. gain be eut down to prevent overloading on strong signals. For c.w. receptlon, the regeneration control iss advaned to the point just below oscillation and the b.f.o. is detuned slightly to give the familiar single-signal effect. For' 'phone reception, S_{2} is switched to "A.V.C." and volumecontrol adjustments made with the audio control, R_{26}. If desired, the regeneration control can be advanced until the i,f, is oscillating weakly, and then a heterodyne will be ohtained on weak carricrs, making them easy to spot. Strong carriers will pull the i.f. out of oscillation because the developed a.v.c. voltage roduces the gain, and hence a simple form of automatic selectivity control is obtained. If it is considered desirable to reduce the i.f. gain when switched to the "A.V.C." position, the regeneration control can be used for this purpose. The "MAN", position permits manual gain-control operation with the b.f.o. off.

The switch S_{1} is used for receive-transmit and throws about 40 volts negative on the grid of the first r.f. stage, saving the first tube a little if the transmitter is pouring some power into the receiver.

Power Supply

A power supply suitable for the eight-tube recciver is shown in Figs. 5-37 and 5-38. An idea of the parts arrangement can be obtained from Fig. $5-38$, although there is nothing critical about this portion of the receiver. If one wants a neat-looking station with no loose power supplies in sight, the power supply can be built into one corner of the loudspeaker cabinet.

The filtering of the power supply is quite adequato and no trace of hum shonld be found in the completed receiver when used with this power supply. If any a.c. hum is noticed, it is being introduced in the audio section if it is still present with the r.f. gain control set at minimum. Probable soures of hum in the audio system are leads to C_{33}, R_{26}, C_{36} or J_{1} running too close to a "hot" (ungrounded) heater lead, and the correction is to remove these leads from the field of the heater wiring. If signals are modulated with a.c. hum, particularly at the higher frequencies, it is possible that the grid cireuit of the $6 \mathrm{~K}^{\circ} 8$ converter is picking up hum from a nearby heater lead.

A Simple Audio Noise Limiter

The limiter shown in Fig. 5 - 39 is plugged into the receiver headphone jack and the headphones are plugged into the limiter, with no work required on the receiver. The limiter will cut down serious noise on 'phone signals, and it will keep the strength of c.w. sigmals at a constant level. It will do moth to relieve the

Fig. 5.39 - A simple andio moime limiter for reducing operator fatigue caused by ignition noises, key elieks and static crashes.
operating fatigue caused by long hours of listening to static crashes, key clicks encoumtered on the air and with break-in operation, and the like.

The wiring diagram, Fig. 5-40, shows how two 1 N34 crystal diodes are individually biased by $11 / 2$-volt flashlight eolls. The crystals short circuit any audio signal that has an amplitude of more than 3 volts prak-to-peak. A 10,000-ohm potentiometer, R_{2}, allows the operator to control the output from the limiter to his houdphones and is usoful in establishing the optimum relationship botwen the re-
coiver volume-control setting and the headphone sigmal strength. A 6.116 t win diode can be substituted for the two crystals, but a heater supply will be required, and it is genarally more convenient to build the limiter as shown. No current is drawn from the two bias cells, and their useful life will be their shelf life.

The limiter can be built in a $4 \times 4 \times 2$-inch cabinet, as shown in lig. 5-41. The front panel carries the "on-off" switch, the hoadphone jack and the potentiometor. The 1×3 erystals:

R_{1} - 1.5, , (10n ohme, 1 watt.
H_{2} - 10,41011 -ahmp potentionater, wire-wound.
$\mathrm{B}_{1}, \mathrm{~B}_{2}$ - 1 L -wold flathlightrall.
J_{1} - Open-rircuit Jark.
P1 - Veadohone pluz.
st - S.p.s.t. togele switch.
are mounted on their own leads. Care must be taken while soldering to hold the leads of the ervstal diodes with long-nose pliers placed betwern the point being soldered and the body of the crystal. The pliers conduct away the heat that might otherwise damage the erystal.

The back pand carries the batteries. A wooden stirrup has contacts of folded copper braid that make contact to one end of the batteries, and a strip of Presdwood with similar contacts is used at the opposite end. The batterics are secured to the panel and the two strips under tension with rubber bands tied to hooks made from soldering lugs.

Fig. 5.41 - 'The andio noise limiter is Juilt on the two removable panels of a small matinet. The ins cella are held in place by rulber lands.

A Signal-Strength Indicator (S-Meter)

If your receiver has no built-in S-meter and you would like one for comparing signal strengths (and for help in aligning your receiver), the unit shown in Figs. 5-42 and 5-43 can be used. The wiring diagram, Fig. $5-44$, is an adaptation of Fig. $5-22 \mathrm{C}$, and uses a $0-1$ milliammeter as the indicator. A variable shunt, R_{1}, allows the meter sensitivity to be regulated to suit the particular receiver. and R_{4} is for setting the meter to zero with no signal. The meter can be connected in the plate eircuit of any amplifier controlled by the a.v.e. If possible and desirable, the meter and circuit can be built into the receiver.

It is customary to calibrate in terms of sunits up to about midscale, and then in "decihels above S9" over the upper half of the scale. Although there are no standards, current practice is to use about $6-\mathrm{db}$. steps in the s-scale, and a 100 -microvolt signal for " S 9 ."

Such a calibration requires an accurate r.f. signal generator, and relatively few amateurs have access to laboratory equipment of this type. Also, the scale will be accurate only on the radio frequency at which the calibration is made. On different bands - or even in different parts of the same band - the r.f. gain of the receiver will change and the calibration will not hold.

An S-meter is principally useful for making comparisons between signals on or near the same frequency. For this purpose it is entirely satisfactory to choose arbitrarily a signal that secms to you to be about the right strengt h

Fig. 5-42 - Front view of the signal-strength indieator. The $0-1$ milliammeter is mounted in a metal meter case. The zero-adjustment potentiometer, R_{4}, is momited below the top of the cabinet by means of a " L "-shaped bracket; the potentiometer shaft is slotted so that it can be adjusted with a serendriver. A new face, ealibrated in S-units, can be pasted to the ($\mathbf{1}-1$ ma. scale, or a calibration chart can be attarched to the cabinet.

Fig. 5-1.3-This rear view of the S-meter shows the meter shunt, R_{1}, and a tic-point strip monnted on a nutal strip attached to the rear side of the meter calinet. lesistors R_{2}, R_{3} and R_{5} are mounted on the tiepoint strip. A three-wire cable, running out of the case through a rubber grominet, connects the meter to the receiver.
to represent "S9," adjust the meter sensitivity to give a suitable reading on that signal, and then divide off the scale into equal intervals from zero to 9.

Alternatively, points can be taken by comparing with another receiver that does have a calibrated s-meter. The two receivers may be connected to the same antenna so that simultancous measurements can be made on incoming signals, provided their antenna input impedances are not widely different. Local signals should be used to avoid fading effects.

Fig. 5-4t - Wiring diagram of the signal-strength indicator.
R_{1} - 100 -ohur wire-wound potentiometer.
$\mathrm{K}_{2}-220$ ohms, $1 / 2$ watt.
R_{3} - 680 ohms, $1 / 2$ watt.
R_{4} - 1000 -ohm wire-wound potentioneter.
$\mathrm{K}_{5}-47,000$ ohms, 1 watt.
$11 \mathrm{~A}-0$ - 1 ma. d.e, meter.

A Peaked Audio Amplifier

The peaked audio amplifier shown in Figs. 5-45 and 5-47 uses only resistors and condensers to obtain a high degree of selectivity. The circuit, Fig. $5-46$, consists of an ordinary audio amplifier and a simple twin-" T " vesistance-capacitance bridge. The bridge has a null at the desired audio frequency, and the bridge is connected in a nega-tive-feed-back loop in the amplifier. As a result, the amplifier is highly degenerative at all frequencies except that at which the bridge circuit shows a mull. By controlling the amount of negative feed-back, varying degrees of selectivity ran be obtained.

The unit, minus its power supply, is housed in a $3 \times 4 \times 5$-inch standard steel box. To simplify construction, mose of the compoments are mounted on a piece of $4 \times 5 \times 1 / 16$ inch aluminum that replaces one of the removable panels of the box.

When completed and connected to a source of plate and heater power - the plate demand is about 20 mat at 250 volts - plug P_{1} into the receiver output jack and the headphones into J_{1}. Set the selectivity control, R_{8}, at maximum, i.e., with the arm farthest away from the grounded end. Tune in a stable c.w. signal and adjust C_{8} until the amplifier "rings" or indieates a tendency toward oscillation. Back off on R_{8} until you can tune through : peak on C_{8} without oscillation, and the audio amplifier is aljusted. In operation, the control

Fig. 5-45-A peaked audios anpplitier for increased c.w. selectivity. It is connected to the receiver at the theadphone jack, and the headphones plag into the moit. "The hoob controls the deprece of acelertivity.

Vig. .j-I: - $V 1$ iring diagram of the peaked andio amplitier.
C.1. (:10-0.01- fl . paper.

Cieq $\mathrm{C}_{3}-25-\mu \mathrm{fd}$. 25 -volt electrolytic.
(44-8-pfil. 150 -volt electrolytir.

(: 7 - $0.001-\mu \mathrm{fd}$. mica.
$12,-50,000$ ohms, 1 watt.
$R_{3 .} R_{4}-1200$ ohms.
$K_{5 .} R_{7}-0.22$ megohm.
$\mathrm{R}_{6}-0.1$ merohm.
$R_{s}-2.0-m h h^{2}$ ohm volume control.
$R_{9}-10,000$ ohms, 1 watt.
Resistors are $1 / 2$-watt composition unless sperified otherwise. J_{1} - Open-eircuit jack.
for R_{8} can be advanced or backed off to give the elesired amount of selectivity.

If the amplifier is used with a single-signal superheterodyne in which the crystal filter arrady contributes considerable selectivity, it is essential that the b.f.o. be adjusted to sive peak audio response from the receiver at the frequency for which the audio amplifior shows maximum gain.

Fig. 5.4. .-. Construction of the peaked andio amplitier is facilitated by wounting the parts on an aluniuum panel that replaces the normal panel of the eabinet. Two resistor boards, supported by square posts mounted ou the panel, are used to supprit mont of the small compo. nents. A Jones P-314-113 base-monunting plag on the rabinet is uad for comerting to the power supply.

A Bandswitching Preselector for 14 to $\mathbf{3 0}$ Mc.

The performanee of many receivers begins to drop off at 14 and 30 Mc. The signal-tonoise ratio is reduced, and trouble with r.f.image signals becomes apparent. The preselece tor shown in Figs, 5-48 and 5-50 can be added ahead of any receiver without making any changes within the receiver, and a self-contained power supply eliminates the problem of furnishing heater and plate power.

As can be seen from the wiring diagram, Fig. $5-49$ a 6 AK 5 r.f. pentode is used in the preselector. Both the grid and plate circuits are tuned, but the tuning condensers are ganged and only one control is reguired. The gain through the amplifier is controlled by changing the cathode voltage, through R_{3}. A selenium rectifier is used to supply plate power, and the heater power comes from a step-down transformer. The chassis is at r.f. ground but the d.c. circuit is isolated, to prevent shorteireuiting the a.c. line through external connections to the preselector.

A two-section ceramic switch selects either the 14 - to 21-Mc. or the 28-Mc. coil, or the antenna can be fed through divectly to the receiver iuput. When operating in an amateur band between 14 and 30 Na ., switching to the band not in use will attentate one's own signal sufficiently to permit direct monitoring, in most cases.

As shown in Fig, $5-48$, the ganged condensers are controlled from the front panel by a National MCN dial, and a small knob to the right of this dial is comected to the antemna trimmer, C_{4}, for peaking the tuning with various antennas. The a.c. line is controlled by S_{2}, a toggle switch mounted on the pancl.

The preselector is built on a $3 \times 5 \times 10-$ inch chassis, and at $6 \times(6$-inch plate of thin metal is used for a pancl. A $13 / 4 \times 3$-inch aluminum bracket mounted about $31 / 2$ inches behind the front panel supports the tuning
condenser, C_{5}, and the antenna trimmer, C_{4}. Millen 39005 flexible couplings are required to handle the offset shaft of C_{4}. Both C_{5} and C_{8} are mounted on the chassis with 6-32 screws, but the chassis should be scraped free of paint before installation, to insure good contact.

The shield partition between the two switch sections (Fig. 5-50) straddles the tube socket and shields the grid from the plate circuit. The switched ends of all coils are supported by their respective switch points, and the other ends are soldered to tie points mounted on the

COIL TABLE FOR THE PRESELECTOR
$L_{1} 5$ t. No. 24, 3/4-inch diameter ($\mathrm{B} \& W 3012$)
$L_{2} 5 \mathrm{t}$. No. 24, 1-inch diameter ($\mathrm{B} \& \mathrm{~W} 3016$)
$L_{3} 6$ t. No. 24, 3/4-inch diameter ($\mathrm{B} \& W 3012$)
$L_{4} \quad 7$ t. No. 20, 1-inch diameter (B \& W 3014)
$L_{5} 71 / 2$ t. No. 20, 3/4-inch diameter (B \& W 3010)
$L_{6} 3$ t. No. 24, 1-inch diameter ($\mathrm{B} \& \mathrm{~W} 3015$)
$L_{7} 11$ t. No. 24 d.c.c., close-wound, $1 / 2$-inch diameter
$L_{8} \quad 4$ t. No. 28 d.c.c., close-wound, 1/2-inch diameter
L_{7} and L_{8} are wound adjacent on a $1 / 2$-inch diameter polystyrene form (National PRD-2)

chassis. The mica trimmers, C_{9} and C_{10}, are supported on short lengths of stiff wire, and a hole in the side of the chassis is required to reach C_{10} with an aligning tool.

The power-supply components are mounted as near the rear of the chassis as possible. The selenium rectifier must be insulated from the chatsis.

Fig. 5-48-A bandswitehing preselector for 14 and 28 , Mc. A single $6: 1 \mathrm{~K} 5 \mathrm{ampl}$ ficr is used, and the power supply is included in the unit. The antenna-trimming condenser is mounted on the small uluminum partitiou.
 the handswitrhing preselfetor.
(.1, C2 -10 - $\mu \mathrm{ff}$. mica

(:4-15- $\mu \mu \mathrm{fd}$, midget variable (Villen 200) 5).

(9, $\mathrm{C}_{10}-3$ - to $30-\mu \mu \mathrm{fil}$, mira trimmer.
(C_{13}, $\mathrm{C}_{15}-\mathrm{O} .01$ - $\mu \mathrm{fd}$, paper, for) volts.
(it - I) aral 11 - $\mu \mathrm{fl}$. 150-volt electrolytic.
$\mathrm{R}_{1}-2 \overline{2}, 000$ wh:m:
$\mathrm{R}_{2}-330$ ohms.
$\mathrm{I}_{3}-5000-1 \mathrm{~h}_{3}$ wirr-wound protentionmeter.

The coils are mado from $B \mathbb{E} W$ " Miniduefors," as shown in the coil table, with the execption of one plate and coupling coil which are wound on a polystyrene form. The ground returns for the cathode and plate by-pass condensers are made to a common terminal, a soldering lug under one of the mounting screws for C_{8}.

When the wiring has been completed and chocked, the antenna is connected to J_{1} and a able from J_{2} is run to the receiver input. Tune the receiver to the $14-$ Me. band and set S_{1} to the proper point. Then turn the main tuning dial until the noise or signal increases to a maximum. This should occur with C_{5} and r_{8} set at close to maximum capacity. Then pak the noise by adjusting (" 10 and C $^{4} 4$.

The 28-Me. range is adjusted in the same
$1 \mathrm{R} .4-1.000$ shms.
$\mathrm{R}_{5}-18,0101$ ohms, -2 watts.

1,1-1, - Sere coil table.
$1.9-20$ henry 30 -maia. filter choke.
J_{1}, J_{2} - Coarvial-ablile jark (Joness.|tl|).
 Si_{2} - S.p, s.t, teghle,
Sh - 50 mat, arlenium rectifier.
' O_{1} - 6. 3 wolt transformer.

Wisy, with the exception that $r^{\prime \prime}$ is touched up. It may be found necessary to touch up f_{4} when different antemnas are used. The preselector may oscillate with no antenna connected, but with any type of wire or ferdline the operation of the amplifier should ordinarily be perfectly stable.

As shown, the preselector is intended for use with coaxial-line feed to the antematand to the recoiver. If a balanced two-wire line is used from the antenna, it is recommended that a suitable twowire connector be substituted for J_{1}. The grounded sides of L_{1} and L_{2} should be disconnected from ground and returned to one side of the connector. The out put connector can be left as shown, since at the lower frequencies the proper antenna comero tion isn't so imprortant.
rig. 5-50 - 1 view underneath the chassis of the bandswitching preselyetor. showing the shield partition between ewitch sections and the selenium rectifier and associated filter.

An Antenna-Coupling Unit for Receiving

It will often be found advantageons on the 14- and 28-Mc, bands to tune (or mateh) the receiving-antenna feedline to the receiver, in order to get the most out of the antenna. One way to do this is to use, in reverse, any of the line-coupling devices advocated for use with a transmitter. Naturally the component: can be small, beramse the power involved is negligi-

Fig. $\overline{3} . \boldsymbol{3} /$ - 1 compart mophing network for matehing a balanced line to the reveiver on 14 and 28 Me.
ble, and small roeriving condensers and coils are quite satisfactory. Some provision for adjustable coupling is recommended, as in the transmitting case, because the signal-to-noise ratio at 14 and 28 . Mc. is depentent, to a latge extent, on the degree of coupling to the antenna system. The tuning unit can be built on a small chassis located near the recoiber, or it can be mounted on the wall and a piere of $\mathrm{R}(\mathrm{i}-59 / \mathrm{U}$ run from the mit to the receiver input, in the mamer of a link line in transmitting practice. For ease in changing bands, the coils can be switehed or phagerd into a suitable soeket. . Wjustahle coupling not only ofters an opportunity to adjust for best simal-to-moise ratio, but the coupling can be decreased whon a strong loeal signal is on the air, fo diminate

Fig. 5.52 - Circuit diagram of the coupling unit. $\mathrm{C}_{\mathrm{t}}, \mathrm{C}_{2}-100 . \mu \mu \mathrm{fd}$. midget variable (Millen 22100). $\mathrm{L}_{1}, \mathrm{~L}_{2}-30$ turns No . 21 l.c.c. close-wound on $1 / 2 \cdot$.inch diameter pulystyrene form, tapped at $21 / 2,61 / 2$ and 11 参 turns.
 awitely (Vallors 1736).
"Hocking" and cross-modulation effects in the receiver.

One convenient type of antenna-coupling unit for receivers uses the faniliar pi-section filter circuit, and can be used to mateh a wide range of antenna impedances. The dagram of a compart unit of this type is shown in Pig. 5 -52. Throush proper selection of condensers and inductances, a match can be obtained over a wide rangre of values. The dovice can be placed close to the ruceiver and left counected all of the time, since it will have litthe or mo effert on the lower treduencios. I
 iont for connereting the antenna eobiplar to the renoiver.

The antema coupher is huilt is a $3 \times+\times$ inch metal cabinct. . ll of the componentsexept the two pairs of terminals atre monnter on Ghe panel. The condensers are mounted olf the pated he the sparem furmithed with the momdonsers. and a clearanee hole for the shatit prevents any short-cirenit to the panel. The roils, wound on National l'lRD-2 polystyrome forms, are fastened to the pand with brassorews. and the coils should be wound on the forms as far away as posible from the mounting end. If this still laves the coil ends within $1 / 2$ inch of the panel, the forms should be spaced away from the panel by National XP-6 buttons. The switch should be wired so that the -witching sequence puts in, in each coil, 0

 The two roild can be seen direrelly below the two thank condernaer.
turns, 212 (ums, $61 / 2$ turus, $111 / 2$ turns and 30 turns. All of the wiring, with the exception of the leads to the input and output terminals, can be done with the panel removed from the how.

The unit is adjusted for maximum signal by: switching to different coil positions and adjusting C_{1} and C_{2}. It will not be necessary to ret rim the condensers except when going from one end of a band to the other, and when the unit is not in use, as on 7 and 3.5 Me., the coils should be switched out of the circuit and the condensets set at minimum. The small raparity remaining has a beragibla effart.

Receiver Matching to Coaxial Line

While some of the war-surplus receivers arn dexigned to work from a low-impedance antema, most of the popular communications receivers are designed for an impedance of from 300 to 500 ohms. When using coavial-line feed from an antema, as is not ratro on 14 and 28 Mr., maximum signal transior from line to receiver is not obtained unlews some type of matehing network is used. The pi-section colupler ran le used, by shorteercuiting the inductather in one leg and emnere ting this side of the roupler to the outer comductor of the cable and to the ground connection on the reecever. However, in mat ching betwen two unbalaneed mesistive loads of this type, another atme whighty simpler circuit can be used. It is called atl "L" suction.

Fin. 5-5t - W iring diagram of the "I."-serion mateh ing net work.
 (:2- 100$)_{-\mu \mu \mathrm{fd}}$ mica.
($3 ;-1 \cdot \mu \mu \mathrm{fl}$, mica.
I.1 - 1" turns, spaced to orrupy ós inch.
I.2-7 turns, spaced to occupy $\overline{3}$ is inch. L_{1} and L_{2} wound with Jo. 18 d.s.e. on National MR-50) ($1 / 2$-inch diameter) iron slug-tuned forms.
$s_{1}-2$-pole 3 -position rotary wafer switch.
An " 1 "-section matching coupler for 14 and 28 Me. is shown in Fig. 5-55. .Ill of the eomponents are mounted on a switch, and the unit is intended to be mounted on the antemna and ground post of the reeceiver. As man be sern from the wiring diagram in fig. s-ot.

Fig. 5-56 - The "l" "-suretion coupler monnted on the antenna and ground blinding posts of a communicationreceiver.
provision is included for straight-through oporation botween feed line and receiver on the ot her frequencies.

The values of the eomponents are not eritiral, but provision is incladed for adjusting both the inductanere and the capacity, to accommodate minor variations in recerver impedances. If operation is limited to one band, or if differcont reereivers or converters are used on the various bands, the coil and eondenser can be mounted right at the receiver terminals without the switeh. Is shown, the unit is intended for use following an antenna change-ovor relay: and it is assumed that the different anlennas are changed at the rolay. However, if a relay is not used, the different feed lines can be brought directly to the unit and soldered to the antenna sibles of L_{1} and L_{2}.

The units ran bo adjusted on a local signal that is not fading, hy adjusting the inductance and 'aparity for maximum signal, as indicatorl by 1 he semeter. It is not be to expereted that the adjustment will he critical, but the gain ohtained by proper mat.ching will be observed ly switehing to the straight-through condition, and comparing the difference. The improvemont will be only slight if the initial mismatch was small, but an improvoment of several db, can be expected in any case.

Fig. $\mathbf{3}-5 . \overline{5}-\mathrm{An}$ " J "-section matching net work for coupling the receiver to coaxial line. It is drsigned for use between 50 or $75 \cdot 0 \mathrm{hm}$ line inl a receiver of 300 to 100 ohms imput impedance.

Receiver Matching to Tuned Lines

The pi-section coupler shown in Figs. 5-51, $5-52$ and $5-53$ can be used in many instances for matching a balanced open-wire line to the receiver, and it can be used with an unbalanced line by short-circuiting the inductance in the grounded side of the unbalanced line. However, there are many applications where a nother type of coupler is slightly more advantageous, as when an all-band antenna system with tuned feeders is used, or where a wide range of line impedances may be en-

Fig. 5-57 - A small tuned coupler for matching the receiver to a tuned line. The unit is made cither seriesor parallel-tuned by the position of the antenna connection block.
countered. This other type of coupler, shown in Figs. 5-57, 5-58 and 5-59, is simply a scaleddown transmitter coupler, with provision for either series or parallel tuning. The change from series to parallel tuning is made simply by the manner in which the antenna connection plate is plugged into the unit.

As can be seen in the wiring diagram, Fig. $5-58$, when the antenna connection plate is plugged in so that all four contacts are engaged, the two condensers are connected across the coil in series, to give parallel tuning. When the plate is dropped down, so that only the antenna plugs engage at A and B, the unit is connected for series tuning. Small low-power transmitting coils with swinging links are used.

The unit is built in a $4 \times 4 \times 2$-inch box, with the coil socket mounted on one 2×4 inch side. One of the 4×4-inch side plates is replaced by a sheet of polystyrene or other insulating material, on which are mounted four banana jacks. A similar but smaller piece of insulating material is drilled at the same time

Fig. 5.58-Circuit of the tuncd antenna coupler. $\mathrm{C}_{1}, \mathrm{C}_{2}-100-\mu \mu \mathrm{fd}$. midget variable (Millen 22100). 1.1-Coil to tune to band in use, with swinging link (National AR-16).
to take four banana plugs. A pair of clearance holes must be added to the larger plate to clear two of the plugs when the series connection is used.

The two condensers are mounted in the box and ganged with an insulated shaft coupling. The remaining 4×4-inch side plate is drilled and filed to form an oval hole that will pass the 300 -ohm line from the coupler to the receiver. A rubber grommet should be fitted in the hole to protect the line from the metal and to provide a little clearance.

In operation, the coupler is used in exactly the same way that one is used with a transmitter. Some experimenting is necessary to determine whether series or parallel tuning should be used on the various bands, and it may be necessary to use the coil from the next lower-frequency band if series tuning is indicated, or to remove a few turus from a coil if parallel tuning is required. In any event, the tuner should tune fairly sharply and give a definite "peak" to the incoming signals. When this condition has been found on any one band, the coupling can then be adjusted for maximum response to the signals, by adjusting the position of the link winding within L_{1}.

Fig. 5-5y - Another view of the tuned antenna coupler.

A One-Tube Converter for 10 and 11 Meters

The 10- and 11-meter converter shown in Figs. 5-60 and $\mathbf{5}-62$ is a simple unit that can be built in a few hours, for a cost of less than ten dollars. The converter uses a fixed-frequency oscillator and tunable input and output circuits. The fixed oscillator frequency is selected to take advantage of the calibration and bandspread offered by the communications receiver into which the converter works. Because of the light current consumption - 10 to 12 ma. it is usually possible to operate the converter from the receiver power supply.

The circuit diagram, Fig. 5 -61, shows that a Type 6BE6 miniature pentagrid-converter tulse is used. The tuning range of the oscillator allows the oscillator to be set 4 to 6 Mc . helow the frequency of the signal (input) circuit, and the receiver into which the converter works must be able to cover the range $4-6 \mathrm{Mc}$.

A Hartley circuit is used in the oscillator portion of the 6BE6. Coil L_{3} is connected in parallel with condensers C_{2} and C_{4}, and the frequency of the oscillator is determined by the values of these three components. The frequency of the oscillator must remain fixed after the converter has once been adjusted, and, as a result, stability is an important requirement. This condition is obtained by using a high- C tank circuit, with the $100-\mu \mu \mathrm{fd}$. condenser, C_{4}, providing the major portion of the capacity. The variable condenser, C_{2}, is used as a vernier control for selection of a spot-frequency within the oscillator-frequency range. Feed-back control for the oscillator is obtained by moving the GBE6 cathode tap on

Fig. $5.60-\mathrm{A}$ front view of the ten-meter converter. The components and controls on the front wall of the case, from left to right, are as follows: top row, r.f. tuning control, oseillator tuning knob, and i,f.-circuit control: botton row, dial-light assembly, antenna change. over switeh, and flament switeh.
L_{3}. Bias voltage for the oscillator is developed across resistor R_{1}, and C_{6} is the grid-blocking condenser. Condenser C_{6} keeps the sereen grid at ground r.f. potential, and the dropping resistor, R_{2}, reduces the receiver supply voltage to 100 volts - the value recommended for the 613 l 6 screen grid. The exact value for this resistor cannot be suggested at this time because the receiver supply voltage must be known before the resistance can be calculated. However, the resistor will carry about 7 ma., and it will probably have a resistance somewhere between 10,000 and 22,000 ohms.

The input circuit consists of coils L_{1} and L_{2} and condenser C_{1}. The antenna coil, L_{1}, is center-tapped to allow changing from the doublet to a single-wire type of antenna without the necessity for grounding one of the input terminals.

The output circuit uses a parallel tank circuit, $C_{3} L_{4}$, an output link, L_{5}, and a decoupling network formed by condenser C_{7} and resistor R_{3}.

Antenna change-over and stand-by switehing is done with the selector switch, $S_{\text {iA- }}$ b-c-d. When set at one of the two positions, sections A and B will connect the antenna to the converter input coil while section C will connect the output link, L_{5}, to the out put jack, J_{1}. At the same time, section D will complete the high-voltage connection between the input jack, J_{2}, and the plate and screen circuits. When the selector switch is thrown to the second position the antenna will be connected to the receiver and plate and screen voltage will be removed from the 613E6. This action of disconnecting the antenna and high voltage during transmission periods prevents converter-tube overload and damage to the input coils that might be caused by the strong transmitter signal. A toggle switch, S_{2}, is used as the heater on-off control.

Construction

A utility box, measuring $3 \times 4 \times 5$ inches, serves as the chassis and cabinet for the converter. The variable condensers, switches, pilot-light assembly and jacks should be mounted on the front and rear walls as shown in Fig. 5-62. The condensers are mounted in line on the front wall, with the shafts centered exactly 1 inch down from the top of the box. The pilot-light assembly and switches are mounted below the condensers and, in each case, are centered $11 / 16$ inch above the bottom edge of the case.

The tube socket is mounted on the top cover of the utility box and is located $15 / 8$ inches from the front edge. Holes to pass the coil-form mounting screws are drilled on either side of the tube socket; these holes are $7 / 8$ inch in from the
ends of the cover. A tie-point strip is mounted to the rear and right of the tube socket.

Wiring of the unit will be greatly simplified if the wiring is divided into two jobs. The first half includes the wiring associated with the parts mounted on the case walls. This includes the jumper connections on the selortor switeh and the connections between this switeh and the input and output jacks and terminals. Amphenol 300 -ohm Twin-Lead is used between the antemma terminals and switeh sections A and B but ordinary hookup wire, twisted to form a low-impedance line, can be used. The lead from the switeh to the output jack should be placed up, against the rolled-over edge of the box, to obtain as much shielding as possible. The pilot light and toggle switch can be wired at this time, and a 6 -inch lead should be left hanging from the switch side of the pilot light so that the tube filament circuit ean be completed when the unit is assembled. The plate by-pass condenser, C_{7}, can be connected between the rotor terminals of the i.f. and oscillator condensers, and the decoupling resistor, R_{3}, can be mounted between C_{3} and section 1$)$ of the selector switch.

The input and output coils should now be wound on the forms suggested in the parts list. Holes, separated by the recommended distance, are drilled straight through the forms, and the ends of the windings are pulled through these holes and cemented in place. The antenna coil is wound directly below the grounded end of the grid coil, L_{2}. and the output link is wound over the cold end of L_{4}. It will not be possible to pass the top end of the output link, L_{5}, through a hole because L_{4} is directly below this winding and, as a result, the free end of the link should be held in place with Scotch Tape or cement until the coil is mounted and wired. The oseillator coil, L_{3}, can be wound on a dowel or tube of $5 / 8$-inch diameter ; the coil will expand to a $3 / 1$-inch diameter when it has been slipped off the form.

The tube socket, tie-point strip and coils arc now mounted in place on the box cover. Soldering lugs are placed unter each of the tubesocket mounting nuts. The oscillator coil is soldered between one of the lugs and one of the tie-point terminals. Contenser C_{4} is connected across the ends of L_{3}, and the grid resistor, grid-blocking condenser and sereen by-pass are wired into the circuit. If the receiver supply voltage is known at this time it is possible to calculate the correct value for the screen-dropping resistor, and the resistor can be mounted on the tie-point strip. The resistor value is obtained from the equation

$$
R(\mathrm{ohms})=\frac{\text { supply voltage }-100}{0.0073}
$$

Example: Supply voltage 250; the resistor value is $\frac{250-100}{0.0073}=20,500$ ohms. Anybhing within 10% of this figure would be satisfatiory.

fir. 5-61-Cirenit diagram of the low-cost ten-meter converter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-15-\mu \mu \mathrm{fd}$. variable (Millen 20015).
(3 - $75-\mu \mu \mathrm{fi}$. varialle (Millen 20075).
CiA - $100-\mu \mu \mathrm{fd}$, silver mic:a,
(: $-17-\mu \mu \mathrm{fd}$, mica.
Cis, (:
$R_{1}-2,0000$ ohme, $1 / 2$ watt.
R_{2} - Sereen resistor: see text.
$\mathrm{R}_{3}-1,000$ olmms, 1 watt.
L.1 - 5 turns No, 22 d.e.o', 9 in-inch diamı, close-wound and renter-tapped.
$1.2-13$ turns No. 22 d.c.e. 96 -inch diam., $7 / 8$ ineh long.
$13-6$ turns No. 14 tinned, $3 / 4$-ineh diam., $3 / 4$ inch long. Cathode tap $13 / 4$ turns from cold end.
$L_{4}-78$ turns No. 32 d.ce.c., 9 得-inch diam., $11 / 4$ inclulong.
Is- 10 turns No. 32 d.e.c., elose-wound.
 PRE:-3 forms.
I_{1} - 6.3-volt pilot-laitu-and-sochet assembly.
J_{1} - Panel-mounting female sochet (Jones S-101).
J_{2} - Panel-monnting male socket (Amphenol 86-CP4).
$\mathrm{S}_{1 \mathrm{~A}} \mathrm{~B} \cdot \mathrm{C}-\mathrm{D}-4$-pule donhle-throw silector switeh (Vil). lory 32 12J).
s_{2} - S.p.s.i. toggle switch.
An 8-inch lead should be connected to the high-voltage end of the screen-resistor mounting terminal; the free end of this lead will be comnected to the selector switch during the final stage of the wiring. The grounded ents of L_{2} and L_{5}, and the center-tap of L_{1}, are eonnected to the grounded soldering lugs, and 2-inch tinned wire leads are comnected to the following points: one to each soldering ligg and one each to Pins 5 and 7 of the tube socket. A commection is now made between the cathode prong of the tube socket and the tap on coii L_{3}, and a connection is made between the screen dropping-resistor, R_{2}, and the screenarid pin (50.6) of the socket.

The top cover is now attached to the cascand the wiring completed. Few connections remain to be made and, in each case, wires are already provided and soldered in place at one cond. After the wiring has been completed it should be given a final check before the testing is started, paying special attention to the heater and plate eircuits. Fxtreme care musi be taken while soldering leads that terminate at the ends of L_{1}, L_{2}, L_{4} and L_{5}. These coils are wound on polystyrene forms which melt and lose shape if subjected to intense heat for any length of time.

Testing

Adjustment of the converter is convenient if a test oscillator is a vailable, but it is not necessary. Power for the unit ean be obtained from the receiver with which the converter is to be used, or from a separate power supply. The ronverter requires 6.3 volts at $0.4 \overline{0}$ ampere for the heater amel pilat lamp, and 200 to 250 volts If.e. at 10 to le ma, to supply the plate and screon power.

After the power supply has been connerted, it is alvisable to cherk the someen and pate voltages with a voltmeter. It may be necessary (1) rhange the screen-dropping resistor, R_{2}, if the voltage at Pin 6 isn't in the recommended range of 90 to 110 .

A coaxial or shieded catble should be connerted from the converter output jack to the reeciver input torminals. The able must be thicleded to avoid the pick-up of unwanted signals. If your transmitter uses 1 POO, set it to 28 Me, and your rereiver to 4 Mc . If you don't have VFO but use crystal control, set the rereiver to your erystal frequeney minus 24 Me . li, for example, your erystal gives a harmonie at $28,(0,0) \mathrm{ke}$., set the receiver to 4650 kc . The converter osillator condeniser, ("2, should now be adjusted until the VFO or erystal harmonic ran be heard. If the harmonic ean't be heard, run a wire from the antemnat posts of the converter close to the transmitter oseillator. If the signal from the tranmitter oseillator is too loud, reduce the length of the wire or remove it entirely. When the signal is reasonably weak in the converter, the input and output tuning eapacitors, C_{1} and C_{3}, can be tuned to make sure that the coils don't need trimming to bring the tuning ranges within the limits of the bands.

Once the converter has been carefully set up
on a known frequency within the 10- or 11meter bands, C_{2} is left fixed and the tuning is done with the receiver. The frequency of the incoming signal can be read directly from the receiver, by adding 24 to the receiver frequency in Me. For eximple, a $28-\mathrm{Mc}$. signal will tune at 4 Mc., and a $29,250-\mathrm{Me}$, signal will fall at 5.250 Mc . When tuning the $11-$ meter band, the setting of C_{2} is changed so that a signal frequenry of 27 Mc . corresponds to 4.0 Mr . on the receiver.

The ronverter, when properly aligned and working into an average receiver, gives a signal-to-noise ratio of 10 to 1 with an input signal of about 10 microvolts. In operation, C_{1} and C_{3} need not be touched over a tuning range of about 150 or 200 ke . on the receiver. Therefore, these controls should be touched up at intervals if the entire 10 -meter band is being combed, but they require little or no adjusting in the 11 -metor bind.

It is important that the link between the converter bo woll shidded, io avoid picking up any signals in the tuning range of the receiver. A longth of $\mathrm{R}(\mathrm{i}-\mathrm{is} / \mathrm{L}$ or $\mathrm{RL}(\mathrm{i}-59 / \mathrm{L}$ should be used betwern the converter and the receiver and, if necessary, a small shied should be mounted over the antema binding post on the receiver. If it is found to be impossible to keep out some particularly strong local signal that is being pieked up on the coupling lead, it may be necessary to shift the tuning range of the receiver (by resetting (${ }_{2}$) to avoid this signal. Such a condition is very unusual, however, if care is taken with the coupling lead.

If no communications receiver is available, a war-surphus $B(-454$ aircraft receiver (tuning range of 3 to 6 Mc .) makes an inexpensive receiver for use with this converter.

Fïg. 5-62 - An inside view of the ten-meter converter. The r.f. and i.f, coils are at the right and left ends of the bos, reapectively. The nscillator coil may be seen to the rear of the tube socket. This view also shows the" arrangenent of the components mounted on the front wall of the ease and the location of the input and output connectors which are mounted on the rear wall. The plate hy. pass condenser is in a vertical porition her. tween the oseillator and the i.f. tuning roundenser:

Crystal-Controlled Converters for 14, 21 and 28 Mc.

The principle of using a fixed high-frequency oscillator in a converter and tuning the receiver the converter works into can be claborated upon by using a stage of r.f. amplification ahead of the miver and by using a crystalcontrolled oscillator for maximum stability. Nince such a converter is generally used on a high frequency where fundamental crystals are not available, it is necessary to use a harmonic of a lower-frequency crystal. A crystalcontrolled converter of this type is shown in Figs. 5 -63 and 5-65). A separate conventer is required for the $14-$, 21- and $27-/ 28$ - Mc. bands, since by using separate converters it is possible to simplify their construction and to maximize their performance.

The converter uses the harmonic of a crystal oscillator to provide an exceedingly stable highfrequency oscillator signal. For example, in the 10 -meter converter a 12.25 - Mc. crystal doubles to 24.5 Me , and this signal is fed to the mixer. By tuning the amplifier (your present recciver) following the mixer over the range 3.5 to 5.2 Mc ., you are, in effect, tuning across the $28-\mathrm{Mc}$. band. The r.f. circuits in the converter are tuned to 28 Mc ., and only have to be touched up when going from one end of the band to the other.

The wiring diagram is shown in Fig. 5-64. A neutralized triode-connected $6 \mathrm{~A} 5 \overline{5}$ is used for the r.f. amplifier. There is some question as to its necessity on 14 and 21 Mc., where the atmospheric noise is generally high enough to limit the maximum usable sensitivity. A pentode-connected 6.1 K s could probably he used with no detectable difference in performance on 14 and 21 , but the triode is casy to handle and you don't lose anything by using it. Using high-impedance cireuits with the pentode might give trouble from regeneration, unless the stane were neutralized. Adjustable antenna coupling and a Faraday screen are in-
cluded to accommodate various antenna systems and to eliminate capacity coupling to the antenna line. The r.f. stage runs at 105 volts on the plate, since this gives the best noise figure. The separate plate lead also offers an opportunity to kill the converter by opening this eircuit. The 6AK5 pentode mixer is easy to handle and quiet enough so that its noise doesn't impair the over-all performance. A triode mixer might be used, but the pentode runs with low current and is quiet.

The plate circuit of the mixer is tuned to the center of the receiver tuning range by setting L_{4} to resonate with the various shunt circuit capacities. The circuit has a low Q and there is little variation in gain over the range. A 6C4 cathode follower is used as a low-impedance coupling to the receiver input.

One section of a 6.J6 twin triode is used for the crystal oscillator, and the other half serves as a frequency multiplier. To minimize the other harmonics existing in the plate circuit of the multiplier, the plate is tapped down on L_{6}.

To get the best possible r.f. circuits, within the space limitations, $B \& W$ "Miniductors" are used for L_{1}, L_{2} and L_{3}. Their Q is well above that obtainable with sinaller-diameter coils, and they are easy to handle. To insure good shielding and low-resistance ground paths, an aluminum chassis is used in preference to the more common steel units.

The converter is built on a $5 \times 91 / 2 \times 3$-inch aluminum chassis, with several shield partitions to reduce unwanted interstage coupling. The most important shield is the one that straddles the r.f. amplifier socket and separates the grid and plate circuits of this stage. The grid tuning condenser, C_{2}, is mounted on bakelite insulating washers, and its ground lead returns to the common ground at the tube socket, to eliminate stray coupling through chassis cur-

Fig. $5-63-$ A $28-\mathrm{Mc}$ crystal-controlled converter. The adjustable antenna coupling can be seen at the left front. The tube shields. from left to right, cover the triode-connected 6.1 K 5 r.f. amplifier, the 6 AK 5 mixer and the 6 C 4 cathode follower. The unshielded tube is the 6.16 osciliator-multiplier.

$\mathrm{C}_{1}-10-\mu \mu \mathrm{fd}$. miea.
$\mathrm{C}_{2}-20-\mu \mu \mathrm{fd}$. midget variable (Johnson 160-110).
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{3}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{17}, \mathrm{C}_{20}-680-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{6}-5-\mu \mu \mathrm{fd}$. midget variable (Johnson 160-102).
$\mathrm{C}_{7}-11-\mu \mu \mathrm{fd}$. midget butterfly (Johnson 160-211).
$\mathrm{C}_{8}, \mathrm{C}_{13}-470 . \mu \mu \mathrm{fd}$. miea.
C 9 - Twisted wire. See text
$\mathrm{C}_{16}, \mathrm{C}_{19}$ - See coil table.
$\mathrm{C}_{18}-47-\mu \mu \mathrm{fd}$. mica.
$\mathrm{R}_{1}, \mathrm{R}_{9}-220$ ohms.
$\mathrm{H}_{2}-2200$ ohms, 1 watt.
rents. If this isn't done, you may have trouble neutralizing the amplifier.

A $21 / 4$-inch diameter hole is punched in the chassis, so that the externally-mounted antenna coil, L_{1}, can be coupled to the grid coil, L_{2}. The Faraday screen is then mounted across this hole on the underside of the chassis. To construct the Faraday shield, first cut a piece of $1 / 8$-inch-thick polstyrene (Millen Quartz-Q) to measure $21 / 2$ by $31 / 4$ inches, and drill a pair of holes at one end to clear No. 6 screws, for mounting the finished shield. (These are the same screws that hold the mounting strip for the antenna condenser, C_{1}, visible in Fig. 5-63.) At the opposite end of the poly sheet, drill a small hole in each corner, for securing the wire used in making the shield. Then wind No. 20 tinned wire tightly around the poly sheet in the long direction, spacing it with string or more No. 20 wire. When the winding is finished and secured at both ends, unwind the spacing string (or wire) and remove it. If you have done the job carefully, you will have neat parallel lines of wire across the polystyrene, all equally spaced and all lying fairly flat. Then apply two or three heavy coats of Duco cement to one side ouly, allowing sufficient time between coats for the cement to harden thoroughly. When this has been done, it will be found an easy job to cut each wire on the uncemented side. Straight-
$\mathrm{h}_{3}-56,000$ ohms.
$\mathrm{R}_{4}-6800$ ohms.
$\mathrm{h}_{5}-0.1$ megohm.
$\mathrm{R}_{\mathrm{f},} \mathrm{R}_{10}, \mathrm{R}_{12}, \mathrm{R}_{14}-470$ olnms.
$\mathrm{R}_{7}, \mathrm{R}_{11}-\mathbf{4}_{\mathbf{7}}(\mathrm{ON}$ ohms.
$\mathrm{R}_{8}-0.18$ megohm.
R_{13} - 82,(x)0 olimis.
All resistors $1 / 2$-watt unless otherwise specified.
$\mathrm{L}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{I}_{4}, \mathrm{I}_{5}, \mathrm{I}_{6}-$ See coil table.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Cable-connector sochets (Jones S-101).
R FC_{1} - 750 - $\mu \mathrm{h}$. r.f. choke (Na ational R-33).
XTAL. - See coil table.
en out the wires so that you now have a flat sheet of parallel wires, and trim off the wires at the mounting holes end of the sheet along a line inside the mounting holes. Figs. 5-65 and 5-66 show what this looks like. When trimming these wires, be careful to see that no wire is left touching an adjacent one. Trim the wire ends at the other end to about $1 / 2$ inch from the polystyrene. Clamp the shield in a vise, between two pieces of wood, and wrap each wire end around a piece of No. 12 tinned copper, as shown in Fig. 5-66. With a good hot iron, run a bead of solder along the bus, and your shield is finished. Work fast, and no heat will reach the poly. The shield is mounted with the smooth side exposed through the hole, and one end of the No. 12 bus is grounded at the r.f. tube socket.

The grid coil, L_{2}, is supported by its leads and a couple of drops of Duco cement that hold its grounded end to the Faraday shield. The antenna coil, L_{1}, is mounted by its leads on a piece of $1 / 4$-inch diameter polystyrene rod. The rod is supported by a shaft bushing. A small wire pin through the rod at the back of the bushing and a rubber grommet between the bushing and the control knob give a soft friction lock that holds the coupling in any position. Flexible leads run from the coil to C_{1} and the shield of the RG-59/U coaxial line.

The ref, plate coil, L_{3}, is eemented to a small pieee of polystyrene sheet that is supported by two small brackets. The neutralizing condenser, C_{6}, is supported by one terminal of C_{7} and a stiff wire lead back to the grid pin on the tube socket. The coupling eondenser, C_{9}, is simply an insulated wire wrapped once around the lead from C_{8} to the grid of the mixer. It is brought out of the oscillator compartment through a polystyrene or rubber grommet.

After the usual last check of the wiring, conneet a power supply and remove the GAli5 r.f. amplifier from its socket. Listen in on your receiver at the erystal frequeney, and if you don't find the crystal signal, adjust L_{5} until you do. Then set your receiver on the proper harmonic frequency and peak L_{6} for maximum signal, as indicated by your S-meter. When you have done this, you can probably squeeze out a little more by readjustment of L_{5}. Then back off on L_{5} a little, because there is no need to run the crystal at maximum.

Then tune your receiver - its antenna circuit must complete the cathode circuit of the 6 C 4 follower - to about 3.8 Mc . and peak L_{4} for maximum noise. The adjustment is not sharp, because of the low Q of the circuit. If your receiver has an antenna trimmer, don't forget to peak it, too. Then plug in the 6AKis r.f. amplifier and, after the tube has warmed up, rock C_{2} and C_{7}. Unless you are very lucky, you will find several settings where you are greeted by birdies and squawks. Through the hole in the bottom plate, use an alignment tool to adjust C_{6} a little at a time, until you

\left.| COIL TABLE FOR THE CRYSTAL-CONTROLLED | | | |
| :---: | :---: | :---: | :---: |
| CONVERTER | | | |$\right]$

L_{4} Slug-tuned eoil (Cambridge Thermionic Corp. 1-Mc. LSM with 200 turns removed) (Coils for L_{5} and L_{6} are wound on $1 / 4$-ineh diameter Cambridge Thermionic Corp. LSM forms)

Lo No, 32 enam., 1/6inch long

L6 22 turns No. 28 cnam., close-wound, center-tapped
$C_{16} \quad 75 \mu \mu \mathrm{fi}$.
C19 0
Xtal 6000 kc , (triples)

No. 32 enam. $1 / 2$ inch long

20 t. No. 20 enam., close-wound, center-tapped
$7.5 \mu \mu \mathrm{fd}$,
$2 \cdot \mu \mu \mathrm{fd}$.
3875 ke ((triples)

30 t. No. 28
enam.,
close-wound
20 t. No. 24
enam., close-wound. center-tapped
$33 \mu \mu \mathrm{fd}$.
$2 \cdot \mu \mu \mathrm{fd}$.
$12,250 \mathrm{kc}$. (doubles)
lose all of the unpleasant sounds with any settings of C_{2} and C_{7}, and you have your r.f. stage neutralized. Connect the antenna, and peak C_{2} and C_{7} on the first signal you find. Do all of your tuning with your regular receiver, and only use C_{2} and C_{7} to peak the signal when you make a big frequency excursion. The adjustable antenna coupling provides some measure of gain control for the unit, but it is generally best to use fairly tight coupling and hold the gain down in your regular receiver. The antenna coupling is designed for low-inpedance input, and will work satisfactorily with

Fig. 5-65-This view of the underside of the converter with the bottom cover removed shows the Faraday shicld at the lowior rikht, the shield straddiling ther r.f. amphtier socket (lower center) and the shiched oseillator section (top cernt(er). The neutralizing rondenser for the e.f. stane is adjumbed through a hole in the bottom cover.

50- or 75 -ohm line. If you use 300 -ohm 'Twinlead, it is better to leave the short length of coaxial line ungrounded and to use something wther than a coaxial fitting for connecting the antenna. If your antenna uses 600 -ohm line or tuned feeders, it is best to use a small antenna tuning unit link-coupled through a length of RG-59/U to the converter input.

There is nothing sacred about the crystal frequencies used, other than to be sure that they have no harmonics falling within the sig-nal-frequency range. For the crystals suggested in the coil table, the receiver tunes from 4 to 3.6 to cover 14 to 14.4 Mc . (yes, it tunes backwards!), 3.375 to 3.825 for 21 to 21.45 Mc., and 3.5 to 5.2 for 28 to 29.7 Mc. The $27-\mathrm{Mc}$. amateur band is also covered by the 10 -meter converter, simply by tuning your receiver below 3.5 Mc .

What first i.f. (tuning range of your receiver) you will use depends on the available crystals and the range your present receiver tunes. Csing the second or third harmonic of the crystal should be satisfactory in practically -very case. By careful selection of crystal frequencies you can arrange things so that the
band edges start at some even $100-\mathrm{kc}$. mark on your receiver, thus giving you frequencycalibrated reception (with the necessary mental correction factor). The accuracy of calibration of your receiver on the one tuning range, together with the accuracy of the crystal used in the oscillator portion of the converter, will determine the accuracy of calibration of the receiving system.

Power Supply

The eirenit diagram of a suitable power supply for use with the converters is shown in Fig. $5-67$, although any source of 6.3 volts a.c. and 105 and 180 volts d.e. will do. One set of connections runs to the eonverter in use, and the other goes to a small control box located on the operating table. If desired, the a.e. switch ean be incorporated in the power supply, but the plate switeh, in the 105 -volt lead to the r.f. stage, should be handy to the operator. A switeh can be provided for shifting the pewer from one converter to another. Sinceseparate receiving antennas are generally used at these frequencies, the antemas do not require switching.

Fig. 5-67 - A power supply for the erystal-controlled seriverter.
Ci, C2 $-8-\mu \mathrm{fd} .450$-volt electrolytic.
$\mathrm{Ki}_{1}-1500$ ohme, 10 watts.
$R_{2}-10,000$ ohms, 10 watts.
1.1 - 16-hy. 50 -ma. cloke ((itancor C. 1003).
$\mathrm{T}_{1}-210-0-2.40$ at $10 \mathrm{ma.}$. , and 6.3 v . (Stancor P.6297).

A Simple Narrow-Band FM Adapter

Quite a few amateurs are now using NFM transmission, but most of the receivers in current use are of the straight AM type. Reception on a receiver equipped with an FM adapter is quite an improvement, from the standpoint of readability, over the same signal received by detuning the AM receiver to detect the FM signal on the i.f. slope.

With the adapter the "on-signal" noise level from external noise is reduced because of limiter action, and an improvement in readability is immediately noticed when receiving F.M signals. Since the adapter allows you to tune to the center of the incoming carrier, any a.v.e. action in the receiver can be used to advantage to hold the "on-signal" noise level down by reducing reeciver gain, an advantage
i.f. system overloads before it is possible to overload the limiter, indicating that little would be gained from the standpoint of maintaining constant output by adding another limiter stage.

The discriminator transformer has two separate low-impedance primary windings, each with a separate secondary winding coupled to it. Each half of the transformer secondary is fixed-tuned with a $510-\mu \mu \mathrm{fd}$. silvered-mica condenser, and variable tuning is accomplished by means of movable iron cores. One of the transformer secondaries is tuned to a frequency approximately 10 kc . higher than the i.f. of receiver to which it is attached. The other is tuned approximately 10 kc . lower than the i.f. The transformer should be used with a receiver

Fig. 5.68- The NF'N-adapter circuit. Cil $10-\mu \mu \mathrm{fd}$. ceramic or miea.
$\mathrm{C}_{2}, \mathrm{C}_{3}-\mathbf{O} .1 \cdot \mu \mathrm{ft}$. paper.
Ci4, (s - $100 \cdot \mu \mu \mathrm{ff}$) ceramie or mica.
$\mathrm{K}_{1}-1$ mequhm, $1 / 2$ watt.
$\mu_{2}, R_{3}-33,000$ ohms, I watt.
$R_{4}, R_{5}, R_{6}-0.1$ megohm, $1 / 2$ watt.
\mathbf{T}_{1} - Discriminator eransformer (National sis-1842).

that cannot be realized with i.f. slope detection. "Off-signal" noise is somewhat greater than with AM, but this is not too serious since most tuning is done on AM and the adapter is switched in when an FMI signal is present.
l3asically, the adapter unit consists of a limiter stage followed by a discriminator. The limiter uses a 6 S .57 tube with a $10-\mu \mu \mathrm{fd}$. coupling condenser and a 1 -megohm grid leak, as shown in Fig. 5-68. The tube will reach full limiting at about 2.5 microvolts input t_{0}, the average receiver, and the limiter output is constant over a wide range. Gencrally, the receiver
having an i.f. of approximately 456 kc . The bandwidth of the transformer is approximately 20 kc . and the characteristic is quite linear over approximately 12 kc . The output of the discriminator is fed directly to the receiver audio system.

Construction of the unit is relatively simple, as will be apparent from reference to Figs. 5-6: and $5-70$. It is possible to construct it in an evening. The chassis, which measures $21 / 4 \times 5$ $\times 1$ inches, is constructed from a piece of 0.062 -inch aluminum sheet measuring $41 / 4 \times$ 7 inches. Construction can be simplified hy

Fis. 5.69 - Whis two.tube adapter gives NFM reception with a communications receiver laving an i.f. in the vicinity of 456 hc . 'The tulses are a 6SJ\% and a 6116. The phone phug, connected to the audio output terminal in the unit, ie plugged into the 'phone jack on the receiver for FM recrption, and simply pulled out of the jack for AM.

Fig. 5.70 - The simplicity of the wiring is evident in this underneath view of the adapter. The i.f. leanl, a piece of small coaxial cable, is laced with the power and audio leads.

using a piece of metal $41 / 4$ by 5 inches and by putting only two bends in the chassis, making it "U"-shaped. Socket holes, as well as the mounting holes for the discriminator transformer, are punched before the chassis is bent to its final shape. Insulated lugs can be mounted on socket screws, as shown, to provide for neat layout of parts.
some receivers are provided with adapter sockets at the rear into which the adapter may be plugged. This adapter socket provides all voltages necessary to operate the adapter. The audio output can be run through a shielded lead to the phonograph-input jack on the front of the receiver, if the receiver has one, and switching from AM to FM reception is then accomplished by inserting the plug in the phono jack. Simpler methods can be devised, especially if the user has no objection to adding a switch to the front panel of his receiver. In this event it is simply necessary to switch either the AM-detector output or the FM-
discriminator output to the audio input of the receiver. It is not necessary to switch off the 13 -plus of the adapter tubes since interference from cross-talk is negligible.

The i.f. output can be taken from the plate of the second i.f. tube, and there will be some detuning of the detector input transformer. The simplest way to retune the detector transformer, when no signal generator is available, is to set the receiver for maximum background noise with no signal present. When this unit is used in connection with receivers having highimpedance i.f. systems, care must be taken to have the lead from the i.f. tube to the limiter well shielded and as short as possible. Small coaxial cable, such as $12 \mathrm{G}-59 / \mathrm{U}$, should be used for this lead. In the event oscillation troubles are encountered in the receiver with the adapter in place, make sure the adapter unit is well grounded to the receiver and all shiedding is attached to a good ground, preferably in the receiver if possible.

High-Frequency Transmitters

Transmitters for the amatenr bands lying between 1.8 and 30 Me may take a variety of forms, deponding primarily upon the frequency bands to be covered and the power output desired. Aeded to these are such important factors as operating eonvenience and spare restrictions.

The principal requirement that must be

(C)

(D)

 tions of oxcillator and amptifiern and power-supuly arrangement- for tranmitters. A wide aelection ia po.. sible, depending mon the munber of banda in whind opreration is deaired and the prower ontphat.
met in c.w. transmitters, to which this chapter is limited, is that the outpat must be confined as closely as the state of the art permits to a single steady frequeney free from modulation. A frequency-stable signal is nocessary not only to comply with FCO regulations, but also to provide a signal that can loe received satisfactorily with a selective receiver, and one that will cause a minimum of interferener to amateurs working in the same band. Radiation of signals at harmonie frequencies, or spurious radiations at other frequencies, must be minimized to prevent interforence to other radion surviees, espectally television.

A simple oscillator may be used as a transmitter, as shown in Fig. fi-1A, but the amount of power obtamable with satisfactory froquency stability is smatl. Therefore in most transmitters the oscillator is used to feed one or more amplifiers as required to bring the power up to the desired level, as indicated at B, before delivering the power to the antenna system.

An amplifier whose output frequency is the same as the input frequency is called a straight amplifier. If such a straght amplifier is phaced in an intermediate position between two other transmitter stares it is sometimes called a buffer amplifier,

Breause it becomes increasingly difficult to maintain oseillator frequency stability as the frequeney is increased, it is most usual practice in working at the higher frequencies to operate the oscillator at a low frequeney and follow it with one or more frequency multipliers as required to arrive at the desired output frequency. A frequency multiplier is an amplifier that delivers output at a multiple of the exciting frequency: A doubler is a multiplier that gives output at twier the exciting irrequency: a tripler multiplies the exeiting frequeney be threr, etc. Although multiplications in a single stage as high as eight or more somotimes are used to reach the hands abowe 30 Mc., in the majority of low-frequency tranmitters, multiplication in a single stage is limited to two or three, sinee the afficiency of a multiplier decreases rapidly as the order of nultiplieation increases. Also, it becomes more dittioult to kerp umwanted harmonics from the cutput.

Frequency multipliers sometimes are used 10 feed the antenna system directly, but preferably should feed a straight amplifier which, in turn, feeds the antenna system, as shown in Fig. 1-C, D and E, because it is otherwise
difficult to eliminate the multiplier driving frequency and undesired harmonics in the antenna system. As the diagrams indicate, it is often possible to operate more than one stage from a single power supply.

Variable-Frequency Oscillators

Two general classes of oscillators are used in amateur transmitters. A crystal-controlled oscillator is a fixed-frequency oscillator. The frequency generated is held within very close limits (a few cycles per megacyle) by a quartz crystal. The frequency is determined almost entirely by the thickness of the crystal. Other constants in the circuit have relatively little effect. The frequency of a self-controlled or variable-frequency oscillator (VFO) is determined principally by the values of inductance and capacitance which make up the oseillator tank circuit.

The disadvantage of the crystal type of uscillator is that a different crystal must be used for each frequeticy desired (or multiples. of that frequency). By making the inductance, capacitance, or both, variable in the selfcontrolled oseillator, it may be operated at any frequency desired within a band at the turn of a dial, in the manner of a receiver. The disadvantage of a VFO is that mueh care must be exercised in the design and construction if the frequency stability is to approach that of a crystal-controlled oseillator.

Although the trend in recent years has been toward the VFO with its greater flexibility, the erystal oseillator still is widely used by heginners and is preferred by many others because of the comparative ease with which frequency stability and calibration are mantained.

While any of the basic self-controlled ascit-
lator circuits may be used, the prevailing choice lies among those shown in Fig. 6-2, or modifications of these cireuits.

To provide satisfactory performance on the air, special attention must be paid to the circuit and mounting of parts. Since the frequency depends upon the L and C in the circuit, anything which operates to change there values will cause a change in frequency. For stability which will approach that of which a erystal oscillator is capable, the values of inductance and capacitance must be held within extremely small tolerances.

It is perhaps not too difficult to provide a satisfactory coil and condenser for the tank circuit. But the tube must be connected across this circuit and its effect upon frequency is by no means negligible nor casily controlled. The tube has the effect of a capacitance which can be made to hold satisfactorily constant only with great care.

Effects of Load

It is obvious too that the connection of any reactive load, such as an antemna or the input of an amplifier stage, will change the frequency, since this load must be connected across the frequency-determining circuit, thereby changing the net value of inductane or capacitance as the case may be. An antenna and feeders cannot be held sufficiently rigid to prevent changes in their capacitances. For this

(A)

(B)

(C)

Fig. 6-2 - Typical simple VFO circuit. A - Tiekler feed-bick. B - Hartley, (- Colpitts.
 the 3.5. Vre band are an follows:
(:1-Tuning condenser - 1.01) $\mu \mathrm{\mu fl}$, variable.
(2 - Tank condenser - $\boldsymbol{-}(0)$ - μ ffd. zero-temp. mica.

© - Tank condenter - 0.0.0121-pfil, zern-temp, mica.
C: 5 - Grid condenier - 100 - μ ufd, zero-temp, mica.
Co- Output roupline condenser - $10 \mathrm{fl} \mathrm{m}_{\mu \mathrm{fd}}$. or leas, mica.

H_{1} - Grill leak - $, \mathbf{0}, \mathbf{(N)}$ ohme.
L_{1} - Tank coil - $1.3_{\mu} \mathrm{h}$.
Le - Tickler winling - Ipproximately one-third numther of turnio on L_{1}. womad on same form nevt to L_{1} or over gromend and of L_{1}.
L.3-Same as L_{1}, tapleat approximatoly one-haird from blate end.
HFC: - l'arallelefoed r.f. elache - 3.3 mh .
reason it is almost universal practice to use an amplifier between the VFO and the antenna system.

Under practical operating conditions the input circuit of an amplifier may develop changes in the reactance which it presents across the oscillator circuit, especially while it is being tuned or alternately connected and disconnected, which it is in effect if the amplifier is keyed. Special oscillator circuits have been developed to minimize this effect. Two forms of the electron-coupled oscillator circuit are shown in Fig. 6-3. In circuits of this type a single screen-grid tube performs the functions of both an oscillator and an amplifier. The screen serves as the plate of a triode oscillator, while the power is taken from a separate tuned output-plate tank circuit, the coupling between the two being principally through the common electron stream.

In Fig. 6-3A, the oscillator circuit is a Hartley in which the ground point has been shifted from the cathode to the "plate." Fig. 63 B shows the Colpitts modified in a similar

Fig. 6-3-ECO cirenits. A - Hartley. B - Colpitts. Approximate values are as follows:
(.) - Oscillator tuning condenser - for 3.5 Mr.: 1.50 . ${ }_{\mu}$ fid. variable.
C_{2} - Output tank condenser - 100 ($\mu \mathrm{ff}$ fd. variable.
C_{3} - Tank condenser - $\mathbf{5}(1)$ - $\mu \mu \mathrm{fl}$, zerto-temp. mica for 3.5 Me.
C_{4} - Grid condenser - $1(6){ }_{\mu} \mu \mathrm{fd}$. or less, zero-temp. nica.
C_{5} - Sercen ly-pass condenser - $0.01-\mu \mathrm{fd}$. paper.
C6 - I'late by-pass condenser - $0,01-\mu \mathrm{ff}$. paper.
C_{i} - Output coupling condenser - $100 \mu \mu \mathrm{fd}$. or less, mica.
C_{8} - :(ر) $-\mu \mu \mathrm{fd}$. zero-temp. mica.
C_{9} - (0.0)2 $21-\mu \mathrm{fd}$. zero-temp. mica.
H_{1} - Grid leak - $\mathbf{5 0 , 0 0 0}$ ohms.
1.1 - Osieilator tanh coil- $1.3 \mu \mathrm{~h}$. tapped approximately one-third from ground end for 3.5 Mc .
1.2 Output tanh coil - $22 \mu \mathrm{~h}$. for $3.5 \mathrm{Mc} ., 7.5 \mu \mathrm{~h}$. for 7 Mr.
IfFCi - Parallel-feed r.f. choke - 2.5 mh .
manner. The choke, $R F C_{1}$, is required to provide a d.c. path to the cathode without grounding it for r.f.

In both of these circuits, output at a multiple of the oscillator frequency may be obtained by tuning the output-plate tank circuit to the desired harmonic, although this is seldom done beyond the second harmonic.

The oscillator frequency is not entirely independent of tuning or loading in the output plate circuit. The reaction is less, however, when the output-plate circuit is tuned to a harmonic or replaced by an untuned circuit, such as an r.f. choke, as shown in Fig. 6-4. The power output obtainable with the latter arrangement is much lower, however.

Well-screened tubes are preferable as elec-tron-coupled oscillators. Those commonly used are the 6K7, 6SK7, 6F6 or 6.1G7.

Another measure that may be taken to provide isolation between the oscillator and a following tuned amplifier is the use of an untuned amplifier, as shown in Fig. 6-5.

The power gain of an amplifier of this type is quite small, the purpose being almost entirely that of securing isolation between the VFO and tuned power amplifiers whose adjustment might react on the freduency of the oscillator if coupled to it directly. Two amplifier stages of this type usually are necessary before a following amplifier can be tuned or keyed without noticeably affecting the oscillator frequency and stability.

When using such an amplifier following an electron-coupled oscillator, a nonresonant output circuit also is usually used in the ECO. R.f. chokes are used as nonresonant circuits in the outputs of the ECO and in the second amplifier. L_{1} in the plate circuit of the first amplifier is a winding that is self-resonant with the tube and circuit capacitances at a frequency near but not in the band of frequencies over which the amplifier is intended to operate. This is to prevent forming a lowfrequency t.g.t.p. oscillating circuit which occurs when chokes of approximately the same characteristics are used in both input and output circuits of the amplifier tubes. For the same reason, resistors without chokes are used in the grid circuits.

Regulated voltages for the screens and plates are desirable.

Chirp

Variations in the voltage of the oscillatortube elements can cause changes of appreciable magnitude in the effective input capacitance of the tube. If the oscillator can be run continuously during transmission, this effect can be made negligible by the use of regulated plate and screen voltages. But if the oscillator must be keyed for break-in work, an objectionable shift in frequency with keying (chirp) can be avoided only by reducing the time constant of the keying circuit to the point where the change in frequency between zero voltage,
when the key is open, and full voltage, when the key is closed, takes place so rapidly that the ear cannot detect it. The time constant is reduced by minimizing any capacitance which may appear across the key contacts, including by-pass condensers in the transmitter. Unfortunately, as discussed in Chaptur Eight, a certain time lag is required to climinate clicks. Therefore the measures necessary for the elimination of chirps and clicks are in opposition. A compromise is usually necessary, unless the oscillator can be made insensitive to voltage changes by other means. It is possible that the keying of an amplifier may constitute little improvement over oscillator keying, for reasons previously given, unless sufficient isolation is provided between the oscillator and the keyed stage.

Drift

'lhe effects of temperature change are characterized by a slow drift or creep in frequency. Part of this change, especially for the first few minutes after power is applied to the oscillator, may be attributable to change in tube-electrode capacitance as the tube heats up. But over a protracted period of time, drift is a result of small changes with temperature in physical dimensions of the eoil and condenser in the tank cireuit. Good design dictates that these components be of good construction and isolated as much as possible from the heat developed in the tubes and power-supply equipment. With care, frequency drift can be brought within satisfactory limits by mounting the tubes external to the enclosure surrounding the tank roil and condensers and the use of zerotemperature mica condensers for all tank capacitance other than that required for tuning purposes, by providing ventilation and by keeping the power input to the oscillator at a minimum - not more than a few watts. Where maximum stability with temperature change is desired, temperature-compensating condensers may be used to form part of the tank-circuit capacitance.

Fig. 6-4- ECO with an r.f. choke replacing the output tank circuit for the purpose of reducing reaction on the oscillator portion of the circuit.

Mechanical Considerations

Any mechanical vibration which causes a change in the capacitance across the tank circuit, or in dimensions of the coil, will cause a corresponding change in frequency. This should be minimized by solid construction. by secure wiring and by cushioning the mount ing of the oscillator unit against shocks, The oscillator should be thoroughly shielded from the strong r.f. fields of the antenna and

Fig. 6-5 - Diagram showing two isolating-amplifier stages coupled to the output of an ECO. Well-screcned tubes are preferable, 6 K ts or 6 F 6 s heing suitable.
C_{1} - Coupling condenser - $100 \quad \mathrm{R}_{1}$ - Grid leak - 50,000 to $1000_{9} \cdot$ $\mu \mu \mathrm{fd}$. or less, mica.
C_{2} - Screen by-pass condenser - 0.01 - ff d. paper.
C_{3} - Cathode by-pass condenser - 0.01- $\mu \mathrm{fd}$. paper.

000 ohms.
H_{2} - Cathode biasing resistor 200 to 500 ohms.
L_{1} - Coupling inductance - see text.
RFC - Plate choke - 2.5 mb .
adjacent high-power amplifier stages which may, through overloading of the oscillator grid, cause roughening of the oscillator signal.

Plug-in coils for changing oscillator frequency ranges are not recommended because experience has shown that the coil contacts may become the source of undesirable frequency instability.

VFO Tank Q

All of the previously-mentioned effects upon the frequency of an oscillator may be minimized by the use of high capacitance in the tank circuit, thus making uncontrollable capacity changes a small percentage of the total circuit capacitance. At 3.5 Mc., a tank capacitance of 500 to $1000 \mu \mu \mathrm{fd}$. is considered adequate, with values increased in proportion if the oscillator is designed to operate at lower frequencies. An increase in Q can be obtained also by tapping the tube across only a portion of the tank circuit. Fig. 6-6A shows the Hartley circuit with the grid and plate tapped across small portions of the tank-coil reactance. An equivalent arrangement for the Colpitts circuit is shown at $B . C_{1}$ (and C_{2} in parallel) is small compared with ('3 and (${ }_{4}$. Therefore, the reactance across which each tube element is connected is a small portion of the total. (2, which is the tuning condenser, should be no larger than is necessary to tune across the band so as not to influence the function of C_{1} any more than necessary. The tuning condenser should not be connected across the coil, since this reduces the Q of the cireuit.

In both of these atrangements, the highes the Q of the coil, the smaller the reactance between tube elements may be without stopping oscillation and, therefore, the greater the stability. Because of the high L / C ratio which results with the circuit of 13 , greater care must be exercised in the construction and mounting of tank-circuit components.

Any of the bandspread tuning systems used in reedivers may be applied to the oscillator rireuits which have been under diseussion. The patallel-oondensor system is used most widely since it lends itself well, partienlarly to high-C circuits.

Berause it is considered asier to maintain percentage stability at lower frequencies, YFOs usually are designed to porato at a frequeney not higher than the $3.5-M e$. band, the higher-frequency hands boing reached by frequency-multiplier stages.

VFO ADJUSTMENT

Tuning Characteristics

Normally-operating VFO rircuits of the types under discussion will function quite uniformly, over the range of an amateur band at least, as soon as plate voltage is applied. If, through incorrect adjust ment of excitation or overloading the circuit does not oscillate, the plate current will be the zero-bias value for the tube at the plate voltage at which it is being operated, falling to a lower value when osrillation takes place. If the oscillator is functioning, touching the grid with a grounded prod will cause a variation in plate eurrent. The value of plate current to be expected with

Fig. 6-6 - As an alternative to the use of a bigh. C tank circuit, oscillator tubes sometimes are connected across only a portion of the tank circuit to increase the (\%. In the Hartley circuit of A, the grid and plate connection: arc made to taps instead of to the ends of the coil. In the Colpitts circuit of B, the division is by capacitive means. For 3.5 Mc , C_{3} and C_{4} shoutd be abont $0.001 \mu \mathrm{fd}$. and $C_{1}+C_{2}$ no larger than necessary to maintain oscillation and tume across the hand. The Q of L_{1} and the G_{m} of the tuhe should be as high as possible.
a given tube when oscillating depends upon such factors as plate and sereen voltages, gridleak resistance, excitation adjustment and loading. It should remain essentially constant with reasonable changes in tuning capacitance. With normal excitation adjustment, the plate current should show an increase when the load is connected. Excitation and grid-leak resistance should be adjusted for maximum frequency stability - not maximum output.

Fik. 6-7-Set-up for checking $\$ FOst ability. Thereceiver should he tuned preferahly to a harmonic of the VFO frequency. The crystal osicillator may operate somewhere in the hand in which the Vr'O is operating. The: receiver b.f.o. should the turned off.

In the circuit of Fig. $6-6 \mathrm{~A}$, maximum frequency stability is obtained with the plate and grid taps as close as possible to the cathode tap without stopping oscillation. In the circuit of Fig. 6-6ils, maximum stability is obtained when C_{3} and C_{4} (usually equal) are large and the ratio of $C_{1}+C_{2}$ to C_{3} or C_{4} is the maximum possible without stopping oscillation. The adjustment in each case will be limited by the Q of the coil. Therefore, the Q must be high for gratest frequeney stability.

Checking VFO Stability

A VFO should be checked thoroughly before it is placed in regular operation on the air. Since succeeding amplifier stages may affect the signal characteristics. final tests should be made with the complete transmitter in operation. Almost any VFO will show signals of good quality and stability when it is running free and not comected to a load. A wellisolated monitor is a neeessity. Perhaps the most convenient, as well as one of the most satisfactory, well-shiclded monitoring arrangements is a receiver combined with a crystal oscillator, as shown in Fig. (i-7. (See "Crystal Oscillators.") The crystal frequency should lie in the band of the lowest frequency to be checked and in the frequency range where its harmoniess will fall in the higher-frequency bands. The receiver b.for. is turned of and the VFO sigual is tuned to beat with the sigual from the crestal oseillator instead. In this way any receiver instability caused by overloading of the input eircuits, which may result in "pulling" of the h.f. oscillator in the receiver, or by a change in line voltage to the receiver when the transmitter is keyed, will not affeet the reliability of the check. Most present-day crystals have a sufficiently-low temperature coefficient to give a satisfactory check on drift as well as on chirp and signal quality if they are not overloaded.

(B)

Fig. 6-10 - Crystal-controlled circuits. A - Tri-tet. B and C proximate values are as follows:
C_{1} - Cathode-tank tuning conder C_{2} - Output-tank tuning condens C 3 - Screen by-pass condenser - $0.01-\mu \mathrm{fl}$. paper.
C_{4} - l'late by-pass condenser - C C_{5} - Output coupling condenser C_{6} - Feed-back control condenser C_{7} - Parallcl-feed blocking conde Cs - Feed-back-ad justment conde C_{9} - Feed-back-adjustment cond $\mu \mu \mathrm{fd}$.
R_{1} - Grid leak - 50,000 to 150,0 H_{2}-Screen voltage-dropping I 100,000 ohms.
$\mathrm{L}_{1} \mathrm{C}_{3}$ - Tuned well above crystal 1 $\mathrm{I}_{2} \mathrm{C}_{2}$ - Thuned to crystal frequency IRFC — Parallel-feed r.f. choke -:

When operating the Tri-t crystal frequency, $L_{1} C_{1}$ shot closer to the crystal frequet essary to make the circuit -output-plate voltage appliec screened tubes, it may be ad circuit $L_{1} C_{1}$ when operating fundamental frequency, revert circuit as a measure of safety
With well-screened tubes, st 2 E 25 or 802 , the output-plate teristic is like that shown in fundamental as well as at the

Harmonies of the crystal may be used to beat with the transmitter signal when monitoring at the higher frequencies. Since any chirp at the lower frequencies will be magnified at the higher frequencies, accurate checking can best be done by monitoring at the latter.

The distance between the crystal oscillator and receiver should be adjusted to give a good beat between the erystal oscillator and the transmitter signal. When using harmonics of the erystal oscillator, it may he meresaly to
attach a piece of wire to the oscillator as an antenna to give sufficient signal in the receiver.

Checks may show that the stability is sufficiently good to permit oscillator keying at the lower frequencies, where break-in operation is of greater value. but that chirp becomes objectionable at the higher frequencies. If further improvement does not seem possible, it would be logical in this case to use oscillator keying at the lower frequencies and amplifier keying at the highor fropurncios,

Crystal Oscillators

While erystal-controlled oscillators are much more tolcrant than VFOs in respect to temperature changes the danger of crystal frateture, as well as drift. phaces a limitation on the amount of power output obtainable. The oscillator normally should be considered as a

Fij. 68-Simple crystal-ostillator circuits, 1 - Trie ode. B-Thtrode or pentode. C - Tetrode Piarce. Approximate values are as follows:
C_{1} - Tank condenser - $100 \cdot \mu \mu \mathrm{fd}$. variable.
C_{2} - l'late by-pass condenser - $0,01-\mu \mathrm{fd}$. paper.
C_{3} - Output coupling condenser - $100{ }_{\mu \mu} \mathrm{fd}$. or lesmica.
C_{4} - Screen by-pass condenser - 0.01 - fd . paper.
C- Feed b)ack condenser - 50 to $100 \mu \mu \mathrm{fd}$.
Cic - Plate hocking condenser - 0.001 - $\mu \mathrm{fd}$. mica.
11_{1} - Grid leak - 50,000 olms.
11_{2} - Srreen voltage dropping resistor - 25,000 to 50,000 ohms.
1 - Tank coil - 22 нhy. for $3 . \overline{3}$ Mc.; $7.5 \mu \mathrm{~h} y$, for : Mc.

RFO: - P'aralledeferd r.f. choke - 2.5 mh.
frequeney-genorating deviec only, with power output of secondary importaner. The amount of power which may be obtained from a erystal oscillator is limited by the heat the erystat will stand without fracturing. 'The amount of heating is dependent upon the r.f. erystal curron which, in turn, is a function of the amount of feed-back required to provide proper excitation. Crystal heating short of the danger point results in frequency drift to an extent depending upon the way the erystal is cut. Exeitation should always be adjusted to the minimum neeressary for proper operation.

SIMPLE CIRCUITS

The basic erystal-controlled oscillator circuits are shown in Fig. (j-8. Since the crystal is the equivalent of a high-(Q tuned eircuit of fixed frequency, it will be observed that ach of the erystal circuits is essentially the equivalent of a self-controlled circuit.

Triode, Tetrode and Pentode Oscillators

The triode erystal circuit of Fig. 6-8A is the cquivalent of the t.e.t.p. circuit in which a crystal replaces the tuned grid circuit. The pentode cireuit of B is the satme except for the substitution of a screen-grid tube for the triode. This circuit sometimes is operated with the suppressor by-passed and raised to a positive voltage of about 50 instead of being grounded as shown. The same circuit is used for tetrodes, such as the 656 and $6 L G$, the suppressor connection being omitted.

With this ecreuit, oscillation takes place only when the plate tank circuit is tuned to a frequency higher than that of the crystal, and maximum output usually occurs when it is tuned close (but not exactly) to the crystal frequency. If the plate tuning condenser has sufficient range to tune the circuit to a frequency lower than that of the grid circuit, oscillation will cease and the plate current will jump to a relatively high value, as shown at the left in Fig. 6-9. As the plate circuit is tuned past the point of resonance with the crystal in the high-frequency direction, the plate current will drop suddenly (point A) indicating the starting of oscillation, then dip rapidly to a minimum (point (") where the power output is
greatest. As the tun further, the plate el point B where it w indicating that os maximum frequen should be tuned in

When the oscilla teristic is similar (se but the minimum pl pronounced and the which the circuit w the loading is incre:

Fig. 6.9- General tu tetrode or pentode cry: tance of the plate tan! maximum, oscillation wi rent dropping abruptly, caparitance is decreased dif to a minimum, C., a θ where an abrupt rise that nscillation has cease tained at point C, but ti for operation in the L stability.

With triode, tetro feed-back may be a the plate tank circui However, it is safes power fed back fron stricting the plate v limitation cannot b during normal tuni large prewar-type c cillators may be ope ment at plate voltag but the voltage shoul for the new-type sma dimm- μ tubes are pr used. Beam tetrode: high power-sensitivit capacitance, require crystal than a triode output. With scree type crystals can be ages of 300 or 400 , 10 or 15 watts if requ may take plate vol before showing mas However, as stated advisable to limit the depend upon amplifie

With the triode, tel oscillator circuits sho and therefore r.f. vol greatest when the osc is under this condit crystal is greatest.
resonance and that a neak self oscilation will oecur instearl. This condition can usually be avoided by proper proportioning of the two feed-back capacitances. If fixed capacitances are to be used, the values given under Fig, 6-10 are suggested, but they may have to be modified somewhat, depending upon the type of wher used.

CRYSTALS

Crystal Characteristics

While crystals are produced for frequencies as high as 50 Ne., by far the majority of those used in amateur high-frequency transmitters are cut for the $3.5-$ and 7 -.Mc. bands. With suitable frequency-multiplying stages, this permits the use of a single crystal for operation in the harmonically-related parts of higherfrequency bands, as well as at the crystal fundamental frequency. As an example, a 3501ke. crystal with appropriate multipliers may the used for frequencies of 7002 kc ., $14,004 \mathrm{ke}$., $28,008 \mathrm{ke}$., ete.

Crystals vary in characteristics depending upon the manner in which they are cut from the natural quartz erystal, particularly in the thickness-frequency and temperaturefrequency relationships. The frequency of erystals of the carliur cuts, designated " X " and "Y," vary appreciably in frequency with changes in temperature. Nore recently they have been almost entirely superseded by the modern" $A T$-" and "BT"-type erystals which are cut so as to have very small frequency change with temperature. The temperaturefrequency characteristics for various crystal types are summarized in the following tabulation:

X-ent - -10 to -25 cyeles per Me. per degree C.
I'ent -+100 to -20 cycles per Mc. per dexree C.
AT-cut - +10 creles per Mc. per degree at 0 degrees C.

- 0 eyches per Mc. per degree at 15 degrees C.
— +20 cycles per Mc. per degree at 85 degrees C
BT-eut - -10 cyclis per Mc. per degree at 0 degrees C:
- 0 eyeles jer Me. per degree at 30 degrees C. --20 cycles per Me. per degree at 70 degrees C.
The relationship between the thickness of a erystal and its frequency is given by:

$$
f_{\mathrm{M} .}=\frac{k}{\ell_{\mathrm{mai}}}
$$

where f_{mc} is the frequency in megacycles, t the thickness in thousandths of an inch and k is a constant of the crystal cut approximatelyas follows:

$$
\begin{gathered}
\text { X-cut }-112.6 \\
\text { Yecut }-77 \\
\text { AT-cut }-66.2 \\
\text { B'T-eut }-100.78
\end{gathered}
$$

An AT erystal usually is more active than one of the BT-cut type, but since it is thimer for the same frequener, there is greater danger
of fracture in operation. Therefore, AT-cut crystals usually are used for frequencies below 5 Mc., while the BT-cut is used for crystals whose frequcncies lie above 5 Mc., although this is not true in all cases.
While crystals are sometimes cut for fundamental frequencies as high as 14 Mc., most crystals used by amatcurs for frequencies higher than the 7 -Mc. hand are "harmonictype" crystals; that is, the thickness corresponds to a frequency of one-third (sometimes one-fifth) of the normal operating frequency, The other dimensions of the crystal are proportioned so that the mechanical vibration is at three times (or five times) the fundamental frequency.

GRINDING CRYSTALS

Crystal blanks. cut to approximate frequency, are available at very reasonable prices. With proper equipment and a little care, these blanks can be ground to the desired frequency: Complete crystal-grinding equipment includes several components. First necessity is a flat piece of plate glass, about 4 inches square or larger. To hold the erystal flat while grinding a flat "button" (shown in Fig. 6-12), also of plate glass, either rome or square and slightly larger than the crystal, is required. Both pieces may be obtained at glass stores. Two grades of abrasive, No. 303 emery for surface grinding and No. 600 Carborundum for edge grinding and beveling, are obtainable from hardware stores or opticians' supply houses. A small paint brush is handy for moistening the abrasive and spreading it around the lapping plate. To facilitate frequent checking of frequency during the grinding process, the quick-chatuge holder shown in Fig. 6-13 is desirable. It consists of an FT243 holder with a sliding cover

Fig. 6.12 - The equipment nercseary for grinding a erystal blank to frequency. A piece of plate glass and a "hutton" of the same material are essential. The "quick change" adaptaion for the crystal holder is a convenadaptation for the erystal hore a small paint ence. Not shown, but also convenient, are a small paim rush for

Fí. 6.13The quick. change crystal holder with sliding rover.
fashioned from sheet metal. Suap, warm water and a toothbrush are used to clean and rinse the erystal. Iintless cloth from an optician's or a clean towel can be used for drying.
l'resent-day electrodes have raised lands on cach corner, as shown in Fig. 6-14, and the erystal should lie at least halfway across these lands and should not be larger than the clectrode. The edectrodes should be cleaned as carofully as the crystal. Before final assembly both erystal and cheetrodes should be handed rarefully by the corners or edges after their last good serubbing.

The actual grinding is done as follows: Sproad the 303 abrasive over an area about a hatf inch square on the lapping plate, wet the brush. mix water into the spot and spread the abrasive over the lapping plate. Nlways keep the abrasive moist. Take the buttom, put a drop of water at its eenter, and press the dry arystal bank over the drop of water. There should be just enough water in the drop so that it squeezes out under the edges of the blank. where it is wiped away. Dlace the button, blank down, on the emery and put the index finger in the center of the button. Ise just enough pressure to move the button in a figure-8 pattern. This motion is used because it helps kerep the blank flat.

After grinding through ten or fifteen " $8 s$ " the blank should be rechecked for frequency and activity. The frequency change probably will be botween 200 and 1000 cycles per " 8 ," using a 7 -Me. erystal. The crystal can be moved along faster as the operator becomes more familiar with the technique, but for the beginner frequent checks of activity are in order.

To grind a crystal successfully, the activity must be good when the crystal is brought to the desired frequeacy. There are several ways to raise the activity. Assuming that. with careful grinding on a flat plate with a flat button, the
two faces of the crystal are paralled. the major cause of low activity will be dirt or moisture on the crystal or electrodes. Before checking activity the erystal should be scrubbed carefully with the toothbrush, using warm water and soap. Wipe the crystal clean and be sure that the electrodes are clean and dry. If the activity is still down the next thing is to bevel all eight cdges of the crystal. The beveling can be done with cither fine or coarse abrasive, but is usually more effective with the coarse. Beveling, incidentally, will also raise the frequency because of the quartz ground off during the process.

Although beveling will usually improve the activity, another method - and probably the simplest - is to change electrodes. The land heights on the electrodes have a critical effect on activity. If the center of the crystal becomes too high and the lands are so low that the center of the erystal touches the center of the electrodes, the crystal will stop oseillating.

rig. 6.14 - The $1 / 2 \times 1 / 2$-inch clectrodes used in mod. ern crystal holders. showing the lands at the corners between which the erystal is firmly held.

The last step - and the most drastic method of raising activity - is to edge-grind adjacent edges. This grinding is best done with coarse abrasive and should be followed by a slight bevel to remove any chips which may remain. By checking the crystal frequently, a drop in aetivity can be corrected by the above methods. If the crystal is ground too far anl goes completely dead, the frequency may be too high when the crystal is again reactivated.

Most crystals produced in the last five years or so have bern brought to the desired frequency by an etching process. This process: is not only a convenient means of quantity production, but it also results in a completely clean surface for the crystal, which plays an important part in the activity of the crystal and the maximum power it will handle without overheating. Therefore, regrinding may impair the performance of etched crystals, since reprinding destroys the etched surface.

R.F. Power Amplifier Circuits

l'he power output from an oscillator is limited for reasons previously stated. Power greater than a few watts usually is obtained by feeding the output of the oscillator into one or more amplifiers as may be required to raise the power level to that desired before feeding it to the antenna.

Fig. ($6-1$) shows a fundamental amplifier cireut, The oscilator output is forl into the
grid eircuit of the amplifier. Power output is taken from the plate circuit. Both grid and plate circuits are tuned to the frequency of the oscillator. It will be noticed, however, that this fundamental circuit is the same as the circuit for the tuned-grid tuned-plate osrillator. Therefore the amplifier circuit itself will function as an oscillator, independent of the useillator feoding it. undess measures are taken
to reduce the plate-grid capacitance or nullify its effect.

TRIODE CIRCUITS

Plate Capacitive Neutralizing Systems

The plate-grid capacitance can be neutralized by feeding back to the grid, through an external path, a voltage which at any instant

Fig. 6.15-Fundamental r.f, power-amplifier circuit. Means must be provided to prevent oscillation since the circuit is the same as that for a t.k.t.p. oscillator. Sce text for discussion.
is equal, but in opposite phase, to the voltage fed back through the tube.

The most commonly-used circuits for this purpose are shown in Fig. 6-16. Amplifiers using these systems of neutralization are known as plate-neutralized amplifiers. In each case, the midpoint of the plate tank circuit, either coil or condenser, is grounded. Thus the voltages at opposite ends of the tank are
essentially equal, but 180 degrees out of phase.
'l'he neutralizing and feed-back voltages are matched in amplitude by adjusting the capacitance of the neutralizing condenser, C_{6}.

In Fig. 6-16. the thivision of voltage across the tank circuit is dependent upon the ratio of the capaciances of the two sections of the tank condenser. Since these capacitances are equal in a split-stator condenser, the voltages at the ends of the tank circuit in respect to the cathode, which is connected to the center of the tank circuit through ground, are equal. Therefore the neutralizing voltage is the same as the feed-back voltage when the capacitance of the neutralizing condenser is equal to the grid-plate capacitance of the tube, including socket and other external stray capacitances across the elements.

In Fig. 6-1613, the voltage division for neutralization is dependent upon the ratio of inductances in the two sections of the coil. The coil usually is tapped at the center to give equal voltages at the ends of the tank circuit.

Push-Pull Triode Circuits

Fig. 6-16C and D show equivalent pushpull arrangements. In circuit D, better circuit balance can be maintained by using splitstator tank condensers. The rotors in this case should not be grounded.

Fig. 6-16 - Neutralized-triode amplifier circuits. A - Single tube with capacitive balance. B - Single tube with inductive balance. C and D show corresponding push-pull arrangements.
$\mathrm{C}_{1} \mathrm{~L}_{1}$ (grid tank) and $\mathrm{C}_{2} \mathrm{~L}_{2}$ (plate tank) are tuned to the frequency fed to the amplifier.
C_{6} - Veutralizing condenser approximatcly same capacitance as tulve grid-plate capacitance.
C_{3} - Grid by-pass condenser - 0.001 - $\mu \mathrm{ff}$. mica t1. $0.01-\mu \mathrm{fd}$. paper.
$\mathrm{C}_{5}-$ Plate by-pass condenser, $0.001-\mu \mathrm{fd}$, mica $\mathbf{t} 0.01$. $\mu \mathrm{fd}$. paper.
R_{1} - Grid-circuit isolating resistor - 100 ohms.
R FC - Plate-cirenit isolating radio-frequency choke 1 t, 2.5 mh .

Fig. 6.17-Additional, but less commonly-used nentralizing circuits. A - Grid neutralizing. $13-1$ link nentralizing. ($:$ - Inductive neutralization.
$C_{1} L_{1}, C_{2} L_{2}$ - T ank circuits tuned to operating frequency.
C_{3} - Neutralizing condenser - approximately sama capacitance as grid-plate capacitance of tuhe.
C_{4} - Plate by-pass condenser - $0.001-\mu \mathrm{fd}$. mica to $0.01-\mu \mathrm{fd}$. paper
C_{5} - Grid by-pass condenser - $0.001-\mu \mathrm{fd}$. mica to 0.01 . $\mu \mathrm{fd}$. paper.
C_{6} - Voltage-llocking condenser - $0.001-\mu \mathrm{fl}$. mica.
C_{7} - Variable condenser to tune trap circuit to oprorating frequency with L_{5} and grid-plate caparitance of tube. (See text.)
\mathbf{I}_{3}, L_{4} - Neutralizing links - 2 to 10 turns, depending upon frequency.
I 5 - Neutralizing trap coil - to tune to operating frequency with C_{7} and grid-plate capacitance of tube. (Sce text.)

In Fig. 6-16C, the r.f. choke in the plate circuit prevents r.f. grounding of the coil centertap (through the power supply) and the rotur of the condenser simultaneously. This condition is to be avoided because it sets up three tuned circuits - each half of the tank circuit in addition to the circuit as a whole. The isolating resistor in the grid circuit serves a similar purpose.

Grid Capacitive Neutralizing Systems

Additional. but less widely-used neutralizing circuits are shown in Fig. 6-17. The circuit of Fig. 6-17. is similar to that of Fig. 6-16A, except that the voltage division takes place in the grid circuit instead of the plate circuit. Any voltage which may be fed back to the grid circuit through the grid-plate capacitance of
the tube is divided in the grid tank circuit so that half appears at the grid, while the other half is fed, 180 degrees out of phase, back to the plate. In another similar version the grid tank coil, instead of the condenser, is used as the voltage divider, the circuit being comparable to Fig. 6-16B.

Link Neutralizing Circuit

The link neutralizing circuit of Fig. 6-17B sometimes is useful as an expedient to stabilize a screen-grid amplifier which is not sufficiently sereened or shielded. It has the advantage that it may be added readily to an alreadyexisting amplifier circuit without the necessity for the major alteration in either grid or plate cireuits which would be required to shift the ground point to the center of the tank circuit. The link provides the path for coupling back the neutralizing voltage and proper phasing is dependent upon the polarization of the two link coils. Connections to one of the link coils may be switched to obtain correct polarization.

Inductive Neutralization

The inductive neutralizing arrangement of Fig. 6-17C consists merely of making the phategrid caparitance of the tube part of a circuit tuned to the frequency at which the amplifier is designed to operate. Since such a circuit presents a high impedance to the flow of current at the frequency to which it is tuned (wavetrap), it prevents feed-hack. C_{7} may be

Fig. 6.18 - Screen-grid amplifier circuits, A - Singletube amplifier. B - Push-pull.
C4 - Screen by-pass condenser - $0.001-\mu \mathrm{fd}$. mica to $0.01-\mu \mathrm{fd}$. paper.
K_{1} - Screen voltage-dropping resistor.
K_{2} - Grid-circuit isolating reaistor - 100 ohms.
Other values same as Fig. 6-16.
adled for adjustment, although thls may decrease the frequency range over which one neutralizing adjustment will hold.

All of the circuits of Fig. 6-17 have disadvantages in amateur practice, particularly in respect to the tuning range over which a single adjustment of neutralization will hold.

SCREEN-GRID AMPLIFIER CIRCUITS

single-tube and push-pull sereen-grid amplifier circuits are shown in Fig. 6-18. The grounded sereen in transmitting-type tetrodes and pentodes serves as a shicld between the
plate and grid to reduce the grid-plate capacitance to the point where feed-back is insufficient to support oscillation. Thus tubes of this type are designed to be operated without neutralization when circuit simplicity is of importance. However, neutralization usually will result in more reliable stability. Poorlysereened audio tetrodes, such as the 61,6 and 6 V 6 , invariably require neutralization.

The power sensitivity of sereen-grid tube is much higher than that of triodes of comparable power rating. Therefore greater eare must be exercised in eliminating possible paths for feed-back coupling external to the tube.

Interstage Coupling Systems

Of the various systems that have been devised for feeding the output of one stage into the input of another, the inductive-link and capacitive systems are the most widely used in amateur transmitters. The link system is used principally in cases where there must be appreciable physical separation between stages, where balanced and unbalanced eircuits are to be coupled, or when minimum circuit capacitance is desired. Coupling is adjusted more readily with this system and harmonis conergy is not so easily coupled from stage to stage. Therefore link couphing has considerable advantage when TVI is a consideration. The capacitive system has the advantages of simplicity, cheapness and compactness, but it dues not lend it self so readily to the conditions listed above.

- INDUCTIVE COUPLING SYSTEMS

 Link CouplingThe link system, examples of which are shown in Fig. 6-19, consists merely of a twowire low-impedance line with each end terminated in a coil of a few turns coupled tightly: to the low-potential point of the output tank coil of the driver and the input tank coil of the driven stage. This low-potential point occurs at the "ground" end of the tank coil in unbalanced circuits (Fig. 6-19A, B and C) and at the center of the tank coil in balanced arrangements (Fig. 6-19B, C and D).

The coupling between the two stages is largely a matter of the tank-circuit Qs but it can be adjusted within limits either by changing the number of turns in the link winding. or by ehanging the coupling between the links and the tank coils. If increasing the number of link turns does not provide sufficient coupling, the tank-cireuit Q must be increased.

Fig. 6-19A shows the link system coupling two unbalanced circuits. This arrangement would be used, for instance, in coupling an oscillator or a screen-grid driver to the input of a single-tube stage.

The scheme at 13 would be suitable for coupling a neutralized or push-pull driver to a single-tube amplifier.

Fig. 6-19C shows the method applied in coupling the output of an unneutralized driver to a push-pull amplifier, while D) is the circuit to be used in coupling a neutralized or pushpull stage to another push-pull input.

Inductive Coupling

Another system which is used sometimes in coupting between an unbalanced driver and a balanced amplifier is shown in Fig. 6-20. The output coil of the driver stage is designed to resonate, with the driver-tube and stray circuit capacitances, near the desired operating frequancy. The amplifier input tank circuit tunes to the oporating frequency and serves to a considerable degree also to tune the output circuit of the driver stage, since the two coils are coupled quite tightly. L_{1} should be wound centrally over or inside L_{2} and the turns of L_{1} adjusted experimentally for optimum power transfer. sometimes both circuits are tuned, in which case the coils need not be coupled so tightly.

CAPACITIVE COUPLING CIRCUITS

In a capacitive coupling system, the output tank circuit of the driver stage serves also as the input tank eircuit of the driven stage, Several arrangements for coupling between balanced and unbalanced circuits, depending upon whether series or parallel power feed is desired, are shown in Fig. 6-21.

With capacitive coupling, the two stages rannot be separated physically any appreniable distance without involving loss in transferred power, radiation and the danger of instability because of feed-back which long high-impedance leads may provide. Since both the output capacitance of the driver tube and the input capacitance of the driven tube are lumped aeross the single tuned circuit, this sometimes makes it diffieult, with the highcapacitance of screen-grid tubes, to ohtain a tank circuit with a sufficient amount of inductance to provide an efficient circuit for the higher frequencies. Another disadvantage is that it is difficult to preserve circuit balance in

(B)

(C)

(D)

Fig. 6.I9-Link coupling circuits, A - Unbalanced output to unbalanced input. 3 - Balanced output to unbalanced input. C - Unhalanced ontput to halanced input. () - Balanced output to balanced inpit,
(i_{1} - Driver-stage plate tank condenser.
(i2 - Driven-stage grid tank condenser.
C_{3} - Plate by-pass condenser.
C_{4} - Grid by-pass condenser.
C_{5} - Veutralizing condenser.
L_{1} - I river output tank coil.
I.2- Driven-stage input tanh roil.
l.3-Link winding.
$C_{1} L_{1}$ and $C_{2} L_{2}$ are always tumed to the same frequency. RHC - R.f. choke.
coupling from a single-tube stage to a pushpull stage because the circuit tends to become unbalanced by the output capacitance of the driver tube which appears across only one side of the circuit. This does not, however, preclude its use for this purpose, if simplicity in circuit is considered of greater importance, for frequencies below 30 Mc .

The arrangements of Fig. 6-21A and B are most often seen with the plate tap of A and the grid tap of B connected to the top end of the coil. A is used when series driver plate feed is desired; B when series amplifier grid feed is wanted. In the circuit of C, the tank condenser and coil are grounded directly, but parallel power feed is required for the driver plate and usually for the amplifier grid although the grid leak sometimes is placed across the coupling condenser, C_{3}.

An arrangement which makes possible series feed to both plate and grid is shown at D. L_{1} in I) is a single coil, opened at the center for feeding in plate and biasing voltages. Since the by-pass condensers, C_{2}, are directly in the tank circuit, they should be of good-grade mica and capable of handling the r.f. current circulating through the tank circuit. The scheme is practical chiefly in low-power stages. Because it provides a "double-ended" output circuit, it may be used in a neutralized amplifier stage simply by the addition of neutralizing condenser C_{5}. The grid of the driven tube and the plate of the driver tube being connected across opposite halves of the tank circuit helps to distribute stray capacitances more evenly, therehy preserving a better circuit balance. A still better balance can be achieved by using a split-stator condenser at C_{1} and a single mica condenser at C_{2}, grounding the circuit at the split-stator rotor rather than between the two fixed condensers. Excitation may be adjusted, if necessary, by tapping the grid or plate, as may be required, down on the coil. Such a change, however, will necessitate readjustment of noutratization if the tank is used for neutralizing the driver as suggested.

The circuit of Fig. 6-21E is the preferred arrangement for coupling a neutralized driver to a singlo-tube amplifier in cases where series feed to the grid of the amplifier is not considered important. F shows the same system feeding a push-pull amplifier. If a more accurate balance is desired, a balancing condenser, C_{6}, can be used across the other half of the circuit to compensate for the driver-tube output capacitance.

Fig. 6.20 - Inductive coupling from unbalanced output to balanced input.
C_{1} - Driven-stage grid tank condenser.
C_{3} - Plate by-pass condenscr.
L_{t} - Self-resonant (approximately) output coil.
L_{2} - Driven-stage grid tank coil.
L_{1} and L_{2} should be coupled tightly.
RFI: - II.f. choke.

Fig. 6-21-Examples of capacitive coupling. A - Series plate feel, parallel grid feed. 18 - Parallel plate feed. series grid feed. C - Parallel feed in both plate and grid. 1) - Series feed in both plate and grid. E - Balanced output to unbalanced input, series plate feed, parallel grid feed. F - Single tuhe to push-pull.

C; - Tank condenser.

(i2 - Iy y-pass condenser.
(:3-Conpling condenser.
C_{4} - Driver plate blocking condenser.

Capacitive-Coupling Adjustment

Overcoupling ean be remedied by reducing the capacitance of the coupling condenser, or by tapping the grid of the driven tube across only a portion of the tank coil, as indicated in Fig. 6-2113. If increasing the capacitance of the coupling condenser does not provide sufficient coupling, the tank-circuit Q must be increased. This can be done by decreasing the L / C ratio of the tank circuit or by tapping the
(s - Driver nentralizing condenser.
Cif - Cirruit-halancing condenser. 6
1,1-Tank roil.
RFI: - R.f. chooke.
plate of the driver aeross a portion of the tank coil, as shown in Fig. 6-21A. However, it is preferable and often possible to choose a tankcircuit L / C ratio that will give the desired coupling with both grid and plate connected to the end of the tank circuit.

Coupling Condensers

Coupling condensers should be of the mica type with a voltage rating above the sum of the driver plate and amplifier biasing voltages.

Amplifier Design Considerations

PLATE-CIRCUIT VALUES

Tank-Circuit \mathbf{Q}

Power cannot be readily coupled out of a plate tank circuit if the (Q is too low. Also, harmonies are more readily coupled out of a tank circuit whose Q is low. On the other hand, a large C / L ratio causes high circulating current in the tank circuit, increasing the losses. Unless one of these factors is considered to be of greater importance than the other, a compromise Q value of 12 usually is selected.

With the conditions under which r.f. power amplifiers in amateur transmitters usually are operated, the L / C ratio for the same Q varies in proportion to the ratio of d.c. plate voltage fo plate current with the amplifier in operation athl loaded. The chart of Fig. 6 - 22 shows reeommended values of tank capacitance for a Q of 12 for a wide range of plate-voltage/platecurrent ratios for each of the low-frequency amateur bands. The values given apply to the type of plate tank circuits shown in Fig. 6-23A and B only. Because the tube is connected
across only half of the tank in the remainder of the circuits shown in Fig. 6-23, the total capacitance across the tank coil may be reduced to one-quarter that shown by the graph for the same plate-voltage/plate-current ratio. This means that in circuits in which a splitstator condenser is used, the capacitance of each section of the condenser may be half the value shown in the graph, since the two sections are in series across the coil.

The values shown in Fig. 6-22 are the capacitances which should be in actual use when the eircuit is tuned to resonance in the selected band - not the maximum rated capacitance of the tank condenser - including tube and circuit capacitances. They should be considered minimum values for satisfactory operation. They can be exceeded 50 to 100 per cent without involving an appreciable loss in circuit efficiency. The Q can be increased also by tapping the plate down on the tank coil, although this sometimes results in setting up a parasitic oscillatory circuit.

Plate Tank-Condenser Voltage

In selecting a tank condenser with a spacing between plates sufficient to prevent voltage breakdown, the peak r.f. voltage across a tank circuit under load, but without modulation, may be taken conservatively as equal to the d.e. plate voltage. If the d.c. plate voltage also appears across the tank condenser, this must be added to the peak r.f. voltage, making the total peak voltage twice the d.c. plate voltage, If the amplifier is to be plate-modulated, this: last value must be doubled to make it four times the d.c. plate voltage, because both d.e. and r.f. voltages double with 100 -per-econt plate modulation. At the higher plate voltages, it is desirable to choose a tank circuit in which the d.c. and modulation voltages do not appear across the tank condenser, to permit the use of a smaller condenser with less plate spacing. Fig. 6-23 shows the prak voltage, in terms of d.e. plate voltage, to be experted across the tank condenser in various circuit arrangements. These peak-voltage values are given assuming that the amplifier is loaded to rated plate current. Without load, the peak r.f. voltage will run much higher. Since a c.w. transmitter may be operated without load while adjustments are being made, although a modulated amplifier never should be operated without load, it is sometimes considered logical to select a condenser for a c.w. transmitter with a peak-voltage rating equal to that required for a 'phone transmitter of the same power. However, if minimum cost and space are considerations, a condenser with half the spacing required for 'phone operation can be used in a c.w. transmitter for the same carrion output, as indicated under lig. 6-23, if power is reduced temporarily while tuning up without load.

In the circuits of Fig. 6-23C, D and E, the rotors are deliberately conneeted to the posi-
tive side of the high-voltage supply, eliminating any difference in d.c. potential between the rotors and stators.

The plate spacing to be used for a given peak voltage will depend upon the design of the variable condenser, influencing factors being the mechanical construction of the unit, the dielectric used and its placement in respect to intense fields, and the condenser-plate shape and degree of polish. Condenser manufacturers usually rate their products in terms of the peak voltage between plates.

Plate Tank Coils

The inductance of a manufactured coil usually is based upon the highest plate-voltage/ plate-current ratio likely to be used at the maximum power level for which the coil is designed, following the logical conclusion that it is casier to cut off turns than to add them. Therefore in the majority of cases, the capacitance shown by Fig. 6-22 will be greater than

Fig. 6.22 - Chart showing minimum plate tank capacitances recommented with various ratios of plate voltage to plate current, for the six low-frequeney amateur bands. In the circnitas F, G and II of Fig. 6-23, the values show in by the graph may be divided by four. In circuits $\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{I}, \mathrm{J}$ and K , the capacitance of each section of the split-stator condenser may be one-half the value shown by the graph. The full graph values should be used for circuits A and B. These values are based on a circuit Q of 12.

or ground.

type are preferred. I'he capacitance should be large enough to have low reactance at the lowest operating frequency. For frequencies het ween 3.5 and 30 Mc., a capacitance of 0,001 $\mu \mathrm{fd}$. is commonly used. The voltage rating should be 25 to 50 per cent above the platesupply voltage.

By-pass condensers also should have low reactance at the operating froquency. Paper condensers with a caparitance of $0.01 \mu \mathrm{fd}$. are satisfactory for supply voltages up to 500 or 600 at frequencies up to at least 7 Me. Miea condensers, usually $0.001 \mu \mathrm{fl}$. , are proferable at the higher frequencies and greater plate voltages.

Voltage ratings should be doubled in the case of plate modulation.

R.F. Chokes

Parallel plate feed provides a considerable measure of protection against serious injury to the operator from accidental contact with high-voltage d.c. in the tank circuit. However,
that for which the coil is designed and turns must be removed to permit the use of the proper value of capacitance. At 28 Mc ., and somelimes 14 Mc., the value of capacitance shown by the chart for a high plate-voltage plate-current ratio will be lower than that attainable in practiee with the components a vailable. The design of manufactured coils usually takes this into consideration also and it may be found that values of eapacitance greater tham those shown in the graph (if stray eapacitanee is included) are required to tune these coils to the band.

Manufactured coils ate rated ateording 10 the plate power input to the tube or tubes when the stage is loaded. Nince the cireulating tank current is much greater when the amplifier is unloaded, care should be takin to operate the amplifier conservatively when unloaded to prevent damage to the coil as a result of excessive heating,

Plate-Blocking and By-Pass Condensers

Plate-blocking condensers should have low inductance: therefore eondensers of the iniea
the r.f. choke in this case is ralled upon to present a high impedance at the operating frequency if serious loss of power in the choke is to be avoided. In the design of mandactured r.f. chokes, an attempt is made to make the rhoke universally satisfactory for several a mateur bands. Howrever, when the transmitter is designed to operate on all amateur bands from 28 Me. to 3.5 Mc., loss in r.f. ehokes often oceurs on one or more of the bands. There is no simple remedy for this diffirulty aside from a shift to series plate ferd which, of eourse, nullifies the safoty angle. One possible remedy is the use of different chokes for cach hand, the rhokes boing plugged in with the tank eoil.

For frequencies between 3.5 and 30 Me., $2.5-\mathrm{mh}$. chokes are used whero the plate current is 125 ma . or less, and 1 mh . when the plate current is above 125 ma . In the circuit of Fig. (6-23I), the choke does not carry any current, so a low-current choke may be used, regardless of the power. In serbes-fed circuits in which the choke is used to isolate the coil center-tap from ground, the value of the choke indurtane is not eritical.

GRID TANK CIRCUITS

The value of capacitance to be used in a grid tank circuit when employing link coupling is not critical so long as the Q is high enough to permit satisfactory coupling to the driver stage. A eapacitatice of $200 \mu \mu \mathrm{fd}$. should b_{o}. sufficient in most cases for unbalanerd grid tank circuits tuned to 3.5 Me., with the value decreased in propertion as the frequency increases, as given under Fig. 6-24. For unbalanced grid tank cireuits, the total condenser capacitance may be cut in half, making the eapacitance of each section of a sphit-stator rondenser the same as that of the single comdenser used in an unbalanced input grid lank rircuit.

The Q can also bo inereased by tapping the grid down on the input eoil, at some risk, however, of setting up a parasitie circuit.

Approximate tank-condenser voltage ratings are suggested under lig. 6-24. Tank coils with a power rating equal to that of the driver plate tank coil should le used in the grid tank circuit.

The resistor R in Fig. ($6.24($ and 1$)$ is remmmended in place of the r.f. choke customarily used in the same position, to eliminate the possibility of forming a low-frequency parasitic t.g.t.p. oscillator in conjunction with the r.f. choke usually used similarly in the plate circuit. A resistance of 100 ohms will be sufficient in most cases. If a grid leak is used, the 100ohm resistor will mot be meressary.

(A)

(C)

(B)

(D)

Fif. o-2l-Wiagrams for A-tormining grid tankecondenser caparitance. (: whould he approximately $200 \mu \mu$ fot.
 $25, \mu \mathrm{fd}$. for 28 Ml .

The tank eondenser should have a voltage rating approsimately equal th the operating bias voltage plus 20 iner cent of the plate voltage for eirenit A, twice thiw value for cirruit 13 and carls section of the condenser in cireuit 1 , while the biasing voltage must be added to this latter figure in determining the voltage rating of each section of the condenaer in cirruit $C . K$ is an ianlating resistor of 110 ohms.

R. F. Power-Amplifier-Tube Operating Factors

Transmitting-tube instruction sheets and data tables specify the limitations on various dectrode voltages and currents which should be observed in the operation of transmitting tubes to insure normal tube life. Included also are sets of recommended operating conditions which may be followed as a guide in ohtaining rated output with good efficiency consistent wit h reasonable driving power, alt hough it may be desirable to depart from these somewhat under certain conditions.

GRID-CIRCUIT RATINGS

Grid Bias

Two values of grid-biasing voltage are of interest in the practical operation of r.f. power amplifiers. These are protective bias and operating bias.

When phate (and screen) voltage is applied, most tubes will draw appreciable plate current in the absence of any grid bias. Therefore protective bias must be used with all but "zero-bias"-type tubes to hold the power input to the tube below the rated dissipation value when excitation is removed without removing plate (and screen) voltage. Without excitation, the amplifier delivers no power. Therefore any power input is dissipated in heat which would
ruin the tube in a short length of time. This condition exists when the transmitter is keyed ahead of the amplifier, while tuning adjustments are being made, or through failure of a crystal oscillator to function or other accidental failures.

Operating bias is the value of biasing voltage between grid and wathode when the amplifier is being driven and delivering power. The optimum value of biasing voltage for operating under a given set of conditions is listed in tube tables and manuals, and with triodes is normally two to three times the cut-off bias value - the value neressary to reduce the plate eurrent to zero with plate voltage applied.

Protective bias may be any value between that which limits the input to the tube to its rated plate (and screen) dissipation as a minimum, and the operating value as a maximum. It is common practice. however, to set the value at some point between that which is necessary to cut off plate current completely and the operating value. With fixed plate voltage, the cut-off value for a triode can be determined quite closely by dividing the plate voltage by the amplification factor ohtained from the tube data shect. For screen-grid tubes,

Fig. 6-25 - Various systems for oltaining protective aml operating bias for r.f amplifiers, A - Grid-leak. B - Battery. C - Combination battery and grid leak. D - Grid leak and adjusted-voltage bias pack. F - Combination grid leak and voltage-regulated pack. F - Cathode bias.
the amplification factor and voltage of the sereen must be used instead. In cases where this is not included in the operating data, the approximate cut-off value may be obtained from an inspection of the plate-current platevoltage curves which show the plate current for a wide range of plate, screen and biasing voltages.

A saving in the operation of a c.w. amplifier sometimes can be effected by adjusting the protective bias so that the tube (or tubes if more are operated from the same supply) draws the same current as the required bleeder resistance for the power supply (see Chapter Seven), if this can be done without exceeding the dissipation rating of the tube. This saves the cost of the bleeder resistor and some of the power it wastes and also improves the regulation, since the difference between minimum and maximum load as the amplifier is keyed is less.

A factor which must be considered in determining the value of bias which will protect the tube is plate- (and screen-) voltage regulation. If the power-supply regulation is poor, or if the plate or screen is fed from a resistance voltage divider or a voltage-dropping resistor, the electrode voltages will soar as the tube draws less than normal operating current and therefore an increase over the calculated value of cut-off bias will be required to bring the
current to zero. This condition is encountered most often in the operation of a screen-rrid tube where the sereen is not fed from a fixedvoltage source. In such cases, care should be taken to make certain that the proper operating bias is not exceeded when excitation is applied.

Several different systems for obtaining bias are shown in Fig. 6-25. At A, bias is obtained entirely from the voltage drop across the grid leak, R_{1}, caused by the flow of rectified grid current, when the amplifier is being driven. This system has the desirable feature that the biasing voltage, being dependent upon the value of grid current, is kept adjusted close to proper operating value automatically over a considerable range of excitation levels. However, when excitation is removed, grid-current flow ceases and the voltage across R_{1} falls to zero and there is no bias. Therefore this system provides no protection for the amplifier tube in case excitation fails or is removed.

A battery delivering the required operating bias is used in the arrangement of Fig. 6-2513. Since the biasing voltage still remains when excitation is removed, plate-current fow ceases and the tube is protected. A factor which must be taken into consideration when dry batteries, such as " B " batteries, are used, is the resistance of the batteries. If the internal resistance is high, the resistance will cause an increase.
by grid-leak action, in the operating bias above that normally delivered by the batteries. Batteries develop internal resistance with age and should be replaced from time to time. Another fartor is that the direction of gridcurrent flow is such as to reverse the normal direction of current through the battery. This acts to charge the battery. A battery which has heen in use for some time, particularly if the grid current under excitation is high, will show a considerably higher-than-rated terminal voltage because of the charging action of the grid current. The terminal voltage of a battery used in transmitter bias service where grid current flows cannot be used as an indication of the condition of the battery. Its internal resistance may be high, even though it shows normal or above-normal terminal voltage. If the grid current in a battery-biased stage falls off after a period of operation and no other reason is obvious, it is probable that the biasing battery should be replaced. The battery life which may be expected in bias service with a given value of grid current will be approximately the same as it would be if that same current were being drawn from the battery.
In Fig. 6-25(${ }^{\prime}$, the battery voltage is reduced to the protective value. When excitation is applied, grid-leak action through R_{2} supplies the additional biasing voltage necessary to bring the total up to the operating value. This combination of fixed and grid-leak bias is the most popular system, since it combines the safety of protective fixed bias and a measure of automatic adjustment of the operating value through grid-leak action.

In Fig. 6-251), a power pack is used to supply protective bias. The output of the power pack is connected across the grid resistor which is of the normal grid-leak value for the tube. The peak voltage output of the transformer used in the power pack must not exceed the operating-bias value. A bleeder resistance cannot be used across the output of the pack, nor can the output voltage be reduced by means of a voltage divider or series dropping resistor without affecting the biasing voltage when excitation is applied.

These restrictions on the use of a power pack can be avoided by the addition of a voltageregulator tube across the output of the pack, as shown in Fig. 6-2:5E. The voltage across the regulator tube remains constant with or without grid current flowing. By making the voltageregulator series resistor, R_{6}, of proper value. the output voltage of the pack may be anything within reason above a minimum of approximately twice the voltage rating of the VIR tube. These tubes are available for 75,90 , 105 and 150 volts and each tube will handle up to 30 or 40 ma . of grid current. Vil tubes may be used in series to obtain regulated voltages above 150 , and in parallel for grid currents above 40 ma . It is usual practice to use a VIR tube, or combination of VR tubes in series or series-parallel, with the minimum voltage rat-
ing which will give plate-current cut-off, and obtain the additional voltage required to bring the total hias up to the operating value by grid-leak action when exritation is applied, as with battery bias in Fig. 6-25C. The use of Vle tubes for this purpose is discussed more fully in Chapter Seven.

A single source of fixed biasing voltage, such as batteries or VI? tubes in series, may be used to provide protective bias for more than one amplifier stage, tapping the batteries or connecting to the junction of the tubes in the VIR series if lower biasing voltages are required for other stages. In this case, the current flowing through the fixed-bias source is the sum of the grid currents of the individual stages obtaining bias from the source.

In Fig. 6-25F, bias is obtained from the voltage drop across a resistor in the cathode (or filament center-tap) lead. Protective bias is ohtained by the voltage drop across R_{3} as a result of plate (and screen) current flow. Since plate current must flow to obtain a voltage drop across the resistor, it is obvious that cutoff protective bias cannot be obtained by this system. When excitation is applied, plate (and screen) current increases and the grid current also contributes to the drop across R_{5}. thereby increasing the bias to the operating value. Since the voltage between plate and cathode is reduced by the amount of the voltage drop across R_{5}, the over-all supply voltage must be the sum of the plate and operatingbias voltages.

The resistance of R_{j} should be adjusted to the value which will give the correct operating bias with rated grid, plate and screen currents flowing with the amplifier loaded to rated input. When excitation is removed, the input to most types of tubes will fall to a value that will prevent damage to the tube, at least for the period of time required to remove plate voltage.

Calculating Bias-Resistor Values

The calculation of the required grid-leak and cathode biasing-resistor values is not difficult. For simple grid-leak bias, as shown in Fig. $6-25 \mathrm{~A}$, the resistance is obtained by dividing the required operating-bias voltage by the rated grid current.

Example: Required operating bias $=100$ volts.
Rated grid current $=20 \mathrm{ma} .=0.02 \mathrm{amp}$.
Grid-leak resistance $=\frac{100}{0.02}=5000$ ohms.
If a combination of grid-leak and fixed protective bias is used, the amount of protective bias should be subtracted from the required operating-bias voltage before the calculation is made (except in the case of the arrangement of Fig. 6-25D).
Example: Required operating bias $=150$ volts.
Protective bias from battery or V'R tube $=90$ volts.
$1.50-90=60$ volts $=$ required bias from grid leak.
Rated grid current $=10 \mathrm{ma} .=0.01 \mathrm{amp}$.
Grid-leak resistance $=\frac{60}{0.01}=6000$ ohms.

In the case of a cathode biasing rosistor, the rated grid, sereen and plate currents under load are added together. The required operating voltage is then divided by this total current to obtain the resistance.

$$
\begin{aligned}
& \text { Example: Iated grid current }=15 \mathrm{ma},=0.015 \mathrm{amp} \text {, } \\
& \text { Rated screen current }=20 \mathrm{ma},=0.02 \mathrm{amp} \text {, } \\
& \text { Rated plate current }=200 \mathrm{ma}=0.2 \mathrm{amp} \text {. } \\
& \text { Total rated cathode current }=235 \mathrm{ma} .=0.235 \text { :anm, } \\
& \text { Required operating hias }=150 \text { volts. } \\
& \text { Cathode resistance }=\frac{1.50}{0.235}=638 \text { ohms, }
\end{aligned}
$$

For two tubes in parallel or push-pull that use a single common resistor in examples similar to those above, the calculated value of resistance should be eut in half.

The power rating of the resistor may be deLermined from Ohm's Law:

$$
I^{\prime}=I^{2} R
$$

Example: In the first example above for wrid-leati resistance.
$I=20$ ma. $=0.02$ แル॥. $I^{2}=0.00014$
$R=$ g(m) oluns.
$P^{\prime}=(0.01014)($ (5)(HO) $)=2$ watte.
Example; In the above example for cathode resistor. $I=235$ nt: $=0.235$ (1แ!). $I^{2}=0.055$
$R=6: 38$
$P=(0.0 .5)(038)=3.5,1$ witts,

Maximum Grid Current

When a Class C amplifier is properly exrited, and the grid is driven positive over part of the cyele, rectifieation takes place as it does in a diode. The rectified grid current flows between grid and cathode within the tube and thene through the external d.c. circuit which must always be provided, comerting grid and "athode. This external circuit includes the bias source (grid leak or voltage source) and (ither the grid r.f. choke with parallel feed, or the tank coil in sories-feed arrangements. The flow of rectified current causes heating of the grid. As with the plate, there is a limit to the heat which the grid can dissipate safely. This limit is expressed in terms of maximum d.e. grid enrrent which shouhd not be exceeded in regular operation of the amplifier. Efficient operation usually ean be attained with grid current below the maximum rated value.
The rated total grid current of two tuber in parallel or push-pull is twice that of a single tube of the same type.

Excitation

Excitation, or driving power, is the r.i. power fed to the grid of the amplifier by a preceding oscillator or amplifier. For efficient oporation, a triode amplifier requires a driver rapable of delivering 15 to 20 per cent as much power as the rated output of the amplifier. Screen-grid tubes require much less - usually. from 5 to 10 per cent of their rated power output. To cover tank-circuit and coupling losses, a driver capable of supplying several times the driving power listed in the tube data should bre vial.

Two tubes ia parallel or push-pull require t wice the driving power of a single tube of the same type under similar conditions.

PLATE-CIRCUIT RATINGS

Power Output

The figure for power out put given in the tube data is the r.f. power that the tube can be expected to deliver to the tank circuit (not the power output from the tank which is somewhat lower) under the conditions sperified, at the fundamental frequency.

Power Input

Dower input for both triodes and screen-grid tubes is the d.c. power input to the plate rir"uit. It is the product of the d.c. plate voltage and plate current.

> Exumple: Plate voltage $=1250$ volts.
> Plate current $=150 \mathrm{ma},=0.15$ amp,
> Power input $=(1250)(0.15)=1 \times 7.5$ watts.

Plate and Screen Dissipation

All of the d.c. power fed to the plate circuit of an amplifier is not converted into r.f. power. Part of it is wasted in heat within the tube. There is a limit to the amount of power that a tube can dissipate in the form of heat without danger of damage to the tube. This is the maximum rated plate dissipation given in lube data. The power dissipated is the difference between the d.c. power input and the r.f. power output.

Since the d.c. power furnished to the sereen of a pentode or tetrode does not contribute to the r.f. output, it is entirely dissipated in heating the screen, and the maximum-input rating should be carefully observed.

Plate Efficiency

The efficiency of an amplifier is the ratio of r.f. power output to the d.c. power input.

> Example: D.c. power input $=175$ watts.
> R.f. power output $=125$ watts.
> Dissipation $=175-125=50$ watts.
> Efficiency $=\frac{125}{175}=0.714=71.4$ per cent.

The plate efficiency at which an r.f. power a mplifier can be operated depends chiefly upon

Fig. 6-26-Curve showing relation between driving power and plate-circuit efficiency of an r.f. power-amplifier stage.
the relative driving power delivered to the input circuit. Fig. 6-26 shows that the driving power must be increased considerably out of proportion to the increase in efficiency at the higher efficiencies. An efficiency of 65 to 75 per cent represents a satisfactory balance between power output and driving power.

Maximum Plate Current and Voltage

All voltage figures given in tube data, unless otherwise specified, refer to the voltage between the electrode mentioned and cathode, or filament center-tap. Included are figures for maximum rated plate voltage and plate current. These are the respective maximum values that should be used under any circumstances. Neither should be exceeded to compensate for a lower-than-maximum value of the other in attempting to bring the power input up to permissible level. These maximum values should not be used simultaneously unless it is possible to do so without execeding the rated plate dissipation.

OTHER OPERATING FACTORS

Filament Voltage

The filament voltage for the indirectlyheated cathode-type tubes found in low-power classifications may vary 10 per cent above or below rating without seriously reducing the life of the tube. But the voltage of the higher-
power filament-type tubes should be held closely between the rated voltage as a minimum and 5 per cent above rating as a maximum. Care should be taken to make sure that the plate power drawn from the power line does not cause a drop in filament voltage below the proper value when plate power is applied. When the filament transformer is found not to deliver the required filament voltage, the voltage may be adjusted by means of a resistor in series with the transformer primary if the transformer voltage is too high, or by one of the line-voltage adjusting schemes described in Chapter Seven that either boosts the voltage or reduces it as necessary.

Thoriated-type filaments lose emission when the tube is overloaded appreciably. If the overload has not been too prolonged, emission sometimes may be restored by operating the filament at rated voltage with all other voltages removed for a period of 10 minutes, or at 20 per cent above rated voltage for a few minutes.

Interelectrode Capacitances

The value given in tube data for grid-plate capacitance is useful in determining the value of capacitance necessary to neutralize a triode. The input- and output-capacity values are helpful in arriving at a figure of minimum circuit capacitance, particularly where capacitive coupling is used.

Adjustment of R. F. Amplifiers

GENERAL TUNING PROCEDURE

Metering

Sets of typical operating conditions for r.f. amplifiers are given in all tube-data sheets and these should be followed closely for maximum output with a good balance between efficiency and required driving power. In amateur service, ICAS (intermittent commercial-amateur service) ratings may be used when this set of ratings is given. When the available plate voltage falls between values given in the data, satisfactory performance may be obtained by using intermediate values for the other voltages and currents listed.

Fig. 6-27 shows the connections for a voltmeter and milliammeter to obtain desired readings. While cathode metering often is used for reasons of safety to the operator and meter insulation, it is frequently difficult to interpret readings that are the resultant of three currents, one of which may be falling while the other two are increasing. Fig. 6-28 shows a commonly-used system for switching a single meter to read current in any of several different circuits. The resistors, R, are connected in the various circuits in place of the milliammeters shown in Fig. 6-27. Since the resistance of R is several times the internal resistance of the milliammeter, it will have no practical
effect upon the reading of the meter itself.
When the meter must read currents of widely differing values, a meter with a range sufliciently low to accommodate the lowest values of current to be measured may be selected. In the circuits in which the current will be above the scale of the meter, the resistance of R can be adjusted to a lower value which will give the meter reading a multiplying factor. (See Chapter Sixteen.) Care should be taken to observe proper polarity in making the connections between the resistors and the switch.

Input-Circuit Adjustment

In setting up an r.f. power amplifier for operation, the necessary provisions for grid bias should be made first. ("R.F. PowerAmplifier Tube Operating Factors," this chapter.) The output of the driver (the oscillator and whatever intermediate amplifier stages there may be) should have been checked previously and found to be adequate. The amplifier biasing system should be connected, and if it includes a fixed protective supply, this should be turned on. No plate or screen voltage should be applied to the a mplifier, however.

In general, with capacitive coupling, an amplifier grid-current reading should be obtained when the driver is coupled to the amplifier and tuned to resonance. If the driver is

Fig. (0.27 - Diagrams showing placement of voltmeter and milliammeter to ohtain desired measurements. A - Series grid feed, parallel plate feed and series sereen voltage-dropping resistor. $13-1$ 'arallel grid feed, series plate feed and sereen voltage divider.
however, usually is an indication of driver overload. Maximum driver output (maximum amplifier grid-current reading) usually will be obtained with the coupling adjusted to the point where there is still a fair amount of dip in plate current. The dip is likely to be less with a fully-loaded sereen-grid tube than with a triode. Wach time an adjustment in coupling is made, the above tuning process should be repeated.

Proper excitation to am amplifier is indicated when the recommended grid current is obtained simultaneously with recommended grid bias, with the amplifier operating and fully loaded. But here, for preliminary tuning, any grid-current reading approximating the recommended value will suffice.

Output-Circuit Adjustment

At this point, the driver should be turned off and the amplifier checked for parasitic oscillation, (Wee "Parasitic Oscillations," this chapter.)

The next step in the adjustment of a triode amplifier is that of neutralization. (Ser " Neutralizing Procedure," this chapter.)

After the amplifier stage has been stabilized, the output circuit may be adjusted. With normal hias and excitation applied again, reduced plate voltage can now be turned on and the plate tank circuit resonated.

Resonance in the plate circuit of ant r.f. power amplifier is accompanied by a dip in plate current similar to
a simple VFO or a crystal oscillator of the lierce type, with no separate tuned outputcireuit tank, the operation is merely one of adjusting the coupling to the amplifier until rated amplifier grid current, or the maximum consistent with satisfactory oscillator stabilit y, is obtained. If link coupling is used, the grid tank circuit must also be tuned to resonance as indicated by the peak in grid current.

With all eapacitive-coupled drivers having a tuned output tank, maximum amplifier grid current should occur at or very elose to the point where the driver plate current dips to a minimum. With link coupling, the amplitier grid tank condenser should first be set at minimum or maximum, whichever is judged to be farthest from resonance. The driver output circuit should then be tuned for minimum plate current. Then the grid tank condenser should be swung for maximum grid eurrent. As a final tuning adjustment, the driver plate tank circuit should be retuned to make sure that it is at the minimum point of its platecurrent dip. As the coupling is increased, the driver plate-current dip will become less pronounced and may almost disappear altogether if the coupling is increased sufficiently. This,
that shown in Fig. 6-11. 'lhis dip is caused by the increase in tank impedance in the plate circuit when the tank is tuned to resonance. When the tank is not at resonance, the platecircuit impedance is low and therefore the plate current is high. An external load coupled to the tank circuit lowers the impedance and therefore the plate current at resonanee increases.

If no other means is available for reducing plate voltage, a 115 -volt lamp of $100-$ to $150-$ watt size may be connected in series with the primary of the plate transformer, provided it is separate from the transformer supplying filaments. A dummy load (see "Checking Power Output," this chapter) should now be coupled to the output tank circuit and the tank retuned to resonance. The minimum plate current at the dip at resonance should be higher after the load is connected and the dummy load should show an indication of output. Full plate voltage may now be applied and the plate tuning checked carefully for the dip at resonance. When testing at full plate voltage, care should be taken not to operate the amplifier off resonance longer than absolutely necessary, because
the tube may be seriously damaged.
If the plate current at full voltage is not up to the rated value, the coupling to the load should be increased until the plate current at resonance is the rated value. Under no circumstances should the plate circuit be detuned to obtain the desired increase in plate current, since this results in a decrease in power output and an incroase in dissipation. If the plate current exceds the rated value at resonance, the coupling to the load should be reduced.

Final Adjustment

The grid eurrent and biasing voltage now should be checked while the amplifier is in operation under load. In a properly-neutralized triode amplifier, the grid current normally will fall off when plate voltage and load are applied. If it does not, it is an indication of regeneration and the amplifier should be checked for feed-back, either through the tube because of incomplete neutralization, or through paths external to the tube.

If the grid curent falls below the recommended value when plate voltage and load are applied, the biasing voltage should be checked. If this is found to be above the recommended value, it should be deereased. This deerease in hias should serve to increase the grid current. If the grid current is still too low, or if the biasing voltage also checks low, the excitation must be incrased by tightening the coupling to the driver or raising its plate voltage if aither or both ean be done without exceeding the driver-tube rating.

If the increase in excitation causes an increase in plate current to above the rated value, the coupling to the load should be reduced. The amplifior is correctly adjusted when all of the recommended values are obtained simultancously.

SPECIAL ADJUSTMENT OF PUSH. PULL AMPLIFIERS

Proper push-pull operation requires an accurate balance between the two sides of the circuit. Otherwise the dissipation will not be distributed evenly between the two tubes, one being overloaded if an attempt is made to operate the amplifier at full rating. Unbalance is indicated when the grid and/or plate currents are not equal and, if serious, is accompanied by a visible difference in the color of the tube plates. If interchanging the tubes does not change the unbalance, the circuit is not symmetrical electrieally.

If the coil center-tap in split-stator tank circuits is sufficiently well-isolated from ground, the balance will depend upon the accuracy of apacitance balance in the tank condensers, the length of leads connecting the tubes to the eondenser (including the return lead from rotor to filament) and the settings of the neutralizing condensers. Unbalance in the plate circuit will seldom influence the balance in the grid
circuit, but the opposite may not be true. Small differences often may be taken care of by a readjustment of the neutralizing condensers, possibly to slightly unequal settings. Ieng thening one or the other of the leads betwern the tubes and the tank condenser will alter the balance, particularly in the plate circuit. In extremes it may be neressary to place a trimmer arross one section of the split-stator condenser.

If the coil center-tap is grounded, unbalance usually ean be corrected by shifting the coil center-tap. Both condenser and coil should not be grounded simultaneously, since this may result in a condition where the resonance point for each tube comes at a different setting of the tank condenser.

OPERATION OF SCREEN-GRID AMPLIFIERS

Most of the foregoing procedure relating to triodes applies also to screen-grid tubes. However, principally because of the presence of the sereen, there are additional factors which must be considered. Most screen-grid transmitting tubes are designed to operate without neutralization. Itowever, this assumes certain further considerations. Beatuse of the high powersensitivity of such tubes, the feed-back coupling needed for oscillation is very small. Iseyond the requirement of a well-sereened tube, any possible feed-back coupling external to the tube must be reduced to a minimum. Sperial care must be used in the construction so that the input and output tank-circuit components and their respective wiring are well isolated from each other through judicious placement,

Fig. 6-28 - Method of switching a single milliammeter, The resistors, R, should be 10 to 20 times the internal resistance of the meter; $t^{7} \mathrm{ohms}$ will usually be satisfactory. S_{1} is a 2 -section rotary switch. Its insulation should be ceramic for high voltages, and an insulating coupling should always be used between shaft and control knob.
and by shielding as completely as possible. Because it is sometimes difficult to eliminate all external capacitive coupling, it may be necessary to neutralize a screen-grid amplifier to eliminate all tendency toward oscillation.

Considerable dependence must be placed also on the fact that, from other considerations, a screen-grid amplifier should always be operated fully loaded, since the loading helps to prevent oscillation. Return leads to cathode.

Fig. 6.29 - Screen protective circuit for screen-grid amplifier as an alternative to the use of fixed bias. R_{1} is the normal grid leak for the amplifier and K_{2} the recom. mended screen volt-age-dropping reaistor.
common to both plate and grid circuits, should be avoided. It is particularly important that the cathode be grounded directly or by-pussed at the socket terminal and that the screen be by-passed thoroughly to the cathode with a mica condenser and short leads. The use of an un-by-passed parasitic-suppressing resistor at the screen is not recommended, since it aggravates instability at the operating frequency.

An indication of the coupling existing between input and output circuits can be obtained by the use of a sensitive r.f. indicator coupled to the output circuit as mentioned under "Neutralizing Procedure" in this chapter.

Other measures that can be taken to assist in stabilization at the operating frequency are the use of at least partial fixed bias and a nonresonant or detuned input circuit. With sufficient power from the driver, it is possible to secure rated excitation without having the grid circuit tuned close enough to resonance to start oscillation. In such a case the grid circuit should be detuned to the high-frequency side of resonance. Care should be taken that the grid circuit does not become resonant when the transmitter is tuned to another frequency.

Screen Considerations

For greatest protection to the tube, the sereen voltage should be supplied from a series voltage-dropping resistor or a "light" voltage divider. When the sereen is operated from a fixed-voltage source, the screen current increases rapidly with even slight amounts of overdrive or underloading. Since the series resistor serves to drop the voltage as the screen current increases, it affords a measure of protection. However, this same action may make it necessary to adjust the excitation with more than ordinary care if rated output is to be obtained. When a screen resistor or voltage divider is used, screen voltage should always
bo checked after each adjust ment of excitation and loading to make sure that it is at rated value.
A screen-grid tube should never be operated at full screen voltage without plate voltage and full load. The screen current runs to damaging proportions under such conditions, especially if the screen is operated from a fixed-voltage source.

When plate and screen voltage and load are applied to a screen-grid amplifier, the grid current may increase, decrease or remain about the same, depending largely on the screenvoltage adjustment in relation to excitation.

Aside from the use of fixed bias, a screen-grid tube can be protected against excessive input when excitation is removed by the scheme shown in Fig. 6-29. A 6Y6G tetrode is connected as a low- μ triode. Since it is connected to the same point at the grid leak, the same bias appears at the grid of the protective tube and the grid of the amplifier. So long as excitation is supplied, the bias is sufficient to cut off the protective tube and it has no effect upon the operation of the amplifier. However, when exitation fails, the bias drops to zero and the $61^{\circ} 6$ draws current through the screen resistor, dropping the screen voltage to a point where the input to the amplifier is held within the dissipation rating.

CHECKING POWER OUTPUT

Dummy Loads

As a check on the operation of an amplifier, its power output may be measured by the use of a load of known resistance, coupled to the amplifier output as shown in Fig. 6-30. At A a thermoammeter, A, and a noninductive (ordi-

Fig. 6.30 - "Iummy-antenna" circuits for chroking power cutput and making adjustments under load without applying power to the actual antenna.
nary wire-wound resistors are not satisfactory) resistance, R, are connected across a cuil of a few turns coupled to the amplifier tank coil. The higher the resistance of R, the greater the number of turns required in the coupling coil. A resistor used in this way is generally called a dummy antenna. The loading may readily be adjusted by varying the coupling between the two coils, so that the amplifier draws rated plate current when tuned to resonance. The power output is then calculated from Ohm's Law:

$$
P(\text { watts })=I^{2} R
$$

where I is the current indicated by the thermoammeter and R is the resistance of the noninductive resistor. Special resistance units are a vailable for this purpose, ranging from 73 to 600 ohms (simulating antenna and transmis-sion-line impedances) at power ratings up to 100 watts. For higher powers, the units may be connected in series-parallel. The meter scale required for any expected value of power output may also be determined from Ohm's Law:

$$
I=\sqrt{\frac{P}{R}}
$$

Incandescent light bulbs can be used to re-
place the special resistor and thermoammeter. The lamp should be equipped with a pair of leads, preferably soldered to the terminals on the lamp base. The coupling should be varied until the greatest brilliance is obtained for a given plate input. In using lamps as dummy antennas a size corresponding to the expected power output should be selected, so that the lamp will operate near its normal brilliancy. Then, when the adjustments have been completed, an approximation of the power output can be obtained by comparing the brightness of the lamp with the brightness of one of similar power rating in a $115-\mathrm{volt}$ socket.

The circuit of Fig. 6-3013 is for resistors or lamps of relatively high resistance. In using this circuit, care should be taken to avoid accidental contact with the plate tank when the power is on. This danger is avoided by circuit C , in which a separate tank circuit, $L C$, tuned to the operating frequency, is coupled to the plate tank circuit. The loading is adjusted by varying the number of turns arross which the dummy antenna is connected on L and by changing the coupling between the two coils. With push-pull amplifiers, the dummy antenna should be tapped equally on either side of the center of the tank when the circuit of Fig. 6.3013 is used.

Frequency Multiplication

- SINGLE-TUBE MULTIPLIER

Output at a multiple of the frequency at which it is being driven may be obtained from an amplifier stage if the out put circuit is tuned 10 a harmonic of the exciting frequency instead of to the fundamental. Thus, when the frequency at the grid is 3.5 Mc., output at 7 Me., 10.5 Mc., 14 Mc., ete., may be obtained by tuning the plate tank circuit to one of these frequencies. The circuit otherwise remains the same as that for a straight amplifier, although some of the values and operating conditions may require change for maximum multiplier efficiency.

Efficiency in a single- or parallel-tube multiplier comparable with the efficiency obtainable when operating the same tube as a straight amplifier involves decreasing the operating angle in proportion to the increase in the order of frequency multiplication. Obtaining output comparable with that possible from the same tube as a straight amplifier involves greatly increasing the plate voltage. A practical limit as to efficiency and output within normal tube ratings is reached when the multiplier is operated at maximum permissible plate voltage and maximum permissible grid current. The plate current should be reduced as necessary to limit the dissipation to, the rated value by increasing the bias. High efficiency in multipliers is not often required in practice, since the purpose is usually served if the frequeney
multiplication is obtained without an appreciable gain in power in the stage.

Since the input and output circuits are not tuned close to the same frequency, neutralization usually will not be required. Instances may be encountered with tubes of high transconductance, however, when a doubler will oscillate in t.g.t.p. fashion, requiring the inthoduction of neutralization. The link neutralizing system is convenient in such a contingency.

OTHER MULTIPLIER CIRCUITS

Push-Pull Multiplier

A single- or parallel-tube multiplier will deliver output at either even or odd multiples of

Fig. 6-31 - Circuit of a push-push frequency multiplier for even harmonies. The grid tank cirruit. $L_{1} C_{1}$, is tuned to the frequency of the preceding driving stage, while the plate tank circnit, $L_{2}(\cdot)$, is tuned to an even multiple of that frequency, usually the second harmonic. C_{3} is the plate by-pass capacitor, usually a 0.01 - $\mu \mathrm{fd}$. paper condenser, while RFC is a 2.5 -mh. r.f. choke.
the exciting frequency. A push-pull multiplice does not work satisfactorily at even multiples because even harmonics are largely canreled in the output. On the other hand, amplifiers of this type work woll as triplers or at other odd harmonics. The operating requirements are similar to those for single-tube multipliers.

Push-Push Multipliers

A two-tube circuit which works wedl at even harmonies, but not at the fundamental or odd harmonies, is shown in Fig. 6-31. It is known as the push-push circuit. The grids are eommected in push-pull while the plates are conneeted in parallel. The efficiency of a doubler using this cireuit may approach that of a straight amplifier moder similar operating conditions, beratase there is a plate-current pulse for each cycle of the output frequeney.

This arrangement has an advantage in some applications. If the heater of one of the tubes is turned off, making the tube inoperative, its grid-plate capacitance, being the same as that of the remaining tube, serves to neutralize the circuit. Thus provision is made for either straight amplification at the fundamental with a single tube, or doubling frequency with two tubes as tlesired.

Multiplications of four or five sometimes are used to reach the bands above 28 Me. from a lower-frequeney erystal, but in the majority of lower-frequeney transmitters, multiplieation in a single stage is limited to a factor of two or three, berause of the rapid derline in prateticably obtainable efficientry as the multiplication factor is incrased. Soren-grid tubes make the best frequency multipliers because their high power-sensitivity makes them easier to drive properly than triodes.

Parasitic Oscillations

Before placing the amplifier in operation, measures should be taken to make sure that the amplifier will function in a stable manner. In addition to the possibility of oscillation at or near the operating frequeney, r.f. power amplifiers are subject to parasitic oscillation at frequencies far removed from the frequencies to which the amplifier is tuned by the converntional tank circuits. Oscillations of this type not only cause the transmission of illegal spurious signals, but they also impair the efficieney of the amplifier. In fact, they can be so severe as to make operation of the stage as an amplifier impossible and may destroy the tube if they are allowed to persist for any appreeiable time. Erratic tuming characteristics invariably are a result of oscillation of one type or another. Parasitic oscillations may not be obvious under normal conditions of bias and load, but may be transient in nature, occurring intermittently during keying or modulation, causing widespread clicks or splat ter. They can be treated most successfully only by adjusting the amplifier for conditions favorable toward sustained oscillation when they can be more radily observed and identified.

V.h.f. PARASITIC OSCILLATION

Parasitic oscillation in the v.h.f. range (usually in the vicinity of 100 to 200 Mc .) allmost invariably will take plare in an amplifier unless steps are taken to suppress it. Not always but in most cases, this sort of oscillation takes place as the result of an unavoidable t.g.t.p, circuit set up by the grid and plate leads tuned by the tank condensers in series, as shown by the heavy lines in Fig. 6-32A. The normal tank coils act only as ref. chokes or caparitanees at this high frequency. The same condition holds for balanced or push-pull circuits.

Testing Procedure

To test for this type of oscillation, the 28-Me. tank coil should be plugged into the grid tank circuit (or the plate tank cirenit of the driver stage if capabitance coupling is used) and the 3.5-Me coil in the plate tank circuit. This is to prevent any possible t.g.t.p. oscillation at the

Fig. 6.32-A - V.h.f. parasitic circuit hidden in highfrequency amplifier. \mathbf{B} - Che method of suppression with tetrodes. (: - Preferred mothod. Approximate values: $R F_{C, 1}-15$ turis No. $22,1 / 4$-inch diam., elosewomed: $C_{1}-12-\mu \mu \mathrm{fd}$. ceramic; $\mathrm{C}_{2}-15-\mu \mu \mathrm{ff}$. tuloular: $\mathrm{C}_{3}-160$ - $\mu \mathrm{\mu} \mathrm{fd}$. milget variable; $L_{1}-3$ turns No. 14 , $1 / 2$-iuch diam., $1 / 2$ inch long.

 'The circuit - of $I 3$. II and F^{\prime} are the recommended alternatives, which apply egually well to push-pull.
operating frequency which might lead to confusion in identifying the parasitis. If either tank circuit emplows a split-stator condenser with an r.f. choke at the ernter of the coil, the r.f. choke should be short-ribruited during the test. Any fixed bias should be replaced with a grid leak of 10,000 to 20,000 ohms. In a eat pacitiveroupled stage, the driver should be roupled in the normal way, but all load on the output of the amplifier should be diseomeeted. If the stage is an intermediate amplifier, the tube in the following stage should remain in pace, but with its fiament turned off. Plate (and screen) voltage should be redued to the point where the rated dissipation is not exceeded. If a Variac is not available, voltage may be reduced by a $11 . \mathrm{b}$-volt electric lamp of suitable wattage rating in series with the primary of the plato transformer.

With power applied only to the amplifier under test (not the driver), a careful sareh should be made by adjusting the input tank
condenser to several settings, esperially including minimum and maximum, and furning the plate tank eondenser through its range for each of the grid-condenser settings. Any grid-current reading, or any dip or slight flicker in plate current at any point, indicates oscillation. This ran be confirmed by using an indieating absorption wavemeter (see (hapter Sixteen) tumed to the frequeney of the parasitic and held close to the plate lead of the tube.

Remedies

At the outset, an amplifier should be laid out so that the heary leats shown in Fig. 6-32.1 are brought to the barest possible minimum. An inch of wire can be an appreciable length at 200 Me. The indurtance of those leads that cannot be made short can be redued by the use of harge conductor. Of equal importance are the return paths from the rotors of the input and output tank condensers to cathode or filament, usually made through the chassis.

The paths through the by-pass condensers (C_{4} and C_{5}, Fig. 6-32.1) to cathode should be as close to zero as possible. With capacitance coupling, this is often difficult, since the path through C_{4} to both cathodes should be short. Link coupling has an advantage in this respect, since the grid return of the amplifier and the plate return of the driver are independent.

In the case of filament-type tubes, the filament should be by-passed directly at the socket with miea condensers and the returns made to the grounding point of the by-pass condensers.
V.h.f. parasitie oscillation usually can be suppressed in screen-grid tube circuits by inserting a v.h.f. choke in scries with the grid and a small resistor of 50 to 100 ohms between the sereen and its by-pass condenser, as shown in Fig. 6-3213. However, the introduction of even a small a mount of resistance in the screen circuit in this manner invariably results in a reduction in the isolation between input and output circuits at the fundamental operating frequency. Therefore, unless the stage is to be neutralized, the treatment shown in Fig. 6-32C is preferable. Here, in addition to the v.h.f. choke at the grid, the input and output cirruits are shunted by low-inductance condensers, C_{1} and C_{2}. For amplifiers up to those requiring one or two 807 s as drivers, small ceramic condensers connected across the grid and filament terminals of the tube sockets have been satisfactory. Those in the plate circuit should be of the tubular air type or vacuum type with a peak voltage rating equal to twice the plate voltage for c.w. operation, or four times the plate voltage for plate modulation. They should be conneeted with the shortest possible heavy leads between the plate eap at the top of the tube and the cathode or filament ground point. In the case of triode amplifiers, these condensers, when combined with short leads, often are the only requirement in eliminating v.h.f. parasitic oscillation.

In extreme cases of parasitic oscillation in sercen-grid amplifiers, it may be necessary to add a v.h.f. wavetrap in the plate circuit as shown in Fig. 6-32C. The adjustment of such wavetraps in a push-pull amplifier will have a marked effect on the balance, however, and the two cannot be adjusted independently.

A sensitive grid-dip meter of the type deseribed in Chapter Sixteen is often helpful in the locating of resonances responsible for parasitic oscillation. Once the circuit has been traced, it is easier to determine what can be done to detune or otherwise nullify the effects of the offending circuit.

LOW-FREQUENCY PARASITICS

Low-frequency parasitic oscillations (which usually lie in the wide range between 100 and 2000 ke.) invariably involve plate- and gridcircuit r.f. chokes in combination with a splitstator tank condenser tuning at least one of them if not both. The normal tank coils have such little reactance at low frequencies that they may be considered merely as long connecting leads,

Although they are not so likely to be encountered in amplifiers using the betterscreened transmitting tetrodes and pentodes, low-frequency parasitic oscillations are often found in stages employing triodes and the less effectively-shielded audio tubes, such as the 6L6, 6V6, etc. Even if well-screened tubes are used, it is safer and more convenient to arrange the circuit in advance so that these low-frequency circuits are broken up.

Circuits To Be Avoided

Fig. 6-33 shows several commonly-used circuit arrangements that should be avoided to eliminate the possibility of low-frequency parasitics. In A, either r.f. choke or both may be replaced with a $100-\mathrm{ohm}$ resistor, as shown in B. In a similar circuit, parallel feed can be used in either grid or plate, but not in both.

In Fig. 6-33C, $R F C_{2}$ should be replaced by a resistor. If parallel plate feed is desired, series feed should be used in the grid, as shown at D, necessitating parallel feed in the driver-stage plate. If the driver plate tank cireuit has at split-stator condenser, as shown in L , the grid choke should be replaced by a 100 -ohm resist or by-passed to ground, as shown in F. It is important that the by-pass be fairly large so as to be effective at low frequencies.

A eheek for low-frequency parasitics should be made after the v.h.f. oscillations have been eliminated. The eheck is conducted along the lines described for very-high frequencies. Lowfrequency oscillation can be detected by coupling the absorption wavemeter elosely to the r.f. chokes involved, remembering that the range of frequencies over which this type of parasitie may occur is wide. They can also sometimes be detected by listening on a receiver close to the transmitter, when harmonics, usually rough in character, may be heard at regular intervals that are multiples of the fundamental frequeney. On a calibrated receiver, the fundamental frequency ban be determined by observing the spacing between adjacent harmonics.

Neutralizing Procedure

The procedure in neutralizing is essentially the same for all types of tubes and circuits. The filament of the amplifier tube (or tubes) should be lighted and excitation from the prereding stage fed to the grid circuit. There
should be no plate voltage on the amplifier. The immediate objective of the neutralizing process is reducing to a minimum the r.f. driver voltage fed from the input of the amplifier to its output circuit through the grid-plate capae-
itance of the tube. This is done by adjusting the neutralizing condenser until an r.f. indicator in the output circuit gives minimum response.

NEUTRALIZING INDICATORS

Fig. 6-34 shows the diagram of a sensitive neutralizing indicator. I3y referring to Chapter Sixteen, it will be seen that this forms part of the indicating absorption wavemeter also recommended for checking parasitic oscillation. The link should be coupled to the output tank coil at the low-potential or "ground" point. Care should be taken to make sure that the roupling is loose enough at all times to prevent burning out the meter or the rectifier.

A neon bulb touched to the "hot" end wi

Fig. 6-3. - Cirenit of sensitive arntralizing indicator. Neal is a N34 erystal detector, MA a $0-1$ direct-current milliammeter and $C a 0,001$ - μ fd, mira by-pass condenser.
the tank eoil will glow if enough feed-through voltage is developed across the tank, but it is a less-sensitive device. . Inother disadvantage is that its use introduces capacitance across one side of the circuit which may unbalance the circuit, thus giving an inaccurate indication of neutralization.

A more satisfactory indicator than the neon bulb is a flashlight bulb (the lower the power the more sensitive) connected at the center of a turn or two of wire coupled to the tank coil at the low-potential point. Its sensitivity is poor compared with the milliammeter-rectifier indieator, however.

The grid-current milliammeter may also be used as a neutralizing indicator. If the amplifier is not neut malized, there will be a large dip in grid current as the plate-tank tuning pasies through resonance. This dip reduces as neut ratization is approached until at exact neutralization all change in grid current should disappear.

NEUTRALIZING ADJUSTMENTS

The neutralizing condenser should always be adjusted with an insulating rod, not only to protect the operator but also to avoid capaeitive effeets which might give a false indication,

With excitation applied, the neutralizing adjustment should be started with the neutralizing eondenser at minimum capacitanee, increasing the capacitance in small steps. At each step, the plate tank should be swung through resonanee which will be indieated by maximum deflection of the indicators mentioned above and by the dip in grid current. As the point of

Fig. 6.3 .5 - In this neutralizing circuit, C, which should have the same capacitance as the output capacitance of the tube, has been added to comprisate for the tule capacitance across the upper half of the cirruit.
neutralization is approached, the indieation will become less until it is a minimum when neutralization is reached. If the neutratizing capacitance is inereased further, the indieation will again increase. If the neotratizing comdenser has a proper range of eapanitathee, it whould always be possible to find a point of minimum indieation with an increase on either side.

If it is found that neutralization does mot hold over the entire range of the tank condenser for any one batud in a single- or paralleltube amplifier, the balameing condenser of Fig. 6-35 should be added and adjusted.

In an amplifier which is to be used on several bands, it should be first neutralized when

Fig. 6 - 36 - If an amplitier fails to remain nentralized on all bands, the condition unally can be remedied by tapping the input-tank lead along the nentraliaingcondenser lead (or vice versa), aljusting the position until the amplifier neutralizes at the highest frequency at the same setting of the neutralizing condenser as at the lowest frequency. The same adjustment should be made to both sides of a pushopall circuit.
tuned to the lowest-frequency loand. Then the neutralization should be checked at the highest frequency. If it is found that the neutralizing condenser needs readjustment at the higher frequency, the connection between the grid tank circuit (or the plate tank circuit of the driver with capacitance coupling) should be adjusted as indicated in Fig. 6-36 until the neutralizing adjustment is the same for both bunds, always neutralizing first on the lowestfrequener band and checking at the highest frequency, If there are parasitic chokes at the grid and plate, connection of the neutralizing condenser to one side and then the other should be tried to determine which connection permits the hest neutralizing from band to band.

Any indication remaining at minimum means that coupling between input and output exists external to the tube. The isolation seldom can be made complete, but it should be possible to bring it down to a very low value with proper wiring and shiolding. Short loads in neutralizing circuits are highly desirable, and the input and output inductances should be so plared with respect to each other
that magnetic coupling is minimized. Usually this reduires that the axes of the coils be at right angles to each other. In some cases it may be necessary to shield the input and output circuits from each other. Magnetic coupling can be detected by disconnecting the plate tank from the remainder of the circuit and testing for r.f. in it as the tank rondenser is tuned through resonatmere. The driver stane must be operating while this is done, of course.

Adjustment of Inductive Neutralizing Systems

With link neutralizing of a single-tube or parallel-tube amplifier, the noutralization can be adjusted by altering the number of turns at rither end or by changing the sparing hetwern the link and the tank roil.

The inductive neutralizing system holds neutralization over a wider freguency range if the auxiliary adjusting condenser (lig. $6-17 \mathrm{C}$) is omitted, adjusting the size of the coil to resonate at the operating frequency with the plate-grid capacitaner of the tube only. The use of the auxiliary condenser makes the adjustment more convenient, of course.

Harmonic Reduction

A transmitter may generate and radiate energy at harmonics of the operating frequency of any stage. Although this harmonic power seldom is large in terms of the power at the output frequency, nevertheless it may be sufficient to cause interference at cousiderable distances under favorable conditions of propagation, as well as to various amateur and nonamateur scrvices, particularly television, at shorter distances.

Low-frequency harmonics seldom are of great consequence, provided that the tank circuits in the transmitter have a reasonable amount of capacitance, that link coupling is used at both input and output of the final amplifier, and that the antenna system is provided with a tuned circuit. V.h.f. harmonics that fall in television channels, however, are a matter of considerable concern to a constantlyincreasing number of amateurs, principally because the distance involved between transmitter and television receiver may be so small.

The primary means of reducing TVI, so far as the transmitter proper is concerned, may be divided into three general parts. First, the transmitter circuits and the manner of operating the tubes may be adjusted to bring the amplitude of harmonics generated in the transmitter to a minimum. Second, the transmitter may be shielded to prevent direct radiation of harmonic energy from the transmitter components and wiring. The third step that may be taken is that of filtering the power leads entering the shielding enclosure to prevent radiation by the external power leads. One or all of these steps may be necessary. The extent to which
treatment must be carried will vary according to the proximity of the recoiver and the strength of the television signal. The last two steps mentioned must be considered as one in practice, since one is seldom effective unless accompanied by the other.

Circuit and Layout

At the outset, the use of link coupling between all stages of a transmitter is strongly recommended wherever harmonics must be reduced to the extreme minimum. In any case, it should be used between the driver and the final amplifier. Link lines should be made with coaxial cable.

The transmitter should be designed so that the frequency-multiplier stages can be operated at low power level without the need for driving any stage excessively hard. The required step-up in power should be secured through the use of straight amplifiers at the operating frequency. In e.w. transmitters, the output stage can be operated with eut-off bias, or even somewhat less, without a drastir reduction in efficiency. When the output stage is to be plate-modulated, the driving power and bias should be reduced to the minimum that will give linear operation at the plate input used.

In laying out the components of a transmitter for minimum harmonics, the same precautions should be observed as those recommended in avoiding v.h.f. parasitic oscillation in a preceding section of this chapter. The arrangement should be such that all r.f. leads are as short as possible. This will help to move the
resonant frequency of lead segments and combinations with shunting capacitances up above the television channels. Where a lead cannot be shortened physically, its inductanece can be reduced by the use of large conductor, such as (copper st rip or tubing. By-pass condenser leads should be as short as possible and the condensers should be grounded to the chassis at points as rlose as possible to the rathorde or

Fig. 6.37 - A - 1 common eircuia for harmonie resornance. B - Tuhe-shunting condensers added to shift resonaners. C - I'late-eireait wavetrap used to break upor hift v.h.f. resonance. (it and (iz ate the usual input and output tank rondensers, Cos and Cit the respective
 condenser wired directly across the tube socket. Cis is a tubular air condenser or one of the high-veltage vacumm type with heavy leads. A capacitance of 10 to $1 . \overline{3} \mu \mathrm{ffl}$. is usually satisfactory here also. Cir and L_{1} usually are made to tune through the second and third harmonies of 28 . Me. band frequencies. C_{7} van be a 100 . μ fid. midget and L_{1} may consist of 3 turns No. If wire, $1 / 2$-inch diameter, $1 / 2$ inch long.
filament grounding point. Mica condensers should be used, since their inductance is less than that of conventional paper condensers.

After a stage has been wired up, it should be checked for resonances in the televisionfrequency range with a grid-dip meter. If resonances are found, they can often be shifted to a higher or lower frequency by a change in the length of leads in the offending circuit.

One of the most troublesome circuits is the path through the tank condenser (either grid or plate or both) as shown in Fig. 6-37.1. When these paths are found to be resonant in the television band, the resonant frequency often can be changed beneficially by the addition of fixed shunting condensers connected direetly from
plate or grid to cathode or filament. Since these shunting condensers are in parallel with the tank condensers, the resonant frequency of the combination will be lower than that of the original resonance, while the frequency of the new path through the fixed condensers will be higher, because the inductance involved is small. To achieve this, the inductance of the shunting condonsers should be as small as possible. In the grid circuit, small ceramic eondensers of 10 to $15 \mu \mu \mathrm{fd}$. have beon found satisfactory when the driving power does not excend that obtainable from one or two 807 s . In the plate cireuit tubular air or high-voltage vacuum condensers connected with heavy leads should be used. These condensers should have a peak-voltage rating of twiee the d.c. plate voltage for cew. operation, or of four times the der, plate voltage with plate modulation.

In other cases it may be necessary to break up the resonance, or shift its frequency, with a wavetrap, as shown in Fig. 6-37C. Nlthough sometimes required for satisfartory reduction in harmonirs in the transmitter tank, this step is not a highly desirable one, however, since it will have an influence on the neutralizing adjustment in triode amplifiers and on the balance in push-pull amplifiers using rither triodes or sereen-grid tubes. Furthermore, the solectivity of the trap is sufficient to make it necossary to retune the trap for any appreciable change in operating frequency.

Since even mica condensers possess some inductance, they should be checked for resonances after they have been wired in the circuit. In some cases, it may be beneficial to shunt a mica by-pass condenser with a lowrapacitance ceramic unit, or even a tubular atir condenser if the voltage requires it.
. 111 r.f. connertions, especially those to the chassis, should be solid, since a loose connection may cause rectification and consequent generation of harmonics. Where parts of the r.f. cireuit (the tube base, for instance) are below the chassis, while the remainder is above, all connections should be made to both top and bottom surfaces of the chassis.

Power-Lead Filtering

Filtering of power leads from the transmitter is of utmost importance, since any harmonic energy permitted to flow back through the power lines is casily conducted or radiated to near-by tele vision receivers. The use of shiedded wire for all power wiring inside the transmitter has been found to be very effective in reducing harmonics in external power leads. Such wire not only is shielded against pick-up of r.f., but it also may act to attenuate harmonics through its continuous capacitance to ground.

The type of filter that experience has thus far shown to be most effective for high-voltage and bias leads is shown in Fig. 6-38.A. It consists of a $v . h . f$. choke and a mica condenser on the terminal side, or on both sides. In some cases the filtoring may be found better with
the condenser on the terininal site unly.
Except possibly in extremc cases, it is sufficient to filter the a.c. line to the filamenttransformer primary if the transformer is so placed that the secondary leads are not too long. The filtering arrangement is shown in lig. 6-3813. Condensers of the "feed-through" type (such as the Sprague "Hypass") have a definite advantage over ordinary mica condensers in this application. The chokes will not always be found necessary.

All power-lead filters should be located as close to the point of exit from the chassis as possible and the components should be shielded from any possible r.f. pick-up. If there are no r.f. circuits under the chassis, the shielding offered by the chassis itself may be suffieient. But if r.f. circuits are placed under the chassis, the filters should be covered with separate shields. It is also important that the leads external to the chassis be shielded until they leave the transmitter enclosure. Unshielded wire should not be exposed to direct r.f. fields as shown in Fig. 6-39. If a filament center-tap or cathode lead is brought out, it too should

Fig. 6-38- V.h.f. filters in power leads. A - Filter for plate- or bias-supply lead. 13 - Filament-circuit filtering. C - Meter filtering. C_{1}, C_{2} and C_{6} should be $1: 0-\mu \mu \mathrm{fd}$. mica condensers. Feed-hirough type condensers (Sprague "Hypass") are recommended for C_{3}, C_{4} and $C_{5.5}$. Capacitances of 0.01 to $0.1 \mu \mathrm{fd}$. have been found sativfactory, RFC is a 7 - $\mu \mathrm{h}$. v.h.f. choke (Ohmite Z.-50).
be filtered, as shown in Fig. 6-38B, with a v.h.f. choke and a "fecd-t hrough" type condenser.

Meters should be enclosed in shielding covers and connected with shielded wire. A mica by-pass condenser should be strapped across the meter terminals and v.h.f. chokes placed as shown in Fig. 6-38C at the point where the meter connections to the eircuit are made. Any meter multipliers must, of course, be adjusted with the meter wired up and in place.

Care should be used in the selection of shielded wire for transmitter use. Not only should the insulation be conservatively rated for the d.c. voltage in use, but the insulation should be of material that will not easily deteriorate in suldering. For high voltages, automobile ignition cable covered with shielding braid is recommended. The shield of all wiring should be grounded as often as a convenient grounding point can be found. Where the

Fig. 0.39 - A metal cabinet can be an adequate shield, but there will still be radiation if the leads inside can piek up r.f. from the transmitting cirenits.
power wiring erosses or runs parallel, the shields should be spot-soldered together.

Transmitter Enclosure

The transmitter itself should be operated in a metal enclosure. This of course means that the pancls must be of metal. While commercial eabinets and cabinet-t ype racks do not provide "tight" shielding, the screening usually will be sufficient if the other measures outlined are taken. Homemade enclosures of copper screening, as described at the end of this chapter, can be made to provide adequate shiclding and ventilation at the same time.

With the transmitter operating and coupled to a dummy load as shown in Fig. 6-40, harmonic fields in proximity to the transmitter enclosure and conergy flowing in the power leads can be checked with a sensitive absorption wavemeter of the type described in Chapter Sixteen. The wavemeter should be tuned

Fig. $6-10$ - loading arrangement which should be used in ehecking harmonics around transruitter and in power teads.
to the harmonic frequencies that may fall in the TV bands. By means of these checks, it will be possible to determine the effect of the measures taken. When checking power leads external to the transmitter enclosure, a small section of the power lead should be formed into a loop which should be coupled tightly to the coil of the wavemeter.

A Simple Single-Tube Transmitter

One of the simplest practical transmitters is shown in the photographs of Figs. 6-41 and $6-42$. If the station receiver has a power audio stage which is not required for headphone reception, the tube may be taken from the receiver and used in the transmitter (provided that the tube is a pentode or tetrode as it usually is). A plug inserted in the empty socket in the receiver may be used to obtain power for operating the transmitter.

The schematic diagram is shown in Fig. $6-43$. The Tri-tet oscillator circuit is used to permit operation in either the 3.5 - or 7 - Me. bands with a single $3,5-$ Mc. crystal. Series plate feed is used and no means of redueing the voltage of the sereen below that of the plate is necessary if the supply potential doens not exceed 250 to 300 volts.

The cathode circuit is tuned by a fixed mica condenser, C_{1}, but if necessary, the tuning of this circuit can be changed by changing the dimensions of the coil, L_{1}.

No provision is included for tuning the antenna system, for the sake of maximum simplicity. This can be done by selecting the proper feeder length and adjusting the size of the antenna coupling coil, L_{3}.

Construction

To minimize the tools required for the construction of the transmitter the parts are mounted on a simple chassis of wood finished with clear lacquer or shellac. Two $13 / 4 \times 93 / 4-$ inch strips of $1 / 4$-inch-thick wood are fastened with serews to the two $41 / 2 \times 21 / 2 \times 3 / 4$-inch end pieces, leaving enough separation between the strips for the Amphenol M1P' octal sockets used for holding both the crystal and the tube. Wood screws can be used to mount the sockets, or they can be bolted to the wood strips with

6-32 machine screws. The key of the tube socket should be mounted toward the front of the transmitter for convenience in wiring the plate circuit to the tuning condenser. lecause the tuning condenser does not have a long mounting shank, it is necessary to drill a clearance hole for the shank and then dig away - or counterbore - clearance for the nut. The two Fahnestock clips for the anterna are sectured under two of the serews used for fastening the wood strips to the right-hand end piece, and the other two clips used for the key leads are held down by machine serews on the loft-hand end piece. The r.f. choke is held in place on the left-hand end piece by a machine serew. The four wires used for a power cable are brought out at the rear left under the wood strip - a hali-round hole is filed in the end piece to clear the wires.

The plate and antenna coils are held in place on three small sticks set in the top of the chassis - peminy suckers are a good source of these sticks. The bottom of the plate coil connects to a brass machine serew soldered to a lug which is sweated to the stator terminal of the tuning eondenser, and the serew is built up most of its length by adding nuts or small spacers. The sereen end of the coil, the top end of the winding, is fastened to a brass serew that runs through the rear wood strip. The coil ends have lugs soldered to them to facilitate band changing. The antenna-coil ends similarly fasten to two brass screws supported by short lengths of heavy wire and the wire is sweated to the Fahnestock clips and to the heads of the screvs.

Wiring

The wiring is done with the same wire that is used for the coils, because a single 50 -foot

Fig. 6.41-Ry using word for the chassis and simplitied conetrurtion throughout, this simple oscillator trans. mitter can be built with very few shop tools. I sing a 3.j-Mc, ery-tal, operation in the 3.5 and 7 . Me. bands is possible by changing the plate and antenna coils. The arrangement is suitalle for $6 \mathrm{~F}^{\circ} 6$. OWG or other similar pronforles and tetrodes.

Fig. 6. 22 - Bottom view of the simple single-tube transmitter. The eathorle cuil is hetween the tube and arystal sochets. "Whe r.f. choke is to the right, (A is at left eenter with the two hy-pass condensers, C_{3} and C_{3}, to the right of i.
roll of No. 18 bell wire, available in any " 5 \& 10 " or hardware store, suffices for the whoke rig with some to spare. To insure good clectrical connection, the wire is soldered at evory comeetion, which means that the wire is sodered to the heads of the brass machine serews used for the key leads and the sereen end of L_{2} before the serews are put in plate. One key lead, one end of R_{1}, the outer foil connertions on C_{2} and C_{3}, and the lead to P'in 1 of the power plug must be connected to Pin 1 of the tube socket. At the erystal socket, two adjacent pins (e.g., 1 and 8) are bonded together for the grid side of the erystal and the next two pins (0.g., 2 and 3) are bonded together for the cathode side. This permits plugging the crystal into either Pins 8 and 2 or 1 and 3 . The connertion can be claborated still further hy bonding Pins 4 and 5 with 8 and 1 and t ying 6 and 7 to 2 and 3 , in which case the erystal can be plugged in any way and it will make the proper connertion.

The cathode coil, consisting of $\overline{5}$ turns of No, 18 bell wire, is wound on a $11 / 4$-inch diameter form and thon removed and tied with string at a number of places. The cathode coil is mounted by its leads only but, being short, they offer adequate support.

The plate and antenna coils are wound by equally spationg serem nails on a 2 -inch diameter circle, driving the nails completely through the boarl used so that the heads are flush against the board. Small spikes can be used, or nails of the " 8 -penny" size will be satisfactory if a thin board is used. One end of the wire is secured to a nail and the wire is threaded over alternate nails, so that the coil repeats itself every two turns. When the required number of turns has been made, the end of the wire is wrapped around a nail and the coil tied together with string at the seven crossover points. Soldering lugs are soldered to the ends of the coil for ease in changing bands.

The four wires coming out the side of the chassis that go to the power plug are twisted toget her slightly and cabled with string to form a neat cable, and the cable plug, P_{1}, is simply the base from an old tube. If the receiver is to be used as a source of power, the base should be one that will fit the power-output tube in the receiver. Break the tube and chew out the
flase from inside the bave with a pair of pliers, being careful not to break the bakelite of the hase. It will help in making connection to the proper pins if a small drill, slightly larger than the diameter of the No. 18 wire, is run through the pins before the wires are inserted and soldered in place.

Tuning

After checking the wiring, plug in a crystal and conneet the 7-Mc. coil in place. Place the audio tube from the receiver in the transmitter and plug in the power cable, and connect a key to the clips on the side of the transmitter. If the receiver has push-pull output, it is probably best to remove both power tubes. Set the tuning condenser, C_{4}, at about 40 per cent meshed and turn on the power to the recoiver. When the tube has had time to warm up - about 30 seconds - close the key and touch a neon bulb to the plate end of L_{2}. Or a small 10-watt electric lamp can be conneeted to the antenna posts with the 6 -turn antenna coil in place. If C_{4} is set properly, the

Fig. 6-43 - Wiring diagram of the inexpensive cany-to. build transmitter.
$\mathrm{C}_{1}-470-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.01-\mu \mathrm{fl}$. 600 -volt paper.
$\mathrm{C}_{4}-140-\mu \mu \mathrm{fd}$. variable (Hammarlund SM-1 10 or Bud MC-1876).
R_{1} - 0.1 -megohm 1-wall composition.
$\mathrm{L}_{1}-5$ turns No. 18 d.e.c., $11 / 4$-ineh inside diameter. close-wound.
$\mathrm{L}_{12}-3.5$ Me.: 19 turns. 7 Me.: 12 turns.
L3 - 13 turns and 6 turns. Requires experiment - see text. See text for L_{2} and L_{3} winding instruetions.

P_{r} - See text.

RFC - 2.5 -mh. r.f. choke (National R-100U).

Fig. 6-4 4 - Suggested antenna dimensions for use with the single-tube transmitter. A - end-ted half-wave or hepp, 13 - Center-fed half-wave, C - Quarter-wave grounded antenna.
neon bulb will glow or the lamp will light. If this does not happen, try tuning the phate condenser until signs of output become apparent. The transmitter can then be checked on the 3.5-Me, band by putting in the proper coils remembering, however, to turn off the receiver and hold the key closed until the power pack of the receiver has been discharged, to a void getting a shock when touching the coil terminals. The tuning condenser setting will be about 8 -5 per cent meshed on the lower-frequency band.

It will not be possible in most cases to check the keying on the receiver used to furnish power to the transmitter, and it is highly advisable to check the keying in a monitor or another receiver. If the keying is chirpy, the eathode coil, L_{1}, should be squeczed out of round to reduce its inductance until the keying is better. On the $3.5-$ Mc. band, best keying will
generally be obtained with slightly less capacity at C_{4} than the setting for maximum output. In the oscillator shown in the photographs, a slight key click on "break" was eliminated by connecting a $0.1-\mu \mathrm{fd}$. 600 -volt paper condenser directly across the key. Some crystals key better than others.

Antennas

A 135 -foot piece of wire for the antenna can be fed in several ways to give satisfactory results. It can be fed at one end with about 10 feet of open-wire feeders (about 32 feet of Amphenol 300-ohm Twin-Lead), as shown in Fig. 6-44A or it can be fed in the center with 100 feet of open-wire feedline (about 80 feet of 300 -ohm Twin-Lead) as indicated at 13 , These lengths will enable one to connect the feedline directly to the antenna posts of the transmitter without the necessity for tuning condensers - other lengths may require either series or parallel condensers. Some experiment with the antenna coil may be necessary, but a small flashlight bulb in series with one of the feeders will serve as a good indication of feeder current, and will help in the tuneup process. The lamp need not be shorted during normal operation unless it burns too brightly. A neon bulb will also help in detecting r.f. energy in the transmission line, but it may not always light with this low power.

If room for only a short length of wire is a vailable for the antemna, say 40 or 50 feet, it is best to connect its end to one antenna post and a good ground to the other as shown in Fig. 6-44C. Here again some experimentation will be necessary to detcrmine the optimum size of L_{3}. The diagram of a suitable alteruative power supply is shown in Fig. 6-45.

The power can be increased by substituting a 61.6 for a smaller tube and adding a separate power supply to give 350 volts at 100 ma., but with the newer small erystals it is not advisable to increase the voltage much above this value without keeping the screen voltage down by the addition of a dropping resistor and another by-pass condensor.

Iig. 6.45 - Circuit diagram of alternative power supply for the simple single-tube transmitter.
$C_{1}-8-\mu \mathrm{fd} .450$-volt electrolytie.
$\mathrm{K}_{1}-25,000$ ohms, 10 watts.
h_{1} - Filter choke - any receiver replacement type, 15 hy. or more, 50 ma. or more.
$\mathrm{J}_{1}-8$-prong tube sochet.
S_{1} - S.p.s.t. toggle switeh.
T_{1} - l'ower transformer - any receiver replacement type, not over $\overline{3}$, $l l$ volts c.t., 50 ma, or mort.

A Low-Power VFO Transmitter for the 3.5- and 7-Mc. Bands

A complete 20-watt c.w. transmitter for the 80- and 40-meter bands is shown in Figs. 6-46 through 6-52. Considerable economy and simplification in both circuit and operation result by confining the function to these two bands. Additional considerations are that the need for v.h.f. filtering and other measures against TVI is climimated for most localities and that the special design often found necessary fur satisfactory VFO performance when operating at the higher frequenpies is not required. The transmitter has been designed to make maximum use of the eapabilities of any available. low-cost receiver-type power supply delivering from 150 or 200 volts to $3 \overline{5} 0$ or 400 volt.s. Sine both hands are covered with a single buffer-doubler coil. only two plug-in coils are requived. Instability at the operating froquency, often experienced with the less-expensive receiver audio screengrid tubes, is climinated because the input of the buffer-doubler is untuned and the output stage always operates right angles.

Fig. A-17 - Bottom view of the r.f. section of the low-powes transmitter for 3.5 and : Mc. 'The oscillator is to the left and the output tank condenser to the right. The osidlator and buffer-doubler coite should be spaced away from the chassis and mounted at

Fig. 6-46 - The four units of the low-power transmitter are assembled in a simple frame of 1 by 2 wood strips. The rack meanures 16 inches high, $11 \frac{8}{4}$ inches wide and $61 / 4$ inches deep.
with a conventional single-tube doubler. Iligher-order harmonic output also is comparable with that of a straight-through amplifier stage.

Circuit Details

I 6 AC 7 is used in the series-tuned Colpitts VFO circuit and 6V6s are used in both bufferdoubler and output stages. Type 6Fios or 6Los masy be used instead of bivis withont changes in rireuit values. (C_{1} is the main oscillator tuning control, while C_{2} serves to set the tuning range over the proper frequencies. 'The oscillator delivers output at $1.7 \overline{5}$ Mc. at all times. The buffer-doubler stage is tuned to 1.75 Me. for 3.5- Me. output and to 3.5 Me. for 7-Mc. output from the transmitter.

Paralled plate feed is used in the output. stage to remove high voltage from the plug-in coil. The oscillator and output stages are keyed simultaneously in the common cathode lead, while the buffer-doubler stage is proteeted with cathode-resistor bias. A switch on the control panel opens up the cathode circuit of the output stage while the VFO is being sed to frequency. A VR-150 is included wothe chassis to regulate the screen voltage for the nseillator and buffer-doubler and the plate voltage for the $6 . \mathrm{AG} 7$.

Construction

The complete transmitter is made up of four separate units assembled on a simple framework or rack made of 1 by 2 wood strips. The units from bottom to top are power supply,

Fig. 6. 18 - Cirmit of the low-power c.w. transmitter for the 3.5. and 7.Mc. bands.
(C_{1} - (Ose. tuning) approx. Ho. $\mu \mathrm{ff}$. variahle (Millen 19050 with one rotor plate removed).
C_{2} - (Bandset) $50 . \mu \mu \mathrm{fd}$. max. midget variable (National ISR-50).
$\mathrm{C}_{3}, \mathrm{C}_{4}-1000-\mu \mu \mathrm{fd}$. silver misa
$\mathrm{C}_{6}, \mathrm{C}_{8}, \mathrm{C}_{14}, \mathrm{C}_{15}-100-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{10}, \mathrm{C}_{11}$. Cis, $\mathrm{C}_{21}-\mathbf{0 . 0 1 - u f d}$ paper, 600 volts.
$\mathrm{C}_{9}, \mathrm{C}_{13}, \mathrm{C}_{19}, \mathrm{C}_{20}-1000-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{12}-200-\mu_{\mu} \mathrm{fd}$. variable (Millen 10200).
$\mathrm{C}_{16}, \mathrm{C}_{1}$ - 22 - $\mu \mu \mathrm{fl}$. mica.
$\mathrm{C}_{22}-325-\mu \mu \mathrm{fd}$. variable (MiAlen 19325).
$\mathrm{R}_{1}, \mathrm{H}_{2}, \mathrm{~K}_{4} . \mathrm{K}_{6}-17,000$ ohms, $1 / 2$ watt.
$R_{3}-4 \% 0$ ohms, 1 watt.
$R_{5}-150$ ohms, 1 watt.
$\mathrm{R}_{7}-10,000$ ohme, 5 watts.
$\mathrm{I}_{1}-95$ turns Vo. 32 d.s.e. close -wound on l-inch diam. form.
control-and-meter panel, r.f. section, and antema coupler. The r.f. section, as well as the power supply and antenna tuner, is built on a $5 \times 10 \times 3$-inch chassis. The three tuning condensers are mounted with their shafts in line, equally spaced along the front of the ehassis. The rotor of C_{12} is insulated from the chassis by mounting the eondenser on a small subpanel of polystyrene and fitting the shaft with an insulating coupling. The bandset condenser, C_{2}, is mounted on the keft-hand end of the chassis so that it may be adjusted with a screwdriver frem outside. All tube sockets and the socket for the plug-in output tank coil are submounted. L_{1} and L_{2} are wound on Millen 1 -inch diameter forms and are fastened permanently under the chassis with their axes at right angles. Two plugs on cords are provided - one with four pins for the powersupply connection and one with five pins for the control and meter connections. A vernier dial (National type AM) is used for the oseillator. Matching straight dials (National type P) are used for the other tuning controls.

The diagram of the power supply is shown in Fig. 6-52. With condenser input, this particular unit will deliver between 350 and 400
L. -18 turns No. 24 d.s.c. close-wound on 1 -inch diam. form.
$\mathrm{L}_{3}-3.5$ Mc.: $14 \mu \mathrm{~h}$. (National AR-17-40E). 29 turn* No. 20, $11 / 4$-inch diam., spaced to oceupy $11 / 2$ inches. 4-turn center-tapped link.
-7 Me.: $4 \mu \mathrm{~h}$. (National AlR-16-20F). It turns No. 18, $1 \frac{1}{4}$-inch diam., spaced to ocrupy $11 / 4-$ inch length. 4 -turn center-tapped link.
J_{1} - Closed.erircuit 'phone jack.
$\mathrm{P}_{1}-4$-prong male conncetor.
$\mathrm{P}_{2}-5$-prong male connector.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{6}-2.5-\mathrm{mh}$. r.f. choke (National R-100.s).
$\mathrm{RFC}_{3}, \mathrm{RFC}_{4}-1$ - $\mu \mathrm{h}$. r.f. choke (National R -33).
RFC 5 - 16 thrns No. 20 d.s.e. close wound on $1 / 4$-inch diam. forn. (A l-watt resistor of any hiph value mav be used as the form.)
volts under load. R_{1} is the voltage-dropping resistor for the VR tube. The transformer and reetifier tube are placed at one end of the chassis and the other components underneath

Fig. outy - Wiring diagran of the meter and control panel for the 3.5 - and - Me transmitter.
J_{1} - Female a.c. receptacle.
$J_{2}-5$-prong fermale receptacle.
M $\mathrm{C}=0-200 \mathrm{ma}$. d.c.
P_{1} - Male a.c. plug.
$S_{1}, S_{2}-$ S.p.s.t. toggle switeh.

Fig. 6-in - liwar view of the power supply and eontrol panel in place in the frame.
so that the two sockets on the eontrol panel may be reached from the rear. In mounting the transformer, room betwern the transformer and the front edge of the chassis should be allowed for the toggle switch at the righthand end of the eontrol panel. The latter is not fastened to the chassis but to small wood strips on the frame.

In addition to the two toggle switches and the meter at the front, two sockets are mounted at the back of the $35 / 8 \times 10$-inch control panel, toward the left-hand end. The plug from the r.f. section goes in the fiveprong soeket and the a.ce cord from the power supply plugs into the a.e outhet. The wiring of this panel is shown in Fig. (i-49.

The diagram of the antenna coupler is shown in Fig. (i-al. Connections betwern the coil and the base pins may be made appropriate for either series or parallel tuning, whichever may be found neeessary, as shown in the eireuit. The proper eonnere ions are then made automatieally when the coil is pharged into the socket. The rotor of the anten in

Fig. 6.5l - Viring diagram of the antematumer for the 3.5- and $\overline{-}$. Ne. c.w. transmitter. The eonil c :nnere tions can be altered as shown to provide either seriess or parallel tuming when the coil is pluged in.
(.1-200- $\mu \mu \mathrm{ff}$. variable (Willen logon),
1.-3.5 Mr. - 22 turns No. 22, center-tapped, $1 / 4$-inch diam., 15 备 inchers fong, G-turn center-tipped link (Datuonal AR-15--10S).

- 7 Me.: 12 turns Vo, 18 centretapped, $11 / 4$-imeh diam., $11 / 2$ inches long, $f-t u r n$ center-talymed link (National AR-1..2(S).
tuning eondenser is insulated from the chassis in the manner deseribed for the buffer-doubler lank condenser.

Adjustment

With the amplifier switch (S_{2}, Fig. (6-49) off, tho VR voltage-dropluing rawiwtor (R_{1}, Fig. (i-i2) should be adjusted so that the VIR tube just ignites with the key elosed. Then the oscillator bandset condenser, C_{2}, should be adjusted while listening on a receiver so that the signal is heard at 3500 ke . with C_{1} set mear maximum eapacitance. With the amplifier switeh furned on, and the 80 -meter eoil in place, ('z2 should be adjusted to the point near maximum capacitance where the milliammeter shows a slight increase in current. Then the output-stage tank condenser, C_{22}, should be adjusted for minimum plate current to the

Fig, 6.52- (iirenit diakram of the power supply for the low-power transmitter.
$\mathrm{C}_{1}, \mathrm{C}, 2-8-\mu \mathrm{fd}$. 4,0 -volt electrolytie.
R_{1} - 10,000 olims, 511 watts, with slider.
Re- 50,000 ohms. 10 watts.
1,1-8 hy., 100 ma.
$1,-6.3$ volt pilot-lamp assentbly.
$\mathrm{J}_{1}-4$-terminal female conneetor.
P_{1} - Male a.e. comertor.
' 1 ' $-375-0-375$ v., 100 ma.: 5 v., 3 a.: 6.3 v., 4 a. (L"CR-9).
final (approximately 10 ma . unloaded). The adjust ment for $\mathbf{7}$-Mc. output is similar, exeept that the buffer-doubler tank condenser will lne set near minimum capacitance and the T-Mc. coil will be plugged into the output stage. If, by any chance, it is found that both hands are not covered, it will be necessary to adjust the size of L_{2} by a couple of turns, kerping the same number of turns on each side of the center-tap. In adjusting the transmitter, eare should be used not to tume up on the third harmonic of the oscillator at 5.2 Mc . This resonance will be found near the center of the range of Cete.

With ew. operation, it is permissible to load the output stage until it draws 100 ma, even though the power transformer may have a rating of 100 mat. or somewhat less. A plate voltage of 400 should not be exceeded, but the trammitter will operate satisfactorily (at reduced input, of course) from power supplies having much lower voltage and current ratings.

For adjustment of the antenna tuning and coupling, see "Practical Coupling Systems," Chapter Ten.

A Two-Control 75-Watt All-Band Plug-In-Coil Transmitter or Exciter

Through the use of bandpass couplers and fixed-tuncd circuits, the number of tuning controls necessary for the adjust ment of the transmitter shown in Figs. 6-53 through 6-57 is reduced to two - onc for setting the frequency of the VFO and the other for resonating the final out put tank circuit. The general system of

Fig. 6-53 - The VFO tuning dial and the amplifier tuning-condenser control are at the left and right ends of the panel, respectively. Switches for the metering eircoit and for control of the multiplier heater eireuit are at the center of the panel jnst below the meter.
substantially-flat range from 3.37 to 4 Mc. to minimize undesired oseillator and harmonic drive to the buffor wnge.

The pluy-in eoils (L_{4}) for the plate circuit of the socond stage are upproximately self= resonatnt. Four of these are required - twof for
 ing the following frequeney multiplier for optimum output over the 14-, 21-and 28-Mc. hands, and the fourth for use when final-stage output is desired over the full range of the 27-Mr. hand.

Solf-resonant roils (L_{5}) are also used in the output of the third fiA(:7 multiplier for 11, 21 and 27 Me., but a bandpates coupler (${ }^{5} L_{0} L_{0}\left({ }^{\prime} L_{0}\right)$ is used for 28 Mr . hoth to oltain the dexired bandwith and to reduce v.h.f. harmonies. This, stage, when not in use, is disabled by turning off the heater by throwing switch S.

Standard plug-in coils cover all bands in the 807 output stage, a single coil serving for the $21-, 27$ and 28-Nr. hands. RFC' $_{4}$ is a parasitic supprosor. $C_{3 n}$ is a tubular fixed air condenser comnerted directly from plate to aathode with short leads. This condenser not only aids in suppressing parasitic oscillation but also helps to reduce harmonic output. C_{7} and L_{3} makio Colpitts VFO operating at $1 . \overline{\mathrm{S}} \mathrm{S}$ Me, doubles frequenty in the plate circuit, driving a serond 6Aci7 as a buffer at 3.5 Mc. or as a doubler to 7 Mc. The output of the latter stage can be connected (at II) to drive the 807 output stage for cither 3.5- or 7-Mc. output (II ronnerted to Y), or to drive a third 6A(i7 (II connected to X). Through the use of plug-in coils, the third 6.A(i7 may be operated as a doubler to 14 Mc., a tripler to 21 Mc ., or a quadrupler to 28 Me . to drive the output stage on any one of these bands (II connected to X, and Z connected to V^{\prime} for $1-1$ Mre; I^{*} connerted to X and L_{7} connected to Y for 28 Mc .). When the plug Z is not in use, it is plugged into a jark-top insulator mounted nearby so that its capacitance to ground will be held constant. If this precaution is not taken, its position may affect the tuning.

Circuit Details

A bandpass coupler, $L_{2} C_{3}-L_{3} C_{4}$, is used between the oscillator and the first 6:AG7. This coupler cuts off rather sharply on either side of a

Fig. 6-5.4 - Rear view of the 75-watt all-band transmitter or eveiter. The w.h.f. trap is fastened to the top of the tulmalar condeniser. C.30 to the rear of the output tank coil and alongside the $80{ }^{-}$and the 6166". A small bafle shield separates the two multiplier eoil seeket., shown here with the 28. Mc. bandpass coupler in place. The mount ing of the low-frequency coupler is shown between the oscillator tube and the two frequency multipliers.
up a v.h.f. harmonic wavetrap that may be tuned to either the second or third harmonic of 28-Mc. band frequencies. All power keads are completely filtered for protection against radiation of high-frequeney harmonics.

The 6VGGT prowides automatic protection for the 807 when exedation is removed. I VR tube also is included on the chassis to regulate the common plate and sereen voltage for the oscillator. S_{1} is a meter switch for ehoeking the plate, soreen and grid currents of arh stage. The switch leads also are filtered for high-order harmonies.

Construction

The construction departs somewhat from the conventional in that the components are assembled on an aluminum bottom plate for the $7 \times 17 \times 3$-inch chassis, the inverted chassis serving as a bottom cover. The alumimam is easier to work than steel.

The rear view shows the osedlator tube at the night-hand end of the chassis with the lowfrequency bandpass assembly to the left. A slot, $11 / 4$ by $21 / 2$ inches, is cut in the aluminum plate to allow clearance for the filter compo-

Fig. 6.55 - Circuit diagram of the two-control all-band transmitter.
(i) - $\mathbf{5 0} 0-\mu \mathrm{fd}$. variable (Millen 19050).
$\mathrm{Ci}_{2}-100-\mu \mu \mathrm{fd}$. variable (Millen 20100).
(i3, $\mathrm{C}_{4}, \mathrm{C}_{5} 5, \mathrm{C}_{6}-5-20 \mu \mu \mathrm{fd}$. ceramic trimmer (Centralab) 8:0B).
(:7 - $100 . \mu \mu \mathrm{fd}$. air trimmer (Millen 96100).

$\mathrm{C}_{8}, \mathrm{C}_{18}-100-\mu \mu \mathrm{fd}$. mica.
C $10, \mathrm{C}_{11}-680-\mu \mu \mathrm{fd}$. silver mica.
$\mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{16}, \mathrm{C}_{17}, \mathrm{C}_{20}, \mathrm{C}_{21}-\mathbf{0 . 0 1} \mu \mathrm{Fd}$. paper, 100 volts.
C. 19 - $15.5 \mu \mathrm{fd}$. mica.
(:22, $\mathrm{C}_{31}-0.001$ - fd . mica.
C 23 - 680 . $\mu \mathrm{ff}$ d. mica.
$\mathrm{C}_{24}, \mathrm{C}_{25}, \mathrm{C}_{26}\left(\mathrm{C}_{27}, \mathrm{C}_{28}, \mathrm{C}_{29}-170-\mu \mu \mathrm{fd}\right.$. mica.
C30-12 $\mu_{\mu \mathrm{ftl}}$. (Millen 1.5015).
$\mathrm{C}_{32}-0.01-\mu \mathrm{fd}$. mica, 1200 volts.
$\mathrm{C}_{33}, \mathrm{C}_{34}-340 \cdot \mu \mathrm{fd}$. mica (two $680 \cdot \mu \mu \mathrm{fd}$. units in series).
$\mathrm{K}_{1}-47,000$ ohms, $1 / 2$ watt.
$\mathbf{R}_{2}, \mathbf{R}_{3}, \mathbf{R}_{7}, \mathbf{R}_{9}, \mathbf{R}_{10}, \mathbf{R}_{13}, \mathbf{R}_{15}, \mathbf{R}_{16}, \mathbf{R}_{17}, \mathbf{R}_{19}-\mathbf{1 0 0}$ ohms, 1/2 watt.
$\mathrm{R}_{4}-47 \mathrm{ohms}, 1 / 2$ watt.
$\mathrm{R}_{5}, \mathrm{R}_{14}$ - $\mathbf{3 3 0}$ ohms, 1 watt.
$R_{0}, R_{18}-22,000$ olims, $1 / 2$ watt.
$R_{8}, R_{11}-10,000$ ohums, 10 watts.
$\mathrm{R}_{12}-0.1$ megohm, $1 / 2$ watt.
K_{20} - $-\overline{5},(100)$ ohms, 20 watts (two 10 -watt resistors in seriess).
K_{21} - Meter shunt: 51 inches No. 28 wound on a highresistance $1 / 2 \cdot$ watl resistor.
R_{22} - $\mathbf{3 3 , (0 0 0)}$ olms, 1 watt.
$\mathrm{R}_{23}-16.500$ ohms (twon 33,000 .0hm l-watt in parallel).
1_{11} to L_{-9}, inc. - See coil table.
MA - 0 - 50 d.c. milliammeter.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{3}, \mathrm{RFC}_{5}-\mathbf{2} \mathbf{5}$.mh. r.f. choke.
$\mathrm{HFC}_{4}-1 \cdot \mu$ h. r.f. choke (National R33).
$\mathrm{RFC}_{6}, \mathrm{RFC} \div, \mathrm{RFC}_{9}, \mathrm{RFC}_{10}-\overline{-} \cdot \mu \mathrm{h}$. r.f. choke (Ohmite 2.50).
$\mathrm{RFC}_{8}-36$ turns No. 18 enam ${ }_{2}$, if $_{6}$-inch diam., closewound on National PRE. 3 form.
$\mathrm{S}_{1}-2$-pole 2 -section 11 -position selector switch (Ceutralab 1413).
$\mathbf{S}_{2}-$ S.p.s.t. rotary toggle switch.

COil table for two.control all band transmitter						
Coil	Lis mit.	Wire	Tuma	Diam, In.	Immath, In.	$C_{\text {coml }}$ Type
L_{1}	${ }^{12}$	als.a.	${ }_{6}$	'	Cluememan	On Nililen tiono form
Le, 1,3	ir	$3^{3} \mathrm{~s}$ cmanm.	"	1	TIneewnumd	On. Silien tiono form
				$i_{\text {i* }}^{\text {i* }}$		
	$\begin{aligned} & 5.8 \\ & 3,2,5 \\ & 3,15 \end{aligned}$		\%	;	Close-wound $\frac{3 / 16}{3} 8$	
	${ }^{1}$		"	i	1	
4.		16.5 man	,	\%6	\%	
	$\begin{array}{r} 11 \\ 6,1 \end{array}$				\% $1 / 1 /$	\qquad turn Millen Millen 4301

* Find turns adjustable - see text.

Nore: Figures in parentheses after turns for L atre link turns. Links wound over L a at groumd end. Adjust as aeressary.

COIL LINE-UP FOR TWO-CONTROL TRANSMITTER				
Band	L_{4}	$1 / 5$	$1.6 L_{i}$	$L 4$
3.5	A	-	-	J
7	C	-	-	に
14	B	1	-	1
$\bigcirc 1$	13	F	-	3
27	D	(-	I
28	B	-	11	M

nents. The buffer-doubler tube, the frequeneymultiplier tube and the VR- 75 form a line from rear to front just to the left of the filter. The oseillator bandset condenser, C_{2}, is to the right of the VR-75. Coils for the driver tubes and a crystal socket (eontacts X and Y in the (eireuit diagram) are next in line to the left. The 807 amplifier tube, the tubular by-pass capacitor, $C_{3 n}$, the harmonic trap, and the tank esil are at the left end of the chassis. Connections to points II and Z in the eircuit diagram so through feed-through bushings between the

807 and the driver-coil sockets. The stand-off insulator mounted in front of the 807 is used as a low-capacity holder for terminal Z when inductive coupling from the multiplier tube is used. The antenna terminals are to the rear of the tank coil and the power-cable terminals to the rear of the oscillator tube.

All power wiring should be done with shielded wire.

Bandpass Couplers and Coils

The windings of the self-resonant coils should not be cemented in place until they have been finally adjusted in the circuit by spreading or compressing the turns. Also, means should be provided for adjusting the coupling between the two coils in each of the bandpass couplers. In the case of the lowfrequency coupler, which is wound on a 1 -inch form, one of the windings can be wound over a layer of paper between the wire and the form so that it may be slid back and forth. The coil

Fig. 6-56 - Bottom view of the all-hamil plug-in-coil transmitter. The ossillator coil. tuning condenser an! handset condenser are in the apper left-haml corner, with the lowfrequency bandpass coupler below and to the right. The middle shaft is that of the meter switch mountel on a metal brucket. The output tank ron. denser is to the right.

form and the two trimmer eombensers ate fastened to a 2×216-inch piece of sheet polystyrene. A rectangular hole cut in the chassis permits the unit to be mounted with the condensers on top, where they may be adjusted, and the coil at the center underneath.

The 28-Ne. couplar components also are mounted on a piece of polystyrene, this one measuring $1 \frac{1}{2}$ by $23 / 4$ inches. This is then fastened to a small stand-off insulator mounted on a 5 -pin plug so that the unit may be plugged into the 5 -prong coil socket. After the coupling has been aljusted, the coils may be cemented to the base. liig. 6-55. shows the cireuit of the last 6Acit when the coupler is being used for 28-Mc. output, while 13 and (: show the connections to the coil sockets for either a sidfresonant coil (B) or the coupler (C). Dotted lines indieate pins that should be wired together in the roil plug rat ther than in the socket.

Adjustment

The unit is designed to operate from two power supplies. The one for the osidlator and multiplier stages should doliver 375 volts at 100 mat of more. The 807 may be operated from any supply delivering from 450 volts or so to a maximum of 750 volts, the output obtainable being in proportion. it 6.3 -volt filamont tramsformer, rated at 3 amperes or more, is required for the heaters.

The oscillator tuning range should first be set, by adjusting C_{2}, so that it covers 1.68 to 2 Mc. with ('s. The low-frequeney compler can be adjusted by observing the grid current to the 80^{-}with the $3.5-$ Ne coil plugged in at L_{4}. With the oscillator set at $3.3-\mathrm{Me}$, ("4 should be adjusted for maximum grid current. Then, with the oseillator set at 1 Mc., C_{3} should be adjusted for maximum grid current. If, on checking, as the oscillator is tuned across the band the grid current shows a pronounced puak at one end or the other, the size of L_{4} in the buffer stage should be adjusted slightly to bring resonance farther away from the end of the band at which the peak occurs. If there is a decided dip in grid current between the two
ends of the band, the coupling bet ween the two coupler coils may be too great or too little. With the circuits tuned as deseribed and the coupling adjusted to the proper point, the grid current to the 80^{-}stage should be essentially flat ower the desired band and drop off rather rapidly at wath end, Onee the coupler has been adjusted for the 3.5 -Mc. hand no further adjustment should be required for the higher frequencies, the adjust ment for the latter being taken eare of by adjusting the self-resonant plate coils to maintain grid current to the 807 as constant as possible over the band in each case. The 28-Mc. coupler is adjusted in the same manner described for the low-frequency unit. Linder all conditions, the grid current to the 807 amplifier should average 3 to 4 ma. For proper adjustment of the 807 output circuit, see "Adjustment of l, F. Amplifiers," this chapter.

Current and Voltage Data

The phate and sereen cireuits of the oscillator should each draw approximately 3 mat when the supply voltage is held at 75 volts by a regulator tube. The grid current for the next two 6: G7s should average 1 ma . Sereen and plate currents of the buffer-doubler tube should be about 4 and 10 ma , respectively, and the seren and plate voltage should measure approximately 110 and 220 volts. Operating conditions for the sereen of the frequency-multiplier tube are 7 ma, at 230 volts and the plate should draw about 20 ma . These figures can be expeeted to vary as the operating frequency of the transmitter is varied, because the selfresonant plate circuits will perform most efficiently over only a small band of frequencies. However, the meter readings should remain within a few per cent of the typical values listed above.

The sereen of the 807 amplifier tube draws 5 to 6 ma . with an applied potential of approximately 300 volts. Normal full-load plate current for the 807 is 100 ma . and, with excitation removed, the 6 V 6 GT should hold the d.c. input to less than 15 watts.

A 500-Watt Link-Coupled All-Band Transmitter

In the design of the transmitter shown in Figs. 6-58 through 6-69, an attempt has been made to incorporate means by which harmonic radiation and transmission may be minimized. In addition to the use of thorough shielding and power-line filtering, link coupling is used -throughout.

Through the use of plug-in coils, the transmitter may be operated up to 21 Mc . with 1.75-Mc. crystals, and to 28 Mc. with either 3.5- or 7-Mc. crystals. With VFO input, it will go to 7 Me, with $1.75-\mathrm{Mc}$. VFO output, to 21 Me. with $3.5-\mathrm{Me}$. VFO output, and to 28 Mc . with 7-Mc. VFO output.
The design of the push-pull triode final amplifier is suitable for any of the usual triodes with plate-cap connection, operating at plate voltages up to 1500 with plate modulation and a plate-voltage/total-plate-current ratio of 5 to 1 or greater.
The transmitter is made up in two sections mounted in a simple shielding enclosure consisting of a wood-strip frame covered with copper screening. The exciter unit is provided with pull handles and is designed to slide out for coil changing. As the unit is returned to the

Fig, 6-58-A complete 500-watt all-band transmitter including antenna tuner. The exciter unit at the bottom slides out for coil changing. The panel serews on this unit are dummies cemented in place. 'I'he top of the sereened enclosure is hinged to permit changing coils in the final amplifier and antenna tuner.
enclosure, the power-supply connections are automatically made at the rear through a series of plugs which fit into jacks set along the side of a $3 \times 4 \times 17$-inch chassis fastened permanently at the rear. This chassis also encloses and shields the harmonic-filter components for all power-supply leads.

The second section above includes the pushpull final amplifier and an antenna tuncr. The top cover is hinged to provide access to the output-stage and antenna tank coils. The meters for the amplifier stage are set in a separate panel between the two main sections.

Circuit Details

Referring first to the circuit diagram of the exciter section shown in Fig, 6-60, either the built-in Pierce crystal oscillator or an external VFO may be used to feed a 6L6 stage which is operated as a doubler, as a tripler, or, when necessary, as a buffer amplifier. This stage feeds a push-push 807 driver stage that may be operated either as a doubler, or as a selfneutralized straight-through a mplifier by opening S_{2} which controls the heater of one of the 807 s . This inactive tube then becomes the

Fig. 6-5y - Rear view of the eompleted 500-watt allband transmitter with the back serecning panel removed. The rectangular enclosed unit to the rear of the exciter contains the v.h.f. power-lead filters. The two matching boxes above enclose the amplifier-stage milliammeters.

Fig. 6.60-Circuit diagram of the exeiter for the 500 .n att all-hand transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-1.40$ - $\mu \mathrm{fd}$, variable condenser (Millen 29140).
C3- $100-\mu \mu \mathrm{fd}$.-persection variable rondenser (Millen 23100).
(4-250- $\mu \mathrm{ff}$. variable condenser (National TVK.2.i0).
(${ }_{5}-0.0022-\mu \mathrm{fd}$. mica.
(${ }_{8,}, \mathrm{C}_{7}-100$. $\mu \mathrm{ffd}$. mica.
$\left(\therefore, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{16}, \mathrm{C}_{19}, \mathrm{C}_{22}-\mathbf{0}, 0047 \ldots \mathrm{fd}\right.$. mica
Co, $\mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{15}, \mathrm{C}_{20}, \mathrm{C}_{21}-22-\mu \mu \mathrm{fil}$, ceramic.
Cif, Cis - 12 - $\mu \mathrm{ffd}$. reramic.
(:23-15- $\mu \mu \mathrm{fd}$. air tuhular (see text).
(:24-0.001- $\mu \mathrm{fd}$. $1 \geqslant(0)$-volt-wkg. mica.
($\mathrm{C}_{25}-470$ - $\mu \mathrm{\mu fd}$. mica.
$\mathrm{R}_{1}-\mathbf{4 7 , (\mathrm { ONO }}$ ohns, $1 /$ watt.
K_{2} - $\mathbf{5 0 0 0}$ ohms, 2 watts.
$R_{3}, R_{f}-100$ ohms, $1 / 2$ watt.
$\mathrm{R}_{4}-250 \mathrm{~K}$ ohms, 10 watts.
$\mathrm{K}_{5,} \mathrm{~K}_{11}-10$-times meter shunt (see test).
$\mathrm{R}_{7}, \mathrm{R}_{8}-10,000$ ohms, 10 watts.
$R_{9}, R_{10}-100$ ohms, $1 / 2$ watt, moninductive.
$\mathrm{I}_{1,1}, \mathrm{I}_{2}, \mathrm{~L}_{4}, \mathrm{~L}, 5$ - See table.
I_{3} - See line-up table for comections.
$\mathrm{J}_{1}, \mathrm{~J}_{3}$ - Coaxial fitting.
J_{2} - Closed-circuit jack.
MA - Milliammeter - 25-ma. d.e. seale.
RFC. $-3.5-\mathrm{mh}$. 125 mar r.f. chohe.
$\mathrm{RFC}_{2}, \mathrm{RFC}_{3}, \mathrm{RFC}_{4}, \mathrm{RFC}$ - 2.5 -nhh, 50 -mat r.f. whoh (National R-50).
RFC.f, RFC_{5} - V.h.f. parasitic chohe - 12 turns No. 16, $1 / 4$-inch diam., 1 ineh long, self-supporting.
RFCs, RFC -.$- \mu \mathrm{h}$. r.f. choke (ollmite Z..in).
s_{1} - S.p.d.t. ceramic rotary.
S2-S.p.s.t. toggle.
s_{3} - 2 -pole 4 -position 2 -section ceramic rotary.
T_{1} - Filament transformer: 6.3 voltr, 6 amp.
"neutralizing condenser" for the other 807.
When the output frequency desired is the same as the crystal frequency, the input circuit of the 6 L .6 is not tuned, since this might result in instability in the 6L.6 stage. In this case, no coil is used at L_{1}. When the coil socket and form of L_{1} are wired as shown in Fig. 6-60A and B, the connection to tuning condenser C_{1} is broken automatically when

COIL LINE-UP TABLE - 500-WATT ALL-BAND TRANSMITTER							
Outpu?	XTAL	$V F O$	L_{1}	$\begin{gathered} L_{2} / \\ / L_{4} \end{gathered}$	L_{3}	$\left.\begin{gathered} d_{55} / \\ / L_{6} / \\ / L_{i} \end{gathered} \right\rvert\,$	S_{2}
3.5	1.75	-	1.75	3.5	I-7	35	Ofen
7	1.75	-	3.5	7	1-7	7	Opren
14	1.75	-	3.5	7	Y-7	14	Closed
21	1.75		35	10.5	1-7	21	(${ }^{\text {c losed }}$
3.5	3.5	-	\013	3.5	Y-7	3.5	$0_{\text {pren }}$
7	3.5	-	35	7	1-Z	7	Opent
14	3.5		3.5	7	1-7	14	(${ }^{4} \operatorname{losen} 1$
21	3.5	-	35	10.5	$\mathrm{Y}-7$	21	('losed
28	3.5	-	$\overline{7}$	14	Y-7	28	C 'losed
7	7		one	7	Y-\%	7	Open
14	7	-	7	11	Y-\%	14	Open
24	-	-	$\overline{7}$	1t	$\underline{1-7}$	24	Closed
3.5	-	1.75	1.75	35	Y-Z	3.5	Open
7	--	175	175	3.5	Y-\%	7	('losed
35	-	3.5	-	-	$\mathbf{X}-\%$	35	Open
7	-	3.5	35	7	$\mathrm{Y}-\mathrm{Z}$	7	Open
14	-	3.5	3.5	7	Y-\%	14	Closed
21	-	3.5	35	10.5	Y-Z	21	('losed
7	-	7	-	-	X-\%	7	Open
14	-	7	7	14	I-\%	14	Open
21	-	7	7	21	$1-2$	21	Open
28	-	\cdots	$\%$	14	$\underline{1-Z}$	28	Closed

the coil is removed. When the VFO output frequency is the same as the desired frequency of operation, the VFO is fed directly to the input of the push-push stage through the link contacts at $X-Z$ instead of $Y-Z$. The pins of the plug-in-coil base can be wired to make this connection automatic when the coil is plugged into place.

(23 - $0.0002 \dot{2}-\mu \mathrm{fl}$. mica.
(3 - 110 - $\mu \mu$ frl.-per-section var. (Johnoon 100111)-15).
(:3b. (is - I (0)- $\mu \mu \mathrm{fil} . \mathrm{per}$-section variable (Iohnsom 100FD -30).

(1_{12}, Cis3-Veutralizing condroner - $-11 \mu_{\mu} \mathrm{fil}$.

(Millen lin) (0.i).

 (ser text).

Double by-pass condensers are used at the cathode and sereen terminals and for the platecireuit returns in the 6L6 and 807 stages. A

Fig. 6.61 - Cir. cuit diagram of the final amplifier and antema tuner of the 500 -watt all-band rig. tubular air condonser is used at ('23 10 provide : low-inductanco platereturn to rathode. 'The larger by-pass condensers in each case are effective at the lower freuncneies, but the rerramie condensore, together with $K F_{6} C_{6}, \quad K F C_{7}, \quad R$ and R_{10} in the 80^{-} stage, are requiroul

Fig. 6.62 - Rear virw of the exciter of the 500.walt all-band tranemitter.

Fig. a-6.3-Bottom view of the exciter ser. tion of the 500 -watt all-hand transmitter.
which the two external milliammeters are connereted by switches S_{4} and S_{5}. RP' ${ }_{17}$ and C_{47} form ond sieftion of a w.h.f. filter in the high-voltage supply lead.

All other v.h.f. filters are in the
R_{3}, R_{5}, R_{6} and l_{11} are metering resistors across which the milliammoter may be switched by S_{3} to read grid and plate currents in the two amplifier stares, R_{5} and R_{11} should be adjusted in the circuit to give a scale multiplication of 10 times as deseribed under " Measurement of Current, Voltage and Power," Chaptor Sixteron. $R F_{3}, R C_{9}$ and C_{25} are part of the v.h.f. filtering system.
The circuit diagram of the push-pull final amplifier and the antemat tuner is shown in Fig. 6-61. The grid tank circuit is split for d.c. by the insertion of C_{34} at the center of /f: and a separate filament transformer is used for each of the two tubes so that individual grid and cathode rurrents may be wherked for amplifior balance. (${ }_{41}$ and C_{15} are tubular air condensers commected divectly with whort leads from plate to ground near the tube sockets. They are essential in suppressing v.h.f. parasitic oscillation in this stage. R_{14}, R_{15}, R_{16} and R_{17} are metering resistors arross
separate shielded unit at the rear of the exciter. The wiring of this chassis is shown in Fig. 6-67.

Fig. 6.65 - Sketches showing th. ronstruction of the air tubu'ar condensers, (A) for the exciter and (1) for the final amplifier. The smaller condensers shown in the photographe of the final were replaced after preliminary tests.

Pis. enot - Rear view of the amplitier serction of the sto.watt all. hand transmitter. The anternal tumer is to tha risht, 'I'he ear hov drising the variable. link of the anternat tuner is fasterned to tha-left-hand side of the shielding partition.

Fiк. G.б6-Buttom vien of the anoblifer sections of the 5hto-watt all-hand transmitler. The large cenatial latad runs from the amplitier link to the antommatuner link.

Exciter Construction

The exciter is atssembled on a $7 \times 17 \times 3$ inch chassis with a 10^{1} dinch motal pancl.

The pand should be dropped so that its lower edge protrudes $3 / 4$ inch below the bottom erlge of the chassis to cower the bottom strip of the

COIL TABLE - S00-WATT TRANSMITTER								
Coil	Band	L $\mu \mathrm{h}$.	Turne	Wire	Diam.	Lgth.	Jink	Manufactured Tupr
L_{1} / L_{2}	1.75	58	60	$\begin{gathered} 28 \\ \text { d.s.c. } \end{gathered}$	1"	${ }^{\text {cw }}$	8	Wound on Millen
	35	19	34	$\begin{gathered} 24 \\ \text { d s.s.c. } \end{gathered}$	1"	${ }_{\text {cw }}$	${ }_{6}$	450051 -ituch 5 -pin
	i	7	18	$\begin{gathered} 22 \\ \text { ds.s.c. } \end{gathered}$	$1^{\prime \prime}$	*	3	bakelite form. See
L_{2}	105	4.4	16	$\begin{gathered} 22 \\ d s, r_{r} . \end{gathered}$	1"	7/8'	3	circuit diagram for
	14	2.5	10	$\begin{array}{r} 22 \\ 4.5 . \mathrm{c} . \end{array}$	1'"	5/8' ${ }^{\prime \prime}$	3	pin comuections.
	21	1.2	;	18	$1^{\prime \prime}$	$1 / 2^{\prime \prime}$	2	
24	3.5	19	16	24	$11^{\prime \prime}$	13/81	10	National (11-17-8504
	-	11	22	22	11/4	11"1"	5	National.AR-17-40-s
	10.5	*	18	22	111"	$1^{\prime \prime}$	5	National AR-17-4(1)-s 2 turns off pach end.
	14	2.9	12	18	$11^{\prime \prime}$	11/8"	3	National AR-17-20-s
	21	1.3	6	18	11/4"	11/8'	2	National AR-17-10s
L_{5}	35	10	22	16	$1^{1} 2^{\prime \prime}$	$17 /{ }^{\prime \prime}$	3	B\&W JEIm ${ }^{\text {d }}$
	\%	3	12	14	$1^{1} 2^{\prime \prime}$	$2^{\prime \prime}$	2	BEW JEL-20
	$1+$	2.3	10	14	$1^{1} 1^{\prime \prime}$	21/11	$\underline{2}$	B\&W JEL-15
	21	0.8	6	14	$1^{112^{\prime \prime}}$	2'1	2	B\&W JEL-10
	28	0.5	4	1	$11_{2}^{\prime \prime}$	1411	2	Bell JEL-2turns off
L_{6}	3.5	55	$5 \mathfrak{}$	18	11,"	18/81	4	National AR-17-800
	-	11	22	22	11, ${ }^{\prime \prime}$	$1^{111^{\prime \prime}}$	5	National AR-1\%-40 ${ }^{\circ}$
	14	7	14	22	11/4"	1/81	5	National AR-17-40S 4 turns off earh side
	21	2.5	10	18	11/41	$1^{\prime \prime}$	3	National AR-17-2is 1 turn off each sidp
	28	0.7	4	18	11/2"	1/2'1	2	National AR-17-10S 1 turn off each side
L_{7}	35	40	40	14	$21^{1 \prime \prime}$	$5^{\prime \prime}$	6	Johnson 500 HCF- 0^{0}
	7	15	24	12	${ }^{21} 1_{2}^{\prime \prime \prime}$	$5^{\prime \prime}$	6	Johnson $500 \mathrm{HCF}-10$
	14	3.7	12	6	$2^{21} 2^{\prime \prime}$	$5^{\prime \prime}$	3	Johnson $500 \mathrm{HCF}-20$
	2	1	8	6	$2^{\prime \prime}$	$5^{\prime \prime}$	3	Johnson $500 \mathrm{HCF}-10$
	28	0 \%	${ }^{6}$	${ }^{6}$	$2 \prime$	$4^{\prime \prime}$	3	Johnson 500 HCF-10 1 turn off each side
Ls	Same as L_{7}, with swinging link							Johnson 500 HCs

Lenderneath, the tuber sorkets are mounted on : 3 's-inch strip of aluminum spanning the bottom of the chassis. The tubular condenser also is fastened to this strip. The construction of this condenser is shown in frig. (6-65. A. In the push-push stage, the grid tank condenser, (${ }_{3}$, is immediately to the left of the tube sockets in Fig. fi-f2 and at the eenter of the whasis, with the parasitic chokes, $R P^{\prime} \prime^{\prime}$ g and $R P^{\prime}$ ' ' $^{\prime}$, fitstened directly betwern the tuber socket and eondenser terminals. Farther to the left in ordor are (en, S_{1}, and C_{1} with their shafts equally: spaced.

To the right of C_{3} are S_{2}, S_{3} and the key jack, also equally spaced along the panel. The filament transformer is fastened to the right-hand end of the chassis. The crystal socket is mounted on the panel where it is

FiR. 6.67 - Wiring diagram of the larmenie-filter unit for the $5(0)$-watt all-band transmitter.
$\mathrm{C}_{26}-0.015 \mathrm{Hfl}_{\text {. }}$ (60) volts (Hprague liypass).
$\mathrm{C}_{27}, \mathrm{C}_{28}-0.01 \mu \mathrm{fil} . \mathrm{(0)0}$ volts (Sprague Hypass).
$\left.\mathrm{C}_{29}-0.00\right)^{2} \quad \mu \mathrm{fl} ., 5000$ volts wkg. (Sprague Hypass). $\mathrm{C}_{30}, \mathrm{C}_{31}-0.1 \quad \mu \mathrm{fd} ., 250$ volts (Sprague Hypass).
RFC R $_{10-15}$ - - $-\mu \mathrm{h}$. v.h.f. chohe (Ohmite Z-50).
readily accessible. Connections to it are made by way of feed-through points in the chassis.

All power wiring is done with shielded conductor and is brought out at the rear to banana-type plugs set in bakelite insulating grommets. R.f. comnections should be as short and direct as possible and all by-pass condensers commeted to the terminals to be bypassed, and grounded as chose as possible to the eathode (or cathode by-pass) grounding point.

Figs. 6-64 and 6-66 show the construction of the final-amplifier section. The ehassis is $10 \times 17 \times 3$ inches and is fitted with a standard rack panel of metal $153 / 4$ inehes high. The amplifior and antemat tuncr are separated by a sheet-aluminum partition. The two tank condensers are mounted on small ceramie cones and plated at an equal distance from the respective ends of the chassis. The coil jack bar in the amplifier is fastened to the tankcondenser frame by means of ahominum angle pieces. The two amplifier tubes are mounted in a manner quite similar to that deseribed for the 807s in the exeiter, through elearance holes in the chassis. Clearance holes are also cut for the noutratizing condensers as well as for the tubular condensers, (44 and C_{45}. The neutralizing eondensers are removed from their originad insubator mountings and are fastened instead to large feed-through insulators (Millen type 32103) set in the st rip supporting the tube sockets. The connections are then made to the feed-through terminals below. The tubular condensers are plated so that the mounting flanges are close to the point where the fidament by-pass condensers are grounded. These condensers are made as shown in Fig. 6-6inß.

Underneath, the grid tank condenser is mounted on brackets at the center of the chassis near the strip holding the tube sockets. The brackets space the condensar from the chassis to clear the grid-coil socket which is submounted centrally to the right of the tubes in Fig. 6-64. The two filament transformers are fastened to the right-hand end of the chassis.

A metal strip spanning the antemat tank condenser from front to rear provides a mounting for the antenna tank coil with its axis at right angles to that of the amplifior coil. 1 Nillen right-angle gear box fastened to the partition on metal pillars drives the lankadjust ment shaft from the control at the upper center of the panel.

The meter panel is $51 / 4$ inches high. The backs of the meters are shielded by enchosing them in standard metal boxes 3 by \pm by 5 inches.

The frame for the enclosure is made from strips of 1 by 2 stock. Its over-all height ($31 \frac{1}{2}$ inches) and width (10 inches) match the pancl dimensions. The over-all depth is 12 inehes. The eopper sereming is phaced on the inside and is brought out around the outer edges of the frame so that it will make an overlapping contact with the metal panels in front and the sereening of the removable back. The back extends down only as far as the top edge of the $3 \times 4 \times 17$-inch chassis holding the power-supply terminals. The sereening of the hinged top also should make good contact with the sereening of the sides. The removable back, the hinged top and the stiding exciter unit are provided with interdock mieroswitches that break the power-supply primary rircuits when either is opened.

The circuit diagram of a suitable power supply for this transmitter is shown in Fig. 6-69.

Fif. ifos- Bhatom view of the line-filter unit. The chasois is divided off into shielded compartments by aluminum partitions. Left to right, the filters are for the a.e. line, $1500-$ volt d.c. line, $\mathbf{3} \%$-volt d.e. line, 300 -volt d.e. line, and hias.

Adjustment

The accompanying tables give the coil dimensions and show the coil line-up for any desired output frequeney, depending upon IFO or erystal frequency. Care should be taken to cheek the frequency of each stage with an absorption-t ype wavencter until the proper dial settings for each band have been determined and logged. The objective should be to obtain rated grid current to the final amplifier with a minimum of drive to the 807 stage. The coupling between the driver and the final should be adjusted to the optimum point, while the link at the input of the $80{ }^{-1}$ s should in cach case be set to produce rated final-amplifier grid current.
The grid current to the 6 LG should run 1 ma. or less on all bands. The combined

I. 7 - 20-hy. 400-rna, smoothing choke.
$S_{1}, S_{5}, S_{H_{1}}, S_{7}-10$-amp, togyle swite h_{1}.
$\mathrm{s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$ - Microswitch interlochs.
T_{1} - Power transformer: 300 volts A.c., 120 ma.; 5 volts, 3 amp.
T_{2} - Filament transformer: 5 wolta, 3 amp.
Ts - Filament transformer: 2.5 volte. 4 amp.
"I: Plate transformer: $\mathbf{3}(0)$ volts il.e.. $2(K)$ ma,

T_{R} - Filament transformer: 2.5 volts. 10 amp. $10 .(K K)$. volt insulation.
VR - VR-M0 regulator tule.
screen and plate current should vary from 10 mas, or less, when the input cireuit is untuned, to 45 ma. when the 61.6 is doubling. To obtain rated grid current to a pair of 812 As in the final amplifier, as an example, the grid current of a single 807 as a straight amplifier should be about 3 ma. When the two tubes are in use as a doubler, a total grid current of 2 ma. or less should be sufficient. The respective plate currents under these conditions are 100 ma. and 140 ma . The 80^{-}sereen current will run between 5 and 7 ma. for single-tube operation and a total of about the same for the two tubes when they are operating as doublers.

When tubes of other types are used in the output stage, R_{12} and R_{13} (Fig. 6-(61) must be changed to suit (sce "R.F. Power-AmplifierTube Operating Factors," this chapter).

A Push-Pull 813 Transmitter

Shown in Figs. 6-70 through 6-77 is an ex-citcr-amplifier combination comprising a complete transmitter capable of 800 watts input in AM 'phone operation and 900 watts in c.w. or NFM service. A pair of 813 beam tetrodes in push-pull is used in the final amplifier. The exeliter unit uses an 807 in its output stage and is itself capable of heing used as a To-watt c.w. or 60-watt AM 'phone transmitter. Both units cover all amatebur bands from 3.5 to 28 Me. and are designed for mounting in an enelosed relay rack.

Circuit Details

The diagram of the exciter unit is shown in Fig. (i-71. Provision is made for frequeney control from 3.b- and 7 - Me arstals or from an external VFO unit. Bandswitehing is used in all stages exeopt the 807 plate cireuit to reduee the number of plug-in coils that must be hathded when changing bands, and to permit good isolation betwern the input and output cireuts of the 807 . The crystal oscillafor uses a $6 . d$ (ia in a cireuit in which the seroen

Fig. 6-70-Vront vien of the bush-pull 813 amplitier and its exciter meonted in a standard rach. From left to right, the controls along the lower edige of the exciter panel are for the erystal- $\mathbf{V}^{\circ}(0)$ switeh, the oreillator thring condenser, multiplier tuming condenser, meter switeh and handswiteh. "The eontrolw are Hanked by the key jack and a panel lamp. The kinh (1) the left of the raeiter milliammetur is the eveitation control: the one to the right is the 80- mutput turing control.
(ha the amplifier panel, the meter switches thank the grid tuming dial at the lottom, with the plate tuning dial and the rontrol for the swinging link below the meters.
surves as the anode of a Pierce triode oscillator, with the output circuit tunable to either 3.5 or 7 Mc . The tuning condenser, C_{3}, covers both bands with a single coil in this stage. When VFO control is used, the screen is grounded through C_{1} by the crystal-VF() switch and the stage operates as a conventional frequency doublar.

For either 3.5- or 7 -Me. output, the 6.16it drives the 807 directly, but for output at highor frequencies, a 6 V 6 multiphicr stage is brought into use by the bandswiteh S_{2}. This stage has two plate eoils, L_{2} and L_{33}, the desired one being seleeted by the bandswiteh. One coil is used for the $14-$ Me band, while the other covers both 21 and 28 Mc. The stage operates as a doubler for $14-$ Mc. output, a tripler for 21 Me., and as a quadrupler for 28 Me . The cathode biasing resistor, R_{6}, proteets the tube against excessive input in the absence of excitation.

The 807 stage is operated as a straight amplifier on all bands to reduce harmonies in its output circuit. A 6YoG is connected as a protective tube to hold the 800^{-}input well below the maximum dissipation rating whon exeitation is removed. C_{13} is a tubular air condenser connected direetly from phate to ground to assist in the reduction of v.h.f. harmonies. In conjunction with $R P^{2} C_{5}$, it also serves to climinate high-frequeney parasitic oscillation. Plug-in coils are conveniently used in the output circuit of this stage.

The single milliammeter may be switehed to read eurrents csisential to the proper tuning of the exeiter. . Il power leads are filtered for v.h.f hapmonier.

The circuit of the push-pull 813 finalamplifier section is shown in Fig. 6-74. The amplifier is link coupled to the exciter. A multihand tuner (National MBS-20) elimimates the need for access to the grid circuit and thus permits complete shidding of the grid eireuit for better stability. With this tuner, the grid tank circuit may be resonated anywhor whin the frequency range of the transmitter without changing coils.
small improvised condensers are used to neutralize the amplifier, and chokes inserted in the grid leals eliminate v.h.f. parasitic oseillation.

Three meters are used in the amplifier. One moasures the total cathode current of the amplifier, while the others are switched to read individual grid or sereen currents of the two tubes, thus permitting a ready comparison of currents for balance in the stage. All supply leads and the leads rumning to the meters are shielded and filtered to reduce TVI. Plugin coils are used in the output circuit.

Ci, Ci, $\mathrm{C}_{2}-\mathbf{0}-001-\mu \mathrm{fd}$ nica.
(2, C6, $\mathrm{Cis}-\mathbf{0 . 0 1 - \mu \mathrm { fd } \text { paper. }}$
(:3-300- $\mu \mathrm{ffl}$, variable (National s'lll-300).

($\mathrm{B}, \mathrm{C}, 11$ - 100 ($-\mu \mathrm{fd}$. mica.
(:i, Ci2-2e- $\mu \mu \mathrm{fl}$. reramic.
($\mathrm{C}_{10}-50-\mu \mu \mathrm{fal}$. variable (Vational s'l-50).
C_{13} - 'Tubular air condenser, approx. $10 \mu \mu \mathrm{fd}$. (see

(10) N15-150).
(i6-0.00t- ff . 1000-volt-whk. mica.
$\mathrm{C}_{17}, \mathrm{C}_{11}, \mathrm{C}_{10}, \mathrm{C}_{20}, \mathrm{C}_{23}, \mathrm{C}_{24}$, C25. C:26-4. C $21, \mathrm{C} 22-500-\mu \mu \mathrm{fd}$. 10000 - $\mathrm{olt}-w k \mathrm{k}$. mica.
$1 R_{1}-15,000$ ohms, $1 / 2$ watt.
$R_{2}-25,000-$ ohm - - watt wire-wound potentioncter
$\mathrm{R}_{3}-1-, 500$ ohme, 10 watts.
$R_{4}, R_{8}, R_{10}-100$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-56,000$ ohms, I watt.
$\mathrm{R}_{6}-\mathbf{6 0 0}$ ohms, 2 watts.
$13_{7}-25,000$ ohmis, 10 watt.
IR_{0} - 2e, 0000 ohms, I watt.
$1 R_{11}-50,000$ ohms. 10 watts.
R_{12} - 3-time metor shme (sere Chapter 16).
$1 \mathrm{R}_{1}: 3-330$ ohme, 1 watt.
1.1-20 turns Vo. 20. 1 -inch diam., $13 / 8$ inches long, tapled ? thrme from plate eml (IS N W 301: limiductor).
turns No. 18, 3/4-ineh diam., I inch lonk tapped - turn: from plate end (13 \& W W 3010 Niniduc. tor).
turns No. 20, 3 í inch louk, 3 - inch diam. tapped 3 turns from phate end (13 \& W 3011 Miniductor).
L_{4} - Millen $430(1)$ series coils, modified:

 inches long, s-turn link (Ntilen $4.3082,18$ turns S_{3} - Two section f-position rotary switch.
removed).
—7 Mr.- 19 turns No. 18, $11 / 2$ inches diam., $11 / 4$
inches long, T-turn link (Millen $4.3012,8$ turns
 $3 / 4$ inch long, シ-turn link (Millen $4302 \boldsymbol{2}$, turns removed).
— 28 Me. 3 turns Vo. 18, $11 / 2$ inches diam., I inch long, 2-turn link (Millen $\$ 3012,1$ turn removed). $\mathrm{I}_{1}-\mathrm{P}$ 'ancl lamp
$\mathrm{J}_{1}, \mathrm{I}_{2}$ - Coasial ronnector.
Ia- Closed-circuit jack.
1.1 - $\mathbf{0}$-ma. d.e. milliammeter.

RFC: 1 - - h h. r.f. choke (National R-33).
 (Ohmite \% $-\mathbf{5 0}$).
$S_{1}-$ Wwosection reramic rotary swithh, points per S_{2} - 'Threc-section \bar{n}-ponition reramie rotary
S_{3} - Tuosection $t-p$ sition rotary switch.
T_{1} - liilament transformer: 0.3 volts, 1 amp. (I'hor-

Fig. 6. 22 - Kear view of the exciter thassis for the push-pull 813 transmitter. The tubular condenser is alongside the 807 in back of the 6i6G. The 6\% 6 multiplier is in the center of the charsis, with the 61G:7 oseillator, the ersstal sockets and the excitation control at the risht. Coasial connectors for output and VFO input, phus a terminal strip, are mounted on the rear edge of the chassis.

Construction

The exciter unit is built on a $17 \times 7 \times 3$ inch chassis. The key jack, S_{1}, C_{3}, C_{10}, meter switch, bandswitch shaft and the panel lamp are first arranged so that the controls will be equally spaced along the lower edge of the pancl. C_{3} is insulated by mounting it on a polystyrene subpanel and using an insulating shaft coupling. The similar subpancl holding C_{10} in place is of metal. The crystal sockets are lined up behind the crystal switch and the sockets for the 6AG7 and 6V6 are placed at the center of the ehassis alongside their tank condensers.

A Millen type 80070 shield-and-bracket assembly is used for the 807. The tubular condenser, C_{13}, which is similar to the one shown in Fig. 6-65A, is mounted at one corner of the bracket, a hole being cut in the bracket to clear the bottom ceramic button. Clearance holes for the tube shield and the tubular condenser are cut in the chassis so that the bracket can be centered between the front and back edges of the chassis with the bottom of the bracket two inches below the surface of the chassis. It is held in this position by an aluminum-sheet bracket 5 inches long and $28 / 4$ inches deep fastened to the chassis. The socket for the 6 V 6 G is placed immediately to the rear of the 807 .

The bandswitch is fastened, about centrally, on brackets along the rear edge of the chassis. The gear drive (National ACD-2), also on brackets, is lined up with the switeh shaft and the panel control.

On top, the output tank condenser and coil are placed close to the 807. The condenser is mounted on ceramic button insulators with its stator terminals on top so that the plate lead can be made short. An insulating coupling is used in the control shaft. The coil socket is elevated on 1 -inch ceramic pillars (National GS-1). The excitation control, R_{2}, is mounted on the panel so as to balance the output tankcondenser tuning control.

The power wiring should be done before the assembly has progressed too far. Shielded wire,
laid ehse to the chassis, should be used. The shielding should be grounded at each end of cach lead and at intermediate points where mounting screws, or other grounded metal, make it convenient. Wherever wires cross or run parallel, they should be spot-soldered together. At points where there is danger of a short circuit by the braid, the wire may be covered with a sleeve of spaghetti.

By-pass condensers should be connected with leads as short as possible. Two screen by-pass condensers are shown in the 807 circuit. One of these, C_{12}, is a small ceramic unit soldered directly between the screen and cathode terminals of the socket to serve as a low-inductance path for v.h.f. The other, C_{14}, is grounded at one end on one of the socketmounting serews. One end of the parasitic suppressor, $R F C_{5}$, should be soldered directly to the grid terminal of the socket. The cathode should be grounded with a short lead to the mounting flange of the tubular condenser.

Coaxial connectors are provided at the rear for VFO input and r.f. output to the final annplifier. A terminal strip is set in the rear of the chassis, at the left-hand end in Fig. 6-73, for power-supply connections. The v.h.f. filter components are assembled on a terminal board placed close to this terminal strip. The filament transformer is immediately behind, fastened to the end of the chassis.

After the power wiring has been done, the exciter coils may be put in place. L_{1} is mounted on $1 / 2$-inch cone insulators to the rear of $C_{3} . L_{2}$ and L_{3} are placed at right angles (L_{2} horizontal and L_{3} vertical) behind C_{10} and are soldered between the rotor terminal of the condenser and the $S_{2 B}$ section of the bandswitch.

The final amplifier is assembled on a 17×13 $\times 3$-inch ehassis with a $171 / 2$-inch metal panel. The tank condenser is mounted at the exact center of the chassis on 1 -inch cone insulators. A high-voltage insulating coupling is placed between the condenser shaft and the control on the panel. The fixed condenser, C_{2}, is plaeed under the condenser frame and is connected between the frame and a grounding screw in
the chassis. This screw also is used for grounding the grid tuner below.

Clearance holes are cut in the chassis and the sockets are submounted on $1 / \frac{1}{2}$-inch spaters so that the plate caps of the two tubes will come close to the outside terminals of the condenser stators. A large feed-through insulator is placed $11 / 2$ inches from the inside edge of each of the clearance holes. A $1 / 2$-inch strip of aluminum, about $2 \frac{1}{2}$ inches long, is bent into " L ", shape and mounted on top of each feredthrough. This serves as one side of the neut ralizing condenser, the plate of the tube itself forming the other side of the condenser.

To the rear of the tank condenser, the coil jack bar is mounted on large stand-off insulators (National GS-4) to bring the coil terminals close to those of the tank condenser. The link is adjusted from the panel by means of a right-angle gear drive (National $\Lambda(D)-2)$ mounted from a bracket fastened at a rean corner of the chassis.

The three meters are enclosed in at standard $3 \times 4 \times 1$-inch chassis acting as a shiolding box. The box is fastened to the panel with selftapping screws. Standard 10 -inch panel brackets are fastened to the ends of the meter box as well as to the panel and chassis. Power terminals and conneetors for r.f. input and output are lined up along the rear edge of the chassis.

Conderneath, the grid tuner is mounted at the center of the chassis on pillars to space the coils equally between the chassis and its bottom plate. The individual filament transformors are placed close to their associated sockets. The lower terminals of the two feedthrough insulators are connected to opposite (not adjacent) grid terminals. One end of the parasitic-suppressor chokes is soldered directly to the grid terminal of the socket. A l-inch ceramie pillar at the forward inside comer of oach tube sooket serves as an insulated tio point for the parasitic choke, the grid ehoke, the fixed grid condenser and the neutralizing lead on each side of the eireuit.

A terminal board at the rear holds the v.h.f. filter components for the a.c. and bias lines.

Filters in the other power leads are placed close to their respective terminals. All power wiring is done with shielded wire. The highvoltage lead is a piece of ignition cable covered with a sheathing of copper braid. Shiclded leads also conneet the meter switches underneath the chassis to the meters on the panel above. C_{24} and C_{25} are connocted directly areoss the terminals of the meters, but $R F C_{14}$ and $R F C^{\prime} 15$ are placed under the chassis at the switch terminals.

Adjustment

Fig. (6-77 shows the circuit diagram of a power-supply system for this transmitter. The section at the bottom supplies low voltage for the exciter and bias for the final amplifier, while the next section above supplies voltage for the $80 \overline{0}$ driver and sereen voltage for the output stage. Starting at maximum resistance, R_{3} is adjusted until at last one of the VR tubes just ignites. R_{4} need not be used, or may be shorted out, for c.w. operation. For plate modulation at maximum ratings, R_{4} should be set at 830 ohms. When S_{6} is open, reduced screan voltage is appliod to the 813 s . With S_{6} closed, R_{7} should be set at approximately 1250 ohms for at supply voltage of 500 , or at about 9400 ohms if the supply delivers 700 volts, with proportionate values for voltage bet ween these extremes. After the final amplifier hats been adjusted for oporation at full load, R_{7} should be adjusted finally to bring the sereen voltage to 400 for c.w. or 350 for 'phone under operating conditions. S_{6} should always be open during preliminary adjustments of the final amplifier or regular adjust ment of the exciter, since full sereen voltage in the absence of plate voltage and full load can cause dangerous heating of the screen.

The power swit ehos are arranged in sorios so that the lower voltages must be turned on before the higher voltages can be appliod. Euder normal operating conditions, all switches will be closed except S_{2} which then surves as the power eontrol for the entire transmitter.

The exeiter should be tuned up initially with an absorption wavemeter to make certain

Fig. 6.73 - Bottom view of the exriter for the pushtypll 813 trans. mitter. The harmonic: fibters are momoted on terminal twards placed in the lower left-lamid cormer, adjacent to the impit terminals and just below the filament transformer. "I'her mounting brarkets for the bandswitch and the right-angle drive are supported by the rear of the chassis, white the brachet that supports the 80 socket ansentbly extends back from the front.

Fig. в. .f - Schematic diagram of the push-pull 813 amplifier.
$\mathrm{C}_{1}-100$ - $\mu \mathrm{ffl}$.-per-wection variable, 0.077 -inch spacing (Millen 04103).

 sparing ()ational $\leqslant=11-125$ - part of MB-20 tuner).
$\mathrm{C}_{5,} \mathrm{C}_{\mathrm{f}}-0.001-\mu \mathrm{fd}$. mica.

 mica.
C_{16} - $\mathbf{5 0 0 6}-\mu \mu \mathrm{fl}$. 1000 .volt-whg. mica.
$\mathrm{C}_{18}-50(1)-\mu \mathrm{fd}$. 5000 -volt-wkg. miea.
Cx-See text.
$R_{1}, R_{2}, R_{3}, R_{4}-100$ ohms, $1 / 2$ watt.
1.1-13 \& W HDNL series coils:
(All are split-winding eoils, $3 / 4$ inch betwern sections for all except 21 , and $28 . \mathrm{Ml}_{\mathrm{c}}$ corilwhere the apacing is $1 \frac{1}{4}$ inches. Dimmasions given are for rach section of coil.)
-3.5 Mc. - 16 turns No. $10,31 / 2$ inches diam.. 3 inches long.

- - Me. - 10 turns No. $8,31 / 2$ inches diam., 2 inches long.
that each circuit is tuning to the proper frequency. At the plate voltage specified, the meter reading with S_{3} in the first position should run bet ween 25 and 35 ma., depending upon the setting of the excitation control, Re. The combined sereen and plate current of the
- 14 Me. -6 turns No. $8,31 / 2$ inches diam., 3 inches long.
-21 Mc. -1 turns 3 ́a-ind enpper tuhing, 3 inches diam., $2^{7 / 6}$ inches long.
- 28 Mc. - 2 turns $3 / 6$-inch copper tuling, 3 inches diam., 2 多 inches long. (One turn removed from each section of IIDC,-10).
1.2, 1.3-7 turns Xo. 22, 1 -ineh diam., ${ }_{16}{ }^{6}$ inch long, $3 / 8$ inch between windinge (part of MB-20 tumer).
1.4-30 turns No. 22,1 -inch diam.. $1 \frac{1}{4}$ inches long (bart of 11 B-20 tuner).
J_{1}. J J_{2} - Coasial connetor.
$\mathrm{MI}_{1}, \mathrm{M} \mathrm{I}_{2}-50$-ma. d.e. milliammeter.

RFC ${ }_{1}$ - 810 -mat. r.f. choke (National R-175).
$\mathrm{RFC}, \mathrm{BPC}_{3}-2 . j$-nh. r.f. chohe.
 1833).
 $\mathrm{RFC}_{3}, \mathrm{RF} \mathrm{C}_{14}, \mathrm{RPC} \mathrm{C}_{5}-\overline{7}-\mu \mathrm{h}$. r.f. choke ((hmite $\mathrm{K}=-\mathbf{5 0}$).
s_{1}, s_{2} - 2-section 3 -position ceramic rotary.
l_{1}, I_{2} Hilament transformer: 10 volts, 5 amp. ("hordarson '1'21F'18).

6 V 6 before excitation is applied should be approximately 30 ma., increasing to 35 ma . when excitation is applied and the stage is doubling or tripling, and to about 45 ma . when quadrupling. The grid current to the 807 should be adjusted, by means of the excitation

Fig. 6.75- Rear view of the push-pull 813 amplifier. The feed-through insulator holding one of the nentralizing condensers is just to the left of the visible 813. The chassis that eneloses the meters is held in position with self-tapping screws passing through the up-ended pancl brackets. 'The gear drive at the left is for link adjustment from the panel. Input, output and all power connections are arranged along the rear edge of the chassis.
control, to the minimum that will give rated grid current to the final amplifier with optimum coupling to the 807 when the final is loaded fully. It should be possible to do this without exceeding a grid current of 3.5 ma. to the 807 and with the plate current
 between 60 and 90 ma .

In adjusting the multiband tuner in the amplifier grid eircuit, the resonances should be checked carefully with an absorption wavemoter to make sure that the circuit is tuned to the desired frequency. The setting of each band should then be logged.

Since the adjustment is more critical at 28 Me. than on any of the other bands, the final stage should be neutralized with the transmitter tuned to this band. With an indicating absorption wavemeter or other r.f. indicator coupled to the output tank coil and with excitation only applied, the grid and plate tank circuits should be tuned to resonanee. Resonance in the output tank circuit will be indieated by a maximum response on the indicator. The neutralizing condensers should then be adjusted similarly, bit by bit, either by bending the metal st rips closer to, or farther
away from, the tubes, or by clipping the length of the strips until a minimum response on the neutralizing indicator is obtained when the plate tank circuit is tuned to resonance. In this particular amplifier, minimum r.f. feedthrough was obtained with the strips clippeel to about a half inch.

To check the balance of the amplifier, temporarily disconnect the two center-tap leads of the fitament transiomers from the cathode meter and insert individual moters bet ween the conter taps and ground. Apply power to the exciter with the transmitter tuned to the 28-Mc. band. Resonate the grid circuit and set the meter switch to read individual grid currents. The roadings may not be equal before plate and sereen voltages are applied to the final amplifier, but the readings should rise and fall together as the grid eireuit is tuned through

Fig. 6.76 - Bottom view of the push-pull 813 amplifier. The multihand tmer used in the grid eircuit is centrally loraterd. flanked by the two the sockets. All bypass condensers are mounted on the sockets. The neutralizing leads are crossed breneath the insulated shaft coupling, and terminate at stand-off insulators placed close to the grid terminals of the tulse sockets. The harmonic filters are placed along the edge of the chassis alose to the points at which the various leads leave the chassis. 'The coaxial cable to the right is the onsput link line.

Ci, $\mathrm{C}_{2}, \mathrm{C}_{3}-8-\mu$ fil. 1.01-n idt elertrolytio.
(i4, Cis - $1-\mu \mathrm{fd}$. 100H) volt oil-filled.

$R_{1}, R_{2}-100$ ohms, I watt.

