28 Th EDITION • 1951

THE STANDARD MANUAL OF AMATEUR RADIO COMMUNICATION

\$2.50
U.S.A. Proper

PUBLISHED BY THE AMERICAN RADIO RELAY LEAGUE

SCHEMATIC SYMBOLS USED IN CIRCUIT DIAGRAMS

1 Where it is necessary or desirable to identify the electrodes, the curved element represents the outside electrode (marked "out-ide foil," " pround," etc.) in fixed paper-and eeramic-dielectric condenaers, and the nequite elecirode
in electrolytic condensers.
2 In the modern symbol, the curved line indicates the moving element (rotor plates) in variable and adjustable airor mica-dielectric condenser:-

In the case of switehes, jacks, relays. ete., only the basic combinations are shown. Any combination of these sym. bols may be assembled as required, following the elementary forms shown.

THE RADIO AMATEUR'S HANDBOOK

By the HEADQUARTERS STAFF of the
AMERICAN RADIO RELAY LEAGUE
WEST HARTFORD, CONN., U.S.A.

1951
Twenty-Eighth Edition

COPYRIGHT 1951 BY

THE AMERICAN RADIO RELAY LEAGUE, INC.

Copyright secured under the Pan-American Convention

International Copyright secured

This work is Publication No. 6 of The Radio Amateur's Library, published by the League. All rights reserved. No part of this work may be reproduced in any form except by written permission of the publisher. All rights of translation are reserved. Printed in U. S. A.

Quedan reservados todos los derechos

Twenty-Eighth Edition

THERUMFORDPRESS
Concord, New Hampahire, U. S. A.

Foreword

This twenty-righth edition of The Radio Amateur's Hamblook is the latest of a series extending over twenty-five years of continuous publication, a period during which the total circulation has climbed to well over two million. The immediate and enthusiastic acepetance of the first edition by the radio amateurs of 1926 has been matched by continuing popularity throughout the intervening years - a popularity based on the IIandboo's practical utility, its treatment of radio communication prohlems in terms of how-to-do-it, and its long-established poliey of presenting the soundest and best aspects of current amateur practice rather than merely the new and novel. These same features have won for the Handbook universal acceptance in other segments of the technical radio world - engineering, educating, servicing, operating - even though the book is written primarily for the radio amateur. Its preparation and production is the work of the headquarters staff of the amateur's own organization, the American Radio Relay League.

The changes that have taken place in the technical practices of amateur radio during the past yoar are, as always, reflected in the present edition. A eonsiderable amount of new equipment in all categories - transmitting, rereiving, v.h.f., measurements - appears throughout the book. Continuing the trend of the past few years, all transmitting equipment has been designed with the reduction of harmonirs in the television broadeasting bands as a primary feature, and in view of the large number of tolevision transmitting stations now in operation, the problems of amateur interference with this service are given special attention. As compared with previous editions, the plan of the book has been modified somewhat: Radiotelephony, formerly covered in its entirety in one chapter, is now broken down into several chapters dealing with audio equipment, various basic types of modulation, and singlo-sideband; similarly, transmission lines and antennas are now treated in separate chapters. It is the theught that by this means information on a specialized phase of a general subject will be made more readily accessible.

Those to whom the IIandhook has for years been an indispensable companion are well aware of it, but for new readers it is worth pointing out that in eontrast to most publications of a comparable nature, the /Iandbook is printed in the conveniont format of the League's monthly magazine, QST. This, together with extensive and usefully-appropriate catalog advertising by reputable manufacturers producing equipment for radio amateurs, makes it possible to distribute for a very modest charge a work which in volume of subject matter and profusion of illustration surpasses most available radio texts selling for several times its price.

It is sincerely hoped that this new edition will sureeed in bringing as much assistance and inspiration to amateurs and newcomers to the hobby as have its many predecessors.
A. 1. Budiong

Secretary, A.R.R.L.
West Hartford, Conn.
December, 1950

CONTMRNTS

Frontispiece 2
The Amateur's Code 8
Chapter 1.......Amateur Radio 9
Chapter 2......Electrical Laws and Circuits 17
Chapter 3......Vacuum-Tube Principles 59
Chapter 4......High-Frequency Communication 79
Chapter 5......High-Frequency Receivers 85
Chapter 6......High-Frequency Transmitters 140
Chapter 7.......Power Supplies 218
Chapter 8.......Keying and Break-In 241
Chapter 9......Speech Amplifiers and Modulators 250
Chapter 10.......Radiotelephony 275
Chapter 11.......Frequency and Phase Modulation 290
Chapter 12......Single-Sideband Transmitting Techniques 298
Chapter 13.......Transmission Lines 311
Chapter 14.......Antennas 337
Chapter 15.......About V.H.F 368
Chapter 16......V.H.F. Receivers 372
Chapter 17......V.H.F. Transmitters 395
Chapter 18......V.H.F. Antennas 419
Chapter 19......U.H.F. and Microwave Communication 428
Chapter 20....... Mobile Equipment. 440
Chapter 21.......Measuring Equipment 463
Chapter 22.......Assembling A Station 495
Chapter 23......BCI and TVI 501
Chapter 24......Construction Practices 516
Chapter 25...... Operating A Station 524
Chapter 26...... Miscellaneous Data 539
Chapter 27......Vacuum-Tube Data V1
Catalog Section
Index

THE
 AMATEUR'S CODE

ONETHE AMATEUR IS GENTLEMANLY . . . He never knowingly uses the air for his own amusement in such a way as to lessen the pleasure of others. He abides by the pledges given by the ARRL in his behalf to the public and the Government.

TWO
 THE AMATEUR IS LOYAL . . . He owes his amateur radio to the American Radio Relay League,

 and he offers it his unswerving loyalty.THRT円 THE AMATEUR IS PROGRESSIVE . . . He built well and efficiently. His operating practice is clean and regular.

HOUR THE AMATEUR IS FRIENDLY . . Slow and vice and counsel to the beginner, kindly assistance and coöperation for the broadcast listener; these are marks of the amateur spirit.
$\boldsymbol{H} \boldsymbol{H} \begin{aligned} & \text { THE AMATEUR IS BALANCED . . . Radio is his } \\ & \text { hobby. He never allows it to interfere with any of }\end{aligned}$ the duties he owes to his home, his job, his school, or his community.

STX THE AMATEUR IS PATRIOTIC ... His knowledge N1 1 and his station are always ready for the service of his country and his community.

- Paul M. Segal

CHAPTER 1

Amateur Radio

Amateur radio is a scientific hobby, a means of gaining personal skill in the fascinating art of electronies and an opportunity to communicate with fellow citizens by private shortwave radio. scattered over the globe are more that 125,000 amateur radio operators who perform a service defined in international law as one of "self training, intercommunication and technical investigations carried on by . : . duly authorized persons interested in radio technique solely with a personal aim and without pecuniary interest."

From a humble begimning at the turn of the century, amateur radio has grown to become an established institution. Today the American followers of amateur radio number 90,000 , a group of trained communicators from whose ranks will come the professional communications specialists and executives of tomorrow just as many of today's radio leaders were first attracted to radio by their early interest in amateur radio communication. A powerful and prosperous organization now provides a bond between amateurs and protects their interests; an internationally-respeeted magazine is published solely for their benefit. The Army and Navy seek the coopperation of the amateur in developing communications reserves. Amateur radio supports a manufacturing industry which, by the very demands of amateurs for the latest and best equipment, is always up-1o-date in its designs and production techniques - in itself a national asset. Amateurs have won the gratitude of the nation for their heroic protormanees in times of natural disaster. Through their organization, amateurs have coopprative working agremonts with such agencies as the ['nited Nations and the Red Ctoss. Amaterur radio is, indeed, a magnificently useful institution.

Although as ohd as the art of radio it colt, amateur radio did not always enjoy such prestige. Its first enthusiasts were private ditizens of an experimental turn of mind whose imaginations went wild when Marconi first proved that messages actually could be sent by wireless. They set about learning enough about the new serintific mavel to build homemade stations. By 1912 there were numerous Govermment and commercial stations, and hundreds of amatcurs; regulation was needed, so laws, licenses and wavelengt specifications for the various services appeared. There was then $n 0$ amateur organization nor spokesman.

The official viewpoint toward amateurs was something like this:
' Amatcurs? . . Oh, yes. . . Well, stick 'cm on 200 meters and below; they'll never get out of their backyards with that."

But as the years rolled on, amateurs found out how, and DN゙ (distance) jumped from local to 500 -mile and even oceasional 1,000 -mile twoway contacts. Because all long-distanee messages had to be relayed, relaying developed into a fine art - an ability that was to prove invaluable when the Government suddenly called hundreds of skilled amateurs into war service in 1917. Meanwhile U. S. amateurs began to wonder if there were amateurs in other countries across the seas and if, some day, we might not span the Atlantic on 200 meters.

Most important of all, this period witnessed the birth of the Amorican Radio Relay League, the amateur radio organization whose name was to be virtually synonymous with subsequent amateur progress and short-wave devolopment. Conceived and formed by the famous inventor, the late lliram Percy Maxim, AlRI?1, was formally launched in early 1914. It had just begun to exert its full force in amateur activities when the United States declared war in 1917, and by that act sounded the knell for amateur radio for the next two and a half yours. There wore then over 6000 amateurs. Over 4000 of them served in the armed forees during that war.

Touday. few amatrurs realize that Wordel

HHAMEERCY MAXIM
President ARRL, 1914-1936

War I not only marked the close of the first phase of amateur development but came very near marking its end for all time. The fate of amateur radio was in the balance in the diys immediately following the signing of the Armistice. The Government, having had a taste of suprome authority over communications in wartime, was more than half inclined to keep it. The war had not been ended a month before Congress was consillering legishation that would have made it impossible for the amatcur radio of old ever to be resumed. ARRL's President Maxim rushed to Washington, pleaded, argued, and the bill was defeated. But there was still no amateur radio; the war ban continued. Repeated representations to Washington met only with silence. The League's offices hat boen elosed for a vear and a half, its records stored away. Most of the formor amateurs had gone into serviee: many of them would never come back. Would those roturning be interested in such things as amateur radio." Mr. Maxim, determined to find out, called a meeting of the old Board of Directors. The situation was diseouraging: amateur ratio still banned by law, former members scattered. no organization, no membership, no funds. But those few determined men financed the publication of a notice to all the former amateurs that could be loomed, hired kenneth B. Warner as the Lague's first paid seeretary, floated a bond issue among old League members to obtain money for immediate running -xpenses, bought the magazine $Q S T$ to be the lagae's official organ, started activities, and dunned officialdom until the wartime ban was lifted and amateur radio resumed again, on October 1, 1919. There was a headlong rush by amatcurs to get back on the air. (iangWay for King Spark! Mandacturers wore hard pui to supply radio apparatus fast enough. Liach night saw additional dozens of stations rashing out over the air. Interference? It was bedlam!

But it was an era of progress. Wartime needs had stimulated technical development: Vacuum tubes were being used both for recoiving and transmitting. Amateurs immediately alapted the new gear to 200-meter work. Ranges promptly incrased and it became possible to brilge the continent with but one intermediate relay.

TRANS-ATLANTICS

As $10 N$ became 1000 , then 1500 and then 2000 miles, amateurs began to dream of transAtlantic work. Could they get across? In 1)ecember, 1921 ; ARIRI sent abroad an capert amateur, Paul F. Coddey, 2ZE, with the best roweiving equipment available. Tests were run, and thirty Ancrican stations were heard in Earope. In 1922 another trans-Atlantic test Was carried out and 315 American calls were logged by European amateurs and one French and two British stations were heard on this side.

Everything now was centered on one objective: two-way amateur communication across the Atlantic! It must be possible - but somehow it couldn't quite be done. More power: Many already were using the legal maximum. Better receivers:" They had superheterodynes. Another wavelength? What about those undisturbed wavelengths below 200 meters? The engineering world thought they were worthless - but they had said that about 200 mot(ars. So. in 1922, tests botween Hartford and Boston were made on 130 meters with encouraging results. Early in 1923. ARRL-sponsored tests on wavelengths down to 90 meters were sucerssful. Reports indicated that as the warelength dropped the results were better. A growing excitement began to spread through amateur ranks.

Finally, in November, 1923, after some months of careful preparation. two-way amaten trans-Atlantic communication was arcomplished, when Schnell, 1 MO , and Reinartz, 1. $A M$ (now W91'Z and K613,J, respeetively) worked. for several hours with Deloy, 8AB, in France, with all three stations on 110 meters! Additional stations dropped down to 100 meters and found that they, tos, could easily work two-way across the Atlantic. The exodus from the 200 -meter region had started. The "short-wave" era had begun!

I3y 1924 dozens of commercial companies had rushed stations into the 100 -meter region. Chaos threatened, until the first of a series of national and international radio conferences partitioned off various bands of freduencies for the different serviees. Although thought still centered around 100 meters, Jeague oflicials at the first of these frectueneryotermining conferences, in 1924. wisely obtained amateur bands not only at 80 meters but at $40,20,10$ and even 5 meters.

Eighty meters proved so successful that "forty" was given a try, and (2SOs with Australia, New Zealand and South Afriea soon became commonplacc. Then how about 20 meters:" This new band revealed entirely unexpeeted possibilities when 1 XAM worked 6'Ts on the Wiest Coast. direet, at high noon. The dream of amateur radio - daylight IDN! was finally true.

From then until " D'arl Harbor," when l^{\prime}. s. amatcurs wore again closed down "for the duration," amateur radio thrilled with a serits of unparalleled accomplishments. Countries all over the world came on the air, and the world total of amateurs passed the 100,000 mark. . . . ARRL representatives deliberated with the representatives of twenty-tho other nations in Paris in 1925 where, on April 17 th. the International Amateur Radio Union was formed - a federation of national amateur radio societies. . . . The League began issuing certificates to those who could prove they had worked all six continents. More than eight thousand amateurs have been awarded W.IC certificates.

- PUBLIC SERVICE

Amateur radio is a grand and glorious hobby but this fact alone would hardly merit such wholehearted support as is given it by our Government at international eonferencess. There are other reasons. One of these is a thorough apprectation by the Army and Navy, of the value of the amateur as a souree of skilled radio persommel in time of war. Amother asset is best deseribed as "publie servioe."

About 4000 amateurs had eontributed their skill and ability in $17-18$. After the war it was only natural that cordial relations should prevail betwere the Army and Nave and the amaleur. These relations strengthered in the next fow years and. in gradual stops, grow into eooperative activities which resulterl, in 1925, in the cetablishment of the Naval Communications leserve and the Army-Amateur Radio System thow the Military Amatcur Radio Sistem). In World War 11 thousands of amateurs in the Naval Reserve were called to aloive duty, where they served with distinetion. white many other thousands served in the Army, Air Formes, Coast Guaral and Marinc Corps. Altogether, more thath 25,000 ratio amateurs sorved in the armed fores of the l° nited States. Other thousands were engaged in vital eivilian electronio research. dovelon)mont and manufacturing. They also organiad and manod the War Emergency Radio sorviere, the communications sertion of (CD).

The "public-service" record of the amateur is a brilliant tribute to his work. These atotivities can be roughly divided into two chasses, expeditions and emergements. Amaterar eooperation with experfitions began in 1923 when a League member, Don Mix, 1 Ts, of Bristol, Comn, (now assistant technieal editor of QST'), aceompanied MaceMillan to the Aretie on the sehooner Bordoin with atn amateur station. Amateurs in Canada and the I'. S. provided the home contarts. The suceress of this venture was such that other explorers followed suit. During subsequent yoars atotal of perhaps two humdred voyages and expeditions were assisted by amateur radio, and for many vears no expedition has taken the field without such plans.

Since 1913 amateur radio has been the principal, and in many cases the only. means of outside communication in several hundred storm, flood and carthquake emergencies in this country. The 1936 eastern states flood, the 1937 Ohio River Valley food, the Southern California flood and Long Island-New England hurricane disaster in 1938, and the FloridaGulf Coast hurricanes of 1947 called for the amateur's greatest emergency effort. In these disasters and many others - tornadoes, slect storms, forest fires, blizzards - amateurs played a major roble in the relief work and carned wide commendation for their resourcefulness in cffecting eommunication where all other moans had failed. During 1938 AIRIRI. inaugurated a new emergency-preparedness
program, registoring persomel and equipment in its Emergency Corps and putting into offeet a compreherisive program of eoöperation with the Red Cross, and in 1947 a National Emergency Coürdinator was appointed to full-time duty at Latgue heatquarters.

TECHNICAL DEVELOPMENTS

Throughout these matny years the amateur was carefal not to slight experimental develop)mont in the onthusiasm incident to international DN. The experimenter was constantly at work on ever-higher frequencios. devising improved apparatus, and loarning how to cram sereral stations where previously there was room for only onc! In particular. the amawur pressed on to the development of the very high fregurneles and his experienere with five moters is esperially representative of his initiative and resourectulness and his ability to make the most of what is at hand. In 1924. first amateur experiments in the vieinity of is Me. indicated that hatnd to be pratelicatly worthless for D)X. Xomethelews. great "short-hatul" atetivity reontuatly cante about in the band and new gear wats developed to meen its sperial problems. Beginning in 1934 a serios of investigations hy the brillitan experimenter. Ross Hall (later Qs'T"s oditor), devoloped the theory of v.h.f. Water-bending in the lower atmosphere and lod amateurs to the attainment of better distances: while oceasional mathifestations of ionospheric propatgation, with still greater distances. gaw the hamd aniquely arratie performance. Bys Pearl Harbor thomands of amateurs wore spembing much of their time on this and the next highor band, many having worked hundreds of stations at distaneres up to scveral thousathd miles. Transeontinental 6 meter DX is now a commonplate oceurence; even the oreans have beron bridged! It is a tribute to these indefatigable amateurs that today's concept of v.li.f. propagation was devoloped largely through amateur researeh.

The amateur is constantly in the forefront of terhnieal progress. His incessant curiosity, his eagerness to try anything new, are two reatsons. Another is that evor-growing amateur radio eontinually overerowds its freguency assignments, spurring amateurs to the development and adoption of new techniques to permit the

. corner of the IIRKL, laboratory.
accommodation of more stations. For examples, amateurs turned from spark to c.w., designed more selective receivers, adopted crystal control and pure d.c. power supplies. From the ARRRI's own laboratory in 1932 came James Lamb's "single-signal" superleterodyne - the world's most advanced high-frequency radiotelegraph receiver and, in 1936 , the "noise-silencer" circuit. Amateurs are now turning to speech "clippers'" to reduce bandwidths of 'phone transnissions and investigating "single-sideband suppressed-carrier" systems which promise to halve the spectrum space required hy a voice-modulated signal.

During World War II, thousands of skilled amateurs contributed their knowledge to the development of seeret radio deviese, both in Government and private laboratories. Equally as important, the prewar technical progress by amateurs provided the kevstone for the development of modern military communications equipment. Perhaps more important tolay than individual contributions to the art is the mass cooperation of the amateur body in Govermment projects such as propagation studies; each participating amateur station is in reality a separate field laboratory from which reports are made for correlation and analysis.

Emergency relief, expedition contact, experimental work and countless instances of other forms of public service - rendered, as they always have been and always will be, without hope or expectation of material reward - made amateur ralio an intogral part of our peacetime national life. The importance of amateur participation in the armed forces and in other aspects of national defense have emphasized more strongly than ever that amateur radio is vital to our national existence.

THE AMERICAN RADIO RELAY LEAGUE

The ARRL is today not only the spokesman for amateur radio in this country but it is the hargest amateur organization in the world. It is strictly of, by and for amateurs, is noncommercial and has no stockhollers. The members of the League are the owners of the ARRL and QST.

The Ierague is pledged to promote interest in two-way amateur communication and experimentation. It is interested in the relaying of messages by amateur radio. It is concerned with the advancement of the radio art. It stands for the maintenance of fraternalism and a high standard of conduct. It represents the amateur in legislative matters.

One of the league's principal purposes is to keep amateur activities so well conducted that the amateur will continue to justify his existence. Amateur radio offers its followers countless pleasures and unending satisfaction. It also calls for the shouldering of responsi-

'The' operating romen at W'IAW.
bilities - the maintenance of high standards, a coöperative loyalty to the traditions of amateur radio, a dedication to its ideals and principles, so that the institution of amateur radio may contiaue to operate "in the public interest, convenience and necessity."

The operating territory of ARIRL is diviled into fifteen U.S. and five Canadian divisions. The affairs of the League are managed by a Board of Directors. One director is eleceted every two years by the membership of each U. S. division, and a Canadian (ieneral Manager is elected every two years by the Canadian membership. These directors then choose the president and vice-president, who are also members of the Board. The managing secretary, treasurer and communications manager are appointed by the board. The directors, as representatives of the amateurs in their divisions, meet amually to examine current amateur problems and formulate AIRIRL policies thereon.

ARRL owns and publishes the monthly magazine, QSTT. Acting as a bulletin of the League's organized activities, QNT alsu serves as a medium for the exchange of ideas and forsters amateur spirit. Its technical articles are renowned. It has grown to be the "amateur's bible," as well as one of the foremost radio magazines in the world. Membership dues include a subseription to QST.

ARKL maintains a model headquarters amateur station, known as the Hiram Percy Maxim Memorial Station, in Newington, Conn. Its call is W IAW, the call held by Mr. Maxim until his death and later transferred to the League station by a special FCC action. Separate transmitters of maximum legal power on each amateur band have permitted the station to he heard regularly all over the world. More important, WiAW transmits on regular schedules bulletins of general interest to amateurs, conducts code practice as a training feature, and engages in two-way work on all popular bands with as many amateurs as time permits.

At the headquarters of the League in West Hartford, Conn., is a well-equipped lak,oratory to assist staff members in preparation of technical material for QST and the Rutio Amateur's IIandbook. Among its other activities, the League maintains a Communica-
tions Department concerned with the operating activities of League members, A large fied organization is headed by a Section Communications Manager in each of the League's seventy-t wo sections. There are appointments for qualified members as Official IRelay Station or Official 'Phone Station for traffic handling; as Official Observer for monitoring frequencies and the quality of signals; as Route Manager and 'l'hone Activities Manager for the establishment of trunk lines and networks; as Emergency Coordinator for the promotion of amateur preparedness to cope with natural disasters; and as Official Experimental Station for those pioncering the frequencies above 50 Mc. Mimeographed bulletins keep appointees informed of the latest developments. Special activities and contests promote operating skill. A special section is reserved each month in QST for amateur news from every section of the country.

A MATEUR LICENSING IN THE UNITED STATES

The Communications Act lodges in the Federal Communications Commission authority to classify and liemse radio stations and to preseribe regulations for their operation. l'ursuant to the haw, FCC has issued detailed regulations for the amateur serviee.

A radio amateur is a duly athorized person interested in radio technique solely with a personal aim and without peeuniary interest. Amateur operator licenses are given to C, S. citizens who pass an cexamination on operation and apparatus and on the provisions of law and regulations affecting amateurs, and who demonstrate ability to send and reecive code at 13 words per minute. Station licenses are granted only to licensed operators and permit communication between such stations for amateur purposes, i.e., for personal noneommereial aims flowing from an interest in radio technique. An amateur station may not be used for material compensation of any sort nor for broadeasting. Narrow hands of frecquencies are allocated exclusively for use by amateur stations. Transmissions may be on any frequency within the assigned loands. All the frequencies may be used for c.w. telegraphy and some are available for radiotelephony by any amateur, while others are reserved for radiotelephone use by persons having at least a year's experience and who pass the examination for a Class A license. The input to the final stage of amateur stations is limited to 1000 watts and on frequencies below 144 Mc. must be adequatelyfiltered direct current. Emissions must be free from spurious radiations. The licensee must provide for measurement of the transmitter frequency and establish a procedure for checking it regularly. A complete log of station operation must be maintained, with specified clata. The station lieense also authorizes the holder to operate portable and mobile stations on
certain frequencies, subject to further regulations. An amateur station may be operated only by an amateur operator licensee, but any licensed amateur operator may operate any amateur station. All radio licensees are subject to penalties for violation of regulations.

Amateur licenses are issued entirely free of charge. They can be issued only to citizens but that is the only limitation, and they are given without regard to age or physical condition to anyone who successfully completes the examination. When you are able to copy 13 words per minute, have studied basie fransmitter theory and are familiar with the law and amateur regulations, you are ready to give serious thought to securing the Government amateur licenses which are issued you, after examination at a local distriet offiee or examining points in most of our larger cities, through FCC at Washington. A complete up-to-theminute discussion of license requirements, and a study guide for those preparing for the examination, are to be found in an ARRL publication, The Rudio Amuteur's License Manual, available from the American IRadio Relay League, West Hartford 7, Conn., for 2oć, postpaid.

LEARNING THE CODE

In starting to learn the code, you should consider it simply another means of conveying information. The spoken word is ono mothod,

A didah	N dahdit
B dahdididit	O dahdahdah
C dahdidahdit	P didahdahdit
D dahdidit	Q dahdahdidah
E dit	R didahdit
F dididahdit	\mathbf{S} dididit
G dahdahdit	T dah
H didididit	U dididah
I didit	V didididah
J didahdahdah	W didahdah
K dahdidah	X dahdididah
L didahdidit	Y dahdidahdah
M dahdah	Z dahdahdidit
1 didahdahdahdah	6 dahdidididit
2 dididahdahdah	7 dahdahdididit
3 didididahdah	8 dahdahdahdidit
4 dididididah	9 dahdahdahdahdit
5 dididididit	0 dahdahdahdahdah

Period: didahdidaholidah. Comma: dahdahdididahdah. Question mark: dididahdahdidit. Error:didididididididit. Doubledash:dahdidididah. Wait: didahdididit. End of message: didahdidahdit. Invitation to transmit: clahdidah. Find of work: didididahdidah. Fraction bar: tlahdididahdit.
Fig. 1.1 - The Continental (International Morse) ende.
the printed page another, and typewriting and shorthand are additional examples. Jearning the code is as easy - or as difficult - as learning to type.

The important thing in beginning to study code is to think of it as a language of sound, never as combinations of dots and dashes. It is casy to "speak" rode equivalents by using "dit" and "dah," so that A would be "didah" (the " f " is dropped in surh combinations). The sound "di" should be stacesto: a code character such as " 5 " should sound like a machinegun burst: dididididit! Stress eath "dah" equally; they are underlined or italieized in this text beeause they should be slightly arcented and drawn out.

Take a few characters at a time. Jearn them thoroughty in didah language before going on to new ones. If someone who is familiar with cole can be found to "send" to you. either by whistling or by means of a buzzer or code oscillator, enlist his couperation. Learn the code by listening to it. Don't think about speed to start; the first requirement is to learn the characters to the point where you ran recognize each of them without hesitation. Concentrate on any difficult letters.

A ACQUIRING SPEED BY BUZZER PRACTICE

Regular practice periods will develop code proficieney. Two prople ean learn the code together, sending to each other by means of a buzzer-and-key outfit. An advantage of this system is that it develops sending ability. too. for the person doing the receiving will be quiek to criticize uneven or indistinet sending. If possible get an experienced operator for the first few sessions to learn how well-sent characters should sound.

Either the buzzer set shown in Figs. 1-2 and 1-3 or the audio oseillator described will give satisfactory results ats aticelice set. The battery-operated audio oscillator in Figs. 1-4 and $1-\overline{6}$ is easy to consinuct and is effertive. If nothing is heard in the heol latomes when the

Hig. 1.2 - The headphones are connected across the coils of the buzzer, with a condenser in series. If the value shown gives an excesivety loud signal. it may lue reduced to $470 \mu \mu \mathrm{fd}$. or $220 \mu \mu \mathrm{fi}$.

Fig, 1-3 - The cover of the buzaer unit has been remoned in this view of the buzzer code-practioe set.
key is depressed, reverse the leads going to fither transformer winding (do not reverse both windings .

With a practice set ready. send single letters at first. When ach chatacter can be read quickly follow this by slow sending of complete words and sentences. Have the material sont at a rate slightly fastor that you catl copy easily: this speeds up your mind. Write down each letter you recognize. Do not try to write down the dots and dashes; write down leaters. Don't stop to compare the sounds of different letters, or think too long about a letter or word that has been missed. (Go) right on to the next one, or each "miss" will canse you to lose somal characters. If you exoreise a litthe patience you will soon be getting every chararter. When you can receive 13 words a minute
 code groups rather than English text. This will prevent you from recognizing a word "on the way" and filling it in before you've really listened to the letters themselves.

Afor you have acquired reasonable profirioncy, eoncentrate on the less common whatacters. as woll as the numerals and pumetatition. These prove the downfall of many appheants taking the eode examination.

LEARNING BY LISTENING

Assoon as you can, listen on a real communirations receiver (with beat oscellator) and have. the fun of learning by listening. W1.III conducts practier transmissions Mondays. Wednesdays and Fridays, 9 to $3 \overline{3} \mathrm{w} . \mathrm{p} . \mathrm{m}$., and Tuesdays-Thursdays, $1 \bar{i}$ to $3 \overline{\mathrm{~s}}$ w.p.m., starting at $9: 30$ r.m. ESST. In addition, the Offirial Bulletins, also sent from W1AW, give added pratfice at 15 and 25 w -p.m. Wee the (Operatiner News sertion announcements of the WIAW operating sehedule, and Code Proficiency Program notes, in the latest copy of QST'. Practise until you can mail in what you have copied over the air on IIIAW's monthly "qualifying run" to get a 15 -word-per-minute Code Proficioney Cortificate or atieker for advaneed speods.

Fis. I-4 - Wiring diagram of a simple vacuam-tube amborfequency oscillator for wae as a code-practier set.

USING A KEY

The correce way to grasp the key is important. The knoh of the key should be about "ighteen inches from the edge of the operating table and about on a line with the operator's right shoulder, allowing room for the elbow to rest on the table. A table about thirty inches in height is best. The spring tension of the key vatios with different operators, ifaily hoavy spring at the start is desirable. The bate atjustment of the key should be changed until there is a verieal movement of about onc-sixternth inch at the knob. After an operator has mastered the use of the hand key the tension should be changed and cath be reduced to the minimum spring fension that will cause the key to open immodiately when the pressure is released. Nure spring tension than necessary canses the expenditure of unnecessary energy. The contacts should be spaced by the rear screw on the kiy only and not by allowing play in the side sorrws. which atte provided moroly for aligning the contart points. Theser side serews should be sorewed up to a setting which prevents appreriable side play. but mot adjusted so tighty that binding is caused. The gap betwern the contate should always be at least a thirty-serond dif an inch, sinee tore finely spaced contarts will cultivate a nervous style of semding which is highly umesirable. On the other hathd, tow-wide spating (much over one-sixteronth inch) may result in unduly heave or "muddy" sending.

Da not hold the key tighty. Let the hamel rest lightly on the key. The thumb should be against the left side of the knob. The first and

Fip. 1.5- I.ayout of the andio-oseillator code-practiec set. All parts may he monated on a wooden haschoard, aprosimately 5 by 7 inches in size.
second fingers should be bent a little. They should hold the middle and right sides of the knob, respectively. The fingers are partly on top and partly over the side of the knob. The other two fingers should be free of the key. Fig. 1-6 shows the correct way to hold a key.

A wrist motion should be used in sending. The whole arm should not be used. One should not send "nervously" but with a steady flexing of the wrist. The grasp on the key should be firm, but not tight, or jerky sending will result. None of the muscles should be tense but they should all be under control. The arm should rest lightly on the operating table with the wrist hed above the table. An up-anddown motion without any sideway action is best. The fingers should never leave the key knob.

Good sending may seem easior than receiving, but don't be deceived, A beginner should not attempt to send fast. Keep your transmitting speed down to your receiving speed, and bend your efforts to sending well. Do not try to speed things up too soon. A slow, even rate of

Fit. I-6-I'his sketch illustrates the correet position of the hand and fingers for good semding with a tele. graph hey.
sending is the matk of a good operator. Speed will come with timo alone. Leave special types of keys alone until you have mastered the knack of handling the standard key. Becanse radio transmissions are seldom free from interference. a "heavier" style of sending is best to develop for radio work, A rugged, heavy key will help in developing this characteristic.

Toberome expert in transmitting good code, after you have thoroughly learned each letter and numeral and can both send and copy letters without hesitation, your best practice is to listen to commercial automatie-tape stations. Perfectly-sent code can be aceomplished onlyby a machine, and you want to get fixed in your mind, indelibly, the correet formation of cach and covery code character and in particular the associated spates. One of the best methods for deriving this association is to find a commereial or other tape station sending at about vour maximum receiving speed, Notice the formation of each letter, the spaces left between letters and words, and the proportion in length of dits to dahs. Listen to the transmissions as you woukl at a musical concert, concentrating on assimilating every detail. The spaces betwern words may seem exaggerated, simply beeause you have probably been running yours together. I seore of other details where the auto-
matic transmission is different than yours will very likely show up in the same text. From all this you will learn where your own faults lie and be able to correct them.

- THE AMATEUR BANDS

Amateurs are assigned bands of frequencies at approximate octave intervals throughout the speetrum. Like assignments to all services, they are subject to modification to fit the changing picture of world communications needs.

In the adjoining table is a summary of the U.S. amateur bands on which operation is permitted as of our press date. Figures are megacerles. A0 means an unmodulated carrier, Al means c.w. telegraphy, A2 is m.c.w., A3 is AM 'phone, A4 is facsimile, A5 is television, NFM designates narrow-band frequency- or phasomodulated radiotelephons, and FM means frequency modulation, phone (including NFM) or telegraphy. In addition, amateur: are assigned portions of the band 1800-2009 ke, subject to certain power and geographical restrictions, as shown in the table below; either c.w. or voice may be used.

Area		Porrer (ratta)	
	Band, ke	Day	Night
Mississipni Riwer to Eust	1800-1825 ke	500	200
Coast IT.S. (exerpt Florida and states bordering	1875-190 ke		
Gulf of Mexico)			
Mississippi River to West	1000-1025 ke.	* 500	*200
Coast I's. (except states	1975-2000 kc		
bordering Galf of Mexico)			
Florida and states bor-	1800-182.jke	200	No oner-
dering (Bulf of Mexieo	$187 . j-1900 \mathrm{kc}$		ation
Pumeto Ried and Virgin	1900-142; ke	50	. 30
Islands	147.0-2006 ke		
Hawabian Islands	$1000-142 \mathrm{akc}$	500	200
	197.3-2000 ke		

[^0]The lets International Radio Conference resulted in certain planmed changes in present bands which may beeome efferetive some time in da5l. They are: a reduction in the 20 -meter band to make it themeforth $1,4,000-14,350 \mathrm{ke}$., and a new band $21,000-21,450 \mathrm{kc}$. Further, in late loan there appoared to be substantial agrement between FCC and the amateur body on the dexirability of certain additional changes in domestic regulations, among which are the extension of the \quad io-meter Class A 'phone band to read $3800-4000 \mathrm{ke}$. and extension of NFM priviloges throughout the 50-Me. band. Because of the possibility of such changes each amateur should kerp himsolf cur-

rently informed by consulting QST or by writing ARRL, for latest information.

- NEW LICENSE STRUCTURE

Also at press time announcement is imminently experted of a change in the license strueture, the most pertinent aspect of which would be the creation of two new (lasses of license sometime during 1951. One would be a Novice Class, requiring the passing of an FCC examination including a code test at only 5 words per minute and a very simple written test in theory and regulation, The Novice Class lienose would have a tem of only one year, and could not be renewed; its purpose would be to provide on-the-air training for neweomers wishing to become "fullfledged" amateurs.
As might be experted from the reduced requirements, the privileges available to the Novice Class lierenseo would bo dimited. Maximum input power probably would be 75 watts and erystal control would be required. Code could be used in $3700-3750 \mathrm{kc}$, and $26,960-27,230 \mathrm{kc}$, and either code or voice in $145-147 \mathrm{Mc}$.

For the neweomer to amateur radio who is particularly interested in the ultrahigh frequencies and miero-waves, it is expected there will also be a Technician Class lieense, with a $5 \mathrm{w} . \mathrm{p} . \mathrm{m}$. code tesit but the samo written test as for present Class I license. Privileges would be all those in bands above 220 Mc . This would be a five-ycar term license, renewable in the usual manmer.

Consult QST' or write ARRI. Headquarters in West IIartford, Conn., for any further data about these licenses.

CHAPTER 2

Electrical Laws and Circuits

Everyone knows that radio is electrical in nature, and it is taken for granted that to know anything about the operation of radio equipment von have first to know something about elertricity and electrical circuits. The amount of electrical knowledge sou need in amateur tatio depends on how far you delve into the technicalities of the varions types of transmitters, receivers and measuring equipment that amateurs use. If you're just getting started you do not need very much, but as you progress you will find that you will acquire, more or less unconseiously, a great deal of basie information. That is, you will if you make a conscientious effort to understand and
analyze the things that you observe in using radiogear.

The purpose of this chapter is to provide the answers to many questions about circuits that will come up in the conre of buthding and operating an amateur station. It is a practical reference soction, covering those principles that are basie to all radio equipment. However, those who wish to use it as a course in elementary circuit theory will find that the material is arranged so it can be studied consecutivel., such study is, of course, valuable; but the chapter should prove even more valwable when frequently consulted for help in the solution of everydity problems.

Fundamentals

ELECTRIC AND MAGNETIC FIELDS

At the botom of everything in electricity and radio is a field. Nlthough a field is not too easy to visualize, we need to have some appreciation of what it is if electrical effects are to be understood. When something occurs at one point in space because something else happened at another point, with no visible means by which the "cause" ean be related to the "effect," we say the two events are connected by a "field." It does not matter whether or not the field is "real" - that is, whether it is something physieal although, like air, invisible. The important point is that the distant effects are predictable, and it is convenient to attribute them to properties of a field. The fields with which we are concerned are the electric and magnetic, and the combination of the two called the electromagnetic field.

I field has two important properties, intensity (magnitmbe) and tirrction. 'That is, the ficld exerts a force on an objeet immersed in it; intensity measures the amount of force exerted while direction tolls the direetion in which the object on which the force is exerted will tend 10 mover. An electrically-chatrged objert in ath electrice fiold will be aroded on by a force that will temd to move it in a direction determined by the direction of the fied. Similarly, at magnet in a magnetic field will be subject to a foree. Everyone has seen demonstrations of
magnetic ficlds with pooket magnets, so intensity and direction are not hard to grasp.

A "static" ficld is one that is fixed in space. Such a field can be set up by a stationary electrie eharge (electrostatic field) or by a stittionary magnet (magnetostatic field). But if either an electric or magnetic field is moving in space or changing in intensity, the motion or change sets up the other kind of field. That is, a ehanging electric field sets up : magnetie field, and a changing magnetic field generates an electric field. "This interrelationship between magnetic and electric fields makes possible such things as the electromagnet and the electrie motor. It also makes possible the electromagnetic waves by which radio communieation is carried on, for such waves are simply traveling fields in which the energy is alternately handed back and forth between the electric and magnetic fields.

Lines of Force

We need, obviousty, some way to eompare the intensity and direction of different ficlds. This is done by picturing the field ats made up of lines of force, or flux lines. These are purely imaginary threads that show, by the direetion in which they lie, the direction the objact on whish the force is exerted will move. The number of lines in achosen cross section of the fiekl is at measure of the intensit! of the force. The number of lines per square inch, or per square centimeter, is called the flux density.

- ELECTRICITY AND THE ELECTRIC CURRENT

Electrical effects are caused by extremely small particles of electricity called electrons. Everything physical is built up of atoms, partieles so small that they cannot be seen even through the most powerful microscope. l3ut the atom in turn consists of still smaller particles - several different kinds of them. One type of particle is the electron, An ordinary atom consists of a central core, called the nucleus, around which one or more electrons circulate somewhat as the earth and other planets circulate around the sun. Both the nucleus and the electrons are electrical, but the kind of electricity associated with the nucleus is called positive and that associated with the electrons is called negative.

The important fact about these two "opposite" kinds of electricity is that they are strongly attracted to each other. Also, there is a strong force of repulsion between two charges (a collection of electrified particles is called a charge) of the same kind. The positive nucleus and the negative electrons are attracted to each other, but two electrons will be repelled from each other and so will two nuclei. The fact that an atom contains both positive and negative charges makes it tend to stay together as a unit; in a normal atom the positive charge on the nucleus is exactly balanced by the total of the negative charges on the electrons. It is possible, though, for an atom to lose one of its electrons; when that happens the atom has a little less negative charge than it should or, to put it another way, it has a net positive charge. Such an atom is said to be ionized, and in this case the atom is a positive ion. If an atom picks up an extra electron, ats it sometimes does, it has a net negative charge and is called a negative ion. A positive ion will attract any stray electron in the vicinit y, ittcluding the extra one that may be attached to a nearby negative ion. In this way it is conveniently possible for electrons to travel from atom to atom, and when such movement occurs on a measurable scale (millions or billions of cleetrons moving) we have a detectable electric current.

Conductors and Insulators

The movement of electrons can take place in a solid, a liquid, or a gats. In liquids and gases, positive and negative ions, as well, are free to move when attracted electrically, but in solids only the electrons move. However, movement of electrons or ions is not possible in all substances. Atoms of some materials, notably metals and acids, will give up an electron readily, but atoms of other materials will not part witl any of their electrons even when the electric force is extremely strong. Materials in which electrons or ions can be moved with relative ease are called conductors, while those that refuse to permit such movement are
called nonconductors or insulators. The following listing shows how some common materials divide between the conductor and insulator classifications:

Conductors	Insulators
Metals	Dry Air
Carbon	Wood
Acids	Porrelain
	Textiles
	Glass
	Rubber
	Resins

Electromotive Force

The electric force (called electromotive force, and abbreviated e.m.f.) that cabuses current flow may be developed in several ways. The action of certain chemical solutions on dissimilar metals sets up an e.m.f.: such it combination is called a cell, and a group of cells forms an electric battery. The amount of current that such eells can carry is limited, and in the course of current flow one of the metals is eaten away. The amount of electrical energy that can be taken from a battery consequently is rather small. Where a large amount of energy is needed it is usually furnished by an electric generator, which develops its e.m.f. by a combination of magnetic and mechanical means. Large generators in power houses supply the energy that is distributed to homes and factories.

In picturing current flow it is natural to think of a single, constant force causing the electrons to move. When this is so, the elee-
(A)

(B)

(C)

Fip. 2-1 - Three types of current flow. A - direct current; B - intermittent direst current; C - alternating current.
trons always move in the same direction through it path or circuit made up of conductors connected together in a continuous ehain. Sueh a eurrent is called a direct current, abbreviated d.c. It is the twpe of current furnished by batteries and by certain types of generators, However, it is also possible - and desirable as well - to have in e.m.f. that periodically reverses. With this kind of e.m.f. the eurrent flow: first in one direction throngh the pircuit and then in the other. Such an e.m.f. is ealled an alternating e.m.f., and the current is called an alternating current (ab)breviated a.c.), The reversils (alternations) may oecur at any rate from a few per second up to several billion per second. Two reversals make a cycle; in one cycle the force acts first in one direction, then in the other, and then returns to the first direction. The number of cycles in one second is called the frequency of the alternating current.

Direct and Alternating Currents

The difference between direct current and alternating current is shown in Fig. 2-1. In these graphs the horizontal axis measures time, inereasing toward the right away from the vertical axis. The vertical axis represents the amplitude or size of the eurrent, inereasing in either the up or down direetion away from the horizontal axis. If the graph is above the horizontal axis the current is flowing in one direction through the eircuit (indicated by the + sign) and if it is belor the horizontal axis the eurrent is flowing in the reverse direction through the eircuit (indieated by the - sign). fig. $2-1 \mathrm{~A}$ shows that, if we close the circuit that is, make the path for the current complete - at the time indicated by X, the eurrent instantly takes the amplitude indicated by the height A. Ifter that, the current continues at the same amplitude ass time goes on. This is an ordinary direct eurrent.

In Fig. 2-1 13, the current starts flowing with the amplitude A at time X, continues at that amplitude until time Y and then instantly ceases, After an interval $Y \%$ the current again begins to flow and the same sort of start-andstop performance is repeated. This is an intermiltent direct current. We could get it by alternately closing and opening a switch in the circuit. It is a direct current because the direction of current flow does not change; the graph is always on the + side of the horizontal axis.

In Fig. 2-10 the current starts at zero, increases in amplitude as time goes on until it reaches the amplitude A_{1} while flowing in the + direction, then decreases until it drops to zero amplitude once more. At that time (X) the direction of the current flow reverses; this, is indicated by the fact that the next part of the graph is below the axis. . Is time goes on the amplitude increases, with the current now flowing in the - direction, until it reaches amplitude A_{2}. Then the amplitude decreases until finally it drops to zero (1) an! the direc-

Hif. 2-2 - A complex waveform. A fundamental (top) and serond harmonic (eenter) added together, point hy mint at each initant, result in the waveform shown at the bottom. When the two components have the same polarity at a selected instant, the resultant in the simple sum of the two. When they have opposite polarities, the resultant is the difference: if the negative-polarity compment is larger, the resultant is megative at that indant
lion reverses onere more This is an allernatiag eurrent.

Waveforms

The graph of the alternating eurrent is what is known ats a sine wave. Nine-wave alternating current is the simplest - but not the only kind. Notice that the variations in amplitude are quite regular and that the "negative" half-cycle or alternation is exactly like the "positive" half-eycle except for the reversal of direction. The variations in many a.c. waves are not so smooth, nor is one hati-cyele necessurily just like the preceding one in shape. However, these more complex waves actually can be shown to be the sum of two or more sine waves of frequencies that are exact integral (whole-number) multiples of some lower frequency. The lowest frequency is called the fundamental frequency, and the higher frequencies (2 times, 3 times the fundamental frequency, and so on) are called harmonics.

Fig. 2-2 shows how a fundamental and a second harmonic (twice the fundamental) might add to form a complex wave. . little thought will show that simply by changing the relative amplitudes of the two waves, as: well as the times at which they pitso through zero amplitude, an infinite number of waveshapes ean be constructed from just a fundamental and second hamonic. Wives that are still more complex can be construpted if more than two harmonics are used.

Electrical Units

The unit of electromotive force is called the volt. An ordin:ry flashlight cell generates an
e.m.f. of about 1.5 volts. The e.m.f. commonly supplied for domestic lighting and power is 11% volts, usually a.c. having a frequency of 60 cycles per second. The voltages used in radio receiving and transmitting circuits range from a few volts (usually a.c.) for filament heating to as high as a few thousand d.c. volts for the operation of power tubes.

The flow of electric current is measured in amperes. One ampere is equivalent to the movement of many billions of electrons past a point in the circuit in one second. Currents in the neighborhood of an ampere are required for heating the filaments of small power tubes. The direct currents used in amateur radio equipment usually are not so large, and it is customary to measure such currents in milliamperes. One milliampere is equal to one onethousandth of an ampere, or 1000 milliamperes equals one ampere.

In assigning a value to an alternating current or voltage, it is necessary to take into account the difference between direct and alternating currents. A "d.c. ampere" is a measure of a steady current, but the "a.c. ampere" must measure a current that is continually varying in amplitude and periodically reversing direction. To put the two on the same basis, an a.c. ampere is defined as the amount of current that will cause the same heating effect (see later section) as one ampere of steady direct current. For a sine-wave allernating current. this effective (or r.m.s.) value is equal to the maximum amplitude of the current (A_{1} or A_{2} in Fig. 2-1C) multiplied by 0.707. The instantaneous value of an alternating current is the value that the current measures at any selected instant in the cycle.

If all the instantaneous values in a sinewave altemating current are averaged over a half-cycle, the resulting figure is the average value of the alternating current. It is equal to 0.6:36 times the maximum amplitude. The average value is useful in connection with rectifier systems, as described in a later chapter.

These definitions of units apply to a.c. voltage as well as to current.

- FREQUENCY AND WAVELENGTH

Frequency Spectrum

The electrical energy supplied for household use usually has a frequency of 60 cycles per second. Frequencies ranging from about 15 to 15,000 cycles per second are called audio frequencies, because the vibrations of air particles that our ears recognize as sounds occur at the same rate. Audio frequencies (abbreviated a.f.) are used to act uate loudspeakers and thus create sound waves.

Frequencies above about $1,5,000$ cycles are called radio frequencies (r.f.) because they are
useful in radio transmission. Frequencies all the way up, to and beyond $10,000,000,000$ cycles have been used for radio purposes. . It radio frequencies the numbers become so large that it becomes convenient to use a larger unit than the cycle. Two such units in everyday use are the kilocycle, which is equal to 1000 cycles and is abbreviated kc., and the megacycle, which is equal to $1,000,000$ eycles or 1000 kilocycles and is abbreviated Mc. The accompanying table shows how to convert frequencies expressed in one unit into frequencies in another unit.

The various radio frequencies are divided off into classifications for ready identification. These classifications, listed below, constitute the frequency spectrum so far as it extends for radio puiposes at the present time.

Frequency	Classification	Abtreviation
10 to 30 ks .	Vers-low frequencies	$v .1 . f$.
30 to 300 ke .	Low frequencies	l.f.
300 to 3000 ke,	Medium frequencies	m.f.
3 to 30 Mc .	High frequencies	h.f.
30 to 300 Mc .	Vers-high frequencies	v.l.f.
300 to 3000 Me .	Lltrahigh frequencies	u.l.f.
3000 to $30,000 \mathrm{Mc}$.	Superhigh frequencies	s.h.f.

Wavelength

We said earlier that radio waves are traveling fields of elertric and magnetic force. These fields travel at great speed - so great that, so far as we can observe, "rause" and "effect" are simultaneous. Nevertheless, it does take a definite amount of time for the effect of a field set up at one point to be felt at a point some distance away.

Radio waves travel at the same speed as light - $300,000,000$ meters or about 186,000 miles a second. They are always set up by a radio-frequency current flowing in a circuit, because the rapidly-changing current sets up a magnetic field that changes in the same way, and the varying magnetie field in turn sets up a varying electric field. And whenever this happens, the two fieds move outward at the speed of light.

Suppose our r.f. current has a frequency of $3,000,000$ eycles per second. The fields, then, will go through complete reversals (one cycle) in $1 / 3,000,000$ second. In that same period of time the fields - that is, the wave - will move $300,000,000 / 3,000,000$ meters, or 100 meters. (The meter is the unit of length commonly used in all seiences. We could use miles, feet, or inches, though, if those units were more convenient.) By the time the wave has moved that distance the next cycle has begun and a new wave has started out. The first wave, in other words, covers a distance of 100 meters before the begiming of the next, and so on. "This distance is the "length" of the wave, or wavelength.

The longer the time of one cycle - that is, the lower the frequency - the greater the distance ocrupied by each wave and hence the longer the wavelength. The relationship be-
tween wavelength and frequency is shown by the formula

$$
\lambda=\frac{300,000}{f}
$$

where $\lambda=$ Wavelength in meters
$f=$ Frequency in kilocycles
or

$$
\lambda=\frac{300}{f}
$$

where $\lambda=$ Wavelength in meters
$f=$ Frequency in megacucles

Example: The wavelength corresponding to a frequency of 30.30 kilocycles is

$$
\lambda=\frac{300,000}{3650}=82.2 \text { meters }
$$

Most of our dealings are with frequency, if for no other reason than that it can be measured much more accurately than wavelength. However, we cannot ignore wavelength; it enters into the calculation of the size of "linear" circuits such as antennas.

Resistance

The ease with which we can force an clectric current through a conductor varies with the material, shape and dimensions of the conductor. (iiven two conductors of the same size and shape, but of different materials, the amount of current that will flow when a given e.m.f. is applied to the conductor will be found to vary with what is called the resistance of the material. The lower the resistance, the greater the current for a given value of e.m.f.

Resistance is measured in ohms. A circuit has a resistance of one ohm when an applied e.m.f. of one volt causes a current of one ampere to How. The resistivity of a material is the resistance, in ohms, of a cube of the material measuring one centimeter on each edge. One of the best conductors is copper, which is why this metal is so widely used in electrical circuits. It is frequently convenient, in making resistance calculations, to compare the resistance of the material under consideration with that of a copper conductor of the same size and shape; Table $2-I$ gives the ratio of the resistivity of the material to that of copper.
'The longer the path through which the current flows the higher the resistance of that conductor. For direct current and low-frequency alternating currents (up to a few thousand cycles per second) the resistance is inversely proportional to the cross-sectional area of the path the current must travel; that is, given two conductors of the same material and having the same length, but differing in crosssectional area, the one with the larger area will have the lower resistance.

Resistance of Wires

It is readily possible to combine all these statements about resistance in a single formula that would enable us to calculate the resistance of conductors of any size, shape and material. However, in most practical cases the problem will be to determine the resistance of a round wire of given diameter and length - or its opposite: finding a suitable size and length of wire to supply a desired amount of resistance. such problems can be easily solved with the help of the information in the copper-wire table in the Miscellaneous Data chapter. This table gives the resistance, in ohms per thousand feet, of each standard wire size.

Example: Suppose a resistance of 3.5 ohms is needed and some No. 28 wire is on hand. The wire table in the Miscellaneous Data chapter shows that No. 28 has a resistance of 66,17 ohms per thousand fect. Since the desired resistance is $\mathbf{3 . 5}$ ohms, the length of wire required will be

$$
\frac{3.5}{66.17} \times 1000=52.89 \text { feet. }
$$

Or, suppose that the resistance of the wire in the circuit must not exceed $0,05 \mathrm{ohm}$ and that the length of wire required for making the connections totals 14 feet. Then

$$
\frac{14}{1000} \times R=0.05 \mathrm{ohm}
$$

where R is the maximum allowable resistance in ohms fer thousand feet. Rearranging the formula gives

$$
R=\frac{0.05 \times 1000}{14}=3.57 \mathrm{ohms} / 1000 \mathrm{ft}
$$

Reference to the wire table shows that No. 15 is the smallest size having a resistance less than this value.
When the wire is not copper, the resistance values given in the wire table should be multiplied by the ratios given in Table 2-I to obtain the resistance.

$$
\begin{aligned}
& \text { Example: If the wire in the first example were } \\
& \text { iron instead of copper the length required for } \\
& 3.5 \text { ohms would be } \\
& \qquad \frac{3.5}{66.17 \times 5,(5.5} \times 1000=9.35 \text { feet. }
\end{aligned}
$$

Temperature Effects

The resistance of a conductor changes with its temperature. Nithough it is seldom necessary to consider temperature in making the

resistance calculations required in amateur work, it is well to know that the resistance of practically all metallie conductor: increases with increasing temperat ure. Carbon, however, acts in the opposite way: its resistance abcreases when its temperature rises. The temperature effect is important when it is necessary to maintain a constant resistance under all conditions. Spereal materiahs that have little or no change in resiatance over a wide temperature range are used in that case.

Resistors

Rexistance has important uses in electrical and radion cirrouts. A "package" of proistance made up into at single wit is called a resistor. Resistors having the same resistance value may be considerably different in size and construction, The flow of current through resistane eatuses the eonducter to become heated; the higher the resistance and the larger the eurrent, the greater the amount of heat developed. Comsequently, high-resistinee resistors intended for carrying large currentmust be physically large so the heat ean be radiated quickly to the surrounding air. If the resistor does not get rid of it- heat quickly it might reach at temperat ure that would canse it lo molt or burn. Types of resistors used in radio circuits are shown in the photograph.

Conductance

The reciproeal of mistance (that is, $1 / R$) is called conductance. It is hwailly represented by the symbol (i, and the higher its value the greater the conductivity of the cirenit. I circuit having large eonductance has low resistance, and viee versat. In radio work the term is used chiefly in commection with vacuum-tube characteristies. 'The mat of eonductance is the mho. I rexistanee of one whm hat a conductance of one mho, a rexistance of 1000 ohmo hats at conductance of 0.001 mho, and so on. I unit frequently used in comnection with vacuum $1:$ bes is the micromho, or one-millionth of : mho. It is the conductanee of a resistanee of one niegohm.

Fig. 2.3-A simple rircuit consistime of a battery and reaistor.

ohm's Law

The simplest form of electrie rireuit is a hattery with a resistance combected to its terminals, ts shown by the sembols in Fig. 2-3. A complete cireuit must have an unbroken path so curvent can flow out of the battery, through the apparatus connected to it, and back into the battery. The rircuit is: broken, or open, if a eomnection is removed at any point. A switch is a device for making and breaking connections and thereby closing or opening the circuit, either allowing current to low or preventing it from flowing.

The values of current, voltage and resistance in a circuit are by mo means independent of each other. The relationship, between them is known :s Ohm's Law. It ran he statad as follow:: 'The current lowing in at corvit is directly proportional to the applied e.nn.f. and inversely propertional to the resistance. bixpressed as ath equation, it is

$$
I(\text { amperes })=\frac{E(\text { wolts })}{R(\text { ohms })}
$$

The equation above gives the value of current when the voltage and resistance are kmown. It may be tramsored so that any of the three quantitios may be found when the other two are known:

$$
E=I R
$$

(that is, the voltage acting is equal to the current in amperes multiplied by the resistance in ohms:) and

$$
R=\frac{E}{I}
$$

(or, the resistance of the circuit is equal to the applied voltage divided by the current).

Nll three forms of the equation are used almost constantly in radio work. It must be

Typer of resistors ueed in radin equipment. Those in the furcground with "ire leats are carhon tyes, ranging in size from watt at the left to watte at the right. The larker resistors use resi-tatae wire wonal on reramic tubes: sizes show th range from 5 watt: to 160 watts, Three are the allystable Dope. using a sliding contart on an cymised section of the resistance winding.
remembered that the quantities are in rolts, ohms and amperes: other units camot be used in the equations without first being converted. For example, if the current is in millitamperes it must be changed to the equivalent fraction of an ampere before the value can be substituted in the equations.

Table 2-II shows how to convert between the various units in common use. The prefixes attached to the basic-unit name indicate the nature of the unit. These prefixes are:
micro - one-millionth (abbrevisted μ)
milli - one-thousandth (abbreviated m)
kilo - one thousand (abbreviated k)
mega - one million (abbreviated, V)
For example, one microvolt is one-millionth of a volt, and one megohm is $1,000,000$ ohms. There are therefore $1,0(00,000$ microvolts in one volt, and 0.0000001 megohm in one ohm.

The following examples illustrate the use of Ohn's Law:

The current flowing in a resistance of 20.000 ohms is 150 milliamperes. What is the voltage? Sine the voltage is to be foumd, the equation to use is $E=I R$. The current must first be converted from milliamperes to amperes, and reference to the table shows that to do so it is necessary to divide hy l000. Therefore.

$$
E=\frac{150}{1000} \times 20,000=3000 \text { volts }
$$

When a voltage of 1.50 is applied to a eircuit the eurrent is measured at $2, \tilde{5}$ amperes. What is the resistance of the circuit? In this case R is the unknown, so

$$
R=\frac{E}{I}=\frac{150}{2.5}=60 \mathrm{ohms}
$$

No conversion was necessary becanse the voltatre and enrrent were given in volts and amperes.

How much current will flow if 250 volte is applied to a "oncl-ohm resistor"? since I is unknown,

$$
I=\frac{E}{R}=\frac{2,01}{3000}=0.0 .3 \text { impere }
$$

Milliampere mits would be more convenient for the current, and 0.05 amp. $\times 1000=50 \mathrm{mil}$ liamperes.

SERIES AND PARALLEL RESISTANCES

Very few actual electric circuits are as simple as the illustration in the preading section. Commonly, resistances are found eonnected in at variet of ways. The two fundamental methods of connecting resistances are slown in Fig. :-4. In the upper drawing, the current flows from the source of e.m.f. (in the direction shown by the arrow, let us say) down through the first resistince, R_{1}, then through the second. l_{2}, and then back to the source. 'These resistors are conneeted in series. The rument everywhe in the circuit has the same value,

In the lower drawing the current flows to the common connection point at the top of the two resistors and then divider, one part of it flowing through R_{1} and the other through R_{2}. It the lower connection point these two eurrents again combine: the total is the same as the current that flowed into the upper common commetion. In this case the two resistors are connected in parallel.

TABLE 2-II Conversion Values for Fractional and Multiple Units			
To change from	To	Ditide by	Multiply by
l'nits	Miero-units Milli-units Kilo-units Mrga-units	$\begin{gathered} 1000 \\ 1,000,000 \end{gathered}$	$\begin{gathered} 1,000,000 \\ 1000 \end{gathered}$
Micro-units	$\begin{aligned} & \text { Milli-units } \\ & \text { I'nit: } \end{aligned}$	$\begin{gathered} 1000 \\ 1,000,0000 \end{gathered}$	
Millionits	Miero-units Lnits.	1000	1000
Kilo-unit:	$\begin{aligned} & \text { Cnits-units } \\ & \text { Meya-unis } \end{aligned}$	1000)	1000
Meqa-units	[nits. Kile-units		$\begin{gathered} 1,000,000 \\ 10000 \end{gathered}$

Resistors in Series

When a circuit hits a number of resistances connected in series, the total resistance of the circuit is the sum of the individual resistances. If these are numbered R_{1}, R_{2}, R_{3}, etc., then $R($ totai $)=R_{1}+R_{2}+R_{3}+R_{4}+\ldots$. where the dots indicate that as many resistors as necessary may be added.

> Example: Suppose that threc resistors are connected to a source of c,m,f, as shown in Fig. $2-5$. The e,m.f. is 2.50 volts, R_{1} is 5000 ohnms, R_{2} is 20,000 ohms, and R_{3} is 8000 ohms. The total resistance is then

$$
\begin{aligned}
R=R_{1}+R_{2} & +R_{3}=5000+20,000+8000 \\
& =33,000 \text { oh } 1 \mathrm{~ms}
\end{aligned}
$$

The current flowing in the circuit is then
$I=\frac{E}{R}=\frac{2.50}{33,000}=0,00757 \mathrm{unp} .=7.57 \mathrm{ma}$.
(We need not carry calculations beyond three signifieant figures, and often two will suffice becaluse the aceuracy of meastrements is seldom better than a few jer cent.)

Voltage Drop

Ohm's Law applies to an! part of a circuit as well ats to the whole circuit. Although the current is the same in all three of the resistances in the example, the total voltage divides

Fig. 2-4-liesistors comnected in series and in parallel.
v

among them. The voltage appearing across each resistor can be found from Ohm's law.

Example: If the voltage across R_{1} (Fig. 2-5) is called E_{1}, that across R_{2} is called E_{2}, and that across R_{3} is called E_{3}, then

$$
\begin{aligned}
& E_{1}=I R_{1}=0.00757 \times 5000=37.9 \text { volts } \\
& E_{2}=I R_{2}=0.007 .57 \times 20,000=151.4 \text { volts } \\
& E_{3}=I R_{3}=0.00757 \times 8000=60.6 \text { volts }
\end{aligned}
$$

The total coltage must equal the sum of the individual voltage drops:
$L^{2}=E_{1}+E_{2}+E_{3}=37.9+151.4+60.6$

$$
=249.9 \text { volt } \mathrm{s}
$$

The answer would have been more nearly exact if the current had been calculated to more decimal places, but as explained above a very high order of accuracs is not necessary.

In a simule series cirnut like that in Fig. 2-5, the volture drop across each resistance can be calculated vers' simply, if only the drop and not the current is wanted. The drop across each resistor is proportional to the ratio of the individual resistance to the total resistance. Thas

$$
\begin{aligned}
& H_{1}=\frac{R_{1}}{R_{1}+R_{2}+R_{3}} \times 250 \\
& =\frac{50100}{.0000+20,000+8000}=\frac{5000}{33,000} \times 2.50 \\
& =37.8 \text { vol tss } \\
& H_{2}=\frac{20,000}{33,000} \times 250=151.5 \text { volts } \\
& E_{3}=\frac{8000}{33,000} \times 250=60.5 \text { volts }
\end{aligned}
$$

Fig. 2-5 - An example of resistors in series. 'l'he: solution of the circuit is worked out in the text.

In problems such as this considerable time and trouble can be saved, when the current is small enough to be expressed in milliamperes, if the resistance is expressed in kilohms rather than ohms. When resistance in kilohms is substituted directly in Ohm's Law the current will be in milliamperes if the e.m.f. is in volts.

Example: Since 5000 ohms $=5$ kilohus, 20,000 ohms $=20$ kilohthes, and 8000 ohms $=8$ kilohns, the equations above herotue

$$
\begin{aligned}
& I=\frac{E}{H}=\frac{2 . \%}{3: 3}=7.5 \% \mathrm{mit} \\
& R_{1}=/ R_{1}=7.37 \times i=37.9 \text { wolts } \\
& E_{2}=1 R_{2}=7.57 \times 20=1.51 .4 \text { volts } \\
& E 3=/ R_{3}=7.57 \times s=\text { tib, if vohs }
\end{aligned}
$$

Resistors in Parallel

In a circuit with resistances in parallel, the total resistance is less than that of the lowest value of resistance present. This is because the total current is always greater than the current in any individual resistor. The formula for finding the total resistane of resistances in parallel is

$$
R=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+\cdots \cdot}
$$

Fig. 2-6 - In example of resistors in parallel. The solution is worked out in the text.
where the dots again indicate that any number of resistors can be combined by the same method. For only two resistances in parallel (a very common case) the formula is

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Example: If a \mathbf{b} on-ohm resistor is paralleled with one of $12(100$ ohms, the total resistamee is

$$
\begin{aligned}
R=\frac{R_{1} R z}{R_{1}+R_{2}}=\frac{500 \times 1200}{500}+12400 & =\frac{(000,000}{1700} \\
& =3.30 \text { ohme }
\end{aligned}
$$

It is probahly easider to solve practical prohhems by a different mothod than the "reciprocal of reciprocals" formula. Suppose the three resistors of the previous example are conneeted in parallel as shown in Fig. 2-6. The same e.m.f., 2;0 volts, is applied to all three of the resistors. The current in each can be found from Ohm's $I_{\text {atw }}$ as shown below, I_{1} being the current through R_{1}, l_{2} the current through R_{2} and l_{3} the current through R_{3}.

For convenience, the resistance will he expressel in kilohms so the current will be in milliamperes.

$$
\begin{aligned}
& I_{1}=\frac{E}{R_{1}}=\frac{2.50}{5}=.50 \mathrm{ma} \\
& I_{2}=\frac{E}{R_{2}}=\frac{2.50}{20}=12.5 \mathrm{ma} \\
& I_{3}=\frac{E}{R_{3}}=\frac{2.50}{8}=31.25 \mathrm{ma}
\end{aligned}
$$

The total eurrent is
$I=I_{1}+I_{2}+I_{3}=50+12.5+31.2 .5$

$$
=43.7 \pi \mathrm{n} \text { un }
$$

The total resistance of the circuit is therefore

$$
R=\frac{E^{T}}{I}=\frac{2.5)}{93.75}=2.66 \text { kilohums }(=2(6 i 5) \text { ohms })
$$

Resistors in Series-Parallel

An actual circuit may have resistances both in parahlel and in series. To illustrate, we use the same three resistances again, but now connected as in Fig. 2-7. The method of solving such a circuit is as follows: Consider R_{2} and R_{3} in parallel as though they formed a single resistor. Find their equivalent resistance. Then this resistance in series with R_{1} forms a simple

Equivalent Cibcuit
Fig. 2-7 - An examole of resintors in serios-parallel. 'I'lusolution is worked ont in the text.
series cireuit, as shown at the right in Fig. 2-7.
Example: The first step is to find the equivalent resistance of R_{2} and R_{3}. From the formula for two resistances in parallel,
$R_{\text {eq. }}=\frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{20 \times \mathrm{s}}{20+\mathrm{s}}=\frac{160}{2 \mathrm{~S}}$
$=5.71$ kilohms
The total resistance in the circuit is then
$R=R_{1}+R_{\text {ent }}=5+5.71$ kilohmas
$=10.71$ kilohms
The current is

$$
I=\frac{E}{R}=\frac{2.30}{10.71}=23.4 \mathrm{ma}
$$

The voltage drops across R_{1} and $R_{\text {ent }}$ are
$E_{1}=1 R_{1}=23.4 \times 5=117$ volts
$E_{2}=/ R_{\mathrm{r} \mid}=23.4 \times 5.71=133 \mathrm{~B}$ volts
with sufficipot accuracy. These total 2.50 volts, thus checking the calculations so far, because the sum of the voltage drops must equal the total voltage. Since E_{2} appears arross both R_{2} and R_{3}.

$$
\begin{aligned}
& I_{2}=\frac{E_{2}}{R_{2}}=\frac{133}{20}=6.65 \mathrm{ma} \\
& I_{3}=\frac{E_{2}}{R_{3}}=\frac{133}{\mathrm{~s}}=16.6 \mathrm{ma}
\end{aligned}
$$

where $I_{2}=$ Current through R_{2}

$$
I_{3}=\text { Current through } R_{3}
$$

The total is 2:3.35 ma., which cherks closely enough with 23.4 ma., the current through the whole circuit.
There is a general rule for handling such complex eircuits; Reduce the various resistances in parallel or series in parts of the cirenit to equivalent resistances that then can he hamded as single resistances in a simpler circuit. Eventually this process will lead to a simple series or parallel circuit from which the current and voltage drops can be calculated. Once these are known, Ohm's Law ean be applied to each part of the circuit to determine currents and voltage drops in individual resistances.

P POWER AND ENERGY

bower - the rate of doing work - is equal to voltage multiplied by current. The unit of electrical powre, called the watt, is equal to one volt multiplied by one ampere. The equation for power therefore is

$$
I=E I
$$

where $P=$ Power in watts
$E=1$ E, m.f. in volts
$I=$ Current in amperes
Common fractional and multiple units for power are the milliuratt, one one-thousandth of a watt, and the kilowath, or one thousind watts.

$$
\begin{aligned}
& \text { Example: The plate voltage on a transmitting } \\
& \text { vacum tube is } 2000 \text { volts and the plate current } \\
& \text { is } 3.0 \text { milliamperes. (The current must be } \\
& \text { changel to amperes before substitution in the } \\
& \text { formula, and so is } 0.35 \text { amp.) Then } \\
& \qquad P=E I=2000 \times 0.3 .5=700 \text { wats }
\end{aligned}
$$

By substituting the Ohm's Law equivalents for E and I, the following formulas are obtained for power:

$$
\begin{gathered}
P=\frac{E^{2}}{R} \\
P=I^{2} R
\end{gathered}
$$

These formulas are useful in power calculations when the resistance and either the current or voltage (but not both) are known.

Example: How much power will be used up in a 4000 -ohm resistor if the voltage applied to it is 200 volts.' From the equation

$$
P=\frac{E^{2}}{R}=\frac{(200)^{2}}{4000}=\frac{40,000}{4000}=10 \text { watts }
$$

Or, suppose a eurrent of 20 milliamperes flows through a 300 -ohm resintor. Then

$$
P=I^{2} R=(0.02)^{2} \times 300=0.0004 \times 300
$$

$$
=0.12 \text { watt }
$$

Note that the current was changed from milliamperes to amperes before substitution in the formila.
Electrical power in a resistance is turned into heat. The greater the power the more ratpidly the heat is generated. We said earlier that if a resistor is to handle considerable power it must be large in size and must be construeted in such a way that the heat will be carried off rapidly by the surrounding air. This prevents the temperature of the resistor from rising to a dangerous point. Resistors for radio work are made in many sizes, the smallest being rated to "dissipate" (or carry safely) about $1 / 4$ watt. The largest resistors used in amateur equipment will dissipate about 100 watts.

However, electrical power is not always tumed into heat. The power used in rumning a motor, for example, is converted to mechanieal motion. The power supplied to a radio transmitter is largely converted into radio waves. Power applied to a loudspeaker is ehanged into sound waves. Nevertheless, every electrical device has some resistance, so a part of the power supplied to it is dissipated in that resistance and hence appears as heat even though the major part of the power may be converted to another form.

Efficiency

In devices such as motors and vaeuum tubes, the object is to obtain power in some other form than heat. Therefore power used in heating is considered to be a loss, because it is not the uscful power. 'The efficiency of a device is the uscful power output (in its converted form) divided by the power input to the device. In a valcuum-t ube transmitter, for example, the object is to convert power from a d.e. soure into a.c. power at some radiofrequeney. The ratio of the r.f. power output to the d.e. input is the efficiency of the tube. That is,

$$
E f f=\frac{P_{0}}{P_{i}}
$$

where Eff. = Effieiency (as a deeimal)
$P_{\mathrm{o}}=$ Power out put (watts)
$P_{i}=$ Power input (watts)
Example: If the d.e. input to the tube is 100 watts and the r.f. power output is 60 watts, the efficieney is

$$
E f f_{.}=\frac{P_{0}}{P_{i}}=\frac{60}{100}=0.6
$$

Efficiency is usually expressed as a percentage; that is, it tells what per cent of the input power will be available as useful output. The efficiency in the above example is 60 per eent.

If a resistor is used purely for generating heat - as in an electric heater or cooker - its efficiency is practically 100 per cent, because all of the power input is converted into the desired form of power output. However, generating heat is usually not the desired end when resistors are used in radio equipment. The power losses in them are tolerated becalus very often a resistor performs a function that could not be conveniently or economically performed by any other device.

Energy

In residences, the power company's bill is for electric energy, not for power. What you pay for is the work that electricity does for you, not the rate at which that work is done.

Electrical work is equal to power multiplied by time; the common unit is the watt-hour, which means that a power of one watt has been used for one hour. That is,

$$
W^{\circ}=P^{\prime} T
$$

where $W=$ Encrgy in watt-hours

$$
P=\text { Power in witts }
$$

$T=$ Thime in hours
()ther energy units are the kilowatt-hour and the watt-second. These units should be selfexplanatory.

Energy units are seldom used in amateur practice, but it is obvious that a small amount of power used for a long time can eventually result in a "power" bill that is just as large as though a large amount of power had been used for a very short time.

Capacitance and Condensers

Suppose two flat metal plates are placed close to each other (but not touching) as shown in Fig. 2-8. Normally, the plates will be electrically "neutral"; that is, the number of electrons in each plate will just balance the number of atomic nuclei and there will be no electrie charge.

Now suppose that the plates are connected to a battery through a switch, as shown. At the instant the switch is closed, electrons will be attracted from the upper plate to the positive terminal of the battery, and the same number will be repelled into the lower plate from the negative battery terminal. This electron movement will continue until enough electrons move into one plate and out of the other to make the e.m.f. between them the same as the e.m.f. of the battery. (That this must be so should be fairly obvious. The plates are conductors, and when they are connected to the battery, the battery voltage must appear bet ween them.

Fip. 2-8-A simple condenser.

If the switch is opened after the plates have been charged, the top plate is left with a deficiency of electrons and the bottom plate with an excess. In other words, the plates remain charged despite the faet that the battery no longer is connected. They remain charged because with the switch open there is nowhere for the electrons to go. However, if a wire is touched between the two plates (short-circuiting them) the excess electrons on the bottom plate will flow through the wire to the upper plate, thus restoring electrical neutrality to both plates. The plates have then been discharged.

The two plates constitute an electrical condenser, and from the discussion above it should be clear that a condenser possesses the property of storing electricity. It should also be clear that during the time the electrons are moving - that is, while the condenser is bring charged or discharged - a current is flowing in the circuit even though the circuit is "broken" by the gap between the condenser phates. Ilowever, the current flows only during the time of charge and discharge, and this time is usually very short. There can be no contimuous flow of direct current through a condenser.

The charge or quantity of electricity that can be placed on a condenser when a given voltage is applied depends on its capacitance or capacity. The larger the plate area and the smaller the spacing between the phates the

TABLE 2-III

Dielectric Constants and Breakdown Voltages

Material	Dielectria Constamt	Puncture Voltage*
Air	1.0	19.8-29.8
Alsimay 1196	5.7	240
Bakelite (paper-base)	3.8-5.5	$6.50-750$
13akelite (mica-filled)	5-6	475-600
Celluloid	4-16	
Cellulose acetate	6-8	300-100)
Fiber	5-7.5	150-180
Formica	4.6-4.9	450
(Glass (window)	7.6-8	200-250
Glass (photographie)	7.5	
Clasa (l'yrex)	4.2-4.9	335
Lucite	2.5-3	480-5(9)
Vira	2.5-8	
Miera (elcar India)	6.4-7.5	600-150
Mycalex	7.4	250
Paper	2.0-2.6	1250
Polyethylene	2.3-2.4	1000
Polystyrene	2.4-2.9	500-2500
Porcelain	6.2-7.5	40-100
Rubber (hard)	$2-3.5$	450
Steatite (low loss)	4.4	150-315
U ood (dry oak)	2.5-6.8	
* In volts per mil	I ineh).	

Fig. 2-9- I multiple-plate condenser. Niternate plates are connected togsther.
greater the capacitance. The capacitance also depends upon the kind of insulating material between the plates; it is smallest with air insulation, but substitution of other insulating materials for air may increase the capacitance of a condenser many times, The ratio of the capacitance of a comdenser with some material other than air between the plates, to the capaeitance of the same condenser with air insulation, is called the specific inductive capacity or dielectric constant of that particular insulating material. 'The material itsolf is called a dielectric. The dielectric constants of a number of materials commonly used as dielectries in condensers are given in Table 2-III. If a sheet of photographic glass is substituted for air between the plates of a condenser, for example, the eapacitance of the condernser will be increased 7.5 times.

Units

The fundamental unit of eapacitance is the farad, but this unit is mach too large for practical work. Capacitance is usually measured in microfarads (abbreviated $\mu \mathrm{fd}$.) or micromicrofarads ($\mu \mu \mathrm{fd}$.). The microfitrad is one-millionth of a farad, athe the micromicrofirad is one-millionth of a microfartal. Condensers nearly always have more than two plates, the alternate plates being connected together to form two sets as shown in Pig. Z-9. 'This makes it possible to attain a farly large capacitance in a small space as compared to a two-phate condenser, since several plates of sinaller individnal areal can be stacked to form the equivalent of a single large pate of the same total area. Also, all plates, except the two on the ends, are
exposed to plates of the other group on both sibles, and so are twice as effective in increasing the capacitance.

The formula for calculating the capacitance of a condenser is:

$$
C=0.224 \frac{K .}{d}(n-1)
$$

where $C=$ Capacitance in $\mu \mu \mathrm{fd}$.
$K=$ Dielectric constant of material between piates
$A=$ Area of one side of one plate in square inches
$d=$ separation of plate surfaces in inches:
$n=$ Number of plates
If the plates in one group do not have the same area as the plates in the other, use the area of the smaller plates.

$$
\begin{aligned}
& \text { Fxamble: . } 1 \text { " variable ' comdenser has } 7 \text { semi- } \\
& \text { circular plates on its rotor, the diameter of the } \\
& \text { semicircle being } 2 \text { imehes. The stator has } 6 \text { ree- } \\
& \text { tangular plates, with a semirirmalar eat-out to } \\
& \text { clear the rotor shaft, but otherwise large enough } \\
& \text { to fatee the entire areas of a rotor plate. The dianti- } \\
& \text { eter of the ebt-out is } 1 / 2 \text { inch. The distance be- } \\
& \text { tween the adjacent surfaces of rotor and stator } \\
& \text { mates is } 1 / 8 \text { inch. The dielectric is air. What is } \\
& \text { the caparitance of the rondenser with the plates } \\
& \text { fully neshed? } \\
& \text { In this case, the "effective" area is the arca } \\
& \text { of the rotor plate mints the area of the ent-onat } \\
& \text { in the stator plate. 'The area of either semicirele } \\
& \text { is } \pi r^{2 / 2} / 2 \text {, where } r \text { is the ralius. The areat of the } \\
& \text { rotor hlate is } \pi / 2 \text {, or } 1 ., 5 \pi \text { spluare inches (the } \\
& \text { ratlins is } 1 \text { ineli). 'l'he ate: of the cut-ont is } \\
& \pi\left({ }^{3}\right)^{2} / 2=\pi / 32=0.10 \text { s(bare inel. approxi- } \\
& \text { mately. The "effective" area is therefore 1.j7 - } \\
& 0.10=1.47 \text { sfuare inches. 'The eapacitanee is } \\
& \text { therefore } \\
& C=0.224 \frac{K .1}{d}(n-1)=0.2 .24 \frac{1 \times 1.47}{0.12 ;}(13-1) \\
& =0.224 \times 11.76 \times 12=31.6 \mu \mu \mathrm{fil} .
\end{aligned}
$$

(The answer is only approximate, because of the difficulty of accurate measurement, Wus a "fringing" effect at the colges of the plates that makes the actual capacitance a little higher.)
The usefulness of a condenser in electrical circuits lies in the fact that it can be charged

Fixed and wariable condensers, "Iha" bentum row includes, left to right, a high-voltage mica fixed condenser, at cubular electrolytio. lubular papmr, two sizes of "pmetages-stamp" micas, a small ceramic Ism (trmprature compensating), an adjustable condenser with erramir insulation (for nentralizing in transmitters), a "lme(ton" ceramie romlenser. and an andjustablu "padding" remdenar. Four sizes of variable condensers are slown in the second row. The twoplate condenser with the micrometer adjustment is used in transmitters. The condenser enclosed in the metal case is a high-voltage paper type used in power-supply filters.

with electricity at one time and then discharged at a later time. In other words, it is capable of storing electrical energy that can be relcased later when it is needed; it is an ."electrical reservoir."

Condensers in Radio

The types of condensers used in radio work differ considerably in physical size, construction, and caparitance. Some representative types are shown in the photograph. In "variable" condensers (almost always constructed with air for the dielectric) one set of plates is made movable with respect to the other sct so that the capacitance can be varied. "Fixed" condensers - that is, having fixed capacitance -also can be made with metal phates and with air as the dielectric, but usually are constructed from plates of metal foil with a thin solid or liquid dielectric sandwiehed in between, so that a relatively large capacitance can be secured in a small unit. The solid didectrics commonly used are mica and paper. An exampte of a liquid dielectric is mineral oil, but it is seldom used by itself in present-day condensers. The "electrolytic" condenser uses aluminum-foil plates with at semiliquid conducting chemical compound bet ween them; the actual diclectric is a very thin film of insulating material that "forms" on one sct of plates through electrochemical action when a dic. voltage is applied to the condenser. The capacitance obtained with a given plate area in an electrolytic condenser is very large, compared with condensers having other dielectrics, because the film is so extremely thin - much less than any thickness that is practicable with a solid dielectric.

Voltage Breakdown

When a high voltage is applied to the plates of a condenser, a considerable foree is exerted on the electrons and nucki of the dielectric. Because the dielectric is an insulator the electrons do not become detached from atoms the way they do in conductors. However, if the force is great enough the dielectric will "break down"; usually it will puncture and may char (if it is solid) and permit current to fow. The breakdown voltage depends upon the kind and thickness of the dielectric, as shown in the table. It is not directly proportional to the thickness; that is, doubling the thickness does not quite double the breakiown voltage. If the dielectric is air or any other gas, breakdown is evidenced by a spark or are between the plates, but if the voltage is removed the are ceases and the condenser is ready for use again. Breakdown will oceur at a lower voltage between pointed or sharp-edged surfaces than between rounded and polished surfaces; consequently, the breakdown voltage between metal plates of given spacing in air can be increased by buffing the edges of the plates.
Since the dielectrie must be thick to withstand high voltages, and since the thicker the
dielectric the smaller the capacitance for a given plate area, a high-voltage condenser must have more plate area than a low-voltage condenser of the same capacitance. Highvoltage high-apacitance condensers are physically large. The breakdown voltage of paperdielectric condensers can be increased by saturating the paper with a special insulating oil and by immersing the condenser in oil. Flectrolytic condensers can stand 400 to 500 volts before the dielectrie film breaks down.

CONDENSERS IN SERIES AND PARALLEL

The terms "parallel" and "series" when used with reference to condensers have the same circuit meaning as with resistances. When

Fif. 2-10-Condensers in series and paralle.!.
a number of eondensers are connected in paralled, as in Fig. 2-10, the total caparitanco of the group is equal to the sum of the individual capacitances, so

However, if two or more comdensers are connected in series, as in the second drawing. the total capacitance is less than that of the smallest condenser in the group. The rule for finding the caparitance of a number of seriesconnected comdensers is the same as that for finding the resistance of a number of parallelconnected resistors. That is,

$$
C(\text { total })=\frac{1}{\frac{1}{C_{1}^{\prime}}+\frac{1}{c_{2}}+\frac{1}{C_{3}^{r_{3}}}+\frac{1}{r_{4}^{\prime}}}+\ldots \ldots .
$$

and, for only two condensers in series,

$$
C(\text { total })=\frac{C_{1} C_{2}}{C_{1}+C_{2}}
$$

The same units must be used throughout; that is, all capacitances must be exprossed in either $\mu \mathrm{fd}$, or $\mu \mu \mathrm{fd}$.; you cannot use hoth units in the same equation.

Condensers are connected in parallel to obtain a larger total capacitance than is available in one unit. The largest voltage that can be applied safely to a group of condensers in paralled
is the voltage that can be applied safely to the condenser having the lowest voltage rating.

When condensers are connected in series, the applied voltage is divided up among the various condensers; the situation is much the same as when resistors are in series and there is a voltage drop across each. However, the voltage that appears across each condenser of a group connected in series is in inverse proportion to its caparitanee, as compared with the caparitance of the whole group.

Example: Three combensers having capacitances of 1,2 and 4μ fd., resperctively, are conneeted in series as shown in fir. 2-11. The total capacitanee is

$$
\begin{gathered}
C=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}}=\frac{1}{\frac{1}{1}+\frac{1}{2}+\frac{1}{4}}=\frac{1}{\frac{7}{4}}=\frac{4}{7} \\
=0.571 \mu \mathrm{fd} .
\end{gathered}
$$

The voltage aeross euch condenser is proportional to the total eapacitance divided by the capacitunce of the condenser in question, so the voltage arross C_{1} is

$$
E_{1}=\frac{0.371}{1} \times 2000=1142 \text { voles }
$$

Similarly, the voltares across C_{2} and C_{3} are

$$
\begin{aligned}
& E_{2}=\frac{0.571}{2} \times 2000=571 \text { volts } \\
& E_{8}=\frac{0.571}{4} \times 2000=286 \mathrm{volts}
\end{aligned}
$$

totaling approximately 2000 volts, the applied voltuse.

Fig. 2-II - An example of condensers connected in serips, The solution to this arrangement is worked out in the text.

Condensers are frequently conneeted in series to enable the group to withstand a larger voltage (at the expense of decreased total capacitance) than any individual condenser is rated to stand. One very common application of this arrangement is in the filter circuits of high-voltage power supplies. However, as shown by the previous example, the applied voltage does not divide equally a mong the condensers (except when all the eapacitances are the same) so care must be taken to see that the voltage rating of no condenser in the group is exceeded. It does no good, for example, to conneet a condenser in series with another if the capacitance of the second is many times as great as the first; nearly all of the voltage still will appear across the condenser having the smaller capacitance.

Inductance

It is possible to show that the flow of eurrent through a conductor is accompanied by magnetic effects; a compans needle brought near the conductor, for example, will be defleeted from its normal north-south position. The stronger the current, the more pronounced is the magnetic effect. The current, in other words, sets up a magnetic field.

If a wire conductor is formed into a coil, the same current will set up a stronger magnetic field than it will if the wire is straight, Also, if the wire is wound around an iron or steel "core" the field will be still stronger. The relationship between the strength of the field and the intensity of the current causing it is expressed by the inductance of the conductor or coil. If the same current flows through two coils, for example, and it is found that the magnetic fiedd set up by one eoil is twice as strong as that set up by the other, the first coil has twice as much inductanere as the second. Inductance is a property of the conductor or eoil and is determined by its shape and dimensions. The unit of inductance (corresponding to the ohm for resistance and the farad for capacitance) is the henry.

If the current through a conductor or coil is made to vary in intensity, it is found that an e.m.f. will appear arross the terminals of the conductor or coil. This e.m.f. is entirely separate from the e,m,f, that is causing the current
to flow. The strength of this "induced" e.m.f. becomes greater, the greater the intensity of the magnetic field and the more rapidly the current (and hence the field) is made to vary. since the intensity of the magnetic field depends upon the inductance, the induced voltage (for a given current intensity and rate of variation) is proportional to the inductance of the conducter or coil.
The fact that an c.m.f. is "induced" accounts for the name "inductance" - or "self-inductance" as it is sometimes called. The induced e.m.f. tends to send a current through the circuit in the opposile direction to the current that flows because of the external e.m.f. solong as the latter current is increasing. However. if the current caused by the applied e.m.f. decreases. the induced e.m.f. tends to send current through the circuit in the same direction as the current from the applied e.m.f. The effeet of inductance. therefore, is to oppose any change in the current flowing in the eircuit, regardless of the nature of the change. It aecomplishes this by storing energy in its magnetie field when the current in the cireuit is being increased, and by releasing the stored energy when the current is being decreased. The effect is the same as the mechanical inertia that prevents an automobile from instantly coming up to speed when the accelerator pedal is pressed, and that prevents it from coming to
an instant stop when the brakes are applied.
The values of inductance used in radio equipment vary over a wide range. Inductance of several henrys is required in power-supply circuits (sere chapter on Power supplies) and to obtain such values of induetanee it is necessary to use coils of many turns wound on iron cores. In radio-frequency circuits, the inductance values used will be measured in millihenrys (a millihenry is one one-thousandth of a henry) at low frequencies, and in microhenrys (one oncmillionth of a henry) at medium frequencios and higher. Although coils for radio frequencies may be wound on special iron cores (ordinary iron is not suitable) most r.f. coils made and nised by amateuns are the "air-core" type; that is, wound on an insulating form consisting of nonmagnetie material.

Inductance Formula

The inductance of air-core coils may be calculated from the formula

$$
L\left(\mu h_{.}\right)=\frac{0.2 a^{2} n^{2}}{3 a+9 b+10 c}
$$

where $L=$ Inductance in microhenrys
$a=$ Average diameter of coil in inches
$b=$ Length of winding in inches
$c=$ Radial depth of winding in inches
$n=$ Number of turns
The notation is explained in Fig. 2-12. The quantity c may be neglected if the coil onls. has one layer of wive.

Example: Assume a coil having 35 turns of No. 30 d.s.c. wire on a form 1.5 inches in dianeter. (onnalting the wire table (Miscellaneous Data chapter), 35 turns of No. 30 d.s.c. will occupy 0.5 inch. 'liserefote, $a=1.5, b=0.5$, $n=3.5$, and

$$
L=\frac{0.2 \times(1.5)^{2} \times(3.5)^{2}}{(3 \times 1.5)+(9 \times 0.5)}=61.25 \mu \mathrm{~h} .
$$

To calculate the number of turns of a singlelayer coil for a required value of inductance:

$$
N=\sqrt{\frac{3 a+9 b}{0.2 a^{2}} \times L}
$$

Example: suppose an inductance of 10 microhenrys is remuired. The form on which the coil is to be wound has a diameter of one inch and is long enough to acommodate a coil lenuth of $11 / 4$ inches. Thon $a=1, b=1.25$, and $L=10$. substituting,

$$
\begin{aligned}
& N=\sqrt{\frac{13 \times 1)+(9 \times(.20)}{0.2 \times 1} \times 1} \\
& =\sqrt{\frac{14.2 .0}{0.2} \times 110}=\sqrt{712.5} \\
& =26.10 \text { turns. }
\end{aligned}
$$

12-74rn coil wolld be rlose emough to the required value of induetame in primtiral work. Since the woil will tre $1.8-5$ ituren long. the mamler of turns per inch will be $3-1.2-5=21.6$. Consulting the wire table, we firm that No. 18 enameled wire (or ans smaller size) rath be nsead. We ohtain the proper imbutance bs wiming the regulared mumber of turns on the form and then adjusting the suatring bet ween the thrins to make a uniformb-spaced coil $1.8 . j$ inchers leng.

Every comductor has inductance. even though the eometuetor is not formed into a coil. The inductane of a short length of staight wire is small - but it may not be negligible. because if the eurrent through it changes its intensity rapidly enough the induced voltage may be appreciable. This will be the case in even a fow inches of wire when an alternating current having a frequence of the order of 100 Me. is flowing. However, at much lowet frequencies the inductance of the same wire could be left out of any calculations berause the indued voltage would be negligibly small.

Inductance coils for power and radion frequenciea. 'The two irmonerere ersits att the upper left are "chotose" for power-supuly filters. "Dive three "pine". somalal eorils at the lower right are
 circolits. 'I'he other coils are for r.f. tuned circaitr ranging in gmoer from 25 watts to a kilowatt.

IRON-CORE COILS

We mentioned earlier that the induetanee of a coil wound on an iron core is much greater than the indureanee of the same roil wound on a nonmagnetic core As a ermate analogy, iron has a much lower "resistance" to the magnetie fore than nonforous materials. just as metals have much lower resistance to the flow of clectric eurrent than nonmetalie substances.

Permeability

For example, suppose that the coil in Fig. 2-13 is wound on an iron core having a crosssertional area of 2 square inches. When a certain eurrent is sent through the coil it is found that there are 80,000 lines of force in the core Since the area is 2 square inches, the flux density is 40,000 lines per square inch, Now suppose that the iron core is removed and the same current is maintained in the roil, and that the flux density without the iron rore is found to be so lines per square inch. The ratio of the flus density with the given core material to the flux density (with the same coil and same current) with an air core is called the permeability of the material. In this case the permeability of the iron is $40,000 / 50=800$. The indurtance of the roil is inereased 800 times by inserting the iron core. therefore.

The permeability of a magnetice material is not constant, unfortunately, but varies with the flux density, At low flux densities (or with an air core) increasing the current through the coil will cause a proportionate increase in flux, For example, if there are 2000 lines per square inch at a given current, doubling the corrent will increase the flux density to 4000 lines per square inch. But this cannot be carried on indefinitely; at some value of flux density, depending upon the kind of iron, it will be found that doubling the curvent only increases the flux density bys say, 10 pore cont. It very high flux densitios, increasing the current may eause no apprectable change in the flux at all. When this is so, the iron is said to be saturated. "Saturation" causes a rapid decrease in permeability, berause it derreasen the ratio of flux lines to those obtainable with the same current and an air core. Obviously, the inductaner of an iron-eore coil is highly dependent upon the eurent flowing in the eoil. In an air-core coil, the inductance is independent of current berause air dors not "eaturate,"

In amateur work, iron-cole coils such as the one sketehed in Fig, 2-is are used chiofly in power-supply equipment. They usually have direct current flowing through the winding, and the variation in inductaner with eurent is usually undesirable. It may be overeome by kerping the flux density below the saturation point of the iron. This is done by cutting the core so that there is a small "air gap," as indieated by the dashed lines. The magnetic "resistance" introduced by such a gap is so large

- (even though the gap is only a small fraction of an inch - compared with that of the iron that the gap, rather than the iron, controls the flux density. This naturally redues the inductanere compared to what it would be without the aid gap - but only for small currents. It act ually results in a higher inductance when the current is large; furthermore, the inductance is practically constant regardless of the value of the current. Further information on the ronstruetion of such indurtane coils will be found in the chapter on Power Supply.

Eddy Currents and Hysteresis

When alternating current flows through a coil wound on an iron core the magnetic flux in the core goes through variations in intensity and direction that correspond to the variations in the alternating current. Variations in a magnetic field canse an e.m.f. to be induced, as previously explained, and since iron is a conductor a current will flow in the core. such currents (called eddy currents) represent a waste of power because they flow through the resistance of the iron and thas catuse hoating. Eddycurrent losses can be reduced by laminating the core: that is, by eutting it into thin strips. These strips or laminations must be insulated from each other by painting them with some insulating material such as varnish or shellac.

There is also another type of energy loss in an iron core: the iron tends to resist any change in its magnetic state, so a rapidlychanging current such as a.c. is forced cointinually to supply energy to the iron to overcome this "inertia." Lasses of this sort are called hysteresis losses.

Diddy-current and hysteresis losses in iron increase rapidly as the frequency of the altermating current is incorased. For this reason, we can use ordinary iron rores only at power and audio frequencies - up to say, 15,000 eycles. Even so, a very good grade of iron or steel is neeresary if the core is to perform well at the higher audio frequencies. Iron cores of this type are completely useless at radio frequenciles.

Fior radio-freguence work, the losses in iron cores can be reduced to a satisfactory figure by grinding the iron inte a powder and then mixing it with a "binder" of insulating material in such a way that the individual iron particless are insulated from each other. l3y this means cores can be made that will function satisfar-

Fig. 2-13 - Typical construc. tion of an iren-core coil. The small air kap prevents magnetic saturation of the iron and increases the inductance at bigh currents.
torily even through the v.h.f. range - that is, at frequencies up to perhaps 100 Mc. Becanse a large part of the magnotie path $\mathrm{i}_{\text {s }}$ throurh a nonmagnetic material. the permeability of the iron is low compared to the values obtained at power-supply frequencies. The core is usually in the form of a "slug" or cylinder which fits inside the insulating form on which the roil is wound. Despite the fact that, with this construction, the major portion of the magnotic path for the flux is in the air surrounding the coil, the slug is quite effective in inereasing the coil induetance. By pushing the slug in and out of the coil the inductance can be varied over a considerable range.

- INDUCTANCES IN SERIES AND PARALLEL

When two or more inductance eoils (or inductors, as they are frequently called) are connected in series (Fig. 2-14, left) the total inductance is equal to the sum of the individual inductances, provided the coils are sufficiently separated so that no coil is in the magnetic fieln of (mother. 'lhat is,

$$
L_{\text {total }}=L_{1}+L_{2}+L_{3}+L_{4}+\ldots \ldots
$$

If induetances are connected in parallel (Fig. 2-14, right), the total inductance is

$$
L_{\text {total }}=\frac{1}{\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}+\frac{1}{L_{4}}}+
$$

and for two inductances in paralled,

$$
I_{0}=\frac{L_{1} L_{2}}{L_{1}+L_{2}}
$$

Thus the rules for combining inductances in series and parallol are the same as for resistances, if the coils are far enough apart so that each is unaffected by another's magnetic field. When this in not so the formulas given above cannot be used.

In calculating the total inductance of a combination of iron-core coils to be used in a d.c. circuit, it must be remembered that the inductance of each coil may change with the amount of current that flows through it. With air-core coils there is no such change.

Although there is frequent occasion to combine resistances or capacitances in series or
parallel in amateur work, there is relatively little necessity for such combinations of inductances - or rather, the cases that do arise in practice seldom require calculations.

MUTUAL INDUCTANCE

If two eoils are arranged with their axes on the same line. as shown in Fig, 2-15, a current sent through Coil 1 will rause a magnetic field which "euts" (coil 2. Consequently, an e.m.f. will be indueed in Coil 2 whenever the fiedd strength is changing. This induced e.m.f. is similar to the e,m,f, of solf-induction, but since it appears in the secome coil because of current flowing in the first, it is a "mutual" effeet and

Fig. 2-15 - Mutual inductance. When the switeh, S, is closed current flow throngh coil No. 1 , setting up a magnetic field that induces an e.m.f. in the turns of enif No. 2.
results from the mutual inductance between the two roils.

Mutual inductance may be large or small, depernding upon the solf-inductances of the coils and the proportion of the flux set up by one coil that cuts the turns of the other coil. If all the flux sot up by one coil cuts all the turns of the other coil the mutual inductance has its maxivem possible value. If only a small part of the flux set up by one coil cuts the turns of the other the mutual inductanee is relatively small. Two coils having mutual induetance are said to be coupled.

The ratio of actual mutual inductance to the maximum possible value that could be obtained with two given coils is called the coefficient of coupling between the coils. Coils that have noarly the maximum posible motual inductance arc said to be closely, or tightly, coupled, but if the mutual inductance is relatively small the coils are said to be toosely coupled. The degree of coupling tepends upon the physical spacing betwern the coils and how they are placed with mespeed to each other. Naximum roupling exists when they have a common axis, as shown in lig. 2-15, and are as close together as possible. The coupling is least when the coils are far apart or are placed so their axes are at right angles.

The maximum possible coefficient of cou-
pling is 1. This value is closely approached only when the two coils are wound on a closed iron core. The coefficient with air-core coils may run as high as 0.6 or 0.7 if one coil is wound over the other, but will be much less if the two coils are separated.

If two coils having mutual inductance are connected to the same source of current, the magnetic field of one coil can either aid or oppose the field of the other. In the former case
the mutual inductance is said to be "positive"; in the latter case, "negative." Positive mutual inductance means that the total inductance is greater than the sum of the two individual inductances. Negative mutual inductance means that the total inductance is less than the sum of the two individual inductances. The mutual inductance may be made either positive or negative simply by reversing the connections to one of the coils.

Time Constant

Both inductance and capacitance possess the property of storing energy - inductance stores magnetic energy and eapacitance stores electrical energy. In the case of inductance, electrical energy is converted into magnetic energy when the current through the inductance is increasing, and the magnetic energy is converted back into electrical energy (and thereby restored to the circuit) when the current is decreasing. It is this alternate storing and releasing of energy that makes inductance oppose a change in the current through it. The self-induced e.m.f. is the means by which energy is put into and taken out of the magnetic field,

In the case of capacitance, energy is stored in the condenser (actually in the electric field between the plates) whenever the voltage applied to the condenser is increasing, and restored to the circuit when the applied voltage is decreasing. That is, current flows into the condenser in the first case, and out of the condenser in the second.

Capacitance and Resistance

In Fig. 2-16A a battery having an e.m.f., E, a switch, s, a resistor, R, and condenser, C, are connected in series. Suppose for the moment that R has zero resistance - in other words, is short-circuited - and also that there is no other resistance in the circuit. If S is now closed, condenser C will charge instantly to the battery voltage; that is, the electrons that constitute the charge redistribute themselves in a time interval so small that it can be considered to be zero. As soon as the condenser is fully charged the current flow stops completely. But since the condenser became fully charged in zero time, the current during the instantaneous charge must have been very large; mathemati-

Fig. 2-16-Schematies illustrating the time constant of an $R C$ circuit.
cally, it would be infinitely large if the time actually was zero - this regardless of the actual number of electrons that moved. At the instant of closing the switch, therefore, the condenser can be considered to have a "resistance" of zero, a resistance that becomes an open circuit the instant the charge is complete.

If a finite value of resistance, R, is put into the circuit the condenser no longer can be charged instantaneously. If the condenser is initially uncharged, it will have zero "resistance" at the instant S is closed, but now the amount of current that can flow is limited by R. The infinitely-large current required to charge the condenser in zero time cannot flow through R, because even with C considered as a short-circuit the current in the circuit as a whole will be determined by Ohm's Law. If the battery e.m.f. is 100 volts, for example, and R is 10 ohms, the maximum current that can flow with C short-circuited is 10 amperes. Even this much current can flow onl! at the very instant the switch is closed. As soon as any current flows, condenser C begins to acquire a charge, which means that the voltage across the condenser plates rises. Since the upper plate (in Fig. 2-16A) will be positive and the lower negative, the voltage on the condenser tends to send a current through the circuit in the opposite direction to the current from the battery. The voltage on the condenser, in other words, opposes the battery voltage. Immediately after the switch is closed, therefore, the current drops below its initial Ohm's Law value, and as the condenser continues to acquire charge and its potential rises, the current becomes smaller and smaller.

The length of time required to complete the charging process depends upon the capacitance of the condenser and the resistance in the circuit. More time is taken if either of these quantities is made larger. Theoretically, the charging process is never really finished, but practically the current eventually drops to a value that is smaller than anything that can be measured. The time constant of such a circuit is the length of time, in seconds, required for the voltage across the condenser to reach 63 per cent of the applied e.m.f. (this figure is chosen for mathematical reasons). The voltage

Fig. 2-17 - Ilow the voltage across a condensier rises. with time, when a condenser is charged through a resistor. 'The lower curve shows the way in which the voltage decreases across the combenser terminals on discharging through the same resistor.
across the condenser rises logarithmically, as shown by lig, 2-17.

The formula for time constant is

$$
T=C R
$$

where $T=$ Time constant in seconds $C=$ Capacitance in farads $R=$ Resistance in ohms;

If C is in microfarads and R in megohms, the time constant also is in seconds. The latter units usually are more convenient.

$$
\begin{aligned}
& \text { Example: The time constant of a } 2 \text { - } \mu \mathrm{fd} \text {, con- } \\
& \text { denser and a } 250,000 \text {-ohm resistor } \mathrm{i} \text { - } \\
& \qquad T=C R=2 \times 0,25=0.5 \text { second } \\
& \text { If the applied e.m.f. is } 1000 \text { volts, the woltage } \\
& \text { across the condenser plates will be } 6 ; 30 \text { volts at } \\
& \text { the end of } 1 / 2 \text { second. }
\end{aligned}
$$

If a charged condenser is discharged through a resistor, as indicated in Fig. 2-1613, the same time constant applies. If there were no resistance, the condenser would discharge instantly when S was closed, and for instantaneons discharge the current would have to be infinitely large. However, if R is present the current cannot exceed the value given by Ohm's Law, where E is the voltage to which the condenser is charged and R is the resistance. Since l limits the current flow, the condenser voltage cannot instantly go to zero, but it will decrease just as rapidly as the condenser can rid itself of its charge through R. When the condenser is discharging through a resistance, the time constant (ealeulated in the same way as above) is the time (in seconds) that it takes for the condenser to lose 63 per cent of its
voltage; that is, for the voltage to drop to 37 per cent of its initial value.

> Example: If the condenser of the example above is charged to 1000 volts, it will diseharge to 370 volts in $1 / 2$ second through the 250,000 ohm resistor.

Inductance and Resistance

A comparable situation exists when resistance and inductance are in series. In lig. 2-18, first consider L to have no resistance (which would be impossible, since the conductor of which it is composed always has resistance) and also assume that R is zero. Then closing S would tend to send a current through the circuit. llowever, the instantancous transition from no current to a finite value, however small, represents a very rapid change in current, and a back e.m.f. is developed by the self-inductance of L that is practically equal and opposite to the applied e.m.f. The result is that the initial current is very small. However, the back e.m.f. depends upon the change in current and would cease to offer opposition if the current did not continue to increase. With no resistance in the circuit (which would lead to an infinitely-large current, by (Ohm's Law) the current would increase forever, always increasing just fast enough to keep the e.m.f of self-induction equal to the applied e.m.f. Since such a rireuit never would "settle down," the time constant of an inductive circuit without resistance is infinitely long.

When resistance is in series, Ohm's Law sets a limit to the value that the current can reach. In such a circuit the current is small at first, just as in our hypothetical case without resistance. But as the current increases the voltage drop across R becomes larger. The back e.m.f. generated in L has only to equal the difference between E and the drop across R, because that difference is the voltage actually applied to L. This difference becomes smaller as the current approaches the final Ohm's Law value. Theoretically, the back e.m.f. never quite disappears (that is, the current never quite reaches the (Ohm's Law value) but practically it becomes moneasurable after a time. The difference between the actual current and the Ohm's Law value also becomes undetectable. The time required for this 10 occur is greater the larger the value of L, and is shorter the larger R is made. The time constant of an inductive circuit is the time in seconds required for the current to reath 63 per cent of its final value. The formula is,

Fig, 2-I8- lime constant of an $L R$ circuit.

$$
T=\frac{L}{R}
$$

where $T=$ Time constant in seconds
$L_{t}=$ Inductance in henrys
$R=$ Resistance in ohms
The resistance of the wire in a coil acts as though it were in series with the inductance.

Example: A coil having an inductance of 20 benrys and a rexistance of 100 ohme has a time ronstint of

$$
T=\frac{L}{R}=\frac{20}{100}=0.2 \text { serond }
$$

if there is no other resistance in the circuit. If a d.e. e.mif. of 10 rolts is applied to such a roil, the fimal current, by Ohm's $\mathrm{L}_{\text {at }} w$, is

$$
J=\frac{E}{K}=\frac{10}{1(10)}=0.1 \text { am।. or } 100 \text { nия. }
$$

"lhe current would rise from \%ero to $6: 3$ milliamperes in 0.2 second after clowing the switch.

An inductor cannot be discharged in the same way as a condenser, because the magnetie ficld disappears as soon as current flow ceases. Opening S does not leave the inductor "charged." The energy stored in the magnetic field instantly returns to the circuit when $\underset{\sim}{c}$ is opened. The rapid disappearance of the
field causes a very large voltage to be induced in the coil - ordinarily many times larger than the voltage applied, because the induced voltage is proportional to the speed with which the field ehanges. The common result of opening the switch in a circuit such as the one shown is that a spark or arc forms at the switch contacts at the instant of opening. If the induetance is large and the current in the circuit is high, a great deal of energy is released in a very short period of time. It is not at all unusual for the switch contacts to burn or melt under such cireumstances.
"Filter" circuits used in power-supply equipment represent an excellent example of the applieation of the $C R$ or L / R time constant to practical work, although calculations of the type illustrated above are seldom necessary with such circuits. An understanding of the principles also is necessary in numerous special devices that are coming into widespread use in amateur stations, such as electronie keys, shaping of keying eharacteristics by vacuum tubes, and timing devices and control eircuits. The time constants of circuits are also important in such applications as automatic gain control and noise limiters.

Alternating Currents

PHASE

lou cannot really understand alternating currents until you have a clear picture of phase. Essontially it means "time," or the time interval between the instant when one thing occurs and the instant when a second related thing takes place. As a homely example, when a baseball piteher throws the ball to the catcher there is a definite interval, represented by the lime of flight of the ball, between the act of throwing and the act of eatehing. The throwing and catching are therefore "out of phase" because they do not occur at exactly the same time.

Time differences are measured in seconds, minutes, hours, and so on. In the baseball example the ball might be in the air two seconds, in which case it could be said that the throwing and catching were out of phase by two seconds. However, simply saying that two events are out of phase docs not tell us which one occurred first. To give this information, the later event is said to lag the first in phase, while the one that occurs first is said to lead. Thus, throwing the ball "leads" the catch by two seconds, or the catch "lags" the throw by two seconds.

In a.e. cireuits the current amplitude changes continuously, so the concent of phase or time obviously has utility whenever it becomes neressary to specify the value of the current at a particular instant. Phase can be measured
in the ordinary time units, such as the second, but there is a more convenient method: since each a.c. eycle occupies exactly the same amount of time as every other cycle of the same frequency, we can use the eycle itself as the time unit. When this is done it does not matter whether one cycle lasts for a sixtieth of a seeond or for a millionth of a second so long as all the cycles are the same. In other words, using the cyele as the time unit makes the specification or measurement of phase independent of the frequeney of the current, so long as only one frequency is under consideration at a time. If there are two or more frequencies, the measurement of phase has to the modified just as the measurements of two lengths must be reconciled if one is given in feet and the other in meters.

Fig. 2-19-An a.c. cyele is divided off into 360 degrees that are used as a measure of time or phase.

The time interval or "phase difference" under consideration usually will be less than one cycle. Phase difference could be measured in decimal parts of a cycle, but for many reasons it is more convenient to divide the cycle into 360 parts or degrees. A phase degree is therefore $1 / 360$ of a cycle. (The reason for this choice of unit is this: In a sine-wave alternating current, the value of the current at any instant is proportional to the sine of the angle that corresponds to the number of degrees that is, length of time - from the time the cycle began. There is of course no actual "angle" associated with an alternating current.) Fig. 2-19 should help make this method of measurement clear.

Measuring Phase

In a steady alternating current each cycle is exactly like the preceding one. To compare the phase of two currents of the same frequency, we measure between corresponding parts of cycles of the two currents. This is shown in Fig. 2-20. The current labeled A leads the one marked B by 45 degrees, since A^{\prime} 's cycles hegin 4 : degrees sooner in time. (It is equally correct to say that B lags A by 45 degrees.) The amplitudes of the individual currents do not affect their relative phases - current B is shown as having smaller amplitude than A. Regardless of the amplitudes, the lagging current always would begin its cycle (the start of the cycle is considered to be the point at which it is passing through zero and starting to increase in the positive direction) the same number of degrees after the current that leads begins its cycle.

Fig. 2-20 - When two waves of the same freguency start their cycles at slightly different times, the time difference or phase difference is measured in degrees. In this drawing wave B starts 45 degrees (onc-eighth cycle) later than wave A, and so lags 45 degrees behind A.

Two important special cases are shown in Fig. 2-21. In the upper drawing B lags 90 degrees behind A; that is, its cycle begins just one-quarter cycle later than that of A. When one wave is passing through zero, the other is just at its maximum point. Note that (using A as a reference) in the first quarter cycle A is positive and B is negative; in the second quarter cycle both A and B are positive, but one is decreasing while the other is increasing; in the third quarter cycle A is negative while B is positive; and in the last quarter cycle both are negative.

In the lower drawing A and B are 180 degrees out of phase. In this case it does not matter which one we consider to lead or lag. B is always positive while A is negative, and vice versa. The two waves are thus completely out of phase.

Fig. $2.2 I$ - 'I'wo important special cases of phase difference. In the upper drawing, the phase difference loetween A and B is 90 degrees; in the lower drawing the phase difference is 180 degrees.

The waves shown in Figs. 2-20 and 2-21 could represent current, voltage, or both. A and B might be two currents in separate circuits, or A might represent voltage while B represented current in the same circuit. If A and l represent two currents in the same circuit (or two voltages in the same circuit) the actual current (or voltage) would take a single value at any instant. This value would equal the sum of the two at that instant. (We must take into account the fact that the sum of positive and negative values is actually equal to the difference between them.) The resultant current (or voltage) also is a sine wave, because adding any number of sine waves of the same frequency always results in a sine wave also of the same frequency.

- reactance

The discussion of capacitance and inductance earlier in this chapter was confined to cases where only d.c. voltages were applied. To understand what happens in a condenser or inductance when an a.c. voltage is applied, it is necessary to become acquainted with a fundamental definition of electric current (as contrasted to the physical description of current given earlier). By definition, the amplitude of an electric current is the rate at which electric charge is moved past a point in a circuit. If a large quantity of charge moves past the olserving point in a given time, the current is large; if the quantity is small in the same amount of time, the current is small.

Alternating Current in Condensers

The quantity of charge that can be placed on a condenser of given capacitance is propor-
tional to the voltage applied to the condenser. As we explained earlier, the condenser becomes charged instantly if there is no resistance in the circuit. Suppose a sine-wave a.c. voltage is applied to a condenser in a circuit containing no resistance, as indicated in Fig, 2-22. For convenience, the first half-cycle of the applied voltage is divided into eight equal time intervals. In the period $O A$, the voltage increases from zero to 38 volts; at the end of this period the condenser is charged to that voltage. In the next interval the voltage increases to 71 volts; that is, 33 volts additional. In this second interval a smaller quantity of charge has been added than in the first interval, because the voltage rise during the second interval was smaller. Consequently the average current during the second interval is smaller than during the first. In the third interval, $B C$, the voltage rises from 71 to 92 volts, an increase of 21 volts. This is less than the voltage increase during the second interval, so the quantity of electricity added to the charge during the third interval is less than the quantity added during the second. In other words, the average current during the third interval is still smaller. In the fourth interval, $C D$, the voltage increases only 8 volts; the charge added is smaller than in any preceding interval and therefore the current also is smaller. By dividing the first quarter cycle into a very large number of intervals it could be shown that the current charging the condenser has the shape of a sine wave, just as the applied voltage does. But the current is largest at the beginning of the cycle and becomes zero at the maximum value of the voltage (the condenser cannot be charged to a higher voltage than the maximum applied, so no furt her current can flow) so there is a phase difference of 90 degrees between the voltage and current. During the first quarter cycle of the applied voltage the current is flowing in the normal way through the circuit, since the condenser is being charged. Hence the current is positive during this first quarter cycle, as indicated by the dashed line in Fig. 2-22.

In the second quarter cycle - that is, in the time from D to $I I$, the volage applied to the

Fig. 2.22 - Voltage and current phase relationships when an altermating voltage is applied to a condenser.
condenser decreases. During this time the condenser loses the charge it acquired during the first quarter cycle. Applying the same reasoning, it is plain that the current is small from D to E and continues to increase during each succeeding interval. However, the current is flowing against the applied voltage because the condenser is discharging into the circuit. Hence the current is negative during this quarter cycle.

The third and fourth quarter cycles repeat the events of the first and second, respectively, with this difference - the polarity of the applied voltage has reversed, and the current changes to correspond. In other words, an alternating current flows through a condenser when an a.c. voltage is applied to it. As shown by Fig. 2-22, the current starts its cycle 90 degrees before the voltage, so the current in a condenser leads the applied voltage by 90 degrees.

Capacitive Reactance

Iemembering the definition of current as given at the beginning of this section, as well as the meehanism of current flow described above, it should be plain that the more rapid the voltage rise the larger the current, because a rapid change in voltage means a rapid transfer of charge into or out of the condenser. The rapidity with which the voltage changes depends upon two things: (1) the amplitude of the voltage (the greater the maximum value, the faster the voltage must rise from zero to reach that maximum in the time of one-quarter cycle if the frequency is fixed); (2) the frequency (the higher the frequency, the more rapidly the voltage goes through its changes in a given time if the maximum amplitude is fixed). Also, the amplitude of the current depends upon the capacitance of the condenser, because the larger the capacitance the greater the amount of charge transferred during a given change in voltage.

The fact that the current flowing through a condenser is directly proportional to the applied a.c. voltage is extremely important. It is exactly what Ohm's Law says about the flow of direct current in a resistive circuit, and so leads us to the conclusion that Ohm's Law may be applied to an alternating-current circuit containing a condenser. Of course, a condenser does not offer "resistance" to the flow of alternating current, because the condenser does not consume power as a resistor does. It merely stores energy in one part of the cycle and returns it to the circuit in the next part. Furthermore, the larger the capacitance the larger the current; this is just the opposite of what we expect with resistance. And finally, the "opposition" offered by a condenser to alternating current depends on the frequency of that current. But with a given capacitance and a given frequency, the condenser follows Ohm's Law un a.c.

Since the opposition effect of a condenser is not resistance, it is called by another name, reactance. But because reactance holds hack current flow in a similar fashion to resistance, the unit of reactance also is the ohm. The reactance of a condenser is

$$
X_{\mathrm{C}}=\frac{1}{2 \pi f C^{\prime}}
$$

where $X_{c}=$ Condenser reactance in ohms

$$
\begin{aligned}
f & =\text { Frequency in cyeles per second } \\
f^{\prime} & =\text { (apacitance in farads } \\
\pi & =3.1 t
\end{aligned}
$$

The fundamental units (cycles per second, farads) are too large for practical use in ratio circuits. However, if the capacitance is in microfarads and the frequency is in megacycles, the reactance will come out in ohms in the formula.

$$
\begin{aligned}
& \text { Vxample: 'lhe reactanee of a eondenser of } 470 \\
& \mu \mu \mathrm{fd},(0.000+7 \mu \mathrm{fd} .) \text { at a frequency of } 71.50 \mathrm{kc} \text {. } \\
& (7.1 . \mathrm{Nc} .) \text { is } \\
& X=\frac{1}{2 \pi f C}=\frac{1}{6.28 \times 7.15 \times 0.00047}=47.4 \mathrm{ohms} \\
& \text { Inductive Reactance }
\end{aligned}
$$

In the case of an alternating voltage applied to a circuit containing only inductance, with no resistance, it must be remembered that in such a resistanceless circuit the current always changes just rapidly enough to induce a back e.m.f. that equals and opposes the applied voltage. In Fig. 2-23, the cyele is again divided off into equal intervals. Assuming that the current has a maximum value of 1 ampere, the instantanoous current at the end of each interval will be as shown. The value of the induced voltage is proportional to the rate at which the current changes. It is therefore greatest in the intervals $O A$ and (iII and least in the intervals $C D$ and $D E$. The induced voltage actually is a sine wave (if the current is a sine wave) as shown by the dashed curve. The applied voltage, because it is always equal to and opposed hy the induced voltage, is equal to and 180 degrees out of phase with the induced

Fig. 2-2.3 - Phase relationships between voltage and current when an alternating voltage is applied to an inductance.
voltage, as shown by the second dashed curve, The result, therefore, is that the current flowing in an induetance is 50 degrees out of phase with the applied voltage, and lags behind the applied voltage. This is just the opposite of the condenser case.

Just enough current will flow in an inductance to induce an e.m.f. that just equals the applied e.m.f. Since the value of the induced e.m.f. is proportional to the rate at which the current changes, and this rate of change is in turn proportional to the frequency of the current, it should be clear that a small current changing rapidly (that is, at a high frequency) can generate a large back e.m.f. in a given inductance just as woll as a large current changing slowly (low frequency). Consequently, the current that flows through a given inductance will decrease as the frequency is rased, if the applied e.m.f. is held constant. However, with both frequency and inductance fixed, the current will be larger when the applied voltage is increased, because the necessary rate of change in the current to induce the required back e.m.f. can only be obtained by having a greater total current flow under such circumstances. Again, when the applied voltage and freguency are fixed, the value of current required is less, as the inductance is made larger, because the induced e.m.f. also is proportional to inductance.

Just as in the capacitance case, the key point here is that - with the frequency and inductance fixed - an increase in the applied a.c. voltage causes a proportionate increase in the current. This is Ohm's Law again - and. again. the opposition effect is similar to, but not identical to, resistance. It is called inductive reactance and, like capacitive roactance, is measured in ohms. There is no energy loss in inductive reactance; the energy is stored in the magnetic field in one quarter evele and then returned to the circuit in the next.

The formula for inductive reactance is

$$
X_{\mathrm{L}}=2 \pi f L
$$

where $X_{L}=$ Inductive reactance in ohins $\begin{aligned} f= & \text { lrequency in cycles per } \\ & \text { second }\end{aligned}$ $L=$ Inductance in henrys $\pi=3.14$
Example: The reactance of a coil having an inductance of 8 henrys, at a frequency of 120 cycles, is
$X_{L}=2 \pi f L=6.28 \times 1.20 \times 8=6029$ ohns
In radio-frequency circuits the inductance values usually are small and the frequencies are large. If the inductance is expressed in millihenrys and the frequency in kilocycles, the conversion factors for the two units cancel, and the formula for reactance may be used without first converting to fundamental units. Similarly, no conversion is necessary if the inductance is in microhenrys and the frequency is in megacycles.

Example: The reactance of a 15 -microhenry coil at a frequency of 14 Mc . is
$X_{\mathrm{L}}=2 \pi f L=6.28 \times 14 \times 15=1319$ ohms
Ohm's Law for Reactance
Ohm's Law for an a.c. circuit containing only reactance is

$$
\begin{aligned}
I & =\frac{E}{X} \\
E & =I X \\
X & =\frac{E}{I}
\end{aligned}
$$

where $E=$ E.m.f. in volts
$I=$ Current in amperes
$X=$ Reactance in ohms
The reactance may be either inductive or capacitive.

Example: If a current of 2 amperes is flowinr through the condenser of the previous example (reactance $=47.4$ ohms) at 7150 kc ., the volt age drop across the condenser is

$$
E=I \mathrm{~N}=2 \times 47.4=94.8 \text { volts }
$$

If 400 volts at 120 cycles is applied to the 8 henry inductance of the previous example, the current through the coil will be

$$
I=\frac{E}{X}=\frac{400}{6029}=0.0663 \mathrm{amp} .(66.3 \mathrm{ma} .)
$$

These examples show that there is nothing complicated about using Ohm's Law for a reactive a.c. circuit. The question naturally arises, though, as to what to do when the circuit consists of an inductance in series with a capacitance. In such a case the same current flows through both reactances. However, the voltage across the coil leads the current by 90 degrees, and the voltage across the condenser lags behind the current by 90 degrees. The coil and condenser voltages therefore are 180 degrees out of phase.

A simple circuit of this type is shown in Fig. 2-24. The same figure also shows the current (heavy line) and the voltage drops across the inductance (E_{1}.) and capacitance $\left.{ }^{(} E_{\mathrm{C}}\right)$. It is assumed that X_{C}, is larger than X_{C} and so has a larger voltage drop. Since the two voltages are completely out of phase the total voltage (E_{A}) is equal to the difference between them. This is shown in the drawing as $E_{\mathrm{L}}-$ E_{C}. Notice that, because E_{L} is larger than E_{C}, the resultant voltage is exactly in phase with E_{L}. In other words, the circuit as a whole simply acts as though it were an inductance an inductance of smaller value than the actual inductance present, since the effect of the actual inductive reactance is reduced by the capaeitive reactance in series with it. If X_{C} is larger than X_{t}, the arrangement will behave like a capacitance - again of smaller reaetance than the actual capacitive reactance present in the circuit.

The "equivalent" or total reactance of any circuit containing inductive and capacitive reactances in series is equal to $X_{\mathrm{t}}-X_{\mathrm{C}}$. If

Fig. 2-24-Current and voltages in a circuit having inductive and caparitive reactances in series.
there are several coils and condensers in series, we simply add up all the inductive reactances, then add up all the capacitive reactances, and then sultract the latter from the former. It is customary to call inductive reactance "positive" and capacitive reactance "negative." If the equivalent or net reactance is positive, the voltage leads the current by 90 degrees; if the net reactance is negative, the voltage lags the current by 90 degrees.

Reactive Power

A curious feature of the drawing in Fig. 2-24 is that the voltage drop across the coil is larger than the voltage applied to the circuit. At first glance this might seem to be an impossible condition. But it is not; the reason is that neither the coil nor condenser consumes power. Actually, when energy is being stored in the coil's magnetic field, energy is being returned to the circuit from the condenser's electric field, and vice versa. This stored energy is responsible for the fact that the voltages across reactances in series can be larger than the voltage applied to them.

It will be recalled that in a resistance the flow of current causes heating and a power loss equal to $I^{2} R$. The power in a reactance is equal to $I^{2} X$, but is not a "loss"; it is simply power that is transferred back and forth between the fiehd and the circuit but not used up in heating anything. In the quarter cycle when the current and voltage in a reactance both have the same polarity, energy is stored in the field; in the quarter cycle when the current and voltage have opposite polarity the energy is returned to the circuit. To distinguish this "nondissipated" power from the power which is actually eonsumed, the unit of reactive power is called the volt-ampere instead of the watt. Reactive power is sometimes called "wattless" power.

- IMPEDANCE

Although resistance, inductive reactance and capacitive reactance all are measured in ohms, the fact that they all are measured by the same unit does not indicate that they can be combined indiscriminately. Reactance does not absorb energy; resistance does. Voltage and current are in phase in resistance, but differ in phase by a quarter cycle in reactance. Furthermore, in inductive reactance the voltage leads the current, while in capacitive reactance the current leads the voltage. All these things must be taken into account when reactance and resistance are combined together in a circuit.

Fig. 2.25 - Resistance and induetive reartance connected in series.

In the simple circuit shown in Fig. 2-25, for example, it is not possible simply to add the resistance and reactance together to obtain a quantity that will indicate the opposition offered by the combination to the flow of current. Inasmuch as both resistance and reactance are present, the total effect can obviously be neither wholly one nor the other. In circuits containing both reactance and resistance the opposition effect is called impedance. The unit of impedance is also the ohm.

If the induetance in Fig. 2-25 were shortcircuited, only the resistance would remain and the circuit would simply have a resistance of 75 ohms. In such a case the current and voltage would be in phase. On the other hand, if the resistance were short-circuited the circuit simply would have a reactane of 100 ohms, and the current would lag behind the voltage by one-quarter cyele or 90 degrees. When both are in the circuit, it would be expected that the impedance would be greater than either the resistance or reactance. It. might also be expected that the current would be neither in phase with the voltage nor lagging 90 degrees behind it, but would be somewhere between the complete in-phase and the $90-$ degree phase conditions. Both things are true. The larger the ratance compared with the resistance, the more nearly the phase angle approaches 90 degrees; the larger the resistance compared to the reactance, the more nearly the current approaches the condition of being in phase with the voltage.

It can be shown that resistance and reactance can be combined in the same way that a right-angled triangle is constructed, if the re-
sistance is laid off to proper scale as the hase of the triangle and the reactance is laid off as the altitude to the same scale. This is also indicated in Fig. 2-25. When this is done the hypotenuse of the triangle represents the impedance of the circuit, to the same scale, and the angle between Z and R (usually called θ and so indicated in the drawing) is equal to the phase angle between the applied e.m.f. and the current. It is unnecessary, of course, actually to draw such a triangle when impedance is to be calculated; by geometry,

$$
Z=\sqrt{R^{2}+X^{2}}
$$

In the case shown in the drawing,
$Z=\sqrt{(75)^{2}+(100)^{2}}=\sqrt{15,625}=125 \mathrm{ohms}$.
The phase angle can be found from simple trigonometry. Its tangent is equal to X / R; in this case $X / R=100 / 75=1.33$. From trigonometric tables it can be determined that the angle having a tangent equal to 1.33 is approximately 53 degrees. Fortunately, in ordinary amateur work it is seldom necessary to give much consideration to the phase angle because in most practical cases the angle will either be nearly zero (current and voltage in phase) or close to 90 degrees (current and voltage approximately a quarter cycle out of phase).

A circuit containing resistance and capacitance in series (Fig, 2-26) can be treated in the same way. That is, the impedance is

$$
Z=\sqrt{R^{2}+X^{2}}
$$

and the phase angle again is the angle whose tangent is equal to X / R. It must be remembered, however, that in this case the current leads the applied e.m.f., while in the resistanceinductance case it lags behind the voltage.

In neither case is the impedance of the circuit equal to the simple arithmetical sum of the resistance and reactance. With $R=75$ ohms and $X_{L}=100$ ohms, simple addition would give 175 ohms while the actual impedance is 125 ohms. However, if either X or R is very small compared to the other (say, $1 / 10$ or less) the impedance is very near!y equal to the larger of the two quantities. For example, if $R=1 \mathrm{ohm}$ and $X=10 \mathrm{ohms}$,

$$
\begin{aligned}
Z=\sqrt{R^{2}+X^{2}} & =\sqrt{(1)^{2}+(10)^{2}} \\
& =\sqrt{101}=10.05 \mathrm{ohms}
\end{aligned}
$$

Hence if either X or R is at least 10 times as large as the other, the error in assuming that the impedance is equal to the larger of the two will not exceed $1 / 2$ of 1 per cent, which is

Fig. 2.26 - Re-

usually negligible. This fact is frequently useful.

In working with impedance, remember that one of its components is reactance and that the reactance of a given coil or condenser changes with the applied frequency. Therefore, impedance also changes with frequency. The change in impedance as the frequency is changed may be very slow if the resistance is considerably larger than the reactance. However, if the impedance is mostly reactance a change in frequency will cause the impedance to change practically as rapidly as the reactance itself changes.

Ohm's Law for Impedance

Since impedance is made up of resistance and reactance, Ohm's Law can be applied to circuits containing impedance just as readily as to circuits having resistance or reactance only. The formulas are

$$
\begin{aligned}
I & =\frac{E}{Z} \\
E & =I Z \\
Z & =\frac{E}{I}
\end{aligned}
$$

where $E=$ L.m.f. in volts
$I=$ Current in amperes
$Z=$ Impedance in ohms
Example: Assume that the e.m.f. applied to the circuit of Fig. $2-25$ is 250) volts. Then

$$
I=\frac{E}{Z}=\frac{250}{125}=2 \text { amperes. }
$$

The same current is flowing in both R and $\boldsymbol{X}_{\mathrm{L}}$, and Chm's Law as applied to either of these quantities says that the voltage drop across R should edual $I R$ and the voltage drop across I_{L} should equal $I \mathrm{~F}_{\mathrm{L}}$. Substituting,

$$
\begin{aligned}
E_{\mathrm{R}}=I R & =2 \times 75=150 \text { volts } \\
E_{\mathrm{X}_{\mathrm{L}}} & =I \mathrm{X}_{\mathrm{L}}=2 \times 100=200 \text { volts }
\end{aligned}
$$

The arithmetical sum of these voltages is greater than the applied voltage. However, the actual

Fir, 2-27 - Voltage drops around the circuit of Fig. 2-25. Because of the phase relationships, the applied voltage is less than the arithmetical sum of the irrops arress the resistor and induetor.
sum of the two when the phase relationship is taken into account is equal to 250 volts r.m.s., as shown by Fig, 2-27, where the instantaneous values are added throughont the cycle. Whenever resistance and reactance are in series, the individual voltage drops always add up, arithmetically, to more than the applied voltage. There is nothing fictitious about these voltage drops; they can be measured readily by suitable instruments. It is simply an illustration of the importance of phase in a.c. circuits.

A more complex series circuit, containing resistance, inductive reactance and capacitive reactance, is shown in Fig. 2-28. In this case it is necessary to take into account the fact that the phase angles between current and voltage differ in all three elements. Since it is a series circuit, the eurrent is the same throughout. Considering first just the inductance and

Fig. 2.28 - Resistance, inductive ractance, and rapacitive reactanec in serics.
capacitance and neglecting the resistance, the phase relationships are the same as in Fig. 2-24. The net reactance in Fig. 2-28 is
$X_{\mathrm{L}}-X_{\mathrm{C}}=150-50=100 \mathrm{ohms}$ (inductive)
Since the series reactances can be lumped into one equivalent reactance, it is easy to find the impedance of the circuit by the rules previously given. The impedance of a circuit containing resistance, inductance and capacitance in series is

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{c}\right)^{2}}
$$

Example: In the circuit of Fig. 2-28, the impedance is

$$
\begin{aligned}
Z & =\sqrt{R^{2}+\left(X_{\mathrm{L}}-X \mathrm{~K}\right)^{2}} \\
= & \sqrt{(20)^{2}+(1.50-50)^{2}=\sqrt{(20)^{2}+(100)^{2}}} \\
& =\sqrt{10,400}=102 \text { ohms }
\end{aligned}
$$

The phase angle can be found from X / R. where $X=X_{L}-X_{C}$.

Parallel Circuits

Suppose that a resistor, condenser and coil are connected in parallel as shown in Fig. 2-29 and an a.c. voltage is applied to the combination. In any one branch, the current will be unchanged if one or both of the other two branches is disconnected, so long as the applied voltage remains unchanged. For example, I_{L}, the current through the inductance, will not change if both R and C are removed (although the total current, I, will change). Thus the current in each branch can be calculated quite simply by the Ohm's Law

Fig. 2-29 - Resistance, indurtance and caparitance in parallel. Instruments connected as shown will read the total carrent, I, and the individual eurrents in the three tranches of the circuit.
formulas given in the preceding sections, if the voltage and reactance or resistance are known. The total current, I, is the sum of the currents through all three bramehes - not the arithmetical sum, but the sum when phase is taken into account.

The currents through the various branches will be as shown in Fig. 2-30, assuming for pupposes of illustration that X_{L} is smaller than X_{C} and that X_{C} is smaller than R, thus making I_{L} larger than I_{C}, and I_{C} : larger than I_{R}. The current through C leads the voltage by 90 degrees and the current through L lags the voltage by 90 degrees, so these two currents are 180 degrees out of phase. As shown at E , the total reactive current is the differenee between I_{C} and I_{L}. This resultant current lags the voltage by 90 degrees, because $/ \mathrm{L}$ is larger than $/ \mathrm{C}$. When the reactive current is added to I_{R}, the total current, I, is as shown at F. It can be seen that I lags the applicd voltage by an angle smaller than 90 degrees and that the total current, while less than the simple sum (neglecting phase) of the three branch eurrents, is larger than the current through R alone.

The impedance looking into the parallel circuit from the source of voltage is equal to the applied voltage divided by the total or "hine" current, I. In the case illustrated, I is greater than I_{R}, so the impedance of the cireuit is less than the resistance of R. How mueh less depends upon the net reactive current flowing through L and C " in parallel. If X_{1} and X_{c} are very nearly equal the net reartive current will be quite small because it is equal to the difference between two nearly equal currents. In such a case the impedance of the circuit will be almost the same as the resistance of R alone. (On the other hand, if X_{L} and X_{C} are quite different the net reartive current can be relatively large and the total current also will be appreciably larger than I_{R}. In such a case the eircuit impedance will be lower than the resistance of R alone.

The ealculation of the impedance of parallel eircuits is somewhat complicated. Fortunately, calculations are not necessary in most amateur work except in a special - and simple - case treated in a later section of this chapter.

Power Factor

In the circuit of Fig. 2-25 an applied e.m.f. of 250 volts results in a current of 2 amperes.

If the eircuit were purely resistive (containing no reactane) this would mean a power dissipation of $250 \times 2=500$ watts. Howerer, the circuit actually eonsists of resistance and reartance, and only the resistance consumes power. The power in the resistanee is

$$
P=I^{2} R=(2)^{2} \times 75=300 \text { watts }
$$

This is the actual power consumed by the eircuit as compared to the apparent power input of 500 watts. The ratio of the power consumed to the apparent power is called the power factor of the circuit, and in the case used as an example would be $300 / 500=0.6$. Power factor is frequently expressed ats a percentage; in this case, the power factor would be 60 per cent.
"Real" or dissipated power is measured in watts; apparent power to distinguish it from real power, is measured in volt-amperes (just like the "wattless" power in a reactancer). It is simply the product of volts and amperes and has no direct relationship to the power actually used up or dissipated unless the power factor of the circuit is known. The power factor of a purely resistive circuit is 100 por cent or 1 . while the power factor of a pure reactance is zaro. In this illustration, the reactive power is
$l^{\prime \prime} A($ volt-amperes $)=I^{2} X=(2)^{2} \times 100$

$$
=400 \text { volt-amperes. }
$$

Fig. 2.30 - Phase relationships between branch currents and applied voltage for the cireuit of Fig. 2.29. The total current through L and C in parallel ($I \mathrm{~L}+/ \mathrm{C}$) and the total current in the entire circuit (I) also are shown.

Complex Waves

It was pointed out early in this chapter that a complex wave (a "nonsinusoidal" wave) can be resolved into a fundamental frequency and a series of harmonic frequencies. When such a complex voltage wave is applied to a circuit containing reactance, the current through the circuit will not have the same waveshape as the applied voltage. This is because the reactance of a coil and condenser depend upon the applied frequency. For the second-harmonic component of a complex wave, the reactance of the coil is twice and the ractance of the condenser one-half their values at the fundamental frequency; for the third harmonic the coil reactance is three times and the condenser reactance one-third, and so on.

Just what happens to the current waveshape depends upon the values of resistance and
reactance involved and how the circuit is arranged. In a simple circuit with resistance and inductive reactance in series, the amplitudes of the harmonics will be reduced because the inductive reactance increases in proportion to frequency. When a condenser and resistance are in series, on the other hand, the harmonies are likely to be accentuated because the corr denser reactance becomes lower as the frequency is raised. When both inductive and capacitive reactance are present the shape of the current wave can be altered in a variety of ways, depending upon the circuit and the "constants," or values of L, C and R, selected.

This property of nonuniform behavior with respect to fundamental and harmonics is an extremely useful one. It is the basis of "filtering," or the suppression of undesired frequencies in favor of a single desired frequency or group of such frequencies.

Transformers

It has been shown in the preceding sections that, when an alternating voltage is applied to an inductance, an e.m.f. is induced by the varying magnetic field accompanying the flow of alternating eurrent. If a second coil is brought into the same field, a similar c.m.f. likewise will be induced in this coil. This induced e.m.f. may be used to force a current through a wire, resistance or other electrical device connected to the terminals of the second coil.

Two coils operating in this way are said to be coupled, and the pair of coils constitutes a transformer. The coil connected to the source of energy is called the primary coil, and the other is called the secondary coil.

Types of Transformers

The usefulness of the transformer lies in the fact that electrical energy can be transferred from one circuit to another without direct connection, and in the process can be readily. changed from one voltage level to another. Thus, if a device to be operated requires, for example, 115 volts and only a 440 -volt source is available, a transformer can be used to change the source voltage to that required. The transformer, of course, can be used only on a.c., since no voltage will be induced in the secondary if the magnetic field is not changing. If d.c. is applied to the primary of a transformer, a voltage will be induced in the secondary only at the instant of closing or opening the primary circuit, since it is only at these times that the feld is changing.

As shown in Fig. 2-31, the primary and secondary coils of a transformer may be wound on a core of magnetic material. This increases the inductance of the coils so that a relatively small number of turns may be used to induce
a given value of voltage with a small current. A closed core (one having a continuous magnetic path) such as that shown in Fig. 2-31 also tends to insure that practically all of the field set up by the current in the primary coil will cut the turns of the secondary coil. However, the core introduces a power loss because of hysteresis and eddy currents so this type of construction is practicable only at power and audio frequencies. The diseussion in this section is confined to transformers operating at such frequencies.

Voltage and Turns Ratio

For a given varying magnetic field, the voltage induced in a coil in the field will be proportional to the number of turns on the coil. If the two coils of a transformer are in the same field (which is the case when both are wound on the same closed core) it follows that the induced voltages will be proportional to the number of turns on each coil. In the case of the primary, or coil connected to the source of power, the induced voltage is practi-

SYMBOLS
Fig. 2-31 - The transformer. Power is transferred from the primary coil to the sceondary by means of the magnetie field. The upper symbol at right indieates an ironcore transformer, the lower one an air-core transformer.
cally equal to, and opposes, the applied voltage. Hence, for all practical purposes,

$$
E_{\mathrm{s}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} E_{\mathrm{p}}
$$

where $E_{s}=$ Secondary voltage
$E_{\mathrm{p}}=$ 1'rimary voltage
$n_{\mathrm{s}}=$ Number of turns on secondary
$n_{\mathrm{p}}=$ Number of turns on primary
The ratio $n_{\mathrm{s}} / n_{\mathrm{p}}$ is called the turns ratio of the transformer.

Example: A transformer has a primary of 400 turns and a secondary of 2800 turns, and 115 volts is applied to the primary. The secondary voltage will be

$$
\begin{aligned}
E_{\mathrm{s}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} E_{\mathrm{p}}=\frac{2800}{400} \times 115 & =7 \times 115 \\
& =805 \text { volts }
\end{aligned}
$$

Also, if 805 volts is applied to the 2800-turn winding (which then becomes the primary) the output voltage from the 400 -turn winding will be 115 volts.

Either winding of a transformer can be used as the primary, providing the winding has enough turns to induce a voltage equal to the applied voltage without requiring an excessive current flow.

Effect of Secondary Current

The current that flows in the primary when no current is taken from the secondary is called the magnetizing current of the transformer. In any properly-designed transformer the primary inductance will be so large that the magnetizing current will be quite small. The power consumed by the transformer when the secondary is "open" - that is, not delivering power is only the amount neeessary to supply the losses in the iron core and in the resistance of the wire of which the primary is wound.

When current is drawn from the secondary winding, the secondary current sets up a magnetic field of its own in the core. The field from the secondary current always reduces the strength of the original field. But if the induced voltage in the primary is to equal the applied voltage, the original field must be maintained. Consequently, the primary current must change in such a way that the effect of the field set up by the secondary current is completely canceled. This is accomplished when the primary draws additional current that sets up a field exactly equal to the field set up by the secondary current, but which opposes the secondary field. The additional primary current is thus 180 degrees out of phase with the secondary current.

In practical calculations on transformers it is convenient to neglect the magnetizing current and to assume that the primary current is caused entirely by the secondary load. This is justifiable because the magnetizing current should be very small in comparison with the load current when the latter is near the rated value.

If the magnetic fields set up by the primary and secondary currents are to be equal, the primary current multiplied by the primary
turns must equal the secondary current multiplied by the secondary turns. From this it follows that the primary current will be equal to the secondary current multiplied by the turns ratio, secondary to primary, or

$$
I_{\mathrm{P}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} I_{\mathrm{B}}
$$

where $I_{\mathrm{p}}=$ Primary current
$I_{\mathrm{s}}=$ Secondary current
$n_{\mathrm{p}}=$ Number of turns on primary
$n_{s}=$ Number of turns on secomlary
Example: Suppose that the secondary of the transformer in the previous example is delivering a eurrent of 0.2 ampere to a load. Then the primary current will be
$J_{12}=\frac{n_{4}}{n_{\mathrm{p}}} I_{,}=\frac{2800}{400} \times 0.2=7 \times 0.2=1.4 \mathrm{amp}$,
Although the seeondary voltage is higher than the primary voltage, the secondary current is lower than the primary current, and by the same ratio.

Power Relationships; Efficiency

A transformer cannot create power; it can only transfer and transform it. Hence, the power taken from the secondary cannot exceed that taken by the primary from the source of applied e.m.f. There is always some power loss in the resistance of the coils and in the iron core, so in all practical cases the power taken from the source will exceed that taken from the secondary. Thus,

$$
P_{\mathrm{o}}=n P
$$

where $P_{o}=$ Power output from secondary $I_{i}=$ Power input to primary $n=$ Efficiency factor
The efficiency, n, always is less than 1 . It is usually expressed as a percentage; if n is 0.65 , for instance, the efficiency is $6 \overline{3}$ per cent.

Example: A transformer has an efficiency of 85% at its full-load output of 150 watts. The power input to the primary at full secombary load will be

$$
P_{i}=\frac{P_{0}}{n}=\frac{150}{0.85}=176.5 \text { watts }
$$

The efficiency of a transformer is ustally by design - highest at the normal power output for which it is rated. The efficiency decreases with either lower or higher outputs. On the other hand, the losses in the transformer are relatively small at low output but increase as more power is taken. The amount of power that the transformer can handle is determined

Fig. 2-32 - The equivalent circuit of a transformer in. eludes the effeets of leakage inductance and resistance of both primary and seeondary windings. The reaistance Re is an equivalent resistance representing the constant core lisses. Since these are comparatively small, their ef. feet may be neglected in many approximate ealeulations.
by its own losses, because these heat the wire and core and raise the operating temperature. There is a limit to the temperature rise that can be tolerated, because too-ligh temperature either will melt the wire or break down the insulation between turns. A transformer always can be operated at reduced output even though the efficiency is low, because the actual loss also will be low under such conditions.

The full-load efficiency of small power transformers such as are used in radio receivers and transmitters usually lies between about 60 per cent and 90 per cent, depending upon the size and design.

Leakage Reactance

In a practical transformer not all of the magnetic flux is common to both windings, although in well-designed transformers the amount of flux that "cuts" one coil and not the other is only a small percentage of the total flux. This leakage flux acts in the same way as flux about any coil that is not coupled to another coil; that is, it causes an e.m.f. of selfinduction. Consequently, there are small amounts of leakage inductance associated with both windings of the transformer, but not common to them. Leakage inductance acts in exactly the same way as an equivalent amount of ordinary inductance inserted in series with the circuit. It has, therefore, a certain reactance, depending upon the amount of leakage inductance and the frequency. This reactance is called leakage reactance.
In the primary, the current flowing through the leakage reactance causes a voltage drop. This voltage drop increases with increasing primary current, hence it increases as more current is drawn from the secondary. The induced voltage consequently decreases, because the applied voltage has been reduced by the voltage drop in the primary leakage reactance. The secondary induced voltage also decreases proportionately.

When current fows in the secondary circuit the secondary leakage reactance causes an additional voltage drop that further reduces the voltage available from the secondary terminals. Thus, the greater the secondary current, the smaller the secondary terminal voltage becomes. The resistances of the primary and secondary windings of the transformer also cause voltage drops when current is flowing; although these voltage drops are not in phase with those caused by leakage reactance, together they result in a lower secondary voltage under load than is indicated by the turns ratio of the transformer.

At power frequencies (60 cycles) the voltage at the secondary, with a reasonably welldesigned transformer, should not drop more than about 10 per cent from open-circuit conditions to full load. The drop in voltage may be considerably more than this in a transformer operating at audio frequencies because the
leakage reactance increases directly with the frequency.

Impedance Ratio

In an ideal transformer - one without losses or leakage reactance - the following relationship is true:

$$
Z_{\mathrm{p}}=Z_{\mathrm{s}} N^{2}
$$

where $\%_{\mathrm{p}}=$ Impedance of primary as viewed from source of power
$Z \mathrm{~s}=$ Impedance of load connected to secondary
$N=$ Turns ratio, primary to secondary
That is, a load of any given impedance connected to the secondary of the transformer will he changed to a different value "looking into" the primary from the source of power. The amount of impedance transformation is proportional to the square of the primary-tosecondary turns ratio.

Example: A transformer has a primary-tosecondary turns ratio of 0.6 (primary has $\mathbf{6 / 1 0}$ as many turns as the secondary) and a load of 3000 ohms is connected to the secondary. The impedance looking into the primary then will be

$$
\begin{gathered}
Z_{\mathrm{g}}=Z_{\mathrm{s}} N^{2}=3000 \times(0.6)^{2}=3000 \times 0.36 \\
=1080 \text { ohms }
\end{gathered}
$$

13y choosing the proper turns ratio, the impedance of a fixed load can be transformed to any desired value, within practical limits. The transformed or "reflected" impedance has the same phase angle as the actual load impedance; if the load is a pure resistance the load presented by the primary to the source of power also will be a pure resistance.

The above relationship is sufficiently accurate in practice to give quite adequate results, even though it is based on an "ideal" transformer. Aside from the normal design requirements of reasonably low internal losses and low leakage reactance, the only other requirement to be met is that the primary have enough inductance to operate with low magnetizing current at the voltage applied to the primary. Despite a common - but mistaken - impression, a transformer operating with

Fig. 2-3.3 - Two common typen ef transformer constructiom. Core picees are interleaved to provide a continuous magnetic path with as low reluctance as possible.
a load does not "have" an impedance; the primary impedance - as it looks to the source of power - is determined by the load conneeted to the secondary and by the turns ratio. If the characteristics of the transformer have an appreciable effect on the impedance presented to the power source, the transformer is either poorly designed or is not suited to the voltage applied to it. Most transformers will operate quite well at voltages from shightly above to well below the design figure.

Impedance Matching

Many devices require a specific value of load resistance (or impedance) for optimum operation. The resistance of the actual load that is to dissipate the power may differ widely from this value; so the transformer is frequently called upon to transform the actual load into one of the desired value. This is called impedance matching. From the preceding,

$$
N=\sqrt{\frac{Z_{\mathrm{s}}}{Z_{\mathrm{p}}}}
$$

where $N=$ Required turns ratio, secondary to primary
$Z_{4}=$ Impedance of load connected to secondary
$Z_{10}=$ Impedance required
Example: A varuun-tube a.f. amplifier requires a lowl of 5000 ohms for optimum performance, and is to be connected to a loudspeaker having an impedance of 10 olms. The turns ratio, secondary to primary, required in the coupling transformer is

$$
N=\sqrt{\frac{Z_{\mathrm{b}}}{Z_{p}}}=\sqrt{\frac{10}{5000}}=\sqrt{\frac{1}{500}}=\frac{1}{22.4}
$$

The primary therefore must have 2.4 times as many turns as the secondary.

Impedance matehing means, in general, adjusting the load impedance - by means of a transformer or otherwise - to a desired value, However, there is also another meaning. It is possible to show that any source of power will have its maximum possible ontput when the impedance of the load is equal to the internat impedance of the source. The impedance of the source is said to be "matched" under this condition. Iowever, the efficiency is only in per cent in such a case; just as much power is used up in the source as is delivered to the load. Because of the poor efficiency, this type of impedance matching is limited to cases where only a small amount of power is available. (ietting the most power output may be more important than effiriency in such a case.

Transformer Construction

Transformers usually are designed so that the magnetic path around the core is as short as possible. A short magnetic path means that the transformer will operate with fewer turns, for a given applied voltage, than if the path were long. It also helps to reduce flux leakage and therefore minimizes leakage reactance. The

Fig. 2-34 - The autotransformer is based on the transformer principle, hut usics only one winding. The line and load courrents in the common winding (1) flow in opposite dirertions, so that the resultant current is the difference between them. The voltage across A is proportional to the turns ratio,
number of turns required also is affected by the cross-sectional area of the core.

Two core shapes are in common use, as shown in Fig. 2-33. In the shell type both windings are placed on the inner leg, while in the core type the primary and secondary windings may be placed on separate legs, if desired. This is sometimes done when it is necessary to minimize capacity effects between the primary and secondary, or when one of the windings must operate at very high voltage.

Core material for small transformers is usually silicon steel, called "transformer iron." The core is built up of laminations, insulated from each other (by a thin wating of shellac, for example) to prevent the flow of eddy currents. The laminations overlap at the ends to make the magnetic path as continuous as possible and thus reduce finx leakage.

The number of turns required on the primary for a given applied e.m.f. is determined by the type of core material used, the maximum permissible flux density, and the froquency. .s a rough indication, windings of small power transformers frequently have about six to eight turns per volt on a core of 1 -squareinch cross section and have a magnetic path 10 or 12 inches in length. . 1 longer path or smaller cross section requires more turns per volt, and vice versa.

In most transformers the coils are wound in latyers, with a thin sheet of paper insulation between each layer. Thicker insulation is used between coils and between coils and core.

Autotransformers

The transformer principle can be utilized with only one winding instead of two, as shown in Fig. 2-34; the principles just diseussed apply equally well. A one-winding transformer is called an autotransformer. The current in the common section (. 1) of the winding is the difference between the line (primary) and the load (secondary) currents, since these currents are out of phase. Hence if the line and load currents are nearly equal the common section of the winding may be wound with comparatively small wite.

This advantage of the autotransformer is of practical value only when the primary (line) and secondary (load) voltages are not very different. On the other hand, it is frequently undesirable to have a direct connection betwern the primary and secondary circuits. For these reasons the autotransformer is used chiefly for boosting or reducing power-line voltage by relatively smatl amounts.

Radio-Frequency Circuits

RESONANCE

Fig. 2-35 shows a resist or, condenser and coil connected in series with a source of alternating corrent. Assume that the frequency can be varied over a wide range and that, at any frequency, the voltage of the source always has the same value.

It some low frequency the condenser reartance will be much larger than the resistanco of R, and the inductive reactance will be small compared with either the reactance of C or the

Fig, 2-3.5-1 series rirouit containing L 。 C and R is "resonant" at the applied frequency when the reactance of C is equal to the reactance of L.
resistance of R. (The resistance, R, is assumed to be the same at all frequencies.) On the other hand, at some very high frequency the reactance of C will be very small and the reactance of L will be very large. In the low-frequeney case the amount of current that can flow will be determined practically entirely by the reactance of C; since X_{C} is large at the low frequency, the current will be small. In the highfrequency case the amount of current that can flow will be determined almost wholly by the reactance of $L ; X_{\mathrm{L}}$, is large at the high frequency so the current is again small.

Now condenser reactance decreases as the frequency is raised, but inductive reactance increases with frequency. At some frequency, therefore, the reactances of C and L will be equal. At that frequency the voltage drop across the coil equals the voltage drop across the condenser, and since the two drops are 180 degrees out of phase they cancel each other completely. At that frequency the amount of current flow is determined wholly by the resistance, R. Also, at that frequency the current has its largest possible value (remember that we assumed the source voltage to be constant regardless of frequency). A series circuit in which the inductive and capacitive reactances are equal is said to be resonant; or, to be "in resonance" or "in tune" at the frequency for which the reactances are equal.

Resonance is not peculiar to radio-frequency circuits alone. It can occur at any a.c. frequency, including power-line frequencies. However, resonant circuits are used principally at radio frequencies: in fact, at those frequencios the circuits used almost always are resonant.

Resonant Frequency

The frequency at which a series circuit is resonant is that for which $X_{L_{2}}=X_{C}$. Substituting the formulas for inductive and capacitive reactance gives

$$
f=\frac{1}{2 \pi \sqrt{\overline{L Y}}}
$$

where $!=$ Frequency in eveles per second
$L=$ Inductance in henrys
$C^{Y}=$ Capacitance in farads
$\pi=3.14$
Those units are inconveniently large for radiofroquency eircuits. I formula using more appropriate units is

$$
f=\frac{10^{6}}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in kilocycles (ke.)
$L=$ Inductance in microhemrys ($\mu \mathrm{h}$.)
$C^{C}=$ Capacitance in micromicrofarads ($\mu \mu \mathrm{fl}$.)

$$
\pi=3.14
$$

Examble: The resonant frequeney of a scries circuit containing a $\bar{i}-\mu \mathrm{h}$. coil and a $3 \mathrm{z}-\mu \mu \mathrm{fd}$. comlenser is

$$
\begin{aligned}
f=\frac{10^{6}}{2 \pi \sqrt{L C}} & =\frac{10^{6}}{6.28 \times \sqrt{5 \times 3.7}} \\
& =\frac{10^{6}}{6.28 \times 13.2}=\frac{10^{6}}{8.3}=12,050 \mathrm{ke}
\end{aligned}
$$

The formula for resonant frequency is not affected by the resistance in the circuit.

Resonance Curves

If a plot is drawn of the current flowing in the circuit of Fig. 2-35 as the frequency is varied (the applied voltage being constant) it would look like one of the curves in Fig. 2-36. At frequencies very much higher than the resonant frequency the current is limited by the inductive reactance; the condenser and resistor have only a negligible part. At frequencies very much lower than resonance the condenser limits the current, the resistor and inductance playing very little part. Exaetly at resonance the current is limited only by the resistance; the smaller the resistance the larger the resonant current. The shape of the resonance curve at frequencies near resonance is determined by the ratio of reactance to resistance at the particular frequency considered. If the reactance of either the coil or condenser is of the same order of magnitude as the resistance, the current decreases rather slowly as the frequency is moved in either direction away from resonance. Such a curve is said to be broad. On the other hand, if the reactance is considerably larger than the resistance the current decreases rapidly as the

Fig. 2-36-Current in a series-resonant circuit with various values of series resistance. 'The values are arhitrary and would not apply to all circuits, but represent a typical case. It is assumed that the reactames (at the resonant frequency) are 1000 ohms (minimmm $\left.Q^{(}=10\right)$. Note that at frequencies at hast plos or minus ten per cent away from the resonamt frefuency the current is substantially unaffected by the resistance in the cirroit.
frequency moves away from resonance and the circuit is said to be sharp. Curves of differing sharpness are shown in Fig. 2-3(3. A sharp circuit will respond a great dual more readily to the resonant frequency than to frequencies quite close to resonance; a broad aireuit will respond almost equally well to a gromp or band of frequencies centering around the resonant frequency.

Both types of resonance curves are usofnl. A sharp circuit gives good selectivity - the ability to soleet one desired frequency and discriminate against others, . 1 broad circuit is used when the apparatus must give about the same response over a band of frequencies rather than to a single frequency alone.

Q

Most diagrams of rewonant circuits show only inductance and capacitance; no resistance is indicated. Novertheless, resistance is always present. At frequencies up to per haps 30 Me, this resistance is mostly in the wire of the coil. Above this frequency energy loss in the condenser (principally in the solid dioleetric which must be used to form an insulating support for the condenser plates) beromess ap)preciable. This energy loss is equivalent to resistance. When maximum sharpness or selectivity is needed the object of design is to reduce the inherent resistance to the lowest possible value.

We mentioned above that the sharpness of the resonance curve is determined by the ratio of reactance to resistance. The value of the
reactance of either the coil or condenser at the resonant frequency, divided by the resistance in the circuit, is called the Q (quality factor) of the circuit, or

$$
Q=\frac{X}{h^{\prime}}
$$

where $Q=$ Quality factor
$X=$ Reatetance of either coil or condenser, in ohms
$R=$ Resistance in ohms
Example: The coil and condenser in a series circuit each have a reactance of 350 ohms at the resonant frepuency. The resistance is $\overline{5}$ ohms. Then the Q is

$$
Q=\frac{X}{R}=\frac{3 . \overline{5} 1}{i}=70
$$

Since the same current flows in R that flows in λ, the Q of the circuit also is the ratio of the reactive power to the "real" power, or power dissipated in the resistance. The term "volt-ampere-to-watt" ratio or, when the power is large, "kva.-to-kw, ratio," therefore is sometimes used instead of " Q." To put it another way, the higher the Q, the greator the amount of anorgy stored in the circuit as compared with the renergy lost or used up in cach ryele.

The effert of Q on the sharphess of resoname of a circuit is shown by the curves of Fig. 2-37. In these curves the frequency change is shown in merentage above and below the resonant frequency. $Q:$ of $10,20,50$ and 100 are shown; these values cover much of the range commonly used in radio work.

Fig. 2-37-Current in series-resonant circnits having different Qs. In this graph the current at resonanee is assumed to be the same in all cases. 'The lower the O, the more slowly the curront decreases as the applied frequeney is moved away from resonance.

Voltage Rise

When a voltage of the resonant frequency is inserted in series in a resonant cireuit, the voltage that appears across either the coil or condenser is considerably higher than the applied voltage. The current in the circuit is limited only by the actual resistance of the coil-condenser combination in the circuit and may have a relatively high value; however, the same current flows through the high reactances of the coil and condenser and catuses large voltage drops. (As explained above, the reactances are of opposite types and hence the voltages are opposite in phase, so the met voltage around the circuit is only that which is applied.) The ratio of the reactive voltage to the applied voltage is equal to the ratio of reactance to resistance. This ratio is the Q of the circuit. Therefore, the voltage across either the coil or condenser is equal to Q times the voltage inserted in series with the circuit.

Example: The inductive reactance of a circuit is 260 olims, the capacitive reactance is 200 ohms, the resistance 5 ohns, and the applied voltage is in). The two reactances cancel and there will be but \bar{j} ohms of pure resistance to limit the current flow. Thus the current will be $50 / 5$, or 10 amperes. The voltage developed across either the coil or the condenser will be equal to its reactance times the current, or $200 \times 10=200$ volto. An alternate method: The Q of the circuit is $X / R=200 / 5=40$. The reactive voltage is equal to Q times the applied voltage, or $40 \times 50=2000$ volts.

Parallel Resonance

When a variable-frequency source of constant voltage is applied to a parallel circuit of the type shown in Fig. 2-38 there is a resonance offect similar to that in a series circuit. However, in this case the current (measured at the point indicated) is smallest at the frequency for which the coil and condenser reactances are equal. At that frequency the current through L is exactly canceled by the out-of-phase current through C, as explained in an carlier section, so that only the current taken by R flows in the line. At frequencies below resonanee the current through L is larger than that through C, because the reactance of L is

Fig. 2-38- Circuit illustrating parallel reso. natnce.
smaller and that of C higher at low frequencies; there is only partial cancellation of the two reactive currents and the line current therefore is larger than the current taken by R alone. At frequencies above resonance the situation is reversed and more current flows through C than through L, so the line current again increases. The current at resonance, being deter-
mined wholly by R, will be small if R is large and large if R is small.
The resistance R shown in Fig. 2-38 seldom is an actual physical resistor. In most cases it will be an "equivalent" resistance that corresponds to the effect of an actual energy loss in the circuit. This energy loss can be inherent in the coil or condenser, or may represent en-

ergy transferred to a load by means of the resonant circuit. (For example, the resonant circuit may be used for transferring power from a vacuum-tube amplifier to an antenna system.)

Paralled and series resonant circuits are quite alike in some respects. For instance, the circuits given at A and 13 in Fig, 2-39 will behave identically, when an external voltage is applied, if (1) L and C are the same in both cases; and (2) R_{p} multiplied by R_{3} equals the square of the reactance (at resonance) of either L or C. When these conditions are met the two eircuits will have the same $Q_{\text {s. }}$. (These statements are approximate, but are quite securate if the Q is 10 or more.) Now the circuit at A is a series circuit if it is viewed from the "inside" - that is, going around the loop formed by L. ("and $R-$ so its Q can be found from the ratio of X to R_{s}.

What this moans is that a circuit like that of Fig. 2-39.1 has an equivalent parallel impedance (at resonance) equal to R_{p}, the relationship, between R_{s} and R_{p} being as explained above. Although R_{p} is not an actual resistor, to the source of voltage the parallelresonant eircuit "looks like" a pure resistance of that value. It is "pure" resistance because the coil and condenser currents are 180 degrees out of phase and are equal; thus there is no reactive current, At the resonant frequency, then, the parallel impedance of a resonant eircuit is

$$
Z_{\mathrm{r}}=Q X
$$

where $Z_{r}=$ Resistive impedance at resonance $Q=$ Quality factor
$X=$ Reactance (in ohms) of either the coil or condenser

$$
\begin{aligned}
& \text { Example: The paralle! impedance of a circuit } \\
& \text { having a } Q \text { of } 50 \text { and having inductive and ca- } \\
& \text { pacitive reactances of } 300 \text { ohms will be } \\
& \qquad Z_{\mathrm{r}}=Q X=50 \times 300=15,000 \text { ohms, }
\end{aligned}
$$

At frequencies off resonance the impedance is no longer purcly resistive because the coil and condenser currents are not equal. The olfresonant impedance therefore is complex, and
is lower than the resonant impedaner for the reatsons previously outlined.

The higher the Q of the circuit, the higher the parallel impedance. Corves showing the variation of impedance (with frequency) of a parallel eireuit have just the same shape as the curves showing the variation of current with frequency in a sories circuit. Fig. 2-40 is a set of such curvers.

Q of Loaded Circuits

In many applications of resonant circuits the only power lost is that dissipated in the resistance of the circuit itself. At frequencies below 30 Mc. most of this resistance is in the coil. Within limits, increasing the number of turns on the coil inerases the roactance faster than it raises the resistance, so coils for circuits in which the Q must be high are made with relatively large inductance for the frequency under consideration.

However, when the eireuit delivers energy 1o a load (as in the ease of the resonant eircuits used in transmitters) the conorgy consumed in the cireuit it self is usually negligible compared with that consumed by the load. The equivalent of such a dircuit is shown in Fig. 2-41A, where the parallel resistor represents the load to which power is delivered. If the power dissipated in the load is at least ten times as great as the power lost in the coil and condensor, the parallel impedance of the resonant circuit itself will be so high compared with the resistance of the load that for all practical purposes the impedance of the combined circuit is equal to the load resistance. Gider these conditions the Q of a parallel-

PER CENT CHANGE FROM RESONANT FREQUENCY
Fig. 2.40-Relative impedance of parallel-resonant circuits with different Q_{s}. 'These curves are similar to those in Fig. 2-37 for current in a series-resonant circuit. 'I'he effect of Q on impedance is most marhed near the resonant frequency.
resonant rirenit loaded by a resistive imperdatuee is

$$
Q=\frac{Z}{X}
$$

Where $($) $=$ (Quality lator
$Z=$ Parallel load resistance (ohms)
$x=$ Reactane (ohms) of cither the coil or condenser

Exatmple: it resistive load of 3000 ohms is conneeted ateross a resonamt cirenit in which the imdurtive and eatoacitive rethetaces are eath 2on ohths, "The eircult Q is then

$$
Q=\frac{Z}{I}=\frac{3000}{2.30}=12
$$

(A)

(B)

Fig. 2-11 - The equivalent eircuit of a resonant cireuit delivering prower to a load. The resistor R represent: the load resistance. It 13 the load is tapped areosis part of I, whish by transformer action is equivalent to using a higher load resistance across the whole cirenit.

The effective Q of a circuit loaded by a parallel resistance becomes higher when the reactances of the coil and condenser are doereased. A circuit loaded with a relatively low resistance (a few thousand ohms) must have low-reactance elements (large capacitance and small inductance) to have reasonably high Q.

The cffect of a given load resistance on the Q of a circuit can be changed by connecting the load across only part of the circuit. A common method is to tap the load across part of the coil, as shown in Fig, 2-4113. The smaller the portion of the coil across which the load is tapped, the less the loading on the circuit; in other words, tapping the load "down" is equivalent to connecting a higher value of load resistance across the whole circuit. 'This is similar in principle to impedance transformation with an iron-core transformer. In highfrequency resonant circuits the impedince ratio does not vary exactly as the square of the turns ratio, because all the magnetic flux lines do not cut every turn of the coil. A desired reflected impedance usually must be obtained by experimental adjustment.

L/C Ratio

The formula for resonant frequency of a circuit shows that the same frequency always will be obtained so long as the product of 1 , and C is constant. Within this limitation, it is evident that L can be large and C small, L small and C large, etc. The relation between the two for a fixed frequency is called the L / C ratio. A high-C circuit is one which has more capacity than "normal" for the frequency; a low- C circuit one which has less than normal capacity. 'l'hese terms depend to a
considerable extent upon the particular application considered, and have no exact numerical meaning.

LC Constants

As pointed out in the preceding paragraph, the product of inductance and capacity is eonstant for any given frequency. It is frequently convenient to use the numerical value of the $L C$ constant when a number of calculations have to be made involving different L_{4} / C ratios for the same frequency. The constant for any frequency is given by the following equation:

$$
L C^{\prime}=\frac{25,33: 0}{f^{2}}
$$

where $L=$ Inductance in microhenrys ($\mu \mathrm{h}$. .)
$\mathbf{f}^{\prime}=$ Capacitance in michomiero-
farads ($\mu \mu \mathrm{fl}$.)
$f=$ Frequency in megacyeles:
Example: Find the inductance required to resonate at 3030 kc (3.(3.) Mc.) with rapacitances of $25,50,100$, and $500 \mu \mu \mathrm{fd}$. The $L C$ constant is

$$
\begin{aligned}
& L C=\frac{25,330}{(3.65)^{2}}=\frac{25,3330}{13.35}=15000 \\
& \text { With } 25 \mu \mu \mathrm{fd}, L=1900 / C=1900 / 25 \\
& =76 \mu \mathrm{~h} . \\
& .50 \mu \mu \mathrm{fl} . ~ L=1900 / C=1900 / 50 \\
& =3 x_{\mu} \mathrm{h} . \\
& 100 \mu \mu \mathrm{fl} . L=1900 / C=1900 / 100 \\
& =1!\mu h, \\
& 500 \mu \mu \mathrm{fd} . L=1900 / C=1900 / 500 \\
& =3.8 \mu \mathrm{~h} \text {. }
\end{aligned}
$$

COUPLED CIRCUITS

Energy Transfer and Loading

Two eircuits are coupled when energy can be transferred from one to the other. The circuit delivering power is called the primary circuit; the one receiving power is called the secondary circuit. The power may be practically all dissipated in the secondary circuit itself (this is usually the case in receiver cireuits) or the secondary may simply aet as a medium through which the power is transferred to a load resistance where it does work. In the latter case, the coupled circuits may act as a radio-frequeney impedance-matching device. The matching can be aceomplished by adjusting the loading on the secondary and by varying the amount of eoupling between the primary and secondary.

A general understanding of coupling methods is essential in amateur work, but there is seldom, if ever, need for calculation of the performance of coupled circuits. Very few radio amateurs have the equipment necessary for measuring the quantities that enter into such calculations. In actual practice, the adjustment of a coupled circuit is a cut-and-try process. satisfactory results readily can be obtatined if the principles are understood.

Fig. 2-42 - Basic methods of eircuit coupling.

Coupling by a Common Circuit Element

One method of coupling between two resonant circuits is through a circuit element common to both. The three variations of this type of coupling shown at A, I3 and C of Fig. 2-42, utilize a common inductanee, capacitance and resistance, respectively. Current circulating in one $L C$ branch flows through the common element ($L_{\mathrm{c}},\left({ }_{\mathrm{c}}\right.$, or R_{c}) and the voltage developed across this element causes current to flow in the other $L C$ branch.

If both circuits are resonant to the same frequency, as is usually the case, the value of impedance - reactance or resistance - required for maximum energy transfer is generally quite small compared to the other reactances in the circuits. The common-circuit-element method of coupling is used only occasionally in amateur apparatus.

Capacitive Coupling

In the circuit at D the coupling increases as the capacitance of C_{c}, the "coupling condenser," is made greater (reactance of C_{c} is decreased). When two resonant circuits are coupled by this means, the capacitance required for maximum energy transfer is quite small if the Q of the secondary circuit is at all high. For example, if the parallel impedance of the secondary circuit is 100,000 ohms, a
reactance of 10,000 ohms or so in the condenser will give ample coupling. The corresponding capacitance required is only a few micromicrofarads at high frequencies.

Inductive Coupling

Fig. 2-42F, shows inductive coupling, or coupling by means of the magnetic field. A circuit of this type resembles the iron-core transformer, but because only a small percentage of the magnetic flux lines set up by one coil cut the turns of the other coil, the simple relationships between turns ratio, voltage ratio and impedance ratio in the iron-core trinsformer do not hold.

Three common types of inductively-coupled circuits are shown in lig. 2-4:3. In the first two, only one circuit actually is resonant. The eircuit at I is frequently used in receivers for eoupling between amplifier tubes when the tuning of the circuit must be varied to respom to signals of different frequencies. (ircuit 13 is used prineipally in transmitters, for coupling a radio-frequency amplifier to a resistive load. ('ircuit (' is used for fixed-frequency amplification in receivers. The same circuit also is used in transmitters for transferring power to it load that has both reactance and resistance.

In circuits A and is the coupling between the primary and secondary coils usually is "tight" - that is, the coefficient of coupling hetween the coils is large. With tight coupling either cirenit operates much as though the device to which the untuned coil is connected were simply tapped across a corresponding number of turns on the tuned-circuit coil. Any resistance in the circuit to which the untuned coil is connected is coupled into the tuned circuit in proportion to the mutual inductance. This "coupled" resistance increases the effective series resistance of the tuned circuit, thereby lowering its (Q and selectivity. If the circuit to which the untuned coil is connceted has reactance, a certain amount of reactance will be "coupled in" to the tuncd circuit. The coupled reactance makes it necessary to readjust the tuning whenever the coupling is changed, beoanse coupled reactance tunes the circuit just as the actual coil and condenser reactance does.

These eircuits may be used for impedance matching by adjusting the mutual inductance between the coils. This can he done by varying the coupling, changing the number of turns in the untuned coil, or both. The parallel impedance of the tuned circuit is affected by the coupled-in resistance in the same way as it would be by a corresponding increase in the actual series resistance, The larger the value of coupled-in resistance the lower the parallel impedance. By proper choice of the number of turns on the untuned coil, and by adjustment of the coupling, the parallel impedance of the tuncd circuit may be adjusted to the value required for the proper operation of the device to which it is connected.

Fig. 2-43-Types of inductively -coupled cireuita. In A and 13 , one circuit is tuned, the other antuned. C shows the method of compling between two tumed cirenits.

Coupled Resonant Circuits

When the primary and secondary circuits are both tuned, as in Fig. $2-43 \mathrm{C}$, the resonance effects in both circuits make the operation somewhat more complicated than in the simpler circuits just considered. Imagine first that the two circuits are not coupled and that each is independently tuned to the resonant frequency. The impedance of cach will be purely resistive. If the two are then coupled, the secondary will couple resistance intor the primary, causing its parallel impedance to decrease, As the coupling is made greater (without changing the tuning of either circuit) the coupled resistance becomes larger and the parallel impedance of the primary continues to decrease. Also, as the coupling is made tighter the amount of power transferred from the primary to the secondary will increase but only up to a certain point. The fuwer transfer becomes maximum at a "critical" valuc of coupling, but then decreases if the coupling is tightened beyond the critical proint. At critical coupling, the resistance coupled into the primary circuit is equal to the resistance of the primary itself. This represents the matched-impedance condition and gives maximum power transfer.

Critical coupling is a function of the $Q s$ of the two circuits taken independently. A higher coefficient of coupling is required to reach critical coupling when the Qs are low; if the (s are high, as in receiving applications, a coupling coefficient of a few per cent may give critical eoupling.

With loaded circuits it is not impossible for the Q to reach such low values that critical coupling cannot be obtained even with the highest practicable coefficient of coupling (coils

$f i g, 2-14$ - Shawing the effect on the output voltage from the secondary circuit of changing the cocflicient of coupling between two resonant circuits independently tuned to the same frequency. The voltage applied to the primary is held constant in amplitule while the frepuency is varied, and the output voltage is measured across the secondary.
as physically close as possible). In such case the only way to secure sufficient coupling is to increase the Q of one or both of the coupled circuits. This can be done either by decreasing the L / C ratio or by tapping the loud down on the secondary coil. If the load resistance is known beforehand, the circuits may be designed for a () in the vicinity of 10 or so with assurance that sufficient coupling will be avatilable; if unknown, the proper Q s can be determined by experiment.

Selectivity

In . I and B, Fig. D-43, only one circuit is tuned and the selectivity curve will be that of is single resonant circuit having the appropriate Q. As stated, the effective Q depends upon the resistance comected to the untuned coil.

In Fig. 2-4:3C, the selectivity is the same as that of a single tuned circuit hasving a Q equal to the proshact of the (2s of the individual circuits - if the coupling is well below critical and both circuits are tuned to resonance. The Qs of the individual circuits are affected by the dogree of coupling, because each couples resistance into the other; the tighter the coupling, the lower the individual Qs and therefore the lower the over-ill selectivity.

If both circuits are independently tuned to resonance, the over-all selectivity will vary alout as shown in Fig. $2-44$ as the coupling is varied. At loose coupling, A, the output voltage (aeross the secondary circuit) is small and the selectivity is high. . Is the coupling is increased the secondary voltage abo increases until critical coupling, B, is reached. . It this point the output voltage at the resomant frequeney is maximum but the selectivity is lower than with looser coupling. At still tighter coupling, C, the output voltage at the resonant frequency decreases, but as the frequency is varied either side of resonance it is found that there are two "humps" to the curve, one on either side of resonance. With very tight eoupling, D, there is a further decrease in the output voltage at resonance and the "humps" are farther away from the resonant frequencer. Resonance curves such as those at C and D
are called flat-topped because the output voltage does not change much over an appreciable band of frequencies.

Note that the off-resonance humps have the same maximum value as the resonant output voltage at critical coupling. These humps are caused by the fact that at frequencies off resonance the secondary circuit is reactive and couples reactance as well as resistance into the primary. The coupled resistance decreases olf resonance and the humps represent a new condition of impedance matching - at a frequency to which the primary is detuned by the coupled-in reactance from the secondary.

When the two circuits are tuned to slighty different frequencies it double-humped resonance curve results even though the coupling is below critical. "This is to be expected, because each circuit will respond best to the frequency to which it is tuned. Tuning of this type is called stagger tuning, and often is used when substantially uniform response over a wide band of frequencies is desired.

Link Coupling

I modification of inductive coupling, called link coupling, is shown in Fig. 2-45. 'This gives the effect of inductive coupling between two coils that have no mut ual inductance; the link is simply a means for providing the mutual inductance. The total mutual inductance betiveen two coils coupled by a link cannot be made as great as if the coils themselves were coupled. This is because the coefficient of coupling between air-core coils is considerably less than 1 , and since there are two coupling points the over-all coupling coefficient is less than for any pair of coils. In practiee this need not be disadvantageous because the power transfer can be made great enough by making the tuned circuits sufficiently high-Q. Link coupling is convenient when ordinary inductive coupling would be impracticable for constructional reasons. It finds wide use in transmitters, for example.

Fig. 2.45 - Link conpling. The mutual inductances at both ends of the link are equivalent to mutual inductance between the tuned circuits, and serve the same purpose.

The link coils usually have a small number of turns compared with the resonant-circuit coils. "The number of turns is not greatly important, because the coefficient of coupling is relatively independent of the number of turns on either coil; it is more important that looth link coils should have about the same number of turns. The length of the link between the
coils is not critical if it is very small compared with the wavelength; if the length becomes an appreciable fraction of a wavelength the link operates more as a transmission line than as a means for providing mutual inductance. In such case it should be treated by the methorls described in the chapter on Transmission Lines.

Piezoelectric Crystals

A number of crystalline substances found in nature have the ability to transform mechanical strain into an electrical charge, and vice versa. This property is known as piezoelectricity. A small plate or bar cut in the proper way from a quartz erystal, for example, and placed between two conducting electrodes, will be mechanically strained when the electrodes are connected to a source of voltage. Conversely, if the crystal is squeezed between two electrodes a voltage will develop between the electrodes.
l'iezoelectric erystals can be used to transform mechanical energy into electrical energy, and vice versa. They are used, for example, in microphones and phonograph pick-ups, where mechanical vibrations are transformed into alternating voltages of corresponding frequency. They are also used in headsets and loudspeakers, transforming electrical energy into mechanical vibration. Crystal plates for these purposes are cut from large erystals of IRochelle salts.

Crystalline plates also are mechanical vibrators that have natural frequencies of vibration ranging from a few thousand cycles to several megacycles per second. The vibration frequency depends on the kind of crystal, the way the plate is cut from the natural erystal, and on the dimensions of the plate. Such a crystal is, in fact, the mechanical counterpart of an electrical tuned circuit; its resonant frequency is the natural frequency of the mechanical vibration. Because of the piezoelectric effect, the crystal plate can be coupled to an electrical circuit and made to substitute for

Fig. 2-46-Equivalent circuit of a crystal resonator. I, C and R are the electrical equivalent: of mechanical properties of the erystal; Ch is the capacitance of the electrodes with the crystal plate between them.
a coil-and-condenser resonant circuit. The thing that makes crystals valuable as "resonators" is the fact that they have extremely high Q, ranging from 5 to 10 times the (2 s obtainable with $L C$ resonant circuits.

Analogies can be drawn between various mechanical properties of the crystal and the electrieal characteristics of a tuned circuit. 'lhis leads to an "equivalent circuit" for the erystal. The electrical coupling to the crystal is through the electrodes between which it is sandwiched; these electrodes form, with the crystal as the dielectric, a small condenser like any other condenser constructed of two plates with a dielectric between. The erystal itself is an equivalent to a series-resonant circuit, and together with the capacitance of the electrodes; forms the equivalent circuit shown in Fig. 2-46. The equivalent inductance of the crystal is extremely large and the series capacitance, C, is correspondingly low; this is the reason for the high (2 of a crystal. The electrode capacitance, (11 , is so very large compared with the series capacitance of the crystal that it has only a very small effect on the resonant frequency. It will be realized, also, that because C_{b}^{\prime} is so large compared with C the electrical coupling to the crystal is quite loose.

Crystal plates for use as resonators in radiofrequency circuits are almost always cut from quartz crystals, because quartz is by far the most suitable material for this purpose. (Quartz crystals are used as resonators in receivers, to give highly-selective reception, and as fre-quency-controlling elements in transmitters.

Practical Circuit Details

COMBINED A.C. AND D.C.

Most radio circuits are built around vacuum tubes, and it is the nature of these tubes to require direct current (usually at a fairly high voltage) for their operation. They convert the direct current into an alternating current (and sometimes the reverse) at frequencies varying from ones well down in the audio range to well up in the superhigh range. The conversion process almost invariably requires that the direct and alternating currents meet somewhere in the circuit.

In this meeting, the a.c. and d.c. are actually combined into a single current that "pulsates" (at the a.c. frequency) about an average value equal to the direct current. 'This is shown in Fig. 2-47. It is easier, though, to think of them
separately and to consider that the alternating current is superimposed on the direct current. Thus we look upon the actual current as having two components, one d.c. and the other a.c.

If the alternating current is a sine wave, its positive and negative alternations have the same maximum amplitude. When the wave is superimposed on a direct current the latter is alternately increased and decreased by the same amount. There is thus no average change in the direct current. If a d.c. instrument is being used to read the current, the reading will be exactly the same whether or not the sine-wave a.c. is superimposed.

However, there is actually more power in such a combination current than there is in the direct current alone. This is because power

Fig. 2-47 - Pulsat ing current, composed of an alternating rurrent or voltage superimposed on a steady direet eurrent or voltage.
varies as the square of the instantaneous value of the current, so more power is added to the circuit on the half-cycle of the a.c. wave that increases the instantaneous current than is subtracted on the half-cycle that decreases it. If the peak value of the alternating current is just equal to the direct current, the average power in the circuit is 1.5 times the power in the direct current alone.

In many circuits, also, we may have two alternating currents of different frequencies; for example, an audio frequency and a radio frequency may be combined in the same circuit. The two in turn may be combined with a direct current. In some cases, too, two r.f. currents of widely-different frequencics may be combined in the same circuit.

Series and Parallel Feed

Fig. 2-48 shows in simplified form how d.c. and a.c. may be combined in a vacuum-tube circuit. (The tube is shown only in barc outline; so far as the d.c. is concerned, it can be looked upon as a resistance of rather high value. On the other hand, the tube may be looked upon as the generator of the a.c. The mechanism of tube operation is deseribed in the next chapter.) In this case, we have assumed that the a.c. is at radio frequency, as suggested by the coil-and-condenser tuned circuit. We also assume that r.f. current can easily flow through the d.c. supply; that is, the impedance of the supply at radio frequencies is so small as to be negligible.