K_{4} - lowo ohms, 10 watto. alljustable.
$\mathrm{K}_{5}-1 \overline{5}, 000$ ohms, 10 watts.
$\mathrm{R}_{6}-25,000$ ohms, 50 watts.
$R_{7}-10,000$ ohms, 511 watts, adjustable.
$R_{8}-10,000$ ohms, 50 watts.
$\mathrm{K}_{9}, \mathrm{R}_{10}-25,000$ ohms, 75 watts.
la-30-liy. Solma. filter choke.
I.2, $1,3-20-h y .100$ ma. filter choke.
I. $-5 / 2 \overline{5}-\mathrm{hy}$. $1 . \overline{0} 0-\mathrm{ma}$. swinging choke.
I. - 20-hy. 1,50-ma. smoothing choke.
resonance. If such is not the case, a slight readjust ment of the position of the grid link should improve this condition. In some cases it may be neecssary to connect a small padding condenser across one of the two sections of C_{3} and adjust it until the grid currents rise and fall in unison and are reasonably well balanced.

With a dummy load connected to the output, apply refluced sereen and plate voltages, resonate the tank circuits and observe grid, sereen and cathode currents of the two tubes. An agreement within 10 per cent may be considered satisfactory. If the difference is greater, check the wiring in the plate circuit to
l. 6 - $5 / 25 \cdot h y .500-\mathrm{man}$, winging chocke.
I. 7 - 20.hy. 500 -ma. smoothing choke.
I_{3} - 115 -volt lamp of suitable size to redace voltage for tune-ap.
$S_{1}-20$-amp. s.p.s.t. switel.
$s_{2}, s_{3} s_{4}-15-a m p, s_{1}, s_{t}$. switch.
$S_{5}-10$-amp. s.pont. Ewitch,

$T_{1}, \mathrm{~T}_{3}, \mathrm{~T}_{5}$ - Fibament trans former: 5 volts, 3 amp.
T2 - Power tramsormer: 1.50 volt: r,mo.s. each side of center, 100 ma .
J_{4} - Ilate transformer: 500 to $\mathbf{3} \mathbf{5 0}$) volts d.c., 150 ma . ${ }^{\circ}{ }_{6}$ - Filament transformer: 2.5 wolts, 10 amp ., 10.0100 volt insulation.
'I'-- Plate transformer: $2000 / 2.50$ volts d.c., 500 ma. IR -V゙R-1.50.30.
be sure that it is symmetrical. A slight difforence in lead length, between the tank circuit and the tubes, can cause considerable unbalance at 28 Mc. Some readjustment of the grid padding condenser, if one is used, may help.

In c.w. service, plate voltages up to 22.50 may be used and up 102000 for A.I 'phone. Maximum plate current under these conditions should be 220 and 200 ma . respectively per tube. The total of grid and screen currents of both tubes must be subtracted from the reading of the cathode meter to obtain the actual plato curront. Screen current should be less than 40 ma . per tube under full load.

A High-Stability VFO

Figs. 6-78 through 6-84 illustrate the construction of a well-stabilized VFO dolivering sufficient output at $1.75,3.5$ or 7 Mc . to drive any small triode or tetrode stage up to and including one or two 807s. The two out put frequences are chosen so that if the VF() is used to drive a erystal-oscillator stage in the transmitter, the oscillator stage may be opcrated as a doubler to avoid the possibility of oscillation in the crystal stage.

Referring to the diagram of Fig. 6-7!, a 6AG7 pentode is used in the electronroupled series-tuned Colpitts oscillator circuit. ('1 is the bandspread tuning condenser which rovers the fundamental range of 1750 to 2000 ke. (or 3500 to 4000 kc .), ('2 is a padder to provide a fixed minimum circuit caparitance. Cz and C_{4} are the tubreshunting capacitatnces. Since the screen, which sorves as the plate in the oscillating eireuit, is groumded, the cathode is above ground and therefore must be returned to ground for d.c. through a choke.

The output circuit ($R F\left({ }_{2}{ }_{2}\right.$) is nonresonant and is capacity coupled to a 61,6 output stage fitted with plug-in coils so that it may be operated at either $1.75,3.5$ or 7 Me. The tuming condensers of the oscillator and amplifier are ganged.

A power supply is included in the unit. Screen and plate voltages for both stages are taken from a VR-tube voltage divider. The regulator tubes are used both as a convenient voltage-divider arrangement and to limit the
shaping of the keying characteristic entirely to any key-click filter that may be used with the unit.

Construction

In the unit shown in the photographs, the frequency-detemmining tank is isolated from the rest of the eireuit by enclosing it in a standard steal bos $5 \times(0 \times 9$ inches, The tuning condenser is mounted on the top phate of a $4 \times 4 \times 2$-inch steel boo with metal brackets that space the bottom edges of the condenser and plates $1 / 8$ inch from the phate.

The coil is removed from its original mounting, the link removed, and the coil remounted on a $3 / 4$-inch cone insulator at the forward end and a smatl feed-through insulator at the rear. The first quarter turn at the front end of the coil is broken loose and a short connection between the adjacent condenser terminal and the coil at this point is made with a piece of heave wire This survers as a brace for the coil against vibration. Another short piece of heavy wire goes from this point to a small feedthrough insulator set directly below in the top phate. This feed-through insulator and the one at the rear cud of the coil verve in making eonneetions to the comdensers on the underside of the plate.

The adjustable padder, C_{2}, is mounted centrally on the underside of the plate with its shaft pointed toward the right. The end of the shaft is sotoded for a serewalriver and holes

Fig. 6.78- The ron. pleted IfO. "The en. tire r.f. sertion iflouting on an antishock motonting. The hold in the side of the bos is to permit athjuthtimet of the fre. quener ranse

Fis. 0.79 - Circuit diagram of the seriestuned VFO.
(C_{1} - $\mathbf{5 0}-\mu \mathrm{ffl}$. per -section variable (Millen 23050).
$R_{i}-50,000$ ohms. 10 watts.
($i_{2}-100 . \mu \mathrm{ffd}$. varialle (Millen 19100).
$\mathrm{C}_{3}, \mathrm{C}_{4}-0.001$. ff d. zero-temp. mica.
$\mathrm{C} 5, \mathrm{C} s-100-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{7}, \mathrm{C}_{10}-0.01$ - $\mu \mathrm{fd}$ p paper.
C_{11} - $1 . \mathrm{T}$ and 3.5 Me. - $\mathbf{4 5}-260-\mu \mu \mathrm{fd}$. mica trimmer. 7 Mc.- 100 -upfl. air trimmer (Ilammarlund AP'C.100).
C_{12} - Approx. $\overline{5} \cdot \mu \mu \mathrm{fd}$, variable (Millen 22100 with 3 stator plates renoved).
$\mathrm{C}_{13}-220-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{14}, \mathrm{C}_{15}-16 \cdot \mu \mathrm{fl}$. 450 -volt electrolytic.
$\mathrm{H}_{1}-47,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}-0.1$ megohm, 1 watt.
$\mathrm{R}_{3}-470 \mathrm{ohms}, 1$ watt.
$\mathrm{R}_{4}-1000$ ohms, 10 watts, adjustable.
are drilled in the sides of both inner and outer boxes so that the padder may be adjusted

$L_{1}-1.6$ Me - 1.4$)^{\mu}$. (National AR.160)
L_{2} - 1.55 Mc. - 3 ? turns No. 22 d.c.c., $11 / 2$ inches diam., close-wound.
3.5 Mc. -16 turns No. 22, $1 \frac{1}{2}$ inches diam.. 7/8 inch long.
$7 \mathrm{Mc} .-1.4$ turne No. $20,11 / 2$ inches diam., 112 inches long. tapped 5^{\prime} turns from ground end for Cin.
$\mathrm{L}_{3}, \mathrm{I}_{4}$ - 11 .h. 100 -ma. filter choke (LTVC R-19).
J_{1} - Closed-rireuit jack.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}-2 . \boldsymbol{\pi}$-mh. r.f. choke.
S_{1}, S_{2}-S.p.s.t. torgle switch.
T_{1} - Power transformer: $350-3.50$ r.m.s.. 90 ma.: 5 volts, 3 amp.; 6.3 volts, 3.5 amp.
from the outside after the unit has been assembled. The mica condensers, C_{3} and C_{4}, are fastened alongside the padding condenser by cementing them to the plate with Dueo cement to eliminate movement. The top lip of the small how may have to be notched out in a few places hefore the top plate will fit in place.

Discarding the bottom plate of the small hox, the height

Fik. $6-80$ - The oserillator tank circuit is isolated from the remainder of the rircuit by enclosing it in a shock. prowf metal box.

Fig, 6-81 - Rear view of the VF'O. The osril. lator tube and amplifier componsintsaremomited on a shelf fastened to the floaring box. l'owersupply components ocrupy the rear fortion of the chassis.

of the tuning-condenser shaft above the lower edge of the box should be measured carefully and 1 -inch elcarance holes cut centrally in the outer box at this same level. Placing the smaller box inside, with its rear face against the back wall of the outer box and with the tuning-condenser shaft lined up with the shaft holes, the position of the smaller box should be marked on the rear wall. Then the top plate should be removed, the small box replaced, and holes marked in the bottom of the outcr box so that the smaller

Fif. 6-82-Bottom view of the oscillator-tank unit, showing the placement of the oscillator tuning padder and the tube-shunting condensers.
box can be fastened in place with serews up through the bottom. With this done, a grommet hole for the leads to the oscillator tube should be drilled through the rear of both boves simultaneously ncar the oscillator-tube socket. Thrce leads - connections to the grid condenser, C_{5}, to the cathode, and to the ground point of the cat hode by-pass condenser of the oseillator tulk - are bunched together and brought out through this hole.

With the oscillator-tank unit fastened in place within the large box, and flexible insulated couplings on each end of the tuningcondenser slaft, the dial can be lined up and its mounting holes marked on the front of the outer box. The lower edge of the dial plate will overhang a halt inch or so at the bottom.
The remainder of the r.f.-circuit components are assembled on a $2 \frac{1}{2} \times 8$-inch aluminum shelf fastened to the rear of the hex to isolate the tank components from the heating of the tubes. The amplifier tuning condenser, C_{12}, must be insulated from the shelf. The height of the shelf is adjusted, after the condenser has been mounted, so that its shaft lines up with the tail shaft of C_{2}. Wiring and associated small parts are placed under the shelf. All power-supply connections and the key connection are made to a 5 -point Jug strip at the left-hand end of the shelf.

The entire unit is guarded against mechanical vibration by mounting the box on rubber grommets, A grommet is placed in each of the four corners of the bottom of the

Fig. 6.8.3-Viring mader. neath the shalf. The loose Hexible leads at the right are alluhored to a lug strip on the phassis after assembly.
hox. These are duplicated in the top of the $10 \times 12 \times 3$-inch chassis which serves as a base. Machine screws with washers at either end are passed through both sets of grommets to fasten the floating box to the chassis. Gare should be taken in locating the grommet holes in the chassis to provide $1 / 16$ inch or so of clearance between the lower overhanging edge of the dial plate and the chassis, so that the dial is free from contact with the chassis.

A duphicate lug strip is fastened to the chassis directly below the terminal strip on the sholf. The two strips are then connected together with highly-flexible wire bent to form half loops between the terminal strips. This is done to minimize any vibration that might be transmitted from the base chassis to the box through the connecting leads. Similar fexible connections are matde to anchorages on the chassis for the output leads.

The output coil, L_{2}, is wound on a standard 1 lex-inch diameter a-prong pug-in form (Bud). The padder condenser, fin, in carh case is mounted inside the form where it may be adjusted with a screwdriver.

The power transformer, rectifier, the t wo V'R tubes and their voltage-dropping resistor, R_{4}, as well ats the bleceder resistor. R_{5}, are mounted along the rear edge of the -hassis. The filter chokes and condenserare plared underneath, sinee the develop no appreciable heat. d 115-volt connector and two coaxial output conmetors are mounted in the rear edgre of the chatsis. The output may be either capacity or link coupled to a following stage. The iwn power switches and the key jack are set ill the frome edge of the chaseis.

Adjustment

The adjust ment of the unit is bery simple. The V'lk resistor, R_{4}, should first bo set so that the V'R tubes stay ignited with the key closed. VRTiss or V1R90s may be used, the higher voltage giving somewhat greater output from the unit. Then, the tuning condenser C_{1} should be set at
maximum capacitance Listening on a receiver tuned to about 3490 ke , the oscillator padder, (", should be adjusted until the oscillator signal is heard at that frequency. The oscillator tuning shouk then cover the range up to a frequency slightly above 4000 ke.

The amplifier padder is adjusted by tuning the oscillator to the approximate center of the band and adjusting (Gil for maximum grid current to the following stage. If the coil dimensions: have been followed carefully, the output should then be substantially eonstant over the entire band. The $1750-\mathrm{ke}$. or 3.5 -. I C . output should be used in feeding a crystal stage normally using 3.5-Me. crystals, while 3.5- or T-Mc. output should he used in cases where 7-Mr. ervestals are normally employed.

Fig. 0.8 .4 - Bottom view of the completed seriestaned VIO unit. Power leads are cabled. The coavial cables go to the r.f. output connectors.

A Bandswitching Gang-Tuned VFO-Exciter

Figs. 6-85 through 6-88 show the construction of a bandswitching gang-tuned VFO-exciter delivering an output of approximately 5 watts on all hands from 80 to 10 moters. Power supply and a reactance modulator for NFM are included.

Referring to the circuit diagram of Fig. 6-87, a 6AG7 is used in the series-tuned Colpitts oscillator circuit. Three frequency ranges are covered here. The first range, with L_{1} in the circuit, is from 3.5 to 4 Mc . This range is in use for $3.5-7$ - and $14-\mathrm{Mc}$. output from the exciter. The second range, covered by L_{2}, starts at 5.25 Mc. to cover the 21-Mc. band in the output. The third range, with L_{3}, starts at 6740 ke . to cover the 11 -and 10 -meter bands in the output.

The second stage is a 6 L 6 buffer-doubler. In the 80 - and 40 -meter positions of the bandswitch, the output circuit is resonant approximately halfway between the 80 - and 40 -meter bands. This provides sufficient excitation for the output stage without danger of instability. In the last three positions of the switch, the stage doubles frequency suceessively to 7 , 10.5 and 14 Mc . The last stare operates as a straight amplifier with an untuned input circuit on 80 meters, and as a doubler to 7,14 , 21 and 27-28 Mc. The tuning condensers of all three stages are ganged.

The reactance modulator consists of a 6AK5 amplifier driving a $6 B .16$ reactance tube. Jacks are provided for keying wither the oscillator or the output stage, as desired. The sereen voltage of all three r.f. tubes, as well as the plate supply for all but the output tube, is regulated by VIR tubes. S_{1} is a control
switch. In the first position, all power is turned off. In the second position the power supply is turned on, but plate voltage can be applied to the exciter only through the external relay terminals. In the third position, plate voltage is applied directly. In the fourth position the modulator is turned on and plate voltage applied through the relay terminals.

Construction

In assembling the exciter in a so-called am-plifier-foundation enclosure with a 6×14-inch chassis, an effort has been made to keep the unit as compact as possible. If space is available, the constructor may wish to use a $7 \times$ 17 -inch enclosure which allows more space in which to work. To permit removal of the eover without disturbing the dial, the spot wolds at one end of the cover are broken by drilling them out. Self-tapping serews are then substituted as fastenings. The dial (a National type SCN) is fastened to the cover end plate with the lower edge of the dial at chassis-top level. The side edges of the dial escutcheon plate are trimmed to fit the width of the cover, if necessary.

Looking at the rear view of Fig. 6-86, the condensers in the tuning gang, C_{10}, C_{22} and $C_{\text {gi }}$, are mounted on a strip of polystyrene 3 inches wide and as long as necessary to accommodate the length of the gang. The polystyrene strip is supported on metal pillars at the corners to bring the gang shaft up level with the dial hub. The sockets for the r.f. tubes are lined up along one edge of the chassis with the two miniature modulator tubes along the opposite elge. The power transformer is

Fig. 6-85 - The gang-tumed bandswithing exciter is built in a standard amplifier-foundation enclosure, Additional holes have been pusched in the top to aid ventilation.

Fig. 6-86 - Rear view of the gang-tuned bandswitehing exciter.
placed at the extreme rear end of the chassis and the filter input condenser, C_{32}, and the sockets for the rectifier and the two voltageregulator tubes are grouped around in the remaining available space.

Underneath, the bandswitch, with the ceramic sections spaced out $23 / 4$ inches, is mounted along the center line of the chassis. A metal bracket inside the last section holds the rear end of the assembly. The oscillator bandset condenser, C_{9}, is fastened to the side of the chassis, opposite the first bandswitch section where it can be adjusted with a serewdriver from outside. The deviation control, R_{6}, is similarly placed opposite the last bandswitch section.

The control switeh and the two key jacks are to the right of the bandswitch control at the front end of the eliassis. The two doubler bandset condensers, C_{23} and C_{28}, are on the right side of the chassis in Fig. (i-88, near the last bandswitch section. C_{23} is mounted verti"ally, with its shaft protriding out through the top of the chassis, while C_{28} is mounted horizontally so that it can be adjusted from the side. The two filter ehokes secupy the rear of the chassis.

All roile are givuped around the bandswiteh sections. Most of them can le supported by their leads from the switch. The oscillator coils: are braced against vibration by eementing them, where necessary, to polystyrene-strip braces fastened to the chassis. An aluminum partition to the left of the bandswitch in Fig. $6-88$ shields these coils from the others. It is advisable to cut or wind the coils with an extra turn or two for adjustment. The final trimming of inductance can be done by bending or sliding the last turn or two away from the other turns.

All power wiring should be done with shieded wire with the braid grounded as often as convenient. The only additional v.h.f. filtering found desirable in TVI tests was the installation of eapacitors C_{30} and C_{31} across the a.c. line.

Adjustment

The tracking of the three stages is not difficult, but it should be done carefully. Only the last stage needs to be tracked for 3.5- and 7-Mc. operation, of course. A milliammeter should be placed temporarily in the circuit to read plate current to the 616 s . The oscillator should first be adjusted with the bandswitch in the first $(80-m e t e r)$ position. Then, with C_{10} set at or close to maximum capacitance, C_{9} should be adjusted until the oscillator is heard at 3500 kc . C_{10} is then turned to minimum capacitance and the frequency noted. If 4000 ke. comes too far inside the tuning range.

COIL TABLE FOR GANG-TUNED BAND. SWITCHING EXCITER

Coil	Wire No.	Diam.	Lenth	Turns
L_{1}	24	$1^{\prime \prime}$	18/8"	50
L_{2}	24	s/8' ${ }^{\prime \prime}$	1758"	47
L_{3}	20	$1^{\prime \prime}$	11396"	29
L_{4}	20 criam.	5/8'	$3 / 41$	23
L_{5}	24	$32^{\prime \prime}$	12"	161\%
L_{6}	24	3/2	2/8"	11
Lif	22 enam.	$1^{\prime \prime}$	$78^{\prime \prime}$	32
L_{8}	20 cham.	$5 / 8$	$1318{ }^{\prime \prime}$	21
L_{9}	24	12"	$3 / 3^{\prime \prime}$	11
L_{10}	20	3/4"	$916^{\prime \prime}$,
L_{11}	20	$3 / 41$	$9180^{\prime \prime}$	4%

$L_{1}-\mathrm{B}$ \& W Miniductor No. 3016, L_{2} —No. 3008. L_{3} No. 3015. L_{5}, L_{c}, L_{9}-No, 3004, $L_{10}-N . \operatorname{No.} 3011, L_{11}-$ No. 3010.
Links as follows: $L_{\overline{7},} L_{8}-5$ turns, $L_{9}-3$ turns, L_{10}, L_{11} -2 turns.
L_{ϕ} and L_{7} close-wound.

Fig. 6-87- Cireuit diagram of the gang-tuned bandswitching exciter.
$\mathrm{C}_{1}-25-\mu \mathrm{fd}$. 25-volt eleetrolytir.
$\mathrm{C}_{2}, \mathrm{C}_{3} \mathrm{C}_{5}, \mathrm{C}_{18}, \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{20}, \mathrm{C}_{24}-0.01-\mu \mathrm{fd}$. paper Ci - $220-\mu \mu \mathrm{fll}$. mica.
CA - $8-\mu \mathrm{fd}$. 150 -volt electrolytic
C:7, Cs, C2s-47- $\mu \mathrm{fd}$. miea.
($\mathrm{C}, \mathrm{C}_{23}, \mathrm{C}_{28}-50-\mu \mu \mathrm{fd}$. air trimmer (Millen 26050). (10, C22, $\mathrm{C}_{27}-25-\mu \mu \mathrm{fd}$. variable (Millen 19025).
(i1, C12 - 680- $\mu \mu \mathrm{fd}$. silvered mica.
Ci3, $_{13}, C_{19}-100-\mu \mu \mathrm{fd}$. mica.
(i4-50- $\mathbf{\mu} \mathrm{ff}$. 330 p.p.m. neg. coefficient condenser
$C_{15}-25-\mu \mu \mathrm{fd} .330 \mathrm{p.p.m}$. neg. coefficient condenser
2fl. ceramic (Surague 36C-1)
$\mathrm{C}_{30}, \mathrm{C}_{31}-0.01-\mu \mathrm{fd}$. paper (Sprague Ilypass).

$$
\begin{aligned}
& \mathrm{C}_{32}, \mathrm{C}_{33}, \mathrm{C}_{34}-8-\mu \mathrm{ffl} \text {. 450-volt electrolytic. } \\
& R_{1}-2.2 \text { megohms, } 1 / 2 \text { watt. } \\
& \mathrm{R}_{2}-2200 \text { ohms, } 1 / 2 \text { watt. } \\
& \mathrm{R}_{3}, \mathrm{R}_{6}-0.1 \text { megohm, } 1 / 2 \text { watt. } \\
& \mathrm{H}_{4} \text { - } 0.22 \text { megohm, } 1 / 2 \text { watt. } \\
& \mathrm{H}_{5} \text { - } 1 / 2 \text {-megohm potentiometer. } \\
& R_{7}-0.47 \text { megohm, } 1 / 2 \text { watt. } \\
& R_{i}, R_{10}-10,000 \text { ohms, } 1 / 2 \text { watt. } \\
& R_{9}, R_{13}, R_{15}-470 \text { ohms, } 1 \text { watt } \\
& 11-47,000 \text { ohms, } 1 \text { watt. } \\
& \mathrm{K}_{12} \text { - } 1-1000 \text { mohm, watt. } \\
& \mathrm{R}_{16}-10,000 \text { olmis, } 10 \text { watts. }
\end{aligned}
$$

 In12, Li3 - $25-\mathrm{hy}$. 125 -ma. filter ehohe.
 RFC.
RFC:
S_{1} - 3-pole 4-position rotary switeh (Mallory 313.3J).
$\mathrm{S}_{2}-3$-section, 2 , poles per section, 6-position ceramie
T_{1} - Powary switch (Centralah Switehkit).
T_{1} - Power transformer: 370-(0)-370 volts r.m.s., $100-$ 150 ma.; 6.3 volts, 5 amp.; 5 volts, 3 amp.
VR - VR-75-30 voltage-regulator tube.
L_{1} should be decreased slightly and the promess repeaterl, readjusting C_{9} to bring the signal at 3500 ke with C_{a} set at maximum. If, on the other hand, the tuning range is not sufficiently wide to include 4000 kc . when C_{10} is at minimum rapacitance, L_{2} must be incretsed and the above process repeated. The larger L_{1} is, the greater will he the frequency range eoveredt the smaller L_{l} is made, the greater the handspread, i.e., the smaller the frequeney range.

With the osoillator tuned to 3500 ke., C_{27} will be set at or near maximum capacitance, since it is ganged to ('10. ('2s should now be adjusted to resonance, using the dip in GLG plate current as the indieator. Then with the oscillator tumed to 4000 ke , resonance in the

Fig. 6-88 - Hottom view of the gang-tuned bandewitelsing exciter. The chassis is 3 indlea deep.
output cireuit should again be checked. If the tuning is not at resonance, it should be carefully observed whether Cer must be increased or decreased to restore resonance. If C_{28} must be decrased, C_{2} is not tuning fast enough. In this case, the size of L_{7} must be increased *lightly and the process repeated. If an incrase, instoad of a decrease, in the capacitance of C_{29} is required to restore resonance, L_{7} must be trimmed down.

With L_{1} and $L_{\text {a }}$ adjusted so that the oscillator and output stages track over the 80 -meter batd, the settings of C_{9} and C_{28} should be noted carafully so that they may be reset at the same points. L_{8} is next adjusted so that the output circuit, with the bandswitch in the 4 (0)-tueter position, tuncs to 7000 ke at the same motting of the gang that tunes to 3500 ke . Ces should not be roadjusted for this except experimentally to determine if Lo need be increased or decrased to tune the eircuit to 7000 ke . When the adjustment is completed, all eondenser settings should be the same for 7000 and 3500 ke . If this is done, the circuits should track over the 40-muter band withoul further adjustment.

With the switeh in the 20-mrter position, L_{4} is adjusted noxt. With the gang sot so that the oscillator tunes to 3500 ke , ('as should be adjusted for resonance at 7000 ke . Then, with the oscillat or tuned to 3600 kc ., C C_{23} should be adjusted for resonaner at $\bar{i} 200 \mathrm{kc}$. If Com must be changed from its original setting to restore resonance, La must be adjusted following the procedure outlined previously for the adjustment of L. 7 .

Nest, L_{9} is adjusted so that the output circuit tunes to $1.1,000 \mathrm{kc}$, when the osrillator is sel at 3500 ke., withoul disturbing the selling of G_{2}. Ther wutput circuil should then trame at least up to $11,400 \mathrm{ke}$, the highest frequenes of interest.

With the switeh in the 21-Me. position, L_{2} is eommened into the oscillator circuit. This roil should be adjusted so that the oseillator sigmal is heard at 5250 ke, when the gang is set near maximum capacitance. The selling of $C^{\prime} 9$ should not be disturbet. Then, without disturbing the selting of the gang or of ('23, I_{6} should be alt justed so that the ripeuit resonatem at 10,500 kc. and L_{13} should bo adjusted so that tho ontput crecut tumes to $21,000 \mathrm{ke}$, without disturbing the setting of Ces. The thee stages should then track over the full width of the 21-Mr: band.

The adjustment for 27-28 Me, is similar. L_{3} is trimmed so that the onsillator tumes to 6740 ke. with the gang near maximum eapacitanec. At the same setting, L_{6} is adjusted for 13,480 ke . and L_{a} for $26,960 \mathrm{ke}$.

The powey supply shown delivers a vollage of 360 under load. At this voltage, the 6 AC 7 cathode current should run 10 ma. or less, while the cathode current in the first and secand doubler stages should be approximately 25 and 3.5 ma. respertively.

A 175-Watt Transmitter for the 160 -Meter Band

A single transmitter that will cover the extremes of 1.8 and 28 Me. necossarily must involve considerable compromise as well as complication. From several considerations, it is not only preferable, but also economically feasible, to build a separate unit for 160 meters, sinee it can be simple and straightorward. In most instances, operating conditions may be chosen so that the 160 -meder unit will operate from the same power supply as the higherfrequency transmitter, if the station has one.

An example is shown in Figs, (i-80) through ($6-93$. Berause the $1.8-$ Mc. hand is divided into narrow slices, erystal control is proferable to reduce the danger of out-of-band operation. The oscillator cireuit in this case is a modified Pierce with a separate untuned plate outpht circuit. C_{3} is a feed-back-adjust ment condenser

The 6L6 stage provides the neeresary buffering between the oscillator and the final amplifier for 'phone operation. There is no danger of oscillation at the fundamental in the buffer slage because its input cireuit is untumed. since the frequency range to be eovered is small, the output cireuit of this stage is easily broadbanded. Thus only a single tuning control is required for the entire transmitter.

The triode final amplifier is a conventional arrangement with a capacitive-divider plate neutralizing eireuit, The d.e connection to the rotor of the tank condenser through $R F^{\prime} r_{6}$ makes it possible to use a condonser with half the peak-voltage rating that otherwise would be required. $R F^{\prime} C_{5}$ is a v.h.f. parasitic suppressor.

For ew. operation, the oscillator is keyod in the cathode circuit. R_{5} provides proteetive hias for the buffer stage.

The layout is suitable for any of the usual triodes with platerap eonnection, operating at plate voltages up to 1500 with a plate-voltage/plate-current ratio of 10 or greater. If a tube with a $\mathbf{6 . 3}$-volt filament is chosen, only a single filament transformor is needed.

Construction

The unit is assembled on an $8 \times 17 \times 3$-inch chassis with an $83 / 4$-inch pancl. Most of the constructional details are evident from the photographs. The output-stage tank condenser is mounted on ceramic pillars and its shaft is fitted with an insulating coupling. The condenser is plated on the chassis so that its dial and the milliammeter will be symmetrical in respect to the eonter of the panel. The tank coil is a homemade affair wound in two equal sertions on separate Millen type 44000 polystyrene forms, each cut down to a length of $21 / 2$ inches. The outer end only of each seetion is fastened to a $11 / 4$-inch cone insulator, and the two sections are placed with their imer cods ath inch apart. Additional bracing is provided by the No. 14 wire leads from the inner end of each section to the plate r.f. choke, $R F^{\prime} C_{6}$ mounted near the center. After winding the turns are cemented in place with coil dope.

The output link (8 turns of No. 18 d.e.c. should be satisfactory) is wound on a $3 / 4$-inch length of loftower form. A lengith of $1 / 4$-inch polystyrene rod is cemented to the inside surface of the link form. This shaft then runs through a panel bearing fitted with a National type RSL shaft lock which provides an adjustable friction for the shaft. A knob on the shaft provides a means of adjusting the coupling from the pancl.

The noutralizing condenser, C_{s}, is placed close to the tube, between the tube and the panel. ('is should not be less than the value spereified, nor larger than $0.005 \mu \mathrm{fd}$, if the amplifier is to be platemodulated.

All eomponents for the exciter stages, exerpt the two tubes and crystal, are placed underne at h the ehassis. These inelude the plate tank rireuit of the buffer stage. C_{7} is mounted so that it may be adjusted with a serewdriver from on top. L_{1} is wound on a Millen 1 -inch plastic form and is placed alongside the eon-

Fig. 6-8y - Front view of a 10.5-watt transmitter for the 160 -meter hand. Only one tuning rontrol is needed, phus a zmall knob used to adjust the setting of the swinging link on the out put eovil.

CHAPTER 6

Fiz. 6-90-Buttom view of the 160 . meter tranwitter. The oscillator tulve sochet and itw rebated parts are in the upper left morner. The 61.6 and the finalamplifier tube are mounted in a line throuph the renter of the chassis. with the plate coil for the 61.6 supported on a bracket between the two stages. The parasitlc-suppressing choke is mounted between the: zrid terminal of the annilifier sochet and a ecramic stand-off insulator.
so far from the tube sockets that exeessive voltage drop results through the wiring. In this case it was convenient to plate one on
denser on a bracket that spaces it from the chassis on all sides.

For convonience in changing erystals, the crystal socket is mounted on the front edge of the chassis, at the loft. Clearance holes for both the crystal socket and the key jack are cut in the panel.

The placement of the filament transformers is not critical, except that they should not be
top of the chassis and the other below. Terminals are provided across the back for high voltage, low voltage, bias and ground. An a.e. cord makes the line-voltage connection to the filament-transformer primaries.

Fig. 6-92 shows the diagram of a suitable power supply in case a separate supply is necessary or desirable. Control circuits are included.

Fig. 6.91 - Schematic diakram of a single-control 175-watt transmitter for the 160 -meter land.
C.] $-0.001-\mu \mathrm{fl}$, mica, 400 wolts.
($\mathrm{C}_{2} \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{12}, \mathrm{C}_{13}-0.01-\mu \mathrm{fd} .600$-volt paper.
(3-10) $-\mu$ fil. mica. See text.
$\mathrm{C}_{4}, \mathrm{C}_{8}-100-\mu \mu \mathrm{fl}$. mica
(7 - $50-\mu \mu \mathrm{fl}$. variahle (National PSR-50).
$\mathrm{C}_{9}, \mathrm{C}_{11}-0.0068-\mu \mathrm{fd}$. mira, 510 volts.
(in- 220 ($-\mu \mu \mathrm{fd}$. mica, 600 volts.
Ci4 - $100-\mu \mu \mathrm{d}$.-per-section dual transmitting variable, 0.070 air gap (3000 volts peak). (National TMC. 100.1).)
($15-0.0035-\mu \mathrm{fl}$, mica, 5000 volts.
(is - Nentralizing condenser, $0.8-10 \mu \mu \mathrm{fd}$. (NC-800-A).
$\mathrm{K}_{1}-15,000$ ohms, $1 / 2$ watt.
$\mathrm{K}_{2}-330$ ohms, 1 watt.
$\mathrm{R}_{3}-39,000$ ohms, 1 watt.
$\mathrm{R}_{4}-22,000$ ohms, $1 / 2$ watt.
R_{5} - 600 ohms, 2 watts (two 1200 -ohm l-watt units in parallel).
$\mathrm{R}_{6}-10,000$ ohms, 5 watts.
$\mathrm{L}_{1}-46$ turns No. 26 d.s.e. close-wound on 1 -inch diam. form.
L_{2} - Earh half consists of 46 turns No. 20 d.s.e. closewound on a 15 - inch diam. form (Millen $11(000)$). The two halves are momed so that there is $11 \frac{1}{3}$ inches between windings to permit passage of the link enil. I.ink: 8 turns No. 18 d.e.e. eloseweund on $1 / 8$-inch diam. form made of same material as the main coil form.
I_{1} - 6.3 -volt panel lamp.
J_{1} - Closed-cirenit jark.
MA - 0-300 ma. d.c. meter.
RFC_{1} throngh $\mathrm{RFC}_{4}-\mathbf{2 . 5}-\mathrm{mh}$. r.f. choke (National R-100.s).
$\mathrm{RF}^{\circ} \mathrm{C}_{5}-21$ turns No. 26 d.s.e. close-wound on $3 / 4 \mathrm{inch}$ diam. form (a l-watt resistor of any high value may be used as the form).
hFC_{6} - Transmitting r.f. choke (Millen 34140).
$\mathrm{T}_{1}-6.3$-volt 3 -amp. filament transformer (Stancor P-6011).
$\mathrm{T}_{2}-7.5$-volt t.amp. filament transformer (L'TC S.56).

$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-8$ - $\mu \mathrm{fd}$. 600-volt-whg. eler. $\mathrm{C}_{4}, \mathrm{C}_{5}-4-\mu \mathrm{fd}, 2000-v o l t$ oil-filled.
$\mathrm{R}_{1}-25,000$ ohms, 25 watts.
$\mathbf{R}_{2}-30,000$ ohms, 10 watts, with slider.
$\mathrm{H}_{3}, \mathrm{H}_{4}-47$ ohms, 1 watt.
H_{5}-Seetext.
$R_{6}-25,000$ ohms, 150 watts.
$\mathrm{L}_{1}-5 / 25-h y .150-\mathrm{ma}$. swinging choke. $1.2-20-h y .150-\mathrm{ma}$. smoothing choke. I. 3 - 30 -hy. 75 -ma. filter choke.
I_{4} - 5/25-hy. 200-ma. swinging choke. I.s - 10-hy. 200 -ma. smoothing choke.

11 - 150 -watt 115 -volt lamp.
$\mathrm{S}_{1}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$ - 10 amp, toggle switrh.
$S_{2}-5$-amp. toggle switeh.
$\mathrm{T}_{\mathrm{t}}, \mathrm{I}_{3}-5$-volt 3 -amp. filament trans. former.
$\mathrm{T}_{2}-400-\mathrm{v}$. d.c. $225-\mathrm{ma}$, plate transformer.
$\mathrm{T}_{4}-2.5$-volt 10 -amp. filament transformer, 10,000 volt insulation.
$\mathrm{T}_{5}-1750 / 1500 / 1250-\mathrm{v}$. d.c. $200-\mathrm{ma}$. or-more plate trans.
VR - VR-75 voltage-regulator tube.
eurrents of the oseillator and buffer (100 to 120 ma.). However, there should be a usable dip in current when C_{7} tunes th: buffer tank circuit through resonance. If the circuit is tuned to 1850 ke., it will not need readjustment for any frequency betwern 1800 and 1900 kc . Similarly, if it is initially adjusted for 1950 kc., it will cover the 1900- to 2000-ke. range.

The proper bias adjustment for the final amplifier will depend upon the type of tube used. Any additional operating bias voltage above 75 volts is obtained by grid-leak action from R_{5} in the power supply. The resistance at which R_{5}, shoukd be set can be determined by subtracting 75 from the rated operating bias for the tube used and dividing the remainder by the rated grid eur-

Adjustment

If the transmitter is to be used for e.w. operation, it may be desirable to experiment bricfly with C_{3} to obtain best keying charaeteristics. It may be found that a different capacitance will work better with some erystals, while with others the condenser may not be needed at all, or that the keying will be better with C_{3} connected from grid to ground, rather than from screen to ground.

With the oscillator running, the d.c. voltage aeross the buffer grid leak, R_{4}, should be 90 to 110 volts. A milliammeter placed in the 400 volt lead will road the combinod

Fig. 6-9.3 - Rear view of the 1.8-Mc. transmitter. The construction of the amplifier plate coil and its swinging link is shown at the left. The plate r.f. choke and the plate by-pass condenser are mounted underneath the main tuning condenser, which is supported by 1 -inch stand-off insulators. An insulated conpling is used between the rotor shaft of the condenser and the panel control. The neutralizing condenser is visible behind the amplifier tube.
rent in amperes. The amplifier should be neutralized before applying plate voltage. If neecssary, the size of L_{2} should be adjusted so that resonance occurs with the tank condenser set near maximuin capaeitanee.

The choke, $R F^{\prime} C_{5}$, should be the only means necessary to suppress v.h.f. parasitic oseillation if a Type 5514 tube is used. Other tulow may require cireuit alterations.

A Push-Pull 807 Amplifier with Multiple-Band Tuners

A push-pull 807 amplifier and antenna tuner requiring no plag-in coils or bandswit ching is shown in Figs. 6-94 through 6-99. The tanks of both the amplifier and antenna tuner are made of the new multiband cireuits - combination circuits that show multiple resonances through the range of the tuning condensers. All bands, 80 through 10 meters, atro covered as the ganged condensors are turned through their eapacitanere range. Tuners of this type are available on the market, or they ran be built.

Referring to the diagram of Fig, 6-96, the grid-tank tuner is made up of ('t, C_{2} and L_{1}, L_{2} and L_{3}. (${ }_{3},\left({ }_{4}, L_{6}, L_{-}\right.$and $L_{4 x}$ comprise the plate-tank tuner. The antemna tumer consists of ('5, (ff, L_{11}, L_{12} and L_{13}. The output tank rircuit is coupled to the antemat tumer both through a link line for the high frequencios and bev the eoupling coils $L_{2} 9$ and L_{20}, which are included in the manufactured units, for low frequencies. Series or paralled tuming may be used for 3.5 and - Me. Paralled tuning is used for the higher hands.
$R F^{\prime}{ }_{1}$ and $R F^{\prime} \mathbf{\prime}_{2}$ are parasitio suppressors. (10 and ('11 are tububar air contensers comected direetly betweren plate and cathode. They contribute to rih.f. hatmonic reduction as well ats parasitic suppression. $L_{4} C^{\prime}-$ and $L_{5}\left({ }^{\prime}, ~\right.$ are v.h.f. traps that may be tuncd to the second or third harmonie of 28 -Mc. band frequencies as found neeessary to reduce TVI. The 6)6G reduces the power input to the 807s to a sater value whenexeitation is removerl.
box as an inexpensive shielding cabinet. The box, with its bottom cover removed, is fastened to the chassis by means of 1 -inch metal-strip cleats along each 10 -inch side of the chassis. The box then overhangs the chassis at the rear, pro-

Fig. 6.9.5- Rear-top, view of the multiband 800^{7} amplifier, showing the hinged door in the rear for altering antenna connections. The amplifier is to the left, the antenna tuner to the right. The third tube is the 616 C . The onter eonductor of both link lines is crounded on the shielding partition.

Construction

The amplifier is const ructed on a $10 \times 12 \times$ 3 -inch chassis with a $11 \times 12 \times 8$-inch utility
viding, together with the holes in the top cover, ventilation essential in an enclosed job such as this. The spare bottom cover is cut to form a partition shielding the amplifier plate tank from the antemma tuner. A door rut in the back provides aceess to the antonnatuner terminals.

The two large tuaters are motanted on l-ineh rone insulators. The harmonic traps, ('ist and ('x $L_{\text {a }}$, are mounted on a strip of polysterene fastened to the plate thacr with brackets. Clearance holes for the 80 sa are cut in the top of the chassis alongside the plate tuner. The tube sockets are submounted in an aluminum strip $2^{1} \underline{\underline{6}}$ inches wide spanning the chassis. The edges of this strip

Fig, 6.9.4-A moltihand push-pull 807 ampli. fier and antenna tuner with no phagein coils or switching. The aluminum strip on top covers the harmonic-trap adjusting holes. 'The other hales are for ventilation. The panel is a sheret of 310 -inch aluminum $12 \frac{1}{4}$ incher wide and $101 / 2$ inches hish.

(i, (:2-125- $\mu \mu \mathrm{fd}$. variable (Vational s.iH-|25), part of (113-.50 tuner).
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}-110-\mu \mu \mathrm{fd}$-per-section variable (part of National M13-150 tuner).
($\mathrm{C}, \mathrm{C}_{8}-50-\mu \mu \mathrm{fi}$. variable (Vational l'SE).
C9-0.00.17- $\mu \mathrm{fd}$. mica.
$\mathrm{C}_{10}, \mathrm{C}_{11}-10-\mu \mu \mathrm{ff}$. tubular: sec text.
($\mathrm{C}_{12}, \mathrm{C}_{13}-0.005-\mu \mathrm{fl}$. ceramic (Centralah D) $\mathrm{A}-0-18$).
($\mathrm{H}_{4}-\mathbf{0 . 0 0 1 - \mu \mathrm { fd } , \text { mica, } 1 2 0 0 \text { volts worhing. }}$
Cis - $500-\mu \mu \mathrm{fl}$. mica, 1200 volts work ing.
$\mathrm{C}_{16}, \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21}-4 \mathrm{SO}_{-\mu \mu \mathrm{fd}}$. mica.
$R_{1}-12,000$ ohms, 1 watt.
$R_{2}-25,000$ ohms, 20 watts.
$1.1-30$ turns \o. 22 enam., center-tapped, $1 \frac{1}{4}$ inches long, l-inch diam.
$L_{2}, L_{3}-7$ turns Do, 22 enam., 5io inels long, I-inch diam., with $: / 8$-inch space bet ween seretions.
(Note: Above eoils are part of 113.50 timer.)
are bent up a quarter of an inch to provide longitudinal strength.

Underneath, the grid tuner is mounted close to the tube sockets on pillars that space the coils evenly between the top and bottom of the chassis. The shaft of this tuner is operated by a pulley system so that the control can be brought out to the center of the panel. The pulleys are casily made by lightly grooving small bakelite tuning knobs.

The tubular condensers, C_{10} and C_{11}, are made as shown in the sketch of Fig. 6-97. They are mounted between the two tube sockets after clearance holes have been cut in the aluminum strip and the top of the chassis. The har-monic-filter components are placed close to the associated power terminals at the back. All power wiring should be done using shielded wire.

Modification of Antenna Tuner

If the National MB-150 tuner is used, slight modification is necessary to adapt it to the antenna tuner. The r.f. choke is removed. One
 diam.
 diam., with $3 / 8$-ind space between scrtions,
$L_{8}, \mathrm{I}_{11}-18$ turns No. 12,2 inches long, $13 / 4$-inch diam.: L_{8} is center-tapped.
In, $\mathrm{L}_{10}-12$ turns \o. $12,2 \frac{1}{2}$ inches long, $21 / 2-\mathrm{im} \cdot \mathrm{h}$ diam. Note: $/ .6$ to L_{13}, inc. - part of MB. 1.30 tuner.)
J_{1} - Coraxial-calile connector.
J_{2} - t-prong male plug.
$\mathbf{I I} A_{1}-0-25$ d.e. milliammeter.
$\mathrm{MA}_{2}-0-300$ d.c. milliammeter.
RF' $\mathrm{S}_{1}, \mathrm{RF} \mathrm{C}_{2}-I-\mu \mathrm{h} . \mathrm{r}$ f. choke (National 1333).

 ' T_{1} - 6.3-volt 3 -amp. filament transformer (Stanoor P5014)
end of L_{11} is disconnected from the condenser and is brought to one of the antemat terminals as indicated in Fig. (i-96. The original coupling clips are removed from L_{9} and L_{10}. On each of the two coupling coils, one of the flexible leads is soldered permanently to the third turn from one end. The other lead is terminated in a copper spring clip. The original clips are fastened permanently to the coil after the position of the taps for proper coupling has been determined. These then serve as points or taps to which the spring clip can

Fig. 6.99° - Shetch showing the eonstraction of the tubular air condensers nsed in the p.p. 807 amplifitr. The eondenser is monnted with screws through the forting.

be quickly attached in changing bands． R（i59）／U cable is satisfactory for the low－ frequency coupling line between L_{9} and L_{10} ， but the larger R（ill／C should be used for the high－frequence line to avoid breakdown． fiach end of the latter is formed into a coavial link（see＂Stray Coupling，＂Chapter Ten）．

Adjustment

The diagram of a power supply for this amplifier is shown in Fig．6－98．Approxi－ mately three watts of driving power is re－ quired．

If the National units are used，or if the tun－ ars have been built closely to the specifications given under Fig． $6-96$ ，adjustment of the amplifier should be merely a matter of resonat－ ing the input circuit for maximum grid current for the desired hamd，and the plate circuit for minimum plate eurrent in the usual fashion （seere＂Idjustment of R．F．Amplifiers，＂this chapter）．However，as the tank condensers are turned from minimum to maximum capaci－ tanee，the tuners do not resonate in the hands in logical sequence，but as foliows：28－27 Me， 7 Me．， 21 Me．，3．5 Me．and 14 Me．Minor resonances may be found at other multiples
of frequencies that may be fed through from at multiband exciter．Therefore，until the dials have been plainly marked，the frequency should always be chocked with a wavemeter．

The excitation should be adjusted for a grid current of 8 mat under loand．This should give a bias of 90 volts under fuil－load operating

ANTENNA．COUPLER CONNECTION CHART FOR THE 807 P．P．AMPLIFIER				
Tuning	＂C^{+*}	Feeder Terminals	Jump Terminals	Comned （7ip Lead ＂ $\boldsymbol{E}^{1 "}$ 10
Series	Low	A d C	－	［）
Series	Medium	A \＆	－	B or（ ${ }^{\text {c }}$
Series	High	A 心	I 心 C	I）
l＇arallel	Low	A心B	A A C	I）
1＇aratlel	Medium	A＊B	A＊ C	B or C
I＇arallel	High	A A B	A＊${ }^{\circ}$	A

conditions．Without load，the plate current should dip to about 20 ma．With load，the coupling may be inereased until the plate cur－ rent at resonance is 200 ma ．when the sereen current should be approximately 16 mat．at 300 volts．If excitation is removed，the 6Y6G should limit the plate current to 35 ma ．or less．

The antemma tuner is adjusted fol－ lowing aonventional prowedure（heo ＂Practical Coupling Systems，＂Chap－ ter len）．The accompanying table shows how the terminal connections should be made to obtain the desired combination．If a eenter－fed antenna system is used whose total length for each hatf is a half wavelength for 3．j Me，or a multiple of that length，it should be possible to use parallel tun－ ing on all bands，dispurning with the change in feader compections to the antenna coupler．

Fia， 690 －Bottom view of the pushoputl 80－amplifier．The grid－circuit multhband tuner is to the right of the aluminum strip on which the 80：sockets and tubular condensers are mounted．The filament transformer is to the left with the v．h．f．power－lead filters above．

Two Triode Amplifiers

Figs, 6-100 through 6-110 show the circuits and photographs of two neutralized-triode amplifiers designed esperially toward eliminating parasitic oscillation and the minimizing of

Fig. 6.100 - The single-tube trionde amplifier installed in a metal cabinet. The controls are for input- and outputceireuit tuning and variable-link adjustment. The pand is of metal $83 / 4$ inchers high.
v.h.f. harmonic radiation. The chief objective in the arrangement of components in each case is that of keeping the inductance of r.f. conneetions to the tubes as short as possible.

The design of both amplifiers as shown is suitable for any conventional platerap-connection triodes operating with a plate-voltage/plate-current ratio of 10 to 1 or greater per tube, at plate voltages up to 1500 volis.

The rircuit diagram of the single-tube amplifier is shown in Fig. (i-102. It is comentional, except for the addition of the eon-
 Wavetrap ('s L_{3} in the plate lead, and the w.h.f. filters in the power leads. The trap may be adjusted to either the second or third harmonic of $28-$ Me. band frequencies. ('s is a small ceramir condenser connected directly between the grid and filament terminals of the tube socket for the purpose of providing a short low-inductance path across the input of the tube. Coserves the same purpose at the output of the tube, while Cor helps to maintain the original vircuit batance as well as to provide a

Fig. 6.10l - Grid-rirenit eml of the single-tube triote amplilier, 'Ilye arid taith roil in the friegroumbl is momented on $21 / 2$-inch eramic pillars to bring it. terminalm alose to the torminals of the prid tank condelamer immediately hehind the roil. Tlise twa tuhutar condenser are sisible, one lielow the tube and the other above and behind the tube. 'Ihe' air trimmer condonser close to the plate eap of the tole is the harmonio-t rap timing condenser, The panel in this case is a Tresodworal sution lyacked with aluminum shect.

Fig. o-102 - (iirruit diagram of the single-tube triode amplifier.
 (Xational TVK-10\%).
 spacing (\ational 'TVK-100-W).

Ci. - Disk-tyme neutralizing condenser Hammarhund N:-10).
$0:-12-\mu \mathrm{fI}$. reramic.
© - $100-\mu \mu$ fil. variable air padder (Villon 1-100
 6. 101 for rometruetional details).

J., 1_{2} - Sire coil table.

133-3 turns Ao. 10 timued, $3 / 2$-inch diame, $1 / 2$ incla lomq. R1FC, 1 -mh, 300 ma. r.f. choche.
 \%-,i0).
T_{1} - Pilament tram-lirmar: 6.3 whols. f amp.
low-inductance lead to the neutralizing eondenser. These two condensers are of the tubular air type.

The plate tuning condenser, C_{2}, is mounted on $\frac{1}{2}$-inch cone insulators at the center of the $10 \times 17 \times 3$-inch chassis, with just enough space at the front end for an insulating shaft coupling. I narrow aluminum bracket is made for the socket so that the tube will be held horizontally with its plate cap close to the front stator terminal of the tuning condenser.

The two tubular condensers are made similar to the sketch of Fig. 6-104 except that a 1, inch cone insulator is cemented in the tubing at one end in place of the button insulator. The $1 / 8$-inch rod threads into the 10 p of the conc. (9 is monated from the bracket supporting the tube sorket so that it is orientated

Fig, 6.10.f - shateh showins the constructien of the tubular fined conderesers, 'The' pate prip makes a rombmient mounting and eonnertion peint.

Fig. 6.103 - Rear view of the single tube triode amplifier. 'The tubular rondenser in yiew in Cin. The chassis is 10 inches deep.

COIL TABLE FOR SINGLE-TUBE TRIODE AMPLIFIER					
Bund	Turns	Hire N	Diam.	l.ength	I. $\mu \mathrm{h}$,
* Plate					
27-28 Mf.	6	8	$13 / 4{ }^{\prime \prime}$	21/8'	1.2
21 Mc .	8	8	$2^{\prime \prime}$	23/4"	18
14 Mc .	10	14	$2^{1}{ }_{2}{ }^{\prime \prime}$	$22^{\prime \prime}$	4.0
7 Mr,	18	14	$22^{\prime \prime}$	$23 / 4{ }^{\prime \prime}$	12.0
3.5 Mc .	30	16	21: ${ }^{\prime \prime}$	$23 / 4{ }^{\prime \prime}$	3611
** Grid					
$27-24.110$.				11/8'	1.2
21 Mc .	9	$1{ }^{16}$!1",	3/4",	22
14. Mc ,	14	16	11.	11:"	4
; Mc.	22	(*)	11.1	$11^{\prime \prime}$	10
3.5 Mr .	$2 \times$	18	11:"	"/8'	20

* B\&W BVL series coils, unaltered except for 1 turn off cach end of BYI.-10. Halves of coils are separated $1 / 2$ inch.
** National AR-16-F. series coils with turns removed as follows: $28 \mathrm{Mc} .-1$ turn, $1+\mathrm{Mc}$. - unaltered, $7 \mathrm{Mc},-6$ turns, 3.5 Mc . 28 turns. AR-16-20E with 5 turns removed for 21 Mc.
directly beneath the tube and paralled to it.
A second aluminum bracket at the rear of the chassis supports one end of C_{10} so that the other end is close to the inside terminal of the rear stator section of (e2. I clamp around the outer conductor makes a connection to the bracket supporting the tube and provides additional bracing. The two filamont by-pass condensers are grounded on the socket-mounting serews.

The neut ralizing eondenser, C_{4}^{\prime}, is tucked in between the bracket that holds (10 and the rear of the tuning condenser. It may be adjusted through a $\frac{1}{2}$-inch hole aut in the bracket. The trap condenser, ('s, is mounted on a bracket fastemed to the frame of the plate tuning comenter so that the stator terminal is
rlose to the phate eap of the tuber. A shore lead connerets the rotor terminal of C 's to the front stator terminal of ('2. The trap coil, L_{3}, is soldered ateross (8 , underneath.

The grid tuning condenser is mounted on lo-inch cone insulators close to the tube socket. The grid-eircuit by-pass condenser, C_{3}, is connected between the rear end phate of C_{2} and the ground point at the tube socket.

On the other side, the plate tank-eoil mounting is paterd elose to the tuning condenser. The plate r.f. choke, $R F^{\prime} C_{1}$, is mounted bet were the coil atnd condenser, and the high-voltage lead comes up from under the chassis through a ceramie bushing.

A control for the variable link is brought out to the panel to balance the grid tuning control on the other side. A pair of Millen universaljoint shatt couplings is used to take care of the displacement between the link shaft and the panel control.

The filament transformer and the harmoniefilter components are plated underneath the chassis close to the power terminals at the rear. All pown wiring is done with shiolded wire.

The Push-Pull Amplifier

The cirenit of the push-pull amplitier is shown in Fig, 6-106. The same general principles are followed both in the circuit and in eonstruction. Provision is made for metering the individual grid and cathode currents so that the amplifier may be adjusted for batamed current readings. In this amplifier tubalar neutralizing condensers, made as show in the photograph of Fig. 6 - $10 \overline{7}$, are used.

The plate tank eondenser is plated on the chassis with its shaft 3 ! 6 inches from the end of the $10 \times 17 \times 3$-imeh chassis. It must be
 push-puli triade amplifier installad in a samalard metal eabimen.

fig. 0-106 - Circuit diagram of the push-pull triode amplifier.
$C_{1}-H_{1}$ al variatble - $100 \mu \mu \mathrm{fd}$, per section, 0.03 -inch spacing (Hammarlund HFAD-100-B).
$\mathrm{C}_{2}-$ Inal variable - $100 \mu \mu \mathrm{fd}$, per section, $0.0 \overline{0}$-inch spacing (Hammarlund IIF1BI)-100-F),
Ca - 0.001- $\mu \mathrm{fl}$. mica.
$\mathrm{C}_{4}, \mathrm{C}_{5}-12-\mu \mu \mathrm{fil}$, ceramic.
$\mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}-0,001-\mu \mathrm{fd}$, mica.
(in, Clit - 'lubular air condenser (see text).
Cin, C_{13} - Neutralizing condenser (sce text).
Cis - $0.001-\mu \mathrm{fi}$. 5000 -volt-whg. mica.
$\mathrm{C}_{15,} \mathrm{C}_{16}-1: 0-\mu \mu \mathrm{fd}$. mica.
(Ci_{17}, (is - $0.1 \mu \mathrm{fl}$., 250 volts (Sprague 11 ypass).
insulated from the rhassis, of course. The jack har for the plate tank coil is mounted on $1 / 2$-inch cone insulators, close to the tank condenser.

An aluminum bracket 7 inches long and $31 / 2$ inches high holds the two tube sockets, spaced $4 \frac{1}{2}$ inches apart. The grid tank condenser also

Fig. 6-107-This photograph shows the construction of the tubular neutralizing condensers for the push-pull triode amplifier. The tubing is $1 / 2$-inch inside diameter, mounted on ceramic pillars by means of plate grips soldered to serews in the pillars. The inner conductor threads into the end of a third pillar that supports the loose end of the rod.
(:19-500- $\mu \mu \mathrm{fd}$. 5000 -volt-wkg. mica.
$\mathrm{C}_{20}, \mathrm{C}_{21}-0.01 \mu \mathrm{fd}, 600$ volts (Sprague 1 ypass).
$R_{1}, R_{2}-100$ ohms, 1 watt.
L_{1}, L_{2} - See coil table.
$M A_{1}, M_{2}-$ D.c. milliannmeter, 50 -ma, scale.
$\mathrm{MA}_{3}, \mathrm{MA}_{4}-$ D.e, milliammeter, 300 -ına. scale.
RFC, R R FC_{2} - 2.5-mh. 125-ma. r.f. choke.
RFC.
 (Ohmite Z-is0).
$\mathrm{T}_{1},{ }^{\prime} \Gamma_{2}$ - Filament transformer: 6.3 volts, 1 amp. (for 812 As).
is mounted direetly on this bracket without insulation. Metal spacers are used to bring the shaft of the condenser $3 \frac{1}{2}$ inches from the end of the chassis to match the shaft of the plate tank condenser. The grid tank-roil socket is placed next to the condenser so that the axis of the eoil will be at right angles to that of the plate coil. The National AR-17 grid coils are cut at the center and the open end is connected to a spare pin in the base.

The two fixed air condensers, C_{10} and C_{11}, are made as shown in Fig. (i-10t and are fastened to the tube-socket bracket. A standard 9/6. inch plate grip makes a convenicht conuedtom to the tuting and also sorves as a means of mounting.

The photograph of Fig. 6-107 shows the construction of the tubular neutralizing condensers. They are quite similar to the tubular fixed condensors, but provision is made for moving the rod in and out of the tubing. A National ceramic button, cemented in the tubing at the cont rol end, serves as a bearing for the rod. The other end of the rod is threaded 6-32 to fit a National GS-1 ceramic pillar which is $1 / 2$ inch in diameter. This holds the rod central within the tubing as it is slid back and forth. Clearance holes, lined with rubber grommets, are cut in the tube bracket to admit the condenser rods and the rods arc provided with sliding

(.1, C.2 - $1 \cdot \mu \mathrm{fd}$. 2000 .wolt nil-filled.
(.3-8. H_{fl}. 4.30 volt elertrolytic.
$R_{1}-25,000$ ohnss, 1.50 watts.
$R_{2}-50,000$ ohms, 25 watts, adjustable.
l_{3} - 1.500 ohms, 25 watts. adjustable.
$R_{4}, R_{s}-1010$ ohms, I watt.
$1.1-5 / 25 \cdot h y$. swinging chohe, 200-ma. for single tube, fol-ma. for push-pull.
I. 2 - 20-hy. sumothing choke, 200 -ma. for single tube, tor-ma. for push-pull.
14-30-liy. Ellma. filter choke.
$J_{1}-1.50$-watt 115 -volt lamp.
s. 1.5.amp. switrh.
$\mathrm{s}_{2} \mathrm{~s}_{3,} \mathrm{~s}_{4}$ - 10.amp. w witeh.
S_{1} is the main power switeh, turning on all filaments and the bias supply and setting up the circnit for siz which controls the exciter plate supply. S_{2} also sets up the cirenit for sis which turns on the high. voltage supply. $\$_{3}$ cuts in or out I_{1} for reducing power daring trans. mitter adjustment.
T1 - Filament transformer: $2 . \overline{5}$ volts, 10 amp., $10,1000$. volt insulation.
F_{2} - Mate transformer: 1200/1300 volts d.c., 200 or 410 ma,
T_{3} - lower transformer: 6.50 v. a.c.. (.t., . 0) ma. or more: $\overline{3}$ volts, 2 amp.
VR - $111-75$ voltage regulator (see tent).

Fig. 6.109-13ot1om view of the pushopull triode amplifier show. ing the placement of the filament trans. formers and v.h.f. filter components.

COII TABLE FOR PUSH-FULL AMPLIFIER					
Band	Turns	W'ire No.	Diam.	Length	$L \mu h$,
$\begin{gathered} \text { *Plate } \\ 27-28 \mathrm{Mc} . \end{gathered}$	4	8	$2^{\prime \prime}$	5"	0.6
14 Mc .	10	10	$21 / 4 \prime$	$2^{\prime \prime}$	3.4
7 Mc .	18	12	$3^{\prime \prime}$	$21{ }^{\prime \prime \prime}$	13
3.5 Mc .	26	14	$3^{\prime \prime}$	$3^{\prime \prime}$	37
${ }_{97=98}^{*} \text { Grid }$					
27-28 Mc.	12	18 18	$1^{1 / 4}$	$1^{\prime \prime}$	36
7 Mc .	23	22	11'"	112	15
3.5 Mc.	56	21	$11^{11}{ }^{\prime \prime}$	$13 / 4{ }^{\prime \prime}$	55

[^0]contacts (hanama jacks) soldered to the tubesocket grid terminals. Insulated control knobs can be fasterned to the protruding ends of the rods, hut it is safer to adjust the condensers in small steps with excitation off.

The filament transformers and harmoniefilter components are placed underneath the chassis as in the single-tube amplifier, All power wiring is done with shielded wire.
both units are shown installed in a standard sted cathinet. An enclosure of sereening would be equally satisfactory as a shield and might have the advantage of better ventilation. If the cabinet is used, it would be advisable to punch several ventilating holes in the cover immediately above the tubes and ot hers in the chassis below the tubes and in the bottom of the eabinot, since a very considerable amount of heat is generated in the eourse of operation.

Adjustment

The circuit diagram of a power-supply section and a control system for these amplifiers is shown in Fig. 6-108. With the tubular condensers shown, the plate voltage should be limited to about 1200 volts with plate modulation. An exeiter capable of delivering about 25 watts should be provided for the single-tube amplifier and about twice this driving power should be available for the push-pull stage. Fig. 6-106 shows how the dual meters should be connected in the push-pull amplifier, For 812-A tubes, VR-75s may be used in the has supply. Only a single regulator tube need be used in the case of the single-tube amplifier. In either case, R_{2} should be set initially so that at least one of the regulators just ignites. For c.w. operation at 1500 volts, R_{3} should be adjusted to 1500 ohms for a single tube or to 750 ohms for two tubes. For plate-modulated 'phone operation at 1200 volts, the grid resistor should be set at 1000 ohms for a single tube, of 500 ohms for t wo tubes. Grid current should run 30 ma , per tube for c.w. operation and 35 mat. per tube for 'phone operation, both under full load (175 ma. per tube e.w. or 140 mat. per tube 'phone).

For other tube types, and for tuning procodure, see the tube tables, Chapter TwentyFive, and earlier seetions of this chapter.

Unbalance in the cathode currents of the p.p. amplifier can be correeted by adjust ment of the lengt of one or the ot her of the two plate leads, betwoen the junction of the conncetion to the tubular condenser and the tank condenser. Crratest unbalance is likely to oceur at 28 Me., so a satisfactory adjust ment for this batnd will usuatly hold for lower frequeneios.

Fig. 0.110 - Hear view of the push-pull triode amplificr. 'The prid tank condenser is fastened to the loracket holding the tube workets, The nentralizing condensers are lirtween the tubes with their inner rods ex. tending through holes in the bracket.

A 1-Kw. Beam-Tetrode Amplifier

Figs. 6-111 through ti-115 show the eireuit diagram and construction of a single-tube screen-grid amplifier capable of handling up to l-kw. input on c. W., or 675 watts on platemodulated 'phone. It is designed to be operated in any band from 80 through 10 meters by the use of phug-in coils. Any exciter capable of dolivering 15 to 20 watts should provide adequate excitation for the $1-250.1$ in this amplifior.

The circuit diagram is shown in Fig. $\{j-113$. It is a conventional link-coupled armagement except for the inductive link meut alizing srstem (L_{2} and L_{4}). This neutralization is desirable to maintain reliable stability on all bands. All power leads are filtered for v.h.f. harmonics.

Construction

The amplifier is designed for use in atandard rack rabinet or other shichding enclosure. To that end, it is arranged so that both grid and plate eoils may be removed by pulling toward the rear. Thus the chassis is inverted to provide aceess to the grid coil.

On top, the plate tank condenser is inverted and mounted with metal angles on 2 -inch reramic cone insulators. It is placed so that its. shaft will come at the conter. The jack bar for the tank roil is fastened between an angle piece at the forward end of the tank-condonser frame and another angle pieere bolted to one of the panel brackets. The mounting is made so that the coil is tilted at an angle of about 45 degrees. The antema-coupling link shaft is driven from a control on the panel by means of a Millen right-angle gear low. The neutralizing link. $1 / 4$, is the 13 \& W type Bl'L. The asisembly is fastened with at single serew to the top of a $1 \frac{1}{4}$-inch coramic pillar mounted on the rear corner of the tank rondenser. This mounting permits the link to be pivoted on the pillar as well as hinged in the usual fishion.

Sinee roils with a variable end liak are not availathle, enonter-link mils have been adapted to the purpose by using only one seetion of the two-sertion coils. As a mation of convernione in changing bands, the unused seretion of one coil is removed and a section of roil for an adjacent hand is

Fig. 6.111 - Pront view of the 1.8.50. amplifier, showing the method of assembling the panel and the chassis. The controls on the pande, from top to bottom. are the output conpling knob, plate tuning dial, and prisl tuning dial. The panel is 19 by $171 / 2$ inches.
mounted instead. Thus each coil plug strip carrias roils for two bands and the change from one to the other is made simply by turning the unit end for end. The two unused jacks in the jack bar are comerted together with a copper strap so that the unused section of eoil is short-circuited.

The tube sorket (National HX-100-s) is submounted alongside the rear corner of the tank condenser where the plate lead to the stator torminal can be made short. The filament transformer is mounted at the front of the chassis out of the direet field of the tank. A dearance hole is eut for the terminals which protrude underneath.

Cuderneath, the grid tank eondenser is mounted at the eenter of the chassis on 16 -inch stand-off insulators, I $3^{3} s^{-i n c h}$ strip of aluminum is bent as shown in the botom-view photograph to form a mounting for the grid tank eoil directly to the rear of the eondenser, as well as a shielding enclosure for the components in the power-lead filters. The leads bet ween the coil socket and the rondenser pass through small bushings (Millen 32150) or elearance holes in the aluminum. The soeked and ventilating fan are cnclosed in a $6 \times 4 \times$ $31 / 4$-inch box made of aluminum sheet. Whern the bottom plate of the box is in place, the fan forees air up through the socket to the tube. The box should be perforated with $1 / 4$-inch holes batk of the fan to provide an air intake.

The filament, screen and grid by-pass condensers are mounted direetly at the tube sorket. All are grounded at the same point -

one of the sockel momenting serews. A ceramic terminal strip for the a.c. line, bias, sereen voltage and ground terminals, a Millen safety terminal for the plate-voltage connertion, and a coaxial jack for r.f. input are mounted on the rear surface of the shielding strip.

All power wiring is done with shiclded wire. The high-voltage lead is a length of highvoltage ignition cable covered with 1 -inch shiclding braid up to within an inch of each end.

The grid-circuit neut ralizing link eonsists of t wo turns of No. 14 wire, $1 / \frac{1}{2}$ inehes in diameter, fastened ton a pair of $21 / 2$-inch pillar insulators (National GS-2) so that the eoil is coupled to the low-potential end of L_{1} and yet does not interfere with the removal of the grid coil.

Plate-Coil Modification

The 80 -meter lidVI coil is dismounted from its coramic plug bar and a diagonal cot is sawed through the center of the plastie strip) holding the two sections of the eoll. The tometer eoil is similarly eut. One seretion of the 80 -meter enil and one seetion of the 40 -meter coil are then reassembled as a unit by eomenting together at the center, the diagonal euts overlapping. The coils for 14- and 28-Mc. operation are altered in the same way. Other combinations may be made up as desired, depending upon the bands wanted. The 21Me. coil may be a separate unit or combined with the eoil for another band.

Adjustment

The circuit diagram of a suitable powersupply unit for this amplifier is shown in Fig. 6-114. Caution should be exereised in operating a beam tetrode with fixed sareen supply - especially a high-power tube - since the sereen current in the absener of plate voltage and full load can run to damaging limits.

Fig. 6-113 - Schrmatic diagram of (her 1-2.0. 1 amptificr.
$\mathrm{C}_{1}-100$ - $\mu \mathrm{ffl}$. variable (National TMS.100).
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-0.002 \mathrm{O}_{-\mu \mathrm{fd}}$ mica.
C 5 - $0.001-\mu \mathrm{ft}$. 1000 -volt mica.
(C - $1,010-\mu \mu \mathrm{fil}$. 61000 -volt peak (Natinnal TMA-150-A).
C:- $0.001-\mu \mathrm{fd}$. $50100-\mathrm{volt}-\mathrm{wkg}$. mica.

$\mathrm{C}_{9}-5010$ - $\mu \mathrm{ffd}$. 10000 -velt mica.
C_{10} - .500 - $\mu \mathrm{ffl}$. B$)(\mathrm{O})$-wolt -whg. mica.

1.f - Mithen 130ヶ6 series coils:
3.5 Me. - 32 turns \o. 20, $11 / 2$-in. diam., $11 / 2$ in. long, i-turn link (43082 with 6 turns remon ad).
7 Mr. - 24 turns No. 16, $1 \frac{112-i n . ~ d i a m . . ~}{2}$ in. Iong, 7 -turn linh (430.42).
$1+$ Mr. - ${ }^{1}$ turns No. $16,11 / 2$-in. diam., $11 / 2$ in. long, 2-turn link (43022).
21-28. Mc.- $\frac{1}{}$ turrs No. 14, 1 1/2-in. diam., $12 / 8$ in. long, 2 -turn link (43012).
1.2 - 2 -turn linh, Vo. 14, 1 12 inches diam.
I.3-BNW IIINI. series (modified, see tent).
3.5 Me. - 16 turns No. $10.31 / 2$-in, diam., 3 in, long.

- Vr. - 10 turns No. 8,31 -in. diam., 2 要 8 in. long.

If Me. - 6 turns No. $8,3 \frac{1}{2}-\mathrm{in}$. diam., 3 in. Inge.
21 Vt. -1 turns 3 is-in. copper tubing, 3 -in. diam., $27 / 8 \mathrm{in}$. long.
28 Vic. -3 turns 3 is.in. copper tuhing, $23 / 8 \mathrm{in}$. diam., 25/9 in. Img.
$\mathrm{L}_{4}-3$-turn swinging link, No. $18,25 / 8$-in. diam., $1 / 4 \mathrm{in}$. long (BVI, linh assembly).
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial conncetor (Amphenol 83-1R).
 T_{1}-lilament trans.: 5 volts, 14.5 amp. (l'TC S-59).

rif. 6-112 - Rear view of the 4-2.01 A amplifier. 'I'he construction of the reversible plug-in phate coil is shown. The small variable link at the left of the plate eobil is a part of the nemtralizing circuit. 'I 'he grid-enil compartment is seen below the chassis between the shield box that houses the fan and the partition on which the input terminals are mounted.

It is advisable to conduet all preliminary adjustments at reduced screen voltage to keep the screen dissipation at a safe level. The lamps, I_{1} and I_{2} in Fig. 6-114, are for this purpose. A size of lamp should be selected that will give the desired reduction in sereen and plate voltage, remembering that the lamps with lower wattage rating have a higher resistance and therefore will give a greater voltage reduction.

Seutralization is merely a matter of adjusting the position of the plate neutralizing link for complete stability. since the system depends upon correct polarization of the links, it may be necessary to reverse the connections to one of the links.

For operating at a plate voltage of 3000 , normal excitation is indicated when the grid current is 10 ma . and the hias 180 volts with the amplifier loaded to draw a plate current of 32.5 mat. Under these conditions, the sereon current with a screen-supply voltage of 500 should run approximately 60 ma. For platemodulated 'phone operation at 3000 volts, the grid eurrent should be ? ma. at 310 volts under full load and the sereen current 30 ma , at +00 current 30 mat. at +00 volts. Under the above conditions,
R_{3}, Fig. $6-114$, should be set at 3000 ohms for c.w. operation and at 18,000 whras for 'phone aluration. R_{2} should be adjusted so that the V'R tube just ignites without expitation.

Fig. 6-115-13otom view of the 4-250 A amplifier. The harmonic filters are in the compartment to the left of the grid coil. 'The arrangement of the by-pass condensers inside the fan honsing is also shown, with the grid termioul of the tohe sorket pointing toward the grid tank circuit. The chassis measures 17 ly 13 by 2 inches.

Fig. 6-1I.1 - Circuit diagram of a power supply for the beam-tetrode amplifier. S_{1} is the main switeh, turning on all filaments. S_{2} turns on the plate voltage for the exciter unit and sets up the circuit for S_{3} which turns on lonth sereen and plate supplies for the amplifier. I_{1} and I_{2} are 115 -volt lamps of proper size to reduse screen and plate voltages to a suitable value for tuning. S_{4} and \dot{S}_{5} short-eircuit these lamps for full-power operation.
$\mathrm{C}_{1}, \mathrm{C}_{2}-1-\mu \mathrm{fd} .600$-volt oil-filled.
$\mathrm{C}_{3}-1-\mu \mathrm{fd} .450$ volt-wkg. electrolytic. $\mathrm{Ci}_{4}, \mathrm{C}_{5}-t-\mu \mathrm{ff}$. 3000 -volt oil-filled. $\mathrm{R}_{1}-2.5,000$ ohms, 25 watts.
$\mathrm{H}_{2}-\overline{0} 0,000$ ohms, 25 watts, adju-t. $R_{3}-20,1000$ ohms, 25 watts, adjustable. $\mathrm{R}_{4}, \mathrm{R}_{5}-\mathbf{0} 0,0100$ ohmas, 75 watts.
$\mathrm{L}_{1}, \mathrm{I}_{2}-20-\mathrm{hy}, 100$-ma. filter choke, 1.3-30-hy. 50 -ma, filer choke. $1.4-5 / 25-h y .400$-ma. swinging choke. $1.5-20-h y, 400$-ma. sinoothing choke. I_{1}, I_{2} - Power-reducing lamp. 8_{1} - 15-amp. switch.
$\mathrm{Sa}_{2} \mathrm{Sa}_{3} \mathrm{~S}_{4}, \mathrm{~S}_{5}-10$-amp. switel.
'lı- F'ilament transformer: 5 volts, 2 amp.
' I_{2} - I'late transformer: 500 volts d.e., I 00 ma.
${ }^{\circ}{ }^{3} 3$ - Power tranoformer: $250-3.50$ volt s H.c., 75 ma.; $\overline{3}$ volts, 3 amp.

I' - Fibament transformer: 2.5 volts, 10 ample, 10,000 volts insulation.
I's-Plate transformer: 3000 volts d.c., 100 ma.

VR - Voltage regalator - VR-150.

A 20-Watt Mobile Transmitter for 40 and 80 Meters

The circuit diagram of a 20 -watt transmit ter for 75 -meter 'phone and 40 - or 80 -meter e.w. js shown in Fig. 6-118. A modified lieree crystal oscillator drives a 2 V2f amplifier. Hoth hands are covered by the oscillator tank condenser, ('s, with a single coil at L_{1}. The output cireuit of the 2 l ? 26 is in the form of a pi-sertion network which permits fereling power into antemas of a variety of lengths. A coramie tap switeh, S_{l}, adjusts the antemat inductance for each band.

Fig. 6-120 shows the cireuit of the modulator. The two seetions of the 12.15° dual triode serve as surech amplifier and driver for the $6 \mathbb{N}$ Chass 13 modulator. The audio section is designed for use with a low-obltut singlebutton earbon microphone such as the '10-17. A 3-section 3-pole rotary switch, S. Fig. (i-120, performs the necessary change-over functions in shifting the rig between 'phone and e.w. operation.

Construction

The transmitter unit is made up of two separate sections housed in a stamdand $9 \times 5 \times$ fi-inch sterl utility box. The r.f. unit is assambled on an aluminum chassis 6 inches long. $11 / 4$ inches wide and 1 ineh derep. All parts in the ref. unit, with the exception of the output roil and tap switeh, are mounted on the chassis. The switch is fastened to the box cover, which serves as the pancl, and the coil is mounted direetly behind, supported at one end by a - -inch eeramie pillar and at the other end ber a short length of heary wire that extents from the feed-theough antemat terminal to the tuming condenser bolow it.

Parts umelermeath the chassis should the plaed earefully so that they will not interfere with the atdio romponents below. The oscilbator plate coil and tuning condenser are mounted along one edge where they extend

Fig. 6-115- (ieneral , iew of the romplete transmitter a-cembly. 'Ihe r.f. cirmits orrupy the upor deck, and are held abose the andia eection lys simple tab bracket. Powar and control cable: entar ilirough connectors mobinted on ome of these tabs. Ther construction of the plate vircuit of the 2 lied stage is Amwn, with the r.f. chate juat viable betweren the two tuning condarasers.
down into the spare just above the driver tramsformer and the $12.4{ }^{7} 7$ on the atudio chassis. The smather parts in the r.f. unit are momed near the other adge, as chose to the (has-is as possible to insure adequate clearance for the modulation transformer and the (i) 5 on the lefthans side.

The audio unit is huilt on a similar chassis having the same dimensions but with $1 / 4$-inch

 mister for the 3.ラ- and --Mc, bande We-ainned for inwonting under the dashboard of the var. the transmitter and it pencer *uppls oraus standard i $\times 6 \times 9$-inch utitias liver.. and the enntrol lons, which ©lampe the ateering romet. in in a $1 \times 1 \times 2$-inch trox.

Fig．0．118－Circuit diagram of the 20．watt mohila r．f．unit

Ci，C． 6 － $0.01-\mu \mathrm{fd}$ ．paper， 600 volts．
$\mathrm{C}_{2}, \mathrm{C}_{10}-0.001-\mu \mathrm{fd}$ ．mis＇a， B 00 volts．
Cis－0．00） $47-\mu \mathrm{fl}$ ．mica， 300 volts．
$\mathrm{C}_{4}-47-\mu \mu \mathrm{ff}$ ，mica， 500 wolts．
$\mathrm{C}_{5}-2.50 . \mu \mu \mathrm{fl}$ ．variable（National STII－250）．
C．$-0.00(68-\mu \mathrm{fd}$ ．mica， $\mathbf{3}(0)$ volts．
Cs，Ci－ $335-\mu \mu \mathrm{fd}$ ，variable（ （ational STII－335）．
$\mathrm{R}_{1}-47.000$ ohms， $1 / 2$ watt．
H_{2}－ \boldsymbol{B} ，（0）OO ohms， 1 watt．
$13_{3}-22,(0) 0$ ohma， 1 watt．
lips bent out along the bottom to provide rails on which the assembly rides when it is being slipped into the box．The parts bencath the audio chassis are mounted as close to the chassis as possihle．

Aluminum strips $41 / 2$ inches long by 1 inch wide serve as braces at the rear between the t wo chassis．A similar strip $15 / 8$ inches wide，at the front on the right side，provides a mounting for the two connectors used to hring the supply voltage and the control circuits into the unit． A cut－out is made in the edge of the box to clear these connectors．

TYPICAL OPERATING DATA－ 20－WATT MOBILE TRANSMITTER

Conditions：c．w．；loaded to 110 mat．total cathode current；supply voltage（under load） 390 volts： 80 －meter crystal used．

Stage	80－Meter Out put		40－Meter Ouipht	
	Volts	Ma．	Volts	Ma．
6．1に゙5 plate screen	$\begin{aligned} & 390 \\ & 200 \end{aligned}$	$\begin{array}{r} 19 \\ 3 \end{array}$	$\begin{array}{r} 390 \\ 210 \end{array}$	21
2EOG plate screen grid＊	$\begin{array}{r} 390 \\ 200 \\ -100 \end{array}$	78 4 4	$\begin{array}{r} 310 \\ \because 10 \\ -10 \end{array}$	$\begin{gathered} 78 \\ 5 \\ 3 \end{gathered}$

＊Grid current and voltage will vary widely from these figures depending on tuning．Optimum obtainable values are shown．
$1 h_{4}-15.010$ ohms， 10 watts．
I．1－32 turns No，29 enam．close－wound on $8 / 4$－inch dian．form．
$\mathrm{L}_{2}-48$ turns No． 20 tinned． $31 / 8$ inches long， 1 －imh diam．，tape at $12,2,2,32$ and 10 turns from plate end（ $13 \mathbb{N} W$ Miniductor No．301．5）．
RIFCi，RFCis，RHC （ Aational 1 －100．S）．
RIPC3－2．5 turns No． 26 enam．close－wound on リ́と inch diam．form（ National R－33． $1 \mu \mathrm{~h}$ ．）．

Fig． 6.119 －Hottom view of the r．f．chassis．The os－ cillator socket is partly hidden from view by the twor．f． chokes that are moninted on the right－hand chassis cdee．Directly to the left of the ossillator socket is the orvilator pate coil．The sorket for the $2 \mathrm{~F}: 26$ is mounted a little to the right of center of the chassis，close to both the sesillator socket and the tuning condenser．

Fig. 6-120 - Circuit of modulator for 20 -watt mobile transmitter.
$\mathrm{C}_{1}-0.1-\mu \mathrm{fd}$. paper.
$\mathrm{C}_{2}, \mathrm{C}_{5}-10 . \mu \mathrm{fd}$. 25.volt electrolytic.
$\mathrm{C}_{3}-8-\mu \mathrm{fd}$. 450 -volt electrolytic.
$\mathrm{C}_{4}-0.01-\mu \mathrm{fd}$. paper.
$\mathrm{C}_{6}-50$ - fid. 50 -volt electrolytic.
C. $-0.0068-\mu$ fd. mica, 500 volts.
$\mathrm{R}_{1}-0.47$ megohm, $1 / 2$ watt.
$\mathrm{R}_{2}-2200$ ohms, $1 / 2$ watt.
$\mathrm{R}_{3}-0.1$ megohn, $1 / 2$ watt.
R_{4} - 4700 olnns, 1 watt.
$\mathrm{R}_{5}-0.5$ megohm potentiometer, audio taper.

Power Supply

The power-supply circuit is shown in Fig. 6-122. A combination transformer is used to permit operation from cither the 115 -volt a.c. line or a 6 -volt car battery. Two 6X5 rectifiers in parallel are used to carry the total current drain of about 120 ma . Hash filtering is

Fig. 6.121 - Top view of the audio unit. At the righthand edge are the gain control and the 'phone-c.w. switch. The 12 AL 7 and the 6 N 7 are monnted in line behind the two controls. The transformers occupy the rear of the chassis, located in such position that they clear all parts in the r.f. unit, which mounts above them.
$\mathrm{R}_{6}-560$ ohms, $1 / 2$ watt.
$\mathrm{R}_{7}-220 \mathrm{ohms}, 2$ watts.
$s_{1}-3$-pole 3-position rotary switch.
I_{1} - Midget microphone transformer, s.b. mic. to grid (Inca F-65).
T_{2} - Driver transformer, single plate to Class B grids ('Thordarson T'-20D76).
T_{3} - Multitap modulation transformer (LTC S-18, connected to match 8000 ohm primary to 100 K . ohm secondary).
accomplished by chokes and by-pass condensers. Scparate output connectors are used for 6 - and 115 -volt power sources. When operating from a battery, d.c. is applied directly to the heaters. When a.c. input is used, the other connector supplies 6.3 volts a.c. to all heaters from the transformer. A s.p.d.t. switeh, S_{2}, shifts the heaters of the $6 \mathbb{N} \bar{s}$. All parts in the power supply are mounted on a $41 / 4 \times 83 / 4 \times 1$-inch aluminum chassis. The entire supply is enclosed in a second utility box of the same size as that used for the transmitter.

Control Circuits

The circuit of the control box is shown in Fig. 6-123. The box is a standard item 4 b 4 by 2 inches, with a bracket bolted to one of the covers for clamping to the stecring wheel. Jacks for both microphone and key and a $41 / 2$-volt microphone battery are included. A -terminal receptacle is mounted on the bottom of the box to bring the control cable into the box from the transmitter unit.

Only wo cables are required. One is a 3 -wire shiclded cable that runs from the eontrol box to the transmitter. The other requires 3 conductors, one for high voltage, one for heater voltage and the third for ground. 'lhe ground and filament leads should be made of as heavy wire as possible to minimize voltage drop.

The control circuit is arranged so that push-to-talk or break-in operation is possible. The switch on the microphone controls the transmitter, once the main power switch has been turned on. In 'phone operation, the microphone switch closes the cathode circuits of the two tubes in the r.f. section. In the "stand-by" position the eathode rircuits are opened. Plate voltage is still applied to the audio circuits but the microphone circuit is opened. In e.w. operation, tho 'phone-e,w. switch removes plate voltage from the audio tubes.

By using standard steel angle brackets, the transmitter may be supported underneath the dashboard, against the bulkhead, or any place where it will fit. The control box mounts on the steering wheel and the power supply should be placed as close to the battery as possible. The pi-section output circuit will permit full loading even when a short length of wire or a whip antennat is used.

Adjustment

The accompanying table shows typical voltage and current readings for the two bands.

Fip, 6.123-Schematic diagram of the control box, (ionnections of the 2 arircuit plug used with the 'l-1\%-1) mierophone are shown in the sketch at the top.
J_{1} - -erireuit microphone jack.
I2- Omen-circuit hes jach.
$11_{1}-220$ ohms, I watt.

Fig. 6-122 - Circuit diagram of the power supply used with the 20 -watt mobile rig. l'rovisions are made for operation from cither the 115 -volt a.c. line o. from a 6 -volt storage battery.
$\mathrm{C}_{1}-0.5$. ff d pabwr. $\mathbf{5 0}$ volts or more.
$\mathrm{C}_{2}-0.00 .5$ ufd., 1600 woils.
$\mathrm{C}_{3}-0.01-\mu \mathrm{fd}$., 600 volts.
$\mathrm{C}_{4}-8-\mu \mathrm{fd}$., 450 volts, electrolytic.
$\mathrm{C}_{5}-32-\mu \mathrm{fd}$., 1.50 volts, electrolytir (dual $16-\mu \mathrm{fd}$. condenser with scetions in parallel).
$\mathrm{R}_{1}-4700 \mathrm{ohms}$, 1-watt carton.
$\mathrm{R}_{2}-25,000$ ohms, 20 walls, wirewound.
$1.1-2.3$ hy., 100 -ma. filter chohe, 100 ohms d.c. resistance (Stancor C-2303).
F_{1}-2-amp. fume.
F_{2} - 15 -amp. fuse
$R F C_{1}-11$ turns No. 14 enameled, $12-$ inch diam., $21 / 2$ inclies long.
HFC, $-2,5 \mathrm{mh}$., 300 ma . (Nationil R-300).
s_{1} - S.p.s.t toggle switch.
s_{2} - S.p.d.t. tokgle swith h.
s_{3} - ILeavy -huty s.p.s.t. toggle swith \mathbf{T} - b-volt vibrator transformer, with separate 11 - volt primary. $3.50-(0-3.3)$ v, r.m..., 13.: ma.. and 6.3 v . at 2.25 amp . (Stancor P-(6166).

No special provision has been made for moters in the unit, since the transmitter can be tuned up with a milliammeter plugged into the key jatek.

The oscillator tank cireuit should tune to the $3.5-$ Me. band near maximum caparitance of the tank condenser and to 7 Me, near minimum. Resonance will be indicated by an upward kick in the reading of the milliammeter. With one of the condensers in the pi-seetion filter set at about half capacitance, the other should be adjusted for a dip in plate current with the oseillator rumning. If this dip eamot be found, the switeh should be turned to a elifferent tap and the process repeated. Connection of the antenma will cause a change in the tuning of the output cireuit. Both taps and condensers should be readjusted until resonanee as indicated by the dip in cathode current is found again. If the current at resonatne is too low, the capanitance in the two condensers should be reapportioned, increasing one and decreasing the other to restore resonance, or vice versa, until the total current at resonance is about 100 ma .

When tuning for $3.5-\mathrm{Mc}$. output, the output should be cherked with an absorption wavemeter to make sure that the 2 E 26 final is not doubling frequency.

Rack Construction

Many of the units described in the constructional chapters of the Mandbook are designed for a standard rack mounting. This standardization facilitates the assembly and modification of station equipment. Since the advent of television, racks of the enclosed type have become a matter of practical neressity for transmitters to be operated without interference in neighborhoods where television reremers are in use. While enclosed cabinettype racks of metal are available on the market, many amateurs prefer to build their own less expensively from wood and eopper soreening. With eare, an excellent substitute can be made.

Fig. 6-124.A shows a broken top view of an enrlosed rack made of copper sereening stretehed over a framework of woodstrips 1 by 2 or 1 by 3. The copper sereen, represented by the dashed limes and the eross-hatehing, is stretched over. the outside of each frame, wrapped around the ends on all four sides and tacked fast on the inside. The top and bottom are made in similar fashion. When the frames are fastened together, the sereming makes contact all along each joint. Contact at the hinge of the door at the rear is assured by the use of a fulllongth piano hinge. Trim strips of thin wood

Fig. 6-124-1 'lop detail view of an enclosed relay rach made of word strips and cop. per streening. 13 -Pancl-momiting dimensions.

Fig. 6-12. - Detail sketeh showing proper drilling for standard rach and panels. As shown for the $31 / \frac{1}{2}$ and $51 / 4$-ineh panels. only sufficient holes are drilled in the panel to provide the necesiary strength. When the panels are drilled as shown, they may be moved up and down in steps of $13 / 4$ inches and the holes will always match.
along the two vertical 1 by 3 s, which hold the pancls, and across the top and bottom headers rover up the ragged edges of sereening.

As shown in Fig. 6-124B, the panel elearance should be $191 / 16$ inches and the hole conters $181 / 4$ inches apart. Standard pancls are in unit licights of $13 / 4$ inches and the hole spacing alternates between $1 / 2$ inch and $11 / 4$ inches as shown in Fig. 6-125. The table shows the standard drilling for panels of various sizes.
(B)

TABLE OF STANDARD RACK DRILLING											
Panel /li. In.	* Holes In.	Panel HI. In.	- Holes l h.	Panel III. In.	* Holes In.	Panel Ift. In.	- Holes In.	Panel IIt. in.	* Holes In.	Panel IIf. In.	*Holes In.
$31 \frac{1}{2}$ $243 / 4$ 28	$31^{1}=30$ $29^{1} 2-241^{1}$ $2-8 / 4-241^{1} 2$	$2 n^{1} 4$ $24^{3} 2$ $22^{3} 4$	$263-218 / 4$ $24!,-23$ $22!$ $2-211 / 4$	21 191 1.3 4	$20^{3} 4^{-141} 2$ $19^{-3}-17^{-3} 4$ $11^{-1}-16^{2}$	$1.3 / 4$ 14 121	$15^{1}, 2-11 / 1$ $133 / 4-1212$ $12-163 / 4$	$10^{3} 2$ $83 / 4$ 7	$101 / 2-9$ $412-1 / 1$ $63 / 4-512$	$51 / 4$ $31 / 2$ $18 / 4$	$\begin{aligned} & 5 \quad-33 / 4 \\ & 31,-2 \\ & 112-1 / 4 \end{aligned}$

[^1]
CHAPTER

Power Supplies

Eisentially pure direet-current plate supply is required for receivers to prevent hum in the output. Government regulations require the use of d.e. plate supply for transmitters to prevent motlulation of the carrier by the supply, which would result in undesired hum in the case of voice transmissions and an unnecessarily broad e.w. signal.
their use except where commercial a.c. lines are not available. Wherever such lines are available, it is universal practice to obtain low a.c. voltage for filaments and heaters from a stepdown transformer, and the required highvoltage d.e. by means of a transformer-recti-fier-filter system. Such a system is shown in the block diagram of Fig. 7-1. Power from the

Fig. $\mathrm{J}=1$ - Block diagram show. ing the essentials of a transformer. rectifier-filter system for obtain. ing filament and plate power from an a.c. line.

The filaments of tubes in a transmitter may be operated from a.c. Those in a receiver, excepting the power audio tubes, may be a.c. operated only if the cathodes are indirectly heated.

The comparatively high cost and inconvenience of batteries and d.e. generators preclude
a.c. line is fed to a transformer which steps the voltage up to that required. The steppedup voltage is changed to pulsating d.c. by passing through a rectifier - usually of the vacuum-tube type. The pulsations then are smoothed out to the required extent by a filtering system.

Rectifier Circuits

Half-Wave Rectifier

Fig. 7-2 shows three rectifier eircuits covering most of the common applications in amateur equipment. Fig. 7-2.1 is the cireuit of a half-wave reetifier. During that half of the a.c. cycle when the rectifier plate is positive with respect to the eathode, current will flow through the reetifier and loatd. But during the other half of the evele, when the plate is negative with respeet to the cathode, no current can flow. The shape of the output wave is shown at the right. It shows that the current always flows in the same direction but that the flow of current is not continuous and is pulsating in amplitude.

The average output voltage - the voltage read by the usual d.c. voltmeter - with this circuit is 0.45 times the r.m.s. value of the a.c. voltage delivered by the transformer secondary. Because the frequeney of the pulses in the output wave is relatively low, considerable filtering is required to provide adequately
smooth d.e. output, and for this reason this cireuit is usually limited to applications where the eurrent involved is small, such as in supplies for cathode-ray tubes and for protective bias in a transmitter.

Full-Wave Center-Tap Rectifier

The most universally-used rectifier circuit is shown in Fig. 7-213. Being essentially an arrangement in which the outputs of two halfwave rectifiers are combined, it makes use of both halves of the a.e. cycle. A transformer with a center-tapped secondary, or two identieal transformers with their secondaries connected in series (with proper polarization), is required with the circuit. When the plate of rectifier No. 1 is positive, current flows through the load to the center-tap. Current cannot flow through rectifier No. 2 because at this instant its cathorle is positive in respect to its plate. When the polarity reverses, rectifier No. 2 conducts and current again flows through the

Fig. 7.2 - Fundamental varomm-nine reetifier circuits. A-Halfwave. B - Full-ヶave. C-Bridge.
load to the center-tap, this time through rectifier No. 2.

The a verage output voltage is 0.9 times the r.m.s. value of the voltage across half of the transformer secondary. For the same total secondary voltage, the average output voltage will be the same as that delivered with a half-wave rectifier. However, as can be seen from the sketch of the output waveform, the frequency of the output pulses is twice that of the halfwave rectifier. Therefore much less filtering is required. Since the rectifiers work alternately, each handles half of the average load current. Therefore the load current which may be drawn from this circuit is twice the rated load current of a single rectifier.

Full-Wave Bridge Rectifier

Another full-wave reetifier circuit is shown in Fig. 7-2C. In this arrangement, two rectifiers operate in series on each half of the eycle, one rectifier being in the lead to the load, the other being in the return lead. Over that portion of the cycle when the upper end of the transformer secondary is positive with respect to the other end, current flows through rectifier No. 1, through the load and thence through rectifier No. 2. During this period current cannot flow through rectifier No. 4 because its plate is negative with respect to its cathode. Over the other half of the cycle, current flows through reetifier No. 3, through the load and thener through rectifier No. 4. The crossover connection keeps the current flowing in the same direction through the load. The output waveshape is the same as that from the simple
center-tap rectifier circuit. The output voltage obtainable with this circuit is 0.9 times the r.m.s. voltage delivered by the transformer secondary. For the same total transformersamodary voltage, the average out put voltage when using the bridge rectifier will be twice that obtainable with the center-tap rectifier circuit. However, when comparing rectifier circuits for use with the same tran.sformer, it should be remembered that the poter which a given transformer will handle remains the same rogardless of the rectifier circuit used. If the output voltage is doubled by substituting the bridge circuit for the center-tap rectifier circuit, only half the rated load current can be taken from the transformer without exceeding its normal rating. The value of load current which may be drawn from the bridge rectifier circuit is twice the rated d.c. load current of a single rectifier.

Rectifiers

Cold-Cathode Rectifiers

Tube rectifiers fall into three general classifications as to type. The cold-cathode type of rectifier is a diode which requires no cathode heating. Certain types will handle up to 350 ma. at 200 volts d.c. output. The internal voltage drop in most types lies between 60 and 90 volts. Rectifiers of this kind are produced in both half-wave (single-diode) and full-wave (double-diode) types.

High-Vacuum Rectifiers

High-vacuum rectifiers depend entirely upon the thermionic emission from a heated cathode and are characterized by a rekatively high internal resistance. For this reason, their application usually is limited to low power, although there are a few types designed for medium and high power in cases where the relatively high internal voltage drop may be tolerated. This high internal resistance makes
them less susceptible to damage from temporary overload and they are free from the bothersome electrical noise sometimes associated with other types of reetifiers.

Some rectifiers of the high-vacuum fullwave type in the so-ralled receiver-tube class will handle up to 250 mat at 400 to 500 volts d.c. output. Those in the higher-power class can be used to handle up to 500 mat at 2000 volts d.e. in full-wave circuits. Most lowpower high-vacuum rectifiers are produced in the full-wave type, while those for greater power are invariably of the half-wave type.

Mercury-Vapor Rectifiers

In mercury-vapor rectifiers the internal resistance is reduced by the introduction of a small amount of mereury which vaporizes un-

Fig. 7-3-Conneeting rectifiers in parallel for heavier currents. R_{1} and R_{2} should have the same value, between .50 and 100 ohms.
der the heat of the filament, the vapor ionizing upon the application of voltage. The voltage drop through a rectifier of this type is practically constant at approximately $1 \overline{5}$ volts regardless of the load current. Tubes of this type are produced in sizes that will handle any voltage or current likely to be encountered in amateur transmitters. For high power they have the advantage of cheapness. Rectifiers of this type, however, have a tendency toward a type of oseillation which produces noise in near-by receivers. This can usually be eliminated by suitable filtering.

Selenium Rectifiers

Selenium rectifiers are now available which make it possible to design a power supply capable of delivering up to 400 or 450 volts, 200 ma. These units have the advantage of compactness as well as low internal voltage drop (about 5 volts). However, to limit the charging current with condenser input, a resistance of 25 to 100 ohms should be used in series with the rectifier. They may be substituted in any of the basic circuits shown in Fig. 7-2, the terminal marked " + " or "cathode" corresponding to the cathode in these circuits. Circuits in which the selenium rectifier is particularly adaptable are shown later in Figs. 7-23 through $7-25$. Since they develop little heat if operated within their ratings, they are especially suitable for use in equipment requiring minimum temperature variation.

Rectifier Ratings

Vacuum-tube rectifiers are subject to limita-
tions as to brcakdown voltage and currenthandling capability. Some types are rated in terms of the maximum r.m.s. voltage which should be applied to the rectifier plate, while others, particularly mercury-vapor types, are rated according to maximum inverse peak voltage - the peak voltage between plate and rathode during the time the tube is not conducting. In the circuits shown in Fig. 7-2, the inverse peak voltage across each rectifier is 1.4 times the r.m.s. value of the voltage delivered by the entire transformer secondary.

The maximum d.c. sutput current is the maximum load current that can be drawn safely from the output of the filter. The value listed in tube tables is the saff maximum under average conditions. The exart value is dependent upon the nature of the filter that follows the rectifier.

A more significant rating is the maximum prak plate current. It is the prak value of the current pulses passing through the rectifier. This peak value can be much greater than the load current, especially if a large condenser is placed across the ontput of the rectifier because of the large instantaneous charging current drawn by the condenser if there is no impedance between the rectifier and the condenser. These peaks do not run as high with high-vacuum-trpe rectifiers as they do with rectifiers of the mercury-vapor type because of the relatively high series resistance of the former.

Rectifiers may be connected in parallel for current higher than the rated current of a single unit. This includes the use of the sections of a double diode for this purpose. Equalizing resistors of 50 to 100 ohms should be connected in series with each plate, as shown in Fig. 7-3, as a measure toward maintaining an equal division of current.

Operation of Rectifiers

In operating rectifiers requiring filament or cathode heating, care should be taken to provide the correct filament voltage at the tube terminals. Low filament voltage can cause excessive voltage drop in high-vacuum rectifiers and a considerable reduction in the inverse peak-voltage rating of a mercury-vapor tube, Filament connections to the rectifier socket should be firmly soldered, particularly in the case of the larger mercury-vapor tubes whose filaments operate at low voltage and high current. The socket should be selected with care, not only as to contact surface but also as to insulation, since the filament usually is at full output voltage to ground. Bakelite sockets will serve at voltages up to 500 or so, but reramic sockets, well spaced from the chassis, always should be used at the higher voltages. Sperial filament transformers with high-voltage insulation between primary and secondary are required for rectifiers operating at potentials in excess of 1000 volts inverse peak.

The rectifier tubes should be placed in the
equipment with adequate free space surrounding them to provide for proper ventilation. When mercury-vapor tubes are first placed in service, they should be allowed to run only with
filament voltage for tea minutes before applying high voltage. After that, a delay of 30 seconds is recommended each time the filament is turned on.

Filters

The pulsating d.c. wave shown in Fig. 7-2 is not sufficiently smooth to prevent modulation. A filter consisting of chokes and condensers, as shown in Fig. 7-4, is connected between the rectifier output and the load circuit (transmitter or receiver) to smooth out the wave to the required legree.
The filter natakes use of the energy-storag 1 properties of the inductance of the choke and the capacitance of the condenser, energy being stored over the period during which the voltage and curvent are rising and releasing it to the load circuit during the period when the amplitude of the pulse is falling, thus leveling off the output by both lopping off the peaks and filling in the valleys.

Ripple Frequency and Voltage

The pulsations in the output of the rectifier can be considered to be the resultant of an alternating current superimposed upon at steady direct current. From this viewpoint, the filter may be considered to consist of shunting condenseres which short-eircuit the a.c. component while not interfering with the flow of the d.e. component, and series chokes which pass d.c. readily but which impede the flow of the a.e. component.

The alternating component is called the ripple. The effectiveness of the filter can be expressed in terms of per cent ripple which is the ratio of the r.m.s. value of the ripple to

Fig. 7.4- Choke.input filter circuits. 1-Single-sec. tion. B - Double section.
the d.c. value in terms of percentage. For c.w. transmitters, a reduction of the ripple to 5 per cent is considered adequate. The ripple in the output of power supplies for voice transmitters and VFOs should be reduced to 0.25 per cent or less. High-gain speech amplifiers and receivers may require a reduction to as
low as 0.1 per cent to avoid objectionable hum.
Ripple frequency is the frequency of the pulsations in the rectifier output wave - the numher of pulsations per second. The frequency of the ripple with half-wave rectifiers is the same as the frequeney of the line supply - 60 cycles

Fin, 7..) - (iraph thowing combinations of induetance and caparitance that may be used to reduce ripple to 5 per cent with a single-iection ehoke-input filter.
with 60 -evele supply. Since the output pulses are doubled with a full-wave reetifier, the ripple frequency is doubled - to 120 eycles with 60 -evele supply.

The amount of filtering (values of inductance and capacitance) required to give adequate smoot hing depends upon the ripple frequency, more filtering being required as the ripple frequency is lower.

CHOKE-INPUT FILTERS

The filters shown in Fig. 7-4 are known as choke-input filters because the first element in the filter is a choke. This term is used in contrast to a condenser-input filter in which the first element is a condenser.
The percentage ripple output from a singlesection filter (Fig. 7-4A) may he determined to a close approximation, for a ripple frequency of 120 cycles, from the following formula:

where L is in hy. and C in $\mu \mathrm{fd}$.
Example: $L=5$ hy., $C=4 \mu \mathrm{fd}$.
Percentage risple $=\frac{100}{(5)(4)}=\frac{100}{20}=5$ per cent.
Fig. 7 -5 show various other combinations
of inductance and capacitance which will retuce the ripple to 5 per cent - the required minimum reduction for a supply for a c.w. transmitter.
Example: With a lo-hy. choke, what capaci-
tance is required to reduce the ripple to is per
cent?
Referring to Fig. 7 - , following the $10-1$ s.
ine horizontally, it intersects the ripple line at
the $2-\mu \mathrm{fd}$. vertical line. Therefore the filter ea
paritance should be $\mathbf{2} \boldsymbol{\mu f d}$.
Example: With at $4-\mu$. 1 . comderser, what
choke induetance is reruired to reduce the
ripple to $\overline{3}$ per cent?
Follow the vertical $C=4-\mu \mathrm{fd}$. line to the point
where it intersects the ripple line; then follow
the horizontal line at that moint to read as he,
the required induetance.

In the case of a hali-wave rectifier, the valueof inductance and capacitance in the filter arrived at on the basis of a ripple frequencr of 120 cercles must be doubled. It requires twice as much inductance and capacitance for the same degree of filtering with the half-wave circuit.

From the consideration of ripple reduction, any combination of inductances and capacitances which will give the required product and sum respectively will give the same ripple reduction. However, two other factors must be taken into consideration in the design of the filter. These are the peak rectifier current and voltage regulation.

Voltage Regulation

Unless the power supply is designed to prevent it, there may be a considerable differenee between the output-terminal voltage of the supply when it is running free without an external load and the value when the external load is connected. Application of the load usually will be accompanied by a reduction in terminal voltage and this must be taken into consideration in the design of the suppty: Regulation is commonly expressed as the percentage change in out put voltage between moload and full-load conditions in relation to the full-load voltage.

$$
\text { Per cent regulation }=\frac{100\left(E_{1}-E_{2}\right)}{E_{2}} .
$$

Fxample: No-load voltage $=E_{1}=1.530$ volts.
Full-load voltage $m E_{2}=1230$ volts.

$$
\begin{aligned}
\text { Percentage regulation } & =\frac{100(1550-1230)}{1230} \\
& =\frac{32,000}{1230}=26 \text { per cent. }
\end{aligned}
$$

With proper design and the use of conserva-tively-rated components, a regulation of 10 per cent or less at the output terminals of the supply unit is possible with a choke-input filter. Good voltage regulation may or may not be of primary importance depending upon the nature of the load. If the load is constant, as in the ease of a receiver, speech amplifier or the stages of a transmitter which are not keved, voltage regulation. so far a- that contributed
by filter design is concerned, may be of secondary importance. The highly-stabilized voltage desirable for high frequency-stability of oscillators in receivers and transmitters is obtatined by ot her means. Power supplies for the keyed stage of a e.w. transmitter and the stages following, and for Class \mathbf{B} modulators, should have good regulation.

Bleeder Resistor

In general, a bleeder resistor is a resistance connected across the output of a filter to supply a minimum load (see R, Fig. 7-4). It also serves as a safety measure to discharge the filter condensers when the supply is turned off. The bleeder resistance need not be composed entirely of a resistor. Any constant load on the supply may serve the same purpose. In this case, a resistor of a high value should be used as a protective device to discharge the filter condensers.

The Input Choke

The rectifier paik current and the powersupply voltage regulation depend almost entirely upon the inductance of the input choke in relation to the load resistance. The function of the choke is to raise the ratio of average to prak current (by its energy storage), and to prevent the d.c. output voltage from rising above the avorage value of the a.c. voltage appliced to the rectifier. For both purposes, its impedance to the flow of the a.c. component must be high.

The value of input-choke inductance which prevents the d.c. output voltage from rising above the average of the rectified a.c. wave is the critical inductance. For 120 -cycle ripple, it is given by the approximate formula:

$$
L_{\text {crit. }}=\frac{\text { Loond resistance (ohms) }}{1600}
$$

For other ripple frequencies, the inductance required will be the above value multiplied by the ratio of 120 to the actual ripple frequency.

With inductance values less than critical, the d.c. output voltage will rise because the filter tends to act as a condenser-input filter. With critical inductance, the peak plate current of one tube in a center-tap rectifier will be approximately 10 per cent higher than the d.c. load current taken from the supply.

An inductance of twice the critical value is called the optimum value. This value gives a further reduction in the ratio of peak-to-average plate current, and represents the point at which further increase in inductance does not give correspondingly improved operating characteristies.

Swinging Chokes

The formula for critical induct ance indicates that the minimum inductance required varies widely with the load resistance. In the case where there is no load except the beeder on the power supply. the eritical inductance re-
quired is the highest: much lower valyes are satisfactory when the full-load current is being delivered. Since the inductance of a choke tends to rise as the direct current flowing through it is decreased, it is possible to effect an economy in materials by designing the choke to have a "swinging" characteristic so that it has the required critical inductance value with the bleeder load only, and about the optimum inductance value at full load. If the bleeder resistance is $20,000 \mathrm{ohms}$ and the full-load resistance (including the bleeder) is 2500 ohms, a choke which swings from 20 henres to \bar{s} henrys over the full outputcurrent range will fulfill the requirements. With any given input choke, the bleder resistance (or other steady minimum load) should be 1000 times the maximum inductance of the choke in henrys.

Example: With a swinging choke of 5 to 20 hy., the bleeder resistance (or the resultant of the bheder plus other stealy loand in parallel) should not exreed (20) (1000) $=20,000$ ohms.

Output Condenser

If the supply is intended for use with an audio-frequency amplifier, the reactance of the last filter condenser should be small (20 per cent or less) compared with the other a.f. resistance or impedance in the circuit, usually the tube plate resistance and load resistance. On the hasis of a lower a.f. limit of 100 cycles for speech amplification, this eondition usually is satisfied when the output capacitance (last filter capacitor) of the filter is 4 to $s \mu$ fol., the higher value of capacitance being used in the case of lower tube and loal resistances.

Resonance

Resonance affects in the series circuit across the output of the rectifier which is formed by the first choke (L_{1}) and first filter condenser ($\left(_{1}\right.$) must be aroided, since the ripple voltage would build up to large values. This not only is the opposite action to that for which the filtor is intended, but also may cause excessive rectifier peak currents and abnormally-high inverse peak voltages. For full-wave rectificabion the ripple frequency will be 120 cycles for a (i0-rele supply, and resonanee will oceur

Fig. 7-6- Wiakram showing various voltage drops that nust be taken into consideration in determining the recuired transformer voltage to deliver the desired output voltage.

Fig. T. \bar{Z} - Ripple-reduction factor for various values of L and (: in filter section. Output ripple $=$ input ripple \times ripple factor.
when the product of choke inductance in henrys times condenser capacitance in microfarads is equal to 1.77. The corresponding figure for 50 -eycle supply (100 -cyele ripple frequency) is 2.53 , and for 25 -cycle supply (50-cycle ripple frequency) 13.5 . At least twice these products should be used to ensure against resonance effects.

Output Voltage

Provided the input-choke inductance is at least the critical value, the output voltage may be calculated quite closely by the following equation:

$$
E_{\mathrm{o}}=0.9 E_{\mathrm{t}}-\frac{\left(I_{\mathrm{t}}+I_{\mathrm{L}}\right)\left(R_{1}+R_{2}\right)}{1000}-E_{\mathrm{r}}
$$

where E_{0} is the output voltage; E_{t} is the r.m.s. voltage applied to the rectifier (r.m.s. voltage between center-tap and one end of the secondary in the case of the center-tap rectifier) I_{b}, and I_{I}, are the bleeder and load currents, respectively, in milliamperes; R_{1} and R_{2} are the resistances of the first and second filter chokes; and E_{r} is the drop between rectifier plate and rathode. These voltage drops are shown in Fig. 7-6. At no load I_{L} is zaro, hence the no-load voltage may be calculated on the basis of bleeder current only. The voltage regulation may be determined from the no-load and full-ioad voltages.

Additional Filtering

The graph of Fig. 7-7 shows the factor by which the ripple percentage may be reduced by the addition of one or more sections of filter, each similar in configuration to the first.

Example:
Ripple after first section $=5$ per cent.
L in second section $=10 \mathrm{hy}$.
C in second section $=8 \mu \mathrm{fd}$.
$L \times C=80$.

Fig. 7-8- (omdenser-infut filter direnits. A - Singlesection. IB - Doulle resection.

From Fig. 7-7, the reduction factor is approximately 0.019 . Therefore the ripple after the second section will be $5 \times 0.019=0.095$ per cent.

CONDENSER-INPUT FILTERS

Condenser-input filters are shown in Fig. 7-8. In comparison with a properly-designed input-choke filter, the d.c. output voltage is higher for most values of load, the ratio of peak rectifier plate current to d.e, output current is greater and the voltage regulation is considerably poorer.

The approximate performance of a filter consisting of the input condenser only is indicated in Figs. 7-9, 7-10 and 7-11. Fig. 7-9

Fig. 7.9-Graph showing relationship between d.e. load current and rectifier peak plate current with con. denser input for various load and input resistances.
shows the retationship between rectifier peak phate current and d.c. load current for various values of load and input resistance. Input resistance is the sum of transformer and rectifier resistances. In each case a capacitance of $4 \mu \mathrm{fd}$. or greater is assumed, since the characteristics change relatively little with higher values of capacitance.

Fig. 7-10 shows the ratio of d.c. output voltage to the transformer r.m.s. voltage. In this

Pig. 7-10 - Chart showing approximate ratis of d.c. output voltage across filter input condenser to trans. former r.m.s. secondary voltage for different load and input resistances.
respect, too, the change with higher capacitance values is small.

Fig. 7-11 shows the approximate percentage ripple across the input condenser for capacitances of 4 and $8 \mu \mathrm{fd}$. The change in ripple voltage with normal differences in input resistance is relatively slight.

Further reduction in ripple may be obtained by adding sections of series inductance and parallel capacitance, as shown in Fig. 7-8. The reduction factor from Fig. 7-7 applies in this case also.

Exanple:
Input condenser - $4 \mu \mathrm{fd}$.
Output condenser $-8 \mu \mathrm{fd}$.
Input resistance - 200 ohms.
Transformer r.m.s. voltage - 400 .
Load resistance (including resistance of filter choke) - 5000 ohms.

From Fig. $7-10$, $\frac{\text { D.c. volts output }}{\text { Transformer r.m.s. }}=1.17$.
D.c. volts output $=400 \times 1.17=468$ volts.

From Fig. $7-9, \frac{\text { Peak rectifier current }}{\text { D.c. load current }}=4$.
D.e. load current $=\frac{468}{.000}=93.15 \mathrm{ma}$.

Peak rectifier current $=93.5 \times 4=371$ ua. From Fig. 7-11, ripple percentage across input eondenser $=$ approximately 8 per cent. $L \times C=8 \times 20=160$.
From Fig. 7-7, reduction factor $=0.009$.
Output ripple percentage $=8 \times 0.009$ 0.072 per cent.

Ratings of filter components

Athough filter condensers in a choke-input filter are subjected to smaller variations in d.c. voltage than in the condenserinput filter, it is advisable to use condensers rated for the peak transformer voltage in casithe bleeder resistor should burn out when there is no load on the power supply, since the voltage then will rise to the same maximum value as with a condensor-input filter.

In a condenser-input filter, the condensers should have a working-voltage rating at least as high and preferably somewhat higher, as a safoty factor. Thus, in the case of a center-tap, rectifier having a transformer delivering 5.50 volts each side of the center-tap, the minimum rafe condenser voltage rating will be $5.50 \times$ 1.41 or 775 volts. An 800 -volt condenser should be used, or preferably a 1000 -volt unit to allow a margin of safet y.
filter condensers are made in several different types. Liectrolytic condensers, which are available for voltages up to about soo, combine high eapacitance with small size, since the dielectric is an extremely-thin film of oxide on ahuminum foil. Condensers for higher voltages usually are made with a dielectric of thin paper impregnated with oil. The working voltage of a condenser is the voltage that it will withstand continuously,

The input choke may be of the swinging type, the required no-load and full-load inductance values being calculated as described above. The second ehoke (smoothing choke) should have constant inductane with varying

Fig, 子-11 - Chart showing approximate 120 -evole percentage ripple across filter input condenser for variou* loads.
d.c. load eurrents. Values of 10 to 20 henry: ordinarily are used. Since chokes usually are placed in the positive leads, the negative being grounded, the windings should be insulated from the eore to withstand the full d.c. output voltage of the supply and be capable of handling the required load eurrent.

Filter chokes or inductances are wound on iron cores, with a small gap in the core to prevent magnetic saturation of the iron at high currents. When the iron becomes saturated its permeability thereases, consequently the inductance also decreases, Despite the air gap, the inductance of a choke usually varies to some extent with the direct current flowing in the winding: hence it is necessary to specify the inductance at the current which the choke is intended to carry. Its inductance with little or no direct current fowing in the winding may be considerably higher than the value when fuil load current is flowing.

The Plate Transformer

Output Voltage

The output voltage which the plate transformer must deliver depends upon the required d.e. load voltage and the type of rectifier circuit. With condenser-input filters, the r.m.s. secondary voltage usually is made equal to or slightly more than the d.c. output voltage, allowing for voltage drops in the rectifier tubes and filter chokes as well as in the transformer itself. The full-wave center-tap rectifier requires a transformer giving this voltage each side of the secondary center-tap, the total secondary voltage being twice the desired d.c. output voltage.

With a choke-input filter, the required r.m.s. secondary voltage (each side of eenter-tap)
for a center-tap rectifier) can be calculated loy the equation:

$$
E_{\mathrm{t}}=1.1\left[E_{\mathrm{u}}+\frac{I\left(R_{1}+R_{2}\right)}{1000}+E_{\mathrm{r}}\right]
$$

where E_{0} is the required d.e. output voltage, I is the load current (including bleeder current) in ma., R_{2} and R_{2} are the resistanees of the chokes, and E_{r} is the voltage drop in the rectifier. E_{t} is the full-load r.m.s. secondary voltage; the open-circuit voltage usually will be 5 to 10 per cent higher than the full-load value.

Volt-Ampere Rating

The volt-ampere rating of the transformer depends upon the type of filter (eondenser or choke input). With a conlenser-input filter
the heating effect in the secondary is higher because of the high ratio of peak to average current, consequently the volt-amperes consumed by the transformer may be several limes the watts delivered to the load. With a choke-input filter, provided the input choke has at least the critical inductance, the secondary volt-amperes can be calculated quite rlosely by the equation:

$$
\text { Sec. } V . A .=0.00075 E I
$$

where E is the total r.m.s, voltage of the secondary (between the outside ends in the case of a center-tapped winding) and I is the d.c. output current in milliamperes (load current plus bleeder current). The primary voltamperes will be 10 to 20 per cent higher because of transformer losses.

Building Small Transformers

Power transformers for both filament heating and plate supply for all transmitting and rectifying tubes are available commercially, but occasionally the amateur wishes to build a transformer for some special purpose or has a core from a burned-out transformer on which he wishes to put new windings.

Most transformers that amateurs build are for use on 115 -volt 60 -eycle supplies. The number of turns necessary on the 115 -volt winding depends on the kind of iron used in the core and on the cross-sectional area of the core. Nilicon steel is best, and a flux density of about 50,000 lines per square inch can be used. This is the basis of the table of cross-sections given.

An average value for the number of primary turns to be used is 7.5 turns per volt per square inch of cross-scetional area. This relation may be expressed as follows:

$$
\text { No. primary turns }=7.5\left(\frac{E}{A}\right)
$$

where E is the primary voltage and A the number of square inches of cross-sectional area of the core. For 115 -volt primary transformers the equation becomes:

$$
\text { No. primary turns }=\frac{863}{A} \text {. }
$$

When a small transformer is built to handle
a continuous load, the copper wire in the windings should have an arra of 1500 circular mils for each ampere earried. (Sce Wire Table in (hapter Twenty-Four.) For intermittent use, 1000 circular mils per ampere is permissible.

The primary wire size is given in Table 7-I; the secondary wire size should be chosen according to the current to be carried, as previously described. The Wire Table in

Fig. 7-12-- Two different types of transformer cores and their laminations.

Chapter Twenty-Four shows how many turns of each wire size can be wound into a square inch of window area, assuming that the turns are wound regularly and that no insulation is used betwen layers. The primary winding of a 200 -watt transformer, which has 270 turns of No. 17 wire, would occupy $270 / 329$ or 0.82 square inch if wound with double-cotton-covered wire, for example. This makes no allowance for a layer of insulation between the windings (in general, it is good practice to wind a strip of paper between each layer) so that the winding-area allowance should be increased if layer insulation is to be used. The figures also are based on accurate winding such as is done by machines; with hand-winding it is probable that somewhat more area would be required. An increase of 50 per cent should take care of both hand winding and layer thickness. The area to be taken by the secondary winding should be estimated, as should also the area likely to be occupied by the insulation between the core and windings and between the primary and seeondary windings themselves. When the total window area required has been figured -

TABLE 7-I Transformer Design					
$\begin{aligned} & \operatorname{Input} \\ & \text { (U'atto) } \end{aligned}$	Full-Load Efficiency	Size of Primary Wire	$\begin{gathered} \text { No. of } \\ \text { Primary Turns } \end{gathered}$	Turns Per Volt	Cross-Section Through Core
50	75%	23	-5	4.80	$11 / 6^{\prime \prime} \times 11 /{ }^{\prime \prime}$
75	85	21	437	3.95	$13 / 8 \times 13 / 8$
100	90	20	367	3,33	$11 / 2 \times 11 / 2$
150	90	18	313	2.84	$15 / 8 \times 15 / 8$
200	90	17	270	2.45	$18 / 4 \times 18$
2.50	Y0	16	248	2.25	$17 / 8 \times 178$
300	90	15	248	2.25	$17 / 8 \times 178$
400	90	14	206	1.87	2×2
500	95	13	183	1,66	$21 / 8 \times 21 / 8$
760	95	11	146	1.33	$23 / 8 \times 23 / 8$
1000	95	10	132	1,20	$21 / 2 \times 21 / 2$
1500	95	9	109	0.99	$23 / 4 \times 23 / 4$

allowing a little extra for contingencies laminations having the desired leg-width and window area should be purchased. It may not be possible to get laminations having exactly the dimensions wanted, in which case the nearest size should be chosen. The cross-section of the core need not be square but can be rectangular in shape so long as the core area is great enough. It is easier to wind coils for a core of square cross-section, however.

Transformer cores are of two types, "core" and "sliell." In the core type, the core is simply a hollow rectangle formed from two "L"shaped laminations, as shown in Fig. 7-12. Shell-type laminations are "E"'- and "I"shaped, the transformer windings being placed on the center leg. Since the magnetic path divides between the outer legs of the " E ," these legs are each half the width of the center leg. The cross-sectional area of a shell-type core is the cross-sectional area of the center leg. The shell-type core makes a better transformor than the core type, because it tends to prevent leakage of the magnetic flux. Calculations are the same for both types.

Fig. 7-13-A convenient method of aswembling the windings of a shell-type core. Windings can be similarly mounted on core-type cores, in which case the coils are placed on one of the sides. High. voltage core-type transformers some. times are made with the primary on one core leg and the sexondary on the oppresite.

Fig. 7-13 shows the method of putting the windings on a shell-type core. The primary is usually wound on the inside - next to the core - on a form made of fiber or several layers of cardboard. This form should be slightly larger than the core leg on which it is to fit so that it will be an easy mater to slip in the laminations after the coils are completed and ready for mounting. The terminals are brought out to the side. After the primary is finished, the secondary is wound over it, sevcral layers of insulating material being put between. If the transformer is for high voltages, the high-voltage winding should be carefully insulated from the primary and core by a few layers of Empire (Cloth or tape. A protective covering of heavy cardboard or thin fiber should be put over the outside of the secondary to protect it from damage and to prevent the core from rubbing through the insulation. Square-shaped end pieces of fiber or cardboard usually are provided to protect the sides of the windings and to hold the terminal leads in
place. Iligh-voltage terminal leads should be enclosed either in Empire Cloth tubing or in spaghetti.

After the windings are finished the core should be inserted, one lamination at a time. Fig. 7-12 shows the method of building up the core, Alternate "E"-shaped laminations are pushed through the core opening from opposite sides. The "I"-shaped laminations are used to fill the end spaces, butting against the open ends of the "E"-shaped pieces. This mothod of building up the core ensures a good magnetic path of low reluctance. All laminations should be insulated from each other to prevent eldy currents from flowing. If there is iron rust or scale on the core material, that will serve the purpose very woll - otherwise one side of each piece can be coated with thin shollac. It is evsential that the joints in the core be well-made and be square and even. After the transformer is assembled, the joints can be hammered up tight using a block of wood between the hammer and the core to prevent damaging the laminations. If the winding form does not fit tightly on the core. small wooden wedges may be driven between it and the core to prevent vibration. Transformers built by the amateur can be painted with insulating varnish or waxed to make them rigid and moistureproof. A solution of melted beeswax and rosin makes a good impregnating mixture. Melted paratfin should not be used because it has too low a melting point. Double-cotton-covered wire can be coated with shellac as each layer is put on. However, enameled wire should never be treated with shellac as it may dissolve the enamel and hurt the insulation, and it will not dry because the moisture in the shellac will not be absorbed by the insulation. Small transformers can be treated with battery compound after they are wound and assembled. Strips of thin paper between layers of small enameled wire are necessary to keep each layer even and to give added insulation. Thick paper must be avoided since it keeps in the heat generated in the winding so that the temperature may become dangerously high.

Heep watch for shorted turns and layers. If just a single turn should become shorted in the entire winding, the voltage set up in it would cause a heavy current to flow which would burn it up, making the whole transformer useless.

Taps can be taken off as the windings are made if it is desired to have a transformer giving several voltages. Taps should be arranged, whenever possible, so that they come at the ends of the layers.

After leaving the transformer primary winding connected to the line for several hours it should be only slightly warm. If it draws much current or gets excessively hot there is something wrong. Some short-circuited turns are probably responsible and will continue to cause overheating.

Voltage

Series Voltage-Dropping Resistor

Certain plates and screens of the various tubes in a transmitter or receiver often require a variety of operating voltages differing from the output voltage of available power supplies, In most cases, it is not economically feasible to provide a spparate power supply for each of the required voltages. If the current drawn by an electrode, or combination of electrodes operating at the same voltage, is reasonably constant under normal operating conditions, the required voltage may be ohtained from a supply of higher voltage by means of a voltagedropping resistor in series, as shown in Fig. 7-14.A. The value of the series resistor, R_{1}, may be obtained from Ohm's Law, $R=\frac{E_{\mathrm{d}}}{I}$, where E_{1} is the voltage drop required from the supply voltage to the desired voltage and I is the total rated current of the load.

Example: The plate of the tube in one stage and the screens of the tubes in two other stages require an operating voltage of 250 . The nearest available sumply voltane is 400 and the total of the rated plate and screen currents is is ma. The required resistance is

$$
R=\frac{400-250}{0.075}=\frac{150}{0.055}=2000 \mathrm{ohms}
$$

The power rating of the resistor is obtained (rom P (watts) $=I^{2} R=(0.075)^{2}(2000)=11.2$ watts. A 25 -watt resistor is the nearest safe rating to be used.

Voltage Dividers

The regulation of the voltage obtained in this manner obviously is poor, since any change in current through the resistor will cause a di-rectly-proportional change in the voltage drop, across the resistor. The regulation can be improved somewhat by connecting a second resistor from the low-voltage end of the first to the negative power-supply terminal, as shown in Fig. 7-14B. Such an arrangement constitutes a voltage divider. The second resistor, R_{2}, acts as a constant load for the first, R_{1}, so that any variation in current from the tap becomes a smaller percentage of the total current through R_{1}. The heavier the current drawn by the resistors when they alone are connected across the supply, the better will be the voltage regulation at the tap.

Such a voltage divider may have more than a single tap for the purpose of obtaining more than one value of voltage. A typical arrangement is shown in Fig. 7-14C. The terminal

Fig. 7-14 - A - Series voltage-dropping resistor. B Simple voltage divider. C - Maltiple divider eirenit.

$$
R_{3}=\frac{E_{1}}{I_{b}} ; R_{4}=\frac{I_{2}-E_{1}}{I_{\mathrm{b}}+I_{1}} ; R_{5}=\frac{E-I_{2}}{I_{\mathrm{b}}+I_{1}+I_{2}}
$$

voltage is E, and two taps are provided to give lower voltages, E_{1} and E_{2}, at currents I_{1} and I_{2} respectively. The smaller the resistance between taps in proportion to the total resistance, the smaller the voltage botween the taps. For convenience, the voltage divider in the figure is eonsidered to be made up of separate resistances R_{3}, R_{4}, R_{5}, between taps. R_{3} carric's only the bleeder current, $I_{1} ; R_{i}$ carries I_{1} in addition to $I_{1} ; R_{5}$ carries I_{2}, I_{1} and I_{1}. To calculate the resistances required, a bleeder current, I_{1}, must be assumed; generally it is low compared with the total load current (10 per cent or so). Then the required values can be calculated as shown in Fig. 7-14C, I being in amperes.

The method may be extended to any desired number of taps, each resistance section being calculated by Ohm's Law using the voltage drop aeross it and the total current through it. The power dissipated by each seetion may be calculated either by multiplying I and E or I^{2} and R.

Voltage Stabilization

Gaseous Regulator Tubes

There is frequent need for maintaining the voltage applied to a low-voltage low-current circuit at a practically constant value, regardless of the voltage regulation of the power supply or variations in load current. In such
applications, gaseous regulator tubes (VR10530, VR150-30, ete.) can be used to good atvantage. The voltage drop aeross such tubes is constant over a moderately wide current range. Tubes are available for regulated voltages of $150,105,90$ and 75 volts.

The fundamental circuit for a gaseous regulator is shown in Fig. 7-15.A. The tube is connected in series with a limiting resistor, R_{1}, across a source of voltage that must be higher than the starting voltage. The starting voltage is about 30 per cent higher than the operating voltage. The load is connected in parallel with the tube. For stable operation, a minimum tube current of 5 to 10 ma . is required. The maximum permissible current with most types is 40 ma ; consequently, the load current cannot exceed 30 to 35 ma . if the voltage is to be stabilized over a range from zero to maximum load current.

The value of the limiting resistor must lie between that which just permits minimum

Fig. 7-15 - Voltage-stabilizing circuits using VR tuber.
tube current to flow and that which just passes the maximum permissible tube current when there is no load current. The latter value is generally used. It is given by the equation:

$$
R=\frac{1000\left(E_{\mathrm{s}}-E_{\mathrm{r}}\right)}{I}
$$

where R is the limiting resistance in ohms, E_{s} is the voltage of the source across which the tube and resistor are connected, E_{r} is the rated voltage drop across the regulator tube, and I is the maximum tube current in milliamperes (usually 40 ma .),

Fig. $7-15 \mathrm{~B}$ shows how two tubes may be used in series to give a higher regulated voltage than is obtainable with one, and also to give two values of regulated voltage. The limiting resistor may be calculated as above, using the sum of the voltage drops across the two tubes for E_{r}. Since the upper tube must carry more current than the lower, the load connected to the low-voltage tap must take small current. The total current taken by the load: on both the high and low taps should not ex. ceed 30 to 35 milliamperes.

Voltage regulation of the order of 1 per cent can be obtained with regulator circuits of this type.

Electronic Voltage Regulation

A voltage-regulator circuit suitable for higher voltages and currents than the gaseous tubes, and also having the feature that the output voltage can be varied over a rather wide range, is shown in Fig. 7-16. A high-gain volt-age-amplifier tube, usually a sharp cut-off pentode, is conneeted in such a way that a small change in the output voltage of the power supply causes a change in grid bias, and thereby a
corresponding change in plate current. Its plate. current flows through a resistor $\left(R_{5}\right)$, the voltage drop across which is used to bias a second tuhe - the "regulator" tube - whose platecathode circuit is connected in series with the load circuit. The regulator tube therefore functions as an automatically-variable series resistor. Should the output voltage increase slightly the lias on the control tube will become more positive, eausing the plate current of the control tube to increase and the drop across R_{5} to increase correspondingly. 'The bias on the regulator tube therefore becomes more negative and the effective resistance of the regulator tube increases, causing the terminal voltage to drop. A decrease in output voltage causes the reverse action. The time lag in the aetion of the system is negligible, and with proper circuit constants the output voltage can be held within a fraction of a per cent throughout the useful range of load current and over a wide range of supply.

An essential in this system is the use of a constant-voltage hias source for the control tube. The voltage change which appears at the grid of the tube is the difference between a fixed negative bias and a positive voltage which is taken from the voltage divider across the output. To get the most effective control, the negative bias must not vary with plate current. The most satisfactory type of hias is a dry battery of $4 \overline{5}$ to 90 volts, but a gaseous regulator tube (VIR75-30) or a neon bull) of the type without a resistor in the base may be used instead. If the gas tubo or neon bulh is used, a negative-resistance type of oscillation may take place at audio frequencies or higher, in which case a condenser of $0.1 \mu \mathrm{fd}$. or more should be connected across the tube. A similar condenser between the control-tube grid and cathode also is frequently helpful in this resperet.

The variable resistor, R_{3}, is used to adjust

Fig. 7.16 - Electronic voltage regulator. 'lhe regulator tuhe is ordinarily a 2.13 or a number of them in parallel, the control tube a 6SJ7 or similar type. The filament transformer for the regulator tube must be insulated for the plate voltage, and cannot supply current to other tubes when a filamentetype regulator tube is used. Typical values: $R_{1}, 10,000$ ohms: $R_{2}, 22,000$ ohms; $R_{3}, 10,000$ ohm potentiometer; $R_{4}, 4700$ ohms; $R_{5}, 0.47$ megohm.

Fig. i.1:- I heavy duty electronivalls regulated power eupply. The unit is as sembled on a $6 \times 14 \times 3$-inch chaseis fitted with an meloming cover. The five wher arrose the rear, left to right, are the $6.15: 1$; regnlator, the 6SJa control tobe the VIS-10. biad regulator, the 1-V hias reetifier and the it iG power rectificr. In the foreground aro the two filter chokes and the power transformer. The remainder of the componemlarr mounted underneatlo.

the bias on the control tube to the proper operating value. It also serves as an output voltage control, setting the value of regulated woltage within the existing operating limits,

The maximum out put voltage obtainable is equal to the power-supply voltage minus the minimum drop through the regulator tube. This drop is of the order of 50 volts with the tubes ordinarily used. The maximum current abo is limited by the regulator tube: 100 milliamperes is a safe value for the 2A3. Two or more regulator tubes may be connected in parallel to inerease the current-carrying capac-
ity, without need for changes in the cireuit arrangement.

A heavy-duty regulated supply of this type is shown in Fig. 7-17. The circuit is shown in Fig. 7-18. A 6AS7G dual power triote is used as the regulator which is controlled by a $6 \mathrm{~S}, 77$. Reference bias is furnished by means of a $1-1$ half-wave rectifier whose output is regulated by a VR-10a regulator tube. The supply is eapable of delivering 150 ma. over a range of 120 to 340 volts. Filament voltage and an external comection from the bias supply are also brought out to the output socket.

Fig. 7.18 - ('irenit diagram of the electronically-regulated power suppls,
$\mathrm{C}_{1}, \mathrm{C}, \mathrm{C}, \mathrm{Ci}-16-\mu \mathrm{ff}$. 4.0 O -volt eleetrolytic.
$R_{1}-0.17$ megnohm, ${ }^{1} 2$ watt.
H_{2} - 0.18 megohm, to watt.
$\mathrm{R}_{3}-\pi, 000$-ohm poientiometer.
$R_{4}-0.1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{5}-$ - $\mathbf{0}, 000 \mathrm{OHm}$, 10 watts.
$\mathrm{H}_{6}-2.4000$ ohms, 2 watts.
$\mathrm{R}_{5}, \mathrm{~K}_{\mathrm{s}}, \mathrm{R}_{9}-2500$ ohms, 10 watts.
$\mathrm{I}_{1}-8 / 30-\mathrm{hy}$. 150-ma. filter chohe (Stancor (:1:18).
I. 2 - 30-hy. 110-ma, filter choke (stancor C:lo01).
S_{1} - S.p.s.t. torggle switch.
T_{1} - V̈lament transformer: 6.3 volt $=$, 3 amp. (Stancor P-j0il).
T_{2} - Power transformer: 35:-0 35 volts, 150 ma:; 5 volts, 3 amp. $; 6.3$ volts, 5 amp. (Stancor P'6014).
I_{3} - İitament transformer: 6.3 voles, I.2 amp. (Stancor P-6134).

Miscellaneous Power-Supply Circuits

Duplex Plate Supplies

In some cases it may be advantageous economically to obtain two plate-supply voltages from a single power supply, making one or

Fig. 7-19— Duplex rlate sup ply delivering two output volt ages, both with good regulation.
simultaneously. A separate full-wave rectifier is used at each pair of taps. The filter chokes are placed in the common negative lead, but separate filter condensers are required. The sum of the currents drawn from each pair of taps must not execed the transformer rating, and the chokes must carry the total load current. Each bleeder should have a value in ohms 1000 times the maximum rated inductance in henrys of the swinging choke, L_{1}, for best regulation. A power supply of this type is shown in Figs. $\overline{-}-21$ and $7-22$. In this case two sets of chokes are used to divide the load current.

Selenium-Rectifier Circuits

White the circuits shown in Figs. 7 -23, 7 -24 and $7-25$ may be used with any type of reati-
more of the components serve a double purpose. Circuits of this type are shown in Figs. 7-19 and $7-20$.

In Fig. $7-19$, a bridge rectifier is used to obtain the full transformer voltage, while a connection is also brought out from the center-tap to obtain a second voltage corresponding to half the total transformer secondary voltage. 'The sum of the currents drawn from the two taps should not exceed the d.e. ratings of the rectifier tubes and transformer. Filter values for each tap are computed separately.

Fig. 7-20 shows how a transformer with multiple secondary taps may be used to oltain both high and low voltages

Fig. 7-21 - Circuit diapram of the combination 1006)- and 100-volt supply shown in l'ig. 7-22.
$115 \mathrm{~V}, \mathrm{~A} . \mathrm{c}$.

$\mathrm{C}_{3}-4-\mu \mathrm{fd}$. (60) volt electrolytir (C-1) (0it).
$\mathrm{C}_{4}-8-\mu \mathrm{fil}$. 600 - woll electrolytic ($\left.\mathrm{C}-\mathrm{I}\right) \mathbf{0} 08$).
$\mathrm{H}_{1}-20.1000$ ohms, 85 watts.
$\mathrm{R}_{2}-20,000$ ohms, 25 watte
I.1, 1.3 - $5 / 20$ hy. swinging choke, 1.50 ma. (Thordarson T'-19(39).

$1 \mathrm{~T}_{2}-2.5$ volts, 5 amp . (Thordarson T . 19 F 88).
$\mathrm{T}_{3}-5$ volts, 4 amp. (Thordarsen ' $\mathrm{T}-0.3 \mathrm{~F}^{4} 9$).

Fig. 7-20 - Power supply in which a single transformer and set of chokes serve for two different output voltages.
fier, they find their greatest advantage when used with selenium rectifiers which require no filament transformer.

Fig. $7-23$ is a straightforward halfwave rectifier circuit which may be used in applications where 115 to 130 volts d.e. is desired. It makes an ideal bias supply, for instance. In this, as well as other circuits, it wil! be ohserved that the negative side of the output is common with one side of the a.c. line and it is suggested that this side be fused with a $1 / 2$-ampere fuse.

Fig. 7-2f shows several voltagodoubler circuits. Of the three, the one

Fig. 7.22 - 'This power supply makes use of a comhination tranoformer and a dual filter system. delivering 1000 volts at 125 ma. and 400 volts at $i 50$ ma., or toll volis amil 7.00 wolta simoltancously. depending upon the transformer setected. The circuit diagram is given in lig. $\bar{i}-21$. The J00)-volt bleeder resistor is mannted on the rear edge of the chassis. with a protective ghard made of a piece of gulvanized forme ing material to provide ventilation. Millen wafety terminals are used for the two high-voltage terminals. Ceramie sockets should be used for the 866 Irs. The chassis muasures 8 by 17 by 3 inches.

Fig. $7 \cdot 2: 3$ - Simple half-wave circuit for selenium revifiter.

C. 2 - $10 . \mu \mathrm{fd}$. $2(0)$-volt elertrolytic.
$1 k_{1}-25$ to 100 ohms.

Fig. $7 \cdot 24$ - Voltage-doubling circuits for use with selenium rectifiers.
$\mathrm{C}_{1}-0.05-\mu \mathrm{fd} .600$-volt paper.
(: $2-40$ - $\mu \mathrm{fd} 200$-volt electrolytic.
C. 3 - Jilter condenser.
$k_{1}-25$ to 100 ohms.
1_{1} - Filter choke.
shown at 13 is the most desirable since there is no series condenser. It is a fall-wave cireuit and there will be very little ripple voltage appearing at the output. On the other hand, the cireuit of C has one very desirable feature in that point I is common to both condensers in the

Fig. 7-25-Seleninm-rectifier voltage-tripling and voltage-quadrupling circuits.
$\mathrm{C}_{1}-0.05-\mu \mathrm{fil} .600$-volt paper.
$\mathrm{C}_{2}-10-\mu \mathrm{fl} .450$-volt electrolytic.
$1 k_{1}-25$ to 100 ohms.
rectifier and also to the first comdenser in the filter. This means that a single-unit threesection condenser may be used, saving space. If less than 100 ma . is being used this is the best circuit. The ripple content under these conditions, and the leakage between sections, will not be excessive. These three circuits will find ready application in communications receivers, converters, VFOs, test equipment, etc., and especially in cases where heat has been a problem.

Fig. 7-25.1 and B shows voltage-tripler and
voltage-ruadrupler circuits respectively, for use where higher voltages are desired. They are ideal for powering the small rig.

All components are standard. C_{1} in all circuits is for "hash" filtering and its value is not critical. A $0.05-\mu \mathrm{fd}$. 600-volt-working condenser should serve. All other condensers should be $40-\mu \mathrm{fd}$. 200 -volt units, except those in the tripler and quadrupler cireuits. Those in the circuit of Fig. $7-2.5$ should have a rating of 450 volts working. In the voltage multiplier: and in other circuits where a condenser is passing the full current, gool condensers should be usid because the a.c. ripple mentioned ahove
appears across the condenser and inereases as the load increases. If the current is allowed to become too high, it will catue heating and deterioration of the condenser. This can be kept to a minimum by using a capacitor of high value and making sure it is of good make. R_{1} should be 250 ohms, but if it is found that the rectifier units are running a little too warm. this value may be increased to as high as 100 ohms, with a corresponding drop in output voltage, of eourve.

A single-section filter, as shown in Fig. $7-24 \mathrm{C}$, will provide sufficient smoothing for most applications.

Bias Supplies

As discussed in Chapter Six, the chief function of a bias supply for the r.f. stages of a transmitter is that of providing protective bias, although under certain circumstances, a bias supply, or pack, as it is sometimes called, can provide the operating bias if desired.

Simple Bias Packs

Fig. 7-26A shows the diagram of a simple bias supply, R_{1} should be the recommended grid leak for the amplifier tube. No grid leak should be used in the transmitter with this type of supply. The output voltage of the supply, when amplifier grid current is not flowing, should be some value between the bias required for plate-current eut-off and the recommended operating bias for the amplifier tube. The transformer prak voltage (1.t times the r.m.s. value) should not exeeed the recommended operating-bias value, otherwise the output voltage of the pack will soar above the operating-bias value when rated grid current flows.

This soaring can be reduced to a considerable catent by the use of a voltage divider across the transformer secondary, as shown at 13 . Such a system can be used when the transiormer voltage is higher than the operating-bias value. The tap on R_{2} should be adjusted to give amplifier cut-off bias at the output terminals, The low or the total value of R_{2}, the loss the soaring will be when grid current flows.

A full-wave circuit is shown in Fig. 7-26C. R_{3} and R_{4} should have the same total resistance and the taps should be adjusted symmetrically. In all cases, the transformer must be designed to fumish the current drawn by these resistors plus the current drawn by R_{1}.

Regulated Bias Supplies

The inconvenience of the eircuits shown in Fig. 7-26 and the difficulty of predicting values in practical application can be avoided in most cases by the use of gascous voltageregulator tubes across the output of the bias supply, as shown in Fig. 7-29A. A VR tube with a voltage rating anywhere between the biasing-voltage value which will reduce the input to the amplifier to a safe level when excita-
tion is removed, and the operating value of bias, should be chosen. K_{1} is adjusted, without amplifier excitation, until the VR tube ignites and draws about 5 ma. Additional vollage to bring the bias up to the operating value when excitation is applied can be obtained from a grid leak, as diseussed in Chapter six.

Each VIR tube wil! handle 40 ma . of grid current. If the grid current exereds this valur under any condition. similar VIR tubes should

Fig. 7. $2(1$ - Simple bias-supply circuits. In A, the peak transformer voltage must not exceed the operating value of bias. The circuits of B (half-wave) and C (full-wave) may be used to reduce transformer voltage to the rectifier. R_{1} is the recommended grid-leak resistance.

Fig. 7.27 - Cireuit diagram of ant electronically-rcgulated bias suppls.

 K_{1} - $\left.\overline{\mathrm{B}}(1) \mathrm{n}\right)$ ohms, 25 watts. $\mathrm{R}_{2}-2 \underline{2}, 000$ ohms, $1 / 2$ watt. $\mathrm{K}_{3}-68$, (tM) ohms, $\mathbf{R}_{4}-0.2^{-}$megolsm, 1_{2} watt. $\mathrm{K}_{5}-3000$ olms, 5 watts. K - 0.12 megohm, lowatt.
R_{7} - 0.1 -mexolam potentionseter.
$R_{8}-2-(0,0)$ olmms, $1 / 2$ watt.

' I_{1} - Power transformer: 3.30 volta r.m.s. each side of center, in mal: is volto. 2 amp.; 6.3 volt-, 3 amp.
exceeded, a series arrangement may be tapped for lower voltage, as shown at F.
The circuit diagram of all electronically-regulated biassupply is shown in Fig. 7-27. The out put voltage may be adjusted to any value between 20 volts and 80 volts and the unit will handle grid currents up to 200 ma . over the range of 30 to 80 volts, and 100 ma. over the remainder of the range. This will take care of the bias requirements of most tubes used in Class B amplifier service. The regulation will hold to about 0.001 volt per milliampere of grid current. Fig. $7-28$ is a photograph of the completed unit.
be added in parallel, as shown in Fig. 7-2913, for rach to ma., or less, of additional grid current. The resistors Ro are for the purpose of helping to maintain equal currents through each Vld tube.

If the voltage rating of a single The tube is not sufficiently high for the purpose, of hor VIR tubes may be used in series (or series-parallel if required to satisfy gridecurrent requirements) as shown in Fig. 7-29(and 1).

If a single value of fixed bias will sorve for more than one stage, the biasing terminal of each such stage may be connected to a single supply of this type, provided only that the total grid current of all stage so connected does not exceed the current rating of the VIR tube or tubes. Alternatively, other separate VR-tube branches may be alded in any desired combination to the same supply, as shown in Fig. 7-29E, to suit the needs of each stage.

I'roviding the VIR-tube current rating is not

Other Sources of Biasing Voltage

In some cases, it may be convenient to obtain the biasing voltage from a source other than a separate supply. A half-wave rectifier may be conneeted with reversed polarization to obtain biasing voltage from a low-voltage plate supply, as shown in Fig. 7-30.A. In another arrangement, shown at B, a spare filament winding can be used to operate a filament transformer of similar voltage rating in reverss to obtain a voltage of about 130 frem the winding that is customarily the primary. This will be sufficient to operate a VR75 or VIRYO.

A bias supply of any of the types discussed requires relatively little filtering, if the outputterminal peak voltage does not approach the operating-bias value, because the effect of the supply is entirely or largely "washed out" when grid eurrent flows.

Fig. 7.28 - An electronically . regulated bian supply. Small components are mounted underneath the $5 \times 10 \times 3$-ind ehussim. 'The eircuit diagram is shown in rig. 7-27.

Other Power Considerations

FILAMENT SUPPLY

Except for tubes designed for battery operation, the filaments or heaters of vacuum tubes used in both transmitters and receivers are universally operated on alternating current obtained from the power line through a stepdown transformer delivering a secondary voltage equal to the rated voltage of the tubes used. The transformor should be designed to carry the current taken by the number of tubes which may be eonnected in parallel across it. The filament or heater transformer generally is conter-tapped, to provide a balanced circuit for climinating hom.

For medium- and high-power r.f. stages of transmitters, and for high-power audio stages, it is desirable to tese a separate filament transformer for each section of the transmitter, installed near the tube sockets. This avoids the nocessity for ahnormally large wires to carry the total filament current for all stages without appreciable voltage drop. Maintenance of rated filament voltage is highly important, especially with thoriated-filament tubes, since under-or over-voltage may reduce filament life.

LINE-VOLTAGE ADJUSTMENT

In certain communities trouble is sometimes experienced from fluctuations in line voltage. Usually these fluctuations are caused by a variation in the load on the line and, since most of the variation comes at certain fixed times of the day or night, such as the times when lights are turned on and off at evening, they may be taken care of by the use of a manually-operated compensating device. A simple arrangement is shown in Fig. 7-31A. A toy transformor is used to boost or buck the line voltage as required. The transformer should have a tapped secondary varying between 6 and 20 volts in steps of 2 or 3 volts and its secondary should be capable of carrying the full load current of the entire transmitter, or that portion of it fed by the toy transformer.

The secondary is connected in series with the line voltage and, if the phasing of the windings is correct, the voltage applied to the primaries of the transmitter transformers can be brought up to the rated 115 volts by setting the toytransformer tap switch on the right tap. If the phasing of the two windings of the toy transformer happens to be reversed, the voltage will be reduced instead of increased. This connection may be used in cases where the line voltage may be ahove 115 volts. This method is prefcrable to using a resistor in the primary of a power transformer since it does not affect the voltage regulation as serionsly. The circuit of 7-31l3 illustrates the use of a variable transformer (Variac) for adjusting line voltage to the desired value.

Another scheme by which the primary volt-

Fig. $7-29$ - Mlustrating the use of V 'R tubes in stabiliz. ing protective-bias supplies. R_{1} is a resistor whose value is adjusted to limit the current through each VR tube to 5 ma. before amplifier excitation is applied. K and R_{2} are current-equalizing resistors of 50 to 100 ohms.
age of each transformer in the transmitter may be adjusted to deliver the desired secondary voltage, with a master control for compensating for changes in line voltage, is deseribed in Fig. 7-32.

This arrangement has the following features:

1) Adjust ment of the switeh S_{1} to make the volt meter read 105 volts automatically adjusts all transformer primaries to the predetermined correct voltage.
2) The necessity for having all primaries work at the same voltage is eliminated. Thus, 110 volts can be applied to the primary of one transformer, 115 to another, etc.
3) Independent control of the plate transformer is afforded by the tap switch S_{2}. This permits power-input control and does not require an extra autotransformer.

Fig. $7 \cdot 30$ - Convenient means of obtaining biasing voltage. A - F'rom a low-voltage plate supply. 13 Froms spare filament winding. T_{1} is a filament transformer, of a voltage output similar to that of the spare filament winding, conmected in reverse to give 115 volts r.m.s. output. If eold-eathode or selenium rectifiers are used, no additional filament supply is reguired.

CONSTRUCTION OF POWER SUPPLIES

The length of most leads in a power supply is unimportant, so that the arrangement of components from this consideration is not a factor in construction. More important are the points of good high-voltage insulation, adequate conductor size for filament wiring, proper ventilation for rectifier tubes and - most important of all - safety to the operator. 1xposed high-voltage terminals or wiring which might be bumped into accidentally should not be permitted to exist. They should be covered with adequate insulation or placed inaccessible to contact during normal operation and adjustment of the transmitter.

Rectifier filament leads should be kept short to assure proper voltage at the rectificr sorket, and the sockets should have good insulation and adequate contact surface. Plate leads to

Fig. 7-31 - Two methods of transformer primary control. At A is a tapped toy transformer which may be connected so as to benst or buek the line voltage ats required. At 13 is indicated a variable transformer or antotransformer (Variac) in series with the transformer primaries.
mercury-vapor tuhes should be kept short to minimize the radiation of noise.

Where high-voltage wiring must pass through a metal chassis, grommet-lined clearance holes will serve for voltages up to 500 or 750, but ceramic feed-through insulators should be used for higher voltages. Bleeder and voltage-dropping resistors should be placed where they are open to air eirculation. Placing them in confined space redures the power rating.

It is highly preferable from the standpoint of operating convenience to have separate filament transformers for the rectifier tubes, rather than to use combination transformers, such as those used in receivers. This permits the transmitter plate voltage to be switched on without the necessity for waiting for rectifier filaments to come up to temperature after

Fig. 7.32-W ith this cireuit, a singleadjustment of the tap switch S_{t} places the correet primary voltage on all transformers in the transmitter. Information on constructing a suitable autotransformer at negligille enst is containel in the text. The light winding represents the regular primary winding of a revamped transformer, the heavy winding the voltage-adjusting section.
cach time the high vollage has been turned off.
A bleeder resist or with a power rating gi ving a considerable margin of safety should be used across the output of all transmitter power sup)plies so that the filter condensers will be discharged when the high-voltage transformer is turned off. To guard against the possibility of danger to the operator should the bleeder re-
sistor burn out without his knowledge, a relay with its winding connected in parallel with the high-voltage transformer primary and its contacts in series with a 1000 -ohm resistor across the output of the power supply sometimes is used. The protective relay should be arranged so that the contacts open when the relay is energized.

Emergency and Independent Power Sources

Emergency power supply which operates independently of a.e. lines is available, or ean be built in a number of difforent forms, depending upon the requirements of the service for which it is intended.

The most practical supply for the average individual amateur is one that operates from a 6 -volt car storage battery, such a supply may take the form of a small motor generator (often called a gencmotor), a rolary converter, or a vibrator-transformer-rectifier combination.

Dynamofors

A dynamotor differs from a motor generator in that it is a single unit having a couble armature winding. One winding serves for the driving motor, while the outpht voltage is taken from the other. Dynamotors usually are operated from 6-, $12-, 28$ - or 32 -volt storage batteries and deliver from 300 to 1000 volts or more at various current ratings.

Genemotor is a term popularly used when making reference to a dynamotor designed rspeceally for automobile-receiver, soundtruck and similar applications. It has grood regulation and efficiency, combined with econony of operation. Standard models of gencmotors have ratings ranging from 135 volts at 30 ma. to 300 volts at 200 ma . or 600 volts at 300 ma . The normal efficiency averages around 50 per cent, increasing to better than 60 per cent in the higher-power units. The voltage regulation of a genemotor is comparable to that of well-designed a.c. supplies.

Successful operation of dynamotors and genemotors requires heavy dircet leads, mechanical isolation to reduce vibration, and thorough r.f. and ripple filtration. The shafts and bearings should be thoroughly "run in" before regular operation is attempted, and thereafter the tension of the bearings should be checked occasionally to make certain that no looseness has developed.

In mounting the genemotor, the support. should be in the form of rubber mounting bloeks, or equivalent, to prevent the transmission of vibration meehanically. The frame of the genemotor should be grounded through a heavy flexible connector. The brushes on the high-voltage end of the shaft should be bypassed with $0.002-\mu \mathrm{fl}$. mica condensers to a common point on the genemotor frame, preferably to a point inside the end cover elose to the brush holders. Short leads are essential. It may prove desirable to shield the entire
unit, or even to remove the unit to a distance of three or four feet from the receiver and antenna lead.

When the genemotor is ased for receiving. a filter should be used similar te that described for vibrator supplies. A $0,01-\mu \mathrm{fd}$. 600-velt (d.c.) paper coudensor should be connected in shunt across the output of the genemotor, followed by a 2.5 -mh. r.f. choke in the positive high-voltage lead. From this point the output should be run to the receiver power terminals through a smoothing lilter using 4- to 8- ff f. condensers and a 15 - or 30 -henry choke having low d.c. resinamed.

A.C.-D.C. Converters

In some instances it is desirable to utilize existing equipment built for 115 -volt a.c. operat tion. To operate sueh equipment with any of the power sourers outlined above would require a considerable amount of rebuilding. This can be obviated by using a rotary eonverter capable of changing the d.c. from 6-, 12-or 32 -volt batteries to 115 -volt 60-cycle a.e. Such converter units are built to deliver outputs ranging from 40 to 300 watts, depending upon the battery power a vailable

The conversion efficiency of these units a vorages about 50 per eent. In appearance and operation they are simikar to genemotors of cquivalent rating. The over-all efficiency of the converter will be lower, however, because of losses in the a.c. reetifier-filter circuits and the necessity for converting heater (which is supplied directly from the battery in the case of the genemotor) as well as plate power.

Vibrator Power Supplies

The vibrator type of power supply consists of a special step-up transformer combined with a vibrating interrupter (vibrator). When the unit is eonnected to a storage battery, plate power is obtained by passing current from the battery through the primary of the transformer. The circuit is made and reversed rapidly by the vibrator contacts, interrupting the current at regular intervals to give a changing magnetic field which induces a voltage in the secondary. The resulting squarewave d.e. pulses in the primary of the transformer eause an alternating voltage to be developed in the secondary. This high-voltage a.c. in turn is reetified, either by a vacuum-tube rectifier or by an additional synchronized pair of vibrator contaets. The rectified output is
pulsating d.c., which may be tiltered by ordinary means. The smonthing fitter can be a single-section affair, but the filter output capacitance should be faily large - 16 to $32 \mu \mathrm{fd}$.

Fig. 7-33 shows the two types of circuits. At I is shown the nonsynchronous type of vibrator. When the battery is disconnected the

Fig. 7-3.3-Basic types of vilirator power-supply circuits. A-Nonsymhronous. B-Synchronous.
reed is midway between the two contacts. tourhing neither. On closing the battery cireuit the magnet coil pulls the reed into contact with one contar point, catusing current to flow through the lower half of the transformer primary winding. Simultaneonsly. the magne coil is short-cireuited, deencrgizing it. and the reed swings back. Inertia carries the reed into contact with the upper point, causing current to flow through the upper half of the transformer primary. The magnet roil again is energized. and the cycle repeats itself.

The synchronous cireuit of Fig. 7-3:3B is provided with an extra pair of contacts which rectify the secondary output of the transformer, thus eliminating the need for a separate rectifier tube. The secondary eenter-tap furnishes the positive output terminal when the relative polarities of primary and secondary windings are correct. The proper connertions may be determined by experiment.

The buffer condenser, C_{2}, across the transformer secondary, absorls the surges that oceur on breaking the current, when the magnetic field collapses practically instantaneously and hence causes very high voltages to be induced in the secondary. Without this condenser excessive sparking oceurs at the vibrator contacts, shortening the vibrator life. Correct values usually lie between 0.005 and $0.03 \mu \mathrm{fe}$., and for 250-300-volt supplies the condenser should be rated at 1500 to 2000 volts d.e. The exact capacitance is critical, and should be determined experimentally. The optimum value is that which results in least battery current for a given rectified d.c. output from the supply. In practice the valuc can be determined by observing the degree of vibrator
sparking as the capacitance is changed. When the system is operating properly there should be practically no sparking at the vibrator contacts. A 5000 -ohm resistor in series with C_{2} will limit the secondary current to a safe value should the condenser fail.

A more exact check on the operation can be secured with an oscilloscope having a linear sweep circuit that can be synchronized with the vibrator. The vertical plates should be connerted across the outside ends of the transformer primary winding to show the input voltage waveshape. Fig. $7-34\left({ }^{\circ}\right.$ shows an idealized trace of the optimum waveform when the buffer capacitor is adjusted to give proper operation throughout the life of the vibrator. The horizontal lines in the traee represent the voltage during the time the vibrator contacts are closed, which should be approximately 90 per cent of the total time. When the contacts are open the trace should be partly tilted and partly vertical, the tilted part being 60 per cent of the total conmecting trace. The oscilloscope will show readily the effeet of the buffer condenser on the percentage of tilt. In actual patterns the horizontal sections are likely to droop somewhat because of the resistance drop in the battery leads as the current builds up through the primary inductance (Fig. 7-34D). Trace E shows the result of insufficient buffering capacitance, while too much buffering capacitance will show a slow build-up in voltage with rounded eorners evident in the trace. Figs.

Iig. \quad - 34 - Characteriatic vibrator wateforme as viewed on the oscilloscope. A, ideal theoretical trace for resistive load; current flow stops instantly when vilsator contacts open and resumes approximately 1 microsecond later (for standard 115 -cycle vibration frequency) after interrupter arm meves across for the next half-cycle. 13, ideal practical waveform for inductive load (transformer primary) with correct buffer capacitance. C, practical approximation of B for loaded nonsynchronous vibrator. I), satisfactory practical trace for sy nchronous (self-rectifying) vibrator under load; the peaks result from voltage drop in the primary when the secondary load is connected, not from faulty operation.
fraulty operation is indicated in E throngh II: l , effect of insufficient loffering capacitance (not to be mis. taken for "bouncing" of contacts). The opposite condition - excessive buffering capacitance - is indicated by slow build-up with rounded corners, cspecially on "open."' F, overclosure caused by too-small buffer con. denser (same condition as in E) with vibrator unloaded. G, "skipping" of worn-out or misadjusted vibrator, with interrupter making poor contact on one side. $\mathrm{II},{ }^{\text {e }}$ bounting" resulting from worn-out contacts or sluggish reed. G and II usually call for replacement of the vibrator.

7-34G and II indicate a worn or improprolyadjusted vibrator.

"Hash" Elimination

Sparking at the vibrator contacts causer ref. interference ("hash," which can be distinguished from hum by its harsh, sharper pitch) when used with a rocoiver. To minimize this, r.f. filters are incorporated, consisting of $R F C_{1}$ and C_{1} in the battery circuit, and $R F C_{2}$ with C_{3} in the d.e. output cireuit.

Lequally as important as the hash filter is thorough shiedding of the power supply and its commerting leads, since even a small piece of wire or metal will radiate conough r.f. to catuse interference in a sensitive rerober.

Testing in connection with hash elimination should be carried out with the supply operating a receiver. Since the interference usually is pieked up on the receiving-antenna leads by radiation from the supply itsolf and from the battery loads, it is advisable to keep the supply and battery as far from the reediver as the connerting cables will permit. Three or four feet should be ample, The microphone cord likewise should be kept awny from the supply and leads.

The power supply should be built on a metal chassis, with all unshielded parts underneath. A bottom phate to complete the shiclding is advisable. The transformer case, vibrator cover and the metal shell of the tube all should be grounded to the chassis. If a glass tube is used it should be enclosed in a tube shield. The battery leade should be evenly twisted, since these leads are more likely to radiate hash than any other part of a well-shiedded supply. Experimenting with different values in the hash filters should come afler radiation from the battery lead has been reduced to a minimum. Shiedding the leads is not particularly helpful.

PRACTICAL VIBRATOR-SUPPLY CIRCUITS

A vibrator-type power supply may be designed to operate from a sis-volt storage battery only, or in a combination unit which may be operated interchangeably from wither battery or 115 volts a.c.

Typical cireuits are shown in Fig. 7-35. The one shown at A is the simplest, although it operates from a 6 -volt d.e. source only. S' turns the high voltage on and off.

The circuit of 13 provides for either 6 -volt d.c. or 115 -volt a.c. operation with a dualprimary transformer. Si is the a.c. on-off switch while S_{3} switches the heater of the 6.05 rectifier from the storage battery to the 6.3 -volt winding on the transformer. Filament supply for the transmitter or receiver is switehed by shifting the power plug to the correct output socket, X when operating from a 6 -volt d.e. source, and Y when 115-volt a.c. input is used.

The circuit of Fig, 7-35C may be used when a dual-primary transformer is not available. The filter is switched from one rectifier

Fig. - 35 - Typical vihrator-transformer power-anpuly circuits. The circuit at A shows a simple arrangement for 6-volt d.c. inpuat: the one at 13 illusirates the nae of a combination transformer for operation from either 6 volts d.c. or 115 volts. a,c. The circuit of C is similar to that of 13 hut reses separate transformers.
(. $-0.5-\mu \mathrm{fl}$. paper, 50-volt rating or higher.
(:2-0.005 to $0.01 \mu \mathrm{fd} . .1600$ volts.
$\mathrm{Ci}_{3}-0.01-\mu \mathrm{fl}$. 600 -volt paper.
$\mathrm{C}_{4}-8-\mu \mathrm{fd} .4 \mathrm{SO}$-volt electrolytic.
($\mathrm{C}-32-\mu \mathrm{fl}$. 450 -volt clectrolytic.
C.s - $100-\mu \mu \mathrm{fl}$. mica.
$\mathrm{R}_{1}-4500$ ohms. $1 / 2$ or 1 watt.
I. 1 - $10 / 12$-henry $100-\mathrm{ma}$. fiter chose, not over 100 ohms (Stancor (:-230.3 or equivalent).
$\mathrm{F}-15$-ampere fuse.
KFC(1-5.5turns No. 12 on 1 -inch form. Hose-wound. IR $\mathrm{FC}_{2}-2.5$-mh. r.f. choke.
$\$_{1}$-S.p.s.t. toggle - battery switch.
S_{2} - S.p.s.t. tokgle - a.c. power switeh.
S_{3} - S.p.d.t. toggle - rectifier-heater changeover switch.
S_{4} - I).p.d.t. toggle - a.c.-d.c. switeh.
T' - Vilisator transformer.
T_{2} - Special vibrator transformer with 115 volt and 6.volt primaries, to give approximately 300 volts at 100 ma.d.c. (Stancor l' 6166 or equiva. lent).
$\Gamma_{3}-25{ }^{-5}$ to 300 volts each side of center-tap, 100 to 150 ma.; 6.3 -volt flament.
V13-Vibrator unit (Mallory 500P. 294, etc.)
X - Insert a series resistor of suitable value to drop the output voltage to 301 at 100 ma, load, if neressary. If transformer gives over 300 volts d.e., a second filter whoke may be used to give additional voltage drop as well as more smonthing.
output to the other by means of the d.p.d.t. switch, S_{4}, which also shifts filament connections from a.c. to d.c. The filter section of the switch could be eliminated if desired by connecting the filtering circuit permanently to the output terminals of both rectifiers and removing the unused rectifier tube from its socket. Similarly, the filament section of S_{4} could be dispensed with by providing two output sockets as in the circuit at B. If a separate rectifier filament winding is available on T_{3}, directly-heated rectifier types may be substituted for the 6 N 5 in the a.c. supply. In some cases where the required filament windings are not available, a rectifier of the coldrathode type, such as the 0Zt, which requires no heater voltage, sometimes may be used to advantage.

If suitable filament windings are available, a regular a.c. transformer will make an acceptable substitute for a vibrator transformer. If the a.c. transformer has two 6.3 -volt windings, they may be commected in series, their junction forming the required center-tap. A 6.3 -volt and a $\overline{0}$-volt winding may be used in a similar manner even though the junction of the two windings does not provide an accurate centertap. A better center-tap may be obstained if a $2 . \overline{5}$-volt winding also is available, since half of this winding may be connected in series with the 5 -volt winding to give 6.25 volts.
R.f. filters for reducing hash are incorporated in both primary and secondary circuits. The secondary filter consists of a $0.01-\mu \mathrm{fd}$. paper condenser directly across the rectifier output, with a $2.5-\mathrm{mh}$. r.f. choke in series ahead of the smoothing filter. In the primary circuit a low-inductance choke and high-capacitance condenser are needed because of the low impedance of the circuit. A choke of the specifications given should be adequate, but if there is trouble with hash it may be beneficial to experiment with other sizes. The wire should be large - No. 12, preferably, or No. 14 as a minimum. Manufactured chokes such as the Mallory R Fis83 are more compact and give higher inductance for a given resistance because they are bank-wound, and may be substituted if obtainable. C_{1} should be at least $0.5 \mu \mathrm{fl}$.; even more capacitance may help in bad cases of hash.

The smoothing filter for battery operation can be a single-section affair, but there will be some hum (readily distinguishable from hash because of its deeper pitch) unless the filter out put capaeitance is fairly large - 16 to $32 \mu \mathrm{fd}$.

The compactness of selenium rectifiers and the fact that they do not require filament voltage make them particularly suited to compact lightweight power supplies for portableemergeney work.

Fig. 7-36 shows the circuit of a vibrator pack that will deliver an output voltage of 400 at 200 ma . It will work with either 11 j -volt ac. or 6 -volt battery input. The circuit is that of the familiar voltage tripler whose d.c. output
voltage is, as a rough approximation, three times the peak voltage delivered by the transformer or line. An interesting feature of the circuit is the fact that the single transformer serves as the vibrator transformer when operating from 6 -volt d.c. supply and as the filament transformer when operating from an a.c. line. This is accomplished without complicated switehing.

The vibrator transformer, T_{1}, is a dualsecondary 6.3 -volt fitament transformer conneeted in reverse. It may also consist of two single transformers of the same type with their primaries connected in series and secondaries in parallel, both windings being properly polarized. In either event, the filament windings must have a rating of 10 amperes if the full load current of 200 ma . is to be used. Some excellent surplus transformers that will handle the required current are now available on the surplus market. The vibrator also must be capable of handling the current. The hashfiltor choke, L_{1}, must carry a current of 20 amperes.

The following table shows the output voltage to be expected at various load currents, depending upon the size of condensers used at C_{1}, C_{2} and C_{3}.

$\underset{\left(\mu d_{0}\right)}{C_{1}, C_{2}, C_{3}}$	Output Voltage at			
	60 ma .	100 ma .	100 ma .	200 ma .
60	455	430	415	395
40	425	$3!0$	360	330
20	400	340	285	225

In operating the supply from an a.c. line, it is always wise to determine the plug polarity with respect to ground. Otherwise the rectifier part of the circuit and the transformer circuit can-

Fig. 7-36- (irenit diagram of a compact vibrator-a.c. portable power supply suggested by W9CO.
$\mathrm{C}_{\mathrm{t}}-60-\mu \mathrm{fd} .200$-volt electrolytic.
$\mathrm{C}_{2}-60 \cdot \mu \mathrm{fd}$. 400 -volt electrolytic.
$\mathrm{C}_{3}-60-\mu \mathrm{fd}$. 600-volt electrolytic.
C_{4} - 25- $\mu \mathrm{fd}$. 25 -volt electrolytic.
$\mathrm{C}_{5}, \mathrm{C}_{6}-0.5-\mu \mathrm{fd} .25$-volt paper.
($\mathrm{i}-0.00^{-}-\mu \mathrm{fd}$. $15(0)$-volt paper.
$R_{1}-25,000$ ohms, 10 watts.
I_{1} - 25-дliy. 20-amp. choke.
$S_{1}-115$-volt toggle switeh.
S_{2} - I).p.d.t. heary-duty knife switch.
S_{3} - 25-amp. s.p.w.t. switeh.
II - See text.
V - Heavy-duty vibrator.

TABLE 7-II PLATE-BATTERY SERVICE HOURS

Estimated to 34 -volt end-point per nominal 45 -volt section.
Based on intermittent use of 3 to 4 hours daily at room temp. of $70^{\circ} \mathrm{F}$.
(For batteries manulactured in U.S. A. only.)

Monufacturer's Type No.		Weight		Current Drain in Mo.											
Burgess	Eveready	Lb.	Oz,	5	10	15	20	25	30	40	50	60	75	100	150
-	758	14	8	Suggested current range $=7$ to 12 Ma .											
21308	-	12	8	1500	1100	690	490	一	390	200	-	130	-	60	30
10308	-	11	4	1300	750	520	350	-	-	130	-	90	-	45	22
-	754	6	8	Suggested current range $=5$ to 15 Mo .											
2308	-	8	3	1100	500	330	200	-	150	80	-	43	-	-	-
-	487	4	2	Suggested current range $=7$ to 18 Ma .											
B30	-	2	8	350	175	90	50	-	21	17	-	-	-	-	-
A 30	-	2	-	260	100	48	28	-	17	7	-	-	-	-	-
-	482	1	14	400	200	182	80	-	-	-	-	-	-	-	-
Z30N	-	1	4	155	70	30	80	15	9.5	-	-	-	-	-	-
-	467	-	12	89	30	-	-	-	-	-	-	-	-	-	-
-	738	1	2	160	70	30	20	10	7	-	-	-	-	-	-
W30FL	-	-	11	70	80	12	7	-	3.5	-	-	-	-	-	-
一	455	-	8	82	30	-	-	-	-	-	-	-	-	-	-
$\times \times 30$	-	-	9	70	20	12	7	-	3.5	-	-	-	-	-	\sim

not be connected to artual ground exrept through by-pass condensers.

Vibrator-Supply Construction

A typical example of vibrator-supply construction is shown in the photograph of Fig. 7-37.

This model makes use of separate power transformers for 115 -volt a.c. and 6 -volt d.c. operation, the single rectifier tuhe being shifted from one octal socket to the other when the change from a.c. to d.c. operation is made. The components are assembled on a $5 \times 10 \times 3$-inch steel chassis. The two transformers are flush-mounting type requiring eut-outs in the ehassis. Three socket holes are required - one for the 4 -prong socket for the vibrator and two octal sorkets for the rectifier. The a.c. line cord and battery and power-output leads are brought out at the rear.

Fig. 7-37-A typical combination a.c.-d.c. power pack for low-power emergency work. The two transformers are flush-mounted at either end of the chassis. The filter condenser is at the left, the two rectifier sockets at the center and the vibrator to the rear.

GASOLINE-ENGINE DRIVEN GENERATORS

For higher-power instaltations, such as for communications control centers during emergencies, the most practical form of independent power supply is the gasoline-engine driven generator which provides standard 115 -volt $60-\mathrm{c}$ ele supply.

Such generators are ordinarily rated at a minimum of 250 or 300 watts. They are available up to two kilowatts, or big a nough to handle the highest-power amateur rig. Most are arranged to charge automatically an anxiliary 6 - or 12 -volt battery used in starting. ditted with self-starters and adequate muffler: and filters, they represent a high order of performance and efficiency. Many of the larger models are liquid-cooled. and they will operate continuously at full load.

A variant on the generator idea is the use of fan-belt drive. The disadvantage of requiring that the automolile must be running throughout the oporating period has not led to general popularity of this idea among amateurs. Nuch generators are similar in construction and capacity to the small gas-driven units.

The ontput frofpeney of an engine-driven generator must fall belwern the relatively narrow limits of 50 to 60 eycles if standard 60-eyele transformers are to operate efficiently from this somrer. A fin-eycle electric clock provides a means of checking the output frequency with a fair degree of accuracy. The clock is connected across the output of the generator and the second hand is checked closely against the second hand of a watch. The speed of the engine is adjusted until the two second hands are in synchronism. If a 50-cycle clock is used to check a 60 -cycle generator, it should be remembered that one revolution of the second hand will be made in 50 seconds and the clock will gain 4.8 hours in each 24 hours.

Output voltage should be checked with a

TABLE 7 -III - FILAMENT-BATTERY SERVICE HOURS

Estimated to 1 -volt end-point per nominal 1.5 -volt unit. Based on infermittent use of 3 to 4 hours per dey at room temperature. (For betteries manulactured in U. S. A. only.)

Manulacturer's Type No.		Weight		Volt09*	Current Drain in Mo.											
Burgess	Everosdy	Lb.	Oz.		30	50	60	120	150	175	100	200	240	250	300	350
-	A. 1300	8	4	1.25	-	-	-	-	2000	1715	1500	13.33	1250	1200	1000	054
-	740	6	4	1.5	-	-	-	-	-	-	-	870	-	-	-	-
-	$741{ }^{1}$	2	13	1.5	-	-	-	-	-	-	-	460	-	-	270	-
-	743	2	1	1.5	-	-	-	-	-	-	-	300	-	225	175	-
-	742	1	6	1.5	-	-	-	-	-	-	-	170	-	120	90	-
85^{2}	-	2	10	1.5	-	-	1100	600	450	-	-	400	-	320	230	190
4 F	-	1	4	1.5	-	-	600	340	230	-	-	160	-	110	95	60
-	A. 2300	11	-	2.5	-	-	-	-	2000	1715	1500	1333	1250	1800	1000	054
2059	-	13	18	3.0	-	-	-	-	1100	-	-	850	-	775	600	500
2F9H	-	1	6	3.0	600	-	340	130	95	-	-	60	-	42	30	-
2F2BP3	-	1	5	3.0	600	$\stackrel{\square}{+}$	340	130	95	-	-	60	-	42	30	-
F20P	-	-	12	3.0	340	-	130	45	30	-	-	-	-	-	-	-
G3*	-	1	5	4.5	370	200	150	50	35	-	-	-	-	-	-	-
-	746	1	4	4.5	-	225	-	-	-	-	-	-	-	-	-	-
-	718^{5}	2	13	6.0	-	415	-	-	-	-	-	-	-	-	-	-
F4PI	-	1	6	6.0	340	150	130	45	30	-	-	-	-	-	-	-

${ }^{1}$ Same life figures apply to 745 , wt. 2 lb .13 oz. 2 Same life ügures apply to 8FL, wt. 2 lb. 15 oz.

Seme life figures opply to 2 F 4 , volts 6 , wt. $2 \mathrm{lb}, 11$ oz.
${ }^{4}$ Same life figures opply to $\mathrm{G5}$, volts $7 \mathrm{l} / 2, \mathrm{wt}$. 2 ib 2 or
s Same life figures apply to 747 , wt. 2 lb .13 oz .
same life figuros apply to 747 ,
Sd, locate ones of similar sizo and
If betieries of another make are to be usod, locate ones of similar size and
weight on these tables and comperable performance may be oxpocted.
voltmeter since a standard $11 \bar{j}$-volt lamp bulb. whieh is sometimes used for this purpose, is very inaccurate. Tests have shown that what appears to be normal brilliance in the lamp may occur at voltages as high as 150 if the cheek is made in bright sunlight.

Noise Elimination

Electrical noise which maty interfere with rereivers operating from engine-driven a.c. genrators may be reduced or eliminated by taking proper precautions. The most important point is that of grounding the frame of the generator $\begin{gathered}\text { ant } \\ \text { one side of the output. The }\end{gathered}$ ground lead should be short to be effective, wherwise grounding may actually increase the woise. A water pipe may be used if a hort conneetion can be made near the point where the pipe enters the ground, otherwise a good separate ground should be provided.

The next step is to loosen the brush-holder

Fig. 7 -38 - Connection: used for eliminating inter. ference from gas-driven generator plants. (ishonld bee I $\mu \mathrm{fl} ., 300$ volts, paper, while C_{2} may be $1 \mu \mathrm{fd}$, with a voltage rating of twice the d.c. output voltage delivered by the generator. I indicates an added conmection between the slip ring on the grounded side of the line and the gencrator frame.
locks and slowly shift the position of the brustes while cheeking for noise with the receiver. Csually a point will be found (almost always different from the factory setting) where there is a marked deerease in noise.

From this point on, if necessary, by-pass condensers from varions brush holders to the frame, as shown in Fig. 7-38. will bring the hash down to within 10 to 15 per cent of itorigimal intensity, if not entirely oliminating it. Most of the remaining noise will be reduced still further if the high-power audio stages are cut out and a pair of headphones is connereded into the serond deteetor.

POWER FOR PORTABLES

Dry-edl batteries are the only practical source of supply for equipment which must bo transported on foot. From ecrtain considerations they may also be the best source of voltatge for a receiver whose filamonts may bo operated from a storage battery, since no problem of noise filtering is involved.

Their disadvantages are weight, high cost, and limited current capability. In addition, they will lose their power even when not in use, if allowed to stand idle for periods of a year or more. This makes them uneconomical if not used more or less continuously.

Tables 7-II and 7-III give service life of representative types of batteries for various: current drains, based on intermittent service simulating typical operation. The continuousservice life will be somewhat greater at very low current drains and from one-half to twothirts the intermittent life at higher drains.

Keying and Break-In

If the proper keying of a transmitter entailed only the ability to turn on and off the output, keying would be a simple matter. Lnfortunately, perfect keying is as difficult to obtain as perfect voice quality, and so is not a matter to be dismissed lightly. The keying of a transmitter can be considered satisfactory if the power output is reduced to acro with the key open, or "up," and reaches fall output when
the key is closed, or "down." The keying system should aceomplish this without producing objectionable transients or "clicks," which cause interference with other amateur stations and with local broadeast reception. Furthermore, the keying process should cause no "chirp," which means that the transmitter output frequeney should not be affected by the keying process.

Keying Principles and Characteristics

Back-Wave

When the transmitter output is not reduced to zero under key-up conditio ns, the signal is said to have a back-wave. If the amount of back-wave is appreciable, the keying will be difficult to read. A pronounced back-wave maty result when the amplifier feeding the antenna is keyed, as a result of the excitation energy feeding through an incompletely-ncutralized stage. Magnetic coupling between atenna coils and one of the driver stages on the operating frequency is also a cause of back-wave. Direct radiation from is driver stane ahead of the keyed stage will result in a back-wave, but this type is generally heard only within a few miles of the transmitter, unless the driver stage is fairly high-powered.

A back-wave also may be radiated if the keying systen does not reduce the input to the keyed stage to zero during keying spaces. This trouble will not occur in keying systems that completely cut off the phate voltage when the key is open. It will occur in gridbock keying systems if the blocking voltage is not great chough, or in power-supply primary keying systems if only the final-stage power-supply primary is keyed. A vacuumtube keyer will give a back-wave if the "open" key resistance is too low.

Key Clicks

If a transmitter is keyed in such a manner that the power output rises instantly to its full value or drops immediately to zero, the resultant short rise and deray times produce signals (at the times of closing and opening the key) extending from the signal frequency to several hundred kilocyeles on either side.

These signals are called "key clicks," and they will cause interference to other amateurs and other serviecs. Consequently, keying systems must be used that increase the rise and decay times of the keyed eharactert, since this results. in less click energy removed from the signal frequency.

The simple process of making and breaking any eireuit with current flowing through it will produce a brief burst of r.f. energy. This effect ran be noticed in a radio receiver when an electric light or other appliance in the house is turned on or off. It is, therefore, not only necessary to delay the rise and decay times of the keyed transmitter to prevent interference with other services, but it may be necessary to filter the r.f. energy generated at the key contatets if this energy is found to interfere with broad(ant reception in the amateur's house or vicinity. This interference is also called "key rlicks."

Getting back to the discussion of rise and decay times, tests have shown that practically all operators prefer to copy a signal that is "solid" on the "make" end of each dot or dash; i.e., one that does not build up too slowly but juet slowly enough to have a slight click when the key is closed. On the other hand, the most-pleasing and least-difficult signal to copy, particularly at high speeds, is one that has a fairly soft "break" characteristic; i.e., one that has practically no click as the key is opened. A signal with heavy clicks on both make and break is difficult to copy at high speeds and also causes considerable interference. If it is too "soft" the dots and dashes will tend to run together and the characters will be difficult to eopy. The keying should be
adjusted so that for all normal hand speeds (15 to $35 \mathrm{w} . p . \mathrm{m}$.) the readability will be satisfactory without causing unnecessary interference to the reception of other signals near the transmitter frequency.

Chirps

Keying should have no effect upon the frequency of the transmitter. In many cases where sufficient pains have not been taken, keying will cause a frequency change, or "chirp," it the instant of opening or closing the key. The resultant signal is unpleasant and, in cases of extreme chirp, difficult to copy Multistage transmitters keyed in a stage following the oscillator are generally free from chirp, unless the keying causes line-voltage changes which in turn affert the oseillator frequency. When the oscillator is keyed, as is done for "break-in" operation, particular care must be taken to insure that the signal does not have keying chirps.

Break-In Operation

In code transmission, there are intervals between dots and dashes, and slightly longer intervals between letters and words, when no power is being radiated by the trimsmitter. If the receiver can be mate to operate at normal sensitivity during these intervals, it is possible for the receiving operator to signal the transmitting operator, by holding his key down. This is useful during the handling of messages, since the receiving operator can immediately signal the transmitting operator if he misses part of the message. It is also useful in reducing the time necessary for calling in
answer to a "CQ." The ability to hear signals during the short "key-up" intervals is called break-in operation.

Selecting the Stage To Key

It is highly advantageous from an operating standpoint to design the c.w. transmitter for break-in operation. In most cases this requires that the oscillator be keyed, since a continu-ously-running oscillator will create interference in the receiver and prevent break-in on or near one's own frequency. On the other hand, it is easier to avoid a chirpy signal by keying a stage or two following the oseillator. Since the effect of a chirp) is multiplied with frequency, it is quite difficult to obtain chirpless uscillator keying in the 14-and 28-Mc. bands. In any a ase, however, the stages following the keyed stage (or stages) must be provided with sufficient fixed bias to limit the plate currents to safe values when the key is up and the tubes are receiving no excitation voltage. Complete cut-off reduces the possibility of a bark-wave if a stage other than the oscillator is keyed, but the keying waveform is not well preserved and some clicks can be introduced, even though the keyed stage itself produces no clicks. $/ t$ is a good general rule to bias the tubes following the keyed stage so that they draw a key-up current of about 5 per cent of the normal key-down value.

The power broken by the key is an important consideration, both from the standpoint of safety to the operator and that of sparking at the key contacts. Veying of the oseillator or a low-power stare is favorable on both counts. The use of a keying relay is recommended when a high-power circuit is keved.

Keying Circuits

Only general circuits can be shown for keying, since the final decision on where and how to key rests with the amateur and depends upon the power level and type of operation.

PLATE-CIRCUIT KEYING

Any stage of the transmitter can be keyed by opening and closing the plate-power circuit. Fig. 8-1 shows how the key can be connected to key the plate circuit (A) or the screen circuit (B). The circuit of lig. 8-1A shows the key in the negative power lead, alt hough it could be placed in the positive lead, at the point marked " x ." Either system is recommended only for low-voltage circuits, of the order of 300 or less, untess a relay is used, because of the danger of accidental electrical shock.

Fig. 8-113 shows the key in the screen lead of an electron coupled oscillator, and can be considered a variation of 8-1 A that has the desirable advantage of breaking less current at a lower voltage.

Both of the circuits shown in Fig. 8-1 respond well to the use of key-click filters, and

(A)

(B)

Fif. 8.1-Plate-rirenit keying is shown at A, and screen-grid heying is shown at H. Oscillator circuits are shown in both cases, hut the same keying methods can be used with amplifier circuits, Notice the similarity between A and Fig. 8-5 - the only difference is in the way the grid return is connected.
are particularly suitable for use with crystaland self-controlled oscillators, which are gencrally operated at low voltage and low power.

In any transmitter where a driver stage requires the same supply voltage as the sereen of the driven stage, the positive lad to the driver stage and to the sereen grid of the amplifier ean be keyed simultaneously, with excellent results. I'sually no fixed bias will be required on the grid of the amplifier, since the kev-up phate current will have a low value.

Generatly an oscillator will operate at a very low plate voltage, but some refuse to. In the case of the latter, an improvement in keying can sometimes be obtained by using a high value of resistance aross the key that will permit the oscillator to draw some plate current (without oscillating). No one value of resistance can be recommended, since every case will be different, but several different values of resistance should be tried, increasing in value until the oscillator stops.

PRIMARY KEYING

A popular method of keying high-powered amplifiers is shown in Fig. 8-2. In its simplest form, as shown in 8-2 A, it consists of keying the primary of the plate transformer supplying power to one or more of the driver stages. It has the advantage that the filter,
$L C$, acts as a keying filter and prevents clicks. However, too much filter camnot be used or the keving will be too soft, amb a single section is all that ean normally be used. Since this will intronluce some a.c. modulation on the keyed stages, it is essential that the amplifier driven by the keyed stage have sufficient excitation to oprate as a Class C amplifier, which tends to climinate the modulation existing in the excitation voltage. Primary keying of the final phate power supply alone is not recommended, since it is practically impossible to comply with FCC regulations about "adequatelyfiltered power supply" and still avoid keying that is too soft.

Primary keying of the driver power supply requires that the following amplifier stage (or stages) be biased to prevent excessive current under key-up conditions. If this bias exreeds the cut-off value for the tube (or tubes) a slightly more elaborate version of primary keying can be used, as shown in Fig. 8-2l3. The primaries of both driver and final-amplifier phate supplies are keyed, and the system has the advantage that the final-amplifier plate voltage remains substantially constant under key-up or key-down conditions, and thus no clicks can be introduced by the sudden changes in finat-amplifier phate voltage as the excitation is applied or removed. The final-

(A)
(B)

IISV. A.C.

Fig. 8-2 - Primary-heying circnits. The circuit at A shows primary keying of the driver-stage (or stages) pewer supuly, followed by an amplifier tiased to or close to cut-off. The circuit of B uses primary keying of both driver and final supplies, and has the advantage that the key-up and hey-down voltages on the final amplifier remain substantially constant, thus eliminating the chance of elicks being introduced by the final-amplifier plate-supply regulation.
In either case, L and C should be as small as possible, consistent nith sufficient filtering and rectifier-tube limits. K in B need be only about 1000 ohms per volt. If a plate voltmeter is used, the bleed through it is sufficient, since the only function is to remove any long-standing charge from the power supply. A heavy bleed current will redure the effectiveness of the keying system. See texi'for other bleeder suggestions.

Fig. 8-3-Grid-controlled rectilier keving. Circuit is similar to Fiz. 8.and the values of L and C: are the same. I well-insulated keving relay, $R y$, is used to control the lias on the revtifiers I_{1} and I_{2}. The lias voltage is ohtained from a small receiver mower-suphly transformer T_{2}, the 80 rectifier, and filter condenser (.1. T T_{2} does not need to be insulated for the full phate-supply voltage (obtained from F_{1}) becanse it is exited from the filament transformer for I_{1} and $1 / 2$. It soond be well insulated to ground, however. R_{1} limits the short-cirenit on the hias supply and can he approximately $\mathbf{j 0 , (\mathrm { KM }}$ ohms in value.
amplifier phate supply will remain charged for several minutes after the last transmission, however, and extreme cation must be exurcised. As a safoty meavure, the final-amplifier power supply can be discharged by a relay that shorts the supply through a 1000 ohm resistor, or the bias can be removed and the final-amplifier tube will discharge the power supply.

The keying system shown in Fig. 8-213 has been used to key an entire transmitter for break-in operation. The oscillator and multiplier/driver stages take their plate power from the supply with the small filter, while the final amplifier is powered from the heavilyfiltered supply. It is essential, however, in a transmitter keyed for break-in in this manner, that the oscillator be free from chirp, and this point should be checked carefully before using the system on the air.

In using primary keying up to several humdred watts, direct keying in the primary circuit is satisfactory. For higher powers, however, a suitable keying relay should be used, becanse

Fig. 8-4 - Blocked-grid keying. R_{1}, the eurrent-limit ing resistor, should have a value of about $\mathbf{5 0 , 0 0 0}$ chmms. C_{1} may have a capacity of 0.1 to $1 \mu \mathrm{fd}$., dependiog upon the keying characteristie desired. K_{2} is the normal value of grid leah for the tube.
of the areing at the contacts. Fig. 8-3 shows grid-controlled rectifier tubes in the power supply. By applying suitable bias to the tubes when the key is up, no current flows through the tubes. When the key is closed, the bias is removed and the tubes conduct. The system can be used in the same way that primary keying was used in Fig. 8-2A and B. This system is used only in highpowered high-voltage supplies.

BLOCKED.GRID KEYING

An amplifier tube can be keyed by applying sufficient negative bias voltage to the control or suppressor grid to cut off plate-current flow when the key is up, and by removing this bloeking bias when the key is down. When the bias is applied to the control grid, its value will be considerably higher than the nominal cut-off bias for the tube, since the r.f. excitation voltage must be overcome. The fundamental circuits are shown in Fig. 8-4A and B. The circuits can be applied to oscillator tubes as well as amplifiers. Suppressor-grid

Fig. $8-5$ - Cathode and center-tap keying. The condens. ers C are r.f. by-pasis condensers. Their capaeity is not critical, values of 0.001 to $0.01 \mu \mathrm{fd}$. ordinarily being used
keying will not completely turn off a Tri-tet crystal oscillator or electron-coupled selfcontrolled oscillator, and is likely to cause serious chirps with the latter.

In both circuits the key is connected in series with a resistor, R_{1}, which limits the current drain on the blocking-bias source when the key is closed. $R_{2} C_{1}$ is a resistance-capacity filter that controls the rise time on make, the rise time increasing as $R_{2} \times C_{1}$ is made larger. $C_{1} \times\left(R_{1}+R_{2}\right)$ controls the decay time on break in the same manner. Since grid current flows through R_{2} in Fig. 8-4A when the key is closed, operating bias is developed, and R_{2} is the normal grid leak for the tube. Thus C_{1} only is varied to obtain the proper rise time.

With blocked-grid keying only a small current is broken compared with other systems, and sparking at the key is slight.

- CATHODE KEYING

Neying the cathole cireuit of a tube simultaneously opens the grid and plate circuits of the tube. This is shown in Fig. 8-is. The conlenser C serves as a short path for the r.f. energy, since the keying leads are often long. When a filament-type tube is keyed in this manner, the key is connected in the filamenttransformer center-tap lead, as in Fig. 8-5B, and the system is called center-tap keying. The condensers C serve the same purpose as in rathode keying.
(athode (or center-tap) keying results in less sparking at the key contacts than does plate-smpply keying, for the same plate power. When used with an oscillator it does not respond as readily to bey-click filtoring as does plate-circuit keying, but it is an excellent method for amplifier keying. If plate voltages above 300 are used, it is highly advisable to use a keying relay, to avoid accidental electrical shock at the key.

- KEYING RELAYS

A keying relay can be substituted for a key in any of the keying cireuits shown in this

Fig. 8-6 - Λ keying relay can always be substituted for the key, to provide better isolation from the keyed circuit. An r.f. fitter is generally required at the hey, and the keying filter is eonnected in the heyed eircuit at the relay contacts.
chapter. Most keying relays operate from 6.3 or 115 volts a.e., and they should be selected for their speed of operation and adequate insulation for the jol, to be done. Adequate eur-rent-handlitg capability is also a factor. A typical circuit is shown in Fig. 8-6.
'The relay-coil current that is broken by the key will cause elicks in the receiver, and an r.f. filter (see later in this chapter) is often necessary across the key. The normal keying filter connects at the relay armature contacts in the usual manner. Vibration effects of the keying relay upon the oscillator circuit should be a voided.

Key-Click Reduction

As pointed out earlier, interference caused by the key breaking current and the fast rise and deay times of the keyed characters is ralled "key clicks." 'The elimination of the interference depends upon its type.

R.F. FILTERS

Key clicks caused by the spark (often very minute) at the key contacts can be minimized by isolating the key from the rest of the wiring by a small r.f. filter. Such a filter usually

Fig. 8.7-1R.f. filter used for eliminating the radiation effects of sparhing at the key contacts. Suitalle values for hest results with individual transmitters must be determined by experiment. \backslash alues for RFC range from 2.5 to 80 millihenrys and for (C from 0.001 to $0.1 \mu \mathrm{fd}$.
consists of an r.f. choke in earh key lead, placed right at the key terminals and by-passed on the line side by a small condenser. Such a circuit is shown in lig. 8-7. Suitable values are best found by experiment, although $2.5-\mathrm{mh}$. r.f. chokes and a $0.001-\mu \mathrm{fd}$. condenser represent good starting points. The chokes must be capable of carrying the current that is broken, and the condenser must have a voltage rating equal at least to the voltage across the key under key-up conditions. Sometimes a small condenser directly across the key terminals is also necessary to remove the last trace of click. This type of r.f. filter is required in nearly
every keying installation, in addition to the various circuits to be described in the following few paragraphs.

Keying Filters

A filter used to give a desired shape to the keyed character, to eliminate clicks on the amateur bands and adjacent frequencies, is called a keying filter or lag circuit. In its simplest form it consists of a condenser and an inductance, connected as in Fig. 8-8. This type of keying filter is suitable for use in the circuits shown in Figs. 8-1 and 8-5. The optimum values of capacitance and inductance must be found by experiment but are not very critical. If a highvoltage low-current circuit is being keyed, it small condenser and a large inductance will be required, while a low-voltage high-current

circuit needs a large condenser and small inductance to reduce the clicks properly. For example, a 300 -volt 6 -ma. cireuit will require about 30 henrys and $0.05 \mu \mathrm{fd}$., while a 300 -volt 50 -ma. circuit needs about 1 henry and 0.5 $\mu \mathrm{fl}$. For any given set of conditions, increasing
the inductance will reduce the clicks on "make" and increasing the capacitance will reduce the clicks on "break."

Primary keying is adjusted by changing the filter values (L or C in Fig. 8-2). Since it is unlikely that a variety of chokes will be available to the operator, capacitance changes are usually all that can be made. If the keying is found too "soft," the value of C must be reduced.

Blocked-grid keying is adjusted by changing the values of resistors and condensers in the circuit, as outlined under the description of the circuit. The values required for individual installations will vary with the amount of blocking voltage and the value of grid leak.

Tube Keying

A tube keyer is a convenient device for keying the transmitter, because it allows the key-
ing characteristic to be adjusted easily and also removes all dangerous voltages from the key itself. The current broken by the key is negligible and usually no r.f. filter is required at the key. A tube keyer uses a tube (or tubes in parallel) to control the current in the plate or cathode circuit of the stage being keyed. The keyer tube turns off the current flow when a high negative voltage is applied to the grid of the keyer tube. The keying characteristic is shaped through the time constants of the grid circuit of the keyer tube, in exactly the same way that it is controlled in blocked-grid keying. When a tube keyer is used to replace the key in a plate or cathode circuit, the power output of the stage may be reduced somewhat because the voltage drop across the keyer lowers the plate voltage or adds cathode bias, but this is of little importance and can be minimized by using more keyer tubes in parallel.

A Vacuum-Tube Keyer

A tube-keyer unit is shown in Figs. 8-9 and 8-10. T_{1}, the 80 rectifier, and C_{1} and R_{1} form the power-supply section that furnishes the blocking voltage for the keyer tubes. S_{1} and S_{2} and their associated resistors and condensers are included to allow the operator to select the keying characteristic he wants. A simplified version could omit the switches and extra components, since once the value have been selected the components can be soldered permanently in place. The rule for adjusting the keying characteristic is the same as for blocked-grid keying. However, large values of resistors and small values of condensers can be used, since there is no value of grid leak determined by the tube that dictates a starting point.

As many 45s may be added in parallel as desired. The voltage drop through a single tube varies from about 90 volts at 50 ma . to 50 volts at 20 ma . Tubes added in parallel will reduce the drop in proportion to the number of tubes used.

When connecting the output terminals of the keyer to the circuit to be keyed, the grounded output terminal of the keyer must be con-

Fig. 8.9- A vacuum-tube keyer, built up on a $7 \times$ 9×2-inch chassis with space for four or less keyer tubes and the power-supply rectifier. The resistors and condensers that produce the lagg are underneath, controlled by the hnolse at the right. 'I'he jack is for the key, while terminals at the left are for the keyed eircuit.

Fig. 8-10 - Wiring diagram of a practical vacuum \cdot tube keyer similar to the one in Fig. 8-9.
$\mathrm{C}_{1}-2-\mu \mathrm{fd} .600$-volt paper.
$\mathrm{C}_{2}-0.0033-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{3}-0.0047-\mu \mathrm{fd}$. mica.
R_{1} - 0.22 megohm, 1 watt.
$\mathrm{R}_{2}-50,000$ ohms, 10 watts.
$\mathrm{K}_{3}, \mathrm{~K}_{4}-4.7$ megohms, 1 watt.
$\mathrm{K}_{5}-0.47$ megohm, 1 watt.
$S_{1}, S_{2}-3$-position 1 -cirenit rotary switch.
$\mathrm{T}_{1}-325-0-325$ volts, 5 volts and 2.5 volts (Thordarson T-13R01).
nected to the transmitter ground. Thus the kewer can be used only in negative-lead or cathode keying.

When the key or keying lead has poor insulation, the resistance may become low enough
(particularly in humid weather) to reduce the blocking voltage and allow the keyer tube to pass some current. This may cause a slight back-wave, but can be cured by better insulation or reduced values of R_{2}, R_{3}, R_{4} and R_{5}.

Checking Transmitter Keying

One of the best ways to cheek your tramsmitter keying is to anlist the aid of a near-by amater and trade stations with him for a short time. Not only will you be able to cheek your own key clicks and chirps, but if you have any complaint about the other fellow's signal this is a ronveniont way to let him know!

SIGNAL CHECKING

If keying the ramemiture fors unot atfoet the line voltage, the station communications reeciver can be used to cheok koying. The antemat should be diseonnected from the recoiver and the antemna posts shorted to ground. This method is satisfactory only when the line voltage is not affected by keying.

Key Clicks

When checking for key clicks, the b.f.o. and a.v.e. of the monitoring receiver should be lurned off. The keying should be adjusted so that a stight eliek is heard as the key is closed but practically none heard as it is opened. The gain should be reduced during these tests, sinee false clicks can be generated if the rereiver is overloaded. No clicks should be heard off the signal frequency. Checks should also be made with no r.f. power but with the key breaking its normal curront, to see if local clicks are qenerated by sparking at the key.

Chirps

Keying chirps may be ehecked by tuning in the signal or one of its harmonics on 1 he highest frequeney range of the receiver or monitor and listening to the beat note in the normal manner. The gain should be sutherent to sive moderate signal strength, but low enough to avoid overloading. Adjust the tuning to give a bow-frequency beat note and key the transmitter at se veral diferent spoeds. The signal should be quned in on either side of zero beat and at various beat frequencies for a complete rheck. Listening to a hamonie magnitios the "ffect of any chirp by the order of the harmonic.

Oscillator Keying

Any oscillater, either erystal- or self-controlled, shoukd oscillate at luw voltages (two or three volts) and have negligible change in frequency with plate voltage, if it is to key without chirps or eticks. I crystal oseillat or will oscillate at how voltages if a regenerative lype such as the Tri-tet or grid-plate is used and if an r.f. choke is connected in series with the grid-leak resistor, to reduce loading on the arystal. Oscillators of this type are generally free from chirp unless the erystal is a poor one
or if there is too much air gap in the holder.
Self-controlled oscillators are more diflicult to operate without chirp, but the important requirements are proper C / L ratio in the lank circuit, low plate (and sereen) currents. and careful adjustment of the feed-back. I keyed self-controlled oscillator should the designed for best keging rather than maximum output.

Stages Following Keying

When a keying tilter is being adjusted, the stages following the keyed stage should be made inoperative by removing the plate voltage. The following stages shoutd then be connected in, one at at time, and the keying checked after each addition. An increase in click intensity (for the same earrier strength in the receiver) indieates that the clicks are being added in the stages following the one boing keyed. The fixed hias on such stages should be sufficient to reduce the idling plate current (no (xeitation) to a low value, but not to zero. The output condensers on the filter: of the power supplies feeding these later stages should not be too small.

Low-frequency parasitic oseillations can cance key clicks removed from the signal frequeney by 50 or 100 ke . They are most common in beam-tetrode stagers, and often can only. be eliminated by neutralizing the stage.

Fig. 8-11 - A top view of the "Monitone." The shaft of the screwilriver-adjusted potentionteter controlling tone and volume is located betwem the 65.5 and 6SL.7 tubes. The right-hamd switelo controls the a.c.. and the center switeh cuts the tone oscillator in and out.

Fig. 8-12-Circuit diagram of
the "Nonitone."
$\mathrm{C}_{1}-0.004$ - $-\mu \mathrm{fl} .400$-volt paper or mica.
$\mathrm{C}_{2}-0.1-\mu \mathrm{fd}$. 600-volt paper.
$\mathrm{C}_{3}-100 \cdot \mu \mu \mathrm{fd}$ mica.
C_{4} - $0.001-\mu \mathrm{fd}$. paper or mica.
$\mathrm{C}_{5}-220-\mu \mu \mathrm{fd}$. paper or mica.
$\mathrm{C}_{6} \mathrm{C}_{7}-8-\mu \mathrm{fl} .450$-volt electro. Jytic.
$\mathrm{R}_{1}-6800$ ohms.
$11_{2}-1000$ ohms.
$\mathrm{K}_{3}, \mathrm{R}_{4}-1200$ ohms.
$\mathrm{R}_{s}-0.56$ megohm.
$\mathrm{R}_{\mathrm{G}}-1$ megohm.
$\mathrm{R}_{r}-68,000$ ohms.
$1_{8}-1.7$ megohms.
$11_{9}-2.2$ megohms.
$\mathrm{R}_{10}-25,000$ ohms, 5 watts.
K_{n} - I-megohm volume control.
$\mathrm{R}_{12}-22.000$ ohms, 1 watt.
All resistors $1 / 2$-watt unless otherwise sperified.
$\mathrm{L}_{1}-40 . \mathrm{ma}$. filter choke (Thordarson lis(20).
J_{1} - Coavial-connector jack.
J_{2} - Open-cirinit jack.
$1_{1}-{ }^{\prime}$ 'hone plug. $^{\text {b }}$
RF(i_{1} - $-\overline{\mathrm{B}}$-mh. r.f. choke.
$\mathrm{S}_{1} \mathrm{~S}_{2}$ - S. י1. s.t. toggle.
T T_{1} Small b.c. replacement tranzformer (Stancor 1-(0297).

MONITORING OF KEYING

The mosit popular type of monitor is an audio oseillator that is keyed simultameonsly with the transmitter. A unit that will ker antomatieally with the transmitter (and also blank the recoiver output at the same time) is the "Monitone" shown in Figs. 8-11 and 8-13. It requires no direct eonnection to the transmitter or key. When the key is up, signals from the receiver pass through the Monitone to the headphones. When the key is down, the reeciver output is blanked and a sidetone atppears in the headphones. The sidetone and blanking are keved by the r.f. output of the transmitter, regardess of frequency.

The wiring diagram of the Monitone is given in Fig, 8-12. The 6sd. 7 acts as a dual amplifier, for the receiver output and for the sidetone oncillator (consisting of the neon bulb - NE:-2, C_{4} and $\left.R_{5}+R_{9}\right)$. Whon r.f. from the transmitter is fed in at J_{1} it is rectified by the 1×34 and a negative voltage appears at the grid of the 6.J.j and Pin 1 of the GSI.7. This negative voltage cuts off the 6 .J 5 and the one hall of the 6sid.7. The neonbulb oscillator goes into action and the resultant tone is amplified by the other half of the $6 S^{2} \bar{z} . S_{1}$ is opened for ' p hone operation.

The arrangement of parts can be seen in Figs. $8-11$ and $8-13$. The placement is not critical, although the rif. network ($R F C_{1}, 1 \times 31$ and $\left({ }_{3}\right)$ should be separated from the $6 \mathrm{SL} / 7$.

Installation of the device consists of plugging the input lead into the headphone jack on the receiver, the headphones into the jack on the Monitone, and the plug into the a.c. outlet.

The fintil step is to couple the right amount of r.f. into the Monitone. A short piece of wire can be connected to the coaxial fitting on the back of the Monitone if the operating table is near the transmitter. If they are widely separated a piece of R1: $-59 / \mathrm{U}$ or ordinary shielded wire can be run from the coaxial fitting to a point near the final amplifier or feeders. (Cautrox - high voltage!) The length of the pickup wire, either directly from the Monitone or extending bevond the shichding of the coaxial

Fig. 8.1.3 - Bottom view of the "Monitone", showing the small neon lamp supported on its own leads and located directly above the center of the 6J5 socket. The r.f. fecder terminates on the tie-point that earries the 1 N 34 .
line, will depend on the transmitter power being used. Only a foot or two will be needed.

Close the key and move the pick-up nearer or farther from the transmitter or fceder until the neon bulb in the Monitone glows. Find a point where a little less coupling will extinguish the neon - in other words adjust for the
loosest coupling that will cause vigorous and sustained oscillation of the neon circuit. If only the final is keyed, care must be taken not to put the pick-up wire in the r.f. field of the driver stages - otherwise the oscillator will run continuously whenever the transmitter is switched on.

Break-In Operation

Break-in operation requires a separate receiving antenfa, since none of the available antenna change-over relays is fast enough to follow keying. The receiving antenna should be installed as far as possible from the transmitting antenna. It should be mounted at right

the same time is often necessary. The system shown in Fig. 8-14 permits quiet break-in operation for higher-powered stations. It requires a simple operation on the receiver but otherwise is perfertly straightforward. R_{1} is the regular receiver r.f. and i.f. gain controt. The ground lead is lifted on this control and run to a rheostat, R_{2}, that goes to ground. A wire from the junction runs outside the receiver to the keying relay, R_{y}. When the key is up, the ground side of R_{1} is connected to ground through the relay arm, and the receiver is in its normal operating condition. When the key is closed, the relay closes, which breaks the ground comnection from R_{1} and applies additional bias to the tubes in the receiver. This bias is controlled by R_{2}. When the relay closes, it also closes the circuit to the transmitter oscillator.

Fig. 8-14- Xirng diagram for smooth break-in operation. The leads shown as heavy lines should be kept as short as possible, for ninimum pickrup of the transmitter signal.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-0.101{ }_{\mu} \mathrm{fll}$.
\mathbf{R}_{1} - Receiver manual gain control.
$\mathrm{h}_{2}-5000$ - or 10,000 -ohm wire-wound potentiometer.
$\mathrm{RHC}_{1}, \mathrm{RFC}_{2}, \mathrm{RH} \mathrm{F}_{3}-2.5 \mathrm{mh}$. r.f. choke.
Ry-S.p.d.t. keying relay.
angles to the transmitting antenna and fed with low piek-up lead-in material such as coaxial cable or 300 -ohm Twin-Lead, to minimize pick-up.

If a low-powered transmitter is used, it is often quite satisfactory to use no special equipment for break-in operation other than the separate receiving antenna, since the transmitter will not block the rereiver too seriously. Kven if the transmitter keys without clicks, some clicks will be heard when the receiver is tuned to the transmitter frequency because of overload in the receiver. An output limiter, as described in Chapter Five, will wash out these clicks and permit good break-in operation even on yeur transmitter frequency.

When powers above 25 or 50 watts are used, sperial treatment is required for quiet break-in on the transmitter frequency. A means should be provided for shorting the input of the receiver when the code characters are sent, and a means for reducing the gain of the receiver at
C_{2}, (${ }_{3}, R F C_{2}$ and $R F^{\prime}{ }_{3}^{\prime}$ compose a filter to suppress the clicks caused by the relay current.

The keying relay should be mounted on the receiver as close to the antenna terminals as possible, and the leads shown heavy in the diagram shonld be kept short, since long leads will allow too much signal to get through into the receiver. A good high-speed keying relay should be used. If a two-wire line is used from the receiving antenna, another r.f. choke, $R F C_{4}$, will be required. The revised portion of the schematic is shown in Fig. 8-15.

A DE LUXE BREAK-IN SYSTEM

In many instances it is quite difficult to key an oscillator without clicks and chirps. Most oscillators will key without apparent chirp

Fig. 8-15 - Neecssary circuit revision of Fig. 8-14 if a two-wire lead from the receiving antenna is used. $R F C_{4}$ is a $2.5-\mathrm{mh}$, r.f. choke - other values are the same as in Fig. 8-14,

Fig. 8-16 - 1 de luxe break-in sestem that holds :he oseillator circuit closed (and the receiver input shorted) during a string of fast dots but opens between letters or worils.
$\mathrm{C}_{1}-0.001-\mu \mathrm{frl}$. mira,
$\mathrm{C}_{2}-0.0047-\mu \mathrm{fd}$. mica.
$\mathrm{R}_{\mathrm{I}}-20,000$ ohms, 10 watts, wire wound.
$\mathrm{K}_{2}-1800$ shms.
$\mathrm{R}_{3}-1.500$ shms.
$\mathbf{R}_{4}, R_{5}-1.0$ megohm.
$\mathrm{R}_{6}-4700$ ohms.
R_{7} - 6.8 megohm.
R_{8} - 0.1. megolim.
$R_{g}-50$-ohm center-tapred resistor. 2 watts.
All resistors 1 -wat eomposition unlessotherwise noted.

Ry - High-speed relay, 1100 -ohm 18 -volt coil (StrvensArnodd lype I'is Millisere relay).
if the rise and deray times are made very short, but this introduces key clicks that camot be avoided. The system shown in Fig. 8-16 avoids this trouble by turning on the oscillator quickly, kexing an amplifier with a vacuumtube keyer, and turning off the oscillator after the amplificr keving is finished. The oscillator is turned on and off without lag, but the resultant clicks are not passed through the transmitter. Actually, with keving speeds faster than about $15 \mathrm{w} . \mathrm{p} . \mathrm{m}$., the oscillator will stay turned on for a letter or even a word, but it turns off between words and allows the transmitting station to hear the "break" signal of the other station. It requires one tube more than the ondinary vacumm-tube keyer and a special high-speal relay.

As can be seen from Fig. 8-16, the circuit is a combination of the break-in system of Fig. $8-14$ and the tube kever of lig. $8-10$, with a (isㅈ7 tube and a few resistors added. Normally the left-hand portion of the 6SN7 is biased to a low value of phate current by the drop through R_{2} (part of the bleeder $R_{1} R_{2} R_{3}$) and the relay is open. When the key is closed and ('2 starts to discharge, the right-hand portion
of the 6SN7 draws current and this in turn puts a lessnegative voltage on the grid of the left-hand portion, The tube draws eurrent and the rolay closes. The relay will stay closed until the megative voltage atross C_{2} is close to the supply voltage, and eonsecpuently a string of dots or dashes (which dowsn't give C_{2} a chanere to charge to full nequtive) will keep the relay closed. In adjusting the system, R_{2} controls the amount of idling current through the relay and R_{6} determines the voltage across the relay. R_{7}, R_{8} and C_{2} are the normal resistors and condenser for the tube keyer. When adjusted properly, the relay will close without delay on the first dot and open quickly during the spaces botween words or slower letters. When idling, the voltage across the relay should be one or two volts - with the key down it should be 18 volts.

The oseillator should be designed to key as fast as possible, which means that series resistances and shunt caparitanees should be held to a minimum, Negative plate-lead keying is slightly faster than cathole keving and should be used in the oscillator. The keyor tubes are comected in the eathote cirevit of an amplifior stage, far enough remowed in the circuit to avoid reaction on the oscillator.

ELECTRONIC KEYS

Electronic keys, as contrasted with mechanical automatie keys, use vacumm tubes (and possibly relays) to form antomatic dashes as well as antomatie dots. Full descriptions of such devices ean be found in the follewing (as't articles:
Beecher, "Electronie Kieying," April, 1940.
Grammer, "Inexpensive Electronic Kiey," May, 1940.
Savage, "Improved Switching Arrangement for Simplified Eleetronic J̌ey," Märch, 1942.
Gardner, "New Electronic-K゙ey Cireuits," Marel, 1944.
Wiler, "Simplifying the Electronie K"ey," July, 1944.
"Electronic Bug Movement," Feb., 1945.
Snyder, "Versatile Eleetronic Kiey," March, $19+5$; correction, page 82, May, 1945.
Bewcher, "Better Electronie Keyer," August, 194.5.

Dellart, "De luxe Electronie Ǩey," Sept., 1946: correction, page 27, Jan., 1947.
Gotisar, "The Dash Master," Aug., 1948.
Bartlett, "Further Advances in ElectronicKeyer Design," October, 1948; correction, page 10, Jan., 1949.

CHAPTER 9

Radiotelephony

To transmit intelligible speech by radio it is necessary to modulate the normally-constant output of the radio-frequency section of a transmitter. Modulation, defined in the most simple terms, is the process of varying the transmitter output in a desired fashion. In the case of radiotelephony, it means varying the radio-frequency output in a way that follows the spoken word.

The unmodulated r.f. output of the transmitter is called the carrier. In itself, the carrier conveys no information to the receiving operator - other than that the transmitting station is "on the air." It is only when the carrier is modulated that it becomes possible to transinit a message.

- METHODS OF MODULATION

The carrier as generated by the transmitter is a simple form of alternating current - practieally a sine wave. As such, it has three "dimensions" that can be varied - its amplitude, its frequency, and its phase. Modulation can be applied successfully to any of the three.

In amplitude modulation (AM) the amplitude of the carrier is made to vary upward and downward, following similar variations in audio-frequency currents generated by a microphone. In this type of modulation the frequency and phase of the carrier are unaffected by the modulation. Amplitude modulation is today the most widely-used system in amateur stations.

In frequency modulation (FM) the frequency of the carrier is made to vary above and below the unmodulated carrier frequency, the frequency variations being made to follow the a.f. currents. The power output of the transmitter does not change in frequency modulation. The phase of the carrier does change, however, since frequency and phase are intimately related.

In phase modulation (PM) the phase of the carrier is advanced and retarded by the modulating audio-frequency current. The transmitter power does not vary with modulation, but the carrier frequency changes.

These definitions are quite broad, and detailed explanations of the three systems are given later in this chapter.

SIDEBANDS

No matter what the method of modulation, the process of modulating a carrier sets up new groups of radio frequencies both above and below the frequency of the carrier itself. These new frequencies that accompany the modulation are called side frequencies, and the frequency bands occupied by a group of them when the modulating signal is complex (as it is with voice modulation) are called sidebands. Sidebands always appear on both sides of the carrier; the band higher than the carrier frequency is called the upper sideband and the band lower than the carrier frequency is called the lower sideband. The modulation (that is, the intelligence) in the signal is carried in the sidebands, not in the carrier itself.

The result of this is that a modulated signal occupies a group or band of frequencies (channel) rather than the single frequency of the earrier alone. Just how much of a frequeney band (that is, how wide a channel) is occupied depends upon the method of modulation and the frequency characteristics of the modulating signal itself.

A normal voice contains frequencies or tones ranging from perhaps a hundred cycles at the low end to several thousand cycles at the high end. Vowel sounds (a, e, i, o, u) are in general fairly low in frequency and contain most of the voice power. Consonants usually are characterized by higher frequencies, and the hissing sound of the letter " S " is particularly high up in the audio-frequency range. The timbre of a voice, or the thing that makes it possible for us to distinguish the voices of different individuals, results principally from overtones or harmonics. All these things add up to the fact that a fairly wide range of audio frequencies is needed for the accurate reproduction of a particular voice.

On the other hand, the frequency range required for good intelligibility is not nearly so wide as that needed for accurate reproduction or "fidelity." For the latter, an audio system that is "flat" - that is, has the same amplification at all frequencies - over the range up to about 10,000 cycles is required. But a system that "cuts off" above 2500 cycles - that is, has comparatively little output above that
figure - will transmit everything that is necessary for understandable speech. The speech may sound a little less like the speaker's actual voice, but it will be thoroughly intelligible to the receiving operator.

This distinction between intelligibility and "quality" is extremely important. The minimum channel occupied by a 'phone transmitter, no matter what the system of modulation, is equal to twice the highest audio frequency present in the modulation. If audio frequencies up to 10,000 cycles are contained in the modulation, the channel will be at least twice 10,000 or 20,000 cycles (20 kc .) wide. But if there are no frequencies above 2500 cy cles in the modulation, the channel will be only 3000 cycles (5 kc .) wide. In amateur bands where there is a great deal of congestion it is in everybody's interest that each transmitter should occupy no more than the minimum channel needed for transmitting intelligible speech. Taking up a wider frequency channel than that simply creates unnecessary interference.

Also, transmitting a wide range of audio frequencies in a congested band actually accomplishes nothing, insofar as "fidelity" is concerned; the receiving operator has to use so much receiver selectivity - in order to !'copy" the signal at all - that the higher-frequency sidebands are rejected by the receiver. Those sidebands do, however, continue to interfere with stations operating on near-by carrier frequencies.

We have said that the minimum channel is equal to twice the highest audio frequency in the modulation. The actual channel occupied may be several times the minimum necessary channel-width. This depends on the system of modulation used, for one thing. For another, it depends on whether the system is operated properly or whether it is misadjusted. Improper operation of any sort invariably increases the channel-width. Since the amount of frequency space available for amateur operation is limited, no operator of an amateur 'phone station can avoid the obligation to confine his transmissions to the least possible space.

Amplitude Modulation

In amplitude modulation, as we have already stated, the amplitude or strength of the carrier is varied up and down from the unmodulated value. The several methods of making the carrier strength vary are discussed in a later section; for the moment let us look only at the end result that is the object of all the various amplitude-modulation systems.

In Fig. 9-1, the drawing at I shows the unmodulated r.f. carrier, assumed to be a sine wave of the desired radio frequency. The graph can be taken to represent cither voltage or current, and each cycle has just the same height as the preceding and following ones.

In B, the carrier wave is assumed to be modulated by a signal having the shape shown in the small drawing above. The frequency of the modulating signal is much lower than the carrier frequency, so quite a large number of carrier cycles can occur during each cycle of the modulating signal. This is a necessary condition for good modulation, and always is the case in radiotelephony because the audio frequencies used are very low compared with the radio frequency of the carrier. (Actually, there would be very many times more r.f. cycles in each modulation cyele than are shown in the drawing; so many that it is impossible to make the drawing to actual scale.) When the modulating signal is "positive" (above its axis) the carrier amplitude is increased above its unmodulated anplitude; when the modulating signal is "negative" the carrier amplitude is decreased. Thus the carrier grows larger and smaller with the polarity and amplitude of the modulating signal.

The drawing at C shows what happens with a stronger modulating signal. In this case the
strength of the modulation is such that on the "up" modulation the carrier amplitude is doubled at the instant the modulating signal reaches its positive peak. On the negative peak of the modulating signal the carrier amplitude just reaches zero; in other words, the cartier is "all used up."

Percentage of Modulation

When a modulated wave is detected in a receiver the sound that comes out of the loud-

Fig. 9.1 - Graphical representation of (A) carrier un. modulated, (B) modulated 50%, (C) modulated 100%.
speaker or headset is caused by the modulation, not by the carrier. In other words, in detecting the signal the receiver eliminates the carrier and takes from it the modulating signal. The stronger the modulation, therefore, the greater is the useful receiver output. Obviously, it is desirable to make the modulation as strong or "heavy" as possible. A wave modulated as in Fig. 9-1 C would produce considerably more useful signal than the one shown at B.

The "depth" of the modulation is expressed as a percentage of the unmodulated carrier amplitude. In either B or C, Fig. 9-1, X represents the unnodulated carrier amplitude, Y is the maximum increase in amplitude on the modulation up-peak, and Z is the maximum decrease in amplitude on the modulation downpeak. Assuming that Y and Z are equal, then the percentage of modulation can be found by dividing either Y or Z by X and multiplying the result by 100. In the wave shown in Fig. $9-1 C, Y$ and Z are both equal to X, so the wave is modulated 100 per cent. In case the modulation is not symmetrical (Y and Z not equal), the larger of the two should be used for calculating the percentage of modulation.

The outline of the modulated wave is called the modulation envelope. It is shown by the thin line outlining the patterns in Figs. 9-1 and 9-2.

Power in Modulated Wave

The amplitude values shown in Fig. 9-1 correspond to current or voltage, so the drawings may be taken to represent instantancous values: of either. Now power varies as the square of either the current or voltage (so long as the resistance in the circuit is unchanged), so at the peak of the modulation up-swing the instantaneous power in the wave of Fig. 9-1C is four times the unmodulated carrier power (because the current and voltage are doubled). At the peak of the down-swing the power is zero, since the amplitude is zero. With a sinewave modulating signal, the average power in a 100 -per-cent modulated wave is one and onehalf times the value of unmodulated carrier power; that is, the power output of the transmitter increases 50 per cent with 100 -per-cent modulation.

The complex waveform of speech does not contain as much power as there is in a pure tone or sine wave of the same peak amplitude. On the average, speech waveforms will contain only about half as much power as a sine wave, both having the same peak amplitude. The average power output of the transmitter therefore increases only about 25 per cent with 100 -per-cent speech modulation. However, the instantameous power output must quadruple on the peak of 100 -per-cent modulation regardless of the modulating waveform. Therefore, the peak output-power capacity of the transmitter must be the same for any type of modulating signal.

Overmodulation

If the carrier is modulated more than 100 per cent, a condition such as is shown in Fig. $9-2$ occurs. Not only does the peak amplitude exceed twice the carrier amplitude, but there actually may be a considerable period during which the output is entirely cut off. Therefore the modulated wave is distorted, and the modulation contains harmonics of the audio modulating frequency.

Fig. 9.2-An over. modulated r.f. carrier wave.

The sharp "break" when the carrier is suddenly cut off on the modulation down-swing produces a type of distortion that contains a large number of harmonics. For example, it is easily possible for harmonics up to the fifth to be produced by a relatively small amount of overmodulation. If the modulating frequency is 2000 cycles, this means that the actual modulated wave will have sidebands not only at 2000 cycles, but also at $4000,6000,8000$ and 10,000 cycles each side of the carrier frequency. The signal thus occupies five times the needed channel-width. It is obviously of first importance to prevent the modulation from exceeding 100 per cent, and thus prevent the generation of spurious sidebands - commonly called "splatter."

Carrier Requirements

For satisfactory amplitude modulation, the carrier freqnency should be entirely unaffected by the application of modulation. If modulating the amplitude of the carrier also causes a change in the carrier frequency, the frequency will wobble back and forth with the modulation. This causes distortion and widens the channel taken by the signal. Thus unnecessary interference is caused to other transmissions. In practice, this undesirable frequency modulation is prevented by applying the modulation to an r.f. amplifier stage that is isolated from the frequency-controlling oscillator by a buffer amplifier. Amplitude modulation applied directly to an oscillator always is accompanied by frequency modulation. Iinder existing regulations amplitude modulation of an oscillator is permitted only on frequencies above $1+4 \mathrm{Mc}$. Below that frequency the regulations require that an amplitude-modulated transmitter be completely free from frequency modulation.

Plate Power Supply

The d.c. power supply for the plate or plates of the modulated amplifier must be well filtered; if it is not, the plate-supply ripple will modulate the carrier and catuse annoying hum. To be substantially hum-frec, the ripple voltage should not be more than about 1 per cent of the d.c. output voltage.

In amplitude modulation the plate current varies at an audio-frequency rate; in other words, an alternating current is superimposed on the d.c. plate current. The output filter condenser in the plate supply must have bow reactance, at the lowest audio freduency in the modulation, if the transmitter is to modulate equally well at all audio frequencies. The condenser capacitance required depends on the ratio of d.c. plate current to plate voltage in the modulated amplifier. The requirement: will be met satisfactorily if the capacitance of the output condenser is at least equal to

$$
C^{\prime}=2.5 \frac{I}{E}
$$

where $C=$ Caparitance of output condenser in $\mu \mathrm{fd}$.
$I=$ D.e. plate current of modulated amplifier in milliamperes
$E=$ Ilate voltage of modulated amplifier

$$
\begin{aligned}
& \text { Example: A modulated amplifier operates at } \\
& 1250 \text { volts and } 25 \% \text { mad. The cibucitance of the } \\
& \text { output condenser in the plate-supnly filter } \\
& \text { should be at least } \\
& C=25 \frac{I}{E}=25 \times \frac{25}{1250}=25 \times 0.22=5.5 \mu \mathrm{fd} \\
& \text { Linearity }
\end{aligned}
$$

I p to the limit of 100 -per-cent modulation, the amplitude of the r.f. output should be directly proportional to the amplitude of the modulating signal. Fig. $9-3$ is a graph of an ideal modulation characteristic, or curve showing the relationship between r.f. output amplitude and modulating-signal amplitude. The modulation swings the amplitude back and forth along the curve A as the modulating signal alternately swings positive and negative. Issuming that the negative peak of the modulating signal is just sufficient to reduce the carrier amplitude to zero (modulating signal equal to -1 in the drawing), the same modulating signal peak in the positive direction $(+1)$ should cause the r.f. amplitude to reach twice its unmodulated-carrier value. The ideal modulation characteristic is a straight line, as shown by curve A. Such a modulation characteristic is perfertly linear.

A nonlinear characteristic is shown by curve B. The r.f. amplitude does not reach twice the unmodulated carrier amplitude when the modulating signal reaches its positive peak. A modulation characteristic of this type gives a modulation envelope that is "flattened" on the up-peak; in other words, the modulation envelope is not an exact reproduction of the
modulating signal. It is therefore distorted and harmonics are generated, causing the transmitted signal to occupy a wider channel than is necessary. A nonlinear modulation characteristic can easily result when a transmitter is not properly designed or is misadjusted.

Fif. 9-3- The mondulation characteristic shows the relationship between the instantaneous amplitude of the r.f. output and the instantancous amplitude of the modalating signal. 'The ideal characteristic is a straight line, as shown by eurve A.

The modulation capability of the transmitter is the maximum percentage of modulation that is possible without objectionable distortion from nonlinearity. The maximum capability is 100 per cent on the down-peak but can be higher on the up-peak. The modulation capability should be as high as possible, so that the most effective signal can be transmitted for a given catrier power.

Types of Amplitude Modulation

The most widely-used a mplitude-modulation system is that in which the modulating signal is applied in the plate circuit of a radio-frequency power amplifier (plate modulation). In a second type the andio signal is applied to a control grid (grid-bias modulation). A third system, involving variation of both plate and grid voltages, is called cathode modulation.

PLATE MODULATION

The most popular system of amplitude modulation is plate modulation. It is the simplest to apply, gives the highest efficiency in the modulated amplifier, and is the easiest to adjust for proper operation.

Fig. 9-4 shows the most widely-used system of plate modulation. A balanced (push-pull Class A, Class AB or Class B) modulator is transformer-coupled to the plate circuit of the modulated r.f. amplifier. The audio-frequency power generated by the modulator is com-
bined with the d.c. power in the modulatedamplifier plate circuit by transfer through the coupling transformer, T. For 100 -per-cent modulation the audio-frequency output of the modulator and the turns ratio of the coupling transformer must be such that the voltage at the plate of the modulated amplifier varies between zero and twice the d.c. operating plate voltage, thus causing corresponding variations in the amplitude of the r.f. output.

Is stated earlier, the average power output of the modulated stage must increase during modulation. The modulator must be capable of supplying to the modulated r.f. stage sinewave audio power equal to 50 per cent of the d.c. plate input. For example, if the d.c. plate power input to the r.f. stage is 100 watts, the sine-wave audio power output of the modulator must be 50 watts.

Modulating Impedance; Linearity

The modulating impedance, or load resistance presented to the modulator by the modulated r.f. amplifier, is equal to

$$
\frac{E_{\mathrm{b}}}{I_{\mathrm{p}}} \times 1000
$$

where $E_{\mathrm{b}}=$ D.c. plate voltage

$$
I_{p}=\text { D.c. plate current (ma.) }
$$

E_{b} and I_{p} are measured without modulation.
The power output of the r.f. amplifier must vary as the square of the plate voltage (the r.f. voltage must be proportional to the applied plate voltage) in order for the modulation to he linear. This will be the case when the amplifier operates under Class C conditions. The linearity then depends upon having sufficient grid excitation and proper hias, and upon the adjustment of circuit constants to the proper values.

Adjustment of Plate-Modulated Amplifiers

The general operating conditions for Class C operation have been described in Chapter Six. The grid bias and grid current required for plate modulation usually are given in the operating data supplied by the tube manufacturer; in general, the bias should be such as to give an operating angle of about 120 degrees at carrier plate voltage, and the grid excitation should be great enough so that the amplifier's plate efficiency will stay constant when the plate voltage is varied over the range from zero to twice the unmodulated value. For best linearity, the grid bias should be obtained partly from a fixed source of about the cut-off value, and then supplemented by gridleak bias to supply the remainder of the required operating bias.

The maximum permissible d.c. plate power input for 100 -per-cent modulation is twice the sine-wave audio-frequency power output of the modulator. This input is obtained by varying the loading on the amplifier (keeping its tank circuit tuned to resonance) until the product
of d.e. plate voltage and plate current is the desired power. The modulating impedance under these conditions must be transformed to the proper value for the modulator by using the correct output-transformer turns ratio. This point is considered in detail later in this chapter in the section on Class 13 modulator design.

Neutralization, when triodes are used, should be as nearly perfect as possible, since regeneration may cause nonlinearity. The amplifier also must be completely free from parasitic oscillations.

Nthough the effective value of power input increases with modulation, as described above, the average d.c. plate power input to a platemodulated amplifier does not change. This is because cach increase in plate voltage and plate current is balanced by an equivalent decrease in voltage and current on the next half-cycle of the motulating signal. The d.c. plate current to a properly-modulated amplifier is always constant, with or without modulation. On the ot her hand, an r.f. ammeter comected in the antenna or transmission line will show an increase in r.f. current with modulation.

Screen-Grid Amplifiers

Screen-grid tubes of the pentode or beamtetrode type can be used as Class C platemodulated amplifiers by applying the modula-

Fig. 9-4 - Plate modulation of a Class C r.f. amplifier. The r.f. plate by pass condenter, C, in the amplifier stage should have reasonably high reactance at andio frequencies. (See section on Class B modulators.)
tion to both the plate and screen grid. The usual method of feeding the screen grid with the necessary d.c. and modulation voltage is shown in Fig. 9-5. The dropping resistor, R, should be of the proper value to apply normal d.c. voltage to the screen under steady carrier

Fig. 9-5 - Plate annl screen modalation of a Class C r.f. amplifier using a pentode tube. The plate r.f. by-pass condenser, Ci, should have reasonably high reactance at all audio frecuencies. (See section on Class 13 modulators.) The sereen loy-pass, C_{2}, should be $0.002 \mu \mathrm{fd}$. or less in the usual rase.
ronditions. Its value can be ealculated by taking the difference between plate and screen voltages and dividing it by the rated screen rurrent.

The modulating impedance is found by dividing the d.c. plate voltare by the sum of the plate and screen currents. The plate voltage multiplied by the sum of the two currents gives the power input to be used as the hasis for determining the audio power required from the modulator.

Modulation of the screen along with the plate is necessary because both elements affect the plate current in a power-type screenrrid tube, and a linear modulation characteristic cannot he obtained by modulating the pate alone. However, at least some types of heam tetrodes (the $4-250 . \mathrm{A}$ and $4-125 \mathrm{~A}$, for example) can be modulated satisfactorily by applying the modulating power to the plate "ircuit alone, provided the screen is "floating" at audio frequencies - that is, is not grounded for a.f. but is connected to its d.c. supply through an audio impedance. The circuit is shown in Fig. 9-6. The choke coil L_{1} is the audio impedance in the screen circuit; its inductance should be large enough to have a reactance (at the lowest desired audio frequency) that is not less than the impedance of the screen. The latter can be taken to be approximately equal to the d.c. sereen voltage divided by the d.c. screen current.

Choke Coupling

Fig. 9-7 shows the circuit of the chokecoupled system of plate modulation. The d.c. plate power for both the modulator tube and modulated amplifier is furnished from a common source through the modulation choke, L. This choke must have high impedance, compared to the modulating impedance of the ('lass C amplifier, for audio frequencies. The modulator operates as a power amplifier with the plate circuit of the r.f. amplifier as its load, the audio output of the modulator being superimposed on the d.c. power supplied to the amplifier.

For 100 -per-cent modulation, the audio volt-
age applied to the r.f. amplifier plate circuit across the choke, L, must have a peak value equal to the d.c. voltage on the modulated amplifier. To obtain this without distortion the r.f. amplifier must be operated at a lower d.c. plate voltage than the modulator. The cxtent of the voltage difference is determined by the type of modulator tube used. The necessary drop in voltage is provided by the resistor, R_{1}, which is by-passed for audio frequencies by the by-pass condenser, C_{2}.

This type of modulation seldom is used exrept in very low-power portable sets, because a Class A modulator is required. The output of a Class A modulator is very low compared to the power obtainable from a pair of tubes of the same size operated Class B, so only a small amount of r.f. power can be modulated.

GRID-BIAS MODULATION

Fig. 9-8 is the diagram of a typical arrangement for grid-bias modulation. In this system, the secondary of an audio-frequency output transformer, the primary of which is connerted in the plate circuit of the modulator tuhe, is connected in series with the grid-bias supply for the modulated amplifier. The audio voltage varies the grid bias, and thereby the power output of the r.f. stage. The r.f. stage is operated as a Class C amplifier.

In this system the plate voltage is constant, and the increase in power output with modulation is obtained by making both the plate rurrent and plate efficiency vary with the mod-

Fig. 9.6- Plate molulation of a beam tetrode, using an audio imperlance in the sereen circuit. The value of L_{1} is discussed in the text. See Fig. 9-5 for data on bypass capacitors C_{1} and C_{2}.
ulating signal. For 100-per-cent modulation, both plate current and efficiency must, at the peak of the modulation up-swing, be twice their carrier values. Thus at the modulation peak the power input is doubled, and since the plate efficiency also is doubled at the same instant the peak output power will be four times the carrier power. The maximum efficiency obtainable in practicable circuits is of the order of 70 to 80 per cent, so the carrier efficiency ordinarily cannot exceed about 35

Fig. 9-7-Choke coupled plate modulation.
to 40 per cent. For a given r.f. tube, the carrier output is about one-fourth the power obtainable from the same tube plate-modulated.

Modulator Power

The increase in average carrier power with modulation is secured by varying the plate efficiency and d.c. plate input of the amplifier, -o the modulator need supply only such power losses as may be occasioned by connecting it in the grid eircuit. Since these are quite small, a modulator capable of only a few watts output will suffice.

The load on the modulator varies over the a.f. cycle as the rectified grid current of the modulated amplifier changes, so the modulator must have good voltage regulation. The purpose of the resistor R across the primary of the modulation transformer in Fig. 9-8 is to "swamp" such load changes by dissipating most of the audio power in the resistor. Generally, this resistor should be approximately equal to the load resistance required by the particular type of modulator tube used. The turns ratio of transformer T should be about 1-to-1 in most practical cases.

Grid-Bias Source

The change in instantaneous bias voltage with modulation causes the rectified grid current of the amplifier also to vary, the r.f. excitation being fixed. If the bias source has appreciable resistance, the change in grid current will cause a change in bias in a direction opposite to that caused by the modulation. It is necessary, therefore, to use a grid-hias source having low resistance, so that these bias variations will be negligible. Hattery bias is satisfactory. If a rectified a.c. bias supply is used, the type having regulated output should be chosen (see Chapter Seven). Giridleak hias for a grid-modulated amplifier is un-
satisfactory, and its use should never be attempted.

Driver Regulation

The load on the r.f. driving stage varies with modulation, and a linear modulation characteristic cannot be obtained if the r.f. voltage from the driver does not stay constant with changes in load. Driver regulation (ability to maintain constant output voltage with changes in load) may be improved by using a driving stage having two or three times the power output necessary for excitation of the amplifier (which is less than the power required for ordinary Class C operation), and dissipating the extra power in a constant load such as a resistor. The variations caused by changes in load with modulation are thereby reduced berause the variable load is only a fraction of the total load.

Operating Conditions

The d.c. plate input to the modulated amplifier, assuming a round figure of $1 / 3$ (33 per cent) for the plate efficiency, should not exceed $11 / 2$ times the plate dissipation rating of the tube or tubes used in the modulated stage. On the modulation up-peaks the d.e. plate current doubles instantaneously but the d.e. plate voltage does not change. The problem, therefore, is to choose a set of operating conditions that will give normal Class C efficiency when the plate current is twice the carrier value.

Example: Two tubes having plate dissipation ratings of 55 watts each are to be used with grid-bias modulation. With plate modulation, the ratings are 1250 volts and 250 ma , for the two tubes, so the plate-voltage/plate-current ratio is

$$
\frac{E(\text { volts })}{I(\mathrm{ma.})}=\frac{1250}{2.50}=5
$$

Fig. 9.8-Grid-bias modulation of a Class C ampli. fier. The r.f. grid by-pass condenser, C, should have bigh reactance at audio frequencies (0.005 ufd . or less).

With grid-bias modulation the maximum power input, at 33% efficjener, is
$P=1.5 \times(2 \times 5.5)=1.5 \times 110=165$ watts The maximum recommended plate voltage for these tuhes is 1500 volts. L'sing this figure, the plate eurrent for the two tulies will be

$$
I=\frac{P}{E}=\frac{165}{1.500}=0.11 \mathrm{amp} .=110 \mathrm{ma}
$$

The plate-voltage/plate-current ratio at turice carrier plate eurrent is

$$
\frac{1500}{220}=6.8
$$

This is quite satisfactory, In this ease it would be possible to use a lower plate voltage without having the plate-voltage/plate-eurrent ratio drop to too low at value. At 1300 volts, for example, the ratio would be slightly over 5. However, at 1000 volts it would be only 3.

At $3: 3 \%$ efficiencs, the carrier output to be expeeted is 5 watts.

The tank-circuit L / C ratio should be chosen on the basis of twice the carrier plate current. In the example above, it would be based on a pate-voltage/plate-current ratio of 6.S. Note that if currier conditions are used the ratio is 13.6, and a tank L / C ratio based on this figure would have a Q much too low for good coupling to the output circuit.
since the amplifier operates in normal Class C fashion on the modulation up-peaks, the grid bias should be chosen for Class C operation at the phate voltage used. It may be higher if desired, but should never be lower. It is convenient to have an adjustable bias source for arriving at optimum operating conditions.

Adjustment

This type of modulated amplifier should be adjusted with the aid of an oscilloscope. The oscilloscope should be connected as shown in Fig. 9-9. A tone source for modulating the transmitter is a convenience, since a steady tone will give a steady pattern on the oscilloscope. A steady pattern is easier to study than one that flickers with voice modulation.

Having determined the permissible carrier plate current as previously described, apply r.f. excitation and plate voltage and, without modulation, adjust the plate loading to give the required plate current (keeping the plate tank circuit tuned to resonance). Next, apply
modulation and increase the modulating signal until the modulation characteristic shows curvature (see later section in this chapter for use of the oscilloscope). If curvature occurs well below 100 -per-cent modulation, the plate cfficiency is too high. Increase the plate loading slightly and reduce the exritation to maintain the same plate current ; then apply modulation and check the characteristic again. Contimue this process until the characteristic is linear from the horizontal axis to twice the carrier amplitude. It is usually casier to ohtain a more lincar characteristic with high plate voltage and low current (carrier conditions) than with relatively low plate voltage and high plate current.

Suppressor Modulation

The circuit arrangement for suppressorgrid modulation of a pentode tube is shown in Fig. 9-10. The operating principles are the same as for grid-bias modulation. However, the r.f. excitation and modulating signals are applied to separate grids; this makes the system somewhat simpler to operate hecause best adjustment for proper excitation requirements and proper modulating-cireuit requirements are more or less independent. The carrier plate efficiency is approximately the same as for grid-bias modulation, and the modulator power requirements are similarly small. With tubes having suitable suppressor-grid charac-

Fig. 9-10 - Suppressor.grid modulation of an r.f. amplifor using a pentode-type tube. The suppressor-grid r.f. by-pass condenser, C, should be the same as the grid by-pass condenser in grid-bias modulation (Fig. 9-8),

Fig. 9.11 - Circuit arrangement for cathode modulation of a Class C r.f. amplifier.
teristics, linear modulation up to practically 100 per cent can be obtained with negligible distortion.

The method of adjustment of this system is essentially the same as that described in the preceding paragraph.

CATHODE MODULATION

Circuit

The fundamental circuit for cathode or "center-tap" modulation is shown in Fig. 9-11. This type of modulation is a combination of the plate and grid-bias methods, and permits: a carrier efficieney midway between the two. The audio power is introduced in the cathode cireuit, and both grid bias and plate voltage vary during modulation.

Because part of the modulation is by the grid-bias method, the plate efficiency of the modulated amplifier must vary during modulation. The carrier efficiency therefore must be lower than the efficiency at the modulation peak. The required reduction in efficiency depends upon the proportion of grid modulation to plate modulation; the higher the percentage of plate modulation, the higher the permissible earrier efficieney, and vice versa. The audio power required from the modulator also varies with the percentage of plate modulation, being greater as this percentage is increased.

The way in which the various quantities vary is illustrated by the curves of Fig. 9-12. In these eurves the nerformance of the cath-ode-modulated r.f. amplifier is plotted in terms of the tube ratings for plate-modulated telephony, with the percentage of plate modulation as a base. As the percentage of plate modulation is decreased, it is assumed that
the grid-bias modulation is increased to make the over-all percentage of modulation reach 100 per cent. The timiting condition, 100 -percent plate modulation and no grid-bias modulation, is at the right (A) ; pure grid-bias modulation is represented by the left-hand ordinate (B and C).

Example: Assume that the r.f. tube to be used has a 100% plate-modutation rating of 2.50 watts inphit and will give a carrier power output of 190 watts at that input. Cathode modulation with 40% plate modulation is to be used. From Fig. 0-12, the carrier efficiener will be 56% with 40% plate modulation, the permissible d.c. input will be 65% of the plate-modulation rating, and the r.f. output will be $48 / \mathrm{c}$ of the plate-modulation rating. That is,

Power input $=250 \times 0.65=162.5$ watts
Power output $=190 \times 0.48=01.2$ watts
The required andio power, from the chart, is equal to 20% of the d.c. input to the modutated amplifier. Therefore

Audio power $=162.5 \times 0.2=32.5$ wat t .
The modulator should supply a small amount of extra power to take eare of losses in the grid! cireuit. These should not exceed four or five watts.

Modulating Impedance

The modulating impedance of a cathodemodulated amplifier is approximately equal to

$$
m \frac{E_{\mathrm{b}}}{I_{\mathrm{b}}}
$$

where $m=$ Percentage of plate modulation (expressed as a decimal)
$E_{\mathrm{b}}=$ D.c. plate voltage on modulated amplifier
$I_{5}=$ D.c. plate current of modulated amplifier

Example: Issume that the modulated amplifier in the example above is to operate at a plate

Fig. 9.12-Cathode-modulation performance curves, in terms of percentage of plate modulation plotted against percentage of Class C telephony tule ratings. $W_{\text {in }}$ - I.c. plate input watts in terms of percentage of plate-modulation rating.
Wo - Carrier output watts in per cent of plate-modulation rating (hased on plate efficiency of 77.5%). W. - Audio power in per cent of d.c. watts input. N_{p} - Plate efliciency of the amplifier in percentage.
potential of $12: 0$ volts. Then the d.c. plate current is

$$
I=\frac{P}{E}=\frac{162.5}{1250}=0.13 \mathrm{amp} .(130 \mathrm{ma} .)
$$

The modulating impedance is

$$
m \frac{E_{\mathrm{b}}}{I_{\mathrm{b}}}=0.4 \frac{12 \overline{5} 0}{0.13}=3816 \mathrm{ohms}
$$

The modulating impedance is the load into which the modulator must work, just as in the case of pure plate modulation. This load must be matched to the load required by the modulator tubes by proper choice of the turns ratio of the modulation transformer.

Conditions for Linearity

R.f. excitation requirements for the cathodemodulated amplifier are midway between those for plate modulation and grid-bias monlulation. More excitation is required as the percentage of plate modulation is increased. (irid bits should be considerably bevond cut-off; lixed hias from a supply having good voltage regulation is preferred, especially when the percentage of plate modulation is small and the amplifier is operating more nearly like a grid-bias modulated stage. At the higher percentages of plate modulation a combination of fixed and grid-leak bias can be used, since the variation in rectified grid current is smaller. The grid leak should be by-passed for audio frequencies. The percentage of grid modulation
may be regulated by choice of a suitable tap on the modulation-transformer secondary.

The cathode circuit of the modulated stage must be independent of other stages in the transmitter. That is, when directly-heated tubes are modulated their filaments must be supplied from a separate transformer. The filament by-pass condensers should not be larger than about $0.002 \mu \mathrm{fd}$., to avoid bypassing the audio-frequency modulation.

Adjustment of Cathode-Modulated Amplifiers

In most respects, the adjustment procedure is similar to that for grid-bias modulation. The critical adjustments are antenna loading, grid bias, and excitation. The proportion of grid-bias to plate modulation will determine the operating conditions.

Idjustments should be made with the aid of an oscilloscope connected in the same way as for grid-bias modulation. With proper antenna loading and excitation, the normal wedge-shaped pattern will be ohtained at 100-per-cent modulation. Is in the case of grid-bias modulation, too-light antenna loading will cause flattening of the upward-peaks of modulation as also will too-high excitation. The cathode current will be practically constant with or without modulation when the proper operating conditions have been established.

Speech Equipment

In designing speech equipment it is necessary to "work from both ends." That is, we must know, simultaneously, (1) the amount of audio power the modulation system must furnish and (2) the output voltage developet by the microphone when it is spoken into from normal distance (a few inches) with ordinary loudness. It then becomes possible to choose the number and type of amplifier stages needed to generate the required audio power without werloading or distortion anywhere along the line.

The starting point is the microphone.

- MICROPHONES

In this age, no one needs an introduction to the microphone. However, there are several different types of them, considerably different in characteristics. Before considering the various types, it is necessary to define a few terms used in connection with microphones.

The level of a microphone is its electrical output for a given sound intensity. Level varies greatly with microphones of different basic types, and also varies between different models of the same type. The output is also greatly dependent on the character of the individual voice (that is, the audio frequencies present in the voice) and the distance of the
speaker's lips from the microphone. It derreases approximately as the square of the distance. Because of these variables, only approximate values hased on averages of "normal" speaking voices can be given. The values in the following paragraphs are based on close talking; that is, with the mierophone about an inch from the spaker's lips.

The frequency response or fidelity of a microphone is its relative ability to convert sounds of different frequencies into alternating current. With fixed sound intensity at the microphone, the electrical output may vary considerably as the sound frequency is varied. For understandable speech transmission only a limited frequency range is necessary, and intelligible speech can be obtained if the output of the microphone does not vary more than a few decibels at any frequency within a range of about 200 to 2500 cycles. When the variation expressed in terms of decibels is small between two frequency limits, the microphone is said to be flat between those limits.

Carbon Microphones

The carbon microphone consists of a metal diaphragm placed against an insulating cup containing loosely-packed carbon granules (microphone button). Current from a battery flows through the granules, the diaphragm be-

(A) S b carbon

Fig. 9-13 - Speech input circuits used with various types of mierophones.

(B) CRYSTAL

(C) HI-Z VELOCITY

ing one connection and the motal backplate the other. lig. ! 3 -13A shows connections for carbon microphoner. A rheostat is included for adjusting the button current to the value as sperified with the microphone. The primary of a transformer is connected in series with the battery and microphone.

As the diaphragm vibrates, its pressure on the granules alternately inereases and decreases, causing a corresponding increase and decrease of current flow through the circuit, since the pressure ehanges the resistance of the mass of granules. The resulting change in the current flowing through the transformer primary causes an alternating voltage, of corresponding frequency and intensity, to be set up in the transformer secondary.

Good-quality carbon microphones give outputs ranging from 0.1 to 0.3 volt across 50 to 100 ohms; that is, across the primary winding of the microphone transformer. With the st (p-up) of the transformer, a peak voltage of between 3 and 10 volts can be assumed to be avaiable at the grid of the amplifier tube. The usual button current is 50 to 100 ma .

Crystal Microphones

The crystal microphone makes use of the piezoelectric properties of Rochelle salts crystals. This type of microphone requires no
battery or transformer and can be connected directly to the grid of an amplifier tube. It is the most popular type of microphone among amateurs, for these reasons as well as the fact that it has good frequency response and is available in inexpensive models.

The "communications-type" crystal microphone uses a diaphragm mechanically coupled to a crystal. This type of construction gives good sensitivity and adequate frequency response for speech. In higher-fidelity types the sound acts directly on a pair of crystals cemented together, with plated electrodes. The level with the latter construction is considerably less. The input circuit for either model of crystal microphone is shown in Fig. 9-13R.
. Dthough the level of crystal microphones varies with elifferent models, an output of 0.03 volt or so is representative for communication types. The level is affected by the length of the cable connecting the microphone to the first amplifier stage; the above figure is for lengths of 6 or 7 feet. The frequency characteristic is unaffected by the cable, but the load resistance (amplifier grid resistor) does affect it ; the lower frequencies are attenuated as the value of load resistance is lowered. A grid-resistor value of at least 1 megohm should be used for reasonably flat response, 5 megohms being a customary figure.

Velocity and Dynamic Microphones

In a velocity or "ribbon" microphone, the element acted upon by the sound waves is a thin corrugated metallic ribbon suspended between the poles of a magnet. When vibrating, the riblon cuts the lines of force bet ween the poles, first in one direction and then the other, thus generating an alternating voltage. The movement of the ribbon is proportional to the velocity of the air particles set in motion by the sound.

Velocity microphones are built in two types, high impedance and low impedance, the former being used in most applications. I high-impedance microphone can be directly connected to the grid of an amplifier tube, shunted by a resistance of 0.5 to 5 megohms (lig. 9-13C). Low-impedance microphones are used when a long connecting cable ($\overline{3}$ feet or more) must be employed. In such a case the output of the microphone is coupled to the first amplifier stage through a suitable step-up transformer, as shown in Fig. 9-1:3D.

The level of the velocity microphone is about $0.0: 3$ to 0.05 volt. This figure applies directly to the high-impedance type, and to the low-impedance type when the voltage is measured across the secondary of the coupling transformer.

The dynamic microphone somewhat resembles a dynamic loudspeaker. A light-weight voice coil is rigidly attached to a diaphragm, the coil being placed between the poles of a permanent magnet. Sound causes the diaphragm to vibrate, thus moving the coil back
and forth between the magnet poles and gencrating an alternating voltage. The frequency of the generated voltage is proportional to the frequency of the sound waves and the amplitude is proportional to the sound pressure.

The dynamic microphone usually is built with high-impedance output, suitable for working directly into the grid of an amplifier tube. If the connerting cable must be unusually long, a low-impedance type should be used, with a step-up transformer at the end of the cable.

A small permanent-magnet 'speaker can be used as a dynamic microphone, although the fidelity is not as good as is obtamable with a properly-designed microphone.

- THE SPEECH AMPLIFIER

In eommon terminology, the andio-frequency amplifier stage that actually causes the r.f. carrier output to be varied is called the modulator, and all the amplifier stages preceding it comprise the speech amplifier. Depending on what sort of modulator is used, the speech amplifier may be called upon to deliver a power output ranging from practically zero (only voltage required) to 20 or 30 watts.

Before starting the design of a speech amplifier, therefore, it is necessary to have selected a

Fig. 9.14-Resistance-compled voltage-amplifier circuits. A, pentode; B, triode. Designations are as follows:
C_{1} - Cathode by-pass condenser.
C_{2} - Plate by-pasis condenser.
C_{3} - Ootput compling condenser (blocking condenser).
C_{4} - Scren by-pass eondenser.
R_{1} - Cathode resistor.
K_{2} - Grid resistor.
K_{3} - Plate resistor.
R_{4} - Next-stage prid resistor.
IRs - Plate decoupling resistor.
R_{6} - Screen resistor.
Values for suitable tubes are given in Table 9-I. Values in the decounling vircuit, $C_{2} R_{5}$ are not critical. R_{5} may he about 10% of R_{3} : an 8 - or 10 - $\mu \mathrm{fd}$, electrolytic condenser is usually large enough at C_{2}.
suitable modulator for the transmitter. This selection must be based on the power required to modulate the transmitter 100 per cent, and this power in turn depends on the type of modutation system selected, as already described. With the modulator picked out, its: driving-power requirements (audio power required to excite the modulator to full out put) can be determined from the tube tables in Chapter Twenty-Five. (ienerally speaking, it is advisable to choose a tube or tubes for the last stage of the spech amplifier that will be capable of developing at least 50 per cent more power than the rated driving power of the modulator. This will provide a factor of safety so that losses in coupling transformers. ete., will not upset the calculations. I "skimpy" driver, or one designed without a safety factor, usually cannot excite the modulator to full output without being itself overfoaded. The inevitable result is speech distortion, generation of unnecessary sidebands, and a "broad" transmitter.

Voltage Amplifiers

If the last stage in the speech amplifier is a Class AB_{2} or Class B amplifier, the stage ahead of it must be capable of sufficient power output to drive it. However, it the last stage is a Class $A B_{1}$ or Class A amplifier the preceding stage can be simply a voltage amplifier.

From there on back to the microphone. all stages are voltage amplifiers. These are always operated (lass A, not only to simplify the design by avoiding driving power, but because just as much vollage can be secured from a Class A amplifier as from any other type.

The important characteristies of a voltage amplifier are its voltage gain, maximum undistorted output voltage, and its frequency response. The voltage gain is the voltage-amplification ratio of the stage. The output voltage is the maximum a.f. voltage that ean be secured from the stage without distortion; we camot figure on any greater output voltage than this, no matter what the gain of the stage, without rumning into the overload region. The amplifier frequency response should be adequate for voice reproduction; this requirement is easily satisfied.

The voltage gain and maximum undistorted output voltage depend on the operating conditions of the amplifier. Data on the popular types of tubes used in speech amplifiers are given in Table 9-I, for resistance-coupled amplifieation. The output voltage is in terms of peak voltage rather than r.m.s.; this method of rating is preferable because it makes the rating independent of the waveform. Exceeding the peak value causes the amplifier to distort, so it is more useful to consider only peak values in working with amplifiers.

Resistance Coupling

Resistance coupling generally is used in voltage-amplifier stages. It is relatively inex-
fensive, good frequency response can be secured, and there is little danger of hum pick-up from stray magnetic fields associated with heater wiring. It is the only type of coupling suitable for the output circuits of pentodes and high- μ triodes, because with transformers a sufficiently high load impedance cannot be obtained without considerable frequency distortion. Typical circuits are given in Fig. 9-14 and design data in Table 9-I.

Transformer Coupling

Transformer coupling between stages ordinarily is used only when power is to be transferred (in such a case resistance coupling is very inefficient), or when it is necessary to couple between a single-ended and a push-pull stage. Triodes having an amplification factor of 20 or less are used in transformer-coupled voltage amplifiers. With transformer coupling, tubes should be operated under the Chass A conditions given in the tube tables in Chapter Twenty-Five.

Representative circuits for coupling singleended to push-pull stages are shown in Fig. 9-15. The circuit at A combines resistance and transformer coupling, and may be used for exciting the grids of a Class A or AB_{1} following stage. The resistance coupling is used to keep the d.c. plate current from flowing through the transformer primary, thereby preventing a reduction in primary inductance below its nocurrent value; this improves the low-frequency response. With low- μ triodes ($6 \mathrm{C} 5,65 \overline{5}$, ete.), the gain is equal to that with resistance cou-

Fig. 9-15 - Transformer-coupled amplifier circuits for driving a push-pull amplifier. I is for renistance-trans. former conpling: 13 for transformer coupling. Designations correspond to those in liz. 9-1t. In A, values can the taken from lable $9-1$. In 13, the cathode resistor is calculated from the rated plate current and grid bias as given in the tube tables for the particular type of tube used.

Fik. 9-16 - Self-balaneing, phase inverter eircuits. II and I_{2} may be a double trioule such as the 65 NGI or 6 LL ICT. ${ }_{3}$ may be any of the triodes listed in Table 9-I, or one section of a double triode.
$1 \mathrm{~h}_{1}$ - Crid resistor (1 megohm or less).
R_{2} - Cathode reesistor; use one-half value given in Table 9-I for tube and operating conditions chosen.
$\mathbf{R}_{3}, \mathbf{R}_{4}$ - Plate resistor; select from Table 9-I.
$\mathrm{R}_{5}, \mathrm{l}_{6}$ - Following-stage grid resistor (0.22 to 0.47 megohm).
$\mathrm{H}_{7}-0.22$ inegohm.
I_{4} - Cathode resistor; select from Table 9-I.
$\mathrm{K}_{0}, \mathrm{~K}_{10}$ - Fach one-half of plate load renistor given in Talite 9-I.
$\mathrm{C}_{1}-10-\mu \mathrm{fJ}$. electrolytic.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.01$ to $0.1-\mu \mathrm{fil}$. paper.
pling multiplied by the secondary-to-primary turns ratio of the transformer.

In 13 the transformer primary is in series with the plate of the tube, and thus must carry the tube plate current. When the following amplifier operates without grid current, the voltage gain of the stage is practically equal to the μ of the tube multiplied by the transformer ratio. This circuit also is suitable for transferring power (within the capabilities of the tube) to a following Class. IB_{2} or Class 13 stage.

Phase Inversion

Push-pull output may be secured with resistance coupling by using "phase-inverter" circuits as shown in Fig. 9-16.

The circuit shown in Fig. 0-16A is known as the "self-balancing" type. The amplified voltage from V_{1} appears across R_{5} and R_{7} in series. The drop across R_{7} is applied to the grid of V_{2}, and the amplified voltage from V_{2} appears across R_{6} and R_{7} in series. This voltage is 180 degrees out of phase with the voltage from V_{1},

TABLE 9－I — RESISTANCE－COUPLED VOLTAGE－AMPLIFIER DATA
Data are given for a plate supply of 300 volts．Departures of as much as 50 per cent from this supply voltage will not materially change the operating conditions or the voltage gain，but the output voltage will be in propartion to the new valtage．Voltage gain is measured at 400 cycles；condenser values given are based on 100 －cycle cut－off．For increased low－frequency response，all condensers may be made larger than specified（cut－off frequency in inverse proportion to condenser values provided all are changed in the same proportion）．A variation of 10 per cent in the values given has nesligible effect on the perfermance．

	Plate Resistor Megohms	Next－Stage Grid Resistor Megohms	Screen Resistor Megohms	Cathode Resistor Ohms	Screen By－pass $\mu \mathrm{fd}$ ．	$\begin{aligned} & \text { Cathode } \\ & \text { By-pass } \\ & \mu \text { fd. } \end{aligned}$	Blocking Condenser $\mu \mathrm{fd}$ ．	Output Volts （Peak）${ }^{1}$	Voltage Gain ${ }^{2}$
6SJ7	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.37 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 500 \\ & 530 \\ & 590 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.09 \\ & 0.09 \end{aligned}$	$\begin{array}{r} 11.6 \\ 10.9 \\ 9.9 \\ \hline \end{array}$	0.019 0.016 0.007	$\begin{array}{r} 78 \\ 96 \\ 101 \end{array}$	$\begin{array}{r} 67 \\ 98 \\ 104 \end{array}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 1.10 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 850 \\ & 860 \\ & 910 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.06 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.4 \\ & 6.9 \end{aligned}$	$\begin{aligned} & 0.011 \\ & 0.004 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 79 \\ & 88 \\ & 98 \end{aligned}$	$\begin{aligned} & 139 \\ & 167 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 9.9 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1410 \\ & 1530 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.05 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.8 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 0.004 \\ & 0.008 \\ & 0.0015 \end{aligned}$	$\begin{aligned} & 64 \\ & 79 \\ & 89 \end{aligned}$	$\begin{aligned} & 200 \\ & 938 \\ & 263 \end{aligned}$
6J7，7C7	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.5 \\ & 0.53 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.07 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.3 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 55 \\ & 81 \\ & 96 \end{aligned}$	$\begin{aligned} & 61 \\ & 82 \\ & 94 \\ & \hline \end{aligned}$
	0.95	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.18 \\ & 1.18 \\ & 1.45 \end{aligned}$	$\begin{aligned} & 1100 \\ & 1200 \\ & 1300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.4 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.005 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 81 \\ 104 \\ 110 \end{array}$	$\begin{aligned} & 104 \\ & 140 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.9 \\ & 2.95 \end{aligned}$	$\begin{aligned} & 1700 \\ & 2200 \\ & 2300 \\ & \hline \end{aligned}$	0.04 0.04 0.04	$\begin{aligned} & 4.2 \\ & 4.1 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.003 \\ & 0.0025 \end{aligned}$	$\begin{array}{r} 75 \\ 97 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 161 \\ & 200 \\ & 230 \end{aligned}$
6AU6，6SH7	0.1	$\begin{aligned} & 0.1 \\ & 0.29 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.24 \\ & 0.86 \end{aligned}$	$\begin{aligned} & 500 \\ & 600 \\ & 700 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.11 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 16.4 \\ & 15.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.019 \\ & 0.011 \\ & 0.006 \end{aligned}$	$\begin{array}{r} 76 \\ 103 \\ 129 \end{array}$	$\begin{aligned} & 109 \\ & 145 \\ & 168 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.5 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1100 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.098 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 12.4 \\ & 12.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 0.009 \\ & 0.007 \\ & 0.003 \end{aligned}$	$\begin{array}{r} 92 \\ 108 \\ 122 \\ \hline \end{array}$	$\begin{aligned} & 164 \\ & 230 \\ & 262 \\ & \hline \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1800 \\ & 1900 \\ & 2100 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.065 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.6 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 0.0045 \\ & 0.0028 \\ & 0.0018 \end{aligned}$	$\begin{array}{r} 94 \\ 105 \\ 129 \\ \hline \end{array}$	$\begin{aligned} & 248 \\ & 318 \\ & 371 \end{aligned}$
6AQ6， 6 ATO， 6Q7，6SL7GT （one triode）	0.1	$\begin{aligned} & 01 \\ & 0.82 \\ & 0.47 \end{aligned}$	－	$\begin{aligned} & 1500 \\ & 1800 \\ & 2100 \end{aligned}$	－	$\begin{aligned} & 4.4 \\ & 3.6 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.027 \\ & 0.014 \\ & 0.0065 \end{aligned}$	$\begin{aligned} & 40 \\ & 54 \\ & 63 \\ & \hline \end{aligned}$	$\begin{aligned} & 34 \\ & 38 \\ & 41 \\ & \hline \end{aligned}$
	0.22	$\begin{aligned} & 0.29 \\ & 0.47 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 2600 \\ & 3800 \\ & 3700 \end{aligned}$	二二	2.5 1.9 1.6	0.013 0.0065 0.0035	$\begin{aligned} & 51 \\ & 65 \\ & 77 \\ & \hline \end{aligned}$	$\begin{aligned} & 42 \\ & 46 \\ & 48 \\ & \hline \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$		$\begin{aligned} & 5900 \\ & 6300 \\ & 7800 \end{aligned}$	－	$\begin{aligned} & 1.9 \\ & 1.0 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 0.006 \\ & 0.0035 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 61 \\ & 74 \\ & 85 \end{aligned}$	$\begin{aligned} & 48 \\ & 50 \\ & 51 \end{aligned}$
$\begin{gathered} 6 F 5,6 S F 5, \\ 784 \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	\cdots	$\begin{aligned} & 1300 \\ & 1600 \\ & 1700 \end{aligned}$	二－	5.9 3.7 3.8	$\begin{aligned} & 0.025 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 33 \\ & 43 \\ & 48 \end{aligned}$	$\begin{aligned} & 42 \\ & 49 \\ & 59 \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 2600 \\ & 3900 \\ & 3500 \end{aligned}$	－	2.5 2.1 2.0	$\begin{aligned} & 0.01 \\ & 0.007 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 41 \\ & 54 \\ & 63 \end{aligned}$	$\begin{aligned} & 56 \\ & 63 \\ & 67 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	－	$\begin{aligned} & 4500 \\ & 5400 \\ & 6100 \end{aligned}$	二	$\begin{aligned} & 1.5 \\ & 1.2 \\ & 0.93 \end{aligned}$	$\begin{aligned} & 0.006 \\ & 0.004 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 50 \\ & 62 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \\ & 70 \end{aligned}$
$\begin{gathered} \text { 6SC7 }{ }^{3} \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{array}{r} 750 \\ 930 \\ 1040 \\ \hline \end{array}$	－	－	$\begin{aligned} & 0.033 \\ & 0.014 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 35 \\ & 50 \\ & 54 \end{aligned}$	$\begin{aligned} & 29 \\ & 34 \\ & 36 \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1400 \\ & 1680 \\ & 1840 \\ & \hline \end{aligned}$	－	二	$\begin{aligned} & 0.012 \\ & 0.006 \\ & 0.003 \end{aligned}$	45 55 64	39 49 45
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	－	$\begin{aligned} & 2330 \\ & 2980 \\ & 3980 \end{aligned}$	－	－	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 62 \\ & 72 \\ & \hline \end{aligned}$	45 48 49
$\begin{aligned} & \text { 615, 7A4, } \\ & \text { 7N7, 6SN7GT } \\ & \text { (one triode) } \end{aligned}$	0.05	$\begin{aligned} & 0.05 \\ & 0.1 \\ & 0.25 \end{aligned}$	－	$\begin{aligned} & 1020 \\ & 1970 \\ & 1500 \end{aligned}$	二	$\begin{aligned} & 3.56 \\ & 2.96 \\ & 2.15 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.034 \\ & 0.012 \end{aligned}$	$\begin{aligned} & 41 \\ & 51 \\ & 60 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \\ & 14 \end{aligned}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{aligned} & 1900 \\ & 2440 \\ & 2700 \\ & \hline \end{aligned}$	－	$\begin{aligned} & 2.31 \\ & 1.49 \\ & 1.9 \end{aligned}$	0.035 0.0125 0.0065	$\begin{aligned} & 43 \\ & 56 \\ & 64 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \\ & 14 \\ & \hline \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 4590 \\ & 5770 \\ & 6950 \end{aligned}$	－	$\begin{aligned} & 0.87 \\ & 0.64 \\ & 0.54 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.0075 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 46 \\ & 57 \\ & 64 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \\ & 14 \end{aligned}$
6C4	0.347	$\begin{aligned} & 0.14, \\ & 0.1 \\ & 0.22 \end{aligned}$	二二	$\begin{array}{r} 870 \\ 1800 \\ 1500 \end{array}$	二二	$\begin{aligned} & 4.1 \\ & 3.0 \\ & 9.4 \end{aligned}$	$\begin{aligned} & 0.065 \\ & 0.034 \\ & 0.016 \\ & \hline \end{aligned}$	$\begin{aligned} & 38 \\ & 59 \\ & 68 \end{aligned}$	12 12 12
	0.1	$\begin{aligned} & 0.1 \\ & 0.28 \\ & 0.47 \end{aligned}$	二－	$\begin{aligned} & 1900 \\ & 3000 \\ & 4000 \end{aligned}$	－	$\begin{aligned} & 1.9 \\ & 1.3 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 0.039 \\ & 0.016 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 44 \\ & 68 \\ & 80 \end{aligned}$	$\begin{aligned} & 19 \\ & 19 \\ & 19 \end{aligned}$
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	\bar{Z}	$\begin{array}{r} 5300 \\ 800 \\ 11000 \end{array}$	二	$\begin{aligned} & 0.9 \\ & 0.52 \\ & 0.46 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.0035 \end{aligned}$	$\begin{aligned} & 57 \\ & 89 \\ & 92 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$

[^2]A Cathoderesistor values are for phase－inverter service．
thus giving push-pull output. The part that appears across R; therefore opposes the voltage from l_{1} across R_{7}, thus reducing the signal applied to the grid of V_{2}. The negative feed-back so obtained tends to regulate automatically the voltage applied to the phase-inverter tube so that the output voltages from both tubes are substantially equal - as they must be for distortionless reproduction. The self-balancing cireuit also hats the advantage of compensating for variations in the characteristics of the two tubes. The gat is slighty less than twice the gain of a single-tube amplifier using the same operating conditions.

The single-tube circuit shown in Fig. 9-16B also is inherently balanced. In this case the phate load resistor is divided into two equal parts, Rsand R_{10}, one being comnected to the pate in the normal way and the other bet ween cathode and ground. Since the voltages at the phate and cathode are 180 degrees out of phatse. the grids of the following tubes are fed equal a.f, voltages in push-pull. The grid return of l_{3} is mate to the junction of R_{8} and R_{11} so normal hias will be applied to the grid. This cireuit is highly degenerative because of the way R_{10} is eonnected. The voltage gain is less thatn 2 even whon a high- μ triode is used at F_{3}.

Gain Control

A means for varying the over-all gain of the amplifier is a practical necessity. Without it, there would be no way to keep the final out pat down to the proper level for modulating the taansmitter exeept to talk at just the right intensity. The eommon method of gain control is to adjust, the value of a.c. voltage applied to the grid of one of the amplifiers by means of a voltage divider or potentiometer.

The gain-eontrol potentiometer should be near the input end of the amplifier, at a point where the a.c. voltage level is so low that there is no dinger of overtoading in the stages ahead of the gain control. With carbon microphones the gain eontrol may be planed directly across the mierophone-transomerseeondary. With other types of microphones, however, the gain control usually will affect the frequency response of the microphone when eomected directly amoss it. The control therefore is usually placed in the grid circuit of the second stage.

DESIGNING THE SPEECH AMPLIFIER

The steps in designing a speech amplifier are as follows:

1) Determine the power needed to modulate the transmitter and select the modulator. In the case of plate modulation, this will nearly always be a Class B amplifier. solect a suitable tube type and determine from the tube tables in Chapter 'T'wenty-l'ive the driving power reçuired.
2) As a safety factor, multiply the required driver power by at least 1.5 .
3) Select a tube, or pair of tubes, that will deliver the power determined in the second step. This is the last speech-amplifier stage. Re-ceiver-type power tubes can be used (beam tubes such as the 6 L 6 mas be needed in some cases) so the receiving-tube tables in Chapter Twent y-Five may be consulted. If the speech amplifier is to drive a Class B modulator, use a Class A or $A B_{1}$ amplifier if it will give enough power output.
4) If the last speech-amplifier stage has to operate (Class AB. wse a medium- μ triode (such as the 6.J5 or corresponding types) to drive it. In the extreme case of driving 6L, 6 s to maximum output, two triodes should be used in push-pull in the driver. In either ease transformer coupling will have to be used, and transformer manufacturers' atalognshould be consulted for a suitable type.
5) If the last speech-amplifier stage operates Class A or $A B_{1}$, it may be driven by a voltage amplifier. If the last stage is push-pull, the driver may be a single tube coupled through a transformer with a balanced seeondary, or may be a dual-triode phase inverter. Determine the signal voltage required for full output from the last stage. If the last stage is a single-tube (diss A amphifier, the peak signal is equal to the grid-bists voltage; if push-pull Class A, the peak signal voltage is equal to twice the grid bias; if Chass $\$ 13_{1}$, twice the bias voltage when fixed bitas is used; if cathode bias is used, twice the bias figured from the cathode resistance and the no-signal pate current.
(i) From 'Table $9-1$, select a tube capable of giving the required output voltage and note its rated voltage gain. A double-triode phaso inverter (Fig. 9-16A) will have approximately twice the output voltage and twier the gain of one triode operating as an ordinary amplifier. If the driver is to be transformer-coupled to the last stage, seleet a medium- μ triode and calculate the gain and output voltage as previously described.
6) Divide the voltage required to drive the hast stage by the gain of the preceding stage. This gives the peak voltage required at the grid of the next-to-the-last stage.
7) Find the output voltage, under ordinary conditions, of the microphone to be used. This information should be obtained from the manufacturer's catakge. If mot available, the figures given in the section on mirrophones in this chapter will serve.
8) Divide the voltage found in (7) by the output voltage of the miarophone. The result is the over-all gain required from the mierophone to the grid of the next-to-the-hast stare. To be on the safe side, double or triple this figure.
9) From Table 9-1, select a combination of tubes whose gains, when multiplied together, give approximately the figure arrived at in (9). These amplifiers will be used in cascade. In
general, if high gain is required it is advisable to use a pentode for the first speech-amplifier stage, but it is not advisable to use a second pentode because of the possibility of feedback and self-oscillation. In most cases a triode will give enough gain, as a second stage, to make up the total gain required. If not, a third stage, also a triode, may be used.

SPEECH-AMPLIFIER CONSTRUCTION

Once a suitable circuit has been selected for a speech amplifier, the construction problem resolves itself into avoiding two difficulties excessive hum, and unwanted feed-back. For reasonably humless operation, the hum voltage should not exceed about 1 per cent of the maximum audio output voltage - that is, the hum should be about 40 db . below the output level. Lnwanted feed-back, if negative, will rednce the gain below the calculated value; if positive, is likely to canse self-oscillation or "howls." Feed-back can be minimized by isulating each stage with "decoupling" resistors and condensers, by avoiding layouts that bring the first and last stages near each other, and by shiolding of "hot" points in the circuit, such as grid leads in low-level stages.
speech-amplifier equipment, epecially voltage amplifiers, should be constructed on metal chassis, with all wiring kept below the chassis to take advantage of the shiolding atforded. kxposed keads, particularly to the grids of lowlevel high-gain tubes, are likely to pick up hum from the electrostatic field that usually exists in the vicinity of house wiring. Even with the chassis, additional shielding of the input circuit of the first tube in a high-gain amplifier usually is necessary. In addition, such circuits should be separated as much as possible from power-supply transformers and chokes and also from any audio transformers that operate at fairly-high power levels; this will minimize magnetic coupling to the grid circuit and thus reduce hum or andio-frequency feed-back. It is always a safe plan, although not an absolutely necessary one, to build the speech amplifier and its power supply as separate units.

If a low-level microphone such as the crystal type is used, the microphone, its comnecting cable, and the phug or connector by which it is attached to the speech amplifier, all should be shioded. The microphone and cable usually are constructed with suitable shielding. The cable shield should be connected to the speechamplifier chassis, and it is advisable - as well as usually necessary - to connect the chassis to a ground such as a water pipe.

Heater wiring should he kept as far as possible from grid leads, and either the center-tap or one side of the heater-transformer secondary winding should be connected to the chassis. If the center-tap is grounded, the heater leads to each tube should be twisted together to reduce the magnetic field from the heater cur-
rent. With either type of connection, it is advisable to lay heater leads in the comer formed by a fold in the chassis, bringing them out from the corner to the tube socket by the shortest possible path.

In a high-gain amplifier it is sometimes helpful if the first tube has its grid connection brought out to a top cap rather than to a base pin; in the latter type the grid lead is exposed to the heater leads inside the tube and hence may pick up more hum. With the top-cap tuhes, complete shielding of the grid lead and grid cap is a necessity.

When metal tubes are used, always ground the shell comertion to the chassis. Class tubes used in the low-level stages of highgain amplifiers must be shielded; tube shields are obtainable for that purpose. It is a good plan to enclose the entire amplifier in a metal box, or at least provide it with a cane-metal cover, to awoid feed-back difficulties caused by the r.f. field of the transmitter; r.f. picked up on exposed wiring leads or tube elements causes overloading, distortion, and frequently oscillation.

When using paper condensers as by-passes, be sure that the terminal marked "outside foil" is connerted to gromed. This utilizes the outside foil of the condenser as a shieh around the "hot" foil. When paper condensers are used as coupling condensers between stages, always connert the outside-foil terminal to the side of the circnit having the lowest impedance to ground. Itsually, this will be the phate side rather than the following-grid side.

INCREASING THE EFFECTIVENESS OF THE 'PHONE TRANSMITTER

The design principles outlined so far in this section are perfectly straight forward and apply. to amplifiors designed for any purpose. However, the affectiveness of an amateur 'phone transmitter can be increased to a remarkable extent by taking advantage of speech characteristics and of the requirements in voice communication.

Mrasures that may be taken to make the modulation more effective include band compression (filtering), volume compression, and speeeh elipping.

Compressing the Frequency Band

Most of the intedigibility in speech is contained in the medium band of frequencies; that is, between about 500 and 2500 cyrles. On the ot her hand, the major portion of speech power is normally concentrated below 500 cycles. It is these low frequencies that modulate the transmitter most heavily. If they are eliminated, the frequencies that carry most of the actual communication can be increased in amplitude without exceeding 100 -per-cent modulation, and the effectiveness of the transmitter is correspondingly increased.

Fis. 9-17 - 1 , nae of at small rounling condenaer to reduce low frequency response: B, tone-ontrol cireuit: for reducing high frequeney reaponse. Values for C and R are discussed in the text; $0,01 \mu \mathrm{fd}$. and 25,000 ohms are typical.

One simple way to reduce low-frequeney response is to use small values of coupling caparitance between resistanco-coupled stages. as shown in Fig. 9-17A. A time constant of 0.0005 second for the coupling eondenser and following-stage grid resistor will have little offeet on the amplification at 500 cyeles, but will practically halve it at 100 recles. In two cascaded stages the gain will be down about \Rightarrow dh, at 200 eycles and 10 db , at 100 eycles. When the grid reaistor is 任 megohm a coupling condenser of $0.001 \mu \mathrm{fd}$. will give the required time constant.

The high-frequency response can be redued by using "tone control" methods, utilizing a condenser in series with a variable resistor connected across an audio impedance at some point in the speech amplifior. The best spot for the tone control is across the primary of the output transformer of the speech amplifier. as in Fig. 9-1713. The condenser should have a reactance at 1000 cyeles about equal to the load resistance required by the amplifier tube or tubes, while the variable resistor in series may have a value equal to four or five times the load resistance. The control can be adjusted while listening to the amplifier, the object being to cut the high-frequency response as much as possible without unduly sacrificing intelligibility.

Compressing the audio-frequency band not only puts more modulation power in the optimum frequency band but also reduces hum, because the low-frequency response is reduced, and helps reluce the width of the channel occupied by the transmission, because of the reduction in the amplitude of the high audio frequencies.

Volume Compression

It is obviously desirable to modulate the transmitter as completely as possible - without, of course, overmodulating and setting up) spurious sidebands. However, it is difficult to maintain constant voice intensity when speaking into the microphone. To overcome this variable output level, it is possible to use automatic gain control that follows the average (not instantaneous) variations in speech amplitude. This can be done by rectifying and filtering some of the audio output and applying the rectified and filtered d.c. to a control electrode in an early stage in the amplifier.

A practical circuit for this purpose is shown in Fig. 9-18. The rectifier must be connected, through the cransformer, to a tube capable of delivering some power output (a small part of the output of the power stage may be used) or else a separate power amplifier for the rectifier circuit alone may have its grid connected in parallel with that of the last voltage amplifier.

Resistor R_{4}, in series with R_{5} aeross the plate supply, provides an adjustable positive bias on the rectifier cathodes. This prevents the limiting action from begimning until a desired microphone input level is reached. R_{2}, R_{3}, C_{2}, C_{3} and C_{4} filter the audio frequencies from the rectified output. 'lhe output of the rectifier may be connected to the suppressor grid of a pentode first stage of the speech amplifier.

A step-down transformer with a turns ratio such as to give about 50 volts when its primary is connected to the output circuit of the power stage should be used. If a transformer having a center-tapped secondary is not available, a half-wave rectifier may be used instead of the full-wave circuit shown, but it will be harder to get satisfactory filtering.

The over-all gain of the system must be high enough so that full output can be secured at a morlerately low voice level.

Speech Clipping and Filtering

Earlier in this chapter it was pointed out that with sine-wave 100 -per-cent modulation the average power increases to 150 per cent of the unmodulated carrier power, but that in speech waveforms the average power content is considerably less than in a sine wave, when

Fig. 9.18-Speech-amplifier output-limiting circnit. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-0.1 . \mu \mathrm{fd} . ; \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}-0.22$ megohm; $\mathrm{h}_{4}-25,000$ ohm pot.; $\mathrm{li}_{5}-0.1$ megohm; T-see text.

Fig. 9.19 - 'Ilie normal peerh wave (IB) has high peaks but low average encrgy content. When the peaks are clipped the signal may be increased to a considerablyhipher power level without causingovermodulation (C).
both waveforms have the same peak amplitude. Nevertheless, it is the peak conditions that count in modulation. This is shown in the drawings of Fig. 9-19. The upper drawing, A, represents a sine wave having a maximum amplitude that just modulates a given transmitter 100 per cent. 'The same maximum amplitude will modulate the same transmitter 100 per cent regardless of the waveform of the modulating signal. The speech wave at 13 , therefore, also represents 100 -per-cent modulation.

Now suppose that the amplitude of the wave shown at 13 is increased so that its power is comparable with - or even higher than - the power in a sine wave, but that everything above the 100 -per-rent modulation mark is cut off. We then have a wave such as is shown at C, which is the wave at B increased in amplitude but with its peaku "clipped." 'This signal will not modulate the transmitter more than 100 per sent, but the voice power will be several times as great. The wave is not exactly like the one at 13 , so the result will not sound exactly like the original. However, such rlipping can be used to secure a worth-while increase in modulation power without sarrificing intelligibility. The elipping can be done in the speerh amplifier. and once the system is properly adjusted it will be impossible to oncrmodulate the transmitter no matier how much gain is used ahead of the clipper - because the clipper will hold the maximum output amplitude to the same value no matter what the amplitude of the signal applied to it.
l3ut by itself the clipper is not enough. Although the clipping takes place in the audio sustem, the signal applied to the modulated r.f. amplifier has practically the same waveshape that the modulation envelope would have hal if the signal were molipped and the transmitter were badly overmodulated. In other words, clipping generates the same high-
order harmonics that overmodulation does. It is therefore neressary to prevent the higher audio frequencies from reaching the modulator. In other words, the frequencies above those needed for intelligible speech must be filtered out, after clipping and hefore modulation. The filter required for this purpose should have telatively little attenuation at frequencies below about 2500 cycles, but very great attenuation for all frequencies above 3000 cycles.

It is possible to use as much as 25 db . of clipping before intelligibility is lost; that is, if the original peak amplitude is 10 volts, the signal can be clipped to such an extent that the resulting maximum amplitude is less than one volt. If the original 10 -volt signal represented the amplitude that caused 100 -per-cent modulation on peaks, the clipped and filtered sigual can then be amplified up to the same 10 -volt peak level for modulating the transmitter, with a very considerable inerease in modulation power.

Fig. 9.20 - Hlock diagram of speocherlipping and filtering amplifier.

There is a loss in naturalness with "deep" clipping, even thongh the voice is highly intelligible. With moderate elipping levels (6 dt). or so) there is almost no perceptible change in "quality" but the voice power is four or five times as great as in ordinary modulation.

Before drastic clipping can be used, the speerh signal must be amplified up to 10 times more than is necessary for normal modulation. Also, the hum and noise must be much lower than the tolerable level in ordinary amplification, because the noise in the outpat of the amplifier increases in proportion to the gain.

The clipper-filter system is shown in block form in Fig, 9-20. The limiter is a peak-limiting rectifier of the same general type that is nsed in receiver noise limiters. It must elip both positive and negative peaks. The gain control sets the amplitude at which clipping starts. lollowing the low-pass filter for eliminating the harmonie distortion frequencies is a second gain control, the "level" control. This control is set initially so that the amplitude-limited output of the clipper-filter modulates the transmitter 100 per cent. Thereafter it need not be touched. The elipper-filter system is consequently an automatic "overmodulation-preventer," and is a worth-while addition to the transmitter on that account even though deep clipping is seldom used.

Practical circuits are illustrated in a specech amplifier described later in this chapter.

Speech Amplifier with Push-Pull Triode Output

The speech amplifier shown in Fig. 9-21 is a general-purpose unit of straight forward design. L'sing a pair of power triodes in the output stage, it is capable of an actual undistorted output power of about 8 watts. It can therefore be used to drive a ('lass IB modulator of moderate power output. It is also suitable for use as a grid-bias modulator for high-power transmitters. The gain of the amplifier is ample for the ordinary communications-type crystal microphone.

As shown in the cireuit diagram, Fig. 9-22, the amplifier has a pentode first stage using a Gs.J7. A medium- μ triode, a (6.J., is used in the second stage. The gain control is in the grid circuit of this tube. The third stage uses a 6slag in in the self-balaneing phase-inverter cireuit, to obtain push-pull output for the grids of the output tubes. The final stage has two 6134 (is in push-pull, operated Class A Br. The power supply for the amplifier is included on the same chassis.

The rireuits of individual stages are basically as deseribed earlier in this chapter. R_{6} and R_{10} are decoupling resistors in the 6s.J7 and 6.5 stages, respectively, to prevent unwanted feed-back. These resistors, in combination with C_{3}^{\prime} and C_{7}^{\prime}, also provide some additional power-supply hum filtering for the first two stages where the signal level is low. Condenser' ('5, which is shunted across the gain control, R_{5}, when S_{1} is closed, sarves to reduce the gain at frequencies above about 2500 cyeles. This, as explained carlier in this chapter, is desirable bevaluse it reduees the width of the channel ocepuped by the transmitter. R_{17} and (12 are the eathode-bias resistor and by-pass condenser, respertively, for the output stage. Cis should not be onitted unless the output stage operating conditions are changed so that the amplifier operates purely Class A. When

fig. 9.21 - This amplifuer uses 6H1C:s (enuivalent to $013:$) a- output tubes and will deliver 8 watt of undiztorted power. It is complete wilh power sumply on a $7 \times 11 \times 2$-inch chassis.

$\mathrm{C}_{1}, \mathrm{C}_{6}, \mathrm{C}_{9}-20-\mu \mathrm{fll} .25-\mathrm{val}$ electrolatic.
$\mathrm{C}_{2}-0.1-\mu \mathrm{fd}$. 100 -volt paper.
$\mathrm{C}_{3}, \mathrm{C}_{7}, \mathrm{C}_{43}, \mathrm{C}_{44}, \mathrm{C}_{15}-110-\mu \mathrm{fil}$. 450 -woll dertrolytic.
Cis, Cs, Cio, Cill - 0. (0)- $\mu \mathrm{fil}$. $6(0)$-volt paper.
(is - $0.0(0) 1-\mu$ fif. 500 -volt mical.
($\mathrm{i} 2-50$ - ffil . 100-volt electrolstic.
$1 i_{1}-1$ merohm, $1 / 2$ watt.
$\mathrm{H}_{2}, \mathrm{~K}_{7}-1500$ ohms, $1 / 2$ watt.
$\mathrm{H}_{3}-1.5$ megohms, $1 / 2$ watt.
$H_{1}, K_{12}, R_{13}, K_{14}, R_{15}, K_{16}-0.22$ mbquolum, $1 / 2$ watt.
$R_{B}-0 . \overline{5}$-megahm volume control.
$\mathrm{H}_{6}-47,000$ ohms, $1 / 2$ watt.
the grid prong on the 6 SJ 7 socket, but there are otherwise no special constructional precautions to observe - other than those ment ioned in the section on general considerations in sperech-amplifier construction.

The output transformer shown in the photographs is designed for working into a $500-$ or 200 -ohm line. This type of transformer may be used when the spereh amplifier is located at

1 s - 8:.000 ohms, $1 / 2$ watt.
H_{5} - 11.17 megolom, $1 / 2$ watt.
$11_{10}-10,01100$ ohms, I watt.
1_{11} - 1500 ohms, 1 watt.
K_{17} - $\quad \mathbf{2} 00$ ohtme, 10 watts.

$\mathrm{L}_{2}-10-\mathrm{h}^{2} .35 \cdot \mathrm{ma}$, filter choke (I' (: R-5.5).
$S_{1}, S_{2}, S_{3}-S_{-p} s . t$ torgle.
' I_{1} - Out put transfurmer, p.p. plates (5000 ohms) to line (LTC PA-16).
$T_{2}-700$ volts c.t., 110 mai.: 5 volts, 3 amp.; 6.3 voli-. 4.5 amp. (Stancor P-1080).
some distance from the Class B modulator or other unit it is to drive. If desired, a Cliss: B input transformer can be substituted at T_{1}. In that ease, the leads to the modulatortube grids should be shielded as a precaution against hum or r.f. pick-up. The transformer selected should be designed for working from a 5000 -ohm plate-to-plate load to the grids of the modulator tubes seleeted.

Fik. 9-23-Bottom view of the push-puli 6134C amplifier. Outpht-transformer terminals are brought ont to a connection strip on the rear ellge of the chassis.

A Clipper-Filter Speech Amplifier

The amplifier shown in lig. $9-2 \pm$ has a usable output of about 4 watts (sine wave) and includes a clipper-filter for increasing the effectiveness of the modulator and for confining the channel-width to the frequencies needed for intelligible speech. The output stage uses a 6V6 with negative feed-back: this reduces the effective plate resistance of the tube to a low value. The unit therefore can be used to drive a Class 13 modulator that does not require more than $\&$ watts on the grids. It ean also be used as a complete modulator unit for grid-bias modulation.

As shown in the circuit diagram, Fig. 9-25, the first tube is a 6 s 57 . The seoond stage is one section of a 6sli.7.iT. With sis thrown to the right-hand position, the output of this stage is connected to the grid of a 6.J.5, which in turn drives the 6V6. [inder these conditions the amplifier operates conventionally and has fairly wide frequency response. With S_{3} thrown to the left, the output of the first 6 SL 7 G 'T section is fed to the 6.1Ls clipper, and the clipped output is then fed to the grid of the second section of the 6sl.7(iT'. The output of this tube goes through a low-pass filter and thenee through a second gain control, R_{15}, to the grid of the 6.J.). Thus the clipper-filter feature can be used or not as desired.

The first two stages are rosistance-eoupled amplifiers following ordinary practice. In the last stage, use is made of the eenter-tap on the primary of the output transformer to obtain feed-back voltage that is applied to the grid of the 6V6 through the plate resistor, R_{13}, of the 6J5. If a different type of tramsformer is used, not having a conter-tap, a voltage divider can be connerted ateross the primary to obtain the feed-back voltage, as deseribed in the section on negative feed-hack in this chapter.

The amplifier has its own power supply, as shown in the diagram and photographs.

Circuit Notes

The clipper cireuit uses two diodes, one to clip positive and the other to clip negative peaks, in shunt with a load resistor, R_{11}. The diodes are biased so that they are nonconducting until the signal amplitude reaches about 2 volts. When conducting, the diode resistance is low compared to the resistance of R_{11}, and also compared to the series resistance R_{10}. [ader these conditions, all of the voltage in cexcess of the 2 -volt hias appears as a voltage drop in R_{10} (and in the plate resistance of the preeeding stage), with the result that the voltage across R_{11} eamot fereed 2 volts.

For convenience, the bias for the diodes is taken from the eathode resistor of the 6V6 by a voltage-dividing arrangement. . Is shown in Fig. 9-25, the plate of one diode is connected to ground, h_{11} is returned to a peint 2 volts above ground, and the cathode of the second diode is returned to a point 4 volts above sround. This makes the plate of each diode 2 volts negative with respect to its own cathode.

The filter shown in Fig. 9-26 is construeted of standard components, the chokis being $12 \mathrm{j}-\mathrm{mh}$. units usually sold as r.f. chokes. The design of a filter using this value of inductance requires a fairly high eapacitance and a low value of load resistance. The eonstants listed give a sharp cut-off between 2500 and 3000 eveles, with very large attenuation (averaging $4 \overline{3}$ (th, below the response at 1000 (ycles) at all frequencies above 3000 cycles. However, the low value of load or terminating resistor, 2000 ohms, greatly dorreases the voltage amplification of the 6str7(0T section as compared to what could to obtained with a normal load. The over-all gain with $R_{1,}$, at maximum is about the same' as with x_{3} in the "normalamplifier" position, despite the extra stage, when the input signal is below the elipping level. Once clipping begins, of course, the output voltage camot rise above the clipping level no matter how high the amplitude of the input signat.

Construction

The amplifier is built on a $6 \times$ 14×3-inch chassis. The input rime of the spereh amplitier is at the left end and the power supply is at the right. A shiold is placed over the 6SL.7G'T to prevent hum pick-up and to protect the
lif. $9.24-$ A 4 -watt output amplifier with peech clipping and filtering. It uses a GV6 output tube with negative feedhalok, and has its power supply on the same chassis.

Fig. 9-25-Cirenit diagram of the elipper-filter :beech amplifier.

Ci2-0.1- C fd. 100 -volt paper.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{18}, \mathrm{C}_{22}, \mathrm{C}_{23}-8-\mu \mathrm{fd}$. 4.50 -volt electrolytic.
($\mathrm{S}, \mathrm{C}_{7}, \mathrm{Cs}_{9} \mathrm{C}_{17}, \mathrm{C}_{2 n}-0.01-\mu \mathrm{fl}$. 600 -volt paper.
($10, \mathrm{C}_{11}, \mathrm{C}_{13}-0.015-\mu \mathrm{ft}$. paper.
C.12-0.03- $-\mathrm{fil}^{2}$ paper.
(is - 0.0.5- Hft . paper.
(i.s - 0.003- ffl . mira.

Ciff - 0.06 - $\mu \mathrm{fd}$. paper.
(i21 - . 0 - $\mu \mathrm{fd}$. 50 volt electrolytic.
124-16- Hfl . 450 -volt eleetrolytic.
$\mathrm{H}_{1}-1$ megohne, $1 / 2$ watt.
$\mathrm{H}_{2}, \mathrm{R}_{13}-1000$ ohms, $1 / 2$ watt.
$k_{3}-1.2$ megohm: $1 / 2$ watt.
$R_{4}-0.2 .2$ inegohm, $1 / 2$ watt.
R.i. Rio-47,000 ohms, $1 / 2$ watt.
$R_{R_{i}}-0.1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{\text {; }}$ - - -megohm volume control.
Rs - 3300 ohms, $1 / 2$ watt.
tube from r.f. fields from the transmitter. The 6 AL 5 is between the 6SL7GT and the 6 V 6. The 6.55 is just to the rear of the $6 V^{\circ} 6$, and the output transformer, T_{2}, is to its right. Along the front edge of the chassis are the microphone connector; gain control, R_{7}; clipper-filter switeh, S_{3}; the "output" control, R_{15}; and at the far right - the " 13 " voltage and a.c. toggle switches.

The low-pass filter is built as a unit on a 2×5-inch mounting board, as shown in Fig. 9-26. The coils are kept well separated and are mounted so that their axes are all at right angles. This prevents magnetic coupling between them, and is essential to good filter performance. In other respects the placement of parts in the filter is not critical. If the proper values of capacitance are not at hand, they can be made up by connecting smaller units in parallel. For example, a $0.01-\mu \mathrm{fd}$. paper and $0.005-\mu \mathrm{fd}$. mica can be paralleled to make $0.015 \mu \mathrm{fd}$. The filter unit occupies the upper
$\mathrm{R}_{9}, \mathrm{~K}_{12}, \mathrm{~K}_{19}-0.1^{-}$murghm, $1 / 2$ watt.
K_{n} - 0.1 .5 megolm, $\frac{1}{2}$ watt.
$1 \mathrm{~h}_{14}$ - 10,000 ohms, 1 watt.
R1.5- 2000 -ohm wirc-wound volame control.
$11_{16}-0.33$ negohin, $1 / 2$ watl.
$11_{1} ;-1500$ ohms, $1 / 2$ watt.
$H_{18}-82,000$ ohms, $1 / 2$ wall.
$\mathrm{H}_{20}-150$ ohms, 10 watts.
$R_{21}, R_{22}-39$ ohms, 2 watts.
I.1. $1.2 . \mathrm{l}_{2}-125 \mathrm{mh}$.
$I_{A}-10$ henrys, 60 ma.
Is - 10 henrys, 3 in ma.
$J_{1}=115-v$. a.e. comector.
$\mathrm{S}_{\mathrm{t}}, \mathrm{S}_{2}-\mathrm{S} . \mathrm{p} . \mathrm{s.t}$ toggle.
S_{3} - I).p.d.t. toggle.
'I' - Power transformer. 3.50 volts earl site e.t., 70 ma,: 5 volts, 2 amp. 6.3 volte, 3 amp. (Stancor P-1078).
Γ_{2} - Output transformer. Bolo ohms (total primary) to line or voice eotil.
right-hand corner in the bottom-view photograph, Fig. 9-27.

Particular care should be taken to reduce hum. The 6S. 77 grid lead must be shielded, and the heater wiring in the vicinity of the first two tubers should be kept in the corners of the chassis except where it is necessary to bring the ungrounded wire out to the socket terminal. It is worth while to try reversing the heater connections on the 6SJ7 to reduce hum. Reducing the gain at the lower frequencies; also will reduce the hum in the output, and this may be done by decreasing the capacitance of C_{3} and C_{7} to $0.002 \mu \mathrm{fd}$. instead of the $0.01 \mu \mathrm{fd}$. specified.

The output transformer, T_{2}, in this unit is a low-impedance output type, with $500-$ and 200 ohm line taps as well as taps for a 'speaker voice coil. If the unit is close to the Class B modulator a Class B driver transformer can be substituted, if desired, or a 1-to-1 transformer can be used for grid-bias modulation.

Fig. 9-26 - The low-pans, fitter is assembled as a unit on its own mmenting lorard. Reatily available parts are used throughout.

Adjusting the Clipper-Filter Amplifier

The good effect of the low-pass filter in eliminating splatter can be entirely nullified if the amplifier stages following the filter ean introduce approciable distortion. That is a primary reason for the use of negative feedback in the output stage of the amplifier described. Amplifier stages following the unit must he operated wedl within their eapabilities; in particular, the ('lass IS output transformer (if at Class 13 modulator is to be driven) should be shunted be condensers to reduce the highfrequency response as deseribed in the seetion on ('lass 13 modulators.

The setting of R_{1}; is most important. It is most casily done with the aid of an osilloseope (one having a linear swep) and an audio os(ellator, using the test set-up shown in the section on testing of speech equipment. Vie a resistance load on the output transformer to reflect the proper load resistance (5000 (ohms) at the plate of the 61%. First set R_{13} at about $\frac{1}{4}$ the resistance from the ground end, switeh in the dipper-filter, and apply a $50(0)-$ cycle sine-wave signad to the microphone input. In rease the signal amplitude until clipping starts, as shown by fattening of both the negative and positive peaks of the wave. To check whether the elipping is taking place in the elipper or in the following amplifiers, throw S_{3} to the "normal" or "out" position; the waveshape should return to normal. If it does not, return S_{3} to the "in'" position and reduce the setting of $R_{1 ;}$, until it does. Then reduce the amplifier gain by means of R_{7} until the signal is just below the dipping level. At this point the signal should be a sine wave.

Increase R_{15}, without touching R_{7}, until the wave starts to become distorted, and then back off R_{15} until distortion disappears.

Sext, change the input-signal frequency to 2000 cerclex, without changing the signal level. Slowly increase R; white observing the patorm. It this frequency it should be almost imposisible toget anything exerept a sine wave through the filter, so if disturtion apperars it is the result of overloading in the amplifiers following the filter. Reduce the setting of R_{15} until the distortion disappears, even when R_{7} is sot at maximum and the maximum available signal from the audio oscillator is applied to the amplifier. The position of $R_{i 5}$ should be marked at this point and the marked setting should never be exereded.

To find the operating setting of R_{15}, lave the atdio-oscillator signal amplitude at the value just under the elipping leved and set up the complote tramsmitter for a modulation check, using the oscilloscope to give the trape\%oidal pattern. With the ('lass C amplifior and modulator ruming, find the setting of R_{15} (keeping the andio signal just under the ripping level) that just given 100)-per-rent modulation, This selting should be below the maximum setting of R_{2} ats previously determined; if it is rot, the driver and modulator are not capable of modulating the transmitter 100 per cent and must be redesigned - or the ('lass (amplifie input must be lowered. Assuming a satisfactory sotting is found, comete a microphone to the amplifior and set the amplifier gain control, R_{7}, so that the tranmiter is modulated 100 per cent. Obsurve the pattern closely at different settings of $R ;$ to see if it is possible to overmodulate. If overmodulation does not ocour at any setting of R_{7}, the transmitter is ready for operation and k_{1}, may be locked in position; it need never he tonched subsequanty. If some overmodulation does occur, R_{15} should be backed off until it disappears and then locked.

In the absence of an oscilloseope the other methods of checking distortion described in the section on spech-amplifier testing may be used. The object is to prevent distortion in stages following the filter, so that when the elipping level is exceeded the following stages will be working within their capabilities.

Fig. 9.27 - Bothom view of the clipprer filter perch amplifier. Resisturs and con densers are grouped around the sockets to which they connet.

6L6 Modulators for Low-Power Transmitters

l'ate modulation for transmitters operating at final-stage plate power inputs up to 75 or 80 watts can be provided at relatively small cost by using Class AB 6L6s as modulators. The combined speech amplifier and modulator shown in Fig. 9-28 uses the 6I.6s as (lass AB_{2} amplifiers and has an output (from the transformer secondary) of about 40 watts. The

must be obtained from a separate supply. Fixed bias for the 6 L 6 grids is obtained from the built-in supply by taking the drop across R_{19}. This resistor, a potentiometer, should be adjusted so the voltage drop across it is $\mathbf{2 2 . 5}$ volts when the speech-amplifier stages are operating normally.

In buiding the amplifier, the usual precautions as to placement of components and wiring to avoid hum and feed-back should be

Fig. 9-28-A 40-watt montulator of inexpensive constrwetion. The second tube from the left, in the forground, is the $6.5 J$? first ampiner. The mierophone eonnector is immediately below it on the ehassis wall. Nlong the left edge, from the front, are the first and secom 6.NOG'lis and the driver tramsomer for the 616s. The ontput transformer is to the right of the 61.05 . The power trans. former and rectifier are at the far risht. observed. The mierophone connector, I_{1}, should be located close to the (6. 77 socket so the lead to the grid can be short. This load also should be shiolded.

The power supply for the 6 L (is must have good voltage regulation, since the total current varies from approximately 95 ma. with no signal to 220 mat. at full output. A heavy-duty choke-input plate supply should be used: general design data will be found in Chapter seven.

20. Watt Modulator

Fig, $9-31$ is the circuit of a speech amplifier and modulator that has an output of approximately 20 watts. This circuit also uses 6L.6s as output tubes, but the amplifier operates ('lass AB_{1} and thus requires no driving power. Because of this, fewer voltageamplifier stages are needed than in the case of the 40 -watt amplifier. Pushpull input for the grids of the 6L.6s is secured by using a single-plate-to-push-pull audio transformer between the 6.55 and the 61.6 s . In this case it is
and is resistance coupled to one section of a 6SN7GT triode amplifier. The other section of the 6SN7GT is used as a single-tube phase inverter to ohtain push-pull output. The grids of the push-pull GLos are driven by a $6 \therefore \times 7 \mathrm{CT}$, with the two sections in push-pull, through transformer T_{1}. The gain eontrol, R_{6}, is in the grid circuit of the first $6 \mathrm{SN7GT}$ section, and is shunted by condenser C_{5} to reduce the highfrequeney responste. Comdenser Cal, across the secondary of T_{1}, serves a similar purpose. The over-all cireuit constants have been chosen so that the maximum response is in the most effective sperch-frequency band. The response is chown abouf 10 db . at 100 and 3000 eycles, as compared with the range $300-1500$ cycles. The gain is more than sufficient for typical crystal microphones.

A power supply for the speechamplifier stages and for the 6 L 6 heaters is included in the unit, but the power for the $6 L 6$ plates and screens

Fig. 9.29 - L'merneath the chassis of the 10 -watt modulator. The mower-supply choke is mounted below chassis at the right. The bias. setting resistor, $R_{1 g}$. is on the rear chasis wall, at the lower right in this photograph, Oher components are grouped near the tube socket with which they are associated.

Fig. 9-30 - (iircuit diagram of the 40 -watt modulator.
$\mathrm{C}_{1}, \mathrm{C}_{6}-25-\mu \mathrm{fi}$. 2.5-volt electrolytic.
$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}-\mathrm{O} .1-\mu \mathrm{fal}$. (1)N-volt paper.
$\mathrm{C}_{3 .} \mathrm{C}_{10}, \mathrm{C}_{12}, \mathrm{C}_{14}, \mathrm{C}_{15}-8-\mu \mathrm{ft}$. F 0 - olt eleetrolytic.
Cis- $170-\mu \mu \mathrm{fd}$. mira.
Cil - $0.1-\mu \mathrm{ffl}$. 6010-volt paper.
$\mathrm{C}_{13}-0.01-\mu \mathrm{fd}$. 1200 (volt mica.
$\mathrm{C}_{16}-50-\mu \mathrm{fd}$. 50 -s olt electrolytic.
$R_{1}-4.7$ megohms, $1 / 2$ watt.
$R_{2}, R_{7}-1500$ ohms, $1 / 2$ watt.
$R_{3}-1.5$ megohms, $1 / 2$ watt.
$\mathrm{R}_{4}-0.22$ mesohm, 12 watt .
$\mathrm{R}_{5}-47,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{\mathrm{B}}-\mathbf{0 . 5}$-megohm portentioneter.
$R_{n}, R_{13}-56,000$ ohms, $1 / 2 w a t t$.
$\mathrm{R}_{9}, \mathrm{R}_{14}, \mathrm{R}_{15}-10.17$ meqohm, $1 / 2$ watt.
$\mathrm{R}_{10}-18,0100$ ohmes, $1 / 2 \mathrm{watt}$.
$\mathbf{R}_{11}-39,($ (N) ohms, $1 / 2$ watt.
$\mathrm{R}_{12}-10,000$ ohms, I watt.
$\mathrm{R}_{16}-470$ ohms, I watt.
R_{17} - 8500 ohms, 10 watts.
$\mathrm{R}_{18}-7000$ ohms, 9.5 watts.
h_{19} - $100(0$-ohm wire-wound potentiometer, 1 watl.
R_{20} - 1200 O ohms, 1 watt.
L_{1} - Amoothing choke: 12 henrys, 80 ma. ('liordiarson T20C33).
I_{1} - 6.3 -wolt pilot lamp.
J_{1} - Microphone-cable connector (Amphenol).
T_{1} - Class $1 \mathrm{H}_{2}$ driver tranformer, p.p. plates to p.p. grids (Staneor A-1416).
T_{2} - Modulation transformer, 3800 ohms to desired load (mnit shown is Stancor A-389;3).
T_{3} - Power transformer: 350 wolts each side center-tap, 70) ma.: 5 volts, 3 amp.; 6.3 volts, 3 amp. (Stiancor P'-1078).
an input of 40 watts to the r.f. amplifier. It is necossary, of course, to choose the proper output-transformer turns ratio to couple the modulator and modulated amplifier. The output stage is designed to work into a plate-to-plate load of 9000 ohms .
For the maximum power output of 20 watts, the plate supply for the amplifier must deliver 145 ma . at 360 volts. A condenser-input supply of ordinary design (Chapter Scven) may be used. The total plate current is approximately 120 ma . with no signal and 145 ma . at full output. If no more than 12 or 13 watts is needed, R_{9} and R_{10} may be omitted and all tubes fed directly from a "B" supply giving approximately 175 ma . at 270 volts.

Fig. 9-31 - Circuit diagram of a low cost modulator capalle of power outputs up 1020 watts.
$\mathrm{C}_{1}, \mathrm{C}_{2}-{ }^{2} 0$) $-\mu \mathrm{ffl}$. 50 -volt electrolytic.
$\mathrm{C}_{3}-0.1$ - $\mu \mathrm{fil} .200$-volt paper.
$\mathrm{C}_{4}-0.01$...fd. 400 -volt paper.
$\mathrm{C}_{5}, \mathrm{C}_{6}-8$ - jfl .450 -volt electroIytic.
C_{7} - $\mathbf{5 0}-\mu \mathrm{ff}$. $\mathbf{5 0}$-volt dectrolytic.
$R_{1}-4.7$ megohms, $1 / 2$ watt.
$\mathrm{h}_{2}-1500$ ohms, $1 / 2$ watt.
$\mathrm{R}_{3}-1.5$ megohms, $1 / 2$ watt.
$1 h_{4}-0.20$ megohm, $1 / 2$ watt.
$\mathrm{R}_{5}-4{ }^{2}, 000$ ohms, $1 / 2$ watt.
1_{6} - 1-megohm volume control.
R: - 1500 ohms, 1 watt.
$\mathrm{K}_{8}-250$ ohins, 10 watts.
$R_{9}-2010$ ohms, 10 watts.
$R_{10}-20,000$ ohms, 25 watts.
T_{1} - Interstape audio traniformer, single plate to p.p.grids, ratic 3:1.
T_{2}-Output tranfformer, type depending on requirements.

An 807 Modulator and Speech Amplifier

The combined speech amplificr and modulator unit shown in Fig. 9-32 is simple and inexpensive in design and, with the exception of the plate supply for the modulator tubes, is contained on a chassis measuring $3 \times 8 \times 17$ inches. With a 750 -volt plate supply, the pushpull Class $\mathrm{AB}_{2} 807 \mathrm{~s}$ are capable of a tube output of 120 watts, or enough to plate-modulate a Class C stage with 200 watts input, allowing for moderate losses in the modulation transformer.

As shown in Fig. 9-33, the first tube in the sperech amplifier is a 6.37 (a 6S.J7 may be substituted). A 6SN7GT is used in the second stage, one section serving as a voltage amplifier and the other as a phase inverter of the self-balancing type. The gain control for the amplifier is in the grid circuit of the tirst half of the tube. The third tube, also a $6 \mathrm{SN} \mathbf{2 G T}$, is a pushpull amplifier, transformer-coupled to the grids of the 807 s .

A power supply for the three tubes preceding the 807 s is built on the same chassis. Voltage for the 807 screens is taken from this same supply. The negative return of the supply goes to the chassis through the adjustable arm of potentiometer R_{17}, which is connected in series with the bleder resistor, R_{16}. The voltage developed in the section of R_{17} below the adjustable arm is negative with respect to chassis, and is used to provide fixed bias for the $807 \mathrm{~s} . C_{11}$ is connected across this section of R_{17} to by-pass any a.f. current that might flow through the resistor. A separate filament transformer is provided for the 807 heaters, since the total heater power required by all the tubes in the amplifier is somewhat in excess of the rating of the 6.3 -volt winding on the ordinary small power transformer.

Resistors R_{14} and R_{15} and condenser C_{8} are placed in the 807 screen circuit to suppress the r.f. parasitic oscillations that sometimes occur with these tubes. Their use is principally a precautionary measure, and they may not be required in some installations.
The frequency response of this unit is maximum in the range from about 200 to 2500 cy cles, for greatest voice effectiveness and minimum width of the r.f. channel. Frequencies above 2500 cycles are attenuated by condensers C_{12} and C_{13}, the former across the secondary of the driver transformer and the latter aeross the secondary of the output transformer. The capacitance values given are about optimum for the types of transformers specified and shouk be close to optimum for other transformers of similar ratings. The voltage rating of C_{13} should be at least equal to the d.e. voltage on the modulated r.f. amplifier.

The photographs show the general layout of components. The $6 J 7$ and $65 N 7 G T$ phase inverter are in line at the left-hand front edge of the chassis. The 6SN7GT driver and $5 \mathrm{l}^{\circ} 3 \mathrm{GT}$ rectilier are to the rear of the phase inverter.

The bottom view shows the by-pass condensers and resistors grouped around the sockets to which they connect. The bias-control potentiometer, R_{17}, is mounted on the rear edge of the chassis. A jack shield (National Js-1) covers the mierophone jack, and the first-stage grid resistor, R_{1}, is mounted inside this shicld. The lead to the 6J7 grid eap must be shielded and the shield grounded.

The No. 1 terminals of the driver transformer specified should be connected to the grids of the 807 s . If a different transformer is used, it should have a primary-to-secondary ratio (total) of about 1-to-1 to couple the

Fig. 9.32- 1 speceh amplifier and 807 modulator for plate modulation of transmitters up to 200 watts input. The microphone jack and the gain rontrol are at the left end of the chassis. I'lue audio emomenents and tulvesoreaps the front seetion, and the power surply for the driver tulves is laid out along the rear edge. The driver transformer is in the center foreground, with the power-supply transformer directly behind it. The large transformer at the right is the modulation transformer.

Fis. U. 33 - (irsuit diakram of the pmah-pull 80: sperch amplifier-modulator.
C. -10 - μ fil. 80 -nolt electrolstic.
$\mathrm{C}_{2}-0.1-\mu \mathrm{fi}$. 100 -volt paper.

$\mathrm{C}_{4}, \mathrm{C}_{11}-\mathbf{5 0}-\mu \mathrm{fd}$. 50 -volt electrolytic.
Cis_{5}, Cif, $\mathrm{C}_{7}-0.01_{-\mu \mathrm{fd}}$. 100-vole paper.
Cs - 0.0)(068- ff d. mieda.
$\left.\mathrm{C}_{12}-0.0 \mathrm{~N}\right) 1-\mu \mathrm{fl}$. mica (see text).
(:13-0.02- μ fil. mica (see text).
$\mathrm{R}_{1}-1$ megohm.
$R_{2}, R_{7}-1 . i 00$ ohms.
$R_{3}-1.5$ megohms.
$\mathbf{R}_{4}, R_{s}, R_{11}, R_{12}-0.22$ megolim.
$\mathrm{R}_{5}-47,0100$ ohmas.
$R_{6}-1-n e g o h m$ volume control.
$\mathrm{R}_{9}, \mathrm{R}_{10}-\mathrm{O} .1$ megohm.
$\mathrm{R}_{13}-150$ ohms.
$R_{14}, R_{15}-100$ ohms.
$\mathrm{R}_{16}-1 \mathrm{~B}, 0100$ ohms, 10 waths.

GS.77GT and 807 grids properly. The outputtransformer turus ratio will depend on the type of operation sclected and the modulating impedance of the Class C amplifier. Operated at ICAS ratings, the 807 s will doliver a tube output of 120 watts into a plate-to-plate load of (6950 ohms. This requires a plate supply capa-
$\mathrm{R}_{1:}$ - I HON -ohm wire-wound potentiometer.
(Ill resistors $1 / 2$ watt unless otherwise noted.)
1.1 - smoothing choke, 30 hy., $7 . \bar{i}$ mal., 3 10.ohm d.e. resi-tance ($\mathbf{1}$ tah 1002).
I_{1} - 6.3-volt a.e, pilot-lamp-and-sochet asembly.
It - Microphont--cable jack.
J_{2} - Panel-momenting a.e. plug (Amphenol 61-M1).
S_{1} - Sp....t. switch.
T_{1} - Push-pull plates to pu-h-pull grids ((IVC: s.9).
T_{2} - Oatput transformer, type depending on recquirements. A multitap tramformer (ITC: (1)-3) is shown in photos.
T_{3} - Filament transformer, 6.3 volts, 3 amp. (Thordarson ltelf10).
T_{4} - Power transformer, 350 volte a.e. carth side of eenter-tap, $\mathbf{7}$-mat. rating. Filament wimding: 5 v., 3 amp.: 0.3 v., 3 amp . (Stancor P-4078).

He of delivering 240 ma at 750 volts . At C(CS ratings the tubes will deliver 80 watts into a (6.400-ohm load and require a fon-volt 200 -ma. plate supply. The bias should be sot, using R_{17}, to give - 32 volts between the negative plate-supply terminal and chassis for ICAS operation, and to -30 volts for ("O operation.

Fig. 9.3.1- Below-chassia view of the 80^{-7} mondulator. The shiedted microphone jack is in the upper left-liand eorner. The filter choke is mounted in the lower left-limed corner and the 80\% ${ }^{-1}$ lament transformer is to the rear and slighty to the right of the 80 itube sockets. 'Iher rondenser for atwomating the high andio froquencies. -hown at the right-hand cond of the chaseiz, is suppertod by No. 12 wire leadk which conneret to the output terminals of the modulation transformer.

Class-B Modulators and Drivers

CLASS-B MODULATORS
Pate modulation of all but low-power transmitters requires so much audio power that the Class Bamplifier is the only practical type to use. (Included in the Class 13 category are high-power modulators of the (lass-Al3g type; whether the operation is in one class or the other is primeipally a matter of degree.)

Class 13 modulator circuits are practically identical no matter what the power output of the modulator. The diagrams of Fig. 9-35 therefore will serve for any modulator of this type that the amateur may elect to build. The triode circuit is given at A and the circuit for tetrodes at 13. When small tubes with in-directly-heated cathodes are used, the cathodes should be comnected to ground.

Modulator Tubes

Class 13 audio ratings of various types of transmitting tubes are given in the tube tables of Chapter Twenty-Five. Choose a pair of tubes that is capable of delivering sine-wave audio power equal to somewhat more that half the d.c. input to the modulated (Class ('amplifier. It is sometimes romvenient to use tubes

Fig. 9-35-Class B modulator cirenit diagrans. Tubes and circuit considerations are discussed in the text.
that will operate at the same plate voltage as that applied to the Class C stage, because one power supply of adequate current capacity may then suffier for both stages.

In estimating the output of the modulator, remomber that the figures given in the tables are for the twhe out put only, and do not include output-transformer losses. To be adequate for modulating the transmitter, the modulator should have a theoretical power capability about 25 per cent greater than the actual power needed for modulation.

Matching to Load

In giving Class 13 ratings on power tubes, manufacturers sperify the plate-to-plate load imperdance into whirh the tubes must operate to deliver the rated audio power output. This load impedanee seldom is the same as the modulating impedance of the class (: r.f. stage, so a match must be brought about by adjusting the turns ratio of the coupling transformer. The required turns ratio, priniary to scomolary, is

$$
N=\sqrt{\frac{Z_{\mathrm{p}}}{Z_{\mathrm{m}}}}
$$

where $N=$ Turns ratio, primary to secomdary
$Z_{\text {ni }}=$ Modulating impodance of (lass (${ }^{\prime}$ r.f. amplifier
$Z_{1}=$ Plate-to-plate load impedance for Class 13 tumes

Example: The modulated r.f. amplifier is to Onerate at 12,00 volts amd $2 \overline{0} 0$ ma. The power inpult is

$$
P^{\prime}=E I=1200 \times 0.25=312 \text { watts }
$$

so the modulating power remuired is $312 / 2=$ 150 watts. Increasing this hy 25% to allow for losses and a reasonable oprerating margin mives $150 \times 1.20=180$ watts. The modulating impedance of the ('lass ('staze is

$$
Z_{\mathrm{II}}=\frac{E}{I}=\frac{1250}{0.25}=5000 \text { ohms. }
$$

From the tube talles a pair of Class B tubes is selected that will give ?(M) watts output when working into a 6900 -ohm load, phate-to-plate. The primary-to-secondary turns ratio of the modulation transformer therafore should be

$$
N=\sqrt{\frac{Z_{p}}{Z_{10}}}=\sqrt{\frac{6900}{5000}}=\sqrt{1.38}=1.175: 1
$$

C'ommercial Class 13 output transformris usually are rated to work between specified primary and secondary impedances and frequently are designed for specific Class B tubes. In such a case, it will be unnecessary to calculate the turns ratio when the recommended tube contbination is used. Many transformers are provided with primary and secondary taps, so that various turns ratios can be

Fiz. $9.36-\mathrm{A}$ typical chassis layout for a Class 13 modulator. Bevond adefotate insulation for the voltages bed, and sufficient ventilation for the mondulator tulem, no partientar
 sars. If the size of the componomt: maders it necessary to bie more than one chassis, the frivar transformer may be included with the spereh amplifier. In surla caser it is adviablble to -his ld the "hot" inndion Irials to the memblator qribl= if thry hane the run ans rensiderathe diatatuec.
obtained to med the requirements of varions tube combinations.

It may be that the exact turns ratio required by a particular tube combination cannot be secured, aven with a tapped modulation transformer. Smoll departures from the proper turns ratio will have no serious effect if the modulator is operating well within its capabilities; if the actual turns ratio is within 10 per cent of the ideal value the system will operate satisfactorily. Where the diserepancy is larger, it is always possible to choose a now set of oporating conditions for the Class () stage to give a modulating impedance that can be matehed by the turns ratio of the available transformer. This may require operating the (lass C amplifier at higher voltage and less plate current, if the modulating impedance must be increased, or at lower voltage and highor current if the modulating impedanee must be decerased. However, this process cannot be carried too far without expeding the ratings of the Class (tubes for cither plate voltage or current, even though the power input is kept at the same figure. In such a case the only solution is to operate at redued imput and use less of the power available from the modulat or.

Suppressing Audio Harmonics

Distortion in cither the driver or (\%ass 13 modulator itself will cause a.f. harmonies that may lie outside the frequeney hand needed for intelligible speech transmission. While it is almost impossible to avoid some distortion, it is possible to cut down the amplitude of the higher-frequency harmonies. The purpose of condensers C_{1} and C_{2} across the primary and secondary, respectively, of the Class B output transformer in Fig. ?) 35 is to reduce the strength of harmonics and unnecessary high-frequency components existing in the modulation.
The condensers act with the loakage inductance of the transformer winding to form a
rudimentary low-pass filter. The values of capaciance required will depend on the load resistance (modulating impedance of the Class (amplifier) and the leakage inductanee of the particular transformer used. In general, capacitances betwern about 0.001 and 0.006 $\mu \mathrm{fd}$. will be required; the larger values are neeessary with the lower values of load resistance. A test set-up for measuring frequency response (deseribed in a later seetion in this chapter) will quickly show the optimum values to use, if a small assortment of condensers is on hand for experimenting. The object is to find the combination of C_{1} and C_{2} that will give the mosi rapid reduction in response as the sirnal froguency is raised above about 2500 a yeles.

The voltage rating of each condenser should at least be equal to the d.e voltage at the transformer winding with which it is associated. In the rase of (2 , part of the total eat paritance required usually is supplied bey the plate hy-pass or hocking condenser of the modulated amplifier, so C2 noed only be large enough to make up the difference.

Grid Bias

Many modern transmitting tubes designed for Class 13 atudio work can be operated without grid bias. Besides climinating the need for a grid-bias supply, this raduces the variation in grid impedance owor the atodo-frequeney ereleand thas gives the driver a more eonstant load into which to work. With these tubes, the grid return lead from the center-tap of the driver transformer secondary is simply conneeted to the filament center-tap or cathode.

When the tubes require bias, it should always be supplied from a fixed voltage source. Neither cathode hias nor grid-leak bias can be used with a (lass 13 amplifier; with both types the bias changes with the amplitude of the signal voltage, whereas proper operation demands that the bias voltage be unvarying no matter what the strength of the signal. When only a small amount of hias is required

Fik. 9.38 - Negative feed-back cirenits for drivers for Class B modulators. A - Single-ended beam-tetrode driver. If V_{1} and l_{2} are a $6 J 5$ and 6 V 6 , respertively, the following values are suggested: $R_{1}, 47,000$ ohms: $R_{2}, 0.4^{-1}$ meqohm: $R_{3}, 250$ ohns: $R_{4}, R_{5}, 22,0$ (N) ohnos; (.1, $0.01 \mu \mathrm{fd} .: \mathrm{C}_{2}, 50 \mu \mathrm{fu}$.

3 - Push-pull heam-tetrole Iriver. If V_{1} is a 6.5 and I_{2} and I ${ }_{3}$ 6 L 6 s , the following values are $s u g \mathrm{~g}_{\mathrm{c}}=\mathrm{ted}: R_{1}, 0.1$ megolim: R_{2}. 22,000 ohms; $R_{3}, 250$ ohms; $(1,0.1 \mu \mathrm{fl} . ;(2,100 \leadsto \mathrm{fd}$.

Such high-frequency harmonies can be reduced by connecting condensers across both the primary and secondary of the output transformer as previously described.

Operation Without Load

Excitation should never be applied to a Class B molulator until after the Class: amplifier is turned on and is drawing the value of plate current required to present the rated load to the modulator. With no load to absorbs the power, the primary impedance of the transformer rises to a high value and excessive audio voltages are developed across it - frequently high enough to break down the transformer insulation. If the modulator is to be tested separately from the transmitter, a resistance of the same value as the modulating impedance, and eapable of dissipating the full power output of the modulator, should be connected aeross the transformer secondary.

DRIVERS FOR CLASS-B MODULATORS

Class B amplifiers are driven into the gridcurrent region, so power is consumed in the grid circuit. The preceding stage or driver must be capable of supplying this power at the required peak audio-frequency grid-to-grid voltage. Both of these quantities are given in the manufacturer's tube ratings. The grids of the Class 13 tubes represent a variable load resistance over the audio-frequency cycle, because the grid current does not increase directly with
the grid voltage. To prevent distortion, therefore, it is necessary to have a driving source that will maintain the waveform of the signal without distortion even though the load varies. That is, the driver stage must have good regulation. To this end, it should be capable of delivering somowhat more power than is consumed hy the (lass 13 grids, as previonsly descrithed in the discussion on sperech amplifiers. It is also desirable to use an input coupling transformer having a turns batio giving the largest step-down in the voltage between the driver plate or plates and the Class 13 grids that will permit ohtaining the specified grid-to-grid a.f. voltage.

The driver transformer, T or T_{2} in Fig. 9-37, may couple directly botween the driver tube and the modulator grids or may be designed to work into a low-impedance (200- or 500-ohm) lime. In the latter case, a tube-to-line out put transformer must he used at the output of the driver stage. This type of coupling is reeommended only when the driver must be at a considerable distance from the modulator; the second transformer not only introduces additional losses but also impairs the voltage regulation of the driver stage.

Driver Tubes

The variation in grid resistance of a Class 13 amplifier over the audio-frequency cycle posess a special problem in the driver stage. To avoid distortion, the driver output mollage (not powner) must stay eonstant (for a fixed siphal voluge on its grid) regardless of the variations in load resistance.

The fundamental requirement for good voltage rogulation in any dectrical generator is that the internal resistance must be low. In a vacuum-tube amplitier, this means that the tubes must have a low value of plate resistance. The best tubes in this respect are low- μ triodes (the 6.A3 is an example) and the worst are tetrodes and pentodes as represented by the 6 V 6 and 61.6 . This does mot mean that tetrodes (or pentodes) cannot be used, but it does mean that they should not be used without taking measures to reduce the effective phate resistance (see next section).

In seleoting a driver stage always chonse Class A or $A B_{1}$ operation in preference to Class $A B_{2}$. This not only simplifies the speechamplifier design but also makes it easier to apply negative feed-baek to tetrodes for reduction of plate resistance. It is possible to obtain a tube power output of approximately 25 watt (from 6I,6s) without going beyond Class $A 13_{1}$ operation; this is ample driving power for the popular Class 13 modulator tubes, aven when a kilowatt transmitter is to the modulated

The rated tube output (as shown by the
it can be ohtained conveniontly from a few dry colls. When greater values of hias are repuired, a heavy-duty "B" battery may ln" used if the grid current does not exeered 40 or 50 milliamperas on voioe peaks. Even thongh the batteries are eharged by the grid eurrent rather than disoharead, a hattery will deteriorate with time and ita internal resistanee will increase. When the inerease in internal resistancer beeomes approeriable, the battery temeds to atet like a grid-latak resistor and the hias varies wilh the appliad signal. Bathories should be chacked with a voltmotor oce:asionally while the amplitier is operatingr, If the bias varies more than 10 pere aent or so with voise exritation the hathery should be roplamed.

As an allarnative to bitteries. a merulatod bias supply may be used. This type ot supply is deseribed in ('hapter seven.

Plate Supply

The plate supply for a (lass B modulator shonld bo sufficiontly woll filtered to prevent hume motalation of ther.f. stage. An additional requirement is that the output comblonser of tho supply should have low reatetance, at 100 (ryeles or loss, eompatiod to the leat into which

 compling to grids; B, tran-former eoupling. R_{t} in A i- the phate rosiator for the preceding atage, value determined hy the type of talie and oprat-
 and grid resistor, respectively: value, also may be taken from lialile 9.1.

In beth circuits the output trannformer, $T_{,} I_{2,}$ should have the proper turns ratio to comple bertwen the driver tubtes and the class B yrids. T_{1} in 13 is usually a $2: 1$ tranaformer, semomary to primary, R, the cathode resistor, should be calculated for the partieniar tubes used, 'I he value of C, the eathode by-pasis, is determined as deweribed in the text.
ach tube is working. (This load is onc-fourt of the plate-to-plate load resistance.) A $t-\mu \mathrm{d}$ output rondenser with a 1000 -voll supply, or : $2-\mu$ fit. condenser whith a 2000 -volt supply usially will be satisfactory. With other plata voltages, condenser values should be in inverse propurtion to the plate voltage.

To keep distortion at a minimum, the volt are regulation of the plate supply should be as good as it can be made. If the d.e. output voltage of the supply varies with the amont of current taken, it should be kept in mind that the voltage at moximum current delermine: the amount of power that (ath be taken from the modulator without distorion. A supply whose voltage drops from 1 goo at no load to 1250 at the full modulator plate current is a 1250-volt supply, so far as the modulator is comermed, and any estimate of the power outputavailable should be hased on the lower figure.

It is particulanly important, in the case of a terode Class B stage, that the sermen-voltate power-sapply source have exedent regulation, to prevent distortion, The sereen voltatge should be set as exactly as possibhe to the recommended vathe for thor fular.

Overexcitation

When a Class 13 amplifier is overdriven in at attempt to secure more than the rated power, distortion increases rapidly. The high-frequency harmonies which result from the distortion modulate the transmitter, producing spurious sidebands which can caluse serions interference over a band of frequearies several times the channel width required for speech. This may happen even thongh the transmitter is not being overmodulated. It will happen if the mondulator is incapable of delivering the power required to mudulate the transmitter fully, or if the Class C amplifier is not adjusted to give the proper modulating impedance.

As previousty stated, the tubes used in the Class is modulator should be eapable of somewhat more than the power outpat nominatly required. In addition, the Clase (C : mplifier should be adjustad to give the proper modulating impedane and the correct output transformer turns ratio should be used. Even though means may be incorporated in the speech amplifier to attenuate frequancies above those neecessary for intelligible sperch, it is still possible for high-frequency sidebands to be radiated if distortion occurs in the modulator, or if the transmitter is overmodulated.
tube tables) should be reduced by about 20 per cent to allow for losises in the (lass B input transformer. If two transformors are used, tube-to-line and line-to-grids, allow about 3 3 per cent for transformer losses, Another 25; per cent should be allowed, if possible, as a safety factor and to improve the voltage regulation,

Pige 0 - 37 shows representative eircuits for a push-pull 1 riode drivar using mathole bias. If the amplifier operates (lases A, the cathode resistor need not be by-passed, locause the a, f. "urrents from warh tube flowing in the eathode resistor are out of phase and cancol each other. However, in Class AB operation this is not true: considerable distortion will be generated at high signal levels if the cathode resistor is not by-pasiol. The by-pass rapacitance required can be caleulated by a simple rule: the cathode resistance in ohms multiplied hy the by-pass capacitance in microfarads should equal at least 25,000 . The voltage rating of the condenser should be equal to the maximum bias voltage. This can be found from the maxi-mum-xignat plate curront and the cathode resistance.

> Examote: A pair of 6.A3s is to be used in ('lass $A B_{1}$. elfebiased. From the thbe tables, the (athode resistatree shonalid be 780) ohmos and the maximum-signal pate currath 120 ma. Frem Ohm's Law.
> $E^{\prime}=K I=-60 \times 10.12=36.15$ volt .
> From the rule mumbed previously, the ter-pasis capacitance requires is

> A 40 - or $80-\mu \mathrm{fd}$. 10 m$)$-volt electrolytic condenver would be satisfactors:

Negative Feed-Back

Whenever tetrodes or pentodes are used as drivers for (lass 13 modulators, negative feedback should be used in the driver stage. This will reduce the distortion caused by the variable learl resistance represented by the Class 13

Fig. 9.34-1)uiput voltager regulation of twotype of heam-tetrode drivers with nogative fred-hach. For somparisen, the regulation with a pair of 3.13- (me frefl-lack) alor is shown.
grids. It also redures the distortion inherent in the driver stage itself, when properly applied. The effect of feed-back is to reduce the apparent plate resistance of the driver, and this in turn hedps to maintain the a.f. output voltage at a more constant level (for a constant signal on the grid) when the load resistance varies. It is readily possible to reduce the plate resistance to a value comparable to or lower than that of low $-\mu$ triodes such as the 6 A 3 .

Suitable circuits for single-ended and pushpull tetrodes are shown in Fig. 9-38. Fig. 9-38A shows resistance coupling between the preceding stage and a single tetrode, such as the 6V6, that operates at the same plate voltage as the preceding stage. P'art of the a.f. voltage aeross the primary of the output transformer is fed back to the grid of the tetrode, V_{2}, through the plate resistor of the preceding tube, $\sqrt[V]{l}$. The amount of voltage so fed back is determined by the voltage divider, $R_{4} R_{j}$. The total resistance of R_{4} and R_{5} in series should be large compared to the rated load resistance of \dot{F}_{2}. Instead of the voltage diviter, a tap on the transformer primary can be used to supply the feed-back voltage, if such a tap is available.

The ambunt of feed-back voltage that appears at the grid of tube V_{2} is determined by R_{1}, K_{2} and the plate resistane of V_{1}, as well as by the relationship betwern R_{4} and R_{5}. (alculation of the feed-back voltage, alt hough not mathematieally difficult, is not ordinarily practicable because the plate resistance of l_{1} is seldom known at the particular operating conditions used. Circuit values for a typieal tulne combination are given in detail in Fig. 9-38.

The push-pult cireuit in Fig. 9-38B requires an audio transformer with a sphit secondary. The feed-back voltage is obtained from the plate of each output tube by mearis of the voltage divider, $R_{1} R_{2}$. The blocking conderiser, C_{1}, prevents the d.c. plate voltage from being applied to $R_{1} R_{2}$: the reactance of this condenser should be low, compared with the sum of R_{1} and R_{2}, at the lowest audio frequency to be amplified, Also, the sum of R_{1} and R_{2} should be high eompared with the rated load resistance for V_{2} and V_{3}.

In this circuit the feed-back voltage that is developed across R_{2} also appears at the grid of V_{2} (or V_{3}) because there is no appreciable current flow (in the usual audio range) through the transformer secondary and gridcathode circuit of the tube, provided the tubes are not driven to grid current. If the grid-cathode impedance of the tubes is relativelylow, as it is when grid current flows, the feed-back voltage decreases because of the voltage drop through the transformer secondary. The circuit should not be used with tubes that arc operated Class

Fig. 9. f0 - Cirenit diagram of speesh ammlifier using blow with nematise feed-back, suitable for driving Class 18 modulators up to .500 watts output.

(2_{2}, C $0, C_{10}$ - II. $1-\mu$ fil. 100-volt paper.

R_{1} - $\because .2$ mexolims, $1 / 2$ wat .
$R_{2}, R_{5}-1.300$, ohms, $1 / 2$ watt.
$1 h_{3}-1.5$ meqolms, $1 / 2$ watt.
K_{4} - 0.2 z memohm, i.2 wall.

Ha-1-meqohm volume control.
A 3_{2}. The per cent feed-back is

$$
n_{1}=\frac{R_{2}}{R_{1}+R_{2}} \times 100
$$

where n is the feed-back pereontare, and R_{1} and R_{2} are commerted as shown in the diagram. The higher the feed-back perecontage, the lower the effective plate resistance. However, if the percentage is made too high the preceding tube. V_{1}, may not be able to developenough voltages. through T_{1}, to drive the push-pull stage to maximum output without itself genorating harmonic distortion. Distortion in V_{1} is not compernsated for by the feed-back circuit. If V_{2} and V_{3} are flobs operated self-biased in Class $A B_{1}$ with a load resistance of 9000 ohms, V_{1} is a 6.5 5, and T_{1} has a turns ratio of 2-to-1, total seeondary to primary, it is possible to use over 30-perecent feed-hack without going beyond the output-voltage capatrilities of the 6.J. Actually, it is umecossary to use more than about 20 -perement feed-hark. This value reduees the offertive plate pesistane to the point where the output voltage regulation is better than that of $6.13 s$ or 2.43 s without feed-hack.

Instead of the voltage-tivider arrangement shown in Fig. 9-3813 for obtaining feed-back voltage, a scparate winding on the output transformer can be used, provided it has the proper number of turns to give the desired feed-hack pereentage, special transformers are available for this purpose.

The improvement in constancy of output voltage resulting from the use of mative fred-back is shown graphically in Fig. 9-39. In order to compare the various types of tubes, the variation in output voltage is slown as a

Re - 0.5^{-}m.gohm, $1 / 2$ watt.
$R_{1 n}-1.300$ ohms, 1 watt.
$R_{11}-10,0000$ ohmers. $1 / 2$ watt.
$R_{12}, R_{13}-0.1$ mexohm, I watt.
$R_{14}, R_{15}-20.0110$ ohms, $1 / 2$ watt.

1R17-2mon olims, 10 watts.
'I, - Jnteratace audio, $2: 1$ secondars (lotal) to primary, with eplit aroondary wimbling.
I_{2} - Class is input tran-fornuer in suit modulator tubers.
procentage of the output voltage when the tubes are working into the rated load. The load resistance atso is expressed as a percontage of the rated load resistance for the particular tube, or pair of tubes, used.

SPEECH-AMPLIFIER CIRCUIT WITH NEGATIVE FEED-BACK

A circuit for a speech amplifier suitable for driving a Class 13 modulator is given in frig. 9-10. In this amplifior the 6L6s are operatted (${ }^{(l a s e s}$ AB3 and will deliver up to 20 watts to the grids of the (lass 13 amplifier. The feedback circuit requires no adjust mont, but does require an interstage transformer with two separate secomdary windings (split secondary).

This amplifier may be constructed along the same lines as in lig. $9-28$, observing the same precautions with respect to shielding the 6is. 17 grid circuit. Although the power output is the same as from the amplifior of Fig. ! -31, an additional voltage-amplifier stage is incorporated in the circuit. This is necessary because the voltage ford back from the plates to the erids of the fil.fis opposis: the voltage from the preceding stage, so the latter must be increased in order to maintain the same power output from the 6L.6s. In turn, this neressitates more wer-all voltage gain that is required to drive (lass $.13_{1} \mathrm{p} \cdot \mathrm{p}$. biltis without feed-back.

The oupput transformer, 7 , should be selocted to work betwern a 9000 -ohm plate-toplate load and the grids of whatever Class 12 lubes will be used. The power-supply requirements for this amplifier are essentially the same as for the amplitior of Fig. 9-31.

Checking 'Phone-Transmitter Operation

SPEECH EQUIPMENT
Fivery phone tramsmitter requires cherking before it is initially put on the air. An adequate job can be done with erpuipment that is neither elaborate nor expensive. 1 simple set-up is shown in Fig. 9-41. Thir only equipment that is not likely to be already at hathe is the atudio oscillator (the construetion oil a rery simple one is described in (hapter sixtern). The woltmeter - one that operates at andio frequenemes is neeessary - "an be alty multirange volt-ohm-milliammeter that has a reatifier-type a.e. range. The hemdsot is induded for atural cherking of the amplifier performaner.

The audio oscillator usually will have an output control, but if the maximum output voltage is in excess of a volt or so the output setting may be rather critioal when a highgain speech amplifier is being tested. In such cases an attenuator surh as is shown in Fig. $9-41$ is a convenience. Fiarh of the two voltage dividers reduces the voltage be a factor of roughly 10 to 1 , so that the over-all atternuation is about 100 to 1 . The relatively low value of resistamere, R_{4}, acrass the input terminals of the amplifier also will minimize at rat hum piek-up on the connereting loads.

 The andiodsidillator fremumbey range should be from about lous to $\overline{3}$ (h) or more eveles. It is not necoesary that it be continuously variable; a number of "spot" frequencien will be satinfacetory. Suitable resistor salues are: R_{1} and $R_{3}, 10,010$ ohms: K_{2} and K_{4}, 1000 ohms: R_{6}, rated load resistanee for amplifier output slage: $R_{\text {B. }}$ determine hy trial for comfortable headphone level (2.5 to 100 ohms, ordinairily). Vis a high-resistance a.c. voltmeter, multirange reetifier type.

As a preliminary cherek, eover the mierophone input terminals with a metal shifeld (with the audio oscillator and attenuator diseonnected) and, while listening in the headser. note the hum level with the amplifer gatia control in the off position. The hum should be rery low umder these conditions. Then inerease the gain-control setting to maximum and observe the hum: it will no doubt inerease. Then romere the adudio oscillator and attenuator athd, starting from minimum signat, incre:as the audio input voltage until the voltmeter indicates full power output. (The voltage should equal $\sqrt{P R}$, where I ' is the experted powser output in watts and R is the load rexistance Rain the diagram.) While indreasing the input. listen carefully to the tome to see if there is tay change in its chamater. When it begins to
sound like a musical ortave instead of a single tone, distortion is begimning. Ascoming that the output is substantially without adudible distortion at full output, substitute the mierophone for the audio waillator and spak into it in a normal tone while watching the voltmeter. Redure the gain-control selting until the meter "kicks" nearly up to the full-powor reading on voice paaks. Note the hum level, as read on the voltmoter, at this print: the hum level should not exered one or two per cent of the voltage at full output.

If the hum level is too high, lhe amplifier stage that is causing the trouble can be located by temporarily short-rimenting the grid of each tube, in turn, to ground. When shorting a particular grid makis a marked decrease in hum, the hum presumably is coming from a preseding stage, athough it is prosible that it is getting its start in that partirular grid circuit. If shorting a grid doess mot decreatser the hum, the hum is originating cither in the plate cirecuit of that tube or the grid circonit of the next. Avide from wiring errors, : defortive tube, or inalequate matresupply filtering, ohjerotionable hum nastally originates in the firsi stage of the amplifier.
If distortion occurs bebow the print at which the experted power output is sereured, the stage in whieh it is oceurring can be located by working from the last stage toward the front end of the amplifier, applying a signal to cach grid in tarn from the addio oscillator and adjusting the signat voltage for maximum output. In the case of push-pull slages, tho signal mas be applied to the primary of the interstage transformer - "fter diseommerting it from the plate-voltage sourere. dssuming that normal dosign principles have been followed and that all stago are theoretically working within their capabilities, the probable auses of distortion are wiring errors (wuch ats areidental short-rireuit of a rathode resistor), defective romponents, or a: of wrong values of resistance in cathode and plate: cireuits.

Using the Oscilloscope

Spereh-antulifier chacking is farilitated considerably if an oveilloweope of the tope havian amplifiers and a linear sweep rirevit is available. A typical set-up for using the oseilloscope is shown in Fig. 9-42. With the connertions shown, the sweep cirmit is not required but horizontal and vertical amplifiers are necessary. Audio voltage from the oscillator is fed directly to one oscilloseope amplifier (horizontal in this rase) and the output of the sperech amplifier is commerted to the other. The scope amplifier getine should be adjusterd so that each signal gives the same line length with the other signal shat off.

Coder these ronditions, when the input and output signals are applied simultameonsty they are compared direetly. If the speech amplifier is distortion-free and introduces no phase shift, the resulting pattern is simply a straight line, as shown at the upper left in fig. $9-43$, making an angle of about 45 degrees with the horizontal and vertical axes. If there is no distortion but there is some phate shift, the pattern will be a smooth ellipse, as shown at the upper right. The greater the phase shill the greater the cendency of the ellipse to grow into at cirele. When there is even-harmonie distortion in the amplifier one end of the line or ellipse beoomes curved, as shown in the second row in Fig. 9-43. With odd-harmonic distortion surh as is chararteristia of overdrivera push-pull stages, the line or ellipse is curved at both ends.

Patterns such as these will be ohtaned when the input signal is a fairly good sine wave. Ther will tend to berome complicated if the input waveform is complex and the sureech amplifier introdures improper phase shifts. Most amplifiers will be quite satisfactory in this respert in the medium aturlio-freduenes range, so it is advisable to cherk for distortima with a frequence in the virinity of sol cerches.
(ienmatly speaking, it is catsior to depert small amounts of distortion with the tope of pattern shown in Fig. 9-43 that it is with the waveform pattern obtained be feeding the output signal to the vertioal plates and makine use of the linear sweep) in the 'soope. This is berause it is quite cass to determine whether or not a line is straight, but not so casy to decide whether or not a pattera displayed bex the swerp direuits meets giver specifations. The waveform pattern ean be used satislatetorily, howerer, if the signal from the andis, osciliator is a reasonably good situe wate. Onte simple method is to examine the output of the oseillator alone and trace the pattern on a sheet of tramsparent paper. 'The pattern givern by the output of the amplifier can then be compared with the "standard" patter"u by adjusting the oscilloseope gain to make the twon patterns coincide ats closely ats possible. The pattern diserepancies are a measure of the distortion.

In using the oncilloseope catre must be used to avoid introducing hum voltages that will

 for distortion. These commertions will result in the type of pattern shown in Fig. 9-13, the horizontal swerp teeing provided by the audio input nigual. For wayeform pat terns, omit the comection between the andionsoillator and the horizontal amplifier in the 'scope, and use the horizontal lincar sweep.
upsed the measurements. Hum pirk-up on the ssoope leads or other exposed parts such ats the amplifier load resistor or the volt meter can be detected be shutting off the atulio oscillator and spereh amplifier athe connerting first one atud then the other to the vertical plates of the 'soope, setting the internal horizontal swore to

 thms -hown in Fig. 9.12. Demending on the nomber of stages in the amplilier, the patorn may slope upward to the right, as shown. ur upwarl ter the left. Nst, depending on where the dietortion orixinates, the bursature in the seforal row may appear cither at the topor lattom of the line or ellipse.
an appropriate width, The trate should be at straight horizontal lime when the verticat sain control is set at the prosition used in the artaal measurements. Waviness in the line indiates ham. If the hum is not in the 'sope itself (cherek be diseonnecting the leads at the instrument) make sure that there is a goond ground combertion on all the equipment and, if meressary, shimd the hot leads.

The oseilluseope rath be used to good advantage in stage-ber-stage testing to rhook Watroforms at the grid and plate of eath stage and thus to detromine rapidly where a sourew of trouble mase be located. When the seoper in commeded to "ireuits that are bot at mroumd potential for d.e., a condenser of about 0.1 ufd. should be comoceted in series with the hos asibloseope lead. The probe leate should be shielded so that it will not pick up hum.

- Class-b MODULATORS

Once the spereh amplifior is in satisfactory working condition, the Class B modulator call be checked by similar means. A simple cireuit
is shown in Fig. 9-41, The resistance of R_{1} should be equal to the modulating impedanere of the Class (B amplitier to be modulated, amal the resistor should hater a power rating erpatal to the rated power output of the modulatore (a aloulate the voltage to be expere ted acroses R_{1} at full ontpul: if it exreeds the range of the metor the metor may be conmeded across say

half or one-fourth of R_{1} athd the readings multi-
 will be nemded at k, in the average case, to give a good signal in the headphones. Is a safoly precantion, gromel the chtput terminal to which the headphomes arr commeeted and use a resistor at low that hats ample curvernratrying capacily.

Hum will sedtom be a problem in the mondulathe. Jistortion may be choreked as desoribed previously: the ascilloseope is exeellont for this purpose. If a variable-fregueney athedo oscillator is used, a wherk on the fredueney response of the wer-all sestem can be ohtamed by varying the oseillater fremueney (cherek its output voltage at each frequency changer and observing the variation in the modulator outpat voltage. The high-fredueney response of the *istem can be attentathed by trying rondensers of various values arrose the primary and somodary of the outpat transformer, as pointed out in the discussion on Class 13 modulators. 'The object is to reduce the ra-

 by the trammitter will hot be exeessive. A simple mothod of adjustment is to apply an andio tome of about bone revers and inerease its amplituda until distortien becomes notiresable: when this occurs the fone no longer somble parm but somads like a musional odave. 'Theremalemser values should then be adjusted until the test fome sumble pure again at the satur- xignal amplitude.

- THE MODULATED AMPLIFIER

Propur adjusiment of a phone tramsmitier is alided immeasurably by the oscilloseoper it will give more information, more aceurately, than almost any collection of other instruments that might be named. Furthermore, an oscilloscope that is entirely satisfactory for the purpose is not necessarily an expensive instrument: the eathode-ray tube and its power supply are about all that are neoded. Amplifiers and linear sweop cirenits are by no mesths neecssiay.

When using the fule without a sweep circuit, matio-frequency voltage from the modulated amplifior is applied directly to the vertical deflection plates of the tube, and audiofrequency voltage from the modulator is applied in the horizontal deffection plates. As the amplitude of the horizontal signal varies, the r.f. output of the tramsmitter also varios, and this produces a wedge-shaped pattern of trapezoid on the sereots. If the oseillosoope has a horizontal swerp, the r.f, voltage is appliad to the vertieal platas as before (never through an amplitier) and the sweep produces a pathern that follows the modulation envelope of the transmitter output, provided the sweep frequency is lower than the modulation from guency. This produces a wave-envelope modulation pattern.

Oscilloscope connections for both types of patterns are shown in Fig, 9-4. . The conner times for the wave-envelope pattern are somewhat simpler than those for the trapezoidal figure. The vertieal deftection phates are couphed to the amplifur tank coil (or an antemat coil) through a fwisted-pair line and piok-up coil. As shown in the altornative drawing, a resomant circuit tuned to the operating frequeney may be conneded to the vertieal plates, using link coupling betwern it athe the trammilter. This will mininate r.f. hamomies,

and the luning eontrol provides a means for adju-1 ment of the pattern hoight.

Tor got a wave-envelope pattern the position of the piek-up enil should be varied until a carrier pattorn, fig. ! b -463, of suitable height is ohtained. The horizontal sweep voltage should be adjusted to make the width of the pattern somewhat more than half the diameter of the screen. When voice modulation is applied, a rapidly-changing pattern of varving height will be oldained. When the maximum height of this patern is just twiee that of the carrier alone, the wave is being modulated

100 per cent. This is illustrated by Fig. 9-46I), where the point X represents the swerp line (reference line) alone, $\gamma Z Z$ is the carrier height, and $P Q$ is the maximum height of the modulated wave. If the height is greater than the distance $P Q$, as illustrated in E, the wave is overmodulated in the upward direction. Overmodulation in the downward direction is indicated by a gap) in the pattern at the reference axis, where a single bright line apporas on the soreen. Overmolulation in wither diredtion may take phace even when the modulation in the other direction is less than 100 per ernt.

Connections for the traposoidal pattern are shown in Fig. 9-45B. The vertical plates are coupled to the transmitter lank circuit

Fig, 9-f6-Waveanvelope aml trapmaida! patterns representing different combitions of modulation.
through a pick-up loop; alternatively, the tuned input circuit to the oscilloscope may be used. The horizontal plates are coupled to the output of the modulator through a voltage divider, $R_{1} R_{2}$. R_{2} should be a potentiometer so the audio voltage can be adjusted to give a satisfactory horizontal sweep on the screen. R_{2} may be a 0.25 -megohm volume control. The value of R_{1} will depend upon the audio
output voltage of the modulator. This vollage is equal to $\sqrt{P R}$, whore P is the audio power output of the modulator and R is the modulating impedance of the modulated r.f. amplifier. In the case of grid-bias modulation with a $1: 1$ output transformer, it will be satisfactory to atssume that the anc: ouppot voltage of the modulator is equal to 0.7 E for a single tube, or to 1.4E' for a push-pull stage, where E is the d.e. phate vollage oll the modulator. If the transiomer ratio is wher that 1:1, the volage so calculated should be multiphied by the actual socodary-to-primary turns ratio.

The wad resistance of R_{1} and R_{2} in series should be 0.25 megohm for every 150 volt: of modulator wotput f for example, if the modulafor output wollage is 600, the total resistance should be four (6 (i) $0 / 150$) times 0.25 megohm, or 1 megohm. Then. with 0.25 megohm at R_{2}, R_{1} should be $0 . \pi .5$ megohm. For good lowfrequency coupling the capacitance, in mierofarads, of the bowking condenser, C, should at least equal $0.004 / R$, where K is the total resistane. ($R_{1}+K_{2}$) in megolmes. Thus in the example above, whore R is 1 megohm, the rapacitance required is $0.004 \mu \mathrm{fd}$. The voltage mating of the rondenser should be at least twise the d.e voltage applied to the modulatend amplifier that is, the same as the rating of the plate by-pass condenser in the final stage. The eapacitance can be mate up of two or more similar units in series, so long ats the total (aparatiance is equal to that required, in case units of sufficient voltage rating are not available; or of two or more units in parallel if condensers having adguate voltage rating but insufficient capaciance are avaibable.

Trapezoidal patterns for various emoditions of modulation are shown in Fig. 9-46 at F' to. J, Bach alongside the corresponding wave-envehope pattern. With no signal, only the eathoderay spot appoars on the serven. When the unmodulated carrier is applied, a vertical line appears; the length of the line should be adjusted, by means of the pick-up coil coupling. to) a convenient value. When the carrier is medulated, the wedge-shaped pattern appear": the higher the modulation percentage, he widher and more pointed the wedge becomes. At 100-per-wnt modulation it just makes a point on the axis, X, al one cond, and the height, $P(Q$, at the other end is equal to 1 wice the carricer height, $Y \%$. Oxermodulation in the upward direction is indicated by increatsed height ower P (l) and in the downward direction by an extension along the axis x at the pointed end

Modulation Monitoring

It is always dexirathe to motulate as fully as pussible, but 100-per-cent modulation should not be exceceled - particularly in the downward direction - because harmonic distortion will be introduced and the channel width increased. This causes unneresary interference to other stations. The oseilloscope is the best instrument for continuously checking the

Nemlinararits in modulatend r.f. stake, frequently caused by insuflicient excitation of a whate-mondulated amplitior or overexpeitation of a grid. lidas mondulated amplifier. The amplifier modulatem linearly in the downward direvtion but the up-peaks are llattened.

Properly-operated 'phone transmitter monlulated low aner cerot.

Orermendulation of a trans. mitter having high modulation capability. Di-tortion escurs only on the down-peaks.

Overmedulation and nome linear operation (insufficient modulation capability). 'These patterns are similar to those directly above, but with the modulation carried heyond 100) per cent in the downward direction.

Overmondulation and parasitic oscillations in the modulated amplifier. The trapezondal pattern also shoms phase distortion caused by incorrest rouphing between the oscilluscope and audio systerm.

Ioff - Ploiare dinhurtion cansed ly incorrect coupling between audin system and oscilloserome. Right - Multiple pattern caused by ineorrect setting of serilloserpe time-base control. In both cases the wave is modulated l(M) per cent.

PHOTOGRAPII OF TYPICAL OSCIJIONCOPE PATIIFERS
These photographs show various conditions of modulation as di-played by the wedge or trapezoidal patterns in the left-hand column and the wave-cnvelope patterns in the right-hand column.
(I'hotographis reproduced through courteny of the Allen IS. DuMont Latoratories, Ine., Passaie, N. J.)
modulation. However, simpler indieators may be used tor the purpose, onee calibrated.

A convenient indicator, when a Class B modulator is used, is the plate milliammeter in the Class B stage, since plate current fluctuates with the voice intensity. Using the oseilloscope, determine the gain-control setting and voice intensity that give 100 -per-cent modulation on voice peaks, and simultancously observe the maximum Class 13 plate-milliammefer reading on the peaks. When this maximam realing is obtained, it will suffice to adjust the gain so that it is not exceeded.

A sensitive rectifier-type voltmoter (copporoxide type) also can be used for modulation monitoring. It should be connected ateross the output circuit of an audio driver stage where the power level is a few watts, and similarly calibrated against the oscilloseope to determine the reading that represents 100 -per-cent modulation.

The plate milliammeter of the modulated r.f. stage also is of some value as an inticator of overmodulation. The average plate curvent stays constant if the amplifier is linear, so the reading will be the same whether or not the transmitter is modulated. When the amplifier is overmodulated, especially in the downward direction, the operation is no longer linear and the average plate current will change. A flicker of the pointer may therrfore be taken as an indication of overmodulation or nonlinearity. However, it is possible that under some operating conditions the average plate eurrent will remain constant even though the amplifier is considerably overmodutated. Therefore an indicator of this type is not wholly reliable unless it has been checked previously against an oscilloseope.

Linearity

The linearity of a modulated amplifier may readily be ehoeked with the oscilloseope. The trapezoidal pattern is more easily interpreted than the wave-envelope pattern, and less auxiliary equipment is required. The connections are the same as for measuring molulation percentage ($\mathrm{Fig} .9-45 \mathrm{~B}$). If the amplifier is porfectly linear, the sloping sides of the trapezoid will be perfectly straight from the point at the axis up to at least 100 -per-cent modulation in the upward direction. Nonlinearity will be shown by curvature of the sides. Gurvature near the point, causing it to approach the axis more slowly than would orcur with straight sides, indicates that the output power does not decrease rapidly enough in this region; it may also be caused by positive feed-back (a push-pull amplifier is recommended because better neutralization is possible than with single-ended amplifiers) or by r.f. leakage from the exciter through the final stage. The latter condition can be cheoked by removing the plate voltage from the modulated stage, when the carrier should disappear, leaving only the beam spot remaining on the sereen
(Fig. ! - fiff). If a small vertieal line remains, the ampllter should be reneutralized; if this doess not eliminate the line, it is an indication that r.f. is being pieked up from lower-power stages, either by coupling through the final tank or via the oscilloseope pick-up loop.

Inward eurvature at the large end of the pattern is caused by improper operating conditions of the modulated amplifier - usually improper bias or insufficient excitation, or both, with plate modulation. In grid-bias and cathode-modulated systems, the bias, excitation and phate loading are not correctly proportioned when such curvature occurs. The usual reason is that the amplifier has been adjusted to have too-high carrier efficiency without modulation.

Fig. !)-47 shows typical patterns of both the trapozoid and wave-envelope types. The cause of the distortion is indieated for grid-bias and suppressor modulation. The patterns at .1 , although not truly linear, are representative of properly-oprerated grid-bias modulation systems. Bottor linearity can be obtained with plate modulation of a (latss C' amplifier.

Faulty Patterns

The drawings of Figs. 9-46 and ? 17 show What is normally to be expereted in the way of pattern shapes when the oscilloscope is used to cherek modulation. If the actual patterns differ considerably from those shown, it may be that the pattern is faulty rather than the transmitter. It is important that only r.f. from the modulated stage be coupled to the oscilloseope, and then only to the verticat plates. The effert. of stray r.f. from other stages in the transmitfer has been mentioned in the preeeding section. If r.f. is present also on the horizontal plates,

Fig. 9.f7- Oseilloscope patterns representing pruper and improper abljustments for grid-bias or cathode modulation. 'Irapezoidal pattern at left; wave-envelope pattern at right. The pattern ohtained with a correctlyadjusted amplificr is shown at A. The other drawings indicate nonlinear modulation from typical causes.

Spurious Sidebands

A sumerhuterodyne redeiver having a crystal filter is needed for checking spurious sidebands outside the normal communication chanmel. The r.if imput to the receiver must be kept low enough, by removing the antenna or be adoquafe separation from the tramsmitter. to avoid overtoading and consequent spurious receiver rexponses. With the erystal filter in its sharpest position and the beat oscillator turned on. tume through the region outside the normal chammel limits (3 to 4 kilocyeles each side of the carrier) while another person talks into the microphone. Spuriens sidebands will be obsorved as intermittent beat notes coinciding with voice prats - or, in bad cases of distortion or overmodulation, as "elieks" or crabkles well away from the carrier frequener. sidebands more than 3 to 4 kilocycles from the carrier should be of negligible strength in a properly-modulated 'phone transmitter. The fatuses are overmodulation or monlimear operation.

R.F. in Speech Amplifier

A small amount of rif. burrent in the speech amplifier - particularly in the first slage, which is most susceptible to surh r.f. piok-up - will raduse overloading athd distortion in the low-level stages. Frequently also there is a regenerative effert which catuas an atadio-frequency oscillation or "howl" to be set up in the atudio system. In such cases the gain control camnot be advanced very lar before the howl builds up, even though the amplifier may be perfectly stable when the r.f. section of the transmitter is not turned on.

Complete shielding of the mierophone, microphone cord, athd speech amplitier is neressary to prevent r.f. piek-up, and a ground eonmertion separate from that to which the transmitter is connected is advisable. Direct coupling or unsymmetrical coupling to the antenna (single-wire feed, feoders tapped on final tank (ircuit, ete.) may be responsible because these systems sometimes cause the tramsmitter chassis to take an r.f. potential above ground. Inductive coupling to a two-wire transmission line is advisable. This antenna effect can be checked by disoonnerting the antenna and dissipating the r.f. power in a dummy antenna, when it usually will be found that the r.f. feed-back disappears. If it does not, the speerh amplifier and inierophone shielding are at fault.

Overmodulation Indicators

The most praitive method of preventing overmombation is the clipper-filter system deseribed earlier, when properly set up and adjusted. In the absence of such a system - or even with it, just to be safe - some form of overmodulation indicator should be in constant use when the transmitter is on the air.

The best device for this purpose is the cath-
ode-ray oseilloscope. 'The trapozoidal and wave-envelope pathorns are equally useful. A bo-e yele sinusoidal swep will be quite sat isfactory for the wave-envelope pattern. Either pattern should be watched particularly for the bright spots at the axis that acoompany overmodulation in the downwat direction. The spraking-voice intensity should be kept below the lew that shows 100-per-eent modulation on the swope.

Overmodulation on negative patas is more likely for result in spurions sidebands than overmodulation in the upward direction berause of the sharp broak that oceurs when the carrier is suddenly eut off and on. The milliammeter in the negative-peak indicator of lig. :-4s will show a reading on each overmodulation peak that carries the instantaneous voltare on the plate of the Class C modulated amplifier "below zero" - that is, negative. The reetifier, V, cantot conduet solong as the

Fig. 9-48-A negative-peak ovarmodalation indicator. Dilliammeter Mi may be any low-range instrument (up to $0-i 0$ ma, or so). "'he inverse-peak-voltage rating of the reetifier, 1 . must be at least equal to the d.e. voltage apwhed to the plate of the r.f. amplifier. 'The alternative meter. return circoit can be used to indicate modulation in excess of ans desired value below 100 per cent. 'The reactance of the by-pass emmenser, (: at low eycles should be small compared with the rexistance arros whieh it is connected. In 8 -pfle electrolytic comelenser will be satisfactory if the renimance it shmes is 1000 ohms or more.
nogative half-rule of audio output voltage is less than the d.e. voltage applied to the r.f. tube.

The inverse-peak-voltage rating of the rextifier tube must be at least twice the d.e. voltage applied to the plate of the modulated Chass C amplifier. The filament transformer likewise must have insulation rated to withstand twice the d.e. plate voltage. Wither mereury-vapor or high-vacuum rectifiers can he used. The 15 -volt breakdown voltage of the former will introduco a slight error, since the phate voltage must go at least 15 volts negative before the rectifier will ionize, but the error is inconsequential at plate voltages above a few hundred volts.

The effectiveness of the monitor is improved if it indicates at somewhat less than 100 -percent modulation, as it will then warn of the danger of overmodulation before it actually oneurs. It ran be adjusted to indieate at any

Hue pattorn will lasan to one side instead oi being upright. If the owilloseope camot be moved to a spot where the unwanted piek-u! disappears, a small by-pass condenser (10 $\mu \mu \mathrm{f}$.) should the comuerted acoros the horizontal plates as close to the cathoderay tube as possible. An r.f. choke (2.5 mh , or smaller) maty also be comnected in series with the ungrounded horizontal plate.
"Folded" rapezoidal patterns, and patterns in which the sides of the trapezoid are elliptieal instead of straight, occur when the autio sworp voltage is taken from some point in the audio system other than that where the af. power is applied to the modulated stage. Such patterns are caused by a phase difference between the sweep voltare and the modulating voltage. The connections should always be as shown in Fig. 9-4513.

Plate-Current Shift

As montioncel ahove, the al.e. plate murent of a mollulated amplifior will be the same with and withomt mondulation solong as the amplitior operation is perfectly linear and other conditions remain unchanged. This also assumes that the modulator is working within its cababilities. Beremse there is usuatly some curvat ture of the modulation characteristie with gridbias modulation there is normally a slight upward change in plate current of a stage so modulated, but this oecurs only at high modulation peraentages and is barely detertable under the usual conditions of voice modulation.

With phate modulation, a downward shift in plate current may indicate one or more of the following:

1) Insufficiont exatation to the modulated r.f. amplifier.
2) Insufficiont grid hias on the modulated staye.
3) Wrong load resistaner for the ('lase ('r.f. amplifier.
4) Insufficient outpul capacitance in the filter of the modulated-amplifier phate supply.
5) Havy overtading of the ('lass (' r.f. amplifere tube or tubes.
Any of the following may catuse an upward shift in plate current:
6) Ovarmothation (exeressiva atudio prower, atudio gain too grat).
7) Incomplete ne atralization of the mombe lated amplifier.
8) Parasitie osidlation in the modulated amplifier.
When a common plate supply is used for both a C'lass 13 (or Class AB) modulator and a modulated r.f. amplifier, the plate current of the latter may "kiek" downward beratuse of poor power-supply voltage regulation with the varying additional load of the modulator on the supply. The same effect may oceur with highpower transmitters because of poor regulation of the a.e. supply mains, wen when a separate

Howresupply mit is used for the Class B modulator. Either comdition may be detertad hy measuring the plate voltare applied to the modulated stage; in addition, poor line regulation also may be deteeted by observing if there is any downward shift in filament or line voltage.

With grid-bias modulation, any of the following may be the eause of a platerourent shift greater than the normal mentioned above:

Downward kick: Too much r.f. excitation; insufficient operating bias; distortion in modulator or speech amplifier; too-high resistance in bias supply; insufficiont ontput capacitance in plate-supply filtor to mondulated amplifier; amplifier phate circuit not baded heavily enough; phate-rircuit efficiency too high under carrier eomblitions.

Cpward kick: Overmodulation (exeessive audio voltage) ; distortion in audio systum: regeneration because of incomplete neutratizattion; operating grid bias too high.

A downward kiek in plate current will arcompany ath oscilloseoper pattorn like that of Fig. : 9 -4B; the pattorn with an upward kick will look like Fig. ! - +7. , with the shatded portion extending father to the right and above the carrier, for the "welge" pattern.

Noise and Hum on Carrier

Noise and hum may be delerted by listening to the signal on a receiver, provided the redover is far enough away from the transmittor to aroid overloading. The ham level should be low compared to the voice at 100 -per-cent modulation. Hum may come either from the sperch amplifier and modulator or from the r.f. section of the transmitter. Ilum from the r.f. section can be detected by eompletely shutting off the modulator; if hum remains when this is clone, the power-supply filters for one or more of the r.f. stages have insufficient smoothing. With a hum-free carrier, hum introduced by the modulator can be checked by turning on the modulator but having the speech amplifier off: power-supply filtering is the likely source of such hum. If carrier and modutator are both clean, connect the spech amplifier and oth serve the increase in hum level. If the hum disappears with the gain control at minimum, the hum is being introduced in the stage or stages preceding the gain control. The mierophone also may piek up hum, a condition that ran be checeked by removing the microphone from the cireuit but leaving the first speach-amplifier grid circuit otherwise unchanged. A grood ground on the nicrophone and speech system usually is essential to hum-free operation.

Hum can be checked with the oscilloseope, where it has the same appearance as ordinary modulation on the carriar. While the percentage usually is rather small, if the carrier shows modulation with no specth input hum is the likely cause. The various parts of the transmitter may be whered through as desseribed above
desired modulation pereontage by making the meter return to a peint on the power-supply bleder as shown in the alternative diagram. The by-pass condenser, C', insures that the full andio voltage appears across the indicator
circuit. The modulation percontage at which the system indicates is determined by the ratio of the d.c. voltage between the milliammeter tap and the positive terminal to the total d.e. voltage.

Frequency and Phase Modulation

The primary advantage of frequency modulation (FM) or phase modulation (PM) ovel amplitude modulation ($1, \mathrm{M}$) eomes from the fact that moise or "static," whether natural or set up by electridal machincs, is fundamentally. an amplitude effect. An $\mathrm{A} . \mathrm{I}$ detector responds to noise just as readily as to the desired modulation on a signal. However, if the receiving system responds principally to frequency or phase changes and is insensitive to amplitude variations, it will give normal rereption of an fill or PM signal but moise will be greatly reduced.
The improvement that an be realized by using FM or PM instead of 1.0 depends on the strength of the received signal, the chatracter of the noise, and the way the moise is distributed over the recoiver passband. In general, the wider the chamel oerupied by the signal the better the noise suppression - if the signal st rength is above a coertain threshold value. The wider the chammel orecupiod by the signal, the stronger the signal required to reach the threshold.

In amateur work, liM and PM have been used not so mueh beeause of the possibility of an improved signal-to-noise ratio (the improvement is not great with narrow bandwidths) hut because of more-or-less incidental andvantages. For example, in the ultrahigh and superhigh frequence ranges some tubes do not land themselves well to amplitude modulation, hat ean easily be frequencemodulated. On the lower frequencies FM and PM are often used because they cause less interforeme thath A.M in unshielded broadeast receivers in the vieinity.

Frequency Modulation

Fig. 9-49 is a representation of frequence modulation. When a modulating signal is applied, the carrier frequency is increased during one half-r vele of the modulating sighal and decreased during the half-evele of opposite polarity. This is indicated in the drawing by the fact that the r.f. exeles oceupy less time (higher frequency) when the modulating signal is positive, and more time (lower frequence) when the modulating signal is neyative. The whange in the carrier frequency (frequency deviation) is proportional to the instantancons amplitude of the modulating signal, so the doviation is small when the instantaneous amplitude of the modulating signal is small, and is greatest when the modulating signal reaches its prak, wither positive of negative. That is, the frequeney deviation
follows the instantaneous changes in the amplitude of the modulating signal.

As shown ber the drawing, the amplitude of the signal does not change during modulation.

Phase and Frequency

To understand the difference between FM and "M it is neressary toappreciate that the frequency of all alternating current is dotermined by the rate at which its phuse changes. A current in which the phase changes rapidly has a higher frequeney than one in which the phase changes slowly. For example, if the phase moves through 360 degrees in one sorond the frequencer is one cerle per second, but if the phase moves through 1080 degrees in one second (3×360) degrecs) there are three eomplote cyeles in one secomal.

If the phase of the current in a cireuit is changed - this might be done by adjusting the foning of ath amplifior tank rireuit, for example - there is an instantaneous frequene: change during the time that the phase is being shifted. The amount of frequener change, or deviation, depends on how rapidly the phase shift is accomplished. It is also dependent upon the total amount of the phase shift. In a properly-operating PM sustem the amount of phase shift is proportional to the instantaneous amplitude of the modulating signal. The rapidity of the phase shift is directly proportional to the frequener of the modulating signal. Consequently, the frequency deviation in PM is proporional to both the amplitude and freguenc: of the modulating signal. The latter
(A)

(B)

(C)

Fig. 9. 19 - Craphical representation of frequency modulation. In the ummodalated earrier at A, each r.f. sycle rocupiss the same amount of time. When the modulating cignal, 13 , is applied, the radio frequency is increased and decreased acoroding to the amplitude and polarity of the modulating signal.
represents the outstanding difference between Fil and PM, since in FM the frequency deviation is proportional only to the amplitude of the modulating signal.

Modulation Depth

In FM or PM there is no condition that corvesponds exactly to overmodulation in AM. "Percentage of modulation" has to be defined a little differently for these systems. Prartically, "lo0-per-cent modulation" is reached when the transmitted signal oceupies a channel just equal to the bandwidth for which the receiver is designed. If the channel occupied is wider than the receiver can accept, the receiver distorts the signal and the end effect is much the same as overmodulation in AM. However, on another receiver designed for a different bandwidth the same signal might be equivalent to only 25 -per-cent modulation.

In amateur work no specifieations have been set up for channel width exrept in the case of "narrow-band" FM or PM (irequently abbreviated NFM), where the channel width is defined as being the same as that of a properlymodulated 1.1 signal . That is, the chanmel width for NFM does not exceed twice the highest audio frequency in the modulating signal. NFM transmissions based on an upper audio limit of 3000 cycles therefore should orcupy a channel no wider than 6 kr .

$F M$ and PM Sidebands

It might be surmised that the channel occupied by an FM or P'M signal is no greater than the frequency deviation on both sides of the carrier. Similar reasoning applied to amplitude modulation would lead to the conclusion that an A.M signal takes up no more space than the carrier alone, since only the amplitude of the carrier varies. liowever, the fart is that both FM and PM set up sidebands, just as AM does. In the case of FM and PM, single-tone modulation sets up a whole series of pairs of sidebands that are harmonically related to the modulating frequency, whereas in AM there is only one pair of sidebands.

The number of "extra" sidebands that occur in FM and PM depends on the relationship between the modulating frequency and the carrier frequency deviation. The ratio between the frequency deviation, in reveles per second, and the modulating frequency, also in cycles per second, is called the modulation index. That is,

$$
\text { Modulation index }=\frac{\text { Carrier frequency deviation }}{\text { Modulnting frequency }}
$$

Example: The maximum frequency deviation in an FAI tranmmitter is 3000 eveles either side of the carrier frequency: The modulation index when the modulating frequency is 1000 eycles is

$$
\text { Modulation index }=\frac{3000}{1(100)}=3
$$

At the same deviation with 3moryele modulation the index would be 1; at lon cycles it would be 30, and in on
The modulation index is also equal to the phase shift in radians. In PM the index is constant regardless of the modulating frequency; in FM it varies with the modulating frequency, as shown in the previous example. To identify any particular FM system, the limiting modulation index - that is, the ratio, of the marimum carrier-frequency deviation to the highest modulating frequency used - is called the deviation ratio.
Fig. 9 -50 shows how the amplitudes of the carrier and the varions sidebands vary with the modulation index. This is for single-tone moduhation; the first sideband (artually a pair, one above and one below the carrier) is displaced from the carrier by an amount equal to the modulating frequency, the second is twice the modulating frequency away from the carrier, and so on. For example, if the modulating frequency is 2000 cyoles and the carrier frequency is $29,500 \mathrm{kc}$, the first sideband pair is at $29,498 \mathrm{kc}$. and $29,502 \mathrm{ke}$, the second pair is at $29,496 \mathrm{kc}$. and $29,50+\mathrm{kc}$., the third at $29,494 \mathrm{ke}$, and $29,306 \mathrm{ke}$., ete. The amplitudes of these sidebands depend on the modulation index, not on the frequency deviation. In AM, regardless of the percentage of modulation (so long as it does not exceed 100 per (ent) the sidebands would appear ort!! at 29,498 and $29,502 \mathrm{kc}$. under the same conditions,

Note that, as shown by Fig. 9-50, the carrier strength varies with the modulation index. (In amplitude modulation the carrier strength is coustant; only the sideband amplitude

Fig. 9.50 - How the amplitude of the pairs of sidehands saries with the modalation indes in an FII or PX signal. If the purves were extended for greater values of modulation index it would be seen that the rarrier amplitude goes through zero at several points. The same statement also applies to the sidehands.
varies.) At a modulation index of approximately 2.4 the carrier disappears entirely and then becomes "negative" at a higher index. This simply means that its phase is reversed as compared to the phase without modulation. In FM and PM the energy that goes inte the sidebands is taken from the carrier, the total power remaining the same regardless of the modulation index. In AM the sidehand power is supplied by the modulator in the case of
phate modulation, and by changing the power input and efficiency in the case of grid-bias modulation.

The curves of lig. $9-50$ can be earried out to considerably-higher modulation indexes, in which case it will he discovered that more and more additional sidehands are set $u p$ and that the earrier goes through several "zeros" and reversals in phase.

Frequency Multiplication

In frequeney or phase modulation there is no chanre in the amplitude of the signal with mondalation, consequently an FW or PM signal can be amplified by an ordinary Class $($ amplifire without distortion. The modulation ran take place in a very low-lavel stage and the signal can then be amplified by cither frecuener multipliers or stratight amplifiers. The audio power required for modulating an FM or PM transmitter is negligible.

If the modulated signal is passed through one or more frequenc. multipliers, the modulat tion index is multiplied by the same factor that the carrice frequence is multiplied. For (xample, suppose that modulation is applied on 3.5 Mre and the final output is on 28 Me. The total frequener multiplication is 8 times, so if the frequeney deviation is 500 eycles at 3.5 Mr., it will be 4000 exales at 28 . Mc. Prequene. multipliration offers a means for obtaining practically any desired amount of frequenco deviation, whether or not the modulator itsolf is capable of giving that much deviation without distortion.

Where FM or PM is used in erowded 'phone bands (particularly below 29 Me.) it is of utmost importance that the transmissions should oreupy a channel no wider than would be occupied by an AM signal. It is evident from Fig. 9-j0 that this requirement can be met ouly bey using a relatively small motalation index. It must be realized that the higherorder sidebands always are present, even at very small indexes. If the modulation index (with single-tone modulation) does not exreed about 0.6 the most important extra sidebind, the second, will be at least 20 dt . below the unmodulated carrier level, and this should represent an effertive channel width about equivalent to that of an. . M signal. In the case of speech, a somewhat higher modulation index can be used. This is because the eneryy distribution in a complex wave is such that the modulation index for any one frequence eomponent is reduced, as compared to the index with a sine wave having the same peak amplitude as the voice wave.

The chief advantage of narrow-band F.W or P.II for frequencies helow 30 Mc. is that it climinates or reduces certain types of interference to broadcast reception. Also, the modulating equipment is relatively simple and inexpensive. However, assuming the same unmodulated carrier power in all ases, narrow-band FM or PM is not as cffective as AM. As shown
by Fig. 9-50, at an index of 0.6 the amplitude of the first sideband is about 25 per cent of the ummodulated-earrier amplitude; this compares with a sideband amplitude of 50 per cent in the rase of a 100 -per-cent modulated AM transmitter. In other words, so far as effectiveness is concerned, a narrow-band FM or I'M transmitter is about equivalent to a 10)-per-eent molulated AM transmitter operating at one-fourth the power input.

Comparison of FM and PM

The methods used by amateurs for the reecption of FA or PM signals (see Chapter Five) are for the most part better adapted to frequener modulation than to phase modulation. On a receiver properly adjusted for FM reception the outstanding difference between the two sustems is that F.M sounds natural, while a PM signallacks" lows." 'This is because, for a given receiver bandwidth, the audio output from a reeceiver set for FM reception is proportional to the frequener deviation. In FAI transmission the deviation is the same for all audio freguencies of the same amplitade, but in PM the deviation is proportional to the audio frequener. Hence if a 3000 -rede modulating signal of given amplitude results in a cortain frequency deviation, a 100 -rerle modulating signal of the same amplitude will give only one-thirtieth as much deviation. The crystal-filter receiving method deseribed in Chapter Five owromest this, but is not used bey many amatcurs because the adjustment is somewhat eritieal.

Frequency modulation cannot be applied to an amplifior stage, but phatse modulation can. PM is therefore readily adaptable to transmitters employing oscillators of high stability such as the croxateontrolled trpe. The amount of phase shift that can be obtained with good lincarity is limited to about onehalf radian: in other words, the maximum practicable modulation index is 0.5 at the radio frecueney at which the modulation takes placr. Beratuse the phase shift is proportional to the modulating frequeney, this index can be used only at the highest frequency present in the modulating signal, assuming that all frequencies will at one time or another have equal amplitudes. Taking 3000 regles as a suitable upper limit for voire work, and setting the modulation index at 0.5 for 3000 credes, the frequeney response of the speechamplifior system above 3000 eveles must be sharply attemuated, to prevent sideband splatLor. Also, if the "timny" quality of PM as received on an FM recoiver is to be avoided, the PM must be changed to FM, in which the modulation index derreases in inverse proportion to the modulating frequency. This requires shaping the speech-amplifier fre-quencr-response curve in such a way that the output voltage is inversely proportional to frequeney, at least over the voice range. When this is done the maximum modulation index
an only be used at the lowest athdio frequenery, appoximately 100 eyeles in voier tramsmission, and must decrease in proportion to the increase in freguency. The result is that the maximum linear frequency deviation is only about 50 areles, when PM is changed to F.M. To increase the deviation to 3000 eveles requires a frequency multiplication of $3000 / 50$, or 60 times.

In contrast, it is relatively casy to secure a fairly-large frequency deviation when a solfrontrolled ascillator is frequencr-modulated directly. (True frequency modulation of a revstal-eontrolled oscillator results in only
very small heviations and so reguires a great deal of frequeney multiplieation.) The chief problem is to mantain a satisfactory degree of carrier stability, since the greator the inherent stability of the oseillator the more difficult it is to serure a wide freguene swing with linearity. Iowever, it is possible, with a compromise dexign, to secure a frequenc: deviation of 3000 evoles at all amatear frequencies on which FMI is permitted. It is vers (asy fo do so at 14 Mre and higher, ceperially when the oseilator fregueney is surh that a frequency multiplication of 4 or more is possible.

Methods of Frequency and Phase Modulation

- FREQUENCY MODULATION

The simplest and most satisfactory device for amateur $F=\|$ is the reactance modnator. This is a vacuum tube connored to the r.f. tank circuit of an osidilator in such a way as to act as a variable inductance or eapacitane . Fig. 9-5! is a representative direuit. The aon-trol-grid circuit of the e 61.7 tube is eommeded across the small capacitance, © which is in series with the resistor, R_{1}, areross the oncilLator tank rircuit. Iny type of oscillator cirrenit may he used. The resistance of R_{1} is made large compared to the ratatance of $\frac{1}{1}$, so the r.f. current through $R_{1} \boldsymbol{C}_{1}$ will be practically in phase with the rif. voltame appearing at the terminals of the tank cirenit. However, the voltage atrons C_{1} will lag the current by an degrees. The r, fo current in the plate circuit of the 6 L 7 will be in phase, with the grid voltage. and consequently is 90 degrees behind the current through 6,1 , or 90 degrees behind the r.f. tank voltage. This lagging current is drawn through the oscillator tank, giving the same -ffert as though an inductance were commerom arross the tank. The frequeney increases in proportion to the amplitude of the lagging plate rurrent of the modulator. The value of phate current is determined by the voltage on the No. 3 gritl of the 6Li, ; hence the oseillator frequency will vary when an audio signal voltage is applied to the No. 3 grid.

If, on the other hand, C_{1} and R_{1} are interehanged and the reactane of C_{1} is made large compared to the resistathere of R_{1}, the ref. current in the 6 L .7 phate eircuit will load the owcillator-tank r.f. voltage, making the reactance rapabitive rather than inductive.

I circuit using a receiving-type r.f. pentode of the high-transeonductane tope, such as the Gs(i7, is shown in Fig. 9-in2. In this case, both r.f. and audio are applied to the control srid. The audio voltage, introduced through a ratiofrequeney choke, $R F C$, varies the transconductance of the tube and therebs varies the r.f. plate curront. The capari-
tance ('s corresponds to ('i in Fig. 9-5) ; it represents the input capacitance of the tube. (It is possible, also, to omit C_{1} from Fig. 9-j) and depend upon the input capacitance of the 61.7 instead: the only disadvantage is that there is then no cont mol over the modulator sensitivit,: Likewise, a 3-30- μ mid, trimmer condenser can be eonnected at C_{8} in Fig. 9-i) 2 to permit controlling the wnsitivity.) In Fig. 9-52 the r.f. cirouit is serios-fed, which is advantageous if the r.f. tube and the modulator can be operated at the satme plate voltage. The use of different plate voltages on the two tubes ralls for the parallel-feed arrangement shown in Fig. 9-i)

The modulated oscillator usually is operated on a relatively low frequency, so that a high order of carrier stability can be secured. Frequencer multipliers are used to ratise the frequency to the final frequency desired. The frequency deviation increases with the numbere of times the intitial freguence is multiplied: for instaner, if the oseillator is operated on 6.5 Ne. and the output frequeney is to be at Ne, ath owillator frequency deviation of 1000 cerdes will be raised to 8000 eycles at the ontput frequency:

Fig. 9-5l - Reactance-mon fatator circuit using a 6L: inbe. (: - R.f. tank capacitance. $\mathrm{C}_{1}-3.30 \mu \mu \mathrm{fl}$. $\mathrm{C}_{2}-290 \mu \mu \mathrm{fl}$.
 paper (r.f. by-pass)
 I. - R.f, tank inductance, $R_{2}, R_{5}-0.1_{\%}^{F}$ megohin. $R_{1}-4 ., 400$ ohme, $\mathrm{R}_{3}-33,000$ ohms,
R. - 330 ohma.
$\mathrm{RHC}-2.5 \mathrm{mh}$.

I reactance modulator can be conneeted to a erystal oscillator as well as to the selfentrolled type. However, the resulting signal is more phase-modulated than it is frequenc. F modulated, for the reason that the frequeney deviation that ean be socured be varring the tuning of a rerstal oseillator is quite small.

Fig. Voiz - Reactance modulator u-ing a high-iralla-

(i) - R.f. tank rapacitance (nee text).

(is - 10. $\mu \mathrm{fl}$. elertrolytir.
(is - l'ulse input eapacitanee (sere text).
R1, H_{2} - V. 1_{7}^{-}mergohm.
H_{3} - sicreen drupping rosi-tor: weleet w give proper sereen voltake on ty ine of modnlator molne used. R_{4} - Cathode bias redistor; meleet as in cate of K_{s}. la-R.f. tank imdurtance.
RFC - 2.s.mh. r.f. chose.

Design Considerations

The sensitivity of the modulator (frequenery change per unit change in grid voltage) depends on the transconductance of the modulator tuhe. It increases when C_{1} is made smaller, for a fixed value of R_{1}, and also increases with an increase in L / G ratio in the ascillator tank circuit. Nince the arrier stability of the oscillator depends on the L / C ratio, it is desirable to use the highest tank capacitance that will permit the desired deviation to be sereured while kerping within the limits of linear operation. When the circuit of Fig. 9-52 is, used in connection with a 7 -Mc. oveillator, a linear deviation of $1: 00$ cyeles above and below the ratrier frequency ean be secured when the oscillator tank rapacitance is approximately $200 \mu \mu \mathrm{ful}$. A peak a.f. input of two volts is required for full deviation.

I change in any of the voltages on the mondahator tube will canse at change in r.f. platerourrent, and consequently a frequency change. Therefore it is advisable to use a regulated plate power supply for both modulator and owillator. At the low voltages used (250) volts) the required stabilization can be secured by means of gatseous regulator tubes.

Speech Amplification

The speech amplifior preceding the modubator follows ordinary design, exeept that no power is required from it and the a.f. voltage taken by the modulator grid usuatly is small -
not more that 10 or 15 volts, even with large modulator tubes. Because of these modest res quirements, only a few speedh-amplifier stages; are needed; a two-stage amplifier consisting of a pentode followed by a triode, both resistancocompled, will more than suffice for crystal microphones,

- PHASE MODULATION

The same type of ractance-t ube circoit that is used to vary the tuning of the owrillator tank in F.M ran be used to vary the tuning of an amplificr tank and thas vare the phase of the tank current for PM. Hence the morlulator cireuits of Figs. 9-51 and 0-52 ('an be used for PWI if the reartance tube works on an amplifior tank instead of directly on a self-controlled oweillator.

The phase shift that oreurs when a cireuit is detumed from resonatued depends on the amount of dotuning and the Q of the circuit. The higher the (), the smaller the amount of dotuning nerded to serdure a given mumber of dogrees of phase shift. If the Q is at least 10 , the relationship, betwen phase shift and detuning (in kiloererles either side of the resonant frequency) will he substantially linear over a ramge of about 25 dogrees. From the standpoint of modulator sernstivity, the (f of the tumed direnit on which the modulator operates should be as high as presible. (On the other hathe, the effective $(g$ of the rirenit will not be vers high if the amplifier is delivering power to a load sume the load resistance reduces the (?. There must therefore the a compromise between modulator sonsitivity and r.f. power output from the modulated amplifier. An optimum fisure for Q appears to be about 20: this, allows reasomable loading of the modnlated amplifier and the nesessary tming vartation cant be serolted from a reatonde modulator without diffirulty. It is advisable to modulate at a very low power level - preferably in a transmittor stage where recoiving-tye tubes are usied.

Reactance modulation of an amplifier stage usually also results in simultaneous amplitude mondulation. This must be eliminated by fereding the modulated signal through an amplitude limiter or one or more "saturating" stages that is, amplifiors that are operated Class (: and driven hard enough so that variations in the amplitude of the grid expitation produce no appreciable variations in the final outpat amplitude.

For the same type of reactance modulator, the speech-amplifier gain required is the same for PM as for FM. However, as pointed out earlier, the fart that the actual frequency deviation increases with the modulating audio frequeney in P.M makes it neressatry to cut off the frequencies above about 3000 cycles before modulation takes phare. If this is not done, unnecessary sidebands will be generated at frequencies considerably away from the earrier.

Reactance－Modulator Unit for Narrow－Band FM

The FM sperch－amplifier and modulator unit shown in Figs．（1－i）？and 9－54 uses a pentodereartanere modulator in a cirenit which is hasically that of Fig． $9-\bar{z}$ ？．It differs only in the detal that the audio simal is applied to the eonterl grid in parallel with the r．f．voltage from the osrillator，instead of the series－fered arrangement shown in Fig．！－as．Berethse of the paralled leed，resistor R_{4} is incorporateol in the eireuit 10 provent rif．from appearing in the wate ciretuit of the sporeh－amplifier tube．

The mit uses minialure tubes for ther sater of making at compact assombly that ran bre mounted in any convenient spot mear the VFo tuned circuit．In Fig．！l－．）：it is shown mounted on the outside of the VFO rase． When this type of monntimg is used the unit should be plated so that the lead betwen the VFO tuned cireuit and the modulator is as short as possible．If there is space a valable．it is preferable to mount the unit inside the Vlo rabinnet．

The chassis for the unit is 4 inches long by 2 inches wido，and hats a mombing lip 2 imehes deep．Ss shown in the photographes，it is formed from a pineeof athminum with the edges tumed over to siffen it．The various eom－ pmonents are rasily acommodated umelerneath．The rif．lads should bw kept short and separated as murh as possible from the audio athe power－ supply wiring．
filament and plate power can usia ally be taken from the Vfo supply． since the total plate current is only a fow milliamperes．Filament current recpuired is 0.6 amp．The mierophone input is carriod Hemorh a shimeded head

Fip．9－53－Miniature reartance modulator that rian be u－od with any $1 \mathrm{r}^{\circ} \mathrm{O}$ ．The shiehded lead is for miero－ phone input；the other two wires bring in filament and plate supply．
to the unit，thus the microphone connector can be placed in any convenient location on the VFO unit itself．Once the proper setting of the

Fig．ソーシ－I indermeath the modulator unit．＇Ihe r．f． conmection to the Ifog goes through the feed－through bushing at the left．
gain control is fomat it meed not be tourhed again，so serewdriver adjustment is quite adrouate．

The adinstment of reactanere modulators is diserusided in at later seretion in this rhapter．

fip．リ．j．；Circuit diagram ol the narrow－hand fll monlalator anit．
（it－6，80－$\mu \mu \mathrm{fl}$ ．mid：a．

$\mathrm{K}_{3}-10 . \overline{\mathrm{B}}$－megohm motentionseter．
R_{4}－ 0.1 mexohm，${ }_{2}$ watt．
12_{5}－ 10.0100 ohmo， 1_{2} watt，
$\mathrm{R}_{6}-0.1^{-}$megohm，${ }^{\circ} \mathrm{m}$ watt．
R：－300 ohme， 1 watl．

Checking FM and PM Transmitters

Accurate checking of the operation of an FM or IPM transmitter requires differont methods than the eorresponding checks on an AM set. 'lhis is beratuse the common forms of measuring devires cither indieate amplitude variations only (a d.e. milliammeter, for example), or berause their indications are most easily intorporeded in terms of amplitude. Thare is no simple instrument that indicates frequency Wrviation in a modulated signal divectly:

However, there is one favorathe fature in FW or P'W checking. The modulation takes place at a very low level and the stages following the one that is modulated do mot afteen the linearity of modulation so long as they are properly tuned. Therefore the modulation maty be cheeked uithont putting the transumitter on the air, oren on a dummy antema. 'line pown is simple cut off the amplifiers following the modulated stage. This not only a voids unnome sary interference to other stations during tating periods, but alsor keron the signal at siluh a

Pig. 9-5t - II.c. method of cheching frequene: deviation of a reactance-tulne-mondulated owillator. A 500. or HKN-ohn motmionneter may be nad at R.
low lever that it may be obsorved quite eavily on the station receiver, I good recedier with a ersstal filter is an essential part of the ehecking equipment of an FM or PM transmitter, particularly for narow-band FM or PM,
'The quantities tole checked in an FM or PM transmitter are the linearity and frequency deviation. Berause of the ensential difference between F'M and l'M the mothods of werking differ in detail.

Reactance.Tube FM

It was explaned carlier that in FM the frequeney deviation is the same at any audiomodulation frequency if the audiosignal amplitude does not vars. since this is true at any audio frequeney it is true at zoro frequency. Consequently it is posisible to calibnate a reartance modulator by apploing an adjustable d.e. voltage to the modulator grid and noting the rhange in oseillator frequency as the voltage is varied. A suitable dincuit for applying the adjustable voltage is shown in Jig. 9-ifi. The battery, B, should have a voltage of 3 to 6 volts (two or more dry cells in series). The arrows indicate clip comections so that the battery polarity can be reversed.

The dseilator frequener deviation should be measured by using a recedver it conjunction with an areurately-calibrated fresumey meter, or by any maths that will promit arourate
mo:sturement of frequence differences of a few humbed eydes. One simple method is to tume in the oxcillator on the receiver (diseomecting the receiving antenna, if necessary, to keep the signal strength well below the overload point) and then set the recoiver b.f.o. to zero beat. Then increase the d.e. voltage applied to the modulator grid from zero in steps of about $1 / 2$ volt and mote the beat frequeney at each change. Then reverse the battery terminals and ropeat. The frequency of the beat note may be measured by comparison with a calibrated audio-frequency oscillator, or by comparison with a piano or other musical instrument (see Chapter Twenty-Four for frequencies of musioal tones). Note that with the hattury polarity positive with respect to ground the radio frequency will move in one direction when the voltage is increased, and in the other dircotion when the battery terminals are reversed. When a number of readings has been taken a curve may be plotted to show the refationship between gid voltage and frequency arviation.

I sample curve is shown in Fig. 9-57. The usable portion of the erurve is the center part which is essentially a straight line. The bending at the ends indicates that the modubator is no lomger linear; this departure from linearity will raluse harmonic distortion and will broaden the chammel occupied by the signal. In the example, the characteristic is linear 1.5 ke . on either side of the center or carrier frequener. This is the maximum deviation permiswible at the frequency at which the measurement is made, It the final output frequency the deviation will be multiplied by the same number of times that the measurement frequener is multiplied. This must be kept in mind when the check is made at a frequency that differs from the output frequency.

A grood modulation indicator is a "magiceve" tube such as the filio. This should be connered arross the grid resistor of the reactance modulator as shown in Fig. 9-i8. Note its deflection (nsing the der. voltage method as in

 mondulator krid wilake.

Fig, 9-56) at the maximum deviation to be used. This dellection represents " 100 -per-cent modulation" and with speech input the gain should be kept at the point where it is just reached on voice peaks. If the transmitter is used on more than one band, the wain control should be marked at the proper setting for each band, beranse the signal amplitude that gives the correct deviation on one band will be either too great or too small on another. For narrow-band lill the proper deviation is approximately 2000 cycles (based on an upper a.f. limit of 3000 cycles and a deviation ratio of 0.7) at the final out ${ }^{\prime \prime}$ il frequency. If the output frequency is in the 29-Mc. band and the ascillator is on 7 Mc. , the deviation at the ascillator frequency should not exceed $2000 / 4$, or 500 cyros.

Checking with a Crystal-Filter Receiver

With I'M the d.c. method of checking just described cannot be used, because the frequency deviation at zerofrequencey also is zero. For marrow-hand $P M$ it is neressary to cherk the actual width of the chamel ecoupied by the tramsmission. (The same method also can be used to check FM.) For this purpose it is neressary to have a crestal-filter receiver and ath a.f. widhator that generates a 3000-cyole sille wave.

 modulators. 'To insure sufficient grid voltage for a youl Arforetion, it may be neressary to commect the gain rontrol in the modulater grid circnit rather than in an earlier speech-amplifier stage.

Kerping the signal intensity in the recoiver at a medium level, tune in the carrier at the output frequency. Do not use the a.v.e. Switch on the beat occillator, and wet the crystal filter at its sharpest position. I'eak the signal on the arystal and adjust the b.f.o. for any comvenient beat mote. Then apply the 3000 -avele tone to the sperech amplifier (use the conmertions shown in lig. 9-41 to avoid overloading and increase the audiogain until there is a small amount of modulation. 'Tuning the receiver on either side of the arrier frequency will show the presence of sidebands 3 kc . from the carrier on both sides. With low audio input, these two should the the only sidebunds detectable.

Now increase the audio gain and tune the rereiver over a range of about 10 kc . on both sides of the carrier. When the gain beomes high enough, a second set of sidebands spaced 6 ke . (n) either side of the carrier will be detected.

The signal amplitude at which these sidebands berome detectable is the maximum speech amplitude that should be used. If the 6 lis modulafion indicator is incorporated in the modulator. its deflection with the 30 on-ryele tone will be the "100-per-cent modulation" daflection for speech.

When this method of cherking is used with a reactance-tube modulated $\mathrm{F} M$ (not PM) transmitter, the linearity of the system can be cherked by observing the carrier ass the a.f. gain is slowly increased. The beat-note frequency will stay constant so long as the modulator is linear, but nonlinearity will be acompanied by a shift in the average carrier frequency that will canse the brat note to change in frequency. If such a shift occurs at the same time that the (b -ke. sidebands appear, the extra sidebands may be caused by modulator distortion rather than by an excessive modulation index. This means that the modulator is mot able to shift the frequency over a wide-enough range. The fi-ke. sidehands should appar before there is any shift in the carrior frequeney.

R.F. Amplifiers

The r.f. stages in the tranmitter that follow the modulated stage may be derigned and adjusted as in ordinary aperation. In fact, there are no sperial requirements to be met except that all tank circuits should be carefully thmed to resonance (to prevent unwanted r.f. phase shifts that might interact with the modulation and thereby introdure ham, noise and distortion). In neutralized stages, the neutralization should be as exact as possible, also to minimize unwanted phase shifts. With FM and PM, all r.f. stages in the transmitter can be operated at the manufacturer's maximan c.w.-telegraphy ratings, since the average power input does not vary with modulation as it deres in AM 'phone operation.

The output of the transmitter should be checked for amplitude modalation by observing the antemai current. It should not change from the umodulated-carrier value when the transmitter is modulated. If there is no antemat ammeter in the transmitter, a flashlight lamp and loop can be eoupled to the final tank coil to serve as a current indicator. If the carrier amplitude is eonstant, the lamp brilliance will not change with modulation.

Amplitude modulation accompanying FM or PM is just as much to be avoided as froquency or phase modulation that accompanies IM. I mixture of $A M$ with either of the other two systems results in the generation of spurious sidebands and consequent widening of the chammel. If the presence of $A M$ is indicated by variation of antenna current with modulation, the catuse is almost certan to be nonlinearity in the modulator. In very wide-band F.II the selectivit y of the transmittertank circuits may cause the amplitude to decrease at high deviations, but this is not likely to orcur on amateur frequencies at which wide-hand FM would be used.

Single-Sideband Transmission

The most recent development in anateur radiotelephony is the introduction of practical single-sideband suppressed-carrier transmission. This system has tremendous potentialibes for ingrasing the effectiveness of phone transmission and for reducing interference. Bratuse only one of the two sidebands normally produced in modulation is transmitted, the chamel width is immediately cut in half. However, when only one sideband is transmitted the carrier - which is essential in double-sideband transmission - no longer is necessary: it cin be supplied without too murh difficulty at the receiver. With the rarrier eliminated there is a great saving in power at the transmitter - or, from anothor viewpoint, a great increase in effective power output. Assuming that the same final-amplifier tube or tubes are used either for normal A.M or for single-sideband, carrier suppresed, it can be shown that the use of ssils gives an effective gain of at least 9 d), over AM - equivalent to increasing the trammitter powor 8 times. Filiminating the carrier also eliminates the heterodyne interference that wrecks so much communication in rongested phone bands.

Two hasie syome for generating sil3 signals are shown in Fig. 9-59. One involves the use of a bandpass filter having sufficient selertivity to pass one sideband and rojeret the other. Filters having such characteristices ean only be constructed for relatively low frequencies, and most filters used by amateurs are designed to work somewhore bet ween 10 and 20 ke. Good sideband filtering can be done at frequencies as high as 100 kc . by using mul-tiple-erystal filters. The low-frequency osidLator output is combined with the audio output of a speech amplifior in a "balanced modulator" - one in which the carrior is "neutralized" out, and only the upper and lower sidebands appear in the output. One of the sidebands is passed by the filter and the ot her rejected, so that an SSB signal is fed to the mixer. The signal is there mixed with the output of a high-frequency r.f. oseillator to produce the desired output frequency. For additional amplification a linear r.f. amplifier (Class A or Class B) must be used. When the SSB signal is generated at 10 or 20 ke , it is generally first heterodyned to somewhere around 500 kc . and then to the operating fregurnes. This simplifies the problem of rejecting the "image" frequencies resulting from the heterodyne process.

The second system is based on the phase relationships between the carrier and sidebands in a modulated signal. As shown in the diagram, the audio signal is split into two components that are identical except for a phase difference of 90 degrees. The output of the r.f. oscillator (which may be at the operating freguency, if desired) is likewise split into two

Separate components having a 90-degree phase difference. Onc rif. amd one audio component are sombined in cach of two separate balaneed modulators. The carrier is suppressed in the modulators, and the relative phases of the sidebands are such that one sideband is balanced out and the other is arrentuated in the combined oatput. If the output from the balanced modulators is high enough, such an sisb exciter can work directly into the antenna, or the power level can be increased in a linear amplifier following the exriter.

Which is the better method of generating an SSB signal, the filter or the phasing method, is a controversial question. Properly adjusted, either system is capable of good results. Arguments in faver of the filter systrm are that it is

Fig. 9-59 - Two basic systems for generating single. sideband suppressed-carriser signals.
somewhat easier to adjust without an oscilloseope, since it requires only a receiver and a v.t.v.m. for alignment, and it is more likely to remain in adjust ment over a long period of time. The chief argument against it, from the amateur viewpoint, is that it requires quite a few stages and at least two frequency conversions after modulation. The phasing system requires fewer stages and can be designed to require no frequency conversions, but its alignment and adjustment are often considered to be a little "trickier" than that of the filter system. This probably stems from lack of familiarity with the system rather than any actual difficul!y. In most rases the phasing system will cost less to apply to an existing transmitter.

A One-Band SSB Exciter

The exciter shown in Figs. 9-60, 9-f6 and $9-63$ is an exeellent unit for the amateur who might like to try single sideband with a minimum of cost and effort. It requires r.f. driving power from one's present exciter, audio power from an existing speech amplifier, and a power supply. It will deliver sisB output in the 3.9-Mc. 'phone band, either to an antema for lowal work or to an r.f. amplifier adjusted for linear operation. The operating frequency can be varied over a wide range without seriously impairing the adjustment. Provision is made for transmitting either the upper or the lower sideband.

The complete schematic of the exciter is shown in Fig. 9-61. Four 6V6 tubes are used as balaneed modulators. The plate circuit of the

Fig. 9.60-A small single-sinlehand evriter that can he used with practically any 7,0 -meter phone rig. Receiv. ing tuhes are used. (W2iN, Aug., 1919, (5.:T.)
balanced modulators uses a push-pull-parallel arrangement. The grids of one pair of balanced modulators are fed through a phase-shift network consisting of a 300 -ohm resistor and an inductance that is adjustable to 300 ohms reactance at the operating frequency. The grids of the second pair of balanced modulators are fed through a phase-shift network consisting of a 300 -ohm resistor and a condenser which is adjustable to 300 ohms reactance at the operating frequency. The input impedance of the two phase-shift networks in parallel is 300 ohms. A grid-leak resistor, suitably bypassed, provides bias for each pair of batanced modulators.
The screen of each balanced-modulator tube is by-passed to ground for r.f. Screen modulation is used, and therefore each serem-dropping resistor is by-passed for audio. Two of the resistors are variable to allow balancing of the modulators.
A tapped audio inductance is used in the output of each audio amplifier, to provide push-pull modulating voltages from the sin-gle-ended amplifiers. A voltage divider is inserted hetween earh output of the audio phase-
shift network and the corresponding amplitier grill. One of these voltage dividers is made variable to provide for balancing of the two audio chamels. The network constants are rompensated for the load of these voltage dividers.

The Audio Phase-Shift Network

The audio phasp-shift net work requires close matching of resistance and capacity values and. to do this economically, advantage is taken of the fact that resistors and condensers in junk boxes and in stock at local dealers vary considerably from their nominal values.

Table 9-II is used in selecting the network components. The procedure is to collect ass many resistors and condensers as possible with nominal values as indicated in the second column of the chart. Measure all of the comdensers first, and select the six condensers whose measured values are closest to the "tarpot values" in the third column. Biteer the measured values of these condensers in the fourth column of the chart. Then calculate the "target values" for the resistors and selecet the six resistors whose measured values are closest to these target values.

I capacity bridge, of the type used be servicemen, and a good ohmmeter should give sufficient accuracy in selecting the network components. Absolute accuracy is not importan, if the components are all in correct proportion to each other. A difference in percentage error between the rexistance measurements and the caparitance measurements will merely shift the operating range of the network. The network components are mounted on a small sheet of insulating material to facilitate wiring.

TABLE 9 -II
Phase-Shift Network Design Data

Part	Numinal Value	Taryet Value	Measured Volue
(')	0.001	0.0010 .7	(Crin)
(\because	0.012	0.00210	(Cum)
(:	0.0015	0,004i3:3:	(Cmis)
$1+$	0.00 .5	0.004%	('114,
r^{\prime}	0.01	$0 . \mathrm{Mr0.80}$	(Cms)
(\%)	0.10.3	0.028 .3	(${ }^{\prime}$ 'mis)
R_{1}		$\frac{100}{(11111}=$	
R_{2}	50,000	110:5	
		('me	
R \%	15,906,	100	
		Cmis:	
R_{4}	100.0:10	$4{ }^{4}+3$	
		CmH_{4}	
R_{5}	50.0100	476	
		Cmis	
R_{6}	15,000	403	
		Cilur.	

（i）－（i6－Simerable 9－1）．
（：7－I．⿹勹口－$\mu \mu$ fld．air padder condenser：
（is－I $00-\mu \mu \mathrm{fd}$ ，－per－section dual varialbs．

（：is－ $10-\mu \mathrm{fil}$ ． 5 Il－volt electrolytic．
R_{1}－ \mathbf{R}_{6}－sce Table 9－II．
R_{7} ，Rs－libigh or more onewatt remintor of equal value paralleled to pive 300 ohmo．
$\mathrm{R}_{9}, \mathrm{R}_{10}-20.000$ arhm potentiometers．

$R_{12}, R_{13}-2.2 .0100$ ohmms， 1 walt．
$\mathrm{K}_{14}, \mathrm{R}_{15}-33,000$ ohms， 1 watt．

The R．F．Phasing Inductance

The only other＂tricky＂eomponent of the expiter is the r．f．phasing inductance，L_{1} ，This inductance is wound on a slug－tuned form sal－ vaged from an i．f．transformer．The form is about three－eight hs of an inch in diameter and one and five－eighths inches long．The winding is forty turns of No． 30 d．c．e．wire，close－ wound．Since duplication of this inductance may be difficult，it is recommended that the ronstructor use a slug－tuned form and wire from his own junk box，and wind a coil that will resonate at 3.9 Mr ，at the eenter of the slug－tuning range，with a variable condenser set at about $15.5 \mu \mu \mathrm{fl}$ ．Revonance can be cherked by using the coil and condenser ans a wavetrap connected in series with the antema on the station receiver．

Construction

The exriter is assembled on a $5 \times 10 \times 3-$ inch chassis．The plate－tank tuning condenser is mounted on top of the chassis，front and center，with two of the 6 V 6 modulator tubes on each side．The plate tank coil is mounted
$\mathrm{R}_{16}, \mathrm{R}_{1:}-10,(\mathrm{HNO})$ ohms， 1 watt．
$\mathrm{R}_{1 \times}-3(\%)$ ohms， 2 watts．
$\mathrm{R}_{19}-0.5$ mekohm， 1 watt．
R_{20}－ $0 . \frac{\mathrm{T}}{} \mathbf{5}$ meqohm，I watt．
R_{21}－ $0.2 \overline{2}$ mekohm， 1 watt．
$\mathrm{R}_{22}, \mathrm{R}_{23}, \mathrm{R}_{24}, \mathrm{R}_{25}-33.000$ ohms， $1 / 2$ watt．
1．1－See text．
1．2－Low－power 801－meter coil．（Bud Oc： $1 .-80$ with hase removed．Six－turn link mbatituted for orikinal．）
I．s，L4－Midget push－pall ontpat to voice coil trans－ former（wice－coil winding not used）．
s_{1}－D．p．d．t．switch．
on top of the condenser．Pate leads from the four $6 V^{\circ}$ ay are brought directly to the funing condenser through four $3 / 8$－inch holes drilled Whrough the chassis near each tube－socket plate connection．The $6 \mathrm{~V}^{\prime} 6$ soreen grids are ber pasied to ground directly at the sockets．R_{3} ， L_{1}, C_{7} and R_{10}（all adjustable components） are mounted in a row directly behind the 6V6s．The two 6 K 6 amplifiers are mounted at the rear of the chassis，one on each side，with R_{11} and S_{1} between them．The audio phase－ shift network is mounted inside the chassis at the rear．Crystal sookets are used for r．f． input and oulput conneetions．A cable is brought out at the rear of the chassis for audio and power connections．Layout．eon－ struction and wiring are all conventional． The 5×7－inch front panel is optional．

Associated Equipment

The r．f．input impedance of the exciter is 300 ohms，but a link line of lower characteris－ tic impedance will operate satisfactorily for the short distance usually required．A means for adjusting the r．f．driving power is desirable． \boldsymbol{A} surplus Command set transmitter（BC－696 or
 tatakes an ideal r.f. source, but any VFO or revisal oseillator with a few watto output will do.

Iia inost stations, the handiest source of pustr-pull atudio for the exeiter will be the sersmidary of the modulator driver transfamer. I single triode-commerted $6 \mathrm{~F}^{6} 6$ output tube in the sperech amplitior will provide sufficient nudio. The modulator tubes should be removed from their sookets, and the eenter tap of the driverthatsformer seeomdary should be grounded, after removing the bias connection, In alternative method is 10 use blocking condensepes in the atudio leads to the singlo-sidehand exciter to isolate the modulator hias from the atdin phasc-shift network in tho axefter. If some of her sourere of push-pull atudio is used. it should have low internal impedance (Clats A triodres, or beam tubes with megative rollage fordalmak).

Operating Conditions

Ther operating conditions for therexerter atre determined bey the required output. If the required output is low. it is better to run the exriter with low plate voltages. This will redure the atmount of residual carrier present in the

Fip, 9.62 - A ton view of the exeiter. The toggle switeh at ilie rear solects the sidehand in use.
output in relation to the wideband output. Also, the exedter will he more stable athe maintain aljustment longer with lower plate vollages.

Tha power imput to the modulatur plates should not exceed 30 watts with un athdio input. The imput to the modulatoms mas be varied he adjusting the voltage used on the amplifiers and modulator sereenas.

The exator mas be coupled direetly to atr antomator use as a low-power tramsmiture but most amaterurs will wish to use it to driverat bufter ma final amplifier. All atages following tha expitar must be operated undior C Clasis A, AB, or 3 conditions. In general, the correet operating comblitions fon stages following the exator maty be found ber referring to the andio operating conditions for the tube under consideration. Grid-bias and screen voltages should have very good regulation. For amatrur voire operation, tubes may be operatiod considerably berond the ratings given in the tube matuats. as discussed later. When the r.f. amplifier is uperated Class AB. or Class B, the grid tank rircuit should be shunted be a resistor in ortar to provide better regulation of the exriting voltage. The value of this resistor is not reritioal and may be detomined by experimont.

Adjustment

Whustment of the cexiter is hest made under atrollal operating conditions. Conneret the exwiter to the transmitter, load the tramsmittor into a dummy load, apply r.f. exatation to the excitor, feed a souree of sinc-wave audio into the speech amplifier, and tume the transmitter in the conventional way for maximum output.

Redure the andio inpat fororo, and adjust potentiometers Ry and Rof for minimum conrrier wutput. Minimum carrier output maty he detormined by any sensitive r.f. indicator conpled to the final-amplifier phate eironit. () 0-1 milliammeter, in series with at erystad deteretor and a two-turn coupling loop, will make a satisfartory indicator'. The metor should be by-patserel with a 0.000 .0 fol contdonser. If a null indication camont be obtained within the rature of the potentiometers, the $6 \mathrm{Bl}_{6}$ tules are mot evonly matehed. Pixchanging the posilions of the bibls may and in obtaining the batance, or other tubes maty have lo be used.

Atter the carrier batance is oblatined, tume in the ref. sourere on the station reereverer, and with the antema terminals shomed, and the erssatal solecetivity in sharp position, aljust the erystal phasing to the point where only one sharplyperaked response is ohtained an the remeriver is tuned through the signal. Now apply sime-wave atudio of about 1 sonoreve fresurnery to the spereh amplifer, and fand the two sidehands an the recodver. Three distinct peak indications will be observed on the s-meter as the receiver is tumed. siet the receiver on the weaker of the two sidebatids and adjust L_{1}, C_{7} and R_{11} for

Fig. 9-6:3-A bottom view of the exciter. 'lhe phaserwhift network is mounted on a patall at the righthamd side. 'l'he doulto metring of resistere at the Ieft is the losad for the r.f. excitation.

minimum sidehand strength. If suppression of the other sidetband is desired, throw x_{1} to its: other position. A dip obtained with one set of adjustments is not neressarily the minimum. Other combinations should be triod. The final adjustment should give s-metor readings for the two sidebands which differ by at least 30) dh. The bias voltages on the two pairs of balanced modulators will be equal.

After the adjustments have been rompheted, the ref. drive to the rxater should be adjusted to the point where a derorase in drive will canse a dearease in output, bat an incerase in drive will not rathe an increase in ontpat. The romplete adjustment procedure should then be reathered. 'The rig is then ready for a microphoner. an antemat, and an on-tho-air ferst.

If an oweillusompe is avaibable. a simpler and

A

(C)

B

(D)

Fig. 9-o. Sketches of the owilloseope fare showing differmen conditions of adjustment of the ex-iter unit. (1) Show's the subitantially dean carrior ohtained when all adjustments are at optimum and a sine-wave sisnal is fed to the andio input. (B) shows improper r.f. phase and anhalane betwern the outputs of the two balanced
 of the two halanced modulators equal. (I) shows proper r,f. phasing but unhalance hetwern outpute of two balanced modalators.
more reliable adjustment procelure maty be used. Wither linear or sinc-wave horizontal swep maty be usid on the oseilloseope. The vertioal input should the couphed to the output of the transmitter in the same manner as is used for observing amplitude modulation. The sinc-wave andio-frequencr input to the speech amplifier should be ans eonveniont multiple
 sworp frequenco and a bootevele atodio frequoticy ate commonly used.

When the exeder is modulated with a single sime-wave adio frequener, the output shomblat to a simgle radio frequenes. Thereme, the oscilloscope should show a straightedged band aross the sereen, the same indication as is given by an ummodulated rarrior. This is illustrated in Fig. 9-64. . If carrier output, or unwanted sideband output, is present, it will be indieated by "ripple" on the top and bottom edges of the oscilloseope pirture. . sma and amount of ripple ean be tolerated, but if the exciter is hadly out of adjustment, the output will appear to be heavily modulated. Adjustment with the 'scope is atromplished by adjusting all controls to ohtain the smallest possible amount of ripple. The asoilloseope may also be used for continuous monitoring during tramsmissions to avoid overloading of ang thage of the transmittor. Overloathing is indi(zated bev: a flattening of the modulation-peak patterns at the top and bottom. In ohserving these patterns, it is difficult to soparate the - fifects of sidehand and ratrier suppression. However, considered separately, sideband or earrier supression of 30 db , wothld give a 3 per cont ripple, 25 db. a ripple of 6 per cent, and 20 db. at 10 per cent ripple. Itarmonies present in the atudio modulating signal will modify the results and invalidate this test if they ran more than 1 per cent.

A pair of 807s operating Class $A B_{2}$ can be driven be the exriter with only 60 ma. (at 120 volts) input to the batanced modulators, and with the exciter amplifiers also operating at 120 volts. Part of the output of the exciter is, of course, dissipated in the load resistor aeross the grid tank eitruit of the 807 s. The balanced modulators require sufficient r.f. drive to develop 12 volts of yrid bias under these operating conditions.

Amplification of SSB Signals

When an sibl signal is generated at some frequency other than the operating frequence. it is neressary to change freguency by heterodyne methods. These are exactly the same as those used in reerivers, and any of the normal mixer or convertor circuits can be ased. Whe expeption to this is the cose where the origital signal and the herermenting werillator are not too different in frequeney (ats whon hoterodyning a $2(0-\mathrm{ke}$, signal to 500 kc .) and, in this casio, a balaned mixer should be used, to eliminate the heterodyning osillator freguence in the ouput and thas reduce the chances for spurions signals appearing in the output.

To in rease the power level of an SSB signal, a "linear amplifier" must be used. The simplest form of limear amplifier (r.f. or andio) is the Class A amplifier, which is used almost without exception throughout our reerevert and our low-level spereh eguipment. White its limearity can be made phenomenally good, it is unfortanately quite inefficient. The theoretical limit of efficiency in this cate is so per eremt, while most practival amplifins run 25-3.5 por erolt ©ficient at full output. At low levels this is not worth worrying about, but when the 2 - to 10-wat leved is exceded something else must be done to improve this efficiencer and redare tube, power-upply and operating costs.
(lass 13 amplitiers are theoretically capable of 78.5 per cent efficiency at full output, and practioal amplifiers ran at (6) 70 per cent esficiener al full output. Tubes normally designed for (lass 13 audio, work ran be used in r.f. linear amplifiers and will operate at the same power rating and effiriency provided, of course, that the tule is capable of opration at the radio frequeney. The operating conditions for r.f. are substantially the same as for audio work - the only difference is that the input and output transformers are replaced by suitable r.f. tank circuits. Further, in r.f. cireuits it is readily possible to operate only one tube if only hatf the power is wanted - push-pull is not a neressity in Class Br.f. work. Howerer, the r.f. harmonies will be higher in the cate: of the single-ended amplifier, athl hix should be laken into consideration if TV1 is a problem.

In a few instamees, Class B r.f. amplifior ratinges of tubes are given in the tube book. and the efficiency shown will be about 33 per cent. These ratings are for use when carrier is present and do not apply to Sisi suppressed(arrier operation. The Class 13 andio ratings are a better indication of what can be expected.

For proper operation of Class 13 amplifiers, and to reduce harmonics and facilitate coupling, the input and output cireuits should not have a low C-to- L ratio. A good guide to the proper size of tuning condenser is the chart of Fig. (6-22 and, in case of any doubt, it is well to be on the high-raparity side. If zero-bias
tubere are used in the ('lass B staye, it will not be necessary to add murh "swamping" resistance arross the grid circuit, beratuse the grids of the tubes load the circuit at all times. However, with other tubse that require bias, the swamping resistor should be surh that it dissipates from five to ton times the power reguired be the grids of the tules. This will insure an almost constant load on the driver stage and good regulation of the grid voltage of the Class 13 stake.

Before going into derail on the adjustment and toading of the ('lass 13 linear amplifier, a few general considerations should be kept in mind. If proper operation is experted, it is essential that the amplifier the so constructed, wired and nent ralized that no trace of regeneration or parasitie instability remains. Xeedless to saty, this also applies to the stages driving it.
The bians supply to the ("ass 13 linusuramplifier should be quite stifl. A Clats O stage Wrives on grid-keak biats, hut for really goom opreation the Clats 13 shoub be supplied from a very stiff somere, such ats batterios or some for:n of voltage regulator. If monlinearity is notied when testing the unit, the bias supply may be cherked by mans of a large electrolytic capacitor. Simply shum the supply with $100 \mu \mathrm{fd}$. or so of caparity and sere of the linearity improves. If so, rethuild the hias supply for better regulation. Do not rely on a large condenser alone.

Adjustment of Amplifiers

The two eritioal adjust ments for ohtaining proper uperation from the linear amplifier that has been correctly designod are the plater loading and the grid drive. since these adjust ments: are proferably made with power on, it is a mattter of practical comvenience to have both controls readily availathe, at least during initial tune-up.

The 'scope can show misadjustment at a glanere and will groatly farilitale all adjustments. In addition, it is the most relialle instrument for observing modulation amplitude

Fik. 9-6.) - (Desilloarope pattern ohtained with atwotone test signal thromgh a correctlyadjuitod limear amplifier.
amb，once usol，is likely to become the most nowly essential instmment in the shack． Nothing elaborate is needed．

With single sidehand， 100 per cent modnat－ tion with a single tone is a pure r．f．output with no modulation envelope，and the point of amplifior owerload is diffirult to observe． However，if the input signal consists of two situe waves of different frequencies（for example， 1000 r．p．s．differenere but equal amplitudes， the output of the single－sideband transmitter should have the envelope shown in Fig．9－6in． This is called a＂two－tone＂test signal to dis－ tinguish it from other test sigmals．Its first ad－ vantage lies in the fact that ang flattening of the pesitive peaks is readily diserable，which makes the adjustment of the linear－amplifier drive and output coupling as simple a pro－ erfure ats that for $A M$ sustems．

Those who use the filter method for obtain－ ing single－sideband signals can obtain such a test signal be mixing the output of two andio nseillators of good waveform．The experiment－ rers using the phatsing method of single－side－ hand signal gremeration will reeognize the pat－ forn as that obsained when a single test tome is applied to whe of their batanced modulators． for this later group at twotome test signal mas be readily obtained be disatbling one of the balanced modulators in the exoiter and apple－ ing a single input tome．Other variations are possible in different exciters，and the final choice of athe one operator will be dietated by ＂omveniente．

Suppose that the lincar amplifier has bern coupled to a dummy load athd the single－ sideband exeiter has bern connered to its in－ put．By observing the oscilloseope eoupled to the amplifier output，it will be pessible to ad－ just the drive and output coupling so that the peaks of the two－tone test signal waveform are on the verge of flattening．The peak input power maty now be rhecked．This is readily possible，for with the twotote test signal ap－ plied，the peak input power will be 1.57 times the d．e．power input to the linear amplifier． Should this be different from the design value for the particular linear amplifier，the drive and loading adjustmonts can be quickly changed in the proper direction（alwatys ati－ justing the loading so that the peaks of the envelope are on the verge of flattening）and the proper design value reathed．

As a final chere，before coupling the liama amplifier to the antemat，the single－sideband operator will do well to check the linearity of the system，since distortion in the linear am－ plifier（for that matter，in any of the r．f．ampli－ fiers）probably will result in the weneration of sidebands on the side that was suppressed in the exciter．Here agsim the twotone test sig－ nal will be of great hedp，sinee distomen of the signal will he readily recognized．A cheek of the hias supply has already been recommended． The next most likely form of distortion will be catused by curvature of the tube eharacteristic
near cut－6ff，and will be recognizable from a two－tone test pattern that looks like Fig．9－6if． A slight readjustment of bias（or applying a few volts of positive or negative bias，in the ase of zero－bits tubes）will usually straighten out the kink that exists where the pattern crosses the zero axis．Make this adjust ment with special rare，however，because the dissi－

Fig．O－go－Ther dintorted two－tome tent－ignal pattern obtained when the bias voltage is incorrest．
pation of the tubes with no input signal will be very sensitive to this adjustment．There are a few tubes that will not permit this ad－ justment to be carried to the point where the kink is entirely eliminated without exreeding the rated plate dissipation．

The antenna mate now bo eoupled to the limear amplifier until the plate input with the exeitation ats determined above is the same ats that obtained with the dummy lead．The oper－ ator ran now foel that the sysitem has been ad－ justed for optimum performance．

Further details and reesent developments in amateur equipment for single－sideband work will be found in the following references： Goodman，＂What Is Single－Sideband Teleph－ onṿ＂：（Q心7，January，1948．
Villard，＂Single－Sideband Operating Tests，＂ （2s＇7，Jamuary，1948．
Niehols，＂A Ningla－Nidebamd Tramsmitter for Amateur Gperation，＂（d．\％January，1918．
Norgatarl，＂What About simgle sideband？＂ （2゙T，May，1948．
Norgated，＂A Now ．Approach to Single Side－ band，＂（S．ST，Jume， 1948.
Dawley，＂An S．s．s．C．Transmitter ．Idapter，＂ （2N\％，July， 1948.
Villard，＂A Simple Single－Sideband Trans－ mitter，＂Qs＇t，November， 1948 ．
Goodman，＂The Basic＇Phone Excitor，＂（es＇T， January，1949；correction（＂Feed－back＂）， March， 1949.
Mann，＂An Inexpensive Sidehand Filter，＂ （ぶ\％，March， 1949.
Ireque＇，＂Linear R．F．Amplifiers，＂（QS＇T＂，Mas， 1949.

Berry，＂Filter Design for the Single－sideband Transmitter，＂（QST＇，June， 1949.
Rust，＂Single Nidehand for the Average I Iam，＂ Q心＇T＇，August， 1949.
（Goodman，＂A 75 －and 20－Meter Single－side－ hand Exriter，＂QST，November， 1949.
Nihbre，＂Audio Phase－Shift Networks，＂QsT＇， January， 1950.

Antennas and

Transmission Lines

Abstract

The radio-frequency power that in gemerated be a transmitter serves asoful purpose only when it is radiated out into spare in the fomm of electromagnetic wases. It is the anteman's job to convert the power into radio waves as efficiently as posible, and to direet the wases Where they will do the most geod in erommunication, "Fon do so, the antema usually must be lowated well above the ground and kept as far as pasible from buibdines. treme. and other objects that might absorb oromgy. This raises at problem, beratuse be some meats or athother the power that is gevierated in the transmitter mast be convered to the athtemat. The usual means is a transmission line.

There is thes a natural asseriation between antemats and tranmission lines - ant assoriation that has frequently led the the qute mistaken belief that atn antennat fed be a particular tepe of trammission line is a better (or worse) radiator than exartly the same tyme of antemar fod lis a different type of transmiswion lime. The fact is that a transmiswion line can be used to carty power to ans sont of deviere - not just an antembat-capable of receiving it. Nor dues the antenna rare hey what means it gets the power: the anmont it receives will be radiated just as well no matorn be what system it was emveyed to the antemat poper.

Transmission Lines

Suppose we have a battery and a patir of parallel wires extending to a very great distanee. It the moment the battery is commereded to the wires, clectrons in the wire near the positive terminal will be attrateded the battere and the same number of elecerons in the wire near the megative battery terminal will be repelled outward athag the wire.

Thus a curvent flows in both wires noar the battery at the instant the hattery is comnerted. However, a definite time interval will elapse before these currents are evident at at distance from the battery. The time interval may be very small. For example, one-millionth of at serond (one mierosecond) after the eomneetion is made the currents in the wires will have traveded 300 moters, or mearly 1000 ford, from the battery torminals.

The eurent is in the natme of at chatginge curcont, flowing to charge the capacitame between the two wires. But unlike an ordinary condenser, the condurtors of this "linear" con-

Fig. 10.1 - Fiquivalent of a trammionion line int lumberd cireuit cyantants.
demser have apprectable imbuctance. In fact, We mas think of the line as being composed of a whole semion of small inductances and capacitanere commerted as shown in Vig. 10-1. Where each mil i- the indurtanere of a vers short seretion of ma wire and each mondenser is tha caparitance betwern two such short sections.

Characteristic Impedance

In infinitely-long chain of coik athd rondensers eonnerted as in löis. 10-1, where eath L is the same as all others and all the Co have the same value, hats an important peculiarity. Ton an efectrical impulse applied at one end, the combination appears to have am impedance - ralled the characteristic impedance or surge impedance - that is approximately "qual to $\sqrt{ } L / \bar{C}$. This impedane is purely resistive. In atrammission line, L and C° are the inductance and capacitance per unit length.

The inductance and rapacitance por unit length depend upon the size of the line romductors and the spacing botween them. The elsere the two eonduetors of the line and the greater their diameter, the higher the eaparitance and the lower the indureance. A line with large romductors chosely spaced will have low impedance, while ous with small ronductors widely spaced will have relatively high imperlance.

The characteristic impedance of the tine determines the amonnt of current that ran flow when a voltage is applied to the line. When a line is infinitely long, the current is simply equal to E / Z_{0}, where E is the voltage applied to the line and Z_{0} is the characteristie impedance. This has nothing to do with the resistance of the conductors. The line is an impedance (like any circuit composed of L and C, without any R) that does not consume power. Aetually, of course, the conductors do have resistance, so power cannot be transmitted along the line without some loss. But if the line is properly constructed and operated. this loss will be small compared with the amount of power carried to the load to do useful work.

"Matched" Lines

In this pieture of current traveling along a transmission line we have assumed that the line was infinitely long. Actual lines have a delinite length and are connected to or terminated in a load at the "output" end, or end to which the power is delivered. If the load is a pure resistance of a value equal to the characteristic impedance of the line, the current traveling along the line to the lonal does not find conditions changed in the least when it meets the load; in fart, the load just looks like still more tranmission line of the same characteristic impedance. Consequently, connecting such a load to a short transmission line allows the current to travel in exaetly the same fashion as it would on an infinitely-long line.

In other words, a short line terminated in a purely-resistive load equal to the characteristic impedance of the line atets just as though it were infinitely long. surh a line is said to be matched. In a matched transmission line, power travels outward along the line from the souree until it reaches the load, where it is completely absorbed.

R.F. on Lines

The discussion above, although based on direct-current flow from a battery, also holds When an r.f. voltage is applied to the line. The difference is that the alternating voltage causes the amplitude of the current at the input terminals of the line to vary in the same Way as the amplitude of the voltage, and the direction of current flow also periodically reverses when the polarity of the applied voltage reverses. In the time of one ryole the current will travel a distance of one wavelength along the line wires. Because the current at a given instant at any point along the line is the result of a voltage that was applied at some earlier instant at the input terminals, the instantaneons amplitude of the current is different at all points in a one-wavelength sertion of line: in fact, the current flows in opposite directions in the same wire in adiarent half-watvelongth sections. This is the
instantoneous picture. In contrast, at any given point along the line the current goes through the same variations in the time of one cyrle that the current at the input terminals did.

The result of all this is that the current (and voltage) travels along the wire as a serie: of waves having a length equal to the velocity at which the current travels divided by the frequency of the a.e. voltage. On an infinitelylong line, or one properly matehed at the load, an ammeter inserted anywhere in the line will show the same current, silore the ammeter arorages out the variations in current during at curle. It is only when the line is not properly: matrohed that the wave motion beromes apparent. This is discussed in the next sertion.

STANDING WAVES

With the infinitely-long line (or its matrhed counterpart) the impelance was the same at any point on the line and therefore the ratio of voltage to current was the same at any point on the line. However, the impedance at the end of the line in Fig. 10-2 is zero - or at least extremely small - berame the line isshortaifelited at the cold. I given amount of power in a very low impedane will result in a very lavge current and a very small voltage, as rompared with the current-voltage ration that exists in a few hundred ohms - which is a typical imperdane value for some types of trammission lines. Something has to happen, therefore, when the power traveling along the transmission line meets the short-circuit at the end.

What happens is that the gutgoing power, on meeting the short-circuit, simply reverses its direction of flow and goes back along the transmission line toward the input end. It has nowhere else to go. There is a very large current in the short-circuit, but substantially no voltage across the line at this point. We now have a voltage and current representing the pewor going outward twward the short-cirenit, and a seond voltage and current representing the reflected power traveling back toward the source.

Consider only the two current components for the moment. The reflected current travels at the same sped as the outgoing eurrent, so its instantaneous value will be differemt at every point along the line, in the distance reprosented by the time of one eyele. At some points along the line the phase of the rutgoing and reflected currents will be surh that the currents cancel each other while at others the amplitude is doubled. . It in-between points the amplitude is between these two extremes. The points at whirh the currents are in and out of phase depend only on the time required for them to travel and so depend only on the distance along the line from the point of reflertion. The phase is completely reversed in the time of one-half warle -
that is, a distance of one-half wavelength and is back in the in-phase condition when the current has traveled for one whole eyele, or one wavelength.

In the short-circuit at the end of the line the total current is high and the two current components are in phase. Therefore at a distane of one-half wavelongth batek atong the line from the short-circuit the outgoing and reflectod components will again be in phase athe the current with have its maximum value, This is also true at atmy point that is a multiple of a half-wadength from the shorterimuited end of the line. The distance along the line is ome-half wavelength, rat her that a full wavelength, bealuse the two eomponents are traveling in opposite directions.

Fis. If.2 - Standing waver of woltage and current along a short-circuited transmin-ion line.

Since a fotal distatnee of obr-half wimeJongth gives a eomplete reversal of phase, the outgoing and reflected currents will sanerel at a point onf-gunter wasemgth, allong the lines, from the short-cirenit. It this print, then, the current will be zero. It will ako be zere at all points that are an whl multiple of one-guater wavelengh from the shont-rimait.

If the current abong the line is nowsured at sucressive points with an ammater, it will he found to vary about as shown in Fix. 10-2ls. The same result would be obtaned by measuring the current in wither wire sine the ammoter camot measure phase. Howerer, if the phase could be chereked. it would be found that in earh sucressive half-warelength sere tion of the line the cureents at any riven instant are flowing in upposite directions, as indicated hy the solid line in Fig. 10-20 Furthermore, the current in the serond wire is flowing in the opposite direction to the eurrent in the adjacent section of the first wire, as a result of the eleatron movement discused earlier. This is indiated by the broken rame in Fig. 10-2(. The variations in eurrent intensity along the tramsmission line are referred to as standing waves. The point of maximum line current is called a current loop
and the point of minimum line eurrent a current node.

Voltage Relationships

Since the end of the inte is short-eireuited, the voltage at that print has to be zero. This call only be so if the voltage in the outgoing wave is met. at the end of the lime by an equal voltage of opposite polarity. In other wordo. the phase of the volage wave is repersed when reflection takes phame from the short-cireuit. This revoreal is equivalont to an extra half-
 the wut whing athd returning voltages are in phase a quapler wavelength from the end of the lime. and atran out of phase at half-wavo lenght from the emd. 'Tho standing waves of voltater, shown at J) in lige. 10-2, are therefore displated by ond-quarter wavelenght from the statheng waves of current. The drawing at E shows the volatges on both wires when phase is laken into atecount. The polatity of the voltage on wath wire roverses in cach halfWavelength sertion of thatsmission lime. I voltage maximum on the line is called a voltage loop and a voltage minimum is called a voltage node.

Input Impedance

It is apparent, frome examination of 3 and D) in lig. (0)-3, that at points that are a multiple of a half-wavelength - i.e... $1 / 2,1,11 / 2$ wavelengths, ete. - from the short-areuited end of the line the current and voltage have the same values that they do at the shortcircuit. In other words, if the line were an exact multiple of a half-wavelongth long the senerator or soure of power would "look into" athort-circuit. On the other hatad, at ponits that are an odel multiple of a quarter wamengeth - i.f., $1 / 4,3 / 4,11 / 4$, etr. - from the short-ritenit the voltage is maximum and the aurent is zern. siure $Z=E / I$, the imperdane at these points is theoretically infinite. (Arually it is very high, but uot infinite. 'This is beratuse the current does not actually go to \%ero when there are losses in the line. Lasses are always present, but usually are small elough sil that the impordance is of the order of tens or handreds of thousands of ohms.

At either the odd or even multiples of a quartor wavelength the impedanee is a pure resishather, berause at these points the current athl voltage in the transmisaion line are examply in phase.

I detailod study of the outgoing and roflocted components of volage and curremt will show that at a point such as.X in Jig. $10-2$, lying anywhere in the seetion of line betweren the short-cirevit and the first quater-wave lenerth point, the eurent lates hebind the voltage. This is exately what happens in an induetance, so it can be said that a sertion of short-circuited transmission line less than a quater wavelongh lomg has inductive reaclatoer The value of reactanee is derermined

Fig. 10.3- Input reatamee es. lempth of a shortrircuited transmission line. Antual valurs of reactame depend umon the eharacteristic imperdane of the tine as well as it- henuth. For a kiren lime Ienath, the input reactaner is direrly promertimal to the ehardeteriotioimperlane.
hey the ration of voltage for current at the input end of such a line. 11 is evident from 13 and I) in fig. 10-2 that the reatathe is low when the line is quite shorl, and highest when the line is nearly at quarter wavelenght long. The lime alsa has inductive ractathe: when its lengeth is between me-half and these-quater wamlength, betwern one and one-and-ome-quartor wavelengths, and so on.
()n the other hand, in the sation of line between one-quarter and mo-half wavelength
 the current leads the voltage. A short-cireuitad line having a length betweon these two limits "looks like" a caparitive reactance to the penerator to whirh it is connereded. The reartance is highert when the line is just owe one-quarter wavelength long, and lowest when the line is just less than ome-half wave length long. Fig. 10-: shows the weneral way in whirh the reartance varies with different lime langthe.

Open-Circuited Line

If the end of the lime is opron-eirenited inctand of shortoircuited, there can be no current at
(A)

(B)
(C)

Current
alongline as meassured
by ammeter

distribution including polarity

Voltage along line
(D)
(E) polarity Voltage
distribution
including polerity

Fip, 10.1 - Standing waves of curratt and voltake

the end of the line but a large voltage can exist. Again the outgoing power is reflected hatek toward the source berause it has nowhere We to go. In this case, the outgoing and refleved eomponents of rurrent must be equal athe opposite in plase in order for the total cument at the end of the line to be zaro. The outgoing and reflected components of voltage are in phase, however, and add togethor. The result is that we again have standing waves, hut the conditions are reversed. Jig. 10-t shows the opere-araind line ease. It may be compared directly with lig. 10-2. The impedance looking into the line toward the open end is purely resistive at each multiple of one$g^{\text {luarter wavelength. It is vary low at odd }}$ multiples of one-quarter wavelength, and very hiphat even multiples. In fact, an open-oircuited line and short-cireuited line behave just alike of the length of one differs by one-guarter wareleneth from the leneth of the other.

 rirenited transmi*-ion line A Athal salues of reattanme depend unon the rharateristic imperlame of the line
 rodetaner is directly proportional to the characteriatio immalame.

Fig. 10-5 shows how the reactance varies with line length for the open-circuited line. Comparing this with lig. 10-3 shows that the reatiane of any given length of line is of the opposile type for that obtained with a shortcircuited line of the same langh.

Lines Terminated in Resistive Load

Fig. 10-fis shows a line fominated in a resistive load. In surh a case at least part of the outgoing power is absorbed in the load, and so is not available to be reflected back toward the surbere. Becatase only part of the power is reflocerd, the refleated eomponents of voltage and current do not have the same magnitude as the outgoing compenents. Therefore there is no such thing as complete cancellation of either voltage or current at any point along the linc. Howevor, the sperd at which the outgoing and reflected components travel is not affected by their amplitule, so the phase relationships are similar to those in open- or short-eireuited lines.

It was pointed out earlier that if the load

Practical Line Characteristics

The foregoing discussion of transmission lines has been based on a line consisting of two parallel conductors. Actually, the parallelconductor line is but one of two general types. The other is the coaxial or concentric line. The coaxial line consists of a round conductor placed in the center of a circular tube. The inside surface of the tube and the outside surface of the smaller inner conductor form the two conducting surfaces of the line.

In the coaxial line the fields are entirely inside the tube, because the tube acts as a shield to prevent them from appearing outside. This reduces radiation to the vanishing point. so far as the electrical behavior of coaxial lines is concerned, all that has previously been

Fig. 10-8-Typical construction of open-wire line. The line conductor fits in a groove in the end of the spacer, and is held in place by a tie-wire anchored in a hole near the groove.
said about the operation of parallel-conductor lines applies. There are, however, practical differences in their construction and use.

Types of Construction

There are several constructional variations in both the basic types of transmission lines mentioned in the preceding section. Probably the most common type of transmission line used in amateur installations is a parallelconductor line in which two wires (ordinarily No. 12 or No. 14) are supported a fixed distance apart by means of insulating rods called "spacers." The spacings used vary from two to six inches, the smaller spacings being necessary at frequencies of the order of 28 Mc . and higher so that radiation will be minimized. The construction is shown in Fig. 10-8. such a line is said to be air-insulated. Typical spacers are shown in Fig. 10-9. The characteristic impedance of such "open-wire" lines runs between about 400 and 600 ohms, depending on the wire size and spacing.

Parallel-conductor lines also are sonetimes constructed of metal tubing of a diameter of $1 / 4$ to $1 \underline{\underline{2}}$ inch. This reduces the characteristic impedance of the line. Such lines are mostly used as quarter-wave transformers, when different values of impedance are to be matched.

Two forms of "Twin-Lead" or "ribbon" transmission line are shown in Fig. 10-9, This is a parallel-conductor line with stranded conductors imbedded in low-loss insulating material (polyethylene). It has the advantages of light weight, compactness and neat appearance, together with close and uniform spacing. However, losses are higher in the solid dielecetric than in air, and dirt or moisture on the line tends to change the characteristic inpedance. Twin-Lead line is avalable in characteristic impedances of 75,150 and 300 ohms.

The most common form of coaxial line consists of either a solid or stranded-wire immer conductor surrounded by polyethylene dielectric. Copper braid is woven over the dielectric to form the outer conductor, and a waterproof vinyl covering is placed on top of the braid. This cable is made in a number of different diameters. It is moderately flexible, and so is convenient to install. Some different typer are shown in Fig. 10-9. This solid coaxial cable is commonly available in impedances approximating 50 and 70 ohms.
dir-insulated coaxial lines have lower losses than the solid-dielectric type, but are less used in amateur work because they are expensive and difficult to install as compared with the flexible cable. The common type of air-insulated coaxial line uses a solid-wire conductor inside a copper tube, with the wire held in the center of the tube by means of insulating "beads" at regular intervals.

Characteristic Impedance

The characteristic impedance of an airinsulated parallel-conductor line is given by:

$$
\begin{equation*}
Z_{0}=276 \log \frac{b}{a} \tag{10-D}
\end{equation*}
$$

where $Z_{0}=$ Characteristic impedance
$b=$ Center-to-center distance between conductors
$n=$ Radius of conductor (in same units as b)

Fig. 10-9-1'ypical manufactured transmission lines and spacers.

I'is. Il IO - Chart showing the eharaturistic impedance of typical suacederombertor parallel tramsmision limes. 'Tubing sizes given are for outside dianeters.

It does mot matter what units are used for a and b solong as they are the same units, Both quantities may be monsured in entimeters, inches, etc. since it is nevessary to have a table of common logarithms to solve practical problems, the solution is given in graphical form in lig. 10-10 for a number of common conductor sizes.

The characteristic impedance of an airinsulated comatal line is given by the formula

$$
\begin{equation*}
Z_{0}=138 \log \frac{b}{a} \tag{10-E}
\end{equation*}
$$

where $\%_{0}=$ (haracteristic impodance
$b=$ Inside diameter of outer conductor
$n=$ Outside diameter of inner conductor (in same units as b)
. Igain it does not matter what units are used for b and a, so long as they are the same. Curves for typical conductor sizes are given in Fig. 10-11.

The formula for conxial lines is approximately correet for lines in which head spacers are used, provided the beads are not two closely spaced. When the line is filled with a solid dielectrie, the characteristic impedance as given by the chart should be multiplied by $1 / \sqrt{K}$, where K is the dielectric constant of the material. In solid-dieleetric parallelconductor lines such as Twin-Lead the characteristic impedance cannot be calculated readily, bepanse part of the electric field is in air as well as in the solid dielectric.

Electrical Length

In the discussion of line operation earlier in this chapter it was assumed that currents traveled along the conductors at the speed of light. Actually, the velocity is somewhat less, the reason being that electromagnetic fields travel more slowly in dieleetric materials than they do in free space. In air the velority is
practically the same as in empty space, but a practical line alway: has to be supported in some fashion by solid insulating materials. The result is that the fields are slowed down; the currents travel a shorter distance in the time of one cycle than they do in space, and so the wavelongth along the line is less than the wavelength would be in free space at the same frequency. (Wavelength is equal to velocity divided by frequency.)

Whenever reference is made to a line as being so many wavelongths (such as a "half-wavelength" or "quarter wavelength") long, it is to he understood that the electrical length of the line is moant. Its actual phosical length as measured by a tape always will be somewhat tess. The physical length corresponding to an clectrical wavelength is given by

$$
\begin{equation*}
\text { Length in feet }=\frac{98 t}{f} \cdot V \tag{10-F}
\end{equation*}
$$

where $f=$ Frequency in megacycles
$V=$ Volocity factor
The velocity factor is the ratio of the artual velocity along the line to the velocity in free space. Values of V for several common types of lines are given in Table $10-\mathrm{I}$.

Example: A 75-foot length of 300-ohm TwinLead is used to carry power to an antenna at a frequency of 7150 kc . From Table 10-I, V' is 0.82 . At this frepuency (7.15 Mc .) a wavelength is

$$
\begin{aligned}
& \text { Length }(\text { feet })=\frac{984}{f} \cdot V=\frac{944}{7.15} \times 0.82 \\
& =137.6 \times 0.82=112.8 \mathrm{ft} .
\end{aligned}
$$

The line length is therefore $75 / 112.8=0.665$ wavelength.
Because a quarter-wavelength line is frequently used as a linear transformer, it is convenient to calculate the length of a quarterwave line directly. The formula is

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{246}{f} \cdot V \tag{10-G}
\end{equation*}
$$

where the symbols have the same meaning as above.

Fig. 10-1I - Chart showing characteristic impedance obtained with various air-insulated concentric lines.

Losses in Transmission Lines

There are three ways by which power may be lost in a transmission line: by radiation, by heating of the conductors ($I^{2} R$ loss), and by heating of the dielectric, if any. Loss by radiation will occur if the line is unbalanced and, partieularly with open-wire lines, may greatly exceed the heat losses. It can be reduced to a minimum by terminating the line in a balanced load and by symmetrical construction.

Heat losses in both the conductor and the diclectric increase with frequency. Conduetor losses also are greater the lower the characteristic impedance of the line, because a higher current flows in a low-impodance line for a given power input. The eonverse is true of dielectric losses because these incroase with the voltage, which is great or on high-impedance lines. The dielectric loss in air-insulated lines is negligible the only loss is in the insulating spacers) and such lines operate at high effirioney when radiation losses are low. In soliddielectric lines most of the loss is in the dielectric, the eonductor losses being small.

It is convenient to express the loss in a transmission line in decibels per unit longth, since the loss in db. is directly proportional to the line length. Losses in various types of limes oporated without standing waves that is, terminated in a resistive load equal to the chatateristic impedance of the line) are given in Table 10-I. In these figures the radiation loss is

Fis. 1 11.12 - liffect of standing-ware ratio on line lose The ordinates give the additional lowe in decibels for the total line loss, meder perfeetly-matehed conditions, shown on the horizontal scale.
assumed to be megligible.
When there are slamding waves on the line the power loss increases as shown in Fig, 10-12. Whother or not the inerease in loss is serious depends on what the original loss would have bean if the line were parfeetly matched. If the loss with perfeet mathehing is very low, a larges.w.r. will not greatly affeet the efficienc! of the line - i.e., the ratio of the power delivered to the load to the power putinto the line.
Example: A lion-foot length of RG-11/(T cuble is operating at 7 Me . with a isto-1 s.w.r. If perfretly matched. the loss from Table 10-1 would be $1.5 \times 0.41=0.615$ dh. From Fig. 10-12 tha additional loss tarime of the s.w.r. is 0.73 d d. The total loss is therefore 0.01 i$)+0.73=1.34 .7$ dh. The total power loss is just sufficient to make a detectable change in signal strougth when ohserving eonditions are ideal. but the additiomal loss raused by the s.w.r. is below the detertable 1 dh.) level. With perfeet matching the line eflien iney is apmoximately 87 per cent. With the ©-to. 1 s.w.r, the efferency drops to abont $73 . ⿱$ per cent.

An appreciable s.w.r. on a sotiddieloetric line may result in exeessive luse of power at the highor frequencios. such lines, whether of the parallelcomduetor or coaxial type. should be operated as nearly flat as possible, particularly when the line longt his more than 50 feet or so. As shown by Jig. 10-12, the increase in line loss is not too serious so long as the s.w.r. is below 2 to 1 , but increases rapidly when the s.w.r. rises above 3 to 1 , Tuned transmission lines such as are used with multiband antennas always should be air-insulated, in the interrats of highest efficiency.

Unbalance in Parallel-Conductor Lines

When installing parallel-conductor lines care should be taken to avoid introducing electrical unbalance into the system. If for some reason the current in one conduct or is higher than in the other, or if the currents in the two wires are not exactly out of phase with each other, the electromagnetic fields will not cancel completely and a considerable amount of power may be radiated by the line.

Maintaining good line balance requires, first of all, a balanced load at its end. For this reason the antenna should be fed, whenever possible, at a point where each conductor "sees" exactly the same thing. Usually this means that the antenna svstem should be fed at its electrical center. Even though the antenna appears to be symmetrical, physically, it can be unbalanced electrically if the part connected to one of the line conductors is inadvertently coupled to something (such as
house wiring or a metal pole or roof) that is not duplicated on the other part of the antenna. Every effort should be made to keep the antenna as far as possible from other wiring or sizable metallic objects. The transmission line itself will cause some unbalance if it is not brought away from the antenna at right angles to it for a distance of at least a quarter wavelength.

In installing the line conductors take care to see that they are kept away from metal. The minimum separation between either conductor and all other wiring should be at least four or five times the conductor spacing. The shunt capacitance introduced by close proximity to metallic objects can drain off enourh current (to ground) to unbalance the line currents, resulting in increased radiation. A shurt capacitance of this sort also constitutes a reactive load on the line, causing an impedance "bump" that will prevent making the line act ually flat.

Coupling the Transmitter to the Line

In very general terms, the problem of coupling the transmission line and transmiter together is one of transforming the input impedance of the line into a value of impedance that will "load" the transmitter properly that is, cause it to deliver the desired power output at as high efficiency as the transmitter design will permit. This is a question of impedance matching, and the impedance that must be matched is the value of resistance into which the tubes in the final stage of the transmitter should work. The value of this resistance is determined by the choice of tube operating conditions. The tubes are working into the proper resistance when the final tank circuit is tuned to resonance and the loading is such that the tubes are drawing rated plate current, as described in Chapter Six. The proper value of load resistance is thus reached automatically when the coupling is adjusted to bring the plate current up to the normal operating value. It is therefore not at all neeessary to know what value of resistance is required. It is sufficient to note that, in general, it is in the neighborhood of a few thousand ohms, and is higher the higher the platevoltage plate-current ratio of the final stage.

The input impedance of the line can assume a wide range of values. As deseribed earlier, it may be very much higher or very much lower than the impedance of the load at the end of the line, unless the line is matched to the load. Furthermore, it may or may not be a pure resistance, depending on the s.w.r., the line length, and the characteristics of the load.

Transforming Impedances

It was explained in Chapter Two that a resistive load tapped across part of a tuned rircuit is equivalent to a higher value of resistance commerted in parallel with the whole circuit. In other words, there is a transformer action in such an arrangement that enables us to change the value of a given resistance, such as R in Fig. 10-13. , into a new and higher value when the source of power looks into the terminals $A B$. Given reasonable values for L and C;, the resistance looking into $A B$ is determined practically wholly by the value of R and the position of the tap, so long as $L C$ is tuned to resonance with the applied frequency. This is berause the resonant impedance of $L C$ alone (with R diseomoceted) is usually very high

Fig. lo-1.3-1 sing a resonant circuit for mathing impedances.
compared with the resistance, R, of any practical load likely to be used, and also compared with any resistance that might be required between the terminals $A B$.

Fig. 10-13B shows a circuit that also provides a met hod for impedance transformation, using a capacitance voltage divider instead of tapping on the inductance. In this case, decreasing the capacitance of C_{b} (while increas-

Fig. 10-14-sicres and parallel equivalents of a line whose input impedance has both reactive and resistive components.
ing the capacitance of C corrospondingly to maintain resonance) has the same effect as moving the tap toward the top of the eoil in Fig. 10-13A. This type of circuil gives very smont control. However, variable condensers of impracticable size would be necessary, to give as wide a range of impedance transformation as the cireuit at A.

When an r.f. amplifier is coupled to a transmission line the line impedance very seldom is larger than the load impedance required by the amplifier. However, should such a case arise the same circuits can be used by reversing the terminals. This is shown at C and I) in Fig. 10-13. With R commected across the whole circuit, its resistance can be transformed to a lower value when the input terminals are tapped across part of the coil, ats at A, or across C_{b}, in Fig. 10-1313. The nearer the tap is to the bottom end of the coil, or the larger the capacitance of C'b compared with $C_{:}$, the smaller the resistance between terminals $A B$.

Complex Loads

In the foregoing it, was assumed that the load, R, was a pure resistance. However, the input impedance of a line is more likely than not to have a reactive as well as a resistive component. This means, basically, that the current flowing into the line is not in phase with the voltage applied to the line. To represent such a condition by circuit symbols we can assume the input impedance of the line to consist either of a reactance (coil or condenser) in series with a resistance, or a
reactance in parallel with a resistance. It does not matter which we choose, so long as the values assigned to the resistance and reactance are such that if the voltage were applied to the circuit instead of to the line, the current that flows would have exactly the same amplitude and phase angle as it actually does at the input terminals of the line.

These equivalent circuits are shown in Fig. 10-14. In practical work with lines it is not neressary to know the values of R, L or C. It is sutficient to know that they symbolize a condition that exists at the input end of the line and then to know what to do about them. A few general points are worth moting: Given a fixed value of voltage, if the eurrent at the input end of the line is high, then the impedance is relatively low; if the curment is low, the impodance is relatively high. If the current in very nearly in phase with the voltage the reactance in the series equivalent eireuit is small. but the reactance in the parullel equivatent circuit is large. On the other hand, if there is a considerable phase differenee bet ween current and voltage the reactance is large in the equivahent series eircuit and is low in the equivalent parallel circuit. (In visualizing these reactances as coils and condensers it must be remembered that "large" and "small" are relative terms: for example, a "large" inductance at 28 Me. would be a "small" inductance at 3.5 Me. Also, the larger the capacitance of a condenser the smaller its reactance.)

Now suppose that a reactive line is to be connected to our impedance-transforming resonant circuit. Let us choose the parallel equivalont circuit, since it is somewhat easier to picture what happens. Fig. 10-15A shows a load with inductive reactance tapped across part of the resonant circuit (corresponding to Fig. $10-13 A$), and a load with capacitive reachance is shown in Fig. 10-15B. Inagine for the moment that the load has only reactance; the resistive component, R, is disconmected. Then, just an in the pure-resistance case prevously

(A)

(B)

Fif. 10-15 - Circuit elpuivalent of a reactive line connected to a resonant circuit for impedanee matching.
discussed, a small reactance tapped across the eoil L will appear as a larger reactance across the whole circuit, or between the input terminals $A B$, Thus, connecting a coil, L_{1}, across part of L is equivalent to connecting a larger coil across the whole circuit. Connecting a condenser, C_{l}, across part of L is equivalent to connecting a smaller condenser (larger reactance) acriss the whole circuit.

Fig. 10.10- Mrthods for canceling the reaclive eomponent of the input impedance of a transmission line. In A the line input intperlance is represented by I, and R in series, or loy L^{\prime} and K^{\prime} in parallel, and in B ly \dot{C} and R in series, or lyy C^{\prime} and R^{\prime} in paratlel.

In either ease this equivalent shunting reactance detunes the $L C$ eireuit from resonance, and C must be radjusted to bring it bark. In the rase of Fig. 10-15. , the capacitance of C must be increased berause the "reflected" reactaner in parallel with L deereases the total inductance (inductances in parallel) and so tunes the eireuit to a higher frequeney. The opposite is the case in lig. 10-1513; the shumting reactance is eapacitive and inereases the total capacitanee. Consequently the rapacitance of C must be decreased to bring the circuit back to resonance.

The over-all effeet, then, of coupling a reactive load to the eireuit is to catuse detuning as well as to canse the desired resistance loading. If the reflerted reactance is large, corresponding to eonnecting a very large coil or a very small condenser across the whole $L C$ eireuit. it is readily possible to retune the circuit to resonance by adjusting C. The nearer the tap to the top end of L, the greater the change required in the tuning. But this simple method of compensating for the reactive component of the load is not always sufficient. In some cases the $1: 1$ p has to be moved so far up the coil, in order to obtain the right value of resistance loading, that the tuning eondenser, C, no longer has sufficient range to compensate for the reflected reactance. When such a condition exists it is diffecult, and sometimes impossible, to rouple the desired amount of power to the transmission line.

Canceling Line Reactance

The remedy for this condition is to make the input end of the line look like a pure resistance before it is tapped on the impedance-transforming circuit. This can be done by "tuning out" the ractance of the line, by inserting a reactance of the same value but of the opposite kind. Igain we have our choire between considering the line to be reprosented by react-
ance and rosistance in series, or by ractance and resistance in parallel. The circuits are shown in Fig. 10-16. In A, a condenser, ('1, is used to cancel rut the inductive reatetance of the line, and in 13 an inductance, L_{1}, is used to rancel capacitive reactance. The same value of rapacitanme camot be used for C_{1} and C_{1}^{\prime} under a given set of conditions because, as explained carlior, L and L^{\prime} do not have the same values. For example, if L is small its parallel equivalent, L^{\prime}, is larese, so a large caparitanore would be recuired at C_{1} and a small caparitance at r_{1}^{\prime}. Bocause of limitations in prationable components (particulaty in the capacitance range of variable condensers), there are conditions where the sories circuit is the easiest to set up, from a practical standpoint. In others, the parallel circuit is easier to get working. For the large majority of cases cither circuit will work equatly well: from the standpoint of eonvenience, the paratlel circuit is probably better.

To summarize, then, we have three general cases as shown in Pig. 10-17. If the line is purely resistive, or so nearly so that such react ance as is reflected across the L e eireuit ean be tuned out by readjusting (C, the eircuit at A may be used. Where the line shows more pronotured reactive effects, the line reactance can be tunod ont, as indicated at 13 and (', so that the load tapped on L is purcly resistive. It is casy to tell which should be tused, inductance or capacitance, to eomponsate for the line reatennee. If the line only (Fig. 10-17A)

Fig. 10.17 - Nethonds of canceling line input reactance combined with impridame trandormation.
is tapped across a very small portion of L, C will have to be readjusted slightly to bring the $L C$ circuit back to resonance. If the capacitance of C has to be increased, a condenser, C_{2}, should be connected across the input terminals of the line. If the capacitance of C has to be decreased, an inductance, L_{1}, should be connected across the line. In either case the compensating reactance, C_{1} or L_{1}, should be adjusted in value until the setting of C, for resonance with the applied frequency, is the same whether or not the line is tapped on L. When this condition is reached the loading may be adjusted by changing the tap position until the amplifier takes the desired plate current.

PRACTICAL COUPLING SYSTEMS

In practical work the two primary functions that a coupling system must perform - tuning out the line reactance, if any, and providing a method for control of loading on the transmitter - are not always cnough. For one thing, it is desirable that the coupling system be sueh that the transmission line will operate only in the way it is intended that it should. For another, the coupling system should prevent transfer of any of the harmonic energy that always is present in the output of a transmitting amplifier. Both these points will be considered tater in this section. For the moment, let us take a look at some of the simpler coupling systems.

Fig. 10.18 - Simple methods of coupling to a transmission line. 'the bloch ing condensers, C_{1}, should be $0,001-\mu \mathrm{fd}$. (or larger) mica condensers having a voltage rating in excess of the maximum d.c. voltake applied to the final amplifier (imeloding the voltame applied on modulation up-peaks). 'line coaxial line can lee coupled to a lvalanced tank circuit ly connecting the grounded shield to the center of the coil (through a bloching condenser) and tappink the inner conductor on one side of the center. The paralleleconductor line requires a halaneed tank circuit.

The possibility of tapping the input end of the transmission line directly on the finalamplifier tank suggests itself from the discussion earlier. This method will work when the input impedance of the line is purely resistive, or nearly so. It can therefore be used with nonresonant or untuned lines, or with a resonant line when the line has the right length, As explained earlier, the input impedance of the line will be resistive when its length is a multipte of a quarter wavelength, provided the load at the out put end of the line is a pure
resistance. This will be wo if the antenna itself is resonant, but will not be true if the antenna length is not correet for the operating frequency. The cirenits are shown in Fig. 10-18. If the final amplifier is series-fed so that the tank circuit is "hot" with the plate voltage. it is neeessary to conneet a blocking condenser between the tank and the line. These eircuits, although simple, are not recommended execpt perhaps in emergenemes; there is little or mo diserimination against harmonio frequencies.

Aljustment of this type of coupting is simple. First, resonate the amplifier tank cireuit, with the line disconnecterd, by setting the tank condonser, C, to the minimum plate eurrent point. Then tap the line across a turn or two of the tank coil, and readjust Cor minimum plate curront. The new minimum will be higher than with no load on the tank. Continue increasing the number of turns between the line taps, readjusting (' each time, until the minimum plate current is the desired fullload value.

R.F. Ammeters

The r.f. ammeters shown in Fig. 10-18 and subsequent coupling circuits are useful accessories. The input impedance of the line is unaffected by any adjustments made in the coupling system (except for the effects of stray (:apacitance, as discussed later) so the greater the current flowing into the line the larger the amount of power delivered to the load. Measurement of r.f. eurrent thus gives a check on the adjustment procedure and indicates when the largest power output is being obtained. Obviously, an adjustment that increases the input to the final stage of the transmitter without causing the line current to increase has simply increased the losses without increasing the output.

In the ease of paralleleonductor hines two ammeters are shown, one in each conductor. This gives a check on line balanee, since the two currents should be the same. It is not actually necessary to use two instruments; one ammeter can be switrhed from one side of the line to the other for comparative measurements. . Also, it is to be understood that any eurrent-indieating deviee (such as a flashlight lamp) that will work at r.i. may be used as a substitute for an actual ammeter.

The scale range required depends on the input impedance of the line and the power, The current to be expected can readily be calculated from Ohm's Law when the line is flat. In other cases the s.w.r. and the length of the line must be eonsidered. The maximum current
will occur when there is a current loop at the input end of the line, and if the load impedance and line impedance are known the input impedance at a current loop can be calculated from the formulas given earlier.

The ammeters are less useful when the input impedance of the line is high, because in that case the input current is quite small. It is to be noted that the value of current does not indicate, in any absolute sense, how well the system as a whole is working unless the artual value of the resistance component of the line input impedance is known. Current measurements taken on different lines, or on the same line if its length in wavelengt hs is changed, are not directly comparable.

Inductive Coupling

The circuits shown in Pig. 10-19, like those in Fig. 10-18, are useful only with lines having purely-resistive input impedance. The pick-up eoil, which is inductively coupled to the tank coil, is in fact simply a sulstitute for the tapped portion of the tank coil in Fig. 10-18. The number of turns required in the piek-up coil dopends upon the resist ance represented by the input end of the line. For flat lines, the numhor is governed by the characteristie impedance of the line. For 50- or 70 -ohm lines it may range from one or two turns, at frequencies of the order of $1+$ to 28 Mc , to several turns at 3.5 Mc. For higher-impedance lines it may take half as many turns as there are in the tank coil, to get adequate coupling. In both cases the eoupling between the coils will have to be very tight. The link windings provided on eommercial coils are not usually adequate for this type of coupling except for low-impedance lines at the higher frequencies. When the number of turns on the piek-up eoil is fixed, the loading on the final amplifier can be varied by varying the coupling het weren the two coils. Inductive coupling of this type is somewhat better than direct coupling from the standpoint of harmonie transfer.

Pick-up coil coupling introduces some reactance into the tank circuit, because of the leakage reactance of the coupling coil. This must be compensated for by retuning the final tank circuit when the desired degree of coupling is reached. If very much rotuning is required, or if the amplifier loads with loose coupling between the two coils, it is an excellent indication that the line is not actually flat.

When a "swinging-link" assembly is used to obtain this type of coupling, the loading on the final amplifier can be adjusted to the desired value by varying the coupling between the two coils. The tank condenser, C, should be readjusted to minimum plate current each time the coupling is changed. If the desired loading cannot be obtained there is no alternative but to use a different coupling system,

The pick-up coil may be wound direct!y over the final tank coil, in which case the correet number of turns may be determined by

Fig. 10.19 — Lsing an untured pich-1np ail to ronpla to a tramsisision limer. 'The methond of allustment is discussed in the text.
trial. The insulation between the eoila must the adequate for the plate volage used, if the amplifier is series-fad.

Series and Parallel Tuning

The cireuits shown in lifg. 10-20 are usuful with parallel-conductor lines oporating at a relatively-high standing-wave ratio, particulaty when the line length is such as to make the input impedance substantially a pure resistance. Assuming that the antenna is resonant, the optimum line lengths will be mulliples of a quarter wavelength at the operating frequency. When the s.w.r. is high, the impedance at such points is considerably higher or considerably lower than the characteristic impedance of the line.

In these circuits the secondary, consisting of L_{1}, C_{1} (and C_{2}, in the series circuit) and the input impedance of the lince, is tuned to the operating frequency, As explained in Chapter Two, the degree of eoupling between two resonant circuits is determined by their $Q s$, and it is necessary to keep the Qs fairly high (of the order of 10 or so). Assuming that the input impedance of the line is purely resistive, it can be inserted in series with the circuit (as in A) if its value is below about 100 ohms. The $(Q$ of the secondary circuit then can be brought to the proper value by making the reactance of L_{1} of the order of 500 to 1000 ohms and setting the total capacitance of C_{1} and C_{2} to tune the circuit to resonance. With this type of tuning the eurrent flowing into the line is rather large: in other words, the system is suitable for coupling into the line at a current loop.

On the other hand, if the lime impedance is of the order of a few thousand ohms or more which it will be at a voltage loop when the s.w.r. is high - the secondary circuit cannot be made to take power from the transmitur if the line resistance is inserted in series. The Q of the secondary circuit would be far too low to give adequate eouphing. In such a case the parallel-tuned circuit at B may be used. As ex-
mitter. To take care of cases where the input impedanse of the line has : monsiderable reactive componont, provision is made for switching in either a shunt eapacitance or inductance, both of which are variable (see carlier discussion). The coupling should be variable at least at one end of the link circuit.
necessary to change the setting of C approciably to maintain the fisal tank in rusonance, the taps on L_{1} are tor close together. Move each tap one turn toward the ends of L_{1}, and again try incroasing the coupling for rated load on the amplifier. When the profer loading is obtainerl, the tuning of $L_{1} \mathrm{f}_{1}$ will be reasonably sharp, and changing the coupling will not neressitate more than "touching up" 6' to mathatin resonance. If the latps on L_{1} atre too far apart the antemas tank rircuit, $L_{1} \mathrm{C}_{1}$, will be loaded heavily and its tuning will be broad. Inder these conditions it may also be impossible to load the amplifier to rated plate current, even with the tightest available coupling. On the other hand, if

In quenal, it is advisable to make the inductance of L_{1} about the same as that of L, and to use for C_{1} a condenser of the same capacitance as that used for C '. The voltage rating for C_{1} also should be the same as that of C. In other words, $L_{1} C_{1}$ may be a duplicate of $L C^{\prime}$ for the operating frequency in use. The link coils can consist of two or three turns at each end. Provision should be made for tapping L_{1} at frequent intervals - every turn, if possible. Co should have as large a maximum capacitance as is convenient - 250 to $500 \mu \mu \mathrm{fd}$. but its voltage rating need not be high in the average case, For most installations where the power output does not exceed a few hundred wates a plate spacing of the order of 0.025 to 0.05 inch is sufficient. The inductance L_{2} can consist of 20 or 25 turns approximately 2 inches in diameter and spared 8 to 10 turns to the inch. The coil should be tapped every few turns.

The tuning procedure is as follows: First, disconnect the feeder taps on L_{1} and use the loosest possible coupling, through the variable link coupling, to the final tank circuit. Tune C_{1} until the plate current rises to a peak, indicating that $L_{1} \mathrm{C}_{1}$ is resonated, and note the setting of C_{1}. Cut C_{2} and L_{2} out of the circuit and then eonnect the line taps across a turn or two at the center of L_{1}. Readjust C_{1} to resonance, as indicated by a rise in plate current. It should be necessary to use closer cotnpling to get an observable change in plate current with the line connected. Note the new setting of C_{1}. If the capaciance is lower, switch in L_{2} and find the tap that permits returning C_{1} as nearly as possible to its original setting: if the capacitance is higher, switch in C_{2} and adjust it to bring C_{1} back to the original setting. Then increase the coupling, keeping C_{1} at resonance as indicated by maximum plate current, and keeping C at resonance as indicated by minimum plate current. Continue until the minimum plate current reaches the desired load value. If C_{1} flashes over as the coupling is inereased, or if tuning C_{1} back and forth a small amount either side of resonance makes it
the taps on L_{1} are too close together the antemat tank will be too lightly loaded; its tuning will be critical and will affect the tuning of the plate tank circuit to a marked degree, and J_{1} may overheat when the coupling is adjusted to make the amplitier take normal input.

When the reactive effects at the input ond of the line are small, neither ('2 nor L_{2} will be required. When this is the casce, the setting of ('1 for resonance will not change much when the line is tapped on L_{1}. The greater the number of turns between the taps, the greater the detuning of the antenna tank by a given amount of reactance in the transmission-line input impedance.

This coupling system is equally effective with flat lines or those operating at a high s.w.r. If the line is actually flat, C_{2} and L_{2} will not be needed and the resonance setting of C_{1} will not be affected by connerting the line. Regardless of the s.w.r., the positions of the line taps will depend on the resistive component of the line input impedance. If the resistance is low, the taps will be close toge ther; if it is very high, the taps may have to be set right at the ends of L_{1}.

Coupling to Coaxial Lines

The principles of coupling to coaxial lines are just the same as for coupling to parallelconductor lines. However, this type of line is unbalanced to ground, has inherently low impedance, and always should be operated with a low standing-wave ratio. The input impedance of a properly-operated coaxial transmission line therefore will be principally resistive, and of a value varying between perhaps 30 to 100 ohms, depending on the type of line and the s.w.r.

It is possible to couple such a line by means of a small coil induetively coupled to the final tank coil, as shown in Fig. 10-19A. The small amount of reactance introduced by the pick-up coil - and by the line, if the s.w.r. is slightly greater than 1 - can readily be tuned out by adjust ment of the final tank condenser. However, additional selectivity is desirable for the

ANTENNAS AND TRANSMISSION LINES

purpose of reducing harmonic transfer from the final tank. Circuits are shown in Fig. 10-23. Except that it is adapted for singleended rather than balanced operation, the eircuit at A operates in much the same way ass the cireuit in Fig. 10-22. Also, because the load is known to be in the region of 100 ohms or hoss, it is possible to tap it across a capacity volage divider (see carlier diseussion) for imperdance matching. This avoids the neesensity for tapping L_{1}.

The cireuit of lig. $10-23 \mathrm{~B}$ is similar in operation to that at A , but dispenses with the link circuit. For convenience, it uses a link poil on the final tank for inductive transfor of energy, the rest of the inductance in the antenna tank circuit being made up by L_{I}.

In the eireuit at A, L_{1} may be the same as L_{2}; in $13, L_{1}$ plus the pick-up coil should have about the same inductance as L. Except at perhaps 28 Mc ., it is satisfactory, practically, to make L_{1} the same as L in this circuit also, since the pick-up eoil will not ordinarily have much inductance itself. In both circuits C_{2}, should have about the same eapacitance as 6 . and C_{1} should have approximately the value suggested in Fig. 10-23.

To adjust the circuit, set C_{1} at maximum, loosen the coupling between L and the link or piek-up coil, and tune C_{2} to resonance. This will be indicated, as usual, by a rise in the amplifier plate current. Adjust C to minimum plate current and increase the coupling in small steps, reresomating C_{2} and C each time. until the amplifier plate current is normal. The loading on the antenna tank circuit is least when C_{1} is at maximum capacitance, and increases when the capacitance of C_{1} is decreased (with C_{2} increased correspondingly to maintain resonance). The symptoms of underand over-loading of the antenna tank are the
(A)

Fig. 10.23-Coupling to coanial lines. Thene circuits are used for harmonic suppresion when working into a nonresonant coasial harmo. Reconmended capacitance values for C_{1} are as follows: 28 Mc., $100 \mu \mu \mathrm{fd}$; $14 \mathrm{Mc} ., 200 \mu \mu \mathrm{fd} . ; 7 \mathrm{Mc} ., 400 \mu \mu \mathrm{fd} . ; 3.5 \mathrm{Mc}$. $800{ }_{\mu \mu \mathrm{fd}}$

Fig. 10-24-'The stray capacitive conpling leetwen coils in the upper circuit leals to the equivalent circuit shown below. The effect on the performance of the antema system is discussed in the text.
same as described in connection with the universal antenna eoupler. Aljust the loading by means of ('1, so that at normal plate input the antenna tank tuning is reasomably sharp and the setting of C is not greatly affected When 6 is tuned a small amount either side of resonance.

Stray Coupling

In most of the circuits in Figs. 10-18 to 10-23, inclusive, a single-ended tank circuit has been indicated for the final amplifier. The amplifier itself has been shown only sketchily. The fact is that any type of antenna coupling circuit can be used with any type of amplifier - soreen grid or neutralized triode, singleended or push-pull. However, the actual arrangement, physically, of the circuit elements usually has an important bearing on the performance of the system. As it happens, a coupling system that is poorly designed, constructionally speaking, usually will do what it is supposed to do. But, equally important, it may do a lot of things it is not supposed to do.

Most of the unwanted effects that occur on transmission lines can be traced to stray capacitances in the system. Fig. 10-24 is an illustration. The upper drawing shows the ordinary link-coupled system as it might be used to couple into a parallel-conductor line. Inasmuch as a coil is a sizable metallic object, it will have capacitance to any other metallic objects in its vicinity, including other coils. Consequently there is capacitance between the final tank coil and its associated link coil, and between the antenna tank coil and its link. These capacitances
are small, but not negligible. In addition, the transmitter, particularly with metal-chassis construction, has appreciable capacitance to ground. Even if it did not, there is always a path from the transmitter to ground through the power wiring and the many stray capacitances associated with it.
There is a fundamental difference between the inductive coupling between coils and the eapacitive coupling between them. Inductive coupling induces a voltage in the secondary roil that eases a current to flow, in common terminology, "around" the circuit. In l"ig. 10-24, this means that the same current flows in both conductors of the link but, if the wires are parallel, the current flows in opposite directions in the two as it completes its travel around the loop. The same is true of the currents in the two conductors of the line. But with stray capacitive coupling the voltages at all points on the secondary coil are essentially in phase; for this type of coupling the secondary coil is just a mass of metal. Consequemily, whatever current flows in the link (or in the line) flows in the same direction in both wires. Although both the link and line have two conductors and apparently form an ordinary go-and-return cireuit, to the currents that flow as a result of capacitive coupling they simply look like a pair of conductors in parallel - in effect, that is, like a single eonductor. The equivalent circuit is shown in the lower drawing in Fig. 10-24.

This single-wire cireuit is an antenna system in itself, working in conjunction with a ground lead of unknown composition and length. It includes the regular antenna as well as the entire tranmission line. If the various lengths hap-

to occur in speech equipmont, and a considerable amount of r.f. power may be pamperl into receiving and other equipment connected to the same a.c. power outlet. (A similar type of coupling in the input circuits of a receiver leads to stray piek-up of siguals that may partially or completely mask the directive effects of the proper antenna.) On top of all this, it is,

impossible to tell much almout the operation of the transmission line beratuse the parallel current is more or less in phase with the regular line current in one wire and out of phatse with it in the other. Thus the resultant currents in the two wires are unbalanced, and there is no way to separate the "parallel" and "line" currents in measurement.

These effects can only be eliminated if the stray capacitances are eliminated. However. they can be reduced by arranging the coils a the amount of energy coupled from the primary to the secondary is small, even thoush the rapacitance itsolf still exists. This can be done by using a link coil that is physically smadl that is, has few turns - and coupling it to the "cold" point on the tank roil. The rold point

Fig. 10-25-Methorls of compling ami aromoding link cireuits to reduce energy transfer through stray capmeitance.
pon to be just right, a fairly-latrge "parallal" curront of this type can flow in it. This momes that a considarable proportion of the toral power output of the tramsmitter can be wasted in losses and radiation from a vary undesirathle sort of antemans.stem. Furthermore, despite the tuned tank circuits in the amplifier and antenna eoupler, harmonic currents will flow in such an "antenna" even more readily than the fundamental current.
'There are other undesirable results, too. The fact that the power wiring becomes part of an "antenna" system means that the transmitter itself may perforce be at a considerable r.f. potential above ground. 'The chassis becomes "hot" with r.f., r.f. feed-back is prone will be at the end of the coil that is grounded for r.f., either directly or through a by-pass eondenser, in the cate of singleended tanks. In balaneed tank circuits, the cold print is at the conter. The coupling is further redued if one side of the link circuit is grounded to the transmitter chassis as close as possible to the point where the tank itself is grounded. If the link is at the end of the tank coil the side farthest from the lank should be grounded, as indicated in fïg. $111-2 \pi \mathrm{~A}$. If the link is wound over one end of the tank coil, ground the side toward the hot and of the tank, as indicated in Fig. 10-25) 3 . With a balaneed tank cireuit the link should be at the conter of the coil. In this case the best print to ground is the center of the link coil, but if this is impracticable good results will be serured by grounding aithor end of the coil. (iround directly to the chassis and keep the lead as short as possible.

This treatment of link circuits does not climinate capacitive coupling. It simply makes it less troublesome, by making certain that the coupling occur between parte of circuit, that
are not at high r.f. voltage. However, there are cases, particularly with balanced tank circuits, where the point on the tank coil that is cold for the fundamental frequency is hot at the even harmonies. This means that even though the transmitter and line behave properly on the fundamental frequency, harmonies still can be radiated at considerable intensity. The only way to be sure that these effects do not exist is to eliminate the stray capacitance entirely.

Capacitive coupling between coils can be eliminated by moans of a Faraday screen. This is a shield that prevents the electric field from one coil from reaching the other, but which has no effect on the magnetic field. As shown in Fig. 10-26, it consists of a group of parallel conductors, insulated from each other, and comested together at one end only. This forms an effective shield for the electric field, but since the conductors are open-circuited the voltages induced in them by the magnetic field cannot cause any current to flow. (Such furrent flow is essential to magnetic shielding with nommagnetic materials, as explained in Chapter Two.)

Fig. 10-27 - Installation of Faralay sereens to elimi. nate rapacitive coupling between coils.

The Faraday screen should be somewhat larger than the diameter of the coils with which it is used. It is simply mounted between the two coils that are to be shielded from each other, and then grounded to the chassis through a short lead, as indicated in Fig. 10-27. In the case of a balanced tank circuit with a swinging link, two shields must be used, one
on earh side of the link coil. In the case of fixed links wound over the tank coil, a satisfactory screen can be made by using several turns of the same type of coil, cutting them parallel to the axis to open-circuit the ronductors, and then soldering them together at one end only. This shield can then be inserted between the tank coil and link, making sure that it is adequately insulated from both.

An alternative, and perhaps simpler, type of screening is shown in Fig. 10-28. In this case the inner conductor of a piece of coaxial cable is used to form a one-turn link. The outer conductor serves as an open-circuited shield around the turn, this shield being grounded to the chassis. The circuit to the link line is made by connecting the inner conductor to the outer conductor at the finish of the turn, as shown, and from there on the coaxial line is used to transfer the power to a second, and similar, link coil at the antenna tuner. This type of shielded link is simpler to make than the regular Faraday screen.

Aside from the adverse effects on the performance of the antenna system, stray capacitive coupling frequently is responsible for interference to near-by broadcast receivers. It is not difficult to appreciate that radiation taking place from transmission lines and power wiring is, in general, more likely to get into a broadcast receiver than radiation from an antenna that is intentionally kept away from other antennas - particularly when the receivers are connected to that same power wiring.

Harmonic Reduction

Besides its primary function of providing optimum power transfer from the transmitter to the antenna, the coupling system between the final stage and the transmission line should prevent harmonies from being transferred to the antenna along with the desired fundamental power. Harmonies that fall in the communication spertrum - i.e., up to about 30 Mc. - are usually suppressed to a satisfactory degree in a link-coupled antenna tuner of the type discussed in the preceding section.

However, harmonics in the v.h.i. region can cause serious interference to television reception in the immediate vicinity of the transmitter, even though their amplitude is so low that they are not detectable at a distance.

As stated in Chapters Six and Nineteen, the reduction of harmonic radiation in television channels frequently involves more than preventing harmonics from being coupled from the final stage to the antenna system. Methods that have been found successful in preventing radi-
ation from the transmitter itself are described in Chapter Six. They should be used to the extent necessary for preventing interference when the transmitter is working into a dummy antenna. Once it is determined that there is no interference on a dummy antenna, it is reasonably certain that if interference appoars on reconnerting the regular antenna sestem, it is hecause harmonics are boing coupled into the anteman.

Fig. 10.29 - Recommended type of antenna coupler for reducing harmonic radiation. A ground on the rotor of C_{2} may help in some cases: in others it may indrase harmonic radiation. It shomld be tried hoth ways to see which gives the best results.

The link-coupled antenna coupler will do much to prevent harmonics from being tratiforred from the final stage to the transmission line. A shieded link or Faraday serem is highly desirable because it reduces harmonic transfer by stray capacitive coupling. Fig. 10-29 shows a suitable circuit arrangement for the most desirable form of coupler, one using coaxial cable for the link. Shielding around the transmitter and antenna coupler, along with coan fittings at both ends of the link line, are essential. Without them the harmonic currents can flow on the outside of the coas and will defeat the purpose of the system. It has been found possible to dispense with romplete shiclding of the antenna coupler if the circuits are mounted on a metal chassis so that the coax link can be terminated in a regular fitting, because the chassis tends to perform the same function as a shield in terminating the rable. As compared with eonnecting the transmission line directly to the output coil (L_{5} in Fig. 10-29) measurements on this type of antenna coupler show a reduction of 25 to 30 db . in seeond-harmonic out put from a 28 - Mc. transmitter.

LOW-PASS FILTERS

Very great reduction of harmonic output can be secured by connecting a low-pass filter between the transmitter and the tranmission line. Because stray coupling is hard to ayoid with open-wire lines, such filters are most
effective when used with conxial limes. Ther can be used with any type of line and antenna system if inserted in a coax link between the final amplifier and an antenna coupler - for example, in the coax link in Fig. 10-29. By taking advantage of the so-called infiniterejection points in m-derived filters (see Chapter Twenty-Four) very high attenuation of harmonics can be serured in particular television channels in which harmonics are most troublesome.

A simple filter of this type is shown in Fig. 10-31. This filter has two rejertion frequencies and will give a minimum of 50 dh, attenuation over any two selected channels in the jt-xs Me. range. The attenuation in other chamel, varies from 20 to 40 dt ., depending on the frequency. In general, boralities with a number of television stations fall into two groups. In one, the assignment pattern is Chamols 2 , 4 and 5 in the low hand, and in the other Channels 3 and 6. The filter designs given in Fig. 10-31 are based on maximum attemuation in (hamnels 2 and 4 in the one rase, and Channels 3 and f in the other. In aither ease tha attonuation is ample for harmonies falling in the 174-216 Mc. range.

As shown in Fir. 10-32, the components are laid out in essentially the same form as in the circuit diagram. The condensor rotors are grounded to the alaminum plate on the side nearest the coas terminals, to kerp the return paths as short as possible. The roils are mounted at right angles to reduce the coupling between them. I shield folded from a piece of ahminum is placed about the conter condenser to reduce raparitive coupling het wean the three units. The other batlle shield similarly is used to reduce the coupling between L_{1} and L_{2}.

The variable condensers are best adjusted be setting them to ohtain maximum harmonic suppression while observing the interference in a television pieture. C_{1} and C_{2} are both adjusted to the lower of the two chanmels, and C_{3} to the higher of the two. If surh a test

Fig. 10-30-'Television frreurney harmonie filter, for use with coar rable. All parts are monnted on a $\bar{x} \times \overline{\text {-innh }}$ piece of aluminum, mounted with shect-metal sirens in a 5 by 7 by 2 ahminum chassis which serves as a shield.

Fik. 10_37-Cirmuit diagram of the harmonie filter, It provides two high-attennation peints whidn may be phared in television chanmels employed in the loceality in which the filter is to be med.
$\mathbf{J}_{1}, \mathrm{~J}_{2}$ - Panel-tyme rowial romnertors.
C $\mathrm{C}_{1}, \mathrm{C}_{2}$ - 35- or 50 - $\mu \mathrm{ff}$. variablate see data below.

Coil and Caparimance Inata

fiur sotehme cable. maximum rejection in (hanthels 2 alld 1 :

Cis, l: 12 unfil.
 rient rapacitamer.
 length 5/8 inch.
 langeh gí: ineth.
 * ${ }^{3}$ inch.
 and 6 :

(:3-194) μ_{μ} fil.
1.1, 1.2 - 5 turns Vo. I2. ${ }^{10}-\mathrm{inch}$ intide diameter. length $7 / 8$ ineh.
 Inokth $1 y_{\text {w }}$ inch.
Is - Iturn So. 12. : -inch inaide diameter, longth 16 inth.
 and 4:
$\mathrm{C}_{1}, \mathrm{C}_{2}-28 \mu \mu \mathrm{fI}$.

1.1. 1.2 - turns vin. l?, 1g-inch inside diameter. Iength ${ }^{3}$ iners
 longth 36 in. h.
 ${ }_{9}$ If ineh.
four -:-ohm rable, maximum rejeqtion in Chanmels 3 allod 6:
($1 . \mathrm{C}_{2}-2.5 \mu \mu \mathrm{fol}$.
(:3-60 $\mu_{\underline{\mu}} \mathrm{fd}$.
 lenyll 19 is ind.
 longth $3 / 4$ inch.
 ${ }_{3}{ }_{4}$ inch.
Coil lengthis in all cases measured between centers of wire at thets.
(amont be made convoniontly, a fairly good adjustment can be obtained by short-circuiting point A to the common ground plate (use the shortest possible connection) and adjusting C_{1} so that a grid-dip meter coupled to L_{3} shows the circuit to be resonant at 57 Mc . for a Channel 2 filter, or at 63 Me. for a Channel 3 filter. Adjust C_{2} similarly with the grid-dip meter coupled to L_{4} and point C shorted to ground. Then short point B to ground at thr hole in the shield, rig. 10-32, couple the griddip meter to L_{5}, and adjust C_{3} to 71 Mc. for a Chamel 4 filter or to 85 . Mc. for a Chammel 6 filter. These adjustments usually will provide good average attenuation in the two chamels. Should actual interference be caused a more exact adjustment, made while watching the television picture, should result in a consuderable increase in attenuation.

The cut-off frequencies in both trpes of filters are well above 30 Mc ., and so the filter should have no effect on the performanere of the antenna coupling system at frequencies bolow 30 Mc. If inserting the filter in the line canses the loading on the final stage to change, it is an indication that the coas line is operating at an s.w.r. greater than 1. Optimum results will be secured when the line is first matehed as closely as possible so that it operates at a low s.w.r. A bridgetype indicator such as is desmeribed in Chapter Sixfoern is exerlent for determining the s.w.r. and showing the effect of matehing adjust ments.

Fig. In. 32 - Construction of the harmonic filter. I imensioms should be followed fairly closely for optimum resilta. The enter-to-exnter distance brtween the eoav connertors is $t^{1} \underline{2}$ inches. Mounting centers of the variable condensers are on a line $2^{1} 4$ imehes below and parallel to a line through the centers of the coan fittings.

Antenna-Coupler Construction

The apparatus used to cancel line ratactance and match the line resistance to the transmitter is commonly called an "antemna conpler" or "antenna tumer." (lloe mame is really a misnomer, beratuse the coupling and tuning equipment at the input end of the line does not have any effert on the antenna itself: if there is any antemat tuming to be done it must be done at the antenna, independently of the line.) 'The design principles and the important construc-
tional point: have been erovered carlier in this chapter; in this sertion we show a lew examples of twpical construction.

Bearing in mind the preantions mentioned earlier as to maintaining batance in parallelconductor transmission lines, it is usually goond practice to install the coupling equipment chose to the point where the line enters the station. This is a simple matter when the tuming equipment is link-coupled to the trans-

Fig, $10-33$ - A wall-mounting antenna coupler for merlium-power transmitters. 'lhis unit provides a chonice of either series or parallel tuning for resonant fecters. Standard transmitting coils of the variable-link type are used.
mitter, since there are no particular restrictions on the length of the link that can be used. However, if the link line is fairly long it should be treated as a transmission line rather than merely as a means of providing mutual inductance between two separated coils. In surh a case it is advisable to have variable coupling at both ends of the link. 'This permits matching the link line to the line tank cirouit, and once the match is obtained the power output of the transmitter can be varied by changing the roupling at the transmitter tank. If the link line is not properly matahed its current maty be excessive, leading to unnecessary power loss.

The most desirable form of link line is conaxial cable. Properly handled, its losses are low; and since it is shielded it can be on or near metal objects with impunity.

SERIES-PARALLEL COUPLER FOR WALL MOUNTING

Fig. 10-33 shows a link-coupled coupler designed for series or parallel tuning of a resonant line. It is suitable for transmitters having a power output in the neighborhood of 2.50 watts. A higher-power version easily could be made using a similar layout, hut substituting heavier coils and condensers with greater plate spacing.

As shown in Fig. 10-34, the change from series to parallel tuning is made by means of jumpers and extra pins on the coil plug bar. A separate coil is used for each band, and after determining which should be used, series or parallel tuning, on a particular band, the jumpers may be installed permanently or left off as required. The tuning condensers specified, together with a set of standard plug-in transmitting coils, should provide adequate coupling if the transmission-line length is such as to bring a voltage or curren: loop near the input end.

The unit is mounted on an $8 \times 12 \times 7 / 8$-inch board for hanging on the wall in any conveniont lowation near the entrance point of the feeders The $2 . \overline{\mathrm{j}}$-ampere r.f. ammeter is mounted centrally by long wood screws through spacers at the top of the unit. A short length of twisted pair connects it to the thermocouple, secured in a horizontal position at the bottom of the backbotrd. The tuning condensers are mounted on the underside of a 4 -inch sholf extending the width of the unit. Atop the shelf, the jack bar for the coil is supported on pillars by wood screws. An extension shaft to vary the degree of coupling is supported by a bushing fastened to a short strip of brass at the right of the shelf. A short length of 300 -ohm ribbon (coaxial cable can be used instead) eonnects the input terminals to the movable link, while the output terminals are located at the middle right of the backboard. 'Two screw eves at the top permit the unit to be hung from screws or nails in the wall.