In the circuit at the left, the tube, tuned circuit, and d.c. supply all are connected in series. The direct current flows through the r.f. tuned circuit to get to the tube; the r.f. current gencrated by the tube flows through the d.c. supply to get to the tuned circuit. 'lhis is series feed. It works because the impedance of the d.c. supply at radio frequencies is so low that it does not affect the flow of r. f. current, and because the d.c. resistance of the coil is so low that it does not affect the flow of direct current.

In the circuit at the right the direct current does not flow through the r.f. tuned circuit, but instead goes to the tube through a sccond coil, $R F^{\prime} C$ (radio-frequency choke). Direct current cannot flow through L because a blocking condenser, C, is placed in the circuit to prevent it. (Without C, the d.c. supply would be short-circuited by the low resistance of L.) On the other hand, the r.f. current generated by the tube can easily flow through C to the tuned circuit because the capacitance
of C is intentionally chosen to have low reactance (compared with the impedance of the tuned circuit) at the radio frequency. The r.f. current cannot flow through the d.c. supply because the inductance of $R F C$ is intentionally made so large that it has a very high reactance at the radio frequency. The resistance of $R F^{\prime}($, however, is too low to have an appreciahle effect on the flow of direct current. The two currents are thus in parallel, hence the name parallel feed.

Both types of feed are in use. They may be used for both a.f. and r.f. circuits. In parallel feed there is no d.c. voltage on the a.c. circuit (the blocking condenser prevents that); this is a desirable feature from the viewpoint of safety to the operator, because the voltages applied to tubes - particularly transmitting tubes - are dangerous to human beings. On the other hand, it is somewhat difficult to make an r.f. choke work well over a wide range of frequencies. Series feed is usually preferred, therefore, because it is relatively easy to keep the impedance between the a.c. circuit and the tube low.

By-Passing

In the series-feed circuit just discussed, it was assumed that the d.c. supply had very low impedance at radio frequencies. This is not likely to be true in a practical power supply - if for no other reason than that the normal physical separation between the supply and the r.f. circuit would make it necessary to use rather long connecting wires or leads. At radio frequencies, even a few feet of wire can have fairly large reactance - too large to be considered a really "low-impedance" connection.

To get around this, an actual circuit would be provided with a by-pass condenser, as shown in Fig. 2-49. Condenser C is chosen to have low reactance at the operating frequency, and is installed right in the circuit where it can be wired to the other parts with quite short connecting wires. (The condenser will be an open circuit for the d.c. voltage across which it is connected, of course.) Since condenser C' offers a low-impedance path, the r.f. current will tend to flow through it rather than through the d.c. supply; thus the current is confined to a known path rather than one of dubious impedance through the power supply.

Fig. 2-1 \mathcal{H} - Illustrating series and parallel feed.

To be effective, a by-pass should have very low impedance compared to the impedance of the eircuit element around which it is supposed to shunt the current. The reactance of the condenser should not be more than onetenth of the impedance of the by-passed part of the circuit. Very often the latter impedance is not known, in which case it is desirable to use the largest capacitance in the by-pass that circumstances permit. To make doubly sure that r.f. current will not flow through a nonr.f. circuit such as a power supply, an r.f. choke may be eomnected in the lead to the latter, as shown in fig. $2-40$.

\approx

Rig. 2.49-rypical une of a by-pastis condenser in a series.fed rircuil.
\approx

The use of a by-pass condenser is not confined only to circuits where r.f. is to be kept out of a d.c. source. The sume type of bypassing is used when audio frequencies are present in addition to r.f. Beeause the reactance of a condenser changes with frequency, it is readily posible to choose a eapacitance that will represent a very low reactance at radio frequencies but that will have such high reactance at adio frequencies that it is practically an open cireuit. 1 capacitance of 0,001 $\mu \mathrm{fl}$. is practically a short circuit for r.f., for example, but is almost an open circuit at audio frequencies. (The actual value of caparitance that is usable will be modified by the impedances concerned.) 13y-pass condensers also are used in audio circuits to carry the atudio frequencies around a d.c. supply.

Distributed Capacitance and Inductance

In the discussions earlier in this chapter it was assumed that a condenser has only eapacitance and that a eoil has only inductance. l'nfortunately, this is not strictly true. There is alwas a ecrtain amount of inductance in a conductor of any length, and a condenser is bound to have a little inductance in addition to its intended capaeitance. Also, there is always eapacitance between two conductors or botween parts of the same conductor, and thus there is appreciable capacitance between the turns of an induetance coil.

This distriboted inductance in a condenser and the distributed cabacitance in a coil have important practieal clfects. Ictually, every condenser is a tomed circuit, resonant at the frequency where its capacitance and distrib-
uted inductance have the same reactance. 'The same thing is true of a coil and its distributed capacitance. At frequencies well below these "natural" resonances, the condenser will act like a normal capacitance and the coil will act like a normal inductance. Near the natural resonant points, the coil and condenser act like self-tuned circuit.s, Above resonance, the condenser aets like an inductance and the coil acts like a condenser. Thus there is a limit to the amount of capacitance that can be used at a given frequency. There is a similar limit to the inductance that can be used. At audio frequencies, capacitances measured in microfarads and induetances measured in henrys are practicable. It low and medium radio frequencies, inductances of a few millihenrys and capacitances of a few thousand micromicrofarads are the largest practicable. . It high radio frequencies, usable inductance values drop to a few microhenrys and capacitances to a few hundred micromierofarads.

Distributed capacitance and inductance are impoitant not only in r.f. tuned circuits, but in by-passing and choking as well. It will be appreciated that a by-pass condenser that actually acts like an inductanee, or an r.f. choke that atsts like a condenser, cannot work as it is intended they should.

Grounds

'Throughout this book you will find frequent references to ground and ground potential. When a connection is said to be "grounded" it does not mean that it act ually goes to earth (although in many cases such earth connections are used). What it means, more often, is that an actual earth comnection could be made to that point in the circuit without disturbing the operation of the circuit in any way. 'The term also is used to indicate a "common" point in the circuit where power supplies and metallic supports (such as a metal chassis) are electrically tied together. It is eustomary, for example, to "ground" the negative terminal of a d.c. power supply, and to "ground" the filament or heater power supplies for vacuum tubes. Since the cathode of a vacuum tube is a junction point for grid and plate voltage supplies, it is a natural point to "ground." Aso, since the various circuits connected to the tube elements have at least one point conneeted to cathode, these points also are "returned to ground." "Ground" is therefore a common reference point in the radio circuit. "(iround potential" means that there is no "difference of potential" - that is, no voltage - between the circuit point and the earth.

Single-Ended and Balanced Circuits

With reference to ground, a circuit may be either single-ended (unbabanced) or balanced. In a single-ended circuit, one side of the cirenit is connected tu ground. In a balanced circuit, the elretrical midpoint is comeeted to
ground, so that the circuit has two ends each at the same voltage "above" ground.

Typical single-ended and balanced circuits are shown in Fig. 2-50. R.f. circuits are shown in the upper line, while iron-core transformers (such as are used in power-supply and audio circuits) are shown in the lower line. The r.f. circuits may be balanced either by connecting the center of the coil to ground or by using a "balanced" or "split-stator" condenser and connecting the condenser rotor to ground. In the iron-core transformer, one or both windings may be tapped at the center of the winding to provide the ground connection.

In the single-ended circuit, only one side of the circuit is "hot" - that is, has a voltage that differs from ground potential. In the balanced circuit, both ends are "hot" and the grounded center point is at ground potential.

Shielding

Two circuits that are physically near each other usually will be coupled to each other in some degree even though no coupling is intended. The metallic parts of the two circuits form a small capacitance through which energy can be transferred by means of the electric field. Aso, the magnetic field about the coil or wiring of one circuit can couple that circuit to a second througls the latter's coil and wiring. In many cases these unwanted couplings must be prevented if the circuits are to work properly.

Capacitive coupling may readily be prevented by enclosing one or both of the circuits in grounded low-resistance metallic containers, called shields. The electric field from the circuit components does not penetrate the shield. A metallic plate, called a baffe shield, inserted between two components also may suffice to prevent electrostatic coupling between them. It should be large enough to make the components invisible to each other.

Similar metallic shielding is used at radio frequencies to prevent magnetic coupling. The shielding effect increases with frequency and with the conductivity and thickness of the shielding material.

Fig. 2-50 - Single-ended and balanced cirenits.
A closed shicld is required for good magnetic shielding; in some cases separate shields, one about each coil, may be required. The bafte shield is rather ineffective for magnetic shielding, although it will give partial shielding if placed at right angles to the axes of, and between, the coils to be shielded from each other.

Shielding a coil reduces its inductance, because part of its field is canceled. Also, there is always a small amount of resistance in the shield, and there is therefore an energy loss. This loss raises the effective resistance of the coil. The decrease in inductance and increase in resistance lower the Q of the coil. The reduction in inductance and () will be small if the shield is sufficiently far away from the coil; the spacing between the sides of the coil and the shicld should be at least half the coil diameter, and the spacing at the ends of the coil should at least equal the coil diameter. The higher the conductivity of the shield material, the less the effect on the inductance and (Q. Copper is the best material, but aluminum is quite satisfactory. For good magnetic shielding at audio frequencies it is necessary to enclose the coil in a container of highpermeability iron or sted. In this case the shicld (an be quite close to the coil without harming its performance.

Modulation, Heterodyning and Beats

Since one of the most widespread uses of radio frequencies is the wireless transmission of speech and music, it would be very convenient if the audio spectrum to be transmitted could simply be shifted up to some radio frequency, transmitted as radio waves, and shifted back down to the audio spectrum at the receiving point. Tinfortunately, no simple method for doing this directly has ever been devised, although the effect is obtained and used in some advanced communications techniques.

Suppose the audio signal to be transmitted by radio is a pure 1000 -cycle tone, and we wish to transmit it at some frequency around 1 Mc .
($1,000,000$ eyeles). Nimply adding the two frequencies (1000 and $1,000,000$ cycles) in the same circuit doesn't necessarily do the trick what does happen will depend upon the type of circuit in use. If the circuit or device obeys Ohm's Law at all values of applied voltage the two frequencies will simply be superimposed, and the resultant voltage across the circuit, or the current through it, will appear as in Fig. $2-51 \mathrm{C}$. The amplitude at any instant is the sum of the amplitudes of the $1000-$ and $1,000,-$ 000 -cycle signals at that instant. The rif. in the circuit is not modified in any way by the presence of the audio signal, and thus any receiving equipment at a distance cannot possibly
determine the nature of the audio signal.
There are, however, circuits and devices where Ohm's Law does not hold for all values of current or voltage. In such a circuit it is possible to have one frequency control the passage of the other. If, for example, a $1000-$ cycle tone is used to control the passage through the circuit of a 1-Mc. signal, the maximum r.f. output will be obtained when the 1000 -cycle signal is at one peak and the minimum will occur at the other peak. The process is called amplitude modulation, and the effect is shown in Fig. 2-51D. Berause the r.f. output varies at the modulation rate (1000 cycles), receiving equipment can detect these changes in amplitude and thus tell what the audio signal is.

It might be assumed that the only radio frequency present in such a signal is the original $1,000,000$ eycles, but such is not the case. It will be found that two new frequencies have appeared. These are the sum $(1,000,000+$ 1000) and difference ($1,000,000-1000$) fre-

Fig. 2-51 - Implitude-ss.-lime and amplitude-rs.frequency plots of tarions signals. (A) $11 / 2$ eycles of a
 to the same stale as A. Becanse there are 1.500 cyeles during this time, they catnot be shown accuratels. (6:) The signals of 1 and B added in a cirenit that obeos thmis lan. Althongh the limits vary abowe and below the lorizentat axis, the amplitude of the $1,0(0),(0) 0)$ eyy.le signal is constant, (I) ' The signals of I and 13 eombinet itn a cireuit where (Him's Law doees not hold. The 1,000,-(OK)-rycle signal is modutated by the 1000 -rycle signal, and the amplitude of the l,onc), (MO)-eyde signal is not
 phots of the signals in $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and 1$)$.
quencies, and hence the radio frequencies appearing in the circuit after modulation are $999,000,1,000,000$ and $1,001,000$ cycles.

Many rircuits have been devised for obtaining amplitude modulation, and they will be treated in detail in later ehapters. When an audio frequency is used to control the amplitude of a radio frequency, the proeess is generally called "amplitude modulation," as mentioned previously, but when a radio frequency modulates another radio frequency it is called heterodyning. However, they represent identical processes: the combination of signals in circuits that do not follow Ohm's law, A general term for the sum and difference frequencies generated during heterodyning or amplitude modulation is "beat frequencies," and a more specific one is upper side frequency, for the sum frequency, and lower side frequency for the difference frequency.

In the simple example, the modulating signal was assumed to be a pure tone, but the modulating signal can just as well be a borid of frequencies making up speech or musir. In this case, the side frequencies are grouped into what are called the upper sideband and the lower sideband. In any case, the frequency that is modulated is called the carrier frequency.

In A, B, C and D of Fig. 2-inl, the sketches are obtained by plotting amplitude against time. Ilowever, it is equally helpful to be able to visualize the spectrum, or what a plot of amplitude m. frequency looks like, at any given instant of time, $\mathrm{L}, \mathrm{F}, \mathrm{C}$ (and II of Fig. ?-isl show the signals of Fig. 2-i)1A, B, C and 1) on an amplitude-es.frequency basis. Any one frequency is, of course, represented by a vertical line. Fig. 2-51ll shows the side frequencies appearing as a result of the modulation process.

Since the carrier and the sidebands are radio frequencies, they can be radiated from the transmitting station and reeeived at a distant point. If they are now passed through a suitable rircuit that does not follow Ohm's Law, the sidehands will heterodyne with the carrier to give sum and difference frequencies. The sum frequencies are not used and are filtered out by tuned circuits, but the difference frequency is the original modulating signal. The process is called demodulation or detection.

Amplitude modulation (AM) is not the only possible type nor is it the only one in use. The frequency or the phase of the carrier can be varied in accordance with the modulating frequency or frequencies, to give frequency modulation (F.II) or phase modulation (PM), (For practical rircuits, see later rhapters.) Here again, upper and lower sidehands are generated as a result of the modulation procers, but instead of taking the simple form of the sum and difference frequencies they include higher-order sidebands as well. The signals are demodulated in frequency- or phasesensitive circuits, as deseribed later.

Vacuum-Tube Principles

Iresent-day methods of radio communication rely heavily on the vacuum tube. The tube is used to generate radio-frequency power, to amplify it in transmitters, to amplify and detect weak radio signals picked up from distant stations, to magnify the human voice, to change alternating current into direct current for power supplies - in fact, to do innumerable things that, without it, could not be done, An understanding of vacuum-tube principles is just as necessary to the radio amateur as an understanding of the circuit principles discussed earlier.

In this chapter we shall confine ourselves to the funtamentals of vacuum-tube operation. The special circuits and special typers of tubes
that find application in amateur radio will be taken up in later chapters.

The operation of vacuum tubes can be predicted mathematically, just as the operation of circuits can be predicted from mathematical formulas. It happens, though, that the amateur rarely has need to perform any calculations in conneetion with vacuum tubes, other than simple ones having to do with the power supplies for the tube elements. These are straightforward applications of Ohm's Law. T'ube manufacturers invariably supply sets of data that give optimum operating conditions for their tubes, and thus save any need for calculation. What you need, to get the most out of your tubes, is mostly a pieture of how they work.

Diodes and Rectification

CURRENT IN A VACUUM

The outstanding difference between the vacuum tube and most other electrical devices is that the electric current does not flow through a conductor but through empty space - a vacuum. This is only possible when "free" electrons - that is, electrons that are not attached to atoms - are somehow introduced into the vacuum. It will be recalled from an earlier section that electrons are particles of nogative electricity. Free electrons in an evacuated space thorefore can be attracted to a positively-charged ohject within the same space, or can be rejelled by a negatively-charged object. The movement of the electrons under the attraction or repulsion of such charged objects constitutes the current in the vacuum.

The most practical way to introduce a sufficiently-large number of electrons into the evacuated space is by thermionic emission.

Thermionic Emission

If a thin wire or filament is heated to incandescence in a vacuum, electrons near the surface are given enough energy of motion to fly off into the surrounding space. The higher the temperature, the greater the number of electrons emitted. A more general name for the filament is cathode.

If the cathode is the only thing in the vacuum, most of the emitted electrons stay in its immediate vieinity, forming a "cloud" about the cathode. The reason for this is that
the electrons in the space, being negative electricity, form a negative charge (space charge) in the region of the cathode. The negativelycharged space repels those electrons nearest the cathode, tending to make them fall back on it.

Now suppose a second conductor is introduced into the vacuum, but not connected to anything else inside the tube. If this second conductor is given a positive charge with respect to the eathode, electrons in the space will be attracted to the positively-charged conductor. The conductor can be given the requisite charge by eonnecting a source of e.m.f. between it and the cathode, as indicated in Fig. 3-1. The electrons emitted by the cathode and attracted to the positively-

charged conductor then constitute an clectric current, with the circuit completed through the source of e.m.f. In Fig. 3-1 this e.m.f. is supplied by a battery (" B " battery) ; a second battery ("A" battery) is also indicated for heating the cathode or filament to the proper operating temperature.

Fía, 3.1-Conduction by thermionie emission in a vaeuum tube. One battery is used to heat the filament to a temperature that will canse it to emit electrons, The other hattery makes the plate positive with respeet to the filament, thereby cansing the emitted electrons to be attraeted to the plate. Vilectrons eaptured by the plate llow back through the battery to the filament.

The positively-charged conductor is usually at metal plate or cylinder (surrounding the cathode) and is called an anode or plate. Like the other working parts of a tube, it is a tube element or electrode. The tube shown in lig. 3-1 is a two-element or two-electrode tube, one element heing the cathode or filament and the other the anode or plate.
since electrons are negntive electricity, they will be attracted to the plate only when the plate is positive with respect to the cathode. If the plate is given a negative charge, the electrons will be repelled back to the cathode and no current will flow in the vacuum. The vacuum tube therefore can conduct only in one direction.
peratures, by using special cathode materials. One of these is thoriated tungsten, or tungsten in which thorium is dissolved. Still greater efficiency is achieved in the oxide-coated cathode, a cathode in which rare-carth oxides form a coating over a metal base.
. Athough the oxide-coated cathode has much the highest efficiency, it can be used successfully only in tubes that operate at rather low plate voltages. lts use is therefore confined to receiving-type tubes and to the smaller varieties of transmitting tubes. The thoriated filament, on the other hand, will operate well in high-voltage tubes and is therefore found in most of the transmitting types used by amateurs.

Plate Current

The number of clectrons attracted to the plate depends upon the strength of the positive charge on the plate - that is, on the amount of voltage between the cathode and plate. The electron current - called the plate current - increases as the plate voltage is increased (although the relationship is not the simple proportionality of Ohm's Law). Actuatly, this statement is true only up to a certain point; if the plate voltage is made high enough, all the electrons emitted by the cathode would be attracted to the plate. Obviously, when this occurs, a further increase in plate voltage cannot cause an increase in plate current.

Fig. $3-3$ shows a typical plot of plate current with increasing plate voltage for a two-eloment tube or diode. A curve of this type can be obtained with the circuit shown, if the plate voltage can be increased in small steps and a current reading taken (by means of the current-indicating instrument -a "milliammeter") at each voltage. The plate current is zero with no pate voltage and the curve rises almost in a straight line until a "saturation point" is reached. This is where the positive

Cathodes

Before electron cmission can occur, the cathode must be heated to a high temperature. The only satisfactory way to heat it is by electricity. However, it is not essential that the heating current flow through the actual metal that does the emitting. The filament or heater can be electrically separate from the emitting cathode, and very many tubes are built that way. Such a cathode is called indirectly heated, while an emitting filament is called directly heated. lig. 3-2 shows both types in the forms in which they are commonly used.

Obviously, the cathole should emit as many electrons as possible with the least possible heating power. A plain metal cathode is quite inefficient in this respect. Much greater electron emission can be obtained, at relatively low tem-

Fig, 3.2-Types of eathode construction. Dircetly-heated cathodes or filaments are shown at A, B, and C . 'The inverted V filament is ued in small receiving tubes, the M in both reteiving and transmitting tubes. The spiral filament is a transmittingtube type. The indireetly-heated eathodes at J) and E show two types of heater construction, one a twisted loop and the other lounched heater wires. Both types tend to camest the magnetic fielde set up by the current through the leater.

Fin. 3-3- I'he diode, or two-element thbe, and a typical curve showing how the plate current depends upon the voliage applied to the plate.
charge on the plate has completely overcome the space charge and practically all the electrons are going to the plate. At any higher voltages the plate current stays at the same value.

The curve of Fig, 3-3 does not show actual values of plate voltage and plate current, since these will vary with the type of tube. The shape of the curve, however, is typical of all diodes.

The plate voltage multiplied by the plate current is the power input to the tube. In a circuit like that of Fig. 3-3 this power is all used in heating the plate. If the power input is large, the plate temperature may rise to a very high value (the plate may become red or even white hot). The heat developed in the plate is radiated to the bulb of the tube, and in turn radiated by the bulb to the surrounding air.

Fig. 3-1- Rectification in a diode. Carrent flows only when the plate is positive with respeet to the cathode, so that only half-eyeles of current flow through the load resistor, R,

is, during the half-cycle when the upper end of the transformer winding is positive. During the negative half-cycle there is simply a gap, in the current flow. This rectified alternating current therefore is an intermittent direct current. (The "humps" in the output current may be smoothed out by a "filter." A filter uses inductance and caparitance to store up energy during the time that eurrent flows through the diode, energy that is then released to the circuit during the period when the diode is nonconducting. Filters of this type are discussed in later chapters.)

The load resistor, R, represents the actual circuit in which the rectified alternating current does work. All tubes work into a load of one type or another; in this respect a tube is much like a generator or transformer. A circuit that did not provide a load for the tube would be like a short-circuit across a transformer; no useful purpose would be accomplished and the only result would be the generation of heat in the transformer. So it is with vacuum tubes;

RECTIFICATION

Since current can flow through a tube in only one direction, a diode can be used to change alternating current into direct current. It does this by permitting current to flow when the plate is positive with respect to the cathode, but by shutting off current flow when the plate is negative.

Fig. 3-4 shows a representative circuit. Alternating voltage from the secondary of the transformer, T, is applied to the diode tube in series with a load resistor, R. The voltage varies as is usual with a.c., but current flows througl the tube and R only when the plate is positive with respect to the cathode - that
they must deliver power to a load in order to serve a useful purpose. Also, to be afficient most of the power must do useful work in the load and not be used in heating the plate of the tube. 'This means that most of the voltage should appear as a drop across the load rather than as a drop between the plate and cathode of the diode. That is, the "resistance" of the tube should be small compared to the resistance of the load.

Notice that, with the diode connected as shown in Fig. 3-4, the polarity of the voltage drop across the load is such that the end of the load nearest the cathode is positive. If the connections to the diode elements are reversed, the direction of rectified current flow also will be reversed through the load.

Vacuum-Tube Amplifiers

TRIODES

Grid Control

It was shown in Fig. 3-3 that, within the normal operating range of a tube, the plate current will increase when the plate voltage
is increased. The reason why all the electrons are not drawn to the plate when a small positive voltage is placed on it is that the space charge (which is negative) counteracts the effect of the positive charge on the plate. The higher the positive plate voltage, the more

Fif. 3.5-Construction of an elementary triode vacuum tube, showing the filament, grid (with an end view of the grid wires) and plate. The relative density of the pace charge is indicated roughly hy the dot density.
effectively the space charge is overcome.
If a third element - called the control grid, or simply grid - is inserted between the cathode and plate as in Fig. 3-5, it can be used to control the effect of the space charge. If the grid is given a positive voltage with respect to the cathode, the positive charge will tend to neutralize the negative space charge. The result is that, at any selected plate voltage, more electrons will flow to the plate than if the grid were not present. On the other hand, if the grid is made negative with respect to the cathode the negative charge on the grid will afll to the space charge. This will reduce the number of electrons that can reach the plate at any selected plate voltage.

The grid is inserted in the tube to control the space charge and not to attract electrons to itself, so it is male in the form of a wire mesh or spiral. Electrons then can go through the open spaces in the grid and to the plate.

Characteristic Curves

For any particular tube, the effect of the grid voltage on the plate current can be shown by a set of characteristic curves. A typical set of curves is shown in Fig. 3-6, together with the circuit that is used for getting them. With several fixed values of plate voltage (in these curves, the plate voltage is increased in 5ovolt steps, starting at 100 volts) the grid voltage is varied in small steps and a plate-current reading taken at each value of grid voltage. The curves show the result. In Fig. 3-6, the grid voltage is varied between zero and 25 volts negative with respect to the cathode. It can be seen that, for each value of plate voltage, there is a value of negative grid voltage that will reduce the plate current to zero; that is, there is a value of negative grid voltage that will cut off the plate current.

The curves could be extended by making the grid voltage positive as well as negative. The practical effect would be to lengthen each of the curves upward along the same line. However, in some types of operation the grid is
always kept negative with respect to the cathode, and the particular tube used as an illustration happens to be one that normally would be used that way. Whenever the grid is negative, it repels electrons and therefore none of them reaches it; in other words, no current flows in the grid cireuit. When the grid is positive, it attracts electrons and a current (grid current) flows, just as current flows to the positive plate. Whenever there is grid current there is an aceompanying power loss in the grid eircuit, but so long as the grid is negative there is no current and therefore no power is used.

It is obvious that the grid can act as a valve to control the flow of plate current. Actually, the grid has a much greater effect on plate current flow than does the plate voltage. A smoll change in grid voltage is just as effective in bringing about a given change in plate current as is a large change in plate voltage.

The fact that a small voltage acting on the grid is equivalent to a large voltage aeting on the plate indicates the possibility of amplification with the triote tube; that is, the generation of a large voltage by a small one, or the generation of a relatively large amount of power from a small amount. The many uses of the electronic tube nearly all are based upon this amplifying feature. The amplified power or voltage output from the tube is not obtained from the tube itself, but from the source of e.m.f. connected between its plate and cathode. The tube simply controls the power from this source, changing it to the desired form.

To utilize the controlled power, a load must be connected in the plate or "output" circuit, just as in the diote case. The load may be either a resistance or an impedance. The term "impedance" is frequently used even when the load is purely resistive.

Tube Characteristics

The physical construction of a triode determines the relative effectiveness of the grid and plate in controlling the plate current. If a very small change in the grid voltage has just as much effect on the plate current as a very large change in plate voltage, the tube is said

Fig.3.6 - Grid-voltage-es.-plate-current curves at various fixed values of plate voltage (E_{1}) for a typical small triode. Characteristic curyes of this type can be taken by varying the battery voltages in the circuit at the right.
to have a high amplification factor. Amplification factor is commonly designated by the (ireek letter μ. In amplification factor of 20 , for example, means this: if the grid voltage is changed by I volt, the effect on the plate current will be the same as when the plate voltage is changed by 20 volts. The amplification factors of triode tubes range from 3 to something of the order of 100 . 1 high- μ tube is one with an amplification factor of perhaps 30 or more; medium- μ tubes have amplification factors in the approximate range 8 to 30 , and low- μ tubes in the range below 7 or s.

It would be natural to think that a tube that has a large μ would be the best amplitier, but such is not necessarily the case. If the μ is high it is difficult for the plate to attract large numbers of electrons. (Quite a large change in the plate voltage must be made to effect a given change in plate current. "This means that the resistance of the plate-cathode path - that is, the plate resistance - of the fube is high. Since this resistance acts in sories with the load, the amount of current that can be made to flow through the load is relatively small. On the other hand, the plate resistance of a low- μ tube is relatively low. Whether or not a high- μ tube is better than one with a low μ depends on the operation we want the tube to perform.

The best all-around indication of the effectiveness of the tube as an amplifier is its transconductance - also called mutual conductance. This characteristic takes account of both amplification factor and plate resistance, and therefore is a sort of figure of merit for the tube. Actually, transconductance is the change in plate current divided by the change in grid vollage that causes the plate-current change (the plate voltage being fixed at a desired value). Since current divided by voltage is equal to conductance, transconductance is measured in the unit of conductance, the mho. Practical values of transconductance are very small, so the micromho (one-millionth of a mho) is the commonly-used unit. Different types of tubes have transconductances ranging from a few hundred to several thousand, The higher the transconductance the greater the possible amplification.

AMPLIFICATION

To understand amplification, it is first neeessary to become acquainted with a type of graph called the dynamic characteristic. Such a graph, together with the eireuit used for obtaining it, is shown in Fig. 3-7. The curves are taken with the plate-supply voltage fixed at the desired operating value. 'The differenee' between this rireuit and the one shown in Fig. :3-6 is that there is a load resistance connected in series with the plate of the tube in Fig. :3-7, while there is none in Fig. :3-6. Fig.

3-7 thus shows how the plate current will vary, with different grid voltages, when the plate curront is made to flow through a load and thus (lo) usefiel work.

The several curves in Fig. 3-7 are for various values of load resistance. The effect of the amount of load resistance is worth noting. When the resistance is small (as in the case of the 0000 ohm load) the plate current changes rather rapidly with a given change in grid voltage. If the load resistance is high (as in the 100,000 -ohm curve), the change in plate current for the same grid-voltage change is relatively small, so the curve tends to be straighter.
(ioing now to Fig. 3-S, we have the same type of curve, but with the circuit arranged so that a source of alternating voltage (signal) is inserted between the grid and the grid battery ("C" battery). The voltage of the grid battery is fixed at -5 volts, and from the curve

Fig. 3.7- Dynamic characteristics of a amall trionde with various load resistances from 5000 to 100,000 ohms.
it is seen that the plate current at this grid voltage is 2 milliamperes. This current flows when the load resistance is 50,000 ohms, as indicated in the circuit diagram. If there is no a.c. signal in the grid circuit, the voltage drop in the load resistor is $50,000 \times 0.002=100$ volts, leaving 200 volts between the plate and cathode.

Now when a sine-wave signal having a peak value of 2 volts is applied in series with the bias voltage in the grid circuit, the instantaneous voltage at the grid will swing to -3 volts at the instant the signal reaches its positive peak, and to -7 volts at the instant the signal reaches its negative peak. The maximum plate current will occur at the instant the grid voltage is -3 volts. As shown by the graph, it will have a value of 2,65 milliamperes. The minimum plate current occurs at the instant the grid voltage is -7 volts, and has a value of 1.35 ma. It intermediate values of grid voltage, intermediate plate-current values will occur.

The instantaneous voltage between the plate and cathode of the tube also is shown on the

Fif. 3-8 - Amplifier operation. When the plate current varies in response to the signal applied to the grid, a varying voltage drop appears across the load, R_{p}, as shown liy the dashed eurve, E_{p}. I_{p} is the plate current.
graph. When the plate current is maximum, the instantaneous voltage drop in R_{p}, is $\mathbf{5 0 , 0 0 0}$ $\times 0.00265=132.5$ volts; when the plate current is minimum the instantaneous voltage drop in R_{p} is $50,000 \times 0.00135=67.5$ volts. The actual voltage between plate and cathode is the difference between the plate-supply potential, 300 volts, and the voltage drop in the load resistance. The plate-to-cathode voltage is therefore 167.5 volts at maximum plate current and 232.5 volts at minimum plate current.

This varying plate voltage is an a.c. voltage superimposed on the steady plate-cathode potential of 200 volts (as previously determined for no-signal conditions). The peak value of this a.c. output voltage is the difference between either the maximum or minimum platecathode voltage and the no-signal value of 200 volts. In the illustration this difference is $232.5-200$ or $200-167.5$; that is, 32.05 volts in either case. Since the grid signal voltage hats a peak value of 2 volts, the voltageamplification ratio of the amplifier is $32.5 / 2$ or 16.25. That is, approximately 16 times as much voltage is obtained from the plate circuit ats is applied to the grid circuit.

One feature of the alternating component of plate voltage is worth special note. As shown by the drawings in Fig. 3-s, the positive swing in the grid signal voltage is aceompanied by a dournuard swing in the voltage (E_{p}) between the plate and cathode of the tube, Also, when the alternating grid voltage swings in the negntive direetion, the plate-to-cathode voltage swings to a higher value. In other words, the
alternating component of the plate voltage swings in the negative direction (with reference to the no-signal value of plate-cathode voltage) when the grid swings in the positive direction, and vice versa. This means that the alternating eomponent of plate voltage (that is, the amplified signal) is 180 degrees out of phase with the signal voltage on the grid.

Bias

The fixed negative grid voltage (called grid bias) in Fig. 3-8 serves a very useful purpose. In the first place, one of the things we want to do in the type of amplification shown in this drawing is to obtain, from the plate circuit, an alternating voltage that has the same waveshape as the signal voltage applied to the grid. To do so, we must choose an operating point on the straight part of the eurve; not only that, the curve must be straight in both direetions from the operating point at least far enough to aecomodate the maximum value of the signal applied to the grid. If the grid signal swings the plate current back and forth, over a part of the curve that is not straight, as in Fig. 3-9, the shape of the a.c. wave in the plate cireuit will not be the same as the shape of the grid-signal wave. In such a case the output waveshape will be distorted.

The second reason for using negative grid bias is this: The grid will not attract electrons - that is, there will be no grid current - if the grid is always negative with respect to the eathode. When the grid has a negative bias, any signal whose peak positive voltage does not exceed the fixed negative voltage on the grid cannot eause grid eurrent to flow. With no current flow there is no power consumption, so the tube will amplify without taking any power from the signal sorarce. However, if the pasitive

Fig. 3.9- Harmonic distortion resulting from clonice of an operating point on the curved part of the tube characteristic. 'The lower half-cycle of plate current does not have the same shape as the upper half-cycte.
peak of the signal does exceed the negative bias, current will flow in the grid circuit during the time the grid is positive. While it is perfectly possible to operate the tube in the "positive-grid region," in many cases we do not want the grid to consume power.

Distortion of the output waveshape that results from working over a part of the curve that is not straight (that is, a nonlinear part of the curve) has the effect of transforming a sine-wave grid signal into a more complex waveform. As explained in an carlier chapter, a complex wave can be resolved into a fundamental and a series of harmonies. In other words, distortion from nonlinearity causes the generation of harmonic frequencies - frequencies that are not present in the signal applied to the grid. Harmonic distortion is undesirable in most amplifiers, although there are oceasions when harmonies are deliberately generated and used. This is particularly so in certain types of r.f. transmitting circuits.

Amplifier Output Circuits

The thing that is wanted from the output circuit of a vacuum-tube amplifier is the alternating component of plate current or plate voltage. The d.c. voltage on the plate of the tube is essential, of course, for the tube's operation. However, it almost invariably would cause difficulties if it were applied, along with the a.e. output voltage, to the load. The output circuits of vacuum tubes are therefore arranged so that the a.c. is transferred to the load but the d.c. is not.
Three types of coupling are in common use at audio frequencies. These are resistance coupling, impedance coupling, and transformer coupling. l'hey are shown in Fig. 3-10. In all three cases the output is shown coupled to the grid circuit of a subsequent amplifier tube, but the same types of circuits can be used to couple to other deviees than tubes.
In the resistance-coupled circuit, the a.c. voltage developed across the plate resistor R_{R} (that is, between the plate and cathode of the tube) is applied to a second resistor, R_{g}, through a coupling condenser, C_{c}. The condenser "blocks off" the voltage on the plate of the first tube and prevents it from being applied to the grid of tube B. The latter tube should have negative grid bias, of course, and this is supplied by the battery shown. No current flows in the grid circuit of tube B and there is therefore no d.e. voltage drop in R_{g}; in other words, the full voltage of the bias battery is applied to the grid of tube B.

The grid resistor, h_{k}, usually has a rather high value (0.5 to 2 megohms). The reactance of the coupling condenser, C_{c}, must be low enough compared to the resistance of h_{k} so that the a.c. voltage drop in C_{c} is nesligible at the lowest frequency to be amplified. If R_{k} is at least 0.5 megohm, a $0.1-\mu \mathrm{fd}$. condenser will be amply large for the usual range of audio frequencies.

Fig. 3-10-Three basic forms of coupling between vacuum-tube amplifiers.

No far as the altornating component of plate voltage is concerned, it will be realized that if the voltage drop in C_{c} is negligible then R_{p} and R_{g} are effectively in parallel (although they are quite separate so far as d.e. is concerned). The resultant parallel resistance of the two is therefore the actual load resistance for the tube. That is why R_{g} is made as high in resistance as possible; then it will have the least effect on the load represented by R_{p}.

The impedance-coupled circuit differs from that using resistance coupling only in the substitution of a high-inductance coil (usually several hundred henrys) for the plate resistor. The advantage of using an inductance rather than a resistor is that its impedance is high for alternating currents, but its resistance is relatively low for d.e. (A resistor, of course, has the same resistance for d.c. that it does for a.c.). It thus permits us to obtain a high value of load impedance for a.c., but without an excessive d.e. voltage drop that would use up a good deal of the voltage from the plate supply.

The transformer-coupled amplifier uses a transformer with its primary connected in the
plate circuit of the tube and its secondary connected to the load (in the circuit shown, a following amplifier). There is no direct connection between the two windings, so the plate voltage on tube A is isolated from the grid of tube B. The transformer-coupled amplifier has the same advantage as the impedance-coupled circuit with respect to loss of voltage from the plate supply. There is an additional advantage as well: if the secondary has more turns than the primary, the output voltage will be "stepped up" in proportion to the turns ratio.

All three circuits have good points. Resistance coupling is simple, inexpensive, and will give the same amount of amplification or voltage gain - over a wide range of frequencies; it will give substantially the same amplification at any frequency in the audio range, for example Impedance coupling will give somewhat more gain, with the same tube and same plate-supply voltage, than resistance coupling. However, it is not quite so good over a wide frequency range; it tends to "peak," or give maximum gain, over a comparatively narrow hand of frequencies. With a good transformer the gain of a transformer-coupled amplifier can be kept. fairly constant over the audio-frequency range. On the other hand, transformer coupling is best suited to triodes

Fig. 3.1I-An rementary power-amplificr circuit in which the power-consuming load is coupled to the plate circuit through an impedance-matching transformer.
having amplification factors of about 10 or less, for the reason that the primary inductance of a practicable transformer cannot be made large enough to work well with a tube having high plate resistance.

An amplifier in which voltage gain is the primary consideration is called a voltage amplifier. Maximum voltage gain is secured when the load resistance or impedance is made as high as possible in comparison with the plate resistance of the tube. In such a case, the major portion of the voltage generated will appear across the load and only a relatively small part will be "lost" in the plate resistance.

Voltage amplifiers belong to a group called Class A amplifiers. A Class A amplifier is one operated so that the waveshape of the output voltage is the same as that of the signal voltage applied to the grid. If a Class A amplifier is biased so that the grid is always negative, even with the largest signal to be handled by the grid, it is called a Class A_{1} amplifier. Voltage
amplifiers are always Class A_{1} amplifiers, and their primary use is in driving a following Class A_{1} amplifier.

Power Amplifiers

The end result of any amplification is that the amplified signal does some work. Is a familiar example, an audio-frequency amplifier usually drives a loudspeaker that in turn produres sound waves. The greater the amount of a.f. power supplied to the 'speaker, the louder the sound it will produce.

In some amplifiers, therefore, power output rather than voltage is the primary comsideration. It was mentioned in an earlier chapter that any source of power will deliver the largest possible output when the resistance of the load is equal to the internal resistance of the source. In the case of a vacuum tube, the "source" resistance is the plate resistance of the tube. Therefore if we want the utmost power from the tube the load resistance should be equal to the plate resistance of the tube. Actually, however, this is not the best operating condition because the use of such a relatively low value of load resistance generally results in more distortion than we want. For this reason the load resistance for a power amplifier usually is two or three times the plate resistance; this represents a good compromise between distortion and power output.

I'ig. 3-11 shows an elementary power-amplifier circuit. It is simply a transformer-coupled amplifier with the load connected to the secondary. Although the load is shown as a resistor, it actually would be some device, such as a loudspeaker, that employs the power usefulty. The resistance of the actual load is rarely the right value for "matching" the load resistance that the tube wants for optimum power output. Therefore the transformer turns ratio is chosen to retlect the proper value of resistance into the primars. The turns ratio may be either step-up or stepdown, depending on whether the actual load resistance is higher or lower than the load the tube wants.

The power-amplification ratio of an amplifier is the ratio of the power output obtained from the plate circuit to the power required from the a.e. signal in the grid circuit. There is no power lost in the grid circuit of a Class.$_{1}$ amplifier, so such an amplifier has an infinitely large power-amplification ratio. llowever, it is quite possible to operate a Class it amplifier in such a way that current flows in its grid circuit during at least part of the cyele. In such a case power is used up in the grid eircuit and the power amplification ratio is not infinite. A tube operated in this fashion is known as a Class $\mathbf{A}_{\mathbf{2}}$ amplifier. It is necessary to use a power amplifier to drive a Class λ_{2} amplifier, because a voltage amplifier cannot deliver power without serious distortion of the waveshape.

Another term used in connection with power

Push-Pull
Fig. 3-12 - Paralled and posh-pull a.f. amplifier circuits. amplifiers is power sensitivity. In the case of a Class λ_{1} amplifier, it means the ratio of power output to the grid signal voltage that causes it. If grid current flows, the term usually means the ratio of plate power output to grid power input.

The a.c. power that is delivered to a load by an amplifier tube has to be paid for in power taken from the source of plate voltage and current. In fact, there is always more power going in to the plate circuit of the tube than is coming out as useful output. The difference between the input and output power is used up in heating the plate of the tube, as explained previously. If we want a great deal of power output, therefore, it is advantageous to make this difference as small as possible. The ratio of useful power output to d.e. plate input is called the plate efficiency. The higher the plate efficiency, the greater the amount of power that can be taken from a tube having a fixed plate-dissipation rating.

Parallel and Push-Pull

When it is necessary to obtain more power output than one tube is capable of giving, two or more similar tubes may be connected in parallel. In this case the similar elements in all tubes are connected together. This method is shown in Fig. 3-12 for a transformer-coupled amplifier. The power output is in proportion to the number of tubes used; the grid signal or "exciting" voltage required, however, is the same as for one tube.

If the amplifier operates in such a way as to consume power in the grid circuit, the grid power required also is in proportion to the number of tubes used.

An increase in power output also can be secured by connecting two tubes in push-pull. In this case the grids and plates of the two tubes are connected to opposite ends of a balanced cireuit as shown in Fig. 3-12. At any
instant the ends of the secondary winding of the input transformer, T_{1}, will be at opposite polarity with respect to the cathode connection, so the grid of one tube is swung positive at the same instant that the grid of the other is swung negative. Hence, in any push-pulleonnected amplifier the voltages and currents of one tube are out of phase with those of the other tube.

In push-pull operation the even-harmonic (second, fourth, etc.) distortion is balanced out in the plate circuit. This means that for the same power output the distortion will be less than with parallel operation.

The exciting voltage measured between the two grids must be twice that required for one tube. If the grids consume power, the driving power for the push-pull amplifier is twice that taken by either tube alone.

Cascade Amplifiers

It is of course thoroughly possible to take the output of one amplitier and apply it as a signal on the grid of a second amplifier, then take the second amplifier's output and apply it to a third. and so on. Wach amplifier is called a stage, and a number of amplifier stages used to increase successively the amplitude of the signal are said to be in cascade.

The number of amplifiers that can be connected in cascade is not unlimited. If the overall amplification becomes too great, there is danger that some of the output voltage will get back into one of the early stages. This "feedback," discussed in a later section, may make the amplifier unstable and prevent it from functioning as it should.

Class B Amplifiers

Fig. 3-13 shows two tubes connected in a push-pull circuit. If the grid bias is set at the point where (when no signal is applied) the plate current is just cut off, then a signal can eause plate current to flow in either tube only when the signal voltage applied to that particular tube is positive. In the balanced grid circuit, the signal voltages on the grids of the two tubes always have opposite polarities; that is, when the signal swings the instantaneous voltage in the positive direction on the grid of tube A, it is at the same time swinging the grid of tube B more negative. On the next half-cycle the polarities reverse and the grid of tube B is more positive and that of tube A more negative. Since the fixed bias is just at the cut-off point, this means that plate current flows only in one tube at a time.

The graphs show the operation of such an amplifier. The plate current of tube B is drawn inverted to show that it flows in the opposite direction, through the primary of the output transformer, to the plate current of tube A. Thus each half of the output-transformer primary works alternately to induce a halfcycle of voltage in the secondary. In the secondary of T_{2}, the original waveform is re-
stored. This type of oporation is called Class B amplification.

The Class 13 amplifier is considerably more efficient than the Class .1 amplifier. Furthermore, the d.c. plate current of a Class B amplifier is proportional to the signal voltage on the grids, so the power input is small with small signals. The d.c. plate power input to a Class A amplifier is the same whether the signal is large, small, or absent altogether; therefore the maximum input that can be applied to a Class A amplifier is the rated plate dissipation of the tube or tubes. Two tubes in a Class IB amplifier can deliver approximately twelve times as much audio power as the same two tubes in a Class A anmplifier.

Fig. 3-13-Clams B amplifier operation.
A Class B amplifier usually is operated in such a way as to secure the maximum possible power output. This requires that the grids be driven positive with respect to the cathode during at least part of the cycle, so grid current flows and the grid circuit consumes power. While the power requirements are fairly low (as eompared with the power output), the fact that the grids are positive during only part of the cycle means that the load on the "driver" stage varies in magnitude during the cycle; the effective load resistance is high when the grids are not drawing current and relatively low when they do take current. This must be allowed for when designing the driver.

Certain types of tubes have been designed specifically for Class 13 service and can be operated without fixed or other form of grid bias ("zero-bias" tubes). The amplification factor is so high that the plate current is small without signal. Because there is no fixed bias, the grids start drawing current immediately whenever a signal is applied, so the grid-current flow is continuous throughout the cycle. This makes the load on the driver much more
ennstant than is the ease with tubes of lower μ biased to plate-current cut-off.

Class AB Amplifiers

A Class AB amplifier is one operated midway between Class A and Class B eonditions. A Class 1 B amplifier is a push-pull amplifier with higher bias than would be normal for pure Class A operation, but less than the cut-off hias required for Class B. It low signal levels the tubes operate practically as Class A amplifiers, and the plate current is the same with or without signal. At higher signal levels, the plate current of one tube is cut off during part of the negative cycle of the signal applied to its grid, and the plate current of the other tube rises with the signal. The plate current for the whole amplifier also rises above the no-signal level when a large signal is applied.

In a properly-designed Class AB amplifier the distortion is as low as with a Class .1 stage, but the efficiency and power output are considerably higher than with pure Class . 1 operation. A Class AB amplifier can be operated either with or without driving the grids into the positive region. 1 Class AB_{1} amplifier is one in which the grids are never positive with respect to the cathode: therefore, no driving power is required - only voltage. . 1 Class $\mathbf{A B}_{2}$ amplifier is one that has gridcurrent flow during part of the cycle, when the applied signal is large; it takes a small amount of driving power. The Class AB_{2} amplifier will deliver somewhat more power (using the same tubes) but the Class $A B_{1}$ amplifier avoids the problem of designing a driver for it that will deliver power, without distortion, into a load of highly-variable resistance.

Class C Amplifiers

Inspection of Fig, 3-13 shows that either of the two tubes actually is working for only half the a.c. cycle and idling during the other half. It is convenient to describe the amount of time during which plate current flows in terms of electrical degrees. In Fig. 3-13 each tube has " 180 -degree" excitation, a half-cycle being equal to 180 degrees. The number of degrees during which plate current flows is called the operating angle of the amplifier. From the descriptions given above, it should be clear that a Class A amplifier has 360 -degree excitation, because plate current flows during the whole eycle. In a Class AB amplifier the operating angle is between 180 and 360 degrees (in each tube) depending on the particular operating conditions chosen. The greater the amount of negative grid bias, the smaller the operating angle becomes.

An operating angle of less than 180 degrees obviously would lead to a considerable amount of distortion, berause there is no way for the tube to reproduce even a half-cycle of the signal on its grid. I'sing two tubes in pushpull, as in Fig. 3-13, would not overcome this
distortion; it would morely put together two distorted half-cecoles. In operating angle of less than 180 degress therefore cannot be used if distortionless output is wanted.

However, in cortain types of amplifiers distortion does not matter particularly. One example is an amplifier used to generate r.f. power. The power output of such an amplifier is delivered to a tuned circuit, and it is characteristic of a tuned circuit that it will have a high impedance at the frequency to which it is resonant, but low impedance to all other frequencies. The tuned circuit can be made to have a high impedance at the frequency applied to the grid of the amplifier, thus providing a load of the optimum value for the tube, At harmonies of this fundamental frequency the impedance of the tuned circuit will be low, and thus will be a poor load for the tube for those frequencies set up by distortion; the distortion is "filtered out." The result is that the output voltage and current are practically pure sine waves.

I'sing an operating angle less than 180 degrees increases the plate efficiency, because it is characteristic of tube operation that the smaller the time during which plate current flows the smaller the amount of power lost in the plate. Also, when the proper angle and other operating conditions are chosen the power output of the amplifier is proportional to the square of the voltage applied to its plate. That is, the amplifier has the linear characteristics of a resistor insofar as its behavior when the plate voltage is varied is concerned. This is an important consideration when the amplifier is to be "modulated," as described in later chapters. Such an amplifier is called a Class C amplifier. In (lass C operation the operating angle usually is in the range $120-150$ degrees, and the plate efficiency is 70 to 80 per cent.

- FEED-BACK

As we have shown, there is more energy in the plate circuit of an amplifier than there is in the grid circuit. It is easily possible to take a part of the plate-circuit energy and insert it into the grid circuit. When this is done the amplifier is said to have feed-back.

There are two types of feed-back, if the voltage that is inserted in the grid circuit is 180 degrees out of phase with the signal voltage acting on the grid, the feed-back is called negative, or degenerative. (nn the other hand, if the voltage is fed back in phase with the grid signal, the feed-back is called positive, or regenerative. With negative feed-back the voltage that is fed back opposes the signal voltage; this decreases the amplitude of the voltage acting between the grid and cathode. With a smaller signal voltage, of course, the output also is smaller. The effect of negative feed-back, then, is to reduce the amount of amplification.

Negative Feed-Back

The circuit shown at A in Fig. $3-14$ gives degenerative feed-back. Resistor R_{c} is in series with the regular plate resistor, R_{p}, and thus is a part of the load for the tube. Therefore, part of the output voltage will appear across $R_{\text {c }}$. Wowever, R_{c} also is connected in series with the grid circuit, and so the output voltage that appears across R_{c} is in series with the signal voltage. In this circuit, the output voltage across R_{c} opposes the signal voltage and the actual a.c. voltage between the grid and cathode therefore is equal to the difference between the two voltages.

While it would be natural to assume that there could be no point in reducing the amplification by negative feed-back, it does have uses. The greater the amount of negative feedback (when properly applied) the more independent the amplification becomes of tube characteristics and circuit conditions. This means that the frequency-response characteristic of the amplifier hecomes flat - that is, amplification tends to be the same at all frequencies within the range for which the amplifier is designed, Also, any distortion generated in the plate circuit of the tube tends to "buck itself out" when some of the output voltage is fed back to the grid. Amplifiers with negative feed-back are therefore comparatively free of harmonic distortion. These advantages, secured at the expense of voltage amplification, are worth while if the amplifier otherwise has enough gain for its intended use.

The circuit shown at 13 in Fig. 3-14 can be used to give either negative or positive feedback. In this case the secondary of a transformer is connected back into the grid circuit to insert a desired amount of feed-back voltage. Reversing the terminals of either the

Fif, 3-1.t-Circuits for prolacing feed-hack. In A, part of the a,e. plate voltage appears across the cathode resistor, R_{c}, and is therefore also applied between grid and rathode. The feed-back is negative in this case. In 13, the voltage that is generated in the secondary of the transformer is inserted in series in the grid cirenit. Feed-back may be either positive or negative, depending upon the transformer connections.
primary or secondary of the transformer (but not both windings simultancously) will reverse the phase of the voltage fed back. Thus either type of feed-back is available.

Positive Feed-Back

Positive feed-back increases the amplification because the fed-back voltage adds to the original signal voltage and the resulting larger voltage on the grid causes a larger output voltage. It has the opposite characteristics to negative feed-back; the amplification tends to be greatest at one frequency (depending upon the particular circuit arrangement) and harmonic distortion is increased. If the energy fed back becomes large enough, a self-sustaining oscillation will be set up at one frequency; in this case all the signal voltage on the grid is supplied from the plate circuit; no external signal is needed. It is not even necessary to have an external signal to start the oscillation; any small irregularity in the plate current and there are always some such irregularities - will be amplified and thus give the oscillation an opportunity to build up. Oscillations obviously would be undesirable in an audiofrequency amplifier, and for that reason (as well as the others mentioned above) positive feed-back is never used in a.f. amplifiers. Positive feed-back finds its use in "oscillators" at both audio and radio frequencies, as described in a subsequent section.

The two circuits shown in Fig. 3-14 are only two of many that can be used to provide feedback. Despite differences in appearance, such circuits are alike in this fundamental energy is fed back from the output circuit to the grid circuit in the proper phase to give the type of feed-hack that is wanted.

- interelectrode capacitances

Each pair of elements in a tube actually forms a small "condenser," with each element acting as a condenser "plate." There are three such capacitances in a triode - that between the grid and cathode, that between the grid and plate, and that between the plate and cathode. The capacitances are very small only a few micromicrofarads at most - but they frequently have a very pronounced effect on the operation of an amplifier circuit.

Input Capacitance

It was explained previously that the a.c. grid voltage and a.c. plate voltage of an amplifier are 180 degrees out of phase, using the cathode of the tube as a reference point. However. these two voltages are in phase if we go around the circuit from plate to grid as shown in Fig. 3-15. This means that their sum is acting between the grid and plate; that is, across the grid-plate capacitance of the tube. When an a.c. voltage is applied to a condenser, a current flows through the condenser. As viewed from the source of the signal on the grid, this
current is flowing because of the signal voltage.
The larger the current, the lower the effertive reactance in the grid circuit. The larger the grid-plate capacitance the larger the current; also, the greater the voltage amplification the larger the current, because this puts more voltage across the grid-plate condenser. The result is that the source of signal "sees" a capacitive reactance that is much smaller than the actual reactance of the capacitance between the grid and cathode.
since a small reactance is equivalent to a large capacitance, the input capacitance of an amplifier may be many times its actual gridcathode capacitance. In practice, the input capacitance of a triode may be as much as a few hundred micromicrofarads, particularly if the triode has a large amplification factor. such a capacitance is not negligible, even at audio frequencies, when it is placed in parallel with a resistor of 50,000 ohms or more.

Tube Capacitance at R.F.

It radio frequencies the reactances of the interelectrode capacitances drop to such low values that they must always be taken into account in circuit design. A resistance-coupled amplifier cannot be used at r.f., for example, because the reactances of the interelectrode "condensers" are so low that they, and not the resistors, would be the actual load. Furthermore, they are so low that they practically short-circuit the input and output circuits and thus the tube is unable to amplify. We get around this at radio frequencies by using thened circuits for the grid and plate, and making the tube capacitances part of the tuning caparitances. In this way the circuits can have the high impedances necessary for satisfactory amplification.

Fig. 3.15 - The a.c. voltage appearing between the grid and plate of the amplifier is the sum of the signal voltage and the output voltage, as shown hy this simplified circuit. Instantaneous polarities are indicated.

The grid-plate capacitance is important at radio frequencies because it is, in effect, a coupling condenser between the grid and plate circuits. Since its reactance is relatively low at r.f., it offers a path over which energy can be fed back from the plate to the grid. In practically every case the feed-back is in the right phase and of sufficient amplitude to cause oscillation, so the amplifier becomes useless. Special circuits can be used to prevent feedback but they are, in general, not too satisfac-
tory when used in radio receivers. (They are, however, widely used in transmitters.) A better solution to this problem is found in the use of the screen-grid tube.

Fig. 3-16- Kepresen. tative arrangement of elements in a screengrid tube with front part of plate and screen grid cut away. In this drawing the control-mrid eomnection is mate through a cap on the top of the tuhe, thus climinating the capacitance that would exist betneen the plate-andgrid-lead wires if both passed through the base. Gome modern tules that have both leads going through the base use sperial shieht. ing and construction to eliminate interlead capacitance.

SCREEN-GRID TUBES

The grid-plate capacitance can be climinated - or at least reduced to a negligible value by inserting a seeond grid between the control grid and the plate, as indicated in Fig. 3-16. The second grid, called the screen grid, acts as a shield between the control grid and plate. It is made in the form of a grid or coarse screen so that electrons can pass through it; a solid shield would entirely prevent the flow of plate current. The screen grid is usually grounded through a by-pass condenser that has low reactance at the radio frequency being amplified.

Because of the shielding action of the sereen grid, the plate voltage cannot control the flow of plate current as it does in a triode. In order to get electrons to the plate, it is necessary to apply a positive voltage (with respect to the cathode) to the screen. The screen then attraets electrons much as does the plate in a triode tube. In traveling toward the screen the electrons acquire such velocity that most of them shoot between the screen wires and go on to the plate. A certain proportion do strike the sereen, however, with the result that some current also flows to the sereen-grid circuit of the tube.

A tube having a cathode, control grid, sercen grid and plate (four clements) is called a tetrode.

Pentodes

When an electron traveling at appreciable velocity through a tube strikes the plate it dislodges other electrons which "splash" from the
plate into the interelement space. This is called secondary emission. In a triode the negative grid repels the secondary clectrons back into the plate and they cause no disturbance. In the screen-grid tube, however, the positivelycharged screen attracts the secondary electrons, causing a reverse current to flow between sercen and plate.

To overcome the effects of secondary emission, a third grid, called the suppressor grid, may be inserted between the sercen and plate. This grid, which usually is connceted directiy to the cathode, repels the relatively lowvelocity sccondary electrons. They are driven back to the plate without appreciably obstructing the regular plate-current fow, A five-element tube of this type is called a pentode.

Nlthough the screen grid in either the tetrode or pentode greatly reduces the influence of the plate upon plate-current flow, the control grid still can control the plate current in essentially the same way that it does in a triode. Conscquently, the grid-plate transconductance (or mutual conductance) of a tetrode or pentode will be of the same order of value as in a triode of corresponding structure. On the other hand, since the plate voltage has very little effect on the plate-current flow, both the amplification factor and plate resistance of a pentode or tetrode are very high. In small receiving pentodes the amplification factor is of the order of 1000 or higher, while the plate resistance may be from 0,5 to 1 or more megohms. Because of the high plate resistance, the actual voltage amplification possible with a pentode is very mueh less than the large amplification factor might indicate. A voltage gain in the vicinity of 50 to 200 is typical of a pentode stage.

Pentode R.F. Amplifier

Fig. 3-17 shows a simplified form of r.f. amplifier circuit, using a pontode tube. Radiofrequency energy in the small coil coupled to L_{1} is built up in voltage in the tuned circuit, $L_{1} C_{1}$, when $L_{1} C_{1}$ is tuned to resonance with the frequency of the incoming signal. The voltage that appears across $L_{1} C_{1}$ is applied to the grid and cathode of the tube and is amplified by the tube. A second resonant circuit, $L_{2} C_{2}$, is the load for the plate of the tube, its parallel impedance being high because it is tuned to resonance with the frequency applied to the

Fig. 3-17 - Simplified pentode r.f.-amplifier eircuit. $L_{1} C_{1}$ and $L_{2} C_{2}$ are tuned to the same frequency.
grid. R.f. output can be taken from the coil coupled to L_{2}. The screen-grid voltage is obtained from a tap on the plate battery; most tubes are designed for operation with the screen voltage considerably lower than the plate voltage. In this circuit the batteries are assumed to have low impedance for the r.f. current; in a practical circuit, by-pass condensers would be used to make sure that the impedances of the return paths actually are low enough to be negligible.

In addition to their applications as radiofrequency amplifiers, pentode or tetrode sercengrid tubes also can be constructed for audiofrequency power amplification. In tubes designed for this purpose the shielding effect of the screen grid is not so important; the chief function of the screen is to serve as an accelerator of the electrons, so that large values of plate current can be drawn at relatively low plate voltages. Such tubes have quite high power sensitivity compared to triodes of the same power output. Harmonic distortion is somewhat greater with pentodes and tetrodes than with triodes, however.

Variable- μ Tubes

The mutual conductance of a vacuum tube decreases with increasing negative grid bias, assuming that the other electrode voltages are held constant. Since the mutual conductance controls the amount of amplification, it is possible to adjust the gain of the amplifier by adjusting the grid bias. This method of gain control is universally used in radio-frequency amplifiers designed for receivers. Some means of controlling the r.f. gain is essential in a receiver having a number of amplifiers, hecause

Fig. 3-18 - Curves showing the relationship between mutual ronductance and nogative prid bias for two small receiving pentodes, one a sharp cut-off type and the other a variable- μ type.
of the wide range in the strengths of the incoming signals.

The ordinary type of tube has what is known as a sharp cut-off characteristic. The mutual conductance decreases at a uniform rate as the negative bias is increased, as shown in Fig. 3-18. The amount of signal voltage that such a tube can handle without causing distortion is quite limited, and not sufficient to take care of very strong signals. To overcome this, some tubes are made with a variable- μ characteristic (that is, the amplification factor changes with the grid bias), resulting in the type of curve shown in Fig. 3-18. It is evident that the variable- μ tube can handle a much larger signal than the sharp cut-off type before the signal swings either beyond the zero grid-bias point or the plate-current cut-off point.

OTHER TYPES OF AMPLIFIERS

In the amplifier cireuits so far discussed, the signal has been applied between the grid and rathode and the amplified output has been taken from the plate-to-cathode circuit. That is, the cathode has been the common point, or meeting point, for the input and output circuits. However, since there are three elements (the screen and suppressor in a pentode ordinarily do not enter directl!/ into the amplifying action) it is possible to use any one of the three as the common point. This leads to two different kinds of amplifiers, commonly called the grounded-grid amplifier (or grid-separation circuit) and the cathode follower.

These two circuits are shown in simplified form in Fig. 3-19. In both circuits the resistor R represents the load into which the amplifier works; the actual load may be resistance-capacitance-coupled, transformer-coupled, may be a tuned circuit if the amplifier operates at radio frequencies, and so on. Also, in both circuits the bateries that supply grid bias and plate power are assumed to have such negligibe impedanee that they do not enter into the operation of the circuits.

Grounded-Grid Amplifier

In the grounded-grid amplifier the input signal is applied between the cathode and grid, and the output is taken between the plate and grid. The grid is thus the common element. The plate current (including the a.c. component) has to flow through the signal source to reach the cathode. Since this source always has appreciable impedance, the alternating plate current causes a voltage drop that acts between the grid and cathode. Because of the phase relationship between the signal and output voltages, the circuit is degenerative. Also, since the source of signal is in series with the load through the plate-to-cathode resistance of the tube, some of the power in the load is supplied by the signal source. The result is that the signal source is called upon to furnish a considerable amount of power.

The grounded-grid amplifier finds its chief application at v.h.f. and u.h.f., where the more conventional amplifier circuit fails to work properly. With a triode tube designed for

Fig. 3-19 - In the upper circuit, the grid is the junction point between the input and ontput circuits. In the lower drawing, the plate is the junction, In either case the output is developed in the load resistor, R, and may be coupled to a following amplificr by the usual methods.

this type of operation, an r.f. amplifier can be built that is free from the type of feed-back that causes oscillation. This requires that the grid act as a shield between the cathode and plate, reducing the plate-cathode capacitance to a very low value.

Cathode Follower

The cathode follower uses the plate of the tube as the common element. The input signal is applied between the grid and plate (assuming negligihle impedance in the batteries) and the output is taken from between cathode and plate. 'This circuit, like the grounded-grid amplifier, is degenerative. In fact, all of the output voltage is fed back into the input circuit to buck the applied signal. The input signal therefore has to be larger than the output voltage; that is, the cathode follower not only gives no voltage gain but actually results in a loss in voltage. (It can still give just as much power gain as ever, though.)

The cathode follower has two advantages: It has a very high input impedance (impedance between grid and ground - in the customary cathode-follower circuit the plate is at ground for signal voltage); and its output impedance is very low. (The large amount of negative feed-back has the effect of greatly reducing the plate resistance of the tube.) These two characteristics are valuable in an amplifier that must work over a very wide range of frequencies. Also, the high input impedance and low output impedance can be used to obtain an impedance step-down over wide ranges of frequencies that could not possibly be covered by a transformer. The cathode follower is useful both at audio and radio frequencies.

Fig. 3-20 - Filament center-tapping methods for use with direetlyheated tuber.
reason directly-heated filaments are employed for the most part in transmitting power tubes, where the amount of hum introduced is extremely small in comparison to the poweroutput level.

With indirectly-heated cathodes the source of heating power does not introduce hum by a direct connection. The chief problem with such tubes is the magnetic field set up by the heater. ()ccasionally, also, there is leakage between the heater and cathode; leakage that allows a
small a.e. voltage to get to the grid. Both these things are principally a matter of tube design. However, it is found in practice that, if hum appears, grounding one side of the heater supply will help to reduce it. Sometimes better results are obtained if the heater supply is center-tapped and the center-tap grounded, as in Fig. 3-20.

Cathode Bias

In the simplified amplifier circuits discussed in this chapter, grid bias has been supplied by a battery. However, it is seldom obtained that way in an actual piece of equipment that operates from the power line. Cathode bias is the type commonly used.

The cathode-bias method uses a resistor connected in series with the eathode, as shown at R in Fig. 3-21. The direction of plate-current flow is such that the end of the resistor nearest the cathode is positive. The voltage drop across R therefore places a negative voltage on the grid. This negative bias is obtained from the steady d.c. plate current.

If the alternating component of plate current flows through R when the tube is amplifying, the voltage drop caused by the a.c. will be degencrative (note the similarity between this circuit and that of Fig. 3-14it). To prevent this the resistor is by-passed by a condenser, C, that has very low reactance compared to the resistance of R. The capacitance required at C depends upon the value of R and the frequency being amplified. Depending on the type of tube and the particular kind of operation, R may be between about 250 and 3000 ohms. For good by-passing at the low audio frequencies, C should be 10 to 50 microfarads (edectrolytic condensers are used for this purpose). At radio frequencies, capacitances of about $100 \mu \mu \mathrm{fd}$. to (0. $1 \mu \mathrm{fd}$. are used: the small values are sufficient at very high frequencies and the largest at low and medium frequencies. In the range 3 to 30 megacyeles a capacitance of $0.01 \mu \mathrm{fd}$. is satisfactory.

The value of cathode resistor can easily be calculated from the known operating conditions of the tube. The proper grid bias and plate current always are specified by the manufacturer. Knowing these, the required resistance can be found by applying Ohm's Law.

$$
\begin{aligned}
& \text { Example: It is found from tube tables that the } \\
& \text { tube to be used should have a negative grid bias } \\
& \text { of } 8 \text { volts and that at this bias the plate current } \\
& \text { will be } 12 \text { milliamperes (} 0.012 \text { amp.). The re- } \\
& \text { quired cathode resistance is then } \\
& \qquad R=\frac{E}{I}=\frac{8}{0.012}=667 \text { ohms. } \\
& \text { The nearest standard value, } 680 \text { ohms, would be } \\
& \text { close enough. The power } 14 \text { ised in the resistor is } \\
& P=E I=8 \times 0.012=0.096 \text { watt. } \\
& \text { A } 1 / 4 \text {-watt or } 1 / 2 \text {-watt resistor would have ample } \\
& \text { rating. }
\end{aligned}
$$

The current that flows through R is the total eathode current. In an ordinary triode

amplifier this is the same as the plate current, but in a screen-grid tube the cathode current is the sum of the plate and screen currents. Hence these tro currents must be added when calculating the value of cathode resistor required for a sereen-grid tube.

Abstract

Example: A receiving pentode requires 3 volts negative bias. At this bias and the recommended plate and screen voltages, its plate current is 9 ma. and its screen current is 2 ma. The cathode current is therefore 11 ma . (0.011 amp .). The required resistance is

$$
R=\frac{E}{I}=\frac{3}{0.011}=272 \text { ohms. }
$$

A 270 -ohm resistor would be satisfaetory. The power in the resistor is

$$
P=E I=3 \times 0.011=0.033 \text { watt. }
$$

The cathode-resistor method of biasing is convenient because it avoids the use of batteries or other source of fixed voltage. However, that is not its only advantage: it is also selfregulating, because if the tube characteristics vary slightly from the published values (as they do in practice) the bias will increase if the plate current is slightly high, or decrease if it is slightly low. This tends to hold the plate current at the proper value. For the same reason, the value of the cathode resistance is not highly critical. Cathode bias also avoids any tendency toward unwanted feed-back that might oecur when a single fixed-bias source is used to furnish bias for several amplifiers. Even a very small a.c. voltage drop in the impedance of a bias source can cause oscillation (if the feedback is positive) or loss of gain (if the feedback is negative) when the voltage is applied to the first stage of amplification in an amplifier having several stages, simply becanse the gain in a multistage amplifier is likely to be very large.

The calculation of the bias resistor in a re-sistance-coupled amplifier is not as easy as the examples above. This is because the actual voltages that should be used on the plate and grid are not ordinarily known. The difficulty is that the voltage drop in the plate resistor causes the actual voltage at the plate of the tube to be considerably less than the platesupply voltage, and the lower plate voltage requires a different value of bias than that given in the published operating conditions for the tube. The proper voltages can be found by a cut-and-try process from the tube characteristie curves. However, representative data for
the tubes commonly used as resist ance-coupled amplifiers are given in a later chaptor, including cathode-resistor values.

Screen Supply

In practical circuits using tetrodes and pentodes the voltage for the screen frequently is taken from the plate supply through a resistor. A typical circuit for an r.f. amplifier is shown in Fig. 3-22. Resistor R is the screen dropping resistor, and C is the screen by-pass condenser. In flowing through R, the screen current causes a voltage drop in R that reduces the plate-supply voltage to the proper value for the screen. When the plate-supply voltage and the sereen current are known, the value of R can be calculated from Ohm's Law.

Example: An r.f. receiving pentode has a rated screen current of 2 milliamperes ($0,002 \mathrm{amp}$.) at normal operating conditions. The rated screen voltage is 100 volts, and the plate supply gives 250 volts. To put 100 volts on the screen, the (Irop) across R inust be equal to the difference between the plate-supply voltage and the screen voltage; that is, $250-100=150$ volts. Then

$$
R=\frac{E}{I}=\frac{150}{0.002}=75,000 \mathrm{ohms}
$$

The power to be dissipated in the resistor is $P=E I=150 \times 0.002=0.3$ watt.
A $3 / 2$ - or 1 -watt resistor would be satisfactory.
The reartance of the screen by-pass condenser, (', should be low compared with the screen-to-cathode impedance. For radio-frequency applications a capacitance of $0.01 \mu \mathrm{fd}$. is amply large.

In some circuits the screen voltage is obtained from a voltage divider connected across the plate supply. The design of voltage dividers is discussed in the chapter on Power Supplies.

SPECIAL TUBE TYPES

Beam Tubes

"Beam tetrodes" are tetrode tubes constructed in such a way that the power sensitivity is very high. Beam tubes are useful as both radio-frequency and audio-frequency power amplifiers, and are available in output ratings from a few watts up to several hundred watts. The grids in a beam tube are so constructed and aligned as to form the electrons traveling to the plate into concentrated beams. This makes it possible to draw large plate currents at relatively low plate voltages, and also reduces the number of electrons that are captured by the screen. Additional design features overcome the effects of secondary emission, so that a suppressor grid is not needed.

Multipurpose Tubes

A number of "combination" tubes is a vailable to perform more than one function, particularly in receiver circuits. For the most part these are simply multiunit tubes made up of individual tube-element structures, combined in a single bulb for compactness and economy.

Among the simplest multipurpose types are full-wave rectifiers, combining two diodes in one envelope, and twin triodes, consisting of two triodes in one bulb. More-complex types include duplex-diode triodes (two diodes and a triode in one structure), duplex-diode pentodes, converters and mixers (for superheterodyne receivers), combination power tubes and rectifiers, and so on.

Mercury-Vapor Rectifiers

For a given value of plate current, the power lost in a diode roctifier will be reduced if it is possible to decrease the voltage drop from plate to cathode. A small amount of mercury in the tube will vaporize when the cathode is heated and, further, will ionize when plate voltage is applied. The positive ions neutralize the space charge and reduce the plate-cathode voltage drop to a practically constant value of about 1 : volts, regardless of the value of plate current.

Fig. 3-22 - Screen-voltage supply for a pentode tube through a dropping resistor, R. The sereen by-pass condenser, C, must have low enough reactance to bring the screen to ground potential for the frequency or frequencies being amplified.

Since this voltage drop is smaller than can be attained with purely thermionic conduction, there is less power loss in a mercury-vapor rectifier than in a vacuum rectifier. Also, the voltage drop in the tube is constant despite variations in load current. Mercury-vapor tubes are widely used in rectifiers built to deliver large power outputs.

Grid-Control Rectifiers

If a grid is inserted in a mercury-vapor rectifier it is found that, with sufficient negative grid bias, it is possible to prevent plate current from flowing. However, this is true only if the bias is present before plate voltage is applied. If the bias is lowered to the point where plate current can flow, the mercury vapor will ionize and the grid will lose control of plate current, because the space charge disappears when ionization occurs. The grid can assume control again only after the plate voltage is reduced below the ionizing voltage.

The same phenomenon also occurs in triodes filled with other gases that ionize at low pressure. Grid-control reetifiers or thyratrons find considerable application in "electronic switching."

Oscillators

It was mentioned carlier in this chapter that if there is enough positive feed-back in an amplifier circuit, self-sustaining oscillations will be set up. When an amplifier is arranged so that this condition exists it is called an oscillator.
()scillations normally take place at only one frequency, and a desired frequency of oscillation can be obtained by using a resonant circuit tuned to that frequency. The proper phase for positive feed-back can be obtained quite easily from a single tuned circuit. For example, in Jig. 3-23.A the circuit $L C$ ' is tuned to the desired frequency of oscillation. The coil L is tapped and the cathode of the tube is connected to the tap. The grid and plate are connected to opposite ends of the tuned cireuit. There will be a voltage drop across the tuned circuit, a voltage drop that increases progressively along the turns of the coil when viewed from one end. It an instant when the upper end of L is positive, for instance, the lower end is negative. However, the tap on the coil is at an intermediate voltage and so is negative with respect to the upper end of L, and positive with respect to the lower end. (Or, viewed from the tap, the upper end of L is positive and the lower end is nogative. Therefore the grid and plate ends of the coil are opposite in polarity, or opposite in phase. This is the right phase relationship for positive feed-back.

The amount of feed-back depends on the pusition of the tap. If the tap is too close to either end of the coil the circuit will not oscillate. If the tap is too near the grid end the voltage drop is too small to give enough feedback, and if it is too near the plate end the impedance between the cathode and plate is too small to permit good amplification. Maximum feed-back usually is obtained when the tap is somewhere near the center of the coil.

It will be observed that the circuit of lig. 3-23.1 is parallel-fed, C_{b}, being the blocking condenser. The value of $\left({ }^{\prime}\right.$, is not eritical so long as its reactance is low at the operating frequency.

Condenser $\left({ }_{k}{ }_{k}\right.$ is the grid condenser. It and R_{R} (the grid leak) are used for the purpose of obtaining grid bias for the tube. In this (and practically all) oscillator circuits the tube generates its own bias. When the grid end of the tuned circuit is positive with respect to the cathode, the grid attracts electrons from the cathode. These electrons cannot flow through L back to the cathode because C_{B} "blocks" direct current. They therefore have to flow or "leak" through h_{s} to cathode, and in doing so cause a voltage drop in R_{k} that places a negative bias on the grid. The amount of bias so developed is equal to the grid current multiplied by the resistance of R_{g} (Ohm's Law). The value of grid-leak resistance reguired de-
pends upon the kind of tube used and the purpose for which the oscillator is intended. Values range all the way from a few thousand to several hundred thousand ohms. The capacitance of c_{k} should be large enough to have low reactance at the operating frequency.

The circuit shown at B in lig. 3 -23 uses the voltage drops across two condensers in series, in the tuned circuit to supply the feed-back. Other than this, the operation is the same as just described. The feed-back can be varied by varying the ratio of the reactances of C_{1} and C_{2} (that is, by varying the ratio of their capacitances). To maintain the same oscillation frequency the total capacitance across L must be constant; this means that every time r_{1}, for example, is adjusted to change the feedback, '2 must be adjusted in the opposit sense to return the total capacitance and thereby the frequency to the original valuc.

Another type of oscillator, called the tunedplate tuned-grid circuit, is shown in Fig. 3-24. Resonant circuits tuned approximately to the same frequency are connected between grid and cathode and between plate and cathode. The two coils, L_{1} and L_{2}, are not magneticallycoupled. The feed-back is through the gridphate capacitance of the tube, and will be in the right phase to be positive when the plate eircuit, $C_{2} L_{2}$, is tuned to a slightly higher frequency than the grid circuit, $L_{1} C_{1}$. The amount of feed-back can be adjusted by varying the tuning of either circuit. The frequency of oscillation is determined by the tuned circuit that has the higher (Q. The grid leak and grid condenser have the same functions as in the other circuits. In this case it is convenient

Fig. 3.23 - Basic escillator circuits, Feed-hack voltage is oflained by tapping the grid and cathode across a porlion of the tuned circuit. In the Ilartley circuit the tap is on the coil, but in the Colpitts circuit the voltage is obtained from the drop across a condenser.

Fig. 3-2. - The uned-phate tunel-grid oscillator.
to use series feed for the plate circuit, so C^{\prime} b is a by-pass condenser to guide the r.f. current around the plate supply:

Practically all feed-back oscillator circuits (and there is an endless variety of them) are variations of these general types. They differ in details and appearance, and some use two or more tubes to aceomplish the purpose. However, the basic feature of all of them is that there is positive feed-back in the proper amplitude to sustain oscillation.

Oscillator Operating Characteristics

As a general rule, oseillators are powergenerating devices. There are exceptions: in some cases the oscillator is used primarily to generate a voltuge that is then applied to an amplifier that does not require power in its grid circuit. This type of oscillator is used principally in certain types of moasuring equipment; the oscillators used in transmitters and receivers usually are called upon to deliver some power.

When an oscillator is delivering power to a load, the adjustment for proper feed-back will depend on how heavily the oseillator is loaded. If the feed-back is not large enough - that is, if the grid excitation is too small - a slight change in load may tend to throw the circuit into and out of oscillation. On the other hand, too much feed-back will make the grid current excessively high, with the result that the power loss in the grid circuit is larger than neeessary. The oscillator itself supplies this grid power, so excessive feed-back lowers the over-all efficiency because whatever power is used in the grid circuit is not available as useful output.

One of the most important considerations in oscillator design is frequency stability. Amost invariably we want the generated frequency to be as constant as possible. The principal factors that cause a change in frequency are (1) temperature, (2) plate voltage, (3) loading, (4) mechanical variations of circuit elements. Temperature changes will cause vacuum-tube elements to expand or contract slightly, thus causing variations in the interelectrode capacitances. Since these are unavoidably part of the tuned circuit, the frequency will change correspondingly. Temperature changes in the eoil or condenser will alter their inductance or capacitance slightly, again causing a shift in the resonant frequency. These effects are relatively slow in operation, and the frequency change caused by them is called drift.

Load variations aet in much the same way as plate-voltage variations. A temperature change in the load may also result in drift.

Plate-voltage variations will cause a corresponding shift in frequency; this type of frequency shift is called dynamic instability. Dynamic instability can be reduced by using a tuned circuit of high effective Q. Since the tube and load represent a relatively low resistance in parallel with the circuit, this means that a low $L /($ r ratio ("high-C") must be used and that the circuit should be lightly hoaded. Dynamic stability also can be improved by using a high value of grid leak; this increases the grid bias and raises the effective resistance of the tube as seen by the tank circuit. lising relatively high phate voltage and low plate current also helps.

Fig. 3-25-Showing luow the r.f. ground on a typical oscillator cirenit (Hartley) may be placed on either the plate (1) or grid (B) instrad of the more conventional method of grounding the cathode. I'rovided the proper provisions are made for supplying cathode and plate voltages, the cireuit operation is unchanged by shifting the r.f. ground to any desired point.

Mechanical variations, usually caused by vibration, cause changes in inductance and/ or capacitance that in turn cause the frequency to "wobble" in step with the vibration.

Methods of minimizing frequency variations in oscillators are taken up in detail in later chapters.

Ground Point

In the oscillator cireuits shown in Figs. 3-23 and 3 -24 the cathode is connected to ground. It is not actually essential that the radiofrequency eircuit should be grounded at the cathode; in fact, there are many times when an r.f. ground on some other point in the circuit is desirable. The r.f. ground can be placed at any point so long as proper provisions are made for feeding the supply voltages to the tube elements.

Fig. 3-25 shows the Hartley circuit with (A) the plate end of the circuit grounded, and (B) the grid end. In A, no r.f. choke is needed in the plate circuit because the plate already is at ground potential and there is no r.f. to choke off. All that is necessary is a by-pass condenser, C_{b}, across the plate supply. Direct current flows to the cathode through the lower part of the tuned-circuit coil, L.

The grounded-grid circuit at B is essentially the same as the circuit in Fig. 3-23.1 except that the ground point and negative platevoltage connection have been placed at the grid end of the tuned cireuit.

One advantage of either type of circuit (the one in Fig. 3-25. 1 is widely used) is that the frame of the tuning condenser can be grounded. With a grounded-cathode oscillator, both ends of the tuned circuit are "hot"; that is, there is an r.f. voltage to ground from both ends of the circuit. When the ordinary type of tuning condenser is used in such a circuit there is a slight change in capacitance when the hand is brought near the tuning shaft for adjustment of capacitance, This "hand capacitance" or "body capacitance" is annoying because the oscillator frequency changes when the hand is brought near the tuning control. It is overcome by grounding (for r.f.) the condenser shaft and by using a condenser that has a frame with metal end plates.

Tubes having indirectly-heated cathodes are more easily adaptable to circuits grounded at other points than the cathode than are tubes having directly-heated filaments. With the latter tubes special precautions have to be taken to prevent the filament from being bypassed to ground by the capacitance of the filament-heating transformer.

- negative-resistance oscillators

If a tuned circuit could be built without resistance, a small amount of energy introduced into the circuit would start an oscillation that would continue indefinitely. It would do so because, in a circuit having no power losses. the power never diminishes and therefore is always available to keep the oseillation going. Of course, such a circuit cannot be built.

Ilowever, it was explained in an carlier chapter that a resonant circuit has a definite value of parallel impedance at resonance, and that that impedance is a pure resistance. If we could, connet across the circuit a value of "negative" resistance equal to the parallel resistance of the circuit, the negative resistance would cancel the "positive" (real) resistance of the circuit and we would have a circuit that is, in effect, without resistance.

Fig. 3.26-Negative-resistance oseillator circuits. A, dynatron; 13, transitron.

A negative resistance is one having the opposite characteristics to real or positive resistance. In a negative resistance the current increases when the voltage is decreased, and vice versa. . 1 so, a negative resistance does not consume power: it generates it. Under certain conditions a vacuum tube ean be made to operate like a negative resistance, and thus can be conneoted to a tuned circuit to set up oscillations. 'Two circuits for doing this are shown in Fig. 3-26.

The circuit at A is called the dynatron oscillator. It functions because of the secondary emission from the plate that occurs in certain types of sereen-grid tetrodes. It makes use of the fact that, at certain values of sereen voltage, the plate current of a sereen-gridtetrode decreases when the plate voltage is increased. This gives a negative plate-resistance characteristic.

In lig. 3-2613, negative resistance is produced by virtue of the fact that, if the suppressor grid of a pentode is given negative bias, electrons that normally would pass through the suppressor to the plate are turned back to the screen, thus increasing the screen current and reversing normal tube action. The negative resistance produced between the screen and suppressor grids is sufficiently low so that ordinary tuned circuits will oseillate readily up to in Mc. or so. This circuit is known as the transitron.

For most amateur applications, negativeresistance oseillators do not have enough advantages to bring them into wide use. Feedback oscillators are generally more adaptable to wide frequency ranges, can generate more power, and are more readily adjusted to meet varying conditions. The transitron oscillator is used occasionally in measuring equipment.

CHAPTER 4

High-Frequency Communication

Much of the appeal of amateur communication on the high frequencies lies in the fact that the results are not always predictable. Transmission conditions on the same frequency vary with the year and even with the time of day. Although these variations usually follow certain established cycles, many peculiar effects can be observed from time to time, Every radio amateur should have some understanding of the known facts about radiowave propagation so that he will stand some ehance of interpreting the unusual conditions
when they occur. The observant amateur is in an excellent position to make worth-while contributions to the science, provided he has sufficient background to understand his results. He may develop a new theory of propagation for the very-high frequencies or the microwave region, as amateurs have in the past. In fact, it is through amateur efforts that most of the extended-range possibilities of various radio frequencies have been discovered, either through aceident or long and careful investigation.

What To Expect on the Various Amateur Bands

The 1.8 -Mc., or " 160 -meter," band offers reliable working over ranges up to 25 miles or so during daylight. On winter nights, ranges from 1000 to 3000 miles are not impossible. Only small sections of the band are available to amateurs, because of the presence of the loran service in that part of the spectrum. The pulse-type interference sometimes cansed by loran can be readily eliminated by using an audio limiter in the receiver.

The $3.5-$ Mc., or " 80 -meter," band is a more useful band during the night than during the daylight hours. In the daytime, one can seldom hear signals from a distance of greater than 100 miles or so, but during the darkness hours distances up to several thousand miles are not unusual, and transoceanic contacts are regularly made during the winter months. During the summer, the static level is high in some parts of the world. The $3.5-\mathrm{Mc}$. band supports the majority of the traffic nets throughout the country, and it is also a great gathering place for "rag-chewers." Low power and simple antennas can be used with good results.
The 7-Mc., or " 40 -meter," band has many of the same characteristics as 3.5 , except that the distances that can be covered during the day and night hours are increased. During daylight, distances up to a thousand miles can be covered under good conditions, and during the dawn and dusk periods in winter it is possible to work stations as far as the other side of the world, the signals following the darkness
path. The winter months are somewhat better than the summer ones. Rag-chewing, traffic handling and DX (working foreign countries) are popular activities on the band, in the order named. Here again antennas are not too important, although results will be improved in proportion to the effectiveness of the antenna system. In general, summer static is much less of a problem than on 80 meters, although it can be serious in the semitropical zones.
The 14 -Mc., or " 20 -meter," band is probably the best one for long-distance work. During portions of the sunspot cycle it is open to some part of the world during practically all of the 24 hours, while at other times it is generally useful only during daylight hours and the dawn and dusk periods. DX aetivity is paramount, with rag-chewing next. Being less consistent, day by day, traffic handling is not too general, although many long-distance schedules are kept on the band. Effective antennas are more necessary than on the lower frequencies, but many amateurs enjoy excellent results with simple antennas and low power. Automobile ignition and other types of man-made interference begin to be a problem on this band.

The 28-Mc. band is generally considered to be a DX band during the daylight hours and a local rag-chewer's band during the hours of darkness. However, during parts of the sunspot cycle, the band is "open" into the late evening hours for DX communication. The
band is even less consistent than 14 Mc., but this very fact is what makes it so fascinating for its many followers. It is not unusual for a foreign station to appear suddenly with a loud signal when only U.S. stations, or none at all, are being heard. High-performance antennas are almost a necessity for best results, but
its small dimensions make the rotary beam a popular choice for the band. These antennas can be turned to direct the radiation in the desired direction, and they are used to provide useful gain on reception as well. A good antenna is far more important on this band than high power.

Characteristics of Radio Waves

Radio waves differ from other forms of electromagnetic radiation (such as light and heat) in the manner in which they are generated and detected and in their wavelength. The wavelength spectrum of radio waves is greater than either heat or light, and ranges from approximately $: 30,000$ metors to a small fraction of a centimeter. This corresponds to a frequency range of about 10 kc to $1,000,000$ Me. They wavel at the same velocity as light waves (about 186,000 miles per second in free space) and can be reflected, refracted and diffracted the way light and heat waves can.

The passage of radio energy through space is explained by a concept of traveling electrostatic and electromagnetic waves. The energy is evenly divided between the two types of fields, and the lines of force of these fields are at right angles to each other, in a plane perpendicular to the direction of travel. A simple representation of this is shown in Fig. 4-1.

Polarization

The polarization of a radio wave is taken as the direction of the lines of force in the electrostatic fiek. If the plane of this field is perpendicular to the earth, the wave is said to be vertically-polarized; if it is parallel to the earth, the wave is horizontally-polarized. The longer waves, when traveling along the ground, usually maintain their polarization in the same plane as was generated at the antenna. The polarization of shorter waves may be altered during travel, however, and sometimes will vary quite rapidly.

Fig. 4-1 - Representation of electrostatie and electromagnetic lines of force in a radio wave. Arrows indicate instantaneous directions of the fields for a wave traveling toward the reader. Heversing the direction of one set of lines would reverse the direction of travel.

Reflection

Radio waves may be reflected from any sharply-defined discontinuity of suitable characteristics and dimensions encountered in the medium in which they are traveling. Any conductor (or any insulator having a dielectric constant differing from that of the medium) offers such a discontinuity if its dimensions are at least comparable to the wavelength. The surface of the earth and the boundaries between ionospheric layers are examples of such discontinuities. Objects as small as an airplane, a tree or even a man's body will readily reflect. the shorter waves.

Refraction

As in the case of light, a radio wave is bent when it moves obliquely into any medium having a refractive index different from that of the medium it leaves. Since the velocity of propagation differs in the two mediums, that part of the wave front that enters first travels faster if the new medium has a higher velocity of propagation. This tends to swing the wave front around, or "refract" it, in such a manner that the wave is directed in a new direction. If the wave front is one that is traveling obliquely away from the earth, and it encounters a medium with a higher velocity of propagation, the wave will be directed back toward the earth. If the new medium has a lower velocity of propagation, the opposite effect takes place, and the wave is directed away from the earth. Refraction may take place either in the ionosphere (ionized upper atmosphere) or the troposphere (lower atmosphere), or both.

Diffraction

When a wave grazes the edge of an object in passing, it tends to be bent around that edge. This effect, called diffraction, results in a diversion of part of the energy of those waves which normally follow a straight or line-of-sight path, so that they may be received at some distance below the summit of an obstruction, or around its edges.

Types of Waves

According to the altitude of the paths along which they are propagated, radio waves may be classified as ionospheric waves, tropospheric waves or ground waves.

The ionospheric wave (sometimes called the sky wave), is that part of the total radiation
that is directed toward the ionosphere. Depending upon variable conditions in that region, as well as upon transmitting wavelength, the ionospheric wave may or may not be roturned to earth by the effects of refraction and reflection.

The tropospheric wave is that part of the total radiation that undergoes refraction and reflection in regions of abrupt change of dielectric constant in the troposphere, such as the boundaries between air masses of differing temperature and moisture content.

The ground wave is that part of the total radiation that is directly affected by the presence of the earth and its surface features. The

Fig. 4-2 - Slowing how both direct and reflected waves may be received simultancously in v.h.f. transmission.
ground wave has two components. One is the surface wave, which is an carth-guided wave, and the other is the space wave (not to be confused with the ionospheric or sky wave). The space wave is itself the resultant of two components - the direct wave and the groundreflected wave, as shown in Fig, +-2,

Ionospheric Propagation

Communication between distant points by means of radio waves of frequencies ranging between 3 and 30 Mc . depends principally upon the ionospheric wave. Upon leaving the transmitting antenna, this wave travels upward from the earth's surface at such an angle that it would continue out into space were its path not bent sufficiently to bring it back to carth. The medium that causes such bending is the ionosphere, a region in the upper atmosphere, above a height of about 60 miles, where free ions and electrons exist in sufficient quantity to cause a change in the refractive index. This condition is believed to be the effect of ultraviolet radiation from the sun. The ionosphere is not a single region but is composed of a series of layers of varying densities of ionization occurring at different heights. Each layer consists of a central region of relatively dense ionization that tapers off in intensity both above and below.

Refraction, Absorption and Reflection

For a given density of ionization, the degree of refraction becomes less as the wavelength becomes shorter (as the frequency increases). The bending, therefore, is less at high than at low frequencies, and if the frequency is raised to a sufficiently high value, a point is finally reached where the refractive bending becomes too slight to bring the wave back to earth, even though it may enter the ionized layer along a path that makes a very small angle with the boundary of the ionosphere.

The greater the density of ionization, the greater the bending at any given frequeney. Thus, with an increase in ionization, the minimum wavelength that can be bent sufficiently for long-distance communication is lessened and the maximum usable frequency is increased.

The wave necessarily loses some of its energy in traveling through the ionosphere, this absorption loss increasing with wavelength and also with ionization density. Unusually high ionization, especially in the lower strata of the ionosphere, may cause complete absorption of the wave energy.

In addition to refraction, reflection may take place at the lower boundary of an ionized layer if it is sharply defined; i.e., if there is an appreciable change in ionization within a relatively short interval of travel. For waves approaching the layer at or near the perpendicular, the change in ionization must take place within a difference in height comparable to a wavelength; hence, ionospheric reflection is more apt to occur at longer wavelengths (lower frequencies),

Critical Frequency

When the frequeney is sufficiently low, a wave sent vertically upward to the ionosphere will be bent sharply enough to cause it to return to the transmitting point. The highest frequency at which such reflection can occur, for a given state of the ionosphere, is called the critical frequency. Although the critical frequency may serve as an index of transmission conditions, it is not the highest useful frequency, since other waves of a higher frequency that enter the ionosphere at angles smaller than 90 degrees (less than vertical) will be bent sufficiently to return to earth. The maximum usable frequency, for waves leaving the earth at very small angles to the horizontal, is in the vicinity of three times the critical frequency.

Besides being directly observable by special equipment, the critical frequency is of more practical interest than the ionization density because it includes the effects of absorption as well as refraction.

Virtual Height

Although an ionospheric layer is a region of considerable depth it is convenient to assign to it a definite height, called the virtual height. This is the height from which a simple reflection would give the same effect as the gradual refraction that actually takes place, as illustrated in Fig. 4-3. The wave traveling upward is bent back over a path having an appreciable radius of turning, and a measurable interval of time is consumed in the turning process. The
virtual height is the height of a triangle formed as shown, having equal sides of a total length proportional to the time taken for the wave to travel from T to R.

Normal Structure of the Ionosphere

The lowest normally useful layer is called the E layer. The average height of the region of maximum ionization is about 70 miles. The ionization density is greatest around local noon; the layer is only weakly ionized at night, when it is not exposed to the sun's radiation. The air at this height is sufficiently dense so that free ions and electrons very quickly meet and recombine.

In the daytime there is a still lower ionized area, the D region. The D-region intensity is proportional to the height of the sun and is greatest at noon. Low-frequency waves (K 0 meters) are almost completely absorbed by this layer while it exists, and only the highangle radiation is reflected by the E layer. (lower-angle radiation travels farther through the 1) region and is absorbed.)

The second principal layer is the F layer, which has a height of about 175 miles at night. At this altitude the air is so thin that recombination of ions and electrons takes place very slowly, inasmuch as particles can travel relatively great distances before meeting. The ionization decreases after sundown, reaching : minimum just hefore sumrise. In the daytime the F layer splits into two parts, the F_{1} and F_{2} layers, with averuge virtual heights of, respectively, 140 miles and 200 miles. These layers are most highly ionized at about local noon, and merge again at sunset into the F layer.

Cyclic Variations in the Ionosphere

Since ionization depends upon ultraviolet radiation, conditions in the ionosphere vary with changes in the sun's radiation. In addition to the daily variation, seasonal changes result in higher critical frequencies in the E layer in summer, averaging about 4 Mc . as against a winter average of 3 Mc . The F layer shows little variation, the critical frequency being of the order of 4 to 5 Me . in the evening. The F_{1} liyer, which has a critical frequency near 5 Mc . in summer, usually disappears entirely in winter. The critical frequencies for the F_{2} are highest in winter (11 to 12 Mc .) and lowest in

Fik, 4-3- Bending in the ionosphere, and the echo or reflection method of determining virtual height.
summer (around 7 Mc .). The virtual height of the F_{2} layer, which is about 185 miles in winter, averages 250 miles in summer.

Seasonal transition periods occur in spring and fall, when ionospheric conditions are found highly variable.

There are at least two other regular cycles in ionization. One such eyclic period eovers 28 days, which corresponds with the period of the sun's rotation. For a short time in each 28-day recle, transmission conditions reach a peak. Usually this peak is followed by a fairly rapid drop to a lower level, and then a slow buitding up to the next peak. The 28-day cycle is particularly evident in the 14 - and 28 -Mc. bands.

The longest cycle yet observed covers about 11 years, corresponding to a similar cycle of sumspot activity. The effect of this cycle is to shift upward or downward the values of the critical frequencies for F_{-}- and F_{2}-layer transmission. The critical frequencies are highest during sunspot maxima and lowest during sunspot minima. It is during the period of minimum sunspot activity when long-distance transmissions occur on the lower frequencies. At such times the $28-\mathrm{Mc}$. band is seldom useful for long-distance work, while the 14 -Me. band performs well in the daytime but is not ordinarily useful at night. The most recent sunspot maximum is considered to have occurred in the winter of 1947-48.

Magnetic Storms and Other Disturbances

Unusual disturbanees in the earth's magnetie field (magnetie storms) usually are arcompanied by disturbances in the ionosphere, when the layers apparently break up and expand. There is usually also an increase in absorption during such a period. Radio transmission is poor and there is a drop in critical frequencies so that lower frequencies must be used for eommunication. A magnetie storm may last for several days.

Unusually high ionization in the region of the atmosphere below the normal ionosphere may inerease absorption to such an extent that sky-wave transmission becomes impossible on high frequencies. The length of such a disturbance may be several hours, with a gradual falling off of transmission conditions at the beginning and an equally gradual buidding up at the end of the period. Fade-outs, similar to the above in effect, are caused by sudden disturbances on the sum. They are characterized by very rapid ionization, with sky-wave transmission disappearing almost instantly, occur only in daylight, and do not last as long as the first type of absorption.

Magnetic storms frequently are accompanied by umusual auroral displays, creating an ionized "curtain" in the polar regions which can act as a reflector of radio waves. Auroral reflection may be observed on any frequency, depending upon the conditions, and it is always characterized by a flutter on all signals that makes voice work difficult but not impossible.

HIGH-FREQUENCY COMMUNICATION

Directive antennas must be pointed toward the north and not in the direction of the station being worked.

Sporadic-E Layer Ionization

Occasionally scattered patches of clouds of relatively dense ionization appear at heights approximately the same as that of the E laver. The effect is to raise the eritical frequency to a value perhaps twice that which is returned from any of the regular lavers by normal refraction. Abnormally short distances for the frequency may be covered if the ionized cloud is situated midway between transmitter and receiver, or is of any considerable extent. This effect, while infrequently observed in winter, is prevalent during the late spring and early summer, with no apparent correlation of the condition with the time of day.

The presence of sporadic- E refraction is readily determined by the reception of $14-\mathrm{Mc}$. signals from stations 500 to 100 miles away, or by the reception of $28-\mathrm{Mc}$. signals from distances of 1000 to 300 miles. Over these abnormally short paths, the signal strengths may often rise to high intensities, of an order usually associated only with lower-frequency transmissions.

Scatter

Scatter signals are heard on any band, but are more easily recognizable on the higher frequencies because of the extended skip zone. They are signals reflected from large discontinuities at a distance, such as sharp concentrations of ionization in any of the normal layers, sporadic- E clouds or (rarely) large land objects. 'They result in one's hearing signals within the normal skip zone. Scatter signals are never very loud, and have a slight flutter characteristic. A further indication of scatter reflection is that, when beam antennas are used to indicate the direction of arrival of the wave, the ray path is not necessarily the direct route but can even be at right angles or in the opposite direction.

Meteor Trails

Another phenomenon generally encountered in the 28-Mc, band, but also observed in the 14 - and 50-Mc. bands, is one characterized by sudden bursts of intensity of a signal. These bursts last less than a second, generally, and are caused by reinforced reflection from the ionized trail of a meteor. The meteor, entering the carth's atmosphere at high velocity, heats by friction against the atmosphere and leaves a trail of ionized atmosphere. It takes a finite time for the ionized molecules to recombine, and during this time a small ionized cloud exists. If it is in the ray path of a signal, it may serve to reinforce the signal and cause the
burst in intensity. When the meteor is moving in a direction somewhat parallel to the ray path, it can induce a rising or falling "whistle" on the signal, for a second or so. The effects of bursts and whistles can be observed at any time during the day or night, if there is any marked meteor activity, and during rare "meteor showers" the ionized clouds can serve in almost the same manner that sporadic- E does to make long-distance work possible on z0 Mc.

Wave Angle

The smaller the angle at which a wave leaves the earth, the less will be the bending required in the ionosphere to bring it back and, in general, the greater the distance between the point where it leaves the earth and that at which it returns. This is shown in Fig. 4-4. The vertical angle which the wave makes with a tangent to the earth is called the wave angle or angle of radiation.

Skip Distance

Since greater bending is required to return the wave to earth when the wave angle is high, at the higher frequencies the refraction frequently is not enough to give the required bending unless the wave angle is smaller than a certain angle called the critical angle. This is illustrated in Fig. 4-4, where waves at angles of A or less give useful signals while waves sent at

fig. 4-1- Refraction of sky waves, showing the critical wave angle and the ship zone. Waves leaving the transmitter at angles above the eritical (greater than 4) are not bent enough to be returned to earth. As the angle is increased, the waves return to earth at inereasingly greater distances.
the same wave angle. Wave angles at the transmitting and receiving points are usually, although not always, approximately the same for any given wave path.

It is readily possible for the ionospheric wave to pass through the E layer and be refracted back to earth from the F, F_{1} or F_{2} lavers. This is because the eritical frequencies are higher in the latter layers, so that a signal too high in frequency to be returned by the E layer can still come hack from one of the others, depending upon the time of day and the existing conditions. Depending upon the wave angle :and the frequency, it is sometimes possible to carry on eommunication via either the E or $F_{1}-F_{2}^{\prime}$ layers on the same frequency.

Multihop Transmission

()n returning to the earth the wave can be reflected upward and travel again to the ionosphere. There it may onee more be refracted, and again beat back to earth. This process may be repeated several times. Multihop propagation of this nature is necessary for transmission over great distances berause of the limited heights of the layers and the curvature of the earth, since at the lowest useful wave angles (of the order of a few degrees, waves at lower angles generally being absorbed rapidly at high frequencies by being in eontact with the (arth) the maximum one-hop distance is about 1250 miles for refraction from the E laver and around 2500 miles for the r_{2} laver, However, ground lossis absort some of the energy from the wave on each reflection (the amount of the loss varying with the type of ground and being least for reflection from sea water). Thus, when the distance permits, it is better to have one hop rather tham several, since the multiple refleetions introduce losses that are higher than those caused by the ionosphere alone.

Fading

Tho or more parts of the wave may follow slightly different paths in traveling to the receiving point, in which case the difference in path lengths will cause a phase difference to exist between the wave components at the reeaiving antenna. The field strength therefore may have any value between the numerical sum of the components (when they are all in phase) and zero (when there are only two components and they are exactly out of phase). Since the pathe change from time to time, this causes a variation in signal strength called fading. Fading can also result from the combi-
nation of single-hop and multihop waves, or the combination of a ground wave with an ionospheric or tropospheric wave. Such a condition gives rise to an area of severe fating near the limiting distance of the ground wave, better reception being obtained at both shorter and longer distances where one component or the other is considerably stronger. Fading may be rapid or slow, the former type usually resulting from rapidly-changing conditions in the ionosphere, the latter occurring when transmission conditions are relatively stable.

It frequently happens that transmission conditions are different for waves of slightly different frequencies, so that in the case of voicemodulated transmission, involving sidebands differing slightly from the carrier in frequenes. the carrier and various sideband components may not be propagated in the same relative amplitudes and phases they had at the transmitter. 'This effert, known as selective fading, causes severe distortion of the signal.

Tropospheric Propagation

Changes in refractive index of air masses in the lower atmosphere often permit work over greater-than-normal distances on 2 N Mc. and higher frequencies. The effert can be observed on 2S Me., but it is generally more marked on io and 144 Mc. The subject is treated in detail in a later chapter.

PREDICTION CHARTS

'The National Izureau of standards offers prediction charts three months in advance, for use in predicting and studying long-distance communication on the usable frequencies above :3.i Me. By means of these charts, it is possible to predict with considerable accuracy the maximum usable frequeney that will hold over any path on the earth during a monthyperiod. The charts are based on ionosphere soundings made at a number of stations throughout the world, coupled with considerable statistical data. The charts are conservative enough to enable the amateur to anticipate and plan his best operating times, particularly on the 14 - and 28-Me. bands. Amateurs who work on 50 Mc , and are interested in the oceasional f_{2} "openings" in this band watch the charts with great interest. They can be obtained from the Superintendent of Documents, U.S. Government Printing ()ffice, Washington 25 , D. C. for 10 cents a copy or $\$ 1,00$ per year on subscription. They are catled "CRPD-D Basic Radio Propagation Predictions."

CHAPTER 5

High-Frequency Receivers

A good receiver in the amateur station makes the difference between mediocre contacts and solid ($\mathrm{QS}(\mathrm{O}$, and its importance cannot be emphasized too much. In the v.h.f. hands that are not too crowded, sensitivity (the ability to bring in weak signals) is the most important factor in a receiver. In the more crowded amateur bands, good sensitivity must be combined with selectivity (the ability to distinguish between signals separated by only a small frequency difference) for best results and general case of reception. (sing only a simple receiver, old and experienced operators can copy signals that would be missed entirely by newer amateurs, but their success is a result of their experience, not of the receiving equipment. On the other hand, a less-experienced operator can use modern techniques to obtain the same degree of success, provided he understands the operation of his more advanced type of receiver and how to get the most out of it.

A number of signals may be picked up by the receiving antenna, and the receiver must be able to separate them and allow the operator to copy the one he wants. This ability is called "selectivity." 'To receive weak signals, the receiver must furnish enough amplification to amplify the minute signal power delivered by the antenna up to a useful amount of power that will operate a loudspeaker or set of headphones. Before the amplified signal can operate the 'speaker or 'phones, however, it must he converted to audio-frequency power by the process of detection. The sequence of amplification is not too important - some of the amplification can take place (and usually does) before detection, and some can be used after detection.

There are two major differences between receivers for 'phone reception and for c.w. reception. A 'phone signal has sidehands that
make the signal take up about 6 or 8 kc , in the band, and the audio quality of the received signal is impaired if the passband of the receiver is less than half of this. ()n the other hand, a c.w. signal occupies only a few hundred cycles at the most, and consequently. the passband of a c.w. receiver can be smali. In either case, if the passband of the receiver is more than is necessary, signals adjacent to the desired one can be heard, and the selectivity of the receiver is said to be poor. The other difference is that the detection process delivers directly the audio frequencies present as modulation on a 'phone signal, but there is no modulation on a c.w. signal and additional technique is required to make the signal audible. It is necessary to introduce a second radio frequency, differing from the signal frequency by a suitable audio frequency, ints the detector circuit to produce an audible beat. The frequency difference, and hence the beat-note, is generally of the order of 300 to 1000 cycles, since these tones are within the range of optimum response of both the ear and the headset. If the source of the second radio frequency is a separate oscillator, the system is known as heterodyne reception; if the detector itself is made to oscillate and produce the second frequency, it is known as an autodyne detector. Modern superheterodyne receivers (described later) generally use a separate oscillator to generate the beat-note. Summing up the two differences, 'phone receivers can't use as much selectivity as c.w. receivers, and c.w. receivers require some kind of beating oscillator to give an audible signal. Broadcast receivers can receive only 'phone signals because no beat oscillator is included. On the other hand, communications receivers include beat oscillators and often some means for varying the selectivity.

Receiver Characteristics

Sensitivity

Confusion exists among some radio men when talking about the "sensitivity" of a receiver. In commercial circles it is defined as
the strength of the signal (in microvolts) at the input of the receiver that is required to produce a specified audio power output at the 'speaker or headphones. This is a perfectlysatisfactory definition for broadcast and com-
munications receivers operating below about 20 Me., where general atmospheric and manmade electrical noises normally mask any noise generated by the receiver itself.

Another commercial definition of sensitivity measures the merit of a receiver by defining the sensitivity as the signal at the input of the receiver required to give an audio output some stated amount (generally 10 db .) above the noise output of the receiver. 'This is a much more useful sensitivity measure for the amateur, since it indicates how well a weak signal will be reproduced and is not merely a measure of the over-all gain, or amplification, of the receiver. However, it is still not an absolute method for comparing two receivers, because the passband width of the receiver plays a large part in the result.

The random motion of the molecules in the antenna and receiver circuits generates small voltages called thermal-agitation noise voltages. The frequency of this noise is random and the noise exists across the entire radio spertrum. Its amplitude increases with the temperature of the eircuits. Only the noise in the antenna and first stage of a receiver is normally significant, since the noise developed in later stages is masked by the amplified noise from the first stage. The only noise that is amplified is that which falls within the passband of the receiver, so the moise appearing in the output of a receiver is less when the passband is reduced (the effect of the "tone control" of a broadcast receiver). similar noise is generated by the current flow within the first tube itself ; this effect can be combined with the thermal noise and called receiver noise. Since the passhand of two reccivers plays an important part in the sensitivity measured on a signal-to-moise basis as described in the preceding paragraph, such a sensitivity measurement puts more emphasis on passband width than on the all-important "front-end" design of the receiver.
'The limit of a receiver's ability to detect weak signals is the thermal noise generated in the input circuit. Even if a perfect noise-free tube were developed and used throughout the receiver, the limit to reception would be the thermal noise. (Atmospheric-and-man-made noise is a practicnl limit below 20 Mc ., but we are looking for a measure of comparison of receivers.) 'The degree to which a receiver approaches this ideal is called the noise figure of the receiver, and it is expressed as the ratio of noise power at the input of the receiver required to increase the noise output of the receiver 3 db . Since the noise power passed by the receiver is dependent on the passband (which is the same for the receiver noise and the noise introduced to the receiver), the figure is one that shows how far the receiver departs from the ideal. The ratio is generally expressed in db ., and runs around 6 to 12 db . for a good receiver, although figures of 2 to 4 db), have been obtained with special techniques. Com-

Fis. 5.1-Typical selectivity eurve of a modern superheterodyne receiver. Relative response is plotted against deviations above and helow the resonance freftency. The scale at the left is in terms of voltage ratios, the corresponding dreibel siters are shown at the right.
parisons of noise figures can be made by the amateur with simple equipment, (See QST, . Lugust, 1949, page 20.)

Selectivity

selertivity is the ability of a receiver to discriminate against signals of frequencies differing from that of the desired signal. The over-all selectivity will depend upon the selectivity of the individual tuned circuits and the number of such circuits.
'The selectivity of a receiver is shown graphically by drawing a curve that gives the ratio of signal strength required at various frequencies off resonance to the signal strength at resonance, to give constant output. A resonance curve of this type (taken on a typical communications-type superheterodyne receiver) is shown in Fig. - -1 . The bandwidth is the width of the resonance curve (in cycles or kilocycles) of a receiver at a specified ratio; in Fig. 5-1, the bandwidths are indicated for ratios of response of 2 and 10 ("' 2 times down" and "10 times down").

A receiver is more selective if the bandwidth (or passhand) is less, but the handwidth must be sufficient to pass the signal and its sidebands if faithful reproduction of the signal is desired. In the crowded amateur bands, it is generally advisable to sacrifice fidelity for selectivity, since the added selectivity reduces adjacent-channel interference and also the noise passed by the receiver. If the selectivity curve has steep sides, it is said to have good skirt selectivity, and this feature is very useful in listening to a weak signal that is adjacent to a strong one. Good skirt selectivity can only be obtained by using a large number of tuned circuits.

Stability

The stability of a receiver is its ability to remain tuned to a signal under varying conditions of gain-control set ting, temperature, supplyvoltage changes and mechanical shock and distortion. In other words, it means the ability "to stay put" on a given signal. The term "unstable" is also applied to a receiver that breaks into oscilation or a regenerative condition with some settings of its controls that are not specifically intended to control such a condition.

Fidelity

Fidelity is the relative ability of the receiver to reproduce in its output the modulation (keying, voice, etc.) carried by the incoming signal. For perfect fidelity, the relative amplitudes of the various components must not be changed by passing through the receiver. I Iowever, fidelity plays a very minor rôle in amateur communication, where the important requirement is to transmit intelligence and not "high-fidelity" signals.

Detection and Detectors

Detection is the process of recovering the molulation from a signal (see "Mordulation, Ileterodyning and Beats"). Any device that is "nonlinear" (i.e., whose output is not exactly proportional to its input) will act as a detector. It can be used as a detector if an impedance for the desired modulation frequency is connected in the output circuit, so that the detector output can develop across this impedance.

Detector sensitivity is the ratio of desired detector output to the input. Detector linearity is a measure of the ability of the detector to reproduce the exact form of the modulation on the incoming signal. The resistance or impedance of the detector is the resistance or impedance it presents to the circuits it is connected to. The input resistance is important in receiver design, since if it is relatively low it means that the detector will consume power, and this power must be furnished by the preceding stage. The signal-handling capability means the ability of the detector to accept signals of a specified amplitude without overloading or distortion.

Diode Detectors

The simplest detector for a.m, is the diode. A galena, silicon or germanium crystal is an imperfect form of diode (a small current can pass in the reverse direction), and the principle of detection in a crystal is similar to that in a vacuum-tube diode.

Circuits for both half-wave and full-wave diodes are given in Fig. 5-2. The simplified half-wave circuit at $5-2 \mathrm{~A}$ includes the r.f. tuned circuit, $L_{2} C_{1}$, a coupling coil, L_{1}, from which the r.f. energy is fed to $L_{2} C_{1}$, and the diode, D, with its load resistance, R_{1}, and bypass condenser, C_{2}. The flow of rectified r.f. current causes a d.c. voltage to develop across the terminals of R_{1}, and this voltage varies with the modulation on the signal. The - and + signs show the polarity of the voltage. The variation in amplitude of the r.f. signal with modulation causes corresponding variations in the value of the d.c. voltage across R_{1}. In audio work the load resistor, R_{1}, is usually 0.1 megohm or higher, so that a fairly large voltage will develop from a small rectified-current flow.

The progress of the signal through the detector or rectifier is shown in Fig. 5-3. A typi-
cal modulated signal as it exists in the tuned circuit is shown at A. When this signal is applied to the rectifier tube, current will flow only during the part of the r.f. cycle when the plate is positive with respect to the eathode, so that the output of the rectifier consists of half-cycles of r.f. still modulated as in the original signal. These current pulses flow

Fig. 5-2-Simplified and practical diode detector circuits. A, the clementary half-wave diode detector; B, a practical circuit, with r.f. filtering and andio ontput coupling; C, full-wave diode detector, with output coupling indicated, The circuit, $L_{2} C_{1}$, is tuned to the signal frequency; typical values for C_{2} and K_{1} in A and C are $250 \mu \mu \mathrm{fd}$. and 250,000 ohms, respectively; in B, C_{2} and C.3 are $100 \mu \mu \mathrm{fd}$, each; $R_{1}, 50,000$ ohms; and $R_{2}, 250,000$ ohms. C_{4} is $0.1 \mu \mathrm{fd}$, and R_{3} may be 0.5 to 1 megohm.
in the load circuit comprised of R_{1} and C_{2}, the resistance of R_{1} and the capacity of C_{2} being so proportioned that C_{2} charges to the peak value of the rectified voltage on each pulse and retains enough charge between pulses so that the voltage across R_{1} is smoothed mut, as shown in C. C_{2} thus acts as a filter for the radio-frequency component of the output of the rectifier, leaving a d.c. component that varies in the same way as the modulation on the original signal. When this varying d.c. voltage is applied to a following amplifier through a coupling condenser (C_{4} in Fig. 5-2B), only the variations in voltage are transferred, so that the final output signal is a.c., as shown in D.

In the circuit at $5-2 \mathrm{~B}, R_{1}$ and C_{2} have been divided for the purpose of providing a more effertive filter for r.f. It is important to prevent the appearance of any r.f. voltage in the output of the detector, because it may cause overloading of a succeeding amplifier tube. The audiofrequency variations can be transferred to another circuit through a coupling condenser, C_{4} in Fig. 5-2B, to a load resistor, R_{3}, which usually is a "potentiometer" so that the volume can be adjusted to a desired level.

Coupling to the potentiometer (gain control) through a condenser also avoids any flow of d.c. through the gain control. The flow of d.c. through a high-resistance gain control often tends to make the control noisy (scratehy) after a short while.

The full-wave diode circuit at $5-2 \mathrm{C}$ differs in operation from the half-wave circuit only in that both halves of the r.f. cycle are utilized. The full-wave circuit has the advantage that very little r.f. voltage appears across the load resistor, R_{1}, because the midpoint of L_{2} is at the same potential as the cathode, or "ground" for r.f., and r.f. filtering is easier than in the half-wave circuit.

The reactance of C_{2} must be small compared to the resistance of R_{1} at the radio frequency being reetified, but at audio frequencies must

Fig. 5-3 - Diagrams showing the detection process.
be relatively large compared to R_{1}. This condition is satisfied by the values shown. If the capacity of C_{2} is too large, response at the higher audio frequencies will be lowered.

Compared with other detectors, the sensitivity of the diode is low, normally running around 0.8 in audio work. Since the diode consumes power, the Q of the tuned circuit is reduced, bringing about a reduction in selectivity. The loading effect of the diode is close to one-half the load resistance. The detector linearity is good, and the signal-handling capability is high.

Plate Detectors

The plate detector is arranged so that rectification of the r.f. signal takes place in the plate circuit of the tube. Sufficient negative bias is applied to the grid to bring the plate current nearly to the cut-off point, so that the application of a signal to the grid circuit causes an increase in average plate current. The average plate current follows the changes in signal amplitude in a fashion similar to the rectified current in a diode detector.

Circuits for triodes and pentodes are given in Fig. 5-4. C_{3} is the plate by-pass condenser, and, with $R F C$, prevents r.f. from appearing in the output. R_{1} is the cathode resistor which provides the operating grid bias, and C_{2} is a by-pass for both radio and audio frequencies across $R_{1} . R_{2}$ is the plate load resistance across which a voltage appears as a result of the rectifiying action described above. C_{4} is the output coupling conclenser. In the pentode circuit at B, R_{3} and R_{4} form a voltage divider to supply the proper potential (about 30 volts) to the screen, and C_{5} is a by-pass condenser between screen and cathode. C_{5} must have low reactance for both radio and audio frequencies.
In general, transformer coupling from the plate circuit of a plate detector is not satisfactory, because the plate impedance even of a triode is very high when the bias is set near the plate-current cut-off point. Impedance coupling may be used in place of the resistance coupling shown in Fig. 5-4. Usually 100 henrys or more inductance is required.
The plate detector is more sensitive than the diode since there is some amplifying action in the tube. It will handle large signals, but is not quite so tolerant in this respect as the diode. Linearity, with the self-biased circuits shown, is good. Up to the overload point the detector takes no power from the tuned circuit, and so does not affect its Q and selectivity.

Infinite-Impedance Detector

The circuit of Fig. 5-5 combines the high signal-handling capabilities of the diode detector with low distortion (good linearity), and, like the plate detector, does not load the tuned circuit it connects to. The circuit resembles that of the plate detector, except that the load resistance, R_{1}, is connected between cathode and ground and thus is common to both grid and plate circuits, giving negative
feed-back for the audio frequencies. The cathode resistor is by-passed for r.f. (C_{2}) but not for audio, while the plate circuit is lyy-passed to ground for both audio and radio frequencies. R_{2} forms, with C_{3}, an $R C$ filter to isolate the plate from the " B^{\prime} " supply at a.f. An r.f. filter, consisting of a series r,f. choke and a shunt condenser, can be connected between the cathode and C_{4} to eliminate any r.f. that might otherwise appear in the output.

The plate current is very low at no signal, increasing with signal as in the case of the plate detector. The voltage drop across R_{1} similarly increases with signal, because of the increased plate current. Because of this and the fact that the initial (lrop) across R_{1} is large, the grid usually cannot be driven positive with respeet to the cathode by the signal, hence no grid eurrent can be drawn.

REGENERATIVE DETECTORS

By providing controllable r.f. feed-back or regeneration in a triode or pentode detector circuit, the incoming signal can be amplified many times, thereby greatly increasing the sensitivity of the detector. Regeneration also increases the effective Q of the circuit and

Fig. 54- Circuits for plate detection. A, triode; B, pentode. The input cirenit, $L_{1}\left(C_{1}\right.$, is uned to the simal frequency. Typical values for the other eomponents arr:

Componpnt Circuit A	Circuit B
($i_{2} 0.5$ pfd. or larger.	$0.5 \mu \mathrm{fd}$, or larger.
C3 0.001 to 0.00- 2 fd .	250 to $500 \mu_{\mu} \mathrm{fl}$ I.
($\mathrm{H}_{4} 0.1 \mu \mathrm{fl}$.	$0.1 \mu \mathrm{ft}$.
C5	$0.5 \mu \mathrm{fl}$. or larger.
R125,000 to 150,000 ohms.	10,000 to 20,000 ohims.
R2 50,000 to 100,000 ohms.	100,000 to 250,000 ohms.
R_{3}	50,000 ohms.
R_{4}	20,000 olims.
RFC. 2.5 mh.	2.5 mh .

Plate voltages from 100 to 250 volts may be uscel. Effective sereen voltage in I\$ should be about 30 volis.

Fig. 5-5 - The infinite-impedance detector. 'The inpont cireuit, $L_{2} C_{1}$, is tuned to the signal frequency. 'lypical values for the other eomponents are:
$\mathrm{C}_{2}-2.50 \mu \mu \mathrm{fd}$. $\mathrm{R}_{1}-0.15 \mathrm{~m}$ - goh .
($3-0.5 \mu \mathrm{fd} . \quad k_{2}-2.0,000$ ohms.
 A tube having a merlium amplification factor (about 20) should be uscd. Ilate voltage should be 250 volts.
increases the selectivity because the maximum regenerative amplification takes place only at the frequency to which the circuit is tuned. The grid-lak type of detector is most suitable for the purpose.

The grid-leak detector is a combination diode rectifier and audio-frequency amplifier. In the circuits of Fig. 5-6, the grid corresponds to the diode plate and the rectifying action is exactly the same as in a diode. The d.c. voltage from rectified-current fow through the grid leak, R_{1}, biases the grid negatively with resperet to cathode, and the audio-frequency variations in voltage across R_{1} are amplified through the tube just as in a normal a.f. amplifier. In the plate eircuit, T_{1}, L_{4} and L_{3} are the plate load resistances, C_{3} is a loy-pass condenser and $R F C$ an r.f. choke to eliminate r.f. in the output cireuit. With a triode, the load is almost always an audio transformer.
Since audio amplification is added to rectifiation, the grid-leak detector has considerably greater sensitivity than the diode. The sensitivity is further increased by using a sereengrid tube instead of a triode, as at $5-6 \mathrm{~B}$ and (: The operation is equivalent to that of the triode circuit. The screen by-pass condenser, C_{5}, should have low reactance for both radio and audio frequencies. R_{2} and R_{3} constitute a voltage divider on the phate supply to furnish the proper d.c. voltage to the sereen. In both circuits, C_{2} must have low r.f. reartance and high a.f. reactance compared to the resistance of R_{1}. The reactance of $R F C$ will be high for r.f. and low for audio frequeneies.

Because of the ligh plate resistance of the screen-grid tube, transformer coupling from the plate circuit of a screen-grid detector is not satisfactory. An audio choke can be used in place of a resistor, with a gain in sensitivity because a high value of load impedance can be developed with little loss of phate voltage as compared to the voltage drop through a resistor.
'The sensitivity of the regenerative grid-leak detector is higher than that of any other type. llowever, the many disadvantages of the detector commend it for use only in the simplest receivers. The linearity is rather poor, and the signal-
handling capability is limited. The signal-handling capability can be improved by reducing R_{I} to 0.1 megohm, but the sensitivity will be decreased. The degree of antenna coupling is often critical.

The circuits in Fig. 5-6 are regenerative, the feedback being obtained by feeding some signal to the grid back from the plate circuit. The amount of regeneration must be controllable, because maximum regonerative amplification is

Fig. 5-t - Triode and pentode regenerative detector rircuits. The imput rircuit, L. 2 C. is $^{\text {is }}$ tumed to the signal frequency. The zrid condenser, C_{2}, should haw a value of atout 100 m $\mu \mathrm{fd}$. in all circuits: the grid leak, R_{1}. may range in value from 1 to 5 megohms. The tichler coil, L_{-3}, ordinarily will have from 10 to 25 per eent of the momber of turns on L_{2}; in (C, the cathode tap is about 10 per cent of the mumber of turns on 1.2 above ground. Repenerationecontrol condenser C.3 in A should have a maximum capacity of $100 \mu \mu \mathrm{fd}$, or more; by-pass condensers C_{3} in 13 and C are likewise $100 \mu \mu \mathrm{fd}$. C 5 is ordinarily $1{ }_{\mu \mathrm{ff}}$, or more; R_{2}, a 50,000 -ohm potentiometer; $K_{3}, 50,000$ to 100,000 ohms. L_{4} in B (L_{3} in C) is a 500 . henry inductance, C_{4} is $0.1 \mu \mathrm{fd}$. in looth circuits. T_{1} in A is a conventional audio transformer for compling from the plate of a tube to a following grid, RFC in 2.5 mh , In A, the plate voltage should be aloout 50 volts for best sensitivity. Pentode crircuits repuire about 30 volts on the sercen; plate potential may be 100 to 250 volts.
secured at the critical point where the circuit is just about to oscillate, and the critical point in turn depends upon circuit conditions, which may vary with the frequency to which the detector is tuned. In the oscillating condition, a regenerative detector can be detuned slightly from an incoming e.w. signal to give autodyne reception.

Fig, $\overline{0}-6$ shows the circuits of regenerative detectors of various types. The circuit of A is for a triode tube, with a variable by-pass condenser, C_{3}, in the plate eircuit to control regeneration. When the capacity is small the tube does not regenerate, but as it increases toward maximum its reactance becomes smaller until a critical value is reached where there is sufficient feed-back to cause oscillation. If L_{2} and L_{3} are wound end-to-end in the same direction, the plate comnection is to the outside of the plate or "tickler" coil, LL3, when the grid connertion is to the outside of L_{2}.

The circuit of $\overline{0}-6 \mathrm{I} 3$ is for a pentode tube, regencration being controlled by adjustment of the screen-grid voltage. The tickler, L_{3}, is in the plate circuit. The portion of the control resistor between the rotating contact and ground is by-passed by a large eondenser ($0.5 \mu \mathrm{fd}$. or more) to filter ont seratehing noise when the arm is rotated. "The feed-back is adjusted by varying the number of turns on L_{3} or the coupling between L_{2} and L_{3}, until the tube just goes into oscillation at a screen potential of approximately 30 volts.

Circuit ((is identical with IS in principle of operation, except that the oscillating circuit is of the Hartley 1 ype. Since the sereen and phate are in parallel for r.f. in this circuit, only a small a mount of "tickler" - that is, relatively few turns between the cathode tap and ground - is required for oscillation.

Smooth Regeneration Control

The ideal regeneration control would permit the detector to go into and out of oscillation smoothly, would have no effect on the frequency of oscillation, and would give the same value of regeneration regardless of frequeney and the loading on the circuit. In practice, the effects of loading, particularly the loading that occurs when the detector circuit is coupled to an antenna, are difficult to overcome. Likewise, the regeneration is usually affected by the frequency to which the grid circuit is tuned.

In all circuits it is best to wind the tickler at the ground or cathode end of the grid coil, and to use as few turns on the tickler as will allow the detector to oscillate easily over the whole tuning range at the plate (and screen, if a pentode) voltage that gives maximum sensitivity. Should the tube break into oscillation suddenly as the regeneration control is advanced, making a click, the operation often can be made smoother by changing the gridleak resistance to a higher or lower value. The wrong grid leak phus too-high plate and screen voltage are the most frequent causes of lack of smoothness in going into oscillation.

Antenna Coupling

If the detector is coupled to an antenna, slight changes in the antenna constants (as when the wire swings in a breeze) affect the frequency of the oscillations generated, and thereby the beat frequency when c.w. signals are being received. The tighter the antenna coupling is made, the greater will be the feedback required or the higher will be the voltage necessary to make the detector oscillate. The antenna coupling should be the maximum that will allow the detector to go into oscillation smoothly with the correct voltages on the tube. If capacity coupling to the grid end of the coil is used, generally only a very small amount of capacity will be needed to couple to the antenna. Increasing the capacity incroases the coupling.

At frequencies where the antenna system is resonant the absorption of energy from the oscillating detector circuit will be greater, with the consequence that more regeneration is needed. In extreme cases it may not be possible to make the detector oscillate with normal voltages, causing so-called "dead spots." The remedy for this is to loosen the antenna coupling to the point that permits normal oscillation and smooth regeneration control.

Body Capacity

A regenerative detector occasionally shows a tendency to change frequency slightly as the hand is moved near the dial. This condition (body capacity) can be caused by poor design of the receiver, or by the antenna if the detector is coupled directly to it. If body capacity is present when the antenna is disconnected, it can be eliminated by better shielding, and sometimes by r.f. filtering of the 'phone leads. Body capacity that is present only when the antenna is connected is caused by resonance effects in the antenna, which tend to raise the whole detector circuit above ground potential. A good, short ground connection should be made to the receiver and the length of the antenna varied electrically (by adding a small coil or variable condenser in the antenna lead) until the effect is minimized. Loosening the coupling to the antenna circuit also will help.

Hum

Hum at the power-supply frequency may be present in a regenerative detector, especially when it is used in an oscillating condition for c.w. reception, even though the plate supply itself is free from ripple. 'The hum may result from the use of a.c. on the tube heater, but effects of this type normally are troublesome only when the circuit of Fig. 5-6C is used, and then only at 14 Mc . and higher frequencies. Connecting one side of the heater supply to ground, or grounding the center-tap of the heater-transformer winding, is good practice to reduce hum, and the heater wiring should be kept as far as possible from the r.f. circuits.

House wiring, if of the "open" type, will
have a rather extensive electrostatic field which may cause hum if the detector tube, yrid lead, and grid condenser and leak are not shideded. This type of hum is casily recognizable because of its rather high pitch (a result of harmonics in the power-supply system).

Antenna resonance effects frequently cause a hum of the same nature as that just described which is most intense at the various resonance points, and hence varies with tuning. For this reason it is called tunable hum. It is prone to occur with a rectified-a.c. plate supply, when the receiver is put "above ground" by the antenna, as described in a preceding paragraph. The effect is associated with the nonlinearity of the rectifier tube in the plate supply. Elimination of antenna resonance effects as described and by-passing the rectifier plates to cathode (using by-pass condensers of the order of $0.001 \mu \mathrm{fd}$.) usually will cure it.

Tuning

For c.w. reception, the regeneration control is advanced until the detector breaks into a "hiss," which indicates that the detector is oscillating. Further advancing the regeneration control after the detector starts oscillating will result in a slight decrease in the strength of the hiss, indicating that the sensitivity of the detector is decreasing.

The proper adjustment of the regeneration control for best reception of c.w. signals is where the detector just starts to oscillate, when it will he found that c.w. signals can be tuned in and will give a tone with each signal depending on the setting of the tuning control. As the receiver is tuned through a signal the tone first will be heard as a very high pitch, then will go down through "zero beat" (the region where the frequencies of the incoming signal and the oscillating detector are so nearly alike that the difference or beat is less than the lowest audible tone) and rise again on the other side, finally disappearing at a very high pitch. This behavior is shown in Fig. 5-7. It will be found that a

Fig. 5-7-As the tuning dial of a receiver is turned past a c.w. signal, the beat-note varies from a high tone down throught "zero beat" (no audible frequency difference) and back up to a high tone, as shown at A, B and C.. The curve is a graphical representation of the action. The beat exists past 8000 or 10,000 cycles but usually is not heard because of the limitations of the audio system.
low-pitched beat-note cannot be obtained from a strong signal berause the detertor "pulls in" or "blocks"; that is, the signal tends to control the detector in such a way that the latter oscillates at the signal frequency, despite the fact that the circuit may not be tuned exartly to resonance. This phenomenon, commonly observed when an oscillator is coupled to a souree of r.f. voltage of approximately the frequency at which the owillator is operating, is ralled "locking-in"; the more stable of the two frequencies assumes control over the other. " Blocking" usually can be corrected by advancing the regeneration control until the beat-note is heard again. If the regenerative detector is preceded by an r.f. amplifier stage, the blocking can be eliminated by reducing the gain of the r.f. stage. If the detector is coupled
to an antenna, the borking condition can be satisfactorily eliminated by advancing the regeneration control or loosening the antenna eoupling.

The point just after the detector starts oscillating is the most sensitive condition for c.w. reception. Further advancing the regeneration control makes the receiver less susceptible to bloeking by strong signals, but also less sensitive to weak signals.

If the detector is in the oscillating condition and a phone signal is tuned in, a steady audible beat-note will result. While it is possible to listen to 'phone if the receiver can be tuned to exact zero beat, it is more satisfactory to reduce the regeneration to the point just before the receiver goes into oscillation. This is also the most sensitive operating point.

Tuning and Band-Changing Methods

Band-Changing

The resonant circuit- that are tuned to the frequency of the incoming signal constitute a special problem in the dexign of amateur receivers, since the amateur frequeney assignments consist of groups or bands of frequencies at widely-spaced intervals. The same coil and tuning condenser cannot be used for, say, 14 Me . to 3.5 Mc., Wecause of the impracticable maxi-mum-to-minimum capacity ratio required, and also because the tuning would be exeessively rritical with such a large frequency range. It is necessary, therefore, to provide a means for changing the circuit con-
(A)

(B)

(c)

Fig. 5.8 - Lissentials of the three basie bandspread tuning systems. stant: for various frequency hands. As a mattor of convenience the same tuniug condenser usuatly is retained, but new coils are inscrted in the circuit for each band.

One method of changing inductances is to use a switch laving an appropriate number of contacts, which connects the desired coil and disconneets the others. The unused eoils are sometimes short-circuited by the switeh, to avolid the possibility of undesirable self resonances in the unused coils. It is not neressary if the roils are separated from eath other hy several coil diameters, or are mounted at right angles to eath other.

Another method is to use eoils wound on forms with contacts (usually pins) which can be plugged in and removed from a socket. These coils are advantageous when space in a multiband receiver is at a premium. They are also very useful when eonsiderable experimental work is involved, because they are easier to work on than coils clustered around a switch.

Bandspreading

The tuning range of a given coil and variable condenser will depend upon the inductance of the coil and the change in tuning capacity. For ease of tuning, it is desirable to adjust the tuning range so that prartically the whole dial seale is occupied by the band in use. This is called bandspreading. Because of the varying widths of the bands, sperial tuning methods must be devised to give the correct maximumminimum capacity ratio on each band. several of these methods are shown in Fig. 5-8.

In A, a small bandspread condenser, C_{1} (15 to $25-\mu \mu \mathrm{fd}$. maximum capacity), is used in parallel with a condenser, C_{2}, which is usually large enough (100 to $140 \mu \mu \mathrm{fu}$.) to cover a 2 -to- 1 frequency range. The setting of C_{2} will determine the minimum capacity of the circuit, and the maximum capacity for bandspread tuning will be the maximum capacity of C_{1} plus the setting of C_{2}. The inductance of the coil can be adjusted so that the maximumminimum ratio will give adequate bandspread. In practicable circuits it is almost impossible, because of the nonharmonic relation of the various bands, to get full bandspread on all bands with the same pair of condensers, especially when the coils are wound to give continuous frequency coverage on C_{2}, which is variously called the band-setting or maintuning condenser. C_{2} must be reset each time the band is changed.

The method shown at B makes use of condensers in series. The tuning condenser, C_{1}, may have a maximum capacity of $100 \mu \mu \mathrm{fl}$. or more. The minimum capacity is determined principally by the setting of C_{3}, which usually has low capacity, and the maximum capacity by the setting of C_{2}, which is of the order of 25 to $50 \mu \mu \mathrm{fd}$. This method is capable of close adjustment to practically any desired degree of bandspread. Wither C_{2} and C_{3} must be adjusted for each band or separate preadjusted condensers must be switched in.

The circuit at C also gives complete spread
on each band. C_{1}, the bandspread condenser, may have any convenient value of capacity; $50 \mu \mu \mathrm{fd}$. is satisfactory. C_{2} may be used for continuous frequency coverage ("general coverage') and as a band-setting condenser. The effective maximum-minimum capacity ratio depends upon the capacity of C_{2} and the point at which C_{1} is tapped on the coil. The nearer the tap to the bottom of the coil, the greater the bandspread, and viee versa. For a given coil and tap, the bandspread will be greater if C_{2} is set at higher caparity. C_{2} may be mounted in the pluy-in coil form and preset, if desired. This requires a separate condenser for each band, but eliminates the necessity for resetting ('2 cach time the band is changed.

Ganged Tuning

The tuning condensers of the several r.f. circuits may be coupled together mechanically and operated by a single rontrol. However, this operating convenience involves more complicated construction, both clectrically and mechanically. It becomes necessary to make the various circuits track - that is, tune to the same frequency at each setting of the tuning control.
'True tracking can be obtained only when the inductance, tuning condensers, and circuit induetances and minimum and maximum eapacities are identical in all "ganged" stages. I small trimmer or padding eondenser may be eonnected across the coil, so that variations in minimum capacity can be compensated. The fundamental rircuit is shown in lig. 5-9, where C_{1} is the trimmer and C_{2} the tuning condenser. 'The use of the trimmer necessarily

Fif. 5-9 - Showing the use of a trimmer condenser to set the minimum circuit cabacity in order tooltain true tracking for gang-tuning.
increases the minimum circuit capacity, but it is a neressity for satisfactory tracking. Midget condensers having maximum capacities of 15 to $30 \mu \mu \mathrm{~d}$, are commonly used.

The same methods are applied to bandspread circuits that must be tracked. The circuits are identical with those of Fig. 5-8. If both general-coverage and bandspread tuning are to be available, an additional trimmer rondenser must be connected across the coil in
each eircuit shown. If only amateur-band tuning is desired, howerer, then ("3 in Fig. i - 8 Bl , and C_{2} in Fig. is-R(: serve as trimmers.

The coil inductance ran be adjusted by starting with a larger mumber of turns than necessary and removing a turn or fraction of a turn at a time until the circuits track satisfactorily. An alternative method, provided the inductance is reasomably close to the correct value initially, is to make the eoil so that the last turn is variable with respect to the whole

Fig. $5-10$ - Methods of adjusting the inductance for Hanping. 'The half-turn in A ean he moved so that its mapnetic field cither aids or onnoses the fiell of the conl. 'the shorted loop in 13 is not eonmected to the coil, hut "puerates by induetion. It will have no effect on the coil induetance when the axis of the loon is perpendieular to the avis of the coil, and will give maximum reduetion of the coil inductance when rotated 90°. The loop can be a solid disk of metal and give exactly the same effect.
coil, or to use a single short-rireuited turn the position of which can be varied with respeet to the coil. The application of these methods is shown in Fig. 5-10.

Still another method for trimming the inductance is to use an adjustable brass (or (opper) or powdered-iron core. The brass core acts: like a single shorted turn, and the inductance of the coil is decreased as the brass eore, or "slug," is moved into the coil. The pow-dered-iron core has the opposite effect, and increnses the inductance as it is moved into the roil. The Q of the coil is not affected materially by the use of the brass slug, provided the brass slug has a clean surface or is silverplated. The use of the powdered-iron core will actually raise the Q of a coil, provided the iron core is of a type suitable for the frequency in use. Good powdered-iron cores can be obtained for use up to ahout io Me.

The Superheterodyne

For many years (up to about $10: 32$) practically the only type of receiver to be found in amateur stations consisted of a regenerative detector and one or more stages of audio amplification. Receivers of this type can be made quite sensitive but they are lacking in stability and selectivity, particularly on the higher frequencies, Strong signals bloek them easily and, in our present crowded bands, they are seldom used except in emergencies. 'l'hey
have been replaced by superheterodyne receivers, generally called "superhets."

The Superheterodyne Principle

In a superheterodyne receiver, the frequency of the ineoming signal is ehanged to a new radio frequency, the intermediate frequency (abbreviated "i.f."), then amplified, and finally detected. The frequency is changed by means of the heterodyne process, the output of
a tunable oscillator (the high-frequency, or local, oscillator) being combined with the incoming signal in a mixer or converter stage (first detector) to produre a beat frequency equal to the intermediate frequency. The audio-frequency signal is obtained at the second detector. C.w. signals are made audible by autodyne or heterodyne reception at the second detector.

As a numerical example, assume that an intermediate frequency of $4 \mathrm{~m}^{5} \mathrm{kc}$. is chosen and that the incoming signal is on 7000 kc . Then the high-frequency oseillator frequency may be set to 745 j k., in order that the beat frequency (74% minus 7000) will be $4 \% \mathrm{kc}$. The high-frequency oscillator could also be set to $6545^{\circ} \mathrm{kc}$. and give the same difference frequency. To produce an audible ew. signal at the second detector of, say, 1000 cycles, the autodyning or heterodyning oscillator would be set to either 454 or 456 kc .

The frequency-conversion process permits r.f. amplification at a relatively low frequency, the i.f. lligh selectivity and gain can be ohtained at this frequency, and this selectivity and gain are constant. The separate oscillators can be designed for stability and, since the h.f. oscillator is working at a frequency considerably removed from the signal frequency, its stability is prartically unalferted by the incoming sigual.

Images

Each h.f. oscillator frequency will cause i.f. response at two signal frequencies, one higher and one lower than the oscillator frequency. If the oscillator is set to 745 j ke. to tune to a $7000-\mathrm{kc}$. signal, for example, the receiver can respond also to a signal on 7910 kc ., which likewise gives a 4 ajoke. beat. The undesired signal is called the image. It can cause unneressary interference if it isn't eliminated.

The radio-frequency circuits of the receiver (those used before the frequency is converted to the i.f.) normally are tuned to the desired signal, so that the selectivity of the circuits reduces or eliminates the response to the image signal. The ratio of the receiver voltage output from the desired signal to that from the image is called the signal-to-image ratio, or image ratio.

The image ratio depends upon the selectivity of the r.f. tuned circuits preceding the mixer tube. Also, the higher the intermediate frequency, the higher the image ratio, since raising the i.f. increases the frequency separation between the signal and the image and places the latter further away from the resonance peak of the signal-frequency input circuits. Most receiver designs represent a compromise between economy (few r.f. stages) and image rejection (large number of r.f. stages).

Other Spurious Responses

In addition to images, other signals to which the receiver is not ostensibly tuned may be
heard. Iarmonics of the high-frequency oscillator may beat with signals far removed from the desired frequency to prodnce output at the intermediate frequency; such spurious responses can be reduced by adequate selectivity before the mixer stage, and by using sufficient shielding to prevent signal pick-up by any means other than the antenna. When a strong signal is received, the harmonics generated by rectification in the second detector may, by stray coupling, be introduced into the r.f. or mixer circuit and converted to the intermediate frequency, to go through the receiver in the same way as an ordinary signal. These "birdies" appear as a heterodyne beat on the desired signal, and are principally bothersome when the frequency of the incoming signal is not greatly different from the intermediate frequency. The cure is proper circuit isolation and shielding.

Harmonics of the beat oscillator also may be converted in similar fashion and amplified through the receiver; these responses can be reduced by shieiding the beat oscillator and operating it at low output level.

The Double Superheterodyne

At high and very-high frequencies it is difficult to secure an adequate image ratio when the intermediate frequency is of the order of $45 ; \mathrm{kc}$. To reduce image response the signal frequently is converted first to a rather high (1 :000, 5000 , or even $10,000 \mathrm{kc}$.) intermediate frequency, and then - sometimes after further amplification - reconverted to a lower i.f. where higher adjacent-channel selectivity can be obtained. such a receiver is called a double superheterodyne.

FREQUENCY CONVERTERS

The first detector or miser resembles an ordinary detector. A circuit tuned to the intermediate frequency is placed in the plate circuit of the mixer, to offer a high impedance to the i.f. voltage that is developed. The signaland oscillator-frequency voltages appearing in the plate circuit are by-passed to ground, since they are not wanted in the output. The i.f. tuned circuit should have low impedance for these frequencies, a condition casily met if they do not approach the intermediate frequency.

The conversion efficiency of the mixer is the ratio of i.f. output voltage from the plate circuit to r.f. signal voltage applied to the grid. High conversion efficiency is desirable. The mixer tube noise also should be low if a good signal-to-noise ratio is wanted, particularly if the mixer is the first tube in the receiver.

The mixer should not require too much r.f. power from the h.f. oscillator, since it may be diflicult to supply the power and yet maintain good oscillator stability. Also, the conversion efficiency should not depend too critically on the oscillator voltage (that is, a small change in oscillator output should not change the
gain), since it is difficult to maintain constant output over a wide frequency range.

A change in oscillator frequency caused by tuning of the mixer grid circuit is called pulling. If the miser and oscillator could be completely isolated, mixer tuning would have no effect on the oscillator frequeney; but in practice this is a difficult condition to attain. Pulling should be minimized, because the stability of the whole receiver depends critically upon the stability of the h.f. oscillator. Pulling decreases with separation of the signal and h.f.oseillator frequencies, being less with high intermediate frequencies. Another type of pulling is caused by regulation in the power supply. Strong sigmals cause the supply voltage to change, and this in turn shifts the oscillator frequency.

Circuits

If the first detector and high-frequency oscillator are separate tubes, the first detector is called a "mixer." If the two are combined in one envelope (as is often done for reasons of economy or efficiency), the first detector is called a "converter." In either case the function is the same, however.

Typical mixer circuits are shown in Fig. ij-11. The variations are chiefly in the way in which the oscillator voltage is introduced. In 5-11A, a pentode functions as a plate detector; the oscillator voltage is capacity-coupled to the grid of the tube through C_{2}. Inductive coupling may be used instead. The conversion gain and input selectivity generally are good, so long as the sum of the two voltages (signal and oscillator) impressed on the mixer grid does not exceed the grid bias. It is desirable to make the oscillator voltage as high as possible without exceeding this limitation. The oscillator power required is negligible. If the signal frequency is only $\overline{5}$ or 10 times the i.f., it may be difficult to develop enough oscillator voltage at the grid (because of the selectivity of the tuned input circuit). However, the circuit is a sensitive one and makes a good mixer, particularly with high- G_{m} tubes like the 6AC7 and 6Ali5. A good triode also works well in the circuit, and tubes like the 7 Fs (one section), the 6.J6 (one section), the 12.AT7 (one section), and the 6J4 work well. When a triode is used, care should be taken to see that the signal frequency is short-circuited in the plate circuit, and this is done by mounting the tuning capacitor of the i.f. transformer directly from plate to cathode.

It is difficult to avoid "pulling" in a triode or pentode mixer, however, and a pentagrid converter tube used as a mixer provides much better isolation. A typical circuit is shown in Fig. 5-1113, and tubes like the 6SA7, 707 or 6l3E6 are commonly used. The oscillator voltage is introduced into the electron stream of the tube through an "injection" grid. Measurement of the rectified eurrent flowing in R_{2} is used as a check for proper oscillator-voltage amplitude. Tuning of the signal-grid circuit

Fig. 5-11-Typical circoits for separately excited mixers. Grid injertion of a pentode mixer is shown at A, and separate excitation of a pentagrill eonverter is given in B. Typieal values for 13 will be fonmed in 'Table 5-1 the values below are for the pentode miver of 1 .
$C_{1}-10$ to $50 \mu \mu \mathrm{ffl}$. R_{2} - 1.0 megohm. $\mathrm{C}_{2}-5 \mathrm{~m} 10 \mu \mu \mathrm{fil} \quad \mathrm{R}_{3}-0.17$ megohm. $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{3}-0.001 \mu \mathrm{fd} . \quad \mathrm{K}_{4}-1500$ ohms. $\mathrm{R}_{1}-6800$ ohms.
Ponitive supply voltage can be 2.50 volts with a $6 \mathrm{AC}, 150$ with a 6.1 K 5.
can have little effect on the oscillator frequency because the injection grid is isolated from the signal grid by a screen grid that is at r.f. ground potential. The pentagrid miser is not quite as sensitive as a triode or pentode mixer, but its splendid isolating characteristics make it a very useful circuit.
Many receivers use pentagrid converters, and two typical cirenits are shown in Fig. $5-12$. The cirevit shown in Fig. $5-12 \Lambda$, which is suitable for the 6 K 8 is for : "triode-hexode" converter. A triode oscillator tube is mounted in the same envelope with a hexole, and the control grid of the oscillator portion is connected internally to an injection grid in the hexode. The isolation between oseillator and converter tube is reasonably good, and very little pulling results, except on signal frequencies that are quite large compared with the i.f.

The pentagrid-converter circuit shown in Fig. 5-1213 can be used with a tube like the GSA7, 7Q7, 6BA7 or 6IBE6. Generally the only care neecessary is to adjust the feed-back of the oscillator circuit to give the proper oscillator r.f. voltage. This condition is checked by measuring the d.c. current flowing in grid resistor R_{2}.

A more stable receiver generally results, particularly at the higher frequencies, when separate tubes are used for the mixer and oscillator. Practically the same number of circuit components is required whether or not a combination tube is used, so that there is very little difference to be realized from the cost standpoint.

Fig. 5-12 - Typieal eirenits for triode-hexode (1) and pentagrid (B) eonverters. Values for R_{1}, R_{2} and R_{3} can be found in 'Table 5-I; others are given helow.
$\mathrm{C}_{1}-47{ }_{\mu} \mathrm{fd}$. $\quad \mathrm{C}_{3}-0.01 \mu \mathrm{fd}$.
$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.001{ }_{\mu} \mathrm{fd} . \quad \mathrm{l}_{4}-1000$ ohms.
Typical circuit constants for converter tubes are given in Table 5-I. The grid leak referred to is the oscillator grid leak or injection-grid return, R_{2} of Figs. 5-11 and 5-12.

The effectiveness of converter tubes of the type just described becomes less as the signal frequency is increased. Some oscillator voltage will be coupled to the signal grid through "spacecharge" coupling, an effect that increases with frequency. If there is relatively little frequener
difference between oscillator and signal, as for example a 14 - or 28 -Me. signal and an i.f. of 455 ke., this voltage can become considerable because the selectivity of the signal circuit will be unable to reject it. The effect of this oscillator voltage on the grid is to make the output of the converter dependent upon the tuning of the signal circuit. If the signal grid is not returned directly to ground, but instead is returned through a resistor or part of an a.v.e. system, considerable bias can be developed which will also cut down the gain. For these reasons, and to reduce image response, the i.f. following the first converter of a receiver should be not less than 5 or 10 percent of the signal frequency, for best results.

Audio Converters

Converter circuits of the type shown in Fig. $5-12$ can be used to arlvantage in the reerption of c.w. and single-sideband suppressed-carrier signals, by introducing the local oscillator on the No. 1 grid, the signal on the No. 3 grid, and working the tube into an audio load. Its operation can be visualized as heterodyning the incoming signal into the audio range. The use of such circuits for audio conversion has been limited to selective i.f. amplifiers operating below 500 kc . and usually below 100 ke . An ordinary a.m. signal cannot be received on such a detector unless the tuning is adjusted to make the local oscillator zero-beat with the incoming carrier.

Since the beat oscillator modulates the electron stream completely, a large beat-oscillator component exists in the plate circuit. To prevent overload of the following audio amplifier stages, an arlequate i.f. filter must be used in the output of the converter.

THE HIGH-FREQUENCY OSCILLATOR

Stability of the receiver is clependent chiefly upon the stability of the h.f. oscillator, and partieular care should be given this part of the receiver. The frequency of oscillation should be insensitive to mechanical shock and chanres in voltage and loading. Thermal effects (slow change in frequency because of tube or circuit hoating) should be minimized. They can be reduced by using ceramic instead of bakelite insulation in the r.f. circuits, a large cabinet relative to the chassis (to provide for good radiation of developed heat), minimizing the

TABLE 5-I								
Circuit and Operating Values for Converter Tubes								
Plate voltage $=250$ Screen voltage $=100$, or through specified resistor from 25								
	Self-ExCited				Separate Excitation			
Tube	Cathode Resistor	Screen Resistor	Grid Leak	Grid Citurrent	Cathole Resistor	screen Resistor	Grid Leak	Grid Current
613171	0	12,000	2-2,000	0.35 ma ,	68	15,000	29.000	0.35 ma .
6BE6 ${ }^{1}$	0	22.000	2.,000	11.5	150	22,000	29,000	0.3
OK882.	210	2-,000	17,000	11, 15-0.2		-	-	-
$6 \mathrm{~A} 7^{2}\left(60 \mathrm{C}^{-3}\right)$	0	18,000	22.000	0.8	150	18,000	20,000	0.5
6S13752.	0	15,000	22,000	0.35	68	15,000	2,2000	0.35
${ }^{1}$ Miniature tu	Octal base	metal.	Lock-in					

number of high-wattage resistors in the receiver and putting them in the separate power supply, and not mounting the oscillator coils and tuning condenser too close to a tube. Propping up the lid of a receiver will often reduce drift by lowering the terminal temperature of the unit.

Sensitivity to vibration and shock can be a bother, and should be minimized by using good mechanical support for coils and tuning condensers, a heavy chassis, and by not hanging any of the oscillator-circuit components in the air on long leads. Tie-points should be used wherever necessary to avoid long leads on components in the oscillator circuits. Stiff long wires used for wiring components are no good if they can vibrate, and stiff short leads are excellent because they cant be made to vibrate.
Smooth tuning is a great convenience to the operator, and can be obtained by taking pains with the mounting of the dial and tuning condensers. They should have good alignment and no back-lash. If the condensers are mounted off the chassis on posts instead of brackets, it is almost impossible to avoid some back-lash unless the posts have extra-wide bases. The condensers should be selected with good wiping contacts to the rotor, since with age the rotor contacts can be a source of erratic tuning. All joints in the oscillator tuning circuit should be carefully soldered, since a loose connection or "rosin joint" can develop trouble that is sometimes hard to locate. The chassis and panel materials should be heavy and rigid enough so that pressure on the tuning dial will not cause torsion and a shift in the frequency. Care in mechanical construction of a receiver is repaid many times over by increased frequency stability.

In addition, the oscillator must be capable of furnishing sufficient ref. voltage and power for the particular mixer circuit chosen, at all frequencies within the range of the receiver, and its harmonic output should be as low as possible to reduce the possibility of spurious response.
The oscillator plate power should be as low as is consistent with adequate putput. Low plate power will reduce tube heating and thereby lower the frequency drift. The oscillator and mixer circuits should he well isolated, preferably by shielding, since coupling other than by the means intended may result in pulling.
If the h.f.-oscillator frequency is affected by changes in plate voltage, it is good practice to use a voltage-regulated plate supply employing a VR tube except, of course, in receivers operated from batteries. Changes in platesupply voltage are caused not only by variations in the line voltage but by poor regulation in the power supply. When a.v.c. is used, the controlled tubes draw less current from the power supply as the signal increases, and this change in power-supply load causes the powersupply voltage to vary if it isn't regulated. The use of Class AI audio amplification may
also cause severe changes in the power-supply voltage.

Circuits

Several oscillator circuits are shown in Fig. 5-13. The point at which output voltage is taken for the miser is indicated in each case by X or Y. Circuits A and B will give about the same results, and require only one coil. However, in these two circuits the cathode is above ground potential for raf., which often is a cause of hum modulation of the oscillator output at 14 Mc . and higher frequencies when a.c.-heated-cathode tubes are used. The circuit of Fig. $5-13 \mathrm{C}$ reduces hum because the cathode is grounded. It is a simple circuit to adjust, and it is also the best circuit to use with filamenttype tubes. With filament-type tubes, the ot her two circuits would require ref. chokes to keep the filament above ref. ground.

Fig. 5-13 - High-frequency oscillator circuits. A, penlode grounded-plate oscillator; B, triode groundedplate oscillator; C, triode oscillator with tickler circuit. Coupling to the mixer may betaken from points Sand Y. In A and B, coupling from Y will reduce pulling effects, but gives less voltage than from X; this type is best adapted to mixer circuits with small oseillator-voltage requirements. Typical values for components are as follows:

The plate-supply voltage should be 250 volts. In cir. cuits 13 and $\mathrm{C}, \mathrm{R}_{2}$ is used to drop the supply voltage to $100-150$ volts; it may be omitted if voltage is obtaitted from a voltage divider in the power supply.

Besides the use of a fairly high C / L ratio in the tuned circuit, it is necessary to adjust the feed-bark to obtain optimum results. Too much feed-back may cause the oscillator to "squeg" and generate several frequencies simultaneously; too little feed-back will cause
the output to be low. In the tapped-coil circuits (A, I3), the feerl-back is increased by moving the tap toward the grid end of the coil. Using the oscillator shown at C, feed-back is obtained by increasing the number of turns on L_{2} or by moving L_{2} closer to L_{1}.

The Intermediate-Frequency Amplifier

One major advantage of the superhet is that high gain and selectivity can be obtained by using a goodi,f, amplifier. This can be a onestage affair in simple receivers, or two or three stages in the more complex sets.

Choice of Frequency

The selection of an intermediate frequency is a compromise between various conflicting factors. The lower the i.f. the higher the selectivity and gain, but a low i.f. brings the image nearer the desired signal and hence decreases the image ratio. A low i.f. also increases pulling of the oscillator frequency. On the other hand, a high i.f. is beneficial to both image ratio and pulling, but the selectivity and gain are lowered. The difference in gain is least important.

An i.f. of the order of 455 kc . gives good selectivity and is satisfactory from the standpoint of image ratio and oscillator pulling at frequencies up to 7 Mc . The image ratio is poor at 14 Mc . when the mixer is connected to the antema, but adequate when there is a tuned r.f. amplifier between antenna and mixer. At 28 Mc. and on the very-high frequencies, the image ratio is very poor unless several r.f. stages are used. Above 14 Mc ., pulling is likely to be bad unless very loose coupling can be used between mixer and oscillator.

With an i.f. of about 1600 kc . satisfactory image ratios can be secured on 14,28 and 50 Mc., and pulling can be reduced to negligible

Fif, 5-14 - Typical intermediate-frequeney amplifier cirruit for a superheterodyne recciver. Kepresentative values for components are as follows:
$C_{1}-0.1 \mu \mathrm{fi}$. at $4.55 \mathrm{kc} . ; 0.01 \mu \mathrm{ff}$. at 1600 kc . and higher. $\mathrm{C}_{2}-0.01 \mu \mathrm{fd}$.
$\mathrm{C}_{3}, \mathrm{C}, \mathrm{C}_{4}$ - $0.1 \mu \mathrm{fl}$. at $455 \mathrm{ke} . ; 0.01 \mu \mathrm{fd}$. above 1600 ke . $\mathrm{R}_{1}, \mathrm{R}_{2}$ - See 「'able 5-II. R_{3} - 1800 ohms. $\mathrm{R}_{4}-\mathbf{0 . 2 7} \mathrm{mcgoh}$.
proportions. IIowever, the i.f. selectivity is considerably lower, so that more tuned circuits must be used to increase the selectivity. For frequencies of 28 Mc , and higher, the best solution is to use a double superheterodyne, choosing one high i.f. for image reduction (5
and 10 Mc are frequently used) and a lower one for gain and selectivity.

In choosing an i.f, it is wise to avoid frequencies on which there is considerable activity by the various radio services, since such signals may be picked up directly on the i.f. wiring. Shifting the i.f. or better shielding are the solutions to such an interference problem.

Fidelity; Sideband Cutting

Modulation of a carrier causes the generation of sideband frequencies numerically equal to the carrier frequency plus and minus the highest modulation frequency present. If the receiver is to give a faithful reproduction of modulation that contains, for instance, audio frequencies up to 5000 cycles, it must at least be capable of amplifying equally all frequencies contained in a band extending from 5000 eycles above or below the carrier frequency. In a superheterodyne, where all carrier frequencies are changed to the fixed intermediate frequency, this means that the i.f. amplifier should amplify equally well all frequencies within that band. In other words, the amplification must be uniform over a band 5 kc . wide, when the carrier is set at one edge. If the carrier is set in the center, a $10-k e$, band would be required. The signalfrequency circuits usually do not have enough over-all selectivity to affect materially the "at-jacent-channel" selectivity, so that only the i.f.-amplifier selectivity need be considered.

A 10-ke. band is considered sufficient for reasonably-faithful reproduction of music, but much narrower bandwidths can be used for communieation work where intelligibility rather than fidelity is the primary objective. If the selectivity is too great to permit uniform amplification over the band of frequencies occupied by the modulated signal, some of the sidebands are "cut." While sideband cutting reduces fidelity, it is frequently preferable to sacrifice naturalness of reproduction in favor of communications effectiveness.

The seloctivity of an i.f. amplifier, and hence the tendency to cut sidebands, increases with the number of amplifier stages and also is greater the lower the intermediate frequency. From the standpoint of communication, sideband cutting is never serious with two-stage amplifiers at frequencies as low as 455 kc . A two-stage i.f. amplifier at 85 or 100 kc . will be sharp enough to cut some of the higherfrequency sidebands, if good transformers are used. However, the cutting is not at all serious, and the gain in selectivity is worthwhile if the recciver is used in the lower-frequency bands.

Circuits

I.f. amplifiers usually consist of one or two stages. At 455 kc . two stages generally give all the gain usable, and also give suitable selectivity for 'phone reception.

A typical circuit arrangement is shown in Fig. 5-14. A second stage would simply duplicate the circuit of the first. The i.f. amplifier practically always uses a remote cut-off pentode-type tube operated as a Class A amplifier. For maximum selectivity, doubletuned transformers are used for interstage coupling, although single-tuned circuits or transformers with untuned primaries can be used for coupling, with a consequent loss in selectivity. All other things being equal, the selectivity of an i.f. amplifier is proportional to the number of tuned circuits in it.

In Fig. 5-14, the gain of the stage is reduced by introducing a negative voltage to the lead marked "to a.v.c." or a positive voltage to R_{1} at the point marked "to manual gain control." In either case, the voltage increases the bias on the tube and reduces the mutual conductance and hence the gain. When two or more stages are used, these voltages are generally obtained from common sources. The decoupling resistor, R_{3}, helps to isolate the amplifier from the power supply and thus prevents stray feed-back. C_{2} and R_{4} are part of the automatic volume-control circuit (described later); if no a.v.c. is used, the lower end of the i.f.-transformer secondary is simply connected to ground.

In a two-stage amplifier the screen grids of both stages may be fed from a common supply, either through a resistor (R_{2}) as shown, the screens being connected in parallel, or from a voltage divider across the plate supply. Separate screen voltage-dropping resistors are preferable for preventing undesired coupling between stages.
Typical values of cathode and screen resistors for common tubes are given in Table $5-\mathrm{II}$. The $6 \mathrm{~K} 7,6 \mathrm{SK} 7,6 \mathrm{BJ} 6$ and 7 H 7 are recommended for i.f. work. The indicated screen re-

TABLE 5-II Cathode and Screen-Dropping Resistors for R.F. or I.F. Amplifiers				
Tube	Plate Volts	Screen Volls	Cathode Resister	Screen Resiztor
6.187	300		200 ohms	33,000 ohms
$6.4 \mathrm{C7}$	300		160	62,000
6.1 K 5	180	120	200	27,000
$6.4{ }^{\text {c }} 6$	250	150	68	33,000
6 BA 4	250	100	68	33,000
6 BJ 6	250	100	82	47,000
6.57	250	100	1200	270,000
6 K 7	250	125	240	47,000
6 SG 7	250	125	68	27,000
6SG7	250	150	200	47,000
6 SH 7	250	150	68	39,000
6 SJ 7	250	100	8.0	180,000
6 SK7	250	100	270	56,000
7G7/1232	250	100	270	68,000
7H7	250	150	180	27,000

AIR TUNED
PERMEABILITY TUNED
Fig. 5-15 - Representative i.f.-transformer construction. Coils are supported on insulating tubing or (in the air-tuned type) on wax-impregnated wooden dowels. The shield in the air-tuned transformer prevents capacity coupling between the tuning condensers. In the permeability-tuned transformer the cores consist of finely-divided iron particles supported in an insulating binder, formed into cylindrical "plugs," 'The tuning capacity is fixed, and the inductances of the coils are varied by noving the iron plugs in and out.
sistors drop the plate voltage to the correct screen voltage, as R_{2} in Fig. 5-14.

When two stages are used the high gain will tend to cause instability and oscillation, so that good shielding, by-passing, and careful circuit arrangement to prevent stray coupling, with exposed r.f. leads well separated, are necessary.

I.F. Transformers

The tuned circuits of i.f. amplifiers are built up as transformer units consisting of a metalshield container in which the coils and tuning condensers are mounted. Both air-core and powdered iron-core universal-wound coils are used, the latter having somewhat higher Q : and, hence, greater selectivity and gain per unit. In universal windings the coil is wound in layers with each turn traversing the length of the coil, back and forth, rather than being wound perpendicular to the axis as in ordinary single-layer coils. In a straight multilayer winding, a fairly large capacity can exist between layers. Universal winding, with its "criss-crossed" turns, tends to avoid building up such potential differences, and hence reduces distributed-capacity effects.

Variable tuning condensers are of the midget type, air-dielectric condensers being preferable because their capacity is practically unaffected by changes in temperature and humidity. Ironcore transformers may be tuned by varying the inductance (permeability tuning), in which case stability comparable to that of variable aircondenser tuning can be obtained by use of high-stability fixed mica condensers. Such stability is of great importance, since a circuit whose frequency "drifts" with time eventually will be tuned to a different frequency than the other circuits, thereby reducing the gain and

selectivity of the amplifier. Typical i.f.-transformer construction is shown in Fig. 5-15.

Besides the type of i.f. transformer shown in Fig. 5-15, special units to give desired selectivity characteristics are available. For higher-than-ordinary adjacent-channel selectivity triple-tuned transformers, with a third tuned circuit inserted between the input and output windings, are used. The energy is transferred from the input to the output windings via this tertiary winding, thus adding its selectivity to the over-all selectivity of the transformer. Variable-selectivity transformers also can be obtained. These usually are provided with a third (untuned) winding which can be connected to a resistor, thereby loading the tuned circuits and decreasing the () and selectivity to broaden the selectivity curve. The variation in selectivity is brought about by switching the resistor in and out of the circuit. Inother method is to vary the coupling between primary and secondary, overcoupling being used to broaden the selectivity curve.

Selectivity

The over-all selectivity of the i.f. amplifier will depend on the frequency and the number of stages. The following figures are indicative of the bandwidths to be expected with goodquality transformers in amplifiers so constructed as to keep regeneration at a minimum:

Intermediate Frequency	Bandwidth in Kilocycles		
	2 times	10 times	100 times
	down	down	down
One stage, 50 kc . (iron core).	0.8	1.4	2.8
One stage, 455 kc . (air core).	8.7	17.8	32.3
Onestage, 455 kc . (iron core)	4.3	10.3	20.4
Two stages, 45 is kc. (iron core).	2.9	6.4	10.8
Two stages, $1600 \mathrm{kc} .$. . . .	11.0	16.6	27.4
Two stages, 5000 kc.	25.8	46.0	100.0

Tubes for I.F. Amplifiers

Variable- μ (remote cut-off) pentodes are almost invariably used in i.f. amplifier stages, since grid-bias gain control is practically always applied to the i.f. amplifier. 'Tubes with high plate resistance will have least effect on the selectivity of the amplifier, and those with high mutual conductance will give greatest gain. The choice of i.f. tubes has practically no effect on the signal-to-noise ratio, since this is
determined by the preceding mixer and r.f. amplifier (if the latter is used).

When single-ended tubes are used, care should be taken to keep the plate and grid leads well separated. With these tubes it is advisable to mount the screen by-pass condenser tirectly on the bottom of the socket, crosswise botween the plate and grid pins, to provide additional shielding. The outside foil of the condenser should be connected to ground.

THE SECOND DETECTOR AND BEAT OSCILLATOR

Detector Circuits

The second detector of a superheterodyne receiver with an i.f. amplifier performs the same function as the detector in the simple receiver, but usually operates at a higher input level because of the relatively great amplifieation ahead of it. Therefore, the ability to handle large signals without distortion is preferable to high sensitivity. Plate detection is used to some extent, but the diode detector is most popular. It is especially adapted to furnishing automatic gain or volume control. The basic circuits have been described, although in many cases the diode elements are incorporated in a multipurpose tube that contains an amplifier section in addition to the diode.

The Beat Oscillator

Any standard oscillator circuit may be used for the beat oscillat or required for heterodyne reception. Special beat-oscillator transformers are available, usually consisting of a tapped coil with adjustable tuning; these are most conveniently used with circuits such as those shown at Fig. 5-13A and B, with the output taken from Y. A variable condenser of about $2 \tilde{j}-\mu \mu \mathrm{fd}$. capacity may be connected between cathode and ground to provide fine adjustment. The beat oscillator usually is coupled to the second-detector tuned circuit through a fixed condenser of a few $\mu \mu \mathrm{fd}$. capacity.

The beat oscillator should be well shielded, to prevent coupling to any part of the circuit except the second detector and to prevent its harmonics from getting into the front end of
the receiver and being amplified with desired signals. The b.f.o. power should be as low as is consistent with sufficient audio-frequency output on the strongest signals. Ilowever, if the beatoscillator output is too low, strong signals will not give a proportionately strong audio signal. Contrary to some opinion, a weak b.f.o. is never an advantage.

When an oscillating second detector is used to give the audio beat note, the detector must he detuned from the i.f. by an amount equal to the frequency of the beat note. 'ine selectivity and signal strength will be reduced, while blocking will be pronounced berause of the high signal level at the second detector.

AUTOMATIC VOLUME CONTROL

Automatic regulation of the gain of the receiver in inverse proportion to the sigual strength is a great advantage, especially in 'phone reception, since it tends to keep the output level of the receiver eonstant regardless of input-signal strength. The average rectified d.c. voltage, developed by the reecived signal across a resistance in a detector circuit, is used to vary the bias on the r.f. and i.f. amplifier tubes. Since this voltage is proportional to the average amplitude of the signal, the gain is reduced as the signal strength becomes greater. The control will be more complete as the number of stages to which the a.v.c. bias is applied is increased. Control of at least two stages is advisable.

Circuits

A typical circuit using a diode-triode type tube as a combined a.v.c. rectifier, detector and first audio amplifier is shown in Fig. $5-16$. One plate of the diode section of the tube is used for signal detection and the other for a.v.c. rectification. The a.v.c. diode plate is fed from the detector diode through the small coupling condenser, C_{3}. A negative bias voltage resulting from the flow of rectified carrier current is developed across R_{4}, the diode load resistor. This negative bias is applied to the grids of the controlled stages through the filtering resistors, R_{5}, R_{6}, R_{7} and R_{8}. When Σ_{1} is closed the a.v.c. line is grounded, thereby removing the a.v.c. bias from the amplifiers without disturbing the detector circuit.

It does not matter which of the two diode plates is selected for audio and which for a.v.c. Frequently the two plates are connected together and used as a combined detector and a.v.c. rectifier. This could be done in Fig. 5-16. The a.v.c. filter and line would connect to the junction of R_{2} and C_{2}, while C_{3} and R_{4} would be omitted from the circuit.

Delayed A.V.C.

In Fig. 5-16 the audio-diode return is made directly to the cathode and the a.v.c. diode is returned to ground. This places nega-
tive bias on the a.v.c. diode equal to the d.c. drop through the cathode resistor (a volt or two) and thus delays the application of a.v.c. voltage to the amplifier grids, since no rectification takes place in the a.v.c. diode circuit until the carrier amplitude is large enough to overcome the bias. Without this delay the a.v.c. would start working even with a very small signal. This is undesirable, because the full amplification of the receiver then could not be realized on weak signals. In the audiodiode circuit fixed bias would cause distortion, and nust be avoided; hence, the return is made directly to the cathode.

Time Constant

The time constant of the resistor-condenser combinations in the a.v.c. circuit is an important part of the system. It must be high enough so that the modulation on the signal is completely filtered from the d.c. output, leaving only an average d.c. component which follows the relatively slow carrier variations with fading. Audio-frequency variations in the a.v.c. voltage applied to the amplifier grids would reduce the percentage of modulation on the incoming signal, and in practice would cause frequency distortion. On the other hand, the time constant must not be too great or the a.v.c. will be unable to follow rapid fading. The capacitance and resistance values indicated in Fig. 5-16 will give a time constant that is satisfactory for average reception.

C. W.

A.v.c. can be used for c.w. reception but the circuit is more complicated. The a.v.c. voltage must be derived from a rectifier that is isolated from the beat-frequency oscillator (otherwise the rectified b.f.o. voltage will reduce the receiver gain even with no signal coming through). This is generally done by using a separate a.v.c. channel connected to an i.f. amplifier stage ahead of the second detector (and b.f.o.). If the i.f. selectivity ahead of the a.v.c. rectifier isn't good, strong adjacent signals will develop a.v.c. voltages that will reduce the receiver gain while listening to weak signals. When clear channels are available, however, c.w. a.v.c. will hold the receiver output constant over a wide range of signal input. A.v.c. systems designed to work on c.w. signals must have fairly long time constants to work with slow-speed sending, and often a selection of time constants is made available.

Amplified A.V.C.

The a.v.c. system shown in Fig. 5-16 will not hold the audio output of the receiver exactly constant, although the variation becomes less as more stages are controlled by the a.v.c. voltage. The variation also becomes less as the delay voltage is increased, although there will, of course, be variation in output if the signal intensity is below the delay-voltage level at the a.v.e. rectifier. In the circuit of Fig. 5-16, the

Fir, 5-17-Delayed a.v.c. is shown at S, and anplified and delayed a.v.e. is shown in B. The cirenit at Bives excellent a.v.c, action over a wide range, with no inpairment of sensitivity for weak signals. For either cirruit, typical values are:
(1 - $0.001 \mu \mathrm{ffl}$.
$\mathrm{R}_{1}, \mathrm{R}_{2}-1.0$ megohm.
($: 2-100{ }_{\mu} \mu \mathrm{fd}$.
$\mathbf{R}_{3}, \mathrm{R}_{4}$ - Voltage divider.
delay voltage is set by the proper operating bias for the triode portion of the tube. However, a separate diode may be used, as shown in fig. 5-17A. Since such a system requires a large voltage at the diode, a separate i.f. stage is sometimes used to feed the delayed a.v.c.

Resistors R_{3} and R_{4} are carefully proportioned to give the desired delay voltage at the cathode of diomle V_{2}. Bleeder current of 1 or \cong ma. is ample, and hence the bleeder can be figured on 1000 or 500 ohma per volt. The delay voltage should the in the vicinity of 3 or 4 for a simple receiver and 20 or 30 in the ease of a multitulie high-gain affair.
diode, as in Fig. 5-17B. A system like this, often called an "amplified a.v.c." system, gives superlative control artion, since it maintains full receiver sensitivity for weak signals and substantially uniform audio output over a very wide range of signal strengths.

Noise Reduction

Types of Noise

In addition to tube and circuit noise, much of the noise interference experienced in reception of high-frequency signals is caused by domestic electrical equipment and by automobile ignition systems. The interference is of two types in its effects. The first is the "hiss" type, consisting of overlapping pulses similar in nature to the recciver noise. It is largely reduced by high selectivity in the receiver, especially for code reception. The second is the "pistol-shot" or "machine-gun" type, consisting of separated impulses of high amplitude. The "hiss" type of interference usually is caused by commutator sparking in d.c. and series-wound a.c. motors, while the "shot" type results from separated spark discharges (a.c. power leaks, switch and key clicks, ignition sparks, and the like).

The only known approach to reducing tube and circuit noise is through better "front-end" design and through more over-all selectivity.

Impulse Noise

Impulse noise, because of the extremely short duration of the pulses as compared with the time between them, must have high pulse amplitude to contain much average energy. Hence, noise of this type strong enough to, cause much interference generally has an instantancous amplitude much higher than that of the signal being received. The general principle of devices intended to reduce such noise is that of allowing the desired signal to pass through the receiver unaffected, hut making the recciver inoperative for amplitudes greater than that of the signal. The greater the amplitude of the pulse compared with its time of duration, the more successful the noise reduction, since more of the constituent energy can be suppressed.

Another approach is to "silence" (render inoperative) the receiver during the short duration time of any individual pulse. The listencr will not hear the "hole" because of its short dura-
tion, and very effective noise reduction is obtained. Such devices are called "silencers" rather than "limiters."

In passing through selective receiver circuits, the time duration of the impulses is increased, because of the () or fiywheel effect of the circuits. Hence, the more selectivity ahead of the noise-reducing device, the more difficult it becomes to secure good noise suppression.

Audio Limiting

A considerable degree of noise reduction in code reception can be accomplished by an-plitude-limiting arrangements applied to the audio-output cirenit of a receiver. Such limiters also maintain the signal output nearly constant during fading. These output-fimiter systems are simple, and adaptahbe to most recerivers. However, they camot prevent noise peaks from overloading previous circuits.

SECOND-DETECTOR NOISELIMITER CIRCUITS

The circuit of Fig. 5-18 "chops" noise peaks at the second detector of a superhet receiver by means of a biased diode, which becomes noneonducting above a predetermined signal level. The audio output of the detector must pass through the diode to the grid of the amplifier tube. The diode normally would be nonconducting with the connections shown were it not for the fact that it is given positive bias from a 30 -volt source through the adjustable potentiometer, R_{3}. Resistors R_{1} and R_{2} must be fairly large in value to prevent loss of audio signal.

The audio signal from the detector can be considered to modulate the steady diode current, and conduction will take place so long as the diode plate is positive with respect to the cathode. When the signal is sufficiently large to swing the cathorle positive with respect to the plate, however, conduction ceases, and that portion of the signal is cut off from the audio amplifier. The point at which cut-off occurs can be selected by adjustment of R_{3}. By setting R_{3} so that the signal just passes through the "valve," noise pulses higher in amplitude than the signal will be cut off. The circuit of Fig. 5-18A, using an infinite-impedance detector, gives a positive voltage on rectification. When the rectified voltage is negative, as it is from the usual diode detector,

Fig. 5.18-Series-valve noise-limiter circuits. A, as used with an infinite-impedance detector; B, with a diode detector. Typical values for components are as follows:
$\mathrm{R}_{1}-0.27$ megohm.
$\mathrm{R}_{2}-4 \overline{4}, 000$ ohme.
$\mathrm{R}_{4}-20,000$ to 50,000 ohms.
$\mathrm{H}_{3}-10,000$ ohms.
$\mathrm{C}_{1}-2.0 \mu \mu \mathrm{fd}$.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.1 \mu \mathrm{fd}$.

All wher diode-eircuit constants in 13 are conventional.
the circuit arrangement shown in lig. 5-18B must be used.

An audio signal of about ten volts is required for good limiting action. The limiter will work on cither c.w. or 'phone signals, but in either case the potentiometer must be set at a point determined by the strength of the incoming signal.

Second-detector noise-limiting circuits that automatically adjust themselves to the receiver carrier level are shown in Fig. 5-19. In either circuit, V_{1} is the usual diode second detector, $R_{1} R_{2}$ is the diode load resistor, and C_{1} is an r.f. by-pass. A negative voltage proportional to the carrier level is developed across C_{2}, and this voltage cannot change rapidly because R_{3} and C_{2} are both large. In the circuit at A, diode V_{2} acts as a conductor for the audio signal up to the point where its anode is negative with respect to the cathode. Noise peaks that exceed the maximum carriermodulation level will drive the anode negative instantaneously, and during this time the diode does not conduct. The large time constant of $C_{2}^{*} R_{3}$ prevents any rapid change of

Fig. 5-19 - Self-adjusting serie. (A) and shunt (B) noise limiters. The functions of V_{1} and I_{2} can be combined in one tube like the 6116 or 6AL5, or Type 1N31 erystals can be used.
$\mathrm{C}_{1}-100 \mu \mu \mathrm{fd}$.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.05 \mu \mathrm{fd}$.
$\mathrm{R}_{1}-0.27$ meg. in $\mathrm{A} ; 47,000$ ohms in B .
$\mathrm{H}_{2}-0.27$ meg. in $\mathrm{A} ; 0.15 \mathrm{meg}$.
in B.
R_{3} - 1.10 megohm.
R_{4} - 0.82 megohm.
this reference voltage. In the circuit at B, the diode V_{2} is inactive until its cathode voltage exceeds its anode voltage. This condition will obtain under noise peaks and, when it does, the diode V_{2} short-circuits the signal and no voltage is passed on to the audio amplifier. Practical values for the circuit at 13 will be found in the eight-tube superheterodyne described later in this chapter. Diode rectifiers such as the 6 H 6 and 6.1 L 5 , or the 1 N 34 germanium erystal diode, can be used for these types of noise limiters. Neither circuit is useful for c.w. reception, but they are both quite effective for 'phone work.

I.F. Noise Silencer

In the circuit shown in Fig. 5-20, noise pulses are made to decrease the gain of an i.f. stage momentarily and thus silence the receiver for the duration of the pulse. Any noise voltage in excess of the desired signal's maximum i.f. voltage is taken off at the grid of the i.f. amplifier, amplified by the noiseamplifier stage, and rectified by the fullwave diode noise rectifier. The noise circuits are tuned to the i.f. The rectified noise voltage is applied as a pulse of negative bias to the No. 3 grid of the 6L7 i.f. amplifier, wholly or partially disabling this stage for the duration of the individual noise pulse, depending on the amplitude of the noise voltage. The noiseamplifier/rectifier circuit is biased by means of the "threshold control," R_{2}, so that rectification will not start until the noise voltage exceeds the desired signal amplitude. With antomatic volume control the a.v.c. voltage can be applied to the grid of the noise amplifier, to augment this threshold bias. In a typi-

Fig. 5-20- I.f. noise-silencing eircuit. The plate supply should he 250 volts. Typical values for compronents are: $\mathrm{C}_{1}-50-250 \mu \mu \mathrm{fd}$. (use smallest value possible without r.f. feed-back).
$\mathrm{C}_{2}-47 \mu \mu \mathrm{fd}$.
$\mathrm{C}_{3}-0.1{ }_{\mu \mathrm{fd}}$.
$\mathrm{R}_{2}-5000$-ohm variahle.
$\mathrm{R}_{3}-22.000$ ohms.
T_{1}-Special i.f. transformer for noise rectifier.

Pig. 5-21 - Thning-indicator or S-meter circuits for suprethet receivers. A, electron-ray indicator; 13, platecurrent meter for tubes on a.v.c.; C, bridge cirruit for a.v.c.-controlled tube. In 13 , resistor K should have a maximum resistance several times that of the milliammeter. In (i, representative valurs for the componemts are: $R_{1}, 270$ ohms; $R_{2}, 330$ olims; $R_{3}, 1000$-ohm variable.
cal instance, this system improved the signal-to-noise ratio some 30 db . (power ratio of 1000) with heavy ignition interference, raising the signal-to-noise ratio from -10 db . without the silencer to +20 db . with the silencer.

SIGNAL-STRENGTH AND TUNING INDICATORS

A useful accessory to the receiver is an indicator that will show relative signal strength. Not only is it an aid in giving reports to transmitting stations, but it is helpful also in aligning the receiver circuits, in conjunction with a test oscillator or other steady signal.

Three types of indicators are shown in lig. $5-21$. That at A uses an electron-ray tube, several types of which are available. The grid of the triode section usually is connected to the a.v.c. line. The particular type of tube used depends upon the voltage available for its grid; where the a.v.c. voltage is large, a remote cut-off type ($6 \mathrm{G} 5,6 \times 5$ or 6 ADGG) should be used in preference to the more sensitive sharp cut-off type ($6 \mathrm{E} \overline{5}$).