- RACK-MOUNTING SERIES-PARALLEL COUPLER

The rack-mounting coupling unit shown in Fig. 10-35 is suitable for power outputs of 2.5 to 50 watts, and provides either series or parallel tuning for resomant lines. Separate combensers are used for this purpose, and while

Fig. 10.3. - Circuit diagram of an antenna compler for use with a medium-power trammitter. \mathbf{A} - Series turning. B - Parallel tuning.
$\mathrm{C}_{1}, \mathrm{C}_{2}-100 \cdot \mu \mu \mathrm{fd}$. single section variable, 0.0 .0 -inth spacing (Cardwell M'I'100-(GW).
$L-B \mathbb{N} W 1 B L$ series.
A - 0-2.5 thermocouple r.f. ammeter.
three are required, this system has the advantage that no switching is necessary when changing from series to parallel tuning. It is also possible to cover a somewhat wider range of line input impedances with parallel tuning because the series condensers can be used to help cancel out inductive reactance that cannot be handled by the parallel circuit alone.

The coupler is mounted on a $51 / 4 \times 19$-inch panel. The parallel condenser, C_{1}, is in the center, with C_{2} and C_{3} on either side. The variable condensers are mounted on National G心-1 stand-off insulators which are fastened to the rondenser tie-rods by means of machine serews with the heads cut off. simall ceramic shaft couplings are used to insulate the control knobs from the condenser shafts.

Clips with flexible leads attached are provided for the parallel condenser, C_{1}, so that the sections may be used either in series or parallel to form either a high-C or low-C tank circuit, as required. When the high-r tank is necessary the two stators are connected together by means of the clips, as indicated by the dotted lines in the circuit diagram, Fig. 10-36. When the two sections are comected in series for low-(operation the breakdown voltage is increased.

Two sets of variable condensers are suggested in the list of parts. The smaller receiv-ing-type condensers with 0.03 -inch air gap are satisfactory for transmitter power outputs up to 50 watts. The larger condensers, with 0,045 inch spacing, are required for transmitter outputs of the order of 100 watts.

- bANDSWITCHING UNIVERSAL COUPLER

The coupling unit shown in Figs. 10-37 and 10-39 is of the "universal" type discussed carlier. It is a bandswitehing unit using com-mereially-available coils. Provision is made for switching either capacitance or inductance arross the transmission line to compensate for its input reactance. Impedance matrhing is arhioved by tapping the tank coils at the proper points.

In the eircuit diagram, lig. 10-38, only one

Fig. 10-36-Circuit of the rack-monnting antenna tuner for use with transmitters having final amplifiers that are operated at less than 1000 volts on the plate.

All coils are $1 \% / 8$ inches in diameter and $21 / 4$ inche. long. with the variable link located at the center. Jior sorios tuning, use the coil specified for the next-higher frequency band, which will be approximately corrert.
$C_{1}-100 \mu \mu \mathrm{fd}$. per section, 0,0 . 45 -imbh aparing (\triangle ational TXK-100-1) for high voltages; receiving type for low voltages: (Ilammarlund V(:D)-low).

1. - 13 \& W JVi-series coits. Approximate dimendons for parallel tuning for cach hand are as follems: 3. B - Me. band - 4 41 turns No, 20 .
-W1. hand - 24 turns vo, 16.
2. \1s. hamd - 11 turn= No. If.
-8-Mr. band - 8 turns No. 16 .
set of eoils is shown. For other bands the comneetions shown for L_{1} and L_{2} would be duplicated. Bandswitching is accomplished by a five-gang switch, s_{1}. Compensating reartances can be switched in or out of the circuit by i. The coupling links, L_{2}, are the shielded type using conxial cable described earlier in this (hapter (Fig. 10-28).

The coupler is wholly supported by a $7 \times$ 10 -inch relay-rack panel. The variable condensers are mounted from the panel by small stand-off insulators, and insulated couplings are used hetween the condenser shafts and the National Type AM dials. The tank condenser, (' 1 , is mounted at the right-hatud end of the panel with the bandswitch, S_{1}, to its left. The four coils are grouped around the bandswite!, with the 28-Mc. coil placed so that the loads to it are the shortest. The roils are Millen 44000 serics with the plug bases removed from the

Fig. 10-35- Rach-momnted compler fer low-pmwer tran-miltor-. 'Jhis mit naio- three sariable comdenerers to provile either eerio- or parallel tuning withent eondenser switehing.

Fig. 10.37- Bandewitching miver-sal-tis per eropher for parallel-comdurtor lines. 'Ithim unit can be used with transmitters having power outputs of the order of 1010 watts.

3.5-, 7-and 1t-Mc. mils. If is not practicable to remove the base from the 28 - Me wil because it does not have the polystyrene supporting strip that is part of the lower-ferguence coil

 con!ler. In this diagram the proume sombol indicates jmint- that are combeted together. Wiring to coil- is shown for one hand only, (os aboid complicating the diakran: the wirimp for other enoits is identisal.
 (10)-131)).
($\therefore-33^{-5}-\mu \mu \mathrm{fo}$. variatlle (Cardwell MR-3:35-BS).
I.1 - Millen 4 HиO)-meries coils (see text).
1.2 - Shiched linh; one turn for 28 and is Me.; 2 turns for $\overline{6}$ and 3.5 Me.
 tional XR-11:), 7 turns per inch. 'l'apped 8. 11. 18. 22 and 24 turns from end to which arm of $\therefore \begin{gathered}3 \\ \text { is commected. }\end{gathered}$
J_{1} - (inasial-cable conmetor (Amphenol).
S_{1} - ,-arcion $4 \cdot p$ mition ceramic wafer switeh (Cin(ratab 2:5 16).
$S_{2}-2$-whiont t-fneition ceramie wafer switch (Cill(ralab e5 43).
$S_{3}-1$-xertion 6-pmition ceramic wafer switeh (Cerltralab 2501).
assemblies. The coils are partly supported by the wiring to the switch and partly by the pelystyrene plate mounted on the back of the switch. The ends of the coil momating strips are eemented into holes cut in the plate.
 at the loft-hand end of the panel. L_{3} is monnted vertiatly to it= right, with x_{3} dirertly in front of it on the panel. x_{2} is monnted centrally on the panel. The output terminals to the line are monated above x_{3}. The link input terminal is a coaxial cable sockot mounted on a small bracket in the lower right-hand corner.

The link coils, $l_{\text {i }}$, are supported by the wiring, and the coupling is changed by bending the link into or out of its assonfated tank eoil. Nine the links fit rather tightly in the tank coils, the pressure helps hold them in plare once the proper coupling is determined. The link shields are all eommerted together and to the imput eomertor; the inner conductors ro to the switrh eontants. The link coils are made from $R(i-i) 9 /$ cable.

With the coils and condensers sperified, this coupler can handle power outputs of the order of 100 to 180 watts. The method of adjustment is covered earber in this chapter.

- A WIDE-RANGE ANTENNA COUPLER

The photograph of Fig. 10-10 shows the constructional detals of a wide-range antemnat eobupler suitable for use with high-power transmiters. Various eombinations of parallel and sories tuning, with high- and low-C tanks and high- and low-impedance outputs, are avaitable. Diagrams of the varions cirouit combinations possible with this arrangemont are given in Fig. 10-41.

A separate coil is used for eath band, and the desired conmections for series or paralled t uning with high or low C, or for low-impedanceont put

fis. 10-39 - Rear view of the handswituhing coupler. Details of coil mountings are shown in this view.

Fis. 10.40 - Viderange antrina coupler. The unit is asisembled on a metal cha-rio mea-aring $10 \times 15 \times 2$ indes, with a panal $8:+\times 19$ inchm in size. The variable emondenser is a zplit-tator unit with a teapabitance of 20) $\mu \mu$ fil. per sertion and (1).O-inifl phate
 raile are the $18 \mathbb{X} \mid I$ 'II, eries. 'the r.f. ammetrer hat a bampere wale.

with high or low f, ato atutomatioally mate when the roil is plugged in. Coil eonnertions to the pins for various circuit arrangements are shown in lig. 10-41.

The tuning condonser specified, together with a set of standard plug-in transmitting coils, should cover nearly all coupling conditions likely to be ancountered.

Because the switching connections require the use of a central pin, a slight alteration in the $13 \& W^{\circ}$ eoil-mounting unit is required. The rentral link-mounting unit should beremoved from the jack-bar and an extra jack placed in the eentral hole thus made available. The link assembly should then be mounted on a 2 -inch cone insulator to one side of the jatek bar.

Correspondingly, the cent ral nut on each coil plug base must be removed and a Johnson tapped plug, similar to those furnished with

the coils, substituted. An rextemsion shat may then be fitted on the link shaft and a control brought out to a knob on the pand.
'The split-stator tank condenser is mounted by means of angle brackets on four 1 -inch conetype ceramic insulators, and an insulated flexible coupling is provided for the shaft.

If desired, the coiks may be wound with fixed links on coramic transmitting coil forms. The links should be provided with flexible leads which can be plugeded into a pair of jacktop insulators mounted near the coil jack strip, unless a sperial mounting is made providing for weren conneretions.

The unit as deswribed should be satisfactory for transmitters having an output of 500 watts with plate modulation and somewhat more on c.w. For higher-power phome a tank condenser with harger plate sparing shombl be used.

Fig. 10.41 - Circuit diagram of the widerange rach-type antema conpler. A - Parallel tuning, low C. B - Parallel tuning, high C. C - Series tuning, low (.. I) - Series tuning, high C. E. - Paral. lel tank. Iow-impedance output. low C. Y - Parallel tank, low-impedance output, high C. After the inductance required for each of the varions bands has heen determined experimentally, the connections to the coils can be made promanent. "lhen it will he necessary only to plug in the right coil for each band, tune the condenser for resenance, and adjust the link laading.

Antennas

In selecting the type of antema to use, the propagation characteristics of the frequency band or bands to be used should be given due consideration. These are outlined in Chapter Four. In general, antenna construction and location become more critical and important on the higher frequencies. To some extent on 14 Mc . and to an even greater degree on the higher bands, the angle of radiation should be as low as possible for good results over long-distance paths. On any one band, how--ver, an antenna well-suited for long-distance work is not likely to be as suitable for shorthaul contacts as some other type of antenna. Important properties of an antenna or antema system are its polarization, angle of radiation, impedance, direetivity and gain.

Polarization

The polarization of a straight-wire antenna is its position with respect to the earth. That is, a vertical wire transmits vertically-polarized waves and a horizontal :untenna generates horizontally-polarized waves in its direction of maximum radiation (broadside). The wave from an antema in a slanting position contains both horizontal and vertical components.

Angle of Radiation

The wave angle (or vertical angle) at which an antenna radiates best is determined by its polarization, height above ground, and the nature of the ground. Radiation is not all at one well-defined angle, but rather is generally dispersed over a more or less large angular region, depending upon the type of antenna. The angle is measured in a vertical plane with respect to a tangent to the earth at that point.

Impedance

The impedance of the antenna at any point is the ratio of the voltage to the current at that point. It is important in connection with feeding power to the antenna, since it constitutes the load represented by the antenna. It is a pure resistance only at current loops (maxima) and nodes (minima) on resonant antennar. The antema impedance is high at the current node and low at the current loop.

Directivity

All antennas radiate more power in certain directions than in others. This characteristic, called lirectivity, must be considered in three dimensions, since directivity exists in the vertical plane as well as in the horizontal plane. Thus the directivity of the antema will affect the wave angle as well as the actual compass directions in which maximum transmission takes place.

Current

The field strength produced by an antema is proportional to the current flowing in it. When there are standing waves on an antema, the parts of the wire carrying the higher current have the greater radiating effect. . 111 resonant antemas have standing waves - only terminated typer, like the terminated rhombic and terminated " ${ }^{\text {, }}$ " have suhstantially uniform current along their lengths.

Power Gain

The ratio of power required to produce a given field strength, with a "comparison" antemn, to the power recuired to produce the same ficld strength with a specified type of antema is called the power gain of the latter antenna. The field is measured in the optimum direction of the antema under test. In amateur work, the comparison antema is generally a half-wave antenna at the same height and having the same polarization as the antenna under consideration. Power gain usually is expressed in decibels.

Front-to-Back Ratio

In unidirectional beams (antenna systems with maximum radiation in only one direction) the front-to-back ratio is the ratio of power radiated in the maximum direction to power radiated in the opposite direction. It is also a measure of the reduction in received signal when the beam direction is changed from that for masimum response to the opposite direction. Front-to-back ratio is usually expressed in decibels.

Ground Effects

The radiation pattern of any antenna that is many wavelengths distant from the ground and all other objects is ealled the free-space pattern of that antenna. The free-space pattern of an antenna is almost impossible to obtain in practice, except in the v.h.f. and u.h.f. ranges. Below 30 Mc ., the location of the antenna with respect to ground plays an important part in determining the actual radiation pattern of the antenna.

When any antenna is near the ground the frec-space pattern is modified by reflection of radiated waves from the sround, so that the actual pattern is the resultant of the free-space pattern and ground reflections. This resultant is dependent upon the height of the antemat, its position or orientation with respect to the surface of the ground, and the electrical characteristics of the ground. The effect of a perfectly-reflecting ground is such that the

Fis, 10 - 42 - Viffere of pround on radiation of hurizontal antenas at vertical angles for four antoma heights. This chart is based on perfeetly remolucting grommi.
original free-spare field strength may be multiplied by a fartor which hats a maximum value of 2 , for complete reinforcement, and having all intermediate values to zero, for complete rancelation. These reflections only affere the radiation pattern in the vertiocal plane - that is, in direetions upward from the earth's surfare - and not in the horizontal plane, or the usual geographical directions.

Fig. 10-42 shows how the multiplying factor varies with the vertical angle for several representative heights for horizontal antennats. As the height is increased the angle at which complete reinforcement takes place is lowered, until for a height equal to one wavelength it occurs at a vertical atigle of 15 degrees, It :till greater heights, mot shown on the chart, the first maximum will oceur at still smaller angles.

Radiation Angle

The vertioul angle, or angle of radiation, is of p imary importance, experially at the higher frequencies. It is advantageous, therefore, to erect the antema at a height that will take advantage of ground reflection in sueh a way as to reinfore the space radiation at the most desirathe angle. Since low radiation angles usually are desirable, this generally means that the antenma should be high - at least one-half wavelength at 14 Mr ., and preferably three-quarters or one wavelength; at least one wavelength, and preferably higher, at 28 Mc . and the veryhigh frequencies. The physical height required for a given height in wavelengths decreases as the frequeney is increased, so that good heights are not impracticable; a half-wavelength at 14 Mc. is only 35 feet, approximately, while the same height represent: a full wavelength at 28 Mc . At 7 Mc . and lower frequencies the higher radiation angles are effective, so that again a reasonable antenna height is not difficult of attainment. Height: between 35 and 70 feet are suitable for all bands, the higher figures being preferable.

Imperfect Ground

Fig. 10-42 is based on ground having perfect conductivity, whereas the actual earth is not a perfect conductor. The principal effect of artual ground is to make the curves inaecurate at the lowest angles; appreriable high-frequeney radiation at angles smaller than a few degrees is practically impossible to obtain over horizontal ground. Above 15 degrees, however, the eurves are accurate enough for all practical purposes, and may be taken as indicative of the sort of result to be expected at angles, between 5 and 15 degrees.
The effective ground plane - that is, the plane from which ground reflections can be considered to take place - seldom is the actual surface of the ground but is a few feet below it, depending upon the character of the soil.

Impedance

Waves that are refleeted directly upward from the ground induce a current in the antenna in passing, and, depending on the atitema height, the phase relationship of this: induced current to the original current may be such as either to increase or decrease the total current in the antema. For the same power input to the antema, an increave in current is equivalent to a decrease in impedance, and vice versa. Hence, the impedince of the antema yaries with height. The theoreticat curve of rariation of radiation resistance for an antema above perfectly-reflecting ground is shown in Fig. 10-43. The impedance approaches the free-spare value as the height becomes large, but at low heights may differ considerably from it.

Choice of Polarization

Polarization of the transmitting antenna is generally unimportant on frequencies between 3.5 and 30 Me . However, the question of whether the antenna should be installed in a horizontal or vertical position deserves consideration for other reasons. A vertical halfwave or quarter-wave antenna will radiate

Fig. 10.4.3 - Theoretical enrve of variation of ralliation resistance for a half-wave horizontal antenna, as a function of height in wavelength above perfectly-refecting ground.
equally well in all horizontal directions, so that it is substantially nondirectional, in the usual sense of the word. If installed horizontally, however, the antenna will tend to show directional effects, and will radiate best in the direction at right angles, or broadside, to the wire. The radiation in such a case will be least in the
direction toward which the wire puints.
The vertical angle of radiation also will be affected by the position of the antenna. If it were not for ground losses at high frequencies, the vertical half-wave antenna would be preferred because it would concentrate the radiation horizontally.

The Half-Wave Antenna

The fundamental form of antenna is a single wire whose length is approximately equal to half the transmitting wavelength. It is the unit from which many more-complex forms of antemnas are constructed. It is varimusly known as a half-wave dipole, half-wave doublet, or Hertz antema.
'The length of a half-wavelength in space is:

$$
\text { Length }(\text { fert })=\frac{4 \cdot 2}{\text { Freq. }\left(\mathrm{Ir}^{\prime} \cdot\right)}
$$

($10-\mathrm{H}$)
The actual length of a half-wave antemat will not be exactly equal to the hali-wave in space, but depends upon the thickness of the conductor in relation to the wavelength as shown in Fiig. 10-44, where K is a factor that must be multiplied by the half-wavelengh in free space to obtain the resonant antemat

fix, 10.14- Effect of antenna diameter on length for half.wave resonance, shown as a multiplsing fartor, K, to be applied to the free-space half-wavelength (Fipuation $10-11$). The effect of conductor diameter on the impedance measured at the center also is shown.
length. In additional shortening efferet orears with wire anternas supported by insulators at the ends berause of the capacitance added to the system by the insulators (end effect). The following formula is sufficiently accurate for wire antenmas at frequencies up to 30 Mr .:

$$
\begin{align*}
& \text { Length of hulf-ware antemna (feot) }= \\
& \frac{492 \times 0.9 \%}{\text { Freq. }(\mathrm{Mc},)}=\frac{4 \text { iN }}{\text { Freq. }(\mathrm{Mc} \cdot)} \tag{10-I}\\
& \text { Example: A half-wave antenna for } 71 \mathrm{im} \mathrm{kc} \text {. } \\
& (7.15 \mathrm{Mc}) \text { is } \frac{41 \mathrm{~N}}{7.15}=65.45 \mathrm{ffect} \text {, or } 6 \mathrm{~F} \text { feet } 5 \\
& \text { inches. }
\end{align*}
$$

Above 30 Me , the following formulas should be used, particularly for sutenmas comstructed from rod or tubing. K is taken from Fig. 10-44.

Length of half-urave anterna (foet) $=$

$$
\begin{equation*}
\frac{492 \times K}{\text { Freq. (Mc.) }} \tag{10-J}
\end{equation*}
$$

or length (inches) $=\frac{5905 \times K}{\text { lreq. }(\mathrm{Mc} .)}$
Example: Find the length of at half-warklenguth athenta at end Mr.. if the athernatis made of \geq. inch diameter thaing, At e9 Mro, a half-wave-
 10-H. Ratio of half-wabelmerh to rondurior diameter (elanging wavelogita io itwhes) is 14.9: $\times 12$ $\stackrel{2}{2}$
for this ratio. The length of the antemmat, from Eq, 10-T. is $\frac{492 \times 0,963}{23}=16.34$ fret, or 16 freet
4 inches. The answer is ohtatimed directly in inches b, sutsititution in Eq. 10-K: $: \frac{5905 \times 0.063}{25}$
$=196$ inthes.

Current and Voltage Distribution

When power is fed to such an antenna, the current and voltage vary along its length. 'The current is maximum at the center and nearly zero at the ends, while the opposite is true of the r.f. voltage. The current does not actually rach zero at the current modes, because of the end effect : similarly, the voltage is not zero at its node berause of the resistance of the antemna, which consists of both the r.f. resistance of the wire (whmic resistunce) and the radiation resistance. The radiation resistance is an equivalent resistance, a convenient conception to indicate the radiation properties of an antema. The radiation resistance is the equivalent resistance that wonld dissipate the power the antenma radiates, with a current flowing in it equal to the anteman eurrent at a current loop (maximum). The ohmie resistance of a half-wavelength antenna is ordinarily small enough, in comparison with the radiation resistance, to be neglected for all practical purposes.

Impedance

The radiation resistance of an infinitelythin half-wave antenna in free space - that is, sufficiently removed from surrounding objerts so that they do not affect the antemna's characteristics - is 73 ohms, approximately. The value under practical conditions is commonly taken to be in the neighborhoad of 70 ohms. It is pure resistance, and is measured at the center of the antenna. The impedance

Fig. 10-45-'Jhe alwe charts, based on Eif. 10-I, can be used to determine the length of a half-wave antenna of wire.

Fig. $10-46$ - The treespace radiation pattert of a halfwave antenna. The antema is shown in the vertical position. This is a cross-section of the solid pattern desuribed by the figure when rotated on its vertical asis. The "doughnut" form of the solid pattern can be more casily visualized by imagining the drawing glued to a piece of cardhoart, with a short length of wire fastened on it to represent the antenna. Twirling the wire will give a visual representation of the solid radiation pattern.
is minimum at the center, where it is equal to the radiation resistance, and increases toward the ends. The actual value at the ends will depend on a number of factors, such as the height, the physical construction, the insulators at the ends, and the position with respect to ground.

Conductor Size

The impedance of the antenna aho dopends upon the diameter of the conductor in relation to the wavelength, as shown in Fig. 10-44. If the diameter of the conductor is made large, the capacitance per unit length increases and the inductance per unit length decreases. Since the radiation resistance is affected relatively little, the decreased $L / \mathbf{C}^{\text {ratio }}$ rauses the Q of the antenna to decrease, so that the resonance curve becomes less sharp. Henere, the antema is capable of working over a wide frequency range. This effect is greater as the diameter is increased, and is a property of some importance at the very-high frequencies where the wavelength is small.

Radiation Characteristics

The radiation from a half-wave anternat is not uniform in all directions: but varies with the angle with respeet to the axis of the wire. it is most intense in directions perpendicular to the wire and zero along the direction of the wire, with intermediate values at intermediate angles. This is shown by the sketch of Fig. 10-46, which reprevents the radiation pattern in free space. The relative intensity of radiation is proportional to the length of a line drawn from the renter of the figure to the perimeter. If the antema is vertical, as shown in the figure, then the field strength will be uniform in all horizontal directions; if the antenna is horizontal, the relative field strength will depend upon the direction of the receiving point with respect to the direction of the antenna wire. The variation in radiation at vari-

Fig. 10-47-Illustrating the importance of vertical angle of radiation in determining antenna directional effects. Ground ruflection is neplected in this drawing of the free-space field pattern of a horizontal anterna.
ous vertical angles from a half-wavelength horizontal antenna is indicated in Figs. 10-47 and 10-48.

- feeding the half.wave ANTENNA

Direct Feed

If possithle, it is advisable to locate the antema at least a half-wavelength from the transmitter and use a tramsmission line to earry the power from the transmitter to the antemal. However, in many caser this is impossible, particularly on the fower frequencios, and direct feed must be used. Three examples of direct feed are shown in Fig. 10-49. In the method shown at $.1, C_{1}$ and C_{2} should be abomet $150 \mu \mu \mathrm{fd}$. each for the $3 . \pi-\mathrm{Mc}$. band, $75 \mu \mu \mathrm{ful}$. each at 7 Mc , and proportionately smalle at the higher frequencies, The antemat enil

Fig. 10 - 8 - llorizmtal pattern of a horiamtal half. wave antenna at three vertical radiation angles. 'the" solid line is relative radiation at 15 degrees. Doted lines slow deviation from the 15 -degree pattirn for angles of ${ }^{6}$ and 30 degres. The patterns are useful for shape onls, since the amplitude will depend upon the haight of the antenna above ground and the vertieal angle considered. The patterns for all there angles have leen proportioned to the sames scalo. hut this does not mean that the masinum amplitules neresearily will her the same. The arrow indicates the direction of the horizontal antenna wire.
comnected hetween them should resomate to 3. $\overline{2}$ Mr. with about 60 or $70 \mu \mu \mathrm{id}$., for the 8 (0)moter band, for 40 meters it should resomate with 30 or $35 \mu \mu \mathrm{Fd}$., and so om. The circuit is adjusted by using loose eompling between the antenna coil and the transmitter tank coil and adjusting C_{1} and C_{2} until resonance is indicated by an increase in plate current. The coupling between the coils should then be increased until proper plate current is drawn it may be necessary to reresonate the transmitter tank circuit as the coupling is increased, but the change should be small.
The circuits in Fig. 10-4913 and C are used when only one end of the antenna is arcessible. In B , the conpling is adjusted by moving the

Fig. 10-49 - M.thoma of directly exciting the half-wave antenna. A, current feed, series tuning; B, voltape fred, capacitive coupling; C, voltage feed, with in-ductively-coupled antenna tank. In A, the roupling circuit is not included in the effertise Arctrical length of the antrina-ysiem proper.

1ap tow and the "hot" or pate end of the tank coil - the condenser C may be of any convenient value that will stand the voltage, and it doesn't have to be variable. In the circuit at C, the sutenna tuned circuit ($\left(C_{I}\right.$ and the antenna coil) should be similar to the transmitter tank eircuit. The antenna tuned circuit is adjusted to resonance with the antenna comected but with loose coupling to the transmitter. Heavier loading of the tube is then obtained by tightening the coupling between the antenna coil and the transmitter tank coil.

Of the three systems, that at A is preferable hecause it is a simmetrical system and generally results in tess r.f. power "floating" around the shate. The system of B is undesirable be-

Fig. $1(16.50$ - Construction of a half-wave doublet fed with $\overline{5}$-ohm line. The length of the antenna is calenlated from Equation 10-1 or Pig. 10-45.
cause it provides practically no protection against the radiation of harmonies, and it should only be used in emergencies.

Transmission-Line Feed for Half-Wave Antennas

Since the impedance at the center of a halfwavelength antenna is in the vicinity of 75 ohms, it offers a good match for 7 johm twowire transmission lines. Several types are available on the market, with different powerhandling capabilities. They can be connected in the center of the antenna, across a small strain insulator to provide a convenient connection point. Coaxial line of 75 ohms impedance can also be used, but it is heavier and thus not as convenient. In either case, the transmission line should be run away at right angles to the antenna for at least one-quarter wavelength, if possible, to avoid current unbalance in the line caused by pick-up from the antenna. The antenna length is calculated from Equation 10-I, for a half-wavelength antenna. When

No. 12 or No. 14 enameled wire is used for the antenna, as is generally the case, the length of the wire is the over-all length measured from the loop through the insulator at each end. This is illustrated in Fig. 10-50.

The use of 75 -ohm line results in a "flat" line over most of any amateur band. However, by making the half-wave antenna in a special manner, called the two-wire or folded doublet, a good mateh is offered for a 300 -ohm line. such an antenna is shown in Fig. 10-i) with another version in Fig. 10-8413. The two differ only in the eonstruction of the antenna

Fig. 10.51 - The construction of an omen-wire folded donblet fed with 300 oonm line. The lenkth of the antenna is calculated from Equation 10-I or Fig. I(0-45.
proper. The open-wire line shown in Fig. 10-51 is made of No. 12 or No. 14 enameled wire, separated by lightweight spacers of Lucite or other material (it doesn't have to be a low-loss insulating material), and the spacing can be on the order of from 4 to 8 inches, depending upon what is convenient and what the oprorating frequency is. At 14 Mc., 4-inch separation is satisfactory, and 8 -inch or even greater spacing can be used at 3.5 Me .

If a half-wavelength antenna is fed at the center with other than 75 -ohm line, or if a folded doublet is fed with other than 300 -ohm line, standing waves will appear on the line and coupling to the transmitter may become awkward for some line lengths, as described earlier in this chapter. Lowever, in many cases it is not convenient to feed the half-wave antenna with the correct line (as is the case where multiband operation of the same antenna is desired), and sometimes it is not convenient to feed the antenna at the center. Where multiband operation is desired (to be discussed tater) or when the antenna must be

Fig. 10-52 - The antenna can be fed at the center or at the end with an open-wire line. The antenna length is obtained from Equation 10.I or Fig. 10-45.

Fig. 10-5.3 - Delta-matthed antemna systenn. The dimensions C, D, and E are fond hy formulas piven in the text. It is important that the matehing sertion, E, come straight away from the antenna withont any bends.
fed at one end by a transmission line, an openwire line of from 450 to 600 ohms impedanere is generally used. The impedance at the end of a half-wavelength antenna is in the vicinity of several thousand ohms, and hence a standingwave ratio of 4 or $\overline{5}$ is not unusual when the line is connected to the end of the antenna. It is advisable, therefore, to keep the losses in the line as low as possible. This requires the use of ceramic or Micalex feeder spacers, if any appreciable power is used. For low-power installations in dry climates, dry wood spacers that have been boiled in paraffin are satisfactory. Mechanical details of half-wavelength antemas fed with open-wire lines are given in Fig. 10-52. If the power level is low, below 100
watts or so, 300 -ohm Twin-Lead can be used in place of the open line.

One method for offering a match to a 600 -ohm open-wire line with a half-wavelength antemna is shown in Fig. 10-53. The system is called a delta match. The line is "fanned" as it approaches the antenna, to have a gradu-ally-increasing impedance that equals the antenna impedance at the point of connection. The dimensions are fairly critical, but careful measurement before installing the antenna and matching section is generally all that is necessary. The length of the antenna, L, is calculated from Equation 10-I or Fig. 10-45. 'lhe length of section (" is computed from:

$$
C(\text { feet })=\frac{118}{\text { Freq. (Mc.) }}
$$

(10-L)
The feeder cloarance, E, is found from

$$
\begin{equation*}
E(\text { fiet })=\frac{148}{\text { Freq. (.Mc.) }} \tag{10-M}
\end{equation*}
$$

Fxample: For a frequencry of 7.1 Me., the lenerh

$$
L=\frac{4 t i c}{3.1}=\text { tin. } 91 \text { fret, or tia feet } 11 \text { inches. }
$$

$$
C=\frac{11 \mathrm{~s}}{7.1}=16.42 \text { fret, or } 16 \text { fret } i \text { inches. }
$$

$$
E=\frac{14 N}{i .1}=20.84 \mathrm{feet} \text {. or } 20 \text { feet } 10 \text { iurhes. }
$$

sime the equations hold only for 600 -olm line, it is important that the line be close to this value. This requires 43 -inch spared Nu. 14 wire, 6 -inch spaced No. 12 wire, or $33 / 4$-inch spared No, 16 wire.

Long-Wire Antennas

An antenna will be resonant so long an integral mumber of standing waves of current and voltage can exist along its length; in other words, so long as its length is some integral multiple of a half-wavelength. When the antema is more than a half-wave long it usually is called a long-wire antema, or a harmonic antenna.

Current and Voltage Distribution

Fig. 10-5t shows the current and voltage distribution along a wire operating at its fundamental frequency (where its length is equal to a half-wavelength) and at its serond, third and fourth harmonics. Fur example, if the fundamental frequener of the antema is 7 Me., the current and voltage distribution will be as shown at 1 . The same antenna exifed at If Mc. would have current and voltage distribution as shown at 13. At 21 Mc., the third harmonic of 7 Mc ., the current and voltage distribution would he as in (; and at 28 Me., the fourth harmonic, as in D. The number of the harmonic is the number of half-waves contained in the antenna at the particular operating frequeney.

The polarity of current or voltage in each standing wave is opposite to that in the ad-

Fig. 10-5.4-Standing-wave current and voltage distribution along an antenna when it is operated at various harmonies of its fundamental resonant frequency.

Iij, 10 - $\overline{3}$ - Curve A shoms sariation in madiatien resistance nith antenna length. Curne B shows power in lohest of masimmer radiation for long-nire antronata at a ratio to the maximum radiation for a half-wave anterna.
jarent standing waves. This is shown in the figure by drawing the curront and voltage rurves successively above and bolow the antenna (taken as a zero reference line), to indirate that the polarity revorses when tho rurrent or voltage goes through zero. Currents flowing in the same direction are in phase; in opposite directions, out of phase.

It is evident that one antenna may be used for harmonically-related frequencies, such as the warions amatemr bambs. 'lhe long-wire or harmonic antemma is the basis of multiband "freration witl| who :lltemat.

Fig, INoib - Horizontal pattorns of ratiation frem a full-mure antenna. "The solid line shom: the pattern for a vertical angle of 15 degrees; elotted lines show deviation from the 1.⿹\zh26灬degree patternat 9 and 30 degrees. All there patterns are drawn to the same relativescale: actual ame plitudes will dromed upon the heipht of the antenna.

Physical Lengths

The length of a long-wire antenna is not an exact multiple of that of a half-wave antennil berause the end effects operate only on the end sections of the antenna; in other parts of the wire these effects are absent, and the wire length is approximately that of an equivalent portion of the wave in space. The formula for the length of a long-wire antemn, therefore, is

$$
\text { Length }(\text { fect })=\frac{492(N-0.05)}{\text { Frq. }(\mathrm{Mc})}
$$

$(10-N)$
where N is the number of holf-waves on the antemina.

$$
\begin{aligned}
& \text { Example: in antronat half-wave lome :it } 14.2 \\
& \text { Mc. would he } \frac{4(02(4-0.0 i v)}{14.2}=\frac{402 \times 3.450}{14.2}
\end{aligned}
$$

It is apbarent that an antenuat eut as a halfwave for a wiven frequeney will be slightly off

Fis. Ho. 5 : - Horizontal patterns of ratiation from ant antenna three holf-tcaver long. "ihe solid line shous the battern fur a vertical angle of 1.5 degrecs; detted fines show deviation from the 1 E-degree pattern at 9 and 30 degrees. Minor loless eoineide for all three anglem.
resonance at exactly twire that frequency (the second harmonie), berame of the dereased influmere of the end efferets when the antema is more than one-half wavelength long. The effeet is mot very important, exept for a possible unbatance in the feeder ststem and consequent radiation from the feedline. If the antenatis fod in the exact center, no unbalane will orcur at any frequency, but end-fed systems will show an unbalance in all but one frequency band, the band for which the antenna is cut.

Impedance and Power Gain

The radiation resistance as measured at a currot lonp becomes lager as the anteman length is incrased. Aso, a long-wire antenna radiates more power in its most favorable di-
rertion than does a half-wave antenna in its most favorable direction. This power gain is secured at the expense of radiation in wther directions. Fig. 10-55 shows how the radiation resistance and the power in the lobe of maxinum radiation vary with the antennt length.

Directional Characteristics

As the wire is made longer in terms of the number of hatf-wavelongths, the directional affects change. Instead of the "doughmut" pattern of the half-wave antenna, the directional characteristic splits up into "lobes" which make varions angles with the wire. la general, as the length of the wire is increased the direction in which maximum radiation wocurs tends to approach the line of the antenna itself.

Directional characteristies for antennas one wavelength, three half-wavelengths, and two Wavelengths long are given in ligs. 10-5t, $10-57$ and $10-5 x$, for three vertical angles of radiation. Note that, as the wire length increases, the radiation along the line of the antemat becomes more pronounced. still longer antemas can be considered to have pratically "ehdon" dirertional characteristies, even at the lower radiation angles.

Methods of Feeding

In a long-wire antema, the currents in adjarent half-wave sections must be out of phase, as shown in Fig. 10-54. The feeder system must not upset this phase relationship. This requirement is met by feeding the antenna at wither end or at any current loop. A two-wire foedor camot be inserted at a current norle, however, becanse this invariably brings the currents in two adjacent half-wave sedions in

Fie. 10.38 - Horizontal patterns of rathation from an antenna two teavelenghs long. The solid line shows the pattern for a vertioal angle of 15 degrees; donted lines show deviation from the liz-legrar pathern at 9 and 30 degrees. 'the minor lohes coincide for all three anghos.
phase; if the phase in one section could be reversed, then the currents in the feeders necessarily would have to be in phase and the feeder radiation would not be canceled out.

No point on a long-wire antenna offers a reawonable impedance for a direst match to any of the common typer of transmission lines. The most common practice is to feed the antenna at one end or at a current loop with a low-loss open-wire line and accept the resultion stancint-wave ratio of 4 or 5 . When a better match is required, "stubs" are generally used (dewcribed later in this chapter).

Multiband Antennas

As suggested in the preceding section, the same antenna may be used for several bands by operating it on harmonies. When this is done it is necessary to use resonant feeders, since the impedance matching for nonresonant feeder operation can be accomplished only at one frequency unless means are provided for changing the length of a matching section and shifting the point at which the feeder is attached to it.
lurthermore, the current loops shift to a new position on the antenna when it is operated on harmonies, further complicating the feed situation. It is for this reason that a half-wave antenna that is center-fed by a rubber-insulated time is practically useless for harmonic operation; on all even harmonics there is a voltage maximum occurring right at the feed point, and the resultant impedance mismatch is so bad that there is a large standing-wave ratio and consequently high losses arise in the rubber dielectric. It is also wise not to attempt to use a half-wave
antenna center-fed with coaxial cable on its harmonics. Higher-impedance solid-dielectric lines such as 300 -ohm 'Twin-lead may be used, however, provided the power does not exceed a few hundred watts.

TABLE 10-II Multiband Resonant-Line Fed Anternas						
Intenna l.enkih (ft.)	Feeder Lengu (ft .	Band	Type of Tuning			
11 ith end feed: 120	60	1-36. "phome	series			
130	67	$\begin{aligned} & 3 . \overline{3} \text { Mc. e.w. } \\ & 7 \mathrm{Mc} \\ & 1.7 \mathrm{Mc} \\ & 28 \mathrm{Mc} \end{aligned}$	serim: parallel parallel parallel			
134	6%	$\begin{aligned} & 3.5-M c . \mathfrak{w} \\ & \div \text { Mc. } \end{aligned}$	serips parallel			
67	33	- 11 c . 1.1 Ne. 28 Me.	serips parallel parallel			
H"ith renter feed: 137	67	$\begin{array}{rl} 3.5 & \\| c . \\ 7 & \\| c . \\ 14 & M c . \\ 28 & \\| c . \end{array}$	parallel parallel parallel paralle.			
62.5	3.4		parall-! parali! parallel			
The antenna lengths given represent compromisen for harmonic operation beratese of different end efferets on differpint hands. The 130-foot end-fid antemna is slightly long for 3.5 Mre, hint will work well in the region ($35(0)-36(0)$ he.) that quadrushes into thr If-Me, band. Bands not listed are not recommonded for the particnlar antenna. The ren-ter-fiod systems are less critival as to length. On harmonies, the end-fed and center-fed antennas will not have the same directional characteris. tics, as explained in the text.						

When the same antemat is used for work in nveral bands, it must be realized that the directional characteristic will vary with the band in use.

Simple Systems

The most practical simple multiband antomat is one that is a half-wavelength bong at the bowest frequency and is fed either at the center or one end with an open-wire line. Athough the standing-wave ratio on the ferdline will not approach 1.0 on any band, if the losses in the line are low the system will be efficient. From the standpoint of reduced feedline radiation, a center-fed system is superior to one that is end-fed, but the end-fed arrangemont is often more eomvenient and should not be ignored as a possibility. The center-fed antenna will not have the same radiation pattern as an end-fed one of the same length, except on frequencies where the over-all length of the antenna is a half-wavelength or less. The end-fed antenna acts like a long-wire antenna on all bands (for which it is longer than a half-wavelength), but the center-fed one acts like two antennas of half that length fed in phase. For example, if a full-wavelength antema is fed at one cond, it will have a radia-
tion pattern as shown in Fig. 10-56, but if it is fed in the center the pattern will be somewhat similar to Fig. $10-48$, with the maximum radiation broadside to the wire. Lither antema is a good radiator, but if the radiation pattern is a factor, the point of feed must be considered.

Since multiband operation of an antenna does not permit matching of the feedline, some attention must be paid to the length of the feedline if convenient transmitter-eoupling arrangements are to be obtained. Table 10-II gives some suggested antema and feeder lengths for multiband operation. In general, the length of the feedline should be some integral multiple of a quarter wavelength at the lowest frequency.

Antennas for Restricted Space

If the space available for the antenna is not large enough to aceommodate the length necessary for a half-wave at the lowest frequency to be used, quite satisfactory operation can be secured by using a shorter antematam making up the missing length in the feeder system. The antema itself may be as short as a quarber wavelength and still radiate fairly well, although of course it will not be as effective as one a half-wave long, Novertheters, such a system is usaful where operation on the desired band otherwise would be impossible.

Resonant feeders are a pratical necessity with such an antenan sytem, and a center-fed antema will give bost all-around performance. iVith end feed the feeder currents beome badly unbalanced.

With center feed practically any convenient length of antenna can be used, if the feeder length is adjusted to acoommodate at least

TABLE 10-III Anterna and Feeder Lergths for Short Multiband Anternas, Center-Fed				
Ithertim Lengrh (ftr)	Piecrler Lenuth (ft.	Bund	Tive of Tumink	
100	38	$\begin{array}{rl} 3.7 & 11 \\ 7 & V_{0} \\ 11 & U_{1} \\ 28 & W_{0} \end{array}$	parallel suries wries arris's or paralle!	
67.0	3.4	$\begin{array}{r} 3.5 \mathrm{Nc} \\ 7 \mathrm{Nc} \\ 11 \mathrm{Vc} \\ 28 \mathrm{Vl} . \end{array}$	neries parallel parallel parallet	
50	43	7 Ne. 14 Nc. 28 Nl.	parallel praralle] parallel	
33	51		paralle\| parallel parallel	
33	31	$\begin{aligned} & -V_{r} \\ & \text { if } \\|_{c} \\ & 28 V_{r} \end{aligned}$	parallel spries parallel	

Fig. $10-60$ - Folded arrangement for shorterned antennas. The total length is a half-wave, not ineluding the feeder.- 'The horizantal part is made as long as eonvenient and the ends dropped down to anake up the required length. The emde may be bent hack on themselves like fecters to cancel radiation partially. 'lhe horizontal section should le at least a ruarter wave long.
one half-wate around the whole system.
A practical antenna of this type can he made as shown in Figg. 10-59. Table 10-1II gives a few recommended lengths. However. the antenna can be made any convenient length, provided the total length of wire is a half-wavelength at the lowest frequentey, or an integral multiple of a half-wavelength.

Bent Antennas

Since the field strength at a distance is proportional to the current in the antenna, the
high-current part of a half-wave antenna (the center quarter wave, approximately) does most of the radiating. Advantage can be taken of this fact when the space available does not permit erecting an antenna a halfwave long. In this case the ends may be bent, either horizontally or vertically, so that the total length equals a half-wave, even though the straightaway horizontal length may be as short as a quarter wave. The operation is illustrated in Fig. 10-(i). Such an antenna will be a somewhat better radiator than a quarterwavelength antenna on the lowest frequency, but is not so desirable for multiband operation boratne the ends play an increasingly important part as the froquency is raised. The performance of the systom in such a case is difticult to_{0} predict, espectially if the ends are vertical (the most convenient arrangement) becaluse of the complex combination of horizontal and vertical polarization which results as well as the dissimilar directional eharacteristics. However, the fact that the radiation pattern is incapable of predietion does not detract from the general usefuhtuess of the antemba.

Long-Wire Directive Arrays

- THE "V" ANTENNA

It has been emphasized that, as the antenna length is inereased, the lobe of maximum rat diation makes a more acute angle with the

Fís, $|(1)-6|$ - The basic "V" antenta, made by combining two long wires.
wire. Two such wires may be combined in the form of a horizontal " V " so that the main lobes from each wire will reinforme along a line bisucting the angle betwern the wires. This inereases both gain and direcbivity, sinee the lobes in directions other than along the bisector cancel to a greater or lesser extent. The horizontal " V " antemma therefore transmits best in either direction (is bidirectional) along a line biserting the "V" made by the two wires. The power gain depends upon the length of the wires. Provided the necessary space is available, the " V " is a simple antenna to build and operate. It can also be ued on harmonies, so that it is suitable for multiband work. The " V " antenna is shown in Fig. 10-61.

Fig. 10-62 shows the dimensions that should be followed for an optimum design to obtain maximum power gain for differentsized " V " antennas. The longer systems
give good performance in multiband operation. Angle a is approximately equal to twice the angle of maximum radiation for a single wire equal in length to one side of the "V."

The wave angle reterred to in Fig. 10-(i2 is the vertical angle of maximum radiation, Tilting the whole horizontal plane of the " V " will tend to increase the low-angle radiation off the low end and decreatse it off the high end.

The gatin increases with the length of the

Fiy. 10-62 - Design chart for horizontal "V'" antennas, piving the enelosed angle hetween sides the the length of the wires. Values in parentheses represent approximate wave angle for height of one-half wavelenght,
wires, but is not exactly twice the gain for a single long wire as given in Fig. $10-5 \%$. In the longer lengths the gain will be somewhat increased, because of mutual coupling between the wires. A "V" eight wavelengths on a leg, for instance, will have a gain of about 12 dh. over a half-wave antenna, whereas twice the gain of a single eight-wavelength wire would he only approximately 9 db .

The two wires of the "V" must he fed out of phase, for correct operation. A resonant line may simply be attached to the ends, as shown in Fig. 10-61. Alternatively, a quarter-wave matrhing section may be employed and the antenna fed through a nonresonant line. If the antemat wires are made multiples of a half-wave in length (use bquation 10-N for computing the length), the matching sertion will be closed at the free end. I stub can be comberted across the resonant line to provide a match, as described later.

THE RHOMBIC ANTENNA

The horizontal rhombir or "diamont" antenna is shown in Fig. 10-63. Like the "V'," it requires a great deal of space for ereetion, but it is eapable of giving excellent gain and directivity. It akso can be used for multiband operation. In the terminated form shown in Fig. 10-6i3, it operates like a nonresonant transmission line, without standing waves, and is midirectional. It may also be used without the terminating resistor, in which case there are standing waves on the wires and the antenna is bidirectional.

The important quantitios influencing the design of the rhombic antenna are shown in lig. 10-63. While several design methods may be used, the one most applicable to the conditions existing in amateur work is the so-called "compromise" method. The chart of Fig. 10-64 gives design information based on a given length and wave angle to determine the remaining optimum dimensions for best operation. Curves for values of length of two, three

Fig. IOAX - The horizontal rhombic or diamond antemna, t.rmi. nated. Important design dimensions are indicated; detaila in text.

Fï, In-d.f-Compromise-methorl design inart for rhombin antennatsof varion- leg lengtho and wave angles. THu following examples illustrate the nee of the chart:
(1) Given:
length (L) $=2$ nasemengths Desirell wave angle ($(1)=20^{\circ}$.
'lo Find: $/ I$, Φ.
Method:
Draw vertical lime Itrungh print $n(I=2$ waver lengthes) amd print bon aton-isa $\left(\Delta=20^{\circ}\right)$. Read angle of tilt (\$) for moint a anml hooight (H) from interserelion of line ab at point c on curve $/ I$. Result:
$\phi=60,3^{\circ}$.
$H=0.73$ waverangth.
(2) Given:
lungth (I) = 3 wavelengths.
Ingle of tilt $(t)=78$.
Fio lind: II. 3.
Meithert:
Braw a vertieal line from print don curve $L=3$ wavelengths at $\phi=-88^{\circ}$, Read intersection of this line on curve $/ /$ (point e) for height, and intersection at point f on the abselissa for 3 .
Mrailt:

$$
\begin{aligned}
& H=11, . \pi 6 \text { wavrlength } \\
& د=26.6^{\circ} .
\end{aligned}
$$

and four wavelengths are shown, and any intermediate values may be interpolated.

With allother dimensions corred, an increase in length causes an increase in power gain and a slight reduction in wave angle. An increase in height also canses a roduction in wave angle and an increase in power gain, but not to the same extent as a proportionate increase in length. For multiband work, it is satisfactory to design the rhombic antenna on the basis of 1t-Mc. operation, which will permit work from the $7-$ to $28-\mathrm{Mc}$. bands as well.

A value of 800 ohms is correct for the terminating resistor for any properly-oonstructed rhembic, and the system hehaves as a pure resistive load under this eondition. The terminating resistor must be capable of sately dissipating one-half the power output (to eliminate the rear pattern), and should be noninductive. Such a resistor may be made up from a carbon or graphite rod or from a long $\mathrm{X}(0)$-nhm transmission line using
resistange wire, If the carbon rod or a similar form of lumped resistance is used, the device should be suitably protected from woather effeets, i.e., it should be covered with a good asphattic compound and sealed in a small lightwright box or fiber tube sutable nombertive torminating resistors are also available commereially.

For feeding the antema, the antennat impedance will be matehed hy an 800 -ohm line, which may be constructed from No. 16 wire spared 20 inches or from No. 18 wire spaced 16 inehes. The 800 -ohm line is somewhat ungainly to install, however, and may be replaed by an ordinary 600 -ohm line with only a megligible mismateh. Iternatively, a materhing section may be installed betwern the antena terminals and a low-impedance
line. However, when such an armanement is used, it will be nedemary to change the matoh-ing-section constant: for cach different band on which operation is contemplated.

The same design details apply 1 , the unterminated rhombie as to the terminated type When used without a terminating resistor. the systom is bidirectional. Rosonant feeders art proforable for the unterminated rhombir. I nomresonatht line may be used by incorporating at matehing sertion at the antema, but is not readily adaptable tosatisfactory multiband work.

Rhombic antennas will give a powor gain of 8 to 12 dh. or morr for leg lengths of two to four wavelongths, when construeted acoording (1) the charts givern. In genoral, the larger the antemas, the greater the power gain.

Directive Arrays with Driven Elements

By combining individual half-w:ave antennas into an array with suitable spateing between the antentas (called elements) and foeding power to themsimultancously, it is possible to make the radiated fields from the individmal elemonts add in a favored direction, thas inreasing the field strength in that direction as rompared to that produced by one antema elament alone. In other directions the fields will more or less oppose each other, giving a reduction in field strength. Thus a power gain in the desired direction is secured at the expense of a power reduction in other direetions.

Besides the spacing betwernelements, the instantaneous direetion of current flow (phase)

Fig. 10-6 - Collincar half-wave antemnas in pha-e. The system at 1 is pentrally known a" " two half-wases- in phate." B is an extension of the system; in theory the number of elements may be carried on indelinitely, but pratical considerations usually limit the clement- to four.
in individual elements determines the dirertivity and power gain. There are several methods of arranging the elemonts. If they are shang end to end, wo that all lic on the same straight line, the elements are said to be collinear. If they are parallel and all lying in the same plane, the elements are said to be broadside when the phase of the current is the same in all, and end-fire when the currents are not in phase. lilements that receive power from the tratnimitter through the transmission line are called driven elements.

The phwer gatin of a direetive system in-
creases with the number of elements. The proportionality botween gain ath number of elements is not simple, howeror. The gain depends upon the effect that the spacing and phasing hats upon the radiation resistance of the elements, as well as upon their number.

Collinear Arrays

Simple forms of collinear arrays, with the current distribution, are shown in Fig. 10-6is. The fwoelement array at it is popularly known as "two half-waves in phase." It will be recognized as simply a center-fed antenma operated at its semal harmonic. The way in which the mumber of elements may be extended for increased directivity and gain is shown in Fig. 10-6isll. Note that quarter-wave phasing soctions are used between elements; these give tho reversal in phase necessary to make the currents in individual antenna clements all flow in the same direction at the same instant.

Any phase-reversing section may be used as a quarter-wave matrhing section for attathing a nonresonant feeder, or a resonant transmission line may be substituted for any of the quarter-wave sections. Also, the antemat may be endfold by any of the systems previonsly described, or any element may be centerferl. It is bost to feed at the center of the array, so that the energy will be distributed as unifurmly as possible among the elomonts.

The gain and directivity depend upon the number of elements and their spacing. center-to-eniter. This is shown by Table 10-IV. Although three-quarter wave spacing gives greater gain, it is difficult to construct a suitable phase-roversing system when the ends of the antenna dements are widely separated. For this reason, the half-wave spacing is most generally used in actual practice.

Collinear arrays may be momented bither horizontally or vertically. Horizontal momot-

TABLE 10-IV Theoretical Gain of Collinear Half-Wave Anternas					
Spacing between centers of adjacent half-wares	Number of half-tiates in array vs. gain in db.				
	2	3	4	5	6
$\frac{1}{1 / 2}$ wave	1.8 3.2	3.3 4.8	4.5	$\begin{array}{r}\square \\ \hdashline 3 \\ \hdashline 0\end{array}$	$\frac{6}{6} 8$

ing gives indretsed horizontal directivity, while the vertical directivity remains the same as for a single element at the same height. Vertical mounting gives the same horizontal pattern ts a single element, but concentrates the radiation at low angles. It is seldom praticable to ase more than two elements vertically at frequencies below 14 Mc . herause of the excessive height required.

Broadside Arrays

Parallel antenna elements with currents in phase nay be combined as shown in Fig. 10-6it to form a broadside array, so named berause

Fif. IO-to - Broal-ide array using parallel half-wave ehrments. Irrows indicate the direelion of current thow. 'Transposition of the ferders is necessars to bring the antema currents in phase. Any reasonable number of elements may be used. The array is bidirectional, with masimum radiation "broadside" or perpendicular to the ant-nna plane (perpendicularly through this page).
the direction of maximum radiation is broadside to the plane containing the antennas. Igain the gain and directivity depend upon the number of elements and the spacing, the gain for different spacings being shown in Fig. 10-67. Half-wave spacing generally is used, since it simplifies the problem of feeding the system when the array has more than two elements. Table $10-\mathrm{V}$ gives theoretical gain as a function of the number of elements with half-wave spacing.

Broadside arrays may be suspended either with the clements all vertical or with them horizontal and one above the other (stacked). In the former case the horizontal pattern be(oomes quite sharp, while the vertical pattern is, the same as that of one element alone. If the array is suspended horizontally, the horizontal pattern is equivalent to that of one element while the vertical pattern is sharpened, giving low-angle radiation.

Broadwide arrays may be fed cither by resonant transmission lines or through quarterwave matching sections and nonresonant lines. In Fig. 10-iti, note the "rossing over" of the
feeders, which is necessary to bring the elements into proper phase relationship.

Combined Broadside and Collinear Arrays

Broadside and collinear arrays may be combined to give both horizontal and vertical directivity, as well as additional gain. The general plan of constructing such antennas is shown in Fig. 10-68. 'lhe lower angle of radiation resulting from starking elements in the vertical plane is desirable at the higher frequencies. In general, doubling the number of eldments in an array by stacking will raise the gain from 2 to 4 db ., depending upon whether vertical or horizontal elements are used - that is, whether the stacked elements are of the broadside or collinear tepe.

The arrays in Fig. 10-68 are shown fed from one end, but this is not especially desirable in the case of large arrays. Better distribution of energy betwen elements, and hence better over-all performance, will result when the foeders are at tarhed as nearly as possible to the center of the array. Thus, in the eight-element array at A, the fecders could be introduced at the middle of the transmission line between the second and third set of elements, in which case the connccting line would not be transposed between the second and third set of elcments. Alternatively, the antema could be construeted with the transpositions as shown and the feeder comnerted between the adjacent ends of either the second or third pair of eollinear elements

A four-clement array of the general type shown in Fig. 10-68B, known as the "lazy-II" antoma, has been quite frequently used. This arrangement is shown, with the feed point indicated, in Fig. 10-69.

End-Fire Arrays

Fig. 10-70 shows a pair of parallel half-wave elements with currents out of phase. This is known as an end-fire array, because it radiates best along the line of the antennas, as shown.

The end-fire array may be used either ver-

Fig. 10-67 - Gain es. spacing for two parallel half-wave elements combined as cither broadside or end-fire arrays.

Fin. 10-68-Combination broadside and collinear array. A. with vertical elmments: B, with horizontal elemonts. Both arrays give low-angle radiaton. 'Two "n more sertions may be used. The gain in dh. will be rqual. apposimately, to the sum of the gain for one set af hroadside elements ('liahle 10-V) plu* the gain of one set of collinear elements ("Iable 10-IV). For example, in I rach torondside set has four elements (Main 7 dh.) and tan h_{3} rollinear set two elements ((ain 1.8 dh.), tiving a total main of 8.8 db . In 13, eath hroadside set ha- ? wo elde ments (gatn 4 db.) and each collinear set three rements (kain 3.3 d .), mahing the total main 7.3 d . Th. The result is not etriotly aceurate, lnecause of mutual coupling to. ineen the elemento, but is good enough for practical parposes.
tiablly or horizontally (elements at the same loeight), and is well idapted to amateur work beranse it gives maximum gain with relatively clase element spacing. Fig. 10-6i7 shows how the gain varies with paring. kuddifo elements may he combined with anditional collinear and bradside elements to give a further increase in gain and directivity.

 eollinear array, popmiarly known as the "la\%-H" antenna. A rlosed quarter-wave stuh may be uaded at the foed print to mateh into a 600 -onhm transmission lines, or resolant fredere maty be athached at the point indicated. The gain over a half-wave antemea is 5 tof 0 dt.

Either resonant or nomresomant lines may bo used with this type of array. Nomresonant lines preferably are mate hed to the antemathrough a quarter-wave matching section or phasing stub.

Phasing

Figs. 10-68 and 10-70 illustrate a point in connertion with ferding a phatsed antenna system which sometimes is confusing. In Fig. 10-70, when the transmision line is connerted as at I there is no crussover in the line connecting the two antennas, but when the transmission line is commerted to the center of the
connecting line the armsover becomes necessary (B). This is because in B the two halves of the connecting line are simply branches of the same line. In other words, even though the comnecting line in B is a half-wave in length, it is not actually a half-wave line but turo quarter-wave limes in parallel. The same thing is true of the untransposed line of Fig. 10-6813. Note that, under these conditions, the antenna elements are in phase when the line is not transposed, and out of phase when the transposition is made, 'I he opposite is the case when the half-wave line simply joins two antemat dements and does not have the foedline comnected to its eenter, as in Fig. 10-6i7.

Adjustment of Arrays

With arrays of the types just deseribed, using half-wave spacing between eloments, it

Fig. I $10-80$ - Eind-fire arrals - wink parallel half-wave elements. 'The elaments are shown with half-wave siaring to illustrate feeder eommertions. In pratidec. closer sparinge are desiralle, as shown lyg Fig. 10-6. . Direction of masimom radiation is shown by the larpe arrous.
will wisully suffice to make the leagth of each elemont that given by Japations $10-1$ or $10-\mathrm{J}$. The half-wate phasing lines betwern the parallel elements should be of wen-wire construction, athed their length cant be calmated from:
Lemeth of half-mure line (feet) = 480
Freq. (Me.)
Fxample: A half-wavelength phasimy line for

8 inthens.
The spacing between elements ran the mate "qual to the length of the phasing line. No sperial adinstments of line or eloment length or pacing are needed, provided the formulas are follownd dosely.

With collinear arrays of the type shown in Fig. $10-65 \mathrm{~B}$, the same formula may be used for the element length, while the length of the quarter-wave phasing section can be found from the following formula:

Length of quarter-mare line (feet) $=(10-\mathrm{P})$ $2-10$
Freq. (Mc.)
Fxample: A quarter-wavelonght fhasing line
for 142.2. Mr, would be $\frac{240}{14,20}=16,54$ feret $=16$ feet 10 inches.
If the array is fed in the center it should not be nevessary to make any particular adjustments, although, if desired, the whole system can be resonated by comnecting an r.f. ammeter in the shorting link of each phasing section and moving the link back and forth to find the maxi-mum-current position. This refinement is hardly necessary in practice, however, so long as: all elements are the same length and the system is symmetrical.

The plasing sections can be made of $300-$ ohm 'Twin-Lead, if low power is used. However, the lengths of the phasing sections must be only 84 per cent of the length obtained in the two formulas above.

Example: The half-wavelength line for 28.8 Mr. woull beeome $0.84 \times 16.66=13.99$ feet $=$ 14 fect 0 inches
['sing Twin-Lead for the phasing sections is most useful in arrays such as that of Fig. 10-6inl , or any other system in which the element spacing is not controlled by the length of the phasing section.

Simple Arrays

Several simple directive-antenna systems using driven elements have aehieved rather wide use among amateurs. Four of these systems are shown in Fig. 10-71. Tuned feeders are assumed in all cases; however, a matching section readily can be substituted if a nonresonant transmission line is preferred. Dimensions given are in terms of wavelength; artual lengths can be calculated from the equations for the antenna and from the equation above for the resonant transmission line or matching section. In cases where the transmission line proper comnects to the midpoint of a phasing line, only half the length of the latter should be added to the line to find the quarter-wave point.

At A and 13 are two-element end-fire arrangements using close spacing, They are clectrically equivalent; the only difference is in the method of connecting the feeders. 13 may also be used as a four-element array on the second harmonic, although the spacing is not quite oplimum (Fig. 10-67) for such operation.

A elose-spaced four-element array is shown at C. It will give about 2 db. more gain than the two-element array.
The antemna at ID, commonly known as the "extended double-Zepp," is designed to take advantage of the greater gain possible with collinear antennas having greater than halfwave center-to-center spacing, but without introducing feed complications. The elements are made longer than a half-wave in order to bring this about. The gain is 3 db . over a single half-wave antenna, and the broadside directivity is fairly sharp.

The antennas of A and B may be mounted either horizontally or vertically; horizontal suspension (with the elements in a plane parallel to the ground) is recommended, since this tends to give low-angle radiation without an unduly sharp horizontal pattern. Thus these systens are useful for coverage over a wide horizontal angle. The system at C, when mounted horizontally, will have a sharper horizontal pattern than the two-element arrays because of the effect of the collinear arrangement. The vertical pattern, however, will be the same as that of the antennas in A and B.

Antennas for 160 Meters

Results on 1.8 Mr, will depend to a large extent on the antenna system and the time of day or night. Amost any random long wire that can be tumed to resonance will work

Fig. $10-2$, - Bent antenna fror the 160 -meter hand. In the syatem at A, the vertieal portion (length iv) shonld be made as long as posibibe. In either antenna
 To adjuat I_{2} in antenma A, remonate $I_{1} \mathrm{C}_{1}$ alome to the operating freguency, then connert it to the anterna s3:tem and adjust L_{2} for maximmm loading. Further loading can be obtained by increasing the coupling betwen L_{1} and the link.
during the night but it will generally be found very ineffertive during the day. A vertical anteona - or rather an antemna from which the radiation is predominantly vertically polarized - is probably the best for $1 . x$ - Me uperation. A horizontal antemat (horizontally polarized ratiation) will give better results during the night than the day because daytime absorption in the ionosphere is so high at this frequeney that the retlected wave is too weak to be useful. At night the proformanee improves berause nightime ionosphere conditions generally permit the reflected wave to return to carth without too much attenuation. The vertieally-polarized radiator gives a st rong ground wave that is effertive day or night, and it is to be preferred on 1.8 Me.

There is another reason why a vertical antemat is better than a horizontal for 160 (0) moter operation. The low-angle radiation from a horizontal antenna $1 / 8$ or $1 / 4$ wavelength athove ground is almost insignificant. Any reasonable height is small in terms of wavelongth, so that a horizontal antema on 160 meters is a poor radiator at angles useful for long distances ("long", that is, for this band). lts chief usofulness is over relatively short distances at night.

Bent Antennas

Since ideal vertical antemmas are generally out of the question for pratical amateur work, the best compromise is to bend the antenna in such a way that the high-eurrent portions of the antenna run vertically. It is, of course, advisable to place the antenna so that the highest currents in the antenna orour at the highest points above atual ground. Two antenna systems designed along these lines are shown in Fig. 10-72. The antenna at A uses a loading coil, L_{2}, to increase the clectrical length of the antenna to a half wavelength, so that the antenna ean be fed at its high-voltage point through the coupling aircuit $L_{1} C_{1}$. The antenna of Fig. $10-72$ B uses a full half-wavelength of wire but is bent su that the high-surrent portion runs vertically. The horizontal portion running to $L_{1} C_{1}$ should run 8 or 10 feet above ground.

Grounds

A good ground combetion is generally important on 1 (i0) meters. The ideal system is a number of wire radials buried a foot or two underground and extending 30 to 100 feet from the rentral connection

Fig. $10-\pi 3$ - In arrangemunt for kerping the main ratiating portion of the antenna vertical.
fer seraped dean before tightoning the ground elamp around the pipe.

A 6 - or 8 -foot length of 1 -inch water pipe. driven into the soil at a point where there is considerable natural moisture, can be used for the ground comection. Three or four pipes, driven into the ground 8 or 10 feet apart and all joined together at the top with heavy wire, are more effertive than the single pipe.

The use of a counterpoise is recommended Where a buried system is not practicable or where a pipe ground cannot be made to have low resistance because of poor soil conditions. A counterpoise consists of a number of wires supported from 6 to 10 feet above the surface of the ground. Generally the wires are spated 10 to bis feet apart and lorated to form at square or polygonal configuration under the vertical portion of the antomna.

Matching the Antenna to the Line

Except in the several rases of half-wave antennas mentioned earlier, most antema systems do not have center impedances that readily match open-wire lines or available solid-dielectric ones. However, any antenna can be matched to practically any line by any of the several means to be described. The matehing is accomplished by first resonating the antema to the proper frequency and then introducing either a matching transformer between the antenna and the line or by applying errective stubs to the line.

Fiд. 10-74 - The "O"antenna, using a quarter-wave im. perdance-matishing seetion with close-xpaced combluetors.

An impedance mismateh of 10 or 20 por cent is of little consequence so far ats power transfer to the antenna is concerned. It is relatively casy to get the standing-wave ratio down to 1.5- or 2-to-1, a perfectly satisfactory condition in practice. Of eonsiderably greater importance is the necessity for getting the currents in the t wo wires balanced, both as to amplitude and phase. If the eurrents are not the same at rorresponding points on adjacent wires and the loops and nodes do not also occur at corresponding points, there will be considerable radiation loss. Perfect balance can be brought about only by perfect symmetry in the line, particularly with respect to ground. This symmetry should extend to the coupling apparatus at the transmitter.

In the following discussion of ways in which different types of lines may be matched to the antenna, a half-wave antenna is used as an example. Other types of antennas may be treated by the same mothods, making due allowame for the order of imperdance that appears at the end of the line when more elaborate systems are used.
' Q ''-Section Transformer
The impedance of a two-wire line of ordinary construction (400 to 600 ohms) can be mat ched to the impedance of the center of a half-wave antenna by utilizing the impedance-transforming properties of a quarter-wave line, Equation $10-\mathrm{B}$. The matching section must have low surge impedance and therefore is commonly ronstructed of large-diameter conductors such as aluminum or copper tubing, with fairly-- lowe spacing. This system is known as the "($($ "
antenna. It is shown in Fig. 10-74. Important dimensions are the length of the antematitself, the lengtl of the matching section, B, the spacing between the two conductors of the matching section, C, and the impedance of the untuned transmission line connected to the lower end of the matching section.

The required characteristic impedance for the matching section is

$$
\begin{equation*}
Z_{\mathrm{m}}=\sqrt{Z_{1} Z_{2}} \tag{10-B}
\end{equation*}
$$

where $\%_{1}$ and Z_{2} are the antenna and feedine impedances.

> Example: To matcha 600 ohm line to an anthena fresenting a i2-ohm load, the quarterwate mateling section wonld require a chararterixtic impedanee of $\sqrt{12 \times 6(0)}=\sqrt{43}, 500$ $=208$ ohms.

The spacings between eonductors of various sizen of tubing and wire for different surge impedances are given in graphical form in Fig. $10-10$. With $1 / 2$-inch tubing, the spacing should be 1.5 inches for an impedance of 208 ohms.

The longth of the matching sertion, $l i$, should be equal to a quarter wavelength, and is given by Equation 10-6: The length of the antenna can be calculated from Equations $10-1$ or 10-J.

This system has the advantage of the simplicity of adjustment of the 75 -ohm feedor

Fif. 10-75 - Antenna systems with quarter-wave openwire linear impedance-matching transformers.
system and at the same time the superior insulation of an open-wire isstem.

Linear Transformers

Fig. 10-75 shows two methods of coupling a nonresonant line to an antenna through a quarter-wave linear transformer or matching section. In the case of the center-fed antema, the free end of the matching section, B, is open (high impedance) if the other end is comected
to a low-impedance point (current loup) on the antenma. With the end-fed antenma, the free end of the matching section is chosed through a shorting bar or link; this end of the section has low impedance, since the other end is connected to a high-impedance point on the antenna.
When the connection between the matching section and the antenna is unbalanced, as in the end-fed system. it is important that the antenna be the right length for the operating frequency if a good match is to be obtained. The balanced center-fed system is less critical in this respect. The shorting-har method of tuning the center-fed system to resonance may be used if the matching section is extended to a half-wavelength, bringing a current loop at the free end.

In the center-fed system, the antema and matching section should be cut to lengths found from Equations $10-\mathrm{I}, 10-\mathrm{N}$ and $10-\mathrm{P}$. Any necessary on-the-ground adjustment can be made by adding to or elipping off the open ends of the matching section. In the end-fed system the matching section can be adjusted

Fig. 10.76 - When antemat and trammissiom line difler in impedance, they may be matched hy a short leopith of transmission lime, l, called a stub. Detrmination of the eritical dimensions, I and Y, for proper matching depents on whether the stub is open or elosed at the and.
by making the line a little longer than necessary and adjusting the wystem to resonance by moving the shorting link up and down. Resonance can be determined by exciting the antenna at the proper frequency from a temporary antenna near by and measuring the current in the shorting bar by a low-ramge r.f. ammeter or galvanometer using one of the devices of this type described in the chapter on measurements. The position of the bar should be adjusted for maximum current reating. This should be done before the transmission line is attached to the matching section.

The position of the line taps will depend upon the impedance of the line as well as on the antenna impedance at the point of connection. The procedure is to take a trial point, apply power to the transmitter, and then check the transmission line for standing waves. This can be done by measuring the current in, or voltage along, the wires. At any one position along the line the currents in the two wires should be identical. Readings taken at intervals of a

Fig. 10.:77- Craph for letermining ponition and hengeth of a shorted stah. Dimensionm may lee ronverted en linear unit- after values have been tahen from the grajh.
quarter wavelength will indieate whether or not standing waves are present.

It will not usually be possible to ohtain complete elimination of standing waves when the mateling stub is exactly resomant, but the line taps should be adjusted for the smallest obtainable standing-wave ratio. Then a further "touching up" of the matehing-stub tuning will eliminate the remaning standing waves. provided the adjustments are carefully made. The stub must be readjusted, beaduse when rewonant it exhibits some reactance as well as resistance at all points except at the ends, and a slight lengthening or shortening of the stub is neressary to tume out this reartance.

Matching Stubs

The operation of the quarter-wave matching transformer of Fig. 10-75 may be comsidered from another - and more general - viewpoint. Suppose that section (is looked upon simply as a continuation of the transmission line. Then the "free" end of the transformer becomes a "stub" line, shunting a section of the main transmission line. From this viewpoint, matching the line to the antenna becomes a matter of selecting the right type and length of stub and attaching it to the proper spot along the line.

Referring to Fig. 10-76, at any distance (\mathcal{I} from the antenna, the line will have an imped-

Fig. 10-78 - Graph for determining position and length of an open stub, Wimensions may be comverted to linear units after values have heen tahen from the graph.
ance that may be considered to be made up of reactance (either inductive or capacitive) and resistance, in parallel. The reactive component can be eliminated by shunting the line at distance X from the antenna with another reactance equal in value but opposite in sign to the reactance presented by the line at that point. If distance \boldsymbol{X} is surh that the line presents an inductive reactance, a corresponding shunting capacitive reactance will be required.

The required compensating reactance may be supplied by shunting the line with a stub, cut to proper length, Y. With the reactances ranceled only a pure resistance remains as a termination for the remainder of the line between the sending end and the stub, and this resistance can he adjusted to match the characteristic impedance of the line by adjusting the distance X.
1)istances X and Y may be determined experimentally, bat since their values are interdependent the cut-ind-try method is somewhat laborious. If the standing-wave ratio and the positions of the current loops and nodes can be measured, the length and position of the stubs can be found from Figs. 10-77 and 10-78.

While it is relatively casy to locate the position of the current (or voltage) loons and nodes hy examining the line with a neon bulh, r.f. galvanometer, or pick-up loop and crestal detector, other means are more direct for determining the standing-wave ratio. Neveral devires of this type are deseribed in Chapter

Sixteen, and the use of these also affords a simple method for determining the location of current loops (voltage nodes). With the meter or indicator in the line near the transmitter, points will be found on the transmission line where touching the line with a screwdriver will have a minimum effect on the meter indication. These points correspond to voltage nodes.

Onee the standing-wave ratio is known, the length and position of the stub, in terms of wavelength, can be found directly from Figs. $10-77$ and $10-78$. The wavelength in feet for any frequency can be found from Equation 10-0.

Measuring Standing Waves

In adjusting a "(2-mateh" or linear transformer, or a delta or " T "-mateh to an antenna, one of the standing-wave indicators described in Chapter Sisteen should be used. If 300 -ohm Twin-lead is used, the simple "twin-lamp" indicator is the most convenient and the simplest to use. For lines of other impedance, or for coaxial line, the Micro-Match type or the bridge type should be used. In any event, the absolute value of standing-wave ratio is not as important as the proper adjustment for a minimum ratio, since ratios of 1.5 -to-1 or less represent good amateur practice.

Where two-wire lines are used, the standing-wave-ratio indicator should give the same reading regardless of the polarity of the transmission line - any diserepancy indicates an unbalance in the line.

Directive Arrays with Parasitic Elements

Parasitic Excitation

The antema arrays previously described are bidirectional; that is, they will radiate in directions both to the "front" and to the "hack" of the antenma system. If radiation is wanted in only one direction, it is necessary to use different element arrangements. In most of these arrangements the additional elements receive power by induction or radiation from the driven element, generally called the "antemm," and reradiate it in the proper phase relationship to achieve the desired effect. These elements are called parasitic elements, as contrasted to the driven elements which receive power directly from the transmitter through the transmission line. They are widely used to give additional gain and directivity to simple antennas.

The parasitic element is called a director when it reinforces radiation on a line pointing to it from the antenna, and a reflector when the reverse is the case. Whether the parasitie element is a director or reflector depends upon the parasitic-element tuning (which usually is atdjusted by changing its length) and, particularly when the element is self-resonant, upon the sparing between it and the antenna.

Fig. 10.79 - Gain res. element spacing for an antenna and one parasitic element. The reference point, 0 db ., is the field strength from a half-wave antenna alone. The greatest gain is in direction A at sparings of less than 0.14 wavelength, and in dircction B at greater spacings. The front-to-hack ratio is the difference in db. betwern curves A and B. Variation in radiation resistance of the driven element also is shown. These curves are for a self. resonant parasitic element. At most spacings the gain as a reflector can be increased by slight lengthening of the parasitic element: the gain as a director can be increased by shortening. 'Ithis alsu improves the front-to-back ratio.

Gain vs. Spacing

'The gain of an antematreflector or an an-tema-director combination varies chiefly with the spacing between the elements. The way in which gain varies with spacing is shown in Fig. 10-79, for the special case of self-resonant parasitie elements. 'This chart also shows how the attenuation to the "rear" varies with spacing. The same spacing does not necessarily give both maximum forward gain and maximum backward attenuation. Backward attemation is desirable when the antenna is used for rereiving, since it greatly reduces interference roming from the opposite direction to the desired signal.

Element Lengths

The antemna length is given by the formula for a half-wavelength antenna. The dirertor and reflector lengthe must be determined experimentally for maximum performanere. The proferable method is to aim the antema at a reociver a mile or more distant amd hawe an obsirver check the signal strength (on the receiver S-meter) while the reflector or director is adjusted a few inches at a time, until the longh which gives maximum signal is found. The attenuation may be similarly checked, the length being adjusted for minimum signal. In gencral, for best front-to-back ratio the longth of a director will be about 4 per cent less than that of the antemat. The reflertor will be about 5 per rent longer than the antema.

Fip, lo-80-Malfowae antomas with para-ili, plements. A, with director: \mathbb{B}, with reflecetor: C , with both director and reflector; D, wo directors and one reflector. Gain is approximately as shown hy Fig. 10-79, in the lirst two cases, and depends upon the spacing and length of the parasitic element. In the three and four-tement arrays a reflector spacing of 0.15 wavelongth will give slightly morr gain then 0 . I-wavelength sparing. Arrows show the direction of maximum radiation.

Simple Systems: the Rotary Beam

Four practical combinations of antema, reflector and director elements are shown in Fig. 10-80. Spacings which give maximum gain or maximum front-to-back ratio (ratio of power radiated in the desired direction to power radiated in the opposite direction) may be taken from Fig. 10-79. In the chart, the front-to-back ratio in db. will be the sum of gain and attenuation at the same spacing.

Systems of this type are popular for rotarybeam antemats, where the entire antema system is rotated, to permit its gain and directivity to be utilized for any compass direction. They may he mounted either horizontally (with the plane containing the elements paralfel to the earth) or vertically.

Arrays using more than one parasitio demont, such as those shown at C and D in Fig. 10-80, will give more gain and diredivity than is indicated for a single reflector or director by the curves of Fig, 10-79. The gain with a properly-adjusted three-ement army (antemat, director and reffector) will be 5 to 7 dh. over a half-wave antenna. Somewhat higher gain still can be secured by adding a serond director to the system, making a four-element array. The front-to-hack ratio is eorrespondingly improved as the number of elements is increased.

The eloments in clowespared (less than onequarter wavelength element paring) arrays preferably should be made of tuhing of onehalf to one-inch diameter. A eonduetor of large diameter not only has less ohmie rosistance but also has lower Q : both theso factors are important in olose-spaced arrays beratuse the impedance of the driven element usually is quite low eompared to that of a single half-wave dipole. With 3 - and 4 -eloment arrays the ratiation resistance of the driven elemont may be as low as 6 or 8 ohms, so that ohmie losses in the comductor can eonsume an apperciable fraction of the power. Low radiation resistance means that the antenna will work over only a small frequency range without retaning unloss large-diametor comductors are usel. In addition. the antemna elements should be rigid beratue if they are free to mowe with resperet to each other. the array will tend to show troublesome detuning effects under windy conditions.

Feeding Close-Spaced Arrays

While any of the usual methods of feed may bo applied to the driven element of a parasitie array, the fact that, with close spacing, the radiation resistance as measured at the center of the driven element drops to a very low value makes somesystems more desirable than others. 'The proferred methods are shown in Fig. 10-s2. Resonant feeders are not recommended for lengt hs greater than a half-wavelength.
'The quarter- or half-wave matching stubs shown at 1 and 13 in Fig. 10-82 preferably

FREQUENCY (MC)

Fig. 10-81 - Director, antenma and reflector lengths for three-element beams, for element spacing of 0.1 to 0.2 wavelength. The greater spacing will result in slightly higher gain. The lengths indicated are for maximum gain-some improvement in front. toback ratio may be obtained by adjustment of the reflector length.

Fig. $10-82$ - Reoonmmended methods of ferding the driven antenna element in close-spaced parasitic arrass. The parasitic elemfnts are not shown. A, quarter-wave open stub; B, half-wave elosed stub; C, concentric-line quarter-wave matehing section; D, delta matehing transformer: Fi " "'I' ${ }^{\prime \prime \prime}$ matching transformer. Adjustment details are dincussed in the text.
should be constructed of tubing with rather close spacing, in the manner of the " Q " section. This lowers the impedance of the matehing section and makes the position of the line taps somewhat less difficult to determine accurately. The line adjustment should be made only with the parasitic elements in piace, and after the correct element lengths have been determined it should be checked to compensate for changes likely to occur because of element tuning.

The concentric-line matching section at C will work with fair accuracy into a close-spaced parasitic array of 2,3 or 4 elements without necessity for adjustment. The line is used as an impedance-inverting transformer, and, if its characteristic impedance is 700 hms (RG11 /L'), it will give a good match to a 600 -ohm line when the resistance at the termination is about 8.5 ohms. Over a range of 5 to 15 ohms
the mismateh, and therefore the standingwave ratio, will be less than 2 -to- 1 . The length of the quarter-wave section may be calculated from Equation 10-G.

The delta matching transformer shown at I) is prohably casier to install, mechanically. than any of the others. The positions of the taps (dimension a) must be determined experimentally, along with the length, b, by checking the stamding-wave ratio on the line as adjustments are made. Dimension b should be about 15 per cent longer than a.

The system shown at l ("T"'match) resembles the delta matrh in principles of operation. It has the advantage that, with close spacing between the two paralled conductors, line radiation from the matching section is negligible whereas radiation from a delta may be considerable. It is adjusted by moving the shorting bars. kerping them equidistant from the eenter, until there are no standing waves on the line. The matching section may be made of the same type of conductor used for the driven element and spaced a few inches from it.

The "folded-dipole" type of antenna may be used as the driven element of a closespared parasitic array to secure an impedance step-up to the transmission line and also to broaden the resonance curve of the antema. The folded dipole consists of two or more half-wave antemas connected together at the ends with the feder connerted to the center af only one of the antennas. The spacing botween the parallel antenas should be small of the order of the spacing used between wives of a transmission line. The current in the sy:tem divides in approximate proportion to the arcas of the conductors, resulting in an impedance step-up at the input terminals. With two similar conductors (equal areas) the impalance step-up is 4-to-1; if there are three similar conductors (or if the one not commeded to the transmission line has twice the diameter of the other) the step-up is $9-10-1$; if the ratio of the aroas is 3 -to- 1 the step-up is $16-t-1$, and so on. Thus if a 3 -conductor dipole (all conductors the same diameter) is used as the driven element of a four-element parasitic array the center impedance of approximately 8 ohms is multiplied by 9 and appears as approximately 72 ohms at the input terminals. Such a system therefore can be fed directly from a 70 -ohm line with no additional means for matching.

Fig. 10-83 shows the impedance stop-up obtained in a folded dipole when conductors of different sizes are used.

Sharpness of Resonance

Peak performance of a multielement parasitic array depends upon proper phasing or tuning of the elements, which can be exact for one frequency only. In the case of close-spaced arrays, which because of the low radiation resistance usually are quite sharp-tuning, the frequency range over which optimum results can be secured is only of the order of 1 or 2

Fig. 10-83 - Nomogram for computing impedanee splo-np in a folded dipole with dissimilar conductorThe line at the left in the ratio of conductor diameters, and the line at the right $i=$ the ratio of eonductor spacing (reuter-tonenter) to the drivenedement radius. "The solid slamting line is the impedane step-up ratio. I, aying at saikhtedge between any two known duantities will kive the value of the third.

Example: Find the diameter of the large conductor when the driven-element diameter is 0.5 inch, line impedunce 300 ohms, antenna itnpedance 40 olms, and spacing 1.75 inches.

Impedance step-11p required $=300 / 40=7.5$
Spacing-to-element-radius ratio $=1,75 / 0,25$ $=7$
Laying a straightedge arross the figure (dached line), ratio of condurtor diameters $=2.3$
Diameter of large conductor $=2.3 \times 0.5=$ 1,15 inches
per econt of the resonant frequency, or up to about 500 kc . at 28 Me . However, the antenna can be made to work satisfactorily over a wider frequency range by adjusting the director or direetors to give maximum gain at the highest frequency to be covered, and by adjusting the reflector to give optimum gain at the lowest frequency. This sacrifices some gain at all frequencies, but maintains more uniform gain over a wider frequeney range.

As mentioned in the preceding paragraphs, the use of large-diameter conductors will broaden the response curve of an array bre cause the larger diameter lowers the Q. This causes the reactances of the elements to change rather slowly with frequeney, with the result that the tuning stays near the optimum over a considerably-wider frequency range than is the case with wire conductors.

Combination Arrays

It is possible to combine parasitic elements with driven elements to form arrays composed
of collinear driven and parasitic elements and combination broadside-collinear-parasitic elements. Thus two or more collinear elements might be provided with a collinear reflector or director set, one parasitic element to each driven element. (or both directors and reffectors might be used. I broadside-collinear array could be treated in the same fashion.

When combination arrays are built up, a rough approximation of the gain to be experted may be ohtained by adding the gains: for each type of eombination. Thus the gain of two broadside sets of four collinear arrays with a set of reflectors, one behind each element, at quarter-wave spacing for the parasitic eloments, would be estimated as follows: from Table $10-1 V$, the gain of four collinear elements is 4.5 db . with half-wave spacing; from lig. $10-67$ or Table $10-\mathrm{V}$, the gain of two broadside elements at half-wave spacing is 4.0 db .; from Fig. 10-79, the gain of a parasitic reflector at guarter-wave spacing is 4.5 db . The total gain is then the sum, or 13 db . for the sixteen elcments. Note that using two sets of clements in broadside is "quivalent to using t wo elements, so far as gain is concerned; similarly with sets of reflectors, as against one antemna and one reflector. The artual gain of the combination array will depend, in practice, upon the way in which the power is distributed between the various elements and upon the effect which mutual coupling between elements has upon the radiation resistance of the array, and may be somewhat higher or lower than the estimate.

A great many directive-antenna combinations can be worked out by combining elements according to these principles.

RECEIVING ANTENNAS

Nearly all of the properties posisessed by an antenna as a radiator also apply when it is used for reception. Current and voltage distribution, impedanee, resistance and directional charaeteristies are the same in a receiving antenna as if it were used as a transmitting antenna. This reciprocal behavior makes possible the design of a receiving antenna of optimum performanee based on the same considerations that have been discussed for transmitting antennas.

The simplest receiving antenna is a wire of random length. The longer the wire, the more energy it abstracts from the wave. Because of the high sensitivity of modern receivers, it large antenna is not necessary for pieking up signals at good strength. An indoor wire only 15 to 20 feet long will serve at frequencies below the v.h.f. range, although a longer wire outdoors is better.

The use of a tuned antenna improves the operation of the receiver, however, because the signal strength is raised more in proportion to the stray noises pieked up than is the case with wires of random length. Nince the transmitting antema usually is given the best loca-

Fig. 10.84 - Some suggested antenna systems. A Simple bidirectional rotatable end-fire array using $1 / 8 \cdot w a v e$ spacing between out-of-phase elements. It is suitable for either 14 or 28 Mc . and can be hand-rotated. It can also be suspended from the halyard holding another antenna, as sugpested in the lower drawing. B Fulded dipole using 300 -ohm Twin-l,ead for both antenna and feeder. The junction X at the center is made by opering one conductor of the antenna section and soldering to the feeder leals. The joint may be made merlanically firm by heating the dielectric with a soldering iron, using extra bits of dielectric for a good bond. C - An end-fire array for use where spare is
limited. The ends of the two halfowa elements are folded to meet at an insulator in the center. The antenna may be made still shorter by increasing the spacink: sparings up to $1 / 4$ wavelength may be used. D-Pipeassembly three-element beam ("plumber's delight") with folded-dipole driven element. Because all three eleuents are at the same r.f. potential at their center: it is possible to join them electrically as well as mechamcally with no effect on the performance. Provision is made for adjusting the element lengths for optinum performance at a given frequency. E - An extension of the folding principle sbown in C. The eollinear in-phase elements give additional gain and directivity. F-End.

fire array with extended double-7epps. This antenna should give a gain of about 7 dh. in the direction perpendieular to the line of the antenna. G-An 8 -element array combining broadside, end-fire and collinear elements. The gain of an antenna of this type is about 10 Ah. "This antenna also can be used at half the frequeney for which it is designed. II - A threc-rfuarter wavelength folded antema matches 500 or 600 oohm open. wire line, but 300 -ohm I'win-Lead will be satisfactory. It - pattern is quite similar to a half-wavelength antenna. Note that, unlike the half-wavelength folded dipole, the far side is open at the center. I - Uising two half-wave antennas at right angles to change direvtion. With the
three feelers indicated, either antenna alone can be fed as a Kepp and will radiate lest perpendioular to it: direction. By feeding the two together, leaving the thirt ferder wire idle, the optimum direction is the bisector of the angle between the wires. This system is most useful at high freguencies.

In these drawings, wavelength dimensions on conductors refer to lengths calculated for the conductor size as described in Eqquation 10-J.

The feeders to the varions directive systems in A, C, $E_{4}, F^{\text {and }}$; must be tuned if used as shown. Fur one* band operation, watching stubs may be attached to the feder-if a matched lime is desired.

Fig. 10-85-Antenna-switwhing arrangements for varions topes of antennas and conpling systems. A - For tuned lines with separate autenna thners or low-impedance lines. B - For a voltage-fed antenna. C - For a tuned line with a single antenna tuner. D - For a voltage-fed antenna with a single tuner. E. - For two tuned-line antennas with a tuner for each antenna or for two low-impedance lines. F - For combinations of several two-wire lines.
tion. it can also be expected to serve best for receiving. This is especially true when a directive antenna is used, since the directional effects and power gain of directive transmitting antennas are the same for receiving as for transmitting.

In selecting a directional receiving antenna it is preferable to choose a type that gives very little response in all bat the desired direction (small minor lobes). This is even more important than high gain in the desired direction. berause the cumulative response to noise and unwanted-signal interference in the snallor lohes may offset the advantage of inereased desired-signal gain. The feedline from the antemna should be balanced so that it will not pick up signals and destroy the direotivity.

Antenna Switching

Switching of the antenna from receiver to transmitter is commonly done with a changeover relay, connected in the antenna leads or the coupling link from the antenna tumer. If the relay is one with a 11 -volt a.c. coil, tho switch or relay that controls the transmitter plate power will also eontrol the antenna relay. If the convenience of a relay is not desired, porcelain knife switches can be used and thrown by hand.

Typical arrangements are shown in Fig. 10-8.). If coaxial line is used, the use of a coaxial relay is recommended, alt hough on the lower-frequency bands a regular switch or change-over relay will work almost as well.

Antenna Construction

The use of good materials in the antenna system is important since the antenna is exposed to wind and wather. To kerep elootrical losses low, the wires in the antenna and feeder system must have good condurtivity and the insulators must have low dielectric loss and surface leakage, particularly when wet.

For short antemas, No. 14 gauge hard-drawn enameled copper wire is a satisfactory conductor. For long antennats and directive arrays, No. 14 or No. 12 enameled copper-clad sted wire should be used. It is best to make feecers and matching stubs of ordinary soft-drawn No. 14 or No. 12 enameled copper wire, since harddrawn or copper-clad steel wire is difficult to hamde unless it is under considurable tonsion at all times. The wires should be all in one piece; where a joint cannot be avoided, it should be carefully soldered.

In building a resonant two-wire feeder, the
spacer insulation should be of as good quality as in the anterna insulators proper. Fior this reason, good ceramic spacers are advisable Wooden dowels boiled in paraffin may be used with untuned lines, but their use is not recommended for tuned lines. The wooden dowels can be attathed to the feder wires by drilling small holes and binding them to the feeders with wire.

At points of maximum voltage, insulation is most important, and P'yrex glass, Isolantite or steatite insulators with long leakage paths are rerommended for the antenna. Glazed porcelam also is satisfactory. Insulators should be eleaned once or twice a year, expectially if they are subjected to much smoke and soot.

In most cases poles or masts are desirable to lift the antenna clear of surrounding buiddings, although in some locations the antenna will be sufficiently in the clear when strung

Fip. 10-86 - Details of a simple 10 -fonit " $A^{\prime \prime}$-frame mast suitable for erection in locations where space is limited.
from one chimmey to another or from a chimmey to a troe. small trow usually are not satiofactory as points of suspension for the antema breause of thoir movement in windy weather. If the anternat is strung from a point near the center of the trunk of a large tree, this difficully is not so strious. Where the antenna wire must be strung from one of the smallor branches, it is best to tie a pulley firmly to the branch and run a rope through the pulley to the antema, with the other end of the rope attached to a counterweight now the ground. The counterwaight will kerp the tension on the antema wire rasonalby eonstant even whon the bramehes sway or the rope tightens and stretches with varying climatic conditions.

"A"-FRAME MAST

The simple and inexpensive mast shown in Fig. $10-86$ is satisfactory for heights up 10 35 or 40 feet. Clear, sound lumber should be selected. The eompleted mast may be protected by two or three coats of house paint.

If the mast is to be erected on the ground, a eouple of stakes should be driven to keep the bottom from slipping and it may then he "walked up" by a pair of helpers. If it is to go on a roof, first stand it up against the side of the building and then hoist it from the roof, kepping it vertioal. The whole assembly is light enough for two men to perform the eomplete operation - lifting the mast, carrying it to its permanent berth, and fastening the guys with the mast vertical all the while. It is entirely practicable. therefore, to erect this type of mast on anyemall. flat area of roof.

By using $2 \times 3 s$ or 2×4 s, the height may be extended up to about 50 feet. The 2×2 is too flexible to be satisfactory at such heights.

SIMPLE 40-FOOT MAST

The mast shown in Fig, 10-87 is rolatively strong, easy to construct, readily dismantled. and costs very little. Like the "A"-frame, it is suitable for heights of the order of 40 feet.

The top section is a single 2×3, bolted at the bottom between a pair of 2×3 w with an overlap of about two feet. The lower section thus has two legs spaced the width of the narrow side of a 2×3. At the bottom the two legs are bolted to a length of 2×4 which is set in the ground. A short length of 2×3 is placed between the two legs about halfway up the bottom section, to maintain the sparing.

The two back guys at the top pull against the antenna, while the three lower guys prevent buckling at the center of the pole.

The 2×4 section should be set in the ground so that it faces the proper direction, and then made vertical be lining it up with a plumb boh, The holes for the bolts should he drilled beforehand. With the lower section laid on the ground, bolt A should be slipped in place through the three pieces of wood and tightened just enough so that the section can turn freely on the bolt. Then the top section may be bolted in plare and the mast pushed up, using a ladder or another 20 -foot 2×3 for the joh. As the nast goes up, the slack in the guys can be taken up so that the whole structure is in some meas-

Fig. 10.87-A simple and sturdy mast for heights in the virinity of 40 feet, pivoted at the hase for easy erec. tim. "the height fan be extended to 50 fret or more hy using $2 \times$ 4 s instead of $2 \times 3 \mathrm{~s}$.

ure continually supported. When the mast is vertical, bolt is should be slipped in place and both A and B tightened. The lower guys can thon he given a final tightening, leaving those at the top a little slack until the antenna is pulled up, when they should be adjusted to pull the top sertion intol line.

- "T"'SECTION MAST

A type of mast suitabhe for haights up to ahout 80 feet is shown in Fig. 10-88. The mast is built up by butting 2×4 or 2×6 timbers Hatwise agatinst a serond 2×4, as shown at A. with alternating joints in the edgewise and flat wise sections. The construction ran be carricel out to greater lengths simply by continuing the 20 -foot sections. Ianger or shorter sections may be used.

The mothod of making the joints is shown at C. Quarter-ineh or $3 / 16$-inch iron, $11 / 2$ to 2 inches wide, is recommended for tho straps, with $1 / 2$-inch bolts to hold the pieces logehor. One bolt should be run through the pieces midway betwern joints, to provide additional rigidity.

Although there are many ways in which such a mast can be secured at the base, the "cradle" illustrated at D has many advantages. Havy timbers set firmly in the ground, spaced far enough apart so the base of the mast will pass betweon them, hold a large carriage bolt or steel bar which serves as a bering. The bolt goes through a hole in the mast so that it is pivoted at the botrom.

Half of the guys can be tiyhtemed up before the mast leaves the ground by using four sets of guys, one in front, one directly in the raar, and one on each side at right angles to the direction the mast will face. The mast should be guyed every twenty fert and at the top, at each of the joints in the edgewise sections, the guy wires being wrapped around the pole for added strength.

For heights up to 50 feet, 2×4-inch memlorem may be usid throughout. For greater heights, use 2×4 for the edgewise seetions; 2×6-inch pieces will do for the flat sections.

- POLE AND TOWER SUPPORTS

Poles, whith often maty be purchased at a reasonable price from the loral telephone or power company, have the advantage that they do not require guying unless they are called upon to carry a very heavy load. The hife of a pole can be extended many years by proper precantions before erecting, and regular maintenance thereafter.

Before setting the pole, it should be given four or five roats of creosote, applying it liberally so it can soak into and preserve the wool. The bottom of the pole and the part that will be buried in the ground should have a generous coating of hot pitch, poured on while the pole is warm. This will keep termites out and prevent rotting.

The pole should be set in the ground four to eight feet depending upon the height. It is a good idea to pour concrete around the bottom three feet of the base, packing the rest of the excavation with woil. The concrete will help hold the pole against strong winds. After filling the hole with dirt, astream from a hose should be played on the dirt slowly for several hours.

fin. forso - This type of mast may be carried to a height of lifty fret or more. لo ghy wires are reguired.

This will help to settle the soil quickly. If desired, the pole may be extended by the arrangement shown in Fig. 10-89. Three $2 \times$ ts are required for the top section, two being 18 feet long and one 10 feet long. The 10 -foot section is placed between the other two and bolted in place. A half-inch hole should be bored through the pole about 2 feet from its top and through both 18 -foot 2×4 a about 5 feet from their bottom ends, which are spread apart to fit the top of the pole. The bottom end of the extension is then hauled up to the top of the pole and bolted loosely so that the sertion "an be swong up into place by the leverage of another 2×4 temporarily fastened to the section, as shown in Fig. 10-89.

Lattice towers built of wood should be awsembled with brass screws and casein gluc, rather than with nails which work loose in : short time. A tower constructed in this manuer will give trouble-free service if treated with a coat of paint every year.

In painting outside structures, use pure white lead, thinned with three parts of pure linseed oil to one part of turpentine, for the first coat on new wood. The use of a drier is not recommended if the paint will possibly dry without it, since it may canse the paint to prel after a short time. For the second and thirid coats pure white lead thimed only with pure

Fig. In-90 -- I sing a lever fror twinting heav: ghe wires.
linseed oil is recommended. Plenty of time for drying should be allowed between coats. White paint will last fifty per cent longer than any colored paint.

- GUYS AND GUY ANCHORS

For masts or poles up to about 00 feet. No. 12 iron wire is a satisfactory guy-wire material. Heavier wire or stranded cable may be used for taller poles or poles installed in locations where the wind velocity is high.

More than three guy wires in any one set usually are unnecessary. If a horizontal antenna is to be supported, two guy wires in the top set will be sulficient in most cases. There should run to the rear of the mast about 100 degrees apart to offset the pull of the antenna.

Fig. $10-91$ - Pipe guy anchors. One pipe is sufficient for small masts. but two installed as shown will provide the additional strength required for the largerpolem.

Intermediate guys should be used in sets of three, one running in a direction opposite to that of the antenna, while the other two are spared 120 degrees either side. This leaves a cleir space under the antenna. The guy wires should be adjusted to pull the pole slightly bark from vertioal bofore the antenna is hoisted so that when the antenna is pulled up tight the mast will be straight.

When raising a mast that is big enough to tax the facilities available, it is some advantage to know mearly exactly the length of the guys. Those on the side on which the pole is lying can then be fastoned temporarily to the anchors beforehand, which assures that when the pole is raised, those holding opposite guys will be able to pull it into nearly-vertical position with no danger of its getting out of control. The guy lengths can be figured by the right-angledtriangle rule that "the sum of the squares of the two sides is equal to the square of the hypotenuse." In other words, the distance from the hase of the pole to the anchor should be mossured and squared. To this should be added the square of the pole length to the point where the guy is fastened. The square root of this sum will be the length of the guy.

Guy wires should be broken up by strain insulators, to avoid the possibility of resonance at the transmitting frequency. Common prattice is to insert an insulator near the top of earh guy, within a few feet of the pole, and then eut each section of wire between the insulators to a length which will not be resonant either on the fundamental or harmonies. An insulator every 25 feet will be satisfactory for frequencies up to 30 Mc . The insulators should be of the ""ge" type with the insulating material under compression, so that the guy will not part if the insulator breaks.

Twisting guy wires onto "egg" insulators may be a tedious job if the guy wires are long and of large galuge. The simple time- and fingersaving device shown in Fig. $10-90$ can be nade from a piece of heavy iron or steel by drilling a hole about twice the diameter of the guy wire about a half inch from one end of the piece. The wire is passed through the insulator. given a single turn by hand, and then held with a pair of pliers at the point shown in the sketrh. By passing the wire through the hole in the iron and rotating the iron as shown, the wire may be quickly and neatly twisted.

Guy wires may be anchored to a tree or building when they happen to be in convenient spots. For small poles, a 6 -foot length of 1 -inch pipe driven into the ground at an angle will
suffice. Additional braring will bre pror vided by using two pipes, ats shown in liig. 10-91.

- HALYARDS AND PULLEYS

Halyards or ropes and pulloys are important items in the antenna-supporting system. Particular attention should be directed toward the choice of a pulley and halyards for a high mast since replacement, once the mast is in position, may be a major undertaking if not entircly impossible.

Galvanized-iron pulleys will have a life of only a year or so. Especially for coastal-area instatlations, marine-type pulleys with hardwood blocks and bronze. wheels and bearings should be used.

An arrangement that has certain advantages over a pulley when a mast is used is shown in Fig. 10-92. In case the rope breaks, it may be possible to replace it by heaving a line over the brass rod, making it umecessary to climb or lower the pole.

For short antennas and temporary installations, heavy clothesline or window-sash cord may he used. However, for more permanent johs, $3 / 8$-inch or $1 / 2$-inch waterproof hemp rope should be used. Even this should be replaced about onee a year to insure against breakage.

Nylon rope, used during the war as glider tow rope, is, of course, one of the best materials for halyards, since it is weatherproof and has extremely long life.

It is advisable to carry the pulley rope back up to the top in "endless" fashion in the manner of a flag hoist so that if the antenna breaks close to the pole, there will be a means for pulling the hoisting rope batek down.

BRINGING THE ANTENNA OR FEEDLINE INTO THE STATION

The antenna or transmission line should be anchored to the outside wall of the building. as shown in Fig. 10-93, to remove st rain from the lead-in insulators. Holes eut through the walls of the building and fitted with fred-through insulators are undoubtedly the best means of

Fig. 10-92 - 'lhis device is murh easicr than a pulley to "rethread" when the rope breaks.

Fif. 10.93 - 1 - Anchoring feedere takes the strain from feedthrough insulators or window glass. B-Going throngh a full-tength sereen, a cleat is fastened to the frame of the sorem on the inside. Clearance holes are ent in the cleat and also in the sireen.
lringing the line into the station. The holes should have plenty of air elearance about the condueting rod, esperially when using tuned lines that develop high voltages. Probably. the best place to go through the walls is the trimming board at the top or bottom of a window frame which provides flat surfaces for lead-in insulators. Either eement or rubber

gaskets maty be used to waterproof the exposed joints.

Where such a procedure is not permissible, the window itself usually offers the best opportunity. One satisfactory method is to drill looles in the glass near the top of the upper sash. If the glass is replaced by plate glass, a stronger job will result. Plate glass may be obtained from automobile junk yards and drilled before placing in the frame. The glass itself provides insulation and the transmission line may be fastened to bolts fitting the holes. Rubber gaskets will render the holes waterproof. The lower sash should be provided with stops to prevent damage when it is raised. If the window has a full-length sercen, the scheme shown in Fig. 10-93B may be used.

As a less permanent method, the window may be raised from the bot tom or lowered from the top to permit insertion of a board which carries the feed-through insulators. This lead-in arrangement can be made weatherproof by making an overlapping joint between the board and window sash, as shown in Fig. 10-94, and

 tingrantemna installations:-
covering the opening betwern sashos with a sheet of soft rubber from a discarded inner tube.

LIGHTNING PROTECTION

An ungrounded radio antenna, partienaray if large and well elevated, is a lightning hazard. When grounded, it provides a measure of protection. Therefore, grounding switches or lightning arresters should be provided. Examphes of construction of low-loss arresters are shown in Fig. 10-95, At A, the arrester electrodes are mounted by means of standoff insulators on a fireproof asbestos board. At B, the electrodes are enelosed in a standard stomb outlet box. The gaps should be made as small as possible without danger of breakdown during operation. Jightning-arrester systems roquire the best ground eonnection obtainable.
The most positive protection is to ground the antenna system when it is not in use; grounded flexible wires provided with clips for connection to the ferder wires may be used. The ground lead should be shert and run, if possible, directly to a driven pipe or water ppe where it enters the ground outside the building.

Rotary-Beam Construction

It is a distinct advantage to be able to shift the direction of a beam antenna at will, thus seeuring the bemefits of power gain and directivity in any desired compass direction. A favorite mothod of doing this is to construct the antemnat so that it can be rotated in the horizontal phane. Obviously, the use of such rotatable antennas is limited to the higher frequencies - 14 Mc . and above - and to the simpler antennat-dement combinations if the

structure size is to be kept within practicable bounds. For the 14- and 28-Me. bands such antemnas usually consist of two to four elemonts and are of the parasitic-array type desoribed earlier in thas chapter. At 50 Mr. and higher it becomes possible to use more elaborate arrags because of the shorter wavelength and thus ohtain still higher gain. Antemnas for these bands are deseribed in Chapter Fourteren.

The problems in rotary-bean construction are those of providug a suitable mechanical support for the antenna elements, furnishing a means of rotation, and attaching the transnission line so that it does not interfere with the rotation of the system.

Elements

The antenna elements usually are made of motal tubing so that they will be at least partially self-supporting, thus simplifying the supporting structure. The large diameter of the conductor is beneficial also in redueing resistance, which becomes an important consideration when close-spaced elements are usod.

Dural tubes often are used for the elements, and thin-walled corrugated steel tubes with copper coating also are available for this
Fig. 10.96 - Easily-built supporting structure for hori. zontal rotary beams. Made chiefly of $1 \times 2^{\prime \prime}$ wood strip, it is strong yet lightweight. Antenna elements are supported on stand-off insulators on the arms, E. The length of the D scctions will depend upon the element spacing, while the length of the E sections and the spacing het ween the D sections should be $1 / 4$ to $1 / 2$ the length of the antenna elements.
purpose. The elements frequently are constructed of sections of telescoping tubing making length adjustments for tuning quite easy: Electrician's thin-walled conduit also is suitable for rotary-beam elements.

If steel elements are used, speeial precautions

Fig. $10.97-\Lambda$ ladder-supported 3-element 28.Me. beam. It is mounted on a pipe mast that projeets through a loaring in the roof and is turned from the attic operating room. (W IMRK in Augnst, 1946, QST.)
should be taken to prevent rusting. Even eop-per-coated steel does not stand up indefinitely, since the coating usually is too thin. The elements should be coated both inside and out with slow-drying aluminum paint. For coating the inside, a spray gun may be used. or the paint may be poured in one end while rotating the tubing. The exerss paint may be caught as it comes out the bottom end and poured through again until it is certain that the entire inside wall has been covered. The ends should then be plugged up with corks sealed with glyptal varnish.

Supports

The supporting framowork for a rotary beam usually is made of wood but sometimes of metal, using as lightweight construction as is consistent with the required strength. Gerterally, the frame is not required to hold much woight, but it must be extensive emough so that the antenna aloments can be supported near enough to their ends to prevent excessive sag, and it must have sufficiont strength to stand up under the maximum wind in the locality. The design of the frame will depend chiefly on the size of the antenna elements, whother they are mounted horizontally or vertically. and the method to be employed for rotating the antenna.

The general preference is for horizontal polarization, primarity because less height is required to clear surrounding obstruetions when all the antenna elements are in the horizontal plane. This is important at 14 and 28 Me . where the elements are fairly fong.

An easily-const ructed supporting frame for a horizontal array is shown in Fig. 10-96. It may be made of 1×2-imeh lumber, preferably wak, for the center sections B, C, and D. The outer arms, E, and cross braces, F, may be of whit. pine or cypress. The square block, A, at the
eenter supports the whole structure and may be coupled to the polle by any convenient means which permits rotation. Alternatively, the block may be firmly fastened to the pole and the latter rotated in bearings affixed to the side of the house.

Another type of construction is shown in Fig. 10-97, with details in Figs, 10-98 and 1099. This method, suitable for $28-\mathrm{Me}$. beams, uses a seetion of ordinary ladder as the main support, with erosspieces to hold the tubing antemna elements. Fig. 10-9N also indicates a mel hod of adjusting the lengt hs of the parasitio. eloments and bringing the transmission line down through the supporting pole from a delta match. The latter is esperially adapted to construction in which the pole rather than the framework alune is rotated.

Metal Booms

Motal can be used to support the chemonts of the rotary beam. For 28 Me ., a piece of 2 inch diameter duraluminum tubing makes a good "boom" for supporting the elements. The elements can be made to slide through suitable holes in the boom, or special elamps and brackets can be fashioned to support the Hements. The antenna of Fig. $10-84 \mathrm{D}$ shows one example of such construction.

Generally it is not practicable to support the plements of a $14-\mathrm{Me}$. beam by a single-piece boom, because the size of the ekments requires a stronger structure. However, by making use of tubing or duraluminum angle, is lightweight support for a 20 -meter antenna can be built. The four-element beam shown in

Fip. 10-98 - Top-view drawing of the ladder support and mounted elements. Lengths of director and reflector are aljusted by means of the storting hars on the small stubs at the center. The drawing also shows a method for pulling off the wires of a delta match and feeding 300 -ohm Twin-lerat transmission line through the pipe support.

Figs. 10-100, 10-101 and 10102 is an example. It uses $13 / 4$-inch angle for the main pieces and $3 / 4$-inch angle for the other members, and the entire framework plus elements weighs only forty pounds. This simplifies eonsiderably the problem of supporting the beam.

The following aluminum pieces are required:
4-1-inch diametor tubing. 12 fert long. 3/6-inch watl
 inch wall. Must fit sulugly into l-ineh tubing.
2-13-inch angle, 21 ford long
2 - 3 -inch angle, 21 foed long
4 - 3_{1}-inch anghe. 1 foot long
2 - $\sqrt[2]{2}$-ineh diamber tubing, 6 foed long
Aluminum tubing and angle correspomting to the above sizes can possibly be bought from scrap dealers at reasonable prices, if not directly frem the mandiathere. If the seetions of the clements do not fit snugly, insert shims or

Fig. IO-IOM - A four-element 14-Mr. beam of lightweinht alt-metal comstruction. Frod by eovial rathe and hami-rotatod, the antenna and hom aseembly waighs

Fig. 10-101 - Details of the 4-element beam construction. The general dimensions and arrangement of the beam are given in A, the detail of the ends of the boom is shown at 13 , and 6 , show the construction of the central pisut. A diserarded-forge blower gear train is used to drive the assembils.

With all-metal construction, dolta mateh or "T"-match is the only practical matehing method to use to the line, since anything else requires opening the driven element at the ennter, and this complicates the support problem for that element.

A Wooden Boom for 14 Mc .

Many amateurs prefer to build their beam booms from standard pieces of lumber, and the beam shown in Figs. 10-103 and 10-104 is an example of excellent dexign in wooden-boom construction. The boom mombers are two 20foot 2×4 s fastened to the $4 \times 12 \times 2$-inch eonter block with six lag sorews. The two center screws serve as the axis for tilting the other four lock the boom in position after final assembly and adjust ment have been remplated. The blocks midway from each chel are $2 \times 4 s$ spaced about six inches apart, with a long bolt beween them. When this bolt is drawn tight, a very sturdy box brace is formed.

Fig. 10.102-The boom for the $4 \cdot e l e m e n t ~ b e a m ~ i s ~ c r o s s-~ ' ~$ braced at two points, about $6 \frac{1}{2}$ feet in from the ends.

Fig. 10.103-A wooden boom for a 4 -element 14.Me. boom can be made quite strong by judieious use of guy nires. This installation is made on a windmill tower, and the drive motor is mounted halfway down on the tower. (W6MJB, Nov., 1947, QST.)

 constriotion of the slip rings.
tower. The driving motor for the beam was located halfway down the tower, the torque being transmitted through a longth of $11 / 2$-inch drive shaft. A pipe flange is welded to the drive shaft and bolted to the center block. A cone bearing is obtained by turning both the flange and a sleeve of 2 -inch pipe to match, as shown in Fig. 10-104,

One method of matching the line to the antemma is to use a quarter wavelength of $\overline{\text { g }}$-ohm Twin-dad between the radiator and the slip-ring contacts, to match a boo-ohm line from the slip rings to the transmitter.

A bootohm open-wire line is run to a point about halfway up on the tower, then up the side of the tower to the slip rings. The slip rings are mounted on the top of the tower. directly under the renter bosek. I quarter-wavolength matrhing scetion of trans-mitting-type $\overline{\text { ontoh }}$ - Amphenol Twin-Lead hangs in a loep boween the driven element and the slip-ring contacts.

"Plumber's-Delight" Construction

The lightest beam to buidd is the su-called "plumber's delight ${ }^{\circ}$ atl array constructod entirely of metal, with no insulating members betwern the clements and the supporting structure. Suggested ronstructional details are shown in Figs. 10-10:, 10-106, 10-107, 10-10x and 10-109.

The boom can be built of two lengthe of :3-inch diametor 2tis dural tubing of 0.07e-inch wall

The erossarms arr $3 \times 3 \times$ twolve feet long, bolted to the boom with carriage bolts.

The umbrella guys should have turnbuckles in them, and the guys are fast oned to the center support after the beam has been permanently locked in its horizontal position. With the turnbuckles properly adjusted, there will be no sag in the boom, the elements will be paralkel and neat, and weaving in the wind will be eliminated.

The dements are $13 / 8$ and $11 /$-inch diameter duralumin tub)ing, supported by 1 g-inch standoff insulators. IIose elamps are used to hold the elements on the insulators. Final adjustment of elcment lengt his is possible through "hairpin" loops. The tower for the beam shown in Fig. 10-10:3 was a Sears-Robback windmill

Fig. 10.105 - 'Ihe boom is made of two 10 -foot lengths of dural tubing slipped over a 3 -foot oak block and held in place with 2 -inch wood screws. Guy wires from the center add strength to the lumm strmeture.

Fig. 10-766 - The center clement seetion is held in the boom with a $1 / 4: 28$ machine serew, nut and lowk washer. The guy wire attaches to the head of the bolt.
is bolted to the top surface of the oak block, and a single guy wirn is run to each end of the boom. An cegg insulator and a turnbuckle are placed in each guy. The turnbuckles should be tightened until there is no sag in the boom when it is supported at the center, and then satet y-wired. Finally the center bloek should be given a good coat of paint or varnish.

The elements can be made of three 12-foot lengths of dural tubing, the two outside lenge hs telescoping inside the center section. The ends of the center section should be slotted for a distance of about t inches with a hark saw, but it is advisable to do the slotting after the center sections have beren assembled on the boom. The parasitic-element center sections are fastened to the boom with $1 / 4$-inch bolts, as shown in Fig. 10-10ti, while the driven dement is secured in a cradle made of half sections of iron pipe wolded toget her, as shown in Fig. 10-107. The cradle is bolted to the hoom with three $1 / 4$-inch bolts, and the driven element is held fast with two bolts or with adjustable aireraft-tubing clamps.

The ferelline for the antenna ran be any babaned line, of from 200 to ti00 ohms imperi-

Fig. 10.107 - The damp for the driven alement is made by splitting 1 -fort lengths of iron pipe and welding them as showin.
ance, and it is most conveniontly coupled through a "T"-match. This "T"-match assembly can be made from two 4-foot longithe of dural tuhing joined together by a piece of broomstick, as shown in lig. 10-109. The "T" is connerted to the antenna by two clamps fashioned of 1-inch-wide brass strip.

A convenient method for supporting the boom atop the pipe used to rotate the heam is shown in Fig. 10-10s, A "U"-rhamel into which the boom will fit is welded to the end of the pipe. Holes are drilled in the side of the channel corresponding to holes in the boom. The boom is hoisted up and positioned between the two flanges and a bolt run through the flanges and the boom. The boom ean then be swung into a horizontal position and the second bolt put in place.

Feeder Connections

For beams that rotate only 180 degrees, it is relatively simple to bring off feeders by making a short section of the feeder, just where it leaves the rotating member, of flexible wire. buough slack should be left so that there is no danger of breaking or twisting. Stops should be placed on the rotating shaft of the antenna so that it will be impossible for the feeders to "wind up." 'This method also can be used with antennas that rotate the full 3 tio degrees, but again a stop is neecesary to avoid jamming the feeders.

For continuous rotation, the sliding contact is simple and. when properly built, quite prace

Fís. 10.108 - The monnting plate i- made from a length of " U^{*} echammel iron cut ame drilled as shown. 'The hoom is raiseal vertieally mentil mes set of boht holeris in line and a bolt is sipped through. The tenem is then swong into its horizontal position and the other bolt is put in place.
ticable. Fig. 10-110 shows two methods of making sliding contacts. The chief points to keep in mind are that the contaet surfares should be wide enough to take care of wohble in the rotating shaft, and that the contart surfaces should be kept clean. Spring contacts are esserntial, and an "umbrella" or other scheme for keeping rain off the contacts is a desirable addition. Sliding contacts preferably should be used with nonresonant open liness where the chararteristic impedance is of the order of 500 to 600 ohms, so that the line current is low.

The prossibility of poor connertions in sliding contacts can be avoided by using inductive coupling at the antemna, with one coil rotating on the anterna and the other fixed in position, the two roils being arranged so that the coupling does not change when the antemna is rotated. Such an arrangomont is shown in Fig. 10-111, adapled to an antenna system in which the pole

Fig. IO. 100 - Details of the "F". - matoh assembly.

Fig. 10.110 - Itloas in diding montacts for rotatable antenna feeder
 care of any wohble in the rotating mast or driving shaft.
mount, convenient to use, and require lit tle or no maintenance. However, to many the cost of such units puts them out of reach, and a homemade unit must be considered. Generally speaking, lightweight units are hotter because they reduce the load on the mast or tower.

The speed of rotation should not be too great - one or two r.p.m. is about right. This requires a considerable gear reduction from the usual 1750r.p.m. speed of small induction motors; a large reduction is atvantageous beoanse the goar train will prevent the beam from turning in weather-vane fashion in a wind. The ordinary
it self rotates. A quarter-wate forder system is connereded to a tuned piek-up cireuit whose induetanere is eoupled to a link. In the drawing, the link eoil connects to a twisted-pair transmission linc, but any type of line such ats floxible eosxial cable can be used. The cirmit would be adjusted in the same way as any linkcoupled cirenit, atal the number of turns in the link should be variod to give proper loading on the transmitter. The rotating coupling eircuit of course tumes to the transmitting frequener: The whole thing is equivatent to a link-coupled anterna tumer mounted on the pold, using at parallel-tuned tank at the end of a quartorwave line to center-feed the anterna. 'To maintain constant coupling, the two coils should be quile rigid and the pole should rotate without wobble. The two coils might be made a part of the upper bearing assembly holding the rotating pole in position.

Other variations of the inductive-coupled systrom ratl be worked out. The tuned circuit might, for instance, be paced at the ond of a 600 -ohm line, and a one-turn link used to conple directly to the center of the antennat, if the construction of the rotary member permits. In this case the coupling can be varied by changing the $/$. C ratio in the tuned circuit. For mechanial strongh the coupling coils proforably should be made of $1 / \frac{1}{-i n d}$ beopmer tubing, woll hraced with insulating strips to keep them rigid.

Rotation

It is conveniont to usie a motor to rotate the beam, but it is not always neeressary, expeceally if a rope-and-pulley arrangement can bebrought into the operating room. If the pole can bo mounted near a window in the operating room, hand rotation of the beam will work out quite well, as has been proven by many amateur installations.

If the use of at rope and pulleys is impractifable, motor drive is about the only alternat tive. There are several eomphete motor-driven rotators on the market, and the are easy to
structure does not require a great deal of power for rotation at slow speed, and a $1 / 8$-hp. notor will be ample. Even small series motors of the sewing-machine type will develop enough power to turn a 28 -Me. beam at slow speed. If passible, a reversible motor should be used so that it will not be nocessary to go through nearly 360 degrees to bring the beam hatek to a divertion only slighty different, but in the opposite direction of rotation, to the direation to which it may be pointed at the momont. In cases where the pole is stationary and only. the supporting framework rotates, it will be neressatry to monnt the motor and wear train in a housing on or marar the top of the pole. If the pole rotates, the motor can be instathed in a

 sy-tom eompling which eliminatos stiding rontarts. 'The low-impedanere line is link-obupled thathed lines.
more accessible location (see Fig. 10-103).
Parts from junked automobiles often provide gear trains and bearings for rotating the antenna. Rear axles, in particular, can readily be adapted to the purpose. Driving motors and gear housings will stand the weather better if given a coat of aluminum paint followed by wo coats of enamel and a coat of glyptal varnish. Fiven commereial units will last longer if treated with glyptal varnish. Be sure, of course. that the surfaces are clean and free from grease before painting them. Grease can be removed by brushing it with kerosene and then squirting the surface with a solid stream of water. The work can then be wiped dry with a rag.

If hand rotation of the beam is used, or if the rotating motor drives the beam through a pulley system, bronze cable or chain drive is preferable to rope. However, if you must use rope, be sure to soak it overnight in pure linseed oil and then let it dry for several days before permanent installation.

The power and control leads to the rotator should be run in electrical conduit or in lead covering, and the metal should be grounded. Often r.f. appearing in power leads can be roduced by suitable filtering, but running wires in conduit is generally easier and more satisfactory. Any r.f. in the wiring can sometimes be responsible for feed-back in a 'phone transmitter. "Hash" from the motor is also reduced by shielding the wires, but it is often necessary to install a small filter at the motor to redure this source of interference. Motor noise appearing in the receiver is a nuisance, since it is usual practice to determine the proper direction for the beam by rotating it white listening to the station it is desired to work and setting the antenna at the point that gives maximum signal strength.

The outside electrical connections should be soldered, bound with rubber tape followed by regular friction tape, and then given a eoat of glyptal varnish.

About V.H.F.

In the days when D. $\begin{gathered}\text { atetivily first bur- }\end{gathered}$ geoned on our lower frequencies the assignments above 30 Wre were not too highly regarded. It was assumed that propagation on these frequencies was limited to distances only slighty beyond the visual horizon, and thas the bands allocated to amateurs in this region were used principally in areas where large roncentrations of population brought hundreds of workers within local range of one another. In the early thirties activity boomed on if . Ac. in the larger cities of the United staters, but there wero few stations elsewhere. Use of frequencies higher than 60 Mc. was confined to a fow experimentally-inclined amateurs hore and there.

In 1934, '35 and '36, new types of propagation were discovered by amateurs, and the opportunities for v.h.f. ISX so brought to light cansed a tremendous growth in activity, particularly in areas where it had not previously existed. L'p to this time, practically all v.h.i. work had been done with the simplest sort of gean, mainly modulated-oseillator transmittors and superregencrative receivers; but when our available space brgan to fill with DX signals it became ohvious that, if we were to realize anything like the possibilities inherent in this type of work, we must have improved terhniques, whereby more stations could be aroommodated in a given area. Crystal-contwolled transmitters and superhoterodyne roadvers. promitting utilization of the sto-Mc. hathd on a sate comparable wilh that obtaining on lower frequencics, became the order of
the day, and by the end of l938 stabilization of transmitters used on all frequencies up to (60) Mr, berame mandatory.

With the impetus of improved techniques. operating ranges on 56 Mc. grew by leaps and bounds. Meanwhile the use of the simplest form of equipment was transferred to the nex higher band, then 112 Me.; and this band, in turn, took over the burten of heavy urban oecupancy formerly carried by the j-meter band. Soon our principal cities were teeming with 112-Mc. activity, and before long it was found that this band, too, had much of interest to ofter. Even more than had been the case on 56 Mc., it was found that weather conditions had a profound effect on 112-Mke. propagation. and before the close-down of amateur activit y, at the entry of our country into the war, the record for 112-. We, work had passed the 300 mile mark. There was a smattering of activity on the still higher frequencies of $22 t$ and 400 Me. as well.

In the postwar yors the value of the veryhigh frequencies has been amply demonstrated. World-wide communication has been acoomplished on j 0 Mc . ; two-way work on 144 Mc . has been extemded to more than 800 miles; and pioneering effort on 220 and 420 Mr . is estathlishing these hands as fields of great interest for the experimentally-inclined amateur. The v.h.f. worker need no longer apologize for his interests. His frequencios are among the most highly prized in the entire speetrum, and his is now regarded as one of the major fields of amatent endeavor.

Propagation Phenomena

A thorough understanding of the bavie prineiples of wave propagation, outlimed in Chapter Four, is a most useful tool for the v.h.f. worker. Much of the ploasure and satisfaction to be derived from v.h.f. endeavor lies in making the best possible use of propagation vagaries resulting from natural phenomena. Contrary to the impression of many new comers to the fichl, a working knowledge of v.h.f. propagation is not difficult of attainment. Below are listed the principal ways by which v.h.f. waves may be propagated over abnormal distances.

F_{2}-Layer Reflection

Tho "normal" contacts made on 28 Mre and lower frequencios are the result of reflection of
the transmitted wave by the F_{2} layer, the ionization density of which varies with molar activity, the highest frequencies being refleceded at the prak of the 11-vear solar cycle. The maximum usable frequency (m.u.f.) for F_{2} reflection also rises and falls with other welldefined cycles, including daily, monthly, and seasonal variations, all related to conditions on the sun and its position with respect to the earth.

At the low point of the 11-year cycle, such as the priod we wereentoring at the outbrak of war, the m.n.f. may rearh 28 Mc. only during a short period each spring and fall, whereas it may go to (60) Mc. or higher at the peak of the cycle. The fall of 1946 sav the first authentic

Fig. 11-1 - The primeipal means ly which v.h.f, waves may be raturmed toearth. 'lhe Fa layer, highest of the hnown ionospherie layers, is rapable of reflecting $\overline{30}$. Mr. signals during the preriod around the perak of the ll-year solar evele, and nay support commomieation over world-wide distaness. Sporadic ionization of the E layer produces "short-skip" eontants at mediom distances, It is a fairly frequent ocenrence regardless of the solar evele, but is most common in May through Ingmat. Refraction of v.h.f. waves also takes place at air-mas boumaries in the lower atmosphere, making pasible recoption of signalm at diatances up to 300 miles or more withont a skip zone,
instances of long-distance 50-Mc, work be this medium, and it is probable that $F_{2} D N$ will be workable on 50 Mc . until about 1950 . In the morthern latitudes there are peaks of m.u.f. rach spring and fall, with a low preriod during the summer and a slight dropping-off during the midwinter months. At or near the Equator combitions are more or less constant at all seasons.

Fortunately the F_{2} m.n.f. is quite readily determined by observation, and means are available whereby it may be estimated quite accurately for any path at any time. It is predictable for months in advance, ${ }^{\text {b }}$ enabling the v.h.f. worker to arrange test sehedules with distant stations at propitious times. As there are numerous signals, both harmonics and fundamental transmissions, on the air in the range hetween 28 and 50 Mc., it is possible for an observer to determine the approximate m.u.f. by careful listening in this range. A series of daty ohservations will serve to show if the m.u.f. is rising or falling from day to day, and once the para for a given month is determined it can be assumed that the peak for the following month will oceur about 27 days later, this cycle coinciding with the turning of the sun on its axis. The working range, via F_{2} skip, will be roughly comparable to that on 28 Me., though the minimum distance is somewhat longer. Two-way work on 50 Mc . by

[^3]means of reflection from the F_{2} laver has been accomplished over distances ranging from 2200 to 10,500 miles. The maximum frequenery for F_{2} reflection is believed to be in the vicinity of 70 Mc .

Sporadic-E Skip

Patchy concontrations of ionization in the E-laver region are often responsible for reflection of signals on 28 and 50 Mc. This is the popular "short skip" that provides fine contacts on both bands in the range between 400 and 1300 miles. It is most common in May, Jone and July, during the early evening hours, but it may oecur at any time or season. Since it is largely unpredictable, at our present state of knowledge, sporadic- E skip is of high "surprise value." Multiple-hop effects may appear. when ionization develops simultaneously over large areas, making possible work over distances of more than 2500 miles. The known limit of sporatic- E skip is about 100 Mc., but rare cases of $144-$ Mc. reception at 1000 to 1200 miles indieate that E-layer reflection may be possible in that band.

Aurora Effect

Low-frequency communication is occasionally wiped out by absorption of these frequencies in the ionosphere, when ionospherie storms, associated with variations in the earth's magnetic field, occur. During such disturbances, however, $50-\mathrm{M}$ e. signals may be reflected back to earth, making communication posibible over distances not normally workable on this band. Magnetic storms may be accompanied by an aurora-boralis display, if the
disturbance oceurs at night and visibility is good. When the aurora is confined to the northern sky, aming a directional array at the aturoral curtain will bring in $50-$ Mr. signals strongest, regardless of the true direction to the transmitting station, When the display is widesprad there may be only a slight improvement noted when the array is amed north. The hatter condition is often notiend duning the period around the pak of the 11 yoar eycle, when solar activity is spread woll over the sun's surfaere, instead of being romenentrated in the region near the solar equator.

- hurora-rofleeted signals are chatratorized by a rapid fluteor, which lemds a "dribbling" sound to 2 S - Me. carriers and may render modulation on ab-Me signals completely unreadable. The only satisfactory meathe of communication then beromes straight e.w. The effere thay be notierable on signals from any distance other than purely local, and stations up to about 500 miles in any direetion may be worked at the peak of the disturbance. L'nlike the two methods of propagation previousty deseribed, aurora efferet cxhibits no skip zome. It has been obsorved mainly on frequenejos up to about 60 Mr., though there have beon several instaness when it has shown up on 14t Mr. The highest frequeney for aurora reflecetion is not yot kuown.

Reflections from Meteor Trails

Prohathy the least-known means of v.h.f. wave propagation is that resulting from the pasatge of moteors across the signal path. Reflections from the ionized meteor trails may be moted as a doppler-efteet whistlo on the carrier of a signal already being reedived, or they may caluse bursts of reception from stations not normally receivable, Sudeden large increases in strength of mormally-woak signals are another manifestation of thise colfect. Ordinarily such reflections are of lithe value in extending communteation ranges. sine the inorases in signal strength are of short duration, but meteor showers of comsiderabhe magnitude and duration may provide flut tery $50-$ Mc.
signals from distances up to 1000 miles or more, Nignals so reflected have a combination of the characteristics of aturora and sporadic- E skip.

Tropospheric Bending

Refraction of radio waves takes place whenever a change in refractive index is encountered. This maty oceur at one of the jonized lavers of the ionosphere, as mentioned above, or it may exist at the boundary area between two different types of air masses, in the region close to the earth's surface. A Warm, monat air mass from wer the (iult of Mexieo, for instance, may overrun a cold, dry air mass which may have had its origin in northern Canada. Fach temds to retain its original characteristies for considerable periods of time, and there may be a well-defined boundaty betworn the two for as much as several days. When such an airmass boundary exists near the midpoint betweon two v.h.f. stations separated by 30 to 300 miles or more, a eonsiderable degree of relbaction takes place, and signals run high above the average value. Linder ideal conditions thore may be almost no attonuation, and signals from far beyond the visual horizon will eome through with strength comparable to that of local stations.

Many fartoms ot her than air-mass movement of a continental chatmeter may provide incrased v.h.f. operating rathge, The convection that takes phato along wur coastal arean in warm woather is a good example. The rapid cooling of the earth atter a hot day in summer, with the air alof rooling more slowly, is another, producing a rise in signal strength in the period aromol sumbown. The early-morning hours, when the sun heats the air aloft, before the temperature of the earth's surface begins its daily rise, may frequently be the best hours of the day for exterded v.h.f. range, partieularly in claar, calm weather. when the baroneter is high and the humidity low.

Any weathor condition that produres a pronounced boundary between air masses of different temperature and humidity character-

Fig. II-2-Illustrating a typiral wrather semuphe, with aswiated variations in v.h.f. propagation, At the right is a coll air masa (fair weather. high or rising hammeter. monderate summer temperaturex), Approaching thiw from the left is a warm moint air masu, whibh overruns the cold air at the point of contart, ereating at lemprature inver. sion and con-iederable bending of vh.f. wave. At the left, in the - torm arra, the inversion is dissipated and signals are weah and subjeet to faling. Harmmetor iv low or falling at this moint.

V.H.F. Receivers

In its basic primiples, modern roceiving equipment for 20,144 and even 220 Ma. differs very little from that used on lower amaterur frequencies. Pederal regulations impose identical restrictions on all frequencies below it Mc. as to stability of transmitted signals, and experience has shown that only through the use of stabilized transmitters and selective reweivers can the find possibilities of 141 and 220
 tion, at least, receivers for the v .h.f. hands may have the same selectivity as those used for lower frequencies.

This order of selectivity is not only possible but desirable, sinere it permits a considerable increase in the number of stations that can work in a band without harmful interference. High selectivity also adds greatly in improving the signal-to-noise ratio, both as to noise originating in the remeiver itsolf and its response to external nows. The effective sensitivity of a reociver having "commanications" soleotivity ean be made considerably higher than is possible with monselective receivers. First on the old $56-\mathrm{Mc}$. band in the late '30s, then on $14 t$ Mr, in the early part of the postwar period, and currently on 220 Me ., the change to selective superheterodynes for wee at the more progressive v.h.f. stations marked the beginning of real extensions of the effective operating radius of v.h.f. stations,
Superregenerative readivers, one the most popular type for v.h.f. work, are now used mainly for portable operation, or for other applieations where maximum selectivity and sensitivity are not required. Its lack of these essential features, its inability to provide satisfactory recoption of $\mathrm{F} \boldsymbol{l}$ signals, and its tombency to radiate a strong interforing signal, rule the superregenerator out as a home-station receiver in areas where there is appremiable activity on the v.h.f. bands.

Superheterodynes for V.H.F.

Superheterodynes for 50 Me and higher should have fathy-high intermediate frequenries to reduce both image response and oseillator "pulling." For example, a differenere between signal and image frequencies of 900 kr . (the difference when the i.i. is $\mathbf{5} 0 \mathrm{kc}$.) is a very small percentage of the signal frequency: romsequently, the response of the r.f. circuit: to the image frequeney is nearly as great as to the desired frequency. To obtain disrrimination agamest the image equal to that obtamable at
3.5 Me. would require an i.f. 16 times as high, or about 7 Mc . However, the \& of tuned circuits is less in the v.h.f. range than it is at lower frequencies. chiefly because the tube loading is considerably greater, and thus still higher intermediate frequencies are desirable. A practical compromise is reached at about 10 Me., and the standard i.f. for converters and commorrial v.h.f. recoivers is 10.7 Mc .
To ohtain the desired degree of selectivity with a reanonable number of i.f. stages, the doubloreonversion principle is often employed. A 10-Mr. intermediate frequenery for example. is changed 10 an i.f. of 1600 or $4 \overline{5}$) ke . by adding a surond mixer-oscillator combination.
Most v.h.f. receivers are of this category gemeral pratice being to use a conventional communications receiver to handle the i.f. output of a relatively-simple converter. Even a broadeast recoiver which hats a "short-wave band" may be used as an i.f. amplifier in this manmer with good results. Only crystal-controlled or otherwise stabilized signals can be reacived with such combinations, but sinee nearly all v.h.f. amateur stations now employ stabilized transmitters this is not likely to be troublesome.

When a high-selectivity i.f. is employed in v.h.f. reception, the stability of the oscillator is a primary problem. and care must be taken to be sure that the converter oseillator is both merhanically and electrically stable. One satisfactory solution to this problem is the use of a crystal-controlled oscillator and frequenery multiplier to supply the injertion voltage, the method used in the $144-$ Mc. converter shown in Figs. 12-10-12-12.

Whare recerption of wide-hand FM or unstable signats of the modulated-oscillator type is desired, a converter may be used ahead of an i.f. of the type used for F. Wh broadeast receplion, or with a complete recoriver of the FM broadeast variety. A superrgenerative detector operating at the intermediate frequency, with or without additional i.i, amplifier stages, also may serve as an i.f. and detector system for reception of wide-hand signals. By using a high i.f. (10 to 30 Me. or so) and by resistive loading of the i.f, transformers, almost any desired degree of bandwidth can be secured, providing good voice quality on all but the most unstable signals. Any of these mothods may be used for reception in the u.h.f. and microwave regions, where stabilized batnmission is rextremely difficult at the curment sater of the art.

A Two-Tube Converter for 50 Mc .

The eonvertor shown in Figs. 12-1-12-4 is designed to provide good performaner on 50 Me, with a minimum of compliation, It amploys a $0 . \mathrm{N}^{5} 5$ tuned r.f. stage and a dualtriode mixer-oscillator using a 12 AT'7. It has its own built-in power supply. To reduce tracking problems and simplify const ruction, only the oseillator is tuned by means of the vernier dial. The r.f. amplifier grid eireuit and the mixer grid circuit, neither of whim is aritical in its tuning, are ganged together, and are adjusted by means of the knob at the left of the vernier dial, as seen in fig. 12-1. In actual operation this controd maty be peaked at about ol Mc. and the converter tuned over the lower hadf of the band or more before any readjust ment of the knob is reguired.

Electrical and Mechanical Details

One suction of the 12.AT7 is used as a trionde oweillator, employing a Colpitts cirouit. It povers a range of sis megacyeless in order to permit tuning well below the low end of the bo- Me. band, a useful feat ure whenone is interested in surarohing these frequencies for signs of 1 N. . 3 , resetting ('s and f^{\prime} to at higher rapacitance the tuning range mas be extended down to about tis Me.. at the siterifier of the top three megacoves of the 6-meter band.

The oscillator is tuned with at standard splitstator variable capacitor, (${ }_{3}$, the rotor of which is grounded. l'arallel catpacitancer, for itereasodstability, is supplied by the smatl air padders, ("s, ("s. The owallator tank eroil, L_{5}. is attached diredty to the stator terminals of the tuning condenser, and its (enter-tap) provides three-point suspension, resistor R_{s} being attached to a feed-through bushing directly below it. To prevent microphonies resulting from vibration, the turns of the moll are remonted together at four points.

The 6AN゙ら and 12. AT' 7 tubes are mounted in
an inverted powition, with their sockets above the ehassis, in order to provide the shortest possible leads. The socket for the 6.1 k g has the baflle plate between the two tuned cireuits passing across the middle of the socket in such a way that lins i through t are on the anclosed side, while the others, which are eoneerned with the output circuits, are on the side toward the pancl. The shiche is made of sheet copper and is soldered to the revindrical shield at the ernter of the bid Kis socket. A high value of /. C' ratio is matutaned in the ref. and miser stages hey the elimination of the paralled paded condensers which would have been required for tracking, if the oseillator had been tuned from the same shaft.

The intermediate frequeney may be any convenient value, and the i.f. transformer is made phag-in so that the frequency may be - hanged over a wide range if desired. With the values of inductance and capacitanee given the i.f. can bo varied from about 7 to 11 Me. Originally 10.7 Me . the RMA standard i.t. for converters, was tried, but some image trouble was experiened from strong loeal 10 -meter stations, so the i.f. transformer was retuned to 7.4 Me. Note the position of C_{6}, the mires trimmer visible in the top-view photograph. It was found neeessary to mount this trimmer diredty on the 12.AT7 terminads, as the mixer oseillated when the trimmer was connected across the coil terminals below the chassis.
some precations may also be required to prevent useilation in the r.f. stage. Note the manner in which the serven and cathode circuits of the 6 AKj are by-passed. Referring to the schematic diagram, Fig. 12-2, it may be seen that both cathode terminats of the ($\mathrm{A} \mathrm{N}_{\mathrm{H}} \mathrm{g}$ are by-passed, the bias resistor, R_{1}, and its bypass, ('-, being on the input side, while ('s is on the opposite side of the shiedd. Originally all the cathode connections were made to l'in 7 ,

Fia. 12.1 - A twotube converter for 61 Me. (Onls the oseillator is tumed by the vernier dial, simplifying tracking problems. Miver and rif. cirruita arr adjusted by the knob at the left. The unit has a self-contained regulated power suppily.

 with one ntator plate remeved .
(: $1 . \mathrm{B}-\mu \mu \mathrm{fl}$.-per-acetion aplit stator (Cardwell f:K. 15-(11)).

 positiens).

($\mathrm{C}_{10}, \mathrm{C}_{12}$ - 1010$)_{-\mu \mu \mathrm{fl} \text {. errantio. }}$

$\mathrm{K}_{1}-150$ oltms. $1 / 2$ wat 1 .

K: $\boldsymbol{2} \boldsymbol{2}(\mathrm{K})$ ohms.
R_{4} - 1.0 morahim.
K_{m} — J (MHI ohms, 10 watts.
R:s - 2., 1000 ohms, 10 watt .
and the sereen was bepassed to ground. With this arrangement the r.f. stage oweillated, so the capariturs were rearranged so that the seroen was bepassed (hy (a) to the rathode. Pin 7, and both cathode pins by-passed suparately. Even this way the stage maty oweillate when no antenna is romeeted, but in homat operation it is completely stable.

Adjustments

Because of the separate tuning of the oseillator stage, alignment of the converter presents no great problem. First the oseillator should be set to cover the dexired range, in this case 40.6 to 46.6 Me., for a tuning range of 48 to 5t Me. with an i.f. of 7.4 Mc. The i.f. transformer may then be set to the proper point, by moving the slug or adjusting C_{6}. A signal generator is convenient, but the adjustment ran be made by listening for a noise peak, if no generator is available.

Next the flexible coupling between C_{1} and ('2 should be disengaged so that the r.f. and mixer eircuits can be adjusted separately. First , an antenna or signal source should be eoupled to the mixer grid eoil, L_{4}, and C'g peaked for
 L. 2 .
1.: - 10 turns Nor, 16 anamel, $1 / 2$-ineh inside diam., $11 / 8$ ineher fong.
L.as - is turns No. Sis enamel, interwoumad in cold rond of L_{4}.
I.t-9 turns Vor. 16 enamel, $1 / 2$-inch inaide diam.. '. inch long.
$\mathrm{L}_{5}-11$ thris No. 12 enante emoter-tapped, j^{3}, incher long. Cement turn- tomethar - see tevt.

I. - 4 turns No. 21 d.s.c. close-womil wer cold end of I. 6 with one lager of in-ulating tape betworn windings.
Is - Mideret filter chohe.
I_{1} - (\%raxial finting (Jomes. Sol).
\therefore - Sp.s.l. tokgle witeh.

Fig. 12.3 - 'Mop view of the 50 . Me. converter, showing placement of the principal r.f. components. The shielded plug-in coil near the middle of the chassis is the i,f. output transformer. The tulue at the upper right of the photo is the voltage regulator.

maximum signal (or noise) near the middle of the band. Then eonnect the signal souree to the antenna terminals and adjust C_{1} in the same manner. If the two grid coils are the proper size the settings of C_{1} and C_{2} should come out the same. If they do not, the sparing of the turns in L_{2} should be adjusted so that the set ting of C_{1} mat ches that of C_{2}.

If the physideal arrangement of the convorter components is different from that shown in the photographs, it maty he nocessary to add a small amount of ascillator injection for best performance. This may be done by connecting a short piece of insulated wire to the plate terminal of the oscillator. Pin 1 , and running it Wer to the grid terminal of the mixar, Pin 7 . Bend the wire near to the mixer terminal, and adjust its position to give the desired degree of injeetion. The wire may then be fastened in phaee with a drop of household eement. Oscillator injection may also be adjusted by using more capacity eoupling than is meeded, and then inereasing the value of the aseillator plate dropping resistor until the desired performance is attained. The optimum degree of coupling is the largest value that can be used without resulting in a change in oscillator frequency when the mixer circuit is tuned.

Reducing Spurious Responses

In locations where thare is broadeasting in the high Fill hath, so-Me. reocivers and convorters may experiener severe interfernore resulting from these high-hand signals beating with the second harmonic of the converter oscillator. The selectivity of the r.f. eireuits is not suffieiontly high at these frequeneres to climinate the unwanted signals, but the interference may be reduced by other means,

First, the output of the converter oscillator should be held to the minimum required to give satisfactory injection. In the case of the converter described above this may be accomplished by making the value of R_{7} as high as possible, while still retaining satisfactory performance. This can best be wecked by chang-
ing the resistor while listening to a very wak signal.

Second, if the above method does not cure the interference, a 100 -Me. trap may be inserted in series with the antenna pick-up coil, L_{1}. The trap may be made with an adjustable trimmer, or it may use a small fixed eapacitor, in which case adjustment is atcomplished by spreading or stueezing the turns.

If several interforing signals are prosent the trap should be adjusted on the strongest. Tume the sigual it with the trap out of the eireuit. then insert and tume the trap for maximum rejeetion of the interference. The sharpuess of tuning of the trap (and its ability to reject interference) will depend on the L / C ratio. If only one st rong signal must be eliminated, a high-C circuit should be used. If there are several, distributed over a considerable frequency range, more inductance and lower catpatitance will provide a broder trap response,

 interferener from high-hand FM signals.
at the expense of some rejection at any one frequeney.

A usable average value is a coil of 7 turns of No. 14 to 18 wire, ${ }^{1}$-inch diameter, spaced about the diameter of the wire. This may be mounted on a mica trimmer ($3-30 \mu \mu \mathrm{fd}$) or on a small $i-\mu \mu \mathrm{fi}$. ceramic condenser.

A Low-Noise Converter for 144 Mc.

The 2-meter converter shown in Figs. 12-6 to 12-9 was designed for superior weak-signal performance, yet it is relatively simple and inexpensive to build. Its r.f. section has a low noise figure, and special attention has been paid to oscillator design, for smooth tuning and improved stability. Its built-in i.f. amplifier stage, the gain of which is adjustable, permits use of the converter with receivers of widely-different performance characteristies.

Two r.f. stages are used, employing the highly-effective cascode eircuit. The first tube is a $6 . \mathrm{AK} 5$ connected as a triode, inductively neutralized. This feeds a 6.16 grounded-grid stage, in which one triode section is the amplifier, and all other tube elements are grounded. The mixer and oscillator are 6.AB4 triodes. These functions could be combined in a single 12.1 T7 if dosired, but separate triodes were used to permit more flexible adjust ment of the oscillator injection. The mixer is followed by a 6.A(i5 i.f. amplitier, gain controlled by means of a potentiometer in its cathode eircuit. The intermodiate froquency is 7.4 Me, selected because of its availability in most communications recivers, but 10.7 Mc ., or any other desirable frequeney, may be used.

The Oscillator

A high degree of receiver selectivity can be utilized affertively at 14.4 Me. only if a stable and smooth-tuning oscillator is used in the converter. Mechanical vibration is reduced in this moded through the use of a tank inductance made of $1 / 8$-inch copper tubing, soldered directly to the stators of the tuning condenser. The latter is a typo designed specifically for v.h.f. service. It has ball bearings at both ends of its rotor and coramic and plates of heavy stock. Brackets for mounting the oscillator tube socket are an integral part of the condenser assembly. A smonth-operating dial assembly is madr by substituting a large knob (National HRK or HRT) for the small one
normally supplied with the National type K dial.

The oscillator circuit is one which provides constant output over the necessary tuning range, and the stage is run at low input, with light loading. The quality of the e.w. note thus obtained is adequate for reception of 2 -meter c.w. signals, and the absence of hum modulation makes for good weak-signal reception of modulated signals. Oscillator injection is controlled by means of the link loops, L_{10} and L_{11}.

The R.F. and I.F. Stages

Though the converter has more tubes than the simplest units, it is not difficult to buide or adjust. All eircuits cxecet the oscillator and the r.f. input circuit are slug-tuned, and only the oscillator is varied in tuning ateross the band. All stages may be praked readily without a signal generator. The r.f. input circuit, L_{2}, is condenser-tuned, and it is important that a high- Q coil be used for best performance. The loading effect of the antema is such that r_{1} may be set for maximum signal at 1.46 Mc ., and little difference in response will be noted at either end of the band.

The mixer and i.f. amplifier plate coils, L_{6} and $L_{i}-8$, must be shiedded, and coaxial line should be used for coupling the converter to the receiver, otherwise there may be anmoring pick-up of signals at the intermediate frequency.

Construction

The position of components is not critical, and other arrangements may be desirable if the parts used are not duplicates of the original. In this instance an "I "'shaped layout is used, with the antenna terminals and r.f. stage at the right rear corner of the chassis and the socond r.f., mixer, and i.f. amplitier stages rumning along the back and left sides in that order. The oseillator assembly is at the right

Fig. 12.6-The raseole eonverter for 111 Me. The dial ralibration was made by drawing on heavy white paper, which is then fastened to the dial surface with rubber cement.

Fig. 12. - Schematid diagram of the - -theter rascode converter,
(.t $-8 . \mu \mu \mathrm{fd}$, variable (Johnsion 160).10.1).
$C_{2} C_{3}, C_{;}-170-\mu \mu \mathrm{fd}$. hutton-type hy-pas.
(i4, C6. C_{8}, (:13, (:18 - $17-\mu \mu \mathrm{fd}$, ceramic.
($: 170-\mu \mu \mathrm{fd}$. mira.
\mathbf{I} - $\mathbf{I} 00-\mu_{\mu} \mathrm{fd}$. ceramis.
 inside the i.f. shieles.

C.in - 6.7. $\cdot \mu \mu \mathrm{ffi}$. stator-to-stator variable (Vational (IIF-I-1)
(18 - $3-30-\mu \mu \mathrm{fd}$, air padder (Bilver 619).
Rr. R:, R R_{4} - I IK ohms. (All resistors $1 / 2$-watt unless otherwise specified.)
$R_{2}, R_{4}, R_{6}, R_{12}-1000$ ohms.
$\mathbf{R}_{5}-0.68 \mathrm{mrgohm}$
13:-1 mexohm.
R_{8} - 220 ohms.
$\mathrm{R}_{9}-2000$-ohm wire-wound potentiometer.
$\mathrm{R}_{10}-22,000$ ohms, 1 watt.
$11_{11}-33,000$ ohme.
from eorner. It should be plated so that the flexible eoupling does not touch the front paned. The rhassis is aluminum, 7 hy 7 by 2 inches, and the sheed aluminum paned measures $53 / 4$ by 8 inches. Note that aluminum braces are used to provent panel vibration. These were found necessary for best oscillator stability.

The method of coupling the output of the useillator to the mixer may be seen in the bottom and rear views, Figs, 12-8 and 12-9. A roupling loop is mounted on the two outside. lugs of a 3 -lug tie-point strip diructly below the oscillator inductance. This loop is connected through 75 -ohm Twin-Lad to a loop around the r.f. plate eoil, L_{5}. The conter lug on the strip is used for mounting the oseillator decoupling resistor, R_{14}, which also sorves as a third support point for the oweillator tank inductance. The size of the eoupling loops, L_{20} and L_{11}, will depend on the amount of oscillator injertion needed, but the degree of coupling will be small. L_{10} is a semicircular loop of No. IS wire, $3 /$ inch across, about onehalf inch below L g. L_{11} is a rircular loop
R_{13} - 9500 ohmm, 10 watts.
$\mathrm{R}_{15}-15,000$ ohms.
I. 1 - 2 turns No. 18 enamel, 3 -inch diameter, between turne of L a.
$1,2-2$ turns Yo. 11 tinned, $3 / 4$-inch diameter. $1 / 8 \mathrm{inch}$ hetween turns.
Is - 10 turns No. 21 enamel on $1 / 4$-inch diameter slug. tuned form (CTC).
L4, $1 \%-3$ turns to. 2.1 enamel on $1 / 4-$ inch diameter slug-tuned form (C'PC). Winding $1 / 4$ inch tong.
Iff. I.: - Vo. 21 d.s.c. wire close-wound to fill winding - pave on National Xh.int form.
$L_{1 s}$ - j turne No. $2+$ d.s.c. over cold end of L_{7}.
L_{9} - Ilairpin - hhaped loop, $1 / 8$-inch copper tubing. $3 / 4$ inch wide. Total length before soldering: 112 inches, Fatends $11 / 8$ inches beyond tuning-condenser stators. (See Prig. 12.9.)
Lio, I, 11 - Ilairpin loops for moupling oscillator to mixer. Spe text and photographs.
J_{1} - Coasial connector.
eoncontric with L_{5}. It is visible in the lefthand corner of the bottom-view photograph, Fig. 12-8.

In mounting the oscillator tube socket the phate lug, pin No. 1, is sodered directly to the tuning-condenser stator. Pin No. 6 is conneeted to the other stator through the short length of the grid condenser, Cty. All other socket pins except the heater, No. 4, ari connected together and grounded.

Adjustment

The first step in placing the converter in service is to set the oscillator for the proper frequency range, 136.6 to 140.6 Me . for a 7.4-Mc. i.f. This may be done with a ealibrated absorption-type frequency meter, or by listening to the oscillator on a calibrated rereiver. Next the converter should be connected to the receiver with which it is to be used, and the i.f. adjustments (cores in L_{6} and L_{7}) peaked for maximum noise. Next the slugs in L_{4} and L_{5} should be peaked for maximum noise, rither tube noise or that from somme external source, such as an electric razor or

Fig. I2.8- Buttom view of the - -meler \quad-mberter.
a moise gemerator. This should be done with the converter set for approximately $1 / 4 \mathrm{~d}$ Ms. The r.f. input circuit may be peakerl on moise or a signal by adjusting ch, squerzing of spreading the tums of L_{2} until the optimum setting occurs near minimum caparity. This adjustment should be made with the antemat comnected.

Tuning of the slugs will be rather broad, so precise adjustment is not neeressary. The slug in the neutralizing coil, A an, may be set at approximately the midpoint of its travel, unless a noise generator is available, in which case it should be set for minimum noise figure. I noise generator will be helpful in determining the best position for L_{1} with resperet to L_{2} also, but if nome is available the eoupling
should be set some what tighter than that giving the maximum signal response.

The best position for the converter gain control will depend upon the sensitivity of the reeeiver with which the converter is to be used. With better-grade receivers it will bo possible 10 operate the gain cont mol well bew the maximum setting. The optimum will be the minimam at which the over-all gath is adequate. The gain control also siorves as a monsenient means of setting up the s-meter rading, if the receiver is so equipped.
(onpling betwern the oseillator and mixer is not reritieal. The tighter the roupling the mone the miver output, within aretain limits, bul when ath i.f. amplifier is hased the highest posxible mixer output is mot requmed. The best setting of the coupling lomp, L_{10}, is the minimum coupling required to give satisfactory response. Somewhat tighter couphing than the minimum required will have very little effeet on the over-all performaner. exeret to inevase the pulling of the oserillator frequency as the second r.f. plate circuit is tumed. Very tight coupling will have an advorso efferet on the signal-to-nuise ratio and uniformity of response arons the band.

A Simpler Version

If the buider desires the eonverter may be built in casy stages. In its simplest form it Would eonsist only of the two diABI stages, the mixer and oseillator. In this case the coil and condenser (ireuit, C1 L_{2}, would be subtstituted for the slug-tumed mixer cosil, L_{5}, and the i.f. output would be taken off from the mixer plate coil, L_{6}. The i.f. amplifier stage should be added next, as it is quite essential 10 satisfactory operation, The addition of the r.f. stages provides a furt her improvenemt, particularly in signatoto-noise ratio in reception of wata signtals.

Ther eomplete converter, as it is shown heres is the minimum that will provide performanee sufficientlygood th salisfy the diseriminating x.h.i. worker, but the matn who wishes to build something simplor as an start will be able to obtain reereption of atl hut the weakest signals with the twoar threetabe version.
foik. 12.4 - Kas view of the 2-meter com. serter. At the left side, near the panel, ithe weillator assembly. 'the r,f. stayes. miner. and i.f. amplifier are arranged in "t" furmation arrusn the back and right sides of the rhar-in. with the voltage-remulator tube ill the middle.

A Crystal-Controlled Converter for 144 Mc.

stability in the owillator is of umment importance in achioving satisfatory performance in a 2 -meter converter, particularly when a highly-selective communications recoiver is 10 hr used as the i.f. amplifiot. lien a smatl amount of drift, or the slightert mothanienal instability, will make comstant reatimatmant of the comberter 1 uning meresary. In addition it is diffieult, if not impussible, io sereure fresdom from hum modulation of incoming sigmals, when ordinary tunable oseillators are ustal. "The eonvertor shown in Figs. 12-10, 12-11 ath 12-12 aminates thes diffirultios by the use of
 fowed be two multiplier stages bering the frequener up what required for $1+4-$ Inc. rereption. Tunding of the band is aceomplished by varying the eommunioations remore (now the i.f. amplifier) from 1410 Is Me.

It first thought it would appear that the design wif such a converter would be romplirated and its construction diffieult, but the photographs and whematic diagram show that this is not necessarily true. Sinea no tunable circuits are required at the signal frequency the meehanieal eonstruction is simplified, and the alignment problems usually assoriated with tracking of gang-tuncel circuits are roduced. Only four tubes are required, two of then raf. amplifiers.

Circuit Details

Two 6.J6s perform the functions of weillator, multiplier and mixer. Two 6. NKos are used as bathdats ref. stages, self-resonant overcoupled plate and grid circuits being employed to achiove the bandpass characteristies. leforring to the schematic diagram, Fig. 12-11, it will be seen that the erystal oscillator is a simple triode circuit, using one section of a $6 . .6$ and a 13-Me. ervostal. The serond section of the tube is a doubler, which drives the first section of the serond bJti as a quintupler to 1:30 Me. Finergy from this stage mixes with the signal in the second section of the tube, the output of which is at the intermediate frequeney.

Two problems are prosented hy this approach. First, the rif and mixer circuits must he broadened out sufficiently so that the response of the eonverter will be substantially Hat over the (mite hathd; and seemal, signals. at the intormediate frequency may catuse considerable interferene undes the unit is comphetely shidded. Tha moded batodpass chatacteristice in the r.f. sages are supplied ber wereoupling the stages, adjustment of which is explained in a later paragraph. The i.f. output trastormer in the mixer plate circuit is provided with an adjustable tumed eivenit, Which requifes some realjust ment if maximum sonsitivity is to be mantained across the entire batme It is not oritical in its setting, however. so it does not eompliate the tuning promess appreciabs.

The only other adjustmont used after the initial tume-up promedure is rempleted is an ref. gain control, the setting of which may be emploved to reduce possible cross-modulation from extremely-strong local signats. Normally it may bo set at the optimum position and left there without further change.

Mechanical Construction

Structural details should be reasonably clear from the photographs. The chassis is a "l""shaped aftair folded from sheet aluminum. Anothor folded sheot is used as a shield, complemely enelosing the components, all of which are momated on the matin chassis, which is ? by io be finches in sizo. looking at the top view, lig. 12-10, it maty be seen that the gain control and i.i. tuning adjust ment are mounted on the front wall of the ehassis. Across the top are the ergstal and the two (6.J6s, and at the rear are the antemat input terminals, the two (f. 1kise and the eoasial fitting for the i.f. output cable. The power plag is between the two r.f. tubes, at the rear edge of the chassis. looking at the bottom of the chassis, Fig. 12-12, the oscillator, multiplier and mixer components are in the upper portion of the photograph, with the r.f. stages aeross the bottom.

 two bilkis are bandpase r.f. stage-

Fig. 12-1 - Wiring diagram of the - -meter ronverter with eryat-controlled oarilhator.
(i) - $15-\mu \mu$ fol variable (Willen 2001.5).
$\mathrm{Ci}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-3-30-\mu \mu \mathrm{fd}$, mica trimmer.
 $\mu \mu \mathrm{fd}$. ceramic.

$\mathrm{C}_{13}-50-\mu \mu \mathrm{fd}$. ceramie.
$\mathrm{C}_{14}, \mathrm{C}_{15}$ - $0.01-\mu \mathrm{fl}$. erramic.
$\mathrm{C}_{16}, \mathrm{C}_{17}, \mathrm{C}_{29}-1000_{-\mu \mu \mathrm{fd}}$. eeramic.
$\mathrm{C}_{\mathrm{tg}}-0.0015-\mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{19}-27-\mu \mu \mathrm{Cd}$. ceramic.
$\mathrm{H}_{1}, \mathrm{~K}_{3}-2 \cdot 20$ ohms, $1 / 2$ watt.
$\mathrm{H}_{2}, \mathrm{~K}_{6}, \mathrm{~K}_{8}, \mathrm{~K}_{10}, \mathrm{~K}_{12}, \mathrm{~K}_{14}-1000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{4}-2000$ ohm wire-wound potentiometer.
$\mathrm{R}_{5}-10,000$ ohms, 1 watt.
$1 k_{7}-8.2$ megohms, $1 / 2$ watt.
$\mathrm{R}_{9}-22,000$ ohmse, $1 / 2$ watt.
$R_{11}, R_{13}-0.1$ megohm, $1 / 2$ watt.
$\mathrm{L}_{1}-2$ turns No. 18 enameled wire, $3 / 8$-ineh inside
The shield arrangement which isolates the r.f. stages may also be seen in the bottom view. It is made of sheet copper, to permit easy soldering to the cylindrical shields on the tube sockets. At the left is the grid coil, L_{2}, with the antema winding, L_{1}, inserted between its first two turns. Inside the shield are the first r.f. plate (L_{3}) and second r.f. grid (L_{4}) coils mounted close together in the same plane. Just outside the upper right corner of the shield are the second r.f. plate coil, L_{5}, and the mixer grid coil, L_{6}.

At the upper left of the bottom view are the oscillator and doubler plate coils, L_{9} and L_{10}, with their associated trimmers. The quintupler plate coil and its trimmer are bet weon the gain control and the i.f. output tuning condenser. The i.f. output transformer, $L_{-} L_{8}$, is at the upper right. Because of their small size and
diameler, tixhtly couphed to gromad end of L as.
1.2, 1.f. Ifin 1.11 - 5 turns Vo. 11 timed wire, $3 / 8$-inch diameter. turns sared wire diameter (sere text).
L_{3} - 6 tarns No. $1+$ timed wire, $3 / 8$-inch diameter, turn. spaced wire diancter (see text).
L.5 - 7 turns No. 14 tinned wire, $\frac{3 / 8-i n e h ~ d i a m e t e r, ~}{\text { d }}$ turns spaced wire diameter (seec text).
$L_{7}-27$ turns No 28 enameled wire, dose wound to a lenkth of $3 / 8$ inch on a $1 / 2$-inch diameter form.
$\mathrm{L}_{8}-3$ turns "push-luaeh" wire, close-wound over cold end of 1.7 .
$\mathrm{L}_{9}-8$ turns No. 18 timed wire, $3 / 4$-inch diameter, $1 / 2$ inch long.
I 10 - 6 turns No. 18 tinned wire, 3 - - ineh diameter. 3,8 inch long.
Note: Coils L_{9} and L_{10} are rut from a length of B \& W "Miniductor" type 3011.
J_{1} - Coaxial-eable eomnector (Joness $\mathrm{S} \cdot 201$).
$\mathrm{J}_{2}-1$-promg mate plag (Iones P-30:-AB).
greater affectiveness, ceramie eapacitors wero used throughout the unit, the particular values used now being available from Contralab and possibly others.

Adjustment and Operation

The first step in putting the converter into servier is to set up the oseillator and multiplier stages for proper operation. This procedure is similar to that employed in multistage transmitters, except that at 105 volts the eurrents in the various stages are very low. It is recommemed that the supply voltage be maintained at that figure with a Vik-105, in which case the total drain for the two 6.J6s is about 12 ma . The two 6ikNes draw approximately the same. I low-range milliammeter may be inserted in series with the plate decoupling rosistors, R_{10}, k_{12} and h_{14}, to check on the operation of the
oseillator and multiplior stages, as a good platrcurrent dip is noted as the 6,56 stages are tuned to resonance. A calibrated absorption-type wavemeter should be used to be certain that the doubler and quintupler stages are operating on the correet frequencies.

The r.f. circuits may be aligned by means of a grid-dip motor. Dotails of a suitable instrument, which is a useful tool for many other purposes, will be found in Chapter Sixteren. The induetance of the grid and plate coils may be alljusted to approximately the proper value by spreading or squeezing the turns to the point whieh produces maximum dip with the grid-dip meter set for 146 Me .

The mixer plate cireuit may be checked by feeding a signal into the mixer grid at the i.f. frequeney, it to 18 Me., making sure that the luned eircuit, $C_{1} L_{\pi}$, is capable of resonating arross this range. In the absenere of a signal generator, 20 -meter amateur signals may be used for this check by conmecting an antema to the mixer grid. They should peak with the mixer phate eondenser set near the middle of its tuning range.

A calibrated signal generator operating in the $14+\mathrm{M}$. range is helpful in checking the converter performance, but a low-powered oscillator, or oven a superregemerative receiver. may be used. A fair idea of the performanee ran be obtained by merely eonnecting an ant temat to the converter and aligning the r.f. rireuits by uoise pick-up. If the antenna in question is a simple dipole cut for 146 Mr., the noise level should remain nearly constant over the entire band, if the ref. eeoils and the eoupling betwoen them has been adjusted properly. If neressary, the self-resonant enils may be "staggof-tuned" to achieve uniform response atross the band.

Other Suggested Circuits

One of the problems in connection with the use of crystal-eontrolled oscillators in v.h.f. converters is the choice of a suitable erystal frequency. If a relatively low frequency is used in the revatal oscillator the erystal must be

Fip. 12-13 - shematio diakram of a remencratio. harmonir ositlator cirenit, which may be sub-tituted for the 13-Me. owillator shown in Fig. 12.H. The serond section then dmultw to 13.32 Mr., and the second 6.I6 operates as a tripler to 130 Me., instead of a quintupler.
chosen carefully to avoid trouble from its harmonics falling in the band to be covered. If higher reystal frequencies are used the cost of the cerstal beromes considerable, and some harmonic-type erystals have poor stability.

A crystal oscillator circuit which helps to by-pass these troubles is deseribed in the transmitter chapter in comertion with the v.h.l. exeiter-transmitter pietured in Fig. 13-11. With this circuit, Fig. 13-12, ordinary 7-8-Mr. (rystads are mate to oscillate on their third harmonic, thus reducing the number of stages required, and pormitting the use of inexpensive erystals.

This circuit may be substituted for that in Fig. 12-11, in case a less expensive or more readily-obtainable arystal is to be used. In example would be the use of a 7.22 - Me. erystal, oseillating at 21.66 Mr. in the first diJf triode section of Fig. 12-11. The seeond section would double to 43.32 Me. The next triode section would operate as a tripler to 130 Me . Except for the grid circuit of the first 6.56 the schematie would be similar to that shown in Fig. 12-11. The regenerative harmonic oscillator cireuit is reproduced in Fig. 12-13. It is suggested that prospective users study the material on page 421, Chapter Thirtern, for further information before attempting to utilize this circuit for receiver purposes.

Fig. 1\%.12-Bontom view of the cryatalemitionded eno. verter. Note the overempled elrcuits in the two r.f. stages.

A Cascode Converter for $\mathbf{2 2 0} \mathbf{M c}$.

The 220-Mc. converter shown in Figs. 12-14, 12-15 and 12-16 is an adaptation of the 2-meter design shown carlier in this chapter. The cascode r.f. amplifier is similar, but different tubes are used in the mixer-oseillator and i.f. amplifier stages, and a completely difforent merhanical layout is employed, as is quickly evident from a comparison of the photographs.

The first stage is a triode-connected (6.Dlis. No neutralization was found neressary, oseillation being prevented by the heary loading imposed by the following 6.J6 grounded-grid stage. The ref. plate eibruits are self-resonant and sufficiently broadhand to more than cover the 220-Mc. band without adjustment. The r.f. input rircuit is condenser-tuned, but the antemna loading makes repeaking of this circuit umberessary.

The functions of mixer and oseillator are combined in a 12 ATt dual triode. The osecilator tank circuit is in the form of a " \mathbf{C} " cut from sheet copper and soldered directly to the tuning-rombenser stators. A fairly high valur of paradlel caparitance is added in C_{4}, for stability. some mixer injeretion is obtatined through the celements and pommon connewtions of the dual triode, but additional conpling was found to he necessary. It is added by a short piece of Twin-Leat, and shown on the diagram as Cio.

The 6BA6 i.f. amplifier has a potentiometer in its eatherle circuit for gain eontrol. The mixer plate coil, L_{5}, and the output transformer, L_{6}, make use of ready-made commerrial slug-tumed coils of small dimensions, requiring only slight modification of L_{6}, as noted in the parts list. Voltages throughout the converter are stabilized by an 0132 regulator tube.

Mechanical Details

As may be sern in the photographs, the r.f. and mixer-oscillator tubes are mounted in an inverted position, with the sorekets above the chassis. This keeps r.f. leads to a minimum (of great importance in 220- Me. construction) and brings portions of the eireuit requiring adjust ment up where they are readily aceessible. The i.f. and voltage-regulator tubes are mounted in the eonventional manner. The i.f. tuning slugs are below the chassis, providing partial shiclding. If pirk-up of signals on the i.f. frequency is tronhlesome it can be corrected by the addition of a bottom plate to the chassis.

An aluminum chassis, 2 by 5 by 7 inches, is used, with a 5 hy 7 -inch panel. A small bracked is mounted at the back of the chassis, earrying the r.f. tuning condenser and the erystal soreket used for antenna terminals. The antolnat condenser is insulated from ground at the mounting point, and a heavy copper strip is run over to the commonground point at the r.f. tube socket. (eramie fixed eondensers (the disk trpe in the higher values and the eylindriral type in the smaller ones) allow compart design, and provide improved by-passing qualitics.

Alignment

P'utting the eonverter into service involves only standard procedure, such as that outlined in the deseription of the 2 -meter eonverter of similar design, exeept that the plate coils, L_{3} and L_{4}, are adjusted by spacing their turns. The intermediate frequency can be anything within reason, depending on the receiver with which the converter is used. In the origital model it is 15 Me ., but it could be altered considerably without component change, ot ther

 visucode aomertor. showing incerted mont ing of the' r.f. alld mixer-merillator tubes. "The r.f. input eircuit is mounted on a brachet at the rear of the chassis, with the 6.1 K .5 socket direcely loflow it. Vearer the parel is the o.J. with the 12:'T mixer-omillator socket and onrillator compournts near the middle. 'The Gll 16 i.f. amplifier and olde regnlator tuben are monnterl in the eonventimal manner. at the righ.

($: 3-30-\mu \mu$ fil. mirat Irimmer.
 with 2 roter batiss removed (rom rarh aretion).

$R_{1}, R_{0}-68$ ohms. $1 / 2$ watt.
$K_{2}, K_{4}, K_{B_{4}} K_{11}-1000$ ohms. 16 watt.

R_{12} - $\mathbf{- 0} 0101$ olimo. 10 watts.
than different settings of the slugs in L_{5}^{5} athl Lafo and resetling of padder (eat, acrose the oscillatore circuit. It will be noted that part of the reparitance arooss L_{6} is in the form of a

 betwern turna of las.
 lown.
 spare turns for matimum responoe.

L.n-Similar to I.an lout with 10 turns removed.

 inches long, shat is lí inch wide.
1, Creen-jewel pilot-lampasembly.
It - Coaxial output fitting.
P_{1} - 1 -promg mate plug.

'lumable capacitance, (es, is rommeded across the i.f, coil. Its adjusting serew is rached through a rubber-grommetted hole in the side of the chassis. fixed eomelenser, ("bs. This is lo forestall posible v.h.f. patasitic oscillattion in the i.f. stage, by by-passing the plate direet to the rathote.

The Superregenerative Receiver

The simplest type of v.h.f. receiver is the superregenerator, for many vears the most popular receiver for v h.f. work. It affords fair sensitivity with few tubes and clementary cirruits, and though it has largely been replaced by the more offective superheterodyne for home-station use, it still has many v.h.f. applirations. Its disadvantages are lack of selere tivity, poor signal-to-noise ratio on weak signals, and its tendency to radiate a strong signal which ratuses severe interference.

Its selectivity may be improved somewhat and its interference eapabilities reduced by the addition of an r.f. stage, a rofinement which should be eonsidered at necessity if the receiver is to be used in a locatity where thereare other stations operating on the same band. If no r.f. stage is used, as in portatbe applications where economy of spate and battery drain are primary considerations, the detector should be operated with the lowest phate voltage that will permit superregeneration, in odder to reduce its interferencer range.

From a practical aspert, suporregenoration recotions may be divided into two general types. In the first the quenching voltage is developed by the deteetor itself, called a "selfquenched" detector. In the secomed, a separate low-frequency oscillator is used to generate the quench voltage. Self-quenched detectors have found wide favor, particularly for portable work; hut it is possible to arhiove bettor performance with the separately-quenehed type, particularly an the frequency approathes the upper limit of the tubers capabilitios.

Superregeneration Principles

The limit to which ordinary regenerative amplification can be carried is the point at which oscillation commences, since at that point further amplification reases. The suparregencrative detector overeomes this limitation be introducing into the deteretor elreuit an alternating voltage of a froqueney someWhat above the audible range, the vatue being betwern 20 and 200 ke . depending on the signal frequency. Bocatuse the oscillations are constantly boing interrupted by this quenching voltage the regeneration can be gratly increased, and the amplified signal will build up to tremendous proportions. A one-t ube superregenerative recoiver is capable of an fuhetent sensitivits approaching the thermal-agitation noise level of the tuned circuit, and may have an antenna input sensitivity of two microvolts or butcr.

Beratase of its inherent characteristics, the suparmenorative circuit is suitable only for the reerption of modulated signals, and operates best on the vary-high frequencies. Typical superrgenorative cireuits for separatelyquenehed and self-quenched deteretors are shown in Fig. 12-17, but the basic circuit mat be any of the various arrangements used for straight regenerative detectors.

In the self-quenched detector the irequenc. of the quench oscillation depends upon the feed-back and upon the time constant of the grid leak and condenser, the oseillation being a "blorking" or "squagging" in which the grid aceumutates a strong targative charge which does mot leak off rapidly enongh through the grid leak to prevent a relatively slow variation of the operating point.

The greater the differcone between the quenching and signal freguencies the greater the amplifiestion, because the signal then has a longer period it, which to build up during the nonquenching halfeycle when the resistance of the cireuit is megative. This ratio should not exceed a cortain limit, how"ver, for during the quenched or nonregenerative intervals the input selectivity is merely that of the Q of the tuned circuit alone.

Because of the greater amplification, the hiss noisawhonasuper-
fig. 12-18- l'ront view of the coavialline reariver. 'l'tae r.i, amplitier tuning control is at the left and the main control, for the rowentriedme Intactor circiit, im at the right side of the unit. 'Ihe audio gain eontrol, send-receive switeh, "phone jach and regeneration control can lwe reen in that order, from left tor right, anrose the front wall of the chanio.

regenerative detector goes into oscillation is much stronger than with the ordinary regenrrative detector. The most sensitive condition is at the point where the hiss first beeomes marked. When a signal is tuned in, the hiss will disappear to a degree that depends upon the signal strongth.
lack of hiss indioates insufficient foed-batek at the signal frequeney, or inadequate quench voltage. Antenna-loading effects will canse dead spots that are similar to those in regencrative deteetors and ean be overeome by the same methods. The self-quenching detertor may require eritical adjustment of the gridleak and grideondenser values for smooth operation, since these determine the frequency and amplitude of the quench voltage.

A COAXIAL-LINE SUPERREGENERATIVE RECEIVER FOR 220 MC.

The performance of a superregenerative rereiver, both as to solectivity and smoothness of operation, can be improved by the use of a conaxial line tank in the grid cireuit of the detwerer, in pace of the customary coil and conhenser. Addition of an r.f. amplifier stage will improve sensitivity, reduce radiation, and make antemat coupling less critical. A superregenorative reconor for 220 to 240 Mc . incorporating these foatures is shown in Figs. 12-18-12-21.

The r.f. tube is at ! 5 atorn with a conventional tumed cireuit in its grid. The plate circuit is a seli-resonant loop, which is coupled to the conecontrie line grid eircuit of the U.\K゙か detecter. The detector out put is fod through a quench filter to a

Fif. 12-19 - Rear view of the superregencrative receiver. 'The r.f. arobits are mountril on a eopper shelf to the left of the antema terminala. The detector tuning condenser is monnted on a small pancl to the front of the coaxial line, and the bandset condenser is suldered across the open and of the lime. The r.f. stage is momed on atl "J." shaped bracket with the tube surhet and plate-eireuit components on the Left side and the pride eircuit on the right side. Audio tubes and voltage regnlator are in lime arrops the rear of the chaswis.

> C. - Midget variable condenser (Millen 2molis reduced to one stator and two rotor platex:
> C_{2} - Midget variable condenser (Millen 2mblis redured to one stator and one rotor plate :
> ($3-5-20$)- $\mu \mathrm{ff}$. ceramic trimmer (Centralad 820 (0-13).
> $\mathrm{C}_{4}, \mathrm{C}_{5,5} \mathrm{C}_{6}-100-\mu \mathrm{ftI}$ ((National VIA.C).
> C7-29- $2 \mu \mathrm{fal}$. mica.
> $\mathrm{C}_{8} \mathrm{C}_{12}, \mathrm{C}_{21}-450-\mu \mathrm{ff}$. mira.
> $\mathrm{C}_{9}-10.0022-\mu \mathrm{fd}$ mica.
> $\mathrm{C}_{10} \mathrm{C}_{11}-0.0068-\mu \mathrm{fd}$. mica.
> $\mathrm{C}_{13}-\mathbf{0} .2 \cdot \mu \mathrm{fd}$. 40 . wolt paper.
> $\mathrm{C}_{14}-47$ - $\mu \mathrm{fd}$. mica.
> Cis - $10-\mu \mathrm{fd}$. 25 -volt clectrolytic.
> C_{16} - 8 - $\mu \mathrm{fl}$. 4.50 -volt electrols tio.
> $\mathrm{C}_{17}, \mathrm{C}_{18}-\mathbf{0 . 0 1}-\mathrm{ffl}$. $\mathrm{f}(\mathrm{N})$-vols paper.
> $\mathrm{C}_{19}-0 .(\mathrm{KN}) \stackrel{1}{\circ} \mu \mathrm{fd}$. mica.
$\mathrm{K}_{1}, \mathrm{~K}_{3}-\mathrm{I}(\mathrm{KK})$ ohms, $1 / 2$ watt.
$\mathrm{K}_{2}-33,(\mathrm{KK})$ ohms. $1 / 2$ watt.
R_{4} - 0.1 megohm, $1 / 2 \mathrm{watt}$.
R_{5} - $\mathrm{BO}, 0 \mathrm{OKO}-\mathrm{ohm}$ potentiometer.
$\mathrm{R}_{6}-1,1,000 \mathrm{Ohms}$, I watt.
$R_{i}, K_{9}-1500$ ohms, 10 watt .
$R_{8}-20^{2}(0)$ ohms, $1 / 2$ watt.
R_{10} - $0.25-\mathrm{m}$ - kohm potentiometer.
(i.J: triode audio followed by a bVt seeond audio. Either phones or speaker may be used.

Constructional Details

The receiver is built on a standard aluminum chassis measuring 2 be 7 by 11 inches and the small panel for the detector tuning dial is cut from a sheet of 3_{16}-inch aluminum measuring $37 / 8$ by $37 / 8$ inches. The shelf for the r.f. section is made from a piece of 1_{1} g-inch copper stock measuring $51 / 2$ by $61 / 4$ inches which is cut and bent as shown in the photographe of the rereiver. The horizontal section of the subchassis measures $31 / 2$ be $61 / 4$ inches and the small vertical panet is 2 inches high and $21 / 2$ inches wide. The detector handspread eondenser and the aluminumpanel for the detector tuning dial are both mounted on this upright member of the ropper chassis. C_{2} is mounted with the two stator terminals facing toward the right end of the chassis (as seen from the rear view) and the lower stator terminal is one ineh up from the horigontal surface and $1 \frac{1}{4}$ inches in from the left side of the eopper panel. The tube socket for the (6.1 k) is 2 inehes in from the left

R_{12} - 0.1 megohm, $1 / 2$ watt.
K_{13} - 0.17 meqohm. $1 / 2$ watt.
$R_{14}-2.0$ ohme. I watt.
$\mathrm{I}_{11}-2$ turns Xo. 1.8 e e. $1 / \frac{1}{4}$-ineh in-ide diameler. elower. nound.
 space hetween turns.
1.3 - $5 \frac{1}{4}$-inch length No. 12 c.. bent to form a " 1 ". shaped lomp having a $3 / 4$-inch ppace between conductors. Plate side of lomp in $13 / 4$ inches lons and the opposite side is $23 / 4$ inethes long.
1.4-Conemtrie line, Jnide condnetor is a 4 -inch length of $1 / 2$-inch o.d. copper tuling. Grid tap 1 inets from grounded end for twith 220 - and $235-10$. operation or $3 / 4$ inch from grounded fond for $2 \cdot 20$ Mc. only. Gut-ide condactor is a 4 -inch length of 2 -inch i.d. copper tubing.
h_{1} - $)_{\text {pen-ctircuit jack. }}$
RFC, - 80-mhl. chohe (Meisiner (0)-3.596).
RFi:2-1-mh. r.f. ehohe (National R-33).
5 -S.p.s.t. togale switch.
H_{1} - Interitage atudio transformer (Stancor A.53().
1:- - 'niversal ontput transformer (Cinaudakraph (1-85).
end of the chassis and is located as far towam the front edge as possible.

The "L"-shaped bracket for the r.f. amplifier is $2 \frac{1}{2}$ inches high, has a depth of $23 / 8$ inches, and is $1 \frac{1}{2}$ inches across the front. Spade lugs are bolted, and then soldered, to the botiom of the partition to provide a method of mounting that is both clectrically and mechanically sound. The National XLA tube socket is centered on the side of the partition at a point tocated $13 / 8$ inches in from the rear and top edges. $A^{5} 16$-inch hole, drilled in the bracket at this point, allows the grid prong of the 954 to extend through to the grid-circuit components. The eathode and heater prongs of the socket face toward the front of the receiver and the XLA-C hy-pass condensers are mounted inside the socket. The plate by-pass condenser, C_{6}, is mounted underneath socket prong No, is as this prong is used as the support point for the cold end of the plate loop, L_{3}. Note that the No. is prong is a spare so far as the 954 is concerned. A National XLA-S interual shield, designed for use with the XLA socket, provides a common path for the condenser ground con-
nerotions and, of course, this sohdering should be done before the socket is belted to the copper pattions. The heater, wathode and suppressor comections are also made to the intermal shichd and, after monnting, the shield is in twon soldered to the eqpper plate.

Ther r.f. amplifier tuning condenser is mounted with the shat in line with the shaft of Co, Nealow terminals fate 10 dhe left so that the botlom lormanal is within $\frac{1}{4}$ imeh of the 95 B grid prong. L_{2} is supported by the condenser terminats and the atatemat coil. L_{1}. is supported by Lesand hy the twoterminal lugstrip located to the right of the amplifier. (irid elips for the gat were improviad hy removing the prones froms a miniature tabo sorker

Holes, large enough to elear לose machome sorews, are drilled at wach corner of the eopper mounting plate so that the unit may for mounted on $11 / 2-\mathrm{im}$ (h stand-ofi insulators. larger holos, equipued with ruhber grommets. are aljacent to the detereor and amplifiev tabe sorkets so that power wiring may bo patsod down through the matn fhas-is.
(omst ruction of the emenentric line is not diifieult if the various operations ate carried out as suggested below. The inner and outer conductors are 4 inches long, and the end plate is $2{ }^{2}$ 2inches square A ${ }^{1}$-inch hole for the inner conductor of the line should be drilled at the center of the end plate and the phate should also have a hole for at ${ }^{6}$, machine serew at each comer. However. before the renter hole is drilled, it is advisable to use the erenter-puneh mark as the pivot for seribing a cirele to indirate the position of the outside conductor. This: will simplify the task of lining up, the two pipes for the soldering operation.

I ${ }^{3}$-inch hole should now be drilled in the large pipe at a point lowated I inch up from the bottom edge, and a seromel hole of We-inch diamoter should be drilled on line with the larerer lowe and around the pipe hy an degrees.

After the material between these fwo holes and the bottom of the tubing is removed by cutting with a hack saw, the finishod slots will provide openings for the input coupling coil. L_{3}. and the detector-grid comneetion. The inner conductor should also be drilled and tapped for a ${ }^{4} 3 \mathrm{z}$ machine serew at this time. One hole, ${ }^{3}$ t inch upf from the bottom of the line, is required if the reediner is to be used to rover only one bamd. A serend hole, $1 / 4$ inchabove the first. is meressary if the reverver is to be tumed to both the 220-sud 235-Ma.* hands. In eit her case. the tapped hole will be used as the connerting point for the lead rumning to the tuning condenser.

I nless extremely thin-walled tubing is used we the eonemente line, it will be difficult to romplete the soldering operation with an ordinary iron. Plating the assembly on an clectric hot plate will heat the copper in a very few minutes and will allow the work to be done neatly and easily. The end plate should be laid on a flat level surfare while the inner conductor is lined up perpendieular to the horizontal surface of the phate. This operation may be carried out with the metal resting on the hot plate if the latter is to be used. The outer conductor should be placed in the position indicated by the scribed circle. Heat may now he applied and the soldering completed. The metal is ready to acrept solder when a rapid change in the color of the copper is noticed. A long piece wf wolder may ine inserted through the open end of the line and ass the end is moved around the surfaces to be joined the solder will melt and run into place casily.

The remaining constructional work is straightforward and study of the three photographs will show the location of the various components. Since there is no cruwding of parts, it should not be difficult to duplieate the original layout.

[^4]Fia. $I 2 \cdot 2 l$ - Buthom virw of the romakialline reveiver stowing the ontput trans. former. It lonated at the lower left-hand enemer of tho ribasois, and the alndio trans-
 for the andion mber. The quentl-filter

 alre inounted an end to the rieht of the reyahator-talne ancket.

A Mobile Converter for 28 and 50 Mc .

The converter shown in Figs. 12-22-12-25 was designed for mobile reception on 6, 10 , and 11 meters, but it may also be used in fixedstation work with good results. The intermediate frequency is 1500 ke , to permit its use with mobile broadeast receivers.

Circuit Details

The ronverter circuit diagram is shown in Fig. 12-23. A 6 Ahs broadband r.f. amplifier is followed by a 6.16 mixer-oscillator. The oscillator circuit is the ultraudion type, operating 1500 ke. below the signal frequence. The need for gang-tuned circuits is eliminated by the broadband r.f. amplifier: thus only the os--illator tuning condenser, (${ }^{\prime}$, requires adjust mont during normal tuning operation. Band

Fig. 12-22 - A bandswith hing comerter for fi. 10 and 11 meter. 'The pilot light at the lower right his all andjatable beam. for convenience in mohile worh.
rhanging is acomplished with a sowetion selector switch, shown on the diagram as $S_{1 A}, B,(\cdot, 1), E$.

Seven commercially-available eoils are used, sis of them being identical exerept for the setting of the slags. The wide inductance range of the slug-tuned units makes it possible to usi similar coils for the r.f., mixer and oseillator eoils for both ranges. Padder capacitance is added across the 10 -meter r.f. and mixer coils, L_{4} and L_{6}, and across both oscillator coils, L_{7} and L. Varying the slug position takes care of the necessary differences in wil induetanme for all these positions.

A single whip antenna may be used for both broadeast and amateur reception. A jumper connection bet ween sections A and E of S_{1} completes the circuit between the antenna and the broadeast reeeiver, with the switeh in the position marked B. ('. on Fig. 12-23, I tilament
switch, S_{2}, is provided to remove the load of the converter tubes from the car battery when the receiver is being used for broadcast reception.

Broadbanding of the r.f. and mixer circuits is accomplished through the use of low- Q eoils and tight coupling in the antema cireuit. The plate coil of the mixer is self-resomant at the i.f. frequency, giving a degree of broadness suffiriont to permit tuning the receiver over a limited range near the high end of the broadeast band, providing a vernier effect.

Construction

All of the metal components are formed from $1 / 16$-inch aluminum stork. The interior view, Fig. 12-24, shows the "L"-shaped section which serves as the front panel and the bottom plate of the unit. The pand and the bottom areas are each 5 inchess square. lips, ${ }^{1} \frac{2}{2}$ inch wide, are folded over along the top and side edges of the panel and also along the sides of the bottom section. The rolled-over edges are drilled and tapped to acommodate 6-32 machine sorews.

A three-sided portion and a square top phate complete the converter cabinet. The sides are $\overline{5}$ inches square and the war wall is 5y inches wide. All three sides are 5 inches ligh with 1 -inch flanges folded over on the (op) edges and drilled and lapped for 6-32 serews. The sides and hottom edges of the case are drilled to clear machine serews; the hotes should line up, with the tapped holes of the panch-botom assembly. A reetangular hold, $17 / 8$ inehes high and 2 inches wide, is cut at the bottom left-hand corurer (as seen from the rear of the converter) of the rear wall, to provide clearance for the cable eomectors. The top plate for the converter measures 5 by 5 inches. Holes, drilled along the edges, allow the eover to be fastemed to the flanges at the top of the eabinet.

The physical shape of the converter chassis ran best he visualized hy st ady of the interion views. The chassis is 5 by t^{7} bis $13 / 4$ inches in size, with flanges $1 \frac{1}{2}$ inch wide folded over along the front and the bottom edges to provide a means of mounting. A $21 / 4 \times 33 / 4$-inch cut-out at the center of the chassis allows clearance for the bandswiteh. A large round hode located in the rear wall of the chassis simplifies the job of tinding the oseillator padder condenser when this control requires adjust ment.

I vartical partition used as the mounting surface for the osedlator tuning eondenser, Co, also serves as the shidd bet ween the plate and the grid eircuits of the r.t. amplifier. It is $3^{1}{ }^{\frac{2}{2}}$ inches wide and $43 / 4$ inches high, and is not ched to clear the main chassis and the spacer hars and rotor arm of the bandewitch. The partition is held in place by a spade lug which passes through the chassis and by a mounting

 rotor phates (Millen 20M15).
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-3-30-\mu \mu \mathrm{fd}$. mica trimmer (Villen 220339).

© © (C_{10} - $10-\mu \mu \mathrm{ff}$, ceramic (Centralab) (C:OZ).
 C12- 11.01 - -fd. ceramic (Centralab DA0 18003. $)$. R_{1} - 220 ohms, 12 watl.
$\mathrm{H}_{2}, \mathrm{~K}_{6}-6810$ ohms, 在 watt.
H_{3} - 1.5 megohms, $1 / 2$ watt.
R1: $12,(100)$ ohmins, $1 / 2$ watt.
$\mathrm{R}_{5}-47$ (ONO ohms, $1 / 2$ watt.
18 - - 5000 ohms, 10 watts.
$\mathrm{L}_{4}, \mathrm{~L}_{2}-1$ turns No. 28 d.×.c. elose-wound over ground conds of L_{3} and I_{4}.
lip which is serewed to the bottom side of the rabinet. It is located 3 inches in from the front edge of the chassis.

The heater switeh and the pilot-light assembly are mounted at the lower loft-and right-hand corners of the front panel with the bandswitch at the eenter, $11 / 8$ inches up from the bottom edge. The selector-switch index plate should have a rotorshaft length of at least 3 inchers. and the switeh wafers should be mounted on the shaft with the first separated from the index plate hy l-inch spacers and with the second wafor separated from the first b, 15/8 inches.

The National MCN dial is centorod above the bandswith with the control shaft 3 ituches above the bottom edge of the panel. It is wise to cut the large mounting hole suggested in the dial-mounting instrurtion sheet and then do the fimal fastening down of the dial after the tuning condenser and its mounting

Fig. 12.24-Interior view of the converter. Only the oscillator is tuned by the front-panel control, eliminating traching problems.
 clone-wound min 8 /8-ineli dianteter form: sugtuned: inductance range 0.35 to 1,0) $\mu \mathrm{h}$, (Cam. bridge 'Thermionic Corp, Ls'3-30 Me,),
Ls - Suramble-type winding on $3 / 8$-inch slug-thened form: indurtance ranke 325 to $7.50 \mu \mathrm{~h}$. (Cambridge "larmionic (©orp. 1.S. 3 - 1 Mc.).
 I_{1} - VIju-table-boim dial-light assembly.
J_{1}, J_{2} - Convial-datole jacks (Amphenol 7..-PCIM). J_{3} - 3 -prone vathe vomertor (Jones P-303 \13).
RFC. - 300- $\mu \mathrm{h}$. r.f. choke (Nillen 34300).
$\mathrm{S}_{1} \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{L}$ - - -gang orecircuit bandswitch (two Cen. tralabses sectionsi).
S2-s.p.s.t. torgle =witrh.
phate have heen permanently secured in place.
The interior view of the completed converter shows the fi.k Kis amplifier tube in front of the shided partition. with the grid induetances to
the right of the tube. The padder condensers for 27 and 28 Me. are mounted on the forward coil. From left to right across the rear of the chassis are the mixer-oscillator tube, five of the slug-tuned induetances, and the regulator tube. The i.f. output coil and the two oscillator roils are mounted below the rhassis, as seen in the bottom view of the rhassis subassembly. The r.f. plate coils are above the chassis to the loft of the 0132 regulator, the $28-$ Me, coil being the one with the trimmer condenser mounted arross the termimals.

Construction will be simpler if the builder uses coils as shown. The Type LN3 30-Me. inductors will resomate at 50 Mre with the tube and circuit rapacitances, and only a small padder capacitance is required to tune them to 27 and 28 Mc.

Coaxial jacks for the anteman and i.f. output cables are at the rear of the chassis to the left of the power-cable jack. They are elosely grouped so that the input and output cables may be taped together to form a common cable.

Wiring ean be done readily if the subassembly method is amploved. The bottom view of the chassis, Fig. 12-25), shows how the circuit romponents are closely grouped around the tube sorkets, with wiring completed to the point of making commections to the bandswitch. Twin-Latad of the 75 -ohm trpe is used to make connection bet ween the antenna input jatek and the bandswitch. The two wires enclosed in spaghetit at the right of the chassis are the 6.3 -volt leats which go to the heater switeh.

Testing

The heater requirements of the converter are 6.3 volts at 0.625 amp., and the plate supply shoudd deliver 200 to 250 wolts at 25 to 30 mat. These may be drawn from the reediver with which the converter is to be used, or a separate supply may be employed. With power turned on, the plate voltage of the mixer and
r.f. amplifier should measure 105 volts and the 0.155 cathode resistor should provide a drop of approximately 2 volts. The 6.1 Ki cathode eurrent should be abotat 8.5 ma. The regulatortube drain will be about 8 ma.

Nignment of the convertor is made most simple if a calibrated signal generator is available, otherwise amateur tramsmitter signals of known frequency may be used. The r.f. and i.f. circuits can be peaked on batkground moise. The oseillator stage should be on the low side of the sigmal frequenery. It is possible to vary the bandspreat of the eonverter over a wide range. With a fairly low order of padder eapacitance, and with the inductanco increased by the tuning slug, the 10 - and $11-$ moter hands ean be eovered with one swing of the tuning dial, Anvone not interested in II moters can incrase the bandspread on the 10-meter range by adding more padder capacitance and by decreasing the inductance of L s. The eonverter as shown has 13 divisions of handspread at 11 moters and 32 divisions at 10 moters, with the logging of frequencies mate on the 13 seale of the dial. Bandspread for the $50-\mathrm{Me}$. hand is 48 divisions on the 1 scale. This spread may be increased by the same method.

Some operators favor a solected group of frequencies within a band. I slight improvement in the performaner of the converter ran be made in this case by peaking the ref. amplifier cireuits at a favorite spot rather than at the center of a band. There maty be a tendenes toward regencration in the so-. Ite. r.f. amplifier, however, if the imput and plate cireuit are peaked at procisely the same frequeners making stagger tuning desirable.

Reducing Spurious Responses

In localitios where there are stations operat ing in the high FM band a converter or reediver having broadhand r.f. stages will experience eonsiderable interference on the 30-Mc. range. This can be corrected in several ways, the simplest being the insertion of a 100 - Me e trap in the antemat lead, as dowribed on page 3 so .
 is mate araicr if as much wiring as posihas is dond hefore the assembling in completed This bottom viow of the chastis suth. :nsiembly alown the wiring completed to the print of eonneetion to the bandswiteh.

A 2-Meter Converter for Mobile Use

The converter shown in Figs. 12-26 through 12-29 was dosigned primarily for mobile roreption in comnection with a cau broadeast roreiver, It may also be used for home-station work, with any recoiver capable of tuning to the high end of the bromdeast hand.
 When an i,f. of 1600 ke . is used, double conversion must be emploved for satisfactory rexults. Two 6.J6t win triodes atre used, carh as a mixeraseillator. The first eonverts the sigual frequeney to 11.1 Mr., the serond working from this frequency 100 l600 ke. Only the high-frequeney oseillator requires tuning during mormal operation. Plate woltage for all circuits is stabilizad by an 0ls2 requlator tube.

Circuit Details

The first-mixer grid eoil is thened to the cenfer of the 14-Me band by the tube and cir-- mit capacitances. lis plate eirenit is bunch to 11.1 Mr. by ('ı and Laz. The osidator tuncos from 132.9 to 133.9 Mc . to rover tha hand. The resulting i.f., 11.1 Mr., is then "aparity(ooupled by means of ces to the grid of the sureond mixer. ("4 is the bandset rondenser and f_{5}^{\prime} is the hathdepread rapateitor. Xo coupling condenser is noeded betwern the oseillator and mixer.

The second didi mixer-oscillator combinat dion converts the $11.1-\mathrm{Mc}$. i.f. to 1600 ke . for Working into a car radio. Note that a trap $\left({ }^{*}{ }_{2} L_{4}\right)$ is conmered in series with the coupling condenser betwow the two mixer rirenits. This is tuned to 14.3 Mre and attenuates image response at a fergheney removed from the signal frequeney by 3200 ke . This image, which falls within the e-meter band when the convertor is tuned to the low edges an bere-
duced by 35 to 40 dh, through adjust ment of the trap.
The plate circuit of the mixer is tumed to 1 fi00 ke. be the trimmer, Cow and a fixed capaeilor, Cin. A low-impedance output link, $I_{\text {tif }}$, torminatos at $/ /_{2}$, and a short length of coaxial rable is used bet wera the jack and the reeciver.
('irelut detads of the two oscillators are nearly identirat, exemt that the low-frequenery rireuit uses obly one capacitor, C_{6}^{\prime}, acrose the plater coil beramise the cirenit operates at a fixed frequeney of $12 . \overline{7}$ Mr. Radiation from this oscillator, operated with 10 b volts on to the plate, reached the high-frequeney mixer and caused spurious responses. This condition was cormeded by reducing the oseillator plate Polage ber moans of the dropping resistor, R_{5}, and by paring a copper shideld ber ween the two rimuits. The redurtion in overilator signal made it mextsary to add caparitive coupling bet wern the uscillator and mixer. A 1^{1}-2tach longh of $\overline{\text { ondohm }}$ Twin-latad, identified as ("x on the dircuit diagram, provides adequate coupling.

Construction

The rhassis for the ronverter monsures $17 / 8$
 $7^{3}{ }^{3}$-inch sheet of $1 / 16$-inch aluminum stock. A 178-inch squate is cut from catch cormer of the aluminum shere so that the metal ran be bent to form a boxlike whasis. It is recommended that the marking and drilling of mounting holes for parts be done before the chassis is bent into shape. The photographe of the convertar show the location of most of the components. The hole for the oseillator bandset condenser (reen at the top of the chassis) is 1 ineh square and is contered betwen the sides of the chassis.

Fif. 12-26-A Iwo-tuhe 111-11r. conwarter for aze with a car broadeast rereiver. "The sidle plate was removed to show the moul. ifiration of the utility eathiset.

The mounting hole for the bandsprad condenser is $1 / 4$ inch down on the front wall, and at 7/8-inch hole for the regulator-tube soeket is centered to the left of the square hole. The high-frequency mixer-oseillator tube is centered on the chassis to the rear of the square hole, and the other r.f. tube is $11 / \frac{1}{2}$ inches to the right of the first tube. A mounting hole for the $11,1-\mathrm{Me}$. coil is located $3, \frac{1}{4}$ ineh in from the edge of the chassis directly to the right of the h.f. osedlator tube and the 12.7-Mc. (secondoscillator) coil is "? inch in from the reat of the chassis and centered $7 / 8$ inch away from the left edge. The form for L_{0} is $5 / 8$ ineh from the right edge and $7 / 8$ inch from the rear edge. R_{8}, J_{1}, J_{2} and J_{a} may be seen at the rear of the chassis and the location of these eomponents is not critical. A two-terminal lug strip is located to the rear of the remulator tube for the leads running to the filament switch and the pilot-lamp socket. Trimmer condensers: ('1, C ${ }_{3}$ and C_{6}, are mounted on the side walls of the chassis with their shafts $1 / 8$ inches from the top of the box. C ${ }_{1}$, mounted on the left side, is $3 / 4$ inch back from the front wall and C_{3} is $13 / 8$ inches farther toward the rear. C_{6} is $11 / 4$ inches from the rear wall on the right side. The mounting hole for the 14.3-Me eoil is ?í 6 inch up from the bottom edge of the chassis and is centered betwoen ('i and c_{3}.

The bottom view of the eonverter, Fig. 1229 , shows how the regulator-tube soeket is mounted on a smatl aluminum bracket which is in turn mounted on the side wall of the chassis. An aluminum strip, 1 inch wide. should be bent to form a right angle atod the position of the socket mounting hole should be marked after the bracket has bern plated inside the chassis against the large clearance hole. Expess material may be cut from the
bracket after it hat been drilled for the sooket. A threo-torminal tie-point strip is mounted in a certical position to the rear of the aluminum bracket, the bottom lug serving as a support point for the grid end of L_{2}. The eoaxial cable and the antema eoupling loop are eonneeted to the remaining two lugs.

The shield for the low-frequeney oseillater riteuit is madde from a 1 ² $2 \times 33 / 4$-inch strip of $\frac{1}{16}$-inch copper, bent to form at right anglehaving sides $17 / 8$ inches long and covering all of the components located at the top leithand eorner of the chatssis. The shield is notehed at the bottom corner to allow elearance for the coaxial cable which runs alone the left edge of the chassis, and is equipped with a spade lug (the lug is soldered to the copper) for mounting.

The IRE-3 coil form for L_{5} should be cut to 13 inches before the coil is wound. This and the other forms should then be marked and drilled to accommodate the windings. Terminal holes are drilled st raight through the forms. A coat of cement may be applied to the windings and allowed to dry while other operations: are performed.

Is shown by Fig. 12-26, some work must be done on the metal utility box before it can be used ats a cabinet. This consists of removing the top and bottom flanges at the right sideof the case and notehing the front and rear flanges to provide clearance for the comdenser shaft and the jacks which are mounted on the aluminum ehassis. . I large slot must be eut in the rear of the case to allow aceess to the input and output jarks when the unit is assembled, and $3 / 4$-inch holes should be cut in the top, bottom and sides of the box so that the adjustment serews of the trimmer condensers maty be reached with an alignment tool. The

Fig. $12-2 \mathrm{Z}$ - 'Top view of the 2 -meter romverter rembed from its citace.

Fip. 12-28 - Schematic diagram of the mohile Z-meter romertar.

(轵 (in - $10.01-\mu \mathrm{ff}$. paper.
($: 101-\mu \mu \mathrm{fd}$. misa.
(:1t-15(1- $\mu \mu \mathrm{fd}$. micat.
($i_{12}-1 \bar{i}-\mu \mu \mathrm{fel}$. mica.

($\mathrm{S}_{14}-0.0015-\mu \mathrm{fl}$. miea.
(ix - Injertion compling, made from Th.ohm Twin-Lead - ser text.
$K_{1}, R_{3}-1 . \overline{5}$ megohms, $1 / 2$ watt.
$\mathrm{K}_{2}, \mathrm{~K}_{4}-1000$ ohms, $1 / 2$ watt.
$R_{5}-0.2 .2$ megohm, $1 / 2$ watt.

Rs, 350 (1 ohmo, 10 watts.
 diam.
heater switch and the pilot lamp are mounted as far toward the top of the front panel as possible, and a $3 / 4$-inch hole is drilled up from the bottom of the panel for a distance of $1^{1 / 2}$ inchers. This large hole will allow the National IN that to be positioned correctly with respeet to the tuningeondenser shaft after the rhassis has been phaced inside the cabinet.

The miniat ure Johnson condenser, C_{5}, may have a small-diameter control shaft that does not fit a standard dial coupling, in which case a bushing or shim is required. Fortunately, a 1/4inch longth of $1 / 4$-inch soft copper tubing can be made to fit the shaft by working the inner surface with a rattail file.

Wiring

Construction and wiring are not difficult if the parts are mounted and wired in the follow-
1.g - 6 turna No. 11 enam., Fídinch diam., 5/8 inch lonn.
1.3- 311 turns So. 28 enam., $1 / 2$-inch diam., 5 id inch lomy. (ail wound on a National PRBE form.
I. 4 - 28 turn: lo. 28 enam., $3 / 8$-inch diam., $3 / 8$ inch long. (ioil wouml on a Xational PlRC. 3 form.
$1,5-7.5$ turns Do. 28 enamt, 9 ís-inch diam., 1 inch lony. (inil wound on a National PRE. 3 form.
l.f - 10 turns Vo. 28 enam., close-hound over cold end of 1.5 .
1.7-3 turns No. 11 enam., Sto-inch diam., approx. $1 / 2$ inch long. See text for adjustment of length.
L.s - 20 turns No. 28 enam., $1 / 2$-ineh diam., 5 is ineh lonk. (ioil wouml on a Vational PRD.2 form. I_{1} - 6.3-volt pilot-lamp assembly.
J_{1}, J_{2} - (naxial-cable jack (Amphend 75- [P ${ }^{2} \mathrm{C} 1 \mathrm{M}$).
J, I'hree-prong cable jaek (Jones S-303-AB).
$\mathrm{RHC}_{1}-1 \cdot \mu \mathrm{~h}$. r.f. choke (National R-33).
K $\mathrm{P}^{\circ} \mathrm{C}_{2}-300 \cdot \mu \mathrm{~h}$. r.f, choke (Millen 34300).
s_{1}-S.p.s.t. togrle switel.
ing order: First, mount the tube sockets, the three jacks, and the lug strip (the one located on the top of the chassis). Next, complete the heater wiring and mount the grid-leak resistor: in place. ('4 can now be soldered across the terminals of (5 and L_{i} can also be mounted on the condenser. This assembly is then mounted on the front wall of the chassis and, in turn, is connected to the tube socket by means of a short lengt h of stiff tinned wire at the plate side and by C_{12} at the grid side. Now, mount the vertically-positioned lug strip on the side wall and connert a short piece of coaxial cable between the top lugs and J_{1}, C_{7} can now be connected between the tube socket and the terminad strip and L_{2} (with the small antenna winding slipped inside the cold end of the coil) may be mounted.

Condensers C_{1}, C_{3} and C_{6}, and coils L_{3}, L_{5}
and L_{8}, are now mounted and wired into their respective circuits and, from hereon, the wiring ran proceed in any order. The 0.01- $\mathbf{\mu}$ fol. hy-pass condensers are mounted in a vortical plane next to C_{1} and C_{3}, respectively, and $R P C_{1}$ and Reare supported at the B-plus end by lin on of the repulator-tube socket. The small metal post at the erenter of the rear tube somekt is used as the the point for the rommon anometion
 head. Lat is wired to (2after the padder eont denser has beren mounted betwern the eompling condenser, (fy, and a piece of No. 12 timmed wire which rums down to the stater torminat of (1 .

If the construetor wisher to nase mise ats a monas of making a rough alignment of the eonverter, it is suguested that the ingertion-voltare condeniser, ('x. and the dropping resistor. $l_{\text {s. }}$.
 the plate of the $6 . \operatorname{de}$ must be eonmered direetly to RFE 2 in this case. The converter will have at much higher moise level when wired in this manner and alignment on miso is simplifiol. Actually, this is a poor method of aligning a double converter and should be used only as a last resort.

Testing

Power requirements for the eonverter are approximately 300 volts at .00 ma, and 6 volts at 0.9 ampere. A receiver eapable of tuning 10 1600 ke . should be coupled to the erosverter by a short length of eoaxial catble atad the rerever adjusted for mormal operation at this frequency. If a sigual pamerator is to be used. it is commerted to the input jack, I_{1}, amd if a wenerator is not available, the converter shoutal the roupled to a low-impedane antonna sys-
tem. Remember that e^{\prime} xand R_{5} should both be incorporated in the ciredit if the eonverter is 10 he aligned with the atd of a text signal.

If preliminary testing is to be done with nowse, the converter and the receiver are turned on and the converter output tuning eondenser. (${ }_{3}$. adgusted until the noise leved is at maximum. The low-frequency weillator should now In : adjusted by means of f_{6} until a furthere inarase in mone fevel is heara. ('4, the h.f. aseillafor patder. should adso be adjusted to produen masimum reseder output and this should oreur with the padder adjusted to approximately half maturity.

It this perint, it is neeressary to introduce a test signal of kumon frequency, and it is helptul if the signal ratube wet at I If Me. - the center of the hand. With f's set at half capacity. C_{4} is adjusterd until the test signal is hearal. It is advisatola 10 choek the frequency of the highirequeney owethator at this point to make sure that it is adjusted io the lew-frecpuency side of the inpur mixer eireuit. Comdensers \prime_{1}, ('s and $\boldsymbol{r}_{6 i}$ should now be tuned for maximum convertar saxitivity. The frequency of the seremed owallator can be chacked by tuning the range aromblel 12.7 . Mr. with ath all-band reoriver.

The anvertor bandepread can be adjusted by ehanging the L (ratio of the first oscillator, by altering the spacing betwern turns of L_{i}. If eourse, G_{4} must be reset eath time the indurtance of the eopil is variod. Because the first miser hats a broad frequeney response, it is only neressary to peak the imput coil, L_{2}, at the center of the band by varying the length of the eool. The coupling betweon the antenma link and La should be adjusted for maximum moporis.

When all of the rircuits have
 them aligued, it is time to adjust the 11.3 -Mr. trap. With a strong lest sighal at the low end, tune tu the high side until the image is homad, and then adjust C for lowest image response.

It is to be experted that the various cirentits will need slight readjustment after the whasix has been enefosed in the cabined Hawever, this presents mo difliculty as all oit the tuning cont mols are areresible through small heres in the crathinel walls.

Fis 12.20-Hent!om viow of the 2-meter comverter. shem. ing the emall ropper shimlat 110ed to reduce "birdias" from the low-licpuenty willator.

A 6J6 Preamplifier for 28,50 and 144 Mc .

The triode pramplifier shown in Figs. 12-30 to $12-33$ will improve the sensitivity and lower the noise figure of receivers and converters that are deficiont in these characteristies. It uses a 6.J6 as a push-pull neutralized amplifior, with plag-in coils in its grid and

Fip. 12-3" - An r.f. preamplifier for 28,50 and 111 Me. The 50.Mc. coils are shown,
plate circuits, 1 selfecontained power supply is included, so the only eonnections needed are to the receiver antenna terminals and the a.c. line.

The ref. components are mounted on the top plate of a standard utility box, 3 by $\&$ by 5 inches in size. The power-supply parts are attached to the walls of the box itself. The 6.J6 socket is in the middle of the top plate, with the plug-in coil soekets equally spaced in front and back of it. The butterfly tuning condensers: are on the underside of the same plate, as clese as possible to the eoil sockets. The neutralizing trimmers mount directly on the stators of the tuning condensurs.

The power supply uses two small (i,3-volt filament transformors wirod "hatk-to-hatek," a selenium rectifier, two small filter condensers, and a resistor in licu of a choke. The filament transformers also supply the heater voltage for the 6.56. Fig. 12-33 shows the utility box with all power-supply components mounted in place and wired, ready for use.

Adjustments

The amplifier must be ucutralized before operation cath be checked. This may be done in 1 wo ways. The noutralizing trimmors should be set near minimum capacitance and the
tuning-condenser gatng turned through its entire travel, white listening on the receiver with which the amplifier is to be used. The output terminals of the amplifier should be connected to the antenna terminals of the receiver by a short lenglh of $300-o h m$ line, and an antenna

Fif, 12.31 - Nhematie diagram of the 3-band r.f. prramplifier.
 hund BF(:-12). Flexible coupling is National type TX-10.
($\mathrm{O}, \mathrm{C}, \mathrm{C}-3-30-\mu \mu \mathrm{fd}$. mica trimmer.
($\because-40 / 40-\mu \mathrm{fd}, 150$-volt electrolytic.
(: 0 - $1000_{-\mu \mu \mathrm{fd}}$ mica.
$R_{1}-17$ shmes.
$\mathrm{K}_{2}-220$ ohma.
$\mathrm{R}_{3}-\mathrm{I} 000$ ohms.
$R_{4}-0.1$ megolim.
Si-S.p.s.t. togyle.
SK—Selenimm rectifier (Federal $1(0 \leq 1): 31 ; 0)$ A).
${ }^{\prime} \mathrm{I}_{1}$, ' I_{2} - 6,3 -volt l -amp. fitament transformer (Mcrit J-29(1).
of the type normally used for the band in queslion should be attached to the preamplifier. If no antemat is available a carbon resistor of the value of the lime impertance ($75,300,500$ ohms, ete.) should be connected aeross the amplifier input terminals. Moving the neutralizing trimmers ather way from the proper setting will cause the (6.J 6 to oscillate, as indieated by excessive noises in the receiver. Best operation will be had with the trimmers at the mid-

COIL DATA FOR THE 616 PREAMPLIFIER				
Band	. n^{+}enn	firid, IL 1	Plate, L:	'output
$2 \times \mathrm{Mc}$.	3 t. No. 14 r . 3 -inelh dia.inside L_{t}.	11 t. No.n. 24 t'.. r.t. $5 / 8 \mathrm{inch}$ long.	Same as L_{i}.	it t. No. 18 e . $3 / 8$-ineh dia. inside L_{2},
50 Mr .	1 t. No. $1^{18} \mathrm{c}$. Bib-iuch dia. inside L_{1},	6) t. No. 24 c ., e.t., 5 íc inch loug,	Same as L_{1}.	fit. No. 18 e. Fis-inch dia. inside L_{2}.
HtMe.	2 t . No. $1 \$ \mathrm{e}$. ${ }^{2}$ ifind dia. Insert hetwert sections of I_{1}.	2 t. No, 18 t . each side of c.t.. 5itionch dia,. $8 / 8$ inch loug.	Same as L_{1}. but $3 / 6$ inch lous.	3 t , No. 18 e . 'ineh dia, Insert betweell sections of L_{2}.
(. Amphenol $5 t-5 \mathrm{H}$). The $1 \mathrm{H}-\mathrm{Mr}$ - conils are air-wound, using cut-down forms for bases.				

Pif, 12-32 - The: r.f. portion of the 3 -band preamplifier is monnted on the acoer plate of the utility box.
point between the settings at which oseillation starts. If the normal minimum eapacitance of the trimmers is too high to permit neutralization the movable plates should be cut down in size.

The most effective check for neutralization is had by inserting a burnedeout $6 . J 6$ (or ond with a heater prong cut off) in the sorket and adjusting the trimmors for minimum response while listening to a stroug signal. With some care it is possible fo find at setting that holds for all three bands, but the adjustment should be made for the band on which best wak-signal reception is desired.

No provision is made for padding the coils, so the inductance should be close to the eorrect value. This may be checked by inserting

Fig. 12.33- Powrexipply components of the preamplifier are monted on the walls of the utility box.
an iron core into the plate and grid coils, one at a time. If an incorase in signal results the inductance of the coil in question is too low. . A varions antemats and reeceiver input rircuits may refleet difforont loads back on I_{1} and ha this cherek should be marle with the receiver and altemat with which the amplifier is to be usad.

The coil and rondenser values given represent a compromise for threo-band uperation. If such a promaplifier is 10 be used for $1+4$ Me, only improved results ran be achieved by using variathe dondensers of lower minimum capacitanco and climinating plug-in coils. The redured eireut capacitane thus ohtained will permit the use of more affietent coils for the 14.t-Mr. hathal.

CHAPTER 13

V.H.F. Transmitters

Beginning with the v.h.f. region, amateur frequency assignments are not in direct harmonic relationship with our lower-frequency bands. This fact, coupled with the necessity for extreme care in selection and placement of components for low circuit capacitance and minimum lead inductance, makes it highly desirable to construet separate gear for r.h.f. work, rather than attempt to adapt for v.h.f. use a transmiter designed for the lower amatour frequencies.

Transmitter stability requirements for the $50-\mathrm{Mc}$. band are the same as for lower bands, and proper design may make it possible to use the same rig for 0 on, 28, 21, and even 14 Me., but incorporation of 50 Me , and higher in the usual multiband transmitter is generally not feasible. Rather, it is usually more satisfactory to combine 50 and $14 t$ Me, since the two hands are close to a third-harmonic relationship. At least the exciter portion of the transmitter may be made to cover the reguirements for bot h these bands very readily.

Though no stalility restrictions are imposed by law on operation at $1+4$ Me and higher amateur bands (other that that the entire amission must be kept within the limits of the band in question), experiener has demonstrated the value of using erystal control or its equivalent for at least homestation operation in the e-meter hand. When large numbers of stations flock to a $w, h . f$. band, as occurred in the first months of operation on 14t Me., surere interference soon develops if unstable transmitters and broadband receivers are employed. Conversion of this activity to crystalcontrolled transmitters and reedivers having the minimum handwidth neerssary for voire communication makes it possible for hundreds of stations to operate without undue interference, in the same band which appeared overreowded with only a dozen or so stations working with inferior gear,

The use of narow-band eommunications s.rstems also pays off in the form of improved efficiency in both transmitter and receiver. It is this factor, perhaps more than the interference potentialities of the wide-band systems, which makes it desirable to employ advanced terhniques at 220 and even 420 Mc. Stabilized transmitters for 220 Mc , are not too difficult to build, and their use at this frequency is highly rooommended.

Construction of multistage rigs for 420 Ne . is not easy, and the choice of tubes suitable for this type of work is quite limited, but the
adranced amateur who is interested in making the most of the interesting possibilities afforted by this developing field will be satisfied with nothing less. The t20-Me. band is much wider than our lower v.h.f. assigmments, however, and interference is not likely to become a limiting factor in this batad for a long time to come. Thus it may be more important, in many localities, to get aetivity rolling with any sort of gear, leaving perfection in design to come along as the need develops.

At 420 Mc . and in the higher amateur assignments most standard tubes cannot be used with any degree of success, and special tubes designed for these frequencies must be employed. These types have extremely-close electrode sparing, to reduce transit-time effects, and are eonstructed with leads having virtually no inductance. several more-or-less conventional tubes are now available which will operate with fair efficiency up to about 500 Mc., and the disk-seal or "lighthouse" variety will function up to about 3000 Me . with specially construeted circuits. Above about 2000 Ma. the most useful vacuum tubes are the klystron and the magnetron. These are essentially one-band devices, the frequency-determining cireuits being an integral part of the tube itself. 'Tuning over a small frequency range, such as an amateur band, is possible, usually by warping a built-in cavity, but the tubes are not independent of frequency in the conventional sense.

Frequency modulation may be used throughout the v.h.f. and higher bands, wide-band amission bering permitted above - 2.5 Mc . and narow-band FM above 51 Mc. Where suitable receivers are available to make best use of such emissions, either wide-band or narrowband FM can provide effective v.h.f. communication, and the latter is becoming increasingly popular, particularly in congested areas, where its freedom from broadeast interference permits operation under conditions which would be prohibitive for amplitudemodulated transmitters of any appreciable power.

In areas where there is television service in operation, the v.h.f. enthusiast must guard against interference to television reception. One way of keeping TVI to a minimum is the use of low power in the driving stages, building up the power level only after the operating frequency is reached. Extensive shielding and filtering, covered in other chapters. may alon be required.

A 400 -Watt Transmitter for 50 and 144 Mc.

A high-powered transmitter for usio of obl two most-popular v.h.f. bands presents some knotly design problems. It is not always easy to develop satisfactory drive for the higher band, and an offociont hand-changing system for a $1+4-M \mathrm{C}$. amplifier radls for something better that the ordinary plug-in coil arrangement. These two factors wore prime considerations when the all-tetrode rig for 50 and 111 Nr. shown in Figs. 13-1 to 13-7 was haid out.

The expiter has separate output stages for the two batuls, climinating the nererssity for driving the final sage with a frequener multiplier on the higher one. Efficient operation of the final stage is at ained with a novel form of bank cireuit that avoids the use of a plug-in
 has practically the same over-all dfferency as would to obtainable if it were dexigned for ather band alone.

THE EXCITER

Though the two units were intended for use logether as a complete foowath transmiter, as shown in the fomposite photograph, the exeiter portion may be used as a low-powered oramminter by inself. As all exuter it has the
virtue of providing uniform drive for the final on both hands. Other points of interest inchude quick band changing, erystal switching, $V F()-i n p u t$ provision, low power consumption, and fredom from critieal adjust ments.
'The circuit diagram of the excriter is given in Fig. 13-3. The GARS Tri-tet wisillator employs a fixed-tuned cathode cirenit, Cos L_{3}. Thu palle eireuit, $1_{1} L_{1}$, tumes $2+t_{0} 27 \mathrm{Me}$, the uscillator triphing when 8-Mc. crystals are used and quadrupling with 6-Mc. ervitals. Five erystals are provided for by the switching eircuit, and a sixth position of the switch conneres the fillise grid to a tuned eircuit, $\left({ }_{5} L_{1}\right.$, which is in turn link coupled to the VForinput jack, J. Switeh No. grounds the mathote of the oseillator tube when VPO input is wisel. The serond ti.AR5 is a frequency doubler with its output link coupled to an 832.1 am-plifier-tripler cireuit.

As a straight-fhrough amplifier at 50 Mc . the 832 A use's a low-value grid resistor, R_{5}, cut into the circuit by switeh $\mathrm{S}_{3 n}$. A highresistance grid-leak, R_{h}, is picked up by S_{3} when the tube is operated as a frequeney tripler to 144 Me. Tube and circuit capacitance resonate the grid coil, $/$ ss, at approximately f! Me, Jacks I_{2} and I_{3} permit metering of the grid and the cathode currents with J_{3} also serving as the bering jatek for c.w. work at 50 Ne. Theo plate rireuit uses plug-in coils with the output link-coupled to the timal hy metnes of L_{11} in the jo Me. coil. At 14.4 Me., output is caparity-coupled to the 2-metor output stage by andensers (${ }^{\prime \prime}$ is and ('16. The 144-Nle. stage, also ann 832. h, has grid and cathode jacks as in the previous stage. It is made active by applying heater voltage through S_{31}.

Power wiring for the unit is shown in the lower section of Fig. 13-3. Power for the exciter is fel through a i-prong male receptawhe I t-prong femate reventacho promits taking out hoater and patte voltages for an external VFO. ('hathing from VFO to

[^5]Y゙is, 1.3-2 - 1 rear siow of the A. an- and 14.1. Ho, cesiter. Verose lhe tep of the rhasesifrom risht to left. are the ers-tal weshetto. the woithator and dombler tuleo. the 832 I ampli-tier-tripler and it- Mate conil. and the inverted H1-We, amplitier -tage, (irsstal sorhets, therd as r,f, output terminats. are momited ons the rear wall of the ehassis along with the power muge and the blament trandermor.

rryatal opration is done by momas of the reretal switch and $S_{2, t}$, b.

Higher phate voltage is appliod to the 144-Me, amplifier than is used with the other three circuits, making the output on $1+4$ Me. comparable with that of the $50-$ Me, amplifier.

Construction

The exciter is built on a motal chassis measuring 3 by 5 by 17 ithehes. The aluminum latek panel, $1 / 8$ by $83 / 4$ by 19 inches in size, is held in plate be the monnting mats of the various eontrols.

1hate tuning comdensers for the oxeillator athd the doubler ate mounted on the front wall of the ehassis. These two controls are hot with +300 volts and must he insulated from the chassis, Bakelite tuning knobs without metal dial phates protert the operator.

The amplifier-tripher eiveuit, located at the lefterenter of the whassis as aren from the rear view, has its phate coil monnted om a National type X 8 -16 socker. Fhied loraid is used for the combertions butwern the eroil socket and the 832A phate caps, while Twin-lead is wived betwern the output link and the output terminals. The tube is submomered on a dohntson shiedded sorket, 'Type 122-101, and the phate tuning combenser, ('3, is mounted to the loft of the tube socket on all aluminum bracket.

The $1+4-$ Me amplifier has the shiedded tube socked mounted in an inverted position. The grid chokes, $R F^{\prime}{ }^{\prime}$ sand $R F^{\prime} \mathbf{C}^{\prime}$, ate mounterd hertwen the socket terminals and a lie-point stip which is in turn mounted on the metal part of the sorket along with the button-tyer by-pass condensers. The coupling condensers, (${ }^{\prime}$ is and (${ }_{16}$, are bet ween the tube socket and the amplifier-tripler phate coil socket. Millen No. 32150 through-bushings, set in the chassis to the left and rear of the tube socket, pass d.c. and heater leads for the 832.1 .

The bottom view of the exciter shows the plate tuning comdenser, (${ }^{\prime}$, mounted on the and wall of the chassis just below the two-
terminal tie-point strip which supports the output link, L_{22}. A heavy eopper strip is used as the ground lead for the rotor of the tuning condenser. The seren-dropping resistor is mounted on a tie-point strip located on the rear wall of the chassis.

Testing

lowar-supply requirements for the exeiter will depend on how the unit is operated. If it is to sorve as a low-power transmit tor, the supply med deliver only 300 volts at approximately $1-5$ mat. For exciter service, 1 wo supplies ate reeommented - obe delivering 300 volts at 125 mat, and one fumbining ton volts. at 100 mat, the datter te be used on the seremed 832A. The filament transformer must deliver 6.3 volts at t amp. in cither case.

If oproation with a VFO not having its own supply is contemplated, the power-supply rapabilities should be ineroased to meet the extran requirmomes. When the V. H, F, Man's VFO, Figs. 13-8to 13-10, is used it increases the heater load by 2 amp. and the platerourrent drain by appoximately 60 na

Performance of the oseillator and the donbler eireuits should be ehecked first. This is tone with the plate and sereen voltages removed from both 832 siages, and with a low range milliammeter plugged in J_{2}. The ascillator eathode swit ch should be opened. Trablo 13-I will assist in the selfection of a crystal for the desired output frequeney, and shows the

TABLE 13-I				
Crysfal	Oreillator	Doubir	Amplifier-Tripler	Amplifier
5250	25	30	50	
5650	27	54	54	
8333.4	25	50	50	
9000	27	54	54	
6000	24	48	144	144
6166.6	24.6	49.3	148	148
9000	24	48	144	144
9222.2	$\underline{24.6}$	49.3	148	148

(: (:4-2.)-unfel.-prer-section split stator (Bud I.C
$(s-2=-\mu \mu \mathrm{fil}$. midget mira.
(:fi. (:10-100- 10 fil, midget micat
C. C C. (iя - 0.(W)
(; $-68-\mu \mu \mathrm{fd}$. miea.

Cis, (:10-10- $\mu \mu \mathrm{fd}$. midget mivat.

R_{1} - 1.12 memohm. ${ }^{1 / 2}$ watt.
$122-15,050$ ohms, 1 watt.
$\mathrm{R}_{3}-17,000$ ohms, $1 / 2$ watt.
$R_{4}-23,000$ ohms. 1 watt.
$\mathrm{R}_{\mathrm{s},} \mathrm{R}_{8}-2,2,(\mathrm{MN})$ ohms. $1 / 2$ watt.
R $R_{1}-0.1$ megolim, $1 / 2$ watt.
$\mathrm{R}_{5}, \mathrm{~K}_{9}-25,0(\mathrm{~N})$ ohms. 10 watt .
l:, 18 turns No. 21 conam., 3 s inch long, 1 -inch diam.

 rind of $/ \mathrm{A}$.
1.3 - 11 turns No. 20 timued, ${ }^{\circ}$ imohlomg, ${ }^{2}$ x-inch diam.

 Vote: 13 \& $\mid 1$ Miniductor Do. 300% used for $L_{3,} L_{A}$ and L.
1,6, I. 7 - I'no-turn roupling links.
L\& - 18 turns. Xo. 20 rnam.. ${ }^{5}$ itwh lonk. 1 - inch diam. L. in Vic:: 1 turns No. 20 cnam., $3 / 4$ inh homg, $1 / 4$
 inch diam. Xational type

- 114 Mr.: 1 turns No. 11 tinned, $\overline{/}$ ineh long, $1 / 4$-inch diam.
1.10-50. Me, output link: 2 turns Vo. 20 cnam., wound aromid L.
lal - turns No. 12 timed, $5 / 8$-inch diam., wound in
(wor sidetimus with two turns cach side of center tap anll a w-imel space at comter, tirns spaced wire diam.
I. 12 - 1H. Mc. output link: 2 thrna No. 14 tinned, 3 - inch dian., turns epaced wire diam.
J_{1} - Covaxial-rable ronneretor
$\mathrm{J}_{2}, \mathrm{~J}_{3} \mathrm{I}_{4}, \mathrm{~J},-\mathrm{Clnsed}$-circuit jachs.
for-prong male recriparle.
IF-1-prong female receptarle.

So-g.position selectur nwitch (A
Sua, Su- D.p.a.t. togate swith.
T_{1} - Filament tranaformer: 0,3 volts, 6 amp. 3 soe text.

Fig. 13-1- Bottom view of the v.h.f. ex. citer. 'The VFO input coil in at the left end of the ehassis. llate coils for the oseillator. the doubler and the $11.4 . \mathrm{Mc}$, amplifier circuits are mounted on the tuning condenaer. The grid coil for the amplifier-tripler stage imounted on the tulberorket terminals.

frequencies to which the varions eirenits should be tumed. With plate voltage applied and with the doubler tuned to resonamere, the grid current of the 832 A should be approximately 7 ma. when an 8-Mc. crystal is used. (irid current will be 5 or $(\mathrm{f}$ ma. with a 6 . Me. crystal. Total cathode current for the two (6.ilins should be 50 ma. Normal sereen voltage for the oseillator and the doubler tubes is about 230 and 200 volts, respectively.

The 832 A may now be tested at 50 Me. This requires a 100 -ma, meter in the eathode dircuit and a lo-watt lamp coupled to the output terminals. When the phate cireuit is tuned to resonanee, the grid current showhd stay up around 5 man, the rathode current should dip to about 65 ma., and the lamp should indicate an output of i_{j} to 8 watts. i sereen potential of 160 volts is correct with the amplifier loaded. The plate current should rise noticeably and the grid eurent fall to zern when excitation is removed. This last test must be one of short duration.

To check the 14t-Mc. stage, plug in the 2 meter eoil at L_{11} and apply the heater voltage through $S_{3 i n}$. Grid current for the amplifier will be around 3.5 ma. A recheck of the tripler should show a grid current of 1 ma, and a cathode current of 55 to 60 ma .

Witha 400 -volt supply connered to the amplifier and with the dumme load across the 14t-Mc. out put terminals, 6 to 8 watts output should be obtained with an 832A cathode current of approximately 65 ma. (irid rurront
should be 3 mata and the screen voltage should measure 170 volts. A short test for self-oseillation should be made by removing the excita1 ion.

The general method of tuning does not change when a VFO is used as the frequencycontrol mit. However, it is important that the oseillator cathode switeh be closed; otherwise the oseillator cireuit will take off on its own.

It is reeommended that a calibrated wavemeter be used to cherek the tuning adjustmonts, particulamy those associated with H1-Ma. operation. There are numerous out-of-hand harmonies from the low-frequeney cessals and the high ordar of frequeney multiplieation. Be careful to choose the proper harmonies in the first two stages.

- THE POWER AMPLIFIER

("ustomary plur-in coil arrangements are not well adapted to use in high-power 144-Mr. stares. The lead inductance and parallel caparitanee inherent in the best jack bars and foil bases have almost nothing for the coil itself, with the result that efficient operation is all but impossible. The 144 - Mc. tank circuit used here is, however, practically as effeetive as if it were designed for one-band operation. When the amplifier is used on $1+4$ Mr. the phate circuit operates as a conventional tuned quarter-wave lime. Ja changing to 50 Me. it is merely neessaly to remove the shorting bar, rhane the erid coil, and pluy the 50-Mr.
fig. 13.- - Rear view of the $1-0.1$ amplitier, showing the two-hand tank circuit set up for io) $\mathbf{\text { Br }}$ © operation. K.f. input terminals are on the rear wall to the left and receptarles for thi. nower leads are to the right. The 141- Mc. output terminals are on a brachet to the left of the protective tube. The E0.Ne. output terminal is monnted direetly on the N13.15 worket for the plate coil. A phak-in shorting har, used across the plate lines at 144 Mr... is shown in the foregroustad.

A V.H.F. Man's VFO

Though a VFO is considered to be an almost indispensable part of an amatrur station for lower freqummes, v.h.f. oneration is still carried on mainly with crystal control. This is largely because of the relatively lower ocenpancy of the v.h.f, bands and the freedom from interference problems which results. It is also, in part, the result of the fart that, as we go higher in frequeney, it beommes more diflicult to generate an entirely satisfactory signal by means other than with crystal control.

With proper attention to the well-known factors affecting oscillatorstability a frequency control unit for s0-, 40 or 20 -meter use can be built with a minimum of complications, hut many a signal which sounds aeerptable on these frequencies beromes quite fuzzy hy the time it is multiplied to the v.h.f. bands. Even on 10 meters it is not too case to obtain a pure d.e. note, esperially when the oseillator frequency is modulated for hatrow-hand F.M.
The frequenerocontrol unit deseribed horewith has a degree of frequenery stability that is adequate for the high-order ferquency multiplication reguired in v.h.f. servier, and the design of the atudio portion is such that litule or no hum is int roduced in the reactaner-modulation process. 'The unit has the reatiane-modulator and sperech amplifier built in, the gain of the latter being only just anough to provide sufficient deviation for 10 -metor XFM, Much of the hum present on some FM signals comes from the use of axcossive spereh gatin, or haywire patching systems in order to utilize the speech equipment in some other portion of the transmitter.

This unit, shown in Figs. 1:3-s-1:1-10, was designed with the needs of the v.h.f. mam in mind. Since many v.h.f. operators alse work on 10 and 11 meters the oscillator tuning range was extended to include these bands, as woll as 2 and 6 meters. The actual output frequency of the VFO is 6.74 to 9 Mc. It is designed to
sorve as a crystal substitute, and may be plugged into the erystal socket of any transmitter employing crystals falling within its thong range. Thus, though the dial is eatibated only for the hands from 11 to 2 meters, the unit may be used on 40 or 20 , or on portions of the higher v.h.f. bands that are in harmonic relationship with the output frequener. The output is suffieient so that the unit maty also be used as a driver for a bowpowered amplifier or frequency multiplier Whose grid circuit is on that frequency. It also includes a reactance modulator and speech amplifior, providing narrow-band F'M on 27 Me. and higher frequencies with only the addition of a crystal microphone.

Two 6.d(i7s are used in the r.f. portion. The first is an oscillator-doubler employing the highly-stable Clapp oscillator, the operating frequency of which is 3370 to tion ke., doubling in the plate direuit. The serond is an amplifire opreating on 6.74 to 9 Me. By means of separate padders switched in by a front-panel eontrol, a reasonable amount of bandspread is provided for each of the four bands from 2 to 11 meters. The 50 - Me. band covers 55 divisions on the vernier dial, 144 Mc. is covered in 25 divisions, the 10 -meter band occupies 80 divisions, and 11 meters 20 divisions. By proper setting of the padders the 2 - and 11 moter ranges can be made to come at the opposite conds of the National MIC' dial, leaving the two other spaces on the dial card for the 10- and 6-meter calibrations.

Frequency modulation is acomplished by means of a reatance modulator and a speech amplifier, both using 613Ati miniature tubes. Deviation of the oscillator frequency is approsimately 500 cyeles, providing alequate swing for 10 -moter NFM as a result of the eight times multiplication. I deviation of approximately 10 kc . is possible in the 6-meter hand, and as much as 30 ke , on 2 meters. This greater

rig. AB+8--13:all viaw of the v.h.f. VFU wislı NFM modulator.

Fip. 13-9 - Circuit diagram of the NFI comtrol unit for v.lo.f. use.
$\mathrm{C}_{1}-3.3-\mu \mathrm{fd}$. variable, double spaced (Millen 2193.5).
$\left(\therefore 2, C_{3}-10(0)-\mu \mu \mathrm{fd}\right.$. variable (Millen $2(100)$.
 (Millen 27030).
C: $-33-\mu \mu \mathrm{fl}$. silver mica.
© - $10-\mu \mu$ fll silver mita.
$\mathrm{Cin}_{11}, \mathrm{C}_{12}-680 \cdot \mu \mu \mathrm{fd}$. silver mica.
(.13-68- $\mu \mu \mathrm{fd}$. silver mica.
$\mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{17}, \mathrm{C}_{14,} \mathrm{C}_{19}, \mathrm{C}_{21}, \mathrm{C}_{22}, \mathrm{C}_{23}, \mathrm{C}_{24}, \mathrm{C}_{22}-11.111$ - ffl . 400 -volt paper.

C $23, \mathrm{C}_{26}-\mathrm{t}_{\mathrm{i}}-\mu \mathrm{ff}$. mica.
$\mathrm{R}_{1}, \mathrm{Rg}_{9}$ - 0.1 megohm, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{R}_{10}$ - $10,($ (Кк) ohms, $1 / 2$ watt.
$\mathrm{R}_{3}-\mathrm{I}_{7}$ chmen, $1 / 2$ wall.
\mathbf{R}_{4} - 330 ohms, 1 watt.
$\mathrm{R}_{5}-15, \mathrm{NHO} \mathrm{ohms}, 2$ watts.

swing is useful on 144 Me., where a considerable number of relatively-broad recoivers is in use. The deviation is controllable to any required value below this, by means of the potentiometer, K_{8}. A switeh is provided in the heater circuit of the spereh section (So) so that this portion of the unit can be cut off when c.w. or amplitude modulation is being used. As operation of this switeh atfects the oscillator frequency appreciably it is usually preferable to leave the speech-section heaters on at all times, using the deviation control at its off position when emissions other than NFM are being used.

The arrangement of the parts should be clear from the photegraphs. The top view, Fig. 13-8, shows the microphome jack and
$\mathrm{H}_{\text {; }} \mathrm{H}_{13}$ - 0.22 mekohm, $1 / 2$ watt.
$R=-0 . \overline{-}$-megohm potentiometar.
$R_{11}-0.17$ mekolin. $1 / 2$ watt.
$R_{12}-170$ ohms, $1 / 2$ watt.
R_{14} - $\overline{\mathrm{E}} \mathrm{I} 00$ ohms, 10 watts.
$L_{1}-24$ turns Vo. 22 timed wire, diameter $11 / 2$ inches, length $1^{1 / 8}$ inches (BN W 80 JCL, with 18 turns remaved).
$\mathrm{I}_{2}, \mathrm{~L}_{3}-14$ turns Vo. it e. wire, diameter 1 inch. length $3 / 8$ inch: wound on Millen 5.500 form. $1.4-3$ turn No. 24 e. chone woond at botomend of I_{3}. J1, I_{2} - Coaxialocable jack (Iones S.101).

S_{1} - Amosition progresiveoshorting swith (Contralab (id modified: sere tevt).
s_{2} - S.p.s.t. toggle swith.
heaterswitch at the right end of the panel. The deviation control, bandswiteh, oscillator-plate and amplifier-plate tuning controls are in line ateros the bottom of the pancel. The oscillator frequeney setting is controlled by the vernier dial. Looking the the top of the chassis the two bidurs may be seen to the left of the tuning condenser, the first being the oscillator tube. The oscillator tank coil, L_{1}, is mounted on stand-offs, just in baek of the 6A(izs. Twometal brackets are used to mount the tuning condenser, which should be the double-ended variety for greatest mechanical stability. The reactanee-modulator and speech-amplifier tuhes are at the right of the tuning condenser, with the regulator at the rear. The chassis is a standard $3 \times 0 \times 10$-inch size and the panel is

6 hy 11 inches. I $5 \times 10-\mathrm{inch}$ ahuminum phata with clearame holes for the trimmer atjustments, is attached to the hotlom or the ahasesis.

The arrangement of components under the chassis is apparent from the bottom viow, Fig. 13-10. The bandswiteh and associated padders are at the middle, with the oseillator plate coil. Ther amplifier plate coil is at the left, The padder emolensers are mounted with their grounded terminals soldered to melal pillats, in order to redure semsitivity 10 vibmalion to : minimum.

The bandswiteh requires some motifieation. In its original form it has a disk which shorts out all unused contarts. This disk must be cut through the center so that one half may be removed. As maty be sem from the wirimg diagram, Irig. 13-9, the conneretion betwern the oscillator coil athe the switch is made to Number 1 terminal, rather than to the reqular wiper contate.

The power supply for the VFO should be well filtered and capable of delivering 300 volts d.c. at 60 to 70 mit., and 6.3 volts at.e, at 1.9 amp. Socket voltage measurements are approximately as follows: 20 volts on the atudiotube sereens, 150 volts on the tide it sereens, 40 and 150 volts, respectively, on the speerhamplifier and reattance-modulator plates, and 300 volts on the $6.1\left(\begin{array}{l}7 \\ \text { plates. Cathode current }\end{array}\right.$ for the oscillator should be about 10 ma., and the output stage, at resonanere, 30 ma .

Calibration and Use

Calibration of the VPO dial can be accomplished with the aid of a receiver having an areurate dial calibration, as the reatings on the VFO dial should not be relied upon for hant-edge opration. The so- Da, range, requiring the least padder capacitance, should be calibrated first. Padders r's and rews sed at nearly full eapacianer will provide the corvert tuning range, which should be appoximately 5is divisions spread over the midethe of the diat seale. The 141 -, 28- and 27-Mr. ranges should be calibrated in that order, their spread on the dial being approximately $2.5,80$ and 20 divisions respertively. It the NFM portion of the

mit in to bo used extensively it is recommended that the eatibuation procedure be ratried out with the reactaneemombator heater on, as this tube afferes the calibration apprectiably.

When adjusting the plate cireuits of the oscillator and amplifier stages it is recommended that the approximate settings of these controls for the middle of the band in question be marked on the panel. It will then not nomally be necessary to readjust these controls when shifting frequency within a hand. This broad-band effert is arcomplished by slightly overdriving the amplifier tube at the center frequeney, causing the sereen voltage to dropand rechece the output. Tuning away from the center frequeney reduces the drive and allows the sereen voltatre and output to riso, Wore than mough output is thus obtamable over the entire batad, without too great a variation for proper operation of the suecerding stage. Two 250-ma. pilot lamps in parallel make a satisfactory dummy load for the amplificr.

Next the operation of the reactance modulator should be cheeked. The procedure for this operation is deseribed in detail in Chapter Nine. It shouldalsobe pointed out that there is no excuse for radiation of an improperly-modulated FMI signal, since it can be monitored radily in one's own reeoiver. With the reoriver in operation on the band in which the transmitter is to be used, but with only the VFO turned on, it is a simphe matter to tell exactly how the signal will sound on the air. Deviation reguirements vary with different recoivers, but a safe starting point is to set the deviation control so that the sigmal sounds well on a communications recaiver with the erystal filter in the broadest "on" position.

Ordinarily a mit of this type may be used to replate the erystal shage of an existing transmitter bes simply plugging it into the erysal socket. Theoutput couphing is a low-impedance line, howerer, and it may be connected to a link winding on the grid eoil of any low-power stage whose tuning range is 7 to 9 Me. Although it is shown calibrated only for the frequencies above 27 Me., it maty be used as a e.w. exator for 7 - ol $1+-\mathrm{Mc}$. work. The deviation may, howevor, be int sufleient for 20-mberr NFM operation. Output. at 7 to 9 Me., is about three watts.

Pig. 13.1" - Bottom view of the VFO.

A Simplified Exciter for 50 and 144 Mc.

Through the use of a special crystal-oscillator eircuit, by means of which standard lowcost crystals are made to oscillate on their third harmonic in a simple triode regenerative oscillator, the transmitter-exciter shown in Figs. 13-11, 13-12 and 13-13 provides output on 50 and 144 Mc. with only two tubes and simple circuits. A dual-triode oscillator-multiplier is used, the first section oscillating on 24 to 27 Mc., depending on the frequeney of the erystal, which may be anything from 8 to 9 Me. The serond section doubles to 48 to 54 Me., providing more than enough output to drive an 832 amplifier or tripler. Plug-in coils are used in the 832 plate circuit, to permit output on 50-54 Mc. or 144-148 Mc. Output on the lower band is 20 watts or more, with three to five watts available on the higher frequency.

The rig may be modulated on 50 Mc., in fither portable or fixed-station service, but it should be used as an exciter only for 144 Mc. The power output on the higher band is sufficient to drive another 832 or 829 stage, the design of which might follow that of the 829 amplifier deseribed later in this chapter. It may also be used to drive a $50-\mathrm{Mr}$. amplifier such as that in Fig. 13-6.

A standard 5: $\times 10 \times 3$-inch chassis is used, with the oseillator-multiplier components mounted below the deck and the 832 platerircuit components above. A power-switching arrangement is included to permit use of the rig as a complete transmitter for a) Mc. or as an exciter for an additional modulated stage on $14+\mathrm{Mc}$.

The Harmonic-Oscillator Circuit

Design is conventional except for the ossillator cireuit, the key feature of which is the feed-back arrangement in L_{1}. The portion of the coil below the tap determines the proper functioning of the oscillator, the correct position of the tap being approximately one-third up from the erystal end of the coil when at $6, \mathrm{Jt}$ is used. With other dual triodes it may be necressary to alter this materially

If too much inductance is included in the tickler portion of the coil the tube will oscillate at a frequency determined by the setting of C_{2} rather than by the erystal. When the unit is ready for test the ascillator stage alone should be ehecked first. With a low-range milliammeter inserted temporarily in series with the multiplier grid resistor, R_{2}, about 150 volts should be applied to the oscillator plate. Rotate C_{2} until grid current appears, indicating oscillation, the freduency of which should the eheeked in a calibrated reeciver. Changing the setting of C, should not cause an appreciable change in the frequency of oscillation, and the crystal will oscillate only over a part of the tuning range of the condenser and at no otherepoint. If the oscillator frequency shifts widely, indicating uneontrolled oscillation, the tap is too high on L_{1}. If the tap is too low the $6 . J 6$ will oscillate weakly or not at all, and will refuse to start when the eondenser is funed near the point of maximum output, as indicated by the grid-current peak in the succereding stage.

It should be noted that pulling the erystal out of its socket is mot a satisfactory check for uncontrolled oscillation, as the eapacitance of the erystal and its holder is required to complete the feed-back circuit.

Provision is made for measuring the grid and cathode current of the amplifier stage by means of J_{1} and J_{2}. The former is insulated from the panel, and connected in reverse, so that the meter leads need not be reversed in changing from one jack to the other. When the rig is operated on 50 Mc. the grid current in the 832 need not be more than 2 ma., and this amount of drive can be furnished by the 6.J6 with 150 volts applied to the junction of K_{1} and R_{4}. Amplifier cathode current, with no load, will be about $3 \overline{5}$ ma. at resonance, with a 400 -volt supply. It may be loaded up to athout 70 ma.
li $1+4$-Ne. output is desired, the final stage should not be operated at more than 300 volts or so, but at this level it will provide more than

Fin. 13-11. The twortube exriter for 50 and $1+1 \mathrm{Vr}$. The e-meter coil is plogged into the output stame. with the 6 -meter one in the right forsyround.