In B , a milliammeter is connected in series with the d.c. plate lead to one or more r.f. and i.f. tubes, the grids of which are controlled by a.v.c. voltage. Since the plate current of such
tubes varies with the strength of the incoming signal, the meter will indicate relative signal intensity and may be calibrated in S-points. The scale range of the meter should be chosen to fit the number of tubes in use; the maximum plate current of the average remote cutoff r.f. pentode is from 7 to 10 milliamperes. The shunt resistor, R, enables setting the plate current to the full-scale value ("zero adjustment"). With this system the ordinary meter reads downward from full scale with increasing signal strength, which is the reverse of normal pointer movement (clockwise with increasing reading). special instruments in which the zero-current position of the pointer is on the right-hand side of the scale are used in some commercial receivers.

The system at C uses a $0-1$ milliammeter in a bridge circuit, arranged so that the meter reading and the signal strength increase together. The current through the branch containing R_{1} should be approximately equal to the current through that containing R_{2}. In some manufactured receivers this is brought about by draining the screen voltage-divider current and the current to the screens of three r.f. pentodes (r.f. and i.f. stages) through R_{2}, the sum of these currents being about equal to the maximum plate current of one a.v.c.-controlled tube. The sensitivity can be increased by increasing the resistance of R_{1}, R_{2} and R_{3}. The initial setting is made with the manual gain control set near maximum, when R_{3} should be adjusted to make the meter read zero with no signal.

Improving Receiver Selectivity

INTERMEDIATE-FREQUENCY AMPLIFIERS

As mentioned earlier in this chapter, one of the big advantages of the superheterodyne receiver is the improved selectivity that is possible. This selectivity is obtained in the i.f. amplifier, where the lower frequency allows more selectivity per stage than at the higher signal frequency. For 'phone reception, the limit to useful selectivity in the i.f. amplifier is the point where so many of the sidebands are cut that intelligibility is lost, although it is possible to remove completely one full set of sidebands without impairng the quality at all. Maximum receiver selectivity in 'phone reception requires excellent stability in both transmitter and receiver, so that they will both remain "in tune" during the transmission. The limit to useful selectivity in code work is around 50 or 100 cycles for hand-key speeds, but it is difficult to use this much selectivity because it requires remarkable stability in both transmitter and receiver, and to tune in a signal becomes a major problem.

Single-Signal Effect

In heterodyne c.w. reception with a superheterodyne receiver, the beat oscillator is set to give a suitable audio-frequency beat note when the incoming signal is converted to the intermediate frequency. For example, the beat oscillator may be set to 456 kc . (the i.f. being 455 kc .) to give a 1000 -cycle beat note. Now, if an interfering signal appears at 457 kc ., or if the receiver is tuned to heterodyne the incoming signal to 457 kc ., it will also be heterodyned by the beat oscillator to produce a 1000 -cycle beat. Hence every signal can be tuned in at two places that will give a 1000cycle beat (or any other low audio frequency). This audio-frequency image effect can be reduced if the i.f. selectivity is such that
the incoming signal, when heterodyned to 457 kc ., is attenuated to a very low level.

When this is done, tuning through a given signal will show a strong response at the desired beat note on one side of zero beat only, instead of the two beat notes on either side of zero beat characteristic of less-selective reception, hence the name: single-signal reception.

The necessary selectivity is difficult to obtain with nonregenerative amplifiers using ordinary tuned circuits unless a very low i.f. or a large number of circuits is used.

Regeneration

Regeneration can be used to give a pronounced single-signal effect, particularly when the i.f. is $45 \% \mathrm{kc}$. or lower. The resonance curve of an i.f. stage at critical regeneration (just below the oscillating point) is extremely sharp, a bandwidth of 1 kc . at 10 times down and 5 kc . at 100 times down being obtainable in one stage. The audio-frequency image of a given signal thus can be reduced by a factor of nearly 100 for a 1000 -cycle beat note (image 2000 cycles from resonance).

Regeneration is easily introduced into an i.f. amplifier by providing a small amount of capacity coupling between grid and plate. Bringing a short length of wire, connected to the grid, into the vicinity of the plate lead usually will suffice. The feed-back may be controlled by the regular cathode-resistor gain control. When the i.f. is regenerative, it is preferable to operate the tube at reduced gain (high bias) and depend on regeneration to bring up the signal strength. This prevents overloading and increases selectivity.

The higher selectivity with regeneration reduces the over-all response to noise generated in the earlier stages of the receiver, just as does high selectivity produced ly other means, and therefore improves the signal-to-noise ratio. The disadvantage is that the regenerative gain
varies with signal strength, being less on strong signals, and the selectivity varies.

Crystal Filters

Probably the simplest means for obtaining high selectivity is by the use of a piezoelectric quartz crystal as a selective filter in the i.f. amplifier. Compared to a good tuned circuit, the ($)$ of such a crystal is extremely high. The dimensions of the crystal are made such that it is resonant at the desired intermediate frequency. It is then used as a selective coupler between i.f stages.

Fig. 5-22 gives a typical crystal-filter resonance curve. For single-signal reception, the audio-frequency image can be reduced by a factor of 1000 or more. Besides practically climinating the a.f. image, the high selectivity of the crystal filter provides great discrimination against signals very close to the desired signal and, by reducing the band-width, reduces the response of the receiver to noise.

Crystal-Filter Circuits; Phasing

Several crystal-filter circuits are shown in Fig. 5-23. Those at A and B are practically identical in performance, although differing in details. The crystal is connected in a bidge circuit, with the secondary side of T_{1}, the innut transformer, balanced to ground either throumh a pair of condensers, $C-C(A)$, or by a centertap on the secondary, L_{2} (B). The bridge is completed by the crystal and the phasin: condenser, C_{2}, which has a maximum capacity somewhat higher than the capacity of the crystal in its holder. When C_{2} is set to balance the crystal-holder capacity, the resonance curve of the crystal circuit is practically symmetrical; the crystal acts as a series-resonant

Fig. 5-22-Graphical representation of single-signal selectivity. The shaded area indicates the over-all bandwidth, or region in which response is ohtainable.
circuit of very high Q and thus allows signals of the desired frequency to be fed through C_{3} to $L_{3} L_{4}$, the output transformer. Without C_{2}, the holder capacity (with the crystal acting as a dielectric) would pass undesired signals.

The phasing control has an additional function besides neutralization of the crystal-holder capacity. The holder capacity becomes a part of the crystal circuit and causes it to act as a parallel-tuned resonant circuit at a frequency slightly higher than its series-resonant frequeney. Signals at the parallel-resonant frequency thus are prevented from reaching the output circuit. The phasing control, by varying the effect of the holder capacity, permits shifting the parallel-resonant frequency over a considerable range, providing adjustable rejection of interfering signals. The effect of rejection is illustrated in Fig. 5-22.

Additional I.F. Selectivity

Most commercial communications receivers do not have sufficient selectivity for amateur use, and their performance can be greatly improved by adding additional selectivity. One popular method is to couple a BC- 553 aireraft receiver (war surplus, tuning range 190 to 550 $k e$.) to the tail end of the $465-k c$. i.f. amplifier in the communications receiver and use the resultant output of the $13 \mathrm{C}-453$. The aircraft receiver uses an $85-k c$. i.f. amplifier that is quite sharp -6.5 kc . wide at -60 db . - and it helps tremendously in separating 'phone' signals and in backing up crystal filters for improved c.w, reception. (See QST, January, 1918, page 40.)

If a BC-453 is not available, it is still a simple matter to enjoy the benefits of improved selectivity. It is only necessary to heterodyne to a lower frequency the $465-\mathrm{kc}$. signal existing in the receiver i.f. amplitier and then rectify it after passing it through the sharp lowfrequency amplifier. The ITammarlund Company and the J. W. Niller Company both offer $50-k e$ t transformers for this application.

QST references on high i.f. selectivity include: McLaughlin, "Selectable Single Sideband," April, 1948; Githens, "C.W. Receiver," Aug., 1948.

RADIO-FREQUENCY AMPLIFIERS

While selectivity to reduce audio-frequency images can be built into the i.f. amplifier, discrimination against radio-frequency images can only be obtained in circuits ahead of the first detector. These tuned circuits and their associated vacuum tubes are called radiofrequency amplifiers. For top performance of a communications receiver on frequencies above 7 Mc ., it is mandatory that it have one or two stages of r.f. amplification, for image rejection and improved sensitivity.

Receivers with an i.f. of 455 kc . can be expected to have some r.f. image response at a signal frequency of 14 Mc . and higher if only one stage of r.f. amplification is used. (Regen-

Fig. 5-2.3-Crystal-filter circuits of three types. All give variable bandwidth, with (: having the greatest range of selectivity. Suitable circuit values are as follows: Circuit A, T_{1}, special i.f. input transformer with high-inductance primary, L_{1}, closely coupled to tuned secondary, $L_{2} ; C_{1}$, $50-\mu \mu \mathrm{fd}$. variable; C, each $100-\mu \mu \mathrm{fl}$. fixed (mica); $\mathrm{C}_{2}, 10$ - to 15- $\mu \mu \mathrm{fd}$. (max.) variable; C3, $50-\mu \mu \mathrm{fd} . \operatorname{trimmer;~} L_{3} C_{4}$, i.f. tuned circuit, with I_{3} tapped to match crystal-circuit impedance. In circuit B, T_{1} is the same as in circnit A except that the secondary is center-tapped; C. is $100-\mu \mu \mathrm{fd}$, variable; C_{2}, C_{3} and C_{4}, same as for circuit $A ; L_{2} L_{4}$ is a transformer with primary, L_{4}, corresponding to tap on L_{3} in \mathbf{A}. In circuit C^{C}, T_{1} is a special i.f, input transformer with tuned primary and low-impedance secondary; C, each $100-\mu \mu \mathrm{fd}$. fixed (nica) ; C_{2}, opposed stator phasing condenser, approximately $8-\mu \mu \mathrm{fd}$. maxinum capacity each side; $L_{3} C_{3}$, high-Q i.f. tuncel circost; $R, 0$ to 3000 olims (selectivity control),
they won't oscillate) are often used on the higher frequencies because they introduce less noisc. Pentodes are better where maximum image rejection is desired, because they have less loading effect on the circuits.

Feed-Back

Feed-back giving rise to regeneration and oscillation can occur in a single stage or it may appear as an over-all feed-back through soveral stages that are on the same frequency. To a void feed-back in a single stage, the output must be isolated from the input in every way possible, with the vacuum tube furnishing the only coupling between the two circuits. For example, an oscillation can be obtainedin an r.f. or i.f. stage if there is any undue capacitive or inductive coupling between output and input circuits, if there is too high an impedance between cathode and ground or screen and ground, or if there is any appreciable impedance through which the grid and plate currents can flow in common. This simply means good shielding of coils and condensers in r.f. and i.f. circuits, the use of good by-pass condensers (mica at 14 Mc . and higher, and with short leads), and returning all by-pass condensers (grid, cathode, plate and screen) with short leads to one spot on the chassis. If single-ended tubes are used, the sereen or cathode by-pass condenser should be mounted across the socket, to serve as a shield between grid and plate pins. Less care is required as the frequency is lowered, but in high-impedance circuits, it is sometimes necessary to shield grid and plate leads and to be careful not to run them close together.

To avoid over-all feed-back in a multistage amplifier, strict attention must be paid to avoid running any part of the output circuit back near the input circuit without first filtering it carefully. Since the signal-carrying parts of the circuit (the "hot" grid and plate leads) can't be filtered,
eration in the r.f. amplifier will reduce image response, but regeneration is often a tricky thing to control.) With two stages of r.f. amplification and an i.f. of 455 kc ., no images should be apparent at 14 Mc ., but they will show up on 28 Mc. and higher. Three stages or more of r.f. amplification, with an i.f. of 455 ke., will reduce the images at 28 Mc., but it really takes four or more stages to do a good job. The better solution at 28 Mc . is to use a "triple-detection" superheterodyne, with one stage of $r . f$. amplification and a first i.f. of 1600 kc . or higher. A regular receiver with an i.f. of 455 kc . can be converted to a triple superhet by connecting a "converter" (to be deseribed later) ahead of the receiver.

For best selectivity, r.f. amplifiers should use high- Q circuits and tubes with high input and output resistance. Variable- μ pentodes are practically always used, although triodes (neutralized or otherwise connected so that
the best design for any multistage amplifier is a straight line, to keep the output as far away from the input as possible. For example, an r.f. amplifier might run along a chassis in a straight line, run into a mixer where the frequency is changed, and then the i.f. amplifier could be run back parallel to the r.f. amplifier, provided there was a very large frequency difference between the r.f. and the i.f. amplifiers. However, to avgid any possible coupling, it would be better to run the i.f. amplifier off at right angles to the r.f.-amplifier line, just to be on the safe side. Good shielding is important in preventing over-all oscillation in high-gain-per-stage amplifiers, but it becomes less important when the stage gain drops to a low value. In a high-gain amplifier, the power leads (including the heater circuit) are common to all stages, and they can provide the over-all coupling if they aren't properly filtered. Good by-passing and the use of series
isolating resistors will generally eliminate any possibility of coupling through the power leads. 1R.f. chokes, instead of resistors, are used in the heater leads where necessary.

CROSS-MODULATION

Since a one- or two-stage r.f. amplifier will have a passband measured in hundreds of ke. at 14 Mc . or higher, strong signals will be amplified through the r.f. amplifier even though it is not tuned exactly to them. If these signals are strong enough, their amplified magnitude may be measurable in volts after passing through several r.f. stages. If an undesired signal is strong enough after amplification in the r.f. stages to shift the operating point of a tube (by driving the grid into the positive region), the undesired signal will modulate the desired signal. This effeet is called cross-modulation, and is often encountered in reeeivers with several r.f. stages that are working at high gain. It is readily detectable as a superimposed modulation on the signal being listened to, and often the effeet is that a signal can be tuned in at several points. It can be reduced or eliminated by greater selectivity in the antenna and r.f. stages (difficult to obtain), the use of variable- μ tubes in the r.f. amplifier, reduced gain in the r.f. amplifier, or reduced antenna input to the receiver.

Gain Control

To avoid cross-modulation and other overload effeets in the first detector and r.f. stages, the gain of the r.f. stages is usually made adjustable. This is accomplished by using vari-able- $-\mu$ tubes and varying the d.e. grid bias, either in the grid or cathode circuit. If the gain control is automatic, as in the case of a.v.e., the bias is controlled in the grid circuit Manual control of r.f. gain is generally done in the cathode eircuit. A typical r.f. amplifier stage with the two types of gain control is shown in Fig. 5-24.

Fig. 5-2. - Typical radio-frequency amplifier circuit for a superheterodyne receiver. Representative values for components are as follows:
$\mathrm{C}_{4} . \mathrm{C}_{2}$. $\mathrm{C}_{3} . \mathrm{C}_{4}-0.01 \mu \mathrm{ff}$. below $15 \mathrm{Mc}, 0.001 \mu \mathrm{fd}$, at 30 Mc .
$\mathrm{K}_{1}, \mathrm{~K}_{2}$ - See Table 5-II.
13_{3} - 1800 ohms.
K_{4} - 0.22 megohm.

Fig. 5.25-Converter-circuit tracking methods. Fi,l. lowing are approximate circuit values for $450-$ to 465 kc . i.f.s, with tuning ranges of approximately 2,15-to-1 and fiz having $1-10-\mu \mu \mathrm{fd}$, maximum, and the total minimum capacitance, including C_{3} or C_{4}, being 30 to $35 \mu \mu \mathrm{fd}$.

Tuning Runge	L_{1}	L_{2}	C5
$1.6-1 \mathrm{Mr}$.	50 ${ }^{\text {un, }}$	$40 \mu \mathrm{~h}$.	$0,0013 \mu \mathrm{fd}$.
$3.6-5.5 \mathrm{Mc}$	$14 \mu \mathrm{~h}$.	12.2 m.	(0.012 2 - $\mu \mathrm{fd}$.
- 15 Mc .	$3.5 \mu \mathrm{~h}$,	$3 \mu \mathrm{~h}$.	0,00) $45 \mu \mathrm{fd}$.
14.30 Mc .	$0.8{ }^{\mu} \mathrm{h}$,	$0.78 \mu \mathrm{~h}$.	lune used

Sprosimate values for $4 \pi 0$. to 465 ke, i,f with a $\because, \overline{-}+10 \cdot 1$ tuning range, C_{1} and C_{2} heing $350-\mu \mu \mathrm{F}$, , maximum. minimuni including C_{3} and C_{4} being 40 ta $50 \mu \mu \mathrm{fd}$.

Tuning Runge	L_{1}	L_{2}	C5
11.5-1.5 Mc,	$240 \mu h$.	$130 \mu \mathrm{~h}$.	12.7 $\mu_{\mu} \mathrm{fd}$.
1.5-4 \c.	$32 \mu \mathrm{~h}$.	$2.5 \mu \mathrm{~h}$.	$0.00115 \mu \mathrm{fd}$.
$4-10 \mathrm{Dl} .$	$1.5 \mu \mathrm{~h}$.	$1 \mu \mathrm{~h}$.	$0.0028 \mu \mathrm{fd}$.
$10-25 \mathrm{Mc}$	$0.8 \mu \mathrm{~h}$,	$10.25 \mu \mathrm{~h}$.	None used

Tracking

In a simple receiver with no r.f. stage, it is no ineonvenience to adjust the high-frequency oscillator and the mixer circuit independently, because the mixer tuning is broad and requires little attention over an amateur band. However, when r.f. stages are added ahead of the mixer, the selectivity of the r.f. stages and mixer makes it awkward to use a two-control receiver over an entire amateur band, even though the mixer and r.f. stages are ganged and require only one control. Hence most receivers with one or more r.f. stages gang all of the tuning controls to give a single-tuning-
control receiver. Obviously there must exist a constant difference in frequency (the i.f.) between the oscillator and the mixer/r.f. circuits, and when this condition is achieved the circuits are said to track.

Tracking methods for covering a wide frequency range, suitable for general-coverage receivers, are shown in Fig, 5-25. The tracking capacity, C_{5}, commonly consists of two condensers in parallel, a fixed one of somewhat less capacity than the value needed and a smaller variable in parallel to allow for adjustment to the exact proper value. In practice, the trimmer, C_{4}, is first set for the high-frequency end of the tuning range, and then the tracking condenser is set for the low-frequency end. The tracking capacity becomes larger as the percentage difference between the oscillator and signal frequencies becomes smaller (that is, as the signal frequency becomes higher). Typical circuit values are given in the tables
under Fig. 5-25. The coils can be calculated with the ARRL Lightning Calculator and then trimmed in the circuit for best tracking.

In amateur-band receivers, tracking is simplified by choosing a bandspread circuit that gives practically straight-line-frequency tuning (equal frequency change for each dial division), and then adjusting the oscillator and mixer tuned circuits so that both cover the same total number of kilocycles. For example, if the i.f. is 45 j kc. and the mixer circuit tunes from 7000 to 7300 kc . between two given points on the dial, then the oscillator must tune from 7455 to 7755 ke. between the same two dial readings. With the bandspread arrangement of Fig. 5-8A, the tuning will be practically straight-line-frequency if C_{2} (bandset) is 4 times or more the maximum capacity of C_{1} (bandspread), as is usually the case for strietly amateur-band coverage. C_{1} should be of the straight-line-capacity type (semi-circular plates).

Improving Receiver Sensitivity

Early in this chapter it was pointed out that the sensitivity (signal-to-noise ratio) of a receiver on the higher frequencies above 20 Mc . is dependent upon the bandwidth of the receiver and the noise contributed by the "front end" of the receiver. Neglecting the fact that the image rejection is poor, a receiver with no r.f. stage is generally satisfactory, from a sensitivity point, in the $3.5-$ and $7-\mathrm{Mc}$. bands. However, as the frequency is increased and the atmospheric noise becomes less, the advantage of a good "front end" becomes apparent. Hence at $1 *$ Mc. and higher it is worth while to use at least one stage of r.f. amplification ahead of the first detector for best sensitivity as well as image rejection. The multigrid converter tubes have very poor noise figures, and even the best pentodes and triodes are three or four times noisier when used as mixers as they are when used as amplifiers.

If the purpose of an r.f. amplifier is to improve the receiver noise figure at 14 Mc . and higher, a high- G_{m} pentode or triode should be used. Among the pentodes, the best tubes are the 6AC7, 6Aに゙5 and the 6SG7, in the order named. The 6AK5 takes the lead around 30 Mc. The 6J4, 6J6, 7 F 8 and triode-connected $6 . \mathrm{K} 5$ are the best of the triodes. For best noise figure, the antenna circuit should be coupled a little heavier than optimum. This condition leads to poor selectivity in the antema circuit, so it is futile to try to combine best sensitivity with selectivity in this circuit.

When a receiver is satisfactory in every respect (stability and selectivity) except sensitivity on 14 and/or 28 Mc., the best solution for the amateur is to add a preamplifier, a stage or two of r.f. amplification designed expressly to improve the sensitivity. If image rejection is lacking in the receiver, some selectivity should be built into the pre-
amplifier (it is then called a preselector). If, however, the receiver operation is poor on the higher frequencies but is satisfactory on the lower ones, a "converter" is the best solution.

Some commercial receivers that appear to lack sensitivity on the higher frequencies can be improved simply by tighter coupling to the antenna. Since the recciver manufacturer has no way to predict the type of antenna that will be used, he generally designs the input for some compromise value, usually around 300 or 400 ohms in the high-frequency ranges. If your antenna matches to something far different from this, the receiver effectiveness can be improved by proper matching. This can be accomplished by changing the antenna to the right value (as determined from the receiver instruction book) or by using a simple matching device as described later in this chapter. Overcoupling the input circuit will of ten improve sensitivity but it will, of course, always reduce the image-rejection contribution of the antenna circuit.

Commercial receivers can also be "hopped up" by substituting a high- G_{m} tube in the first r.f. stage if one isn't already there. The amateur must be prepared to take the consequences, however, since the stage may oscillate, or not track without some modification. A simpler solution is to add the "hot" r.f. stage ahead of the receiver.

Regeneration

Regeneration in the r.f. stage of a receiver (where only one stage exists) will often improve the sensitivity because the greater gain it provides serves to mask more completely the first-detector noise, and it also provides a measure of automatic matching to the antenna through tighter coupling. However, accurate ganging becomes a problem, because of the
increased selectivity of the regenerative r.f. stage, and the receiver almost invariably becomes a two-handed-tuning device. Regeneration should not be overlooked as an expedient, however, and many amateurs have used it with considerable success. High- G_{m} tubes are the best as regenerative amplifiers, and the feed-back should not be controlled by changing the operating voltages (which should be the same as for the tube used in a high-gain amplifier) but by changing the loading or the feed-tack coupling. This is tricky and another reason why regeneration is not too widely used.

Gain Control

In a receiver front end designed for best signal-to-noise ratio, it is advantageous in the reception of weak signals to eliminate the gain control from the first r.f. stage and allow it to run "wide open" all of the time. If the first stage is controlled along with the i.f. (and other r.f. stages, if any), the signal-to-noise ratio of the receiver will suffer. As the gain is reduced, the G_{m} of the first tube is reduced, and its noise figure becomes higher. An elaborate receiver might well have separate gain controls for the first r.f. stage and for all i.f. stages.

Extending the Tuning Range

As mentioned earlier, when a receiver doesn't cover a particular frequeney range, either in fact or in satisfactory performance, a simple solution is to use a converter. A converter is another "front end" for the receiver, and it is made to tune the proper range or to give the necessary performance. It works into the receiver at some frequency between 1.6 and 10 Mc . and thus forms with the receiver a "triple-deteetion" superhet.
There are several different types of converters in vogue at the present time. The commonest type, since it is the oldest, uses a regular tunable oscillator, mixer, and r.f. stages as desired, and works into the receiver at a fixed frequency. A second type uses broadbanded r.f. stages in the r.f. and mixer stages of the converter, and only the oscillator is tuned. since the frequency the converter works into is high (7 Mc . or more), little or no trouble with images is experienced, despite the broad-band r.f. stages. A third type of converter uses broad-banded r.f. and output stages and a fixed-frequency oscillator (selfor crystal-controlled). The tuning is done with the receiver the converter is conneeted to. This is an excellent system if the receiver itself is well shielded and has no external piek-up of its own. Many war-surplus receivers fall in this category. A fourth type of converter uses a fixed oscillator with ganged mixer and r.f. stages, and requires two-handed tuning, for the r.f. stages and for the receiver. The r.f. tuning is not critical, however, unless there are many stages.

The broad-banded r.f. stages have the advantage that they can be built with short leads, since no tuning capacitors are required and the unit can be tuned initially by trimming the inductances. They are a little more prone to cross-modulation than the gangtuned r.f. stages, however, because of the lack of selectivity. The fourth type of converter, although the most difficult to build, is probably the most satisfactory, particularly if a erystal-controlled high-frequency oscillator is used. It not only has the advantage of the best selectivity and protection against images and cross-modulation, but the crystal gives it a stability unobtainable with self-controlled oscillators. Amateurs who specialize in operation on 28 and 50 Mc . often develop good converters for use ahead of conventional communications receivers, and the extra trouble often pays off in outstanding performance for the station.

While converters can extend the operating range of an existing receiver, their greatest advantage probably lies in the opportunity they give for getting the best performance on any one band. By selecting the best tubes and techniques for any particular band, the amateur is assured of top receiver performance. With separate converters for each of several bands, changes can be made in any one without disabling or impairing the receiver performance on another band. The use of converters ahead of the low-frequency receiver is rapidly becoming standard practice on the bands above 14 Mc .

Tuning a Receiver

C. W. Reception

For making code signals audible, the beat oscillator should be set to a frequency slightly different from the intermediate frequency. To adjust the beat-oscillator frequency, first tune in a moderately-weak but steady carrier with the beat oscillator turned off. Adjust the receiver tuning for maximum signal strength,
as indicated by maximum hiss. Then turn on the beat oscillator and adjust its frequency (leaving the receiver tuning unchanged) to give a suitable beat note. The beat oscillator need not subsequently be touched, except for occasional checking to make certain the frequency has not drifted from the initial setting. The b.f.o. may be set on either the liigh- or low-frequency side of zero beat.

The use of a.v.c. is not generally satisfactory in c.w. reception, except in receivers expressly designed for the purpose, because the rectified beat-oscillator voltage in the second-detector circuit also operates the a.v.c. circuit. This gives a constant reduction in gain and prevents utilization of the full sensitivity of the receiver. Hence the gain should be manually adjusted to give suitable audio-frequency output.

To avoid overloading in the i.f. circuits, it is usually better to control the i.f. and r.f. gain and keep the audio gain at a fixed value than to use the a.f. gain control as a volume control and leave the r.f. gain fixed at its highest level, except when there are few loud signals on the band and a low noise leyel.

Tuning with the Crystal Filter

If the receiver is equipped with a crystal filter the tuning instructions in the preceding paragraph still apply, but more care must be used both in the initial adjustment of the beat oscillator and in tuning. The beat oscillator is set as described above, but with the crystal filter in operation and adjusted to its sharpest position, if variable selectivity is available. The initial adjustment should be made with the phasing control in the intermediate position. After it is completed, the beat oscillator should be left set and the receiver tuned to the other side of zero beat (audio-frequency image) on the same carrier to give a beat note of the same tone. This beat will be considerably weaker than the first, and may be "phased out" almost completely by careful adjustment of the phasing control. This is the adjustment for normal operation; it will be found that one side of zero beat has practically disappeared, leaving maximum response on the desired side.
An interfering signal having a beat note differing from that of the a.f. image can be similarly phased out, provided its carrier frequency is not too near the desired carrier.

Depending upon the filter design, maximum selectivity may cause the dots and dashes to lengthen out so that they seem to "run together." It must be enphasized that, to realize the benefits of the crystal filter in reducing interference, it is necessary to do all tuning with it in the circuit. Its selectivity is so high that it is often impossible to find the desired station quickly, should the filter be switched in only when interference is present.

'Phone Reception

In reception of 'phone signals, the normal procedure is to set the r.f. and i.f. gain at maximum, switch on the a.v.c., and use the audio gain control for setting the volume. This insures maximum effectiveness of the a.v.c. system in compensating for fading and maintaining constant audio output on either strong or weak signals. On occasion a strong signal close to the frequency of a weaker desired station may take control of the a.v.c., in which
case the weaker station will practically disappear because of the reduced gain. In this case better reception may result if the a.v.c. is switched off, using the manual r.f. gain control to set the gain at a point that prevents "blocking" by the stronger signal.

A crystal filter will do much toward reducing interference in 'phone reception. Although the high selectivity cuts sidebands and thereby reduces the audio output, especially at the ligher audio frequencies, it is possible to use quite high selectivity without destroying intelligibility even though the "quality" of the transmission may suffer. As in the case of c.w. reception, it is advisable to do all tuning with the filter in the circuit. Variable-selectivity filters permit a choice of selectivity to suit interference conditions.

An undesired carrier close in frequency to a desired carrier will heteroclyne with it to produce a beat note equal to the frequency difference. Such a heterodyne can be reduced by adjustment of the phasing control in the crystal filter. It cannot be prevented in a "straight" superheterodyne having no crystal filter.

A tone control often will be of help in reducing the effects of high-pitched heterodynes, sideband splatter and noise, by cutting off the higher andio frequencies. This, like sideband cutting with high selectivity, causes some reduction in naturalness.

Spurious Responses

Spurious responses can be recognized without a great deal of difficulty. Often it is possible to identify an image by the nature of the transmitting station, if the frequency assignments applying to the frequency to which the receiver is tuned are known. However, an image also can be recognized by its behavior with tuning. If the signal causes a heterodyne beat note with the desired signal and is actually on the same frequency, the beat note will not change as the receiver is tuned through the signal; but if the interfering signal is an image, the beat will vary in pitch as the receiver is tuned. The beat oscillator in the receiver must be turned off for this test. Using a crystal filter with the beat oscillator on, an image will peak on the side of zero beat opposite that on which the desired signal peaks.

Harmonic response can be recognized by the "tuning rate," or movement of the tuning dial required to give a specified change in beat note. Signals getting into the i.f. via high-freguency oscillator harmonics tune more rapidly (less dial movement) through a given change in beatnote than do signals received by normal means.

Harmonics of the beat oscillator can be recognized by the tuning rate of the beat-oscillator pitch control. A smaler movement of the control will suffice for a given change in beat note than that necessary with legitimate signals. In poorly-shielded receivers it is often possible to find b.f.o harmonics below 2 Mc., but they should be very weak at higher frequencies.

Narrow-Band Frequency- and Phase-Modulation Reception

FM Reception

In the reception of NFM signals by a normal communications receiver, the a.v.c. is switched off and the incoming signal is not tuned "on the nose," as indicated by maximum reading of the S-meter, but slightly off to one side or the other. This puts the carrier of the incoming signal on one side or the other of the i.f. selectivity characteristic (see Fig. 5-1). As the frequency of the signal changes back and forth over a small range with modulation, these variations in frequency are translated to variations in amplitude, and the consequent AM is detected in the normal manner. The signal is tuned in (on one side or the other of maximum carrier strength) until the audio quality appears to be best. The audio output from the signal depends on the slope of the i.f. characteristic and the amount of swing (deviation) of the signal. If the audio is too weak, the transmitting operator should be advised to increase his swing slightly, and if the audio quality is bad ("splashy" and with serious distortion on volume peaks) he should be advised to reduce his swing. Coïperation between transmitting and receiving operators is a necessity for best audio quality. The transmitting station should always be advised immediately if at any time his bandwidth exceeds that of an AM signal, since this is a violation of FCC regulations, except in those portions of the bands where wide-band FM is permitted.

If the recciver has a discriminator or other detector designed expressly for FM reception,
the signal is peaked on the receiver (as indicated by maximum S -meter reading or minimum background noise). There is also a spot on either side of this tuning condition where audio is recovered through slope detection, but the signal will not be as loud and the background noise will be higher.

PM Reception

Phase-modulated signals can be received in the same way that NFM (narrow-band FM) signals are, except that in this case the audio output will appear to be lacking in "lows," beeause of the differences in the deviation-us.audio characteristics of the two systems. This can be remedied to a considerable degree by advancing the tone control of the receiver to the point where more nearly normal speech output is obtained.

NPM signals can also be received on communications receivers by making use of the erystal filter, in which case there is no need for audio compensation. The erystal filter should be set to the sharpest position and the carrier should be tuned in on the crystal peak, nol set off to one side. The phasing condenser should be set not for exact neutralization but to give a rejection notch at some convenient side frequency such as 1000 cycles off resonance. There is considerable attenuation of the side bands with such tuning, but it can readily be overcome by using additional audio gain. NFM signals received through the crystal filter in this fashion will have a "boomy" characteristic because the lower frequencies are accentuated.

Reception of Single-Sideband Signals

Single-sidehand siguals are generally transmitted with little or no carricr, and it is necessary to furnish the carrier at the recciver before proper reception can be obtained. Because little or no carrier is transmitted, the a.v.c. in the receiver is not useful, and manual variation of the r.f. gain control is recuired.

A single-sideband signal can be identified by the absence of a strong carrier and by the severe variation of the s-meter at a syllabic rate. When such a signal is encountered, it should first be peaked with the main tuning dial. (This centers the signal in the i.f. passband.) After this operation, do not touch the main tuning dial. Then set the r.f. gain control at a very low level and switch offit the a.v.e. Increase the audio volume eontrol to maximum, and bring up the r.f. gain control until the signal can be heard weakly. Switeh on the beat oscillator, and carefully adjust the frequency of the beat oscillator until proper sperech is heard. If there is a slight amount of carrier present, it is only necessary to zero-
beat the oscillator with this weak carricr. It will be noticed that with an incorrect setting of the beat oscillator, the speech will sound high- or low-pitehed or even inverted (very garbled), but no trouble will be had in getting the eorrect setting, once a little experience has been obtained. The use of minimum r.f. gain and maximum audio gain will insure that no distortion (overload) occurs in the receiver.

Another method of receiving single-sideband signals is to reinsert the carrier at the signal frequency. If, for example, you wish to copy a single-sideband signal that is on 3990 ke., you can supply the carricr at that frequency (with a smail auxiliary oscillator or frequency meter) and leave your receiver in the normal condition for A M reception (a.v.c. on, b.f.o. off). This method of reception is advantageous in "round-table" contacts that include a single-sideband station, because it calls only for carcful tuning of the auxiliary oscillator and not of the receiver. Further, only the auxiliary oscillator must be stable.

I.F. Alignment

A calibrated signal generator or test oscillator is a very useful device for initial alignment of an i.f. amplifier. Some means for measuring the output of the receiver is required. If the receiver has a tuning meter, its indications will serve the purpose. Larking an S-meter, a high-resistance voltmeter or preferably a vacuum-tube voltmeter can be connected across the second-detector load resistor, if the second detector is a diode. Alternatively, if the signal generator is a modulated type, an a.c. voltmeter can be connected across the primary of the transformer feeding the 'speaker, or from the plate of the last audio amplifier through a $0.1-\mu \mathrm{fl}$. blocking condenser to the receiver chassis. Lacking an a.c. voltmeter, the audio output can be judged by ear, although this method is not as accurate as the others. If the tuning meter is used as an indication, the a.v.c. of the receiver should be turned on, but any other indication requires that it be turned off. Lacking a test oscillator, a steady carrier tuned through the input of the receiver (if the job is one of just touching up the i.f. amplifier) will be suitable. However, with no oscillator, and tuning an amplifier for the first time, one's only recourse is to try to peak the i.f. transformers on "noise," a diffieult task if the transformers are badly off resonance, as they are apt to be. It would be much better to spend a little time and haywire together a simple oscillator for test purposes.

Initial alignment of a new i.f. amplifier is as follows: The test oscillator is set to the correst frequency, and its output is coupled through a condenser to the grid of the last i.f. amplifior tube. The trimmer condensers of the transformer feeding the second detector are then adjusted for maximum output, as shown by the indicating device being used. The oscillator output lead is then clipped on to the grid of the next-to-the-last i.f. amplifier tube, and the second-from-the-last transformer trimmer adjustments are peaked for maximum output. This process is continued, working back from the second detector, until all of the i.f. transformers have been aligned. It will be necessary to reduce the output of the test oscillator as more of the i.f. amplifier is brought into use, because the increased gain is likely to cause overloading and consequent inaccurate adjustments. It is desirable in all cases to use the minimum oscillator signal that will give useful output readings. The i.f. transformer in the plate circuit of the mixer is aligned with the signal introduced to the grid of the mixer. Since the tumed circuit feeding the miser grid may have a very low impedance at the i.f., it may be necessary to boost the test generator output or to disconnect the tuned circuit temporarily from the mixer grid.

If the i.f. amplifier has a crystal filter, the filter should first be switched out and the alignment carried out as above, setting the test oscillator as closely as possible to the crystal frequency. When this is completed, the crystal should be switched in and the oscillator frequency varied back and forth over a small range either side of the arystal frequency to find the exact frequency, as indicated by a sharp rise in output. Leaving the test oscillator set on the crystal peak, the i.f. trimmers should be realigned for maximum output. The necessary readjustment should be small. The oscillator frequency should be checked frequently to make sure it has not drifted from the crystal peak.

A modulated signal is not of much value for aligning a crystal-filter i.f. amplifier, since the high selectivity cuts sidebands and the results may be inaccurate if the audio output is used as the tuning indication. Lacking the a.v.c. tuning meter, the transformers may be conveniently aligned by ear, using a weak unmodulated signal adjusted to the crystal prak. Switch on the beat oscillator, adjust to a suitable tone, and align the i.f. transformers for maximum audio out put.

An amplifier that is only slightly out of alignment, as a result of normal drift or aging, can be realigned by using any steady signal, such as a local broadeast station, instead of the test oscillator. One's 100-ke. standard makes an excellent sigmal source for "touching up" an i.f. amplifier. Allow the receiver to warm up thoroughly, tune in the signal, and trim the i.f. for maximum output.

If you bought your receiver instead of making it, be sure to read the instruction book carefully before attempting to realign the receiver. Most instruction books include alignment details, and any little special tricks that are peculiar to that particular type of receiver will also be described.

R.F. Alignment

The objective in aligning the r.f. circuits of a gang-tuned receiver is to secure adequate tracking over each tuning range. The adjustment may be carried out with a test oscillator of suitable frequency range, with harmonics from your $100-\mathrm{kc}$. standard or other known oseillator, or even on noise or such signals as may be heard. First set the tuning dial at the high-frequency end of the range in use. Then set the test oscillator to the frequency indicated by the receiver dial. The test-oscillator output may be connected to the antenna terminals of the receiver for this test. Adjust the oscillator trimmer condenser in the receiver to give maximum response on the test-oseillat or signal. then reset the receiver dial to the low-frequency end of the range. Set the test-oscillator frequency near the fre-
quency indicated by the receiver dial and carefully tune the test oscillator until its signal is heard in the receiver. If the frequency of the signal as indicated by the test-oscillator calibration is higher than that indicated by the receiver dial, more inductance (or more capacity in the tracking condenser) is needed in the receiver oscillator circuit; if the frequency is lower, less inductance (less tracking capacity) is required in the receiver oscillator. Most commereial receivers provide some means for varying the inductance of the coils or the capacity of the tracking condenser, to permit aligning the receiver tuning with the dial calibration. Set the test oseillator to the frequency indicated by the receiver dial, and then adjust the tracking capacity or inductance of the recciver oscillator coil to obtain maximum response. After making this adjustment, recheck the high-frequency end of the scate as previously described. It may be necessary to go back and forth between the ends of the range several times before the proper combination of inductance and capacity is secured. In many eases, better over-all tracking will result if frequencies near but not artually at the ends of the tuning range are selected, instead of taking the extreme dial settings.

After the oscillator range is properly adjusted, set the receiver and test oscillator to the high-frequency end of the range. Adjust the mixer trimmer condenser for maximum hiss or signal, then the r.f. trimmers. Reset the timing dial and test oscillator to the low-frequency end of the range, and repeat; if the circuits are properly designed, no change in trimmer settings should be necessary. If it is necessary to increase the trimmer capacity in any circuit, it indicates that more inductance is needed; if less capacity resonates the circuit, less inductance is required.

Tracking seldom is perfect throughout a tuning range, so that a check of alignment at intermediate points in the range may show it to be slightly off. Normally the gain variation from this cause will be small, however, and it will suffice to bring the circuits into line at both ends of the range. If most reception is in a particular part of the range, such as an amateur band, the circuits may be aligned for maximum performance in that region, even though the ends of the frequency range as a whole may be slightly out of alignment.

Oscillation in R.F. or I.F. Amplifiers

Oscillation in high-irequency amplifier and mixer circuits may be evidenced by squeak or "birdies" as the tuning is varied, or by complete lack of audible output if the oscillation is strong enough to cause the a.v.c. system to reduce the receiver gain drastically. Oscillation can be caused by poor connections in the common ground circuits. Inadequate or defective by-pass condensers in cathode, plate and screengrid circuits also can cause such oscillation. A metal tube with an ungrounded shell may cause
trouble. Improper screen-grid voltage, resulting from a shorted or too-low screen-grid series resistor, also may be responsible for such instability.

Oscillation in the i.f. circuits is independent of high-fiequency tuning, and is indicated by a continuous squeal that appears when the gain is advanced with the c.w. beat oscillator on. It can result from defects in i.f.-amplifier circuits similar to those above. Inadequate cathode by-pass capacitance is a common cause of such oscillation. An alditional by-pass condenser of 0.1 to $0.25 \mu \mathrm{fd}$. often will remedy the trouble. Similar treatment can be applied to the screen-grid and plate by-pass filters of i.f. stages.

Instability

"Birdies" or a mushy hiss occurring with tuning of the high-frequency oscillator may indicate that the oscillator is "squegging" or oscillating simultancously at lugh and low frequencies. This may be caused by a defective tube, too-high oscillator plate or screen-grid voltage, excessive feed-back, or too-high gridleak resistance.

A varying beat note in c.w. reception indicates instability in either the h.f. oscillator or beat oscillator, usually the former. The stability of the beat oscillator can be checked by introducing a signal of intermediate frequency (from a test oscillator) into the i.f. amplifier; if the beat note is unstable, the trouble is in the beat oscillator. Poor connections or defective parts are the likely cause. Instability in the high-frequency oscillator may be the result of poor circuit design, loose connections, defective tubes or circuit components, or poor voltage regulation in the oscillator plate- and/ or screen-supply circuits. Mixer pulling of the oscillator circuit also will cause the beat note to "chirp" on strong c.w. signals because the oscillator load changes slightly.

In 'phone reception with a.v.c., a peculiar type of instability (" motorboating") may appear if the h.f.-oscillator frequency is sensitive to changes in plate voltage. As the a.v.c. voltage rises the electrode currents of the controlled tubes decrease, decreasing the load on the power supply and causing its output voltage to rise. Since this increases the voltage applied to the oscillator, its frequency changes correspondingly, throwing the signal off the peak of the i.f. resonance curve and reducing the a.v.c. voltage, thus tending to restore the original conditions. The process then repeats itself, at a rate determined by the signal strength and the time constant of the power-supply circuits. This effect is most pronounced with high i.f. selectivity, as when a crystal filter is used, and can be cured by making the oscillator relatively insensitive to voltage changes and by regulating the plate-voltage supply. The better receivers use Vli-type tubes to stabilize the oscillator voltage - a defective tube will cause trouble with oscillator instability.

A One-Tube Regenerative Receiver

The receiver shown in Figs. 5-26, 5-27, 5-28 and $5-29$ represents close to the minimum requirements of a useful short-wave receiver. Under suitable conditions, it is capable of receiving signals from many foreign countries. It is an excellent receiver for the beginner, because it is casy to build and the components are not expensive.

Fig. 5-26 - The simple one-tube regencrative receiver is buile on a wood-and-Presdwood ehassis, with an aluminum banel. The large left-hand knob drives the eabibrated seale on the bandspread eondenser. The large right-hand knob is for the band-set condenser.
section serving as an audio amplifier to the headphones. A variable antenna-coupling condenser, C_{l}, minimizes "dead spots" in the tuning range that might be caused by antennaresonance effects. Two tuning condensers are used. The band-set condenser, C_{4}, tunes to the desired frequency band, and the bandspread condenser, C_{2} / C_{3}, allows the operator to tune slowly through the band. The bandspread condenser is a dual condenser made from a single midget variable, and on all of the amateur bands except 3.5 Mc , only the C_{3} portion is connected in the circuit. The $3.5-\mathrm{Mc}$. coil includes a jumper that connects C_{2} on that band. Regeneration is controlled by varying the plate voltage on the detector with R_{4}.

The nechanical design is made as simple as possible. Work on the chassis and the front panel can be done with only a No. 8 drill, a $1 / 4$-inch drill, and a round file. There is no complicated metal work or bending. To reduce the panel size, the knob on the band-set condenser overlaps the friction-driven tuning dial.

The front panel is a 7×7-inch sheet of $1 / 16$-inch aluminum. It carries the tuning controls, the regeneration adjustment and the antenna-coupling condenser shaft. The sides of the chassis are soft wood strips, $7 \times 2 \times 5 / 8$ inches. The deck of the chassis is a 7×7-inch sheet of $1 / 4$-inch Presdwood

From the circuit in Fig. 5-28, it can be seen that the only tube in the receiver is a 6SN゙7 twin triode. One section is used as a regenerative detector, the other triode

Fig. 5.27 - Another view of the one-tube regenerative receiver shows how the tube and eoil sockets are mounted. The headphone tips phug into the two small tip jaeks on the rear panel - the set of four machine serews and muts is for conneeting to the power supply.

Fig. 5-28 - Wiring diagram of the one-tube regenerative receiver.
C_{1} - Homemade adjustable condenser. see text.
$\mathrm{C}_{2}, \mathrm{C}_{3}$ - Reworked midget variable
(Millen 21935), see text.
$\mathrm{C}_{4}-100-\mu \mu \mathrm{fd}$, midget varialle (Millen 20100).
Cis - $100-\mu \mu \mathrm{fd}$, mica.
(С6, $\mathrm{C}_{7}-470 \cdot \mu \mu \mathrm{fd}$, mica.
(in - $12-\mu \mathrm{fd}$. 150 -volt electrolytic.
C $5-10-\mu \mathrm{fd} .25 \cdot v o l t$ electrotytie.
$\mathrm{H}_{1}-1.5$ megohms, $1 / 2$ watt.
$\mathrm{R}_{2}-0.15 \mathrm{megohm}, 1 / 2$ watt.
$\mathrm{R}_{3}-1500$ ohms, $1 / 2$ watt.
$R_{4}-50,000$-ohm wire-wound potentiometer.
$R_{5}-33,1000$ ohms, 1 watt.
$\mathrm{Rr}^{\circ} \mathrm{C}_{1}-2.5-\mathrm{mh}$. r.f. choke (National 100L).
T_{1} - Interstage audio transformer (Stancor A-4-2.3).
prong coil socket is on $7 / 8$-inch pillars. The grid leak, R_{1}, and grid condenser, C_{5}, are located above the deck. The back panel is made of 1/4-inch l'resdwood and carries the binding posts. The binding posts are $3 / 4$-inch $6-32 \mathrm{ma}-$ chine screws with suitable nuts and washers. The chassis is assembled with $3 / 4$-inch No. 6 round-head wood serews. Upon completion, the assembly is given a coat of flat black paint, The front panel is secured to the chassis side members with No. 6 rount-head wood screws.

The bandspread condenser, C_{2} / C_{3}, is made by modifying a Millen 21935 variable condenser. L'sing a hack-saw blade, the stator bars arre carefully cut between the eighth and ninth of sheet copper. One plate is secured to the underside of the deck on a tiepoint. The other plate is carried by a $1 / 4$-inch diameter polystyrene rod. Rotating the shaft swings the moving plate away from the fixed plate and provides a capacity of from 5 to less than $1 \mu \mu \mathrm{fd}$. The polystyrene rod passes through the front panel and out the back panel. It is secured at the back by a $1 / 4$-inch shaft collar. The panel end carries a tuning knob, and a rubber grommet under slight compression, placed between the knob and the panel, acts as a friction lock. The moving plate is sedured to the polystyrene rod by a copperwire hairpin soldered to the plate and fixed into a pair of holes drilled in the rod. A flexible

fis, 5-29 - This view underneath the one-tube regenerativerceeivershows the arrangement of parts and the eonstruction of the vari. alle antenna-coupling condenser.

COIL TABLE FOR THE ONE.TUBE REGENERATIVE RECEIVER		
All coils wound on Millen 45005 l-inch diameter		
coil forms. Both L_{1} and L_{2} should be wound in the		
gane direction, with L_{2} closer to the pins of the		
form. The grid end of L_{1} and the plate end of L_{2}		
should be on the outside ends of the coils.		

separation between strips is just enough ($11 / 4$ inches) to clear the tube socket and electrolytic eondensers, and the leads from the transformer and choke also pass through this opening. binding posts are made in the same manner as on the receiver, with No. 6 machine screws and suitable nuts and washers.

Although it is satisfactory to mount the power supply on the same table with the receriver, it should be at least ond or two feet away, to avoid the possibility of a.c. hum pick-up. Fior the same reason, the antenna lead should not pass too close to any a.c. wiring from or to the power supply.
losing the parts listed in lig. 5-31 shoulat result in a power supply that gives about 180 volts when connected to the receiver. However, if the 6s. 7 in the receiver appears to run too hot (as tested by touehing the tube after the recoiver has boon ruming for jo or 10 minutes), the output voltage can be reduced by increasing the resistance at R_{1} (ligg. $\overline{3}-31$). Adding
lead is soldered to the protruding wire, and the lead passes out through a hole in the side of the chassis to make connection to the antenna. Kinots in this wire, on either side of the chassis wall, secure the wire firmly in place. The fixed plate is covered with a single layer of cerlophane scoteh Tape, to prevent a short-circuit when the condenser is positioned at maximum capacity.

All wiring is No. 14 tinned copper. birect leads from the condensers to the coil sockeot add to the strength and rigidity of the receiver. "The r.f. choke RF' (r , by-pass condensers, and the audio transformer all are fastened to the underside of the deck.

The power supply for the receiver, shown in Figs. $5-30$ and $5-31$, is simple 10 assemble because it is built on a wooden chassis. Two strips of $11 / 2 \times$ $3 / 4$-inch wood, 12 inches long, are nailed to two short and pioces. The

Fig. 5-30 - The power supply for the regenerative receiver is buili on a simple wooden chassis.

Fig. 5.31 - Circuit diagram of the power supply for the regenerative receiver.
$\mathrm{C}_{1}, \mathrm{C}_{2}-16-\mu \mathrm{fl}$. 450-volt electrolytic (Mallory RS-217).
R_{1} - 20,004 -ohm 10 -watt wire-wound.
1.1-15-henry 50 ma, filter choke (Stancor C-1080).
$P_{1}-115$-volt line plug.
$\mathrm{T}_{1}-26-5-(0-25$ volts at 50 ma., 6.3 v . at $2.5 \mathrm{amp}, 5 \mathrm{v}$. at 2 amp. (Thordarson T2eR30).

5000 or 10,000 ohms in series with R_{1} should do the trick. Or it may be possible to borrow a voltmeter for measuring the output voltage.

The tuning procedure for a regenerative rereiver is given carlier in this chapter. Even a short piece of wire hung inside the operating room will serve as an antenna, but for best results an antenna from 30 to 75 feet long, strung as high as possible, should be used.

In buying headphones for use with this receiver, one should avoid the "low-impedance" headphones offered in many of the surplus outlets. While these headsets are excellent when used in the proper circuits, this simple receiver requires the use of "high-impedance" headphones for maximum signal output. Good, inexpensive hodphones of this type can be found in any radio store.

An Amateur-Band Eight-Tube Superheterodyne

An advanced type of amateur receiver incorporating one r.f. amplifier stage, variable i.f. selectivity and andio noise limiting is shown in Figs. 5-32, 5-34 and 5-35. As can be seen from the circuit in Fig. 5-33, a 6SG7 pentode is used for the tuned r.f. stage ahead of the 6 N8 8 converter. An antenna compensator, C_{4}, controlled from the pancl, allows one to trim up the r.f. stage when using different antennas that might modify the tracking. The cathode bias resistor of the r.f. stage is made as low as possible consistent with the tube ratings, to keep the gain and hence the signal-to-noise ratio of the stage high. The oscillator portion of the 6 K 8 mixer is tuned to the highfrequency side of the signal except on the 28 Me. band, the usual custom nowadays in eommunications receivers. The oscillator tuning condenser, C_{17}, is of higher capacity than the r.f. and miser tuning condensers, in the interest of better oseillator stability.

The i.f. amplifier is tunced to 455 kc ., and the first stage is made regenerative by soldering a short length of wire to the plate terminal of the socket and running it near the grid terminal, as indicated by $\mathrm{C}_{\mathrm{C} 1}$ in the diagram. Regeneration is controlled by reducing the gain of the tube, and R_{12}, a variable cathode-bias control, serves this function. The second i.f. stage uses a 61:7, selected because high gain is not necessary at this point.

Manual gain-control voltage is applied to the r.f. and second i.f. stages. It is not applied to the mixer because it might pull the oscillator frequency, and it is not tied in with the first i.f. amplifier because it would interlock with the regeneration control used for controlling the selectivity. However, the a.v.e. voltage is applied to the r.f. and both i.f. stages, with the result that the selectivity of the regenerative
stage decreases with loud signals and givers a measure of automatic selectivity control. Using a negative-voltage power supply for the manual gain control is more expensive than the familiar cathode control, but it allows a wide range of control with less dissipation in the components. The a.v.c. is of the delayed type, the a.v.c. diode being biased about $11 / 2$ volts by the cathode resistor of the diode-triode de-tector-audio stage.

The second-detector-and-first-audio is the usual diode-triode combination and uses a 6SQ7. A $1 N 34$ crystal diode is used as a noise limiter, and is left in the circuit all of the time. As is common with this type of circuit, it has little or no effect when the b.f.o. is on, but it is of considerable help to 'phone reception on the bands where automobile ignition is a factor The constructor can satisfy himself on itsoperation when first building the receiver and working on it out of the case. By leaving one end of the 1 N34 floating and touching it to the proper point in the circuit, a marked drop in ignition noise will be noted.

The b.f.o. is capacity-coupled to the detector by soldering one end of an insulated wire to the a.v.c. diode plate and wrapping several turns of the wire around the b.f.o. grid lead. This capacity is designated $C^{(2 g}$ in the diagram. The wire was connected to the a.v.c. diode plate lead only for wiring convenience - the a,v.c. coupling condenser, C_{32}, passing the b.fo. voltage without introducing appreciable attenuation.

Headphone output is obtained from the plate circuit of the $6 S Q 7$ at J_{1}, and loudspeaker output is available from the 6F6 audio-amplifier stage. High-impedance or erystal headphones are recommended for maximum headphone output.

Fig. 5-32-An amateurband sighttube receiver. The hnobs on the left eontrol audio volume (upper) and b.f.o. pitch, and the two on the right handle r.f. and i.f. kain (npper) and i.f. reqemeration. 'The knol) to the left of the large tuming haol, is fastened to the MAN. A.J.(.,-B,F.O switch, and the one on the right is for the antenna trimmer. The toggle switeh under the dial throws high negative bias on the r.f. stage during transmission periods.

Fig. 5-34-This view of the eight-tube receiver chassis shows the mounting of the tuning condensers and the placement of most of the large compo. nents. The three shielded plug-in coil assemblies can be seen to the left of the tuning gang. 'The 6K8 eonverter is the tulbe on the left nearest the panel.
The antenna terminalstrip, power-supply pha, headphone jach and'speaker terminals are mounted on the rear (foreground in this view) of the chassis.

Construction

The recoiver is built on an aluminum chassis mounted in a Par-Metal CA-202 cabinet, and a Millen 10035 dial is used for tuning. The chatssis is made of $1 / 16$-inch-thick stock. hent into a " U"-channel, and measures 13 inchos wide and $71 / 4$ inches deep on the top. It is 33 inches derep at the rear and $1 / 8$ inch less at the front. The rear edge is reinfored with a piece of $3 / 8$-inch square dural rod that is tapped for screws through the botton: of the cabinet, further to add to the strength of the structure when finally assembled. The various components that are common to the front lip of the chassis and the panel are used to tie the two together.

The shield panel used to mount the antenaacompensator condenser is also made of $1 / 16$-inch aluminum with a $5 / 8$-inch lip on the side for mounting. lart of the lip must be cut away to clear wires and mounteng plates on some sockots, so it is advisable to put in the panel after most of the assembly and wiring have been completed. Fhexible couplings and bakelite rod couple the condenser to the pancl bushing.

The three tuning condensers are mounted on individual brackets of 16 -inch aluminum. The brackets measure $21 / 2$ inches wide ard 1916 high, with $1 / 2$-inch lips. A cover of thin aluminum not shown in the photographs - slicles over the condenser assembly to dress up the top view a bit. The dust cover is not necossary for satisfactory operation of the receiver.

Ceramic sockets are used for the plug-in coils and for the r.f. amplifier, converter and b.f.o. tubes. Mica condensers were used throughout the receiver for by-passing wherever feasible, because they lend themselves well to compact const ruction. Ceramic condensers are now available that could be used in the i.f. amplifier at considerable saving in cost and room.

In wiring the recoiver, small tie-points were used wherever necessary to support the odd ends of resistors and condensers, and rubber grommets were used wherever wires run through the ehassis, with the exception of the tuning-condenser leads. The latter leads, being of No. 14 wire, are self-supporting through the 5/6-inch clearance holes and do not require grommets. The same heavy wire was used fo: the grid and plate leads of the r.f. stage and the plate lead of the oscillator, to reduce the inductance in these leads. The tuning condensers are grounded back at the coil sockets and not above the chassis as might be the tendency. Screen, cathode and plate by-pass condensers are grounded at a single point for any tube wherever possible, although ('2 is grounded at the r.f.-coil socket, C_{8} is grounded at the converter-coil socket, and C_{13} is returned at the oscillator-coil socket. The plate and $\mathrm{B}+$ leads from T_{1} are brought back to the converter socket through shield braid, and C_{21} is returned to ground at the converter socket.

The b.f.o. pitch condenser, C_{38}, is insulated from the chassis and panel by fiber washers, and the rotor is connected back to the tube socket by braid that shields the stator lead. This is done to reduce radiation from the b.f.o. which might get in at the front end of the i.f. a mplifier.

The coils are wound on Millen 74001 per-meability-tuned coil forms, according to the coil table. Series condensers are mounted inside the forms on all bands except the 80 -meter range, where no condenser is required and the tuning condenser is jumped directly to the grid end of the coils. In building the coils, the washers are first drilled for the leads and then cemented to the form with Duco or other cement. The bottom washer is cemented close to the terminal pins, leaving just enough room
to get the soldering iron in to fasten the coil ends and to leave room for the series condenser. The large coils, L_{2}, L_{4} and L_{6}, were wound first in every case, and then a layer of polystyrene Scotch Tape wrapped over the coil, after which the smaller winding was put on and the ends of the windings soldered in place. Since for maximum range of adjustment it is desirable to allow the powdered-iron slug to be fully withdrawn from the coil, keeping the coils at the base end of the form allows the iron slug to travel out at the other end, under which condition the adjusting screw on the slug projects the least. To secure the wires after winding, drops of cement should be placed on them where they feed through the polystyrene washers.

Alignment

If a signal generator is available, it can be used to align the i.f. amplifier on 455 kc . in the usual manner. If one is not available. the coupling at C_{Cl} can be increased to the point where the i.f. stage oscillates readily and the b.f.o. transformer is then tuned until a beat note is heard. The other transformers can then be aligned until the signal is loudest, after which ('ca should be decreased until the i.f. oscillates with the regeneration control, R_{12}, about 5 degrees from maximum. The trimmers on T_{1} then should be tuned to require maximum advancing of the regeneration control for oscillation, with a set value of $C_{C l}$. When properly tuned, the oscillation frequency of the i.f. stage and the frequency for maximum gain in the regenerative condition will be the same.

With a set of coils in the front end, set the tuning dial near the high-frequency end and tune in a strong signal or marker with the adjustment screw on the oscillator coil. The converter and r.f. coils can then be peaked, with the antenna compensator set at about half
capacitance. Then tune to the other end of the band and see if you have enough bandspread. If the bandspread is inadequate, it means that ('14 is too large, and it should be reduced by using a smaller size of condenser or a combination that gives slightly less capacitance. The tracking of the converter and r.f. coils can be checked by repeaking the position of the slugs in the coils at the low-frequency end. If the converter- or r.f.-coil tuning slugs have to be advanced farther into the coil (to increase the inductance) it indicates that C_{9} or C_{1} should be larger. Tracking by the method described is at best a compromise, although to all intents and purposes the loss from some slight misalignment is completely unimportant. Another method would be to tap the tuning condensers on the coil in the familiar bandspreading manner, but this requires considerable time and patience. However, with the series condensers as used in this receiver, the tuning curve is more crowded at the high-frequency end of a range than at the low, and this would be reduced somewhat by the tapped-coil bandspread.

COIL DATA FOR THE EIGHT-TUBE SUPERHETERODYNE

	S.5 Mc.	$7 M c$.	$14 M c$.	$28 M c$.
Coil	15 t.	9 t.	6 t.	4 t.
L_{1}	76 t.	33 t.	19 t.	8 t.
$L_{2,}, L_{24}$	short	$27 \mu \mu \mathrm{fd}$.	$15 \mu \mu \mathrm{fd}$.	$20 \mu \mu \mathrm{fd}$.
C_{1}, C_{0}	25 t.	11 t.	7 t.	4 t.
L_{3}	10 t.	8 t.	4 t.	2 t.
L_{5}	47 t.	32 t.	14 t.	6 t.
L_{6}	short.	$42 \mu \mu \mathrm{fd}$.	$27 \mu \mu \mathrm{fd}$.	$51 \mu \mu \mathrm{fd}$.
C_{14}				

All coils wound on Millen 74001 forms, closewound. $3.5-\mathrm{M}$ c. coils wound with No. 30 enam.; 7 Me. coils wound with No. 30 d.s.c.; 14-and 28-Mc. coils wound with No. 30 d.s.e. on primaries and ticklers and No. 24 enam, on secondarics. C 14 for $7-$ Mc. range made by connecting 27 - and $15-\mu \mu \mathrm{fd}$. condensers in parallel. C_{1}, C_{0} and C_{14}. Erie Ceramicons, mounted in coil form.

Fig. 5-35 - The bypass condensers used throughout the r.f. and i.f. stages are gromped around the sorkets of their respective tuhes. 'I'iepoints are used wherever neeessary to support small resistors and condensers. 'I'he antenna trimmer condenser is mounted on a liracket which also serves as shielding between the mixer. and r.f.coil sockets, and it is offect to allow acceseg to the trimmer screws on the coil forms. The plate and B + leads from the first i.f. transformer, T. are run in shiched braid, as are the loads from the b.f.o. pitchcontrol eondenser and the volume control.

Fig. 5.36-Wiring diagram of power supply for the eight-tube receiver.
$\mathrm{C}_{1} \mathrm{C}_{2}-16-\mu \mathrm{fd} .450$-volt electrolytic.
Ci, $\mathrm{C}_{4}-8 . \mu \mathrm{fl}$. 450 -volt electrolytic.
H_{1} - 500 ohms, 10 watts, wirc-wound.
R_{2} - 5000 ohms, 10 watts, wire-wound.
H_{3} - 0.1 megohm. 1 watt, composition.
L. -30 -henry 110 -ma. filter chohe (Stancor (.-1001).
$\mathrm{T}_{1}-350-0-350$ volts, 90 ma.; 5 volts at $3 \mathrm{amp},, 6.3$ volts at 3.5 amp .

The adjust ment of I_{5} can be made, if deemed neressary, by lifting the eathode cond of R_{6} and inserting a $0-1$ milliammeter. If the tickler coil has the right number of turns. the current will be from 0.15 to 0.2 mat, and it won't change appreciably over the band. Although such a grid-current check is a fine point and not really. necossary, it is a simple way to determine that the oscillator portion is working, since the cold ents of L_{5} and L_{6} are at the same end of the form - the plug end - and this necessitates winding the two coils in opposite directions.

Some trouble may be experienced with oscillation in the r.f. stage at 28 Mc. However, a grounding strap of spring brass, mounted under one of the screws holding the mixer-coil socket to ground the shield when the coil is plugged in, will normally clear up the trouble. Inadequate coupling to the antenna will also let the r.f. stage oscillate under some tuning conditions, and close coupling is highly recommended for stability in this stage and also for best signal response. A 10 -ohm resistor from L_{2} to the grid of the 6SG7 will also do the trick.

Fig. 5-37 - Power supply for the eight-tube receiver. Two rectifiers are required because a separate supply is incorporated for gain-control purposes. The filter choke and the negative-supply filter condensers are mounted under the chassis. At the rear of the chassis is the socket for the power cable.

It will be found that the over-all gain of the weciver is quite high on the lower-frequency binds. requiring that the r.f. gain be cut down to prevent overloading on strong signals. For e.w. reception, the regeneration control is advanced to the point just below oscillation and the b.f.o. is detuned slightly to give the familiar single-signal effect. For 'phone reception, S_{2} is switched to "A.V.C." and volumecontrol adjustments made with the audio control, R_{26}. If desired, the regeneration control can be advanced until the i.f. is oscillating weakly, and then a heterodyne will be obtained on weak carriers, making them easy to spot. Strong carriers will pull the i.f. out of oscillat tion because the developed a.v.c. valtage reduces the gain, and hence a simple form of automatic selectivity control is obtained. If it is considered desirable to reduce the i.f. gain when switched to the "A.V.C." position, the regeneration control can be used for this purpose. The "MAN." position permits manual gain-control operation with the b.f.o. off.

The switch s_{1} is used for receive-transmit and throws about 40 volts negative on the grid of the first r.f. stage, saving the first tube a little if the transmitter is pouring some power into the receiver.

Power Supply

A power supply suitable for the eight-tube receiver is shown in Figs. 5-36 and 5-37. An idea of the parts arrangement can be obtainel from Fig. 5 -37, although there is nothing critical about this portion of the receiver. If one wants a neat-looking station with no loose power supplies in sight, the power supply can be built into one corner of the loudspeaker cabinet.

The filtering of the power supply is quite adequate and no trace of hum should be found in the completed receiver when used with this power supply. If any a.c. hum is notieed, it is being introduced in the audio section if it is still present with the r.f. gain control set at minimum. Probable sources of hum in the audio system are leads to C_{33}, R_{26}, C_{36} or J_{1} running too close to a "hot" (ungrounded) heater lead, and the correction is to remove these leads from the field of the heater wiring. If signals are modulated with a.c. hum, particularly at the higher frequencies, it is possible that the grid cireuit of the 6 li 8 converter is pieking up hum from a nearby heater lead.

A Clipper/Filter For C.W. or 'Phone

The clipper/filter shown in Fig. \mathbf{z}-39 is plugged into the receiver headphone jack and the headphones are plugged into the limiter, with no work required on the receiver. The limiter will cut down serious noise on 'phone or c.w. signals, it

The circuit is shown in Fig. 5-38. The constants are not too critical, and have been adjusted for operation at the signal levels ordinarily available from the headphone jack on a receiver. The clipper output circuit is heavily by-passed by C_{6}

Fif. 5 -38 - Circuit diagram of the audio elipper unit. Power requirements are 16 ma, at 250 v. d.c., 1.2 amp . at 6.3 v. a.e.
$\mathrm{C}_{1}, \mathrm{C}_{4}, \mathrm{C}_{7}-4 \mathbf{4 0}-\mu \mu \mathrm{fd}$, mica.
$\mathrm{C}_{2}-0.04-\mu \mathrm{fd}$, paper.
$\mathrm{C}_{3}-0.1-\mu \mathrm{fd}$. paper.
$\mathrm{C}_{5}-8 . \mu \mathrm{fl}$. 450 -volt electrolytir.
$\mathrm{C}_{6}-0,003-\mu \mathrm{fd}$, paper.
C_{8} - $\mathbf{1 0}-\mu \mathrm{fd}$. 25 -volt electrolytic.
$\mathrm{C}_{9}-0.25$ - $\mu \mathrm{fd}$, paper.
$\mathrm{R}_{1}, \mathrm{R}_{3}$ - 1 megolın, $1 / 2$ watt.
$\mathrm{H}_{2}, \mathrm{H}_{9}-1500$ ohms, $1 / 2$ watt.
$R_{4}-10,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-22,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{0}-47,000$ ohms, 1 watt.
$\mathrm{R}_{7}-33,000$ ohms, $1 / 2$ watt.
R_{8} - 1-megolim volume control.
l_{1} - $250-\mathrm{mh}$. choke (Millen 3400-250).
J_{1} - 'Phone jack, single circuit.
S_{1}-2-circuit 3-position switch.
will keep the strength of c.w. signals at a constant level, and it will add selectivity to your receiver for c.w. reception. It will do much to relieve the operating fatigue caused by long hours of listening to static crashes, key clicks encountered on the air and with break-in operation, and the like.
to reduce the amplitude of the harmonics generated in the clipping process, and additional bypassing by C_{9}, across the headset, is used for the same purpose. Cathode-follower input and output circuits allow the unit to be used with any receiver output and any headphones, and they also

Fig. 5-39 - The audio rlipper unit includes input and output amplifiers of the cathodefollower type, a dual-triode elipper circuit, and a selective andio system, It is built in a small utility box, with a cable for power-supply conneetions and a cord and plug to pick up andio from the receiver's headphone jack.

contribute to the effectiveness of the audio filter, $L_{1} C_{2} C_{3}$. A three-pesition switch, S_{1}, is provided so that the unit can be cut out entirely, used with straight liniting and no selectivity, or with both seloctivity and limiting. 'Thr' "off" position is useful principally to convince the skeptical, and the limiting without selectivity is useful for impulse noise, when encountered. High selectivity and good moise suppression do not go hand in hand.

The unit, shown in Figs, 5-39 and $5-40$, is built on one panel and the sides of a 3 by 4 by 5 utility bos. The parts on the pancl and the box proper are connected through cabled leads made long enough so the panel can be swung out as shown. Any type of construction can be used, since there is nothing eritical in the layout. One precaution to observe is to use a shielded lead between the "hot" input terminal and the switch, to prevent possible stray coupling between the input and later high-impedance circuits because of the cabled leads.

The selective audio circuit chosen gives a type of frequency-response curve that is quite useful. The peak at 80t) cycles is broad enough to avoid tuning difficulties, even when used in conjunction with the crystal filter in the receiver. Nevertheless, the response drops off rapidly enough, particularly on the high-frequency side, to make a

Fig. 5-10 - Inside view of the rlipper unit. The gain eomtroh, switeh, headphone jack, anil the larger fixed condensers are nounted on the walls of the box. The two tulnes and the selective andio circuit are mounted on the removable panel. The selective circuit, consisting of the choke coil and two tululacondensers, oceupies the upper half of the panel in this biew. The socket at the left is for the input and output amplifiers: the right-hand sorket in for the domble-trinde clipper.
marked difference in respect to the "capturing" of the limiter by strong off-resonance signals. 'There is a "notch" at 1700 cyeles.

There is a wide latitude in choice of inductances for L_{1}. The Millen coil listed under Fig. 5-38 was the best of available low-priced units tried, in terms of sharpness of the response curve and the depth of the rejection noteh. Some of the small filter chokes such as the Stancor C-1515 and 'Ihordarson T20C'53 also work reasonably well. The former will resonate at approximately the same frequencies as given above with $330 \mu \mu \mathrm{fd}$. at C_{2} and $470 \mu \mu \mathrm{fd}$. at C_{3}; the latter choke requires $0.001 \mu \mathrm{fd}$. at C_{2} and $0.002 \mu \mathrm{fd}$. at C_{3}. With any coil the values of capacitance required to place the peak and noteh at frequencies that best fit one's taste in beat notes can casily and quickly be determined by simple cut-and-try. Other typers of selective audio circuits can, of course, atso be substituted.

In use, the receiver's gain controls should be sot so that only the stronger signals are clipped; too-dere elipping will make the receiver sound as though practically every signal overloads it. Once the proper settings for clipping level are determined, the artual audio volume is adjusted by the gain control on the unit. A little juggling back and forth between the reeeiver controls and the output control in the clipper unit will eventually result in the receiver's sounding very much like it does without the clipper present. The difference is that the signals and noise, including one's own transmitter sigual, don't rise above the level set as a ceiling.

The "Selectoject"

The selectoject is a reeciver adjunct that can be used as a sharp amplifier or as a singlo-froquency rejection filter. The frequency of operation may be set to any point in the audio range by turning a single knob. The degree of selectivity (or depth of the null) is continuously adjustable and is independent of tuning. In 'phone work, the rejection notch can be used to reduce or eliminate a heterodyne. In c.w. reception, interfering signals may be rejected or, alternatively, the desired signal may be picked out and amplified. The Selectoject may also be operated as a low-distortion variable-frequency audio oscillator suitable for amplifier frequency-response measurements, modulation tests, and the like, hy advancing the "selectivity" control far enough in the selectiveamplifier rondition. The Selectoject is connected in a receiver between the deteetor and the first audio stage. Its power requirements are 4 ma. at 150 volts and 6.3 volts at 0.6 amperes. For proper operation, the 150 volts should be obtained from across a VIR-150 or from a supply with an output capacity of at least $20 \mu \mathrm{fl}$.

The wiring diagram of the Selectoject is shown in Fig. 5-41. Resistors R_{2} and R_{3}, and R_{4} and R_{5}, can be within 10 percent of the nominal value but they should be as close to each other as possible. An ohmmeter is quite satisfactory for doing the
matching. One-watt resistors are used because the larger ratings are usually more stable over a long period of time.

If the station receiver has an "accessory socket" on it, the cable of the Selectoject can be made up to match the conneretions to the socket, and the numbers will not necessarily match those shown in Fig. 5-41. The lead between the second dotertor and the receiver gain control should be broken and run in shiolded leads to the two pins of the socket corresponding to those on the plug marked "A.F. Input" and "A.F. Output." If the receiver has a VR-150 included in it for voltage stabilization there will be no problem in getting the plate voltage - otherwise a suitable voltage divider should be incorporated in the rechiver, with a 20- to 40- $\mu \mathrm{fd}$. clectrolytic condenser connected from the +150 -volt tap to ground.

In operation, overload of the receiver or the Selectojeet should be avoided, or all of the possible selectivity may not be realized.

The selectoject is useful as a means for obtaining much of the performance of a crystal filter from a receiver lacking a filter, and it is just as useful with a crystal filter in that it provides additional flexibility and performaner. It is the answer to the 'phone man's prayer: "If I only had a weond rrystal filter!"

Fig. 5-H - Complete sedurnatic of Selectoject using 12AX7 tubes.
$\mathrm{C}_{1}-0.01-\mu \mathrm{fd}$. mica, 400 volts.
($\mathrm{C}_{2}, \mathrm{C}_{3}-0.1-\mu \mathrm{f}$. paper, 204) volts.
$\mathrm{C}_{4}, \mathrm{C}_{5}-0.002-\mu \mathrm{fd}$. paper, 400 volts.
$\mathrm{C}_{6}-0.05-\mu \mathrm{fd}$. paper, 400 volts.
$\mathrm{C}_{7}-16-\mu \mathrm{fd}$. 150 -volt electrolytic.
$R_{1}-1$ megohm, $1 / 2$ watt.
$R_{2}, K_{3}-2000$ ohms, 1 wat , matched as asely as possible (see text).
$R_{4}, R_{s}-1000$ ohms, 1 watt, matched as closely as possihle (see text).
$R_{6}-20,000$ ohms, $1 / 2$ watt.
$R_{7}-2000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{8}-10,000$ ohms, 1 watt.
$\mathrm{R}_{9}-6000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{10}-20,000$ ohms, $1 / 2$ watt.
R_{11}, R_{12}-Ganged $0.5-$ megohm $1 / 2$-watt potentiome. ters, standard audio taper (tuning control).
$\mathrm{K}_{13}-0.5$-megohm $1 / 2$-watt potentiometer (selectivity control).
s_{1} - D.p.d.t. toggie.

A Bandswitching Preselector for 14 to 30 Mc .

The performance of many receivers begins to drop off at 14 and 30 Mc . The signal-tonoise ratio is reduced, and trouble with r.f.image signals becomes apparent. The preselector shown in Figs. 5-42 and 5-44 can be added ahead of any receiver without making any changes within the receiver, and a self-contained power supply eliminates the problem of furnishing heater and plate power.

As can be seen from the wiring diagram, Fig. $5-43$, a 6 AK 5 r.f. pentode is used in the preselector. Both the grid and plate circuits are tuned, but the tuning condensers are ganged and only one control is required. The gain through the amplifier is controlled by changing the cathode voltage, through R_{3}. A selenium rectifier is used to supply plate power, and the heater power comes from a step-down transformer. The chassis is at r.f. ground but the d.c. circuit is isolated, to prevent shortcircuiting the a.c. line through external connections to the preselector.

A two-section ceramic switch selects either the 14 - to $21-\mathrm{Mc}$. or the $28-\mathrm{Mc}$. coil, or the antenna can be fed through directly to the receiver input. When operating in an amateur band between 14 and 30 Mc ., switching to the band not in use will attenuate one's own signal sufficiently to permit direct monitoring, in most cases.

As shown in Fig. 5-42, the ganged condensers are controlled from the front pancl by a National MCN dial, and a small knob to the right of this dial is connected to the antenna trimmer, C_{4}, for peaking the tuning with various antennas. The a.c. line is controlled by S_{2}, a toggle switch mounted on the panel.

The preselector is built on a $3 \times 5 \times 10$ inch chassis, and a 6×6-inch plate of thin metal is used for a panel. A $13 / 4 \times 3$-inch aluminum bracket mounted about $31 / 2$ inches behind the front panel supports the tuning
condenser, C_{5}, and the antenna trimmer, C_{4}. Millen 39005 fiexible couplings are required to handle the offset shaft of C_{4}. Both C_{5} and C_{8} are mounted on the chassis with $6-32$ screws, but the chassis should be scraped free of paint before installation, to insure good contact.
The shield partition between the two switch sections (Fig. 5-44) straddles the tube socket and shields the grid from the plate circuit. The switched ends of all coils are supported by their respective switch points, and the other ends are soldered to tie points mounted on the

COIL TABLE FOR THE PRESELECTOR
$L_{1} 5 \mathrm{t}$. No. 24, $3 / 4$-inch diameter ($\mathrm{B} \& \mathrm{~W} 3012$)
$L_{2} \quad 5 \mathrm{t}$. No. 24, 1-inch diameter ($\mathrm{B} \& \mathrm{~W} 3016$)
$L_{3} 6 \mathrm{t}$. No. 24, 3/4-inch diameter ($\mathrm{B} \& \mathrm{~W} 3012$)
$L_{4} \quad 7$ t. No. 20, 1-inch diameter
($\mathrm{B} \& \mathrm{~W} 3014$)
$L_{5} \quad 71 / 2$ t. No. 20, 3/4-inch diameter
(B\& W 3010)
$L_{6} \quad 3 \mathrm{t}$. No. 24, 1-inch diameter ($\mathrm{B} \& \mathrm{~W} 3015$)
$L_{7} 11$ t. No. 24 d.c.c., close-wound, $1 / 2$-inch diameter
$L_{8} 4$ t. No. 28 d.c.c., close-wound, $1 / 2$-inch diameter
L_{7} and L_{8} are wound adjacent on a $1 / 2$-inch diameter polystyrene form (National PlRD-2)
chassis. The mica trimmers, C_{9} and C_{10}, are supported on short lengths of stiff wire, and a hole in the side of the chassis is required to reach C_{10} with an aligning tool.
The power-supply components are mounted as near the rear of the chassis as possible. The selenium rectifier must be insulated from the chassis.

Fig. 5-12-A bandswiteh. ing preselector for 14 and 28 Mc . A single 6AK5 ampli. fier is used, and the power supply is included in the unit. The antenna-trimming eon. denser is mounted on the small alumimum partition.

The eoils are made from B\&W "Miniductors," as shown in the coil table, with the exception of one plate and coupling coil which are wound on a polystyrene form. The ground returns for the cathode and plate by-pass condensers are made to a common terminal, a soldering lug under one of the mounting screws for C_{8}.

When the wiring has been completed and checked, the antenna is conneeted to J_{1} and a cable from J_{2} is run to the receiver input. Tune the receiver to the 14-Mc. band and set S_{1} to the proper point. Then turn the main tuning dial until the noise or signal increases to a maximum. This should occur with C_{5} and ('8 set at close to maximum eapacity. Then prak the noise by adjusting C_{10} and C_{4}.

The 28 -Mc. range is adjusted in the same
R_{4} - 4700 ohms.
$\mathrm{R}_{5}-18,000$ ohms, 2 watts.
$R_{6,} R_{7}-470$ olims.
I.1-Ls - Sce coil table.
L.9-20-henry 30 -ma. filter choke.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial-eable jack (Iones S-101).
$\mathrm{S}_{1}-2$-gang 2 -circuit 5 -position ceramic (Mallory 177C).
S_{2}-S.p,s,t togyle.
$\mathrm{S} \mathrm{S}-50 \mathrm{ma}$. selenium rectifier.
$\mathrm{T}_{1}-6.3$-volt transformer.
way, with the exception that C_{9} is touched up. It may be found necessary to touch up C_{4} when different antennas are used. The preselector may oscillate with no antenna connected, but with any type of wire or feedline the operation of the amplifier should ordinarily be perfectly stable.

As shown, the preselector is intended for use with coaxial-line feed to the antenna and to the receiver. If a balanced two-wire line is used from the antenna, it is recommended that a suitable two-wire connector be substituted for J_{1}. The grounded sides of L_{1} and L_{2} should be diseonneeted from ground and returned to one side of the connector. The out put connector can be left as shown, since at the lower frequencies the proper antenna connection isn't so important.

Fig, 5-44-A view under. neath the chassis of the handswitching preselector, showing the shield partition between switeh sections and the selenium rectifier and associated filter.

An Antenna-Coupling Unit for Receiving

It will often be found advantageous on the 14- and 28-Mc. bands to tune (or match) the receiving-antenna feedline to the receiver, in order to get the most out of the antenna. One way to do this is to use, in reverse, any of the line-coupling devices advocated for use with a transmitter. Naturally the components can be small, berause the power involved is neyligi-

Fig. 5-1.5 - A compact coupling network for matching a balanced line to the recciver on 14 and 28 Mc .
ble, and small receiving condensers and coils are quite satisfactory. Some provision for adjustable coupling is recommended, as in the transmitting case, because the signal-to-noise ratio at 14 and 28 Mc . is dependent, to a large extent, on the degree of coupling to the antemna system. The tuning unit can be built on a small chassis located near the receiver, or it can be mounted on the wall and a piece of IRG-59/U run from the unit to the receiver input, in the manner of a link line in transmitting practice. For ease in changing bands, the coils can be switched or plugged into a suitable socket. Adjustable coupling not only offers an opportunity to adjust for best signal-to-noise ratio, but the coupling can be decreased when a strong local signal is on the air, to eliminate

Fig. 5.46 - Circuir diagram of the coupling unit. $\mathrm{C}_{1}, \mathrm{C}_{2}-100-\mu \mathrm{fd}$. ruidget varialle (Millen 22100).
$\mathrm{L}_{1}, \mathrm{~L}_{2}-30$ turrs No. 24 d.c.c. close-wound on 9 何-inch diameter polystyrene form, tapped at $21 / 2,61 / 2$ and $14 \frac{1}{2}$ turns.
$\mathrm{St}-2$-circuit J -position single-section ceranvic wafer switeh Mallory IT3(?).
"hocking" and eross-modulation effects in the receiver.

One convenient type of antenna-eoupling unit for receivers uses the familiar pi-section filter circuit, and can be used to match a wide range of antenna impedances. The diagram of a compact unit of this type is shown in Fig. 5-46. Through proper selection of condensers and inductances, a match can be obtained over a wide range of values. The device can be placed close to the receiver and left connected all of the time, since it will have little or no effect on the lower frequencies. A short length of 300 -ohm Twin-Lead is conveniont for connecting the antenna coupler to the receiver.

The antenna coupler is huilt in a $3 \times 4 \times 5$ inch metal cabinet. All of the components except the two pairs of terminals are mounted on one panel. The condensers are mounted off the panel by the spacers furnished with the condensers, and a clearance hole for the shaft prevents any short-circuit to the panel. The coils, wound on National PRE-3 polystyrene forms, are fastened to the panel with brass screws, and the coils should be wound on the forms as far away as possible from the mounting end. If this sill leaves the coil ends within $1 / 2$ inch of the panel, the forms should be spaced away from the panel by National XP-6 butlons. The switch should be wired so that the switching sequence puts in, in each coil, 0

Fig. 5-f: - Rear view of the antenna-coupling unit. The two coils can be seen directly below the two tuning condensers.
turns, $21 / 2$ turns, $61 / 2$ turns, $141 / 2$ turns and 30 turns. All of the wiring, with the exception of the leads to the input and output terminals, can be done with the panel removed from the box.

The unit is adjusted for maximum signal by switching to different coil positions and adjusting C_{1} and C_{2}. It will not be necessary to retrim the condensers except when going from one end of a band to the other, and when the unit is not in use, as on 7 and 3.5 Mc., the coils should be switched out of the circuit and the condensers set at minimum. The small capacity remaining has a negligible effeet.

Receiver Matching to Tuned Lines

The pi-section coupler shown in Figs, 5-45, $5-46$ and $5-47$ can be used in many instances for matehing a balanced open-wire line to the receiver, and it can be used with an unbalaneed line by short-eireuiting the inductance in the grounded side of the unbalanced line. However, there are many applications where another type of coupler is slightly more advantageous, as when an all-band antenna sy:tem with tuned feeders is used, or where a wide range of line impedances may be en-

Fig. 5-48- A small tunct coupler for matehing the receiver to a tuned line. The unit is made either seriesor parallel-tuned by the position of the antenna connection block.
countered. This other type of coupler, shown in Figs. $5-48,5-49$ and $5-50$, is simply a scaleddown transmitter coupler, with provision for either series or parallel tuning. The change from series to parallel tuning is made simply by the manner in which the antenna connection plate is plugged into the unit.

As can be sect in the wiring diagram, Fig. 5-49, when the antenna connection plate is plugged in so that all four contacts are engaged, the two condensers are connerted across the coil in series, to give parallel tuning. When the plate is dropped down, so that only the antenna plugs engage at A and B, the unit is connected for series tuning. Small low-power transmitting coils with swinging links are used.
The unit is built in a $4 \times 4 \times 2$-inch box, with the coil socket mounted on one 2×4 inch side. One of the 4×4-inch side plates is replaced by a shect of polystyrene or other insulating material, on which are mounted four banana jacks. A similar hut smaller piece of insulating material is drilled at the same time

Fig. 5-19 - Cirmit of the tuned antenna coupler. $\mathrm{C}_{1}, \mathrm{C}_{2}-100$ - μ fll. midget variable (Villen 22100), L_{1} - Coil to tunc to band in use, with swinging linh (National AR-16).
to take four banana pluys. A pair of clearance holes must be added to the larger plate to clear two of the plugs when the series connection is used.

The two condensers are mounted in the box and ganged with an insulated shaft coupling. The remaining 4×4-inch side plate is drilled and filed to form an oval hole that will pass the 300 -ohm line from the coupler to the receiver. A rubber grommet should be fitted in the hole to protect the line from the metal and to provide a little clearance.

In operation, the coupler is used in exactly the same way that one is used with a transmitter. Some experimenting is necessary to determine whether series or parallel tuning should be used on the various bands, and it may be necessary to use the coil from the next lower-frequency band if series tuning is indicated, or to remove a few turns from a coil if parallel tuning is required. In any event, the tuncr should tune fairly sharply and give a definite "peak" to the incoming signals. When this condition has been found on any one band, the coupling can then be adjusted for maximum response to the signals, by adjusting the position of the link winding within L_{1}.

rig. $5-50$ - Inother view of the tuned antenna coupler.

A One-Tube Converter For 10 and 11 Meters

The 10- and 11-meter converter shown in Figs. $5-51$ and $5-53$ is a simple unit that can be built in a few hours, for a cost of less than fourteen dollars. The converter uses a fixed-tune i,f, and tunable input and oscillator circuits, in preference to a fixed-frequency oseillator and a tunable output circuit. With a one-tube converter of the latter type, it is almost impossible to avoid pieking up at least a few signals in the tuning range of the receiver. I'sing a tunable oscillator and a fixed-frequency output circuit permits one to select an i.f. free from interference. The platecurrent demand is only 5 ma ., and it is usually possible to operate the converter from the rereiver power supply.

As can be seen in Fig. 5-in2, the Hartley circuit is used in the oscillator portion of the 6BA7 pentagrid converter. A padding condenser, C_{2}, is switched in through S_{1} to change the range for 11-meter operation, Condenser C_{4} is used for tuning, and the imput circuit is tuned to cither range with C_{1}. The sereen grid of the 613A7 is operated at about 65 volts, since higher voltages will inerease the total tube current without any marked improvement in porformance. However, since the available supply voltage will vary with different receivers, the value of the screen dropping resistor, M_{2}, cannot be speceifierl, and it must he calculated, as described later.

There is a good reason for not using an antenna switch for straight-through operation of the converter. With practically any available switch it is very difficult to prevent capacity coupling between the input and output circuits of the converter. Any such capacity coupling increases the problem of eliminating interference at the i.f. By equipping the converter and the receiver with identical input terminals and using similar plugs on both the antenna feed line and the converter output cable, antenna changeover is no problem. The metal partition separating L_{2} and L_{3}, shown in Fig. 5-52, reduces the effect of oscillator har-

monics beating with high-frequency (f.m.) broadcast stations.

Construction

The converter is built on a 5 by 7 by 2 -inch aluminum chassis, and a 6 by 7 -inch pancl is held in place by the components mounted on the front wall of the chassis. The main tuning dial is a National type MCN.

It can be seen in Fig. 5-51 that the oscillator tuning condenser, C_{4}, is mounted on $1 / 4$-inch metal pillars. A National Type GS-10 stand-off insulator is located at the front-right-hand side of C_{4}, and a soldering lug at the top end of this insulator is soldered to the stator terminal lug of the condenser. This added support for the tuning condenser improves oscillator stability, by preventing rocking of C_{4} as the control shaft is turned. A feed-through bushing at the other front terminal of the condenser is used to support and insulate the lead passing through the chassis to the coil below. The padder condensers for the oscillator circuit, C_{3} and C_{3}, are mounted on the rear terminal lugs of the tuming condenser.

The grid coil, L_{2}, is mounted on the terminal lugs of the input tuning condenser, C_{1}. The antenna coil, L_{1}, shouki be wound around L_{2} before the larger coil is soldered in place. The tube socket, to the rear of $C_{1} L_{2}$, is mounted with pins No. 1 and 7 facing toward the rear of the chassis. The aluminum shield between the input and the oscillator coils has a $3 / 8$-inch lip bent over along one edge, for fastening to the chassis. The shield is slotted to clear the cathode-tap lead.

The screen and decoupling resistors, R_{2} and R_{3} - respectively, are supported at the powersupply ends by a tie-point strip which is held in place by the same serew that anchors the soldering lug for L_{3}. If the receiver supply voltage is known at this time, it is possible to calculate the correct value for the sereen-dropping resistor, and the resistor can be mounted on the tiepoint strip. The resistor value is obtained from the equation
$R($ ohus $)=\frac{\text { supply voltade }-65}{0.0046}$
Fxample: supply voltage 200; the resistor value is
$\frac{260-6.3}{}=42,391$ ohms. Anything within 20%
The coaxial output cable is terminated at the chassis end at a tio-point strip located at the left end of the chassis.

Fig, 5-51 - A one-tube converter for extending the tuning range of a receiver to 10 and 11 meters, The crystal socket on the back of the chassis receives the antenna plog (Millin 3.412).

Fik, 5-52 - Cireuit diagram of the low-cost 10. and II-meter converter.
(81 - $15-\mu \mu \mathrm{ffl}$, varialile (Millen 20015).
(:2, (:3-3-30- $4 \mu \mathrm{ful}$, mica trimmer.
(i4 - $25-\mu \mu \mathrm{fd}$, variable (Millen 19050 with 2 stator and 2 rotor plates removed).
C. 5 - (68- $\mu \mu \mathrm{fd}$. silver mica.
(.6-4 $-\frac{1}{-\mu} \mathrm{fd}$. ceramio.
$\mathrm{Ci}_{8}, \mathrm{C}_{9}-0.01-\mu \mathrm{fd}$, dise ceramic.
$\mathrm{C}_{8}-82-\mu \mu \mathrm{fd}$, mica.
$\mathrm{R}_{1}-22,000$ ohms, $1 / 2$ watt.
K_{2} - Screen resistor: see text,
$R_{3}-1000$ ohms, $1 / 2$ watt.
l_{1} - 3 turns Vo. 24 d.s.c., space wound around L_{2},
It is important that the link from the converter to the receiver be well shielded, to avoid pieking up any signals directly in the receiver. A length of R(i-i88/L or RRG-i9/U can be used and, if necessary, a small shield should be mounted over the antenna binding post of the receiver. However, it is usually possible to set the receiver somewhere near 3 Mr , that will be free from even the weakest straight-t hrough interference.

If no communications receiver is availahle, a war-surplus $13(-454$ aircraft receiver (tuning range of 3 to 6 Me.) makes an inexpensive rereiver for use with this converter.

Testing

Power for the converter can be obtained from a separate supply, hut it is usually more convenient to "stal" the power from the receiver. The converter requires 6.3 volts at 0.3 amperes for the heater and 200 to 250 volts d.e. at $\overline{5}$ to 6 ma. for the plate and sereen.

After the power supply has been connected, it is advisable to check the screen and plate voltages with a voltmeter. It may be neressary to change the value of R_{2} if the sereen voltage isn't in the recommended range of fif) to 70 .

Fig. 5-5.3- I bottom view of the one-tube converter. The toggle switehes are for band-changing and opening the heater circuit.
$1.2-13$ turns No. 20 tinned, $8 / 8$-ineh diam., 13 -in-inch long (B \& W 3007).
$1 / 3-6$ turns No. 18 tinned, $1 / 2$-inch diam., $3 / 4$-ineh long, cathode tap $13 / 4$ turns from ground end (13 \& W 3002).
L_{4} - Slug-tuned plate coil (CTC IS3-5 MC.).
L.5 - 10 turns No. 24 d.s.c. scramble wound at cold end of L_{4}.
J_{1} - Panel-mounting malc socket (Amphenol 86.CP4). $P_{1}-300$-ohm twin-lead plug (Millen 37.412).
$\mathrm{S}_{1}, \mathrm{~S}_{2}$ - S.p.s.t. toggle switeh.
If your transmitter uses $\mathrm{V}^{\circ} \mathrm{FO}$, set the VF() to have a harmonie fall at 28 Me , and tune the receiver to 3 Mc . If you have erystal control, turn on the oscilator and set the receiver to the crystal's 28-Mc. harmonic minus 25 Mc . If, for example, your crystal has a harmonic at 28,650 kc ., set the receiver to 3650 kc . Set the tuning condenser, C_{4}, to where you want the test frequency (transmitter-oscillator harmonic) to appear on the dial, and tune it in by adjusting C_{3}. If the signal is too loud, remove any test antenna from the converter. With a reasonable signal, cherk the tuning of the input circuit, $C_{1} L_{2}$, and adjust L_{4} for maximum signal in the receiver.

Onee the eonverter has been set up on known frequencies within the 10 - and 11-meter bands, C_{2} and C_{3} are left fixed and the tuning is done with C_{4}. The bandspread will be approximately 80 dial divisions on 10 and 20 or so on 11 meters. C1 need not be touched over a tuning range of about 200 ke , and so should be used at intervals if the entire band is being combed.

Crystal-Controlled Converters for 14, 21 and 28 Mc.

The principle of using a fixed high-frequency oscillator in a converter and tuning the receiver the converter works into can be elaborated upon by using a stage of r.f. amplification ahoad of the mixer and by using a crystalcontrolled oscillator for maximum stability. Since such a converter is generally used on a high frequency where fundamental crystals are not available, it is necessary to use a harmonic of a lower-frequency crystal. A crystalcontrolled converter of this type is shown in Figs. 5-54 and $\overline{5}-\mathbf{5 1}$. I separate converter is required for the 14 -, 21-and 27-/28-Mc. hands, since by using separate converters it is possible to simplify theil construction and to maximize their performance.

The converter uses the harmonic of a crystal oscillator to provide an exceedingly stable highfrequency oseillator signal. For example, in the 10 -meter converter a 12.25 - Mc. crystal doubles to 24.5 Mc ., and this signal is fed to the mixer. By tuning the amplifier (your present recoiver) following the mixer over the range 3.i) to 5.2 Mc ., you are, in effect, tuning across the 2 s -Mc. band. The r,f, circuits in the converter are tuned to 28 Mc., and only have to be touched up when going from one end of the band to the other.

The wiring diagram is shown in Fig. 5-55. A neutralized triode-connected 6AK5 is used for the r.f. amplifier. Thore is some question as to its necossity on 14 and 21 Me., where the at mospherie noise is genorally high enough to limit the maximum usable sensitivity. A pentode-connected 6 AK5 eould probably be used with no detectable difference in performance on 14 and 21 , but the triode is easy to handle and you don't lose anything by using it. ["sing high-impedance circuits with the pentode might give trouble from regeneration, unless the stage were noutralized. Adjustable antenna coupling and a liaraday screen are in-
cluded to accommodate various antenna sys tems and to eliminate capacity coupling to the antenna line. The r.f. stage runs at 105 volts on the plate, since this gives the best noise figure. The soparate plate lead also offers an opportunity to kill the converter by opening this circuit. The 6AK゙5 pentorde mixer is casy to handle and quiet enough so that its noise doesn't impair the ower-all performance. I triode mixer might be used. but the pentode runs with low current aud is quiet.

The plate circuit of the mixer is tumed to the center of the receiver tuning range by sotting L_{4} to resonate with the various shunt cireuit capacities. The circuit has a low Q and there is little variation in gain over the range. A 6C4 cathode follower is used as a low-impedance coupling to the reeviver input.

One section of a $6 . J 6$ twin triode is used for the crustal oscillator, and the other half sarves as a frequency multiplior. To minimize the other harmonies existing in the plate circuit of the multiplier, the plate is tapped down on L_{6}.

To get the best possible r.f. circuits, within, the space limitations, 13 \& W "Miniductors" are used for L_{1}, L_{2} and L_{3}. Their $(Q$ is well above that obtainable with smaller-diameter coils, and they are easy to handle. To insure good shiclding and low-resistancer ground paths, an aluminum chassis is used in preference to the more common sted units.

The converter is built ona $5 \times 91 / 2 \times 3$-inch aluminum chassis, with several shield partitions to roduce unwanted interstage coupling. The most important shield is the one that straddles the r.f. amplifier socket and soparates the grid and plate circuits of this stage, The grid tuning condenser, C_{2}, is mounted on bakelite insulating washers, and its ground lead returns to the common ground at the tube socket, to eliminate stray coupling through chassis cur-

Fig. 5-54-A 28-Mc. crystal-controlled converter. The adjustable antenna coupling can be seen at the left front. 'The tube shields. from left to rizht, cover the triode-onnected 6. $\mathbf{1 K} 5 \mathrm{r}$ r.f. amplifier, the 6.1 K .5 mixer and the $6 \mathrm{C}+$ cathode follower. The unshielded tube is the $\mathbf{0 J} 6$ uscillator-multiplier.

(: $-20-\mu \mu \mathrm{fd}$. midget variahle (Johnson 160-110).
$\left.\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{17}, \mathrm{C}_{20}-681\right)_{-\mu \mu} \mathrm{fl}$. mica.
(: $8-5-\mu \mu \mathrm{fd}$, midget variable (Johmson 160-102).
Ci - $11-\mu \mu \mathrm{fd}$, midget butterily (Johnson $100-21 \mathrm{I})$.
$\mathrm{C}_{8,} \mathrm{C}_{13}-470$ - $\mu \mu \mathrm{fd}$. mica.
Co-Twisted wire. See text
Cin, C: See coil table.
Cis - $47-\mu \mu \mathrm{fd}$, mica.
$\mathrm{K}_{1}, \mathrm{~K}_{9}-220$ ohms.
$\mathrm{R}_{2}-2200$ ohms, 1 watt.
rents. If this isn't done, you may have trouble neutralizing the amplifier.

A $21 / 4$-inch diameter hole is punched in the chassis, so that the externally-mounted antenna coil, L_{1}, can be coupled to the grid coil, L_{2}. The Faraday sereen is then mounted across this hole on the underside of the chassis. To construct the Faraday shieh, first cut a piece of $1 / 8$-inch-thick polstyrene (Millen Quartz-Q) to measure $21 / 2$ by $31 / 4$ inches, and drill a pair of holes at one end to clear No. 6 serews, for mounting the finished shield. (These are the same screws that hold the mounting strip for the antenna condenser, C_{1}, visible in Fig. $\bar{j}-54$.) At the opposite end of the poly sheet, drill a small hole in each corner, for securing the wire used in making the shield. Then wind No, 20 tinned wire tightly around the poly sheet in the long dircetion, spacing it with string or more No. 20 wire. When the winding is finished and secured at both ends, unwind the spacing string (or wire) and remove it. If you have done the job carefully, you will have neat paralle! lines of wire across the polystyrene, all equally spaced and all lying fairly flat. Then apply two or three hoavy eoats of Dueo cement to ore side only, allowing sufficient time between coats for the eement to harden thoroughly. When this has been done, it will be found an easy job to cut each wire on the uncemented side. Straight-
$\mathrm{R}_{3}-56,000$ ohms.
$\mathrm{h}_{4}-6800$ ohms.
$\mathrm{R}_{5}-0.1$ megohm.
$\mathrm{he}, \mathrm{K}_{10}, \mathrm{~K}_{12}, \mathrm{~K}_{14}-470$ ohms.
$\mathrm{K}_{7}, \mathrm{~K}_{11}-\mathrm{L}_{2} \mathbf{0} 0$ ohms.
1 Rs - 0.18 megohm.
$\mathrm{K}_{13}-82,000$ ohms.
All resistors $1 / 2$-watt unless otherwise specified.
$\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{I}_{4}, \mathrm{I}_{5}, \mathrm{~L}_{6}$ - See coil table.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Cable-connector sockets (Jones S-101).
RIC $-750-\mu \mathrm{h}$, r.f. choke (National $1 \mathrm{R}-33$).
D'AL-Sec coil tahle.
en out the wires so that you now have a flat sheet of parallel wires, and trim off the wires at the mounting holes end of the sheet along a line inside the mounting holes. Figs. $5-5$ (and $5-57$ show what this looks like. When trimming these wires, be careful to see that no wire is left touching an adijacent one. Trim the wire ends at the other end to about $1 / 2$ inch from the polystyrene. Clamp the shield in a vise, between two pieces of wool, and wrap each wire end around a piece of No. 12 timned copper, as shown in Fig. 5-57. With a good hot iron, run a bead of solder along the bus, and your shied is finished. Work fast, and no heat will reach the poly. The shield is mounted with the smooth side exposed through the hole, and one end of the No, 12 bus is grounded at the r.f. tube socket.

The grid coil, L_{2}, is supported by its leads and a couple of drops of Duco cement that hold its grounded end to the Faraday shield. The antenna coil, L_{1}, is mounted by its leads on a piece of $1 / 4$-inch diameter polystyrene rod. The rod is supported by a shaft bushing. A small wire pin through the rod at the back of the bushing and a rubber grommet between the bushing and the control knob give a soft friction lock that holds the coupling in any position. Flexible leads run from the coil to C_{1} and the shield of the RG-59/U coaxial line.

The r.f. plate coil, L_{3}, is cemented to a small piece of polystyrene sheet that is supported by two small brackets. The neutralizing condenser, C_{6}, is supported by one terminal of C_{7} and a stiff wire lead back to the grid pin on the tube socket. The coupling condenser, C_{9}, is simply an insulated wire wrapped once around the lead from C_{8} to the grid of the mixer. It is brought out of the oscillator compartment through a polystyrene or rubber grommet.

After the usual last check of the wiring, connect a power supply and remove the 6AK5 r.f. amplifier from its socket. Listen in on your receiver at the crystal frequency, and if you don't find the crystal signal, adjust L_{5} until you do. Then set your receiver on the proper harmonic frequency and peak L_{6} for maximum signal, as indicated by your S-meter. Then back off on L_{5} a little, because there is no need to run the crystal at maximum.

Then tune your receiver - its antenna circuit must complete the cathode circuit of the 6 C 4 follower - to about 3.8 Mc. and peak L_{4} for maximum noise. The adjustment is not sharp. If your receiver has an antenna trimmer, peak it too. Then plug in the 6AK5 r.f. amplifier and, after the tube has warmed up, rock C_{2} and C_{7}. Through the hole in the bottom plate, use an alignment tool to adjust C_{6} a little at a time, until
L. No. 32 enam.,

COIL TABLE FOR THE CRYSTALCONTROLLED CONVERTER

	14 Mc .	21 Mc .	$28 \mathrm{Mc}$
L_{1}	23 t. No. 24 $3 / 4$-inch dianı. (B \& W 3012)	9 t. No. 24 1 -inch diam. ($\mathrm{B} \& \mathrm{~F}$ 3016)	10 t. No. 20 (B \& W 3015)
L_{2}	21 t. No. 24 $3 / 4$-inch diam. ($\mathrm{B} \& \mathrm{~W}^{2012)}$	10 t. No. 20 1 -inch diam. (13 \& W 3015)	9 t. No. 20 l-inch diam. (13 \& W 3015)
L_{3}	38 t. No. 24 $3 / 4$-inch diam., center-tapped ($\mathrm{B} \& \mathrm{H} 3012$)	22 t. No. 24 $3 / 4$-inch diam., center-tapped (B \& \| 1 3012)	16 t. No. 24 8/4-inch diam., center-tapped (13 \& $\mid 13012$)

L4 Slug-tuned coil (Cambridge Thermionic Corp. 1-Mc. LSM with 200 turns removed) (Coils for L_{5} and L_{6} are wound on $1 / 4$-inch diameter Cambridge Thermionic Corp. ISM forms)

No. 32 enam.,
close-wound,
$1 / 2$ inch long
20 t. No. 20
enam., close-wound, center-tapped
$75 \mu \mu \mathrm{fd}$.
$22 \mu \mu \mathrm{fd}$.
58.5 kc . (triples)

30 t. No. 28
enam., close-wound

20 t. No. 24
enam., close-wound, center-tapped
$33 \mu \mu \mathrm{fd}$.
$22 \mu \mu \mathrm{fd}$.
$12,250 \mathrm{kc}$. (doubles)
you lose any unpleasant sounds with all settings of C_{2} and C_{7}, and the r.f. stage is neutralized. Connect the antenna, and peak C_{2} and C_{7} on a signal. Do all of your tuning with your regular receiver, and only use C_{2} and C_{7} to peak the signal when you make a big frequency excursion. The adjustable antenna coupling provides some measure of gain control for the unit, but it is generally best to use fairly tight coupling and hold the gain down in your regular receiver. The antenna coupling is designed for low-impedance input, and will work satisfactorily with

Fig. 5-56-This view of the underside of the converter with the bottom cover removed shows the Faraday shicld at the lower right, the shield straddling the r.f. amplifier socket (lower center) and the shielded oscillator section (top center). The neutralizing condenser for the r.f. stage is adjusted through a hole in the bottom cover.

Fig. 5.57 - Constructional details of the Faraday shield, before soldering the ends of the No. 20 wires to the No. 12 wire bus.

50 - or 75 -ohm line. If you use 300 -ohm TwinLead, it is better to leave the short length of coaxial line ungrounded and to use something other than a coaxial fitting for connecting the antenna. If your antenna uses 600 -ohm line or tuned feeders, it is best to use a small antenna tuning unit link-coupled through a length of $\mathrm{RG}-59 / \mathrm{U}$ to the converter input.

There is nothing sacred about the crystal frequencies used, other than to be sure that they have no harmonies falling within the sig-nal-frequency range. For the crystals suggested in the coil table, the receiver tunes from 4 to 3.6 to cover 14 to 14.4 Mc. (yes, it tunes backwards!), 3.375 to 3.825 for 21 to 21.45 Mc ., and 3.5 to 5.2 for 28 to 29.7 Mc . The 27 -Mc. amateur band is also covered by the 10 -meter converter, simply by tuning your receiver below 3.5 Mc.

What first i.f. (tuning range of your receiver) you will use depends on the available crystals and the range your present receiver tunes. Using the second or third harmonic of the crystal should be satisfactory in practically every case. By careful seleetion of crystal frequencies, you can arrange things so that the
band edges start at some even $100-k c$. mark on your receiver, thus giving you frequencycalibrated reception (with the necessary mental correction factor). The accuraey of calibration of your receiver on the one tuning range, together with the accuracy of the crystal used in the oscillator portion of the converter, will determine the accuracy of calibration of the receiving system.

Power Supply

The circuit diagram of a suitable power supply for use with the converters is shown in Fig. 5-58, although any source of 6.3 volts a.c. and 105 and 180 volts d.c. will do. One set of connections runs to the converter in use, and the other goes to a small control box located on the operating table. If desired, the a.c. switeh can be incorporated in the power supply, but the plate switch, in the 105 -volt lead to the r.f. stage, should be handy to the operator. A switch can be provided for shifting the power from one converter to another. Sinceseparate receiving antennas are generally used at these frequencies, the antennas do not require switching.

Fig. 5-58 - A power supply for the crystal-controlled converter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-8-\mu \mathrm{fd} .450$-volt electrolytic.
$\mathrm{h}_{1}-1500$ ohme, 10 watts.
$\mathrm{K}_{2}-10,000$ ohms, 10 watts.
1., 16-hy. 50 -ma. choke (Stancor C-1003).
$\mathrm{I}_{1}-240-0-210$ at $40 \mathrm{ma}, 5$ and 6.3 v. (Stancor P.6297).

A Sharp I.F. Amplifier For 'Phone Or C.W.

The amplifier shown in Figs. 5-60 and 5-61 is designed to follow any receiver i.f. amplifier in the range around 455 kc ., to give additional selectivity to the receiving system. For c.w. reception, ten circuits tuned to 50 kc . give a characteristic with excellent skirt selectivity, as indicated by a bandwidth of only 1900 cycles at -60 db . (Compare this with Figs. $5-1$ and 5-22.) However, the amplifier is about 450 cycles wide at -6 db ., so signals do not "ring" or become difficult to tune. For 'phone reception, some of the circuits are detuned (by throwing a switch) to give a "stagger-tuned" amplifier that has a bandwidth sufficient for reception of one sideband. However, since a majority of the circuits are still tuned to 50 ke., the resultant characteristic has greater gain at 50 kc . than at any other, and by tuning so that the heterodyned carrier falls at 50 kc., "exalted-carrier reception" is obtained. The useful bandwidth for 'phone reception is about 2300 eycles, so some high-audiofrequency response is lost, but the gain in intelligibility in crowded bands more than makes up for it. The bandwidth at -60 db . is 4000 cycles in the 'phone condition.
The complete circuit of the amplifier is shown in Fig. 5-59. Receiver output at 455 kc . is fed into the 6BE6 i.f. converter, where the crystal-con-

[^1]trolled oscillator portion can be set either 50 kc . higher or lower, to use the familiar selectablesideband principle. ${ }^{1}$ If the recciver i.f. were something other than 455 kc ., the choice of crystals would be different, of course. Two 6BJ6 i.f. amplifier tubes are coupled by eight Millen $50-\mathrm{kc}$. high-Q tuned circuits, $T C_{1}-T C_{8}$, with provision through S_{2} for switching the tuning of four of these circuits by cutting in series condensers C_{5}, C_{8}, C_{12} and C_{16}. The second 613J6 stage is coupled to a 6BE6 a.f. converter used for c.w. and s.s.b. suppressed-carrier reception, and also to another 6[3J6 i.f. amplifier. This i.f. amplifier feeds a diode rectifier for a.m. reception and also has a.v.c. voltage applied to its grid, to obtain some a.v.c. action and to give a logarithmic S-meter action. The switch S_{3} selects output from one of the two detectors and also turns the b.f.o. on or off. The rest of the circuit includes a filter following S_{3} R to keep $50-\mathrm{kc}$. energy out of the audio amplifier, and a meter amplifier for the S-meter. The i.f. gain is controlled through R_{7}, and the audio volume through R_{25}. The i.f. gain control is important, because the gain of the amplifier is much higher in the narrow-band (c.w.) condition than in the stagger-tuned ('phone) arrangement, and the gain setting must be changed when switch S_{2} is thrown from one position to the other.

Fig. 5-59 - Wiring diagram of the selective $50-\mathrm{kc}$. i.f. amplifier.
$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{29}, \mathrm{C}_{30}-\mathbf{0 . 0 1}-\mu \mathrm{fd}$. ceramic disc.
$\mathrm{C}_{2}-47-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{4}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{11}, \mathrm{C}_{13}, \mathrm{C}_{15}, \mathrm{C}_{23}-4.7-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{5}, \mathrm{C}_{12}-0.0078-\mu \mathrm{fd}$. mica (0.0068 and 0.001 in parallel).
$\mathrm{C}_{8}, \mathrm{C}_{10}-0.0068-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{9}, \mathrm{C}_{17}, \mathrm{C}_{22}, \mathrm{C}_{27}-0.1-\mu \mathrm{fd}$. 200 -volt paper.
$\mathrm{C}_{10}, \mathrm{C}_{14}-1.0-\mu \mathrm{fd} .400$-volt paper.
$\mathrm{C}_{18}-100-\mu \mu \mathrm{fd}$. midget variable.
$\mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{26}, \mathrm{C}_{33}, \mathrm{C}_{34}, \mathrm{C}_{38}-470-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{21}, \mathrm{C}_{24}, \mathrm{C}_{31}-0.001-\mu \mathrm{fd}$. mica.
C_{25} - $100-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{28}-20-\mu \mathrm{fd}$. 25 -volt electrolytic.
$\mathrm{C}_{32}-220-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{35}, \mathrm{C}_{38}, \mathrm{C}_{41}-0.01-\mu \mathrm{fd} .400$ volt paper.
$\mathrm{C}_{37}-0.002-\mu \mathrm{fd} .400$-volt papcr.
$\mathrm{C}_{30}, \mathrm{C}_{42}-10-\mu \mathrm{fd}$. 25-volt electrolytic.
$\mathrm{C}_{40}-8-\mu \mathrm{fd} .450$-volt electrolytic.
$R_{1}, R_{21}, R_{33}-0.47$ megohm.
$\mathrm{R}_{2}, \mathrm{R}_{31}-0.1$ megohm.
$\mathrm{R}_{3}-470$ ohms.
$\mathrm{R}_{4}, \mathrm{R}_{13}-22,000$ ohms.
$\mathrm{R}_{5}, \mathrm{R}_{8}, \mathrm{R}_{10}-100$ ohms.
$\mathrm{R}_{6}-33,000$ ohme, 2 watts.
$\mathrm{R}_{7}-5000$-ohm wire-wound potentiometer.
$\mathrm{R}_{9}-2200$ ohms, 1 watt.
$\mathrm{R}_{10}-2200$ ohms.
$\mathbf{R}_{11}-33,000$ ohms.
$\mathrm{R}_{12}-56,000$ ohms.
R_{14} - 330 ohms.
$\mathrm{R}_{15}, \mathrm{R}_{22}-1.0$ megolim.
$\mathrm{R}_{17}, \mathrm{R}_{18}, \mathrm{R}_{32}-4700$ ohms.
$R_{19}-68,000$ ohms.
$\mathrm{K}_{20}, \mathrm{R}_{23}-47,000$ ohms.
$\mathrm{K}_{24}-1000$ ohms.
$\mathbf{R}_{25}-0.25$-megohm volume control.

Fig. 5-60 - The selective 'phone and e.w. $50-k r$. i.f. amplifier connects to the i.f. of a regular receiver, in the manner of the familiar Qīer. It is built on a $10 \times 17 \times 2$-inch chassis, with a $51 / 4$-ineh high panel. The plate circuit filter, C:36, R23, RFl:3, (:37 and C:38 are mounted above the chassis in the shield can wear the right frome.

In an amplifier like this, over-all feed-back must be eliminated, and this calls for proper bypass condensers in the common sereen and plate leads. The choke, $R F C_{1}$, is included to series resonate with ℓ_{14} at 50 ke . and bring the common sereen circuit down to ground potential without using a by-pass condenser larger than $1 \mu \mathrm{fd}$. Everything else in the circuit is conventional and familiar to anvone acquainted with i.f. amplifier practice. The switch, \mathscr{S}_{4}, for shorting out the s-meter, is an elaboration exrept for someone who doesn't like to see the meter swing too far on orcasion.

Constructional details will, of course, vary with the builder and his particular station lavout. The only point to watch in any modification is to be sure not to double the amplifier string
back on itself, which might encourage feedback.

Adjustment

The first step in aligning the amplifier, after the wiring has been checked, is to tune the circuits to 50 kc , approximately. For a signal source, couple from the receiver at 455 kc . and feed it into the input of the amplifier. Tune in a steady signal (freqmeter or b.c. carrier) and align the tuned circuits $T C_{10}$ back through $T C_{1}$, with S_{2} set to short out the condensers. When the circuits have been aligned, as indicated by the S-meter, switch S_{1} to the other erystal and see if the signal is still peaked. It probably won't be, and you now have to "split the difference" and realign the circuits until a signal poaked at one setting of S_{1} will be peaked at the other. If the exact

$\mathrm{R}_{28}-\mathbf{2 2 0}$ ohms.
$\mathrm{H}_{27}-4 \overline{\mathrm{I}}, 000$ ohms, 2 watts.
$\mathrm{H}_{28}-390$ ohms.
$\mathrm{R}_{29}-4^{7}$ ohms.
$\mathrm{H}_{30}-\mathbf{3 9 0}(\mathrm{O}$ ohms.
$\mathrm{R}_{34}-2^{2} 0$ ohms.
It - 750 uh. (National R-33),
L_{2} - 10 mh . (Villen 34240).
$1,3-80 \mathrm{mh}$. (Millen 34280).
IIA 0.1 milliammeter.
$\mathrm{RFC}_{1}-67$ t. No. 30 cnam, close-woland .on $1 / 4$-inch diam. form (I-megolim resistor).
RFC2 -80 mh . (Millen 34280), mounted at right angles to I. 3 .
IR $\mathrm{FC}_{3}-125 \mathrm{mh}$. (Millen $34000-2$ removed from can).
$\mathrm{S}_{1}, \mathrm{~S}_{3}, \mathrm{~S}_{4}-\mathrm{I}$).p.d.t. rotary switch (Mallory 3222 J); one pole only used on S_{1} and S_{4}.
\mathbf{S}_{2} - 4-pole rotary switch (Mallory 3242J).
'I' - Audio output transformer (Merit A-2902),
'I'C C_{1} - ${ }^{\prime} \mathrm{C}_{10}$ - $50-\mathrm{kc}$, tuncd circuit (Millen 63650).
frequencies of the crystals are known, and you have an accurate signal generator in the $50-\mathrm{kc}$. range, align the circuits the first time on half the frequency difference between the two crystals. It may sound complicated, but it isn't. The experimental method shouldn't require more than four or five tries.
Next check the b.f.o. tuning range by switching it on and watching the S-meter as C_{13} is tuned through its range. The b.f.o. couples some energy into the S-meter circuit, and as C_{13} is tuned through you will find a peak. Add or subtract fixed capacity across the circuit until the peak occurs with C_{13} at about half capacity. Tuning the b.f.o. through its range should show an even rise and fall in the S-meter circuit - any sudden jump indicates some regeneration in the amplifier. Switch off the b.f.o., tune in a signal as indicated on the S-meter, and jump a $1-\mu \mathrm{fd}$, condenser across the $\mathrm{B}+$ and screen leads at various points throughout the amplifier. Any change in S-meter reading indicates regencration in the amplifier, and it means that more by-passing, or a modification of $R F C_{1}$, is required. In adjusting $R F C_{1}$, wind it large and remove turns two at a time, with a constant signal through the amplifier. When the signal comes down to a minimum and then starts back up, rewind the choke to the turns that gave the minimum. The amplifier may be slightly regenerative at a high gain setting in the "sharp" condition. However, this gain is well beyond anything you would ever use, and at normal settings the amplifier should be perfectly stable. Also check the S-meter reading with the b,fo. on (no signal coming through) to see if there are any points along the +105 -volt line where extra by-passing will cut down the b.f.o. leakage.

At about this point in the checking it is wise to try a little more capacity across C_{32}, since this fixed condenser tunes the coupling circuit between the 6BJ6 amplifier and the diode. With a steady signal coming through, hold a 10 - or 20 $\mu \mu \mathrm{fd}$, condenser across C_{32}. If the S -meter reading goes up, C_{32} is too small, and if the reading goes down the condenser is too large. The tuning isn't very critical however, and there is plenty of signal to spare at this point.

Now switch S_{2} to the other position and tune across an unmodulated signal, with the b.fo. off and R_{7} set for maximum gain. The meter reading will show two peaks, one of the same frequency as in the "sharp" position and one new one. Experiment with the tuning of $T C_{9}$ and $T C_{10}$ until the new peak is not so sharp) and has somewhat less amplitude than the original. You will find that you can change it considerably, so make your changes in small steps. Set it up by cut and try, using a b.c. station as your signal and adjusting for good intelligibility. It probably won't be necessary to touch C_{5}, C_{8}, C_{12} and C_{16}, unless these condensers are incorrectly marked and thus far off the nominal value. Their value, of course, affects the position of the lower hump in the sclectivity characteristic.

When tuning in a 'phone signal, watch the S-meter and set the carrier at the maximum meter reading, learning not to be fooled by the slight hump 2000 cycles off this point. If there is a heterodyne on the signal, flip S_{1} to the position giving the least interference.

In operation, set the i.f. gain controls in both receiver and $50-\mathrm{kc}$. i.f. where there is no chance for overload, with the audio adjusted for comfortathe listening. On c.w. the S-meter may kick a little on a loud signal, and on 'phone it will get up to half scale on a good signal. This calls for some juggling of the gain controls as you tune across a band. When throwing S_{3} from one position to the other, it is advisable to reduce the audio volume to zero first, or else the audio tube takes quite a licking because of the difference in potential in the two points on switch $\mathrm{S}_{3} \mathrm{~B}$.

You may have to realign your receiver slightly to use this amplifier, or else get a pair of crystals that match your receiver. If, for example, the crystal in your present receiver is on 450 kc ., and hence the i.f. is aligned there, the $405 / 505-\mathrm{ke}$. crystal combination won't be right. What you need is a 400 - and a $500-\mathrm{kc}$. crystal. But since the crystal filter won't be used much any more, it is easier to switch it out of the circuit and realign the receiver i.f. amplifier. Tune in a signal on the $50-\mathrm{kc}$, amplifier and retune the receiver i.f. transformers for maximum signal, and that's all there is to it.

Fig. 5-61 - ('nderneath the chassis of the Wo-ke, amplifier. leads to the audio volume control, to the grids and plates of the amplifier tubes, and to the selectivity swith, are all run in shielded wire.

Receiver Matching to Coaxial Line

While some of the war-surplus receivers are designed to work from a low-impedance antenna, most of the popular commmications rocoivers are designed for an impodaner of from 300 to 500 ohms. When using coaxial-line feed from an antenna, as is not rare on 14 and 28 Mc., maximum signal transfer from line to receiver is not obtained unless some type of matching network is used. The pi-section coupler can be used, by short-circuiting the inductance in one leg and connecting this side of the coupler to the outer conductor of the eable and to the ground comection on the receiver. However, in matching bet ween two mbalaned resistive loads of this type, another and slightly simpler circuit can be used. It is called an "L" section.

Fig. 5-62- Wiring diagram of the "L."-section matching network.
$\mathrm{C}_{1}, \mathrm{C}_{4}-3$ - to 30 - $\mu \mathrm{fl}$. micatompression trimmer. $\mathrm{C}_{2}-100-\mu \mu \mathrm{fd}$. mica.
$\mathrm{l}_{3}-\mathrm{i}_{1}-\mu \mu \mathrm{fd}$. mica.
$1.1-12$ turns, spaced to ocenpy $5 / 8$ ineh.
 womd with No. 18 d.s.e. on National XR-.jo ($1 / 2$-inch diameter) iron slug-tuned forms.
s_{1}-2-pole 3-position rotary wafer switch.
An "L"-section matching coupler for 14 and 28 Mc. is shown in Fig. 5-64. All of the components are mounted on a switch, and the unit is intended to be mounted on the antenna and ground post of the receiver. As can be wern from the wiring diagram in Fig. 5-62,

Fig. 5-63 - 'lise "L"'sertion compler mounted on the antenna and kround binding posts of a communications receiver.
provision is included for straight-through operation between feed line and receiver on the other frequencies.

The values of the components are not critical, but provision is included for adjusting both the inductance and the capacity, to accommodate minor variations in receiver impedances. If operation is limited to one band, or if different receivers or converters are used on the various bands, the coil and condenser can be monnted right at the recoiver terminals without the switeh. As shown, the unit is intended for use following an antenna change-over relay, and it is assumed that the different antennas are changed at the relay. However, if a relay is not used, the different feed lines ean be brought directly to the unit and soldered to the antenna sides of L_{1} and L_{2}.

The units cam be adjusted on a local signal that is not fading, by adjusting the inductance and capacity for maximum signal, as indicated by the S -meter. It is not be to expected that the adjustment will be critical, but the gain obtained by proper matching will be observed by switching to the straight-through condition, and comparing the difference. The improvement will be only slight if the initial mismatch was small, but an improvement of several db. can be expected in any case.

Fig. 5-64-An "L"-section matching net work for coupling the receiver to coaxial line. It is designed for use between 50 - or 75 -olim line and a receiver of 300 to 400 ohms input impedance.

High-Frequency Transmitters

Transmitters for the amateur bands lying between 1.8 and 30 Mc . may take a variety of forms, depending primarily upon the frequency bands to be covered and the power output desired. Added to these are such important factors as operating convenience and space restrictions.

The principal requirement that must be

(D)

Fig. 6-1 - Block diagratiss showing typical eombinations of oscillator and ampliliers and power-supply arrangements for transmitters, A wide selection is possible, depending upon the number of bands in which operation is desired and the power outpat.
met in c.w. transmitters, to which this chapter is limited, is that the output must be confined as closely as the state of the art permits to a single steady frequency free from modulation. . 1 frequency-stable signal is necessary not only to comply with FCC regulations, but also to provide a signal that can be received satisfactorily with a selective receiver, and one that will cause a minimum of interference to a mateurs working in the same band. IRadiation of signals at harmonic frequencies, or spurious radiations at other frequencies, must ise minimized to prevent interference to other radio services, esperially television.

A simple oscillator may be used as a transmitter, as shown in Fig, 6-1 A, but the amount of power obtainable with satisfactory frequency stability is small. Therefore in most transmitters the oseillator is used to feed one or more amplifiers as required to bring the power up to the desired level, as indicated at 13, before delivering the power to the antenna system.

An amplifier whose output frequency is the same as the input frequency is called a straight amplifier. If such a straight amplifier is placed in an intermediate position between two other transmitter stages it is sometimes called a buffer amplifier.

Because it becomes increasingly difficult to maintain oscillator frequency stability as the frequency is increased, it is most usual practice in working at the higher frequencies to operate the oscillator at a low frequency and follow it with one or more frequency multipliers as required to arrive at the desired output frequency. A frequency multiplier is an amplifier that delivers output at a multiplo of the exciting frequency. A doubler is a multiplier that gives output at twice the exciting frequency; a tripler multiplies the exciting frequency by three, etc. Although multiplications in a single stage as high as eight or more sometimes are used to reach the bands above 30 Mc., in the majority of low-frequency transmitters multiplication in a single stage is limited to two or three, since the efficiency of a multiplier decreases rapidly as the order of multiplication increases. Also, it becomes more difficult to keep unwanted harmonics from the output.

Frequency multipliers sometimes are used to feed the antenna system directly, but preferably should feed a straight amplifier which, in turn, feeds the antenna system, as shown in Fig, 1-C, D and E, because it is otherwise
difficult to eliminate the multiplier driving frequence and undesired harmonies in the antenna system. As the diagrams indicate, it is of ten possible to operate more than one stage from a single power supply.

Variable-Frequency Oscillators

Two general classes of oscillators are used in amateur transmitters. A crystal-controlled oscillator is a fixed-frequency oseillator. The frequency generated is held within very close limits (a few cycles per megacyle) by a quartz crystal. The frequency is determined almost entirely by the thickness of the crystal. (Other constants in the circuit have relatively little effect. The frequency of a self-controlled or variable-frequency oscillator (VFO) is determined principally by the values of inductance and capacitance which make up the oscillator tank circuit.

The disalvantage of the crystal type of oscillator is that a different crystal must be used for each frequency desired (or multiples of that frequency). By making the inductance, capacitance, or both, variable in the selfcontrolled oscillator, it may be operated at any frequency desired within a band at the turn of a dial, in the manner of a receiver. The disadvantage of a VFO is that much care must be exoreised in the design and construction if the frequency stability is to approach that of a crystal-controlled oseiilator.

Although the trend in recent years has been toward the VF' with its greater flexibility, the erystal oscillator still is widely used by beginners and is preferred by many others because of the comparative ease with which frequency stability and catibration are maintained.

While any of the basic self-controlled oscil-
lator circuits may be used, the prevailing choice lies among those shown in Fig. 6-2, or modifications of these circuits.

To provide satisfactory performance on the air, special attention must be paid to the circuit and mounting of parts. Since the frequency depends upon the L and C in the circuit, anything which operates to change these values will cause a change in frequency. For stability which will approach that of which a erystal oscillator is capable, the values of inductance and capacitance must be held within extremely small tolerances.

It is perhaps not too difficult to provide a satisfactory coil and condenser for the tank circuit. But the tube must be connected across this circuit and its effect upon frequeney is by no means negligible nor easily controlled. The tube has the effect of a capacitance which can be made to hold satisfactorily constant only with great care.

Effects of Load

It is obvious too that the connection of any reactive load, such as an antema or the input of an amplifior stage, will change the frequency, since this load must be connected across the frequency-determining circuit, thereby changing the net value of inductanee or capacitanee as the case may be. An antenna and feeders cannot be held sufficiently rigid to prevent changes in their capacitances. For this

(A)

(B)

(C)

Fig. 6-2 - Typical simple VFO cirenits. I - Tiekler feed-hack. B - Martley. C - Colpitts. Inw- μ triodes, surh as the 6C5 or 6 J , are preferable. Approximately appropriate values for the 3.j-Mc. band are as follows:

Ci - 'I'uning condenser - $150-\mu \mu \mathrm{fd}$. variable.
(2 - 'Tank condenser - $.000-\mu \mu \mathrm{fd}$. zero-temp. mica.
(:3-Tank ondenser - $\mathbf{8 0 0}-\mu \mu \mathrm{fd}$. zero-temp, mica.
(C_{4} - Tank eondenser - $0.0021-\mu \mathrm{fd}$. sero-temp. mica.
C_{5} - Grid condenser - $100-\mu \mu \mathrm{fd}$, zero-temp. mica.
C_{6} - Output coupling eondenser - $100 \mu \mu \mathrm{fd}$. or less, mica.
C_{7} - Plate by-pass - $0.01-\mu \mathrm{fd}$. disk ceramic.
C_{8} - Plate blocking condenser - $0.001-\mu \mathrm{fd}$. mica.
R_{1} - Grid leak - $\mathbf{5 0 , 0 0 0}$ ohms.
L_{1} - Tank coil - $4.3 \mu \mathrm{~h}$.
L_{2} - liekler winding - Approximately one-third number of turns on L_{1}, wound on same form next to L_{1} or over ground end of L_{1}.
L_{3} - Same as L_{1}, tapped approximately one-third from plate end.
RFC - Parallel-feed r.f. choke -2.5 mh .
reason it is almost universal practice to use an amplifier between the VFO and the antenna system to isolate the two.

Under practical operating conditions the input circuit of an amplifier may develop changes in the reactance which it presents across the oscillator circuit, especially while it is being tuncd or alternately connected and disconnected, which it is in effect if the amplifier is keyed. special oscillator circuits have heen developed to minimize this effect. Two forms of the electron-coupled oscillator circuit are shown in Fig. 6-3. In circuits of this type a single sereen-grid tube performs the functions of both an oscillator and an amplifier. The screen serves as the plate of a triode oscillator, while the power is taken from a separate tuned output-plate tank circuit, the coupling between the two being principally through the common electron stream.

In Fig. 6-3.1, the oscillator circuit is a Hartley in which the ground point has been shifted from the cathode to the "plate." Fig. 6313 shows the Colpitts modified in a similar

Fig. 6.3- ECO circuits. A - Hartley. 13-Colpitts. Approximate values are as follows:
C_{1} - Oscillator tuning condenser - for 3.5 Me.: 150. ${ }_{\mu} \mu \mathrm{fd}$. variable.
C_{2} - Output tank condenser - $100 \cdot \mu \mu \mathrm{fid}$. variahle.
C_{3} - Tank condenser - $500-\mu \mu \mathrm{fd}$. zero-temp. mica for 3.5 Mc .
C_{4} - Grid condenser-100 $\mu \mu \mathrm{fd}$. or less, zero-temp. mica.
$\mathrm{C}_{3}-$ Screen by -pasis $-0.01-\mu \mathrm{fd}$. disk ceramie.
C_{6} - Plate by-pass - $0.01-\mu \mathrm{fd}$. disk ceranic.
C_{7} - Output coupling condenser-100 $\mu \mu \mathrm{fd}$. or less, mica.
$\mathrm{C}_{8}-700-\mu \mu \mathrm{fd}$. zero-temp. mica.
$\mathrm{C}_{0}-0.0021-\mu \mathrm{fd}$. zero-temp. mica.
R_{1} - Grid leak - 50,000 ohms.
L_{1} - Oscillator tank coil-4.3 $\boldsymbol{\mu}$ h. tapped approximately one-third from ground end for 3.5 Mc.
\mathbf{L}_{2} - Output tank coil - $22 \mu \mathrm{~h}$. for $3.5 \mathrm{Me} ., 7.5 \mu \mathrm{~h}$. for 7 Mc .
RFCl_{1} - Parallel.feed r.f. choke - 2.5 mh .

Fig. 6-4-ECO with an r.f. choke replacing the output tank circuit for the purpose of reducing reaction on the oscillator portion of the circuit.
manner. The choke, $R F^{\prime} C_{1}$, is required to provide a d.c. path to the cathode without grounding it for r.f.

In both of these circuits, output at a multiple of the oscillator frequency may be obtained by tuning the output-plate tank "ireuit to the desired harmonic, although this is seldom done bryond the second harmonic.

The oscillator frequency is not entirely independent of tuning or loading in the output plate circuit. The reaction is less, however, when the output-plate circuit is tuned to a harmonic or replaced by an untuned circuit, such as an r.f. choke, as shown in Fig. 6-4. The power output obtainable with the latter arrangement is much lower, however.

Well-screened tubes are preferable as eler-tron-coupled oscillators. Those commonly used are the $6 \mathrm{~K} 7,6 \mathrm{SK} 7,6 \mathrm{~F} 6$ or $6.1 \mathrm{G7}$.

Chirp

Variations in the voltage of the oscillatortube elements can cause changes of appreciable magnitude in the effective input capacitance of the tube. If the oscillator can be run continuously during transmission, this effect can be made negligible by the use of regulated plate and screen voltages. But if the oscillator must be keyed for break-in work, an objectionable shift in frequency with keying (chirp) can bo avoided only by reducing the time constant of the keying eircuit to the point where the change in frequency between zero roltage, when the key is open, and full voltage, when the key is closed, takes place so rapidly that the ear cannot detect it. The time constant is reduced by minimizing any capacitance which may appear across the key contacts, including by-pass condensers in the transmitter. Enfortunately, as discussed in the chapter treating keying, a certain time lag is required to eliminate elicks. Therefore the measures necessary for the elimination of chirps and clicks are in opposition. A compromise is usually necessary, unless the oscillator can be made insensitive to voltage changes by other means. It is possible that the keying of an amplifier may constitute little improvement over oscillator keying, for reasons previously given, unless sufficient isolation is provided between the oscillator and the keyed stage.

Drift

The effects of temperature change are characterized by a slow drift or creep in frequency. Part of this change, especially for the first few minutes after power is applied to the oscillator, may be attributable to change in tube-electrode capacitance as the tube heats up. But over a protracted period of time, drift is a result of small changes with temperature in physical dimensions of the coil and condenser in the tank circuit. Good design dictates that these components be of good construction and isolated as much as possible from the heat developed in the tubes and power-supply equipment. With care, frequency drift can be brought within satisfactory limits by mounting the tubes external to the enclosure surrounding the tank coil and condensers and the use of zerotemperature mica condensers for all tank capacitance other than that required for tuning purposes, by providing ventilation and by keeping the power input to the oscillator at a minimum - not more than a few watts. Where maximum stability with temperature change is desired, temperature-compensating condensers may be used to form part of the tank-circuit capacitance.

Mechanical Considerations

Any mechanical vibration which causes a change in the capacitance across the tank circuit, or in dimensions of the coil, will cause a corresponding change in frequency. This should be minimized by solid construction, by secure wiring and by cushioning the mounting of the oscillator unit against shocks. The oscillator should be thoroughly shielded from the strong r.f. fields of the antenna and adjacent high-power amplifier stages which may, through overloading of the oscillator grid, cause roughening of the oscillator signal.

Plug-in coils for changing oscillator frequency ranges are not recommended because experience has shown that the coil contacts may become the source of undesirable frequency instability.

VFO Tank Q

All of the previously-mentioned effects upon the frequency of an oscillator may be minimized by the use of high capacitance in the tank circuit, thus making uncontrollable capacitance changes a small percentage of the total circuit capacitance. At 3.5 Mc ., a tank capacitance of 500 to $1000 \mu \mu \mathrm{fd}$. is considered adequate, with values increased in proportion if the oscillator is designed to operate at lower frequencies. An increase in Q can be obtained also by tapping the tube across only a portion of the tank circuit. Fig. 6-5A shows the Hartley circuit with the grid and plate tapped across small portions of the tank-coil reactance. An equivalent arrangement for the Colpits circuit is shown at B. C_{1} (and C_{2} in parallel) is small compared with C_{3} and C_{4}. Therefore, the
reactance across which each tube element is connected is a small portion of the total. C_{2}, which is the tuning condenser, should be no larger than is necessary to tune across the band so as not to influence the function of C_{1} any more than necessary. The tuning condenser should not be connected across the coil, since this reduces the Q of the circuit.

In both of these arrangements, the higher the Q of the coil, the smaller the reactance between tube elements may be without stopping oscillation and, therefore, the greater the stability. Because of the high L / C ratio which results with the circuit of B, greater care must be exercised in the construction and mounting of tank-circuit components.

Any of the bandspread tuning systems used in receivers may be applied to the oscillator circuits which have been under discussion. The parallel-condenser system is used most widely since it lends itself well, particularly to high-C circuits.

Because it is considered easier to maintain percentage stability at lower frequencies, VFOs usually are designed to operate at a frequency not higher than the $3.5-\mathrm{Mc}$. band, the higher-frequency bands being reached by frequency-multiplier stages.

VFO ADJUSTMENT

Tuning Characteristics

Normally-operating VFO circuits of the types under discussion will function quite uniformly, over the range of an amateur band at least, as soon as plate voltage is applied. If, through incorrect adjustment of excitation or

Fig. 6.5 - As an alternative to the use of a high- C tank circuit, oscillator tubes sometimes are connected across only a portion of the tank circuit to increase the (). In the Hartley circuit of A, the grid and plate connections are made to taps instead of to the ends of the coil. In the Colpitte circuit of B , the division is by capacitive means. For $3.5 \mathrm{Mc}^{2}, C_{3}$ and C_{4} should be about $0.001 \mu \mathrm{fd}$. and $C_{1}+C_{2}$ no larger than necessary to maintain oscillation and tune across the band. The Q of L_{1} and the G_{m} of the tube should be as high as possible.
overloading the circuit does not oscillate, the plate current will be the zero-bias value for the tube at the plate voltage at which it is being operated, falling to a lower value when osrillation takes place. If the oseillator is functioning, fouching the grid with a grounded prod will cause a variation in plate current. The value of phate current to be experted with

Fig. (1.6-S. S.t-mp for eherking V'FO stability, 'I'herecciver should be tuned preferally to a harmonic of the Vifo frequenes. The erystal oseillator may operate somewhere in the hand in which the VE'() is operating. The receiver b,fo, shoulal be turned off.
a given tube when oscillating depends upon such factors as plate and sereen voltages, gridleak resistance. excitation adjustment and loading. It should remain essentially constant with reasonable changes in tuning capacitance. With normal excitation adjustment, the plate current should show an inerease when the load is conmeted. bxeitation and grid-leak resistance should be adjusted for maximum frequency stability - not maximum output.

In the circuit of Fig, (6-5A, maximum frequency stability is obtained with the plate and grid taps as close as possible to the cathode tap without stopping oseillation. In the circuit of Fig. (i-6) 3 , maximum stability is obtained when (${ }_{3}$ and C_{4} (usually equal) are large and the ratio of $C_{1}+C_{2}$ to C_{3} or C_{4} is the maximum possible without stopping oscillation. The adjustment in each case will be limited by the () of the coil. Therefore, the () must be high for greatest frequency stability.

Checking VFO Stability

A VFO should be checked thoroughly before it is phaced in regular operation on the air. Since succeeding amplifier stages may affect
the signal characteristies, final tests should be made with the complete transmitter in operation. Almost any Vl'O will show signals of good quality and stability when it is running free and not connected to a load. A wellisolated monitor is a necessity. Perhaps the most convenient, as well as one of the most satisfactory, well-shielded monitoring arrangements is a receiver combined with a erystal oscillator, as shown in Fig, 6-6. (See " (rystal Oscillators," this chapter.) The erystal frequency should lie in the band of the lowest frequency to bo checked and in the frequency range where its harmonies will fall in the higher-frequenery bands. The receiver b.f.o. is turned off and the VFO signal is tuned to beat with the signal from the crystal oscillator instead. In this way any receiver instability caused by overloading of the input circuits, which may result in "pulling" of the h.f. oscillator in the receiver, or by a change in line voltage to the receiver when the transmitter is keyed, will not affeet the reliability of the check. Most present-day crystals have a sufficiently-low temperature coefficient to give a satisfactory check on drift as well as on chirp and signal quality if they are not overloaded.

Ilarmonics of the crystal may be used to beat with the transmitter signal when monitoring at the higher frequencies. Since any chirp at the lower frequencies will be magnified at the higher frequencies, accurate ehecking can best be done by monitoring at the latter.

The distance between the crystal oscillator and receiver should be adjusted to give a good beat between the crystal oscillator and the transmitter signal. When using harmonies of the crystal oscillator, it may be necessary to attach a piece of wire to the oscillator as an antenna to give sufficient signal in the receiver.

Checks may show that the stability is sufficiently good to permit oscillator keying at the lower frequencies, where break-in operation is of greater value, but that chirp becomes objectionable at the higher frequencies. If further improvement does not seem possible, it would be logical in this case to use oseillator keying at the lower frequencies and amplifier keying at the higher frequencies.

Crystal Oscillators

While crystal-controlled oscillators are much more tolerant than $V^{\prime} F O$ s in respect to temperature changes, the danger of crystal fracture, as well as drift, places a limitation on the amount of power output obtainable. The oscillator normally should be eonsidered as a frequency-gememing deviee only, with power output of secondary importance. The amount of power which may be obtained from a crystal oseillator is limited by the heat the erystal will stand without fracturing. The amount of heating is dependent upon the r.f. crystal current which, in turn, is a function of the a mount of feed-back required to provide proper exeita-
tion. Crystal heating short of the danger point results in frequency drift to an extent depending upon the way the crystal is cut. lixeitation should always be adjusted to the minimum necessary for proper operation.

SIMPLE CIRCUITS

The basic erystal-controlled oscillator circuits are shown in lig. 6-7. Since the crystal is the equivalent of a high- () tuned circuit of fixed frequency, it will be observed that each of the erystal circuits is essentially the equivalent of a self-controlled cireuit.

Triode, Tetrode and Pentode Oscillators

The triode crystal circuit of Fig. 6-7A is the equivalent of the t.g.t.p. circuit in which a crystal replaces the tuned grid direnit. The pentode circuit of 13 is the same exeept for the substitution of a sereen-grid tube for the triode. This eircuit sometimes is operated with the suppressor by-passed and raised to a positive voltage of about 50 instead of being grounded as shown. The same cireuit is used for tetrodes, such as the $6 \mathrm{~V}^{-6}$ and 616 , the suppressor conneetion being omitted.

With this circuit, oscillation takes place only when the plate tank cireuit is tuned to a frequency higher than that of the erystal, and maximum output usually occurs when it is tuned elose (but mot exactly) to the erystal fraquency. If the plate tuning rondenser has sufficient range to tunc the circuit to a frequency lower than that of the grid eireuit, os-

Fïg. 6-7 - Simple erystal-oscillator eirenits. A - Triade. 13 - Tetrode or pentode. C - Tetrode Pierce. Approximate values are as follows:
C_{1} - Tank condenser - $100-\mu \mathrm{ffl}$, variable.
(2- Plate hy-pass - $0,01-\mu \mathrm{fl}$. disk ceramic.
© ${ }_{3}^{2}$ - Output coupling condenser - $100 \mu \mu \mathrm{fd}$, or lers, mica.
(44 - Screen by-pass - $0,01-\mu$ fll. dish ceramic.
C: F Feed •lack eondenser - 50 to $100 \mu \mu \mathrm{fd}$,
C_{6} - Plate blowhing condenser - $0.001-\mu \mathrm{fd}$. mica.
R_{1} - Grid leak - $\mathbf{5 0 , 0 0 0 0}$ ohms,
1_{2} - Screen voltage-dropping resistor - 25,0010 in $.50,0000$ ohms.
L_{1} - T'ank coil - 2.2 hy, for 3.5 Mc.; 7.5 uly, for 7 Mc.

RFC - P'arallel-feed r.f. chohe -2.5 mh ,
cillation will cease and the plate current will jump to a relatively high value, as shown at the left in Fig, 6-8, As the plate circuit is tuned past the point of resonance with the crystal in the high-frequency direetion, the plate current

$F i g, \quad 6-8$ - General tuning eharacteristie of triode, tetrode or pentode erystal oscillators, As the capacitance of the phate tank condenser is decreased from maximum, oscillation will start suddenly, the phate current dropping abruptly, as shown at point A. As the capacitance is decreased further, the plate current will dib to a minimum, C., and then gradually rise to point B where an abrupt rise in plate current will indicate that oscillation has ecased. Waximum output will he obtained at point Co, but the oseillator should he adjusted fur operation in the D-F resion for hest frequency stalility,
will drop suddenly (point A) indicating the starting of oscillation, then dip rapidly to a minimum (point (") where the power output is greatest. As the tuning capacitance is decreased further, the plate current will rise gradually to point B where it will jump to a higher value, indicating that oscillation has ccased. For maximum frequency stability the circuit should be tuned in the region $D-E$.

When the oscillator is loaded, the characteristic is similar (see dashed curve in Fig. (i-8), but the minimum plate-current dip is much less pronounced and the range of plate tuning over which the circuit will oscillate becomes less as the loading is increased.

With triode, tetrode or pentode circuits, the feed-back may be adjusted by the tuning of the plate tank circuit, as in the t.g.t.p. circuit. However, it is safor to limit the amount of power fed back from the plate circuit by restricting the plate voltage so that the crystal limitation cannot be exceeded inadvertently during normal tuning procedure. With the large prewar-type crystals, triode crystal oscillators may be operated with proper adjustment at plate voltages as high as 200 or 250 , but the voltage should be reduced to 100 to 150 for the new-type smaller crystals. Low- or me-dium- μ tubes are preferable when triodes are used. Beam tetrodes or pentodes, with their high power-sensitivity and reduced grid-plate capacitance, require less voltage across the crystal than a triode for the same amount of output. With sereen-grid tubes the largertype crystals can be operated with plate voltages of 300 or 400 with power output up to 10 or 15 watts if required. The smaller erystals may take plate voltages up to 250 or 300 before showing marked drift in frequency. However, as stated previously, it is always
advisable to limit the input to the oscillator and depend upon amplifiers for the desired power.

With the triode, tetrode and pentode crystaloscillator circuits shown in Fig. 6-7, excitation, and therefore r.f. voltage across the crystal, is greatest when the oscillator is unloaded and it is under this condition that danger to the crystal is greatest.

Pierce Oscillator

The cireuit shown in Fig. 6-7C is known as the Pierce circuit. It is the equivalent of the ultraudion variation of the Colpitts in which the grid-cathode and plate-cathode capacitances of the tube form the capacitive divider. The crystal replaces the single tuned circuit and thus this oscillator requires no tuning adjustment and will work without change in values over a wide range of crystal frequencies. Since excitation otherwise is not adjustable, except by change in plate voltage, the condenser ('s sometimes is required to obtain satisfactory operation. Less power is obtainable from the Pierce circuit than from the preceding oscillators because the crystal is directly in the power-delivering circuit which limits the r.f. voltage that may be developed without danger to the crystal. Triodes also may be used in this circuit.

- COMBINATION CRYSTAL OSCILLATORS

Tri-Tet Circuit

Fig. 6-9 shows three crystal-oseillator circuits which operate on principles similar to those of the ECO. Circuits such as these have the additional advantage that they are invariably found to key more reliably than the simple triode or tetrode circuits, and do not incur the considerable loss in efficiency sometimes involved in detuning the plate circuit far to the high-frequency side of resonance for reliable crystal starting under load.

The extent to which the output-plate circuit reacts on the oscillator portion of the circuit, and the output-eircuit tuning characteristies. are influenced to a considerable degree by the effectiveness of the screening of the tube selected. Well-sereened tubes always are preferable from the standpoints of both isolation and safety to the crystal.

Fig. 6-9.A shows the Tri-tet circuit. The oscillator portion is equivalent to that of a triode crystal oscillator, with the screen serving as the "plate" and the ground point being shifted from the cathode to the "plate." Power is taken from a separate output-plate tank circuit. Since the output-plate circuit returns to cathode through the $L_{1} C_{1}$ tank circuit, the plate contributes to the feed-back to a certain extent. In addition, the sereen-to-control-grid capacitance is greater than the corresponding plate-grid capacitance of most triodes. Therefore, $L_{1} C_{1}$ should always be tuncd well to the high-frequency side of the crystal frequency to prevent excessive feed-back and consequent
unnecessary crystal heating. In respect to heating of the crystal, limitation of screen voltage is of greater importance than plate voltage.

As with the ECO, harmonic output may be obtained by tuning the output tank circuit, $L_{2} C_{2}$, to the desired multiple of the crystal frequency.

When operating the Tri-tet circuit at the crystal frequency, $L_{1} C_{1}$ should be tuned no closer to the crystal frequency than is neressary to make the circuit oscillate without output-plate voltage applied. With poorlyscreened tubes, it may be advisable to shorteircuit $L_{1} C_{1}$ when operating at the crystal

Fig. 6-9 - Crystal-controlled amplifying-oscillator circuits. A - Tri-tet. B and C - Modified Pierce. Approximate values are as follows:
C_{1} - Cathode-tank tuning condenser - $100-\mu \mu \mathrm{hd}$.
C_{2} - Output-tank tuning condenser - $100-\mu \mu \mathrm{f} \downarrow$
C_{3} - Screen by-pass condenser ("plate" grounding) - $0.01-\mu \mathrm{fd}$. disk ceramic.
C_{4} - Plate by-pass - $0.01-\mu \mathrm{fd}$. disk ceramic.
C_{5} - Chatpmt coupling condenser - $100 \mu \mu \mathrm{fd}$. or less.
C_{6} - Feed-back control condenser - $100-\mu \mu \mathrm{Cd}$. variable.
C_{7} - Parallel-feed blocking condenser - 0.001 - ff .
C_{8} - Feed-bach -ad justment condenser - 10 to $15 \mu \mu \mathrm{fed}$.
C_{9} - Feed-bach-adjustment condenser - 150 to 200 $\mu \mu \mathrm{fd}$.
R_{1} - Grid leak - 50,000 to 150,000 ohms.
1_{2} - Scrcen voltage-dropping resistor-25,001 to 100,000 ohms.
$\mathrm{L}_{1} \mathrm{C}_{1}$ - Tuned well above crystal frequency (see text). $\mathrm{L}_{2} \mathrm{C}_{2}$ - Tuned to crystal freguency or desired harmonie.
RFC - Parallel-feed r.f. choke $\boldsymbol{-} 2.5 \mathrm{mh}$.
fundamental frequency, reverting to the tetrode circuit as a measure of safety to the crystal.

With well-screened tubes, such as the 6skit, 6AG7 or 802 , the output-plate tuning rharacteristic is like that shown in Fig, 6-10 at the fundamental as well as at the harmonirs, and the circuit will continue to oscillate regardless of the tuning of the output circuit. However, with prorly-sereened tubes, such as the $6 \mathrm{~V}^{\circ} 6$, 6 F 6 or 6 L 6 , the circuit may stop oseillating abruptly when the output circuit is tuned to a frequency lower than the crystal frequency, more in the manner of a simple triode or tetrode oscillator. With well-screened tubes, feed-back is at a minimum when the output circuit is unloaded, the excitation increasing as load is increased. This chararteristie is opposite to that of the triode or tetrode ciystal oscillator.

Modified Pierce Circuits

Figs. 6-9B and 6-9C show similar extensions of the Pierce or Colpitts-t ype circuit. In 13 , the oscillator portion of the circuit is the triode Pierce with the cathode grounded and the screen serving as the "plate." In this arrangement the suppressor provides sereening against capacitive coupling. Pentodes, such as the 6SK7, 6AG7 and 802, are suitable for this circuit.

Variation in sereen voltage provides the primary means of adjusting feed-back, although it may also be changed by adding capacitance between either grid and cathode or screen and cathode, as found neressary. Ilarmonic output may be obtained by tuning the output circuit to a multiple of the crystal frequency.

The circuit of Fig. 6-9C is identical, except that the operation is less dependent upon the relative electrode capacitances of the tube. C_{8} and C_{9} are connected in parallel respectively with the grid-cathode and "plate"-cathode capacitances of the tube. This is a more flexible arrangement than that of B , since the amount of feed-back is now a function of the relative capacitances of the two condensers, rather than of the tube capacitances. One or both of the condensers may be made variable to provide a means of adjusting the feed-back over a wide range.

With some adjustments of feed-back, it may

Fig. 6-10 - Plate-tuning characteristic for Tri-tet, grid-plate and modified Pierce crystal-oscillator circuits, using well-screened tubes, for loaded (dashed line) and unloaded (solid line) conditions. In this case the outpnt-plate circuit may be tuned accurately to the minimum plate-current dip for maximum output.
be found that the crystal will stop oscillating when the output eireuit is tuned exactly to resonatnce and that a weak self-oscillation will secur instead. This condition can usually be avoided by proper proportioning of the two feed-hack capacitances. If fixed capacitances are to be used, the values given under Fig, (- -9 atre suggested, hut they may have to be modified somewhat, depending upon the type of tube used.

QUARTZ CRYSTALS

Crystal Characteristics

While erystals are produced for frequeneies as high as 50 Me., by far the majority of those used in amateur high-frequency transmitters are cut for the $3.5-$ and $7-M \mathrm{c}$, bands. With suitable frequency-multiplying stages, this permits the use of a single crystal for operation in the har-monically-related parts of higher-frequency bands, as well as at the crystal fundanental frequmery. As an example, a 3 an01-ke, crystal with appropriate multipliers may be used for the frequencies of 7002 ke ., $14,004 \mathrm{kc}, 28,008 \mathrm{ke}$. etc.

The characteristics of a crystal - particularly in the thickness-frequency and temperaturefrequency relationships - depend upon the plane in which the erystad plate is cut from the natural quartz block, Whike other cuts are uscful in certain other applications, those for amateur transmitters invariably are of either the "AT" or "BT" types. Their respeetive temperature characteristics are as follows:

$$
\begin{aligned}
& \text { AT-cut - }+10 \text { eycles per Me. per degree at } 0 \\
& \text { degrees } C \text {. } \\
& 0 \text { cycles per Mc. per degree at } 45 \\
& \text { degrees } C \text {. } \\
&+20 \text { eycles per Mc. per degree at } 85 \\
& \text { degrees } C \text {. }
\end{aligned}
$$

The relationship between the thickness of a erystal and its frequeney is given by:

$$
f_{\text {sic. }}=\frac{k}{\ell_{\text {tail }}}
$$

where f_{m}. is the frequency in megacycles, t the thickness in thousandths of an inch and k is a constant of the crystal cut approximately as follows.

$$
\begin{aligned}
& \text { A'recut }-66,2 \\
& \text { B'T'cut }-100,78
\end{aligned}
$$

An AT crystal usually is more active than one of the BT-cut type, but since it is thinner for the same frequency, there is greater danger of fracture in operation. Therefore, AT-cut crystals usually are used for frequencies below 5 Mc., while the BT-cut is used for crystals whose frequencies lie above 5 Mc., although this is not true in all cases.

While crystals are sometimes cut for fundamental frequencies as high as 14 Mc ., most crystals used by amateurs for frequencies higher than the 7-Mc. band are "harmonic-
type" arystals; that is, the thickness corresponds to a frecqueney of one-third (sometimes one-fifth) of the normal operating frequency. The other dimensions of the erystal are proportioned so that the mechanical vibration is at three times (or five times) the fundamental frequency.

Regrinding Crystals

Hocause erystals near any desired frequency ran be purchased reasonably these days, it is not. profitable for the amateur to cut and grind his own blanks. However, frequently it may be desirable to make a limited increase in the frequency of a crystal at have. Indispensable requirements are a piece of plate glass, a good midrometer, supplies of Siza 800 aluminum oxide for light grinding, and Size 400 silicon carbide for coarse grinding, and a test oscillator. The eoarse grinding eompound may be desirable only if the required change exreeds 40 or 30 ke . at 7 Mc . or half of this at $3, \overline{5}$ Me. Even much larger changes ean be made with the finer abrasive - it simply takes somewhat longer. A test oscillator of the regeneratfive type, such as the one shown in Fig, 6-9C, is preferred because it oscillates more readily and therefore permits frequency cherks at times when the activity of the arystal may be subnormal. The oseillator should be equipped with a grideurrent milliammeter, preferatbly one with a $0, \bar{i}-m a$. scale. The grid current should be cherked first with the crystal to be reground, and proferably with several others, to ohtain an average of the grid current to be expected for normal erystal artivity. Then this figure ean be used as a standard of comparison, less grid current indicating lower activity.

In grinding a crystal to a new frequency, the most important factor in respect to activity is that of maintaining the proper surface contour. When properly ground, the crystal is thicker in the eonter than at the erges. The difference in thiekness should vary from about 0.001 inch for a $3 . i-\mathrm{Mc}$. crystal $1 / 2$ inch square to about 0.00015 inch for a 7-Mr, rrystal, The micrometer is used chiefly in chereking the eontour.

The grinding compound should be sprinkled on the glass plate and moistened with water to make a very thin paste. One side of the erystal should be marked with a peneil and all of the grinding should be done on the opposile side, Thus the marked side is alwavs preserved for reference in checking with the micrometer. The crystal should be swirled around in the grinding mixture in a motion describing figure-cight paths. The location of the path should be changed froquently to another part of the glass plate so that the plate will be worn evenly. Light pressure with the finger on a eomer of the erystal should be used. Make three or four " 8 's" to 'ach of the corners in sucession and then repeat. Use lighter pressure and make fower " 8 's" as the desired frequency is approached. It is a good idea to mark the referonce side with a character - such as an \mathbf{F} - which can be read properly in but one position, This will help to identify each of the
four corners. After each corner has had a turn, the identifying mark should be back to the original starting position, of course.

If a calibrated recoiver is available, it can be used to keep a continuous check on the frequeney as the crystal is being ground. Place a sheet of tinfoil or metal under the plate glass and connert it to the antennat terminal of the receriver. Then as the crystal is being ground, it will produce a hiss in the receiver that peaks close to the crystal frequency. To be safe, however, it is advisable to limit the use of this nethod of eheeking to within 20 ke , of the desired frequeney at 7 Mc . Then if it is found that the activity is not up to normal, the contour can be corrected without overshooting the desired frequeney. It might be mentioned also that this mothod may not be usable at night when outside signals may make it difficult to spot the crystal frequency with any great accuracy.

The reystal should be thoroughly cleaned of grinding compound and other matter before using the micrometer or checking in the test. oscillator, of course. I'se soap, warm water and a tooth brush, and dry with a lintless cloth or tissue. IIandle the crystal by the edges only after cleaning.

In measuring the coruers, the apex of the eorner should be placed at the center of the mierometer jaw. Since aceurate micrometer readings are difficult when they differ so slightly, it is sometimes helpful to judge by "feel." Set the mierometer lightly to the center of the crystal and then move the crystal around. In no case should there be any binding or sticking at the edges with the mierometer set at the same pesition.
The crystal should be checked in the test, oscillator more frequently as the desired froquency is approarhed, both for frequeney and activity. Up to this point it should be sufficient merely to place the crystal in the holder and squecze the assembly together with the fingers while making the check. Make sure, however, that the outside plate of the holder is connereded to the "ground" side of the circuit. When close to the desired frequency, the checks should be made with the holler completely assembled. If the activity is found to have dropped off, pay particular attention to the corners and bring the activity back to normal twefore the final fine adjustment to frecpuency. In some cases, beveling or grinding one or nore of the edges may be necessary to restore activity, but this should be done with caution and only in case the contour has first been corrected. If the erystal width and length dimensions are responsible for low artivity, a fow light swipes on the edges should be sufficient to show an improvement in activity.

Lowering Frequency

If a crystal has areidentally been ground down too far, or if it is desired to lower slightly the frequency of any other crystal, this can often be done by loading the erystal. Loading, however, may reduce the crystal activity if it is carried too far. With a good active crystal, it should be pos-
sible to decrease the frequency as much as one prer cent-35 ke. for a $3500-\mathrm{ke}$. erystal. Cold soft solder rubbed into the crystal surface is suitable. The solder should be applied gradually while the frequency and activity are checked.

Start of by marking a circle about $1 / 4$ inch in diameter at the center of the crystal and use this as a boundary for additional applications of the solder. The loading should be applied to both surfaces as equally as possible.

R.F. Power Amplifier Circuits

The power output from an oscillator is limited for reasons previously stated. Power greater than a few watts usually is obtained by feeding the output of the oscillator into one

Fig. 6-11 - Fundamental r.f, power-amplifier circuit. Meana must be provided to prevent oscillation since the circuit is the same as that for a t.g.t.p, oscillator. Sere text for diseussion.
or more amplifiers as may be required to raise the power level to that desired before feeding it to the antenna.
Fig. 6-11 shows a fundamental amplifier circuit. The oscillator output is fed into the
grid circuit of the amplifier. Power output is taken from the plate cirenit. Both grid and plate circuits are tuned to the frequency of the oscillator. It will be noticed, however, that this fundamental circuit is the same as the circuit for the tuned-grid tuned-plate oscillator. Therefore the amplifier circuit itself will function as an oscillator, independent of the oscillator feeding it, unless measures are taken to reduce the plate-grid caparitance or nullify its effect.

TRIODE CIRCUITS

Plate Capacitive Neutralizing Systems

The plate-grid capacitance can be neutralized by feeding back to the grid, through an external path, a voltage which at any instant is equal, but in opposite phase, to the voltage fed back through the tube.
The most commonly-used circuits for this purpose are shown in Fig. 6-12. Amplifiers using these systems of neutralization ars

(c)

(D)

Fig. 6-12 - Nentralized-triode amplifier circuits. A - Single tuthe with capacitive balance. B - Single tube with inductive balance. (C and I) show rorresponding push-pull arrangements.
$\mathrm{C}_{1} \mathrm{I}_{1}$ (grid tank) and $\mathrm{C}_{2} \mathrm{I}_{2}$ (plate tank) are tuncd to the frequency fed to the amplifier.
C_{3} - Grid by-pass condenser - $0.001-\mu \mathrm{fd}$, mica.
C_{5} - Ilate by-pass condenser, $0.001 \cdot \mu \mathrm{fd}$. mica.
C_{6} - Neutralizing condenser - approximately same capacitatice as tube grid-plate capacitance.
K_{1} - Grid-circuit isolating resistor - $\mathbf{1 0 0}$ olıms.
RFC - P'late-circuit isolating radio-frequency choke 1 to 2.5 mh .

Fig. 6.13 - Additional, but less commonly n ised neutralizing cireuits. A-Grid neutralizing. 1 - Link nentralizing. C - Inductive neutralization.
$\mathrm{C}_{1} \mathrm{l}_{1}, \mathrm{C}_{2} \mathrm{l}_{2}$ - Tank cireuits tuned to operating frequency.
C_{3} - Neutralizing condenser - approximately same capacitance as grid-plate capacitance of tube.
C_{4} - Ilate ly-pass condenser - $0.001 \cdot \mu \mathrm{fd}$. mica.
C_{5} - Crid hy-pass condenser - 0.001 - $\mu \mathrm{fl}$. mica to 0.01 $\mu \mathrm{fd}$. paper.
C_{6} - Voltage-llocking condenser - $0.001-\mu \mathrm{fd}$. mica.
C_{7} - Variable condenser to tune trap circuit to operating frequency with L_{5} and grid-plate capacitanee of tube. (Sce text.)
$\mathrm{L}_{3}, \mathrm{~L}_{4}$ - Neutralizing links - usually a single turn is sufficient.
\mathbf{L}_{δ} - Neutralizing trap coil - to thete to operating frequency with $G 7$ and grid-plate caparitance of tule. (See text.)
known as plate-neutralized amplifiers. In each case, the midpoint of the plate tank circuit, either coil or condenser, is grounded. Thus the voltages at opposite ends of the tank are essentially equal, but 180 degrees out of phase.

The neutralizing and feed-back voltages are matched in amplitude by adjusting the eapacitance of the neutralizing condenser, C_{6}.

In Fig. 6-12A, the division of voltage across the tank circuit is dependent upon the ratio of the capacitances of the two sections of the tank condenser. Since these capacitances are equal in a split-stator condenser, the voltages at the ends of the tank circuit in respect to the cathode, which is connected to the center of the tank circuit through ground, are equal. Therefore the neutralizing voltage is the same as the feed-back voltage when the capacitance
of the neutralizing condenser is equal to the grid-plate capacitance of the tube, including socket and other external stray capacitances arross the elements.

In Fig. 6-12 I3, the voltage division for neutralization is dependent upon the ratio of inductances in the two sections of the coil. The coil usually is tapped at the center to give equal voltages at the ends of the tank circuit.

Push-Pull Triode Circuits

Fig. 6-12C and D show equivalent pushpull arrangements. In circuit I), hetter circuit balance can be maintained by using splitstator tank condensers. The rotors in this case should not be grounded.

In Fig. 6-12C, the r.f. choke in the plate circuit prevents r.f. grounding of the coil centertap (through the power supply) and the rotor of the condenser simultaneously. This condition is to be avoided because it sets up threc tuned circuits - cach half of the tank cireuit in addition to the circuit as a whole. The isolating resistor in the grid circuit serves a similar purpose.

Grid Capacitive Neutralizing Systems

Additional, hut less widely-used neutralizing rincuits are shown in Pig. 6-13. The circuit of Fig. 6-13A is similar to that of Fig. 6-12A, exeppt that the voltage division takes place in the grid circuit instead of the plate circuit. Any voltage which may be fed back to the grid circuit through the grid-plate capacitance of the tube is divided in the grid tank circuit so that half appears at the grid, while the other half is fed. 180 degrees out of phase, back to the plate. In another similar version the grid tank coil, instead of the condenser, is used as the voltage divider, the circuit being comparable to Fig. 6-1213.

Link Neutralizing Circuit

The link neutralizing eireuit of lig. 6-1313 sometimes is useful as an expedient to stabilize a screen-grid amplifier which is not sufficiently sereened or shielded. It has the advantage that it may be added readily to an alradyexisting amplifier circuit without the necessity for the major alteration in cither grid or plate circuits which would be required to shift the ground point to the center of the tank circuit. The link provides the path for coupling back the neut ratizing voltage and proper phasing is dependent upon the polarization of the two link roils. Connedions to one of the link coils may be swit ched to obtain correct polarization.

Inductive Neutralization

The inductive neutralizing arrangement of Fig. 6-13C consists merely of making the plategrid capacitance of the tube part of a high- Q circuit tuned to the frequency at which the amplifier is designed to operate. Since such a circuit presents a high impedance to the flow of current at the frequency to which it is tuned
(wavetrap) it prevents feed-back. Most complete neutralization requires that the Q of the tuned circuit be high. On the other hand, the higher the Q the narrower will be the band over which a single adjustment will hold.

All of the circuits of Fig. 6-13 have disadvantages in amateur practice, particularly in respect to the tuning range over which a single adjustment of neutralization will hold.

SCREEN-GRID AMPLIFIER CIRCUITS

Single-tube and push-pull sereen-grid amplifier circuits are shown in Fig. 6-14. The grounded screen in transmitting-type tetrodes and pentodes serves as a shield between the plate and grid to reduce the grid-plate capacitance to the point where feed-back is insufficient to support oscillation. Thus tubes of this type are designed to be operated without nentralization when circuit simplicity is of importance. However, neutralization usually will result in more reliable stability. Poorlyscreened audio tetrodes, such as the 61.6 and 6V6, invariably require neutralization.

The power sensitivity of screen-grid tubes is much higher than that of triodes of comparable power rating. Therefore greater care must be exercised in eliminating possible paths for feed-back coupling external to the tube.

Fik. 6. 14 - Screen-grid amplifier cirruits. A - Sing] tule amplifier. \mathbf{B} - Push-pull.
C_{4} - Sereen $\mathrm{hy}-\mathrm{pass}$ condenser - $0.001-\mu \mathrm{fd}$. mica. R_{1} - Sereen voltage dropping resistor.
H_{2} - Grid-circoit isolating resistor - 100 ohms. Other values same as Fig. 6.12.

Interstage Coupling Systems

Efficient transfer of power from the output tank circuit to the grid of a succeeding amplifier requires the use of a suitable correctly-adjusted coupling system. The essential requirement of such a system is that it should, so far as possible, transform the actual load impedance presented by the grid circuit of the following tube to the value of output load impedance recommended as optimum for the driving tube. (See section on tube operating factors, this chapter.)

INDUCTIVE COUPLING METHODS

Link Coupling System

The inductive link coupling system, several examples of which are shown in Fig. 6-15, has a number of advantages. The two tuned circuits discriminate against harmonies and therefore this system is a primary means of reducing 'TVI, especially when used between the transmitter output stage and its driver. It facilitates coupling between balanced and unbalanced circuits and matching the optimum load impedance for the driver and the input impedance presented by the driven stage when they differ appreciably in value. Since the output capacitance of the driver stage and the input capacitance of the driven stage are across individual tank circuits, the system is preferred when circuit capacitance must be minimized. When properly adjusted, the link line can be of any length with negligible loss or radia-
tion and therefore is useful when it becomes necessary or desirable to have considerable physical scparation of driver and driven stages.

Fig. 6-15A shows the link system coupling two unbalanced circuits. This arrangement would be used, for instance, in coupling an oseillator or a screen-grid driver to the input of a single-tube stage.

The scheme at B would be suitable for coupling a neutralized or push-pull driver to a single-tube amplifier.

The diagram of Fig. 6-15C shows the method applied in coupling the output of an unneutralized driver to a push-pull amplifier circuit, while D is the circuit to be used in coupling a neutralized or push-pull stage to another pushpull grid circuit.

This system may be considered either as simply a means of obtaining mutual inductance betwern the two tank coils or as a low-impedance transmission line. If the system is to be treated without regard to transmission-line effects, certain requirements must be met if sufficient coupling is to be obtained. The Q of each of the two tank circuits must usually be at least 10 and preferably 12 (see "Amplifier Design Considerations", this chapter). The link coils should have an equal number of turns and should be capable of being coupled tightly to the tank coils. The link line must not offer appreciable reactance at the operating frequency.

The first two requirements are not often difficult to meet, but the third requires special consideration unless the line is very short. Any appreciable reactance, inductive or capacitive, will in effect reduce the coupling. Coaxial cables especially have considerable capacitance for even short longths and for this reason it may be more desirable to use a spaced line, such as twin lead, if the ratiation can be tolerated.

(B)

(C)

(D)

Fig. 6.15-Link coupling circuits. A - Inhalanced output to unbalaned input. $13-$ Balanced ontput 10 unhalanced iuput. (. - Linbalanced output to halaneed input. 1) - Balanced output to halaneed input.
(it-I)river-stage plate tank condenser.
$\mathrm{C}_{2}-$ I)riven-stage grid tanh condenser.
(is - Ilate by pass condenser.
C_{4} - Grid by-pass condenser.
C_{5} - Veutralizing condenser.
I_{1} - I river output tank coil.
I_{2} - Driven-stage input tank coil.
I,3-Link winding.
KFC: - R.f. choke.
($C_{1} L_{1}$ and $C_{2} L_{2}$ are always tuned to the same frequency.

The reactance of the line can be nullified only by making the link resonant. This may require changing the number of turns in the link eoils, the length of the line, or the insertion of a tuning capacitance. The disadvantages of such a resonant link are obvious. The line losses increase because of the greater current, the voltage increase may be sufficient to canse a break-down of the cable and the added tuned cireuit makes adjastment more eritieal with rolatively small whanges in frequency.

These troubles maty not be encountered if the link line is kept very short for the highest froquency. A length of $\overline{5}$ fore or nore may be tolerated at 3.5 Me., but a length of a foot of coaxial line at 28 Mc. may be enough to caluse serious effects on the functioning of the system.

Most of these difficulties cau be avoided if the link is considered as a transmission line. However, a standing-wave indicator is reguired for promer adjustment. The procedure is deseribed in detail in the chapter on transmission lines.

Coupling is adjusted by moving one or both of the link coils in respeet to their respective tank coils.

Inductive and Bandpass Coupling

When negligible soparation between stages is permissible, the link line may be omited and the two tank eoils coupled directly. Coupling is adjusted by changing the position of one coil in respeet to the other. With the roils in close proximity, the amount of capacitive coupling introduced by the capacitance between coils may be greater than with link coupling where the coils usually have greater separation. This may be a consideration in reducing v.h.f. harmonies to a minimum.

If the L / C ratios in the two tank circuits are appropriate and the coupling is adjusted critically, it is possible to cover the width of any amateur hand (up) to and ineluding 28 Mc .) with only a single initial adjustment of the two tuning condensers. In other words, the tuning is "broadbanded." To adjust the coupling, the two coils are first separated as much as possible, so that the tuning of one circuit will not disturb the tuning of the other tow drastically. Each eircuit is then tuned to resomanee near the center of the band to be covered. Then the coupling is gradually inereased until a characteristic similar to that shown in the solid line of Fig. 6-16 is obtained. Overcoupling is indicated by praks near the ends of the band, with a dip at the eenter, while a prak at the center and drooping at the ends of the band are characteristic of undercoupling. Where the desired band camot be covered satisfactorily, the L / C ratio should be increased. This may not be possible at 14 and 28 Mc. Without taking special precautions to minimize circuit capacitances.

In the case of a single peak, care should be taken to make sure that the peak observed is in fact a single peak and not one of two peaks, the other lying outside the olservable range. Such a situation may arise if the preceding circuits are

Fig. 6-16-Typical bandpasscoupler characteristics. The solid curve shows the sort of performance possible with a correctly. adjusted coupler. The dashed-line curves are typical of incorrect coupling.
limited in frequency range. If increasing the coupling seems to have no broadening effect on the peak, the coupling should be reduced until an adjustment is found where the single peak flattens out, or the two humps begin to appear within the available frequency span.

To ohtain the desired output characteristic from a bandpass coupler, it is essential that the excitation at the grid of the amplifer be substan-
tially constant across the band for which operation is contemplated.

CAPACITIVE COUPLING CIRCUITS

In a capacitive coupling system, the output tank circuit of the driver stage serves also as the input tank circuit of the driven stage. Several arrangements for coupling between

Fig. 0.17 - Examples of capacitive coupling. A - Series plate feed, parallel grid feed. B - Parallel plate feed, series grid feed. C - Parallel feed in both plate and grid. D-Series feed in both plate and grid. E - Balanced output to unbalanced input, series plate feed, parallel grid feed. F - Single tube to push-pull.
C_{1} - Tank condenser.
C_{2} - Hy-pass condenser.
C_{3} - Coupling condenser.
C_{4} - Driver plate blocking condenser.
C_{5} - Driver neutralizing condenser.
C_{6} - Circuit-balaneing condenser.
L1-Tank coil.
RFC - R.f. choke.
balanced and unbalanced circuits, depending upon whether series or parallel power feed is desired, are shown in Fig. 6-17.

With capacitive coupling, the two stages cannot be separated physically any appreciable distance without involving loss in transferred power, radiation and the danger of instability berause of feed-back which long high-impedance leads may provide. Since both the output rapacitance of the driver tube and the input eapacitance of the driven tube are fumped acros, the single tuned circuit, this sometimes makes it difficult, with the highcapacitance of sereen-grid tubes, to obtain a tank circuit with a sufficient amount of inductance to provide an efficient circuit for the higher frequencies, Another disadvantage is that it is difficult to preserve circuit balance in coupling from a single-tube stage to a pushpull stage because the circuit tends to become unbalanced by the output capacitance of the driver tube which appears across only one side of the eircuit. This does not, however, preclude its use for this purpose, if simplicity in circuit is comsidered of greater importance, for frequencies below 30 Me .

The arrangements of Fig. 6-17A and 13 are most often seen with the plate tap of A and the grid tap of B connected to the top end of the coil. A is: used when series driver plate feed is desired; 13 when series amplifier grid feed is wanted. In the circuit of C , the tank condenser and coil are grounded directly, but parallel power feed is required for the driver plate and usually for the amplifier grid although the grid loak sometimes is placed across the coupling condenser, (${ }^{3} 3$.

An arrangement which makes possible series feed to both plate and grid is shown at D . L_{1} in D) is a single coil, opened at the center for feeding in plate and biasing voltages. Since the by-pass condensers, C_{2}. are directly in the tank circuit, they should be of good-grade mica and capable of handling the r.f. current eirculating through the tank circuit. The scheme is practical chicfly in low-power stages. Because it provides a "double-ended" output eircuit, it may be used in a neutralized amplifier stage simply by the addition of nout ralizing condenser ('s. The grid of the driven tube and the plate of the driver tube being connected across opposite halves of the tank circuit helps
to distribute stray capacitances more evenly, thereby preserving a better circuit balance. A still better balance can be achieved by using a split-stator condenser at C_{1}^{\prime} and a single mica condenser at C_{2}^{\prime}, grounding the circuit at the split-stator rotor rather than between the two fixed condensers. Excitation may be adjusted, if necessary, by tapping the grid or plate, as may be required, down on the coil. Such an alteration of coupling, however, will necessitate readjustment of neutralization if the tank is used for neutralizing the driver as suggested.

The cireuit of Fig, 6-17E is the preferred arrangement for coupling a neutralized driver to a single-tube amplifier in cases where series feed to the grid of the amplifier is not considered important, F shows the same system feeding a push-pull amplifier. If a more accurate balance is desired, a balancing condenser, C_{6}, can be used across the other half of the circuit to compensate for the driver-tube output capacitance.

Capacitive.Coupling Adjustment

With capacitive coupling, an exact match between output and input impedances that differ appreciably cannot be made without tapping the coil (rigs. 6-17A and B). Tapping not only often presents a mechanical problem, but also is sometimes responsible for parasitic oseillation. When the output impedance of the driver is lower than the input impedance of the driven stage, the plate of the driver should be tapped down on the coil. On the other hand, if the input impedance of the driven tube is the lower, the grid should be tapped down.

In many casses, satisfactory coupling can be obtained without tapping the coil, particularly if the impedances to be coupled do not differ too greatly, or if the driver has power to spare. Within limits, the lowding of the driver can be changed by a change in the capacitance of the coupling eondenser, a smatler condenser reducing the coupling. Whether a tap is necessary and where it should be placed can be determined as discussed under "Adjustment of R.F. Amplifiers," this chapter.

Coupling Condensers

Coupling condensers should be of the mica type with a voltage rating above the sum of the driver plate and amplifier grid biasing voltages.

Amplifier Design Considerations

PLATE-CIRCUIT VALUES

Tank-Circuit Q

The primary function of the plate tank circuit in a Class C' amplifier is that of smoothing out the pulses fed to it by the tube. As diseussed in the chapter dealing with electrical laws and cireuits, it is also an essential part of certain systems used to comple the tube output to a nseful load eireuit. For both of these objeretives, the Q of the tank
circuit when shunted by the load should have a certain minimum value, With the condition under which Class C r.f. power amplifiers are usually operated in amateur transmitters, a minimum () of 12 is recommended. For a fixed value of Q, the tank-eircuit L / C ratio varies in proportion to the ratio of the d.e. plate voltage to plate current with the amplifier loaded. 'The chart of Fig. 6-18 shows required values of tank caparitance for a Q of 12 for a wide range of plate-voltage/plate-
current ratios for each of the lower-frequency amateur bands. The values apply to the type of plate tank circuits shown in Fig. 6-19A only. Because the tube is connected across only half of the tank in the remainder of the circuits shown in Fig. 6-19, the total capacitance across the tank coil may be reduced to one-quarter that shown by the graph for the same plate-voltage/platecurrent ratio. This means that in circuits in which a split-stator condenser is used, the capacitance of each section of the condenser may be half the value shown in the graph, since the two sections are in series across the coil.

The values shown in Fig. 6-18 are the capacitances which should be in actual use when the circuit is tuned to resonance in the selected band - not the maximum rated capacitance of the tank condenser - including tube and rircuit capacitances. They should be considered minimum values for satisfactory operation. They can be exceeded 50 to 100 per cent without involving an appreciable loss in circuit efficiency. The Q can be increased also by tapping the plate down on the tank coil, although this sometimes results in setting up a parasitic oscillatory circuit.

Plate Tank-Condenser Voltage

In selecting a tank condenser with a spacing between plates sufficient to prevent voltage breakdown, the peak r.f. voltage across a tank circuit under load, but without modulation, may be taken conservatively as equal to the d.c. plate voltage. If the d.e. plate voltage also appears across the tank condenser, this must be added to the peak r.f. voltage, making the total peak voltage twice the d.c. plate voltage. If the amplifier is to be plate-modulated, this last value must be doubled to make it four times the d.e. plate voltage, because both d.c. and r.f. voltages double with 100 -per-cent plate modulation. At the higher plate voltages, it is desirable to choose a tank circuit in which the d.c. and modulation voltages do not appear across the tank condenser, to permit the use of a smaller condenser with less plate spacing. Fig. 6-19 shows the peak voltage, in terms of d.c. plate voltage, to be expected across the tank condenser in various cireuit arrangements. These peak-voltage values are given assuming that the amplifier is loaded to rated plate current. Without load, the peak r.f. voltage will run much higher. Since a c.w. transmitter may be operated without load while adjustments are being made, although a modulated amplifier never should be operated without load, it is sometimes considered logical to select a condenser for a c.w. transmitter with a peak-voltage rating equal to that required for a 'phone transmitter of the same power. However, if minimum cost and space are considerations, a condenser with half the spacing required for 'phone operation can be used in a c.w. transmitter for the same carrier output, as indicated under Fig. 6-19, if power
is reduced temporarily while tuning up without load.
In the circuits of Fig. 6-19C, D and Fi, the rotors are deliberately connected to the positive side of the high-voltage supply, eliminating any difference in d.c. potential between the rotors and stators.
The plate spacing to be used for a given peak voltage will depend upon the design of the variable condenser, influencing factors being the mechanical construction of the unit. the dielectric used and its placement in respect to intense fields, and the condenser-plate shape and degree of polish. Condenser manufacturers usually rate their products in terms of the peak voltage between plates.

Plate Tank Coils

The inductance of a manufactured coil usually is based upon the highest plate-voltage/ plate-current ratio likely to be used at the maximum power level for which the coil is

Fig. 6-18-Chart showing minimum plate tank capacitances recommended with various ratios of plate voltage to plate current, for the six low-frequency amateur bands. In the circuits F, G and H of Fig. 6-19, the values shown ly the graph may be divided by four. In circuits $\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{J}, \mathrm{J}$ and K , the capacitance of each section of the split-stator condenser may be one-half the value shown by the graph. The full graph values should be used for circuits A and B. These values are based on a circuit Q of 12 ,

Plate-Blocking and By-Pass Condensers

Plate-blocking condensers should have low inductance; therefore condensers of the mica type are preferred. The capacitance should be large enough to have low reactance at the lowest operating frequency. For frequencies between 3.5 and 30 Mc . a capacitance of 0.001 $\mu \mathrm{ff}$, is commonly used. The voltage rating should be 25 to 50 per cent above the platesupply voltage.

13y-pass condensers also should have low reactance at the operating frequency. Disktype ceramic condensers with capacitances botwern 0.001 and 0.01 $\mu \mathrm{fl}$. are recommended where the phate voltage does not exceed 400 or 500 volts. Miea condenscrs of similar caparitance should be used at highor voltages. The voltage rating should be 25 to 50 per eent higher than the plate voltage for c.w. and double this value for a stage that is to be plate modulated
designed. following the logical conclusion that it is easier to cut off turns than to add them. Therefore in the majority of cases, the caparitance shown by lig. 6-18 will be groater than that for which the coil is designed and turns must be removed to permit the use of the proper value of capacitance. At 28 Mc ., and sometimes 14 Me., the value of capacitance shown by the chart for a high plate-voltage/ platereurent ratio may be lower that that attainable in practice with the eomponents available. The design of manufact ured coils usually lakes this into consideration also and it may be found that values of capacitance greator than those shown in the graph (if stray capacitance is included) are required to tume these coils to the band.

Manufartured coils are rated according to the plate power input to the tube or tubes when the stage is loaded. Since the circulating tank current is much greater when the amplifier is unloaded, care should be taken to operate the amplifier conservatively when unloaded to prevent damage to the eoil as a result of excessive heating.

R.F. Chokes

Parallel plate feed provides a considerable moasure of protection against serious injury to the operator from accidental contact with high-voltage d.c. in the tank eireuit. However, the r.f, choke in this case is called upon to present a high impedanee at the operating frequency if serious loss of power in the choke is to be avoided. In the design of manufactured r.f. chokes, an attempt is made to make the choke universally satisfactory for several amateur bands. However, when the transmitter is designed to operate on all amateur bands from 28 Me. to 3.5 Me , loss in r.f. chokes often oecurs on one or more of the bands. There is no simple remedy for this difficulty aside from a shift to series plate feed which, of course, mullifies the safety angle. One possible remedy is the use of different chokes for each band, the chokes being plugged in with the tank eoil provided it can be fitted with a protective guard.

For frequencies between 3.5 and 30 Mc ., $2.5-\mathrm{mh}$. chokes are used whore the plate current is 125 ma . or less, and 1 mh . When the
plate current is about 125 ma . In the circuit of Fig. 6-191), the choke does not carry any current, so a low-current choke may be used, regardless of the power. In series-fed circuits in which the ehoke is used to isolate the coil center-tap from ground, the value of the choke inductance is not critical.

GRID TANK CIRCUITS

As with the plate tank circuit, the grid tankrireuit Q should have a certain minimum value to assure adequate eoupling. The amount of caparitance neressary for a given grid-tank Q depents upon the average grid impedance shunting the tank cireuit. As the equation given later in the seetion on r.f. power-amplifier-tube operating factors indieates, this impedance under usual (lass C operating conditions is a function of driving power and d.c. grid current. Fig, 6-20 shows the various values of grid tank capacitance required for a Q of 12 for different ratios of driving powar to the square of the d.c. grid current. The value of C thus chetermined is for the single-tube

Fig. 6-20-Chart showing reguired grid tank rapacitance for a Q of 12 for varions ratios of driving power to d.e. grid current stuared. These values shomld lee modified as indicated in Fig. 6-21 for eirenits other than $6-21$ A.

Fig, 6. 21 - Grid tank eircuits. The ehart of Fig. 6.20 gives the prower value for C. 'Whe tank condenser should have a voltage rating approximately equal to the operating hias voltage phes 20 per cent of the plate voltage for circuit A, twiec this value for eirenit 13 and each section of the rondenser in eirruit I). The biasing voltage must be added to this latter figure in determining the voltage rating of each section of the condenser in circuit C, R is an isolating resistor of 100 ohms minimum, which must he considered an part of the grid leak.
cireuit of Fig. 6-21A. This value should be modified as indicated in other sections of the same figure for tubes in push-pull.

If it is found that a Q as high as 12 is not needed to provide adequate coupling, the tuning of the grid circuit an be broadened by increasing the L / C ratio. This makes it necessary to retune the grid circuit less frequently in covering a given band.

Approximate tank-condenser voltage ratings are suggested under Fig. (i-21. Tank coils with a power rating equal to that of the driver plate tank coil should be used in the grid tank cireuit.

The resistor R in $\mathrm{Fig} .6-21 \mathrm{C}$ and 1) is recommended in place of the r.f. choke customarily used in the same position, to eliminate the possibility of forming a low-frequency parasitie t.g.t.p. oscillator in conjunction with the r.f. choke usually used similarly in the plate circuit. A resistanee of 100 ohms will be sufficient in most cases. If a grid leak is used, the 100ohm resistor will not be neecssary.

R. F. Power-Amplifier-Tube Operating Factors

Transmitting-tube instruction sheots and data tables specify the limitations on various dectrode voltages and currents whioh should be observed in the operation of transmitting tubes to insure normal tube lifer Ineluded also are sets of recommended operating conditions which may be followed as a guide in obtaining
rated output with good efficiency consistent with reasonable driving power, although it may be desirable to depart from these somewhat under certain conditions. Some transmitting-tube manufacturers list two sets of ratings, one for continuous commercial service and one for intermittent amateur (ICAS) service.

GRID.CIRCUIT RATINGS

 Grid BiasTwo values of grid-biasing voltage are of interest in the practical operation of r.f. power amplifiers. These are protective bias and operating bias.

When plate (and screen) voltage is applied, most tubes will draw appreciable plate current in the absence of any grid bias. Therefore protective bias must be used with all but "zero-bias"-type tubes to hold the power input to the tube below the rated dissipation value when excitation is removed without removing plate (and screen) voltage. Without excitation, the amplifier delivers no power. Therefore any power input is dissipated in heat which would ruin the tube in a short length of time. This condition exists when the transmitter is keyed alead of the amplifier, while tuning adjustments are being made, or through failure of a erystal oscillator to function or other accidental failures of excitation.

Operating bias is the value of biasing voltape between grid and cathode when the amplifier is being driven and delivering power. The optimum value of biasing voltage for operating under a given set of conditions is listed in tube tables and manuals, and with triodes is normally $t w o$ to three times the cut-off bias value - the value necessary to reduce the plate current to zero with plate voltage applied.

Protective bias may be any value between that which limits the input to the tube to its rated plate (and screen) dissipation as a minimum, and the operating value as a maximum. It is common practice, however, to set the value at some point between that which is necessary to cut off plate current completely and the operating value. With fixed plate voltage, the cut-off value for a triode can be determined quite elosely by dividing the plate voltage by the amplification factor obtained from the tube data sheet. For sereen-grid tubes, the amplification factor and voltage of the screcm must be used instead. In cases where this is not included in the operating data, the approximate cut-off value may be obtained from an inspection of the plate-current platevoltage curves which show the plate current for a wide range of plate, screen and biasing voltages.

A saving in the operation of a c.w. amplifier sometimes can be effected by adjusting the protective bias so that the tube (or tubes if more are operated from the same supply) draws the same current as the required bleeder resistance for the power supply (see power-supply chapter), if this can be done without exceeding the dissipation rating of the tube. This saves the cost of the bleeder resistor and some of the power it wastes and also improves the regulation, since the difference between minimum and maximum load as the amplifier is keyed is less.

A factor which must be considered in determining the value of bias which will protect the tube is plate- (and sereen-) voltage regulation. If the power-supply regulation is poor, or if the plate or screen is fed from a resistance voltage divider or a voltage-dropping resistor, the electrode voltages will soar as the tube draws less than normal operating current and therefore an increase over the calculated value of cut-off bias will be required to bring the current to zero. This condition is encountered most often in the operation of a screen-grid tube where the sereen is not fed from a fixedvoltage soure. In such cases, care should be taken to make certain that the proper operating hias is not exceeded when excitation is applied.

Several different systems for obtaining bias are shown in Fig. 6-22. At A, bias is obtained entirely from the voltage drop across the grid leak, R_{1}, caused by the flow of rectified grid eurrent when the amplifier is being driven. This system has the desirable feature that the biasing voltage, being dependent upon the value of grid current, is kept arljusted close to proper operating value automatically over a considerable range of excitation levels. However, when exeitation is removed, grid-current flow ceases and the voltage across R_{1} falls to zero and there is no bias. Therefore this system provides no protection for the amplifier tube in case excitation fails or is removed.

A battery delivering the required operating bias is used in the arrangement of Fig, 6-2213. Since the biasing voltage still remains when excitation is removed, plate-current flow ceases and the tube is protected. A factor which must be taken into consideration when dry batteries, such as "B" batteries, are used, is the resistance of the batteries. If the internal resistanea is high, the resistance will cause an increase by grid-leak action, in the operating bias above that normally delivered by the batteries. Batteries develop internal resistance with age and should be replaced from time to time. Another factor is that the direction of gridcurrent flow is such as to reverse the normal direction of current through the battery. This acts to charge the battery. A battery which has been in use for some time, particularly it the grid current under excitation is high, will show a considerably higher-than-rated terminal voltage because of the charging action of the grid current. The terminal voltage of a battery used in transmitter hias service where grid current flows cannot be used as an indication of the condition of the battery. Its internal resistance may be high, even though it shows normal or above-normal terminal voltage. If the grid current in a battery-biased stage falls: off after a period of operation and no other reason is obvious, it is probable that the biasing battery should be replaced. The battery life which may be experted in bias service with a given value of grid current will be approximately the same as $i t$ would be if that same
current were being drawn from the battery.
In Fig. 6-22C, the battery voltage is reduced to the protective value. When excitation is applied, grid-leak action through R_{2} supplies the additional biasing voltage necessary to bring the total up to the operating value. This combination of fixed and grid-leak bias is the most popular system, since it combines the safety of protective fixed bias and a measure of automatic adjustment of the operating value through grid-leak action.

In Fig. 6-22D, a power pack is used to supply protective bias. The output of the power pack is connected across the grid resistor which is of the normal grid-leak value for the tube. The peak voltage output of the transformer used in the power pack must not exceed the operating-bias value. A bleeder resistance rannot be used across the output of the pack, nor can the output voltage be reduced by means of a voltage divider or series dropping resistor without affecting the biasing voltage when excitation is applied.

These restrictions on the use of a power pack can be avoided by the addition of a voltageregulator tube across the output of the pack, as shown in Fig. 6-22E. The voltage across the regulator tube remains constant with or without grid current flowing. By making the volt-age-regulator series resistor, $R_{\text {f }}$, of proper value, the output voltage of the pack may be
anything within reason above a minimum of approximately twice the voltage rating of the VR tube. These tubes are available for 75.90 . 105 and 150 volts and each tube will handle up) to 30 or 40 ma . of grid current. VR tubes may be used in series to obtain regulated voltages above 150 , and in parallel for grid currents above 40 ma . It is usual practice to use a V R tube, or combination of VIR tubes in series or series-parallel, with the minimum voltage rating which will give ptate-current cut-off, and obtain the additional voltage required to bring the total bias up to the operating value by grid-leak action when excitation is applied, as with battery bias in Fig. 6-22C. The use of VR tubes for this purpose is discussed more fully in the power-supply chapter.

A single source of fixed biasing voltage, such as batteries or VR tubes in series, may be used to provide protective bias for more than one amplifier stage tapping the batteries or connecting to the junction of the tubes in the VR series if lower biasing voltages are required for other stages. In this case. the current flowing through the fixed-bias source is the sum of the grid currents of the individual stages obtaining bias from the source.

In Fig. 6-22F, bias is obtained from the voltage drop across a resistor in the cathode (or filament center-tap) lead. Protective bias is obtained by the voltage drop across R_{5} as a

$\mathcal{F i s .} 0.22$ - Varions sy stems for obtaining protective and operating bias for r.f. amplifiers. A - Gridelcak, B - Battery. C - Combination battery and yrid leak. 1)-Grid leak and adjusted-voltage bias pack. E-Conlbination grid leak and voltage-regulated pack. F - Cathode bias,
result of plate (and screen) current flow. Since plate current must flow to obtain a voltage drop across the resistor, it is obvious that cutoff protective bias cannot be ohtained by this system. When excitation is applied. plate (and screen) current increases and the grid current also contributes to the drop across R_{j}. thereby increasing the bias to the operating value. Since the voltage between plate and cathode is reduced by the amount of the voltage drop across R_{5}, the over-all supply voltage must be the sum of the plate and operatingbias voltages.

The resistance of R_{5} should be adjusted to the value which will give the correct operating bias with rated grid, plate and screen currents flowing with the amplifier loaded to rated input. When excitation is removed, the input to most types of tubes will fall to a value that will prevent damage to the tube, at least for the period of time required to remove plate voltage.

Calculating Bias-Resistor Values

The calculation of the required grid-leak and eathode biasing-resistor values is not difficult. For simple grid-leak hias, as shown in Fig. $6-22 A$, the resistance is obtained by dividing the required operating-bias voltage by the rated grid current.

> Example: Required operating hits $=100$ volts. Rated grid current $=20$ ma. $=0.02$ amp. Grid-leak resistanee $=\frac{100}{0.02}=5000$ ohms.

If a combination of grid-leak and fixed protective bias is used, the amount of protertive bias should be subtracted from the required operating-bias voltage before the calculation is made (except in the case of the arrangement of Fig. 6-22D).

Example: Requirel operating hias $=150$ volts.
Protective bias from hattery or VR tube $=90$ volts.
$1,50-90=60$ volts $=$ reguired bias from grid leak.
Rated grid current $=10 \mathrm{ma} .=0.01 \mathrm{amp}$.
Grid-leak resistance $=\frac{60}{0.01}=6000$ ohms.
In the case of a cathode biasing resistor, the rated grid, screen and plate currents under load are added together. The required operating voltage is then divided by this total current to obtain the resistance.

```
Example: Rated grid current \(=15\) ma. \(=0.015 \mathrm{amp}\).
    Rated screen current \(=20 \mathrm{ma} .=0.02 \mathrm{amp}\).
    Rated plate current \(=200 \mathrm{ma} .=0.2 \mathrm{amp}\).
    Total rated eathode current \(=235 \mathrm{ma} .=0.235 \mathrm{amp}\).
    Required operating bias \(=150\) volts.
    Cathode resistance \(=\frac{150}{0.235}=638\) ohms.
```

For two tubes in parallel or push-pull that use a single common resistor in examples similar to those above, the calculated value of resistanee should be cut in half.

The power rating of the resistor may be determined from Ohm's Law:

$$
I^{\prime}=I^{2} R
$$

```
Rxample: In the first example above for grid-leak
    resistance,
    resistance,
\(I=20 \mathrm{ma}, 0.02 \mathrm{amp} . \quad I^{2}=0.0004\)
    \(R=5000\) ohms.
    \(I^{\prime}=(0.0004)(5000)=2\) watts.
Fxample: In the above example for cathorle resistor, \(I=235 \mathrm{ncs}=0.235 \mathrm{amp} . \quad I^{2}=0.0 \overline{5}\)
\(k=638\)
\(P^{\prime}=(0.055)(638)=35.1\) watts.
```


Maximum Grid Current

When a Class C amplifier is properly exrited, and the grid is driven positive over part of the eycle, rectification takes place as it does in a diode. The rectified grid eurrent flows between grid and cathode within the tube and thence through the cxternal d.e. circuit which must always be provided, connceting grid and cathode. This external circuit includes the bias source (grid loak or voltage source) and either the grid r.f. choke with parallel feed, or the tank coil in series-feed arrangements. The flow of rectified current rauses heating of the grid. As with the plate, there is a limit to the heat which the grid can dissipate safely. This limit is expressed in terms of maximum d.e. grid current which should not be exeeeded in regular operation of the amplifier. Efficient operation usually can be attained with grid current below the maximum rated value.

The rated total grid current of two tubes in parallol or push-pull is twice that of a single tube of the same type.

Excitation

Excitation, or driving power, is the r.f. power fed to the grid of the amplifier by a precoding oscillator or amplifier. For efficient operation, a triode amplifier requires a driver capable of delivering 15 to 20 per cent as much power as the rated output of the amplifier. Screen-grid tubes require much less - usually from 5 to 10 per cent of their rated power output. To eover tank-circuit and coupling losses, a driver capable of supplying several times the driving power listed in the tube data should be used.

Two tubes in parallel or push-pull require twice the driving power of a single tube of the same type under similar conditions.

Grid Impedance

For the conditions under which Class (' amplifiers normally are operated, the impedance presented by the grid may be calculated to a close approximation by:

Input impedance (ohms)

$$
=\frac{\text { driving power }(\text { watts })}{d \text { c. grid current }(\text { ma. })^{2}} \times 622 \times 10^{3} .
$$

Both the driving power and the grid current are given in tube-operating data. The single-tube value thus obtained should be doubled for tubes in push-pull or halved for two tubes in paraliel. These values will, of couns, change if the operating eonditions vary from those speeified.

pLATE-CIRCUIT RATINGS

Power Output

The figure for power output given in the tube data is the r.f. power that the tube can be expected to deliver to the tank circuit (not the power output from the tank which is somewhat lower) under the conditions specified, at the fundamental frequency.

Power Input

Powar input for both triodes and screen-grid tubes is the d.c. power input to the plate circuit. It is the product of the d.c. plate voltage and plate current.

Fxample: Plate voltage $=1250$ volts,
Date current $=150 \mathrm{ma}=0,1 \mathrm{~s} \mathrm{amp}$,
Power inint $=(1250)(0.15)=187.5$ waths

Plate and Screen Dissipation

All of the d.c. power fed to the plate rircuit of an amplifier is not converted into r.f. power. Part of it is wasted in heat within the tube, There is a limit to the amount of power that a tube can dissipate in the form of heat without danger of damage to the tube. This is the maxinum rated plate dissipation given in tube data. The power dissipated is the difference between the d.c. power input and the r.f. power output.

Since the d.c. power furnished to the screen of a pentode or tetrode does not contribute to the r.f. output, it is entirely dissipated in heating the screen, and the maximum-input rating should be carefully observed.

Plate Efficiency

The efficiency of an amplifier is the ratio of r.f. power output to the d.c. power input.

> Example: D.c. power input $=175$ watts, R.f. power output $=125$ watts, Dissipation $=175-125=50$ watts Efficiency $=\frac{125}{175}=0.714=71.4$ per cent.

The plate efliciency at which an r.f. power amplifier can be operated depends chiefly upon the relative driving power delivered to the input circuit. Fig, 6-23 shows that the driving power must be increased consirlerably out of

fig. 6-23- Curve showing relation hetween driving power and plate-rircuit efferiency of an r.f. power-amplifier stage.
proportion to the increase in efficiency at the higher efficiencies. An efficiency of 65 to 75 per cent represents a satisfactory balance between power output and driving power.

Maximum Plate Current and Voltage

All voltage figures given in tube data, unless otherwise specified, refer to the voltage between the electrode mentioned and cathode, or filament center-tap. Included are figures for maximum rated plate voltage and plate current. These are the respective maximum values that should be used under any circumstances. Neither should be exceeded to compensate for a lower-than-maximum value of the other in attempting to bring the power input up to permissible level. These maximum values should not be used simultaneously unless it is possible to do so without exceeding the rated plate dissipation.

Optimum Plate Load Resistance

The approximate optimum load resistance for a tube working under usual Class C operating conditions may be calculated by using the following equation:

Optimum plate load (ohns)

$$
=570 \times \frac{\text { d.c. plate voltage }}{\text { d.c. plate current (ma.). }}
$$

For a push-pull amplifier the value thus calculated for a single tube should be doubled, and halved for two tubes in parallel.

OTHER OPERATING FACTORS

Filament Voltage

The filament voltage for the indirectlyheated cathode-type tubes found in low-power classifications may vary 10 per cent above or below rating without seriously reducing the life of the tube. But the voltage of the higherpower filament-type tubes should be held closely between the rated voltage as a minimum and 5 per cent above rating as a maximum. Make sure that the plate power drawn from the power line does not cause a drop in filament voltage below the proper value when plate power is applied.

Thoriated-type filaments lose emission when the tube is overloaded appreciably. If the overload has not been too prolonged, emission sometimes may be restored by operating the filament at rated voltage with all other voltages removed for a period of 10 minutes, or at 20 per cent above rated voltage for a few minutes.

Interelectrode Capacitances

The value given in tube data for grid-plate capacitance is useful in determining the value of capacitance necessary to neutralize a triode. The input- and output-capacity values are helpful in arriving at a figure of minimum circuit capacitance, particularly where capacitive coupling is userd.

Adjustment of R. F. Amplifiers

GENERAL TUNING PROCEDURE

Metering

Sets of typical operating conditions for r.f. amplifiers are given in all tube-data sheets and these should be followed closely for maximum output with a good balance between efficiency and required driving power. In amateur service, ICAS (intermittent commercial-amateur service) ratings may be used when this set of ratings is given. When the available plate voltage falls between values given in the data, satisfactory performance may be obtained by using intermediate values for the other voltages and currents listed.

Fig. 6-24 shows the connections for a voltmeter and milliammeter to obtain desired readings. While cathode metering often is used for reasons of safety to the operator and meter insulation, it is frequently difficult to interpret readings that are the resultant of three currents, one of which may be falling while the other two are increasing. Fig. 6-25 shows a commonly-used system for switching a single meter to read current in any of several different circuits. The resistors, R, are connected in the various circuits in place of the milliammeters shown in Fig. $6-24$. Since the resistance of R is several times the internal resistance of the milliammeter, it will have no practical effect upon the reading of the meter itself.

When the meter must read currents of widely differing values, a meter with a range sufficiently low to accommodate the lowest values of current to be measured may be selected. In the cireuits in which the current will be above the scale of the meter, the resistance of R can be adjusted to a lower value which will give the meter reading a multiplying factor. (See chapter on measuring equipment.) Care should be taken to observe proper polarity in making the connections between the resistors and the switch.

Input-Circuit Adjustment

In setting up an r.f. power amplificr for operation, the necessary provisions for grid bias should be made first. ("R.F. Power-Amplifier Tube Operating Factors," this chapter.) The output of the driver (the oscillator and whatever intermediate amplifier stages there may be) should have been checked previously and found to be adequate. The amplifier hiasing system should be connected, and if it includes a fixed protective supply, this should be turned on. No plate or screen voltage should be applied to the amplifier, however.

Fig, 6-24- Diagrams showing placement of voltmeter and milliammeter to obtain desired measurements. A - Series grid feed, parallel plate feed and series screen voltage-dropping resistor. $\$$ - Parallel grid feed, series plate feed and screen voltage divider,

Fig. 6-25 - Method of switching a single milliammeter. The resistors, R, should the 10 to 20 times the internal resistance of the meter; 47 ohms will usually be satisfactory, S_{1} is a 2 -scction rotary switch, Its insulation should he ceramic for high voltages, and an insulating coupling shonld always be used between shaft and control knob.

As a final tuning adjustment, the driver plate tank circuit should be retuned to make sure that it is at the minimum point of its platecurrent dip. As the coupling is increased, the driver plate-current dip will become less pronounced and may almost disappear altogether if the coupling is increased sufficiently. This, however, usually is an indication of driver overload. Maximum driver output (maximum amplifier grid-current reading) usually will be obtained with the coupling adjusted to the point where there is still a fair amount of dip in plate current. The dip is likely to be less with a fully-loaded screen-grid tube than with a triode. Fiach time an adjustment in coupling is made, the above tuning process should be repeated.

Proper excitation to an amplifier is indicated when the recommended grid current is obtained simultaneously with recommended grid hias, with the amplifier operating and fully loaded. But here, for preliminary tuning, any grid-current reading approximating the recommended value will suffice.

Output-Circuit Adjustment

At this point, the driver should be turned off and the amplifier checked for parasitic oscillation. (See "Parasitic Oscillations," this chapter.)

The next step in the adjustment of a triode amplifier is that of neutralization. (See "Neutralizing Procedure," this chapter.)

After the amplifier stage has been stabilized, the output circuit may be adjusted. With normal bias and excitation applied again, reduced plate voltage can now be turned on and the plate tank circuit resonated.

Resonance in the plate circuit of an r.f. power
amplifier is accompanied by a dip in plate current similar to that shown in Fig, 6-10. This dip is caused by the increase in tank impedance in the plate circuit when the tank is tuned to resonance. When the tank is not at resonance, the platecircuit impedance is low and therefore the plate current is high. An external load coupled to the tank circuit lowers the impedance and therefore the plate current at resonance increases.

If no other means is available for reducing plate voltage, a 115 -volt lamp of 100 - to $150-$ watt size may be connected in series with the primary of the plate transformer, provided it is separate from the transformer supplying filaments. A dummy load (see "Checking Power Output," this chapter) should now be coupled to the output tank circuit and the tank retuned to resonance. The minimum plate current at the dip at resonance should be higher after the load is connected and the dummy load should show an indication of output. Full plate voltage may now be applied and the plate tuning checked carefully for the dip at resonance. When testing at full plate voltage, care should be taken not to operate the amplifier off resonance longer than ahsolutelynecessary, because the tube may be seriously damaged.

If the plate current at full voltage is not up to the rated value, the coupling to the load should be increased until the plate current at resonance is the rated value. Under no circumstances should the plate circuit be detuned to obtain the desired increase in plate current, since this results in a decrease in power output and an increase in dissipation. If the plate current exceeds the rated value at resonance, the coupling to the load should be reduced.

Final Adjustment

The grid current and biasing voltage now should be checked while the amplifier is in operation under load. In a properly-ncutralized triode amplifier, the grid current normally will fall off when plate voltage and load are applied. If it does not, it is an indication of regeneration and the amplifier should be checked for feed-back, either through the tube because of incomplete neutralization, or through paths external to the tube.

If the grid current falls below the recommended value when plate voltage and load are applied, the biasing voltage should be checked. If this is found to be above the recommended value, it should be decreased. This decrease in bias should serve to increase the grid current. If the grid current is still too low, or if the biasing voltage also checks low, the excitation must be increased by tightening the coupling to the driver or raising its plate voltage if either or both can be done without exceeding the driver-tube rating.

If adequate coupling cannot be obtained, that is, if the grid current is below normal and the driver plate current is still below the rated maximum operating value, the carlier sections on
roupling ronsiderations should be reviewed.
If the increase in excitation causes an increase in plate current to above the rated value, the coupling to the load should be reduced. The amplifier is correctly adjusted when all of the recommended values are obtained simultaneously.

SPECIAL ADJUSTMENT OF PUSH. PULL AMPLIFIERS

l'roper push-pull operation requires an accurate balance between the two sides of the circuit. Otherwise the dissipation will not be distributed evenly between the two tubes, one being overloaded if an attempt is made to operate the amplifier at full rating. Unbalance is indicated when the grid and/or plate eurrents are not equal and, if serious, is accompanied by a visible difference in the color of the tube plates. If interchanging the tubes does not change the unbalaner, the circuit is not symmetrical electrically.
lf the coil center-tap in split-stator tank circuits is sufficiently well-isolated from ground, the balanee will depend upon the accurary of capacitance balance in the tank condensers, the length of leads connecting the tubes to the condenser (including the return lead from rotor to filament) and the settings of the neutralizing eondensers. Unbalance in the plate circuit will seldom influenee the balance in the grid circuit, but the opposite may not be true. Small differences often may be taken care of by a readjustment of the neutralizing condensers, possibly to slightly unequal settings. Leng thening one or the other of the leads between the tubes and the tank condenser will alter the balanee, particularly in the plate circuit. In extremes it may be necessary to phace a trimmer arcoss one section of the split-stator condenser.

If the coil center-tap is grounded, unbalance usually can be corrected by shifting the coil center-tap. Both condenser and coil should not be grounded simultaneously, since this mar result in a condition where the resonance point for each tube comes at a difforent setting of the tank condenser.

OPERATION OF SCREEN-GRID AMPLIFIERS

Most of the foregoing procedure relating to triodes applies also to sereen-grid tubes. However, principally because of the presence of the screen, there are additional factors which must be considered. Most screen-grid transmitting tubes are designed to operate without neutralization. However, this assumes certain further considerations. Because of the high powersensitivity of such tubes, the feed-back coupling needed for oscillation is very small. Beyond the requirement of a well-screened tube, any possible feed-back coupling external to the tube must be reduced to a minimum. Special rare must be used in the construction so that the input and output tank-cireuit eomponents
and their respertive wiring are well isolated from each other through judicious phacement, and by shideling as completely as possibhe. Berause it is sometimes difficult to climinato all external capacitive coupling, it may be neecssary to neutralize a screen-grid amplifior to eliminate all tendency toward oscillation.

Considerable dependence must be plated also on the fact that, from other considerations, a sereon-grid amplifier should always bo operated fully loaded, since the loading helps to prevent oscillation. Return leads to cathode.

Fig. 6.26-screan protective circuit for sereen-grid ampolifier as an alternative tu the use of fixed hias. R_{3} is the nosmal grid leak for the amplifier and R_{2} the rerommended soreen volt-age-dropping resiator.
common to both plate and grid circuits, should be avoided. It is particularly important that the cathode be grounded directly or by-passed at the socket terminal and that the screen be by-passed thoroughly to the cathode with a mica condenser and short leads. The use of an un-by-passed parasitie-suppressing resist or at the sereen is not recommended, since it aggravates instability at the operating frequency.

An indication of the coupling cxisting between input and output circuits can be obtained by the use of a sensitive r.f. indicator coupled to the output circuit as mentioned under "Neutralizing Procedure" in this chapter.

Other measures that can bo taken to assist in stabilization at the operating frequency arc the use of at least partial fixed bias and a nonresonant or detuned input circuit. With sufficient power from the driver, it is possible to secure rated cxcitation without having the grid circuit tuncd close enough to resonance to starl oscillation. In such a case the grid circuit should be detuned to the high-frequency side of resonance. Care should be taken that the grid eircuit does not become resonant when the transmitter is tuned to another frequency.

Screen Considerations

For greatest protection to the tube, the screen voltage should be supplied from a series voltage-dropping resistor or a "light" voltage divider. When the screen is operated from a fixed-voltage source, the screen current increases rapidly with even slight amounts of overdrive or underloading. Since the series resistor serves to drop the voltage as the screen current increases, it affords a measure of protection. However, this same action may make it neeossary to adjust the excitation with more than ordinary care if rated output is to be ob-
tanned. When a screen resistor or voltage divider is used, screen voltage should always be checked after each adjustment of excitation and loading to maintain it at rated value.

A sereen-grid tube should never be operated at full screen voltage without plate voltage and full load. 'The screen may be damaged under such conditions, especially if the screen is operated from a fixed-voltage source.

When plate and screen voltage and load are applied to a sereon-grid amplifier, the grid eurrent may increase, decrease or remain about the same, depending largely on the screenvoltage adjustment in relation to excitation.

Aside from the use of fixed bias, a screon-grid tube can be protected against excessive input when excitation is removed by the scheme shown in Fig. 6-26. A $6 \mathrm{Y}^{\prime} 6(;$ tot rode is connetted as a low- μ triode. Since it is connected to the same point at the grid l lake, the same bias appears at the grid of the protective tube and the grid of the amplifier. So long as exeitaton is supplied, the bias is sufficient to cut off the protective tube and it has no effect upon the operation of the amplifier. However, when excitation fails, the bias drops to zero and the GY6 draws current through the screen resistor, dropping the screen voltage to a point where the input to the amplifier is held within the dissipation rating. This system usually is not satisfactory if the stage is to be sereen-and-plate morlulated.

CHECKING POWER OUTPUT

Dummy Loads

As a check on the operation of an amplifier. its power output may be measured by the use of a load of known resistance. coupled to the

Fig. 6-27-" Dummy -antenna" circuits for checking power output and making adjustments under load without applying power to the actual antenna.
amplifier output as shown in Fig, 6-27, At Aa thermoammeter, A, and a noninductive (ordinary wire-wound resistors are not satisfactory) resistance, R, are connected across a coil of a few turns coupled to the amplifier tank coil. The higher the resistance of R. the greater the number of turns required in the coupling coil. A resistor used in this way is generally called a dummy antenna. The loading may readily be adjusted by varying the coupling between the two coils, so that the amplifier draws rated plate current when tuned to resonance. The power output is then calculated from Ohm's Law:

$$
P(\text { watts })=I^{2} R
$$

Where I is the current indicated by the thermoammeter and R is the resistance of the noninductive resistor. Special resistance units are available for this purpose, ranging from 73 to 600 ohms (simulating antenna and transmis-vion-line impedances) at power ratings up to 100 watts. loo higher powers, the units may be connected in series-parallel. The meter scale required for any expected value of power output may also be determined from Ohm's Law:

$$
I=\sqrt{\frac{P}{R}}
$$

Incandescent light bulbs can be used to replace the special resistor and thermoammeter. The lamp should be equipped with a pair of leads, preferably soldered to the terminals on the lamp base. The coupling should be varied until the greatest brilliance is obtained for a given plate input. In using lamps as dummy antennas a size corresponding to the expected power output should be selected, so that the lamp will operate near its normal brilliancy. Then, when the adjustments have been completed, an approximation of the power output can be obtained by comparing the brightness of the lamp with the brightness of one of similar power rating in a 115 -volt socket.

The circuit of Fig. 6-27 B is for resistors or lamps of relatively high resistance. In using this circuit, care should be taken to avoid accidental contact with the plate tank when the power is on. This danger is avoided by circuit C, in which a separate tank circuit, $L C$, tuned to the operating frequency, is coupled to the plate tank circuit. The loading is adjusted by varying the number of turns across which the dummy antenna is connected on L and by changing the coupling between the two coils. With push-pull amplifiers, the dummy antenna should be tapped equally on either side of the center of the tank when the circuit of Fig. $6-2713$ is used.

If the dummy load resistance chosen is the same as the impedance of the antenna system to be used (assuming a resonant system or one in which the line and the antenna have been matched), the coupling adjustments made for the dummy should hold for the antenna also.

Frequency Multiplication

SINGLE-TUBE MULTIPLIER

Output at a multiple of the frequency at which it is being driven may be obtained from an amplifier stage if the output circuit is tuned to a harmonic of the exciting frequency instead of to the fundamental. Thus, when the frequency at the grid is 3.5 Mc., output at 7 Mc., 10.5 Me., 14 Me., ete., may be obtained by tuning the plate tank circuit to one of these frequencies. The circuit otherwise remains the same as that for a straight amplifier, although some of the values and operating conditions may require change for maximum multiplier efficiency.

Efficiency in a single- or parallel-tube multiplier comparable with the efficiency obtainable when operating the same tube as a straight amplifier involves decreasing the operating angle in proportion to the increase in the order of frequency multiplication. Obtaining output comparable with that possible from the same tube as a straight anplifier involves greatly increasing the plate voltage. A practical limit as to efficiency and output within normal tube ratings is reached when the multiplier is operated at maximum permissible plate voltage and maximum permissible grid current. The plate current should be reduced as necessary to limit the dissipation to the rated value by increasing the bias. High efficiency in multipliers is not often required in practice, since the purpose is usually served if the frequency multiplication is obtained without an appreciable gain in power in the stage.

Since the input and output circuits are not tuned close to the same frequency, neutralization usually will not ine required. Instances may be encountered with tubes of high transconductance, however, when a doubler will oscillate in t.g.t.p. fashion, requiring the introduction of neutralization. The link neutralizing system is convenient in such a contingency.

OTHER MULTIPLIER CIRCUITS

Push-Pull Multiplier

A single- or parallel-tube multiplier will deliver output at either even or odd multiples of the exciting frequency. A push-pull multiplier does not work satisfactorily at even multiples because even harmonics are largely canceled in the output. (On the other hand, amplifiers of this type work well as triplers or at
other odd harmonics. The operating requirements are similar to those for single-tube multipliers.

Push-Push Multipliers

A two-tube circuit which works well at even harmonies, but not at the fundamental or odd harmonics, is shown in Fig. 6-28. It is known as the push-push circuit. The grids are connected

Fir. 6.28 - (iircuit of a puah-push frequency multiplies for even harmonics. 'The qrid tank cirenit. Lifi, is tuned to the fregueney of the preceding driving stage, while the plate tank eircuit, $L_{2} \mathrm{C}_{2}$, is tuned to an even multiple of that frequency, usually the second harmonic. C. 3 is the plate by pass capacitor, usually a $0.001-\mu \mathrm{fd}$. mica eondenser, while $R F^{\prime}(:$ is a $2.5 \cdot \mathrm{mh}$, r.f. choke.
in push-pull while the plates are connected in paratlel. The efficiency of a doubler using this circuit may approach that of a straight amplifier under similar operating conditions, because there is a plate-current pulse for each eycle of the output frequency.
This arrangement has an advantage in some applications. If the heater of one of the tubes is turned off, making the tube inoperative, its grid-plate capacitance, being the same as that of the remaining tube, serves to neutralize the circuit. Thus provision is made for either straight amplification at the fundamental with a single tube, or doubling frequency with two tubes as desired.

Multiplications of four or five sometimes are used to reach the bands above 28 Me. from a lower-frequency crustal, but in the majority of lower-frequency transmitters, multiplication in a single stage is limited to a factor of two or three, because of the rapid decline in practicably obtainable efficiency as the multiplication factor is increased. Screen-grid tubes make the best frequency multipliers because their high power-sensitivity makes them easier to drive properly than triodes.

Parasitic Oscillations

Before placing the amplifier in operation, measures should be taken to make sure that the amplifier will function in a stable manner. In addition to the possibility of oscillation at or near the operating frequency, r.f. power amplifiers are subject to parasitic oscillation at frequencies far removed from the frequencies to
which the amplifier is tuned by the conventional tank circuits. Oscillations of this type not only cause the transmission of illegal spurious signals, but they also impair the efliciency of the amplifier. In fact, they ean be so severe as to make operation of the stage as an amplifier impossible and may destroy the tube
if they are allowed to persist for any appreciable time. Erratic tuning characteristics invariably are a result of oscillation of one type or another. Parasitic oscillations may not be obvious under normal conditions of bias and load, but may be transient in nature, oceurring intermittently during keying or modulation, causing widespread clicks or splatter. They can be treated most successfully only by adjusting the amplifier for conditions favorable toward sustained oscillation when they can be more readily observed and identified as to frequency and type or mode.

V.h.f. PARASITIC OSCILLATION

Parasitic oscillation in the v.h.f. range (usually in the vicinity of 100 to 200 Mc .) almost invariably will take place in an amplifier unless steps are taken to suppress it. Not always but in most cases, this sort of oscillation takes place as the result of an unavoidable t.g.t.p. circuit set up by the grid and plate leads tuned by the tank condensers in series, as shown by the heavy lines in Fig. 6-29A. The normal tank coils act only as r.f. chokes or capacitances at this high frequency. The same condition holds for balanced or push-pull circuits.

Testing Procedure

To test for this type of oscillation, the 28 -Mc. tank coil should be plugged into the grid tank circuit (or the plate tank circuit of the driver stage if capacitance coupling is used) and the 3.5-Mc. coil in the plate tank circuit. This is to prevent any possible t.g.t.p. oscillation at the operating frequency which might lead to confusion in identifying the parasitic. If either tank circuit employs a split-stator condenser with an r.f. choke at the center of the coil, the r.f. choke should be short-circuited during the test. Any fixed bias should be replaced with a grid leak of 10,000 to 20,000 ohms. In a ca-pacitive-coupled stage, the driver should be coupled in the normal way, but all load on the output of the amplifier should be disconnected. If the stage is an intermediate amplifier, the tube in the following stage should remain in place, but with its filament turned off. Plate (and screen) voltage should be reduced to the point where the rated dissipation is not exceeded. If a Variac is not available, voltage may be reduced by a 115 -volt electric lamp of suitable wattage rating in series with the primary of the plate transformer. A 150 -watt size is about right for a medium-power transmitter.

With power applied only to the amplifier under test (not the driver), a careful search should be made by adjusting the input tank condenser to several settings, especially including minimum and maximum, and turning the plate tank condenser through its range for each of the grid-condenser settings. Any grid-current reading, or any dip or slight ficker in

Fig. 6.29-A - V.h.f. parasitic circuit hidden in highfrequency amplifier. IS - One method of suppression with tetrodes. C - I'referred method, Approximate values: $R F C_{1}-15$ turus No, 22, 1/4-inch diam., closewound; $C_{1}-12 \cdot \mu \mu \mathrm{fd}$. ceramic; $\mathrm{C}_{2}-15-\mu \mu \mathrm{fd}$, tulular; (3 - $100-\mu \mu \mathrm{fd}$. midget variable; $L_{1}-3$ turns No. 14, $1 / 2$-inch diam., $1 / 2$ inch long.
plate current at any point, indicates oscillation. This can be confirmed by using an indicating absorption wavemeter (see measurements chapter) tuned to the frequency of the parasitic and held close to the plate lead of the tube.

Remedies

It the outset, an amplifier should be laid out so that the heavy leads shown in Fig. 6-29A are brought to the barest possible minimum. An inch of wire can be an appreciable length at 200 Mc. The inductance of those leads that cannot be made short can be reduced by the use of large conductor. Of equal importance are the return paths from the rotors of the input and output tank condensers to cathode or filament, usually made through the chassis.

It is often helpful to provide returns independent of the chassis by mounting the tank condensers on a wide aluminum strip as a subassembly with the tube socket also mounted on the strip.

The paths through the by-pass condensers (C_{4} and C_{5}, Fig. 6-29A) to eathode should be as close to zero as possible. With capacitance coupling, this is often difficult, since the path through C_{4} to both cathodes should be short. The use of link coupling has an advantage in this respect, since the grid return of the amplifier and the plate return of the driver are independent.

In the case of filament-type tubes, the filament should be by-passed directly at the socket with mica condensers and the grid and plate returns made to the grounding point of the by-pass condensers.
V.h.f. parasitic oscillation usually can be suppressed in screen-grid tube circuits by inserting a v.h.f. choke in series with the grid and a small resistor of 50 to 100 ohms botween the screen and its by-pass condenser, as shown in Fig. 6-2913. However, the introduction of even a small amount of resistance in the sereen circuit in this manner invariably results in a reduction in the isolation between input and output circuits at the fundamental operating freduency. Therefore, unless the stage is to be neutralized, the treatment shown in Fig. 6-20) C is preferable. Here, in addition to the v,h.f. choke at the grid, the input and output circuits are shunted by low-inductance condensers, C_{1} and C_{2}. For amplifiers up to those
requiring one or two $80 \overline{\mathrm{~s}}$ as drivers, small ceramic condensers connected across the grid and filament terminals of the tube sockets have been satisfactory. Those in the plate circuit. should be of the tubular air type or vacuum type with a peak voltage lating equal to twice the plate voltage for c.w. operation, or four times the plate voltage for plate modulation. They should be connected with the shortest possible heavy leads botween the plate cap at the top of the tube and the cathode or filament ground point. In the case of triode amplifiers, these condensers, when combined with short leads, often are the only measures that are neeressary to take toward eliminating v.h.f. parasitic oscillation.

In extreme cases of parasitic oscillation in sereen-grid amplifiers, it may be necessary to add a v.h.f. wavetrap in the phate circuit as shown in Fig. 6-29C. The adjustment of such wavetraps in a push-pull amplifier will have a

marked effeet on the batanee, however, and balanee and suppression adjustments samot be made independently.

A sensitive grid-dip moter of the type desistibed in the measurements chapter is often helpful in the locating of resonances responsible for parasitic oseillation as well as those which atet to reinforee v.h.f. harmonies. Often the climination of one will result in elimination of the other. Once the cireuit has beon traced, it is easier to determine what ran be done to detune or otherwise nullify the effeets of the offending circuit.

LOW-FREQUENCY PARASITICS

Low-frequency parasitie oseillations (which usually lie in the wide range between 100 and 2000 ke .) invariably involve phate- and gridcircuit, r.f. chokes in combination with a splitstator tank condenser tuning at least one of them if not both. The normal tank eoils have such little reactance at low frequencies that they may be considered merely as long ronneeting leads.

Although they are not so likely to be encountered in amplifiers using the botterscreened transmitting totrodes and pentodes, low-frequency parasitic oscillations are often found in stages employing triodes and the less effectively-shielded audio tubes, such as the $616,6 V^{\prime} 6$, etc. However, even if well-sereened tubes are used, it is safor and more eonvenient to arrange the circuit in advance so that these low-frequency aircuits are not permitted to exist.

Circuits To Be A voided

lig. 6-30 shows several commonly-used aircuit arrangements that should be avoided to eliminate the possibility of low-frequeney parasitics. In.λ, either r.f. choke or both may be replaced with a 100 -ohm resistor, as shown in I3. In a similar circuit, parallel feed can be used in either grid or plate, but not in both.

In Fig. 6-30C, $R F^{\prime}\left({ }^{2} 2\right.$ should be replaced by a resistor. If parallel plate feed is desired, series feed should be used in the grid, as shown at 1), necessitating parallel feed in the driver-stage plate. If the driver plate tank circuit has a split-stator condenser, as shown in E, the grid choke should be replaced by a 100 -ohm resistor b, -passed to ground, as shown in F. It is important that the by-pass be fairly large so as to be offertive at low frequencies.

A check for low-frequency parasities should be made after the v.h.f. oscillations have been eliminated. The check is conducted along the lines described for very-high frequencies. Iowfrequeney oscillation can be detected by coupling the absorption wavemeter closely to the r.f. chokes involved, rememboring that the range of frequencies over which this type of parasitic may occur is wide. They can also sometimes be detected by listoning on a reeciver close to the transmitter, when harmonics, usually rough in charater, may be heard at regular intervals that are multiples of the fundamental frequeney. On a calibrated receiver, the fundamental frequency can be determined by observing the spacing between adjacent harmonies.

Neutralizing Procedure

The procedure in neutralizing is essentially the same for all types of tubes and circuits. The filament of the amplifier tube (or tubes) should be lighted and excitation from the preeeding stage fed to the griel cireuit. " There should be no plate voltage applied to the amplifier.

The immediate objective of the neutralizing process is reducing to a minimum the r.f. driver voltage fed from the input of the amplifier to its output circuit through the grid-plate capacitance of the tabe. This is done by adjusting the neutralizing condenser until an r.f. indicator in the output cirenit reads minimum.

NEUTRALIZING INDICATORS

Fig. 6-31 shows the diagram of a sensitive neutralizing indicator. By referring to the measurements chapter, it will be seen that this forms part of the indicating absorption wavemeter also recommended for checking parasitic oscillation. The link should be coupled to the output tank coil at the low-potential or "ground" point. Care should be taken to make sure that the coupling is loose enough at all times to prevent burning out the moter or the rectifier. A neon bulb touched to the "hot" end of
the tank coil will glow if enough feed-through voltage is developed across the tank, but it is a less-sensitive device. Another disadvantage is that its use introduces capmeitance across one side of the eireuit which may unbalance the circuit, thus giving an inaccurate indication.

A more satisfactory indicator than the neon bulb is a flashlight bulb, (the lower the power the more sensitive) connected at the center of a turn or two of wire coupled to the tank coil at the low-potential point. Its sensitivity is poor compared with the milliammeter-rectifier.

The grid-current milliammeter may also be used as a neutralizing indicator. If the amplifier is not neutralized, thare will be a large dip in grid current as the plate-tank tuning passes

Fïg. 6.31 - Circuit of sensitive neutralizing indicator, Xiat is a 1×34 erystal detector, MA a $0-1$ direct-eurrent milliammeter and C a 0.001 - $\mu \mathrm{fd}$. mica by -pass condenser.
through resonance. This dip in grid current reduces as neutralization is approached until at exact neutralization all change in grid current should disappear.

- EXTERNAL COUPLING

Before making any neutralizing adjustment, the circuit should be checked for external coupling. This can be done by removing the tube from the socket and disconnecting the neutralizing condenser. If the plate terminal is at the socket, it should be diseonnected also. With the driver in operation, the plate tank circuit should be checked for r.f. with one of the r.f. indicators previously suggested.
The input and output coils should be so placed in respect to each other that magnetic coupling is minimized. Usually this requires that the axes of the coils be at right angles to each other. In some cases, if the coils are close together, it may be necessary to introduce shielding between the input and output circuits.

NEUTRALIZING ADJUSTMENTS

The neutralizing condenser should always be adjusted with an insulating rod, not only to protect the operator but also to avoid capacitive effects which might give a false indication,

With excitation applied, the neutralizing adjustment should be started with the neutralizing condenser at minimum capacitance, increasing the capacitance in small steps. At each step, the plate tank should be swung through resonance which will be indicated by maximum deflection of the indicators mentioned above and by the dip in grid current. As the point of

Fig. 6-32 - In this nentralizing (ircuit, C, which should have the same capacitance as the output capacitance of the tube, has been added to compensate for the tube capacitance aeross the upper half of the circuit.
neutralization is approached, the indication will become less until it is a minimum when neutralization is reached. If the neutralizing capacitance is increased further, the indication will again increase. If the neutralizing condenser has a proper range, it should always be possible to find a point of minimum indication with an increase on either side.

If it is found that neutralization does not hold over the entire range of the tank condenser for any one band in a single- or paralleltube amplifier, the balancing condenser of Fig. 6-32 should be added and adjusted to match the output capacitance of the tube.

Fig, 6-33- If an amplifier fails to remain neutralized on all bands, the condition usually can be remedied by tapping the inputtank lead along the neutralizingcondenser lead (or vice versa), adjusting the position until the amplifier neutralizes at the highest frequeney at the same setting of the nentralizing condenser as at the lowest frefuency. The same adjustment should be made to both sides of a push-pull circuit.

In an amplifier which is to be used on several bands, it should be first neutralized when tuned to the lowest-frequency band. Then the neutralization should be checked at the highest frequency. If it is found that the neutralizing condenser needs readjustment at the higher frequency, the connection between the grid tank circuit (or the plate tank circuit of the driver with capacitance coupling) should be adjusted as indicated in Fig. 6-33 until the neutralizing adjustment is the same for both bands, always noutraizing first on the lowestfrequency band and checking at the highest frequency. If there are parasitic chokes at the grid and plate, connection of the neutralizing condenser to one sidie and then the other should be tried to determine which connection permits the best neutralizing from band to band.

It will seldom he possible to reduce the indienfion to zero with a sensitive indicator unless excitation is reduced below the grid-current point.

Adjustment of Inductive Neutralizing

With link neutralizing of a single-tube or parallel-tube amplifier, the neutralization can be adjusted by changing the spacing between the link and the tank coil.

The inductive neutralizing system of Fig. 6-13C is adjusted by adjusting the value of either the inductance or the capacitance for minimum fectthrough to the plate eircuit.

A Single-Control Low-Power Transmitter

Figs, 6-34 through 6-40 show the circuit and constructional details of a 40 -watt two-stage transmitter that requires the adjustment of only one tuning control. The crystal oscillator uses a modified lierce circuit. The use of bandpass couplers in the output circuit of this stage makes it unneedssary to retune when changing frequency and at the same time provides inductive coupling as a measure toward reducing v.h.f. harmonies. The coupling between the two circuits is adjusted to give the desired broadhand response and then fised in that position. It is possible to arrive at an adjustment where the amplifior grid excitation is substantially constant over any given band and drops off quite sharply outside the band edges. (See Fig. 6-16.)

The output stage is a conventional 807 amplifier normally working straight through on the output frequency of the oscillator, except for 28 Mc ., although it will double frequency to any of the lower-frequency bands. $R F C_{3}$ and R_{6} are parasitic suppressors. The amplifier grid leak, R_{5}, is connected in series with the grid tank circuit, since the coupler provides an opportunity to avoid parallel grid feed. $R F C_{4}$ and $C_{12}, R P^{\prime} C_{5}$ and C_{13} are v.h.f. harmonie filters.
The unit is designed to operate from a single power supply delivering 300 to 450 volts. To avoid the need for fixed bias on the output stage, both stages are keyed simultaneously in the common cathote lead. The octal socket used as a crystal mounting also provides a moans of feeding a Vro into the unit. Connections are shown in Fig. 6-39.

Construction

The transmitter is built in a standard $5 \times 9 \times 6$-inch steel utility box. Most of the parts are mounted on an aluminum plate cut to fit the inside of the box and supported from its sides by 1 de-inch angle brackets as shown in the bottom view of the unit, fig. 6-36. The plate is mounted $35 / 8$ inches above the bottom of the box. Two ventilating holes are cut through the plate near the front of the box, and additional vents are punched through the top and bottom eovers of

Fig. (o-34-Front view of the transmitter with cover removed. The tank circult for the 80^{-7} amplifier ocrupises the front compartment. with the $6 A G^{-}$oseillator and the plug-in bandpass coupler at the rear. Ventilation for the tuhes is obtained through holes punched in the top, bottom, and the interior mounting plate which supports the various components
the box. These holes permit air to circulate through the entire box, yet do not reduce the effectiveness of the shielding.

The sockets for the 6.AG7 and for the plug-in bandpass coupler are mounted in line, $11 / 4$ inches from the rear of the aluminum plate. The socket for the 80^{-}is mounted in a Millen bracket assembly (80007) trimmed down to fit betow in a horizontal position. It is placed so that the grid terminal is $33 / 4$ inches from the rear of the box, allowing adequate space for mounting the small parts in the oscillator circuit, yet retaining the desired short r.f. leads.

An octal socket used to hold the crystal and to connect a VFO, an octal plug for power input connections, and a coaxial output connector are mounted at the rear, centered $11 / 4$ inches above the bottom edge. The key jack and a panellight are mounted on the front, spaced $15 / 8$ inches above the bottom edge.

The top view of the transmitter, Fig. 6-34, shows the arrangement of the plate tank circuit of the 807 stage. A six-prong ceramic socket for the plug-in plate coils is supported above the deck by $3 / 4$-inch ceramic stand-off insulators (National GS'-10) 47/8 inches behind the front of the box. The tuning condenser is mounted on ceramic button-type insulators (National XS-6) immediately in front of the coil socket. The rotor shaft of this condenser

Fig. 6-35 - Circuit diagram of a two-stage four-hand transmitter utilizing bandpass coupling and inchoding 'TVI-reducing filters.
$\mathrm{C}_{1}, \mathrm{C}_{8}, \mathrm{C}_{\mathrm{n}}-0.01-\mu \mathrm{fl}$. dime ceramic.
Ci2-0.00. $-\mu \mathrm{fl}$. dise ceramic.
Ci3-25- μ_{μ} fid mica.

(:5, (: -3 - 30) $\mu \mu \mathrm{fl}$. air-dielectrie trimmers (I hillips),
(:7-100- $-\mu \mathrm{fd}$, micad.
Cato - $300-\mu \mu \mathrm{fd}$. transmitting variable (National TMS. 300).
($\mathrm{S}_{11}-0.001-\mu \mathrm{ff}$, mica, 1200 v. d.c. working.
$\mathrm{R}_{1}-47,000$ olms, $1 / 2$ watt.
$R_{2}-3.30$ ohms, 1 watt.
$\mathrm{R}_{3}-47,000$ ohms, 1 watt.
$\mathrm{K}_{4}-10,000$ ohms, $\overline{\text { on }}$ watts, wire-wound.
$\mathrm{R}_{5}-2.2,000$ ohms, 1 watt,
R(n-47 ohms, $1 / 2$-watt carlon.
$R_{F}-20,000$ ohms, 5 watts, wire-wotud.
I_{1} - I'rimary, bandpass coupler.
3.5 Me. - 40 turis Nio, 30 d.s.c., close-woumd, 11/2-inch diam, form,
7 Me. - 16 turns No, 26, d.s.e., close-wound. $11 / 2$-inch diam. form.
14 Me. - 9 turns No. 20 d.s.c., elose-wound. $11 / 2$-ineh dian. form.
$1 a_{2}$-Secondary, bandpass coupler. Wound on same form as L_{1}, spaced as indicated.
3.3 Mc. - 35 turns No. 30 d,s,c, close-wound, $1 / 4$-inch separation from L_{1}.
7 Me. - 15 turns No, 26 ds, C^{2}, close-womind. 9/16-inch separation from $I_{\text {a }}$.
14 Me. - 9 turns No. 20 d.s.e., close-wound. $1 / 2$-inch separation from L_{1}.
L_{3} - Plate coil for 80^{-1} stage. (All are National AR-1: series).
3.5 Me, - Ilk-17-10ト, (28 turns No, 18, $19 / 16$ inches long, $11 / 4$-ineh diam.)
 inches long, 11/4-inch diam.)
14 Me. - AR-17-10K, (8 turns No. 16, $15 / 8$ inches long, (1/4-inch diam.)
28 Mc. $-1 R-1$ - -0 E. (4 turns No. 12,2 inehes long, $7 / 8$-ineh diann.)
$\mathrm{I}_{1}-6.3$-volt pilot lamp.
I_{1} - Oetal sochet, ceramic.
J_{2} - Closed-circuit jack.
J_{3} - Conaxial conncetor, female.
$P_{1}-$ Octal plug, panel mounting.

from the condensers to ground. Parasitic-supprossing choke $R F C_{3}$ is mounted right at the grid terminal of the 807 socket, and R_{6}, which also has a part in eliminating parasities, is mounted botween the sereen-grid terminal and a small tie-point bolted to the mounting bracket. screen by-pass condenser C_{9} is connected from this tie-point to the cathode pin on the cube socket. Plate by-pass condenser C_{11} is phaed behind the 807 , between it and the mounting plate which serves as ground. The lead from the "high" side of this condenser to the plate tank circuit passes through a bushing.

All heater and d.c. Wiring is made with shielded wire, with the braid grounded at each end. The screen dropping resistor R_{7}, and K_{4}, which reduces the supply voltage to the proper level for the oscillator, are mounted on tie-points near the oetal power plug.

The circuit diagram of a power supply for this transmitter is shown in Fig. 6-40. It is conventional with condenser-input filter. A separate filament transformer is provided so that the plate supply mas. be turned off independently.

Fig. 6.36 - Bottom view of the transmitter. The 807 socket is mounted in a cut-down conmercial bracket, with the sockets for the 6.1G7 ant the handpass coupler spaced below and to cither side of it. Irranged along the rear of the box are the crystal wocket, the output jack, and the power plug.
and soldering their spike terminals, atong with the coil conds, into the pins of the National Type NR-5 eoil forms. It is highly important that the windings be made as close as possible to the dimensions given under lig. 6-35. It is prohaps advisable to not make the turns too snug on the form so that the distane between the coils can be given a final adjustment should this be found necessary.

The adjustment of the bandpass couphers cat be checked by measuring the amplifier hiasing voltage as the oscillator is tuned across the band. This can be done by connecting a high-resistanco voltmoter betweon the 807 grid and ground, with a $2.5-\mathrm{mh}$. r.f. choke in series with the meter lead that is conneeted to the grid.
The cherking should be done with the plate- and sereen-voltage line to the 807

The diagram of a suitable power supply for this unit appears in Fig. 6-43. A separate filament transformer is suggested so that the high voltage may be turned off independently of the filaments.

Bandpass Couplers

Three eouplers are needed to use the transmitter in four amateur bands. One coupler is designed to provide excitation across the entire $3.5-4-\mathrm{Me}$. hand, another for the $7-7.3-\mathrm{Me}$. band, and the third from 14 to 14.9 Me . This latter range is eonsiderably in excess of what would be required for coverage of the $14-$ Mc. band alone. The extension at the high-frequeney end of the range is necessary if the transmitter is to operate in the $28-\mathrm{Mc}$. band, because for output in this range, the 807 stage must be operated as a doubler from the $14-$ Me. exeitation supplied to its grid circuit.

In erystal-controlled operation, $3.5-\mathrm{Mc}$. fund:amental erystals may be used for output in the $3.5-$ and $7-M e$ bands, and $7-$ Mc. crystals for output in the $7-, 14$-, and $28-\mathrm{Mc}$. batuds. In instances where a VFO is used to replace the erystal, the 6AG7 stage shonld be used as a frequency doubler to eliminate the possibility of oscillation.

The photograph of Fig. 6-37 and the sketeh of Fig. 6-38 show how the bandpass couplers are constructed and wired. The l'hillips trimmers are especially well adapted for this use, since they are readily mounted by inserting
discomnected. Choose a crystal as close to the eenter of the band as possible and adjust C_{5} and C_{6} for maximum 807 grid voltage. The two adjustments will not he entirely independent, because of the coupling, and some juggling back and forth may be required before the sotting for maximum reading is attained. Now, without further adjustment of the

Fig. 6-37- One of the bandpass couplers, "The two trimmer condensers are monnted inside of the coil form, with connections made ans show in Fig. 6.11.

BANDPASS COUPLER DETAILS

Winding Placement

Fig. 6-38 - Details of the bandpass couplers. 'The trinsmer condensers are soldered inside of the coil form, as described in the text, making a simple, compact plug-in assembly that needs adjustment only once.
coupler, plug in other crystals for the same band. If it is found that the grid voltage falls off considerably with erystals whose frequencies lie near the edges of the band, the windings should be moved slightly closer together and the check across the band made again. If it is found that the voltage is high near both ends of the band, but low in the middle, the coupling should be loosened. When the voltage is considerably higher at one end than the other, this can usually be corrected by trial readjustments of C_{5} and C_{6} in small amounts. For crystal control, it is necessary to carry the adjustment only to the point where adecpuate excitation (at least 45 volts bias with the amplifier running and loaded) is ohtained with each of the available crvstals. If a VFO is used, its output frequency should be one frequency band lower than the band of the coupler and the adjustments will have to be more exact if uniform excitation across the band is desired. Some means should be provided for adjusting the output of the VFO, since excessive driving of the 6ACi 7 may have an cffect on the shape of the excitation curve.

Once the couplers are adjusted properly, the windings should be cemented in place with coil dope, and the rotors of the trimmers should be locked in position with a drop of Duco cement.

Fig, 6-39 - Method of substituting a VNO for the crystal. An octal plug, wired as shown, is inserted in the crystal socket. The jumper between P'ins 5 and 6 serves to ground one side of C_{2}, therehy changing it from a coupling condenser to a screen by-pass condenser. Excitation from the VFO is applied to the grid of the 6AG 7 through l'in 8 of the plug, whiels is connected to the center conductor of a short length of coaxial cable. The condenser shown at Pin 8 should be mounted inside the VFO, serving as a d.c. hloching condenser. Its size may be anything from $100 \mu \mu \mathrm{fd}$. to $0.001 \mu \mathrm{fd}$., with the smaller value being preferred.

Amplifier Adjustment

Reconnect the d.c. screen lead to the 807 stage, and plug a milliammeter capable of reading up to 200 ma . in the key jack where it will read the total current flowing in both stages. The 6 AG 7 plate current normally will run between 10 and 15 ma ., so this should be subtracted from the meter reading to determine the current flowing in the 807 . Plug the desired coil in the 807 plate circuit, and the correct crystal-coupler combination in the oscillator stage. Connect a 25 -watt lamp bulb to the output terminal to serve as a dummy load while the 807 stage is tested.

Apply plate voltage and resonate the 807 tank circuit by tuning C_{10}. The off-resonance plate current will he very high, in the neighborhood of 200 ma., dipping to 100 ma. or less at resonance. If it

Fig. 6.4I - Diagram of a power supply for the singlecontrol low-power transmitier.
C. $-2-\mu \mathrm{fd}$. 1000 -volt oil-filled. $\mathrm{C}_{2}-2-\mu \mathrm{fd}$. min. 1000 -voli oil-filled.
$\mathrm{R}_{1}-15,000$ ohms, 25 watts.
$\mathrm{l}_{1}-10 \mathrm{~h}$, min, 130 ma , min. P_{1} - Octal female plug.
$\mathrm{S}_{1}, \mathrm{~S}_{2}-3$-amp. togyle switch.
'I'I - Power transformer: tot to 4.50 volts r.m.s. each side of center, $1: 30$ ma. min.; 5 volts, 3 amp. (6.3 -volts. 1.5 amp, min, if used, See text.)
T_{2} - Filament transformer: $\mathbf{6 . 3}$ volts, $\mathbf{i . 5}$ amp, min.
is not possible to load the 807 stage so that the total current indication is 100 ma . or slightly over, disconnect the lamp from the output terminal and tap it across a few turns of the tank coil. This should he done with the power off, of course! By changing the numiber of turns across which the lamp is tapped and re-resonating the phate circuit, it should be possible to obtain full loading.

Check the keying characteristic by listening to the signal, or a hamonic of it, in the receiver with the gain turned down as far as possible and the antenna disconnected. With the cireuit constants shown and active erystals, good keving should be obtained with both 3.5 - and 7 -Mc. erystals. If, however, the keving is sluggish, and it sounds as though the crystal doesn't start oscillating readily, the size of feed-back condenser C_{3} should be changed in $25-\mu \mu \mathrm{fd}$. steps until good keying is obtained.

An All-Band Bandpass Exciter

Figs. 6-41 through 6-46 show diagrams and constructional details of a 120 -watt VFObandpass transmitter or exciter for a higherpower amplifier. An f.m. modulator and crystal calibrator, to be included if desired, are also described. Referring to the circuit diagram of Fig. (i-42, a 6AG7 series-tuned VFO, operating in the $2-$ Mc. range, doubles frequency to the $3.5-$ Me. range and drives a second 6AG7 as a straight amplifier at this frequency. This amplifier then drives a series of 6SN7 frequency doublers (one triode section in each stage). The appropriate stages for any desired band are connected in by the bandswiteh, S_{1}. The bandswitch also connects the grids of a parallel-connected $829-13$ output amplifier to the corresponding doubler output cireuit. Bandpass couplers that provide, without retuning, essentially constant output over the bands in which they operate are used between all stages, instead of capacity coupling. Aside from the fact that the use of these couplers reduces the number of tuning controls to only 2 for a 7 -stage transmitter, it also provides inductive coupling that discriminates against harmonics that may cause TVI. Since the bandpass circuits cannot be conveniently made to cover the wide frequency range including both the 28 - and $27-$ Mc. bands, a separate coupler is used for each. A trimmer is connected across the input of each of the doubler stages to make the input capacitance equal to that of the $829-1$ so that the tuning of the couplers will not be disturbed when switehing bands.

The output tank circuit of the $829-13$ amplifier is a combination "all-band" circuit that covers all bands without changing coils. At 3.5 and 7 Mc. $C_{54} L_{16} L_{17}$ act as a parallel-tuned circuit with the two sections of C_{54} connected across $L_{17} . L_{16}$ may be considered as a jumper connection between the stator sections of the capacitor at frequencies below 7 Me. However, the reaetance of L_{16} becomes appreciable at 14 Mc . and above. At these frequencies the circuit becomes rather complex, consisting of the resultant of L_{16} and L_{17} partially in parallel, tuned by the resultant of the two scetions of the tank capacitor in series. Two output-coupling links, both series-tuned by C_{59}, are terminated at one of the wafers on the bandswiteh. L_{18} is the low-frequency link and L_{15} operates at 14 Mc and above.

Fig. 6-4l- Operating controls have been eut to a minimum in this handswitching transmitter, Only the VFO dial need be tuned for coverage of a large portion of any one band. The grid and plate meters are to the left and right of the main tuning dial. 'I'he microphone jack, gain control, crystal-modulator switch, bandswitch and the amplifier control knolv are in line across the bottom of the panel. 'The output-link tuning control is just below the plate meter.

The tubular condenser, C_{52}, and the wavetrap consisting of L_{14} and C_{53} represent measures taken to eliminate parasitic oscillation and v.h.f. harmonics in the output stage. In addition, all external power leads are provided with v.h.f. filtering and the meters are bypassed.

The f.m. modulator consists of a 6AK5 speceh amplifier and a similar tube in the reactance modulator. The modulator is conneeted across the oscillator tank circuit.

The crystal calibrator is a simple $100-\mathrm{kc}$. oscillator giving $100-\mathrm{kc}$. points throughout the spectrum. Thus band-edge markers are provided for setting the VFO.

The transmitter requires two power supplies, one delivering 300 volts, 150 ma. and the other 600 to 750 volts, 200 ma . A source of fixed bias also is needed for the $829-\mathrm{B}$. This may consist of a 45-volt battery, as Fig. 6-42 indicates, or R_{25} may be omitted and the bias obtained from a VR-regulated supply. Fig. 6-46 shows the diagram of a suitable power unit, including provision for bias. In the transmitter, a 150 -volt lead, regulated by a VR-150, is brought out from the 300 -volt input terminal. From this is operated the plate and screen of the VFO, the screen of the 6 AG7 buffer, the reactance modulator and the $100-\mathrm{kc}$. crystal calibrator. A 6.3 -volt transformer that supplies all filaments is included in the transmitter.

Transmitter Construction

The chassis for the transmitter measures 3 by 10 by 17 inches and the whole unit is housed in a No. CA-304 Par-Metal cabinet. The rear view (Fig. 6-43) shows the meter shields mounted on the front panel to the left and right of the dial lamps and the output-link tuning condenser at the lower left-hand corner of the pancl. The $829-\mathrm{B}$ tube socket is sub-

Fik. 6.42-Cireuit diagram of the bandpass trans. mitter.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{10}, \mathrm{C}_{12}, \mathrm{C}_{14}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{22}, \mathrm{C}_{28}, \mathrm{C}_{30}, \mathrm{C}_{32}$,
$\mathrm{C}_{41}, \mathrm{C}_{44}, \mathrm{C}_{46}, \mathrm{C}_{48}-30-\mu \mu \mathrm{fd}$, ceramic trimmer
(National M30).
$\mathrm{C}_{3}, \mathrm{C}_{11}, \mathrm{C}_{13}, \mathrm{C}_{21}, \mathrm{C}_{26}, \mathrm{C}_{29}, \mathrm{C}_{31}, \mathrm{C}_{39}, \mathrm{C}_{40}, \mathrm{C}_{42}, \mathrm{C}_{43}, \mathrm{C}_{45}$,
$\mathrm{C}_{47}, \mathrm{C}_{50}, \mathrm{C}_{58}-0.01$ - $\mu \mathrm{fd}$. dise-type ceranic
(Sprague 36(1).
$\mathrm{C}_{5}, \mathrm{C}_{15}, \mathrm{C}_{24}, \mathrm{C}_{25}-47$. $\mu \mu \mathrm{fd}$, mica.
(6 - $22-\mu \mu \mathrm{fd}$, mica.
C7 - $50-\mu \mu \mathrm{fd}$, varialle (Mitlen 26050).
$\mathrm{C}_{8}-150 \cdot \mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{9}-0.0022$ - $\mu \mathrm{fd}$, mica.
$\mathrm{C}_{16}, \mathrm{C}_{23}, \mathrm{C}_{33}, \mathrm{C}_{36}, \mathrm{C}_{49}-100-\mu \mu \mathrm{fl}$. mica.
$\mathrm{C}_{17}-10-\mu \mathrm{fd}$. 25-volt electrolytie.
$\mathrm{C}_{18}-0.01-\mu \mathrm{fd}$. 400 -volt paper.
$\mathrm{C}_{27}-0.025-\mu \mathrm{fd} .400$-volt paper
$\mathrm{C}_{34}-50-\mu \mu \mathrm{fd}$. variable (Nillen 19050).

Abstract

Fig. 6-f.3 - A rear view of the handpass transmitter. Rectan. pular holes, cut in the ehassis, provide clearanre for the conpler coils. 'The coupler capacitors are readily accessil)le for adjustment.

mounted at the left end of the chassis in between the homemade tubular condenser (Fig. 6-44) and the amplifier plate coils. A stand-off insulator supports the plate trap to the left of the $829-13$. Feed-through insulators to the right of the plate coils allow connections to the output links and the bandswitch underneath. L_{15} is the 3-turn winding located closest to the panel and L_{18} is the coil in front of the $829-13$ (right).
To the right of the amplifior components, in the line nearest the panel, are the VIR-150, C_{34}, the rontrol for C_{35}, and the modulator tubes. The see-

[^2]$\mathrm{K}_{1}, \mathrm{H}_{6}-22,000$ ohms, 1 wate.
$\mathrm{R}_{2}-0.15$ megohm, $1 / 2$ watt.
$\mathrm{R}_{3}, \mathrm{R}_{12}-0.1$ megohm, $1 / 2$ watt.
$1_{4}, R_{16}-0.47$ megoh $m, 1 / 2$ watt.
$\mathrm{H}_{5}, \mathrm{H}_{3}-1000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{7}, \mathrm{l}_{19}-470$ ohms, 1 watt.
R_{8} - 1 megohm, $1 / 2$ watt.
$R_{10}, R_{15}-0.22$ meqohm, $1 / 2$ watt.
$\mathrm{R}_{11}-12,000$ ohms, 1 watt.
$R_{13}-0.5-$ megohm potentiometer.
R_{14} - $\mathbf{1 0 , 0 0 0}$ ohms, $1 / 2$ watt.
$\left.\mathbf{R}_{17}-3^{\prime}\right)^{0}$ ohms, 1,2 watt.
$\mathrm{R}_{1 \mathrm{~s},} \mathrm{R}_{20}-47,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{21}-47$ ohms, $1 / 2$ watt.
$\mathrm{H}_{22}-22,000$ ohms, $1 / 2$ natt.
R_{23} - 330 ohms, 1 watt.
$\mathrm{R}_{24}-5000$ obms, 10 watts.
$R_{25}-1500$ ohms, 1 watt.
$\mathrm{R}_{26}-2000$ ohms, 10 watts.
$1 R_{27}-15,000$ ohms, 10 watts.
1_{1} through 1.18 - Sce coil table.
I_{1}, I_{2}-Panel lamp.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial-cable connector.
$\mathrm{J}_{3}-5$-prong malc plug.
$11 A_{1}-0-25$ d.c. milliammeter.
$\mathrm{MA}_{2}-\mathbf{0 - 3 0 0}$ d.c. milliammeter.
 chohe.
$1 \mathrm{RFC}_{3}-300$ - H . r.f. choke (Hill en 34300).
$\mathrm{RFC}_{8}, \mathrm{KFC}_{9}-7-\mu \mathrm{h}$, r.f. choke (Ohmite Z.-50).
$\mathrm{S}_{1}-6$-pole 3 -section 5 -position selector switeh ($\mathrm{C} \cdot \mathrm{n}$ tralab 2525).
S_{2} - S.p.d.t. center-off toggle switch.
T' - 6.3-volt 6 -amp, filament transformer (Thoridarson T-21F11).

ond line of parts starts at the loft with the 7 - amd $1+$-Mc. doubler tube and continues to the right with the VFO tube, the 6SH7, and the 100-ke. arystal. To the rear of the first two tubes are the 14and 7 -Me. couplers and the coupler in the output of the TFO. From left to right are C_{22}, C_{20}, C_{32}, C_{30}, C_{41} and C_{44}. The two tubes to the rear are the 10-and 11-meter doubler to the left and the 6AG7 buffer to the right. Behind these tubes are the 10- and 11 -meter couplers and the coupler in the output of the 6 ACi 7 . Left to right are $C_{\mathrm{I} 4}$, $C_{12}, C_{4}, C_{2}, C_{48}$ and C_{46}.

The bottom view of the transmitter (Fig . (i-45) shows the amplifier tank condenser and the plate by-pass capmacitor, C_{55}^{\prime}, lined up to the right in front of the $829-13$ tube socket. The tank capacitor, C_{54}, is insulated from ground (for d.e.) by means of National Xip-i polvstyrene buttons and an insulated shaft coupling protects the operator from accidental contact with the "hot" control shaft. Screengrid resistors, R_{26} and R_{27}, are mounted directly on the tube socket and the $829-\mathrm{B}$ gricl r.f. choke is located on the rear wall.

Aluminum brackets support the bandswitch at the right center of the chassis. The rear wafer of this switeh accommodates the wiring for the 27 - and $28-\mathrm{Mc}$. doubler tube, the center section takes care of the $14-\mathrm{Me} . \mathrm{GN}^{2}$ output circuit and

Fig. 6-44 - Shetch of the tulbular condenser used in the output circuit of the bandpass all-hand exciter.
the $829-\mathrm{B}$ grid circuit, while the front wafer handles switching for the $7-\mathrm{Mc}$. doubler and the output links. Compensating capacitors for the doubler grid circuits are mounted between the switch sections and ground.

Rectangular cut-outs are required for the bandpass couplers. The couplers in the output of the 6AG7 and those for 28 and 27 Mc. are mounted from left to right at the rear of the chassis. The coupler for 14 Mc . is to the left of the switch, and bandpass circuits for the VFO tube and the 7 -Mc. doubler are to the left and right of the aluminum partition. This aluminum shield prevents instability caused by coupling between the low-frequency circuits, L_{9}, the VFO coil, is mounted on a $1 / 4$-inch pillar at the front of the chassis.

The audio and the $100-\mathrm{kc}$. oscillator circuits are grouped at the upper left-hand corner and the filament transformer is bolted to the left wall. Shielded wire for all leads carrying other than r.f. will provide additional r.f. bypassing and help to reduce TVI.

Making the Band-Pass Couplers

The accompanying coil talle gives the details of the various coupler windings. The dimensions listed should be followed with the greatest possible care. Especially the spacing between the two windings of the eouplers is critical if the desired bandpass characteristie is to be obtained. All except the 28-Mc. coils: L_{1} and L_{2}, make use of Millen Type 45000 1-inch-diameter coil forms. The low-frequency coupler coils, L_{7} through L_{13}, are closewound

COIL TABLE FOR BANDPASS TRANSMITTER							
Coil	$L_{\mu}{ }_{\text {h }}$.	II ire	Turns	Diam., In.	liength, In.	$\begin{aligned} & \text { Coil spar- } \\ & \text { ins, } \mathrm{In} \text {. } \end{aligned}$	$\begin{aligned} & B \text { \& } 11 \\ & \text { Tyen No. } \end{aligned}$
L.t. L_{3}	1.18	20 tinued	8	$3 / 4$	1/2	I.1. $1.2-1 / 2$	3011
L_{2}	0.99	20 timed	7	$3 / 4$	${ }^{1} 16$	-	3011
L_{4}	0.81	20 tinned	6	$3 / 4$	8/8		3011
I_{5}	1.1	24 timned	1.5	$3 / 4$	${ }^{15}$	1:5.1.1-9\%的	3012
I. ${ }^{\text {f }}$	2.26	24 timed	10	3/4	${ }^{3}{ }_{6}$	--	3012
L_{-7}	15.8	30 enam.	21	1	is		- -
Ls	9.8	26 enam.	16	1	${ }_{92}$	-	-
L_{09}	92.0	30 s.s.c.c	68	1	${ }^{23} 6$	-	-
$L_{\text {, } 10, L_{11}}$	52.5	30 enam.	42	1	${ }^{7}{ }_{16}$	L.10. $L_{11}-5_{16}$	-
L_{12}	53.5	30 enam.	41	1	1/2	$L_{\text {L2 }}, L_{13}-1 / 4$	--
L_{13}	12.0	30 enam.	37	1	13 号	--	-
L_{14}	0.1	14 cnam.	3	8/8	1/2	-	-
$L_{1.5}$	1.05	14 enam.	3	$21 / 2$	8/8	-	3906
L_{16}	2.0	12 enam.	5	21/2	1*	-	390.5
I_{17}	6.5	14 enam.	10	$21 / 2$	$11 / 4$	-	3906
L_{18}	5.4	14 enam.	9	21/2	11/8	-	3906

* Find turn adjustable - see text.
on the outside of the form in the conventional manner, except that one of the two coils in each case is made so that its position on the form can be changed slightly if necessary. This is done in the following manner. Dust the form with talcum powder. Wrap a band of Scotch tape, adhesive side out, around the form. Wind the required number of turns over the band of tape. The tape will hold the turns intact while the coil is removed from the form and coated with coil dope. Replace the winding on the form when the dope is dry. After final adjustment, a drop of eement will hold the winding in place on the form.

B \& W self-supporting Miniductor windings are used for the $14-$ and $27-\mathrm{Mc}$. couplers (L_{1} through L_{6}). These are of such diameter that when the polystyrene supporting strips are sandpapered down slightly, the coils will slide snugly inside the Millen coil forms. The forms are slotted diametrically by making a longitudinal hacksaw cut down through the center of the form to within a half inch or so of the bottom. The leads from the coils ride up and down in these slots and are cemented in place after the final adjustment of the coupling.

No form is used for the $28-\mathrm{Mc}$. coupler, L_{1} and L_{2}.

The coupler tuning condensers are spaced out evenly on strips of $1 / 8$-inch bakelite or polystyrene, $13 / 4$ inches wide. As shown in the top-view photograph of Fig, 6-43, and discussed earlier, some of the couplers are grouped together on one strip. The one nearest the panel with 6 condensers is 6 inches long, the one with 4 condensers is 4 inches in length and the small piece is 2 inches long. The condensers are fastened to the strips with small machine serews through holes in the condenser tabs. Underneath, the Millen 1-inch forms are fastened to the strips with a machine screw through the hole in the bottom of the form, midway between asso(iated funing condensers. In the case of the $28-\mathrm{Mc}$. coupler, the coils are soldered directly to the condensermounting screws, in a horizontal position. Once the rorrect spacing has been found, the two coils are made rigid by joining them with a strip of polyst yrene bridging the tops of the eoils and held fast with eement.

Placement of this coupler can be seen in the bottomview photograph of Fig. 6-45. The coils are mounted at right angles to those of the 11meter coupler immediately to the rear of the bandswiteh.

Output Coils

The coils in the output circuit of the 829-13 and their link coils are made from strip-coil material of larger size. The two coils are mounted by their leads to small stand-off insulators, with their axes at right angles. One end turn of L_{16} is broken away from the others hy severing all but the bottom insulating strip. This permits the turn to be bent away from the rest of the coil for accurate adjustment of the inductance.

Tuning the Couplers

The driver stages should be adjusted in sequence, starting with the lowest-frequence band. The high-voltage supply to the 82!-13 should be turned off and the lead to the sereens of this tube should be disconnected temporarily. With the bandswiteh in the $3.5-\mathrm{Mc}$. position, set C_{34} at minimum capacitance and adjust C_{25} until the oscillator signal is heard at slightly above 4000 kc . Then the oscillator should tune over the range of about 3350 to slightly above 4000 ke .

To adjust the first coupler in the output of the oscillator, connect a high-resistance voltmeter across Rea, move the two coils as far apart as possible and adjust C_{41} and C_{41} for maximum meter reading. After both circuits have been peaked, do not disturb the settings of the two condensers. Slide the movalale coil to give the coil spacing shown in the coil table and then check the voltmeter reading as the VFO is tuned through its range. The reading should stay constant within 10 or 15 per cont across the band. If the reading is high near both ends and low in the middle of the hand, this indicates that the coupling is too tight and the coils should be moved slightly farther apart. On the other hand, if the readings show a peak in the center of the band and the excitation drops off too much at the ends of the range, the coupling is tow loose and the coils should be moved slightly eloser. together. If the reading is much higher at one end of the hand than at the

Fig. 6.45-13ottom view of the all-hand handpass exciter. The placement of parts is discussed in the text.
other, this can usually be eorrected by very slight adjustment of the tuning condensers. Do not change the condenser settings appreciably however, or it may upset the shape of the curve as a whole.

VOLTAGE AND CURRENT TABLE FOR THE LOWLEVEL TUBES OF THE BANDPASS TRANSMITTER						
Tiube	Freq., M/	E_{p}	E:	E.	Ek	Ik, Ma.
6.107	1.7	150)	1.50	- 12	-	8
6107	3.5	3(1)	1.50	- 35	6	20
6x\%	7.	300		-199)	13	22
6×6	14.	300	-	- 90	21	20
6×5	27.	300		-100	14	29
6.17	28.	300	-	- 65	1.4	30

The same procedure is followed in adjusting the coupler in the output of the 6AG7 amplifier, but this time grid current to the 82 !3 can be used as the indicator. The grid current should average 16 to 18 ma .

Next turn the bandswitch to the 7-Mc. position and connect the voltmeter across R_{18}. A $2.5-\mathrm{mh}$. r.f. choke should be used in series with the voltmeter lead connecting to the grid. Now adjust C_{28} until the meter readings follow the previous characteristie pattern. Then loosen the coupling between L_{7} and L_{8} as much as possible. Set the VFO to the middle of the designated frequency range of this stage and tune the two circuits to resonance as deseribed previously, using the 829 -13 grid current as the indicator. Bear in mind that this stage and the sucereding stages need cover with essentially flat output only that frequency range for which they are labeted in Fig. 6-42. The $14-, 27$ - and $28-\mathrm{Mc}$. couphers are adjusted following the same proeedure. The voltmeter should be connected across the grid leak only in these last three stages and no r.f. choke for the meter lead is necessary.

r 'is. $6 . \kappa_{6}$ - Circuit di. agran of plate and bias supply for the all-band handpases transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \quad \mathrm{C}_{3}-8-\mu \mathrm{fl}$. 4.30-volt-whg. eler. trolytic.
(C4, (is - $4-\mu \mathrm{fd}$. 1000). vold oil-filled.
$\mathrm{R}_{1}-2.20,000$ ohmes, 25 watts.
$\mathrm{R}_{2}-25,000$ olums, 25 watts, with slider.
$\mathrm{H}_{3}-25,(\mathrm{MK})$ ohms:, 50 watts.
14-5/25-h. 150 -ma. swinging choke.
$\mathrm{L}_{2}-20 . \mathrm{h} .1 \overline{5} 0 \cdot \mathrm{ma}$. smoothing choke.
1.3-30.h. W)-ma. filter choke.
$14-5 / 25-\mathrm{h} . \quad 200$-ma. swinging chohe.
$\mathrm{l}, 5-10 \mathrm{~h} .200 \mathrm{ma}$. smosthing clooke.
I_{1} - 150-watt $115 \overline{\text {-volt }}$ lamp.
J_{1} - 5 prong sochet.
s_{5}, s_{3}, s_{4} - 10 -amp. togyle switch.
'1t, I_{3} - - s.volt 3 -amp. filament trats former.
${ }^{\prime} \mathrm{I}_{2}-300 \mathrm{v}$. d.e. 150. ma. plate trants.
T4-2.5-volt, 1-amp. filanemt transformer.

VR - VR-is voltage-regulator tube.

Adjusting the Output Amplifier

Since there are no eoils to change in the output tank circuit, the tuning of this stage is quite simple. With the bandswiteh turned to the desired band, and reduced plate voltage applied to the plate after reconnecting the sereen lead, the dual tank eondenser is simply tuned for the eharacteristie dip in plate current indieating resonance. The cireuit tunes to 3.5 and 14 Me. with the condenser near maximum eapacitanee. Resonance at 7,27 and 28 Me. will be found near minimum capacitance. However, it is important that 3.5 Me. and 14 Me., and also 7 Me. and 28 Me. do not fall at exaetly the same settings, since this condition may result in excessive fourth-harmonic output when the transmitter is working at the lower of the two frequencies. The eondition can be avoided by adjusting the free turn on L_{16}.

A current and voltage table shows the approximate operating conditions for the lowlevel tubes. ['nder full load, the 820 -13 grid current and grid voltage should average 12 ma. and 70 volts, respectively, and the serem should draw about 30 ma . at 200 volts. The amplifier may be loaded to a plate current of 200 ma .

Testing the Audio Section

The power amplifier should be turned off (do not forget to remove sereen voltage) while the audio system is undergoing the first test. After a microphone has been connected to J_{1} and the low-voltage supply turned on, the output signal of the transmitter should be monitored by means of a receiver. Modulation should be
applied for this test and, with the reeriver tuned to an n.f.m. band, the deviation eontrol should be adjusted for a clean-sounding wellmodulated signal. It must be remembered that this adjustment holds for one band only and that the deviation eontrol requires readjustment when the transmitter is switched to another band. Less deviation is needed for the higher-frequeney bands. More extensive information on aligning n.f.m. units is given in the chapter on frequency and phase modulation.

Total cathode current for the two audio tubes is approximately 1.5 ma and about 0.5 volt is developed arross the cathode resistor of each stage. Plate voltage for the speectiamplifier tube is roughly 30 volts and 25 volts should be measured at the sereen-grid pins of both 6.1 K 5 s .

Testing the 100-Kc. Oscillator

lower for the 100 -ke. erystal oseillator may be obtained only by turning on the transmitter supply. However, the transmitter can be disabled during the test by opening the key. S_{2} must be switched to the erystal position and a receiver should be tuned to a harmonic of the erystal. A short antenna conneeted to the os-eillator-output terminal at the rear of the ehassis may be necessury if the receiver is tuned to a high frequency and if the transmitter is enelosed in the cabinet. When the eircuit appears to be working normally, the oscillator may be brought to zero beat with one of the WWV frcquencies by means of C_{7}.

Plate and sereen potentials for the 6SH7 should be 150 and 50 volts, respectively. Onc volt should appear across the cathode resistor, R_{5}, and the eathode current is 1 mat.

Figs. 6-47 through 6-5is show the circuit and various constructional details of a $150-$ watt transmitter with a shielding enclosure made of screening. In the circuit diagram of Fig. ($i-48$, the oscillator is a modified Pierce. It drives either a single 807 W as a straight amplifier, or two of them as push-push doublers. When a single tube is used, the heater of the other 807 W is turned off $\left(S_{1}\right)$ and the idle tube then serves as a neutralizing condenser for the other. Type 807 W tubes permit a more compart arrangement with shorter leads, but standard 807 s may be substituted with very minor modifications.

To minimize v.h.f, harmonie radiation, link coupling, instead of capacitive coupling, is used between the two stages and sinule harmonic filters are inserted in the power and keping leads which are shielded. R_{3}, R_{4} and $R F_{5} \dot{C}_{5}$ $R F C_{6}$ are v.h.f. parasitic suppressors.

Both stages have parallel phate feed. Since the entire unit is designod to operate from a single power supply, VR tubes are used to stabilize the plate and scren voltages of the oscillator. The 807 W sereen voltage also is taken from the tap for c.w. operation. If screen and plate modulation is contemplated, individual series screen resistors directly from the high-voltage terminal must be used. Farh should have a rating of 50,000 ohms, 5 watts for operation at a plate voltage of 600 . A small tä-volt biasing battery (90 volts for 'phone) mounted under the chassis serves to hold the amplitier input to a safe level when the oseillator is keved. Meters with r.f. by-passes are provided in the amplifier grid and plate circuits.

VFO input ean be used by means of capacitive coupling through a coaxial line and a plug (Millen 37412) that fits the crystal socket.

Fig. 6.47- The 150-watt transmitter installed in its shielding ensclomirr. The illuminated meters can be read through the doublewall sereening.

The outer conductor of the coaxial line is grounded as close as practicable to the 6 A 17 socket. When the plug is inserted, C_{1} is grounded and serves as the screen bropass condenser for the 6A(i7, while the grid is connerted to the "hot" side of the VFO output.

Shielding Enclosure

Screening makes a desirable type of enclosure for an amateur transmitter, since it not only provides the necessary ventilation, but also visibility. The transmitter is built in quite conventional form on a standard chassis, and the enclosure is made simply of adequate dimensions to surround it rompletely. The box is provided with a metal panel in front and a terminal board of the same material at the rear. The control shafts are extended the neressary distance to the panel, while the power leads are extended to the terminal bourd. The shieding and filtering of meters is no problem beause they also are completely within the enclosure, the screening permitting reading without cut-outs.

Double-wall shiclding is provided, since it is considerably more effective than single-layer screening, even though the walls are not insulated at all points.

The sketch of Fig. 6-50 illustrates the manner in which the enclosure is contructed. Each side (also top and hottom) consists basically of a square or rectangular frame of 1 by 2 pine strip stock covered with bronze sereening. Copper is better if it is available. At the frame corners, the two pieces are simply butted and joined with metal angles from the dime store. To cover the edges of the frames as well as the openings, the first piece of sereening is cut exartly to the width of the frame and about four inches longer than the length. Then one edge of the screen is tacked along the front face of the top strip. The sceen is bent backward around the adjacent edge, stretched across the back of the frame, pulled around the opposite edge and tacked along the front face of the bottom strip. The second layer of sereening is cut to a width equal to the length of the frame, and is applied to the front side of the frame in the same manner as described above, exeept that it is wound around the frame in the opmosite direction, i.e., from side to side, instead of from top to bottom. The result is a frame that is completely covered with screening, including the edges.

Fig. 6-5 1 suggests a method of stretching the screening tightly across the frame. After tacking one end of the sereening to the frame, the loose end of the screcuing is clamped between angle irons in a vise. The top strip of the frame rests against the face of the vise. When

Fig. 6-48 - Circuit diagram of the shielded transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{6}-0.002-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{2}, \mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{9}, \mathrm{C}_{12} \mathrm{C}_{13}-0.01-\mu \mathrm{ft}$. ceramic dish.
(:3-0.01- ffd. feed-through (Sprague 471'(6).
($\mathrm{A}_{4}-25-\mu \mu \mathrm{fd}$. mica.
(:8-100- $-\mu$ fld. variable (National S'r.100).
$\mathrm{C}_{10}, \mathrm{C}_{17}-0.001 \cdot \mu \mathrm{fd}$ miea.
$\mathrm{C}_{11}-100 . \mu \mu \mathrm{fd}$ - per-section variable (National STlll). 100).
$\mathrm{C}_{14}, \mathrm{C}_{15}-0.002-\mu \mathrm{fd}$. 2000-volt silicone (1lasticon ASGI3 Glassmike).
$\mathrm{C}_{16}-300 \cdot \mu \mu \mathrm{fd}$. variable (National TMS-300).
$\mathrm{C}_{18}, \mathrm{C}_{19}, \mathrm{C}_{20}-0.005-\mu \mathrm{fd}$. feed-through (Sprague 16P8).
$11_{1}-0.1$ megohm, $1 / 2$ watt.
$k_{2}-1000$ ohms, 1 watt.
$\mathrm{K}_{3}, \mathrm{~K}_{4}-100$ ohms, $1 / 2$ watt, moninductive.
$\mathrm{K}_{5}-15,000$ ohms, 25 watts.
$\mathrm{L}_{\mathrm{l}}-3.5 \mathrm{Mc}-20 \mu \mathrm{~h} .-30$ turns Vo. 22 d.s.c., $11 / 2$ inehes dian., $11 / 2$ inches long, A-turn link (National A l/ 17 -80.F. with 26 turns removed).
-7 Mc. - $10 \mu \mathrm{~h} .-18$ turns No. 22 d.s.e., $11 / 2$ inches diam., $11 / 2$ inches long, 4 -turn link (National A 1 17-40-E with 10 turns removed).

- 14 Mc. $-5 \mu \mathrm{~h}$. - 12 turns No. 22 d.s.c., $11 / 2$ inches diam., 1 inch long, 3-turn link (Vational AR17-20-E).
I. $-3.5 \mathrm{Mc} .-40 \mu \mathrm{~h} .-38$ turns No. 22 d.s.c. closewound, 1 1/2 inches diam.. approx. 5-turn link

 inches diam.. I 19 inches long, approx. d-turn link over center ($\operatorname{dational} \backslash 1817.40 . S$).
- 14 : $1 \mathrm{c} .-4.7 \mu \mathrm{~h}$. - 10 turns Vo. 22 d.s.c., $11 / 2$
inches diam., 1 inch long. approx. 3-turn link over center (National AR1:-20.S).
$\mathrm{L}_{3}-3.5$ Mr. - $11 \mu \mathrm{~h} .-26$ turns No. $18,17 / 8$ inches diam., $21 / 2$ inches long, 5 -turn link ($15 \mathbb{X} \mathbf{W}$ JFiL-10).
-7 Mc. - $3 \mu \mathrm{~h} .-10$ turns No. $18,17 / 8$ inches diam., 2 inches long, 3 -turn link (15 S \mathbb{N} JEI. 2().
- 11 Mc. - $1.5 \mu \mathrm{~h} .-8$ turns Vo. $14,17 / 8$ inches diann., 2 inches long, 3-turn link (\mathcal{B} \& W JIS. 10).
- 28 Mc. $-0.65 \mu \mathrm{~h} .-4$ turns No. $11,17 / 8$ inch diam., l inch long, 2-turn linh ($B \mathcal{X}$ W JELS-6).
$\left.\mathrm{J}_{1}, \mathrm{~J}_{7}, \mathrm{~J}_{8}-J o n e s ~ S-101-1\right)$ connector.
J_{2} - Open-circuit jack.
$\mathrm{J}_{3}, \mathrm{~J}_{4}-$ Amphenol 80-I'c2 $\mathrm{Ml}_{\text {connector. }}$
$\mathrm{J}_{5}, \mathrm{~J}_{6}$ - Amphenol 8:3-1 12 connector.
M A_{1} - Milliammeter, 25 -ma, seale.
HA_{2} - Villiammeter, 30()-ma. scale.
P_{1} - Rihhon-line plug (Millen 3:4l2).
P_{2} - Amphenol 80. \1 (:Fl connector.
P^{3} - Imphenol 83.1S1' connector.
P_{4} - Jenes $\mathrm{P} \cdot 101-1 / 4-\mathrm{in}$. connector.

 wound (National $1160-1 \mu h$. with turns re* moved).
KFC. $-1 \cdot m h .300$-ma. r.f. choke (National li300S).
S_{1} - S.p.s.t. togyle.
'I — Filament transformer: $6.3 \mathrm{v} ., 2$ a.
the bottom of the frame is pressed as indieated, the sereening is brought under tension while it is being tacked along the face of the upper edge of the frame. The remainder of the sereening is then folded over the edge of the frame and tacked along the back.

The front and rear frames are constructed as shown in Fig, 6-52A. The intermediate strip is placed to come level with the top edge of the aluminum control panel, or rear terminal board, as the case may be. Both panel and terminal board should be brought tightly against the screening by the generous use of wood screws. The construction of the top
frame is shown in lrig. 6-52 3 . The additional crosspieces make provision for an arcess opening for rhanging roils and minor adjustments. After this frame has been eovered with sereening as described above, the sereening across the opening can be slit and bent around the edges of the hole and tacked in place underneath. Several long machine screws are spaced around the edges of the opening so that the aluminum-sheet cover can be fastened down tightly with wing nuts. The cover should overlap the opening out to the edges of the wood framework around the hole.

The sides of the enclosure are fastened to-

Fig. 6.49 - llear view of the enclosure showing, from left to right, the shiedded terminations for the r.f. ontput, a.c. line, key and VFO input. The opening in the top provides access to the plug-in coils.
gether tightly with several $11 / 2$-inch wood screws. Wood trim strips are used to cover the seams of the screening if desired. Latticing wood is suitable for this purpose.
The control shafts require holes in the two sereening walls. The holes should be no larger than is necessary to pass the shafts. Ragged edges can be avoided hy first flowing a small patch of solder over the screening where the hole is to be drilled, and then drilling the hole through the solder and sereening.

All power and key wiring bet ween the chassis and the terminal board at the rear should be shielded and the shield should be soldered to the screening as it passes through to the terminal board. Shielded fittings should be used as power terminals and it is advisable to use shielded wire between the terminal board and the power-supply unit.
The meters are mounted on a separate panel inside the enclosure. The panel is spaced away from the inner wall of sereening by an inch or so. If there is any difficulty in reading the meters through the screening, 6.3 -volt dial lamps operating from the filament transformer can be used to provide illumination for them. The lamps should be chaded toward the from to eut off glare. This can be done quite easily by coating the front of the bulls with black paint.

Fig. 6-50-Two layers of screening are applied to each frame of the enclosure - one on earh side of the frame.

Transmitter Construction

The amplifier tubes and their associated input and output tank circuits are constructed as a unit on a " U "-shaped bracket made from a single piece of aluminum sheet. This provides a low-inductance return, from plate circuit to cathode, independent of the chassis, as well as a measure of shielding between input and output circuits. The tank condensers are mounted directly on the bracket with their shafts at the same height. The two coil sockets are mounted above the tank condensers so that the axes of the coils are at right angles to

Fig. 6-5I - A suggested metlod for pulling the screen tight across the frame. See text.
minimize coupling. The resistors, chokes and br-pass condensers associated with the amplifier grid and sereen eircuits are grouped around the tube bases and connected with the shortest possible leads. Tubular-shaped C_{14} is supported (through a hole in the bracket) between the plate coil-soeket terminal and

Fig. 6.52 - In the front and back frames (A) a cross. piece is added as a support for the control panel and terminal board, respectively. Whe top frame (13) has additional members to accommodate an access opening.
the top of RFC_{7} which is mounted vertically from the chassis, between the two tubes, near the plate caps. The parasitie chokes, $R F^{\prime} C_{5}$ and $R F C_{6}$, are suspended between the tube plate caps and the end of C_{14}. The oscillator components and the VR tubes are to the right in Fig. 6-50. The crystal, 6.AG7 and the oscillator tank coil, L_{1}, are placed in line, with L_{1} at right angles to L_{2}. Fig. 6-53 also shows the mounting of the two meters, and the shielded power connections.

Underneath the chassis in Fig. 6-54, the oscillator tank condenser is to the left and the filament transformer and biasing battery to

 mitter. "The out mat stage is assembled on a "l" -shaperd Irachet leent up from sheret aluminum. ()seillator somponents are to the right.

VFO output one band lower than the band to which the 6.1 (i7 output will be tuned. This avoids possible instability in the 6A(i7 stago.

For maximum rated \cdot •w. output, a 7.50 -volt $300-\mathrm{ma}$. power supply is required (600 volts for 'phone). But a lower-voltage supply may be used for less than full output. If the supply voltage falls much below 400, however, thr IIR tubes will not operate, unless lower-voltagn V lis are used, thus reducing the oscillator and screen voltages. Fig. 6-55 shows a suitable power supply for maximum rated operation.

The Type 807 W tubes serm to work best with less than the usually-rerommended grid current of 3 to 4 ma . per tube. If the grid current is run much above 2 ma, per tube, the screen rurrent beromes excessive. At lower plate voltages, even less grid current may become desirable. At maximum plate voltage. the loaded plate current should be limited to 100 ma . per tube, At lower phate voltages, it may not be possible to load the amplifier to maximum rated plate current. In this case,
the right. R_{5} is at the center. On extension leads at the top are the key jack (mounted in a National microphonejack shield), the meter lamps, the filamont switch, S_{1}, and the moter loads with their hy-pass condensers. All power wiring is done with shielded wire with the braid shields bonded together at frequent points and tied to ground. Feed-through type hy-pass fondensers for harmonies : atre fastened directly to the a.c--line and key terminals.

Adjustment

With the VIR tubes in place, hut the other tubes out of their sockets, R_{5} should be adjusted until a meter conneeted externally in the high-voltage lead reads 40 ma. "The remainter of the adjustment is quite conventional, remembering that it is possible to double frequency both in the output circuit of the oscillator and again in the output stage. Thus, output can be obtained up to the 14 -Me. band with 80 -meter crystals and up to 28 Me . with $7-\mathrm{Me}$. crystals. $C_{8} L_{1}$ and $C_{11} L_{2}$ should alwas: be adjusted to the same frequence:

When using VPO, it is preferable to have the

Fig. 0.51 - Bothom sien of the 1.50 -watt shielded transmitter. The chassis is of aluminum measuring $17 \times 10 \times 3$ inches. All power wiring is done with braid-covered wire. The biasing battery to the right is held in place with a metal bracket.

ris. 6.55- (ircuit of a power supbly for the shielded 150-watt transmitter.
$C_{1}, C_{2}-4-\mu \mathrm{fl}$. 1000 -volt oil-filled. $\mathrm{R}_{1}-25,000$ olms. 50 watts.
$\mathrm{L}_{1}-5 / 25 \mathrm{~h} . \quad 300$-ma. swinging chohe.
$\mathrm{L}_{2}-10 \mathrm{~h}$. 300 -ma.
J_{1} - Amphenol 80.PC:2F Connertor.
J_{2} - Amphenol 83-11 connector.
$\mathrm{S}_{1}, \mathrm{~S}_{2}-3$-amp. toggle switch.
T_{1}-Filanient transformer: 2.) volts, 4 amp .
T_{2} - Plate 1 ransformer: $600 / 650$ volte d.c., 300 ma.

A 500-Watt Link-Coupled All-Band Transmitter

In the design of the transmitter shown in Figs. 6-56 through 6-67, an attempt has been made to incorporate means by which harmonic radiation may be minimized. In addition to the use of thorough shielding and power-line filtering, link coupling is used throughout.

Through the use of plug-in coils, the transmitter may be operated up to 21 Me. with $1.75-\mathrm{Mc}$. erystals, and to 28 Mc. with either $3.5-$ or $7-$ Mc. crystals. With VFO input, it will go to 7 Mc . with 1.75 -Mc. VFO output, to 21 Mc. with $3.5-\mathrm{Mc}$. VFO output, and to 28 Mc . with 7-Mc. VFO output.

The design of the push-pull triode final amplifier is suitable for any of the usual triodes with plate-cap connection, operating at plate voltages up to 1500 with plate modulation and a plate-voltage/total-plate-current ratio of 5 to 1 or greater.

The transmitter is made up in two sections mounted in a simple shielding enclosure consisting of a wood-strip frame covered with copper screening.
The exeiter unit is provided with pull handles and is designed to slide out for coil changing. As the unit is returned to the enclosure, the power-

Fig. 6.56-A complete 500 -watt all-band transmitter inclading anterna tuner. The exciter unit at the bottom slisles out for coil changing. The panel screws on this unit are dummies cemented in place. 'The top of the sercened enclosure is hinged to permit changing eoils in the final amplifier and antenna tuncr.
supply connections are automatically made at the rear through a series of plugs which fit into jacks set along the side of a $3 \times 4 \times 17$-inch chassis fastened permanently at the rear. This chassis also encloses and shields the harmonicfilter components for all power-supply leads.

The second section above includes the pushpull final amplifier and an antenna tuner. The top cover is hinged to provide access to the output-stage and antenna tank coils. The meters for the amplifier stage are set in a separate panel between the two main sections.

Circuit Details

Referring first to the circuit diagram of the exciter section shown in Fig. 6-58, either the built-in Pieree erystal oscillator or an external VFO may be used to feed a 6 L 6 stage which is operated as a doubler, as a tripler, or, when necessary, as a buffer amplifier. This stage feeds a push-push 807 driver stage that may be operated either as a doubler, or as a selfneutralized straight-through amplifier by opening s_{2} which controls the heater of one of the 807 s . This inactive tube then becomes the "neutralizing condenser" for the other 807.

Fig. 0.57 - Kear view of the completed 500 -watt allband transmitter with the back scrcening panel removed. The rectangular enclosed unit to the rear of the exciter contains the v.h.f, power-lead filters. 'The two matching boxes above enclose the amplifier-stage milliammeters.

Fig. 6.58 - Circuit diagram of the exciter for the 500 watt all-band transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-140-\mu \mu \mathrm{fd}$. variahle condenser (Millen 22140). C_{3} - $100-\mu \mu \mathrm{fd}$.-per-section variable condenser (Millen 23100).
$\mathrm{C}_{4}-250 . \mu \mu \mathrm{fd}$. variable condenser (National TMK-250).
$\mathrm{C}_{5}-0.0022 \cdot \mu \mathrm{fd}$. mica.
$\mathrm{C}_{6}, \mathrm{C}, 7-100-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{8}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{16}, \mathrm{C}_{19}, \mathrm{C}_{22}-0.0047$ ffd. mica.
$\mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{35}, \mathrm{C}_{20}, \mathrm{C}_{21}-22-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{17}, \mathrm{C}_{18}-12-\mu \mu \mathrm{fl}$. ceramic.
(i23-15- $\mu \mu \mathrm{fd}$. air thibular (see text).
C_{24} - $0.001-\mu \mathrm{fd}$. 1200 -volt-wkg. mica.
C:25-470- $\mu \mathrm{\mu} \mathrm{fd}$. mica.
$R_{1}-47,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}-5000$ ohms, 2 watts.
$\mathrm{R}_{3}, \mathrm{R}_{6}-100$ ohms, $1 / 2$ watt.
$R_{4}-2500$ ohms, 10 watts.
$\mathrm{R}_{5}, \mathrm{R}_{11}$ - 10 -times meter shunt (see text).
$\mathrm{K}_{7}, \mathrm{R}_{8}-10,000$ ohms, 10 watts.
$R_{9}, R_{10}-100$ ohms, $1 / 2$ watt, noninductive.
1.1, 1.2, I.4. I. 3 - See table.

1. 3 - See line-up table for connections.
$\mathrm{J}_{1}, \mathrm{~J}_{3}$ - Coaxial fitting.
$\mathrm{J}_{2}-$ Closed-circuit jack.
MA_{1} - Milliammeter - 25 -ma. d.c. scale.
$\mathrm{RFC}_{1}-2.5 \cdot \mathrm{mh}$. $125-\mathrm{ma}$. r.f. choke.
$\mathrm{RFC}_{2}, \mathrm{RFC} 3, \mathrm{RFC}, \mathrm{RFC}, 5-2.5-\mathrm{mh} .50$-ma. r.f. chohe (National R-50).
$\mathrm{RFC}_{6}, \mathrm{RFC}_{7}$ - V.h.f. parasitic choke - $\mathbf{1 2}$ turns No. 16, $1 / 4$-inch diam., 1 inch long, self-supporting.
$\mathrm{RFC}_{8,}, \mathrm{RFC} \mathrm{C}_{\theta}-7-\mu \mathrm{h}$. r.f. choke (Ohmite Z-50).
S_{1}-S.p.d.t. ceramic rotary.
S_{2}-S.p.s.t. toggle.
S3-2-pole 4 -position 2 -section ceramic rotary.
'Ti-Fílament transformer: 6.3 volts, 6 amp .
When the output frequency desired is the same as the crystal frequency, the input circuit of the $6 L 6$ is not tuned. In this case, no coil is used at L_{1}. When the coil socket and form of L_{1} are wired as shown in Fig. 6-58A and B, the conneetion to tuning condenser C_{1} is broken automatically when the coil is removed. When

COIL LINE-UP TABLE - 500.WATT ALL-BAND TRANSMITTER							
Output	YTAL	$V F O$	L_{1}	$\begin{gathered} L_{2} / \\ / L_{4} \end{gathered}$	L_{3}	$\left\|\begin{array}{c} L_{s} / \\ / L_{i 6}, \\ \\ / 7 \end{array}\right\|$	S_{2}
3.5	1.75	-	1.75	3.5	$\mathrm{Y}-\mathrm{Z}$	35	Open
7	1.75	-	35	7	Y-7/	7	Oprn
14	175	-	35	7	Y-Z	14	C'losed
21	1.75	-	3.5	10.5	Y-2	21	Closed
3.5	3.5	-	None	3.5	$\mathrm{Y}-7$	35	Open
7	3.5	-	3.5	7	Y-\%	7	Open
14	3.5	-	3.5	7	$\mathrm{Y}-2$	14	Closed
21	3.5	-	3.5	10.5	Y-Z	21	Closed
28	3.5	-	7	14	Y-\%	98	Closed
7	7	-	Non ${ }^{2}$	7	Y-7/	7	Open
14	7	-	7	14	$\mathrm{Y}-7$	14	Open
28	7	-	7	14	$\mathrm{Y}-7$	29	Closed
3.5	-	1.75	1.75	35	Y-7	3.5	0 mm
7	-	1.75	1.75	3.5	1-\%	7	(losed
3.5	-	3.5	-	--	$\overline{\mathrm{X}}$ - $/$	3.5	Open
7	-	35	3.5	7	1-\%	7	Open
14	-	3.5	35	7	Y-\%	14	closed
21	-	35	35	10.5	Y-\%	21	() losed
7	-	7	-	-	X $7 /$	7	Open
14	-	7	7	14	$\mathrm{Y}-\mathrm{Y}$	14	Open
21	-	7	7	21.	Y-7/4	21	Open
28	--	7	i	14	$Y-7$	28	Closed

the VFO output frequency is the same as the desired frequency of operation, the VFO is fed directly to the input of the push-push stage through the link contacts at $X-Z$ instead of $Y-Z$. The pins of the coil hase can be wired to make this connection when the coil is plugged into place.

Fig. 6 -59 - Cir. cuit diagram of the final amplifier and antenna tuncr of the 500 -watt all-hand rig.
$\mathrm{C}_{32}, \mathrm{C}_{33}-0.1 \mu \mathrm{fl},{ }_{2}^{2} \mathbf{3}$) volts (Sprague Hypa-s:
$\mathrm{C}_{34}-0,0022$ - $\mu \mathrm{fd}$, mica.
$\mathrm{C}_{35}-100-\mu \mu \mathrm{fl}$ - peresection var. (Johnenn 100III).|.5).
Casв، C_{3} - - 100 - $\mu \mathrm{\mu fl}$-per-section variable (Johmson 100EI)-30).
$\mathrm{C}_{38}, \mathrm{C}_{39}, \mathrm{C}_{40}, \mathrm{C}_{41}, \mathrm{C}_{48}, \mathrm{C}_{49}, \mathrm{C}_{50}, \mathrm{C}_{53}-450 . \mathrm{m}_{\mu \mathrm{fd}}$ mica.
$\mathrm{C}_{42}, \mathrm{C}_{43}$ - حeutralizing eondenser - $1-14 \mu \mu \mathrm{fl}$.
(Millen 1.5005)
C_{44}, Ci45-12- $\mu \mathrm{fd}$. 8000 -volt tubular air condenser (see text).
$\mathrm{C}_{46}, \mathrm{C}_{47}-500-\mu \mu \mathrm{fl}$. 2500 -volt-whg. mica.
Double by-pass condensers are used at the cathode and screen terminals and for the platecircuit returns in the 6 L 6 and 807 stages. A tubular air condenser is used at C_{23} to provide a low-inductance plate return to cathode. The larger by-pass condensers in each case are effective at the lower frequencies, but the coramic condensers, together with $R F C_{6}, \quad R F C_{7}, \quad R_{9}$ and R_{10} in the 80^{-7} stage, are required

Fig. 6-60 - Rear view of the exeiter of the 500-watt all-band transmitter.

Fig. 6.6l - Hottom view of the exriter section of the 500 -watt all-hand tramsmitter, The filament trangformer is to the right.
R_{3}, R_{5}, R_{6} and R_{11} are motering resistors aceross which the milliammeter may be switched by s_{3} to read grid and plate currents in the two amplifier stages. R_{5} and R_{11} shouldibe adjusted in the cir-
 ruit to give a sale multiplication of 10 times as described in the chapter on measuring equipment, $R F^{\prime} C_{8,} R X_{9}$ and C_{25} are part of the v.h.f. filtoring system.

The circuit diagram of the push-pull final amplifier and the anternat tuner is shown in Fig. 6-59. Tho grid tank circuit is splif for d.c. by the insertion of (${ }_{34}$ at the econter of L_{6}, and a separate filament transformer is used for each of the two tubes so that individual grid and cathode currents may bo
 tubular air condensers connected direetly with short leads from plate to ground near the lube sockets. They are essential in suppressing $v . h . f$, parasitic oscillation in this stage. R_{14}, R_{15}, R_{16} and R_{17} are metering resistors across which the two external milliammeters are connected hy switchos s_{4} and $S_{50} R F^{\prime} C_{17}$ and $C_{4 ;}$ form one section of a v.h.f. filter in the high-voltage supply lead.

All other v.h.f. filters are in the separato
shieded unit at the rear of the exciter. The wiring of this chassis is shown in Fig. 6-65.

Fip. i. 6.3 - Sketches showing the construetion of the air tubular condensers, (1) for the exriter and (B) for the linal amplifier. The smaller condensers shown in the photographs of the final were replaced after preliminary tests.

Fig. 6-62 - Hear view of the amplifier section of the 500 -watt all. hand transmitter. 'The antenna tuner is to the right. The sear fox driving the variable link of the antenna tunce is fastened to the left-hand side of the shiolding partition.

Fig. 6.64-Bottom vien of the amplitior wertion of the $\overline{3} 00$-wat all-hand transmitter. The large eoavial lead runs from the amplifier link to the antennatuner link. 'The twofilament transformers are to the right.

Exciter Construction

The exeiter is assembled on a $7 \times 17 \times 3-$ inch chassis with a $10 \frac{1}{2}$-inch metal panel.

COIL TABLE-SOO-WATT TRANSMITTER								
Coil	Band	$L_{\text {L }}$ h.	Tiurns	Wire	Diam.	1.4th.	Link	Manufoctured Type
L_{1} / L_{2}	1.85	38	60	$\begin{gathered} 28 \\ \text { dsce. } \end{gathered}$	1"	ew	8	Weund on Millen 15005 l-ineb 5 -pin
	3.5	19	31	$\begin{gathered} \frac{21}{21} \\ \text { d.s.e.e. } \end{gathered}$	1"	cm	6	
	7	:	18	$\begin{gathered} 22 \\ 15.9 \end{gathered}$	1"	**	3	
L_{2}	10.5	1.1	16	$\begin{aligned} & 22 \\ & \text { Ils.c. } \end{aligned}$	1"	$7 / 81$	3	bahelite form, sce eircuit diagram for pin connections.
	1.4	2.5	10	$\begin{gathered} 2! \\ \mathrm{d} . \mathrm{s}, \mathrm{c} . \end{gathered}$	$1^{\prime \prime}$	5/8'	3	
	21	1.2	-	18	$1^{\prime \prime}$	1/2"	2	
L_{4}	3.5	10	16	2.	11/41"	$138^{\prime \prime}$	10	Vational AR-17-80.s
	7	11	22	$\because 2$	$11 / 4^{\prime \prime}$	11/4'	5	National AR-17-10-5
	10.5	8	18	22	$11 / 4^{\prime \prime}$	1"	5	Vational AR-17-40. 5 \because turns off each end.
	14	2.9	12	18	$11 / 4^{\prime \prime}$	11/8'1	3	National AR-17-20.S
	21	1.3	6	18	11/4"	$11 / 8^{\prime \prime}$	2	National AR-17-10.S
Ls	3.3	10	$\underline{12}$	16	$11 / 2^{\prime \prime}$	$17 / 8{ }^{17}$		B\&゙ JFI... 10
	\square	3	12	14	$11 / 2^{\prime \prime}$	${\underline{ }{ }^{\prime \prime}}^{\prime \prime}$	2	BRW JE1.20
	14	2.3	10	1.1	$11 / 2^{\prime \prime}$	$21 / 4^{\prime \prime}$	2	BRW JEL.15
	21	0.8	6	14	$11 / 2^{\prime \prime}$	2'10	\cdots	BXW JEL-10
	28	0.5	1	14	11/2"	11/4"	2	BXW JEL. 2 turns off
L_{6}	3.5	55	56	18	11/4"	13/1"	1	National AR-17-80\%:
	${ }^{14}$	11	22	22	$11 / 4{ }^{\prime \prime}$	$11^{\prime \prime}$	5	Vational AR-17-40S
	14	$\overline{7}$	17	22	$11 / 4^{\prime \prime}$	- ${ }^{1 / 8}$.	Vational AR-17-10S 4 turns off cach side
	21	2.5	10	18	11/4"	1"	3	National AR-17-20S 1 turn off each side
	28	07	4	18	11/4"	1/2"	\geq	National AR-17-10S 1 turn off each side
L_{i}	3.5	40	10	14	$21 / 2^{\prime \prime}$	$5^{\prime \prime}$	6	Johnson 500 HCF-80
	1	1.3	24	12	$\underline{11 / 2 \prime}$	$5^{\prime \prime}$	6	Johnson 500 HCF- 40
	14	3.7	12	6	$212^{\prime \prime}$	$5^{\prime \prime}$	3	Johnson 500 HCF-20
	21	0	8	6	$2^{\prime \prime}$	5"	3	Johnson 500 HCF. 10
	28	0.7	6	6	$2^{\prime \prime}$	$4^{\prime \prime}$	3	Johnson 500 HCF-10 1 turn off each side
L_{4}	Same as L_{i}, with swinging link							Johnson 500 HCS

The panel should be dropped so that its lower edge protrudes $3 / 4$ ineh below the bottom edge of the chassis to cover the bottom strip of the
frame of the enelosure, The arrangement of parts on top of the chassis is shown quite clearly in Fig. 6-60. The sockets for L_{4} and L_{5} are orientated so that fhe ases of the two ceils are at right angles. I.arge clearance boles for the 807s and their shields, and one to clear the tubular condenser, C_{23}, also are cut in the top of the chassis. The 807 tank andenser, C_{4}, is insulated for d.c. by mounting it on polystyrene button-type insulators and providing an insulating coupling in the control shaft.

Underneath, the tube sockets are mounted on a $31 / 2$-inch strip of aluminum spanning the bottom of the chassis. The tubular condenser also is fastened to this strip. The construction of this condenser is shown in Fig. 6-63A. In the push-push stage, the grid tank condenser, C_{3}, is im-

Fig. 6-65-Wiring diagram of the harmonic.filter unit for the $5(1)-w a t t$ all-hand transmitter.
C.26-0.005 $\mu \mathrm{fd}, \mathbf{6 0 0}$ volts (Hyrague IIypass).
$\mathrm{C}_{27}, \mathrm{C}_{28}-0.01$ pfil., 600 volts (')rague Ilypass).
$\mathrm{C}_{29}-0.002 \quad \mu \mathrm{fd} ., 5000$ volts whg, (sprague llypars).
$\mathrm{C}_{30}, \mathrm{C}_{31}-0.1$ $\mu \mathrm{fl}, 25^{\circ}$ volts (Sprague 11 ypass).
IRI'C $\mathrm{C}_{10-1,5}-7 \cdot \mu h_{\text {. }}$ vh,f, choke (Ohmite Z-50).
mediately to the left of the tube sockets in Fig. $6-61$ and at the center of the chassis, with the parasitic chokes, $R F C_{6}$ and $R F C_{7}$, fastened directly between the tube-socket and condenser terminals. Farther to the left in order are C_{2}, S_{1}, and C_{1} with their shafts equally spaced.

To the right of C_{3} are S_{2}, S_{3} and the key jack, also equally spaced along the panel. The crystal socket is mounted on the panel where it is readily accessible. Connections to it are made by way of feed-through points.

All power wiring is done with shielded conductor and is brought out at the rear to banana-type plugs set in bakelite insulating grommets. R.f. connections should be as short and direct as possible and all by-pass condensers connected to the terminals to be bypassed, and grounded as close as possible to the cathode by-pass grounding point.

Figs. 6-62 and 6-64 show the construction of the final-amplifier section. The chassis is $10 \times 17 \times 3$ inches and is fitted with a standard rack pancl of metal $153 / 4$ inches high. The amplifier and antenna tuner are separated by a sheet-aluminum partition. The two tank condensers are mounted on small coramic cones and placed at an equal distanco from the respective ends of the chassis. The coil jack bar in the amplifier is fastened to the tankcondenser frame by means of aluminum angle pieces. The two amplifier tubes are mounted in a manner quite similar to that described for the 807 s in the exciter, through clearance holes in the chassis. (learance holes are also cut for the noutralizing condensers as woll as for the tubular condensers, C_{44} and C_{45}. The neutralizing condensers are removed from their original insulator mountings and are fastened instead to large feed-t hrough insulators (.Millen

type 32103) set in the strip supporting the tube sockets. The connections are then made to the feed-through terminals below. The tubular condensers are placed so that the mounting flanges are close to the point where the filament by-pass condensers are grounded. These condensers are made as shown in Fig. 6-6313.

Underneath, the grid tank condenser is mounted on brackets at the center of the chassis near the strip holding the tube sockets. The brackets space the condenser from the chassis to clear the grid-coil socket which is submounted centrally to the right of the tubes in Fig. 6-tit.

A metal strip spanning the antenna tank condenser from front to rear provides a mounting for the antenna tank coil with its axis at right angles to that of the amplifier coil. 1 Nillen right-angle gear box fastened to the partition on metal pillars drives the linkadjust ment shaft from the control at the upper center of the panel.

The meter panel is $51 / 4$ inches high. The meters are shichded by enclosing them in standard metal boxes 3 by 4 by 5 inches.

The frame for the enclosure is made from strips of 1 by 2 stock. Its over-all height ($31 \frac{1}{2}$ inches) and width (10 inches) mateh the pancl dimensions. The over-all depth is 12 inches. The copper screcning is placed on the inside and is brought out around the outer edges of the frame so that it will make an overlapping contact with the metal panels in front and the serening of the removable back. The back extends down only as far as the top edge of the $3 \times 4 \times 17$-inch chassis holding the power-supply terminals. The screening of the hinged top also should make good contact with the scroening of the sides. The removable back, the hinged top and the sliding exciter unit are provided with interlock miero-switches that break the powar-supply primary circuits when either is opened. The circuit diagram of a suitable power supply is shown in Fig, (i - f 7 .

Fig. 6.66 - Hotton view of the line-filter unit. The chassis is divided off into shielded compartments by aluminum partitions. Ieft to right, the filters are for the a.c. line, 1.500 volt d.e. line, 500 -volt d.e. line, 300 -volt d.e. line, and bias.

Fig. 6.67 - Circuit diagram of a power supply for the 500 -watt all-hand transmitter,
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-8$ - $\mu \mathrm{fd}$. 450-volt-whg. electrolytio.
$\mathrm{C}_{4} \mathrm{C}_{5}$ - $4-\mu \mathrm{fd}$. 600 -volt oil-filled.
$\mathrm{C}_{6}, \mathrm{C}_{7}-4$ - $\mu \mathrm{fd}$. 2000 -volt nil-filled.
$\mathrm{R}_{1}-25,000$ ohms, 2.5 watts.
$\mathrm{R}_{2}-25,000$ ohms, 50 watts.
$\mathrm{K}_{3}, \mathrm{~K}_{4}-100$ ohms, 1 watt.
$\mathrm{R} s-25,000$ ohms, 100 watts.
$\mathrm{R}_{6}-25,000$ ohms, 150 watts.
$\mathrm{I}_{1}, \mathrm{I}_{2}-20$-hy. 120-ma. filter choke.
1s - 20-hy. $75-\mathrm{ma}$ filter choke.
$\mathrm{L}_{4}-5 / 25 \cdot \mathrm{hy} .200 \cdot \mathrm{ma}$. swinging choke.
L.5 - $20 \cdot \mathrm{hy}$. 200 -ma. smoothing choke.
$\mathrm{l}_{6}-5 / 25-\mathrm{hy} .400-\mathrm{ma}$. swinging choke.

Adjustment

The accompanying tables give the coil dimensions and show the coil line-up for any desired output frequency, depending upon VFO or crystal frequency. Care should be taken to cheek the frequency of each stage with an absorption-type wavemeter until the proper dial'settings for each band have been determined and logged. The objective should be to obtain rated grid current to the final amplifier with a minimum of drive to the 807 stage. The coupling between the driver and the final should be adjusted to the optimum point, while the link at the input of the 807 s should in each ease be set to produce rated final-amplifier grid current.

The grid current to the 6L6 should run 1 ma. or less on all bands. The combined
$\mathrm{L}_{7}-20$-hy. 400 -ma. smonthing choke.
$\mathrm{S}_{1}, \mathrm{~S}_{5}, \mathrm{~S}_{8}, \mathrm{~S}_{7}-10$ amp. toggle switch.
$\mathrm{s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$ - Microswiteh interlocks.
T_{1} - Power transformer: 300 volts d.c., 120 ma.; 5 volts, 3 amp.
T_{2} - Filament transformer: 5 volts, 3 amp .
T_{3} - Filament transformer: 2.5 volts, 4 amp.
T4 - Plate transformer: 500 volts d.c., 200 ma ,
Ts - Plate transformer: 1500 volts d.c. 400 ma .
$\mathrm{T}_{6}-$ Filament transformer: 2.5 volts, 10 amp., 10,000 volt insulation.
VII - VR.90 regulator tube,
screen and plate current should vary from 10 ma. or less, when the input circuit is untuned, to 45 ma . when the 6 L 6 is doubling. To obtain rated grid current to a pair of 812 As in the final amplifier, as an example, the grid current of a single 807 as a straight amplifier should be about 3 ma . When the two tubes are in use as a doubler, a total grid current of 2 ma . or less should be sufficient. The respective plate currents under these conditions are 100 ma . and 140 ma. The 807 screen current will run between 5 and 7 ma . for single-tube operation and a total of about the same for the two tubes when they are operating as doublers.

When tubes of other types are used in the output stage, R_{12} and R_{13} (Fig. 6-59) must be changed to suit (see "IR.F. Power-Amplifier'Tube Operating Factors," this ehapter).

A Push-Pull 813 Transmitter

Shown in Figs. 6-68 through 6-75 is an ex-citer-amplifier combination comprising a complete transmitter capable of 800 watts input ill AM 'phone operation and 900 watts in c.w. or NFM service. A pair of 813 beam tetrodes in push-pull is used in the final amplifier. The exciter unit uses an 807 in its output stage and is itself capable of being used as a 75-watt c.w. or 60 -watt AM 'phone transmitter. Both units cover all amateur bands from 3.5 to 28 Me. and are designed for mounting in an enclosed relay rack.

Circuit Details

The diagram of the exciter unit is shown in Fig. 6-69. Provision is made for frequency control from 3.5 - and 7 -Mc. erystals or from an external VFO unit. Bandswitching is used itl all stages exerpt the 807 plate circuit to reduce the number of plug-in coils that must be handled when changing bands, and to permit good isolation betwern the input and output circuits of the 807 . The crystal oscillator uses a 6 Ad (7 in a circuit in which the sereen

Fig, 6.68 - Front view of the push-pull 813 amplifier and its exciter nounted in a standard rach. From left to right, the controls along the lower edge of the exciter panel are for the erystal-V1) switch, the osedlator tuning condenser, multiplier tuning condenser, meter -witch and bandswitch. The controls are flanked by the key jach and a panel lamp. The hnob to the left of the exciter milliammeter is the excitation control; the one to the right is the 807 output tuning eontrol.

On the amplifier panel, the meter switches flank the arid tuning dial at the hottom, with the plate tuning dial and the control for the swinging link below the nieters.
serves as the anode of a l'ierce triode oscillator, with the output circuit tunable to either 3.5 or 7 Mc . The tuning condenser, C_{3}, covers both bands with a single coil in this stage. When VFO control is used, the screen is grounded through C_{1} by the crystal-VFe switch and the stage operates as a conventional frequency doubler.

For either 3.5 - or 7 -Mc. output, the 6AG7 drives the 807 directly, but for output at higher frequencies, a 6 V 6 multiplicr stage is brought into use by the bandswitch \mathcal{S}_{g}. This stage has two plate coils, L_{2} and L_{3}, the desired one being selected by the bandswitch. One coil is used for the 1-Mc. hand, while the other eovers both 21 and 28 Me. The stage operates as a doubler for 14-Mc. output, a tripler for 21 Mc., and as a quadrupler for 28 Mc . The cathode biasing resistor, R_{6}, protects the tube against excessive input in the absence of excitation.

The 807 stage is operated as a straight amplifier on all bands to reduce harmonies in its output cireuit. 1616 G is connected as a protective tube to hold the 807 input well below the maximum dissipation rating when exeitation is removed. C_{13} is a tubular air condenser connected directly from plate to ground to assist in the reduction of v .h.f. harmonies. In conjunction with $R P C_{5}$, it also serves to eliminate high-frequency parasitic ossillation. Plug-in coils are conveniently used in the output circuit of this stage.

The single milliammeter may be switched to read currents essential to the proper tuning of the exciter. All power leads are filtered for y.h.f. harmonies.

The circuit of the push-pull 813 finalamplifier section is shown in Fig. 6-72. The :amplifier is link coupled to the exciter. I multibant tuner (National MBS-30) eliminates the need for access to the grid circuit and thus permits complete shielding of the grid rircuit for better stability. With this tuncr, the grid tank circuit may be resonated anywhere within the frequency range of the transmitter without changing coils.
simall improvised condensers are used to neutralize the amplifier, and chokes inserted in the grid leads eliminate v.h.f. parasitic oscillation.

Three meters are used in the amplifer. One measures the total cathode current of the amplifier, while the others are switched to read individual grid or sercen carrents of the t wo tubes, thus permitting a ready comparison of currents for balance in the stage. All supply leads and the leads running to the meters are shielded and filtered to reduce TVI. Plugin crils arre used in the output circuit.

Fig, 6-n9 - (ircuit diagram of the exciter of the push-pull 813 transmiter.

$\mathrm{R}_{z}-2.5,000$ ohms, 10 watts.
$R_{9}-22,100$ ohms, 1 watt.
$R_{11}-50,000$ ohms, 10 watts.
R_{12} - 3-times meter shunt (see Chapter 16).
$R_{13}-330$ ohms, 1 watt.
$\mathrm{L}_{1}-22$ turns Xo. 20, 1 -ineh diam., $13 / 8$ inches long tapped i turns from plate end (IS \& W 3015 Miniductor).
$1.2-8$ turns Xo. $18,8 / 4$-inelı diam, 1 ineh long, tapped 2 turns from plate end (B \& W 3010 Minidue tor).
L.3-11 turns No, 20, $3 / 4$ inch long, $3 / 4$-inch diam., tapped 3 turns from plate end (13 \& W 3011 Miniductor)
1.4 - Millen 43000 series coils, modified:

- 3.5 Mc.- 22 turns No. $20,11 / 2$ inches diam., $11 / 8$ inches long, 5 -turn link (Nillen 43082, 18 turn removed).
- 7 Me. -14 turns No. $18,11 / 2$ inehes diam.. $11 / 4$
inches long, 7 -turn link (Millen 43042, 8 turns removed).
- $14 \mathrm{X} 21 \mathrm{Mc},-5$ turns No. $18,11 / 2$ inches diam., $3 / 4$ inch long, 2 -turn link (Millen 43022, 4 turns removed).
- 28 Mc. - 3 turns No. 18, $11 / 2$ inches diam., 1 inch long, 2-turn link (Millen 43012, 1 turn removed).
11 - Pane! lamp
I_{1} - I_{2} - Coaxial connector.
$1, H_{2}$ Closed-circuit jack.
M1 - 50 -ma, d.c. milliammeter.

RFI ${ }_{5}-1-\mu h$. r.f. choke (National IR-33).
 (Ohmite $\mathrm{Z}-50$).
S_{1}-I'wo-section ceramic rotary switch, points per deek optional.
\mathbf{S}_{2} - Three-section 5-position ceramic rotary switch
3 - Two-section 4 -position rotary switch.
' Γ_{1} - F'ilament transformer: 6.3 volts, 4 amp . (Thordarson TशF11).

Fig. 6.70 - Rear view of the exciter chassis for the push-pull 813 transmitter. The tubular condenser is alongside the 807 in back of the 6)6C. The 6V6 multiplier is in the eenter of the chassis, with the 6AG7 oscillator, the erystal sockets and the excitation control at the right. Coaxial conneetors for output and WHO input. plus a terminal strip, are mounted on the rear edge of the chassis. In fringe areas it may be necessary to shield the meter face.

Construction

The exciter unit is built on a $17 \times 7 \times 3$ inch chassis. The key jack, S_{1}, C_{3}, C_{10}, meter switch, bandswitch shaft and the panel lamp are first arranged so that the controls will be equally spaced along the lower edge of the panel. C_{3} is insulated by mounting it on a polyst yrene subpanel and using an insulating shaft coupling. The similar subpanel holding C_{10} in place is of metal. The crystal sockets are lined up behind the crystal switch and the sockets for the $6 . \mathrm{G} 7$ and 6 V 6 are placed at the center of the chassis alongside their tank eondensers.

A Millen type 80070 shield-and-bracket assembly is used for the 807 . The tubular condenser, C_{13}, which is similar to the one shown in Fig. 6-63.1, is mounted at one corner of the bracket, a hole being cut in the bracket to clear the bottom ceramic bufton. Clearance holes for the tube shield and the tubular condenser are cut in the chassis so that the bracket can be contered between the front and back edges of the chassis with the bottom of the bracket two inches below the surface of the chassis. It is held in this position by an aluminum-sheet bracket 5 inches lang and $23 / 4$ inches deep fastened to the chassis. The socket for the 616G is placed immediately to the rear of the 807 .

The bandswiteh is fastened, about centrally, on brackets along the rear edge of the chassis. The gear drive (National . ACD-2), also on brackets, is lined up with the switch shaft and the panel control.

On top, the output tank condenser and coil are placed close to the 807 . The condenser is mounted on ceramic button insulators with its stator terminals on top so that the plate lead can be made short. An insulating coupling is used in the control shaft. The coil socket is clevated on 1 -inch ceramic pillars (National GS-1). The excitation control, M_{2}, is mounted on the panel so as to balance the output tankcondenser tuning control.

The power wiring should be done before the assembly has progressed too far. Shielded wire,
laid close to the chassis, should be used. The shielding should be grounded at each end of each lead and at intermediate points where mounting screws, or other grounded metal, make it convenient. Wherever wires cross or run parallel, they should be spot-soldered together. At points where there is danger of a short circuit by the braid, the wire may be covered with a sleeve of spaghetti.

By-pass condensers should be connected with leads as short as possible. Two screen by-pass condensers are shown in the 807 circuit. One of these, C_{12}, is a small ceramic unit soldered directly between the screen and cathode terminals of the socket to serve as a low-inductance path for v.h.f. The other, C_{14}, is grounded at one end on one of the socketmounting screws. One end of the parasitic suppressor, $R F^{\prime} C_{5}$, should be soldered directly to the grid terminal of the socket. The cathode should be grounded with a short lead to the mounting flange of the tubular condenser.

Coasial connectors are provided at the rear for VFO input and r.f. out put to the final amplifier. A terminal strip is set in the rear of the chassis, at the left-hand end in Fig. 6-71, for power-supply connections. The v.h.f. filter components are assembled on a terminal hoard placed close to this terminal strip. The filament transformer is immediately behind, fastened to the end of the chassis.

After the power wiring has been done, the exciter coils may be put in place. L_{1} is mounted on $1 / 2$-inch cone insulators to the rear of $C_{3} . L_{2}$ and L_{3} are placed at right angles (L_{2} horizontal and L_{3} vertical) behind C_{10} and are soldered between the rotor terminal of the condenser and the $S_{2 B}$ section of the bandswitch,

The final amplifier is assembled on a 17×13 $\times 3$-inch chassis with a $171 / 2$-inch metal panel. The tank condenser is mounted at the exact center of the chassis on 1 -inch cone insulators. A high-voltage insulating coupling is placed between the condenser shaft and the control on the panel. The fixed condenser, C_{2}, is placed under the condenser frame and is connected between the frame and a grounding screw in
the chassis. This screw also is used for grounding the grid tuner below.

Clearance holes are cut in the chassis and the sockets are submounted on $11 / 2$-inch spacers so that the plate caps of the two tubes will come close to the outside terminals of the condenser stators. A large feed-through insulator is placed $11 / 2$ inches from the inside edge of each of the clearance holes. A $1 / 2$-inch strip of aluminum, about $2 \frac{1}{2}$ incheslong, is bent into " L " shape and mounted on top of each feedthrough. This serves as one side of the neutralizing condenser, the plate of the tube itself forming the other side of the condenser.

To the rear of the tank condenser, the coil jack bar is mounted on large stand-off insulators (National GS-4) to bring the coil terminals close to those of the tank condenser. The link is adjusted from the panel by means of a right-angle gear drive (National ACD-2) mounted from a bracket fastened at a rear corner of the chassis.

The three meters are enclosed in a standard $3 \times 4 \times 17$-inch chassis acting as a shielding box. The box is fastened to the panel with selftapping screws. Standard 10 -inch panel brackets are fastened to the ends of the meter box as well as to the panel and chassis. Power terminals and connectors for r.f. input and output are lined up along the rear edge of the chassis.

Underneath, the grid tuner is mounted at the center of the chassis on pillars to space the coils equally between the chassis and its bottom plate. The individual filament transformers are placed close to their associated sockets. The lower terminals of the two feedthrough insulators are connected to opposite (not adjacent) grid terminals. One end of the parasitic-suppressor chokes is soldered directly to the grid terminal of the socket. A 1 -inch ceramic pillar at the forward inside corner of each tube socket serves as an insulated tie point for the parasitic choke, the grid choke, the fixed grid condenser and the neutralizing lead on each side of the circuit.

A terminal board at the rear holds the v.h.f. filter components for the a.c. and bias lines.

Filters in the other power leads are placed close to their respective terminals. All power wiring is done with shielded wire. The highvoltage lead is a piece of ignition cable covered with a sheathing of copper braid. Shielded leads also connect the meter switches underneath the chassis to the meters on the panel above. C_{24} and C_{25} are connected directly across the terminals of the meters, but $R F C_{14}$ and $R F C_{15}$ are placed under the chassis at the switch terminals.

Adjustment

Fig. 6-75 shows the circuit diagram of a power-supply system for this transmitter. The section at the bottom supplies low voltage for the exciter and bias for the final amplifier, while the next section above supplies voltage for the 807 driver and screen voltage for the output stage. Starting at maximum resistance, R_{3} is adjusted until at least one of the VR tubes just ignites. R_{4} need not be used, or may be shorted out, for c.w. operation. For plate modulation at maximum ratings, R_{4} should be set at 830 ohms. When S_{6} is open, reduced screen voltage is applied to the 813 s . With S_{6} closed, R_{7} should be set at approximately 1250 ohms for a supply voltage of 500 , or at about 9400 ohms if the supply delivers 750 volts, with proportionate values for voltage between these extremes. After the final amplifier has been adjusted for operation at full load, R_{7} should be adjusted finally to bring the sereen voltage to 400 for c . w. or 350 for 'phone under operating conditions. S_{6} should always be open during preliminary adjustments of the final amplifier or regular adjust ment of the exciter, since full screen voltage in the absence of plate voltage and full load can cause dangerous heating of the screen.

The power switches are arranged in series so that the lower voltages must be turned on before the higher voltages can be applied. Under normal operating conditions, all switches will be closed except S_{2} which then serves as the power control for the entire transmitter.

The exciter should be tuned up initially with an absorption wavemeter to make certain

Fig. 6-71-Bottom view of the exciter for the push-pull 813 transmitter. The harmonic filters are mounted on terminal boards placed in the lower left hand corner, adjacent to the input terminals and juit below the filament transformer. The nounting brackets for the bandswiteh and the right-angle drive are supported by the rear of the chassis, while the bracket that supports the 807 socket assembly extends back from the front.

Fig. 6.72 - Schematic diagram of the push-pull 813 amplifier.
$\mathrm{C}_{1}-100 \cdot \mu \mu \mathrm{fd}$. -per-section variable, 0.075 -inch spacing (Millen 0.1103).
$\mathrm{C}_{2}-0.001-\mu \mathrm{fl} .5000$-volt.wkg. nica.
$\mathrm{C}_{3}, \mathrm{C}_{4}-125-\mu \mu \mathrm{fd}$.per section variable, 0.026 -inel sparins (National SSII-125-part of M13-20 tuner).
$\mathrm{C}_{5}, \mathrm{C}_{6}-0.001-\mu \mathrm{fd}$. mica.
$\mathrm{Ci}_{7}, \mathrm{C}_{8}-0.001-\mu \mathrm{fI} .1000$-volt-wkg. mica.
$\mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}-0.0047-\mu \mathrm{fd}$. miea.
$\mathrm{C}_{13}, \mathrm{C}_{14}-100-\mu \mu \mathrm{fd}$. miea.
$\mathrm{C}_{15}, \mathrm{C}_{18}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21}, \mathrm{C}_{22}, \mathrm{C}_{23}, \mathrm{C}_{24}, \mathrm{C}_{25}-47 \mathrm{O}_{-\mu \mu \mathrm{fl}}$. mica.
$\mathrm{C}_{16}-500-\mu \mu \mathrm{ffl}$. 1000 -volt \cdot whg. mica.
$\mathrm{C}_{17}-500-\mu \mu \mathrm{fd}$. 5000 -volt.wkg. mica.
C.N-See text.
$R_{1}, R_{2}, R_{3}, R_{4}-100$ ohms, $1 / 2$ wat .
$\mathrm{L}_{1}-\mathbf{B} \& \mathbf{W}$ HINI series coils:
(All are $s p l i t-w i n d i n g$ coils, $3 / 4$ inch hetween sections for all except 21 . and 28. . 1 c . coils where the spacing is $11 / 4$ inches. Dimensions given are for cach section of coil.)
-3.5 Me - 16 turns No. 10, $31 / 2$ inches diant., 3 inches long.

- 7 Me. - 10 turns No. 8, $31 / 2$ inches diam., $27 / 8$ inches long.
that cach circuit is tuning to the proper frequency. At the plate voltage specified, the meter reading with S_{3} in the first position should run bet ween 25 and 35 ma , depending upon the setting of the excitation control, \boldsymbol{K}_{2}. The combined screen and plate current of the
-14 Me. -6 turns No. $8,31 / 2$ inches dianı., 3 inehes long.
-21 Me.-4 turns 3 ín-inch eopper tubing, 3 inches diam., 2 - $/ 8$ inches long.
- 28 Me. - 2 turns 3 in-inch copper tubing, 3 inches diam., $27 / 8$ inches long. (One turn removed from carh section of IIIN L-10).
$\mathrm{L}_{2}, \mathrm{~L}_{3}-7$ turns No. 22, 1 -inch diam., 510 inch lonk, $3 / 8$ inch between windings (part of MB- 20 tuner).
$\mathrm{L}_{4}-30$ turns No. 29,1 -ineh diam., $11 / 4$ inches bong (part of M13-20 tuner).
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial imnector.
$\mathrm{MA}_{1}, \mathrm{M} \mathrm{A}_{2}$ - 50 mai. d.r. milliammeter.
MA_{3} - B 解ma. d.e. milliammeter.
$\mathrm{RFC}_{1}-800 \mathrm{ma}$. r.f. choke (National R-175).
$\mathrm{RFC}_{2}, \mathrm{KPC}_{3}-\mathbf{2} . \mathbf{3}$-mh. r.f. choke.
$\mathrm{KFC}_{4}, \mathrm{RFC}_{5}$ - $\mathbf{1}-\mu \mathrm{h} .300$-ma. r.f. eloke (Nationa: 1133).
$\mathrm{RFC}_{6}, \mathrm{RFC}_{7}, \mathrm{HFC}_{8}, \mathrm{RFC}, \mathrm{RFC}_{10}, \mathrm{RFC}_{\mathrm{m}}, \mathrm{HJ} \mathrm{C}_{12}$, RFC13, R RFC_{14}, RFC15 - $\mathbf{7}-\mu \mathrm{h}$. r.f. choke (Ohmite Z-50).
$\mathrm{S}_{1}, \mathrm{~S}_{2}-2$-section 3 -position ceramic rotary.
$\mathrm{T}_{1}, \mathrm{~T}_{2}$ - Filament transformer: 10 volts, 5 amp. (Thordarson 'T21F18).

6 V 6 before excitation is applied should be approximately 30 ma., increasing to 35 ma . when excitation is applied and the stage is doubling or tripling, and to about 45 ma . when quadrupling. The grid current to the 807 should be adjusted, by means of the excitation

Hig. 6.73- Rear view of the push-phll 813 amplifier. The feed-through insulator holding one of the neutralizing condensers is just to the left of the visible 813. The rhassis that encloses the meters is held in position with self-tapping serews passing through the up-ended panel lirackets. The gear drive at the left is for link adjustment from the panel. Lnput, output and all wher comeetions are arranged along the rear edge of the chaswis.
control, to the minimum that will give rated grid current to the final amplifier with optimum coupling to the 807 when the final is loaded fully. It should be possible to do this without exceeding a grid current of 3.5 ma. to the 807 and with the plate current between 60 and 90 ma .

In adjusting the multiband tuner in the amplifier grid circuit, the resonances should be checked carefully with an absorption wavemeter t.o make sure that the circuit is tuned to the desired frequency. The setting of each band should then be logged.

Since the adjustment is more critical at 28 Me. than on any of the other bands, the final stage should be neutralized with the transmitfer tuned to this band. With an indicating absorption wavemeter or other r.f. indicator coupled to the output tank coil and with excitation only applied, the grid and pate tank circuits should be tuned to resonance. Resonance in the output tank circuit will be indicated by a maximum response on the indicator. The neutralizing condensers should then be adjusted similarly, bit by bit, either by bending the metal strips closer to, or farther
a way from, the tubes, or by clipping the length of the strips until a minimum response on the neutralizing indicator is obtained when the plate tank circuit is tuned to resonance. In this particular amplifier, minimum r.f. feedthrough was obtained with the strips clipped to about a half inch.

To check the balance of the amplifier, temporarily disconnect the two center-tap leads of the filament transformers from the cathode meter and insert individual meters between the center taps and ground. Apply power to the exciter with the transmitter tuned to the 28-Mc. band. Resonate the grid circuit and set the meter switch to read individual grid curronts. The readings may not be equal before plate and screen voltages are applied to the final amplifier, but the readings should rise and fall togethor as fhe grid circuit is tuned through

Fig. 6.74 - Bottom view of the push-pull 813 amplifier. 'Jhe multiband tuner used in the grid cirenit is centrally located, Hanked by the two tulie sockets. All by. pass condensers are mounted on the snekets. 'lhe neutralizing leads are crossed beneath the insulated shaft coupling, and terminate at stand-off insulators placed close to the grid terminals of the tuhe sockets. 'The harmonic filters are placed along the edge of the chassis close to the points at which the various leads leave the chassis. The coaxial eable to the right is the ontput link line.

Fig. 6.7.5 - Circuit diagram of a powersupply system for the push-pull 813 transmitter.

C.t. ($\mathrm{s}-4-\mu \mathrm{fl}$. 1000)-volt oil-filled.
(:6-2- fd . 2500 -volt oil-filled.
$\mathrm{C}_{7}-4-\mu \mathrm{fd} .2500$-volt oil-filled.
$R_{1}, R_{2}-100$ ohms, 1 watt.
$1 R_{3}-25,000$ ohms, 25 watts, aljustahle.
$R_{4}-1000$ ohms, 10 watts, adjustalle.
$\mathrm{R}_{\mathrm{s}}-15,000 \mathrm{ohms}, 10$ watts.
$\mathrm{R}_{6}-25,0000$ olims, 50 watts.
$R_{7}-10,000$ ohms, 50 watss, adjusiahle.
$\mathrm{R}_{8}-10,000$ ohms, 50 watts.
$R_{9}, R_{10}-25,000$ ohms, 75 watts.
1, - $30-\mathrm{hy}$. $50-\mathrm{ma}$. filter choke.
$\mathrm{L}_{2}, \mathrm{~L}_{3}-20-\mathrm{hy}$. $100-\mathrm{ma}$. filter chooke.
$\mathrm{I}_{4}-5 / 25$-hy. 150 -ma. swinging choke.
I.5-20-hy, 150 -ma. smoothing choke.
resonance. If such is not the case, a slight readjustment of the position of the grid link should improve this condition. In some cases it may be necessary to connect a small padding condenser across one of the two sections of C_{3} and adjust it unt il the grid currents rise and fall in unison and are reasonably well balanced.

With a dummy load connected to the output, apply redueed sereen and plate voltages, resonate the tank circuits and observe grid, screen and cathode currents of the two tubes. An agreement within 10 per cent may be considered satisfactory. If the difference is greater, eheck the wiring in the plate circuit to
I. $-5 / 25-$ hy. $500-\mathrm{ma}$. swinging choke.
1.: - 20.hy. 500 -ma. smothing choke.

1 - 115 -volt lamp of suitable size to reduce voltage for tune-up.
$\mathrm{S}_{1}-20$-amp. s.p.s.t. switch.
$\mathrm{s}_{2}, \mathrm{~s}_{3 .} \mathrm{s}_{4}-15$-imp. s.p.s.t. switch.
$\Sigma_{5}-10$-amp. s.p.s.t.switch.
S_{s} - Ceramic s.p.s.t. rotary switch.
$\mathrm{T}_{1}, \mathrm{~T}_{3}, \mathrm{~T}_{5}-$ Filament transformer: 5 volts, 3 amp .
T_{2} - Power transformer: 450 volts r.m.s. each side of center, 100 ma .
T_{4} - Plate transformer: $\mathbf{5 0 0}$ to 750 volts d.c., 150 ma.
T_{6} - Filament transformer: 2.5 volts, 10 amp ., 10,000 volt insulation.
I'; - Plate transformer: $2000 / 2250$ volts d.c., 500 ma. VR - VR-150-30.
be sure that it is symmetrical. A slight difference in lead length, between the tank eircuit and the tubes, can cause considerable unbalance at 28 Mc . Some readjustment of the grid padding condenser, if one is used, may help.

In e.w. service, plate voltages up to 2250 may be used and up to 2000 for AM 'phone. Maximum plate current under these conditions should be 220 and 200 ma . respectively per tube. The total of grid and screen currents of both tubes must be subtracted from the reading of the eathode meter to obtain the actual plate eurrent. Screen current should be less than 40 ma . per tube under full load.

A 175-Watt Transmitter for the $\mathbf{1 6 0}$-Meter Band

A single transmitter that will cover the extremes of 1.8 and 28 Mc. necessarily must involve considerable compromise as well as complication. From several considerations, it is not only preferable, but also economically feasible, to build a separate unit for 160 meters, since it can be simple and straightforward. In most instances, operating conditions may be chosen so that the 160 -meter unit will operate from the same power supply as the higherfrequency transmitter, if the station has one.

An example is shown in Figs. 6-76 through $6-80$. Because the $1.8-\mathrm{Mc}$. band is divided into narrow slices, crystal control is preferable to reduce the danger of out-of-band operation. The oscillator circuit in this case is a modified Pierce with a separate untuned plate output circuit. C_{3} is a feed-back-adjustment condenser.

The 6 L 6 stage provides the necessary buffering between the oscillator and the final amplifier for 'phone operation. There is no danger of oscillation at the fundamental in the buffer stage because its input circuit is untuned. Since the frequency range to be covered is small, the output circuit of this stage is easily broadbanded. Thus only a single tuning control is required for the entire transmitter.

The triode final amplifier is a conventional arrangement with a capacitive-divider plate neutralizing circuit. The d.c. connection to the rotor of the tank condenser through $R F C_{6}$ makes it possible to use a condenser with half the peak-voltage rating that otherwise would be required. $R F^{\prime} C_{5}$ is a v.h.f. parasitic suppressor.

For c.w. operation, the oscillator is keyed in the cathode circuit. R_{5} provides protective bias for the buffer stage.

The layout is suitable for any of the usual triodes with plate-cap connection, operating at plate voltages up to 1500 with a plate-voltage/plate-current ratio of 10 or greater. If a tube with a 6.3 -volt filament is chosen, only a single filament transformer is needed.

Construction

The unit is assembled on an $8 \times 17 \times 3$-inch chassis with an $83 / 4$-inch panel. Most of the constructional details are evident from the photographs. The output-stage tank condenser is mounted on ceramic pillars and its shaft is fitted with an insulating coupling. The condenser is placed on the chassis so that its dial and the milliammeter will be symmetrical in respect to the center of the panel. The tank coil is a homemade affair wound in two equal sections on separate Millen type 44000 polystyrene forms, each cut down to a length of $21 / 2$ inches. The outer end only of each section is fastened to a $11 / 4$-inch cone insulator, and the two sections are placed with their inner ends an inch apart. Additional bracing is provided by the No. 14 wire leads from the inner end of each section to the plate r.f. choke, $R F C_{6}$, mounted near the center. After winding the turns are cemented in place with coil dope.

The output link (8 turns of No. 18 d.c.c. should be satisfactory) is wound on a $3 / 4$-inch length of leftover form. A length of $1 / 4$-inch polyst yrene rod is cemented to the inside surface of the link form. This shaft then runs through a panel bearing fitted with a National type IRSL shaft lock which provides an adjustable friction for the shaft. A knob on the shaft provides a means of adjusting the coupling from the panel.

The neutralizing condenser, C_{N}, is placed close to the tube, between the tube and the panel. C_{15} should not be less than the value specified, nor larger than $0.005 \mu \mathrm{fd}$., if the amplifier is to be plate-modulated.

All components for the exciter stages, except the two tubes and crystal, are placed underneath the chassis. These include the plate tank circuit of the buffer stage. C_{7} is mounted so that it may be adjusted with a screwdriver from on top. L_{1} is wound on a Millen 1-inch plastic form and is placed alongside the con-

Fig. 6.76 - F'ront view of a 175-watt transmitter for the 160 -meter hand. Only one tuning control is needed, plus a small knob used to adjust the setting of the swinging link on the output coil.

Fig, 6.77 - Bottom view of the 160. meter transmitter. The oscillator tulne socket and its related parts are in the upper left corner. The $6 \mathbf{L} .6$ and the final. amplifier tube are mounted in a line through the center of the chassis, with the plate coil for the 61.6 supported on a bracket between the two stages. The parasitic-suppressing choke is mounted between the grid terminal of the amplifier sochet and a cerannic stand-off insulator.
so far from the tube sockets that excessive voltage drop results through the wiring. In this case it was convenient to place one on
denser on a bracket that spaces it from the chassis on all sides.

For convenicnce in changing crystals, the crystal socket is mounted on the front edge of the chassis, at the left. Clearance holes for both the crystal socket and the key jack are cut in the panel.

The placement of the filament transformers is not critical, except that they should not be
top of the chassis and the other below. Terminals are provided across the back for high voltage, low voltage, bias and ground. An a.c. cord makes the line-voltage connection to the filament-transformer primaries.

Fig. 6-79 shows the diagram of a suitable power supply in case a separate supply is neressary or desirable. Control circuits are included.

Fig. 6.78 - Schematic diagram of a single.contrel 18.5 . watt transmitter for the 160 -meter band.
$\mathrm{C}_{1}-0.001-\mu \mathrm{fd}$. mica, 400 volts.
$\mathrm{C}_{2}, \mathrm{C}_{5}, \mathrm{C}_{3}, \mathrm{C}_{12}, \mathrm{C}_{13}-0.01$ - $\mu \mathrm{fd}$. 600 -volt paper.
$\mathrm{C}_{3}-10-\mu \mu \mathrm{fll}$. mica. See text.
$\mathrm{C}_{4}, \mathrm{C}_{8}-100-\mu \mathrm{ffl}$, nica.
$\mathrm{C}_{7}-50-\mu \mu \mathrm{fl}$, variable (Vational PSR-50).
$\mathrm{C}_{9}, \mathrm{C}_{11}-0.0068-\mu \mathrm{fd}$. mica, 500 volts.
$\mathrm{C}_{10}-220 . \mu \mu \mathrm{fd}$. mica, 600 volts.
C_{14} - $10 \mathrm{~m}-\mu \mu \mathrm{fd}$.-per-section dual transmitting variable, 0.070 air gap (3000 volts peak). (National T'MC. 100.1).)
$\mathrm{C}_{15}-0.0035-\mu \mathrm{fd}$, mica, 5000 volts.
CN_{N} - Neutralizing condenser, $0.8-10 \mu \mu \mathrm{fd}$. (NC-800-A).
$\mathrm{h}_{1}-15,400$ ohns, $1 / 2$ watt.
$\mathrm{R}_{2}-330$ ohms, l watt.
$\mathrm{R}_{3}-39,1000$ ohms, 1 watt.
K_{4} - 22,000 ohme, $1 / 2$ watt.-
$R_{B}-600$ ohme, 2 watts (two 1200 -ohm 1-watt units in parallel).
$R_{B}-10,000$ ohms, 5 watts.
L_{1} - 46 turns No. 26 d.s.c. close-wound on 1 -inch diam. form.
I. 2 - Fiach half consists of 46 turns No. 20 d.s.f. closewound on a $17 / 8$-ineh diam. form (Millen 41000). The two halves are mounted so that there is $11 / 8$ inches between windings to permit passage of the link coil. Link: 8 turns No. 18 d.e.c. elosewound on $17 / 8$.inch diam. form made of same material as the main coil form.
$\mathrm{I}_{1}-6.3$.volt panel lamp.
J_{1} - Closed-circuit jack.
M. $1-0-300$ ma. d.c. meter.
HFC_{1} through RFC4 - 2. R.100.5).
$1 \mathrm{RFC}_{6}-21$ turns Nio. 26 d.s.e. clore-wend on $1 / 4$-inch diam. form (a I-watt resistor of any high value may be used as the form).
RFC ${ }_{8}$ - Transmitting r.f. choke (Millen 341:10).
$\mathrm{T}_{1}-6.3$-volt 3 -amp. filament transformer (Stancor P-6014).

$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-8$ - $\mu \mathrm{fd} .600$-volt-wkg. elec. $\mathrm{C}_{4}, \mathrm{C}_{5}-4$ - ff . 2000 -volt oil-filled.
$R_{1}-25,000$ ohms, 25 walt.
$\left.11_{2}-30,000\right)$ ohms, 10 watts, with stider. $\mathrm{R}_{3} \mathrm{R}_{4}-47$ nhms, 1 watt.
R_{5} - See text.
$\mathrm{R}_{8}-25,000$ ohms, 150 watts.
$1.1-5 / 25$-hy. 150 -ma. swinging rhoke. 1. 2 - 20 -hy. 150 -ma. smoothing ehoke. $\mathrm{I}_{-3}-30 \mathrm{hy} .75-\mathrm{ma}$. filter chohe.
$1,4-5 / 25-\mathrm{hy} .200$-ma. swinging choke.
1.s- 10 hy. 200 -ma. smonthing choke.
$\mathrm{I}_{1}-150$-watt 115 -volt lamp.
$S_{1}, S_{3} S_{4}-10-\mathrm{amp}$. toggle switch.
$\$_{2}-5$-amp. toggle switth.
$\mathrm{T}_{1}, \mathrm{~T}_{3}-5$-volt 3 -amp. filament transformer.
T^{2} - 400-v. d.c. $225-\mathrm{ma}$. plate transformer.
$\mathrm{T}_{4}-2 . \overline{\mathrm{w}}$ volt 10 amp . filament transformer, 10,000 -volt insulation.
Ts-1750/1506/1250-r. d.c. 200 -ma.-or-more plate trans.
VR - VR-65 voltage-regnlator tube.
eurrents of the oscillator and buffer (100 to 120 ma.). However, there should be a usable dip in current when C_{7} tunes the buffer tank circuit through resonance. If the circuit is tuned to 1850 ke., it will not need readjustment for any frequency between 1800 and 1900 ke. Similarly, if it is initially adjusted for 1950 kc., it will cover the 1900- to 2000-kc. range.

The proper bias adjustment for the final amplifier will depend upon the type of tube used. Any additional operating bias voltage above 75 volts is obtained by grid-leak action from R_{5} in the power supply. The resistance at which R_{5} should be set can be determined by subtracting 75 from the rated operating bias for the tube used and dividing the remainder by the rated grid cur-

Adjustment

If the transmitter is to be used for c.w. operation, it may be desirable to experiment briefly with C_{3} to obtain best keying characteristics. It may be found that a different capacitance will work better with some crystals, while with others the condenser may not be needed at all, or that the keying will be better with C_{3} connected from grid to ground, rather than from screen to ground.

With the oscillator running, the d.c. voltage across the buffer grid leak, R_{4}, should be 90 to 110 volts. A milliammeter placed in the 400 volt lead will read the combined

Fig. 6.80-Rear view of the 1.8.Me. transmitter. The construction of the amplifier plate coil and its swinging link is shown at the left. 'l'he plate r.f. choke and the plate by-pass condenser are mounted underneath the main tuning condenser, which is supported by 1 -inch stand-off insulators. An insulated conpling is used between the rotor shaft of the condenser and the panel eontrol. The neutralizing condenser is visible behind the amplifier tule.
rent in amperes. The amplifier should be neutralized before applying plate voltage. If necessary, the size of L_{2} should be adjusted so that resonance occurs with the tank condenser set near maximum capacitance.

The choke, $R F^{\prime} C_{5}$, should be the only means necessary to suppress v.h.f. parasitic oscillation if a Type 5514 tube is used. Other tubes may require cirenit alterations.

A Simple VFO

The details of a simple VPO with output at 1.75, 3.5 or 7 Me . are shown in Figs. 6-81 through 6-85. In the circuit, shown in Fig. 6-84, a Type 5763 miniature pentode in a serie-tuncd Colpitts oscillator circuit drives a similar tube as an amplifier or doubler. The output circuit of the oseillator stage is broallanded through the use

Fir. 6.81-A simble VFO delivering output at 1.5. 3.5 or 7 Mc .
of self-resonant slug-timed coils at L_{2}, and frequency may be doubled in this circuif, as well as in the output circuit, to obtain 7-Me output. For 3.5-Me, output, frequeney may be doubled in either stage. The nominal output is approximately 2 watts - sufficiont for driving the usual

Fig. 6-82 - The top of the simple IFO showing the oscillator tuning condenser, the tuhes and phas-in coils.
crystal-oscillator stage of the transmitter.
To simplify the bandspread problem, the oscillator tuning range is restricted. At 3.5 Mc . a range of approximately 250 ke , is covered. For c.w. operation in this band, the band-set condenser, C_{2}, is set so that the tuning condenser, C_{1}, eovers approximately 3000 to 3750 kc . For operation in the 'phone portion of the band, C_{2} is reset to shift the range to approximately 3750 to 4000 ke . Corresponding ranges are provided at the harmonies, and the oscillator can be tuned low chough (by C_{2}) to cover the 11-meter band with appropriate doublers.

Construction

The unit is built in a $5 \times(; \times 9$-inch steed box with cap-type covers. The components are assembled on an aluminum-sheet base supported by seretions of aluminum angle stock that hold the hase half way between the two eovers. On top, the tuning eondenser, C_{2}, is fastened direetly to the base along the center line. The shaft is fitted with a National Type AM vernier dial. The two tubes and L_{2} are in line to the right in Fig. 6-82, with the output tank eoil, L_{3}, to the left of the amplifier tube. The L_{2} coils are wound on Millen Type 74001 shielded slug-tuned forms.

Underncath, in lig. 6-83, the band-set condenser, C_{2}, is mounted against the front of the hox. A short lead through a feed-through point or ciearance hole connects the stator of C_{2} to the stator of C_{1} above. L_{1} is wound on a Millen l-inch coil form and is placed immediately to the rear of C_{2}. The output tank condenser, C_{14}, is mounted on a bracket with its rear stator termi-

Fig. 6.8.3-Bottom view of the simple VFO showing the arrangement of parts underneath.

Fig. 6-84 - (iircuit diagram of the simple VFO.
C_{1} - Approx. $15-\mu \mu \mathrm{fd}$. variahle (Millen lOM25 with all bat 1 rotor and 2 stators removed).
$\mathrm{C}_{2}-100-\mu \mu \mathrm{fd}$. variable (Millen 22100).
(${ }_{3}, C_{4}-0.001-\mu \mathrm{fd}$. silvered mica.
($5, \mathrm{C}_{9} \mathrm{C}_{15}-100-\mu \mu \mathrm{fd}$, mica.
C:8, C7, C8, Cit, Ci2-0.01- $\mu \mathrm{fd}$, disk evramic.
$\mathrm{C}_{10}, \mathrm{C}_{13}-0,001-\mu \mathrm{fd}$. disk ceramic.
(i44-140- -1 fld, variable. (Millen 22140).
$\mathrm{K}_{1}, \mathrm{H}_{2}-4-, 000$ ohms, $1 / 2$ watt.
$I_{1}-62$ turns No. 30 d,s.e.. 1 ineh diam., clowe-wound.
$1.2-1.75$ Mc. -210 turns No, 36 d.s.c., $1 / 2$ inch diam., close-wound (Millen $\mathbf{1} 4001$ form). ($300 \mu \mathrm{~h}$.)
-3.5 Mc. - 126 turns No. 30 d.s.c., $1 / 2$ inch diam.,
nal close to the coil socket. It is placed so that its insulated shaftextension control will balanee up with the eontrol for C_{2} in front.

The various r.f. chokes and fixed condensers are grouped closely around the sockets with whieh they are associated in the circuit. All power wiring is done with shielded wire and coaxial output terminals are provided at the rear for cither capacitive or link eoupling. Key and power connections are made through the oetal plug. several ventilating holes are cut in the longer sides of the box and also in the top cover.

Adjustment

The unit requires a regulated 150 -volt supply. The supply diagrammed in Fig. 6-85 is suitable. First aljust R_{1}, Fig. (i-85, to the maximum resistance that will permit the VR150 to stay ignited when the key is elosed. Then, listening on a calibrated receiver, close the key, set C_{1} at maximum caparitance and adjust C_{2} until the oscillator signal is heard at 3500 kc . luning C_{1} should then eover the band up to about 3750 ke, Mark the setting of C_{2}, set C_{1} at maximum again and adjust C_{2} until the signal is heard at $37 \% 0 \mathrm{ke}$.
close-wound (Millen 74001 form). ($75 \mu \mathrm{~h}$.)
1.3-1.55 Me. - 55 pli. - 45 turns No. 22 d.c.e., $11 / 2$ inches diam., close-wound (National AR1:$80 \mathrm{~F})$.
$-3.5 \mathrm{Mc} .-16 \mu \mathrm{~h} .-20$ turus No. 22 d.c.c., $11 / 2$ inches diam., close-wound (National AR17401:)

- 7 Mr. $-5 \mu \mathrm{~h} .-12$ turns No. 22 d.c.c., $1 \frac{1}{2}$ inches diam., $3 / 4$ inch long (National AR1テ̈:20E).
J_{1} - Chassis-mounting octal plug.
$\mathrm{J}_{2}, \mathrm{~J}_{3}$ - Female coaxial connector (Jones S101-D).
R $\mathrm{F}^{\prime} \mathrm{C}_{1}$ - 2.5-mh. r.f. choke (Na ational R-50).
$\mathrm{RFC}_{2}, \mathrm{RFC}_{3}-2.5-\mathrm{mh}$. r.f. choke (standard type).

Then C_{1} should eover the range from 3750 to approximately 4000 ke. Repeat the process, setting C_{2} for about 3350 ke. to obtain the proper range for 11 meters.

To adjust the remainder of the eireuit, turn the slug of L_{2} in full. Touch a small neon bulb to the capacitive output terminal and adjust C_{14} for maximum indication. Cheek the output frequency with a wavemeter, since indications may be obtained at any multiple of 1.75 Me . When the VFO is connected to a following stage, C_{14} and L_{2} should be adjusted for maximum grid current. For capacitive output coupling, eonnection is made at J_{2}, while J_{3} is provided for link coupling. With eapacitive coupling, the output tank eireuit should resonate with eoaxial-cable lengths up to five or six feet. The frequener should be rechecked, since the setting of C_{14} will be influenced somewhat by the length of the coaxial eable with eapacitive coupling. C_{24} may require an occasional touch-up in tuning the VFO across the band. A milliammeter conneeted in series with the key should read approximately 40 ma ; about half of this is taken by the oseillator sereen and phate circuits.

Fip. 6-85- Circuit diagram of a power supply for the simple VFO.
(i, (: $:_{2}-16-\mu \mathrm{fl} .150$-volt electroIytic.
$K_{1}-5000$ ohms, 25 watts, adjustahle.
$I_{1}, I_{2}-10-\mathrm{h} .50$-ma. filter choke. J1 - (octal sochet.
S_{1} - 3 -amp. toggle switch.
' l_{1} - I'owar transformer: 325-0.
$1-10 w i r ~ t r a n s f o r m e r: ~$
325 volts r.m.s., 10 ma.; 6.3 volts, 2 amp.; 5 volts. 2 amp. 000 ohm
justahle.

A Silenced VFO for Break-In C.W.

Unfortunately, there is no known practical way in which an oscillator, particularly one of the V'FO type, can be keyed without a compromise in respert to chirps or clicks. Steps taken to eliminate one will aggravate the other. In the VFO unit shown in Figs. 6-86 through 6-90, the oscillator is not keyed, but allowed to run continuously while a subsequent amplifier is keved. The signal from the oscillator is suppressed by proper shiedding and circuit design, so that it rauses no interference to reception on any frequency, including the operating frequency, even with the receiver r.f. gain control at maximum, Any desired shaping of the keved signal can be applied to the amplifier without introducing chirps.

A block diagram of the system is shown in Fig. 6-87 and the circuit diagram appears in Fig. 6-88. A very low-power high-C Iartley oscillator 115 to 20 volts at the plate), using a 6SKi 7 and operating in the region of 875 kc . drives a secomd GSK7 as a strictly Class A isolating amplifier at the same frequency. The Class A stage, in turn, drives a doubler to 1750 kc . This doubler stage is keyed by the blocked-grid method. Thus, until the key is closed, most of the signal is confined to 875 ke . Further suppression of harmonies from the oscillator is obtained by omitting the cathode by-pass condenser in the buffer stage, thereby introducing a slight amount of degeneration.

The output circuits of both the oscillator and buffer are broadbanded and require only initial adjustment. The tuning controls of the oscillator and the output doubler are ganged. A suitable power supply is included on the chassis.

Construction

The photographs of Figs. 6-80 and 6-89 show one method of construction. The layout is not critical, and may be changed to meet individual
needs provided that certain considerations are kept in mind. It is desirable to have as much isolation between stages as possible to eliminate stray coupling of the oscillator harmonic to the output circuit. For this reason all heater and d.c. supply leads are made with shielded wire, with the shield braid grounded at several points. The bottom of the $12 \times 10 \times 3$-inch chassis is divided into three compartments by simple aluminum shield partitions. One, which runs the

VFO UNIT

Fig. 6.87 - Block diagram of the system. '1he circuits so closely resemble those of the usual 1 FO unit that modification of an existing unit to use the new system should be simple. 'The underlying principles that make the new system better than the old are discussed in the text.
full depth of the chassis along one side, contains all the power-supply components. Another, in the front part of the chassis, eontains the oscillator circuit. The third compartment contains the Class A amplifier and the output stage. The coils in these stages (L_{3} and L_{4}) should be kept as far apart as possible, and mounted at right angles to one another. If a more compact dayout is used, it is suggested that a shield be installed between them.
The wiving is arranged so that there is only one lead passing from one r.f. compartment to

Fige 6.86- Rear view of the breah-in VFO unit. The oscillator tube and it: padder condenser are near the pand. with the Class A amplifier and the 6067 output stage in line brhind it. The slug-adjusting serews of the plat." enils are visille between the tubrs. The output padding emulenser is mounted so that its shaft comes through the ehassis near the fidg:The key jach and the roaxial connector used for a shielded output terminal are mounted on the rear of the chassis. Alt powersupply compo. nemts are grouped along one side of the chassis.

Fig. 6.88 - Schematic diagram of the VF.O
$\mathrm{C}_{1}-200-\mu \mu \mathrm{fd}$. max. variahle (Millen 10200).
$\mathrm{C}_{2}, \mathrm{C}_{16}-110-\mu \mu \mathrm{fl}$, trimmer (Millen 20140).
Cis - $680-\mu \mu \mathrm{fd}$. silver miea.
(a $_{4}, \mathrm{C}_{7}, \mathrm{C}_{11}, \mathrm{C}_{15}-100-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{5}, \mathrm{C}_{9}-68 . \mu \mu \mathrm{fd}$. mica.
($\mathrm{C}_{6}, \mathrm{C}_{8}, \mathrm{C}_{10}, \mathrm{C}_{14}-0.01 \cdot \mu \mathrm{fd} .600$-volt paper.
$\mathrm{C}_{12}-0.02$ to $0.1-\mu \mathrm{fd}$. paper.
(i3-0.01- $\mu \mathrm{fd}$. disk ceramie.
Cis - $220-\mu \mu \mathrm{fd}$. mica.
($: 1 ;-50 \cdot \mu \mu \mathrm{fd}$. Variable (Itammarlund MC:-50-S)
(:19, (.20-8. ffd . 450-volt electrolytic.
$\mathrm{C}_{21}, \mathrm{C}_{22}-0.1-\mu \mathrm{fd} .250$-volt a.c. (Šprague IIypass).
$\mathrm{R}_{1}, \mathrm{R}_{7}-47,000$ ohms, $1 / 2$ watt.
$R_{2}, R_{3}-10,000$ ohms, $1 / 2$ watt.
$R_{4}-330$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-0.1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{6}-0.22$ negohm, 1 watt.
R_{7} - 5000 ohms, 20 watts.
$\mathrm{L}_{1}-4 \overline{\mathrm{i}}$ turns No. 21 d.s.c. close-wound on 1 -in. diam. form. 'ap at 11 turns from ground.
1.2, I.3-Slug.tuned coil (C'I'C IS.3, 1 Mc.). ($350 \mu \mathrm{~h}$)
$\mathrm{I}_{4}-53$ turns No. 26 d.s.e. close-wound on l-in. diam.
l.5-10-hy. 75 -ma. filter choke.
$13_{1}-62.5$ to 90 -volt battery.
$I_{1}, I_{2}-6.3$-volt dial lamps (part of dial assembly).
J_{1} - Closed-circuit 'phone jack.
J_{2} - Coaxial connector, female.
P_{1} - Male a.c. plug.
RFCC C_{1}, RFC.2-2.5•mh. r.f. choke (National R-100-S).
S_{1} - S.p.s.t. toggle switeh.
T_{1} - 700 volts c.t., 70 ma.; 5 v., 3 amp.; 6.3 v., 2.5 amp. (Stancor I'.6011).
of the oscillator-tube socket. In the compartment to the rear, L_{4} is mounted horizontally from the shielding partition and the amplifier-tube sockets are to the left.

Adjustment and Operation

Some adjustment of the amount of fixed capacitance used in the oscillator circuit may be required to permit tuning the range 875 ke , to 1000 kc . If only c.w. operation is wanted, greater bandspread of the low-frequency end of the bands may be obtained by removing rotor plates from C_{1}, and making up the difference in fixed capacitance with C_{2}. A wide frequency range is possible with the constants shown, including coverage of the 11-meter band, by readjustment of C_{2}.

The most important adjustment is to make sure that the Class A stage is operating true Class A. To do this, resonate the plate circuit of the oscillator in the center of the desired tuning range. Then do the same for the plate circuit of

Fig. 6.89 - Bottom view of the silenced VFO unit. In this view, the three compartments are shown. The oseillator ocernies the lower left-hand compartment, with the Class A amplifier and the $6 A \mathrm{G} 7$ ontput stage in the compartment above it. The power supply is in the compartment at the right.
the (lass A stage. If no wavemeter capable of tuning the required range is available, a receiver tuned to the broadeast band can be used. Connect a low-range voltmeter, through an r.f. choke, across the cathode resistor, R_{4}, of the Class A amplifier. Ahout 3 volts bias should be indieated. Now pull the oscillator tube out of its socket. The
(A)

(B)

Fig. 6-90 - I'wo sugkented methods of coupling the UPO unit to the transmitter. In troth cases the bAG7 is used as either a donbler or quadrupler from the output of the IFO. In A, a former eryatalonsillator stage has been revised to oprato with fixed bias. In IB, a swithhing system providing for either 1 I' (or erystal control is shown.
C_{1} - $0,001-\mu \mathrm{fl}$. (or larger) mica.
$\mathrm{H}_{1}-10,000$ ohms, $1 / 2$ watt.
$\mathrm{H}_{2}, \mathrm{H}_{3}-47,000$ ohms, $1 / 2$ watt.
S_{1} - Double-pote 3 -or-more-porition ceramic.
voltage rad across K_{4} will remain the same if Class A conditions are being mot. If they are not, reducing oscillator output by incroasing the size of R_{7}, or decreasing the size of either R_{2} or R_{3}, should correct the trouble.

Now connect the output of the VFO to the input of the transmitter through a shielded lead. Coaxial cable, with the outer shield grounded, can be used here to good advantage, beeause it is low-loss and well shielded. Any length up to 8 or 10 feet can be used. The cable should be terminated at the transmitter end close to the grid of the first stage, so that radiation will not take place from any exposed wiring in the transmitter. Press the key, and adjust trimmer C_{15} for maximum grid current in the first stage of the transmitter. If too mueh drive is available, as well may be the rase if a 6.AG7 is used as the first stage in the transmitter, use a $6 \mathrm{~S} . \mathrm{J} 7$ output stage in the VIFO unit. This will reduec the output eonsiderably. The substitution can be made without wiring changes, but the tuning of both the Class A stage and the output stage may have to be readjusted slightly. If an 807 is used as the first stage of the transmitter, a 6A(i7 will probably be needed as the output tube in the VFO, but for smaller tubes, the 6s.J7 should be adequate.

To eliminate the last trace of signal from the oscillator, it is usually necessary to apply a certain amount of fixed bias to the stage into which the VFO unit as shown is to work. Fig. 6-90 shows the method of applying bias to the usual 6AG7 erystal-oseillator circuit. Only the minimum value of bias needed to suppress the oscillator signal should be used; the balance can be made (up by grid leak. Some value between 3 and 22.5 volts should be sufficient. If the battery used in the keying circuit has appropriate taps, the same battery may be used for both purposes. Small-size batteries may be used, since the drain is negligible.

A Bandswitching Gang-Tuned VFO-Exciter

Figs. 6-91 through 6-94 show the construction of a handswitching gang-tuned VFO-exciter delivering an output of approximately 5 watts on all bands from 80 to 10 meters. Power supply and a reactance modulator for NFM are included.
Referring to the circuit diagram of Fig. $6-93$, a $6.4 \mathrm{G}^{-1}$ is used in the series-tuned Colpitts oscillator circuit, Three frequency ranges are covered here. The first range, with L_{1} in the circuit, is from 3.5 to 4 Mc. This range is in use for 3.5-, $7-$ and $14-$ Mc, output from the exciter. The second range, covered by L_{2}, starts at 5.25 Mc. to cover the 21-Mc. band in the output. The third range, with L_{3}, starts at 6740 ke . to cover the 11 -and 10 -meter bands in the output.

The second stage is a 6 L .6 buffer-cloubler. In the 80 - and 40 -meter positions of the bandswitch, the output circuit is resonant approximately halfway between the 80 - and 40 -meter hands. This provides sufficient exeitation for the mutput stage without danger of instahility. In the last three positions of the switch, the stage doubles frequency successively to 7 , 10.5 and 14 Mc. The last stage operates as a straight amplifier with an untuned input eircuit on 80 meters, and as a doubler to $\overline{7}, 14$, 21 and 27-28 Mc. The tuning condensers of all three stages are ganged.

The reactance modulator consists of a 6.AK5 amplifier driving a 6 BA6 reactance tube. Jacks are provided for keying either the oseillator or the output stage, as desired. The sereen voltage of all three r.f. tubes, as well as the plate supply for all but the output tube, is regulated by VIf tubes. S_{1} is a control
switch. In the first position, all power is turned off. In the second position the power supply is turned on, but plate voltage can be applied to the exciter only through the external relay terminals. In the third position, plate voltage is applied directly. In the fourth position the modulator is turned on and plate voltage applied through the relay terminals.

Construction

In assembling the exciter in a so-called am-plifier-foundation enclosure with a 6×14-inch chassis, an effort has been made to keep the unit as compart as possible. If space is available, the constructor may wish to use a $7 \times$ 17 -inch enclosure which allows more space in which to work. To permit removal of the cover without disturbing the dial, the spot welds at one end of the cover are broken by drilling them out. Self-tapping screws are then substituted as fastenings. The dial (a National type SCN) is fastened to the cover end plate with the lower edge of the dial at chassis-top level. The side edges of the dial escuteheon plate are trimmed to fit the width of the cover, if necessary.