Fig. $13-12$ - Schematic diagram of the s-tube v.h.f. rig. 'The power-switehink arrangement shown provides for later aldition of a 1.14- Mr. amplifier stace.
(i $-680-\mu \mu \mathrm{fd}$. mica.
(2 - iol $-\mu \mu \mathrm{fd}$, variahle.
(:3-15- $\mu \mu \mathrm{fl}$. veramio.
(24 - 20- $\mu \mu$ fid.-per-setion split-4tator, marle hy sawing the stator hars of a Millen $2(10$ ald and remowing center llate.

C:- Cs - $\mathbf{~ (M)}-\mu \mu \mathrm{ff}$. ceramir
(is - 6- $\mu \mu \mathrm{fd}$.-prexedion split-stator (Millen 21006 D).
R_{1} - 4.0) ohms, $1 \frac{1}{2}$ watt.
R_{2} - $33(4)$ ohmen, 1 watt.
$\left.\mathrm{K}_{3}-4 \overline{7}, \mathrm{~m}\right) \mathrm{l}$ ohm $=$, 1, walt.
R_{4} - 3310 H ohthe, 1 watt
H_{5} - 29, (HNO ohnis, I watt.

I.1-I4 turns \ı. 18. ${ }_{2}{ }_{2}$-inch diatn.. I inch long. tappeal at $11 / 2$ turns.
enough output to drive another 8:3 amplifier, or even an 829 . For 144 - Mc. use the whole unit may be operated from a single 300 -volt supple, the additional voltage on the oscillator and doubler being helpiul in securing sufficient drive to make the $8: 32$ triple effectively. It is not reeommended that the $8: 32$ be modulated for 144 - Dle voice operation, as there is not enough drive for operation of the stage as a modulated tripler, and the functioning of such a stage would not be generally satisfactory under any conditions. Grid current, for tripling, should be 4 ma. or more.

In 50-Mce serviee the over-all drain, with at 300 -volt supply, is only about $8 \overline{5}$ to 90 ma, and under these conditions the amplifier delivars an output of about 10 watts, with a total load on the supply of less than 30 watts. On $1+4 \mathrm{Mr}$, the output is three to fire watts.
 center-tapped.
L_{1} and L_{2} made from Barker and Williamson "Miniductor" type 3003.
1.3- 50 Me. - 14 turus No. 14 enamel, $7 / 8$-inch diam., 2 inches long. Link: 3 turns No. 20 enamel, spaghetti-covered.
14 Me. - 2 turns No . It enamel. I ind diam. apaced $1 / 2$ inch. I.ink: $\because=$ turns No. It enamel.
Base anel phos assemblies are National $\$ 18-16$ and l'ls-1t.
J. I 2 - Chused-erenit jack.
 I-wall resistor, or Millen 3130%.
\therefore - I).p.d.t. oroste switch.
A more complete description of the transmitter and the regenerative oseillator cireuit used may be found in QNT for Oetober and November, 194s. The same technique could be amployed to advantage in the construction of an exciter unit for 220 Me., except that the second section of the 6.56 would be operated as a tripher to $7 \overline{5}$. Me., instead of as a doubler to is Me. Wore than enough output would be available to drive another 6.Jias a tripler from 7.) 10 2es Mc.

Another possibility in comnertion with the oseillator eireuit used in this transmitter involves taking off the fifth harmonie instead of the third, Many 7-Me. crystals can be used in this way, taking off the 5 th harmonic from the first triode section, and then doubling in the second. Only an additional doubler stage is then needed to reach $14 t$ Me.

Pig. 18.13-Bottom view of the simplified v.li.f. exciter.

144-Mc. Double Beam-Tetrode Power Amplifier

An amplifier set-tup suitable for use with double beam-tetrode tubes is shown in pigs. $1: 3-1+1,1: 3-1.5$ and $1: 3-16$. The tube in the photographs is an 82), but an 81.5 or 832 can be used in the same layout. The only change that might be required would be in the inductances of the grid and plate coils, L_{2} and L_{3}; these may have to be made slightly smaller or larger in diameter to compensate for the differences in input and output capacitances in the various typers. When an 829 is used, the amplifier is woll suited for use as an outhoard unit with warsurplus transmitters such as the s(Cli-ion.

The amplifier is buitt on an aluminum chassis formed by bending the long edges of a $\bar{s} x$ 10-inch piece of aluminum to form vertical lips $3 / 4$ inch high, so that the top-of-chatsis dimensions are $31 / 2$ by 10 inches. The tube socket is mounted on a vertical alominum partition messuring $31 / 2$ inches high by $31 / 4$ inches wide on the flat faree, with the sides bont as shown in the photographs to provide bracing. The partition is mounted to the rhassis by right-angle brackets fastened to the sides. The socket is mounted with the eathode comnection at the top, the cathode prong being directly groumded to the nearest monnting sorew for the socket. The heater by-pass comdenser, C_{6} is mounted directly over the renter of the tube sorket, extending between the paralleled heater prongs at the boteom and the cathode prong at the top. The sereen by-pass is eonnected with shot leads berwern the sereen prong and the nearest sodket serew

The grid coil, L_{2}, is supported by the wrid prongs on the socket. The two turns of the coil are spaced about one-hadf inch to allow room for the input eoupling coil L_{1} to be inserted between them. The coupling is adjusted by bending L_{1} into or out of L_{2}. The grid tuning condenser, C_{1}, is mounten between the socket
prongs: although the condenser has mica insulation it is used essentially ats ath air-dielectrie condenser since the movathle plate does not artually contact the mida at any woting inside the band. The coupling link is soldored to lugs under binding posts on a National FWG strip. the strip being mounted on metal pillars $1 \frac{1}{2}$ inches high to bring the link to the same height as the grid eoth.

Although the shiclding betweren the input and output circuits of the tube is sufficiently good so that the cirenit will not self-rsallate, tuning of the plate cirenit will react on the grid circuit to some extent beause the grid-plate eapacitance, while small, is not zero. To climinate this reaction it is necessary to neutralize the tube. The neutralizing "condensers" are lengths of So. 12 wire soldered to the grid prongs on the socket. The wires are crossed over the socket and then go through small ceramie feed-throughesat the top of the vertical shidd, progeeting wer the tuhe plates on the other side as shown in Fig. 1:3-14.
(ommertions botween the plate tank condenser, ('z, and the tube phate terminals are made by moans of small Fahaostock elips soldered to short lengths of flexible wire. The tank coil, L_{23}, is mounted on the same condenser terminals to which the plate clips make connection. The output link, $L_{\text {t }}$, is mounted similarly to the grid link exrept that the posts are $17 / 8$ inches high. The plate choke. $R F^{\prime} C_{1}$, is mounted vertically on the chassis midway betwern the plate prongs of the tube, the mounting means being a short marhine serew threaded inter the end of the prowstyrene rod. The "cold" lead of the choke is by-passed by C_{5} underneath the chassis,
supply comections are made through a 5 -post strip on the rear edge of the chassis. The dotted lines between conneetions in Fig. 13-15 indicate

Fin, 13.1.1-. 111. No, amplifier nsing a demble locam tetrode. 'I hi= ty me of ronitrur-

 werliad partition prom vides suppert for thas folve as well as -hicheling betweer the input and output circuitDote the neutralizang "wndensers" frommil by the wires near the thbe plates.

Fig. 33.15 - Circuit of the 829 amplifier fur $14.4 \mathrm{M}^{2}$.
(it - 3-30- $\mu \mu \mathrm{fd}$. ceramic trimmer.
C2, C_{3} - Neutralizing condensers; see text.
(i4- $500 \cdot \mu \mu \mathrm{fd}$ mica, 1000 volts.
(. $5-\mathbf{5 0})-\mu \mu \mathrm{fi}$. mica, $\mathbf{2 . 5 0 0}$ volts.
C. $-470-\mu \mu \mathrm{fd}$. tnica.
(i, -split stator, 15 нufd. per section (Cardwell F.ll-is-Al).
$R_{1}-\$ 700$ ohms, 1 watt.
$\mathrm{H}_{2}-10,000$ ohms. 10 watts.
l. 1 - 2 turns No. 12, diameter $1 / 2$ inch.
$1.2-2$ turns No. 12, diameter $1 / 2$ inch, length $1 / 2$ inch.
l.3-2 turns No. 12, diameter $11 / 8$ inches, length 1 inch.
$1.4-2$ turns No. 12. diameter 1 inch.
$1 \mathrm{KFC}_{1}-1$-inch winding of $\mathbf{N o} .24$ dis.c. or s.c.c. on $1 / 4$-inch dianeter polystyrene rod.
that these connections are normally shortecircuited; leads are brought out so that the gridand sereen currents can be measured separately.

In adjusting the amplifier, the plate and sereen voltages should be left off and the d.c. grid circuit closed through a milliammeter of $0-25$ or $0-50$ range. The driver should be coupled to the amplifier input circuit through a link (Amphenol Twin-Lead is suitable, because of its constant impedance and low r.f. losses). Use loose coupling between L_{1} and L_{2} at first, and adjust C_{1} to make the grid circuit resonate at the driver frequency, as indicated by maximum grid current. The coupling between L_{1} and L_{2} may then be increased to make the grid current slightly higher than the rated load value for the tube used - approximately 12 ma . for the 829 . If the driver is an oseillator.
the coupling between $L_{1}-L_{2}$ should be as loose as possible with proper grid rusrent.

After neutralization, the procedure for which has been given in connection with ot her similar amplifiers, plate and sereen voltage may he applied. If possible, the plate voltage should be low at first trial so there will be no danger of overloading the tube. . Adjust C_{7}^{\prime} to resonanee, as indieated by minimum plate curront (this should be metsured independently of the soreen); with the S29, the minimum plate current should be in the moightrohood of 80 milliamperes with 400 volts on the phate and no load on the circuit. A dummy load such as a bowatt lamp should light to something near full brillianere when the coupling between I_{23} and I_{4} is add justed to make the tube draw a plate carrent of 200 ma. When the loading is set, the grid current should be checked to make sure it is up to the rating for the tube.
Power-supply and modulator requirements will depend upon the particular tube used. For the 829, the phate supply should have an out put voltage of 400 to 500 with a current capacity of 250 milliamperes. With a 400 -volt supply the modulator power required is 50 watts, with ath output transformer designed to work into a 1600-ohmiload; with a 500 -volt supply slightly over 60 watts of andio power is needed, the load being 2000 ohms.

This amplifier may also be used with the s:32 rig deseribed in the proroding pages. The output from the driver stage may be fed into the amplifier by means of a link, if the two units are to be operated remote from one another, or the grid cireuit of the 829 may be arranged to provide direet indurtive coupling to the $\$ 32$, if the two are placed side by side.

Fik. 13.16-Another view of the 114-11e: amplificr. The nemeral. iaing wires are crumed over the eorket before koing through tho feed-through in. sulators. The input circuit is designed for link courding to the driver stage.

Crystal Control on 220 Mc.

Const ruction of a multistage transmitter for the $220-\mathrm{Mc}$. band is not as diffieult as might be imagined, and the serious worker on this frequency will find the use of crystal control or its equivalent highly worth while. Fortunately the crystals used are also usable on 144 Me, cutting down the total cost of building equipment for both bauds, if the crystal frequencies are selected with this use in mind.

The transmitter-exciter shown in Figs. 1:3-17, 13-18 and 13-19 employs (ither 8- or 12-Mc. crystals, and if they are between 8148 and 5222 or 12,223 and $12,33: 3 \mathrm{ke}$. they may also be used for operation in the upper portion of the 14t-Mc. band. By using miniature tubes and components, and by arranging the parts for minimum lead length, efficient operation on 220 Me. is obtained, with a simplicity of construction that puts the equipment well within the capabilities of the average experienced a mateur.

Four 6.J6 dual triodes are used. The first works as a triode oscillator and frequency multiplier, the second section doubling or tripling, depending upon which type of crystal is employed. Tuning is less critical, and the various stages operate somewhat more efficiently with 12-Mc, crystals, but 8-Mc, crystals may also be used. The next two stages are push-pull triplers, and the output stage is a neutralized amplifier. Capacitive coupling is used between stages. The chassis is $21 / 2$ inches wide, 2 inches high, and 12 inches long, with $1 / 2$-inch edges folded over. It may be made from a piece of sheet aluminum $71 / 2$ by 12 inches in size. The first tubo socket is $11 / 2$ inches in from the left end and the other sockets are spaced along the chassis, $21 / 4$ inches center to center. The tuning condensers are spaced equally between the sockets, the last two, C_{13} and C_{27}, being mounted on the top surface of the chassis for minimum lead length and symmetrical layout. Pin jacks, labeled a and b on the schematie diagram, are
mounted on the front wall of the chassis and may be used for metering or keving of the out put stage.

Initial Adjustments

Meter jacks for the individual stages were not considered necessary, as there will normally be few occasions for shifting frequency and retuning, once the initial adjustment of the exciter is completed. For these first measurements the various rireuits may be opened and tests made with a portable meter.

With a meter in series with K_{2}, set the core in L_{1} at an intermediate position and adjust C'e for oscillation, as indicated by a dip in plate current to about 10 ma . The frequency and note should be checked in a communieations receiver, making sure that the oscillation is controlled by the erystal. Next, insert the moter in series with R_{4} and tune (44 for a dip at the proper frequency, which should be between 24.5 and 25 Mc. Adjustment of the multiplier tuning may be critical, if fundamen-tal-type crystals are used, the crystal tending to "pop out" when C_{4}^{\prime} is tuned on the nose. With "overtone" or harmonic-type crystals this trouble will not be in evidence, and the setting of C_{4} (or the core in L_{2}) will not be fussy. Adjustment should be for maximum grid current in the second 6J6.

Adjustment of the push-pull tripler stages is merely a matter of resonating the circuits for maximum output as indicated by the grid current in the succeeding stage, being certain that the stages are tripling and not quintupling, which they will also do with fair efficiency. Each stage has cathode bias to prevent damaging the tubes during the adjustment period. Input to each will run about 25 ma. at 200 volts, when operating correctly.

Neutralization of the output stage is accomplished in the customary manner, except that the neutralizing capacitors are made from short lengths of $7 \overline{5}$-ohm Twin-Lead.

Fig. 13-17-Front view of the 220. Mc. transmitter-exciter. Across the front of the chasmis are the oncillator platemenil adjustment, erystal, multipliercenil adjustment, first-tripler plate condenser, and tip jarks for final cathode metering. sorondatripler and final plate condensers are monnted on the top portion of the chassis. Output terminala are at the far riỵht.

Fir, 13-18—s shematio diasrath of the ofth tranzmitar. ewiter for $2: 0 \mathrm{ll}$:
$\mathrm{C}_{1}, \mathrm{C}_{7}$ - 680 . $\mu \mu \mathrm{fl}$, mica
$\mathrm{C}_{2}^{2} \mathrm{C}_{4}-3-311-\mu \mu \mathrm{fil}$. ni"a trimmer.
1.3-68- $-4 \mu \mathrm{fd}$. mic:

(\therefore, $C_{12}-330$ - $\mu \mu \mathrm{fl}$. mira.
1.9, C13-0.- 8.5 - μ fol midmet butterfly variable
(Johnzon 160)-208).

(1) 16 - $2(0)-\mu \mu$ fol cramir.
$\mathbf{1}_{17}-1 . \bar{i}-3.3-\mu \mu \mathrm{fl}$. midwer huttertly variable (Jehnson ($(x)-203$).
Civ, (iv2-Nentralizing capacitors made of äohom
Twin-l ead: sere taxt.
$R_{1}, R_{3}-6,800$ ohman. $1 / 2$ watt.
R_{2} - 470 ohms. $1 / 2$ watt.
$\mathrm{R}_{4}-3900$ ohtin*, 1 watt.

Starting with sections about two inches long, they should be trimmed a small amount at a time until tuning the final plate through resonane (with plate voltage removed) catuses no downward kick in grid curton.

Performance

With the voltages shown, the output on 220 Me. will be about 2 watts, as indeated hy a full-brillianoe indication in a Number uf (blue bead) pilot lamp. More output can be obtained by inereasing the voltage above 200, bett the increase is seldom worth the exta strain on the tubes. Operated as shown, the rig will give ample output to drive an 8 :32 amplifier which will deliver about 12 watt:.
$R_{n}, R_{12}, R_{14}-15(9)$ ohms, 1 watt.
1.1-34 turns Xin. 28 d.s.c.. dose-wound on National XR-30 shu-therd form, center-tapied.
1.2-12 thras No. 21 d.a.c., closerwound on National XR-30 shar-tuned form, ernter-tapped.
1.3-: turns Do. 16 enamel, ${ }^{6}$ - z inch inside diameter. spaced wire diameter, center-tapped.
1.4-2 turns to. 16 phamel, $3 / 8$-inch inside diametor. spared 14 inch. center-tapped.
1.5 - $11 / 2$ turn- 0 o. 12 enamel. $3 / 4$-inn hinside diameter. crnter-tapped. sparer turne ahont 3 ns inchapart. Gail $11 / 2$ inthes long ower-all. sore bottomevirn photograph.
L.6 - Itairpin lewn No. 16 enamel inaerted between turnio of I.
RPC
 wire wound on $1 / 2-w a t t$ earthon ressiator. $1 / 8$-inch diameter. ${ }^{\text {and }}$ in inh home.
or the final 6.Jt may he modulated and the unit operated as a completr low-powered transmitter.

The same general arrangement dexoribed above may he used to got to 220 Me. with three tubes insted of four, if the regemerative harmonic-oseillator cireuit shown in Fig. 13-12 is used toreplate the mone conventional erystal
 arestal is then made for owillate on 25.3 Me . in the first 1 bje sertion. The secomed section triphes to 7.5 Mc. The rest of the unit, from L a 6 , is the wame as in loig. 13-1x. It is suggested that the description of the ti- and 2 -moter transmitter of Fig. 1;3-12 be studied carefully before this substitution is aftempted.

Fig. 13.19- Bottom view of the 0.66200 . Vle. ris, showilg the implievty of the lay. out.

Until recently, most stations operating in the higher v.h.f. bands employed simple transmitters of the modulated-oscillator type. Sinere the superegencrative receiver was ako widely used, the instability of the thansmitters was not a matter of great importance: but with the rapid swing to stabilized transmittors and solective recerivers now in evidenere, mest of the modulated-oscillator signals are molonger readable. It is, howeror, still possible, he careful design and proper operation, to use the simple and economical oscillator rig and yot radiate a signal that can be copied on all but the most selective recoivers. Two such transmitters, for 144 and 200 Me., are shown in Figs. 13-20 through 13-27.

Oscillator Ills and Their Treatment

There are two principal fatults in most simple oseilator-type transmitters. Many use filamont tubes with ace applied to the filaments, causing severe hum modulation. (others, through poor design, have insufficient feedback (as exdenced by low grid eurrent) so that they are unable to sustain strong oscillation under load. I, ack of sufficient excitation also renders them incapable of maintaining oscillat tion at low plate voltages, causing them to go out of oscillation over a considerable portion of the modulation cyele. Such osiflators suffer
from extreme frogurner modulation, making their signals unvedahife on all but the vers: broadest recervers, and even on these the quality is poor indeed.

- 2.METER UNITY-COUPLED OSCILLATOR

No simple transmiture can hope to overeome these faults cotircly, but they are materially reduced in the rig described horewith. A.c. hum modulation is reduced through the use of in-directly-hated tubes; and stability is improved through the use of a high-C push-pull uscillator, employing the familiar "unitycoupled" eireuit. This arrangement, wherein the gride eoil is fed through the inside of a plate tank made of copper tubing, provides adequate exeitation. stability over wide ranges of phate voltage is quite good, and the degree of freguenes modulation is mot 100 severe if the modulation is held to 7.5 per cent or less. It is latd out so that it is stable mechanically. reducing possible frequency changes from vibration.

Mechanical Details

The transmitter is designed for use with a plate supply of 250 to 300 volts, making it useful for mobile or low-powered homo-station

Fite. 13-20 - Iremt virw of the simble 1 11. Slre tran-mitter, 'lhe jache at each side of the antenna terminals are for insertion of a moter in the oweillator arial (left) and phate (riyht) rircuits. The" mierophone jack is at the lower left and the coroff switch is at the right. 'The valifration arale is drawn with lmata imh on heas: while biarer.

$\mathrm{C}_{2}-8$ - $\mu \mathrm{fd}$. 4.3 (volt electrolytia.

C_{6} - "Hutterfly"variable (Cardwell ER-11-18F/Emodi. fied: sce text).
$\mathrm{h}_{1}-470$ ohms, 1 watt.
H_{2} - 0.33 megohm, $1 / 2$ watt.
$R_{3}, R_{4}-5(M)$ ohms, \boldsymbol{S}^{5} watts.
$R_{s}-0.17$ megohm, $1 / 2$ watt.
$\mathrm{R}_{6}-680$ ohems, 1 watt.
$\mathrm{R}_{7}-10,(000$ ohms, I watt.
operation. It employs a pair of 2 (222 tubes (also known as 7193 s) as oscillators, a $6 \mathrm{l}^{\circ} 6(\mathrm{iT}$ modulator, and a fCt as a sueed amplifier and source of mierophone voltage. It is housed in a standard $5 \times(\mathrm{f} \times 8$-inch utility cabinet, the batek and front of which are removable. The schematic diagram is shown in Fig. 13-21.

The plate tank "coil" is made of 3,16 -inch copper tubing, bent into a "I" which is two inches long overall. The ends of the "l"" are made into spade lugs, as shown in Fig. 13-22, the slotted ends providing a small range of inductance adjustment. The lug ends are fastened directly to two of the stator terminals of the butterfly-type tank condenser, C 6. Part of the " L " is cut out at the courved emd, to provide an opening for the renter-tap of the grid coil. An easy way to make the grid coil is to cut two pieers of flexible insulated wire, about four inches long, and feed them into the " 1 " through the center opening. The protruding tap, made by twisting the ends of the wires together, should be coated with household cement after the grid resistor has been soldered to it. Note that the grid leads are transposed. The 2('22s will not oscillate if theso are improperly connected. The plate leads may be made of $1 / 4$-inch copper braid, or copper or silver ribbon is even better, if available. If braid is used, it may be made solid at the end by flowing solder over the last half inch, after which it may be drilled, to pass the stator terminal screw.

Provision is made for reading both grid and plate current to the oscillator, two meter jacks: being mounted on cither side of the plate tank. Their terminals make convenient mounting places for R_{7} and $R F C_{1}$. Note that the jacks are connected so that the metor leads need not be reversed when changing from one jack to the other. The plate-meter jack must, of course, be insulated from the metal panel.
f. - Midzet filter choke.
T.2. I 3 - Inityroupled grid and plate coile, Sece text and Fig. 13.2 .
$\mathrm{I}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}$ - Cloted orircuit jack.
RFG - Vo. 28 d.s.c. wire, elosewomid on l-watt re. sistor, $1 /$-ineh diam. 5x́ inch lonk.
 wire rlose-wound on $1 / 4$-inch pmilystyrene rexl.
s_{1} - S.p.s.t. toggle switch.
T_{1}-Single-button microphone tranformer itt: "Oancer" - surphis).

No battery is required for miorophone rurrent, this being obtained by running the cathode current of the 6C4 speech amplifier through the microphone transformer. The 60: rathode is by-passed with a large electrolytir condenser, and the plate is decoupled and bepassed to redure hum, Nince the 6C'f stage iused primeipally as a souree of microphone current, resistance roupling to the 6V6G'1 modulator gives adequate drive No gain control is ineluded, as the full output of the modulator is insufficient for overmonlulation.

Testing

Since the grid is the controlling element in the operation of any. Class C stage, it is important that the grid current be observed in adjust-

Jik. 13-2: - Netail Irawing of the oreillator plate inductance. It is made from ${ }^{3}$ is-inch copper tuhing, bent into a "L" shape. Ents of the "I" are formed into spade lugs, the mots in which provide a means of slight inductance adjustment. It is montited dirertly on the stator terminals of the tuning condenser.
ing the oscillator. The plate current may be almost meaningless, as an indication of the proper functioning of such a stage, but the grid current shows plainly if the oscillator is funetioning correctly. If the grid current and bias are normal for the tubes used, the plate current ean be ignored, exeept to see that the input is not excessive. Grid current in this os-

Abstract

Fif 13-2.3-13ack view of the 2 -mbter tramsmitter, showing the symmetrical ar. rangement of enme pmenent. Vote that the "L"-shaped tank in. donctance is monnted directly on the stator turminala of the butterfly tuning condenser.

rillator should run about S ma. When a pate voltage of 27 ar or 8 is used and the osedtator is lomded by a lamp of antenma. The "U""-shaped antrona-eoupling loop should be adjusted until the erid rurrent is approximately this value. The pate eurrent will be about to ma. with 2π volts on the plates.

The transmitter frequeney should be cheoked with Leeher wires, or by listening to the signal in a catibrated recoiver. In cither case there should be a load ateross the antemmaterminals, as the frequency may be appreciably difforent betweon loaded and unloaded operation.

The rough calibration scale shown was first roughed on a white card using pencil, and afterward drawn over in India ink. The calibration card is glued to the panel, and further held in place by the condenser mounting nut and two small machine screws.

A LINE OSCILLATOR FOR 220 MC.

A line usillator whirh is suitable for low-power experimental work is shown in Figs. 1:3-2.i, $13-26$ and $1: 3-27$. It is built cntirely of readily-obtainable standard parts, and may be constructed at very low cast. The pube is a Ffis dual trioth, working as a plash-pull oseillator, with paralled limes in the plate eireuit. The freduency is varied by means:
lig. 1:3.2. - linder. rhasio virw $\quad=1$ w $w=$ the four heater chokes and andio eomprnent- The small round objest, left entor, i- the miwwiphone tran-furmer, a surplas minget mit. The autio choke is at the right.

of a mieat trimmer which is connected acros the line near the cold end, so that a vormior offect is attained. A rough adjustment of frequency is mato be means of an adiustable shorting har.

Fig. 13.25-1 one. tube oscillator for $2=2$ Me. using a ifs dual triode, liamear tarh rircuit and antemna coupling are under the chassis.

When the proper setting of the shorting bar is found, the $220-225-$ Mc. band will be covered by about two complete turns of the trimmer.

The transmitter is mounted on a $3 \times 5 \times$ 10 -inch chassis. Only the oscillator tube is above the chassis, with the lines and antenna roupling below. The antenna coupling loop is connected to a National FW'(terminal assembly which projects: through the end of the chassis. The phate limes are $71 / 2$ inches long and made of $1 / 4$-inch copper tubing spaced $3 / 4$ inch, center to center. They arr held in position by two halver of a National FWII or FWJ terminal block. These blocks are of low-loss insulating material, and the hole spacing is right for this application. The eonneetion between the plates and the lines should be made with $1 / 4$-inchwide eopper strip. They are mounted on two cone stand-atts i $^{\text {inches apart. }}$ Solf-supporting r.f. chokes, one in the rathode lead and the other in the 13-plus lead, a 1000 -ohm resistor from grids to ground, and a small by-pass

Pig. 13-26 - L'nder-havin view of the 220.Mc. transmitter, Note the method of making the shorting bar and mounting the trimmer condenser - both be the use of spring arid clips, permitting ad. justment of the position of either along the line. condenser from the hot heater terminal to ground, complete the cireuit. The antemna coupling is a " C "-shaped loop $4!2$ ine hes long.

The transmiter maty be pared in operation be applying (6.3 volts ate amd about 250 volts dire Dlate current, under load, shombld be under 10 ma. A lamp load should be used across the antema terminals umil the frequence is atjusted to within the band timits. The shoring bar is made from two National No. 8 grid elips. which make a tight fit on the $1 / 4$-inch tubing, and the trimmer condenser is alse connerted to the line by means of a pair of these clips, making it possible to adjust the position of the condenser along the line to give the desired degree of frequency covrage. The shorting bat and the trimmer should be set in such positions that, with the trimmer set near maximum, the frequenty of oscillation is near 220 Me.
the antemm coupling may then be adjusted

The transmitter can be run at 10 watts input without endangering the tube. The ussful output is in the vicinity of 2 watts. The rig may be modulated with a single $6 \mathrm{~V}^{\circ} 6$ tube, a suitable modulator being that shown in fig. 13-21.

 18.f. Woher are 13 turn. Vo. 18 d.e.e, wire ${ }^{1}$ tinell diam.

Mobile Gear with Quick-Heating Filaments

A worth-while saving in battery drain ean be made by using filament-type tubes in the mobile station, arranging the control circuits so that the filament voltage is applied simultaneously with the starting of the generator or vibrator supply. The mobile transmitters shown in Figs. 13-28 to 13-36 combine operation on 50 and 144 Mc. They use Hytron instant-heating filament tubes throughout. All the necessary control and power-supply cireuits are given in the sehematie diagrams.

Fig. 13-28 shows the three units, At the left is the $144-$ Mc. transmitter, with the $50-M c$. rig at the right. The modulator, shown bet wen them, may be used with either unit. By means of suitable interconnecting cables, conneetions for which are shown in the schematic diagrams, it is possible to select either hand by operation of a single switch at the control position. Operation thereafter is controlled entirely by the push-to-talk switeh on the microphone.

Both units use Valpey type CXI-5 crystals in the 24-27-Me range, with a $2 \mathrm{~L} 30 \mathrm{Tri-tet}$ oseillator doubling to $48-5+$ Ne. The oseillatordoubler drives a Hytron 5516 amplifier directly in the 50-Mc. transmitter. A Type 5812 tripler drives the 5516 final in the 144 -Mc. rig. The modulator uses two 2 E 30 s driven directly by a carbon microphone. Coaxial output fittings are provided for antenna connection, and a series-tuned antemna coupling circuit is included in each unit. Note that the jacks for metering purposes are recessed in back of the panels, to prevent contact with the high voltage, a danger spot in many motile installations.

The 5O-Mc. R.F. Section

The 50-Mc. r.f. unit, Figs. 13-29, 13-30, and 13-31, is built on an aluminum chassis t inches square and 2 inches high. The panel is 4 inches square, with a half-ineh lip folded over across the bottom for fastening to the chassis. Arrangement of the parts is ohvious
from the photographs. It will be seen that the sereen dropping resistor, R_{2}, is a lower value in this unit than in the 14t-Mc, one. More oscillator power was required, as the final stage is driven directly, and the value of the screen resistor is a good means of controlling oscillator output.

No neutralization of the final was required, but a slight regenerative tendency at some condenser settings was corrected by the insertion of R_{5}, a 22 -ohm resistor, at the grid terminal of the 5516 .

The 144-Mc. Portion

The 2 -meter r.f, section is built on a standard $2 \times 5 \times 7$-inch chassis, with a 6×7-inch

TABLE 13-II
Typical Operating Conditions in the 50- and 144-Mc. Mobile Transmitters of Fig. 13-28 When Used with a 300.Volt Supply.

Ntage	Plate rurrent	Screen Voltapr	Grid P'urrent
50, Me. Os ${ }^{\text {co. }}$	30 ma.	200 v.	-
14-Mc. Osc.	30	15	-
14-Mc. Tripler	111	150	-
50-Mc. Amp.	(in)	229	3 ma,
	till	160	3
Modulator	$510-80$	3(1)	-

pancl. The oseillator is similar to the 6 -meter one, except as noted above. It is followed by a tripler stage using a 5812 , a tube similar to the 2 E30 but designed sperifically for frequenes. multiplication. The plate circuit of this tube is inductively coupled to the final grid cireuit, L_{23} and L_{4} being hairpin-shaped loops visible in the bottom view, lig. 13-3t.

Note the method of meutralization used in the final stage. The copper fin (designated as (tin in Fig. 13-33) visible in the resur view of the 14t-Me. unit is a devier occasionally found necessary in tetrode amplifiers. In this
lip. 13-28-A eom. plete mobile station for in and 1.44 Mr . using quick-heating filament tuhea. The litMe. r.f. sections is at the left, the $50-M c$. portion at the right. and the modulator in the middle.

Fig. 13.29 - Rear view of the 50. V1c. r.f. section. The knob above the chassis is the cathode control. The tinal tank circuit is at the mpper left, with antenna serics tuning at the npper right.
case the physical layout was such that the gridplate capacitance was effectively negative; thus the addition of external capacitance directly from grid to plate. The position of the fin is adjusted in the normal manner. It was made by hammering out the end of a piere of 3,6 -inch eopper tubing.

Details Common to Both Units

The Tri-tet eirenit is modifiel for filamenttype tubes by using closely-oupled (interwound) coils in the filament leads and tuning onc of them. This cathote circuit is resonated slightly higher than the frequency marked on the erystal. It may be tuned for maximum grial curcent indieation in the sucemeding stage. There are various types of arystals for the 2t-27-Me. range. lintil recontly surh erystals have hero highly active but very umstable, athel great caro has beon meessary to prevent extremb drift whon they were used. Most crystal companies now supply harmonic-type "rystals that are less ative, but mueh more stable. The wame eathode cireuit will work with either variety, but more input will have to be run to the osiollator to atefieve the same grid drive when the new type of arystal is used. If the old-type crystals are usod the screen resistor, R_{2}, can be increased to as much as 120,000 ohms, dropping the total cathode current to about 20 ma. At this input the drift, with the unstable type of cerystal, is not severe. It amounts to approximately 20 to 30 kc ., at 144 Mc., but may be as much as ten times this value if the oseillator is not operated correetly. The newer types of crystals show a quick drift of a few kilocycles at 144 Me ., as the plate voltage is applied, but remain fairls steady after the first few seconds.

The cathode-circuit values given are correct for either type of crystal. The cathode coils, $L_{1 \mathrm{~A}}$ and $L_{1 \mathrm{~B}}$, are made by winding with two wires simultancously. A coating of household cement over the windings will hold then together, giving the coil the appearance of a single winding.

Fig. 13-30 - Schematic diagram of the 30-Mc. mobite unit.
$\mathrm{C}_{1}, \mathrm{C}_{4}-50-\mu \mu \mathrm{fl}$. variable (Millen 20050)

$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{5}, \mathrm{C}, \mathrm{C}, \mathrm{C}_{10}-\mathrm{F}_{\mathrm{O}} \mathrm{O}-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{8}-22-\mu \mu \mathrm{fd}$. mica or ceramic.
R_{1} - 0.1 megolim, $1 / 2$ watt.
$\mathrm{R}_{2}-39,000$ ohms, 1 watt.
$\mathrm{R}_{3}-100$ ohms, $1 / 2$ watt.
R_{4} - 15,000 ohms, $1 / 2$ watt.
R_{5} - 22 ohms $4,1 / 2$ watt.
$\mathrm{R}_{6}-8000$ ohims, 2 watts.
$\mathrm{L}_{1 \mathrm{~A}}, \mathrm{~L}_{1 \mathrm{~B}}$ - Interwound coils, earh 12 turs No. 18 enamel, $3 / 8$-inch diameter.
$1.2-7$ turns No. 18 tinned, $1 / 2$-inch diameter, $7 / 8$ inch long ($188 H^{\prime}$ Miniductor, No. 31022).
I. 3 - 8 turns No. 20 timed, 1 -inch diameter, 1 inch long (13 \& W No. 3002).
1.4-7turns Vo. 20 tinned, 12 -inch diameter, Zíc inch Iong (B \& A N No. 3013).
I_{1} - Pilot lamp anembly with 60 -ma. bulb.
$\mathrm{J}_{1}, \mathrm{I}_{2}$ - Chosed-rircuit jack.
I_{3} - Coaxial output fitting.
P_{1} - 4-prong male plug (Jones P-304-AB).
$\mathrm{KFC}_{1}, \mathrm{MFC}_{2}-\mathrm{i} \cdot \mu \mathrm{h}$. r.f. choke (Ohmite Z.50).

Fis. 13-31-Hotom vien if the 50.Mc. rig. Wote the inter. wound cathode coil at the left.

Provision is made for motering the grid and phate cireuits of the final stages by meatas of jacks in centh rig. An approximate check on the fimal plate currents, sufficient for normal tuning-up purposes, is provided bes a (i0-ma. pilot lamp eonnected in the high-voltage lead to the final plate coil. After a few comparisons between the hulh brilliance and observed plate-moter readings it will be possible to estimate the plate current fairly closely by this means. The rod jewed in front of the lamp also allows it to serve as a poweron indicator. ()ff-resonance or no-drive plate curent in the $50-\mathrm{Mc}$. final stage may be suffirient to burn out a $60-\mathrm{ma}$. pilot lamp, so a $150-\mathrm{ma}$. bull) may be used during the initial-test phases. Once the rig is adjusted there is little likelihood that the current will exceed 80 ma . or so, which the 60 -ma. lamp will take in stride.
off convoniontly from the tert position. This switeh is, of course, momatly open. The ouly other control switch is one to be mounted at the operating position to select the hand to be used. If only one r.f. section is construeted this remote selector switch (not shown in the sohomatic diagrams) and its associated power sorket, J_{2} in Fig. 13-36, can be dispensed with.

The male power plug, P^{\prime} in Fig. 13-36, and the three female power sockets, J_{2}, J_{3} and J_{4}, are mounted along the back of the modulator chassis. Power details of a typical installation are shown at A and B in this diagram. A 3 -wire

The Modulator and Control Circuits

The modulator, Figs. 13-35 and 13-36, is also the power-distribution unit. Control of the power system is by the push-to-talk microphone button, or the toggle switch, S_{1}, by which the transmitter may be turned on and

Fig. 1.3.32-Kear view of lhe 1/1-Me. mobile unit. The ropper fin at the side of the final tube is a neu. tralizing adjustment.

Fig．1．3－3．3－Schematic diagram of the 14．－Mc．r．f．section．
（：－ $50-\mu \mathrm{fd}$ ．variable（ Millen 20100）．

C： $\mathbf{0} 0 \mu \mu \mathrm{ffl}$ ．－persection butterfly variable（Cardwell ER－6－131：S）．
（ $6-3.5-\mu \mu \mathrm{fll}$ ．variable（Millen 20035）．
$\mathrm{C}_{7}, \mathrm{C}_{n}, \mathrm{C}_{9}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15} \mathrm{C}_{12}, \mathrm{C}_{14}, \mathrm{C}_{14}, \mathrm{C}_{21} \mathrm{C}_{21}$ － $470-\mu \mu \mathrm{fil}$ ．mica．
$\mathrm{C}_{10}-47$－$\mu \mathrm{\mu ff}$ ）mica．
（Si6－Neatralizink－raparitor Matr－ape bist and Fig．13－32．
$\mathrm{R}_{1}, \mathrm{~K}_{4}-\mathbf{0} .1$ megohm，＇自 watl
$\mathrm{R}_{2}-8 \mathrm{~B}, \mathrm{ONO}$ ohms，以 watl．
R_{3}－ 1000 ohm $=1 / 2$ watt．
$\mathrm{R}_{5}-33,0 \% \mathrm{~N}$ ohms， $1 / 2$ watt．
$\mathrm{R}_{6}-\mathrm{D}, \mathrm{O}, \mathrm{OH}$ ohms， 12 watt．
$\mathrm{R}_{7}-22,000$ ohms， 1 watt．
L．1A，lais－Internound coils，earh 13 turne No． 18 ena－ mel， $3 / 8$－inch diameter．
$\mathrm{I} .2-7$ turns No． 18 tinned， $1 / 2$－ineh diameter， $7 / 8$ inch long（B \＆W W Miniductor No．3002）．
1．3．It－Itairpin loops No． 14 wire， $11 / 4$ inches long， ＂名 inch wide．（See lontom view，Fig．13－34）．
1．：－ 6 turns Vo． 14, e．t．，with $3 / 8$－inch space at center． 112 －inch diameter， 1 ineh total length．
1， $11 / 4$ turns Vo． 11 enamel， 3 －inch diameter．
1，－Pilot－lamp asembly with obe－ma．hulls．
Jt，J2－Closed－circuit jach．
J3－Goavial output filting．
P1－4－prong male plug（lones 1，－30t－13）．
RFC1，RFCO，RFC
cated in the diagram，there should be 4 －con－ duetor eables from J_{3} to the so－Me，r．f．sec－ tion，and from J_{4} to the $1+4-M a$ ，unit．

The modulator uses a single stage，without a sperech amplifier．Though this neressitates clowe talking it makes for eronomy and simpli－ fies bias problems．It also keeps down power－ supply noise（eloctrical）and rat noise（me－ （hanieal）．With a 300 －volt supply there is ade－ quate atudio for modulating the final stage of whor rig．Bias is supplied by a 30 －volt hear－

Fiд．13．3．4－Bottom siew of the $1 / f+\mathrm{Mr}$ ． tamsmitter．Note tha＊ hairpin loops in tha （ripher－plate and am－ plifier－grid eircuits． （）arillatur compment $=$ are at the left，the tribler in the midille． and the amulifier at the risht．
 view of the modulator and power-distrilin. tion unit.

ing-aid battery, which should be good for two years or more of ordinary use.

Testing

Operation of this equipment is similar to that of any transmitter using ter rode tubes,

Fig. 1:3.3o - schematic diagram of the modnatator unit. (hassis size, 2 by 5 by Zinches, Connections to the pownr plugand jachson the unit are shownat A. Finfrnal power rircuits are given in \mathbf{B}.
13_{1} - Bias battery, 30 volts (Fiverrady Vo. 430 hearing. aid type).

St - S.post. logyte witch.
 I_{2} - Modulation transformer (stancar 1.3815).
axepr for the removal of filament vollage during stand-by periods. A supply voltage of 300 is recommended, though lower or higher voltages may be used with suitable modificat tion of the circuit values, No more than 300 volts should be applied to any of the smather tubes, in any ease, and the generator type of supply is recommended.
bench testing can be done with an a.e. supply, though there will be some hum in the modulation. Operation should be chacked. starting with the oscillator, with plate voltage applied to this stage only until it is rumning properly. An insulated rod, or an empty 'phone phag, can be inserted in the amplifier plate jack to permit tuning the exciter portion without Aamaging the final tube. The accompanying Table 13-11 show the approximate voltages and currents that will result from use of a 300 wolt supply, when the rigs are properly tuned. Sll eontrols except the final plate and antennas coupling should be adjusted for maximum final grid current.

The antemat coupling circuit shown will permit the use of almost any coaxial-line-fed antenna system. The proper method of adjustment is to set the coupling at the loosest value that will permit the proper plate current to be drawn when the series condenser is tuned for plate eurrent parak. If the system is properly tuned there will be little, if any, change in the position of the final phate tuning for minimum plate eurrent, with and without the antenna commected to the coaxial ontpmit fitting.

Conclusion

Because the form factor of the mobile installation will be different with almost every far, no particular "ase or monuting is shown. The desigus buedy show practical parts ato rangements and eleetrical values, leaving the Gape and phament of the units to the individual comstructor

A Low-Powered Station for 50 and 144 Mc.

The two small transmitters shown in Fig. 13-37 were designed primarily for use tognother in mobile service on 50 and $1 / 1$ Me., but they may be used as a low-powered two-hand homestation, or they mas. be built and operated separately, if only one of the hands is to be employed. The larger of the two is for 144 Mc., and this unit includes the modulator, though that part of the rig cath very well be incorporated in the $50-M c$. unit, if that transmitter is to be used alone. When the two units are connected to a common power souree, either one may be used by manipulation of the toggle switches, which apply the heater voltage to the desired circuits.

The r.f. sections are nearly identical, exerept for the inclusion of a FFs tripler stage betwern the osedlator and the final in the 2 -meter unit. Both use Tri-tet oseillators with liverer tubess and fixed-tumed cathole and plate cireuits. Dlarmonic-type ervatals are used, 24 to 24 titi Ne. for the 2 -meter rigated $2 \overline{5}$ to $2 \overline{6}$ Me. for the (j-meter job, the oscillator doubling in each ease. The final stage in both units is an si:3 amplifier, the only difference in the circuits being a small amount of neutralization required in the 2 -moter rig.

When the two units are used together, 14tMe. operation requires that switches S_{1} and N_{2} (Fig. 13-38) be clowed, and x_{1} in the 50 Mc. unit, Fig. 13-39, left open. For 50-Mc. operation, S_{2} is opened, cutting off the ref. hoaters in the IH-Me. unit, and s_{1} in both units is closed. 'The terminal strips on the bateks of the two units are combereted in parallel, applying the plate voltages to both at all times, and the heaters of the desired cireuits are energized by means of the toggle switehers. Switching of the plate voltage is not necessary.

Fig. 13. 37- 1 2-band set-tup for mohile or low -powered fixed-station operation on 50 and 111 Vr . It the left is the 2 -meter unit, complete with monhator, "I'he smaller is the Su. Ve. r.f. ertion. Foggle awitrhes permit use of the modulator with either r.f. ardion.

THE 144-MC. SECTION

The $1+4$-Mc. unit, Figs. 13-3s and $13-40$, includes the modulator and is designed to oprate at about 15 watts input with a 300 volt power supply. Meter jacks are provided for measuring the cathode rarrents of all stages and the grid current of the final. The plate circuits of the oscillator and tripler slages are self-resonant, and are inductively compled to their following grid circuits.

A small amount of neutralization was required to assure completely-stable operation of the final. The nentralizing eomlensers, \boldsymbol{C}_{11} and C_{12} in the eireuit diagram, are pierese of No. 12 wire extending from the grid of one seretion of the s32.1 to the vicinity of the plate of the other sedtion. The wires are erossed at the bottom of the tube socket and go through Millen 32100 bushings mounted in the chassis betwen the 7 F 8 and the 832 A sorkets. It is possible that use of a shiclded tube socket would climinate the tendency toward oscillation in the 832A.

A seriestuned antennat circuit, consisting of C_{4} and L_{4}, is intended for use with any of the low-impedane antenna feed systems commonly used for mobile work. The amount of loading is adjusted by varying the position of the pick-up link, Lat.

The modulator cmploys a pair of $6 \backslash 6$ or 6'6GT tubes working Class AB. A speechamplifier stage is not required so long as a single-button carbon microphone is userl. Voltage for the microphone is taken from the junction of the two eathorle-hiasing resistors, $R_{\text {a }}$ and R_{2}, thus climinating the need for a microphone battery.

The midrophone and modulation transformors used are both large and expensive for the job at hand and were used only Breatuse they happeraed to be available. The microphone transormer can be any single-button-microphone to-push-pull-grids tratisformer and the modulation transformor need not be rated at more than 10 watts. It should be capable of
 0,000 to 7000 ohms, depending upon the input at whirh the 832.1 is operaterl.

The photegraphis of the trabmitter show how the parts are mounted on a metal chassis mataring 3 by 5 by 10 in hes. The front panel measures 3 by 5 inches and has a $1 / 2$-inch lip for fastening to the chassis. The construction of the antenna assombly and the method of mounting the components on the panel are identical to the $50-\mathrm{Mc}$. transmitter. A recommended system of mounting the 832A tube socket is also detailed in the text referring to the so-Mr. unit.

No sperial cate need be given to the wiring of the audio circuit, but the r.f. leats should lne kept as short as possible. The use of four

Fig．13．38－Circnit diagram of the $1+1$. Nc．r．f．seetion and merlulator．

（．3－＂Butterfly＂rondenter， $6 \mu \mu \mathrm{fd}$ ．wer eertion（Card）． well FiN－6－13ド／S）．

C C $_{6} \mathbf{1 0 0 - \mu \mu} \mathbf{f d}$ ．midget mica．

Cil，（．12－Nentralizing wirrs．（See text．）
（i14，Cis－ $10 . \mu \mathrm{fd}$ ． $2 \overline{2}$－volt elertrolytic．
\mathbf{K}_{1}－ 0.1 megohm， $1 / 2$ watt．
$\mathrm{R}_{2}-17,1000$ ohms， $1 / 2$ watt．
$\mathrm{R}_{3}-33,000$ ohtis， $1 / 2$ watt．
$\mathrm{R}_{4}-470$ ohms， $1 / 2$ watt．
$\mathrm{R}_{5}-22,($ NN ohms， $1 / 2$ watt．
$1_{6}-25,0$（H）ohm 6,10 watts．
k；-100 ohme， 1 watt．
R_{s}－I．50 ohms，I watl．
I．1－ 3 turn．Vo．IK rnam．，elose－wound， $1 / 2$－inch diam
$\mathrm{L}_{2}-\mathrm{I}$ turns No． 18 enam．， B_{s} inch long．
I． 3 － 10 turns No． 18 enatn．：coil wonnd in two sections with 5 turns each side of La e each section $3 / 8$ inch long．A $1 / 2$ inch is left between windings．
tie－point strips will simplify the mounting and wiring of parts．A single tie point is mounted to the rear of the oscillator tube socket and is used as the junction of R_{7}, R_{5}, C_{14} and the primary lead of the microphone transformer．I double tie－point strip is mounted to the right of the crystal socket（as seen in liig．13－40）． One lug is used as the connecting point for the positive high－voltage lead and the bottom ends of $R F C_{1}$ and $R F C_{2}$ ，the bottom of L_{1} and the top ends of C_{5} and J_{1} are connected to the second terminal．The cathode end of L_{1} is connected to the cathode side of the crystal socket．The third tie－point strip is mounted on the 832 A tube socket and serves as the con－ nerting point between K_{4} and I_{2} ；the bottom and of R_{6} conneets to the high－voltage lead at the second lug．The fourth strip＇single luge is
 off insulatur， $2 / 4-$ inch diam．
I． $4-3$ turns No． 18 enam．， $1 / 2$ inth long， 3 iooinch diameter．
Lij－ 2 turns No． 18 entam．，interwound with turns of L．1．L_{4} and $L_{\text {－}}$ are wound on a Xational 1＇RE． 3 coil form．
I． 6 － 1 turns No． 12 enam．， $1 / 2$ ineh i．d．，wound in two sections with 2 turns cach side of center－tap and a $1 / 2$－inch mpace at the center，turn－spaced wire diameter．
1．i－ 3 turns No． 12 enam．， $1 / 2$－inch diam．，turns spaced nire dianteter．
$J_{1}-J_{5}$－Closed－circuit jack．
Js－Oprertrircuit jack．
$\mathrm{J}_{7}-$ Coavialecrathe ronnertor．

S1， S_{2}－S．p．s．t．togyle．
＇ 1 ＇ $1-$ Single－button miorophone transformer（LTC S－7）．
T_{2}－Modulation transformer（ $\mathrm{L} ⿳ \mathrm{CO} \mathrm{C}$ S．19）
mounted on the frame of C_{2} and the leads between R_{5} and J_{3} join at this point．

The construction of the driver－stage coils is not difficult if the coil forms are properly pre－ pared in advance．A study of Fig．13－40 will show how the windings are placed on the forms，and the lengths of the windings are given in the parts list．The forms should be marked and drilled to accommodate the wind－ ings with the holes for the ends of the windings passing directly through the forms．L_{3} should be wound in two sections with the inside ends being soldered together after the winding of L_{2} has been completed．The center－taps for L_{4} and L_{5} are made by cleaning and twisting the wire at the center of each winding．Condenser f_{1} is soldered across the grid ends of L_{3} bofore the coil is connected to the tube soekct．

C_{3} - 3 - $30-\mu \mu \mathrm{fd}$, mida Irimmer.
$\mathrm{C}_{1}-100$. $\mu \mu \mathrm{fl}$. midget mirat.

(in - 0.1) $11-\mu \mathrm{fd}$. mita.
$11_{1}-1.12$ meghom, $1 / 2$ watt.
$\mathrm{H}_{2}-17,(0(0)$ ohms, $1 / 2$ walt.
R_{3} - $2,2,(00)$ ohms, $1 / 2$ watt.
$\mathrm{R}_{4}-25,000$ ohms, 10 watts.
I. 3 barns \o. 18 enameled wire, flese-wound. $1 / 2-$ indt diam
1.2 - 0 turns.

la- IO turns, 5 each oide of center, with a 8 -inch pace between section-
I:- 3 turns. I_{2} throngli $L_{\text {is }}$ have an inside diameter of ${ }_{t}$ inch; No. 12 enameded wire, turns spaed wire diametter.
J. It - Virlget elosed-ciriuit jach.

Ia-Coaxial-cathle conneetor.

KNC.2-2.5.mh. r.f. choke (Millen 31loz).
st-s.p.e.t. toggle switeh.

Adjustment and Testing

When tosting the transmitter, it is advisabla to start with the high voltage applied to the first two stages anly. With a 100 -ma. motor phuged in J_{1} the oserillator wathoede current at resomather should bo appoximataly 30 mat. A low-range milliammeter should now bo plugered in I_{3} and the final gride eirevit should be brought into resomance by adjust ment of Cg. Proper operation of the tripler statge will be indicated by a cathode current of amproximataly 20 ma and a final-amplifier gid curront of 2.5 to 3 ma. The tripler grid enndenser, (${ }_{1}$, should be retuned after the amplifier grid wirwit has hoon peaked, waseure maximmoner-
all operating oflerioney
The amplitier should be tested for nentralizing requircments after adergate griddrive has beron obtained. If a wellshiedted tube sorket has beern used, it is possible that the amplifier grid eurrent will not be affected by tuming the sised plate circuit through resonature. However, if the gride current does kick down an tho plate circuit is tumed, it will be necessary to add the nentralizing wires referred to in the text and partslist as ('11 and (12. After installation these wires should he adjusted until mo kick in grid current is seron as the $8: 3:-1$ plate circuit is tumed through resonather.

Plate and serem volt ages can now be applied to the s3zel and the plate circuit tumed to resonance, as indicated by a dip in the cathode current to fo mat. or losis. Then a dhmmy load (a lis-watt light hulb will do) is commeted W the antemat jack and the loading adjusted hy varying the position of 107 and the capacitance of ('f, to callse a cathode current of 60 to 70 ma . Appoximately 10 mat of the total cathode cursent will be drawn by the sereen of the s32. and this value should be subtracted from the cathode current in determining the plate input. Amplifier gridecurrent should be 1.5 to 2 ma. under load.

Modulator rathode eurrent should be 70 mat: 85 ma, with modulation. 'The reading will deerease slightly whon the mierophone is plugged into the eirenit. This is caused by the parallel curvent path that exists when the miarophome aimuit is completed.

Fis. $/ 3-16$ - Buttom view of the $111 . \ 1 \mathrm{c}$.
 are monnted on the side wall of the thasai-: the form for $l_{\text {a }} / \frac{5}{5}$ is monnted on a small -tand off insulator an that the winding- oan be brought out to the center line of the chassis. (i, the grid eondenser for the frequeney multiplier, is soldered arrosa the gridends of 1.s. 'The' amplifier prid tuning eondenser. Co. i- momeded ont melal pillars having a leoneth of 1^{3} a inchers.

Fig. $13-11$ - Bottom vies of the motbila eranamitter, ahowing a! major conlmbinema attached to the top glate.

THE 50-MC. PORTION

The 50- N1. unt, shown in Figs. 1:3-39 and 13-41, is very similar to the 144 -Me. portion, but for the chimination of the tripler stage. Beratuse of the somewhat lighter load on the power supply, slightly higher power eath be run on 50 Ma , In addition, the amplifier operates more efliciently at the lower frequenes, promitting inputs up to 30 watts or so if the power is available. Neutralization is mot mencrally required in so-Me. operation, but this may not hold true for all physidal layouts.
dacks are provided for measuring the grid and eathode currents of the final stage, and the eathode jark may be used for keying, if c.w. operation is desired. Interstage and athtenna coupling circuits are similar to the 14tMr. section.

The photographes show how a metal box meduring 3 by + by 5 inches serves as the chassis for the 1 ransmitter. The bottom plate of the bos is removed and used as a panel, and is hedd in plater by the serews and mots that hold the top eover and the bos togethere Ln Fig. 1:3-37 the condenser, (e2, alad the antemna jack may be seen mounted on the pancl. Metal pillars, $1 / 4$ inch long, are used to space the condenser away from the pand. A National FU'B polystyreme insulator is usod as a mounting support for the antenna coil, L_{5}, and the insulator is mounted on $3 / 4$-ineh metal posts, (3_{3} is supported by its own mounting tats, and is romened betwern one end of the pirk-up link and ground.

The rear and bottom views of the transmitter show how the rest of the components are laid out on the top phate of the metal box. This plate should be removerl from the box while the construction and wiring are being carried on. All of the wiring, with the exception of the d.c. leads to the metering jacks and the input terminals, can be completed in convenient fashion before the top plate is attached to the metal hox.

The socket for the amplifier tube is centered on the chassis plate at a point $23 / 8$ inches in from the front edpe, and is mounted below the plate on metal pillars $5 / 8$ inch long. A clearance hole for the $8: 32.1,2^{1}$ inches in diameter, is directly above the tube socket. Sockets for the oscillatow tube and the erystal are monnted toward the rear of the chassis.

The oscillator coil, L_{2}, is mounted on the
 boing used as the tie point for the cold end of the plate coil and the other conneetions that must be made at this part of the cireuit. The oseillator eathode coil is mounted betwern the
 plared under the mounting serew of the crystal soeket ('s and C_{6} can be seen to the rear of the crystal socket, and $R F^{\prime} C_{1}$ is mounted between the lube soreket and a bakelite tiepoint strip located at the left of the whassis.

The method amploved to assure good rff. grounding of the amplifier eomponents is visible in F̈̈g. 1:3-f1. 太ohdering lugs are plawed beneath the mounting nuts of the 832 A soeket, and these lugs are joined together with a No. 12 lead which, in tum, is camied on to the common ground point for the oscillator rireuit. The filament, cathode, and sereen by-pass condensers for the amplifier are atl returned to the common pround. These three condensers, C_{7}, C's and ('s, all rest on the 8:32. 1 tube socket.

The amplifier gride coil, L_{23}, is self-supporting, with the amls commedted to the grid pians of the 832.1 socket. The tuning eomdenser, ('1, is actually supported on metal piltars at the right-hand side of the motal box, but the eondenser can be wired in place if the operation is carrided out in the proper order. First, monnt the chassis plate on the bux and locate the proper plater for the condenser. Next, determine the length of the leads to comect the condenser to the tube socket, and then remove the chassis from the case. The condenser may now be wired into the circuit, and the rigid mounting of c_{1}, hy means of metal posts $1 \frac{1}{4}$
inches long, can be done during the: final assembly of the unit.

The grid leak, R_{3}, is connected between the renter-tap of L_{3} and a tie-point strip that is mounted on the condenser frame. $R F C_{2}$ is mounted toward the front of the chassis, and the grommet-fitted hole to the left of the choke (Fig. 13-41) carries the lead between the plate-voltage terminal and the choke.

The metering jacks and the power terminal strip may now be mounted on the front and rear walls of the metal box. Holes to permit mounting and adjust ment of C_{1} should also the drilled at this time. Portions of top flanges of the metal case must be cut away in order to provide clearance for the oscillator seetion and the mounting nut for the amplifier plate choke. After the ease, chassis and pand have been fastened together, the wiring of the amplifier plate circuit may be completed.

Test Procedure

A power supply capable of delivering 300 volts at 100 ma . and 6.3 volts at 2 amp . may be used for testing the transmitter. The high voltage should not be applied to the 832.1 plates until the oseillator has been checked. For initial tests the input voltage ean be reduced to approximately 150 volts while the circuits are checked for resonance and proper operation. Squeezing or spreading the turns of the coils should bring the circuits into resonance, as indicated by maximum grid current

10 the xi32A. The grid ourrent should fall to zero, and the plate current of the oscillator tube should rise considerably when the crystal is removed from the socket.

The amplifier plate and screen voltage can be applied at this point. The unloaded cathode current of the amplifier should be about 15 ma., rising to a maximum of $7 \overline{5}$ or 80 ma. under load, which may be a lī-watt light bulb conneeted to the antenna jark. C_{3} should be adjusted along with the coupling between L_{4} and $L_{\text {s }}$ until maximum output is obtained. The correct degree of loading has been obtained when the plate current at resonance is 10 to 15 ma . below the off-resonance value. The plate tuning condenser, C_{2}, should be reset "ach time that a loading adjustment is made.

A final check of vollages and currents should show the following: oscillator and amplifier plate, 300 volts: oscillator sereen, 200 volts: amplifier sereen, 150 volts; amplifier bias (read at the grid-eoil conter-tap with a high-resistance voltmeter), 65 volts, negative.

The oscillator plate current should be 28 to 30 ma. and amplifier grid current should be about 3 ma . Under load, the amplifier cathode current should be approximately 60 ma . with 8 or 10 ma . of this amount being drawn by the $832 . \mathrm{A}$ sereen.

Modulation can be supplied by the audio system used in the 2-meter rig shown in Fig. 13-38, or a similar unit may be added, if only 50-Mc. operation is desired.

Transceivers

The transceiver is a combination trans-mitter-receiver in which. by suitable switching of d.c. and audio circuits. the same tube and r.f. circuit functions either as a modulated transmitting oscillator or as a superregenerative detector. This makes for extreme compartness and light weight, making the transceiver popular for hand-carried portable equipment. It is a compromise with respect to other features, however. The transceiver can be a source of serious interference, and its efficiency
is not equail to that of other types of gear wherein separate tubes and circuits are used for transmission and reception.

As a matter of good amateur practice the use of transceivers should be confined to very low-power operation - as in "walkie-talkie" or "handie-talkie" equipment - in the 144Mc. band, and to experimental low-power operation in the higher-frequency bands. The use of transceivers should be avoided entirely for regular operation on the 144-Mc. band.

V.H.F. Antennas

White the basie principles of antenna operation are essentially the same for all frequenries, certain factors peculiar to v.h.f. work call for changes in antemat technique for the frequencies above 50 megaryches. Here the physical size of multidement arrays is reduced to the point where an antenma system having some gain over a simple dipole is possible in nearly evely location, and experimentation with various typer of arrays is an important part of the program of most progressive amateurs, The importance of high-gain antennas in v.h.f. work cannot be overemphasized. A good antema system is often the sole difference betwern routine operation and outstanding success in this field. By no other means (an so large a return be obtained from a small investment as results from the erection of a good directional array

Design Factors

Beginning with the $50-\mathrm{Me}$. band, the frequency range over which antenna arrays should operate effectively is often wider in percentage than that required of lower-frequency systems: thus greater attention must be paid to designing arrays for maximum frequency response, possibly to the extent of sacrificing other factors such as high front-toback ratio.

As the frequency of operation is increased, losses in the transmission line rise sharply: hence it beromes more important that the line be matched to the antenna system correctly. Beause any v.h.f. transmission line is long, in terms of wavelength, it is often more effective to use a high-gain array at relatively low height, rather than to employ a lowgain system at great height above ground, particularly if the antema location is not completely shied ded by heavy foliage, buiddings, or other obstructions in the immediate vicinity.

This concept is in direct contrast to early notions of what was most desirable in a v.h.f. antenna system. An appreciable clearance above surrounding terrain is desirable, but great height is by no means so all-important as it was once thought to be. Outstanding results have been obtained by many v.h.f. workers, especially on 50 and 144 Me., with antemas not more that 25 to 40 feet above ground. DX ean be worked on 50 Me. with arrays as low as a half-wave above the ground level.

Polarization

Practically all the early work on frequencies above 30 Me. Was done with vertical antennas, probably because of the somewhat stronger field in the immediate vicinity of a vertical system. When v.h.f. work was confined to almost pure line-of-sight distances, the vertical dipole produced a stronger signal at the edge of the working range than did the same antema turned over to a horizontal position. With the advent of high-gain antemnas and extended operating ranges, horizontal systems began to assume importance in v.h.f. Work, especially in parts of the country where a considerable degree of activity had not already beon established with verticals.

Numerous tests have shown that there is very little difference in the effective working range with either polarization, if the most effective eloment arrangements are used and the same polarization is employed at both ends of the path. Vertical polarization still has its adherents among 50-Mc. enthusiasts and much fine work has been done with vertical antennas, but an effective horizontal array is somewhat easier to build and rotate. Simple 2-, 3 - or telement horizontal arrays have proven extremely effective in 50-Mc. Work, and the postwar era has seen an increase in the use of such arrays which has amounted to standardization on horizontal polarization.

The picture is somewhat different when one goes to 144 Mc . and higher. . It these frequencies, the most effective vertieal systems (those having two or more half-wave dements. vortically stacked) are more easily erected than on 50 Mr . 1 mportant . in considering the polarization question. is the existence of numerous 14+-Me. mobile stations whose antenna systems must, of necessity, be vertical. While horizontal polarization will undoubtedly find increased favor at 144 Mc . and higher, particularly for point-to-point work in rural areas, it is probable that vertical polarization will continue in use for some years to come, particularly in areas where activity has been established with vertical systems. Under certain conditions, notably a station directly in the shadow of a hill, there may be a considerable degree of polarization shift, but ordinarily it may be assumed that best results in 14- Mc. work will be obtained by matching the antenna polarization of the stations one desires to contact.

Impedance Matching

Because line losses tend to be muth higher in v.h.f. antenna semse it becomes increasingly important that feodlines be made as nearly "flat" as possible. Tramsmission lines commonly used in v.h.f. work include the open-wire line of 000 to 600 ohms impedance, usually spaced about two inches; the poly-athylene-insulated flexible lines, available in impedances of $300,150,100$ and 72 ohms; and coasial lines of 50 to 90 ohms impedance. These may be matehed to dipole or multiclement antennas by any of several arrangements detailed below.

The " 5 "

I'sed principally an a means of feoding a stationary vertical radiator, around which parasitic elements are rotated, the "J" consixts of a half-waye vertical radiator fod by a quarter-ware matching section, as shown at A, Pig. 14-1. The spating between the 1 wo sides of the matching section should be wo inches or less, and the point of attachment of the feedline will depend on the impedanere of the line used. The feeder should be stid along the matehing section until the point is found that gives the best operation. The bottom of the matehing section may be grounded for lightning protection. A variation of the "J" for use with coaxiat-line feod is shown at Bin Fig. 14-1. The" ". J " is also useful in mobile applications.

Probably the simplest at rangement for foeding a dipole or parasitic array is the familiar delta, or "Y"-mateh, in which the feeder :ysfem is famed out and attached to the radiator at a point where the impedance along the element is the same as that of the line used. Information on figuring the dimensions of the delta may be found in Chapter Ten. Chief weakness of the delta is the likelihood of radiafion from the matching socotion, which may interfere with the affectiveness of at multiclement array. It is also somewhat unstable
mechanically, and quite eritical in adjusiment.

The " Q " Section

An reffertive arrangement for matehing an open-wire line to a dipole, or to the driven element in a 2 - or 3 -element array having wide (0.2: wavelength or greater) spating, is the " (?' section (Chapter Ten). This consists of a quarter-wave line, usually of 1/2-inch or larger tubing, the spacing of which is detormined by the impedance at the eenter of the array. The paratlel-pipe " $(Q$ " section is: not practical for matching multiclement arrays to lines of lower impedances that about (i00 ohms, nor can it be used affectively with close-spaced parasitic arrays. The impedance of the " Q "

Hig. 11.2-1)etails of the folderd digole. section required in these cases is lower than can be obtained with paralfel sections of tubing of practical dimensions. A quarter-wave section of concial or other lowimpedance line is a commonly-used means of matching a line of 300 to 600 ohms impedance to the low renter impedance of a 3 - or t ehoment array. The length of such a line will depend on the velocity of propagation propagation factor) of the line used. The propagation factors of all the eommonly-used lines ane given in table form in Chapter Ton.

In some installations it may be more convenient to use a line of greater length than a single quarter wave for matehing purposes, in which rase any odd multiple of a puarter wavelength may be used. The exact length required may be determined cexperimentally by shorting one end of the line and coupling it to a source of r.f., and trimming the line length until maximum loating is obtaned at the center frequeney of the operating range.

The "T" -Match

The principal disadvantages of the delta stitem ean he usereome through the use of the arrangement shown in liges. It-s and 14-13. commonly rathed the "T"-mate. It has the advantage of providing a means of adjust ment (by sliding the dips atong the paralled conductors), got the radiation from the matehing arrangement is lower than with the delta, and its rigid construction is more suitable for rotatable arrays. It may be used with coaxial lines of any impedance, or with the various other forms of transmission lines up tu 300 ohms. The position of the clips should, of course, be adjusted for maximum loading and minimum standing-wave ratio, the latter being most important as an indication of
proper setting. The " T " system is particularly well suited for wise in all-matial "plumbing" arrays.

The Folded Dipole

Probably the most effertive means of matehing various lines to the wide range of antenna impedances encountered in v.h.f. antenna work is the folded dipole, shown in its simplest form in Fig. $1+4$. When all portions of the lipole are of the same conductor size. the impedance at the feed-point is equal to the square of the number of elements in the folded dipole limes the normal center impedance which would be present if only a conventional split half-wave radiator were used. Thus, the simple folded dipole of Fig. 14-2 has a feed-point impedance of 4×72, or approximately 288 ohms. It may be fed with the popular 300 -ohm
line without appreciable mismatch. If a threrwire dipole were used, the step-up in impedance would be nine times. Note that this stepup ocrurs only if all portions of the folded dipole are the same conductor size.

The imperdance at the feed-point of a folded dipole may aloo be raised by making the fed portion of the dipole smatler that the parallel saction. Thas, in the a()- Mc. array shown in Fig. 14-4 the relatively low center impedance of a terlement array is raised to a point where it may be fed directly with 300 -ohm line by making the fed portion of the dipole of $1 / 4$-inely tubing, and the parallel section of 1 -inch, I 3 -element array of similar dimensions could be matehed by substituting $3 / 4$-inch tubing in the umbroken section. Conductor ratios and spateings may be obtained from the folded-antenna nomogram in Chapter Ten.

Antenna Systems for 50 and 144 Mc.

Since the same basic principles apply to all antemmas regardess of frequencey, little dis"ussion is given here of the various simple dipoles that may be used when nondirectional systems are desived. Details of such antennas may be found in Chapter Ten, and the only modification neecssary for adaptation to use on 50 Mc . or higher is the reduction in length meressary for increased condurtor diameter at these frepguncies.

A Simple 2-Element Array

A simple but effective array which requires no matching arrangement is shown in Fig. 14-3. Its design takes into account the drop in center imperanere of a half-wave radiator when a parasitic element is placed a quarter wavelength away, A director element is shown, as the drop in impedance using a slightlyshortened parasitic element is just about right to provide a good match to a $50-\mathrm{ohm}$ coaxial line. The element lengths are not extremely aritical in such a simple system, and the figures presented may be used with satisfactory. results.

A 4-Element Array

The importance of broad frequency response in any antema designed for v.h.f. work eamot be overlooked. The disadyantage of all parasitic systems is that they teme to tume

Fig. 14-3-A simple 2-element array for 50 Mc. No matching deviese are needed with this arrangement.
quite sharply, amd thus are oftern effective over only a small portion of a given band. One way in which the response of a system can be broadand out is to incerase the spateing betweren the

Fig. 14-4-Dimentional drawing of a t-element 50-Mc. array. Element lengal and sparing were derivel experimentally for maximum forward gain at ino.. Me.
parasitic elements to somewhat more than the 0.1 or 0.15 wavelength normally considered to provide optimum front-to-back ratio. Some broadening may also be obtained by making the directors slightly shorter and the reflector slightly longer than the optimum value. The folded dipole is useful as the radiator in such an array, as its over-all frequency response is somewhat broader than other types of driven chenents.

A 4 -element array for 50 Mr . having an effective operating range of about 2 Mc. is shown in Figs. 14-4 and 14-5. It employs a folded dipole having nonumiform conductor size. Reflector and first director are spaced 0.2 wavelength from the driven clement, while the forward director is spaced 0.25 wavelength. The spacing and element lengths given were derived experimentally, and are those that sive optimum forward gain at the expense of some front-to-back ratio. As the latter quality is not of great value in $50-\mathrm{Mr}$. work, it can be neglected entirely in the thang prowedure for such an array.

The dimensions given are for peak performane at 50.5 Mr. For other frequancies, the length of the folded dipole in inches should he figured according to the formula

$$
L=\frac{5540}{f_{\mathrm{Mc}}}
$$

The reflector will be $\overline{5}$ per cent longer, the first director 5 per rent shorter, and the second director 6 per rent shorter than the driven element. A broadening of the response maty he obtained, at a slight sacrifice in forward gain. bey adding to the reffector length and subtracting from the director longths. For those interested in experimenting with clement lengths.

Hik. IA-j- Detail drawing of imerts which may the used in the emds of the elements of a paraxitis: array to permit accurate adjustment of element length.
sloted extensions may be inserted in the ends of the various dements, other than the dipole, ats shown in Fig. $14-5$. A 3 -element array maty be built, using the same general dimensions. except that the unbroken section of the folded dipole, in this rase, should have a $3 / 4$-inch diameter element in place of the 1 -inch tubing used in the t-clement array.

Stacked Antennas

The radiation angle of a $\overline{0} 0-\mathrm{Mr}$. antema system maty be lowered, with a resulting'improvement in operating range, by stacking two or more parasitic arravs and feeding them in phase. At spacings of $1 / 2$ to 5 wavelength a gain of 4 db . or more may be realized bey the stacking of two arrays. Bxamples for 50 and 144 Me. are combined in the dual array shown in Fig. 14-6.

Two $50-M c$. 4 -element arrass are mounted one-half wavelength apart, with a similar dual system for 144 Me. in the middle of the space betweoll them. The strueture is all-metal dosign. Booms for the $80-$ Me, portion are 112 inch $24 \mathrm{~S}^{\prime} \mathrm{C}$ dural tubing 12 x inches long. Filoments are $3 / 4$-inch tubing of the same atlos, fored through holes in the booms. Director spacing is 0.2 wavelength, reflector spacing 0.15 wavelength. The booms are mounted on the vertical member (a $1 / \frac{1}{2}$-inch od pipe) by means of blocks of wood, the only nommetallic parts employed. These were made from pieces of two-by-four one foot long. A hole the size of the mast is made in the block near one side, at the middle of the block lengthwise. The block is then sawed lengthwise in a vertieal plane, through the middle of this hole. Bolting
the two portions togethor provides a tight tit around the vertical pipe. The boom is bolted to the block at three points. This method of mounting provides a rigid assembly. The booms should be bonded to the main support to provide lightning protection.

Booms in the 2-meter array are of 1 -inch tubing, and elements of $71 i^{\prime}$-inch, mounted through the booms as in the larger array. The vertical member is 1%-inch dural tubing, attarhed to the main pipe with " U " bolts. Eikement sparing is 0.2 wavelength throughout.

A double version of the "Q" system of matching is used in both arrays. Folded-dipole radiators are used in the 6 -meter portion, amd " Γ "-matehed dipoles in the 2-meter array, but a similar dipole arrangement eould, of course, be used in both.

The main transmission line for cach array is 300 -ohm Twin-lead. The method of feed was chocked out for minimum standing-wave ratio with one bay alone; then the phasing section for the two bays was proportioned so that it would serve as a " Q " section as well. Dimensions for hoth arrays are given in Table 14-I. The feedlines are brought at right angles from

Fig. 1f-6- 1 "four-wer-fomr" array for $11!$ Me., monnted between the hays of a similar array for 00 Me. Stacking of two bay-a half wave apart lowers the radia. tion angle appreciably below that obtainable with ele. ments in a simple plame, and net- a pain of about 1 db . over that of a single array,
the phasing sections to stand-off insulators on the main vertical support. They drop verlically to a combination tie point and bearing, just below the lower boont of the fimeter array. From this anchor, which rotates with the beains, they drop loosely to a fixed tie point, with enough slack left to permit slightly more than 360 degrees of rotation.

The fed seetions of the 50-Me, folded dipoles are made of 3 /6-inch coppertubing, mounted on 5 -inch cone stand-offs. Theonterends are supportedon metal pillars of the satme length. Two stand-offs are used for each side of the dipole; otherwise the rather soft tubing tends to sag and disturb the spacing betwern it and the larger clenuent. The copper tubing is flat tened in a vise at the points where it is to be monated. The $t-t_{0}-1$ conductor ratio, and the spacing of one inch, center to eronter, betwern the two conductors gives the neressary impedance step-up to match 300 -ohm line, in a 1 -rbement array of the sparings mentioned earlier in this section.

A similar arrangement might have been used in the 2-meter array, but the "T"-mateh was substituted because a suitable conductor ratio was not so practical with the smaller-sized elements used. Adjusting clips for the " Γ " section were made from grid clips slipped over the respective elements and soldered together in such a position as to give a spacing of about $11 / 4$ inches, renter 10 renter. A one-inch ceramic stand-off wats used on earh section, to hold the "T" sertion in aligmment with the main element. The phasing section is the same as in the larger array: No. 12 wire spaced one inch. The point of connertion betwen the "T" section and the dipole turned out to be approximately $\overline{5}$ inches from the eenter, but this should be adjusted for minimum standingwave ratio.

Phased Arrays

Superior performance is obtainable on 144 Me, and higher by using curtains of $4,6,8$ or more driven half-wave elements, arranged in pairs fed in phase, and backed up by reflectors. Figs. 14-7 to $14-9$ show 12 - and 1 feresment arrays that are capable of more than 12 and 14 db, gain, respectively. The supporting structures required by such arrays would make them out of the question for lower fre-

TABLE 14.1
Dimensions of the 6-and 2-Meter Stacked Arrays, in Inches

	Radiator	Rettector	1st Director	Ind Director
io. Uc.	110	116	10.5	103
$1,14 \mathrm{c}$	38	4'	-1\%	352/6
	Phasiny Line	Hefterto	Spural	Dieretur Spucin:t
sio. Mc.	114			; 6
14 Mc .	3913		\%	1.7814

 stallation. decigned for polarization tests, has its bonnt monnted on a hingo to permit use of the array in either a horizontal or vertical poxition. The lower array is a 50. Ne. Arelement beam.
quencies, but for $14+$ Me. and higher they are relatively easy to buidd and erect. Their dimensions are not particularly critical, and careful adjustment of the clements is not required for good results. The frequency response of arrays having several driven elements is broader than that of systems in which the gain is built up through the use of additional parasitic elements.

The 12 -element array, Figs. 14-7 and 14-8, has a similar pattern in both horizontal and vertical planes. The photograph shows an experimental set-up in which the array was mounted on a choor hinge. in order to permit its use in horizontal-vertical tests. The horizontal radiation pattern of the 16 -edement array is somewhat sharper when it is used in a vertical position, but it is a highly effective antenna either way.
The elements need not be larger that halfinch diameter, athd smather sizes ban be used if desired, so the entire structure can be made light in weight and still have comsiderable strength. The phatsing soctions maty be No. 1 tor 16 wire, spaced 1 to 1 ! 2 inches. They are tramsposed in both sides of the 12 -element array, and in the two and sections of the 16 element.

Either array maty be fed with 300 -ohm Twin-Led, connected as shown in the drawings. The feed impedance of the 12 -element array is brought down by sparing the reflectors 0.1 .5 wavelength, making it possible to connect the transmission line to the center pair of clements directly without a matching

Heviere The feed impedture of the liberement aryay mas be sommwhat lower that 300 ohms. but the mismatch is not sorious and it may be disergarded if the tratmansion line is redatively short. If a long line is neressaty it may

fig. / $1-8-$ Finment arrangement and leed watum of the l:-element arras, Raflectors are \&pated 0.1. wave length behind the drisen eloments.
he desirable to instatl an adjustable "(${ }^{\prime \prime}$ " seefion at the feed point. This can be made of two 20-inch tubes of the same matrrial as is used for the drisen dements, mounted so that the spacing betwern them wan be adiusted for lowest standing-wave ratio. The feed imped-
ance of an army having several driven elemonts is subject to many variables, making ather sort of adjustable impedamer-mattehing devier highty desimble if long ferdlimes are asiad.

Finment lengt hs and sparings may be taken from Table 14-1, exeret for the sparing beI wedn the driven elements and the reffectors. This should be 12 inches for the 12 -itement array and 17 inches for the libedement.

Long-Wire Antennas

Where long-wire systems designed for use on lower fregurnobes are avalable they may often be used on the v.h.f. batuds with good results, particulaty if the feedlines are not too long. " V^{2} " and rhombic antenna systems designed expressty for the v.h.f. bunds are small anough in siza to be used in many locations whore similar arrays for lower frequencies would be out of the question. The polarization oi long-wire systems is normally horizontal, but in locations where the have a downated slope they maty abo have a romsiderable vertioal componant. Their polarization diserimination is seldom as sharp as that of systems using hati-wave elements.

Information on the various types of longwire arrays will be found in Chapter Ten. At 14. Me, and higher it is relatively easy to stark two or more " V " or rhombic arrays a half-wave apart. This improves their performance considerably, but makes them essentially one-hand devices.

Arrays for 220 and $\mathbf{4 2 0}$ Mc.

The use of a high-gain antenna system is atmost a Heressity if work is to be done over any great diatance on 220 and 120 Ma. Expremontalion with antematarmer for thene frequenctes is fasemating indered, as their size is so smatl as to permit trying various rement arrangemonts and foed sertems with

Fig. If.9 - Shematio Jrawing of a lowlemme array for 111 Vr.

atase. Arays for 420 Mre, particularly, are comboniont for use in demonstrations of athtemata principhes, as even high-gain systems may be of table-top proportions.

Say of the arrays deseribed previously may be used on these bands, but those having a mumber of driven elements fed in phase will he most desirable. The 12- and 16 dement arrays, Figs. 14-8 and 14-9, may be adapted to use on 220 or 420 Mr. ber using the dimensions given in Table 14-II.

The use of a plane reflector, in plate of the parasitic reflectors used in the 1/1-M6. models, is highly desirable When phased sostems are used on higher bands. The spating between the driven elements and the reflecting wane is not particularly critical, exeept as it afferts the feed impedance of the system. Maximum gain occurs in the region around 0.1 to 0.15 wavebongth, with the feed impedance being lowest with the closest sparing. The foed impedance is highest at approximately 0.3-wavelength spacing. The reflew tor has moferect on the feed impedather when a sparing of 0.22 wave-
lengeth is used. As the gaill is neatly erolmatat from 0.1 to 0.25 wavelength, it may be seen that the spacing may be varied to achieve ath impedance matich.

An advantage of the plane reflector is that it may be used for two arrays, incorporating horizontal and vertical polarization on opposite sides of the phane, or providing two-hand operation, as is done in the arraty for 220 and 420 Mc . shown in Fig, $14-10$. Nix driven clements for 220 Mc. are used on one side. arranged in a manner similar to the driwen elements in the 12 -element array for 141 Me. described earlier in this chapter. The 420- Me. side uses 16 driven elements arranged in two sets of 8 each.

These two sets of elements are mounted one above the other with their ends approximately one-half wavelength apart. This dimension is not reritical, though maximum gatin is obtained with end-to-end spacings of about a half wavelength. The two pairs of phasing wires are connected by means of one-wavelength sedtions: of $300-$ ohm Twin- atad at the middle of the array. This junction, which hats an impedaner of about 500 ohms, is fed with 300 -ohm lime through an adjustable" " Q " vection.

The one-wavelength sections of 300 -ohm line are 21^{3} 亿 inches long, this figure taking the propagation factor of the line into areount. The " Q " section may be madr of the same"

TABLE 14-11
Element Lengths and Spacings. in Inches, for 12- and 16 -Element Arrays for 220 and 420 Mc .

Freq. (Mf.)	Driven Element	$\begin{gathered} \text { Re- } \\ \text { fiector } \end{gathered}$	Phasing Section	Reflector $1.2-E /$.	Sparing $\mathrm{JH}-\mathrm{E} / \mathrm{l}$	
220	217/8	261/8	25\%/8	is/6	11	13
420	128/6	138/8	131/4	4	53/4	6\%8

material as the clements, or any available tubing, from $1 / 4-$ to $1 / 2$-inch diameter, may loe used. As proper matching is extremely important at 420 Mc . the sparing of this " (2 " section should be adjusted carcfully for minimum standing-wave ratio.

 side hat 16 driven mements for 120 Mr ., and the rewrse side has 6 half-waves in phase for 220 Mc . Beoh arts of dements are spaced 0.15 wavelength from the reflecting plane.

The reflecting plane is 6 feet square. This is larger than nocessary for the 420 - Mc. system, the size being detormined by the 220Mre side, (chicken wire of 1 -ineh mesh is used for the sereen. Wire netidig, shere metal, or closely-spated wires may be substituted. The size of the reflector is not eritical. except that it should extend at least a cuarter wavelength beyond the area rovered by the driven elements. it plane-reflector array has slightly more gatin than is obtaned with the same number of driven elemonts backed up by parasitio reflectors. The frequenes response is wider and it has a considerably higher front-to-back ratio. The principal dimensions maty be laken from Table 1t-ll.

Mobile and Portable Antennas

A common type of antemat amployed for mobila operation on 50 and 144 Mc . is the quater-wave radiator which is fed with a conxial line. The antenna, which may be a flexible telescoping "fish pole," is mounted in any of several places on the car. The inner conductor of the coaxial line is commected to the antenna, and the outer conductor is grounded to the frame of the car. Quite a gornd mateh may be ghtained by this method with the sotohm coaxial line now available: how-\cdot-ver, it is well to providu some means of tum-
ing the system, su that all variables can bu taken "are of. The simplest tuning arrationment consists of a variable comdensar comneeded betwern the low side of the transinitter compling evil and ground. ats shown in l"ir. 14-I1. This condenser should have a maximum caparitance of 75 to $100 \mu \mu \mathrm{fl}$. for 50 Me , and should be adjustod for maximum loading with the loast coupling to the transmittor. Some method of varving the compling to the transmitter should be provided.

(approximately 19 inches) permits mounting the antenna on the top of the car. Such an arrangement provides good coverage in all directions, the car body acting as a ground plane. When the antenna is mounted else-

Fig. H.H - Method of ferding quarter-wave motile antemas with coaxial line. Ci should have a maximum capaeitance of 75 to $100 \mu \mu \mathrm{fl}$, for 28 - and 50 . Ne, work. L_{1} is an adjustable link.
where on the car. it is apt to show quit. marked directional characteristies. Because of this it is desirable to make provisions for the use of the same antenna for both transmitting and receiving.

A Collapsible Array for 50 Mc.

The best antema possible for operation under mobile combitions is not particudarly efferetive, as compared with antenna sostems normally used in fixed-station work. To make the most of the fine opportunities for DN work afforded by countless high-altitude locations which are accessible by car, it is helpful to have some sort of collapsible antenna array which can be assembled "on the spot." Even a simple array like the one shown in Figs. 14-12 and 14-13 will effect a great improvement in the operating range of the low-powered gear normally used for mobile operation. This one is designed for $50-\mathrm{Mc}$. use, but similar arrangements can be made for other frequencies.

The array shown is a 2 -dement system, comprised of a radiator which is fed with coasial line by means of a " T "-match, and a reflector" which is spaced 0.15 wavelength in back of the driven element. It is made entirely of $3 / \frac{1}{4}$ inch dural tubing, except for the vertical support. which is l-inch tubing of the sime material.

A suggested method of mounting is shown in Fig. $14-12$. A short length of 1×2-inch or larger wood is bolted to the car bumper. A piece of $\sqrt[3]{4}$-inch dural tubing is bolted to this upright. and the 1 -ineh vertical section of the array slips over the top of the $3 / 4$-inch section. The array is turned by means of ropes attached to the reflector element. Height of the array may be increased over that shown by using a longer wooden support, in which case it is desirable to use a 2×2 for greater strength. An

fig. If-12 - 1 2-element collapsible array for ju. He. portable use.
anchoring pin made from a spike inserted in the bottom end of the wooden support is helpful to prevent tilting of the array. With such a device embedded in the ground, the whole assembly will remain rigid, which is helpful in the high winds usually encountered in moun-tain-top locations. Portability is provided by making the clements in three sections, with

Fig. 14-13 - Detail drawing of the collapsible 50 . Mc. array shown in Fig. 14-12. All parts cxcept the vertical support, which is 1 inch in diameter, are made of $3 / 4$-inch dur. alumin tubing. For carrying purposes, it is taken apart at poiuts A and B, inserts of slotted dural tubing being used at points A to hold the sections together. All extensions are the sarue length, the difference in element length being irsovided by the length of the center -rtions.
the end seetions all the same length. The center section of the radiator is 6 inches shorter than that of the reflector.

The fed section of the " Γ " matrhing device is composed of two pieces of $3 / 4$-inch dural tubing about 14 inches long. The two sections are held together mechanically, but insulated electrically, by a piece of polystyrene rod which is turned down just enough to make a tight fit in the tubing. The inner and outer conductors of the coaxial line are fastened to
the two inside ends of the matching section. Clips made of spring bronze are used for comnection between the radiator and the "T." The position of these should be adjusted for maximum loading and minimum standingwave ratio on the line.

This antenna system may be used as a dipole on 29 Me . by plugging the reflector seetions into the driven element, thus bringing its over-all longth to approximately that of a halfwave for the high end of the 10 -meter band.

Miscellaneous Antenna Systems

Coaxial Antennas

With the "J" antenna radiation from the matching section and the transmission line tends to combine with the radiation from the antenna in such a way as to raise the angle of radiation. At v.h.f. the lowest possible radiation angle is essential, and the coaxial antenna shown in Fig. 14-14 was developed to eliminate feeder radiation. The center conductor of a 70 -ohm concentric transmission line is extended one-quarter wave beyond the end of the line, to act as the upper half of a half-wave antenna. The lower half is provided by the quarter-wave sleeve, the upper end of which is connected to the outer conductor of the concentric line. The sleeve acts as a shield about the transmission line and

Fig. 14-14- Coaxial antenna. The insulated inner conductor of the 70 -ohm concentric line is connected to the quarter-wave metal rod which forms the upper half of the antenna. very little current is induced on the outside of the line by the antenna field. The line is nonresonant, since its characteristic impedance is the same as the center impedance of the half-wave antenna. The sleeve may he made of copper or brass tubing of suitable diameter to clear the transmission line. The coaxial antenna is somewhat difficult to construct, but is superior to simpler costems in its performance at low radiation angles.

Cylindrical Antennas

Radiators such as are used for television and broal-band FM are of interest in amateur v.h.f. operation because they work at high efficiency without adjustinent throughout the width of an amateur band.

At the very-high frequencies an ordinary dipole or equivalent antenna made of small wire
is purely resistive only over a very small frequency range. Its Q, and therefore its selectivity, is suffieient to limit its optimum performance to a narrow frequency range, and readjustment of the length or tuning is required for each narrow slice of the spectrum. With tuned transmission lines, the effective length of the antenna can be shifted by retuning the whole system. However, in the rase of antennas fed by matcherd-impedance lines, any appreciable frequency change requires an actual mechanical adjustment of the system. Otherwise, the resulting mismatch with the line will be sufficient to cause significant reduction in power input to the antenna.

A properly designed and constructed wideband antenna, on the other hand, will exhibit very nearly constant input impedance over several megacyeles.

The simplest method of obtaining a broadband characteristic is the use of what is termed a "eylindrical" antenna. This is no more that a conventional doublet in which large-diameter tubing is used for the elements. The use of a relatively large diameter-to-length ratio lowers the Q of the antenna, thus broadening the resonance characteristic.

As the diameter-to-length ratio is increased, end effects also increase, with the result that the antenna must be made shorter than a thinwire antenna resonating at the same frequency. The reduction factor may be as much as 20 per cent with the tubing sizes commonly used for amateur antennas at v.h.f.

Cone Antennas

From the cylindrical antema various specialized forms of broadly-resonant radiators have been evolved, including the ellipsoid,

fig. 1f-I. - Conical Lroad-land antennas have relatively constint impedance over a wide frequency range. The three-quarter wavelength dipole at left and the duarter-wave vertical with ground plane at right have the same input impedance - approximately 65 ohms. Sheet-netal or spine-type construetion may be used.

Fig. 14-16 - I'lane sheet rethectors for v.h.f. and u.h.f. A shows a parabolic sheet and if a sumarevorner rethector.
spheroid, cone, diamond and double diatmond. Of these, the conioal antenna is perhaps the most interesting. With larga angles of revolution the characteristic impodance can be redured to a very low value suitable for extremely wide-band opration. The eone may be made up either of sheet metal or of multiple wire spines, as in Fig. 14-1\%.

Plane Sheet Reflectors

The small physical size of r.h.f. antemnas makes practical many methods not feasible on lower frequencies. For example, a plane flat-shere reflector may be used with a halfwave dipole, ohtaining gatis of 5 to 7 db . Much higher gains are attainable with a number of stacked dipoles fed in phase, monnted in front of a reflecting plane. such an arrangement is called a "billomard" array.

Plane reflectors need not be constructed of solid sheets. Wire mesh, or a prid of eloselyspaced parallel-wire spince is more easily erected and offers lowor wind resistance.

Parabolic Reflectors

A plane sheet may be formed into the shape of a parabolic curve and used with a driven radiator situated at its focus, to provide a highly-direetive antemas sysem. If the parabolie reflector is sufficiontly large so that the distance to the focal point is a number of wavelengths, optical conditions are approached and the wave across the mouth of the reflector is a plane wave. However, if the reflector is of the same order of dimonsions as the operating Watelongth, or lers, the devern radiator is appreriably compled to the reflecting sheret and minor lobes oredur in the pattern. With an aperture of the order of 10 or 20 wavelengtha, a heam-width of approximately is drarees may le achievod.

A refleeting paraboloid must be carefolly designed and constructed to mbtain ideal performance. Thar antennat mast he located at the focal point. The most doxitable focal length of the parabola is that whieh phates the radiator along the plane of the mouth: this length is equal to one-half the mouth radius. At other foeal distances interference fiedre maty derom
the pattern or cancel a sizable portion of the radiation.

Corner Reflectors

The "corner" reflector consists of two flat combucting sherets which intersect at a dexirnated angle. The corner-reflector anternat is particularly useful at v.h.f. where struetures one or two wavelengthe in maximum dimensions are more practical to buid than larger systems.

The plane surfaces are set at an angle of 90 degrees. with the antennaset on a line biseeting this angle. For maximum performance, the distance of the antema from the vertex should be 0.5 wavelength, but compromise designs can be built with closer sparings. The phane surfaces need not be solid sherets: spines spaned about 0.1 wavelongth apart will serve as wedl. The spines do not have to be connerted together electrically.

If the driven radiator is situated on a line biserting the romer angle, as shown in lig. 14-16, maximum radiation is in the direction of this line. There is no fueus print for the driven radiator, as with a parabolic reflector, and the radiator can be plated at a variety of powitions along the biserting line.

Corner angles larger than 90 degrees can be used, with some decrease in gain. I 1so-degree "eormer" is equivalent to a simgle flat-xheet reflector. With angles smaller than (0) degrees. the gain theoretically inereases ats the cormer angle is deerrased. Howerer, to reatize this gain the size of the reflecting sheets must alan be increased.

At a sparilus of $0,-$ wavelongth from the driven dipole to the vertex. the radiation resistance of the driven dipole is approximately twire the radiation resistance of the satme dipole in frer satre. Smaller spacings of driven dipole and vertex are matetical, but at a slight sabrifice in efficiency. The altornative design for the $1+4$-and $\mathbf{5 0}$ - IJe. square-corner reflector has a dipole-to-vertex spateing of 0.4 wavelength. It this spacing the driven-dipole radiation resistance is still somewhat higher than its free-space value, but is considerably less than whan the spacing is 0.5 wavelongth.

U.H.F. and Microwaves

Once the amatour passes the $220-$ Mr. band on the way up through the radio-frequency speectrum, he encounters a distinct change of technique. So far he has been operating in a region where various modifications make usable the familiar coils and condonsers, the crystal-eont rolled transmitters, selective superhet receivers, and other more-or-less standard items of the amateur fied.

The boundary line beyond which such conventional gear is no longer usable has moved ever higher and higher in frequency as new developments and improvements in existing equipment have come along. In the carly '30s the boundary line was our 28-Me. band; then, as that band filled, the line moved up to $\overline{5} 6$ Me., which remained border territory untid 1938 , when stabilization of transmiters used was made a legal requirement of operation in the old 5 -meter band. For some yoars, then, the $112-\mathrm{Mc}$. band, and since the war the 14 Me. band, constituted the dividing line, but even the latter band has now swung into the stabilized-transmit ter-and-superhot-recoiver fied, and the 220-Mc. band is rapidly achieving the same status.

In the light of current developments, it may be said that the $420-\mathrm{Me}$. band is now true borderline territory. The multistage transmitter ean be used successfully, as can the superheterodyne receiver of semiconventional design, but special tank circuits must be employed and extreme care in mechanical layout must be used, in order to achieve satisfactory results.

The $420-$ Me. band is fruitful territory for the experimentally-minded amateur. Most of the gear used will have to be made by the worker himself, but the techniques employed are such that construction of the necessary equipment
will not be outside his eapabilities. There is enough interest in a number of areas to support regular activity in this band, and more can be generated with a little organizational effiort.

Antema work on these frequencies is particularly intriguing. The antema systoms are so small in size that arrays having a gain of 10 db . or more can be erected in almost any location. Experimentation with models built for 420 Mc. is a fine way of checking the performance of arrays for lower frequencies. The experimenter whis starts to work with u.h.f. antenna systems is bound to find himsolf spending many interesting hours checking his pet antenna ideas. Since u.h.f. or microwave experimentation is best accomplished in groups of interested workers, it is a fine project for cöprerative affort by radio clubs.

The communication possibilities of the u.h.f. region should not be overkooked. Recent experience in the $14+$ Mc. band has demonstrated the possibilities of that band for long-distance work, and it is reasonable to assume that propagation vagaries, as regards tropospheric effects, will continue on up through the microwave range. With suitable antoma systems, it is probable that operating ranges on the frequencies above 200 Mc . may equal or approach those now being covered in the $70-160-\mathrm{Mc}$. region.

At least some amateur work has been done in all the microwave bands now assigned. The work of the pioneers in adapting these frequencies to communication purposes has been in line with the best amateur tradition, and it is hoped that the almost unknown territory from 500 Mc . up will see much amateur exploration in the near future.

U.H.F. Tank Circuits

In resonant circuits as employed at the lower frequencies it is possible to consider each of the reactance components as a separate entity. A coil is used to provide the required inductance and a condenser is connected across it to provide the needed capacitance. The fact that the coil itself has a certain amount of self-capacitance, as well as some resistance, while the condenser also possesses a small self-inductance, can usually be disregarded.

At the very-high and ultrahigh frequencies, however, it is no longer possible to separate these components. The connecting leads which,
at lower frequencies, would serve merely to join the condenser to the coil now may have more inductance than the coil itself. The required inductance coil may be no more than a single turn of wire, yet even this single turn may have dimensions comparable to a wavelength at the operating frequency, Thus the energy in the field surrounding the "coil" may in part be radiated. At a sufficiently high frequency the loss by radittion may represent a major portion of the total energy in the circuit. Since energy which camot be utilized as intemded is wasted, regardless of whether it is

Fig. 15.1-Equivalent conpling eirenits for parallel. linc, coaxial-line and conventional resonant eircuits.
consumed as heat by the resistance of the wire or simply radiated into space, the effert is as though the resistance of the tuned cirmit were greatly increased and its Q greatly reduced.

For this reason, it is common practice to utilize resonant sections of tranmmission line as tuned circuits at frequencies above 100 Mc . A quarter-wavelength line, or any odd multiple thereof, shorted at one end and open at the other, exhibits large standing waves. When a voltage of the frequency at which such a line is resonant is applied to the open end, the response is very similar to that of a parallel resonant circuit; it will have very high input impedance at resonance and a large current flowing at the short-cireuited end. The input impedance may be as high as 0.4 megohm for a well-eonstructed line.

The action of a resonant quarter-wavelength line can be compared with that of a coil-andcondenser combination whose constants have been adjusted to resonance at a corresponding frequency. Around the point of resonance, in fact, the line will display very nearly the same characteristics as those of the tuned circuit. The equivalent relationships are shown in Fig. 15-1. At frequencies off resonance the line displays qualities comparable to the inductive and capacitive reactances of the coil-andcondenser circuit, although the exact relationships involved are somewhat different. For all pratetical purposes, however, sections of resonatnt wire or transmission line can be used in much the same manner as coils or condensers.

In circuits operating above 300 Me ., the spacing botween conductors beromes an appreciable fration of a wavelength. To keep the radiation loss as small as possible the

Fig. 15.2 - Methenle of tuning coaxial resonant lines.
parallel conductors should not be spaced farther apart than 10 per cent of the wavelength, conter to center, On the other hand, the spacing of large-diameter conductors should not be reduced to much less twice the diameter because of what is known as the proximity effect. whereby another form of loss is introduced through eddy currents set up by the adjacent fields. Because the cancellation is no longer complete, radiation from an open line becomes so great that the Q is greatly reduced. Consequently, at these frequencies coaxial lines must be used.

Construction

Practical information concerning the construction of transmission lines for such specifie uses as feeding antemnas and as resonant circuits in radio transmitters will be found in this, and other chapters of this IIandbook. Certain basic considerations applicable in genoral to resonant lines used as circuit cloments may be considered here, however.

While either parallel-Jine or coaxial sections may be uscd, the hatter are preferred for higherfrequency operation, Reprosentative mothods for adjusting the length of sumh lines to resonance are shown in Fig. 1is-… At the left, a slid-

Fig. 15-3- Methods of tuning paralleltype resonant lines.

ing shorting disk is used to reduee the effective length of the line by altering the position of the short-circuit. In the center, the same effect is accomplished by using a telesooping tube in the end of the inner condurtor to vary its length and thereby the effective length of the line. At the right, two possible methods of mounting parallel-plate condensers, used to tume a "foreshortened" line to resonance. are illustrated. The arrangement with the loading capacitor at the open end of the line has the greatest tuning effect per unit of capacitance; the alternative method, which is equivalent to "tapping" the condenser down on the line, has less effect on the Q of the circuit. Lines with "aparitive "loading" of the sort illustrated will be shorter, physically, than an unloaded line resonant at the same frequency.

The short-circuiting disk at the end of the line must be designed to make perfect electrical contact. The voltage is a minimum at this end of the line; therefore, it will not break down some of the thinnest insulating films. Lsually a soldered connection or a tight clamp is used to secure good contact. When the length of line

lig, 15-1- Cincern. tricervinder or "pu". type tank for v.h.f. The equivalent rircuit diagram is also shown. Commections are made to thet erminals marhed T. For maximum Q the ratio of b to r shorild He hetween 3 and 5.
must be readily adjustable, the shorting phag is provided with spring collars which make contact on the inner and outer conductors at some distance away from the shorting plug at a point where the voltage is sufficient to break down the film belwern the collar and conductor.

Two methods of tuming parallel-conductor lines are shown in Fig. 15-3. The sliding shortrireuting strap cam be tightened by means of sorews and nuts to make good electrial contact. The parallel-phate condenser in the second drawing may be placed anywhere along the line the tuning effert beroming less as the combenser is lorated nearer the shorted end of the line. Althomghathereapaciance variablo eondenser of ordinaty construction can be tsed, the circular-plate type shown is symmetrial and thas dues not unbalance the line. It also has the further aldvantage that no insulating material is required.

Fquivalent impedance points, for coupling or imperdance-t ransformation purposes, are shown in Fig. 15-1 for parallel-line, coaxial-line, and conventional coil-and-condenser cirenits.

Lumped-Constant Circuits

At the very-high frequencies the low values of L and C required make ordinary eoils and condensers impracticable, while linear circuits offer mechanical difficulties in making tuning adjustments over a wide frequency range, and radiation from unshielded lines may reduce their effectiveness materially.

To overcome these difficulties, sperial high- Q lumped-constant circuits have been developed in which connections from the "condenser" to the "coil" are an inherent part of the structure. Integral design minimizes both resistance and inductance and increases the C / L ratio.

The simplest of thesc circuits is based on the use of disks combining half-turn indurtane donps with semicircular condenser phates, By connecting several of these half-turn coils in parallel, the effective inductance is reduced to a value appreciably below that for a single thrn. Tuning is acemmplished by interleaving grounded rotor plates between the turns. Buth by shielding action and short-circuited-turn effect, these further reduce the inductance.

Another type of ligh-C circuit is a singloturn toroid, commonly termed the "hat" resonator. Two copper shells with wide, flat "brims" are mounted facing each other on an axially-aligned copper rod. The capacitance in the circuit is that between the wide shells, while the central rod comprises the indurtance.

'Pot'".Type Tank Circuits

The lumperd-constant concentric-clement tank in Fig. 15-4, commonly referred to as the "pot" circuit, is equivalent to a very short coaxial line (no linear dimension should exced 1 , 20 wavelength), lomded by a large integral capacitor.

The inductance is supplied by the copper rod, A. Capacitance is provided by the concentric cylinders, B and ${ }^{*}$, phas the capacitance between the plates at the bottoms of the revinders.

Approximate values of capacitance and indurtame for tank circuits of the "pot" type can be determinad by the following:

$$
\begin{aligned}
& L=0.0117 d \log \frac{b}{c} \mu \mathrm{~h} . \\
& C=\left(\begin{array}{cc}
0.112 c & d \\
\operatorname{lng} & \frac{1}{b}
\end{array}\right)+\binom{0.1775 b^{2}}{e} \mu \mu \mathrm{fd}
\end{aligned}
$$

where the symbols are ats indicated in Fig. $15-4$, and dimensions are in inches. The lefthand term for capacitance applies to the concentric eylinders, B and C, while the second term gives capacitalle betwen the botom plates.

"Butterfly" Circuits

The tank circuits described in the preceding section are primatily fised-frequency devires. The "hutterfly" circuits shown in Fig. 15-3are capable of heing tuned over an exceptionally wide range, whide still having high Q and reaisonable physical dimensions. The circuit at .1 is derived from a conventional balanced-type variable condenser. The imductance is in the wide circular band connecting the stator plates. At its minimum setting the rotor plate fills the opening of the loop, reducing the imductance to a minimum. Comnertions are malle to points 1 and 2. This basic structure diminates all connecting leads and avoids all sliding or wiping electrical contacts to a rotating momber. A disadvantage is that the chectrieal midpoint shitts

Fig. 15.5 - " Butterfly" tank circuits for v.h.f., showing front and crossespetion virws and the equivalent circuit.
from point 3 to point 3^{\prime} as the rotor is turned. Constant magnetic coupling may be obtained by a coupling loop located at point 4 , however.

In the modification shown at I), two sectoral stators are spaced 180 degrees, thereby achieving the electrical symmetry required to permit tapping for balanced operation. Connections to the circuit should be made at points 1 and? and it may be tapped at points 8 and 3^{\prime}, which are the electrical midpoints. Where magnetic roupling is employed, points $\frac{1}{}$ and ${ }^{\prime \prime}$ are suitable locations for coupling links.

The caparitance of any butterfly circuit may be computed by the standard formula for parallel-pate combensers given in Chapter Twent-Four. The maximum inductance can be obtained approximately by finding the inductance of a full ring of the same diameter and multiplying the result by a factor of 0.17 . The ratio of minimum to maximum inductance
varies between 1.5 and 4 with conventional construction.

Any number of butterfly sections may be connected in parallel. In prace tice, units of four to eight plates prove most satisfactors. The ring and statur sections may either

Fip. $15-6$ - Sectimal view of the "lighthouse" tube's construction. Close ellectrode sparing reducetransit time while the disk electrode conncetions reducelradinduetance. be made in a single piece or with separate rectoral stator plates and spacing rings assembled with mat chine serews.

V.H.F. and U.H.F. Tubes

At very-high frequencies, interelectrode catpacitance and the inductance of internal leads delormine the highest possible frequeney to which a vacuum tube can be tuned. The tube usually will not oscillate up to this limit, however, because of dielectric losses, grid emission, and "transit-time" cffeets. In low-frequency operation, the antual time of flight of electrons

Fig. 15-7 - Simple form of evlindrical-grid velocitymodulated tube with retarding-fiedl eotlector and coaxial-line output circuit, used as a superheterodyne high-frequency oscillator or as a superregernerative detector. Sinilar tubex can aloos be used as r.f. amplifiers and frequency converters in the $5-50-\mathrm{cm}$. region.
between the cathode and the anode is negligible in relation to the duration of the cycle. At 1000 ke., for example, transit time of 0.001 microsecond, which is typical of eonventional tubers, is only $1 / 1000$ cycle. But at 100 Me., this same transit time represints $1 / 10$ of a evele and a full eycle at 1000 Mc . These limiting fachors establish about 3000 Me ats the upper frequency limit for negative-grid tubes.

With tubes of ordinary construction, the upper limit of oscillation is about 150 Me . For higher frequencies, v.h.f. tubes of special construction are used. The "acorn" and "doorknob," types and the special v.h.f. "miniat ure" tubes, in which the griderathode sparing is
made as little as 0.005 inch, are capable of operation up to about $700-800 \mathrm{Mc}$. The normal frequency limit is around 600 Mc., although output may be obtained up to 800 Me .

Very low interelectrode capacitance and lead inductance have been achieved in the newor tubes of modified construction. In multiplolead types the electrodes are provided with up to three separate leads which, when connected in parallel, have considerably-reduced effective induetance. In double-lead types the plate and grid elemonts are supported by heavy single wires which run entirely through the envelope, providing terminals at either end of the bull. When a resonant circuit is comected to cach mair of leads, the shmong capacitance divides between the two circuits. With linear eircuits the leads become a part of the line and have distributed rather than lumped constants. Radiation loss is minimized and the effert of the transit time is reduced. In "lighthousc" tubes or megntrons the plate, grid and cathode are assembled in parallel planes, as shown in Fig. 15-6, instead of coaxially. The uniform cophanar electrode design and disk-seal terminals permit low interelectrode capacitance.

Velocity Modulation

In negative-grid operation the potential on the grid tends to reduce the electron velocity during the more negative half of the oscillation cycle, while on the other half-cycle the positive potential on the grid serves to accelerate them. Thuss the electrons tend to separate into group:, those leaving the eathode during the negative half-evele being collectively slowed down, while those leaving on the positive half are accelerated. After passing into the grid-plate space only a part of the electron stream follows the original form of the oscillation cycle, the remainder traveling to the plate at differing velorities. Since these contribute nothing to the

Fig. 15-8 - Circuit diagram of the klystron osidiator, showing the fred-back loop coupling the frequency-rontrolling rhumbatrons and the output loop in the catcher.
power output at the operating frequency, the efficiency is reduced in direct proportion to the variation in velocity, the output reaching a value of zero when the transit time approaches a half-cycle.

This effect, such a disadvantage in conventional tubes, is an advantage in velocity-modulated tubes in that the input signal voltage on the grid is used to change the velocity of the electrons in a constantecurrent electron beam, rather than to vary the intensity of a constantvelocity current flow as is the method in ordinary tubes.

A simple form of velocity-modulation oscillator tube is shown in lig. 15-7. fileotrons emitted from the cathode are accelerated through a negatively-biased cylindrical grid by a constant positive voltage applied to a sleeve electrode, shown in heavy lines. This electrode, which is the volocity-modulation control grid, consists of two hollow tuhes, with a small space at each end between the inner tube, through which the electron beam passes, and the disks at the ends of the larger tube portion. With r.f. voltage applied arross these gaps, which are small compared to the distance traveled by the electrons in one halfor.vele, electrons entering the tube will be accelerated on positive half-cycles and decelerated on the negative half-cycles. The lengtl of the tube is made equal to the distance covered by the electrons in one-half cycle, so that the electrons will be further accelerated or decelerated as they leave the tube.

As the beam approaches the collector electrode, which is at nearly zero potential, the electrons are retarded, brought to rest, and ultimately turned back by the attraction of the positive sleeve electrode. The collector electrode is, therefore, also termed a reflector.

The point at which electrons are returnold depends on their velocity. Thus the veloeity modulation is again translated into current modulation.

Velocity-modulated tubes operate satisfactorily up to $6000 \mathrm{Mc} .(5 \mathrm{~cm}$.) and higher, with outputs of 100 watts or more.

The Klystron

In the klystron velocity-modulated tube, the electrons emitted by the cathode are accolorated or retarded during their pasage through an clectric fiedd established by two grids in a cavity resonator, or rhumbutron, called the "buncher." 'The high-frequency electric field between the grids is paralled to the electron stream. This field aceelerates the electrons at one moment and retards them at another, in accordance with the variations of the r.f. voltage applied. The resulting veloeity-modulated beam travels through a field-free "drift space," where the slowly-moving electrons are gradually overtaken by the faster ones. The electrons emorging from the pair of grids therefore are separated into groups or bunched along the direction of motion. The velority-modulated electron stream is passed to a "catcher" rhumbatron. Again the beam passes through two parallel grids; the r.f. current created by the bunching of the electron beam induces an r.f. vollage between the grials. The catcher cavity is made resonant at the frequeney of the

Fis, 1.5.4- Conventional magnetrons, with equivalent schematic symbols at the right. A, simple cylindrical magnetron. \mathbf{B}, split-anode negative-resistance mapnetron.
velority-modulated electron beam, so that an oscillating fieded is set up within it by the passage of the electron bunches through the grid aperture.

If a feed-back loop is provided between the two rhumbatrons, as shown in Fig. 15-8, oscillations will occur. The resonant frequeney depends on the electrode voltages and on the shape of the cavities, and may be adjusted by varying the supply voltage and altering the dimensions of the rhumbatrons. The bunched beam current is rich in harmonies, but the output waveform is remarkably pure because the high Q of the catcher rhumbatron suppresses the unwanted harmonies.

Fig. 15-10-File tron trajectorics for increasing values of magnetic field strength, H. Below is shown the corresponding curve of plate current. $I_{u .}$. Oscillations commence when H reaches a critical value, I_{c}; progressively higherorder modes of oseillation occur beyond this point.

Magnetrons

A magnetron is fundamentally a diode with cylindrical electrodes placed in a uniform magnetic field with the lines of electromagnetic force parallel to the clements. The simple cylindrical magnetron consists of a filamentary cat hode surrounded by a concentric cylindrical anode. In the more efficient split-anode magnetron the cylinder is divided longitudinally.

Magnetron oscillators are operated in two different ways. Electrically the circuits are similar, the difference being in the relation between electron transit time and the frequency of oscillation.

In the negative-resistance or dynatron type of magnetron oscillator, the element dimensions and anode voltage are such that the transit time is short compared with the period of the oscillation frequency. Electrons emitted from the cathode are driven toward both halves of the anode. If the potentials of the two halves are unequal, the effect of the magnetic field is such that the majority of the electrons travel to that half of the anote that is at the lower potential. In other words, a decrease in the potential of either half of the anode results in an increase in the electron current flowing to that half. The magnetron conseguently exhibits negative-resistance characteristics. Nega-tive-resistance magnetron oscillators are usefut betwen 100 and 1000 Mre. linder the best operating conditions efficiencies of 20 to 25 per cent may be obtained. Since the power loss in the tube appears as heat in the anode, where it is readily dissipated, relatively large power-handing capacity can be oltained.
In the transit-time magnetron the frequency is determined primarily by its dimensions and

Fig. 15-11 - S.h.f. magnetron circuits. A, splitanode type. B, 4-anode type, opposite electrodes paralleled.
by the electric and magnetic field intensities rather than by the tuning of the tank circuits. The efficiency is much better than that of a positive-grid oscillator and good power output can be obtained even on the superhighs.

In a nonoscillating magnetron with a weak magnetic field, electrons traveling from the cathode to the anode move almost radially, their trajectories being bent only slightly by the magnetic field. With increased magnetic field the electrons tend to spiral around the filament, their radial component of velocity being much smaller than the angular component. Under critical conditions of magnetic field strength, a cloud of electrons rotates about the filament. It extends up to the anode but dues not actually reach it.

The nature of these electron trajectories is shown in Fig. 15-10. Cases A, B and C correspond to the nonoscillating condition. For a small magnetic field (A) the trajectory is bent slightly near the anode. This bending inereases for a higher magnetic field (B) and the electron moves through quite a large angle near the anode before reaching it, signifying a large increase of space charge near the anode. For a

Fig. 15.12-Sulit-anode magnetron with integral resonant arode cavity for use at u.h.f.

strong magnetic field (C) electrons start radially from the cathode but are soon bent and curl about the filament in the form of a long spiral before reaching the anode. This means a very long transit time and a very large space charge in the whole region where the spiraling takes place. Vnder critical conditions (D), no current flows to the anode and no electron is able to move from cathode to anode. but a large space charge still exists between the cathode and anode. The spiraling beromes a set of concentric circles, and the entire space-charge distribution rotates about the filament.

Fig. 15-101之, F and $(x$ depicts higher-arder (harmonictype) modes of operation in which the space charge oseillates not only symmetrically but in transverse diretions contrasting to the vibrations of the fundamental.

In a transit-time magnetron oseillat or the intensity of the magnetic field is adjusted so that, under static conditions, electrons leaving the cathode move in curved paths which just fail to reach the anode. All electrons are therefore deflected back to the cathode, and the anode current is zero. When an alternating voltage is applied between the two halves of the anode, causing the potentials of these halves to vary about their average positive values, the conditions in the tuhe berome analogous to those in a positive-grid oscillator. If the period of the alternating voltage is made equal to the
time required for an electron to make one complete rotation in the magnetic field, the a.c. component of the anode voltage reverses direction twice with each electron rotation. some electrons will lose energy to the electric field, with the result that they are unable to reach the rathode and continue to rotate about it. Meanwhile other electrons gain energy from the field and are returned to the cathode. Since those electrons that lose energy remain in the interelectrode space longer than those that gain energy, the net effect is a transfer of energy from the electrons to the electric field. This energy can be applied to sustain oscillations in a rewonant transmission line connected between the two halves of the anode.

Split-anode magnctrons for u.h.f. are constructed with a cavity resonator built into the tube structure, as illustrated in Fig. 15-12. The assembly is a solid block of copper which assists in heat dissipation. At extremely high
frequencies operation is improved by subdividing the anode structure into from 4 to 16 or more segments, the resonant cavities for each anode coupled by slots of eritieal dimensions to the common cathode resion, as in Fig. 15-13.

The effieieney of multisegment magnetrons
Fig. 15.13Multisegment magnetron with four res. onant cavities. This construc. tion is used for extremely high frequencies.

reaches 65 or 70 per cent. Slotted-anode magnetrons with four segments function up to $30,000 \mathrm{Mc}$. (1 cm .), delivering up to 100 watts at efficiencies greater than 50 per cent. Using larger multiples of anodes and higher-order modes, performance can be attained at 0.2 cm .

Equipment for $\mathbf{4 2 0} \mathbf{~ M c}$.

Though it is possible to use crystal control on 420 Mc . it is improbable that all amateurs will care to go to the trouble necessary to accomplish it. The same is true in reception of $420-$ Mc. signals: many workers will be looking for the simpler forms of gear, in the early phases of their 420-Mc. endeavor. Thus we may expect that, for some time to come, much of the work on this band will be done with simple oscillator-type transmitters and superregenerative receivers.

The next step up from the superregenerator is the superheterodyne converter or receiver using a very broad i.f. amplifier, such as is employed in radar service. This sort of i.f. system is readily adapted to amateur use, and its extreme broadness is not a serious handicap
at the present state of activity on this frequency. Lack of selectivity in the receiver, and broadness of the signal radiated by simple transmitters, while not conducive to best results, need not be troublesome from the standpoint of interference, as the $420-\mathrm{Mc}$. band is much wider than any lower amateur assignment.

SIMPLE 420-MC. GEAR FOR THE BEGINNER

The 420-Mc. transmitter and receiver shown in Figs. 15-14 to $15-21$ are about the simplest equipment with which satisfactory communication can be carried on. Both employ 6.J6 tubes in their r.f. portions, the circuits being

Fig. $15.14-\mathrm{A} 420$. Nc. transmitter huilt in two units. The modulator portion, on a $7 \times 7 \times$ 2 -inch chassis, uses a 6 C.4 driving a 6.10 .5 modulator. The nscillator uses a 6.56 and $i=$ assembled on a removable troush-shatied chassis.

lik. $1.5 \cdot 1 \overline{3}$ - Bottom view of the on-illator assembly. 'The trongh in which the components are mounted is made of tashing copper, It is 6 inches long, $1^{7} \mathrm{~s}$ inches high, and $21 / 4$ inches wide, with $1 / 4$-inch erlges folled wer for sliding into a clip attached to the matn dassis.
practioally identiad schematically. The tuned cireuit in cath is a half-wave line, with the tube plates at one end and the tuning condenser at the other. The plate voltage is fed into the line at the approximate middle, the exact point being determined by experiment. Two looohm resistors, R_{5} and R_{8} in Fig. 1.5-16, are used at the feed point in the transmitter, as a precatution against loss of r.f. into the powersupply leand. The receiver uses a smatl contertapped choke, R/P (' in Fig. 1.i-20), for this purpose, and a similar arrangement may be used in the transmitter, if desired. The onl! other owrillator circuit difference between the two units is the value of the grid leak, and the use in the receiver of the by-pass condenser (${ }_{1}$ in the grid lead to induce superregeneration. The cathode and heator are maintained above ground potential in both units by small solfsupporing r,f. chakes.

The audio portions of the receiver and transmitter are also quite similar cireuitwise. la the Hansmitter a 6C4 speerh amplifier is operated Wh the mierophone-transomer primary connected in its cathode laad, thus doing away with the necessity for a microphone battery. This drives a $6.1 Q 5$, providing more than enough output for modulating the 5 or 6 watts input to the 6 .JG ascillator. The receiver audio systom uses a 6.5. and a 6 F 6 .

Mechanical Details

The serere of sureess in getting the 6.J6 tubes to operate satisfactorily at 420 . We lies in the climination of all "leads" in the radio-frequency rircuits. The plate line, L_{2}, is connerted directly to the sorket pins, as are the grid resistors and the heater chokes. Use of the hatf-wave line, in place of the more common capacitance-loaded quarter-wave arrangement, permits the use of a standard readily-obtainable tuning eondenser, yet leaves a line of appreciable length. (tsing hatif-wave lines in the manner shown the $6 J 6$ can be made 10 oscillate up to 700 Mc. or more with ease.

The oscillator portion of the transmitter, Fig. 15-15, is built inside a trough made of flashing ropper, which is easy to work with simple tools and ideal from the standpoint of condurtivity and shiclding qualities. It is inexpernsive and may be obtained from buildingsupply houses everywhore. The trough is fitted to a copper clip fastened to the main chassis. Dowar eonnections are made with a small plag and socket, the latter being mounted on the rear wall of the main chassis. This permits experimentation with the oscillator portion, or even substitution of r.f. sections for other bamts, without the neressity for making changers in the modulator unit. This trough

Fig. 15-16 - Shematin dianram of the 420-Mc. transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{4}-10-\mu \mathrm{fil}$. $2 \mathrm{~B}-\mathrm{r}$ olt electrolytic.
$\mathrm{C}_{2}-8$ - fd . . si 0 - volt electrolytic.
$\mathrm{C}_{3}-0.01 . \mu \mathrm{fd}$. tubular.
\mathbb{C}_{5} - Miniature split-stator variable, $4 \mu \mu \mathrm{fl}$. per suction. (Millen 21912 D , with one rotor plate removed from earh section.)
$\mathrm{R}_{1}-170$ ohms. 1 watt.
R_{2} - 10.33 mewolm, $1 / 6$ watt.
$\mathrm{K}_{3}, \mathrm{R}_{4}$ - $\boldsymbol{\mathrm { T }}$ (R) ohme, 5 watts.
R_{s} - 01.15 megohm, 1/2 watt.

- R_{6} - (18id ohmes. I watt.

Rt, Ks - 100 , ,hlum, $1 / 2$ watt, carlem.
R_{9} - 2.00 ohms, $1 / 2$ watt.
1.1- Nidget filter ehoche.
1.2- Plate line made of two pieces of No, 12 wire, 41/4 inches long, ${ }^{3}$ inch apart, center to center.
L. 3 - Hairpin of No. 18 wire. Portion which eomples to Lat is about $5 / 8$ inch long. Position should be adjusted for masimum tran-fer of power to antemina.
J. J 2 - Closed-circuit jack.
 diam., $3 / 4$ inch long.

Fig. 15.17-13otom view of the maill chamais of the ! : O. Mr, Iransmitter, - buming antia emmor. nellos.

construction akse helps prevent diree radiation from the tank circuit. The useful output with this type of assembly is nearly twiee that obtainable with open construction.

The GJ6 plate line in the recoiver, Fig. $1,-19$, is bent in the shape of an inverted " U," with the tube socket mounted on a small bracket near the edge of the chassis. A padder adjustment is added in the form of two eopper plates soldered to the stator terminals of $C_{\text {so }}$ These are approximately $1 / 2$ by 1 inch in size, and are bent toward one another until the desired setting of the band is obtained.

The antenna coupling loop should be shaped so that it may be placed parallel to the plane of the line at a position about $1 / 8$ to $1 / 4$ of an inch above it. As the frequency range to be covered is considerable, the degree of loading by the antenna varies widely over the band, and some form of adjustable antemna coupling
is an absolute necessity. Don't try to do without it - the detector cannot be made to operate at maximum sensitivity unless the coupling is adjusted with extreme care.

Testing

Lerher Wires provide the best means of cherking the frequency of the 420-Mc. transmitter. Information on the construction of Lecher Wires mas be found in chapter Sixtern. After the transmitter range has been calibrated by this means, an absorption-type wavemeter may be mado and used thereatiter for approximate chocks. The tuning range of the superregenerative recolver may be cheeked with either deviee, or it may be done by listening to the transmitter, once the frequency of that unit has been determined.

A convenient absorption-type wavemetor may be made by bending 6 inches of Number

Fig. 1.5-18-A superresenerative reverisar for $1: 0$) Vo. J'ie ino lower montrols are for variation of detector voltage (left) and andio gain. The vernier dial is the main tuning and the knob) at the top ad. justs the antenna coupling.

Hig. 15-19-1 Hetail view of the 120. \1e. superregenerative receiver. Note the method of varslog the antemia couiling. Coppore plates attached to the tuning-enmenser -tators provide a hambert adjustment.

12 wire into a " U " $1 \frac{1}{8}$ inches arross, and soldering its ends to the stator terminals of a 2-plate Cardwell Trim-dire, the stator plate of which has been sawed down the middle. The rotor plate should be spared lif inch from the split-stator plate. This wavemeter will spread the $420-$ Mc. band over threequarters of its tuning range.

The grid current of the transmitter provides a good check on its performance. This may he measured by inserting a meter between R_{9} and ground. With 200 volts on the plate the grid current should rior about 5 to 6 ma . under load. A suitable load for the transmitter is a (f 8-volt 1.00 -ma. pilot lamp, which should
show a full-brilliance indication at about 30 ma. plate current.

Adjustment of the antenna coupling will probably be different with the antenna than with a lamp load, so this adjust ment should be made with the antenna connected. I simple field-strength indirator may be a folded dipole $123 /$ inches long, with a $60-\mathrm{ma}$. pilot lamp, or a 1 N34 cerystal and a mioroammeter, connected at its conter. The anterna coupling loop may be adjusted by meatis of a fiber erochet hook inserted through a small hole in the top of the trough.

For most efficient operation, the point of connection of the $t w o$ resistors, R_{7} and R_{4},

$\mathrm{C}_{1}-4$: 0 - $\mu \mathrm{\mu}$ lid, mina.
$\mathrm{C}_{2}-10,0033-\mu \mathrm{fd}$, micat.
$\mathrm{C}_{3}-0.01-\mu \mathrm{fd}$. tuhular.
$\mathrm{C}_{4}, \mathrm{C}_{5}-10-\mu \mathrm{fl}$. 2.)-volt electrolytic.
Co-Miniature split-stator variahle, alout $4 \mu \mu \mathrm{fd}$. per section. (Millen 210120), with me rotor pate removed from each section. See text and phons.)
$\mathrm{C}_{7}-0.1-\mu \mathrm{fd}$. tubular.
$11_{1}-3800$ ohms, $1 / 2$ watt.
$11_{2}-47,000$ ohme, $1 / 2$ watt.
R_{3} - $0 . \bar{n}$-megohm potentiometer.
$R_{4}-2: 00$ ohms, 1 watt.
$\mathrm{R}_{5}, \mathrm{R}_{0}=0.1$ megohm, $\frac{1}{2}$ watt.
$11_{7}-1.0$ ohms, 1 watt.

$1 R_{9}-2200$ ohms, 1 watt.
$R_{14 .} \mathbb{R}_{1}-47,000$ ohms, 1 watt.
$\mathrm{K}_{12}-1.5$ megohms, $1 / 2$ watt.
I. - Itairpin loop No. 14 enameled wirr. samur sparing as 1,2 . Commet to antemat terminals ly mans of 300 okhm line.
1:z Halfowave line No. 1^{12} wire. each side $3^{1} \frac{1}{2}$ inchers long, spaced $3 / 8$ inch center torenter. (bee tivt and photographs for other details of L_{1} and I_{22}.
J - (:losed-circuit jack.
 diameter, $\overline{8}$ inch long. centertapped.
RIC -10 -mh. r.f. choke.
 inside diameter, $\frac{3}{4}$ inch lons.
s. S.p.s.t. toggle switeh.
T_{1} - Interstage audio transformer.
should the adjusted carefully．Starting with the connertion near the middle of the line，touch a pencil along the line in either direction，noting the grid current meanwhile，I spot will he found where there is little or no change in grid current when this is done．This is the spot for the B－plus conmections．If an appreriable change in the point of commertion is mate the frequency of the oscillator should be chaceked again．

The receiver should be wexked in a similar manner，except that listening to the receiver will replace observation of the grid current as the prencil test is made．The position of the antenta coupling loop in the receiver will he found to be quite aritical，and the best position will change in tuning across the band．The optimum setting will be that just before the detertor goes out of oscilation as the antomat roupling is increased．Both the antenna－cou－ pling and the regeneration－control settings will affert the freducney of the rereiver，so it will be neressary to retune the recoiver as these are adjusted．The eopper plates attamed to the stator plates of the tuning combenser provide a means of adjusting the bandspread abd the position of the band on the dial．

Bibliography on 420－Mc．Equipment

For the convenienere of the aprerimonter Who is interested in 420 Mr．a list of articles apporating in Q心＇V and the Handbok since 1946 is given below．
＂Getting started on 420 Me．＂（Ituisington）， June 1946 （2がT，page 43．
＂Four－Twenty Is fun＂（Tilton），Nov． 1917 QST＇，page 13.
＂Operating the BC－6tis on 120 Me．＂（Ralph

＂liun on 420 with the B（C－788＂（（lapp）．July 1948 QST＇，page 21.

Fig．15－21－Bottom view of the 420. Me，rersiver． laudepraker terminals are at the lower left．At the right are the antenna terminalo，from which a length of 300 －ollum line runs up through the classis to the antema compling loop．
＂Operating the APS－13 on＋20 Mc．＂（Addison）， May 1948 （2st\％，page 57.
＂Tripling to 420 Mc．＂（Brammin），June 1918 （ $x^{\prime} T$ ，page 2.
＂A Doorknob Oscillat or for 420 Mc ．＂（Tilton）， January 1949 （QST，page 29.
＂Simple Gear for the 420 －M C ．Beginner＂（Til－ （ou），May 1919 QST，page 11.
＂An Weorn（onverter for 120 Mc．，＂ 1949

Wave Guides and Cavity Resonators

A wave guide is a conducting tube through Which energy is transmitted in the form of elec－ tromagnetic waves．The tube is not considered as carrying a current in the same sense that the wires of a two－conductor line do，but rather as a bounlary which contines the waves to the enclosed space．Skin effect prevents any ulec－ womagnetic efferts from being evident outside the guide．The energy is injected at one and， wher through caparitive or inductive coupling or by radiation，and is recoised at the other
end．The wave guide then merely confines the enorgy of the fields，which are propagated through it to the receiving end by means of reflections against its inner walls．

The difficulty of visualizing energy transfer without the ustal closed cireut can be relieved somewhat by considering the guide as being evolved from an ordinary two－conductor line．

In Fig． $15-22 . A$ ，several closed quarter－wave stubs are shown connected in parallel arross a two－wire transmission line．Since the open end of each stub is equivalent to an open circuit，the line im－ pedance is not affected by thoir presence．Fnough stubs may be adeded to form a＂$L^{-\prime}$＂ shaped rectangular tube with solid walls，as at 13 ，and an－ （C）other identical＂U＂－shaped tube may be added edge－to－ edge to form the rectangular

CHAPTER 15

pipe slown in Fig. $1 \mathrm{~J}-22 \mathrm{C}$. As before, the line impedance still will not be afferted. But now, instead of a two-wire transmission line, the energy is being conducted within a hollow rectangular tube.

This analogy to wave-guide operation is not exact, and therefore should not be taken too literally. In the evolution from the two-wire line to the closed tube the electrio- and mag-netic-fied configurations undergo considerable change, with the result that the guide does not actually operate like a tworonductor line

Fig. 15-23-Field distribution in a rectangular wave guide. The TE $E_{1,0}$ mode of propagation is depicted.
shunted by an infinite number of quarter-wave st ubs. If it did, only waves of the proper length to correspond to the stubs would be propagated through the tube, but the fact is that such waves do not pass through the guide. Only waves of shorter length - that is, higher frequency - ean go through. The distance x represents half the cut-off wavilength, or the shortest wavelength that is unable to go through the guide. Or, to put it another way. waves of length equal to or greater than $2 x$ cannot be propagated in the guide.

A second point of difference is that the apparent length of a wave along the direction of propagation through a guide always is greater than that of a wave of the same frequency in free space, whereas the wavelongth along a two-conductor transmission line is the same as the free-space wavelongth (when the insulation betweeti the wires is air).

Operating Principles of Wave Guides

Analysis of wave-guide operation is based on the assumption that the guide material is a
perfert conductor of eleetricity. Typical distributions of eleetric and magnetic fields in a rectangular guide are shown in Fig. 15-23. It will be observed that the intensity of the electric field is greatest at the center along the x dimension, diminishing to zeroat the end walls. The latter is a necessary condition, sinee the existence of any electric field parallel to the walls at the surface would cause an infinite current to flow in a perfect conductor. This represents an impossible situation.

Zero electric field at the end walls will result if the wave is considered to consist of wo erpa= rate waves moving in zigzag fashion down the guide, reflected back and forth from the end walls as shown in Fig. 15-24. Just at the walls, the positive arest of one wave meets the negative erest of the other, giving complete cancellation of the electric fields. The angle of reflection at which this cancellation ocrours dopends upon the width x of the guide and the length of the waves; Fig. 15-24.A illustrates the case of a wave considerably shorter than the cut-off wavelength, while B shows a longer wave. When the wavelength equal: the cut-off value, the two waves simply bounce back and forth bet ween the walls and no energy is transmitted through the guide.

The two waves travel with the speed of light, but since they do not travel in a straight line the energy does not travel through the guide as rapidly as it does in space. A further consequence of the repeated reflections is that the points of maximum intensity or wave crests are separated more along the line of propagation in the guide than they are in the two sepatrate waves. In other words, the wavelength in the guide is greater than the free-spare wavelength. This is also shown in lig. 15-24.

Modes of Propagation

Fig. 1.7-23 rupresents a relatively simple distribution of the eleotric and magnelie fields. There is in general an infinite number of ways in which the fields can arrange themselves in a guide so long as there is no upper limit to the frequency to be transmitted. Each field eonfiguration is called a morle. All modes may be separated into two gencral groups. One group, designated T.1I (transorse maynetic), has the

-..... Positive crest

䢒

(B)

Fig. 15-24- Reflection of two component waves in a rectangular guide. $\lambda=$ wavelength in space, $\lambda g=$ wavelength in guide. Direction of wave motion is perpendienlar to the wave front (erests) as shown by the arrows.
magnetic field entirely transverse to the direction of propagation, but has a component of Nectric field in that direction. The other type, designated $T E^{\prime}$ (transverse electric) has the electric field entirely transverse, but has a component of magnetic field in the direction of propagation. TM waves are sometimes called E waves, and $T E$ waves are somotimes called $I /$ waves, but the $T M$ and $T E^{\prime}$ designations are preferred.

The particular mode of transmission is identified by the gronp letters followed by two subsicript inmerals: for example, $T E_{1.0}$, $T M_{1,1}$. etr. The number of possible modes increases with frequency for a given size of guide. There is only one possible mode (called the dominant mode) for the lowest frequency that can be transmitted. The domintme mode is the one generally used in practical work.

Wave-Guide Dimensions

In the rectangutar guide the critieal dimension is x in Fig. 15-22; this dimension must he more than one-half wavelength at the lowest frequency to be transmitted. In practice, the ?f dimension usually is made about equal to $\frac{1}{2}$. to avoid the possibility of operation at other than the dominant mode.

Other cross-sectional shapes than the rectangle can be used, the most important being the rircular pipe. Much the same considerations apply as in the rertangular ease.

Wavelength formulas for rectangular ami rircular guides are given in the following table. where x is the width of a rectangular guide and r is the radius of a circular guide. All figures are in terms of the dominant mode.

	Rectungular	Circrilar
('ut-off wavelength. .	\because	$3.41 r$
Longest wavelength transmitted with little attennation.	- $1.6 x$	$3.2 r$
Shortest wavelength before next monle beromes possible \qquad	- $1.1 x$	$2.8 r$
Cavity Reso	onators	

At low and medium radio trequencies resonant circuits usually are composed of "lumped" constants of L and C; that is, the inductance is concentrated in a coil and the capacitance conrentrated in a condenser. However, as the frequency is increased, coils and condensers must be reduced to impracticably small physieal dimensions. lip to a certain point this difficulty may be overcome by using linear circuits but even these fail at extremely high frequencies. Another kind of circuit particularly applicable at wavelengths of the order of centimeters is the cavity resonator, which may be looked upon as a section of a wave guide with the dimensions chosen so that waves of a given length can be maintained inside.

The derivation of one type of cavity resonator from an ordinary $L C$ cireuit is shown in lig. $15-25$. . Is in the case of the wavr-guide derivation, this picture must be accepted with
some reservations, and for the same reasons.
Considering that even a straight piece of wire has appreciable inductance at very-high frequencies, it may be sern in lig. 15-25A and B that a direct short across a two-phate condenser with air dietectric is the equivalent of a tuned circuit with a typical coiled inductance. With two wires between the plates, as shown in liig. $15-25 \mathrm{C}$, the circuit may be thought of as a resonant-line section. For d.c. or even low froqueney r.f., this line would appear as a short arross the two rondenser plates. At the ultrahigh fregurncies, however, such a section of line a quarter wavelength long would appear as an open cireuit when viewed from one of the plates with respect to the other end of the servion.

Fif. $1.5-25-$ - Stor in the derivation of a tavity resomator from a conventional coil-and-condenser tuned circuit.

Increasing the number of parallel wires between the plates of the condenser would have no effect on the equivalent circuit, as shown at D. Fventually, the colosed figure at E will be developed. Since each wire which is added in D is like connerting inductances in parallel, the total inductance across the condenser becomes increasingly smatler as the solid form is approached, and the resonant frequency of the figure therefore becomes higher.

If mergy now is introduced into the cavity in a manner such as that shown at F. the circuit will respond like any equivalent coil-condenser tank circuit at its resomant frequency. A cavity resonator may therefore be used as a u.h.f. tuning eloment, along with a vacuum tube of suitable design, to form the main components of an uscillator circuit which will be capable of functioning at frequencies considerably beyond the maximum limits posible when conventional tuines, coils and condensers are employed.

Other shapes than the cylinder may be used as resonatots, among them the rectangular box, the sphere, and the sphere with re-entrant cones, ats shown in Figy, $15-26$. The resonant frequency depends upon the dimensions of the cavity and the mode of osrillation of the waves (comparable to the transmission modes in a
wave rinde). For the lowest modes the resonant wavelengths are as follows:

(ylindur	2.61%
Siduare box	1.411
Sthere.	$2.28 r$
Sphere wit	$4 r$

The resonant wavelengths of the relinder and square box are independent of the heipht when the height is hese than a half-wavelougth. In other modes of ospillation the height must be a multiple of a half-wavelengh as measured inside the cavity. Fig. 15-25F show: how : rylindrieal cavity can be tuned when operating in such a mode. Other tuning methods include phacing adjustable tuning paddles or "slugs" inside the cavity so that the standing-wave pattern of the electric and matgetic firlds can be varied.

Fig. 15:26 - Forms of ravity resobators.
A form of eavity resonator in wide pratical use is the re-entrant colindrical type shown in Figg. 15-27. It is useful in connertion with var-uum-tube oseillators of the types deseribed for u.h.f. use earlier in this chatper. In ronstruction it resembers a concentric line closed at both ends with eapacitance loading at the top, hat the artual mode of oseillation may differ considerably from that oecurving in conxial lines. The resomant frequeney of such a ravity depends upon the diameters of the two rylinders and the distance d between the ends of the imuse and outer evinders.

Compared to ordinary resonant ribobits, ravity resonators have extremely-high Q.

A value of Q of the orter of 1000 or more is reatily ubtainable, and (\&) values of several thousand ean readily be secured with goond design and construction.

Coupling to Wave Guides and Cavity Resonators

Energy may be introdued into or abstracted from a wave guide or resonator by means of either the electrie or magnetic field. The mergy transer frequently is through a coasial line. two methods for compling to which

CROSS-Stctional view
Fig. 15-27 - Re-natrant cylindrical cavity resonator.
are shown in Fig. li-28. The probe shown at A is simply a short extension of the inner ermductor of the coaxial line, so oriented that it is parallel to the electric lines of force. The loop shown at 33 is arranged so that it encloses. some of the magnetic lines of force. The point at which maximum roupling will be secured depends upon the particular mode of propagation in the guide or eavity; the coupling will be maximum when the eoupling device is in the most intense fiold.

Coupling can be varied by tuming cither the probe or loop through a 90 -degree angle. When the probe is perpendiabar to the eler-

Fig. 15-28-Conding to wave guides and reandators.
tric lines the eoupling will be minimum; similarly, when the plane of the loop is parallel to the magnotie lines the coupling will have its least possible value.

Amateur Microwave Technique

All the microwave bands allotted to amatteurs have been used experimentally for erommunication purposes. Complete devipriptom of the equipment used is berond the seope of this text, but refornece is made to various arides whirh have appeared in QST, deseribing the gear devised by the amateur pioneers in this field.

For the experimentalls-inclined, our mierowave assigmments represent a challenge to amattwur ingenuity. Who ram say but grater use of these frequencios will womat mast history.
forning ap propagation perularitios and potential uses which will make these bands as eoveted a region as our "communication frequencies" are considered today?

The first amateur microwave communication was carried on bey Morehant and Harrison. WhBMA 2 and W2I.(if, who assembled the gear shown in Fig. 15-29 in time to communicate with carh other on Sovember 15,1945 the date that the mierowave bands were offirially opened to amateur experimentation. They wed two klystron tubes. one as a fre'

Fig. 15-29 - The first amateur microwave communication was accomplished by W613 MIS (left) and W21.GF, who used two sets of similar equipment to open the 5300 - 1 c c amateur band on November 1., 1945 , the date that the first microwave bands were released for amateur use.
quency-modulated transmitter oscillator, the other as a local oscillator for receiving. The latter worked in conjunction with a crgstal mixer, into a $30-\mathrm{Mc}$. i.f. in the form of an FM receiver.

The $2300-\mathrm{Mc}$. amateur assignment was first used for communication by Kioch and Floyd, WOWHM/2 and W6OJK/2, who used light-
house tubes in simple transecivers, both of which are shown in Fig. 15-30. Theil antema systems used parabolic reflectors, one being made of wire screening attached to a wooden frame, and the other, also shown in the photograph, was simply an electric-hoater assombly, with the mirrowave dipole substituted for the heater element.

Amateur communication on $10,000 \mathrm{Mc}$. was first accomplished by Atwater and MeGregor, W'2JN and W2IRJM, who modified 723-A/B klystrons to permit their operation in the amateur band. They are shown, with one of their equipment set-ups, in lig. 15-31. A somewhat similar arrangroment was used by W4HPJ/3 and W6IFE/3 to extend the dislance record, and has since been employed by Whirle in opening the $33300-$ Me. hand to amathe ur use, except that the tube used in the latter instance was a 707-13 with an external cavity.

The highest frequency ever used in amateur work is 21,000 Mc., first cmployed by Sharbaugh and Watters, W1NVL، 2 and WisisD/2, whose laboratory set-up is shown in Fig. 15-32. The r.f. generator, for transmitting and recciving, was a developmental tube derignated as the Z-668, a velocity-modulated tube of the reflex type. Communication was carried on, two-way, over a distance of 800 feet.

A list of QST references, arranged according to the amateur band coneerned, follows. It should be cmphasized that the equipment described in these mports is experimental in nature. In most instances it represents only one of several ways in which microwave communication equipment might be built. The distances covered in the pioneering work just mentioned are not, for the most part. indieative of the

Fig. 15-30-The 2300-Mc. band was first employed for amateur communication by W"60JK (left) and W9WHM (extreme right). Antenna systems employed a standard electrie-heater unit and a handmade sereen-lined parabola.
maximum working range，since exploration of the particular band ia question was the end in view when the experiments were conducted， rather than the covering of any long distances．

Bibliography

1215 Mc ．－＂World Above 50 Mc ．＂（W1BM3M）， May 1！17（QST．page 136：also July 1947 QsF\％，page 130．Sulzer and Am－ merman，＂An Oscillator for the 121ir Mr．Band，＂April 1sts Q心＇T，page 16.
2300 Mr．－Koch and loleved，＂（O） 2400

Fig．15－3I－H213JM（left）and M2JN，with one of the equipments used in pioneering work on 10,000 Ite．
＂World Above 50 Mc．＂（WGIFE）． Aug．1947 Q．ST＇，pare 128 ．
3300 Mc －＂World Above oc Mr．＂（WhifE） Aug．1917（2．5\％page 128．

Fig．15－32－W1NVL（left）and W9SAD with the equipment used to work a distance of 800 fert on the highest frequency ever used for amateur eommunication － 21,000 Nl．Intenna sy－tems employed a parabolic rethertor at one end and a horn radiator at the oflor．

5250 Me．－Merchant and Harrison，＂Duplex ＇Phone on 5300 Me．，＂Jan． 1946 Q心゙T，page 19.
10，000 Mc．－Me（iregor and Atwater，＂Dish－ ing Out the Milliwats on 10 KMe ．，＂
 ＂World Howe 50 Mr．＂W4lli＇d 3，

$21,000 \mathrm{Mc}$ ．－Sharbatigh and Watters，＂Our Best DX－S00 F＇eret！＇Aug．19te QS＇T，page 19.

Measuring Equipment

To comply with FCC regutations it is meressary that the amateur station be equipued to make a few relatively simple measurememts. For example the regulations require that means be available for checking the transmitfer frequency to make sure that it is inside the band. This mans must be independent of the frequency control of the trammitter itself; it is not enough to depend on, stav, the calibration of a crystal in the erystal-romerohed oscillator that drives the transmittor. In addition, it is neressary to make sure that the phate power imput to the final stage of the tramsmitter does
not exered one kilowatt. The regulations also impose certain requirements with respect to phate-supply filtering, stability and purity of the transmitted signal, and depth of motuatation in the case of 'phone transmission.

In many cases all these measurements can be made to a satisfactory degree of accuracy with no more auxiliary equipment than the regular station reeriver. However, a better job usually can be done by building and calibrating some relatively simple test gear. Too, the progressive amateur is interested in instruments as an aid to better performance.

Frequency Measurement

Types of Equipment

Frequency-messuring equipment can be divided into two broad classes: oscillator- of various types generating signals of known frequency that ean be compared with the signal whose frequency is unknown, and adjustable resonant circuits.
list ruments in the first classifieation are the more accurate. Two types are commonly used by amateurs, the secondary frequency standard and the heterodyne frequency meter. The secondary frequeney standard ushally wenerates a frequency of 100 ke . and employs a circuit that is rich in harmonic output. is a result, it supplies a series of freguremeres, all multiples of 100 ke., which provith areurate (alibration points throughout the communiat thons spectom. The more elaborate instruments of this type inelude frepurney dividers (multivibrators) to supply intermediate calibration points: a divisor commonly used is 10 , thus signals are genemated at intervals of 10 kc . when the fundamental frequeney is 100 ke .

The conventional type of heterodyne frequener meter is simply a variable-frequeney oscillator. The oseillator usually is designed to cover the bowst frequene: band in which measurements are to be made: mensurements then can be made in higher frequeney bands hy using the hatmonic output of the oscillator. For examphe, when the oseillator is set to 3560 ke. its secomp harmonic is 7120 ke., its fourth harmonic is $14,240 \mathrm{ke}$, and so on. The proper frequency reading is dotermined by observing the fundamental frequency of the oscillator and then multiplying by the number of the harmonic that fatls in the desired frequency range.

In both types of instruments - semondary

Natulard and heterolyne meter - the inherent accurare is a fixed percentage of the frepuenes at which the measurement is made. The serondary stamdard is usually the more areurate, since it ean be made crystal-eontrolled with attendant high stability. However, it lacks the flexibility of the hoterodyne meter in that it does not in itself provide a means for making measurements between adjacent hapmonics of the oscillator or multiviberator. A third tipe of instrument uses a secondary standard in conjunction with a variable oseillator for intorpolation. When these are combinct in the "additive" frequency meter as deseribed lator, the result is a frequency moter that has (esentially the areuracy of the secondary standard but has the direct measurement feature of the heterodyue meter.

Frequency-measuring equipment incorporating oscillators is used in conjunction with a regular receiver. The process of measurement consists of comparing the signal from the frequeney moter with the signal whose frequeney is to be measured. Nomosrillating types of frequonce meters operate by absorbing some entry from the signal source under measurement, and in consequence are callod "absorption" Prequency meters. They are simply tumed circuita, adjustable over the desired frequene. range, provided with some means for imlicating when the energy in the rireuit is maximum. Their accuracy is low compared with the oseillating types, but where approximate measurement is sufficient they have a number of desirable features.

Frequency Measurement with the Receiver

An ordinary receiver has the essential elements needed for frequency measurement. Its
dial readings must be calibrated in torms of frequency, of course, before measurements can be made. Manufactured receivers are generally so calibrated; the accuracy of the calibration will vary with the receiver model, but if the rereiver is well made and has good inherent stability, a bandspread dial calibration can be relied upon to within perhaps 0.2 per cent. For most accurate measurement, maximum response in the recoiver should be determined hy means of a earrier-operated tuning indiotator (such as an S-meter), the rereiver heat oscilbator being turned off. If the recoiver has a crystal filter, it should be set in a fairly "sharp" position to increase the arcuracy.

When ehecking the frequency of your own transmitter, the recoiving antenna should be diseonnerted so the signal will not overlond or "block" the receiver. Also, the r.f. gain should be reduced as a further prectation against overloating. If the reeceiver still blocks without an antenna the frequency may be checked by turning off the power amplitior and tuning in the oseillator alone. It is difficult to avoid blocking under almost any conditions with a regenerative receiver, and so this type is not very suitable for checking the frequency of one's own transmitter.

THE SECONDARY FREQUENCY STANDARD

The most practical type of seromdary stambard for amateur use is a 100 -ke. erystal oncillator". It is very simple to build and its harmonics will mark the edges of the amateur bands to a high degree of aceurace: A series of such "marker" signals at the band edges is all that is required, from the standpoint of making sure that the transmitter frequency is inside the band on whirh it is supposed to be working.

Manufacturers of $100-\mathrm{ke}$. erystals usually supply circuit information for their particular

1月is. 16-1 - Cirwit for arystal-rotrolled frequency stamlard. 'liubes such as the $65 \mathrm{~K} 7,65117,6.1 \mathrm{C}^{\circ} 6$, ete., are suitable.
(C_{1} - $50-\mu \mu \mathrm{ff}$, variable.
C 2 - $150-\mu \mu \mathrm{fl}$, mica.
($-0,0022-\mu \mathrm{fd}$, mica.
(i, - 0,01 - fld . paper.
C $-22-\mu \mu \mathrm{fd}$. mica.
181_{1} - $0 . \mathbf{1}_{1}$ megohm, $1 / 2$ watt.
$\mu_{2}-1000$ olms, $1 / 2$ watt.
$\mathrm{l}_{3}-0.1$ megohm, $1 / 2$ watt.
$\mathrm{K}_{4}-0.15$ megohm, $1 / 2$ watt.

WWV SCHEDULES

Standard radio and andio frequenciew are broadeast contimously, day and nisht, from WXV, the station of the Central Radio P'ropagation Laboratory, National Burean of Standards, Washington, D. C., on the following frequencies:

Mr.	Porier (hus.	Audia Freer. (aveles)
2 i	0.1	1 athl 410
B 11	80	1 and 4.40
1110	9.11	I. 110 and form
1.31	9.0	1. 1101 and 1000
20.1	8.5	1. 110 and 4000
2.0	0.1	1. 4.40 and 4000
311.0	0.1	1 and 410
3.9 .0	0.1	1

The l-r.p., mombalation is a 0.ons-secomal pulac, the legenning of which marks the terginning of earh second to an accuracy of one part in $1,000,000$. The pulse is omited on the 59th serond of every minute.
'The aceuracy of the radio and audio frequencies is within one part in s0.0010,000, The audio frequencios are interrupted at precisaly one minute before each hour and cach tive minutes thereafter (50 hin minute, f minotes past hour, ete.): they are resumed in preciaely one minute. During each wilent interval the time (F S'I') is given in telegraphic code. A station announcement is given in wice on the hour and half hour.
(rystals. The eireuit given in Fig. 16-1 is representative, and will gencrate usable harmonies up to 30 Me . or so. The variable condenser, C_{1}, provides a means for adjusting the frequency to exartly 100 kr . Harmonic output is taken from the cireuit through a small condenser, C_{5}. There are no particular constructional points to be observed in building such a unit. Power for the tube heater and plate may be taken from the suphly in the receiver with which the unit is to be used. The plate voltage is not eritieal, but it is recommended that it be taken from a V li-150 regulator if the receiver is equipped with one.

Suffirient sigat strongth ustally will be secured if a wire is run between the output torminal connerted to C_{5} and the antema post on the recoiver. At the bower frequencies a metallie eonnertion may not be necessaty.

Adjusting to Frequency

The frequeney can be adjusted exactly to loo ke. by making use of the WWV transmissions tabulated in this chapter. solect the frequeney that gives a good signal at your location at the time of day most convenient. Tune in the W'WV signal with the receiver b.f.o. of and wait for the period during which the modulation is absent. Then switch on the $100-\mathrm{ke}$. oscillator and adjust its frequency, by means of C_{1}, until its harmonic is in zero beat with WWV. The exact setting is easily found by observing the slow pulsation in background noise as the harmonic comes close to zero beat, and adjusting to where the pulsation disappears or occurs at a very slow rate. The pulsa-
tions can be observed even more readily by switching on the recoivers b,fo, after approximate zero boat has been secured, and observing the rise and fall in intonsity (not frequency) of the beat tone. For host results the WWV signal and the signal from the 100-ke. oscillator should be about the same strength. It is advisable not to try to set the 100-ke. oscillator when the WWI signal is modulatem, since it is difficult to tell whether the harmonic is being adjusted to \%oro beat with the carried or one of the sidebands.

"Marker' ${ }^{\text {Frequencies }}$

Identification of the $100-\mathrm{kc}$. harmonies is usually not difficult in or near the amateur bands because the normal artivity in those bands will show which 100 -kre harmonies define the band limits. In ot her regions harmonirs can be identified by counting them off from one whose frequency is known. The frequency of a given harmonia can often be identified by comparing it with a rommerrial or government station of known frequency operating in the vicinity. Alternatively, a "marker" erestal ran be used. A faverite frequeney for such a marker is 1000 ke. Harmonios of a 1000 -ke. oscillator are easily identified on the avorage receiver beramse they are fairly widdy spaced, and one the recoivor setting for a multiple of 1000 ke . is determined it is an easy matter to count off the $100-\mathrm{ke}$. points between. Other marker frequencios can of course be used - for example, a fregurney near 2000 ke ., wheh is in the range of ervatal; available for amateur use. The riraut given in Fig. 16-1 will work satisfactorily with surh crystals, so the marker points wan be determined simply by insarting a suitable crystal.

THE HETERODYNE FREQUENCY METER

The basis of the hoterodyne froqueney moter is a completely-shichded uscillator with a procise frequency calibration. The waillator must be so designed and construeted that it can be acourately calibrated and will retain its calibration over long periods of time.

The oseilator used in the frequeney moter must be vory stable, Mochanical consideratiens are most important in its construction. No matter how good the instrument may be electrically, its aceurary cannot be deponded upon if the mechanical construction is flimsy. Inhorent frequency stability can be improved by avoiding the use of phonotic compounds and thermoplasties (bakelite, polystyrene, etc.) in the oscillator circuit, employing only high-yrade ceramies instoad. Plug-in coils ordinarily are not acecptable; instead, a solidlybuilt and firmly-mounted tuned circuit should be permanently installed. The oseillator pand and chassis should be as rigid as possible.

To be usable over a wide frequency range the heterodyne frequency meter must have strong harmonic output. I suitable cirmit, including a harmonic amplifier, is shown in Fig. 16-2. The mechanical construction should parallel that of the VFOs shown in Chaptor Six. In the oscillator arruit, an aljustable padding condenser, C_{2}, is provited so that the tuning range can be set to cover whichever band is selected for the fundamental frequency. In addition, it maty be necessary to adjust the coil inductance slightly in order to make the range cover as much as possible of the tuning dial.

Fig. 16.2 - Iletermy ne frajurney meter with hammonic amplifier.
$\mathrm{C}_{1}-100-\mu \mu \mathrm{fl}$. variable (tuning).
$\mathrm{C}_{2}-100-\mu \mu \mathrm{fd}$. variable (band-set).
$\mathrm{C}_{3}-220-\mu \mu \mathrm{ft}$. silver mira (padder).
Ca, C $\%$, $\mathrm{Cin}-100$ - $\mu \mathrm{fl}$. miea.

$R_{1}, K_{3}-1.17$ megohm, $1 \frac{1}{2}$ watt.
K_{2} - 10.000 ohme, I watt.
$\mathrm{ki}_{4}-3.30$ ohms. 1 watt.
$\mathrm{k}_{5}, \mathbf{2} \mathbf{5}, 0(0)$-ohm potentiometar.
l.1-For 3500 - (00) ke. fundamental: 18 turn: Vn. 18 on 1 -inch form, length $11 / 2$ inches. Cathode lap $^{\prime}$

5 turns from ground cond.
For $1750-2000 \mathrm{he}$. fumbamentat: 36 turn- Vo. 20 d.e.e. close-wound on 1 -inch form. Cathode tap 10 turns from ground end.
1.2. I.3-2.5-mh, r.f. choke.
I.4-2! turns No. 18 enam. elose-wound on $1 / 4$-inch furm.
$1.5-11$ thris No. 18 enam. elose-wound on $1 / 4$-inch furm.
$1.15-2$ turns No. 16 spaced $1 / 2$ inch, diameter $1 / 4$ inch. S_{1}-4-position I-pole ceramic wafer switeh.

Athough the owillator alone will give sat isfactory output in the lower-frequency amatere bands, better results at 28 . Me, and higher are obtaned by using the 6.107 harmonic amplifier. The 6,1 (7 plate circuit is broadly tuned by means of switched coile resonating, with the cirruit caparitaners, at 144,50 and 28 Mr, 1 radio-frequeney choke is connerted to the fourth swith position: this gives ample signal strengith at It Ma. and lower frequencios, For beutimutur h_{5} in the output riveuit make it nossible to reduee the strength of the sigual from the frequeney meter to the value dosired for moasurement purposes.

The various amateur bands are covered by the following harmonies: $3.5-1$ Me.. fundamental: 7-7.3 Me., and harmonic; 14-1t.4 Me., th : 26.96-27.23 Me., 7 th: 28-29.7 Mc., Sth: 50-it Mc., 14th: 144-148 Me., toth. It lower frequencies a short length of wire conneered to the output terminal will give ample signal strength under avirage conditions, but in the v.h.f. range closur coupling - such as running the wire in close proximity to the reweiving antenna lead, or actually counoeting it to the antema post through a small fixed eondenser - may be necorsary to got a good signal.

Calibration

The heterodyme fremumey moter may be (alibrated agatinst the harmonios of a 100 -ke. seeondary standard of the type dewribed in the preceding wetion, using al receiver as ant ausiliary. For example, suppose the ospillator fundamental range is 3., $0-4$ Ne. Then if the remeiver is adjusted to piok up the fifth harmonie of the ossillator (17.5 to 20 Mr.) and the harmonic is beat against 100 -ke, points from the erystaloseillator in that ramge, loa-ke.

Fig. 16.3-Additive frequen-y meter with erlformtained power rupply. The small knots are for correction of drift so that luth the low-he. erestal oscillator and IFO can be set to exact frequene? . Dial caliheation is in 1000 -cycle intervals. This unit can be used for hish. aceuracy frequency measurement at all fremonerofrom 100 he . through 30 Mc .
intervals on the fifth harmonie will give 20-ke. intervals on the fumbanmatal. With a ratraightline caparitance condenser at Co $^{\prime}$, the relationship hetween dial divisions and frequency is almost linear. and marking of the dial at the proper interval: betwern actual ealibration points will result in a calibration of sufficient accuracy.

- INTERPOLATION-TYPE FREQUENCY METER

By using a variable-frequency oscillator of rostricted tuning range to interpolato between the hamonies gemerated by a $100-\mathrm{ke}$, crostal standard, it becomes possible to measure frequeney with an afcurary that is more than adorguate for all practical purposes. In the frequrney meter shown in Fig. 16-3 to Iti-6, inclusive, this interpolation is aceomplished by modulating the harmonie output of the loo-kr. oweillator with the output of a $100-$ lion-ke. variable owcillator. ds in ordinary trephony, the modulation process sets up side frequencies that add algebracally to earh harmonir, hence the name "additive frequency meter." The sidebands appear as siguals of adjustable frequency between the 100-ke. harmonies.

To cover a 100 -ke. range, the interpolation oscillator need cover only an actual tuning range of 50 kc . This is beratase both sum and difference frequencies appear. For example, if the VFO is set at 100 kr ., this frequency will add to and subtract from cach harmonic of the "rysial oweillator. Thus the crystal harmonic at 6000 ke., when modulated by 100 ke ., will produre side frequencies at 7000 ke , and 6800 kr.: likewise, the erystal hatmonid at 7200 ke . will have side frequencies at 7300 and 7100 ke. If the VFO is set to 150 ke ., the same crostal harmonies will have side frequencies at 7050 and 6750 ke ., and at 7350 and 7050 ke ., respectively. In the latter case the upper side froquensy of the $6800-k$ e. harmonic comerides with the lower side frequener of the 7200 -ke. hatmonie, both being at 70.50 ke . Hence the satur VFO signa!, in tuning from 100 to 100 kio, rovers the ratue from 7000 to 70 an kr ., and from 7100 to 70.50 kon . simultameously: Thi oceurs betweren marh pair of 100 -ke. urvital harmonies throughout the spectrum. since the side frefuencies move in opposite dieretions when the tuning of the VFO is sariod, the interpolation sate is calibrated to fond from 0-io ke. (enrresponding to varying the artual V FOO freguenery from 100 to 1.00 k (.) in one dire + ion, and from $00-100 \mathrm{ke}$, in the opposite dirertion.

The circuit diagram of the instrument is shown in Fig. 16-4. A double triode is used as a combination VF()-amplifier, the amplifier being of the eathode-follower trye to provide gronl isolation. The output of the amplifier gross through a low-pass filter ($\mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}$,

Fig. I6.1 - (:ircuit diakram of the additive frequency meter.
$\mathrm{C}_{1}-25-\mu \mu \mathrm{fd}$. variable (Millen 2002.5) (drift rorrector).
(2 - 1000 - $\mu \mu$ fd. variable (Millen $26(100)$ (padder).
($3-50-\mu \mu \mathrm{fd}$ variable (National st:II-2.50) (tuning).

(C , C16, C_{18} - 0.(M)I- $\mu \mathrm{fd}$. mica.
$\therefore 9$, C $11, \mathrm{C}_{20}-0.1 \mu \mathrm{ff}$. paper.
$\mathrm{C}_{\mathrm{C}}, \mathrm{C}_{12}, \mathrm{C}_{17}, \mathrm{C}_{25}-0.01$ - ffl . paper.
($\AA_{13,} \mathrm{C}_{15}-680-\mu \mu \mathrm{fid}$. miea,
(: 14 - $1360-\mu \mu$ fd. mica (two $680-\mu \mu \mathrm{fd}$. units in parallel).
(:21-150- $\mu \mu \mathrm{fd}$. mira.
$(22-50$ - μ fifl. varialle (Millen 26050).
(24 - 2 2- $-\mu \mathrm{ff}$ d. mica.
© 26 - 100 - $\mu \mu \mathrm{fd}$. nica.
(:27-15- μ ffl. variable (Millen 20115).
(i2g, $\mathrm{C}_{29}-8$ - $\mu \mathrm{fd}$. electrolytic, 4.50 volts.
$\mathrm{K}_{1}-47,000$ ohmms, $\frac{2}{2}$ watt.
$\mathrm{K}_{2}, \mathrm{~K}_{10}-22,000$ ohnms, 1 watl.
k_{3} - 3300 ohme, $1 / 2$ watt,
K_{4} - 2200 ohms. $1 / 2$ watt.
from being applied to the 65 S 77 modulator or mixer tube. The output of the 6 Sill $100-\mathrm{kc}$. crystal oscillator is fed through a harmonic amplifier (one 6SL.7 section) before also being applied to the mixer tube, the purpose being to level off the harmonic strength throughout the spectrum as much as possible. The plate circuit of the mixer is likewise adjusted so that the output signal is as uniform in strengt hat possible up to 30 Mr. The spare triode section of the 6sil. is used as an auxiliary erystal

Sif. 16.5-Chassis view of the additive frequency meter. Immediately in fromt of the power transformer are the rectifier and voltage-regulator tulbes. The $100-\mathrm{ke}$. crystal, mounted in a metal-tube shell (James Knights), is just to the right of the power transformer. The tubes along the rear edge, from left to right, are the 6silt, 6Si.7, and 6SA7. The marher crystal is immediately in front of the 6SL.A. The VFO ceil is at the lower right, with the $6 \mathrm{~N}, \mathrm{~B}$ just behind it. The shaft fur the eserillator padder projects through the chassis to ther risht of the
turing condenser. tuming condenser,
$\mathrm{R}_{5,}, \mathrm{~K}_{13}, \mathrm{H}_{14}, \mathrm{~K}_{18}-10.1$ megohn, $1 / 2$ watt.

R_{i} - 1.500 chms, ${ }^{1} \mathrm{~g}$ watt.
$\mathrm{R}_{8}-25010$ ohturs, 10 watts.
R_{9} - 220 ohms, 1_{2} watt.
11_{11} - 0.29 mexolmu, $\frac{1}{2}$ watt,
R_{13} - 0.1 mekohm, 1 watt.
$\mathrm{K}_{16}-\mathbf{0}, 1$ megohm, ${ }^{1}$, watt.
K_{12} - 0.15 mesolim, $1 \mathrm{I}_{2}^{2}$ watt.
1_{11} - Variable from app. 8 to 11 mh . (Millen 65000-35).
1.2, I. $3-2.5-\mathrm{mh}$. r.f. clophe ($\mathrm{Nationat} \mathrm{R-50)} \mathrm{)}$.

1 - $10 \mu \mathrm{~h}$. (National R-60).
$15-100 \mu \mathrm{~h}$. (National R-33).
1 - Thl. (Ohmite Z-ino).
1.7 - 111 -ma. filter chokr.

1- lilot-lamp assembly.
$\mathrm{S}_{1} \mathrm{~s}_{2}, \mathrm{~S}_{3}, \mathrm{~s}_{4}$ - Sp.s.t. togele.
T_{1} - P'ower transformer, 2.5 carl wide c.t. at 50 ma.; 0.3 v. at 2.5 amp.; 5 v. at 2 amp. (Thordarson 122(130).
oscillator so that a marker crystal can be used for identification of the $100-\mathrm{kr}$, erystal harmonis's.

Calibration

To sot up the instrument, it is neressary first to :uljust the VFO range exaretly to 100 .

 identified by referemee to the tuhes with which they are anocoriated (see top siew).
150 ke . For this purpose the (isL. 7 and 6 (is. 17 shouhd be out of their sockets. On any receiver capable of tuning to 600 kr ., tume in the 6th harmonie of the $100-k$ e. erystal oseilhator. Conneet a wire from point d to the antema post of the rereiver. Turn the VEO condenser wer its whole range and note the number of harmonies heame at 600 ke ., ('a being at about 7.5 per cent of full scoble. Adjust K_{4}, and C_{2} if neecsary, until there are just three such harmonics, one at each and of the sala and one betwern. This adjusts the osedlator to the proper range, by making the th harmonic of the high end and the Gth harmonie of the kow rend fall at 600 kr .

After noting the strength of the oscillator harmonies, shat off the 100 -ke. crystal aseillafor and move the recerver antemna comnertion from I^{\prime} to the No. 3 grid commertion (output of the harmonie filter) on the fis. 17 socket. It should be impossible to hatre any hamonic output from the oscillator when the tuning is varied. Then insert the fis. 17 in its soreket, allow it to warm up, atm agstin tume the V'0 over its. range. If hammonies now beome audible the owoillator sigual is too strong. It may he reduced by increasing the capacitane at ("y as much as is neressary to make the harmonies disappear.

Cablatation is best carried out in a series of
 recoiver antema posi to point λ, and tune in the 200(0)ke. hamonir from the 100-ke. crystal owillator, set the $\mathbf{V F}$) at 100 ke , and bring its hamonic to arero beat with the crestal harmonic. Mark this point " 0 " on the dial. Then tune the recoiver to the 21 st crystal harmonic (2100 ke .) and slowly tune the VPO) highor in frequenes until its harmonie is at zero beat with the ervital harmonic. It this point the $20 t h$ harmonie of the VPO coineides with the 2lst harmonic of the rerstal, and so the VFO
frequenty is $2100 / 20=105 \mathrm{kc}$. Mark this point ":" on the satale, move the recoriver to 2200 ke , and increase the VFO frequence until its 20th harmonir. coincides with 2200 ke , giving the 10ke . point. Continue until the seale is (alibrated at (ach $\bar{j}-\mathrm{ke}$, point up to 50 ke.

The mext step) is to calibrate at $2-\mathrm{ke}$. intervals, and for this purpose it is neressary to inerease the strength of the hamonices. The marker oscillator (an br used as an amplifier, by removing the revisal and making the ronneetions shown in Fig. 16-7.1. Clip leads are watistactory, It is necessary torepare the fisla. hat do net put the dis. 17 in its sueket. 'lume in the $5000-$ ke. Jammenic of the 100-ke. (erostal waidator, s. the VFO to 100 kr . by beating it: ioth harmonic with the booo-ke. harmonie of the crystal, and proced up through the spectrum one J00-ke, point at a time, using the same procedure as before. The Vro harmonics will tume quite rapidly, and the previously-determined i-ke. marks will ensure that the calibration puints do not get out of proper order.
The impromptu harmonic amplifier alone will not usually give enough output to repeat this process with the $100 t h$ harmonic, by means of whith l-ke. points are obtained. The necessary harmonies can be gonerated by using a erystal reetifier as shown in Fig. 16-713. In this Gase the lad from the receiver antenna should be brought nowr, but not connected to, the harmonic amplifier. The crratal acts as a mixer and introluces many secondary beats, but if the coupling to the reweiver is loose enough the desired harmoniow will be the strongest and can gasily be identified, particularly since the 2-ke. points already photed wil practically show where they should fall. There should also be no trouble in hearing tho 100 -ke. erystal harmonios from 10 to 15 Ne: if the receiver anteman lead is near the erystal oseillator. The eadibration prints should be plotted on the seale as aceuratmy as posible.

By use of the drift-comeretor condensers the accurace of the instrument is practically the

Fig. 16-7-Trmporary connections for amplify ing \backslash FO harmonios when calibrating. The marker-aseillatur tube is need with the ergstal remoned.
accuracy with which the dial ran be read. Interpolation to 100 cyeles is readily possible. The crystal-oscillator frequency can be checked against WWV and reset when acrurate measurements are to be made. The VFO is easily corrected by setting the dial to the 50 -ke. point and adjusting the drift-corrector condenser to bring the two side frequencies into exact zero beat. Without drift corrertion the instrument is reliable to the nearest kilorycle, with average construction and good rompo-

Fig. 10.8 - Absorption frequency meter and a 1 ypical application. The meter consists simply of the resonant circuit LC. When coupled to an amplifier or oseillator the tube plate eurrent will rise when the frepuency meter is tuned to resonance. The frequency may then loe read from a calitrated condenser dial. Suitable constants for L and C may be tahen from Fix. 16-10. A flashlight lamp may be connerted in series at X to give a visual indication, but it decreases the selectivity of the instrument and makes it neressary to the rather close coupling to the circuit being measured.
nents, at frequencies as high as 30 megatereles.
(A complete description of this system is given in May, 1949, (SST.)

ABSORPTION FREQUENCY METERS

The simplest possible frequency-measuring device is a resonant circuit, tunable over tho desired frequency range and having its tuning dial calibrated in terms of frequency. Such a frequency melor operates by extracting a small amount of encrgy from the oseillating rircuit to be measured, the frequener being determined by the tuning setting at which the energy absorption is maximum.

This method is not capable of as high accuracy as the heterodyne methods for two reatsons: First, the resomathe indication is relatively "broad" as compared with the zero beat of a heterodyne: second, the necessarily close coupling between the frequency meter and the circuit being measured causes some detuning in both circuits, with the result that the calibration of the frequencymeter circuit depends to some degree on the roupling to the cireuit being measured. Nevertheless, an absorption wavemeter is a highly useful
instrument in the amateur station. It requires no power supply for its operation, which is a convenience. It also eliminates the confusion that sometimes arises because of the large number of harmonic responses that oceur in making measurements by heterodyne methods: a simple tuned circuit will respond to only one frequency. This is helpful, for example, in determining the actual output frequency of a frequeney multiplier in the transmitter, and eliminates the possibility that the multiplier can be tuned to the wrong harmonic.

When an absorption meter is used for checking a transmitter, the plate current of the tube connerted to the circuit being cherked can provide the neressary resonatice indieation. When the frequency meter is tuned through resonance the plate current will rise, and if the frequency meter is loosely coupled to the tank circuit the plate current will simply give a slight upward flicker as the meter is tuned through resonamee. The greatest accuracy is secured when the loosest possible coupling is used.

A receiver oscillator may be cherked by tuning in a steady signal and heterodyning it to give a beat note as in ordinary e.w. reception. When the frequeney meter is coupled to the oscillator coil and tuned through resonance the beat note will change, Again, the coupling should be made loose enough so that a justpereptible change in beat note is observed when the meter is tuned through resoname.

An approximate ralibration may be obtained be comparison with a calibrated receriver. The usual receiver dial calibration is sulficiently accurate, A simple oscillator cireuit covering the same range as the frequency meter will be useful in calibration. Set the receiver to a given frequency, tune the oscillator to zero beat at the same frequency, and adjust the frequeney meter to resolaner with the os-

Fif. 16-9 - I masilive absorption-type freduency meter with a crystal-detector rectifier and a d.e.-milliammeter indicating cirenit. 'The meter in housed in a separate compartment so that it may be used with other measuring devices. "I'he cabinet and front cover are drilled and tapped to arcommodate the mounting serews for a larpesize chart frame: frobuency ealihrations are marked on cardboard held in place loy tho chart frame. I short strip of wood, drilled to mateh the coil-form pronge, is ased ats a rack for the coils. Meterbox connections are shown in Fig. 16-20.
cillator as described above. This gives one calibration point. When a sufficient number of such points has been obtained a graph may be drawn to show frequency vs. dial settings on the frequency meter.

A Sensitive Absorption Frequency Meter

Figs, 16-9 to 16-11, inclusive, show an absorption frequency meter or "wavemeter" with a crystal-detector/milliammeter resonance indicator that provides a molatively high degree of sensitivity. As shown in fity. 16-10, a resonant circuit is connected in series with a erystal detector and a $0-1$ milliammeter (a microammeter can be substituted for still greater sensitivity). The tank coil, L_{1}, serves as the piek-up coil, and the revstal is tapped down on the inductance in order to improve the sensitivity and selectivity of the meter. Plug-in coils are provided so that the unit covers a frequency range from about 1 megarycte to 165 megacyeles. Any type of fixed crystal detector may be used, but the v.h.f. types are recommended. The meter box shown at the right in Fig. 16-9 is the same unit that is used with the volt-ohm-milliammeter deseribed later in this chapter.

The frequency meter is housed in a $2 \times 4 \times 4$ inch metal box, the milliammeter being mounted in a separate box of the same size. The coil socket is on the top noar the front edge, with the tuning condenser just below it inside the case. This arrangement keeps: the tumed-cireuit leads short. A headphone jack is provided for monitoring 'phone transmissions. The unit may be calibrated as deseribed in the preceding section.

A two- or three-foot antenna rod may be added to the unit to permit using the instru-

Fig. 16.10-Circuit diagram of the absorption-type frequency meter.
$\mathrm{C}_{1}-140-\mu \mu \mathrm{fl}$. varialle (Millen $2: 210$).
$\mathrm{C}_{2}-0.0015-\mu \mathrm{fl}$. miduet mica.
h.1 - 1.22-4.0 Me.: $\overline{0} 0$ turn: No, 32 cnameled wire, 1. inch diam, s, inch long. Tap 1212 turns from grounded end.
-4.0-13.5 Mc.: 20 turns No. 20 enameled wire, 1 . inch diam., 9 ís inch long. 'lap $4 \frac{1}{2}$ turns from grounded end.

- 13.2-44.0 Mc.: 5 turns No. 20 enameled wire. 1-ineh diam., 5 伯 inch long. Tip $1 \frac{1}{2}$ turns from gromided end.
 spacing, 2 inches long (tolal length indurling ends which fit down into the coil-form pron-:). Tap 1% inches from grounded end. IIl four coils wound on $\mathbf{1 i l l l e n} 45004$ coil liurms.
I_{1} - I-pronge tuhe sorket.
J_{2} - Clusel-circuit jack.
$1_{1}-4$-prenge male phas.

Fij. $/ 6-1]-$ I rear view of the absorption-type frequency meter. 'The erystal is wired between the connector flug at the left and the coil socket at the top. The meter her-pass conclenser is mounted between the plug and the grounted side of the 'phone jack. The variable-condenser terminals are connected directly to the eoil sochet.
ment for field-strength measurements. The antenna should be connected to the top end of the tank coil, L_{1}. The rod antenna may be undesirable when the frequencies of indivilual simultancously-operating circuits are to be checked - as in the case of a multistage transmitter with frequency multipliers - beratuse the antenna inereases the sensitivity to such an extent that it may be difficult to identify the output of a particular circuit. It may be convenient to interconneet the two units by means of a length of lamp cord or coaxial cable of any reasonable length (up to several hundred feet) when the meter is being used as a field-strength measuring device.

In addition to the uses mentioned in the preceding section, a meter of this type may be used for final adjust ment of neutralization in r.f. amplifiers. For this purpose it may be loosely conpled to the plate tank coil. Nternalively, L_{1} may be removed and the final-amplifier link output terminals connected to 1'rongs 2 and 4 in the coil soeket. The latter method tends to ensure that the pick-up is from the final tank coil only.

LECHER WIRES

It very-high and ultrahigh frequencies it is possible to determine frequency by actually measuring the length of the waves generated. The measurement is made by observing standing waves on a two-wire parallel transmission line or Lecher wires. Such a line shows pronounced resoname effects, and it is possible to determine quite accurately the current loops (points of maximum current). The physieal distance between two consecutive current loops is equal to one-half wavelength. Thus the wavelength can be read directly in meters ($39 .: 37$ inches $=1$ meter; $0,39: 37$ inch $=1 \mathrm{~cm}$.),
or in centimeters for the vory-short watolongthes.

The Lecher-wire line should be at least a wavelength long - that is, 7 fect or more on 144 Mc. - and should be entirely air-insulated except where it is supported at the ends. It may be made of copper tubing or of wires stretched tightly. The spacing between wires should not exceed about 2 pereent of the shortest wavelength to be measured. The positions of the eurrent loops are found by means of a "shorting bar," which is simply" a metal strip or knife edge which can be slid along the line to vary its effective length. The system can be used more conveniently and with greater arcuracy if it is built up in permanent fashion and provided with a shorting har maintaned at right angles to the wires (Fig. 16-12). The support may consist of two pieces of " $1-b y-2$ " pine fastened together with wood screws to form a "T"-girder, this arrangement being used to minimize bending of the wood when the wires are tightened. A slider holds the shorting bar and aets as a guide to keep the wire spacing constant.

For measuring lengths in the metrie system used for wavelength, the supporting beam may be marked off in derimeter (10-rentimeter) units. A 10 -centimeter transparent scale (obtainable at 5 \& 10 eont stores) may be demented to the slider, extending out from the front, so that radings can be taken to the nearest millimetar. The difference between any two readings gives the half-wavelength directly.

Making Measurements

Let us suppose the frequency of a transmitter is to be measured. A convenient and fairly sensitive indicator can be made by soldering the ends of a one-turn loop of wire, of about the same diameter as the transmitter tank coil, to a low-current flashlight bulb, then coupling the loop to the tank coil to give a moderately bright glow. A coupling loop should be connected to the ends of the Lecher wires and brought near the tank eoil, as shown in Fig. 16-13. Then the shorting bar should be slid along the wires outward from the transmitter until the lamp gives a sharp dip in bright ness. This point should be marked and the shorting bar moved out until a second dip is obtained. The distance between the two points will be equal to half the wavelength. If the measurement is made in

Fir. 16.12 - One end of a typical Iecher wire system. The fret at each end keep the assembly from tipping over when in use. The wire is No. 16 bare solid-copper antenna wire (hard-drawn). The turnbuckles are held in place by a 3 io $\times 2$-inch bolt through the anctior block. The other end of the line, the one connected to the pich-up lowp, thould be insulated.
imehes, the frequency will be

$$
F_{\mathrm{Mc} .}=\frac{5905}{\text { length (inches) }}
$$

If the length is measured in meters,

$$
F_{\mathrm{Mc}_{\mathrm{c}}}=\frac{150}{\text { length (meters) }}
$$

In chocking a superregenerative receiver, the Lecher wires may be similarly coupled to the receiver coil. In this case the resonance indication may be obtained by setting the receiver just to the point where the hiss is obtained, then as the bar is slid along the wires a spot wild be found where the receiver goes out.

Fiy. 16-1.3-Coupling a Iecher wire system to a transmitter tank coil. Typical standing-wave distribution is shown by the dashed line. The distance X between the positions of the shorting bar at the current loops equals one-half wavelength.
of oscillation. The distance between two such spots is cqual to a half-wavelength.

The most accurate readings result when the loosest possible coupling is used between the line and the tank eoil. After taking a preliminary reading to find the regions atong the line in which rosonance oceurs, loosen the coupling until the indications are just discornible and repeat the measurement. As the coupling is loosened the resonance points will become sharper, which is a further aid to accurate determination of the wavelength.

The shorting bar must be kept at right angles to the two wires. A sharp edge on the bar is desirable, since it not only helps make good contact but also definitely locates the point of eontact.

The arcuracy with which frequency ean be measured by such a system depends principally upon the technique of measurement. Careful measurement of the exact distance between two current loops is essential. An aceurate standard of length is necessary - a good steel tape, for instance - for all but rough measurements.

Signal Monitoring

Every amateur should make prowision for rherking the quality of his tramsmitter's output. This requires that some means be available in the station for reduring the st rengt of the signal from the transmitter to the point where its characteristios can lee examined without danger of falsin indieations from overbanding the receriving equipment.

The simplest method of eherking the quality of c.w. transmissions is to hase the regular station recoiver. If the recoiver is a superheterodyne the process may simply be that of reducing the rif. gain to minimum and tuning to the transmintor fropurney. If distant signals are stable and have "pure-d.c." tohe In tormal reepetion. then the loeal transmiter should, too, when the reaciver matin is reduced to the point where the recoiver does not overtoad. If the signal is too strong with the r.f. satin "ofl," shorting the receiver antenna input terminals may redure it to suitable proportions. or the mixer eirout in the recoiver may be temporarily detmed to arrive at the same dosired result.

An allornative method is to sed the receiver on the next lower-fergurney band than the one in use, then that the remererso that the second harmonic of its oseillator beats with the tramsmitere signal to produce the intermediate frequeney. Iligher-orter harmonies also may be usid for this purposit. With this harmonic method there is ordinarily no danger that the reeriver will overload, because the r.f. and miser tuned cirenits are so far from resomathe with the tramsmitter frequency. The setting of the tuning dial bears no direet rodation to the transmitter frepuancy under these combitions. since the uscillator harmonie most maintain a constant difference widn the transmitter to produce the i, f. beat.

A phone signal may be monitored in the same way, povided a headset is used for reception. (se of a loudepeaker is not ustatly pratetable beramse the somand output feeds back to the microphone and catses howling. A crystal defeetor and headsed maty also be ased for the same purpose, as descrithed in preceding soctions. In monitoring a phone signal the best plan is to have almother person spack into the mierophanter rather than to
listen to me's own voice. It is difficult to judge quality when speaking and listening at the same time.

MODULATION MONITOR

Fig. 16-14 is the circuit of a 'phone monitor that can be used both for aural ehecking and for measuring modulation percentage. When a small r.f. voltage is applied to the input circuit it is rectified by the erystal. With switch S_{1} in the "r.f." position the average value of the reetified current is measured by the 0-1 milliammeter, M. With the switch in the "a.f." position, the audio modulation on the shanal is transfored though T_{1} to a secomed reerifior. The average value of the roctified adulo is again read by the milliammeter. The circuit constants are chosen so that if the input is adjusted to make the meter road full sale on r.f., the a.f. moter readings will lo directly proportional to perentage of modulation (for voice modulation), 100 per cent modulation being represented by a enrrent of 1 milliampere. Switeh S_{2} provides for reversing the "polarity" of the modulation, miving a qualitative indication of the up- and down-paraks. A headphone jack, J_{1}, is provided for listening to the quality of the modulation. (The percentage modulation cannot be read with 'phones plugged into J_{1}, so the 'phones must be removed when readings are to be taken.)

In constructing such an instrument, care should be used to prevent r.f. pick-up in the audio reetifier circuit. This can be cheoked by testing the instrument on an umodulated carrior (which must be substantially hum-free); with a full-scale reading when S_{1} is in the "r.f." position, the moter should read zero When S_{1} is switched to "a.f." The values of resistor: R_{1} and R_{2} are critical and should br within plus or minus 5 per cent of the reeommended values.

A sample of the modulated carrier may be coupled into the instrument through a oneturn link and a length of Twin-Lead, the link being placed within a few inches of the final tank circuit of the transmitter. The coupling betwern the link and final tank coil must be adjusied to give a full-scale r.f. reading. attor

Fig. 16-14- Circuit of directrealling modulation meter. C. $\mathrm{C}_{4}-1000$ - $\mu \mu \mathrm{fd}$, ceramic. C:2-f(N)- $\mu \mathrm{ff}$ d, variable midget. C. $\mathrm{C}_{5}-470, \mu \mu \mathrm{fd}$. mica. h_{1} - 1110 ohms, 5%, I watt. $R_{2}-16,000$ ohms, 5%. 1 watt. J1-Closed-circuit jack. $11.1-0-1$ ma., 100 ohms. $\mathrm{KFC}-20 \mu \mathrm{~h}$.
$\mathrm{S}_{1 \mathrm{~A}-\mathrm{B},} \mathrm{S}_{2}$-1 1.p.d.t. toggle.
Th-Push-pull interstake tranaformer, 1:1 ratio.

Ca has bern set for maximum reading. Alternatively, a eonl that will resonate with Ce at the operating frequency may be conneeted to the input terminals and the instrument located so that a suitable full-scale reading will be obtained.

Besides indicating modulation percentage, the instrument will show carrier shilt (as shown by a change in the reading, when modulating, with S_{1} in the "r.f." position) and thus detect nonlinearity in the modulated amplifier.

Measurement of Current, Voltage and Resistance

D.C. Instruments

1).e. ammetors and voltmeters are basieally identical instruments, the difference being in the method of connection. An ammeter is comneeted in series with the cirenit and measures the current flow. A voltmeter indieates the current through a high resistance connected across the source to be measured; its cabibration is in terms of the voltage drop in the resistance or multiplier.

If a single instrument must be used for measuring widely-different values of current or volage, it is advisable to purchase otu that will read, at ahout 75 per cent of full scale, the smallest value of current or voltang to be measured. Small currents camot be read with any degree of precision on a high-scale instrument, but the range of a low-scale instrument can be extended as desired to take caro of larger values. The ranges ran be extemdod by the use of external resistors, comected in saries with the instrument in the case of a voltmeter, and in parallel or "shunt" in the rase of an ammeter. Fig. 16-15 shows at the left the manner in which a shunt is connected to extend the range of an ammeter and at the right the connection of a voltmeter multiplier.

To calculate the value of a shunt or multiplier it is necessary to know the internal rosistance of the moter itself. If it is desired to extend the range of a voltmeter, the value of resistance which must be added in series is given by the formula

$$
R=R_{\mathrm{ma}}(n-1)
$$

where R is the multiplier resistance, R_{m} the resistance of the voltmeter, and n the scale multiplication factor. For example, if the range of a 10 -volt meter is to be extended to 1000 volts, n is equal to $1000 / 10$ or 100 .

If a milliammeter is to he used as a voltneter, the value of series resistane can be found by Ohm's Law:

$$
R=\frac{1000 E}{I}
$$

where E is the desired full-scale voltage and I the full-scale reading of the instrument in milliamperes.

To increase the current range of a milliammeter, the resistance of the shunt is

$$
R=\frac{l_{i m}}{n-1}
$$

where the symbols have the same meanings as abowe.

Homemade milliammeter shunts can be constructed from any of the various special kinds of resistance wire, or from ordinary eopper magnet wire if no resistance wire is available. The Copper Wire Table in Chapter Twent:Four gives the resistance per $\mathbf{1 0 0 0}$ feet for various sizes of eopper wire. After computing the resistance required, determine the smallest wire size that will carry the full-seale current (at 250 circular mils per ampere). Measure off enough wire (pulled tight but not stretched) to provide the required resistance. Accuracy can be checked by cansing enough current to flow through the meter to make it read full seale without the shunt; connecting the shunt should then give the correct routing on the new filloscale range.
(A)

(B)

(C)

fig. 16.16-Circuits for meaduring rexistanco. Valuas are disensed in the text.

Fig. 16.17 - An incxpmaive multirange valt-ohm-milliammeter. "he $2 \times 4 \times$ tinch eablinet at the loft homese the maltipliers,
 The meter is mounted in the metal cabinet shown at the right. 'lhe units are provided with phags and jachos su that the meter tan lne nised independently or at the indicator ernmponent for other instrinuritio. Combertions to the volt-ohmemilliammetir. or to the nueter alome, are made to the terminals momonted at the top of both boses, 11 ambles are mounted col the cathinet to facilitate handling.

Precision wire-wound resistors used as voltmeter multipliers cannot readily be made by the amateur because of the much higher resistance required (as high as several megohms). As an economical substitute, standard fixed resistors may be used. Such resistors are supplied in tolerances of 5,10 or 20 per cent \pm the marked values. By obtaining matched pairs from the dealer's stock, one of which is, for example, 4 per cent low while the other is 4 per cent high, and using the pairs in parallel or sories to obtain the required value of resistance, good accuracy can be obtained at small cost. High-voltage multipliers are proferably made up of several resistors in series: this not only raises the broakdown voltage but tends to average out errors in the individual resistors attributable to manufacturing tolerances.

When d.c. voltage and current are known, the power in a d.e. circuit can be stated he simple application of Ohm's Law: $P=E I$. Thus the voltmeter and ammeter are also the instruments used in measuring d.c. power.

Multirange Voltmeters and Ohmmeters

A combination voltmeter-milliammeter having various ranges is extremely useful for experimental purposes and for trouble shooting in receivers and transmitters. As a voltmoter such an instrument should have high resistance so that very little curront will be drawn in making voltage measurements. A voltmeter taking considerable current will give inacourate readings when connerted in a high-resistance circuit - for example, in various parts of a recciver. For such purposes the instrument should have a resistance oí at least 1000 ohms per volt: a 0-1 milliammeter or $0-\overline{5} 00$ microammeter ($0-0.5 \mathrm{ma}$.) is the hasis of most multirtuge meters of this type. Nicroammeters hating a range of $0-50 \mu \mathrm{a}$., giving a sensitivity of 20,000 ohms per volt, also are used.

The various current ranges on a multirange instrument can be obtained by using a number of shunts individually switehed in parallel with the meter. A switch with low contact resistance must be used.

It is often neecessary to cherk the value of a
resistor or to find the value of an unknown resistance, particularly in receiver servicing. An ohmmeter is used for this purpose. The ohmmeter is a low-current d.e. voltmeter provided with a source of voltatre (usually dry. cells). In the simplest form, shown in Fig. $16-16 \mathrm{~A}$, the meter and battery are connected in series with the unknown resistance. If a given deflection is obtained with terminals $A-B$ shorted, insertion of the resistance under measurement will cause the moter reading to derrease. When the resistance of the volimeter is known, the following formula can be appliced:

$$
R=\frac{c l_{1 m}^{\prime}}{E}-R_{\mathrm{m}}
$$

where R is the resistance under measurement. e is the voltage applied ($A-B$ shorted), E is the voltmeter reading with R connected, and
R_{m} is the resistance of the voltmeter.
The cireuit of Fig. 16-16.1 is not suited to measuring low values of resistame (below a

Fig. 16.18- Diagram of the volt-iblm-milliammeter.
$\mathrm{k}_{1}-2000$-ohtm wire-womad variable.
H_{2} - 30kM alms, ${ }^{1} 2$ watt.

R_{4} - 100 -ma. shunt, $10 . \bar{n}-\overline{3}$ ohm (were tevt).
$R_{5}-11001$-ma. Ahant, 0.0 .55 ohm (sere text).
$\mathbb{R}_{6}-1000$-volt multiplier, 0.9 meqolm, 16 watt
K_{7} - 100 -volt maltiplier, 00,0000 ohms, $1 / 2 \mathrm{watl}$.
$R_{s}-10$-volt multiplier, 10.000 ohms, 1 名watt.

P_{1} - $t-p r o n g$ male plag (for milliamoneter),
sia-1s-0.puint 2-pole selector switeh (Vallory $3294 \mathrm{~J})$.

 adjustument potentiometor, and the shants and amiti. pliera are comented arros the switeh terminalo. I four-prong made plug, for comberion to the meter lows. is shown att the left of the calhinter. "Jhe ohmmeter hattery fits inside the calsor; the hattery terminal-should tar insulated with tape or paber before the hattery is installed in the box.
humbed ohms (or so) with a high-resistame roltmeder. For surh measurements the cirenit of Fige 16-16ib ran he used. Tha millianmotor should bee at 11 mat. instrument, and R_{1} should be equal to the batlery voltage, e, multiplied by 1000. The unknown moristance is

$$
R=\frac{l_{2} l_{1}}{I_{1}-I_{2}}
$$

where h is the unknown.
$R_{\text {ba }}$ is the intermal resistance of the milliammetor.
I_{1} is the current in ma, with $/ f$ disconneeted from terminals , $1-k$, and
$I 2$ is the current in mat with K ronnerted.
The formala is approsimate, hat the erpor will be megligible if r is at least 3 volts se that K is at lacast 3000 ohtas.

I third riment for mataring resiatame is :hown in Fig. 1fi-160'. In this cate : highpesistance voltmeter is used to measure the voltage doop atross a roforencer resistor, Ra, When the unknown rowistor is conneeted so that eurrent flows through it, R and the hattery in series. Bys suitable choice of $R 2$ (low values for low rosistatere, high values for highresistance unkmowns) this cirnuit will wive equally good results on all resistance values in the range from one ohm to several megohms, provided that the voltmeter resistance, R_{m}, is alwase very high (ol) times or more) compated with the mesistame of R. $120.000(0)$ ohm-per-volt illitrument (. (0)-mamp. move-
ment) is generally used. Assuming that the current through the voltmeter is negligible compared with the current through $R=$, the formula for the unknown is

$$
R=\frac{e R_{2}}{E}-R_{2}
$$

where K and $R=$ are as shown in lig. 16-16(\%
e is the voltmeter reating with $A-l B$ shorted, and
f is the voltmeter reading with k connerted.
Ther "zero adjuster." R_{1}, is used to set the wolt met er reading exactly to full sate when the meter is ealibrated in whms. I 10,000 -ohm

Fis, 10.20 - 11 ir . ing diagram of the 0-1 milliammeter shown in fixs. 16-9) and 16.1-. J_{1} is a f-prong tube sorkert.
variable resistor is suitable with : 20.000 -ohm-per-voltmotor. The battery voltage is usually 3 volts for ranges up to 100,000 ohms or so and 6 volts for higher ranges.

- an inexpensive v.o.m.

1 combination multirange volt-ohm-milliammeder, reduced to simple and inexpensive terms, is shown in Figs. 16-17 to 16-20. Dising a $0-1$ milliammeter, the voltmoter has three

Fig. I0-2l - Catiloration corve for tha high. and low. resimtance range- of the volt-ohm-millianmetar.
ranges at 1000 ohms per voll: $0-10,100$ and 1000 volts. Current ranges of $0-1,10,100$ and 1000 ma are provided. There are two resist-ance-measurement ranges, a series range that is useful up to about 0.5 megohm, and a shunt range of 0-1000 ohms.

For ceonomy, ordinary carbon resistors are used as voltmeter multipliers. These can be ohtained with an accuracy within $\overline{5}$ per cent. However, standard resistors of 10 per cent folerance can be used without introducing undue error. The 1000 -volt multiplier, $P_{f_{6}}$ is two $1.8-\mathrm{mog}$ ghm resistors connected in parallel, and the 100 -volt multiplier, R_{7}, is two
0.18 merohm rosirtore arranged in parallol.

The 10-, 100 - and 1000 -mat. shunts are made of ordinary copper magnot wire wound on $1 / 2$-watt resistors of high resistance value-10,000 ohms or higher. The approximate lengthe and sizes of the wire for the shunts. are as follows: $h_{3}, 9$ feet $N o .38$ enameled; R_{4}, 5 feet No. 30 enameled; $R_{5}, 8 \frac{1}{2}$ feet No. 18.

A calibration curve for the ohmmeter ranges is given in Fig. 16-21. With instruments having different internal resistance than the one shown in the photograph (Tripledt Model $0321-1$) the "low-ohms" curve will mol :aply exactly.

Grid-Dip Meters

I usfol and int xunsive general-purpose instrument is an r.f. oscillator eovering a wide frequeney range. It generates signals that can be used for receiver alignment, for calibrating absorption wavemeters as described earlier in this chapter, and for furnishing small r.f. voltages for whatever purpose may be required. When equiped with a low-range milliammeter connected to read the oscillator grid current, it beeomes a grid-dip meter and may bo used for checking the resonant frequencies of tunced circuits, and as a means for measuring inductance and capacitance as deseribed in a later section.

The grid-dip meter is so called because when its oscillator is coupled to a tuned circuit, the oscillator grid current will show a decrease or "dip" when the oseillator is tuned through resonance with the unknown circuit. The reason for this is that the external eircuit will absorb energy from the oscillator when both it and the oseillator are tuncd to the same frequency, and the loss of energy from the oscillator cireuit causes the feed-back to decrease. The decrease in feed-back is accompanied by a decrease in grid current. The dip in grid current is quite sharp when the circuit to which the oscillator is compled has reasomably high Q.

Any type of oseillator circuit can be used for the grip-dip meter, the only requirement being that a milliammetor of suitable range ($0-1$ is satisfactory in most cases) be comnected in sories with the grid leak. However, the grid-dip meter will be most useful when it covers a wide fremuency range and is so construeted that it
can be compled to cireuits in hard-ta-rearh paces such as in a receiver chassis. The meters described in the following section have bern designed with this in mind.

- INEXPENSIVE GRID-DIP METER

The grid-dip meter shown in l:ig. 16-22 is easy to build, handy to use, and covers a frequeney range of 2850 ke . to 48 Me . with five plug-in coils. This range readity an be extended in either direction, but for v.h.f. use a somewhat difforent version, shown later, is recommended. The rircuit diagram of the oscillator is given in Fig. 16-23.

The support for the oscillator is a piece of aluminum measuring $0^{1} \frac{1}{2}$ by $1 \frac{1}{2}$ inchors, bent in the form of : " C " with sides $3 \overline{4} / 4$ inches long so that the width of the " U " is just great enough approximately 2 inches) for fastening to the mounting st uds on the tuning comdenser. As shown in Fig. 16-22, the socket for the plugin eroils is mounted ateross the open end of the "L" hy motan of smatl aluminum angle brackets. The socket for the !as owillator tube is similaty mounted near the closed end of the "[", The blocking and by-pass condensers are miniature ceramic units that take up very little spate and thus contribute to compate tness. The oseillator is provided with a handlo (which catn eatsily be mate from a piece of broomstick) for case of mathipulation in choreing circuits in recoivers and transmitters.

The tuning condenser is a double-bearing unit originally of the single-sertion type having a maximum capacitance of $100 \mu \mu \mathrm{~d}$, To ehange

Fig. 16.22 - Inexpron-ive krid-dip oncilater tusing a 955 and phas-in enils. The five vorils show'n moper the range 20,010 ke. to 18 Mu . An external 0-1 d.c. milliammeter is used az an indieator. lower and meter comection* are brought through the four wire vathe.
it to the balanced type the ecnter two stator plates are removed and the support bars sawed through at the middle. The rotor need not be touched. The stator plates can be removed without difficulty by hending them

Fig. 16.23 - Circuit diagram of the grid-dip meter.
C_{1} - Doublle-section midget, app. 12 $\mu \mathrm{ffl}$. per reetion
(Millen 21100 modified as deseribed in teat).
$\mathrm{C}_{2}, \mathrm{C}_{3}-100 \cdot \mu \mu \mathrm{fd}$. ceramic (Centralab Hi-K ap).
($\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{8}-\mathbf{0} 01-\mu \mathrm{fd}$. ceramic (sprague dise ceramic).

K_{2} - 68.0000 ohms, $1 / 2$ watt, cartom.
I. $-2.85-5.4$ Mr.: 90 turns No. 30 s.e.c. on 1 inch form, close wound.

- 4.6-8.7 Mc. 37 turis No. 30 s.e.e, on 1 -inch form, close-wound.
- 8.4-15.3 Mc.: 19 turns No. 30 w.e.e. on 1 -inch form, close-womal.
- 14.1-25.3 \c.: 11 turna Vo. 24 ellam. on 1 -inch form, elose-wound.
- 25.1-18 Mc.: 8 turns No. 24 enam, on 1 -inch form, spaced to nerupy 13 体 inches.
MA-0-1 d.c. milliammeter.
back and forth at the soldered juint with a pair of long-nose pliers until the solder breaks loose. The rotor should begrounded to the " 1 " frame at both ends: this helps to prevent dead spots (eondenser settings at which the grid cureent shows rapid variations) in varions portions of the range. The frequency calibration can be marked on a small piece of cardboat as shown in Fig. 16-22, using a pointor on the rear shaft extomsion of the condensers at an indicator.

Fig. Jo.24 V.II.t. regencrative wave-meter/grid-dip meter. covering the $50-250$ Mc. range. This is a high-sensitivity absorptiontype wavemeter particularly useful for checking transmittor harmonics in television bands. The case in which the meter is mounted also contains the power supply. Regeneration is controlled by the hnotion onf uf the rasie.

The power requirements of the oscillator are 6.3 volts at $0.1 \overline{5} \mathrm{amp}$. for the $95 \overline{5}$ heater and a maximum of about 2 ma. at 150 volts for the plate. This power usually can be taken from a receiver or other cxisting supply. However, if a special supply is to be made for the instrument, the eircuit of Fig. 16-27 will serve, the 1.5 -volt dry cell shown in that diagram being omitted. In any event, it is a good idea to use a potentiometer, as shown in Fig. 16-27, for adjustment of plate voltage. In any grid-dip moter the grid current will be different in different parts of the frequency range, with fixed plate voltage, so that it is ordinarily neressary to choose a phate voltage that will keep the reading on seale in the part of the range where the grid current is highest. This usually results in rather low grid current at some other part of the range. With variable plate voltage this compromise is unnecessary.

The instrument may be calibrated by listening to its output with a calibrated receiver. High aceurary is not required in the applications for which a grid-dip meter is useful. The unit also may be used as an indicating wavemeter, in which ease no plate voltage is nerded since the grid and cathode of the $95 \overline{3}$ act as a simple diode. However, this type of cirruit is not as sensitive as the rystal-detector type shown rarlier in this chapter, berause of the high-resistance grid leak in series with the meter.

REGENERATIVE WAVEMETER AND GRID-DIP METER

The unit shown in Fig. 16-2t is similar in construction to the grid-dip meter of Fig. 16-22, but in addition is an absorption wavemeter of vory high sensitivity. The latter feature is particularly desirable in the v.h.f. range which this instrument covers, because of the nocessity for detecting the presence of weak harmonies in the various television chammels (i) -88 Mc , and 17 f 216 Mc .). High sensitivity

Fig. 16-2. - 1 bettom view of the reqcmerative wavemeter/grid-dip meter. This view shows the bottom of the (I).is anhet, with the miniature tulu. lar coramies mounted between the atator acotions of the tuming condenser and the urid and plate terminals on the someket. The grid choche, shonting resi-tor, atnd hy-pase condroser are at the lottom: the plate resiator, monnted through the -whet, and the plate byopass condenser are at the top. 'there is no wiring on the other side.
is achioved hy operating the unit as a regenerative detecter and by eliminating the grid-loak resistance, a low-resistanere r.f. rhoke being substituted. The frequency range that can be covered satisfactorily with a given choke is limited, but the choke sperified in the cirruit diagram, Fig. li-26, has been found to be adequate over the range $50-250 \mathrm{Mc}$.

With this instrument variable plate voltage is essential as a means of controlling regeneration. It is also assential to use the bias battory shown in the power-supply diagram of fig. 16-27; without surh hias there is a grid current of ahout 0.5 mat, even with no plate voltage on the tube, berause of eontact potemial. Just as in the case of the lower-freguener instrument desuribed earlior, the power for the oscillator can be taken from any existing supply. The

Fig. 16-26- (:irenit diagram of the resernerative wave-meter/grid-dip meter.
C_{1} - Double-section midget, app. 36 uffd. per sertion $C_{2} C_{3}$ (hillen -1100 modified as descriled in text).

R_{1} - 20,000 ohms. $1 / 2$ watt, carlom.
$11_{2}-68,000$ ohms, $1 / 2$ watt, carlom.
 ineh long, with $31 / 2$-inch load.

- $76-156$. Me.: $23 / 4$ turns No. 12, $1 / 2$ inch diam.. 3 3́ inch long, $21 / 2$-inch leads.
- 130-26" Mre: "I" shaped loop, No. 12. 11/2 inches long. $1 / 2$ ineh hetween sides.
1HC- Ohmite $\% \cdot 111$.

Fig. 16-27-Power-iupply circuit for the grid-dip meters shown in lizs. 16.22 and 16.2 . When ged with the meter of lig. $16.2 \pm$ the 1.5 -volt lattery should be omit ted.

11_{1} - 0.1 -megehm potentionster.

MA - 0 -I ma. (or wnaller range for greater sensitivity). S_{1} - S.p.s.t. taggle (mounted on R_{1}).
Sild - Selenium rectifier.
' I_{1} - P'ower tran-formor, reduired to furninh 6.3 volts at 0.3 amp. and app. 5 ma, at 11.7 volts (Millen 00011).
plate-supply requiremonts are lion volts and approximately 4 ma. Whout half of this current flows through the voltage divider, R_{1}, in Fig. 16-27.

The tuning condenser, C_{1}, is the same type used in the instrument shown in Fig. 16-22 and is similarly modified into a split-sitator unit. However, in this case a somewhat smatler minimum capacitance is dexirable, so enough pates are removed from both rotor and stator so that each seetion consists of 5 stator and 5 rotor plates. Both ends of the rotor must be grounded to avoid dead spots. This can be done by soldering a short piece of wire between the eontact washer and a mounting stud at each end. The ground eonnertion is then made through the stud to the " C "-shaped support.

A cristal socket (half-inch spacing) with its lugs soldered directly to the condenser stators is used as a coil socket. No. 12 wire makes a good fit in surh a socket, so the coils are selfsupporting. 1 little additional strength for the socket mounting is sereured by cementing it to the condenser end plates with Duco cement.

There are several methods by which the instrument can be given a frequency calibration. If a receiver is available covering at least a part of the range the unit can be used as an oscillator and calibrated against the receiver settings. Lecher wires also can be used; the method of using them is described earlier in this ehapter.

To use the unit as a grid-dip meter the platevoltage control is advanced to the point where a convenient value of grid current is obtained, after which it functions in the same way as the conventional grid-dip meter. 'To use it as a simple absorption wavemeter the plate voltage is turned off the sensitivity under these conditions is about the same as the sensitivity of a crystal-detector wavemeter. To use it as a regenerative wavemeter the plate-voltage control is first advanced to the point where oscilla-
tion begins, as cevidenced by a small amount of grid current, and then backed off until the grid current just disappears. This is the most sensitive condition. The setting of the platevoltage control will depend to some extent on how tightly the instrument is coupled to the cireuit being checked; tight coupling requires more plate voltage, loose coupling less. Care must be used to avoid false indications caused by actual oscillation should the coupling inadvortently be derreased; this usually an be cherked by tuning over a small range about the desired frequency. When the unit is properly operated the grid current will show a sharp kick as the circuit is tuned through an atetual signal and the current will drop to zero on either side. If the circuit is oscillating the grid current will be appreciable over a considerable tuning range.

Measuring Inductance and Capacitance

The ability to measure the inductance of coils, the capacitance of condensers, or the resonant frequency of a tuned circuit frequently saves time that might otherwise be spent in cut-and-try. A convenient instrument for this purpose is the grid-dip oscillator, described earlier in this chapter.

For measuring inductance, the coil is connocted to a condenser of known capacitance as shown at A in Fig. 16-28. I mica condenser may be used as a standard; a $100-\mu \mu \mathrm{d}$. 5 per rent tolerance unit will serve for most purposes. With the unknown eoil connected to the standard condenser, the pick-up loop is coupled to the coil and the oscillator frequeney adjusted for the prid-current dip, using the loosest coupling that gives a detectable indication. The inductance is then given by the formula

$$
L_{\mu \mathrm{h} \cdot}=\frac{25,330}{C_{\mu \mu \mathrm{d} \cdot} \cdot f_{\mathrm{Mc} \mathrm{e}^{2}}{ }^{2}}
$$

A calibrated variable condenser is gemerally used for measuring capacitance. The circuit is shown at 13 in Fig. 16-28. The frequency of the rircuit, using any convenient coil, is first measured with the unknown caparitance disconneeted and the calibrated condenser set near maximum. The unknown is then connected and the calibrated condenser readjusted to resonance. The unknown capacitanee is then equal to the difference between the capacitances at the two settings of the calibrated condenser. Obviously only capacitances smaller than the maximum eapacitance of the calibrated eondenser can be measured by this method.

Since high accuracy in capacitanee measurement is not ordinarily required, a satisfactory standard is any condenser of the straight-line capacitance type, for which a sufficiently good calibration curve can be constructed by noting the dial setting at which the plates just start to mesh and the setting at which they are com-
pletely meshed, and assuming that the capacitance change is linear within those limits. The minimum and maximum capacitance (corresponding elosely enough to these condenser settings) can be obtained from the manufacturer's data on the particular variable condenser used.

An alternative method of measuring eapacitance utilizes the fixed standard capacitance described above in inductance measurements, together with a coil of the proper inductance to resonate at a convenient part of the frequency range of the grid-dip meter. First measure the inductance of the coil with the standard condenser connected to it. Then substitute the unknown caparitance for the standard and determine the new resonant frequency. The unknown capacitance is then

$$
C_{\mu \mu \mathrm{fI} \cdot}=\frac{2 \overline{5}, 330}{L_{\mu \mathrm{h}} f_{\mathrm{Mt} \cdot{ }^{2}}}
$$

where f is the new frequeney. This method is most adaptable to capacitances in the range $10-1000 \mu \mu \mathrm{fd}$. The standard eondenser should be approximately $100 \mu \mu \mathrm{fd}$. for this range of measurcment.

Fig. $16-28$ - Net-up, fur measuring inductance and capacitance with the krid-dip meter.

Audio-Frequency Oscillators

A useful ancersory for testing audio-frequency amplifiers and modulators is an audiofrequence signal generator or oscillator. Chooks for distortion, gath, and the ordinary troubles that occur in such amplifiers do not requirc claborate equipment; in most cases, a single audio frequency in the $500-1000$ erele region will suffiere. The chief requirement is that the adio osoillator be able to generate a reasonably good sine wave.

Fig. 16.29 - Audinomerillator cirruit for finol-fromurney oatput.
(C_{1} - App. $0.05 \mu \mathrm{fl}$. (see tent).
(:2-8- -fd , electrolstic.
($\mathrm{C}_{3}, \mathrm{C}_{4}-\mathbf{- 1} \mathrm{l}-\mu \mathrm{fd}$, paper.
$R_{1}-68,000$ ohms, J watt.
$\mathrm{K}_{2}-1500$ ohms, I watt.
R_{3} - 0.1 -megohm potentiometer.
I_{1} - App. 1 henry.

A circuit for a simple audio oscillator is given in Fig. 16-29. The second section of the 6SN7GT double triode is used to provide feedback in the proper phase to the first section, so that oscillations can be maintained without requiring a tapped coil at L_{1}. The output amplitude is controlled by the potentiometer, R_{3}.

The frequency of oscillation is determined by $L_{1-a n d} C_{1} . L_{1-}$ preferably should be an air-core coil, and can be an ordinary small "a.c.-d.c." filter choke with the iron core removed. Such coils usually will resonate in the virinity of 400 cycles with $0.05-\mu \mathrm{fd}$. at C_{1}. If trial shows that the tone generated is too high or too low, appropriate changes in C_{1} will bring it within the range desired. A number of frequencies can be made available by using several different values of capacitance, connected to a switeh for convenient solection.

The output of such an oseillator with the control at maximum should be approximately 1.5 volts.

- VARIABLE-FREQUENCY AUDIO OSCILLATOR

For measurements requiring a variablefrequency audio source the signal generator shown in Figs. 16-30 to 16-33, inclusive, is relatively inexpensive and easy to build. It uses a dual-triode oscillator with resistance-caparitance networks to obtain the phase shift required for oscillation, and includes an output
amplifior and a power supply. It is built on a $7 \times 9 \times 2$-inch chassis and housed in an $8 \times$ 10×7-inch cabinet.

As indieated in the circuit diagram, Fig. 16-31, the oscillator tube is a fisi7ciT. The freguence of oseillation is determined by the resistance and caparitance in the network commerted to the loft-hand seretion of the oseillator tube. The small lamp, I_{1}, in the cathode lad to this tube section serves as a cathorde hias resistor whose resistance varies with the oscillation amplitude in such a way as to maintain the output volage essentially constant. The feed-back amplitude is controlled by R_{1} as With a variablo condenser padded as sporition in Fig. 16-31 the frequeney range with a given sed of resistors is somewhat less than 4 to 1 , so five sets of resistors are needed to cover the $30-15,000$ corle range. S_{1} selects the range required for a particular measurement.

The output of the oscillator is coupled through the amplitude control, R_{24}, to the 6.J. amplificr. Two output connections are provided. One, using the 6.5 as an ordinary amplifier, is for working into high-impedance circuits. The second, using the bion as a cathode follower, is for circuits having an impedance in the neighborhood of a few thousand ohms. Shorting-type output jarks are used at J_{1} and J_{2} so that the unused output is properly bypassed by means of C_{8} or C_{7}.
The power-supply section follows standard practice. Fairly good filtering is required, inasmuch as the oscillater eovers the power-supply frequency range.

The const ruction of the inst rument is shown in the photographs. The frequener-determining resistors, R_{1} to R_{18}, are mounted on the terminals of the range switch. Placement of other parts is not critical. To redure the possibility of trouble from a.c. hum, shielded wire is used for the heater circuits, the wiring to the

Fig. 16.30 - Variable-frequency audio signal generator. A dial of the type permitting direct calibration can be substituted if desired. This instrument is complete with power supply and covers the $30-15,000$ cycle range in five steps.

Fig. 16.31 - Circuit diagram of the andio-frefuency signal generator.
 receiver type.
C_{2}, C: $13310-\mu \mu \mathrm{fl}$. trimmer ($100-\mu \mu \mathrm{fd}$. fixed mica in parallel with 3-30 compression trimmer).

$\mathrm{C}_{5}-(1.104$ - $\sqrt{6} 1$. paper, 400 volts.
(if, $\mathrm{C}_{7}-50$ - 0 fil. electrolytic, 25 volts.
C9, Ciso- $8-\mu \mathrm{fd}$, electrolytic, 450 volts.
$\mathrm{C}_{11}-16-\mu \mathrm{fl}$. electrolytic, 450 volts.
$\mathbf{R}_{1}, \mathbf{R}_{2}-8.2$ megohms, 10% tolerance, $1 / 2$ watt.
$\mathrm{K}_{3,}, \mathrm{~K}_{4}-1.5$ mergohms, 10% tolerance, $\frac{1}{1} 2$ wats.
$K_{6}, R_{6}-2 .!$ me:nohms, 10% tolerance, $1 / 2$ watt.
$K_{7}, K_{s}-10.2$ megolm, 10% tolerance, $1 / 2$ watt.
$R_{s,}, R_{10}$ - $0 . \pi$ mogehm, $10 \% \%$ tolerance, $1 / 2$ watt.
$\mathrm{R}_{11}, \mathrm{R}_{12}-0.1$ meqohm, 10% colerance, $1 / 2$ watt.
$K_{13}, R_{1+}-0.18$ mequhm, 10% tolerance, $1 / 2$ watt. $\mathrm{R}_{15} \mathrm{R}_{16}$ - 2.2000 ohms, 10% tolerance, $1 / 2$ watt.
$R_{17}, R_{18}-50,000$ ohms, 10% tolerance, $1 / 2$ watt.
a.c. switeh, and the leads to the output control, R_{24}. Good insulation is required in the frequency-determining $R C$ circuits to avoid leakage, because of the high values of resistance required for the low-frequency ranges. A switch with ceramic wafers should be used at s_{1}, and the variable condenser should be mounted on ceramic button insulators.

The resistance values required for establishing adequate overlap between frequency ranges will not, in general, permit using single resistors of the preferred values. As shown in l’ig. 16-31, two resistors are used in series in most cases so that, by combining preferred values appropriately, the desired resistance can be securcel. Units with 10 per cent tolerance
$1 \mathrm{l}_{19}-5000$ - ohm wire-wound potentioneter.
$\mathrm{R}_{2 \mathrm{~g}}$ - $\mathbf{4 7 , 0 0 0}$ ohms, 1 watt.
$1 i_{21}-1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{22}-1000$ olms, 1 watt.
$\mathrm{R}_{23}-22,000$ ohms, 1 watt.
R_{24} - 1-megohm potentiometer, andio taper.
$\mathrm{R}_{25}-1.500$ ohms, 1 watt.
$\mathrm{R}_{26}-56,000$ ohms, 1 watt.
K_{27} - 10,000 ohms, 1 watt.
R_{28} - 61,000 ohms, 20 watts.
li- 9 herress, 50 ma. (Staneor C-1215).
I_{1} - 4 -watt 115 -vot lamp.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-Shorting-t ype mierophone jack (Amphenol 75CI. PCIM).
$S_{1}-2$-section 2 -pole 5 -position ceramic switeh.
$\mathrm{S}_{2}-$ S.p.s.t. switch (mounted on K_{24}).
I_{1} - Power transformer, 650 volts c.t., 40 ma.; 5 volts, 3 amp .; 6.3 volts, 2 amp . (Stancor P-6010).
will be satisfactory. The exact value of total resistance is less important than that the corresponding pairs (e.g., $R_{1} R_{3}$ and $R_{2} R_{4}$) be matched as closely as possible to the same total resistance. Close matching is necessary to maintain the same oscillation amplitude on all frequency ranges. It is advisable to match the resistor pairs with an ohmmeter before installing them in the unit.

For preliminary alignment, set the trimmer condensers, C_{2} and C_{3}, at maximum capacitance, set S_{1} at Position 3, and connect a headset to the high-impedance output terminals. If $R_{9} R_{11}$ and $R_{10} R_{12}$ are closely matched, an audio tone should be heard at some setting of R_{19}. Set R_{19} at the point that just maintains

oscillation, and turn C_{1} through its entire range. If asallations stop at any moint adjust Co and C": for better caparity balame. When the proper trimmer settings have been obtained the osidtator will perform equally well at all settings of C_{1}.

Next, try the other frequency ranges and note which one gives oscillation at the lowest setting of R_{19}. If one or more ranges do not also work at this setting, the resistor pairs used on those ranges are not dosely-mough matehod. (Other resistors of the same nominal rating should be substituted for the smallere values in cach pair until oseillation is obtained on all ranges at the minimum satting of the feed-back control. This cut-and-try should not be required if the rexistors are within 10 per cent tolerance. If a compromise setting of R_{19} has to be used, whact the wavelom on all ranges to make sure that it is satisfactory. The purest sime wave will be ohtaned when R_{19} is at the lowest wetting that mastains oseillation. An owilloseope will give the best rherk on waveform.

A fairly good frocquency calibration can be
serured by comparing the audio tone with the notes of the piano scale (see Chapter TwentrFour). I more areurate calibration ram be serured by comparing the signal with that from a good commerrial unit. Alternativels, calibration points cath be obtained with high adeuracy throughout the entire range be using Lissajous patterns on an oseilloseoper The mothod is deseribed in detail heter in this chapter.

If Rat is set too high, the amplifier will overload and the output waveform will be distorted. At the highest setting that presurves the waveform, the open-circuit voltage at the high-impedance terminals is of the order of (i) volts, and at the low-impuedane terminals is approximately 6 volts. A load of lass than 1000 ohms on the low-impedance tarminals will cause distortion. If the generator mast work into a lower load impedance, the load can be connected in sories with a resistor of the proper value to bring the total load up to at least 1000 ohms. Alternatively. a stepodown transformer of the proper ratio may be connered latween the generator and the load.

Fis, 16.33 - Behaviohan-is view af the andio signal generator. The rogulator lamp in just tos the left of the range switeh, underneath the papurr tubular, and is sumported ley terminals on the oseillator tule wathet. "I'he' lengtlowise strip of aluminum serpat rates the prower supply from the oncillator and amplifier, as a prowntion akainst hum pich oup in the likhimperlancer RG: cireuits.

The Oscilloscope

The cathode-ray oscilloscope gives a visible representation of signals at both audio and radio frequencies and ean therefore be used for many types of measurements that are not possible with instruments of the types desuribed earlier in this chapter. For example, it can be made to show the waveform of an audio-frequency signal and thus detect distortion in an audio-frequency amplifier. With suitable ealibration, it will measure a.c. voltages at radio as well as audio frequencies. The oscilloscope is such a versatile instrument that it is a highly valuable addition to the practical amateur station.

CATHODE-RAY TUBES

The heart of the oscilloscope is the cathoderay tube, a vacuum tube in which the electrons emitted from a hot cathode are first accelerated to give them considerable velocity, then formed into a beam, and finally allowed to strike a special translucent screen which flumesces, or gives off light at the point where the beam strikes. A narrow beam of moving electrons is analogous to a wire carrying current, and can be moved laterally, or deflected, by electric or magnetic fields.

Since the eathode-ray beam consists only of moving eleetrons, its weight and inertia are negligibly small. For this reason, it can be made to follow instantly the variations in periodicallychanging fields at both audio and radio frequencies.

The electrode arrangement that forms the electrons into a beam is called the electrongun. In the simple tube structure shown in Fig. 16-34, the gun consists of the eathode, grid, and anodes Nos. 1 and 2. The intensity of the electron beam is regulated by the grid in the same way as in an ordinary tube. Anode No. 1 is operated at a positive potential with respect to the cathode, thus accelerating the electrons that pass through the grid, and is provided with small apertures through which the electron stream passes. On emerging from the apertures the electrons are traveling in practically parallel straight-line paths. The electrostatie fieds set up by the potentials on anode No. 1 and anode No. 2 form an electron lens
system which makes the electron paths converge to a point at the fluorescent screen. The potential on anode No. 2 is usually fixed, while that on anode No. 1 is varied to bring the beam intoforus. Anode No. 1 is, therefore, called the focusing electrode.

Sharpest focus is oltained when the electrons of the beam have high velocity, so that relatively high d.c. potentials are common with cathode-ray tubes. However, the current required is small, so that the power consumption is negligible. A second grid may be plated between the control grid and anode No. 1, for additional acceleration of the electrons.

Methods of Deflection

When focused, the beam from the gun produces only a small spot on the screen, as desoribed above. However, if after leaving the gun the beam is deflerted by either magnetic or electrostatic fields, the spot will move across the sereen in accordance with the force exerted on the beam. If the motion is rapid, the path of the spot (trace) appears as a continuous line.

Electrostatic deflection, the type generally used in the smatler tubes, is produced by deflecting plates. Two sets of plates are placed at right angles to each other, as indieated in Fig. 16-34. The fields are created by applying suitable voltages between the two plates of each pair. Isually one plate of each pair is connected to anode No. 2, to establish the polarities of the vertioal and horizontal fields with respeet to the beam and to cach other.

Formation of Patterns

When periodically-varying voltages are applied to the two sets of deflecting plates, the path traced by the fluoreseent spot forms a pattern that is stationary so long as the amplitude and phase relationships of the voltages remain unchanged. Fig. 16-35 shows how such patterns are formed. The horizontal sweep voltage is assumed to have the "sawtooth" waveshape indicated. With no voltage applied to the vertical plates the trace simply sweeps from left to right aeross the screen along the horizontal axis $X-X^{\prime}$ until the instant $I I$ is reached, when it reverses direction and returns

Fig. 16-34-Typical construction for a cathode ray tube of the electrostatie-fleflection type.
to the starting point. The sine-wave voltage applied to the vertical plates similarly would trace a line along the axis $Y-Y^{\prime}$ in the absence of any deflecting voltage on the horizontal plates. However, when both voltages are present the position of the spot at any instant depends upon the voltages on both sets of plates at that instant. Thus at time B the horizontal voltage has moved the spot a short distance to the right and the vertical voltage has similarly moved it upward, so that it reaches the actual position B^{\prime} on the screen. The resulting trace is easily followed from the other indicated positions, which are taken at equal time intervals.

Types of Sweeps

A sawtooth sweep-voltage waveshape, such as is shown in Fig. 16-35, is called a linear sweep, because the deflection in the horizontal direction is directly proportional to time. If the sweep were perfect the fly-back time, or time taken for the spot to return from the end (H) to the beginning (I or A) of the horizontal trace, would be zero, so that the line $H I$ would be perpendicular to the axis $Y-Y^{\prime}$. Although the fly-back time cannot be made zero in practicable sweep-voltage generators it can be made quite small in comparison to the time of

the desired trace $1 / I$, at least at most frequeneies within the audio range. The fly-back time is somewhat exaggerated in Fig. 16-35, to show its effect on the pattern. The line $I^{\prime} I^{\prime}$ is called the return trace; with a linear sweep it is less brilliant than the pattern, because the spot is moving much more rapidly during the fly-back time than during the time of the main trace. If the fly-back time is short enough, the return trace will be invisible.

The linear sweep has the advantage that it shows the shape of the wave in the same way that it is usually represented graphically. If the
time of one cycle of the a.c. voltage applied to the vertical plates is a fraction of the time taken to sweep horizontally across the sereen, several cycles of the vertical or "signal" voltage will appear in the pattern. The shape of only the last cycle (or the last few cycles, depending upon the number in the pattern and the characteristics of the sweep) to appear will be affected by the fly-back in such a case.

The shape of the pattern obtained, with a given signal waveshape on the vertical plates, obviously will depend upon the shape of the horizontal sweep voltage. If the horizontal sweep is sinusoidal, the main and return sweeps each occupy the same time and the spot moves faster horizontally in the center of the pattern than it does at the ends. When two sinusoidal voltages of the same frequency are applied to both sets of plates, the pattern may be a straight line, an ellipse, or a circle, depending upon the amplitudes and phase relationships of the two voltages.

For many amateur purposes a satisfactory horizontal sweep is simply a 60 -cycle voltage of adjustable amplitude. In modulation monitoring (described in Chapter Nine) audiofrequency voltage can be taken from the modulator to supply the horizontal sweep. For examination of audio-frequency waveforms, the linear sweep is essential. Its frequency should be adjustable over the entire range of audio frequencies to be inspected on the oscilloscope.

Lissajous Figures

When sinusoidal a.c. voltages are applied to the two sets of deflecting plates in the ascilloscope the resultant pattern depends on the relative amplitudes, frequencies and phase of the two voltages. If the relationship between these quantities is random the pattern is in continuous motion, but if the ratio between the two frequencies is constant and can be expressed in integers the pattern will be stationary. This makes it possible to use the oscilloscope for determining an unknown frequency, provided a variable fequency standard is available, or for determining calibration points for a variable-frequency oscillator if a few known frequencies are aviilable for comparison.

The stationary patterns obtained in this way are called "Lissajous figures." Examples of some of the simpler Lissajous figures are given in Fig. 16-36. Patterns of the type shown in Fig. 16-36 are obtained when the two voltages have cqual amplitudes; in case one has greater amplitude than the other the patterns will be elongated in the direction having the larger amplitude but will retain the same essential features. The form of the pattern for a fixed frequency ratio depends on the phase relationship between the two voltages; these figures are for a 90 -degrce phase difference.

In every case the patterns shown will be produced when the higher of the two frequencies
is applied to the horizontal deflecting plates. Should the lower frequency be applied to the horizontal plates the pattern will be turned at right angles. The frequency ratio is found by counting the number of loops along two adjacent edges. Thus in the third figure from the top there are three loops along a horizontal

Fig. 16-36-Lisajous finures and corresponding fre. quency ratios for a 90 -degree phase relationship between the voltages applied to the two sets of deflecting plates.
edge and only one along the vertical, so the ratio of the horizontal frequency to the vertical frequency is 3 to 1 . Similarly, in the fifth figure from the top there are four loops along the horizontal edge and three along the vertical edge, giving a ratio of 4 to 3 . Assuming that the known frequency is applied to the horizontal plates, the unknown frequency is

$$
f_{2}=\frac{n_{2}}{n_{1}} f_{1}
$$

where $f_{1}=$ known frequency applied to horizontal plates,
$f_{2}=$ unknown frequency applied to vertical plates,
$n_{1}=$ number of loops along a horizontal edge, and
$n_{2}=$ number of loops along a vertical edge.
In calibrating an oscillator, one of the frequencies is usually variable. The 90 -degree pattern ean be obtained by careful adjustment of the variable frequency until a stationary pattern resembling those shown is obtained. As the phase is varied the patterns will assume various forms, for a given frequency ratio, but the 90 -degree pattern is easily identified because it is the most symmetrical.

An important application of Lissajous figures is in the calibration of audio-frequency
signal generators, such as the variable-frequency a.f. oscillator described earlier in this chapter. Standard audio frequencies for this purpose are readily available. For very low frequencies the 60 -cycle power-line frequency is held accurately enough to be used as a standard in most localities. The medium audiofrequency range can be covered by comparison with the 440 -cycle modulation on the WWV transmissions, while high audio frequencies can be compared with WWV's 4000cycle modulation. An oscilloscope having both horizontal and vertieal amplifiers is desirable, since it is convenient to have a means for adjusting the voltages applied to the deflection plates to secure a suitable pattern size. The signal to the horizontal plates is fed directly to the amplifier, the horizontal linear sweep (if any) in the 'scope being switched out. The 60 -cycle voltage can be obtained from the secondary of a filament transformer. The 440 and 4000 cycle voltages from the WWV signal can be taken from the headphone jack on a receiver. It is possible to calibrate over a 4 -to-1 range, both upwards and downwards, from each of these three frequencies and thus cover the audio range completely.

A SIMPLE OSCILLOSCOPE FOR MODULATION MONITORING

Figs. 16-37 through 16-39 show the circuit and constructional details of a simple 2 -inch oscilloseope that is suitable for use as a modulation monitor. It is designed to be mounted in the transmitter rack, becoming a permanent part of the 'phone station. Inexpensive parts are used throughout, and the circuits themselves are simple to build and operate.

The 2AP1 cathode-ray tube is mounted with its screen protruding through a 2 -inch hole in the $19 \times 5 \frac{1}{4}$-inch aluminum rack panel. The cathode-ray tube is enclosed in a Millen shield, and its sereen is covered by a Millen type 80072 bezel. The power-supply components are housed in a standard $3 \times 4 \times 5$-inch utility box that is bolted to the left rear of the rack panel. An inexpensive replacement-type transformer is used with a 2 X 2 half-wave rectifier to deliver about 800 volts at the required 4 or 5 ma . drain.

The voltage-divider circuit components and the sweep-circuit controls are mounted on the right-hand side of the panel, and are enclosed by a $6 \times 41 / 4 \times 2 \frac{1}{2}$-inch three-sided box folded from sheet aluminum. A small audio transformer, mounted on the rear of this box, serves to provide 60 -cycle sweep voltage. The by-pass condensers, C_{2}, C_{3} and C_{4}, used to eliminate a.c. components from the d.c. control circuits, are connected directly to the rotor arms of their respective potentiometers, R_{1}, R_{8} and R_{9}.

The socket for the cathode-ray tube is not fastened to any of the structural members of the unit but is used as a plug, with the socket

Fig, $16-37$ - Vront view of a rack-mounting mailloscope for modulation monitoringe ill components are mounted on the rear of a 19 \times is $1 / 2$-inch rack pantl. 'The pmwer-supply womponents are built into a utility box boltal on the left side of the partel, and the 'seope circuits are mounted on the right-hand side, emelosed by a shieh box. The a.c. switeh is on the left. Alt other controls are on the right, a* follows: top row, l, to r., wirep witth, itltensity control, furise control; bottom row, sweeg-amplitude rontrol, horizontal centering. vortioal romering.
terminals enclosed in a tubular aluminum shied made by emoling down a National tyone T-78 tube shichl. 'The base plate of this assembly is used as the support for a two-terminal tie point that holds isolating resistors h_{10} and R_{11}. These resistors are mounted inside the socket shidd, as close to the tube hase as possible. A $1 / 2$-inch hole is drilled through the side of the shied to pass the cabled and shichded d.c. leads that run from the tube socket into the divider network in the aluminum shied box. A caramic feed-throuyh bushing requiring a $3 / 8$-inch clearance hole passes through the opposite side of the socket shichl to serve as the vortieal input torminal. C_{6} is commected betweon this bushing and the vortical dofler-tion-phate pin on the tube socket. (${ }^{5}$, the roupling rondensur for the horizontal platers, is mounted inside the hargershichd eompart mont,

Fig. 16.38- Ciruit diapram of the simple ascilloscope for modulation monitoring.
C. $-1 \mu \mathrm{fd}$., 10 KO volts, wil-filled.

C $2, \mathrm{C}_{3}$, C_{4} - (0.01- $\mu \mathrm{fd}$. 6011 -salt paper.

(6 - $0.0011 \mu \mathrm{fl}$. . (00) volt , miera.

$R_{2}-4.100$ olm=, $1 \frac{1}{2}$ watt.
$\mathrm{R}_{3}-50,000$-ohm potentiomerter, linear tapmer.
$\mathrm{R}_{4,} \mathrm{R}_{5}-33^{2}, \boldsymbol{1}$ (1) ohms, I watt.
$R_{6}, R_{7}-4_{-}^{-},(1610$ ohmes, I watt.
$R_{s,} R_{0}-50,(M M)-o h m$ putentioneter. Jinnalr taper.
$\mathrm{K}_{10}, \mathrm{R}_{11}-1$ mex.ehm, 1/2 watt.
 taper.
s - Sp.s.t. toggle swith.
S_{2} - D.p.d.t. toggle switeh.
' S_{1} - Replacement - ype rereiver tranaformor. 350 v. each side of c.t., 70 ma. (C (an) (or P'(x) 11 .)
T_{2} - Interstake audio transformer. (ITC $\therefore \therefore$, with half of serondary umsed; to produce approx. $1: 1$ turn $=$ ratio.)

Fig. 16.39 - Rear view of the rach-moumting oweillosonpr. The shield cuvering the voltaze-divider componeris has lwerl ramored the show wiring. Monnted on the shirld are the andion transturmer and the lorizontal input terminals. 'The 'songe tube and ilsoneth have leen remowed.

imput terminals to reduce the andio voltage to the desired level. Instruetions for selection of this resistor are given in Chapter Nine.

- LINEAR SWEEPS AND AMPLIFIERS

Probably the chief use of the oselloseope in amatour work is in measuring the pereontage modulation in 'phone tramimiteres and in serving as a continuous monitor of motulation percontare. An ascilloserpe for this purpose maty be quite simple and inexpensive, consisting only of a small cathode-ray tabe and an appropriate power supply as deseribed earlier. However, by providing amplitiers for the deflection paties and furnishing a linear swoop eireuit, the possibilities of the instrment are wreatly extended. It then beomes possible for example, to examine a.f. waveforms and to lorate caluses of distortion in at.f. amplifiers.

Gas-Tube Sweep Generator

A typical cirenit for a linear swerp generator and amplifier is shown in lig. 16-40. The tube is at gats triode or grid-control rectifier. The striking or breakdown voltage, which is the phate voltage at which the tube ionizes or "fires" and starts conducting, is determined by the grid bias. Whon plate voltage, E_{b} in Fig. $16-41$, is applied. the condenser between phate and cathode aequires a charge through $h_{6} h^{\prime}$. The charging voltage rises relatively slowly, as shown by the solid line, until the broakdown or flashins point, V_{f}, is reached. Then the condenser discharges rapidly through the comparatively low plate-eathode resistance of the tube. When the voltage drops to a value too low to maintain platiorurrent flow, E_{a}, the ionization is extinguished and the condenser once more charges through $R_{6} R_{7}$. If the resistane is large emough, the voltage amoss

Fïg. 16.10 - Linear sweep generator and horizontal amplifier.

(.) - II.1-Mfil parer.	H_{2} - 20, (0) ohms, ${ }^{2}$ watt.
C2 -25-rfd. 25-volt elertrolytic.	$\mathrm{H}_{3}-150$ ohms, $1 / 2$ watt.
(3 - 0,2\%-pfd. paper, (0) volts.	R_{4} - 2200 olims, $1 / 2$ watt.
(4)-11.1-pfid. paper, 6 (K) volts.	$\mathrm{R}_{5}-2 \cdot, 040$ ohms, 1 watt.
$\mathrm{C}_{5}-1.019 \mathrm{\mu}$ fd. praper, 610 volts.	R_{6} - 0.33 meqohim, $/ 2$ watt. $\mathrm{K}_{7}-1$-megolm potentiomerer.
$\mathrm{C}_{6}-0.015-\mu \mathrm{fd}$. paper, 600 volts.	
$\mathrm{C}_{7}-11.005-\mu \mathrm{fd}$. paper or mica, 600 volts.	
$\mathrm{C}_{8}-0.0022-\mu \mathrm{fl}$. mica.	$\mathbf{R}_{11}-\mathbf{0}$, i -megohm potentioneter.
C.9, C_{11} - 0.5 - $\mu \mathrm{fd}$. papmer, 600 volt .	
	R_{13} - 0.1 megolsm, 1 watt.
	N14- Blemi for horizontal deflertion plates.

the condenser will rise linearly with time up to the breakdown point. This linear voltage change is used for the sweep. The fly-back time is the time required for condenser discharge through the sweep-generator tube; to keep this time small, the resistance during discharge must be low.

Fig. 16-41 - Condenser charging curves shuwing how a sawtooth wave is produced by a gascous-tube linear sweep oscillator.

The "sawtooth" rate is controlled by varying the capacitance between plate and cathode and the resistance of $R_{6} R_{7}$. To obtain a stationary pattern, the sweep is synchronized by introducing some of the voltage being observed on the vertical plates into the grid circuit of the 884 gas triode. This voltage "triggers" the tube into operation in synchronism with the signal frequency. Synchronization will occur so long as the signal frequency is nearly the same as, or a multiple of, the self-generated sweep frequency.

The pentode amplifier in Fig. 16-40 can be used either to amplify the sweep-voltage output of the 884 oscillator, or to amplify any external voltage that it may be desired to use as a horizontal swerp. The gain control, R_{11}, provides a means for adjusting the width of the pattern on the cathode-ray tube sereen. The output of the amplifier should be connected to the horizontal deflection plates of the tube. If this circuit is to be used with the oscilloscope previously described, the output terminals may be connected directly to Terminals 6 and 9 on the 2AP1 socket. In such case C_{5} in Fig. 16-38 should be disconnected, but all other connections should be left unchanged.

Vertical Amplifiers

When using an oscilloscope for checking audio-frequency waveforms a "vertical" amplifier is a practical necessity. For most purposes the amplifier will be satisfactory if its frequency-response characteristic is flat over the a.f. range and if it has a gain of 100 or so. A typical eircuit is shown in Fig, 16-42. It will be recognized as being practically similar to the "horizontal" amplifier of Fig. 16-40, A high-resistance gain control is desirable, to avoid loading the audio circuits to which the amplifier is connected.

When such an amplifier is used with the oscilloscope of lig. 16-38, the output terminals should be connected between Terminals 3 and 8 on the 2AP'1 socket. It is advisable to comnect

Terminal 3 to the arm of a 2 -position ceramic switch, one contact going to the vertical amplifier and the other to C_{6} in Fig. 16-38. This permits using cither r.f. or a.f. input to the vertical deflection plates, disconnecting the a.f. amplifier eircuit when r.f. voltage is to be applied.

Constructional Considerations

In building an oscillosrope, care should be taken to see that the tube is shiclded from stray electrie and magnotic fiods that might doflect the beam, and means should be provided to protect the operator from acecidental shork, since the voltages employed with the larger tubes are quite high, In general, the preforable form of eonstruction is to enclose the instrument completely in a motal cabinet. From the standpoint of safet y, it is good prattice to provide an interlook switeh that automatically disconnects the high-voltage supply when the cabinet is opened for servicing or other reasons.

In laying out the unit, the cathode-ray tube must be placed so that the alternating magnetic field from the power transformer has no effect on the electron beam. The transformer should be mounted directly behind the base of the tube, with the axes of the transformer windings; and of the tube on a common line.

It is important that provision be included either for switching off the electron beam or reducing the spot intensity when no signal voltage is being applied. A thin, bright line or a spot of high intensity will "burn" the tube screen.

Fig. 16-12-Circuit diasram of a vertical amplifier for an oscilloscope.
$\mathrm{C}_{3}, \mathrm{C}_{3}, \mathrm{C}_{4}-0.1-\mu$ fil. paper. $1(0)$ volts.
$\mathrm{C}_{2}-25-\mu \mathrm{fd}$. 2.5 -volt electrolstie.
R_{1} - 1 -megohm potentinmeter.
R_{2} - 1.000 ohms, ${ }^{1}$ 年watt.
R_{3} - 2.2 megohme, 1 watt.
$\mathrm{R}_{4}-0.15$ megohm, 1 watt.
R_{5} - Bleed resistor for vertical deflection plates.
If trouble is exporienced in obtaining a clean pattern from a high-power transmitter because of r.f. voltage introduced by the 115 -volt line, by-pass condensers (0.01 or $0.1 \mu \mathrm{fd}$.) should be connected in sorios apros: the primary of the power transformer. the eommon connection hetwen the two being grounded to the oserillusiope case.

Antenna Measurements

Antenna measurements are made for the purpose (a) of securing maximum transfer of power to the antenna from the transmitter, and (b) of adjusting directional antennas to conform with design conditions. Measurements of the antenma system include the measurement of transmission-line performance,
crystal rectifier, and antenna connection, and the other housing a inicroammeter for registering the rectified current from the crystal. The two units are fitted with matching plug and socket, permitting them to be used together, or they may be interconnected by means of a cable which can be any length up to several hundred feet. Three coils are

Fig. 16-43- Remote-indicating field-strength meter, consisting of an r.f. pich-up and rectifier unit, and a meter unit. The haob on the left side of the meter unit is the switeh for the shunt. On the pick-up unit the wo wontrols are the bandswitch (left) and tuning. The knob at the right is for the resistor-shorting switeh. used, so that measurements may be made on 28,50 and 144 Mc. A resistor is inserted in seriess with the crustal and neter, to lessen the loading effret on the tuned circuit and to make the response of the crystal more linear with variations in received current. As the resistor reduces the sensitivity somewhat, a switch is provided to short it out in case measurements are to be made with extremely low power or at large distances from the transmitting antenma. A 100-microampere moter is used to give high sensitivity, and a shunt is available to multiply the range of the meter hy three. This shunt is also provided with a switch so that low or high readings can be taken without making a trip to

FIELD-INTENSITY METERS

In adjusting antenna systoms fur maximum radiation and in determining radiation patterns, use is made of ficld-intensity meters. Fundamentally the fied-intensity meter consists of a pick-up antenna and an indicating device such as a rectifier and mieroammeter. or a vacuum-tube voltmeter provided with a tunced imput circuit. It is used to indicate the relative intensity of the radiation field under actual rodioting conditions. It is particularly useful on the very-high frequencies and in adjusting directional antennas. Field-intensity checksshould be made at points at least several wavelengths distant from the anterma and at hrights corresponding with the desired angle of radiation.

The crystal-detector wavemeter described earlier in this chapter may be used as a fieldstrength meter if provided with a pick-up antenna. It is convenient to have the indicating device separate from the actual pick-up. This arrangement allows the pirk-up unit to be set up out in the field to pick up radiation from the antenna under test, while the meter unit is near where adjustments are to be made. Antenna adjustment thus becomes a one-man job.

The unit shown in Figs. 1(i-43 to 16-45, inclusive, is particularly suitable for measurements in the v.h.f. range. It is constructed in two sections, one containing a tuned circuit,
the pirk-up unit. The cryst al is the 1N21 type. (iermanium crystals (1×34) also may be used with good results.

The two units are housed in $2 \times 4 \times 4$-inch steel boxes with front and back removable.