Looking at the rear view of Fig, 6-92, the condensers in the tuning gang, C_{10}, C_{22} and C_{27}, are mounted on a strip of polystyrene 3 inches wide and as long as necessary to accommodate the length of the gang. The polystyrene strip is supported on metal pillars at the comers to bring the gang shaft up level with the dial hub. The sockets for the r.f. tubes are lined up along one edge of the chassis with the two miniature modulator tubes along the opposite edge. The power transformer is

Fig. 6.91 - The gank-tuned bandswitching exeriter is built in a standard amplifier-foumdation condosure. Additional holes have been punched in the top to aid ventilation.

Fig. 6.92 - Rear view of the gang-tuned bamdswitehing exciter.
placed at the extreme rear end of the chassis and the filter input condenser, C_{32}, and the sockets for the rectifier and the two voltageregulator tubes are grouped around in the remaining available space.

Underneath, the bandswitch, with the ceramic sections spaced out $23 / 4$ inches, is mounted along the center line of the chassis, A metal bracket inside the last section holds the rear end of the assembly. The oscillator bandset condenser, C_{9}, is fastened to the side of the chassis, opposite the first bandswitch section where it can be adjusted with a screwdriver from outside. The deviation control, R_{b}, is similarly placed opposite the last bandswitch section.

The control switeh and the fwo key jack: are to the right of the handswiteh control at the front end of the chassis. The two doubder bandset condensers, C_{23} and C_{28}, are on the right side of the chassis in Fig. 6-94, near the last bamdswiteh section. C_{23} is mounted vertically, with its shaft protruding out through the top of the chassis, while ${ }^{(} 28$ is mounted horizontally so that it can be adjusted from the side. The 1 wo filter chokes oerupy the rear of the chassis.

All eoils are grouped around the bandswites sections. Most of them can be supported by their heads from the switch. The oscillator coils are braced against vibration by cementing them, where necessary, to polystyrene-strip braers fastened to the chassis. An aluminum partition to the left of the bandswiteh in Fig, $6-94$ shichds these coils from the others. It is advisable to cut or wind the coils with an extra turn or two for adjust ment. The final trimming of inductance can be done by bending or sliding the last turn or two away from the other turns.

All power wiring shoudd be done with shieded wire with the braid grounded as often as eonvenient. The only additional v.h.f. filtering found desirable in TVI tests was the installation of caparitors C_{30} and C_{31} aeross the a.c. line.

Adjustment

The tracking of the three stages is not difficult, but it should be done carefully. Only the last stage needs to be tracked for 3.5- and 7-Me. operation, of course. A milliammeter should be placed temporarily in the eircuit to read plate current to the 6 L bs. The oscillator should first be adjusted with the bandswiteh in the first (80-meter) position. Then, with C_{10} set at or close to maximum capacitanere. C_{9} should be adjusted until the oscillator is: heard at 3500 ke. C_{10} is then turned to minimum capacitance and the frequency noted. If 4000 ke . comes too far inside the tuning range,

COIL TABLE FOR GANG-TUNED BAND.

 SWITCHING EXCITER| ('oil | Wire No. | Diam. | Lenyth | Turn* |
| :---: | :---: | :---: | :---: | :---: |
| L_{1} | 24 | 1 ' | $13 / 8{ }^{\prime \prime}$ | 50 |
| 1.2 | 24 | $8 / 8{ }^{\prime \prime}$ | 174" | 47 |
| L: | 20 | $1^{\prime \prime}$ | 1136" | 29 |
| L_{4} | 20 enam. | $3 / 8{ }^{\prime \prime}$ | 3/6" | 23 |
| L. | 24 | 1/2' | 1/2" | 161/2 |
| Lati | 24 | 1/2" | $8 / 81$ | 11 |
| J.i | 22 enam. | $1^{\prime \prime}$ | 7/8" | 32 |
| L. 8 | 20 mam. | $5 / 81$ | 1318 ${ }^{\prime \prime}$ | 21 |
| L_{8} | 24 | 1/2' ${ }^{\prime \prime}$ | $8 / 8{ }^{\prime \prime}$ | 11 |
| $L 10$ | 20 | 3/" | 9,6" | , |
| L_{11} | 20 | 3/4" | 960 | 11/2 |

$L_{1}-13$ N Winiductor No. 3016, L_{2} - No. 30088. L_{3} No. 301.5. Ls. Lf. Ls - No. 3004, Li0 - No. 3011, $L_{11}-$ No. 3010.

Links as follows: $L_{7}, L_{8}-5$ turns, $L_{0}-3$ turns, L_{10}, L_{11} -2 turns.
L_{4} and L_{7} close-wound.

Fig. 6-93- Circuit diagram of the gang-tuned handswitching exciter.
$\mathrm{C}_{1}-25-\mu \mathrm{fd}$. 25-volt clectrolytic.
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{16}, \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{20}, \mathrm{C}_{24}-0.01-\mu \mathrm{fd}$, paper. $\mathrm{C}_{4}-220-\mu \mu \mathrm{fl}$. mica.
$\mathrm{C}_{\mathrm{B}}-8-\mu \mathrm{fd}$. 150 -volt electrolytie.
$\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{25}-47-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{9}, \mathrm{C}_{23}, \mathrm{C}_{28}-50-\mu \mu \mathrm{fil}$. air trimmer (Clillen 26050) $\mathrm{C}_{10}, \mathrm{C}_{22}, \mathrm{C}_{27}-25-\mu \mu \mathrm{f}$. variable (Millen 19025).
$\mathrm{C}_{11}, \mathrm{C}_{12}-680-\mu \mu \mathrm{fd}$. silvered mica.
i13, $\mathrm{C}_{19}-100-\mu \mu \mathrm{fd}$. mica.
(it - $50-\mu \mu \mathrm{fd} .330 \mathrm{p} . \mathrm{p} . \mathrm{m}$. neg. coefficient condenser.
$C_{15}-25-\mu \mu \mathrm{fd} .330$ p.p.m. neg. coefficient condenser.
($21, \mathrm{C}_{26}, \mathrm{C}_{29}, \mathrm{C}_{35}-0.01-\mu \mathrm{fd}$. ceramic (S ${ }_{\text {pragne }} 36 \mathrm{C}-1$) ($\mathrm{B}_{30}, \mathrm{C} 31-0.01-\mu \mathrm{fd}$. paper (Spragne 11 ypass).

$$
\begin{aligned}
& \text { Ca2. (} \mathrm{Can}_{3}, \mathrm{C}_{34}-\mathrm{B}-\mu \mathrm{fd} .450 \text {-volt electrolytic. } \\
& R_{1}-2.2 \text { megohms, } 1 / 2 \text { watt } \\
& \mathrm{H}_{2}-2200 \text { ohins, } 1 / 2 \text { watt. } \\
& R_{3}, R_{B}-0.1 \text { megohm, } 1 / 2 \text { watt. } \\
& \mathrm{R}_{4} \text { - } 0.22 \text { megohm, } 1 / 2 \text { watt. } \\
& \mathrm{R}_{5} \text { - } 1 / 2 \text { megohm potentiometer. } \\
& \mathrm{R}_{7}-0.47 \text { megohm, } 1 / 2 \text { watt. } \\
& \mathrm{K}_{8}, \mathrm{l}_{10}-10,(00) \text { ohms, } 1 / 2 \text { watt. } \\
& R_{0}, l_{13}, l_{15}-470 \text { ohms, } 1 \text { watt. } \\
& \mathrm{R}_{11}-57,000 \text { ohms, } 1 \text { watt. } \\
& R_{12}-7.1,000 \text { ohms, } 1 \text { watt } \\
& \begin{array}{l}
\mathrm{R}_{14}-1,000 \text { ohms, } 1 \text { watt. } \\
\mathrm{h}_{16}-10,000 \text { ohms, } 10 \text { watt. } .
\end{array}
\end{aligned}
$$

$\mathrm{L}_{12}, \mathrm{~L}_{13}-25-\mathrm{ly}$. 125 -ma. filter choke.
J1, ${ }^{\text {J }}$
RFC1, RFC,3, RFC4, RFC6 - 2.s-mil. r.f. choke.
RF: $\mathrm{C}_{2}-10$ mh. r.f. choke.
RKC5-10-uh. r.f. choke (National 12-3;3).
$\mathrm{S}_{1}-3$-pole 4 -position rotary switch (Mallory 313.4 J).
$\mathrm{S}_{2}-3$-section, 2 poles per section, 6 -position ceramic
$T_{1}-I$ Power transformer: $370-0-370$ volts r.m.s., $100-$
150 ma.; 6.3 volts, 5 amp.; 5 volts, 3 amp.
VR - Vl $-7.5-30$ voltase-resulator tube
L_{1} should he decreased slightly and the process repeated, readjusting C_{9} to bring the signal at 3500 ke. with C_{10} set at maximum. If, on the ot her hand, the tuning range is not sufficiently wide to include 4000 kc . when C_{10} is at minimum capacitance, L_{1} must be inereased and the above process repeated. The larger L_{1} is, the greater will be the frequency range covrered; the smaller L_{1} is made, the greater the handspread, i.e., the smaller the frequency range.

With the oscillator tuned to $3500 \mathrm{ke} ., C_{27}$ will be set at or near maximum capacitance, since it is ganged to C_{10}. C_{28} should now be adjusted to resonance, using the dip in 616 plate current as the indicator. Then with the oscillator tuned to 4000 ke., resonance in the

Fig. 6-9.4 - Bottom view of the gang-tuned bandawitching exciter. The chassis is 3 inches deep.
output eircuit should again be checked. If the tuning is not at resonance, it should be carefully observed whether C_{28} must be increased or decreased to restore resonance. If C_{28} must be decreased, C_{2}; is not tuning fast enough. In this case, the size of L_{7} must be increased slightly and the process repeated. If an inerease, instead of a decrease, in the capacitance, of C_{28} is required to restore resonance, L_{7} must. be trimmed down.

With L_{1} and L_{i} adjusted so that the oscillator and output stages track over the 80 -meter band, the settings of C_{9} and C_{28} should be noted carefully so that they may be reset at, the same points. L_{8} is next adjusted so that the output circuit, with the bandswitch in the 40 -meter position, tunes to 7000 kc . at the same setting of the gang that tunes to $3500 \mathrm{kc}, C_{28}$ should not be readjusted for this except experimentally to determine if $L 8$ need be increased or decreased to tune the circuit to 7000 kc . When the adjustment is eompleted, all condenser settings should be the same for 7000 and 3500 kc . If this is donc, the circuits should track over the 40 -meter band without further adjustment.

With the switch in the 20 -meter position, L_{4} is adjusted next. With the gang set so that the oscillator tunes to 3500 kc ., C_{23} should bo adjusted for resonance at 7000 kc . Then, with the oseillator tuned to $3600 \mathrm{kc}, C_{23}$ should be adjusted for resonance at 7200 kc . If C_{23} must be changed from its original setting to restore resonance, L_{4} must be adjusted following the procedure outlined previously for the adjustment of L_{i}.

Next, L_{9} is adjusted so that the output circuit tunes to $14,000 \mathrm{ke}$. when the oscillator is set at 3500 kc ., without disturbing the selling of C_{2}, The output circuit should then track at least up to $14,400 \mathrm{kc}$., the highest frequency of interest.

With the switch in the 21-Mc. position, L_{2} is connected into the oscillator circuit. This eoil should be adjusted so that the oscillator signal is heard at 5250 ke . when the gang is set near maximum capacitance. The selting of C_{9} should not be disturbed. Then, without disturbing the setting of the gatng or of C.23, L_{5} should be adjusted so that the cireuit resomates at 10,500 ke. and L_{10} should be adjusted so that the output eireuit tunes to $21,000 \mathrm{ke}$. without disturbing the setting of $C_{2 s}$. The three stages should then track over the full width of the 21-Mc. band.

The adjustment for 27-28 Me, is similar. L_{3} is trimmed so that the oscillator tunes to 6740 ke. with the gang near maximum capacitance. It the same setting, L_{6} is adjusted for 13,480 kc, and L_{11} for $26,960 \mathrm{kc}$.

The power supply shown delivers a voltage of 360 under load. At this voltage, the 6AG7 eathode current should run 10 ma . or less, while the cathode eurrent in the first and second doubler stages should be approximately 25 and 35 ma , respectively.

A Push-Pull 807 Amplifier with Multiple-Band Tuners

A push-pull 807 amplifier and antenna tuner requiring no plug-in coils or bandswitching is shown in Figs. 6-95 through 6-100. The tanks of both the amplifier and antennat uner are made of the new multiband eircuits - eombination eircuits that show multiple resonances through the range of the tuning eondensers. All bands, 80 through 10 meters, are covered as the ganged condensers are turned through their capaeitance range. Tuners of this type are available on the market, or they can be built.

Referring to the diagram of Fig. (i-97. the grid-tank tuner is made up of C_{1}, C_{2} and L_{1}, L_{2} and $L_{3} . C_{3}, C_{4}, L_{6}, L_{5}$ and L_{8} comprise the plate-tank tuner. The antenna tuner consists of $C_{5}, C_{6}, L_{11}, I_{12}$ and L_{13}. The output tank circuit is coupled to the antenna tuner both through a link line for the high frequeneies and by the coupling coils L_{9} and L_{10}, which aro included in the manufactured units, for low frequencies. Series or parallel tuning may be used for 3.5 and 7 Mc. l'arallel tuning is used for the higher bands.
$R F^{\prime} C_{1}$ and $R F^{\prime} C_{2}$ are parasitie suppressors. C_{10} and C_{11} are tubular air condensers connected directly between plate and cathode. They contribute to v.h.f. harmonic reduction as well as parasitic suppression. $L_{4} C_{7}$ and $L_{5} \mathrm{C}_{8}$ are v.h.f. traps that may be tuned to the second or third harmonic of $28-\mathrm{Me}$. band frequencies as found necessary to reduce TVI. The 6 Y 6 G reduces the power input to the 807 s to a safe value when excitation is removed.

Construction

The amplificr is constructed on a $10 \times 12 \times$ 3 -inch chassis with a $11 \times 12 \times 8$-inch utility
box as an inexpensive shielding eabinet. The box, with its bottom cover removed, is fastened to the chassis by means of 1 -inch melal-strip cleats along each 10 -inch side of the ehassis. The box then overhangs the ehassis at the rear. pro-

Fig, 6.96 - Rear-top view of the smultiband $80{ }^{-}$amplifier, showing the hinged door in the rear for altering antenna connertions. The amplifier is to the left, the antenna tuner to the right. The third tube is the 6Y60. The outer conductor of both link lines is grounded on the shielding partition.
viding, together with the holes in the top cover, ventilation essential in an enclosed job such as this. The spare bottom cover is cut to form a partition shielding the amplifier plate tank from the antema tuner. A door eut in the back provides aceess to the antenna-tuner terminals.

The two large tuners are mounted on l-inch cone insulators. 'The harmonic traps, $C_{7} L_{4}$ and $C_{8} L_{3}$, are mounted on a strip of polystyrene fastened to the plate tuner with brackets. Clearance holes for the 807 s are cut in the top of the chassis alongside the plate tuner. The tube sockets are submounted in an aluminum strip $2 \frac{1}{2}$ inches wide spanning the chassis. The edges of this strip

Fig. 6.95 - A multiband push-pull 897 ampli. fier and antenna tuner with no phig-in coils or switching. 'The aluminum strip on top eovers the harmonic-trap adjusting holes. The other holes are for ventilation. The panel is a sheet of 3,10 inch aluminum $121 / 4$ inches wide and 101/2 inches high.

$\mathrm{C}_{1}, \mathrm{C}_{2}-1: 5-\mu \mu \mathrm{fd}$. varial le (National SSH-125), part of MB-50 tuner).
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}-110$ - $\mu \mu \mathrm{fd}$-per-section variable (part of National M13-150 tumer).
(:7, Cs - $50-\mu \mu \mathrm{fd}$. variable (National ISE).
(i0 $-0.0017-\mu \mathrm{fd}$. mica.
($\mathrm{in}_{10} \mathrm{C}_{11}-10-\mu \mu \mathrm{d}$. tulular: sce text.
(:12, (:13-0,0015- μ fd. ceramic (Centratal, DA-048).
($14-0.001-\mu \mathrm{fd}$, mica, $12(00$ volts worhing.
($15-500-\mu \mu \mathrm{fd}$. mica, 1200 volts working.
$\mathrm{C}_{16}, \mathrm{C}_{17}, \mathrm{C}_{48}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21}-40-\mu \mathrm{fd}$, mica.
$\mathrm{R}_{1}-12,000$ ohms, 1 watt.
$\mathrm{H}_{2}-2, \mathbf{2}, 000$ ohms, 20 wat ts.
1,140 turns No, 22 enam., center-tapped, $11 / 4$ inches long, 1 -inch diam.
1.2, 13 - 7 turns to. 22 enam., 310 inch long, 1 -incla diam., with $3 / 8$-inch space between sertions.
(Note: Above coils are part of MB-40 tuner.)
are bent up a quarter of an inch to provide longitudinal strength.

Underneath, the grid tuner is mounted close to the tube sockets on pillars that space the eoils avenly between the top and bottom of the chassis. The shaft of this tuner is operated by a pulley system so that the control can be brought out to the center of the panol. The pulleys are easily made by lightly grooving small bakelite tuning knobs.

The tubular eondensers, C_{10} and C_{11}, are mate as shown in the sketch of Fig. 6-98. They are mounted between the two tube soekets after clearance holes have been cut in the alnminum strip and the topof the chassis. The har-monic-filter components are placed close to the assoriated power terminals at the back. All power wiring should be done using shielded wire.

Modification of Antenna Tuner

If the National M13-150 tuner is used, slight molification is necessary to adapt it to the antenna tuner. The r.f. choke is removed. One
 diam.
$L_{6}, L_{7}, \mathrm{~L}_{12}, \mathrm{I}_{13}-5$ turns No. $12,5 / 8$ inch long, $13 / 4$-inch diam., with $3 / 8$-inch space hetween sections.
$L_{8}, L_{11} \frac{18 \text { turns }}{}$ Vo. 12,2 ineties long, $13 / 4$-inch diam.: L_{8} is centertapped.
$\mathrm{L}_{0}, \mathrm{~L}_{10}-12$ turns No. $12,21 / 2$ inches long, $21 / 2$-ineh diam. (Note: L. to L_{13}, inc. - part of M13-1.0) tuner.)
J_{1} - Coaxial-cable comector.
J_{2} - 4 -prong male plus.
$\mathrm{MA}_{1}-0-2.5$ d.e. milliammeter.
$\mathrm{Mi}_{2}-0-3010$ d.e. milliammeter.

 I_{1} - 6.3 -volt 3 -amp). filament transformer (Stancor 15011).
end of L_{11} is disconnected from the condenser and is brought to one of the antemat terminals as indicated in Fig. (j-97. The original conpling clips are removed from L_{9} and L_{10}. (On each of the two coupling coils, one of the flexible leads is soldered permanently to the third turn from one end. The other lead is terminated in a copper spring clip. The original clips are fastened permanently to the coil after the position of the taps for proper coupling has been determined. These then serve as points or taps to which the spring clip can

Fig. 6.98 - Sketeh showing the construction of the tubular air condensers used in the p.p. 807 amplificr. The condenser is monnted with serews through the footing.

Fig. 1.99 - Circuit of power sunply for the push-pull 807 amplificr. $\mathrm{C}_{1}, \quad \mathrm{C}_{2}-1-\mu \mathrm{fd} .1000$ volt oilfilled.
$\mathrm{K}_{1}-25,000$ ohms, 50 watts.
$\mathrm{L}_{1}-5 / 25 \mathrm{hy}$. $250 \cdot \mathrm{ma}$. swinging choke.

1. 2 - 10 -hy, 250 -ma. sunothing choke.
S_{1} (filaments), S_{2} (low voltage), S_{3} (high voltage) -S.p.s.t. togele switch.
${ }^{\prime} l_{1}$ - Plate' transformer: 600/80 volts d.c., 250 ma.
$12-$ Vilament transformer: $2 . \overline{ }$ volts. 4 amp.
be quickly attached in changing bands. RG5! / U^{\top} cable is satisfactory for the lowfrequency coupling line between L_{9} and L_{10}, but the larger R(ill/L should be used for the high-frequency line to avoid breakdown. Each end of the latter is formed into a coavial link.

Adjustment

The diagram of a power supply for this amplifier is shown in Fig. (i-99. Approximately three watts of driving power is required.

If the National units are used, or if the tuners have been built closely to the specifications given under Fig. 6-97, adjustment of the a molifier should be merely a matter of resonating the input circuit for maximum grid current for the desired band, and the plate circuit for minimum plate current in the usual fashion (see "Adjustment of R.F. Amplifiers," this chapter). However, as the tank condensers are turned from minimum to maximum capacitance, the tuners do not resonate in the bands in logical sequence, but as follows: 28-27 Mc., 7 Mc, 21 Mc, 3.5 Mc, and 14 Mc. Minor resonances may be found at other multiples of frequencies that may be fed through from a multiband exciter. Therefore, unt il the dials have been plainly marked, the frequency should always be chocked with a wavemeter.

The excitation should be adjusted for a grid current of 8 ma, under lowd. This should give a bias of 90 volts under fullload operating conditions. Without load, the plate current should dip to about 20 ma. With loarl, the coupling may be increased until the plate current at resonance is 200 ma . when the screen current should be approximately 16 ma at

Fig, 6-100 - Buttoms view of the push-pull 807 amplifier. The grid-cireuit multiband tuner is to the right of the aluminum stripon which the 807 sochets and tuhular condensers are mounted. The filament transformer is to the left with the v.h.f. power-lead filters alove,

300 volts. If excitation is removed, the $6 \mathrm{H}^{\circ} \mathbf{6 0}$; should limit the plate current to 35 ma . or less.

The antenna tuner is adjusted following eonventional procedure (see chapter on transmission lines). The accompanying table shows how the terminal conneetions should be made to obtain

ANTENNA.COUPLER CONNECTION CHART FOR THE 807 P.P. AMPLIFIER				
Tuning	${ }^{*} C^{\prime \prime}$	repder Terminals	Jump Terminals	Connert Clip Lead " E " to
Series	Low	$A \& C$	-	D
Series	Medium	ANC	-	B or C
Series	Itimi	A \& I	138 C	
Jarallel	Low	A A H	$A \& C$	D
Parallel	Medium	A \& 3	$A \& C$	B or C
Parallel	High	A A B	$18{ }^{\circ}$	A

the desired combination. If a center-fed antemat system is used whose total length for each half is a half wavelength for 3.5 Mc ., or a multiple of that length, it should be possible to use parallel tuning on all bands, dispensing with the neressity for any change in feeder connections to the anterna coupler.

A 1-Kw. Beam-Tetrode Amplifier

Figs. 6-101 through 6-105 show the circuit diagram and construction of a single-tube screen-grid amplifier capable of handling up to $1-k w$. input on c.w., or 675 wat ts on platemodulated 'phone. It is designed to be opcrated in any band from 80 through 10 meters by the use of plug-in coils. Any exciter capable of delivering 15 to 20 watts should provide adequate excitation for the $4-250 \mathrm{~A}$ in this amplifier.

The circuit diagram is shown in Fig. 6-103. It is a conventional link-coupled arrangement except for the induetive link neutralizing system (L_{2} and L_{4}). This neutralization is desirable to maintain reliable stability on all bands. All power leads are filtered for v.h.f. harmonics.

Construction

The amplifier is designed for use in a standard rack cabinet or other shielding enelosure. To that end, it is arranged so that both grid and plate coils may be removed by pulling toward the rear. Thus the chassis is inverted to provide aecess to the grid coil.

On top, the plate tank condenser is inverted and mounted with metal angles on 2 -inch ceramic cone insulators. It is plateed so that its shaft will come at the center. The jack bar for the tank coil is fastened between an angle piece at the forward end of the tank-condenser frame and another angle piece bolted to one of the panel brackets. The mounting is made so that the coil is tilted at an angle of about 45 degrees. The antenna-coupling link shaft is driven from a control on the panel by means of a Millen right-angle gear box. The neutralizing link, L_{4}, is the 13 \& W trpe BVL. The assembly is fastened with a single serew to the top of a $1 \frac{1}{4}$-ineh ceramic pillar mounted on the rear corner of the tank condenser. This mounting permits the link to be pivoted on the pillar as well as hinged in the usual fashion.

Since coils with a variable end link are not available, center-link coils have been adapted to the purpose hy using only one section of the two-section coils. As a matter of convenience in changing bands, the unused section of one coil is removed and a section of coil for an adjacent band is

Fig. 6-101 - Front view of the $4-250 \mathrm{~A}$ amplifier, showing the method of assernbling the panel and the chassis. The controls on the panel, from top to botion, are the outfut coupling knob, plate tuning dial, and grid tuning dial. The panel is 19 by $171 / 2$ inches.
mounted instead. Thus each coil plug strip carries coils for two bands and the change from one to the other is made simply by turning the unit end for end. 'The two unused jacks in the jack bar are connceted together with a copper strap so that the unused section of coil is short-cireuited.

The tube socket (National HX-100-S) is submounted alongside the rear corner of the tank condenser where the plate lead to the stator terminal can be made short. The filament transformer is mounted at the front of the chassis out of the direct field of the tank. A clearance hole is cut for the terminals which protrude underneath.

Underueath, the grid tank condenser is mounted at the center of the chassis on $1 / 2$-inch stand-off insulators. A $33 / 8$-inch strip of aluminum is bent as shown in the bottom-view photograph to form a mounting for the grid tank coil directly to the rear of the condenser, as well as a shielding enclosure for the components in the power-lead filters. The leads between the coil socket and the condenser pass throngh small bushings (Millen 32150) or clearance holes in the aluminum. The socket and ventilating fan are enclosed in a $6 \times 4 \times$ $31 / 4$-inch box made of aluminum sheet. When the bottom plate of the box is in place, the fan forces air up through the socket to the tube. The box should be perforated with $1 / 4$-inch holes back of the fan to provide an air intake.

The filament, screen and grid by-pass condensers are mounted direetly at the tube socket. All are grounded at the same point -

one of the socket mounting screws. A ceramic terminal strip for the a.c. line, bias, screen voltage and ground terminals, a Millen safety terminal for the plate-voltage connection, and a coaxial jack for r.f. input are mounted on the rear surface of the shielding strip.

All power wiring is done with shielded wire. The high-voltage lead is a length of highvoltage ignition cable covered with $1 / 2$-inch shielding braid up to within an inch of each end.

The grid-circuit neutralizing link consists of two turns of No. 14 wire. $11 / 2$ inches in diameter, fastened to a pair of $2 \frac{1}{2}$-inch pillar insulators (National GS-2) so that the coil is coupled to the low-potential end of L_{1} and yet does not interfere with the removal of the grid coil.

Plate-Coil Modification

The 80 -meter III)V coil is dismounted from its ceramic plug bar and a diagonal cut is sawed through the center of the plastic strip holding the two sections of the coil. The $40-$ meter coil is similarly cut. One section of the 80 -meter coil and one section of the 40 -meter coil are then reassembled as a unit by cementing together at the center, the diagonal cuts overlapping. The coils for 14 - and 28 -Mc. operation are altered in the same way. Other eombinations may be made up as desired, depending upon the bands wanted. The 21Mc. coil may be a separate unit or combined with the coil for another band.

Adjustment

The circuit diagram of a suitable powersupply unit for this amplifier is shown in Fig. 6-104. Caution should be exercised in operating a beam tetrode with fixed sereen supply - especially a high-power tube - since the screen current in the absence of plate voltage and full load can run to damaging limits.

Fig. 6-103 - Schematie diagram of the 1-250A amplifier. C_{1} - $100-\mu \mu \mathrm{fd}$. variable (National TMS-100).
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-0.0022$ - ff . mica.
$0: 50.001-\mu \mathrm{fd}$. 1000 volt mica.
$\mathrm{C}_{6}-1.50-\mu \mu \mathrm{fd}$. 6000 -volt peak (National TMA-150-A) $0-0.001-\mu \mathrm{fd}$. 5000 -volt-wkg. mica.
$\mathrm{C}_{8}-170-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{9}-500-\mu \mu \mathrm{fd}$. 1000 volt mica.
C_{10} - $500-\mu \mu \mathrm{fd}$. 5000 -volt-wkg. mica.

L_{1} - Dillen 43000 series coils:
3.5 Mc. -32 turns Xo. $20,11 / 2$-in. diam., $11 / 2$ in. long, 7 -turn link (13082 with 6 turns removed).
7 Mc - 2.4 turns No. 16, $11 / 2$-in. diam., 2 in. long, 7-turn link (43012).
14 Mc. - 9 turns No. $16,11 / 2$-in. diam., $11 / 2 \mathrm{in}$. long, 2 -turn link (43022).
$21-28$ Mc. -4 turns No. 14, $11 / 2$ in. diam., $13 / 8 \mathrm{in}$. long, 2 -turn link (43012).
L_{2} - 2 -tırn link, No. $14,11 / 2$ inches diam.
$\mathrm{L}_{3}-\mathrm{B} \& \mathrm{~W}^{\prime} \mathrm{IIDVL}$ series (modified, see text).
$3.5 \mathrm{Mc}-16$ turna No. $10,31 / 2-\mathrm{in}$. diam., 3 in. long.
7 Mc - -10 turns Vo. $8,31 / 2-\mathrm{in}$. diam., $27 / 8 \mathrm{in}$. long.
14 Mc. - 6 turns No. $8,31 / 2$-in. diam., 3 in. long.
21 Mc. - 4 turns 3 36-in. copper tubing, 3 -in. diam., $27 / 8 \mathrm{in}$. long.
28 lic. -3 turns $3 / 6$-in. copper tubing, $23 / 8-\mathrm{in}$. diam., $25 / 8 \mathrm{in}$. long.
1.4-3-turn swinging link, No. 18, 25/8-in. diam., $1 / 4 \mathrm{in}$. long (BVI. link assembly).
$\mathrm{I}_{1}, \mathrm{~J}_{2}$ - Coaxial connertor (Ainphenol 83-1 R).
$\mathrm{RF}\left(\mathrm{i}_{1}, \mathrm{RFC} \mathrm{C}_{2}, \mathrm{RFC}_{3}-7\right.$ - $\mu \mathrm{h}$. r.f. choke (Ohmite Z.50).
T_{1} - Pilament trans.: 5 volts, 14.5 amp . (UTCC S-i9).

Fig. 6.102- Rear view of the 4.250 A amplifier. The construction of the reversible plug-in plate coil is shown. The small variable link at the left of the plate coil is a part of the ncutralizing circuit. 'Ihe grid-coil compartment is seen below the chassis between the shield box that houses the fan and the partition on which the input terminals are mounted.

It is advisable to comluct all preliminary adjustments at reduced sereen voltage to keep the screen dissipation at a safe level. The lamps, I_{1} and I_{2} in Fig. 6-104, are for this purpose. A size of lamp should be selected that will give the desired reduetion in soreen and plate voltage, remembering that the lamps with Inwer wattage rating have a higher resistanee and therefore will give a greater voltage reduction.

Neutralization is merely a matter of adjusting the position of the plate nentralizing link for complete stability. Since the system depends upon correct polarization of the links, it may be necessary to reverse the connections to one of the links.

For operating at a plate voltage of 3000 , normal excitation is indicated when the grid current is 10 ma . and the bias 180 volts with the amplifier loaded to draw a plate current of 325 ma. Under these conditions, the sereen current with a sercen-supply voltage of 500 should run approximately 60 mat. For platemodulated phone operation at 3000 volts, the grid eurrent should be ! ma. at 310 volts under full load and the sereen eurrent 30 ma. at 400 volts. Under the above conditions, R_{3}, Fig. (j-104, should be set at 3000 ohms for e.w. operation and at 18,000 ohms for 'phone operation. R_{2} should be adjusted so that the V'I? tube just ignites without exeitation:

Fig. 6-105-13ottom vicw of the 4-250A amplifier. The harmonic filters are in the compartment to the left of the grid coil. The arrangement of the by-pass condensers insile the fan housing is also shown, with the grid terminal of the tulse socket pointing toward the grid tank circuit. 'Hhe chassis measures 17 by 13 by 2 inches.

Rack Construction

Many of the units described in the constructional chapters of the Handbook are designed for a standard rack mounting. This standardization facilitates the assembly and modifiention of station equipment. Since the advent of television, racks of the ent closed type have become a matter of practical necessity for transmitters to be operated without interference in neighborhoods where television receivers are in use. While enclosed cabinet-type racks of metal are available on the market, many amateurs prefer to build their own less expensively from wood and copper sereening. With eare, an excellent substitute can be made.

Fig. 6-106A shows a broken top view of an enclosed rack made of copper screening stretched over a framework of wood strips 1 by 2 or 1 by 3. The copper screen, represented by the dashed lines and the cross-hatching, is stretched over the outside of each frame, wrapped around the ends on all four sides and tacked fast on the inside. The top and bottom are made in similar fashion. When the frames are fastened together, the screening makes contact all along each joint. Contact at the hinge of the door at the rear is assured by the use of a fulllength piano hinge. Trim strips of thin wood

(A)

Fig, 6-107-1)etail sketeh showing proper drilling for standard rack and panels. As shown for the $31 / 2$ and $51 / 4$-inch panels. only sufficient holes are drilled in the panel to provide the neressary strength. When the panels are drilled as shown, they may be moved up and down in steps of $13 / 4$ inches and the holes will always mateh.
along the two vertical 1 by 3 s, which hold the panels, and across the top and bottom headers cover up the ragged edges of screening.

As shown in Fig. 6-10613, the panel clearance should be $191 / 16$ inches and the hole centers $181 / 4$ inches apart. Standard panels are in unit heights of $13 / 4$ inches and the hole spacing alternates between $1 / 2$ inch and $11 / 4$ inches as shown in Fig. 6-107. The table shows the standard drilling for pancls of various sizes.

Fig. 6-106 - A - Top detail view of an enclowed relay rack inade of wood strips and eopper screening. 13 - l'anel-mount. ing dimensions.
(B)

table of Standard rack dillling											
I'anel IIt. In.	$\begin{gathered} \text { * Holes } \\ \text { In. } \end{gathered}$	I'unel Ift. In.	$\begin{gathered} \text { * IIoles } \\ \text { In. } \\ \hline \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { PaneI } \\ & \text { Ift. In. } \end{aligned}\right.$	* IIoles $\mathrm{In} .$	P'anel 1ht. In.	* Holes In.	Panel Ht. In.	* IIoles In.	Panel Ht. In.	$\begin{gathered} \text { * Holes } \\ \text { /n. } \end{gathered}$
$311 / 2$	311/4-30	261/4	26-213/4	21	203/4-191/2	153/4	151/2-141/4	$10 \frac{1 / 2}{2}$	$101 / 1{ }^{-9}$	$51 / 4$	5 ${ }^{5}$-3 ${ }^{3 / 4}$
298/4	$291 / 20281 / 4$ 27854	$241 / 2$ $223 / 4$	$241 / 4-23$ $221 / 2-21 / 4$	191/4	${ }_{1714}^{19} 4{ }^{-173 / 4}$	$121 / 4$	13 $13 / 4.12 \%$	87	863/4-51/2	13/4	$11 / 2$

[^3]
Power Supplies

Essentially pure direct-current plate supply is required for receivers to prevent hum in the output. Government regulations require the use of d.c. plate supply for transmitters to prevent modulation of the carrier by the supply, which would result in undesired hum in the case of voice transmissions and an unnecessarily broad c.w. signal.
their use except where commercial a.c. lines are not available. Wherever such lines are available, it is universal practice to obtain low a.c. voltage for filaments and heaters from a stepdown transformer, and the required highvoltage d.c. by means of a transformer-recti-fiel-filter system. Such a system is shown in the block diagram of Fig. 7-1. Power from the

Fig. 7.1 - Block diagram show. ing the essemtialla of a transfornter. rectifier-filter system for obtaining filament and plate power from an a.c. line.

The filaments of tubes in a transmitter may be operated from a.c. Those in a receiver, excepting the power audio tubes, may be a.c. operated only if the cathodes are indirectly heated.

The comparatively high cost and inconvenience of batteries and d.c. generators preclude
a.c. line is fed to a transformer which steps the voltage up to that required. The steppedup voltage is changed to pulsating d.c, by passing through a rectifier - usually of the vacuum-tube type. The pulsations then are smoothed out to the required extent by a filtering system.

Rectifier Circuits

Half.Wave Rectifier

Fig. 7-2 shows three rectifier circuits covering most of the common applications in amateur equipment. Fig, 7-2 A is the circuit of a half-wave rectifier. During that half of the a.c. cycle when the rectifier plate is positive with respect to the cathode, current will flow through the rectifier and load. But during the other half of the cycle, when the plate is negative with respect to the cathode, no current can flow. The shape of the output wave is shown at the right. It shows that the current always flows in the same direction but that the flow of current is not continuous and is pulsating in amplitude.

The average output voltage - the voltage read by the usual d.c. voltmeter - with this circuit is 0.45 times the r.m.s. value of the a.c. voltage delivered by the transformer secondary. Because the frequency of the pulses in the output wave is relatively low, considerable filtering is required to provide adequately
smooth d.c. output, and for this reason this circuit is usually limited to applications where the current involved is small, such as in supplies for cathode-ray tubes and for protective bias in a transmitter.

Another disadvantage of the half-wave rectifier circuit is that the transformer must have a considerably higher primary volt-ampere rating (approximately 40 per cent greater) than in other rectifier circuits.

Full-Wave Center-Tap Rectifier

The most universally-used rectifier circuit is shown in Fig. 7-213. Being essentially an arrangement in which the outputs of two halfwave rectifiers are combined, it makes use of both halves of the a.e. cycle. A transformer with a center-tapped secondary, or two identical transformers with their secondaries connected in series (with proper polarization), is required with the circuit. When the plate of rectifier No. 1 is positive, current flows through

Fig. 7.2 - Fundamental vacuum-tube rectifier circuits. A-Malf. wave. B-Full-wave. C - Bridge.
the load to the center-tap. Current cannot flow through rectifier No. 2 because at this instant its cathode is positive in respect to its plate. When the polarity reverses, rectifier No. 2 conducts and current again flows through the load to the center-tap, this time through rectifier No. 2.

The average output voltage is 0.9 times the r.m.s. value of the voltage across half of the transformer secondary. For the same total secondary voltage, the average output voltage will be the same as that delivered with a half-wave rectifier. However, as can be seen from the sketch of the output waveform, the frequency of the output pulses is twice that of the halfwave rectifier. Therefore much less filtering is required. Since the rectifiers work alternately, each handles half of the average load current. Therefore the load current which may be drawn from this circuit is twice the rated load current of a single rectifier.

When two separate transformers are used in the full-wave circuit with their secondaries connected in series, the same derating mentioned in regard to the half-wave rectifier circuit must be observed.

Full-Wave Bridge Rectifier

Another full-wave rectifier circuit is shown in Fig. $7-2 \mathrm{C}$. In this arrangement, two rectifiers operate in series on each half of the cycle, one rectifier being in the lead to the load, the other being in the return lead. Over that portion of the cycle when the upper end of the transformer secondary is positive with respect to the other end, current flows through rectifier No. 1, through the load and thence through rectifier No. 2. During this period current cannot flow through rectifier No. 4 because its plate is negative with respect to its cathode. Over the other half of the cycle, current flows through rectifier No. 3, through the load and thence

through rectifier No. 4. The crossover connection keeps the current flowing in the same direction through the load. The output waveshape is the same as that from the simple center-tap rectifier circuit. The output voltage obtainable with this circuit is 0.9 times the r.m.s. vollage delivered by the transformer secondary. For the same total transformersecondary voltage, the average output voltage when using the bridge rectifier will be twice that obtainable with the center-tap rectifier circuit. However, when comparing rectifier circuits for use with the same transformer, it should be remembered that the power which a given transformer will handle remains the same regardless of the rectifier eireuit used. If the output voltage is doubled by substituting the bridge circuit for the center-tap rectifier circuit, only half the rated load current can be taken from the transformer without exceeding its normal rating. The value of load current which may be drawn from the bridge rectifier circuit is twice the rated d.c. load current of a single rectifier.

Rectifiers

Cold-Cathode Rectifiers

Tube rectifiers fall into three general classifications as to type. The cold-cathode type is a diode which requires no cathode heating. Certain types will handle up to 350 ma . at 200 volts d.c. output. The internal drop in most types lies between 60 and 90 volts. Rectifiers of this kind are
produced in both half-wave (single-diode) and full-wave (double-diode) types.

High-Vacuum Rectifiers

High-vacuum rectifiers depend entirely upon the thermionic emission from a heated cathode and are characterized by a relatively high
internal rosistance. For this reason, their application usually is limited to low power, atthough there are a few types designed for medium and high power in cases where the relatively high internal voltage drop may be tolerated. This high internal resistance makes them less susceptible to damage from tomporary overload and they are free from the bothersome electrical noise sometimes associated with other typers of rectifiers.

Some rectifiers of the high-vacuum fullwave type in the so-called rocoiver-tube chass will handle up to $2 \overline{0} 0$ mat at 100 to $\bar{j} 00$ volts d.c. output. Those in the higher-power class ean be used to handle up to 200 ma. at 2000 volts d.c. in full-wave rircuits. Nost lowpower high-vacuum rectifiers are produced in the full-wave type, while those for greater power are invariably of the half-wave type.

Mercury-Vapor Rectifiers

In mereury-vapor rectifiers the internal resistance is reduced by the introduction of a small amount of moreury which vaporizes un-

Fip, F-3 - Connecting rectifiers in parallel for heavier currents. K_{1} and R_{2} should have the same value, between 50 and 100 olums.
der the heat of the filament, the vapor ionizing upon the application of voltage. The voltage drop through a rectifier of this type is practically constant at approximately 1.5 volts regardless of the load eurrent. Tubes of this type are produced in sizes that will handle any voltage or current likely to be encountered in amateur transmitters. For high power they have the advantage of eheapness, Reetifiers of this type, however, have a tendency toward a type of oscillation which produces noise in near-by receivers. This can usually be eliminated by suitable filtering.

As with high-vacuum rectifiers, full-wave types are available in the lower-power ratings only. For higher power, two tubes are required in a full-wave circuit.

Selenium Rectifiers

Selenium rectifiers are availathe which make it possible to design a power supply capable of delivering up to 400 or $4 \overline{5} 0$ volts, 200 ma . These units have the advantage of compactness as well as low internal voltage drop (about 5 volts). However, to limit the charging current with condenser input, a resistance of 25 to 100 ohms should be used in series with the rectifier. They may be substituted in any of the hasic cireuits shown in Fig. 7-2, the terminal marked " + " or "cathode" corresponding
to the cathode in these circuits. Circuits in which the selonium rectifier is particularly adaptable are shown later in Figs. 7-2l through 7-23. Since the develop little heat if operated within their ratings, they are esperially suitable for use in equipment requiring mininum temperature variation.

Typical ratings are listed in the table in the data chapier.

Rectifier Ratings

Vacuum-tube rectifiers are subject to limitations as to breakdown voltage and currenthandling capability, Some types are rated in terms of the maximum r.m.s. voltage which should be applied to the rectifier plate, while others, particularly mereury-vapor types, are rated according to maximum inverse patak voltage - the peak voltage between plate and rathode during the time the tube is not condueting. In the rireuits shown in Fig. 7-2, the inverse peak voltage across each rectifier is 1.4 times the r.m.s. value of the voltage delivered by the entire transformer secondary.

The maximum d.e. output current is the maximum load current that can be drawn safcly from the output of the filter. The value listed in tube tables is the safe maximum under average conditions. The exact value is dependent upon the nature of the filter that follows the rectifier.

A more signifieant rating is the maximum peak plate current. It is the peak value of the current pulses passing through the rectifier. This peak value can be much greater than the load current, especially if a large condenser is placed across the output of the rectifier because of the large instantaneous charging eurrent drawn by the condenser if there is no impedance between the rectifier and the condenser. These peaks do not run as high with high-vacuum-type rectifiers as they do with rectifiers of the mercury-vapor type because of the relatively high series resistance of the former.

Rectifiers may be connected in parallel for eurrent higher than the rated current of a single unit. This includes the use of the sections of a double diode for this purpose. Equalizing resistors of 50 to 100 ohms should be connected in series with each plate, as shown in Fig. 7-3, as a measure toward maintaining an equal division of current.

Operation of Rectifiers

In operating rectifiers requiring filament or cathode heating, care should be taken to provide the correct filament voltage at the tube terminals. Low filament voltage can cause excessive voltage drop in high-vacuum rectifiers and a considerable reduction in the inverse peak-voltage rating of a mercury-vapor tube. Filament connections to the rectifier socket should be firmly soldered, particularly in the case of the larger mercury-vapor tubes whose filaments operate at low voltage and high
current. The socket should be seleeted with care, not only as to eontart surface but also as fo insulation, sinve the filament usuatly is at full output voltage to gromed. Bakelite sorkets will serve at voltages up to 500 or so, but ceramie sockets, well spaced from the chassis, always should be used at the higher voltages. Special filament transformers with high-voltage insulation between primary and secondary are required for rectifiers operating at poten-
tials in excess of loon volts inverse peak.
The rectifier tubes should be placed in the equipment with adequate free spate surrounding them to provide for proper ventilation. When mercury-vapor tubes are first placed in service, they should be allowed to run only with filament voltage for ten minutes before applying high voltage. . Ifter that, a delay of 30 seronds is recommended each time the filament is turned on.

Filters and Transformers

The pulsating d.e. wave shown in Fig. $7-2$ is not sufficiently smooth to prevent modialittion hum. A filter consisting of chokes and condensers, ats shown in Fig. $7-4$, is connected between the rectifier output and the load cireuit (transmitter or reveiver) to smooth out the wave to the required degree.

The filter makes use of the energy-storage properties of the inductance of the choke and the capacitance of the condenser, energy being stored over the period during which the voltage and current are rising and releasing it to the load eircuit during the period when the amplitude of the pulse is falling, thus leveling off the output by both lopping off the peaks and filling in the valleys.

Ripple Frequency and Voltage

The pulsations in the output of the reetifier can be considered to be the resultant of an alternating current superimposed upon a steady direct current. From this viewpoint, the filter may be considered to consist of shunting combensers which short-circuit the a.c. component while not interfering with the fow of the d.c. component, and series chokes which pass d.e. reatily but which impede the flow of the a.c. component.

The altemating component is called the ripple. The effectiveness of the filter can be expressed in terms of per cent ripple which is the ratio of the r.m.s. value of the ripple to the d.c. value in terms of percentage. For c.w. transmitters, a reduction of the ripple to 5 per cent is considered alequate. The ripple

fig. 7. 4 - Choke-input filter circuits. 1 - Singleseer. iom. H - Double asection.
in the out put of power supplies for voice transmithers and VFOs should be reduced to $0.2 \overline{3}$ per cent or less. High-gain speech amplifiers and receivers may require a reduction to as: low as 0.1 per rent to prevent objectionable ripple hum.

Ripple frequency is the frequency of the putsations in the rectifier output wave - the numbor of pulsations per second. The frequenes of the ripple with half-wave rectifiers is the same as the frequency of the line supply - 60 eyelos

Fig. 7-i - Graph showing combinations of inductance and raparitance that may be used to reduce ripute to 5 pers rent with a single-siction chohe-input filter.
with 60-cyele supply. Since the output pulses are doubled with a full-wave rectifier, the ripple frequeney is doubled - t.o 120 cycles with f0-eycle supply.

The amount of filtering (values of inductance and capacitance required to give adequate smoothing depends upon the ripple frequency, more filtering being required as the ripple frequeney is lower.

CHOKE-INPUT FILTERS

The filters shown in Fig. 7-4 are known as choke-input filters because the first element in the filter is a choke. This torm is used in contrast to a condenser-input filter in which the first element is a condenser.

The pereentage ripple output from a singlesection filter (Fig. 7-4A) may be determined to a close approximation. for a ripple frequency
of 120 cycles, from the following formula:

where L is in h, and C in $\mu \mathrm{fd}$.
Example: $L=5 \mathrm{~h}, \mathrm{C}=4 \mu \mathrm{fd}$.
Percentage ripple $=\frac{100}{(5)(4)}=\frac{100}{20}=5$ per cent.
Fig. 7-5 shows various other combinations of inductance and capacitance which will reduce the ripple to 5 per cent - the required minimum reduction for a supply for a c.w. transmitter.

> Example: With a $10-\mathrm{h}$, choke, what capacitance is required to reduce the ripple to 5 per cent?
> Referring to Fig. $7-5$, following the $10-\mathrm{h}$. line horizontally, it interscets the ripple line at the $2-\mu f d$. vertical line. Therefore the filter capacitance should be $2 \mu \mathrm{fd}$.
> Example: With a 4 - $\mu \mathrm{fd}$, condenser, what choke inductance is requirch to reduce the ripple to : per cent?
> Follow the vertical $C=4-\mu \mathrm{ffl}$. line to the point where it interscets the ripple line; then follow the horizontal line at that point to read 5 h ., the required inductance.

In the case of a half-wave rectifier, the values of inductance and capacitance in the filter arrived at on the basis of a ripple frequency of 120 cycles must be doubled. It requires twice as much inductance and capacitance for the same degree of filtering with the half-wave circuit.

From the consideration of ripple reduction, any combination of inductances and capacitances which will give the required product and sum respectively will give the same ripple reduction. However, two other factors must be taken into consideration in the design of the filter. These are the peak rectifier current and voltage regulation.

Voltage Regulation

Unless the power supply is designed to prevent it, there may be a considerable difference between the output-terminal voltage of the supply when it is running free without an external load and the value when the external load is connerted. Application of the load usually will be accompanied by a reduction in terminal voltage and this must be taken into consideration in the design of the supply. Regulation is commonly expressed as the percentage change in output voltage between noload and full-load conditions in relation to the full-load voltage.

$$
\text { Per cent regulation }=\frac{100\left(E_{1}-E_{2}\right)}{E_{2}}
$$

Example: No-load voltage $=E_{1}=15.50$ volts. Full-load voltage $=E_{2}=1230$ volts.
Percentage regulation $=\frac{100(1550-1230)}{1230}$

$$
=\frac{32,000}{1230}=26 \text { per cent. }
$$

With proper design and the use of conserva-tively-rated components, a regulation of 10 per cent or less at the output terminals of the supply unit is possible with a choke-input filter. Good voltage regulation may or may not be of primary importance depending upon the nature of the load. If the load is constant, as in the case of a receiver, speech amplifier or the stages of a transmitter which are not keyed, voltage regulation, so far as that contributed by filter design is concerned, may be of secondary importance. The highly-stabilized voltage desirable for high frequency-stability of oscillators in receivers and transmitters is obtained by other means. Power supplies for the keved stage of a c.w. transmitter and the stages following, and for Class 13 modulators, should have good regulation.

Bleeder Resistor

In general, a bleeder resistor is a resistance connected across the output of a filter to supply a minimum load (see R, Fig. 7-4). It also serves as a safety measure to discharge the filter condensers when the supply is turned off. The bleeder resistance need not be composed entirely of a resistor. Any constant load on the supply may serve the same purpose. In this case, a resistor of a high value should be used as a protective device to discharge the filter condensers.

The Input Choke

The rectifier peak current and the powersupply voltage regulation depend almost entirely upon the inductance of the input choke in relation to the load resistance. The function of the choke is to raise the ratio of average to peak current (by its energy storage), and to prevent the d.c. output voltage from rising above the average value of the a.c. voltage applied to the rectifier. For both purposes, its impedance to the flow of the a.c. component must be high.

The minimum value of input-choke inductance which prevents the d.c. output voltage from rising above the average of the rectified a.c. wave is the critical inductance. For $120-$ eyele ripple, it is given approximately by:

$$
L_{\text {crit. }}=\frac{\text { Load resistance (ohms) }}{1000}
$$

For other ripple frequencies, the inductance required will be the above value multiplied by the ratio of 120 to the actual ripple frequency.

With inductance values less than critical, the d.c. output voltage will rise because the filter tends to act as a condenser-input filter.

An inductance of twice the critical value is called the optimum value. With this value, the peak plate current of one tube in a center-tap rectifier will be about 10% higher than the d.c. current taken from the supply. To obtain good voltage regulation and, at the same time permit maximum d.c. current to be drawn from the reetifier without exceeding its peak-current rating, the input choke should have the optimum
value at full load and the critical value with bleeder only.

Swinging Chokes

The formula for critical inductance indicates that the minimum inductance required varies widely with the load resistance. In the case where there is no load except the bleeder or the power supply, the critical inductaner required is the highest; much lower values are satisfactory when the full-load current is being delivered. Since the inductance of a choke tends to rise as the direct current flowing through it is decreased, it is possible to effect an economy in materials by designing the choke to have a "swinging" characteristic so that it has the required critieal inductance value with the bleeder load only, and about the optimum inductance value at full load. If the bleeder resistance is 20,000 ohms and the full-load resistance (including the bleeder) is 2500 ohms, a choke which swings from 20 henrys to 5 henrys over the full output-current range will fulfill the requirements. With any given input choke, the bleeder resistance (or other steady minimum load) should be 1000 times the maximum inductance of the choke in henrys.

Example: With a swinging choke of 5 to 20 h., the bleder resist ance (or the resultant of the bleeder phus other steady loan in parallel) should not exceed (20) (1000) $=20,000$ ohms.

Output Condenser

If the supply is intended for use with an audio-frequency amplifier, the reactance of the last filter condenser should be small (20 per cent or less) compared with the other a.f. resistance or impedance in the circuit, usually the tube plate resistance and load resistance. On the basis of a lower a.f. limit of 100 cycles for specch amplification, this condition usually is satisfied when the output capacitance (last filter capacitor) of the filter is 4 to $8 \mu \mathrm{fd}$., the higher value of capacitance being used in the case of lower tube and load resistances.

Resonance

Resonance effects in the series circuit across the output of the rectifier which is formed by the first choke (L_{1}) and first filter condenser

Fig. 7-6- Diagram showing various voltage drops that must be taken into consideration in determining the required transformer voltage to deliver the desired ontput voltage.

Fig. 7.7 - Ripple-reduction factor for varions values of L and C in filter section. Output ripple $=$ input ripple \times ripple factor.
$\left(C_{1}\right)$ must be avoided, since the ripple voltage would build up to large values. This not only is the opposite action to that for which the filter is intended, but also may cause excessive rectifier peak currents and abnormally-high inverse poak voltages. For full-wave reetification the ripple frequency will be 120 cycles for a fo-cycle supply, and resonance will occur when the product of choke inductance in henrys times condenser capacitance in microfarads is equal to 1.77. The corresponding figure for 50 -cycle supply (00 -cycle ripple frequency) is 2.53 , and for 25 -cycle supply (50-cycle ripple frequency) 13.5. At least twice these products of inductance and capacitance should be used to ensure against resonance efferts.

Output Voltage

Provided the input-choke inductance is at least the critical value the output voltage may be calculated quite closely by the following equation:

$$
E_{0}=0.9 E_{\mathrm{t}}-\frac{\left(I_{\mathrm{b}}+I_{\mathrm{L}}\right)\left(R_{1}+R_{2}\right)}{1000}-E_{\mathrm{r}}
$$

where E_{o} is the output voltage; E_{t} is the r.m.s. voltage applied to the rectifier (r.m.s. voltage between center-tap and one end of the secondary in the case of the center-tap rectifier); I_{b}, and I_{L}, are the bleeder and load currents, respectively, in milliamperes; R_{1} and R_{2} are the resistances of the first and second filter chokes; and E_{r} is the drop between rectifier plate and cathode. These voltage drops are shown in Fig. 7-6. At no load I_{L} is zero, hence the no-load voltage may be calculated on the basis of bleeder current only. The voltage regulation may be determined from the no-load and full-load voltages using the formula previously given.

Fig. 7-8 - Condenser-input filter rireuits. A - Singlesection, B - Double-section.

Additional Filtering

The graph of Fig. 7-7 shows the factor by which the ripple percentage of the first section may be reduced by the addition of one or more sections of filter, each similar in configuration to the first rection.

Example:
Ripple after first wection $=$ in per cent .
L in second section $=10 \mathrm{hy}$.
C in seeond section $=8 \mu \mathrm{fd}$.
$L \times C=80$.
From Fig. $7-7$, the reduction factor is approximately 0.019 . Therefore the ripple after the second section will be $5 \times 0.019=0.095$ per cent.

Fig. 7-9-Graplı showing the relationship between the d.c. load eurrent and the rectifier peak plate current with condenser input for various values of load and inplit resistance.

CONDENSER-INPUT FILTERS

Condenser-input filters are shown in liig. 7-8. In comparison with a properly-designed input-choke filter, the d.c. output voltage is higher for most values of load, the ratio of peak rectifier plate current to d.c. output current

Fig. 7-10-Chart showing approximate ranin of d.e. output voltage across filter input condenser to transformer r.m.s. sccondary voltage for different load and input resistanees.
is greater and the voltage regulation is considerably poorer.

The approximate performance of a filter consisting of the input eondenser only is indicated in Figs, 7-4, 7-10 and 7-11, Jig. 7-9) shows the relationship between rectifier peak plate current and d.c. load current for various values of load and input resistance. Input resistance is the sum of transformer and reetifier resistances. In each case a raparitance of $4 \mu \mathrm{fd}$. or greater is assumed, simee the characteristics change relatively little with higher values of capacitance.

Fig. $7-10$ shows the ratio of d.c. output voltage to the transformer r.m.s. voltage. In this respect, too, the change with higher capacitance values is small.

Fig. 7-11 shows the approximate percentage ripple across the input eondenser for capacitances of 4 and $8 \mu \mathrm{fd}$. The change in ripple voltage with normal differences in input resistance is relatively slight.

Further reduction in ripple may be obtained by adding sections of scries inductance and parallel capacitance, as shown in Fig. 7-s.

The reduction factor from Fig. 7-7 applies in this case also.
Example:
Input condenser - $4 \mu \mathrm{fd}$.
Output condenser $-8 \mu \mathrm{fd}$.
Input resistance - 200 ohms.
Transformer r.in.s. voltage -400 .
Load resistance (including resistance of filter choke) - 5000 ohms.

From Fig. 7-10, $\frac{\text { D.c, volts output }}{\text { Transforiner r,m,s, }}=1,17$.
D.c. volts output $=400 \times 1,17=468$ volts.

From Fig. 7-9, $\frac{\text { Peak rectifier current }}{\text { D.c. load current }}=4$,
D.c. load current $=\frac{468}{5000}=93.6 \mathrm{ma}$.

Peak rectifier current $=93.6 \times 4=374 \mathrm{ma}$.
From Fig. $7-11$, ripple percentage across input condenser $=$ approximately 8 per cent.
$L \times C=8 \times 20=160$.
From Fig. 7-7, reduction factor $=0.009$,
Output ripple percentage $=8 \times 0.009=$ 0,072 per cent.

RATINGS OF FILTER COMPONENTS

Nithough filter condensers in a choke-input filter are subjected to smaller variations in d.c. voltage than in the condenserinput filter, it is advisable to use condensers rated for the peak transformer voltage in case the bleeder resistor should burn out when there is no load on the power supply, since the voltage then will rise to the same maximum value as it would with a filter of the condenserinput type.
In a condenser-input filter, the condensers should have a working-voltage rating at least as high, and preferably somewhat higher, than the peak-voltage rating of the transformer. Thus, in the case of a center-tap rectifier having a transformer delivering 550 volts each side of the center-tap, the minimum safe condenser voltage rating will be 550×1.41 or 775 volts. An 800 -volt condenser should be used, or preferably a 1000 -volt unit to allow a margin of safety.

Filter condensers are made in several different types. Electrolytic condensers, which are available for voltages up to about s00, combine high capacitance with small size, since the dielectric is an extremely-thin film of oxide on aluminum foil. Condensers for higher voltages usually are made with a dielectric of thin paper impregnated with oil. The working voltage of a condenser is the voltage that it will withstand continuously.
The input choke may be of the swinging type, the required minimum no-load and full-load inductance values being calculated as described above. For the second choke (smoothing choke) values of 10 to 20 henrys ordinarily are used. Since chokes usually are placed in the positive leads, the negative being grounded, the windings should be insulated from the core to withstand the full d.c. output voltage of the supply and be capable of handling the required load current.

Fig. 7-11 - Chart showing approximate 120 -cycle percentage ripple across filter input condenser for varions loads.

Filter chokes or inductances are wound on iron cores, with a small gap in the core to prevent magnetic saturation of the iron at high currents. When the iron becomes saturated its permeability decreases, consequently the inductance also decreases. Despite the air gap, the inductance of a choke usually varies to some extent with the direct current flowing in the winding; hence it is necessary to specify the inductance at the current which the choke is intended to carry. Its inductance with little or no direct current flowing in the winding may be considerably higher than the value when full load current is flowing.

THE PLATE TRANSFORMER

Output Voltage

The output voltage which the plate transformer must deliver depends upon the required d.c. load voltage and the type of filter circuit.

With a choke-input filter, the required r.m.s. secondary voltage (each side of center-tap for a center-tap rectifier) can be calculated by the equation:

$$
E_{\mathrm{t}}=1.1\left[E_{\mathrm{o}}+\frac{I\left(R_{1}+R_{2}\right)}{1000}+E_{\mathrm{r}}\right]
$$

where E_{0} is the required d.c. output voltage, I is the load current (including bleeder current) in milliamperes, R_{1} and R_{2} are the d.c. resistances of the chokes, and E_{r} is the voltage drop in the rectifier. E_{t} is the full-load r.m.s. secondary voltage; the open-cireuit voltage usually will be 5 to 10 per cent higher than the full-load value.

The approximate transformer output voltage required to give a desired d.c. output voltage with a given load with a condenserinput filter system can be calculated with the help of Fig. 7-10.

Example:
Required d.e. output volts - 500
Load eurrent to be drawn - 100 ma
Load resistance $=500=5000$ ohms. $\overline{0.1}$
If the rectifier resistance is 200 ohms, Fig. 7-10 shows that the ratio of d.c. volts to the required transformer r.m.s. voltage is approximately 1.15 .

The required transformer terminal voltage under load with chokes of 200 and 300 ohms is

$$
\begin{aligned}
E_{\mathrm{t}} & =\frac{E_{\mathrm{o}}+I\left(\frac{R_{1}+R_{2}}{1000}\right)+E_{r}}{1.15} \\
& =\frac{500+100\left(\frac{200+300}{1000}\right)+200}{1.15} \\
& =\frac{570}{1.15}=495 \text { volts. }
\end{aligned}
$$

Volt-Ampere Rating

The volt-ampere rating of the transformer depends upon the type of filter (condenser or choke input). With a condenser-input filter the heating effect in the secondary is higher because of the high ratio of peak to average current, consequently the volt-amperes consumed by the transformer may be several times the watts delivered to the load. With a choke-input filter, provided the input choke has at least the eritical inductance, the secondary volt-amperes can be calculated quite closely by the equation:

$$
\text { Sec. } V . A .=0.00075 E I
$$

where E is the total r.m.s, voltage of the secondary (between the outside ends in the case of a center-tapped winding) and I is the d.c. output current in milliamperes (load current plus bleeder current). The primary voltamperes will be 10 to 20 per cent higher because of transformer losses.

Rewinding Filament Transformers

Although the home winding of high-voltage transformers is a task that few amateurs undertake these days, the rewinding of a smalltransformer secondary to give some desired filament voltage is not difficult. It involves a matter of only a small number of turns and the wire is large enough to be handled easily. Often a broadeast-receiver power transformer with a burned-out high-voltage winding, but with the primary winding intact, can be converted into an entirely satisfactory filament transformer without great effort.

The primary volt-ampere rating of a transformer to be rewound may be taken from the label on the transformer or from the manufacturer's catalogue. This will indicate whether or not the transformer will be capable of handling the necessary power. The secondary voltampere rating will be ten to twenty per cent less than the primary rating. The product of the voltage and the number of amperes required from the new filament winding, plus that for any other secondaries that may be
kept in use, should not exceed the secondary volt-ampere rating, unless the builder is willing to accept a lower safety factor.

Before disconnecting the winding leads from their terminals, each should be marked for identification. In removing the core laminations, care should be taken to note the manner in which the core is assembled, so that the reassembling will be done in the same manner. Some transformers have secondaries wound over the primary, while in others the order is reversed. In case the secondaries are on the inside, the turns can be pulled out from the center after slitting and removing the fiber core.

The turns removed from one of the original filament windings of known voltage should be carefully counted as the winding is removed. This will give the number of turns per volt and the same figure should be used in determining the number of turns for the new secondary. For instance, if the old filament winding was rated at 5 volts and has 20 turns, this is $20 / 5=4$ turns per volt. If the new secondary is to deliver 7.5 volts, the required number of turns on the new winding will be $7.5 \times 4=30$ turns.

The Copper-IVire Table in the chapter of miscellaneous data shows the current-carrying capacity of various sizes of wire at a cross section of 1500 circular mils per ampere. This is a conservative rating. A cross section of 1000 circular mils per ampere is closer to the figure used for most amateur-service transformers. In cheaper broad-cast-recoiver transformers, the figure may run as low as 500 . The current-carrying capacity at, 1000 circular mils per ampere may be determined hy pointing off three derimal places from the right in the figures in the third column of the table showing circular-mil area. As an example, No. 18 wire has a capacity of 1.7 amperes at 1500 circular mils per ampere, 2.58 amperes at 1000 circular mils per ampere and 5.16 ampores at 500 circular mils per ampere. The choice of rating to be used in most cases will be decided by the size of available wire and the available winding space. If the transformer being rewound is a filament transformer, it may be necessary to choose the wire size carefully to fit the small available space. On the other hand, if the transformer is a power unit, with the high-voltage winding removed, there should be plenty of room for a size of wire that will conservatively handle the required current.

The insulation to be used between the primary and secondary windings (and also between the secondary winding and the core if the secondary is on the inside) will depend on whether the transformer is to be used to supply r.f. tubes or rectifier tubes in a highvoltage supply. A few layers of linen paper should be sufficient for the former service, but insulating cambric sheet should be used if the voltage between primary and secondary runs more than 1000 volts.

Voltage Dropping

Series Voltage-Dropping Resistor

Certain plates and screens of the various tubes in a transmitter or receiver often require a variety of operating voltages differing from the output voltage of available power supplies. In most cases, it is not ceonomically feasible to provide a separate power supply for each of the required voltages. If the current drawn by an electrode, or combination of electrodes operating at the same voltage, is reasonably constant under normal operating conditions, the required voltage may be obtained from a supply of higher voltage by means of a voltagedropping resistor in series, as shown in Fig. $7-12 \mathrm{~A}$. The value of the series resistor, R_{1}, may be obtained from Ohm's Law, $R=\frac{E_{\mathrm{d}}}{I}$, where E_{d} is the voltage drop required from the supply voltage to the desired voltage and I is the total rated current of the load.

Example: The plate of the tube in one stage and the screens of the tubes in two other stages require an operating voltage of 250 . The nearest available supply voltage is 400 and the total of the rated plate and screen currents is 75 ma . The required resistance is

$$
R=\frac{400-250}{0.075}=\frac{150}{0.075}=2000 \mathrm{ohms}
$$

The power rating of the resistor is obtained from P (watts) $=I^{2} R=(0.075)^{2}(2000)=11.2$ watts. $A 25$-watt resistor is the nearest safe rating to be used.

Voltage Dividers

The regulation of the voltage obtained in this manner obviously is poor, since any change in current through the resistor will cause a di-rectly-proportional change in the voltage drop across the resistor. The regulation can be improved somewhat by connecting a second resistor from the low-voltage end of the first to the negative power-supply terminal, as shown in Fig. 7-1213. Such an arrangement constitutes a voltage divider. The second resistor, R_{2}, acts as a constant load for the first, R_{1}, so that any variation in current from the tap becomes a smaller percentage of the total current through R_{1}. The heavier the current drawn by the resistors when they alone are connected across the supply, the better will be the voltage regulation at the tap.

Such a voltage divider may have more than a single tap for the purpose of obtaining more than one value of voltage. A typical arrangement is shown in Fig. $7-12 \mathrm{C}$. The terminal

Fig. 7-12 - A - Series voltage-dropping resistor. B Simple voltage divider, C - Multiple divider circuit.

$$
R_{3}=\frac{E_{\mathrm{t}}}{I_{\mathrm{b}}} ; R_{4}=\frac{E_{2}-E_{1}}{I_{\mathrm{b}}+I_{1}} ; R_{5}=\frac{E-E_{2}}{I_{\mathrm{b}}+I_{1}+I_{2}}
$$

voltage is E, and two taps are provided to give lower voltages, E_{1} and E_{2}^{\prime}, at currents I_{1} and I_{2} respectively. The smaller the resistance between taps in proportion to the total resistance, the smaller the voltage between the taps. For convenience, the voltage divider in the figure is considered to be made up of separate resistances R_{3}, R_{4}, R_{5}, between taps. R_{3} carries only the bleeder current, $I_{\mathrm{b}} ; R_{4}$ carries I_{1} in addition to $I_{\mathrm{b}} ; R_{5}$ carries I_{2}, I_{1} and I_{b}. To calculate the resistances required, a bleeder current, I_{b}, must be assumed; generally it is low compared with the total load current (10 per cent or so). Then the required values can be calculated as shown in Fig. 7-12C, I being in decimal parts of an ampere.

The method may be extended to any desired number of taps, each resistance section being calculated by Ohm's Law using the voltage drop across it and the total current through it, The power dissipated by each section may be calculated either by multiplying I and E or I^{2} and R.

Voltage Stabilization

Gaseous Regulator Tubes

There is frequent need for maintaining the voltage applied to a low-voltage low-current circuit at a practically constant value, regardless of the voltage regulation of the power supply or variations in load current. In such
applications, gaseous regulator tubes (VR10530 , VR150-30, etc.) can be used to good advantage. The voltage drop across such tubes is constant over a moderately wide current range. Tubes are available for regulated voltages of $150,105,90$ and 75 volts.

The fundamental circuit for a gaseous regulator is shown in Fig. 7-13.A. The tube is conneeted in series with a limiting resistor, R_{1}, across a source of voltage that must be higher than the starting voltage. The starting voltage is about 30 per cent higher than the operating voltage. The load is connected in parallel with the tube. For stable operation, a minimum tube current of 5 to 10 ma . is required. The maximum permissible current with most types is 40 ma ; consequently, the load current cannot exceed 30 to 35 ma . if the voltage is to be stabilized over a range from zero to maximum load current.

The value of the limiting resistor must lie between that which just permits minimum

Fig. 7-13 - Voltage-statrilizing circuits using V K tubes.
tube current to flow and that which just passes the maximum permissible tube current when there is no load current. The latter value is generally used. It is given by the equation:

$$
R=\frac{1000\left(E_{\mathrm{s}}-E_{\mathrm{r}}\right)}{I}
$$

where R is the limiting resistance in ohms, E_{3} is the voltage of the source across which the tube and resistor are connected, E_{r} is the rated voltage drop across the regulator tube, and I is the maximum tube current in milliamperes (usually 40 ma .).

Fig. 7-13B shows how two tubes may be used in series to give a higher regulated voltage than is obtainable with one, and also to give two values of regulated voltage. The limiting resistor may be calculated as above, using the sum of the voltage drops across the two tubes for E_{r}. Since the upper tube must carry more current than the lower, the load connected to the low-voltage tap must take small current. The total current taken by the loads on both the high and low taps should not exceed 30 to 35 milliamperes.

Voltage regulation of the order of 1 per cent can be obtained with regulator circuits of this type.

Electronic Voltage Regulation

A voltage-regulator circuit handling higher voltages and currents than the gaseous tubes, and also having the feature that the output voltage can be varied over a rather wide range, is shown in Fig. 7-14. A high-gain voltageamplifier tube, usually a sharp cut-off pentode, is connected in such a way that a small change in the output voltage of the power supply causes a change in grid bias, and therehy a
corresponding change in plate current.. Its plate current flows through a resistor $\left(R_{5}\right)$, the voltage drop across which is used to bias a second tube - the "regulator" tube - whose platrcathode circuit is connected in series with the load circuit. The regulator tube therefore functions as an automatically-variable series resistor. Should the output voltage incroase slightly, the bias on the cont rol tube will become more positive, causing the plate current of the control tube to increase, and the drop across R_{5} to increase correspondingly. The bias on the regulator tube therefore becomes more negative and the effective resistance of the regulator tube increases, causing the terminal voltage to drop. A decrease in output voltage causes the reverse action. The time latg in the action of the system is negligible, and with proper circuit constants the output voltage can be held within a fraction of a per cent throughout the useful range of load current and over a wide range of supply voltages.

An essential in this system is the use of a constant-voltage bias source for the control tube. The voltage change which appears at the grid of the tube is the difference bet ween a fixed negative bias and a positive voltage which is taken from the voltage divider across the output. To get the most effective control, the negative bias must not vary with plate current. The most satisfactory type of bias is a dry battery of 45 to 90 volts, but a gascous regulator tube (VR75-30) or a neon bulb of the type without a resistor in the base may be used instead. If the gas tube or neon bulb is used, a negative-resistance type of oscillation may take place at audio frequencies or higher, in which case a condenser of $0.1 \mu \mathrm{fd}$. or more should be connected across the tube. A similar condenser between the control-tube grid and cathode also is frequently helpful in this respect.

The variable resistor, R_{3}, is used to adjust

Fig. 7.14 - Electronic voltage regulator. The regulator tube is ordinarily a 2 A 3 or a number of them in parallel, the control tube a 6SJ7 or similar tyre. The filament Iransformer for the regulator tube must be insulated for the plate voltage, and cannot supply current to other tubes when a filament-type regulator tube is used. Typical values: $K_{1}, 10,000$ ohins; $R_{2}, 22,000$ ohnis; $R_{3}, 10,000$. ohm potentionteter; $R_{4}, 4700$ ohms; $K_{s,} 0.47$ megohm.

Fig. 7.15 - A heavy-duty electronically regulated power supply. The mnit is assembled on a $6 \times 14 \times 3$-inch chasis fittod with an enclosing cover. The five tuloraeross the rear, left to right, are the 6.1506 regulator, the 6.576 control tulse, the V 1 - 10.5 bias regnlator, the $1-1$ bias rectifier and the 514 B power rectifier. In the foregronnol are the two filter chokes and the power trans. former. The remainder of the compment. are mounted moderneath.

the bias on the control tube to the proper operating value. It also serves as an output voltage control, setting the value of regulated voltage within the existing operating limits.

The maximum output voltage obtainable is equal to the power-supply voltage minms the minimum drop through the regulator tube. This drop is of the order of 50 volts with the tubes ordinarily used. The maximum eurrent also is limited by the regulator tube: 100 milliamperes is a safe value for the 2A3. Two or more regulator tubes may be connected in parallel to increase the current-rarrying capac-
ity, without need for changes in the eircuit arrangement.

A heavy-duly regulated supply of this type is showen in Fig. 7-15. The cirenit is shown in Fig. 7-16. A 6AS7G dual power triode is used as the regulator which is controlled by a $6 S J 7$. Reference bias is furnished by means of a $1-\mathrm{V}$ (or 6 W 4 GT) half-wave reetifier whose output is regulated by a VIR-105 regulator tube. The supply is capable of delivering 150 mas. over a range of 120 to 300 volts. Filamett voltage and an external connection from the bias supply are also brought out to the output sorket.

Fig. 7-16-Cireuit diagram of the electronically-regulated power supply.
$\left.\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-16-\mu \mathrm{fd} .4 .5\right)$.volt electrolyic.
$R_{1}-0.17$ megohm. $1 / 2$ watt.
$k_{2}-0.18$ megohm, $1 / 2$ watt.
$R_{3}-75,000$-ohm potentioneter.
I_{4} - 0.1 megohm, $1 / 2$ watt.
$\mathrm{R}_{5}-50,000$ ohms, 10 watts.
$\mathrm{R}_{6}-2 \cdot \mathrm{t}, 000$ ohms, 2 watts.
$\mathrm{R}_{7}, \mathrm{R}_{8}, \mathrm{~K}_{9}-2500$ chmes, 10 watts.
Li $-3.5 / 13-h_{y} y .150-m a$. filter choke (Stancor CI-18).
L_{2} - 7-hy. 150 -ma, filter choke (Stancor C:1710).
S_{1} - S.p.s.t. toggle switch.
'I' - Filament transformer: 6.3 volts, 3 amp. (Stancor P-501 1).
T2 - I'ower transformer: 375-037.5 volts, 150 ma.; 5 volts, 3 amp.; 6.3 volts, 5 amp. (Stancor P'6014).
T_{3} - Filament transformer: 6.3 volts, 1.2 amp. (Stancor 1'-6134).

Bias Supplies

As discussed in the chapter on high-irequency transmitters, the chief funetion of a bias supply for the r.f. starges of a transmitter is that of providing protective bias, although under certain circumstances, a bias supply, or pack, as it is sometimes called, ean provide the operating bias if desired.

Simple Bias Packs

Fig. 7-17A shows the diagram of a simple bias supply. R_{1} should be the reeommender grid leak for the amplifier tube. No grid leak should be used in the transmitter with this type of supply. The output voltage of the supply, when amplifier grid eurrent is not flowingr. should be some value between the bias required for plate-eurrent cut-off and the recommended operating hias for the amplifier tube. The transormer peak voltage (1.4 times the r.m.s. value) should not exceed the reeommended operating-bias value, otherwise the output voltage of the pack will soar above the operating-hias value with rated grid current.

This soaring can be reduced to a considerable extent by the use of a voltage divider across

(E)

(F)

Fig. 7-18 - Mhnstrating the use of VR tubes in stabilizing protective-bias supplics. K_{1} is a resistor whose value is adjusted to limit the current through cach VR fube to 5 ma . before anplifier excitation is applied. R and K_{2} are current-epualizing resistors of 50 to 100 ohms .
the transformer secondary, as shown at B. Such a system can be used when the transformer voltage is higher than the op-erating-bias value. The tap on R_{2} should be adjusted to give amplifier cut-off bias at the output terminals. The lower the total value of R_{2}, the lass the soaring will be when grid current flows.

A full-wave circuit is shown in Fig. 7-17C. R_{3} and R_{4} should have the same total resistance and the taps should be adjusted symmetrically. In all cases, the transformer must be designed to furnish the current drawn by these resistors plus the current drawn by R_{1}.

Fig. 7 - 14 - (:ircuit diagram of an electronically-regulated bias supply. $\mathrm{C}_{1}-20-\mu \mathrm{fd}$. 150 .wolt elvetrolytic. $\mathrm{C}_{2}-20-\mu \mathrm{fd}$. 150 -volt electrolytic. $R_{1}-5000$ olnms, 25 watts.
R_{2} - 22,000 ohms, $1 / 2$ watt.
K_{3} - 68,000 ohms, $1 / 2$ watt.
$11_{4}-0.2^{-}$megohn, ${ }^{2} \frac{2}{2}$ watt.
$\mathrm{H}_{5}-3000$ ohms, 5 watts.
$\mathrm{H}_{\mathrm{G}}-0.12$ megolim, $1 / 2$ watt.
$1 \mathrm{~K}_{7}-0.1$-megohm potentiometer.
$\mathrm{R}_{8}-27,000$ ohms, $1 / 2$ watt.
L.1-20-ly. 30-ma. filter choke.
T_{1} - Power transformer: 350 volts, r.m.s. earh side of center, 50 ma.; 5 volts, 2 amp.; 6.3 volts, 3 amp .

Regulated Bias Supplies

The inconvenience of the circuits shown in Fig. 7-17 and the difficulty of predicting values in practical application an be aroided in most cases by the use of gascous voltageregulator tubes across the output of the bias supply, as shown in Jig. 7-18A. A VIR tube with a voltage rating anywhere between the biasing-voltage value which will reduce the input to the amplifier to a safe level when excitation is removed, and the operating value of bias, should be chosen. R_{1} is adjusted, without amplifier exeitation, until the VR tube ignites and draws about 5 ma . Additional voltage to bring the bias up to the operating value when excitation is applied can be obtained from a grid leak (see transmitter chapter).

Each VR tube will handle 40 mat of grid current. If the grid current exceeds this value under any condition, similar \'R tubes should be added in parallel, as shown in Fig. 7-1813, for each 40 ma., or less, of additional grid current. The resistors R_{2} are for the purpose of helping to maintain equal currents through each VR tube.

If the voltage rating of a single V'la tube is not sufficiently high for the purpose, other VR tubes may be used in series (or series-parallel if required to satisfy grid-current requirements) as shown in Fig. $7-18 \mathrm{C}$ and D.

If a single value of fixed bias will serve for more than one stage, the biasing terminal of each such stage may be connected to a single supply of this type, provided only that the total grid current of all stages so connerted does not exceed the current rating of the Vir tube or tubes. Alternatively, other separate VR-tube branches may be added in any desired combination to the same supply, as shown in Fig. 7-18E, to suit the needs of each stage.

Providing the 1 R -tube current rating is not exceeded, a series arrangement may be tapped for lower voltage, as shown at F.

The circuit diagram of an electronicallyregulated bias-supply is shown in Fig. 7-19.

The output voltage may be adjusted to any value between 20 volts and 80 volts and the unit will handle grid currents up to 200 ma. over the range of 30 to 80 volts, and 100 ma . over the remainder of the range. This will take care of the bias requirements of most tubes used in Class 13 amplifier service. The regulation will hold to about 0.001 volt per milliampere of grid current.

Other Sources of Biasing Voltage

In some cases, it may be ronvenient to obtain the biasing voltage from a source other than a separate supply. A half-wave rectifier may be connected with reversed polarization to obtain biasing voltage from a low-voltage plate supply, as shown in Fig. 7-20A. In another arrangement, shown at 13 , a spare filament winding can be used to operate a filament

Fig. 7-20-Convenient means of obtaining biasing voltagr. A - From a low-voltage plate sulply. 13 From spare filament winding. T_{1} is a fitanemt transformer, of a voltage output similar to that of the spare filament winding, connerted in reverse to give 115 volts r.m.c. output. If coll-ceathode or selenium rectifiers are used, no additional filament supply is required.
transformer of similar voltage rating in reverse to obtain a voltage of about 130 from the winding that is customarily the primary. This will be sufficient to operate a VR75 or VlR90.

A bias supply of any of the types discussed
requires relatively little filtering, if the outputterminal peak voltage does not approach the operating-bias value, because the effeet of the supply is entirely or largely "washed out" when grid current flows.

Selenium-Rectifier Circuits

While the circuits shown in ligs. 7-21, 7-22 and 7-23 may be used with any type of rectifier, they find their greatest advantage when used with selenium rectifiers which require no filament transformer.

Fig. 7.21-Simple half-wave circuit for selenium rectifier.
$\mathrm{C}_{1}-0.05-\mu \mathrm{fd}$, 600-volt paper.
$\mathrm{C}_{2}-40-\mu \mathrm{fd}$. 200-volt electrolytic.
$R_{1}-2.5$ to 100 ohms.
Fig. $7-21$ is a strightforward half-wave rectifier circuit which may be used in applications where 115 to 130 volts d.e is desired. It can be used for bias supply, for instance. In this, as well as other circuits, it will be observed that the negative side of the output is sommon with one side of the a.e. line and it is suggested that this side be fused with a $1 / 2-$ ampere fuse.

Fig. 7-18 shows several voltage-doubler circuits. Of the three, the one shown at A is the most desirable since there is no series condenser. It is a full-wave circuit and there will

Fig. 7-22-Voltage-doubling circuits for use with selenium rertifiers.
C_{1} - $0.0 .05-\mu \mathrm{fd} .600$-volt paper.
$\left.\mathrm{C}_{2}-40-\mu \mathrm{ff}^{2} 20\right)$-volt reetrolytic.
\therefore - Filter rondenser.
$\mathrm{K}_{1}-2.5 \mathrm{t} 100$ ohms.
1.1-Filter choke.
be very little ripple voltage appearing at the output. On the other hand, the circuit of C has one very desirable feature in that point X is common to both condensers in the rectifier and also to the first condenser in the filter. This means that a single-unit three-section condenser may be used, saving space. If less than 100 ma . is being used this is the best circuit. The ripple content under these conditions, and the leakage between sections, will not be excessive. These three circuits will find ready application in communications receivers, converters, VFOs, test equipment, etc., and especially in cases where heat has been a problem.

Fig. $\mathbf{7}-23.1$ and 13 shows voltage-tripler and voltage-quadrupler circuits respertively, for use where higher voltages are desired. They can be used for powering the small transmitter.

Fig. 7-23 - Selenium-rectifier voltage-tripling and voltage-quadrupling eircuits.
$\mathrm{C}_{3}-0.05-\mu \mathrm{fd}$. 600 vert paper.
$\mathrm{C}_{2}-40-\mu \mathrm{fd}$. 450 -volt elertrolytic.
$K_{1}-25$ to 100 ohms.
Ill components are standard, ${ }^{\prime} 1$ in all circuits is for "hash" filtering and its value is not critical. A $0.05-\mu \mathrm{fd}$. 600 -volt-working condenser should serve. All other condensers should be $40-\mu \mathrm{fd}$. 200 -volt units, except those in the tripler and quatrupler circuits. Those in the eircuit of Fig, 7-23 should have a rating of 450 volts working. In the voltage multipliers and in other circuits where a condenser is passing the full curretit, good condensers should be used because the a.e ripple mentioned above appears across the condenser and increases as the load increases. If the eurrent is allowed to become too high, it will cause heating and deterioration of the comdenser. This ran be kept to a minimum by using a caparitor of high value and making sure it is of good make. K_{1} should be 25 ohins, but if it is found that the rectifier units are running a little too warm,
this value may be increased to as high as 100 ohms, with a corresponding drop in output voltage, of course.

A single-section filter, as shown in Fig. $7-22 \mathrm{C}$, will provide sufficient smoothing for most applications.

Other Power Considerations

FILAMENT SUPPLY

Except for tubes designed for battery operation, the filaments or heaters of vacuum tubes used in both transmitters and receivers are universally operated on alternating current obtained from the power line through a stepdown transformer delivering a secondary voltage equal to the rated voltage of the tubes used. T'he transformer should be designed to carry the current taken by the number of tubes which may be connected in parallel across it. The filament or heater transformer generally is center-tapped, to provide a balanced circuit for eliminating hum.

For medium- and high-power r.f. stages of transmitters, and for high-power audio stages, it is desirable to use a separate filament transformer for each section of the transmitter, installed near the tube sockets. This avoids the neeessity for abnormally large wires to carry the total filament current for all stages without appreciable voltage drop. Maintenance of rated filament voltage is highly important, especially with thoriated-filament tubes, since under-or over-voltage may reduce filamentlife.

- POWER-LINE CONNECTIONS

If the transmitter is rated at much more than 100 watts, special consideration should be given to the a.c. line running into the station. In some residential systems, three wires are brought in from the outside to the distribution board, while in other systems there are only two wires. In the three-wire system, the third wire is the neutral which is grounded. The voltage between the other two wires normally is 230, while half of this voltage (115) appears between each of these wires and neutral, as indicated in Fig. 7-24A. In systems of this type, usually it will be found that the 115 volt household load is divided as evenly as possible between the two sides of the circuit, half of the load being connected between one wire and the neutral, while the other half of the load is connected between the other wire and neutral. Heavy appliances, such as electric stoves and heaters, normally are designed for 230-volt operation and therefore are connerted aeross the two ungrounded wires. While both ungrounded wires should be fused, a fuse should never be used in the wire to the neutral, nor should a switch be used in this side of the line. The reason for this is that opening the neutral wire does not disconnect the equipment. It simply leaves the equipment on one side of the 230 -volt circuit in series with whatever load may be across the other side of the circuit, as shown in Fig. 7-2+13. Furthermore, with the neutral open, the voltage will then be
divided between the two sides in proportion to the load resistance, the voltage on one side dropping below normal, while it soars on the other side, unless the loads happen to be equal.

The usual line running to baseboard outlets is rated at 15 amperes. Considering the power consumed by filaments, lamps, modulator, receiver and other auxiliary equipment, it is not unusual to find this 15 -ampere rating exceeded by the requirements of a station of only moderate power. It must also be kept in mind that the same branch may be in use for other household purposes through another outlet. For this reason, and to minimize light blinking when keying or modulating the transmitter, a separate heavier line should be run from the distribution board to the station whenever possible. (A three-volt drop in line voltage when the load is applied will cause noticeable light blinking.)

If the system is of the three-wire type, the three wires should be brought into the station so that the station load can be distributed to keep the line as balanced as possible. The voltage across a fixed load on one side of the circuit will increase as the load current on the other side is increased. The rate of increase will depend upon the resistance introduced by the neutral wire. If the resistance of the neutral is low, the increase will be correspondingly

Fig. 7-24 - ' I'hree-wire power-line circuits. A - Norınal 3-wire-line termination, No fuse should be used in the grounded (ncutral) line. B-Showing that a switch in the nentral does not remove valtage from either side of the line. C- Connections for both 115- and 230 -volt transformers. D)-Operating a 115 -volt plate transformer from the 230 -volt line to avoid light blinking, T_{1} is a 2-to. 1 step-down transformer.
small. When the currents in the two circuits are balanced, no current flows in the neutral wire and the system is operating at maximum efficiency.

Jight blinking can be minimized by using transformers with 230 -volt primaries in the power supplies for the keyed or intermittent part of the load, ronnecting them across the two ungrounded wires with no connection to the neutral, as shown in Fig. 7-24C. The same can be aceomplished by the insertion of a stepdown transformer whose primary operates at 230 volts and whose secondary delivers 115 volts. Conventional 11\%-volt transformers may be operated from the secondary of the step-down transformer (see Fig. 7-2+D),

When a special heavy-duty line is to be installed, the local power company should be consulted as to local requirements. In some localities it is necessary to have such a job done by a licensed electrician, and there may be special requirements to be met in regard to fittings and the manner of installation. Some amateurs terminate the special line to the station at a switch box, while others may use clectric-stove receptacles as the termination. The power is then distributed around the station by means of conventional outlets at convenient points. All circuits should be properly fused.

LINE-VOLTAGE ADJUSTMENT

In certain communities trouble is sometimes experienced from fuctuations in line voltage. l'sually these fluctuations are caused by a variation in the load on the line and, since most of the variation comes at certain fixed times of the day or night, such as the times when lights are turned on at evening, they may be taken care of by the use of a manuallyoperated compensating device. A simple arrangement is shown in Fig. $7-25 \mathrm{~A}$. A toy trans-

Fig. 7-25 - Two methods of transformer primary control. At A is a tapped toy transformer which may be connected so as to lorost or buck the line voltage as required. At B is indicated a variable transformer or antotransformer (Variac) which feeds the transformer primaries.

Fig. 7-26-With this circuit, a single adjustment of the tap switch S_{1} places the correet primary voltage on all transformers in the transmitter. Information on constructing a suitable autotransformer at negligible cost is contained in the text. The light winding represents the regular primary winding of a revamped transformer, the heavy winding the voltage-adjusting section,
former is used to boost or buck the line voltage as required. The transformer should have a tapped secondary varying between 6 and 20 volts in steps of 2 or 3 volts and its secondary should be capable of carrying the full load current of the entire transmitter, or that portion of it fed by the toy transformer.

The secondary is connected in series with the line voltage and, if the phasing of the windings is correct, the voltage applied to the primaries of the transmitter transformers can be brought up to the rated 115 volts by setting the toytransformer tap switch on the right tap. If the phasing of the two windings of the toy transformer happens to be reversed, the voltage will be reduced instead of increased. This connection may be used in cases where the line voltage may be above 11.5 volts. This method is preferable to using a resistor in the primary of a power transformer since it does not affect the voltage regulation as seriously. The eircuit of $7-25 \mathrm{~B}$ illustrates the use of a variable transformer (Variac) for adjusting line voltage to the desired value,

A nother scheme by which the primary voltage of each transformer in the transmitter may be adjusted to deliver the desired secondary voltage, with a master control for compensating for changes in line voltage, is described in Fig. 7-26.

This arrangement has the following feat ures:

1) Adjustment of the switch S_{1} to make the voltmeter read 105 volts automatically adjusts all transformer primaries to the predetermined correct voltage.
2) The necessity for having all primaries work at the same voltage is eliminated. Thus, 110 volts can be applied to the primary of one transformer, 115 to another, et.c.
3) Independent control of the plate transformer is afforded by the tap switch S_{2}. This

Fig. 7-27-A typical simple receiver power supply Filament and plate voltages are taken from the malijcontact tube socket which serves as an outlet.
permits power-input control and does not require an extra autotransformer.

Constant-Voltage Transformers

Although comparatively expensive, special transformers called constant-voltage transformers are available for use in cases where it is necessary to hold line voltage and/or filament voltage constant with fluctuating supply-line voltage. They are rated over a range of 17 va . at 6.3 volts output, for small tube-heater demands, up to several thousand volt-amperes at 115 or 230 volts. In average figures, such transformers will hold their output voltages within one per cent under an input-voltage variation of 30 per cent.

CONSTRUCTION OF POWER SUPPLIES

The length of most leads in a power supply is unimportant, so that the arrangement of components from this consideration is not a

Fig. 7. 28- Bottom view of the receiver power supply showing the eut -ont for the flush-monnting transformer.
factor in construction. More important are the points of good high-voltage insulation, adequate conductor size for filament wiring, proper ventilation for rectifier tubes and most important of all - safety to the operator. Exposed high-voltage terminals or wiring which might be bumped into accidentally should not be permitted to exist. They should be covered with adequate insulation or placed inaccessible to contact during normal operation and adjustment of the transmitter. Powersupply units should be fused individually.

Rectifier filanent leads should be kept short to assure proper voltage at the rectifier socket, and the sockets should have good insulation and adequate rontact surface. Plate leads to mercury-vapor tubes should be kept short to minimize the radiation of noise.

Where high-voltage wiring must pass through a metal chassis, grommet-lined clearance holes will serve for volages up to 500 or 750, but ceramic feed-through insulators should be used for higher voltages. Bleeder and

Fig. 7-29 - A typical high. voltage transmitter power supply, The transformers, chokes and condensers are inverted so that no terminals are exposed to accidental contact. The eaps of the 866 rectifiers are the insulated type.

Fig. 7-3N- Bottont view of the transmitter power supply showing the cut-outs for the terminals. Separate power plugs are used for the reetifier-filament and plate transformers so that they may be switehed independently from the control position.
voltago-dropping resistors should be placed where they are open to air circulation. Placing them in confined spaee reduces the rating.

It is highly preferable from the standpoint of operating convenience to have separate filament transformers for the rectifier tuber, rather than to use combination filament and plate transformers, such as those used in receivers. This permits the transmitter plate voltage to be switehed on without the neeessity for wating for rectifior filaments to come up, to temperature aftor each time the high voltage has been turned off.

A bleeder resist or with a power rating giving a considerable margin of safoty should be used aeross the output of all transmitter power supplies so that the filter condensers will be discharged when the high-voltage transformer is turned off. To guard against the possibility of danger to the operator should the bleeder resistor burn out without his knowledge, a relay with its winding connected in parallel with the high-voltage transformer primary and its contacts in series with a 1000 -ohm resistor across the output of the power supply sometimes is used. The protective relay should be arranged so that the contaets open when the relay is encrgized.

Emergency and Independent Power Sources

Emergeney power supply which operates indepondently of a.c. lines is available, or can be built in a number of different forms, depending upon the requirements of the service for which it is intended.

The most practical suphly for the average individual amateur is one that operates from a 6 -volt ear storage battery. Such a supply may take the form of a small motor generator (often ealled a genemotor), a rotary eonverter, or a vibrator-translormer-reetificr combination.

Dynamotors

A dynamotor differs from a motor gencrator in that it is a single unit having a double armature winding. One winding serves for the driving motor, while the output voltage is taken from the other. Dynamotors usually are operated from (i-, $12-28$ - or 32 -volt storage batteries and deliver from 300 to 1000 volts or more at various current ratings.

Genemotor is a term popularly used when making reference to a dymamotor dexigned espectially for automobile-receiver. soundtruck and similar applications. It has grood regulation and efficiency, combined with eeonomy of operation. Stantard models of genemotors have ratings ranging from 135 volts at 30 ma. to 300 volts at 200 ma . or 600 voits at 300 ma . The normal efficiency averages around 50 per eent, increasing to better than 60 por cent in the higher-power units. The voltage regulation of a genemotor is comparable to that of well-designed a.c. supplies.

Successful operation of dynamotors and genemotors requires heavy direct leads, mechanical isolation to reduce vibration, and thorough r.f. and ripple filtration. The shafts
and bearings should be thoroughly "run in" before regular operation is attempted, and thereafter the tension of the bearings should be checked oceasiomally to make certain that no looseness has devoloped.

In momnting the genemotor, the support should be in the form of rubber mounting blocks, or equivalent, to prevent the transmission of vibration merhanically. The frame of the genemotor should be grounded through a heavy flexible comnertor. The brushes on the high-voltage end of the shaft should be bypassed with $0.002-\mu \mathrm{fd}$. mica condensers to a common point on the genemotor frame, preferably to a point inside the end cover close to the brush holders, Short loads are essential. It may prove desirable to shield the entire unit, or even to remove the unit to a distance of three or four feet from the receiver and antenna lead.

Whon the genemotor is used for recriving, a filter should be used similar to that deseribed for vibrator supplies. A $0.01-\mu \mathrm{fd}$. (600-volt (d.e.) paper condenser should be commerted in shunt across the output of the genemotor, followed by a $2 . \overline{\mathrm{j}}$-mh. r.f. choke in the positive high-voltage lead. From this point the output should be run to the receiver power terminals through a smoothing filter using 4- to $8-\mu \mathrm{fd}$. condensers and a 15 - or 30 -henry choke having low d.e. resistance.

A.C.-D.C. Converters

In some instances it is desirable to utilize existing equipment built for 115 -volt a.c. operation. To operate such equipment with any of the power sources outlined above would require a considerable amount of rebuilding.

This can be obviated by using a rotary converter capable of changing the d.c. from 6-, 12 -or 32 -volt batteries to 115 -volt 60 -cycle a.c. Such converter units are built to deliver outputs ranging from 40 to 300 watts, depending upon the battery power available.

The conversion efficiency of these units averages about 50 per cent. In appearance and operation they are similar to genemotors of equivalent rating. The over-all efficiency of the converter will be lower, however, because of losses in the a.e. rectifier-filter circuits and the necessity for converting heater (which is supplied directly from the battery in the case of the genemotor) as well as plate power.

Vibrator Power Supplies

The vibrator type of power supply consists of a special step-up transformer combined with a vibrating interrupter (vibrator). When the unit is connected to a storage battery, plate power is obtained by passing current from the battery through the primary of the transformer. The circuit is made and roversed rapidly by the vibrator contacts, interrupting the current at regular intervals to give a changing magnetic field which induces a voltage in the secondary. The resulting squarewave d.c. pulses in the primary of the transformor cause an alternating voltage to be developed in the secondary. This high-voltage a.c. in turn is reetified, cither by a vacuum-tube rectifier or by an additional synchronized pair of vibrator contacts. The rectified output is pulsating d.e., which may be filtered by ordinary means. The smoothing filter can be a single-section affair, but the filter output rapacitance should be fairly large - 16 to $32 \mu \mathrm{fl}$.

Fig. 7-31 shows the two types of circuits. At I is shown the nonsynchronous type of vibraior. When the hattery is discomnected the reed is midway between the two contacts, touehing neither. On closing the battery circuit the magnet coil pulls the reed into contact with one contact point. causing current to flow through the lower half of the transformer primary winding. Simultancously, the magnet

Fin. 7-31-Basic type- of vibrator pewer-supply eircuit. 1- \onsymhronous, B-Synchronous.
coil is short-circuited, deënergizing it, and the reed swings back. Inertia carries the reed into contart with the upper point, causing current to flow through the upper half of the transformer primary. The magnet coil again is energized, and the cycle repeats itself.

The synchronous circuit of Fig. 7-3113 is provided with an extra pair of contacts which rectify the secondary output of the transformer, thus eliminating the need for a separate rectifier tube. The secondary center-tap furnishes the positive output terminal when the relative polarities of primary and secondary windings are correct. The proper connections may be determined by experiment.

The buffer condenser, C_{2}, across the transformor secondary, absorbs the surges that occur on breaking the current, when the magnetic field collapses practically instantaneously and hence causes very high voltages to be induced in the secondary. Without this condenser excessive sparking occurs at the vibrator contacts, shortening the vibrator life. Correct values usually lie between 0.005 and $0.03 \mu \mathrm{fl}$. ., and for $250-300$-volt supplies the condensor should be rated at 1500 to 2000 volts d.c. The exact capacitance is critical, and should be determined exporimentally. The optimum value is that which results in least battery current for a given rectified d.c. output from the supply. In practice the value can be determined by observing the degree of vibrator sparking as the capacitance is changed. When the system is operating properly there should be practically no sparking at the vibrator contacts. A $5000-0 h m$ resistor in series with C_{2} will limit the secondary current to a safe value should the condenser fail.

Vibrator-transformer units are available in a variety of power and voltage ratings. Representative units vary from one delivering 125 to 200 volts at 100 ma . to others that have a 400 -volt output rating at 150 ma . Most units come supplied with "hash" filters, but not all of them have built-in ripple filters. The requirements for ripple filters are similar to those for a.e. supplies. The usual efficiency of vibrator packs is in the vicinity of 70 per cent, so a 300 -volt, 200-ma. unit will draw approximately 15 amperes from a 6 -volt storage batterv. Special vibrator transformers are also available from transformer manufacturers so that the amateur may build his own supply if he so desires. These have d.c. output ratings varving from 150 volts at 40 ma , to 330 volts at 135 ma .

"Hash" Elimination

Sparking at the vibrator contacts causes r.f. interference ("hash," which can be distinguished from hum by its harsh, sharper pitch) when used with a receiver. To minimize this, r.f. filters are incorporated, consisting of $R F C_{1}$ and C_{1} in the battery circuit, and $R F^{\prime} C_{2}$ with C_{3} in the d.c. output circuit.

Equally as important as the hash filter is
thorough shielding of the power supply and its connecting leads, since even a small piece of wire or metal will radiate enough r.f. to cause interference in a sensitive receiver

Testing in connection with hash elimination should be carried out with the supply operating a receiver. Since the interference usually is picked up on the receiving-antema leads by radiation from the supply itself and from the battery leads, it is advisable to keep the supply and battery as far from the receiver as the connecting cables will permit. Three or four feet should be ample. The microphone cord likewise should be kept away from the power supply and its leads.

The power supply should be built on a metal chassis, with all unshielded parts underneath. A bot tom plate to complete the shiclding is advisable. The transformer case, vibrator cover and the metal shell of the tube all should be grounded to the chassis. If a glass tube is used it should be enclosed in a tube shield. The battery leads should be evenly twisted, since these leads are more likely to radiate hash than any other part of a well-shielded supply. Experimenting with different values in the hash filters should come after radiation from the battery leads has been reduced to a minimum. Shielding the leads is not often found to be particularly helpful.

Fig. 7-32-Circuit of a combination a.e.-d.c, power supply for emergency work.
$\mathrm{C}_{2}-0.01-\mu \mathrm{fd} .600$-volt paper.
$\mathrm{C}_{2}-8-\mu \mathrm{fd} .450$-volt electrolytie.
$\mathrm{C}_{3}-32-\mu \mathrm{dd} .450$-volt electrolytic.
$\mathrm{C}_{4}-0.005-\mathrm{to} 0,01-\mu \mathrm{ff}$. 1600 -volt paper.
C:5 - 0.3 - ff . paper, 50 volts or higher.
$\mathrm{C}_{6}-100-\mu \mu \mathrm{fd}$. 600 -volt mica.
$11_{1}-4700 \mathrm{ohms}, 1$ watt.
l.t - 10 - to 12 hy. filter choke, 100 ma (not over 100 ohms) (Stancor C.2303 or equivalent).
RFC: -.5 -mh. r.f. choke.
RFC_{2} - 55 turns Xo. 12 on 1 -inch form, elose-wound. $\mathrm{s}_{1}, \mathrm{~S}_{2}$-Togyle switch.
T_{1} - Power transformer: 275 to 300 volts r.m.s. each side of center tap, 100 to 150 ma., 6.3 -volt filament winding.
T_{2} - Vilrator transformer (Stancor P-6131 or similar). VIB - Vibrator unit (Mallory 500P, 294, etc.).

Practical vibrator-supply CIRCUIT

A vibrator-type power supply may be designed to operate from a six-volt storage battery only, or in a combination unit which may be operated interchangeably from either battery or 115 volts a.e.

An example of the latter-type circuit is shown in Fig. 7-32. It consists essentially of two transformer-rectifier systems - one for 115 volts a.c. and the other a vibrator system to operate from a 6 -volt storage battery. A common filter is used for the two systems. In interchanging between a.c. and d.c. operation, the rectifier tube (a 6×5 or 6 W 5 G) is shifted to the appropriate socket, while the filament connections are made to the proper output terminals. If desired, two rectifier tubes may be used and the changeover made through suitable switches.
R.f. filters for reducing hash are incorporated in both primary and secondary circuits. The secondary filter consists of a $0.01-\mu \mathrm{fd}$. paper condenser directly across the rectifier output, with a $2.5-$ mh. r.f. choke in series ahead of the smoothing filter. In the primary circuit a low-inductance choke and high-capacitance condenser are needed because of the low impedance of the circuit. A choke of the specifications given should be adequate, but if there is trouble with hash it may be beneficial to experiment with other sizes. The wire should be large - No. 12, preferably, or No. 14 as a minimum. Manufactured chokes such as the Mallory RF583 are more compact and give higher inductance for a given resistance because they are bankwound, and may be substituted if obtainable. C_{1} should be at least 0.5 $\mu \mathrm{fd}$.; even more caparitance may help in bad cases of hash. The components are assembled on a $5 \times 10 \times 3$ inch steel chassis. Three socket holes are required - one for the 4-prong socket for the vibrator and two octal sockets for the rectifier. The a.c. line cord and battery and power-output leads are brought out at the rear.

The compactness of selenium rectifiers and the fact that they do not require filament voltage make them particularly suited to compact lightweight power supplies for portable emergency work.

Fig. 7-34 shows the circuit of a vibrator pack that will deliver an output voltage of 400 at 200 ma. It will work with either 115 -volt ac. or 6 -volt hattery input. The circuit is that of the familar voltage tripler whose d.c. output voltage is, as a rough approximation, three times the peak voltage delivered by the transformer or line. An interesting feature of the circuit is the fact that the single transformer serves as the vibrator transformer when operating from 6 -volt d.c. supply and as th:

Fig. 7-33 - A typical combination a.c.-d.c. power pack for low-power energency work. The two transformers are mounted at cither end of the chassis. 'I'he filter condenser is at the left, the two rectilier sookets at the eenter and the vibrator to the rear.
filament transformer when operating from an a.c. line. This is accomplished without complicated switching.

The vibrator transformer, T_{1}, is a dualsecondary 6.3-volt filament 1 ransformer connected in reverse. In either event, the filament windings must have a rating of 10 amperes if the full load current of 200 ma . is to be used. Some excellent surplus transformers that will handle the required current are now available on the surplus market. The vibrator also must be capable of handling the current. The hashfilter choke, L_{1}, must carry a current of 20 amperes.

Fig. 7.34 - Circuit diagram of a compact vibrator-a.c. portable power supply using selenium rectifiers.
$\mathrm{C}_{1}-60-\mu \mathrm{fl} .200$-volt electrolyic.
$\mathrm{C}_{2}-60-\mu \mathrm{fd}, 400-$ volt electrolysic.
$\mathrm{C}_{3}-60-\mu \mathrm{fl}, 600-\mathrm{volt}$ electrolytic.
$\mathrm{C}_{4}-25-\mu \mathrm{fd}$. 25 -volt electrolytic.
$\mathrm{C}_{5}, \mathrm{C}_{6}-0.5-\mu \mathrm{fd}$, 25 -volt paper.
$\mathrm{C}_{7}-0.007+\mu \mathrm{fd}$. 1500 -volt paper.
$\mathrm{R}_{1}-25,000$ ohms. 10 natts.
L_{1} - 25-phy, 20-amp. choke.
$\dot{s}_{1}-115$-volt tougle switeh.
$\therefore 2$ - D.p.d.t. heavy-duty knife switch.
S_{3} - 25 -amp. s.p.s.t. switch.
T_{1} - See text.
V-Heavy-duty vibrator.

The following table shows the output voltage to be expected at various load currents, depending upon the size of condensers used at C_{1}, C_{2} and C_{3}.

C_{1}, C_{2}, C_{3}	Output Vollage at			
(μ / d).	50 ma.	100 ma.	150 ma.	200 ma.
60	455	450	415	305
40	425	390	360	330
20	400	340	285	225

In operating the supply from an a.c. line, it is always wise to determine the plug polarity with respect to ground. Otherwise the rectifier part of the circuit and the transformer circuit cannot be connected to actual ground except through by-pass condensers.

- GASOLINE-ENGINE DRIVEN GENERATORS

For higher-power installations, such as for rommunications control conters during emergencies, the most practical form of independent power supply is the gasoline-engine driven generator which provides standard 115 -volt 60-cyele supply.

Such generators are ordinarily rated at a minimum of 250 or 300 watts. They are available up to two kilowatts, or big enough to handle the highest-power amateur rig. Most are arranged to charge automatically an ausiliary 6 - or 12 -volt battery used in starting. Fitted with self-starters and adequate muflers and filters, they represent a high order of performance and efficiency. Many of the larger models are liquid-cooled, and they will operate continuously at full load.

A variant on the generator idea is the use of fan-belt drive. The disadvantage of requiring that the automobile must be running throughout the operating period has not led to general popularity of this idea among amateurs. Such generators are similar in construction and capacity to the small gas-driven units.

The output frequency of an engine-driven generator must fall between the relatively narrow limits of 50 to 60 cycles if standard (00-cycle transformers are to operate efficiently from this source. A 60-cycle electric clock provides a means of checking the output frequency with a fair degree of accuracy. The clock is connected across the output of the generator and the second hand is checked closely against the second hand of a watch. The speed of the engine is adjusted until the two second hands are in synchronism. If a 50 -cycle clock is used to check a 60 -cycle generator, it should be remembered that one revolution of the second hand will be made in 50 seconds and the clock will gain 4.8 hours in each 24 hours.

Output voltage should be checked with a voltmeter since a standard 115 -volt lamp bulb, which is sometimes used for this purpose, is very inaccurate. Tests have shown that what appears to be normal brilliance in the lamp may occur at voltages as high as 150 if the check is made in bright sunlight.

Noise Elimination

Electrical noise which may interfere with receivers operating from engine-driven a.c. generators may be reduced or eliminated by taking proper precautions. The most important point is that of grounding the frame of the gencrator and one side of the output. The ground lead should be short to be effective, otherwise grounding may actually increase the noise. A water pipe may be used if a short connection can be made near the point where the pipe enters the ground, otherwise a good separate ground should be provided.

The next step is to loosen the brush-holder

Fig. 7-35 - Connections used for eliminating interference from gas-driven generator plants. C should be 1 $\mu \mathrm{fd}$, 300 volts, paper, while C. 2 may be $1 \mu \mathrm{fd}$, with a voltage rating of twice the d.e, ontput voltage delivered by the generator. X indicates an added connection between the slip ring on the grounded side of the line and the generator frame.
locks and slowly shift the position of the brushes while checking for noise with the receiver. Usually a point will be found (almost always different from the factory setting) where there is a marked decrease in noise.

From this point on, if necessary, by-pass condensers from various brush holders to the frame, as shown in Fig. 7-35, will bring the hash down to within 10 to 15 per cent of its
original intensity, if not entirely eliminating it. Most of the remaining noise will be reduced still further if the high-power audio stages are cut out and a pair of headphones is connected into the second detector.

POWER FOR PORTABLES

Dry-cell batteries are the only practical source of supply for equipment which must be transported on foot. From certain considerations they may also be the best source of voltage for a receiver whose filaments may be operated from a storage battery, since no problem of noise filtering is involved.

Their disadvantages are weight, high cost, and limited current capability. In addition, they will lose their power even when not in use, if allowed to stand idle for periods of a year or more. This makes them uneconomical if not used more or less continuously.
Table 7-I gives service life of representative types of B batteries for various current drains, based on intermittent service simulating typical operation. The continuous-service life will be somewhat greater at very low current drains and from one-half to two-thirds the intermittent life at higher drains.

Dry " 13 " batteries are made in a variety of sizes and shapes, from a 45 -volt unit weighing about 1 lb , that has an intermittent service rating of 20 hours at a drain of 20 ma ., to a $12-\mathrm{lb}$. unit rated at 130 hours at 40 ma . "A" batteries for filament service range from a 6 -volt unit weighing $11 / 2$ lbs. delivering in intermittent service and average of 60 ma . for 150 hours, to a $61 / 4-\mathrm{lh} .1 .5$-volt unit having a servire life of 870 hours at 200 ma . Miniature batteries, suitable for hand-portable use, are also available.

TABLE 7-I - PLATE-BATTERY SERVICE HOURS

Estimated to 34 -volt end-point per nominal 45 -volt section.
Based on intermittent use of 3 to 4 hours daily at room tomp. of $70^{\circ} \mathrm{F}$. (For botteries manulactured in U. S. A. only.)

Manulaeturer's Type No.		Weight		Curent Drain in Ma.											
Burgess	Eveready	Lb.	Or.	Volts	5	10	15	20	25	30	40	50	60	100	150
	759	17	9	90	Suggested current range $=7$ to 12 Ma .										
-	758	14	4	90											
21308	-	12	14	45	1600	1100	690	490	-	300	200	-	130	60	30
10308	-	11	4	45	1300	750	520	350	-	-	130	-	90	45	22
-	754	6	1	90	Suggested current range $=5$ to 15 Ma .										
2308	-	8	3	45	1100	500	330	200	-	150	80	-	43	-	-
-	487	4	2	45	1000	430	250	170	-	-	-	-	-	-	-
B30	-	2	-	45	350	170	90	50	-	21	17	-	-	-	-
A 30	-	2	-	45	260	100	48	88	-	17	7	-	-	-	-
-	482	1	15	45	400	210	122	80	-	-	-	-	-	-	-
Z30NX	-	1	4	45	155	70	30	20	15	9.5	-	-	-	-	-
-	738	1	4	45	130	52	28	17	-	-	-	-	-	-	-
	490	-	15	90	70	20									
-	467	-	12	67.5	70	20	-	-	-	-	-	-	-	-	-
	457	-	8	67.5	35	9									
-	455	-	8	45	70	20	-	-	-	-	-	-	-	-	-
X×30	-	-	8	45	70	25	12	7	-	3.5	-	-	-	-	-

Keying and Break-In

Offhand it would appear that keying a transmitter is a simple matter, since on the face of it nothing more is involved than turning the transmitter output on and off to correspond to the code characters being sent. ['nfortunately, it is not this simple, and perfert keying of a c.w. rig is as difficult to come by as perfect voice quality is with a 'phone transmitter. The problem cannot be dismissed lightly.

Although the operation is basically that of turning the transmitter output power on and off, it is complicated by the fact that it must not be turned on and off instantanemusly. Instead, the output must be made to rise to (and fall from) maximum in some finite period of time, if key clicks are to be avoided. These clicks are the inescapable result of ehanging the power level rapidly, and they appear in the radio spectrum adjacent to the signal proper. The more rapidly the output is varied, the farther the clicks will extend in frequency and the greater will be their amplitude. They interfere unnecessarily with other signals and, if severe enough, can be cause for a discrepancy report by the FCC.

Another effect of improper keying of a transmitter is the introduction of chirp, a change in frequency at the instant of making or breaking the signal. A ehirp of 30 cycles is enough to make a signal unpleasant to copy, and a chirp of several hundred cycles may render the signal difficult to copy or a target for an FCC discrepancy report. Much depends, of course, upon the selectivity and beat note being used at the receiver, but the safest procedure is to aim for no detectable chirp.

A third keying fault is defined as backwave, and it consists of power leaking through and being radiated when the key is "up." If strong enough, backwave makes the signal unpleasant or difficult to copy.

In code transmission, there are intervals between dots and dashes, and slightly longer intervals between letters and words, when no power is being radiated by the transmitter. If the receiver can be made to operate at normal sensitivity during these intervals, it is possible for the receiving operator to signal the transmitting operator, by holding his key down. This is useful during the handling of messages, since the receiving operator can immediately signal the transmitting operator if he misses part of the message. It is also useful in reducing the time necessary for calling in answer to a "CQ." The ability to hear signals during the
short "key-up" intervals is called break-in operation.

SELECTING THE STAGE TO KEY

It is of ten desirable from an operating standpoint to design the c.w, transmitter for breakin operation. In most cases this requires that the oscillator be keyed, since a continuouslyrunning oscillator will create interference in the receiver and prevent break-in on or near one's own frequency, unless the oscillator stage is well shielded. ${ }^{1}$ However, chirpless and clickless keying of an oscillator is difficult to obtain, since the necessary slow turning on and off of the oscillator (for click elimination) shows up any oscillator frequency-vs.-voltage changes. It is easy to key an oscillator without chirps or without clicks but not without both. Since the effect of a chirp is multiplied with frequency, it is quite difficult to obtain chirpless oscillator keying at an output frequency of 14 or 28 Mc .

The best-sounding keying (and the most simple to adjust) is usually obtained by keying the output or driver stage, or both. With the oscillator running continuously and "buffered" by several intermediate stages, its frequency remains constant throughout all parts of the keving cycle. The only problem in keying then becomes that of properly "shaping" the keying to reduce or eliminate clicks. When keying several stages away from the output amplifier, it is necessary to bias the stages following the keyed stage so that they draw little or no plate current when the key is up, to avoid excessive plate dissipation. If the stages are biased too heavily, however, these subsequent amplifiers tend to shorten the rise and fall times and thus reintroduce clicks. This should always be borne in mind when a multistage transmitter is used with oscillator or other low-level keying.

The power broken by the key is an important consideration, both from the standpoint of safety to the operator and that of sparking and sticking at the key contacts. Keying of the oscillator or a low-power stage is favorable on both counts. The use of a keying relay or keyer tube is recommended when a high-power circuit is keyed.

Because transmitters vary widely in design,

[^4]there is no specific recommendation that can be made about choosing the stage to key. If the oscillator alone keys satisfactorily (no (hirps or clicks), even when listening to its harmonics on 14 or 28 Me., the transmitter should be keyed there, but the effect of adding the additional multipliers and amplifiers should be carefully checked, to see that clicks are not reintroduced. Methods for checking will be
given later. If the oscillator camot be keyed satisfactorily by itself or with the following stage added, a stage near the output should be keyed and any thought of break-in operation should be discarded. A close approach to break-in operation can be obtained by using a convenient and fast "on-off" switch for the oscillator, or the break-in system described later in the chapter can be used.

Keying Circuits

The plate circuit is a good one to key in an oscillator or low-voltage amplifier, because it is easy to shape the keying properly in this circuit. When plate-circuit keying is used, however, it is usually done in the negative lead, since this permits one side of the key to be grounded. The stage can be keyed in the positive lead, but both sides of the keyed cireuit will be "hot," and a keying relay is advisable. Fig. 8 - 1 shows the general circuit for negativelad keying in either an oscillator or an amplifier. Two examples are shown using triodes, but screen-grid tubes can be used just as readily. Plate-circuit keying is recommended only for low-voltage circuits if no keying relay is used, since a large portion of the supply voltage can appear across the open key.

Shaping circuits applicable to this and later circuits will be discussed in this chapter under "Testing Your lieying."

Somewhat closely related to plate-circuit keying is screen-grid keying, shown in Fig. 8-2. The only basic difference is that the screen grid is pulled down to a negative voltage when the key is up, to avoid the backwave that may

Fig. 8-I - Negative plate-leall keying for rathode. or filament-type tubes. These circuits are useful for oscillator or low-power stages, where the voltage across the open hey is not very dangerons. 'Tetrode or pentode stages can be keyed in this manner, but the screen circuit should be stabilized with VR tubes or a heavy volt age divider. R_{5} is the normal grid leak, C_{1}, C_{2}, C_{3} and C_{4} are r.f. by-pass condensers.
be present when the sereen goes only to zero volts. The negative supply can be small, since its current demand is only a few milliamperes. If the screen voltage is taken from the plate supply, it should come from a voltage divider rather than a simple dropping resistor.

Fig. 8-2 - Screen-grid keying, suitable for oscillator or amplifier keying. R_{1} is the normal grid leak, K_{2} should be about 200 to 500 ohms per screen volt, and C_{1}, C_{2} and C_{3} are normal by -pass condensers.

Grid-circuit, or blocked-grid, keying is shown in Fig. 8-3. With the key up, a negative voltage is applied to the grid sufficient to cut off the tube and mevent current flow. With the key elosed, the grid circuit develops normal grid bias through R_{2}. The drain on the negative-voltage supply is small, since it is limited by the size of R_{1}. Grid-circuit keying is most generally used with low-power stages or where the voltage necessary to cut off the amplifier is only a few hundred volts. The value of C determines the keying characteristic, together with the ratio of R_{2} and R_{k}, and will be discussed later.

I3y placing the key in the cathode (or center tap) circuit of an oscillator or amplifier, both the grid and plate (and screen, if any) circuits are opened by the key. Cathode keying is good for use with amplifiers, because the proper

Fig. 8-3- Blocked-gridkeying. R_{1}, the current-limiting resistor, should have a value of about $50,0 \% 0$ ohms. C_{1} may have a capacity of 0.1 to i $\mu \mathrm{fd}$., depending upon the keying characteristic desired. R_{2} is the normal value of grid leak for the tule.

Fig. 8-4 - Cathode and center-tap keying. The eondens. ers C are r.f. by-pass condensers. Their capacity is not eritical, values of 0.001 to $0.01 \mu \mathrm{fd}$. ordinarily being used.
shaping ean be accomplished readily. It is also widely used with oscillators, but here the shaping is often complicated by the gridcircuit time constant. Cathode keying is shown

Fig. 8.5-The basis heyer-tube eircuit for cathode or negative-lead heying. in Fig. 8-4. It is popular for use in low- and me-dium-power stages, although a keying relay or keyer tube should be used where the plate voltage is more than 300.

A pepular method of keying involves using one or more tuthes as keyer tubes, in place of a relay. A keyer tube (or tubes) can be used in the negative-lead or eathodekeying cireuits of Figs. 8-1 and 8-4. One advantage of tube keying is that the voltage aeross
the key is limited by large resistors, and so the operator has no ehance for anything but the slightest electrical shock. A further advantage is that the shaping is done in the grid cireuit of the keyer tube with inexpensive parts. The basie keyer tube cireuit is shown in Fig. 8-5-it is similar to the grid-cireuit keying of Fig. 8-3.

A keying relay can be substituted for a key in any of the keying circuits shown in this chapter. Most keying relays operate from 6.3 or 115 volts a.c., and they should be selected for their speed of operation and adequate insulation for the job to be done. Adequate cur-

Fis. 8.6 - A keying relay can always be sulstituted for the key, to provide better isolation from the keyed circuit. In r.f. filter is generally refuired at the key, and the keying filter is connected in the keyed cireuit at the relay contacts.
rent-handling capability is also a factor. A typical circuit is shown in Fig. 8-6.

The relay-coil current that is broken by the key will eause elieks in the receiver, and an r.f. filter (see later in this chapter) is often necessary across the key. The normal keying filter eonnects at the relay armature contaets in the usual manner. Vibration effects of the keying relay upon the oscillator circuit should be avoided.

Testing Your Keying

The choice of a keying circuit is not as important as its complete testing. Any of the circuits shown can be made to give satisfactory keying, but they must be adjusted properly.

The easiest way to find out what your keyed signal sounds like on the air is to trade stations with a near-by ham friend some evening for a short (QSO. If he is a half mile or so away, that's fine, but any distance up to the point where the signals are still S 9 will be satisfactory.

After you have found out how to work his rig, make contact and then have him send slow dashes, with dash spacing. (The letter " T " at about is w.p.m.) With the erystal filter out, cut the r.f. gain back just enough to avoid receiver overloading (the condition where you get crisp signals instead of mushy ones) and tune slowly from out of beat-note range on one side of the xignal through to zero and out the other side. Knowing the tempo of the dashes, you can readily identify any clicks in the vicinity as yours or someone else's. A good signal will have a thump on "make" that is perceptible only where you can also hear the beat note, and the
click on "break" should be practically negligible at any point. Fig. 8-7.1 shows how it should sound. If your signal is like that, it will sound good, provided there are no chirps. Then have him run off a string of 35 - or $40-\mathrm{w} . \mathrm{p} . \mathrm{m}$. dots with the bug - if they are easy to copy, your signal has no "tails" worth worrying about and is a good one for any speed up to the limit of manual keving. If the receiver has poor selectivity with the crystal filter out, make one last check with the filter in (Fig. $8-713$), to see that the clicks off the signal are negligible even at high signal level.

If you don't have any convenient friends with whom to trade stations, you can still check your keying, although you have to be a little more careful The finst step is to get rid of the r.f. click at the key, because if you don't you will never know where you stand. Locally (meaning in your own receiver) this click will eoincide in time with elicks that may or may not be on your signal, so there is just no way to observe your signal without first eliminating the r.f. click. And unless you have a keying system that breaks no current, you have a

Fig. 8.7 - Representations of a clean c.w. signal as a receiver is tuned through it. (A) shows a receiver with no crystal filter and the b.f.o. set in the center of the passband, and (B) shows the crystal filter in and the receiver adjusted for single-signal reception. The variation in thickness of the lines represents the relative signal intensity. The audio frequency where the signal disappears will depend upon the recciver selectivity characteristic and the strength of the signal.
click at the key. Even the current broken by the key in a vacuum-tube keyer circuit (which is sometimes only 0.1 ma . or so) will cause r.f. clicks that can be heard in your receiver and often in the b.e. set. If you key with a relay, the key opens the relay-coil circuit and elicks are generated at the key as well as at the relay contacts. Don't make the very common mistake of thinking these clicks are the same as the on-the-air clicks discussed earlier - they are not! They are simply local clicks that you must eliminate before you can observe your signal in your receiver. These clicks are the same as the ones you get when you turn an electric light on or off - when you suddenly start or stop current flow, no matter how little, you generate r.f. and that's the elick.

Getting rid of this little click is generally no trick at all, unless you're breaking a lot of current. All it requires is a small r.f. filter, as shown in Fig. 8-8. Sometimes just a small ($0.001-\mu \mathrm{fd}$.) condenser mounted right at the key terminals will do it, and sometimes it will require the full treatment complete with r.f. chokes and second condenser. Measure the normal current through the key leads, remove the transmitter leads, and then connect a d.c. power supply and resistor to give the same current through the key. When your key will break this current with no click, as observed in your receiver and the b.e. set (tuned off any station), you have a suitable r.f. filter at the

Fig, $8-8$ - A filter for miminating the r.f. click at the key. First try C_{1}, then add the two r.f. chokes, and then C_{2}. This filter does not eliminate on-the-air clicks, but it is necessary if you are trying to check heying in your own receiver. It should be mounted right at the key.
$\mathrm{Ci}_{1}, \mathrm{C}_{2}-0.01$ to $0.001 \mu \mathrm{fd}$, not critical.
RFC ${ }_{1}$, RFC $_{2}$ - 1- to $2.5-\mathrm{mh}$. r.f. choke.
key and you can reconnect the transmitter. If you use a vacuum-tube keyer, just don't turn on the transmitter but key the normal keyer grid current. If you use a keying relay, first eliminate the click at the key by just keying the relay and adding filter across the key, and then eliminate the click at the relay contacts with another r.f. filter in the relay-keyed circuit. The filter should be mounted right at the key or relay contacts. The objective is to be able to make or break normal key current without generating a local click, and the filtering is usually so simple that the junk box will yield the parts and the process takes longer to desoribe than to apply.

So far you haven't done a thing for your signal on the air and you still don't know what it sounds like, but you may have cleaned up some clicks in the b.e. set. Now disconnect the antenna from your receiver and short the antenna terminals with a short piece of wire. Tune in your own signal and reduce the r.f. gain to the point where your receiver doesn't overloarl. Detune any antenna trimmer the receiver may have. If you ean't avoid overload within the r.f. gain-control range, pull out the r.f. amplifier tube and try again. If you still can't avoid overload, listen to the second harmonic as a last resort. Since an overloaded recoiver can generate clicks, it is easy to realize the importance of eliminating overload during any tests or observations.

Describing the volume level at which you should set your receiver for these "shack" tents is a little difficult. The r.f. filter should be effertive with the receiver running wide open and with an antenna connerted. When you turn on the transmitter and take the other steps mentioned to reduce the sigmal in the receiver, run the audio up and the r.f. down to the point where you can just hear a little 'rushing' sound with the b.f.o. off and the receiver tuned to the signal. This is with the crystal filter in. At this level, a properly-adjusted keying circuit will show no clicks off the rushing-sound range. With the b.f.o. on and
the same gain setting, there should be no clicks outside the beat-note range. When observing clicks, make the slow-dash and fast-dot tests outlined previously.

Now you know how your signal sounds on the air, with one exception. If keying your transmitter makes the house lights blink or the dial light in your receiver flicker, you may not be able to tell too accurately about any chirp on your signal. However, if yom are satisfied with the absence of chirp when tuning either side of zero beat, it is safe to assume that your receiver isn't chirping with the light flicker and the observed signal is a true representation. No chirp either side of zero beat is fine - some chirp can be either in your transmitter or your receiver, whell the lights flicker. But don't try to make these tests without first getting rid of the r.f. click at the key - you will never be able to give yourself a clean bill of health, because clicks can mask a chirp,

In some instances, particularly if the transmitter power is several hundred watts or more,

Fig. 8-9-A key-rlick filter for cathode, negativelead or screen keying. It can be located anywhere in the heying line, The values of L and C will vary widely with different corrents and voltages, and must be foomd by cut-and-try. For sereen heying, the resistor R_{2} (Fig, 8-2) should connert to the junction of L and C.
$\mathrm{C}-0,05$ to $2,0 \mu \mathrm{fd}$.

1. - 0.5 to 30 henrys.
you may find that a small click still persists on all frequencies. If such a click is observed, pull out the last i.f. amplifier tube in your receiver and listen again. If the click is still there, it indicates rectification in the audio system of your receiver, the same type of BCI we cuss out cheap midget recoivers for. You can cure it with the usual resistor-condenser filter used for curing such BCI cases, or you can leave it in and make mental compensation for it. Any click you hear on your signal should reduce to this minimum elick immediately off the signal.

Another unavoidable click can be encommtered by ref. pick-up on the lead from a receiver i.f. amplifier to a (e)-er. Here again the click will be present at any setting of the receiver tuning control. The solution here is to make your cherks with the (5 - er disconnerted and the lead removed from the recoiver.

Key clicks are caused by the key turning your transmitter on and off too fast - and sometimes by parasitic oseillations in an amplifier - and all a key-click filter does is to slow down the turning-on and turning-off processes. Parasitic clicks occur at points 25 to 100 kc . either side of the signal, and are caused by
low-frequency parasitic oscillations that are triggered by the keying. The cure consists of eliminating the oscillation, not adding keyclick filters.
llate, screen or cathode keying requires a key-click filter of the type shown in Fig. 8-9. . Adjustment of surh a filter is a simple matter. If the signal has too heavy a click or thump, on "make," L should have more inductance. If the click is too heavy on "break," C should have more "apacity. The "break" characteristic is also influenced by the value of L, so start with a value of C ' that reduces the clicks notireably on "break," adjust the value of L for lest "make" characteristic, and then clean up the "break" by further modification of C. Since you may have only a few stray inductances around the shack, you may not find just the value you want for L. In this case, use a value that gives too soft a "make" and then shant the inductance with resistance to reduce its effect. Transformer windings will often serve as well as standard chokes in this applicat tion, so try everything around the shack until you find what you need. For a given voltage, high-current eircuits will require more (" and less L, than will low-current ones.

In the sereen-grid keying circuit, the value of R_{2} will also affert the "break" characteristic. If R_{2} is too large the "break" will tail off too gratually, if it is too small it may introduce a click on "break." In general it is best to start with a value as suggested in Fig. 8-2 and adjust C for the proper "break" eharacteristic.

Adjustment of control-grid or keyer-tube keying characteristics is simple, since the important components are (${ }_{1}, R_{1}$ and R_{2} (Figs. 8-3 and 8-5). For a given value of (' 1 , increasing the value of R_{2} will soften the "make" characteristic, and increasing the value of R_{1} will soften the "break." The value of R_{1} will be many times the value of R_{2}. With grid-block keying, the value of R_{2} is determined already if the tube runs grid current, because this will be the nomal grid leak, and so the value of (is must be adjusted for proper "make" characteristic and then the "break" made satisfactory by adjust ment of R_{1}. Tubes running heavy grid current are not too suitable for grid-block keying because the value of R_{1} generally ends up comparatively low and the negative supply must furnish too much current when the key is down.

If you are keying in a low-level stage, don't overlook the clipping action of subsequent stages that are fixed-biased beyond cut-off. It can reintroduce clicks. ${ }^{2}$ And if you key your oscillator, don't be too disappointed in the chirp that shows up when you have elickless keying, Amplifier keying is the answer.
${ }^{2}$ For a more complete disenssion of this effect, sce Carter. " Reducing Key Clicks," QST, Marclı, 1949,

A Vacuum-Tube Keyer

A tube-keyer unit is shown in Figs. 8-10 and 8-11. T_{1}, the 80 rectifier, and C_{1} and R_{1} form the power-supply section that furnishes the blocking voltage for the keyer tubes. S_{1} and S_{2} and their associated resistors and condensers are included to allow the operator to select the keying characteristic he wants. A simplified version could omit the switches and extra components, since once the values have bean selected the components can be soldered permanently in place. The rule for adjusting the keying characteristic is the same as for blocked-grid keying. However, large values of resistors and small values of condensers ean he used, since there is no value of grid leak determined by the tube that dietates a starting point.

As many tios may be added in parallel as desired. The voltage drop through a single tube varies from about 90 volts at 50 mat to 50 volts at 20 ma. Tubes added in parallel will reduce the drop in proportion to the number of tubes used.

When connerting the output terminals of the keyer to the circuit to be keyed, the grounded output terminal of the keyer must be conneeted to the transmitter ground. Thus the keyer can be used only in negative-lead or cathode keying.

When the key or keying lead has poor insulation, the resistance may become low enough (particularly in humid weather) to reduce the

Fig. 8.10 - A vacuum-tube keyer, built up on a $7 \times$ 9×2-inch chasin with pace for four or less keyer tubes and the power-supply rectifier. The resistors and condensers that produce the lag are underneath, controlled by the knobs at the right. 'The jack is for the key, while terminals at the left are for the keyed circuit.
blocking voltage and allow the keyer tube to pass some current. This may cause a slight back-wave, but can be cured hy better insulation or reduced values of $K_{2}, K_{3} . R_{q}$ and K_{5}.

Fig. 8.11-Wiring diagram of a practical vacum-tube kever similar to the one in Fig. 8.10.
$\mathrm{C}_{1}-2 \cdot \mu \mathrm{fd}$, (000-volt paper.
$\mathrm{C}_{2}-0.0033 \cdot \mu \mathrm{fd}$, mid'a.
$\mathrm{C}_{3}-0.004^{7}-\mu \mathrm{fil}$ mica.
$R_{1}-0.22$ megohm, 1 watt.
$\mathrm{R}_{2}-50,000$ ohms, 10 wat ts.
$R_{3}, R_{4}-4.7$ megohms, 1 watt.
$\mathrm{K}_{5}-0.47$ megnhim, 1 watt.
$S_{1}, S_{2}-3 \cdot p$ sition 1 -cirentit rotary switch.
$\mathrm{T}_{1}-330-0-350$ volts, 5 volts and 2.5 volts (Stancor P6003).

Monitoring of Keying

The most popular type of monitor is an audio oseillator that is keyod simultaneously with the transmitter. A unit that will key automatically with the transmitter (and also blank the receiver output at the same time) is the "Monitone" shown in Figs. 8-12 and 8-14. It requires no direct connection to the transmitter or key. When the key is up, sigmals from the receiver pass through the Monitone to the headphones. When the key is down the receiver output is blanked and a sidetone ap-
pears in the headphones. The sidetone and blanking are keyed by the r.f. output of the transmitter, regardless of frequency:

The wiring diagram of the Monitone is given in Fig. S-13. The 6sLi ats as a. dual amplifier, for the receiver output and for the sidetone oscialator (consisting of the neon bulb - NE-2, C_{s} and $R_{8}+R_{9}$). When r.f. from the transmitter is fed in at J_{1} it is rectified by the 1×34 and a negative voltage appears at the grid of the 6.55 and Pin 1 of

Pig. 8.12-A top view of the "Monitone." 'Ihe shaft of the serewdriver-adjusted potentiometer controlling tone and volume is located bet ween the 6 J 5 and 651.7 tubes. The right-hand switch controls the a.c., and the center switch euts the tone oseillator in and out.
the 6SL7. This negative voltage cuts off the 655 and the one half of the 6ss.7. The neonbulb oscillator goes into action and the resultant tone is amplified by the other half of the $6 \$ 1.7 . s_{1}$ is opened for 'phone operation.

The arrangement of parts can be seen in Figs. 8-12 and 8-14. The placement is not critical, although the r.f. network ($R F^{\prime} C_{1}, 1 N 31$ and ('3) should be separated from the 6sLa.

Installation of the device consists of plugging the input lead into the hearlphone jack on the

Fig. 8.14-Bottom view of the "Monitone," showing the small neon lamp supported on its own leads and located directly above the eenter of the 655 socket. The r.f. pick-up fine terminates on the tie-point that carries the 1 N 3.4 .
reeeiver, the headphones into the jack on the Monitone, and the plug into the a.ce outlet.

The final step is to couple the right amount of r.f. into the Monitone. A short piece of wire can be connected to the coaxial fitting on the back of the Monitone if the oprotting table is near the transmitter. If they are widely separated a piece of R(i-59 'U or ordinary shidded wire can be run from the coaxial fitting to a point near the final amplifier or ferders. (CauTION - high voltage!) The length of the pick-

Fig... 8-1:3- Cireuit diagram of the " Vonitome."
C. - $10.0195^{5}-\mathrm{pfl} .400$-volt paper or mica.
$\mathrm{C}_{2}-0.1-\mu \mathrm{fd}$. 610 -volt paper.
$\mathrm{C}_{3}-100$ - -1 fd . mica.
$\mathrm{C}_{4}-0.001-\mu \mathrm{fd}$. paper or mica.
C:S -220 - $\mu \mu \mathrm{fd}$. paper or mica.
C.6. Cis - 8 -ufd. 450.volt electroIstic.
$\mathrm{K}_{1}-68000$ ohms.
R_{2} - 1000 ohms.
$\mathrm{R}_{3} \mathrm{R}_{4}-1200$ olims.
$\mathrm{H}_{5}-0.50$ megohm.
K_{6} - 1 megohm.
R_{i} - ($\mathbf{0 3}, \mathbf{8 1 0 0}$) ohms.
$\mathrm{R}_{8}-1.7$ megohms.
$\mathrm{R}_{9}-2.2$ megohms.
$\mathbf{R}_{10}-\cdots=20000$ ohms, 5 watts.
R_{1} - I-megohm volume vontrol.
$\mathrm{h}_{22}-22.000$ ohms, 1 watt.
All resistors $1 / 2$-wall impess otherwise specified.
L_{1} - Wh-ma. filter choke (Thordarsm 13C26).
J_{1} - Cinasial-conneetor jack.

P_{1} - Phone plug.
$\mathrm{RH} \mathrm{C}_{1}-2.5-\mathrm{mh}$, r.f. choke.
$\mathrm{S}_{1}, \mathrm{~S}_{2}$ - S.p.s.t. togale.
T_{1}-Small b.c. replacement transformer (Stancor P-6297).
up wire, either directly from the Monitone or extending beyond the shielding of the coaxial line, will depend on the transmitter power being used. Only a foot or two will be needed.

Close the key and move the pick-up nearer or farther from the transmitter or feeder until the neon bulb in the Monitone glows. Find a point where a little less coupling will extin-
guish the neon - in other words adjust for the loosest coupling that will cause vigorous and sustained oscillation of the neon circuit. If only the final is keyed, care must be taken not to put the pick-up wire in the r.f. field of the driver stages - otherwise the oscillator will run continuously whenever the transmitter is switched on.

Break-In Operation

Break-in operation requires a separate receiving antenna, since none of the available antenna change-over relays is fast enough to follow keying. The receiving antenna should be installed as far as possible from the transmitting antenna. It should be mounted at right

the same time is often necessary. The system shown in Frig. 8-15 permits quiet break-in operation for higher-powered stations. It requires a simple operation on the receiver but otherwise is perfectly straightforward. R_{1} is the regular receiver r.f. and i,f. gain control. The ground lead is lifted on this control and run to a rheostat, R_{2}, that goes to ground. A wire from the junction runs outside the receiver to the keying relay, R_{ν}. When the key is up, the ground side of R_{1} is connected to ground through the rolay arm, and the receiver is in its normal operating condition. When the key is closed, the relay closes, which breaks the ground connection from K_{1} and applics additional bias to the tubes in the receiver. This bias is controlled by R_{2}. When the relay closes, it also closes the circuit to the transmitter oscillator. ('2, ('s, $R P^{\prime} \prime_{2}^{2}$ and $R F^{\prime} f_{3}^{\prime}$ compose a filter to suppress the clieks caused by the relay current.

The keying relay should be mounted on the receiver as close to the antematerminals an possible, and the leads shown heavy in the diagram should be kept short, since long leads will allow too much signal to get through into the receiver. A good high-speed keying relay should be used. If atwo-wire line is used from the receiving antenna, another r.f. choke, $R P C_{4}$, will be required. The revised portion of the schematic is shown in Fig. 8-16.

A DE LUXE BREAK-IN SYSTEM

In many instances it is quite difficult to key an oscillator without clicks and chirps. Most oscillators will key without apparent chirp if the rise and decay times are made very short, but this introduces key clicks that eannot be

Fig. 8.16 - Necrssary circuit revision of Fig. 8.15 if a two-wire lead from the receiving antenna is used. $R F C_{4}$ is a $2.5-\mathrm{mh}$. r.f. choke - other values are the same as in Fig. 8-15.

Fig. 8.17 - A de luxe breah-in system that bolds the uscillator eircuit closed (and the recciver input shorted) during a string of fast dots but opens between letters or words.
$\mathrm{Cl}_{1}-0.001-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{2}-0.0047-\mu \mathrm{fd}$. mica.
$R_{1}-20,000$ ohms, 10 watts, wire-wound.
$\mathrm{R}_{2}-1800$ ohms.
$\mathrm{H}_{3}-1500$ ohmis.
$R_{4}, R_{5}-1.0$ megohm.
$R_{6}-4700$ ohms.
$\mathrm{K}_{7}-6.8$ megolim.
$\mathrm{N}_{8}-0.47$ megohm.
$R_{9}-50-0 h m$ center-tapped resistor, 2 watts.
Ill resistors 1 -watt composition unless otherwise noted.
IR $\mathrm{FC}_{1}-2.5 \cdot \mathrm{mh}$. r.f. choke.
Ry - High-speed relay, 1400 -ohm 18 -volt coil (Stevens. Arnold Type 17: Millisec relay).
avoided. The system shown in Fig. 8-17 avoids this trouble by turning on the oscillator quickly, keying an amplifier with a vacuumtube keyer, and turning off the oscillator after the amplifier keying is finished. The oscillator is turned on and off without lag, but the resultant clicks are not passed through the transmitter. Actually, with keying speeds faster than about $15 \mathrm{w} . \mathrm{p} . \mathrm{m}$. , the iscillator will stay turned on for a letter or even a word, but it turns off between words and allows the transmitting station to hear the "break" signal of the other station. It requires one tube more than the ordinary varuum-tube keyer and a special high-speed relay.

As can be seen from Fig. 8-17, the circuit is a combination of the break-in system of Fig. 8-15 and the tube keyer of lig. 8-11, with a 6SN 7 tube and a few resistors added. Normally the left-hand portion of the $6 S N 7$ is biased to a low value of plate current by the drop through R_{2} (part of the bleeder $R_{1} R_{2} R_{3}$) and the relay is open. When the key is closed and C_{2} starts to discharge, the right-hand portion of the $6 \mathrm{~S} \times 7$ draws current and this in turn puts a less-negative voltage on the grid of the left-hand
portion. The tube draws current and the relay closes. The relay will stay closed until the negative voltage across C_{2} is close to the supply voltage, and consequently a string of dots or dashes (which doesn't give C_{2} a chance to charge to full negative) will keep the relay closed. In adjusting the system, R_{2} controls the amount of idling current through the relay and R_{6} determines the voltage across the relay. R_{7}, R_{8} and C_{2} are the normal resistors and condenser for the tube keyer. When adjusted properly, the relay will close without delay on the first dot and open quickly during the spaces between words or slower letters. When idling, the voltage arross the relay should be one or two volts - with the key down it should be 18 volts.
The oscillator should be designed to key as fast as possible, which means that series resistances and shunt capacitances should be held to a minimum. Negative plate-lead keying is slightly faster than cathode keving and should be used in the oseillator. The keyer tubes are connected in the cathode circuit of an amplifier stage far ponogh removed in the rircuit to avoid reaction on the oscillator. By using blocked-grid keying of the amplifier stage, the keyer tubes can be eliminated.

ELECTRONIC KEYS

Electronic keys, as contrasted with mechanical automatic keys, use vacuum tubes or relays (or both) to form automatic dashes as well as automatic dots. As first devised by amateurs in 1940, a dash could be "clipped short" if the dash lever were lifted too soon. More recent designs have resulted in "sslf-completing dashes" that eliminate this possibility and permit the operator, with a roasonable anount of practice, to generate near-perfect code. Full deseriptions of electronic keys that produce self-completing dashes can be found in the following QSI' articles:
Bartlett, "Further Advances in Electronic-Keyer Design," October, 1948; correction, page 10, January, 1949.
Turrin, "Delougging the Filectronir Bug," Jan., 1950.

Montgomery, "'Corkey' - A 'Tubeless Autimatic Key," November, 1950.
A simple unit that can be attached to a mochanical automatic key to give automatic dashes (not of the self-completing type, however) can be found described in the following QST' article:
Gotisar, "The Dash Master," Aug., 1948.

Speech Amplifiers And Modulators

The audio amplifiers used in radiotelephone transmitters oprorate on the prineiples outlined carlier in this book in the chapter on vacuum tubes. The design requiroments are determined principally by the type of modulation system to be used and by the type of microphone to be employed. It is necessary to have a cloar understanding of modulation principles before the problem of laying out a sperech system can be approached successfully. Those prineiples are discussed under appropriate chapter headings,

The present chapter deals with the design of audio amplifier systems for communication purposes. In voice communication the primary objective is to obtain the most efferlive transmission; i.c., to make the mosage be understood at the receiving point in spite of adverse conditions croated by noise and interference. The methods used to accomplish this do not necossarily coineide with the mothods used for other purposes, such as the reproduction of
music or other program material. In other words, "naturatness" in reproduction is distinctly secondary to intelligibility.

The fact that satisfactory intelligibility can be maintained in a relatively narrow band of frequencies is particularly fortunate, because the width of the channel occupied by a 'phone transmitter is directly proportional to the width of the andio-frequeney hand. If the chamnel width is reduced, more stations can occupy a given band of frequeneies without mutual interferemer. Also, it is possible to use more selectivity in the receiver and thus effect a further improvement.
In sporech transmission, amplitude distortion of the voice wave has very little effect on intelligibility. Its importance in communication lies almost wholly in the fact that the audio-frequeney harmonies caused by such distortion may lie outside the channel needed for intelligible speech, and thus will create unnecessary interference to other stations.

Speech Equipment

In designing speech equipment it is necessary to "work from both ends." That is, we must know, simultancously, (1) the amount of audio power the modulation system must furnish and (2) the output voltage developen by the microphone when it is spoken into from normal distance (a few inches) with ordinary loudness. It then becomes possible to choose the number and type of amplifier stages needed to generate the required audio power without overloading or distortion anywhere along the line.

MICROPHONES

The level of a microphone is its electrieal output for a given sound intensity. Level varies greatly with microphones of different basic types, and also varies between different models of the same type. The output is also greatly dependent on the character of the individual voice (that is, the audio frequencies present in the voice) and the distance of the speaker's lips from the microphone. It decreases approximately as the square of the distance. Because of these variables, only approximate values based on averages of "nor-
mal" speaking voices can be given. The values in the following paragraphe aro based on close talking; that is, with the microphone about an inch from the speaker's lips.

The frequency response or fidelity of a microphone is its relative ability to convert sounds of different frequencies into alternating current. With fixed sound intensity at the microphone, the electrical output may vary considerably as the sound frequency is varied. For understandable speech transmission only a limited frequency range is necessary, and intelligible speech can be obtained if the output of the microphone does not vary more than a few decibels at any frequency within a range of about 200 to 2500 cycles. When the variation expressed in terms of decibels is small between two frequency limits, the microphone is said to be flat between those limits.

Carbon Microphones

The carbon microphone consists of a metal diapluragm placed against an insulating cup containing loosely-packed carbon granules (microphone button). Current from a battery fows through the granules, the diaphragm be-

(A) S.B CARBON

Fïp. 9-1 - Speech input circuits used with various types of microphones.
(B) CRVSTAL

(C) Hi-Z velocity

ing one connection and the metal backplate the other. Fig. 9-1A shows connections for earbon microphones. A rheostat is included for adjusting the button current to the value as specified with the microphone. The primary of a transformer is connected in series with the battery and microphone.

As the diaphragm vibrates, its pressure on the granules alternately increases and decreases, causing a corresponding increase and decrease of current flow through the circuit, since the pressure changes the resistance of the mass of granules. The resulting change in the current flowing through the transformer primary causes an alternating voltage, of corresponding frequency and intensity, to be set up in the transformer secondary.

Good-quality carbon microphones give outputs ranging from 0.1 to 0.3 volt across 50 to 100 ohms; that is, across the primary winding of the microphone transformer, With the step-up of the transformer, a peak voltage of between 3 and 10 volts can be assumed to be available at the grid of the amplifier tube. The usual button current is 50 to 100 ma .

Crystal Microphones

The crystal microphone makes use of the piezoelectric properties of Rochelle salts cry:tals. This type of microphone requires no
battery or transformer and can be connected directly to the grid of an amplifier tube. It is: the most popular type of microphone among amateurs, for these reasons as well as the fact that it has good frequeacy response and is available in inexpensive models.

The "communications-type" crystal microphone uses a diaphragm nechanically coupled to a crystal. 'lhis type of construction gives good sensitivity and adequate frequency response for speech. In higher-fidelity types the sound acts directly on a pair of erystals cemented together, with plated electrodes. The level with the latter construction is considcrably less. The input eircuit for either model of crystal microphone is shown in Fig. 9-1 IB.

Although the level of crystal microphones varies with different models, an output of 0.0 :3 volt or so is representative for communication types. The level is affected by the length of the cable connecting the microphone to the first amplifier stage; the above figure is for lengths of 6 or 7 feet. The frequency characteristic is unaffected by the cable, but the load resistance (amplifier grid resistor) does affect it; the lower frequencies are attenuated as the value of load resistance is lowered. A grid-resistor value of at least 1 megohm should be used for reasonably flat response, 5 meg ohms being a customary figure.

Velocity and Dynamic Microphones

In a velocity or "ribbon" microphone, the element acted upon by the sound waves is a thin corrugated metallic ribbon suspended between the poles of a magnet. When vibrating, the ribbon cuts the lines of force between the poles, first in one direction and then the other, thus generating an alternating voltage. The movement of the ribbon is proportional to the velocity of the air particles set in motion by the sound.

Velocity microphones are built in two types, high impedance and low impedance, the former being used in most applications. A high-impedance microphone can be directly connected to the grid of an amplifier tube, shunted by a resistance of 0.5 to 5 megohms (Fig. 9-1C). Low-impedance microphones are used when a long connecting cable (75 feet or more) must be employed. In such a case the output of the microphone is coupled to the first amplifier stage through a suitable step-up transformer, as shown in Fig. 9-1 D.

The level of the velocity microphone is about 0.03 to 0.05 volt. This figure applies directly to the high-impedance type, and to the low-impedance type when the voltage is measured across the secondary of the coupling transformer.

The dynamic microphone somewhat resembles a dynamic loudspeaker. A light-weight voice coil is rigidly attached to a diaphragm, the coil being placed between the poles of a permanent magnet, found causes the diaphragm to vibrate, thus moving the coil back
and forth between the magnet poles and generating ath alternating voltage. The frequency of the generated voltage is proportional to the frequency of the sound waves and the amplitude is proportional to the sound pressure.

The dynamic mirrophone uswally is built with high-impedance output, suitable for working directly into the grid of an amplifier tube. If the connecting cable must be unusually long, a low-impedance type should be used, with a step-up transformer at the end of the cable.

A small permanent-magnet 'spoaker ran be used as a dynamic microphone, although the fidelity is not as good as is obtamable with a properly-designed microphone.

THE SPEECH AMPLIFIER

In eommon terminology, the audio-frequency amplifier stage that artually causes the r.f. carrier output to be varied is called the modulator, and all the amplifier stages preceding it comprise the speech amplifier. Depending on what sort of modulator is used, the speech amplifier may be called upon to deliver a power output ranging from practically zero (only voltage required) to 20 or 30 watts.

Before starting the design of a speech amplifier, therefore, it is necess:ary to have se-

Fig. 9-2 - Resistance-coupled voltage-amplifier circuits. A, pentode; B, triode. Designations are as followa: Cl - Cathode by-pass condenser.
C_{2} - Plate by-pass condenser.
(B_{3} - Output coupling condenser (blocking condenser).
C_{4} - Screen by-pass condenser.
R_{1} - Cathode resistor.
R_{2} - Grid resistor.
R_{3} - Plate resistor.
\mathbf{R}_{4} - Next-stape qrid resistor.
R_{s} - Plate deconpling resistor.
i_{6} - Sercen resistor.
\backslash alnes for suitable tulies are kiveri in Table 9-I. Values in the decounling circuit, $C_{2} R_{s .}$ are not critical, R_{5} may be about 10% of R_{3}; an 8 - or $10-\mu \mathrm{fd}$. electrolytic condenser is usually large enough at C_{2}.
lected a suitable modulator for the transmitter. 'This selection must be based on the power required to modulate the transmitter, and this power in turn depends on the trpe of modulation system seleeted, as described in other chapters. With the modulator picked out, its driving-power requirements (audio power reguired to excite the modulator to full output) can le determined from the tube tables in the last chapter. Generally speaking, it is advisable to choose a tube or tubes for the last stage of the speed amplifier that will be capahle of developing at least 50 per cent more power than the rated driving power of the modulator. This will provide a factor of safety so that loses in coupling transformers, ete., will not upset the ealculations. A "skimpy" drivar, or one designed without a safety factor, usually rannot excite the modulator to full output without being itself overloaded. The inevitable result is speech distortion, generation of unneressary sidebands, and a "broad" transmitter.

Voltage Amplifiers

If the last stage in the speech amplifier is a (lass Al_{2} or Class B amplifier, the stage ahead of it must be eapable of suffieient power output to drive it. However, if the last stage is a (lass.λB_{1} or (lass A amplifier the preceding stage can be simply a voltage amplifier.

From there on back to the microphone, all stages are voltage amplifiers. These are always operated (lass A, not only to simplify the design by avoiding driving power, but hecause just as much voltage ean be secured from a Class I amplifier as from any other type.

The important charaeteristies of a voltage amplifier are its voltage gain, maximum undistorted output voltage, and its frequency response. The voltage gain is the voltage-amplification ratio of the stage. The output voltage is the maximum a.f. voltage that can be secured from the stage without distortion; we cannot figure on any greater output voltage than this, no matter what the gain of the stage, without running into the overload region. The amplifier frequency response should be adequate for voice reproduction: this requirement is easily satisfied.

The voltage gain and maximum undistorted output voltage depend on the operating conditions of the amplifier. Data on the popular types of tubes used in speech amplifiers are given in Table 9-I, for resistance-coupled amplification, The output voltage is in terms of peak voltage rather than r.m.s.; this method of rating is preferable because it makes the rating independent of the waveform. Exceeding the peak value causes the amplifier to distort, so it is more useful to consider only peak values in working with amplifiers.

Resistance Coupling

Resistance coupling generally is used in voltage-amplifier stages. It is relatively inex-
pensive, good frequency response can be seeured, and there is little danger of hum pick-up) from stray magnetic fields associated with heater wiring. It is the only type of coupling suitable for the output circuits of pentodes and high- μ triodes, because with transformors a sufficiently high load impedance cannot be obtained without considerable frequency distortion. Typical circuits are given in Fig. 9-2 and design data in Table 9-1.

Transformer Coupling

Transformer eoupling between stages ordinarily is used only when power is to be trathsferred (in such a case resistance coupling is very ineflicient), or when it is necessary to eouple between a single-ended and a push-puil stage. 'rriodes having an amplification faetor of 20 or less are used in transformer-coupled voltage amplifiers. With transformer coupling, tuber should be operated under the Class .1 conditions given in the tube tables at the end of this book.

Representative eircuits for coupling singleended to push-pull stages are shown in Fig. 9-3. The circuit at A combines resistance and transformer coupling, and may be used for exciting the grids of a Class I or AB_{1} following stage. The resistance coupling is used to keep the d.c. plate current from flowing through the transformer primary, thereby preventing a reduction in primary inductance below its nocurrent value; this improves the low-frequency response. With low- μ triodes ($6(5,5.65 j$, ete.), the gain is equal to that with resistance cou-

Fig. 9.3- Transformer-coupled amplifier circuits for driving a push-pull amplifier. A is for resistance-trans. former coupling; B for transformer coupling. Designa. tions correspond to those in Fig. 9-2. In A, values can be taken from I'able 9.1 . In IB, the cathode resistor is calculated from the rated plate current and grid bias as given in the tube tables for the particular type of tube used,

IFig, 9-4 - Selfolalancing phase-inverter circuits. I_{1} and 12 may be a double triode such as the $65 \times 7 \mathrm{C}, \mathrm{l}$ or ($2 \mathbb{1} 1.7 \mathrm{C}^{\prime} 1 \mathrm{I}, V_{3}$ may be any of the triodes listed in 'Talle 9.I, or one section of a double triode.

Il 1_{1} - Grid resistar (I megohn or less).
I_{2} - Cathode resistor; use one-half value given in 'lable 9.1 for tube and operating conditions chosen.
$\mathrm{K}_{3}, \mathrm{~K}_{4}$ - Plate resistor; selert from 'Table 9.1 .
$\mathrm{K}_{5}, \mathrm{R}_{6}$ - Following-stage grid resintor (A .22 to 0.47 megohm).
$\mathrm{I}_{7}-0.22$ megolim.
IRs - Cathole resistor; seleet from 'lable 9.I.
$K_{0}, K_{10} \ldots$ Fach one-half of wate load resistor given in Table 9.1.
C_{1} - $10 . \mu \mathrm{fd}$. clectrolytie.
$\mathrm{C}_{2} \mathrm{C}_{3}-0.01$ - to $0.1 \cdot \mu \mathrm{fd}$, paper.
pling multiplied by the seeondary-to-primary turns ratio of the transformer.

In 13 the transformer primary is in series with the plate of the tube, and thus must carry the tube plate current. When the following amplifier operates without grid current, the voltage gain of the stage is practically equal to the μ of the tube multiplied by the transformer ratio. This circuit also is suitable for transferring power (within the capabilities of the tube) to a following Class A_{2} or Class B stage.

Phase Inversion

Push-pull output may be secured with resistance coupling by using "phase-inverter" eircuits as shown in Fig. 9-4.

The cireuit shown in Fig. 9-4A is known as the "self-balancing" type. The amplified voltage from V_{1} appears across R_{5} and R_{7} in series. The drop across R_{7} is applied to the grid of V_{2}, and the amplified voltage from V_{2} appears across R_{6} and R_{7} in series. This voltage is 180 degrees out of phase with the voltage from V_{1},

TABLE 9－I－RESISTANCE－COUPLED VOLTAGE－AMPLIFIER DATA
Data are given for a plate supply of 300 volts．Departures of as much as 50 per cent from this supply voltage will not materially change the operating conditions or the voltage gain，but the output voltage will be in propcrtion to the new voltage．Voltage gain is measured at 400 cycles；condenser values given are based on 100 －cycle cut－off．For increased low－frequency response，all condensers same proportion）． same proportion）．A variation of 10 per cent in the values given has nesligible effect on the performance．

	Plate Resistor Megohms	Next－Stage Grid Resistor Megohms	Screen Resi：tor Megohms	Cothode Resistor Ohms	Screen By－pass $\mu \mathrm{id}$ ．	Cathode By－pass $\mu \mathrm{id}$ ．	Blocking Condenser $\mu \mathrm{id}$ ．	Output Volts （Peak）${ }^{1}$	Voltage Gain ${ }^{2}$
6SJ7，12SJ7	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.37 \\ & 0.47 \\ & \hline \end{aligned}$	$\begin{array}{r} 500 \\ 530 \\ 590 \\ \hline \end{array}$	$\begin{aligned} & 0.10 \\ & 0.09 \\ & 0.09 \end{aligned}$	$\begin{array}{r} 11.6 \\ 10.9 \\ 9.9 \\ \hline \end{array}$	$\begin{aligned} & 0.019 \\ & 0.016 \\ & 0.007 \end{aligned}$	$\begin{array}{r} 72 \\ 96 \\ 101 \end{array}$	$\begin{array}{r} 67 \\ 98 \\ 104 \end{array}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.89 \\ & 1.10 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 850 \\ & 860 \\ & 910 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.06 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.4 \\ & 6.9 \end{aligned}$	$\begin{aligned} & 0.011 \\ & 0.004 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 79 \\ & 88 \\ & 98 \end{aligned}$	$\begin{aligned} & 139 \\ & 167 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1300 \\ & 1410 \\ & 1530 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.05 \\ & 0.04 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.8 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 0.004 \\ & 0.002 \\ & 0.0015 \end{aligned}$	$\begin{aligned} & 64 \\ & 79 \\ & 89 \end{aligned}$	$\begin{aligned} & 200 \\ & 238 \\ & 263 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 6J7, 7C7, } \\ & 12.77-G T \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.5 \\ & 0.53 \end{aligned}$	$\begin{array}{r} 500 \\ 450 \\ 600 \\ \hline \end{array}$	$\begin{aligned} & 0.07 \\ & 0.07 \\ & 0.06 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.3 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 55 \\ & 81 \\ & 96 \\ & \hline \end{aligned}$	$\begin{aligned} & 61 \\ & 82 \\ & 94 \end{aligned}$
	0.95	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.18 \\ & 1.18 \\ & 1.45 \end{aligned}$	$\begin{aligned} & 1100 \\ & 1200 \\ & 1300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.05 \end{aligned}$	5.5 5.4 5.8	$\begin{aligned} & 0.008 \\ & 0.005 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 81 \\ 104 \\ 110 \end{array}$	$\begin{array}{r} 104 \\ 140 \\ 185 \end{array}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.45 \\ & 8.9 \\ & 8.95 \\ & \hline \end{aligned}$	$\begin{aligned} & 1700 \\ & 2900 \\ & 2300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.04 \end{aligned}$	4.2 4.1 4.0	$\begin{aligned} & 0.005 \\ & 0.003 \\ & 0.0025 \end{aligned}$	$\begin{array}{r} 75 \\ 97 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 161 \\ 800 \\ 230 \\ \hline \end{array}$
$\begin{gathered} \text { 6AU6, 6SH7 } \\ \text { 12AU6, 12SH7 } \end{gathered}$	0.1	0.1 0.29 0.47	$\begin{aligned} & 0.2 \\ & 0.24 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 500 \\ & 600 \\ & 700 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.11 \\ & 0.11 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.0 \\ & 16.4 \\ & 15.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.019 \\ & 0.011 \\ & 0.006 \\ & \hline \end{aligned}$	$\begin{array}{r} 76 \\ 103 \\ 199 \\ \hline \end{array}$	109 145 168
	0.22	$\begin{aligned} & 0.29 \\ & 0.47 \\ & 1.0 \end{aligned}$	0.42 0.5 0.55	$\begin{aligned} & 1000 \\ & 1000 \\ & 1100 \\ & \hline \end{aligned}$	0.1 0.098 0.09	$\begin{aligned} & 12.4 \\ & 12.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 0.009 \\ & 0.007 \\ & 0.003 \end{aligned}$	$\begin{array}{r} 92 \\ 108 \\ 122 \end{array}$	$\begin{aligned} & 164 \\ & 930 \\ & 262 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1800 \\ & 1900 \\ & 2100 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.065 \end{aligned}$ 0.06	8.0 7.6 7.3	$\begin{aligned} & 0.0045 \\ & 0.0028 \\ & 0.0018 \\ & \hline \end{aligned}$	$\begin{array}{r} 94 \\ 105 \\ 129 \\ \hline \end{array}$	$\begin{array}{r} 248 \\ 318 \\ 371 \end{array}$
$\begin{gathered} \text { 6AQ6, 6AQ7, } \\ \text { 6AT6, 6Q7, } \\ \text { 6SL7GT, 6SZ7, } \\ \text { 6T8,12AT6, } \\ \text { 12O7.GT, } \\ \text { 12SL7-GT } \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 01 \\ & 0.29 \\ & 0.47 \end{aligned}$		$\begin{aligned} & 1500 \\ & 1800 \\ & 2100 \\ & \hline \end{aligned}$	－	4.4 3.6 3.0	$\begin{aligned} & 0.027 \\ & 0.014 \\ & 0.0065 \end{aligned}$	40 54 63	$\begin{aligned} & 34 \\ & 38 \\ & 41 \end{aligned}$
	0.22	$\begin{aligned} & 0.29 \\ & 0.47 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 2600 \\ & 3200 \\ & 3700 \\ & \hline \end{aligned}$	－	2.5 1.9 1.6	0.013 0.0065 0.0035	51 65 77	42 46 48
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.8 \\ & \hline \end{aligned}$	—	$\begin{aligned} & 5800 \\ & 6300 \\ & 7800 \end{aligned}$	－	1.8 1.0 0.9	$\begin{aligned} & 0.006 \\ & 0.0035 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 61 \\ & 74 \\ & 85 \end{aligned}$	48 50 51
$\begin{gathered} \text { 6AVG, } 12 A V 6, \\ 19 A X 7 \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.29 \\ & 0.47 \\ & \hline \end{aligned}$		$\begin{aligned} & 1300 \\ & 1500 \\ & 1700 \\ & \hline \end{aligned}$	二	4.6 4.0 3.6	$\begin{aligned} & 0.027 \\ & 0.013 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 43 \\ & 57 \\ & 66 \\ & \hline \end{aligned}$	45 59 57
	0.22	0.22 0.47 1.0		$\begin{aligned} & 2800 \\ & 9800 \\ & 3100 \\ & \hline \end{aligned}$	二	$\begin{aligned} & 3.0 \\ & 2.3 \\ & 2.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.006 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 54 \\ & 69 \\ & 79 \\ & \hline \end{aligned}$	59 65 68
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \\ & \hline \end{aligned}$	二	$\begin{array}{r} 4300 \\ 5200 \\ 5900 \\ \hline \end{array}$	－	1.6 1.3 1.1	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.009 \end{aligned}$	62 77 92	69 73 75
$\begin{aligned} & \text { 6SC7, 12SC7 } \\ & \text { (one triode) } \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{array}{r} 750 \\ 930 \\ 1040 \\ \hline \end{array}$	－	－	$\begin{aligned} & 0.033 \\ & 0.014 \\ & 0.007 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 50 \\ & 54 \\ & \hline \end{aligned}$	29 34 36
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1400 \\ & 1680 \\ & 1840 \\ & \hline \end{aligned}$	－	－	$\begin{aligned} & 0.012 \\ & 0.006 \\ & 0.003 \end{aligned}$	45 55 64	$\begin{aligned} & 39 \\ & 49 \\ & 45 \\ & \hline \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	－	$\begin{aligned} & 2330 \\ & 2980 \\ & 3980 \\ & \hline \end{aligned}$	－	－	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 69 \\ & 79 \\ & \hline \end{aligned}$	45 48 49
$\begin{gathered} \text { 6J5, 7A4t } \\ \text { 7N7, 6SN7GT, } \\ \text { 125-GT, } \\ \text { 19SN7-GT } \\ \text { (one triode) } \end{gathered}$	0.05	$\begin{aligned} & \hline 0.05 \\ & 0.1 \\ & 0.25 \\ & \hline \end{aligned}$	－	$\begin{aligned} & 1080 \\ & 1270 \\ & 1500 \\ & \hline \end{aligned}$	二	$\begin{aligned} & 3.56 \\ & 2.96 \\ & 2.15 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.034 \\ & 0.012 \\ & \hline \end{aligned}$	$\begin{aligned} & 41 \\ & 51 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \\ & 14 \\ & \hline \end{aligned}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \\ & \hline \end{aligned}$	－	$\begin{aligned} & 1900 \\ & 2440 \\ & 2700 \\ & \hline \end{aligned}$	二	2.31 1.42 1.2	$\begin{aligned} & 0.035 \\ & 0.0125 \\ & 0.0065 \end{aligned}$	$\begin{aligned} & 43 \\ & 56 \\ & 64 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \\ & 14 \\ & \hline \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 4590 \\ & 5770 \\ & 6950 \\ & \hline \end{aligned}$	－	$\begin{aligned} & 0.87 \\ & 0.64 \\ & 0.54 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.0075 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 46 \\ & 57 \\ & 64 \\ & \hline \end{aligned}$	14 14 14
$\begin{gathered} 6 C 4 \\ 12 A{ }^{2} 7 \\ \text { (one triode) } \end{gathered}$	0.047	$\begin{aligned} & 0.047 \\ & 0.1 \\ & 0.29 \end{aligned}$	－	$\begin{array}{r} 870 \\ 1200 \\ 1500 \end{array}$	二	4.1 3.0 2.4	$\begin{aligned} & 0.065 \\ & 0.034 \\ & 0.016 \end{aligned}$	38 59 68	18 12 12
	0.1	0.1 0.29 0.47	－	$\begin{aligned} & 1900 \\ & 3000 \\ & 4000 \\ & \hline \end{aligned}$	－	1.9 1.3 1.1	$\begin{aligned} & 0.032 \\ & 0.016 \\ & 0.007 \\ & \hline \end{aligned}$	$\begin{aligned} & 44 \\ & 68 \\ & 80 \end{aligned}$	12 12 12
	0.22	$\begin{aligned} & 0.29 \\ & 0.47 \\ & 1.0 \end{aligned}$	－	$\begin{array}{r} 5300 \\ 800 \\ 11000 \end{array}$	二	$\begin{aligned} & 0.9 \\ & 0.52 \\ & 0.46 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.0035 \end{aligned}$	$\begin{aligned} & 57 \\ & 89 \\ & 92 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$

[^5]thus giving push-pull output. The part that appears across R_{7} therefore opposes the voltage from V_{1} across R_{7}, thus reducing the signal applied to the grid of V_{2}. The negative feed-back so obtained tends to regulate automatically the voltage applied to the phase-inverter tube so that the output voltages from both tubes are substantially equal - as they must be for distortionless reproduction. The self-balancing circuit also has the advantage of compensating for variations in the characteristies of the two tubes. The gain is slightly less than twice the gain of a single-tube amplifier using the same operating conditions.

The single-tube circuit shown in Fig. 9-413 also is inherently balanced. In this case the plate load resistor is divided into two equal parts, R_{9} and R_{10}, one being connected to the plate in the normal way and the other between cathode and ground. Since the voltages at the plate and cathode are 180 degrees out of phase, the grids of the following tubes are fed equal a.f. voltages in push-pull. The grid return of V_{3} is made to the junction of R_{8} and R_{10} so normal bias will be applied to the grid. This circuit is highly degenerative because of the way R_{10} is connected. The voltage gain is less than 2 even when a high- μ triode is used at V_{3}.

Gain Control

A means for varying the over-all gain of the amplifier is a practical necessity. Without it, there would be no way to keep the final output down to the proper level for modulating the transmitter except to talk at just the right intensity. The common method of gain control is to adjust the value of a.c. voltage applied to the grid of one of the amplifiers by means of a voltage divider or potentiometer.

The gain-control potentiometer should be near the input end of the amplilier, at a point where the a.c. voltage level is so low that there is no danger of overloading in the stages ahead of the gain control. With carbon mirrophones the gain control may be placed directly across the microphone-transformersecondary. With other types of microphones, however, the gain control usually will affect the frequency response of the microphone when connected directly across it. "The control therefore is usually placed in the grid circuit of the second stage.

DESIGNING THE SPEECH AMPLIFIER

The steps in designing a speech amplifier are as follows:

1) Determine the power nceded to modulate the transmitter and select the modulator. In the case of plate modulation, this will nearly always be a Class B amplifier. Select a suitable tube type and determine from the tube tables at the end of this book the grid driving power required.
2) As a safety factor, multiply the required driver power by at least 1.0.
3) Select a tube, or pair of tubes, that will deliver the power determined in the second step. This is the last or output stage of the speechamplifier. Receiver-type power tubes can be used (beam tubes such as the 6L6 may be needed in some cases) as determined from the receiving-tube tables. If the speech amplifier is to drive a Class B modulator, use a Class A or Al_{1} amplifier, in preference to Class $A B_{2}$, if it will give enough power output.
4) If the speech-amplifier output stage has to operate Class AB_{2}, use a medium- μ triode (such as the 6J5 or corresponding types) to drive it. In the extreme case of driving 6L6s to maximum output, two triodes should be used in push-pull in the driver. In either case transformer coupling will have to be used, and transformer manufacturers' catalogs should be consulted for a suitable type.
5) If the speech-amplifier output stage operates Class A or AB_{1}, it may be driven by a voltage amplifier. If the output stage is push-pull, the driver may be a single tube coupled through a transformer with a balanced secondary, or may be a dual-triode phase inverter. Determine the signal voltage required for full output from the last stage. If the last stage is a single-tube Class I amplifier, the peak signal is equal to the grid-bias voltage; if push-pull Class A, the peak signal voltage is equal to twice the grid bias; if Class $1 B_{1}$, twice the bias voltage when fixed bias is used; if cathode bias is used, twice the bias figured from the cathode resistance and the no-signal plate current.
6) From Table 9 -I, select a tube capable of giving the required output voltage and note its rated voltage gain. i double-triode phase inverter (Fig. 9-4A) will have approximately twice the output voltage and twice the gain of one triode operating as an ordinary amplifier. If the driver is to be transformer-coupled to the last stage, select a medium $-\mu$ triode and calculate the gain and output voltage as described earlier in this chapter.
7) Divide the voltage required to drive the output stage by the gain of the preceding stage. This gives the peak voltage required at the grid of the next-to-the-last stage.
8) Find the output voltage, under ordinary conditions, of the microphone to be used. This information should be obtained from the manufacturer's catalog. If not available, the figures given in the section on microphones in this chapter will serve.
9) Divide the voltage found in (7) by the output voltage of the microphone. The result is the over-all gain required from the microphone to the grid of the next-to-the-last stage. To be on the safe side, double or triple this figure.
10) From Table 9-I, select a combination of tubes whose gains, when multiplied together, give approximately the figure arrived at in (9). These amplifiers will be used in cascade. In
general, if high gain is required it is advisable to use a pentode for the first speech-amplifier stage, but it is not advisable to use a second pentode because of the possibility of feedback and self-oscillation. In most cases a triode will give enough gain, as a second stage, to make up the total gain required. If not, a third stage, also a triode, may be used.

SPEECH-AMPLIFIER CONSTRUCTION

Once a suitable circuit has been selected for a speech amplifier, the construction problem resolves itself into avoiding two difficulties e:cessive hum, and unwanted feed-back. For reasonably humless operation, the hum voltage should not exceed about 1 per cent of the maximum audio output voltage - that is, the hum should be about 40 db , below the output level. Cnwanted feed-back, if negative, will reduce the gain below the calculated value; if positive, is likely to cause self-oscillation or "howls." Feed-back can be minimized by isolating each stage with "decoupling" resistors and condensers, by avoiding layouts that bring the first and last stages near cach other, and by shielding of "hot" points in the circuit, such as grid leads in low-level stages.
speech-amplifier equipment, especially voltage amplifiers, should be constructed on metal chassis, with all wiring kept below the chassis to take advantage of the shielding afforded. lixposed leads, particularly to the grids of lowlevel high-gain tubes, are likely to pick up hum from the electrostatic field that usually exists in the virinity of house wiring. Even with the chassis, additional shielding of the input circuit of the first tube in a high-gain amplifier usually is necessary. In addition, such circuits should be separated as much as possible from power-supply transformers and chokes and also from any audio transformers that operate at fairly-high power levels; this will minimize magnetic roupling to the grid circuit and thus reduce hum or andio-frequency feed-back. It is always a safe plan, although not an absolutely necessary one, to build the speech amplifier and its power supply as separate units.

If a low-level microphone such as the crystal type is used, the microphone, its comeeting cable, and the plug or connector by which it is attached to the speech amplifier, all should be shielded. The microphone and cable usually are constructed with suitable shielding. The cable shield should be comected to the speechamplitier chassis, and it is advisable - as well as usually necessary - to connect the chassis to a ground such as a water pipe.

Heater wiring should be kept as far as possible from grid leads, and either the center-tap or one side of the heater-transformer secondary winding should be connected to the chassis. If the center-tap is grounded, the heater leads to each tube should be twisted together to reduce the magnetic field from the heater cur-
rent. With either type of connection, it is advisable to lay heater leads in the corner formed by a fold in the chassis, bringing them out from the corner to the tube socket by the shortest possible path.

In a high-gain amplifier it is sometimes helpful if the first tube has its grid connection brought out to a top cap rather than to a base pin; in the latter type the grid lead is exposed to the heater leads inside the tube and hence may pick up more hum. With the top-cap tubes, complete shielding of the grid lead and grid cap is a necessity.

When metal tubes are used, always ground the shell connection to the chassis. Class tubes used in the low-level stages of highgain amplifiers must be shielded; tube shields are obtainable for that purpose. It is a good plan to enclose the entire amplifier in a metal box, or at least provide it with a cane-metal cover, to avoid feed-back difficulties caused by the r.f. field of the transmitter; r.f. picked up on exposed wiring leads or tube elements causes overloading, distortion, and frequently oscillation,

When using paper condensers as by-passes, be sure that the terminal marked "outside foil" is connected to ground. "This utilizes the outside foil of the condenser as a shield around the "hot" foil. When paper condensers are used as coupling condensers between stages, always comert the outside-foil terminal to the side of the circuit having the lowest impedance to ground. I'sually, this will be the plate side rather than the following-grid side.

INCREASING THE EFFECTIVENESS OF THE 'PHONE TRANSMITTER

The design principles outlined so far in this section are perfeetly st raight forward and apply to amplifiers designed for any purpose. However, the effectiveness of an amateur 'phone transmitter can be increased to a remarkable extent by taking advantage of specch characteristics and of the requirements in woice communication.

Measures that may be taken to make the modulation more effective include band compression (filtering), volume compression, and speech clipping.

Compressing the Frequency Band

Most of the intelligibility in speech is contained in the medium band of frequencies; that is, between about 500 and 2500 cycles. ()n the other hand, the major portion of sipech power is normally concentrated below 500 cycles. It is these low frequencies that modulate the transmitter most heavily. If they are eliminated. the frequencies that carry most of the actual communication can be increased in amplitude without exceeding 100 -per-cent modulation, and the effectiveness of the transmitter is correspondingly increased.

Fig. 9-5 - A, use of a small coupling condenser to reduce low-frequeney response; 13, tone-control eireuits for redueing high-frequency response. Values for C and R are diseussed in the text: $0.01 \mu \mathrm{fl}$. and 25,000 ohms are typical.

One simple way to reluce low-frequency response is to use small values of eoupling capacitance between resistance-coupled stages, as shown in Fig. 9-5A. A time constant of 0.0005 second for the coupling condenser and following-stage grid resistor will have little effect on the amplification at 500 cycles, but will practically halve it at 100 cycles. In two cascaded stages the gain will be down about 5 db. at 200 cycles and 10 db . at 100 cycles. When the grid resistor is $1 / 2$ megohm a coupling condenser of $0.001 \mu \mathrm{fd}$. will give the required time constant.

The high-frequency response can be reduced by using "tone control" methods, utilizing a condenser in series with a variable resistor connected across an audio impedance at some point in the speech amplifier. The best spot for the tone control is across the primary of the output transformer of the speech amplifier, as in Fig. 9-513. The condenser should have a reactance at 1000 cycles about equal to the load resistance required by the amplifier tube or tubes, while the variable resistor in series may have a value equal to four or five times the load resistance. The control can be adjusted while listening to the amplifier, the object being to cut the high-frequency response as much as possible without unduly sacrificing intelligibility.

Compressing the audio-frequency band not only puts more modulation power in the optimum frequency band but also reduces hum, because the low-frequency response is reduced, and helps reduce the width of the channel occupied by the transmission, because of the reduction in the amplitude of the high audio frequencies.

Volume Compression

It is obviously desirable to modulate the transmitter as completely as possible - without, of course, overmodulating and setting up spurious sidebands. However, it is difficult to maintain constant voice intensity when speaking into the microphone. To overcome this variable output level, it is possible to use automatic gain control that follows the average (not instantaneous) variations in speech amplitude. This can be done by rectifying and filtering some of the audio output and applying the rectified and filtered d.c. to a control electrode in an early stage in the amplifier.

A practical circuit for this purpose is shown in Fig. 9-6. The rectifier must be connected, through the transformer, to a tube capable of delivering some power output (a small part of the output of the power stage may be used) or else a separate power amplifier for the rectifier circuit alone may have its grid connected in parallel with that of the last voltage amplifier.

Resistor R_{4}, in series with R_{5} across the plate supply, provides an adjustable positive bias on the rectifier cathodes. This prevents the limiting action from beginning until a desired microphone input level is reached. R_{2}, R_{3}, C_{2}, C_{3} and C_{4} filter the audio frequencies from the rectified output. The output of the rectifier may be connected to the suppressor grid of a pentode first stage of the speech amplifier.

A step-down transformer with a turns ratio such as to give about 50 volts when its primary is connected to the output circuit of the power stage should be used. If a transformer having a center-tapped secondary is not available, a half-wave rectifier may be used instead of the full-wave circuit shown, but it will be harder to get satisfactory filtering.

The over-all gain of the system must be high enough so that full output can be secured at a moderately low voice level.

Speech Clipping and Filtering

In the chapter on amplitude modulation it is pointed out that with sine-wave 100 -per-cent modulation the average power increases to 150 per cent of the ummodulated carrier power, but that in speech waveforms the average power content is considerably less than in a sine wave, when

Fig. 9.6-Speceh-amplifier output-limiting cirenit. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-0.1-\mu \mathrm{fd} . ; \mathrm{H}_{1}, \mathrm{~K}_{2}, \mathrm{R}_{3}-0.22$ megohm; $\mathrm{R}_{4}-25,000$-ohm pot.; $\mathrm{R}_{5}-0.1$ megohm; T - see text.

Fig. 9-7 - Ihe normal speech wave (13) has high peaks hut low average energy content. When the peaks are clipped the signal may be inereased to a considerablyhigher power level without eausing overmodulation (C).
both waveforms have the same peak amplitude. Nevertheless, it is the peak conditions that count in molulation. This is shown in the drawings of lig. 9-7. The upper drawing, A, represents a sine wave having a maximum amplitude that just modulates a given transmitter 100 per cent. The same maximum amplitude will modulate the same transmitter 100 per cent regardless of the waveform of the modulating signal. The speech wave at B, therefore, also represents 100 -per-cent modulation.

Now suppose that the amplitude of the wave shown at B is increased so that its power is comparable with - or even higher than - the power in a sine wave, but that everything above the 100 -per-cent modulation mark is cut off. We then have a wave such as is shown at C, which is the wave at B increased in amplitude but with its peaks "clipped." This signal will not modulate the transmitter more than 100 per cent, but the voice power will be several times as great. The wave is not exactly like the one at B , so the result will not sound exactly like the original. However, such clipping can be used to secure a worth-while increase in modulation power without sacrificing intelligibility, The clipping can be done in the speech amplifier. and once the system is properly adjusted it will be impossible to overmodulate the transmitter no matter how much gain is used ahead of the clipper - because the clipper will hold the maximum output amplitude to the same value no matter what the amplitude of the signal applied to it.

But by itself the clipper is not enough. Although the clipping takes place in the audio system, the signal applied to the modulated r.f. amplifier has practically the same waveshape that the modulation envelope would have had if the signal were unclipped and the transmitter were badly overmodulated. In other words, clipping generates the same high-
order harmonics that overmodulation does. It is therefore necessary to prevent the higher audio frequencies from reaching the modulator. In other words, the frequencies above those needed for intelligible speech must be filtered out, after clipping and before modulation. The filter required for this purpose should have relatively little attenuation at frequencies below about 2500 cycles, but very great attenuation for all frequencies above 3000 cycles.

It is possible to use as much as 2.5 db . of clipping before intelligibility suffers; that is, if the original peak amplitude is 10 volts, the signal can be clipped to such an extent that the resulting maximum amplitude is less than one volt. If the original 10 -volt signal represented the amplitude that caused 100 -per-cent modulation on peaks, the clipped and filtered signal can then be amplified up to the same 10 -volt peak level for modulating the transmitter, with a very eonsiderable increase in modulation power.

Fig. 9-8 - Block diagran of speed-clipping and filtering amplifier.

There is a loss in naturalness with "deep" clipping, even though the voice is highty intelligible. With moderate clipping levels (6 to 12 dib.) there is almost no perceptible change in "quality" but the voice power is four or sisteen times as great as in ordinary modulation.

Before drastic clipping can be used, the speech signal must be amplified up to 10 times more than is necessary for normal modulation. Ilso, the hum and noise must be much lower than the tolerable level in ordinary amplification, because the noise in the output of the amplifier increases in proportion to the gain.

The clipper-filter system is shown in block form in Fig. ()-8. The limiter is a peak-limiting rectifier of the same general type that is used in receiver noise limiters. It must clip both positive and negative peaks. The gain or clipping control sets the amplitude at which clipping starts. Following the low-pass filter for eliminating the harmonic distortion frequencies is a second gain control, the "level" or modulation control. This control is set initially so that the amplitudelimited output of the elipper-filter modulates the transmitter 100 per cent. Thereafter it need not be touched. The clipper-filter system is consequently an automatic "overmodulation-preventer," and is a worth-while addition to the transmitter on that account even though deep clipping is seldom used.

Practical circuits are illustrated in a speech amplifier deseribed in this chapter.

SPEECH AMPLIFIERS AND MODULATORS
 A Clipper-Filter Speech Amplifier-Driver

259

The speech amplifier shown in Figs. 9-9, to 9-11, inclusive, uses push-pull triodes to obtain a power output of 13 watts with negligible distortion - sufficient to drive most of the com-monly-used ('lass-13 modulator tubes. It includes a clipper-filter for increasing the effectiveness of modulation and for confining the channel width to frequencies needed for intelligible speech. The over-all gain is ample for use with communica-tions-type crystal microphones when using clipping of the order of $12-1 \overline{\mathrm{~d}} \mathrm{db}$. Miniature tubes are used in the voltage-amplifier stages. The output tubes are 6134 Gs , operated Class AB1 with fixed bias. Two power supplies are included, one for the voltage amplifier stages and the other for the output tube plates.

As slown in Fig. 9-10, the first two stages are voltage amplifiers of ordinary design, using a 6AL6 pentode in the first stage and a 6 C 4 triode in the second. The output of the second stage can be switched wither to the 12AU7 doubletriode elipper or to the 6 ('4 voltage amplifier that drives the 6134 G grids. In the latter case the amplifier operation is conventional. The clipper, when operative, provides additional voltage gain as well as clipping. Its output goes through a simple low-pass filter ($L_{1} C_{11} C_{12}$) so that harmonics generated by clipping will be attenuated before the signal reaches the grid of the second $6 C 4$. The frequency response of the amplifier with the filter in circuit, but with the signal below the clipping level, drops at the rate of roughly 6 db . per octave below 500 cycles; above 4000 cycles the response is down 25 db . compared with the medium audio range.

A two-sertion filter is used in the plate supply for the voltage-amplifier stages. The hum level must be kept low because of the high gain required when using elipping. A single-section filter is sufficient for the output stage. Bias for the (il34G grids is obtained from the low-voltage supply by means of R_{16}, by-passed by C_{14}.

Two gain controls are included, one (R_{6}) for setting the level into the clipper circuit and thus determining the amount of clipping, and the
second (R_{13}) for setting the output level after clipping. With the clipper in use, proper setting of R_{13} will keep the modulation level high but will prevent overmodulation.

Construction

As shown in Fig. 9-9, the voltage amplifiers occupy the left front section of the chassis. The 6AU6 first amplifier is at the left, followed in order to the right by the first 6 C 4 , the 12 AL 7 , and the second 6 C 4 . The 6134 Gs and their output transformer are at the right front. The cylindrical unit just behind the second 6 C 4 is the interstage audio transformer, T_{1}.

Power supply components are grouped along the rear edge of the chassis, with the low-voltage supply at the loft. The power transformers should be kept well separated from the voltage amplifiers, particularly the first two stages, in order to minimize hum difficulties.

On the front panel, the microphone input connoctor is at the lower left. Next to it is the clipping control, then the clipper in-out switch, and then the modulation control. The two toggle switches at the right are S_{2} and S_{3}. The a.c. input socket is by-passed by C_{15} and C_{16}, to reduce the possibility that r.f. picked up on the line cord will get into the low-level speech stages.

The wiring underneath the chassis is relatively simple, as shown by Fig. 9-11. The microphone input circuit, including $R F C_{1}$ and C_{1}, is enclosed in a National jack shield, and the lead from $R F^{\prime} C_{1}$ to the 6AL6 grid also is shielded.

Adjusting the Clipper-Filter Amplifier

The good effect of the low-pass filter in eliminating splatter can be entirely nullified if the amplifier stages following the filter can introduce appreciable distortion. Amplifier stages following the unit must be operated well within their capabilities; in particular, the Class 13 output transformer (if a Class IS modulator is to be driven) should be shunted by condensers to reduce the high-frequency response as described in the section on Class B modulators.

Fig. 9.9-This specch-amplifier and driver has ample gain for a crystal microphone and is complete with power supply. The measured undistorted output is 13 watts. It incorporates a clipper-filter system for increasing modalation effectiveness and decreasing channel width.

Fig. 9-10-Circuit diagram of the elipper-filter speech amplifier.

097

Fig. 9-1/ - Below-chassis view of the rlip. per-filter speech amplifier. 'The relatively small number of eomponents below the chassis makes wiring simple.

The setting of R_{13} is most important. It is mose easily done with the aid of an ascilloscope (one having a linear swere) and an audio oscillator, using the test sot-up shown in the section on testing of speerh equipment. C'se a resistance load on the output transformer to refleet
 the proper load resistance (3000 ohms) at the plates of the 6B4Gs. First set R_{13} at about $1 / 4$ the resistance from the ground end, switch in the clipper-filter, and apply a booreve sine-wave signal to the microphone input. Increase the signal amplitude until clipping starts, as shown by flattening of both the negative and positive peaks of the wave. To rheck whether the elipping is taking place in the clipper or in the following amplifiers, throw S_{1} to the "normal" or "out" position; the waveshape should return to normal. If it does not, return S_{1} to the "in" position and reduce the setting of R_{13} until it does. Then redure the amplifier gain by means of R_{6} until the signal is just below the clipping level. At this point the signal should be a sine wave. In-

[^6]erease R_{13}, without touching R_{6}, until the wave starts to berome distorted, and then back off R_{13} until distortion disappears.

Next, change the input-signal frequency to 2500 rycles, without changing the signal level. Slowly increase R_{6} while observing the pattern. At this frequency it should be almost impossible to get anything exeept a sine wave through the filter, so if distortion appears it is the result of overloading in the amplifiors following the filter. Reduce the setting of R_{13} until the distortion disappears, even when R_{6} is set at maximum and the maximum available signal from the audio oseillator is applied to the amplifier. The position of R_{13} should be noted at this point and the observed setting should never be exceeded.

To find the operating setting of R_{13}, leave the audio-oscillator signal amplitude at the value just under the clipping level and set up the complete transmitter for a modulation check, using the oseilloseope to give the trapezoidal pattern. With the Class (' amplifier and modulator running, find the setting of R_{13} (keeping the audio signal just under the clipping level) that just gives 100 -per-eont modulation. This setting should be below the maximum setting of R_{13} as previously determined; if it is not, the driver and modulator are not capable of modulating the transmitter 100 per cent and must be redesigned - or the Class (' amplifier input must be lowered. Assuming a satisfactory setting is found, comect a mierophone to the amplifier and set the amplifier gain control, R_{6}, so that the transmitter is modulated 100 per eent. Observe the pattern elosely at different settings of R_{6} to see if it is possible to overmodulate. If overmodulation does not oecur at any setting of R_{6}, the transmiter is rearly for operation and R_{13} may be locked in position; it need never be touched subsequently. If some overmodulation does oerur, R_{13} should be bateked off until it disappears and then locked.

In the absence of an oscilloscope the other methods of checking distortion deseribed in the section on spereh-amplifier testing may be used. The objeet is to prevent distortion in stages following the filter, so that when the clipping level is exceeded the following stages will be working within their capabilities.

6L6 Modulators for Low-Power Transmitters

Plate modulation for transmitters operating at final-stage plate power inputs up to 75 or 80 watts can be provided at relatively small cost by using Class AB 6L6s as modulators. The combined speech amplifier and modulator shown in Fig. 9-12 uses the 6L6s as Class AB. amplifiers and has an output (from the transformer secondary) of about 40 watts. The first stage is a 6SJ7 high-gain pentode amplifier,

Fig. 9.12-A 40-watt modulator of inexpensive eonstruction. The seennd tuhe from the left, in the foreground, is the 6SJ7 first amplifier. The microphone conncetor is immediately below it on the chassis wall. Nong the left edge, from the front, are the first and second 6 SN T G'l's and the Iriver transformer for the 6L6s, "the output transformer is to the right of the 6J.6s, 'Jhe power transformer and reetifier are at the far right. rent.
and is resistance coupled to one section of a 6SN7GT triode amplifier. The other section of the 6SN7GT is used as a single-tube phase inverter to obtain push-pull output. The grids of the push-pull 6 L 6s are driven by a $6 \times \underset{N}{ } \mathrm{GGT}$ with the two sections in push-pull, through transformer T_{1}. The gain control, R_{6}, is in the grid circuit of the first $6 \mathrm{SN} 7 \mathrm{G}^{\prime} \Gamma$ section, and is shunted by condenser (5_{5} to reduce the highfrequency response. Condenser Cit, across the secondary of T_{1}, serves a similar purpose. The over-all circuit constants have been chosen so that the maximum response is in the most effective speech-frequency band. The response is down about 10 db . at 100 and 3000 cycles, as compared with the range $300-1500$ cycles. The gain is more than sufficient for typical crystal microphones.

A power supply for the speechamplifier stages and for the 626 heaters is included in the unit, but the power for the 610 plates and sereens
must be obtained from a separate supply. Fixed bias for the 616 grids is ohtained from the built-in supply by taking the drop across R_{19}. This resistor should be adjusted so the voltage drop across it is 22.5 volts when the speceh-amplifior stages are taking nomal cur-

In building the amplifier, the usual precautions as to placement of components and wiring to avoid hum and feed-back should be observed. The microphone eonnector, J_{1}, shouhd be located close to the 6心.J7 socket so the lead to the grid can be short. This lead also should be shielded.

The power supply for the 6I 6s must have good voltage regulation, since the total current varies from approximately 95 ma, with no signal to 220 ma , at full output. A heavy-duty choke-input plate supply should be used; general design data will be found in the power-supply chapter.

20-Watt Modulator

Fig. $9-15$ is the cireuit of a speech amplifier and modulator that has an output of approximately 20 watts. This circuit also uses (il.fis as output tubes, but the amplifier operates Chass $A B_{1}$ and thus requires no driving power. Beause of this, fewer voltageamplifier stages are needed than in the case of the 40 -watt amplifier. Pushpull input for the grids of the 6L6s is secured by using a single-plate-to-push-pull audio transfomer between the 6.55 and the 61.6 s . In this case it is economical to use a single power supply for the entire amplifier, so the low-voltage supply circuit shown in the 40 -watt amplifier circuit may be omitted.

This amplificr can be used to plate-modulate

Fig. 9-13 - Undernath the chassis of the 40-watt modulator. 'The poser-supply choke is mounted below chassis at the right. The biassetting resistor, $R_{1 \%}$, is on the rear ehassis wall, at the lower right in this photograph. Wher eomponents are grouped near the tube socket with which they are assoriated.

Fig. 9-If - Circuit diagram of the fo-watt modulator.
$\mathrm{Ci}_{1}, \mathrm{C}_{6}-25-\mu \mathrm{fd}$. 25 -volt eldetrolytia.
$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{3}-\mathbf{0} 1-\mu \mathrm{fd}$. 100-volt paper.
$\mathrm{C}_{3}, \mathrm{C}_{10}, \mathrm{C}_{12}, \mathrm{C}_{14}, \mathrm{C}_{15}-8-\mu \mathrm{fl}$. 450 -volt electrolytic.
$\mathrm{C}_{5}-470-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{11}-0.1-\mu \mathrm{fll}$. 600 -volt paper.
C. 13 - 0.01 - $\mu \mathrm{fd}$. 1200 -volt mica.
$\mathrm{C}_{16}-50-\mu \mathrm{fd}$. 50 -volt eleetrolytie.
181 - 4.7 megohms, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{R}_{7}-\mathrm{E} 500$ ohms, $1 / 2$ watt.
$R_{3}-1.5$ megolims, $1 / 2$ watt,
$\mathrm{R}_{4}-0.22$ megohm, $1 / 2$ watt.
$183-47,000$ ohms, $1 / 2$ watt.
$\mathrm{K}_{6}-0 . \overline{\mathrm{j}}$-megohs potentioneter.
$\mathrm{R}_{\mathrm{s},} \mathrm{R}_{13}-56,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{0}, \mathrm{R}_{14}, \mathrm{R}_{15}-0,47$ megohm, $1 / 2$ watt.
$\mathrm{R}_{10}-18,000$ ohms, $1 / 2$ watt.
$H_{11}-39,000$ ohms, $1 / 2$ watt.
R_{12} - 10,00100 ohme, 1 watt.
$R_{10}-480$ ohms, 1 watt.
$R_{17}-7.500$ ohms, 10 watts.
R_{18} - $\mathbf{7 0 0 0}$ ohms, 2.5 watts.
R_{19} - 1000 -ohm wire-wound potentioneter, 4 watl .
$\mathrm{R}_{20}-1200$ ohms, 1 watt.
L_{1}-Smoothing choke; 12 henrys, 80 ma. (Thordarson TOC53).
$\mathrm{H}_{1}-6.3$-volt pilot lamp.
J_{1} - Bicrophone-cable connector (Amphenol).
T_{1} - Class 113_{2} driver transformer, p.p. plates to p.p. krids (Stancor A-1116).
$\mathrm{T}^{\prime}{ }_{2}$ - Mondulation transformer, 3800 ohms to desired load (unit shown is Stancor A-3893).
T_{3} - Power transformer: $3 \mathbf{3 0}$ volts cach side center-tap, 70 ma.; 5 volts. 3 amp.; 6.3 volts, 3 amp . (Stancor P'40:8).
an input of 40 watts to the r.f. amplifier. It is neeessary, of course, to choose the proper output-transformer turns ratio to couple the modulator and modulated amplifier. The output stage is designed to work into a plate-to-plate load of 9000 ohms.

For the maximum power output of 20 watts, the plate supply for the amplifier must deliver 145 ma. at 360 volts. A condenser-input supply of ordinary design may be used. The total plate current is approximately 120 ma . with no signal and 145 ma. at full output. If no more than 12 or 13 watts is needed, R_{9} and R_{10} may be omitted and all tubes fed directly from a "B" supply giving approximately 175 mat, at 270 volts.

Fi». 9. 15 - Cirenit diagram of a low-cost modulator capalole of power outputs up 11,20 watts.
$\mathrm{C}_{1}, \mathrm{C}_{2}-20-\mu \mathrm{fd}$. 50 -volt electro. Iytie.
$\mathrm{C}_{3}-0.1$ ufd. 200 -volt paper.
$\mathrm{C}_{4}-0.01 \cdot \mu \mathrm{ff} .400$-volt paper.
C_{5}. $\mathrm{C}_{6}-8-\mu \mathrm{fd}$. 450 -volt electroIytic.
$\mathrm{C}_{8}-50 . \mu \mathrm{fl} .50$ volt electrolytie.
$R_{1}-4.7$ megohms, $1 / 2$ watt.
R_{2} - 1500 ohms, $1 / 2$ watt.
$\mathrm{K}_{3}-1.5$ megohms, $1 / 2$ watt.
$R_{4}-0.22$ negohm, $1 / 2$ watt.
$\mathrm{K}_{5}-17,000$ ohms, $1 / 2$ watt.
K_{6} - 1-megohm volume control.
R_{7} - 1.501 ohme, 1 watt.
$188-2.50$ ohms, 10 watts.
$1 R_{9}-2000$ ohms, 10 watts.
$\mathrm{R}_{10}-20,010$ ohms, 25 watts.
T_{1} - Interstage andio transformer, single plate to p.p. grids, ratio 3:1.
T2-Output transformer, type depending on requirements.

An 807 Modulator and Speech Amplifier

The combined speech amplifier and modulafor unit shown in lig. 9-16 is simple and inespensive in design and, with the exception of the plate supply for the modulator tubes, is contained on a chassis measuring $3 \times 8 \times 17$ inches. With a 7 750-volt plate supply, the pushpull Class $\therefore B_{2} 807 \mathrm{~s}$ are capable of a tube output of 120 watts, or enough to plate-modulate a Class C stage with 200 watts imput, allowing for moderate lossers in the modulation transformer.

As shown in Fig. 9-17, the first tube in the speech amplifier is a 6.57 (a $6 \mathrm{~S} . \mathrm{J} 7$ may be substi(uted). A 6SN7G'T is used in the second stage, one section serving as a voltage amplifier and the other as a phase inverter of the self-balancing type. The gain control for the amplifier is in the gride eireuit of the first half of the tube. The third tube, also a 6SN7. ${ }^{\text {an'T, is a push- }}$ pull amplifier, transformer-coupled to the grids of the 807 s .

A power supply for the three tubes preceding the 807s is built on the same chassis. Voltage for the 807 sereens is taken from this same supply. The negative return of the supply goes to the chassis through the adjustable arm of potentioneter R_{17}, which is connected in series with the bleoder resistor, R_{16}. The voltage developed in the section of R_{1}, below the adjustable arm is negative with respeet to chassis, and is used to provide fixed bias for the $807 \mathrm{~s} . C_{11}$ is connected across this seetion of R_{17} to by-pass any a.f. current that might flow through the resistor. A separate filament transformer is provided for the 807 heaters, since the total heater power required by all the tubes in the amplifier is somewhat in exeass of the rating of the 6.3 -volt winding on the ordinary small power transormer.

Resistors R_{14} and R_{15} and condenser $C 8$ are placed in the 807 screen circuit to suppress the r.f. parasitic osedlations that sometimes oceur with these tubes. Their use is principally a precautionary measure, and they may not be required in some installations.

The frequency response of this unit is maximum in the range from about 200 to 2500 cy cles, for greatest voice effectiveness and minimum width of the r.f. channel. Frequencies above 2500 cyrles are attenuated by condensers C_{12} and C_{13}, the former across the secondary of the driver transformer and the latter acros; the secondary of the output transformer. The capacitance values given are about optimum for the types of transformers specilied and shoubl be close to optimum for other transformers of similar ratings. The voltage rating of C_{13} should be at least equal to the d.e. voltage on the modulated r f. amplifier.

The photographs show the general dayout of components. The 6.57 and $6 S N 7 G T$ phas. inverter are in line at the left-hand front edge of the chassis. The 6 SN 7 GT driver and $5 \mathrm{Y}^{\prime} 3 \mathrm{a}^{\prime} \mathrm{T}$ rectifier are to the rear of the phase inverter.

The bottom view shows the by-pass condensers and resistors grouped around the sockets to which they connect. The bias-control potentiometer, R_{1}, is mounted on the rear edge of the chassis. A jack shield (National Js-1) covers the microphone jack, and the first-stage grid resistor, R_{1}, is mounted inside this shield, The lead to the 6.57 grid cap must be shielded and the shield grounded.

The No. 1 terminals of the driver transformer specified should be connected to the grids of the 807 s . If a different transformer is used, it should have a primary-to-secondary ratio (total) of about $1-t o-1$ to couple the

Fïg. 9.16 - A speech amplitior and 805 modulator for plate modulation of transmitters up to 200 watts input. The microphone jach and the gain control are at the left end of the 'hassis. 'the audio emmponentand tuhes oceupy the frout sere. tion, and the power supply for the driver tubes is laid out athong the rear edge. The driver transformer is in the ernter foreqround, with the gower-supply tran-former directly lochind it. The larke transfurmer at the right is the mendulation transformer.

Fig. 9.17 - Cireuit liagram of the puah-pall 807 speech amplifier-modulator.
(i) - $10-\mu \mathrm{fil}$, 5ll-volt electrob tic.
(i2- $0.1-\mu \mathrm{fl}$. 40 N -volt paper.
Cis, Co, (in - 8- ffl . 450 -volt electrolytic.
Cin, $\mathrm{C}_{11}-50-\mu \mathrm{fl}, 50$-volt eleetrolytie.
$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}-0.01-\mu \mathrm{fd}, 400$-volt paper
(: $-0.0068 \cdot \mu$ fil miea,
(i) $2-0,001-\mu \mathrm{fd}$, mica (see text).
($\mathrm{B}_{3}-0.02-\mu \mathrm{fl}$, mica (we text).
$R_{1}-1$ megohm.
$R_{2} R_{-}-1500$ ohmı.
$\mathrm{R}_{3}-1.5$ megolms.
$\mathrm{K}_{4}, \mathrm{~K}_{8}, \mathrm{~K}_{11}, \mathrm{~K}_{12}-0.2 \boldsymbol{2}$ morkohm.
$\mathrm{K}_{5}-17,000$ ohms.
K_{6} - 1 -megohm volume control.
$\mathrm{K}_{3}, \mathrm{R}_{1} \mathrm{n}-\mathrm{0}, \mathrm{l}$ megohim.
$11_{13}-170$ ohms.
$R_{14}, R_{15}-100$ ohms.
$\mathrm{R}_{16}-15,000$ ohms, 10 watts.

6SN7GT and 807 grids properly. The outputtransformer turns ratio will depend on the type of operation selected and the modulating impedance of the Class C amplifier. Operated at ICAS ratings, the 807 s will deliver a tube output of 120 watts into a plate-to-plate load of 6950 ohms. This requires a plate supply capa-
$\mathrm{K}_{1}-1000$-ohm wire-womend potentiometer.
(All resistors $1 / 2$ watt unlesis otherwise noted.)
L_{1}-Smoothing choke, 30 hy., 7.5 ma , 340 -ohm d.e.

I_{1} - 6.3-volt a,e. pilot-lamp-and-socket assembly.
J_{1} - Microphone-catble jack.

S_{1} - S.p.s.t. switch.
Ts - P'ush-pull plates to push-pmill grils (LTC: S-9).
'Tz Output transformer, type depending on requirament: I multitap transformer (CTC. VAI-3) ishown in photos.
T_{3} - Filament tranaformer, 6.3 volts, 3 amp. ('Thordarson $10: 2(1 F 10)$.
T_{4} - P'ower transformer, 330 volts a.c. each side of venter-tap, ioma. rating. Filament windings: $\overline{3}$ v., 3 amp,: 0.3 r., 3 amp. (Staneor 1'-1078),
ble of delivering 240 mat at 7 in 0 volts. At CCN ratings the tubes will deliver 80 watts into a $6400-\mathrm{ohm}$ load and require a 600 -volt 200 -ma. plate supply. The bias should be set, using R_{17}, to give - 32 volts betwern the negative plate-supply terminal and rhassis for I(CM operation, and to - 30 volts for ('Cs operation.

Fig. 9-18-1Below-chawis view of the 80% molulator, 'The shielded microphone jack is in the upmer left-hamd corner. 'The' filter chohe is mounted in the. lower left-land corner and the 80) ${ }^{-}$filament transformer is to the rear and slightly to the right of the 807 tulee sochets. The condenser for attenuating the high audin frequencies, shown at the right-hand end of the chassis, is supported by Vo. 12 wire leads which connect to the output terminals of the modulation transformer.

Class-B Modulators and Drivers

CLASS-B MODULATORS

Plate modulation of all but low-power transmitters requires so much audio power that the Class B amplifier is the only practical type to use. (Included in the Class 13 category are high-power modulators of the Class Al_{2} type; whether the operation is in one class or the other is prineipally a matter of degree.)

Class Is modulator cireuits are pratically identical no matter what the power output of the modulator, 'The diagrams of Fig. 9-19 therefore will serve for any modulator of this type that the amateur may elect to buibl. The triode circuit is given at A and the cironit for tetrodes at 13 . When small tubes with in-direetly-heated cathodes are used, the cathodes should be connected to ground.

Modulator Tubes

Class 13 audio ratings of various types of transmitting tubes are given in the chapter containing the tube tables. Choose a pair of tubers that is capable of delivering sine-wave audio power equal to somewhat more than half the dee input to the modulated Class C amplifier. It is sometimes conveniont to use tubes
that will operate at the same plate voltage as that applied to the Class C stage, becasuse onn power supply of adequate current capacity may then suffice for both stages.

In estimating the output of the modulator, remember that the figures given in the tables are for the tube output only, and do not include output-transformer lossus. To be adequate for modulating the transmitter, the modulator should have a theoretical power capability about 25 per cent groater than the actual power needed for modulation.

Matching to Load

In giving Class 13 ratings on power tubes, manufacturers sperify the plate-to-plate load imperdance into which the tubes must operate to deliver the rated audio power output. This load impedance soldom is the same as the modulating impodance of the C'lass (1 r.f. stage, so a mateh must be brought about by adjusting the turns ratio of the coupling transformer. The required turns ratio, primary to serondary, is

$$
N=\sqrt{\frac{Z_{\mathrm{p}}}{Z_{\mathrm{n}}}}
$$

where $N=$ Turns ratio, primary to secondary
$Z_{\mathrm{m}}=$ Modulating impedance of (Class ('rof, amplifior
$Z_{1}=$ Plato- 0 (o-plate loarl impedance for Class 13 tubes

Example: The modulated r.f. amplifier is to
oprate at $1: 20$ volts and 250 mat. The power input is

$$
I^{\prime}=E I=12.00 \times(1.25=312 \mathrm{w} 2 \mathrm{tts}
$$

so the modutating fower reguired is $312 / 2=$ liti watts. In reasimg this by $2 \overline{5} \%$ to allow for lossess and a reasonable operating margin gives $1.96 \times 1.25=10.5$ watts. The monlulaing impedanef of the (latss (' stage is

$$
Z_{\mathrm{rn}}=\frac{\boldsymbol{E}}{I}=\frac{1250}{0,25}=50000 \text { ohms. }
$$

$$
\begin{aligned}
& \text { From the tule tatles a pair of ("lass lif tuhes is } \\
& \text { selected that will give } 201 \text { watts outpat when } \\
& \text { working into a } 690 \text {-ohn load, phate-to-plate. } \\
& \text { The minary-to-secomdary tarns ratio of the } \\
& \text { modnlation transformer therefore should be } \\
& N=\sqrt{\overline{Z_{\mathrm{B}}}}=\sqrt{\frac{69(1)}{50001}}=\sqrt{1.3 \mathrm{~K}}=1.175: 1 .
\end{aligned}
$$

('ommercial Class 13 output transformers usually are rated to work between speecifiod primary and secondary impedanees and frequently are chesigned for specific Class Is tubes. In such a ease, it will be umnecessary to calculate the turns ratio when the recommended tube combination is used. Many transformers are provided with primary and secondary taps, so that various turns ratios can be
fig. 9-20 - A typical ehassis layont for a Class 13 modulator. Beyond adefutate insulation for the voltagrused, and sufficiant ventilation for the modulator tubes, mo particular construetional preeantions are nemensary. If the size of the combonents makes it nevesary to use more than one chassis, the driver transformer may be indurdeal with the speecth amplifier. In surll grase it is advisable to shielh ilor "hot" audion teads to the modulator grids if they have to ran any considerahle distance.

obtained to meet the requirements of various tube combinations.

It may be that the exatet furns ratio required by a particular tube combination cannot be secured, even with a tapped modulation transformer. Small depart ures from the proper turns ratio will have no serious effect if the modulat or is operating well within its capabilities; if the actual turns ratio is within 10 per cent of the ideal value the system will operate satisfactorily. Where the diserepancy is larger. it is always possible to choose a new set of operating conditions for the Class C stage to give a modulating impedance that can be mateded by the turns ratio of the available transformer. This may require operating the Class C amplifier at higher voltage and less plate current, if the modulating impodance must be increased, or at lower voltage and higher current if the modulating impedance must be decreased. However, this process cannot be carried too far without exceeding the ratings of the Class C tubes for either plate voltage or current, even though the power input is kept at the same figure. In such a case the only solution is to oprerate at reduced input and use less of the power available from the modulator.

Suppressing Audio Harmonics

Distortion in either the driver or Class 13 modulator itself will cause a.f. harmonies that may lie outside the frequency band needed for intelligible speech transmission. While it is almost impossible to avoid some distortion, it is possible to cut down the amplitude of the higher-frequeney harmonics. The purpose of condensers C_{1} and C_{2} across the primary and secondary, respectively, of the ('lass 13 output transformer in Fig. 9-19 is to reduce the strength of harmonics and unnecessary high-frequency components existing in the modulation.

The condensers aet with the leakage inductance of the transformer winding to form a
rudimentary low-pass filter. The values of capacitance required will depend on the load resistanee (mbdulating impedance of the Class (amplifier) and the leakage inductance of the particular transformer used. In general, capacitances between about 0.001 and 0.006 μ fld. will be required; the larger values are neeessary with the lower values of lesad resistance. I test set-up for measuring frequency response (deseribod in a later section in this chapter) will quickly show the optimum values to use, if a small assortment of eundensers is on hand for experimenting. The object is to find the combination of C_{1} and C_{2} that will give the most rapid reduction in response as the signal frequaney is raised above abour 2500 cyeles.

The voltage rating of each condenser should at leasi be equal to the d.e. voltage at the transformer winding with which it is associated. In the case of C_{2}, part of the total capacitance required usualiy is supplied by the pate hy-pass or hlocking condenser of the modulated amplifier, so C'2 need only be large enomgin to make up the difference.

Grid Bias

Many modern transmitting tubes designed for Class B audio work can be operated without grid bias. Besides eliminating the need for at gric-ifias supply, this reduces the variation in grid impedance over the audio-frequeney revele and thus gives the driver a more constant load into which to work. With these tubes, the grid return lead from the center-tap of the Triver transformer secondary is simply conmered to the filament center-tap or cathode.

When the tubes require bias, it should always be supplied from a fired voltage source. Feither cathode: bias nor grid-leak hias can be used with a Clase IS amplifier; with both types the bias changes with the amplitude of the signal volage, whereas proper operation demands that the hias voltage be unvarying no matter what the strength of the signal. When only a small amount of bias is required
it can be obtained conveniently from a few dry cells. When greater values of bias are required, a heavy-duty " 13 " battery may be used if the grid current does not exceed 40 or 50 milliamperes on voice peaks. Even though the batteries are edarged by the grid current rather than discharged, a battery will deteriorate with time and its internal resistance will increase. When the increase in internal resistance becomes appreciable, the batery tends to act like a grid-leak resistor and the bias varies with the applied signal, batteries should be cheoked with a voltmetor occasionally while the amplifier is operating. If the bias varies more than 10 per cent or so with voice excitation the battery should be replaced.

As an alternative to batteries, a regulated bitas supply may be used. This type of supply is deseribed in the power supply ehapter.

Plate Supply

The plate supply for a Class 13 modulator should be sufficiently woll filtered to prevent hum modulation of the r.f. stage, An additional requirement is that the output eondenser of the supply should have low reatance, at 100 rycles or less, compared to the load into which

 coupling to grids; B, transformer eoupling. R_{1} in A is the plate resintor for the preceding stage, value determined by the type of tube and operating conditions as given in 'rable $9.1 . C_{1}$ and R_{2} are the coupling condenser and grid resistor, respectively; values also may be taken from Table 9-I.

In hoth cirenits the ont puit transformer, T, T_{2}, should have the proper turns ration to couple between the driver tubes and the Class \mathbf{B} grids. T_{1} in 13 is usually a 2.1 transformer, scondary to primary. R, the cathode resistor, should be calcolated for the particular tuhes used. The value of (., the cathode by-pass, is determined as desaribed in the text.
each tube is working. A $4-\mu \mathrm{fd}$. output condenser with a 1000 -volt supply, or a $2-\mu$ fid. condenser with a 2000 -volt supply, usually will be satisfartory. With other plate voltages, condenser values should be in inverse proportion to the plate voltage.

To keep distortion at a minimum, the voltage regulation of the plate supply should be as gool as it can be made. If the d.e. output voltage of the supply varies with the amount of current laken, it should be kept in mind that the voltage at maximum current determines the amount of power that can be taken from the modulator without distortion. A supply whose voltage drops from 1000 at no load wo 1250 at the full modulator plate current is a 1250-volt supply, so far as the modulator is concerned, and any estimate of the power output a vailable should be based on the lower figure.

It is particularly important, in the case of a totrode Class 13 stage, that the sereen-voltage power-supply source have excellent regulation, to prevent distortion. The screen voltage should be sot as exactly as possible to the recommended value for the tube. Theaudio impedance between screen and cat hode also must be low.

Overexcitation

When a Class B amplifier is overdriven in an altempt to secure more than the rated power, distortion increases rapidly. The high-frequency harmonies which result from the distortion modulate the transmitter, producing spurious sidebands which can cause serious interference over a band of freguencies several times the chanmel width required for speech. This may happen even though the transmitter is not being overmodulated. It will happen if the modulator is incapable of delivering the power required to modulate the transmither fully. or if the Class C amplifier is now adjusted to give the proper modulating impedance.

As previously stated, the tubes used in the Class B modulator should be capable of somewhat more than the power output nominally required. In addition, the Class C amplifier should be adjusted to give the proper modulating impedance and the correet output transformer turns ratio should be used. Even though means may be incorporated in the speech amplifier to attenuate frequencies above those necessary for intelligible speech, it is still possible for high-frequency sidebands to be radiated if distortion oecurs in the modulator, or if the transmitter is overmodulated.

Fig, 9.22 - Negative feed-bach circuits for drivers for Clans is modulators. A - Single-ended beam-tetrode driver. If I_{1} and $\left.\right|_{2}$ are a 6.5 and $6 V^{\circ} 6$, respectively, the following values are suggested: $R_{1}, 47,000$ ohms; $R_{2}, 0.47$ megohm; $R_{3}, 2.50$ ohms; $R_{4}, R_{5} .22 .000$ ohms; $\mathrm{C}_{1}, 0.01 \mu \mathrm{fl}$.; $\mathrm{C}_{2}, 50 \mu \mathrm{fd}$.

B- P'ush-pull beam-tetrode driver. If I'1 is a 6 J a and J_{2} and I_{3} 6L6s, the following values are suggested: $R_{1}, 0.1$ megohm; R_{2}, 22,000 ohms; $K_{3}, 250$ ohme; $C_{1}, 0.1 \mu \mathrm{fd} . ; C_{2}, 100 \mu \mathrm{fd}$.

Such high-frequency harmonics can be reduced by connecting condensers across both the primary and secondary of the output transformer as previously described.

Operation Without Load

Excitation should never be applied to a ('lass B modulator until after the Class C amplifier is turned on and is drawing the value of plate current required to present the rated load to the modulator. With no load to alsorb the power, the primary impedance of the transformer rises to a high value and excessive audio voltages are developed across it - frequently high enough to break down the transformer insulation. If the modulator is to be tested separately from the transmitter, a resistance of the same value as the modulating impedance, and capable of dissipating the full power output of the modulator, should be connected arross the transformer secondary.

DRIVERS FOR CLASS-B MODULATORS

Class B amplifiers are driven into the gridcurrent region, so power is consumed in the grid circuit. The preceding stage or driver must be capable of supplying this power at the required peak audio-frequency grid-to-grid voltage. Both of these quantities are given in the manufacturer's tube ratings. The grids of the Class B tubes represent a variable load resistance over the audio-frequency cycle, because the grid current does not increase directly with
the grid voltage. To prevent distortion, therefore, it is necessary to have a driving source that will maintain the waveform of the signal without distortion even though the load varies. That is, the driver stage must have good regulation. To this end, it should be capable of delivering somewhat more power than is consumed by the Class 13 grids, as previously deseribed in the diseussion on speech amplifiers. It is also desirable to use an input eoupling transformer having a turns ratio giving the largest step-down in the voltage between the driver plate or plates and the Class 13 grids that will permit obtaining the specified grid-to-grid a.f. voltage.

The driver transformer, T or T_{2} in Fig. 9-2I, may couple directly between the driver tube and the modulator grids or may be designed to work into a low-impedance (200- or $500-o h m$) line. In the latter case, a tube-to-line output transformer must be used at the output of the driver stage. This type of coupling is reeommended only when the driver must be at a considerable distance from the modulator; the second transformer not only introduces additional losses but also impairs the voltage regulation of the driver stage.

Driver Tubes

The variation in grid resistance of a Class 13 amplifier over the audio-frequency cycle poses a special problem in the driver stage. To avoid distortion, the driver output roltage (not power) must stay constant (for a fixed signal voltage on its grid) regardless of the variations in load resistance.

The fundamental requirement for good voltage regulation in any electrical generator is that the internal resistance must be low. In a vacuum-tube amplifier, this means that the tubes must have a low value of plate resistance. The best tubes in this respect are low- μ triodes (the 6B4G is an example) and the worst are tetrodes and pentodes as represented by the 6 V6 and 61.6. This does not mean that tet rodes (or pentodes) camnot be used, but it does mean that they should not be used without taking measures to reduce the effective plate resistance (see next section).

In selecting a driver stage always choose Class A or $A B_{1}$ operation in preference to Class A 3_{2}. This not only simplifies the speechamplifier design but also makes it easier to apply negative feed-back to tetrodes for reduction of plate resistance. It is possible to obtain a tube power output of approximately 25 watts (from 61.6s) without going beyond Class AB_{1} operation; this is ample driving power for the popular Class B modulator tubes, even when a kilowatt transmitter is to be modulated.

The rated tube output (as shown by the
tube tables) should be reduced by about 20 per cent to allow for losses in the Class B input transformer. If two transformers are used, tube-to-line and line-to-grids, allow about 35 per cent for transformer losses. Another 25 per cent should be allowed, if possible, as a safety factor and to improve the voltage regulation.

Fig. 9-21 shows representative circuits for a push-pull triode driver using cathode bias. If the amplifier operates Class A, the cathode resistor need not be by-passed, because the a.f. currents from each tube flowing in the cathode resistor are out of phase and cancel each other. However, in Class AB operation this is not true; considerable distortion will be generated at high signal levels if the cathode resistor is not by-passed. The by-pass capacitance required can be calculated by a simple rule: the cathode resistance in ohms multiplied by the by-pass capacitance in microfarads should equal at least 25,000 . The voltage rating of the condenser should be equal to the maximum bias voltage. This can be found from the maxi-mum-signal plate current and the cathode resistance.

> Example; A pair of 6 BAG is to he used in Class A B1, self-biased. From the tube tables, the eathode resistance should be 780 ohms and the maximum-signal plate eurrent 120 ma. From Ohm's Law, $$
E=R I=780 \times 0.12=03.6 \text { volts }
$$ From the rule mentioned previously, the by-pass capacitance repuired is $C=2 ., 000 / R=25,000 / 780=32 \mu \mathrm{fd}$. A 40 - or $50-\mu f 1$. 100 -volt electrolytie condenser would be satisfactory.

Negative Feed-Back

Whenever tetrodes or pentodes are used as drivers for Class B modulators, negative feedback should be used in the driver stage. This will reduce the distortion caused by the variable load resistance represented by the Class 13

Fig. 9-23 - Output voltage regulation of two types of beam-tetrode drivers with negative feed-back. For comparison, the regulation with a pair of 2 A 3 s (no feed-hack) also is shown.
grids. It also reduces the distortion inherent in the driver stage itself, when properly applied. The effect of feed-back is to reduce the apparent plate resistance of the driver, and this in turn helps to maintain the a.f. output voltage at a more constant level (for a constant signal on the grid) when the load resistance varies. It is readily possible to reduce the plate resistance to a value comparable to or lower than that of low- μ triodes such as the 2 A 3 or 6l34G.

Suitable circuits for single-ended and pushpull tetrodes are shown in Fig. 9-22. Fig. $9-22.1$ shows resistance coupling between the preceding stage and a single tetrode, such as the 6V6, that operates at the same plate voltage as the preceling stage. Part of the a.f. voltage across the primary of the output transformer is fed back to the grid of the tetrode, V_{2}, through the plate resistor of the preceding tube, V_{1}. The amount of voltage so fed back is determined by the voltage divider, $R_{4} R_{5}$. The total resistance of R_{4} and R_{5} in serie's should be large compared to the rated load resistance of r_{2}. Instead of the voltage divider, a tap on the transformer primary can be used to supply the feed-back voltage, if such a tap is available.

The amount of feed-back voltage that appears at the grid of tube V_{2} is determined by R_{1}, R_{2} and the plate resistance of V_{1}, as well as b_{y} the relationship between R_{4} and R_{5}. Caleulation of the feed-back voltage, although not mathematically difficult, is not ordinarily practicable because the plate resistance of V_{1} is seldom known at the particular operating conditions used. Circuit values for a typical tube combination are given in detail in Fig. 9-22.

The push-pull circuit in Fig. 9-2213 reguires an audio transformer with a split secondary. The feed-back voltage is obtained from the plate of each output tube by means of the voltage divider, $R_{1} R_{2}$. The blocking
 condenser, C_{1}, prevents the d.c. plate voltage from being applied to $R_{1} R_{2}$: the reactance of this condenser should be low, compared with the sum of R_{1} and R_{2}, at the lowest audio frequency to be amplified. Also, the sum of R_{1} and R_{2} should be high compared witb, the rated load resistance for V_{2} and V_{3}.

In this circuit the feed-back voltage that is developed across R_{2} also appears at the grid of $\mathrm{I}_{2}\left(\right.$ or V_{3}) because there is no appreciable current flow (in the usual audio range) through the transformer secondary and gridcathode circuit of the tube, provided the tubes are not driven to grid current. If the grid-cathode impedance of the tubes is relatively low, as it is when grid current flows, the feed-back voltage decreases because of the voltage drop through the transformer secondary. The circuit should not be used with tubes that are operated Class

Fig. 9-24-Circuit diagram of speech amplifier using 6L6s with negative feed-baek, suitable for driving Class 13 modulators np to 500 watts output.
$\mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}_{8}-20-\mu \mathrm{fd}$, 25 -volt electrolytie.
$\mathrm{C}_{2}, \mathrm{C}_{9}, \mathrm{C}_{10}-0,1-\mu \mathrm{ft}, 400$-volt paper.
$\mathrm{C}_{3}, \mathrm{C}_{6}-0.01-\mu \mathrm{fil} .600$-volt paper.
$\mathrm{C}_{4}, \mathrm{C}_{7}, \mathrm{C}_{22}-10-\mu \mathrm{fl}, 150$-volt electrolytic.
$\mathrm{C}_{\mathrm{n}}-100-\mu \mathrm{fd}$, 50 -volt alectrolytie.
$11_{1}-2,2$ megohms, $1 / 2$ watt.
$R_{2}, R_{7}-1.500$ ohms, $1 / 2$ watt.
$R_{3}-1.5$ nuegohms, $1 / 2$ watt.
$\mathrm{R}_{4}-0.22$ megohm, $1 / 2$ watt.
$\mathrm{R}_{5}, \mathrm{H}_{8}-47,000$ ohms, $1 / 2$ watt.
R_{B} - 1-megohm volume control.
AB_{2}. The per cent feed-back is

$$
n=\frac{R_{2}}{R_{1}+R_{2}} \times 100
$$

where n is the feed-back percentage, and R_{1} and R_{2} are connected as shown in the diagram. The higher the feed-back percentage, the lower the effective plate resistance. However, if the percentage is made too high the preceding tube, V_{1}, may not be able to develop enough voltage, through T_{1}, to drive the push-pull stage to maximum output without itself generating harmonic distortion, Distortion in V_{1} is not compensated for by the feed-back circuit. If V_{2} and V_{3} are 6L6s operated self-biased in Class $A B_{1}$ with a load resistance of 9000 ohms, V_{1}^{\prime} is a 6.J5, and T_{1} has a turns ratio of 2 - t 0 - 1 , total secondary to primary, it is possible to use over 30 -per-cent feed-tack without going beyond the output-voltage capabilities of the 6.J. Actually, it is unnecessary to use more than about 20 -per-cent feed-back. This value reduces the effective plate resistance to the point where the output voltage regulation is better than that of (iB4Gs or 2A3s without feed-back.

Instead of the voltage-divider arrangement shown in Fig, 9-22B for obtaining feed-back voltage, a separate winding on the output transformer can be used, provided it has the proper number of turns to give the desired feed-back percentage. Special transformers are available for this purpose.

The improvement in constancy of output voltage resulting from the use of negative feed-back is shown graphically in Fig. 9-23. In order to compare the various types of tubes, the variation in output voltage is shown as a

R9- 0.47 megohm, $1 / 2$ watt.
$R_{10}-1500$ ohms, 1 watt.
$\mathbf{R}_{11}-10,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{12}, \mathrm{~K}_{13}-0.1$ megohm, 1 watt.
$\mathrm{R}_{14,} \mathrm{R}_{15}-22,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{16}-2.50$ ohms, 10 watts.
$1 \mathrm{R}_{17}-2000$ ohms, 10 watts.
T_{1} - Interstage audit, $2: 1$ secondary (total) to primary, with split secondary winding.
T_{2} - Class is input transformer to suit modulator tubes.
percentage of the output voltage when the tubes are working into the rated load. The load resistance also is expressed as a percentage of the rated load resistance for the particular tube, or pair of tubes, used.

SPEECH-AMPLIFIER CIRCUIT WITH NEGATIVE FEED-BACK

A circuit for a speech amplifier suitable for driving a Class 13 modulator is given in Fig. 9-24. In this amplifier the 6L6s are operated Class $A B_{1}$ and will deliver up to 20 watts to the grids of the Class B amplifier. The feedback circuit requires no adjustment, but does require an interstage transformer with two separate secondary windings (split secondary).

This amplifier may be constructed along the same lines as in Fig. !-12, observing the same precautions with respect to shielding the 6S. 17 grid circuit. Although the power output is the same as from the amplifier of Fig. 9-15, an additional voltage-amplifier stage is ineorporated in the eircuit. This is necessary because the voltage fed back from the plates to the grids of the 6L.6s opposes the voltage from the preceding stage, so the latter must be increased in order to maintain the same power output from the 6LC s . In turn, this necessitates more over-all voltage gain than is required to drive Class $\mathrm{AB}_{1} \mathrm{p} . \mathrm{p}$. bltis without feed-back.

The output transformer, T_{2}, should be selected to work between a 9000 -ohm plate-toplate load and the grids of whatever Class B tubes will be used. The power-supply requirements for this amplifier are essentially the same as for the amplifier of Fig. 9-15.

Checking 'Phone-Transmitter Operation

- SPEECH EQUIPMENT

Every 'plone transmitter requires checking before it is initially put on the air. An adequate job ean be done with equipment that is neither daborate nor (expensive. I simple set-up is shown in Fig. 9-25. The only equipment that is not likely to be already at hand is the audio oscillator (their construction is described in the chapter on measuremonts). The voltmeter - one that operates at andio frequencies is necessary - can be any multirange volt-ohm-milliammeter that has a rectifier-type a.c. range. The headset is included for aural checking of the amplifier performance.

The audio oscillator usuatly will have an output control, but if the maximum output voltage is in excess of a volt or so the output setting may be rather critical when a highgain speech amplifier is being tested. In such cases an attenuator such as is shown in lig. $9-25$ is a convenience. Each of the two voltage dividers reduces the voltage by a fator of roughly 10 to 1 , so that the over-all attenuation is about 100 to 1 . The relatively low value of resistance, R_{4}, across the input terminals of the amplifier also will minimize stray hum piek-up on the eomnecting leads.

Fig. 9-25 - Simple test set-up for cheeking a sperth amplifier. The audio-oseillator frepucney range should he from ahout 100 to $\overline{\mathbf{5}} 000$ or more ryeles. It is not necessary that it be continnonsly variable; a number of "spot" frequencien will be satisfaetory. Suitable resistor values are: R_{1} and $R_{3}, 10,000\left(0\right.$ ohtms: R_{2} and $R_{4}, 1000$ ohms; R_{8}, rated load resistance for amplifier output stage; R_{5}, determine by trial for comfortable headphone level (25 to 100 oluns, ordinarily). $l^{\prime \prime}$ is a high-reristance a.e. voltmeter, maltirange rectifier type.

As a preliminary check, eover the mierophone input terminals with a metal shield (with the audio oscillator and attenuator disconnected) and, while listening in the headset, note the hum level with the amplifier gain control in the off position. The hum should be very low under these conditions. Then increase the gain-control setting to maximum and observe the hum; it will no doubt increase. Then connect the audio oscillator and attenuator and, starting from minimum signal, increase the audio input voltage until the voltmeter indicates full power output. (The voltage should equal $\sqrt{P R}$, where P is the expected power output in watts and R is the load resistance R_{6} in the diagram.) While increasing the input, listen carefully to the tone to see if thore is any change in its character. When it begins to
sound like a musical octave iustead of a single tone, distortion is beginning. Assuming that the output is substantially without audible distortion at full output, substitute the mierophone for the audio osillator and speak into it in a normal tone while watching the voltmeter. Reduce the gain-control setting until the moter "kicks" nearly up to the full-power reading on voice peaks. Note the hum level, as read on the voltmoter, at this point; the hum level should not excced one or two por rent of the voltage at full output.

If the hum level is too high, the amplifier stage that is causing the trouble can be located by temporarily short-circuiting the grid of each tube, in turn, to ground. When shorting a particular grid makes a marked decrease in hum, the hum presumably is coming from a preceding stage, although it is possible that it is getting its start in that particular grid circuit. If shorting a grid does not decrease the hum, the hum is originating either in the plate circuit of that tube or the grid circuit of the next. Aside from wiring errors, a defective tube, or inadequate plate-supply filtering, objectionable hum usually originates in the first stage of the amplifier.

If distortion oecurs bolow the point at which the experted power output is secured, the stage in which it is occurring ran be located ber working from the last stage toward the front end of the amplifier, applying a signal to each grid in turn from the audio oscillator and adjusting the signal voltage for maximum ontput. In the case of push-pull stages, the signal maty be applied to the primary of the interstage transformer - after disconnecting it from the plate-voltage sourece Assuming that normal design principles have been followed and that all stages are theoretically working within their rapabilitios, the probable causes of distortion are wiring errors (such as areidental shorteireuit of a cathode resistor), defective components, or use of wrong values of resistance in cathode and plate circuits.

Using the Oscilloscope

Speech-amplifier chocking is fatilitated considerably if an oscilloseope of the type having amplifiers and a linear sweep circuit is available, A typical set-up for using the oseilloscope is shown in Fig. 9-26. With the conneetions shown, the sweep circuit is not required but horizontal and vertical amplifiers aro necessary, Audio voltage from the oscillator is fed dircetly to one oscilloseope amplifier (horizontal in this case) and the ontput of the speech amplifier is connected to the other The 'seope amplifier gains should be adjusted so that each signal gives the same line length with the other signal shut off.

Under these conditions, when the input and output signals are applied simultaneously they are compared directly. If the speech amplifier is distortion-free and introduces no phase shift, the resulting pattern is simply a straight line, as shown at the upper left in Fig. 9-27, making an angle of about 45 degrees with the horizontal and vertical axes. If there is no distortion but there is some phase shift, the pattern will be a smooth ellipse, as shown at the upper right. The greater the phase shift the greater the tendency of the ellipse to grow into a circle. When there is even-harmonic distortion in the amplifier one end of the line or ellipse becomes curved, as shown in the second row in Fig. 9-27. With odd-harmonic distortion such as is characteristic of overdriven push-pull stages, the line or ellipse is curved at both ends.

Patterns such as these will be obtained when the input signal is a fairly good sine wave. They will tend to become complicated if the input waveform is complex and the speech amplifier introduces appreciable phase shifts. It is therefore advisuble to test for distortion with an input signal that is as nearly as possible a sine wave Also, it is best to use a frequency in the $500-1000$ cycle range, since improper phase shift in the amplifier is usually least in this region. Phase shift in itself is not of much importance in an audio amplifier of ordinary design, because it does not change the character of speech so far as the ear is concerned, but if a complex signal is used for testing it is sometimes difficult to detect distortion in the oscilloscope pattern.

In amplifiers having negative feed-back, excessive phase shift may cause self-oscillation. This is because internal phase shift in one or more stages canses the signal fed back to aid, instead of oppose, the input signal. Oscillation usually occurs at some frequency above 10,000 cycles, and is associated with phase shift in a transformer, although occasionally it will occur at a very low frequency. It can bo prevented by reducing the gain at the frequenes at which it occurs. If the pass-band is deliberately restricted to the optimum voice range, as described earlier, the gain at both very high and very low frequencies will be so low that solf-oscillation is very unlikely, even with large amounts of feed-back.

Fig. 9.26 - 'lest set-1p nsing the oscilloscope to eheck for distortion. These connections will result in the type of pattern shown in Fig. 9-27, the horizontal sweep being provided by the audio input signal. For waveform patterns, omit the connection between the andio oscillator and the horizontal amplifier in the 'scope, and use the horizontal linear sweep.

Generally speaking, it is easier to detect small amounts of distortion with the type of pattorn shown in Fig. 9-27 than it is with the waveform pattern obtained by feeding the output signal to the vertical plates and making use of the linear sweep in the 'scope. This is becanse it is cuite easy to determine whether

Fig. 9.27 - - Typical patterns obtained with the connections shown in Fig, 9-26. Depending on the nutnber of stages in the amplifier, the pattern may slope npward to the right, as shown, or upward to the left. Also, de. pending on where the distortion originates, the curvature in the second row may apparar either at the top or bottom of the line or ellipse.
or not a line is straight, but not so easy to decide whether or not a pattern displayed by the sweep circuits meets given specifications. The waveform pattern can be used satisfactorily, however, if the signal from the audio oscillator is a reasonably good sine wave. One simple method is to examine the output of the oscillator alone and trace the pattern on a sheet of transparent paper. The pattern given by the output of the amplifier can then be compared with the "standard" pattern by adjusting the oscilloscope gain to make the two patterns coincide as closely as possible. The pattern discrepancies are a measure of the distortion.

In using the oscilloscope care must be used to avoid introducing hum voltages that will upset the measurements. IIum pick-up on the 'scope leads or other exposed parts such as the amplifier load resistor or the voltmeter can be detected by shutting off the audio oscillator and speech amplifier and connecting first one and then the other to the vertical plates of the 'scope, setting the internal horizontal sweep to
an appropriate width. The trace should be a straight horizontal line when the vertical gain control is set at the position used in the actual measurements. Wavincss in the line indicates hum. If the hum is not in the 'scope itself (cherk by disconnecting the leads at the instrument) make sure that there is a good ground comnection on all the equipment and, if necessary, shield the hot leads.

The oscilloscope can be used to good advantage in stage-by-stage testing to check waveforms at the grid and plate of each stage and thus to determinc rapidly where a source of trouble may be located. When the 'scope is connected to circuits that are not at ground potential for d.c., a condenser of about 0.1 ufd . should be connected in series with the hot oscilloscope lead. The probe lead should be shielded so that it will not pick up hum.

CLASS-B MODULATORS

Once the speech amplifier is in satisfactory working condition, the Class 13 modulator can be checked by similar means. A simple circuit is shown in Fig. 9-28. The resistance of R_{1} should be equal to the modulating impedance of the Class C amplifier to be modulated, and the resistor should have a power rating equal to the rated power output of the modulator.

Fig. 9-28 - Set-up for choreking a Class 13 modulator.

Calculate the voltage to be expected across R_{1} at full output; if it exceeds the range of the meter the meter may be connccted across say half or one-fourth of R_{1} and the readings multiplied by 2 or 4 , respectively. Only a few ohms will be needed at R_{2}, in the average case, to give a good signal in the headphones. As a safety precaution, ground the output terminal to which the headphones are connected and use a resistor at R_{2} that has ample currentcarrying capacity.

Hum will seldom be a problem in the modulator. Distortion may be checked as described previously; the oscilloscope is excellent for this purpose. If a variable-frequency audio oscillator is used, a check on the frequency response of the over-all system can be obtained by varying the oscillator frequency (check its output voltage at each frequency change) and observing the variation in the modulator output voltage. The high-frequency response of the system can be attenuated by trying condensers of various values across the primary and secondary of the output transformer, as pointed out in the discussion on Class B modulators. The object is to reduce the response above 3000 cycles to a low value as compared with the response in the $200-$ to 2500 -cycle region, so that the channel occupied by the transmitter will not be excessive. A simple method of adjustment is to apply an audio tone of about 1500 cycles and increase its amplitude until distortion becomes noticeable; when this occurs the tone no longer sounds pure but sounds like a musical octave. The condenser values should then be adjusted until the test tone sounds pure again at the same signal amplitude.

CHAPTER 10

Radiotelephony

To transmit intelligible speech by radio it is necessary to modulate the normally-constant output of the radio-frequency section of a transmitter. Modulation, defined in the most simple terms, is the process of varying the transmitter output in a desired fashion. In the case of radiotelephony, it means varying the radio-frequency output in a way that follows the spoken word.

The unmodulated r.f. output of the transmitter is called the carrier. In itself, the carrier conveys no information to the receiving operator - other than that the transmitting station is "on the air." It is only when the carrier is modulated that it becomes possible to transmit a. message.

There are several basic ways in which the carrier can be modulated. In the most common method, amplitude modulation ($A M$), the amplitude of the carrier is made to vary upward and downward, following similar variations in audio-frequency currents generated by a microphone.

- SIDEBANDS

The process of modulating a carrier sets up new groups of radio frequencies both above and below the frequency of the carrier itself. These new frequencies that accompany the modulation are called side frequencies, and they are numerically equal to the carrier frequency plus the modulating frequency and the carrier frequency minus the modulating frequency. The frequency bands occupied by a group of them when the modulating signal is complex (as it is with voice modulation) are called sidebands. Sidebands always appear on both sides of the carrier; the band higher than the carrier frequency is called the upper sideband and the band lower than the carrier frequency is called the lower sideband. The modulation (that is, the intelligence) in the signal is carried in the sidebands, not in the carrier itself.

The result of this is that a modulated signal occupies a group or band of frequencies (channel) rather than the single frequency of the carrier alone. Just how much of a frequency band (that is, how wide a channel) is occupied depends upon the method of modulation and the maximum frequency in the modulating signal.

As explained in the chapter on audio equipment,
it is unnecessary to transmit audio frequencies greater than about 3000 cycles for the intelligible reproduction of average speech. The maximum channel that it is necessary to use for voice communication, therefore, is twice 3000 , or 6 kc . wide. If higher frequencies are transmitted the channel width is increased proportionately, thus creating umecessary interference with stations operating on adjacent channels.

THE MODULATED WAVE

In Fig. 10-1, the drawing at A shows the unmodulated r.f. carrier, assumed to be a sine wave of the desired radio frequency. The graph can be taken to represent either voltage or current, and each cycle has just the same height as the preceding and following ones.

In 13, the carrier wave is assumed to be modulated by a signal having the shape shown in the small drawing above. The frequency of the modulating signal is much lower than the carrier frequency, so quite a large number of carrier cycles can occur during each cycle of the modulating signal. This is a necessary condition for good modulation, and always is the case in radiotelephony because the audio frequencies used are very low compared with the

Fig. 10-1 - Graphical representation of (A) earrier unmodulated, (B) modulated 50%, (C) inodulated 100%.
radio frequency of the carricr. (Actually, there would be very many times more r.f. cycles in each modulation cycle than are shown in the drawing; so many that it is impossible to make the drawing to actual scale.) When the modulating signal is "positive" (above its axis) the carrier amplitude is increased above its: unmodulated amplitude; when the modulating signal is "negative" the carrier amplitude is decreased. Thus the carrier grows larger and smaller with the polarity and amplitude of the modulating signal.

The drawing at C shows what happens with a stronger modulating signal. In this case the strength of the modulation is such that on the "up" modulation the carrier amplitude is doubled at the instant the modulating signal reaches its positive peak. On the negative peak of the modulating signal the carrier amplitude just reaches zero; in other words, the carrier is "all used up."

Percentage of Modulation

When a modulated wave is detected in a receiver the sound that comes out of the loudspeaker or headset is caused by the modulation, not by the earrier. In other words, in detecting the signal the receiver eliminates the carrier and takes from it the modulating signal. The stronger the modulation, therefore, the greater is the useful recoiver output. Obviously, it is desirable to make the modulation as strong or "heavy" as possible. I wave modulated as in Fig. 10-1 1 would produce considerably more useful signal than the one shown at I3.

The "depth" of the modulation is expressed as a percentage of the ummodulated carrier amplitude. In cither IS or C, lig. 10-1, X represents the ummodulated carrier amplitude, Y is the maximum increase in amplitude on the modulation up-peak, and Z is the maximum decrease in amplitude on the modulation downpeak. Assuming that Y and Z are equal, then the percentage of modulation can be found by dividing either Y or Z by X and multiplying the result by 100 . In the wave shown in Fig. $10-1 \mathrm{C}, Y$ and Z are both equal to X, so the wave is modulated 100 per cent. In case the modulation is not symmetrical (Y and Z not equal), the larger of the two should be used for calculating the percentage of modulation.

The outline of the modulated wave is called the modulation envelope. It is shown by the thin line outlining the patternsin Figs. 10-1 and 10-2.

Power in Modulated Wave

The amplitude values shown in Fig. 10-1 correspond to current or voltage, so the drawings may be taken to represent instantancous values of either. Now power varies as the square of either the current or voltage (so.long as the resistance in the circuit is unchanged), so at the peak of the modulation up-swing the instantaneous power in the wave of Fig. 10-1C
is four times the unmodulated carrier power (because the current and voltage are doubled). At the peak of the down-swing the power is zero, since the amplitude is zero. With a sinewave modulating signal, the average power in a 100 -per-cent modulated wave is one and onehalf times the value of unmodulated carrier power; that is, the power output of the transmitter increases 50 per cent with 100 -per-cent modulation.

The complex waveform of speech does not contain as much power as there is in a pure tone or sine wave of the same peak amplitude. On the average, speech waveforms will contain only about half as much power as a sine wave, both having the same pak amplitude. The average power output of the transmitter therefore increases only about 25. per cent with $100-p e r-c e n t$ specch modulation. However, the instantaneous power output must quadruple on the peak of $10(0)$-per-cent modulation regardless of the modulating waveform. Therefore, the peak output-power capacity of the transmitter must be the same for any type of modulating signal.

Overmodulation

If the carrier is modulated more than 100 per cent, a condition such as is shown in Fig. 10-2 occurs. Not only does the peak amplitude exceed twice the carrier amplitude, but there actually may be a considerable period during which the output is entirely cut off. Therefore the modulated wave is distorted, and the modulation contains harmonice of the audio modulating frequency.

Fig. 10.2-An over-
 modulated r.f. car-
rier wave.

The sharp "break" when the carrier is suddenly cut off on the modulation down-swing produces a type of distortion that contains a large number of harmonics. For example, it is casily possible for harmonies up to the fifth to be produced by a relatively small amount of overmodulation. If the modulating frequency is 2000 cycles, this means that the actual modulated wave will have sidebands not only at 2000 cyeles, but also at $4000,6000,8000$ and 10,000 cycles each side of the carrier frequency. The signal thus occupies five times the needed channel-width. It is obriously of first importance to prevent the modulation from exceeding 100 per cent, and thus prevent
the generation of spurious sidebands - commonly called "splatter."

- GENERAL REQUIREMENTS

For satisfactory amplitude modulation, the rurrier frequency should be entirely unaffected by the application of modulation. If modulating the amplitude of the carrier also causes a change in the carrier frequency, the frequency will wobble back and forth with the modulation. This causes distortion and widens the channel taken by the signal. Thus unnecessary interference is caused to other transmissions. In practice, this undesirable frequency modulation is prevented by applying the modulation to an r.f. amplifier stage that is isolated from the frequency-controlling oscillator by a buffer amplifier. Amplitude modulation applied directly to an oseillator always is accompanied by frequency modulation. Under existing regulations amplitude modulation of an oscillator is permitted only on frequencies above 144 Mc . Jelow that frequency the regulations require that an amplitude-modulated transmitter be completely free from frequency modulation.

Plate Power Supply

The d.c. power supply for the plate or plates of the modulated amplifier must be well filtered; if it is not, the plate-supply ripple will modulate the carrier and cause annoying hum. To be substantially hum-free, the ripple voltage should not be more than about 1 per cent of the d.c. output voltage.

In amplitude modulation the plate current varies at an audio-frequency rate; in other words, an alternating current is superimposed on the d.c. plate current. The output filter condenser in the plate supply must have low reactance, at the lowest audio frequency in the modulation, if the transmitter is to modulate equally well at all audio frequencies. The condenser capacitance required depends on the ratio of d.c. plate current to plate voltage in the modulated amplifier. The requirements will be met satisfactorily if the capacitance of the output condenser is at least equal to

$$
C=25 \frac{I}{E}
$$

where C = (Apacitance of output condenser in $\mu \mathrm{fl}$.
$I=$ D.C. plate current of modulated amplifier in milliamperes
$E=$ I'late voltage of modulated amplifier

Example: A modulated amplifier operates at 1250 volts and 275 ma . The capacitance of the output condenser in the plate-supply filter should be at least
$C=25 \frac{I}{E}=25 \times \frac{255}{1250}=25 \times 0.22=5.5 \mu \mathrm{fd}$.

Linearity

Up to the limit of 100 -per-cent modulation, the amplitude of the r.f. output should be directly proportional to the amplitude of the

Fig, 10-3-The modulation characteristic shows the relationship between the instantaneons amplitude of the r.f. output and the instantaneous amplitude of the modnlating signal. The ideal characteristie is a straight line, as shown by curve A.
modulating signal. Fig. $10-3$ is a graph of an ideal modulation characteristic, or curve showing the relationship between r.f. output amplitude and modulating-signal amplitude. The modulation swings the amplitude back and forth along the curve A as the modulating signal alternately swings positive and negative. Assuming that the negative peak of the modulating signal is just sufficient to reduce the carrier amplitude to zero (modulating signal equal to -1 in the drawing), the same modulating signal peak in the positive direction $(+1)$ should cause the r.f. amplitude to reach twiee its unmodulated-carrier value. The ideal is a straight line, as shown by curve A. Such a modulation characteristic is perfectly linear.

A nonlinear characteristic is shown by curve B. The r.f. amplitude does not reach twice the unmodulated carrier amplitude when the modulating signal reaches its positive peak. A modulation characteristic of this type gives a modulation envelope that is "flattened" on the up-peak; in other words, the modulation envelope is not an exact reproduction of the modulating signal. It is therefore distorted and harmonics are generated, causing the transmitted signal to occupy a wider channel than is necessary. A nonlinear modulation eharacteristic can easily result when a transmitter is not properly designed or is misadjusted.

The modulation capability of the transmitter is the maximum percentage of modulation that is possible without objectionable distortion from nonlinearity. The maximum capability can never exceed 100 per cent on the downpeak, but it is possible for it to be higher on the up-peak. The modulation capability should be as close to 100 per cent as possible, so that the most effective signal can be transmitted for a given carrier power.

Methods of Modulation

PLATE MODULATION

The most popular system of amplitude modulation is plate modulation. It is the simplest to apply, gives the highest efficiency in the modulated amplifier, and is the easiest to adjust for proper operation.

Fig. 10-4 shows the most widely-used system of plate modulation. A balanced (push-pull Class A, Class AB or Class 13) modulator is transformer-coupled to the plate circuit of the modulated r.f. amplifier. The audio-frequency power generated by the modulator is comhined with the d.e. power in the modulatedamplifier plate circuit by transfer through the coupling transformer, T. For 100 -per-cent modulation the audio-frequency output of the modulator and the turns ratio of the coupling transformer must be such that the voltage at the plate of the modulated amplifier varies between zero and twice the d.c. operating plate voltage, thus causing corresponding variations in the amplitude of the r.f. output.

Audio Power

As stated earlier, the average power output of the modulated stage must increase during modulation, The modulator must be capable of supplying to the modulated r.f. stage sinewave audio power equal to 50 per cent of the d.c. plate input. For example, if the d.c. plate power input to the r.f. stage is 100 watts, the sine-wave audio power output of the modulator must le so watts.

Fig. 10-4 - Plate modulation of a Class C r.f. amplifier. The r.f. plate by pass condenser, C, in the amplifier stage slould have reasonably high reactanee at andio frequencies. (See chapter on modulators.)

Modulating Impedance; Linearity

The modulating impedance, or load resistance presented to the modulator by the modulated r.f. amplifier, is equal to

$$
\frac{E_{\mathrm{b}}}{I_{\mathrm{p}}} \times 1000
$$

where $E_{b}=$ D.c. plate voltage
$I_{\mathrm{p}}=$ D.c. plate current (ma.)
E_{b}, and I_{p} are measured without modulation.
The power output of the r.f. amplifier must vary as the square of the plate voltage (the r.f. voltage must be proportional to the applied plate voltage) in order for the modulation to be lincar. This will be the case when the amplifier operates under Class \mathbf{C} conditions. The linearity then depends upon having sufficient yrid excitation and proper bias, and upon the adjustment of circuit constants to the proper vialues.

Adjustment of Plate-Modulated Amplifiers

The general operating conditions for Class C operation have been described in the chapter on transmitters. The grid bias and grid current required for plate modulation usually are given in the operating data supplied by the tube manufacturer; in general, the bias should be such as to give an operating angle of about 120 degrees at carrier plate voltage, and the grid exritation should be great enough so that the amplifier's plate efficiency will stay constant when the plate voltage is varied over the range from zero to twice the unmodulated value. for best linearity, the grid bias should be obtained partly from a fixed source of about the cut-off value, and then supplemented by gridleak bias to supply the remainder of the required operating bias.
'The maximum permissible d.c. plate power input for 100 -per-cent modulation is twice the sine-wave audio-frequency power output of the modulator. "lhis input is obtained by varying the loading on the amplifier (keeping its tank circuit tuned to resonance) until the product of d.c. plate voltage and plate current is the desired power. The modulating impedance under these conditions must be transformed to the proper value for the modulator by using the correct output-transformer turns ratio. 'lhis point is considered in detail later in the chapter on modulator design.

Neutralization, when triodes are used, should be as nearly perfect as possible, since regeneration may cause nonlinearity. The amplifier atso must be completely free from parasitic oscillations.

Although the effeclive value of power input increases with modulation, as described above, the average d.c. plate power input to a platemodulated amplifier does not change. This is berause each increase in plate voltage and plate
current is balanced by an equivalent decrease in voltage and current on the next half-eycle of the modulating signal. 'The d.c. plate current to a properly-modulated amplifier is always constant, with or without modulation. On the other hand, an r.f. ammeter comected in the antenna or transmission line will show an increase in r.f. current with modulation.

Screen-Grid Amplifiers

Screen-grid tubes of the pentode or beamtetrode type can he used as Class C platemodulated amplifiers by applying the modula-

Fig. 10-5 - Plate and sereen modulation of a Class C r.f. amplifier using a pentode tube. The plate r.f. by-pass condenser, Gi, should have reasonally high reartance at all andio frequencies. (See chapter on modulators.) The screen by-pass, C_{2}, should be $0.002 \mu \mathrm{fd}$. or less in the usual case.
tion to both the plate and screen grid. The usual method of feeding the screen grid with the necessary d.c. and modulation voltage is shown in Fig. 10-5. The dropping resistor, R, should be of the proper value to apply normal d.c. voltage to the screen under steady carrier conditions. Its value can be calculated by taking the difference between plate and sereen voltages and dividing it by the rated screen current.

The modulating impedance is found by dividing the d.c. plate voltage by the sum of the plate and screen currents. The plate voltage multiplied by the sum of the two currents gives the power input to be used as the basis for determining the audio power required from the modulator.

Modulation of the screen along with the

Fig. 10-6 - Plate modulation of a beam tetrode, using an andio impedance in the sereen circuit. The value of I_{1} is discusised in the text. See Fig. 9.5 for data on bypass capacitors C_{1} and C_{2}.
plate is necessary because both elements: affect the plate current in a power-type screengrid tube, and a linear modulation characteristic cannot be obtained by modulating the plate alone. However, at least some types of beam tetrodes (the $4-250 \mathrm{~A}$ and $4-125 \mathrm{~A}$, for example) can be modulated satisfactorily by applying the modulating power to the plate circuit alone, provided the screen is "floating" at audio frequencies - that is, is not grounded for a.f. but is commected to its d.c. supply through an audio impedance. The circuit is shown in Fig. 10-6. The choke coil L_{1} is the atudio impedance in the sereen circuit; its inductance should be large enough to have a reactance (at the lowest desired audio frequency) that is not less than the impedaner of the screen. The latter can be taken to be approximately equal to the d.c. sereen voltage divided by the d.e. screen current.

- GRID MODULATION

The principal disadvantage of plate modulation is that a considerable amount of audio power is required. This can be avoided by applying the modulating signal to a grid clement in the modulated amplifier, in which case the audio power needed is generally quite small.

In such systems the plate voltage is constant, and the increase in power output with modulation is obtained by making both the plate current and plate efficiency vary with the modulating signal. For 100-per-cent modulation, both plate current and efficiency must, at the peak of the modulation up-swing, be twice their carrier values. Thus at the modulation peak the power input is doubled, and since the plate efficiency also is doubled at the same instant the peak output power will be four times the carrier power. The efficiency ohtainable at the peak is of the order of 66 per cent, so the carrier efficiency ordinarily cannot exceed 33 per cent. For a given r.f. tube, the carrior output is about one-fourth the power obtainable from the same tube in c.w. operation.

The modulator is required to furnish only the audio power dissipated in the modulated grid under the operating conditions chosen. A speech amplifier eapable of delivering 3 to 10 watts is ustailly sufficient.

Plate-Circuit Operating Conditions

The d.c. plate power input to the modulated amplifier, assuming a round figure of $1 / 3$ (333 per cent) for the plate efficiency, should not excced $11 / 2$ times the plate dissipation rating of the tube or tubes used in the modulated stage. It is generally best to use the maximum plate voltage permitted by the manufarturer's ratings, because the optimum operating conditions are more easily achieved with high plate voltage and the linearity also is improved.

[^7]

Fig. 10.7-Control-grid modulation of a Class C ampli. fier. The r.f. grid by-pass condenser, C, should have high reactance at andio frequencirs (0,00) $5 \mu \mathrm{fd}$. or less).

The maximum permissible power input, at 33% efficiency, is
$P=1.5 \times(2 \times 5.5)=1.5 \times 110=165$ watts. The maximum recommended plate voltage for these tubes is 1500 volts. Lsing this figure, the average plate current for the two tuhes will be

$$
I=\frac{P}{E}=\frac{165}{1500}=0.11 \mathrm{amp},=110 \mathrm{ma}
$$

At 33% efficiency, the carrier ontput to be expected is 55 watts.

The plate-voltage/rlate-current ratio at frice carrier plate current is

$$
\frac{1500}{220}=6.8
$$

The tank-cireuit L / C ratio should be ehosen on the basis of twice the average or carrier plate current. If the L / C ratio is based on the plate voltage/plate current ratio under carrier conditions the Q may be too low for good coupling to the output eireuit.

Control-Grid Modulation

Control-grid modulation may be used with any type of r.f. amplifier tube. A typical triode circuit is given in Fig. 10-7. The same eircuit can be used with sereen-grid tubes merely by supplying
the normal value of sereen voltage by any eonvenient means; however, the sereen should $b_{\text {e }}$ hy-passed for audio as well as radio frequencios. The audio signal is insorted, by means of transformer 7 ', in series with the grid-bias lead. In a push-pull amplifier the transformer is connereded in the common hias lead.

In control-grid modulation the d.c. grid bias is the same as in normal Class-C amplifier serviee, but the r.f. grid excitation is somewhat smaller. The audio voltage superimposed on the d.c. bias changes the instantaneous grid bias at an audio rate, thus varying the oprating conditions in the grid circuit and eontrolling the output and efficiency of the amplifier.

The change in instantaneous bias voltage with modulation causes the rectified grid current of the amplifier also to vary, which places a variable load on the modulator. To reduce distortion, resistor R in Fig. 10-7 is connected in the output circuit of the modulator as a constant loal, so that the overall load variations will be minimized. This resistor should be equal to or somewhat higher than the load into which the modulator tube is rated to work at normal audio output. The turns ration of transformer T should be about 1 to 1 in most cases.

The load on the r.f. driving stage atso varies with modulation. This in turn will cause the exeitation voltage to vary which may cause the modulation characteristic to be monlinear. To overeome it, the driver should be capable of two or three times the r.f. power output actually required to drive the amplifier. The exeess power may be dissipated in a dummy load that then porforms the same function in the r.f. circuit that resistor R does in the audio cireuit.

The d.e. bias souree in this system should have low internal resistance. Batteries or a voltageregulated supply are suitable. Grid-leak bias should not be used.

Adjustment

A control-grid modulated amplifier should be adjusted with the aid of an oscilloscope connected as shown in Fig. 10-8. A tone source for modulating the transmitter is a convenience, since a steady tone will give a steady pattern on the oreilloscope. A steady pattern is eavier

Fig. 10.8- Adjustment set-up for grid-hias modulation. L, and C should tune to the operating fregueney, and may be coupled to the transmitter tank circuit through a twisted pair, using single-turn links at eaeh end. The 0,01- Hfd . blocking condenser that couples the audio voltage to the horizontal plates of the orcilloseope should have a voltage rating equal to abont three times the grid bias.
The same set -up may be used for screen-grid and suppressor modulation, so long as the andio signal to the orcillo. seope is coupled from the "hot" end of the coupling transformer secondary.

Figs, 10.9 - Screen-grid modulation of beam tetrode. Condenser C is an r.f. by-pass condenser and should have high reactance at audio frequeneies. A value of $0.002 \mu \mathrm{fd}$. is satisfactory.
to study than one that flickers with voice modulation.

Having determined the permissible carrier plate current as previously described, apply r.f. excitation and plate voltage and, without modulation, adjust the plate loading to give the required plate current (kecping the plate tank circuit tuned to resonance). Next, apply modulation and increase the modulating signal until the modulation characteristic shows curvature (see later section in this chapter for use of the oscilloscope). If curvature occurs well below 100 -per-cent modulation, the plate efliciency is too high. Increase the plate loading slightly and reduce the excitation to maintain the same plate current; then apply modulation and check the characteristic again. Continue this process until the characteristic is as linear as possible from the horizontal axis to twice the carrier amplitude.

Although the linearity of control-grid modulation is never as good as with properly-adjusted plate modulation, a satisfactory modulation characteristic can be obtained by using high plate: voltage, high values of d.c. grid bias, and by careful adjustment, with the oscilloseope, of plate loading and r.f. grid excitation.

Screen-Grid Modulation

A typical circuit for modulating the screen grid of a beam tetrode power tulse is given in lig. $10-9$. The modulated amplifier is operated Class-C, and the power output is varied at an audio-frequency rate by superimposing an audio voltage on the d.c. screen voltage. This can be done through a transformer as indicated in the diagram.

The peak audio voltage required for full modulation is slightly more than the operating value of d.c. screen voltage. The latter, in turn, is approximately half the rated sereen voltage under maximum ratings for c.w. operation. The audio power required is approximately one-fourth the d.c. power input to the screen under e.w. operation.

In this method the amplifier is first adjusted to give optimum output with full rated sereen voltage. The plate current and r.f. current into the antenna or feeders should be noted, and the
d.e. screen voltage should then be reduced to onehalf the initial value. If the plate current and r.f. output current both drop to one-half their initial values, the amplifier is properly adjusted. If not, the plate loading and grid excitation should be varied until this condition is approximated as closely as possible. When modulation is applied, using the reduced value of d.e. sereen voltage, the amplifier can be modulated 100 percent.

The linearity with this method is generally good with beam tetrodes, and is better than can be obtained with control-grid modulation. The adjustments are also considerably less critical, particularly with respect to excitation power and control-grid bias. The normal grid-leak value is satisfactory, and best linearity usually is obtained with approximately half the d.c. grid current that is recommended for c.w. operation.

With pentodes, it is more difficult to obtain good linearity. Suppressor-grid modulation usually is to be preferred with such tubes.

An alternative method of modulating the sereen grid of a beam tube is to use a "clamp" or sereen-protective tube (see chapter on transmitters) as a Class-A modulator. Details of this method are given in March, 1950, QST, page 46.

Suppressor Modulation

The circuit arrangement for suppressorgrid modulation of a pentode tube is shown in Fig. 10-10. With tubes having suitable sup-pressor-grid characteristics, linear modulation up to practically 100 per cent can be obtained with negligible distortion.

The method of adjustment closely resembles that used with screen-grid modulation. The amplifier is first adjusted for optimum c.w. output with zero bias on the suppressor grid. Negative bias is then applied to the suppressor and inereased in value until the plate current and r.f. output current drop to half their original values. When this condition has been obtained the amplifier is ready for modulation. Since the suppressor is always negatively biased, the modulator is not required to furnish any power.

Fig. 10.10-Suppressor-grid modulation of an r.f. amplifier using a pentode type tube. The suppressor-grid r.f. by-pass condenser, C, should be the same as the grid by-pass condenser in control-grid modulation.

CATHODE MODULATION

Circuit

The fundamental circuit for cathode or "center-tap" modulation is shown in Fig. 10-11. This type of modulation is a combination of the plate and grid methods, and permits a carrier efficiency nidway between the two. The audio power is introduced in the cathode circuit, and both grid bias and plate voltage vary during modulation.

Because part of the modulation is by the eontrol-grid method, the plate efficiency of the modulated amplifier must vary during modulation. The carrier efliciency therefore must be lower than the efficieney at the modulation peak. The required reduction in efliciency depends upon the proportion of grid modulation to plate modulation; the higher the percentage of plate modulation, the higher the permissible carrier efliciency, and vice versa. The audio power required from the modulator also varies with the percentage of plate modulation, being greater as this percentage is increased.

The way in which the various quantities vary is illustrated by the curves of Fig. 10-12. In these eurves the performance of the cath-ode-modulated r.f. amplifier is plotted in terms of the tube ratings for plate-modulated telephony, with the percentage of plate modulation as a base. As the percentage of plate modulation is decreased, it is assumed that the grid modulation is increased to make the over-all percentage of modulation reach 100 per cent. The limiting condition, 100 -per-cent plate modulation and no grid modulation, is at the right (.1); pure grid modulation is represented by the left-hand ordinate (B and C).

Fis. 10.11- ('ircuit arrangement for cathode modulation of a Class C r.f. amplifier.

fig. 10-12-Cathode-nodulation performance curves, in tarms of percentage of phate modulation plotted againet percentage of Class C telphiony tulie ratings. $\mathbf{W}_{\text {in }}$ - D.c. plate input watts in terms of perecntage of plate modulation rating.
W。- Carrier ontput watts in per cent of plate-modulation rating (based on plate efficiency of $7 . .5 \%$)
$W_{\text {s }}$ - Audio power in per cent of d.c. watts input.
N_{p} - Plate efficiency of the amplifier in percontape.
Example: Assume that the r.f, tube to be used has a 100% plate-modulation rating of 250 watts input and will give a carrier power output of 190 watts at that input. Cathorle modlulation with 40% plate modulation is to be used. From Fig. 10-12, the carrier efficieney will be 56% with 40% phate modulation, the permissibe d.e. injut will be 6.5% of the plate-molulat tion rating, and the r.f. output will he 48% of the plate-modulation rating. That is,

Power input $=2.50 \times 0.65=162.5$ wat ts
Power output $=190 \times 0.48=91.2$ watts
The renuired audio power, from the chart, is erfual to 20% of the d.e. input to the molulated amplifier. Therefore

Audio power $=162.5 \times 0.2=32.5$ watts The modulator should sup川ly a small amount of extra power to take care of losses in the grid rircuit. These should not exceed four or five watts.

Modulating Impedance

The modulating impedance of a cathodemodulated amplifier is approximately equal to

$$
m \frac{E_{b}}{I_{b}}
$$

where $m=$ Percentage of plate modulation (expressed as a derimal)
$E_{\mathrm{b}}=$ D.c. plate voltage on modulated amplifier
$I_{\mathrm{b}}=$ D.e. plate current of modulated amplifier

Example: Issume that the modulaterl amplifier in the example above is to operate at a plate potential of 1250 volts. Then the d.c, plate current is

$$
I=\frac{P}{E}=\frac{162.5}{1250}=0.13 \mathrm{amp} .(130 \mathrm{ma} .)
$$

The nodulating impedance is

$$
m \frac{E_{1}}{I_{1}}=0.4 \frac{12.50}{0.13}=3846 \mathrm{ohms}
$$

The modulating impedance is the load into which the modulator must work, just as in the case of
pure plate modulation. This load must be matched to the load required by the modulator tubes by proper choice of the turns ratio of the modulation transformer.

Conditions for Linearity

R.f. excitation requirements for the cathodemodulated amplifier are midway between those for plate modulation and grid-bias modulation. More excitation is required as the percentage of plate modulation is increased. (irid bias should the considerably beyond cut-off; fixed bias from a supply having good voltage regulation is preferred, especially when the perecntage of plate modulation is small and the amplifier is operating nore nearly like a grid-bias modulated stage. At the higher percentages of plate modulation a combination of fixed and grid-leak bias can be used, since the variation in rectified grid current is smaller. The grid leak should be by-passed for audio frequencies. The percentage of grid modulation may be regulated by choice of a suitable tap, on the modulation-transformer secondary.
The cathode circuit of the modulated stage must be independent of other stages in the transmitter. That is, when directly-heated tubes are modulated their filaments must be supplied from a separate transformer. The filament by-pass condensers should not be larger than about $0.002 \mu \mathrm{fd}$, to avoid bypassing the audio-frequency modulation.

Adjustment of Cathode-Modulated Amplifiers

In most respects, the adjustment procedure is similar to that for grid-bias modulation. The critical adjustments are antenna loading, grid bias, and excitation. The proportion of grid-hias to plate modulation will determine the operating conditions.

Adjustments should be made with the aid of an ossilloscope connected in the same way as for grid-bias modulation. With proper antenna loading and excitation, the normal wedge-shaped pattern will be obtained at 100 -per-cent modulation. . Is in the case of grid-bias modulation, too-light antenna loading will canse llattening of the upward-peaks of modulation as also will too-high excitation. The eathode current will be practically constant with or without modulation when the proper operating conditions have been established.

OTHER METHODS

It will be ohserved that in the methods of modulation so far deseribed there are two basic ways of obtaining the necessary sideband power: 1) by supplying it in the form of audio-frequeney power, as in phate modulation; 2) by obtaining it direetly at r.f. through reduced carrier effiriency, as in grid modulation. Modulation systems are periodically proposed having the objective of avoiding both these conditions; i.e., the aim is to generate the sideband power without large amounts of adio power and without reducing the efficieney of the modulated amplifier at the carrier level.
For the most part such systems employ one amplifier operating at nomal (lass-C efficieney (about 70%) to supply the carrier. A second amplifier is used to aid the carrier tube in supplying the modulation peak. The second tube is usually idlle with no modulation or during a modulation trough, Since the second tube also works at (Class-C' efficicury, the overall efficieney is high.
Modulation methods of this class are attractive economically, but are usially considerably more difficult to adjust than the systems described previously. They are also inherently incapable of giving as good lincarity as the simpler plateand grid-modulated systems. They have, as a result, had only sporadic use in amateur communication.

Controlled-Carrier Systems

With speech, the maximum modulation oecurs during only part of the time because of the varying voice level, pauses between sentences, ete. It is possible to take advantage of this charactoristic to increase the output of a grid-modulated system.

The method involves varying the carrier amplitude at a syllabic or somewhat slower rate so that the power input is low when there is little or no modulation. This reduees the plate dissipation at the time when the efficiency is least. Space dows not permit a detailed treatment here, bat information on practical systems can be found in the following $Q S T$ artieles:

Lippert, G. R., "A Constant-Modulation 'Phone System," QST, April, 1950.

Lippert, G. R., "Constant Modulation of the 813", (QST', November, 1950.

Checking AM 'Phone Operation

Proper adjustment of a phone transmitter is aided immeasurably by the oscilloseope. The 'seope will give more information, more accurately, than almost any collection of other instruments that might be named. Furthermore, an oscilloscope that is entirely satisfactory for the purpose is not necessarily an expensive instrument; the cathode-ray tube and its power supply are about all that are needed. Amplifiers and linear sweep circuits are by no
means necessary.
When using the tube without a sweep circuit, radio-frequency voltage from the modulated amplifier is applied directly to the vertical deffection plates of the tube, and audiofrequency voltage from the modulator is applied to the horizontal deflection plates. As the amplitude of the horizontal signal varies, the r.f. output of the transmitter also varies, and this produces a wedge-shaped pattern
of trapezoid on the sereen. If the oseilloseope has a horizontal sweep, the r.f, voltage is applied to the vertical plates as bofore (never through an amplifier) and the swepp produces a pattern that follows the modulation envelope of the transmitter output, provided the swerp

frequency is lower than the modulation froquency. This produces a wave-envelope modnlation pattern.

Oscilloscope connections for both types of patterns are shown in Fig. 10-13. The connections for the wave-envelope pattern are somewhat simpler than those for the traperoidal figure. The vertical deflection plates are coupled to the amplifier tank coil (or an antenna eoil) through a twisted-pair line and pick-up eoil. As shown in the alternative drawing, a resonant circuit tuned to the operating frequency may be connected to the vertical plates, using link eoupling between it and the transmitter. This will eliminate r.f. harmonies, and the tuning control provides a means for adjustment of the pattern height.

To get a wave-envelope pattern the position of the piek-up coil should be varied until a eartier pattern, Fig. 10-14B, of suitable height is obtained. The horizontal sweep voltage should be adjusted to make the width of the pattern somewhat more than half the diameter of the sereen. When voice modulation is applied, a rapidly-changing pattern of varying height will be obtained. When the maximum height of this pattern is just twiee that of the carrier alone, the wave is being modulated 100 per cent. This is illustrated by Fig. 10-141), where the point X represents the swerp line (reference line) alone, $\mathcal{P} \%$ is the carrier height, and $P Q$ is the maximum height of the modulated wave. If the height is greater than the distance $P Q$, as illustrated in E, the wave is overmodulated in the upward direction. Overmodulation in the downward direetion is indicated by agap in the pattern at the reference axis, where a single bright line appears
on the sereen. Overmodulation in aither dirertion may take place even when the modulation in the other direetion is less than 100 per cent.

Connections for the trapezoidal pattern are shown in Fig. 10-1313. The vertieal platew are coupled to the transmitter tank cirenit through a pick-up loop; altornatively, the tuned input eircuit to the oscilloscope may be used. The horizontal plates are coupled to the output of the modulator through a voltage divider, $R_{1} R_{2}$. R_{2} should be a potentiometer so the audio voltage can be adjusted to give a satisfactory horizontal sweep on the sereen. R_{2} may be a 0.25 -megohm volume control. The value of R_{1} will depend upon the audio output voltage of the modulator. This voltage is equal to $\sqrt{P R}$, where P is the audio power output of the modulator and R is the modulating impedance of the modulated r.f. amplifier. In the case of grid-bias modulation with a $1: 1$ output transformer, it will be satisfactory to assumb that the a.e. output voltage of the modulator is equal to 0.7 E ' for a single tube, or to $1,4 E$ for a push-pull stage, where E is the d.e plate voltage on the modulator. If the transformer ratio is other than $1: 1$, the voltage

Fig. 10-14-Wave-envelope and trapezoidal patterns representing different conditions of modalation.

Properly-operated phone transimitter modulated 100 per cent.

Overmodulation of a transmitter having high modutalion capability, listortion occurs only on the down-peaks.

Nonlinearity in molulated r.f. stage, frequently cansed by insufficient excitation of a plate-modulated amplifier or overexcitation of a gridbias modulated amplifter. The amplifier modulates linearly in the downward direction but the up-peaks are flat tenell.

Overmolulation and nonlinear operation (insufficient modulation capability). These patterns are similar to those dircelly above, but with the modulation carried beyond I(N) per rent in the downward direction.

Overnodulation and parasitic oscillations in the modulated amplilier. The trapezoidal pattern also slows phase distortion caused by ineorrect coupling between the oscilloseope and andio, system.

Left - lhase distortion cansed by incorrect compling between audio system and usilloseope Kight - Multi. ple pattern cansed by incorrect setting of nacilloseope time-trase control, In loth cases the wave is modulated 100 per cent.

PHOTOGRAPIIS OF TYPICAL. OSCII.I.OSCOIPE PATITERNS.
These photographs show varions comelitions of modulation as displayed by the wedge or trapezoidal patterns in the left-hand column and the wave-envelope patterns in the right-hand column.
(Photographs reproduced through courtesy of the Allen B. DuMont Laboratories, Ine., Pasaic, N. J.)
so calculated should be multiplied by the actual secondary-to-primary turns ratio.

The total resistance of R_{1} and R_{2} in series should be 0.25 megohm for every 150 volts of modulator output; for example, if the modulafor output voltage is 600, the total resistance should be four ($600 / 150$) times 0.2) megohm, or 1 megohm . Then, with 0.25 megohm at R_{2}, R_{1} should be 0.75 megohm. For good lowfrequency coupling the caparitanee, in mierofarads, of the blocking condenser, C, should at least equal $0.00+/ R$, where R is the total resistance ($R_{1}+R_{2}$) in megohms. In the example above, where R is 1 megohm, the caparitance should be at least $0.004 \mu \mathrm{fd}$. The voltage rating of the condenser should be at least twice the d.e. voltage applied to the modulated amplifier - that is, the same as the rating of the plate by-pass condenser in the final stage. The eapacitance can be made up of two or more similar units in series, so long as the total capacitanere is equal to that required, in case units of sufficient voltage rating are not available; or of two or more units in parallel if condensers hatving adergate voltage rating but insufficient caparitance are available.

Trapezoidal patterns for various conditions of modulation are shown in lig. 10-14 at I' to J, each alongside the corresponding wave-envelope pattern. With no signal, only the cathoderay spot appears on the sereen. When the unmodulated carrier is applied, a vertical line appears; the length of the line should be adjusted, by means of the piek-up coil coupling, to a convenient value. When the carrier is modulated, the wedge-shaped pattern appears; the higher the modulation percentage, the wider and more pointed the wedge becomes. At 100-per-cent modulation it just makes a point on the axis, X, at one end, and the height, $P^{\prime} Q$, at the other end is equal to twice the earrier height, $Y \%$. Overmodulation in the upward direction is indicated by increased height over $P Q$, and in the downward direction by an extension along the axis X at the pointed end.

Modulation Monitoring

It is always desirable to modulate as fully as possible, but 100 -per-cent modulation should not be exceeded - particularly in the downward direction - because harmonic distortion will be introduced and the channel width increased. This causes unnecessary interforence to other stations. The oscilloscope is the best instrument for continuously checking the modulation. However, simpler indicators may be used for the purpose, once calibrated.

A convenient indicator, when a Class I modulator is used, is the plate milliammeter in the Class I3 stage, since plate current fluctuates with the voice intensity. C"sing the oscilloscope, determine the gain-control setting and voice intensity that give 100 -per-cent modulation on voice peaks, and simultaneously observe the maximum ('lass is phate-milliammeter reading on the peaks. When this maximum
reading is obtained, it will suffice to adjust the gain so that it is not exceeded.

A sensitive rectifier-t ype voltmeter (copperoxide type) also can be used for modulation monitoring. It should be connected across the output cireuit of an audio driver stage where the power level is a few watts, and similarly calibrated against the oscilloscope to determine the reating that represents 100 -per-cent modulation.

The plate milliammeter of the modulated r.f. stage also is of some value as an indicator of overmodulation. The average plate current stays constant if the amplifier is linear, so the rading will be the same whether or not the transmitter is modulated. When the amplifier is overmolulated, especially in the downward direction, the operation is no longer linear and the average plate current will change. A flicker of the pointer may therefore be taken as an indication of overmodulation or nonlinearity. However, it is possible that under some operating conditions the average plate current will remain constant even though the amplifier is considerably overmodulated. Therefore an indicator of this type is not wholly reliable unless it has been checked previously against an oscilloscope.

Linearity

The linearity of a modulated amplifier may radily be cherked with the oscilloscope. The trapezoidal pattern is more casily interpreted than the wave-envelope pattern, and less auxiliary equipment is required. The connections are the same as for measuring modulation percentage ($\mathrm{Fig} .10-13 \mathrm{~B}$). If the amplifier is perfectly linear, the sloping sides of the trapezoid will be perfectly straight from the point at the asis up to at least 100 -per-cent modulation in the upward direction. Nonlinearity will be shown by curvature of the sides. Curvature near the point, causing it to approach the axis more slowly than would occur with straight sides, indicates that the output power does not decrease rapidly enough in this region; it may also be caused by positive feed-back (a push-pull amplifier is recommended because better neutralization is possible than with single-ended amplifiers) or by r.f. leakage from the exriter through the final stage. The latter condition can be checked by removing the plate voltage from the modulated stage, when the carrier should disappear, leaving only the beam spot remaining on the screen (lig. 10-14l'). If a small vertical line remains, the amplifier should be reneutralized; if this does not eliminate the line, it is an indication that r.f. is being picked up from lower-power stages, either by coupling through the final tank or via the oscilloscope pick-up loop.

Curvature near the point of the wedge is generally to be expected with control-grid and suppressor modulation, because these mothods cannot be made perfectly linear. With eontrol-grid modulation the linearity is improved by operating
with as much negative d.c. bias as possible, adjusting the r.f. excitation and plate loading for the best pattern.

Inward curvature at the large end of the pattern is caused by improper operating conditions of the modulated amplifier - usually improper bias or insufficient excitation, or both, with plate modulation. In grid and cathode-modulated systems, the bias, excitation and plate loading are not correctly proportioned when such curvature occurs. The usual reason is that the amplifier has been adjusted to have too-high carrier efficiency without modulation.

Fig. 10-15 shows typicai patterns of both the trapezoid and wave-envelope types. The cause of the distortion is indicated for grid-modulation systems. The patterns at A, although mot truly linear, are representative of properlyoporated control-grid modulation.

Faulty Patterns

The drawings of Figs, 10-14 and 10-15 show what is normally to be expected in the way of pattern shapes when the oscilloscope is used to check modulation. If the actual patterns differ considerably from those shown, it may be that the pattern is faulty rather than the transmitter. It is important that only r.f. from the modulated stage be coupled to the oscilloseope, and then only to the vertical plates. The effect of stray r.f. from other stages in the transmitter has been mentioned in the preceding section. If r.f. is present also on the horizontal plates, the pattern will lean to one side instead of being upright. If the oscilloscope cannot be moved to a spot where the unwanted pick-up disappears, a small by-pass condenser (10 $\mu \mu \mathrm{fd}$.) should be connected across the horizon-

Fig. 10-15 - Oscilloscope patterns representing proper and improper adjustments for grid-modulation systems. Trapezoidal pattern at left; wave-envelope pattern at right. The pattern obtained with a correctly-adjusted amplifier is shown at A. The other drawings indieate nonlinear modulation from typical causes.
tal plates as close to the cathode-ray tube as possible. An r.f. choke (2.5 mh . or smaller) may also be connected in series with the ungrounded horizontal plate.
"Folded" trapezoidal patterns, and patterns in which the sides of the trapezoid are elliptical instead of straight, occur when the audio sweep voltage is taken from some point in the audio system other than that where the a.f. power is applied to the modulated stage. Such patterns are caused by a phase difference between the sweep voltage and the modulating voltage. The connections should always be as shown in Fig. 10-13B.

Plate-Current Shift

As mentioned above, the d.c. plate current of a modulated amplifior will be the same with and without modulation so long as the amplifier operation is perfectly linear and other conditions remain unchanged. This also assumes that the modulator is working within its capabilities.

With plate modulation, a downward shift in plate current may indicate one or more of the following:

1) Insufficient excitation to the modulated r.f. amplifier.
2) Insufficient grid bias on the modulated stage.
3) The r.f. amplifier is not loaded properly to present the required value of modulating impedance to the modulator.
4) Insufficient output capacitance in the filter of the modulated-amplifier plate supply.
5) D.c. input to the r.f. amplifier, under carrier conditions, is in exeess of the manufacturer's ratings for plate modulation. Alternatively, the filament emission of the amplifier tubes may be low.
6) In plate-and-screen modulation of tetrodes or pentodes, the screen is not being sufficiently modulated along with the plate. In systems in which the d.c. screen voltage is ohtained through a dropping resistor, a downward dip in plate current may occur if the screen by-pass condenser capacitance is large enough to by-pass audio frequencies.
Any of the following may cause an upward shift in plate current:
7) Overmodulation (excessive audio power, audio gain too great).
8) Incomplete neutralization of the modulated amplifier.
9) Parasitic oscillation in the modulated amplifier.
When a common plate supply is used for both a Class B (or Class AB) modulator and a modulated r.f. amplifier, the plate current of the latter may "kick" downward because of poor power-supply voltage regulation with the varying additional load of the modulator on the supply. The same effect may occur with highpower transmitters because of poor regulation
of the a.c. supply mains, even when a separate power-supply unit is used for the (lass 13 modulator. Either condition may be detected by measuring the plate voltage applied to the modulated stage; in addition, poor line regulation also may be detected by observing if there is any downward shift in filament or line voltage.

With grid modulation, any of the following may be the cause of a plate-current shift greater than the normal mentioned above:

Downward kick: Too much r.f. excitation; insufficient operating bias; distortion in modulator or speech amplifier; too-high resistance in bias supply; insufficient output capacitance in plate-supply filter to modulated amplifier; amplifier plate circuit not loaded heavily enough; plate-circuit efficiency too high under carrier conditions.

Upward kick: Overmodulation (excessive audio voltage); distortion in audio system; regeneration because of incomplete neutralization; operating grid bias too high.

A downward kick in plate current will acrompany an oscilloscope pattern like that of Fig. 10-1513; the pattern with an upward kick will look like Fig. 10-15A, with the shaded portion extending farther to the right and above the carrier, for the "wedge" pattern.

Noise and Hum on Carrier

Noise and hum may be detected by listening to the signal on a receiver, provided the receiver is far enough away from the transmitter to avoid overloading. The hum level should be low compared to the voice at 100 -per-cent modnlation. Hum may come either from the speech amplifier and modulator or from the r.f. section of the transmitter. Ilum from the r.f. section can be detected by completely shatting off the modulator; if hum remains when this is done, the power-supply filters for one or more of the r.f. stages have insufficient smoothing. With a hum-free carrier, hum introduced by the modulator can be checked by turning on the modulator but leaving the speech amplifier off; power-supply filtering is the likely source of such hum. If carrier and modulator are both clean, connect the speech amplifier and observe the increase in hum level. If the hum disappears with the gain control at minimum, the hum is being introduced in the stage or stages preceding the gain control. The microphone also may pick up hum, a condition that can be checked by removing the microphone from the circuit but leaving the first speech-amplifier grid circuit otherwise unchanged. I rood ground (to a cold water pipe, for example) on the microphone and speech system usually is essential to hum-free operation.

Hum can be checked with the oscilloscope, where it has the same appearance as ordinary modulation on the carrier. While the percentage usually is rather small, if the carrier shows modulation with no speech input hum is the likely cause. The various parts of the trans-
mitter may be checked through as deseribed above.

Spurious Sidebands

A superheterodyne receiver having a crystal filter is needed for checking spurious sidebands outside the normal communication channel. The r.f. input to the receiver must be kept low enough, by removing the antema or by adequate separation from the transmitter, to avoid overloading and consequent spurious reeciver responses. With the crystal filter in its sharpest position and the beat oseillator turned on, tune through the region outside the normal channel limits (3 to 4 kilocyeles each side of the carrier) while another person talks into the microphone. Spurious sidebands will be observed as intermittent beat notes coinciding with voice peaks - or, in bad cases of distortion or overmodulation, as "elicks" or crackles well away from the carrier frequency. Sidebands more than 3 to 4 kiloeycles from the carrier should be of negligible strength, compared with the carrier, in a properly-modulated 'phone transmitter. The causes are overmodulation or nonlinear operation.

R.F. in Speech Amplifier

A small amount of r.f. current in the sperch amplifier - particularly in the first stage, which is most susceptible to such r.f. pick-up - will cause overloading and distortion in the low-lavel stages. Frequently also there is a regenerative effect which causes an audio-frequency oseillation or "howl" to be set up in the audio system. In such cases the gain control cannot be advanced very far before the howl buikls up, even though the amplifier may be perfectly stable when the r.f. section of the transmitter is not turned on.

Complete shiclding of the microphone, mierophone cord, and speech amplifier is necessary to prevent r.f. piek-up, and a ground connection separate from that to which the transmitter is connected is advisable. Direct coupling or unsymmetrical coupling to the antema (single-wire feed, feeders tapped on final tank circuit, cte.) may be responsible because these systems sometimes cause the transmitter chassis to take an r.f. potential above ground. Inductive coupling to a two-wire transmission line is advisable. This antenna effect can be checked by disconnecting the antenna and dissipating the r.f. power in a dummy antenna, when it usually will be found that the r.f. feed-back disappears. If it does not, the speech amplifier and microphone shielding are at fault.

Overmodulation Indicators

The most positive method of preventing overmodulation is the elipper-filter system deseribed in the chapter on audio amplifiers, when properly set up and adjusted. In the absence of such a system - or even with it, just to be safe - some form of overmodulation indicator should be in constant use when the transmitter is on the air.

RADIOTELEPHONY

The best device for this purpose is the eath-ode-ray oscilloscope. The trapezoital and wave-envelope patterns are equally useful. A 60 -cycle sinusoidal sweep will be quite satisfactory for the wave-envelope pattern. Either pattern should be watched particularly for the bright spots at the axis that accompany overmodulation in the downward direction. The speaking-voice intensity should be kept below the level that shows 100 -per-cent modulation on the 'scope.

Fig. 10-16 - A mogative-peak overmodalation indicator. Nilliammeter MA may be any low-range instrmment (n) to 0 -50 ma, or so). The inverse-peak-voltage rating of the rectifier, l^{\prime}, must be at least equal to the d.c. voltage applied to the plate of the r.f. amplifier. The alternative meter-return circnit can be used to indicate modulation in exress of any desired value below 100 per cent. 'The reartance of the by-pass condenser, C, at 100 cycles should be small compared with the resistance across which it is conmected. An $8-\mu$ fd. electrolytic condenser will be satisfactory if the resistance it shments is $\mathbf{1 0 0 0}$ ohms or more.

Overmodulation on negative peaks is more likely to restlt in spurious sidebands than overmodulation in the upward direction because of the shary break that occurs when the carrier is suddenly cut off and on. The
milliammeter in the negative-peak indicator of Fig. 10-1 0 will show a reading on each overmodulation peak that carries the instantaneous voltage on the plate of the Class C modulated amplifier "below zero" - that is, negative. The rectifier, V, cannot conduct so long as the negative half-cycle of audio output voltage is less than the d.c. voltage applied to the r.f. tube.

The inverse-peak-voltage rating of the rectifier tube must be at least twice the d.c. voltage applied to the plate of the modulated Class C amplifier. The filament transformer likewise must have insulation rated to withstand twice the d.c. plate voltage. Either mercury-vapor or high-vacuum rectifiers can be used. The 15 -volt breakdown voltage of the former will introduce a slight error, since the plate voltage must go at least 15 volts negative before the rectifier will ionize, but the error is inconsequential at plate voltages above a few hundred volts.

The effectiveness of the monitor is improved if it indicates at somewhat less than 100 -percent modulation, as it will then warn of the danger of overmodulation before it actually occurs. It can be adjusted to indicate at any desired modulation percentage by making the meter return to a point on the power-supply bleeder as shown in the alternative diagram. The by-pass condenser, C, insures that the full audio voltage appears across the indicator circuit. The modulation pereentage at which the system indicates is determined by the ratio of the d.c. voltage between the milliammeter tap and the positive terminal to the total d.c. voltage.

CHAPTER 11

Frequency and Phase Modulation

Although the most common type of modulation is that in which the amplitude of the carrier is varied, it is also possible to convey intelligence by varying the frequency or phase of the carrier.

The primary advantage of frequency modulation (FM) or phase modulation (PM) over amplitude modulation (AM) comes from the fact that noise or "static," whether natural or set up by electrical machines, is fundamentally an amplitude effect. An AM detector responds to noise just as readily as to the desired modulation on a signal. However, if the receiving system responds principally to frequency or phase changes and is insensitive to amplitude variations, it will give normal reception of an FM or PM signal but noise will be greatly reduced.

The improvement that can be realized by using FM or PM instead of AM depends on the strength of the received signal, the character of the noise, and the way the noise is distributed over the receiver passband. In general, the wider the channel occupied by the signal the better the noise suppression.

On the lower frequencies FM and PM are often used because they cause less interference than AM in unshielded broadeast receivers in the vicinity.

Frequency Modulation

Fig, 11-1 is a representation of frequeney modulation. When a modulating signal is applied, the carrier frequency is increased during one half-cyele of the modulating signal and decreased during the half-cycle of opposite polarity. This is indicated in the drawing by the fact that the r.f. cycles occupy less time (higher frequency) when the modulating signal is positive, and more time (lower frequency) when the modulating signal is negative. The change in the carrier frequency (frequency deviation) is proportional to the instantaneous amplitude of the modulating signal, so the deviation is small when the instantaneous amplitude of the modulating signal is small, and is greatest when the modulating signal reaches its peak, either positive or negative. That is, the frequency deviation follows the instantaneous changes in the amplitude of the modulating signal.

As shown by the drawing, the amplitude of the signal does not change during modulation.

Phase and Frequency

'To understand the difference between FM and PM it is necessary to appreciate that the frequency of an alternating current is determined by the rate at which its phase changes. A current in which the phase changes rapidly has a higher frequency than one in which the phase changes slowly. For example, if the phase moves through 360 degrees in one second the frequency is one cycle per second, but if the phase moves through 1080 degrees in one second (3×360 degrees) there are three complete cycles in one second.

If the phase of the current in a circuit is changed - this might be done by adjusting the tuning of an amplifier tank circuit, for example - there is an instantaneous frequency change during the time that the phase is being shifted. The amount of frequency change, or deviation, depends on how rapidly the phase shift is accomplished. It is also dependent upon the total amount of the phase shift. In a properly-operating PM system the amount of phase shift is proportional to the instamaneous amplitude of the modulating signal. The rapidity of the phase shift is directly proportional to the frequency of the modulating signal. Consequently, the frequency deviation in PM is proportional to both the amplitude and frequency of the modulating signal. The latter
(A)

(B)

(C)

Fig. 11-1-Graphical representation of frequency modulation. In the unmohlulated carrier at A, each r.f. cycle occupies the same amount of time. When the modulating signal, B , is applied, the ratio frectuency is increased and decreased according to the amplitude and polarity of the modulating signal.
represents the outstanding difference between FM and PM, since in FM the frequency deviation is proportional only to the amplitude of the modulating signal.

Modulation Depth

In FM or PM there is no condition that corresponds exactly to overmodulation in AM. "Percentage of modulation" has to be defined a little differently for these systems. Practically, " 100 -per-cent modulation" is reached when the transmitted signal occupies a channel just equal to the bandwidth for which the receiver is designed. If the channel occupied is wider than the receiver can accept, the rereiver distorts the signal and the end effect is much the same as overmodulation in AM. However, on another receiver designed for a different bandwidth the same signal might be equivalent to only $2 \overline{5}$-per-cent modulation.

In amateur work no specifications have been set up for channel width except in the case of "narrow-band" 1 M or 1 PM (frequently abbreviated N(PM), where the channel width is defined as being the same as that of a properlymodulated AMI signal. That is, the chamel width for NFM does not exceed twice the highest audio frequency in the modulating signal. NFM transmissions based on an upper audio limit of 3000 cycles therofore should occupy a rhannel no wider than 6 kc .

FM and PM Sidebands

It might be surmised that the channel worcupied by an PM or P'M signal is no greater than the frequency deviation on both sides of the carrier. Similar reasoning applied to amplitude modulation would lead to the conclusion that an A.M signal takes up no more space than the carrier alone, since only the amplitude of the carrier varies. However, the fact is that both FM and PM set up sidebands, just as AM does. In the case of FMI and PM, single-tone modulation sets up a whole series of pairs of sidebands that are harmonically related to the modulating frequency, whereas in AM there is only one pair of sidebands.

The number of "extra" sidebands that occur in FAI and PM depends on the relationship between the modulating frequency and the carrier frequency deviation. The ratio between the frequency deviation, in cycles per second, and the modulating frequency, also in cycles per second, is catled the modulation index. That is,
Modulation index $=\frac{\text { Carrier frequency deviation }}{\text { Modulating frequency }}$
Example: The maximum frequency deviation in an FM transmitter is 3000 cycles either side of the carrier frequency. The modulation index when the modulating frequency is 1000 cycles is

Modulation index $=\frac{3000}{1000}=3$

At the same deviation with 3000-cycle modulation the index would be 1 ; at 100 cycles it would be 30 , and so on.

The modulation index is also equal to the phase shift in radians. In PM the index is constant regardless of the modulating frequency; in FM it varies with the modulating frequency, as shown in the previous example. To identify any particular FM system, the limiting modulation index - that is, the ratio of the maximum carrier-frequency deviation to the highest modulating frequency used - is called the deviation ratio.

Fig. 11-2 shows how the amplitudes of the carrier and the various sidebands vary with the modulation index. This is for single-tone modulation ; the first sidebnad (actually a pair, one above and one below the carrier) is displaced from the carrier by an amount equal to the modulating frequency, the second is twice the modulating frequency away from the carrier, and so on. For example, if the modulating frequency is 2000 cycles and the carrier frequency is $29,500 \mathrm{ke}$, the first sideband pair is at $29,498 \mathrm{kc}$. and $29,502 \mathrm{kc}$., the second pair is at $29,496 \mathrm{kc}$. and $29,504 \mathrm{kc}$., the third at $29,494 \mathrm{kc}$. and $29,506 \mathrm{kc}$, etc. The amplitudes of these sidebands depend on the modulation index, not on the frequency deviation. In AM, regardless of the percentage of modulation (so long as it does not exceed 100 per cent) the sidebands would appear only at 29,498 and $29,502 \mathrm{kc}$. under the same conditions.

Note that, as shown by Fig. 11-2, the carrier strength varies with the modulation index. (In amplitude modulation the carrier strength is constant; only the sideband amplitude

Fig. 11.2 - How the amplitude of the pairs of sidebands varies with the modulation index in an FM or PM signal. If the curves were extended for greater values of modulation index it would be seen that the carrier amplitude goes through zero at several points. The same statement also applies to the sidebands.
varies.) At a modulation index of approximately 2.4 the carrier disappears entirely and then becomes "ncgative" at a higher index. This simply means that its phase is reversed as compared to the phase without modulation. In FM and I'M the energy that goes into the sidebands is taken from the carrier, the total power remaining the same regardless of the modulation index. In AM the sideband power is supplied by the modulator in the case of
plate modulation, and by changing the power imput and efficiency in the case of grid-bias modulation.
The curves of Fig. 11-2 ean he carried out to considerably-higher modulation indexes, in which ease it will be discovered that more and more additional sidebands are set up and that the carrier goes through several "zeros" and reversals in phase.

Frequency Multiplication

In frequency or phase modulation there is no change in the amplitude of the signal with modulation, consequently an FM or PM signal can be amplified by an ordinary (lass (amplifier without distortion. The modulation can take place in a very low-level stage and the signal can then be amplified by either frequency multipliers or straight amplifiers. The audio power required for modulating an FM or l.M transmitter is negligible.

If the modulated signal is passed through one or more frequency multipliers, the modulat tion index is multiplied by the same fator that the earrier frequency is multiplied. For example, suppose that modulation is applied on 3.5 Me, and the final output is on 28 . Ire. The total frequency multiplication is 8 times, so if the frequency deviation is 500 cycles at 3.5 Me., it will be 4000 ceveles at 28 Me. Frequenery multiplication offers a means for obtaining practically any desired amount of frequence deviation, whet her or not the modulator itself is capable of giving that much deviation without distortion.

Where FM or PM is used in crowded 'phone hands (particularly below 29 Mr.) it is of ut most importance that the transmissions should occuper a chamel no wider than would be oceupied by an AM signal. It is evident from Fig. 11-2 that this requirement can be met only by using a relatively small modulation index. It must be realized that the higherorder sidehands always are present, even at very small indexes. If the modulation index (with single-tone modulation) does not rexceed about 0. 6 the most important extra sideband, the second, will be at least 20 db . below the ummodulated carrier level, and this should represent an effective chamel width about equivalent to that of an $1 . \mathrm{M}$ signal. In the case of speech, a somewhat higher modulation index can be used. This is because the energy distribution in a complex wave is such that the modulation index for any one frequeney component is reduced, as compared to the index with asine wave having the same peak amplitude as the voice wave.

The chief advantage of narrow-band FM or PM for frequencies below 30 Mc. is that it eliminates or reduces certain types of interference to broadeast reception. Also, the modulating equipment is relatively simple and inexpensive. However, assuming the same ummodulated carrier power in all cases, narrow-hand FM or PM is not as effective as . DM. As shown
by Fig. Il-2, at an index of 0.6 the amplitude of the first sideband is aboht 25 per cont of the unmodulated-arrier amplitude: this compares with a sideband amplitude of 50 per cent in the case of a 100 -per-cent modulated ADI transmitter. In other words, so far as effectiveness is eoncemed, a narrow-band FM or PM transmitter is about equivalent to a 100-per-oent modulated A.M tramsmitter operating at one-fourth the carrior power.

Comparison of FM and PM

The methods used by amateurs for the reception of FM or PM signals (see receiving ehapter) are for the most part better adipted to frequence modulation than to phase modalation. On a receiver proper! $\begin{gathered}\text { adjusted for } \\ \mathfrak{K} M\end{gathered}$ reception the outstanding difference between the two systems is that FX sounds matural. while a l'M signallarks "Jows." This is because, for a given receiver bandwidth, the audi, output from a receiver set for FM recrption is proportional to the frequency deviation. In FMI trammission the deviation is the same for all atudio frequeneries of the same amplitude. but in l'M the deviation is proportional to the audio frequencr. Hence if a 3000 -evele modulating signal of given amplitude results in a certain frequency deviation, a 100 -revele modulating signal of the same amplitude will give only one-thirtieth as much deviation. The aryal-filter recoiving method deseribed in the receiving chapter overeomes this, but is not used by many amateurs because the adjustment is somewhat eritical.

Frequeney modulation cammot be applied to an amplifier stage, but phase modulation catn. PMI is therefore radily adaptable to transmitters emploging osciliators of high stability such as the erystal-rontrolled type. The amount of phase shift that aun be obtained with good linearity is limited to about ondhalf radian: in other words, the maximum practicable modulation index is 0.5 at the radio freguence at which the modulation takes place. Because the phase shift is proportional to the modulating frequener, this index can be used only at the highest fregueney present in the modulating signal, assuming that all frequeneies will at one time or another have equal amplitudes. Taking 3000 eveles as a suitable upper limit for voice work, and setting the modulation index at 0.5 for 3000 cycles, the frequency response of the speechamplifier system above 3000 eveles must be sharply attenuated, to prevent sideband splatter. Also, if the "tinny" quality of PM :as received on an FM receiver is to be avoided. the PM must be changed to FM, in which the modulation index decreases in inverse proportion to the modulating frequence. This requires shaping the speech-amplifier froquenceresponse curve in such a way that the output voltage is inversely proportional to frequency, at least ower the voice range. When this is done the maximum modulation index
can only be used at the lowest audio frequeney, approximately 100 eycles in voice transmission, and must decrease in proportion to the increase in freguency. The result is that the maximum linear frequency deviation is only about 50 cycles, when PMi is changed to FMi. To increase the deviation to 3000 eycles requires a frequency multiplication of $3000 / 50$, or 60 times.
In contrast, it is relatively easy to secure a fairly-large frequency deviation when a selfcontrolled oscillator is frequener-modulated directly. (True frequency modutation of a erystal-controlled oscillator results in only
very small deviations and so requires a great deal of frequency multiplication.) The chicf problem is to maintain a satisfactory degree of carrier stability, since the greater the inherent stability of the oscillator the more difficult it is to secure a wide frequency swing with linearity. However, it is possible, with a compromise design, to secure a frequency deviation of 3000 cycles at all amateur frequencies on which FM is permitted. It is very easy to do so at 14 Me. and higher, especially when the oscillator frequency is such that a frequency multiplication of $\dot{4}$ or more is possible.

Methods of Frequency and Phase Modulation

FREQUENCY MODULATION

The simplest and most satisfactory device for amateur 1 FM is the reactance modulator. This is a vacuum tube connected to the r.f. tank circuit of an oscillator in such a way as to ate is a variable inductance or capacitance. Fig. $11-3$ is a representative circuit. The con-trol-grid circuit of the 6L7 tube is connected aeross the small capacitance, C_{1}, which is in series with the resistor, R_{1}, across the oscillator tank circuit. Any type of oscillator circuit may be used. The resistance of R_{1} is made large compared to the reactance of C_{1}, so the r.f. current through $R_{1} C_{1}$ will be praetically in phase with the r.f. voltage appearing at the terminals of the tank circuit. However, the voltage across C_{1} will lag the current by 90 degrees. The r.f. current in the plate circuit of the 6 L 7 will be in phase with the grid voltage, and consequently is 90 degrees behind the current through C_{1}, or 90 degrees behind the r.f. tank voltage. This lagging current is drawn through the oseillator tank, giving the same effect as though an inductance were commected across the tank. The frequency increases in proportion to the amplitude of the layging plate current of the modulator. The value of plate current is determined by the voltage on the No. 3 grid of the 6Li.7: hence the oscillator frequency will vary when an audio signal voltage is applied to the No. 3 grid.

If, on the other hand, C_{1} and R_{1} are interehanged and the reactance of C_{1} is made large compared to the resistance of R_{1}, the r.f. current in the $6 L 7$ plate cirruit will fead the oscillator-tank r.f. voltage, making the reactance capacitive rather than inductive.

A circuit using a receiving-type r.f. pentode of the high-transconductance type, such as the 6SG7, is shown in lig. 11-4. In this case, both r.f. and audio are applied to the control grid. The audio voltage, introduced through a radiofrequency choke, $R F C$, varies the transconductance of the tube and thereby varies the r.f. plate current. The capaci-
tance C_{8} corresponds to C_{1} in Fig. 11-3; it represents the input (alpacitance of the tube. (It is possible, also, to omit C_{1} from Fig. 11-3 and depend upon the input capacitance of the 6L/7 instead; the only disadvantage is that there is then no control over the modulator sensitivity. Likewise, a $3-30-\mu \mu \mathrm{fd}$. trimmer condenser can be connected at C_{8} in Fig. 11-4 to permit controlling the sensitivity.) In Fig. 11-4 the r.f. circuit is series-fed, which is advantageous if the r.f. tube and the modulator can be operated at the same plate voltage. The use of different plate voltages on the two tubes calls for the parallel-feed arrangement shown in Fig. 11-3.

The modulated oscillator usually is operated on a relatively low frequency, so that a high order of carrier stability can be secured. Frequency multipliers are used to raise the frequency to the final frequency desired. The frequency deviation increases with the number of times the initial frequency is multiplied; for instance, if the oscillator is operated on 6.5 Mc. and the output frequency is to be 52 Me ., an oscillator frequency deviation of 1000 eyeles will be raised to 8000 cyoles at the output frequency.

Fig. 11-3 - Reactance-modulator circuit using a 61.7 tube.
$\mathrm{C}-$ R.f. tank eapacitanee. $\mathrm{C}_{1}-3-30 \mu_{\mu} \mathrm{fd} . \mathrm{C}_{2}-220 \mu_{\mu} \mathrm{fd}$.
$\mathrm{C}_{3}-8 . \mu \mathrm{fd}$. electrolytic (a.f. by-pasa) in parallel with $0.01-\mu \mathrm{fd}$. paper (r.f. hy-pass).
$\mathrm{C}_{4}-10-\mu \mathrm{fd}$. electrolytic in parallel with $0.01-\mu \mathrm{fd}$. paper. 1, - R.f. tank inductance. $\mathrm{R}_{2}, \mathrm{R}_{5}-0.47$ megohm. $\mathrm{R}_{1}-45.000$ ohms.
$\mathrm{R}_{3}-33,000$ olms.
$\mathrm{R}_{4}-330$ ohms.
$\mathrm{RFC}-2.5 \mathrm{mh}$.

A reactance modulator can be conneeted to a erystal oscillator as well as to the selfcontrolled type. However, the resulting signal is more phase-modulated than it is frequencymodulated, for the reason that the frequency deviation that can be secured by varying the tuning of a crystal oscillator is quite small.

Fig. 11-4 - Reactance modulator using a high-transconductance pentode ($6 \mathrm{SG} 7,6 \mathrm{AG} 7$, ete.).
$\mathrm{C}_{3}-$ K.f. tank capacitance (see text).
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.001-\mu \mathrm{fd}$, mica.
$\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}-0.0017-\mu \mathrm{fd}$. miea.
$\mathrm{C}_{7}-10-\mu \mathrm{fd}$. electrolytic.
C_{8} - Tube input capacitance (see text).
$\mathrm{K}_{1}, \mathrm{~K}_{2}-0.47$ megohm.
K_{3} - Sereen dropping resistor; seleet to give proper screen voltage on type of modulator tube used.
R_{4} - Cathode bias resistor; select as in case of K_{3}.
La - R.f. tank induetance.
RFC - $2.5-\mathrm{mh}$. r.f. ehoke.

Design Considerations

The sensitivity of the modulator (frequency change per unit change in grid voltage) depends on the transconductance of the modulator tube. It increases when C_{1} is made smaller, for a fixed value of R_{1}, and also increases with an increase in L / C ratio in the oscillator tank circuit. since the carrier stability of the oscillator depends on the L / C ratio, it is desirable to use the highest tank capacitance that will permit the desired deviation to be secured while keeping within the limits of linear operation. When the circuit of Fig. 11-3 is used in connection with a $7-\mathrm{Mc}$. oscillator, a linear deviation of 1500 cycles above and below the carrier frequency can be secured when the oscillator tank capacitance is approximately $200 \mu \mu \mathrm{fd}$. A peak a.f. input of two volts is required for full deviation.

I change in any of the voltages on the modulator tube will cause a change in r.f. plate current, and consequently a frequency change. Therefore it is advisable to use a regulated plate power supply for both modulator and oscillator. At the low voltages used (250 volts) the required stabilization can be secured by means of gaseous regulator tubes.

Speech Amplification

The speech amplifier preceding the modulator follows ordinary design, except that no power is required from it and the a.f. voltage taken by the modulator grid usually is small -
not more than 10 or 15 volts, even with large modulator tubes. Because of these modest requirements, only a few speech-amplifier stages are needed; a two-stage amplifier consisting of a pentode followed by a triode, both resistancecoupled, will more than suffice for ervstal microphones.

PHASE MODULATION

The same type of reactance-tube circuit that is used to vary the tuning of the oscillattor tank in F.M can be used to vary the tuning of an amplifier tank and thus vary the phase of the tank current for PM. Hence the modulator circuits of Figs. 11-3 and 11-4 can be used for PM if the reactance tube works on an amplifier tank instead of directly on a self-controlled oscillator.

The phase shift that occurs when a circuit is detuned from resonance depends on the amount of detuning and the Q of the circuit. The higher the Q, the smaller the amount of detuning needed to secure a given number of degrees of phase shift. If the Q is at least 10 , the relationship between phase shift and detuning (in kilocycles either side of the resonant frequency) will be substantially linear over a range of about 25 degrees. From the standpoint of modulator sensitivity, the Q of the tuned circuit on which the modulator operates should be as high as possible. On the other hand, the effective Q of the circuit will not be very high if the amplifier is delivering power to a load. since the load resistance reduces the Q. There must therefore be a compromise between modulator sensitivity and r.f. power output from the modulated amplifier. An optimum figure for Q appears to be about 20 ; this allows reasonable loading of the modulated amplifier and the necessary tuning variation can be secured from a reactance modulator without difficulty. It is advisable to modulate. at a very low power level - preferably in a transmitter stage where receiving-type tubes are used.

Reactance modulation of an amplifier stage usually also results in simultaneous amplitude modulation. This must be eliminated by feeding the modulated signal through an amplitude limiter or one or more "saturating" stages that is, amplifiers that are operated Class C and driven hard enough so that variations in the amplitude of the grid excitation produce no appreciable variations in the final output amplitude.

For the same type of reactance modulator, the speech-amplifier gain required is the same for PM as for FM. However, as pointed out earlier, the fact that the actual frequency deviation increases with the modulating audio frequency in PM makes it necessary to cut off the frequencies above about 3000 cycles before modulation takes place. If this is not done, unnecessary sidebands will be generated at frequencies considerably a way from the carrier.

Reactance-Modulator Unit for Narrow-Band FM

The FM speceh-amplifier and modulator unit shown in Figs. 11-5 and 11-6 uses a pentode reactance modulator in a circuit which is basically that of $1 \cdot i g$. $11-4$. It differs only in the detail that the audio signal is applied to the control grid in parallel with the r.f. vollage from the oseillator, instead of the sorios-fered arrangement shown in Fig. 11-4. Berause of the parallel feed, resist or R_{4} is ineorporated in the circuit to prevent r.f. from apperaring in the plate circuit of the speech-amplifier tube.

The unit uses miniature tubes for the sake of making a compact assombly that can be mounted in any convenient spot near the VFo tuned cireuit, In lig. $11-\overline{\text { on }}$ it is shown mounted on the outside of the Vro ease. When this type of mounting is used the unit should be plated so that the lead between the YFO tuned cireuit and the modulator is as short as possible. If there is space available, it is preferable to mount the unit inside the VFO eabinet.

The chassis for the unit is 4 inches long by 2 inches wide, and has a mounting lip. 2 inches deep. As shown in the photographs, it is formod from a piece of aluminum with the edges turned over to stiffen it. The various eomponents are easily accommodated underneath. The r.f. leads should be: kept short and separated as much as possible from the audio and powersupply wiring.
lilament and plate power can usually be taken from the VFO supply, since the total plate eurrent is only a few milliamperes. Filament current required is 0.6 amp. The microphone input is carried through a shiclded lead
to the unit. thus the microphone connector ean be plared in any convenient location on the VFO unit itself. Onace the proper setting of the

Fig. 11.6 - Cnderneath the modulator unit. The r.f. connection to the VFO goes through the feed-through bushing at the left.
gain control is found it need not be touehed again, so serewdriver adjustment is quite adeguate.

The adjustment of roactance modulators is discussed in a later section in this chapter.

Fig, 11-5 - Miniature reactance modalator that can be used with any 1FO. The shielded lead is for mierophone input; the other two wires bring in fllament and plate supply,

Fig. 11-: Gircmit diagram of the narrow-band FM modulatur unit.
$6: 680-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{2}, \mathrm{C}_{4}-0.01$ - ff f , paprer, 100 volts.
(3- $0,102.3 \mu$ fis, paper, 200 volts.
(is, (i6-47- $\mu \mu \mathrm{fd}$. mica.
R_{1} - 1.2 megolime, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{R}_{8}-0.22$ megohn, 3 watt.
R_{3} - 0.5 -mequhm potentioneter.
$\mathrm{R}_{4}-0,1$ mepohm, $1 / 2$ watt.
$\mathrm{R}_{5}-10,000$ ohms, $1 / 2$ watt.
R_{B} - 0.47 megohn, $1 / 2$ watt,
R7- 390 ohms, $1 / 2$ watt.
RFC - 2.5 -mh. r.f. choke.

Checking FM and PM Transmitters

Accurate checking of the operation of an FM or PM transmitter requires different methods than the corresponding checks on an IM set. This is because the common forms of measuring devices either indicate amplitude variations only (a d.c. milliammeter, for example), or because their indications are most easily interpreted in terms of amplitude. There is no simple instrument that indicates frequency deviation in a modulated signal directly.

However, there is one favorable feature in FM or PM checking. The modulation takes place at a very low level and the stages following the one that is modulated do not affect the linearity of modulation so long as they are properly tuned. Therefore the modulation may be checked without putting the transmitter on the air, or even on a dummy antemna. The power is simply cut off the amplifiers following the modulated stage. This not only avoids unnecessary interference to other stations during testing periods, but also keeps the signal at such a

Fí, $11-8$ - I), e, method of eheching frequenc: devia. tion of a reactance-tube-monhalated oseillator. A 500 or $1000-o h m$ potentioneter may be used at R.
low level that it may be observed quite easily on the station receiver. A good rereiver with a crystal filter is an essential part of the checking equipment of an FM or PM transmitter, particularly for narrow-band FM or PM.

The quantities to be cherked in an FM or PM transmitter are the lincarity and frequency deviation. Because of the essential difference between FM and PM the methods of checking differ in detail.

Reactance-Tube FM

It was explained earlier that in FM the frequency deviation is the same at any audio modulation frequency if the audio signal amplitude does not vary. Since this is true at any! audio frequency it is true at zero frequency. Consequently it is possible to calibrate a reactance modulator by applying an adjustable d.e. voltage to the modulator grid and noting the change in oseilator frequency as the voltage is varred. A suitable circuit for applying the adjustable voltage is shown in Fig. 11-8. The battery, B, should have a voltage of 3 to 6 volts (two or more dry cells in series). The arrows indicate clip comections so that the battery polarity can be reversed.

The oscillator frequency deviation should be measured by using a receiver in conjunction with an aceurately-calibrated frequency meter, or by any means that will permit accurate
measurement of frequency differences of a few hundred cycles. One simple method is to tune in the uscillator on the receiver (diseomecting the receiving antemna, if necessary, to keep the signal strength well below the overioad point) and then set the receiver b.f.o. to zero beat. Then increase the d.e. voltage applied to the modulator grid from zero in steps of about $1 / 2$ volt and note the beat frequency at each change. Then reverse the battery terminals and repeat. The frequency of the beat note may be measured by comparison with a calibrated audio-frequency oscillator, or by comparison with a piano or other musical instrument (see miscellaneous data chapter for frequencies of musical tones). Note that with the battery polarity positive with respect to ground the radio frequency will move in one direction when the voltage is increased, and in the other direction when the battery terminals are reversed. When a number of readings has been taken a curve may be plotted to show the relationship, between grid voltage and frequency deviation.

I xample curve is shown in Fig, 11-9. The usable portion of the curve is the center part which is essentially a straight line. The bending at the ends indicates that the modulator is no Ionger linear; this departure from linearity will cause harmomic distortion and will broaden the channel occupied by the signal. In the example, the characteristic is linear 1.5 ke . on either side of the center or carrier frequency. This is the maximum deviation permissible at the frequency at which the measurement is made. At the final output frequency the deviation will be multiplied by the same number of times that the measurement frequency is multiplied. This must be kept in mind when the check is made at a frequency that differs from the output frequency.

A pood modulation indicator is a "mariceye" tube such as the 6 EF . This should be comneeted across the grid resistor of the reastance modulator as shown in Fig. 11-10. Note its deHection (using the d.e. voltage method as in

Fig. 11.9 - Λ typical curve of frequency deviation vs. modulator arid voltage.

Fig. 11-8) at the maximum deviation to be used. This deflection represonts" 100 -per-cent modulation" and with spereh input the gain should be kept at the point where it is just reached on voice peaks. If the transmitter is used on more than one band, the gain control should be marked at the proper setting for each band, because the signal amplitude that gives the correct deviation on one band will be either too great or too small on another. For narrow-band FM the proper deviation is approximately 2000 eycles (based on an upper a.f. limit of 3000 eyeles and a deviation ratio of 0.7) at the final output frequency. If the output frequency is in the $29-\mathrm{Mc}$, band and the oscillator is on 7 Mc ., the deviation at the oscillotor frequency should not excerd $2000 / 4$, or 500 (eveles.

Checking with a Crystal-Filter Receiver

With PM the d.c. method of checking just described cannot be used, because the frequency deviation at zero frequency also is zero. For narrow-band I'M it is necessary to check the actual width of the channel occupied by the transmission. (The same method also can be used to check FM.) For this purpose it is necessary to have a crystal-filter receiver and an a.f. oscillator that generates a 3000 -eycle sine wave.

I'ig, 11-10 - 6E:5 modnation indicator for FX or PM modulators, 'Po insure sufficient grid voltage for a good deflection, it may be necessary to conmeet the gain control in the modulator grid circont rather than in ans varlier speceh-amplifierstage.

Keeping the signal intensity in the receiver at a medium level, tune in the carrier at the outp ul frequency, Do not use the a.v.c. Switch on the beat oscillator, and set the crystal filter at its sharpest position. Peak the signal on the erystal and adjust the b.f.o. for any convenient beat note. Then apply the 3000 -cycle tone to the speech amplifier (through an attenuator, if necossary, to avoid overloading; see chapter on audio amplifiers) and increase the audio gain until there is a small amount of modulation. Tuning the receiver near the carrier frequency will show the presence of sidehands 3 ke. from the carrier on both sides. With low audio input, these two should be the only sidebands detectable.

Now increase the audio gain and tune the receiver over a range of about 10 kc . on both sides of the carrier. When the gain becomes high enough, a second set of sidebands spaced 6 kc . on either side of the carrier will be detected.

The signal amplitude at which these sidehands berome detectable is the maximum speech amplitude that should be used. If the 6 E 5 modulaion indicator is ineorporated in the modulator. its deflection with the 300 u -cycle tone will be the " 100 -per-cent modulation" deflection for speech.

When this method of checking is used with a reactance-tube modulated FM (not PM) transmitter, the linearity of the system can be checked by observing the carrier as the a.f. gain is slowly increased. The beat-note frequency will stay constant so long as the modulator is linear, but nonlinearity will be accompanied by a shift in the average carrier frequency that will cause the beat note to change in frequency. If such a shift occurs at the same time that the 6-ke. sidebands appear, the extra sidebands may be caused by modulator distortion rather than by an excessive modulation index. This means that the modulator is not able to shift the frequency over a wide-enough range. The 6-ke. sidehands should appear before there is any shift in the carrier frequeney.

R.F. Amplifiers

The r.f. stages in the transmitter that follow the modulated stage may be designed and adjusted as in ordinary operation. In fact, there are no special requirements to be met except that all tank circuits should be carefully tuned to resonance (to prevent unwanted r.f. phase shifts that might interact with the modulation and thereby introduce hum, noise and distortion). In neutralized stages, the neutralization should be as exact as possible, also to minimize unwanted phase shifts. With FM and PM, all r.f. stages in the transmitter can be operated at the manufacturer's maximum c.w.-telegraphy ratings, since the average power input does not vary with modulation as it does in AM 'phone operation.

The output of the transmitter should be checked for amplitude modulation by observing the antenna current. It should not change from the unmodulated-carrier value when the transmitter is modulated. If there is no antenna ammeter in the transmitter, a flashlight lamp and loop can be coupled to the final tank coil to serve as a current indicator. If the carrier amplitude is constant, the lamp brilliance will not change with modulation.

Amplitude modulation accompanying FM or PM is just as much to be avoided as frequency or phase modulation that accompanies AM. A mixture of AM with either of the other two systems results in the generation of spurious sidebands and consequent widening of the channel. If the presence of $A M$ is indicated by variation of antenna current with modulation, the cause is almost certain to be nonlinearity in the modulator. In very wide-band F M the selectivity of the transmitter tank circuits may cause the amplitude to decrease at high deviations, but this is not likely to occur on amateur frequencies at which wide-band FM would be used.

Single-Sideband

Transmitting Techniques

The most significant development in amateur radiotelephony in the past several years has heen the increased use of single-sideband suppressedcarrier transmissions. This system has tremendous potentialities for increasing the effectiveness of 'phone transmission and for reducing interference. Because only one of the two sidebands normally produced in modulation is transmitted, the ehamel width is inmediately cut in half. However, when only one sidehand is transmitted the carrier - which is essential in double-sideband transmission - no longer is neeasary; it can be supplied without too much difficulty at the recoiver, With the carrior eliminated there is a great saving in power at the transmitter - or, from another viewpoint, a great increase in efferetive power output, Assuming that the same finalamplifier tube or tubes are used either for normal AM or for single-sidehand, carrier suppressed, it can be shown that the use of SSB gives an efferotive gain of at least 9 db . over AM - equivalent to increasing the transmitter power 8 times. Eliminating the carrier also eliminates the hoterodrue interference that wrecks so much communication in congested 'phone hands.

SUPPRESSING THE CARRIER

The carrior can be suppressed or nearly eliminated by an extremely sharp filter or by using a balanced modulator. The basic principle in any balanced modulator is to introduce the carrior in such a way that it does not appear in the output but so that the sidebands will. This requirement is satisfied by introducing the audio in push-pull and the r.f. drive in parallel, and connereting the output (plate circuit) of the tubes in push-pull. Batanced modulators can also be connected with the r.f. drive and audio inputs in push-pull and the output in parallel, with equal effectiveness. The choice of a bataneed modulator cireuit is generally determined by constructional considerations and the method of modulation preforred by the builder.

In any of the circuits, there will be no output with no audio signal because the rircuits are balanced. The signal from one tube is balanced or cancelled in the output circuit by the signal from the other tube. The cireuits are thus balanced for any value of parallel audio signal. When push-pull audio is applied, the modulating voltages are of opposite polarity, and one tube will conduct more than the other. since any modulation proeess is
the same as "mixing" in receivers, sum and difference frequencies (sidehands) will be generated. The modulator is not balaneed for these sidebands, and they will appear in the output.

The amount of earrier suppression is dependent upon the matching of the two tubes and their associated circuits. Normally two tuber of the same type will balance closely enough to give at least 15 or 20 dh. carrier suppression without any adjustment. If further suppression is required, trimmer condensers to balanes the grid-plate capacities and bias adjustments for setting the operating points can be used.

SINGLE-SIDEBAND GENERATORS

Two hasie sustems for generating SSB signals are shown in Fig. 12-1. One involves the use of a bandpass filter having sufficient selectivity to pass one sidehand and reject the other. Filters having such characteristies can only be constructed for relatively low frequencies, and most filters used by amateurs are designed to work somewhere between 10 and 20 ke . Good sideband filtering can be done at frequencies as high as 500 ke . by using multiple-erystal filters. The low-fregueney oscillator output is combined with the audio output

Fig. 12-1 - Two hasie systems for generating singlesideband suppressed-carrier signals.
of a speech amplifier in a balaneed modulator, and only the upper and lower sidebands appear in the output. One of the sidebands is passed by the filter and the other rejected, so that an SSB signal is fed to the mixer. The signal is there mixed with the output of a high-frequener r.f. oscillator to produce the desired output frequency. For additional amplification a linear r.f. amplifier (Class A or Class B) must be used. When the SSB sigmal is generated at 10 or 20 ke ., it is generally first heterodyod to somewhere around 500 ke , and then to the operating frequancy. This simplifies the prohlem of rejecting the "image" frequencies resulting from the heterodyne process. The problem of image frequencies in the frequency conversions of SSB signals differs from the problem in receivers because the beating-oscillator frequency becomes important. Fither balanced modulators or sufficient selectivity must be used to eliminate the possibility of unwanted radiations.
The second system is based on the phase relationships between the carrier and sidebands in a modulated signal. As shown in the diagram, the audio signal is split into two components that are identical except for a phase difference of 90 degrees. The output of the r.f. oscillator (which may be at the operating frequenes, if desired) is likewise split into two separate components having a !O-degree phase difference. One r.f. and one audio component are combined in each of two separate balanced modulators. The carrior is suppressed in the modulators, and the relative phases of the sidebands are such that one sideband is balanced out and the other is accentuated in the combined output. If the output from the balanced modulators is high enough, such an SSB exciter can work directly into the antenna, or the power level can be increased in a following amplifier.

Which is the better mothod of generating ant Sisls signal, the filter or the phasing method, is a controversial question. Properly adjusted, either system is capable of good results. Arguments in favor of the filter system are that it is somewhat easier to adjust without an oscilloscope, since it requires only a receiver and a v.t.v.m. for allignment, and it is more likely to remain in adjustment over a long period of time. The chied argument against it, from the amateur viewoint, is that it requires quite a few stages and at least one frequenes conversion after modulation. The phasing system requires fewer stages and can be designed to reguire no frequency conversion, but its aligmment and adjustment are often considered to be a little "trickier" than that of the filter" system. This probably stems from lack of familiarity with the system rather than any actual difficulty. In most eases the phasing system will cost less to apply to an existing transmitter.

Regarderss of the method used to gemerate a SiSl signal, the minimum cost will be found to be higher than for an AM transmitter of the same low power. However, as the power level is increased, the SSB transmitter becomes more economical than the AM rig, both basicatly and from an operating standpoint.

AMPLIFICATION OF SSB SIGNALS

When an SSB signal is generated at some frequency other than the operating frequency, it is necessary to change frequency by heterodyne methods. These are exactly the same as those used in receivers, and any of the normal mixer or converter circuits can be used. One exception to this is the case where the original signal and the heterodyning oscillator are not too different in froquency (as when heterodyning a $20-\mathrm{ke}$. signal to 500 kc .) and, in this case, a balanced mixer should be used, to eliminate the heterodyning oscillator frequencer in the output and thus reduce the chances for spurious signals appearing in the output.

To increase the power level of an SSIB signal, a linear amplifier must be used. The simplest form of linear amplifier (r.f. or audio) is the Class A amplifier, which is used almost without exception throughout our receivers and our lowlevel speech equipment. While its linearity can be made phenomenally good, it is unfortunately quite inefficient. The theoretical limit of efficiency in this case is 50 per cent, while most practical amplifiers rum 25-35 per cent efficient at full output. At low levels this is not worth worrying about, but when the 2- to 10 -watt level is exceeded something else must be done to improve this efficiency and reduce tube, power-supply and operating costs.

Class B amplifiers are theoretically capable of 78.5 per cent effieieney at full output, and practical amplifiers run at ($\mathbf{3 0} \mathbf{0} \mathbf{- 7 0}$ per cent efficiency at full output. Tubes normally chesigned for Class B audio work can be used in r.f. linear amplifiers and will operate at the same power rating and efficiency provided, of course, that the tube is catable of oferation at the radio frequency. The operating eonditions for r.f. are substantially the same as for audio work -- the only difference is that the input and output transformers are replaced by switable r.f. tank cireuits. Further, in r.f. circuits it is readily possible to operate only one tube if only half the power is wanted - pushpull is not a neeessity in Class B r.f. work. However, the r.f. hamonics will be higher in the case of the single-ended amplifier, and this should be taken into consideration if TVI is a problem.

In a fow instances, Class 13 r.f. amplifier ratings of tubes are given in the tube books, and the efficiency shown will be about 33 per cent. These ratings are for use when carrier is present and do not apply to sisl3 suppressed-carrier operation. The Class 13 audio ratings are a better indication of what ean be expected.

For proper operation of Class 13 amplifiers, and to reduce hamonics and facilitate coupling, the imput and outpuat circuits should not have a low C,-to-L ratio. A good guide to the proper size of tuning condenser is the chart of Fig. 6-18 and, in case of any doubt, it is well to be on the higheapaeity side. If zero-bias tubes are used in the Class B stage, it will not be necessary to add mueh "swamping" resistance across the grid circuit, because the grids of the tubes load the
circuit at all times. However, with other tubes that require bias, the swamping resistor should be such that it dissipates from five to ten times the power required by the grids of the tubes. This will insure an almost constant load on the driver stage and good regulation of the grid voltage of the Class 13 stage.
Before going into detail on the adjustment and loading of the Class 13 linear amplifier, a fow general considerations should be kept in mind. If proper operation is expereted, it is essential that the amplifier be so constructed, wired and neutralized that no trace of regeneration or parasitic instability remains. Needless to say, this also applies to the stages driving it.

The bias supply to the Class IS linear amplifier should be quite stiff. A Class C stage thrives on grid-leak bias, but for really grood operation the Class B should be supplied from a very stiff source, such as batteries or some form of voltage regulator. If nonlinearity is noticed when testing the unit, the bias supply may be checked by means of a large electrolytic capacitor, Simply shunt the supply with $100 \mu \mathrm{fd}$. or so of capacity and see if the linearity improves. If so, rebuild the bias supply for better regulation. Do not rely on a large condenser alone.

Adjustment of Amplifiers

The two eritical adjustments for obtaining proper operation from the linear amplifier that has been corrertly designed are the plate loading and the grid.drive. Since these adjustments are preferably made with power on, it is a matter of practical convenience to have both controls readily available, at least during initial tune-up).
The 'seope can show misadjustment at a glance and will greatly facilitate all adjustments. In addition, it is the most reliable instrument for observing modulation amplitude and, once used, is likely to become the most nearly essential instrument in the shack. Nothing elaborate is needed.

With single sideland, 100 per cent modulation with a single tone is a pure r.f. output with no modulation envelope, and the point of amplifier overload is diffieult to observe. However, if the input signal consists of two sine waves of different frequencies (for example, 1000 e.p.s. difference) but equal amplitudes, the output of the singlesideband transmitter should have the envelope

Fig. I2-2-(heilloscope pattern ohtained with a Iwotone test signal through a correctly-adjusted linear amplifier.
shown in Fig. 12-2. This is called a "two-tone" test signal to distinguish it from other test signals. Its first advantage lies in the fact that any flattening of the positive peaks is readily discernible, which makes the adjustment of the linear-amplifier drive and output coupling as simple a procedure as that for AM systems.

Those who use the filter method for obtaining single-sideband signals can obtain such a tost signal by mixing the output of two audio oseillators of good waveform. The experimenters using the phasing method of single-side-band signal generation will recognize the pattern as that obtained when a single test tone is applied to one of their balaneed modulators. For this latter group a two-tone test signal may be readily obtained by (lisabling one of the balanced modulators in the exeiter and applying a single input tone. Other variations are possible in different exciters, and the final choice of any one operator will be dictated by convenience.

Suppose that the linear amplifier has been coupled to a dummy load and the single-sideband exciter has been connected to its input. By ob)serving the oscilloscope coupled to the amplifier output, it will be possible to adjust the drive and output coupling so that the peaks of the two-tone test signal waveform are on the verge of flattening. The peak input power may now be checked. This is readily possible, for with the two-tone test signal applied, the prak input power will be 1.57 times the d.c. power input to the linear amplifier. Should this be different from the design value for the particular linear amplifier, the drive and loading adjustments can be quickly changed in the proper direction (always adjusting the loading so that the peaks of the envelope are on the verge of flattening) and the proper design value reached.

As a final cheek, before coupling the linear amplifier to the antenna, the single-sideband operator will do well to check the lincarity of the system, since distortion in the linear amplifier (for that matter, in any of the r.f. amplifiers, probably will result in the generation of sidebands on the side that was suppressed in the exciter. Here again the two-tone test signal will be of great help, since distortion of the signal will be readily reeognized. A check of the bias supply has already been recommended. The next most likely form of distortion will be caused by curvature of the tube characteristic near cut-off, and will be recognizable from a two-tone test pattern that looks like Fig. 12-3. A slight readjustment of bias (or applying a few volts of positive or nergative bias, in the case of zero-bias tubes) will usually straighten out the kink that exists where the pattern crosses the zero axis. Make this adjustment with special care, however, because the dissipation of the tubes with no input signal will be very sensitive to this aljustment. There are a few tubes that will not permit this adjustment to be carried to the point where the kink is entirely eliminated without exceeding the rated plate dissipation.

The antema may now be coupled to the lincar amplifier until the plate input with the excitation
as determined above is the same as that obtained with the dummy load. The operator can now feel that the system has been adjusted for optimum performance.

VOICE-CONTROLLED BREAK-IN

Although it is possible for two SSll stations operating on widely different frequencies to work "duplex" if the carrier suppression is great enough (inadequate arrier suppression would be a violation of the FC(rules), most SSils

Fig. 12-3 - 'The distorted two-tone test-signal pattern oltained when the bias voltage is incorrect.
operators prefer to use voice-controlled break-in and operate on the same frequener. This overcomes any possibility of violating the FCC rules and permits three or more stations to engage in a "round table." Voice-controlled break-in is not popular with straight AM because turning the carrier on and off at a syllabic rate results in a "keved" type of heterodyne interference that is particularly amoving.

Many various systems of voice-controlled break-in are in use, but they are all hasically the same. Some of the audio from the speech amplifier is amplified and rectified, and the resultant d.c. signal is used to key an oscillator and one or more stages in the SSil transmitter and "blank" the receiver at the time that the transmitter is on. Thus the transmitter is on at any and all times that the operator is speaking but is off during the intervals between sentences. The voice-control circuit must have a small amount of "hold" built into it, so that it will hold in between words, but it should be made to turn on rapidly at the slightest voice signal coming through the sperech amplifier. Both tube and relay keyers have been used with good success.

A Phasing-Type SSB Exciter

The exeiter shown in Figs. 12-4, 12-6 and 12-8 is an excellent unit for the amateur who might like to try single sideband with a minimum of cost and effort. It requires r.f. driving power from one's present exeiter and a power supply. It will doliver Ssib output in the $3.9-\mathrm{Me}$, 'phone bend, eithor to an antema for local work or to an r.f. amplifier adjusted for linear operation. The operating frequency can be varied over a wide range without seriously impairing the adjustment. l'rovision is made for transmitting cither the upper or the lower sideband.

The schematic of the exciter is shown in Fig. 12-5. Four (6)6 tubes are used as balanced modulators. The plate circuit of the balaneed modulators uses a push-pull-parallel arrangement. The grids of one pair of balanced modulators are fed through a phase-shift network consisting of a 300 -ohm resistor and an inductance that is adjustable to 300 ohms reactance at the operating frequency. The grids of the second pair of balanced modulators are fed through a phase-shift network consisting of a 300 -ohm resistor and a condenser which is adjustable to 300 ohms reactance at the operating freguency. The input impedance of the two phase-shift networks in parallel is 300 ohms.

Each balanced-modulator tube grid is fed through a blocking condenser and provided with grid-leak bias. The bias circuit of each balanced modulator is made adjustable for control of the earriar suppression. Provision is also made for the addition of fixed hias, in case the exeiter is used in a voice-controlled circuit where the r.f. excitation is removed during listening periods.

Sereen modulation is used, and the sereen of each modulator tube is by-passed to ground for
r.f. A transformer with a center-tapped secondary is used in the output of each audio amplifier to provide push-pull modulating voltages.

A reversing switch, S_{1}, allows switching to either the upper or lower sideband. If this switch has a center "off" position, it will facilitate using the "two-tone test" procedure mentioned earlier. A voltage is inserted betwere each output of the audio phase-shift network and the corresponding amplifier grid. One of these voltage dividers is made variable to provide for balancing of the two audio channels. The network constants are compensated for the load of these voltage dividers.

Fip. 12-4 - A small single-sideband exciter that inchules voice-controlled break-in. Receiving-type tubes are used throughout.

Microphone input and audio gain control are at the left-hand side of the front - the switch selects the upper or lower sideland. (Revised version, W2UNJ, Aug., 1919, (SST.)

Fig. 12-5 - (irenit diagram of the single-sidehand exeiter.
$\mathrm{C}_{1}-\mathrm{C}_{6}-$ Sea 'l'able 12-I.
C. $-150-\mu \mu$ fd, air padder condenser.

C $\mathrm{B}_{8}-\mathrm{Approx} .400-\mu \mu \mathrm{fd}$. per section, b.e. receivar tuning condenser.
C $9-.001-\mu \mathrm{fd}$. 1000-volt mica.
($:_{10}-\mathrm{C}_{18}-, 001-\mu \mathrm{fl}$. 500 -velt mira.
$\mathrm{C}_{10}, \mathrm{C}_{20}$ - $\mathrm{f}_{-\mu \mathrm{f}} \mathrm{I}$, 150 .volt electrolytie.
$\mathbf{R}_{1}-\mathbf{R}_{6}$ - See Table 12-I.
$R_{7}, R_{8}-300$ ohms, 5 watts (5 lisoo-ohm 1 -watt in parallel).
$\mathrm{R}_{0}-0.5$ megohm linear volume control.
$\mathrm{H}_{10}-0 . \mathrm{F}^{7}$ megohm.
$\mathrm{R}_{20}-0.75$ megolim.
$\mathrm{H}_{21}-0.24$ megohm.

Speech Amplifier and Voice Control

The speech amplifior is designed to attenuater both low and high frequeneies, amplifying onlythe audio range required for good intelligilsility. The wiring diagram is shown in Fig. 12-7. The output of the speech amplifier is coupled to the input of the audio phase-shift network through a transformer with a center-tapped secondary, to provide push-pull audio for the phase-shift network.

Part of the output of the speech amplifier is taken off through an adjustable voltage divider circuit and blocking condenser to the voicecontrol circuit. There it is rectified by the diodes of the $6 \mathrm{SQ}^{7}$, and the resulting d.c. voltage is used to charge C_{14} negative. An audio choke prevents
$\mathrm{R}_{13}-\mathrm{R}_{16}-10,000$ ohms.

$R_{20,} R_{21}-680$ whms, 2 watts.
All resistors I-watt unless sperified otherwise.
L_{1} - 25 turns No, 28 enam. chomewound at momenting end of slot of National XR-so slug-tumed form.
L_{2} - 11 -meter $\overline{3}$-watt tank coil with swinging link (Bud 6-OL心-10).
$\mathrm{KFC}_{1}-2.5 \mathrm{mh}$, r.f. choke.
s_{1} - I.p.d.t. toggle, preferably with center off. See text.
' I_{1}, I_{2} - j -watt modulation transformer, $\mathbf{1 0 , 0 0 0}$ ohms e.t. to 1000 ohms (Stancor A-3812).
audio components from appearing across C_{14}. The triode seetion of the $6 \mathrm{SN}^{(27}$ is normally conducting and holding the relay closed, but when the negative voltage appors across (at the Giser plate current is eut off and the relay oqens. When the audio signal is removed, Co diseharges through R_{15} and the triode again conducts, closing the relay.

The Audio Phase-Shift Network

The audio phase-shift network requires close matching of resistance and capacity values and, to do this economically, advantage is taken of the fact that resistors and condensers in junk boxes and in stock at local dealers vary considerably from their nominal values.

Table $12-\mathrm{I}$ is used in selecting the network

TABLE 12-I Phase-Shift Network Design Data			
Part	Nominal	$\begin{aligned} & \text { Target } \\ & \text { I alue } \end{aligned}$	$\begin{gathered} \text { Measured } \\ \text { Ialue } \end{gathered}$
C_{1}	0.001	0.00105	${ }_{(C \mathrm{Cmi}}{ }^{\text {(}}$
C_{2}	0.002	0.00210	(Cm2)
${ }_{4}$	-0.006	0.0014	$\left(\mathrm{Cm}_{4}\right)$
CB_{5}	0.01	0.0010930	(Cmm)
Co	0.003	0.028 .5	(Cme)
R_{1}	100.1000	101	
		Cmi	
R_{2}	50,000	$\frac{105}{0}=$	
R_{3}	15,(160)	${ }^{(1010)}$	
		$\overline{\mathrm{Cm}} 3$	
R_{4}	100, (010)	45.3	
		Cm_{4}	
R_{5}	50, 0100	46	
R_{6}	15,0\%6)		
		$\overline{\mathrm{Cm}}{ }^{\text {c }}$	
All condensers mira. and all resistors 1 watt.			

components. The procedure is to collect as many resistors and condensers as possible with nominal values as indicated in the second column of the chart. Measure all of the condensers first, and select the six condensers whose measured values are closest to the "target values" in the third column. Enter the measured values of these condensers in the fourth column of the chart. Then calculate the "target values" for the resistors and select the six resistors whose measured values are closest to these target values.

A capacity bridge, of the type used by servicemen, and a good ohmmeter should give sufficient accuracy in selecting the network components. Absolute accuracy is not important, if the components are all in correct proportion to each other. A difference in percentage error between the resistance measurements and the capacitance measurements will merely shift the operating range of the network. The network components are mounted on a small sheet of insulating material to facilitate wiring.

Construction

The exciter and its associated audio equipment are assembled on a 13 by 17 by 2 -ineh aluminum chassis, The four 616 balaneed-molulator tubes are arranged in a square pattern toward the front eenter of the chassis, with the plate tuning condenser and coil off to one side and the 6K6 audio amplifier tulves on the other. The two modulation transformers are under the chassis directly below the plate tuning condenser. The speech amplifier is arranged along the left-hand side of the chassis, with the 6S.J at the rear and the output transformer on the top of the chassis at the front. The audio phase-shift network is below the output transformer.

The reactive components of the r.f. phasing network, L_{1} and C_{7}, are mounted in a plug-in shield can that mounts directly behind the balanced-modulator tubes. The shield can is
grounded to the chassis through the spare pins of its plug. The voltage regulator tube is mounted to the left of the shield can, and the 6SQ7 voicecontrol tube is to the right. The components in the voice-control circuit are mounted under the chassis at the rear.

Associated Equipment

The r.f. input impedance of the exciter is 300 ohms, but a link line of lower characteristic impedance will operate satisfactorily for the short distance usually reguired. A means for adjusting the r.f. driving power is desirable. A surplus Command set transmitter (BC-696 or T-19/ARC-5), operating at low plate voltages, makes an ideal r.f. source, but any VFO or crystal oscillator with a few watts output will do.

The plate voltage for the speech amplifier must not be taken from the same point in the power supply that furnishes voltage for the $6 \mathrm{~K} 6 \mathrm{ampli}-$ fiers, since interaction may occur that will upset the phase relationship at the output of the two 6Kits. If separate plate voltage sources are not available, an added filter sertion may be used to isolate the voltage to the speech amplifier.
The built-in voice-controlled relay can be used in a number of ways to provide the rapid voice break-in commonly used on $3.9-\mathrm{Me}$. SS13 'phone. If a good c.w. break-in system is already in use at the station, the voice-control relay contacts may be substituted for the key, and no other changes are necessary.
If the local oscillator in the receiver will key in the plate voltage lead satisfactorily, then a simple voice break-in system may be obtained by using the relay contacts to shift the plate voltage from the receiver local oscillagor to the 1 FO. A drifting receiver oscillator must be avoided in this system, however.

Operating Conditions

If voice control is not used, and d.c. operating voltages are removed when excitation is removed for stand-by, then no fixed hias is required on the balanced motulators and a jumper can be placed

Fig, $12-6$ - A rear view of the phasing-type exciter. The two r.f. phasing adjustments project from the shicld can. The potentiometcr shaft at the left sets the voice-control threshold level. The jack is for the keyed circuit, the r,f, connector takes the excitation cable, and the octal nocket is for the power cable.

I'ig. 12-7 - Wiring diagram of the speed amplifier and voice-comtrol circuit.
C 1 - $100-\mu \mu \mathrm{fd}$, mica or ceramic.
$\mathrm{C}_{2}, \mathrm{C}_{7}, \mathrm{C}_{11}-1-\mu \mathrm{fd}$, $150-\mathrm{wolt}$ electrolytic.
C.3-. $02-\mu \mathrm{fd}$. 100)-a olt paper.
($4, \mathrm{C}_{8}=8-\mu \mathrm{fd}$, 450 -volt electrolytic.
(is-2 $=0-\mu \mu \mathrm{fd}$. midal or ceramie.
$\mathrm{C}_{6}-.001-\mu$ fll. mica or ceramie.
C_{9} - $(\mathrm{OH}) 33-\mu \mathrm{ff}$, mica or ceramic.
C.a - . 002- -fd . mica or ceramic.
(it2 - . $005-\mu$ fd, ceramic or mica.
C_{23} - . $01-\mu \mathrm{fl}$. 100 -violt paper or eramic.

$\mathrm{K}_{1}, \mathrm{~K}_{\mathrm{g}}-0.1$ megolm.
$\mathrm{R}_{2}-2.2$ megohm.
across the bias terminals. When excitation is removed with d.e. voltages applied, as in voicccontrolled operation, then $41 / 2$ volts of fixed bias should be used to limit the plate and sereen currents on the balaneed modulators.
With 400 volts applied to the balaneed-modulator plates and 250 volts to all other plate supply inputs, the operating currents will be approximately as follows:
Total balanced-modulator plate current 8.5 ma .
VR tube supply eurrent
20 ma .
Total 6 K 6 amplifier current
(i2 ma.
Total speech amplifier current 12 ma .
The total balanced-modulator grid current, measured at the bias terminals, will vary with excitation, but it should be in the range 3 to 5 ma.

These currents will not change appreciably with varying audio input and, with the exception of the grid current, will not change apprectiably when the excitation is removed, provided that $41 / 2$ volts of fised bias is used on the balancedmodulator grids.

The exeiter may be coupled directly to an antenna for use as a low-power transmitter, but most amateurs will wish to use it to drive a buffer or final amplifier. All stages following the exciter must be operated under Class A, AB, or B conditions. In general, the correct operating conditions for stages following the exciter may be found by referring to the audio operating conditions for the tube under consideration. (Grid-bias and sereen
$\mathrm{R}_{3} \mathrm{R}_{12}$ - 910 ohtms.
$\mathrm{R}_{\mathrm{t}}-1.0$ megolum.
R_{5} - 0.27 megohm.
R_{6} - 2 2, (010) ofims.
\mathbf{R}_{7} - 0.5 -imexolum volume control.
R_{8} - 2 2.0) ohms.
$\mathrm{R}_{10}, \mathrm{R}_{13}-10,10(0)$ olms, 1 watt.
R_{11}. \mathbf{R}_{15} - $0 . \mathrm{i}^{-}$, mexohm.
$R_{14}-1.5,000$-ohnen volume control.
All resistors $1 / 2$-watt unlese specified otherwise.
T_{1} - $\overline{\mathrm{s}}$-watt modulation transformer, 10 , (O)OO obmis c.t. to H月F ohthis (Stancor A-3812).
I_{1} - Sinall filter or audio choke (Stancor C.1-0 ${ }^{\circ}$).
R_{y} - Sensitive $10,0(\mathrm{OH})$-ohlom relay.
voltages should have very good regulation. For amateur voice operation, tubes may be operated considerally bevond the ratings given in the tube manuals, as diseussed later. When the r.f. amplifier is operated Class AB_{3}, the grid tank eircuit will require shunting by a resistor in order to provide better regulation of the exciting voltage. The value of this resistor is not eritical and may be determined by experiment.

Adjustment

Adjustment of the exciter is best made under actual operating conditions. Connect the exciter to the transmitter, load the exciter with a dummy load, apply r.f. excitation, feed sine-wave audio into the specech amplifier, and tune in the conventional way for maximum output.
Reduce the audio input to zero, and adjust petentiometers R_{26} and R_{27} for minimum carrier output. Minimum carrier output may be dotermined by any sensitive r.f. indieator coupled to the final-amplifier plate circuit. A 0 -I milliammeter, in series with a crystal detector and a two-turn coupling loop, will make a satisfactory indicator. The meter should be by-passed with a $0.00 \overline{-}-\mu \mathrm{fd}$, condenser. If a null indieation cannot be obtained within the range of the potentiomcters, the 616 tubes are not evenly matehed. Exchanging the positions of the 61 (is may aid in oltaining the balanee, or other tubes may have to be used.

Fig. 12-8 - Inderneath the chassis of the exciter. The two potentiemeters are the hias balancing controls, K_{17} and K_{ts}.

12-9. If carrier output, or unwanted sideband output, is present, it will bo indicated by "ripple" on the top and bot tom edges of the oscilloseope pieture. A small amount of ripple can be tolerated, but if the exciter is badly out of adjustment, the output will appear to be hoavily modulated. Adjustment with the scope in accomplished by adjusting all controls to ohtain the smallest possible amount of ripple. The oseilloseope may also be used for continuous monitoring during transmissions to avoid overloading of any stage of the transmitter. Overloading is indicated by a flattening of the molulation-peak patteriss at the top and bottom. In observing these patterns, it is difficult to sepparate the effects of sidehand and carrier suppression. However, considered separately, sideband or carrier supression of 30 db. Would give a 3 per cent ripple, 2.5 db . a ripple of 6 per cent, and 20 db, at 10 per cent ripple. Harmonises present in the audio modulating signal will modify the results and invalidate this test if they run more than 1 per eont.

The exciter is capable of driving any pair of beam tubes commonly used in amateur transmitters, or any pair of triodes in Class AB1. A buffer stage will ordinarily be required to drive Class-13 triodes.
derrease in output, but an increase in drive will not cause an increase in output. The complete
adjustment procedure should then be recheeked. not cause an inerease in output. The eomplete
adjustment procedure should then be recheeked. The rig is then ready for a mierophone, an antenna, and an on-the-air test.

If an oscilloseope is available, a simpler and
If an oseliable adjustment procodure may be used. bither linear or sine-wave horizontal sweep may be used on the oscilloscope. The vertical input should be coupled to the output of the transmitter in the same manner as is used for olserving
amplitude modulation. The sine-wave audiomitter in the same manner as is used for olserving
amplitude modulation. The sine-wave audiofrepuener input to the sprech amplifier should be any convenient multiple of the oseilloseope swerp freguency. A b0-cyde sweep frequener and a (6)-cyole audio frecpueney are commonly used.

When the exciter is modulated with a single sine-wave audio frequener, the output should be a single radio frequenes. Therefore, the oscilloscope should show a straight-edged band across the sereen, the same indication as is given by an unmodulated carrier. This is illustrated in Fig.

After the earrier balance is obtained, tume in the r ,f. souree on the station receiver, and with the antenna torminals shorted, and the erystal selertivity in sharp position, adjust the erystal phasing to the point where only one sharplypeaked response is ohtained as the roceiver is tuned through the signal. Now apply sine-wave audio of about 1500 -s.cle frequency to the sperech amplifier, and find the two sidebands on the receiver. Three distinet paak indications will be observed on the s-moter as the reereiver is tuncol. Set the receiver on the weaker of the two sidebands and adjust L_{1}, C_{7} and h_{9} for minimum sideband strength. If suppression of the other sideband is desired, throw s_{1} to its other position. A dip ohtained with one set of adjustments is not necessarily the minimum. Other combinations should be tried. The final adjustment should give S-meter readings for the two sidebands which differ bue at least 30 db . The hias voltage on all four halaneed modubator tubes will be approximatoly erpual.

After the adjustments have been completed, the r.f. drive to the exciter should be adjusted to the point where a decrease in drive will cause a

Fig. 12.9 - Sketches of the oscillosonge face showing different conditions of adjustment of the exciter unit. (A) shows the substantially clean carrier obtained when all adjustments are at optimum and a sine-wave simnal is fed to the audio input. (13) shows improper r.f. phase and unhalance between the outputs of the two balanced modulators. (C) show improper r.f. phasing but outputs of the two balanced modulators equal. (1)) shows proper r.f. phasing but unhalance between outpats of two halanced modulators.

A Crystal-Filter SSB Exciter

The exeiter uses a quartz erystal filter operating at 450 ke . (or vieinity). The filter allows a passband of 300 to 3000 eveles; the sidehand rejeetion should run $35-40 \mathrm{db}$. over 300 to 3000 eveles. At no time within the reject range is the rejection less than 30 (ll.; at some places it approaches 60 th. Suppression of the carrier is obtained without the use of halanced modulators, and the stability of suppression is excellent. Crystals suitable for use in the filter are available on the war surplus market for less than one dollar each. The most useful of these crystals are in the sories that runs from 375 to 525 ke. in 1.388 -ke. steps; this serios is marked at 72 times the crustal frequency in a series of channels from 28.0 to 38.0 Mc. The erystals were manufactured by Western lelectric for the Signal Corps, and are of the phated variety, mounted in an FT-241A holder. The holder pins have $1 / 2$-inch spacing. The erystals may be socketmounted or soldered directly into the filter at the buidere's discretion.

The filter is of bridge design with eomplex entry and terminating sections. The complex sections are used to suppress the carrier and modify the response characteristics of the bridge. Fig. 12-10 shows the filter proper, set for rejeetion of the upper sideband. The transformer, T_{1}, is a re-placement-type $455-\mathrm{ke}$. inter-stage i.f. transformer, micta-tumed, and air-cored. T_{2} is also a
replacement type, designed to feed into a diode detector.

The original filter was designed to operate at a earrier frequener of 450 ke ., although the filter will work at frequencies between 425 and 490 ke. Without alteration of the circuit or transformers. ['mer the condition of design for 450 -ke.

Fig. 12.10 - The t50-he. quartz arystal filter used fur sideband and carrier rejeetiom.
$\mathrm{C}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-10(1)-\mu \mathrm{ff}$. mica or ceramic.
© 3 - 3- to $30 \cdot \mu \mu \mathrm{fd}$, ceranio trimmer.
T - 15.5 kc . interstage i.f. transformer (Meissuer 16-(6039).
$\mathrm{T}_{2}-45 \mathrm{5}$-ke. diode i.f. transformer (Meismer 16-6660). For a carrier frequency of 150 ke ., the crystals are:
$\begin{array}{ccc}\text { Crvstal } & B & C\end{array}$ High-freq. reject 452.8 ke .448 .6 ke .450 .0 ke . Iow fref, reject $45.2 \mathrm{he}, 451.4 \mathrm{ke} .450,0 \mathrm{ke}$.
carrier, erystal " 13 " is 2.78 ke. higher than 450 ke., or 2 channels higher in the crrstal series. Crystal "C" is 1.39 ke. lower than 450 ke., or I channel lower. Crustal "D)" is 450 ke. Crystal "A," also at $450 \mathrm{kc} \cdot$., is used in a ervatal oscillator"

Fig. 12-11 - Complete diagram of the crystal-filter sib exciter.

($4, \mathrm{C}_{5}-39-\mu \mathrm{fd}$. ceramic.
Cs - $100-\mu \mu \mathrm{fd}$. variable air condenser.

C_{10} - $0,0 \mathrm{l}_{-\mu \mathrm{fd} .}$ 400-volt paper.
C_{x} - Trimmers in T_{3}.
$\mathrm{K}_{\mathrm{t}}-0.4^{7}$ megohm.
$\mathrm{H}_{2}-220$ ohms.
$K_{3}, R_{11}-20,000$ ohms, 1 watt.
$\mathrm{K}_{4}, \mathbf{R}_{5}-0.1$ megohm.
$\mathrm{H}_{6}, \mathrm{R}_{7}, \mathrm{R}_{8}-10.000$ ohms.
H_{6} - 150 ohme, I watt.
$1 \beta_{10}-1000$ ohms.
$\mathrm{H}_{12}-47,000$ ohms.
All resistors $1 / 2$ watt miess specified otherwise.
$L_{1}-2.5-\mathrm{mh}$. r.f. chohe.
$\mathrm{L}_{2}-0.5-\mathrm{mh}$. r.f. choke,
T's-5. Mc. slug-tuned i.f, transformer.
' ${ }^{\prime}$ - -5 -Mc. slug-tuned i.f. transformer. Secondary removed and 8-turn link wound over cold end of primary. All fixed caparitors removed.

Fig. 12.12 -- The erystal-filter S.il3 esciter, as designed for mobile work, complete with receiver converter and WH.'The top dish is the exciter (with cover removed). The meter reads cathode current to a pair of 80^{-i} d driven by the unit, and the two knotns handle carrier reinsertion and 6AG: plate tuning. (W1JEO/9, Nov., 1950, QST,)
to generate the initial carrier. Channel markings on these ervstals are as follows:

$$
\begin{aligned}
& \text { "A"- } 32.4 \text { Me.. Channel } 324 \\
& \text { "B" - } 32.6 \text { Me., Channel } 326 \\
& \text { "C" }-32.3 \text { Me., Channel } 323 \\
& \text { "D" }-32.4 \text { Me., Channel } 324
\end{aligned}
$$

Any other group within the range of the i.f. transformers may be utilized; only the chanmel relationship need be retained.

A diagram of the exciter proper is shown in Fig. 12-11. The 6 K 8 hexode-triode serves as $450-\mathrm{ke}$, oseillator and audie mixer. Approximately 3 volts of audio is required at the signal grid of the 6 k 8 for optimum results. The 6 k 8 delivers a carrier ($4,50 \mathrm{ke}$.) and sidebands to the input of the filter. The filter rejects one sideband (deperding upon the selection of crystals) and delivers single-sideband energy to the 6SNT mixer. The filter also suppresses the carrier some (in db. below the patk sideband energy. The 6SN: mixer combines the single-sideband energy (in the vicinity of 450 ke , with the output of the Yr() (3400 to 3550 ke .) : and the sum products are recovered in the output 3850 to 4000 ke .). 'The'
balanced mixer is used to remove the VFO component from the output tank. Balance is notcritical and no adjustments are required or provided. A V'FO signal of about 6 to 8 volts is required. The output of the miver is fed to the grid of a $6 . \mathrm{AG}^{7}$ which runs as a Class A tuned r.f. amplifier. The output of the $6 . \mathrm{AG}^{7}$ is sufficient to drive a pair of $807 \bar{s}$. Class AB_{2}. Operation on 10 and 20 moters can be accomplished by heterodyning again to the desired band. Most VFOs in use cover or may be easily made to cover 3400 to 3.550 ke . A single untuned 6 SN 5 J or 6 AC 7 Class A amplifier following a BC-221 might be used as a driver for this exciter.

Construction

The original transmitter was built for mobile operation and much hole drilling and experimentation has oceurred on the chassis. Mounting the erystals on opposite sides of the transformers will kepp stray capacity coupling at a minimum. No shielding other than that provided by the i.f. cans and the output tank can is required. It is important that capacity coupling around the crystal filter be minimized - in other words, no modulated signal must reach the 6SN7 mixer by any route exeept through the filter. Before construction is started, a decision must be made as to whether or not choice of sidelands is desired. If choice of sidebands is desired, a dual filter using 5 crystals will be required. This filter is shown schematically in Fïg. 12-13. A double-section wafor switch selects the upper or lower sideband. These wafer sections must be separated by approximately 3 inches to minimize stray coupling. It is recommended that the erystals be wrapped with several layers of adhesive tape and then strapped to the chassis with metal brackets; eonnections may then be made by soldering to the holder pins.

Alignment

Aligmment of the filter is straightforward, and once aligned it will need little attention.

1) Crustal " A " is first removed from the circuit. This ervstal is best provided with a socket

Fig. $12-13$ - The donble-channel crystal filter. Nll components are the same as in Fig. 12-10, exeept for the addition of the d.p.d.t. wafer switch, S_{1}, and the compensating condensers, C_{6} and C_{7} (3-to $30-\mu \mu f d^{\prime}$. eeramic). The trimmer on the input side of T_{2} is set at minimum and the alignment procedure is followed with C_{6} or C_{7} wherever the inst ruetions eall for adjusting the input condenser,

Fig. 12-It - In aligmment chart of the erystal fitur. The mumbers in the cirales rorrespond to the steps outined in the text.
7) Move the signal generator $1 / 2 \mathrm{kc}$. lower than this null and adjust the trimmer on the input side of To for maximum response.
8) Roturn signal gonerator to null.
a) Move the signal gencrator approximately 1 to 1.2 ke. higher than the null and adjust C_{3} for minimum response.
10) Move the signal gen(rator higher until another null is found: this will be the series-resonant frequency of erystal " 13 ," approximately +52.8 kc . With the erystals shown.
11) ('ontinuc : pppoximatcly 1 舀ke. higher thath
mount so it can be removed during alignment.
2) A calibrated signal generator covering the erystal range is commered to the grid of the trionde weretion of the Glis.
3) A vacuum tube voltmeter is combered from grid to ground of one of the 6 NSN grids.
4) Swing the signal generator theough the erystal range until a maximum response is noted at the voltmeter. This will indieate the series-resonant frequeney of ervestal "(C" and with the ervstals described, based on a tho-ke. carrior, will be approximately 488.6 kc .
5) Align all transformer trimmors for maximum response on this freguener.
6) Pext, adjust the signal gencrator slowly in the higher-frequeney direction until a mull is ohtained. This will be the series-resonant fremuener of erystal " D ," 450 ke . with the (rystats indicated.
this mull and adjust the output trimmer on T_{1} slightly for moderate mull.
12) Repeat Ntep) $\overline{7}$ through II to compensate for interaction, and aligmont is complete.

For aligmment of the dual filter the procedure is identical hut must be done one for earch sidehathd. llowever, when adjusting the filter for rejecting the lower sideband and where steps 1-12 mention "higher" you must insert "lower" and viere vorsa. The alignment ehart, Fig. 12-14, will simplify the alignment procedure on either filter.

The slug-tuned i.f. transformer is peaked at 3930 ke . and then stagger-tuned slightly to provide coverage of the entire 'phone band. The $6 \mathrm{~A}\left(\mathrm{i}^{7}\right.$ plate tank eapacitor is adjustable from the front panel and is touched up when shifting froquence, as in the case of any transmitter amplifier stage.

A Two-Stage Linear Amplifier

The amplifier shown in Figs, 12-15, $012-17$ and 12-18 is designed to follow a low-powered stisls exeiter. As ean be seen from the wiring diagram, Fig. 12-16, an 807 Chass-A driver is used to rexito a pair of 811-As operating Class 13 . Only a fow watts is reguired to drive the $80 \overline{ }{ }^{-}$, sincer it is never oprrated with grid eurrent and the driving power is neeressary only to overeome cireuit losers. The 811-As will deliver ahout 180 watts peak with 1000 volts on the plates and 250 watts prak at 1200 volts, Operation as a lincar amplifier for SSll with 1500 volts on the plates is not reeommonded berause the driver stage is likely to introduce too much distortion, although a small amount of fixed bias ($3-4$ le 2 volts) on the erids of the 811-As will permit ceN. operation at this higher plate voltage.

The circuit is not unlike ordinary (lass-(' matetice, exeept for the hias voltages involved. The 807 stage uses cathode biats, and the $81-\mathrm{A}$: run with zero bias (bias terminals short-cireuited by a jumper wire). The most important factor in
linear operation is the loading of the amplitiers, and thus provision has beren made for varring the eoupling on the 807 plate and the plates of the 811-1s. The 807 loading is adjusted ber varying the position of the link coil in L_{3}, and the link to L_{6} is controlled from the front panel.

A low-inductance bybass condenser, C_{2}, made from a pioce of coaxial line, helps to climinate parasitios in the $80-$ stage, as does returning the sereen bepass eondenser, $f^{\prime} 3$, to the cathode instead of to ground, Grid chokes, L_{4} and L_{5}, were found necessary to avoid high-frequency parasitic oweilations in the 81t-A stage, as were resistors R_{3}, R_{4} and R_{5}. All wiring other than r.f. Was run in shicld braid. Filament hypass condensers in the 811-A stage were found to be unneressary.

Construction

The amplifice is built on a 13 ber $1 /$ her 3 -inch aluminum chassis. The panel is an aluminum relay-rack panel, $153 / 4$ inches high, that is held to

Fig. 12.1.5- I twoastage lincar amplifier for hoosting the power level of a SSB signal. Large knothe rontrol the antenaa complisy and outpit plate tuning. 'The meters indicate grid and plate currents of the puah-pull 8|]-1s output stage.
the chassis by the shatf latarings and meters, and it is further braced by twostrips of $1 / 16$ by $1 / 2$-inch brass.