Fip. 16 - 4 - 11 iring diagram of the remote-indicating field-strength meter.
$\mathrm{C}_{1}-25-\mu \mathrm{ffl}$, midget variable.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.001-\mu \mathrm{fd}$, mica.
$\mathrm{K}_{1}-1000 \mathrm{ohms}, 1 / 2$ watt.
$\mathrm{H}_{2}-220$ ohms, $1 / 2$ watt.
$\mathrm{L}_{1}-28$ - Me. coil-7 turns No. 22 enamel, $1 / 4$ inch long, on $3 / 4$-inch dia. form (National PliF-1).
$\mathrm{L}_{2}-50 \cdot \mathrm{Mc}$. coil - 6 turns No. 22 enamel, $1 / 4$ inch long, on $9 / 16$-inch dia. form (National PRE-1).
L_{3} - 144 -3/e. coil - 3 turns No. 18 enamel, $1 / 4$ inch long, $3 / 8$-inch dia., self-suppurting.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Lniversal receptacle, two-pole retainer-ring type (Amphenol 61.F).
MA - 0 - 100 microammeter ($0-500$ microammeter or 0-1 milliammeter may be used, with reduced sensitivity).
P_{1}. P_{2}-Polarized plag, two-pole retainer-ring type (Amphenol 61-M1P).
\therefore - 3-position wafer type switch.
$\mathrm{S}_{2}, \mathrm{~s}_{3}$-S.p.s.t. snap switels.
$\mathrm{RPC}_{1}, \mathrm{RFC}_{2}-2 . \mathrm{S}_{\text {mh }}$. choke ($\mathrm{National}_{\mathrm{R}} \cdot 100$).

Fig. $\quad 16.4 .5 \longrightarrow 11-$ side view of the two units of thir remotr-indieating field-strength meter.

In the pick-up unit all parts exerpt the resistorshorting switch and connecting plug are mounted on the top panel, permitting easy wiring of the assembly. The interconnecting plug and socket are the polarized type, with one prong on the plug slightly larger than the other. The plug will fit a standard a.c. outlet, so the intercomecting cable (ordinary rubbercovered lamp cord) can double as a long a.c. extension cord.

The antenna connertion is a steatite feedthrough bushing fitted with a "banama-plug" socket. A convenient pick-up ant omat is made by drilling and tapping a $1 / 4$-inch rod for $6 / 32$ thread to take the threaded end of a hanama phag. The length of the antenna will vary the sensitivity of the unit. If measurements are to be made with high power levels a rod a few inches in length will suffice, but for ordinary work a 24 -inch length will be suitable.

CHECKING STANDING WAVES

Standing waves on a transmission line can be measured if it is possible to measure the current at every point along the line, or the voltage berwern the two eonductors at every point along the line. Rough chereks on parallejconductor lines can he made by going along the line with an absorption wavemeter having a crystal rectifier, taking (are to keep the pirk-up roil (or pick-up) athema) at the same ristance from the line at evory mosisurement. With such a deviee the milliammoter usually will indicate current loops if a small piek-up roil is used, and voltage loops if a short pickup antenna is used.

An altermative indicator, also useful with parallel-conductor liness is a neon lamp. With moderate amounts of trammittor power, a bowwattage lamp will glow when the glass bull is brought into contart with one line wire. Is the lamp is moved along the line, a change in brightness indieates standing waves. If the glow is substantiatly the same all along the
line the s.w.r. can be considered to be low enough for practical purposes.

Standing-Wave Ratio Indicators

Simple indicators such as those just mentioned are useful for checking the presence of standing waves along a transmission line but are not adequate for actual moasurement of the standing-wave ratio. In many cases, such

 meinurement. 'This fundamental circuit is the basis for one tyme of bridge for meanuring standing-wave ratio.
as adjustment of the match between a line and antenat, an accurate measurement is not at all necessary; it is sufficient simply to determine that a change in adjustment has eithor increased or derreased the s.w.r, But ande from accuracy, it is frequently inconvenient. and sometimes impossible, to move a current or voltage indicator along a transmission lino for the distance required in ehecking standing waves.

An alternative mothod uses a bridge circuit to measure the standing-wave ratio. although not the standing waves themselves. While there are many forms of bridge circuits, the simple resistance bridge shown in Fig. 16-46 will serve to illastrate the basio prineiples. This type of bridge is often used for
measurement of resistance, R_{1} and R_{2} are fixed resistors having known values, and R_{s} is a calibrated variable resistor. The unknown resistance to he measured, R_{L}, is connected in series with R_{s} to form a voltage divider across the soure of voltage, E. The resistance of the voltmeter, V, should be very much larger than any of the four resistance "arms" of the bridge for maximum sensitivity. From (Ohm's Law it is apparent that when R_{1} / R_{2} equals R_{s} / R_{1}, the voltage drops across R_{1} and R_{s} are equal (this is also true of the voltage drops aross R_{2} and R_{L}) and there is no difference of potential between points C and D. Hence the voltmeter reading is zero ("null") and the bridge is said to be "balanced." Under any other conditions the potentials at C and D are not the same and the voltmeter reads the difference of potentiat. When the bridge is balanced,

$$
R_{\mathrm{L}}=R_{\mathrm{s}} \frac{R_{\mathrm{s}}}{R_{1}}
$$

R_{1} and R_{2} are called the "ratio arms" of the bridge. In bridges used for a.c. measurements two or more of the arms are frequently reartances (inductance or caparitance).

The basis for s.w.r. measurements with a bridge is the fact that the input impedance of a properly-terminated transmission line is a pure resistance equal to the line's characteristic impedance. If such a line is connected as tho unknown arm of an appropriate bridge rircuit the bridge can be balanced in the usual way and the indicating instrument will show a null. However, if the line is not properly terminated the input impedance will not equal the characteristic impedance, and will in general be reactive as well as resistive. Consequently, if the bridge is first balanced with a pure resistance equal to the characteristic impedance of the line, then on substituting the actual line the bridge will remain in balance only if the line is properly terminated - i.e., only if there are no standing waves. In all other cases the voltmeter will show an indication because the bridge has been thrown

Fig. 16-17 - Fundamental virenits of two bridge-tope standing-wave indicators. The uperer eircuit is used in the "Mirro-Math" unit: the lower is a Maxnell bridge.
out of balance. It ean be shown that this indication is a function of the standing-wave ratio, since the input impedance varies over a wider range as the s.w.r. increases. Hence the voltmeter wan be calibrated in terms of s.w.r.

In addition to the resistance bridge shown in Fig. 16-46, the two circuits shown in Pig. 16i- 77 are well adapted to s.w.r. measurement. The one at A is a resistance-capacitance bridge and that at Ba Maxwell-t ape bridge. All three

Fia. 16-18-Circuit diagrantof the "Miero-Match" stand-ing-wane indicator.
(. $1-3-15-\mu \mu \mathrm{fd}$. midget variable.
$\left(\mathrm{C}_{2}, \mathrm{C}_{4}-220 \cdot \mu \mu \mathrm{fl}\right.$, micat.
(is - 82- $\mu \mu \mathrm{fd}$ mica.
C3-0.0047- $\mu \mathrm{fd}$. mica.
$h_{1}-1.1$-ohm resistor (nine lo.ohn I-watt carbon resistors in parallel).
$\mathrm{R}_{2}-5000$-ohm potentionteter.
11A-0-1 d.c. milliammeter.
RFC - - . - -mh. r.f. choke.
bridges are theoretically independent of the applied frequency, and are practically so up to the frequency where skin effect, stray inductance, capacitance, and coupling between circuit elements and wiring become of importance. In both circuits the radio-frequency voltmeter, V, must be a high-impedance device. The conditions for "balance" - that is, for the voltmeter to read zero regardless of the voltage applied to the input terminals - are given in the equations to the right of each diagram. C_{1} in Fig. 16-47 A, and C in the circuit at B, are made adjustable so that the ratio of the bridge can be varied for various load resistances, R_{L},

Practical circuits corresponding to the two in Fig. 16-47 are given in Figs, 16-48 and 16-49. The r.f. voltmeter is a crystal rectifier and 0-1 d.c. milliammeter (or microammeter) with chokes and resistors for keeping the r.f. out of the meter eircuit. In order to keep the voltmeter impedance high and to improve the linearity, it is advisable to use as much resistance in series with the metor as possible while still obtaining full-seale indications at the r.f. power level used.

Several precautions must be observed in constructing and using such instruments. The keads must be kept short, to avoid introducing roactance that would prevent obtaining proper balance. The rectifier-circuit wiring should be kept out of the fields of the other components insofar as possible, since stray pick-up in this wiring will give a "residual" volt meter reading that will not balance out. It is absolutely essential that the resistors have negligible capacibather and inductance: wire-wound resistors
gannot be used with any degree of success.
To check either of the bridges shown in Figs. 16-48 and 16-49, connect a noninductive resistor equal to the characteristic impedance of the line to the output terminals, apply an r.f. voltage to the input terminals, and adjust the variable condenser for minimum rading.

Fig. 16.49 - Circuit diayram of the Maxwell-luridge standing-wave indicator. The meter should have a fullscale range of 1 milliampere or less.
C_{1} - 10-100- $\mu \mu \mathrm{fd}$. Ceramicon variahle.
$\mathrm{C}_{2}-470-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{3}, \mathrm{C}_{4}$ - (Optional) $100-\mu \mu \mathrm{fd}$. mica.
R_{1} - $\mathbf{5 0 0}$ ohms, nonreactive.
$\mathrm{I}_{2}, \mathrm{I}_{3}-10,000$ ohms, $1 / 2$-watt cartoon.
L_{I} - Approx. 29 tirns No. 18 , diameter 0.6 ineh, 2.5 inches long.
XTAL - 1N34 or equivalent.
Then reverse the bridge so that the power source is connected to the output terminals and the resistor load to the input. Adjust the r.f. voltage (by changing the coupling to the transmitter) to make the meter read full scale. Then reverse the bridge connertions and check the reading. If it is more than one or two per cent of the full-scale reading it will be neressary to try different arrangements of the wir-

Fig. 16-50 - Standing-wave ratio in terms of meter reading (relative to full scale) after setting outgoing voltage to full scale. This graph is a plot of the formula

$$
\text { S. } \Pi \cdot R .=\frac{I 0+V r}{10-I r}
$$

where Io and Ir are the outgoing and reflected components, respectively, of the voltage on the transmission line.
ing until the null reading can be brought as close to zero as possible.

The variable condenser can be calibrated in terms of various line impedances by substituting load resistances of the appropriate values, noting the setting for balance at each resistance value. Both cireuits can be used over the range of 50 to 300 ohms , approximately.

Gabibation in terms of s.w.r. ean be carried out, after ehecking for the null as described abowe, by using noninductive resistors of various values as loads. For a given line-impedance setting, the s.w.r. is given by

$$
S . H^{\prime} . R_{.}=\frac{R_{1}}{R_{0}} \text { or } \frac{R_{0}}{R_{\mathrm{L}}}
$$

where R_{0} is the line impedanee for which the bridge has been adjusted to null, and K_{I} is the resistance used as a load. Use the formula

Fig. 16.51 - Resistance-hridge standing-wave indicator for coasial lines. Input and output terminals are at the lower left and lower right, respertively. 'This unit, huilt in a 2 by + hy t box, is proviled with a switch so that the voltacter can neasure either the applied voltage or the bridge voltage.
that places the larger of the two resistances in the numerator. 'The theoretical calibration curve for a bridge is shown in Fig. 16-50, but this curve should be used only as a guide. It will not apply except in the case where the voltmeter impedance is intinite and the applied voltage remains constant regardless of how the bridge is comnerted.

To use either bridge for s.w.r. measurements after calibration, first reverse the bridgethat is, connect the line to the input terminals and the transmitter to the output terminals and adjust the transmitter coupling to make the voltmeter read full scale. Then, leaving the transmitter coupling fixed, reconnert the bridge in the normal way, when the volt meter will indicate the s.w.r.

Fig. 16.52 - Resistance-bridge s.w.r. indivatur for co. axial lines.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-0.001$. $\mathrm{\mu d}$. mica.
$\mathrm{R}_{1}-\mathrm{App} .10$ ohms, carbon, is watts (five 17 -ohm 1-watt resistors in parallel).
$R_{2}-50$ to 75 ohms, (arlwor. $1 / 2$ watt (select resistance value to egual characteristic impedance of line).
$R_{3}, R_{4}-A_{p p} .50$ ohms. Absolute value not critical, but the two resistors should be within a few per cent of the same value.
R_{5} - 1700 ohins, $1 / 2$ watt, carbon.
$R_{6}-820$ ohms, $1 / 2$ watt, carbon.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Cioax connectors.
MA- 0-1 d.c. milliammeter.
S_{1} - S.p.d.t. toggle.
Xtal-1N51 or 1×34.

Figs. 16-51 to 16-53, inclusive, show a resistance bridge built for coaxial lines, illustrating the type of construction that should be used in all types of bridge s.w.r. indicators. The construction should be such that coupling between various parts of the r.f. circuits is as small as possible. Short leads in the r.f. wiring are also important, to minimize stray reactances that, although not visible in the circuil diagram, may become appreciable at frequencies of the ordor of 14 Mc. and higher. In this bridge the two ratio arms (R_{3} and R_{4}, Fig. 16-52) are equal, and this makes it unnecessary to reverse the bridge conncetions in either calibration or measurement. The loading resistor, R_{1}, is used prineipally to place a constant low-resistance load on the transmitter and thereby maintain constant voltage across the bridge regardless of the load that may be connected to the output terminals. An ardititional refinement, althrough mot an eso sential part of the brigge, is the voltmeter connected acrose the input side of the line and consisting of the crystal rectifier, C_{1}, and R_{5}, in conjunction with S_{1} and the milliammetor. This line voltmeter is a convenitice in making measurements, because it will show whether or not the line voltage changes when shifting the output connections from open or shortrircuit (the reference reading) to the actual line to be measured. Thus it shows whether or not an error has been introduced bec:ause of line voltage regulation, and permits readjustment to the proper value. The calibrations of the two voltmeters do not have to be identical.

The bridge performance can be checked by using a noninductive resistor of the same value (matched as closely as possible) as R_{2}
as a load. With the output terminals open and S_{1} set to read input voltage, adjust the transmitter coupling to obtain a reading between half and full scale. Then conneet the test resistor to the output terminals, using leads as short as possible, and readjust the transmitter coupling, if necossary, to maintain the same iuput voltage. Then switch s_{1} to the bridge posilion, when the reading should drop to zero. A poon mull under these comditions indicates stray coupling or excessive lead rataance in the bridge circuit.

The bridge may be calibrated by using noninductive resistors as described earlier. As a preliminary, adjust the transmitter coupling so that the voltmeter reads full seale (bridge position of S_{1}) with the output terminals open, and then check the input voltage. Conneet various values of resistance across the output terminals, making sure that the input voltage is the same in each case, and note the reading with the meter in the bridge position. With this, as well as the other bridges, the readings may not correspond exactly for the same s.w.r. when appropriate resistors above and below the line impedance for which the bridge is designed are used. This is because of the current taken by the voltmeter. With the constants given in Fig. 16-52 the variation shonld not exceed about 5 per cent, and the

Fig. 16-53 - Inside view of the resistance-l)ridge s.w.r. indicator. The input terminal is at the right. An aluminum strip, the full width of the box, serves as a lowindnctance ground plane for the instrument. Small ceranic through-bushings are nsed to insulate the "hot" line conductor and the bridge resistor, R_{2} (Fig. 16-52), at the lower left. 'The ratio arms, K_{3} and R_{4}, are mounted alove the gronnd plane at the left edge of the box. The load resistor, at the right, consists of five 1watt resistors monnted in ring fashion. This construction shields the hot conductor and loridge resistor from all other parts of the bridge.
error can be made smaller ber using a lowrange microammeder with a large series resistance as a voltmeter.

The procedure for using a resistance bridge for aetual measurements is the same as that used during calibration.
S.w.r. measurements on parallel-conductor transmission lines are often subjeet to eonsiderable crror if there are appreciable "antemas' currents on the line (sere Chapter 'Ten). These currents flow in parallel in the line conductors and affect the voltmeter indeprondently of the true transmission-line currents. Their presence can be dotevted by interehanging the line wires at the output terminals. If the bridge does not give the same reading both ways the presence of antemna currents is indicated. In such a case nother mading is reliable. With coaxial lines antennat curents should give no trouble if the bridge is shiolded athe good solid combertions are made at the iuput and output forminals.

The "Twin-Lamp"
A simple and inexpensiva standing-wave

Fig. 16.5.1 - The "Inindamp" standing-wave indieator.
indicator for 300 -ohm line is shown in Fig. 16-ot. It conssits only of two Hashlight lamps: and a short piece of 300 -ohm line. When lated flat against the line to be chereked, the combination of inductive and capacitive coupling is surh that outgoing power on the lime causes the lamp, mearest to the tramsmiter to light, while refleroded power lights the lamp meares the

lasul. When the line is matehed and no power is refleered, the lamp toward the antemna will be date. The perver input to the lime should be adjusted to make the lamp nearest the transmitter light to full brilliance. When the lamp nearest the lom just begins to glow, the s.w.r. is about 1.5 to 1 .

To construct the "twin-lamp," take a short longth (a foot or t wo) of $300-\mathrm{ohm}$ Twin-lat and remove about lif inch of insulation from whe wire at the ernter of the piece. Then take a sorond piece, + to 10 inches long (depending on the frequency and the transmiter power), and short-cireuit both ands. Cut one wire in the exact center of the piece and peed the embs hack on either side just far enough to provide leads to the flashlight lamps. Were the lowestcurront flashlight bulbs or dial lamps availabhe. solder the tips of the bulbs together and conneret them to the bare point in the long section of line, then solder the ends of the ent protion of the shart piecer to the shells of the bulbs. Figs. 16-ist and 16-i.5 should make the construetion dear. The whole unit forms a "test sremion" that ran be inserted in series with the line to be measurerl.

CHAPTER 17

Assembling a Station

An amatear station is gomerally far better known by its signal and good operation than by its physical appearance. Good operating and a clean signal will build a reputation faster than thousands of dollars invested in special equipment and an elaborate "shack," and it is this very fact that makes amateur radio the democratic hobby that it is. However, most amateurs take pride in the arrangement of their stations, in the same way that they are careful of the appearance and arrangement of anything else which is part of the household. An antenna installation is the only extemal indication of the amateur station, and the degree of neatness required is generally determined by the district where the amateur lives and the attitude of the neighbors. However, with the advent of all different kinds of television receiving antennas, neighbors are in a much less favorable position to complain about the apparance of an amateur antenna system in the vicinity. TVI is something else, however!

The actual location inside the house of the "shate" - the room where the transmitter and receiver are bocated - depents, of contse. on the free space available for amateur artivities. Fortumate indeod is the amateur with a

A good example of a station well prepared for activity on several bands. The rach houses power supply and T- and 19 - Me. output amplifiers, with the 3.5 -Me. am. plifier adjacent in its own rack. The receiver, VFO, tube kever, typewriter, control switches, key and telephome are all within easy reach of the operator. Special cubly. holes provided for message forms, log book, Call lbook and other papers keep the operating position neat and ready for altion at any time. (W 1 CD A , Danville, Ky .)
soparate room that he can devote to his amatent station, or the few who (ath have a pecial small building separate from the main house. However, most amateurs must share a room with other domestic activities, and amateur stations will be found tucked away in a corner of the living room, a bedroom, a large closet. of even under the kitelen stove! A spot in the collar or the attic can almost be classed an a sepante rom, although it may late the "finish " of at normal room.

Prasurdess of the location of the station. however, it shomid be designed for maximum operating convenience and safety. It is foulish to have the station arranged so that the throwing of several swit ches is required to go from "receive" to "transmit," just as it is silly t" have the equipment arranged so that the operator is in an uncomfortable and cramped position during his operating hours. The rest sons for building the station as safe as possible are obvious, if youre interested in spending : number of years with your hobby!

CONVENIENCE

The first consideration in any amateur station is the operating position, which includes the operator's table and chair and the pieces of equipment that are in constant usi (the receiver, send-receive switeh, and key or microphone). The table should be as large as possible, to allow sufficient room for the recoiror or receivers, frequancy-measuring equipment. monitoring equipment, control switches, and keys and microphones, with enongh space left wer for the loghook, a pad and poneil, and perhetpes a large ash triy. suitable space should be inchuded for radiogram blanks and a call book, if these arressories are in frequent use. If the table is small, or the number of pieces of equipment is large. it is often necessary to build a shelf or rack for the amxiliary equipment, or to monnt it in some lese convenimat lomation in or under the table. If whe has the facilities, a semicircular "ronsole" can be built of wood, or a simpler solution is to use two small wooden cabinets to support a table top of wood or Masonite. Home-built tables or consoles cam be finished in any of the avalable oil stains varnishes, paints or lacquers. Many operators
use a large piece of plate glass over part of their table, since it furnishes a good witing surface and can cover miscellaneous charts and tables, prefix lists, operating aids, calendar, and similar aceessories.

If the major interests never require frequent band changing, or frequency changing within a band, the tramsmitter can be located some distance from the operator, in a location where the meters can be observed from time to time (and the color of the tube plates noted!). If frequont band or frequency changes are a part of the usuad operating procedure, the tramsmitter should be mounted close to the operator, either along one side or above the receriver, so that the controls are easily arcessible

Fïs. $1 \pi=1$ - In a station assembled for maximum ease in frequeney or band ehanging, the transmitter should be located next to the operating position, as shown above. On the operating table, the receiver is in front of the operator and WO or erystal-wwitching oseillator on the left. (The VFO or crystal oscillator could be part of the transmitter proper, but nosit operators seem to prefer a separate VFO.)

The frequency standard and other anxiliary equipment can be mounted on a shelf above the receiver. The operating table can be an old desk, or a top supported by two smalt wouden cabinets. "The" "send-receive" switch is to the right of the telegraph keys - other switches are on the transmitter or the individual units.
The above arrangement can be made to look cleancr by arranking all of the equipment on the table behind at single panel or a set of patils. In this case, provision must be made for getting behind the panel for servicing the units.
without the need for laving the operating position.

A compromise arrangement would phate the VFO or erystal-switched oscillator at the operating position and the transmitter in some convenient loration not aljacent to the opemtor. Since it is usually possible to operate over a portion of a band without retuning the transmitter stages, an operating position of this type is an advantage over one in which the operator must leave his position to make a chathge in frequency.

Controls

The operator has an excellent chance to exercise his ingenuity in the location of the oparating controls. The most important controls in the station are the receiver tuning dial and the send-receive switrh: The receiver tuning dial should be located four to eight inches

A convenient operating position can be ohtained by huikling a "horseshoe-type" operating desk as shown here. Considerably more equipment can be placed on the desk around the operator than if an ordinary desk is used. (W9AND, Dixon, III.)
above the operating table, and if this requires mounting the receiver off the table, a small shelf or bracket will do the trick. With the single exception of the amateur whose work is almost entirely in traffic or rag-chew nets, which require little or no attention to the receiver, it will be found that the operator's hand is on the receiver tuning dial most of the time. If the tuning knob is too high or too low. the hand gets eramped after an extended period of operating. hence the importanee of a properly-located receiver. The majority of c. w. operators tune with the left hand, preferring to leave the right hand fice for copying messages and handling the key, and so the receiver should be mounted where the knob can be reached by the left hand. 'Phone operators aren't tied down this way, and tune the communications receiver with the hand that is more convenient.

The hand key should be fastened securely to the table, in a line just outside the right

When one specializes in clean-cut e.w. operation on all hathle, he is likely to come up with a neat arrangement like this. The transmitter runs 400 watts, despite its: small size. The small unit between transmitter and receiver is the VFO. (W:WY. San Antonio, Texas.)
shoulder and far enongh back from the front edge of the table so that the elbow can rest on the table. A good location for the semiautomatic or "bug" key is right next to the hamdhey, although sume operatoris prefor to monnt the automatic koy in front of them on the left, so that the right forearm rests on the tablo parallel to the front edge.

The best laseation of the misrophome is directly in front of the operator, so that he doesn't have to slont armes the table into is. or rum up the speech-implifier gatu so high that all maner of external somme are pioked up.

In ally andatend alation womy of the mathe. it should be nevessary to thran :no more than one switch to go brom the "reedie" to the "transmit" condition. In 'phone stations, this switeh should be lowated where it can be casily reanched by the hand that isn't on the receiver. In the case of c.w. operation, this switch is most conveniently lorated to the right or left, of the key, although some operators prefer to have it mounted on the left-hand side of the operating position and work it with the left hand while the right hand is on the key. Fither location is satisfactory, of course, and the chaice depends upon personal proference. some operators use a foot-controlled switch. which is a convenionce but docsn't allow too much freedom of position during long operating periods.

If the miemophone is hamd-hed during 'phone operation, it "push-to-talk" switch on the mierophone is convenient, but hand-held mierophones tie up the use of one hand and

F̈̈s. 17-2 - When little spare is available for the atmateur station, the equipment has to be apotted where it will fit. In the above arrangement, the transmitter, morlalator and power supplies (epparate units) are sandwiched in alongsitle the operating table and on a Shelf above the talble. 'lhe antenna tuming unit is monnted over the feedethrough insulators that bring the antenna line into the "shack," and louspreaker and amall power supplies are nomot moder the table. The operating position is man, however, with the Ifl?, receiver and keya at table lowel. 'lhe taning knoh of this receiver would be uncomfortably low if the reveiver werent raised liy the wooden arch, and the "-roulrecoive" switch is monnted on the risht-hand side of thiareh, next to the hand key. Interemnecting leads should the cabled along the back of the table and table legs, to herp them inconspiemoms.

This 800-watt atation is tucked away in one morner of an apartment. The secret to a compart station is to do away with frills mot necessary for commanication. The transmitter and supply are in the cabinet, the \mathbf{V} and receiver on the table. ($1 \mathbf{2} \mathbf{M 1} .0$, Rutherford, N. J.)
are not too desirable, although they are widely used in mobile and portable work. A breast, chin or throat microphone is safer for mobite work, if the operator is also the driver of the vehicle.

The location of other switches, such as those used to control power supplies. filaments, 'phone/ew. change-over and the like, is of no particular importance. and they can be located on the unit with which they are associated. This is not strictly true in the case of the 'phone/cw. DX man, who somotimes has need to change in a hurry from c.w. to 'phone. In this case, the change-over switeh should be at the operating table. although the aetmal change-over should be done by a relay that the switch controls.

If a rotary beam is used the control of the beam should be convenient to the operator. The beam-direction indicator, however, can be located anywhere within sight of the operator, and does not have to be located on the operating table unless it is small, or included with the beam control.

When several fixed beams are used, the selection of any one should he possible from the operating position. to minimize the time required to select the proper onc. This genetally means using a series of antenna relays or a stepping switch.

Frequency Spotting

In a station where a VFO is used, or where a number of erystals is available, the operator should be able to turn on only the oscillator of his transmitter, so that he can spot aceurately his location in the hand with respect to other stations. This altows him to see if he has anything like a clear channel (if such a thing exists in the amateur bands!). or to see what his frequency is with respect to another station. Surh a provision can be part of the "send-receive" switch. Switches are available with a center "off" position. a "hol!" position on one side,

 rircuits, controtled hy the power relay. I heavy-duty swithly can be wed instead of the relay, in which case the antematalay would le commerted in ciranit C.
 suitable windigg: on transformers.
"ith "push-to-talk" operation, the "semb-rceive" switela can be a d.p.d.t. affair, with the secend pole controlling the "on-ofl" circuit of the reveiver.
for turning on the oscillator only. and a "lock" position on the other side for turning on the tramsmitter and antema relays. If oscillator keying is used. the key serves the same purpose, provided a "send-receive" switch is a vailable to turn off the high-voltage supplies and prevent a signal going out on the air during adjustment of the oscillator frequency.

Fior 'phone operation, the telegraph key or all anxiliary switch can control the transmitter oscillator, and the "send-receive" switch ean then be wired into the eontrol system so as to control the oseillator as well as theother cirmits

An example of the compact station, complete on the onerating table. The receiver is mounted on the left side of the table, for left-hand tuning. The beam-direction indieator and swithes are housed in a small box sitting on the VFO. (NeNFt, Forest Hills, N. J.)

Comfort

Of prime importance is the comfort of the operator. If you find yoursalf getting tired after a short period of operating, examina your station to find what canses the fatigue. It may be that the chair is too soft or hasu't a st raight back or is the wrong height for youl. The key or receiver may be lorated su that you assume an uncomfortable position while using them. If you get sleepy fast. the ventilation may be at fatult. (Or you may neod sleep!)

POWER CONNECTIONS AND CONTROL

Following a few simple rules in wiring sour power supplies and control rircuits will make it an easy job to change units in the station. If the station is planned in this way from the start, or if the rules are recallod when you are rebuilding. you will find it a simple matter to revise your station from time to time without a mator rewiring job.

The regular wall outlets in a home are gemerally rated at 15 amperes at 115 volts, and so will furnish suffiriont powar for receivers. monitoring equipment. spereh amplifiers. and anything that docsn't draw tou high an intermittent load (such as a keved transmitter or (Class I3 modulator). A low-powered transmitter, under one or two hundred watts, cam be supplied by an ordinary wall outlet. To make a neat installation, it is better to rum a single pair of wires from the outlet over to the
operating table or some central point, rather than to use a number of adapters at the wall outlet.

In a high-powered station, the receiver and auxiliary equipment can get their power from the wall outlet, but it is advisable to run in a special, heavy three-wire line from the moter box for the transmitter. This three-wire line will, of course, be 115 volts either side of nemtral (ground), or 230 volts across the outside. In many canes it is possible to run the filaments and eonstant hads from one side of this threre wire line and the intermittent loats (plate transformers) from the other site. In this ratse the filament voltages will rise slightly with the application of load, because of the reduced net current in the neatral. However, this procedure often unbalances the system too murh. resulting in considerable "blinkine" of the lights, and the load must be distributed equally across the 230 -volt circuit, This can be done by using plate transformers with 230 -volt primaries, by dividing the losd as equally ats possible across both 115 -volt circuits, or by using autotransfomers that step down the 230 volts to 115 volts and connecting the plate-transformer primaries across the antotransformer secondaries. Obviously balancing the load is the cheapest "out" and the fir"t one to try.

If the lights blink with keying or modulation of a low-powered transmitter that gets its power from a regular wath outlet, taking nome of the power from another outlet may lielp to improve the regulation and is always worth a try.

When a special heavy line is rum into the shack for a high-powered tramsmitter. it will generally be done by a licensed electrician who can advise you on the various types of outlets that are avalable. Some amateurs terminate their special lines in switeh boxes, while others end the line in an electric-stove receptacle. In case you do the work yourself, it is wise to find out if there are any special regulations in your area covering the type of wire, insubation and outlet which must be used. The power eompanies are always willing to alvise yon if it looks at though you will be using more power!

Interconnections

The wiring of any station will ottail two or three common rircuits. The cireuit for the receiver, monitoring equipment and the like, assuming it to be taken from a wall outlet, should be run from the wall to an inconspienous point on the operating table, where it terminates in a multiple outlet large enough to handle the recuired number of plugs. A single switch between the wall outlet and the receptacle will then turn on all of this equipment at one time, or the phug can simply be pulled out at the wall when leaving the shack,

The second common circuit in the station i : that supplying voltage to rectifier-and trans-mitter-tube filaments, has supplies, and any-
thing else that is not switeled on and off luring transmit athl receive periods. The coil power for control relays should also be obtaned from this circuit, 'The power for this circuit can come from a wall outlet or from the transmitter line, if a sperial one is used.

The third circuit is the one that fumishes power to the plate-supply transformers for the r.f. stages and for the modulator. When it is opened, the transmitter is disabled except for the filaments, and the tramsmitter should be safe to work on. However, one always feels safer when working on the transmitter if he has turned off every power supply pertaining to the transmitter.

With these three circuits established, it hecomes a simple matter to arrange the station for different conditions and with new units. Anything on the operating table (which roms all the time) ties into the first circuit. Any new power supply or r.f. unit gets its filament power from the second circuit. Since the third cironit is controlled by the send-reveive switch (or relay), any power-supply primary that is to be switched on and off for send and rereive connerts to cireuit No. 3.

Break-In and Push-To-Talk

In e.w. operation, "break-in" is athy system that allows the transmitting operator to hear the other fellow's signal during the "key-up" periods between characters and letters. 'This allows the semding station to be "broken" by the receiving station at any time, to shorten calls. ask for "fills" in messages, and speed up operation in general. With present terhniques, it requires the use of a separate receiving intenna and, with high power, some means for protecting the receiver from the transmitter when the key is "down." Several methods, applicable to high-power stations, are desuribed in ('lapter light. If the tansmitter is low-powerel 6.0 watts or so), no sperial

In this example of a compact high-power station, the opreating table folds up when not in use and covers the rereiver and freerh amplifier. Special furniture, like this hememade operating table, goes a long way toward solving the spare prohlem for many amateurs, (W.HAV, Fort 'lhomas, K y_{y})

This station goes all the way in concealment by housing the entire station in a special cabinet. When the cabinet is opened, the oprating table is formed and all pirere of gear are accessible. (1 6INX, Muuntain Vew, Calif.)
equipment is required except the separate receiving antema and a receiver that "recovers" fast. Where break-in operation is used, there shouk be a switch on the operating table to turn off the plate supplies when adjusting the oscillator to a new frequency, although during all break-in work this swit ch will be closed.
"Push-to-talk" is an expiession derived from the "push" switch on some microphones, and it means a 'phone station with a single control for all change-over functions. Strictly speaking, it should apply only to a station where this single send-receive switch must be held in place during transmission periods, but any fast-acting switch will give practically the same effect. A control switch with a center "off" position, and one "hold" and one "lock" position, will give more flexibility than a straight "push" switch. The one switch must control the antema change-over relay, the transmitter power supplies, and the receiver "on-off" circuit. This latter is necessary to disable the reariver during transmit periods, to avoid acoustic feed-back.

Switches and Relays

It is dangerous to use an overloaded switch in the power circuits. After it has been used for some time, it may fail, leaving the power on the circuit even after the switch is thrown to the "off" position. For this reason, large switches, or relays with adequate ratings, should be used to control the plate power. Relays are rated by coil voltages (for their control cincuits) and by their contact ratings (the current they will carry safely).

When relays are used, the semd-receive switch closes the cireuit to their coils, thus closing the relay contacts. The relay contacts are in the power circuit being controlled, and thus the switch handles only the relay-coil current.

SAFETY

Of prime importance in the layout of the station is the personal safoty of the operator and of visitors, invited or otherwise, during mormal operating practioce. If there are small chilaren in the house, abery step must be taken to prevent their andedental rontart with power feads of any voltage. A loce fine idea, if it is possible, wherwise housing the tramsmitter and power supplies in metal cabinets is an excellent, although expensive, solntion. Larking a metal cabinet, a wooden cabinet or a weoton framowork covored with wire sereen is the next-beste solution. Mang stations have the power suphlies housed in metal cabinets in the operating room or in a closet or basement, and this cabinet or entry is kept lowkel - with the key out af momblaf everyone but the operator. The power leads are rum through conduit to the transmitter, using ignition cable for the high-voltage leads. If the power supplies and transmitter are in the same cabinet, a lock-type main switch for the incoming line power is a grood precatution.

A simple substitute for a lock-type main switch is an ordinary line phog with a short comnecting wire between the two pins. By wiring a female receptacle in series with the main power line in the transmiter, the shorting plug will act as the main satety lock. When the plug is removed and hidden, it will be impossible to energize the transmitter, and a stranger or child isn't likely to spot or suspect the open receptacle.

An essential adjunct to any station is a shorting stick for discharging any high voltage to ground before any work or coil changing is done in the transmitter. Even if interlocks and power-supply bleeders are used, the failure of one or more of these components may leave the transmitter in a dangerous condition. The shorting stick is made by mounting a small metal hook, of wire or rod, on one end of a dry stick or bakelite rod. A piece of ignition cable or other well-insulated wire is then run from the hook on the stick to the chassis or common ground of the transmitter, and the stick is hung alongside the transmitter. Whenever the power is turned off in the transmitter to work on the rig, or to change coils, the shorting stick is first used to touch the several high-voltage leads (tank condenser, filter condenser, tube plate comnection, ete.) to insure that there is no high voltage at any of these points. Most commereial installations require the use of this simple device, and it has saved many a life. Use it!

Fusing

A minor hazard in the amateur station is the possibility of fire through the failure of a component. If the failure is complete and the component is large, the house fuses will generally blow. However, it is unwise and inconvenient to depend upon the house fuses to
protect the lines running to the radio equipment, and every power supply should have its own set of fuses, with the fuse ratings selected at about 150 or 200 per cent of the maximum rating of the supply. If, for example, a power transformer is rated at 600 watts, it would draw about 5 amperes from the a.c. line ($600 \div 115=5.2$), and a 10 -ampere fuse should be used in the primary circuit of the transformer. Circuit breakers can be used instead of fuses if desired.

Wiring

Control-oireuit wires running betwern the operating position and a transmitter in another part of the room should be hidden, if possible. This can be done by running the wires under the floor or behind the base molding, bringing the wires out to terminal boxes or regular wall fixtures. Such construction, however, is generally only possible in elaborate installations, and the average amateur must content himself with trying to make the wires as inconspicuous as possible. If several pairs of leads must be run from the operating table to the transmitter, as is generally the case, a single piece of rubber- or vinyl-covered inulticonductor cable will always look neater than several pieces of rubber-covered lamp cord.

The antenna wires always present a problem, unless coaxial-line feed is used. Open-wire line from the point of entry of the antenna line should always be arranged neatly, and it is generally best to support it at several points. Many operators prefer to mount their antennatuning assemblies right at the point of entry of the feedline, together with an antenna changeover relay (if one is used), and then the link from the tuning assembly to the transmitter can be made of inconspicuous coaxial line or Twin-Lead. If the transmitter is mounted near the point of entry of the antenna line, it sim-

There was enough romm at this station to build the transmitter into the wall, and to proteet it with glass doors. In an installation like this, it is convenient to have access to the rear of the transmitter units, for making connection to them and for testing. If the rear cannot be reached, all power leads shomld be cabled up along the side walls, at the rear. (W6NY, Whittier, Calif.)
plifies the problem of "What to do with the feeders?"

General

You can check your station arrangement by asking yourself the following questions. If all of your answers are an honest "Yes," your station will be one of which you can be proud.

1) Is your station safe, under normal operating conditions, both for the operator and the visitor?
2) Is the operating position comfortable. even after several hours of operating?
3) Do you throw not more than one swit ch to go from "receive" to "transmit"?
4) Does it take only a short time to explain to another amateur how to work your station?
5) Do you show your station to visiting amateurs or laymen without apologizing for its appearance?

The Amateur's Workshop

TOOLS AND MATERIALS

While an easier, and perhaps a better, job can be clone with a greater varioty of tooks available, by taking a little thought amol rare it is possible to turn out a fine piece of equipment with only a few of the common hathed tools. A list of tools which will be indispensable in the eonstruction of radio equipment will be found on this paige. With these tools it should be possible to parform any of the required operations in preparing

INDISPENSABLE TOOLS

 S.rewdriver. 1- to 5 -inwh, $1 / 8$-inch blade.

Sratroh abl ur suribur for marking lins.
(ombination subare, tiz-ineth, for lasing out work.
Hand drill, $1 / 4$-itull chack or larger, 2-sued tize preferable.
Elentric soldering iron, 100 watts.
Hack saw, 12-inch bades.
('ruter punch for marking hole centers,
Hammer, ball-peen, 1-Ih, head.
Itrave knife.
Yatustick or other straightedge.
('arpenter's brace with adjustable hole cutter or socket-hole punches (see text).
I.arive, coarse. flat file.

Large round or rat-tail file, $1 /$-imbh diameter.
Thare or four small and medium files-flat. roumd. half-round. triangular.
Drills, partipularly ${ }^{1}{ }_{1}$-inch and Nos, 18, 28. 33, 42 and 50 .
Combination wit stome for sharponing tocels.
Solder and soldering paste (noncorroding).
Medium-weight machine oil.

ADDITIONAL TOOLS

IReneh wisu, t-ineh jaws.
"Itin shears, 10 -inch, for entrint thin shant murat. Taper reamer, $1 / 2$-inch, for rinareine small holes. 'Taper reamer, l-ineh. for enlarging tholds. ((buntersink for brace.
('arnenter's plane, א- to 12 -inch, for wowlworkine. ("arpenter's saw, erossiut.
Motor-dri ven emery wheel for arinding.
Long-shank serewdriver with screw-holding elip, for tight plares.
Sot of "spintite" soeket wrenchus for hex nuts. Set of small, flat, open-end wrenches for hex nuts. Wood chisel, $1 / 2$-inch.
Cold chisel, $1 / 2$-ineh.
Wing dividers, 8 -inch, for scribing riretes
Sot of machine-screw taps and dies.
Folding rule, 6-foot.
Dusting brush.
pamels and metal chassis for assmbly and wirme. It is an rexedent idea for the amaterar whon does construetional work to add to his. supply of tools from time to time as finances permit.
several of the pieces of light woodworking machinery, often sold in hardware stores and mail-onder retail stores, are ideal for amateur radin work, espectially the drill press. grinding head, hand and cireular saws, and joiner. N1though not essential, they are desirable should you be in a pusition to acquire them.

Twist Drills

Twist rlrille are matde of either high-speed steed or carbon terel. The latter tyme is more common and will wisally be suphtied unless sperifie request is made for high-speed drills. "The carbon drill will suffice for most ordinary equipment construction work and costs less than the high-sped type.

While twist drills are available in a number of sizes those listed in boll-facod type in Table 1s-1 will be most commonle used in construetion of amatrur equipment. It is usabally desirable to purchase several of each of the commonly-used sizes rather thath a quantity of odd sizos, most of which will be used infrequently, if at all.

Care of Tools

The proper care of tools is not alone a matter of pride to a good workman. He also reatizes the energy which may be saved and the annoyane which maty be avoided be the posshision of a full kit of well-kept sharp-edged tomes.

Drills should be sharpened at frequent intervals so that grinding is kept at a minimum fach time. This makes it easior to manam the rather critical surface angles required for best cutting with least wear. Ocmaional oilstoning of the cutting edges of a drill or reamer will extend the time betwren grindings.

The soldering iron can be kept in good romblition by keeping the tip well tinned with solder and not allowing it to run at full voltage for long periods when it is not boing used. Sfter each period of use. the tip should be resmoved and eleaned of any srate which may have acoumulated. An oxidized tip may be
deaned by dipping it in sal ammoniac while hot and then wiping it clean with a rag. If the tip becomes pitted, it shombld be filed until smooth and bright, and then tinned by dipping it in solder.

Useful Materials

Small stocks of various miscellaneous materials will he required in constructing radio apparatus, most of which are available from hardware or radio-supply stores. A representative list follows:
$1 / 2 \times 1$, 1 -ineh brass strip for brackets, ete. (half-hatel for bemding).
1 -inch-square brass rod or $1 / 2 \times 1 / 2 \times 1 / 16$ inch angle brass for corner joints.
${ }^{1}$-inch diameter round brass rod for shaft extensions.
Marchine screws: Round-head and flat-head, with nuts to fit. Most useful sizes: 4-36. $6-32$ and $8-32$, in leugths from $1 / 4$ inch to $11 / 2$ inches. (Nickel-phated iron will be found satisfactory except in strong r.f. fields, where brass should be used.)
Bakelite and hard-rubber seraps.
Soldering lugs, panel bearings, rubber grommets, terminal-lug wiring strips, var-nished-cambric insulating tubing.

Machine screws, nuts, wastores, soldering lugs, ete, are most reasomathly purmased in quantities of a gross.

CHASSIS WORKING

With a few essential tools and proper proeedure, it will be found that building radio gear on a metal chassis is no more of a chore than building with wood, and a more satisfactory joh results.

The placing of components on the chassis is shown quite clearly in the photographs in this IIandbool. Aside from certain essential dimensions, which usually are given in the text, exact duplication is not necessary.

Much trouble and energy can be saved by spending sufficient time in phaning the job. When all details are worked ont heforehand the actual construction is greatly simplified.

Cover the top of the chassis with a pieee of wrapping paper or, preferably, cross-section

Fig. 18-1 - Method of measuring the heights of condenser shafts, ete. If the sronare is adjustable, the end of the seate should be see flush with the fare of the head.

Number	TABLE 18-I Numbered Drill Sizes		
	Diameter (mils)	Will Clear Screw	Drilled for Tapping Iron, Steel or Brass*
1	228.0	-	-
2	2:1,0	12-24	-
3	213.01	-	14-24
4	209,0	$12-20$	-
\therefore	205.0	--	
6	204.0		-.
7	201.11		
8	199.0	-	-
$!$	196.0	-	-
11	193.8	10-32	-
11	191.0	10)-24	-
12	18.0 .0		-
13	185.0	-	-
1.4	18:.0	-	-
1.7	180.10	-	-
15	175.0	-	12-24
17	173.0	-	-
18	169.5	8-32	-
19	166.0	-	12-20
21	161.0	-	-
21	159.0	-	10-32
$\because 2$	157.0	-	-
23	151.0	-	-
24	102.0	-	-
27	14!2.5	-	10-24
26	14.0	-	--
\because	14.11	-	- -
2 K	140.0	6-82	-
29	1380	-	$8-32$
311	129. ${ }^{\text {a }}$	-	
31	1211.11	-	--
:3:	1118.0	-	-
33	113.0	4-86, 4-40	-
31	111.0	-	
35	110.0	-	6-32
36	106. ${ }^{1}$	-	-
37	104.0	-	--
38	101.8	-	-
319	1499.5	3-48	
411	0198,0	-	-
+1	1116,0	-	
42	093.5	-	4-36, 4-40
43	Ux9,0	2-5ib	--
+4	(184, 0	-	-
$4{ }^{4}$	148: 0	-	3-48
46	081.0	-	--
47	1178.5	-	-
48	11765	-	-
49	1173.0	-	2-56
50	070.0	-	-
51	1)17. 0	-	-
52	063.5	-	--
53	059.5	-	-
5.4	055.0	-	-
*T'so unte size larger for tappiag hahelite and hard anbler.			

paper, folding the edges down over the sides of the chassis and fastening with adhesive tape. Then assemble the parts to be mounted on top of the chassis and move them about until a satisfactory arrangement has been found, keeping in mind any parts which are to be mounted underneath, so that interferences in mounting may be avoided. Place condensers and other parts with shafts extending through the panel first, and arrange them so that the controls will form the desired pattern on the panel. Be sure to line up the shafts squarely with the chassis front. Locate any partition shiplds and panel
brackets next, and then the tube sockets and any other parts, marking the mounting-hole centers of each accurately on the paper. Watch out for condensers whose shafts are off center and do not line up with the mounting holes. Do not forget to mark the centers of socket holes and holes for leads under i.f. transformers. et.c., as well as holes for wiring leads.

By means of the square, lines indicating aecurately the centers of shafts should be extended to the front of the chassis and marked on the panel at the chassis line, the panel being fastened on temporarily. The hole centers may then be punched in the chassis with the center punch. After drilling, the parts which require monnting underneath may be lorated and the mounting holes drilled, making sure by trial that no interferences exist with parts mounted on top. Mounting holes along the front edge

Fig. 18.2 - To cut rectangular holes in a chassis corner, holes may be filed out as shown in the shaded portion of B , making it possible to start the hack-saw blade along the cutting line. A shows how a singleended handle may be constrncted for a hack-saw blade.
of the chassis should be transferred to the panel, by once again fastening the panel to the chatsis and marking it from the rear.

Next, mount on the chassis the condensers and any other parts with shafts extending to the panel, and measure accurately the height of the center of each shaft above the chassis, as illustrated in Fig. 18-1. The horizontal displacement of shafts having already been marked on the chassis line on the panel, the vertical displacement can be measured from this line. The shaft centers may now be marked on the back of the panel, and the holes drilled. Holes for any other panel equipment coming above the chassis line may then be marked and drilled, and the remainder of the apparatus mounted.

Drilling and Cutting Holes

When drilling holes in metal with a hand drill it is important that the centers first be located with a center punch, so that the drill point will not "walk" away from the center when starting the hole. When the drill starts to
break through, special care must be used. Often it is an advantage to shift a two-speed drill to low gear at this point. Holes more than $1 / 4$ inch in diameter may be started with a smaller drill and reamed out with the larger drill.

The chuck on the nsual type of hand drill is limited to $1 / 4$-inch drills. Although it is rather tedious, the $1 / 4$-inch hole may be filed out to larger diameters with round files. Another method possible with limited tools is to drill a series of small holes with the hand drill along the inside of the diameter of the large hole, placing the holes as close together as possible. The center mas then be knocked out with a cold chisel and the edges smoothed up with a file. Thuer reamers which fit into the carpenter's brace will make the job easier. A large rattail file elamped in the brace makes a very good reamer for holes up to the diameter of the file, if the file is revolved countercloekwise.

For socket holes and other large round holes, an adjustable eutter designed for the purpose may be used in the brace. Occasional application of machine oil in the cutting groove will help. The cutter first should be tried out on a block of wood, to make sure that it is set for the correct diameter. Probably the most convenient device for cutting socket holes is the sorket-hole punch. The best type is that which works by turning a take-up serew with a wrench.

Rectangular Holes

Square or rectangnlar holes may be cut out by making a row of small holes as previously described, but is more easily done by drilling a $1 / 2$-inch hole inside each corner, as illustrated in Fig. 18-2, and using these holes for starting and turning the hack saw. The sockethole punch and the square punches which are now available also may be of considerable assistance in cutting out large rectangular openings. The burrs or rough edges which usually result after drilling or cutting holes may be removed with a file, or sometimes more conveniently with a sharp knife or chisel. It is a good idea to keep an old wood chisel sharpened and available for this purpose. A burr reamer will also be useful.

CONSTRUCTION NOTES

If a control shaft must be extended or insulated, a fle xible shaft coupling with adequate insulation should be used. Sittisfactory support for the shaft extension can be provided by means of a metal panel bearing made for the purpose. Never use panel bearings of the nonmetal type unless the condenser shaft is grounded. The meial bearing should be connected to the chassis with a wire or grounding strip. This prevents any possible danger of shock.

The use of fiber washers between ceramic insulation and metal brackets, screws or nuts will prevent the ceramie parts from breaking.

Cutting and Bending Sheet Metal

If a sheet of metal is too large to be cut conveniently with a hack saw, it, may be marked with scratches as deep as possible along the line of the cut on buth sides of the sheet and then clamped in a vise and worked back and forth until the sheet breaks at the line. Do not carry the bending too far until the break begins to weaken; otherwise the edge of the sheet may become bent. A pair of iron bars or pieces of heavy angle stock, as long or longer than the width of the sheet, to hold it in the vise will make the job easier. "C"-elamps may be used to keep the bars from spreading at the ends. The rough edges may be smoothed up with a file or by placing a large piece of emery cloth or sandpaper on a flat surface and running the cdge of the metal back and forth over the sheet.

Bends may be made similarly. The sheet should be scratched on both sides, but not so depply as to cause it to break.

Cutting Threads

Brass rod may be threaded, or the damaged threads of a screw repaired, by the use of dies. Holes of suitable size (see Table 18-I) may be threaded for screws by means of taps. Taps and dies are obtainable in all standard machinescrew sizes. A set usually consists of taps and dies for $4-36$ (or 4-40), 6-32, 8-32, 10-32 and 14-20 sizes, with a holder suitable for use with either tap or die. Machine oil applied to the tap usually makes cutting easier and sticking less troublesome.

Wiring

A popular type of wire for reecevers is that known as "push-back" wire. It eomes in sizes No. $16,18,20$, ete., which are sufficiently large for all power circuits execpt filament. The insulating covering, which is sufficient for circuits where voltages do not exceed 400 or 500 , can be pushed back a few inches at the end, making cutting of the insulation unnecessary when making a connection.

(A)

1.g. 18-3 - Method of preparing the end of coaxial able. In A the onter insulating covering has been removed. At B the metal braid has been cut back, and in © the remaining exposed braid has been wrapped with stall-size tinned wire. When completed, solder should be flowed over this winding.

Tramsmitter power wiring should be done with shichded wire, as diseussed under "Harmonic Reduction," Chtpter Six. Fig. 18-3 shows a common method of preparing the ends of shielded wire or rable. If the wire has an outer sheathing of insulation, this insulation should first be removed for a distance of about 2 inches, as shown at A. Then approximately the first inch of the shielding braid should he removed, as shown at $B, b y$ fraying the braid and cutting with diagonal cutters. At least a half inch of insulation should be left between the braid and the inner conductor. A solid eonnection can be made to the braid by winding a baver of No. 22 tinned wire over the braid, as shown at C, and then flowing soliler over the winding. Care should be taken to prevent damage to the interior insulation during the soldaring proress. Filament wiring should be

WRONG WAV
Fig. 18-1 - Right and wrong methouls of lacing cable. With the rimllt way the leading line is pinched under each turn and will not loosen if a break oweurs in the lacing.
done with sufficiently large conductors to carry the required eurrent without appreciable voltage drop (see Copper Wire Table, Chapter Twenty-Four), Rubber-covered house-wire sizes No. 14 to No. 10 are suitable for heavycurrent transmitting tubes, while No. 18 to No. 14 flexible wire is satisfactory for receivers and low-drain transmitting tubes where the total length of the leads is not excessive.
stiff bare wire, sometimes called bus wire or bus bar, is most favored for the high r.f. potential wiring of transmitters and, where practirable, in receivers. It comes in sizes No. 14 and No. 12 and is usually tin-dipped. Softdrawn antenna wire also may be used. Kinks or bends can be removed by stretching 10 or 15 feet of the wire and then cutting it into small usable lengths.

The insulation of power wiring carrying high transmitter voltages should be appropriate for the voltage. Wire with rubber and varnished eambric covering, similar to ignition cable, is available from radio parts dealers.

The power-supply wiring should be done first. The leads should be bunched together as much as possible and kept down close to the surface of the chassis. The lacing of power wiring in cable form not only improves its appearance but also strengthens the wiring. Fig. 18-4 shows the correct procedure for lacing wires.

Chassis holes for wires should be lined with rubber grommets which fit the hole, to prevent chafing of the insulation. In cases where powersupply leads have several branches, it is often convenient to use fiber terminal strips as anchorages. These strips also form handy mountings for wire-terminal resistors, etc.

High-voltage wiring should have exposed points kept at a minimum and those which cannot be avoided rendered as inaccessible as posibible to accidental contact.

Soldering

The secret of good soldering is in allowing time for the joint, as well as the solder, to attain sufficient temperature. Enough heat shouhd be applied so that the solder will melt when it eomes in contact with the wires being joined, without touching the solder to the iron.

Soldering paste, if of the noncorroding type, is extremely helpful when used correctly. In general, it should not be used for radio work except when necessary. The joint should first be warmed slightly and the soldering paste applied with a piece of wire. Only the bit of paste which melts from the warmith of the joint should be used. If the soldering iron is clean it will he possible with one hand to pick up a drop of solder on the tip of the iron which can be applied to the joint, while the other hand is used to hold the connecting wires together. The use of excessive soldering paste causes the paste to spread over the surface of adjacent insulation, catusing leakage or breakdown of the insulation. Except where absolutely necessary, solder should never be depended upon for the meehanical strength of the joint; the wire should be wrapped around the terminals or elamped with soldering terminals.

TABLE 18-IIStandard Component Values		
$\begin{gathered} 20 \mathrm{Or}_{\mathrm{c}} \\ \text { Tolorance } \end{gathered}$	$10^{\circ} \mathrm{c}$ Tolerance	51 Tolerance
10	10	10 11
	12	12
15	15	1.5
	18	18
22	22	-2
	27	27 30
3?	33	:33
	30	34 34
		43
47	47	47
	56	31
		(i)
(is	68	is
		5
	82	82
		91
100	100	100

COMPONENT VALUES

Values of composition resistors and smati condensers (mica and ceramic) are specified throughout this Ilandbook in terms of "preferred values." In the preferred-number system, all values represent (approximately) a constant-percentage increase over the next lower value. The base of the system is the number 10. Only two significant figures are used. Table 18 -ll shows the preforred values based on tolerance stops of 20,10 and 5 pror cont. All other values are expressed by mulio plying or dividing the base figures given in the table by the appropriate power of 10 . (For example, resistor values of 33,000 ohms, (isoo ohms, and 150 ohms are obtained by multiplying the base figures by 1000 , 100 , and 10 , respectively.)
"Tolerance" means that a variation of plus or minus the percentage given is considered satistactory. For example, the actual resistane of a " 4700 -ohm" 20 -per-cent resistor can lie anywhere between 3700 and 5 tiol ohms, approximately. The permissible variation in the same resisiance value with $\overline{5}$-per-cent tolerance would be in the ringe from $4 \overline{2} 00$ to 4900 ohms, approximately.

Only those values shown in the first column of Table $18-11$ are available in 20 -per-rout tolerance. Additional values, as shown in the second column, are available in 10 -per-cent tolerance; still more values can be obtained in 5 -per-cent tolerance.

In the eomponent sperifications in this IIamdbom, it is to be understood that when no tolerance is specified the largest tolerance available in that value will be satisfactory.

Values that do not fit into the preferrednumber system (such as $500,25,000$, ete.) casily can be substituted. It is obvious, for example, that a 5000 -ohm resistor falls well within the tolerance range of the 4700 -ohm 20-per-eent resist or used in the example above. It would not, however, be usable if the tolerance were specified as $\overline{5}$ per cent.

- COLOR CODES

standardized color codes are used to mark values on small components such the composition resistors and mica condensers, and to identify leads from transformers, atc. The resistor-condenser number eolor code is given in Table 1s-III.

Fixed Condensers

The methods of marking "postatge-stamp" mira condensers, molded paper condensers, and tubular coramie condensers are shown in Fig. 18-5, Condensers made to American War Standards or Joint Army-Navy specifications; are marked with the 6 -dot code shown at the top. Praetically all surplus condensers are in this category. The 3 -dot RMA code is used for condensers having a rating of 500 volts and

Fig. 18-5 - Color coding of fived mira, moldad paper and tubular ceramic condensers. The color wode for mic:a and molded paper condensers is given in Table 18-111 Table 18-1 gives the color code for tubalar ceramic condensers.
$\pm 20 \%$ tolerance only; other rating. and tolerances are covered by the 6-dot RAM code.

Examples: A condenser with a G-dot code has the following markings: Top row, left to right. blark, vellow, violet; botton row, right to left. brown, silver, red. Since the first color in the ton row is black (significant figure zero) this is the AWS code and the condenser has mica dielectric. The significant figures are 4 and 7 , the derima! multiplier 10 (brown, at right of second row). so the capacitance is $470 \mu \mu$ id. The tolerance is $\pm 10 \%$. The final color, the characteristic, theals with temperature coefficients and methols of testing, and may be ignored
A condenser with a 3 -dot corle has the following colors, left to right: brown, black, red. The significant figures are 1,0 (10) and the multiplier is 100 . The capacitance is therefore $1000 \mu \mu \mathrm{fd}$.
A rondenser with a b-dot code has the following markines: Top row, left to right, brown, hatek, batk; hottom row, right to left, Hatch,

Enhl, bhes. Sine the first color in the ton row is wither blabe tor silver, this is the R.M.A code. The siunifieant figures are 1,0,0(100) and the docimal multiplier is ! (black). The capmeitance is therefore $100 \mu \mu$ fid. The gold dot shows that the tolerance is ± 5 'if and the blue dot indicates 600-vola ratiog.

Ceramic Condensers

Conventional markings for ecramie comdensers are shown in the lower drawing of Fig. 18-5. The colors have the manings indicatel in Table 18-IN. In praction, dots may be used insteal of the narrow bands indicated in Fig. 18-5.

> Examuld: I mamic condenser has the following marhiows: Broad band, violdt: narmow bands or dots, green, brown, bawk, green. Tha significant figures are $\mathbf{3}$, 1 (51) and the deeimal maltiplior is 1 , so the capracitane is of $\mu \mu f 1$. The trang rature condficiont is - 7.50 parts ber million per degree C., as Liven by the broad band, and the capacitance tolerance is $\pm 5 \%$.

Fixed Composition Resistors

Componition resistors (including small wirewound units molded in cases identical with the composition type) are color-coded as shown in Pig. 18-6. Colored bathls are used on resistors having axial leats; on radial-lead resistors the colors are plated as shown in the drawing. Whon bands are used for color coding the body color has no signifieance.

Fixamules: I resister of the tisn shown in the lowar drawing of Pige 1801 has the followitger color lands: A. redi: R, rerd: C; orange: I), no
 derimal multiplier is lomo. The value of ressist anere is therefore 22.000 ohnens and the toleranee is $\pm 20^{\circ}{ }^{\circ}$.

A resistor of the twore shown in the upper drawing has the following colors: body- (A), bhe: end (3), gray; dot, red; end (J)), gold. The signifieant figures are 6, 8 (68) and the deejmal multiplier is $1(0)$, so the resistance is $68(0)$ ohms. The tolerance is $\pm 5^{\prime}$;

I.F. Transformers

Bhue - plate lead.
Red - " 13 " + lead.
(ireen - grid (wr dionde) hadd.
Black - grid (or diode) return.

fixed composition resistors

Fïy. 18-6 - Color coding of fixed compmeition remitors. Ther color code is given in Table 18-III. The collored arras have the following signifieance:
A - First significant figure of resistance in ohms.
IB - Second significant figure.
C - Decimal multiphier.
D - Me-istance tolerance in per cent. If no color is shown, the tolerance is $\pm 20 \%$.

Note: If the secondary of the i.f.t. is rentertapped, the second diode plate lead is green-and-black striped, and black is used for the eenter-tap lead.

A.F. Transformers

Blue - plate (finish) lead of primary
Red - "B" + lead (this applies whother the primary is plain or center-tapped).
Brown - plate (start) lead on center-tappord primaries. (Blue may be used for this leat if polarity is not important.
(ireen - grid (finish) lead to secondary.
Black - grid return (this applies whether the secondary is plain or center-tapped).
Yellow - grid (start) lead on center-tapped seeondaries. (Green may be used for this lead if polarity is not important.)
Note: These markings apply also to line-togrid and tube-to-line transformers.

Loudspeaker Voice Colls

Green - finish.
Black - start.

Loudspeaker Field Coils

Black and Red - start.
Yellow and Red - finish.
Slate and Red - tap (if anc!.
Power Transformers

1) Primary Leads Blacli If tapped:

Common Black
Tap........ Bluek and Yellow Striped Finish. Black and Rel Striped
2) High-Voltage Plate Winding. Red

Center-Tap. . Red and Yellow Stripen
3) Rectifier Filament Winding. Yellow Center-Tap. Yellow and Blue Striped
4) Filament Winding No. 1........Green

Center-Tap. . Green aml Yellow Stripel
5) Filament Winding No, 2.......... Brown Center-Tap. Brown and Yellow Striped
6) Filament Winding No. 3....... . . Slate Center-Tap. . Stute unl Yellow Striped

TABLE 18-IV Color Code for Ceramic Condensers					
			Capacitune	Tolerance	
Color	Significant Fiyure	Incimal Mulioplier	$\begin{aligned} & \text { Vore than } \\ & 10 \mu \mu \mathrm{fd} \text {. } \\ & (\text { in } \%) \end{aligned}$	Less than $10 \mu \mu \mathrm{fd}$. (in $\mu \mu f$.)	Trmp. Coeff. p,p,m./deg. C.
Black	11	1	± 0	2.0	0
Brown	1	10	± 1		-30
Red	\because	110	± 2		- 80
Orange	3	1000			-150
Yellow	4				- 220
Green	i		± 5	0.5	-330
Blue	6				-470
Violet	7				-750
Gray	8	001		113	30
White	9	0.1	± 10	1.0	500

Eliminating Broadcast Interference

It is your duty as an amat eur to make sure that the operation of your station does not interfere with broadeasting or other radio serviees because of any shorteomings in your equipment. Failure to observe this rule may lead to curtailed operating privileges - a situation that is easily avoidable if you build and adjust your transmitter according to good practice.

However, there is a larger obligation - to diminate broadcast interference to the greatcst possible extent even when your own transmitter is not at fault. The institution of amateur radio cannot continue to flourish in the face of ill feeling on the part of a large segment of the general public - ill feeling that is only too readily generated if the public's favorite radio programs are broken up by amatcur transmissions. It is no exaggeration to say that the future of amateur radio depends in large part on the efforts you exert now to make it possible for your neighbors to continue to anjoy their radio reception while you pursue vour transmitting activities. It is unfortunately true that most interference to broadrasting is directly the fault of present-day broadeast-receiver const ruction. Nevertheless, the amateur can and should help to alleviate interference even though the responsibility for it does not lie with him.

The regulation of the Federal Communieations Commission covering interference to broadcasting is quoted bolow:
812.152 . Restricted operation. (a) If the operation of an amateur station causes general interference to the repention of transmissions from stations operating in the domestic broadeast service when receivers of good engineering design including adequate selectivity characteristics are used to receive such transmissions and this fact is made known to the amateur station licensee, the amateur station shall not he operated during the hours from 8 o'clock P,M. to 10:30 P.m., local time, and on Sunday for the additional period from 10:30 A.M. until 1 P.m. local time, upon the frepuency or frepuencies used when the interference is created. (b) In weneral, such steps :ts may be necessary to minimize interfarence to stations operating in other services may be reguired after investigation by the Commission.
FCC recognizes the fact that much of the interferenee that occurs is because receivers are not capable of rejecting signals far outside the frequency band to which the receiver is tuned. That is why the phrases "general interference" and "receivers of good engineering design including adequate selectivity characteristics" are used in Section 12.152. "(Quiet hours" are not imposed unless it is shown that the interference is actually the fault of the transmitter.

Gher you have determined that four transmitter is free from parasitic oseillations, spurious radiations, key clicks and molulation splatter, you can tackle the 13 Cl problem with a clear conscience and the firm conviction that the answer is to be found in the b.c. receiver. Be sure your transmitter is elean first. From then on you have a twofold job: convincing the owner of the receiver that his set is at fault (not always the casiest thing in the world, especially if the receiver is fairly new), and finding out just why the interference ocrurs. The first is almost wholly a matter of using the right approach; you may need all the tact at your command to convince him that you know what you're talking about and are sincorely trving to help. II is natural tendeney, ats one with no teehnical knowledge of ratio at all, will be to blame you because you're coming in on the broadeast band where you obviously don't belong. You may have to overcome the suspicion that everything you say about his receiver is just so much camoutlage to cover up something wrong with your transmitter.

In brief, to be successful in climinating IBC'I fou have got to win the list ener's couperation.

GETTING LISTENER COOPERATION

The battle is 75 per cent won when you've carned the listener's confidence in your technical ability and your sincerity in wanting to clear up interference. Here are a few pointers on how to go about it.

Clean House First

We've said above that the first obligation of every amateur is to clean up his transmitterso it has no radiations outside the bands assigned for amateur use. Even then, you'll probably find that you have a BCI problem in your own house.

So clean up your household BCI first! It is always convincing if you ean say - and demonstrate - that you do not interfere with broadcast reception in your own home.

Don't Hide Your Identity

If a listener thinks that you are "trying to get away with something' he will not only be unwilling to coüperate, but may be actively hostile. As a general rule, whenever you change location, or mode of transmission, or increase power, or put up a new antenna, cherk with your neighbors to make sure that they are not

experiencing intertarence, Announce your presrnee and conduct oceasional tests on the air, requesting angone whose reception is being spoiled to let you know about it so that you may take steps to climinate the trouble.

Act Promptly

Do something to show the listener that you are concermed for his welfare as soon as at (eomplaint is received. The aberage person will tolrate a limited amount of interferenere, but no one can be expected to put up with frequent and extended interruption of his listening pleasure. The sooner sou take steps to diminate the interference, the more agreable the listener will be; the longer he has to wait for you, the less willing he will be to comperate.

Present Your Story Tactfully

Put yourself in the listener's plare. He has a right, he believes, to interferenee-free reception of the broadeast programs he likes. When you interfere, his natural reaction is to assume that you are the one at lault. When you call on him, explain that you do not operate on the frequencies to which he wants to listen, and the real trouble is that you and he happen to the lorated so fose to each other. Explain to him that there are thousands of stations operating simultaneously, all the time, and that the problem of rejeeting all but the one he happens to want to hear is one of receiver design. Point out that the average broadeast receiver is made to sell as cheaply as possible, and that features that would prevent interference from near-by stations are left out.

It should be explained to the listener that if it is simply the presence of your strong signal on his receiving antenna that causes the difficulty, the situation can be cleared up by a wavetrap. In other cases the wiring of the receiver itself is pieking up your signal, and such cases can be cured only by suppressing this unwanted pick-up in the receiver itself; in other words, some modifications will have to be made in the receiver if he is to expect inter-ference-free reception.

Arrange for Tests

Most listeners are not very competent observers of the various aspects of interference.

If at all possible, enlist the help of another amateur and have him operate your transmitter while you see what happens at the affeeted broadeast set. You can then determine for yourself where the trouble is most likely to be.

It is a good idea to take along a wavetrap when you arrange such a test. If the receiver is one having an external antenna, it may be possible to cure the int erference then and there.

Avoid Working on the Receiver

If your tests show that the fault has to be remedied in the receiver itself, do not offer to work on the reteiver. It is not your fault that the reeciver design is defective. Recommend that the work be done by a reliable serviceman, and offor to advise the latter as to the cause and cure if necessary.

It is inadvisable to tackle broadeast receivers, particularly the midget varieties, unless you have had experience working on them. In any evont, if you do work on the receiver yourself the chances are that if anything goc: wrong later on you'll be blamed for it. Explain that, while you may be technically eompetent to make the necessary modifications, radio servicing is best left to those who sperialize in it, and that you are sure he, the owner, will prefer to have the work done by someone whom he can hold responsible.

If the owner of the receiver obviously prefers to have you make the modifications, do so only with the understanding that it is purely as a favor and because you are anxious to cooperate. Make him understand, with as much tact as possible, that the responsibility for the interference does not lie with you (your transmitter having previously been checked and found $O K$); if the recoiver responds to fre-

quencies to which it is not tuned that is a defect in its design. You also have no obligation to pay for having the receriver modified. If you do the work yourself you should not make any charge, of course. In that event, insist that you must take the receiver to your own shop in order to work on it properly; you will be able to tell immediately whether the changes you make effect an improvement and therefore can work more rapidly and conven-iently-and without turning the owner's
living room into a repair shop. If it is necessary. to do some work in the listener's home, be neat in the work you do. Remember, the listener's living room cannot be treated in the same manner you would treat your own ham shack!

In General

In this "public relations" phase of the problem a great deal depends on your own attitude. Most people will be willing to meet you half way, particularly when the interference is not of long standing, if you as a person make a good impression. Your personal appearance is important. So is what you say about the reeriver. A display of lofty technical superiority. is more likely to generate resent ment than cooperation. Above all, don't make remarks on the air about "bum broadeast receivers" and "cheap midgets." No one takes kindly to hearing his possessions publicly derided. If you discuss your BCI problems on the air, do it in a constructive way - one calculated to increase listener cooperation, not destroy it.

RADIO-CLUB BCI COMMITTEES

Organized amateur radio clubs can do a lot to pave the way toward coüperation hetween
individual amateurs and the broadcast listenars. Most clubs naintain interference eommittees charged with handling both the public rolations and the technical asperts of $B(1)$. Through such committees, technical assist ance is made available to all members of the elub) so that those less quatified ean have the benefit of the experienere of others. The committen should also maintain eontact with the tocal radio servicemen, supplying them with information and technical assistanere whenevor possible. The committere can maint ain valuable contacts with the local newspapers, broadeast stations and other authorities to provide the right kind of publicity for the efforts of individuals or groups who are trying to clear up) BC'I prohloms

League Aids

The Commmications Department of ARRRL, as one of its services to affiliated clubs, has prepared material suggesting various ways in which looal clubs can form interference committeres, and methods by which such groups can function efficiently for the good of all concerned. This material is available to affiliated clubs on request, addressed to ARRL headquarters.

Causes and Cure of BCI

There are no magic cures for all cases of interference to standard AM broadcasting. The great number of different types of broadeast receivers makes it necessary to tailor the remedy to the specific set. However, interference does usually fall into one or more rather welldefined eategories, A knowledge of the gemeral types of interference and the methods required to climinate it will lead to a rapid appratsal of the situation and will avoid much cut-andtry in finding a cure.

Transmitter Defects

Out-of-band radiation is something that must be cured at the transmitter. Parasitic oscillations are a frequently unsuspected source of such radiations, and no transmitter can be considered satisfactory until it has been thoroughly checked for both low- and highfrequeney parasitics. Very often parasities show up only as transients, causing key clicks in c.w. transmitters and "splashes" or "burps" on modulation peaks in AM transmitters. Methods for detecting and eliminating parasitics are discussed in Chapter Six.

In c.w. transmitters the sharp make and break that oceurs with unfiltered keying causes transients that, in theory, contain frequency components through the entire radio spectrum. Practically, these transients do not have very much amplitude at frequencies very far away from the transmitting frequency. Nevertheless they are often strong enough in the immediate vicinity of the transmitter to cause serious
interference to broadeast reception. Key elicks can be eliminated by the methods detailed in Chapter Eight.

A distinction must be made between clicks generated in the transmitter itself and those set up by the mere opening and closing of the key contacts when current is flowing. The latter are of the same nature as the clicks heard in a receiver when a wall swit ch is thrown to t urn a light on or off, and may be more troublesome nearhy than the clicks that actually go out on the signal, A filter for eliminating them usually has to be installed as close as possible to the key contacts.

Overmodulation in AM phone transmitters generates transients simitar to key clicks. It ean be prevented either by using automatic sy:stems for limiting the modulation to 100 per rent, or by continuousty monitoring the modulation. Methods for both are deseribed in Chapter Nine. In this connection, the term "overmodulation" means any type of nonlinear modulation that results from overloading or inadequate design. This can occur even though the actual modulation percentage is less than 100 .
BCl is frequently made worse by radiation from the transmitter, power wiring, or the r.f. transmission line. This is because the signal causing the interference, in such cases, is radiated from wiring that is nearer the broadcast receiver than the antenna itself. In such cases much depends on the method used to couple the transmitter to the antenna, a subject that
is discussed in Chapter Ton. If it is at all possible, too, the antematiself should be placed so that it is not in close proximity to house wiring, telephone and power lines, and similat conductors.

Image and Oscillator-Harmonic Responses

Relatively few superhet broadeast receivers have any r.f. amplification prefeding the mixer, so that the selectivity at the signal frequency is not esperially high (the i.f. amplifier provides most of the working selectivity). The result is that strong signals from near-by transmitters, even though the tramsmitting frequency is far removed from the broadeast band, can force themselves to the miver grid. They will normally be eliminated by the i.f. selectivity, except in cases whore the transmitter freguency is the image of the broadeast signal to which the receiver is tuned, or when the transmitter frequency is so related to a harmonic of the broadeast receiver's local oscillator as to produce a beat at the intermediate frequence.

These image and oscillator-harmonic responses tune in and out on the broadcast rereiver dial just like a broadrast signal, except that in the case of harmonic response the tuning rate is more rapid. Since most receivers use an intermediate frequency in the neighborhood of $450 \mathrm{kr} \cdot$, the interference is a true image only when the amateur transmitting frequency is in the $1750-\mathrm{ke}$. band. Oscillator-harmonie responses occur from 3.5- and 7-Mc. transmissions, and sometimes even from higher frequencies.

Regardless of whether the interference is raused by either an image or by harmonie response, the problem is to reduce the amplitude of the amateur signal in the front end of the b.c. receiver. If the reciver uses an external antenna a wavetrap at the receiver antenna terminals may help. It may also be helpful to reduce the length of the receiving antenna - and particularly to avoid a length that might be near resonance at the transmitter frequency - or to change its direction with respect to the transmitting antenna. If the signal is being picked up by the antenna it will disappear when the antenna is disconnerted. If it is still present under these eircumstances the pirk-up is in the set wiring or the power rircuits. A line filter may be tried for the latter, lick-up on the set wiring can only be cured b. installing some shielding around the r.f. cirruits. Copper window screening cut and fitted to size will usually do the trick.

Since images and harmonic responses occur at, definite frequencies on the receiver dial, it is always possible to choose an operating frequency that will not give such a response on top of the broadcast stations that are favored in the vicinity. While your signal may still be heard when the receiver is tuned off the local stations, it will at least not interfere with program reception.

Cross-Talk

With some of the older rereivers, particularly of the nonsuperheterodyen type, interference occurs only when the recoiver is tuned to a strong broadeast signal and disappears between stations. This is cross-modulation. a result of rectification in one of the carly stages of the receiver. It is not so likely to occur in more modern sets using a remote-cut-off tube in the antenna stage.

One remedy is to install remote-cut-off tuber in the rif. stages and put in an a.v.c. cireuit. However, this is a major operation and frequently is not practieable. The remaining thing is to reduce the strengt of the amateur signal at the grid of the first tube in the receiver. Wavetraps, a smaller antenna, and a different ant ema position should be tried. Additional shiclding about the r.f. circuits also will sometimes effect an improvement.

Blanketing

"Blanketing" is a form of interference that partially or completely masks reception, no matter where the broalcast rereiver is tumed. Fach time the carrier is thrown on, whether by kesing or for modulation, the program disappears or is greatly reduced in amplitude. Amplitude modulation in such a case is usuatly dist orted rather severely:

When the transmitter is operated on the lower frequencies this type of interference occurs only when the receiver and transmitter are very close together. It is the result of simple overloading of the receiver by the very strong field in the vicinity of the transmitting antenna. It occurs principally on receivers using external antennas (as contrasted with a built-in loop), and can be reduced by the steps recommended above; i.c., using a short receiving antenna, repositioning the antenna with respeet to the transmitting ant enna so the pick-up is reluced, or using wavetraps and line filters.

When the transmitter is operated on 28 Mr. or v.h.f. "blanketing" occurs rather rarely, and then only when the transmitting and recriving installations are located exceptionally elowe together.

Audio-Circuit Rectification

The most frequent cause of interference from operation at the higher frequencies is from rectification of a signal that by one means or another gets into the audio syistem of the roceiver. In the milder cases an amplitudemodulated signal will be heard with reasonably good quality, but is not tunable - that is, it is present no matter what the frequency to which the receiver dial is set. An unmodulated carrier may have no observable effect in surh cases beyond causing a little hum. However, if the signal is very strong there will be a reduetion of the audio out put level of the receiver whenever the carrier is thrown on. This causes an annoying "jumping" of the program when
the interfering signal is keyed. With 'phone transmission the change in audio level is not so objectionable berause it occurs at less frequent intervals. Also, ordinary rectification gives no audio out put from a frequency-modulated signal, so the interference can be made almost completely unnoticeable if FM or PM is used instead of AM.

Interference of this trpe is most prevalent in a.c.-d.c. receivers. The pick-up may occur in the audio-cirenit wiring or the interfering signal may get into the audio eircuits by way of the line cord. Power-line piek-up can be troated by means of line filters, but pick-up in the receiver wiring requires individual attention. Remedies that have been found successful are described in the sections following.

- CHECKING AND CURING BCI

When a case of broadcast interference comes to your attention, set a definite time to conduct tests and thon prepare to do the job as expeditiously as possible. Provide yourself with one or t wo wavetraps and line filters, since they can be tried immediately without getting into the receiver. As suggest ed before, get another amat eur to operate your transmitter while you do the actual observing and testing at the listener's receiver. The procedure out lined below will save time in getting at the source of the trouble and in sat isfactorily eliminating it.

1) Determine whether the interference is tunable or not. This will usually indicate the methods required for climination of the trouble, as it will show which of the general types of interference discussed above is present. In suvere cases it is possible that t wo or more types will be present at the same time, and st eps will be neessary to eliminate each type.
2) If the sot has an external antenna, disconnect it and turn the volume control up full, If the interference is no longer present, it is: morely necessary to prevent the r.f. appearing on the antenna from entering the set. If wavetraps reduce the amplitude of the interfering signal but do not eliminate it entirely, try a short piece of wire as a receiving antenna. Alternatively, the antenna may be relocated. It should be placed as far as possible from the transmitting antema, and should run at right angles to it to minimize coupling.

If the interference persists after the antennat is disconnected, the search is narrowed to an investigation of whether the signal is coming in on the power lines, or is being picked up directly on the receiver wiring.
3) Check for power-line interference by using a sensitive wavemeter such as that discribed in Chapter Sixteen of this Mandlook to probe along the a.c. cord that connects the set to the power source. Checks should be made at the transmitter frequency, and also at harmonic frequencies. If r.f. is detected in the line. by-pass both sides of the a.c. line to ground with $0,00 \mathrm{a}-\mu \mathrm{fd}$. mica condensers at the
point where the line cord enters the set. (A simple plug-and-socket adapter can be made up for this purpose before visiting the listener.) If this does not completely eliminate the interterence, try a line filter designed for the operating frequency.
4) If it is evident that the interference is being picked up on the receiver wiring, explain the situation to the owner and tell him that the exact cause cannot be determined without removing the chassis from the cabinet, and that, in any event, the receiver will have to be modified somewhat if the interference is to be climinated. As suggested before, reconmend that the actual work be done by a radio serviceman. Offer to check into the cause yourself, if he wishes and will allow you to take the set to your shop (with the understanding that you will not make any changes in the receiver Without his express permission) so the serviceman can be told what needs to be done.
5) In the event that the owner allows you to take the receiver, set it up near your transmitter and check to see if the amplitude of the interfering signal is changed hy various setting: of the receiver volume control. If the volume of the interference changes with changes in the volume control, the r.f. is entering the set ahead of the volume control. If it is unaffected by the volume eontrol, it is getting into the audio stages at a point following the volume control.
6) Pin the source down, if it is ahead of the volume control, by removing one tube at a time until one is found that kills the interference when it is removed. In sets using seriesconnected filaments, this will be possible only if a tube of equal heater rating, and with all but the heater pins clipped off, is substituted for the tubs.

(A)

(B)

Fip. 19.1-Fwo methods of eliminating r.l. from the grid of a combined detector/firsi-andio stake, At A, the value of the grid leak is redueed to 2 or 3 megohmes, and a mica by-pase condenser is adderl. At B, both grid amil cathode are by-pasised.
7) Determine which element (or elements) of the tube is picking up the interference by touching each tube pin with a test lead about three fret long. The lead, acting as an antenna, will cause the interference to increase when it is placed on a tube pin that is contributing to the interference. Once the sensitive points have been determined, the trouble can be eliminated hy shielding the leads conneeted to the tube element that is affered, and by shielding
the tube itself. Grid heads are the principal offenders, especially the long leads that run from a tube cap to a tuning condenser, and it may be neeessary to shield several "parts of the set before the interferener is eliminated.
8) If the pick-up is found to be in the audio system - as is the case in many sets, especially when the transmitter is operating at 28 Me . or higher - it can be eliminated by one or another of the methods shown in Figs. 19-1 and 19-2. Fig. 19-1A is a method that has proved sucressful with many a.c.-d.r. recoivers. The value of the grid leak in the combined detertor/first-audio tube (usually a $12 \mathrm{~s}\left(\mathrm{c}^{7}\right.$ or its equivalent) is reduced to 2 or 3 megohms. The grid is then by-passed for r.f. with a $\mathbf{2 . 5 0}$ $\mu \mu \mathrm{fd}$. mica condenser. Fig. 19-113 is a similar method. A third method that has worked in

fin, 19.2 - lising a 7.0 , worohin resistor to form a low-pasa liler with the tube rapacitanere 'The resistor indust be monnted at the tulie pin, between the grid and all other grid connertions,
are-d.e. receivers requires only that the heater of the detector/first-adudio stage be by-passed to ground with a $0.001-\mu \mathrm{fl}$. condenser. The method shown in Fig. 19-2 uses a 75,000 -ohm $1 / 2$-wat resistor to form, with the tube capacitance, a low-pass filter. The resistor is connected between the grid pin of the audio stage and all other wires commected to the grid. In all cases, both sides of the a.e. line should be by-passed to chassis with $0.001-$ to $0.01-\mu \mathrm{fd}$. rondensers.

Wavetraps and A.C. Line Filters

I wavetrap consists of a parallel-tuned cirruit that is connected in series with the broadrast antenna and the antenna post of the re-

Fir. 19.3-- A simple wavetrap cirenit, L and C most resonate at the frequeney of the interfering signal. suitable eronstants are tabulated below.

Band	C	1.		
3.5	$110 \mu \mu \mathrm{fd}$.	$16 \mu \mathrm{~h} ., 32$ turns	222. I', diam.,	I', long
7	$1100 \mu \mu \mathrm{fd}$.	619	"22, ${ }^{\prime \prime}$ '	$\mathrm{I}^{\prime \prime}$
11	$50 \mu \mu \mathrm{fd}$.	3.514	\#18, I"	1",
21	3.5 $\mu \mu \mathrm{fl}$.	2.212	(18, ${ }^{\prime \prime \prime}$	I'"
28	25 $\mu \mu \mathrm{frd}$,	1.54	\#18. I"	I"

reiver. It should be designed to resonate at the frequency of the interfering signal. The circuit of a simple trap is shown in Fig. 19-3. If interference results from operation in more that one amateur hand several traps may be eonmerted

Fip. 14.1 - $1 . c$. line filter for receivers. 'The valnes. of Ci, C.2 and Core not generally critical; capacitanees from 0.001 to $0.01 \mu \mathrm{fd}$, can be nsed. L_{1} and L_{2} can be a 2 -inch winding of Vos. 18 enameled wire on a ladf-ineh diameter form,
in series, cach tuned to the center of one of the bands in which operation is eontemplated. To adjust the wavetrap, have another lierosed amateur operate the transmitter while you tume the trap for maximum attemation of the

Fig. 140.5 - Resonant filter for the a.e. line, I single condenser tunes hoth L_{1} and L_{2}, which arc unity. coupled, one wound on top of the other. Constants for amateur bands are tabulated below.

Hand	\%	$L_{1} \cdot 1.2$
3.5	$\begin{gathered} 110+1.50 \\ (\text { fixed }) \end{gathered}$	2.5 i. Vo. 18. $11 / 4^{\prime \prime}$ dia. $\times 28 / 8^{\prime \prime}$ long
7	1 tor ${ }^{\text {midd. }}$	184. No.18, $11 / 4^{\prime \prime}$ dia. $\times 2$ /8"long
11	JoO $\mu \mu \mathrm{fid}$.	12 t. No. 18. $11 / 4{ }^{\prime \prime}$ dia. $\times 23 / 8^{\prime \prime} \mathrm{long}$
21	50 $\quad 10 \mathrm{fd}$.	111. Vo. 18, $11 / 4^{\prime \prime}$ dia. $\times 23 / 8^{\prime \prime}$ long
10	$25.5 \mu \mathrm{fd}$.	41. No. 18, ${ }^{1} 2^{\prime \prime}$ dia. $\times 23,{ }^{\prime \prime}{ }^{\prime \prime}$ long

D.e.c. wire is recommented for all iovils.
interference. The trap should be connected to the broadrast receiver and the normal rereiving antenna should be connerted in series with the trap, as shown in the figure.

A common form of a.c. line filter is shown in Fig. 19-4. This type of filter will usually do some good if the signal is being picked up on the house wiring and transierred to the set by way of the line cord. The values used for the coils and condensers are in general not critical. The effertiveness of the filter will depend eonsiderably on the ground connection used, and it may be necessary to try grounding to se veral different possible ground connections to secure the best results. A filter of this type will usually not be very helpful if the signal is being pieked up on the line cord itself, which may be the case when the transmitter is on v.h.f. In such
a case it should be installed inside the receiver chassis and grounded to the chassis at the point where the line cord enters.

The tuned filter shown in Fig. 19-5 is often more effective than the untuned type when only one frequener needs to be eliminated. After installation, the condenser is simply ad-
justed to reduce the interference to the greatest possible extent.

It is advisable to mount either type of filter in a small shielding box, both to prevent piek-tup in the filter itself and to make it less conspicuous: when it has to be installed in a listencr's home.

Interference with Television

Interference with reception of television signals presents a more diflicult problem than interferenee with ordinary L II broadeasting. In the lattor case it is comparatively easy to clean uf a transmiter sot that it will have no spurious radiations in the broadeast band. Cloaring up interference diffeculties then becomes a matter of overeoming deficiencies in the selectivity of the broadeast receiver.

In the ease of television reception similar receiver deficienefes exist, and must be treated by methods similar to those ased for lowfrequeney broadeasting. How(ever, a more serious situation for the amaterur arises beeduse harmonies of his transmitting frequency fall in many of the television ehammels. The relationship between television chamels and harmonies of amateur bands from $1+$ through 2s Me. is shown in Fig. 1!-6. Harmonies of the 7 and 3.j-Me. bands are not shown because they fall in every tolevision chanmel. Atso, the harmonies above 54 Me . from these bands are of such high order that they are ustally rather low in amplitude. They are not, however, too weak to interfere if the television receiver is quite close to the amateur transmitter.

Low-orter harmonies - up to about the fourth or fifth - are usually the most difficult to eliminate. The degree of harmonic suppression required is very great, particularly when the television reereiver is nearby and the signals from television stations are weak. Effertive harmonic suppression has three separate phases:

1) Reducing the amplitude of harmonies generated in the transmitter. This is a matter of rireuit design and operating conditions.
2) Preventing stray radiation from the transmitter and from associated wiring. This requires adequate shielding and filtering of all circuits and leads from which radiation can takeplace.
3) Preventing harmonics from bring fet into the ant ennal.

Methods for reduring the amplitude of generated harmonies and for preventing stray radiation are detailed in Chapter Six. Chapter Tengives information on preventing harmonies from reaching the transmitting antemas.

Checking Procedure

Intarforenee with television may be catused (ither by the fundamental output of the transmitter (overtoading) or by harmonios that fall in the TV rhannel. Exeept possibly in the rase of transmittors working at 3.5 and 1.75 Mr., it is safe to assume that harmonies are at least partly responsible. Recciver overloading beratuse of the strong fundamental radiation
antenna will have little effect if the principal radiation is coming from the transmitter itself, and vice versa. Before any corrective measures are tried, therefore, the antenna should be disconnected from the transmitter and replaced by a suitable dummy antenna. If the interference is still present, the transmitter itself must be made radiation-free by the methods outlined in (Chapter Six. It is not worth whike to do any further testing with the regular transmitting antema until the set radiation is antirely climinated. But one the transmitter can bid operated into a dummy antemar without catusing interference, it is then certain that harmonic interference caused when the regular antenna is connected will respond to treatment by the methods given in Chapter Ten.

Testing with a dummy antemna also practically eliminates fundamental interferenoe, excopt possibly when the transmitter and TV receiver are within a fow feet of each other. If, on reconnecting the antenna after the set radiation is eliminated, there is still interference on channels not in harmonic relation to the transmitting frequency, the moasures described in the next section should be applied to the TV receiver before proceeding further with harmonic reduction at the transmitter.

RECEIVER DEFICIENCIES

Spurious responses berause of reveiver inadequacies are particularly likely to occur when the receiver and transmitter are quite close. They usually result from the fact that the strong fundamental-frequency signal from the transmitter overloads some circuit in the receiver.

Many television receivers have "front ends" that are inherently unselective and not well balanced - that is, they will give strong response to parallel currents on the receiving transmission line, Usually, the transmission line picks up a great deal more energy from a near-by transmitter than the television receiving antenna itself, causing parallel currents that should be, but are not, rejected by the receiver's input circuit. A strong signal that overloads the first or second stages in the receiver will cause the receiver itself to genrrate harmonies that fall in the television chathnols. This situation can be improved by using shielded transmission line - coax or, in the balanced form, "twinax" - on the receiving installation. For best results the line should terminate in a coas fitting on the receiver chassis, but if this is not possible the shield should be grounded to the chassis right at the antenna terminals.

The use of shielded transmission line also will be helpful in reducing response to harmonics actually being radiated from the transmitter or transmitting antenna. In most receiving installations the transmission line is very murh longer than the antenna itself, and is consequently far more exposed to the harmonic
fields from the transmitter. Much of the harmonie pick-up, therefore, is on the receiving transmission line when the transmitter and receiver are quite close together. Shielded line. plus relocation of either the transmitting or recriving antenna to take advantage of dircetive effects, often will result in reducing the harmonic pick-up to a level that does not interfere with reception.

Many television rereivers do not have emongh isolation between the antenna athal int ermediate-frequeney circuits. As a result. signals that fall in or near the intermediat (frequency passband (roughly 22 to 27 Mc . in most current receivers) will catuse interference either to the picture or to the sound. If the receiver and transmitter are very close a complete cure may not be possible without shielding the receiver's i.f. circuits. I.f. interference is particularly likely from the 21-Mc. band when the receiver hats its sound i.f. chamel rentered at or near 21.25 Me. Realigning the receiver to a somewhat higher frequency (sound channel at 21.9 Me.) ustally will eure this type of interfermere.

Fig, 19.7 - Iligh-pass filters for installation at the 'I' receiver antenna terminals. A - balaned filter for 300 -ohm line, B - for 75 -ohm coaxial line. Important: Do not use a direct ground on an a.c.ad.c. chassis. (iround through a $0.001-\mu \mathrm{fd}$, mica condenser.

If the fundamental signal is getting into the reweiver by way of the line cord a line filter such as that shown in Fig. 19-4 will help. To be most effertive it should be installed inside the receiver chassis at the point where the cord enters, making the ground connertions dirertly to chassis at this point. It may not be so helpful if placed between the line plug and the wall sorket unless the r.f. is actually picked up on the house wiring rather than on the line cord itself.

In cases where the fundamental r.f. is known to be reaching the receiver through the antenna and transmission line, it can be prevented from doing much harm by installing a high-pass tilter at the receiver's antemma terminals. ('irruits that have proved effertive are shown in Figs. 19-7 and 19-8, Fig, 19-8 has one more

Fig. 19-8 - Another type of high-pas- filtur for 300 -ohm line, "The eoils may ter wound on ${ }^{1}$ - -inch diameter plastic huitting modedles. Importunt: Do not use a direct groumd
 mica condenser.
section than the filters of Fig. 19-7 and as a "onsequence has some what better cut-off characteristics. All the rireuits given are designed to have little or wo effert on the TV signals but will attenuate all signals lower in frequencs than about 40 Mr . These filters preferably should be constructed in some sort of shiedding container, although shielding is not always necessary. The dashed lines in Fig, 19-8 show how individual filter coils can be shielded from each other. The condensers can be ceramic units centered in holes in the partitions that separate the coils.

High-pass filters designed for this purpose are available commercially at moderate prices. In this connertion, it should be understood by all parties concerned that while an amateur is responsible for harmonic radiation from his transmitter, it is no part of his responsibility to pay for or install filters, wavetraps, etc., that mary be required at the receiver to prevent interference caused by his fundomenial frequencr. It is a good idea for the amateur to
have a high-pass filter that can be tried on the receiver when interference exists. If trial shows it to be effective, the reason why it works should be carefully explained to the set owner, who should then be advised to get in touch with the organization from which he purchased the receiver or which services it, to make arrangements for proper installation. The question of cost is one to be settled between the set owner and the organization with which he deals.

Wavetraps may be used instead of high-pass filters. If the receiver has a balanced (300 -ohm) transmission line a trap should be used in each line wire. They may be constructed from the data in Fig. 19-3. When properly tuned, wavetraps will greatly attenuate the fundamental signal but suffer the disadvantage, as compared with a high-pass filter, that they must be retuned if the transmitter frequency is moved. They are of course of no value in rejecting a frequency to which they cannot be tuned, and therefore usually are good only for one amateur band.

Another type of interference, wholly attributable to lack of reeeiver selectivit y, occurs from operation in the 50-Mc. band. A strong j0-Mc. signal on the receiving antenna will overload the receiver, particularly when the receiver is tuned to Channel 2. Wavetraps tuned to the frequency of the interfering signal, installed at the antenna input terminals of the receiver, will help reduce this type of interferenee. It is also helpful to work at the lowfrequency end of the $50-\mathrm{Mc}$. band, since this frequency is farthest removed from Channel 2. shielding of the receiver's r.f. circuits also may be necessary.

Operating a Station

'The enjoyment of our hobby usually comes from the operation of our station one we have finished its construction. Ipon tha station and its operation depend the communication records that are made.

An operator with a slow, steady, dean-rut method of sending has a big advantage over the poor operator. Good sonding is partly a matter of practice but patience and judgment are just as important qualities of an operator ats a good "fist," The technigue of speaking in rommected thoughts and phrases is cqually important for the operator who uses voice.

operating courtesy and TOLERANCE

Normal operating interests in amatrur radio vary considerably, some profer 10 rag-ehew, others handle traflie, others work D.X, others concentrate on working reatain areas, counfries or states, still otheres get on for an oreatsional contact only to rherk a now rig or antemia.

Interfarence is one of the things we amtteurs have to live with. Iowerer, we can conduct our operating in a way doxigned to atLeviate it as murh as possible. Rofore puttin!g the trinsmitter on the air, listen on your own frequent!. If gou hear stations engaged in communieation on that frequenerg, stand by until you are sure no interferenere will be ratused by your operations, or shift to another frequear!. No amateur or any group of amatteurs has any cochesive cham to any frequeney in any hand. Wremust work togother, each resperting the rights of others, Remembere, those other chaps can catuse you as much interference as you rause them, sometimes more! Where a VFO is used it is not noeessary to stirk to a single operating frequence though it is well to have one or two proferred and atternate frequemeies. It has berome general operating procedure these day 10 work stations on or mear your own frequener. This pratere will atomatioblly ansist in reduring interferance.

C.W. PROCEDURE

The best operators, both those using voied athe e.w, observe eertain prodedures developed from experience and ragarded as "standard practice."

1) ralls, Calling stations may rall effi-
rinntly be transmitting the call signal of the station called three times, the lotters Ded followed by one's own station rall sont threre times. (Short ralls with frequent "breaks" to listen have proved to be the hest method.) lepeating the call of the station alled five times and signing not more than twice (repeating not more than three times) has proved
 WUBY WOBY DE WISW W1AW |ete.| Alk.

1'Q. The general-imuiry call (CO) should be sent not more than five times without interanering onces station identifiration. The length of repeated ralls is rarefully limited in intelligent amateur oprorating. (C_{Q} is not to be used when testing or when the sender is not fepoeting or looking for an answer. Never send "(ol "blind." Always listen on the freguenery first.)

The directional CQ: To reduce the number of useless answors and lessen (QRM, wery (") call should be made informative when possible.

> Examplev: A l'nited states station looking for any Hawailan amatour calls: ('(2 Kllis r'(2
Wistern station with tratfic for the Wast (ootast
when bookink for an intermediate relay station
W.griw Wislaw WistaW kr. I station witt
messames for prints in Masachusetts ralls: © (Q)
MAs: (O) MAss C(Q MAss 1H: Wन(\%)
W7C\%Y W7C\%y K. In each examule indicatod
it is understomed that the rombination hased is
repeated throe times.

Hatms who do not raise stations readily may find that their somding is poor, their watls illtimed or judgment in error. When eonditions are right to bring in siguals from the desired bocality, you can call them. Ramomathy short ralls, with appropriate and brief bratse to listen, will raise stations with minmum time and trouble.
2) Ansuering a r'all: Call three times (or less) ; send De: ; sign three times (or less) ; atter rontare is extablished decrease the use of the rall signals of both stations 10 oure or twiere. When a station recoives a coll without hering (ereain that the mall is intemded for it (eRZ? may be used. It means "By whom am I heing "alled?" (Qle\% should not be used in plate of C(2).
3) Endin! Sigmals and Ni(m-f) If: The proper use of $\overline{A k}, K, \overline{K N}, \overline{S K}$ and CL ending signals: is as follows:

I \bar{R} - End of transmission. Recommended
after call to a specific station before contact has been established.

Example: W6ABC W6ABC W6ABC DE WOLMN WOLMN WGIMIN AR. Also at the end of transmission of a radiogram, immediately following the signature, preceding identification.
K - Go ahead (any station). Recommended after CQ and at the cond of each transmission during (QSO when there is no objection to others breaking in.

Example: CQ CQ CQ DE WIABC W1ABC WIABC K or W9XYZ DE W1ABCK.
KN - Go ahead (specific station), all others keep out. Recommended at the end of cach transmission during a QsO, or after a call, when calls from other stations are not desired and will not be answered.

Example: W4FGH DE XU'6GRL $\overline{\mathrm{KNN}}$.

SK - Find of Qso. Recommended before signing last transmission at end of a QSO.

Example: . . . $\overline{S K}$ W8LMN DE W, HBCI.
CL - I am closing station. Recommended when a station is going off the air, to indicate that it will not listen for any further calls,

Example: . . . $\overline{S K}$ W7HIJ I)E Wン.JKL, CL.
4) Test signuls to permit another station to adjust receiving equipment may consist of a series of Vs with the call signal of the transmitting station at frequent intervals. Remember that a test signal can be a totally unwarranted cause of QRM, and always listen first to find a clear spot if possible.
5) Receipting for conversation or traffic: Never send acknowledgment until the transmission has been entirely received. "IR" means "All right, OK, I understand completely." Use R only when all is received correctly.
6) Repeats. When most of a transmission is lost, a ceall should be followed by eorrect abbreviations to ask for repeats. When a few words on the end of a tramsmission are lost, the last word reccivel correctly is given after "Ah, meaning "all after." When a few words on the beginning of a transmission are lost, ?AB for "all before" a stated word should be used. The quiekest way to ask for a fill in the middle of a transmission is to send the last word reecived correctly, a question mark, then the next word received correctly. Another way is to send "? 13.1 [word] and / word]."

Do not send words twice (QSZ) unless it is requested. Send single. Do not fall into the bad habit of sending double without a request from fellows you work. Don't say "QRM" or "(QRN" when you mean "QRS." Don't CQ unless there is definite reason for so doing. When sending C($($, use judgment.

General Practices

When a station has recciving trouble, the operator asks the transmitting station to "(QSV", "The letter "R" in oftern used in plate ol al decimal point (e.g., "3R5 Me.") or the
colon in time designation (e.g., "2R30 PM"). A long dash is sent for "zero."

The law concerning superfluous signals should be noted. If you must test, disconnect the antenna system and use an equivalent "dummy" antenna. Send your call frequently when operating. Pick a time for adjusting the station apparatus when few stations will be bothered.

The up-to-date amateur station uses "break-in." For best results send at a medium speed. Send evenly with proper spacing. The standard-type telegraph key is best for allround use. Regular daily practice periods, two or three periods a day, are best to acquire real familiarity and proficiency with code.

No excuse can be made for "garbled" copy. Operators should copy what is sent and refuse to acknowledge a whole transmission until every word has been received correctly. Goorl operators do not guess. "Swing" in a fist is not the mark of a good operator. Unusual words are sent twice, the word repeated following the transmission of "'?", If not wure, a good operator systematically asks for a fill or repeat. Sign your call frequently, interspersed with calls, and at the end of all transmissions.

On Good Sending

Assuming that an operator has learned sending properly, and comes up with a precision "fist" - not fast, but clean, steady, making well-formed rhythmical characters and spacing beautiful to listen to - he then becomes subject to outside pressures to his own possible detriment in everyday operating. He will want to "speed it up" because the operator at the other end is going faster, and so he begins, unconseiously, to run his words together or develops a "swing."

Perhaps one of the easiest ways to get into bad habits is to do too much playing around with special keys. Too many operators spend only enough time with a straght key to acquire "passable" sending, then subject their newlydeveloped "fists" to the entirely different movements of bugs, side-swipers, electronic keys, or what-have-you. All too often, this results in the ruination of what may have become a very good "fist."

Think about your sending a little. Are you satisfied with it:' You should not be -- ever. Nobody's sending is perfect, and therefore erer!g operator should continually strive for improvement. Do you ever run words together - like Q for MA, or P for AN - especially when you are in a hurry? Practically everybody does at one time or another. Do you have a "swing"". Any recognizable "swing" is a deviation from perfection. Strive to send like tape sending; copy a WIAW Bulletin and try to send it with the same spacing using a local oscillator on a subsequent transmission.

Chere your spacing in chanacters, between characters and between wods occasionally by making a recording of your fist on an inked
tape recorder. This will show up your faults as nothing else will. Practice the correction of faults.

USING A BREAK-IN SYSTEM

Break-in avoids unnecessarily long calls, prevents QRM, gives more communication per hour of operating. Brief calls with frequent short pauses for reply can approach (but not equal) break-in efficiency.

A separate receiving antenna makes it possible to listen to most stations while the transmitting tubes are heated. It is only necessary with break-in to pause just a moment orcasionally when the key is up (or to cut the carrier monentarily and pause in a 'phone conversation) to listen for the other station. The click when the carricr is cut off is as effertive as the word "hreak."

C'. w, teleqroph break-in is usually simple to arrange. With break-in, ideas and messages to be transmitted can be pulled right through the holes in the (QRM. smappy, effective, efficient, enjoyable amateur work really requires but a simple switching arrangement in your station to eut off the powre and switeh 'phones from monitor to receiver.

In calling, the transmitting operator sends the letters " 3 K" at frequent intervals during his call so that stations hearing the call may know that break-in is in use and take advantage of the fact. He panses at intervals during his call, to listen for a moment for a reply. If the station being called does not answer, the call can be continued.

A tap of the key, and the man on the receiving end can interrupt (if a word is missed) since the receiver is monitoring, awaiting just such directions constanty. It is not necessary that you have perfect farilitios to take advantage of break-in when the stations you work are break-in-equipped. After any invitadion to break is given (and at cach pause) tap) your key - and contact can start immediately.

voice operating

The use of proper procedure to get best results is just as important as in using code. In telegraphy words must be spelled out letter by letter. It is therefore but natural that abbreviations and shorteuts should have come into widespread use. In voice work, however, abbreviations are not necessary, and should have less importance in our operating proredure.

The letter " K " has been agreed to in tellographic practice so that the operator will not have to pound out the separate letters that spell the words "go ahead." The voice operator can sa!/ the words "go ahead" or "over," or "come in please."

One laughs on e.w. by spelling out HI. On 'phone use a laugh when one is called for. Be
natural as you would with your family and friends.

The matter of reporting readubility and strength is as important to 'phone operators as to those using code. With telegraph nomenelature, it is necessary to spell out words to describe signals or use the abbreviated signal reporting system (RsT . . . see Chapter Twenty-Four). Vsing voice, we have the ability to "say it with words." "Readability four, Strength eight" is the best way to give a quantitative report. Reporting can be done so much more meaningfully with ordinary words: "You are weak but you are in the clear and I can understand you, so go ahead," or "Your signal is strong but you are buried under local interference." Why not say it with words?

Efficient voice communication, like good r.W. communication, demands good operating. Adherence to certain points "on getting results" will go a long way toward improving our 'phone-band operating conditions.

Voice-Operating Hints

1) Listen before calling.
2) Make short calls with breaks to liston. Avoid long C(2s; do not answer any.
3) Lese push-to-talk. Give essentia! data concisely in first transmission.
4) Make reports honest. Use definitions of strength and readability for reference. Make your reports informative and useful. Honest reports and full word description of signals save amateur operators from FCC trouble.
5) Limit transmission length. Two minutes or less will conver much information. When three or more stations converse in round tables, brevity is essential.
6) Display sportsmanship and eourtesy. Bands are congested . . . make transmissions meaningful . . . give others a break.
7) Check transmitter adjustment ... avoid $A M$ overmodulation and splatter. Do not radiate when moving VFO frequency or checking NFM swing. I'se receiver b.f.o. to check stability of signal. Complete testing before busy hours!

Use push-to-tulk technique. Where possible arrange on-off switches or controls for fast back-and-forth exchanges that emulate the practicality of the wire telephone. This will help reduce the length of transmissions and keep brother amateurs from calling you a "monologuist" - a guy who likes to hear himself talk!

Listen with care. Keep noise and "backgrounds" out of your operating room to facilitate good listening. It is natural to answer the strongest signal, but take time to listen and give some consideration to the best signals, regardless of strength. Every amateur cannot run a kilowat, but there is no reason why every amateur cannot have a signal of good quality, and utilize uniform operating praefices to aid in the understandability and ease of his own communications.

Interpose your call regularly and at frequent intermals. Three short calls are better than one long one. In ealling CQ , one's call should certainly appear at least once for every five or six C(2s. Calls with frequent breaks to listen will save time and be most productive of results. In identifying, always transmit your own call list. Don't say "This is W1ABC standing by for W2IDEF"; say "W2DEF, this is W1ABC, over." FCC regulations require that the call of the transmitting station be sent last.

Include country prefix before call. It is not correct to say "9RRX this is 1BDI." Correct and legal use is "W9RRX this is W1BDI." FCC regulations require proper use of calls; stations have been cited for failure to comply with this requirement.

Monitor your oun frequency. This helps in timing calls and transmissions. Send when there is a chance of being copied successfully not when you are merely "more QRM." Timing transmissions is an art to cultivate.

Keep modulation constant. By turning the gain "wide open" you are subjecting anyone listening to the diversion of whatever noises are present in or near your operating room, to say nothing of the possibility of feed-back, echo due to poor acoustics and modulation excesses due to sudden loud noises. Speak near the microphone, and don't let your gaze wander all over the station causing sharply-varying input to your speech amplifier; at the same time. keep far enough from the microphone so your signal is not modulated by your breathing. Change distance or gain only as necessary to insure uniform transmitter performance without overmodulation, splatter or distortion.

Make connected thoughts and phrases. Don't mix disconnected subjects. Ask questions consistently. Pause and get answers.

II ave a pad of paper handy. It is convenient and desirable to jot down questions as they come in the course of discussion in order not to miss any. It will help you to make intelligent to-the-point replies.

Steer cleur of inanities and soup-opera staff. Our amateur radio and also our personal repu-
tation as a serious communications worker depend on us.

Avoid repetition. Don't repeat back what the other fellow has just said. Too often we hear a conversation like this: "Okay on your new antenna there, okay on the trouble you're having with your receiver, okay on the company who just came in with some ice cream, okay ... [etc.]." Just say you received everything OK. Don't try to prove it.

I'se phonetics only as required. When clarifying genuinely doubtful expressions and in getting your call identified positively we suggest use of the ARRL Phonetic List. Limit such use to really-necessary clarification.

The speed of radiotelephone transmission (with perfect accuracy) depends almost entirely upon the skill of the two operators involved. One must learn to speak at a rate allowing perfect understanding as well as permitting the receiving operator to copy down the message text, if that is necessary. Because of the similarity of many English speech sounds, the use of alphabetical word lists has been found nccessary. All voice-operated stations should use a standard list as needed to identify call signals or unfamiliar expressions.

ARRL Word List for Radiotelephony		
ADAM	JOHN	SLSAN
BAKEIR	KING	THOMAS
CHARLIE	LEWIS	LNION
DAVID	MAII	VICTOR
EDWARD	NANCI	WHILIAM
FRANK	OTTO	NRAY
GEORGE	PETEIR	YOLNG
IIENRI	QTEEN	ZEBIRA
IDA	IROBERT	

Example: W1.AW . . . W 1 ADAM WILL.IAM.

Round Tables. The round table has many advantages if run properly. It clears frequencies of interference, especially if all stations involved are on the same frequency, while the enjoyment value remains the same, if not greater. By use of push-to-talk, the conversation can be kept lively and interesting, giving each station operator ample opport unity to participate without waiting overlong for his turn.

Round tables can become very unpopular if they are not conducted properly. The monologuist, off on a long spiel about nothing in particular, cannot be interrupted: make your transmissions short and to the point. "Butting in" is discourteous and unsportsmanlike: don't enter a round tuble, or any contact between two other amateurs, unless you are invited. It is bad enough trying to understand voice through prevailing interference without the added difficulty of poor quality: check your transmitter adjustments frequently. In general, follow the precepts as hereinbefore outlined for the most enjoyment in round tables as well as any other form of radiotelephone communication.

－WORKING DX

Most amateurs at one time or another make ＂working DN＂a major aim，is in every other phase of amateur work，there are right and wrong ways to go about getting best results in working foreign stations，and it is the intention of this section to outline a few of them．

The ham who has trouble raising I）． N stat tions readily may find that poor transmitter efficiency is not the reason．He may timd that his sending is poor，or his calls ill－tined，or his judgment in error．When conditions are right to bring in the IDX，and the receiver sensitive enough to bring in several stations from the desired locality，the way to work I）． X is to use the appropriate frequency and timing and call these stations，as against the common practice of calling＂C（ D）N．＂

The call $\mathrm{C}(\mathrm{Q}$ 1）N means slightly different things to amateurs in different bands：
a）On v．h．f．，C（ ）1）N is a general call or－ dinarily used only when the band is open，under favorable＂skip＂conditions．For v．h．f＂，work such a eall is used for looking for new states and countries，atse for distances beyond the customary＂line－of－sight＂range on most v．h．f．bands，
b） CQ 1）N on our 7－，14－and 28－Me．hands may be taken to mean＂General（all to any foreign station．＂The term＂foreign station＂ usually refers to any station in a foraign con－ tinent．（E．rperienced amateurs in the I．S．A． and Canada do not use this call，but onsuer such calls made by foreign stations．）
c） CQ DN X used on 3.5 Me ．umber winter－ night conditions may be used in this same manner，At other timen，under atverage 3．j－Me． propagation conditions，the call may he ased in domestic work when looking for new states or countries in one＇s own continent，usually apply－ ing to stations located over 1000 miles distant from your own．

The way to work I）X is not to use a CO call at all（in our continent）．Instead，use your best tuning skill－and listen－and listen－and listen．You hame to hear them before you com wark them．Hear the desitred stations first ；time your calls well．Use your utmost skill．A sensitive recoiver is often more important than the power input in working foreign stations．Before you can expect to be surcessful in working any particular formign colmetry or area，you should be able to har ten or a dozen stations from that area．

One of the most affective ways to work D）N is to know the oprating habits of the I）． sta－ tions sought．Doing too much transmitting on the D）N bands is not the way to do this．Agana， liskening is effertive Once you know the op－ erating habits of the DN station you are after you will know when and where to call，and when to remain silent wating your ehance．

Many DN stations use the signals HIN，MII， I，II and MI，to indicate where they are tuning

DX OPERATING CODE
 （For W／VE Amateurs）

Some amateurs interestedin DX work hate caused considerable eonfusion and QRM in their efforts to work I）X sta－ tions．The points below，if observed by all W／VE amateurs，will go a long way toward making I）X more enjovable for everybedy．

1．（＇all D． C only aftor he ealls（＂（）， （QRZ？siuns SK．or＂phone equivalents thereof．

2．Ihe mot call a 1 ）X station：
ab Wh the frequeney of the station he is working until you are sure the（Qso is over，This is indi－ cated by the ending signal SK on c．w．and any indieation that the operator is listening，on ＇phone．
b．Benause you hear someone else calling him．
c．When he signs バス， AR, CL ，or ＇phone equivalents．
d．Exactly on his frequeney．
e．After he calls a direetional Co， unlese of course you are in the right direction or arra．
3．Neep within frequeney－band lim－ its．Some 1）X stations operate outside． l＇erhaps they can get away with it，but rou cannot．

4．Ohserve calling inst ructions of D N stations．＂ $100^{* "}$ means call ten ke，up from his frequencr，＂151）＂means 15 ke ，down．et c ．

5．（ive honest reports．Many foreign stations depend on W and V＇E reports for adjustment of station and equip－ ment．

6．Keep your signal clean．Koy clicks， chirps．hum or splatter wive you a bad reputation and may get you a citation from $\mathrm{P}^{\prime}\left({ }^{\prime} \mathrm{C}\right.$＇。

7．Listen for and rall the station you want．（＇alling（（ ）D）X is not the best as－ surame that the rare J）Will reply．

8．When there are several W or VE stations wating to work a J． C station， aroid asking him to＂listen for a friend．＂ Let vour friend take his chances with the rest，Also avoid engaging IDN sta－ tions in rag－chews against their wishes．
for replies．The meanings of these signals are as follows：

HM－Witl start to listen at hioh－frefurney end of band and tune toward middle of band．
MII－Will start to listen in the middle of the band and tune toward the high－frequencre end．
1．M－Will start to listen th low－freptanerg end band and fune toward middle of bathd．
MI，－Will start to listen in the middle of the band and

KEEP AN ACCURATE INO COMPIETE STATION LOG IT ILL TLMES: F.C.C. REQUIRES ITI,
A page from the official ARRL log is shown above, answering every Government requirement in respect to station records. Bound logs made np in accord with the above form can be obtained from Meadquarters for a nominal sum or you can prepare your own, in which case we offer this form as a suggetion. The ARRL log has a special wire binding and lies perfectly flat on the table.
tune toward the low-frequency end.
Example: If the procedure will be to tune from the middle of the band to the high end, a CQ call goes: CQ DE GisRY MH K.

ARIR has recommended some operating procedures to D. stations aimed at eontrolling some of the thoughtless operating practices sometimes used by W/VE amateurs. A copy of these recommendations (Operating . id No. 5) can be obtained free of charge from ARRL Headquarters.

In any band, particularly at line-of-sight frequencies, when directional antennas are used, the directional CQ such as $\mathrm{CQ} \mathrm{W}_{5}, \mathrm{CQ}$ north, etc., is the preferable type of call. Mature amateurs agree that (Q DX is a wishful rather than a practical type of call for most stations in the Forth Americas looking for contacts in foreign countries. Ordinarily, it is a cause of unnecessary QRM.

Conditions in the transmission medium make all field strengths from a given region more nearly equal at a distance, irrespective of power used. In general, the higher the frequency hand, the less important power considerations become.

- kEEPING AN AMATEUR STATION LOG

The FCC requires every amateur to keep a complete station operating record. It may also contain records of experimental tests and adjustment data. A stenographer's notebook can be ruled with vertical lines in any form to suit the user. The Federal Communications Commission requirements are that a log be maintained that shows (1) the date and time of each transmission, (2) all calls and transmissions made (whether two-way contacts resulted or not), (3) the input power to the last stage of the transmitter, (4) the frequency band used, (5) the time of ending each (2SO and the operator's identifying signature for responsibility for each session of operating. Messages may be written in the log or separate records keptbut record must be made for one year as required by the FCC. For the convenience of amateur station operators ARRL stocks both logbooks and message blanks, and if one uses the official log he is sure to comply fully with the Government requirements if the precautions and suggestions included in the log are followed.

Message Handling

Amateur operators in the United States and a few other countries enjoy a privilege not available to amateurs in most countries that of handling third-party message traffic. In the early history of amateur radio in this country, some amateurs who were among the first to take advantage of this privilege formed an extensive relay organization which became known as the Imerican Radio Relay League.

Thus, amateur message-handling has had a long and honorable history and, like most services, has gone through many periods of development and change. Those amateurs who handled traffie in 1914 would hardly recognize it the way some of us do it today, just as equipment in those days was far different from that in use now. Progress has been made and new methods have been developed in step with advancement in communication techniques of all kinds. Amateurs who handled a lot of traffe found that organized operating schedules were more effective than random relays, and as techniques advanced and messages increased in number, trunk lines were organized, spot frequencies began to be used, and there sprang into existence a number of traffic nets in which many stations operated on the same frequency to effect wider coverage in less time with fewer relays; but the old methods are still available to the amateur who handles only an occasional message.

Although message handling is as old an art as is amateur radio itself, there are many amateurs who do not know how to handle a message and have never done so. As each amateur grows older and gains experience in the amateur service, there is bound to come a time when he will be called upon to handle a written message, during a communications emergency, in casual contact with one of his many acquaintances on the air, or as a result of a request from a nonamateur friend. Regardless of the occasion, if it comes to you, you will want to rise to it! Considerable embarrassment is likely to be experienced by the amateur who finds he not only does not know the form in which the message should be prepared, but does not know what to do with the message onee it has been filed or reeeived in his station.

Traffic work need not be a complicated or time-consuming activity for the casual or ocrasional message-handler. Amateurs may participate in traffic work to whatever extent they wish, from an occasional message now and then t θ becoming a part of organized traffic systems. This chapter explains some principles so the reader may know where to find out more about the subject and may exercise the message-handling privikge to best effect as the spirit and opportunity arise.

Responsibility

Amateurs who originate messages for transmission or who receive messages for relay or delivery should first consider that in doing so they are aceepting the responsibility of clearing the message from their station on its way to its destination in the shortest possible time. Forty-eight hours after filing or receipt is the generally-agcepted rule among traffic-handling amateurs, but it is obvious that if every amateur who relayed the message allowed it to remain in his station this long it might be a long time reaching its destination. Traffe should be relayed or delivered as quickly as possible.

Message Form

Once this responsibility is realized and arcepted, handling the message becomes a matter of following generally-accepted standards of form and transmission. For this purpose, each message is divided into four parts: the preamble, the address, the text and the signature. Some of these parts themselves are subdivided. It is necessary in preparing the message for transmission and in actually transmitting it to know not only what each part is and what it is for, but to know in what order it should be transmitted, and to know the various: procedure signals used with it when sent by c.w. If you are going to send a message, you may as well send it right.

Standardization is important! There is a great deal of room for expressing originalityand individuality in amateur radio, but there are also times and places where such expression ean only eause confusion and inefficiency. Recognizing the need for standardization in

Here is an example of a plain-language message in correet ARRI, form, varrying the lathlime cheok,
message form and message transmitting procedures, ARRL has long since recommended such standards, and most traflie-interested amateurs have followed them, In general, these recommendations, and the various changes they have undergone from year to year, have been at the request of amateurs participating in this activity, and they are complotely outlined and explained in operating an Amateur Radio Station, a cops of which is available upon request or be use of the eoupon at the and of Chapter Twenty-Three.

Clearing a Message

Amateurs not experienced in message handling should depend on the experienced mes-sage-handler to get a message through, if it is important; but the average amateur ean enjos. operating with a message to be handled either through a loral traffie net or by free-laneing. The latter may be accomplished by careful listening for an amateur station at desired points, directional (QQs, use of the (reneral (alling frequencies, or beyaking and keeping a sohedule with another amateur for regmar work between speeified points. He may well aim at learning and enjoving through doing. The joy and accomplishment in thus developing one's operating skill to top perfection has a reward all its own.

The best way to elear a message is to put it into one of the many organized traffic networks, or to give it to a station who can do so. There are many amateurs who make the handling of traffie their principal operating activity, and many more still who participate in this activity to a greater or lesser extent. The result is a system of traffic nets which spreads to atl corners of the United States and covers most L. S. possessions and Canada. Once a message gets into one of these nets, regardless of the net's size or eoverage, it is systematirally routed toward its destination in the shortest possible time.

If you deride to "take the bull by the horns" and put the message into a traffie net yourself (and more power to you if you do!),
you will need to know something about how traffie nets operate, and the sperial () sighals and procedure they use to dispateh all traffic with a maximum of efficienes. Reference to net lists in QST (usually in the November and January issues) will give you the frequency. and operating time of the net in your section, or other net into which your message can go. bistening for a few minutes at the time and frequency indicated should acquaint you with enough fundamentals to enable you to report into the net and indieate gour traffic. From that time on sou follow the instructions of the net control station, who will tell you when and to whom (and on what frequener, if different from the net frequency) to send vour message. Since most nets use the special "($)$ "" signals, it is usually very helpful to have a list of these before you (list available from ARRL, Hq.).

Network Operation

About this time, you may find that you are enjoying this type of operating aetivity and want to know more about it, and to increase vour proficiency. Many amateurs are happily "addicted" to traffie handling after only one or two brief exposures to it. Most traffie nets are at present being eonducted by e.w., since this mode of communieation seems to he more popular for record purposes - but this does not mean that high eode speed is a necessary prorequisite to working in traffie networks. There are many nets organized specifically for the slow-speed amateur, and most of the socalled "fast" nets are usually glad to slow down to aceommodate shower operators, especially those nets at state or section level.

The significant facet of net operation, however, is that eode speod alone does not make for efficiency - sometimes quite the eontrary! A high-speed operator who does not know net procedure can "foul up" a net mueh more completely and more quickly than ean a slow operator. It is a proven fart that a bunch of high-speed operators who are not "savvy" in net operation cannot aeeomplish as much during a specified period as an equal number of slow operators who know net proeedure. Don't let your code speed deter you from getting into traffie work. (Given a little time, your speed will reath the point where you ean compete with the best of them. Concentrate first on learning net procedure, for most traffie nowatdays is handled on nets.

Team work is the theme of net operation. The net which functions most efficiently is the net in which all partieipants are thoroughly familiar with the procedure used, and in whieh operators refrain from transmitting except at the direction of the net eontrol station, and do not occupy time with extraneous comments, even exchange of pleasantries. There is a time and place for everything. When a net is in session it should concentrate on handling traffic until all traffic is cleared. Before or after the net is the time for rag-chewing and discussion.

Some details of net operation are included in Operating an Amateur Ralio Station, mentioned earlier, but the whole story cannot be told. There is no substitute for actual participation.

The National Traffic System

To facilitate and speed the movement of message traffic, ARIRL has adopted for tial the plans urged by leading traffic men for an integrated national system by means of which originated traffie will normally reach its destination area the same day the message is originated. This system uses the local section net as a basis. liach section net sends a represontative to a "regional" net (normally covering al (all area) and each "regional" net sends at representative to an "area" net (normally rovering a time zone). After the area net has cleared all its traffic, its members then go back to their respective regional nets, where they clear traffic to the various section net representatives. When this is done, the section representatives return to their section nets to distribute the traflic to or near its ultimate destination. By means of connecting schedules between the four area nets, traffic can flow both ways so that traffic originated on the

West Coast reaches the East Coast the same night it is originated, and vice versa. In general local section nets function at 1900 , regional nets at 1945 , area nets at 2030 and the same or different regional and section groups meet again at 2115 and 2200 respectively. Local time is referred to in each case.

The NTS plan somewhat spreads traffie opportunity so that casual traffic may be reported into nets for efficient handling one or two nights per week, early or late; or the ardent traffie man can operate in both early and late groups and in between to roll up impressive totals and speed tratfic reliably to its destination. Old-time traffic men who prefer a high degree of organization and teamwork have returned to the traffic game as a result of the new system. Beginners have shown more interest in becoming part of a system nationwide in scope, in which anyone can participate. The National Traffic System hats vast and intriguing possibilities as an amateur service.

The above is but the briefest resume of what is of necessity a rather complicated arrangement of nets and scherlules. Complote details of the System and itsoperation are available to ambone interested. Just drop a line to ARRL Headguarters.

Emergency

Communication

One of the most important ways in which the amateur serves the public; thus making his existence a national asset, is hy his prepatation for and his participation in rommundeations cmergencies. Every amateur, regaridless of the extent of his normal operating activities, should give some thought to the possibility of his being the only means of communication should his community be cut off from the outside world. It has happened many times. often in the most unlikely places; it has happened without warning, finding some amateurs totally unprepared; it can happen to you. Are you ready.

There are two principal ways in which any amateur can prepare himself for such an eventuality. One is to provide himself with equip)ment capable of operating on any type of emergency power (i.e., cither a.c. or d.c.), and equipment which ean readily be transported to the seene of disaster. Mohile equipment is expecially desirable in most cmergency situations.

Such equipment, regardless of its elaborateness or modermess, is of little usc, however, if it is not used properly and at the right times; and so another way for an amateur to prepare himself for emergencies, by no means less important than the first, is to learn to operate efficiently. There are many amateurs who feel that they know how to operate efficiently who find themselves considerably handicapped at the crucial time by not knowing proper procedure, by being unable due to years of easual amateur operation to adapt themselves to snappy, abbreviat ed transmissions, and by being unfamiliar with message form and routing procedures. It is dangerous to overrate your ability in this respect; it is far better to assume that you have much to learn.

In general it can be said that there is more emergency equipment available than there are operators who know properly how to operate during emergency conditions, for such conditions require clipped, terse procedure with complete break-in on e.w. and fast push-totalk on 'phone. The casual rag-chewing aspect of amateur radio, however mjoyable and worth while in its place, must be forgoten at such times in favor of the business at hand.

Abstract

There is only one way to gain experienee in thistype of operation, and that is by practicing: it, During an emergeney is no time for practice; it should be done beforehand, as often as

 powible, on a regular basis.This leads up to the necessity for emergency organization and prepareduess. ARRL has long recognized this necessity and has provided for it. The Section Communications Manager (whose address appears on page 6 of any recent issue of QST) is empowered to appoint certain qualified amateurs in his section for the purpose of coordinating emergency rommunication organization and preparedness in specilied areas or communities. This appointee is known ats an limergency Coördinator for the eity or town. One is specified for each community. For coördination and promotion at section level a section Pmergeney Coirdinator arranges for and recommends the appoint ments of various limergency Courdinators at activity points throughout the section. Emergency Coördinators organize amateurs in their communities acoording to local needs for emergency eommunication farilities.

The community amateurs taking part in the loeal organization are members of the ARRL Emergency Corps (AEC). All amateurs are invited to register in the ABC, whether they are able to play an active part in their local organization or only a supporting rôle. Application blanks are avalable from your Emergency Coördinator, from your Section Emergency

Coördinator, trom vour Section Communications Manager or direct from ARRL Headquarters. In the event that inquiry reveals no Emergency Coordinator appointed for your community, your SC.I would welcome a recommendation either from yousself or from a radio club of which you are a member. By holding an amateur operator license, you have the responsibility both to your community and to amateur radio to uphold the traditions of the service.

Among the íeague's publications is a booklet entitled Emergency Communications.s. "This booklet, while small in size, contains a wealth of information on AEC organization and functions and is invaluable to any a mateur participating in emergency work. It is free to AEC members and should be in every amateur's shack. Drop a line to the ARRL Communications Department if you want a cops, or use the coupon at the end of Chaptor Twenty-Threc.

Before Emergency

PREPARE yourself by providing a transmitter-receiver set-up together with an emergency power source upon which you can depend.

TES' both the dependability of your entergency equipment and your own operating ability in the ammal ARIRL. Field Day and the several other on-the-air contests which take place annually.

REGISTER your facilities and your availability with your local ARRL, Emergency Coordinator. If your community has no EC, contact your local civic and relief agencies and explain to them what the Imateur service offers the community in time of disaster.

In Emergency

LISTEN before you transmit. Never violate this principle.
RI:P(ORT at once to your Dimergeney Coordinator so that he will have up-to-theminute data on the facilities available to him. Work with loeal civic and relied agencies as the EC suggests, offer these agencies your services directly in the absence of an EC .

R FiSTRIC'C all on-the-air work in accordance with FCC regulations, sec. 12.156, ts soon as FCC has "declared" a state of communications emergency.

QRIRIR is the offieial ARIRL" "land SOS," a distress call for emergeney only. It is for use only by a station seeking assistance.
RliNPlidT the fact that the sucess of the amateur effort in emergency depends largely on circuit discipline. The key station in the emergency zone should be the supreme authority for priority and traffic routing.
(O-OPERATE with those we serve. Be ready to help, but stay off the air unless there is a specific job to be done that you can handle more efficiently than any other station.

COPV all bulletins from W1. WW. I)uring time of emergency special bulletins will keep you posted on the latest developinents.

After Emergency

REPORT to ARIRL Headquarters as soon as possible and as fully as possible so that the Amateur Service can receive full eredit. Amateur Radio has won glowing public tribute in over 75 major disasters since 1919. Maintain this record.

ARRL Operating

Organization

Amaterr operation must have point and constructive purpose to win public resperet. Fanh individual amatenr is the ambassalor of the entire fraternity in his public relations and attitude toward his hobby. ARRRL, field orgatnization adds point and purpose fo amateur operating.

The Communications Department of the langue is eoncomed with the practical operation of stations in all branches of amateur aclivity, Appointments or atwards are avabable for rag-chewer, traftic enthusiast, 'phone oparator, DX mata and experimenter.

There are seventy-two ARRIR sections in the deague's fiold organazation, which combraces the ["nited ritates, (anada and cortain other tervitory. Operating affairs in each sece tion are supervised by a seetion Communimtions Manager elected by members in that section for a two-var term of office. Organization appointments are made by the seetion managers. The election of officials is covered in detail in the deague's Constitution and ByLatws, Section rommunieations managers' addreseres for all sections are given in full in cach issue of QS゙T. SCDs weleome monthly activity reports from all amateur stations in their jurisdiction. Full information on appoint ments may be obtained from SCMs and is also contained in Operating an Amateur Ralio Station.

Whether your activity embraces 'phone or telegraphy, er both, there is a place for you in Lague organization.

LEADERSHIP POSTS

To advance bach type of station work and group interest in amateur radio. and to develop practical commonieations plans with the greatest success, appointments of leaters and organizers in particolar single-interest fied are made by SCMs. Each leadership post is important. Each provides activities and assistance for appointee groups and individual members along the lines of natural interest. While some posts further the general ability of amateurs to communicate offieiontly at all times, by pointing activity toward networks and round tables, others are aimed specifically at establishment of provisions for organizing
the amateur service as a stand-by communications group to serve the public in disaster or emergeney of ans sort. The SCDI appoints the following in aceordane with section meeds and individual qualifirations:
PAM 'Thone Artivities Mantwer, Organizes activities for Ol'ss and voice operators in his section.
RMI Ronte Manager. (oürdinates traffic activitics.
SEC Section Fmergency Coördinator. Promotes and administers section emergency radio organization. EC Fimergency Cö̈rdinutor. Organizes amateurs of a commmity or other arca for emermency radio servier: liaison with offictals and agencies served; also with other local communication facilities.

STATION APPOINTMENTS

ARRLS's field organization has a place for every artive amateur who has a station. The Communirations: Department organization

exists to increase individual enjoyment in amateur radio work, and we extend a cordial invitation to every amateur to participate fully in the activities and to apply to the SCM for one of the following station appointments:
OPS Official 'Phone Station. Voice operating, cxample in setting operating standards, activities on voice. Official Relay Stution, Traffic service, operates nets and trunk lines.
OBS Official Bulletin sitation, Transmits ARRL and FCC bulletin information to amateurs. Official Experimental Station. Experimental operating. collects reports v.h.f.-tu.h.f.-s.h.f. propagation data, may engage in facsimile, TT, TV. ctc. experiments.
Official Observer. Sends eoüperative notices to amateurs to assist in frequency observance, insures high-suality signals, and prevents PCC trouble.

Emblem Colors

Nembers wear the comblem with blackenamel barkground. A red background for an emblem will indicate that the wearer is sc.M. SEC's, EC's, RMs, DMMs may wear the emblem with green background. Obsorvers and all station appointeres are entitled to war emblems with blue batekground.

SECTION NETS AND TRUNK LINES

Amateurs ean add much experience and pleasure to their own amateur lives, and substance and accomplishment to the eredit of all of amateur radio, when organized into effective interconnection of cities and towns.

The surerespin! operation of a net depends a lot on the Net Control Station. This station should be chosen carefully and be one that will not hesitate to enforee cach and every net rule and set the example in his own operation.

I progressiow net grows, obtaining new members both directly and through other net members. Bulletins may be issued at intervals to keep in direet contact with the member: regarding general net artivity, to keep tab, on net procedure and make suggestions for improvement, to keop track of active members and weed out inactive ones.

Official Relay Stations at key points are organized in trunk-line formation, covering fourteen east-west and north-south routes, connecting with numerous section and local networks and feeder systems for the purpose of efficient dispateh of traffic. Speedy and reliable work is carried on, the operation entirely on separate spot frequencies in the 3.j-Mc. amateur band. A station must hold ORS appointment to be considered for a trunk-line post.

Radio Club Affiliation

ARRLL is pleased to grant affiliation to any amateur socicty having (1) 51% of the voting dub membership, made up of licensed Cuited States or Canadian amateurs, and (2) 51% of its licensed amateurs also members of ARRLL. Where a soecety has common aims and wishes to add strength to that of other club groups to strengthen amateur radio by affiliation with the national amateur organization, a request addressed to the Communications Manager will bring the necessary forms and information to initiate the application for afliliation. Such clubs receive field-organization bulletins and special information at intervals for posting on club bulletin boards or for relay to their memberships. A travelplan providing communications, technical and seeretarial contact from the Headquarters is worked out seatsonally to give maximum benefite to at many as possible of the more than four hundred affiliated radio clubs. Papers on elub work, suggestions for organizing, for contstitutions, for radio courses of study, ete., are a vailable on regurst.

Club Training Aids

One section of the ARRI. Communications Deparment handles the Training Aids Program. This program is a service to ARRL. afliliated clubs. Material is supplied for club programs aimed at education, training and entertainment of club members, to make your (lub) meetings more interesting and consequently better attended.
Training Dids include such items as motionpicture films, film strips, slides, recordings, and lecture outlines. Also, code-proficiency training equipment such as recorders, tape transmitters and tapmes will be loaned when such items are a vailable.

All Training Aids materials are loaned free (exerpt for shipping charges) to ARRL, affiliated clubs. Numerons groups use this ARRL service to good advantage. If gour chab, is affiliated but has not yot taken advantage of this serviec, you are missing a good chance to add the available features to your merting programs and general club activities. Wateh club bulletins and Qs'T or write the ARRL. Communications Department for full details.

WlAW

The Maxim Memorial station, Whaw, is dedicated to fraternity and service. Operated by the League headquarters, WIAW is located about four miles south of the Headquarters offices on a seven-atere sitc. The station is on the air daily, execpt holdays, and availabte time is divided botwern different bands and modes. Telegraph and 'phone transmitters are
 provided for all bands from 1.8 to 14 Me. The normal frequencies in cach band for c.w. and voice transmissions are at follows: 1887, 35.5. 395, $3215,14,100$, $14,280,28,060,29,000,52,000$ and $146,000 \mathrm{kc}$. Operating-visiting hours and the station sehedule are listed every other month in gst?

All amateurs are invited to visit 11.1 W , as well as to work the station from their own shacks. The station was established to be a living memorial to Hiram D'erey Maxim and to carry on the work and traditions of the amatcur fraternity.

Operating activities

Within the MRIRL ficld organization there areseveral specialactivities. The first saturday night wach month is set aside for all ARRL, officials, officers and directors to get together wer the air from their own stations. This activity is known to the gang as LO-Nite. For all apmonters, quarterly this called (D) par-
ties are scheduled to develop operating ability and a spirit of fraternalism.

In addition to these special activities for appointees and members, ARLLL sponsors various other activities open to all amateurs. The DS-minded amateur may participate in the Annual ARIRI. International DX Competition during February and March. This popular contest may bring you the thrill of working new countries. Then there is the ever-popular sweepstakes in November. Of domestic scope, the sis affords the opportunity to work new states for that WAs award. For the 28-Me. gang there is the Ten-Meter WAs Contest held each January. The interests of v.h.f. enthusiasts are also provided for in special activities planned by IRRL.

Is in all our operating, the idea of having a good time is combined in the Innual Field I)ay, with the more serious thought of preparing ourselves to render public service in times of emergency. A premium is placed on the use of equipment without connection to commercial power sources. (lubs and individual groups always have a good time in the "FD," learn much about the requirements for knockabout ronditions afield.

ARRRL contest activitios are diversified to rppeal to all operating interests, and will be found anmounced in detail in issues of $Q S^{\prime \prime}$ prereding the different avents.

AWARDS

The League-sponsored operating activities heretofore mentioned have useful objectives and provide much enjoyment for members of the fraternity. Achievement in amateur radio is recognized by various certificates offered through the League and detailed below.

WAS Award

WAs means "Worked All States." This award is available regardless of affiliation or nonaffiliation with any organization. Here are the few simple rules to follow in applying tor a WAS Certificate:

1) Two-way communications must be established on the amateur bands with all forty-eight United States; any and all amateur bands may be used. A card from the District of (olumbia may be submitted in licu of one from Maryland.

2) Contacts with all forty-eight states must be made from the same location. Within a given community one location may be defined as from places no two of which are more than 25 miles apart.
3) Contacts may be made over any period of years, and may have been made any number of years ago, provided only that all contacts are from the game location.
4) Forts-eight QsL cards, or other written communications from stations worked confirming the necessary twoway contacts, must be submitted to ARRI, headquarters.
5) sufficient jostage must be sent with the eonfirmations to finance their return. No correspondence will be returned unless sufficient postare is furnished.
f) The WAS award is avalahle to all amuteurs.
6) Address all applications and confirmations to the ('ommunications Department, AlRRL, is La Saile Road, West Hartford, Conn.

DX Century Club Award

Here are the rules under which the DX Century Club Award will be issued to amatcur: who have worked and confirmed contact with 100 countries in the postwar period. If you worked fewer than 100 eountries before the war and have since worked and confirmed a sufficient number to mak the 100 mark, the I) XCC is still available to you under the rules detailed on page 74 of June, 1946, QS'T'.

1) The Century Club Award Certificate for confirmed contacts with 100 or more countries is available to ail amateurs everywhere in the world.
2) Confirmations must be submitted direct to ARRI. headquarters for all countries claimed. Claims for a total of 100 countrics inust be included with first application. Confirmation from foreign contest logs may be requested in the case of the ARRL International DX Competition only, subject to the following conditions:
a) sulficient confirmations of other types must be submitted so that these, plus the DN Contest confirmations, will total 100, In every case, Contest confirmations must: not be reguested for any countrics from which the applicant has regular confirmations. 'That is, contest confirmations will be granted only in the case of countries from which applicants have no regular confirmations.
b) Look up the contest results as published in QST to see if your man is listed in the foreign scores. If he isn't, he did not send in a log and no confirmation is possible.
c) (ive year of contest, date and time of QSO.
d) In future DN ('ontests, do not request confirmations until after the final results have been published, usually in one of the early fall issues. Requests before this time must be ignored.
3) The ARRI. Countries List, printed periodically in QST, will be used in determining what constitutes a "country." The Niscellancous Data chapter of this Mandbook contains the Postwar Countries List,
4) Confirmations must be accompanied by a list of claimed countries and stations to aid in checking and for future reference.
j) Confirmations from additional countries may be submitted for eredit each tine ten additional confirmations are available. Endorsements for affixing to certificates and showing the new confirmed total ($110,120,130$, ete.) will be awarded as additional credits are granted. ARRL DN ('ompetition logs from foreign atations may be utilized for these endorgements, subject to conditions stated under (2).
5) All contacts must be made with amateur stations working in the authorized amateur bands or with other stations licensed to work amateurs.
6) In cases of countries where amateurs are licensed in the normal manner, credit may be claimed only for stations using regular government-assigned call letters. No credit may be elaimed for contacts with stations in any countries in which amateurs have been temporarily closed down by special government edict where amateur licenses were formerly issued in the normal manner.
A) All stations contacted must be "land stations" . . . contacts with ships, anchored or otherwise, and aircraft, cannot be counted.
a) All stations must he contacted from the same call
area, where such areas exist, or fron the same country in rase's where there are no call areas. One exception is ablowed to this rule: where a station is moved from one all area to anotler, or from one country to another, all contacts must be made from within a radins of $15!$ miles of the initial Ineation,
7) Contacts may be made over any period of years from November $1.5,194.5$, provided only that all contacts be made neder the provisions of Rule ?, and by the same station liernsee: contacts may have been made under different call Intters in the sanne area (or country), if the licensee for all was the same.
II) All confirmations must be sulmitten evactly as reretived from the stations worked. Any altered or forged eonfirmations submitted for Cr' eredit will result in dis?ualification of the applicant. The elisibility of any D)NC(applieant
 tions for such application, shatl be determined by the I wards Committee. Any holder of the C'entury C'lub Award submitting forged or altered eonfirmations must forfeit his riaht to be considered for further andorsements,

 poward the I)X Century ('lub Sward. In the event of specific objections relative to continued poor operating athirs an individual may be displuatified from the D). N('(by action of the ARRL Awards Committere.
8) Sufficient postage for the rethrn of confimations must be forwarded with the applieation. In order to insure the safe return of large batehes of confirmations, it is suggested that enough postage be sent to make possible their return ty first-class mail, registered.
9) Derisions of the ARRLL Awardis Committee regarding interpretation of the rules as here printed or later amended shall be final.
10) Address all applications and confirmations to the (Oommunications Department, ARRL. 38 La Salle Road. West Martford 7. Conn.

WAC Award

The International Amateur Radio Cnion issues W.AC (Worked All Continents) certificates to all members of member-societies who submit proof of two-way communication with at least one station on each continent. Foreign amateurs submit their proof direct to membersocieties of the I.ARL. Others may make application to ARIRI, heddquarters society of the Inion. A c.w. and a telephong certificate are available. Also, special endorsoment will be placed on certificates upon receipt of request accompanied by proof of hating worked all continents on 50 Me.

Code Proficiency \boldsymbol{A} ward

Many hams can follow the general idea of a contart "by ear" but when pressed to "write it down" they "mulf" the copy. The Code Proficiency Award invites every amateur to prove himself as a proficient operator, and sets. up a system of awards for step-by-step gains in copving proficiency. It enables every amateur to check his code proficieney, to better that proficiency, and to receive a certification of his receiving speed.

This program is a whate of a lot of fun. The League will give a certificate to any licensed radio amateur who demonstrates that he can copy perfectly, for at least one minute, plainlanguage Continental code at 15, 20, 25, 30 or $3 \overline{5}$ words per minute, as transmitted during special monthly transmissions from W1.IIV, or from W6OWV, WOT(2) and others mentioned in Qs'T.

Is part of the ARRI, Code Proficieney program, WiAll transmits plain-languge practice material each evoning, Monday through Fridat, at spereds from 9 to 35 w.jp, in. . 110 amafours: are invited to use these transmissions to incroase their code-copying ability. Nonamateurs are invited to utilize the lower sperels, 9, 12 and 15 w.p.m., which are transmitted for the benefit of persons studying the code in preparation for the amateur license examination. Refer to any issuce of QST for details of the practice schethle.

Rag Chewers Club

The Rag Chewers Club is designed to encourage friendly contacts and diseourage the "hello-good-by" type of esi(). Its purpose is to bond toget her operators interested in honest-to-goodness rag-chewing over the air. Membership certificates are available.
How To Get in: (1) Chew the ray with a nember of the elub for at least a solif half hour. This dors not mean a half hour spent in trying to get a mossage over through bad QRAI or QRN, but a solid half hour of conversation or message hatdline. (2) Report the conversation by card to "The Kag (hewers Cluh, ARIRL, Communications Department. West hartford, Conn., and ask the member station you talk with to do the same. When both reports are received you will he sent a membership certificate entitling you to all the privileges of a Rag Chewer.

How To stay in: (1) Be a conversationalist on the air in sterd of one of those tongue-tied infants who don't know any words excret "cuagn" or "eul." or "QLEU" or "nil." Talk to the fellows you work with and get to know them, (2) Operate vonar station in accordance with the radio laws and ARRL practice. (3) Ohserve rules of courtesy on the air. (4) Sign "RCC" after each rall so that others may know you can talk as well as call.

A. 1 Operator Club

The A-1 Operator Club should include in its ranks every good operator. To beeome a member, one must be nominated by at least two operators who already belong, (ieneral keying or voice technique, procedure, copying ability, judgment and courtesy all count in rating candidates under the eluh rules detailed at lengih in operating an Amateur Radio Stalion. Aim to make vourself a finc operator, and one of these days you will be pleasantly surprised by an invitation to belong to the A-1 Operator Club, which carries a worth-while ertificate in its own right.

Brass Pounders League

Every individual reporting more than a specified minimum in official monthly traffic lotals is given an honor place in the QST listing known as the Brass Pounders League and a certificate to recognize his performance.

The value to amateurs in operator training, and the utility of amateur message handing to the members of the fraternity iterlf as well as to the general publie, make message-handling work of prime importance to the fraternity. Frun, enjoyment, and the feeling of having done something really worth while for one's follows is accentuated by pride in mossage files, records, and letters from those served.

Old Timers Club

The Old Timers Club is open to anyone who holds an amateur eall at the present time, and who hedd an amateur license (operator or station) 20 -or-more years ago. lapes in activity during the intervening years are permitted.

If you can qualify as an "Old Timer," send us a brief chronology of your ham career, being sure to indicate the date of your first amateur license, and your present call. If the evidence submitted proves you eligible for the OTC, you will be added to the roster and will receive a membership certificate.

INVITATION

Anateur radio is capable of giving enjoyment, self-training, social and organization benefits in proportion to what the individual amateur puts into his hobby. All amateurs are invited to become ARIRL members, to work toward awards, and to accept the challenge and invitation offered in field-organization appointments. Drop a line for the booklet Operating an Amateur Radio Station, which has detailed information on the field-organization appointments and awards. Accept today the invitation to take full part in all ARIRL activities and organization work.

538

- Operating an Amateur Radio Station covers the details of practical amateur operating. In it you will find information on Operating Practices, Emergency Communication, ARRL Operating Activities and Awards, the ARRL Field Organization, Handling Messages, Network Organization, "Q" Signals and Abbreviations used in amateur operating, important extracts from the FCC Regulations, and other helpful material. It's a handy reference that will serve to answer many of the questions concerning operating that arise during your activities on the air.
- If you as a licensed amateur should ever find yourself in a position to serve during an emergency, there are a lot of things you will wish you had known beforehand. You will do the best you can, and those you serve will sing your praises - but you yourself will realize that had you been better prepared you could have done more and done it more effectively. The booklet Emergency Communications would have told you all you needed to know. You should have had it, studied it, and followed up its advices. Don't wait until the emergency is upon you to wonder what you should do and how you should do it. Get a copy of Emergency Communications and make your preparations now!

> The two publications described above may be obtained without charge by any Handbook reader. Either or both will be sent upon request.

AMERICAN RADIO RELAY LEAGUE 38 La Salle Road
West Hartford 7, Connecticut, U. S. A.
Please send me, without charge, the following:
OPERATING AN AMATEUR RADIO STATION EMERGENCY COMMUNICATIONS

Name.
(Please Print)
Address

Miscellaneous Data

THE DECIBEL

In most ratio communication the rewetred signal is converted intes sount. This being the pase, it is useful to appraise signal strengethe in terme of relative loudness as registered he the ear. A peculiarity of the ear is that an increase or decrease in loudness is responsive to the ratien of the amounts of power involved, and is practically independent of absolute value of the power. For example, if a person estimates that the signal is "twice as loud" when the transmitter power is incrased from 10 watts to 40) watts, he will atso extimate that a 400 -watt signal is twire as loud ats a 100 -watt signal. In other words, the ear has a legarithmic response.

This fact is the basis for the use of the relative-power unit called the decibel. A change of one decibel (ahhreviated db. in the power level is just detectable as a change in doudness under ideal conditions. The power ratio and decibels are related by the following formula:

$$
D b .=10 \log \frac{P_{2}}{P_{1}}
$$

Common logarithms (hase 10) are used.
Note that the deeibel is hased on poner ratios. Voltage or current ratios ean be used, but only when the imperlance is the same for both ralues of rollage, "r current. The gain of an amplifier cannot be expressed correctly in dh. if it in based on the ratio of the out put voltage to the imput voltage unless both voltages are measured across the same value of impedance. When the impedance at both points of measurement is the same, the following formula may be used for voltage or eurrent ratios:

$$
D t .=20 \log \frac{V_{2}}{V_{1}} \text { or } 20 \log \frac{I_{2}}{I_{1}}
$$

The two formulas are shown graphically in the aceompanying chart for ratios from I to 10 . (Gains (increases) expresed in dexibels may be wded arithmetically; loseses (decroases) may be subtracted. A power decrease is indicated by prefixing the decibel figure with a minus sign. Thus +6 dh, means that the power has been multiplied by t, while -6 db. means that the power has been divided by 4 . The chart may be used for other ratios by adding (or subtracting, if a loss) 10 dth , cach time the ratio scale is multiplied by 10 , for power ratios: or by adding (or subtracting) 20 dh. each time the seale is multiplied by 10 for voltage or corrent ratios.

Example: The power input to a transmitter is inereased from 75 to 300 watts. Asaming that the efficiency is the same in loth cases, the ratio of the new output power to the old is $60075=8$. from the chart, the signal will be increased 9 d b. Note that inereasing the power to 7.50 watts, a ratio of 10 , would increase the signal to 10 dh,, a barely perceptible increase over 600 watts.

Example: A speech anjulifier has an output of 10 watts when excited by 0.02 volt from a crystal microphone. "The noninal imsedance of the miarophone is 50,000 ohms. In a 50,000 -ohm load. the voltage developed by the 10 watte would be

$$
\begin{aligned}
E & =\sqrt{P R}=\sqrt{10 \times 50,000}=\sqrt{000,000} \\
& =707 \text { volts }
\end{aligned}
$$

The voltage ratio of the amplifier therefore is $7070.02=35,350$. This is the same as $3.5 \times$ 10,000 . A voltage ratio of $10,000\left(10^{4}\right)$ is ectual to $\$ \times 20=80 \mathrm{db}$. From the chart, a voltage ratio of $3,5=11 \mathrm{db}$. Adding the two gives $11+80=91 \mathrm{db}$, as the gain of the amplifier.

Example: A transmission line is terminated in its chararteristic impedance and operates witholt standing waves. The power put into the line is $1: 0$ watts, but the gower measured at the output end is 100 watts. The ratio is $150 / 100$ $=1.5$. From the chart, this ratio is equal to 1.9 dth . The loss in the line is therefore 1.9 db .

DECIMAL EQUIVALENTS OF FRACTIONS

$\begin{array}{r} 132 \ldots \\ 1 \end{array}$. 03125	17	$32 \ldots$	$\begin{aligned} & 53125 \\ & .3625 \end{aligned}$
332	(0,3775	19	32	. 50375
1 '8	.125		, 8	.62.
$\therefore 32$. 1562.5	21	32	. 15572.5
316	.187.)		1116	.1875
732	.2187.	23	32	. 7187.5
14	. 2.5		34	. 75
432	. 2812.5	2.8	32.	.7812.)
. 16	. 312.5		1316	. 8125
1132	. 3437.5	27	32	.8437.5
38	. 37.5		78.	. 875
1332.	.40625	24		. 40625
716.	. 437.3		1516	, 8375
1.) 32	. 4688.5	31	32	. 96987.5
12	.		1.	

SYMBOLS FOR ELECTRICAL QUANTITIES	
Admittance	r. ${ }^{\text {r }}$
Angular velocity ($2 \pi \mathrm{f}$)	ω
Capacitance	C
Conductance	G,,
Conductivity	γ
Current	I, i
Difference of potential	L, e
Dielectric constant	K
Dielectrie flux	*
Energy	il
Frequeney	i
Impedance	\%,z
Inductance	L
Magnetic intensity	H
Magnetic flux	\$
Magnetic flux density	B
Magnetomotive force	F
Mutual inductance	. 1
Number of conductors or turns	N
Period	T
Permeability	μ
Phase displarement	θ
Power	${ }^{\prime}, p$
Quantity of mertricity	(), q
Reactance	X ${ }^{\prime}$ r
Reactance, Capacitive	No.
Reactance, Inductive	X_{1}
Reluctivity	v
Resistance	R, r
Resistivity	ρ
Susceptance	b
Speed of rotation	n
Voltage	E, e
Work	I'

PILOT-LAMP DATA								
$\begin{aligned} & \text { Lamp } \\ & \text { No. } \end{aligned}$	Bead Color	Basp (. H iniature)	A" 14$T_{1 / 1}$	R.1T/N\%;				
				Volls	. 1 mp .			
40	Hrown	s.rew	T-31/4	(i-8	0.15			
$40 \mathrm{~A}^{1}$	lsrown	Hayonet	T-31/4	(i-8	() 15			
41	White	Arew	$\cdots-3 \frac{1}{4}$	23	115			
42	(ireen	Nrew	T-31/4	3.2	**			
43	Whito	layyonet	T-31/4	2.5	0. 5			
44	Hlue	Bayonet	$\bigcirc-31 / 4$	(i-8	0.2\%;			
45	*	Bayonet	T-21/4	3.2	**			
46^{2}	Hlue	Nrew	T-31/4	6-8	0.2 .5			
47^{1}	13rown	Bayonet	T-31/4	(i-9)	0.15			
48	Prak	virew	T-31/4	$\because 0$	0 Ofi			
$4{ }^{4}$	link	Hayomet	$\mathrm{T}-31 / 4$	2.0	0.06			
,	White	S*rew	T-31/4	2.1	0.12			
$49 \mathrm{~A}^{3}$	White	Hayonet	T-3/4	21	0.12			
50	White	s'rew	($3-3!2$	(i-8	() 2			
51^{2}	White	Ibyonet	(i-31 ${ }^{\text {2 }}$	1;-8	$0 \geq$			
-	White	sicrew	(i-4'2	(i-8	04			
55	White	layonet	(i-41.2,	(i-8	0.1			
$292{ }^{5}$	White	sirew	'1-31/4	29	0.17			
292A ${ }^{\text {a }}$	White	Bayonet	1-34	$\because 9$	$0^{1} 17$			
1455	Brown	Sirew	($\mathrm{i}-\mathrm{F}$	180	03			
	Brown	Baymot	(i-.\%	1×0	1125			
* White in G.F. and Sylvania; preem in Natomat Vnion Raytben and Tung-sol. ** 0.35 in G.E. and sylvalia: 0.0) in Natinna! I'nion Raytheon and Tung-Nol. ${ }^{1} 40 \mathrm{~A}$ and $\mathbf{4 7}$ are interrhangeable. 2 Have frosted bulb. ${ }^{3} 49$ and 49A are interchangeable. ${ }^{-1}$ Replace with No. 48. 5 ['se in 2.5 -wolt suts where rogular bulb burns ont tore frequentls.								

ABBREVIATIONS FOR ELECTRICAL AND RADIO TERMS			
Alternating current	a.c.	Medium frequency	${ }^{\text {malf }}$ f
Ampere (amperes)		Megacyeles (per serond)	18
Amplitude modulation	A.11	Megohm	119
Antenna	ant.	Meter	1.
Audio frequeney	a.f.	Microfarad	$\mu \mathrm{lu}$.
Centimeter	mm .	Microhenry	
Continuous waves	r.w.	Micromicrofarad	upti.
Cycles per seeond	с.р.s.	Mirrovelt	
Decibel	(tb.	Mierovolt par meter	$\mu \mathrm{V}, \mathrm{ml}$.
Direet current	d.e.	Microwatt	$\mu \mathrm{N}$.
Electromotive foree	c.m.f.	Milliampere	mat.
Frequencer	8.	Millivolt	inv.
Frequency modulation	FM	Milliwat	
Ground	gnal.	Moolulated continuols waves	m.r.w
Henry	h.	Ohm	$\stackrel{!}{1}$
High frequency	h.f.	Power	
Intermediate frequency	i.f.	Power factor	p.f.
Interrupted continuous waves	i.c.w.	Radio frequency	
Kilocycles (per second)	kc.	Cltrahigh frequeney	u.h.f.
Kilovolt	kv.	Ferw-high frequency	r.h.r.
Kilowatt	${ }_{\text {kw. }}^{\text {m.m.f. }}$	Watt (watts)	w.

TABLE OF DIELECTRIC CHARACTERISTICS

Dielectric material ${ }^{1}$	Dielectrie constant (H)	I'oner factor					Dielectric strength (puncture voltave) ${ }^{2}$	Volume resistivity ${ }^{3}$ ()
		$\begin{gathered} \text { 6it } \\ \text { cycles } \end{gathered}$	1 kc .	1 Mc.	10 Mc.	100 Mc.		
Air (normal pressure).	1.0							
AlSiMag Al96.....	5.7-6.3	2.9		0.21	0.15		240	10^{14}
Aniline formaldehyde	3-5	1-6					400	
Asphalts...........	2. $7-3.1$		2.3				25-30	
Bakclite - See P'henol								
Beeswax. . .	2.9-3.2							
Cascin plastics ${ }^{4}$	6.1-6.4			5. 2-6			165)	
Castor oil.	4.3-4.7			7			380	
Celluloid.	4-16			5-10				
Cellulose acetate ${ }^{5}$.	6-8	3-6	4-6	4-6	.i.			
Cellulose nitrate ${ }^{6}$.	4-7		4	2.8-5	.1.		$3(m-780$	$2-30 \times 10^{10}$
Ccresin wax	2.5-2.f			0.12-0.21				
Cresol formaldehyde	6	10					$4(0)$	
Dilectene.	3.57					0.33	41	
Ethyl cellulose	2-2.7	0.7	1.2	1.5			1500	10^{15}
Fiber.	5-7.5			4.5-5			150-180	5×10^{9}
Formica 11 F -66. (ilass:	4.6-4.9		1.5	1.1			4.50	
Cobalt.	7.3			0.7				
Common window	7.6-8			1.4			200-250	
Crown.	6. $2 \sim 7$		1	1^{3}			500	
Electrical	4-5			0.5			2000	8×10^{14}
Flint.	7-10		0.45	0.4				
Nonex.	4.2			0.25		0, 28		
Photographic.	7.5			0.8 -1				
Plate.	6.8-7.6			0.6-0.8				
Pyrex.	4.2-4.9		0.5	0.7		11.i4	33:;	10^{14}
Giutta percha	2.5-4.9						200-50,	$\therefore \times 10^{14}-10^{14}$
Lacite?	2.0-3	7	${ }^{3}$	1.5-3	1.9		480-8(\%)	
Molamine formaldehyde	8	16					(3/4)	
Mira.........	2.5-8	0.2	0.3	0.2-6	0.02			2×10^{17}
Mica (clear India)	6.4-7.i	\because	\because	2	\because		(600-1600	
Mycalex.	7.4			0.18			250	11^{13}
Mycalex (British).	6			0.3			350	
Mykroy	6. 5 -7			0.1-0.2			1:30	
Nylon.	3.6			2.2				
Paper.	2.0-2.6						1250	
Paraflin wax (solid)	1.9-2.6			0.1-0.3			3001	$10^{15}-10^{19}$
Pemque.	7.21			0.2				
Phenol: 8								
Pure.	5			1			400-475	1.5×10^{12}
Asbestos hase.	7.5			15			90-150	
Black molded.	5-5.5			3.5			400-50\%	
Fabric base	5-6.5			3.5-11			150-50)	
Mica-filled.	5-6			(1.8-1			475-6(k)	
Paper base.	3.8-5.5			2.5-4			6.5)-750	$10^{10}-10^{13}$
Yellow. . .	5.3-5.4			0.36-0.7			- ${ }^{\text {¢ }}$	
Polycthylene.	2.3-2.4	0.02	0.02	0.02-0.0.5			100\%	10^{17}
Polyindene.	3	0.04						
Polyisobutylene,	2.4-2.5	0.04-5					500	
Polystyrene ${ }^{9}$.	2.4-2.9(2.6)	0.02	0.018	0.02	0.02	0.02	300-250)	$10^{2 n}$
Porcelain (dry process).	6.0-7. ${ }^{\text {a }}$			$0.7-15$			40-100	5×10^{8}
Porcelain (wet process) . .	6.5-7			0.6			150	
Pressboard (untreated) .	2.9-4.5						125-3106	
Quartz (fused).	3.5. (3.8)	0.01	0.01	0.01:-0.03	0.01	0.0.5	7.0 200	$10^{14} \cdot 10^{18}$
Rubber (hard) ${ }^{10}$.	2-3.5(3)			0.5-1			450	$10^{12}-10^{15}$
Shellac.	2.i5-4			0.09			900	$10{ }^{18}$
Steatite: ${ }^{11}$ "Commercial" grade								
"Commercial grade	4.9-6. ${ }_{\text {4. }}^{4}$	0.02	0.2	0.2	0.4	0.5		
Titanium dioxide ${ }^{12}$.	90-170	0.02	0.2 0.1	0.2 0.1	0.18	0.13	150-31\%	$10^{14}-10^{15}$
Urea formaldehyde ${ }^{13}$	5-7	3-5	- -3	2-4	4			$10^{12}-10^{13}$
Varnished cloth 14.	2-2.5	n-	-3	2-3	4		$\begin{aligned} & 300-5.50 \\ & 440-5.50 \end{aligned}$	10^{12-10}
Vinyl resins.	4			1.4-1.7			${ }^{400-500} 0^{\circ}$	10^{14}
Vitrolex,	6.4			0.3			400-30)	
Wood (dry oak)	2.5-6.8(3)		3.8	4,2				
Wood (paraffined maple).	4.1						115	

[^6]Catalin, Celeron, Dielecto, Durez, Durite, Formica, Gernstone, Heresite, Indur, Makalot, Marblette, Micarta, Opalon, Prystal. Resinox, Sy'nhane, Textolite, etc. Yellow bakelite is so-called "low-loss" bakelite.
9 Includes Aniphenol 912 A . Distrene, Intelin IN $4 \overline{\mathrm{~J}}$, Loalin, Lustron, Quartz Q. Rezoglas, Rhodolene M, Ronilla L. Styraflex, Styron, Trolitul, Victron, etc,
in Also known as Ebonite.
${ }_{12}^{11}$ Soapstone - Alberene, Alsimag, Isolantite, Lava, etc. ${ }^{12}$ Rutile. Used in tow temperature-coefficient fixed condensers.
${ }_{11}^{13}$ Includes Aldur, Beetle, Plaskon, Pollopas, Prystal, etc. ${ }^{14}$ Includes Empire cloth.

In the above formulas R is in ohms, C in farads, L in henrys, and f in eycles per sccond.

PILTERS

The filter sections shown on the facing page can be used alone or, if greater attenuation and sharper cutoff are required, several sections can be connocted in series. In the low- and high-pass filters, fo represents the eut-off frequence, the highest (for the low-pass) or the lowest (for the high-pass) frequency transmitted withoat attenuation. In the bandpassfilter desigus, f_{1} is the low-frequene $\begin{gathered}\text { coteotf }\end{gathered}$ and f_{2} the high-frequeney cut-off. The units for L, C, R and f are henrys, farads, ohms and rycles, respectively.

All of the types shown are for use in an unbalaned line (one side grounded), and thus they are suitable for use in coasial line or any other unbalanced circuit. To transform them for use in balaneed lines (e.g., 300 -ohm transmission line, or push-pull audio circuits), the series reattanees should be equally divided between the two legs. Thus the balaneed con-stant- $k \pi$-section low-pass filter would use two inductances of a value equal to $L_{\mathrm{k}} / 2$, while the balanced constant-k π-section high-pass filter would use two condensers of a value equal to $2 C^{\prime}$.

If several low- (or high-) pass sections are to be used, it is advisable to use m-derived end sections on either side of a constant-k section, although an m-derived center section ran be used. The factor m relates the ratio of the cutoff frequency and f_{∞}, a frequency of high attenuation. Where only one m-derived section i.s used, a value of 0.6 is generally used for m, although a deviation of 10 or 15 per cent from this value is not too serious in amateur work. For a value of $m=0.6, f$ will be $1,2.9 f_{c}$ for the low-pass filter and $0.8 f_{\mathrm{c}}$ for the high-pass filter. ()ther values can be found from
$m=\sqrt{1-\left(\frac{f_{c}}{f_{x}}\right)^{2}}$ for the low-pass filter and $m=\sqrt{1-\left(\frac{f_{x}}{f_{c}}\right)^{2}}$ for the high-pass filter.

The filters shown should be terminated in a resistance $=R$, and there should be little or no reartive component in the termination.
simple audio filters ean be made with pow-dered-iron-core chokes and paper condensers. Sharper cut-off eharacteristics will be obtained with more sections. The values of the components can vary by $\pm 5 \%$ with little or no reduction in performance. The more sections there are to a filter the greater is the need for accuracy in the values of the components. High-performance audio filters can be built with only two sections by winding the induetances on toroidial powdered-iron forms - it generally takes three sections to obtain the same results when using other indurtances.

Sideband filters are usually designed to operate in the range 10 to 20 kc . Their attenuation requirements are such that usually at
least a five-section filter is required. The coils should be as high-Q as possible, and mica condensers are the most suitable capacitors.

Low-pass and high-pass filters for harmonic suppression and receiver-overload prevention in the television frequencies range are usually made with self-supporting coils and miea or ceramic condensers, depending upon the power requirements.

In any filter, there should be no magnetio or capacity coupling bet ween sections of the filter unless the dexign specifieally calls for it. This requirement makes it necessary to shield the coils from cach other in some applications, or to mount them at right angles to each other. Further information on filter design can be found in the following articles:
Bennett, "Audio Filters for Eliminating QRM," QST, July, 1949.
Berry, "Filter Design for the Single-Sidehand Transmitter," QS'T', June, 1949.
Buchheim, "Low-Pass Audio Filters," QST', Juls, 1948.
(irammer, "Pointers on Harmonic Reduction," QS'T', Ipril, 1949; "High-Pass Filters for 'TVI Reduction," QST', May, 1949.
Mam, "In Inexpensive Sideband Filter," QST, March, 1949.
Rand, "The Little slugger," QST', February, 1949.

Smith, "Premodulation Speech Clipping and Filtering," QST', February, 1946; "More on speech Clipping," QST', March, 1947.

- TUNED-CIRCUIT RESPONSE

The graph below gives the response and phase angle of a high- $($ parallel-t uned circuit.

Circuit Q is equal to

$$
2 \pi f R C^{\prime} \text { or } \frac{R}{2 \pi f L}
$$

where L and C are the inductance and capacitance at the resonant frequency, f, and R is the parallel resistance across the circuit. The curves above become more accurate as the circuit Q is higher, but the error is not especially great for values as low as $Q=10$

VOLTAGE DECAY
 IN $R C$ CIRCUITS

The accompanying chart enables calculation of the instantaneous voltage acrosis the termi-

nals of a cundenser discharging through at resistance. The voltage is given in terms of percentage of the voltage to which the condenser is initially charged. To obtain the voltage-decay time in seconds, multiply the factor $(t / C R)$ by the time constant of the re-sistor-condenser circuit.

Example: $10,01-\mu$ id. condenser is charged to $1: 50$ volts and then allowed to diseharge through a 0.1-1megohm resistor. How long will it take the voltage to fall to 10 volte.? In percentage, $10 / 1: 00=$ 6.7%. Firon the chart, the factor corresponding to $\mathbf{6 . 7 \%}$, is 2.7 . 'The time eonstant of the eirenit is equal to $C R=0.01 \times 0.1=0.001$. The time is therefore $2.7 \times 0.001=0.0027$ second, or 2.7 milliseconds.

Erample: An RC eircuit is desired in which the reltape will fu!l to 50 of of the intial value in 0.1 speond, From the chart, $t / C R=0.7$ at the $50 \%-$ voltage point, Therefore $C R=1 / 0.7=0.1 / 0.7=$ 1,43. Any combination of resistance and capacitance whose product (R in meqohms and C in mierofarads) is equal to 1,43 can he used; for example, C could be $1 \mu \mathrm{fd}$, and $R 1,43$ megohns.

GERMANIUM CRYSTAL DIODES

Type	Max. Inverse Volfs	Peak Rectif'd Ma.	Max. Surge Ma.	Max. Reverse μ-Amp.	Max. Average Mo.	Freq. Range Mc.	Type	Max. Inverse Volis	$\begin{gathered} \text { Peok } \\ \text { Rectif'd } \\ \text { Mo. } \end{gathered}$	Max. Surge Mo.	Max. Reverse μ-Amp.	Max. Averege Ma.	Freq. Range Mc.
IN34	60	150	500	$\begin{aligned} & 50 \text { (t) } 10 \mathrm{~V} \text {. } \\ & 800 \text { (a) } 50 \mathrm{~V} \text {. } \end{aligned}$	40	0-100	$\begin{aligned} & \text { IN52 } \\ & \text { G5D } \end{aligned}$	85	150	400	150 (i, 50 V	50	-
1N351	50	60	100	10 (a) 10 V	22.5	0-100	1N54	35	150	500	10 (a, 10 V	40	0-100
IN38	100	150	500	$\begin{array}{r} 6(a 3 V \\ 625 \% 100 \mathrm{~V} . \end{array}$	40	0-100	1N55	150	150	500	$\begin{aligned} & 300 \text { (} 100 \mathrm{~V} \\ & 800 \text { (} 150 \mathrm{~V} . \end{aligned}$	40	0-100
1N39	200	150	500	$\begin{aligned} & 200(\omega, 100 \mathrm{~V} \\ & 800(a) 200 \mathrm{~V} . \end{aligned}$	40	0-100	1N56	40	200	1000	300 (a, 30 V .	50	0-100
$1 \mathrm{NAO}^{\text {- }}$	25	60	100	50 (a) 10 V	22.5	0-100	1N57	80	150	500	500 (f) 75 V	40	0-100
1 N4 ${ }^{2}$	25	60	100	50 (a) 10 V .	22.5	0-100	1N58	100	150	500	(a, 100 V	40	0-100
1N42 ${ }^{\text {2 }}$	50	60	100	$\begin{aligned} & 6(\text { (4, } 3 \mathrm{~V} . \\ & 625 \text { (e) } 100 \mathrm{~V} . \end{aligned}$	22.5	0-100	$\begin{aligned} & \text { IN63 } \\ & \text { G5E } \end{aligned}$	125	150	400	50 (a, 50 V .	50	-
$\begin{aligned} & \text { iN48 } \\ & \text { G5 }^{3} \end{aligned}$	85	150	400	833 (a) 50 V	50	-	IN64 G5F ${ }^{3}$	20	Specially designed for use as second defector in Tel. receivers.				-
$\begin{aligned} & \text { 1N5 } \\ & \mathbf{G S C}^{3} \end{aligned}$	50	100	300	1667 (1) 50 V	25	-	$\begin{aligned} & \text { IN65 } \\ & \mathbf{G 5} \mathbf{G}^{3} \end{aligned}$	85	150	400	i200@30 V	. 50	-
							673	5	U.H.F. receiver mixer diede, Sensitivity 4-8 $\mu \mathrm{v}$. Noise index $\mathbf{2 . 5 - 5} \mu \mathrm{v}$.				100-1000

Ratings given are for individual diodes. Average life is over 10,000 hours. Ambient temperature range for all types $-50^{\circ} \mathrm{C}$. to $+75^{\circ} \mathrm{C}$. A verage shunt capacitance $-0.8 \mu \mu \mathrm{fd}$.
${ }^{1}$ Matched dual diode. $\quad{ }_{2}$ Unit has four matehed diodes. $\quad{ }^{3}$ Manufactured by (iE. Other units by sylvania,
MINIATURE SELENIUM RECTIFIERS

Monufacturer	Type Number	Mox. A.C. Volts	Peak Inverse Volts	Peak Current Ma.	Max. R.M.S. Mo.	Max. D.C. Output Ma.	Rectifier Service
Federal Telephone ond Radio Corporation	402D3200	117	380	-	-	50	Holf-Wove
*	$\begin{aligned} & \text { 402D2788 } \\ & \text { 402D3150A } \end{aligned}$	117	380	900	220	75	Half-Wove
"	$\begin{aligned} & \text { 403D2625 } \\ & \text { 403D2625A } \end{aligned}$	117	380	1200	325	100	Holf-Wave
"	402 D 3151	18	-	-	-	100	Holf-Wove
"	402D3239A	160	-	-	-	75	Doubler
"	403D3240A	160	-	-	-	100	Doubler
General Electric Co.	6RS5GH2	117	380	650	163	65	Holf-Wave
"	6RS5GHI	117	380	750	187	75	Holf-Wove
Rodio Receptor Company, Ine.	511	117	380	-	-	75	Holf.Wove
"	5 Ml	117	380	-	-	100	Half-Wave
\#Circular plates-discontinued.							

INDUCTIVE AND CAPACITIVE REACTANCE VS. FREQUENCY CHART

By we of the chart alone, the approximate reactance of any caparitance from $1.0 \mu \mu \mathrm{fl}$. In 10 ffl at any frequency from 100 egcles to 100 megacycles, or the reactance of any inductance from $0.1 \mu \mathrm{~h}$. to 1.0 henry, can be read directly. Intermediate values can he estimated hy interpolation In making interpolationo, remember that the rate of change between lines is logarithmic. I se the frequene: or reactance scales as a guide in estimating intermediate values on the capacitance or inductance scalra.

This chart also can be nsed to find the approximate reanance frequencies of $L C$ combinations, or the frequency to which a given coit-and-condenser combination will tune. First lorate the respective slanting lines for the capacitance and induetance. The point where they intersert, i.e., where the reactances are equal, is the resonant frequency (projected downward and read on the frefueney scale).

ELECTRICAL CONDUCTIVITY OF METALS

	ELECTRICAL CONDU	
	$\begin{gathered} \text { Relative } \\ \text { C'unducticity' } \end{gathered}$	Temp.Coef. ${ }^{2}$ (f) Resivtance
Aluminum (2s; pure)	59	0.6049
Aluminum (alloys):		
soft-annealed.	1.-50	
Heat-treated	$30-45$	
Brass.	28	$0.002-0.005$
Cadmium.	$1!$	
Chromiun.	53	
Climax.	1.83	
Cobalt.	16.3	
Constantin.	3.24	0.00002
Copper (hard drawn)	89.5	0.004
Copper (annealed)	100	
Everdur.....	${ }_{6}$	
German Silver (18\%)	5.3	0.00019
Gold.	65	
Iron (pure)	17.7	0.006
Iron (cast)	2-12	
Iron(wrought).	11.4	

${ }^{1}$ At $20^{\circ} \mathrm{C}$. hatsed on copper as 100 , "1'er ${ }^{\circ} \mathrm{C}$. at $20^{\circ} \mathrm{C}$.

I,	7	0.0041
Manganin	3.7	0.00002
Mercury	1.66	0.00089
Molybdenum	33.2	0.0033
Monel.	4	0.0019
Niehrome	1.45	0.00017
Nickel.	12-16	0.005
Phosphor Bronze	36	0.004
Platinum	15	
Silver	106	0.004
Steel.	3-15	
Tin.	13	0.0042
Tungsten	28.9	0.0045
	28.2	0.0035

Approrimate relations:
An increase of 1 in A. W. (i. or B. \& S. wire size increases resistance 25%.
An increase of 2 increases resistance 60%
In increase of 3 increases resistance 100%.
In increase of 10 increases resistance 10 times.

INDUCTANCE, CAPACITANCE AND IFREQUENCY CHART - 1.5-40 MC.

This chart may lee used to find the values of indurtance and capacitance required to resonate at any given frequency in the medium- or high-frequency range: or, conversely, to find the frequency to which any given coilcondenser combination will tune. In the example shown by the dashed lines, a condenser has a mininume capacitance of $15 \mu \mu \mathrm{fd}$. and a maximum capacitance of $50 \mu \mu \mathrm{fd}$. If it is to be used with a coil of $10-\mu \mathrm{h}$. inductance, what frequencs range will be covered!' The straightedge is connected between 10 on the left-hand scale and 15 on the right. giving 13 Me. as the high-frequency limit. Keeping the straightedge at 10 on the left-hand scale, the other end is swneng to 50 on the right-hand scale, giving a low-freqnency limit of $\overline{7.1} \mathrm{Mc}$. The tuning range would, therefore, be from 7.1 Mc . to $13 \mathrm{Mic}$. , or 7100 kc . $1013,010 \mathrm{ke}$. The center seale also serves to convert frequeney to wavelength.

The range of the ehart can be extended by multiplying each of the seales by 0.1 or 10 . In the example above, if the capacitances are 150 and $5(6) \mu \mu \mathrm{fd}$. and the inductance $1(6)$ uh., the range becomes approximately 231 io 122 meters or 0.7 to 1.3 Mc . Alternatively, 1.5 to $.5 \mu \mu \mathrm{ft}$. and $1 \mu \mathrm{~h}$. will give a range of approximately 71 to 130 Mc .

COPPER-WIRE TABLE

Gauge No. B. \& S.	Diam. in Mils ${ }^{1}$	Circular Mil Area	Turns per Linear Inch ${ }^{2}$				Turns per Square Inch ${ }^{2}$			Feet per Lb.		$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \mathrm{ft} . \\ 25^{\circ} \mathrm{C} . \end{gathered}$	Current ('arrying Capacily at $1500 \mathrm{CL} . \mathrm{M}$. per Amp. ${ }^{3}$	Diam. in $m m$.	Nearest British S. U'G. No.
			Enamel	S.S.C.	$\begin{aligned} & \text { D.S.C. } \\ & \text { or } \\ & \text { S.C.C. } \end{aligned}$	D.C.C.	S.C.C.	Enamel $S . C . C$	D.C.C.	Bare	D.C.C.				
1	289.3	83690	-	-	-	-	-	-	-	3.947	-	. 1264	55.7	7.348	1
2	257.6	66370	-	-	-	-	-	-	-	4.977	-	. 1594	44.1	6.544	3 -
3	229.4	52640	-	-	-	-	-	-	-	6.276	-	. 2009	35.0	5.827	4
4	204.3	+1740	-	-	-	-	-	-	-	7.914	-	.2533	27.7	5. 189	5
5	181.9	333100	-	-	-	-	-	-	-	9.980	-	. 3195	22.0	4.621	7
6	162.0	26250	-	-	-	-	-	-	-	12.58	-	. 4028	17.5	4.115	8
7	144.3	20820	-	-	-	-	-	-	-	15.87	-	. 1080	13.8	3.668	9
8	128.5	16:510	7.6	-	7.4	7.1	-	-	-	20.01	19.6	.1640.5	11.0	3.264	10
9	114.4	13090	8.6	-	8.2	7.8	-	-	-	25.23	24.6	. 8077	8.7	2.906	11
10	101.9	10380	9.6	-	9.3	8.9	87 \%	84.8	80.0	31.82	30.9	1.018	15.9	2.888	12
11	90.74	82.34	11.7	-	10.3	9.8	110	10.5	97. 5	40.12	38.8	1.284	5.5	2.305	13
12	80.81	(6i3)	12.0	-	11.5	10.9	136	131	121	(1). 59	48.9	1.619	4.4	2.053	14
13	71.96	5178	13.5	-	12.8	12.0	170	112	150	63.80	61. 5	2.042	3.5	1.828	1.5
14	64.08	4107	15.0	-	14.2	13.8	211	198	183	80.44	77.3	2.575	2.7	1,628	16
15	57.07	32:57	16.8	-	15.8	14.7	26^{2}	250	223	101.4	97.3	3.247	2.2	1.450	17
16	30.82	25\%3	18.9	18.4	17.9	16.4	321	306	271	127.9	119	4.094	1.7	1.291	18
17	45.26	20148	21.2	21.2	1!9.9	18.1	347	372	32:	161.3	150	5. 16i3	1.3	1.150	18
18	40.30	$16: 24$	23.6	23.6	22.0	19.8	413	454	399	2013.4	188	6.510	1.1	1.124	19
19	35. 89	1288	26.4	26.4	24.4	21.8	509	553	479	256.5	237	8.210	. 81	. 3116	20
20	31.96	1022	29.4	29.4	27.0	23.8	77.5	725	625	323.4	298	10.35	. 68	. 8118	21
21	28.46	810.1	33.1	32.7	29.8	26.0	940	845	754	407.8	370	13.05	. 54	. 7230	22
22	25.35	$6 i+2.4$	37.0	36.5	34.1	30.0	1150	1070	910	814.2	461	16.46	. 43	. 14.38	23
23	22.57	504. 5	41.3	40.6	37.6	31.6	1400	1300	1080	64.8 .4	584	20.76	. 34	. 5733	24
24	20. 10	414.0	46.3	45.3	+1.is	35.6	1700	1570	1260	817.7	745	26.17	. 27	. 5106	25
2.5	17.90	320.4	51.7	50.4	45.6	38.6	2060	1910	1510	1031	(103	33.00	.21	. 4547	26
26	15.94	2:4. 1	88.0	is.). 6	50.2	41.8	2.00	23100	1750	1300	1118	41.122	. 17	. 4044	27
27	14.20	201.5	¢54.9	61.5	55.0	45.0	3030	2780	2020	1639	1422	5 B . 48	. 13	. 3606	29
28	12.64	150.8	72.7	68.6	(i). 2	48.5	3670	33850	2310	2068	1759	66.17	. 11	. 3211	30
29	11.26	126.7	81.6	74.8	(6). 4	81.8	4300	$39(6)$	$27(6)$	2607	2207	83.44	. 084	. 2859	31
30	10.03	100.5	90.5	83.3	71.5	55.5	5040	4660	3020	$3: 287$	25.34	105.2	. 0667	.2546	33
31	8.928	79.70	101	92.0	77.5	51.2	5920	5280	-	4145	2768	132.7	. 0.5	. 2268	34
32	7.950	63.21	113	101	83.6	62.6	7060	(i2:0)	-	522\%	3137	16i\%.3	. 042	. 2019	36
33	7.080	50.13	127	110	90.3	$66^{6} .3$	8120	7360	-	6391	41897	211.0	.033	. 1798	37
34	6.305	39.75	143	120	97.0	70.11	9660	8310	-	8310	(il68	2666.0	. 026	. 1601	38
35	5.615	31.52	158	132	104	73.5	10900	8700	-	10480	17837	3335.0	. 021	. 1426	38-39
36	5.000	25.00	17.5	143	111	77.0	12200	10700	-	13210	7877	423.0	. 017	. 1270	39-40
37	4.453	19.83	198	154	118	80.3	-	-	-	16660	9309	5333.4	.013	. 1131	41
38	3.965	15.72	224	166	126	83.6	-	-	-	21010	10titis	672.6	. 010	. 1007	42
39	3.531	12.47	248	181	133	86.6	-	-	一	26500	11007	848.1	. 008	. 0897	43
40	3.145	9.88	282	194	140	89.7	-	-	-	33410	14222	1069	. 006	. 0799	44

[^7]

LETTER SYMBOLS FOR VACUUM-TUBE NOTATION

Grid potential
Grid current
Gride conductance
Grid resistance
Grid bias voltage
Plate potential
Plate current
Plate conductanco
Plate resistance
Plate supply voltage
Cathode current
Emission current

$l_{\text {c }}, e_{s}$	Mutual conductance	g_{n}
I_{k}, i_{g}	. Amplification factor	μ
(f)	Pilament terminal voltage	E_{f}
t_{k}	Fiament current	/1
He	(irid-plate capacitance	$\mathrm{f}^{\prime \prime}{ }_{\mathrm{g}}$
$b_{p} e_{10}$	(irid-cathode capacitance	${ }^{\prime}{ }^{\prime \prime}{ }^{\prime}$
I_{1}, I_{1}, i_{1}	late-cathode capacitance	$\theta_{1,1 \mathrm{k}}$
9^{1}	(rid capacitance (input)	$C_{0}^{\prime \prime}$
${ }_{r}$	Plate capacitance (output)	$C_{\text {p }}$
Eb		
1 c	Note. - small letters refer to instantancous values.	
I.		

greek alphabet			THE R-S-T SYSTEM
Greek Lettor	(irrek Aıme	$\begin{aligned} & \text { Einglish } \\ & \text { Equivalent } \end{aligned}$	1 - Unreadable - Barely readable, occasional words distinguish. able.
${ }_{\text {A a }}$	Alpha	${ }^{\text {a }}$	$\begin{aligned} & 4 \text { - Readable with practically no difficulty. } \\ & 5 \text { - Perfectly readable. } \end{aligned}$
$\stackrel{\text { B } \beta}{ }$	${ }_{\text {Beta }}^{\text {Beama }}$		signal strength
$\underset{\Delta}{\text { F } \gamma}$	${ }_{\text {comma }}^{\text {Camma }}$	${ }_{\text {g }}$	
${ }_{\text {e }}{ }^{\text {e }}$	Epsilon	d	$2-$ Very eeak signals. $3-$ Weaks igignas.
25	Zeta	${ }^{2}$	
11%	Eta	${ }_{\text {é }}^{\text {e }}$	${ }^{\text {a }}$, Fairiy youn siknals.
${ }^{\ominus \theta}$	Theta	${ }_{\text {th }}$	${ }^{7}$ 7- Moderately strove signals.
$\mathrm{K}^{2}{ }_{k}$	Kıappa	k	${ }_{9-\text { Extremely }}$
${ }^{1 \lambda}$	L, ambda	1	Tone
M μ	Mu	m	
$\stackrel{\mathrm{N}}{\mathrm{N}} \boldsymbol{\square}$	Xi	n	
	${ }_{\text {Omieron }}$	${ }_{8}^{\text {x }}$	
11 \%	$\stackrel{\mathrm{Pi}}{\mathrm{P}}$	p	6- Moduluted note, stight trace of whistle.
$\underset{\sim}{\text { P\% }} \boldsymbol{\sim}$	Rho		
${ }_{T}{ }_{\text {r }}$	Tau	;	
${ }_{\text {r }}$	Tpsilon	${ }^{1}$	
${ }^{\text {中 }} \times{ }_{x}$	${ }_{\text {Plii }}^{\text {Phi }}$	${ }_{\text {ch }}^{\text {ch }}$	If there iss a chirry the teter C may be added to to
\% ${ }_{4}$	${ }_{\text {Psi }}$	$\frac{\mathrm{ps}}{\overline{0}}$	reporting systert is used on both c.w. and voice, leaving out the " tone report on voice.
12ω	Omera		

SIGNALS
Given below are a number of Q signals whose meanings most often need to be expressed with brevity and clearness in amateur work. (Q abbreviations take the form of questions only when each is sent followed hy a question mark.)

QRG Will you tell me my exact frequency (or that of.......)? Your exact frequency (or that of.) is.......ke.
QRH Does my frequency vary? Your frequency varies.
QRI How is the tone of my transmission? The tone of your transmission is (1. (iood; 2. Variable; 3. Bad).

QRK What is the readability of my signals (or those of.)? The readability of your sipnals (or those of.....) is.... (1. Lnreadable; 2. Readable now and then; 3. Readable but with difficulty; 4. Readable; 5. Perfectly readable).
QRL. Are you busy? I am busy (or I am busy with). Please do not interfere.
QRM Are you being interfered with? I am interfered with.
QRN Are you troubled by static? I am being tronbled by static.
QRQ Shall I send faster? Send faster (...... words par min.).
(2Rs , hall I send more slowly? Send more slowly (... w.p.m.).

QRT Shall I stop sending? Stop sending.
QRL Have you anything for me? I have nothing for you.
QRV Are you ready? I am ready.
QRW shall I tell....that you are calling him on . kc.? Please inform.that I am calling him on. . . . ke.
QRX When will you call me again? I will call you again at. hours (on. kc.).
QRZ Who is calling me? You are being called by (on.......kc.).
QSA What is the strength of my signals (or those of)? The strength of your signals (or those of) is...... (1. Scarcely perceptible: 2. Weak; 3. Fairly good; 4. Good; 5. Very good).
QSB Are my signals fading? Your signals are fading.
QSD Is my keying defective? Your keying is defective.
Qsici shall I send.....messages at a time? Send.... messages at a time.

QSL. Can you acknowledge receipt? I ain acknowledging receipt.
QSM Shall I repeat the last message which I sent you, or some previous message? Repeat the last message which you sent me [or message(s) number(\mathbf{s}).].
QSO Can you communicate with... direct or by relay? I can communicate with. direct (or by relay through.....).
QSP Will you relay to ? I will relay to.....
QSV Shall I send a series of Vs on this frequency (orke.)? Send a series of Vs on this frequency (or.ke.).
QSW Will you send on this frequency (or on....ke.)? I am going to send on this frequency (or on ke.).
QSX Will you listen to..... on kc. $?$ I am listening, to...... on..... kc.
QSy shall I change to transmission on another freguency? Change to transmission on another frequency (or on. ...ke.).
QSZ Shall I send each word or group more than once? send each word or group twice (or.... times).
QTA shall I cancel message number.... as if it had not leen sent? Cancel message number. . . . as if it had not been sent.
QTM Do you agree with my counting of words? I do not agree with your counting of words; I will repeat the first letter or digit of each word or group.
QTC How many messages have you to send? I have.... messages for you (or for.).
QTH What is your location? My location is....
QTR What is the exact time? The time is......
Special abbreviations adopted by ARRL:
QST General call preceding a message addressed to all amateurs and ARRL members. This is in effect "CQ ARRL."
QRRR Official ARRL "land sOs." A distress call for emergency use only by a station in an emergency situation.

CHAPTER 24

ABBREVIATIONS FOR C.W. WORK

Abbreviations help to cut down unnecessary transmission. However, make it a rule not to abbreviate unnecessarily when working an operator of unknown experience.

AA	All after	NW	Now; I resume transmission
AB	All before	OB	Old boy
ABT	About	OM	Old man
ADR	Address	OP-OPR	Operator
AGN	Again	OSC	Oscillator
ANT	Antenna	OT	Old timer; old top
BCI	Broadcast interference	PBI,	Preamble
BCL	Broadcast listener	PSE-PJ,	Please
BK	Hreak; break me; break in	PWR	Power
BN	All between; been	PX	Press
B4	Reforc	H	Kereived solid; all right; OK; are
C	Yes	RAC	Kectified alternating current
CFM	Confirm; 1 confirm	RCD	Received
CK	Check	REF	Refer to; referring to; reference
CI.	I am closing my station; call	RPT	Repeat; I repeat
CLD-CLG	Called; calling	SED	Said
CLD	Could	SEZ	Says
CLL	see you later	SIG	Signature; signal
CUM	Cone	SINE	Operator's jersonal initials or nickname
CW	Continuous wave	SKED	Schedule
DLD-DLVD	Delivered	SRI	Sorry
DX	Distance	SVC	Service; prefix to service mexsage
ECO	Electron-coupled uxcillator	TFC:	Traffic
FB	Fine business; excellent	TMW	Tonorrow
G. $\mathrm{B}^{\text {a }}$	Go ahead (or resume sending)	TNX-TKS	Thanks
GB	Goord-by	TT	That
GBA	Qive hetter address	TC	Thank you
GE	Cood evening	TXT	Text
Gi	Going	IR-LRS	Vour; you're; yours
GM	((ood morning	VFO	Variable-frequency oxcillator
GN	Good night	VY	Very
GiND	Ground	WA	Word after
GUD	Goorl	WH	Word before
HII	The telegraphic laugh; high	WD-WDS	Word; words
H12	Here; hear	WKD-WKG	Worked; working
HV	Have	WL	Well; will
HW	How	W゙しD	Would
IID	A poor operator	WX	Weather
MILS	Milliamperes	NMTR	Transmitter
MSG	Message; prefix to radiogram	XTAL	Crystal
N	No	IF(XYL)	Wife
ND	Nothing doing	YL	Young lady
NIL	Nothing; I have nothing for you	73	Best regards
NR	Number	88	Love and kisses

W PREFIXES BY STATES

Alabama W4 Wø
W7 Nevada Arizona.
N W7
W5
Arkansas New Hampshire W1
California W6 New Jersey W2
Colorado Wø New Mexico W5
Connecticut W1 New York. W2
Delaware W3 North Carolina W4
District of Columbia W3 North Dakota Wo
Florida W4 Ohio W8
Georgia W4 Oklahoma W5
Idaho W7 Oregon W7
Illinois W9 W9
Indiana.
Indiana. W3
Rhode Island W1
lowa Wg
Kiansas W \emptyset
lientucky W4
l.ouisiana W 5
Maine W
Maryland W3
Massachusetts W1
Michigan
Michigan W8 W8
Minnesota.
Minnesota. W W
Mississippi W
Missouri
South Carolina W4
South Dakota W0
Tennessee W4
Texas W5
Utah W7
Vermont W1
Virginia W 4
Washington W7
West Virginia W8
Montana
W7 Wyoming W9
Wisconsin W7

INTERNATIONAL PREFIXES

Below is the list of prefixes assigned to the countries of the world by the 1947 International Telecommunications Conference at Atlantic City. These assignments became effective on January 1, 1949.

AAA-ALZ	United States of America	RAA-RZZ	Union of Soviet Socialist Republics
AMA-AOZ	(Not allocated)	SAA-SMZ	Sweden
APA-ASZ	Pakistan	SNA-SRZ	Poland
ATA-AWZ	India	SSA-SCZ	Egypt
AXA-AX2	Commonwealth of Australia	SVA-sZZ	Greece
AYA-AZ7	Argentina Republic	TAA-T'C	Turkey
BAA-BZZ	China	TDA-T'DZ	Guatemala
CAA-CEZ	Chile	TEA-TEZ	Costa Rica
CFA-CKZ	Canada	TFA-TF\%	lceland
CLA-CMZ	Cuba	TGA-TM\%	Guatemala
CNA-CNZ	Morocco	THA-THZ	France and Colonies and Protectorates
COA-COZ	Cuba	TIA-TIZ	Costa Rica
CPA-CPZ	Bolivia	TJA-TZ/	France and Colonies and Protectorates
CQA-CRZ	Portuguese Colonies	UAA-C'QZ	Enion of Soviet Socialist Reputhics
CSA-CUZ	Portugal	URA-C"TZ	Ukrainian Soviet Socialist Republic
CVA-CXZ	Uruguay	UUA-UZZ	Union of Soviet Socialist Republics
CYA-CZZ	Canada	VAA-V(3Z	Canada
DAA-DMZ	Germany	VHA-VN2	Commonwealth of Australia
DNA-DQZ	Belgian Congo	VOA-VOZ	Newfoundland
DRA-DTZ	Bielorussian Soviet Socialist Republic	VPA-VsZ	British Colonies and Protectorates
DUA-DZZ	Republic of the Philippines	VTA-VW\%	India
EAA-EHZ	Spain	VXA-VYZ	Canoda
EIA-EJZ	Ireland	VZA-VZZ	C'ommonwealth of Australia
EKA-EKZ	Union of Soviet Socialist Republics	WAA-WZZ	United States of America
ELA-EIL	Republic of Liberia	NAA-NT\%	Mexico
EMA-EOZ	Union of Soviet Socialist Republics	N.JA-NOZ	Canada
FPPA-EQZ	Iran	X1'A-N12	Denmark
ERA-ERZ	Union of Soviet Socialist Repuhlica	NQA-NRZ	(chile
ENA-ESZ	Estonia	NsA-Xs\%	('hina
ETA-ETZ	Ethiopa	入TA-XW\%	Prance and Coloniew and Protectorates
ELA-EZZ	C'nion of Soviet Socialist Republics	NXA-NX\%	Portuguese Colonies
1゙AA-FZK	France and Colonies and Protectorates	XYA-N\%\%	Burma
GAA-GZZ	Great Britain	Y-A-Y.1Z	Afghanistan
IIAA-HAZ	Hungary	YRA-Y11Z	Vetherlands Indies
HBA-HEZ	switzerland	YIA-YIZ	Irac
HCA-HDZ	Ecuador	Y.JA-Y.JZ	New Hebrides
IIEA-HEZ	switzerland	YKA-YKZ	Syria
11FA-1IFZ	Poland	YLA-YL/	Latvia
116A-HCZZ	HIungary	YMA-YMZ	Turkey
11HA-HHZ	Republic of Haiti	YNA-YNZ	Nicaragua
HIA-H12	Dominican Republic	YOA-YRZ	Roumania
1HJA-HKZ	Republic of Colombia	YsA-Y's\%	Republic of El Salvador
HLA-HMZ	Korea	YTA-Yt\%	Yugoslavia
INNA-HNZ	Iraq	YVA-YYZ	Venezuela
HOA-HPZ	Kepublic of Punama	YZA-YZZ	Yuposlavia
HQA-HRZ	Republic of Honduras	ZAA-ZA\%	Albania
IISA-IISZ	Siam	ZBA-Z.IZ	British Colonies and Protectorates
HTA-HTZ	Nicaragua	ZKA-ZMZ	New Zealand
HUA-HLZ	Republic of El Salvador	ZN.1-70\%	British Colonies and Irotectorates
HVA-HIVZ	Vatican City State	ZP'.1-ZI'Z	Paraguay
IIWA-IIYZ	France and Colonies and Protectorates	ZQ.A-ZQZ	British Colonies and I'rotertorates
112A-1127	Kingdom of Saudi Arahia	ZRA-ZI\%	Inion of South Mírica
1AA-IZZ	1 taly and Colonjes	ZVA-ZZZ	Brazil
JAA-JN\%	Japan	2AA-2Z\%	Gireat Mritain
JTA-JV\%	Mongolian People's Republic	3AA-3AZ	Principality of Monaco
JWA-JNZ	Norway	3BA-3FZ	Canada
JYA-JZZ	(Not allocated)	3GA-3GZ	Chile
KAA-KZZ	United States of America	3IIA-3L ${ }^{\text {d }}$	China
LAA-INZ	Norway	3VA-3V\%	France and Colonies and Protectorates
1.OA-LWZ	Argentina Republic	3WA-3NZ	(Not allocated)
1NA-LXZ	Iuxemboung	3YA-3YZ	Norway
LYA-LYZ	Sithuania	3ZA-3ZZ	Poland
1.ZA-LZZ	Bulgaria	$4 \mathrm{AA}-1 \mathrm{C} / \mathrm{Z}$	Mexico
MAA-MZZ	Gireat Britain	4DA-4IZ	Republic of the Philippines
NAA-NZZ	Cnited States of America	4JA-41. Z	Lnion of Soviet Socialist Republics
OAATOCZ	Peru	4MA-4MZ	Venezuela
ODA-ODZ	Kepublic of Lebanon	4NA-40Z	Yugoslavia
OEA-OLZ	Austria	4PA-4SZ	British Colonies and Protectorates
OFA-OJZ	Finland	4TA-4TZ	Peru
OKA-OMZ	Czechoslovakia	4UA-4CZ	United Nations
ONA-OTZ	Belgium and Coloniea	4VA-4VZ	Republic of Haiti
OUA-OZZ	Denmark	4WA-4WZ	Yemen
PAA-PIZ	Netherlands	4XA-4ZZ	(Not allocated)
PJA-PJZ	Curacao	5AA-5ZZ	(Not allocated)
PKA-POZ	Netherlands Indies	6AA-fZZ	(Not allocated)
PPA-PYZ	Brazil	7AA-7ZZ	(Not allocated)
PZA-PZZ	Surinam	8AA-8ZZ	(Not allocated)
QAA-Q2Z	(Servicc abbreviations)	9AA-9ZZ	(Not allocated)

A.R.R.L. COUNTRIES LIST

Official List for ARRL DX Contest and the Postwar DXCC

Aden and Socotra Island. YS9	Gilbert \& Ellice Islands and	Peru
Afghanistan. YA	Ocean Island. VRI	Philippine Islands DU
Alaska. KL7	Goa (Portuguese India). CR8	Phoenix Islands (British)...... . VR 1
Albania......................... . Z A	Gold Coast (and British	P'itcairn Island. VRG
Aldabra Island	Togoland). $\mathrm{ZD4}$	Poland. SP
Algeria. FA	Greece. SV	Portugal. Cr
Andaman Ids. and Nicobar Ids...VU	Greenland OX	l'rincipe and Sao Thome Islands
Andorra. PX	Guadeloupe. FG8	Puerto Rico. KP4
Anglo-Egyptian Sudan. ST	Guantanarno Bay KG4	Reunion Island FR8
Angola.....CR6	Guatemala...................... TG	Rhodesia, Northern. ${ }^{\text {V2 }}$
Antarctica	Guiana, British... ${ }^{\text {Pr}}$	Rhodesia, Southern.7.
Argentina.. LU	Guiana, Netherlands (Surinam)...PZ	Rio de Oro.
Ascension Island. ZD8	Guiana, French, and Inini. FY8	Roumania... $\mathbf{Y R}$
Australia (including Tasmania)...lV	Guinea, Jortuguese. CRJ	Ryukyu Islands (e.g., Okinawa). KR6
Austria. ($11 \mathrm{B9}$). . OE	Guinea, Spanish.	St. Helena. 7 D77
Azores Istands. CT2	Haiti... HH	Salvador. Ys
Bahanıa Islands VP7	Hawaiian Islands. KH6	Samoa, American KS6
Bahrein Island VU7	IIeard Island VKI	Samoa, W'estern......... $/$ MI
Baker Island, How-land Island and	Honduras. HIR	San Marino. MI
Am. Phoenix Islands. KB6	Honduras, British. ${ }^{\text {Pr }}$	Sarawak. VS5 $^{\text {S }}$
Balearic Islands. EA6	Hong Kong. VS6	Sardinia. IS
Barbados. VP6	Hungary. HA	Saudi Arabia (Hedjaz and Nejd). .HZ
Basutoland. 288	Iceland. Tr	Scotland. GMI
Bechuanaland. 7 S9	Ifni	Seychelles. Q9 $^{\text {a }}$
Belgian Congo 0 OQ	India. 1 UU	Siam. MS
Belgium. ON	Iran. EP-EQ	Sierra Leone $/ 7 \mathrm{D}$ I
Bermuda Islands VP9	Irag. Y \mathbf{Y}	Sikkim. AC3
Bhutan	Ireland, Northern. GI	Solomon Islands 1 R4
Bolivia. CP	Isle of Man. GD	Somaliland, British. JQ6
Bonin Istands and Volcano	Israel . 4 4 4	Somaliland, French. FI,
Islands (e.g., Iwo Jina).	Italy	Somaliland, Italian (MD4)
Borneo, British North...	Jamaica. ${ }^{\text {P }}$ P5	South Georgia. V1'8
Borneo, Netherlands. PK5	Jan Mayen Islan	South Orkney Islands. 1 M
Brazil . PY	Japan......	South Sandwich Islands. P8
Brunei . Vis	Jarvis Island, Palmyra group	South Shetland Islands VP8
Bulgaria. LZ	(Christmas Island) KP'6	Southwest Africa. \qquad
Burma. XZ	Java. ${ }^{\text {PK }}$	Soviet Union:
Carneroons, Firench FE8	Johnston Island. KJ6	European Russian Socialist Fed-
Canada....................... VE	Kenya. VQ4	erated Soviet Republic U.A1-3-4-1;
Canal Zone. KZ, 5	Kerguelen Islands.	Asiatie Russian S.F.S.R.... U.A9-0
Canary Islands EA8	Korea. HL	Ukraine. ${ }^{\text {CB5 }}$
Cape Verde IslandsCR4	Kuwait	White Russian Soviet Socialist
Caroline Islands KC6	Laccadive Islands. VU4	Republic. UC
Cayman Islands VP5	Lebanon...................... AR8	Azerbaijan UD6
Celebes and Molucea Islands. . . . PK6	Leeward Islands. VP2	Georgia. UF6
Ceylon. V'S7	Liberia . EI,	Armenia.................... UG6
Chagos Islands. VQ8	Iibya. (MD1-2). LH I	Turkoman. UH8
Channel Islands GC	Liechtenstein HE]	Uzbek. U18
Chile . CE	Luxembourg. LX	Tadzhik CJ8
China B, C	Macau. CR9	Kazakh UL7
Christnas Island. ZC 3	MacQuarie Island VKl	Kirghiz................ U.18
Clipperton Island	Madagascar... FB8	Karelo-rinnish Republic. UNi
Cocos Island. TTI	Madeira Islands. CT3	Moldavia. UOS
Cocos Islands ZC2		Lithuania. UP $^{\text {P }}$
Colombia HK	Maldive Islan	Latvia. LQ
Comoro Islands	Malta. Z B1	Estonia UR
Cook IslandsZKI	Manchuria. 69	Spain. EA
Corsiea.... FC	Marianus Islands (Guanı) KG6	Sumatra. PR4
Costa Rica. TI	Marion Island (Prince Edward	Svalbard (Spitzbergen). LA
Crete .	Island) Zs	Swan Island. KSt
Cuba. CMI-CO	Marshall Islands. KX6	Swazitand. Zs7
Cyprıs (MD7) . . ZC 4	Martinique. FM8	Sweden. SM
Czechoslovakia. OK	Mauritius. VQ8	Switzerland. HB
Denmark 0 OZ		Syria YK
Dodecanese Islands (e.g., Rhodes) SV5	Midway Istand Kll	Tanganyika Teritory Q 3
Dominican Republic. HI	Miquelon and St. Pierre	Tangier Zone. Ek
Easter Island. .	Islands. FP88	Tannu Tuva.
Ecuador. HC	Monaco. CZ	Tibet. AC4
Egypt. (MD5). . SU	Mongolian Republic (Outer)	Timor, Portuguese CR10
Eire (Irish Free State). EI	Morocco, French CN	Togoland, French. FD8
England. G	Mororro. Spanish. EA9	Tokelau (Union) Islands.
Eritres. 16	Mozambique. CR7	Tonga (Friendly) Islands. V'R
Ethiopia ET	Nepal.	Trans-Jordan..................../C'
Faeroes, The OP	Netherlands.................. PA	Trieste.
J'alkland Islands . .-. VP8	Netherlands West Indies. PJ	Trinidad and Tobago.......... VP1
Fanning Island (Christmas	New (alerdonia. Pk8	TristandaCunhand (${ }^{\text {anogh IslandZD) }}$
Island). VR3	New Gminea. Netherlands PK6	Tunisia . 3 V8
Fiji Islands VR2	New Guinea, Territory of . . . N'K9	Turkey. TA
Finland. OH		Turks and Caicos Islands........ ${ }^{\text {IPim }}$
Formosa (Taiwan) C3	New Zealand. V I,	Uganda. Vas $^{\text {a }}$
France. F	Nicaragua. $\mathbf{Y N}$	Lnion of South Africa. 2 Z
French Equatorial Africa. FQ8	Nigeria ZD2 $^{\text {2 }}$	United States of America. W, K
French India. FN		Uruguay CX $^{\text {V }}$
French Indo-China. F18	Norfolk Island Vkg	Vatican City. HV $^{\text {V }}$
Freach Oceania (e.g., Tahiti)....FO8	Norway Nyasaland . CA LA	Venezuela. KV_{4}
French Weat Africa.FF8		Virgin Islands. Kli 4
Fridtjof Nansen Land (Franz	Ornan. ${ }_{\text {PrP4 }}^{\text {Pakistan. AP9 }}$	Wake Island. WVW6
Josef Land). UA1	Palau (Pelew) Islands. AP	Windward Islands. ${ }^{\text {VP2 }}$
Galapagos Islands.	Palestine . ZC C	Wrangel Islands. .
Gambia. 2 CD 3	Panama. HP	Yemen.
Germany . D	Prpua Territory VK9	Yugoslavia.................. ${ }^{\text {IT-YU }}$
Gibraltar. 7 B2	Paraguay . VP $^{\text {P }}$	Zarzibar. VQ1

INTERNATIONAL AMATEUR PREFIXES

To make possible identification of calls heard on the air, the international telecommunications conferences assign to each nation certain alphabetical blocks, from which all classes of stations are assigned prefixes. The following prefixes are used by amateurs:

Vacuum-Tube Data

For the convenience of the designer, the re-reiving-type tubes listed in this ehapter are grouped by filament voltages and eonstruction types (glass, metal, miniature, ete.). For example, all 6.3 -volt metal tubes are listed in Table I, all lock-in base tubes are in Table III, all miniatures are in Table XI, and so on.

Transmitting tubes are divided into triodes and tetrodes-pentodes, then listed according to rated plate dissipation. This permits direct comparison of ratings of tubes in the same power classification.

For quick reference, all tubes are listed in numerical-alphatetieal order in the index begimning on the following page.

Tube Ratings

Vacuum tubes are designed to be operated within definite maximum (and minimam) ratings. These ratings are the maximum safe operating voltages and eurrents for the eleco trodes, based on inherent limiting faetors such as promissible cathode temperature, emission. and power dissipation in elect rodes.

In the transmitting-tube tables. maximum ratings for electrode voltage, current and dissipation are given separately from the typial operating conditions for the reeommended classess of operation. In the receiving-tube tables, because of space limitations, matings and operating data are combined. Where only one set of operating comditions appeatrs, the positive electrobe voltages shown (phate, sereen,
ete.) are, in general, also the maximum rated voltages for those clectrodes.

For certain air-conled transmitting tubes, there are two sets of maximum values, one designated as CCs (Continuous Commercial Service) ratings, the other ICAs (Intermittent Commercial and Amateur service) ratings. Continuous Commercial Service is defined as that type of servief in which long tube life and reliability of performance under eontimous operating conditions are the prime consideration. Intermitient Commercial and Amatear service is defined to include the many applirations where the transmitter design factors of minimum size, light weight, and maximum power output are more important than long tube life. 1 CAs ratings are considerably higher than CCS ratings. They permit the handling of greater power, and although such use involves some sacrifice in tube life, the period over which tubes will rontinue to give satisfactory performanee in intermittent serviee can be extremely long.

Typical Operating Conditions

The typical operating conditions given for transmitting tubes represent, in general, maximum IC.As ratings where such ratings have been given by the manufacturer. They do not represent the only posible method of epreration of a particular tube type. Other values of plate voltage, plate current, grid bias, ete., may be used so long as the maximum ratings for a particular voltage or current are not exeededed.

INDEX TO TUBE TABLES

I - 6.3-Volt Metal Receiving Tubes . . \quad of.

III - 7-Volt Lock-In Iase Tubes
IV - 6.3-Volt Class Recoiving Tubes. . . 569
V - 2.5-Volt Reeriving Tubes. 571
VI - 2.0-Volt Battery Receiving Tubes. $\quad 771$
VII - 2.0-Volt Battery Tubes with Octal
Bases.
572
VIII - 1.j-Volt Battery Tubes. 573
IX - High-Voltage Ileater Tubes.....
X - Special Recoriving Tubes.
. 1 - Miniature Reeriving Tubes. . . . 578
XII - Subminiature Tubes.
580
XIII - Control and Regulator Tubes.. 582
XIV - Cathode-Ray Tubes and Kine-
scopes.
383
IV-Rectifiors....................... 586
XVI - Triode Transmitting Tubes.... 388
XVII - Tetrode and Pentode Transmit-
ting Tubes. \quad. 99
NVIII - Klystrons 604
NIX - Cavity Magnetrons 60:

BASE TYPE DESIGNATIONS

The type of base used on each tube listed in the tables is indicated in the base rolumn by a letter whose meaning is as follows:

$\mathbf{M}=$ Medium
$\mathrm{N}=$ None or special type
$O=$ Octal
$\mathrm{S}=$ simall
$\mathbf{W}=\mathbf{W a f e r}$

INDEX TO VACUUM-TUBE TYPES

For convenience in locating data on specific tube types the index below lists all tubes in numerical-alphabetical order, showing the page number where individual tuben may be found in the classifieddata section (pages 565-605) and the identifying base-diagranı number in the hasediagram section (pages 558-564).

Ture	Page	Base	Type	Pave	Rasp	Type	Page	Have	rype	Paye	Base	Type	Page	Busf
	596	2 N	Mir4	581		RK4J30	605	－	12K42	573	4 D	T	0	6A
11 K 454 H	508	2 N	1164	． 581	－	RK4J40	605	－	12 K 4.	573	6C	T 40	591	31
11 Ktiod	398	2 N	2174	． 581		RK4J41	－605	－	RK44	599	613M	T05	592	3 B
II Kbin	508	2 N	N『－3c－3	． 577	Fily，3＊	RK4J43	6105		RK46	601	T－5	T60	69	2 D
IIV	597	3 N	PW340	． 603	515	RK4J44	605		RK47	6013	T－51）	T100	593	2 S
HV18	596	2 N	QK154．	601	Fig． 63	RK4J；3	－ 605	－	RK48	603	T－51）	T125．	595	2 N
1927	$5!7$	$3 \times$	RK2J2\％	． 605		RK4J：4	－605	－	RK48A	602	$T=5 \mathrm{D}$	＇9200．	597	2 N
	i88	60	RK2J ${ }^{2}$	，60\％		RK4J55	－605		12K49	600	6A	T300	597	
1191．69\％	600	7 AC	RK2J21．	－ $60{ }^{3}$		RK4Jing	605	－	RK51	519	3 C	1814．	597	3 N
1196569：	0909	7 Ac	［k2Jご\％．	． 60%		RK4J5\％	－ 60.3	－	RK5：	298	3G	T82：	597	3N
11） 24.	S88	＋i）	RK2Jこ6．	－60\％		RK4JIK	－ 60.3	二	にぐ6	509	5AW	T1335	601	Fig． 56
1105	509	36	［ K ${ }^{\text {2 J }} 27$.	－ 605	－	RK4J ${ }^{\text {a }}$	615	－	RK5	545	3 N	T1゙ジ20	589	
11130\％	$5!11$	4H6）	RK2J2	－60：		RK72．A	60\％		RKらN	5194	3N	Tw75．	593	$21)$
$11: 317$	590	$\mathrm{T}-41)$	$\mathbf{K K 2 J} 29$	．605		RK10	589	41）	いだ！	0 NH	T－4］	TW150	598	2 N
11140.	$5(1)$	36	RK2J30	$60 \overline{3}$		RK11	［101	31：	［ぐ60	587	T－4AG	＇1220	589	30
	591	36	RK2J31	－ 605	－	RK゙！	3190	31	R161	181		TZ40	501	3 （i
HY5］A	508	31	RK2J3：	－605	－	RK15	371	411	RK6\％	58.3	4 D	UF100	503	2 D
15513	502	16	12K2J：33．	． 605		RK16	531	5 A	RK6\％	207	2N	UE468	596	Fig．in
HYElz	59	4130	RK2J34．	． 605	－	RK17	． 71	S＂	RlibuA	597	2	U1135	593	3（\％
11 प\％\％．	$5!1$	36	RK2J36．	605		RKK18	390	$3{ }^{1}$	RK64	699	5．1W	L1150	591	2 D
HY60	596	SAW	R K2Ji38．	60\％	－	RK1！	537	4.10	12ヒ6\％	603	T－313C	CH51	591	2 D
H）61	600	万AW	RK2J39．	615.5		RK20	． 601	7－30	RK66	601	T－sC	70	0.93	3N
［1963	59！	T－81）	RK2J48．	605		RK20A	－601	T－${ }^{\text {a }}$	1267\％	600	T－50	Y70．	593	3 C
IY65	6010	T－81）${ }^{\text {c }}$	RK2J4！	． 60 an		RK2l	－ 587	＋1	RK100	589	6．A．	\％7013	518	3 3：
H197	602	（T－51）13	RK2J：	． 605		11628	． 587	T－1A：	RK70．5A	5887	T－3AA	vioc	293	3 C
1996	601	（T－51）	RK2Jist	． 603		［1623	－ 599	633	RK866	587	$4 P$	V701）	694	3 F
H175	：389	T	RK2J5\％	－6015		くK24	57%	$41)$	R\1208	5＊3		V1275	2N3	4AJ
1175．	589	2 T	RK2J： 6	－ 605		RK24	588	$41)$	RME30！	58.3	－	$\$ 1290$	［83	4AJ
H111：	581	5 K	RK2J 8 ．	－ 605	－	RK2j．	599	6131	S13 417.4	5 Sk		YR105	583	4.4
H111415	588	$2{ }^{2}$	RK？J61A	60.5		RK25H	599	63 l	S1）8288	582	－	Y1250	58.3	4 AJ
H1） 115	5×1	5 K	RK2J82．	60）	－	1くKご8．	603	，	S138281	582	－	Wroz		
111123.	581	iK	RK2J66	605		RK28A	603	iJJ	SN944	582		F＇127A	594	T－4 ${ }^{\text {d }}$
119120	581	5K	RK2J6á	60%	－	RK10	390	21）	SX946	582	二	W¢304A	691	
111145	581	5 K	RK2J6S	605	－	RK31	\％90	31	HN9471）	58		$\times 6030$	577	Fig． 4
119185	581	5 F	RK2J6\％	605		RK32．	59	$21)$	SNO48	582		－ CH	578	Fig．${ }^{\text {8 }}$
H1 615	588	T－8AG	RK4J31	－ 605		RK33	588	T310．	SNoz	5×2		（XI）	576	84，
H）R01A	589	41）	RK＋J32．	－605		RK34	591	21）	NNOE513	548		XXL	769	5 AC
I）866jr	587	4 P	RK4J33	6015		RK3i］		$21)$	－\times ¢5613	¢		X．VFM	578	813\％
1191231%	590	T－4D	RK4J34	605		RK36	591	2I）	－N\％66	－		722\％\％．	587	4P
191869	601	＇－51）	RK4J3\％ RK4J36			RK37	591	$21)$	N－T006			7668	604	
1151814 \％		T－8AG	RK4J36 RK 4J37	605 +605	二	RK38	600	5AW	¢．${ }_{\text {¢ }}$	78\％		71360	593	$21)$
KY86\％		1 Hg．${ }^{\text {d }}$	RK4Jこ\％．	． 605	－	Rた4	600	5A W	T20．	5×0	31	713120	543	$4 E$

VACUUM-TUBE BASE DIAGRAMS

The diagrams on the following pages show standard sochet connections corresponding to the base designations siven in the column headed "Socket Connections" in the classified tube-data tables. Hottom views are shown throughout. Terminal designations are as follows:

Alphabetical subscript: I), P, 'I' and IIX indicate, respectively, diode unit, pentode unit, triode unit or hexode unit in multi unit types. Subseript V, T' or CT indicates filament or heater tap.
Gencrally when the \mathcal{V}. I pin of a metal-type tube in T'able I, with the exception of all triodes, is shown connected to the shell, the No. 1 pin in the glass (C or Cr^{\prime}) equivalent is connected to an internal shield.

R.M.A. TLBE BASE DIMCRAMS

Bottom views are shown. Terminal designations on sockets are shown above.

20

3N

4 BR

4 F

$4 P$

$4 Y$

$2 N$

$3 T$

$4 B$

$4 B U$

$4 G$

$4 R$

$4 Z$

$2 T$

-AA

$48 B$

4 C

4 H

$4 S$

5A

22

$\triangle A B$

4CG

4J

4SA

5AA

$3 C$

4AC
OUTPUY
TERMINAIS

4 BJ

40

$4 V$

4X

R.V.A. TIBE BASE DIAGRAMS

Botton views are shown. Terminal dexignations on sorhets are given on page 558.

SAM	SAN	5AP	5AQ	5AS	5AW
			$58 u$		

R.M.A. TUBE BASF DIACRAMS Bottorn views are shown. Terminal designations on sockets are given on page 5.58.

R.M.A. TLBE: BASE DIAGRAMS

Bottom views are thown. Terminal designations on sockets are given on page 558.

R.M.A. TUBE BASE DIARRAMS

R.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page 5.58.

11 M

9L

11 A

11B

12 E

14 A

14 B

14 F

4 G

SUPILLEMENTARY BASE DIACRAMS

fig. 8

FIG. 51

FIG. 9

ditiean

FIG. 3

FIG. 23

FIG. 29^{\prime}
(4)

FIG 40

FIG. 30

FIG. 54

FIG. 13

2no ring g Propring

FIG.50

TABLE I-METAL RECEIVING TUBES
 For "G" ond "GY" tubes not listed (not having metal counterports), see rables II, VII, VIII ond IX.

Typo	Name	Socket Connections	Fil. or Heater		Capacilance μ ufd.			Use	Plate Supply Volts	Grid Bias	$\begin{gathered} 5 \text { creen } \\ \text { Volts } \end{gathered}$	Screen Curren! Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Oulput Watts	Type
			Volts	Amp.	In	Oul	PlateGrid												
648	Pentagrid Convertor	8 A	6.3	0.3	-	-	-	Ose.-Mixer	250	-3.0	100	3.2	3.3	Anode-grid (No. 2) 250 volts max. thru 20,000 ohms					6 A8
$\begin{aligned} & 6 A B 7 \\ & 1853 \\ & \hline \end{aligned}$	Television Amp. Pentode	8 N	6.3	0.45	8	5	0.015	Class-A Amp.	300	- 3.0	200	3.2	12.5	700000	5000	3500	-	-	$\begin{aligned} & 6 A B 7 \\ & 1853 \\ & \hline \end{aligned}$
$\begin{aligned} & 6 A C 7 \\ & 1852 \\ & \hline \end{aligned}$	Television Amp. Pentode	8 N	6.3	0.45	11	5	0.015	Class-A Amp.	300	160*	150	2.5	10	1000000	9000	6750	-	-	$\begin{aligned} & \text { 6AC7 } \\ & 1852 \end{aligned}$
6497	Sharp Cul-off Penlode	8 Y	6.3	0.65	13	7.5	0.06	Class-A Amp.	300	- 3.0	150	$7 / 9$	30/30.5	130000	11000		10000	3.0	6AG7
6AJ7	5 harp Cul-off Pentode	ON	6.3	0.45			-	Class-A Amp.	300	160*	300	2.5	10	1000000	9000				6AJ7
GAK7	Pentode Power Amp.	8 Y	6.3	0.65	13	7.5	0.06	Class.A Amp.	300	-3	150	7	30	130000	11000		10000	3.0	6AK7
6B8	Duplex.Diode Pontode	BE	6.3	0.3	6	9	0.005	Class-A Amp.	250	-3.0	125	2.3	9.0	650000	1125	730	-	-	6B8
6 C 5	Triode	60	6.3	0.3	3	11	2	Class.A Amp.	250	-8.0		-	0.0	10000	2000	20	-		6 C5
								Eias Detector	250	-17.0	-	-	Plate current adjusted to 0.2 ma . with no signal						
6 F5	High- μ Triodo	5M	6.3	0.3	5.5	4	2.3	Class-A Amp.	250	- 1.3	-		0.2	66000	1500	100	-		$6 F 5$
6F6	Pontodo Powor Amplifior	75	6.3	0.7	6.5	13	0.2	Class-A1 Pent. ${ }^{6}$	$\begin{array}{r} 250 \\ 315 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline-16.5 \\ -22.0 \\ \hline \end{array}$	$\begin{array}{r} 250 \\ 315 \end{array}$	$\begin{aligned} & 6.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 36^{7} \\ & 42 \end{aligned}$	$\begin{array}{r} 80000 \\ 75000 \\ \hline \end{array}$	$\begin{array}{r} 2500 \\ 2650 \\ \hline \end{array}$	$\begin{array}{r} 200 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & 7000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.2 \\ & 5.0 \\ & \hline \end{aligned}$	
								Class-A, Triode ${ }^{1}$	250	-20.0			$34{ }^{7}$	2600	2600	6.8	4000	0.85	6F6
								Class-AB: Amp. ${ }^{6}$ Class-AB2 Amp. ${ }^{6}$	$\begin{array}{r} 375 \\ 375 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 340^{*} \\ -26.0 \\ \hline \end{array}$	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	$\begin{gathered} 8 / 18 \\ 5 / 19.5 \\ \hline \end{gathered}$	$\begin{aligned} & 54 / 77 \\ & 34 / 82 \\ & \hline \end{aligned}$	Power oufput for 2 tubes at stated load, plate-to-plate			$\begin{aligned} & 10000^{8} \\ & 10000: \end{aligned}$	$\begin{aligned} & 19.0 \\ & 18.5 \end{aligned}$	
								Class-AB2 Amp. ${ }^{16}$	$\begin{array}{r} 350 \\ 350 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 730^{*} \\ -38 \\ \hline \end{array}$	-		$\begin{aligned} & 50 / 61 \\ & 48 / 92 \end{aligned}$				$\begin{array}{r} 10000^{8} \\ 60000^{5} \end{array}$	$\begin{array}{r} 9 \\ 13 \end{array}$	
6H6	Twin Diodo	70	6.3	0.3	$\overline{3.4}$		-	Rectifier		Max. a.c. voltage per plate $=150$ r.m.s. Max. outpul current 8.0 ma. d.c.									6H6
6.5	Triode	60	6.3	0.3	3.4	3.6	3.4	Class-A Amp.	250	-8.0		-	9	7700	2600	20	-		6 J 5
6.37	5 harp Cut-off Pentode	7 R	6.3	0.3	7	12	0.005	R.F. Amp.	250	-3.0	100	0.5	2.0		1225	1500			6.37
								Bias Detector	250	-4.3	100	Cathode current 0.43 ma .			-	-	0.5 meg.	-	
6 K 7	Variable-s Pentode	7R	6.3	0.3	7	12	0.005	R.F. Amp.	250	- 3.0	125	2.6	10.5	600000	1650	990	.	-	6 K 7
								Mixer	250	-10.0	100		-	-	Oscillator peak volts $=7.0$				
616	Bcam Puwor Ampliflor	7 AC	6.3	0.3		-	-	Converter	250	- 3.0	100	6	2.5	Triode Plate (No. 2) 100 volis, 3.8 ma.					6 K 8
			6.3	0.9	10	12	0.4	Single Tube Closs A_{1}	$\begin{array}{r} 250 \\ 300 \\ \hline \end{array}$	$\begin{aligned} & 170^{\circ} \\ & 220^{\circ} \\ & \hline \end{aligned}$	$\begin{array}{r} 250 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & 5.4 / 7.2 \\ & 3.0 / 4.6 \\ & \hline \end{aligned}$	$\begin{gathered} 75 / 78 \\ 51 / 54.5 \\ \hline \end{gathered}$	-	-	-	$\begin{aligned} & 2500 \\ & 4500 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	616
								Singlo Tube Class A	$\begin{array}{r} 250 \\ 350 \\ \hline \end{array}$	$\begin{array}{r} -14.0 \\ -18.0 \\ \hline \end{array}$	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 5.0 / 7.3 \\ & 2.5 / 7.0 \end{aligned}$	$\begin{aligned} & 72 / 79 \\ & 54 / 66 \\ & \hline \end{aligned}$	$\begin{array}{r} 22500 \\ \mathbf{3 3 0 0 0} \end{array}$	$\begin{aligned} & 6000 \\ & 5200 \end{aligned}$	-	$\begin{array}{r} 2500 \\ 4200 \\ \hline \end{array}$	$\begin{array}{r} 6.5 \\ 10.8 \\ \hline \end{array}$	
								P.P. Class $A_{1}{ }^{\text {c }}$	270	125*	270	11/17	134/145				$5000{ }^{\text {- }}$	18.5	
								P.P. Class $A_{1}{ }^{\text {b }}$	$\begin{array}{r} 250 \\ 270 \\ \hline \end{array}$	$\begin{array}{r} -16.0 \\ -17.5 \end{array}$	$\begin{array}{r} 250 \\ 270 \\ \hline \end{array}$	$\begin{aligned} & 10 / 16 \\ & 11 / 17 \end{aligned}$	$\begin{aligned} & 120 / 140 \\ & 134 / 155 \end{aligned}$	$\begin{array}{r} 24500 \\ 23500 \end{array}$	$\begin{aligned} & 5500 \\ & 5700 \end{aligned}$	—	$\begin{aligned} & 50008 \\ & 50008 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 17.5 \end{aligned}$	
								P.P. Class $\mathrm{AB}_{1}{ }^{3}$	360	250*	270	5/17	88/100	Power outpul for 2 tubes. Load plate-to-plate			9000 -	24.5	
								P.P. Class $\mathrm{AB}_{1}{ }^{\text {b }}$	360	-22.5	270	5/15	88/132				$6600{ }^{\text {- }}$	26.5	
								P.P. Class $\mathrm{AB}_{2}{ }^{6}$	$\begin{array}{r} 360 \\ 360 \\ \hline \end{array}$	$\begin{array}{r} -18.0 \\ -22.5 \\ \hline \end{array}$	$\begin{array}{r} 225 \\ 270 \end{array}$	$\begin{array}{r} 3.5 / 11 \\ 5 / 16 \end{array}$	$\begin{aligned} & 78 / 142 \\ & 88 / 205 \end{aligned}$				$\begin{aligned} & 6000 \\ & 3800 \end{aligned}$	$\begin{aligned} & 31.0 \\ & 47.0 \end{aligned}$	
617	Pentogrid Mixer Amplifior	71	6.3	0.3	-	-		R.F. Amp.	250	-3.0	100	5.5	5.3	800000	1100		380		617
								Mixer	250	-6.0	150	8.3	3.3	Over 1 meg.	Oseillator-grid (No.3) voltage $=-15$				
6 697	Twin Triode	8B	6.3 6.3	0.8				Class-B Amp.	300	- 0	-	-	35/70	-	-	-	8000	10.0	6N7
6R7	Duplex-Diode Triode	7V	6.3	0.3	5.8	3.8	1.4	Triode Amp.	250	-3.0 -9.0	-		1.1	58000	1200	70		-	607
657	Remote Cut-off Pentode	7R	6.3	0.3	6.5	$\underline{10.5}$	$\underline{0.005}$	Closs-A Amp.	250	- 9.0	100	2.0	9.5	8500 1000000	1900	16	10000	0.28	687
65A7	Pentagrid Converter	8R2	6.3	0.3				Converter	250	- ${ }^{3}$	100	8.0	8.5	$\begin{array}{r}1000000 \\ \hline 800000\end{array}$	Grid No. 1 resistor $\mathbf{2 0 0 0 0}$ ohms				657
87	Pentagrid Convertor	8R	6.3	0.3	9.6	9.2		Convertor	100	- 1	100	10.2	3.6	500000	900	rosi	20000		6587Y
								Convertor	250	- 1	100	10	3.8	1000000	950	-			
						Osc. Section in 88-108 Me. Serv.			250	22000 ${ }^{\circ}$	$12000{ }^{\circ}$	12.6/12.5	6.8/6.5						
7	Twin-Triode	85	6.3	0.3		-		Class-A Amp.	250	- 2.0	-	-	2.0	53000	1325	70	-		65C7
	High- μ Triod	6AB	6.3	0.3	4	3.6	2.4	Class-A Amp.	250	- 2.0	-	-	0.9	66000	1500	100		-	6SF5

TABLE I-METAL RECEIVING TUBES-Continued

GSAD bias-2 valis if

- Values are far two fubes in push-pull.
${ }^{7}$ Max.-signal value. ${ }^{9}$ Ose. grid leak-5crn res.
TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES
(Far "G" and "GT"-Type Tubes Not Listed Here, See Equivalent Type in Table 1; Characteristics and Connections Will Be Idenlical)

Type	Nemo	Sockel Cannections	Fil. ar Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	ScreanValis	Screen Curfent Ma.	Plate Current Ma.	Plato Resistance Ohms	Transconductance Mieramhas	Amp. Factor	$\begin{gathered} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Pawer Outpul Wafls	Type	
			Voits	Amp.	In	Out	PlateGrid													
2 C 22	Triado	4AM	6.3	0.3	2.2	0.7	3.60	Class-A Amp.	300	-10.5	-	-	11	6600	3000	20	-		$2 \mathrm{C22}$	
6A5G	Triode Power Amplifor	$6 T$	6.3	1.0				Class-A Amp. ${ }^{\text {a }}$	250	-45.0			60	800		4.2	2500	3.75		
					-	-	-	P.P. Class AB	325	-68.0	-		80		5250	-	$3000{ }^{\text {b }}$	15.0	6A5G	
								P.P. Class AB ${ }^{\text {5 }}$	325	850*			80			-	5000 *	10.0		
6AB6G	Oirect-Caupled Amplifor	7AU	6.3	0.5				Class-A Amp.	250	0	Input		5.0	40000	1800	72	8000	3.5	6AB6G	
						-			250	0	Oulput		34							
								P.P. Class B ${ }^{5}$	250	0			5.0	36700	3400	125	10000 ${ }^{\circ}$	8.0	6AC5G	
6AC5G	Triode	60	6.3	0.4	-			Dyn.-Coupled	250				32				7000	3.7		
6ACbG	Oirect-Coupled Amplifor	7 AU	6.3	1.1				Class-A Amp.	180	0	Input		7.0	-	3000	54	4000	3.8	6AC6G	
						-			180	0	Oulput		45							
6AD5G	High - μ Triade	60	6.3	0.3	4.1	3.9	3.3	Class-A Amp.	250	- 2.0			0.9		1500	100	-		6AD5G	
6AD6G ${ }^{10}$	Electron-Ray Tube	7AG	6.3	0.15				Indicalor	100		0 for 90		-23 for	\% 45 for 0	O. Target eurrent 1.5 $\mathbf{3 2 5}$ 6.0		ma.		GADGG	
	Triode-Pentode	BAY	6.3	0.85				Triode Amp.	250	-25.0			-				-	6AD7G		
6AD7C								Penlode Amp.	250	-16.5	250	6.5		34	80000	2500	-		7000	3.2
6AE5G ${ }^{10}$	Triode Amplitor	60	6.3	0.3	-	-	-	Class-A Amp.	95	-15.0		-	7.0	3500	1200	4.2		-	GAE5G	
6AEGCT ${ }^{10}$	Twin-Plole Triode with Single Grid	7AH	6.3	0.15	Remote cul-off			Class-A Amp.	250	- 1.5			6.5	25000	1000	25	-	-	6AEGGT	
								Class-A Amp.	250	-1.5			4.5	35000	950	33				

table II-6.3-volt glass tubes with octal bases - Continued

Type	Name	Sockel Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plale Resistance Ohms	Transconductance Micromhos	Amp. Factor	LoadResistanceOhms	Power Output Watts	Type
			Volts	Amp.	In	Out	PlareGrid												
6AE7GT ${ }^{10}$	Twin-Input Triode	7AX	6.3	0.5				Driver Amplifier	250	-13.5	\cdots	\cdots	5.0	9300	1500	14			6AE7GT
6AF5G	Triode	60	6.3	0.3				Class-A Amplifier	180	-18.0			7.0		1500	7.4		-	6AF5G
6AF7G	Twin Electron Ray	AAG	6.3	0.3	-			Indicator Tube											6AF7G
6AG6G	Power-Amplifier Pentode	75	6.3	1.25			-	Class-A Amplifier	250	-6.0	250	6.0	32		10000		8500	3.75	6AG6G
6AH5G	Beam Power Amplifier	6AP	6.3	0.9				Class-A Amplifier	350	-18	250			33000	5200	-	4200	10.8	6AM5G
6AH7GT	Twin Triode	88E	6.3	0.3				Converter 2 Amp.	250	- 9.0			121	6800	2400	16	-		6AH7GT
6AL6G	Beam Power Amplifier	6AM	6.3	0.9				Class-A Amplifier	250	-14.0	250	5.0	72	22500	6000		2500	6.5	6AL6G
6AL7GT	Electron-Ray Tube	8CH	6.3	0.15				Indicator	Outer edge of any of the three illuminated areas displaced $1 / 16 \mathrm{in}$. min. outward with +5 volts 10 its electrade. Similer inward disp. with -5 volts. No pattern with - 6 voits grid.										6AL7GT
6AO7GT	Duplex Diode Triode	8CK	6.3	0.3	2.3	1.5	2.8	Class-A Amplifier	250	- 2.0			2.3	44000	1600	70		-	6AQ7GT
GAR6	Beam Power Amp.	6BQ	6.3	1.2	11	7	0.55	Class-A Amplifier	250	-22.5	250	5	77	21000	5400	95			GAR6
GARTGT	Diode Triode	8CG	6.3	0.3	1.4	1	2	Class-A Amplifier	250	-2			1.3	66500	1050	70			GAR7GT
6AS7G	Low-Mu Twin Triode	8BD	6.3	2.5				D.C. Amplifier	135	250*	\square		125	280	7500	2.1			
6As7G	Low-Mu Twin Triode	8 BD	6.3	2.5				Class-A1 Amp. P.P.	250	2500*			100/106	280	$225{ }^{\text { }}$		$6000{ }^{6}$	13	6AS7G
6B4G	Triode Power Amplifier	55	6.3	1.0				Power Amplifier		Characteristics same as Type 6A3-Table IV									6B4G
686 G	Duplex-Diode High- μ Triode	7 V	6.3	0.3	1.7	3.8	1.7	Defector-Amplifier		Characteristics sama as Type 75-Table IV									686G
6BQ6GT	Beam Pentode	6AM	6.3	1.2				Deflection Amp.	250	47*	150	2.1	45		5500				6806GT
68G6	Beam Power Amplifier	5BT	6.3	0.9	11	6.5	0.5	Defiection Amp.	400	-50	350	6.0	70	-	6000		-		6BG6
6C8G	Twin Triode	8 G	6.3	0.3				Amp. 1 Section	250	-4.5			3.1	26000	1450	38			${ }^{6} \mathrm{C8} \mathrm{G}$
6089	Pentagrid Converter	$8 \AA$	6.3	0.15				Converter	250	- 3.0	100	Cothode current 13.0 Ma .			Anade grid (No. 2) Volls $=250^{3}$				608G
6E8G ${ }^{10}$	Triode-Hex ode Converter	80	6.3	0.3				Converter	250	- 2.0			Triode Plole 150 volts						6EBG
6F8G	Twin Triade	8G	6.3	0.6				Amplifier	250	- 8.0	-		91	7700	2600	20			6F8G
6G6G								Class-A Amplifier	180	- 9.0	180	2.5	15	175000	2300	400	10000	1.1	
$6 \mathrm{G6G}$	Pentode Power Amplifier	75	6.3	0.15				Class-A Amplifier ${ }^{2}$	180	-12.0	-			4750	2000	9.5	12000	0.25	6G6G
6H4GT	Diode Rectifier	5AF	6.3	0.15		-		Detector	100	-		\cdots	4.0	-			-		6H4GT
$6 \mathrm{H8G}$	Duo-Diode High- μ Pentode	8 E	6.3	0.3		-	-	Class-A Amplifier	250	- 2.0	100		8.5	650000	2400				6H8G
$618 \mathrm{G}^{10}$	Triode Maploda	8H	6.3	0.3			-	Converter	250	- 3.0	100	2.8	1.2	Anode-grid (No. 2) 250 volts max. ${ }^{2} 5 \mathrm{ma}$.					6J8G
6K5GT ${ }^{10}$	High μ / Triode	50	6.3	0.3	2.4	3.6	2.0	Class-A Amplifier	250	-3.0			1.1	50000	1400	70	-		6K5GT
6K6GT	Pentode Power Amplifier	75	6.3	0.4				Class-A Amplifier		Choracteristics some as Type 41-Table IV									6K6GT
6L5G	Triode Amplifier	60	6.3	0.15	2.8	5.0	2.8	Class-A Amplifier	250	- 9.0	-	-	8.0°	-	1900	17	-	-1	6L5G
6M6G	Power Amplifier Pentode	75	6.3	1.2				Class-A Amplifier	250	-6.0	250	4.0	36		9500		7000	4.4	6M6G
6M7G	Pentode Amplifior	7 R	6.3	0.3				R.F. Amplifier	250	- 2.5	125	2.8	10.5	900000	3400				6M7G
6M8GT	Diode Triode Pentode	8AU	6.3	0.6	-			Triode Amplifior	100	-			0.5	91000	1100		-		
								Pentode Amplifier	100	-3.0	100		8.5	200000	1900				6M8GT
6N6G ${ }^{10}$	Direct-Coupled Amplifier	7 AU	6.3	0.8				Power Amplifior	Characteristics same as Type 685-Table IV										6N6G
6P5GT ${ }^{10}$	Triode Amplifer	60	6.3	0.3	3.4	5.5	2.6	Class-A Amplifior	250	-13.5	-	$\cdots 1$	5.0	9500	1450	13.8			6P5GT
6 P7 $^{\text {c }}{ }^{10}$	Triode-Pentode	70	6.3	0.3		-		Closs-A Amplifier	Characteristics same as 6F7-Table IV										6P7G
6P8G	Triade-Hexode Converter	8K	6.3	0.8			-	Converter	250	-2.0	75	1.4	1.5	Triode Plate 100 V. 2.2 ma .					6 68G
606G	Diode-Triode	6Y	6.3	0.15				Closs-A Amplifier	250	-3.0	-	-	1.2	T	1050	65			606G
6R6G	Penlode Amplifier	6AW	6.3	0.3	4.5	11	0.007	Class-A Amplifier	250	- 3.0	100	1.7	7.0	-	1450	1160			6R6G
6S6GT	Remote Cut-off Pentode	5AK	6.3	0.45	-		-	R.F. Amplifier	250	-2.0	100	3.0	13	350000	4000				6S6GT
6S8GT	Triple Diode Triode	8CB	6.3	0.3	1.2	5	2	Class-A Amplifier	250	-2.0			0.9	91000	1100	100			6S8GT
6SD7GT	Medium Cut-off Pentode	8 M	6.3	0.3	9	7.5	. 0035	R.F. Amplifier	250	- 2.0	100	1.9	6.0	1000000	3600		-	- 6	6SD7GT
6SE7GT	Sharp Cut-off Penlode	8 N	6.3	0.3	8	7.5	. 005	R.F. Amplifier	250	-1.5	100	1.5	4.5	1100000	3400	3750			6SE7GT
6SH7L	Pentode R.F. Amp.	88K	6.3	0.3		-	-	Class-A Amplifier	100	-1.0 -1.0	100 150	2.1	6.3	350000	4000	-	-	$\square 6$	6SH71
6SL7GT	Twin Triode	880							250	- 1.0	150	4.1	10.8	900000	4900				
6SN7GT	Twin Triode	8BD	6.3	0.6				Class-A Amplifier	250				2.31	44000 7700	1600	70		6	6SL7GT
			6.3	0.6			-	Class-A Amplifier	250	-8.0	-	-	$9.0{ }^{2}$	7700	2600	20	-	6	6SN7GT

table il-6.3-volt glass tubes with octal bases-Continued

TABLE III-7-VOLT LOCK-IN-BASE TUBES
For other lock-in-base types see Tables VIII, IX, and X

Type	Nome	Socket Connections	Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volls	Screen Current Mo.	Plate Current Ma.	Plate Resistance Ohms	Transconductonce Micromhos	Amp. Factor	LoadResistanceOhms	Power Outpur Watis	Typ*
			Volts	Amp.	In	Out	PlateGrid												
744	Triode Amplifer	5AC	7.0	0.32	3.4	3	4	Class-A Amplifer	250	-8.0			9.0	7700	2600	20		-	$7 \mathrm{A4}$
745	Beam Power Amplifier	6AA	7.0	0.75	13	7.2	0.44	Class-A, Amplifer	125	- 9.0	125	3.2/8	37.5/40	17000	6100		2700	1.9	7 A5
7 A6	Twin Diode	7AJ	7.0	0.16				Rectiffer			Max.	A.C. volis	per plate-	50. Max. O	utput current-	- 10 ma .			7 A6
7 A 7	Remote Cuf-off Pentode	8 V	7.0	0.32	6	7	. 005	Class-A Amplifer	250	- 3.0	100	2.0	8.6	800000	2000	1600	- -		7 A7
7 A8	Multigrid Converter	8 U	7.0	0.16	7.5	9.0	0.15	Converter	250	-3.0	100	3.1	3.0	50000	Anode	-grid 25	50 volis max	x. ${ }^{1}$	7 A8
7 AD7	Pentode	8 V	6.3	0.6	11.5	7.5	0.03	Class-A, Amp.	300	68*	150	7.0	28.0	300000	9500				$7 \mathrm{AD7}$
7AF7	Twin Triode	8 AC	6.3	0.3	2.2	1.6	2.3	Class-A Amp.	250	-10		-	9.0	7600	2100	16	-	-	7 AF7
7AG7	Sharp Cut-off Pentode	8 V	7.0	0.16	7.0	6.0	0.005	Class-A Amp.	250	250*	250	2.0	6.0	750000	4200	-			7AG7
7 AH7	Pentode Amplifier	8 V	6.3	0.15	7.0	6.5	0.005	Class-A Amplifier	250	250*	250	1.9	6.8	1000000	3300				7 AH 7
784	High $-\mu$ Triode	5AC	7.0	0.32	3.6	3.4	1.6	Class-A Amplifier	250	- 2.0		-	0.9	66000	1500	100		-	7B4
785	Pentode Power Amplifier	6AE	7.0	0.43	3.2	3.2	1.6	Class-A, Amplifer	250	-18.0	250	5.5/10	32/33	68000	2300		7600	3.4	785
786	Duo-Diode triode	8W	7.0	0.32	3.0	2.4	1.6	Class-A Amplifier	250	-2.0			1.0	91000	1100	100		-	786
787	Remote Cut-off Pentode	8 V	7.0	0.16	5	7	. 005	Class-A Amplifier	250	- 3.0	100	2.0	8.5	700000	1700	1200	-		787
788	Penlagrid Converter	8 X	7.0	0.32	10.0	9.0	0.2	Converter	250	-3.0	100	2.7	3.5	360000	Anode	-grid 250	50 volts max	x. ${ }^{1}$	788
$7 \mathrm{C5}$	Tetrode Power Amplifier	6AA	7.0	0.48	9.5	9.0	0.4	Class-A Amplifer	250	-12.5	250	4.5 /7	45/47	52000	4100	-	5000	4.5	$7 \mathrm{C5}$
$7 \mathrm{C6}$	Duo-Diode Triode	8W	7.0	0.16	2.4	3	1.4	Class-A Amplifier	250	-1.0	-	-	1.3	100000	1000	100		-	$7 \mathrm{C6}$
$7 \mathrm{C7}$	Penlode Amplifier	8 V	7.0	0.16	5.5	6.5	. 007	Class-A Amplifier	250	-3.0	100	0.5	2.0	2 meg.	1300		-	\cdots	707
707	Triode-Hexode Converter	8AR	7.0	0.48	-	-		Converter	250	- 3.0			Triod	Plate (No. 3) 150 v. 3.5 m	ma.			707

[^8]TABLE IH－7－VOLT LOCK－IN－BASE TUBES－Continued

Type	Nome	Socket Connec－ fions	Heater		Copacitance $\mu \mu \mathrm{fd}$ ．			Use	Plata Supply Volts	Grid Bias	Screan Volis	Screen Current Ma．	Plate Current Ma．	Plate Resistance Ohms	Transcon－ ductance Micromhos	Amp． Factor	$\begin{array}{\|c\|} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{array}$	Power Output Watts	Type
			Volts	Amp．	in	Out	Plate－ Grid												
$7 E 6$	Dua－Diode Triode	8W	7.0	0.32			－	Closs－A Amplifier	250	－ 9.0	－	－	9.5	8500	1900	16			7E6
$7 E 7$	Duo－Diode Pentode	BAE	7.0	0.32	4.6	4.6	． 005	Class－A Amplifier	250	－ 3.0	100	1.6	7.5	700000	1300				$7 E 7$
757	Twin Triode	BAC	7.0	0.32				Class－A Amplifier ${ }^{2}$	250	-2.0			2.3	44000	1600	70		－	757
7F8	Twin Triode	88W	6.3	0.30	2.8	1.4	1.2	R．F．Amplifier＊	250	－ 2.5		－	10.0	10400	5000		$\underline{\square}$	－	7F8
									180	－ 1.0			12.0	8500	7000				
$\begin{aligned} & 7671 \\ & 1232 \end{aligned}$	Shorp Cut－off Pentode	8 V	7.0	0.48	9	7	． 007	Closs－A Amplifier	250	－ 2.0	100	2.0	6.0	800000	4500	－	\cdots	－	$\begin{aligned} & 7 G 7 / \\ & 1232 \end{aligned}$
$\begin{aligned} & 768 / \\ & 1206 \end{aligned}$	Dual Tetrode	80 V	6.3	0.30	3.4	2.6	0.15	R．F．Amplifier ${ }^{\text {2 }}$	250	－ 2.5	100	0.8	4.5	225000	2100	－	－	－	$\begin{aligned} & 7 G 8 / \\ & 1206 \end{aligned}$
7H7	Semi－Variable－μ Pentode	8 V	7.0	0.32	8	7	． 007	R．F．Amplifier	250	－ 2.5	150	2.5	9.0	1000000	3500	－	－		7H7
737	Triode－Heptode Converter	8AR	7.0	0.32				Converter	250	－ 3.0	100	2.9	1.3	Triode Plate 250 v．Max．${ }^{\text {² }}$					737
7K7	Duo－Diode High－μ Triode	8BF	7.0	0.32				Class－A Amplifer	250	－ 2.0			2.3	44000	1600	70			7K7
717	Sharp Cut－off Pentode	8 V	7.0	0.32	8	6.5	． 01	Class－A Amplifier	250	－ 1.5	100	1.5	4.5	100000	3100	Cathode Resistor 250 ahms			717
7N7	Twin Triode	8AC	7.0	0.6	$\begin{aligned} & 3.43 \\ & 2.94 \end{aligned}$	$\begin{aligned} & 2.03 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.0^{3} \\ & 3.0^{\prime} \end{aligned}$	Class－A Amplifier ${ }^{2}$	250	-8.0	－	－	9.0	7700	2600	20	－	－	7N7
707	Pentagrid Converter	8AL	7.0	0.32			－	Converter	250	0	100	8.0	3.4	800000	Grid No． 1 resistor 20000 ohms				707
7R7	Duo－Diode Pentode	8AE	7.0	0.32	5.6	5.3	． 034	Class－A Amplifier	250	-1.0	100	1.7	5.7	1000000	3200	－			7R7
757	Triode Hexode Converter	8 BL	7.0	0.32		－	－	Converter	250	－ 2.0	100	2.2	1.7	2000000	Triode Plate 250 v．Max．${ }^{1}$				757
717	Pentode Amplifier	8 V	7.0	0.32	8	7	． 005	Class－A Amplifer	250	－ 1.0	150	4.1	10.8	900000	4900		－	－	7 T 7
7V7	Sharp Cut－off Pentode	8 V	7.0	0.48	9.5	6.5	． 004	Class－A Amplifer	300	160＊	150	3.9	10	300000	5800				7V7
7W7	Sharp Cut－off Pentode	8BJ	7.0	0.48	9.5	7.0	． 0025	Class－A Amplifler	300	－ 2.2	150	3.9	10	300000	5800				7W7
7×7	Duo－Diode Triode	88Z	6.3	0.3	\cdots	－	－	Class－A Amplifier	250	-1.0	－	－	1.9	67000	1500	100			7X7
1231	Pontodo Amplifier	8 V	6.3	0.45	8.5	6.5	． 015	Class－A Amplifier	300	200＊	150	2.5	10	700000	5500	3850	－	－	1231
									250	－ 3.0	100	0.7	2.2	1000000	1575	－－	ーー	－	
1273	Nonmicrophonic Pentode	8 V	7.0	0.32	6.0	6.5	． 007	Class．Al Amplifier	100	－ 1.0	100	1.8	5.7	400000	2275	－－	ーー	－	1273
5679	Twin Diode	7CX	6.3	0.15				V．T．V．M．Rectifier						me 0\％7A6					5679
XXL	Triode Oscillator	5AC	7.0	0.32	－	－	－	Oscillator	250	－8．0	－	－	8.0	－	2300	20	－	－	x×1

＊Cothode resistor－ohms．\quad Applied through 20000－ohm dropping resistor．
Each section．
${ }^{3}$ Triode No． 1.
4 Triode No． 2.