The grid coil for the 807 plugs in to a sooket mounted at the rear of the chassis and shielded by an ICA No. J.) 4 ! 3 -inch diameter shiedd cam. The plate coil plugs in to a socket mounted f inehes abore the chassis. The platform for the

rig. 12.17 - I rear view of the linear amplifier, qhowing the push-pull 81 1 - I output amplifier and the 80:' driver. 'The cover of the rectamgular shield can slides off for acress to the final grid coil. 'Whe round shield eats are for the 80" grid and plate coils.
sorket als) shields the plate condenser, Crs. Another 3 -inch diametor shield ean protects the $80-$ plate coil. The plate bypass condenser. (ut, is mounted under the chassis nome the 807 sorket. and the lead from C_{5} and L_{2} is brought down to it in shiehled wire.

The grid eoil for the $811-\mathrm{ds}$ is shielded loy an IC. A No. $298+2+$ by 5 but aluminum utility

Fig. 12.16 - Wiring diagram of the linear amplifier.
(i) - 1111 - unfl. variable (Millen 191.40).
C. 2 - $13-\mu \mathrm{ffl}$, tubular. made of RCo..38/1. Artive length, of inches.

(:5-140- $\mu \mathrm{fl}$. variable (Millen 22140).
C_{6} - $.001-\mu \mathrm{ff}$. 12000 -volt miea.
Cif - inal variable. $10 N$ - μ uffel. per section (Millen $24100)$.
$\mathrm{C}_{8} \mathrm{Cog}_{9}$ - Disc-type neutralizing condenser, with fredthrough hase (13ud N(C-8.3).
 spacing (D ational $\mathbf{~ I L} \mathrm{C}-2001$) .
$11_{1}-100$ ohms. $1 / 2$ watt.
K_{2} - $\mathbf{6 8 0}$ ohmer, 2 watts.

$\mathrm{R}_{4}, \mathrm{R}_{5}-20$ ohms, 2 watts.
$\mathrm{R}_{6}-100(1)$ ohms, 1 watt.
All resistors are composition, not wirewound.
J_{1} - laput comector (Jones S-101-D).
J_{2} - Coasial-line connector (Amphenol 83-1R).
MA1 - 0.50 milliammeter.
II_{2} - 0.0 .010 milliammeter.
$18 \mathrm{FO}_{1}-2.5-\mathrm{mh}, 3(0)$ mat. r.f. choke
RFC_{2} - 2(0)- $\mu \mathrm{h}$. .n-ma. r.f. choohe.

T_{1} - 6.3-volt 100 -amp. (transformer (Stancor Pe.0.308).

CHAPTER 12

COIL TABLE FOR TWO-STAGE LINEAR AMPLIFIER

Band	Turns	Fire No.	Diam.	Length	${ }_{\mu h}$.	Link	Spacing
$\mathrm{L}_{1}{ }^{*}$							
3.9	$221 / 2$	20 enam.	1	3/4	10	4	3 伯
14	101/2	20 enam.	1	$8 / 4$	2.5	3	316
$\mathbf{L}_{2}{ }^{* *}$							
3.9	25	20 enam.	1	7/8	11.2	4	Y16
L_{3} *** ${ }^{\text {cos }}$							
14	12	18 enam.	$11 / 4$	11/8	3.3	4	Aljusitable
Let**** Anjorable							
3.9	22	16 mam.	$21 / 2$	$21 / 4$	20	3	Adjustable
14	8	. 15 tubing	21/2	388	2.3	3	Adjustable
* Mound on Millen $15(0) 1$ plug-in form.							
** N	onal is	$2-16 \cdot 10 \mathrm{an}$	AR-1	-20s.	me	coil	humted by
,	80	condens					

cabinet. To simplify coil changing, the cabinet is fastened to the chassis and a friction-fit cover is made from a piece of sheet aluminum. The inside lips on the top of the cabinet should be bent down to allow more room for the hand that changes coils.

The output tank condenser, C_{10}, is mounted on the chassis with aluminum brackets that also support the jack bar for the output coil, L_{6}.

Adjustment

With a signal from the exciter coupled through J_{1}, and plate and serem voltages on the 807 , it should be quite possible to drive the $811-\mathrm{A}$ grid current off seale (with no plate voltage on the
ponding ruround 40 or 50 ma., depending upon the plate voltage. Adjust the twotone signal amplitude for 10 or 15 ma . grid current and resonate all circuits. Then increase the excitation until the two-tone pattern just begins to flatten on the peaks. When using 1000 volts on the 81 1-As, this flattening should not occur before MA_{2} indicates 160 ma . or so - with 1200 volts the current should run ups to 190 ma, without noticcable flattening. If flattening occurs sooner, it indicates that the $811-\mathrm{A}$ stage should be coupled more tightly to its load, or that the 807 stage is not delivering enough drive. It will probably be found that the $811-\mathrm{A}$ output coupling is at fault. - if the link is coupled closely at L_{3} the 807 should behave at all power levels.

Fig. 2.18 - Under. weath the chassis, showing all boit r.f. leads in shield braid, 'Ithe cooils it" the leads from the split. stator mrid condenser are parasitic eloohes.

Transmission Lines

The place where r.f. power is generated is very frequently not the plare where it is to be utilized. A transmitter and its antemna are a good example: The antema, to radiate well, should be high above the ground and should be kept elear of trees, buildings and other objects that might absorb enorgy, but the transmitter itself is most conveniently installed indoors where it is readily accessible. There are numerous other instances where power must be delivered from one point to another, even though the distance may be only a few feet.

The means by which power is transported from one spot to another is the r.f. transmission line. At radio frequencies a line exhibits en-
tirely different characteristies than it does at commercial power frequencies. This is beeause the speed at which electrical energy travels, while tremendously high as compared with mechanieal motion, is not infinite. The peculiarities of r.f. transmission lines result from the faet that an interval eomparable with the time of an r.f. eycle must clapse before energy leaving one point in the circuit can reach another just a short distance away.

The diseussion to follow assumes that the lime consists of two parallel wires, separated by a distance very small compared with the wavelength. The parallel-conductor line is not the only type, but the same principles apply to all varieties of lines.

Operating Principles

Suppose we have a battery and a pair of parallel wires extending to a very great distance. At the moment the battery is connected to the wires, electrons in the wire near the positive terminal will be attracted to the battery, and the same number of electrons in the wire near the negative battery terminal will be repelled outward along the wire.

Thus a current flows in each wire near the battery at the instant the battery is connected. However, a definite time interval will elapse before these currents are evident at a distance from the battery. The time interval may be very small. For example, one-millionth of a second (one microsecond) after the connertion is made the currents in the wires will have traveled 300 meters, or nearly 1000 feet, from the battery terminals.

The current is in the nature of a charging current, flowing to eharge the capacitance between the two wires. But unlike an ordinary condenser, the conductors of this "linear" condenser have appreciable inductance. In fact, we may think of the line as being composed of a whole series of small inductances and capacitances connected as shown in Fig. 13-1, where rach coil is the inductance of a very short sertion of one wire and each condenser is the eapacitance between two sueh short sections.

Characteristic Impedance

An infinitely-long chain of coils and condensers connerted as in Fig. 13-1, where earh L is the same as all others and all the C's have the same value, has an important property. To an electrical impulse applied at one end,
the eombination appears to have an impedance - called the characteristic impedance or surge impedance - that is approximately equal to $\sqrt{L / C}$, where L and C are the inductance and capaeitance per unit length. This impedance is purely resistive.

In defining the characteristic impedance as $\sqrt{L / C}$, it is assumed that the conductors have no inherent resistance - that is, there is no $I^{2} R$ loss in them - and that there is no power loss in the dielectrie surrounding the conductors. In other words, it is assumed there is no power loss in or from the line no matter how great its length. This does not seem consistent with ealling the characteristic impedance a pure resistance, which implies that power supplied is all dissipated in the line. But in an infinitely-long line the effect, so far as the source of power is concerned, is exactly the same as though the power were dissipated in a resistance, because the power leaves the source and travels outward forever along the line.

The characteristic impedance determines the amount of current that can flow when a niven voltage is applied to an infinitely-long

Fig. 1.3-1 - Equivalent of a transmiseion line in lumped circuit constants.
line, in exactly the same way that a definite value of artual resistance limits current flow when a given voltage is applied.

The inductance and capacitance per unit length of line depend upon the size of the conductors and the sparing between them. The closer the two conductors and the greater their diameter, the higher the capacitance and the lower the inductance. A line with large conductors closely spaced will have low imperlance, while one with sinall conductors widely spaced will have relatively high impedance.

"Matched" Lines

Actual transmission lines do not extend to infinity but have a definite length and are connected to, or terminate in, a load at the "output" end, or end to which the power is delivered. If the load is a pure resistance of a value equal to the characteristic impedance of the line, the current traveling along the line to the load does not find conditions changed in the least when it meets the load; in fact, the load just looks like still more transmission line of the same characteristic impedance. Consequently, connecting such a load to a short transmission line allows the current to travel in exactly the same fashion as it would on an infinitely-long line.

In other words, a short line terminated in a purely-resistive load equal to the characteristic impedance of the line acts just as though it were infinitely long. Such a line is said to be matched. In a matched transmission line, power travels outward along the line from the source until it reaches the load, where it is: completely absorbed.

R.F. on Lines

The discussion above, although based on direct-current flow from a battery, also holds when an r.f. voltage is applied to the line. The difference is that the alternating voltage causes the amplitude of the current at the input terminals of the line to vary with the voltage, and the direction of current flow also periodically reverses when the polarity of the applied voltage reverses. In the time of one cycle the energy will travel a distance of one wavelength along the line wires. The current at a given instant at any point along the line is the result of a voltage that was applied at some earlier instant at the input terminals, Hence the instantaneous amplitude of the current is different at all points in a one-wavelength section of line; in fact, the current flows in opposite directions in the same wire in adjacent half-wavelength sections. However, at any given point along the line the current goes through similar variations with time that the current at the input terminals did.

The result of all this is that the current (and voltage) travels along the wire as a series of waves having a length equal to the velocity of travel divided by the frequency of the a.c. voltage. On an infinitely-long line, or one prop-
erly matehed at the load, an ammeter inserted anywhere in the line will show the same current, since the ammeter averages out the variations in current during a cycle. It is only when the line is not properly matehed that the wave motion becomes apparent. This is discussed in the next section.

STANDING WAVES

In the infinitely-long line (or its matchol counterpart) the impedance is the same at any point on the line because the ratio of voltage to current is always the same. Howaver, the impedance at the end of the line in Fig. 13-2 is zero - or at least extremely small - because the line is short-circuited at the and. A given amount of power in a very low imperlance will result in a very large curren and a very small voltage, as compared with the current-voltage ratio that exists in a few hundred ohms (which is a typical impedance value for some types of transmission lines). something has to happen, therefore, when the power traveling along the transmission line meets the short-circuit at the end.

What happens is that the outgoing power, on meeting the short-circuit, reverses its direction of flow and goes back along the transmission line toward the input end. There is a large current in the short-circuit, but substantially no voltage across the line at this: point. We now have a voltage and current representing the power going outward toward the short-circuit, and a second voltage and current representing the reflected power traveling back toward the source.

The reflected current travels at the same speed as the outgoing current, so its instantancous value will be different at every point along the line, in the distance represented by the time of one cycle. At some points along the line the phase of the outgoing and reflected currents will be sueh that the eurrents cancel each other while at others the ampliturde will be doubled. At in-between points the amplitude is between these two extremes. The points

Fig. 13.2 - Standing waves of voltage and current along a short-circuited transmission line.
at which the currents are in and out of phase depend only on the time required for them to travel and so depend only on the distance along the lime from the point of reflection.

In the shorterireuit at the end of the line the two current components are in phase and the total eurrent is large. At a distanee of one-half wavelength back along the line from the shortcireuit the outgoing and reflected eomponents will again be in phase and the resultant current will again have its maximum value. This is also true at any point that is a maltiple of a half-wavelength from the short-rircuited end of the line.

The outgoing and refleceded currents will cancel at a point one-quater wavelength, along the line, from the short-cireuit. At this point, then, the current will be zero. It will also be zero at all points that are an odd maltiple of one-quarter wavelength from the short-eireuit.

If the current along the line is measured at sucressive points with an ammeter, it will be found to vary about as shown in Fig. 13-2 B. The same result would be olotaned by measuring the current in either wire, since the ammetor camot measure phase. However, if the phase eould be cherked, it would be found that in each sucressive half-wavelength sertion of the line the currents at any given instant are flowing in opposite directions, as indicated by the solid line in Fig. 133-20. Furthermore, the current in the second wire is flowing in the opposite direction to the current in the adjarent section of the first wire. This is indiated by the broken curve in Fig. 13-2. The variations in current intensity along the tramemission line are referred to as standing waves. The print of maximum line current is called a current loop or current antinode and the point of minimum line current a current node.

Voltage Relationships

Since the end of the line is short-cireuited, the voltage at that point has to be zero. This can only be so if the voltage in the outgoing Wave is met, at the end of the line, by a reflected voltage of equal amplitude and opposite polarity. In other words, the phase of the voltage wave is reversed when reflection takes place from the short-rireuit. This reversal is equivalent to all extra half-cyele or halfwavelength of travel. As a result, the outgoing and returning voltages are in phase a quarter wavelength from the end of the line, and arain out of phase a hatf-wavelength from the end. The standing waves of voltage, shown at I) in Fig. 13-2, are therefore displaced by onequarter wavelength from the standing waves of current. The drawing at E shows the voltages on both wires when phase is taken into aceount. The polarity of the voltage on each wire reverses in each half-wavelength section of transmission line. I voltage maximum is called a voltage loop or antinode and a voltage minimum is called a voltage node.

Open-Circuited Line

If the end of the line is open-circuited instead of short-circuited, there can be no current at the end of the line hat a large voltage ean exist. Again the outgoing power is reflected back toward the source. In this case, the out-

Fig. $1.3-3 \longrightarrow$ Stamding waves of current and voltage alonk an open-cirenited transmission line.
going and reflected components of current must he equal and opposite in phase in order for the total eurrent at the end of the line to be zero. The outgoing and reflected components of voltage are in whase and add together. The result is that we again have standing waves, but the conditions are reversed as compared with a short-eireuited line. Fig. 13-3 shows the open-eireuited line case.

Lines Terminated in Resistive Load

Fig. 13-4 shows a line terminated in a resistive load. In this case at least part of the outgoing power is absorbed in the load, and so is not available to be reflected back toward the source. Because only part of the power is refleeted, the reflected components of voltage and current do not have the same magnitude as the outgoing eomponents. Therefore neither voltage nor curront cancel completely at any point along the line. However, the speed at which the outgoing and reflected eomponents travel is not affereted by their amplitude, so the phase relationships are similar to those in open- or short-cireuited lines.

It was pointed out carlier that if the load resistance, Zar, is equal to the characteristic imperanere, Z, of the line all the power is albsorbed in the load. In such a case there is no reflected power and therefore no standing waves of eurrent and voltage. This is a special case that reprosents the change-over point between "short-cireuited" and "opreti-cirruited" lines. If Z_{r} is less than Z_{0}, the current is largest at the load, while if Zar is greater than Zat the voltage is largest at the load. The two eonditions are shown at B and C, respectively, in Fig. 13-4.

The resistive termination is an important practical case, The termination is seldom an

Fig. 13.4-Standing waves on a transmission line terminated in a resistive load.
actual resistor, the most common trominations being resonant cireuits or resonant antemna systems, both of which have essentially resistive impedances. If the load is reactive as well as resistive, the operation of the line resembles that shown in Fig. 13-t, but the presence of reactance in the load causes two modifications: The loops and nulls are shifted toward or away from the load; and the amount of power reffected back toward the source is increased, as compared with the amount reflected hy a purely resistive load of the same total impedance. Both offects become more pronounced as the ratio of ractance to resistanee in the load is made larger.

Standing-Wave Ratio

The ratio of maximum current to minimum eurrent along a line, Fig. 13-5, is called the standing-wave ratio. The same ratio holds for maximum voltage and minimum voltage. It is a measure of the misnateh between the load and the line, and is equal to 1 when the line is perfectly matrhed. (In that rase the "maximum" and "minimum" are the same, since the current and voltage do not vary along the line.) When the line is terminated in a purely-resistive load, the standing-wave ratio is

$$
\begin{equation*}
\text { s. } U^{\prime} . R=\frac{Z_{\mathrm{r}}}{Z_{0}} \text { or } \frac{Z_{0}}{Z_{\mathrm{r}}} \tag{13-A}
\end{equation*}
$$

Where $S^{\prime} . W^{\prime} . R .=$ standing-watve ratio
$Z_{\mathrm{r}}=$ Impedance of load (must be pure resistance)
$Z_{0}=$ (haracteristic impedance of line
Example: A line having a characteristic impedance of 300 ohins is terminated in a resistive load of 25 ohms. The s.w.r. is

$$
\text { S. W. } K .=\frac{Z n}{Z_{1}}=\frac{300}{2 J}=12 \text { to } 1
$$

It is customary to put the larger of the two quantities, Z_{r} or Z_{0}, in the numerator of the fraction so that the s.w.r. will be expressed by a number larger than 1 .

It is easier to measure the standing-wave ratio than some of the other quantities (such as the impedance of an antenna) that enter into transmission-line computations. Consequently,
the s.w.r. is a convenient basis for work with lines. The higher the s.w.r., the greater the mismateh between line and load. In practical lines, the powr loss in the line itself increases with the s.w.r.

INPUT IMPEDANCE

The input impedance of a transmission line is the impedance seen looking into the sending-end or input terminals: it is the impedance into which the source of power must work when the line is connected. If the load is perfectly matched to the line the line appears to be infinitely long, as stated earlier, and the input impedance is simply the characteristic impedance of the line itself. However, if thore are standing waves this is no longer true; the input impedance may have a wide range of values.

This can be understood by referring to Figs. 13-2, 13-3, or 13-4. If the line length is such that standing waves cause the voltage at the input terminals to be high and the current low, then the input impedance is higher than the Z_{0} of the line, since impedance is simply the ratio of voltage to current. Conversely, low voltage and high current at the input terminals mean that the input impedance is lower than the line Z_{0}. Comparison of the three drawings also shows that the range of input impedance values that may be encountered is greater when the far end of the line is open- or short-eircuited than it is when the line has a resistive load. In other words, the higher the s.w.r. the greater the range of input impedance values when the line length is varied.

In addition to the variation in the absolute value of the input impedance with line length, the presence of standing waves also catuses the input impedance to contain both reactaner and resistance. even though the load itself may be a pure resistance. The only exeeptions to this oceur at the exact current loops or nodes, at which points the input impedance is a pure resistaned. These are the only points at which the outgoing and reflected voltages and currents are exactly in phase: At all other distances along the line the current either loads or lags behind the voltage and the effect is exactly the same as though a capacitance or

Fig, 13.5 - Measurement of standing-wave ratio. In this drawing, $l_{\text {mbe }}$ is 1.5 and $l_{\text {mian }}$ is 0.5 , so the s.w.r. $=I_{\text {maz }} / I_{\text {ait }}=1.5 / 0,5=3$ to 1 ,
inductance were part of the input impedance of the line.

The input impedance can be represented by either a resistance and a capacitance, or as a resistance and an inductance, as shown in Fig. 13-6. Whether the impedance is inductive or capacitive depends on the characteristics of the load and the length of the line. It is possible to represent the equivalent circuit by resistance and reactance either in serics or parallel. so long as the total impedance and phase angle. are the same in either case. Meeting this last condition requires different values of resistance and reactance in the series case than in the parallel case.

Fig. 13-6-Serics and parallel equivalents of a line whose input impedance has looth reartive and resistive components. The series and parallel equivalents do not have the same values; e.g., in A, L does not equal I^{\prime} and R does not equal R^{\prime}.

The magnitude and character of the input. impedance is quite important, since it determines the method by which the power source must be coupled to the line. The calculation of input impedance is rather complicated and its measurement is not feasible with ordinary equipment. Fortunately, in amateur work, it is unnecessary either to calculate or measure it. The proper coupling can be achieved by relatively simple methods described later in this chapter.

Unterminated Lines

The input impedance of a short-circuited or open-circuited line not an exact multiple of one-quarter wavelength long is practically a pure reactance. This is because there is very little power lost in the line. Such lines are frequently used as "linear" inductances and capacitances.

If a shorted line is less than a quarter wave long, as at X in Fig. 13-2, it will have inductive reactance. The reactance increases with the line length up to the quarter-wave point. Beyond that, as at Y, the reactance is capacitive, high near the quarter-wave point and becoming lower as the half-wave point is approached. It then alternates between inductive and capacitive in successive quarter-wave
sections. Just the reverse is true of the opencircuited line.

At exact multiples of a quarter wavelength the impedance is purely resistive. It is apparent, from examination of B and D in Fig. 13-2, that at points that are a multiple of a half-wavelength - i.e., $1 / 2,1,11 / 2$ wavelengths, etc. - from the short-circuited end of the line the current and voltage have the same values that they do at the short-circuit. In other words, if the line were an exact multiple of a half-wavelength long the generator or souree of power would "look into" a short-circuit. On the other hand, at points that are an odd multiple of a quarter wavelength -i.e., $1 / 4,3 / 4,11 / 4$, etc. - from the short-circuit the voltage is maximum and the current is zero. since $Z=E / I$, the impedance at these points is theoretically infinite. (Actually it is very high, but not infinite. 'This is beeause the current does not actually go to zero when there are losses in the line. Losses are always present, but usually are small.)

Impedance Transformation

The fact that the input impedance of a line depends on the s.w.r. and line length can be used to advantage when it is necessary to transform a given impedance into another value.

Study of Fig. 13-4 will show that, just as in the open- and short-circuited cases, if the line is one-half wavelength long the voltage and current are exactly the same at the input terminals as they are at the load. This is also true of lengths that are integral multiples of a half wavelength. It is also true for all values of s.w.r. Hence the input impedance of any line, no matter what its Z_{o}, that is a multiple of a half-wavelength long is exactly the same as the load impedance. Such a line can be used to transfer the impedance to a new location without changing its value.

When the line is a quarter wavelength long, or an odd multiple of a quarter wavelength, the load impedance is "inverted." That is, if the current is low and the voltage is high at the load, the input impedance will be such as to require high current and low voltage. The rolationship, between the load impedance and input impedance is given by:

$$
\begin{equation*}
Z_{\mathrm{B}}=\frac{Z_{0}{ }^{2}}{Z_{\mathrm{r}}} \tag{13-B}
\end{equation*}
$$

where $Z_{B}=$ Impedance looking into line (line length an odd multiple of onequarter wavelength)
$Z_{r}=$ Impedance of load (must be pure resistance)
$Z_{0}=$ Characteristic impedance of line
Example: A quarter-wavelength line having a characteristic impedance of 500 ohms is terminated in a resistive load of 75 ohms. The impedance looking into the input or sending end of the line is

$$
Z_{n}=\frac{Z 0^{2}}{Z_{\mathrm{r}}}=\frac{(500)^{2}}{75}=\frac{250,000}{75}=3333 \mathrm{ohms}
$$

If the formula above is rearranged, we have

$$
\begin{equation*}
Z_{0}=\sqrt{Z_{\mathrm{s}} Z_{\mathrm{r}}} \tag{13-C}
\end{equation*}
$$

This means that if we have two values of impedance that wo wish to "match," we can do so if we connect them together by a quarterwave transmission line having a characteristic impedance equal to the square root of their product. A quarter-wave line, in other words, has the characteristies of a transformer.

Resonant and Nonresonant Lines

Because the imput impedance of a line operating with a high s.w.r. is critically dependent on the line length, and furthermore is usually reactive as well as resistive, sperial tuning means are required for effective power transfer from the source to the line. Lines operated in this way are commonly called "tuned" or "resonant" lines. On the other hand, if the s.w.r. is low the input impedance is close to the Z_{0} of the line and does not vary a great deal with the line length. Such limes are called "flat," or "untuned", or "nomresonant".

There is no sharp line of demarkation between tuned and untuned lines. If the s.w.r. is below 1.5 to 1 the line is essentially flat, since the same coupling method will work with all line lengths. If the sw.r. is above 3 or + to 1 the type of coupling system, and its adjustment, will depend on the line length and such lines fall into the "tuned" category.

It is always advantageous to make the s.w.r. as low as possible. "Tuning the line" becomes necessary only when a considerable mismateh between the load and the line has to be tolerated. The most important practical example of this is when a single antenna is operated on several harmonieally-related frequencies, in which case the antenna impedance will have widely-different values on different harmonics.

- RADIATION

Whenever a wire carries alternating current the electromagnetic fields travel away into spare with the velority of light. At power-line frequencies the field that "grows" when the current is increasing has plenty of time to return or "collapse" about the conductor when the current is decreasing, because the altemations are so slow. But at radio frequencies fields that travel only a relatively short dis-
tance do not have time to get back to the conductor before the next eycle commences. The consequence is that some of the electromagnetio energy is prevented from being restored to the conductor: in other words, energy is radiated intospace in the form of electromagnetic waves.

The amount of energy radiated depends, among other things, on the length of the conductor in relation to the frequency or wavelength of the r.f. current. If the conductor is very short compared to the wavelength the energy radiated will be small. However, a transmission line used to feed power to an antenna is not short in this sense; in fact, it is almost always an appreciable fraction of a wavelength long and may have a length of several wavelengths.

The lines previously considered have consisted of two parallel conductors of the same diameter. Provided there is nothing in the system to destroy symmetry, at every point along the line the current in one conductor has the same intensity as the current in the other conductor at that point, but the currents: flow in opposite directions. This was shown in Figs. $13-2 \mathrm{C}$ and $13-3 \mathrm{C}$. It means that the fields set up about the two wires have the same intensity, but opposile directions. The consequence is that the total field set up about such a transmission line is zero; the two fields "cancel out." Hence no energy is radiated.
dctually, the fields to not completely cancel out because for them to do so the two conductors would have to occupy the same spare, wheras they are slightly separated. However, the cancellation is substantially eomplete if the distance between the conductors is very small compared to the wavelength. Radiation will be negligible if the distance between the conductors is 0.01 wavelength or less, provided the currents in the two actually are balanced as described.

The amount of radiation also is proportional to the current flowing in the line. Because of the way in which the current varies along the line when there are standing waves, the effective current, for purposes of radiation, becomes greater as the s.w.r. is increased. For this reason the radiation is least when the line is flat. However, if the conductor spacing is small and the currents are balanced, the radiation from a line with even a high s.w.r. is inconsequential. A small unbalance in the line currents is far more serious.

Practical Line Characteristics

The foregoing discussion of transmission lines has been based on a line consisting of two parallel conductors. Actually, the parallelconductor line is but one of two general types. The other is the coaxial or concentric line. The coaxial line consists of a round conductor placed in the center of a circular tube. The inside surface of the tube and the outside surface of the smaller inner conductor form the two conducting surfaces of the line.

In the coasial line the fields are entirely inside the tube, because the tube acts as a shield to prevent them from appearing outside. 'This reduces radiation to the vanishing point. \therefore far as the electrical behavior of coaxial lines is concerned, all that has previously been said about the operation of parallel-conductor lines applies. There are, however, practical differences in the construction and use of parallel and coaxial lines.

- PARALLEL-CONDUCTOR LINES

A common type of paralldelemaductor line used in amatcur installations is one in which two wires (ordinarily No. 12 or No. 14) are supported a fised distance apart be means of insulating rods called "spacers." The spateings. used vary from two to six itehes, the smaller sparings heing neoessary at frequencies of the order of 28 Me. and higher so that radiation will be minimized. The eonstruction is shown in lig. 13-7. Such a line is stid to be airinsulated. Typieal spacers are shown in Fig. 13-8. The characteristic impedance of such "open-wire" lines rums botwern about foo and 600 ohms, depending on the wire size and spacing.
l'arallel-conductor lines also are sometimes romstrueted of metal tubing of a diameter of $1 / 4$ to 1_{2} inch. This reduces the characteristic impedance of the line, such lines are mostly used as quarter-wave transformers, when different values of impedance are to be matehed.

fig. 13-: - I'ypical eonstrution of open-wire line. The line ronductor fits in a grewse in the and of the pacer, and is held in phace by a tie-wire anchored in a hole near the grome.
l'refatbicated parallel-conductor line with air insulation has beer developed as a low-loss line for television reecption and ean also be used in transmitting applications. This line ronsists of 1 wo No. 18 ronductors hold at a spacing of one inch by moldedobon spacers. The charactoristic impedanee is 450 ohms.

A eonvenient type of manafactured line is one in which the parallel eonductors are imbedded in low-loss insulating material (polyethelene). It is commonly used as a "TV' lead-in and has a characteristic impedaner of 300 ohms. It is sold under various names. the most common of which is "lwin-lead". This t"pe of line hat the advantages of light weight, close and uniform conductor spacing, flexibility and neat appearance. However. the loseses in the solid dielectrie are higher than in air, and dirt or moisture on the line tends to rhange the characteristic impedance. Moisture effects can be reduced by coating the line with silicone grease, A special form of $300-\mathrm{ohm}$ 'Twin-Lead for transmitting uses a polyethylene tube with the conductors molded diametrically opposite; the longer dicleetrie path in such line reduces moisture troubles.

 and wiacers.

In addition to 300-ohm line, Twin-Lead is obtainable with a characteristic impedance of 75 ohms for transmitting purposes. Lightwoight 7 Ti- and $150-0 h m$ Twin-Lead also is available.

Characteristic Impedance

The characteristio impedance of an airinsulated paralleleonductor line is given by:

$$
\begin{equation*}
Z_{0}=276 \log \frac{b}{a} \tag{13-D}
\end{equation*}
$$

where $Z_{0}=$ Characteristic impedance
$b=$ Center-to-center distance between conductors
$a=$ Radius of conductor (in same units as (b)

It does not matter what units are used for a and b so long as they are the same units. Both quantities may be measured in rentimeters, inches, etc. Since it is neressary to have a table of common logarithms to solve practical problems, the solution is given in graphical form

Fig. 13-9-Chart slowing the characteristic impedance of spared-emoductor parallel transmission lines with air dielectric. 'Iuhing sizes piven are for outside diameters.
in Fig, 13-9 for a number of common conductor sizes.

In solid-dielectric parallel-conductor lines such as Twin-lead the characteristic impedance cannot be calculated readily, because part of the clectric field is in air as well as in the solid dielectric.

Unbalance in Parallel-Conductor Lines

When installing parallel-conductor lines care should be taken to avoid introduring electrical unbalance into the system. If for some reason the current in one conductor is higher than in the other, or if the currents in the two wires are not exactly out of phase with each other, the electromagnetic fieds will not cancel completely and a considerable amount of power may be radiated by the line.

Maintaining good line balance requires, first of all, a balanced load at its end. For this reason the antema should be fed, whenever possible, at a point where each conductor "seen" exactly the stme thing. Csually this means that the antemmastem should be fed at its electrical center. Even though the antenna appears to be symmetrical, physically, it can be umbabaned electrically if the part eonnected to one of the line conductors is inadvertently coupled to something (such as house wiring or a metal pold or roof) that is not duplicated on the wher part of the antemal. Every effort should be made to keep the antenna as far as possible from other wiring or sizable metallic objects. The transmission line itself will canse some unbalance if it is not brought away from the antema at right angles to it for a distance of at least a quarter wavelength.

In installing the line conductors take are to soe that they are kept away from metal. The minimum separation between either eonductor and all other wiring should be at least four or five times the eonductor spacing. The

Fig, 13.10-Chart showing characteristic impedance of various air-insulated concentric lines.
shunt capacitance introduced by close proximity to metallic objects can drain off enough current (to ground) to unbalance the line currents, resulting in increased radiation. A shunt capacitance of this sort also constitutes a reactive load on the line, causing an impedance "bump" that will prevent making the line actually fat.

- coaxial lines

The most common form of coaxial line consists of either a solid or stranded-wire inner conductor surrounded by polyethylene dielectric. Copper braid is woven over the dielectrie. to form the outer conductor, and a waterproof vingl covering is placed on top of the braid. This cable is made in a number of different diameters. It is moderately flexible, and so is convenient to install. Some different types are shown in Fig, 13-8. 'This solid coaxia! cable is commonly available in impedances approximating 50 and 70 ohms.
dir-insulated coaxial lines have lower losses than the solid-dielectric type, but are less used in amateur work because they are expensive and difficult to install as compared with the flexible cable. The common type of air-insulated conxial line uses a solid-wire conductor inside a copper tube, with the wire held in the center of the tube by means of insulating "beads" at regular intervals.

Characteristic Impedance

The characteristic impedance of an airinsulated coaxial line in given by the formula

$$
\begin{equation*}
Z_{0}=1.38 \log \frac{b}{a} \tag{13-E}
\end{equation*}
$$

where $Z_{0}=$ Characteristic impedance
$b=$ Inside diameter of outer conductor $a=$ Outwide diameter of inner conductor (in same units as b)
Curves for typical conductor sizes are given in Fig. 13-10.

The formula for coaxial lines is approximately correct for lines in which bead spacers are used, provided the heads are not too closely spaced. When the line is filled with a solid dielectric, the characteristic impedance as given by the ehart should be multiplied by $1 / \sqrt{K}$, where K is the dielectric constant of the material.

Electrical length

In the discussion of line operation earlier in this chapter it was assumed that currents traveled along the conductors at the speed of light. Actually, the velocity is somewhat less, the reason being that electromagnetic fields travel more slowly in material delectrics than they do in free space. In air the velocity is practically the same as in empty space, but a practical line always has to be supported in some fashion by solid insulating materials. The result is that the fields are slowed down;

Fig. 13.11-Attenuation data for common types of transmission lines. Curve A is the nominal attenuation of 600 -ohm open-wire linewith No. 12 conductors, not including dielectric loss in spacers nor possible radiation losses. Adelitional line data are given in Table 13-I.

the currents travel a shorter distance in the time of one cycle than they do in space, and so the wavelength along the line is less than the wavelength would be in free space at the same frequency.

Whenever reference is made to a line as being so many wavelengths (such as a "half-wavelength" or "quarter wavelength") long, it is to be understood that the electrical length of the line is meant. Its actual physical length as measured by a tape always will be somewhat

TABLE 13-I Transmission-Line Data				
Type	Description or 'l'ype Number	Characteristic Imped. ance	Velocity Factor	Capacitance per font: $\mu \mu \mathrm{fd}$.
Coaxial	Air-insulated RG-8/L 1RG-38/U RG-11/L 1RG-59/L	$\begin{gathered} 50-100 \\ 53 \\ 53 \\ 75 \\ 73 \end{gathered}$	$\begin{aligned} & 0.851 \\ & 0.66 \\ & 0.06 \\ & 0.66 \\ & 0.66 \end{aligned}$	$\begin{aligned} & 29.5 \\ & 28.5 \\ & 20.5 \\ & 21.0 \end{aligned}$
Parallel-Conductor	Air-insmlated $14-080^{3}$ $14-023^{3}$ $14-0.9^{3}$ $14-0.56^{3}$ $14-076^{3}$ $1.4-022^{3}$	$\begin{gathered} 200-600 \\ 35 \\ 35 \\ 150 \\ 300 \\ 300 \\ 300 \end{gathered}$	0.975^{2} 0.68 0.71 0.6 0.82 0.84 0.85	$\begin{array}{r} 19.0 \\ 20.0 \\ 10.0 \\ 5.8 \\ 3.9 \\ 3.0 \end{array}$
${ }^{1}$ Average figure for small-diameter lines with ceramic beads. ${ }^{2}$ Average figure for lines insulated with ceramic spacers at intervals of a few feet. ${ }^{3}$ Amphenol type numbers and data. Iine similar to 14-056 is made by several manufacturers, but rated inss may differ from that given in Fig. 13-11. Types 14-023, 14-076, and 14-022 are made for transmitting applications.				

less. The physical length corresponding to an electrical wavelength is given by

$$
\begin{equation*}
\text { Length in feet }=\frac{984}{f}, V \tag{13-F}
\end{equation*}
$$

where $f=$ Frequency in megacycles
$V=$ Velocity factor
The velocity factor is the ratio of the actual velocity along the line to the velocity in free space. Values of V for several common types of lines are given in Table 13-1.

Example: A 75 -foot length of $300-0 h m$ 'l'winLead is used to carry power to an antenna at a frequency of 7150 kc . From Table 13-1, V is 0.82. At this frequency (7.15 Mc .) a wavelength is

$$
\begin{aligned}
& \text { Length (feet) }=\frac{984}{f} \cdot V=\frac{9 \mathrm{S4}}{7.15} \times 0.82 \\
& \quad=137.6 \times 0.82=112.8 \mathrm{ft}
\end{aligned}
$$

The line length is therefore $75 / 112.8=0.665$ wavelength.
Because a quarter-wavelength line is frequently used as a linear transformer, it is convenient to calculate the length of a quarterwave line directly. The formula is

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{246}{f} \cdot V \tag{13-G}
\end{equation*}
$$

where the symbols have the same meaning as above.

LOSSES IN TRANSMISSION LINES

There are three ways by which power may be lost in a transmission line: by radiation, by heating of the conductors ($I^{2} R$ loss), and by heating of the dielectric, if any. There is no appreciable radiation loss from a coaxial line, but radiation from a parallel-conductor line may exceed the heat losses if the line is un-

lig. 13.12-Fiffert of atanding-wave ration on line loss, The ordinates give the additional loss in decibels for the loss, undar perfectly-matched conditions, shown on the horizontal seale.
balanced. Since radiation losses cannot readily be estimated or measured, the following discussion is based only on conductor and dielectric losses.

Heat losses in both the conductor and the diclectric increase with frequency. Conductor losises also are greater the lower the characteristie impedane of the line, because a higher current flows in a low-impedance tine for a given power input. The converse is true of dielectric losses because these increase with the voltage, which is greater on high-impedance lines. The dielectric loss in air-insulated lines is
negligible (the only loss is in the insulating spacers) and such lines operate at high efficieney when radiation losses are low.

It is convenient to express the loss in a transmission line in decibels per unit length, since the loss in d b, is directly proportional to the line length. Losses in various types of lines, operated without standing waves (that is, terminated in a resistive load equal to the characteristic impedance of the line) are given in graphical form in Fig. 13-11. In these curves the radiation loss is assumed to be negligible.

When there are standing waves on the line the power loss increaves as shown in Fig. 13-12. Whether or not the incrase in loss is serions depends on what the original loss would have been if the line were perferety matehed. If the loss with perfect matehing is very low, al large s.w.r. will not greatly affect the efficiency of the line - i.e., the ratio of the power delivered to the load to the power put into the line.

Example: A 150 -foot length of R($;-11 / \mathrm{L}$ cable is operating at 7 Mc . with it into-1 s.w.r. If perfeetly matehed, the lows from Figg. 13-11 wond be $1.5 \times 0.4=0.6$ dh). From lig. $13-12$ the additional loss becanse of the s.w.r. is 0.73 dth . The total lows is therofore $0.6+0.73=1.33$ dis.
An appreciable s.w.r. on a solid-diclectric line may result in excessive loss of power at the higher frequencies, such lines, whether of the parallel-eonductor or coaxial type, should be operated as nearly flat as posible, particularly when the line length is more than 50 feet or so, As shown byig. 13-12, the increase in line loss is not too serious so long as the sew. r. is below 2 to 1 , but inereases rapidly when the s.w.r. rises above 3 to 1 . Tuned transmission lines such as are used with multiband antennas always should be air-insulated, in the interests of highest efficiency.

Matching the Load to the Line

The load for a transmission line may be any device capable of dissipating r.f. power. When lines are used for transmitting applications the most common type of load is an antenna, but there are also practival cases where the grid circuit of a power amplifier may reprosent the load. When a tramsmission line is combected between an antema and a receiver, the receriver input (ircuit (not the antenna) is the load, bectuse the power taken from a passing wave is delivered to the receiver.

Whatever the application, the conditions existing at the load, and only the load, determine the standing-wave ratio on the line. If the load is purely resistive and equal in value to the characteristic impedance of the line there will be no standing waves. If the load is not purely resistive, and/or is not equal to the line Z_{01}, there will be stonding waves. No, adjustments that can be made at the input cond of the line can change the s.w.r., nor is it affected by changing the line length.

Only in a few sperial eases is the load in-
herently of the proper value to math a practicable transmission line. In all other catses it is necessary either to operate with a mismateln and arcept the s.w.r. that results, or else to take steps to bring aloout a proper mateh botween the line and load by means of transformers or similar deviecs. Impedance-matching transformers may take a variety of physical forms, depending on the circumstanes.

Note that it is essential, if the s.w.r. is to bo made ats low as possible, that the load at the point of connection to the transmission lime be purely resistive. In general, this requires that the load be tuned to resonance. If the load itself is not resomant at the operating frequency the tuning sometimes can be acromplished in the matching system.

THE ANTENNA AS A LOAD

livery antenna system, no matter what its physical form, will have a definite value of impedanere at the point where the line is to be connected. The problem is to transform this
"antenna input impedance" to the proper value to match the line. In this respect there is no one "best" type of line for a particular antenma system, because it is possible to transform impedances in any desired ratio. Consequently, any type of line may be used with any type of antema. (There are frequently reasons other than impedane matching that dictate the use of one type of line in preference 10 anothor, such as ease of installation, inherant loss in the line, and so on, but these are not considered in this section.)

Although the input impedance of an antenna system is seldom known very accurately, it is often possible to make a reasonably close estimate of its value. The information in the chapter on antennas can be used as a guide.

Matching circuits may be constructed using ordinary coils and condensers, but are not used very extensively because they must be supported at the antenna and must be weatherproofed. The systems to be deseribed use "linear" transformers.

The Quarter-Wave Transformer or 'Q" Section

As described earlier in this chapter, a quarter-wave transmission line may be used as an impedance transformer. Knowing the antenna impedance and the characteristio impedance of the transmission line to be mat ched, the required characteristie impedance of a matching section such as is shown in Fig. 13-13 is

$$
Z_{\mathrm{m}}=\sqrt{Z_{1} Z_{2}}
$$

where Z_{1} is the antenna impedance and Z_{2} is the characteristic impedance of the line to which it is to be matched.

Example: To match a 600 -ohm line to an athtenna presenting a $i 2$-ohm load, the quarterwave matching section would require a charaeteristic impedance of $\sqrt{72 \times 600}=\sqrt{43,200}$ $=208$ ohms.
The spacings between conductors of various sizes of tubing and wire for different surge impedances are given in graphical form in Fig. 13-9. (With $1 / 2$-inch tubing, the spacing in the example above should be 1.5 inches for an impedance of 208 ohms.)

The length of the quarter-wave matching section is given by lequation 13-G.

The antenna must be resonant at the operating frequeney, sotting the antenna length by formula is amply accurate with singlo-wire antennas, but in other systems, particularly

Fí, 1.3.1.3 - "Q" matching section, a quarter-wave impedance-transformer.

Fig. 13-14 - Matching the antenna to the line by meanof a stob, Y. Curves for determining the lengths X and I are given in F"igs, 13-15 and 13-16, for the ease where the line, section \boldsymbol{X} and section $\boldsymbol{\gamma}$ all have the same characteristie impedance.
close-spaced arrays, the antenna should be adjusted to resonance before the matching section is connected.

When the antenna input impedance is not known accurately, it is advisable to construct the matching section so that the spacing between conductors can be changed. The spacing then may be adjusted to give the lowest s.w.r. on the transmission line.

Stub Matching

When a transmission line is not matehed by the load, the impedance looking into the line. foward the load varies with the distance from the loud, as discussed earlier in this chapter. Considering the input impedance to be equivalent to a resistance in parallel with a reactance, at some distance along the line, such as X in Fig. 13-14, the resistive part of the input impedance will be equal to the Z_{0} of the line. If at this point a reactance equal to the reactive part of the input impedance, but of the opposite type, is comected across the line, the reactanes will eancel and leave only the resistive component. From this point back to the transmitter or other source of energy the line will be matched.

The reactances used for matehing in this way are usually "linear" reactances - sections of transmission line - called "stubs". Stubs may be "open" or "closed," depending on whether the free end is left open or is shortcircuited, acoording to the type of reactance required in a particulay ase. The type and length of stub, as well as the point at which it should be attarhed to the line, can be found without any knowledge of the antenna input impedance, providing that the s.w.r. on the line can be measured before the stub is attached, and providing that the position of a current node (voltage loop) can be determined under the same conditions.

When the s.w.r, and the position of a current node are known Figs. 13-15 and 13-16 give the stub information necessary for impedance matching. Stub lengths are given in wavelengths, which may be converted to feet with the help of Equation 13-F. The data in Figs. $13-15$ and $13-16$ are based on the assumption

Fif. 13-15-Graph for determining position and length of a shorted stuh. Dimensioms may be converted to linear units after values have bern taken from the graph.
that the line and stub both have the same Z_{0}.
With this system of matching it is not necessary that the antenna system be exactly resonant, since the match is based on the position of a current node along the line. The node nearest the antenna should be used for determining the position of the stub so that as much as possible of the transmission line will be operating with a low s.w.r.

Study of the curves in Figs. 13-15 and 13-16 will show that when the initial s.w.r. is high (over 4 to 1) the sum of the stub length and distance from a current node is very close to 0.25 wavelength in the case of the closed stub and to 0.5 wavelength in the case of the open stub. In such cases the system may be visualized as shown in Figs. 13-17, as though a quarter-wave section of line formed a transformer along which the main transmission line can be tapped for impedance matching. When using this conefpt the antenna system should first be resonated to the operating frequency without the matehing section attached. The positions of the line taps on the matehing section are then adjusted to give the lowest possible s.w.r. on the feed line.

Folded Dipoles

A half-wave antenna element itself may be used to match various line impedanees if it is split into two or more parallel condurtors with

Fig. 13-16-Graph for determining position and length of an open stuh. Jimensions may he converted to linear units after values have been taken from the graph,
the transmission line attached at the center of only one of them. Various forms of such "folded dipoles" are shown in Fig. 13-18, Currents in all conductors are in phase in a folded dipole, and since the conductor spacing is small the folded dipole is equivalent in radiating properties to an ordinary single-conductor dipole. The current flowing into the input terminals of the antenna from the line is the current in one conductor only, but the entire power from the line is delivered at this value of current. This is equivalent to saying that the input impedance of the antenna has been raised by splitting it up into two or more eonductors.

If the conductors of a folded dipole are all the same diameter and the spacing between them is small, the impedance at the input terminals is approximately equal to the input impedance of an ordinary dipole multiplied by the square of the number of eonductors. A simple half-wave antenna has an average im-

Fig. 13-17 - Matching by means of quarter-wave limear transformers.
pedance of 70 ohms, so a two-conductor folded dipole will have an input impedance of 280 ohms, and a threroronductor dipole an impedance of 630 ohms. These values are sufficiently close for good matehing to 300 -ohm or (600-ohm line, respectively.

Other values of impedance ratio may be obtained by making one conductor larger in diameter than the other, as shown at C in Fig. 13-18. The required ratio of conductor radii (or diameters) for a desired impedance ratio may be obtained from Fig. 13-19. The unequal-conductor method has been found particularly useful in matching to low-impedance antemas such as directive arrays using close-spared parasitic elements.

The longth of the antenna dement should be such as to be approximately self-resonant at the median operating frequency. The length is usually not highly critical, beeause this method of matching tends to compensate for changes in antema reactance with frequency

Fig. 13-18 - The folded dipole. a method for usins the antenna element itself to provide an imperlance trans. formation.
and thus broadens the frequency-response curve of the antenna.

'TT" and "Gamma'" Matching Sections

The method of matching shown in Fig. 13-20A is based on the fact that the imperanere between any two points symmetrically lorated with respect to the center of a resonant antenna is resistive, and has a value which depends on the spacing between the two points. It is therefore possible to choose a pair of points; between which the impedance will have the right value to match a transmission line. In practice, the line cannot be connerted directly at these points beeause the distance between them is mueh greater than the conductor spacing of a practicable transmission line. The "T" arrangement in Fig. 13-20A overcomes this difficulty by using a second conductor paralleling the antenna to form a matching section to which the line may be connected.

The distance between the points of eonnection (twice the distance y in the drawing) does not represent the same impedance as the Z_{0} of the transmission line, since the matehing section introduees a degree of impedance transformation that depends on the length and diameter of the conductors and their distance from the antenna. Also, the matching section probably shows some reactance at its input terminals because it is not the proper length to be resonant. Design information that will take care of all these factors is not available, hence the system has to be adjusted by cut-and-try. The method of adjustment commonly used is to make the spacing x some value that is convenient construetionally, and then adjust the distance y, while maintaining symmetry with respect to the center, until the s.w.r. on the transmission line is as low as possible. If the s.w.r. is not below 2 to 1 after this adjustment, the antenna length should be
changed slightly (longthening is frequently neressary) and the matching-section taps adjusted again.

The unbalanced ("gamma") arrangement in Fig. 13-2013 is similar in principle to the " T ," but is adapted for use with single coax line. The method of adjustment is the same.

Dimensions of matrhing sections in practical cases are given in the chapter on antemas.

The 'Delta'" Match

The matching system in Fig. 13-21 is based on the variation in impedance between two points symmetrically located with respect to the center of the antenna, as in the case of the "T" match, but uses a different matching section. If the two conductors of a transmission line are fanned out, the Z_{0} of the line will increase with the increase in spacing. A fanned section of line can be used to mateh a given load impedance to the Z_{0} of a uniformlyspaced transmission linc, provided the line Z_{0} is lower than the impedance of the load.

Fig. 13-19 - Nomogran for computing impedance step-up in a folded dipole with dissimilar condurtors. The line at the left is the ratio of conductor diameters. and the line at the right is the ratio of conductor spacing (eenter-to-center) in the radius of the smaller (driven) conductor. The solid slanting line gives the impedance step-up ratio. Laying a straghtedge between any two known guantities will give the value of the third.

Example: Find the sparing required when the diameter of the larme conductor is 1.15 inch , the diameter of the smaller conductor is $0 . \overline{5}$ inch, line impedance 300 ohms, antenna impedance 40 ohms.
Impedance step-up required $=300 / 40=7.5$. Ratio of conductor sizes $=1.15 / 0.5=2.3$. Laying a straightelge across the figure (dashed line), ratio of spacing to radius $=7$. spacing, $D=7 \times 0.2 \mathrm{~B}=1.7 \mathrm{~B}^{\prime \prime}$.

Strictly, such a match can be made only if the conductor spacing in the fanned section of line incrases at an exponential rate, but the "delta" arrangement in Fig. 13-21 approximates this type of spacing.

Dimensions a and b in Fig. 13-21 depend on the antenna impedance (whether it is a simple half-wave antenna or the driven element of a multielement heam), the size of the conductors in the delta, and the Z_{0} of the transmission line to be matehed. Methods for calculation are not available, but dimensions for practical cases are given in the chapters on antennas.

NONRADIATING LOADS

Important pratical cases of nonradiating loads for a transmission line are the grid circuit of a power amplifier, the input circuit of a receiver, and another transmission line. This last case includes the "antenna tuner" (a misnomer because it is actually a device for coupling a transmission line to the transmitter) which, because of its importance in amateur installations, is considered separately in a later section of this rhapter.

P. A. Grid Circuits

When link coupling is used between a driver and a power amplifier it is possible to look upon the link as a means for obtaining mutual inductance, as described in the chapters on electrical fundamentals and transmitters, if the link is electrically short. However, by treating the link as a transmission line it becomes possible to use a link line of any length and to set up the coupling system so that power can be transferred adequately over a relatively wide band of frequencies without readjustment of the tuning.

As explained in the chapter on transmitters, the grid circuit of a power amplifier is equivalent to a resistance. The value of the resistance depends on the operating conditions and can be calculated as described in the transmitting chapter. The essentials of the circuit (omitting bias and similar details) for toth single-ended and push-pull grids are shown in Fig. 13-22. It is advisable to use coaxial cable

Fig. 13-20 - The "r"" match and "kamma" match. The method of adjustment is discussed in the text.
for the link, because the shielded construction not only prevents radiation but also makes it possible to install the line in any way that is convenient, without danger of mananted coupling to other circuits.

In this system the object of adjustment is to make the s.w.r. in the line as low as possible over as wide a band of frequencies as possible. The controlling factors are the (l of the tuned

Fig. 13-21 - The "delta" matehing section.
grid circuit, $L_{1} C_{1}$ (see transmitting chapter), the indurtance of the coupling coil, L_{2}, and the degree of coupling between L_{1} and L_{2}. Variable coupling between the coils is convenient, but not strictly necessary if one or both of the other factors can be varied. An s.w.r. indicator (shown as "SIVR" in the drawing) is essential. An indicator such as the "Micromatch" (a commercially available instrument) may be connected as shown and the adjustments made under actual oporating conditions; that is, with full power applied to the amplifior grid or grids.

Assuming that the coupling is adjustable, start with a trial position of L_{2} with respect to L_{1}, and adjust C_{1} for the lowest s.w.r. Then change the coupling slightly and repcat. Continue until the s.w.r. is as low as possible; if the circuit constants are in the right region it should not be difficult to get the s.w.r. down to 1 to 1 . The Q of the tuned grid circuit should be designed to be at least 10 , and if it is not possible to get a very low s.w.r. with such a grid rireuit the probable reason is that L_{2} is too small. Maximum coupling, for a given degree of physical coupling between the two coils, will occur when the inductance of L_{2} is such that its reactance at the operating frequene y is equal to the characteristic impedance of the link line. The reactance can be calculated as described in the chapter on electrical fundamentals if the inductance is known; the inductance can either be calculated from the formula in the same chapter or measured as described in the chapter on measurements.

Once the s.w.r. has been brought down to 1 to 1 , the frequency should be shifted over the band so that the variation in s.w.r. can be observed, without changing C_{1} or the coupling between L_{1} and L_{2}. If the s.w.r. rises rapidly on either side of the original frequency the circuit can be made "flatter" by reducing the Q of the tuned grid circuit. This may be done by decreasing C_{1} and correspondingly increasing \dot{L}_{1} to maintain resonance, and by tightening the
coupling betwoen L_{1} and L_{2}, going through the same adjustment process again. It is possible to set up the system so that the s.w.r. will not exceed 1.5 to 1 over, for example, the entire 7-Mc. band and proportionately on other bands. Under these circumstances a single setting will serve for work anywhere in the band, with essentially constant power transfer from the line to the power-amplifier grids.
If the coupling between L_{1} and L_{2} is not adjustable the same result may be secured by varying the L / C ratio of the tuned grid circuit - that is, by varying its Q. If any difficulty is encountered it can be overcome by changing the number of turns in L_{2} until a match is secured. The two coils should be tightly coupled.

When a resistance-bridge type s.w.r. indicator is used it is not possible to put the full power through the line when making adjustments. In such case the operating conditions in the amplifier grid circuit can be simulated by using a carbon resistor, ($1 / 2$ or 1 watt size) of the same value as the calculated amplifier grid impedance, connected as indicated by the arrows in Fig. 13-22. In this case the amplifier tubes must be operated "cold" - without filament or heater power. The adjustment process is the same as described above, but with the driver power reduced to a value suitable for operating the s.w.r. bridge.

When the grid coupling system has been adjusted so that the s.w.r. is close to 1 to 1 over the desired frequency range, it is certain that the power put into the link line will be delivered to the grid circuit. The remaining problem, that of coupling power into the line, is discussed in a subsequent section.

Coupling to a Receiver

A good match between an antenna and its transmission line does not guarantee a low standing-wave ratio on the line when the antenna system is used for receiving. The s.w.r. is determined wholly by what the line "sees" at the receiver's antenna-input terminals. For minimum s.w.r, the receiver input circuit must be matched to the line. The rated input impedance of a receiver is a nominal value that varies over a considerable range with frequency. Methods for bringing about a proper match are discussed in the chapter on receivers.

It should be noted that if the receiver is matched to the line, then it is desirable that the antenna and line also be matched, since this results in maximum signal transfer from the antenna to the line. If the receiver is not matched to the line, the input impedance of the line (at the terminals of the antenna itself) in turn cannot match the antenna impedanco. In such a case the signal input to the receiver depends on the coupling system used between the line and the receiver. For greatest signal strength the coupling system has to be adjusted to the best compromise between receiver input impedance and load appearing at the input (antenna) end of the line. The coupling system and its adjustment are a matter for trial and error.

Fig 13-22-Set-up for matching a power amplifier grid circuit to a link line. Circuit values are similar to those discussed in the chapter on transmitters. The resistors are used to simulate the grid impedance of the amplifier when a low-power s.w.r. indicator such as a resistance bridge is used. See text for details.

A similar situation exists when the receiver input impedance inherently matches the line Z_{0}, but the line and antenna are mismatched. Under these conditions perfect matching at the receiver does not result in greatest signal strength; a deliberate mismatch has to be introduced so that the maximum power will be taken from the antenna. Maximum signal input to the receiver occurs when the line is matched at both the receiver and antenna.

Coupling the Transmitter to the Line

In the chapter on transmitters it was explained that an r.f. power amplifier (or oscillator) requires a definite value of load resistance if the desired power output is to be obtained. The present chapter has described the variations in the input impedance of a transmission line with changes in the termination (or s.w.r.) and the line length. Since the input impedance of the line will seldom, if ever, be the same as the load impedance required by the transmitting tube or tubes, it must
be transformed to the proper value. Performing this impedance transformation is a primary function of the coupling circuit.

The proper value of load resistance for the amplifier is automatically obtained when the coupling to the line is such that the amplifier, with its plate circuit tuned to resonance, draws the desired plate current. The coupling circuit can be considered to be adjusted satisfactorily when this condition is reached.

Coupling Circuit Requirements

Power tubes must work into a purely resistive load in order to operate at optimum efficience. On the other hand, the input impedanee of a line frequently is partly resistive and partiy reactive. In performing the required impedane transformation the roupling circuit must eliminate the reactive part, if any, of the liness input impedance.

In addition, it is highly desirable that the coupling circuit help in preventing any energy on other frequencies than the desired one from reaching the antenma. Although the power in such "spurious" frequencies is comparatively small, interference can be caused to the operation of other services. The coupling circuit should, in other words, have some selertivity.

In the circuits to be diseussed, a single-ended tank circuit has been indicated for the amplifier from which power is to be coupled. This is merely to simplify the drawings; any type of amplifier circuit may be substituted. Also, the discussions have bern based on the normal operation of the circuits, neglooting such thinge as stray caparitive coupling which, while having little or no bearing on the fundamental problem of transferring power from one circuit to athother, maty be very important in ealusing interference to other services. They are given detailed attention in the chapter on BCI and TVI.

COUPLING to flat lines

If the standing-wave ratio on the line is known to be below about 1.5 to 1 , the input impedance of the line can be considered to be essentially a pure resistance and a simple transformer can be used to couple the amplifier to the line. As shown in Fig. 13-23, the line is merely comected to a piekup coil or link eoil inductively coupled to the amplifier tank cireuit.

Four requirements must be met if the coupling is to be sufficient to load the amplifior properlyregardless of line length:

1) The s.w.r. on the line actually must be low.

Fig. 13-2.3- Ising an untuned pick-up coil to couple to a transmission line. The method of adjustment is discursed in the tevt.
2) The plate tank circuit must have reasonably high Q. A value of 10 or more is usually sufficient.
3) The inductance of the pick-up or link coil must be close to the optimum value for the frequener and type of line used. The optimum coil is one whose self-inductance is such that its reactance at the operating freguency is equal to the Z_{0} of the line.
4) It must be possible to make the coupling hetween the tank and piek-up coils very tight.

The third in this list is often hard to meet, esperially when a paralled-conductor line is used. Few, if any, manufactured link coils have adoquate inductance for coupling to lines having characteristic impedances over 100 ohms or so, at low frequencies, and very fow are large enough even for coupling to 50 ohm line. The optimum pick-up coil for coupling to lines of 300 ohms Zo, or more will have about the same inductance as the phate tank eoil itself.

Amateurs are frequently successful in coupling power into a line even though the pick-up eoil is quite small and is loosely coupled to the amplifier tank coil. When such coupling is possible it is an indication that the line is operating at a fairly: high s.w.r. and that the line length is such as to bring a current loop near the input end. It is customary to "prune" the line length in such rases until adequate coupling is secured-: practice that has given rise to wholly fallacious beliefs, on the part of many, that pruning the line reduces the standing-wave ratio and that a flat line will load an amplifier with a small link and very loosc coupling. Pruning the line accomplishes nothing if the line is artually flat berause, as explatined carlier in this chapter, the input impedance of a matched line is equal to its Z_{0} regardless of the line length. If the line is not flat, pruning changes the input impedance and eventually results in a value such that the link or pick-up coil is actually tuned to the operating frequency by the line, a condition that will give maximum power transfer with minimum coupling. The higher the s.w.r. the more loose the coupling can be.

If the line is operating with a low s.w.r., the systems shown in Fig. 13-23 will require tight coupling between the two coils. Since the secondary (pick-up coil) cirruit is not resonant, the lakage reactance of the pirk-up coil also will cause some dotuning of the amplifier tank circuit. This detuning effect increases with increasing (oupling, but is usually not serious. However, the amplifier tuning must be adjusted to resonance, as indicated by the plate-current dip, each time the coupling is changed.

The roupling mothods shown in Fig. 13-23, while widely used herause of their simplicity, add nothing to the selectivity of the system as a whole and therefore do not contribute to the suppression of spurious radiations.

Tuned Coupling

The design difficulties of using "untuned" pick-up coils, mentioned above, can be avoided by using a couphing circuit tuned to the operating

Fig. 13-24-Methods for coupling to transmission lines operating at a low stand-ing-wave ratio, 'l'he tuned input circnit is frequently essential for ohtaining suffieient power transfer, and offers a convenient means for varying loading.

frequency. This contributes additional selertivity as well, and hence aids in the suppression of spurious radiations.

If the line is flat the input impedance will be essentially resistive and equal to the Z_{n} of the line. This resistance will be introduced into the coupling circuit, and since the object of tuning is to obtain a reasonable value of Q and thus permit relatively loose coupling, the type of line used will determine the kind of tuning that is practicable. If the line Z_{0} is less than 100 ohms, a cireuit of reasonable Q can be ohtained with practieable values of inductance and capacitance connected in series with the line's input terminals, but connecting the line in parallel with the tuned circuit would require impracticable values of L and C (see chapter on circuit fundamentals). On the other hand, lines having a Z_{0} of 300 ohms or more are best connerted in parallel with the tuned circuit, since the series connection would require impracticable values of L and C in many cases.

Suitable circuits are given in Fig. 13-24. The vahues of inductance and caparitance in the conpling circuits are not highly eritical, but the L / C ratio must not be too small in the case of series tuning nor too large in the case of parallel tuning. The Q of the coupling circuit often may be as low as 2 , without running into difficulty in getting adequate coupling to a tank circuit of proper design, Larger values of Q can be used and will result in increased case of coupling, but as the Q is increased the frequency range over which the circuit will operate without readjustment becomes smaller. It is usually good practire, therefore, to use a coupling-cireuit Q just low enough to permit operation, over as much of a band as is normally used for a particular type of communication, without requiring retuning.

Caparitance values for a Q of 2 and various popular line impedances are given in Table 13-II. In the case of series tuning these are the maximum values that should be used; in the case of paralled tuning they are minimum values. In both cases the inductance in the circuit should be adjusted to give resonance at the oprating frequency. If the link coil used for a particular band does not have enough inductance to resonate, the additional inductance reguired may be comnected in series with it as shown by the alternative circuits.

In practice, the amount of inductance in the circuit should be regulated so that, with somewhat loose coupling letween L_{1} and the amplifier tank coil, the amplifier plate current will increase when the variable condenser, C_{1}, is tuned through the value of capacitance given by the table. The
coupling between the two coils should then be increased until the amplifier loads normally at the same setting of C_{1}. Slight retuning of the plate tank condenser may be required. If the transmission line is flat over the entire frequency band under consideration, it should not be necessary to realjust C_{1} when changing frequency, if the values given in the table are used. However, it is unlikely that the transmission line actually will be flat over such a range, exeept possibly with a simple folded dipole antenna, so some readjustment of C_{1} may be needed to compensate for changes in the input impedance of the line as the frequency is changed. If the input impedance variations are not large, C_{1} may be used as a loading control, no changes in the eompling between L_{1} and the tank coil being necessary.

The degree of coupling between L_{1} and the amplifier tank coil will depend on the couplingcircuit (Q. With a Q of 2 , the coupling should be tight - comparable with the couphing that is trpical of "fixed-link" manufactured coils. With a swinging link it may be necessary to incrase the Q of the coupling cirenit in order to get sufficient power transfor. With sories tuning this can be done by increasing the L / C ratio; with parallel tuning by decreasing the L^{\prime} (' ratio.

Fig. $13-25$ - Matching circuit using a coaxial link, for rise with parallelconductor transmission lines Adjustment set-up using an s.w.r. loridge is shown in the lower drawing. Design considerations and method of adjust. ment are discussed in the text.
measurements is perfectly adequate, requiring only that the transmitter output be reduced to a very low value so that the bridge will not be overloaded. Take a trial position of the line taps on L_{3}, keeping them equidistant irom the

Link Coupling

The coupling arrangements for parallel-conductor line shown in Fig. 13-2413 are not entirely satisfactory from a constructional standpoint. It is usually more convenient to build the coupling apparatus separate from the final amplifier, and this leads to greater operating flexibility as well. For lines operating at a low standing-wave ratio this is easily accomplished by comecting the amplifier and coupling circuits through a short length of transmission line or "link". When properly designed and adjusted, the tuning of both circuits will be completely independent of the length of the line connecting them. This method has the further advantage that, if the comecting line is coaxial cable, it offers an ideal spot for the insertion of low-pass filters for preventing harmonic interference to television and FM reception.

The circuit for coax-link coupling is given in Fig. 13-25. The constants of the tuned circuit $C_{1} L_{3}$ are not particularly critical; the principal requirement is that it must be capable of being tuned to the operating frequeney, and constants similar to those used in the plate tank circuit will be satisfactory. The construction of L_{3} must be such that it can be tapped at least every turn. L_{2} must be tightly coupled to L_{3}, and the inductance of L_{2} should be approximately the value that gives a reactance equal to the Z_{0} of the connecting line at the frequency in use. An average reactance of about 60 ohms will suffice for either 52 - or 75 -ohm cousial line.

At the amplifier end of the link, L_{1} should be as described earlier (Fig. 13-23A or 13-24A) for coupling into coaxial line. The adjustment of coupling at the output end ($L_{2} L_{3}\left(C_{1}\right)$ is entirely independent of the adjustment at the input end (tank circuit and L_{1}) when the system is properly designed and operated. That is, the circuit formed by $L_{2} L_{3} C_{1}$ acts purely as a matching device to transform the input impedance of the main transmission line to a value equal to the Z_{0} of the coaxial link, and the coupling at the amplifier end is consequently designed and adjusted for working into a flat coaxial line.

The most satisfactory way to set up the system initially is to comect a coaxial s.w.r. bridge in the link as shown in Fig. 13-25. A simple resistance bridge such as is deseribed in the chapter on
center of the coil, and adjust C_{1} for minimum s.w.r. as indicated by the lridge. If the s.w.r. is not close to 1 to 1 , try new tap positions and adjust C_{1} again, continuing this procedure until the s.w.r. is practically 1 to 1 . The setting of C_{1} and the tap positions may then be logged for future reference, since they will not change so long as the antenat system and frequeney are not changed. .It this point, check the link s.w.r. over the frequency range normally used in that band, without changing the setting of C_{1}. No readjustment will be required if the s.w.r. does not exceed 1.5 to 1 over the range, but if it goes higher it is advisable to note as many settings of C_{1} as may be neressary to keep the s.w.r. below 1.5 to 1 at any part of the band. Changes in the link s.w.r. are caused chiefly by changes in the s.w.r. on the main transmission line with frequeney, and relatively little by the coupling circuit itsolf. A single setting of \dot{C}_{1} at mid-frequency will suffice if the antema itself is broad-tuning.

If it is impossible to get a 1 to 1 s.w.r. at any settings of the taps or C_{1}, the main transuission line is not flat. Ordinarily there should be no difficulty if the transmission-line s.w.r. is not more than about 3 to 1 , but if the line s.w.r. is higher it may not be possible to bring the link s.w.r. down except by using the methots for reactance compensation described in a subsectuent section.

Once the matching circuit is properly adjusted, the s.w.r. bridge may be removed and full power applied to the transmitter. The input shonld be controlled by the coupling betwen L_{1} and the amplifier tank coil, never by making any changes in the settings of the matching circuit. If the amplifier will not load properly, the methods described above (Fig. 13-23A or 13-24A) should be followed.

It is possible to use a circuit of this type without initially setting it up with the s.w.r. bridge. In such a case it is a matter of cut-and-try until adequate power transfer between the amplifier and main transmission line is secured. However, this method frequently results in a high s.w.r. in the link, with consequent power loss, "hot spots" in the coaxial cable, and tuning that is critical with frequency. The bridge method is simple and gives the optimum operating condjtions quickly and with certainty.

- "TUNED" LINES

If the s.w.r. on a transmission line is high enough to cause the input impedance to change appreciably as the applied frequency is varied, the coupling between the tramsmitter and the line must be changed accordingly if the amplifier is to be loaded adequately, So far as the coupling apparatus is concerned, the principal difference between flat and tuned lines is that the svstem can be designed for relatively constant impedance for flat lines, but must be capable of coupling into a wide range of impedances if the line is "tuned."

The simple circuits shown in Fig. 13-23 can be used for coupling to a line having a high standingwave ratio providing the line length is adjusted so there is a current loop near the point where it connects to the pick-up coil. The coupling will be maximum, for a given degree of separation bet ween L_{1} and the amplifier tank coil, if the line is pruned to a length surh that the input impedance is just sufficiently capacitive to cancel the inductive reactance of the pick-up coil. This can be done by cut-and-try. The higher the s.w.r. on the line the easier it becomes to load the amplifier with loose coupling between the two coils. Whether or not good loading can be obtained over a band of frequencies depends on the characteristics of the antenna system. The sharper the antenna and the higher the line s.w.r., the more difficult it becomes to operate over a band without progressively changing the line length.

Series and Parallel Tuning

Rather than adjusting the line length to fit a given coupling coil, it is more practical to adjust the coupling circuit to fit the conditions existing at the input end of the transmission line. The circuit of Fig. 13-24A will serve for coaxiat-type lines in all cases that should be tolerated in practice; that is, the range of input impedanees that can be handled by such a serios-tumed circuit

Fig. 13-26 - Series and parallel tuning. This method is useful with resonant lines when the length is such as to bring either a current or voltage loop near the input end. Design data and methods of adjustment are given in the text.
is as great as should be encountered. If series tuning does not work satisfactorily, the s.w.r. is too high for efficient line operation and steps should be taken to get a better match between the line and antenna.

A high standing-wave ratio occurs principally on parallel-conductor lines, either because no attempt has been made at matching the antenna and the line or because the system is used for multiband operation, which precludes such matching. In the latter casc, eutting the line length to a multiple of a quarter wavelength will bring either a current or voltage loop near the input terminals of the transmission line (assuming that the antenna itself is resonant) depending on the termination and the line length. If there is a current loop near the input end the impedance will be lower than the line Z_{0}; if a voltage loop, the input impedance will be higher than the line Z_{0}. In both cases the input impedances will be essentially resistive.

Under these conditions the circuit arrangements shown in Fig. 13-26 will work satisfactorily, Series tuning is used when a current loop occurs at the input end of the line; parallel tuning when there is a voltage loop at the input end. In the series case, the circuit formed by L_{1}, C_{1} and C_{2} with the line terminals short-circuited should tune to the operating frequency, C_{1} and C_{2} should be maintained at equal capacitance. In the parallel case, the circuit formed by L_{1} and C_{1} should tune to resonance with the line terminals open.

The L / \dot{C} ratio in either circuit depends on the transmission line Z_{0} and the standing-wave ratio. With series tuning, a high L / C ratio must be used if the s.w.r. is relatively low and the line Z_{0} is high. With parallel tuning, a low L / C ratio must be used if the s.w.r. is relatively low and the transmission-line Z_{0} also is low. With either series or parallel tuning the L / C ratio becomes less critical when the s.w.r. is high. As a first approximation, L and C values of the same order as those used in the plate tank circuit may be tried.

To adjust the series-tuned circuit, first couple L_{1} loosely to the amplifier tank coil and then vary C_{1} and C_{2}, kerping their capacitances equal, until the setting is found that makes the amplifier plate current kick upward. Keep adjusting the amplifier tank condenser, C, for minimum plate current while this is being done. When the proper settings are found, increase the coupling between the two coils until the amplifier draws normal plate current with C adjusted for minimum. It is unnecessary to readjust C_{1} and C_{2} when the coupling is increased. Keep the coupling between the coils at the smallest value that will load the amplifier properly. If full loading cannot be obtained with the tightest possible coupling, use a coil of more inductance at L_{1}.

The same adjustment procedure is used with parallel tuning, excopt that there is only one condenser, C_{1}. If full loading camnot be secured, reduce the inductance of L_{1} and increase C_{1} correspondingly to maintain the same frequency.

The r.f. ammeters shown in lig. 13-26 are not strictly necessary, but are useful for indicating maximum output. They may be omitted if desired; in most cases the amplifier phate current is a good anough indication of output, providing the amplifier is operating at normal ratings and efficiency.

In case full loading cannot be obtained even when the L / C ratio is varied, the type of tuning in use probably is not suitable and should be changed; e.g., from series to parallel. If satisfactory loading still cannot be secured, the probability is that the s.w.r. is quite low and the coupling methods designed for flat lines should be used.

Fig. 13-27-I.ink-roupled serie's and parallel tuning.
Two condensers :ure used in the series-tuned circuit in order to keep the line balanced to ground. This is because two identical condensers, both connected with either their stators or rotors to the line, will have the same capacitance to ground. A single condenser would be perfectly usable so far as the operation of the coupling circuit is concerned, but will slightly mbalance the circuit, since the frame has more capacitance to ground than the stator. The unbalance is not serious unless the condenser is mounted near a large mass of metal, such as a chassis.

A balanced condenser is used in the paralled circuit, in proference to a single unit, for the same reason. An alternative scheme to maintain balance is to use two single-ended condensers in parallel, but with the frame of one connerted to one side of the line and the frame of the other connected to the other side of the line. The same two condensers may be switched in series when series tuning is to be userl.

Link Coupling

The circuits shown in Fig. 13-26 require a means for varying the coupling between two
siaable coils, a thing that is somewhat inconvenient constructionally, It is casier to use separate fixed mountings for the final tank and antenna coils and couple them by means of a link. As explained in the chapter on circuit fundamentals, a short link is equivalent to providing mutual inductance between two tuned circuits. Trpical arrangements for series and parallel tuning are shown in Fig. 13-27. Although these drawings show variable coupling at both ends of the link, a fixed link coil can be used at either end so long as variable coupling is available at the other.

There is no essential difference between the tuning procedures with these circuits and those of Fig. 13-26. The only change is that the coupling is adjusted by means of a link instead of by varying the spacing between L and L_{1}.

In cases where the link will be more than a few inches long, or when coaxial cable is to be used for the link, it is much better to consider the link as a transmission line that should be properly matched. The circuit of Fig. 13-25 is recommended in that case, except that either a series- or parallel-tuned circuit is substituted for $C_{1} L_{3}$ in that figure. The same considerations apply with respect to the sizes of the link coils, and the best adjustment procedure is that using an s.w.r. bridge.

Lines of Random Length

Series or paralled tuning will always work satisfactorily with lines having a high stand-ing-wave ratio so long as the electrical length of the line is approximately a multiple of a quarter wavelength. However, it is not always possible to couple satisfactorily when intermediate line longths are used. This is because at some lengths the input impedance of the line has a considerable reactive component, and berause the resistive component is too large to be connected in series with a tuned circuit and too low to be connected in parallel.

The coupling system shown in Fig. 13-25 is capable of handling the resistive component of the input impedance of the transmission lines used in most amateur installations, regardless of the standing-wave ratio on the line. (A possible exception is where the s.w.r. is considerably higher than 10 to 1 and the line length is such as to bring a current loop at the input end. In such a case the resistance may be only a fow ohms, which is difficult to match by means of taps on a coil.) Consequently, it can generally be used wherever either series or parallel tuning would normally be called for, simply by setting the tapsp properly on the coil.

Within linits, the same circuit is capable of being adjusted to eompensate for the reactive component of the input impedance; this merely means that a 1 to 1 s.w.r. in the link will be obstained at a different setting of C_{1} (Fig. 13-25) than would be the case if the line "looked like" a pure resistance. Sometimes, however, C_{1} does not have enough range available to give romplete
compensation, particularly when (as is the case with some line lengths when the s.w.r. is high) the input impedance is principally reactive.

Under such conditions it is necessary, if the line length cannot be changed to a more satisfactory value, to provide additional means for compensating for or "cancelling out" the reactive component of the input impedance. As described carlicr in this chapter (Fig. 13-6) the input impedance can be considered to be equivalent to a circuit consisting either of resistance and inductance or resistance and capacitance. It is generally more convenient to consider these elements as a parallel combination, so if the line "looks like" $L^{\prime} R^{\prime}$ at A in Fig, 13-6, it is apparent that if we connect a capacitance of the right value aross L^{\prime} the circuit will become resonant and will appear to be a pure resistance of the value R^{\prime}. Similarly, connecting an inductance of the right value across C^{\prime} in Fig. 13-6B will resonate the circuit and the impedance will be equal to R^{\prime}. The resistive impedance that remains can easily be matched to the coax link by means of the circuit of Fig. 13-25.

The practical application of this principle is shown in Fig. 13-28, where L and C are the reactances required to cancel out the line reactance, L for cases where the line is capacitive, C for lines having inductive reactance. The amount of either inductance or capacitance required is easily determined by trial. Using the s.w.r. bridge in the coax link, first disconnect the main transmission line and connert a noninductive resistor to the line terminals. A $1 / 2$ or l-watt earbon resistor of about the same resistance as the line Z_{0} will do. Arljust the coil taps and C_{1} for a 1 to 1 standingwave ratio in the link, as described earlier. This determines the proper setting of C_{1} for a purely resistive load. Then take off the resistor and connect the line, again adjusting the taps and C_{1} for minimum s.w.r. If a 1 to 1 ratio can be obtained further compensation is not needed, but if not,
make the s.w.r. as low as possible and compare the new setting of C_{1} with the original setting. If the caparitance has increased, the line reactance is inductive and a condenser must be connected at C in Fig. 13-28. The amount of capacitance needed to bring the proper setting of C_{1} near the original setting can be determined by trial. On the other

Fig. 13.28 - Reactance cancellation on random-length lines having a high standing-wave ratio.
hand, if the caparitance of C_{1} is less than the original, an inductance must be connected at L. Trial values will show when the proper tuning conditions have been reached. It is not necessary that C_{1} be at exactly the original setting after the compensating reactance has been adjusted; it is sufficient that it be somewhere in the same vicinity.

Using this procedure pratically any length of line can be coupled properly to the transmitter, even when the line s.w.r. is quite high. Unfortunately, no specific values can be suggested for L and C, since they vary widely with line length and s.w.r. Their values usually are comparable with the values used in the regular coupling circuits at the same frequency

Coupler or Matching Circuit Construction

The design of matching or "antenna eoupler" rircuits has been covered in the preceding section, and the adjustment procedure also has been outlined. Since circuits of this type are most frequently used for transforring power from the transmitter to a parallel-conductor transmission line, a principal point requiring attention is that of maintaining good balance to ground. If the coupler circuit is appreciably unbalanced the currents in the two wires of the transmission line will also be unbalanced, resulting in radiation from the line.

In most cases the matching cireuit will be built on a metal chassis, following common practice in the construction of transmitting units. The chassis, because of its relatively large area, will tend to establish a "ground" - even though not actually grounded - particularly if it is assembled with other units of the transmitter in a rack or cabinet. The components used in the coupler, therefore, should be placed so that they
are electrically symmetrical with respect to the chassis and to each other.

In general, the construction of a eoupler circuit should physically resemble the tank layouts used with push-pull amplifiers. In parallel-tuned circuits used with matched lines and with tuned lines having high input impedance, a spilt-stator condenser should be used. The eondenser frame should be insulated from the chassis because, depending on line length and other factors, harmonic reduction and line balance may be improved in some cases by grounding and in others by not grounding. It is therefore advisable to adopt construction that permits either. Provision also should be made for grounding the center of the coil, for the same reason. A single coil used in a parallel-tuned circuit should be mounted so that its hot ends are symmotrically placed with respect to the chassis and other components. This equalizes stray capacitances and helps maintain good balance.

When the coupler is of the type that can be shifted to series or parallel tuning as required, two separate single-ended condensers will be satisfactory. As described earlier, they should be connected so that both frames go to the same side of the circuit - i.e., either to the coil or to the line - for series tuning, and should be connected frame-to-stator for parallel tuming.

A coupler designed and adjusted so that the connecting link acts as a matched transmission line may be placed in any convenient location. Some amateurs prefer to install the coupler at the point where the main transmission line enters the station. This helps maintain a neat station layout when an air-insulated parallel-conductor transmission line is used. With solid-dielectric lines, which lend themselves well to neat installation indoors, it is probably more desirable to install the coupler where it can be reached easily for adjustment and band-ehanging. The use of coaxial line between the transmitter and coupler is strongly recommended if the link line is more than a few inches long, for the reasons outlined in the preceding section.

COAX-COUPLED MATCHING CIRCUIT

The matching unit shown in Figs. 13-29 to 13-32, inclusive, is constructed according to the design principles outlined cartior in this chapter. It uses a parallel-tuned circuit with taps for matching a parallel-conductor line through a link coil to a coaxial line to the transmitter. It will handle about 500 watts of r.f. power and will work, without modification, into lines having

Fig. 13-29 - A matching circuit or "antenna coupler" for use between a coavial link line and a parallelconductor transmission line. link coil design is optimum for suffieient power transfer from à flat coaxial line.

Fig. 13.30 - Circuit diagram of the antenna coupler. The antenna changeover relay and r.f, ammeters are convenient but not essential to the operation of the coupler.
The around (X in the diakram) on the center of the tank roil may be used or not, as required for best harmonic suppression.
(.1 - $100-\mu \mathrm{ff} .-\mathrm{pr}$-section, $1: 300$-volt plate spacing per section (National 'TMK-100J).
$\mathrm{C}_{2}-90{ }_{\mu} \mathrm{ftl}, 3000$ volts, 2 amp , at 3 He., mica,
A- R.f. ammeter, scalc range according to powrer and antenna freder system. For 300 -ohm line opcrating at less than 3 -to-1 s.w.r., 0-1 amp. is satisfactory for 100 watts r.f. output; $0-2$ will suffice for outputs up to 400 watts.
Jt - Coax receptacle.
J_{2} - $11 \overline{5}$-volt receptacle, male (Amphenol).
J_{3}, I_{4} - Crstal socket, for F'T-243-type pin spacing (Willen 33102).
$\mathrm{Ry口}_{1}$ - Antenna relay, d.p.d.t. (W'ard leonard 507-531).

> Coil 1)ata

Band	L_{1}, turns	L_{2}, turns
$3.5-1$ Mc.	24	8
1.1 Mc.	18	5
28 Mc.	10	3
28.	6	2

11_{1} - No. 12 tinned wire, $21 / 2$ inehes dia., 6 turns per ineh (13 \& 11 3905-1).
1.2 - No. 11 tinned wire, 2 inehes dia., 8 turns per inch (13 \& W $39(0)$).
an s.w.r. below 3 or 4 to 1 . If the s.w.r. is high, it may be necessary to compensate for the reactive part of the input impedance of the line, at certain line lengths, by using an additional coil or condenser as diseussed earlier. The necessity for such compensation can be avoided, on lines having a high s.w.r., by making the electrical length of the line a multiple of a quarter wavelength.

As shown by Fig. 13-30, the circuit includes an antema changeover relay and r.f. ammeters for measuring feeder current. Neither is essential to the operation of the coupler, but they are frequently used and the photographs show how they may be incorporated in the coupler unit. The coupler is fitted with crystal soekets for plugs such as the Millen type 37412 for 300 -ohm line; the plug-and-socket arrangement facilitates shifting antennas, in case two or more are available for different bands. The same plug-andsocket combination may be used with lines of other characteristic impedances, but other types of plugs and sockets, or binding posts, may be substituted.

The coils are constructed from commercial coil material to meet the link inductance requirements outlined earlier in this chapter. The diameter of the link coil is such that it fits snugly inside the tank coil, and once the coils are cut to the proper size they may be cemented together

Fig. 13-31-Construition of coils used in the antenma roupler. Connections to the link coil are made with short lengths of wire soldered to the ends of the link winding. Thes tank-coil turns should le spread slightly where the gronecting wires to the liuk pass through the eoil, to prevent short circuits. The link connertions should be ran at right angles to the tanh coil turns, insefar as posible, to reduce capacitive coupling.
at their tie-strips, using Duco cement. A typical coil assembly is shown in Fig. 13-31, the coils being mounted on Millen type 40305 plags and requiring no other support than the stiffness of the short lengths of wire at the ends where they go into the prongs on the plug. The taps on the bank coil for matching are made by means of . Iohnson type $23 \overline{5}-860$ clips.

The coupler is built on a 7 by 9 by 2 aluminum rhassis. The coil socket (Millen 41305) is mounted on brackets made from $1 / 16$-inch aluminum cat in strips a half inch wide, just high enough so that the eoil socket clears the tuning condenser comfortably. A vernier-type friction-drive dial (Na(ional $A M$) is used on the tuning condenser. The r.f. meters are mounted on a piece of bakelite set behind a rectangular cut-out in the 8 by 12 metal pancl, the bakelite being used to reduce the capacitance between the meters and the panel.

Each coil is provieled with its own pair of elips soldered to a short length of 300 -ohm line terminated in a plug. The line phug is inserted it a "rystal socket mounted on top of the tuning condenser. This method avoids the neeessity for whanging elip connections when changing coils.

The socket for the coax link is mounted eentrally on the rear chassis edge. A length of eorax rans from this coax receptacle to the coil socket, and is grounded where it goes through the chassis (between the stator sections of the tuning con(henser) to reach the eoil socket. The a.c. plug on the rear edge conneets to the relay coil.

A fixed condenser, C_{2}, can be connected in parallel with C_{1} by flexible leads and banana plugs. The sockets (taken from jack-top binding pusts) are soldered to the lugs on the variable condenser. C_{2}^{\prime} is used for padding the eircuit on the $3,5-$ - Me range only; a sufficiently large eoil
for tuning with the $50 \mu \mu \mathrm{fd}$, available in C_{1} cannot be mounted on the plug bar.

The L / C ratio in the coupler tank circuit is not especially critical, so the dimensions given in Fig. 13-30 can be varied within reason. The chief point is that each coil must resonate, on the band for which it is made, with the tuning condenser. Fairly low C is preferable to high C, but the limitation on L / C ratio at 3.5 Me , is the size of the eovil required. The plug bar will mount a 4-inch-long coil comfortably. With the 3.5-Me. eoil dimensions given in Fig. $13-30$ the coil is just slightly longer than the bar tand is casily mounted. Additional support is given this coil by rumning a No. 4 screw through the end holes in the bar and fastening a soldering lug under the nut; the coil ends are soldered to this lug as well as to the pins in the plug.

The link eoils specified have adequate inductance for full coupling with either 52 - or 75 -ohm coaxial link lines.

The preferable method of adjusting the coupler is that using an s.w.r. bridge, designed for the characteristic impedance of the coaxial line used for the link, as deseribed in a preceding section in this chapter.

SERIES-PARALLEL COUPLER FOR WALL MOUNTING

Fig. 13-33 shows a link-coupled coupler designed for series or parallel tuning of a resonant line. It is suitable for transmitters having a power output in the neighborhood of 250 watts. A higher-power version easily could be mitde

Fig. 13-32 - Rear view of the antenna coupler, Connectims to the coax linh, to the receiver antenna posts, and to the 115 -volt supply for the relay are throngh sockets on the rear edge of the chassis,

Fig. 13-3.3-A walf-momming amtenna compler for medimm-power tranmituers. This unit provides a chonice of cither series or parallel tuning lor resonant feralorstandarel transmitting coils of the varialle-linh tyre are used.
using a similar layout, but substituting heavier coils and condensers with greater plate spacing.

As shown in Fig. 13-34, the change from series to parallel tuning is made by means of jumpers and extra pins on the coil plug bar. A separate coil is used for each band, and after determining which should be used, series or parallel tuning, on a particular hand, the jumpers may be installed permanently or left off as required. The tuning condensers specified, together with a set of standard plug-in transmitting coils, should provide adequate coupling if the transmission-line length is such as to bring a voltage or current loop near the input end.

The unit is mounted on an $8 \times 12 \times 7 / 8$-inch looard for hanging on the wall in any convenient location near the entrance point of the feeders. The 2.0 -ampere r.f. ammeter is mounted centrally by long wood screws through spacers at the top of the unit. A short length of twisted pair connects it to the thermocouple, secured in a horizontal position at the bottom of the backboard. The tuning condensers are mounted on the underside of a 4 -inch shelf extending the width of the unit. Atop the shelf, the jack bar for the coil is supported on pillars by wood serews. An extension shaft to vary the clegree of coupling is supported by a bushing fastened to a short strip of brass at the
right of the shelf. A short length of 300 -ohm ribbon (coaxial cable can be used instead) connects the input terminals to the movable link, while the output terminals are located at the middle right of the backboard. Two screw eyes at the top permit the unit to be hung from screws or nails in the wall.
The variable-link windings of manufactured eoils may not give adequate coupling unless the length of the link-line to the transmitter is adjusted, by cut-and-try, for optimum results. As an alternative, the coil sets may be wound as deseribed for the antema coupler shown in Fig. 13-29, The coils dimensions given will be satisfactory for use in the circuit of Fig. $13-34$, and providing a coaxial link is used the coupling wi!! be indepentent of link-line longth when adjusted by means of an s.w.r. bridge.

RACK-MOUNTING SERIES-PARALLEL COUPLER

The rack-mounting roupling unit shown in Fig, 13-35 is suitable for power outputs of 25 to 50 watts, and provides either steries or parallel tuning for resonant lines. Separate condensers are used for this purpose, and while three are required, this system has the advantage that no switching is necessary when changing from series to parallel tuning. It is also possible to cover a somewhat wider range of line input impedances with parallel tuning because the series condensers can be used to help cancel out inductive reactance that cannot be handled by the parallel circuit alone.

The coupler is mounted on a $51 / 4 \times 19$-inch panel. The parallel condenser, C_{1}, is in the center, with C_{2} and (${ }_{3}$ on either side. The sariable condensers are mounted on National GS-I stand-off insulators which are fastened to the condenser tie-rods by means of machine serews with the heads cut off. Small ceramic shaft couplings are used to insulate the control knobs from the rondenser shafts.

Fig, 1.3.34-Ciresit diagram of an antenna coupler for use with a medium-power transmitter. A - Series tuning. \mathbf{B} - Parallel tuning.
$\mathrm{C}_{1}, \mathrm{C}_{2}-100-\mu \mu \mathrm{frl}$, single section variable, 0.0 .0-inch spacing (Cardwell M'l'100-GS).

A-0-2.5 thermocomple r.f. ammeter.

Fig. 13-35 - Rach-mounterl coupler for low-power transmitters, This unit uses three variable condensers to provide either series or parallel tuning without condenser switehing.

Clips with flexible leads attached are provided for the parallel condenser, C_{1}, so that the sections may be used either in series or parallel to form either a high-C or low-C tank circuit, as required. When the high-C tank is necessary the two stators are connected together by means of the clips, as indicated by the dotted lines in the circuit diagram, Fig. 13-36. When the two sections are connected in series for low-C operation the breakdown voltage is increased.
'Two sets of variable condensers are suggested in the list of parts. The smaller receiv-ing-type condensers with 0.03 -inch air gap are satisfactory for transmitter power outputs up to 50 watts. The larger condensers, with $0.045-$ inch spacing, are required for transmitter outputs of the order of 100 watts.

Fig. 13-36-Circuit of the rack-monnting antenna tuner for use with transmitters having final amplifiers that are operated at less than 1000 volts on the plate.

All coils are $17 / 8$ inches in diameter and $2 \frac{1}{4}$ inehes long, with the variable link lorated at the center. For series tuning, use the coil specified for the next-ligher frequency hand, which will be approximately correct.
$\mathrm{C}_{1}-100 \mu \mu \mathrm{fd}$. per section, 0.045-ineli sparing (National TXK-100-1) for high voltages; receiving type for low voltages (Ilammarlund MCI)-100).
$\mathrm{C}_{2}, \mathrm{C}_{3}-250$ - $\mu \mathrm{fd}$., 0.026 -inch spacing (Vational TMS-250) for high voltages; receiving type for low voltages (H ammarlund $\mathrm{MC}-250$).
$\mathrm{L}-13 \&$ W JVi-series eoils. Approximate dimensions for parallel tuning for cach band are as follows: 3.5-Mc. hand - 40 turns No. 20

6-Mc. band - 24 turns No. 16.
14. Nc. band - 14 turns No. 16.
28.11 c , hath - 8 turns No. 16 .

A WIDE-RANGE ANTENNA COUPLER

The photograph of Fig. 13-37 shows the constructional details of a wide-range antenna coupler suitable for use with high-power transmitters. Various combinations of parallel and series tuning, with high- and low-C tanks and high- and low-impedance outputs, are available. Diagrams of the various circuit combinations possible with this arrangement are given in Fig. 13-38.

A separate coil is used for each band, and the desired connections for series or parallel tuning with high or low C, or for low-impedance out put with high or low C, are automatically made when the coil is plugged in. Coil connections to the pins for various circuit arrangements are shown in Fig. 13-38.

The tuning condenser specified, together with a set of standard pluy-in transmitting coils, should cover nearly all coupling conditions likely to be encountered.

Because the switching connections require the use of a central pin, a slight alteration in the IS \& W coil-mounting unit is required. The central link-mounting unit should be removed from the jack-bar and an extra jack placed in the central hole thus made available. The link assembly should then be mounted on a 2 -inch cone insulator to one side of the jack bar.

Correspondingly, the central nut on each coil plug base must be removed and a Johnson tapped plug, similar to those furnished with the coils, substituted. An extension shaft may then be fitted on the link shaft and a control brought out to a knob on the panel.

The split-stator tank condenser is mounted by means of angle brackets on four 1-inch cone-type ceramic insulators, and an insulated flexible coupling is provided for the shaft.

If desired, the coils may be wound with fixed links on ceramic transmitting coil forms. The links should be provided with flexible leads which can be plugged into a pair of jacktop insulators mounted near the coil jack strip, unless a special mounting is made providing for seven connections.

The unit as deseribed should be satisfactory

Fig. 13.37 - Wide-range antenna coupler. The unit is assembled on a metal chassis measuring $10 \times 17 \times 2$ inches, with a panel $83 / 4 \times 19$ inches in size. The variable condenser is a split-stator unit with a caparitance of $200 \mu \mu \mathrm{ffl}$. per section and 0,0 - inch plate sparing (Johnson 200):1)30). The plug-in evils are the IS \& W' TVI, series. 'The r.f. am. meter has a -ampere scale.
for transmitters having an output of 000 watts with plate modulation and somewhat more on c.w. For higher-power 'phone, a tank condenser with larger plate spacing should be used.

In case there is difficulty in loading the transmitter with particular lengths of link line, ade-
quate coupling usually can be secured by tuning the link circuit as deseribed earlier in this chapter. On the lower frequencios it may be necessary to add inductance in series with the link coil in order to raise the () of the link circuit to a sufficiently high value for good coupling.

Fig. 13-38 - Circuit diagram of the wide-range rack-type antenna coupler. A - Parallel tuning, low C. B - Parallel tuning, high C, C - Series tuning, low C, D - Series tuning, high C, E - P'arallel tank, low-impedance output, low C. W- l'arallel tank, low-impedance output, high C. After the inductance required for each of the various bands has been determined experimemtally, the connections to the coils can be made permanent. Then it will he neeessary only to plug in the right coil for each band, tune the condenser for resonanee, and aljust the link loading.

Antennas

An antenna s！⿰亻⿱丶⿻工二灬力灬 can be considered to in－ clude the antemat proper（the portion that radiates the r．f．energy），the feedline，and any coupling devices used for transferring power from the transmitter to the line and from the line to the antenna．Some simple systems may omit the transmission line or one or both of the coupling devices．This chapter will describe the antenna proper，and in many cases will show popular types of lines，as well as line－to－ antenna couplings where they are required． However，it should be kept in mind that any antemat proper can be used with any type of feedline if a suitable coupling is used between the antenna and the line．Changing the line does not change the type of antenna．

Selecting an Antenna

In selecting the type of antenna to use，the majority of amateurs are somewhat limited through space and structural limitations to simple antenna systems，except for v．h．f．op－ eration where the small space requirements make the use of multielement beams readily possible．This chapter will consider antennas for frequencies as high as 30 Mc ．－a later chapter will describe the popular types of v．h．f．antennas．However，even though the available space may be limited，it is well to consider the propagation characteristics of the frequency band or bands to be used，to insure that best possible use is made of the available facilities．The propagation characteristies of the various bands，up to 30 Mc ．，are described in Chapter lour．In general，antenna const rue－ tion and location become more critical and im－ portant on the higher frequencies．On the lower frequencies（3．5 and 7 Me．）the vertical angle of radiation and the plane of polariza－ tion may be of relatively little importance；at 28 Mc ．they may be all－important．On a given frequency，the particular type of antenna best suited for long－distance communication may not be as good for shorter－range work as would a different type．

Definitions

The important properties of an antenna proper are its polarization，vertical and hori－ zontal angles of maximum radiation，im－ pedance，gain and bandwidth．

The polarization of a straight－wire antenna is determined by its position with respect to the earth．Thus a vertical antenma radiates vertieally－polarized waves，while a horizontal
antenna radiates horizontally－polarized waves in a direction broadside to the wire and vertically－polarized waves at high vertieal angles of the ends of the wire．The wave from an antenna in a slanting position，or from the horizontal antenna in directions other than mentioned above，contains both horizontal and vertical components．

The vertical angle of maximum radiation of an antenna is determined by the free－space pattern of the antenna，its height above ground，and the mature of the ground．The angle is measured in a vertical plane with re－ spect to a tangent to the earth at that point， and it will usually vary with the horizontal angle，except in the case of a simple vertical antenna．The horizontal angle of maximum radiation of an antenna is determined by the free－space pattern of the antenna．

The impedance of the antenna at any point is the ratio of the voltage to the current at that point．It is important in connection with feed－ ing power to the antenna，since it constitutes the load to the line offered by the antemna．It ran be either resistive or complex，depending upon whether or not the antenna is resonant．

The field strength produced by an antenna is： proportional to the current flowing in it．When there are standing waves on an antenna，the parts of the wire carrying the higher current have the greater radiating effect．．Ill resonant antennas have standing waves－only ter－ minated types，like the terminated rhombic and terminated＂V，＂have substantially uni－ form current along their lengths．

The ratio of power required to produce a given field strength，with a＂comparison＂an－ tenna，to the power required to produce the same field strength with a specified type of an－ tenna is called the power gain of the latter antenna．The field is measured in the optimum direction of the antema under test．In amateur work，the comparison antema is generally a half－wave antenna at the same height and having the same polarization as the antenna under consideration．Power gain usually is ex－ pressed in decibels．

In unidirectional beams（antenna systems with maximum radiation in only one direc－ tion）the front－to－back ratio is the ratio of power radiated in the maximum direction to power radiated in the opposite direction．It is also a measure of the reduction in received sig－ nal when the beam direction is changed from that for maximum response to the opposite
direction. Front-to-back ratio is usually expressed in decibels.

The bandwidth of an antema generally refers to the frequency range over which the
gain and impedance are substantially constant. It is of importance primarily in connere tion with multielement beams fed by a "flat" transmission line.

Ground Effects

The radiation pattern of any antenna that is many wavelengths distant from the ground and all other objects is called the free-space pattern of that antenna. The frec-space pattern of an antenna is almost impossible to obtain in practice, except in the v.h.f. and u.h.f. ranges. Below 30 Me ., the location of the antenna with respect to ground plays an important part in determining the actual radiation pattern of the antenna.

When any antenna is near the ground the free-space pattern is modified by reflection of radiated waves from the ground, so that the actual pattern is the resultant of the free-space pattern and ground reflections. This resultant is dependent upon the height of the antema, its position or orientation with respect to the surface of the ground, and the electrical characteristics of the ground. The effect of a perfectly-reflecting ground is such that the

Fig. 14-1 - Effect of ground on radiation of horizontal antennas at vertical angles for four antenna heights. 'lhis chart is based on perfectlyaconducting ground.
original free-space field strength may be multiplied by a factor which has a maximum value of 2 , for complete reinforcement, and having all intermediate values to zero, for complete cancellation. These reflections only affect the radiation pattern in the vertical plane - that is, in directions upward from the earth's surface - and not in the horizontal plane, or the usual geograplical directions.

Fig. 14-1 shows how the multiplying factor varies with the vertical angle for several representative heights for horizontal antennas. As the height is increased the angle at which complete reinforcement takes place is lowered, until for a height equal to one wavelength it occurs at a vertical angle of 15 degrees. It still
greater heights, not shown on the chart, the first maximum will occur at still smaller angles.

Radiation Angle

The vertical angle of maximum radiation, is of primary importance, especially at the higher frequencies. It is advantageous, therefore, to erect the antemna at a height that will take advantage of ground reflection in such a way as to reinforce the space radiation at the most desirable angle. Since low angles usually are most effective, this generally means that the antenna should be high - at least one-half wavelength at 14 Me., and preferably three-quarters or one wavelength, and at least one wavelength, and preferably higher, at 28 Mc . The physical height required for a given height in wavelengths decreases as the frequency is increased, so that good heights are not impracticable; a half-wavelength at 14 Mc, is only 35 feet, approximately, while the same height represents a full wavelength at 28 Mc . At 7 Mc . and lower frequencies the higher radiation angles are effective, so that again a useful antenna height is not diffieult of attainment. IIeights between 35 and 70 feet are suitable for all bands, the higher figures being preferable.

Imperfect Ground

Fig. 14-1 is based on ground having perfect conductivity, whereas the actual earth is not a perfect conductor. The principal effect of actual ground is to make the curves inaccurate at the lowest angles; appreciable high-frequency radiation at angles smaller than a few degrees is practically impossible to obtain over horizontal ground. Above 15 degrees, however, the curver are accurate enough for all practical purposes, and may be taken as indicative of the result to be expected at angles between 5 and 15 degrees.

The effective ground plane - that is, the plane from which ground reflections can be considered to take place - seldom is the actual surface of the ground but is a few feet below it, depending upon the character of the soil.

Impedance

Waves that are reflected directly upward from the ground induce a current in the antenna in passing, and, depending on the antenna height, the phase relationship of this induced current to the original current may be such as either to increase or decrease the total current in the antenna. For the same power input to the antemma, an increase in current is equivalent to a decreasc in impedance, and vice versa. Hence, the impedance of the an-
tema varies with height. The theoretical curve of variation of radiation resistance for an antenna above perfectly-reflecting ground is shown in Fig. 14-2. The impedance approaches the free-space value as the height becomes large, but at low heights may differ considerably from it.

Choice of Polarization

Polarization of the transmitting antenna is generally unimportant on frequencies between 3.5 and 30 Mc . However, the question of whether the antema should be installed in a horizontal or vertical position deserves consideration for other reasons. A vertical halfwave or quarter-wave antenna will radiate equally well in all horizontal directions, so that it is substantially nondirectional, in the usual sense of the word. If installed horizontally, however, the antenna will tend to show directional effects, and will radiate best in the direction at right angles, or broadside, to the wire. The radiation in such a case will be least in the direction toward which the wire points.

The vertical angle of radiation also will be

Fig. 1.4-2 - Theoretical corve of variation of radiation rexistance for a half-wave horizontal antenna, as a function of height in wavelength above perfectly-rellecting ground.
affected by the position of the antenna. If it were not for ground losses at high frequencies, the vertical half-wave antemna would be preferred because it would concentrate the radiation horizontally.

The Half-Wave Antenna

The fundanental form of antenna is a single wire whose length is approximately equal to half the transmitting wavelength. It is the unit from which many more-complex forms of antemas are constructed. It is variously known as a half-wave dipole, half-wave doublet, or Hertz antenna.

The length of a half-wavelength in space is:

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{492}{\text { Freq. (Mc.) }} \tag{14-A}
\end{equation*}
$$

The actual length of a half-wave antenna will not be exactly equal to the half-wave in space, but depends upon the thickness of the conductor in relation to the wavelength as shown in Fig. 14-3, where K^{K} is a factor that must be multiplied by the half-wavelength in free space to obtain the resonant antenna length. An additional shortening effect occurs

Fig. 14-3 - Effect of antenna diameter on length for half-wave resonance, shown as a multiplying factor, K, to be applied to the free-space half-wavelength (Fiquation 14-1). The effert of conductor diameter on the impedance measured at the center also is shown.
with wire antennas supported by insulators at the ends because of the capacitance added to the system by the insulators (end effect). The following formula is sufficiently accurate for wire antemnas at frequencies up to 30 Me .:

$$
\begin{align*}
& \text { Length of half-uave antenna (feet) }= \\
& \frac{492 \times 0.9 \overline{\mathrm{~J}}}{F^{\prime} r e q .(\mathrm{Mc})}=\frac{468}{F^{\prime} r e q .(\text { Mc. })} \tag{14-B}
\end{align*}
$$

Example: A half-wave antenna for 7150 kc .
(7.15 Mc.) is $\frac{468}{7.15}=65.45$ feet, or 65 feet \bar{j} inches.
Ahove 30 Mc . the following formulas should be used, particularly for antennas constructed from rod or tubing. K is taken from Fig, 14-3.

$$
\text { Length of half-wave antenna (feet) }=
$$

$$
\begin{gather*}
\frac{492 \times K}{\text { Freq. }(\mathrm{Mc} .)} \tag{14-C}\\
\text { or length } \text { (inches) }=\frac{\tilde{5} 905}{\text { Freq. }^{\prime} \times \kappa} \times(\mathrm{Mc} .) \tag{14-D}
\end{gather*}
$$

Example: Find the length of a half-wavelength antenna at 29 Mr., if the antenna is made of $2-$ inch diameter tubing. At 29 Mc, a half-wavelength in space is $\frac{492}{29}=16.97$ feet, from Eq, 14-A. Ratio of half-wavelength to eonductor diameter (changing wavelength to inches) is $\frac{16.97 \times 12}{2}=101.8$. From Fig. $14-3, K=0.963$ for this ratio. The length of the antenna, from Eq. $14-C$, is $\frac{492 \times 0.963}{29}=16.34$ feet, or 16 feet 4 inches. The answer is obtained directly in inches by substitution in Eq. $14-\mathrm{D}: \frac{5905 \times 0.963}{29}$ $=196$ inches .

Fig. 14-1- The ahove scales, based on Eq. 14-13, can be used to determine the length of a half-wave antema of wire.
sistance, to be neglected for all practical purposes.

Impedance

The radiation resistance of an infinitelythin half-wave antemat in free space - that is, sufficiently removed from surrounding objects so that they do not affert the antenna's characteristies - is 73 ohms, approximately. The value under practical conditions is commonly taken to be in the neighborhood of 70 ohms. It is pure resistance, and is measured at the center of the antenna. The impedance is minimum at the center, where it is equal to the radiation resistance, and increases toward the ends. The actual value at the ends will depend on a number of factors, such as the height, the physical construction, the insulators at the ends, and the position with respect to ground.

Conductor Size

The impedance of the antenna also depends upon the diameter of the conductor in relation to the wavelength, as shown in Fig. 14-3. If the diameter of the conductor is made large, the capacitance per unit length increases and the inductance per unit length decreases. since the radiation resistance is affected relatively little, the decreased L / C ratio causes the () of the antenna to decrease, so that the resonance curve becomes less sharp. Ience, the antenna is capable of working over a wide frequency range. This effect is greater as the diameter is increased, and is a property of some importance at the very-high frequencies where the wavelength is small.

Fig. 14.7- Ilorizontal pattern of a horizontal halfwave antenna at three vertical radiation angles. The" solid line is relative radiation at 15 degrees. Dotted lines show deviation from the 15 -degree pattern for angles of 9 and 30 degrees. The patterns are useful for shape only, since the amplitude will depend upon the height of the antenna above ground and the vertical angle considered. 'The patterns for all three angles have been proportioned to the same seale, but this does not mean that the maximum amplitudes necessurily will be the same. The arrow indicates the direction of the horizoutal antenna wire.

Radiation Characteristics

The radiation from a half-wave antenna is not uniform in all directions but varies with the angle with respect to the axis of the wire. It is most intense in directions perpendicular to the wire and zero along the direction of the wire, with intermediate values at intermediate angles. This is shown by the sketch of Fig. 14-5, which represents the radiation pattern in free space. The relative intensity of radiation is proportional to the length of a line drawn from the center of the figure to the perimeter. If the antema is vertical, as shown in the figure, then the field strength will be uniform in all horizontal directions; if the antenna is horizontal, the relative field strength will depend upon the direction of the receiving point with respect to the direction of the antema wire. The variation in radiation at various vertical angles from a half-wavelength horizontal antenna is indicated in Figs. 14-6 and 14-7.

- feeding the half.wave ANTENNA

Direct Feed

If possible, it is advisable to locate the antenna at least a half-wavelength from the transmitter and use a transmission line to carry the power from the transmitter to the

Fig. 14-8-Methods of directly exciting the half-wave antenna. A, current feed, series tuning; B, voltage feed, capacitive coupling; C , voltage feed, with in-ductively-coupled antenna tank. In Λ, the coupling circuit is not included in the effertive electrical length of the antenna system proper.
antenna. However, in many cases this is impossible, particularly on the lower frequencies, and direct feed must be used. Three examples of direct feed are shown in Fig. 14-8. In the method shown at A, C_{1} and C_{2} should be about $150 \mu \mu \mathrm{fd}$. each for the $3.5-\mathrm{Mc}$. band, $75 \mu \mu \mathrm{fd}$. each at 7 Mc ., and proportionately smaller at the higher frequencies. The antenna coil comnected between them should resonate to 3.5 Mc . with about 60 or $70 \mu \mu \mathrm{fd}$, for the $80-$ meter band, for 40 meters it should resonate with 30 or $35 \mu \mu \mathrm{id}$, and so on. The circuit is adjusted by using loose coupling between the antenna coil and the transmitter tank coil and adjusting C_{1} and C_{2} until resonance is indicated by an increase in plate current. The coupling between the coils should then be increased until proper plate current is drawn. It may be necessary to reresonate the transmitter tank circuit as the coupling is increased, but the change should be small,

The circuits in Fig. 14-8B and C are used when only one end of the antenna is accessible. In B, the coupling is adjusted by moving the tap toward the "hot" or plate end of the tank coil - the condenser C may be of any convenient value that will stand the voltage, and it doesn't have to be variable. In the circuit at C , the antenna tuned circuit (C_{1} and the antenna coil) should be similar to the transmitter tank circuit. The antenna tuned circuit is adjusted to resonance with the antenna connected but with loose coupling to the transmitter. Heavier loading of the tube is then obtained by tightening the coupling between the antema coil and the transmitter tank coil.

Of the three systems, that at A is preferable because it is a symmetrical system and generally results in less r.f. power "floating" around the shack. The system of B is undesirable because it provides practically no protection against the radiation of harmonics, and it should only be used in emergencies.

Transmission-Line Feed for Half-Wave Antennas

Since the impedance at the center of a halfwavelength antenna is in the vicinity of 75 ohms, it offers a good match for $\mathbf{7 5}$-ohm twowire transmission lines. Several types are available on the market, with different powerhandling capabilities. They can be connected in the center of the antenna, across a small strain insulator to provide a convenient connection point. Coaxial line of 75 ohms impedance can also be used, but it is heavier and thus not as convenient. In either case, the transmission line should be run away at right angles to the antema for at least one-quarter wavelength, if possible, to avoid current unbalance in the line caused by pick-up from the antenna. The antenna length is calculated from Equation 14-B, for a half-wavelength antenna. When No. 12 or No. 14 enameled wire is used for the antenna, as is generally the case, the length of the wire is the over-all length measured from the loop through the insulator at each end. This is illustrated in Fig. 14-9,

The use of 75 -ohm line results in a "flat" line over most of any amateur band. However, by making the half-wave antema in a special manner, called the two-wire or folded dipole, a good match is offered for a 300 -ohm line. Such an antenna is shown in Fig. 14-10. The open-wire line shown in Fig. 14-10 is made of

Fig. 14.9 - Construction of a half-wave doublet fed with 75 -ohm line. The length of the antenna is calculated from Equation 14-B or Fig. 14-4.

Fig. 14-10- The construction of an open-wire folded doublet fed with 300 -ohm line. 'The length of the antenna is calculated from Equation 14-13 or Fig. 14-1.

No. 12 or No. 14 enameled wire, separated by lightweight spacers of Lucite or other material (it doesn't have to be a low-loss insulating material), and the spacing can be on the order of from 4 to 8 inches, depending upon what is convenient and what the operating frequency is. At 14 Mc., 4 -inch separation is satisfactory, and 8 -inch or even greater spacing can be used at 3.5 Mc .

The half-wavelength antenna can also be made from the proper length of 300 -ohm line, opened on one side in the center and connected to the feedline. Ifter the wires have been soldered together, the joint can be strengthened by molding some of the excess insulating material (polyethylene) around the joint with a hot iron, or a suitable lightweight clamp of two pieces of Lucite can be devised.

Fif. 14-11 - The construction of a 3 -wire folded dipole is similar to that of the $2-w$ ire folded dipole. The end spacers may have to be slightly stronger than the others because of the areater compression foree on them. The length of the antenna is obtained from Equation 14-13 or l'ig. 14-1. A suitable line can lie made from No, 14 wire spaced $41 / 2$ to 5 inehes, or from No. 12 wire spaced 6 inches.

Similar in some respects to the two-wire folded dipole, the three-wire folded dipole of Fig. 14-11 offers a good mateh for a 600 -ohm line. It is favored by amateurs who prefer to use an open-wire transmission line instead of the 300 -ohm insulated line. The three wires of the antenna proper should all be of the same diameter.

Another method for offering a mateh to a 600 -ohm open-wire line with a half-wavelength antenna is shown in Fig. 14-12. The system is called a delta match. The line is "fanned" as it approaches the antenna, to have a gradu-ally-increasing impedance that equals the antenna impedance at the point of connection. The dimensions are fairly critical, but careful measurement before installing the antenna and matching section is generally all that is neces-
sary. The length of the antenna, L, is calculated from Equation 14-B or Fig. 1t-4. The length of section C is computed from:

$$
\begin{equation*}
r^{\prime}(\text { feet })=\frac{118}{\text { Freq. }(\text { Me. })} \tag{14-E}
\end{equation*}
$$

'The feeder clearance, E ', is found from

$$
\begin{equation*}
E(\text { feet })=\frac{148}{\text { Freq. (Mc.) }} \tag{14-F}
\end{equation*}
$$

Fixample: For a frequency of 7.1 Mc . the length

$$
I .=\frac{410}{7.1}=65.91 \text { feet, or } 65 \text { feet } 11 \text { inches. }
$$

$C=\frac{118}{7.1}=16.62$ feet, or 16 feet 7 inches.
$E=\frac{148}{7.1}=20.84$ feet, or 20 feet 10 inches.

Fig, 14-12,- Delta-matehed antenna system. The dimensions C, D, and E are fond by formulas given in the text. It is important that the matching sertion, E. comestraight away from the antenna without any bends.

Since the equations hold only for 600 -ohm line, it is important that the line be close to this value. This requires $43 / 4$-inch spaced No. 14 wire, 6 -inch spaced No. 12 wire, or $33 / 4$-inch spaced No. 16 wire.

If a half-wavelength antenna is fed at the center with other than 75 -ohm line, or if a t wo-wire dipole is fed with other than 300 -ohm line, standing waves will appear on the line and coupling to the transmitter may become awkward for some line lengths, as deseribed in the preceding chapter. However, in many cases it is not convement to feed the half-wave antenna with the correct line (as is the case where multiband operation of the same antenna is desired), and sometimes it is not convenient to feed the antenna at the center. Where multiband operation is desired (to be discussed later) or when the antenna must be

Fig, 14-13 - The half-wave antenna can be fed at the center or at the end with an open-wire line. The antenna length is oltained from Equation 14-IB or Fig. 14-4,
fed at one end by a transmission line, an openwire line of from 450 to 600 ohms impedance is generally used. The impedance at the end of a half-wavelength antenna is in the vicinity of several thousand ohms, and hence a standingwave ratio of 4 or 5 is not unusual when the line is connected to the end of the antenna. It is advisable, therefore, to keep the losses in the line as low as possible. This requires the use of
ceramic or Micalex feeder spacers, if any appreciable power is used. For low-power installations in dry climates, dry wood spacers that have been boiled in paraffin are satisfactory. Mechanical details of half-wavelength antennas fed with open-wire lines are given in fig. 14-13. If the power level is low, below 100 watts or so, 300 -ohm Twin-Lead can be used in phace of the open line.

Long-Wire Antennas

An antenna will be resonant so long as ant integral number of standing waves of current and voltage can exist along its length; in other words, so long as its length is some integral multiple of a half-wavelength. When the antenna is more than a half-wave long it usually is called a long-wire antenna, or a harmonic antenna.

Current and Voltage Distribution

Fig. 14-14 shows the current and voltage distribution along a wire operating at its fundamental frequency (where its length is equal to a half-wavelength) and at its second. third and fourth harmonics. For example, if the fundamental frequency of the antenna is 7 Me., the current and voltage distribution will be as shown at A. The same antenna excited at 14 Mc, would have eurrent and voltage distribution as shown at B. At 21 Mc., the third harmonic of 7 Mc., the current and voltage distribution would be as in C ; and at 28 Mc ., the fourth harmonie, as in D. The number of the harmonic is the number of half-waves con-

2ND HARMONIC (FULL-WAVE)

3RO HARMONIC ($3 / 2$-WAVE)

D
4 TH HARMONIC (2-WAVE)
Fig. 14-14 - Standing-wave current and voltage distribution along an antenna when it is operated at various harmonics of its fundamental resonant frequency.

Fig. 14-15 - Curve , shows variation in radiation resistance with antenna length. Curve B shows power in Ioles of maximum radiation for long-wire antennas as a ratio to the maximum radiation for a half-wave antenna,
tained in the antenna at the particular operating frequency.

The polarity of current or voltage in each standing wave is opposite to that in the adjacent standing waves. This is shown in the figure by drawing the current and voltage curves successively above and below the antenna (taken as a zero reference line), to indicate that the polarity reverses when the rurrent or voltage goes through zero. Currents flowing in the same direction are in phase: in opposite directions, out of phase.

It is evident that one antenma may be used for harmonically-related frequencies, such as the various amateur bands. The long-wire or harmonic antenns is the basis of multiband operation with one antenna.

Physical Lengths

The length of a long-wire antenna is not an exact multiple of that of a half-wave antenna because the end effects operate only on the end sections of the antenna; in other parts of the wire these effects are absent, and the wire length is approximately that of an equivalent

Fig. 14-16 - Ilorizontal patterns of radiation from a full-ucue antenna. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degress. All three patterns are drawn to the same relative scale: actual am. plitudes will depend upon the height of the antemna.
portion of the wave in space. The formula for the length of a long-wire antema, therefore, is

$$
\text { Length }(\text { feet })=\frac{492(N-0.05)}{\text { Freq. }(\text { Mc. })}
$$

where I is the number of half-waves on the antenna.

Example:An antenna 4 half-waves longat 14.2

$$
\begin{aligned}
& \text { Me. would be } \frac{492(4-0.05)}{14.2}=\frac{492 \times 3.9 .}{14.2} \\
& =136.7 \text { feet, or } 136 \text { feet } 8 \text { inehes. }
\end{aligned}
$$

It is apparent that an antenna cut as a halfwave for a given frequency will be slightly off resonance at exactly twice that frequency (the

Fig. 14-17 - llorizontal patterns of radiation from an antenna three half-rates long. The solid line shows the pattern for a vertical angle of 15 degrees; dotted linef show deviation from the $\mathbf{1 5}$-degree pattern at 9 and 30 degrees. Minor lobes eoincide for all three angles.
sccond harmonic), because of the decreased influence of the end effects when the antenna is more than one-half wavelength long. The effect is not very important, except for a possible unbalance in the feeder system and consequent radiation from the feedline. If the antenna is fed in the exact center, no unbalance will occur at any frequency, but end-fed systems will show an unbalanee in all but one frequency, the frequency for which the antenna is cut.

Impedance and Power Gain

The radiation resistance as measured at a current loop becomes larger as the antenna length is increased. Also, a long-wire antenna radiates more power in its most favorable direction than does a half-wave antenna in its most favorable direction. This power gain is

Fig. 14-18 - llorizontal patterns of radiation from an antenna two watelengths long. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degrees. The minor lobes coincide for all three angles,
secured at the expense of radiation in other directions. Fig. $14-15$ shows how the radiation resistance and the power in the lobe of maximum radiation vary with the antenna length.

Directional Characteristics

As the wire is made longer in terms of the number of half-wavelengths, the directional effects change. Instead of the "doughnut" pattern of the half-wave antenna, the directional characteristic splits up into "lobes" which make various angles with the wire. In general, as the length of the wire is increased the direction in which maximum radiation occurs tends to approach the line of the antenna itself.

Directional characteristics for antennas one wavelength, three half-wavelengths, and two wavelengths long are given in Figs. 14-16, 14-17 and 14-18, for three vertical angles of radiation. Note that, as the wire length in-
creases, the radiation along the line of the antenna becomes more pronounced. Still longer antennas can be considered to have practically "end-on" directional characteristics, even at the lower radiation angles.

Methods of Feeding

In a long-wire antenna, the currents in adjacent half-wave sections must be out of phase, as shown in Fig, 14-14. The feeder system must not upset this phase relationship. This requirement is met by feeding the antenna at either end or at any current loop. A two-wire feeder cannot be inserted at a current node,
however, because this invariably brings the currents in two adjacent half-wave sections in phase; if the phase in one section could be reversed, then the currents in the feeders necessarily would have to be in phase and the feeder radiation would not be canceled out.

No point on a long-wire antenna offers a reasonable impedance for a direct match to any of the common types of transmission lines. The most common practice is to feed the antenna at one end or at a current loop with a low-loss open-wire line and accept the resulting standing-wave ratio of 4 or 5 . When a better match is required, "stubs" are generally used (described in the preceding chapter).

Multiband Antennas

As suggested in the preceding section, the same antenna may be used for several bands by operating it on harmonics. When this is done it is necessary to use resonant feeders, since the impedance matching for nonresonant feeder operation can be accomplished only at one frequency unless means are provided for changing the length of a matching section and shifting the point at which the feeder is attached to it.

Furthermore, the current loops shift to a new position on the antenna when it is operated on harmonics, further complicating the feed situation. It. is for this reason that a half-wave antemna that is center-fed by a solid-dielectrie line is practically useless for harmonic operation; on all even harmonics there is a voltage maximum occurring right at the feed point, and the resultant impedance mismatch is so bad that there is a large standing-wave ratio and consequently high losses arise in the solid dielectric. It is wise not to attempt to use on its harmonies a half-wave antenna center-fed with coaxial cable. High-impedance solid-dielectric lines such as 300 -ohm Twin-Inad may be used, however, provided the power does not exceed a few hundred watts.

When the same antenna is used for work in several bands, it must be realized that the directional characteristic will vary with the band in use.

Fig. 14-19 - Practical arrangement of a shortened antenna. The total length, $A+B+B+A$, should be a half-wavelength for the lowest-frequency band, usually 3.5 Mc. See Table 14-1 for lengths and tuning data.

Simple Systems

The most practical simple multiband antenna is one that is a half-wavelength long at the lowest frequency and is fed either at the center or one end with an open-wire line. Nlthough the standing-wave ratio on the feedline will not approach 1.0 on any band, if the losses in the line are low the system will be efficient. From the standpoint of reduced feedline radiation, a center-fed system is superior to one that is end-fed, but the end-fed arrangement is often more convenient and should not be ignored as a possibility. The center-fed antenna will not have the same radiation pattern as an end-fed one of the same length, except on frequencies where the over-all length of the antenna is a half-wavelength or less. The end-fed antenna acts like a long-wire antenna on all bands (for which it is longer than a half-wavelength), but the center-fed one acts like two antemnas of half that length fed in phase. For example, if a full-wavelength antenna is fed at one end, it will have a radiation pattern as shown in Fig. 14-16, but if it is fed in the center the pattern will be somewhat similar to Fig. 14-7, with the maximum radiation broadside to the wire. Either antenna is a good radiator, but if the radiation pattern is a factor, the point of feed must be considered.

Since multiband operation of an antenna does not permit matching of the feedline, some attention must be paid to the
length of the feedline if convenient transmitter-coupling arrangements are to be obtained. Table 14-I gives some suggested antenna and feeder lengths for multiband operation. In general, the length of the feedline should be some integral multiple of a quarter wavelength at the lowest frequency.

Antennas for Restricted Space

If the space available for the antenna is not large enough to accommodate the length necessary for a half-wave at the lowest frequency to be used, quite satisfactory operation can be secured by using a shorter antenna and making

TABLE 14-I Multiband Resonant-Line Fed Antennas			
Antenna Length (ft .)	Feeder L.engh (ji.)	Band	Type of Tuning
With end feed: 120	60	4-Mc. 'phone	spries
136	67	$\begin{aligned} & 3 . \bar{n} .11 \mathrm{c}, \text { c.n. } \\ & 1 \mathrm{H} \mathrm{Hc} \\ & 28 \mathrm{Jc} . \end{aligned}$	suries parallel parallel parallel
134	67	$\begin{aligned} & \text { 3.5.Mc. c.w. } \\ & =\mathrm{Mc} \text {. } \end{aligned}$	suries prarallel
67	33		series parallel parallel
With center feed: 137	67	$\begin{array}{r} 3.5 \text { Мc. } \\ 14 \text { Мс } \\ 28 \text { Мс. } \end{array}$	parallel parallel paralled parallel
67.5	34	7 Hc 14 Mc 28 \c.	parallel parallel parallel
The antenna lengthe given represent compromises for harmonic operation hecause of different end effects on different hands. The 136-foot endefed antenna is slighty long for 3.5 Mc., but will work well in the region ($3,000-3600 \mathrm{ke}$.) that quadruples into the $1 f-\mathrm{He}$. band. Bands not listed are not recommended for the particular antema. The cen-ter-fed systems are less critical as to length. (On harmonies, the end-fed and conter-fed antennas will not have the same directional characteris. tice, as explained in the text.			

up the missing length in the feeder system. The antenna itself may be as short as a quarter wavelength and still radiate fairly well, although of course it will not be as effective as one a half-wave long. Nevertheless, such a system is useful where operation on the desired band otherwise would be imposibible.

Resonant feeders are a practical necessity with such an antenna system, and a center-fed antenna will give best all-around performance. With end feed the feeder currents become badly unbalanced.

With center feed practically any eonvenient length of antenna can be used, if the feeder length is adjusted to accommodate at least one half-wave around the whole system.

A practical antenna of this type can be made as shown in Fig, 14-19, Table 14-II gives a few recommended lengths. However, the antema can be made any convenient length, provided the total length of wire is a half-wavelength at the lowest frequency, or an integral multiple of a half-wavelength.

Bent Antennas

Since the field strength at a distance is proportional to the current in the antenna, the
high-current part of a half-wave antenna (the center quarter wave, approximately) does most of the radiating. Advantage ean be taken of this fact when the space available does not promit building an antenna a halfwave long. In this case the ends may be bent, either horizontally or vertically, so that the

Fiis. 14-20-Folded arrangrment for shortened antennas. The total length is a half-wave, not including the feeders. 'The horizontal part is made as long as convenient and the ends dropped down to make up the refuired length. The cods nay be bent back on themselves like feeders to cancel radiation partially. The horizontal section should be at least a fuarter wave long.
total length equals a half-wave, even though the straightaway horizontal length may be as short as a quarter wave. The operation is illustrated in Fig. 14-20. Such an antenna will be a somewhat better radiator than a quarterwavelength antenna on the lowest frequency, but is not so desirable for multiband operation because the ends play an increasingly important part as the frequency is raised. The performance of the system in such a case is difficult to predict, especially if the ends are vertical (the most eonvenient arrangement) because of the complex combination of horizontal and vertical polarization which results as well as the dissimilar directional characteristics. However, the fact that the radiation pattern is ineapable of prediction does not det ract from the general usefulness of the antenna.

TABLE 14-II Artenna and Feeder Lengths for Short Multiband Antennas, Center-Fed			
Antenna Length (ft.)	Feerler Lengeh (fi.)	Mand	Type of Tuning
100	83	3.5 Mc . 14 Inc. 28 \e.	paralled series series srries or paralle\|
67.5	34		
50	4.3	$\begin{aligned} & 7 \mathrm{Hr} \\ & 14 \mathrm{Nc} \\ & 28 \mathrm{Hc} . \end{aligned}$	paralle! parallel parallel
33	51	$\begin{array}{r} 7 \mathrm{Mc} \\ 1.4 \mathrm{Mc} \\ 28 \mathrm{Wc} . \end{array}$	parallel parallel parallel
33	31	$\begin{aligned} & 7 \mathrm{Mc} \\ & 14 \mathrm{Hc} \\ & 28 \mathrm{Mc} . \end{aligned}$	parallel series paraliel

Grounded Antennas

Space restrictions of ten limit the size of an antenna to less than a half wavelength, partieularly on 160 meters and in mobile work. In these instances, an antenna an electrical quarter wavelength is generally used, since it is resonant and will offer a convenient load to a

Fig. I4-2I- A quarter-wavelength antenna can be fed directly with 50 ornm coaxial line (1) with a low stand-ing-wave ratio, or a coupling network can be used (B) that will permit a line of any impedance to be used. In (18), L_{1} and C_{1} should resonate to the operating frequency, and L_{1} should he larger than is normally used in a plate tank circuit at the same frequency.

By using multiwire antennas, the quarter-wave vertical can be fed with (C) 150 - or (I)) $300-10 h m$ line.
line or coupling device. Quarter-wavelength antennas must be grounded at one end, so they are usually used in a vertical position, to obtain the maximum effective height.

The impedance at the current loop of a quarter-wavelength grounded antenna is in the vieinity of 35 ohms, and thus the antenna may be fed at this point with 50 -ohm coaxial rable without a serious mismatch. This and other methods of feeding quarter-wave antennas is shown in Fig, 14-21.

ANTENNAS FOR 160 METERS

Results on 1.8 Me. will depend to a large extent on the antenna system and the time of day or night. Almost any random long wire that can be tuned to resonance will work during the night but it will generally be found very ineffective during the day. A vertical antenna - or rather an antenna from which the radiation is predominantly vertically polarized - is probably the best for $1.8-\mathrm{Mc}$. operation. A horizontal antoma (horizontally
polarized radiation) will give better results during the night than the day because daytime absorption in the ionosphere is so high at this frequeney that the reflected wave is too weak to be useful. At night the performance improves beause nighttime ionosphere conditions generally permit the reflected wave to return to earth without too much attenuation. The vertically-polarized radiator gives a strong ground wave that is effective day or night, and it is to be preferred on 1.8 Me .

There is another reason why a vertical antenna is better than a horizontal for $160-$ meter operation. The low-angle radiation from a horizontal antenna $1 / 8$ or $1 / 4$ wavelength above ground is almost insignificant. Any reasonable height is small in terms of wavelength, so that a horizontal antenna on 160 meters is a poor radiator at angles useful for long distances ("long", that is, for this band). Its chief usefulness is over relatively short distances at night.

Bent Antennas

Since ideal vertical antennas are generally out of the question for practical amateur work, the best compromise is to bend the antenna in such a way that the high-current portions of the antena run vertically. It is, of course, advisable to place the antenna so that the highest currents in the antenna oceur at the highest points above aetual ground. Two antenna systems designed along these lines are shown in Fig. 14-22. The antenna at A uses a loading coil, L_{2}, to increase the electrical length of the antenna to a half wave-

Fig. 14-22- Hent antenna for the 160 -meter band. In the system at A, the vertical portion (length X) should be made as long as possible. In either antenna system, $L_{1} C_{1}$ should resonate at 1900 kc ., roughly. ' T o adjust L_{2} in antenna A, resonate $L_{1} C_{1}$ alone to the operating frequency, then connect it to the antenna system and adjust L_{2} for maximum loading. Further loading can be olstained by increasing the coupling between $I, 1$ and the link.
length, so that the antenna can be fed at its high-voltage point through the coupling circuit $L_{1} C_{1}$. The antenna of Fig. 14-22B uses a full half-wavelength of wire but is bent so that the high-eurrent portion runs vertically. The horizontal portion running to $L_{1} C_{1}$ should run 8 or 10 feet above ground.

Grounds

A good ground connection is generally important on 160 meters. The ideal system is a number of wire radials buried a foot or two underground and cxtending 50 to 100 fcet from the central connection point. As many radials as possible should be used.

If the soil is good (not rocky or sandy) and gencrally moist, a low-resistance connection to the cold-water pipe system in the house will often serve as an adequate ground system. The connection should be made close to where the pipe enters the ground, and the surface of the pipe should be scraped clean before tightening the ground clamp around the pipe.

A 6 - or 8 -foot length of 1 -inch water pipe, driven into the soil at a point where there is

Fig. 14-23-An arrange. ment for keeping the main radiating portion of the antenna vertical.
considerable natural moisture, can be used for the ground connection. Three or four pipes, driven into the ground 8 or 10 feet apart and all joined together at the top with heavy wire, are more effective than the single pipe.

The use of a counterpoise is recommended where a buried system is not practicable or where a pipe ground cannot be made to have low resistance because of poor soil conditions. A counterpoise consists of a number of wires supported from 6 to 10 feet above the surface of the ground. Generally the wires are spaced 10 to 15 feet apart and located to form a square or polygonal configuration under the vertical portion of the antenna.

Long-Wire Directive Arrays

THE "V', ANTENNA

It has been emphasized that, as the antenna length is increased, the lobe of maximum radiation makes a more acute angle with the

Fip. 14-24 - The hasic "V" antenna, made by combining two long wires.
wire. Two such wires may be combined in the form of a horizontal " V " so that the main lobes from each wire will reinforce along a line bisceting the angle between the wires. This increases both gain and dircetivity, since the lobes in directions other than along the biscctor cancel to a greater or lesser extent. The horizontal " V " antenna therefore transmits best in either direction (is bidirectional) along a line bisecting the " V " made by the two wires. The power gain depends upon the length of the wires. Provided the necessary space is available, the " V " is a simple antenna to build and operate. It can also be used on harmonics, so that it is suitable for multiband work. A top view of the " V " antenna is shown in Fig. 14-24.

Fig. 14-25 shows the dimensions that should be followed for an optimum design to obtain maximum power gain for differentsized "V" antennas. 'The longer systems
give good performance in multiband operation. Angle α is approximately equal to twice the angle of maximum radiation for a single wire equal in length to one side of the "V."

The wave angle referred to in Fig. 14-25 is the vertical angle of maximum radiation, Tilting the whole horizontal plane of the "V" will tend to increase the low-angle radiation off the low end and decrease it off the high end.

The gain inercases with the length of the

Fig. 14-25-Design chart for horizontal "V" antennas, giving the enclosed angle between sides us, the length of the wires. Values in parentheses represent approximate wave angle for height of one-half wavelength.
wires, but is not exactly twice the gain for a single long wire as given in Fig. 14-15. In the longer lengths the gain will be somewhat increased, because of mutual coupling between the wires. A "Y" eight wavelengths on a leg, for instance, will have a gain of about 12 db . over a half-wave antenna. whereas twice the gain of a single eight-wavelength wire would be only approximately 9 (d .

The two wires of the "V" must be fed out of phase, for correct operation. A resonant line may simply be attached to the ends, as shown in Fig. 14-24. Altematively, a quarter-wave matching section may be employed and the antenna fed through a nonresonant line. If the antemat wires are made multiples of a half-wave in length (use Equation 14-G for computing the length), the matching section will be closed at the free end. A stub can be connected across the resonant line to provide a match, as described in the preceding chapter.

- THE RHOMBIC ANTENNA

The horizontal rhombic or "diamond" antenna is shown in Fig. 14-26. Like the "V," it requires a great deal of space for erection, but it is capable of giving excellent gain and directivity. It also can be used for multiband operation. In the terminated form shown in Fig. 14-26, it operates like a nonresonant trinsmission line, without standing waves, and is unidirectional. It may also be used without the terminating resistor, in which case there are standing waves on the wires and the antenna is bidirectional.

The important quantities influencing the design of the rhombic antenna are shown in Fig. 14-26. While several design methods may be used, the one most applicable to the conditions existing in amateur work is the so-called "compromise" method. The chart of lig. 14-27 gives design information based on a given length and wave angle to determine the remaining optimum dimensions for best operation. Curves for values of length of two, three

Fig. 14-26 - The horizontal rhombic or diamond antenna, terminated. Important design dimensions are indieated; details in text.

Fig. 14-27-Compromise-method dexign chart for rhombic antennas of varions leg lengths and wave angles. The following examples illustrate the use of the chart:
(1) Given:

Length (L) $=2$ wavelengths
Desired wave angle (\lrcorner) $=20^{\circ}$.
To Find: II, Φ.
Method:
Draw yertical line through point a ($L=2$ wavelengths) and point b on alseissa ($~\left(~=20^{\circ}\right.$). Read angle of tilt ($\$$) for point a and height (II) from intersection of line ab at point c on eurve H. Result:
$\phi=60.5^{\circ}$.
$H=0.73$ wavelength.
(2) Given:

Length (L) $=3$ wavelengths.
Angle of tilt $(\Phi)=78^{\circ}$.
To Find: II, د.
Method:
Draw a vertical line from point d on eurve $L=3$ wavelengths at $\Phi=78^{\circ}$. Read intersection of this line on eurve II (point e) for height, and intersection at point f on the abscissa for 1 .
Result:

$$
\begin{aligned}
H & =0.56 \text { wavelength. } \\
\Delta & =26.6^{\circ} .
\end{aligned}
$$

and four wavelengths are shown, and any intermediate values may be interpolated.

With all other dimensions correct, an inerease in length causes an increase in power gain and a slight reduction in wave angle. An increase in height also causes a reduction in wave angle and an increase in power gain, but not to the same extent as a proportionate increase in length. For multiband work, it is satisfactory to design the rhombic antenna on the basis of 14-Mc. operation, which will permit work from the 7 - to 28 -Me. bands as well.

A value of 800 ohms is correct for the terminating resistor for any properly-constructed rhombic, and the system behaves as a pure resistive load under this condition. The terminating resistor must be capable of safely dissipating one-half the power output (to eliminate the rear pattern), and should be noninductive. Such a resistor may be made up from a carbon or graphite rod or from a long $800-\mathrm{ohm}$ transmission line using
resistance wire. If the earbon rod or a similar form of lumped resistance is used, the device should be suitably protected from weather effects, i.e., it should be covered with a good asphaltic eompound and sealed in a small lightweight box or fiber tube. Suitable nonreactive terminating resistors are also available commercially.

For feeding the antenna, the antenna impedanee will be matehed by an 800 -ohm line, which may be constructed from No. 16 wire spaced 20 inches or from No. 18 wire spaced 16 inches. The 800 -ohm line is somewhat ungainly to install, however, and may be replaced by an ordinary 600 -ohm line with only a negligible mismatch. Alternatively, a matching section may be installed between the antenna terminals and a low-impedance
line. However, when such an arrangement is used, it will be necessary to change the mateh-ing-section constants for each different band on which operation is contemplated.

The same design details apply to the unterminated rhombic as to the terminated type. When used without a terminating resistor, the system is bidirectional. Resonant foeders are generally used with the unterminated rhombie. A nonresonant line may be used by incorporating a matching section at the antemna, but is not readily adaptable to satisfactory multihand work.

Rhombic antennas will give a power gain of 8 to 12 dt . or more for leg lengths of two to four wavelengths, when constructed according to the charts given. In general, the larger the antema, the greater the power gain.

Directive Arrays with Driven Elements

By combining individual half-wave antennas into an array with suitable spacing between the antennas (called elements) and feeling power to themsimultaneously, it is possible to make the radiated fields from the individual elements add in a favored direction, thus increasing the field strength in that direction as compared to that produced by one antema element alone. In other directions the fields will more or less oppose each other, giving a reduction in field strength. Thus a power gain in the desired direction is secured at the expense of a power reduction in other directions.

Besides the sparing betwern clements, the instantaneous direction of current flow (phase)

Fig. 14-28 - Collinear half-wave antemas in phase. The system at A is generally known as "two half-waves in phase." is is an extension of the system; in theory the mumber of dements may le carried on indefinitely, hut practical considerations usually limit the elements to four.
in individual elements determines the directivity and power gain. There are several methods of arranging the elements. If they are strung end to end, so that all lie on the same straight line, the elements are said to be collinear. If they are parallel and all lying in the same plane, the elements are said to be broadside when the phase of the current is the same in all, and end-fire when the currents are not in phase. Flements that receive power from the transmitter through the transmission line are called driven elements.

The power gain of a directive system in-
creases with the number of elements. The proportionality between gain and number of elements is not simple, however. The gain depends upon the effect that the spacing and phasing has upon the radiation resistance of the elements, as well as upon their number.

Collinear Arrays

Simple forms of collinear arrays, with the current distribution, are shown in Fig. 14-28. The two-element array at .1 is popularly known as "two half-waves in phase." It will be recognized as simply a center-fed antenna operated at its second harmonic. The way in which the number of elements may be extended for increased directivity and gain is shown in Fig. $14-28 B$, Note that quarter-wave phasing sections are used bet ween clements: these give the reversal in phase necessary to make the currents in individual antenna elements all flow in the same direction at the same instant.

Any phase-reversing section may be used as a quarter-wave matehing section for attaching a nonresonant feeder, or a resonant transmission line may be substituted for any of the quarter-wave sections. Also, the antemat may be endfed by any of the systems previously described, or any element may be centerfed. It is best to feed at the center of the array, so that the energy will be distributed as uniformly as possible among the elements.

The gain and directivity depend upon the number of elements and their spating, center-to-center. This is shown by Table 14-III. Although three-quarter wave spacing gives greater gain, it is difficult to construct a suitable phase-reversing system when the ends of the antenna elements are widely separated. For this reason, the half-wave spacing is most generally used in actual practice.

Collinear arrays may be mounted either horizontally or vertically, Horizontal mount-

TABLE 14-III Theoretical Gain of Collinear Half-Wave Antennas					
Spacing betureen renters of adjacent half-tcares	Number of half-waves in array vs. gain in db.				
	2	3	4	5	6
\% $\frac{1}{1 / 2}$ wave	1.8 3.2	3.3 4.8 4	4.5 6.0	5.3 8.0	6.8

ing gives increased horizontal directivity, while the vertical directivity remains the same as for a single element at the same height. Vertical mounting gives the same horizontal pattern as a single element, but concentrates the radiation at low angles. It is seldom practicable to use more than two elements vertically at frequencies below 14 Mc . because of the excessive height required.

Broadside Arrays

Parallel antenna elements with currents in phase may be combined as shown in Fig. 14-29 to form a broadside array, so named because

Fig. 14-29 - Broadside array using parallel half-wave elements. Arrons indicate the direction of current flow. Transposition of the feeders is necessary to bring the antenna currents in phase. Any reasonable number of elements may be used. The array is bidirectional, with maximum radiation "broadside" or perpendicular to the antenna plane (perpendiculariy throngh this page).
the direction of maximum radiation is broadside to the plane containing the antennas. Again the gain and directivity depend upon the number of elements and the spacing, the gain for different spacings being shown in Fig, 14-30, llalf-wave spacing generally is used, since it simplifies the problem of feeding the system when the array has more than two elements. Table $14-I V$ gives theoretical gain as a function of the number of elements with half-wave spacing.

Broadside arrays may be suspended either with the elements all vertical or with them horizontal and one above the other (stacked). In the former case the horizontal pattern becomes quite sharp, while the vertical pattern is the same as that of one element alone. If the array is suspended horizontally, the horizontal pattern is equivalent to that of one element while the vertical pattern is sharpened, giving low-angle radiation.

Ibroadside arrays may be fed either by resonant transmission lines or through quarterwave matching sections and nonresonant lines. In Fig. 14-29, note the "crossing over" of the
feeders, which is necessary to bring the elements into proper phase relationship.

Combined Broadside and Collinear Arrays

Broadside and collinear arrays may be combined to give both horizontal and vertieal directivity, as well as additional gain. The general plan of constructing such antennas is shown in Fig. 14-31. The lower angle of radiation resulting from stacking elements in the vertical plane is desirable at the higher frequencies. In general, doubling the number of elements in an array by stacking will raise the gain from 2 to 4 db ., depending upon whether vertical or horizontal elements are used - that is, whether the stacked elements are of the broadside or collinear type.

The arrays in Fig. 14-31 are shown fed from one end, but this is not especially desirable in the case of large arrays. Better distribution of energy between elements, and hence better over-all performance, will result when the feeders are attached as nearly as possible to the center of the array. Thus, in the eight-element array at A, the feeders could be introduced at the middle of the transmission line between the second and third set of elements, in which case the connecting line would not be transposed between the second and third set of elements. Alternatively, the antenna could be constructed with the transpositions as shown and the feeder connected between the adjacent ends of either the second or third pair of collinear elements.

A four-element array of the general type shown in Fig. 14-3113, known as the "lazy-H" antenna, has been quite frequently used. This arrangement is shown, with the feed point indicated, in Fig. 14-32.

End-Fire Arrays

Fig. 14-33 shows a pair of parallel half-wave elements with currents out of phase. This is known as an end-fire array, because it radiates best along the plane of the antennas, as shown.

The end-fire array may be used either ver-

Fig. 14.30 - Gain rs, spacing for two parallel half-wave clements comlined as cither broadside or enil-fire arrays.

rig. 14-31 - Combination broadside and collinear arrays. A, with vertical element:; B, with horizontal elements. Both arrays give low-angle radiation. Two or more sections may be used. The gain in dh. will be equal, approximately, to the sum of the gain for one set of broadside elements (Table 14-IV) plus the gain of one set of collintar elements (Table 14-III). For example, in A each broadside set has four elements (gain 7 db .) and each collinear set two elements (gain 1.8 db .). giving a total gain of 8.8 dh. In 13, each broadside set has two elements (gain 4 dh.) and each collinear set three elements (gain 3.3 db .), making the total gain 7.3 db . The result is not strietly aecurate, because of mutual coupling between the elements, but is good enough for practical purposes.
tically or horizontally (elements at the same hoight), and is well adapted to amatour work berause it gives maximum gain with relatively close element spacing. Fig. $14-30$ shows how the gain varies with spacing. End-fire elements may be combined with additional collinear and broadside elements to give a further increase in gain and directivity.

Fig. $14.32-\mathrm{A}$ four-element combination broadsidecollinear array, popmarly known as the "lazy-H" antema, A elosed fuarter-wave stub may be used at the ferd point to mateh into a 600 oolm transmission line, or resonant feeders may be attached at the point indicated. The gain over a half-wave antenna is 5 to 6 db .

Either resonant or nonresonant lines may be used with this type of array, Nonresonant lines preferably are matehed to the antenna through a quarter-wave matching section or phasing stub.

Phasing

Figs, 14-31 and 14-33 illustrate a point in connection with feeding a phased antenna system which sometimes is confusing. In Fig. 14-33, when the transmission line is comnected as at I there is no crossover in the line connecting the two antennas, but when the transmission line is comected to the center of the
connecting line the crossover becomes necessary (B). This is because in B the two halve, of the connecting line are simply branches of the same line. In other words, even though the connecting line in B is a half-wave in length, it is not aetually a half-wave line but tuo quarter-ana lincs in parallel. The same thing is true of the untransposed line of lig. $14-3113$. Note that, under these conditions, the antenna elements are in phase when the line is not tramposed, and out of phase when the tramsposition is made. The opposite is the case when the half-wave line simply joins two antenna elements and does not have the feedline connected to its center, as in Fig. 14-29.

Adjustment of Arrays

With arrays of the types just described, using half-wave spacing between elements, it

Fig. 14-3.3-End-fire arrays using parallel half-wave elements. The clements are shown with half-wave spare. ing to illustrate fecder connections. In practice, eleser spacings are desirable, as shown by Fig. 14-30. Direction of maximum radiation is slown hy the large arrows.
will usually suffice to make the length of each element that given by Equations $14-\mathrm{B}$ or $14-\mathrm{C}$. The half-wave phasing lines between the parallel elements should be of open-wire construction, and their length can be calculated from:

Length of half-wave line (feet) $=$

$$
\begin{equation*}
480 \tag{14-4}
\end{equation*}
$$

Freq. (Mc.)
Example: A hali-wavelength phasing line for 2S. 8 Mc. would be $\frac{480}{28.8}=16,66$ feet $=16$ feet 8 inches.
The spacing between elements ean be made equal to the length of the phasing line. No special adjustments of line or element length or spacing are needed, provided the formulas are followed closely:

TABLE 14-IV Theoretical Gain rs. Number of Broadside Elements (Half-Wave Spacing)	
No. of elements	
2	
3	

With collinear arrays of the type shown in Fig. 14-2813, the same formula may be used for the element length, while the length of the quarter-wave phasing section can be found from the following formula:

Length of quarler-wave line (feet) $=$
(14-I)

$$
\frac{240}{\text { Freq. (Mc.) }}
$$

Example: A quarter-wavelength phasing line
for 14.25 Mc . would be $\frac{240}{14.25}=16.84$ feet $=16$
feet 10 inches.
If the array is fed in the center it should not be necessary to make any particular adjustments, although, if desired, the whole sristem can be resonated by connecting an r.f. ammeter in the shorting link of each phasing section and moving the link back and forth to find the maxi-mum-current position. This refinement is hardly necessary in practice, however, so long as all clements are the same length and the system is symmetrical.

Fig. 14-34-Simple direetive-antenna systems. A is a twoelement end-fire array; IB is the same array with center feed, which permits use of the array on the second harmonic, where it hecomes a four-element array with quarter-wave spacing. C is a four-element end-fire array with $1 / 8$-wave spaeing. 1) is a simple two-element broadside array using extended in-phase antennas ("extended double-Zepp"). The gain of A and B is slightly over $4 d$. On the second harmonic, 13 will give about 5 -dlb, gain. With C, the gain is approximately $6 \mathrm{db} .$, and with D, approximately 3 dh. In $A, 13$ and C, the phasing line contrilutes about $1 /$ wavelength to the transmission line; when 13 is used on the second harmonic, this contribution is $1 / 8$ wavelength. Alternatively, the antenna cods may be bent to meet the transmission line, in which ease each fecder is simply connected to one antenna. In 1), points $Y-Y$ indicate a puarter-waye point (high current) and X. X a half-wave point (high volt age). The line may be extended in multiples of quarter waves if resonant feeders are to be used. A, 13 and C may be suspended on woolen spreaters. The plane containing the wires should be parallel to the pround.

The phasing sections can be made of $300-$ ohm Twin-Lead, if low power is used. However, the lengths of the phasing sections must then be only 84 per cent of the length obtained in the two formulas above.

Example: The half-wavelength line for 28.8
Mc. would become $0.84 \times 16.66=13.99$ feet $=$ Mc. would become $0.84 \times 16.66=13.99$ feet $=$

Using Twin-Lead for the phasing sections is most useful in arrays such as that of Fig. 14-2813, or any other system in which the element spacing is not controlled by the length of the phasing section.

Simple Arrays

Several simple directive-antenna systems using driven elements have achieved rather wide use among amateurs. Four of these systems are shown in Fig. 14-34. Tuned feeders are assumed in all cases; however, a matching section readily can be substituted if a nonresonant transmission line is preferred. Dimensions given are in terms of wavelength; actual lengths can be calculated from the equations for the antenna and from the equation above for the resonant transmission line or matching section. In cases where the transmission line proper connects to the midpoint of a phasing line, only half the length of the latter should be added to the line to find the quarter-wave point.

At A and 13 are two-element end-fire arrangements using close spacing. They are electrically equivalent; the only difference is in the method of connecting the feeders. I3 may also be used as a four-element array on the second harmonic, although the spacing is not quite optimum (Fig. 14-30) for such operation.

A close-spaced four-element array is shown at C. It will give about 2 db . more gain than the two-element array.
The antenna at D, commonly known as the "extended double-Zepp," is designed to take adrantage of the greater gain possible with collinear antennas having greater than halfwave conter-to-center spacing, but without introducing feed complications. The elements are made longer than a half-wave in order to bring this about. The gain is 3 db . over a single half-wive antenna, and the broadside directivity is fairly sharp.

The antennas of A and B may be mounted either horizontally or vertically; horizontal suspension (with the elements in a plane parallel to the ground) is recommended, since this tends to give low-angle radiation without an unduly sharp horizontal pattern. Thus these systems are useful for coverage over a wide horizontal angle. The system at C , when mounted horizontally, will have a sharjer horizontal pattern than the two-element arrays because of the effect of the collinear arrangement. The vertical pattern, however, will be the same as that of the antennas in A and B,

Directive Arrays with Parasitic Elements

Parasitic Excitation

The antema arrays previously deseribed are bidirectional; that is, they will radiate in directions both to the "front" and to the "back" of the antenna system. If radiation is wanted in only one direction, it is necessary to use different element arrangements. In most of these arrangements the additional elements receive power by induction or radiation from the driven element, generally called the "antenna," and reradiate it in the proper phase relationship to achieve the desired effect. These elements are called parasitic elements, as contrasted to the driven elements which receive power directly from the transmitter through the transmission line. They are widely used to give additional gain and directivity to simple antennas.

The parasitic element is called a director when it reinforces radiation on a line pointing to it from the antenna, and a reflector when the reverse is the case. Whether the parasitic element is a director or reflector depends upon the parasitic-clement tuning (which usually is adjusted by changing its length) and, particularly when the element is self-resonant, upon the spacing between it and the antenna.

Gain vs. Spacing

The gain of an antema-reflector or an an-tema-director combination varies chiefly with the spacing between the clements. The way in which gain varies with sparing is shown in Fig. 14-35, for the special case of self-resonant

Fig. $14-35$ - Gain es. element spacing for an antenna and one parasitic element. The reference point, 0 dh ., is the field strongth from a half-wave anterna alome. The greatest gain is in direction \boldsymbol{A} at spacings of bess than 0.14 wavelength, and in direction B at greater spacings. The fromt-to-hack ratio is the difference in dh. hetween enrves A and B. Variation in radiation resistance of the driven elementalso is shown. These curves are for a selfresonant parasitic element. At most spacings the gain as a reflector can be increased by slight lengthening of the parasitic elempnt; the gain as a director ean be increased lyy shortening. This alsor improves the front-to-bach ratio.

Fig, 14-36-1lalf-wave antennas with parasitic clements. A, with director: 13 , with reflector: C. with both dircetor and reflector: D, twodirectors and whe redector. Gam is approximately as shown ly lip, 14-35, in the firat two cases, and depends upon the spacing and lengilu of the parasitie element. In the three- and fomerelement arrays a reflector spacing of 0.15 wavelengtl, will give slightly more gain than 0.1 -wavelength spacing. Arrows show the direction of maximum radiation.
parasitic elements. This chart also shows how the attenuation to the "rear" varies with spacing. The same spacing does not necessarily give both maximum forward gain and maximum backward attenuation. Backward attenuation is desirable when the antenna is used for receiving, since it reduces interference coming from the opposite direction to the signal.

Element Lengths

The antema length is given approximately by the formula for a half-wavelength antema. The director and reflector lengths must be determined experimentally for maxinum performance. The preferable method is to aim the antenna at a receiver a mile or more distant and have an olserver check the signal strength (on the receiver s-meter) while the reflector or director is adjusted a fow inches at a time, until the length which gives maximum signal is found. The attenuation may be similarly cherked, the length being adjusted for minimum signal. In general, for best front-to-bark ratio the length of at director will be about 4 per cent less than that of the antenna. The reflector will be about is per cent longer than the antenna.

Simple Systems: the Rotary Beam

Four practical combinations of antema, reflector and director elements are shown in Fig. 14-36. Spacings which give maximum gatin
or maximum front-to-back ratio (ratio of power radiated in the desired direction to power radiated in the opposite direction may be taken from Pig. 14-35. In the chatt, the front-to-back ratio in db. will be the sum of gain and attenuation at the same spacing.

Systems of this type are popular for rotarybeam antennas, where the entire antenna system is rotated, to permit its gain and directivity to be utilized for any compass direction. They may be mounted either horizontally fwith the plane containing the elements parallel to the earth or vertically.

Arays using more than one parasitic element, such as those shown at C and D in Fig. 14-36, will give more gain and directivity than is indicated for a single reflector or director by the curves of Fig. 14-3.5. The gain with a properly-adjusted three-element array (antenna, director and reflector) will be is to 7 db. over a half-wave antenna. Somewhat higher gain still can be secured by adding a second director to the sistem, making a four-element array. The front-to-hack ratio is correspondingly improved as the number of elements is increased.

The elements in close-spaced (less than ondquarter wavelength element spacing) arras* preferably should be made of tubing of onehalf to one-inch diameter. A conductor of large diameter not only has less ohmia resistance but also has lower Q; both thes. factors are important in close-spaced arrays because the impedance of the driven element usually is quite low compared to that of a single half-wave dipole. With 3- and 4-element arrays the radiation resistance of the driven element may be as low as 6 or 8 ohms. so that ohmic losses in the conductor can consume an appreciable fraction of the power. Low radiation resistance means that the antenna will work over only a small frequeney range without retuning unless large-diameter conductor: are used. In addition, the antenna elements should be rigid because if they are free to move with respeet to each other, the array will tend to show troublesome detuning effects under windy conditions.

Feeding Close-Spaced Arrays

While any of the usual methods of feed may be applied to the driven element of a parasitic array, the fact that, with close spacing, the radiation resistance as measured at the center of the driven element drops to a very low value makes somesystems more desirable than ot hers. The preferred methods are shown in lig. 14-38. Revonant feeders are not recommended for lengths greater than a half-wavelength unless open-wire lines of copper-tubing conductors are used.

Three versions of the popular " T "-mateh are shown, for two-wire lines of Twin-Lead at A, for single coaxial line at 13 , and for double coaxial line at C. The mateh is adjusted by moving the shorting bars, keeping them
equidistant from the center, until the minimum s.w.r. is ohtained on the line. If the s.w.r. minimum is not 1.5 or less, the transmitter frequency should be shifted to find the frequeney where the minimum s.w.r. occurs. If it is higher than the original test frequency, it indicates that the antenna element length should be increased. The parasitic element lengths taken from Fig. 14-37 should not require any adjust ment, but it may be necessary to change the position of the shorting bars and the length of the antenna element once or twice hofore the s.w.r. at the test frequency is acceptable, The matching section may be made of the same type of conductor as the clement and spaced a few inches from it. The length of the matrhing section will be greater with higher-impedance lines and with wider element spacing. A good starting point for a 28-Mc. wide-spared (0.2 I)-0.15R) beam fed with 300 -ohm Twin-Lead is 28 inches each side of center. A similar antenna and line on 14 Me . might require about 56 inches each side.

The gamma mateh, shown in Fig. 14-381), can be considered as one-half a "T"-matreh,

Fig. 18-37- Director, antenna and reflector lengths for three-element beams, for element spacing of 0.1 to 0.2 wavelength. The greater spacing will result in slightly higher gain. The lengths indicated are for maximum main - some improvement in front-to-baek ratio may the obtained by adjustment of the refiector lensth.

Fig. 14-38-Recommended methots of feeding the driven antema element in close-spaced parasitic arrays. The parasitic elements are not shown, A, B, C, "I"". mateh; I), "gamma" match; F, delta matehing transformer: F, coaxialdine quarter-wave matehing seetion; (;) folded dipole. Adjustment details are diseused in the text.
and the same principles hold. IIowever, when the length of the element is changed, in an effort to minimize the s.w.r., only the side to which the movable bar is connected should be changed - the other side should remain at one-half the length obtained from Fig. 1t-37. With 52 -ohm coaxial line feed, the length of the matching element may run around 15 to 20 inches in a $28-M c$. beam, and twice this value in a $14-\mathrm{Mr}$. array.

The delta matching transformer shown at \mathbf{E} is probably easier to install, mechanically, than any of the others. The positions of the taps (dimension a) must be determined experimentally, along with the length, b, by checking the standing-wave ratio on the line as adjustments are made. Dimension b should be about 15 per cent longer than a.

The coaxial-line matching section at F will work with fair accuracy into a close-spared parasitic array of 2,3 or 4 elements without necessity for adjustment. The line is used as a quarter-wavelength transformer, and, if its characteristic impedance is 70 ohms (IRG$11 / \mathrm{U}$), it will give a good mateh to a 600 -ohm line when the resistance at the termination is about 8.5 ohms. Over a range of 5 to 15 ohms the mismatch, and therefore the standingwave ratio, will be less than 2-to-1. The length of the quarter-wave section may be calculated from
Length (feet) $=\frac{246 V^{\circ}}{f}$.
where $V^{\circ}=$ Velocity factor $f=$ Frequency in Mc.
Example: A quarter-wave transformer of $12 G-11 / \mathrm{U}$ is to be used at 28.7 Mc . From the table in Chapter Thirteen, $V=0.66$,

$$
\begin{aligned}
\mathrm{I}_{\text {enuth }}=\frac{246 \times 0.66}{28.7} & =5.67 \text { feet } \\
& =5 \text { feet } 8 \text { inches }
\end{aligned}
$$

The folded-dipole antenna, Fig. 14-38G, presents a good match for the line when properly designed. Details are given in Chapter Thirteen. Different impedance step-up ratios can be obtained by varying the number of conductors or their diameter-ratio.

Sharpness of Resonance

Peak performance of a multielement parasitic array depends upon proper phasing or tuning of the elements, which can be exact for one frequency only. In the case of close-spaced arrays, which because of the low radiation resistance usually are quite sharp-tuning, the frequency range over which optimum results can be secured is only of the order of 1 or 2 per cent of the resonant frequency, or up to about 500 kc . at 28 Mc . However, the antenna can be made to work satisfactorily over a wider frequency range by adjusting the director or directors to give maximum gain at the highest frequency to be covered, and by adjusting the reflector to give optimum gain at the lowest frequeney. This sacrifices some gain at all frequencies, but maintains more uniform gain over a wider frequency range.

Is mentioned in the preceding paragraphs, the use of large-diameter conductors will broaden the response curve of an array because the larger diameter lowers the Q. This causes the reactances of the elements to change rather slowly with frequency, with the result that the tuning stays near the optimum over a considerably-wider frequency range than is the case with wire conductors.

Fig. 14-39-Antenna-switching arrangements for various types of antennas and coupling systems. A - lor tuned lines with separate antenna tuners or low-impedance lines, B - For a voltage-fed antenna. C - For a tuned line with a single antenna tuner. 1) - For a voltage-fed antenna with a single tuner. E-For two tuned-line antennas with a tuner for each antenna or for two low-impedance lines. F - For combinations of several two-wire lines.

Combination Arrays

It is possible to combine parasitic elements with driven elements to form arrays composed of collinear driven and parasitic elements and combination broadside-collinear-parasitic elements. Thus two or more collinear elements might be provided with a collinear reflector or director set, one parasitic element to each driven element. Or both directors and reflectors might be used. A broadside-collinear array could be treated in the same fashion.

When combination arrays are built up, a rough approximation of the gain to be expected may be obtained by adding the gains for each type of combination. Thus the gain of two broadside sets of four collinear arrays with a set of reflectors, one behind each element, at quarter-wave spacing for the parasitic elements, would be estimated as follows: From Table 14-III, the gain of four collinear elements is 4.5 db . with half-wave spacing; from Fig. 14-30 or Table 14-IV, the gain of two broadside elements at half-wave spacing is 4.0 db .; from Fig. 14-35, the gain of a parasitic reflector at guarter-wave spacing is 4.5 db . The total gain is then the sum, or 13 db . for the sixteen elements. Note that it makes no difference in the final result if the array is considered as a grouping of several sets of antennas plus reflectors or as an array of antennas plus an array of reflectors. The actual gain of the combination array will depend, in practice, upon the way in which the power is distributed between the various elements and upon the effect which mutual coupling between elements has upon the radiation resistance of the array, and may be somewhat higher or lower than the estimate.

A great many directive-antenna combinations can be worked out by combining elements according to these principles.

RECEIVING ANTENNAS

Nearly all of the properties possessed by an antenna as a radiator also apply when it is used for reception. Current and voltage distribution, impedance, resistance and directional characteristics are the same in a receiving antenna as if it were used as a transmitting antenna. This reciprocal behavior makes possible the design of a receiving antenna of optimum performance based on the same considerations that have been discussed for transmitting antennas.

The simplest receiving antenna is a wire of random length. The longer the wire, the more energy it abstracts from the wave. Because of the ligh sensitivity of modern receivers, a large antenna is not necessary for pieking up signals at good strength. An indoor wire only 15 to 20 feet long will serve at frequencies below the v.h.f. range, although a longer wire outdoors is better.

The use of a tuned antenna improves the operation of the receiver, however, because the signal strength is raised more in proportion to the stray noises picked up than is the case with wires of random length. Since the transmitting antenna usually is given the best location, it can also be expected to serve hest for receiving. This is especially true when a directive antenna is used, since the directional effects and power gain of directive transmitting antennas are the same for receiving as for transmitting.

In scleeting a directional receiving antenna it is preferable to choose a type that gives very little response in all but the desired direction (small minor lobes). This is even more important than high gain in the desired direction, because the cumulative response to noise and unwanted-signal interference in the smaller
lobes may offset the advantage of increased desired-signal gain. The feedline from the antenna should be balanced so that it will not pick up signals and greatly reduce the directivity effects.

Antenna Switching

Switching of the antenna from receiver to transmitter is commonly done with a changeover relay, connected in the antenna leads or the coupling link from the antenna tuner.

If the relay is one with a 115 -volt a.e. coil, the switch or relay that controls the transmitter plate power will also cont rol the ant onna relay. If the convenience of a rolay is not desired, porcelain knife switches can be used and thrown by hand.

Typical arrangements are shown in Fig. $1+39$. If coaxial line is used, the use of a coaxial relay is recommended, although on the lower-frequence bands a regular switch or change-ovor relay will work almost as well.

Antenna Construction

The use of good materials in the antenna system is important, since the antenna is exposed to wind and woather. To keep clectrical losses low, the wires in the antenna and feeder system must have good conductivity and the insulators must have low dielectric loss and surface leakage, particularly when wet.

For short antennas, No. 14 gauge hard-drawn enameled copper wire is a satisfactory conductor. For long antennas and directive arrays, No. 14 or No. 12 enameled copper-clad steel wire should be used. It is best to make feeders and matehing stubs of ordinary soft-drawn No. 14 or No. 12 enameled copper wire, since harddrawn or copper-clad steel wire is difficult to handle unless it is under considerable tension at all times. The wires should be all in one piece; where a joint cannot be avoided, it should be carefully soldered.

In building a two-wire open line, the spacer insulation should be of as good quality as in the antenna insulators proper. For this reason, good ceramic spacers are advisable. Wooden dowels boiled in paraffin may be used

Fig. 14-40-I Ietails of a simple 40-foot "A"-frame mast suitable for erection in locations where space is limitod.
with untuned lines, but their use is not recommended for tuned lines. The wooden dowels can be attached to the feeder wires by drilling small holes and binding them to the feeder: with wire.

At points of maximum voltage, insulation is most important, and Pyrex glass, Isolantite or steatite insulators with long leakage paths are recommended for the antenna. Glazed porcelain also is satisfactory. Insulators shoukl be cleaned once or twice a year, especially if they are subjected to much smoke and soot.

In most cases poles or masts are desirable to lift the antenna clear of surrounding buildings, although in some locations the antenna will be sufficiently in the clear when strung from one chimney to another or from a housetop to a tree. Small trees usually are not satisfactory as points of suspension for the antenna because of their movement in windy weather. If the antenna is strung from a point near the center of the trunk of a large tree, this difficulty is not so serious. Where the antenna wire must be strung from one of the smaller branches, it is best to tie a pulley firmly to the branch and run a rope through the pulley to the antenna, with the other end of the rope attached to a counterweight near the ground. The counterweight will keep the tension on the antenna wire reasonably constant even when the branches sway or the rope tightens and stretches with varying climatic conditions.

Telephone poles, if they can be purchased and installed economically, make excedlent supports because they do not ordinarily require guying in heights up to 40 feet or so. Many low-cost television-antenna supports are now available, and they should not be overlooked as possible antenna aids.

- "A"-FRAME MAST

The simple and inexpensive mast shown in Fig. $14-40$ is satisfactory for heights up to 35 or 40 feet. Clear, sound lumber should be selected. The completed mast may be protected by two or three coats of house paint.

If the mast is to be erected on the ground, a couple of stakes should be driven to keep the bottom from slipping and it may then be "walked up" by a pair of helpers. If it is to go on a roof, first stand it up against the side of
the building and then hoist it from the roof, keeping it vertical. The whole assembly is light enough for two men to perform the complete operation - lifting the mast, carrying it to its permanent berth, and fastening the guys with the mast vertical all the while. It is entirely practicable, therefore, to erect this type of mast on any small, flat area of roof.

By using $2 \times 3 \mathrm{~s}$ or $2 \times 4 \mathrm{~s}$, the height may be extended up to about 50 fect. The 2×2 is too flexible to be satisfactory at such heights.

SIMPLE 4O-FOOT MAST

The mast shown in Fig. 14-41 is relatively strong, easy to construct, readily dismantled, and costs very little, Like the " A"-frame, it is suitable for heights of the order of 40 feet.

The top section is a single 2×3, bolted at the bottom between a pair of $2 \times 3 \mathrm{~s}$ with an overlap of about two feet. The lower section thus has two legs spaced the width of the narrow side of a 2×3. At the bottom the two legs are bolted to a length of 2×4 which is set in the ground. A short length of 2×3 is placed between the two legs about halfway up the bottom section, to maintain the sparing.

The two back guys at the top pull against the antenna, while the three lower guys prevent buckling at the center of the pole.

The 2×4 section should be set in the ground so that it faces the proper direction, and then made vertical by lining it up with a plumb bob. The holes for the bolts should be drilled before-

hand. With the lower section laid on the ground, bolt A should be slipped in place through the three pieces of wood and tightened just enough so that the section can turn freely on the bolt. Then the top section may be bolted in place and the mast pushed up, using a ladder or another 20 -foot 2×3 for the job. As the mast goes up, the slack in the guys can be taken u_{p} so that the whole structure is in some measure continually supported. When the mast is vertical, bolt B should be slipped in place and both A and B tightened. The lower guys can then be given a final tightening, leaving those at the top a little slack until the antenna is pulled up, when they should be adjusted to pull the top section into line.

- GUYS AND GUY ANCHORS

For masts or poles up to about 50 feet, No. 12 iron wire is a satisfactory guy-wire material. Heavier wire or stranded cable may be used for taller poles or poles installed in locations where the wind velocity is high.

More than three guy wires in any one set usually are unnecessary. If a horizontal antenna is to be supported, two guy wires in the top set will be sufficient in most cases. These should run to the rear of the mast about 100 degrees apart to offset the pull of the antenna. Intermediate guys should be used in sets of three, one running in a direction opposite to that of the antenna, while the other two are spaced 120 degrees either side. This leaves a clear space under the antenna. The guy wires should be adjusted to pull the pole slightly back from vertical before the antenna is hoisted so that when the antenna is pulled up tight the mast will be straight.

When raising a mast that is big enough to tax the facilities available, it is some advantage to know nearly exactly the length of the guys. Those on the side on which the pole is lying can then be fastened temporarily to the anchors beforehand, which assures that when the pole is raised, those holding opposite guys will be able to pull it into nearly-vertical position with no danger of its getting out of control. The guy lengths can be figured by the right-angledtriangle rule that "the sum of the squares of the two sides is equal to the square of the hypotenuse." In other words, the distance from the base of the pole to the anchor should be measured and squared. To this should be added the square of the pole length to the point where the guy is fastened. The square root of this sum will be the length of the guy.

Guy wires should be broken up by strain insulators, to avoid the possibility of resonance at the transmitting frequency. Common practice is to insert an insulator near the top of each guy, within a few feet of the pole, and then cut each section of wire between the insulators to a length which will not be resonant either on the fundamental or harmonics. An insulator every 25 feet will be satisfactory for frequencies up to 30 Mc . The

Fig. 14-42 - Using a lever for \mathbf{t} wisting heavy guy wires.

For short antennas and temporary installations, heavy clothesline or window-sash cord may be used. However, for more permanent jobs, $3 / 8$-inch or $1 / 2$-inch waterproof hemp rope should be used. Even this should be replaced about once a year to insure against breakage.

Nylon rope, used during the war as glider tow rope, is, of course, one of the best materials for halyards, since it is weatherproof and has extremely long life.

It is advisable to carry the pulley rope back up to the top in "endless" fashion in the manner of a flag hoist so that if the antenna breaks close to the pole, there will be a means for pulling the hoisting rope back down.
insulators should be of the "egg" type with the insulating material under compression, so that the guy will not part if the insulator breaks.

Twisting guy wires onto "egg" insulators may be a tedious job if the guy wires are long and of large gauge. The simple time- and finger-saving device shown in Fig. 14-42 can be made from a piece of heavy iron or steel by drilling a hole about twice the diameter of the guy wire about a half inch from one end of the piece. The wire is passed through the insulator, given a single turn by hand, and then held with a pair of pliers at the point shown in the sketch. By passing the wire through the hole in the iron and rotating the iron as shown, the wire may be quickly and neatly twisted.

Guy wires may be anchored to a tree or building when they happen to be in convenient

Fig. 14-43 - Pipe guy anchors. One pipe is sufficient for small masts. but two installed as shown will provide the additional strength required for the largerpoles.
spots. For small poles, a 6-foot length of 1-inch pipe driven into the ground at an angle will suffice. Additional bracing will be provided by using two pipes, as shown in Fig. 14-43.

- HALYARDS AND PULLEYS

Halyards or ropes and pulleys are important items in the antenna-supporting system. Particular attention should be directed toward the choice of a pulley and halyards for a high mast since replacement, once the mast is in position, may be a major undertaking if not entirely impossible.

Galvanized-iron pulleys will have a life of only a year or so. Especially for coastal-area installations, marine-type pulleys with hardwood blocks and bronze wheels and bearings should be used.

Fig. $1+4$ - A - Anchoring feeders takes the strain from feedthrough insulators or window glass. B - Going through a full-length screen, a eleat is fastened to the frame of the sereen on the inside. Clearance holes are eut in the cleat and also in the screen.

B BRINGING THE ANTENNA OR FEEDLINE INTO THE STATION

The antenna or transmission line should be anchored to the outside wall of the buiding, as shown in Fig. 14-44, to remove strain from the lead-in insulators. Holes cut through the walls of the building and fitted with feed-through insulators are undoubtedly the best means of bringing the line into the station. The koles should have plenty of air clearance about the conducting rod, especially when using tuned lines that develop high voltages. Probahly the best place to go through the walls is the trimming board at the top or bottom of a win-

Fig. $14.45-\mathrm{An}$ antenna lead-in panel may be placed over the top sash or under the lower sash of a window. Substituting a sinaller height sashit in trulf the window will simplify the weatherprofing prothem where the sash overlap.

Fig, $14-46$ - Low-loss lightning arrestors for transmit. ting-antenna installations.
dow frame which provides flat surfaces for lead-in insulators. Either cement or rubber gaskets may be used to waterproof the exposed joints.

Where such a procedure is not permissible, the window itself usually offers the best opportunity. One satisfactory method is to drill holes in the glass near the top of the upper sash. If the glass is replaced by plate glass, a stronger job will result. Plate glass may be obtained from automobile junk yards and drilled before placing in the frame. The glass itself provides
insulation and the transmission line may be fastened to bolts fitting the holes. Rubber gaskets will render the holes waterproof. The lower sash should be provided with stops to prevent damage when it is raised. If the window has a full-length screen, the scheme shown in Fig. 14-44B may be used.

As a less permanent method, the window may be raised from the bottom or lowered from the top to permit insertion of a board which carries the feed-through insulators. This lead-in arrangement can be made weatherproof by making an overlapping joint between the board and window sash, as shown in Fig. 14-45.

LIGHTNING PROTECTION

An ungrounded radio antenna, particularly if large and well jelevated, is a lightning hazard. When grounded, it provides a measure of protection. Therefore, grounding switches or lightning arresters should be provided. Examples of construction of low-loss arresters are shown in Fig. 14-46. At A, the arrester electrodes are mounted by means of stand-off insulators on a fireproof asbestos board. At I3, the electrodes are enclosed in a standard steel outlet box. The gaps should be made as small as possible without danger of breakdown during operation. Lightning-arrester systems require the best ground connection obtainable.

The most positive protection is to ground the antenna system when it is not in use; grounded flexible wires provided with clips for connection to the feeder wires may be used. The ground lead should be short and run, if possible, directly to a driven pipe or water pipe where it enters the ground outside the building.

Rotary-Beam Construction

It is a distinet advantage to be able to shift the direction of a beam antenna at will, thus securing the bencfits of power gain and directivity in any desired compass direction. A favorite method of doing this is to construct the antenna so that it can be rotated in the horizontal plane. Obviously, the use of such rotatable antennas is limited to the higher frequencies - 14 Me . and above - and to the simpler antenna-element combinations if the structure size is to be kept within praeticable bounds. For the 14 - and $28-\mathrm{Mc}$. bands such antennas usually consist of two to four elements and are of the parasitic-array typo described carlier in this ehapter. At 50 Mc , and higher it becomes possible to use more elaborate arrays because of the shorter wavelength and thus obtain still higher gain. Antennas for these bands are described in another chapter.

The problems in rotary-beam construction are those of providing a suitable mechanical support for the antenna elements, furnishing a means of rotation, and attaching the trans-
mission line so that it cloes not interfere with the rotation of the system.

Elements

The antenna clements usually are made of metal tubing so that they will be at least partially self-supporting, thus simplifying the supporting structure. The large diameter of the conductor is beneficial also in reducing resistance, which becomes an important consideration when close-spaced elements are used.

Dural tubes of ten are used for the elements, and thin-walled corrugated steel tubes with copper coating also are available for this purpose. The elements frequently are constructed of seetions of telescoping tubing making length adjustments for tuning quite easy. Electrician's thin-walled conduit also is suitable for rotary-beam elements.

If steel clements are used, special precautions should be taken to prevent rusting. Even cop-per-coated steel does not stand up indefinitely, since the coating usually is too thin.

Hig. $\quad 4-47-$ A ladder-supported 3-element $28-$ V. beant. It is monnted on a pipe mast that projerols through a liearing in the roof and is turned from the attic operating room. (WIMIRK in August, 1946, QS'T.)

The clements should be eoated both inside and out with slow-drying aluminum paint. For roating the inside, a spray gun may be used. or the paint may be poured in one end while rotating the tubing. The excess paint maty be eaught as it comes out the bottom end and poured through again until it is certain that the entire inside wall hats been eovered. The ends should then be plugged up with corks sealed with glyptal varnish.

Supports

The supporting framework for a rotary beam usually is made of wood or metal, using as lightweight construction as is eonsistent with the required strength. Generally, the frame is not required to hold much weight, hut it must be extensive enough so that the antenna elements can be supported near rnough to their ends to prevent excessive sag, and it must have sufficient strength to stand up under the maximum wind in the locality. The design of the frame will depend chicfly on the size of the antenna elements, whether they are mounted horizontally or vertically, and the method to be employed for rotating the antenna.

The general preference is for horizontal polarization, primarily because less height is required to clear surrounding obstructions when all the antenna elements are in the horizontal plane. This is important at 14 and 28 Mc. where the clements are fairly long.

The support may be coupled to the pole by any convenient means which permits rotation or, alternatively, it may be firmly fastened to the pole and the latter rotated in bearings affixed to the side of the house.

One type of construction is shown in Fig. 14-47. It uses a sertion of ordinary ladder as the main support, with crosspieces to hold the tubing antenna elements

Metal Booms

Metal can be used to support the elements of the rotary beam. For 28 Me., a piece of 2 inch diameter duraluminum lubing makes : grod "boom" for supporting the rements. The clements can be made to slide through suitable holes in the hoom, or special clamps and brackets ean be fashioned to support the elements. By making use of tubing or duraluminum angle, a light weight support for a 20 meter antema can be built. The four-element beam shown in Figs. 14-48, $1+49$ and $1+$-50) is an example. It uses $13 / 4$-inch angle for the main pieces and $3 / 4$-inch angle for the other members, and the entire framework plus elements weighs only forty mounds. This simplifies ronsiderably the problem of support.

The following aluminum pieces are required: $1-1$-ineh diameter tubing, 12 feet long. 1/16-inch wall
$x-7 / 8$-inch ditmeter tubing, 12 feet long, $1 / 32^{-}$ inch wall. Must fit sulugly into 1 -inch tubing.
$2-13 / 4$-inch angle, 21 feet long
2 - $3 / 4$-ineh angle, 21 feet long
4 - $3 / 4$-inch angle, 1 foot long
$2-1 / 2$-inch diameter tubing, 6 feet long

Fig. $14-48-\mathrm{A}$ four-element 14 Mc. beam of lightweight all-metal construction. lied by coaxial cable and hand-rotated, the anterna and boom assembly weigh. only 40 pounds. (KH6TI. Der.. 104\%. OST,

fig. 14-49 - Details of the 4-element beam construction. The general dimensions and arrangement of the bearn are given in A, the detail of the ends of the hoom is shown at B, and C shows the construetion of the central pivot. I disearded-forge blower gear train is used to drive the assembly.

Aluminum tubing and angle corresponding to the above sizes can possibly be bought from serap dealers at reasonable prices, if not directly from the manufacturer. If the sections of the elements do not fit snugly, insert shims or make some other provision for a tight fit, since the appearance of the beam will be spoiled by sagging elements. Some amateurs reinforce their beam elements with copper-clad steel wire supported a foot above the elements at the boom and tied to the extreme ends of the edements.

Is shown in Fig. 14-49.1, two $13 / 4$-inch aluminum angles 21 feet long serve as the main members of the boom. They are spaced one foot apart. The elements are spaced 7 feet apart. Wooden spacers of 2×2 are placed at the end of the boom and screwed on with brass screws. These spacers are also placed under each element where it crosses the boom. These spacers may be unnecessary if the clements are bolted to the boom, but if the construction is as in Fig. 14-4913 the spacers are recommended.

The cross braces shown in Fig. 14-50 are put into position at the very last, after the beam is hung in position on the central pivot, since they offer a means for truing up minor sag in the elements.

The central pivot consists of a structure made from $3 / 4$-inch angle iron and $1 / 2$-inch pipe, as shown in Fig. 14-49C. It has to be brazed. The crossbar rest is made separate from the boom and central pivot, and affords a means for tilting the beam when unbolted from these structures. The $1 / 2$-inch pipe is drilled for the coaxial line that is fed through
this pipe. The pinion gear on the $1 / 2$-inch pipe should be brazed on.

A washing-machine gear train is well suited for this type of beam. Another possibility (used in this instance) is a discarded forge blower. It was fitted with a $1 / 2$-inch pipe which serves as the central pivot. The gear train ends up in a "V"-pultey, and the beam is easily rotated by a system of ropes and pulleys that ends up in an automobile steering wheel at the operating position. A plumb bob attached to the shaft of the steering wheel serves as a direction indicator. A small cardboard scale mounted along the line of plumb-bob travel can be readily calibrated to show the direction of the beam.