TABLE IV－6．3－VOLT GLASS RECEIVING TUBES

Type	Name	Bose	Sockel Connec－ tions	Fil．or Heater		Copacitance $\mu \mu \mathrm{fd}$ ．			Use	Plate Supply Volis	Grid Bias	ScreenVolts	Screen Current Ma．	Plate Current Ma．	Plate Resistance Ohms	Transcon－ ductance Micromhos	Amp． Factor	$\begin{aligned} & \text { Lood } \\ & \text { Resistance } \\ & \text { Ohms } \end{aligned}$	Power Output Wafts	Type
				Volts	Amp．	In	Out	Plate－ Grid												
$\begin{aligned} & \hline 2 C 21 / \\ & 1642 \end{aligned}$	Twin－Triode Amplifior	M．	7BH	6.3	0.6	－	－	－	Class－A Amp．	250	－16．5	－	－	8.3	7600	1375	10.4	－	－	$\begin{aligned} & 2 C 21 / / \\ & 1642 \end{aligned}$
									Closs．A Amp．	250	－45			60	800	5250	4.2	2500	3.5	
6 A3	Triode Power Amplifier	M．	4D	6.3	1.0	7.0	5.0	16.0	Class AB1 Amp．${ }^{10}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{array}{r} -62 \\ 850 \end{array}$		d Bias Bias	$\begin{aligned} & 80 \\ & 80 \\ & 80 \end{aligned}$			－	$\begin{aligned} & 300011 \\ & 500011 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	643
644\％	Pentode Power Amplifier	M．	5B	6.3	0.3				Class－A Amp．	180	－12．0	180	3.9	22	60000	2500	150	8000	1.5	6A4
6 A6	Twin Triode Amplifier	M．	78	6.3	0.8	－	－	－	Class－8 Amp．P．P	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	－	\cdots	Power	output is for load，plate	one lube at －fo－plate	sfated	$\begin{array}{r} 8000 \\ 10000 \\ \hline \end{array}$	$\begin{array}{r} 8.0 \\ 10.0 \\ \hline \end{array}$	646
6A7	Pentagrid Converter	5.	7C	6.3	0.3	8.5	9.0	0.3	Converior	250	－ 3.0	100	2.2	3.5	360000	Anode grid	（No． 2	2） 200 volts	max．	6A7
6AB5／6N5	Electron－Ray Tube	5.	6R	6.3	0.15				Indicator Tube	180	Cut－off	Grid Bias	$=-12 \mathrm{v}$	0.5		Target Curren	nt 2 ma ．		－	6AB5／6NS
6AF6G	Electron－Ray Tube Twin Indicator Type	s．	7AG	6.3	0.15	－	－		Indicator Tube	$\begin{array}{r} 135 \\ 100 \\ \hline \end{array}$		$\begin{aligned} & \text { Ray Con } \\ & \text { Ray Con } \end{aligned}$	trol Voltag trol Voltag	$\begin{aligned} & \text { =81 for } \\ & =60 \text { for } \end{aligned}$	$\begin{aligned} & 0^{\circ} \text { Shadow } \\ & 0^{\circ} \text { Shadow } \end{aligned}$	Angle．Targ Angle．Targ	ot curre	$\begin{aligned} & \text { nt } 1.5 \mathrm{ma} \text {. } \\ & \text { nt } 0.9 \mathrm{ma} \text {. } \end{aligned}$		6AF6G
685	Direct－Coupled Power Amplifier	M．	6AS	6.3	0.8	－	－		Class－A Amp．${ }^{9}$ Push－Pull Amp．${ }^{10}$	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \\ -13.0 \\ \hline \end{array}$		$\begin{aligned} & 61 \\ & 4.52 \end{aligned}$	$\begin{array}{r} 45 \\ 40 \end{array}$	241000	$\underline{2400}$	58	$\begin{gathered} 7000 \\ 1000011 \end{gathered}$	20	685

table iv-6.3-volt glass receiving tubes-Continued

TABLE V-2.5-VOLT RECEIVING TUBES

Type	Name	Base	Socket Conneclions	Fil. or Heater		Copacitance $\mu \mu \mathrm{fd}$.			Use	Plato Supply Volfs	Grid sias	$\begin{aligned} & \text { Screen } \\ & \text { Volts } \end{aligned}$	Screen Current Ma.	Plate Current Ma.	$\begin{gathered} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Transeanductance Micromhos	Amp. Factor	LoodResistanceOhms	Power Output Watts	Type
				Volts	Amp.	In	Out	PlafeGrid												
25/4S	Duodiode	M.	50	2.5	1.35				Detector	Ais d.c. Volts per plate, cathode ma. $=80$										2S/4S
$2 A 3$	Triode Power Amplifior	M.	40	2.5	2.5	7.5	5.5	16.5	Class-A Amp.	Characteristics same as Type 643, Table iV										$2 \mathrm{~A}^{2}$
2A5	Pentode Power Amplifier	M.	68	2.5	1.75				Class-A Amp.	Characteristics same as Type 42, Table iv										2A5
2A6	Duplex-Diode Triode	5.	6 G	2.5	0.8	1.7	3.8	1.7	Class-A Amp.	Characteristics same as Type 75, Table IV										2AB
247	Pentagrid Convertor	5.	7 C	2.5	0.8				Converter	Characteristics same as Type 6A7, Table iv										2A7
286	Direct-Coupled Amplifior	M.	73	2.5	2.25				Ampllifer	250	-24.0			40.0	5150	3500	18.0	5000	4.0	286
287	Duplox-Diode Pentode	5.	70	2.5	0.8	3.5	9.5	. 007	Pentode Amp.	Charactoristics same as rype 687-Table IV										2B7
2 E 5	Electron-Ray Tube	5.	6 6R	2.5	0.8	-			Indicator Tube	Characteristics same as Type 6E5-Table IV										2E5
2G5	Eloctron-Ray Tube	s.	6R	2.5	0.8		-	-	Indicator Tube	Characteristics same as 6U5/6G5-Table IV										2G5
24-A	Totrode R.F. Amplifior	M.	5E	2.5	1.75	5.3	10.5	. 007	$\begin{gathered} \text { Screen-Grid R.F. } \\ \text { Amplifier } \end{gathered}$	250	-3.0	90	1.7	4.0	600000	1050	630			24-A
									Bios Datoctor	250	- 5.0	20/45	Plate current adjusted to 0.1 mo . with no signal							
27	Triode Detector-Amplifier	M.	5A	2.5	1.75	3.1	2.3	3.3	Class-A Amp.	250	-21.0		-	5.2	9250	975	9.0	-	-	27
									Bias Detector	250	-30.0	-	Plate current adiusted to 0.2 ma . with no signal							
35/51	Remote Cut-off Pentode	M.	5E	2.5	1.75	5.3	10.5	. 007	Screen-Grid R.F. Amplifier	250	- 3.0	90	2.5	6.5	400000	1050	420	-	-	35/51
45	Triode Power Amplifier	M.	4D	2.5	1.5	4	3	7	Class-A Amp.	275	-56.0			36.0	1700	2050	3.5	4600	2.00	45
46	Dual-Grid Power Amp.	M.	5 C	2.5	1.75			ـ	Class-A Amp. ${ }^{2}$	250	-33.0			22.0	2380 2350 5.6 Power output for 2 lubes			6400	1.25	46
									Class-8 Amp. ${ }^{\text {a }}$	400	0			12				5800	20.0	
47	Pentode Power Amplifier	M.	58	2.5	1.75	8.6	13	1.2	Class-A Amp.	250	-16.5	250	6.0		60000	2500	150	7000	2.7	47
53	Twin Triode Amplifior	M.	78	2.5	2.0				Closs-B Amp.	Characteristics same as Type 6A6, Table IV										53
55	Duplex-Diode Triode	5.	6G	2.5	1.0	1.5	4.3	1.5	Class-A Amp.	Characteristies same as Type 85, Table iv										55
56	Triode Amplifier, Detector	5.	5A	2.5	1.0	3.2	2.4	3.2	Class-A Amp.	Charocteristics same as Type 76, Toble IV										56
57	Sharp Cul-off Pentode	s.	$6 F$	2.5	1.0				R.F. Amplifier	250	-3.0	100	0.5	2.0	1500000	1225	1500	-	-	57
58	Remote Cut-off Pentode	5.	$6 F$	2.5	1.0	4.7	6.3	. 007	Screen-Grid R.F. Amplifier	250	- 3.0	100	2.0	8.2	800000	1600	1280	-	-	58
59	Pentode Power Amplifier	M.	7 A	2.5	2.0	-	-	-	Class-A Triode ${ }^{\text {a }}$ (${ }^{\text {Class-A Pentode }}$ -	250	-28.0	-250	$\underline{\square}$	26.0	2300	2600	6.0	5000	1.25	59
RK15	Triode Power Amplifier	M.	4D ${ }^{\text {1 }}$	2.5	1.75				Class-A Pentode ${ }^{\text {a }}$	250	-18.0	250	9.0	35.0	40000	2500	100	6000	3.0	
RK16	Triode Power Amplifior	M.	54	2.5	2.0						Character	staristics	ame as	49 with	Class-B con	nnections				RK15
RK17	Pentode Power Amplifier,	M.	$5 F$	2.5	2.0							Ch	rasteristic	same os	Type 2A5	connection				RK16

TABLE VI-2.0-VOLT BATTERY RECEIVING TUBES

Type	Nam*	Base	Socket Connections	Filament		Copacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Blos	Screen Volts	Screen Current Ma.	Plote Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	Lood Resistance Ohms	Power Output Watts	Type
				Volts	Amp.	In	Out	PlateGrid												
1A4P	Variable- μ Pentode	5.	4 m	2.0	0.06	5	11	. 007	R.F. Amplifier	180	-3.0	67.5	0.8	2.3	1000000	750	750	-	-	1A4P
1A4T	Varioble- μ Tatrode	S.	4K	2.0	0.06	5	11	. 007	R.F. Amplifier	180	- 3.0	67.5	0.7	2.3	960000	750	720			1A4t
1Ab	Pentagrid Converter	s.	61	2.0	0.06				Converter	180	- 3.0	67.5	2.4	1.3	500000	Anade grid	(No . 2	180 max.	volts	146
184P/951	Pentode R.F. Amplifior	s.	4M	2.0	0.06	5	11	. 007	R.F. Amplifier	$\begin{array}{r} 180 \\ 90 \end{array}$	$\begin{array}{r} -3.0 \\ -3.0 \end{array}$	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 1500000 \\ & 1000000 \end{aligned}$	$\begin{aligned} & 650 \\ & 600 \end{aligned}$	$\begin{array}{r} 1000 \\ 550 \end{array}$	-	-	184P/951
185/255	Duplex-Diode Triode	s.	6 M	2.0	0.06	1.6	1.9	3.6	Triode Class-A	135	-3.0			0.8	35000	575	20			185/25S

TABLE VI-2.0-VOLT BATTERY RECEIVING TUBES-Continued

Type	Nome	Base	Socket Connecfions	Filament		Capocitonce μ fid.			Use	Plate Supply Volts	Grid Bios	Screen Volis	Screen Current Ma.	Plate Current Mo.	Plate Resistance Ohms	Transconductonce Mieromhos	Amp. Foctar	LoadResistanceOhms	Power Output Watts	Type
				Volts	Amp.	In	Out	PlateGrid												
$1 C^{6}$	Pentagrid Converter	S.	61	2.0	0.12	10	10		Converiter	180	-3.0	67.5			750000	Anode grid (No. 2) 135 max. volis				IC6
154	Pentode Power Amplifier	M.	5K	2.0	0.12	,			Class-A Amp.	135	- 4.5	135	2.6	8.0	200000	1700	340	16000	0.34	1 F4
			6W		0.06	4	9	. 007	R.F. Amplifier A.F. Amplifier		- 1.5	67.5	0.6	2.0	1000000	650	650	- -		1F6
JF6	Duplox-Diode Pentode	s.		2.0						135	$\begin{aligned} & -1.0 \\ & -1.5 \end{aligned}$	$\begin{array}{r} 135 \\ \hline 67.5 \\ \hline \end{array}$	Plate, 0.25 megohm; screen, 1.0 megohm					Amp. $=48$		
15 \%	Sharp Cut-off Pentode	5.	$5 F$	2.0	0.22	2.3	7.8	0.01	R.F. Amplifier	135			0.3	1.85	800000	750	600			15
19	Twin-Triode Amplifier	S.	6 C	2.0	0.26	-			Class-B Amp.	135	0				Load plate-fo-plate			10000	2.1	19
30	Triode Detector Amplifier	5.	4D	2.0	0.06				Closs-A Amp.	180	-13.5	-		3.1	10300	900	9.3			30
31	Triode Power Amplifier	5.	4D	2.0	0.13	3.5	2.7	5.7	Closs-A Amp.	180	-30.0			12.3	3600	1050	3.8	5700	0.375	31
32	Sharp Cut-off Pentode	M.	4K	2.0	0.06	5.3	10.5	. 015	R.F. Amplifer	180	-3.0	67.5	0.4	1.7	1200000	650	780	-		32
33	Pentode Power Amplifier	M.	5K	2.0	0.26	8	12	1	Class-A Amp.	180	-18.0	180	5.0	22.0	55000	1700	90	6000	1.4	33
34	Varioble- μ Pentode	M.	4M	2.0	0.06	6	11	. 015	R.F. Amplifier	180	- 3.0	67.5	1.0	2.8	1000000	620	620	--		34
					0.12				Class-A Amp. ${ }^{1}$	135	-20.0			6.0	4175	1125	4.7	11000	0.17	49
49	Duol-Grid Power Amp.	M.	5 C	2.0	0.12				Class-B Amp. ${ }^{2}$	180	0				ower outpu	t for 2 tubes		12000	3.5	
840	Pentode	S.	53	2.0	0.13				Class-A Amp.	180	- 3.0	67.5	0.7	1.0	1000000	400	400			840
950	Pentode Power Amplifier	M.	5K	2.0	0.12				Closs-A Amp.	135	-16.5	135	2.0	7.0	100000	1000	125	13500	0.575	950
RK24	Triode	M.	4D	2.0	0.12				Closs-A Amp.	180	-13.5		-	8.0	5000	1600	8.0	12000	0.25	RK24
1229	Tehode	M.	4K	2.0	0.06								pecial Typ	32 for lo	w grid-curre	ent opplicatio	ns			1229
1230	Triode	M.	4D	2.0	0.06	3.0	2.1	6.0					pecial Typ	30 for lo	w grid .curre	ent opplicatio	ns			1230

N
${ }^{1}$ Grid No. 2 tied to plate.
${ }^{2}$ Grids Nos. 1 and 2 lied logether.
table vil-2.0-VOLT battery tubes with octal bases

Typo	Name	Socket Connections	Filament		Copacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bios	$\begin{gathered} \text { Screon } \\ \text { Volts } \end{gathered}$	Screen Current Ma.	Plate Current Ma.	Plate Resistonce Ohms	Transconductonce Micromhos	Amp. Factor	$\begin{gathered} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Power Output Watts	Type
			Volts	Amp.	In	Out	PlateGrid												
1C7G	Heptode	72	2.0	0.06	10	14	0.26	Conventer	Characteristics some as Type 1C6-Table VI										1076
105GP	Varioble- μ Pentode	5 S	2.0	0.06	5	11	. 007	R.F. Amplifier	Characteristics same as Type IA4P-Table VI										ID5GP
IDSGT	Variable- μ Tetrade	5R	2.0	0.06				R.F. Amplifier	180	-3.0	67.5	0.7	2.2	600000	650				IDSGT
107G	Pentagrid Converter	72	2.0	0.06	10.5	9.0	0.25	Converter	Characteristics some os Type 1A6-Table VI										1D7G
IESGP	Pentode Amplifier	$5 Y$	2.0	0.06	5	11	. 007	R.F. Amplifier	Characteristics same as Type 184-Table VI										IESGP
IE7G	Double Pentode Power Amp.	8 C	2.0	0.24	-	-		Class-A Amplifer	135	- 7.5	135	2.01	6.5 :	220000	1600	350	24000	0.65	IETG
IF5G	Pentode Power Amplifier	$6 \times$	2.0	0.12				Class-A Amplifier	Characteristics some as Type 1F4-Table VI										1F5G
1F7G ${ }^{\text {? }}$	Duplex-Diode Pentode	7 AD	2.0	0.06	3.8	9.5	0.01	Delector-Amplifier	Characteristics some as Type 1F6-Table VI										IF7G
IG5G	Pentode Power Amplifier	6 X	2.0	0.12				Class-A Ampliner	135	-13.5	135	2.5	8.7	160000	1550	250	9000	0.55	IG5G
IH4G	Triode Amplifier	55	2.0	0.06		-		Delector-Amplifier	Characteristics some as Type 30-Table VI										1H4G
IH6G	Duplex-Diode Triode	7AA	2.0	0.06	1.6	1.9	3.6	Detector-Amplifier	Choracteristics same as Type 185-Taole VI										IH6G
1156	Pentode Power Amplifiar	$6 \times$	2.0	0.12				Class-A Amplifier	135	-16.5	135	2.0	7.0	-	950	100	13500	0.45	1J5G
IJ6G	Twin Triode	7 AB	2.0	0.24				Class-B Amplifer	Characteristics same os Type 19-Toble VI										IJ6G
			2.0	0.12				Class-A, 1 section	90	-1.5	-	-	1.1	26600	750	20			4A6G
4A6G	Twin Triode	8 L	4.0	0.06				Class-B, 2 sections	90	- 1.5	-	-	$10.8{ }^{3}$				8000	1.0	

TABLE VIII-1.5-VOLT FILAMENT BATTERY TUBES
See also Table X for Special $\mathbf{1 . 4 - v o l t ~ T u b e s ~}$

Type	Nome	Base	Socket Connections	Filament		Capacitonce $\mu \mu \mathrm{fd}$.			Use	Plote Supply Vells	Grid Bias	$\begin{aligned} & \text { Sereen } \\ & \text { Volts } \end{aligned}$	Screen Current Ma.	Plale Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	Load Resisfance Ohms	Power Outpul M-wath	Tуpө
				Volts	Amp.	In	Out	PloleGrid												
1A5GT	Pantode Power Amplifier	0.	$6 \times$	1.4	0.05	-			Class-A, Amp.	90	-4.5	90	0.8	4.0	300000	850	240	25000	115	1A5GT
IA7GT	Pentagrid Converter	0.	72	1.4	0.05	-	-		Converter	90	0	45	0.6	0.55	600000	Anode-grid volis 90			115	lasg
IAB5	Pentode R.F. Amplifier	L.	5BF	1.2	0.05	2.8	4.2	0.25	R.F. Amplifer	$\begin{array}{r} 90 \\ 150 \\ \hline \end{array}$	$\begin{gathered} 0 \\ -1.5 \end{gathered}$	$\begin{array}{r} 90 \\ 150 \end{array}$	$\begin{aligned} & 0.8 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 275000 \\ & 125000 \end{aligned}$	$\begin{aligned} & 1100 \\ & 1350 \end{aligned}$	-	-		1 AB5
187GT \#	Hoptode	0.	72	1.4	0.1			-	Convertar	90	0	45	1.3	1.5	350000	Grid No. 1 resistar 200,000 ohms				1B7GT
188GT	Diode Triode Penlode	0.	8AW	1.4	0.1	-	-	-	Triode Amplifier Pentode Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -8.0 \end{gathered}$	90	1.4	$\begin{aligned} & 0.15 \\ & 6.3 \end{aligned}$	$\underline{240000}$	$\begin{array}{r} 275 \\ 1150 \end{array}$	T	$\overline{14000}$		188GT
1C5GT	Pentode Pawer Amplifier	0.	$6 \times$	1.4	0.1	-	-	-	Class-A1 Amp.	90	-7.5	90	1.6	7.5	115000	1550	165	8000	240	IC5GT
1D8GT	Diode Triode Pentoda	0.	8AJ	1.4	0.1	\cdots	-	-	Triode Amp. Pentode Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -9.0 \end{gathered}$	90	1.0	$\begin{aligned} & 1.1 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 43500 \\ 200000 \end{array}$	$\begin{aligned} & 575 \\ & 925 \end{aligned}$	25	-	-	ID8GT
1E4G	Triode Amplifier	0.	55	1.4	0.05	2.4	6	2.40	Closs-A Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -3.0 \end{gathered}$	-	-	$\begin{aligned} & 4.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 11000 \\ & 17000 \end{aligned}$	$\begin{array}{r} 1325 \\ 828 \end{array}$	14.5	-	-	1E4G
1G4GT	Triode Amplifier	0.	55	1.4	0.05	2.2	3.4	2.80	Class-A Amp.	90	-6.0	-	+	2.3	10700	825	8.8			IG4GT
1GGGT	Twin Trioda	0.	7 AB	1.4	0.1		-	-	Class-A Amp. Class. B_{B} Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	0			1.0	45000	675	30		\cdots	IG6GT
IHSGT	Diode High- μ Triode	0.	52	1.4	0.05	1.1	6	1.00	Class-A Amp.	90	0			1/7	34 volts input per grid			12000	675	
ILA4	Pentode Power Amplifier	L.	5AD	1.4	0.05				Closs-A Amp.	90	Choracteristics some os IA5GT									IHSG4
ILA6	Pentogrid Converter	L.	7AK	1.4	0.05	\rightarrow			Converter	90	0	45	0.6	0.55	Anode Grid Valis 90					ILA6
ILB4	Penlode Power Amplifier	L.	SAD	1.4	0.05				Class-A Amp.	90	-9	90	1.0	5.0	200000	925	--	12000	200	ILB4
1L86	Heptode Converier	L.	8 8AX	1.4	0.05	-	-		Converter	90	0	67.5	2.2	0.4	Grid No. 4-67.5 v., No. 5-Q v.					ILB6
1LC5	Remole Cut-off Pentode	L.	740	1.4	0.05	3.2	7	. 007	R.F. Amplifier	90	0	45	0.2	1.15	1500000	775	-	-	-	ILC5
ILC6	Penlogrid Converter	L.	7AK	1.4	0.05				Converter	90	0	35 :	0.7	0.75		Anode Grid Volts 45				ILC6
ILD5	Diode Pentode	L.	6AX	1.4	0.05	3.2	6	0.18	Class-A Amp.	90	0	45	0.1	0.6	950000	600			\square	ILD5
lle3	Triode Amplifier	L.	4AA	1.4	0.05	1.7	3	1.70	Class-A Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{array}{r} 0 \\ -3 \end{array}$	-	-	$\begin{aligned} & 4.5 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 11200 \\ & 19000 \end{aligned}$	$\begin{array}{r} 1300 \\ 760 \end{array}$	14.5	\longrightarrow	-	ILE3
ILG5	Pentode R.F. Amp.	t.	740	1.4	0.05	\pm	-		Class-A Amp.	90	0	45	0.4	1.7	1000000	800	-	-	\cdots	ILG5
ILH4	Diode High- μ Triode	L.	SAG	1.4	0.05	1.1	6	1.00	Class-A Amp.	90	0	-	$\underline{\square}$	0.15	240000	275	65	\square	\cdots	1LG4
INN5	Remote Cul-off Pentode	1.	7AO	1.4	0.05	3.4	8	. 007	Class-A Amp.	90	0	90	0.3	1.2	1500000	750		-	\square	ILN5
INSGG 4	Remote Cul-off Pentode	0.	5Y	1.4	0.05	3	10	. 007	Class-A Amp.	90	0	90	0.3	1.2	1500000	750	1160	\square		INSGT
IPSGT	Pentode	0.	7AM	1.4	0.05	3	10	007	Class-A Amp.	90	-4.5	90	0.6	3.1	300000	800		25000	100	IN6G
105GT	Tetrode Power Amplifier		6AF				10	. 007	R.F. Amplifier	90	- 0	90	0.7	2.3	800000	800	640	-		IPSGT
	Telrode Power Ampli	O.	SAF	1.4	0.1				Class-A Amp.	9	-4.0	90	1.2	$\begin{gathered} 7.2 \\ 9.5 \end{gathered}$	$\begin{aligned} & 70000 \\ & 75000 \end{aligned}$	$\begin{aligned} & 1950 \\ & 2100 \end{aligned}$	-	$\begin{aligned} & 9000 \\ & 8000 \end{aligned}$	$\begin{array}{r} 250 \\ 270 \end{array}$	105GT
IR4/1294	U.h.f. Diode Madium Cut-off Pentode	L.	4AH	1.4	0.15				Rectifier	Max. r.m.s. voliage per plate-30					Max. d.e. output current-340 $\mu \mathrm{a}$.					1R4/1294
ISA6GT	Medium Cut-off P	0.	6CA	1.4	0.05	5.2	8.6	0.01	R.F. Amplifier	90	0	67.5	0.68	2.45	800000	970	\square	\longrightarrow	-	ISA6GT
1586GT	Diode Pentode	0.	6CB	1.4	0.05	3.2	3	0.25	Class-A Amp.	90	0	67.5	0.38	1.45	700000	665				1586GT
IT5GT	Beam Power Amplifior	0.	6AF	1.4	0.05	4.8	8	0.50	R.C. Amplifier	90	0	90	Screen resistor 5 meg., grid 10 mmg .					1 meg.	110^{2}	1sect
387/1291	U.h.f. Twin Triode	L.	7BE	$2.8{ }^{3}$	0.11	1.4	2.6	2.6	Class-A Amp.	90	-6.0	90	1.4	6.5	135	1150		14000	170	ITSGT
1293	U.h.f. Triode	1.	4AA	1.4	0.11	1.7	3.0	1.7	Class-A Amp.	90	0			4.7	10750	1850	21	-		387/1291
3D6/1299	U.h.f. Tatrode	L.	6BE	$2.8{ }^{3}$	0.11	7.5	6.5	0.30	Class-A Amp.	135	-6	90	0.7	5.7	10750	2200		13000	500	3D6/1299
3E6	R.F. Pentode	L.	7 CJ	$\begin{aligned} & \hline .4 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.05 \\ & \hline \end{aligned}$	5.5	7.5	0.007	Class-A Amp.	90	0	90	1.3	3.8	300000	2100	-	-	-	3E6
RK42	Triode Amplifier	5.	4D	1.5	0.6				Class-A Amp.		Characteristics same as Type 30-Table VI									RK42
RK43	Twin Triode Amplifier	5.	6 C	1.5	0.12				Class-A Amp.	135	-3	-	-	4.5	14500	900	13	-	-	RK43

TABLE IX—HIGH-VOLTAGE HEATER TUBES

Type	Nomo	Base	Sockel Connections	Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	Screen Volts	Screen Current Ma.	Plote Current Mo.	Plate Resisfance Ohms	Transconductance Mieramhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Type
				Volts	Amp.	In	Out	PlateGrid												
12A5 ${ }^{8}$	Pentode Power Amplifier	M.	$7 F$	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	9.0	9.0	0.3	Class-A1 Amp. ${ }^{6}$	$\begin{aligned} & 100 \\ & 180 \end{aligned}$	$\begin{array}{r} -15 \\ -25 \end{array}$	$\begin{aligned} & 100 \\ & 180 \end{aligned}$	$\begin{aligned} & 3 / 6.5 \\ & 8 / 14 \\ & \hline \end{aligned}$	$\begin{array}{r} 17 / 19 \\ 45 / 48 \\ \hline \end{array}$	$\begin{aligned} & \mathbf{5 0 0 0 0} \\ & 35000 \end{aligned}$	$\begin{aligned} & 1700 \\ & 2400 \end{aligned}$	-	$\begin{aligned} & 4500 \\ & 3300 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 3.4 \\ & \hline \end{aligned}$	12A5
1246	Beam Power Amplifier	0.	7AC	12.6	0.15				Class-A Amp.	250	-12.5	250	3.5	30	70000	3000		7500	3.4	1246
1247	Reatifier-Amplifier	M.	7K	12.6	0.3				Class-A Amp.	135	-13.5	135	2.5	9.0	102000	975	100	13500	0.55	1247
12A8GT	Heptode	0.	8A	12.6	0.15	9.5	12	0.26	Converter	Characteristics some as 648-Table 1										12A8GT
12AH7GT	Twin Triode	0.	88E	12.6	0.15	Each Triode Sect.			Class-A Amp.	180	-6.5			7.6	8400	1900	16			12AH7GT
12B6M	Diode Triode	0.	$6 Y$	12.6	0.15				Class-A Amp.	250	- 2.0			0.9	91000	1100	100			1286M
1287ML	Pentade Amplifier	0.	8 V	12.6	0.15				Class-A Amp.	250	- 3.0	100	2.6	9.2	800000	2000				1287 ML
$1288 \mathrm{GT}^{8}$	Triode-Pentode	0.	8 T	12.6	0.3	Triode Section Pentode Section			Class-A Amp. Class-A Amp.	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} -1 \\ -3 \\ \hline \end{array}$	100	2	${ }_{8}^{0.6}$	$\begin{array}{r} 73000 \\ 170000 \\ \hline \end{array}$	$\begin{aligned} & 1500 \\ & 2100 \\ & \hline \end{aligned}$	$\begin{array}{r} 110 \\ 360 \\ \hline \end{array}$			1288GT
$12 \mathrm{C8}$	Duplex-Diode Pentode	0.	8E	12.6	0.15	6	9	. 005	Class-A Amp.	Characteristics same os 688.-Table I										$12 \mathrm{C8}$
12E5GT	Triode Amplifier	0.	60	12.6	0.15	3.4	5.5	2.60	Class-A Amp.	250	-13.5			50	-	1450	13.8			12E5GT
12F5GT	Triode Amplifier	0.	5M	12.6	0.15	1.9	3.4	2.40	Class-A Amp.	Characteristics same as 6SF5-Table I										12FSGT
12G7G	Duplex-Diode Triode	0.	7 V	12.6	0.15				Class-A Amp.	250	- 3.0				58000	1200	70			$12 \mathrm{G7G}$
12H6	Twin Diode	0.	70	12.6	0.15				Rectifier	Characteristics same os 6H6-Table I										$12 \mathrm{H6}$
12 J GT	Triode Amplifier	0.	69	12.6	0.15	3.4	3.6	3.40	Class-A Amp.	Characteristics same os 6J5-Table I										12J5GT
1237 GT	Sharp Cut-off Pentode	0.	7R	12.6	0.15	4.2	5.0	3.8	Class-A Amp.	Charocteristics same as 6.17 -Table I										12J7GT
12K7GT	Remote Cut-off Pentode	0.	7R	12.6	0.15	4.6	12	. 005	R.F. Amplifier	Characteristics same as 6K7-Table I										12K7GT
12 K 8	Triode Hexode Converter	0.	8K	12.6	0.15				Converter	Charocteristics same as 6K8-Table 1										12 K 8
12L8GT	Twin Pentode	0.	8BU	12.6	0.15	5	6	0.70	Class-A Amp.	180	-9.0	180	2.8	13.0	160000	2150		10000	1.0	12L8GT
1297GT	Duplex-Diode Triode	0.	7 V	12.6	0.15	2.2	5	1.60	Class-A Amp.	Characteristics same as 607-Table 1										1207 GT
1258GT	Triple-Diode Triode	0.	8CB	12.6	0.15	2.0	3.8	1.2	Class-A Amp.	250	- 2.0			0.9	91000	1100	100			1258GT
12547	Heptode	0.	8R	12.6	0.15	9.5	12	0.13	Converler	Characteristics same as 6SA7-Table I										12547
$125 C 7$	Twin Triode	0.	85	12.6	0.15	2.2	3.0	2.0	Class-A Amp.	Characteristics same as 65C7-Table 1										125 C 7
125 F5	High- μ Triode	0.	6AB	12.6	0.15	4	3.6	2.40	Class-A Amp.	Charaeteristies same as 6SF5-Table I										12SF5
125 F 7	Diode Variable- μ Pentode	0.	7AZ	12.6	0.15	5.5	6.0	. 004	Class-A Amp.	Characteristics same as 65F7-Table I										12SF7
125G7	Medium Cut-off Pentode	0.	88K	12.6	0.15	8.5	7.0	. 003	Class-A Amp.	Characteristics same as 6SG7-Table I										$125 G 7$
12SH7	Sharp Cut-aff Pentode	0.	8BK	12.6	0.15	8.5	7.0	. 003	H-F Amplifier	Characteristics same as $6 \mathbf{5 H 7}$-Table I										12547
12517	Sharp Cut-off Pentode	0.	8N	12.6	0.15				Class-A Amp.	Characteristics same as 65J7-Table I										125.37
125K7	Remote Cut-off Pentode	0.	8 N	12.6	0.15	6.0	7.0	. 003	R.F. Amplifier	Characteristics same as 6SK7-Table I										$125 K 7$
12SL7GT	Twin Triode	0.	8BD	12.6	0.15	-			Class-A Amp.	Characteristics same as 6SL7 GT-Table II										12SL7GT
12SN7GT	Twin Triode	0.	88D	12.6	0.3				Class-A Amp.	Characteristics same as 6SN7GT-Table II										12SN7GT
12597	Duplex-Diode Triode	0.	80	12.6	0.15	3.2	3.0	1.60	Class-A Amp.	Characteristies same as 6507-Table I										12507
12SR7	Duplex-Diode Triode	0.	80	12.6	0.15	3.6	2.8	2.40	Closs-A Amp.	Characleristics same as 6R7-Table I										$125 R 7$
12SW7	Duplex-Diode Triode	0.	80	12.6	0.15	3.0	2.8	2.4	Class-A1 Amp.	250	-9	-	-	9.5	8500	1900	16			125W7
125×7	Twin Triode	0.	8BD	12.6	0.3	3.0	0.8	3.6	Class-A1 Amp. ${ }^{5}$	250	8			9	7700	2600	20	\cdots		125×7
$125 Y 7$	Heptode Converter	0.	8 R	12.6	0.15	Osc.-Grid leak 20000 ohms			Convertar	250	- 2	100	8.5	3.5	1000000	450		-		$125 Y 7$
1444	Triode Amplifier	L.	5AC	14	0.16	3.4	3.0	4.00	Closs-A Amp.	Characteristics same as 744-Table III										1444
1445	Beam Power Amplifier	L.	6AA	14	0.16		-	-	Class-A, Amp.	250	-12.5	250	3.5/5.5	30/32	70000	3000		7500	2.8	1445
$\begin{aligned} & 14 A 7 / \\ & 1287 / \end{aligned}$	Remote Cut-off Pentode	L.	8 V	14	0.16	6.0	7.0	. 005	Class-A Amp.	250	- 3.0	100	2.6	9.2	800000	2000	-	-		$\begin{aligned} & 14 \mathrm{~A} 7 / \\ & 12 \mathrm{~B} 7 \\ & \hline \end{aligned}$
14 AF7	Twin Triode	1.	8 AC	14	0.16	2.2	1.6	2.30	Class-A Amp.	250	-10			9	7600	2100	16			14AF7
1486	Duplex-Diode Triode	L.	8W	14	0.16				Class-A Amp.	Characteristics same as 786-Table III										1486
1488	Pentagrid Converter	L.	8 X	14	0.16	le2 $=4$ Mo.			Converter	Characteristics same as 788-Table III										1488
$14 \mathrm{C5}$	Beam Power Amplifler	L.	6AA	14	0.24			1 -	Class-A Amp.	Characteristics same as 8V6-Table I										$14 C 5$

TABLE IX-HIGH-VOLTAGE HEATER TUBES-Continued

Type	Name	8ose	Sockel Connecfions	Heater		Copacitance $\mu \mu \mathrm{fd}$.			Use	Piale Supply Volts	Grid Bios	Sereen Volis	Screen Current Ma.	Plate Current Ma.	Plate Resisfance Ohms	Transconductance Micromhos	Amp. Foclor	Load Resistance Ohm	Power Oulput Watts	Type
				Volts	Amp.	In	Out	PlateGrid												
14.7	R.F. Pentode	1.	8 V	14	0.16	6.0	6.5	. 007	Class-A Amp.	250	-3.0	100	0.7	2.2	1000000	1575	-			14.7
$14 E 6$	Duplex-Diode Triode	L.	8 W	14	0.16				Class-A Amp.	Chorocleristics same as 7E6-Table III										14E6
$14 E 7$	Duplex-Diode Pentade	L.	8AE	14	0.16	4.6	5.3	. 005	Class-A Amp.	Charoctaristics same as 7E7-Table III										$14 E 7$
1457	Twin Triode	L.	8AC	14	0.16	-			Class-A Amp.	Choracteristics same as 7F7-Table III										$14 F 7$
14 Fs	Twin Triode	L.	88W	12.6	0.15	2.8	1.4	1.2	Closs-A, Amp.	Characteristics same as 7F8										1478
14H7	Semi-Variable- μ Pentode	1.	8 V	14	0.16	8.0	7.0	. 007	Class-A Amp.	250	- 2.5	150	3.5	9.5	800000	3800				14H7
14.37	Triode-Hexode Converter	L.	8BL	14	0.16	$1 \mathrm{pt}=5 \mathrm{Ma}$.			Convertar	Charactaristics same as 717-Table III										14.37
14N7	Twin Triode	L.	8AC	14	0.32				Class-A Amp.	Characteristics same os 7N7-Table III										14N7
1407	Heplode Penlagrid Converter	L.	8AL	14	0.16	-	-	-	Converter	Charaeteristics same as 707-rable III										1407
14R7	Duplex-Diode Penlode	L.	8AE	14	0.16	5.6	5.3	. 004	Closs-A Amp.	Characteristics same as 7R7-Table III										14R7
1457	Triode Heptode	L.	881	14	0.16	$1 \mathrm{pt}=5 \mathrm{Ma}$.			Convarler	250	- 2.0	100	3	1.8	1250000	525				1457
14V7	H.f. Pentode	L.	8 V	14	0.24		-		Class-A Amp.	300	- 2.0	150	3.9	9.6	300000	5800				14V7
14W7	Pentode	L.	88.	14	0.24	Rk $=160$ ohms			Class-A Amp.	300	- 2.2	150	3.9	10	300000	5800				14W7
18	Pentode	M.	68	14	0.30				Class-A Amp.	Charocteristics same as 6F6G										18
$198 \mathrm{G6G}$	Beam Power Amp.	0.	5BT	18.9	0.3	11	6.5	0.65	Deflection Amp.	400	Peak surge $E_{p}=4000$ V. Peak surge $E_{i}=-100$ V. $I_{\text {ci }}=6 \mathrm{ma} .1_{p}=70 \mathrm{ma}$.									19BG6G
20J8GM	Triode Heptode Converter	0.	8H	20	0.15				Converter	250	- 3.0	100	3.4	1.5	Triode Plate (No. 6) 100 v. 1.5 ma .					20J8GM
2147	Triade Hexode Converter	L.	8AR	21	0.16	-		-	Converter	$\begin{array}{r} 250 \\ 150 \end{array}$	$\begin{array}{r} -3.0 \\ -\quad 3.0 \end{array}$	Triode		$\begin{aligned} & 1.3 \\ & 3.5 \end{aligned}$	二	$\begin{array}{\|c\|} \hline 275 \\ 1900 \\ \hline \end{array}$	32		,	21.17
$25 A 6^{8}$	Pentode Power Amolifer	0.	75	25	0.3	8.5	12.5	0.20	Closs-A Amp.	135	-20.0	135	8	37	35000	2450	85	4000	2.0	25A6
25A7GT ${ }^{3}$	Rectifier Power Pentade	0.	8 F	25	0.3				Class-A Amp.	100	-15.0	100	4	20.5	50000	1800	90	4500	0.77	25A7GT
25 AC5GT ${ }^{\text {a }}$	Triode Power Amplifler	0.	60	25	0.3				Class-A Amp.	110	+15.0			45		3800	58	2000	2.0	25AC5GT
	Triode Power Ampliner									165	Used in dynamic-coupled circuil with 6AF5G driver							3500	3.3	
25858	Direct-Coupled Triodes	s.	6D	25	0.3				Class-A Amp.	110	0	110	7	45	11400	2200	25	2000	2.0	25B5
2586G:	Penlode Power Amplifier	0.	75	25	0.3				Class-A Amp.	95	-15.0	95	4	45		4000		2000	1.75	2586G
2588GT ${ }^{\text {P }}$	Triode Pentode	0.	8 T	25	0.15				Class-A Amp.		Characteristics same as 1288GT									2588GT
25B06GT	Beam Pentade	0.	GAM	25	0.3				Deflection Amp.	250	47*	150	2.1	45	-	5500	-	-		25BO6GT
25C6G ${ }^{\text {\% }}$	Beam Power Amplifier	0.	7AC	25	0.3				Class-A1 Amp.	135	-13.5	135	3.5/11.5	58/60	9300	7000		2000	3.6	25C6G
25D8GT	Diode Triode Pentode	0.	8 AF	25	0.15	-	-		Triode Amp.	100	-1.0	$\underline{100}$	-	0.5	91000	1100	100			25D8GT
250.G	Diode Triode Pentode	O.	8AF	25	0.15				Pentode Amp.	100	-3.0	100	2.7	8.5	200000	1900		-	\square	
2516	Beam Power Amplifier	0.	7AC	25	0.3	16	13.5	0.30	Class-A ${ }_{1}$ Amp.	110	-8.0	110	3.5/10.5	45/48	10000	8000	80	2000	2.2	2516
25N6G ${ }^{\text {8 }}$	Direct-Coupled Triodes	0.	7W	25	0.3				Class-A Amp.	110	0	110	7	45	11400	2200	25	2000	2.0	25N6G
26A7GT	Twin Beam-Power Audio Amplifier	0.	8BU	26.5	0.6	Each Unit Push-Pull			Closs-A Amp. Class-AB Amp. 	26.5	-4.5 -7.0	26.5	2/5.5	20/20.5	2500	5500	-	1500	1.0 0.2 0.5	26A7 GT
32L7GT	Diode-Beam Tetrode	0.	82	32.5	0.3				Class-A Amp.	110	-7.5	110	${ }^{2} 8$	40	15000	6000	-	2500	0.5 1.5	32L7GT
35A5	Boam Power Amplifior	L.	6AA	35	0.15				Class-A1 Amp.	110	- 7.5	110	3/7	40/41	14000	5800	-	2500	1.5	35A5
35L6G	Beam Power Amplifier	0.	7 AC	35	0.15	13	9.5	0.80	Class-A Amp.	110	- 7.5	110	3/7	40/41	13800	5800	$\underline{0}$	2500	1.5	35L6G
43	Penlode Power Amplifier	M.	68	25	0.3	8.5	12.5	0.20	Class-A Amp.	95	-15.0	95	4.0	20.0	45000	2000	90	4500	0.90	43
48:	Tetrode Power Amplifier	M.	6 A	30	0.4				Class-A Amp.	96	-19.0	96	9.0	52.0	-	3800	-	1500	2.0	48
5045	Beam Power Amplifier	L.	6AA	50	0.15	-	-		Class-A Amp.	110	- 7.5	110	4/11	49/50	10000	8200	\square	2000	2.2	50.5
50C6GT	Beam Power Amplifier	0.	7AC	50	0.15				Class-A Amp.	135	-13.5	135	3.5/11.5	58/60	9300	7000	-	2000	3.6	50C6GT
50L6GT	Beam Power Amplifier	0.	7AC	50	0.15		-		Class-A Amp.	110	-7.5	110	4/11	49/50	-	8200	82	2000	2.2	50L6GT
70ATGT	Diode-Beam Tetrode	0.	$8 A^{1}{ }^{1}$	70	0.15				Class-A Amp.	110	-7.5	110	3.0	40		5800	80	2500	1.5	70A7GT
70l7GT	Diode-Beam Tetrode	0.	BAA	70	0.15	-	-	-	Class-A Amp.	110	- 7.5	110	3/6	40/43	15000	7500		2000	1.8	70t7GT
$\begin{aligned} & \text { 117L7GT/ } \\ & 117 \mathrm{M} / \mathrm{GT} \end{aligned}$	Reclifior-Amplifior	0.	8AO	117	0.09	-	-	-	Class-A Amp.	105	- 5.2	105	4/5.5	43	17000	5300	-	4000	0.85	117L7GT/ $117 \mathrm{M7GT}$
117N7GT	Rectifier-Amplifier	0.	BAV	117	0.09			-	Class-A Amp.	100	-8.0	100	5.0	51	16000	7000		3000	1.2	117N7GT
117P7GT	Rectifier-Amplifier	0.	8AV	117	0.09				Class-A Amp.	105	-5.2	105	4/5.5	43	17000	5300	-	4000	0.85	117P7GT

table ix - high-voltage heater tubes-Continued

Type	Name	Base	Socket Connec tions	Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volis	Screan Current Mo.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	Lood Resistance Ohms	Power Output Watts	Type
				Volts	Amp.	In	Out	PlateGrid												
1280	Pantode	L.	8 V	12.6	0.15	6.0	6.5	0.007	Class-A Amp.	Same as 14C7 (Special Non-microphonic)										1280
1284	U.h.f. Pentode	t.	8 V	12.6	0.15	5.0	6.0	0.01	Class-A Amp.	250	- 3.0	100	2.5	9.0	S00000	2000				1284
1629	Electron-Ray Tube	0.	6RA	12.6	0.15				Indicator Tube	Characteristics same as 6E5-Table IV										1629
1631	Beam Power Amplifier	0.	7AC	12.6	0.45		\cdots		Class-A Amp.	Characteristics same as 616-Table I										1631
1632	Beam Power Amplifior	0.	7 AC	12.6	0.6				Class-A Amp.	Characteristics same as 2516										1632
1633	Twin Triode	0.	8BD	25	0.15		\square		Class-A Amp.	Characteristics same as 6SN7GT-Table I										1633
1634	Twin Triode	0.	85	12.6	0.15				Class-A Amp.	Characteristics same 0 65C7-Table 1										1634
1644	Twin Pentode	0.	Fig. 7	12.6	0.15				Class-A Amp.	180	-9.0	180	2.8/4.6	13	160000	2150	-	10000	1.0	1644
$\begin{aligned} & \times \times D / \\ & 14 A F 7 \end{aligned}$	Twin Triode	L.	8AC	12.6	0.15	-	-		Class-A Amp.	250	-10	-	-	9.0	-	2100	16	-	-	$\begin{aligned} & \times \times D / \\ & 14 \text { AF7 } \\ & \hline \end{aligned}$
$28 \mathrm{D7}$	Double Beam Power Amplifier	L.	8BS	28.0	0.4	-	-	-	Class-A Amp.	28	$\begin{aligned} & 390^{*} \\ & 180^{*} \\ & \hline \end{aligned}$	$\begin{array}{r} 282 \\ 28^{3} \\ \hline \end{array}$	$\begin{aligned} & 0.7^{2} \\ & 1.2^{3} \end{aligned}$	$\begin{array}{r} 9.0^{2} \\ 18.5^{3} \\ \hline \end{array}$	ت	-	-	$\begin{aligned} & 4000^{1} \\ & 6000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.082 \\ & 0.1753 \end{aligned}$	28D7

* Cathode resistor-ohms.
6.3 -volt pilot lamp musi be connected belween Pins 6 and 7.
${ }_{3}^{2}$ Per section-resislonce-coupled.
${ }^{3}$ P.p. operation-values for both sections.
- Plate to plate.
${ }^{3}$ Values are for each unit.
- Values are for single tube
${ }^{7}$ Grids 2 and 3 connected to plate.
${ }^{8}$ Discontinued.

TABLE X-SPECIAL RECEIVING TUBES

Type	Name	Base	Socket Connec tions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plale Supply Volis	Grid Bias	Screen Volis	Screen Current Ma.	Plate Current Ma .	Plate Resistance Ohms	Transconductance Micromhos	Amp. Facior	Load Resistance Ohms	Power Outpul Watts	Type
				Volts	Amp.	In	Oul	Plate. Grid												
00-A	Triade Delactor	M.	40	5.0	0.25	3.2	2.0	8.50	Grid-Leak Det.	45	-	-		1.5	30000	666	20			O.A
01-A :	Triode Detector Amplifier	M.	4D	5.0	0.25				Class-A Amp.	135	-9.0			3.0	10000	800	8.0			01.A
3A8GT	Diode Triode Pentode	0.	845	1.4	0.1	2.6	4.2	2.0	Class-A Triode	90	0			0.15	240000	275	65			3A8GT
				2.8	0.05	3.0	10.0	0.012	Class-A Pentode	90	0	90	0.3	1.2	600000	750			-	
3B5GT	Beam Power Amplifler	0.	7 AP	$\begin{array}{\|l\|} \hline 1.4 \\ 2.8 \end{array}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$				Class-A Amp.	67.5	-7.0	67.5	$\begin{aligned} & 0.6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.7 \end{aligned}$	100000	$\begin{aligned} & 1650 \\ & 1500 \end{aligned}$	-	5000	$\begin{array}{\|l\|} \hline 0.2 \\ 0.18 \end{array}$	3B5GT
3C5GT	Power Oulput Pentode	0.	740	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	-	-	-	Class-A Amp.	90	-9.0	90	1.4	6.0	-	$\begin{aligned} & 1550 \\ & 1450 \end{aligned}$	-	$\begin{array}{r} 8000 \\ 10000 \end{array}$	$\begin{aligned} & 0.24 \\ & 0.26 \end{aligned}$	3C5GT
3 Cb	Twin Triode	L.	7BW	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	-			Class-A Amp.	90	0	-	-	4.5	11200	1300	14.5	-	-	$3 C 6$
3LE4	Power Amplifier Pentode	L.	6BA	2.8	0.05	-			Class-A Amp.	90	-9.0	90	1.8	9.0	110000	1600		6000	0.30	3LE4
3LF4	Power Amplifier Tetrode	L.	6BB	$\begin{aligned} & 1.4 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	-	-	-	Class-A Amp.	90	- 4.5	90	$\begin{aligned} & 1.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 75000 \\ & 80000 \end{aligned}$	$\begin{aligned} & 2200 \\ & 2000 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 8000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.23 \end{aligned}$	3LF4
305GT	Beam Power Amplifier	0.	740	$\begin{aligned} & 1.4 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \\ & \hline \end{aligned}$	Parallel Filaments Series Filaments			Class-A Amp.	90	- 4.5	90	$\begin{aligned} & 1.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \end{aligned}$	-	$\begin{aligned} & 2100 \\ & 1800 \\ & \hline \end{aligned}$	-	8000	$\begin{aligned} & 0.27 \\ & 0.25 \end{aligned}$	305GT
		0.	81	4	0.06	Triodes Parallel			Class-A Amp.	90	-1.5	-		2.2	13300	1500	20	-		4A6G
4A6G	Twin Triode Amplifier	0.	8 L	2	0.12	Both Sections			Class-B Amp.	90	0			4.6	-	-	-	8000	1.0	
6 F4	Acorn Triode	A.	7BR	6.3	0.225	2.0	0.6	1.90	Class-A Amp.	80	150*	-		13.0	2900	5800	17	-		614
614	U.H.F. Triode	A.	7BR	6.3	0.225	1.0	0.5	1.6	Class-A1 Amp.	80	150*		-	9.5	4400	6400	28	-		614
10	Triode Power Amplifier	M.	4D	7.5	1.25	4.0	3.0	7.00	Class-A Amp.	425	-39.0			18.0	5000	1600	8.0	10200	1.6	10
11/12	Triode Detector Amplifier	M.	4F/4D	1.1	0.25			-	Class-A Amp.	135	-10.5	-		3.0	15000	440	6.6	-		11/12
20 ?	Triode Power Amplifier	s.	4D	3.3	0.132	2.0	2.3	4.10	Class-A Amp.	135	-22.5	-		6.5	6300	525	3.3	6500	0.11	20
$22^{\text {- }}$	Tetrode R.F. Amplifier	M .	4K	3.3	0.132	3.5	10	0.02	Class-A Amp.	135	- 1.5	67.5	1.3	3.7	325000 -	500	160			22
26	Triode Amplifier	M.	4D	1.5	1.05	2.8	2.5	8.10	Class-A Amp.	180	-14.5			6.2	7300	1150	8.3	-		26
40 :	Triode Voltage Amplifier	M .	40	5.0	0.25	2.8	2.2	2.00	Class-A Amp.	180	- 3.0			0.2	150000	200	30	-		40
50	Triode Power Amplifier	M.	4D	7.5	1.25	4.2	3.4	7.10	Class-A Amp.	450	-84.0		-	55.0	1800	2100	3.8	4350	4.6	50

table X－special receiving tubes－Continued

Type	Name	Base	Sockel Conner－ tions	Fil．or Heater		Capacitance $\mu \mu \mathrm{fd}$ ．			Use S	Plate Supply Volls	Grid Bias	Screen Volts	Screen Current Ma．	Plate Current Ma．	Plate Resistance Ohms	Transcon－ duclance Micromhos	Amp． Factor	LoodResistanceOhms	Power Outpul Wolts	Type
				Volis	Amp．	In	Out	Plate－ Grid												
71－A	Triode Power Amplifier	M．	4D	5.0	0.25	3.2	2.9	7.50	Closs－A Amp．	180	－43．0	ーー	ーー	20.0	1750	1700	3.0	4800	0.79	71－A
990	Triode Delactor Amplifier	S．	4D	3.3	0.353	2.5	2.5	3.30	Class－A Amp．	93	-4.5	－	－	2.5	15500	425	6.6	一一	——	99
$112 A^{7}$	Triode Deteclor Amplifier	M．	4D	5.0	0.25		－－		Class－A Amp．	185	$\rightarrow 13.5$	－ー	－	7.7	4700	1330	0.5	－	－	1124
$\begin{aligned} & 1828 / \\ & 4828 \end{aligned}$	Triode Amplifier	M．	4D	5.0	1.25	－	－	－	Class－A Amp．	250	－35．0	－	－	18.0	－	1500	5.0	－	－	$\begin{aligned} & 1828 / \\ & 4828 \\ & \hline \end{aligned}$
183／483 ${ }^{7}$	Power Triode	M．	4D	5.0	1.25		－	－	Class－A Amp．	250	－60．0	－	－	25.0	18000	1800	3.2	4500	2.9	183／483
$485{ }^{7}$	Triode	5.	54	3.0	1.3	－	－		Class－A Amp．	180	－ 9.0	－	－	6.0	9300	1350	12.5	－	－	485
864	Triode Amplifier	S．	40	1.1	0.25				Class－A Amp．	90	-4.5	一－	ーー	2.9	13500	610	8.2	ーー	－	364
	Pentode Detector，				0.15	3.4	3.0	0.007	Class－A Amp．	250	-3.0	100	0.7	2.0	1.5 meg．	1400	2000	——		954
954	Amplifier	A．		0.3	0.15	3.4	3.0	0.007	Bias Detector	250	-6.0	100		Plale curre	enilobeadjus	jusied to 0.1	ma，with	h no signal		
									Class－A Amp．	250	-7.0	－		6.3	11400	2200	25		－	955
955	Amplifier，Oscillator	A．	58C	6.3	0.15	1.0	0.6	1.40	Class－A Amp．	90	－ 2.5	－	－	2.5	14700	1700	25			955
									Class－A Amp．	250	－ 3.0	100	2.7	6.7	700000	1803	144）			956
956	R．F．Amplifier	A．	588	6.3	0.15	3.4	3.0	0.007	Mixer	250	-10.0	100		－		Oscillator pa	ak volts	－7 min．		956
957	Triode Deteclor， Amplifler，Oscillator	A．	5BD	1.25	0.05	0.3	0.7	1.20	Class－A Amp．	135	－ 5.0	－	－	2.0	20800	650	13.5	－		957
$\begin{aligned} & 958 \\ & 958-\mathrm{A} \end{aligned}$	Triode A．F．Amplifier， Oscillator	A．	5BD	1.25	0.1	0.6	0.8	2.60	Class－A Amp．	135	-7.5	－	－	3.0	10000	1200	12	—		$\begin{aligned} & 958 \\ & 958-A \end{aligned}$
959	Pentode Detector， Amplifier	A．	5BE	1.25	0.05	1.8	2.5	0.015	Class－A Amp．	145	-3.0	67.5	0.4	1.7	800000	600	480	－		959
755／1201	U．h．f．Triode	1.	88N	6.3	0.15	3.6	2.8	1.50	Class－A Amp．	180	-3	－－	－	5.5	12030		36			7E5／1201
7C4／1203	U．h．f．Diode	1.	4AH	6.3	0.15				Rectifier		Max	x．r．m．s．	vollage－		Max．	d．c．oulput	current－	8 ma.		7C4／1203
$\begin{aligned} & 7 \mathrm{AB7/7} \\ & 1204 \\ & \hline \end{aligned}$	Sharp Cut－off Penlode	L．	8BO	6.3	0.15	3.5	4.0	0.06	Class－A Amp．	250	-2	105	0.6	1.75	803000	1200	－	－		$\begin{aligned} & 7 \mathrm{AB7/} \\ & 1204 \end{aligned}$
1276	Triode Power Amplifler	M．	4D	4.5	1.14				Class－A Amp．					haracleristics	ics similar to	－6A3				1276
1609	Pentode Amplifier	S．	58	1.1	0.25				Closs－A Amp．	135	－ 1.5	67.5	0.65	2.5	400000	725	300			1609
9004	U．h．f．Diode	A．	4BJ	6.3	0.15			－	Detector			Max	．e．volto	ge－117．	Max．d．c．oul	ulput current	$\rightarrow 5 \mathrm{ma}$ ．			9504
9005	U．h．f．Diode	A．	5BG	3.6	0.165			－	Detector			Max	a．c．volta	ae－117．	Max．d．c．oun	utput current	－1 ma．			9305
EF－50	Sharp Cut－off Pentode	L．	9 C	6.3	0.3	8	5	0.007	I．F．－R．F．Amp．	253	150＊	250	3.1	10	600000	6300		\cdots	－	EF－50
$\begin{aligned} & \text { GL-2C44 } \\ & \text { GL-464A } \\ & \hline \end{aligned}$	U．h．f．Triode	0.	Fig． 17	6.3	0.75	－	－	－	Class－A Amp． and Modulator	250	100＊	－	－	25.0	－	7000	－	－	－	$\begin{aligned} & \text { GL-2C44 } \\ & \text { GL-464A } \end{aligned}$
$\begin{aligned} & \text { GL-446A } \\ & \text { GI-446B } \end{aligned}$	U．h．f．Triode	0.	Fig． 19	6.3	0.75	－	－	－	Oscillator，Amp． or Convertar	250	200＊	－	－	15.0	－	4500	45	－		$\begin{aligned} & \text { GL-446A } \\ & G L-446 B \end{aligned}$
$\begin{aligned} & 559 \\ & \text { GL-559 } \end{aligned}$	U．h．f．Diode	0.	Fig． 18	6.3	0.75	－	－	－	Detector or Irans． line swilch	5.0	－	－	－	24.0	－	－	－	－	－	$\begin{aligned} & 559 \\ & \text { GL-559 } \end{aligned}$
NU－2C35	Special Hi－Mu Triode	0.	Fig． 38	6.3	0.3	5.2	2.3	0.62	Shunt Valtage Regulator	8000	－200	－	－	5.0	525000	950	500	－		NU－2C35
VT52	Triode	M．	4D	7.0	1.18	5.0	3.0	7.7	Class－A，Amp．	220	－43．5		－	29.0	1650	2300	3.8	3800	1.0	VT52
$\times 6030$	Diode	L．	Fig． 4	3.0	0.6	－			Noise Diode	90	－			4.0	－	－		－		$\times 6030$

TABLE X-SPECIAL RECEIVING TUBES—Continued

Type	Name	Base	Socke 1 Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Uso	Plate Supply Volis	Grid Bias	$\begin{aligned} & \text { Scroen } \\ & \text { Volts } \end{aligned}$	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Oulput Watts	Type
				Volts	Amp.	In	Oul	PlateGrid												
XXB	Twin-Triode Frequency Converter	t.	Fig. 9	2.8/ 1.4	$\begin{aligned} & 0.05 / \\ & 0.10 \end{aligned}$				Converter ${ }^{2}$	90^{1}	0	-	-	$\begin{aligned} & 4.5^{4} \\ & 4.5 \end{aligned}$	$\begin{aligned} & 112004 \\ & 112005 \end{aligned}$	$\begin{aligned} & 13004 \\ & 1300^{5} \end{aligned}$	14.51	-	-	xxB
				$\begin{gathered} 3.2{ }^{3} / \\ 1.6 \end{gathered}$	-						- 3	-	—	$\begin{aligned} & 1.44 \\ & 1.45 \end{aligned}$	$\begin{aligned} & 1900^{4} \\ & 1900^{5} \end{aligned}$	$\begin{aligned} & 7604 \\ & 760^{5} \end{aligned}$	14.51	-	-	
XXFM	Twin-Diode Triode	L.	8BZ	6.3	0.3	-	-	-	Class-A Amp.	250	-1	-	-	1.9	6700	1500	100	-	-	XXFM
										100	0	-	-	1.2	85000	1000	85			
* Cathode resistor-ohms.		1 Both sections. 2 Section No. 2 recommended for h.f.o.						${ }^{3}$ Dry battery operation. 4 Section No. 1.			${ }^{5}$ Section No. 2. ${ }^{6}$ Same as X99. Type V99 is sama, but socket connections are 4 E .							${ }^{7}$ Discontinued.		

TABLE XI-MINIATURE RECEIVING TUBES
Other miniature types in Tables XIII and XV

IAbLE AI-miNIAIUKE KELEIVING iudEsーCuminueu

Type	Name	Base	Socket Connections ${ }^{1}$	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volis	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor ,	LoadRessistanceOhms	Power Output Watts	Prototype
				Volts	Amp.	1 n	Out	PlateGrid												
6AK6	Power Amplifier Pentode	B.	7BK	6.3	0.15	3.6	4.2	0.12	Class-A Amp.	180	- 9.0	180	2.5	15.0	200000	2300		10000	1.1	
6ALS	U.h.f. Twin Diode	B.	6BT	6.3	0.3				Defector			Max. r.m.s. voltage-150. Max. d.c. output current-10 ma. ${ }^{1}$								6H6GT
6AN5	Power Amp. Pentode	B.	78D	6.3	0.5	9.0	4.8	0.05	Class-A, Amp.	120	- 6	120	12	35	12500	8000				6 AG7
6AN6	Twin Diade	B.	7BJ	6.3	0.2	-	-	- D	Delector	R.m.s. voltage per plate $=75$ valts; d.c. output $=\mathbf{3 . 5}$ ma. with 25000 ahms and $\mathbf{8} \mu \mu \mathrm{fd}$. load; peak current per plate $=\mathbf{1 0} \mathbf{~ m a}$.; peak inverse voltage $=\mathbf{2 1 0}$.										-
										180	- 8.5	180	$4.0{ }^{2}$	30^{2}	58000	3700	29	5500	2.0	6V6GT
6AQ5	Beam Power Tetrode	B.	7BZ	6.3	0.45	7.6	6.0	0.35	Class-A1 Amp.	250	-12.5	250	$7.0{ }^{2}$	$47{ }^{2}$	52000	4100	45	5000	4.5	
										250	- 3.0	-	-	1.0	58000	1200	70	-	-	6776
6406	Duodiode Hi-mu Triode	B.	78т	6.3	0.15	1.7	1.5	1.80	Class-A Triode	100	-1.0			0.8	61000	1150	70			
					. 4				Class-A, Amp.	250	-18	250	$5.5{ }^{2}$	33.	68000	2300	-	7600	3.4	6K6GT
6AR5	Pentode Power Amp.	B.	6CC	6.3	0.4					250	-16.5	250	$5.5{ }^{2}$	$35{ }^{2}$	65000	2400		7000	3.2	
6A55	Beam Pentode	B.	7CV	6.3	0.8	12	6.2	0.6	Closs-A ${ }_{1}$ Amp.	150	-8.5	110	2/6.5	35/36	-	5600		4500	2.2	
GA56	Sharp Cut-off Pentade	B.	7CM	6.3	0.175	4.0	3.0	0.02	Class-A Amp.	120	-2	120	3.5	5.5		3500				
6AT6	Duplex Diode Triode	B.	7BT	6.3	0.3	2.3	1.1	2.10	Class-A Amp.	250	-3			1.0	58000	1200	70			607GT
6AU6	Sharp Cut-off Pentode	B.	7BK	6.3	0.3	5.5	5.0	. 0035	Closs-A Amp.	250	- 1	150	4.3	10.8	2000000	5200				6SH7GT
6AV6	Duodiode Hi-mu Triode	B.	781	6.3	0.3				Class-A, Amp.	250	- 2			1.2	62500	1600	100			6S07GT
6BA6	Remote Cul-off Pentode	B.	7CC	6.3	0.3	5.5	5.0	. 0033	Class-A Amp.	250	68*	100	4.2	11	1500000	4400				65G7GT
6BA7	Pentagrid Converter	8.	8 CT	6.3	0.3	9.5	8.3		Converter	250	-1	100	10	3.8	1000000	3.5				65B7Y
		B.	7 CC	6.3	0.3				Class-A Amp.	100	- 1	100	5	13	120000	2350	-			65K7GT
6BD6	Remote Cul-off Peniode			6.3	0.3					250	- 3	100	3.5	9	700000	2000				
6BE6	Pentagrid Converter	B.	7CH	6.3	0.3	Osc. Grid 50000Ω			Converter	250	- 1.5	100	7.8	3.0	1000000	475	-	-		65A7GT
6BF6	Duplex-Diode Triode	B.	7BT	6.3	0.3	1.8	1.1	2.0	Class-A, Amp.	250	-9			9.5	8500	1900	16	10000		6SR7GT
6BH6	Sharp Cut-off Pentode	B.	7CM	6.3	0.15	5.4	4.4	0.0035	Ciass-A Amp.	250	1	150	2.9	7.4	1400000	4600				
6 BJ 6	Remole Cut-off Pentode	B.	7 CM	6.3	0.15	4.5	5.0	. 0035	Class-A1 Amp.	250	- 1	100	3.3	9.2	1300000	3800				6557GT
$6 \mathrm{C4}$	Triode Amplifier	B.	6BG	6.3	0.15	1.8	1.3	1.60	Class-A1 Amp.	250	- 8.5			10.5	7700	2200	17			6J5GT
614	U.h.f. Grounded-Grid R.F. Amplifier	B.	780	6.3	0.4	5.5	0.24	4.0	Grounded.Grid	150	200*			15.0	4500	12000	55			
6 J4									Class-A Amp.	100	100*			10.0	5000	11000	55			
656	Twin Triode	B.	7BF	6.3	0.45	2.2	0.4	1.6	Closs-A Amp. Mixer, Oscillator	100	50*	-	-	8.5	7100	5300	38	-	-	-
6N4	U.h.f. Triode Amplifier	B.	7CA	6.3	0.2	3.0	1.6	1.10	Class-A Amp.	180	- 3.5		-	12.0	-	6000	32	-	-	-
						1.5	1.1	2.4	Class-A, Amp.	250	- 3			1.0	5800	1200	70			-
678	Triple-Diode Triode	B.	9 E	6.3	0.45					100	- 1		-	0.8	5400	1300	70			
12AL5	Twin Diode	8.	6BT	12.6	0.15	2.5	-		Detector		R.m.s. voltage per plate $=117$; d.c. output $=9 \mathrm{ma}$. per plate; peak ma. per plate $=54$; peak inverse voltage $=330$.									12H6GT
12AT6	Duplex Diode Triode	B.	7BT	12.6	0.15	2.3	1.1	2.10	Class-A Amp.	250	- 3.0			1.0	58000	1200	70			1207 GT
12AT7	Double Triode	B.	9A	6.3	0.3	$2.5{ }^{7}$	0.45	1.45	Class-A, Amp.	250	- 2			10	10000	5500	55			
				12.6	0.15	$2.5{ }^{8}$	$0.35{ }^{8}$	1.45 ${ }^{\text {8 }}$	Each Unil	180	- 1			11	9400	6600	62			
12AU6	Sharp Cul-off Pentode	B.	7 CC	12.6	0.15	5.5	5.0	. 0035	Class-A1 Amp.	250	- 1.0	150	4.3	10.8	1 mog.	5200				12SH7GT
	Twin-Triode Amplifier	B.	9 A	6.3	0.3	1.6	0.5	$1.5{ }^{7}$	Class-A1 Amp.	250	- 8.5			10.5	7700	2200	17	-	-	125N7 GT
12AU7				12.6	0.15	$1.6{ }^{8}$	0.35 8	1.5^{8}												
$12 A V 6$	Duodiode Hi-mu Triode	B.	7BT	12.6	0.15		-	-	Class-AI Amb.	250	- 2			1.2	62500	1600	100			
			7CM	12.6	0.15	6.5	1.5	0.025	Pentode Amp.	250	200*	150	2.0	7.0	800000	5000				
12AW6	Sharp Cut-off Pentode	B.							Triode Amp. ${ }^{\text {a }}$	250	825*		-	5.5	11000	3800	42			
12AW7	Sharp Cut-off Pentade	B.	7 CM	12.6	0.15	6.5	1.5	0.025	Closs-A1 Amp.	250	200*	150	2.0	7.0	0.8 meg .	5000	-	\square		
12AX7	Double Triode	B.	9 A	12.6	0.15	$1.6{ }^{7}$	$0.46{ }^{7}$	$1.7{ }^{7}$	Class-A1 Amp.	250	- 2	-	-	$1.2{ }^{1}$	62500	1600	100	-		-
				6.3	0.3	$1.6{ }^{8}$	0.34^{8}	$1.7^{\text { }}$		100	- 1		-	$0.5{ }^{\text {l }}$	8000	1250	100			
$124 \mathrm{Y7}$	Dual Triode	B.	9A		$\begin{aligned} & 0.15 \\ & 0.3 \\ & \hline \end{aligned}$	1.3	0.6	1.3	Class-A Amp. Lo-Level Amp. Class-A Amp.	250	- 4	-	-	3	-	1750	40	-		125G7G
				6.3						150	2700**	100	Plata resistor $=20000 \mathrm{sl}$. Grid resistor $=0.1 \mathrm{Meg}$. V.G. $=12.5$							
12846	Remole Cut-off Pentade	B.	7CC	12.6	0.15	5.5	5.0	. 0035		250			4.2	11.0	1500000	4400	-	-	-	

table Xi - miniature receiving tubes - Continued

Type	Name	Base	Socket Connections 1	Fil. or Heater		Copacitance $\mu \mu \mathrm{fd}$.			Use	Plaie Supply Volts	Grid Bias	ScreenVolts	Screen Current Ma.	Plate Current Ma.	\qquad	Transconductance Micromhos	Amp. Facior 4	LoadResistanceOhms	Power Outpul Wats	Protolype
				Volts	Amp.	In	Out	PlateGrid												
12BA7	Pentagrid Converter	B.	8CT	12.6	0.15	9.5	8.3		Converter	250	- 1	100	10	3.8	1000000	3.5				-
128D6	Remote Cut-off Pentode	B.	7CC	12.6	0.15	4.3	5.0	. 004	Class-A Amp.	250	- 3	100	3.5	9.0	700000	2000				125K7GT
12BE6	Pentagrid Converter	B.	7CH	12.6	0.15	Osc. Grid 50000 \{2			Converter	250	-1.5	100	7.8	3.0	1000000	475				12SA7GT
128F6	Duodiode Triode	B.	7BT	12.6	0.15	1.8	1.1	2.00	Class-A Amp.	250	-9	-		9.5	8500	1900	16			I2SR7GT
1916	Twin Triode	B.	7BF	18.9	0.15	2.0	0.4	1.5	Closs- A_{1} Amp.	100	50*			8.5	7100	5300	38			-
1978	Triple-Diode Triode	B.	9E	18.9	0.15	1.5	1.1	2.4	Class-A Amp.	250	- 3	-		1.0	5800	1200	70			-
26A6	Remote Cut-off Pentode	B.	7BK	26.5	0.07	6.0	5.0	. 0035	Class-A Amp.	250	125*	100	4	10.5	1000000	4000				-
$26 \mathrm{C6}$	Duplex-Diode Triode	B.	7BT	26.5	0.07	1.8	1.4	2	Class-A ${ }_{1}$ Amp.	250	- 9	-		9.5	8500	1900	16			-
26D6	Pentagrid Converter	B.	7 CH	26.5	0.07	Osc. Grid 20000 §			Converter	250	- 1.5	100	7.8	3.0	1000000	475				
3585	Beam Pawer Amplifier	B.	7 BZ	35	0.15	11	6.5	0.4	Class-A Amp.	110	-7.5	110	72	41.	-	5800	40 :	2500	1.5	3516GT
35 C 5	Beam Power Amplifier	B.	7CV	35	0.15	12	6.2	0.57	Class-A Amp.	110	- 7.5	110	3/7	40/41	-	5800		2500	1.5	
5085	Beam Power Amplifier	B.	782	50	0.15	13	6.5	0.50	Class-A Amp.	110	- 7.5	110	4.0	49.0	14000	7500	-	3000	1.9	50L6GT
50 C 5	Beam Power Amplifier	B.	7CV	50	0.15				Class-A A Amp.	110	-7.5	110	4/8.5	49/50	10000	7500		2500	1.9	
5590	Pentode	B.	7BD	6.3	0.15	3.4	2.9	0.01	Class-A Amp.	90	820*	90	1.4	3.9	300000	2000		-		
5591	R.F. Pentode	B.	7BD	6.3	0.15	3.9	2.85	0.01	Closs-A Amp.	180	200*	120	2.4	1.7	690000	5100	3500		-	
5654	Sharp Cut-off Pentode	B.	7BD	6.3	0.175	4	2.9	0.02	Class. A_{1} Amp.	120	200*	120	2.5	7.5	340000	5000				
5687	Dual Triode	B.	9 H	12.6	0.45	4	0.45	3.1	Class-A Amp.	250	-12.5			16	4000	4100	16.5	\square	-	
				6.3	0.9					120	- 2	-		34	2000	10000	20		-	
5722	Noisc Generating Diode	B.	5CB	2/5.5	1.6		1.5	-	Noise Generator	200	-	-	-	35	-	-			\cdots	-
9001	Shorp Cut-off Pentode	B.	7PM	6.3	0.15	3.6	3.0	0.01	Closs-A Amp.	250	-3.0	100	0.7	2.0	1 meg. ${ }^{\text {a }}$	1400			-	
									Mixer	250	- 5.0	100	Osc. peak voltage 4 volts			550			-	
9002										250	-7.0	-	-	6.3	11400	2200	25			
	Amplifier, Oscillator	B.	71 m	6.3	0.15	1.2	1.1	1.40	Class-A Amp.	90	- 2.5	-	-	2.5	14700	1700	25			
9003	Remote Cut-off Pentode	B.	7PM	6.3	0.15	3.6	3.0	0.01	Class-A Amp.	250	- 3.0	100	2.7	6.7	700000	1800		-	-	
									Mixer	250	-10.0		Osc. peak voltage 9 volts			600	-	-	-	
9006	U.h.f. Diode	B.	6BH	6.3	0.15				Detector	Max. o.c. voltage-270. Max. d.c. output current-5 ma.										-
* Cathode resistor-ohms.			1 Per Plate. 2 Maximum-signal current for full-power output. : Values are for two tubes in push-pull.							A Also no-signal plate ma. when so indicated. No signal plate ma. ${ }^{3}$ Effective plate-lo-plate.						Triode No. 8 Triode No. 2 ${ }^{2}$ Grid No. 2	1. tied to	ate and No	$\text { 0. } 3 \text { to }$	hode.

Type	Name	Base	Socket Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volts	$\begin{aligned} & \text { Screen } \\ & \text { Current } \\ & \text { Ma. } \end{aligned}$	$\begin{array}{\|c\|} \hline \hline \text { Plate } \\ \text { Current } \\ \text { Ma. } \end{array}$	PlateResistanceOhms	Transconductance Micromhos	Amp. Factor	LoadResistanceOhms	Power Watts	Type
				Volts	Amp.	In	Out	PlateGrid												
IAC5	Power Pentode	Bs.	Fig. 14	1.25	0.04				Class-A ${ }_{1}$ Amp.	67.5	-4.5	67.5	0.4	2.3	150000	750	-	25000	0.05	IAC5
IAD5	Sharp Cut-off Pentode	Bs.	Fig. 16	1.25	0.04	1.8	2.8	0.01	Class-A, Amp.	67.5	0	67.5	0.75	1.85	700000	735	-			1 ADS
$1 \mathrm{C8}$	Heplode	-	-	1.25	0.04	6.5	4.0	0.25	Converter	30	0	30	0.75	0.32	300000	100				168
158	Pentagrid Converter	Bs.	Fig. 27	1.25	0.04	6	-	-	Converter	67.5	0	67.5	1.5	1.0	-	150			-	$1 \mathrm{E8}$
176	Diode-Pentode	Bs.	Fig. 28	1.25	0.04				Class-A Amp.	67.5	0	67.5	0.4	1.6	400000	600		-	-	176
1V5	Audio Pentode	${ }^{1}$?	1.25	0.04				Class-A Amp.	67.5	-4.5	67.5	0.4	2.0	150000	750		25000	0.05	IV5
IW5	Sharp Cut-off Pentade	1	2	1.25	0.04	2.3	3.5	0.01	Class-A, Amp.	67.5	0	67.5	0.75	1.85	700000	735		-	-	IW5
2 E 31	R.F. Pentade	1	2	1.25	0.05				Class-Al Amp.	22.5	0	22.5	0.3	0.4	-	500		-	-	2 E 31
2 E 32	R.F. Pentode	1	2	1.25	0.05				Class-A Amp.	22.5	0	22.5	0.3	0.4	350000	500		-	-	2 E 32
2 E 35	Audio Pentode	1	2	1.25	0.03				Class-A Amp.	22.5	0	22.5	0.07	0.27	-	385		-	0.0012	2 E 35
2 E36		1	2	1.25	0.03				Class-A Amp.	22.5	0	22.5	0.07	0.27	220000	385	\cdots	150000	0.0012	
2E36	Audio Pentode			1.25	0.03				Class-A1 Amp.	45	-1.25	45	0.11	0.45	250000	500		100000	0.006	2E36
2E41	Diode Pentode	1	*	1.25	0.03				Detector Amp.	22.5	0	22.5	0.12	0.35	-	-	-	-		$2 E 41$
$2 \mathrm{E42}$	Diode Pentode	1	1	1.25	0.03				Detector Amp.	22.5	0	22.5	0.12	0.35	250000	375	-	1 meg.	-	$2 \mathrm{E4} 2$

TABLE XIJ - SUB-MINIATURE TUBES - Confinued

Type	Name	Base	Socket Connections	Fil. or Heater		Copacitonce $\mu \mu \mathrm{fd}$.			Use		Grid Bias	Screen Volts	Screen Current Mo.	Plate Current Ma.	PlateResistanceOhms	Transconductance Micromhos	Amp. Factor	LoadResistanceOhms	Power Outpui Watts	Type
				Volts	Amp.	In	Out	PlateGrid												
2G21	Triode Meptode	1	${ }^{2}$	1.25	0.05		-	-	Converter	22.5		22.5	0.2	0.3	--	75		-		2G21
2G22	Converiter	1	2	1.25	0.05				Converter	22.5	0	22.5	0.3	0.2	500000	60				2G22
6K4	Triode	1	2	5.3	0.15	2.4	0.8	2.4	Class A_{1} Amp.	200	680*			11.5	4650	3450	16			6 K 4
1247	Diode	1	2	0.7	0.065				R.F. Probe											1247
CK501	Pentode Voltage Amplifier	-1	2	1.25	0.033				Class-A Amp.	30	0	-30	\| 0.06 0.055	0.3 0.28	$\begin{array}{\|l\|} 1000000 \\ \hline 1500000 \end{array}$	325	-	-		CK501
CK502	Pentode Oulput Amplifier	- ${ }^{1}$	2	1.25	0.033				Class-A Amp.	30	0	30	0.13	0.55	500000	400	-	60000	0.003	CK 502
CK503	Pentode Oulput Amplifier	-1	2	1.25	0.033				Class-A Amp.	30	0	30	0.33	1.5	150000	600		20000	0.006	CK503
CK 504	Pentode Output Amplifier	-1	2	1.25	0.033				Class-A Amp.	30	-1.25	30	0.09	0.4	500000	350		60000	0.003	CK 504
			2							30	0	30	0.07	0.17	1100000	140				CK 505
CK505	Pentode Vollage Amplifier	-1	2	0.625	0.03				Class-A Amp.	45	-1.25	45	0.08	0.2	2000000	150				CK50s
CK 506	Pentode Output Amplifier	- ${ }^{1}$:	1.25	0.05				Class-A Amp.	45	-4.5	45	0.4	1.25	120000	500	-	30000	0.025	CK 506
CK 507	Pentode Oulput Amplifier	- ${ }^{1}$	2	1.25	0.05				Class-A Amp.	45	-2.5	45	0.21	0.6	360000	500		50000	0.010	CK507
CK509	Triode Voltage Amplifier	-1	2	0.625	0.03				Class-A Amp.	45	0			0.15	150000	160	16	1000000		CK509
CK510	Dual Space-Charge Tetrode	- ${ }^{1}$	2	0.625	0.05				Class-A Amp.	45	0	0.2	$200 \mu(x$	$60 \mu \alpha$	500000	65	32.5			CK510
CK512	Low Microphonic Pentode	1	2	0.625	0.02				Voltage Amp.	22.5	0	22.5	0.04	0.125	-	160		-		CK412
CK515BX	Triode Voltage Amplifier	- ${ }^{1}$	2	0.625	0.03				Class-A Amp.	45	0	-		0.15	-	160	24	1000000		CK515BX
CK520AX	Audio Pentode	1	2	0.625	0.05				Class-A Amp.	45	-2.5	45	0.07	0.24		180		-	0.0045	CK520AX
CK521AX	Audio Pentode	1	2	1.25	0.05				Class-A1 Amp.	22.5	-3	22.5	0.22	0.8		400			0.006	CK521AX
CK522AX	Audio Pentode	1	2	1.25	0.02				Class-A Amp.	22.5	0	22.5	0.08	0.3		450			0.0012	CK522AX
CK523AX	Pentade Output Amp.	1		1.25	0.03				Class-A Amp.	22.5	-1.2	22.5	0.075	0.3		360			0.0025	CK523AX
CK524AX	Pentode Output Amp.	1	-	1.25	0.03				Class-A Amp.	15	-1.75	15	0.125	0.45		300			0.0022	CK524AX
CK525AX	Pentode Output Amp.	1		1.25	0.2				Closs-A Amp.	22.5	-1.2	22.5	0.06	0.25		325			0.0022	CK525AX
CK526AX	Pentode Output Amp.	1		1.25	0.2				Closs-A Amp.	22.5	-1.5	22.5	0.12	0.45	-	400			0.004	CK526AX
CK527AX	Pentode Outpul Amp.	1		1.25	0.015				Class-A Amp.	22.5	0	22.5	0.025	0.1		75			0.0007	CK527AX
CK529AX	Shielded Output Pentode	1		1.25	0.02				Class-A Amp.	15	-1.5	15	0.05	0.2		275			0.0012	CK529AX
CK551AXA	Diode Pentode	1	${ }^{2}$	1.25	0.03				Defector-Amp.	22.5	0	22.5	0.04	0.17		235				CK551AXA
CK533AXA	R.F. Pentode	1	*	1.25	0.05				Class-A Amp.	22.5	0	22.5	0.13	0.42		550				CK553AXA
CK556AX	U.h.f. Triode	1	2	1.25	0.125				R.F. Oscillator	135	-5	-		4.0		1600				CK556AX
CK568AX	U.h.f. Triode	1	2	1.25	0.07				R.F. Oscillator	135	-6	-		1.9		650				CK568AX
CK569AX	R.F. Pentode	1	2	1.25	0.05				Class-A Amp.	67.5	0	67.5	0.48	1.8		1100				CK569AX
CK605CX	Sharp Cut-off Pentode	1		6.3	0.2				Class-A Amp.	120	-2	120	2.5	7.5		5000				CK605CX
CK606BX	Single Uiode	1	2	6.3	0.15				Detector	150 a.c.				9.0 d.e.		-				CK606BX
CK608CX	U.h.f. Triode	1	2	6.3	0.2				500-Mc. Osc.	120	-2	-	-	9.0		5000			0.75	CK608CX
CK619CX	Hi-Mu Triode	1	2	6.3	0.2				Class-A Amp.	250	-2	-		4.0		4000			-	CK619CX
CK624CX	Sharp Cut-off Pentode	1		6.3	0.2				Class-A Amp.	120	-2	120	3.5	5.2		3000				CK624CX
CK650AX	Sharp Cut-off Pentode	1	2	6.3	0.2				Class-A Amp.	120	-2	120	2.5	7.5		5000				CK650AX
CK5672	Pentode Output Amp.	1	-	1.25	0.05			-	Class-A Amp.	67.5	-6.25	67.5	1.0	2.75	-	625		-	0.06	CK5672
HYI13 HY123	Triode Amplifier	- ${ }^{1}$	5K	1.4	0.07		-		Class-A Amp.	45	-4.5	-	-	0.4	25000	250	6.3	40000	0.0065	$\begin{aligned} & \text { HY113 } \\ & \text { HY } 123 \\ & \hline \end{aligned}$
HY115 HY145	Pentode Voltage Amplifier	- ${ }^{1}$	5K	1.4	0.07			-	Class-A Amp.	$\begin{aligned} & 45 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.5 \\ -1.5 \end{array}$	$\begin{array}{r} 22.5 \\ 45 \end{array}$	$\begin{aligned} & 0.008 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.48 \\ & \hline \end{aligned}$	$\begin{aligned} & 5200000 \\ & 1300000 \\ & \hline \end{aligned}$	$\begin{array}{r} 58 \\ 270 \\ \hline \end{array}$	$\begin{aligned} & 300 \\ & 370 \end{aligned}$	-	\square	$\begin{aligned} & \text { HY } 115 \\ & \text { HY } 145 \end{aligned}$
HY 125 HY155	Pentode Power Amplifier	- 1	5K	1.4	0.07				Class-A Amp.	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{aligned} & -3.0 \\ & -7.5 \end{aligned}$	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 825000 \\ & 420000 \end{aligned}$	$\begin{array}{r} 310 \\ 450 \end{array}$	$\begin{aligned} & 255 \\ & 190 \end{aligned}$	$\begin{aligned} & 50000^{\prime} \\ & 28000 \\ & \hline \end{aligned}$	$\begin{array}{ll} 0.0115 \\ 0.09 \\ 0 \end{array}$	$\begin{aligned} & \text { HY125 } \\ & \text { HY155 } \end{aligned}$
M 54	Tetrode Power Amplifier	1	2	0.625	0.04			-	Class-A Amp.	30	0	30	0.06	0.5	130000	200	26	35000	0.005	M54
M64	Tetrode Voltoge Amplifier	1	2	0.625	0.02				Class-A Amp.	30	0	-	-	0.03	200000	110	25	-		M64
M74	Teirode Voltage Amplifier	1	2	0.625	0.02				Class-A Amp.	30	0	7.0	0.01	0.02	500000	125	70			M74
RK61	Gas Triode	1	2	1.4	0.05				Rodia Control	45	-	-	-	1.5	-	-				RK61
$\begin{aligned} & \text { SD917A } \\ & 5637 \end{aligned}$	Triode	1	2	6.3	0.15	2.6	0.7	1.4	Class-A Amp.	100	820*	-	-	1.4	26000	2700	70	-	-	$\begin{aligned} & \text { SD917A } \\ & 5637 \end{aligned}$

TABLE XII - SUB-MINIATURE TUBES - Continued

Type	Name	Base	Socket Connec. fions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	ScreonVolts	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	PowerOutpuWetts	Type
				Volts	Amp.	In	Out	Plate- Grid												
$\begin{aligned} & \text { SD828A } \\ & 5638 \\ & \hline \end{aligned}$	Audio Pentode	1	2	6.3	0.15	4.0	3.0	0.22	Class-A Amp.	100	270*	100	1.25	4.8	150000	3300	\square	-	-	
$\begin{aligned} & \text { SD828E } \\ & 5634 \\ & \hline \end{aligned}$	Sharp Cut-off Pentode	4	-	6.3	0.15	4.4	2.8	0.01	Class-A ${ }_{1}$ Amp.	100	150*	100	2.5	6.5	240000	3500	-	-	-	SD828E 5634
$\begin{aligned} & \text { SN944 } \\ & 5633 \\ & \hline \end{aligned}$	Remote Cut-off Pentode	4	-	6.3	0.15	4.0	2.8	0.01	Class-A1 Amp.	100	150*	100	2.8	7.0	200000	3400		-	-	SN944 5633
SN946	Diode	1	2	6.3	0.15	1.8		-	Rectifier	150	-	-		9.0						SN946
$\begin{aligned} & \text { SN947D } \\ & 5640 \end{aligned}$	Audio 8eam Pentode	1	2	6.3	0.45	-	-	-	Class-A1 Amp.	100	-9	100	2.2	31.0	15000	5000	-	3000	1.25	SN947C 5640
SN948C	Voltage Regulator	1	-	6.3	0.15	9.5		0.2	Regulator				perating	oltage $=9$	5; Max. cur	rent $=25 \mathrm{Mo}$				SN948C
SN953D	Power Pentode	${ }^{1}$	-	6.3	0.15	9.5	3.8	0.2	Closs-A Amp.	150	100*	100	4/7.5	21/20	50000	9000		9000	1.0	SN953D
5641	Half-Wave Rectifier	1	2	6.3	0.45	-	-	-	Rectifier	300	-	-	-	45.0	-	-	-	-	-	$\begin{array}{\|l\|} \hline \text { SN954 } \\ 5641 \end{array}$
SN955B	Dual Triode	1	2	6.3	0.45	2.8	1.0	1.3	Class-A Amp. ${ }^{\text {b }}$	100	100*		-	5.5	8000	4250	34	-	-	SN955B
5N956B 5642	H.V. Half-Wove Reclifier	4	-	1.25	0.14	-	-	-	H.V. Rectifier		P	inverse	V. $=1000$	Max. A	verage $\mathrm{Ip}=$	Ma. Peak	$p=23$			SN956B 5642
SN957A 5645	Triode	1	2	6.3	0.15	2.0	1.0	1.8	Class-A1 Amp.	100	560*	-	-	5.0	7400	2700	20	-	-	$\begin{aligned} & \text { SN957A } \\ & 5645 \\ & \hline \end{aligned}$
SN1006	Triode Mixer	4	2	6.3	0.15				Class-A Amp.	100	820**		-	1.4	29000	2400	70	-	-	SN1006
SN1007 ${ }^{\text {d }}$	Mixer	4		6.3	0.15	5.0	2.8	0.003	Mixer	100	150*	100	5.0	4.0	230000	900	-			SN1007B

TABLE XIII-CONTROL AND REGULATOR TUBES

Type	Name	Base	Socket Connections	Cathode	Fil. or Healar		Use	Peak Anode Voltage	Max. Anode Ma.	Minimum Supply Voltage	Operating Voltage	Operating Ma.	Grid Resistor	Tube Voltage Drop	Type
					Volts	Amp.									
042	Voltage Regulator	7-pin B.	5BO	Cold	-	-	Volfage Regulator	-		185	150	5-30	-	-	OA 2
OA5	Gas Pentode	7-pin B.	Fig. 33	Cold		-	Relay or Trigger	Plate -750 V., Screen -90 V., Grid +3 V., Pulse-85 V,							OA5
OB2	Voltage Regulator	7 -pin 8 .	5BO	Cold	-	-	Voltage Regulator	-		133	108	5-30	-		OB2
$\begin{aligned} & \text { OA4G } \\ & 1267 \end{aligned}$	Gas Triode Starter-Anode Type	6-pin 0 .	$\begin{aligned} & 4 V \\ & 4 V \end{aligned}$	Cold	-	-	Cold-Cathode Starter-A node Relay Tube	With 105-120-valt a.c. anode supply, peak starter-anode a.c. voltage is $\mathbf{7 0}$, peak r.f. voitage 55. Peak d.c. $\mathrm{ma}=100$. Average d.c. $\mathrm{ma}=25$.							$\begin{aligned} & \text { OA4G } \\ & 1267 \end{aligned}$
1847	Voltage Regulator	7 -pin 8 .		-	-	-	Valtage Regulator	-		225	82	1-2		,	1847
$1 C_{2} 1$	Gas Triode Glow-Discharge Type	6-pin 0.	4 V	Cold	-	-	Relay Tube	125-145	25	66^{6}				73	$1 \mathrm{C21}$
2A4G	Gas Triode Grid Type	7 -pin O.	55	Fil.	2.5	2.5	Coltage Ragula		$0.1{ }^{6}$	1804				55	
605G	Gas Triode Grid Type	8 -pin 0.	60	Hir.	6.3	0.6	Sweep Circuit Oscillator	300	300	\square	-	1.0	0.1-10 ${ }^{7}$	15	2A4G
$2 \mathrm{B4}$		5-pin M.	5A	Hir.	2.5	1.4					-			19	605
$2 \mathrm{C4}$	Gas Triode	7-pin B.	5AS	Fil.	2.5	0.65	Control Tube	Plate volts $=350$; Grid valts $=-50$; Avg. Ma. $=5$; Peak $\mathrm{Ma}_{\text {, }}=20$; Voltage drop $=16$.							2C4
2D21	Gos Tefrade Gas and Mercury Vapor Grid Type	7-pin B.	7BN	Hir.	6.3	0.6	Grid-Controllad Rectifier	650	500	,	650	100	0.1-10 ${ }^{7}$	8	2 D 21
							Relay Tube	400	-				1.0^{7}	-	
3 C 23		4-pin M.	36	Fil.	2.5	7.0	Grid-Controlled Rectifer	1000	6000	-	500	1500	-4.5 ${ }^{8}$	15	3 C 23
604	Gas Triade	7-pin B.	5AY	Hir.	6.3	0.25	Control Tube	Plafe volts $=350$; Grid volts $=-50$; Avg. Ma. $=25$; Peak Ma. $=100$; Voltage drop $=16$.							
17	Mercury Vapor Triode	4-pin M.	$3 G$	Fil.	2.5	5.0	Grid-Contralled Rectifier	$750{ }^{\text {b }}$	2000	-	-	P00	200-3000	drop $=16$.	17
								2500		-5^{3}	1000	250	-	10-24	
874	Vollage Regulator	4-pin M.	45	-	-	-	Voltage Regulator	-	-	125	90	10-50			874
876	Current Regulator	Mogul			-		Current Regulator	-		-	40-60	1.7	-	-	876
884	Gas Triode Grid Type	6-pin 0.	60	Hir.	6.3	0.6	Sweep Circuit Oscillatar	300	300	-	-	2	25000	-	884
							Grid-Controlled Rectifler	350	300	-	-	75	25000	-	
885	Gas Triade Grid Type	5-pin 5.	5 A	Hit.	2.5	1.4	Same as Type 884	Characterisfics same as Type 884							805

TABLE XII－CONTROL AND REGULATOR TUBES

Type	Name	Base	Socket Connec－ tions	Cathode	Fil．or Heater		Use	Peak Anode Voltage	Max． Anode Ma．	Minimum Supply Voltage	Operating Voltage	Oparating Ma．	Grid Resistor	Tube Voltage Drop	Type
					Volts	Amp．									
886	Current Regulator	Mogul				－	Current Requlator	－		－	40－60	2.05	－	－	886
967	Mercury Vapor Triode	4－pin M．	3G	Fil．	2.5	5.0	Grid－Controlled Rectifier	2500	500	-5^{3}			\cdots	10－24	967
991	Voltage Regulator	Bayonet	－				Voltaqe Requlator	－		87	55－60	2.0	－	－	991
1265	Voltage Requlator	6－pin 0.	4AJ	Cold	－		Valtace Requiator	－	－	130	90	5－30	－	－	1265
1266	Voltage Regulator	6－pin 0 ．	4AJ	Cold	－		Voltage Regulator	－	－		70	5－40	－	－	1266
1267	Gas Triode	6－pin 0.	4V	Cold		－	Relay Tube			Charaet	istics same	as OA4G			1267
2050	Gas Tetrode	8 －pin 0 ．	8BA	Hir．	6.3	0.6	Grid－Controlled Rectifier	650	500	－		100	0．1－10 ${ }^{7}$	8	2050
2051	Gas Tetrode	$8-\mathrm{pin} \mathrm{O}$	8BA	Htr．	6.3	0.6	Grid－Controlled Rectifier	350	375	－		75	0．1－10 ${ }^{7}$	14	2051
$\begin{aligned} & \text { 2523NI/ } \\ & 128 \mathrm{AS} \end{aligned}$	Gas Triode Grid Type	$5-\mathrm{pin}$ M．	5A	Htr．	2.5	1.75	Relay Tube	400	300	－	\square	1.0	$300{ }^{7}$	13	$\begin{aligned} & \hline 2523 \mathrm{NI/} \\ & \hline 128 \mathrm{AS} \end{aligned}$
5651	Voltage Regulator	7－pin B．	5BO	Cold		－	Voltage Regulator	115		115	87	1．5－3．5		－	5651
KY21	Gas Triode Grid Type	4－pin M．	－	Fil．	2.5	10.0	Grid－Controlled Rectifier				3000	500	－	－	KY21
RK61	Thyratron	${ }^{9}$	\square	Fil．	1.4	0.05	Radio－Controlled Relay	45	1.5	30		0．5－1．5	3	30	RK61
RK62	Gas Triode Grid Type	4－pin S．	4D	Fil，	1.4	0.05	Relay Tube	45	1.5		30－45	0．1－1．5	－	15	RK62
RM208	Permatron	4－pin M．		Fil．	2.5	5.0	Controiled Rectifler ${ }^{\text {b }}$	7500 ${ }^{\text {2 }}$	1000	－	－	－	ーー	15	RM208
RM209	Permatron	4－pin M．		Fil．	5.0	10.0	Controlled Rectifier ${ }^{1}$	$7500{ }^{2}$	5000	－	－	－		15	RM209
OA3／VR75	Voltage Regulator	6 －pin 0.	4AJ	Cold			Voltage Regulator	－		105	75	5－40	ー－	\cdots	OA3／VR75
OB3／VR90	Voltage Regulator	6 －pin 0.	4AJ	Cold	－	－	Voltage Regulator	－	－	125	90	5－40	－	－	OB3／VR90
OC3／VR 105	Voltage Regulator	6 －pin 0.	4AJ	Cold			Voltage Regulator	－	－	135	105	5－40		－	OC3／VR 105
OD3／VR150	Voltage Regulator	6－pin 0.	4AJ	Cold			Voltage Regulator	－	－	185	150	5－40	－	－	OD3／VR150
KY866	Mercury Vapor Triodp	4－pin M．	Fig． 8	Fil．	2.5	5.0	Grid－Controlled Rectifer	10000	1000	0－150	－	－	－	－	KY866
1 For use as grid－controlled rectifer or with external magretic control．RM－208 has characteristics of 866，RM－209 of 872.					${ }^{2}$ When under control peak inverse rating is reduced to 2500. ${ }^{3}$ At 1000 anode volts．					${ }^{4}$ Grid tied to plate． ${ }^{3}$ Peak inverse voltage．		6 Grid． ${ }^{7}$ Megohms．	${ }^{8}$ Grid voltage． ${ }^{9}$ No base．Tinned wire leads．		

TABLE XIV－CATHODE－RAY TUBES AND KINESCOPES

Type	Name	Socket Connec－ tions	Heater		Use	Size	Anode No． 2 Voltage	Anode No． 1 Voltage	Cut－Off Grid Voliage	Grid No． 2 Voltage	Signal－ Swing Voltage	Max． Input Voltage ${ }^{1}$	Screen Input Power ${ }^{2}$	Defection Sensitivity ${ }^{6}$		Anode No． 3 Voltage	Pattern Color	Type
			Volts	Amp．										$\mathrm{D}_{1} \mathrm{D}_{2}$	$D_{3} D_{4}$			
2AP17．11	Electrostatic Cathode－Ray	118	6.3	0.6	Oscillograph Television	2＂	1000	250	－ 60	－	－	660	－	0.11	0.13		Green	2AP1－11
							500	125	－ 30					0.22	0.26			
$\begin{aligned} & \text { 2BPI- } \\ & 11 \end{aligned}$	Electro static Cathode－Ray	12E	6.3	0.6	Oscillograph	2＇1	2000	300／560	－135			500500	$=$	$270{ }^{3}$	1743		Green	$\begin{array}{\|l\|} \hline 28 P 1 \\ 11 \\ \hline \end{array}$
							1000	150／280	－67．5					$135{ }^{3}$	87^{3}			
$\begin{aligned} & \text { 3AP I/ } \\ & 906-P 1 . \\ & 4-5-11 \end{aligned}$	Electrostatic Cathode－Ray	7 AN	2.5	2.1	Oscillograph	3＇	1500	430	－ 50			550	10	0.22	0.23		Grean Blue White	3API／ $906 . \mathrm{P}_{1}$ ． 4．5．11
							1000	285	－ 33					0.33	0.35			
							600	170	－ 20		\square			0.55	0.58			
$\begin{aligned} & 3 B P 1 . \\ & 4-11 \end{aligned}$	Electrostotic Cathode－Ray	14A	6.3	0.6	Oscillograph	$3^{\prime \prime}$	2000	575	－ 60	－	－	550		0.13	0.17	－	Green	$\begin{aligned} & 38 p 1- \\ & 4.11 \\ & \hline \end{aligned}$
							1500	430	－ 45	－				0.17	0.23			
3DP 1	Electrostotic Cothode－Ray	Fig． 49	6.3	0.6	Oscillograph	3＇	2000	575	－60			550		$200{ }^{3}$	$148{ }^{3}$		Green	3DP I
							1500	430	－ 40					$150{ }^{3}$	1113			
$\begin{aligned} & \text { 3EP 1/ } \\ & 1806-\mathrm{PI} \end{aligned}$	Electrostatic Cothode－Ray	11A	6.3	0.6	Oscillograph Television	3＇	2000	575	－ 60			550	－	0.115	0.154	-	Green	$\begin{array}{\|l\|} \hline \text { 3EP 1/ } \\ 1806-\mathrm{P} ~ \end{array}$
							1500	430	－45					0.153	0.205			
$3 G P 17$	Electrostatic Cathode－Ray	11A	6.3	0.6	Oscillograph	3＂	1500	350	－ 50	\square		550		0.21	0.24		White Green Blue	$\begin{aligned} & 3 G P 12 \\ & 4.5-11 \end{aligned}$
							1000	234	－ 33					0.32	0.36			
$\begin{aligned} & \text { 3JP1. } \\ & \text { 2-4-7-11 } \end{aligned}$	Electrostatic Cothode－Ray	148	6.3	0.6	Oscillograph	3＂	2000	575	－ 60	－	\cdots	550	-	0.13	0.17	$\begin{aligned} & 4000 \\ & 3000 \end{aligned}$	Green Blue White	$\begin{aligned} & \text { 3JP 1- } \\ & 2-4-7-11 \end{aligned}$
							1500	430	－ 45	\cdots				0.17	0.23			
	Electrastatic Cathode－Ray	11 M	6.3	0.6	Oscillograph	3＇	1000	300	－45	1000	－	500		$68{ }^{3}$	1363		Green	3KP1
3KPI							2000	600	-90	2000	\cdots			52^{3}	$104{ }^{3}$			

TABLE XIV-CATHODE-RAY TUBES AND KINESCOPES—Continued

table xiv－CATHODE－RAY tUBES AND KINESCOPES－Continued

Type	Name	5ocket Connec－ tions	Heatar		Use	Size	Anode No． 2 Voltage	Anode No． 1 Voltoge	Cut－olf Grid Voltoge	Grid No． 2 Voltage	Signal－ 5 wing Voltage		Screen Input Power ${ }^{2}$	Deflection Sensilivity ${ }^{5}$		Anode No． 3 Voltage	Pattern Color	Type
			Volts	Amps．										$\mathrm{D}_{1} \mathrm{D}_{2}$	$\mathrm{D}_{3} \mathrm{D}_{4}$			
							5000	1570	－ 90	－	－	3000		0.136			Green	$\text { 9.JP } 1 /$
$\text { 1809-P } 1$	Electroslatic－Magnetic Cathode－Ray	88R	2.5	2.1	Oscillograph	9	2500	785	－45			3000		0.272			Grean	$1809-\mathrm{Pl}$
108P4	Magnelic Kinescode	12D	6.3	0.6	Television	10＂		9000	－ 45	250							－	108P4
IOEP4	Magnetic－Focus Cothode－Ray	12D	6.3	0.6	Television	$101 / 2^{\prime \prime}$	－	8000	－45	250	38						White	10EP4
10FP4	Electromagnetic Picture Tube	12D	6.3	0.6	Television	$10^{\prime \prime}$		9000	－27／－63	250							White	10FP4
IOKP7	Magnetic Cathode－Ray	12D	6.3	0.6	Oscillograph	$10^{\prime \prime}$	－	9000	$-27 / 63$	250		－	－				－	10KP7
$\begin{aligned} & \text { i2AP4/ } \\ & \text { 1803-P4 } \end{aligned}$	Electramagnetic Picture Tube	6AL	2.5	2.1	Television	12＇	7000	1460	－ 75	250	25		10	－	－	－	White	$\begin{aligned} & \text { 12AP4/ } \\ & 1803-P 4 \end{aligned}$
12CP4	Electromagnetic Picture Tube	4AF	2.5	2.1	Television	$12^{\prime \prime}$	7000		－ 110		25		10			－	White	12CP4
12DP4．7	Electromagnetic Cathode－Ray	5AN	6.3	0.6	Television	12＂	7000	250	-45 -45								White	12DP4
$12 \mathrm{KP4}$	Electromagnetic Cathode－Ray	12D	6.3	0.6	Television	12＂		10000	－27／－63	250						－	White	$12 \mathrm{KP4}$
12LP4	Electromognetic Kinescope	12D	6.3	0.6	Television	12＂		11000	－27／－63	250							White	$12 \mathrm{LP4}$
15 AP4	Electromagnetic Cathode－Ray	120	6.3	0.6	Television	$15^{\prime \prime}$		8000	－ 45	250	38		－				White	15AP4
16AP4	Electromagnetic Kinescope	12D	6.3	0.6	Television	$16^{\prime \prime}$		12000	－33／－77	300				－	－		White	16AP4
20BP4	Electromagnetic Cathode－Roy	12D	6.3	0.6	Television	$20^{\prime \prime}$		15000	－45	250	38		5	－			White	208P4
$902{ }^{\text {7 }}$	Electrostatic Cothode－Roy	Fig． 1	6.3	0.6	Oscillograph	$2{ }^{\prime \prime}$	600	150	－60	一－		350	5	0.19	0.22	－	Green	902
$903{ }^{5}$	Electromagnelic Cathode－Ray	6AL	2.5	2.1	Oscillogroph	$9{ }^{\prime \prime}$	7000	1360	－120	250			10				Green	903
904	Electrostatic－Magnetic Calhode－Ray	Fig． 3	2.5	2.1	Oscillograph	$5{ }^{\prime \prime}$	4600	970	－75	250	－	4000	10	0.09	\rightarrow	－	Green	904
905	Electrostotic Cathode－Ray	Fig． 6	2.5	2.1	Oscillograph	$5^{\prime \prime}$	2000	450	－ 35	一一	－－	1000	10	0.19	0.23		Green	905
907	Electrostatic Cothode－Ray	Fig． 6	2.5	2.1	Oscillograph	5＂		Characteristics same as Type 905								－	Blue	907
9087	Electrostatic Colhode－Ray	7AN	2.5	2.1	Oscillogroph	$3^{\prime \prime}$		Characteristics some os Type 3 AP 1／906P1									Blue	908
		7CE	2.5	2.1		$3{ }^{\prime \prime}$	1500	430	－ 50	－		500		0.223	0.233		Blue	908－A
908－A	Electrostatic Cothode－Roy	$7 C E$	2.5		Oscillograph		1000	287	－ 33	－－		500		0.334	0.348			
9095	Electrostatic Cathode－Ray	Fig． 6	2.5	2.1	Oscillograph	$5^{\prime \prime}$		Choracteristics same os Type 905									Blue	909
910^{5}	Electrostatic Cathode－Ray	7 AN	2.5	2.1	Oscillograph	$3^{\prime \prime}$		Characteristics same os Type 3AP1／906P1							－		Blue	910
$911{ }^{5}$	Electrostatic Cathode－Ray	7 AN	2.5	2.1	Oscillograph	3＇1		Choracleristics same as Type 3AP1／906P1							－		Green	911
912	Electrostatic Cothode－Ray	Fig． 8	2.5	2.1	Oscillograph	$5^{\prime \prime}$	10000	2000	－66	250	二ー	7000	10	0.041	0.051	ーー	Green	912
913	Electrostatic Cathode－Ray	Fig． 1	6.3	0.6	Oscillograph	1 ＂	500	100	－ 65		－	250	5	0.07	0.10		Green	913
914^{7}	Electrostatic Cothode－Ray	Fig． 12	2.5	2.1	Oscillogroph	$9{ }^{\prime \prime}$	7000	1450	－ 50	250		3000	10	0.073	0.093	－	Green	914
1800^{5}	Électromagnetic Kinescope	6AL	2.5	2.1	Television	$9{ }^{\prime \prime}$	6000	1250	－ 75	250	25		10	－	－		Yellow	1800
18015	Electromagnetic Kinescope	Fig． 13	2.5	2.1	Television	$5{ }^{\prime \prime}$	3000	450	－ 35		20	－	10	－	－	－	Yellow	1801
2001	Electrostatic Colhode－Ray	4AA	6.3	0.6	Oscillograph	1＂				Characteristics essentially same as 913								2001
2002	Electrostotic Cathode－Ray	Fig． 1	6.3	0.6	Oscillogroph	$2{ }^{\prime \prime}$	600	120		－	－	－	\square	0.16	0.17	－	Green	2002
2005	Electrostatic Cathode－Roy	Fig． 14	2.5	2.1	Television	5＂	2000	1000	－ 35	200	－		10	0.5	0.56		－	2005
24－XH	Electrostatic Cathode－Ray	Fig． 1	6.3	0.6	Oscilloscopa	$2^{\prime \prime}$	600	120	－ 60		\cdots		10	0.14	0.16	－	Blue	24－XH

1 Between Anode No． 2 and any deflecting plate
${ }^{2}$ In mw．$/ \mathrm{sa}$ ．cm．，max．

3 D．c．Volts／in．
4 Cathode conn
－Cothode connected to Pin 7.
＊Discontinued．
${ }^{6}$ In mm．／volt d．c．
${ }^{7}$ Superseded by some type with suffix＂A．＂

TABLE XV-RECTIFIERS-RECEIVING AND TRANSMITTING
See also Table XIII-Control and Regulator Tubes

Type No.	Name	Base	Socket Connections	Cathode	fil. or Healer		Max. A.C. Vollage Per Piale	D.C. Oulput Current Ma .	Max. Inverse Peak Vollage	Peak Plate Current Mc.	Type
					Voll:	Amp.					
BA	Full-Wave Rectifier	4-pin M.	4J	Cold	-		350	350	Tube dr	¢ 80 v .	G
BH	Full-Wave Rectifier	4-pin M.	4 J	Cold			350	125	Tube dr	p 90 v .	G
BR	Half-Wave Rectifer	4-pin M.	4H	Cold			300	50	Tube dr	p 60 v .	G
CE-220	Half-Wave Rectifer	4-pin M.	4P	Fil.	25	3.0		20	20000	100	HV
OY4	Half-Wave Rectifler	$5-\mathrm{pin} 0$.	4BU	Cold	Connect Pins 7 and 8		95	75	305	500	G
024	Full-Wave Rectifler	$5-\mathrm{pin} 0$.	4R	Cold			350	30-75	1250	200	G
1	Half-Wave Rectifer	4-pin S.	4G	Hir.	6.3	0.3	350	50	1000	400	MV
1-V	Half-Wave Rectifler	4-pin S .	4G	Hir.	6.3	0.3	350	50	-		HV
1B3GT/8016	Half-Wave Rectifier	6-pin 0.	3 C	Fil.	1.25	0.2		2.0	4000	17	HV
$1 \mathrm{B48}$	Half-Wave Rectiffer	7-pin B.		Cold			800	6	2700	50	G
1×2	Half-Wave Rectifior	9-pin B.	Fig. 29	Fil.	1.25	0.2		1	15000	10	HV
122	Half-Wave Rectifler	7-pin B.	7 CB	Fil.	1.5	0.3	7800	2	23330	10	HV
2825	Half-Wave Rectifier	7-pin B.	3 T	Fil.	1.4	0.11	1000	1.5	--	9	HV
2V3G	Half-Wave Recliffer	6-pin 0 .	4Y	Fil.	2.5	5.0		2.0	16500	12	HV
2W3	Half-Wave Rectifier	5 -pin 0.	4X	Fil.	2.5	1.5	350	55	--		HV
2×2/87910	Half-Wave Rectifier	4-pin S.	4AB	Hir.	2.5	1.75	4500	7.5			HV
2×2-A	Half-Wave Rectifler	4-pin S .	4AB	Same as $2 \times 2 / 879$ bul will withstand severe shock \& vibration							HV
2 Y 2	Half-Wave Rectifer	4-pin M.	4AB	Fil.	[2.5	1.75	4400	5.0			HV
222/G84	Half-Wave Rectifler	4-pin M.	4B	Fil.	2.5	1.5	350	50			HV
$3 \mathrm{B24}$	Haif-Wave Rectifler	4-pin M.	T-4A	Fil.	$\begin{aligned} & 5.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 60 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 20000 \\ & 2 า 700 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \\ & \hline \end{aligned}$	HV
$3 \mathrm{B25}$	Half-Wave Rectifler	4-pin M.	4P	Fil.	2.5	5.0	-	500	4500	2000	G
$3 \mathrm{B26}$	Half-Wave Rectifier	8-pin 0.	Fig. 31	Hir.	2.5	4.75		20	15000	8000	HV
DR.3B27	Half-Wave Rectifier	4-pin M.	48	Fil.	2.5	5.0	3000	250	8500	1000	HV
5AZ4	Full-Wave Rectifier	5-pin 0.	$5 T$	Fil.	5.0	2.0	Same as Type 80				HV
5R4GY	Full-Wave Rectifler	5 -pin 0.	$5 T$	Fil.	5.0	2.0	$\begin{aligned} & 9004 \\ & 9507 \end{aligned}$	$\begin{aligned} & 1501 \\ & 1757 \end{aligned}$	2800	650	HV
574	Full-Wave Recliffer	5 -pin 0.	51	Fil.	5.0	3.0	450	250	1250	800	HV
5U4G	Full-Wave Rectifler	8-pin 0.	$5 T$	Fil.	5.0	3.0	Same as Type 523				HV
5 V 4 G	Full-Wave Rectifler	8-pin 0.	51	Hir.	5.0	2.0	Same as Type 83V				HV
5 W 4	Full-Wave Reclifler	5-pin O.	51	Fil.	5.0	1.5	350	110	1000	-	HV
5×3	Full-Wave Rectifter	4-pin M.	4 C	Fil.	5.0	2.0	1275	30			HV
5X46	Full-Wave Recliffor	8-pin 0.	50	Fil.	5.0	3.0	Same as 523				HV
5Y3G	Full-Wave Reclifler	5-pin 0 .	51	Fil.	5.0	2.0	Same as Type 80				HV
5Y4G	Full-Wave Rectifier	8 -pin 0	50	Fil.	5.0	2.0	Same ar Type 80				HV
523	Full-Wave Rectifter	4-pin M.	4C	Fil.	5.0	3.0	500	255	1420	-	HV
524	Full-Wave Rectifler	5-pin 0 .	51.	Hitr.	5.0	2.0	400	125	1100		HV
6W4GT	Damper Service	6-pin 0.	4CG	Hit.	6.3	1.2		125	2000	600	HV
	Half-Wave Rectifior						350	125	1250	600	
6W5G	Full-Wave Rectifler	6-pin 0.	65	Hir.	6.3	0.9	350	100	1250	350	HV
6×4	Full-Wave Rectifler	7-pin B.	7CF	Hitr	6.3	0.6	325	70	1250	210	HV
6×5	Full-Wave Rectifier	6-pin 0.	65	Htr.	6.3	0.5	350	75	-	-	HV
6Y3G	Half-Wave Rectifier	$5-\mathrm{pin} 0$.	4AC	Hitr.	6.3	0.7	5030	7.5	一-	-	HV
6Y5 ${ }^{10}$	Full-Wave Rectifior	6-pin S.	61	Hitr.	6.3	0.8	350	50	-	-	HV
623	Half-Wave Rectifier	4-pin M.	4G	Fil.	6.3	0.3	350	50	-	-	HV
$625{ }^{10}$	Full-Wave Rectifler	6-pin S.	6K	Hir.	6.3	0.6	230	60	-	-	HV
6ZY5G	Full-Wave Rectifler	6-pin 0.	65	Hit.	6.3	0.3	350	35	1000	150	HV
7 Y 4	Full-Wave Rectifier	8 -pin L.	5AB	Hir.	6.3	0.5	350	60	1000	150	HV
724	Full-Wave Rectifior	8-pin L.	5AB	Hfr.	6.3	0.9	$\begin{aligned} & 4501 \\ & 3254 \end{aligned}$	100	1250	300	HV
1247	Rectifler-Pentode	7-pin S.	7K	Hir.	12.6	0.3	125	30	--	-	HV
1223	Half-Wave Rectifler	4-pin S.	4G	Hitr.	12.6	0.3	250	60	-	-	HV
1225	Valtage Doubler	7-Fin M.	7 L	Htr.	12.6	0.3	225	69	-	-	HV
14 Y 4	Full-Wave Reatifier	8-pin L.	5AB	Htr.	12.6	0.3	$\begin{aligned} & 450 \\ & 3254 \end{aligned}$	70	1250	210	HV
1423	Half-Wave Rectifler	4-pin S.	4 G	Hir.	12.6	0.3	250	60	--	-	HV
25A7G ${ }^{10}$	Rectifler-Pentode	8-pin 0.	8F	Hir.	25	0.3	125	75	-	-	HV
25W4	Half-Wave Rectifier	6-pin 0.	4CG	Hir.	25	0.3	350	125	1250	600	HV
25X6GT	Voltage Doubler	7 -pin 0.	70	Htr.	25	0.15	125	60	-	-	HV
25Y4GT	Half-Wave Reclifier	6-pin 0.	5AA	Hirs.	25	0.15	125	75	-	-	HV
$25 Y 5{ }^{10}$	Voltage Doubler	6-pin S.	6 E	Her.	25	0.3	250	85	-	-	HV
2523	Half-Wave Rectifier	4-pin S.	4G	Htr.	25	0.3	250	50	-	-	HV
2524	Half-Wave Rectifier	6-pin 0.	5AA	Her.	25	0.3	125	125	-	-	HV
2525	Rectifler-Doubler	6-pin S.	6 E	Htr.	25	0.3	125	100	-	500	HV
2526	Rectifler-Doubler	7-pin 0.	70	Hitr.	25	0.3	125	100	-	500	HV
2825	Full-Wave Rectifier	8-pin l.	5 AB	Htr.	28	0.24	$\begin{aligned} & 4507 \\ & 3254 \end{aligned}$	100	-	300	HV
32L7GT	Rectifler-Tetrode	8-pin 0.	82	Hit.	32.5	0.3	125	60	-	-	HV
35W4	Half-Wave Rectifier	7-pin B.	5BQ	Hir.	35 ?	0.15	125	100*	330	630	HV
35 Y 4	Half-Wave Rectifier	8 -pin 0.	5AL	Hftr.	$35{ }^{2}$	0.15	235	$\begin{gathered} 60 \\ 100 \end{gathered}$	700	600	HV
3523	Half-Wave Reclif ${ }^{\text {r }}$	8 -pin L.	4 Z	Hir.	35	0.15	250	100	700	600	HV
35Z4GT	Half-Wave Rectifier	6-din 0.	5AA	Hir.	35	0.15	250	100	700	600	HV
3525G	Half-Wave Rectifier	o-pin 0.	6AD	Hir.	$35{ }^{2}$	0.15	125	$\begin{gathered} 60 \\ 100^{8} \end{gathered}$	-	-	HV

TABLE XV-RECTIFIERS—RECEIVING AND TRANSMITTING - Continued
See also Table XIII-Control and Regulator Tubes

Typo No.	Name	Base	Socket Connec. fions	Cathode	Fil. or Heater		Max. A.C. Voltage Per Plate	D.C Output Current Ma.	Max. Inverse Peak Volfoge	Paok Plate Current Ma.	Type
					Volts	Amp.					
35Z6G	Voltage Doubler	6-pin 0.	70	Hr.	35	0.3	125	110	\square	500	HV
4075GT	Holf-Wave Rectifier	6-pin 0.	6AD	Htr.	40^{2}	0.15	125	$\begin{gathered} 60 \\ 100 \\ \hline \end{gathered}$	\square	-	HV
4573	Hall-Wave Rectifier	7 -pin B.	5 AM	Hir.	45	0.075	117	65	350	390	HV
45Z5GT	Holf-Wave Rectifier	6-pin 0.	6AD	Htr.	45 2	0.15	125	$\begin{gathered} 60 \\ 1008 \end{gathered}$	-	-	HV
50×6	Voltage Doubler	8-pin L.	7AJ	Hir.	50	0.15	117	75	700	450	HV
50Y6GT	Full-Wave Rectifier	7 -pin 0.	70	Hir.	50	0.15	125	85	\cdots		HV
50Y7GT	Vollage Doubler	8-pin L.	8 AN	Htr.	50:	0.15	117	65	700		HV
50Z6G	Vollage Doubler	7-pin 0.	70	Htr.	50	0.3	125	150			HV
5077 ${ }^{10}$	Voltage Doubler	8 -pin 0.	8AN	Htr.	50	0.15	117	65			HV
70A7GT	Rectifier-Tetrode	8 -pin 0.	8 AB	Htr.	70	0.15	$125{ }^{5}$	60			HV
70L7GT	Rectifier-Tetrode	8 -pin 0.	8AA	Hir.	7 C	0.15	117	70		350	HV
72	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	3.0		30	20000	150	HV
73	Holf-Wave Rectifier	8 -pin 0 .	4 Y	Fil.	2.5	4.5		20	13000	3000	HV
80	Full-Wove Rectifler	4-pin M.	4 C	Fil.	5.0	2.0	$\begin{aligned} & 3504 \\ & 500^{7} \\ & \hline \end{aligned}$	$\begin{array}{r} 125 \\ 125 \\ \hline \end{array}$	1400	375	HV
81	Holf-Wave Rectifler	4 - $\mathrm{pin} M$.	4B	Fil.	7.5	1.25	700	85	T 140	-	HV
82	Full-Wave Reclifier	4-pin M.	4 C	Fil.	2.5	3.0	500	125	1400	400	MV
83	Full-Wave Reclifier	4-pin M.	4 C	Fil.	5.0	3.0	500	250	1400	800	MV
83-V	Full-Wave Reclifier	4-pin M.	4AD	Hir.	5.0	2.0	450	200	1100		HV
84/624	Full-Wave Rectifier	5-pin S.	5D	Hir.	6.3	0.5	350	60	1000	-	HV
$\begin{aligned} & 117 \mathrm{LGT} / \\ & 117 \mathrm{M} 7 \mathrm{GT} \end{aligned}$	Rectifier-Tetrode	8-pin 0.	8 AO	Htr.	117	0.09	117	75	- 350	-	HV
117N7GT	Rectifier-Tetrode	8 -pin 0.	BAV	Hir.	117	0.09	117	75	350	450	HV
117P7GT	Rectifier-Tetrode	8 -pin 0.	8AV	Hir.	117	0.09	117	75	350	450	HV
11723	Half-Wave Rectifier	7-pin B.	4BR	Htr.	117	0.04	117	90	330	\square	HV
11724GT	Half.Wave Rectifier	6-pin 0.	5AA	Hit.	117	0.04	117	90	350	360	HV
11726GT	Voltage Doubler	7-pin 0.	70	Mitr.	117	0.075	235	60	700	360	HV
217-A ${ }^{10}$	Half-Wave Rectifier	4-pin J.	4AT	Fil.	10	3.25			3500	600	HV
217-C	Half-Wave Rectifier	4-pin J.	4AT	Fil.	10	3.25		-	7500	600	HV
Z225	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0		250	10000	1000	MV
249-B	Half-Wave Rectifier	4-pin M.	Fig. 53	Fil.	2.5	7.5	3180	375	10000	1500	MV
HK253	Half-Wave Rectifier	4-pin J.	4AT	Fil.	5.0	10		350	10000	1500	HV
705A RK-705A	Hatf-Wave Rectifier	4-pin W.	T-3AA	Fil.	$\begin{aligned} & 2.5^{9} \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{array}{r} 35000 \\ 35000 \end{array}$	$\begin{array}{r} 375 \\ 750 \end{array}$	HV
816	Holf-Wave Rectifier	4-pin S.	4 P	Fil.	2.5	2.0	2200	125	7500	500	MV
836	Half-Wove Rectifier	4-pin M.	4P	Htr.	2.5	5.0		250	5000	1000	HV
866A/866	Holf-Wave Reclifier	4-pin M.	4P	Fil.	2.5	5.0	3500	250	10000	1000	MV
8668	Half-Wave Rectifier	4-pin M.	4P	Fil.	5.0	5.0	\longrightarrow	250	8500	00	MV
866 Jr.	Half-Wave Rectifier	4-pin M.	4 B	Fil.	2.5	2.5	1250	$250{ }^{3}$	-	-	MV
HY866 Jr.	Half-Wove Reclifier	4-pin M.	4P	Fil.	2.5	2.5	1750	$250{ }^{3}$	5000		MV
RK866	Half-Wave Reclifier	4-pin M.	4P	Fil.	2.5	5.0	3500	250	10000	1000	MV
$871{ }^{10}$	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	2.0	1750	250	5000	500	MV
878	Half-Wove Rectifier	4-pin M.	4P	Fil.	2.5	5.0	7100	5	25000	100	HV
879	Half-Wave Rectifier	4-pin 5 .	4P	Fil.	2.5	1.75	2650	7.5	7500	100	HV
872A/872	Hali-Wave Rectifier	4-pin J.	4AT	Fil.	5.0	7.5		1250	10000	5000	MV
9754	Half-Wave Rectifier	4-pin J.	4AT	Fil.	5.0	10.0	\cdots	1500	15000	6000	MV
$\begin{aligned} & \text { OZ4A/ } \\ & 1003 \end{aligned}$	Full-Wave Rectifler	5 -pin 0.	4R	Cold	\longrightarrow	\square	-	110	880	-	G
$\begin{aligned} & 1005 / \\ & \text { CK } 1005 \end{aligned}$	Full-Wave Rectifier	8 -pin 0.	5AQ	Fil.	6.3	0.1	-	70	450	210	G
1006/ CK 1006	Full-Wove Rectifier	4 -pin M.	4 C	Fil.	1.75	2.25	-	200	1600	-	G
CK 1007	Full-Wave Rectifer	8 -pin 0.	T-9G	Fil.	1.0	1.2	-	110	980	-	G
CK1009/BA	Full-Wave Reclifler	4-pin M.		Cold				350	1000		G
1274	Full-Wave Rectifier	6-pin 0 .	65	Hir.	6.3	0.6		Same	as 7×4		HV
1275	Full-Wave Rectifier	4-pin M.	4C	Fil.	5.0	1.75		Same	as $5 \mathrm{Z3}$		HV
1616	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	-	130	6000	800	HV
$\begin{aligned} & 1641 / \\ & \text { RK } 60 \end{aligned}$	Full-Wave Rectifer	4-pin M.	T.4AG	Fil.	5.0	3.0	-	$\begin{array}{r} 50 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 4500 \\ & 2500 \\ & \hline \end{aligned}$		HV
1654	Half-Wave Rectifier	7-pin B.	2 Z	Fil.	1.4	0.05	2500	1	7000	6	HV
5517	Half. Wave Rectifier	7-pin B.	5BU	Cold	-	-	1200	6	-	50	G
5825	Half-Wave Rectifier	4-pin M.	4P	Fil.	1.6	1.25	-	2	60000	40	HV
8008	Half-Wave Rectifier	4 -pin ${ }^{\text {c }}$	Fig. 11	Fil.	5.0	7.5	\square	1250	10000	5000	MV
8013A	Half-Wave Reclifler	4-pin M.	4P	Fil.	2.5	5.0		20	40050	150	HV
8016	Half-Wave Rectifier	6-pin 0 .	4AC	Fil.	1.25	0.2	-	2.0	10000	7.5	HV
8020	Half-Wave Kectifier	4-pin M.	4P	Fil.	5.0	5.5	10000	100	40000	750	HV
					5.8	6.5	12500	100	40000	750	
RK19	Full-Wave Rectifer	4-pin M.	4AT	Hir.	7.5	2.5	1250	200.	3500	600	HV
RK21	Half-Wave Rectifier	4-pin M.	4P	Hir.	2.5	4.0	1250	2004	3500	600	HV
RK22	Full-Wave Rectifer	4-pin M.	T-4AG	Hif.	2.5	8.0	1250	200	3500	600	HV

1 With input choke of at least 20 henrys.
${ }^{2}$ Tapped for pilot lamps.
${ }^{3}$ Per pair with choke input.
4 Condenser input.
${ }^{5}$ With 100 ohms min. resistance in series with plate; without series resistor, maximum r.m.s. plate rating is 117 volis.

6 Same as $872 \mathrm{~A} / 872$ excepi for heavy-duty push-type base. Filament connected to pins 2 and 3, plate to top cap. Choke input.
8 Without panel lamp.
9 Using only one-half of flament.
10 Discontinued.

TABLE XVI-TRIODE TRANSMITTING TUBES

Type	Max. Plate Dissi- Watts	Cathode		$\begin{gathered} \text { Max. } \\ \text { Plate } \\ \text { Voltage } \end{gathered}$	Max. Plate CurrentMa. Ma .		Amp. Factor	Interelectrode Capecitances ($\mu \mu \mathrm{fd}$.)			$\begin{aligned} & \text { Max. } \\ & \text { Freq. } \\ & \text { Mc. } \\ & \text { Full } \\ & \text { Ratings } \end{aligned}$	Base	$\begin{gathered} \text { Sockel } \\ \text { Connec- } \\ \text { tions } \end{gathered}$	Typical Operation	$\begin{array}{c\|} \text { Plate } \\ \text { Voltage } \end{array}$	$\underset{\text { Golidge }}{\text { Grid }}$	$\begin{aligned} & \text { Plate } \\ & \text { Current } \\ & \text { Ma. } \end{aligned}$	$\begin{aligned} & \text { D.C. } \\ & \text { Grid } \\ & \text { Current } \\ & \text { Ma. } \end{aligned}$	Approx.CridDrivingPowwerWalts	$\begin{gathered} \text { Class B B } \\ \text { P-to-P } \\ \text { Load Res. } \\ \text { Ohms } \end{gathered}$	Approx. Power Wafts
		Volts	Amp.					$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { for } \\ & \text { Plate } \end{aligned}$	$\begin{aligned} & \text { Plate } \\ & \text { 10. } \\ & \text { Fil. } \end{aligned}$											
958-A	0.6	1.25	0.1	135	7	1.0	12	0.6	2.6	0.8	500	A.	5BD	Class-C Amp.-Oscillator	135	- 20	7	1.0	0.035		
3B7 ${ }^{\text {a }}$	-	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \end{aligned}$	180	25		20	1.4	2.6	2.6	125	0.	TAP	Class-C Amp. (Tolegraphy)	180	0	25	-			0.6
RK24	1.5	2.0	0.12	180	20	6.0	8.0	3.5	5.5	3.0	125	s.	4D	Class-C Amp.-Oscillator	18		16.5	6.0	0.5		
$676{ }^{2}$	1.5	6.3	0.45	300	30	16	32	2.2	1.6	0.4	250	B.	7BF	Class-C Amp. (Telegraphy) ${ }^{2}$	150	- 10	30	16	0.35	-	2.0 3.5
9002	1.6	6.3	0.15	250	8	2.0	25	1.2	1.4	1.1	250	B.	7TM	Class-C Amp.-Oscillator	180	- 35	7	1.5			3.5
955	1.6	6.3	0.15	180	8	2.0	25	1.0	1.4	0.6	250	A.	5BC	Class-C Amp. - Oscillator	180	- 35	7	1.5			0.5
HY114B	1.8	1.4	0.155	180	12	3.0	13	1.0	1.3	1.0	300	0.	2 T	Class-C Amp.-Oscillator	180	- 30	12	2.0	0.2		$1.4{ }^{3}$
3A5 ${ }^{2}$	2.0	1.4	0.22											Class-C Amp. (Telephony)	180	- 35	12	2.5	0.3		1.43
$3{ }^{3}{ }^{2}$	2.0	2.8	0.11	150	30	5.0	15	0.9	3.2	1.0	40	B.	7BC	Class-C Amp.-Oscillator'2	150	- 35	30	5.0	0.2		2.2
6 F4	2.0	6.3	0.225	150	20	8.0	17	2.0	1.9	0.6	500	A.	7BR	Class-C Amp.-Oscillator	150	$\begin{aligned} & -15 \\ & 550^{*} \\ & 2000 \end{aligned}$	20	7.5	0.2	-	1.8
HY24	2.0	2.0	0.13	180	20	4.5	9.3	2.7	5.4	2.3	60	s.	4D	Class-C Amp. (Teiography)	180	-45	20	4.5	0.2	-	2.7
RK33 1,2	2.5	2.0	0.12	250	20	6.0	10.5	3-2	3-2	2.5				Class-C Amp. (Telephony)	180	-45	20	4.5	0.3		2.5
12AU7 ${ }^{\text {2 }}$	$2.75{ }^{\text { }}$	6.3	0.3	350	12^{6}	3.56	18	1.5	1.5	0.5	64	s.	T.7DA	Class-C Amp. Ostillator ${ }^{\text {a }}$	250	-60	20	6.0	0.54	-	3.5
6N4	3.0	6.3	0.2	180	12	-	32	3.1	2.35	0.55	500	B.	9A 7CA	Class-C Amp. Oscillator ${ }^{2}$	350	-100	24	7		-	6.0
hYojsctix	3.5	6.3	0.3	330	20	4.0	20	4.2	3.8	5.0	60	0.	60	Class-C Amp.-Oscillator	330	- 30	20	2.0	0.2		3.5
2C22/7193	3.5	6.3	0.3	500			20	2.2	3.6					Class-C Amp. (Telophony)	250	- 30	20	2.5	0.3	-	2.5
HY615 HY-E1148	3.5	6.3	0.175	300	20	4.0	20	2.2 1.4	3.6 1.6	0.7 1.2	300	0.	4AM	Class-C Amp. (Tolegraphy)	300	-35	20	2.0	0.4		
													T-8AG	Class-C Amp. (Telephony)	300	-35	20	3.0	0.8	-	3.53
GL-446B 1	3.75	6.3	0.75	400	20	-	45	2.2	1.6	0.02	500	0.	Fig. 19	Class-C Amp.-Oscillator	250	—			-	-	
$\begin{aligned} & \mathrm{GL}-2 \mathrm{C} 441 \\ & \mathrm{GL}-464 \mathrm{~A}^{1} \end{aligned}$	5.0	6.3	0.75	500	40	-	-	2.7	2.0	0.1	500	0.	Fig. 17	Class-C Amp.-Oscillator	250		-			-	
$6{ }_{6} 4$	5.0	6.3	0.15	350	25	0.0	18	1.8	1.6	1.3	54	B.	6BG	Class-C Amp.-Oscillator	300	-27	25	7.0			
1626	5.0	12.6	0.25	250	25	8.0	5.0	3.2	4.4	3.4	30	0.	60	Class-C Amp. Oscillator	250	- 70	25	5.0	$\stackrel{0.35}{0.5}$		5.5
	5.0	6.3	0.6	250	40	12	-	1.6	1.6	2.0	-	s.	T-7DA	Class-C Amp.-Oscillator ${ }^{2}$	250	- 60	40	12	1.0		4.0
$6 \mathrm{NT}^{2}$	5.58	6.3	0.8	350	30°	5.0°	35				10	0.	8B	Class-C Amp. Oscillator ${ }^{2,11}$	350	-100	60	10			14.5
2 C 40	6.5	6.3	0.75	500	25		36	2.1	1.3	0.05	500	0.	Fig. 19	Class-C Amp.Oscillator	250	- 5	20	$\stackrel{0}{0.3}$			14.5
5556	7.0	4.5	1.1	350	40	10	8.5	4.0	8.3	3.0	6	M.	4D	Class-C Amp. (Telegraphy)	350	- 80	35	2	0.25		
$2 \mathrm{C43}$	12	6.3	0.9	500	40		48	2.9	1.7	0.05	1250	0.		Class-C Amp. (Telephony)	300	-100	30	2	0.3	-	4
2 C 26 A	16	6.3	1.10				16.3	2.6	2.8	1.1	250	0.	48B	Class-C Amp.-Ostillator	470	-	$38{ }^{7}$	-	三	-	97
$2 \mathrm{C34/}$	10	6.3	0.8	300	80	20	13	3.4	2.4	0.5	250	M.	T.7DC	Class-C Amp.-Oscillator ${ }^{2}$	300	- 36	80	20	1.8		16
205D	14	4.5	1.6	400	50	10	7.2	5.2	4.8	3.3	6	M.	4D	Class-C Amp.-Oscillator	400	-112	45	10	1.5	-	10
2 C 25	15	7.0	1.18	450	60	15	8.0	$0 \cdot$						Class-C Amp. (Telephony)	350	-144	35	10	1.7		7.1
									8.9	3.0	-	M.	4 D	Class-C Amp. (Telophony)	350	-100	50	12	2.2		19
10Y	15	7.5	1.25	450	65	15	8	4.1	7.0	3.0	8	M.	4D	Class-C Amp.-Oscillator	450	-100	65	15	3.2		19
														Class-C Amp. (Telephony)	350	-100	50	12	2.2		12

TABLE XVI－TRIODE TRANSMITTING TUBES—Continuad

Type	Max． Plate Dissi－ pation Watts	Cothode		Max． Plate Voltoge	Max． Plate Current Ma．	Max． D．C． Grid Current Ma．	Amp． Factor	Interelectrode Capacifances（ $\mu \mu \mathrm{fd}$ ．）			Max． Freq． Mc． Full Rating：	Base	Socket Connec－ lions	Typical Operation	Plate Voltage	Grid Vollage	Plate Current Mo．	D．C．GridCurrent Ma ．	Approx． Grid Driving Power Walts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Lood Res. } \\ \text { Ohms } \end{gathered}$	Approx． Outpui Power Watts
		Volts	Amp．					Grid 10 Fil．	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plato } \end{aligned}$	$\begin{gathered} \text { Plote } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
843	15	2.5	2.5	450	40	7.5	7.7	4.0	4.5	4.0	6	M．	5A	Class－C Amp．－Oseillator	450	－143	33	5.0	1.0	－	7.5
														Class－C Amp．（Telephony）	350	－150	30	7.0	1.6		5.0
RK592	15	6.3	1.0	500	90	25	25	5.0	9.0	1.0	－	M．	T－4D	Class－C Amp．－Oscillator	500	－60	90	14	1.3		32
	15	6.3	2.6	450	90	25	9.6	1.8	2.6	1.0	175			Class－C Amp．（Telegraphy）	450	－140	90	20	5.2	－	26
HY75A	15	6.3	2.6	450	90	25	9.6	1.8	2.6	1.0	175	O．	21	Class－C Amp．（Telephony）	400	－140	90	20	5.2		21
	15	6.3	2.5	450	80	20	10	1.8	3.8	1.0				Class－C Amp．－Oscillator	450	－ 50	80	12		－	$21{ }^{1}$
HY75	15	6.3	2.5	450	80	20	10	1.8	3.8	1.0	60	O．	21	Class－C Amp．（Telephony）	450	－60	80	12	ーー	二	16^{3}
1602	15	7.5	1.25	450	60	15	8.0	4.0	7.0	3.0	6	M．	4D	Class－C Amp．（Telegrophy）	450	－115	55	15	3.3	－	13
														Class－C Amp．（Telephony）	350	－135	45	15	3.5		8.0
														Closs－8 Amp．Aldio ${ }^{7}$	425	－ 50	110^{8}	260＊	$2.5{ }^{8}$	8000	25
841	15	7.5	1.25	450	60	20	30	4.0	7.0	3.0	6	M．	4D	Class－C Amp．（Telegraphy）	450	－ 34	50	15	1.8		15
84	1	7.5							7.0	3.0	6	m．	40	Class－C Amp．（Telephony）	350	－ 47	50	15	2.0		11
$\begin{aligned} & 10 \\ & \text { RK } 10^{1} \end{aligned}$	15	7.5	1.25	450	65	15	8.0	3.0	8.0	4.0	60	M．	4D	Class－C Amp．（Telegraphy）	450	－100	65	15	3.2	－	19
														Class－C Amp．（Telephony）	350	－100	50	12	2.2		12
														Class－8 Audio ${ }^{7}$	425	－ 50	55^{8}	$130{ }^{\circ}$	$2.5{ }^{\text {8 }}$	8000	25
RK100 ${ }^{1}$	15	6.3	0.9	150	250	100	40	23	19	3.0	－	M．	T－6B	Class－C Oscillator	110		80	8.0		－	3.5
														Class－C Amplifer	110	－	185	40	2.1		12
TUF－20	20	6.3	2.75	750	75	20	10	1.8	3.6	0.095	250	0.	2T	Class－C Amp．－©scillator	750	－150	75	20	1．5／2．5		40
1608	20	2.5	2.5	425	95	25	20	0.5	9.0	3.0	45	M．	4D	Class－C Amp．（Telegraphy）	425	－ 90	95	20	3.0	－	27
														Closs－C Amp．（Telephony）	350	－80	85	20	3.0		18
														Class－B Amp．Audio ${ }^{\text { }}$	425	－ 15	$190{ }^{8}$	1309	$2.2{ }^{8}$	4800	50
310	20	7.5	1.25	600	70	15	8.0	4.0	7.0	2.2	6	M．	4D	Class－C Amp．（Telegraphy）	600	－150	65	15	4.0		25
310	20	7.5												Class－C Amp．（Telephony）	500	－190	55	15	4.5	－	18
703－A	20	1.2	4／4．5	350	75	12	8	0.9	1.1	0.6	1400	N．		Class－C Amplifier	350	－120	75	12	－	－	2／2．5
801－A／001	20	7.5	1.25	600	70	15	8.0	4.5	6.0	1.5	60	M．	4D	Class－C Amp．（Telegraphy）	600	－150	65	15	4.0		25
														Class－C Amp．（Telephony）	500	－190	55	15	4.5	－	18
														Class－B Amp．Audio ${ }^{7}$	600	－ 75	130	320 ${ }^{\text {\％}}$	$3.0{ }^{8}$	10000	45
HYOOI－A	20	7.5	1.25	600	70	15	8.0	4.5	6.0	1.5	60	M．	4D	Class－C Amp．（Telegraphy）	600	－200	70	15	4.0	－	30
HYOOT－A	20													Class－C Amp．（Telephony）	500	－200	60	15	4.5	－	22
T20	20	7.5	1.75	750	05	25	20	4.9	5.1	0.7	60	M．	36	Class－C Amp．（Telegraphy）	750	－85	85	18	3.6	－	44
r20	20	7.5	1.35							0.7		m．		Class－C Amp．（Telephony）	750	－140	70	15	3.6	－	30
TZ20	20	7.5	1.75	750	05	30	62	5.3	5.0	0.6	80	M．	3G	Class－C Amp．（Telegraphy）	750	－ 40	85	28	3.75	－	44
														Class－C Amp．（Telephony）	750	-100	70	23	4.8	－	38
														Class－B Amp．Audio ${ }^{\text {？}}$	800	0	40／136	$160{ }^{\circ}$	1.0^{8}	12000	70
15E	20	5.5	4.2	－	－	\square	25	1.4	1.15	0.3	600	N	T－AAF			－	－	－	－	－	－
$\begin{aligned} & 3-25 A 3 \\ & 25 T \\ & \hline \end{aligned}$	25	6.3	3.0	2000	75	25	24	2.7	1.5	0.3	60	M．	3 G	Class－C Amp．－Oscillator	2000	－130	63	18	4.0	－	100
															1500	－95	67	13	2.2	－	75
															1000	－ 70	72	9	1.3	－	47
$\begin{aligned} & 3-25 \mathrm{D} 3 \\ & 3 \mathrm{C} 24 \\ & \text { 24G } \end{aligned}$	25	6.3	3.0	2000	75	25	23	$\begin{aligned} & 2.0 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	150	5.	20	Class－B Amp．Audio ${ }^{\text {7 }}$	2000	－80	16／80	2709	$0.7{ }^{8}$	55500	110
															2000	－170	63	17	4.5	－	100
														Class－C Amp．－Oscillator	1500	-110	67	15	3.1	－	75
															1000	－80	72	15	2.6	－	47
														Class－8 Audio ${ }^{\text {？}}$	2000	－85	16／80	2908	$1.1{ }^{8}$	55500	110
3C28	25	6.3	3.0	2000	75	25	23	2.1	1.8	0.1	100	S．	Fig． 56	Class－C Amp．Oscillator	Characteristics same as 3C24						

TABLE XVI-TRIODE TRANSMITTING TUBES-Continued

Type	Max. Plate Dissipation Watts	Cathode		Max. Plate Voltage		Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Capecitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Rotings	Base	5ocket Connecfions	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Wotts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \operatorname{LogdRes.} \\ \text { Ohms } \end{gathered}$	Approx. Output Power Watts
		Vohs	Amp.					$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plote } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
$3 C 34$	25	6.3	3.0	2000	75	25	23	2.5	1.7	0.4	60	5.	3G	Class-C Amp. Oscillator	Characteristics same as 3C24						
RKIII	25	6.3	3.0	750	105	35	20	7.0	7.0	0.9	60	M.	3G	Class-C Amp. (Telegraphy)	750	-120	105	21	3.2		55
									7.0	0.9	60	M.		Class-C Amp. (Telephony)	600	-120	85	24	3.7		38
RK12	25	6.3	3.0	750	105	40	100	7.0	7.0	0.9	60	M.	3 G	Class-C Amp. (Telegraphy)	750	-100	105	35	5.2		55
										0.9	60			Class-C Amp. (Telephony)	600	-100	85	27	3.8		38
HK24	25	6.3	3.0	2000	75	30	25	2.5	1.7	0.4	60	5.	3 G	Closs-C Amp. (Telagraphy)	2000	-140	56	18	4.0		90
										0.4	60	5.		Class-C Amp. (Telephony)	1500	-145	50	25	5.5		60
HY25	25	7.5	2.25	800	75	25	55	4.2	4.6	1.0	60	M.	3G	Class-C Amp. (Telegraphy)	750	- 45	75	15	2.0		42
														Closs.C Amp. (Telaphony)	700	- 45	75	17	5.0		39
8025	30	6.3	1.92	1000	65	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	18	2.7	2.8	0.35	500	M.	4AQ	Closs-C Amp. (Grid. Mod.)	1000	-135	50	4	3.5		20
	$\begin{aligned} & 20 \\ & 30 \end{aligned}$				65									Class-C Amp. (Telephony)	800	-105	40	10.5	1.4		22
														Class-C Amp. (Telegraphy)	1000	-90	50	14	1.6		35
HY30Z ${ }^{1}$	30	6.3	2.25	850	90	25	87	6.0	4.9	1.0	60	M.	480	Class-C Amp.-Oseillator	850	-75	90	25	2.5		58
														Class-C Amp. (Telephony)	700	-75	90	25	3.5		47
HY312 ${ }^{2}$ HY12312 ${ }^{2}$	30	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 3.5 \\ & 1.7 \end{aligned}$	500	150	30	45	5.0	5.5	1.9	60	M.	T-4D	Class-C Amp. (Telegraphy)	500	-45	150	25	2.5	-	56
														Class-C Amp. (Telephony)	400	-100	150	30	3.5	-	45
316A	30	2.0	3.65	450	80	12	6.5	1.2	1.6	0.8	500	N.	-	Class-C Amp. (Telagraphy)	450		80	12		-	7.5
														Class-C Amp. (Tolophany)	400		80	12	-	-	6.5
809	30	6.3	2.5	1000	125		50	5.7	6.7	0.9	60	M.	3G	Closs-C Amp. (Telegraphy)	1000	-75	100	25	3.8	-	75
						-								Class-C Amp. (Telaphony)	750	- 60	100	32	4.3	-	55
														Class-B Amp. Audio	1000	- 9	40/200	155	2.78	11600	145
1623	30	6.3	2.5	1000	100	25	20	5.7	6.7	0.9	60	M.	3G	Class-C Amp.-Oscillator	1000	-90	100	20	3.1	11600	75
														Closs-C Amp. (Telephony)	750	-125	100	20	4.0		55
														Class-B Amp. Audio?	1000	-40	30/200	$230{ }^{9}$	$4.2{ }^{8}$	12000	145
53A	35	5.0	12.5	15000	-	-	35	3.6	1.9	0.4	-	N.	T-48	Oscillotor ol $\mathbf{3 0 J} \mathrm{Mc}$.	Appraximataly 50 wotts output						
RK301	35	7.5	3.25	1250	80	25	15	2.75	2.5	2.75	60	M.	2D	Closs-C Amp. (Talography)	1250	-180	90	18	5.2	-	85
													2D	Class-C Amp. (Telephony)	1000	-200	80	15	4.5	-	60
800	35	7.5	3.25	1250	80	25	15	2.75	2.5	2.75	60	M.	2D	Class-C Amp. (Telegraphy)	1250	-175	70	15	4.0	-	65
														Class-C Amp. (Telephony)	1000	-200	70	15	4.0	-	50
														Class-B Amp. Audio ${ }^{\text {? }}$	1250	- 70	30/130	$300{ }^{9}$	3.48	21000	106
16281	40	3.5	3.25	1000	60	15	23	2.0	2.0	0.4	500	N.	T-4BB	Class-C Amp.-Oscillator	1000	- 65	50	15	1.7	-	35
														Class-C Amp. (Telaphony)	800	-100	40	11	1.6	-	22
														Grid-Modulated Amp.	1000	-120	50	3.5	5.0	-	20
$\begin{aligned} & 8012 \\ & \mathrm{GL}-8012 \cdot \mathrm{~A} \end{aligned}$	40	6.3	2.0	1000	80	20	18	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.4 \end{aligned}$	500	N.	T-488	Class-C Amp.-Oscillator	1000	- 90	50	14	1.6	-	35
														Class-C Amp. (Telephony)	800	-105	40	10.5	1.4	-	22
														Grid-Madulated Amp.	1000	-135	50	4.0	3.5		20
RK18 ${ }^{\text {I }}$	40	7.5	3.0	1250	100	40	18	6.0	4.8	1.8	60	M.	3G	Class-C Amp. (Telegrophy)	1250	-160	100	12	2.8	-	95
								6.0	4.6	1.8	60	M.	3G	Class-C Amp. (Telephony)	1000	-160	80	13	3.1	-	64
RK31	40	7.5	3.0	1250	100	35	170	7.0	1.0	2.0	30	M.	3 G	Class-C Amp. (Telegraphy)	1250	-80	100	30	3.0	-	90
												m.	3	Class-C Amp. (Telephony)	1000	-80	100	28	3.5	-	70
HY40 ${ }^{1}$	40	7.5	2.25	1000	125	25	25	6.1	5.6	1.0	60	M.	3G	Class-C Amp. (Telegraphy)	1000	- 90	125	20	5.0	-	94
														Class-C Amp. (Telephony)	850	- 90	125	25	5.0		82
														Grid-Modulated Amp.	1000	-	125	-	-	-	20

TABLE XVI-TRIODE TRANSMITTING TUBES-Continued

Typo	Max. Plate Dissipation Watis	Cathode		Max. Plate Voltage		Max. D.C. Grid Current Ma.	Amp. Factor	Inierelectrode Capacitances ($\mu \mu \mathrm{id}$.)			Max. Freq. Mc. Full Ratings	Base	Socket Connections	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Watis	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Lood Res. } \\ \text { Ohms } \end{gathered}$	Approx. Output Power Watts
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plote } \end{aligned}$	Plate to Fil.											
HY40Z ${ }^{1}$	40	7.5	2.6	1000	125	30	80	6.2	6.3	0.8	60	M.	3G	Class-C Amp. (Telegrophy)	1000	- 27	125	25	5.0	-	94
														Class-C Amp. (Telephony)	850	- 30	100	30	7.0	-	82
														Grid-Modulated Amp.	1000		60		-	-	20
														Class-C Amp.-Oscillator	1500	-140	150	28	9.0	-	158
140	40	7.5	2.5	1500	150	40	25	4.5	4.8	0.8	60	M.	3G	Class-C Amp. (Telephony)	1250	- 115	115	20	5.25	-	104
T240	40	7.5	2.5	1500	150	45	62	4.8	5.0	0.8	60	M.	3G	Class-C Amp.-Oscillator	1500	- 90	150	38	10	-	165
														Class-C Amp. (Telephony)	1250	-100	125	30	7.5	-	116
														Class-B Amp. Audio?	1500	-9	250 ${ }^{\text {B }}$	285	$6.0{ }^{8}$	12000	250
HY57	40	6.3	2.25	850	110	25	50	4.9	5.1	1.7	60	M.	3G	Class-C Amp. (Telegraphy)	850	-48	110	15	2.5	-	70
														Class-C Amp. (Telephony)	700	-45	90	17	5.0	-	47
														Grid-Modulated Amp.	850	-	70	-	-	-	20
7561	40	7.5	2.0	850	110	25	8.0	3.0	7.0	2.7	-	M.	4D	Class-C Amplifier	850		110	25	-	-	-
756		7.5									15	M	4 D	Class-C Amplifier	750	-180	110	18	7.0	-	55
8301	40	10	2.15	750	110	18	8.0	4.9	9.9	2.2	15	M.	40	Grid-Modulated Amp.	1000	-200	50	2.0	3.0	-	15
3-5044						50								Closs-C Amp. (Telegrophy)	2000	-135	125	45	13	-	200
351	50	5.0	4.0	2000	150		39		1.8	0.3	100	M.	3G	Class-C Amp. (Telephony)	1500	-120	100	30	5.0	-	120
$\begin{aligned} & \text { 3-50D4 } \\ & \text { 35TG } \end{aligned}$								2.5						Class-B Amp. Audio ${ }^{\text {? }}$	2000	- 40	34/167	$255{ }^{\text {a }}$	$4.0{ }^{8}$	27500	235
8010-R	50	6.3	2.4	1350	150	20	30	2.3	1.5	0.07	350	N.	-	Class-C Amplifler	-	-	-	-			9
													2D	Class-C Amp. (Telegraphy)	1250	-225	100	14	4.8		90
RK32 ${ }^{1}$	50	7.5	3.25	1250	100	25	11	2.5	3.4	0.7	100	m.	2D	Class-C Amp. (Telephony)	1000	-310	100	21	8.7	-	70
RK351	50	7.5	4.0	1500	125	20	9.0	3.5	2.7	0.4	60	M.	20	Class-C Amp. (Telegraphy)	1500	-250	115	15	5.0	-	120
														Class-C Amp. (Telephony)	1250	-250	100	14	4.6	-	93
														Grid-Modulated Amp.	1500	-180	37		2.0	-	25
RK37	50	7.5	4.0	1500	125	35	28	3.5	3.2	0.2	60	M.	2D	Class-C Amp. (Telegraphy)	1500	-130	115	30	7.0		122
														Class-C Amp. (Telephony)	1250	-150	100	23	5.6	-	90
														Grid-Modulated Amp.	1500	- 50	50		2.4	-	26
$\begin{aligned} & \begin{array}{l} 3-50 G 2 \\ \text { UH50 } \end{array} \end{aligned}$	50	7.5	3.25	1250	125	25	10.6	2.2	2.6	0.3	60	M.	20	Class-C Amp. (Telegraphy)	1250	-225	125	20	7.5	-	115
														Class-C Amp. (Telephony)	1250	-325	125	20	10	-	115
														Grid-Modulatad Amp.	1250	-200	60	2.0	3.0	-	25
UH51 ${ }^{1}$	50	5.0	6.5	2000	175	25	10.6	2.2	2.3	0.3	60	M.	2D	Class-C Amp. (Telography)	2000	-500	150	20	15		225
														Class-C Amp. (Telephony)	1500	-400	165	20	15	-	200
														Grid-Modulated Amp.	1500	-400	85	2.0	8.0	-	65
HK54	50	5.0	5.0	3000	150	30	27	1.9	1.9	0.2	100	M.	2 D	Class-C Amp. (Telegraphy)	3000	-290	100	25	10	-	250
														Class-C Amp. (Telephony)	2500	-250	100	20	8.0	-	210
														Closs-B Amp. Audio ${ }^{\text {7 }}$	2500	-85	20/150	$360{ }^{\text {a }}$	5.0	40000	275
HK1541	50													Closs-C Amp. (Telography)	1500	-590	167	20	15	-	200
		5.0	6.5	1500	175	30	6.7	4.3	5.9	1.1	60	M.	2D	Class-C Amp. (Telephony)	1250	-460	170	20	12	-	162
														Grid-Madulated Amp.	1500	-450	52		5.0	-	28
														Class-C Amp.-Oscillator	2000	-150	125	25	6.0	-	200
HK158	50	12.6	2.5	2000	200	40	25	4.7	4.6	1.0	60	M.	2D	Class-C Amp. (Telephony)	2000	-140	105	25	5.0	-	170
$\begin{aligned} & \text { WE304A } \\ & \text { 304B } \end{aligned}$	50	7.5	3.25	1250	100	25	11	2.0	2.5	0.7	100	M.	2D	Class-C Amp. (Telography)	1250	-200	100	-	-	-	85
														Class-C Amp. (Telephony)	1000	-180	100	-	-	-	65

TABLE XVI-TRIODE TRANSMITTING TUBES - Continuod

Type	Max. Plato Dissipation Wafts	Cothode		Mox. Plate Voliage	Max. Plafe Mo.	Max. D.C. Grid Current Mo.	Amp. Factor	Interelectrode Capacilances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Me. Full Rotings	Baso	Sockel Connections	Typical Operation	Plato Voltoge	Grid Voltage	Plote Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Wolts	Class B P-to-P Load Res. Ohms	Approx. Outpul Power Watts
		Volts	Amp.					Grid fo Fil.	Grid to Plate	$\begin{aligned} & \text { Plote } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$											
3564	50	5.0	5.0	1500	120	35	50	2.25	2.75	1.0	60	N.	T-4BD	Class-C Amp. (Telegraphy)	1500	- 60	100	-	-	-	100
808	50	7.5	4.0	1500									T-48D	Class-C Amp. (Telephony)	1250	- 100	100	35			85
					150	35	47	5.3	2.8	0.15	30	M.	2D	Class-C Amp. (Telegraphy)	1500	-200	125	30	9.5		140
														Closs-C Amp. (Telephony)	1250	-225	109	32	10.5		105
834	50													Closs-B Amp. Audio ${ }^{\text {? }}$	1500	- 25	30/190	$220{ }^{\text {\% }}$	4.8 \%	18300	185
		7.5	3.1	1250	100	20	10.5	2.2	2.6	0.6	100	M.	20	Class-C Amp. (Telegraphy)	1250	-225	90	15	4.5		75
$841 A^{1}$	50	10		1250		30								Class-C Amp. (Telephony)	1000	-310	90	17.5	6.5	-	58
$8415 W$	50	10	2.0	1000	150	30	14.6	3.5	9.0	2.5		M.	3 G 3 G	Class-C Amplifier	-	-	-	-	-	-	85
8415 W	50	10	2.0	1000	150	30	14.6		9.0			M.	3G	Class-C Amplifier			-			-	8
T55	55	7.5	3.0	1500	150	40	20	5.0	3.9	1.2	60	M.	3G	Class-C Amp. (Telegraphy)	1500	-170	150	18	6.0	-	170
811	55	6.3	4.0	1500	150	50								Class-C Amp. (Telephony)	1500	-195	125	15	5.0	-	145
							160	5.5	5.5	0.6	60	M.	3G	Closs-C Amp. (Telegraphy)	1500	-113	150	35	8.0	--	170
														Class-C Amp. (Telephony)	1250	-125	125	50	11	-	120
														Class-B Amp. Audio ${ }^{\text {? }}$	1500	- 9	20/200	150°	$3.0{ }^{8}$	17600	220
812	55	6.3	4.0	1500	150	35	29	5.3	5.3	0.8	60	M.	3G	Class-C Amp. (Telegraphy)	1500	-175	150	25	6.5	$\underline{-}$	170
														Class-C Amp. (Telephany)	1250	-125	125	25	6.0		120
														Class-B Amp. Audio ?	1500	-45	50/200	$232{ }^{9}$	$4.7{ }^{8}$	18000	225
RK51	60	7.5	3.75	1500	150	40	20	6.0	6.0	2.5	60	M.	3G	Class-C Amp. (Telegraphy)	1500	-250	150	31	10		170
														Class-C Amp. (Telephony)	1250	-200	105	17	4.5	-	96
														Grid-Modulated Amp.	1500	-130	60	0.4	2.3	$\underline{\square}$	128
RK52	60	7.5	3.75	1500	130	50	170	6.6	12	2.2	60	M.	3G	Class-C Amp. (Telegraphy)	1500	-120	130	40	7.0	-	128
														Class-C Amp. (Telephony)	1250	-120	115	47	8.5	-	102
T-60	60	10	2.5	1600	150									Class-B Amp. Audio ${ }^{\text {a }}$	1250	0	40/300	180 ?	$7.5{ }^{8}$	10000	250
	55		2.5	1600	150	50	20	5.5	5.2	2.5	60	M.	2D	Class-C Amp.-Oscillator	1500	-150	150	50	9.0	$\underline{-}$	100
826		7.5	4.0	1000	125	40	31	3.7	2.9	1.4	250	N.	780	Class-C Amp.-Oscillator	1000	- 70	130	35	5.8	-	90
														Class-C Amp. (Telephony)	1000	-160	95	40	11.5	-	70
														Grid-Modulated Amp.	1000	-125	65	9.5	8.2	-	25
$\begin{aligned} & 830 \mathrm{~B} \\ & 930 \mathrm{~B} \end{aligned}$	60	10	2.0	1000	150	30	25	5.0	11	1.0	15	M.	3G	Class-C Amp.-Oscillator	1000	-110	140	30	7.0	$\underline{\square}$	90
														Class-C Amp. (Telephony)	800	-150	95	20	5.0	-	50
														Class-B Amp. Audio ${ }^{\text {? }}$	1000	- 35	20/280	270^{9}	$6.0{ }^{8}$	7600	175
811.A	65	6.3	4.0	1500	175	50	160	5.9	5.6	0.7	60	M.	3G	Class-C Amp. (Telegraphy)	1500	- 70	173	40	7.1	-	200
														Class-C Amp. (Telephony)	1250	-120	140	45	10.0	$\underline{-}$	135
														Class-B Amp. Audio?	1500	-4.5	32/313	1709	$4.4{ }^{8}$	12400	340
812.A	65	6.3	4.0	1500	175	35	29	5.4	5.5	0.77	60	M.	3G	Class-C Amp. (Telegraphy)	1500	-120	173	30	6.5	$\underline{ }$	190
														Class-C Amp. (Telephony)	1250	-115	140	35	7.6	-	130
														Class-B Audio ${ }^{\text {? }}$	1500	-48	28/310	270 ${ }^{\text {a }}$	5.0	13200	340
HY5IAI HY51B ${ }^{1}$	65	7.5	$\begin{aligned} & 3.5 \\ & 2.25 \end{aligned}$	1000	175									Class-C Amp. (Telegraphy)	1000	- 75	175	20	7.5	-	131
						25	25	6.5	7.0	1.1	60	M.	3G	Class-C Amp. (Telephany)	1000	-67.5	130	15	7.5	-	104
														Grid-Modulated Amp.	1000	-	100		$\underline{\square}$	$\underline{\square}$	33
														Class-C Amp. (Telegraphy)	1000	-22.5	175	35	10	-	131
HY512 ${ }^{\text {- }}$	65	7.5	3.5	1000	175	35	85	7.9	7.2	0.9	60	M.	4BO	Class-C Amp. (Telephony)	1000	- 30	150	35	10	-	104
														Grid-Modulated Amp.	1000	-	100	-	-		33
														Class-C Amp. (Telegraphy)	1500	-106	175	60	12	-	200
5514	65	7.5	3.0	1500	175	60	145	7.8	7.9	1.0	60	M.	480	Class-C Amp. (Telephony)	1250	- 84	142	60	10	-	135
														Class-B Audio?	1500	-4.5	$350{ }^{8}$	88^{8}	6.58	10500	400

TABLE XVI-TRIODE TRANSMITTING TUBES—Continued

Typo	Max. Plato Dissipation Watts	Cathode		Max. Plate Voltage	Max.Plale Current Mo.	Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Copocitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Rafings	Base	5ocket Connections	Typical Operation	Plote Voltage	Grid Voltage	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Load Res. } \\ \text { Ohms } \end{gathered}$	Approx. Output Power Watts
		Volts	Amp.					Grid to Fil.	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plote } \end{aligned}$	$\begin{gathered} \text { Plote } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
UH35 ${ }^{1}$	70	5.0	4.0	1500	150	35	30	1.4	1.6	0.2	60	M.	$3 G$	Class-C Amp. (Telegraphy)	1500	-170	150	30	7.0	-	170
Un35	70	5.0	4.0	1500	150	35	30	1.4	1.6	0.2	60	M.	36	Class-C Amp. (Telephony)	1500	-120	100	30	5.0		120
V70	70	10	2.5	1500	140	25	14	5.0	9.0	2.3		J.	3N	Class-C Amp. (Telegrophy)	1500	-215	130	6.0	3.0		140
												M.	3G	Class-C Amp. (Telephony)	1250	-250	130	6.0	3.0		120
V70A	70	10	2.5	1500	140	20	25	5.0	9.5	2.0		J.	3N	Class-C Amp. (Telegrophy)	1000	-110	140	30	7.0	-	90
V70C	70	10							9.5	2.0				Class-C Amp. (Telephony)	800	-150	95	20	5.0		50
50 T	75	5.0	6.0	3000	100	30	12	2.0	2.0	0.4	-	M.	2D	Class-C Amplifer	3000	-600	100	25		-	250
3-75A3						40	20	2.7	2.3	0.3			2D	Class-C Amp. (Telegraphy)	2000	-200	150	32	10	-	225
75 TH	75	5.0	6.25	3000	225					0.3	40	M.	20	Class-B Amp. Audio ${ }^{\text {² }}$	2000	- 90	50/225	$350{ }^{9}$	3 8	19300	300
3.7542						35	12	2.6	2.4	0.4			2D	Class-C Amp. (Telegraphy)	2000	-300	150	21	8	-	225
									2.4	0.4			2D	Class-B Amp. Audio ${ }^{\text {i }}$	2000	-160	50/250	535 *	$5{ }^{8}$	18000	350
														Closs-C Amp. (Telegrophy)	1600	-190	158	12	3.5		200
HF-60	75	10	2.5	1600	160	-	28	5.4	5.2	1.5	30	M.	2D	Class-C Amp. (Telephony)	1250	-190	113	8	2.5	-	110
														Class-B Amp. Audio ${ }^{\text {a }}$	1600	- 75	50/248	310^{9}	3.0	13800	262
ZB-60	75	10	2.5	1600	160	40	80	6.1	5.8	1.85	30	M.	20	Class-C Amp. (Telography)	1500	- 95	158	31	6.0	-	190
2B-60										1.85	30	m.	20	Class-B Amp. Audio ${ }^{\text {7 }}$	1500	- 9	30/305	208.	12.5	11200	320
														Class-C Amp. (Telegraphy)	1500	-200	150	18	6.0	-	170
111H	75	10	2.5	1500	160	30	23	5.0	4.6	2.9	30	M.	2D	Class-C Amp. (Telephony)	1250	-250	110	21	8.0	-	105
														Class-8 Amp. Audio ${ }^{\text {? }}$	1750	-62	40/270	324.	9.0	16000	350
HF75	75	10	3.25	2000	120	-	12.5		2.0		75	M.	20	Class-C Oscillator-Amp.	2000		120		-	-	150
TW75	75	7.5	4.15	2000	175	60	20	3.35	1.5	0.7	60	M.	2D	Class-C Amp.-Oscillator	2000	-175	150	37	12.7	-	225
TW7										0.7	¢0	m.	20	Class-C Amp. (Telephony)	2000	-260	125	32	13.2	-	198
														Closs-C Amp. (Telography)	1500	-200	150	18	6.0		170
	75	10	2.5	1500	150	30	23	4.0	4.5	2.6	30	M.	2 D	Class-C Amp. (Telephany)	1250	-250	110	21	8.0	-	105
HF 100												m.		Grid-Modulated Amp.	1500	-280	72	1.5	6.0	-	42
														Class-8 Amp. Audio ${ }^{\text {7 }}$	1750	-62	40/270	$324{ }^{\text { }}$	$9.0{ }^{8}$	16000	350
														Closs-C Amp. (Telegraphy)	1500	-200	150	18	6.0		170
UE-100	75	10	2.5	1750	150	30	23	3.5	4.5	1.4	30	M.	2D	Class-C Amp. (Telephony)	1250	-250	120	21	0.0	-	105
														Class-B Audio ${ }^{\text {- }}$	1750	-62	540 "		9.0	18000	350
														Class-C Amp. (Telegraphy)	1250	-135	160	23	5.5	-	145
78120	75	10	2.0	1250	160	40	90	5.3	5.2	3.2	30	d.	4 E	Class-C Amp. (Telephony)	1000	-150	120	21	5.0	-	95
														Grid-Modulated Amp.	1250	-	95	8.0	1.5		45
														Class-B Amp. Audio	1500	- 9	60/296	196	5.0 *	11200	300
327B	75	10.5	10.6	-	-	-	30	3.4	2.45	0.3	-	N.	T-4AD	-	-	-	-	-	-	-	
242A	85	10	3.25	1250	150	50	12.5	6.5	13	4.0	6	J.	4E	Class-C Amp. (Telegraphy)	1250	-175	150	--	\square	-	130
242A										4.0	0	J.	4E	Class-C Amp. (Telephony)	1000	-160	150	50	-	-	100
														Class-C Amp. (Telegraphy)	1250	-500	150	-	-	-	125
284D	85	10	3.25	1250	150	100	4.8	6.0	0.3	5.6	-	J.	4E	Class-C Amp. (Telephony)	1000	-450	150	50	-	-	100
														Class-B Amp. Audio :	1250	-250	30/200	-	-	11200	140
														Class-C Amp. (Telography)	1750	-175	170	26	6.5	-	225
														Class-C Amp. (Telography)	1250	-125	125	25	5.0	-	116
812-H	85	6,3	4.0	1750	200	45	-	5.3	5.3	0.8	30	M.	36	Class-C Amp. (Telephony)	1500	-125	165	21	6.0	-	180
														Class-C Amp. (Telephony)	1250	-125	125	25	6.0	-	120
														Class-B Amp. Audio?	1500	-48	42/200	-	-	18000	225

table XVI－triode transmitting tubes－Continued

Typo	Max． Plate Dissi－ pation Watts	Cathode		Max． Plate Voltage	Max． Plate Current Ma．	Max． D．C． Grid Current Ma．	Amp． Factor	Inferelectrode Capacitances（ $\mu \mu \mathrm{fd}$ ．）			Max． Freq． Me． Full Ratings	Base	5ockel Connec－ tions	Typical Operetion	Plate Voltage	Grid Vollage	Plate Current Ma．	D．C．Grid Current Ma．	Approx． Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Logd Res. } \\ \text { Ohms } \end{gathered}$	Approx． Output Power Walts
		Valts	Amp．					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	Grid to Plate	Plate 10 Fil．											
8005	85	10	3.25	1500	200	45	20	6.4	5.0	1.0	60	M．	3 G	Class－C Amp．－Telegraphy	1500	－130	200	32	7.5	－	220
														Class－C Amp．（Telephony）	1250	－195	190	28	9.0		170
														Class－B Amp．Audio ${ }^{\text {］}}$	1500	－ 70	40／310	310^{9}	$4.0{ }^{8}$	10000	300
V－70－D	85	7.5	3.25	1750	200	45		4.5	4.5	1.7	30	M．	3 G	Class－C Amp．（Telegraphy）	1750	－100	170	19	3.9		225
															1500	－ 90	165	19	3.9		195
														Class－C Amp．（Telephony）	1500	－90	165	19	3.7	－	185
															1250	－ 72	127	16	2.6		122
RK36 ${ }^{1}$	100	5.0	8.0	3000	165	35	14	4.5	5.0	1.0	60	M．	2D	Class－C Amp．（Telegraphy）	2000	－360	150	30	15		200
														Class－C Amp．（Telephany）	2000	－360	150	30	15	－	200
														Grid－Madulated Amp．	2000	－270	72	1.0	3.5	－	42
RK38 ${ }^{1}$	100	5.0	8.0	3000	165	40		4.6	4.3	0.9	60	M．	2D	Class－C Amp．（Telography）	2000	－200	160	30	10		225
							－							Class－C Amp．（Telephony）	2000	－200	160	30	10	－	225
														Grid－Modulated Amp．	2000	－150	80	2.0	5.5		60
$\begin{aligned} & 3-100 \mathrm{~A} 4 \\ & 100 \mathrm{TH} \end{aligned}$	100	5.0	6.3	3000	225	60	40	2.9	2.0	0.4	40	M．	2D	Class－C Amp．（Telegraphy） Class－C Amp．（relephony）	3000	－200	165	51	18	－	400
														Grid－Modulated Amp．	3000	－400	70	3.0	7.0	－	100
														Class－8 Amp．（Audio）${ }^{\text {］}}$	3000	－ 65	40／215	335.	$5.0{ }^{8}$	31000	650
$\begin{aligned} & 3-100 A 2 \\ & 10072 \end{aligned}$	100	5．0	6.3	3000	225	50	14	2.3	2.0	0.4	40	M．	20	Class－C Amp．（Telegraphy） Class－C Amp．（Telephony）	3000	－400	165	30	20	－	400
														Grid－Modulated Amp．	3000	－560	60	2.0	7.0	－	90
														Class－B Amp．（Audio）${ }^{\text {－}}$	3000	－185	40／215	$640{ }^{9}$	$6.0{ }^{8}$	30000	450
VI127A	100	5.0	10.4	3000		30	15.5	2.7	2.3	0.35	150	N．	T－48	Class－C Amp．－Oscillator		Characteristics similar to 10071					
227A	100	10.5	10.7	－		－	31	3.0	2.2	0.30		N．	T－4B	Oscillator at 200 Mc ．	ーー	ー－	ーー	－	－	－	－
327 A	100	10.5	10.7	－	—	－	31	3.4	2.3	0.35	－	N．	T－4AD	Oscillator al 200 Mc ．	ーー	ーー	－－	－－	－	－	－－
HK254	100	5.0	7.5	4000	200	40	25	3.3	3.4	1.1	50	J．	2N	Class－C Amp．（Telegraphy）	4000	－380	120	35	20	－	475
														Class－C Amp．（Telephony）	3000	－290	135	40	23	－	320
														Grid－Modulated Amp．	3000		51	3.0	4.0	－	58
														Class－B Amp．（Audio）${ }^{\text {T }}$	3000	－100	40／240	456 ＊	7.0 \％	30000	520
														Class－C Amp．（Telegraphy）	1250	－90	150	30	6.0	－	130
RK58	100	10	3.25	1250	175	70	－	8.5	6.5	10.5	－	J．	3N	Class－C Amp．（Telephany）	1000	－135	150	50	16		100
HF120	100	10	3.25	1250	175	50	12	5.5	12.5	3.5	15	J．	4F	Class－C Amp．－Oscillator	1250	－300	166	8	3.5	－	148
HF125	100	10	3.25	1500	175	－	25	－	11.5	－	30	J．		Class－C Amp．－Oscillator	1500	－	175	－	－	－	200
HF140	100	10	3.25	1250	175	－	12	5.5	13.0	4.5	15	J．	4F	Class－C Amp．－Oscillator	1250	－300	166	8	3.5	－	148
$\begin{aligned} & 203 A \\ & 303 A \end{aligned}$	100	10	3.25	1250	175	60	25	6.5	14.5	5.5	15	J．	4E	Class－C Amp．（Telegraphy）	1250	－125	150	25	7.0	－	130
														Class－C Amp．（Telephony）	1000	－135	150	50	14	－	100
														Class－B Amp，（Audio）${ }^{\text {7 }}$	1250	－ 45	26／320	$330{ }^{\text {a }}$	11^{8}	9000	260
203H	100	10	3.25	1500	175	60	25	6.5	11.5	1.5	15	J．	3N	Class－C Amp．（Telegraphy）	1500	－200	170	12	3.8	－	200
														Class－C Amp．（Telephony）	1250	－160	167	19	5.0	－	160
														Class－B Amp．（Audio）${ }^{\text {7 }}$	1500	－ 52	30／320	$304{ }^{9}$	$5.5{ }^{8}$	11000	340
$\begin{aligned} & 211 \\ & 311 \\ & 835 \end{aligned}$	100	10	3.25	1250	175	50	12	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 14.5 \\ 9.25 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	15	J．	$4 E$	Class－C Amp．（Telegraphy）	1250	－225	150	18	7.0	－	130
														Class－C Amp．（Telephony）	1000	－260	150	35	14	－	100
														Class－8 Amp．（Audio）${ }^{\text {？}}$	1250	－100	20／320	410 ：	$8.0{ }^{8}$	9000	260
242B											6	J．	$4 E$	Class－C Amp．（Telegraphy）	1250	－175	150	－	－	－	130
342B	100	10	3.25	1250	150	50	12.5	7.0	13.6	6.0				Class－C Amp．（Telephany）	1000	－160	150	50	－	－	100

TABLE XVI-TRIODE TRANSMITTING TUBES—Continued

Type	Max. Plate Dissipation Wafts	Cathode		Max. Piate Voltage		Mox. D.C. Grid Current Ma.	Amp. Fuctor	Interelectrode Capacilances ($\mu \mu \mathrm{fd}$.			Max. Freq. Mc. Full Ratings	Base	Socket Connections	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.	D.C. Grid Current Ma.	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Lood Res. } \\ \text { Ohms } \end{gathered}$	Approx. Outpul Power Watts
		Volts	Amp.					$\begin{gathered} \hline \text { Grid } \\ \text { 10 } \\ \text { Fil. } \end{gathered}$	Grid to Plate	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
242C	100	10	3.25	1250	150	50	12.5	6.1	13.0	4.7	6	J.	$4 E$	Class-C Amp. (Telegraphy)	1250	-175	150		-	-	130
														Class-C Amp. (Telephony)	1000	-160	150	50			100
														Class-B Amp. (Audio) ${ }^{7}$	1250	-80	25/150	-	25 *	7600	200
$\begin{aligned} & 261 A \\ & 361 A \end{aligned}$	100	10	3.25	1250	150	50	12	6.5	9.0	4.0	30	J.	4 E	Class-C Amp. (Telegraphy)	1250	-175	125				100
														Class-C Amp. (Telephony)	1000	-160	150	50		-	100
														Class-B Amp. (Audio) ${ }^{7}$	1250	- 90	20/150		25 -	7200	200
$\begin{aligned} & 276 A \\ & 376 A \end{aligned}$	100	10	3.0	1250	125	50	12	6.0	9.0	4.0	30	J.	4 E	Class-C Amp. (Telegrophy)	1250	-175	125				100
														Class-C Amp. (Telephony)	1000	-160	125	50		-	85
														Class-8 Amp. (Audio)?	1250	- 90	20/125		25 *	9000	175
284B	100	10	3.25	1250	150	100	5.0	4.2	7.4	5.3		J.	3N	Class-C Amp. (Telegraphy)	1250	-500	150		-	-	125
											-			Class-C Amp. (Telephony)	1000	-430	150	50	-	-	100
														Class-8 Amp. (Audio)?	1250	-245	15/150		10\%	7200	200
295A	100	10	3.25	1250	175	50	25	6.5	14.5	5.5		J.	4 E	Class-C Amp. (Telegraphy)	1250	-125	150		-	-	125
											-			Class-C Amp. (Telephony)	1000	-125	150	50		-	100
														Class-B Amp. (Audio) ${ }^{7}$	1250	- 40	12/160	-	208	9000	250
$\begin{array}{r} 838 \\ 938 \end{array}$	100	10	3.25	1250	175	70		6.5	8.0	5.0	30	J.	4 E	Class-C Amp. (Telegraphy)	1250	- 90	150	30	6.0		130
							-							Class-C Amp. (Telephony)	1000	-135	150	60	16	-	100
														Closs-B Amp. (Audio) ${ }^{7}$	1250	0	148/320	200 *	$7.5{ }^{8}$	9000	260
852	100	10	3.25	3000	150	40	12	1.9	2.6	1.0	30	M.	20	Class-C Amp. (Telegraphy)	3000	-600	85	15	12	-	165
														Class-C Amp. (Telephony)	2000	-500	67	30	23	-	75
														Class-B Amp. (Audio) ${ }^{\text {] }}$	3000	-250	14/160	780 ${ }^{\text {9 }}$	$3.5{ }^{8}$	10250	320
564818	100	6.3	1.1	1000	100	50	100	8.75	1.95	0.035	2500	N.	-	Closs-C Amp. (Telegraphy)	1000	- 50	50	18	4		30
564812	100	6.3	1.1	1000	100	So	100	8.75	1.95	0.035	2500	N.	\cdots	Class-C Amp. (Telephony)	600	- 25	55	22	6	-	20
8003	100	10	3.25	1500	250	50	12	5.8	11.7	3.4	30	J.	3N	Class-C Amp.-Oscillator	1350	-180	245	35	11	-	250
														Class-C Amp. (Telephony)	1100	-260	200	40	15	-	167
														Class-B Amp. (Audio) ${ }^{7}$	1350	-100	40/490	$480{ }^{9}$	10.5 ${ }^{\text {\% }}$	6000	460
$\begin{aligned} & 3 \times 100 \mathrm{~A} 11 \\ & 2 \mathrm{C} 39 \\ & \hline \end{aligned}$	100	6.3	1.1	1000	60	40	100	6.5	1.95	0.03	500	N.	-	"Grid Isolation" Circuit	600	- 35	60	40	5.0	-	20
$311-\mathrm{CH}$	125	10	3.25	1750	200	50	12	5.5	8.0	4.5	30	J.	Fig. 57	Class-C Amp. (Telegraphy)	1750	-200	200	20	4.5	-	260
														Class-C Amp. (Telephony)	1250	-200	166	8	3.5	-	148
														Class-8 (Audio) ${ }^{7}$	1500	-110	$400{ }^{\text {8 }}$			8200	400
3 C 22	125	6.3	2.0	1000	150	70	40	4.9	2.4	0.05	500	0.	Fig. 30	Class-C Amp.-Oscillator	1000	-200	150	70		-	65
$4 \mathrm{C36}$	125	5	75	4000	-	-	29	3.2	3.0	0.4	60	J.	Fig. 56	Class-C Amp.-Oscillator	-		-		18		480
$\begin{aligned} & \text { F-123-A } \\ & \text { DR-123C } \end{aligned}$	125	10	4.0	2000	300	75	14.5	6.5	8.5	3.3		J.	Fig. 26	Class-C Amp. (Telagraphy)	1500	-250	250	30	11	-	300
											-			Class-C Amp. (Telephony)	1500	-290	160	25	10	-	200
														Class-B Amp. (Audio) ${ }^{7}$	2000	-130	30/175	$217{ }^{9}$	$3.4{ }^{8}$	13800	522
RK57/805	125	10	3.25	1500	210	70		6.5	8.0	5.0	30			Class-C Amp. (Telegraphy)	1500	-105	200	40	8.5	-	215
							-					J.	3 N	Class-C Amp. (Telephony)	1250	-160	160	60	16	-	140
														Closs-B Amp. (Audio) ${ }^{7}$	1500	- 16	84/400	280 \%	7.0 ${ }^{\text {8 }}$	8200	370
T125	125	10	4.5	2500	250	60	25	6.3	6.0	1.3	60	J.	2N	Class-C Amp. (Telegraphy)	2500	-200	240	31	11		475
1125	125	10	4.5	2500	250	60	25	6.3	6.0	1.3	60	J.	2 N	Class-C Amp. (Telephony)	2000	-215	200	28	10	-	320
HF130	125	10	3.25	1250	210	-	12.5	5.5	9.0	3.5	20	J.	-	Class-C Amp.-Oseillatar	1250	-250	200	10	3.5	-	170
HF150	125	10	3.25	1500	210	-	12.5	5.5	7.2	1.9	30	J.		Class-C Amp.-Oscillator	1500	-300	200	10	4	$\underline{\square}$	220
HF175	125	10	4.0	2000	250		18	4.8	6.3	2.7	25	J.	T-3AC	Class-C Amp.-Oscillator	2000	-250	200	23	9	-	320

TABLE XVI-TRIODE TRANSMITting tUBES-Continuad

Typo	Max. Plafe Dissipation Watts	Cathode		Max. Plate Voltage		Max. D.C. Grid Current Mo.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{ff}$.)			Max. Freq. Me. Full Ratings	Base	Socket Connections	Typical Operation	Plato Voltago	Grid Voltage	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Curent } \\ \text { Mo. } \end{gathered}$	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Lood Res. } \\ \text { Ohms } \end{gathered}$	Approx Output Power Wasts
		Volts	Amp.					Grid to Fit.	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	Plote to Fil.											
GL146	125	10	3.25	1500	200	60	75	7.2	9.2	3.9	15	J.	T-4BG	Class-C Amp.-Oscillator	1250	-150	180	30		-	150
														Class-C Amp. (Telephony)	1050	-200	160	40		-	100
														Class-8 Amp. (Audio) ${ }^{7}$	1250	0	34/320			8400	250
GL152	125	10	3.25	1500	200	60	25	7.0	8.8	4.0	15	J.	T-4BG	Class-C Amp.-Oseillator	1250	-150	180	30		-	150
														Class-C Amp. (Telephony)	1000	-200	160	30	-	-	100
														Class-B Amp. (Audio) ${ }^{\text {] }}$	1250	-40	16/320			8400	250
805	125	10	3.25	1500	210	70	40/60	8.5	6.5	10.5	30	J.	3N	Class-C Amp. (Telegraphy)	1500	-105	200	40	8.5		215
														Class-C Amp. (Telephony)	1250	-160	160	60	16		143
														Class-B Amp. (Audio) ${ }^{7}$	1500	-16	84/400	280 "	7.0^{8}	8200	370
$\begin{aligned} & 3 \times 150 \mathrm{~A} 3 \\ & 3 \mathrm{C} 37 \\ & \hline \end{aligned}$	150	6.3	2.5	1000	-	-	23	4.2	3.5	0.6	500	N.	-	-	-	-	-	-	\square	-	-
15071	150	5.0	10	3000	200	50	13	3.0	3.5	0.5	-	J.	2N	Class-C Amp. (Telegraphy)	3000	-600	200	35		-	450
3-150A3	150	5/10	$\begin{array}{r} 12.51 \\ 6.25 \end{array}$	3000	450						40	J.	4BC	Class-C Amp. (Telegraphy)	3000	-300	250	70	27	二	600
152 TH						85	20	5.7	4.5	0.8				Class-B Amp. (Audio) ${ }^{7}$	3000	-150	67/335	$430{ }^{19}$	$3.0{ }^{8}$	20300	700
$\begin{aligned} & 3-150 \mathrm{~A} 2 \\ & 152 \mathrm{TL} \end{aligned}$						75	12	4.5	4.4	0.7			4BC	Class-C Amp. (Telegraphy)	3000	-400	250	40	20	-	600
														Class-B Amp. (Audio) ${ }^{7}$	3000	-260	65/335	675 ${ }^{\text {\% }}$	$3.0{ }^{8}$	20400	700
TW150	150	10	4.1	3000	200	60	35	3.9	2.0	0.8	-	J.	2N	Closs-C Amp.-Oscillolor	3000	-170	200	45	17	-	470
														Closs-C Amp. (Telephony)	3000	-260	165	40	17	-	400
HK252-L	150	5/10	13/6.5	3000	500	75	10	7.0	5.0	0.4	125	N.	4BC	Class-C Amp.-Oscillator	3000	-400	250	30	15	-	610
														Class-C Amp. (Telephony)	2500	-350	250	35	16	-	500
$\begin{aligned} & \text { DR200 } \\ & \text { HF200 } \\ & \text { HV18 } \end{aligned}$	150	10-11	3.4	2500	200	50	18	5.2	5.8	1.2	20	J.	2N	Class-C Amp. (Telegraphy)	2500	-300	200	18	8.0	-	380
														Class-C Amp. (Telephony)	2000	-350	160	20	9.0	-	250
														Class-B Amp. (Audio) ${ }^{7}$	2500	-130	60/360	$460{ }^{\circ}$	$8.0{ }^{\text {8 }}$	16000	600
HD203A	150	10	4.0	2000	250	60	25	-	12	-	15	J.	3N	Closs-C Amplifier		-	-	-	-	-	375
HF250	150	10.5	4.0	2500	200	-	18	-	5.8	-	20	J.	2N	Class-C Amp.-Oscillator	2500		200	-		-	375
$\begin{aligned} & \text { HK354 } \\ & \text { HK354C } \end{aligned}$	150	5.0	10	4000	300	50	14	4.5	3.8	1.1	30	J.	2N	Class-C Amp. (Telegraphy)	4000	-690	245	50	48	-	830
														Class-C Amp. (Telephony)	3000	-550	210	50	35	-	525
														Grid-Modulated Amp.	3000	-400	78	3.0	12	-	05
														Class-8 Amp. (Audio) ${ }^{\text { }}$	3000	-205	65/313	$630{ }^{\text {9 }}$	20 ${ }^{8}$	22000	665
HK354D	150	5.0	10	4000	300	55	22	4.5	3.8	1.1	30	J.	2N	Closs-C Amp. (Telegraphy)	3500	-490	240	50	38	-	690
HK3st0								4.5	3.8	1.1	30	J.	2 N	Class-C Amp. (Telephony)	3500	-425	210	55	36	-	525
HK354E	150	5.0	10	4000	300	60	35	4.5	3.8	1.1	30	J.	2N	Class C Amp. (Telegraphy)	3500	-448	240	60	45	-	690
								4.5	3.8	1.1	3	J.	2 N	Class-C Amp. (Telephony)	3000	-437	210	60	45	-	525
HK354F	150	8.0	10	4000	300	75	50	4.5	3.0	1.1	30	J.	2N	Class-C Amp. (Telegraphy)	3500	-368	250	75	50		720
								4.5	3.0	1.	3	J.	2 N	Class-C Amp. (Telephony)	3000	-312	210	75	45		525
UE-468	150	10	4.05	2500	200	60	18	8.8	7.0	1.25	30	J.	Fig. 57	Class-C Amp. (Telography)	2500	-300	200	18	8.0	-	380
														Class-C Amp. (Telephony)	2000	-350	160	20	9.0		250
														Class-8 (Audio) ${ }^{\text {7 }}$	2500	-130	$320{ }^{8}$	410^{9}	2.5	16000	500
$\begin{aligned} & 810 \\ & 16271 \end{aligned}$	175	$\begin{aligned} & 10 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	2500	300	75	36	8.7	4.8	12	30	J.	2N	Class-C Amp. (Telegraphy)	2500	-180	300	60	19	-	575
														Class-C Amp. (Telephony)	2000	-350	250	70	35	-	380
														Grid-Modulated Amp.	2250	-140	100	2.0	4.0	-	75
														Class-B Amp. (Audio) ${ }^{7}$	2250	-60	70/450	$380{ }^{9}$	13^{8}	11600	725

TABLE XVI-TRIODE TRANSMITTING TUBES—Continued

Type	Max. Plafe Dissi- pation Watts	Cathode		Mox. Plate Voltage		Mox. D.C. Grid Current Ma.	Amp. Factor	Interelectrade Capacitances ($\mu \mu \mathrm{fd}$.)			Mox. Freq. Mc. Full Ratings	Base	Socket Connecfions	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.	$\underset{\substack{\text { G.C.C. } \\ \text { Current }}}{\text { Mo. }}$	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Load Res. } \\ \text { Ohms } \end{gathered}$	Approx. Outpui Power WaHs
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { Po } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plote } \end{aligned}$	Plote to Fil.											
8000	175	10	4.5	2500	300	45	16.5	5.0	6.4	3.3	30	J.	2N	Class-C Amp.-Oscillator	2500	-240	300	40	18	-	575
														Class-C Amp. (Telephony)	2000	-370	250	37	20		380
														Grid-Modulated Amp.	2250	-265	100	0	2.5		75
														Class-B Amp. (Audio) ${ }^{1}$	2250	-130	65/450	$560{ }^{9}$	$7.9{ }^{\text {8 }}$	12000	725
GL-5C24	160	10	5.2	1750	107	-	0	5.6	8.0	3.3	-	N.	Fig. 26	Class-A Amp. (Audio)	1500	-155	107			$8200{ }^{\text {a }}$	55
												N.	Fig. 26	Class-AB1 Amp. (Audio) ${ }^{7}$	1750	-200	3208	3909		8000	240
$\begin{aligned} & \text { RKB3 } \\ & \text { RK63A } \end{aligned}$	200	$\begin{aligned} & 5.0 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	3000	250	60	37	2.7	3.3	1.1	-	J.	2N	Class-C Amp. (Telegraphy)	3000	-200	233	45	17		525
														Class-C Amp. (Talephony)	2500	-200	205	50	19		405
														Grid-Modulated Amp.	3000	-250	100	7.0	12.5	-	100
T200	200	10	5.75	2500	350	80	16	9.5	7.9	1.6	30	J.	2N	Closs-C Amp. (Telegraphy)	2500	-280	350	54	25	-	685
												J.	2N	Class-C Amp. (Telephony)	2000	-260	300	54	23	-	460
F-127-A	200	10	4.0	3000	325	70	38	13	4	13		J.	Fig. 26	Class-C Amp. (Telegraphy)	3000	-250	250	47	18		600
											-			Class-C Amp. (Telephony)	2500	-300	200	58	25.2	--	420
														Class-B Amp. (Audio) ${ }^{\text { }}$	2800	- 75	20/400	$175{ }^{\circ}$	$6.65{ }^{\text {8 }}$	16600	820
$\stackrel{822}{822 S}$	200	10	4.0	2500	300	60	30	8.5	13.5	2.1	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	J.	$\begin{aligned} & \mathbf{3 N} \\ & \mathbf{2 N} \end{aligned}$	Class-C Amp. (Telegraphy)	2500	-190	300	51	17	\square	600
														Class-C Amp. (Telephony)	2000	- 75	250	43	13.7	-	405
														Class-8 Amp. (Audio) ${ }^{7}$	3000	-80	$450{ }^{3}$	$362{ }^{9}$	8.0^{8}	16000	1000
$4 C 32$	200	10	4.5	3000	300	60	30	5.5	5.8	1.1	60	J.	2N	Class-C Amp.-Oscillator	2000	-165	275	20	10	-	400
											60	J.	2 N	Class-C Amp. (Telephony)	2000	-200	250	20	15	-	375
GL-592	200	10	5.0	3500	250	50	24	3.6	3.3	0.41	110	N.	Fig. 52	Class-C Amp.-Oscillator	2600	-240	250	45	18	-	425
												N.	Fig. 52	Class-C Amp. (Telephony)	2000	-530	250	50		-	-
$\begin{aligned} & \text { 4C34 } \\ & \text { HF300 } \end{aligned}$	200	11-12	4.0	3000	275	80	23	6.0	6.5	1.4	$\begin{aligned} & 60 \\ & 20 \end{aligned}$	J.	2N	Closs-C Amp. (Telegrophy)	3000	-400	250	28	16		600
														Class-C Amp. (Telephony)	2000	-300	250	36	17	-	385
														Class-8 Amp. (Audio) ${ }^{\text {a }}$	3000	-115	60/360	$450{ }^{9}$	13*	20000	780
$r 014$ HV1 2	200	10	4.0	2500	200	60	12	0.5	12.8	1.7	30	J.	3N	Class-C Amp. (Telegraphy)	2500	-240	300	30	10	-	575
														Class-C Amp. (Telephony)	2000	-370	300	40	20	-	485
														Class-B Amp. (Audio) ${ }^{\text {7 }}$	2000	-160	50/275	$350{ }^{9}$	7.0^{8}	14400	400
$\begin{aligned} & \text { T822 } \\ & \text { HV27 } \end{aligned}$	200	10	4.0	2500	300	60	27	0.5	13.5	2.1	30	J.	3N	Class-C Amp. (Telegraphy)	2500	-175	300	50	15	-	585
														Class-C Amp. (Telephony)	2000	-195	250	45	15		400
T-300	200	11	6.0	3000	300		23	6.0	7.0	1.4				Class-C Amp. (Telegraphy)	3000	-409	250	28	20		600
						-					-	-	-	Class-C Amp. (Telephony)	2000	--300	250	36	17	-	385
														Class-8 (Audio) ${ }^{7}$	2500	-100	60/450	-	7.5^{8}		750
806	225	5.0	10	3300	300	50	12.6	6.1	4.2	1.1	30	J.	2N	Class-C Amp. (Telegraphy)	3300	-600	300	40	34	-	780
														Class-C Amp. (Telephony)	3000	-670	195	27	24	-	460
														Class-B Amp. (Audio) ${ }^{7}$	3300	-240	80/475	$930{ }^{\circ}$	35 8	16300	1120
$\begin{aligned} & \text { 3-250A4 } \\ & 250 \mathrm{TH} \end{aligned}$	250	5.0	10.5	4000	350	100	37	5.0	2.9	0.7	40	J.	2N	Class-C Amp. (Telegraphy)	2000	-120	350	100	34	-	500
														Class-C Amp. (Telephony)	3000	-210	330	75	42	-	750
														Grid-Modulated Amp.	3000	-160	125	4.5	20	\cdots	125
														Class-B Amp. (Audio) ${ }^{3}$	3000	-65	100/560	$460{ }^{9}$	248	12250	1150
$\begin{aligned} & 3-250 A 2 \\ & 250 \mathrm{TL} \end{aligned}$	250	5.0	10.5	4000	350	50	14	3.7	3.1	0.7				Class-C Amp. (Telegraphy)	3000	-350	335	45	29	-	750
											40	J.	2N	Class-C Amp. (Telephony)	3000	-350	335	45	29	-	750
														Grid-Modulated Amp.	3000	-450	125	2.0	15	-	125
														Class-8 Amp. (Audio) ${ }^{\text {7 }}$	3000	-175	100/500	$840{ }^{3}$	17^{8}	13000	1000

table XVI-TRIODE TRANSmitting tubes-Continued

Type	Max. Plate Dissipation Watts	Cathode		Max.PlateVoliage		Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Me. Full Ratings	Base	Sockel Connecfions	Typical Operation	Plate Voltage	Grid Voltage	Plale Current Ma.		Approx. Grid Driving Power Walts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Load Res. } \\ \text { Ohms } \end{gathered}$	Approx. Output Power Watts
		Volts	Amp.					Grid 10 Fil.	Grid to Plale	Plata to Fil.											
GL159	250	10	9.6	2000	400	100	20	11	17.6	5.0	15	J.	T-4BG	Class-C Amp.-Oscillator	2000	-200	400	17	6.0	-	620
														Class-C Amp. (Telephony)	1500	-240	400	23	9.0		450
														Class-B Amp. (Audio) ${ }^{\text {7 }}$	2000	-100	30/660	$400{ }^{9}$	$4.0{ }^{\text {B }}$	6880	900
GL169	250	10	9.6	2000	400	100	85	11.5	19	4.7	15	J.	T-48G	Class-C Amp.-Oscillator	2000	-100	400	42	10	-	620
														Class-C Amp. (Telephony)	1500	-100	400	45	10	-	450
														Closs-8 Amp. (Audio) ${ }^{7}$	2000	- 18	30/660	$220{ }^{9}$	6.0^{8}	7000	900
$\begin{aligned} & 204 A \\ & 304 A \end{aligned}$	250	11	3.85	2500	275	80	23	12.5	15	2.3	3	N.	T-1A	Class-C Amp. (Telegrophy)	2500	-200	250	30	15		450
														Class-C Amp. (Telephony)	2000	-250	250	35	20		350
														Class-B Amp. (Audio) ${ }^{\text {7 }}$	3000	-100	80/372	500\%	18*	20000	700
308B	250	14	4.0	2250	325	75	8.0	13.6	17.4	9.3	1.5	N.	T-2A	Class-C Amp. (Telegraphy)	1750	-345	300	-	-		350
															1500	-300	300	-	-		300
														Class-B Amp. (Audio) ${ }^{\text { }}$	1750	-215	30/300	-	$35{ }^{8}$	5200	575
HK454H	250	5.0	11	5000	375	85	30	4.6	3.4	1.4	100	J.	2N	Class-C Amp. (Telegraphy)	3500	-275	270	60	28		760
HK454-1	250	5.0	11	5000	375	60	12	4.6	3.4	1.4	100	J.	2N	Class-C Amp. (Telephony)	3500	-450	270	45	30		760
$\begin{aligned} & 212 E \\ & 2418 \\ & 312 E \end{aligned}$	275	14	4.0	3000	350	75	16	14.9	18.8	8.6	1.5	N.	$\begin{aligned} & \mathrm{T}-2 A \\ & \mathrm{~T}-2 A \mathrm{~A} \end{aligned}$	Class-C Amp. (Telegraphy)	3500	-275	270	60	28		760
														Class-C Amp. (Telephony)	3500	-450	270	45	30	-	760
														Class-B Amp. (Audio) ${ }^{\text {7 }}$	2000	-105	40/300		50^{8}	8000	650
$300{ }^{1}$	300	8.0	11.5	3500	350	75	16	4.0	4.0	0.6	-	J.	2N	Class-C Amp. (Telegraphy)	2000	-225	300				400
HK304-L	300	5/10	26/13	3000	1000	150	10	12	9.0	0.8	-	N.	48 C	Class-C Amp. (Telephony)	1500	-200	300	75	-		300
527	300	5.5	135.0	-	-	-	38	19.0	12.0	1.4	200	N.	T-4B	Oscillator of $\mathbf{2 0 0 ~ M c . ~}$		Approximalely 250 watts output					
HK654	300	7.5	15	4000	600	100	22	6.2	5.5	1.5	20	J.	2N	Class-C Amp. (Telegraphy)	2000	-380	500	75	57	-	720
														Class-C Amp. (Telephany)	2000	-365	450	110	70	-	655
														Grid-Maduloted Amp.	3500	-210	150	15	15		210
$\begin{aligned} & \text { 3-300A3 } \\ & \text { 304TH } \end{aligned}$	300	5/10	25/12.5	3000	900	170	20	13.5	10.2	0.7	40		48C	Class-C Amplifier	1500	-125	667	115	25		700
						170	20	13.5	10.2	0.7	40	N.		Class-B Amp. (Audio) ${ }^{\text {i }}$	3000	-150	134/667	$420{ }^{\text {a }}$	$6.0{ }^{8}$	10200	1400
$\begin{aligned} & \text { 3-300A2 } \\ & \text { 304TL } \end{aligned}$											40		4BC	Class-C Amplifer	1500	-250	665	90	33	-	700
						150	12	8.5	9.1	0.6	40	N.	4BC	Class-8 Amp. (Audio) ${ }^{3}$	3000	-260	130/667	$650{ }^{9}$	6.0^{8}	10200	1400
833A	350	10	10	3300	500	100	35	12.3	6.3	8.5	30	N.	T-1AB	Class-C Amp. (Telegraphy)	2000	-200	475	65	25		740
														Class-C Amp. (Telephony)	2500	-300	335	75	30	-	635
270A	350	10	4.0	3000	375	75	16	18	21	2.0	7.5	N.	T-1A	Class-C Amp. (Telegraphy)	3000	-375	350		-		700
														Class-C Amp. (Telephony)	2250	-300	300	80	-	-	450
8491	400	11	5.0	2500	350	125	19	17	33.5	3.0	3	N.	T.1A	Class-C Amp. (Telegraphy)	2500	-250	300	20	8.0	-	560
														Class-C Amp. (Telephony)	2000	-300	300	30	14		425
8311	400	11	10	3500	350	75	14.5	3.8	4.0	1.4	-	N.	T-1AA	Class-C Amp. (Telegraphy)	3500	-400	275	40	30	-	590
											-			Class-C Amp. (Telephony)	3000	-500	200	60	50	-	360

- Cathade resistor in ohms.
${ }^{2}$ Twin triode. Values, except interelement capacities, are for both sections in push-pull.

Grid-leak resistor in ohms.
5 Max. peak volts, plate pulised.
6 Per section.
? Values are for two tubes in push-pull

Max. signal value.
${ }^{9}$ Peak a.f. grid ta-grid volts.
${ }_{11}^{10}$ For singile tube.
1 Class- \mathbf{B} data in Table 1.
2 Farced-air cooling.

TABLE XVII-TETRODE AND PENTODE TRANSMITTING TUBES

Type	Max. Plate Dissipotion Wafts	Cathode		Max. Plate Voltage	Mox. Screen Voltage	Max. Screen Dissipasion Watts	Inferelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base		Typical Operation	Plate Volt$\mathbf{a g e}$	Scraen Voltage		Grid Voltage	Plafe こurrent Ma.	Screen Current Ma.	Grid Current Ma.	Screen Resistar Ohms	Approx. Grid Driving Power Watts	Class B P-to. P Lood Res. Ohms	Approx. Oulput Power Watts
		Volts	Amp.				$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Plate } \end{gathered}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { fil. } \end{gathered}$															
3 A4	2.0	$\begin{aligned} & 1.4 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	150	135	0.9	4.8	0.2	4.2	10	B.	7BB	Class-C Amp. (Telegraphy)	150	135	0	- 26	18.3	6.5	0.13	2300	-	-	1.2
3D6	-	$\begin{aligned} & 2.8 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.22 \\ & \hline \end{aligned}$	150	135	-	7.5	0.3	6.5	50	L.	6BB	Closs-C Amp. (Telegraphy)	150	135	-	- 20	23	6.0	-	-	-	-	1.4
384	3.0	$\begin{aligned} & 2.5 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 0.165 \\ & 0.33 \end{aligned}$	150	135	-	4.6	0.16	7.6	100	B.	7 CY	Class - C Amp.	150	135	-	- 75	25	-	-	-	-	-	1.25
		2.5	0.1125										Class -C Amp. (Telegraphy)	200	100		-22.5	20	4.0	2.0		0.1	-	3.0
HY63 ${ }^{1}$	3.0	1.25	0.225	200	100	0.6	8.0	0.1	8.0	60	0.	T-8DB	Class-C Amp. (Telephony)	180	100		- 35	15	3.0	2.0	\cdots	0.2		2.0
6 AK6	3.5	6.3	0.15	375	250	1.0	3.6	0.12	4.2	54	B.	7BK	Class-C Amp. (Telegraphy)	375	250		-100	13	4.0	3.0	ー-			4.0
5 A6	5	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0.46 \\ & 0.23 \end{aligned}$	150	150	2	8.5	0.15	9.5	100	B.	91	Class-C Amp.	150	150	0	- 24	40	11	1.2	-	-	-	3.1
5618	5.0	$\begin{aligned} & 6.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.46 \end{aligned}$	300	125	2.0	7.0	0.24	5.0	80	B.	7CU	Class-C Amp. (Telegraphy)	300	75	0	- 45	25	7.0	1.5	32000	0.3	-	5.4
6 A05	8.0	6.3	0.45	350	250	2.0	7.6	0.35	6.0	54	B.	7B2	Class-C Amp. (Telegraphy)	350	250	-	-100	47	7.0	5.0		-		11
6V6GT	8.0	6.3	0.45	350	250	2.0	9.5	0.7	7.5	10	0.	7AC	Class-C Amp. (Telegraphy)	350	250		-100	47	7.0	5.0				11
6AG7	9.0	6.3	0.65	375	250	1.5	13	0.06	7.5	10	0.	8Y	Class-C Amp. (Telegraphy)	375	250		- 75	30	9.0	5.0				7.5
				400	100	3.0	10	0.4	9.0	60	M.	5AW	Class-C Amp. (Telegraphy)	400	100	30	-30	35	10	3.0	-	0.18		10
RK64	6.0	6.3	0.5	400	100	3.0	10	0.4	9.0	60	M.	5AW	Class-C Amp. (Telephony)	300		30	- 3J	25	8.0	1.0	33050	0.2		6.0
1610	6.0	2.5	1.75	400	200	2.0	8.6	1.2	13	20	M.	T-5CA	Class-C Amp. (Telegraphy)	400	150		- 50	22.5	7.0	1.5	-	0.1		5.0
													Class-C Amp. (Telegraphy)	400	300		- 40	62	12	1.6		0.1		12.5
RK56	8.0	6.3	0.55	300	300	4.5	10	0.2	9.0	60	M.	SAW	Class-C Amp. (Telephony)	250	200		- 40	50	10	1.6	2800	0.28		8.5
													Class-C Amp. (Telegraphy)	500	200	45	-90	55	38	4.0		0.5		22
RK25	10			500	250	8	10	0.2	10	-	M.	6BM	Class-C Amp. (Telephony)	400	150	0	- 90	43	30	6.0	8300	0.8		13.5
RK258 :		6.3	0.9										Suppressor-Modulated Amp.	500	200	-45	- 90	31	39	4.0		0.5	\square	6.0
						2.5				45		7S	Class-C Amp. (Telegraphy)	350	200		- 35	50	10	3.5	20000	0.22		9
161	10	6.3	0.7	350	275	2.5	8.5	0.5	11.5	45	0	75	Class-C Amp. (Telephony)	275	200		-35	42	10	2.8	10000	0.16		6.0
						2.5	10	0.5	4.5	160	B.	700	Class-C Amp. (Telegraphy)	250	200		- 50	50	10	2.5	-	0.2	-	7.5
2 E 30	10	6.0	0.7	250	250	2.5	10	0.5	4.5	160	B.	760	Class-AB2 Amp. (Audio) ${ }^{\text {b }}$	250	250		- 30	40/120	4/20	$2.3{ }^{7}$	878	0.2	3800	17
													Class-C Amp. (Telegraphy)	500	200	40	- 70	80	15	4.0	20000	0.4		28
837 RK44 ${ }^{1}$	12	12.6	0.7	500	300	8	16	0.2	10	20	M.	6BM	Class-C Amp. (Telephony)	400	140	40	- 40	45	20	5.0	13000	0.3		11
	12	12.6											Suppressor-Modulated Amp.	500		-65	- 20	30	23	3.5	14000	0.1		5.0
5763	12	6.0	0.75	300	250	2	9.5	0.3	4.5	175	B.	9K	Class-C Amp. (Telegraphy)	300	250	0	-60	50	5.0	3.0	\square	0.35		8.0
5763	12	6.0	0.75	300		2	9.5	0.3	4.5	175	B.	9	Doubler to 175 Mc .	300	250	0	- 75	40	4.0	1.0	12500	0.6		3.6
$6 F 6$				400	275	3.0	6.5	0.2	13	10	0.	7AC	Class-C Amp. (Telegraphy)	400	275		-100	50	11	5.0			-	14
6F6G	12.5	6.3	0.7	400	275	3.0	8.0	0.5	6.5	10	-.	7 AC	Class-C Amp. (Telephony)	275	200		- 35	42	10	2.8		0.16	-	6.0
				500	200	2.3							Class-C Amp. (Telephony)	400	180		-45	50	8.0	2.5	27500	0.15		13.5
	9.0		0.65	300		2.3	8.5	0.11	6.5	125	0.	7 CL	Class-C Amp. (Telephony)	500	180		-45	54	8.0	2.5	40000	0.16	-	18.0
2E24	13.5		0.65								O.			400	200		- 45	75	10.0	3.0	20000	0.19	-	20
				600	200	2.5							Class-C Amp. (Telegraphy)	600	195		- 50	66	10	3.0	40500	0.21	-	27
				600	200	2.5							Class-C Amp. (Talegraphy)	600	185		- 45	66	10	3.0	41500	- 0.17		27
$2 \mathrm{E26}$		6.3	0.8				13	0.2	7.0	125	O.	7CK	Class-C Amp. (Telephony)	500	180		- 50	54	9.0	2.5	35500	0.15	-	18
	9.0			500	200	2.3							Class-A82 Amp. (Audio) ${ }^{\text {c }}$	500	125	\sim	- 15	22/150	327	-	608	0.36 :	8000	54
													Class-C Amp. (Telegraphy)	600	250	40	-120	55	16	2.4	22000	0.30	-	23
802	13	6.3	0.9	600	250	6.0	12	0.15	8.5	30	M.	68M	Closs-C Amp. (Telephony)	500	245	40	- 40	40	15	1.5	16300	- 0.10	-	12
													Suppressor-Modulated Amp.	600	250	-45	-100	30	24	5.0	14500	0.6	-	6.3
													Class-C Amp. (Telegraphy)	300	200	-	-45	60	7.5	2.5	-	0.3	-	12
GTX	13	6.3	0.5	350	225	2.5	9.5	0.7	9.5	6	0.	7AC	Class-C Amp. (Telephony)	250	200	-	-45	60	6.0	2.0	15000	0.4	-	10

TABLE XVII－TETRODE AND PENTODE TRANSMItting TUBES—Continued

Type	Max． Plate Dissi－ patian Watis	Cathade		Max． Plate Volf－ age	Max． Screen Volt－ age	Max． Screan Dissi－ pation Watts	Intarelectrode Capacitances（ $\mu \mu \mathrm{fd}$ ．）			Max． Freq． Mc． Full Ralings	Base	Socke Can－ nec＝ tions	Typical Operation	Plate Volt－ age	Screen Volt－ age	Sup－ Pressor Valt－ oge	Grid Volt－ age	Plate Current Ma．	Screen Current Mo．	Grid Current Ma．	Screen Resistor Ohms	Approx Grid Driving Power Watts	Class B P－to－P Load Res． Ohms	Approx． Oufpul Watls
		Volts	Amp．				Grid $t 0$ Fil．	Grid fo Plate	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$															
HY60	15	6.3	0.5	425	225	2.5	10	0.2	8.5	60	M．	5AW	Class－C Amp．（Telegraphy）	425	200	－	－62．5	60	8.5	3.0	－	0.3		18
												SAW	Class－C Amp．（Telephony）	325	200		－ 45	60	7.0	2.5		0.2		14
HY65 1	15	6.3	0.85	450	250	4.0	9.1	0.18	7.2	60	0.	T－8DB	Class－C Amp．－Oscillator	450	250		-45	75	15	3.0		0.5		24
	15		0.8								O．		Class－C Amp．（Telephony）	350	200		－ 45	63	12	3.0		0.5		16
$2 \mathrm{E25}$		6.0		450	250	4.0	8.5	0.15	6.7	125	0.	5BJ	Class－C Amp．－Oseillatar	450	250		－ 45	75	15	3.0		0.4		24
													Class－C Amp．（Telephony）	400	200		－45	60	12	3.0	－	0.4		16
306A	15	2.75	2.0	300	300	6.0		35	13				Class－AB2 Amp．（Audia）${ }^{\text {c }}$	450	250		－ 30	44／150	10／40	3.0	1428	0.9 \％	6000	40
$\begin{aligned} & \text { 307A } \\ & \text { RK } 75 \end{aligned}$	15	5.5	1.0	500	250	6.0	15	0.55	12		M．	T－5C	Class－C Amp．（Telephony）	300	180		－ 50	36	15	3.0	8000			7.0
										－	M．		Class－C Amp．（Telegraphy）	500	250	0	－ 35	60	13	1.4	20000		－	20
$832{ }^{3}$	15												Suppressor－Modulated Amp	500	200	－50	－ 35	40	20	1.5	14000	－		6.0
		12.6	$\begin{aligned} & 1.6 \\ & 0.8 \end{aligned}$	500	250	5.0	7.5	0.05	3.8	200	N	7BP	Class－C Amp．（Telegraphy）	500	200		－ 65	72	14	2.6	21000	0.18	－	26
$832 A^{3}$	15												Class－C Amp．（Telephony）	425	200		－60	52	16	2.4	14000	0.15		16
		$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 1.6 \\ & 0.8 \end{aligned}$	750	250	5.0	7.5	0.05	3.8	200	N．	7BP	Class－C Amp．（Telegraphy）	750	200		－ 65	48	15	2.8	36500	0.19		26
8441	15	2.5	2.5	500	180	3.0	9.5					5AW	Class－C Amp．（Telephony）	600	200		－ 65	36	16	2.6	25000	0.16	－	17
								0.15	7.5	－	M．		Class－C Amp．（Telegraphy）	500	175		－125	25		5.0	－	0.16	－	9.0
865	15	7.5	2.0	750									Class－C Amp．（Telephony）	500	150		-100 -80	20			－	－	－	4.0
					175	3.0	8.5	0.1	8.0	15	M．	T－4C	Class－C Amp．（Telephany）	500	125		-80 -120	40	－	5.5	－	1.0	－	16
1619	15	2.5	2.0	400	300	3.5	10.5	0.35	12.5	45	0.	T9H	Class－C Amp．（Telegraphy）	400	300	－	－ 55	75	10.5	5.0	9500	0.36		10
													Class－C Amp．（Telephony）	325	285		－ 50	62	7.5	2.8	5000	0.18		19.5
													Class－AB ${ }_{2}$ Amp．（Audio）${ }^{\text {c }}$	400	300	0	－16．5	75／150	6．5／11．5		778	$0.4{ }^{7}$	6000	36
5516	15	6.0	0.7	600	250	5.0	8.5	0.12	6.5	80	0.	7 CL	Class－C Amp．（Telegraphy，	600	250	－	－ 60	75	15	5.0		0.5	$\underline{\square}$	32
													Class－C Amp．（Telephony）	475	250	－	－ 90	63	10	4.0	22500	0.5		22
254A	20	5.0	3.25		175	5.0							Class－AB ${ }^{\text {（Audio）}}{ }^{\text {b }}$	600	250		－ 25	36／140	1／24	4^{7}	80^{8}	0.16	10500	67
616	21	6.3	0.9	400	300	5.0	4.6	0.1	12.4	－	M．	T－4C	Class－C Amplifier	750 400	175		-90 -125	60			－			25
6L6G						3.5	11.5	0.9	9.5	10	O．	7 AC	Class－C Amp．－Oscillator	400	300	－	－125	100	12	5.0	－	－	－	28
6L6GX	21	6.3	0.9	500	300	3.5	11	1.5	7.0	－	O．	7 AC	Class－C Amp．（Telegraphy）	500	250	一－	$\begin{array}{r}-70 \\ \hline-50\end{array}$	65	9.0	9.0	－	0.8	－	11
													Class－C Amp．（Telephony）	325	225	ーー	－ 45	90	9.0	3.0		0.25 0.25		30
HY6L6－ GTX	21	6.3	0.9	500	300	3.5	11	0.5	7.0	60	0.	7AC	Class－C Amp．－Osciliator	500	250	－	－ 50	95	9.0	3.0		0.25	－	20
													Class－C Amp．（Telephony）	400	225	－	－45	90	9.0	3.0	16000	0.8		20
121	21	6.3	0.9	400	300	3.5	13	0.7	12	30	M．	6A	Class－C Amp．（Telegraahy）	400	250	ーー	－ 50	95	8.0	3.0	－	0.2	－	25
													Class－C Amp．（Telephany）	350	200	－	－ 45	65	17	5.0	－	0.35		14
RK49	21	6.3	0.9	400	300	3.5	11.5	1.4	10.6	－	M．	6 A	Class－C Amp．（Telegraphy）	400	250	ーー	－ 50	95	8.0	3.0	－	0.2	－	25
													Class－C Amp．（Telephany）	300	200	ーー	－ 45	60	15	5.0	6700	034		12
													Class－C Amp．（Telegraphy）	450	250	ーー	－ 45	103	8	2.0	12500	0.15		31
1614	25	6.3	0.9	450	300	3.5	10	0.4	12.5	80	0.	7 AC	Class－C Amp．（Telephany）	375	250	ーー	－ 50	93	7.0	2.0	10000	0.15		24.5
													Class－AB1 Amp．（Audia）${ }^{\text {c }}$	530	340	－－	－ 36	60／160	20^{7}	－	728		7200	50
$\begin{aligned} & \text { RK41 t } \\ & \text { RK39 } \end{aligned}$	25	$\begin{aligned} & 2.5 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.9 \end{aligned}$	600	300	3.5	13	0.2	10	30	M．	5AW	Class－C Amp．（Telegraphy）	600	300	－	－ 90	93	10	3.0	－	0.38	$\underline{-}$	36
													Class－C Amp．（Telephany）	475	250	－	－ 50	85	9.0	2.5	25000	0.2		26
HY61／	25	6.3											Class－C Amp．（Telegraphy）	600	250	ーー	－ 50	85	9.0	4.0	39000	0.4	－	40
807	25	6.3	0.9	600	300	3.5	11	0.2	7.0	60	M．	5AW	Class－C Amp．（Telephany）	475	250	－	－ 50	100	9.0	3.5	25000	0.2		27
													Class－ AB_{2} Amp．（Audia）${ }^{\text {a }}$	600	300	－	－ 30	200？	10\％	－	－	$0.1{ }^{7}$	－	80
815^{3}	25	12.6	0.8										Class－C Amp．－Oscillatar	500	200	－	－ 45	150	17	2.5	－	0.13		56
	25	6.3	1.6	500	200	4.0	13.3	0.2	8.5	125	O．	8BY	Class－C Amp．（Telephany）	400	175	－	－ 45	150	15	3.0	－	0.16	－	45
													Class－AB ${ }_{2}$ Amp．（Audia）${ }^{3}$	500	125		－ 15	22／150	32 \％	－	60^{8}	0.36	8000	54

Type	Max． Plate Dissi－ pation Watts	Cathode		Max． Plate Volt－ age	Max． Screen Volt－ age	Max． Screen Dissi－ pation Watts	Inferelecirode Capacitances（ $\mu \mu \mathrm{fd}$ ．）			Max． Freq． Me． Full Ratings	Base		Typical Operation	Plala Volt－ age	$\begin{aligned} & \text { Screan } \\ & \text { Volt- } \\ & \text { age } \end{aligned}$	Sup－pressor Volt－ वge	$\begin{aligned} & \text { Grid } \\ & \text { Volt- } \\ & \text { age } \end{aligned}$	Plate Current Ma．	Screen Current Ma．	Grid Current Ma．	Screen Resistor Ohm：	Approx． Grid Driving Power Watts	Class B P－to－P Lood Res． Ohms	Approx． Output Power Watts
		Volts	Amp．				$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$															
254B	25	7.5	3.25	750	150	5.0	11.2	0.085	5.4	－	M．	T－4C	Class－C Amplifier	750	150	－	－135	75	－	\cdots	－	－	－	30
1624	25	2.5	2.0	600	300	3.5	11	0.25	7.5	60	M．	T．50C	Class－C Amp．（Telegraphy）	600	300		－ 60	90	10	5.0	30000	0.43		35
													Class－C Amp．（Telephony）	500	275	－	－ 50	75	9.0	3.3	25000	0.25		24
													Class－AB2 Amp．（Audio）${ }^{\text {E }}$	600	300	－	－ 25	42／180	5／15	106^{8}		$1.2{ }^{7}$	7500	72
30×3	25	6.3	3.0	1500	200	－	－		－	250	5.	Fig． 40	Class－C Amp．（Telegraphy）	1000	200		－155	75		2.8		0.57		50
3E223	30	12.6	0.8	560	225	6.0	14	0.22	8.5	200		8BY	Class－C Amp．（Telegraohy）${ }^{3}$	600	200	－	－ 55	160	20	7.0	20000	0.45	一	72
	30		1.6	560	225	6.0	14	0.22	8.5	200	0.	887	Class－C Amp．（Telephony）${ }^{3}$	560	200		-50	160	20	6.5	18000	0.4		67
RK66	30	6.3	1.5	600	300	3.5	12	0.25	10.5	60	M．	T．5C	Class－C Amp．－Oscillator	600	300		－ 60	90	11	5.0	－	0.5		40
													Class－C Amp．（Telephony）	500			-50	75	8.0	3.2	25000	0.23		25
$\begin{aligned} & 807 \\ & 1625 \end{aligned}$	30	$\begin{array}{\|r\|r\|} \hline 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 0.9 \\ & 0.45 \end{aligned}$	750	300	3.5	11	0.2	7.0	60	M．	$\begin{aligned} & \text { 5AW } \\ & \text { 5AZ } \end{aligned}$	Class－C Amp．（Telegraphy）	750	250	－	－45	100	6	3.5	85000	0.22	－	50
													Class－C Amo．（Telephony）	600	275		－ 90	100	6.5	4.0	50000	0.4	－	42.5
													Class－AB2 Amp．（Audio）${ }^{\text {b }}$	750	300	－	－ 32	60／240	5／10	928	－	$0.2{ }^{\text { }}$	6950	120
													Class－B Amp．（Audio）${ }^{11}$	750			0	15／240		555 ${ }^{\text {b }}$		$5.3{ }^{7}$	6650	120
$2 \mathrm{E22}$	30	6.3	1.5	750	250	10	13	0.2	8.0		M．	5．J	Class－C Amp．－Oscillotor	500	250	22.5	－60	100	16	6.0	15000	0.55	－	34
										－			Class－C Amp．－Oscillator	750	250	22.5	－60	100	16	6.0	30000	0.55		53
													Suppressor－Modulated Amp．	750	250	－90	－65	55	29	6.5	17000	0.6		16.5
3023	35	6.3	3.0	－	－	－	6.5	0.2	1.8	250	M．	Fig． 54	Class－C Amp．（Telegraphy）	1500	375		－300	110	22	15		4.5	－	130
												Fig． 5	Class－C Amo．（Tolephony）	1000	300	－	－200	85	14	10		2.0		60
$\begin{aligned} & \text { RK } \\ & \text { RK } \end{aligned}$	40	$\begin{array}{r} 7.5 \\ 7.5 \\ 12.6 \end{array}$	$\begin{aligned} & 3.0 \\ & 3.25 \\ & 2.5 \end{aligned}$	1250	300	15	14	0.01	12	\longrightarrow	M．	T－5C	Class－C Amp．（Teleqraphy）	1250	300	45	－100	92	36	11.5		1.6	－－	84
													Class－C Amp．（Telephony）	1000	300	0	－100	75	30	10	23000	1.3		52
													Suppressor－Modulated Amo．	1250	300	－45	－100	48	44	11.5		1.5		21
													Grid－Modulated Amp．	1250	300	45	－142	40	7.0	1.8	－	1.5		20
HY69	40	6.3	1.5	600	300	5.0	15.4	0.23	6.5	60	M．	T－50	Class－C Amv．－Oscillator	600	250		－ 60	100	12.5	4.0	30000	0.25		42
													Class－C Amp．（Telephony）	600	250	－	－60	100	12.5	5.0	35000	0.35		42
													Modulated Doubler	600	200	－	－300	90	11.5	6.0	35000	2.8		27
													Class－AB2 Amp．（Audio）${ }^{\text {a }}$	600	300	一－	－ 35	200	18	$5.0{ }^{7}$	－	0.37	－	30
8291,3	40	$\begin{gathered} 6.3 \\ 12.6 \end{gathered}$	$\begin{aligned} & 2.25 \\ & 1.12 \end{aligned}$	500	225	40	14.5	0.1	7.0	200	N．	78p	Class－C Amp．（Telegraphy）	500	200		－45	240	32	12	9300	0.7	－	83
													Class－C Amp．（Telephony）	425	200		－60	212	35	11	6400	0.8		63
													Grid－Modulated Amp．	500	200		-38	120	10	2.0	－	0.5	－	23
829A1．	40	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 2.25 \\ & 1.12 \end{aligned}$	750	240	7.0	14.4	0.1	7.0	200	N．	7BP	Class－C Amp．－Oscillator	750	200	－	－ 55	160	30	12	18300	0.8		87
													Class－C Amp．（Telephony）	600	200		－ 70	150	30	12	13300	0.9	－	70
													Grid－Modulated Amp．	750	200		－ 55	80	5.0	0	\longrightarrow	0.7		24
$\begin{aligned} & 829 \mathrm{~B} \\ & \mathbf{3 E 2 9}^{3} \end{aligned}$	30	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 1.125 \\ & 2.25 \end{aligned}$	750	225	6	14.5	0.12	7.0	200	N．	7BP	Class－C Amp．（Grid Mod．）	500	200		－ 38	120	10	2	－	0.5	－	23
	28			600	225	7							Class－C Amp．（Telephony）	425	200	－	－ 60	212	35	11.0	6400	0.8		63
													Class－C Amp．（Telegraphy）	500	200		-45	240	32	12.0	9300	0.7	－	83
HY1269	40	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 3.5 \\ & 1.75 \end{aligned}$	750	300	5.0	16.0	0.25	7.5	6	M．	T－5DB	Class－C Amp．－Oscillator	750	300		－ 70	120	15	4	－	0.25	二ー	63
													Class－C Amp．（Telephony）	600	250	\cdots	－ 70	100	12.5	5	35000	0.5	－	42
													Grid－Modulated Amp．	750	300	－		80	－		－	－	－	20
													Class－AB2 Amb．（Audio）${ }^{\text {a }}$	600	300		－ 35	200		－		0.3	$\underline{\square}$	80
3D24	45	6.3	3.0	2000	400	10	6.5	0.2	2.4	125	L．	T－9J	Class－C Amp．－Oscillator	2000	375	－	－300	90	20	10	－	4.0	－	140
														1500	375		-350	90	22	10		4.0	－	105
715－B	50	26／28	－		－	－	－	－	－	－		－	Class－C Amp．（Telegraphy）	1500	300		－	125				－		－
5562	45	6.3	3.0	2000	400	8	6.5	0.2	1.8	120	M．	Fig． 5	Class－C Amp．（Telegraphy）	1500	375		－300	116	21	12	－	3.6	－	135
							6.5	0.2	1.8	120	M．	Fig． 5	Class－C Amp．（Telephony）	1000	300	－	-200	85	14	10	－	2.0		60
HK－57	50	5	5	3000	500	25	7.29	0.05	3.13	200	N．	5BK	Class－C Amp．（Telegraphy）	2000	450	＋30	－145	110	2	1	－	0.15		166
													Class－C Amp．（Telephony）	2000	450	＋30	－145	88	2	1.5	－	0.2	－	135
													Suppressor－Modulated Amp．	2000	450	-190	－240	80	14	2.5	110000	0.6		90

Typo	Max． Plate Dissi－ pation Walts	Cathode		Max． Plate Volt－ oge	Max． Screen Volt－ age	Max． Screen Dissi－ pation Watts	Inferelectrede Capacitances（ $\mu \mu \mathrm{fd}$ ．）			Max． Freq． Mc． Full Ralings	Base	Sackel Con－ nec－ tions	Typical Operation	Plate Volt－ －ge	Screen Volt－ age	Sup：pressor Volt－ age	Grid Volt－ oge	Plate Current Mo．	Screen Current Ma．	Grid Current Ma．	Sereen Resistor Ohms	Approx． Grid Driving Power Watts	Class B P－to－P Lood Res． Ohms	Approx． Output Power Walts
		Voits	Amp．				$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	Plate to Fil．															
RK47	50	10	3.25	1250	300	10	13	0.12	10		M．	T－5D	Class－C Amp．（Telegraphy）	1250	300	－	-70	138	14	7.0	－	1.0	－	120
													Class－C Amp．（Telephony）	900	300		－150	120	17.5	6.0		1.4	－	87
													Grid－Modulated Amp．	1250	300		－ 30	60	2.0	0.9		4.0		25
312A	50	10	2.8	1250	500	20	15.5	0.15	12.3		M．	T－6C	Class－C Amp．（Telegraphy）	1250	300	20	－ 55	100	36	5.5		0.7		90
										－			Class－C Amp．（Telephony）	1000	－	40	－ 40	95	35	7.0	22000	1.0	－	65
													Suppressor－Modulated Amp．	1250		－85	－ 50	50	42	5.0	22000	0.55		23
804	50	7.5	3.0	1500	300	15	16	0.01	14.5	15	M．	T－5C	Class－C Amp．（Telegraphy）	1500	300	45	－100	100	35	7.0	34000	1.95	－	110
													Class－C Amp．（Telephony）	1250	250	50	－ 90	75	20	6.0	50000	0.75		65
													Grid－Modulated Amp．	1500	300	45	－130	50	13.5	3.7	\cdots	1.3	－－	28
													Suppressor－Modulated Amp．	1500	300	－50	－115	50	32	7.0		0.95	－	28
4D22	50			750	350	14	28	0.27	13	60	N．	Fig． 50	Class－C Amp．（Telegraphy）	750	300		－100	240	26	12	ーー	1.5	二	135
		12.6	1.6									Fig． 50	Class－C Amp．（Telegraphy）	600	300		－100	215	30	10		1.25	－	100
4032		6.3	3.75									Fig． 51	Class－C Amp．（Telephony）	600			－100	220	28	10	10000	1.25	－－	100
														550			－100	175	17	6	15000	0.6	－	70
													Class－AB2 Amp．（Audio）${ }^{\text {c }}$	600	250		－ 25	100／365	26^{7}	70^{8}		0.45	3000	125
305A	60	10	3.1	1000	200	6	10.5	0.14	5.4	－	M．	T－4CE	Class－C Amp．（Telegraphy）	1000	200		－200	125		－			－－	85
305A	60	10	3.1	1000	200	6	10.5	0.14	5.4	－	m．	1－4CE	Class－C Amp．（Telephony）	800	200		－270	125	－		－	－	－	70
HY67	65	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & \hline 4.5 \\ & 2.25 \end{aligned}$	1250	300	10		0.19	14.5		M．	T－5DB	Class－C Amp．（Telegraphy）	1250	300		－80	175	22.5	10	－	1.5	－	152
							－			－			Class－C Amp．（Telephony）	1000	300	－	－150	145	17.5	14	－	2.0		101
													Grid－Modulated Amp．	1250	300	－	－	78		－	－	－	－	32.5
814	65	10	3.25	1500	300	10	13.5	0.1	13.5	30	M．	T－5D	Class－C Amp．（Telegraphy）	1500	300	－	－90	150	24	10	50000	1.5		160
													Closs－C Amp．（Telephony）	1250	300		－150	145	20	10	48000	3.2	－	130
													Grid－Modulated Amp．	1500	250		－120	60	3.0	2.5		4.2		35
4．65A	65	6.0	3.5	3000	400	10	8.0	0.08	2.1	160^{9}	N．	5BK	Class－C Amp．（Telegraphy）	3000	250	－	－ 90	115	20	10		1.7	－	280
				2500	400								Class－C Amp．（Telephony）	2500	250		－150	108	16	8	－	1.9	－	225
				3000	600								Class－Ė Linear Amp．	2500	500	－	－100	20／230	0／35	$6{ }^{10}$	－	$1.8{ }^{111}$	－	325 ？
				3000	600								Class－AB2 Amp．（Audio）${ }^{6}$	1800	250		－ 35	50／220	0／25	180＊	－	$2.2{ }^{\text {i }}$	20000	270
282A	70	10	3.0	1000	250	5	12.2	0.2	6.8	－	M．	T－4C	Class－C Amp．（Telegraphy）	1000	150		－160	100			－		－	33
282A	70	10	3.0	1000	250	5	12.2	0.2	6.8	－	m．	T－4C	Class－C Amp．（Talephony）	750	150	－	－180	100	－	50		－		50
$\begin{aligned} & \text { 4E27/ } \\ & 8001 \end{aligned}$	75	5.0	7.5	4000	750	30	12	0.06	6.5	75	J．	T－7CB	Class－C Amp．（Telegraphy）	2000	500	60	－200	150	11	6	136000	1.4	－	230
													Class－C Amp．（Telephony）	1800	400	60	－130	135	11	8	125000	1.7	－	178
													Suppressor－Modulated Amp．	2000	500	－300	－130	55	27	3.0	－－	0.4	－	35
HK257 HK257B	75	5.0	7.5	4000	750	25	13.8	0.04	6.7	$\begin{array}{r} 75 \\ 120 \end{array}$	J．	T．7CB	Class－C Amp．（Telegraphy）	2000	500	60	－200	150	11	6.0	\cdots	1.4	－	230
													Class－C Amp．（Telephany）	1800	400	60	－130	135	11	8.0	－	1.7	－	178
													Suppressor－Modulated Amp．	2000	500	－300	－130	55	27	3.0	－	0.4	－	35
828	80	10	3.25	2000	750	23	13.5	0.05	14.5	30	M．	5J	Class－C Amp．（Telegraphy）	1500	400	75	－100	180	28	12	40000	2.2	一一	200
													Class－C Amp．（Telephony）	1250	400	75	－140	160	28	12	30000	2.7	－	150
													Grid－Modulated Amp．	1500	400	75	－150	80	4.0	1.3	－	1.3	－	41
													Class－AB1 Amp．（Audio）${ }^{\text {b }}$	2000	750	60	－120	50／270	2／60	2403	－	0	18500	385
RK28	100	10	5.0	2000	400	35	15	0.02	15		J．	5J	Class－C Amp．（Telegrophv）	2000	400	45	－100	150	55	13	21000	2.0	－	210
													Class－C Amp．（Telephony）	1500	400	45	－100	135	52	13	21000	2.0	－	155
													Suppressor－Modulated Amp．	2000	400	－45	－100	85	65	13	－	1.8	－	60
													Grid－Modulated Amplifier	2000	400	45	－140	80	20	4.0	－	0.9	－	75
$\begin{aligned} & \text { RK48 } \\ & \text { RK48A } \end{aligned}$	100												Class－C Amp．（Telegraphy）	2000	400		－100	180	40	6.5	－	1.0	－	250
		10	5.0	2000	400	22	17	0.13	13	－	J．	T－5D	Class－C Amp．（Telephony）	1500	400	－	－100	148	50	6.5	22000	1.0	\square	165
													Grid－Modulated Amplifier	1500	400	－	－145	77	10	1.5	－	1.6	－	40

table XVII-TETRODE AND PENTODE TRANSMITtING TUBES - Continued

Type	Max. Plate Dissipation Walts	Cathodo		Max. Plote Voltoge	Max. Screen Voitage	Max. Screen Dissipation Watts	Inierelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Socket Con-nections	Typical Operation	Plato Voltago	$\begin{gathered} \text { Screen } \\ \text { Volf- } \\ \text { ago } \end{gathered}$	Sup-Volfage	Grid Volfogo	Plale Currant Ma.	Sereon Curront Ma.	Grid Curront Mo.	Seroon Resistor Ohms	Approx. Grid Driving Power Watts	Class 8 P-to-P Lood Res. Ohms	Approx. Output Power Watts
		Volts	Amp.				$\begin{gathered} \text { Grid } \\ \text { lo } \\ \text { Fil. } \end{gathered}$	Grid to Plate	$\begin{gathered} \text { Plate } \\ \text { lo } \\ \text { FiI. } \end{gathered}$															
813	100	10	5.0	2250	400	22	16.3	0.2	14	30	J.	5BA	Closs-C Amp. (Telearaphy)	2250	400	0	-155	220	40	15	46000	4.0	-	375
													Class-C Amp. (Telephony)	2000	350	0	-175	200	40	16	41000	4.3	-	300
													Grid-Modulated Amplifier	2000	400		-120	75	3.0					50
													Class-8 Amp. (Audio) ${ }^{\text {B }}$	2500	750	0	- 95	35/360	1.2/55			0.35	17000	650
850	100	10	3.25	1250	175	10	17	0.25	25	15	J.	T. 38	Class-C Amp. (Telegraphy)	1250	175		-150	160		35		10		130
													Closs-C Amp. (Telephony)	1000	140		-100	125	-	40	-	10		65
													Gr d-Modulated Amplifier	1250	175	-	- 13	110			-		-	40
860	100	10	3.25	3000	500	10	7.75	0.08	7.5	30	N.	T-4CE	Class-C Amo.-Oscillator	3000	300		-150	85	25	15	F-7	7.0	-	165
													Class-C Amo. (Telephony)	2000	220		-200	85	25	38	100000	17		105
$\begin{aligned} & \text { 4-125A } \\ & 4021 \end{aligned}$	125	5.0	6.2	3000	400	20	10.3	0.03	3.0	120	N.	5BK	Class-C Amp. (Telegraphy)	3000	350	-	-150	167	30	9		2.5		375
													Class-C Amp. (Telephony)	2500	350	-	-210	152	30	9		3.3		300
													Class-AB2 Amp. (Audio) ${ }^{6}$	2500	350	-	- 43	93/260	0/6	1788		1.0	22200	400
RK2JA	125	10	5.0	2000	400	35	15	0.02	15		J.	5.J	Class-C Amp. (Telegraphy)	2000	400	45	-100	170	60	10		1.6	-	250
										-			Class-C Amp, (Telegraphy)	1500	400	45	-100	135	54	10	18500	1.6		750
													Grid-Modulated Amp.	2000	400	45	- 55	80	18	2.0	-	0.5	-	60
													Suppressor-Modulated Amp,	2000		-45	-115	90	52	11.5	30000	1.5		60
803	125	10	5.0	2000	600	30	17.5	0.15	29	20	J.	53	Class-C Amp. (Telegraphy)	2000	500	40	- 90	160	45	12		2.0		210
													Class-C Amp. (Telephony)	1600	400	100	-80	150	45	25	27000	5.0		155
													5uppressor-Madulated Amp.	2000		- 110	-100	80	48	15	35000	2.5		53
													Grid-Modulated Amplifier	2000	600	40	-80	80	20	4.0		2.0		53
$\begin{aligned} & 4 \mathrm{X} \\ & 150 \mathrm{~A} \end{aligned}$	150	0.0	2.8	1000	300	15	16.1	0.02	4.7	500	N.	T-9,	Class-C Amp. (Telegraphy)	1000	250		-80	200	39	7		0.69		148
														750	250		-80	200	37	6.5		0.63	-	110
														600	250		- 75	200	35	6		0.52		35
$\begin{aligned} & \text { PE340/ } \\ & 4 D 239 \end{aligned}$	150	5.0	7.5	4000	400		11.6	0.06	4.35	120	N.	5BK	Class-C Amp. (Telegraphy)	3000	400	-	-290	200	27	7		2.6	-	450
													Class-C Amp. (Telephony)	2500	400		-425	180	27	9		4		350
													Class AB_{2} Audio ${ }^{\text {c }}$	2500	400		- 95	$284{ }^{7}$	$7{ }^{3}$			1.8 .	19100	460
AT-340	150	5	7.0	4000	400		9.04	0.19	4.16	120	J.	5BK	Class-C Amp.-Oscillator	3000	400		-500	165	75			2.4	-	-
RK65	215	5.0	14	3000	500	35	10.5	0.24	4.75	60	J.	T-3BC	Class-C Amp. (Telegraphy)	3000	400		-100	240	70	24		6.0	-	510
							10.5	0.24	4.75	60	J.	T-3BC	Class-C Amp. (Telephony)	2500	-		-150	200	70	22	30000	6.3	-	380
$\begin{aligned} & 4.250 A \\ & 5022 \end{aligned}$	250	5.0	14.5	4000	600	35	12.7	0.06	4.5	75	N.	5BK	Class-C Amp. (Telegraphy)	3000	500		-180	330	60	10		2.6	-	800
													Class-C Amp. (Telephony)	3000	400		-310	225	30	9		3.2	-	510
													Class- AB_{2} (Audio) ${ }^{6}$	1500	300		- 48	100/485	0/34	1928		4.75	5400	428
4-250A	250	5.0	14.5	4000	600	50	12.7	0.06	4.5	85	N.	5BK		4000	500		-250	250	22	13		4.1	\square	750
4-2504													Class-C Amp. (Telegraphy)	2500	500		-100	325	70	22		3.7		562
$\begin{aligned} & \text { GL. } \\ & \mathbf{5 0 2 4} \end{aligned}$	250	5.0	14.1	4000	350	50	12.7	0.06	4.5	85	N.	5BK	Class-C Amp. (Telegraphy)	Same as 4-250A										$\begin{aligned} & \text { GL- } \\ & \text { 5D24 } \end{aligned}$
$4 .$	400	5.0	14.5	4000	600	35	12.5	0.12	4.7	110	N.	5BK	Class-C Teleg. or Telephony	4000	300	-	- 170	270	22.5	10	-	10	-	720
861	400	11	10	3500	750	35	14.5	0.1	10.5	20	N.	T-1B	Class-C Amp. (Telegraphy)	3500	500	-	-250	300	40	40		30		700
													Class-C Amp. (Telephony)	3000	375	-	-200	200	-	55	70000	35		400

1 Discontinued.
${ }_{2}^{2}$ Triode connection-screen grid fied to plate.
${ }^{3}$ Dual fube. Values for both sections, in push-pull. Interolectrode capacitances, however, are for each section.