The supporting structure for this beam consists of a 4×4 pole 30 feet long, with ten-foot extensions of 2×4 bolted to both sides of the bottom, making the total length about 36 feet. Two sets of guy wires should be used, approximately 2 feet and 1 is feet from the top. As an alternative, the pole can be set against the side

Fig. 14.50 - The boom for the 4 -element beam is crossbraced at two points, about $61 / 2$ feet in from the ends.
of the house, and only the top set of guys used to provide additional support.

With all-metal construction, delta, "gamma" or "T"-match are the only practical matching methods to use to the line, since anything else requires opening the driven element at the center, and this complicates the support problem for that element.

A Wooden Boom for 14 Mc .

Many amateurs prefer to build their beam booms from standard pieces of lumber, and the beam shown in Figs. $14-51$ and $14-52$ is an example of excellent design in wooden-boom construction. The boom members are two $20-$ foot 2×4 sastened to the $4 \times 12 \times 24$-inch center block with six lag serews. The two center sorews serve as the axis for tilting the other four lock the boom in position after finad assembly and adjust ment have been completed. The blocks midway from each end are 2×4 spaced about six inches apart, with a long bolt between them. When this bolt is drawn tight, a very sturdy box brace is formed. The crossatms are 3×3 s twelve feet long, bolted to the boom with carriage bolts.

The umbrella guys should have turnbuckles in them, and the guys are fastened to the center support after the beam has been permanently locked in its horizontal position. With the turn-

Fig. 14-51-A wooldn boom for a 1 -element 1t-Mr. boom can be made quite strong by judiciou- use of goy wires. This installation is made on a windmill tower, and the drive motor is monnted halfway down on the tower. (WV.11JB, Nov., 194', QST.)
buckles properly adjusted, there will be no sag in the boom and the elements will be neat.

The elements are $13 / 8$ - and $11 / 2$-inch diameter duralumin tubing, supported by $1 / 1 / 2-\mathrm{inch}$ stand-off insulators. Hose clamps are used to hold the elements on the insulators. Final adjustment of clement lengths is possible through "hairpin" loops. The tower for the beam shown in lig. 14-51 was a Sears-Roebuck windmill tower. The driving motor for the beam was located half way down the tower, the torque being transmitted through a length of $11 / 2$-inch drive shaft. I pipe flange is welded to the drive shaft and bolted to the center block. A cone bearing is obtained by turning both the flange and a sleeve of 2 -inch pipe to match, as shown in lig. 14-52.

One method of matehing the line to the antenna is to use a quarter wavelength of 70-ohm Twin-Lead between the radiator and the slip-ring contacts, to match a 600 -ohm line from the slip rings to the transmitter.

A $600-$ ohm open-wire line is run to a point about halfway up on the tower, then up the side of the tower to the slip rings. The slip rings are mounted on the top of the tower, directly under the renter block. A quarterwavelength matehing section of transmittingtype 7a-ohm Amphenol Twin-lead hangs in a loop between the driven element and the slipring contacts.

"Plumber's-Delight'' Construction

The lightest beam to build is the so-called "plumber's delight" - an array constructed entirely of metal, with no insulating members between the elements and the supporting structure. Suggested constructional details are shown in Figs. $14-5 \cdot 3,14-54,14-3 \bar{n}, 14-56$ and $14-\overline{2} 7$.

The boom ban be built of two lengths of 3 -inch diameter 24s'l dural tubing of $0.072-$ inch wall thickness, as shown in ligg. 10-103. The two sections are splied together with a three-foot length of 6×6 oak, turned down at each end to fit inside the tubing. The center of the block is left square to provide a flat surface to attach to the vertioal rotating pipe. . It eath extremity of this boom is cut a hole the exart diameter of the parasitic elements. A two-foot length of $3 / 4$-inch pipe, complete with flange mounting plate, is bolted to the top surface of the oak block, and a single guy wire is run to each end of the boom. In egg insulator and a turnbuckle are placed in cach guy. The turnbuckles should be tightened until there is no sag in the boom when it is supported at the center, and then safety-wired. Finally the center block should be given a good coat of paint or varnish.

The elements can be made of three 12 -foot lengths of dural tubing, the two outside lengths telescoping inside the renter section. The embs: of the enenter section should be slotted for a distance of about 4 inches with a hack saw, bat it is advisable to do the slotting after the

Fïg. 14.52- Details of the wooden hoom, its method of support and the construction of the slip rings.
ernter sections have been assombled on the hoom. The parasitic-element center sections are fastened to the boom with $1 / 4$-inch bolts, as shown in lig. 14-54, while the driven dement is secured in a cradle made of half sections of iron pipe welded together, as shown in Fig. 14-55. The cralle is bolted to the boom with three $1 / 4$-inch bolts, and the driven element is held fast with two bolts or with adjustable aircraft-tubing clamps.

The feedline for the antenna can be any balanced line, of from 200 to 600 ohms impedance, and it is most conveniently coupled through a "T"'match. This "T"match assembly can be made from two 4 -foot lengths of dural tubing joined together by a piece of broomstick, as shown in Fig. $14-57$. The " T " is connected to
the antenna by two clamps fashioned of 1 -inch-wide brass strip.

A convenient method for supporting the boom atop the pipe used to rotate the beam is shown in Fig. 14-56. At "L""-channel into which the boom will fit is welded to the end of the pipe. Holes are drilled in the side of the channel corresponding to holes in the boom. The boom is hoisted up and positioned between the two flanges and a bolt run through the flanges and the boom. The boom can then be swung into a horizontal position and the second bolt put in place.

Feeder Connections

For beams that rotate only 180 degrees, it is relatively simple to bring off feeders by making a short section of the feeder, just where it leaves the rotating member, of flexible wire. Enough slack should be left so that there is no danger of breaking or twisting. Stops should be placed on the rotating shaft of the antenna so that it will be impossible for the feeders to "wind up." This method also can be used with antennas that rotate the full 360 degrees, but again a stop is necessary to avoid jamming the feeders.

For continuous rotation, the sliding contact is simple and, when properly built, quite practieable. The chief points to keep in mind are that the contact surfaces should be wide enough to take rare of wobble in the rotating shaft, and that the contact surfaces should be kept clean. Spring contacts are essential, and an "umbrella" or other scheme for keeping rain off the contacts is a desirable addition. Sliding contacts preferably should be used with nonresonant open lines where the characteristic impedance is of the order of a00 to 600 ohms, so that the line current is low.

Fig. 14-53 - The loootn is made of two llofoot lengths of dural tubing slipped over a 3 -foot oak block and held in place with 2 -inch wood screws. Guy wirea from the center add strength to the boom structure.

Fig. 14-5.4-- The center element sertion is hedd in the boom with a $1 / 4-28$ machine serew, nat and lock washer. "The glyy wire attaches to the head of the bolt,

The possibility of poor comnections in sliding contacts can be avoided by using inductive coupling at the antema, with one coil rotating on the antemna and the other fixed in position, the two colls being arranged so that the coupling does not change when the antenna is rotated. A quarter-wave feeder system is connected to a tuned pick-up circuit whose inductance is coupled to a link. The link coil connects to a twisted-pair transmission line, but any type of line such as flexible conxial cable can be used. The circuit would be adjusted in the same way as any link-coupled circuit, and the number of turns in the link should be varied to give proper loading on the transmitter. The rotating coupling circuit of course tunes to the transmitting frequency. The whole thing is equivalent to a link-coupled antenna tuner mounted on the pole, using a parallel-tuned tank at the end of a quarter-wave line to center-feed the antenna. To maintain constant coupling, the two coils should be quite rigid and the pole should rotate without wobble.

Fig. 14-55 - The clamp for the driven element is made by splitting 1 -foot lengths of iron pipe and welding them as shown.

The two coils might be made a part of the upper bearing assembly holding the rotating pole in position.

Other variations of the inductive-coupled system can be worked out. The tuned circuit might, for instance, be placed at the end of a 600 -ohm line, and a one-turn link used to couple directly to the center of the antemma, if the construction of the rotary member permits. In this case the coupling can be varied by rhanging the L / C ratio in the tuned circuit. For mechanical strength the coupling coils preferably should be made of $1 / 4$-inch copper tubing, well braced with insulating strips to keep them rigid.

Rotation

It is convenient to use a motor to rotate the beam, but it is not always necessary, esperially if a rope-and-pulley arrangement
can be brought into the operating room. If the pole can be monnted near a window in the operating room, hand rotation of the beam will work out quite well, as has been proven by many amateur installations.

If the use of a rope and pulleys is impracticable, motor drive is about the only alterma tive. There are several complete motor-driven rotators on the market, and they are easy to mount, convenient to use, and require little or no maintenance. However, to many the eost of such units puts them out of reach, and a homemade unit must be considered. (ienerally speaking, lightweight units are better berause they reduce the load on the mast or tower.

Fig. $14-50$ - The monnting plate is made from a length of "L"*-channel iron cut and drilled as shown. The boom is raised vertically until one set of boolt holes is in line and a bolt is slipped through. The boom is then swung into its horizontal position and the other bolt is put in place.

The speed of rotation should not be too great - one or two r.p.m. is about right. This requires a considerable gear reduction from the usual $1750-\mathrm{r} . \mathrm{p} . \mathrm{m}$. speed of small induction motors; a large reduction is advantageous because the gear train will prevent the beam from turning in weather-vane fashion in a wind. The ordinary structure does not require a great deal of power for rotation at slow speed, and a $1 / 8$-hp. motor will be ample. Even small series motors of the sewing-machine type will develop enough power to turn a $28-\mathrm{Mr}$. heam at slow speed. If possible, a reversible motor should be used so that it will not be necessary to go through nearly 360 degrees to bring the beam back to a direction only slightly different, but in the opposite direction of rotation, to the direction to which it may be pointed at the moment. In cases where the pole is stattionary and only the supporting framework rotates, it will be necessary to mount the motor and gear train in a housing on or near the top of the pole. If the pole rotates, the motor can

Fig. 14.57 - Details of the " IT , match assembly.
be installed in a more accessible location.
Parts from junked automohiles often provide gear trains and bearings for rotating the antenna. liear axles, in particular, can readily be adapted to the purpose. Driving motors and gear housings will stand the weather better if given a coat of aluminum paint followed by wo coats of enamel and a coat of glyptal varnish. Even commercial units will last longer if treated with glyptal varnish. Be sure, of eourse. that the surfaces are clean and free from grease before painting them. Grease can be removed by brushing it with kerosene and then squirting the surface with a solid stream of water. The work can then be wiped dry with a rag.

If hand rotation of the beam is used, or if the rotating motor drives the beam through a pulley sustem, bronze cable or chain drive is preferable to rope. However, if you must use rope, be sure to soak it overnight in pure linseed oil and then let it dry for several days before permanent installation.

The power and control leads to the rotator should be run in electrical conduit or in lead covering, and the metal should be grounded. Often r.f. appearing in power leads can be reduced by suitable filtering, but running wires in conduit is generally easier and more satisfactory, Any r.f, in the wiring can sometimes be responsible for feed-back in a 'phone transmitter. "Hash" from the motor is also reduced by shielding the wires, but it is often neeessary to install a small filter at the motor to reduce this souree of interference. Motor noise appearing in the receiver is a nuisance, since it is usual practice to determine the proper direction for the beam by rotating it while listening to the station it is desired to work and setting the antenna at the point that gives maximum signal strength.

The outside electrical connections should be soldered, bound with rubber tape followed by regular friction tape, and then given a coat of glyptal varnish.

About V.H.F.

While it is possible to use the froquencies above 30 Mc , without knowing anything about wave propagation, the amateur who understands something of the means by which his signals reach distant points will be able to do a better job of it. Because much of the pleasure
and satisfaction to be derived from v.h.f. work lie in making the best possible use of propagation vagaries associated with natural phenomena, a working knowledge of the basic principles of wave propagation is a most useful tool for the v.h.f. operator.

What To Expect of the V.H.F. Bands

The assignments from 50 Me. up are superior to our lower bands in one outstanding respect: their ability to provide interferencefree communication consistently within a limited service area. Lower frequencies are more subject to varving conditions that impar their effectiveness for work over a radius of 100 miles or less at least part of the time, and the heavy oceupancy they support creates a continuing interference problem. Our v.h.f. hands, on the other hand, are seldom crowded, and their characteristies for local work are more stable. Because of these attributes the 50 - and 144-Me. hands, particularly, enjoy considerable popularity in areas where there are dense concentrations of population.

In addition, it has been found that there are several media by which v.h.f. signals are propagated beyoud the local range, and operation on the v.h.f. hands has been taken up by many operators who must depend almost entirely on "DN" for their contacts. The latter group, particularly, will benefit from a familiarity with common propagation phenomena. The material to follow is intended to supplement the more detailed information in Chapter 4, dealing with wave propagation as it affects the world above 50 Mc .

50 to 54 Mc .

This band is borderline territory between the frequencies regularly used for long-distance communication and those normally employed for local work. Thus just about every form of wave propagation to be found throughout the radio spectrum will appear, on occasion, in the $50-\mathrm{Me}$. region. This diversity has contributed greatly to the growing popularity of the 50-Mc. hand in the amateur picture.

During the peak years of the sunspot eycle it is occasionally possible to work 50 -Me. DX of worldwide proportions, by reflection of signals from the F_{2} layer. Sporadic- E skip provides opportunities for work over distances from 400 to 2500 miles or so during the carly
summer months, regardless of the solar eycle. IReflection from the aurora regions accounts for communication over 100 to $600-$ mile paths during pronounced ionospheric disturbances. The ever-changing weather pattern offers frequent opportunities for extension of the normal coverage to as much as 300 miles. This tropospheric condition develops most often during the warmer months, but may occur at any season. In the absence of any favorable propagation, the average wellequipped $50-$ Me. station shonld be able to work regularly over a radius of 75 to 100 miles or more, depending on lowal termin.

144 to 148 Mc .

Ionospherie effects are greatly reduced at 144 Mc. It is doubtful whether F_{2}-layer reflection ever occurs at this frequeney, and sporadic- E skip is a rare phenomenon. Aurora reflection is fairly common, but the signals so reflected are generally weaker than on 50 Mc. Tropospheric effects are much more pronounced than on 50 Mc ., and distances covered during favorable weather conditions are much greater than on lower bands. Air-mans boundary bending has been responsible for communication on 144 De. over distances in excess of 1100 miles, and 500 -mile work is fairly common in the warmer months. The reliable working range under normal conditions is slightly less than on 50 Me., when comparable equipment and antennas are used.

220 Mc. and Higher

Amateur experience on the higher bands is insufliciont to provide a complete pieture of what may be expected in the way of unusual propagation. There is reason to believe that tropospheric bending and duct effects beeome more prevalent as we go higher in frequenes. and that much interesting work lies in store for us when we move to the frequencies above 200 Me. in larger numbers and with improved equipment.

Propagation Phenomena

The various known means by which v.h.f. signals may be propagated over unusual distances are discussed below.

F_{2}-Layer Reflection

The "normal" contacts made on 28 Mc . and lower frequencies are the result of reflection of the transmitted wave by the F_{2} layer, the ionization density of which varies with solar activity, the highest frequencies being reflected at the peak of the 11 -year solar cycle. The maximum usable frequency (m.u.f.) for F_{2} reflection also rises and falls with other welldefined cycles, including daily, monthly, and seasonal variations, all related to conditions on the sun and its position with respect to the earth.

At the low point of the 11-year cycle, such as the period we were entering at the outbreak of war in 1941, the m.u.f. may reach 28 Mc . only during a short period each spring and fall, whereas it may go to 60 Mc . or higher at the peak of the cycle. The fall of 1946 saw the first authentic instances of long-distance work on 50 Mc. by F_{2}-layer reflection, and as late as 1950 contacts were still being made in the more favorable areas of the world by this medium. In the northern latitudes there are peaks of m.u.f. each spring and fall, with a low period during the summer and a slight dropping-off during the midwinter months, At or near the Equator conditions are more or less constant at all seasons.

Fortunately the F_{2} m.u.f. is quite readily
determined by observation, and means are available whereby it may be estimated quite accurately for any path at any time. It is predictable for months in advance, ${ }^{1}$ enabling the v.h.f. worker to arrange test schedules with distant stations at propitious times. As there are numerous signals, both harmonics and fundamental transmissions, on the air in the range between 28 and 50 Mc ., it is possible for an observer to determine the approximate m.u.f. by careful listening in this range. A series of daily observations will serve to show if the m.u.f. is rising or falling from day to day, and once the peak for a given month is determined it can be assumed that the peak for the following month will occur about 27 days later, this cycle coinciding with the turning of the sun on its axis. The working range, via F_{2} skip, will be roughly comparable to that on 28 Mc ., though the minimum distance is somewhat longer. Two-way work on 50 Mc . by means of reflection from the F_{2} layer has been accomplished over distances ranging from 2200 to 10,500 miles. The maximum frequency for F_{2} reflection is believed to be in the vicinity of 70 Mc .

Sporadic-E Skip

Patchy concentrations of ionization in the E-layer region are often responsible for re-

[^8]

Fig. 15-I - The principal means by which v.h.f. signals may be returned to earth. The F_{2} layer, highest of the known reflecting regions of the ionosphere, is capable of reflecting 50-Mc. signals during the peak period of the 11 year solar cycle. Such communication may be world-wide in scope. Sporadic iomization of the E layer produces the familiar "short skip" contacts over medium distances at 28 and 50 Mc. On these bands it is a fairly frequent occurrence regardless of the solar cycle. It is most common in May through August. Refraction of v.h.f. waves also takes place at air-mass boundaries in the lower atmosphere, making possible communication over distances of several hundred miles, usually without a skip zone, on all v.f.h. bands.
flection of signals on 28 and 50 Mc. This is the popular "short skip" that provides fine contacts on both bands in the range between 400 and 1300 miles. It is most common in May. June and July, during the early evening hours. but it may occur at any time or season. Since it is largely unpredictable, at our present state of knowledge, sporadic- E skip is of high "surprise value." Multiple-hop effects may appear, when ionization develops simultancously over large areas, making possible work over distances of more than 2500 miles.

The upper limit of frequency for sporadic- f t skip is not positively known, but seattered instances of 14-Me propagation over distances in excess of 1000 miles indicate that E-layer refleetion, possibly aided by tropospheric effects, may be responsible.

Aurora Effect

Low-frequency communication is occasionally wiped out by absorption of these frequencies in the ionosphere, when ionospheric storms, associated with variations in the rarth's magnetic field, oceur. During such disturbaners, however, v.h.f. signals may be roflected baek to earth, making communication possible over distances not normally workable in the v.h.f. range. Magnetie storms maty be accompanied hy an aurora-borealis display, if the disturbanee oceurs at night and visibility is grool. When the aurora is confined to the northcon sky aming a directional array at the auroral curtain will bring in signals strongest, regardless of the true direction to the transmitting station. When the display is widepread there maty be only a slight improvemont noted when the array is aimed north. The latter condition is often noticed during the period around the peak of the 1I-year acle, when solar ativity is spread well over the sun's surface, instead of being concontrated in the ragion near the solar equator.

Durora-reflected signals are chatacterized by a rapid flutter, which lends :t "dribbling" sound to 28 -Mc. carriers and may render modulation on $50-$ and 14-4-Mc. signals completely unrealable. The only satisfactory moans of communication then becomes straight
c.w. The effect may be noticeable on signals from any distance other than purely local, and stations up to about 800 miles in any direction may be worked at the peak of the disturbance. l'nlike the two methods of propagation previously described, aurora offect exhibits no skip zone. It has been observed mainty on frequencies up to about 60 Me., though there have been many instances when it has shown up on 144 Mc. The highest frequency for aurora reflection is not yet known.

Scatter

When the maximum usable frequency for Fo-layer reflection goes above 50 Mc . it is usually possible to observe at phenomenon known to operators on 50 and 28 Mr. by a variety of terms. "scatter" "rehound" and "reflected skip" are some of the names given to the means of propagation by wheh signals are returned at sharp angles from the region near the point of highest m.u.f.

The first two terms are more descriptive of what actually happens. Wsually there is no skip zone, and signals so reflected may bo heard over all distances up to perhaps 1000 mikes. The reflection process is somewhat similar to that of aurora proparation, except that the point of reflection may be in any direction from the stations involved. Scatter signals usually show considerable audio distontion, and are subject to rapid fading.

Reflections from Meteor Trails

Probably the least-known means of v.h.f. wave propagation is that resulting from the patsage of meteors across the signal path. Refletions from the ionized moteor trails may be noted as a Doppler-effeet whistle on the carrior of a signal already being received, or they may cause bursts of reception from stations not normally receivable. sudden large iw creases in strength of normally-weak signals are another manifestation of this effect. Ordinarily such reflections are of little value in extending communication ranges, since the inereases in signal strength are of short duration, but meteor showers of considerable magnitude and duration may provide fluttery v.h.f.

Fig. $15-2$ - Illustrating a typical weather sequence, with associated variations in v.h.f. propagation. At the right is a cold air mas: (fair weather, high or rising barometer, moderate summer temperatures). Approaching this from the left is a warm moist air mass, which overruns the cold air at the point of contact, creating a temperature inversion and considerable hending of v.h.f. waves. At the left, in the storm area, the inversion is dissipated and signalare weak and subject to fading. Barometer is low or falling at this point.
signals from distances up to 1000 miles or more, sigmals so reflected have a combination of the characteristice of aturora athe somadic- E : *kip.

Tropospheric Bending

lafraction of radio waves takes place when"ver a change in roftacion index is encountered. This may oceur at one of the ionized layers of the ionosphere, as mentioned abowe. or it may exist at the boundary area betweon two different types of air masses, in the region diose to the earth's surface. A warm, moist air mass from over the Gulf of Mexico, for instanee, may overrun a cold, dry air mass which may have had its origin in northern Canad:a. Faeh tends to retain its original characteristies for eonsiderable periods of time, and there maty be a well-defined boundary between the two for as much as several days. When such airmass boundaries exiṣt along the path between two v.h.f. stations separated by 50 to 300 miles or more, a considerable degree of refraction takes place, and signals rum high above the average value. Cinder ideal conditions there may be almost no attenuation. and signals from far beyond the visual horizon will come through with strength comparable to that of local stations.

Many factors other than air-mass movement of a continental character may provide increased v.h.f. operating range. The convection that takes place along our eoastal areas in warm weather is a good example. The rapid cooling of the earth after a hot day in summer, with the air aloft cooling more slowly, is another, producing a rise in signal strength in the period around sundown. The early-morning hours, when the sun heats the air aloft, before the temperature of the earth's surface begins its daily rise, may frequently be the best hours of the day for extended v.h.f. range, particularly in clear, calm weather, when the barometer is high and the humidity low.

Any weather condition that produces a pronounced boundary between air masses of different temperature and humidity characteristics provides the medium by which r.h.f. signals cover abnormal distances. The ambitious v.h.f. enthusiast soon learns to correlate various weather manifestations with radiopropagation phenomena. By watehing temperature, batometric pressure, changing cloud formations, wind direction, visibility, and other easily-observed weather signs, he is able to tell with a reasonable degree of accuracy what is in prospect on the v.h.f. bands.

The responsiveness of radio waves to varying weather conditions increases with frequency. Our 50-Mc, band is considerably more sensitive to weather variations than is the $28-$ Mc. band, and the $1+4-$ Me. band may show strong signals from far beyond visual distances when the lower frequencies are pelatively inaetive. The maximum distance over which
tropospheric propagation is frequently observed on 50 Mc . is in the neighborhood of 300 miles. On 14t Me. distances of boo miles are mot uncommon. It is probatble that this temeleney continues on up through the mierowave range, and that our assignments in the u.h.if. and s.h.f. portions of the frequency speetrom may someday support communication over distanees far in exees of the optical range. Stready $1-4+$ Me tropospheric rommunitation by amateurs hats passed the lloo-mile mark, and coren greater distances ate believed possiher on this and higher frequencies.

- STATION LOCATIONS

In line with our carly motions of v.h.f. wave propagation, it was onee thought that only highly-clevated v.h.f. stations had any chance of working beyond a few miles. Amost all the work was done by portable stations operating from monutain tops, and only hillop home sites were considered suitable for fixed-station work. It is still true that the fortunate amateur who lives at the lop of a hill enjops a eeretain advantage' over his, fellows on the v.h.f. bands, but high clevation is not the all-important factor it was once thought to be.

Improverments in equipment, the wide use of high-gain athtennat sistems, and an awareness of the opportunities afforded by weather phenomena have enabled countless v.h.f. workers to achieve excellent results from sermingly poor locations. In $\mathbf{j} 0-\mathrm{Mc}$. D) N work particularly, elevation hats ceased to be an important factor, though it may help in extending the range of operation somewhat under normal ronditions. A high clevation is somewhat more helpful on $1+4$ Me, and higher frequencies, particularly when no musual propagation fatetors are present, as during the winter months. ()ther factors, such as close proximity to large bodies of water, may more than compensate for lack of clovation during the other seasons of the year, however.

Stations situated in sea-level locations along our coasts have been consistent in their ability to work long distancos on $1+4$ Mc.; weather variations provide interesting propagation effeets over our Middle Western platin areas; and even the worker sit uated in momentanous country need not necessartily feel that he is prevented by the nature of his horizon from doing interesting work. Contacts have been made on 50 and 14 Me over distances in exeess of 100 miles in all kinds of terrain.

The consistently-retiable mature of 50 and 144 Me. for work over such a radius and more, regardless of weather, time or season, and the oecasional opportunities these frequencies afford for exriting (). $\mathrm{N}_{\text {, have catused an increas- }}$ ing number of amateurs to migrate to the v.h.f. hands for extemded-local communication, onere thought possible only on the lower frequencies.

CHAPTER 16

V.H.F. Receivers

Even more than in work on lower frequencies, receiver performance is all-important in the v.h.f. station. Iligh sensitivity and good signal-to-noise ratio, necessary attributes in a receiving system for 50 Mc . and higher hands, are best attained through the use of a converter, working in conjunction with a communications receiver designed for lower frequencies. Though receivers and converters for 50,144 , and even 220 Mc. are available on the amateur market, it is possible for the v.h.f. worker to build his own with fully as good results, and at a considerable saving in cost.

In its basic principles, modern receiving equipment for these bands differs little from that employed on lower frequencies, and the same order of selectivity may be used in amateur work up to at least 220 Mc . The greatest practical selectivity should be used in v.h.f. work, as well as on the frequencies below 30 Mc., as it not only permits more stations to operate in a given band, but is an important factor in improving the signal-to-noise ratio. The affective sensitivity of a receiver having "communication" selectivity can be made considerably better than is possible with broadband systems. First on 56 Mc ., more than a decade ago, then more recently on 144 Mc., and currently on 220 and 420 Mr ., the change to selective superheterodyne receivers marked the beginning of real extensions of the operating range.

The superregenerative receiver, once very popular for v.h.f. work, is now used principally for portable operation, or for other applications where maximum sensitivity and selectivity are not of prime importance. It is still capable of surprising performance, for a given number of tubes and components, but its lack of selectivity, its poor signal-to-noise ratio, and its tendency to radiate a strong interfering signal rule out the superregenerator as a fixed-station receiver in areas where there is appreciable v.h.f. activity.

R.F. AMPLIFIER DESIGN

The amount of noise generated within the receiver itself is an important factor in the effectiveness of v.h.f. receiving gear. At lower frequencies the external noise is a limiting factor, but at 50 Mc . and higher the receiver noise figure, gain and selectivity determine the
ability of the system to respond to weak signals. Proper selection of r.f. amplifier tubes and appropriate circuit design aimed at low noise figure are of more importance in the v.h.f. receiver "front end" than mere gain.

Certain triode or triode-connected pentode tubes have been found superior in this respect, their superiority becoming more pronounced as we go higher in frequency. At 144 Mc ., for instance, a triode r.f. stage may give substantially the same gain as a pentode, but with a much lower noise figure. With the exception of the simplest unit, the equipment described in the following pages incorporates low-noise r.f. amplifier teehnique.

When triodes are used as r.f. amplifiers some form of neutralization of the grid-plate capacitance is required. This can be eapacitive, as is commonly used in transmitting applications,

Fig. 16.1 - Schematic diagram of a pushpull r.f. amplifier for v.h.f. receiver use. This circuit is well suited to use with antenna systems fed by balanced lines. Coil and condenser sizes will be governed by the band for which the amplifier is to be used.
$\mathrm{C}_{1}-0.005-\mu \mathrm{fd}$. dise ceramic.
C_{s} - Neutralizing capacitance, about $2 \mu \mathrm{fd}$. May be made from lengths of 75 -ohm Twin-lead about $1 \frac{1}{2}$ inchow long.
R_{1} - 150 ohms, $1 / 2$-watt carbon.
$h_{2}-1000$ ohms, $1 / 2$-watt carbon.
or inductive. The alternative to neutralization is the use of grounded-grid technique. Circuits for these three types of r.f. amplifier stages are given in Fig. 16-1, 16-2 and 16-3.

A dual triode operated as a neutralized pushpull amplifier is shown at 16 -1. This arrangement is well adapted to v.h.f. preamplifier applications, or as the first stage in a converter, particularly when a balanced transmission line such as the popular 300 -ohm Twin-Lead is used. It is relatively selective
and may require resistive loading of the plate circuit, when used as a preamplifier. The loading effect of the following circuit may be sufficient to give the required handwidth, when the pushpull stage is inductively coupled to the mixer.

Fig. 16-2 - Circuit of the cascode r.f, amplifier. I'referred antenna coupling methods for coaxial or halanced lines are shown. The first r.f. grid coil, and the neutralizing coil, I.n, should be a high-Q design. Other coils are not critical as to (Q. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.005-\mu \mathrm{fd}$. dise ceramic.
C3- $50-\mu \mu \mathrm{fd}$. ceramic.
$R_{1}, R_{2}-100$ ohmes, $1 / 2$-watt carhon.
$R_{3}, R_{4}-1000$ ohms, $1 / 2$-watt carbon.
L_{1} - Should resonate at signal frequency with $6 . \mathrm{K} 5 \mathrm{grid}$ pate capacitance.

Atwo-stage triode amplifier having excellent noise figure and broadband eharacteristies is shown in Fig. 16-2. Commonly called the cascode, it uses a triode or triode-connected pentode followed by a triode grounded-grid stage. This circuit is extremely stable and uncritical in adjustment. At 50 Mc . and higher its over-all gain is at least equal to the best single-stage pentode amplifier and its noise figure is far lower.

Neutralization is accomplished by the coil L_{n}, whose value is such that it resonates at the signal frequency with the grid-plate capaeitance of the tube. Its indurtance is not eritical; it may be omitted from the eireuit without the stage going into oseillation, but neutralization results in a lower noise figure than is possible without it. Any of several v.h.f. tubes may be used in the cascode circuit, the most popular arrangement being the 6AKij-6.J6 combination shown.

The neutralization process for the cascode and neutralizedtriode amplifiers is somewhat similar. With the circuit operating normally the neutralizing adjustments (capacitance of C_{n} in Fig. 16-1; setting of slug in $L_{\alpha_{n}}$ in Fig. 16-2) can be changed until the stage stops oseillating. The middle of the range over which no oscillation occurs is approximately the proper setting. Finer adjust-
ment can be made by disconnecting one heater lead from the r.f. amplifier tube socket and adjusting the neutralizing for minimum signal. A 6AK5 with one heater prong cut off may be inserted in the r.f. socket, instead of cutting the heater voltage, if desired. The best results are obtained using a noise generator, adjusting for lowest noise figure, but the two methods described above will provide a satisfactory approximation.

Grounded-grid r.f. amplifier technique is illustrated in Fig. 16-3. Here the input circuit is connected in the cathode lead, with the grid of the tube grounded, to act as a shield between cathode and plate. The grounded-grid circuit is stable and casily adjusted, and is well adapted to broadband applications. The gain per stage is low, so that two or more stages are ordinarily required. Choice of tubes is fairly limited, the best for the job being the 6.If, a triode especially designed for groundedgrid service. The $6 \mathrm{AB4}$ is also suitable, and the 656 is used oceasionally, conneeting all unused elements to ground, as in Fig. 16-2. Disc-seal tubes such as the "lighthouse" and "promil Tube" types are often used as r.f. amplifiers above 300 Mc ., where ordinary miniature tubes become ineffective because of excessive lead inductance.

MIXER CIRCUITS

Triode tubes are favored for v.h.f. applications, as they are less critical as to operating conditions and the highest frequency at which they will operate satisfactorily is well above that of most pentodes. When used in mixer circuits triodes are usually quieter in operation as well.

A simple triode mixer circuit is shown in Fig. 16-fA. The grid cireuit is tuned to the signal frequency, the phate circuit to the intermediate frequency. A dual-triode version is given at 13 . The latter is particularly suitable for use at the higher frequeneies. Frequently a dual triode is used as a combination miser-

Fig. 16-3- Grounded-grid r.f. amplifier. Position of cathode taps on coils should be adjusted for lowest noise figure.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{4}-\mathbf{0}, 005-\mu \mathrm{d}$, dise reramic.
C_{4} - 50) $\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{l}_{1}, \mathrm{~N}_{3}-220$ ohms, $1 / 2$-watt carbon.
$\mathrm{H}_{2}, \mathrm{R}_{4}-4,0$ ohms, $1 / 2$-watt carbon.
oscillator, using the circuits of ligs. $16-4 \mathrm{~A}$ and 16-5.1. The amount of oseillator injection is usually not critical, but in the interest of stability it should he kept as low as practical. In dual triodes having separate cathodes ($7 \mathrm{~F} 8,12 . \mathrm{A}^{\top} \mathrm{t}, 2 \mathrm{C} 5 \mathrm{l}$, etc.) some external coupling may be required, but the common cathode of the 6Jd will provide sufficient injection in most eases. If the injection is more than necessary it can be reduced by dropping the oscillator plate voltage, either directly or by increasing the value of the dropping resistor, R_{1}.

A pentode mixer may be less subject to oscillator pulling than a triode, and it will probably require less injection voltage. If a pentode miser is used, its plate current should

(A)

Fig. 16-1 - Two types of triode mixers suitable for v,h,f, receivers, A single-ended triode circoit is shown at A. 'The tube may be half of a dual trionde, with the other portion used as the oscillator, or separate tubes may be used. The dual.triode version, B, is partienlarly useful for 144 Me. and higher bands.
(i) - $50 \mu \mu \mathrm{fd}$, ceramic or mica.
($2, \mathrm{Co}-30$ to $50 \mu \mu \mathrm{fd}$. ecramie or mica.

$R_{1}-1$ megohm, $1 / 2$ watt.
$l_{2}, \Omega_{4}-1000$ ohms, $1 / 2$ watt,
$\mathrm{K}_{3}-150$ ohms, $1 / 2$ watt.
be held to the lowest usable value, to reduce tube noise. This may be controlled by varying the mixer screen voltage. The principle use of pentode mixers in v.h.f. work is in the interest of simplicity of circuit layout, as in multiband converters employing bandswitching.

OSCILLATOR STABILITY

When a high-selectivity i.f. system is employed in $v . h . f$. reception, the stability of the oscillator is extremely important, Slight variations in oscillator frequency that would not be noticed when a broadiband i.f. amplifier is used become intolerable when the passband is reduced to erystal-filter proportions.

One satisfactory solution to this problem is

 'The push-pull arrangement at B is reeommended for 220 and 420 Me, partieularly.
$\mathrm{C}_{1}-50 \mu \mu \mathrm{fd}$.
R_{1} - Any small earhon resistor, 1000 ohms or léss.
$k_{2}-10,000$ ohms, $1 / 2$ watt.
$1 \mathrm{~K}_{3}-3000$ to $\mathbf{8 0 0 0}$ ohams, $1 / 2$ watt,
the use of a erystal-controlled oscillator, with frequency multipliers if needed, to supply the injection voltage. Such a converter usually employs one or more broadband r.f. amplitier stages, and tuning is done by varying the intermediate frequency to cover the desired frequency range.

When a tunable oscillator and a fixed intermediate frequency are used, special attention must be paid to the oscillator design, to be sure that it is mechanically and clectricaily stable. The tuning condenser should be solidly built; preferably of the double-bearing trpe. Splitstator condensers specifically designed for v.h.f. service, usually having ball-hearing end plates and special construction to insure short lads, are woll worth their extrat cost. Leads should be made with stiff wire, to reduce vibration effects. Mechanical stability of air-wound coils can be improved by tying the turns together with narrow strips of household cement at several points.

Recommended osciliator circuits for v.h.f. work are shown in Fig. 16-5. The single-ended oscillator may be used for 50 or 144 Mc. with good results. The pushpull version is recommended for higher frequencies and may also be used on the two lower bands, as well. Circuit A works well with almost any small triode, the $6 \mathrm{AB4}$ or one half of a $6.56,7 \mathrm{~F} 8$, or $12 \mathrm{AT}^{-}$ being most commonly used. The GJd is well suited to pushpull applications, as shown in circuit 16-5B.

THE I.F. AMPLIFIER

Superheterodyne receivers for 50 Mc . and up should have fairly high intermediate frequencies, to reduce both oscillator pulling and image response. Approximately 10 percent of the signal frequency is commonly used, with 10.7 Me . being set $u p$ as the standard i.f. for commercially-built f.m. receivers. This particular frequency has a disadvantage for 50 -Mc. work, in that it makes the receiver subject to image response from $28-\mathrm{Mc}$. signals, if the oscillator is on the low side of the signal frequeney. A spot around 7 Mc . is favored for
amateur converter service, as practically all communications receivers are capable of tuning this range.

For selectivity with a reasonable number of i.f. stages, double conversion is usually employed in complete receivers for the v.h.f. range. A $7-\mathrm{Mc}$, intermediate frequency, for instance, is changed to $455 \mathrm{kc} .$, by the addition of a second mixer-oscillator. This procedure is, of course, inherent in the use of a v.h.f. converter ahead of a communications receiver.

If the receiver so used is lacking in sensitivity, the over-all gain of the converter-receiver combination may be inadequate. This can be corrected by building an i,f. amplifier stage into the converter itself. Such a stage is useful even when the gain of the system is adequate without it, as the gain control can be used to permit operation of the converter with receivers of widely-different performance. If the communications receiver has an S-meter, its adjust ment may be left in the position used for lower frequencies, and the converter gain set so as to make the meter read normally on v.h.f. signals.

Where reception of wideband FM or unstable signals of modulated oscillators is desired, a converter may be used ahead of an i.f. of the type used for FM broadcast reception, or with a complete receiver of the FM broadcast variety. A superregenerative detector operating at the intermediate frequency, with or without additional i.f. amplifier stages, also may serve as an i.f. and detector system for reception of wide-band signals. By using a high i.f. (10 to 30 Mc. or so) and by resistive loading of the i.f. transformers, almost any desired degrec of bandwidth can be secured, providing good voice quality on all but the most unstable signals. Any of these methods may be used for reception in the micro-
nating quenching voltage, usually in the range between 20 and 200 ke , to interrupt the normal oscillation of a regenerative detector. The regemeration can thus be inereased far beyond the amount usable in a straight regenerative circuit. The detector itself can be made to furnish the quenching voltage, or a separate oscillator tube can be used.

When operated correctly the superregenerative receiver produces a strong hissing sound. The hiss drops or is completely climinated when at strong signal is tuned in. Regencration is usually eontrolled by varying the plate voltage in triode detectors, or the sereen voltage in the case of printodes. Typical superregenerative cireuits are shown in lig. 16-6.
The sensitivity and selectivity of the superregencrative receiver may be improved and its interference potentialities reduced by the addition of an r.f. amplifier stage ahead of the detector. This may be a broadly-tuned stage, such as any of the r.f. amplifiers shown carlier in this ehapter, so that only the detector will require adjustment in tuning across the band. Such an r.f. amplifier will also make tuning of the detector less eritical,

Fig. 16-6 - (A) Superregenerative detector cirenit using a separate quench os. cillator. (13) Self-quenched superregenerative detector circuit. $L_{2} C_{1}$ is tuned to the signal frequency. 'Typieal values for other components are:
$\mathrm{C}_{2}-47 \mu \mu \mathrm{fd}$.
$\mathrm{C}_{3}-470 \mu \mu \mathrm{fd}$.
$\mathrm{C}_{4}-0.1 \mu \mathrm{fd}$.
$\mathrm{C}_{5}-0.001-0.047 \mu \mathrm{fd}$.
R_{1} - 2-10 megohms.
$R_{2}-47,000$ ohms.
$\mathrm{R}_{3}-50,000$-ohm potentiometer.

R4 $-47,000$ ohms.
RFC - R.f. choke, value depending
upon frequency. Small lowcapacitance chokes are required for $\mathbf{v}, \mathrm{h}, \mathrm{f}$, operation,
T_{1} - Audio transformer, plate-to-grid type.
T_{2} - Quenchi-osesillator transformer.
 wave region, where sta-
bilized transmission is extremely difficult at the current state of the art.

THE SUPERREGENERATIVE RECEIVER

The simplest type of v.h.f. receiver is the superregenerator. It affords fair sensitivity with few tubes and elementary circuits, but its weaknesses, listed carlier, have relegated it to applications where small sizc and low power consumption are important considerations.

Its sensitivity results from the use of an alter-
as it removes the effect of antenna resonance.
The superregenerative receiver may be used effectively in mobile operation, as this type of detector combines a certain amount of a.v.c. and noise-limiting action in a single tube, and the sensitivity obtainable is greater than is possible with a superheterodyne having a comparable number of tubes. The performance of the best superregenerative receiver is not sufficiently good for the weak-signal work usually done in home stations, however, and its use on 144 Mc . for other than portable or mobile work is not recommended.

Crystal-Controlled Converters for 2, 6 and 10 Meters

The family of converters shown in Fig. 16-7 through 16-14 was designed to provide optimum performance on 28, 50 and 144 Mc . Crys-tal-controlled oscillators are used, to insure stability, and the triode r.f. sections provide excellent sensitivity and low noise figure. A separate "front end" for each band is plugged into a base unit containing the power supply, i.f. amplifier stage, and other parts that are not changed in shifting from one band to another.

The R. F. Circuits

The cascode circuit is used in the r.f. amplifiers of the converters for 28 and 50 Mc . A triode-connected 6AK5 with inductive neutralization works into a $6 J 6$ grounded-grid amplifier. Circuits for the two units are similar, only the components affecting frequency being different. The functions of crystal-controlled oscillator and mixer are combined in a (6J6. The mixer plate coil is included in the plug-in unit. The schematic diagram is given in Fig. 16-8.

The $144-\mathrm{Mc}$. converter, Figs. 16-10 and 16-11, uses pushpull circuits, with a neutralized 6 J 6 r.f. amplifier and another 6.56 as a push-push mixer. Oscillator injection is provided by another 6 J 6 as crystal oscillator and multiplier. If a coaxial-line fed antenna system is used on 144 Mc . the builder may wish to use the cascode eireuit on this band as well. There is little to choose from between the two circuits, exeept that the push-pull arrangement is better adapted to use with balaneed line, and it provides about equal performance with one less tube. If the cascode circuit is used, constants for 2 -meter operation will be found in Fig. 16-16.

When a fixed oscillator and variable i.f. are used, the r.f. and i.f. circuits in the converter must be made broadband, to avoid the need for readjusting them as the receiver with which
the converter is used is tuned across the band. This broadbanding is accomplished in the converters for 28 and 50 Mc . by using slug-tuned plate coils in the first r.f. and mixer plate circuits. These are resonated by the circuit capacitance only, and are relatively low Q design. Coupling between the second r.f. and mixer stages employs over-coupled tuned circuits. These serve the additional purpose of providing a band-pass response, preventing interference from signals in the i.f. range. The 144 -Mc. converter uses closely-coupled circuits between the r.f. and mixer stages for the same

TABLE I
Crystal And Multiplier Data For CrystalControlled Converters

Band (.Mc.)	$\begin{gathered} \text { Crys- } \\ \left(\begin{array}{c} \text { fal } \end{array}\right. \end{gathered}$	Multipli. cation	Injec. tion Freq. (.Mr.)	l.F. Range (.Mc.)
28-29.7	\%.0)	3rdovertone	21	7-8.7
50-54	8.6	5thovertone	43	7-11
144-148	6.8	5 thovertone	137	$7-11$

purposes. The mixer plate coil is loaded by resistor, R4, for further broadening of the overall response.

Crystal Oscillator Details

Crystal frequencies were selected so that the three bands would start at the same spot on the communications receiver dial, and so that the erystals would be readily obtainable from stocks. Relatively low-cost crystals are used in a regenerative triode oscillator circuit, working at an odd overtone of the crystal frequenc:. In the 28 -Mc. unit a 7000 -ke. crestal oscillates on its third overtone. Fifth-overtone operation of an 8600-ke, erystal furnishes the injection voltage in the $50-\mathrm{Mc}$. converter. A

Fig. 16.7-Crystal. eontrolled converters for 28. 50 amt 144 Mr . At the left the 50- Ne. unit is seen mounted on the base. The latter includes an i.f. anulifier and power supply. The 28-Mr. conserter (center) is similar mechanically and electrically to the $50-\mathrm{Mc}$. one. At the right is the 144-Mc plagrin anit.

Fig. 16.8 - Schematic diagram of the erystal-controlled converters for 28 and 50 Mc . l'nless otherwise indicated, parts are the same for loth units.
C_{1} - $15-\mu \mu \mathrm{fd}$. variable (Millen 20015).
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{7}, \mathrm{C}_{12}, \mathrm{C}_{13}-0.005-\mu \mathrm{fd}$. dise ceramic.
$\mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{10}-50-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{5}-500-\mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{6} \mathrm{C}_{9}-5-20 . \mu \mu \mathrm{fd}$. ceramic trimmer.
C_{11} - 50 Mc .: $50-\mu \mu \mathrm{fd}$, air trimmer (Millen 26050).
$28 \mathrm{Mc} .: 75-\mu \mu \mathrm{fl}$. air trimmer (Millen 26075).
$\mathbf{R}_{1}, \mathbf{R}_{2}-100$ ohms, $1 / 2$ watt.
$R_{3}, R_{4}, R_{6}, R_{8} — 1000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-0.08$ megohm, $1 / 2$ watt.
R_{7} - 3300 ohms, 1 watt.
$\mathrm{I}_{1}-4$ turns No. 28 c . hetween turns of L_{2} at cold end.
$1.2-50, M c .: 10$ turns No. 20 tinned, $1 / 2$-inch diam., $5 / 8$ inch long (H \& W Miniductor 3003). 28 Mc .: 14 turns No. 20 tinned, $5 / 8$-ineh diam., $7 / 8$-inch long (18 \& W Niniductor 3007).
L.3-50 M/c.: 25 turns No. 32 e., close wound on CTC: ISM form ($1 / 4$-inch diam., slug-tuned). 28 Mc .: CHC I.S $310 . \mathrm{Mc}$ coil, slug-tuned.
$\mathrm{I}_{4}-50 \mathrm{Mc}$. Slug-tuned plate coil CTC: 1.5330 Mc .

6800 -ke. crystal oseillates on its fifth overtone in the 114 -Mc. converter, multiplying by four in the sccond 656 triode section. Table 16-I gives the complete information.

Operation of crystals in this way results in a frequency that may not be an exact multiple of the frequency marked on the crystal holder; hence the term, "overtone." It is close enough for ordinary dial calibration purposes, however. IIarmonic-type crystals of the proper frequency could be obtained on order, but the cost would be matcrially higher. Conventional operation of lower-frequency crystals, making up the multiplication with additional stages, is

28 Mc.: C'TC. I.SM $10-\mathrm{Mc}$. coil with 4 turns removed, slug tuned.
L_{5}, L6-50. $/ \mathrm{L}_{\mathrm{L} .}: 8$ turns No. 18 tinned, $5 / 8$-inch diam., 1 inch long (B \& W Miniductor 3006), $1 / 4$ inch space between cold ends. 28 Mc.: 9 turns No. 24 tinned, $1 / 2$-ineh diam., $9 / 32$ inch long ($\mathrm{B} \& \mathrm{~W}$ Miniductor 3004), $3 / 16$ inch space between cold ends.
L. 7 - 50 Me.: 10 turns No. 20 tinned, tapped 31/3 turns from erystal end (13 \& 14 Miniductor 3003), $1 / 2$-inch diam., $5 / 8$ inch long. 28 Mc.: 10 turns No. 20 tinned, $5 / 8$.inch diam., $5 / 8$ inch long, tapped $31 / 3$ turns from crystal end ($B \& W$ Minidurtor $300{ }^{-}$).
$\mathrm{L}_{\mathrm{T},}$ Cit F.m. trap. \mathfrak{T} turns No. 20 tinned, $1 / 2$-inch diam., $3 / 8$ inch long (1 \& W Miniductor 3003), tuned with $5-20-\mu \mu \mathrm{fl}$. ceramic trimmer.
J_{1} - Cirystal socket for antenna terminals.
$\mathrm{P}_{1}-4$-prong male plug.
not recommended, because of the difficulty in avoiding birdies from crystal harmonics. In the overtone circuit, no frequency lower than the overtone at which the crystal oscillates is heard.

Layout

The units are built on aluminum chassis of stock sizes. The buse is 3 by 5 by 13 inches (ICA 29003), and the r.f. units are $11 / 2$ by 5 by $91 / 2$ inches (ICA 29001). The only metal work required is the making of small aluminum guide plates for the front and rear of the converter chassis, and the mounting bracket for

Fig. 16.9 - Bottom view of the 28.31 . plug-jn unit. At the left is the tuned input circuit, followed by the 6 AK 5 r.f. stage, with its slug-tuned plate and neutralizing wind. ings. At the middle of the chassis is the (0J6 grounded-grid stage, with its bandpass cou. pling to the mixer grid. Oscillator emmponents are at the upper right. I'arts arrangement in the $50-$ Mc. converter is similar.

Fig. $10-10$ - Bottom view of the 1It-Nr. eonverter. Acrass the top of the photo. left to right, are the input cirouit, the push-pull r.f, stage. the bush-push mixer, and its slugthmed plate cirruit, oweillatur and multiplier components are at the beit tom of the pioture.
cal standponint. Chief consideration here is to avoid mounting parts on the outside walls of the units, thereby preserving to the fullest degree the deep-but-marrow form factor. This shape takes up a minimum of high-priority
the inter-eomnecting socket at the rear of the base unit. Vemilation holdes are eut in the sides of the base unit. and two $11 / 4$-inch holes atre cut in the top surface of this chassis to provide greater clearance around the major coils of the r.f. assemblies, when they are in the operating position. The plateing of the power supply and i.f. amplifier components on the base unit is not eritical. though the arrangement shown in the photographs works out niedy from a meehani-
space wh the operating table.

Care should be used in mounting the socket and plus on the base unit and converters, respectively, in order that they maty line up exactly. When the job is properly done it is merely necessary to place the converter unit on the hase, with the front edge tilted upward slightly, slide the plug into the socket, and then drop, the converter in place. The converter assemblies should be kept free of parts in the portion

 5M1311).
$\mathrm{C}_{2}, \mathrm{Ce}_{6} \mathrm{C}_{7,} \mathrm{C}_{8}, \mathrm{C}_{10}-\mathrm{C}_{14}-0.005-\mu \mathrm{fr}$, dise reramic.

(.9 - $50-\mu \mu \mathrm{Fd}$, ceramio.
(11 - $50-\mu \mu \mathrm{fl}$, air trimmer (Millen 26050).
C 12 - I (0) $)_{-\mu \mu \mathrm{fl} \text {, ceraltic. }}$

$\mathrm{K}_{1}, \mathrm{~K}_{3}$ - lino ohms, B_{2} watt.
$\mathrm{K}_{2}, \mathrm{~K}_{5} \mathrm{H}_{-}, \mathrm{K}_{9}-\mathrm{IOOO}$ olims, $1 / 2$ watt.
$\mathrm{K}_{4}-2200$ ohms, $1 / 2$ watt.
Ka- 0.22 megohm, $1 / 2$ wat.
118 - 3300 ohmen, 1 watt.
l. 1 - 1 urns. So. 18 rinam., $5 / 16$-inch diam.. $1 / 4$ inch lonis.
I.2. I_{3} - G tirns Vo, 18 enam., 3 turns rach side of ren-
ter tiph, with : ${ }^{n}$-inch eparing between sections. ${ }^{3}$-incli diall. Aljelst turn spacing as nerded.
 and center-tapped.
$L_{55}, L_{4}-1$ turn hask-11p wire wonnd aroumd $L_{L 5}$ and $L_{\text {a }}$: 75.entim 'T'win-lad used to connect bet weren the" ino moils.
Le - Suptured plater reil (C'TC I.S3 5-Me, toil with 20 (urnc removed).
 long, tapped thoms from crystal end of eovil (13 \& II 30013).
$\mathrm{L}, 8$ - 3 turns So, 18 tinned. $1 / 2$-inch diamr. $3 / 8$ inch lomg (13 N W 3010).
I_{1} - (ars stal whehet fer antemea terminal?
P_{1} - 1 -prong male soxcket.
fig, $16-12-13$ ame mit, with rombortor removed, showing the plos-in fitting for the miser output and power connections. 'lhe 6HA6 i.f. amplifier stage is at the lower right.
that is over the rectifier tule soreket, in order that no eomponents be damaged in the plugging-in operation.

Looking at the converters for 28 and 50 Me , from the front we see the tuning condenser for the r.f. input cireuit, followed by the 6AK.5 and 6.J6 r.f. stages and the f.J6 mixer-oscillator, in that order. The 6AK゙5 plate eoil, the noutralizing coil, and the mixer plate eoil are slug-tumed resonating with the eircuit eaparitances only. Condenser-tuned circuits are used in the r.f. input, seeond r.f. plate, and miver grid cireuits. The difference in position of the r.f. tuning eondenser, C_{1}, in the two converters is the result of an improved parts arrangement used in the 28 -Me. job, Mounting of this condenser on the front wall of the converter chassis is recommended for both units.

Note the alternative input circuit for the $50-\mathrm{Me}$, converter, shown in Fig. 16-8. This includes a $100-\mathrm{Mc}$. trap, for elimination oif f . m. interference. If the converter is to be used in a location near to f.m. broadeast stations this trap is necessary to prevent the serond harmonic of the injection frequency from beating with the f.m. signals and producing spurious responses in the 50-Me. band.

In the 2-moter rollverter the ref. and mixer tubes are in lime at the right side of the chassis, as viewed from the front, with the aseillatormultiplier at the left. This layout makes for symmetrical arrangement of the push-pull eircuits. All the r.f. coils are self-supporting, so that thoir length and coupling can be adjusted radily. Link coupling of the injection voltage is aceomplished with single-turn coils around the multiplier-plate and mixer-grid windings, connected by a short length of 7 j -ohm TwinLead.

Adjustment and Operation

Work on the r.f. seetions is made casier if a pateh cord is made up so that the ref. units atn be removed from the hase and kept in operating condition. The only critical portion of the adjustment proeedure is that involved in getting the ervatal oscillator to work properly, athe on the right overtone. The important factor here is the amount of regeneration,

Fig. $16.13-11$ iring diagrann of the power supply and i.f. amplifier unit for use with the esystal-controlled converters.

H_{1} - 2.50() ohms, 10 watts.
$\mathrm{H}_{2}-1$ megohm, $1 / \mathrm{r}_{\text {watt. }}$
H_{3} - $10,(000$-ohm wire-wound motentiometer.
H_{4} - 68 ohms, $1 / 2$ watt.

$\mathrm{Ha}_{\mathrm{o}}-30,(0) 0$ ohms, 1 watt.
$\mathrm{H}_{\text {: }}$ - 2200 ohms, $1 / 2 \mathrm{watt}$.
$\mathrm{Hs}_{8}-1040$ ohms, $1 / 2$ watt.
1.1-11-hy. Soma. filere choke,
 turns remosed).
$I_{R}-15$ turns No, 32 enam., seramalife-wond at hottom end of L_{2}.
$\mathrm{J}_{1}-1$-prong female plug.
\mathbf{J}_{2} - (:naxial-cable jack.
S_{1} - S.por.t. toggle switch.
 6.3 v. at $2.5 \mathrm{amp}: 5 \mathrm{x}$, at 2 mmp . 'Thordarson「-221830).
controlled by the position of the tap on the oscillator coil, L_{7}. The process is the same for all three converters, but the tap position may be somewhat more critical in the 50 - and 144 Mc. units, as a higher-order overtone is used.

The proper position for the tap is that at which oscillation takes place only at the third or fifth overtone, as the converter requires. If the tap is too high on the coil oscillation will be on random frequencies, determined by the setting of C_{11}, rather than controlled by the crystal. If the tap is too low on the coil no oscillation at all will develop. The L / C ratio in the tuned circuit is also fairly critical, for best operation, but if the values given in the parts lists are followed no trouble should be encountered on this score.

To check operation of the oscillator insert a meter in series with R_{8}, apply plate voltage, and rotate C_{11} until a sharp dip in plate current occurs, indicating oscillation. There may be a tendency to self-oscillation at the minimumcapacity end of the tuning range, but this may be disregarded if it disappears quickly as the condenser is turned toward maximum capacity. Crystal oscillation should occur somewhere between half and maximum eapacity. It is helpful if a receiver is available for listening on the frequency of oscillation (indicated over L_{7} in the diagrams) to see whether or not the crystal is controlling the frequency. If the frequency changes markedly or if pronounced handcapacity effects are present, move the tap toward the low end of L_{7} by one turn and try again. A fraction of a turn change may be necessary in some instances, to achieve crystal control without random oscillation. It is also possible that the wrong overtone may develop. With incorrect values of inductance and capacity this type of circuit may produce oscillation on any odd overtone, so a wavemeter or receiver check should be made to be certain that the proper injection frequency is being used.

Next a rough alignment of the r.f. and i.f. circuits should be made. This ean be done on noise, with the receiver set at the approximate midpoint of the frequency range to be tuned, or if one has a signal generator the process is made easier. This need be nothing more than the
crystal oscillator in the transmitter, using the proper harmonic.

Neutralizing is next in order. This should be done following the procedure outlined in the section on r.f. amplifier design earlier in this chapter.

Final adjustment of the converters may now be made. leak all circuits in the 10 - and 6 meter converters at one end of the band, then move the receiver to the other end of the band and repeak either the miser or i,f, amplifier plate winding for maximum response. Receiver noise is satisfactory for this test. If the response is not sufficiently broad, correction can be made with the bandpass circuits in the second r.f. plate and mixer grid circuits, stagger tuning these and the i.f. coils until reasonably flat response is attained. All this is best done with a 300 -ohm resistor connected across the antenna terminals, to eliminate antenna resonance effects. If the response is flat with this set-up, variation in noise over the band with the antenna on may be disregarded, since it is a function of the antenna itself. Absolutely flat response is not important, for the overall gain of the system can be adjusted by means of the i.f. gain control. It should be set so that, with the antenna connected, the normal noise level just starts to read on the meter. Turning the gain beyond the point at which noise becomes a limiting factor effects no improvement in signal readability.

The flatness of response in all converters can be varied by adjusting the r.f.-miver coupling. In the 2 -metor unit the coupling between L_{3} and L_{4} should be increased to the point where it is unnecessary to change the setting of C_{5} to cover the entire band. There will be a slight amount of repeaking of C_{1} necessary in all converters, though it should not make more than about one S-unit difference from one end of the band to the other, and it will have a negligible effect on the noise figure.

The converters are now ready for use, but some work on the receiver may be needed. A few eommunications receivers radiate harmonics of the high-frequency oscillator frequency, and these will show up as birdies throughout the v.h.f, range. 'The cure is similar to that employed in treating transmitters for 'l'I.

Fig. 16-14 - I'nder-chassis view of the base unit, showing the power supply and i.f. amplifier components. "The circular cutouts provide additiomal mearatuce around the tuned circuite in the plug-in unit.

A Low-Noise Converter for 144 Mc.

The 2-meter converter shown in Figs. 16-15 to 16-18 was designed for superior weak-signal performance, yet it is relatively simple and inexpensive to build. Its r.f. section has a low noise figure, and special attention has been paid to oscillator design, for smooth tuning and improved stability. Its built-in i.f. amplifier stage, the gain of which is adjustable, permits use of the converter with reecivers of widely-different performance characteristics.

Two r.f. stages are used, employing the cascode circuit treated earlier in this chapter. The mixer and oscillator are 6AB4 triodes. These functions could be combined in a single 12.1 T 7 if desired, but separate triodes were used to permit more flexible adjustment of the oscillator injection. The mixer is followed by a 6. A (5 5 i.f. amplifier, gain controlled by means of a potentiometer in its cathode circuit., The intermediate frequency is 7.4 Mc., selected because of its availability in most communications receivers, but 10.7 Mc ., or any other desirable frequency, may be used, if the i.f. circuits are suitably altered.

The Oscillator

A high degree of recoiver selectivity can be utilized effectively at 144 Mc . only if a st,able and smooth-tuning oscillator is used in the converter. Mechanical vibration is reduced in this model through the use of a tank inductance made of $1 / 8$-inch copper tuhing, soldered directly to the stators of the tuning condenser, as may be seen in the rear view, Fig. 16-18.

The oscillator condenser is a type designed specifically for v.h.f. service. It has ball bearings at hoth ends of its rotor and ceramic end plates of heavy stock. Brackets for mounting the oscillator tube socket are an integral part of the condenser assembly. A smooth-operating dial assembly is made by substituting a large knob (National HIRK or HIRT) for the small one
normally supplied with the National type K dial.

The oscillator circuit is one which provides constant output over the necessary tuning range, and the stage is run at low input, with light loading. The quality of the c . w . note thus obtained is adequate for reception of 2 -meter c.w. signals, and the absence of hum modulation makes for good weak-signal reception of modulated signals. Oscillator injection is controlled by means of the link loops, L_{10} and L_{11}.

The R.F. and I.F. Stages

Though the converter has more tubes than the simplest units, it is not difficult to build or adjust. All circuits except the oscillator and the r.f. input circuit are slug-tuned, and only the oscillator is varied in tuning across the band. All stages may be peaked readily without a signal generator. The r.f. input circuit, L_{2}, is condenser-tuned, and it is important that a high-() coil be used for best performance. The loading effect of the antenna is such that C_{1} may be set for maximum signal at 146 Me., and little difference in response will be noted at either end of the band.

The mixer and i.f. amplifier plate coils, L_{6} and L_{i-8}, must be shielded, and coaxial line should be used for coupling the converter to the receiver, otherwise there may be annoying pick-up of signals at the intermediate frequency.

Construction

The position of components is not critical, and other arrangements may be desirable if the parts used are not duplicates of the original. In this instance an " L "-shaped layout is used, with the antenna terminals and r.f. stage at the right rear corner of the chassis and the second r.f., mixer, and i.f. amplifier stages running along the back and left sides in that order. The oscillator assembly is at the right

Fig. 16.15- The eascode ennverter for 141 Alr. The dial calilratiom was matle ly drawing on heary white paper, which is then fastened to the dial surface with rubber cement.

Fig. 16-16 - Selematic diakram of the 2 -meter caseode eonverter.
$\mathrm{C}_{1}-8-\mu_{\mu} \mathrm{fd}$, variable (Iohnson $160-101$).

($5-170-\mu \mu \mathrm{fl}$, mira.
(: $100-\mu \mu \mathrm{fl}$ ceramic.
$\mathrm{C}_{10} \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{14}-\mathbf{0 . 0 0 1}-\mu \mathrm{f}$, miea. (C_{10} and C_{14} are inside the i.f. shields.
(in- $-i$ - $-\mu \mu \mathrm{fl}$, stand-off type by-pas.
 (1)F-1-1).
(i: $-3-31$ - $\mu \mu$ fll. air padder (Nilver 619).
$\mathrm{H}_{1}, \mathrm{~K}_{3}, \mathrm{~K}_{14}-100$ ohms. ($\mathrm{I} \mid \mathrm{I}$ resi=tora 1 -watt unless otherwise specified.
$K_{2}, R_{4}, R_{f_{6}}, R_{12}-1090$ ohms.
lis - 0.68 megohm
k - - 1 mukohm.
lis - 220 obma.
It: - 20nowhin wire-wond potentioneter.
lim-2.1000 ohms, 1 watt.
$\mathrm{K}_{11}-33.000$ ohms.
front corner. It should be placed so that the flexible coupling does not touch the front panel. The rhassis is aluminum, 7 by 7 by 2 inches, and the sheret aluminum panel measures $53 / 4$ by 8 inches. Note that aluminum braces are used to prevent pancl vibration. These were found necessary for best oscillator stability.

The mothod of coupling the output of the oscillator to the mixer may be seen in the bottom and rear vicws, Figs. 16-17 and 16-18. A coupling loop is mounted on the two outside lugs of a 3-hag tie-point strip direetly below the oscillator inductance. This loop is connocted through $\overline{5}$-ohm Twin-Lead to a loop around the r.f. plate coil, L_{5}. The center lug on the strip is used for mounting the oscillator - lecoupling resistor, R_{14}, which also serves as a third support point for the oscillator tank inductance. 'The size of the coupling loops, L_{10} and L_{11}, will depend on the amount of uscillator injection needed, but the degree of coupling will be small. L_{10} is a semicircular loop of No. 18 wire, $3 / 4$ inch across, about onehalf inch below L_{9}. L_{11} is a circular loop
$11_{13}-2.500$ ohms, 10 watts.
$1 \mathrm{H}_{15}-1.0,000$ ohms.
C.a-2 turn: So. 18 enamel, $8 / 4$-inch diameter, between turna of L_{2}.
L.2-2 urns Vo. II timed. $3 / 4$-ineh diameter. $1 / 8$ inch between turns.
L_{3} - 10 turn: $10.2 \dot{i}$ enamel on $1 / 4$-ineh diameter slugtuned form (CTC).
L4, $1,5-3$ turns No, 21 enamel on $1 / 4$-incly diameter slug-tuned form (CTC). Winding $1 / 4$ inch long.
$L_{A}, L_{-}-$- Vo. 2.4 d.s.e.-wire elose-wound to fill winding space on National XR-,ill form.
L.s - iturns No. 24 d.s.e. over cold end of L_{7}.

1. - IVarpin-ahaped loop, $1 / 8$-inch copper tuhing, $3 / 4$ inch wide. Total length before soldering: $11 / 2$ inches, Extends $11 / 8$ inches heyond taning-condenser stators. (See Fing, l2-9.
L.10, Lhi - Hairpin lowns for coupling oseillator to miver. See text and photographa.
J_{1} - Coavial eonnector.
concentric with L_{5}. It is visible in the lefthatnd corner of the bottom-view photograph, Fig. 16-17.

In mounting the oscillator tube socket the plate lug, pin No. 1, is soldered directly to the tuning-condenser stator. Pin No. 6 is connected to the other stator through the short length of the grid condenser, C_{18}. All other socket pins except the heater, No. 4, are connected together and grounded.

Adjustment

The first step in placing the converter in service is to set the oscillator for the proper frequency range, 136.6 to 140.6 Me . for a 7.4-Mc, i.f. This may be done with a calibrated absorption-type frequency meter, or by fistening to the oscillator on a calibrated receiver. Next the convorter should be connected to the receiver with which it is to be used, and the i,f, adjust ments (cores in L_{6} and L_{7}) peaked for maximum noise. Next the slugs in L_{4} and L_{5} should be peaked for maximum noise, either tube noise or that from some external souree, such as an electric mazor or

Fig, 16-17-13othon view of the 2-meter converter.
a noise generator. This should be done with the converter set for approximately $1+6$ Mc. The r.f. input eireuit may be peaken on noise (1) a signal by adjusting C_{1}, squevzing or spreading the turns of L_{2} until the optimum scting oceurs near minimum capacity. This adjustment should be made with the andemat cobnected.

Tuning of the slugs will be rather bruad, so precise adjustment is not necessary. The slug in the noutralizing eoil, $l a$, may be set at approximately the midpoint of its pravel, unless a noise gemerator is available, in which ease it should be set for minimum mosise figure. I noise generator will be helpfal in determining the best position for L_{1} with resperet to L_{2} abso, but if note is available the coupling should be set somewhat tighter than that giving the maximum signal recponse.

The best prosition for the converter gain eontrol will depend upon the sonsitivity of the rorover with which the eomverter is to be used. With bet-ter-grate recoivers it will be possible to operate the gatu control well below the maximum setting, The optimum will be the minimum at whirh the

Fig. 16.18 - Rear view of the 2-meter comverter. It the left side, near the pamel, is the ,mallator assembly. 'The r.f. stages, mixer, and i.f. amplifier are arranged in ${ }^{\text {te }}$," formation acoros the back amd right sider of the ehassis, with the voltage-regulator trate is the midile.
over-all gain is adequate. The gain control also serves as a conveniont means of setting up the S-meter reading, if the receiver is so equipped.

Coupling betwen the useillator and mixer is not critical. The tighter the coupling the more the mixer output, within certain limits, but when an i, f, amplitier is used the highest possible mixer output is not required. The best setting of the coupling loop, L_{10}, is the minimum coupling ropuired to give satisfactory response, Somewhat tighter coupling that the minimum required will have very little effert on the over-all performanee, except to inctase the palling of the oscillator froqueney as the secomed r.f. phate eireuit is tuned. Very tight coupling will have an adverse effeet on the signal-to-noise ratio and uniformity of response areross the band.

A Simpler Version

If the builder desires the converter may be built in cosy stages. In its simplest form it would consist only of the two 6AB4 stages, the mixer athl oseillator. In this case the coil and condenser cireuit, $C_{1} L_{2}$, would be sub)stituted for the slug-tuned mixer coil, L_{5}, and the i.f. output would be taken off from the mixer plate coil, L_{6}. The i.f. amplifier stage should be added next, as it is quite essential to satisfactory operation. The addition of the r.f. stages provides a further improvement, particularly in signal-to-moise ratio in reception of weak signals.

The complete converter, as it is shown here, is the minimum that will provide performanee sufliciontly good to satisfy the discriminating v.h.f. worker, but the man who wishes to build something simpler as a start will be able to ohtain reception of all hat the weakest signals with the two or three-tulue version.

A Simple Converter for 50 and 144 Mc.

Though the more complex equipment already described is typical of the gear that must be used in order to attain top performance on the v.h.f. bands, it is possible to start with simpler devices and still do a good job. The converter shown in Figs. 16-19 through 16-22 provides the best performance that can be expected from simple equipment. It was not built to be the simplest possible receiving device; rather, it was designed to provide good resalts with a minimum of complieation and cost.

It uses a dual triode, 6.56 , as a combined mixer-oseillator, followed by a 6 AK 5 i.f. amplifier. The latter is necessary: do not try to do without it. The output of a triode mixer is too low to give adequate gain for most receivers. The i.f. amplifier stage makes the converter usable with even the simplest receivers, and provides a convenient means of controlling the overall gain of the system. 'lug-in coils with a miniature-tube type of base provide the means of changing bands.

Mechanical Details

Though it could be built in a much smaller space, the converter uses a 3 by 5 by 10 -inch chassis, allowing plenty of room for the work that must be done underside. The main tuning condenser is a split-stator variable made from a double-bearing double-spaced $35-\mu$ fid. type. The stator hars are sawed at the middle and each section is reduced to four stator and three rotor plates. This unit is mounted under the chassis, as close to the top plate as possible, to make room for the vernier dial on the front panel, To provide shielding without the necessity for individual shield cans, the mixer and i.f. plate coils, L_{4} and L_{5}, are mounted under the chassis. Normally this will provide all the shielding necessary for the i.f. circuits. If trouble is experienced with signals on the intermediate frequency a bottom plate may be added to the chassis.
A smooth-ruming dial on the oscillator tuning
is a necessity in a v.h.f. converter. The frictiondrive dial used (National Type K) is relatively inexpensive, and if a large knob is substituted for the small one with which the dial is equipped, it provides a very satisfactory tuning rate.

The circuit is so simple that no trouble should be experienced if the general parts arrangement is followed. Look over the photographs elosely before starting to lay out the chassis for drilling. In the rear view, Fig. 16-20, the oscillator coil, the 6J6 tube, and the mixer grid coil, $L_{1}-L_{2}$, appear in that order, from left to right, close to the panel. The 6AK5 tube is nearer the back, with the slug adjustment screws of the mixer plate coil, L_{4}, and the i.f. plate coils, $L_{5}-L_{6}$, at the left and right, respectively. Looking at the hottom view, Fig. 16-19, the oscillator tuning condenser, C_{5}, is at the left, with its parallel trimmer, C_{4}, mounted directly on the stator bars, on the left side. Note that the oscillator coil socket is mounted directly under C_{5}, on the same center line, allowing connections from C_{5} to the socket to be made with the shortest possible leads.

The only critical job in the construction or adjustment procedure is involved in getting the indurtance of the oscillator plug-in coils, L_{3}, to the correct value. There being only one parallel trimmer for the oscillator (C_{4}) the coils must be made and adjusted carefully in order to have the desired bandspread on both ranges.
Considerable care must be used in the placement of the oscillator and mixer components, so that all leads will be very short; otherwise it will not be possible to resonate these circuits at 1.48 Mc . The 6.56 socket is at the right of C_{5} in the bottom view, and the mixer grid circuit components appear just to the right of the middle. The i.f. amplifier gain control, R_{7}, is at the right. The 300 -ohm line from the crystalsocket antenna terminal, J_{1}, may be seen at the far right. The mixer plate coil, the i.f.

Fig. 16.19-A 2-tube converter for 50 and 114 Ne. The vernier dial is a National 'rym' K. with an II R'I hnol, replacing the small onv with which the dia! is normally equipued. 'The two other hnohs are the i.f. gain control, left, and the mixer tuning con. denser.

Fig. 16-20 - Rear view of the simple eonverter. Near the pancl, left to right, are the oscillator roil, mixer-ossrillator tube, and the mixer arid eoil. 'lhe 50-Xe. roils are shown. The i.f. amplifier tuhe is nearer the back of the chassis, with the slug-tuned miver and i.f. plate coils at either side.

amplifier socket, and the output coil assembly are across the back of the view, from left to right. The power plug, i.f. output fixture, and antenna terminal are on the rear wall in the same order.

Test Procedure

When the assembly and wiring are completed, the oseillator operation should bo checked. The power supply should deliver 6.3
volts a.c., at 1 ampere, and 150 volts d.c. at 30 ma., preferably regulated. Insert a milliammeter in series with R_{3} and cheek for oscillation by touching any bare spot in the oscillator plate or grid circuit with a pencil. A change in current indicates osellation.

The frequency of the oscillator may be chereked with an absorytion-t ype wavemeter or Lecher wires. For the 50 Me , range, the oseillator should tune from $\overline{3} .4$ to 61.4 Me . in

Fig. 16.21 - Schenatio diagram of the twotube converter for 50 and 144 Mc .
(i) - $1.5-\mu \mu \mathrm{fd}$. midget variable (M illen 2(M) 15).
(2 - 100) $\mu \mu \mathrm{fd}$. mica or eeramic.
$\mathrm{C}: \mathrm{C}, \mathrm{C}-50-\mu \mathrm{fd}$. mica or ceramic.
(A - $30-\mu \mu \mathrm{fd}$. air-dielectric padder (Silver 619). Ntornative: Ceramic trinmer of similar capacitance, such as Centralab 820-C.
C_{5} - Special split-stator variable, 7 plates per section, made from Millen 21935 - see text.
$\mathrm{C}_{6,} \mathrm{C}_{11}-68-\mu \mu \mathrm{fd}$. mica or ceramic.
(i-, $\mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{12}-0.01-\mu \mathrm{fd}$. dise-type ceramice.
$\mathrm{K}_{1}, \mathrm{k}_{5}-1$ megohn, $1 / 2$ watt.
$11_{2}-10,000$ ohms, $1 / 2$ watt.
$R_{3,}, K_{4}, R_{9}, R_{10}-1000$ chmms, $I_{2} w a l l$.
$\mathrm{H}_{6}-220$ ohms, $1 / 2$ watt.
K_{7} - 2000 oohm wire-wound potentinumere.
$18 x$ - 22, 000 ohms, 1 watt.
L.t - 50 Mr: 3 turns No. 22 enamel, Nememonad at cold enel of L_{2}.
144 Mc.: 2 turns to. 22 enamel, rlose-wound at
cold end of L_{2}
$1.2-50$ Mc: 7 turns No. 22 enamel, $3 / 8$ inch long.
144 Me.: 2 turns No. 22 enamel, $3 / 8$ inch long.
$I_{3}-50$ Me.: 5 turns No. 22 timed, $7 / 16$ inch long, eenter tapped.
144 Nc.: 34 turn No. 12 tinned, center tapped: a $13 / 8$-inch length of wire formed into a partial circle with an inside diameter of $1 / 16$ inch.
Note: Coils L_{1}, L_{2} and L_{3} wound on Millen 6001 forms. For L_{4} the form is sawed off and the base only is used.
1 1, $1.5,23$ turns Vo. 22 enamel, close-wound on National XR-50 slug-tuned forms.

1. 4 - 3 turns No. 22 enamel, close wound at cold end of L/5.
\mathbf{J}_{1} - Antenna terminal (Millen 33102 erystis socket).
J_{2} - I.f. output terninal (Jones S-101-D).
$P_{1}-1$-prong plug (Amphenol 86 -(CP4).
order to beat with an ineoming signal to produce a $7.4-\mathrm{Mc}$. i.f. (The oscillator is on the high side of the signal.) A kick in the oscillator plate current, or a flicker in the voltage-regulator tube in the power supply, can be used to show when the frequency is found with the measuring devier.

Set the padder, C4, so that $57 .+$ Me comes at about 5 divisions in from the maximumeapacity end of the tuning range, and check to see where 61.4 Mc . is found. It should come just inside the minimum-capacity end of the range. If the eireuit will not tune to $61 .+\mathrm{Me}$. the inductance of L_{3} is too low. Move the turns closer together, and reset . C_{4} as before for 57.4 Mc. If the bandspread is too small, spread the turns and increase the capacitance of C_{4} to compensate, for the desired amount of spread, about 90 divisions on the dial.

Next check the 2-meter range. Here the coil must be adjusted in induetanee until the oscillator will hit 136.6 Me. somewhere between the middle and the maximum-capacity end of the tuning range of (${ }_{5}$. The high end, 140.6 Me. will then appear about 50 to 60 divisions higher on the dial. The oseillator is on the low side of the signal on this range. Do not ehange the setting of C_{4} in this process, or it will be necessary to alter the $50-\mathrm{Mc}$ coil again.

This arrangement fone padder for both bands) does away with the need for padders in the coils themselves, and is worth the added care that must be taken in designing the coils. somewhat redued bandspread results on the 14f-Me, hand. This can be increased by making the eoil smaller, and inereasing the value of (is accordingly. It will then not be possible to eover the entire 50 -Me. band, but this is no handicap so long as use of the band is eoncentrated near the low end, as at present.

Once the oscillator is made to tune the proper frequence ranges the converter may be tested in actual reception. Connect the output through a coaxial eable to a reeceiver tuned to approximately 7.4 Me . With the converter in
operation, there should be an increase in noise as the gain control is turned up. The mixer and i.f. amplifier plate windings can be tuned to the proper frequency mercly by adjusting the core serews for maximum noise.

The mixer grid circuit may also be peaked on noise, though care should be taken to see that it is not peaked on the image, 14.8 Mc . away from the signal frequency. If the grid circuit is tuned to the desired frequency there will be a considerable increase in the strength of a signal as the grid condensery, C_{1}, is tuned through resonance. If the eircuit is tuned to the image frequency the noise will prak up, but an amateur-hand signal will drop in strength as the noise peak oceurs. Tuning the mixer grid circuit shifts the oscillator frequency slightly, so it may be peaked more accurately on noise than when listening to a signal.

A final check of the dial ealibration may be made by tuning in signals of known frequency, or by means of an aceurate signal generator. Few wavemeters are sufficiently aceurate for final calibration by the method outlined earlier. When the desired calibration is attained, the converter is ready for use.

If, in actual operation, trouble is encountered with signals in the 7 -Me. region leaking throngh, the i.f. can be shifted slightly to ture out the interferenee. In some instaners it may be necessary to put a bottom phate on the chassis, Small changes in intermediate frequeney can be made without resetting either the oscillator padder or the i.f. coils. With the i.f. amplifior built into the converter, the setup will have adequate gain for use with almost any receiver. Reeption will be nearly as good as with more complex designs, the principal difference being a somewhat higher nove figure (slightly degraded signal-to-noise ratio) in the simpler job. The use of a low-noise ref. amplifior ahead of the converter (an example is the $6 . J 6$ preamplifier of Fig. $1(\mathrm{f}-2(\mathrm{i})$ will make possible reception equal to the best obtainable in a converter having a tumable oscillator.

Fig. $16-22-$ Bottom view of the two-hand ronverter. The split. sator comolenser al the left is for oscillator tuning. The excillator roil serket is out of sight above this condenser. At its right is the oJf socket. The mixer tuning condenser and gride coil socket are just to the right of the middle of the thassis, with the i.f. coils and tube rechet at the rear.

A Cascode Converter for 220 Mc .

The 220-Mc. converter shown in Figs. $16-23,16-24$ and $16-25$ is an adaptation of the 2 -meter design shown carlier in this chapter. The cascode r.f. amplifier is similar, but different tubes are used in the mixer-oscillator and i.f. amplifier stages, and a completely different mechanical layout is employed, as is quickly evident from a comparison of the photographs.

The first stage is a triode-connected 6AK5. No neutralization was found necessary, oscillation being prevented by the heavy loading imposed by the following $6 . J 6$ grounded-grid stage. The r.f. plate circuits are self-resonant and sufficiently broadland to more than cover the 220-Mc. band without adjustment. The r.f. input circuit is condenser-tuned, but the antenna loading makes repeaking of this eireuit unnecessary.

The functions of mixer and oscillator are combined in a 12 AT7 dual triode. The oseillator tank circuit is in the form of a " U " cut from sheet copper and soldered directly to the funing-condenser stators. A fairly high value of parallel capacitance is added in C_{4}, for stability. Some miser injection is obtained through the elements and common connections of the dual triode, but additional coupling was found to be necessary. It is adeled by a short piece of Twin-Lead, and shown on the diagram as C_{10}.

The 613 A 6 i.f. amplifier has a potentiometer in its cathode circuit for gain control. The mixer plate coil, L_{5}, and the output transformer, L_{6}, make use of ready-made commercial slug-tuned coils of small dimensions, requiring only slight modification of L_{6}, as noted in the parts list. Voltages throughout the converter are stabilized by an 0B2 regulator tube.

Mechanical Details

As may be seen in the photographs, the r.f. and mixer-oscillator tubes are mounted in an inverted position, with the sockets above the chassis. This keeps r.f. leads to a minimum (of great importance in 220-Mc. construction) and brings portions of the circuit requiring adjustment up where they are readily accessible. The i.f. and voltage-regulator tubes are mounted in the conventional manner. The i.f. tuning slugs are below the chassis, providing partial shielding. If pick-up of signals on the i.f. frequency is troublesome it can be corrected by the addition of a bottom plate to the chassis.

An aluminum chassis, 2 by 5 by 7 inches, is used, with a 5 by 7 -inch panel. A small bracket is mounted at the back of the chassis, carrying the r.f. tuning condenser and the crystal socket used for antenna terminals. The antenna condenser is insulated from ground at the mounting point, and a heavy copper strip is run over to the common ground point at the r.f. tube socket. Ceramic fixed condensers (the disk type in the higher values and the cytindrical type in the smaller ones) allow compact design, and provide improved by-passing qualities.

Alignment

Putting the converter into service involves only standard procedure, such as that outlined in the description of the 2-meter converter of similar design, except that the plate coils, L_{3} and L_{4}, are adjusted by spacing their turns. The intermediate frequency can be anything within reason, depending on the receiver with which the converter is used. In the original model it is 15 Me , but it could be altered considerably without component change, other

Fig. 16.23-Oblique view of the 220. 1 le . cascode converter, showing inverted mount. ing of the r.f. and mixer-oscillator tubes. "he r.f. input eircuit is mounted on a bracket at the rear of the chassis, with the 6.1 K 5 socket dircetly below it. Nearer the panel is the 6.16 . with the 12AT7 mixer-oscillator socket and oscillator components near the middle. 'l'he 6ll A6 i.f. amplifier and 0152 regulator tubes are nomoted in the conventional manner, at the right.

Fig. 16.24 - Schematic diagram of the 2.0 - Me. converter.

Ci $-\overline{5}-\mu \mathrm{ff}$. miniature variable (Johnson 160-102).
($\mathrm{C}_{2}-3-30-\mu \mathrm{fl}$. mica trimmer.
(${ }_{3}$ - $\mathbf{1 0 . \mu} \mu \mathrm{fd}$.-per-section split stator (Bud I.C-1660) with 2 rotor plates removed from each section). ($44-5-25-\mu \mu \mathrm{fl}$. cerasnic trimmer.
$\mathrm{C}_{5} \mathrm{C}_{9} \mathrm{C}_{6}, \mathrm{C}_{8}$ - $100-\mu \mu \mathrm{fll}$. ceramic tubular.
$\mathrm{C}_{7}, \mathrm{C}_{4,}, \mathrm{C}_{12}, \mathrm{C}_{16}, \mathrm{C}_{18}-2 . \overline{\mathrm{j}}-\mu \mu \mathrm{fd}$. ceramic tubular.
C10-75ohm 'T'win-Jeal, eut to approxisuately $1 / 2$ inch. $\mathrm{C}_{11}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{17}-0,001$, $\mu \mathrm{fd}$. disk-type eeramic. $\mathrm{C}_{19}-\mathbf{0}, 01-\mu \mathrm{fl}$. disk-type ceramic.
$\mathrm{R}_{1}, \mathrm{R}_{9}-68$ olums, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{R}_{4}, \mathrm{R}_{6}, \mathrm{R}_{11}-1000$ ohtms, $1 / 2$ watt.
$1_{3}-100$ ohms, $1 / 2$ watt.
$\mathrm{K}_{5}, \mathrm{~K}_{7}-1$ megolim, $1 / 2$ watt.
1 R - 25,000 -rhm potentionter.
$\mathrm{R}_{10}-56,000$ olims, 1 watt.
R_{12} - $\mathbf{5 0 0 0}$ obms, 10 watts.
than different settings of the slugs in L_{5} and L_{6}, and resetting of padder C_{4}, across the oscillator circuit. It will be noted that part of the capacitance across L_{6} is in the form of a
$\mathrm{R}_{13}-12,000$ ohms, $1 / 2$ watt.
$L_{1}-3$ turns No. 18 enamel, $1 / 4$-inch diameter, inserted between turns of L_{2}.
L.2 -3 turns No. 16 tinned, $1 / 4$-inch diameter, $3 / 8$ inch long.
$\mathrm{I}_{3}, \mathrm{~L}_{4}-2$ turns No. 16 tinned, $1 / 4$-ineh diameter. Space turns for maximum response.
L_{25} - I.f. plate coil, slug-tuned (C.'C IS S -10 Me.).
$L_{A B}$ - Similar to L_{5}, but with 10 turns removed.
L:- -10 turns No, 30 d.s.c. wound over L_{6}.
Ls - Copper loop, 1 íe inch thich, $/ 8$ inch wide. l^{5} inches long. Sot is $1 / 2$ inch wide.
I_{1} - Creen-jewel pilot-lamp assembly.
I 1 -Coaxial output fitting.
$\mathrm{P}_{1}-1$-prong male plug.
RFCi, $\mathrm{RFC}_{2}-\mathbf{0}, 8 \mathrm{f}-\mu \mathrm{h}$, r.f. ehoke (Ohmite $\left.7 .-23.5\right)$.
fixed condenser, C_{16}. This is to forestall possible $v . h . f$. parasitic oscillation in the i,f. stage, by by-passing the plate direct to the cathode. Tunable capacitance, C_{2}, is connected across the i.f. coil. Its adjusting serew is reached through a rubber-grommetted hole in the side of the chassis.

Fig. 16-25-Under-chassis view of the 220-M1. converter. The three inverted tulies may lee seen at the right. 'The slugtuned i,f, coils are at the back of the chassis.

A 6J6 Preamplifier for $\mathbf{2 8 , 5 0} 5$ and 144 Mc.

The triode preamplifier shown in Figs. 12-26 to 12-29 will improve the sensitivity and lower the noise figure of receivers and converters that are defiegent in these eharacteristics. It uses a G.Jh as a push-pull neutralized amplifier, with plug-in coils in its grid and

Fig. 16-26-An r.f. preamplitier for 28, 50 and 141 VIc. The $\mathbf{5 0 - M e}$. coils are shown.
plate circuits, A self-contained power supply is included, so the only connections nerded are to the receiver antenna terminals and the a.c. line.

The r.f. components are mounted on the top plate of a standard utility box, 3 by 4 by 5 inches in size. The power-supply parts are attached to the walls of the box itself. The 6JJ socket is in the middle of the top plate, with the plug-in coil sockets equally spated in front and back of it. The butterfy tuning condensers are on the underside of the same plate, as close as possible to the coil sockets. The neutralizing trimmers mount directly on the stators of the tuning condensers.

The power supply uses two small b.3-volt filament transformers wired "back-to-back,"
a selenium rectifier, two small filter comensers, and a resistor in lieu of a choke. The filament transformers also supply the heater voltage for the 6.16. Fig. $12-29$ shows the utility box with all power-supply components mounted in plare and wired, ready for use.

Fig. 16-27-Schematic diagram of the 3-band r.f. rramplifier.
(\%, (:2-15- $\mu \mathrm{fd}$. butterfly-type variable (Ilammarlund BFC-12). Flexible coupling is Natimal type 'I'X-10.
($3_{4} \mathrm{C}_{4}-3-30$ - $\mu \mathrm{ffd}$. mica trimmer.
($5-40 / 40-\mu \mathrm{fil}$. 150 -volt electrolytic.
C C $_{8} 100 . \mu \mu \mathrm{ff}$. mica.
$\mathrm{R}_{\mathrm{t}}-17$ olims.
$\mathrm{R}_{2}-220$ ohms.
R_{3} - $10(\%)$ ohms.
R_{4} - 0.1 meqоhm.
S_{1}-S.p.s.t. toggle.
Sk - Selenium rectifier (Federal 10201)3150-1).
Tr, ' ${ }_{2}$ - 6.3-volt 1-amp, filament transformer (Merit (1-2911).

Adjustments

The amplifier must be neutralized before operation can be checked. This may be done in two ways. The neutralizing trimmers should be set near minimum capacitance and the tuning-condenser gang turned through its entire travel, while listening on the recciver with which the amplifier is to be used. The output terminals of the amplifier should be connected to the antema terminals of the receiver by a short length

COIL DATA FOR THE 6J6 PREAMPLIFIER				Output
Rand	Antmun	Grid, L_{1}	Plute, L2	
28 Mc . 50 Mc . 144 Mc .	inch dia. inside L_{1}. 4 t. No. 18 e. ${ }^{5} / 6-$ inch dia. Insert between sections of L_{1}	14 t. No. 2.4 e., c.t., 5 , inch long. 6 t. No. 24 e., c.t.. ${ }^{5}$ winch long. 2 t. No. 16 t. earh side of c.t., s/ib-inch da., $5 / 8$ inch long.	same as L_{1}. Same as L_{1}. Same as L_{1}, but $3 / 8$ inch long.	6 t. No. 18 e. 3^{2} inch dia. inside L_{2}. 6 t. No. 18 c. ${ }^{5}$ in $^{-}$ inch dia. inside L_{2}. 3 t. No. 18 e. 1/4inch dia. Insert between sections of L_{2}.
(ail forms are 58 -inch diameter, 5 prong (Amphenol $24-511$) with sockets to match (Amphenol $54-$-ili). The 14t-Mc. coils are air-wound, using cut-down forms for bases,				

Fig. 16.28 - 'The r.f. protion of the 3-hand preamplifier is mounted on the cover plate of the utility box.
of 300 -ohm line, and an antenna of the type normally used for the bend in question should be attached to the proamplifier. If no antemna is available a carbon resistor of the value of the line impedance ($75,300,500$ ohms, ate.) should be connected acrose the amplifier input terminals. Moving the neutralizing trimmers either way from the proper setting will cause the 6.06 to oscillate, as indieated by excessive noises in the reeciver. Best opreation will be had with the trimmers at the midpoint between the settings at which oscillation starts. If the normal minimum capacitance of the trimmers is too high to pormit neutralization the movable plates should be cut down in size.

The most effective check for neutralization is had by inserting a burned-out 6.J6 (or one with a heater prong cut off) in the socket and adjusting the trimmors for minimum response while listening to a strong signal. With some care it is possible to find a setting that holds for all three bands, but the adjust-

Fig. 16.29 - Power-supply components of the preamplifier are mounted on the walls of the utility box.
ment should be made for the band on which best weak-signal reeeption is desired.

No provision is made for padding the coils, so the inductance should be close to the correct value. This may be checked by inserting an iron core into the plate and grid coils, one at a time. If an increase in signal results the inductance of the coil in question is too low. is various antennas and receiver input circuits may reflect different loads back on L_{1} and L_{2} this check should be made with the receiver and antenna with which the amplifior is to be used.

The coil and condenser values given represent a compromise for three-hand operation. If such a preamplifier is to be used for $1+4$ Me. only improved results can be achieved by using variable condensers of lower minimum capacitance and climinating plug-in coils. The reduced circuit capacitance thus obtained will permit the use of more efficient coils for the 144-Me. hand.

Receivers for 420 Mc .

With erystal control or its equivalent in stability almost standard practice for all bands up through 220 Mc., there is little point in using more bandwidth in the receiver for these frequencies than the minimum needed for satisfartory voice reproduction. Since the sharpest practical receiver will give the best signal-to-noise ratio, all other fachurs being erpual, we will want to keap the bandwidth down in a receiver for 420 Me . also, but there are other limiting factors at this frequency.

One is the matter of oseillator stability. Even the best tunable oseillators may suffer from vibration amd hand-capacity efferts at 420 Me., so it is desirable to use an i.f. bandwidth somewhat

Fig. $16-30-\mathrm{A}$ converter for 420 . Mc. reception. 'The oseillator section is in bach of the vernier dial, with the mixer at the rear. Both use 6 J 6s in pushpull circuits. The tules at the right are the $30-\mathrm{Me}$, i,f. annplifier, a $6 \mathrm{~A}(35$,
 and a voltage regulator.

Fig. 16 - 31 - Schematic diagram of a converter for 120 Mc .
(:1- 'wosection ganged splitstator variable, 6.75. μ_{μ} fl.-per-section statur to stator (Vational U1IF-21). (One plate may be removed from cach sertion to increase bandspread, if dexired.
($: 2-3-30$) $\mu \mathrm{fd}$. mica trimmer.
C_{3} - l'adder eapacitance made from two copper plates, 7/8 by 1 inch in size, soldered across terminals of L_{2} and C_{1}. Adjust spacing for bath-setting purposes.
$\mathrm{C}_{4}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{11}-0.005-\mu \mathrm{fd}$. dise ceramic.
Cis. C_{10} - $15-\mu \mathrm{fl}$ d. ceramic.
(is - 50) $-\mu \mu \mathrm{fd}$, ceramie.
$\mathrm{C}_{12}-500-\mu \mu \mathrm{fd}$, ceramic.
S_{13} - $100-\mu \mu \mathrm{fd}$. button loy-pass.
$\mathrm{R}_{1}-470$ ohms, $1 / 2$ watt.
$R_{2}-1000$ ohms, $1 / 2$ watt .
$K_{3}-1$ megohm, $1 / 2$ watt .
$\mathrm{H}_{4}, \mathrm{H}_{8}-1000$ ohms, $1 / 2$ watt.
R_{5} - 10,000 -ohm potentiometer.
$\mathrm{H}_{6}-68$ ohms, $1 / 2$ watt.
$\mathrm{K}_{\mathrm{i}}-33,000$ ohms, 1 watt .
more than that of the communications type of reeriver in 420-Mc. work, even when the signals to be received are of the stable variety. A good compromise in i.f. handwidth for $\mathbf{4} 20-\mathrm{Me}$. reereption is that customarily employed in $\mathrm{f} . \mathrm{m}$. broadrast recoivers, about 200 kc . or so. This is cnough so that, with reasonable precrations in oscillator design, a $420-\mathrm{Mr}$. converter is easily tuned, and reven the modulated oscillator type of signal may be reeoived with good quality if the receiver is equipped with f.m. detertion, and the transmitter modulation is held to a moderate level.

It is difficult, if not impossible, to build a tunable oscillator for a $420-\mathrm{Mc}$. converter that will do a completely satisfactory job when communieations recoiver selectivity is used in the i.f. systrm. One possible approach is the use of an

Fig. 16.32 - Bottom view of the $\mathbf{4 2 0} \mathbf{2}$. Mc, converter.
B_{9}-I(N) ohms, $1 / 2$ watt.
$\mathrm{K}_{10}-3300$ ohms, $1 / 2$ watt.
$\mathrm{R}_{11}-\mathbf{2 5 0 0}$ olms, 10 watts.
$13 / 2-33,1000$ ohms, $1 / 2$ watt.
$1_{1}, \mathrm{~L}_{2}$ - 1 -shaped inductanees cut from shect copper, $7 / 8$ by $17 / 8$ inches over all. Cut-out portion is $1 / 4$ ineh wide. Solder directly to flat plates on the tuning-condenser stators, adjusting position of L_{2} for proper tracking.
L_{3}, L_{4} - Injection compling loops of stiff wire, width of L_{1} and I_{2}, and mounted elosely under them.
L.5-Antenna coupling loop of stiff wire $13 / 4$ inches long, coupled closely to L_{1}.
$1.6-10$ turns No. 24 d.s.c. spaced to fill National XR-50 form.
I. 7 - Same as 1. , but tapped at second turn from cold end.
J_{1} - Antenna terminal - Millen 33102 crystal socket.
J_{2} - Coavial fitting (Jones S-201).
1'-4-prong power fitting.
$R \mathrm{FC}_{1}, \mathrm{RH}_{2}-10$ turns K_{2}, 22 cnameled wire, elosewound on l-watt resistor.

Fig. 16-33 - 1 superragenerative recuiver for 120 Mc . The two lower controls are for variation of detector coltake (left) and andio gain. The verniar dial is the main tuning and the knob at the top adjusts the antenna coupling.
oscillator-multiplicr system, but this is practical only for tuning a part of the band, unless one or more gang-tuned multiplier stages are used.

The best solution to the stability problem is a cryatal-controlled imjeotion souree, but this imposes the band coverage problem to a still greater degree. Several crystals and a tunable i.f. system are then required.

Assuming that we have a reasonably stable oscillator and an i.f. bandwidth of 100 to 200 ke., wo still may be a long way from satisfactory receiver porformance at 420 Me . Nearly all eonventional receiving tubes work poorly, if at all, at this frequency, with the result that the sensitivity and signal-to-noise ratio are much lower at 420 Me . than would be possible with a eomparable tube lineup at 144 Me .
'To date, little suecess has been had with r.f. amplifier stages using inexpensive recciving tubes, the only suitable tubes for this purpose bring the lighthouse and pencil types. These require special tank circuits of the coaxial or flat-plate variety.

Mast eonverters presently used on 420 Mc . thus use only a mixer and an oscillator, followed by one or more i.f. amplifier stages. The i.f. amplifire is a neressity; the output of a $420-\mathrm{Mr}$.
mixer is too low to provide satisintory performance with the average receiver that might be available for use as an i.f. system.

The mixer may te cither a vacuum tube, using more-or-less eonventional circuitry, or a erystal diode. Though tube mixers outperform erystal mixers at lower frequencios, in the region around 400 to 600 Mc . thero is little choice between the two, and many available tubes may actually be inferior to crystal diodes in $420-\mathrm{Me}$. work.

A 420-MC. CONVERTER

The ronverter shown in Figs. 16-30 through 16-32 was designed for use in conjunction with communications receivers having provision for wideband f.m. detertion. Wamples are the $\mathrm{S}-27$, S-36, SN-42, and SX-fi2. The intermediate frequeney is 30 Me., so it may be used with any receiver covering that range, but best results will be obtained with those having wideband f.m. facilities. It may be used with the SX-43 or with f.m. broadeast receivers, provided that the intermediate freguency is changed to suit the tuning range of the recoiver. This would be 42-50 Me, in the case of revivers for the old f.m. band, or 88-108 Mr. for the present assignment.

FFig. 16-34 - Ietail view of the f20-11e. superregencrative receiver. Vote the methoil of varying the antenna erompling. Commer plates attached to the tuning-condenser stators provide a hamdet adjustment.

Fig. 16-35 - Schematie diakram of the 120. Mc, superregenerative receiver.
$\mathrm{C}_{1}-4 \mathrm{~F}_{0} \cdot \mu \mathrm{fld}$ mica.
C_{2} - $0.0033-\mu \mathrm{fd}$. mica.
(a-0.01- -fl d, tutular.
$\mathrm{C}_{4}, \mathrm{C}_{5}-10$ - $\mu \mathrm{fd}$, 25 -volt electrolytic.
C: 6 - Miniature split-stator variable, about $4 \mu \mu \mathrm{fl}$. prer section. (Hillen 21912I), with one rotor plate. removed from cach section. See text and photo.)
$\mathrm{C}_{7}-0.1-\mu \mathrm{fl}$ d. tuhular.
$\mathrm{R}_{1}-3800$ ohms, $1 / 2$ watt.
$\mathrm{H}_{2}-47,000$ ohms, $1 / 2$ watt.
$\mathrm{I}_{3}-0.5$-megohm potentioneter.
$1 \mathrm{~K}_{4}-\mathbf{2 2 0 0}$ ohms, 1 watt.
$\mathbf{R}_{5}, \mathrm{R}_{6}=0.1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{7}-470$ ohms, 1 watt.
$\mathrm{R}_{8}-50,000 \mathrm{ohm}$ potentiometer.
$\mathrm{R}_{9}-2200$ ohms, I watt.
Such a converter may be used for reception of amateur television signals in the $420-\mathrm{Mc}$. band by adjusting the intermediate frequency to a television channel that is not used locally. A channel in the low band is recommended.
The mixer and oscillator stages use 6J6s, with gang-tuned pushpull circuits. A 30-Mc. i.f. amplifier is included, as the gain of most receivers at 30 Mc. is insufficient for best reception. The i.f. stage uses a 6A(ris, which works well at this frequeney, but if the i.f. is to be shifted to the 90 -Mc. region it would be well to use the cascole circuit in the i.f. amplifier, for adequate gain and low-noise characteristics. Details of the cascode amplifier will be found earlier in this chapter. llate voltage for the oscillator and mixer is maintained at 105 volts by means of an OA2 regulator tube.

The tuning condenser is a ganged unit especially designed for v.h.f. service. The mixer and oscillator inductances, L_{1} and L_{2}, are cut from sheet copper in U shape, and soldered direetly to the stator assemblies in the tuning condenser. The 6.J6 tube sockets are mounted on brackets supplied with the condenser assembly, permitting connections to be made without leads other tham the socket lugs themselves. Padder caparitance for the oscillator is supplied by two copper plates, also soldered directly to the stator terminals.

A SUPERREGENERATIVE RECEIVER FOR 420 MC ,

Where simplicity, low eost, and low power consumption are important a superregenerative rereiver may be useful. Such a receiver is shown in Figs. $16-33$ through 16-36. A 6J6 is used as a
$R_{10}, R_{11}-47,000$ ohms, 1 watt.
$\mathrm{R}_{12}-1.5$ megohms, $1 / 2$ watt.
L_{1} - Hairpin loop No. 14 enameled wire, same spacing as L_{2}. Connect to antenna terminals by means of 300 ohm line.
I_{2} - Ilalf-wave line No. 12 wire, each side $31 / 2$ inches long, spaced $3 / 8$ inch center to center. (See text and photographs for other details of L_{1} and I_{2}.) $J_{1}-$ Closed -circuit jack.
$18 \mathrm{FC}_{1}-19$ turns No. 20 enameled wire, 3 /f-inch inside diameter, $7 / 8$ inch long, center-tapped.
R FPC_{2} - IO 0 mh . r.f. choke.
 inside diameter, $3 / 4$ inch long.
$s_{1}-$ S.p.s.t. toggle switch.
${ }^{\prime} 1$ - Interstage audio transformer.
pushpull detector with a halfwave line in the plate circuit, followed by two metal-tube audio stages. Tuning is done by means of a small splitstator condenser across the open end of the line.

Adjustment of the antenna coupling for best reception may be quite critical, so a convenient

Fig. $16-36$ - Hottom view of the $420-\mathrm{Mc}$, receiver. loudspeaker terminals are at the lower left. At the right are the antenna terminals, from which a length of 300 -ohm line runs up through the chassis to the antenna coupling loop.
means for varying the position of the coupling loop is provided. Regeneration is controlled by varying the detector plate voltage. In the rearview photograph, Fig. 16-34, the audio tubes have been removed to show the details of the halfwave line and the antenna coupling assembly. It will be seen that the line is mounted horizontally, with each end bent over to reduce the spare required. Small phates of sheet copper are soldered to the stator plate of the tuning condenser, and these are used to form a band-setting padder caparitance.

The frequency of the superregenerative detector may be cheeked with Lecher wires, or by means of a alibrated wavemeter. When it has been adjusted to tune approximately the correct
frequency the optimum point for connection of the center-tapped r.f. choke, $R F C_{1}$, should be found. With a temporary connection near the midpoint of the line, touch a pencil lead along the line until the least effect on the operation of the detector is noted. This is the point at which the 13 -plus should be fed into the line.

All adjustments on a superregenerative detector interlock somewhat, so it is advisable to go over them several times for best results. The most sensitive operating point will be with the tightest coupling to the antenna that will permit superregencration. If the antenna does not pull the detector out of oscillation at any position of L_{1}, back of the detector plate voltage until just before supreregeneration reases.

CHAPTER 17

V.H.F. Transmitters

Beginning with the $v . h . f$, region, amateur frequency assignments are not in direct harmonic relationship with our lower-frequency bands. This fact, coupled with the necessity for extreme care in selection and placement of components for low circuit capacitance and minimum lead inductance, makes it highly desirable to construct separate gear for v.h.f. work, rather than attempt to adapt for v.h.f. use a transmitter designed for the lower amateur frequencies.

Transmitter stability requirements for the $50-\mathrm{Mc}$. band are the same as for lower bands, and proper design may make it possible to use the same rig for $50,28,21$, and even 14 Me., but incorporation of 50 Me. and higher in the usual multiband transmitter is generally not feasible. Rather, it is usually more satisfactory to combine 50 and 144 Mc , since the two bands are close to a third-harmonic relationship. At least the exciter portion of the transmitter may be made to cover the requirements for both these bands very readily.

Though no stability restrictions are imposed by law on operation at 144 Me. and higher amateur bands (other than that the entire emission must be kept within the limits of the band in question), experience has demonstrated the value of using crystal control or its equivalent in v.h.f. work. Crystal-controlled transmitters and receivers having the minimum bandwidth necessary for voiee communication make it possible for hundreds of stations to operate without undue interference in a band that formerly appeared crowded when occupied by a dozen or less stations using broadband reecivers and unstable transmitters.

The use of narrow-band communications systems also pays off in the form of improved efficioney in both transmitter and receiver. It is this factor, perhaps more than the interferenee potentialities of the wide-band systems, which makes it desirable to cmploy advanced techniques at 220 and even 420 Mc. Stabilized
transmitters for 220 Mc . are not too difficult to build, and their use at this frequency is highly recommended.

Construction of multistage rigs for 420 Me. is not easy, and the choice of tubes suitable for this type of work is quite limited, but the advanced a mateur who is interested in making the most of the interesting possibilities afforded by this developing field will be satisfied with nothing less. The $420-\mathrm{Mc}$. band is much wider than our lower v.h.f. assignments, however, and interference is not likely to become a limiting factor in this band for a long time to come. Thus it may be more important, in many localities, to get activity rolling with any sort of gear, leaving perfection in design to come along as the need develops.

At 420 Mc. and in the higher amateur assignments most standard tubes camnot be used with any degree of success, and special tubes designed for these frequencies must be employed. These typers have extremely-close electrode spacing, to reduce transit-time effects, and are constructed with leads having virtually no inductance. Several more-or-less conventional tubes are now available which will operate with fair efficiency up to about 500 Mc., but best performance is obtained with the "lighthouse", "pencil tube," or coaxial-electrode types built especially for u.h.f. applications, and requiring specially-designed tank circuits.

Frequency modulation may be used throughout the $v . h . f$, and higher bands, wide-band emission being permitted above 52.5 Me, and narrow-band FM above 51 Mc. Where suitable receivers are available to make best use of such emissions, either wide-band or narrowband FM can provide effective v.h.f. communication, their use being particularly advantageous in congested areas where the freedom from interference to broadeast reception they enjoy may promit operation when an amplitudemodulated transmitter of any power would be a constant source of trouble.

Transmitter Technique

The low-power stages of a transmitter for the v.h.f. bands need not be greatly different in design from those used for lower bands, and many of the ideas in chapter 6 may be used to good advantage in the initial stages of the v.h.f. rig. The constructor has the choice of starting at some lower frequency, usually around 6,8 or 12 Me ., multiplying to the operating frequency in one or more additional stages, or he can use a higher
initial frequency and thus reduce the number of multiplier stages required or climinate them entirely. The first approach has the virtue of employing low-rost crystals, and it usually results in better stability when mothods other than erystal control are used, hut high-frequency crystals may affeet a considerahle economy in power consumption, an important factor in portable or emer-gency-powered gear.

CRYSTAL OSCILLATORS

Crystal oscillator stages for v.h.f. transmitters may make use of any of the circuits shown in Chapter 6, when erystals up to 12 Mc . are employed, but certain variations are helpful for higher frequencies. Crystals for 12 Me , or higher are usually of the overtone varicty. Their frequency of oscillation is an approximate multiple

Pig, 17-1 - Regenerative crystal osvillator circuits for v.h.f. use. Feedback is controlled by the position of L_{2} with respect to L_{i} in A, a by the position of the tap on L_{4} in B. Constants below are for 21 to 27 Mc .
C - $\mathbf{5 0} 0-\mu \mu \mathrm{fd}$. variable
© - $0.005-\mu \mathrm{fd}$. ceramic or mica.
C. 3 - $25-\mu \mu \mathrm{fd}$. ceramic or mica.
H_{1} - Decoupling resistor, 1000 to $\mathbf{3 0 0 0}$ otms, carhom. H_{2} - Grid leak, to suit tulie used.
I. (1) - 18 turns No. $18,1 / 2$-inch dia., $11 / 4$ inehers lomg.
1.2 (A) - 3 thrns similar to Λ, mounted on same avis, about $1 / 8$ inch apart.
L. (13) - $1+$ turns No. 18, $1 / 2$-inch dia., 1 inch long. Tap, at about $4 \frac{1}{2}$ turns (see text).
of some lower frequency, for which the erystal is actually ground, Thus $24-\mathrm{Mc}$. crystals commonly used in 144-Mc. work are 8 -Mc. cuts, specially treated for overtone characteristics. Until recent years such erystals were tricky in operation and subject to excessive drift if operated at high crystal current. The overtone crystals now being supplied are approximately as stable as those designed for fundamental operation, and they are easy to handle in properly-designed circuits.

Best results are usually obtained with overtone erystals if some regeneration is added. This makes for casy starting under load and greater output than would be obtainable in a simple triode or tetrode circuit, Two regenerative circuits, with constants for $24-$ or $25-\mathrm{Mc}$. crystals, are shown in Fig. 17-1. Triodes are shown, but the same arrangement may be used with tetrode or pentode. tubes. The important point in either ease is the amount of regeneration, controlled by the position of the feedbark winding, L_{2}, in Fig. 17-1-A, or the position of the tap on L_{1} in B. There should be only enough feedback to assure casy erystal starting and satisfactory operation under load; too much will result in random oscillation not under the control of the crystal.

Overtone operation is possible with standard fundamental-type crystals, using the circuits of Fig. 17-1. Practically all will oscillate on their third overtones, and fifth and higher odd overtones may be possible. Adjustment of regeneration is more critical, however, as the crystals are
not ground for overtone characteristics. It should also be noted that the frequeney may not be an exact multiple of that marked on the crystal holder, so care should be used in working with crystals that are near to a band edge.

Crystals are now available for frequencies up to around 100 Mc . They are somewhat more expensive than those for 25 Mc. and lower, however, so they have not been used widely in amateur work, except where a saving in power is important. Use of $50-M e$. erystals is made occasionally as a means of preventing radiation of the harmonics of lower frequency crystals that might cause interference to television reception.

- FREQUENCY MULTIPLIERS

Frequency multiplying stages in a v.h.f. transmitter follow standard practice, the prineipal procaution being arrangement of components for short lead length and minimum stray capacitance. This is particularly important at 144 Mc. and higher. To reduce the possibility of radiation of oscillator harmonics on frequencies that might interfere with television or other services, the lowest satisfactory power level should be used. Low powered stages are easior to shield or filter, in case such steps become necossary.

Common practice in v.h.f. exciter design is to make the tuned circuits capable of operation over the whole range from 48 to $5+\mathrm{Mc}$., so that the output stage can drive either a $50-\mathrm{Mc}$. amplifier or a tripler from 48 to 144 Mc . Tripling is often done with pushpull stages, particularly when the output frequency is to be 144 Me . or higher. The output capacitances of the tubes in such a circuit are in series, permitting a better $1 /$ C ratio than is possible with single-ended rireuits.

AMPLIFIERS

Most transmitting tubes now used by amateurs will work on 50 Mc ., but for 144 Mc . and higher the tube types are limited to those having low input and output capacitances and compart physical structure. Leads must be as short as possible, and soldered connections should be avoided in high-powered circuits, where heating

Fing $1 \overrightarrow{-2}$ - An efficicnt two-hand tanh circuit for 50 and 1t1 Mc. For operation on $1+1$ Mc. the shorting lar is plugged into the end of the line. For 50 Mc. a suitable tank coil is plugged into the jack har. The line then serves merely as a pair of plate leads, $K F C_{1}$ is a 144 - Mc, choke; $K F C_{2}$ a $50-\mathrm{Mc}$. choke. 'The sjlit-stator variable, C_{1}, tuncs either circuit.
may be great enough to reach the melting point of the solder used.

Plug-in coils and their associated sockets or jack bars are generally unsatisfactory for use at 144 Mc. and higher berause of the stray inductance and capacitanco they introduce, One way around this trouble is the dual tank rircuit shown in Fig. 17-2. Here the tank circuit for 144 Me. is a conventional tuned line, with its shorting bar made removable by plugs or clips. When the stage is to be used on another band the shorting bar is removed and a coil is plugged into the jack bar, the line then serving as a pair of plate leads. Such an arrangement will operate as efficiontly on 144 Mr . as if it were designed for that band alone, yet it can be made to work properly on any lower band.

At 220 Mc . and higher it may be necossary to employ halfwave lines as tuned eireuits, as shown in Fig. 17-3. Iere the tuning ceapacitanee, instead of being connected directly in parallel with the output capacitance of the tube, is at the far

Fig. 17-3 - Ifalfwave line tanh circuit, for nse at 200 or 420 Mc., where tube and rircuit capacitanees prohilhit the use of an ordinary tuned cirenit. Plate voltages is fed into the line at the point of lowest r.f. voltage (see text).
end of a halfwave line. Plate voltage is fed into the line near the middle, at the point where the r.f. voltage is lowest. The proper point can be located by first operating the stage with the voltage fed in near the middle of the line, and then touching a pencil point along the line to locate the spot where the least effeet on the grid or plate current is noted. This check should be made with the pencil in an insulating mount, if dangerous values of plate voltage are used.

Neutralization of triode amplifiers for 50 and 144 Me. ean follow standard practice, but the stray inductance and capacitance introduced by the neutralizing circuits may be excessive for 220 Me and higher. In such instances groundedgrid amplifiers may be used as shown in Fig. 17-4. Driving power is applied to the cathode circuit, with the grid acting as a shield. Groundedgrid amplifiers are stable, but they require high driving power. Some of the drive appears in the output, so both the driver and amplifier must be modulated when amplitude modulation is used. For this reason the grounded-grid amplifier is used mainly for f.m. applications.

Tetrode and pentode amplifiers may oporate without neutralization, but it is advisable to make plans for neutralization in the original layout, as it is often needed. With such tubers as the 829 or 832 enough neutralizing capacitance can be ohtained by running short longths of stiff wire up through the chassis alongside the tube plates, crossing them over to the opposite grid

Fig. 17-\& - (irounded-grid r.f. amplifier. Driving voltage is fed into the cathode circuit, with the control grids maintained at ground potential.
terminals below the chassis. Neutralization is adjusted by trimming or bending the wires.

Instability may show up in tetrole amplifiers as the result of inctfeetive sereen by-passing, in which case conventional cross-over neutralization will aceomplish little or nothing. The solution lies in series-resonating the sereen circuits to ground, as shown in Fig, 17-5. A small split-stator variable can be used for C_{1} and C_{2} if the layout is completely symmetrical. The r.f. choke and condenser values vary with frequency, so screen neutralization is essentially a one-band device.

FREQUENCY MODULATION

Though f.m, has not enjoyed great popularity in v.h.f. operation, probably because of lack of suitable receivers in most v.h.f. stations, its possibilities should not be overlooked, particularly for the higher bands. At 420 Me ., for instance, the efficiency of most amplifiers is so low that it is often difficult to develop sufficient grid drive for proper a.m. service. With f.m. any amount of grid drive may be used without affecting the audio quality of the signal, and the modulation process adds nothing to the plate dissipation. Thus considerably higher power can be run with f.m. than with a.m. before damage to the tubes develops or the signal is of poor quality.

Fis, 17.5 - Tuned screen circuit for stabilizing a v.h.f tetrode pushpoll amplifier. C_{1} and C_{2} may be the two halves of a split-stator variable condenser, if the circuit is symmetrical electrically. The r.f. choke and condenser values vary with frequency, making this form of neutralization essentially a one-band device. C_{3} should be about $0,001 \mu \mathrm{fd}$. for s.h.f. applications.

A 400 -Watt Transmitter for 50 and 144 Mc.

A high-powered transmitter for use on our two most-popular v.h.f. bands presents some knotty design problems. It is not always easy 10 develop satisfactory drive for the higher band, and an efficiont band-changing system for a Ift-Mc, amplifier calls for something better than the ordinary plug-in coil arrangement, These two factors were prime considerations when the all-tefrode rig for 30 and $14 t$ Mr. shown in Figs, 17-6 10 17-12 was laid out.

The exciter has separate output stages for the two bands, climinating the neressity for driving the final stage with a frequeney multiplier on the higher one. Efficient operation of the final stage is attaned with a novel form of tank rireuit that avoids the use of a plug-in roil for 14 Me. As a result, the transmitter has practically the same over-all efficiency as would be obtainable if it were designed for either band alone.

THE EXCITER

Though the two units were intended for use fogether as a complete 400-wat transmitter, as shown in the eomposite photograph, the exeiter portion may be used as a low-powered transmitter by itself. As an exciter it has the
virtue of providing uniform drive for the final on both bands. Other points of interest include quick band changing, crysial switehing, VFO-input provision, low power consumption, and frecdom from critical adjustments.

The eircuit diagram of the exeiter is given in Fig. 17-8. The 6.1R5 Tri-tet oscillator employs a fixed-tmed cathode "ircuit, C8 L_{23}. The plate circuit, $C_{1} L_{4}$, tunes 24 to $2 \overline{7}$ Mc., the oscillator tripling when 8 -Me. erystals are used and quadrupling with 6-Me. arystals. Five erystals are provided for by the switching circuit, and a sixth position of the switch conneets the 6 M 125 grid to a tuned eireuit, $C_{5} L_{1}$, which is in turn link coupled to the VFOinput jack, J_{1}. Switch $S_{2_{n}}$ grounds the cathode of the oscillator tube when $V F^{\prime}()$ input is used. The second 6.0125 is a frequency doubler with its output link coupled to an 832.1 am-plifier-tripler circuit.

As a straight-through amplifier at 50 Mc ., the 832 A uses a low-value grid resistor, R_{5}, cut into the circuit by switch $S_{3 \mathrm{a}}$. A highresistaner grid-leak, R_{a}, is pieked up by $\boldsymbol{S}_{3 x}$ when the tube is operated as a frequency tripler to 144 Mc. Tube and circuit capacitance resonate the grid coil, L_{8}, at approximately 49) Me. Jacks J_{2} and J_{3} permit metering of the grid and the eathode currents with J_{3} also serving as the keying
 jack for c.w. work at 50 Mc . The plate circuit uses plag-in coils with the output link-coupled to the final by means of L_{10} in the 50-Me, coil, At IH Me., output is capacity-roupled to the 2 -meter output stage by condensers C_{15} and $C_{\text {t6 }}$. The 114-Mc. stage, also an 832 A , has grid and cathode jacks as in the previous stage. It is made artive by applying heater voltage through $S_{3 b}$.

Power wiring for the unit is shown in the lower section of Fig. 17-8. Power for the exaiter is fed through a 5 -prong male receptacle. A t-prong female receptacle pormits taking out heater and plate voltages for an external VFO. Changing from VrO to

Fif. 17-6 - A complete $400-w a t t$ transmitter for 50 and 111 Mc .

Fig, 17-7-A rear view of the 50- and IIIMr. exciter. Across the top of the chassi , from right to left, are the crystal sockets, the oscillator and doubler tubes, the 8:3 1 ampli. fier-tripler and its plate coil, and the inverted 14-Me. amplifier stage. Cisystal sockets, nsed as r.f. outpit terminals, are mounted on the rear wall of the chassis along with the mower plugs and the filament transformer.

erystal operation is done by means of the crystal switch and $S_{2 n}$, b,
lligher plate voltage is applied to the 14.4-Mc. amplifier than is used with the other three circuits, making the output on 144 Mc . comparable with that of the $50-\mathrm{Mc}$. amplifier.

Construction

The exciter is built on a metal chassis moasuring 3 by 5 by 17 inches. The aluminam rack pancl, $1 / 8$ by $83 / 4$ by 19 inches in size, is held in place lyy the mounting nuts of the various controls.

Plate tuning condensers for the oscillator and the doubler are mounted on the front wall of the chassis. These two controls are hot with +300 volts and must be insulated from the chassis. Bakelite tuning knobs without metal dial phates protect the operator.
The amplifier-tripler circuit, located at the left-center of the chassis as seen from the rear view, has its phate coil mounted on a National type X13-16 socket. Shield braid is used for the connections between the coil socket and the 832 A plate caps, while Twin-Lead is wired between the output link and the output terminals. The tube is submounted on a Johnson shielded socket, Type 122-101, and the plate tuning condenser, C_{3}, is mounted to the left of the tube socket on an aluminum bracket.
The $14+$-Mc. amplifier has the shielded tube socket mounted in an inverted position. The grid chokes, $R F^{\prime} C_{5}$ and $R P C_{6}$, are mounted betweon the socket termimals and a tie point strip which is in turn mounted on the metal part of the socket along with the button-type by-pass condensers. The coupling condensers, C_{15} and C_{16}, are betwen the tube socket and the amplifier-tripler plate coil socket. Millen No. 32150 throughbushings, set in the chassis to the left and raar of the tube socket, pass d.e. and heater leads for the 832.A.

The bottom view of the exciter shows the plate tuning condenser, C_{4}, mounted on the end wall of the chassis just below the trior
terminal tie-point strip which supports the output link, L_{12}. A heavy copper strip is used as the ground lead for the rotor of the tuning condenser. The sereen-dropping resistor is mounted on a tie-point strip located on the rear wall of the chassis.

Testing

Power-supply requirements for the exciter will depend on how the unit is operated. If it is to serve as a low-power transmitter, the supply need deliver only 300 volts at approximately 175 ma. For exciter service, two supplies are recommended - one delivering 300 volls at 125 ma and one furnishing 400 volts at 100 ma, the latter to be used on the second 832.1. The filament transformer must deliver 6.3 volts at 4 amp . in either case.

If operation with a VFO not having its own supply is contemplated, the power-supply capabilities should be increased to meet the extra requirements, When the V.II.F. Man's VFO. Figs. 17-13 to 17-15, is used it incereases the hater load by 2 amp . and the plate-current drain by approximately 60 ma.

Performance of the oscillator and the doubler circuits should be checked first. This is done with the phate and sereen voltages removed from both 832 stages, and with a low range milliammefer plugged in J_{2}. The oscillator cathode switch should be opened. Table 17-I will assist in the selection of a crystal for

TABLE 17-I				
Crystal	Oscillutor	Dusubler	Amplifier Tripler	. 4 mplifier
(02.5)	25	50	50	
(17.5)	27	5.1	54	
\$3333.4	25	50	50	
$9(\mathrm{~K}) 10$	27	51	54	
万000	24	18	1.4	114
6166,0	24.6	19.3	148	1.48
810010	3.4	18	1.4	1.44
82:3.3	24.6	19.3	1.48	148

$\mathrm{C}_{3}, \mathrm{C}_{2}-25-\mu \mu \mathrm{fd}$, variable (Millen 200225).
$\mathrm{C}_{3}, \mathrm{C}_{4}-25-\mu \mu \mathrm{fd}$,-per-section split stator (Bud L.C
$\mathrm{C}_{6}-22-\mu \mu \mathrm{fd}$. midget mica.
C6, C $10-100-\mu \mu \mathrm{fd}$, midget mica.
$\mathrm{C}, \mathrm{C}_{9}, \mathrm{C}_{12}-0,0047-\mu \mathrm{fd}$, mica.
, \quad - $\boldsymbol{- \mu \mu \mathrm { fd }}$ inica.
Cir, $\mathrm{C}_{13,} \mathrm{C}_{14,} \mathrm{C}_{20}-470$ - $\mu \mu \mathrm{ff}$, midget mica
$\mathrm{C}_{15}, \mathrm{C}_{16}-10-\mu \mu \mathrm{fd}$ midget mica.
17, C.18, (19 - 500 - μ fid. button-t ype by-pass.
R_{2} - 15,000 olins 12 wat
R_{3} - 17,000 ohms, 1 watt.
R_{3} - 47,000 ohms, $1 / 2$ watt.
$\mathrm{K}_{5} \mathrm{I}_{8}-22,000 \mathrm{oh}, 1$
, 01 m, 11,2 watt.
$\mathrm{K}_{6}-0,1$ megohm, $1 / 2$ watt.
$R_{-}, R_{0}-25,000$ ohms, 10 watts.
. 1 - 18 turns No. 24 enam., $3 / 8$ ineh long, 1 -inch diam.

1.2 - 1 turns No. 2.1 enam., close-wound at kround elld of li.
1.3- 14 turns 10.20 tinned. $7 / 8$ inch long, $5 / 8$-inch diam. I. 40 turns No. 20 tinned, $5 / 8$ inch long, $5 / 8$-inch diam. $\mathrm{L}, 5$ - 5 turns No. 20 tinned, 5 ís ineh long, $5 / 8$-inch diam. Vote: 13 \& W Miniductor No. 3007 used for L_{3}, L_{4} and $/ .5$.
L.6. 1.7 - Two-turn coupling links.
$L_{8}-18$ turns, No. 20 enam., $5 / 8$ inch long, $1 / 2$-inch diam. L. -50 Mc.: 4 turns No. 20 enam., $3 / 4$ inch long, $11 / 4$. inch diam. National type AR-16-10C with 2
turns removed from each end.
144 Me.: 4 turns No. 14 tinned, $7 / 8$ ineh long, 1/4-inch diam.
$\mathrm{L}_{10}-50-11 \mathrm{c}$. out put link: 2 turns No. 20 enam., wound around $L a$.
I.11-4turns No, 12 tinned, $5 / 8$-inch diarn., wound in

Iwo sections with two turns each side of cente lap and a $3 / 8$-inch space at ecoter, turn spaced wire diam.
IM. Vic, output link: 2 turns No. II timend, $1 / 2$ inch diam., turus spaced wire diam.
J_{1} - Cnavial-cable connector.
$\mathrm{J}_{2} . \mathrm{J}_{3 .} \mathrm{J}_{4}$. 5 - Closed-circuit jack
Jfi - J -prong mate receptacle.
$\mathrm{RFO}_{1}-\mathrm{prong}$ female receptarle

 (1.11).
S_{1}-8-position selector switeh (Amphenol 36-1)
$\mathrm{S}_{2 a}, \mathrm{~S}_{2},-\mathrm{I}, \mathrm{p}, \mathrm{sit}$. toggle switch.

T_{1} - Vidament transformer: 6.3 volts. 6 amp.: see tevt.

Fig. 17-9- Rottom view of the v.h.f, cxciter. 'The VF() input coil is at the left end of the chassis, l'late coils for the oscillator, the douller and the 144-Mc, amplifier circuits are mounted on the tuning condensers. The grid eoil for the amplifier-tripler stage is mounted on the tulue-sonket terminals.
frequencies to which the various eireuits should be tuned. With plate voltage applied and with the doubler tuned to resonanee, the grid current of the 832 A should be approximately 7 ma. when an 8 - Me, erystal is used. Grid eurrent will be 5 or 6 ma , with a 6 - Me. erystal. Total cathode current for the two 6AR5s should be 50 ma . Normal sereen voltage for the oseillator and the doubler tubes is about 230 and 200 volts, respectively.

The 832A may now be tested at 50 Me. This requires a $100-\mathrm{ma}$. meter in the cathode circuit and a 10 -watt lamp coupled to the output terminals. When the plate circuit is tuned to resonanee, the grid eurrent should stay up around 5 ma., the cathode current should dip to about 65 ma ., and the lamp should indicate an output of 6 to 8 watts. A sereen potential of 160 volts is correet with the amplifier loaded. The plate current should rise notiecably and the grid eurrent fall to zero when excitation is removed. This last test must be one of short duration.

To ehcek the 144-Me. stage, plug in the 2meter eoil at $L_{l 1}$ and apply the heater voltage through $S_{3 \mathrm{~b}}$. Grid current for the amplifier will be around 3.5 ma . A recheck of the tripler should show a grid current of 1 ma . and a eathode current of 55 to 60 ma .

With a 400 -volt supply connected to the amplifier and with the dummy load across the 144-Me. output terminals, 6 to 8 watts output should be obtained with an 832 i eathode eurrent of approximately 65 ma . Grid current
should be 3 ma. and the sereen voltage should measure 170 volts. A short test for self-oseillation should be made by removing the excitation.

The general method of tuning does not change when a VFO is used as the frequeneycontrol unit. However, it is important that the oscillator eathode switeh be elosed; otherwise the oscillator eircuit will take off on its own.

It is recommended that a calibrated wavemeter be used to eheek the tuning adjustments, particularly those associated with $144-\mathrm{Me}$. operation. There are numerous out-of-band harmonies from the low-frequency crystals and the high order of frequency multiplication. Be careful to choose the proper harmonies in the first two stages.

THE POWER AMPLIFIER

Customary plug-in eoil arrangements are not well adapted to use in high-power 144-Me. stages. The lead inductance and parallel capacitance inherent in the best jack bars and coil bases leave almost nothing for the coil itsolf, with the result that efficient operation is all but impossible. The 144 -Me, tank eireuit used here is, however, practically as effective as if it were designed for one-band operation. When the amplifier is used on 144 Me . the plate circuit operates as a conventional tuned quarter-wave line. In ehanging to 50 Me . it is merely necessary to remove the shorting bar, change the grid coil, and plug the $50-\mathrm{Me}$.

Fig. $17-10$ - Rear view of the 4-65A amplifier, showing the two-band tank circuit set up, for $50-\mathrm{Mc}$. operation. R.f. input terminals are on the rear wall to the left and reccptades for the power leads are to the right. The 144-Me. output terminals are on a brachet to the left of the protective tubc. The $50-\mathrm{Mc}$, output terminal is mounted directly on the XB-15 suchet for the plate coil. A plug-in shorting bar. used arross the plate lines at 1.11 Mr ., is shown in the foreground.

Fig. 17.11 - Cireuit diagram of the power amplifier.

C_{3} - $35-\mu \mu \mathrm{fl}$.-per-section with high-voltage eonpling; see text for information on removing plates. (National TVII-351).)
$\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{8}, \mathrm{C}_{9}-470$ - $\mu \mathrm{fl}$. midget miea.
($6,\left({ }_{7}-0.0022-\mu \mathrm{fl}\right.$. mica.
(in - 0.00) $-\mu \mathrm{fd}$. mica.
C: il - $500-\mu \mu \mathrm{fl}$. 5000 -volt mica.
$\mathrm{R}_{1}-5000$ ohms, 10 watts.
$\mathrm{R}_{2}-30,000$-ohm 200 -watt adjustable: two 100 -watt resistors in series.
$\mathrm{L}_{1}-50 \mathrm{Mc} \cdot \mathrm{S} 5$ turns No. 21 tinned, $1 / 2$-ineh diam., turns spaced wire diam.

- 144 Me.: 1 turn No. It wirc, hairpin shape. $11 / 8$ inehes long, $5 / 8$-inch diam. at open end.
$1.2-50$ Ne.: 6 turns each section, No. 20 tinned, $1 / 2$ inch diam. (13 \& N Miniductor No. 3007). Spaee seetions 5íc inelı apart.
coil assembly into the jack bar. Individual antenna coupling adjustments are used, the one for 144 Mc. being adjustable from the front panel.

The circuit diagram of the push-pull amplifier is given in Fig. 17-11. Excitation for the amplifier is link coupled to a conventional split-stator grid circuit. A $6 \mathrm{Y} G \mathrm{G}$ protective tube holds the plate dissipation to a safe level when the excitation is removed. The tubes require no neutralization at 50 Mc . At this frequency the sereen grids are by-passed by condensers C_{6} and C_{7}. Shielding to prevent external coupling between the grid and the plate circuit is provided for by an aluminum partition.

On 144 Mc. it is necessary to series-tune the screens to ground by means of C_{2}, placing the screens effectively at ground potential. This is a frequency-sensitive adjustment, however, and the stability of the amplifier should be checked after making large changes in operating frequency.
-- IH1 Me: Same as IH-Me. L_{1}.
Notr: L_{1} and L_{2} mounted on National type PlB-IG plugs.
$1,3-4$ turns of $1 / 8$-inch o.d. eopper tubing, $15 / 8$-ineh diam., wound in two sections with two turns each side of eenter tap and a $3 / 4$-ineh space at center, turns spaeed $1 / 8$ inch.
$1.4-3$ turns No. 12 enam., $15 / 8$-inch diarne, turns spaced wire diam.
 long, spaced $11 / 8$ inehes on centers.
$L_{6}-1$ turn of $1 / 8$-inch copper tubing, hairpin shape, 3 inches long, $11 / 4$-inch diam, at open end.
I_{1} - 6.3-iolt pilot-lamp assembly.
$J_{1}-1$-prong male reeeptacle.
RFC1 - 1 - $\mu \mathrm{h}$. r.f. choke.

$1 \mathrm{RFC}_{5}$ - 1.8 - $\mu \mathrm{h}$. r.f. ehoke (Ohmite Z-144).
P_{1} - Filament transformer: 6.3 volts, 8 amp.

Construction

The $3 \times 7 \times 17$-inch chassis and the $101 / 2$ $\times 19$-inch panel are held together by the pilot-lamp assembly and three shaft bearings. The latter are for the 144-Mc. output link and the tuning condensers for the screen and grid circuits. The lamp jewel and the three control knobs may be seen from left to right in the front view of the complete transmitter.

The rear view of the amplifier, Fig. 17-10, shows the grid coil mounted on a National type XB-16 socket to the left of the shield partition. An XB-15 socket is mounted on 3-inch stand-off insulators between the $4-65 \mathrm{~A}$ tubes and the plate tuning condenser. The condenser is mounted on $21 / 2$-inch insulators in an inverted position. The minimum capacitance of the plate condenser was reduced by removing two stator and two rotor plates from each section. A feed-through insulator for the highvoltage d.c. lead is mounted directly below the plate-coil socket.

The $144-$ Mc. lines are supported by the tun-
ing condenser and a piece of $1 / 4$-inch polystyrenc. Plate clips for $9 / 16$-inch caps are reduced in diameter and used for contact with the rols at the tube and condenser positions. The condenser should have the clips bolted to the lefthand stator terminals as seen from the rear view. This will allow the condenser shaft to be centered on the panel and the connection to the lines will be at a point four inches in from the plate ends. Shield braid, $1 / 2$ inch wide, is used between the elips at the open ends of the lines and the heat-radiating caps of the tubes.

Aluminum plates equipped with panel bearings for the control shaft of the $14+-M c$. output link are mounted on the front and the rear frames of the plate tuning condenser. The swinging link is made by twisting the open ends of the loop around a 5 -inch length of $1 / 4$-inch polystyrene rod. The turns around the rod should be shorted out by soldering, and since this operation softens the rod, the link and rod will be firmly joined together. A piece of $1 / 8$-inch polystyrene cemented across the closed end of the loop prevents accidental contact with the plate lines. A Millen type 38002 Quartz Q washer at the rear of the shaft and a homemade pulley at the front prevent the control shaft from slipping out of the bearings.

The grid tuning condenser is mounted on an aluminum bracket and the screen condenser is supported by motal posts as shown in the bottom view. Copper strip is used for joining the two screen prongs of each tube socket and for commection to the two variable condensers. Each tube has the mica by-pass condensers and a section of the variable sereen condenser returned to a common point on the socket. The $0.001-\mu \mathrm{fd}$. by-pass for the screen-circuit r.f. chokes is returned to ground in between the two sockets. The pulley and the dial cord for the swinging link are at the front of the chassis.

Testing the Complete Rig

Although the amplifier described may be operated at full ratings (540 watts) for c.w. work, it is recommended that the input be kept to 400 watts or less when plate modulation is used. This value includes the power taken by the sereen grids. For all-round operation a power-supply output of 1000 to 1500 volts at
approximately 350 ma. is recommended. Higher voltages may be used but forced-air cooling of the tubes may be required. The amplifier may also be operated efficiently at supply voltages as low as 600 , provided that the sereen is maintained at approximately 250 volts.

At 50 Me , the amplifier can be tested in the same way as any low-frequency amplifier. The usual test for self-oscillation may be made with the filament and plate voltage applied, with the excitation removed and with the protective tube in place. Proper operation is indicated by the absence of grid-current as the grid and the plate tuning condensers are rotated. The protective tube should limit the d.c. input to no more than the maximum platedissipation rating. The limiting effect will be determined by the supply voltage, but total input should be well below 150 ma . at 1500 volts or less.

With the unit described carlier furnishing excitation, the grid current for the amplifier should be approximately 35 ma. before the high voltage is turned on. A 300 -watt lamp coupled to L_{4} may be used as a dummy load for the power-output test. A cathode current of 320 ma . is correct for operation with a 1000 -volt supply, and 310 ma . is correct with 1500 volts on the plates. The grid current should be at least 2.5 ma. and the screen potential should be about 250 volts when the amplifier is fully loaded.

The amplifier is tested for $144-\mathrm{Me}$. operation with the $50-$ Mc. plate coil removed and with the shorting bar across the resonant lines. The one addition to the test procedure outlined above is adjust mont of the screen tuning condenser, C_{2}. After applying filament voltage and excitation, the condenser is adjusted for minimum feed-through as indicated by a sensitive rectifier-type wavemeter coupled to the plate lines. A second method is to remove the excitation, apply the plate voltage and then tune for zero grid current. The setting of the screen control is very critical, but with care a position can be found which will hold over most of the $144-\mathrm{Mc}$. hand. The most accurate way of setting the adjustment is to try for a position where maximum grid current and minimum plate current occur at the same setting of the plate tuning condenser.

Fig. 1:-12-A bottom view of the power annilifier. Tloning condensers for the grid and sercen circuits are to the left and right of the shielded tube sockets. The filament transformer is at the upper right-thand end of the chassis. The two large resistors drop the voltage to the $4-65 \mathrm{~A}$ screens.

A V.H.F. Man's VFO

Though a VIO) is considered to be an almost indispensable part of an amateur station for lower frequencies, y.h.f. operation is still carried on mainly with erystal control. This is largely because of the relatively lower oceupancy of the $v . h . f$, bands and the freedom from interference problems which results. It is also, in part, the result of the fact that, as we go higher in frequency, it becomes more diflicult to generate an entirely satisfactory signal by means other than with crystal control.

With proper attention to the well-known factors affecting oscillator stability a frequency eontrol unit for 80-, 40- or 20 -meter use can be built with a minimum of complications, but many a signal which sounds aceeptable on these frequencies becomes quite fuzay by the time it is multiplied to the v.h.f. bands. Viven on 10 moters it is not too casy to obtain a pure d.c. note, especially when the oseillator frequency is modulated for narmow-band FM.

The frequency-control unit deseribed herewith has a degree of frecutency stability that is adequate for the high-order frequency multipliation required in v.h.f. service, and the design of the audio portion is such that lit tle or no hum is introduced in the reactance-modulation proeess. "lhe mit has the reactance-modulator and speech amplifier built in, the gain of the latter being only just enough to provide suflicient deviation for 10 -meter NFM. Much of the hum present on some F.M signals comes from the use of excessive speech gain, or haywire patching systems in order to utilize the speech equipment in some other portion of the transmitter.

This unit, shown in Figs. 17-13-17-15, was designed with the needs of the v.h.f. man in mind. Sinee many v.h.f. operators also work on 10 and 11 meters the oscillator tuning range was extended to include these bands, as well as 2 and t meters. The actual output frequency of the VFO is 6.74 to 9 Mc . It is designed to
sorve as a erystal substitute, and may be plugged into the erystal socket of any transmitter employing erystals falling within its tuning range. Thus, though the dial is calibrated only for the bands from 11 to 2 meters, the unit may be used on 40 or 20 , or on portions of the higher v.h.f. bands that are in harmonic relationship with the output frequency. The output is suflicient so that the unit may also be used as a driver for a lowpowered amplifier or frequency multiplier whose grid circuit is on that frequency. It also includes a reactance modulator and speech amplifier, providing narrow-band FM on 27 Me. and higher frequencies with only the addition of a crystal microphone.

Two 6.1G7s are used in the r.f. portion. The first is an oseillator-doubler employing the highly-stable Clapp oscillator, the operating frequency of which is 3370 to 4500 ke., doubling in the plate eireuit. The second is an amplifier operating on 6.74 to 9 Mc . By means of separate padders switehed in by a front-panel control, a reasonable amount of bandspread is provided for cach of the four bands from 2 to 11 meters. The $5(0-$ Me, band covers 55 divisions on the vernier dial, $1+4$ Mc. is covered in 25 divisions, the 10 -meter band occupies 80 divisions, and 11 meters 20 divisions. By proper setting of the padders the 2 - and 11 meter ranges can be made to come at the opposite ends of the National MCN dial, leaving the two other spaces on the dial card for the 10- and 6-meter calibrations.

Frequency modulation is accomplished by means of a reactance modulator and a sperech amplifier, both using 6 BAG miniature tubes. Deviation of the oscillator frequency is approsimately 500 eycles, providing adequate swing for 10-meter XFM as a result of the eight times multiplication. A deviation of approximately 10 kc . is possible in the 6 -meter band, and as much as 30 kc . on 2 meters. This greater

Fig. 11-13- Panel virw of the v.h.f. VFO with NFM modulator.

Fig. 17-14 - Cirenit diagram of the NFI control unit for v.h.f. use.
$\mathrm{C}_{1}-35-\mu \mathrm{ffl}$, variable, flouhle spaced (Millen 21035).
$\mathrm{C}_{2}, \mathrm{C}_{3}-100-\mu \mu \mathrm{fd}$. variable (Millen 20100).
$\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{9}, \mathrm{C}_{10}-2-30-\mu \mu \mathrm{fd}$. ceramic trimmer (Hillen 27030).
C_{5} - $33-\mu \mathrm{ff}$. silver mica.
$\mathrm{C}_{8}-10-\mu \mu \mathrm{fd}$. silver mica.
$\mathrm{C}_{11}, \mathrm{C}_{12}-680$ - $\mu \mathrm{fd}$. silver mica.
$\mathrm{C}_{13}-68-\mu \mu \mathrm{fd}$. silver misa.
$\mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{19}, \mathrm{C}_{21}, \mathrm{C}_{22}, \mathrm{C}_{23}, \mathrm{C}_{24}, \mathrm{C}_{27}-0.01-\mu \mathrm{ft}$. 100-volt paper.
$\mathrm{C}_{16}, \mathrm{C}_{20}-100-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{25}, \mathrm{C}_{26}-4 i-\mu \mu \mathrm{fd}$. nica.
$\mathrm{R}_{1}, \mathrm{R}_{\mathrm{g}}-0.1$ megohm, $1 / 2$ watt.
$R_{2}, R_{10}-10,000$ ohms, $1 / 2$ watt.
$\mathrm{K}_{3}-47$ ohuns, $1 / 2$ watt.
$\mathrm{R}_{4}-330$ ohme, 1 watt.
$\mathrm{R}_{5}-15,(010)$ ohms, 2 watts.
$\mathbf{R}_{\mathrm{f}_{\mathrm{i}}}$ - $1 \mathrm{megohm}, 1 / 2$ watt.
swing is useful on 144 Mc., where a considerable number of relatively-broad receivers is in use. The deviation is controllable to any required value below this, by means of the potentiometer, R_{8}. A switch is provided in the heater circuit of the speech section (S_{2}) so that this portion of the unit can be cut off when c.w. or amplitude modulation is being used. As operation of this switch affects the oscillator frequency appreciably it is usually preferable to leave the speech-section heaters on at all times, using the deviation control at its off position when emissions other than NFM are being used.

The arrangement of the parts should be elear from the photographs. The top view, Fig. 17-13, shows the microphone jack and
$\mathrm{K}_{7}, \mathrm{~K}_{13}-0.22$ megohm, $1 / 2$ watt.
$\mathrm{iss}_{\mathrm{s}}-0.5-\mathrm{megohm}$ potentiometer.
$\mathrm{R}_{\mathrm{II}}-0.47$ megohm. $1 / 2$ watt.
$\mathrm{R}_{12}-470$ ohms, $1 / 2$ watt.
$\mathrm{R}_{14}-7.500$ ohms, 10 watts.
$\mathrm{L}_{1}-21$ turns No. 22 tinned wire, diameter $11 / 2$ inches, length $11 / 8$ inches ($\mathrm{B} \& \mathrm{~W} 80 \mathrm{JCL}$ with 18 turns removed).
L.2, L. 3 - 14 turns No. 24 e. wire, diameter 1 inch, length $3 / 8$ inch; wound on Dillen 45000 form.
$\mathrm{L}_{4}-3$ turns No. 24 e., close-wound at bottom end of I_{3}.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial-cable jack (Jones S-101).
$\mathrm{RHC}_{1}, \mathrm{RHFC}_{3}-2.5-\mathrm{mh}$. r.f. choke (Millen 34100).
R $\mathrm{FC}_{2}-300-\mu$ h. r.f. choke (Nillen 34300).
$\mathrm{S}_{1}-4$-position progressive-shorting switch (Centralab GG modified; see text).
s_{2} - S.p.s.t. toggle switeh.
heater switch at the right end of the panel. The deviation control, bandswiteh, oscillator-plate and amplifier-plate tuning controls are in line across the bottom of the panel. The oscillator frequency setting is controlled by the vernier dial. Looking at the top of the chassis the two 6AG7s may be seen to the left of the tuning condenser, the first being the oscillator tube. The oscillator tank coil, L_{1}, is mounted on stand-offs, just in back of the 6AG7s. Two metal brackets are used to mount the tuning condenser, which should be the double-ended variety for greatest mechanical stability. The reactance-modulator and speech-amplifier tubes are at the right of the tuning condenser, with the regulator at the rear. The chassis is a standard $3 \times 5 \times 10$-inch size and the panel is

6 by 11 inches. A 5×10-inch aluminum plate, with clearance holes for the trimmer adjustments, is attached to the bottom of the chassis.

The arrangement of components under the chassis is apparent from the bottom view, Fig. 17-15. The bandswitch and associated padders are at the middle, with the oscillator plate coil. The amplifier plate coil is at the left. The padder condensers are mounted with their grounded terminals soldered to metal pillars, in order to reduce sensitivity to vibration to a minimum.

The bandswitch requires some modification. In its original form it has a disk which shorts out all unused contacts. This disk must be cut through the center so that one half may be removed. As may be seen from the wiring diagram, Fig. 17-14, the connection between the oscillator coil and the switch is made to Number 1 terminal, rather than to the regular wiper contact.

The power supply for the VFO should be well filtered and capable of delivering 300 volts d.c. at 60 to 70 ma., and 6.3 volts a.c. at 1.9 amp. Socket voltage measurements are approximately as follows: 20 volts on the audiotube screens, 150 volts on the $6 \mathrm{AG7}$ screens, 40 and 150 volts, respectively, on the speecha mplifier and reactance-modulator plates, and 300 volts on the 6 AG7 plates. Cathode current for the oscillator should be about 10 ma ., and the output stage, at resonance, 30 ma .

Calibration and Use

Calibration of the VFO dial can be accomplished with the aid of a receiver having an accurate dial ealibration, as the readings on the VFO dial should not be relied upon for band-edge operation. The $50-\mathrm{Mc}$, range, requiring the least padder capacitance, should be calibrated first. Padders C_{9} and C_{10} set at nearly full capacitance will provide the correct tuning range, which should be approximately 55 divisions spread over the middle of the dial scale. The 144-, 28- and 27 -Mc. ranges should be calibrated in that order, their spread on the dial being approximately 25,80 and 20 divisions respectively. If the NFM portion of the
unit is to be used extensively it is recommended that the calibration procedure be carried out with the reactance-modulator heater on, as this tube affects the calibration appreciably.

When adjusting the plate circuits of the oscillator and amplifier stages it is recommended that the approximate settings of these controls for the middle of the band in question be marked on the panel. It will then not normally be necessary to readjust these controls when shifting frequency within a band. This broad-band effect is accomplished by slightly overdriving the amplifier tube at the center frequency, causing the screen voltage to drop and reduce the output. Tuning away from the center frequency reduces the drive and allows the screen voltage and output to rise. More than enough output is thus obtainable over the entire band, without too great a variation for proper operation of the succeeding stage. Two $250-\mathrm{ma}$. pilot lamps in parallel make a satisfactory dummy load for the amplifier.

Next the operation of the reactance modulator should be checked. The procedure for this operation is described in detail in Chapter Ninc. It should also be pointed out that there is no excuse for radiation of an improperly-modulated FM signal, since it can be monitored readily in one's own receiver. With the receiver in operation on the band in which the transmitter is to be used, but with only the VFO turned on, it is a simple matter to tell exactly how the signal will sound on the air. Deviation requirements vary with different receivers, but a safe starting point is to set the deviation control so that the signal sounds well on a communications receiver with the crystal filter in the broadest "on" position.
Ordinarily a unit of this type may be used to replace the crystal stage of an existing transmitter by simply plugging it into the crystal socket. The output coupling is a low-impedance line, however, and it may be connected to a link winding on the grid coil of any low-power stage whose tuning range is 7 to 9 Mc . Although it is shown calibrated only for the frequencies above 27 Mc., it may be used as a c.w. exciter for 7 - or 14-Mc. work. The deviation may, however, be insufficient for 20-meter NFM operation. Output, at 7 to 9 Mc ., is about three watts.

Fis. 17-15 - Bottom view of the VFO.

A Simplified Exciter for 50 and 144 Mc.

Through the use of a special crystal-oseitlator circuit, by means of which standard lowcost crystals are made to oscillate on their third harmonic in a simple triode regenerative oscillator, the transmitter-exciter shown in Figs. 17-16, 17-17 and 17-18 provides output on 50 and 144 Mc. with only two tubes and simple circuits. A dual-triode oscillator-multiplier is used, the first section oscillating on 24 to 27 Me., depending on the frequency of the crystal, which may be anything from 8 to 9 Mc . The second section doubles to 48 to 54 Mc., providing more than enough output to drive an 832 amplifier or tripler. Plug-in coits are used in the 832 plate circuit, to permit output on 50-54 Mc. or 144-148 Mc. Output on the lower band is 20 watts or more, with three to five watts avaitable on the higher frequency.

The rig may be modulated on 50 Mc ., in either portable or fixed-station service, but it should be used as an exciter only for 144 Mc. The power output on the higher hand is sufficient to drive another 832 or 829 stage, the design of which might follow that of the 829 amplifier described later in this chapter. It may also be used to drive an amplifier such as that in Fig. 17-13.

A standard is $\times 10 \times 3$-inch chassis is used, with the oscillator-multiplier components mounted below the deck and the 832 platecircuit components above. A power-switching arrangement is included to permit use of the rig as a complete transmitter for 50 Mc . or as an exciter for an additional modulated stage on 144 Mc .

The Harmonic-Oscillator Circuit

Design is conventional except for the oscillator circuit, the key feature of which is the feed-back arrangement in L_{1}. The portion of the coil below the tap determines the proper functioning of the oscillator, the correct position of the tap being approximately one-third up from the crystal end of the coil when a $6 . J 6$ is used. With other dual triodes it may be necessary to alter this materially.

If too much inductance is included in the tickler portion of the coil the tube will oscillate at a frequency determined by the setting of C_{2} rather than by the erystal. When the unit is ready for test the oscillator stage alone should be ehecked first. With a low-range milliammeter inserted temporarily in series with the multiplier grid resistor, R_{2}, about 150 volts should be applied to the oscillator plate. Rotate C_{2} until grid current appears, indicating osciltation, the frequency of which should be checked in a catibrated receiver. Changing the setting of C_{2} should not cause an appreciable change in the frequency of oscillation, and the crystal will oscillate only over a part of the tuning range of the condenser and at no other point. If the oscillator frequency shifts widely, indicating uncontrolled oscillation, the tap is too high on L_{1}. If the tap is too low the $6 . J 6$ will oscillate weakty or not at all, and will refuse to start when the condenser is tuned near the point of maximum output, as indicated by the grid-current peak in the succceding stage.

It should be noted that pulling the crystal out of its socket is not a satisfactory check for uncontrolled oscillation, as the capacitance of the crystal and its holder is required to complete the feed-back circuit.

Provision is made for measuring the grid and cathode current of the amplifier stage by means of J_{1} and J_{2}. The former is insulated from the panel, and connected in reverse, so that the meter leads need not be reversed in changing from one jack to the other. When the rig is operated on 50 Mc . the grid current in the 832 need not be more than 2 ma., and this amount of drive can be furnished by the 6 .J6 with 150 volts applied to the junction of R_{1} and R_{4}. Amplifier cathode current, with no load, will be about 35 ma . at resonance, with a 400 -volt supply. It may be loaded up to about 70 ma .

If $144-$ II c, output is desired, the final stage should not be operated at more than 300 volts or so. but at this level it will provide more than

Fig. 17-16- The two-tulse exciter for 50 and 144 Mr. The 2 -meter coil is plugged into the output stage, with the 6 -meter one in the right foregromind.

Fig. 17-17 - Schematic diagram of the ?-tube v.h.f. rig. The power-switching arrangement shown provides for later addition of a $14-M c$. amplifier stage.
$\mathrm{C}_{1}-680-\mu \mu \mathrm{fd}$. mica.
(i2 - $50-\mu \mu \mathrm{fd}$. variable.

(i4-20- μ fd.-per-seetion splitostator, made ly sawing the stator hars of a Willen 210 at and removing center stator and back rotor phates.
C $\%$, $0-\overline{0}-\mu \mu \mathrm{fd}$. ceramic.
C-T, $\mathrm{CN}_{\mathrm{N}}-5(\mathrm{~K})$ - $\mu \mu \mathrm{fd}$, ceramic.
(\therefore - $0-\mu \mu \mathrm{fd}$-prersection split-atator (Willen 219061).
R_{1} - $1: 000$ olims. $1 / 2$ watt.
$\mathrm{R}_{2}-33(0)$ ohms, 1 watt.
$\mathrm{R}_{3}-47,0010$ ohmes, $1 / 2$ watt.
$\mathrm{K}_{4}-3300$ ohm:, 1 watt.
R_{5} - $2 \pm,(\mathrm{MO}$ ohms, 1 watt.
$\mathrm{K}_{6}-2.5,0 \% 0$ ohms, 10 watt .
l. 14 turns Vo. $18,1 / 2$-inch diam., 1 ineh long. tapped at $1 \frac{1}{2}$ turns.
enough out put to drive another $8: 32$ amplifier, or even an 829. For 144 - Mc. use the whole unit may be operated from a single 300 -volt supply, the additional voltage on the oscillator and doubler being helpful in securing sufficient drive to make the 832 triple effectively. It is not recommended that the 832 be modulated for 144-Mc. voice operation, as there is not enough drive for operation of the stage as a modulated tripler, and the functioning of such a stage would not be generally satisfactory under any conditions. (irid current, for tripling, should be 4 ma. or more.

In 50-Mce sorvice the over-all drain, with a 300-volt supply, is only about 85 to 90 ma ., and under these conditions the amplifier delivers an output of about 10 watts, with a total load on the supply of less than 30 watts. On $1+4$ Me. the output is three to five watts.

$1.2-12$ turns Xo. $18,1 / 2$-ineh diam., $7 / 8$ inch long, centet-tapped.
L_{1} and L_{2} made from Barker and Williamson "Miniductor" type 3003 .
1.3-50 Me. - 11 turns No. 14 enamel, $7 / 8$-inch diam., \because inehes long. Link: 3 turns No. 20 enamel, spaghetti-covered.
144 Mc , - 2 turns No. 14 enamel, 1 -inelı diam.. spaced $1 / 2$ inch. Dink: 2 turus Xo. 16 enamel.
Base and plug assemblies are National Y1B-16 and P13-16.
J. I_{2} - Closed-cirenit jack.
 I-watl resistor, or Millen 34300.
s - 1).p.d.t. toggle switch.
A more complete description of the transmitter and the regenerative oscillator eircuit used may be found in QST for October and November, 1948. The same technique could be employed to advantage in the construction of an exciter unit for 220 Mc ., except that the second section of the 6 Jb would be operated as a tripler to $70 . \mathrm{Mc}$, instead of as a doubler to 50 Mc. More than enough output would be available to drive another 6 J 6 as a tripler from 75 to 225 Mc .

Another possibility in connection with tho oscillator circuit used in this transmitter involves taking off the fifth harmonic instead of the third. Many 7-Mc. crystals can be used in this way, taking off the 5 th harmonic from the first triode section, and then doubling in the second. Only an additional doubler stage is then needed to reach $1+4$. Mc.

Fig. 17-18- Jottom view of the simplified v.h.f. exciter.

Crystal Control on 220 Mc.

Construction of a multistage transmiltor for the $220-\mathrm{Mc}$. band is not as difficult as might be imagined, and the serious worker on this frequency will find the use of crystal control or its equivalent highly worth while. Fortunately the crystals used are also usable on $\mathbf{1 4 4}$ Me., cutting down the total cost of building equipment for both bands, if the crystal frequencies are selected with this use in mind.

The transmitter-exciter shown in Figs. 17-19, 17-20 and $17-21$ employs either $\$$ - or 12-Mc. crystals, and if they are betwern $\$ 148$ and 8222 or 12,223 and 12,333 ke. they may also be used for operation in the upper portion of the $144-$ Mc. band. By using miniature tubes and components, and by arranging the parts for minimum lead length, efficient operation on 220 Mc , is obtained, with a simplicity of construction that puts the equipment well within the capabilities of the average experienced amateur.

Four 6J6 dual triodes are used. The first works as a triode oscillator and frequency multiplier, the second section doubling or tripling, depending upon which type of crystal is employed. Tuning is less critical, and the various stages operate somewhat more efficiently with $12-$ Mc. crystals, but 8 -Mc. crystals may also be used. The next two stages are push-pull triplers, and the output stage is a neutralized amplifier. Capacitive coupling is used between stages. The chassis is $21 / 2$ inches wide, 2 inches high, and 12 inches long, with $1 / 2$-inch edges folded over. It may be made from a piece of sheet aluminum $7 \frac{1}{2}$ by 12 inches in size. The first tube socket is $11 / 2$ inches in from the left end and the other sockets are spaced along the chassis, $21 / 4$ inches center to center. The tuning condensers are spaced equally between the sockets, the last two, C_{13} and ('17, being mounted on the top surface of the chassis for minimum lead length and symmetrical layout. Pin janks. labeled a and b on the sehematie diagram, we
mounted on the front wall of the chassis and may be used for motering or keying of the output stage.

Initial Adjustments

Meter jacks for the individual stages were not considered necessary, as there will normally be few occasions for shifting frequency and retuning, once the initial adjustment of the exciter is completed. For these first measurements the various circuits may be opened and tests made with a portable meter.

With a meter in series with R_{2}, set the core in L_{1} at an intermediate position and adjust C_{2} for oscillation, as indicated by a dip in plate current to about 10 ma . The frequency and note should be checked in a communications receiver, making sure that the oscillation is controlled by the erystal. Next, insert the meter in series with R_{4} and tune C_{4} for a dip at the proper frequency, which should be between 24.5 and 25 Mc. Adjustment of the multiplier tuning may be critical, if fundamen-tal-type crystals are used, the crystal tending to "pop out" when C_{4} is tuned on the nose. With "overtone" or harmonic-type crystals this trouble will not be in evidence, and the setting of C_{4} (or the core in L_{2}) will not be fussy. Adjustment should be for maximum grid current in the second 6J6.

Adjustment of the push-pull tripler stages is merely a matter of resonating the circuits for maximum output as indicated by the grid current in the succeeding stage, being certain that the stages are tripling and not quintupling, which they will also do with fair efficiency. Each stage has cathode bias to prevent damaging the tubes during the adjustment period. Input to each will run about 25 ma . at 200 volts, when operating correctly.

Neutralization of the output stage is accomplished in the customary manner, exeept that the neutralizing capacitors are made firom short lengths of 75 -ohm Twin-Lead.

Fis. 17-19-Front view of the 220. In \cdot. iransmitter-exciter. Across the front of the chassis are the oscillator plate-coil adjustment, crystal, multiplier-coil adjustment, first-tripler plate condenser. and tip jacks for final cathode metering. Second-tripler and final plate condensers are mounted on the top portion of the chassis. Output terminals are at the far right.

Fig. 17-20 - Schematic diagram of the 6 J 6 transmitterexciter for 220 Mc .
$\mathrm{C}_{1}, \mathrm{C}_{7}-680-\mu \mu \mathrm{fl}$. mica.
$\mathrm{C}_{2}, \mathrm{C}_{4}-3-30-\mu \mu \mathrm{fd}$. mica trinmmer.
$\mathrm{C}_{3}-68-\mu \mu \mathrm{fd}$, mica.
$\mathrm{C}_{5}, \mathrm{C}_{6}-47$ - $\mu \mathrm{ff}$. mica.
$\mathrm{C}_{8}, \mathrm{C}_{12}-330-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{9}, \mathrm{C}_{13}-2.7-8.5-\mu \mu \mathrm{fd}$. nidget butterily variable (Johison 160-208).
$\mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{14}, \mathrm{C}_{15}-50 \mu \mu \mathrm{fd}$. ceramic (National XLA-C).
$\mathrm{C}_{18}-200-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{17}-\mathrm{l}, 7-3,3-\mu \mu \mathrm{fd}$. midget butterfly variable (Johnson 160-203).
$\mathrm{CN}_{1}, \mathrm{Cn}_{2}$ - Neutralizing capacitors made of 75 -ohm 'Twin-I ead; see text.
$\mathrm{R}_{1}, \mathrm{~K}_{3}-6800$ ohme, $1 / 2$ watt.
$11_{2}-470$ ohms, $1 / 2$ watt.
$\mathrm{R}_{4}-3900$ ohmis, 1 watt.
$\mathrm{R}_{5}, \mathrm{R}_{6}, \mathrm{R}_{9}, \mathrm{R}_{10}-22,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{7}, \mathrm{R}_{11}, \mathrm{R}_{13}-470$ ohms, 1 watt.
Starting with sections about two inches long, they should be trimmed a small amount at a time until tuning the final plate through resonance (with plate voltage removed) causes no downward kick in grid current.

Performance

With the voltages shown, the output on 220 Mc. will be about 2 watts, as indicated by a full-brilliance indication in a Number 46 (blue bead) pilot lamp. More output can be obtained by increasing the voltage above 200, but the increase is seldom worth the extra strain on the tubes. Operated as shown, the rig will give ample output to drive an $8: 32$ amplifier which will deliver about 12 watts,
$\mathrm{R}_{\mathrm{s},} \mathrm{K}_{12}, \mathrm{~K}_{14}-1500$ ohms, 1 watt.
$\mathrm{L}_{1}-34$ turns No. $28 \mathrm{~d}, \mathrm{~s}, \mathrm{c}$., close-wound on National XR-50 slug-tuned form, center-tapped.
$\mathrm{L}_{2}-12$ turns No. 24 d.s.c., close-wound on Nationc: XR-50 slog-tuned form, center-tapped.
$\mathrm{L}_{3}-7$ turns No. 16 enamel, $5 / 8$-inch inside diameter, spaced wire diameter, center-tapped.
$L_{4}-2$ turns No. 16 enamel, $3 / 8$-inch inside diameter. spaced $1 / 4$ inch, center-tapped.
$L_{5}-13 / 2$ turns No. 12 enamel, $3 / 4$-inch inside diametcr. center-tapped. Space turns abont 3 佔 inch apart. Coil $11 / 2$ inches long over-all. See bottom-view photograph.
L_{6} - llairpin loop No. 16 enamel inserted between turns of $I .5$.
$R \mathrm{RFC}_{1}-250$ - $\mu \mathrm{hy}$. r.f. choke (Millen 34300).
$\mathrm{RFC}_{2}, \mathrm{RFC}_{3}$ - Solenoid v.h.f. choke - No, 28 d.s.c. wire wound on $1 / 2$ watt carbon resistor, $1 / 8$-inch diameter, sio inch long.
or the final 6.J6 may be modulated and the unit operated as a complete low-powered transmitter.

The same general arrangement described above may be used to get to 220 Mc . with three tubes instead of four, if the regenerative harmonic-oscillator circuit shown in Fig. 17-17 is used to replace the more conventional orystal oscillator circuit of Fig. 17-20. An 8.3-Mc. crystal is then made to oscillate on 25 Mc . in the first 16 J 6 section. The second section triples to 75 Me . The rest of the unit, from L_{3} on, is the same as in Fig. 17-20. It is suggested that the description of the 6 - and 2 -meter transmitter of Fig. 17-17 be studied carefully before this substitution is attempted.

Fig. 17-21- Bottom view of the 6.16220 . Me. rig, showing the simplicity of the lay. out.

A Low-Powered Station for 50 and 144 Mc.

The two small transmitters shown in Fig. 17-22 were designed primarily for use together in mobile service on 50 and 144 Me., but they may be used as a low-powered two-band homestation, or they may be built and operated separately, if only one of the bands is to be employed. The larger of the two is for 144 Me., and this unit includes the modulator, though that part of the rig can very well be incorporated in the 50-Mc. unit, if that transmitter is to be used alone. When the two units are connected to a common power source, either one may be used by manipulation of the toggle switches, which apply the heater voltage to the desired cireuits.

The r.f. sections are nearly identical, except for the inclusion of a 7 F\& tripler stage between the oscillator and the final in the 2 -meter unit. Both use Tri-tet oscillators with 6 V GGT tubes and fixed-tuned cathode and plate circuits. Ilarmonic-type crystals are used, 24 to 24.66 Me. for the 2 -meter rig and 25 to 27 Mc. for the (i-meter job, the oscillator doubling in each case. The final stage in both units is an s32 amplifier, the only difference in the circuits boing a small amount of neutralization required in the 2-meter rig.

When the two units are used together, 144Mc. operation requires that switches S_{1} and S_{2} (rig. 17-23) be closed, and S_{1} in the 50Mc. unit, Fig. 17-24, left open. For 50-Mc. operation, S_{2} is opened, cutting off the r.f. heaters in the $144-M c$. unit, and S_{1} in both units is closed. The terminal strips on the backs of the two units are comnected in parallel, applying the plate voltages to both at all times, and the heaters of the desired circuits are energized by means of the toggle switches. Switching of the plate voltage is not necessary.

Fig. 17-22 - A 2-hand set-up for molile or low-powered fixed-station operation on 50 and 144 Mc. At the left is the 2 -meter unit, complete with modulator. The smaller is the 50-Mc, r.f. section. 'Toggle switeles permit use of the modulator with either r.f. section.

THE 144-MC. SECTION

The 144 -Mc, unit, Figs, $17-23$ and $17-25$, includes the modulator and is designed to operate at about 15 watts input with a 300 volt power supply. Meter jacks are provided for measuring the cathode currents of all stages and the grid current of the final. The plate circuits of the oscillator and tripler stages are self-resonant, and are inductively coupled to their following grid circuits.

A small amount of neutralization was required to assure completely-stable operation of the final. The neutralizing condensers, C_{11} and C_{12} in the circuit diagram, are pieces of No. 12 wire extending from the grid of one section of the 832 A to the vicinity of the plate of the other section. The wires are crossed at the bottom of the tube socket and go through Millen 32150 bushings mounted in the chassis between the 7 F 8 and the 832 A sockets. It is possible that use of a shielded tube socket would eliminate the tendency toward oscillation in the 832 A .

A series-tuned antenna circuit, consisting of C_{4} and L_{7}, is intended for use with any of the low-impedance antenna feed systems commonly used for mobile work. The amount of loading is adjusted by varying the position of the pick-up link, L_{i}.

The modulator employs a pair of 6 V 6 or 6V6GT tubes working Class AB. A speechamplifier stage is not required so long as a single-button carbon microphone is used. Voltage for the mierophone is taken from the junction of the two cathode-biasing resistors, R_{7} and R_{8}, thus eliminating the need for a mierophone battery.

The microphone and modulation transformers used are both large and expensive for the job at hand and were used only because they happened to be available. The microphone transformer can be any single-button-miero-phone-to-push-pull-grids transformer and the modulation transformer need not be rated at more than 10 watts. It should be capable of matching a pair of 6 V 6 tubes to an r.f. load of 5000 to 7000 ohms, depending upon the input at which the 832 A is operated.

The photographs of the transmitter show how the parts are mounted on a metal chassis measuring 3 by 5 by 10 inches. The front panel measures 3 by 5 inches and has a $1 / 2$-inch lip for fastening to the chassis. The construction of the antenna assembly and the method of mounting the components on the panel are identical to the $50-\mathrm{Me}$. transmitter. A recommended system of mounting the 832 A tube socket is also detailed in the text referring to the 50-Mc. unit.

No special care need be given to the wiring of the audio circuit, but the r.f. leads should be kept as short as possible. The use of four

fig. $17-23$ - Circuit diagram of the 111. Ve. r.f. section and modulator.
$\mathrm{C}_{1}, \mathrm{C}_{4}-3-30-\mu \mu \mathrm{fd}$. mica trimmer.
C: C_{2} - $1 \mathrm{D}-\mu \mathrm{ffl}$-per-section split stator (Bud L,C-1660).
C_{3} - "Butterfly" condenser, $6 \mu \mu \mathrm{fd}$. per section (Carit. well ER-6-BF/S).
Cs, ($7, \mathrm{Cs}$ - $0.00 .47 \cdot \mu \mathrm{fd}$. mica.
$\mathrm{C}_{6}-100-\mu \mathrm{ff}$. midget miea.
$\mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{13}, \mathrm{C}_{16}-470-\mu \mu \mathrm{ff}$. milget mica.
C:11, C.12 - Neutralizing wires. (See text.)
(if 4 , C_{13} - 10 - μ fld. 25 -volt electrolytic.
$R_{1}-0.1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{2}-47,000$ ohms, $1 / 2$ watt.
$\mathrm{K}_{3}-33,000$ ohms, $1 / 2$ watt.
K_{4} - $170 \mathrm{ohms}, 1 / 2$ watt.
$R_{3}-22,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{6}-25,000$ ohm: 10 watts.
$\mathrm{R}_{7}-100$ ohms, 1 watt.
$\mathrm{H}_{8}-150$ ohms, 1 watt.
$\mathrm{L}_{1}-3$ turns No. 18 enam., elose-wound, $1 / 2$-ineh diam $1.2-4$ turns No. 18 chan., $3 / 8$ inch lons.
1.3-10 turns Vo. 18 enam.; coil wond in two sertionwith 5 turns each side of L_{2}, cach wection 3. inch long. A $1 / 2$ inch is left hetwern windinge.

Form for $L_{2} L_{3}$ is a Nillen 30003 Quartz-Q standoff insulator, $3 / 4$ - neh diam.
$L_{4}-3$ turns No. 18 enami., $1 / 2$ inch long, sio-inch diameter.
$15-2$ turns No. 18 enam., interwound with turns of L_{4}. L_{4} and L_{5} are wound on a National PRLE. 3 coil furm.
Le -4 thrns No. 12 enam., $1 / 2$-inch i.d., wond in twe sections with 2 turns each side of center-tap and a $1 / 2$-inch space at the enter, turns spaced wire diameter.
1.7 - 3 turns No. 12 enam., $1 / 2$-inch diam., turns spaced wire diameter.
$\mathrm{J}_{1}-\mathrm{J}_{5}$ - Closed-rircuit jack.
Ja-Open-cireuit jach.
J7-Coaxial-cable connector.
RFC $C_{1}, \mathrm{RHC}_{2}-300-\mu h$. r.f. chohe (Millen 31300).
H\% (.3-2.5-mh. r.f. choke (Niflen 31102).
$\mathrm{S}_{1}, \mathrm{~S}_{2}-\mathrm{S} . \mathrm{p} . \mathrm{s} . \mathrm{t}$ toggle.
1',-Single-button mierophone transformer (TW: S-7).
T_{2} - Modulation transformer (L'TC S-19).
tie-point strips will simplify the mounting and wiring of parts. A single tie point is mounted to the rear of the oseillator tube socket and is used as the junction of R_{7}, R_{8}, C_{14} and the primary lead of the microphone transformer. A double tie-point strip is mounted to the right of the crystal socket (as seen in lig. 17-25). One lug is used as the comecting point for the positive high-voltage lead and the bottom ends of $R P C_{1}$ and $R F C_{2}^{\prime}$, the bottom of L_{1} and the top ends of C_{5} and J_{1} are connected to the second terminal. The cathode end of L_{1} is connected to the cathode side of the crystal socket. The third tie-point strip is mounted on the 832 A tube socket and serves as the connerting point between R_{4} and J_{2}; the bottom end of R_{6} connects to the high-voltage lead at the serond lug. 'The fourth strip (single lug) is
mounted on the frame of C_{2} and the learls between R_{5} and J_{3} join at this point.

The construction of the driver-stage coils is not difficult if the coil forms are properly prepared in advance. A study of Fig. 17-25 will show how the windings are placed on the forms, and the lengths of the windings are given in the parts list. The forms shoull be marked and drilled to accommodate the windings with the holes for the ends of the windings passing directly through the forms. L_{3} should be wound in two sections with the inside ends being soldered together after the winding of L_{2} has been completed. The center-taps for L_{4} and L_{5} are made by cleaning and twisting the wire at the center of oach winding. Condenser C_{1} is soldered across the grid ends of L_{3} before the coil is connected to the tube socket.

Fig. 17-2.1 - Circuit diagram of the 6-meter r.f. seetion.
$\mathrm{C}_{1}-15-\mu \mathrm{fd}$. per section (Bud LC-I660).
C_{2} - "Butterfly" eondenser, $15 \mu_{\mu \mathrm{fl}}$. total (Cardwell ERl-15-BF/S).
($33-3-30-\mu \mu \mathrm{fd}$. mica trimmer.
C4 - $100-\mu \mu \mathrm{fd}$. midget mica.
$\mathrm{C}_{5}, \mathrm{C}_{6}-0.0047$ - ffl mica.
$\mathrm{C}_{7}, \mathrm{C}_{9}-470-\mu \mu \mathrm{fd}$. midget mica.
© $-0.001-\mu \mathrm{ff}$. mica.
$\mathrm{R}_{1}-0.12$ meghom, $1 / 2$ watt.
$1 \mathrm{~K}_{2}-47,000 \mathrm{hms}, 1 / 2$ watt.
$\mathrm{H}_{3}-22,(000$ ohms, $1 / 2$ watt.
$\mathrm{l}_{4}-25,1000$ ohms, 10 watts.
$L_{1}-3$ turns No. 18 enameled wire, close-wound, $1 / 2$-ineld diam.
$1.2-5$ turns.
$1_{23}-9$ turns, $41 / 2$ cachs side of eenter, with a $7 / 8$-inch space hetween sections.
$I_{A-1}-10$ turns, 5 cach side of eenter, with a $3 / 8$-inch space between seetions,
1.5-3 turns, L_{2} through L_{5} have an inside diameter of $3 / 4$ inch; No, 12 enameled wire, turns spaced wire diameter.
$\mathrm{J}_{1}, \mathrm{~J}_{\mathbf{2}}$ - Midget elosed-eirenit jack.
I_{3} - Coaxial-cable connector.
H1PC, - 10- μ h. r.f. chohe (Nillen 31300).
HF' $: 2-2.5-\mathrm{mh}$, r.f. chohe (Millen 3 3102).
st-S.pos.t. toggle swith.

Adjustment and Testing

When testing the transmitter, it is advisable (o) start with the high voltage applied to the first two stages only. With a 100 -ma. meter plugged in J_{1} the oscillator cathode current at resonance should be approximately 30 ma . A low-range milliammeter should now be plugged in J_{3} and the final grid circuit should be brought into resonance by adjustment of C_{2}. Proper operation of the tripler stage will be indicated by a cathode current of approximately 20 ma . and a final-amplifier grid current of 2.5 to 3 ma . The tripler grid condenser, C_{1}, should be retuned after the amplifier grid eirruit has been peaked, to assure maximum over-
all operating efficiency
The amplifier should be tested for neutralizing requirements after adequate grid drive has been obtained. If a wellshiclded tube socket has been used, it is possible that the amplifier grid current will not be affected by tuning the 832 A plate circuit. through resonance. However, if the grid current does kick down as the plate circuit is tuned, it will be necessary to add the neutralizing wires referred to in the text and parts list as C_{11} and C12. After installation these wires should be adjusted until no kick in grid current is seen as the 832-A plate circuit is tuned through resonance.

Plate and screen voltages can now be applied to the 832 A and the plate circuit tuned to resonance, as indicated by a dip in the cathode current to 40 ma. or less. Then a dummy load (a 15)-watt light hulb will do) is connected to the antenna jack and the loading adjusted by varying the position of L_{7} and the capacitance of C_{4}, to cause a cathode current of 60 to 70 ma . Approximately 10 ma . of the tot al cathode current will be drawn by the sereen of the $832 . A$ and this value should be subtracted from the cathode current in determining the plate itput. Amplifier grid-eurrent should be 1.5 to 2 mat. under load.

Modulator cathode current should be 75 ma.; 85 ma. with modulation. The reading will decrease slightly when the mierophone is plugged into the circuit. This is caused by the parallel current path that exists when the mirrophone circuit is eompleted.

fig. 17-25-13ottom view of the 14-1. It . transmitter. The coil forms for $L_{2} L_{3}$ and $L_{4} L_{5}$ are monnted on the side wall of the chassis: the form for $L_{4} L_{5}$ is monnted on a small stand-off insulator so that the windings can le brought out to the center line of the chas. sis. Gi, the grid condenser fur the frequency multiptier, is soldered acrose the grid ends of L.3. The amplifier krid tuning condenser, (i. is mounted on metal pillaris having a length of $15 / 8$ inches.

Fig. 17.26 - Bottom view of the mobile transmitter, showing all major component. atrached to the top pate.

THE 50-MC. PORTION

The 50-Me, unit, shown in Figs. 17-24 and 17-24, is very similar to the 144-Mc. portion, but for the elimination of the tripler stage. Because of the somewhat lighter load on the power supply, slightly higher power can be run on 50 Mc . In addition, the amplifier operates more efficiently at the lower frequency, permitting inputs up to 30 watts or so if the power is available. Neutralization is not generally required in $50-\mathrm{Me}$. operation, but this may not hold true for all physical layouts.
Jacks are provided for measuring the grid and cathode currents of the final stage, and the cathode jack may be used for keying, if c.w. operation is desired. Interstage and antenna coupling circuits are similar to the 144Me. section.
The photographs show how a metal box measuring 3 by 4 by 5 inches serves as the chassis for the transmitter. The bottom plate of the box is removed and used as a panel, and is held in place by the screws and nuts that hold the top cover and the box together. In Fig. 17-22 the condenser, C_{2}, and the antema jack may be scen mounted on the panel. Metal pillars, $1 / 4$ inch long, are used to space the condenser away from the panel. A National FWB polystyrene insulator is used as a mounting support for the antenna coil, L_{5}, and the insulator is mounted on $3 / 4$-inch metal posts. C_{3} is supported by its own mounting tabs, and is connected between one end of the pick-up link and ground.

The rear and bottom views of the transmitter show how the rest of the components are laid out on the top plate of the metal box. This plate should be removed from the box while the construction and wiring are being carried on. All of the wiring, with the exception of the d.c. leads to the metering jacks and the imput terminals, can be completed in convenient fashion before the top plate is attached to the metal box.

The socket for the amplifier tube is centered on the chassis plate at a point $23 / 8$ inches in from the front edge, and is mounted below the plate on metal pillars $5 / 8$ inch long. A clearance hole for the $832 \mathrm{~A}, 21 / 4$ inches in diameter, is directly above the tube socket. Sockets for the oscillator tube and the crystal are mounted toward the rear of the chassis.

The oscillator coil, L_{2}, is mounted on the 6 V 6 socket; the spare pin, No. 6, of the socket being used as the tie point for the cold end of the plate coil and the other connections that must be made at this part of the circuit. The oscillator cathode coil is mounted between the cathode pin of the 6 V 6 and a soldering lug placed under the mounting screw of the crystal socket C_{5} and C_{6} can be seen to the rear of the erystal socket, and $R F C_{1}$ is mounted between the tube socket and a bakelite tiepoint strip located at the left of the chassis.
The method employed to assure good r.f. grounding of the amplifier components is visible in Fig. 17-26. Soldering lugs are placed beneath the mounting nuts of the 832A socket, and these lugs are joined together with a No. 12 lead which, in turn, is carried on to the common ground point for the oscillator circuit. The filament, cathode, and sereen by-pass condensers for the amplifier are all returned to the common ground. These three condensers, C_{7}, C_{8} and C_{9}, all rest on the 832 A tube socket.
The amplifier grid coil, L_{3}, is self-supporting, with the ends connected to the grid pins of the 832 A socket. The tuning condenser, C_{I}, is actually supported on metal pillars at the right-hand side of the metal box, but the condenser can be wired in place if the operation is carried out in the proper order. Pirst, mount the chassis plate on the box and locate the proper place for the condenser. Next, determine the length of the leads to connect the condenser to the tube socket, and then remove the chassis from the case. The condenser may now be wired into the circuit, and the rigid mounting of C_{1}, by means of metal posts $11 / 4$
inches long, can be done during the final assembly of the unit.

The grid leak, R_{3}, is connected between the center-tap of L_{3} and a tie-point strip that is mounted on the condenser frame. $R F C_{2}$ is mounted toward the front of the chassis, and the grommet-fitted hole to the left of the choke (Fig. 17-26) carries the lead between the plate-voltage terminal and the choke.

The metering jacks and the power terminal strip may now be mounted on the front and rear walls of the metal box. Holes to permit mounting and adjustment of C_{1} should also be drilled at this time. Portions of top flanges of the metal case must be cut away in order to provide clearance for the oscillator section and the mounting nut for the amplifier plate choke. After the case, chassis and panel have been fastened together, the wiring of the amplifier plate circuit may be completed.

Test Procedure

A power supply capable of delivering 300 volts at 100 ma . and 6.3 volts at 2 amp , may be used for testing the transmitter. The high voltage should not be applied to the 832 A plates until the oscillator has been checked. For initial tests the input voltage can be reduced to approximately 150 volts while the eircuits are checked for resonance and proper operation. Squeczing or spreading the turns of the coils should bring the circuits into resonance, as indicated by maximum grid current
to the 832 A . The grid current should fall to zero, and the plate current of the oscillator tube should rise considerably when the crystal is removed from the socket.

The amplifier plate and screen voltage can be applied at this point. The unloaded cathode current of the amplifier should be about 15 