Terminals 3 and 6 must be connocted tagether. 6 Filament limited to intermittent operation.
6 Values are for two tubes in push-pull.
${ }^{3}$ Max.-signal value.
8. Peak grid-to-grid a.f. volts.
${ }^{9}$ Forced-air cooling required.
${ }_{10}$ Average valued
${ }_{11}$ Average value.
${ }_{11}^{11}$ Two tubes triode connected, \mathbf{G}_{2} to \mathbf{G}_{1} thraugh $20 \mathrm{~K} \Omega$. Input to \mathbf{G}_{2}.

TABLE XVIIL-KLYSTRONS

Typo	Froq. Range-Mc.	Cathode		Base Connecfions	Typical Operation	Beam Volis	Beam Ma. (Max.)		ControlElectrode Volts	RefloctorV oilts	Cathode Ma.	R.F. Driving Power Watts ${ }^{4}$	Output Watts
		Volts	Amp.										
$\begin{aligned} & \text { 2K25/ } \\ & 723 A-B \end{aligned}$	8702-9548	6.3	0.44	Fig. 60	Reflex Oscillator	300	32	-	-	$-130 /-185$	25	-	0.033
2 K 26	6250.7060	6.3	0.50	Fig. 60	Reflex Oscillator	300	25	-	-	-65/-120		-	0.120
2K-28	1200-3750	6.3	0.65	Fig. 61	Reflex Oscillator	300%	45	-	300	-155/-290	30	-	0.140
2K33	23500-24500	6.3	0.65	Fig. 62	Reflex Oscillator	$1800{ }^{7}$	-	-	-20/-100	-80/-220	6	-	0.04
2K34	2730-3330	6.3	1.6	Fig. 58	Oscillator-Buffer *	1900	150	450	-45	-	75	-	10-14
2K35	2730-3330	6.3	1.6	Fig. 58	Cascade Amplifier*	1500	150	450	0	-	75	0.005	5
2K41	2660-3310	6.3	1.3	Fig. 59	Reflex Oscillator *	1000	60	75	+24	-510	60	-	0.75
2 K 42	3300-4200	6.3	1.3	Fig. 59	Reflex Oscillator*	1000	69	75	0	-650	45	-	0.75
$2 \mathrm{~K} 43{ }^{3}$	4200-5700	6.3	1.3	Fig. 59	Reflex Oscillator *	1000	60	75	0	-320	40	-	0.8
2K44 ${ }^{3}$	5700-7500	6.3	1.3	Fig. 59	Reflex Oscillator*	1000	60	75	0	-700	43	-	0.9
2K39 ${ }^{3}$	7500-10300	6.3	1.3	Fig. 59	Reflex Oscillator *	1000	60	75	0	-660	30	-	0.46
2 K 46	$\begin{aligned} & 2730-33301 \\ & 8190-100000^{2} \end{aligned}$	6.3	1.3	Fig. 58	Frequency Multipliar *	1500	60	60	-90	-	30	0.01/0.07	0.01-0.07
2 K 47	$\begin{gathered} 250-2801 \\ 2250-3360^{2} \end{gathered}$	6.3	1.3	Fig. 58	Frequency Multiplier *	1000	60	60	-35	-	50	3.5	0.15
2K56	3840-4460	6.3	5.0	Fig. 60	Reflex Oscillator	300	25	-	-	-85/-150	-	-	0.090
$3 \mathrm{~K} 21{ }^{3}$	2300-2725	6.3	1.6	Fig. 58	Oscillator-Amplifier *	2000	150	450	0	-	125	1-3	10-20
$3 \mathrm{K22}^{3}$	3320-4000	6.3	1.6	Fig. 58	Oscillator-Amplifier *	2000	150	450	0	-	125	1-3	10-20
$3 \mathrm{K23}{ }^{3}$	950-1150	6.3	1.6	Fig. 59	Reflex Oscillator*	1000	90	80	0	-300	70	-	1-2
3K27 ${ }^{3}$	750-960	6.3	1.6	Fig. 59	Reflex Oscillator *	1090	90	80	0	-300	70	-	1-2
$\begin{aligned} & 3 K 30 \\ & (410 R)^{3} \end{aligned}$	2700-3300	6.3	1.6	Fig. 58	Oscillator-Amplifier *	2000	150	450	0	-	125	1-3	10-20
7078 ${ }^{\text {s }}$	1200-3750	6.3	0.65	Fig. 61	Reflex Oscillator	300 ?	45	-	300	-155/-290	30	-	0.140
OK159	2950-3275	6.3	0.65	Fig. 63	Reflex Oscillator	300	45	-	300	-100/-175	20	-	0.150
2-668	21900-26100	-		-	Reflex Oscillator *	1700		15	-	-1700/-2300	-	-	0.02
${ }^{1}$ Inpul frequency. 2 Output frequency.				${ }^{3}$ Tuner required. *Al max. ratings.		${ }^{5}$ Has demounlable funing cavity. - Cathode current specified on each tube.				\% G2 and G3 voltage. * Forced-air cooling required.			

Index

- Diven	
Regulator Tuhes	235-2:36
Regulator, Voltage	235-236
Relaxation Oswillator	$45{ }^{\text {4 }}$
Resistance	24
Resistance-Bridge Standing-Wave Indicator 49\%	
Resistance-(apacitance fitter	$54 \geq-543$
Resistance-(aparitance Time (on	3:3-34
Resistance- ompherd Amplifer Data (Chart), $18,27.3$	
Resistance Measuretnent	47
Revistance, Negative	Ts
Resistance, ladiation	34.4
Resistance, Temperature Fifferts.	21-2\%
Resistance, Wires	$21-2$
Resistanmo in Series and Paratlel.	2:3-25
Resistivit,	$\because 1$
Resistor	
Renistor Wattage. 25	
Resonance	4-31
Resonance, lilter.	2331
Resonance, sharpness of 4 - $4 \times$, 364	
Resonant-Line Circuits	
Resonant Transmission Lines. $3: 3 \geq 1$	
Resonator, (avity	
Response, Frequencyfor, e69	
Restricted-spare Antenna	3.51
Restriction of Prequeney Response. 20.0	
Return Trace	
Rhombie Anterna. 35.3	
Rhumbatrons.	
"libbon" Mirrophone	
Ripple Frequener and Vontage	
Rorchelle salts (rystals.... 54	
Rotary Antennas	$36 \geq$
Rotary- Beam (onstruction	37.3
Route Manager . 3 .3:3	
S-Meters	1.4
stabe	
Safety... 10.1	
Saturation Point	
Freen lig-Pass Condenser	\%
Sreren Dissipation	
Sereen-1)ropping lesistor	
Screen-(irid Amplifiers 15). 16:3-1tit	
Screen-Grid keving.	25.3
Seromdary bimission. ${ }_{\text {a }}^{\text {a }}$	
Serondary Frequency Stamdard	
Section Emergency Coordinator	5331, $3: 3$;
Selectivity	4x.33
Selectivity (ontro	
Selectivit, Reroiverns, xif, 105-10f	
Self-Controlled Osmillators	
Relf-Inductance.	
Self-Oscillation	
Sories Antenna Tuning	
Sheries Canaritances.	
Series Circuits.	2x-2! $3 \geq$
Series Feed. .	
Series Inductances	: 3
Series Resistanmes	23
Series Resonathe	
Series Toltage-1)ropping lesistor	
Sharp Cut-Off Tubes. -	
shields. .	
Shield, Electrostatic. 137, 33:34	
Shunts, Meter	
sideland laterference	261
Sidebands. .	
Side Frequencies.	

321 Page			
Tuners. Antemna, Construe		220-Mc. Cascode Converter	396
Bandswitching Luiversal Coupl	33	2\%)-Mr. Coaxial-Line superre	nerative
Low-Power Rack-Mounted Antenna Coup- 338 Trec			
Reco	128	50-144-Mc. 400 -Watt Transmitter	
Reries-Parallel	33.38	50-144-Mc. Crystal Controlled Mobite	
Wide-Ranke -	341		
Tuning Indicator	104		
'Tuning lR.F. Amp	161		
Tunigg Receivers	, 110	Crystal Control on 220 Mic.	
Tumipg slug	94		
Turus latio			
Twin-Lamp" Standing Wave I	498	Unitr-Coupled 144-Mc. Oscillator. . . . 427	
	322		
Ultra-High Fred		Variable-requency Oscilator for	
libliography	466		
"Butterfly"	45.3		
Cavity Resomator			
Constructional:		Terhniques............................ ${ }_{\text {, }}^{\text {Transeivers }}$ 3s	
420-Mc. Tramsm			
Superregenerative 420	459	Transmitter Design.	
Klystrons	455	Vibrator Power Supplies................... 24.4	
"Lighthouse" T	454		
Lumped-Constant Cir	$45: 3$	Yolt . 19	
Magnetrons	450		
Megatrons	45.4		
"Pot"-Tspe	$45: 3$		
Principles	451		
Proximity liff	452		
Tank (ircui	451		
Terchnicules	46.	Voltace Drop .	
Transmission-L	451		
Tuber	454	Voltare Gain. 66,271	
Velority Merlulation	45.		
Wave Guides	461		
Unhalance in Amplifier	$16: 3$	Voltuge Node ir........................ ${ }^{318}$	
lnbalance in Tramsmission	32.5	Voltage Ratio, Transformer 483 - 44	
lniversal Antenna Comple	33:39		
Untuned Transmission Lin	3:1	Voltare, Ripple .	
Cpward Modulation	299		
"'Autema	352	Voltage-stabilized Power Suphlies. 2350 - 37	
	233		
Vacuum-Tube Princij,	-78	Voltmeters. . . ${ }^{\text {Volume Compression }}$. ${ }^{176}$	
Yane Tuming	94	W1.AW . 12.0 . 3.34	
Yariahle-Frequency (xeillators	-145	WdC certitates. ${ }^{5 / 36}$	
Variabler Tub	72		
Vatable selectivit			
Velocity Factor	32:3		
Velocity Microphon	270		
Velocity-Modulated	454	W:ave Angle. 83,3442	
Velocity Modulation	454		
Velority of Radio W	0,80		
Yertical Amplifiers			
Very-lligh Frequencies:		Wiave Propagation.................... nt on, 381	
Antemat Systems:			
Coaxial Antenna	449		
Cone Antenna	449	Waverraps. $19.15{ }^{518}$	
Corner-Reflector Ante	450		
Cylindrical Anten	449		
Delta Math h	442	Wivelength-Frequency Conversion 21 Wavelength Performance. $74-80$	
Design litutor	441		
Dirertive Irrays	3-447	Wavelengths, Amateur.......................... 16Wavemeter (See Frequency Measurement.)	
Folded Dipole "J"Antenna.	- 44.3		
"J" Antenna Long-Wire Anten	442 446	Wavemeter (sce "Frequency Measurement") Waves, Complex . 43	
Mobile Antennas.	447	Waves, Electromarnetic 17	
Parabolic Reflect	450	Wide-Band Antennas . 449Wire Table .	
Plane-Shet Reflector	450	Wiring Diagrams, Symbols forWord Lists for Acurate Trinsmision Frontispiece525	
Polarization	441		
	4	Working Yoltage, Condenser ${ }^{\text {W }}$, 238Workshop Practice.	
Stacked Anter	444 442		
Y - March		Workshop Practice . 506WWV schedules 468	
Construetional			
Recoivers:			
2-Meter Mobile Con	405	Y-Cut Crystals 148	
28 and 50 Mc. Mobile Converter	402		
$50-\mathrm{Mc}$. Two-Tube Converter	387		
6 J 6 Preamplifier for 28,50 , and 144		Zero Beat. 92Zepp Feed for Antennas. 175	
	409		

GE
220-Mc. Cascode Converter 396Tral
$50-144-\mathrm{Mc}$. 400 -Watt Transmitter 412
Tramsmitters 431
2e(0)Mc. Line Oscillator 429Doulde bumb Totrode dup
Low-Power for 50 and 144 Nh. $4: 36$
Varable-requency Oscilater418
Receiver Considerations: $\rightarrow 4$
uperreyenchative Recelver
3×4
Transceiver38
fibrator Power Supplies $1-8$ 2
Volt3! 42
Voltage Amplifitation 4
Voltape Deray ot
Voltage Distribution, Antenna $4.34 x$oltare Feed for Antennas329
-312
 9.9
Fhatance in Ampliters 16.5Universal Antenna Compler3:3!
?Cpward Modulation
VR Tint$\because 35$
achumi-Tube Principle 8
Mariahle-Frequency (Bseilators 141-145
Vatable Nelectivity 106
Velocity Microphone 270Celocity Modulation454
, 80
44950
Cylindrical Antemnat 449
Design lactor $4+1$Folded Dipole443
Long-Wire Antemas 447

Pluesher Reflecto50
Polarization 441
Stacked Antemats. 444
"Y"-Marth 442Receivers:

- Meter Mobile Converter 405
$50-\mathrm{Mc}$. Two-Tube Converter 387
Ic. 409

To Handbook readers who are not ARRL members . . .

For thirty-six years the American Radio Relay League has been the organized body of amateur radio, its representative in this country and abroad, its champion against attack by other interests, its leader in technical progress, its center of operating activities.

Join the Leaque

ARRL is an organization that does things. The League protects amateur interests in domestic legislation and regulations and at international conferences. It stages annual operating events such as the Sweepstakes, Member Party, Field Day and DX contests; offers appointments such as Official Experimental Station, Emergency Coordinator. and Official Bulletin Station; and issues awards for achievement in operating skill such as Worked-All-States, DX Century Club, and Code Proficiency. It handles foreign QSL cards for you, answers your technical and regulatory questions, provides you or your clubs with training aids and operating literature - to name just a few of its many services.

As an ARRL member, you will be
posted on amateur affairs. QST will be delivered to your door each month, chock full of the latest news of ham doings, not to mention a wealth of technical and constructional material on amateur gear.

We need you in this big organization of radio amateurs. You need the League and its services to get the most out of your amateur activities.

A bona-fide interest in amateur radio is the only essential requirement for membership, but full voting membership is granted only to licensed amateurs of the United States and Canada.

Dues, including a subscription to QST, are $\$ 4$ per year in the U. S. and possessions, $\$ 4.50$ in Canada, \$5 elsewhere.

Jhe
 Catalog Section

H H H

In the following pages is a catalog-
file of products of the principal manu-
facturers who serve the short-wave
field. Appearance in these pages is
by invitation-space has been sold
only to those dependable firms whose
established integrity and whose prod-
ucts have met with the approval of
the American Radio Relay League.

INDEX OF ADVERTISERS * CATALOG SECTION

 Jhe Radio Amateur's HandbookPage
Allied Radio Corparation 75
American Lava Corporation 70
American Phenolic Corporation 110
American Radio Relay League, In 120
Amperex Electronic Corporation 103
Astatic Corporation, The 71
Barker \& Williamson, Inc 63-65
Belden Manufacturing Co 78
Bliley Electric Company 93
Burstein-Applebee Company 81
Cameradio Company 86
Candler System Company 82
Centralab 102
Collins Radio Company 49-52
Cornell-Dubilier Elec. Corporation 68-69
Eitel McCullough, Inc 25
Electric Soldering Iron Co. 100
Electro-Voice, Inc. 89
General Electric Company 57
Hallicrafters Company, Inc., The 26-37
Harvey Radio Company 90-91
Helipot Corporation 105
Henry Radio Stores 83
Hewlett-Packard Company 72-73
Hytron Radio \& Electronics Corp 87
Illinois Condenser Company 99
Instructograph Company, The 104
International Resistance Co 94-97
Johnson Co., E. F. 58-61Page
Knights Co., The James. 48
Macmillan Company, The B8
Mallory \& Co., Inc., P. R. 56
McElroy Manufacturing Company 22-23
Measurements Corporation 67
Millen Mfg. Co., Inc., James 40-47
National Company, Inc. 3-21
Newark Electric Company 79
Ohmite Manufacturing Company 62
Par-Metal Products Corporation 107
Premax Products Company 106
Radio Corporation of America 38-39
Rodio Shack Corporation, The 77
Shure Brothers, Inc. 109
Shurite Meters 84
Sprague Products Company 53
Stondard Transformer Corporation 66
Superior Instrument Company 92
Sylvonio Electric Products Co. 54-55
Thordarson Manufacturing Div. 24
Timing Devices Company 101
Triplett Electrical Instrument Co. 74
Turner Company, The 85
United Transformer Corporation. 76
Vibroplex Company, The 80
Wile, Eugene G. 98
World Radio Laboratories 108

COMMUNICATION RECEIVERS - COMPONENTS • TELEVISION

the finest amateur receiver National has ever huilt!

the new direct reading HRO-50

Now, National presents a great new HRO receiver after more than three years of designing, development and testing. Retaining all the worldfamous, performance-proved HRO features, this superb receiver - the finest National has ever made - now incorporates no less than 14 advanced-design innovations. Exhaustive comparative tests indicate the new HRO-50, by far the most modern and versatile in its field, will set an entirely new standard of performance for communication receivers.

14 ALL NEW FEATURES

1. Direct frequency reading linear scale with a single range in view at a fime. 2. Provisions for using 100/ 1000 kes. crystal calibrator unit, switched from panel. 3. Voriable front-of-panel antenna trimmer. 4. Builtin power supply with heat resistont barrier. 5. Front-of-panel oscillator compensation conirol. 6. B.F.O. switch separafed from B.F.O. frequency control. 7. Provision for incorporation of NFM adapfer inside receiver, switched from fronl panel. 8. Dimmer control for dial and meter illumination. 9. Miniature tubes in froni end and high frequency escillator. 10. Speaker matching transformer built info receiver with 8 and 500 -ohm oufpuf ferminals. 11. High frequency and beat frequency oscillator circuits not disabled when receiver in "send" position. 12. High-fidelity push-pull oudio amplifier, 8 walfs undistorted output. 13. Tip jack for phono inpul. 14. Accessory socket for Select-- -Ject (see page 4).

Tst RF, 6BA6; 2nd RF 6BA6; Mixer, 6BE6; HF oscillator 6C4; voliage regulator OB2; 1st I.F., 6K7; 2nd I.F., 6K7; Det./AVC, 6H6; B.F. Oscillator, 657; Noise Limiter, 6H6; lst Audio, 6SJ7; phose inverter/ 'S"'meter amp. 6SN7; Push-pull audio, 2-6V6; Rectiffer, 5V4G; accessory crystal calibrator, 6AQ5; NFM adapter I.F. amplifier, 6 SK7; Ratio detector, 6H6. Freq. range: $50 \mathrm{kc} .420 \mathrm{kc}, 480 \mathrm{kc} .35 \mathrm{mc}$ Coils AA , B, C, and D furnished covering standard amateur $\mathbf{1 6 0 - 1 0}$ meter bands.

The flawless design and superb construction of this professional communication receiver make possible amazing performance even under the worst operating conditions. If it's possible to receive a signal, the NC-183 will bring it in!

Continuous tuning from 540 kes to $\mathbf{3 1}$ mes plus the 48 to 56 mes band for 6 -meter reception. Two tuned R.F. stages provide extremely high sensitivity and image rejection. Voltage regulated oscillator and BFO assure minimum drift on phone and CW . Separate main tuning and bandspread dials colibrated for tuning ease. Main dial covers range
in five bands. Bandspread dial calibrated for amateur 80, 40, 20, 11-10 and 6-meter bands. Bandspread usable over entire range. Six-position crystal filter provides any selectivity required from very broad to extremely sharp for cutting through adjacent channel interference. New-fype noise limiter effectively minimizes electrical interference. High fidelity push-pull audio outpul with phono input and front-of-panel RADIO-PHONO switch. Accessory socket for NFM adaptor or other unit, such as crystal calibrator. Uses 2-65G7 R.F.; 16SAT Ist det.; 1-6J5 osc.; 2-6SG7 I. F.; 1-6H6 2nd del.; 1-65.J7 B.F.O.; 1-6AC7 A.V.C.; 1-6H6 noise limiter; 1-6SJ7 A.F.; 1-6J5 phase inv.; 2-6V6GT aud. out.; 1-VR-150 volt. reg.; 1-5V4G rect. Accessory socket for Select-o-Ject (see page 4).
\$268 net*
(Less speaker)

Covers 540 kes. to 31 mes. plus 48 to 56 mes. for amateur 6 -meter band with average sensitivity of 3 microvolis. Separofe bandspread dial calibrated for 80, 40, 20, 10 and 6 meter bands. New doublediode noise limiter with variable threshold effective on both phone and CW. Separate AVC usable on phone and CW. New wide-range, 6-position crystal filter, S-meter, anfenna trimmer for maximum performance with any antenna, phono input. 1-6SG7 funed R.F.; 1-6SA7 lst det.; 1-6J5 osc.; 2-6SG7 I.F.; 1-6H6 2nd def. - AVC; 1-6AC7, AVC; 1-65J7 BFO; 1-6H6 noise limiter; 1-6SJ7 audio; 1-6v6 output; I-VRI 50 volt. reg.; 5Y3GT/G rect.

BOOSTS 38 db ! REJECTS 38 db ! ANY SELECTED FREQUENCY!

SOJ-1 for all receivers SOJ-2 wired for HRO. 50, NCl 183 or NC- 173
$\$ 24.95$ nel*

* Patent applied for. Manufactured under exclusive agreement with Dr. O. G. Villard, Jr., Engineering Depl., Stanford University.

Set SELECT-O-JECT for REJECT, fune by ear and - presto! - an annoying heferodyne or other unwanted signal proctically disappears without materially affecting the wanted signal! Sef SELECT-O-JECT for BOOST, fune - and - presto! - a selected signal rises above background noise and inferfering signals! Can also be used as audio oscillator having over . 100 to 1 frequency range with a single rotation of the funing knobt Excellent as a code practice oscillator! Effective on any frequency from 80 c.p.s. to 9,000 c.p.s.I This is the amazing circuit described in the November 1949 issue of OST, page 11. See your National dealer for details.

outperforms receivers costing twice as much!

NC-57

Built with all the engineering know-how and craftsmanship of National's more expensive receivers, the NC-57 combines feafures never found before af inis low price! The sef used by a recent winner of a DX contest sponsored by the internationally fomous Shortwave Club of London. Both phone and CW reception over entire frequency spectrum from 550 kcs to 55 mes in 5 bands. Built-in power supply and PM speaker-nothing else to buy. Voltage stabilized oscillator circuit keeps signal sfeody regardless of line volfage fuctuations. Automatic threshold noise limiter

Controls include Main Tuning, Bandspread Tuning, Band Switch, RF Gain, RF Trimmer, BFO-MVC-AVC, ANL Switch, AF Gain, BFO Pitch, Tone Control and On-Off Switch.

Superhef uses: 6SG7 RF amp., 6SB7Y conv., 2-65G7 IF amp., 6H6 Det., AVC, ANL, 6SN7 Audio amp., BFO, 6V6GT Audio amp., 5Y3GT rect., VR-150 volfage rect. Antenna terminals for single, double or co-ax anfenna lead-in. Provision made for connecting external " 5 " meter plus ofher accessories. 105-120 V, 50-60 cyc. AC. Gray enamel finish. $161 / 2^{\prime \prime} \times 113 / 4^{\prime \prime} \times 33 / 4^{\prime \prime}$. Wt. 33 Jbs.

most popular and versatile VHF design in the field!

HFS

Here is the perfect answer to the need for compact, dependable and versatile VHF reception. Can be used as a complete receiver in ifself or as a VHF converter with any receiver funing to 10.7 mes. As converter, makes feafures of connected receiver usable on VHF. Covers entire high frequency specfrum from 27 mes to 250 mcs - receivesA M, FM and CW with amazing selectivity and sensitivily.

Two-gang Main Tuning Capacitor, panelcontrolled Antenna Trimmer Capacitor and 6 sets of plug-in coils fune the receiver in six bands. Power furnished by separafe unit. Power supply lisfed below is excellent where 115-230 V, 50-60 cycle AC is available. Also operates with combination of ' B,'" and storage batteries or 6 volt vibrafor-fype supply. Wt. 25 lbs.
\$142.00* net
Power Supply, 15 lbs. \$22.43* net

the ideal receiver for shiphoard use or shortwave listening!

NC-57M

Combining versatility, dependability, exceptional sensitivity, and extended frequency range, the NC-57M is ideal as a personal receiver aboard ship or in the shortwave listener's home. Offers continuous frequency range from 540 kes 10 35 mes plus 200 kes to 400 kes. Receives voice, music, and CW code. Bandspread action on any desired frequency assures optimum selectivity. Covers U.S. and European broadeast bands plus shoriwave. Scales are marked to show location
of such features as amateur, police and forsign frequencies. Voltage regulated oscillator assures excellent stability, regardless of line changes. Built-in power supply for operation from 110/120 volts, either AC or DC. 220-volt operation possible by insertion of external ballast resistor in power plug. Tubes include 6SG7 RF, 6SB7-Y conv.; 6SG7 1st IF; 65G7 2nd IF; 6H6 2nd def., AVC, ANL; 6517 GT/G Ist audio, CWO; 25L6GT aud. out.; OA3/VR-75 volt. reg.; 25Z6GT rect.
\$89.50* net

feature for feature biggest receiver dollar value!

NC-33

Now at last you can get a top-notch communication receiver designed and built by the worldfamous National Company at a price that compares favorably with the lowest in the market! Packed with features found in no other receiver at the price!
Four luning bands provide continuous coverage from 500 KC to 35 MC . Main tuning and bandspread capacities connected in parallel on all bands for bandspread operation af any frequency within funing range. Amatour, police and foreign broadcast bands clearly identified.

Other big set feafures include: Automatic Noise Limiter, CW oscillator and pitch confrol for adjustment of beat note, and Send/Receive 5 witch. Output to $5^{\prime \prime}$ speaker or phene jack which cuis out builf-in speaker when headphones are in use. Tunes infernational SOS frequency. Froni-panel mounfed confrols include: Main funing, band selector switch, beal oscillator pitch control, code-phone switch, noise limiter switch, and audio gain.
New superhef circuil uses latest pype high efficiency tubes. $105-125 \mathrm{~V}, 50-60$ cycles AC or DC.

POPULAR
 natismat COMPONENTS

FWG

XS-9

XS-1

FWG
A Victron termin high frequency binding plugs at the take banana wires through hole at the bottom, simultaneously, if desired.

FWH
 Net \$.66

The insulators of this terminal assembly are moulded R-39 and have serrated bosses that allow the thinnest panel to be gripped firmly, and yet have ample shoulders. Binding posts same as FWG above.

FWJ

Net \$.54
This assembly uses the same insulators as the FWH above, but has jacks. When used with the FWF plug (below), there is no exposed metal when the plug is in place.

FWF

Net $\$.70$
This molded R-39 pluq has two banana plugs on $3 / 4^{\prime \prime}$ centers and fits FWG, FWH or FWJ above. Leads may be brought out through the top or side.
FWA, Post Net, each \$.20 Brass Nickel Plated
FWE, Jack Net, each \$.15 Brass Nickel Plated
FWC, Insulator
Net, per pair \$.24 R-39 Insulation.
FWB, Insulator
Net, each \$.15 Polystyrene insulation.
XS-6 Net, each \$.12 A low-loss steatite bushing for $1 / 2^{\prime \prime}$ holes. Passes 6.32 screw.
XP-6 Net, box of ten \$.51 Same as above but polystyrene.
TPB Net, per dozen $\$.75$ A threaded polystyrene bushing with removable .093 conductor moulded in, 1/4" diam., 32 thread.
X5-7, $13 / 8^{\prime \prime}$ Hole) Net $\$.36$ XS-8. $11 / 2^{\prime \prime}$ Hole) Net $\$.48$ XS-I, (I' Hole) Net $\$.72$ XS-2, (11/2" Hole) Net $\$.81$ Prices listed are per pair, including metal fittings and steatite insulators.

XS-9

Net $\$.30$
Feed-through insulator. Hole size $13 / 64^{\prime \prime}$. Insulators are adjustable on silver-plated terminal stud for different partition thicknesses. Ceramic insulators are of high grade materials designed for high frequency equipment.

AA. 3

A low-loss steatite spreader for 6 inch line spacing. 1600 ohms impedance with No. 12 wire.)
AA. 5
A low-loss steatite aircrafttype strain insulator.

AA- 6

A general purpose strain insulator of low-loss steatite.

GS-1, $1 / 2^{\prime \prime} \times 13 / 8^{\prime \prime}$
GS-2. $1 / 2^{\prime \prime} \times 27 / 8^{\prime \prime}$
GS-3, $3 / 4^{\prime \prime} \times 27 / 8^{\prime \prime}$
GS.4, $3 / 4^{\prime \prime} \times 4^{7 / 8}$
GS.4A, $3 / 4^{\prime \prime} \times 67 / 8^{\prime \prime}$
Cylindrical low-loss steatite standoff insulators with nickel plated caps and bases.

GSJ. (not illustroted)
A special nickel plated jack top threaded to fit the $3 / 4^{\prime \prime}$ diameter insulators GS-3. GS-4 \& GS.4A.
GS-10, 3/4" high
GS-10S (not illustrated) but same as GS-10 except includes threaded stud in top end.

GS-5, $11 / 4^{\prime \prime}$ high
GS.6. 2" high
GS.7. 3' high
These cone type standoff insulators are of low loss stea. tite. They are molded with a tapped hole in each end for mounting as follows:
GS-5, 8-32 tap 7/16" deep; GS-6 \& GS.7. 10.24 tap $11 / 16^{\circ}$ deep; GS-10, 6-32 tap $1 / 4^{\prime \prime}$ deep and GS-IOS as noted above.
GS-8, with terminal GS-9, with jack
These low-loss steatite standoff Insulators are also useful as lead-through bushings.
XS-3, ($23 / 4{ }^{\prime \prime}$ hole)
XS-4, ($33 / 4$ "' hole)
Prices are per pair and include nickel plated spindles, lugs and hardware. These low-loss steatite bowls are ideal for lead-in purposes at high voltages.
XS-5, Without Fittings
XS-5F, With Fittings
These big low-loss bowls have an extremely long leak. age path and a $51 / 4^{\prime \prime}$ flange for bolting in place. Insulation steatite. Fittings include nickel plated brass spindles, lugs, nuts and washers,

POPULAR natiagal COMPONENTS

HRT (gray or black) Net $\$ 75$ The HRT knob is $21 / 8^{\prime \prime}$ in dia. and fits 1/4" shafts. This knob has a chrome appearance circle and combined with the HRS series shown below gives the new look to panel layouts.

HRS (gray or black) Net $\$.50$ The HRS series knobs are a popular easy to grip knob. They are molded of high quality plastic and have 13,8 " dia. chrome plated bevel skirts fit $1 / 4^{\prime \prime}$ shafts available in the following scales:

HRS-I
HRS 2
HRS 5-0.5 through 180°
HRS-4
Single etched line

HR (gray or black)
Net $\$.30$
An HRS type knob without the chrome plated skirt but with a white dot for spotting relative control settings.

HRB

Net $\$.45$
ldeal for bandswitching or other applications where a switch is turned to several index positions, the new HRB lever knob has just the right feel - a bright zinc alloy die casting.

SB

Net $\$.18$
A nickel plated brass bushing $1 / 2^{\prime \prime}$ dia. (Fits $1 / 4^{\prime \prime}$ shaft).

ODL

Net $\$.33$
A locking device which clamps the rim of O, K, L and M Dials. Brass, nickel plated.

ODD
Net $\$.42$
Vernier pinch drivo for O, L, or other plain dials.

AN Vernier Mechanism Net $\$ 1.80$ A vernier mechanism ratio $5-1$ has an insulated output shaft coupling for $1 / 4^{\prime \prime}$ shafts. Drive Shaft fits 3/16' knob.

AVD Vernier Mechanism Net $\$ 1.65$
Similar to AN-Output shaft coup. ling is non insulared.
For commercial uses many variations available. Write for further particulars.

R

Net $\$.60$
This small dial has a $15 / 8^{\prime \prime}$ dia. scale calibrated $0-10$ in 180° for increased reading with clockwise rotation. Black bakelite knob. Fits $1 / 4^{\prime \prime}$ shaft.

HRP-P

Net \$. 24
Black bakelite knob $11 / 4^{\prime \prime}$ long and $1 / 2^{\prime \prime}$ wide. Equipped with pointer. Especially suitable for use on wafer and other rotary switches on laboratory equipment and the like. (Fits $1 / 4^{\text {" }}$ shaft).

HRP

Net \$. 18
The type HRP knob has no pointer but is otherwise the same as the knob above. Recommended for uncalibrated or hard-tuning controls. (Fits $1 / 4^{\prime \prime}$ shaft)

HRK

Net \$. 57
Black bakelite knob $23 / 8^{\prime \prime}$ dial extremely rugged. This is the knob used on National type O and type L dials.

HRT-M
Net \$. 50
This is a smaller version of the HRT and was designed originally for use on the NC-57 Receiver - now available in choice of gray or black - is $1-7 / 16^{\prime \prime}$ in diameter.

POPULAR natianal COMPONENTS

N Dial
AD Dial
The four-inch ana AD $\$ 3.00$ rour-inch N and AD Dials have engine dividea ana die stampea scales respective\%. The N Dial has a decimal vernier the $A D$ Dial employs a poineer. The planetary drive has a ratio o. 5 'o 1. and is contained within the body of the dial. 2, 3, 4, 5 o biank scaie. Fits $1 / 4$ shaft. Specify scale.

B Dial

Net \$2.70
"Velvat Vernier" Dial. Type B, has a compact veriable ratio 6 to 1 min ., 20 to 1 max. drive that is smooth and trouble free. The case is black bakelite. I or 5 scale. $4^{\prime \prime}$ dia. Fits $1 / 4^{\prime \prime}$ shaft. Specify scale.

BM Dial

Neł \$2.10
The BM Dial is a smaller version of the B tor use where spare is limited. The drive ratio is fixed. Although small in size, the BM Dial has the same smooth action as the larger units. I ol 5 scale. 3" dia. Fits $1 / 4^{" 1}$ shaft. Specify scale.

AM Dial

Nei \$2.25
The original "Velvet Vern'er" mech. anism in a melal skirred dial $3^{\prime \prime}$ in dia. ratio 5 to 1. It is available with 2, 3, 4, 5 or 6 scale and fits $1 / 4^{\prime \prime}$ shaft.

F Dial

Net $\$ 1.00$
The new P dial is the same as the AM except direct drive.
Type O. $3^{1 / 2 "}$ dia., scale 2 , with HRK knob, fits $1 / 4^{\prime \prime}$ shafts. Net $\$ 1.00$ Type L, same as O except 5^{\prime} dia. scale 2 only. Net $\$ 1.95$ Type K, same as O except less knob, complete with ODD vernier drive, scale 2 only. Nei $\$ 1.50$ Type M, same as K except $5^{\prime \prime}$ dia., scale 2 only. Net $\$ 2.25$

The dials at the right are for individual calibration: all four employ the noted 5:1 drive ratio Volvet Vernief mechanism and are of excellent quality.

MCN Dial

Net $\$ 2.70$
The MCN dial has been scaled down to lend itself ideally to mobile in. stallations and small converters and tuners. It may also be mounted on the standard $31 / 2^{\prime \prime}$ rack panel where such mounting may be desirable. The dial provides three calibrating scales and a $0-100$ logging scale. On the rear side of the dial, the mechanism extends $1 / 4^{\prime \prime}$ below the dial frame. $23 / 4^{\prime \prime} \mathrm{H} . \times 37 / 8^{\prime \prime} \mathrm{W}$.

SCN Dial

Net $\$ 3.00$
The SCN dial provides the same dial scales as the ACN dial but in a reduced size. Is is used where economy of panel-mounting space is desirable and where a smaller dial would be out of proportion with the size of the panel. $4-7 / 16^{\prime \prime} H . x$ $61 / 4^{\prime \prime} \mathrm{W}$.

ICN Dial

Net $\$ 6.00$
The ICN dial meets those hundreds of requests from amateurs the world over for an illuminated ACN dial. Two dial lights mounted on the top corners of the dial provide efficient and even illumination on all bands. The dial window has been blanked out in semi-circular shape to prevent shadow casting. Dial scales are the same as those used on the ACN dial. $51 / 8{ }^{\prime \prime} \mathrm{H} . \times 71 / 4^{\prime \prime} \mathrm{W}$.

ACN Dial

Net $\$ 3.30$
The $A C N$ is the original of this type dial, o National design for the benefit of experimenters who "build their own" and desire direct calibration. $5^{\prime \prime} H \times 71 / 4^{\prime \prime} \mathrm{W}$.

 MCN

SCN

ICN

ACN

POPULAR
 natisanat COMPONENTS

XLA
Net $\$.99$
A low-loss socket for the 6F4 and 950 series acorn tubes for frequencies as high as 600 Mc. Conventional by-pass condensers may be compactly mounted between the contact terminals and the chassis. Low contact resistance, short and direct leads and low and constant inductance are features.

XLA-S

Net $\$.36$
An internal shield fitting the XLA socket and suitable for tubes such as the 956.
XLA-C
Net $\$.36$ This miniature by-pass condenser may be mounted inside the socket, directly below the contact. Capacities of 50 or 100 mmf . avaiłable.

XLA-C

XCA

XMA

XOA-7 (Axial) XOA-C-7

XOR-7 (Radial) XOR-C-7

XOA-C-9

XCA

Net $\$.99$
A low-loss steatite socket for acorn friodes. Pin grips are designed to accept tube prongs with minimum strain but exert maximum pressure when seated.

XMA

Net \$1.32
For pentode acorn tubes, this socket has built-in bypass condensers. The base is a copper plate.
XOA-7 (mica-filled bakelite) $\mathrm{Net} \$.50$
XOA-C-7 (ceramic) Net $\$.50$
XOR-7 (mica-filled bakelite) Net $\$.50$
XOR-C-7 (ceramic) Net $\$.50$ These high quality sockets for the 7 pin miniature tubes have silver plated beryllium copper contacts that correctly grip the tube pins close to the base of the tube to provide the short leads and low inductance so necessary in ultrahigh frequency design.
A novel feature of these new sockets is the interchangeability of the contacts, which are easily removed for replacement. This permits the use of a mixture of axial (XOA) and radial (XOR) type contacts in the same socket to obtain the shortest possible leads, or minimum size in tight places. The above sockets all mount with two $4-40$ screws on $.875^{\prime \prime}$ centers. Chassis cutout should be $3 / 4^{\prime \prime}$ dia. Shields for use with these sockets are on page 21.
XOA-C-9 (ceramic) Net $\$.57$
XOR-C-9 (ceramic) Net $\$.57$ These sockets are for the new 9 -pin miniature tubes. The XOR-C-9 (not illustrated) has radial contacts. Both have all of the features described above for the 7 -pin types
and they also mount with 4.40 screws. Mounting center dimension is $11 / 8^{\prime \prime}$, the chassis cutout should be $13 / 16^{\prime \prime}$ dia.

CIR SERIES SOCKETS

Any Type Net $\$ 30$ Always a popular National component, type CIR Sockets feature low-loss steatite insulation, a contact that grips the tube prong for its entire length, and a metal ring for six position mounting.
XC-4, 5, 6, 7S, 7 L and CIR-4. $5,6,75$ and 7 L all have I-27/32" mounting centers. CIR-8E has slotted holes in plate but will mount on 1-27/32" center. CIR-8 and XC-8 have $11 / 2^{\prime \prime}$ mounting centers.

XC SERIES SOCKETS

$x \subset-4$
Net $\$.36$ XC-5 \qquad Net $\$.39$ XC-6 \qquad Net $\$.42$ XC-75 \qquad Net $\$.45$ XC-7L Net $\$.45$
XC-8Net $\$.39$ National wafer sockets have exceptionally good contacts with high current capacity together with low loss steatite insulation. All types have a locating groove to make tube insertion easy. The XC-6 is ideal for use with AR-I7 coils shown on page 24.

HX-29

Net $\$.81$
A low-loss wafer socket with steatite insulation for the popular 829 and 832 tubes. JX-51 Net \$.81 A low loss steatite wafer socket for the 813 and other tubes having the Giant 7-pin base. (not illustrated)
XM-10 Net $\$.90$ A heavy duty metal shell socket for tubes having the XU 4-pin base.
XM-50
Net $\$ 1.20$
(see XM-10 for style) A heavy duty metal shell socket for tubes having the Jumbo 4-pin base ("fifty watters" 1 .
HX- 100
Net $\$.99$
A low loss wafer socket suitable for the type 4-125-A, 4-250-A and other tubes using the Giant 5 -pin base. Shield grounding clips are supplied which mount on the chassis with the socket mounting screws to ground the tube shield at three points. Air holes are provided in the socket to permit forced air cooling.
HX-100S
Same ab abe wit insulators as illustrated.

POPULAR natanal COMPONENTS

SHAFT COUPLINGS

TX-19

Net $\$ 1.95$
A steatite insulated flexible coudling for $1 / 4^{\prime \prime}$ shafts. Conservatively rated at 5000 volts peak. Diameter $13 / \mathrm{s}^{\prime \prime}$, length $4^{\prime \prime}$. Length and Rashover volt.' age can be increased by turning callars outboard.

TX-11
Net 3.42
The fexitle shaft of this cauplina The Hexitle shat of this caupling
cannects shafts at angles up to 90 degrees, and eliminates misalignment problems. Fits $1 / 4^{\prime \prime}$ shafts. Length $41 / 4^{\prime \prime}$.

TX-12, Length $45 / \mathrm{B}^{\mathrm{m}} \quad$ Net 3.90 TX-13, Length $71 / \mathrm{m}^{\prime \prime} \quad$ Net $\$ 1.05$ These counlings use flexible shafting like the IX-11 above, but are also provided with steatite insulators at each end.

TX-1, Leakage path $1^{\prime \prime}$ Net 3.65 TX-9, Leakage path $21 / 2^{\prime \prime}$ Net 3.75 Flexible couplings with glazed steatite insulation which fit $1 / 4^{\text {" }}$ shafts.

TX-23 Net \$1.35
A deluxe insulated hexible coupling designed for coupling $1 / 4$ " shafts. Will handle a maximum radial misalignment of $116^{\prime \prime}$ also 2 degrees maximum angular misalignment.

TX-94
 Net $\$ 1.35$

 Same cs IX-23, sha't size $5 / 32^{\prime \prime}$.TX-25 Net 51.35 Same as TX-23, non-insulated.

TX-8 Nei $\$.60$ A nan flexible rigid coupling with steatite insulation. $1^{\prime \prime}$ diam. Fits $1 / 4^{\prime \prime}$ shaft.

TX-10
Net 3.40
TX-10
A very compact insulated coupling free from backlash. insulation is
canvas bokelite. $1-1 / 16^{\prime \prime}$ diam. Fits canvas bo

TX-10F (Notillustrated) Net 5.45 A new versian of the $T \times-10$ which employs thin canvas bakelite strips for flexibility.

TX. 29 (Natillustrated) Net 3.40 A non-insulated coupling identical to TX 10 except of all metal construction. Makes sood electrical cannection between coupled shafts. turers in auantities.

TX.9
Net 5.75
This small insulated Aexible counlina provides hish electrical efficiency when used to isolate circuits. Insulation is steatite. $15 / 8^{\prime \prime}$ diam. Fits $1 / 4^{\prime \prime}$ shaft.

TX-21 (Notillustrated) Net $\$.40$ Similar to TX-10 except $13 / 16^{\prime \prime}$ Iong and couples $1 / 4^{\prime \prime}$ sha! to $5 / 32^{\prime \prime}$ shaft.

SAFETY GRID AND PLATE CAPS

SPP-9
Net $\$.21$
Ceramic insulation. Fits $9 / 10^{\prime \prime}$ diameter.

SPP-3
Net $\$.21$
Ceramic insulation. Fits $3 / 8$ " diameter. National Safery Grid and Plate Caps have a ceramic body which affers protection against accidental contact with high voltage caps on tubes.

GRID AND PLATE GRIPS

Type 19, For 9/16" Caps
Net 5.06 Type 24, for 3/8" Caps Net $\$.03$
Type 8, for $1 / 4^{\prime \prime}$ Caps
Net $\$.03$
National Grid and Plate Grips provide a secure and positive contact with the tube cap and yet are released easily by a slight pressure an the ear.

RIGHT ANGLE DRIVES

ACD-1
Net $\$ 3.75$
ACD- 2
ACD-3
Net $\$ 3.90$ Net 53.90

These sturdy drives were develaped for use with the new Natianal AMT condensers (see page 25). They are as compact as the torave reavirements will allow and hove nickel ments wast fromes and bronze sears plated cast fromes and bronze gears which operate smoathly without chotter ar binding. The ACD- 1 has 32 pitch gears and a $1 / 4^{\prime \prime}$ dia. dial shaft and drives $1 / 4^{n}$ shafts. ACD-2 has 24 pitch gears (for heavier service) and $1 / 4^{\prime \prime}$ dia. shaft driving $1 / 4^{\prime \prime}$ shafts. ACD. 3 is the same as ACD. 2 except that it drives $3 / s^{\prime \prime}$ diameter shafts.

HEAT RADIATING CAPS. Designed ta gavernment specifications. Aluminum contact fingers are integral with radiating fins. Tension on fingers maintcined by an encircling steel spring. $632^{\prime \prime}$ tapped center hole for attaching grid ribbon or ather lead. Crimped beryllium copper, silver-plated grid ribban $31 / 4^{\prime \prime}$ long, supplied with each can. Special lengths can be supplied to manufac-

Trpe No.	Price	Hole Size For Lead or Cap	Heat Radiating Connectors To Fit the Following Tubes
HC-26	$36 \cdot$. 052	3C24-24-24G.25T-27
HC. 27	36 r	. 062	UH50-HK24-304B-892B-832A-834
HC. 28	36 e	. 072	$\begin{aligned} & \text { 35T-35TG-75TH-HK254-HK257B- } \\ & 484-8001 \end{aligned}$
HC-29	50 c	. 125	HK57-152TH
HC. 30	50 e	. 375	4-125A-150TH-2-150D-25OR 250TH-250TL-420A-802-803-804-807-808 Grid-814-815-828
HC. 31	60 c	. 125	304 TH-304 TL
HC. 32	60 c	. 570	ZB60-HF60-HF100-111H. 211 H -203H-HF175-HF300 Grid-100R. HK357C-450TH.454.750TH.805-806-808-809-810-811-812-813-828. 833-866-854-1500T-20001-1054-5331-5332-8000-8003-8005
HC. 33	80.	. 810	WL468-WL463-WL460-HF200-HF901-HF300

POPULAR $\xrightarrow{\text { natianal }}$ COMPONENTS

R-100
Net \$. 35
R-100U Net \$. 42
R-100S Net $\$.42$ R-I00STNet \$. 40 These RF chokes are identical electrically, but differ in mounting provisions. The R-I00 emplcys piatail leads: the R-100U has piqtail leads and a removable stand-off insulator: the R-100S has cotter-pin luq terminats and a non-removable stand-cff insulator: the R-IOOST has a 6-32 threaded stud at each end. These chokes are available in 2.5, 5 and 10 millihenry sizes and are rated at 125 milliamperes.

R-33

Net \$. 35
The R-33 series chokes are 2-section RF chokes available in 10, 50, 100 and 750 microhenry sizes. Also available in this series is a single layer solenoid cheke of I microhenry inductance. All are rated at 33 milliamperes. The chokes are wound on a 5/8" long form and range in diameter up to $5 / 16^{\prime \prime}$ maximum.

R-50
 R-50-I
 Not \$. 35
 Net \$. 53

The R-50 series chokes are 3 and 4 -section RF chokes and available in $0.5,1,2.5$, and 10 millihenry sizes. They are rated at 50 milliamperes. The chokes are wound on a $1^{\prime \prime}$ long form and have a maximum diameter of 15/32'. The 10 millihenry R-50-I choke is wound on an iron core.

R-33G

Net $\$ 3.60$
The R-33G choke is a 2 section 750 microhenry RF choke hermetically sealed in qlass with a current rating of 33 milliamperes. The choke body is 1 " long by $5 / 8^{\prime \prime}$ diameter.

R-60

Net \$. 35
The R-60 choke is a high current RF choke (500 milliamperes) available in 2 and 4 misrohenry sizes. The choke is $11 / 8^{\prime \prime}$ long by $5 / 16^{\prime \prime}$ diameter.

These RF chokes are similar in size to R-100 series but have higher current capacity. The R-300U is provided with a removable stand-off insulator at one end. The R-300S has a non-removable stand-off insulator and cot-ter-pin luq terminals. The R-300ST has a $6-32$ threaded stud at each end. Inductance values of $0.5,1.0,2.5$ and 5.0 millihenries are available with a current rating of 300 milliamperes. R-300, R-300U, R-300S and R-300ST are identical electrically.

R-152

Not $\$ 1.75$
For use in the rance between 2 and 4 Mc . Ideal for high power transmitter stages operated in the 80 meter amateur band. Inductance 4 m.h., DC resistance 10 ohms. DC current 600 ma. Coils honeycomb wound on steatite core.

R-154 R-154U

Net $\$ 1.75$ Net $\$ 1.40$
For the 20, 40 and 80 meter bands. Inductance I m.h.. DC resistance b ohms, DC current 600 ma . Coils honeycomb wound on steatite core. The R-154U does not have the third mounting foot and the small insulator, but is otherwise the same as R-I 54. See illustration.

R-175

Net $\$ 2.25$
The R-175 Choke is suitable for parallel-feed as well as series-feed in transmitters with plate supply up to 3000 volts modulated or 4000 volts unmodulated. Unlike conventional chokes, the reactance of the R-175 is high throughout the 10 and 20 meter bands as well as the 40 and 80 meter bands. Inductance $225 \mu \mathrm{~h}$, distributed capacity 0.6 mmf , DC resistance 6 ohms, DC current 800 ma., voltage breakdown to base 12,500 volts.

Manufacturers: We have facilities for quantity production of RF chokes of practically any type. Send us your specifications.

R-152

R-154U
R-154

POPULAR
 mationah COMPONENTS

I. F. TRANSFORMERS

IFM
IFN
IFO

OSR

IFC. Transformer, Net $\$ 4.25$ IFCO. Oscillator, Net $\$ 4.25$ Litz coils wound on a polystyrene form and ceramic insulated air-dielectric trimming condensers make these transformers inherently stable and exceptionally retentive of tuning. The $4 / 2^{\prime \prime} \times 23 / 8^{\prime \prime} \times 2$ " shield can has two 6.32 spade bolts for mounting. Available for either 175 KC or $450-550$ KC. Specify frequency.
IFL FM Discriminator
Net $\$ 6.90$
IFM IF Transformer Net $\$ 6.45$ IFN IF Transformer Net $\$ 6.45$ IFO FM Ratio Discriminator

Net $\$ 6.98$
IFL, IFM, IFN and IFO transformers operate at 10.7 Mc . and are designed for use in FM Superheterodyne receivers. Coils are precision wound on grooved polystyrene forms and tuning is accomplished by movable iron cores. Bandwidth is not affected by tuning slug position. The transformer cans are $13 / 8^{\prime \prime}$ square and stand $31 / 8^{\prime \prime}$ above the chassis. Two 6-32 spade bolts are provided for mounting.
The IFL transformer is a 10.7 Mc. FM discriminator transformer suitable for use in conventional FM receiver discriminator circuit and is linear over a band of $\pm 100 \mathrm{Kc}$.
The IFM transformer is a 10.7 Mc. IF transformer with a 150 Kc . bandwidth at 1.5 db attenuation. Approximate stage gain of 30 is obtained with IFM Transformer and 6SG7 tube.

COILS AND COIL FORMS
AR-2 High Frequency Coil OSR Net $\$ 1.80$ AR-5 $\$ 1.70$ AR-5 High Frequency Co $\$ 1.1 .46$
Net $\$ 1.46$ The AR-2 and AR-5 coils are high Q permeability tuned RF coils on low loss mica-filled bakelite forms. The AR-2 coil tunes from 75 Mc . to 220 Mc . with capacities from 100 to 10 mmfd . The AR-5 coil tunes from 37 Mc . to 110 Mc . with capacities from 100 to 10 mmfd . The inductive windings supplied may be replaced by other windings as desired to modify the tuning range.

XR-50

Net $\$.90$ These mica-filled bakelite coil forms may be wound as desired to provide a permeabili ty tuned coil. The form winding length is $11 / 16^{\prime \prime}$ and the form winding diameter is $1 / 2$ inch. The iron slug is $3 / 8^{\prime \prime}$ dia by $1 / 2^{\prime \prime}$ long.

The IFN transformer is a 10.7 Mc. IF transformer with a 100 Kc . pass band at 1.5 db attenuation. Approximate stage gain of 30 is obtained with IFN Transformer and 6SG7 tube.
The IFO transformer is a 10.7 Mc. FM discriminator transformer of the ratio type and is linear over a band of ± 100 Ke.
IFJ, with variable coupling
Net $\$ 8.25$
IFK, with fixed crupling
Net $\$ 7.25$
15 Mc. IF transformers suitable for ultra high trequency superheterodynes. They are made in two models with and without variable coupling. Approximate stage qain of 10 is obtained with IFJ or IFK Transformer and 6AB7 tube.

SA:4842

Net $\$ 4.50$
A 456 kc . discriminator transformer for narrow band trequency modulation. This unit is the nucleus of the NFM adapter descr bed by Harring. ton and Bartell in Nevember 1947 QST. Two slug-tuned secondaries are employed and discrimination is accomplished by resonating one at approximately 10 kc . above, the other at approximately 10 kc . below the center frequency of the i.f. channel.
CD-1, $1 / 4$ pint can Net $\$.95$ Liquid Polystyrene Cement is ideal for windings as it will not spoil the properties of the best coil form.

A shielded oscillator coil which tunes to 100 kc . with .00041 mfd. Two separate inductances, closely coupled. Excellent for interruption-frequency oscillator in superregenerative receivers.

Symbol	Outside Diameter	Length	Net
PRC-1	3/.".	3/8,	15
PRC-2 PRC-3	3\%",	1/2."	. 15
PRC-3 PRD-1	甡,	年:	. 15
PRD-1	1/2..	! ${ }_{\text {1/, }}$. 15
PRRE-1	$9 / 16^{\prime \prime}$	$3 / 4$. 18
PRE-2	$9 / 16^{\prime \prime}$	$1{ }^{\prime \prime}$	18
PRE-3	$9 / 16^{\prime \prime}$	2".	. 24
PRF-1	3/4.	$3 / 4{ }^{1}$. 24
PRF-2	3/4.	$1 / 4$.	. 30

These small coil forms are of molded polystyrene, open at one end and closed at the other except for a hole which permits mounting by a single 6-32 screw. A size for every application.

IFJ

IFK

SA-4842

CD-1

PRC

PRF

POPULAR natisnah COMPONENTS

POPULAR
 nathanal COMPONENTS

62ILFFM1R

TRANSMITTER COIL FORMS

The Transmitter Coil Forms and Mounting are designed as a group, and mount conveniently on the bars of a TMA condenser. The larger coil form, Type XR.14A (not illustrated) has a winding diameter of 5°, a windina length of $33 / 4$ (30 turns total) and is intended for the 80 meter band. The smaller form. Type XR-10A has a winding length of $33 / 4^{\prime \prime}$ and a winding diameter of $2 \frac{1}{2} 2^{\prime \prime}(26$ turns total). It is intended for the 20 and 40 meter bands.

Either coil form fits the PB-15 plug. For higher frequencies, the plug may be used with a self-supporting coil of copper tubing. The XB-15 Socket may be mounted on breadboards or chassis, as well as on the TMA Condenser.

SINGLE UNITS

XR-10A, Coil Form only
Net $\$$ XR-14A, Coil Form only PB-15, Plug only
Net \$2
Net $\$ 1$ XB-15, Socket only
ASSEMBLIES
UR-10A, Assembly (including small Coil Form, Plug and Socket)

Net \$3
UR-14A, Assembly (including large Coil Form, Plug and Socket)

Net \$3

BUFFER COIL FORMS

Nationa. Buffer Coil Forms are designed to mount directly on the tie bars of a TMC condenser using the PB. 5 Plug and XB. 5 Socket. Plug and Socket are oi molded R-39.

The two coil forms are of stealite, left unglazed to provide a tooth for coil dope. The larger form, Type XR-13, is $13 / 4^{\prime \prime}$ in diameter and has a winding length of $23 / 4^{\prime \prime}$. The smaller form. Type XR-13A, is $1^{\prime \prime}$ in diameter and provides a winding length of $23 / 4^{\prime \prime}$. Both forms have holes for mounting and for leads.

SINGLE UNITS
XR-13, Coi Form only................................Net
XR-13A, Coil Form only.. $\$$
PB-5, Plug only..
XB-5, Socket only.
Net $\$$
ASSEMBLIES
UR-13A, Assembly lincludina small Coil
Form, Plug and Socket) \$1 UR-13, Assembly lincluding large Coil

EXCITER COILS

There is a National exciter coil for every application. AR. 15 coils are mounted on 5 pin bases which fit any standard 5 cont. tube socket. AR-16 coils are mounted on the well known National PB-16 plug which fits the National XB-16 socket. The AR coils have 6 pin bases which fit standard 6 contact tube sockets and the link windings of this series have center taps which π be grounded for harmonic reduction. All center link models are center tapped for use in balanced circuits. Insulation polystyre and steatite. For use where plate power input does not exceed 50 watts. Available with fixed or swinging end or center links all amateur bands, 6 through 80 meters.
The XR-16 Coil Form (not illustrated) fits the PB-16 Plug-in Base: it has a winding length of $13 / 4^{\prime \prime}$, diameter $1 \frac{1}{4} 4^{\prime \prime}$

Net \$
XR-16 Coil Form
Net $\$.42$ XB- 16 Sockel for PB-16
Net \$

500 WATT COILS

Air-wound coils designed to mount on the split stator models of National AMT condensers. The ARI8.C coils have fixed cen links and require the XB|8-C socket. The AR18-S coils are designed to accommodate the swinging link furnished with the XBI: socket. Link winding of the XBI8-S has a cenier tap which may be grounded for harmonic reduction. Plugs and jacks are sily plated to insure low contact resistance. Insulation, steatite. The sockets (nol illustraied) are $71 / 4^{\prime \prime}$ in length.

AR.18-6C	\$3.25	AR-18-80C	4.50	AR-18-40S	3.95
AR-18-10C	3.50	AR-18-6S	2.96	AR-18-80S	4.20
AR-18-20C	3.75	AR-18-10S	3.20	XB-18S	4.00
AR-18-40C	4.25	AR-18-20S	3.45	XB-18C	1.50

POPULAR natanal COMPONENTS

TYPE TMS TRANSMITTING CONDENSERS

is a condenser designed for transmitter use in low power stages. It is compact, rigid, and dependable. Provision has ' made for mounting either on the panel, on the chassis, or on two stand-off insulators. Insulation is steatite. Voltage ratlisted are conservative.

Capacity	Minimum Capacity	Length	Air Gad	Peak Voltage	No. of Fiates	Catslog Symbol	Net
SINGLE STATOR MODELS							
100 MmF .	9.5	3"'	.026"	10COv.	9	TMS-100	\$2.60
150	11	$3^{\prime \prime}$.026"	1 COOv .	14	TMS-150	2.80
250	13.5	3"'	.026"	1000v.	29	TMS-250	3,30
300	15	$3^{\prime \prime}$.026"	1000\%.	27	TMS 300	3.80
35 50	$1{ }^{8}$	$3^{\prime \prime}$ $3^{\prime \prime}$.065"	2000 v 2000 v.	7 11	TMSA. 35 TMSA. 50	3.90 4.40
DOUBLE STATOR MODELS							
						TMS-50D	\$3.00
$100-100$	$7-7$	$3^{\prime \prime}$	$.026^{\prime \prime}$	$1000 \mathrm{v} \text {. }$	$9-9$	TMS-100D	3.20
	10.5-10.5	$3^{\prime \prime}$		$2000 \mathrm{v} \text {. }$		TMSA.50D	4.40

TYPE TMK TRANSMITTING CONDENSERS

is a new condenser for exciters and low power transmitters. Special provision has been made for mounting AR-16 coils swivel plug-in mount on either the top or rear of the condenser. For stand-off or panel mounting-steatite insulation.

Capacity	Minimum Capacity	Length	Air Gad	Peak Voltage	No. of Plates	Catalog Symbol	Net
SINGLE STATOR MODELS							
35 Mmf .	7.5	27/2",	.047 ${ }^{\prime \prime}$	1500 v .	7	TMK-35	\$3.45
50	8	$2^{3 \times \prime \prime}$.047"	1500 v .	9	TMK-50	3.55
75	9	$2^{11} 10^{\prime \prime}$.047"'	1500 v .	13	TMK-75	3.80
100	10	$3^{\prime \prime}$.047"	1500v.	17	TMK-100	3.95
150	10.5	35/8"	.047"	1500 v .	25	TMK-150	4.65
200	11	411"	.047"	1500 v .	33	TMK-200	5.95
250	11.5	4781	.047"	1500v.	41	TMK-250	5.75
DOUBLE STATOR MODELS							
35-35 MmF.	7.5-7.5	3"	.047"	15 COv .	7-7	TMK-35D	\$3.80
;0-50	$8-8$	$33 / 81$. 047 "	1500 v .	9-9	TMK -50D	3.95
20-100	10-10	41/4"	. 047 "	1500v.	17-17	TMK-100D	5.95
Swivel Mounting Hardware for AR 16 Coils						SMH	\$. 10

TYPE TMH TRANSMITTING CONDENSERS

zondenser that features very compact construction. Excellent power factor, and aluminum plates $.0400^{\prime \prime}$ thick with shed edges. It mounts on the panel or on removable stand-off insulators. Steatite insulators have long leakage path. id-offs included in listed price.

	Capecity	Minimum Capacity	Length	Air Gap	$\begin{gathered} \text { Peak } \\ \text { Voltoge } \end{gathered}$	No. of Plates	Catalog Symbol	Net
	SINGLE STATOR MODELS							
	50 MmF. 75 100 150 35	11 11 12.5 18 11		$.085^{\prime \prime}$ $.085^{\prime \prime}$ $.085^{\prime \prime}$ $.085^{\prime \prime}$ $.180^{\prime \prime}$	$\begin{aligned} & 3500 \mathrm{v} \\ & 3500 \mathrm{v} \\ & 3500 \mathrm{v} \\ & 3500 \mathrm{v} \\ & 6500 \mathrm{v} \end{aligned}$	15 19 25 37 17		$\$ 3.95$ 4.15 4.35 4.95 4.25
	DOUBLE STATOR MODELS							
	$\begin{aligned} & 35-35 \mathrm{Mmf} . \\ & 50-50 \\ & 75-75 \end{aligned}$	$\begin{gathered} 6-6 \\ -8-8 \\ 11-11 \end{gathered}$		$.085^{\prime \prime}$ $.085^{\prime \prime}$ $.085 \prime \prime$	$\begin{aligned} & 3500 \mathrm{v} . \\ & 3500 \mathrm{v} \\ & 3500 \mathrm{v} . \end{aligned}$	$9-9$ $13-13$ $19-19$	TMH-35D TMH-50D TMH-75D	\$4.15 4.35 4.95

TYPE TMC TRANSMITTING CONDENSERS

:ondenser designed for use in the power stages of transmitters where peak voltages do not exceed 3000 volts. The frame is emely rigid and arranged for mounting on panel, chassis or stand-off insulators. The plates are aluminum with buffed ees. Insulation is steatite. The stator in the split stator models is supported at both ends.

POPULAR

TYPE AMT

A larger and sturdier model of the TMK condenser. The frame is extremely rigid, with mounting feet a part of the end plates. Heavy steatite insulation.
The solid aluminum tie bar across the top of the condenser acts as a mounting for AR-18 series coils in the double stator models.
The double stator models are available in either standard end drive (D series) or center-drive (DG series) with $1 / 4^{\prime \prime}$ dia. shaft extension.

TYPE TMA
This is a larger model of the popular TMC. The frame is extremely rigid and arranged for mounting on panel, chassis or st off insulators. The plates are of heavy aluminum with rounded and buffed edges. Insulation is steatite located outside of concentrated field.

Meximum Capacity	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	Catalog Symbol	Net
SINGLE STATOR MODELS							
$\begin{aligned} & 50 \mathrm{Mmf} . \\ & 100 \end{aligned}$	$\begin{aligned} & 13 \\ & 20 \end{aligned}$	$\begin{aligned} & 4,3 " \\ & 63 / 44^{\prime \prime} \end{aligned}$	$.177^{\circ}$	$\begin{aligned} & 6000 v . \\ & 6000 \end{aligned}$	$\begin{array}{r} 9 \\ 17 \end{array}$	$\begin{aligned} & \text { AMT-50 } \\ & \text { AMT-100 } \end{aligned}$	\$ 5.2 C
300 50 100 150 930 100 150 50 100	$\begin{array}{r} 19.5 \\ 15 \\ 19.5 \\ 22.5 \\ 33 \\ 30 \\ 40.5 \\ 91 \\ 37.5 \end{array}$		$\begin{aligned} & .077^{\circ} \\ & .171^{\prime} \\ & .171^{\prime} \\ & .171^{\prime} \\ & .171^{\circ} \\ & .265^{\circ} \\ & .359^{\prime \prime} \\ & .359^{\prime \prime} \end{aligned}$	$\begin{gathered} 3000 \mathrm{v} \\ 6000 \mathrm{v} \\ 6000 \mathrm{v} \\ 6000 \mathrm{v} \\ 6000 \mathrm{v} \\ 9000 \mathrm{v} \\ 9000 \mathrm{v} \\ 12,000 \mathrm{v} \\ 12,000 \mathrm{v} . \end{gathered}$	$\begin{aligned} & 23 \\ & 7 \\ & 15 \\ & 21 \\ & 33 \\ & 23 \\ & 33 \\ & 13 \\ & 95 \end{aligned}$	TMA-300 TMA-50A TMA-100A TMA-150A TMA-230A TMA-100B TMA-150B TMA-50C TMA-100C	$\begin{aligned} & 7.60 \\ & 4.95 \\ & 5.85 \\ & 6.45 \\ & 7.95 \\ & 8.50 \\ & 9.95 \\ & 5.55 \\ & 8.95 \end{aligned}$
$\begin{array}{r} 75 \\ 150 \\ 100 \\ 50 \\ 245 \\ 150 \\ 100 \\ 75 \\ 500 \\ 350 \\ 250 \\ \hline \end{array}$	$\begin{array}{r} 25 \\ 60 \\ 45 \\ 22 \\ 54 \\ 45 \\ 39 \\ 23.5 \\ 55 \\ 45 \\ 35 \\ \hline \end{array}$		$\begin{aligned} & .719^{\prime \prime} \\ & .469^{\prime \prime} \\ & .469^{\prime \prime} \\ & .469^{\prime \prime} \\ & .344^{\prime \prime} \\ & .344^{\prime \prime} \\ & .344^{\prime \prime} \\ & .919^{\prime \prime} \\ & .919^{\prime \prime} \\ & .219^{\prime} \end{aligned}$	$\begin{aligned} & 20,000 \mathrm{v} . \\ & 15,000 \mathrm{v} . \\ & 15,000 \\ & 15,000 \mathrm{v} . \\ & 10,000 \mathrm{v} . \\ & 10,000 \\ & 10,000 \mathrm{v} . \\ & 10,000 \\ & 7,500 \mathrm{v} . \\ & 7,500 \mathrm{v} . \\ & 7,500 \end{aligned} .$	$\begin{array}{r} 17 \\ 97 \\ 19 \\ 9 \\ 35 \\ 91 \\ 15 \\ 11 \\ 49 \\ 33 \\ 95 \end{array}$	TML-75E TML-150D TML-100D TML-50D TML-945B TML-150B TML-100B TML-75B TML-500A TML-350A TML-250A	$\begin{aligned} & 18.35 \\ & 18.50 \\ & 16.60 \\ & 11.50 \\ & 9.15 \\ & 18.35 \\ & 17.55 \\ & 18.80 \\ & 24.60 \\ & 19.65 \\ & 18.35 \end{aligned}$
DOUBLE STATOR MODELS D-End drive DG-Center drive							
$\begin{gathered} 50-50 \\ 100-100 \\ 50-50 \\ 100-100 \end{gathered}$	$\begin{aligned} & 13-13 \\ & 20-90 \\ & 13-13 \\ & 20-20 \end{aligned}$	$\begin{array}{r} 9 \frac{3 / 88^{\circ}}{} \\ 13^{33} 8^{\circ} \\ 93,8^{\circ} \\ 139^{\circ} \end{array}$	$\begin{aligned} & .177^{\circ} \\ & .1777^{\circ} \\ & .177^{\circ} \end{aligned}$	$\begin{aligned} & 6000 \mathrm{v} \\ & 6000 \mathrm{v} \\ & 6000 \mathrm{v} \\ & 6000 \mathrm{v} . \end{aligned}$	18 34 18 34	AMT-50D AMT-100D AMT-50DG AMT-100DG	$\begin{array}{r} 7.00 \\ 9.00 \\ 10.75 \\ 12.75 \end{array}$
$\begin{gathered} 900-200 \\ 180-180 \\ 50-50 \\ 100-100 \\ 60-60 \\ 40-40 \end{gathered}$	$\begin{gathered} 15-15 \\ 10-10 \\ 12.5-19.5 \\ 17-17 \\ 19.5-19.5 \\ 18-18 \end{gathered}$		$\begin{aligned} & .077^{\prime} \\ & .140^{\prime} \\ & .155^{\prime} \\ & .155^{\prime} \\ & .249^{\circ} \\ & .343^{\circ} \\ & \hline \end{aligned}$	$\begin{gathered} 3000 \mathrm{v} . \\ 4000 \mathrm{v} . \\ 6000 \mathrm{v} . \\ 6000 \mathrm{v} \\ 9000 \mathrm{v} \\ 12,000 \mathrm{v} . \end{gathered}$	$\begin{gathered} 16-16 \\ 24-94 \\ 8-8 \\ 14-14 \\ 15-15 \\ 11-11 \end{gathered}$	TMA-900D TMA-180D TMA-50DA TMA-100DA TMA-60DB TMA-40DC	$\begin{array}{r} 9.40 \\ 19.90 \\ 6.75 \\ 8.75 \\ 8.95 \\ 8.50 \end{array}$
$\begin{gathered} 30-30 \\ 60-60 \\ 100-100 \\ 60-60 \\ 200-200 \\ 100-100 \end{gathered}$	$\begin{aligned} & 12-12 \\ & 26-26 \\ & 27-27 \\ & 20-20 \\ & 30-30 \\ & 17-17 \end{aligned}$		$\begin{aligned} & .719^{\circ} \\ & .469^{\circ} \\ & .3444^{\circ} \\ & .219^{\circ} \\ & .219^{\circ} \end{aligned}$	$\begin{array}{r} 20,000 \mathrm{v} . \\ 15,000 \mathrm{v} \\ 10,000 \\ 10,000 \mathrm{v} . \\ 7,500 \mathrm{v} \\ 7,500 \mathrm{v} . \end{array}$	$\begin{gathered} 7-7 \\ 11-11 \\ 15-15 \\ 9-9 \\ 91-91 \\ 11-11 \end{gathered}$	TML-30DE TML-60DD TML-100DB TML-60DB TML-200DA TML-100DA	$\begin{aligned} & 18.55 \\ & 90.15 \\ & 99.35 \\ & 19.15 \\ & 94.60 \\ & 90.15 \end{aligned}$

TYPE LMT

A heavy duty transmitting condenser that completely eliminates troublesome closed loops, vastly simplifying the prob of unwanted harmonics. The rotor shaft is completely insulated from the end plates. Long leakage path (higher safety fact. Plates and parts are extra heavy with highly polished rounded edges to prevent flash-over. Adjustable stator plate mount and end bearings. Available in single-stator, double-stator, or double-stator right angle center drive models. Same capaci and prices as National TML Condenser. Condensers with right angle drive add $\$ 3.90$ to price shown.

TYPE TML

is a heavy duty job throughout. The frame structure (rugged aluminum castings with dural tie bars) and precision bearings assure permanent rotor alignment. All plates are extra thick with rounded and polished edges. This, plus specially treated steatite insulators and - husky self-cleaning rotor contact, provides high flashover, current and voltage ratings.

POPULAR

miniature CONDENSERS:

Type PS variable condensers are compact silver plated units of soldered construction for use as semi-fixed bandsets or padders. Base is steatite - bearing is "snug" but smooth. PSR models are screwdriver adjust type; PSE have $1 / 4^{\prime \prime}$ diameter shats both ends; PSL are similar to PSR but include rotor shaft lock.
Type M-30
Net $\$.92$
The M-30 is a tiny $\left(13 / 16^{N} \times 9 / 16^{\prime \prime}\right.$ $\times 1 / 2^{\prime \prime}$) mica trimmer - $\mathbf{3 0} \mathrm{mmf}$. max. - steatite base.

Type W-75, 75 mmF . Net $\$ 1.60$
Type W-100, 100 mmf . Net $\$ 1.76$ Small air-dielectric podding condensers having a very low temperature coefficient. They are mounted in $1 \frac{1}{4}$ " diameter aluminum shields and have $1 / /^{\prime \prime}$ hex heads for socketwrench adjustment.

The UM condensers are low-loss, aluminum plate staked construction miniature variables designed for UHF converters, VFOs and the like - minimum capacity is exceptionally low. The UMs can be mounted in PB- 10 or RO shield cans and have $1 / /^{\prime \prime}$ dio. shafts front and rear for gansing (see pases 21 , 23 and 24 for shield cans and couplings). Plates: straight-linecap., 180° rotation. Dimensions: Base $1^{\prime \prime} \times 21 / 4^{\prime \prime}$, mtg. holes on $3 / 6^{\prime \prime} \times$ 1.23/39" centers, $2-5 / 10^{\prime \prime}$ max. length.
The UMB-25 and UMB-50 are differential (balanced stator) models. UM-10D and UMA- 25 are double-spaced and the latter is bolted construction for experimental capacity reduction. Hardware for panel or chassis mountins is supplied with all UM candensers.

Copecity	Catalos Symbol			Net
25 mmf	PSR-25	PSE-95	PSL-25	$\$ 1.70$
50	PSRR-50	PSE-50	PSL-50	1.85
75	PSRR-75	PSE-75	PSL-75	$\mathbf{8 . 0 0}$
100	PSR-100	PSE-100	PSL-100	$\mathbf{2 . 1 5}$

Capmeity	Minimum Capacity	No. of Plates	Air Gep	Catalog Symbol	Net
15 mmf .	1.5	6	.017"',	UM-15	\$1.09
35	2.5	12	.017"	UM-35	1.15
50 75	3.5	28	.017"	UM-75	1.45
100	4.5	28	.017"'	UM. 100	1.60
10	1	8	.042"',	UM-10D	1.40
25	3.4	14	.042"	UMA-25	1.75
BALANCED STATOR MODEL					
25 50	$\stackrel{2}{5}$	$4.4-4$ $8.8-8$.017" ${ }^{\prime \prime}$	UMB-25 UMB-50	$\$ 9.40$ 9.70

NEUTRALIZING
 CONDENSERS:

NC-600U
Net $\$.38$
With standoff insulator

NC. 600

Net $\$.32$
Withaut insulatar
For neutralizing low power beam tubes requiring fram .5 ta 4 mmf , and 1500 max, tatal valts such as the 6L6. The NC-600U is supplied with a GS. 10 standoff insulatar screwed on one end, which may be removed for pigtail mounting.

'TU BY' CONDENSERS

Tubuiar condensers providing shart rf. path berween plate and cathode for tubes having the plate connection at the top. Design reduces harmanics and helps eliminate parasitics. 3,000 volts ar 1,500 volts. 15 mmfd . Net $\$ 1.80$

STN

Net $\$ 8.07$
The Type STN has a maximum capocity of 18 mml . (3000 V), making it suitable for such tubes as the 809. It is supplied with twa standaff insulators.

NC-800A

Net $\$ 3.00$
The NC-800A disk-type neutralizing condenser is suitable for the T40, 35TG, 808 and similar tubes. th is equipped with a clamp far lacking. The chort below gives capacity and air gap far different settings.

NC. 75
Net $\$ 3.60$ Far 812, 75 TH and similar tubes.

NC. 150

Net $\$ 5.25$
For RK36, 100TH, HK354, 250TH, etc.

NC-500
Net $\$ 8.75$
Far WE-251, $304 \mathrm{TH}, 833 \mathrm{~A}$ and the like. These large disk-type neutralizing candensers are for the higher powered tubes. Disks are aluminum, insulation steatite.

STN

POPULAR national COMPONENTS

PRECISION CONDENSERS

Originally developed for the famous HRO and NC-100 receivers, National PW and NPW condensers and drive units are well known to professional and amateur radio men throughout the world. Sturdily constructed of the finest materials and carefully adjusted by skilled hands, they have become "standard specifications" for applications requiring smooth, precise control and high re-set accuracy.
The Micrometer Dial reads direct to one part in 500. Division lines are approximately $1 / 4^{" 1}$ apart. The drive, at the mid-point of the rotor, is through an enclosed preloaded worm gear with 20 to I ratio. Each rotor is individually insulated from the frame, and each has its own individual rotor contact. Stator insulation is steatite. Plate shape is straight-line frequency when the frequency range is $2: 1$.
PW Condensers are available in 1, 2, 3 or 4 sections, in either 160 or 225 mmf per section. Larger capacities cannot be supplied.

PW-IR Single section right
Net $\$ 13.50$
PW-IL Single section leff
PW-2R Double section right
PW-2L Double section left
PW-2S Single section each side
PW-3R Double section right; single left
PW-3L Double section left; single right
PW-4 Double section each side
NPW-3 Three sections, each 225 mmf .
Nimilar PW Net \$24.00 lar to panel.
NPW.O
Uses parts similar to the NPW Net $\$ 9.00$ pendicular to panel. One TX-9 coupling supplied.

PW-O

Net $\$ 9.90$
Uses parts similar to the PW condenser. Drive shaft parallel
to panel. Two TX-9 couplings supplied.

PW-D

Net \$5
The Micrometer Dial used on the condensers and drives above is available separafely. It revolves ten times in covering complete range and as there is no gear reduction unit furnished, the driven shaft will revolve ten times, also. The PV dial fits a shaft $5 / 16^{\prime \prime}$ in diameter.

MULTI-BAND TANK ASSEMBLIES

The unique MB-I 50 Multi-Band Tank tunes all amateur bands from 80 through 10 meters with 180° rotation of the shaft; coils are never changed. The unit is built around a circuit which tunes to two harmonically unrelated frequencies at the sa time. Thus, it becomes possible to cover a wide frequency range and yef maintain a reasonably constant L/C ratio. $3^{\prime \prime} \mathrm{W}$ $\times 81 / 4^{\prime \prime}$ high (including the GS-10 standoffs) $\times 9^{\prime \prime}$ long overall including the $1 / 4^{\prime \prime}$ dia. shaft and output terminals.

MB-40L

Features of the MB-150:
(1) For use as the all-band plate tank in push-pull or single-ended stages running up to 150 -watts input (1500 volts peak). It is ideal for a pair of 807 s or 809 s or a single 829B.
(2) Separate link coupling coil has special clips which ad. just to match impedances up to 600 ohms directly. Output couples into a higher powered amplifier, an antenna or an antenna tuning nefwork.
(3) Fast band changing is accomplished without handing coils, thus removing one of the danger points in the amateur station.
MB-I 50 Multi-Band Tank Assembly
Net $\$ 18.75$

MB 40L LOW-POWER MULTI-BAND TANK

Same principle as the famous MB-I50. Logical application as grid circuit for tubes having MB-I50 in plate circuit. Will handle 40 watts input if link kept loaded Net $\$ 9.90$

MB-150

POPULAR

TYPE STHS StRalcht-LINE wavelength
180° Rotation

The ST Type condenser has Straight-Line Wavelength plates. All double-bearing models have the front bearing insulated to prevent noise. On special order a shatt extension at each end is availabie, for ganging. On double-bcaring single shate models. the rotor contact is through a constant impedance pigtail. Steatite insulation.

Capacity	Minimum Capacity	No. of Plates	Air Gap	Length	Catalos Symbol

SINGLE BEARING MODELS

TYPE ST
(Type STD illustrated) StRAIGHT-LINE WAVELENGTH
100° Rotation

SPLIT STATOR DOUBLE BEARING MODELS						
$50-50$ $100-100$	5-5 $5.5-5.5$	$11-11$ $14-14$.096"'	2931" ${ }^{3}$	STD- 50 STHD-100	53.60 3.90
DOUBLE BEARING MODELS						
35 MmI .	6 MmF .	8	.026"	$2^{1}{ }^{\prime \prime}$	ST- 35	\$1.85
50 75	7	11 15	.026"'	21:"	ST- 50	1.90 2.00
100	8	20	. $026^{\prime \prime}$	21*"	ST-100	2.10
140	10	27	.026"	$2^{3} 4^{\prime \prime}$	ST-140	2.30
150	10.5	29	.026"	23/" ${ }^{\prime \prime}$	ST-150	2.30
200	12.0	27	.018"',	21年",	STH-200	8.50
250	13.5	32	.018"'	$9^{3} 3^{\prime \prime \prime}$	STH-950	8.70
300 335	15.0 17.0	39 43	.018 ${ }^{\prime \prime}$. $018^{\prime \prime}$	$2^{23}{ }_{4}{ }^{\prime \prime \prime}$	STH-300 STH-335	9.90 3.10

TYPE SE (Type SEU Ilvistrated) STRAIGHT-LINE FREQUENCY 270° Rotation

NOTE - Type SS Condensers, having straight-line ca. pacity plates but otherwise similar to the Type ST, are available. Capacities and Prices same as Type ST

TYPE SE - All models have two rotor bearings, the front bear. ing being insulated to prevent noise. A shaft extension at each end, for ganging, is avaifable on special order. On models with single shaft extension, the rotor contact is through a constant impedance pigtail. The SEU models (illustrated) are sultable for high voltages as their plates are thick polished aluminum with rounded edges. Other $\mathrm{S} E$ condensers do not have polished edges on the plates. Steatite insulation.

TYPE EMC

 stralcht-LINE wavelenctu 180° Rotation| 15 MmF. 20 25 | 7 MmI 7.5 8 | 6 7 9 | $.055^{\prime \prime}$ $.055^{\prime \prime}$ $.055^{\prime \prime}$ | $21 /{ }^{\prime \prime \prime}$ 214 $9144^{\prime \prime}$ | $\begin{aligned} & \text { SEU- } 15 \\ & \text { SEUU- } 20 \\ & \text { SEU- } 95 \end{aligned}$ | $\begin{array}{r} \$ 2.80 \\ 2.95 \\ 3.10 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 9 | 11 | . $026{ }^{\prime \prime}$ | 21/4' | SE- 50 | 2.30 |
| 75 | 10 | 15 | . $0266^{\prime \prime}$ | 214" | SE- 75 | 2.40 |
| 100 | 11.5 | 20 | .026 ${ }^{\prime \prime}$ | 21/4" | SE-100 | 2.60 |
| 150 | 13 | 99 | .026 ${ }^{\prime \prime}$ | $23 / 4{ }^{\prime \prime}$ | SE-150 | 2.75 |
| 900 | 12 | 27 | .018 ${ }^{\prime \prime}$ | 21/4" | SEH-200 | 2.80 |
| 250 | 14 | 32 | . $018^{\prime \prime}$ | 23/4' | SEH-950 | 3.00 |
| 300 | 16 | 39 | . $018^{\prime \prime}$ | 23.4' | SEH-300 | 3.25 |
| 335 | 17 | 43 | . $018^{\prime \prime}$ | $2^{3} 4^{\prime \prime}$ | SEH-335 | 3.50 |

McELROY

 MANUFACTURING CORPORATION, LITTLETON, MASS.

 MANUFACTURING CORPORATION, LITTLETON, MASS.
 \author{ Telephone, Boston Liberty 2-3411. Cable, Tedmoc, Boston

}

Tens of Thousands of radio operators have been trained on McELROY equipment.
Hundreds of Radiotelegraph Stations - military, naval, commercial - use McELROY equipment.

Now even the Smallest Station

 can convert from manual to automatic operation.The McElroy Portable Morse Package Unit MP-() -sturdy, light, compact - gives you perforated tape keyed transmission and inked slip recording at speeds up to 100 words per minute.

> Technical Information will be sent upon request

Morse Package MP-()
Receiring

22

DEPENDABLE High Speed Communications

By SKILLED Communications Engineers of long EXPERIENCE and INTEGRITY

Auto Head and Drive $A H D$

Tape Bridge TTG

Tape Puller CTP and Reel

23

AUDIO TRANSFORMERS
Thordarson manulactures a complote line of audio transformers - everything from microphone to speaker. Typlcal of the standard catalog thems are low impedance source (ml crophone, line or mixer) to single or push-pull giids, transceiver (plate and/or mic to grid). low imp. mic. of x coll to grid, single plate to single or p.p. gids, p.p. plates to p.p. gids, single or p.p. plates to single or p.p. grids, mic. cable transformers.

No matter how specialized or how simple youl transformer needs may be. Tharkably low cost. So them quickly and at remperience. that 35.000 vast is Thordars different transformecifications are on flle. of these active .. utilizes the latest techniques The "New line" ulides a greater range with and materials types.
4ew catalon can depend on Thordarson ratings and on Vou can depethods of coll impregnation such as: the latest Wax dip or vacuum impregnation.

1. Wax Vacuum varnishing and bake.
2. Fully encased and compound filled.
3. "Tropex" Treated.
4. "Thorseal" - Hermetically sealed.
5. Fully enclosed Hermetically sealed.
6. "Tropez" for complete open frame construction.

AUDIO BAND REJECTION FILTERS

POWER EQUIPMENT
Here's truly a tamous line. cominelete from chokes, that in. clude the new swins intesmeoth. Ing unlversal types, power frans. lormers, Illament transtormers, plate translormers, to vibrator pover transtormers.

Thordarson's leadership in this field is the result of units that have excep. tionally low insertion losses, sharp attenuation. Four general classilications include: 1. 10w pass; 2. high pass; 3. band pass; 4. band rejection. commoniy used lilters carried in stock. Special ones quoled on appli-

Here, too, Thordarson has a complete line - everything from the phono amplitier to very high power amplitiers for industrial applications. spite of its modest cost, only $\$ 55.00$, list, it possesses highest fidelity. It's complete for use with the ordinary high impedance plckup Illustrated is the new or tuner. Plug- in pre-amplifier, for use with reluctance pick-up or high impedance mike, avallable at only $\$ 9.00$, list. Frequency response: 20 10 20,000 cycles. Write for folder.
cation.

Industrial Design Sheets Extremely valuable design date

Tompiomby THORDARSC

electric manufacturing division MAGUIRE INDUSTRIES, INC. . 500 W. Muron St., Chicage 10, III.

Adequate Data

Comprehensive application data is supplied with each tube. In addition to assist you in designing new or modifying your present equipment, the same data is available without charge by writing . . . Eimac. San Bruno, California. There is also a special packet of data titled "Tubes for Amateur Service." Ask for it.

Proven Performance

Check compatition results . . . Eimac tubes are consistently in key-socket position of the transmitters of high scoring stations . . . this is firm evidence of the ability of Eimac tubes to outperform all others.
In commercial electronic applications you also. will find Eimac tubes occupying the key socket positions . . . so specified because of topperformance, economy-of-operation, and as-sured-dependability.

EITEL-McCULLOUGH, INC. San Bruno, California

EIMAC REPRESENTATIYES

W9AlO
W4TO
Mr. J. E. Joyner, Jr.
Mr. Royal J. Higgins
600 South Michigan Ave. Chicago 5, Illinois

W2CN
Mr. Adolph Schwartz
Room 1610
220 Broadway
New York City 7, N. Y.

W6OD

Mr. Herb Becker
1406 South Grand Ave.
Los Angeles I5, Calif.
W5Cl
Mr. M. B. Patterson
Reserve Loan Life Bldg.
505 North Ervay St.
Dallas 1, Texas

James Millar Associates
1000 Peachtree St., N , E.
P. O Box 116 , Station " C "

Atlanta 5, Georgia
Mr. Dave M. Lee
2626 Second Ave.
Seattle 1, Washington
WめRPE
Mr. Clyde H. Schryver
Room 224
4550 Main St.
Kansas City. Missouri
WめAZT
W. Clif Mcloud a Company

5522 East Colfax Ave.
Denver 7, Colorado

WIKKP
Mr. Tim Coakley
11 Beacon St.
Boston B, Mass.

EXPORT AGENTS: FRAZAR ANO MANSEN, 3OI CLAY STREET SANFRANCISCO II. CALIFORNIA, $U S$ A.

hallicrafters

SX-71
\$179.50
Amateur Net

S-72
\$79.95
Amateur Net

w! A Real Hallicrafters "Ham" Receiver

From the Hams at Hallicrafters to Hams everywhere comes this top-performing receiver in the medium price class. Fxtra sensitivity, selectivity, and stability, definitely superior image rejection with double superheterodyne circuit, plus built-in Narrow Band FM reception. Surpasses in Ham performance many sets priced much higher.
PERFORMANCE: Continuous coverage 538 kc to 35 Mc and $46-56 \mathrm{Mc}$. Built-in limiter and halanced detector stages for hiss-free NBPM reception. Double conversion (2075 and 455 kc i-f channels) gives image rejection of hetter than 150 to 1 at 28 Mc. One r-f, wo conversion, and 3 i-f stages yield high gain for sensitivity in the order of 1 microvolt. Sharp selectivity as indicated by the 1 - kc band width (1000 times down from resonance) even before cutting the crystal filter into the circuit.

CONTROLS: Band Selector 538-1650 kc, 1600 - $4800 \mathrm{kc}, 4.6-13.5 \mathrm{Mc}, 12.5-35 \mathrm{Mc}$,
f6-56 Mc. Separate Main and Bandspread tuning; handspread calibrated for 80, 40, 20, 10, and 6 Meter l Bands. BFO Pitch, 3-pos. Selectivity, Xtal Phasing, Tone, AF Gain, RF Gain. A.NL, BFO, and Kec. Send switches. "S"Meter adj: on rear.

PHYSICAL DATA: Satin black steel cabinet with chrome trim. Piano hinge top. Size $18 \frac{1}{2} \mathrm{in}$. wide, $8^{7 / 8}$ in. high, 12 in. deep. Ship wt. approx. 33 lbs.
EXTERNAL CONNECTIONS: Duublet or single wire antenna. 3.2 and 500 -ohm output. Phone jack. Socket for external power. Connections for remote control. $105-125 \mathrm{~V} 50 / 60$ cycle AC line.
11 TUBES PLUS VOLTAGE REGULATOR AND RECTIFIER: GBAG r.f Amp., 6C. 1 Osc., GALG Mixer, GBEG 2nd Conv., three 6SK7 i-f Amps., GH6 ANL and delayed AVC., GSC7 BFO and a-f Amp., GALs Det., GK6GT Output, VR-150 Regulator, and 5Y3GT Rectifier.

Matching speaker for SX-71. Two-position tone switch. 500 oh m input. Heavy duty PM type, 6 by 9 -inch wal size. $181 / 2$ in. wide, $8 \frac{1 / 2}{}$ in. high, 9is in. deep. Ship wt. 19 lbs.

R-44B
\$24.50

w, All-Wave, AC/DC or Battery Portable

You'll always be in wheh with the outside world wherever you go with this new Hallicrafters extra-sensitive portable. Designed both for superior all-wave broadcast reception even in weak signal areas and for Ham operation.
PERFORMANCE: Covers standard broadcast and three short-wave bands 540 kc to 30 Mc continuously. One stage tuned r-f amplification; separate bandspread tuning gang. Two built-in antennas-loop for broadcast and 62 -inch telescoping whip for short-wave. Overalt sensitivity 1.8 microvolts at 30 Mc , ranging to 6 microvolts at 1.7 Mc .
CONTROLS: Band Selector, r-f Gain, AVC, BFO, a-f Gain, Main tuning, Bandspread tuning.
PHYSICAL DATA: Luggage-type cabinet in brown leatherette. Space inside for phones. Size 1 f in. wide, $12 \frac{1}{4}$ in. high, $71 / 4 \mathrm{in}$. deep. Ship wi. 16 lbs., less battery pack.
EXTERNAL CONNECTIONS: Phone jack. Antenna terminals if needed. $105-125 \mathrm{~V}$. DC or 50,60 cycle AC line. Battery power 100 ma. at 7.5 V , and 30 ma . at 90 V . Takes RCA VS018, Burgess G6M60, General 60136F65 and similar packs; life 50 to 100 hours.
8 TUBES PLUS RECT: 1 T-íf r-f Amp., 1 Rs Osc., 1 Úf Mixer, two 1 U'f i-f Amps., 1 Us Det, and a-f Amp., $1 \mathrm{U} 5 \mathrm{BHO}, 3 \mathrm{~V}$ ' Output, long-life selenium rectifier.

LONG-WAVE MODEL-S-72L. Covers airways radio ranges, control towers, and marine beacons. Range $175-400 \mathrm{kc}$, .535-12.3 Mc; otherwise identical with S-72...... Net $\$ 89.95$.

hallicrafters

SX. 62 $\$ 269.50$ Amateui Net

w "SWL" Version of Famous $5 \mathrm{X}-42$

A recknt a dition to Hallicrafters linit and juse what the All-Wave listener fins heen \#aiting for. Fill ouryerform any ordinay wroadcast receiver on any frequencyStendard lBroadcest, Shorrewape or FM- Centimuous coverafe from 540 kc to 109 Mc .

Heving harically the seme chasis as etar best communicacionas receriver, the $5 \mathrm{~K} \mathbf{6 2}$ provadet communicaciofs-rtctiver perforhtathce in simplified form A sir ele tubing contrat whes the widexision disl. Only onc hand lights uge a timerou alvay kmow tuat
 Whing you te adjur the dial peinter to show the exat frequency being tuneri at any fime.
PIRFORMANCE: COALinupis AM recopions 500 kc to 100 Mc FM reception 27-109 Me. Temperazore totypenited, colthee rehulatod. Twe RE. thrce. IE stages: dual if Ethanel, itis ke and IU.- Mc.). Aedia fat $50-15.000$ crole 20 wate push-pull output.

 Phone FM AM CW, sispoustion Selrctivig, lour-powion Iene, RI Gain, Calimation React. PHYSICAL ATA: (tra) steel cubinet with win chrome teith. Top opent on frises hinkr. Cuhuez 20 in . कidr by 101, in. high by 10 in . diep. Ship. Wre. To tbs.
EXTERNAL CONNECTIONS: Doublet or wingle wirc atmerna 500 and 500) otum outpurio Phoes Whe Photegraph inpur jack. Socket for external powir. Reatote control cometetion fol 125 V. 2060 cycle AC line.
14 TUBES PLUS VOLTAGE RECULATOR AND RECTIFUERY TWO GAGS RE Amph.. TFW

 Calibration Ons. YR-150 Regulator, 5 U iG Rerrifet.

R-42 Bass Reflex Speaker $\mathbf{\$ 3 4 . 5 0}$

Matches cither SX-62 or SX-42. Two-position tone switch. 500 -ohm input. 8 -in. heavy-duty PM type. Satin-finish gray metal cabinct 17 in. wide by $113 / 4$ in. high by $121 / 2 \mathrm{in}$. decp. Ship. wt. 30 lbs.

ps in Performance and Versatilify

Freferred by discrimitaitiog, Amateury and SWL'tevery wiere . . our beat commanica-

 CONTROLS: Band Switch $550-1620 \mathrm{kc} 1620-5000 \mathrm{lec} 50-15 \mathrm{Nc}, 15-30 \mathrm{Mc}$? -33 Mc 55-10 Mc. Mair wnite dial metn logkingsals on hnob. Fhend-spread dial calihratei for 3 , 5 , - Id, and 28 Mc Eand ifu logering kedr. Two-postiot dal lueh secures either bain of
 stand hy switches. Cryal Phasing- AM FM CN Phono, CNH Pitch, ix-position Seler[isit, fouz-poxition Tonr. RI Gain. "S Meter adjuswont oo rear. Control seevings for Erpadome and FM Beind mathed in color for simplifiad wise by othere in family.
PHYSICAL DATA: Gray spref cabinet wikh satin chrome trist Top opens on piand hinge. Catumet 20 in wide by 10 , in, hiph by 16 fm deep. Ship. Mh it los.
EXTERNAL CONNECTIONE. Dewblet pe singlt nire ansenos. $5(0)$ atnd 5000 -uhm ontpurs. Phone fack Pbonograph input hak. Soehrt for extermil jonner. Remot coitrel contion. ininc $105-125$ V. 5060 ck ce AC line.

 Bepularen 944 G Restifer.

dest Coverage in Its Class

Abstract

Here is all you would expect from a truly fine communications receiver plus extra coverage to include the G-Meter Band and the FM Broadcast Band. Offers coverage, versatility, and

 performance second only to our SX-42.PERFORMANCE: AM reception 540 kc to 55 Mc ; FM $44-55 \mathrm{Mc}$ and $86-109$ Mc. Temperature compensated oscillator. One RF and two IF stages (3 rd IF stage above 44 Mc). Dual IF channels (455 kc and 10.7 Mc). Audio response to 10,000 cycles; 3 -watt output.
CONTROLS: Band Switch $540-1700 \mathrm{kc}, 1700-5000 \mathrm{kc}, 5-16 \mathrm{Mc}, 14-14.4 \mathrm{Mc}, 15.5-44 \mathrm{Mc}$, $44-55 \mathrm{Mc}, 86-109 \mathrm{Mc}$. Main tuning in Mc; band-spread dial calibrated for 3.5, 7, 14, and 28 Mc bands. Two-position Tone, Receive/Standby and Noise Limiter switches. Crystal phasing, RF Gain, Phono/FM/AM-AVC/AM-MVC/CW, four-position Selectivity, AF Gain, and CW Pitch controls. Adjustment on rear for "S" meter.
PHYSICAL DATA: Gray steel cabinet with satin chrome trim. Piano hinge top. Size $181 / 2$ in. wide by $87 / 8 \mathrm{in}$. high by 12 in . deep. Ship. wt. 44 lbs.
EXTERNAL CONNECTIONS: Doublet or single wire antenna. 500 and 5000 -ohm outputs. Phono jack. Phonograph input jack. Socket for external power supply. Remote control connections. $105-125 \mathrm{~V} .50 / 60$ cycle AC line.
10 TUBES PLUS RECTIFIER: GBAG RF Amp., 7F8 Conv., 6SG7 IF Amp., 6SH7 IF Amp., GSH7 IF Amp., 6H16 AM Det. and ANL, 6AL5 FM Det., 6J5 BFO, 6SQ7 AF Amp., 6V6 Output, 5Y3GT Rectifier.

Matching speaker for SX-43. Two-position tone switch. 500 -ohm input. Heavy-duty PM type, 6 by 9 -inch oval size. Cabinet size $181 / 2 \mathrm{in}$. wide by $81 / 2 \mathrm{in}$. high by $95 / 8$ in. deep. Ship. Wt. 19 Ibs.

R-44
\$24.50

nazing Sensitivity and Value

Offers superior performance in the medium price range, born of Hallicrafters long experience in high-quality communications equipment. Complete in itself, with built-in PM speaker. PERFORMANCE: AM reception 540 kc to 43 Mc . Temperature compensated oscillator. One RF and two IF stages. Audio response to 10.000 cycles.
CONTROLS: Band Switch $540-1700 \mathrm{kc}, 1700-5300 \mathrm{kc}, 5.3-15.7 \mathrm{Mc}, 15.7-43.0 \mathrm{Mc}$. Main tuning in Mc; band-spread dial has arbitrary scale. AF and RF Gain controls; AVC, BFO, and Noise limiter switches; three-position Tone, BFO Pitch, and Receive/Standby controls. Settings for Broadcast Band marked in color for simplified use by others in your family.
PHYSICAL DATA: Satin black steel cabinet with brushed chrome trim. Top opens on piano hinge. Size $181 / 2 \mathrm{in}$. wide by 9 in . high by $91 / 2$ in deep. Ship. wt. 32 lbs.
EXTERNAL CONNECTIONS: Doublet or single wire antenna. Phone jack. Socket for external power supply. Remote control connections. $105-125 \mathrm{~V} .50 / 60$ cycle AC: line.
8 TUBES PLUS RECTIFIER: GSG7 RF Amp., GSA7 Conv., two GSK7 IF Amps., GIJG ANI and AVC, GJ5G'I BIO, 6SQ7, Det. and AF Amp., 6F6G
Output, 5Y3GT Rectifier.

hallicrafters

erformance in Compact Size

Now 2 Mc IF Improver Image Rejection

A rectel addition to ibe Hillicrafters ties ond a miodelifat is rapidt painine popalarity befaws of itt exctlient performance and moderate orict, Coms.

 stabions when optraring *ithin the amatcof hinhs.

Photingraph injmit jack. $105-129 \mathrm{~V} .50 /$ ©f cyate AC live.

Imaxes Even the Experts

Exceptional Performanco at a Low Price

Uxye bends lluituin PM speaker.
 and weltctivity from esperily ensioneted chavis.

$105-125$ y DC oc ro/00.gyde AC

hallicrafters

he Newest and Most Versatile Transmitter Available

HT-19
\$359.50
Amuteur Net

Offers Narrow Band FM and CW, plus provisions for AM, to give maximum flexibility on 5 bands. A completely self-contained. medium-power unit for the mudern minded amateur. In addition, its compatt size and smartly styled cabinct make it enpecially desirable wherever appearance and space are to be considered.
Consists of an oscillator (crystal controlled or VFO), a frequency modulator with speech amplifier, a buffer and a final amplifier. Extremely high stability and low FM distortion are obtained. The $4-65 \mathrm{~A}$ in the final, cooled by a 3 -inch 800 -rpm fan, has a plate input of 185 watts for approximately 125 watts output.
CONTROLS: Operation Switch has three crystal positions plus VFO and NBFM; two pilot lamps show plate and filament power on off; Band Selector switch changes multiplier coils $3.5-4,7-7.3,14-14.4,21-21.45$, and $27.16-29.7$ Mc; final coils are changed inside the unit, with dummy positions provided for four coils not in use. Check switch turns on oscillator for spotting signals on receiver. Plate switch controls all "B" power and makes connections for remote control. Power switch is in 115 -solt line. Deviation Control adjusts for 0.4 ratio on all bands. Osc. Plate Tuning operates osc. gang and calibrated dial. Power Amp. Tuning tunes final plate. Push-hution meter switch throws milliammeter from final cathode to final grid.
PHYSICAL DATA: Gray steel cabinct with satin chrome trim. Piano-hinge top with interlock. Size 20 by $10 \frac{1}{4}$ by 16 in . deep. Ship. wt. 9 lbs .
EXTERNAL CONNECTIONS: Microphone connector: keying terminals (osc. heying); $50-600$ ohm output (pi -section coupling) ; six terminal for remote control of either trans. or rec.; four terminals in final screen and plate circuits for applying audio from external modulator for AM. Cord for $105-125 \mathrm{~V} .50$. 60 cycle AC.
5 TUBES PLUS 2 VOLTAGE RECULATORS AND 3 RECTIFIERS: Three GBAG-()sc.. Freq. Modulator, and Speech Amp., 6L6 Buffer, 4-65A Final, VR-150 and VR-105 Regulators, 5Y3GT and two 866 Rectificrs.

alibrated VFO ...CW/NBFM

Modernize your prencont transmitur with this famous Hallicrafters exciter. Crystal or VFO, NBFM or CW on 5 Bands with all coils, specech amplifier, and power supply built in. Features never before available in one low-priced unit. Low frequency drift, low FM diswortion, how hum level, ex cellent keying. Output 2.5 to 4. 5 watts. Chassis similar to H1'-19 above, less final amplifier.
CONROLS: Operation Switch, Band Sulector (ranges like H'T-19),
 Check, Plate, Power, and Deviation switches. Single Tuning control.
PHYSICAL DATA AND CONNECTIONS:
Satingray cabinct, $127 / 8$ by 7 by $73 / 4 \mathrm{in}$. deep. Shipping weight 24 lbs. Microphone, keying, remote control connections. $72-\mathrm{ohm}$ output terminals.
TUBES: Threc 6BAG, 6L6, VR-150, VR-105, 5 Y 3 GT .
HT-18
$\$ 110.00$
Amatewr Net

ependable, All-Purpose Marine Receiver

S-5 1

$\$ 149.50$
Amatem Net

PERFORMANCE: Ruggedly constructed for sea or air use with special components to resint salt air, etc. Range 132 kc to 13 Mc . Three pre-tuncd channcls for fixedfrequency operation. 1020 -cyde range filter for better voice reception on ranges. One RF. two If stages. Temperature compensated.
CONTROLS: RF Gain; Band Sclector $1.32-405 \mathrm{kc}, 485-1530 \mathrm{kc}, 1450-4550 \mathrm{kc}, 4.2-$ 13 Mc plus threc fixed frequencies in $200-300 \mathrm{kc}$ and $2-3$ Mc ranges; AF Gain, CW:AM, Range Filter, ANL, Tuning, threc-position Tone. CW Pitch, Rec./Send.
PHYSICAL DATA AND CONNECTIONS: Gray steel cabinct. 1812 by 9 by $91 / 2$ in decp. Ship, wt. 30 lbs. Piano hinge top. Doublet or single wire antenna. Phone jack. Socket for 6. 12, or 32-V. vibrator pack (available separatcly). $105-125 \mathrm{~V}$. DC or 5060 c) cle AC.

9 TUBES PLUS RECTIFIER: 6SS7 RF Amp., 7 A8 COnv, two $6 S S 7$ IF Amp., iC6 Det., 7A6 ANL, 6 SS7 BIFO, $35 \mathrm{L6GT}$ or 6 VGGT Output, 3525 GT Rect.

op-quality FM/AM broadeast radio

5. 47 $\$ 229.50$
Amiteer Ner

 puithtouton tunng on hoth Broadcast and FM. and lipgbefdelity audio.
 xecutiog. As anstation is approadhed, this tircuit "akes aver" electronically wad holds the atation in perfect tunc with hnife-like precision.
PERFORMANCE: COVers Standard Braadcas, FM and Three Shorr-Wave Bends. Two thendtpreal" Short-Wave bands spread out stations acrows the dial for atier cunine of popular fordigo
 Fut: audio reponse $30-15,000$ cycle for cich, revonant kone.
COMTROLS: Five push butrons for AM and five for EM; Bathd seleciur witch FM RS- 100 MG AM $510-1720 \mathrm{he}, 5.9-18.2 \mathrm{Mc}$, 9 - 12 Mc . and $15-18 \mathrm{Ml}$. Three-ponition Bant Tonc. Goupposteston Treble Tonc. Volume, FM funing. AM runing.
PHYSICAL DATA: Gray seel, satin chrome trith. Pieno hinge top. Stre $20 \times 101 \mathrm{k} \times 16 \mathrm{in}$. decp) Ship. wt. 66 tbs.
EXTERNAL CONNECTIONS: Woublet or single wire antenna. $500-$ ohm outpur tapraker ant inctuded-use $\mathbb{R}-12$ on Page 3). Phonograph jack; 115 V. wurlet for phono motor. Cord for 105-125 V. 5060 eycte AC.
14 TUBES PLUS RECTIFIER: GBAG RE Amp., GB\#G Miser, GJG HFO and Auro. Treg. Contoul.
 6]3 and two 650^{-}Af Amph two GVGGT Outpot 3 Hita kect,

S-47C
$\$ 209.50$
Antrofru: Ner for Custom Installations Suthe FhJ/AM chastik an in s.i. radio abore. Offer upesi performance with high-fideling pudide fine custam inctillitiose for thow wha porfer the firtetc sise 18y/ in wide by $8: 1 \mathrm{il}$ in. high h 16 in deep sbip. me की its Five relay ruck.

the allicrafters company

There is no other radio like a Hallicrafters. Its precision construction and skillful engineering will bring you superb performance on the short wave bands plus fine quality reception of your favorite broadcast programs. Thrilling land, sea, and air communications from all parts of the world plus hours of enjoyment on the amateur bands are yours with a Hallicrafters.

These world famous precision instruments have been sold in 89 different countries, used by 33 governments. They are remembered by veterans, prized by experts, and preferred by radio amateurs who want a radio that is all radio.

hallicrafters television

In addition to the high quality communications instruments in this catalog, Hallicrafters also make a complete line of precision-built television receivers-from 7 -inch table models to large 19 -inch console models. The same advanced engineering that has characterized "the radio man's radio" now brings you improved television with pictures that are exceptionally sharp, bright, and stable.

Complete information on Hallicrafters television models is available in separate folders. Ask wherever Hallicrafters equipment is sold or write direct to-

the hallicrafters co.

4401 West Fifth Ave., Chicago 24, Illinois

All prices in this catalog include Federal Excise Tax, if any. Prices are subject to change without notice.

RCA Power Tube Chart for Amateur Transmitters

CW, FM, AND PHONE TO 30 Mc.

This table of representative tube types has been set up to give suitable choice of tubes for the final and for a preceding stage to drive the final. A choice of buffer, doubler, or oscillator driver
stage is provided. The tubes listed have been chosen conservatively to provide ample driving power at 30 Mc . even in circuits having higher than usual losses.

FOR EVE: YY AMATIUR SERIIC:

Rafings and Characteristics-Amafeur Transmifting Types							
$\begin{aligned} & \text { RCA } \\ & \text { Type } \end{aligned}$	Filament or Heater (K)		Amplification Factor	Max. Frequency for Full Input Mc.	Max. ICASRatings(Class C Telegraphy)		
	Volts	Amps.			Screen Input Watts	Plate Input Watts	
RCA POWER TRIODES							
$\begin{array}{\|l\|} \hline 810 \\ \hline 811-A \\ \hline \end{array}$	100 6.3	45		30 30	--	$\frac{750}{260}$	
$\begin{array}{\|c\|c\|} \hline 811-A \\ \hline 812-A \\ \hline \end{array}$	6.3	4	$\begin{array}{r}160 \\ \hline 29\end{array}$	30 30	--	260 260	
826	7.5	4	31	250	--	130	
832-A	${ }_{12.6}^{6.3} \mathrm{H}$)	1.6	6.5 •	200	$5 *$	36.	
$\frac{833-A}{80}$	$\frac{10.0}{100}$			${ }^{30}$	--	$\frac{1500}{300}$	83.
${ }^{8005}$	10.0 6.3	325 192	20	60 500	--	300 50	
RCA BEAM POWER TUBES							
$\underline{\mathbf{2 E 2 6}}$	6.3 H 6.3 H 6.	08 08 0	${ }^{6.5}{ }^{\circ}$	$\begin{array}{r}125 \\ 60 \\ \hline\end{array}$	$\frac{2.5}{3.5}$	40 75 50	
-813	100	5	$8.5{ }^{\circ}$	$\frac{30}{125}$	22	500	
815	$\begin{array}{r}63 \\ 12.6 \\ \\ \\ \hline 6\end{array}$	1.6 0.8	$6.5{ }^{\circ}$	125	4.5 *	75.	
829-8	${ }^{12.3} \mathrm{H}$	$\frac{0.8}{22}$	$9 \cdot$	200	7*	120.	
5763	6.0 (H)	0.75	16 •	175	2	17	
RCA TETRODES AND PENTODES							
4.65A	6.0	3.5	5 -	50	10	450	
4.1254 4021 4	5.0	0.5	6.2 -	120	20	675	
	50	14.5	$5.1 \bullet$	75	35	1400	
$\frac{5022}{\frac{802}{5618}}$	$\frac{6.3}{30} \mathrm{H}$	$\frac{0.9}{0.46}$	$\frac{73 .}{}{ }^{\circ}{ }^{\circ}$	100	$\frac{6}{2}$	33 7.5	
RCA RECTIFIERS AND THYRATRONS							
2021	6.3 (H)	0.6	Gas thyratron, minioture type. Two tubes in grid-controlled, full-wave circuit, up to 80 wotts of 400 volts.				4
5R4-GY	50	2	Full-wove, vacuum rectifier, with choke input, 175 ma at 750 volts				
816	2.5	2					
866-A	2.5	5	with choke input. 250 ma. Up to 2380 volts. with choke inout. 500 ma, up to 3180 volts. Gas thyrotion. Two tubes in grid-controlled, full wave cir				
2050	6.3 H7	0.6	Gas thyrotron. Two tubes in grid-controlled, full-wave cir cuit. wo to 80 watls af 400 yolls.				
5557	2.5	5	Mercury-vopor thyratron. Two tubes in grid-controlled, fuli: wave circuit, up to 1500 watts at 1500 volts.				
RCA GIOW-DISCHARGE (Cold Cathode) TUBES							
OA2	Opr Volts 151 Volts 108 Voits	 s Curren 5,0 510	Voltage-regulator types for requlating valtages to oscillators (ECO or XTAL types), oscillator power supplies, to stabilize bias voltoges, and for spark-over protection. OA2 and OB2 are minioture types.				
$\frac{\square}{O A 3}$	$\frac{75 \mathrm{Vals}}{108 \mathrm{Volts}}$						
$\mathrm{OC3}$ 003 5651	$\frac{108 \text { Volts }}{153 \mathrm{Volits}}$						
5651	37 Voits	${ }^{\text {s }} \mathrm{s}$ - 1.510	$3.5 \mathrm{ma} .$Voltage voltage	reference type for use supply	ith series-typ	stabilized	, 6
TlCAS-Intermittent Commercial and Amateur Service "Control grid-screen grid mu-factor ?Vclues shown are for Continuous Commercial Service "Total for tube							$\because \%$
RCA has a popular tube for every Amateur service, every power, and every active band. A few of the best-known types in each classification are listed. In addition, there are special-application types, such as phototubes, acorns, kinescopes, iconoscopes, and the well-known receiving types in metal, glass, and miniature. For additional technical data on these RCA tube types, see your local RCA Tube Supplier, or write RCA Commercial Engineering, Section 35AM, Harrison, N. J.							you getting RCA HAM There's a copy woil. for you of your RCA Supplier.

$\square \sqrt{a}$
 Ba $\sqrt{\square}$ MALDEM

SECONDARY FREQUENCY STANDARD

A precision frequency stondord for both loboratory ond production uses, odjustoble output, provided of intervals of $10,25,100$ and 1000 kc , with mognitude useful to 50 mc . Hormonic amplifier with tuned plote circuit ond ponel range switch. 800 cycle madulator with ponel control switch. In oddition to ascillators, multivibrotars, modulators ond amplifiers, a built-in detector with phone jock ond gain control is incorporoled. Self-contained power supply.
Madel 90505, with tubes.

ABSORPTION WAVEMETERS

The 90600 series of absarption wavemeters ore available in several styles and many different ranges. Most popular is kif of four units, covering range of 3.0 to 140 me.
Madel 90600.
$\$ 18.00$

GRID DIP METER

The No. 90651 MIILEN GRID DIP METER is compoct and completely self contained. The AC power supply is of the "tronsformer" type. The drum dial has seven colibroted uniform length scoles from 1.5 MC to 300 MC with generous over lops plus an orbitrory scale for use with special opplication in ductors. Internal terminal strip permits battery operotion for antenna measurement.
No. 90651 , with tube
$\$ 55.00$

LABORATORY SYNCHROSCOPES

The $5^{\prime \prime}$ laborotary synchroscopes are ovailoble with and without detector-video strips.
Model P-4-2, with lubes. $\$ 350.00$ Model P-4E-2, with tubes
445.00

MINIATURE SYNCHROSCOPE

The compoct design of the No. 90952, measuring only $713^{\prime \prime} \times 596^{\prime \prime} \times 13^{\prime \prime}$, and weighing only 17 lbs., makes availoble for the first time o truly DESIGNED FOR APPIICATION "field service Synchroscope
No. 90952, with tubes.
$\$ 375.00$

CATHODE RAY OSCILLOSCOPES

The No. 90902 , No. 90903 and No. 90905 Rack Panel Oscilloscopes, for two, three and five inch pubes, respectively, are inexpensive basic units comprising power supply, brilliancy and centerong controls, safety features, magnetic shielding switches, etc. As a transmitter monitor, no odditianal equipment or atcessories are required. The well-known trapezoidal monitoring potterns are secured by feeding modulated carrier voltoge from a pickup loop directly to vertical plates of the cathode ray lube and audio modulating volt. oge to horizontal plotes. By the oddition of such units as sweeps, pulse generators, amplifiers, servo sweeps, etc., all of which can be conveniently and neatly constructed on companion rack panels, the original basic scope unit may be expanded to serve any conceivable industriat or laboratory application.
No. 90902, less tubes. \$ 42.50 No. 90903 , less tubes. $\quad 49.50$ No. 90905, less pubes. 100.00

'SCOPE AMPLIFIER - SWEEP UNIT

Vertical and horizontal amplifiers along with hardtube, saw tooth sweep generator. Complete with power supply maunted on o standard $51 / 4^{\prime \prime}$ rock panel.
Na. 90921 , with tubes..
$\$ 75.00$

REGUIATED POWER SUPPLIES

A campact, uncased, reguloted power supply, either for table use in the laborotory or for incorporation as an integral part of larger equipments. 50 watts, with regulafed volfage fram 0 ta 200 volts.
Model 90201, less qubes.
$\$ 100.0 n$

90952

JAMESOMIIHEN MALDEN. MASSACHUSETTS

INSTRUMENT DIALS

The No. 10030 is on extremely sturdy instrument type indicotor. Control shoft hos 1 to 1 rotio. Veeder type counter is direct reoding in 99 revaIutions and vernier scole permits readings to 1 part in 100 of a single revolution. Has built-in dial lock and $1 / 4^{\prime \prime}$ drive shaft coupling. May be used with and $1 / 4^{\prime \prime}$ drive shatt coupling. May be used with geor reduction mechanism for control of fractional revolution copacitors, etc., in recpivers or laboratory instruments.
The No. 10035 illuminated panel diol has 12 to 1 ratio; size, $81 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}$. Smoll No. 10039 has 8 to 1 ratio; size, $4^{\prime \prime} \times 31 / 4^{\prime \prime}$. Both are of compact mechanical design, easy to mount and have lololly self-contoined mechanism, thus eliminating back of panel interference. Provision for mounting ond marking auxiliary conirols, such os switches, po. tentiometers, etc., provided on the No. 10035. Standard finish, either size, flat black art metol.
No. 10039 $\$ 2.70$ No. 10035 6.00 No. 10030 25.00

DIALS AND KNOBS

Just a few of the many stock types of small dials and knobs ore illustrated herewith. 10007 is $15 / 1$ diometer, 10009 is $21 / 2^{\prime \prime}$ and 10008 is $3^{1 / 2 "}$. No. 10007
$\$.60$
1.00 No. 10008
Ne. 10009
No. 10021 No. 10085

PANEL MARKING TRANSFERS

The ponel marking Iransters hove $1 /{ }^{\prime}$ block letters. Special salution furnished. Must not be used with water. Equally satisfactory on smooth or wrinkle finished panels or chossis. Ample supply of every papular ward or marking required far ainateur ar commercial equipment.
No. 59001 , white letters No. 59002 , black letters

HIGH FREQUENCY TRANSMITTER

The No. 90810 erystal control transmitter provides 75 wotl output thigher output may be obtained by the use of forced cooling) on the 20, 10-11, 0 and 2 meter amoteur bonds. Provisions are made for quick bond shift by means of the new 48000 series high frequency plug-in coils.
No. 90810 , less tubes and crvitales
$\$ 69.75$

HIGH FREQUENCY RF AMPLIFIER

A physically 5 mall unit capable of a power output of 70 to 85 watts on phone or 87 to 110 watts on C.W on 20, 15, 11, 10, 6 or 2 meter amoteur bands. Provision is made for quick band shiff by means of the new No. 48000 series VHF plug-in coils. The No. 90811 unit uses either an 829.B or 3 E29.
No. 908 11 with 10 meter band coi'm, less
tube
$\$ 33.00$

HIGH VOLTAGE POWER SUPPLY

The No. 90281 high voltoge power supply has a d.c. output of 700 volts, with maximun current of 250 ma . In addition, a.c. filament pawer of 6.3 volts at 4 omperes is also available so that this power supply is on ideal unit for use with transmitters, such as the Millen No. 90800, as well an genetal laboratory purposes. The power uupply uses two No. 816 rectifiers and has a two section pi filter with 10 henry General Electric chokes and o 2-2-10 mfd. bank of 1000 volt General Electric Pyranol copacitors. The ponel is stondard $83 / 4 \times 19$ rack mounting.
No. 90281, less tubes
$\$ 84.50$

RF POWER AMPLIFIER

This 500 wot amplifier nay be used as the bosis of a high pawer amateur transmitter or as a means for increosing the power output of on existing trons. mitter. As shipped from the factory, the No. 90881 RF power omplifier is wired for use with the populor RCA or G.E. "812" type tubes, but adequote in structions are furnished for readiusting for operation with such other popular amateur style transmitting tubes as Toylor T140, Eimac 35T, etc. The amplifier is of unusually sturdy mechanical conslruction, on a $101 / 2^{\prime \prime}$ relay rack panel. Plua in inductors ore furnished for operation on 10,20,40 or 80 meter omateur bands. The standard Millen No. 90800 exciter unit is on ideol driver for the new No. 90881 RF power omplifier.
No. 90881 , with one set of coils, but less
fubes

902:

JAMES M MMLEN MALDEN M MASSSACHUSETTS

R9'er MATCHING PREAMPLIFIER

The Millen 92101 is an electranic impedance motshing davice and a breod band pranmplifier combined into a single unit, designed primarily for operation on 6 and 10 mether 2 . Coils for 20 meter bond also avoiloble.
No. 92101 , less lubes

SINGLE SIDEBAND SELECTOR

The No. 92105 is designed to permit Single Sidebond Selection with existing receiver. Full lechnicol detoils in April 1948 OST. Produced in co. operotion ond under exclusive U. S. patent license (2,364,863 and others) with the J. L. A. Mrloughlit Research Loboratories.
No. 92105 with tubes ond crystols
$\$ 75.00$

FREQUENCY SHIFTER

A fovorite frequency shifter, pluas in, in ploce of crystol, for instont finger-tip control of carrier frequency, low drift, chirpless keying, vibrotion immune, big band spread, occurate calibration Model 90700 . with tube,
$\$ 42.50$

VARIABLE FREQUENCY OSCILLATOR
The No. 90711 is o complete tronsmitter control unit with 6SK7 temperature-compensoted, electron coupled oscillotor of exceptianal stability and low drift, a SSK7 broad-band buffer or frequency doubler, a 6 A 67 tuned amplifier which tracks with the oscillotor funing, and a regulated power supply. Output sufficient to drive an 807 is avoilable on 160,80 and 40 meters and reduced output is availoble on 20 meters. Close frequency setting is obtained by means of the vernier controt arm of the right of the dial. Since the output is isolated from the ascillator by two stages, zero frequency shift occurs when the output lood is varied from open eircuit to short eirevit. The entire unit is un usually solidlv built so that no frequency shift occurs due to vibration. The keying is clean and free from all annoying chirp, quick driff, jump, and similar difficulties often encountred in keying voriable frequency osciltotors.
No. 90711 , with fubes.
$\$ 89.7 .5$

50 WATT TRANSMITTER

Based on on original Handbook design, this flexible unit is ideal for either low power amateur bond transmitter use or as an exciter for high power PA stoges.
Model 90800. less tubes
$\$ 42.50$

OCTAL BASE AND SHIELD

Low loss phenolic base with octal socket plug and aluminum shield con $1^{7} 16 \times 1 / / 8 \times 3^{11_{16}}$.
No. 74:100
$\$.75$

TRANSMISSION LINE PLUG

An inexpensive, compact, ond efficient polyethylene unit for use with the 300 ohm ribbon type poly.
 No. 32102 (crystal) ackat. Pin spacing $1 / 2^{\prime}$ diameter 095^{2}
No. 37412

PERMEABILITY TUNED CERAMIC FORMS

In addition to the popular shielded plug-in permeability funed forms, 74000 series, the 69040 series of ceromic permeability tuned unshielded forms are availoble as standard stock items. Winding diometers and lengths of winding space ore ${ }^{13} x_{12} \times{ }^{7} 22$ for $69041-2,1 / 4 \times 3 / 5$ for $69043-7-8$. $1 / 2 \times 11_{16}$ for $69045-6 ; 3 / 16 \times{ }^{3} \cdot 16$ for 69044 .
No. 69041 -(Copper Slug)
No, 89042 -(Iron Core)
No. 89042 -(Iron Core)
No. 69043 -(Iron Core)
No. 69043 -(Iron Core)
No. 69044 -(Copper Slug)
No. 69045 - (Copper Slug)
No. 69046 - (iron Core).
No. 69047-(Copper Slug)
No. 69048 - (Iron Core) .
$\$.75$

90711

JAMES OMMLEN MALDEN•MASSACHUSETTS

04000 and 11000 SERIES TRANSMITTING CONDENSERS

A new member of the "Designed for Applicotion" series of transmitting variable air capacitors is the 04000 series with peak voliage ratings of 3000,6000 , and 9000 volts. Right angle drive, 1-1 ratio. Adjustable drive shaft angle for either vertical or sloping panels. Sturdy construction, thick, roundedged, polished aluminum plates with $13 / 4^{\prime \prime}$ radius. Constant impedance, heavy current, mulfiple finger rotor conlactor of new design. Available in all normal capacities.
The 11000 series has 161 ratio center drive and fixed angle drive shaft.

Code	Volts	Capacity	Price
11035	3000	35	$\$ 6.90$
11050	3000	50	7.14
11070	3000	70	1.80
04050	6000	50	16.00
04060	9000	60	18.00
04100	6000	90	18.00
04200	3000	205	20.00

12000 and 16000 SERIES TRANSMITTING CONDENSERS

Rigid heavy channeled aluminum end plates Isolantite insulation, polished or plain edges. One piece rotor contact spring ond connection lug. Compact, easy to mount with connector lugs in convenient locations. Same plate sizes as 11000 series above.
The 16000 series has same plate sizes as 04000 series. Also has constont impedance, heavy current, multiple finger rotor contactor of new design. Both 12000 and 16000 series available in single and double sections and many capacities and plate spacing.

THE 28000-29000 SERIES VARIABLE AIR CAPACITORS

"Designed for Application," double bearings, steatite end plates, cadmium or silver plated brass plates. Single or double section $.022^{\prime \prime}$ or $.066^{\prime \prime}$ air gap. End plate size: $1916^{\prime \prime} \times 11 / 16^{\prime \prime}$. Rotor plate radius: $3 / 4^{\prime \prime}$. Shaft lock, rear shaft extension, special mounting brackets, etc., to meet your requirements. The 28000 series has semi-circular rotor plate shape. The 29000 series has approximately straight frequency line rotor plate shope, Prices quoted on request. Many stock sizes.

NEUTRALIZING CAPACITOR

Designed originally for use in our own No. 90881 Power Amplifier, the No. 15011 dise neutralizing copacitor has such unique features as rigid channel frame, horizontal or vertical mounting, fine thread over-size lead screw with stop to prevent shorting and rotor lock. Heavy rounded-edged polished aluminum plates are $2^{\prime \prime}$ diameter. Glazed Steatite insulation.
No. 15011
$\$ 3.15$

I.F. TRANSFORMERS

The Millen "Designed for Application" line of I.F. transformers includes air condenser tuned, and permeability tuned types for all applications. Standard stock units are for 456,1600 and 5000 kc . B.F.O. also available.

MALDEN. MASSACHUSETTS

TUBE SOCKETS DESIGNED FOR APPLICATION

 MODERN SOCKETS for MODERN TUBES! Long Flashover path to chassis permits use with transmitting tubes, 866 rectifiers, etc. Long leakage path between contacts. Contacts are fype proven by hundreds of millions olready in government, commercial and broadcast service, to be extremely dependable. Sockets may be mounted either with or without metal flange. Mounts in standard size chassis hole. All types have barrier between contacts and chassis. All but octal and crystal sockets also have barriers between individual contacts in addition.The No. 33888 shield is for use with the 33008 octal socket. By its use, the electrostatic isolation of the grid and plate circuits of single-ended metal fubes can be increased to secure greater stability and gain.
The 33087 tube clamp is easy to use, easy to install, effective in function. Available in special sizes for a!! types of tubes. Single hole mounting. Spring steel, cadmium plated.
Cavity Socket Contact Discs, 33446 are for use with the "Lighthouse" ultra high frequency tube. This set consists of three different size unhardened beryllium copper multifinger confact discs. Heat treating instructions forwarded with each kit for hardening after spinning or forming to frequelsy requirements.
Voltage regulator dual contact bayonet socket, 33991 black Bakelite insulation and 33992 with low loss high leakage mica filled Bakelite insulation.

No. 33004
No. 33005 30
No. 33006 .30
No. 33007
No. 33008
No. 33888
No. 33087
No. 33002
No. 33102
No. 33202 . 30
1No. 33302 .21
No. 33446^{*}. 5.00
No. 33991 . 45
No. 33992. .55

* For set of 3 . Single dises $\$ 2.00$ eoch.

RF CHOKES

Many have copied, few have equalled, and none have surpassed the genuine original design Millen Designed for Application series of midget RF Chokes. The more popular styles now in constant production are illustrated herewith. Special styles and variafions to meet unusual requirements quickly furnished.
General Specifications: $2.5 \mathrm{mH}, 250 \mathrm{~mA}$ for types $34100,34101,34102,34103$, 34104 , and $1 \mathrm{mH}, 300 \mathrm{~mA}$ for types 34105 , 34106, 34107, 34108, 34109.

JAMESEMMIIEN M ALDEN. MASSACHUSETTS

CERAMIC PLATE OR GRID CAPS

Soldering lug and contact one-piece. Lug ears annealed and solder dipped to facilitate easy combination "mechonical plus soldered" connection of cable.
No. 36001-9 16"
$\$.21$
No. 36002-3/8"
.21
No. 36004 - $1 / 4^{\prime \prime}$

SNAP LOCK PLATE CAP

For Mobile, Industrial and other applications where tighter than normal grip with multiple finger 360 low resistance contact is required. Contact self-locking when cap is pressed into position. Insulated snap button at top releases contact grip for easy removal without damage to tube.
No. 36011-9 16"
$\$.60$
No. 36012-3/8" 60

SAFETY TERMINAL

Combination high voltage lerminal and thrubushing Tapered contact pin fits firnly into conical socket providing large area, low resistance connection. Pin is swive! mounted in cap to prevent twisting of lead wire.
No. 37001, Black or Red
$\$.40$
No. 37501 , Low loss.
.55

TERMINAL STRIP

A sturdy four-terminal strip of molded black Textolite. Barriers between contacts. "Non turning" studs, threaded 832 each end. No. 37104
$\$.60$

POSTS, PLATES and PLUGS

Designed for Application! Compact, easy to use. Made in black and red regular bakelite as well as low loss brown mica filled bakelite or steatite for R.F. uses. Posts have captive head.
No. 37202 Plates (pr.).
$\$.30$
No. 37212 Plugs
No. 37222 Posts (pr.)

STEATITE TERMINAL STRIPS

Terminal and lug are one piece. lugs are Navy turret type and are free floating so as not to strain steatite during wide tem. perature variations. Easy to mount with series of round holes for integral chassis bushings.

MIDGET COIL FORMS

Made of low loss mica filled brown bakelite. Guide funnel makes for easy threading of leads through pins.
No. 45000
No. 45004
No. 45005
.45

TUNABLE COIL FORM

Standard octal base of low loss mica-filled bakelite, polystyrene $1 / 2^{\prime \prime}$ diameter coil form, heavy aluminum shield, iron funing slug of high frequency type, suitable for use up to 35 mc . Adjusting screw protrudes through center hole of standard octal socket.
No. 74001 , with iron core
$\$ 1.85$
No. 74002 , less iron core
1.50

Midget Absorption Frequency Meters

Many amateurs and experimenters do not realize that one of the most useful "tools" of the commercial tronsmitter designer is a series of very small absorption type frequency meters. These handy instruments can be poked into small shield compartments, coil cans, corners of chassis, etc., to check harmonics; parasitics; oscillator-doubler, etc., tank tuning; and a host of other such opplications. Quickly enables the design engineer to find out what is really "going on" in a circuit.
Types 90605 thru 90609 are extremely small ond designed primarily for engineering laboratory use where they
will be handled with reasonable care. The most useful combination being the group of four under code No. 90600 and covering the total range of from 3.0 to 140 megacycles, When purchased in sets of four under code No. 90600 a convenient carrying and storage case is included. Series 90601 are slightly larger and very much more rugged. They are further protected by a contour fitting tronsparent polystyrene case to protect against damage and dirt. This latter series is designed primarily for field use and are not quite as convenient for laboratory use as the 90605 thru 90608 types. All types have dials directly calibrated in frequency.

Code	Description	Nef Price
90604	Range 16010210 mc .	$\$ 6.00$ 4.50
90605	Range 3.0 to 10 mc .	4.50
90606	Ronge 9.0 to 23 mc .	4.50
20607	Ronge 23 to 60 mc .	4.50
70608	Ronge 50 to 140 mc .	6.00
90609	Ronge 13010170 mc .	6.00
90610	Range 105 to 150 mc . . Neon Indicator	15.00
90619	Range 350 to 1000 kc . - Neon Indicator	15.00
90620	Range I 50 to 350 kc . - Neon Indicator	15.00
90625	Range 2 to 6 mc . - Neon Indicatar	15.00
90626 90600	Range 5.5 to 15 mc . - Neon Indicator Complete set of 90605 thru 90608 , in case	18.00
90600	Complete set of 90605 thru 90608 , in case Complete set Field type Frequency Meters in metal carrying case	18.00
¢	1.5 to 40 mc .	29.00

DISTRICT SALES OFFICES

NEW YORK
Cooper-DiBlasi 259 W. 14th Street PHILADELPHIA L. D. Lowery 1343 Arch Street BOSTON
Horry Gerber
739 Boylston Street

SEATFLE
V. Jensen 2616 Second Avenue INDIANAPOLIS V, MacNabb 915 Westfield Blvd.

KANSAS CITY
J. O. Schmilz

CLEVELAND E. J. Wall

365 Morewood Prkwy.

SAN FRANCISCO

 Russ Hines234 Ninth Street
CHICAGO
G. G. Ryon

FLORIDA
Frank C. Fassett P.O. Box 87, Lake Placid

DALLAS

Jack Yount
Pleasant Grove Station
LOS ANGELES
W. Bert Knight 908 Venice Blud,

GREENSBORO, N. C.
Harrell, Atcheson \& Adams P.O. Box 2158

MINNEAPOLIS
Elliolt Equipment Co.
712 6ih Avenue South

JAMES MILLEN
 MAIN OFFICE

FOR THE

There are no rungs missing in the JK kilocycle ladder!

No matter how special your drys. tail needs may be, the JAMES KNIGHTS CO. is fully equip. ped to meet them. There's a complete selection for commercial, broadcast, industrial and amateur applications. Special crystals to lit special needs will be built to order at modest price. Your inquiries are invited.

Two Jame K Knights Co plane: af e al ailable for the frandling of emerge thees Sandwich,
Srabitijed 2 carts Crybulds

Sandwich, Illinois

COLLINS 51J-1 COMMUNICATIONS RECEIVER

The Collins $51 \mathrm{~J}-1$ is a double conversion superheterodyne, permeability tuned throughout, and continuously tunable over the range $0.5-30.5$ megacycles. Designed as a general purpose communications receiver for military, commercial and individual use, the 51 J 's outstanding characteristics are extremes of accuracy and stability. Quartz crystals in the first conversion circuit, and the very accurate, stable Collins 70E-7A VFO in the second conversion circuit, contribute notably to these characteristics.

The tuning method employed is an innovation. The range is divided into 30 bands of $1,000 \mathrm{kc}$ each. The tuning mechanism is based on a decade system in which the megacycle figure is set by means of a band switch. 100 kc figures are indicated on the slide rule dial; kilocycle figures on the circular dial. Under normal operating conditions, with a 10 minute warmup, the dial reading is within 2 kc of the receiver's exact frequency throughout its range. Calibration error can be reduced to less than 200 cycles by means of an adjusting knob which permits the reading to be corrected at 100 kc intervals by use of a built-in crystal oscillator. The 100 kc crystal may be calibrated directly against WWV.

Even without reference to the crystal calibrator, the frequency over the temperature range $-20^{\circ} \mathrm{C}$

For results in amateur radio, it's . . .
COLLINS RADIO COMPANY, Cedar Rapids, lowa
to $+60^{\circ} \mathrm{C}$ does not vary from the frequency at $20^{\circ} \mathrm{C}$ by more than 30 parts per million plus 1 kc ; thus stability is within 2 kc at the highest operating frequency. Frequency does not vary more than 100 cycles from that at 115 line volts when this voltage is varied through the range 105 to 125. Changes in atmospheric pressure from sea level to 10,000 feet altitude, relative humidity from 10 to 90%, and mild shock, do not vary the frequency by niore than 500 cps .
The 51 J is constructed in a panel and shelf assembly for standard rack cabinet mounting. and is protected by a dust cover. It can be supplied optionally in a table mounting cabinet.

Dimensions: Panel $19^{\prime \prime}$ wide, $10^{1 / 2 "}$ high, $13^{\prime \prime}$ behind the panel. Cabinet $211 / "^{\prime \prime}$ wide, $127 / \mathrm{m}^{\prime \prime}$ high, $137 /{ }^{\prime \prime}$ deep.
Power source: 115 volis $50 / 60$ cycles a-c.
Weights: Receiver 35 pounds, cabinet 20 pounds.
Nel domestic price, rack panel or cabinet mounting, complet with lubes, speaker and matching cabinel assembly, and instruction book (including excise tax but exclusive of any state tax). . $\$ 875.00$

11 W. 42nd St. NEW YORK 18

2700 West Olive Ave.
BURBANK

M\& W Tower
OALLAS 1

Fountain City Bank Bldg. KNOXVILLE

The $32 \mathrm{~V}-2$ is a VFO controlled bandswitching, gang-tuned anateur transmitter, conservatively rated at 150 wat ts input on $\mathrm{c}-\mathrm{w}$ and 120 wat ts input on phone. It covers the $80,40,20,15,11$ and 10 meter bands. The entire transmitter, including power supply, is cased in a cabinet identical in size to that of the $75 \mathrm{~A}-1$ receiver.

The heart of the $32 \mathrm{~V}-2$ is the Collins $70 \mathrm{E}-8 \mathrm{~A}$ permeability tuned oscillator, used as the VFO. The frequency range of the $70 \mathrm{E}-8 \mathrm{~A}, 1600-2000 \mathrm{kc}$. is covered in 16 turns of the vernier dial. The calibration is very accurate, and stability compares favorably with most cryst als used by amateurs. To assure freedom from humidity effects, this oscillator is baked dry, then completely sealed and moisture proofed. As an added protection, a silica gel capsule is inserted in the oscillator at the factory.

The r-f tube line-up: a 6S. 77 VFO, 6AK 6 buffer, 6AG7, 7C5 and 7C5 frequency multipliers, and 4D32 final amplifier. Speech line-up: a 6SL7 in cascade to a 6 SN 7 to a pair of 807 modulators, which furnish 60 watts audio power to modulate the final amplifier. The power supply contains a $5 Z 4$ (low voltage) and two 5R4GY (high voltage) rectifiers, a VR. 75 bias regulator, and two 0A2 screen voltage limiters.

All cont rols are conveniently located on the front panel. As an additional refinement, both coarse and fine antenna loading controls are actuated by the same dial. The $32 \mathrm{~V}-2$ can be operated by a push-to-talk switch on the microphone, a key, or a separate switch.

Terminals are provided for supplying the energizing voltage for an antenna change-over relay. Ot her terminals, paralleled with the operate switch, are used to disable the receiver when the transmitter is in SEND position. Grid-block keying is utilized on three stages following the VFO. The back-wave of the VFO as heard in a receiver placed beside the $32 \mathrm{~V}-2$ is negligible; thus break-in operation is accomplished without difficulty. Keying is very clean, without chirp or clicks. The keyer cir-
cuit also includes a side-tone oscillator which is used as a c-w keying monit or

Dimensions: $21^{18^{\prime \prime}}$ wide, $12^{2 / 16^{\prime \prime}}$ high, $13^{7 / 8 "}$ deep.
Power source: 115 volts $50 / 60$ cycles $0-c$.
Shipping weight: 128 pounds,
Net domestic price, complete with tubes and instruction book, \$575.00.
TVI Reduction - The following methods of avoiding TVI have been provided in the design of the $32 \mathrm{~V}-2$ and accessory units:
(a) Reduction of spurious signals in the transmitter output.
(b) Filtering of transmitter output at the antenna terminal.
(c) Shielding of transmitter.
(a) In the $32 \mathrm{~V}-2$ series added tuned circuits in the exciter and an added L section in the unbalanced pi output network reduce unwanted signals. This output network is designed primarily to feed into a 52 ohm coaxial transmission line, such as RG-8/U It will also match unbalanced impedances of approximately 26 to 300 ohms and will tune out reactances normally encountered.

35C-1 low pass filter attenuation curve

1950 Parade of Collins Stars

35C-1 Low Pass Filter (b) A coaxial fitting is provided at the rear of the $32 \mathrm{~V}-2$ cabinet. This permits the use of a well shielded transmission line in which the Collins 35C-1 Low Pass Filter may be inserted. The $35 \mathrm{C}-1$ is a 52 ohm three-section filter which. with approximately 0.2 db insertion loss below 29.7 me, provides approximately 75 db attenuation of harmonic emissions at the tele vision frequencies (see attenuation curve). This high attenuation is added to that provided in the transmitter. The unbalanced output permits grounding of the outer conductor of the line and the case of the filter. The price of the $35 \mathrm{C}-1$ is $\$ 40.00$ at your Collins dealer's.

49S-1 Shielded Cabinel (c) For reducing TVI from sources other than the antenna, the Collins 49S-1 Shielded Cabinet for the 32V-2 is available at extra cost. It includes well filtered control wires and leads to terminals, and forced air ventilation. Provision is made for mounting the 35C-1 filter on the rear. The $49 \mathrm{~S}-1$ Cabinet is required in only the most difficult TVI installations. If wanted, your new $32 \mathrm{~V}-2$ can be delivered in the $49 \mathrm{~S}-1$ by your dealer. Or, if you already own a $32 \mathrm{~V}-2$, you can order from him a 49S-1 cabinet only, and install it yourself.
$315 \mathrm{E}-1$ Balun Transformer-For best operation, the $35 \mathrm{C}-1$ filter should feed a properly terminated 52 ohm line. Coupling to a balanced antenna may be accomplished by an antemna tuner or by the Collins $315 \mathrm{E}-1$ Balun Transformer, which is a wide band, low loss transmission line (see diagram) for coupling from a 52 ohm unbalanced line to a 300 ohn balanced load without tuning controls. It consists of a transmission line connected to transfer from unbalanced to balanced conditions ("balun") and a step-tapered impedence matching line. Over the frequency range 7 to 30 mc , a standing wave ratio of less than 2 to 1 is possible. The efficiency of the system is good even beyond the specified limits. The $315 \mathrm{E}-1$ is supplied in kit form with coaxial cables completely made up, and aluminum tubing and spacers fabricated ready to assemble. Available through your Collins dealer.

1488-1 Narrow Band FM Adapler - The Collins 148B-1 Narrow Band FM Adapter is for use with either the $32 \mathrm{~V}-1$ or the $32 \mathrm{~V}-2$ amateur transmitters. It plugs into the $70 \mathrm{E}-8$ variable frequency oscillator, and is suitable for FM operation on all bands. Frequency deviation is adjusted by the Audio Gain control on the transmitter. A toggle switch selects AM or FM .

$315 E$ balun transformer schematic

COLLINS 75A-1 AMATEUR RECEIVER

The well known and highly regarded 75A-1 receiver was designed specifically to give the radio amateur the best possible performance in the $80,40,20,15$, 11 and 10 meter bands.

Double conversion and crystal filter controls, with a high frequency first i-f and a low frequency second i-f, provide at least 50 db image rejection in all bands. The received bandwidth is variable in 5 steps from 4 kc to 200 cycles at 6 db down from the peak of the resonant frequency. The $6 \mathrm{AK} 5 \mathrm{r}-\mathrm{f}$ stage makes possible a threshold sensitivity far better than can be realized in normal installations.

Very high accuracy and stability result from the use of precision quartz crystals in the first conversion circuit, the extreme accuracy and stability
of the v.f.o. in the second conversion circuit, and linearity and absence of backlash in the tuning mechanism. The bandlighted slide rule dial indicates frequency in megacylces, while the vernier dial provides a direct reading in kilocycles. Panel controls include tuning, bandswitch, r-f gain, audio gain, c-w pitch, on-off-standby, crystal selectivity, crystal phasing, ave-manual-c-w, and noise limiter switch.

Dimensions: $211 / \mathrm{s}^{\prime \prime}$ wide, $127 / 16^{\prime \prime}$ high, $137 / 8^{\prime \prime}$ deep.
Powet source: 115 volts $50 / 60$ cyeles a-c.
Shipping weight: 93 pounds including speaker.
Net domestic price, complete with 13 tubes and rectifier, speaker and cabinet assembly, and instruction book (exclusive of state tax but including excise tax) . $\$ 375.00$

The New One Kilowatt Transmitter . . . Available Early Summer, 1950

Engineered by Collins expressly for radio amateurs. One kilowatt input, both AM phone and c-w. Designed to avoid TVI. Bandswitching throughout. Usual excellent Collins audio.

Tentative specifications: Exciter, single control
tuning. Dial similar to the new Collins $51 \mathrm{~J}-1$ receiver. Output 50 to 75 ohms; single ended pi followed by L section. Tubes: P. A., two type 4-250A; modulator, two type 810.

ELIMINATE TELEVISION INTERFERENCE PROBLEMS

Featured in QST and CQ magazinesfor bypassing harmonic currents in s-w transmitters and for eliminating h-f interference from power lines and control circuits. Ideal for reducing TV interference from amateur xmitters and other h-i signal sources such as diathermy machines and industrial electronic apparatus. Sprague Hypass capaciors
are Noll self-resonantat low frequencies. Instead, they simulate a lossy transmission linewith effectivebroad-band attenuation. ITnits are 3 -terminal feed-thru devices connected in series with circuit being filtered. The case is the third and ground terminal. High-volage types were developed especially to meet xmitter needs ourlined by ARRI. headquarters.

Cotalog Number	Mid.	Working Voltage	$\begin{gathered} \text { Size } \\ \text { Diam.-Length } \end{gathered}$	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
48P9**	1	250 o.c		\$2.80
46P8	. 005	$600 \mathrm{~d}-\mathrm{c}$	1×15	2.15
47P6	. 01	$600 \mathrm{~d}-\mathrm{c}$	${ }^{\text {IIV }} \times 1{ }_{4}$	2.35
${ }^{47 P 12}$	005	1000 dec	${ }_{16} \times 1 / 1$	2.40
47 P 13	. 01	1000 dec	(16) $\times 13 / 2$	2.60
47814	005	2500 dc	$1 \times 1{ }^{1 / 2}$	2.90
47 P 15	01	2500 d -c	$1 \times 1{ }^{1}$	3.10
47P16	. 002	$5000 \mathrm{~d} \cdot \mathrm{c}$	$1 \times 1{ }^{\circ}$	3.20

* Hos femole screw terminals.

DISC CERAMIC CAPACITORS by SPRAGUE

No bigger than a dime! Tough. dependable and inexpensive for wh-f bypass and coupling usen in TV and F-M as well as in standard A-M applications. Consist of a thin, round wafer of very high dielectric constant ceramic with silvered electrodes fired on both faces of the dinc. Highly moisture-resistant. Rated at 500 wolt d-c work. ing. 1.000 volts test. Packed in plastic enveloper containing 5 units.

Coiglog No.	Mid. (Min.)	Eoch	List Pricq Envelope of 5
$29(4$.001	.25	$\$ 1.25$
$29(3$.0015	.25	1.25
$29(2$.002	.25	1.25
$29(1$.005	.25	1.25
36 (1	.01	.30	1.50
$29 C 7$	$2 \times .001$.40	200
$29 C 6$	$2 \times .0015$.40	2.00
$29(5$	$2 \times .002$.40	2.00
$36 C 2$	$2 \times .004$.45	2.25

... SAVE SPACE and MONEY ON BYPASS and COUPLING JOBS

NO. 1 IN CAPACITORS!... and what this means to you

Whatever type or size capacitor you need it is practically certain Sprague can supply it - in a better, more dependable unit.

As prosed by the record. Sprague is today the nation's largest capacitor monufacturer and the sprague line is the most complete.

This growth is the direct result of research and engineering leadership that has pionecred many new important *Registered liademar hs
capacitor developments. Among them are Telecap" phenolic molded paper tuhulars; Prokar miniature molded capacitors; hermetically-sealed sub-miniatures: Vitar min (? high-soltage d-c papers. and the most complete line of $85^{\circ} \mathrm{C} .$. T'V drys

And don't forget famous sprague koolohm* wire-wound resistors! They operate cooler-can be mounted anywhere.
Write for sprague Catalog C-606.

54 IT'S SYLVANIA TUBES

CATHODE RAY TUBES

More than 75 $\%$, of leading television set manufacturers use Sylvania Television Picture tubes. You'll want Sylvania cathode ray tubes, too, for television replacement, industrial or experimental use. Both magnetic and electrostatic types available in screen sizes from 2 to 16 inches. Tubes have excellent brightness and definition and external conductive coating, which, when grounded, acts as a filter capacitor.

OSCILLOSCOPES

Two unique push-pull amplifiers give extra sensitive patterns on the 7GP1 screen of the Sylvania Type 1.32 Oscilloscope (shown). One inch peak-to-peak vertical deflection is obtained with .21 rms input. Z-axis input provided for intensity modulation applications.

Type 131 (3 -inch screen) utilizes a type 3API cathode ray tube having electrostatic deflection and focus. With horizontal and vertical amplifiers 0.5 volt rms gives l-inch peak-to-peak deflection. Sweep generator variable from 15 to 40 , 000 cycles.

MODULATION METER

Now you can monitor your modulation percentage and speech quality with a fine instrument at low cost-Sylvania Modulation MeterTypeX-7018. Percentage modulation can be read directly on the meter. Headphone jack also permits monitoring your signal quality to check for hum or audible distortion. Indicates carrier shift.

RECEIVING TUBES

You'll want Sylvania tubes-from the tiny subminiatures to the famous Lock-In-for their well-known quality and performance. Sylvania has its own plant for the manufacture of radio tube parts. Every step is quality-controlled. You can be sure of satisfaction when you buy any tubes from the big Sylvania Receiving Tube line.

TRANSMITTING TUBES

Sylvania's comprehensive line of quality transmitting tubes consists of more than 20 different types . . . triodes, beam power tubes and mercury vapor and vacuum diodes.

Typical of this complete line -designed and built to the exacting standards that have made Sylvania Receiving Tubes the leaders - is the 2E26 (shown) . . . a pentode rf amplifier and oscillator. Sylvania Transmitting Tubes are also available for service as af power amplifiers and modulators, and as rectifiers.

GERMANIUM DIODES

In addition to Sylvania's big line of ceramic-type germanium crystal diodes, duodiodes and varistors for a multitude of AM, FM and television applications...Sylvania Electric now offers smaller, lighter germanium diodes hermetically sealed in glass! This construction makes diodes moisture-proof, gives greater electrical stability . . . they're ideal for side-by-side mounting, no risk of accidental contact. Types 1N34A and IN58A are immediately available.

AND SERVICEMEN...
 AND TEST EQUIPMENT!

One of the most versatile and convenient test instruments made, the Sylvania Audio Oscillator Type 145 provides a powerful, accurate tone source for distortion checking of radio receivers.
It may be used as a modulating signal for radio transmitters or as a simple frequency meter. It is ideal for response and distortion testing of audio amplifiers, public address systems, juke boxes, wired musical installations and individual speaker cones. Frequency range 20 to 20,000 cycles. Output impedance variable by 3 -position panel selector switch.

POLYMETER

The Sylvania Polymeter Type 221 is a multi-purpose vacuum tube voltmeter that greatly simplifies the job of applying many accurate measurements and tests to radio and television equipment. Electrical values measured include andio, ac and rf voltages (up to 300 mc) ; dc voltages from 0.1 to 1,000 ; direct currents from . 05 milliampere to 10 amperes; resistances from $1 / 2$ ohm to 1,000 megohms.

New plus features for complete television service: 1. shielded ac probe lead-reduces stray field effects; 2. microphone type panel connectors on probe leads insure firm long life connections; 3. RF probe features ground clip and detachable extension tip-extremely flexible in application.

VOLTAGE MULTIPLIER PROBES

With these two DC Voltage Multipliers, the 1,000 vdc range on your Sylvania Polymeter will extend to 10,000 or 30,000 vdc full scale. Add either of these accessories to your
 Polymeter and you have a Kilovoltmeter for testing TV circuits and other high dc voltage applications. Types 222 and 223 are 10 KV Probes; Types 224 and 225, 30 KV Probes.

SIGNAL GENERATOR

With Sylvania's new Signal Generator Type 216 you can align the rf and if sections of all FM and AM receivers, adjust all types of FM detectors, and make overall receiver checks. Its high level out put and accurate calibrations make it also a valuable instrument for other service and laboratory uses requiring a high quality rf signal source.

MAIL THIS COUPON TODAY!

SYLVANIA ELECTRIC PRODUCTS INC. Rodio Tube Division, Advertising Dept. Emporium, Pa. Cirntemon: Kindly forward information on ilems ellerkerl. Receiving Tubes Cathorle Ray Tuhes Tran-mitiong Tubes \square osibillosionges \square Sig. nal Cenerator \square Polymetar \square Voltage Mul. biplier Prohes Andin ()Ecillator Germaninm Diodes Modulation Meter NAME ADDRESS CITY \qquad \qquad STATE \qquad ZONE

JOHNSON VARIABLE CONDENSERS

TYPES C and D

Single and Dual Models

Sturdily constructed to give trouble-free operation under the most severe service. High in quality vet low in price Heaviest a!uminum plates of any similar condenser, : $051^{\prime \prime}$ thick. Steatite insu!ation-large laminated rotor brushesheavy $5 / 16^{\prime \prime}$ diameter aluminum ije rods for frame strength and igidity - /4" codmium-plated steel shafts. Mounting brackets fit either tap or bottom of end plate so that stators may be mounted either top or bottom. Panel space, Type C, $5 / 2^{\prime \prime}$ wide $\times 53 /{ }^{\prime \prime}{ }^{\prime \prime}$ high -Type D, $4 / 4^{\prime \prime}$ wide $\times 4^{\prime \prime}$ high. Available in capacities, from 12 to 496 mmfd ., and voltage ratings from 3500 V . to $11,000 \mathrm{~V}$.

TYPES E and F

Single and Dual Models
Designed as rugged, compact units for medium and low power transmitters, type E and F condensers are in a class by themselves. They have more capacity per cubic inch and occupy less panel space for their rating than any other condenser.

Heavy aluminum plates, .032" thick, with rounded edges for maximum voltage rating-Heavy aluminum ie rods $1 / 4$ " diameter for frame strength and rigidity-Steatite insulation - heavy phosphor bronze contact springs, cadmium plated-Center contact on dual models-Chassis or panel mounting-Stainless steel shafts.

In addition to mounting foot shown, removable single hole brockets are furnished so that condenser may be inverted from position shown, or other components mounted above.

Panel space, Type $E, 25 / 8^{\prime \prime}$ wide $\times 2^{19} / \pi^{\prime \prime}$ high. Panel space, Type F, $21 / 16^{\prime \prime}$ wide $\times 2^{\prime \prime}$ high. Available in capacities, from 7 to 488 mm d. . and voltage ratings from 2000 V . to 4500 V .

TYPE H CONDENSER
Single Section with single or double end plates and Dual Section Models
The type H condenser was designed for aircraft transmitters and combines a minimum of weight and size with simple but rugged construction. Use of steatite for end plotes permits panel mounting with both rotor and sator insulated from ground. Has aluminum plates . $020^{\prime \prime}$ thick. End plate $12^{\prime \prime}$ square. Available in a wide range of capacities. Voltage ratings of 1500 V . and 3000 V .

TYPE G CONDENSER

The Type G condenser is extremely popular as a neutralizing condenser for medium and low power stages. It is also widely used for grid and plate funing at high and ultra.high frequencies. It has a single end plate of steatite and low minimum copacity. .032" rounded aluminum flates, and front and rear shaft extension ore among outstanding features. Available in capociries from 3.5 to 52 mmfd . and voltage ratings of 2000 V. 107000 V.

TYPE L CONDENSER

Single - Dual - Bufterfly-Differential
 Ceramic Soldered

Outstanding feature is the use of perfected ceramic soldering which assures absolute-and permanent-rigidity and strength, absolute-and permanentmaintenance of capacities!

There are na evelets, nuts or screws to work loose causing stator wobble and fluctuations in capocity. JOHNSON cerariic soldering leaves a bond which is stronger than the rugged steatite end plates themselves.
Silent operation on the highest fre. quencies is assured with o split s'ceve ension bearing that also prevellts fluctuations in capacity.

Ideal for peak efficiency even under the severest conditions, such as poitable mobile operation.

Available in copacities from 2.8 to 202 mmfds ., and voltage ratings of 1500 V . and 3000 V .

The smallest air variables ever built. A necessity in high frequency equipment. Available in single, differential and butterfly types. Single hole mounting. Split sleeve rotor bearings- no shaft wobble. Steapte end frames. Panel mounting space is $1 / 4^{\prime \prime}$ by $5 / 8^{\prime \prime}$ Capacities from 1.5 mmfd . to 19.7 mmfd ., and voltage rating of 1250 V .

TYPE J CONDENSER

The Type 」 condenser is a midget with big condenser characteristics. It has wider spacing than most small types, yet ${ }^{-}$occupies little more space and is ideal for osciliator and low power stages. The spacing is $.025^{\prime \prime}$ and universal type mounting brackets make possible a variety of mountings including chassis, panel, or inside tube sosket type inductors. Steatite end plate is $11 / 8^{\prime \prime}$ wide. Capacities from 2.6 mmid .10102 mmid ., and voltage rating of 1200 V .

TYPE N NEUTRALIZING

Small mounting space requirements, extremely high voltage rating in proportion to size, fine adjustment with uniform voltage breakdown rating throughout the full capacity range, and low cost, make these neutralizing condensers ideal for the modern transmitter. "Plates" are aluminum cups supported on a steatite frame with cast aluminum mounting bracket. Becouse of the design these condensers will withstand much higher voltage than conventional flat plate condensers of the same spacing. Capacities from 1.1 mmfd . to 11.0 mmfd . and voltage ratings of 8500 V . to $14,500 \mathrm{~V}$.
E. F. JOHNSON COMPANY, WASECA, MINN., U. S. A.

58

JOHNSON RADIO TRANSMITTING COMPONENTS

TUBE SOCKETS

Johnson tube sockets are manufactured in a wide range of styles and sizes to meet every need. Avail. able are industrial bayo. net sockets, miniature sockcts, acorn sockets, wafer sockets and special types. The industrial bayonet sockets have heavy metal shell lor strength and ade. quate insulation for high voltage applications. Johnson wafer sockets are all insulated with grade 1.4 steatite or better, top and sides are glazed. Johnson acorn sockets have contacts of silver plated berylliun copper with base grade l.4 steatite.
The Johnson "Tube Socket Guide" is available on request.

SHAFT COUPLINGS

All Johnson insulated shaft couplings are characterized by steatite insulation properly propartioned for clectrical and mechanical strength, and by accurate metal parts heavily plated.

The phosphor bronze springs of the -250 and -251 series couplings provide flexibility without backlash and compensate for minor shaft misalignments. Rigid types $-252,-262$ and -261 meet the requirements of accurate shaft alignment and high torque.
The -259 and -2593 are bar type couplings recommended for high voltages or very high frequencies.
The -264 is a small bakelite insulated flexible coupling for DC or fow voltage RF applications.

PILOT, DIAL and INDICATOR LIGHTS

Johnson dial and indicator light ascemb ies are ou'stanary pexamples of sound engineesing design, excellent material and careful workmanship. Their use is your ossurance of complete satisfaction.
Johnson carries a complete line of hundreds of standard Filo: light assemblies to meet every ardinary need. Special assemblies, to meet specific requirements can be furnished in production quantities on special order. Your inquiries are nuited.

WRITE FOR FREE GENERAL PRODUCTS CATALOG

JOHNSON

E. F. JOHNSON CO. wASECA, MINNESOTA

150 Watts Input AM Phone and CW Bandswitching 10.160 Meters

The Viking 1 offers hams commercial transmitter design, efficiency and appearance at kit prices. Superlative performance and operating convenience set new standards for amateur transmitters. A full 100 watts of AM phone or $C W$ on $160,80,40,20,15$ or 10 meters at your finger-tips.

The pi-section output stage will efficiently load many antennas without external couplers. The final tank coil is a variable inductor with excellent insulation and high Q throughout its range. Plug-in coils are completely eliminated!

Novice or old timer can obtain brilliant performance from the Viking I. A wiring harness, punched chassis and panel, table cabinet, carefully detailed instructions and all parts furnished with the exception of tubes, crystals, mike and key

AMATEUR NET
 s20950

Features

- Amplitude Modulation - Band Switching - 100 Watts Phone Output - 115 Watts CW Output - 10 Crystal Positions - Front Panel Controls
- VFO Input Receptacle
- VFO Power Outlet
- Two Complete Power Supplies
- Pi-Network Coupling
- All Stages Metered
- Self Contained

TUBE LINE-UP

6AU6 crystal oscillator 6AO5 buffer doubler 4032 final amplifier

6 AU6 voltage amplitier 6AUS driver 807 pp modulators

5R4 HV rectifiers 524 LV rectifier 6 AL5 bias rectifier

Find Tank Permits Continuous Tuning

The Ultimate in Beams.. JOHNSON ROTOMATIC
 the new universal

Rotalor icolls at sleel, high winds. lurns on coldest moin ngs Rotation cereisible. 360° it $11 / 4 \mathrm{RPM}$.

available with parasitic or driven elements

Designed for those who want the finest, here's the most flexible beam ever offered the ham. Parasitic arrays for 10,15 or 20 meters, as well as dual offered the ham. Parasilic arrays for 10,15 or 20 meters, as well as dual
beams for two of these bands. In addition, there are the new Johnson designed unidirectional phased arrays employing driven elements. These arrays, having the same gain and front to back ratio, can be erected and tuned without the usual laborious adjustment required by past beams.
The elements, rotator, direction indicator, etc. may be purchased separately.
Write For New Rotomatic Folder
Rearecree Galare

- High Gain
- Excellent Front to Back Ratio

| - All-weather Construction |
| :--- | :--- |
| - Elficient T Match to Erect |

- Availabe With Parasitic	
- Will Safely Handle 21/2 KW	Or Unidirectional Phased

- Elements

Features Galore

\author{

- High Gain
 - Light Weight
 - Efficient T Match
 - Will Sately Handle $21 / 2$ KW
}
 ing motor control and anteand relar.

Heavier Winuings on New JOHNSON HAM INDUCTORS

The Johnson "Air Wound Inductor Catalog" is load. ed with lacts - write for your free copy.

Match Tube to Coil - Link to Line For Higher Efficiency, Harmonic Reduction

Better efficiency and harmonic reduction are secured througn the availability of two fundamental types of inductors for each band, one type for high voltage low current tubes, the other for use with low voltage, high current tubes. They are available for all ham bands in 150,500 and 1000 watt ratings employing HEAVIER windings.
In addition, there's a complete line of plug-in links, which Johnson pioneered for the above inductors.
Coils, jack bar assemblies, swinging link atms, etc. fit present day, competitive components - can be purchased separately.
$\begin{array}{ll}\pi \\ \pi & \pi \\ \pi & \pi\end{array}$
Coil windings are a wire size LARGER.

Johnson was first with the plug-in link.

JOHNSON Q ANTENNAS

Matching Ease and Radiation Efficiency Never Surpassed!

There's a good reason for the ever rising popularity of the Johnson O Antenna - matching ease and radiation efficiency have never been surpassed.
They're available for $2,6,10,15,20$ and 40 meters. The 2 O and 6 O use aluminum tubing for the radiation portion, also. Applications for the Q are practically endless. The Johnson " Q ' beam consists of two "Q's" spaced 15 wave employing two "O's" for the lower frequency of the two bands desired.

New Johnson Antenna Handhook

Just off press. 47 pages of valuable information on antennas, transmission lines, coupling, elc. Sixth Edition

Price 60c

... PIONEERS IN AIR WOUND INDUCTORS

B\& W was the first to develop and manufacture the air wound type inductor, a modern type of coil that sets a standard of design and construction throughout the industry

Pioneers in many new types of coils. $13 \times{ }^{\prime}$ was the first to mambacture a complete line of coils for amateur use. First in the development of variable links. B※W now offers "plug-in" var. iable links for greater 四exibility.

Among the many other B心W firsts in the electronic fied are: trammitting turret assemblies. conl-ariable condenser combinations mindature air wound coils and the latent development, the Faradas Shiedded Link.
Sixteen vears of unchalleneed bead. ership provides an abourance that, rem gardless of the application. Bew has a coil to fit the need. . . and yon can depend on them.

BARKER \& MILIAMSON, fne

237 Fairfield Ave., Upper Darby, Pa.

B \& W BAND SWITCHING TURRETS

Pioneered by $B \in \mathbb{Y}$-These compact 5 -band switching Turrets are available from 35 -watt ratings up through units that may be operated at voltages up to 1000 volts and input powers as high as 150 wates. They provide instane band switching, covering the 80 to 10 meter hands, and are regularly socked as center-linked, center-tapped coils or end-linked, untapped.

B \& W TYPE HD INDUCTORS

Kated up to 1000 W"atts Input-Three general types available: without link, fixed center link with center tap, and variable center link with center tap. Type HD coils are ruggedly built, reasonably priced and are sypical of the many $B \& W$ coils available for specific applications.

B \& W 3400 SERIES INDUCTORS

With Fixed and Adjustable Coupling-Designed for those who want the utmost in sturdy construction and electrical flexibility in coils handling up to 500 watts. These famous coils pioncered individual adjustable link construction, thus providing precise impedance match. ing up to 600 ohms.

B \& W COAXIAL CONNECTOR CC-50

Provides efficient, watertight coaxial cable connections for amateur and commercial use. Also serves as a center insulator. Made of aluminum with steatite insulation, this unit comes complete with weatherproof cement and assembly screws. Weight 12 oz., pull strength 500 lbs.

B \& W HEAVY-DUTY VARIABLE GAPACITORS

Type CX is a radically designed split stator, butterfly rotor variable capacitor that pernits mounting the tank coil assembly directly on the capacitor frame as illustrated. Opposed stator sections provide short R-F paths desirable in high power rigs. Built-in neutralizing capacitors are provided for, on rear end plate.

B \& W PLUG-IN LINKS

For impedance matching, just plug in the proper link. These new $18 \times W$ plug-in links make your rig adaptable to practically any imped. ance as quickly as you can plug in a link with the correct nuniber of turns. Type 3750 mounting bar for HDV coils, Type 3550 for TVH. TVL-BVL coils. Links available in $1-3-6$ and 10 turns.

EQUIPMENT

In addition to the B \& W products shown here, there are dorens of others in our general catalog. All are made under the direct supervision of men who know amateur radio requirements personally. And all are produced to the high quality and design standards that are character istic of $B \& W$ equipment.

B \& W butiterfly variable capacitors

Type JCX small butterlly variable capacitors offer all the electrical and mechanical features of the larger 13 NW units, and are ideally small in size for general ham and other uses. They atcommodate $\mathrm{B} \& \mathrm{~W}^{\prime}$ " B " or " BX " series coils and offer many adrantages over conventional type unics.

B\&W ALL-BAND FREQUENCY MULTIPLIER

Model 504-A fixed-tuned, broad-band frequency multiplier designed for use with either a V.li.O. or Crystal input. Makes transmission on any band available at the llip of a switch.

B \& W "BABY" AIR INDUCTORS

2; Watts Rating-ldeal for crowded layouts, portables and any other application where space is at a premium and high efficiency a "musi." Many other types and sizes avail. able. All offer famous $13 * W$ "air wound" construction.

B \& W TEST INSTRUMENTS

Accurate-Inexpensive-Reliable

AUDIO OSCILLATOR-Model 200-An ex. iremely low distortion source of frequencies between 30 and 30,000 cycles.
DISTORTION METER - Wodel $f(x)$ - Measures total harmonic dintortion for the range of 50 to 1 F,oon cycles.
SINE WAVE CIIPPER-Model 250-Provides test signal particularly useful in examining the phase angle, transient and frequency revponse of audio circuits.
frequency meter - Hodel sok-An accurate and convenient means of making direct measurements of unknown audio frequencies up to 30,000 cycles.
write for complete b \& w instrument catalog!
Get this Handy Catalog for full details an inductors, variable capacitors "rnd accessories etery bum nueds for bis rig.

Modernize YOUR PHONE TRANSMITTER with a STANCOR Audio Filter

C-2317-Use of a splatter suppressor filter between the modulator and Class C amplifier eliminates undesirable high audio frequencies and harmonics which cause illegal interference to stations on other channels. Stancor Part Number C-2317, illustrated in a typical circuit app: ication in the diagram at the right, attenuates frequencies higher than 3,000 CPS when used in accordance with supplied instruction data. The effectiveness of the system is greatly enhanced by the negative peak limiter shown in the circuit.

C-2340-In radiotelephony, it is highly desirable to limit frequencies in the side bands to those providing the greatest degree of intelligibility. Useless, power-consuming frequencies below 200 cycles and above 3,000 cycles can be efficiently eliminated by insertion of the Stancor C. 2340 band-pass filter in the speech amplifier. When used in conjunction with a peak clipper, a high aierage percentage of modulation is possible, providing a signal that rides over the QRM. The graph illustrates the frequency curve of this three-section M-derived filter.

C-2341-Where the properties of a low-pass filter meet circuit requirements, the economical M-derived Stancor C-2341 will give a good account of itself and may be used to advantage with a peak clipper. Typical circuit application of this low-pass filter may be found on page 24 of the November, 1946, issue of QST. The frequency curve of the C-2341 is shown at the right.

Your electronic parts distributor can sup. ply you with more than four hundred types of Stancor transformers and related components for radio, television, sound and other electronic applications. In addition, special units can be built to your
specifications for experimental work. Comperent Stancor enginecring, ad. vanced manufacturing techniques and rigid standards of quality ensure components that improve the performance of the finest equipment.

GENERAL CATALOG 400 transformers and related components are campletely described in Stancar's general catalog. Also included are handy reference charts.

TELEVISION COMPONENTS Revised frequently to

 keep pace with the fast-growing television industry, Catalog 337 lists all Stancar TV campanents currently available, including the "Exact Duplicate" series for dependable replacem ent.HIGH FIDELITY The outstanding HF and WF series of high fidelity transfarmers were designed to meet the demand of audia engineers and enthusiasts far superlative audio components. Stancor Catalag 336 gives complete transformer specifications, including frequency response data.
MOBILE TRANSMITTER The pleasures af mobile aperation ore being discavered by mare and more amateurs every day and their popular transmitter shoice is the field-proven ST-203.A unit, completely described, with illustratians, in Catalog Sheet I311R.

PICK UP COPIES
OF THIS STANCOR
LITERATURE AT YOUR DISTRIBUTOR OR WRITE

STANDARD TRANSFORMER CORPORATION
3590 ELSTON AVENUE
CHICAGO 18, ILIINOIS

THERE ARE MANY GRID-DIP METERS

But Only ONE MEGACYCLE
 METER
 Model 59

WITH THESE EXCLUSIVEFEATURES:

- WIDE FREQUENCY RANGE-2.2 MC TO 400 MC .
- Frequency calibration accu. RATE TO $=2 \%$.
- 120 CyCle modulation.
- oscillator-probe separate from power supply for ease of OPERATION.
- ac or battery operation.
- PRECISION INSTRUMENT DESIGN AND CONSTRUCTION.

Specifications:

FREQUENCY: 2.2 Mc. to 400 Mc.; seven plug-in coils.

MODULATION: CW or 120 cycles; or external. OSCILLATOR UNIT; 3 3/4" diameler; $2^{\prime \prime}$ deep POWER UNIT: $51 / 3^{\prime \prime}$ wide; $61 / 8^{\prime \prime}$ high; $71 / 2^{\prime \prime}$ deep.

POWER SUPPLY: 117 volis, $50-60$ cycles; 20 watts.

MANUFACTURERS OF Standard Signal Generators Pulse Generators EM Signal Generators Square Wave Generators Vacuum Tube voitmeters UHE Radio Noise \& Field UHF Ramgth Meters Strenkth wert Capacitance Bridges induetance pinderes Megohm Meters Television and FM Test Enuinment

TELEVISION INTERFERENCE

The Model 59 will enable you to make efficient trops ond filters for the elimination of most TV interference.

Write for Free Dato Sheet 59TVI

A Multi-Purpose Instrument For Amateur, Service Man, Engineer

- For determining the resonant frequency of tuned circuits, antennas, fransmission lines, by-pass condensers, chokes, coils.
- For measuring capacitance, inductance, Q, mutual inductance.
- For preliminary tracking and aliziment of receivers.
- As an auxiliary signal generator; modutated or unmodulated.
- For antenna tuning and transmitter neutralizing' power off.
- For locating parasitic circuits and spurious resonances.
- As a low sensifivity receiver for signal tracing.

MEASUREMENTS CORPORATION

BOONTON • NEW JERSEY

Yes, say hams the world over it's CORNELL DUBILIER

CAPACITORS •VIBRATORS •ANTENNAS AND CONVERTERS

 for dependable service in all radio and TV applications> Whenever hams CQ, Cornell-Dubilier gets the recommendations on dependable capacitors; rotator, TV, FM and AM antennas; power converters and vibrators. For the most for your money look for the C.D quality trade-mark on these components. Cornell-Dubilier Electric Corporation, Dept. AH50, South Plainfield, N. J. Other plants in New Bedford, Brookline and Worcester, Mass. ; Providence, R. I.; Indianapolis, Ind.; and subsidiary, The Radiart Corp., Cleveland, Ohio.

CORNELL-DUBILIER CAPACITORS

Cornell-Dubilier Paper, Mica, Dykanol and Electro1ytic Capacitors for every conceivable application. For over forty years the capacitor line most in demand. Send for Catalog No. 200B for full description.

CORNELI-DUBILIER "SKYHAWK" ANTENNAS

Cornell-Dubilier TV, FM, AM and Auto Antennas in all shapes and sizes for every possible application. Send for descriptive literature.

cornell-dubilier vibrators

Both heavy duty and automobile radio vibrators have now been added to the famous C.D bannerhead. For the finest engineering in vibrators - for quiet, stable long-life insist on C-D vibrators. Catalog No. VA of standard stock vibrators on request.

CORNELL-DUBILIER POWERCON CONVERTERS

C-D Powercons are honestly rated for dependable trouble-free long life. A complete line for conversion to 110 volts AC from 6, 32 or 110 volts DC ; converters for operating phono-turntables from 110 VDC; battery chargers for 6 and 12 volt DC output from 110 VAC and converters for conversion of DC voltage at one level to DC at another. Powercon catalog on request.

fuSjMas

Custom Made Technical Ceramics rsold ontr to manufacturers,

AMERICAN LAVA CORPORATION
 CHATTANOOGA 5, tennestef

-hp- 200 C Audio Oscillator

-hp- 616A
UHF Signol Generator

-hp- 330B Distortion Anolyzer

-hp- 400 C acuum Tube Voltmeter

-hp- 805A Slolted tine

-hp- 202B Low Frequency Oscillotor

function model	frequenet	eharacteristics
DISTORTION ANALYERS	100 cps and 5 te	Measures total distartion os tom as 0.1°. 70 db altenuator, I db seeps tor comparison
	$50,100,400 \mathrm{cps}$ and 1.5 and 7.5 te	Same ar 320A
	30, 50, $100,400,1.000 \mathrm{cpl}$; $5,7.5,10$ and 15 kc	Meosures total dittortion of low os 0.1%. Input omplifier and complete VTVM each usoble separotely
	Any troquency 20 to $20,000 \mathrm{cps}$	Similor to 325B but measures at ony frequeney and includes AM delestor
	Any ferquency 20 10 20.000 cpt	Similar to 3308, no AM detector. Meter has VU chapocreristics to meet FCC requirements for FM broadcosting
$\begin{aligned} & \text { FM EROADCAST } \\ & \text { MONITOR } 335 B \end{aligned}$	88 to 108 mc	FCC opproved. Manitors cartier frequency and modulation. High fidelity output tor out ol monitoring
ATtenuators	Mar 100 hc	$110 \mathrm{db}, 1 \mathrm{db}$ steps; 5 watr, 500 ohm leval. Bridged Tiype. Accuracy 1 db in 50 db at 100 hc
	Man 100 kc	Some as 3508 but 000 ohm level
	10 cps s 01 ms	Nine ranges 0.03 to 300 volts full icale. Accurocy $=3 \%$ to $100 \mathrm{kc},-5 \%$ to 1 me . Averoge reoding. Calibroled in mm .
	2 cps to 100 dc	Some as 400A with response flat to 2 cps . 10 megohm inpul impedonce
	20 cps 102 mc	Puelve ranges 0.001 10 300.0 voify full wealo: oecuracy $=3 \%$ 10 $100 \mathrm{ke},=5 \%$ to 2 ms ; 10 megohn input impedance; average reading; calibroted in rms volts; may be used as 54 db omplifier
$\begin{aligned} & \text { VACUUM TUBE } \\ & \text { VOLTMETERS } \end{aligned}$	2 to $50,000 \mathrm{cps}$	Portable, batery-operated; aleven ranges; 0.003 to 300 volts full scale: accuracy 3% to $20 \mathrm{ts} ; 10 \mathrm{megohm}$ input impedanse
ACCESSORIES	30 cps to 700 mc	$A C$: sia ranget 1 to 300 vols. $D C$. seven tanger 1 to 3,000 volts. Resistonce seven ronges 0.2 ohm to 500 me gohms
	300 to $2,000 \mathrm{cps}$	Sranding Wove Indicator for use with o bolometer or crysul rectifier: stondard feequency 1000 cps , others on speciol orcer
		Miscomave Power Meter. Measures directly po mer dissipared in a slondard barretler. Full scale reading 0.1 to 10.0 miltwalls.
	101.000 ms	Connectis probe of 410 A ogros 50 ohm tronsmission line. Type N fittinas
	to 1.000 me	Conne els probe of 410 A to open end of 50 ohm transmission line. Type N firinas
AMPLIFIERS 450 A	$10 \times 1.000,000 \mathrm{cps}$	40 db and 20 db stabilized gain. Input impedonse 1 meqohem shunted by opprorimately is uuf.
$\underset{\text { EREQUENCY METER }}{\text { ELECTRONIC }} 500 \mathrm{~A}$	5 cpss to 50 hc	Ten ranges. - 2\%, ascutacr. Inpul 0.510200 volis
ELECTRONIC 505A	300103.000000 rpm	Ten ronges, - $\mathbf{2}^{\circ}$, asculacy
TACHOMETER 505B	57050.000 pss	Same as 505A escepr calibroted in PDS
SIGNAL GENERATORS	500 to 1.350 mc	Calibrated oufput 0.1 mictovalt to 0.1 volt. Internal pulse modulotion. Direst calibration
	1,800 $104,000 \mathrm{~ms}$	Direct erading. Pula, modulation, SW and FM, Calibrated oulput 0.1 mistovolt to 0.2 volss
	10 cps 1010 mc	Direst teading. Sis bands. Output 3 valts 10000 ohm lood. VIVM and outpur atrenuator
POWER SUPPLY 710 A		Any de voliage 180 to 360 for 0 10 75 malaod :
SLOTTED LINE \{805A	$500 \mathrm{to} 4,000 \mathrm{mc}$	VSWR Less than 1.04. Tunable probe. 50 ohm impeasnce. T, pe N connestors.

Accurate measurements are fundamental to electronic progress. -hp- precision instruments are basic tools for making these measurements swiftly, surely, easily. -hp- instruments are used in laboratories, factories, radio and television stations, military installations and technical colleges throughout the world.

ANOTHER -hp- SERVICE

Person-to-Person Attention

 to Your Measuring ProblemsAlmost anywhere in America, -hp-field representatives can pro. vide personal help with your measuring problems. They have complete data on all \cdot bp- insoru-ments-their performance, servicing, and adaptabilities.

BOSTON, MASS.

Burlingame Associates
270 Cornmonwealth Avenue
Kenmore 6.8100
CHICAGO 6, ILL.
Alfred Crossley \& Associates
519 W. Randalph SG.
State Tifíf
CLEVELAND 12, OHIO
M. I'. Odeil
17.18 Norrifield Avenue

Potomac 6960

DALIAS S, TEXAS

Rarl W. Lipecomb
-1f53 Stanfurc: Street
l.ogzall 6.5()7

DENVER 10, COLORADO

Rewaid (; Bowen 1896 Sor, Jhumbolds Street Spruce 936 K
FORT MYERS, FLORIDA
Arthur Iynch and Associates
P. (). Box 'íng

Fort Myers 1260 M
HIGH POINT, N. C.
Bivins \& Caldwell
Room sot, Security Bank Ruilding Phone 3672
LOS ANGELES 46, CALIF.
Norman B. Necly Enterprises
-22 McIrose Avenue
Whiney 11.i7
NEW YORK 7, NEW YORK
Burlingame Associates
11 Park Pace

1) ighy 9-12-10

SAN FRANCISCO 3, CALIF.
Norman H. Neely Enterprises
95-i Howard Street
Doraglas 2-2609
TORONTO 1, CANADA
Atias: Radio (iorporation, Led.
560 King Street W'est
W:averley 1761
WASHINGTON 9, D. C.
Burlingame Ásociates
2017 S Stree N.W.
Decatur 8000
For defalls on ony -hp- instrument, cantoct the nearest -hp. representotive or wrife direct to foctory.

HEWLETT PACKARD CO.

1862-M Poge Mill Rood, Polo Alto, Colif.
Export Agents: Frazar \& Hansen, Lid. 301 Clay St., Son Froncisca, Calif., U.S.A.

make the most of your Station $P_{\text {ower }}$

VOLT-OHM-MILLIAMMETER MODEL 666-HH

A precision-made morvel of compactness that provides a complete minio. fure laboratory for voltage resistance, and direct current onalyses

RANGES

D.C.Volic:0-10-50-250-1000-5000 at 1000 ohms-Volt.
A.C. Volts: $0-10-50-250-1000-$ 5000 at 1200 shmi-Valt.
D.C. Milliumperes: 0-10-100-500 at 250 Millivolts.
OHMS: 0-2000-400,000.
NEW MODEL 666-k-A new pocket tester with presibion resistars, unit canstruetion and higher resistance ranges.

$$
\star \quad \star \quad \star
$$

A COMPLETE LINE OF METERS

Triplett panel and partable meters are available in more than 26 case stylesraund, square, and fon-2"' to $7^{\prime \prime}$ sizes. Included are voltmeters, ammeters, milli ommeters, millivolimeters, microammeters, tharmoammeters, DB meters, VU matars and electrad, namiameter type instruments.

Triplett

electrical instrument company
blUFFTON, OHIO
74

ALLIED gives you every BUYING ADVANTAGE

Get the Best! It's smart to buy quality! That's why ALLIED offers you the widest choice of nationally known, completely dependable equipment.

Gef. if Fast! Your orders-large or smallgo out speedily, under expert supervision. You get exactly what you want when you want it.
Gef Value! Save money on all your station needs. ALLIED'S huge stocks are priced low - to bring you the equipment you need at the lowest market prices.
Get the Easiest Terms! Only 10\% down on ALLIED'S Easy Payment Plan. You get full carrying charge refund on 60 day payment; 50% on payment in half the required time. No red tape - no finance companies. Minimum order is $\$ 45$; carrying charges only 6% after 10% down payment.

Get the Most Liberal Trade-Ins!

Want to make a cash-saving swap? We mean business —FB for you! Just drop a line to Dayton Warner (W9IBC) - or visit our Ham Shack. We'll go all-out to give you the squarest trade-in deals in the business. Try us-we'll see to it that you come out way ahead!

Amateur Radio's Leading Buying Guide

You'll find everything you need in receivers, transmitters, instruments, parts and station gear in this latest 196-page Catalog. Get it today! And get every buying advantage at ALLIED-money-saving values, top-grade equipment, fast shipment, ideal easypay terms, unbeatable trade-ins-and real help from our staff of old-time

Hams. Get the advantages Amateurs have enjoyed at ALLIED for over 20 years. Be sure to keep your ALLIED Catalog handy-it's your complete

Amateur Buying Guide!

FREE

Send for
Your Copy
Today...

COMPPNENTIS FOR EVERY APPICATION

COMmERCIAL GRADE Industrial Dependability	SPECIAL SERIES Quality far the "Ham"			MODULATION UNITS One wall ta lookW
VARIABLE INDUCTOR Adjust like a Trimmer	TOROID HIGH O COILS Ascuracy . . Stability	TOROID FILTER ny type to 300 K		EQUALIZERS Broodcost 2 Sound
PULSE TRANSFORMERS For all Services	SATURABLE REACTORS Power or Phase Contral	PIUG IN ADAPTER mpedance Matching		
			IINE ADJUSTORS Motch ony line roltage	
	Whider Tranef frmer lo. 150 VAGICK STREET WEW YORK 23 N. Y. 			

Hallicrafters
Guardian
Cardwell
Eimac
Hickok
Burgess
Collins
IRC
Jensen
Meissner
Ohmite
National
Roytineon
Potter \& Brumfield
Ohmite
Universal
Taylor
Sangamo
Ward Leonard
Mallory
H \& H
Belden Hammarlund
General Electric Cornoll.Dubilier
Brush

Astatic

Hytron
Johnson
Millen
RCA
Shure
Thordarson
UTC
Clarostat
Browning
Mueller
Rider
Simpson
Tose
Bogen
Blitey
Amphenol
Barker-Williamson
Amperite
Mu-Switch
Aerovox
Advance
Stancor
Abbott
Struthers-Dunn
Triplett
Centralab Gammatron
ESICO
Dunco
Dumont
Dialco
Coto
Cetron
Cannon-ball
Brandes
Birnbach
ATR
Arrow
Heintz and Kaufman
Kato
Lenk
Pyrex
Recordisc
Sigma
Trimm
Turner
Kwikheat
Kester TO

The RADIII SHACK

 AMATEURS ALL

78

3 GREAT STORES! Uptown at 115 West 45 th Street and Downtown of 212 Fulton Street in NEW YORK 323 West Madison Street in the heart of CHICAGO

MAIL ORDER DIVISIONS: 242 West 55th St., N. Y. 19 and 323 West Madison Street, Chicago 6. Illinois - WRITE, WIRE or PHONE our Special! Industrial Departments for Prompt, Efficient Service. IN NEW YORK, Phone: CIrcle 6.4060 - IN CHICAGO, Phone: STate 2.2950

ThE EASIEST SEMI-AUTOMATIC KEY IN THE WORLD TO OPERATE!

"PRESENTATION"
Ite anly key whth Super-Speed Contral Main Springatd Oilier Cinit Clikentiug Featuref
. ifflitilt

 slowa-n or finter thlall lase les-

- Jixirit large font mater lite

- Suta-Grib bin
liva*... vilatole and hasmi

- Cemmbitle kot mettisht

Dintlath- (obll rothed fothiom

Vhbropler Morel GRIGiNNL - In extorntion-
 formatlor, F"allons lhe worlal over for its operating

Vibraplex Model BISE R.XCER - Smalt in wise

 sigual thatity for whicha thot key is internationatly

 Gibroplex Mroder. R.I

 an imbroved flat vibtaling lever, at justable dor

Hhnstrated alowe is the . New, Vibroplex Model Super DeDaxe "PRESEAT.ITION", the shturthest \quad geratimg key ever buit
$\$ 27.50$
mablata bringe in all c.w. keving operations the simpliaty and precision which make high elitss operating posible. The ability os send perfect signals is further aded ber the ease with which these kers can be operated. Porfer babance, simple operation and smonth, pesitive adion emeorage users to mate the mose of their skill. These worthwhile features are importam not only w the experiencel operator, bat 6 ansone desiring w develop a pleatsing semding stole.

Vibroblex Model ciHAMPlav I inll yir. do
 cildeal rithor Nice lishationg Rus aths contbining math of the smexthonss athl ofl-

 athe watko. \$9.95.

 foried eorners. Jikexible lacthor hathelle. lustress shite-kerthing whorn

All Viboplex keys are available for left hand operation, \$1.00 more. Choose from the world's finest semi-athomatic keys. If your dealer camon supply you ORDER DOREC"F.

FREE descriptive literature

To set the genuine Vibroplex key, look for the "BUG" trade mark stamped on mameplate.

```
THE VIBROPLEX CO., INC., 833 Broadway, NEW YORK 3, N. Y. W. W. Albright, President
```

80

DO YOU HAVE YOUR COPY OF THE BIG FREE B-A CATALOG?

A FAST, RELIABLE ONE STOP SOURCE FOR ALL YOU NEED

144 big pages, o complete guide to the very latest products of the top makers in Radio, Video, Sound and Recording fields...complete units, kits, components .. test apparatus, books, tools and sup-plies...everyshing-down to the little things usually too troublesome for others to stock. B-A is a onestop source for Dealers, Servicemen, Broadcasters, Schools, Factories. Public Utilities, Laboratories, Engineers, Amateurs, Experimenters.

IF IT'S NEW...B-A HAS IT

> You'll tind thousands of items in our catalog... all the popu lar staple items and everything NEW. Let B.A be your source of supply for all your needs. You'll like our friendly, speedy service and our attractive prices

MAIL THE COUPON NOW

BURSTEIN-APPLEBEE CO.

 1012 McGee St.Kansas City 6, Mo.

Send me your FREE calalog.

NAME

ADDRESS

TOWN \qquad STATE \qquad

EXPERT CODE OPERATORS ARE ALWAYS IN DEMAND!

LEARN CODE THE QUICK, EASY WAY

Every day trained code operafors are finding their dreams of success coming true. Get ready for your big chance now. Start today to learn code the modern, streamlined CANDLER way. Get the maximum speed and efficiency you need to qualify as an operator in the quickest, easiest way-the CANDLER SYSTEM OF CHAMPIONS. For nearly forty years the CANDLER SYSTEM has trained beginners to develop and apply their talents to top speed and maximum efficiency. The record of highly-paid expert operators who learned the CANDLER way from the start is proof in itself of what the CANDLER SYSTEM offers you. Find out how you can save time and money learning the fundamentals of code sending and receiving. Write for FREE Candler Book of Facts today.

BEGINNERS

PREPARE YOURSELF FOR YOUR BIG OPPORTUNITY

OPERATORS PREPARE
YOURSELF
FOR
GUANCEMENT
ADVANCEMENT

INCREASE CODE SPEED AND SKILL

Is lack of speed and skill holding you back even though you have experience in code sending and receiving? The CANDLER SYSTEM is the answer to your problem. It shows you how to improve your code technique-increase your speed-develop your skill to the highest point - eliminate nervous tension-and pave the way to a top-bracket position as an expert code operator. Special training is the prime requisite in developing skill and speed. The CAND. LER SYSTEM offers you that training in a simple, thorough and interesting way. It is the outstanding system that has developed thousands of first-class code operators-even Champions -from ordinary operators. Let us show you how we can help you reach the top. Write for FREE Candler Book of Facts today.

the CANDLER way is the CHAMPION way

Ted MeElroy is the Official Champion Radio Operator, Speed ㄷ..2 w.p.m., won at Asheville Code Tournament, July 2. 1939. Here is what World Champion MeELroy has (o say: "My skill and speed are the result of the exclusive. scientife traming Walter Canller gave me. Practier is necessary, but without proper training to develop Concentration. Co-ordination and a keen Pereeptive sense, practice is of little value. One likel! "ill practice the wrong way."

THIS
FREE BOOK

TELLS YOU HOW!

Whether you are a beginner or an experienced operator who wants to become an expert Commercial Operator - or whether you want the thrill and excitement of being an expert Amateur Operator the CANDLER SYSTEM has a course designed for your talents and budget. Complete details of the CANDLER SYSTEM are outli.sed in the budget. Complete derails Book of facts. Send for your FREE copy raday.

SPECIAL COURSES FOR BEGINNERS

The SCIENTIFIC CODE COURSE, especially designed for the beginner. Teaches the basic principles of code operation scientifically.
The HIGH SPEED TELEGRAPHING COURSE, intended for the operator who wishes code speed and skill to become a good operator or a better one faster.
The HIGH SPEED TYPEWRITING COURSE, designed for those who desire typewriting proficiency and speed. Especially designed for copying messages and press with typewriter.

SEND FOR YOUR BOOK TODAY you'll never regret iti

BOB HENRY, WØARA, OFFERS YOU:

LOW PRICES: I sell to you as cheap or cheaper than you can buy anywhere.

COMPLETE STOCKS: Collins, Hallicrafters, National, Hammarlund, RME, Millen,

Harvey-Wells, Meissner,
Gonset, Meck, Johnson, RCA, all other amateur receivers, transmitters, beams, TV, AM-FM, high fidelity amplifiers and speakers, test equipment, tubes, parts, etc. I can supply nearly any equipment shown in any catalog or advertisement and at lowest prices.

BEST TRADE-IN ALLOWANCE: Customers in all parts of the USA trade with me because I allow so much. Tell me what you have to trade and what you want. I also buy equipment.

TIME PAYMENTS: You can order anything on terms. I finance the terms myself to save you time and bother. Customers everywhere in the USA find my terms best. Write for details.

QUICK DELIVERY: Mail, phone, or wire your order. It will be shipped promptly. I can be reached nearly 24 hours a day, 7 days a week.

TEN-DAY TRIAL: Try any communications receiver ten days -if you return it your only cost is shipping charges.

PERSONAL ATTENTION: The Butler store is run by Bob Henry, WøARA, and the Los Angeles store by Ted Henry, W6UOU. We make the deals ourselves. We finance the time payments ourselves. That way we have the lowest overhead and can do more for you. That's why YOU AND I CAN DO BUSINESS. Write, phone, or visit either store

Shurite panel
 METERS Meet Your Needs because . . .

They're RUGGED Sturdy construction throughout. Molded inner unit with coil frames and insulators integral for maximum rigicity. Exceptionally high ratio, torque-to-weight.

They're NEAT Dials are metal so they stay good looking in spite of age and moisture. Rich telephone black finish on metal cases. Concealed coils and good readable scales.

They're SENSITIVE Accuracy well within 5%. AC meters are double-vane repulsion type $D C$ meters are polarized-vane solenoid type. High internal resistance models available in popular ranges.

They're GUARANTEED . . . For one year from date of purchase against defective workmanship and material, and will be repaired or replaced if sent to the factory postoaid with 25 c handling charge.

They're INEXPENSIVE For instance, Model 950, 0-100 DC Ma. sells for $\$ 1.45$; Model 550 0-15 DC Amps. for $\$ 1,30$. Other meters are correspondingly reasonable in price.

They're AVAILABLE Stocked by leading electronic distributors in a wide variety of types and ranges.

The line is COMPLETE . . . All of these features are available in 216 ranges and types: $A C, D C$; Voltmeters, Ammeters, Milliammeters, Resistance Meters. For instance, DC Milliammeters are made in 60 types and ranges.

Ask for Generol Catolog Sheet F53-5H
Silurite olso makes pocket meters and testers. Ask your distributor for further information, or write us direct

SHURITE METERS

87 HAMILTON STREET, NEW HAVEN 8, CONN

FOR BRILLIANT PERFORMANCE

Mifichophoned BY TURNER

Thousands of users in every climate and temperature praise the reliability of Turner microphones. They're enpineered ripht for soamd performance, built from finest materials to assure lasting satisfaction, and priced to pive top dollar for dollar value. Wride range of models lets you choose the unit that's right for your job. For microphones that make a good job better - better turn to Turner. See your dealer now.

In Camada: Canadian Marconi Co., L.td., Montreal, P.Q. and Branches

Cedar Rapids, lowa

Export: Ad. Auriema, Inc., 89 Broad St., New York 4, N.Y.

86

Vhf favorites, 12 etc. Top-grade voltage regulators;
HY69,5516, 5812 , OB 2 , etc. \quad these facts? Hytron is trin originated the "But does he know in receiving tubes. GT types ... many new turer specializing the GT ... over 50 GT receiving tubes for TV. subminiature ... a new line of low-cost rece leading set manufacminiatures . . closely . . . constantly wining tubes. Hytron offers Hytron works closely. turers to improve alrequality receiving tubes the ham premium- ostra And Hytron mak inds of receiving jobs - at no extra for him all kinds of reeiving Picture Tubes. know Hytron has metal, lock-in, 7-pin and For de"Does the ham GT, G, standard glass, Hytron is his best bet. tubes ... GT, G, tell the ham. Hy transmitting and special miniatures? Heceiving tubes -as well tell us! Now he has helped us purpose tubes."

CEEIVIMG TUBES" tell you. You know too!
GYOU CAN'T BEAT HYTRON, FREE Hytron Receiving Tubes.

L5

NEW HYTRON SHOP Time-and effort Economical. Original. Practicabe Lifter . . Tube savers. Soldering Aid ... Tube Lifterers, etc. DeTapper .. Miniature radio servicemen in recent signed by and for radio suited to ham use too. Hytron Contest. Idealy Write today for free Hytron At Hytron jobbers.
Shop Tool Catalogue.

Retail Price List for Guide for Miniaturen Reference

1. Hytron Res, 3rd Ed.
tron Tuber and Special Purpose
2Eansmitting and.
Hytron Transmitting 2F25A, 2E30, 3B4. Tube Catalogue. sheets: 2F,25A, 2E 269,5514 ,
A. Complete data sheets HY12312. HY1269, HY31Z, HY 5516,5812 .
oldest manufacturer specializing in receiving tubes

Subraco
Lysco
Magnecorder
Hallicrafters
Guardion
Cardwell
Eimac
Hickok
Burgess
Collins
IRC
Jensen
Meissner
Ohmite
National
Raytheon
Universal
Taylor
Sangamo
Ward Leonard
Mallory
H \& H
Belden
Hammarlund
General Electric Cornell-Dubilier
Brush
Astatic
Hytron
Johnson
Millen
RCA
Shure
Thordarson
UTC
Clarostal
Browning
Mueller
Rider
Simpson
Bogen
Bliley
Amphenol
Barker-Williamson
Amperite
Aerovox
Advance
Stancor
Triplett
Centralab
Grammatron
ESICO
Dumont
Dialco
Coto
Celron
Birnbach
ATR
Arrow
Heintz and Kaufman
Kato
Lenk
Pyrex
Sigma
Trimm
Turner
Kwikheat
Kester
90

HARVEY"es. MAGNECORD

Combine these units to suit your needs and your purse. For portable or studio use. Conforms to all N.A.B. specifications. Pre. cision capstan and drive.

The Pr-6A Tape Recorders are now in use in hundreds of broadcast stations and recording studios. Two tape speeds: $71 / 2$ and 15 inches plus high speed forward on the PT-6AH for cueing purposes.

Designed for professional use, these units provide the highest quality. Frequency response $\pm 2 \mathrm{db}$ from 40 to 15000 cycles, less than 2% harmonic distortion at full modulation. The recorder has high speed rewind (45 seconds) and high speed forward is available on the PT-6AH at slightly higher cost. The PT-6P amplifier is a fully portable record-playback-remote unit with 3 mike inputs and monitor speaker. The PT. 61 has single mike input monitor speaker, jack for external speaker, can be used for public address. Full details of these remarkable units require pages. Come in for a demon. stration or write us for full details.

PT-6A....\$278 and PT-6AH.... \$294

BROADCAST QUALITY RECORDING AND REPRODUCTION

PT-6A

PT. 6 AH

PT.6T Throwover Switch for using 2 PT-6A units with 1 PT.6P amplifier.
with PT-6A Recordel Mounted
All prices Net, F.O.b. New York and subject to chonge without notice.

103 West 43rd 5t., New York 18, N. Y.

...and the MAGNECORD PT-6R RACK AMPLIFIER

For studio use, or for interchangeable studio and renote, the PT.GR provides the studio half of the combination. Designed to take the PT-6A or PT-6AH recording mechanism (as shown in illustration), the recording unit may be lifted out in a few seconds and placed in its case for portable use. This amplifier combines stable, broadcast-quality operation with solid con. struction. It has a single input channel and gain control providing either 600 ohms zero level, or high impedance bridging input. Pre- and postemphasis equalization is built-in, compensating for tape magnetic characteristics. Program is fed to the PT-6R flat, and the playback is fed to the line flat. 600 -ohm line output; signal develops approximately 1 ma in the PT.6A recording head. Response is flat, $=2 \mathrm{db}, 40 \mathrm{cps}$ to 15 kc at $15^{\prime \prime}$ tape speed; 40 cps to 7 kc at $7 \frac{1}{2}$ " tape speed. Three-position switch selects "record" or "listen", proper equalization being inserted for either operation, third switch position removes all equalization.
Volume level meter is supplemented by headphone jack on front panel. Uses 1-12AX7, 2-12AU7, 1-6X4, and supplies operating power for the bias oscillator unit in the PT-6A recording mechanism. 117 volts, 60 cycle, 1 phase, 60 watts. Standard $19^{\prime \prime}$ relay rack panel, $14^{\prime \prime}$ high, $12 \frac{1}{2}$ " deep. Complete, including fubes . $\$ 383.00$

All in sfock for immediote delivery.

The New Model 770-An Accurate Pocket-Sire

VOLT-OHM MILLIAMMETER

(Sensitivity: 1000 ohms per volt
Compact-measures $3^{1 / 3^{\prime \prime}} \times 5^{\prime \prime} \mathrm{s}^{\prime \prime} \times 21 / 4^{\prime \prime}$. Uses latest design 2% accurate 1 Mil. D'Arsonval type me'er. Same zero adjustment holds for both resistance ranges. It is not necessary to readiust when switching from one resistonce range to another. This is on imoortant time-soving feature never before included in a V.O.M. in this price range. Housed in round-cornered molded case. Beoutiful black etched panel. Depressed letters filled with permanent white, insures lang. life even with constont use.
Specifications: 6 A.C. VOLTAGE RANGES: 0-15/30/150/300/1500/ 3000 volts.

6 D.C. VOLTAGE RANGES:
15/75/150/750/1500 volis
4 D.C. CURRENT RANGES
15/150 Ma. 0-11/2 Amrs.
2 RESISTANCE RANGES
Ohs. 0-1 Megohm.
The Model 770 comes complete with self-contained batteries, test teads and all operating instruc. lions.
$\$ 13.90$

The New Model TV. 10

TUBE TESTER

esting Berause number in the RMA base numbering system, the user can instansiy iden"ify, which element is under test. Tubes hoving taoped filaments and tubes with filamen's terminating in more than one pin are truly tested with the Model TV. 10 as any of the pins may be placed in the neutral position when necessary.

* The Model TV-10 does not use any combination type sockets. Insteod individual sockets are used for each tyoe of pube. Thus it is impossible to damage a lube by inserting it in the wrong socket.
* Free-moving built-in roll chart provides complere data for oll tubes. * Newly designed line Voltage Control compensates for variation of ony line voltoge between 105 Volts and 130 Volts.
The Model TV. 10 operoles on $105-130$ Volt 60
Cycles A.C. Comes housed in o beoutiful hond. \$39.50 ubbed ook cobinet complete with portoble cover

The New Model TV-30
TELEVISION SIGNaL GENERATOR

Enables alignment of Television I,F. and front ends withoul the use of an Oscilloscope

Specificotions:
Frequency Ronge: 4 Bands-No switching. 18-32 Mc. 35-65 Me. 54-98 Frequency Range: 4 Bonds-No swithing.
Mc. 150250 Mc. Audio Modulating Frequency: 400 eycles (Sine Wave). Attenuator 4 position, ladder tupe with constant imredance control for fire adiustment. Tubes Used: 6C4 as Cathode follower and mod slated

Model TV. 30 comes complete
with shielded cooxial lead $\$ \mathbf{9 . 9 5}$
and oll operating instruclions. NET

A COMBINATION

20,000 ohms per voit MULTI-METER and TELEVISION KILOVOLTMETER

The New Model
Specifications:

Added Feature: Includes an Uitra lish Frequency Voltmeter Probe with a freCLES When up to TV-20, the V. H. Probe converts the unit into a Neyative Peak Reading il 1° Unitimeter.

9 D.C. Voltoge Ranzes, IA1 20.000 ohmseri' -
$0.2 .5110501100=53$
$500 / 1,000 / 5,000 \%$
50,000 Volis
8 A.C. Voltoge Rangos IAt 1,000 ohms per Voli
$0-2.5 / 10 / 50 / 100 /$ 250/500/1,000/5,000

Current Ranzes Microamperes omperes
0-5 Amperes
4 Resistance Ranzas
0 2/20 Megohms.
7 D.B. Ranges: IAll D.B. ronges bosed on ODD
1 Mv inioo600 ohm in $-410+10 d b$
$-810+22 d b$
$-2210+37 d b$ $-2210+37 d o$
$-2810+42 d b$ $-2810+42 \mathrm{db}$
$+3610+50 \mathrm{~d}$ $+4210+56 \mathrm{db}$ 7 Oulpul Voltagerar 62 db beoutifu hand.rubbed High Volrage Probe, H, F, Probe, Test leals and all
operating instructions.

SUPERIOR INSTRUMENTS CO

Dept. H-50 * 227 FULTON STREET * NEW YORK 7, N. Y.

[^9]

WHEREVER THE CIRCUIT SAYS -MW-

2 WATT

RHEOSTAT-POTENTIOMETER

Designed for long, dependable service and balanced performance in every choracteristic. 2 watt, variable wire-wound W Controls provide moximum odoptability to most rheostot and potentiometer applications within their power rating. Size $11 / 4^{\prime \prime}$ by $9 / 16^{\prime \prime}$. Resistance values: 2 ohms to 10,000 ohms.
(Fully described in Cotolog RDCI-A.)

POWER WIRE WOUND RESISTORS

Fixed and adjustable Power Wire Wounds-10 to 200 watts - hondle full rated power in all standard ronges, require no deroting at high ranges. Dark, rough cooting dissipates heot more ropidly. Unique terminals ossure eosy installation. 10 and 20 watt fixed types have leod ond lug terminal, ond lug moy be clipped off for space saving in crowded chassis. Permanent, fadeless marking shows type, size, resistance.
Where limited space is o foctor, Type FRW Flot Wire Wounds give higher spoce-power rotio than standard tubulor types. Construction allows eosy vertical or horizontal mounting, singly or in stocks.
(Fully described in Cotalogs RDC. 5 and RC-1.)

POWER RHEOSTATS

For voriable power applicotions, IRC Type PR 25 and 50 wott Rheostots offer many advantages over conventional types. Operating temperatures are cut ulmost in half by oluminum construction. They can be used of full power in as low as 25% of rototion without oppreciable temperoture rise.
(Fully described in Cutulog RDC-5.)

FLAT INSULATED WIRE WOUND RESISTORS

Unsurpassed for odaptability to an extremely wide variety of design requirements. Radical design features impervious phenolic compound cosing, special metal mounting brocket that octuolly speeds transfer of heat from inside chassis. Spoce-suving MW's afford unusual flexibility in providing tups for voltoge dividing opplications.
(Fully described in Cutalog RB-2.)

PRECISION WIRE WOUND RESISTORS

Combine the moximum in accuracy and dependobility. Widely used in precision test equipment. 1% occuracy is standord; closer toleronces ovailable of slightly increosed cost. (Completely described in Catalog RDC-6.)

Other Products in IRC's complate resistor line ore descri ed on the following poges.

INTERNATIONAL RESISTANCE COMPANY

401 N. Broad Street

WHEREVER THE CIRCUIT SAYS -M-

CLOSE TOLERANCE DEPOSITED CARBON PRECISTORS

PRECISTORS offer a unique combination of close

 toleranse, stability and economy. Pure erystolline carbon bonded to selected ceramic cores overcomes limitotions of corbon composition resistort and higher cost of precision wire woundr. PRECISTORS offer wide ronge of values, guoranteed occuracy, high stobility, law voltage coeltifcient, excellent frequency chorocisristict, prediciable temperaturt ceetlifient.(Fully dercribed in Cotolos RDC-7.)

WATER COOLED RESISTORS

Unique high frequency-high power resistor for television, FM and dielectric heating applicotions. Centrifugol force whirls high velocity streom of woter in spiral poth against resistance film-gives efflcient high power dissipation up to 5 K.W. 35 ohms to 1,500 ohms. Resistor elements interchangeable.
(Fully described in Cotalog RF-2.)

SEALED VOLTMETER MULTIPLIERS

Dependable multipliers for use under the most severe humidity conditions, Type MF Resistors consist of a number of IRC Precisions interconnected and hermetically sealed in a glazed ceramic fube. Compact, rugged, stable, fully moisture-proof and easy to install. Maximum current: 1.0 M.A.; 0.5 megohms to 6 megohms.
(Fully described in Catalog RD-2.)

MATCHED PAIR RESISTORS

Two resistors matched in series or parallel to os close as 1% initial accuracy. Dependable low-cost solution to close tolerance requirements. Both Types BT and BW resistors ore ovailable in matched pairs. Tolerances from $\pm 5 \%$ to $\pm 1 \%$ can be furnished.
(Fully described in Catalog RB-3.)

INSULATED CHOKES

Ideal for TV and similar circuits. Wide range of size and characteristic combinations permit accurate specification to individual requirements. Types CLA and CL-1 Chokes are fully insuloted in molded phenolic housings-protected from high humidity, abrasion, physical damage or shorting to chassis.
(Completely described in Catalog RDC7.)

IRC RESIST-O-GUIDE

New aid in easy resistor range identification. Turn 3 wheels to correspond with color code on resistors and standard RMA Range is automotically indicoted. 15 c at all IRC Distributors. When ordering direct, send stamps or coin.
For full informotion on ony of IRC's many resistor types, write today for catalog bulletins in which you are interested. Also,

INTERNATIONAL RESISTANCE COMPANY

401 N. Broad Street

COMPLETE OUTFITTERS for the HAM . . .

COMMUNICATIONS

AND

ELECTRONIC

ENGINEERS

EUGENE G. WILE

Distributors of
Nationally Advertised Lines of RADIO, TELEVISION and ELECTRONIC Parts

FAMOUS FOR

Illinois condensers for every electronic need!

AM-FM=TV

Here's a complete line of condensers that are the ultimate in dependability - condensers thet are lamously long-lived! Illinois' motto "Time Tested Quality" is more than a phrase. Its truth is underscored by the efficient perform-
ance of literally millions of llinois condensers in service all over the world since 1934 Once you have tried llinois condensers you, too, will join the ever increasing numben who consistently specily llinois condensers lor every electronic application

(1)
 ELECTROLYTIC CAPACITORS

Rugged, dependable tubular aluminum can with outer insulating sleeve.ILLINI.HYCAPS are short prool, hermetically sealed, have low leakage, excellent shell life, provide extremely long, quiet and stable operation.
Type IHT available in low voltage, intermediate voltage, high voltage, special high voltage, dual units aluminum can (low voltage) and dual units aluminum can. Working voltages $D C$ lrom 5 to 500 .

CLAMP MOUNTING
TUBULAR ELECTROLYTICS
Built for long life under severest operating and climatic conditions. Leads color coded and securely anchored. Common negative or multiple negative units for all service applications. Available in low voltage common negative, separate negative 4 leads, multiple units, high voltage - single units, high surge - single units, and high voltage, multiple units. Working voltages $D C$ from 150 to 500 .

Type UMP

ILLINOIS TWIST PRONG MOUNTING CONDENSERS

Offer a wider range of voltage and capacity types than heretolore possible in units of comparable size. Characteristics superb. Capacities always plus, low power factor, low leakage. Hermeticaliy sealed in seamless drawn aluminum cans. Soldering lugs heavily tinned.
Avalable in single units, dual units, triple units and in quadruple units. Working voltages $D C$ from 6 to 600 .

Type LN

ALUMINUM

CAN CONDENSERS

(Inverted Screw Mounting) Built to operate under severest conditions. Units completely sealea in inner impregnated tube then resealed. Design permits maximum heat dissipation, higher temperature and voltage surges. Available in regular, dual negative 4 leads, triple and quadruple units common negative sections. Single and dual units 450 to 600 DCWV.

ESICO

- Red

Label Irons

These are the irons that are used so universally in factory production lines. They are light weight, finely balanced, and hove the coolest hand!es of any irons on the market. Elements are mounted and held in place with a knur!ed nut which engages the back end of the element and seats against the shoulder of the case shell, holding the element firmly in place regardless of the most rugged use. They are ideal from a maintenance standpoint for, due to their two piece combination terminal and handle, elements are replaceable in three minutes or less. The only iron on the market designed for use with or without a ground wire.
Irons are normally supplied in four wattages. They are obtainable, when required in quantity, in special wattages at no extra cost. Standard voltages are 105-120 and 220-240. Special voltages may be had. List prices of irons are as follows: No. $\mathbf{3 8 - 1 0 0}$ watt $\$ 6.95$, No. $58-200$ watt $\$ 8.95$, No. $78-300$ watt $\$ 10.95$ and No. $98-550$ watt $\$ 12.95$. The iron illustrated is the $N o .38$ and is $1 / 3$ actual size.

No. 61 Pencil Iron

This pencil iron is only seven inches in length and weighs just $21 / 2$ ounces exclusive of cord. The handie temperature at the point where it is held in the fingers, is actually no higher than body temperature. Diameter of handle is $3 / /^{\prime \prime}$ and may be used as a pencil for the most delicate soldering operations. The element construction is of the same type as used in ESICO industrial irons and will give long service. The tip is the so-called plug type, held in place with a set screw. Three shapes of tips are available, Type B-1/4" dia. pyramid point, Type A-1/8" dia. straight pencil point and Type C-1/8" dia. bent 90 degrees with a pencil point.

The No. 61 is regularly wound to 25 watts at 105-1 20 volts, but moy be had in higher wattages, when reauired in quantities at no extra cost. List price of iron is $\$ 4.95$. Tips A, B, or C 30 c each list. Irons are available thru any of the better tool or Radio \& Electronic Supply houses. If your distributor can net supply you from stack, send your order direct to us, but please be sure and give name of your distributor.

SOLDER POTS

Ruggedly constructed cast iron pots, with easily replaceable elements. Model No. 12-3/4 lb. cap. 200 watt Net. $\$ 4.50$ Model No. 36-21/4 lbs. cap. 250 watt. Net. $\$ 5.50$ Model No. $60-31 / 4 \mathrm{lbs}$. cap. 325 watt. Net $\$ 6.50$

- Temperature Control Stand

This control stand is thermastatically actuated by the tip temperature of the iron. This is the only logical way to control the temperature of a soldering iron, for there is too much lag between element and tip temperature for the application of a thermostat to the element, whether in an iron or a control stand. Cat. No. 5, irons up to $1^{\prime \prime}$ dia. tip; Cat. No. 6, irons $1^{\prime \prime}$ to $15 / 8^{\prime \prime}$ did. tips. List price . $\mathbf{\$ 6 . 5 0}$

ELECTRIC SOLDERING IRON CO., Inc.

You Say Goodbye to Guesswork When You Use Centralab Parts

You Can Rely on CRL Components for Top Quality Performance

1 KOLORDISK HI-KAPS replace old-type by-nass or counling canacitors in TV AM, FM. HF, VHF, UHF, AF circuits. Smaller than a dime!

MODEL "II" RADIOHM, left, for mmiature uses such as hearing aid controls. Modtl " M^{\prime}, right, most popular and versatile of all controls.

7
TC, BC TUBULAR HI-KAPS; Use TC for greater stability in temperature compensation. Use BC for non-resunant, by-pass and coupling circuits.

3
high voltage capacitors. These capacitors for transmitter and industrial use aftord low power tactor, stable retrace characteristics.
 TRIMMERS for RF. HF circuits. Made with steatite base, burnished silver electrodes for electrical and mechanical dependability.

7POWER SWITCHES are designed for transmitters. power supply conver ters and other applications. Ffficient performance to 20 megacycles.

- POWER RHEOSTATS for filament 1 control on transmitters, small motor 0 -peed controls, other industrial ap. plications. 25 and 50 watt sizes.
0

0LEVER, SPRING RETURN, TONE SWITCHES. Sec yiur Centralab distributor for complete details on these switches-and all quality CRL parts.

WRITE FOR LITERATURE AND NAME OF NEAREST CRL DISTRIBUTOR

0
ROTARY BAND SWITCH is used prim. arily for band change and general
tap switch applications. Made with steatite or phenolic insulation.

Centralab

Division of GLOBE-UNION INC., Milwaukee

VC- 25

 100-6

 [1]

re-fube with AMPEREX

Learn Code the EASY Way

Beginners, Amateurs and Experts alike recommend the INSTRUCTOGRAPH, to learn code and increase speed.

Learning the INSTRUCTOGRAPH way will give you a decided advantage in qualifying for Amateur or Commercial examinations, and to increase your words per minute to the standard of an expert. The Government uses a machine in giving examinations.

Motor with adjustable speed and spacing of characters on tapes permit a speed range of from 3 to 40 words per minute. A large variety of tapes are available - elementary, words, messages, plain language and coded groups. Also an "'Airways'" series for those interested in Aviation.

MAY BE PURCHASED OR RENTED

The INSTRUCTOGRAPH is made in several models to suit your purse and all may be purchased on convenient monthly pay ments if desired. These machines may also be rented on very reasonable terms and if when renting should you decide to buy the equipment the first three months rental may be applied in full on the purchase price.

ACQUIRING THE CODE

It is a well-known fact that practice and practice alone constitutes ninety per cent of the entire effort necessary to "Acquire the Code," or, in other words, learn telegraphy either wire or wireless. The Instructograph supplies this ninety per cent. It takes the place of an expert operator in teaching the student. It will send slowly at first, and gradually faster and faster, until one is just naturally copying the fastest sending without conscious effort.

BOOK OF INSTRUCTIONS

Other than the practice a!forded by the Instructograph, all that is required is well directed practice instruction, and that is just what the Instructograph's "Book of Instructions" does. It supplies the remaining ten per cent necessary to acquire the code. It directs one how to practice to the best advantage, and how to take advantage of the few "short cuts" known to experienced operators, that so materially assists in acquiring the code in the quickest possible time. Therefore, the Instructograph, the tapes, and the book of instructions is everything needed to acquire the code as well as it is possible to acquire it.

MACHINES FOR RENT OR SALE

ACCOMPLISHES THESE PURPOSES:

FIRST: It teaches you to receive telegraph symbols, words and messages.
SECOND: It teaches you to send perfectly.
THIRD: It increases your speed of sending and receiving after you have learned the code.

With the Instructograph it is not necessary to impose on your friends. It is always ready and waiting for you. You are also free from Q.R.M. experienced in listening through your receiver. This machine is just as valuable to the licensed amateur for increasing his speed as to the beginner who wishes to obtain his amateur license.

Postal Card will bring full particulars ImMEDIATELY

THE INSTRUCTOGRAPH CO.

If it's a problem calling for PRECISION POTENTIOMETERS

Bingrio

 HalipotFor many years The Helimpot Corporation has heen a leader in the development of advanced eypes of potentiometers. It pioncered the belical potentiometer-the potentiometer now so widely used in computer circuits, radar equipment, aviation devices and other military and industrial applications. It pioneered the Duodial*-the turns-indicating dial that greatly simplifies the control of multiple-turn potentiometers and other similar devices. And it has also pioneered in the development of many other unique potentiomerric advancements where highest skill counled with ablity to mass-produce to close tolerances have been imperative.

In order to meet rigid government specifications on these developments-and at the same time protuce them economically-Helipot" has perfected unique manufacturing facilities, including high speed machines capable of winding extreme lengths of resistance elements employing wire even less than $.001^{\prime \prime}$ diamerer. These winding machines are further supplemented by special testing facilities and poo tentiometer "know-how" unsurpassed in the industry.

So if you have a problem requiring precision potentiomb eters your best bet is to bring is to The Hellpot Corporation. A call ar letter outlining your problem will receive im. mediate attention!

MODELS F AND G PRECISION SINGLE.TURN POTENTIOMETERS SINGLE-TURN POTENTIOMETERS
Feature both continuous and Feature both continuous and limited me. chanical rotation, with maximum effective electrical rotatian. Versatility of designs permit a wide variety of special features.
 $359^{\circ}-$ resistances 10 to 100,000 ohms. $\mathrm{G}-1.5 / 16^{\prime \prime}$ dia., 2 watts, electrical rotation 356°-resistances 5 to 20,000 ohms.

- Ask for Bullefin 105-

A

B

D

MODELS A, B, \& C HELIPOTS
A-10 turns, $46^{\prime \prime}$ coil, $1.1310^{\prime \prime}$ dia., 5 wottsresisfances fron 10 to 300,000 ohms. B- 15 turns, $140^{\prime \prime}$ coil, $3.5^{\prime} 16^{\prime \prime}$ dia., 10 watts -resistances from 50 to 500,000 ohms. C^{-3} turns, $13.1 / 2^{\prime \prime}$ coil, $1.1316^{\prime \prime}$ dia., 3 watts-resistances from 5 to 50,000 ohms. - Ask for Bulletin 104 -

- Ask for Bulletin 106 -

E

MODELS D AND E HELIPOTS
Provide exireme accuracy of control and ad. jusiment, with 9,000 and 14,400 degrees of shaft rotation
D-25 turns, $234^{\prime \prime}$ coil, $3-516^{\prime \prime}$ dio., 15 watts -resistances from 100 io 750,000 ohms. E-40 furns, $373^{\prime \prime}$ coil, $3.5^{16^{\prime \prime}}$ dia., $20^{\text {watts }}$ -resistances from 200 ohms to one megohm. es from 200 ohms to on

- Ask for Bulletin $104-$

MODELS R ANO W DUODIALS
Each model available in standard turns-ratias Each model available in standard turns-ratias
of $10.15,25$ and 40 to 1 . Inner scale in. of 10 . 15,25 and 40 to 1 . Inner scale in-
dicates angular positian of HELIPOT sliding dicates angular positian af HELIPOT sliding contact, and outer scale the helical turn an
which it is located. Can be driven from knab which it is loc or shaft end.
$\mathrm{R}-2^{\prime *}$ diameter, exclusive of index.
$\mathbf{W}-4.3 / 4^{\prime \prime}$ diameter, exclusive of index. Feafures finger hole in knob to speed rotation. - Ask for Bullefins 104 and II4-

A

J.GANGED MODEL A HELIPOT AND DOUBLE SHAFT MODEL C HELIPOT
All HELIPOTS, and the Model F Potentiometer All HELIPOTS, and the Model F Potentiometer, can be furnished with shaft extensions ond
mounting bushings af each end to facilitate coupling ta other equipment.
The Model F, and the A, B, and C HELIPOTS are available in multiple assemblies, ganged at the factory on cammon shafts, for the control of associated circuits.

MULIITAPPED MODEL B HELIPOT AND A-GANGED TAPPED MODEL F
This Model 8 HELIPOT cantains 28 taps, placed as required at specified points on coil. The Four Gang Madel F Potententiometer contains 10 taps on each section. Such taps permit use of padding resistors to create desired nonlinear potentiometer functians, with advantage of flexibility, in that curves can be altered as required.

PREMAX
 VERTICAL AND MOBILE ANTENNAS ELEMENTS--MOUNTINGS--ACCESSORIE

Premas Tulmar Sertical Autennas are fully collapsing and adjust-

mmarcipriut			1 1.nnt			
		Sitrul				
	1	11^{\prime} 's'	"'1"	"'	",	
,		$17^{\prime 3} 3$	"2"'	蔀"	:",	
	t	22,	(", ${ }^{1 / 2}$	(120,		

Almmintmin Antronas						
No.	trecrimion	I.		Gins.in	$\begin{aligned} & \text { lins. } \\ & \text { lise } \end{aligned}$	Irivent
A1. 1146	1-piow lawe rad	n'3'	6"3'	313"		
11.312		$12^{\prime \prime} 10$	"! ${ }^{\prime \prime}$	-10"	.334"	$11 / 2$
A1.-718	3.4.0. , 1.,	$13{ }^{\prime}$ 'r $^{\prime \prime}$	"1"	- $\because 0 \times 10$.x* ${ }^{\text {" }}$	
11.321	1..wn	:1"	"!	$1.10410^{\prime \prime}$.831",	5
		un'ı"	6's'	12.2 \%	$1.1031{ }^{\prime \prime}$	7

 Fully aljustadit to any desired hength.

Lumgh I.comh O.D. Recommonded W'right No. Description Entmblal Callapsed Base fior purmir

RBUTAIBY IBEAM KIT

 neocesary hardware. Weiphomily 20 libs.

Type 1 Type 2

Bushing

13.5

Type 8-C

Type 9-C

Type 10-C

 3.4 to l", T.1).

Bushing, brown glaze porerlain with galv. flange for row or dech; fitm
7 sic
fits "x"tor l".
No. \& Insulaterl Monuting Clatmp for harizantals or vertieals: fits bón (1) I' (1), 1).
 (41" (1).1)

 (). 11

HBANE-EADIDED MIDRILE

 proser- radiation "haranderintier wer -titularal
 rupling tran-minting fancer. (ireatls improve

WHAP TYIPEANTENNAS
 Ar-isned for havimum strengh and rophiral

 ion!ou and hiph-temprord steed in $72^{\prime \prime}$, $161^{\prime \prime}$ and

ER EDTEDMEDENT
inf heary sheet meere.
 frll $34,1 P^{\circ}$. Ilatherm Nize 10" a $12^{\prime \prime \prime}$, wapthrust haring: 5 反 $^{\prime \prime}$ renter shift lacadin

medille:

MADINTINAM

No. TA Menating for trank. pabiel or rompf.
No. K Bumper Vanntine pertils $10^{\prime \prime}$: adjumiment.
V.. VI. لlomatinge for patuel of "ar

 ble for athy ponition ond car.
No, S Rowif Vontinu: spring atyle.

Darapat Support

 Fior masts or radiator on baraports or lire walls up to "O". V"its mats ig' $^{\prime \prime}$ to $2^{\prime \prime}$ diammer. An deal -upport. No. I'si. 18 I'arapet Support, weight 8 llos.GIBADNNID IBADAS
Made of copperphitadederl, is s", $2^{\prime \prime}$ amd $5_{x} x^{\prime \prime}$ diatmeters and
 end peinted for eatey driviag. (g) S.rew lamp, (I') Piytail, (II) I rilled hole types available.

[^10]illustrating the complete I'remax line
PRHNAX PRODUCHS
DIVISION CHISHOLN-RYDER CO., INC.
5002 HIGHLAND AVE.
NIAGARA FALLS, N. Y.

ADAPTABLE FOR EVERY REQUIREMENT
... from a Small Receiver to a DeLuxe Transmitter

Years of experience in building metal equipment for electronic products has et abled us to develop the units listed in our Catulog No. 48.

Par-Metal products represent a combination of skill and material -
 a fusion of careful workmanship and mechanical efficiency with furniture sleel. Such products are dependable anc will give vou years of satisfactory service of a reasonable cost

The use of PAR-METAL STANDARDIZED units enables you to build
 electronic equipment that is proessional both in construction and appearance. These units ore beira extensivel, used for Amateur equip. ment lalso for Commercial. Mlarine Airline, and Broadcast equipment both here and abroad.

PAR-METAL PRODUCTS CORP.

32-62 49th Street, Long Island City 3, N. Y.

EXPORT DEPT.: ROCKE INT. CORP., 13 E. 40th St., New York 16, N. Y.

"WHEN YOU CALL CQ-YOU'LL GET THROUGH" WITH THESE DEPENDABLE SHURE MICROPHONES...

The "REX" Crystal Microphone is a strik-ing-looking, low-cost hand-held microphone. Fits snugly in the hand. sits firmly on a desk, or can be placed on a stand. Recommended where good quality speech reproduction is required and low-cost is an important factor. With stand adapter.
Model 710A
Model 710 S (with switch) List Price $\$ 12.00$

The "HERCULES" Controlled Reluctance Microphone provides clear reproduction, high speech intelligibility, high output and ruggedness at "ir am,azingly lou price! Can be used indoors or outdoornfits in the hand, sits firmly on a desk, can be placed on a stand. (With stand adapter.)

Model 510C \qquad List Price $\$ \mathbf{1 2 . 9 5}$ Model 510S (with switch) List Price $\$ 14.95$

The" ${ }^{\text {SONODYNE", }}$ a high-output dynamic microphone with widerange frequency response. Has moving coil unit. Features a Multi-Impedance switch. A rugged unit with high sensitivity, yet perfect for Hams in high temperature and high humidity locations.

Model 51 Lisi Price \$39.75

Model 520SL List Price $\$ 32.00$
Model 520SL-20 List Price $\$ 33.50$

The multi-impedance "UNIDYNE" is a high guatity Super-Cardioid Dynamic Microphone for hams whose rigs must provide dependable performance even under difficult conditions. Reduces random noise pickup by 73%.

Model 55 List Price $\$ 67.50$

Model 737 A

Other SHURE Microphones and Phonograph Pickups are illustrated in the new SHURE Catalogs. Write for catalogs No. 159 and 160.

Microphones and Acoustic Devices 225 W. Huron St., Chicago 10, III. Cable Address: SHUREMICRO

TV AND FM ANTENNAS

All Amphenol antennas are engineered and perfected in our Develop ment Laboratories. They will provide unsurpassed reception of FM ant TV signals. They are built of top-quality materials and are of rugged con struction to withstand bad weather. These antennas assure long, trouble free service.

Madel 114-302 Two Boy Stocked Arroy for maximura distance. Also available are antennas for all TV requirements - Single Bays, PiggyBacks and Indaor onten. Backs.

TWIN LEAD

A real DX antenna, cut-to-band, in use by thousands of amateurs
The finest ready-made amateur transmitting anenna ever developed. Ready-cut to the fout mos popular bands. Broadband characteristics. Excen an lent for your regulat transminle or field day use. auxiliary antenna or for

Amphenol

 Number 139-813 139-815 139 -816 $139-817$Frequency Band 28 mc 14 mc
7 mc 7 mc
3.5 mc 3.5 mc

10 Meters
20 Meters
40 Meters

Antenna
Length
18 feet
35 feet
70 teet
135 feet

A real DX antenna

AMATEUR ANTENNAS

TWIN-LEADTRANSMISSIONLINES

Choice of the serviceman and amateut for receiving and transmitting antennas and transmission lines, Amphenol wing signals with transmissi means of transmitting signale di.
the ideal mimum losses. Durable polyethylene

14.023
$\stackrel{\square}{14.056} \quad \stackrel{\sigma}{\square} \quad \stackrel{\sigma}{\square}$
electric resists weather, acids, alkalies, and oils. Remains tlexible at $-70^{\circ} \mathrm{C}$. For standard. FM and TV receiver installations use Rece in ing Twin-L

COAXIALCABLES

Amphenol Coaxial "RG" cables are produced to standards that surpass Army-Navy specifications. They are ideal for a my resistant vinyl, nontronic application. Outer jackets are alkalies, oils and gasoline. hygroscopic and impervious to and dimensions are available upon Charts sho request.

QST faithfully and adequately reports each month the rapid development which makes Amateur Radio so intriguing. Edited in the sole interests of the members of The American Radio Relay League, who are its owners, QST treats of equipment and practices and construction and design, and the romance which is part of Amateur Radio, in a
 direct and analytical style which has made QST famous all over the world. It is essential to the well-being of any radio amateur. QST goes to every member of The American Radio Relay League and membership costs $\$ 4.00$ in the United States and Possessions, $\$ 4.50$ in the Dominion of Canada, $\$ 5.00$ in all other countries. Elsewhere in this book will be found an applicaion blank for A.R.R.L. membership.

n5I BINDERS

Price $\$ 2.50$ each, postpaid

Available only in U. S. and Possessions

Those who take pride in the appearance of their bookshelf and wish to keep their reference file of QST in a presentable manner, appreciate the QST binder. It is stiff-covered, finished in beautiful and practical fabrikoid. Cleverly designed to take each issue as received and hold it firmly without mutilation, it permits removal of any desired issue without disturbing the rest of the file. It accommodates 12 copies of QST. Opens flat at any page of any issue.

With each Binder is furnished a sheet of gold and black gummed labels for years 1940 through 1960. The proper one can be cut from the sheet and pasted in the space provided for it on the back of the binder. The back copies of QST contain the record of development of modern amateur technique. They are invaluable as technical references. Some back copies are available_list will be sent upon request.

The
 Handbook

tells the things

which are needed for a comprehensive understanding of Amateur Radio. From the story of how Amateur Radio started through an outline of its wide scope of the pres-ent-from suggestions on how to learn the code through explanations of traffic-handling prccedure and good operating practices-from electrical and radio fundamentals through the design, construction, and operation of amateur equipment-this book covers the subject thoroughly. It includes the latest and the best information on everything in Amateur Radio.
\$2.00 u.s.A. proper
\$2.25 U.S. Possessions ond Canado
$\$ 2.50$ Elsewhere
Buckrom Bound Edition
$\$ 3.00$ U.S.A. proper
$\$ 4.00$
Elsewhere

The
standard
elementary guide for the prospective amateur. Features equipment which, although sim. ple in construction, conforms in every detail to present practices. The apparatus is of a thoroughly practical type capable of giving long and satisfactory service_while at the same time it can be built at a minimum of expense. The design is such that a high degree of flexibility is secured, making the various units fit into the more elaborate station layouts which inevitably result as the amateur progresses. Complete operating instructions and references to sources of detailed information on licensing pro-
 cedure are given.

25 c

Postpaid

Anywhere

A

compre-
hensive manual
of antenna design and construction, by the headquarters staff of the American Radio Relay League. Sixteen chapters, profusely illustrated. Both the theory and the practice of all types of antennas used by the amateur, from simple doublets to multi-element rotaries, including long wires, rhomboids, vees, phased systems, v.h.f systems, etc. Feed systems and their adjustment. Construction of masts, lines and rotating
 mechanisms. The most comprehensive and reliable information ever published on the subject.

$\$ 1.00$ Postocoid
U.S.A and Passessions. and Conada
Elsewhere
$\$ 1.25$

To

obtain an

amateur opera-
tor's license you must pass
a government examination. The
License Manual tells how to do that -tells what you must do and how to do it. It makes a simple and comparatively easy task of what otherwise might seem difficult. In addition to a large amount of general information, it contains questions and answers such as are asked in the government examinations. If you know the answers to the questions in this book, you can pass the examination without trouble.

Postpaid

This
booklet is
designed to
train students to handle code skillfully and with precision, both in sending and in receiving. Employing a novel system of code-learning based on the accepted method of sound conception, it is particularly excellent for the student who does not have the continuous help of an experienced operator or access to a code machine. It is similarly helpful home-study material for membets of code classes. Adequate practice material is included for classwork as well as for home-study.

There are also helpful data on high-speed operation, typewriter copy, general operating information-and an entire chapter on tone sources for code practice, including the description of a complete code instruction table with practice
 oscillator.

$25 c$

Postpaid
LII

"A
Course In Radio
Fundamentals" is a study
guide, examination book and
laboratory manual. Its text is based on
the "Radio Amateur's Handbook." As a text, this book greatly smooths the way for the student of the technicalities of radio. It contains interesting study assignments, experiments and examination questions for either class or individual instruction. It describes in detail 40 experiments with simple apparatus giving a complete practical knowledge of radio thear; and design.

50c

Postpoid
Anywhere

Amateur Radio MAP, entirely
different in conception and design from
any other map, contains a wealth of information
useful to the radio amateur. A special type of projection made by Rand, McNally to A.R.R.L. specifications, it gives great circle distance measurements in miles or kilometers within on accuracy of 201 . The map shows principal cities of the world; local time zones; WAC divisions; more than 265 countries, indexed; and amateur prefixes throughout the world. large enough to be casily readable from your
operating position, the map is printed in six
colors on heavy paper, 30×40 inches.

$\$ 2.00$

STATION OPERATING

 taining to transmission and reception, and is equally as useful for portable or mobile operation as it is for fixed. The log pages with an equal number of blank pages for notes and a sheet of graph paper are spiral bound, permitting the book to be folded back flat at any page, requiring only the page size of $81 / 2 \times 11$ on the operating table. In addition, a number sheet, with A.R.R.L. Numbered Texts printed on back, for traffic handlers, is included with each book.

50c per book

Official Radiogram Forms

The radiogram blank is designed to comply with the proper order of transmission. All blocks for fill-in are properly spaced for use in typewriter. It has a heading that you will like. Radiogram blanks, $81 / 2 \times 71 / 4$, lithographed in green ink, and padded 100 blanks to the pad, 35 c per pad, postpaid.

Message Delivery Cards

Radiogram delivery cards embody the same design as the radiogram blank and are available in two styles-on stamped government postcard, 2c each; unstamped, ls each.

The operating supplies shown on this page have been designed by the A.R.R.L. Communications Department.

MEMBERSHIP

Members'
 Stationery

Members' stationery is lithographed on standard $81 / 2 \times 11$ bond paper which every member should be proud to use for his radio correspondence.

100 Sheets, $\$ 1.00250$ Sheets, $\$ 1.50$
500 Sheets
\$2.50
postpaid
In the
January,
1920 issue of
QST there appeared
an editorial requesting
suggestions for the design of an
A.R.R.L. emblem-a device whereby every amateur could know his brother amateur when they met. In the July, 1920 issue the design was announced-the familiar diamond that greets you everywhere in Ham Radio. For years it has been the unchallenged emblem of amateur radio.

The League Emblem, with gold border and lettering, and with black enamel background, is available in either pin (with safety clasp) or screw-back type In addition, there are special colors for Communications Department ap-
pointees. - Red enameled background for the SCM. - Blue enameled background for the ORS or OPS.

50c each postpaid

```
The Emblem Cut. A mounted printing
    electrotype, 5/8" high, for use by mem-
        bers on amateur printed mat-
                        ter, letterheads, cards, etc.
                        $1.00
                            each
                            postpaid
```


Lightning Calculators

Aware of the practical bent of the average amateur and knowing of his limited time, the League, under license of the designer, W. P. Koechel, has made available these calculators to obviate the tedious and sometimes difficult mathematical work involved in the design and construction of radio equipment. The lightning calculators are ingenious devices for rapid, certain and simple solution of the various mathematical problems which arise in radio and allied work. They make it possible to read direct answers without struggling with formulas and computations. They are tremendous time-savers for amateurs, engineers, servicemen and experimenters. Their accuracy is more than adequate
for the solution of practical problems, and is well within the limits of measurement by ordinary means. Each calculator has on its reverse side detailed instructions for its use; the greatest mathematical ability required is that of dividing or multiplying simple numbers. They are printed in several colors. You will find lightning calculators the most useful gadgets you ever owned.

TYPE B

TYPE A

Radio Calculator

This calculator is useful for the problems that confront the amateur every time he builds o new rig or rebuilds an old one or winds a coil or designs a circuit. It has two scales for physical dimensions of coits from one-half inch to five and one-half inches in diameter and from one-quarter to ten inches in length; a frequency scale from 400 kilocycles through 150 megacycles; a wavelength scale from two to 600 meters; a capacity scale from 3 to 1,000 micro-microfarads; two inductance scales with a range of from one microhenry through 1,500; a turns-per-inch scale to cover enameled or single silk covered wire from 12 to 35 gauge, double silk or cotton covered from 0 to 36 and double cotton covered from 2 to 36 . Using these scales in the simple monner outlined in the instructions on the back of the calculator, it is possible to solve problems involving frequency in kilocycles, wavelength in meters, inductance in microhenrys and capacity in microfarads, for practically all problems that the amateur will have in designing-from high-powered transmitters down to simple receivers. Gives the direct reading answers for these problems with accuracy well within the tolerances of practical canstruction. \$1.00 Postpaid.

Ohm's Law Calculator

This calculator has four scalest a power scale from 10 microwotts through 10 kilowatts, a resistance scale from .01 ohm through 100 megohms, a current scale from 1 microampere through 100 amperes, a voltage scale from 10 microvolts through 10 kilovolts.

With this concentrated collection of scales, calculations may be made involving voltage, current, and resistance, and can be made with a single setting of a dial. The power or voltage or current or resistance in any circuit can be found easily if any two are known. This is a newly-designed Type B Calculator which is more accurate and simpler to use than the justly-famous original model. It will be found useful for many calculations which must be made frequently but which are often confusing if done by ordinary methods. All answers will be accurate within the tolerances of commercial equipment. \$1.00 Postpaid.
\square

[^0]: * National AR18 series coils. ARISo6 6-meter coil used for 28 Me . One turn off each end of coils for other bands.
 ** Vational AR17 series coils. One turn off each end on Alk17-10 and AR1:-20. othore mily usalecred.

[^1]: * Any or all holes for smaller pancls that follow may be added or sulstituted as desirable. Hole distanees are from either top or lottom reders of patal.

[^2]: 1 Voltage across next－stage grid resistor at grid－current point．
 At 5 volts rim．s．output．

[^3]: ${ }^{1}$ Basic Radio Propagation Predictions, issued monthly, three months in advance, by the C'entral Radio Proparation Laboratory of the National Bureau of Etandards. Order from the Supt. of I onmments, Washington 25, D. (., \$1.00 prer vear.

[^4]: * The 23.i-Mr. band is still assigned in Canada at this writing.

[^5]: Fig. $13.1-\mathrm{A}$ complete (OK) watt transmitter for 50 and 111 Ne.

[^6]: ${ }^{1}$ Most data taken at $25^{\circ} \mathrm{C}$
 ${ }^{2}$ Puncture voltage, in volts per mil. Most data apply to relatively thin sections and cannot be multiplied directly to give breakdown for thicker sections without added safety factor.
 ${ }_{4}^{3}$ In ohm-cnı.
 ${ }^{4}$ Includes such products as Aladdinite, Ameroid, Galalith. Erinoid, Lactoid, etc.
 ${ }^{5}$ Includes Fibestas, Lumerith, Nixonite, Plastacele, Tenite, etc.
 6 Includes Amerith, Nitron, Nixonoid. Pyralin, etc
 7 Methylmethacrylate resin.
 ${ }^{8}$ Phenolaldehyde products inchude Acrolite, Bakelite.

[^7]: ${ }_{2}^{1}$ A mil is $1 / 1000$ (one-thousandth) of an inch.
 ${ }^{2}$ The figures given are approximate only, since the thickness of the insulation varies with different manufacturers.
 ${ }^{3}$ The current-carrying capacity at 1000 (.M. per ampere is equal to the circular-mil area (Column 3) divided by 1000

[^8]: MनidR Raloमisionl

[^9]: PLEASE PLACE YOUR ORDER WITH YOUR REGULAR RADIO PARTS JOBBER. IF YOUR JOBBER DOES NOT HANDLE OUR LINE PLEASE SEND YOUR ORDER DIRECT TO US

[^10]: Sand for sprrial DX and Mobile Brilletins

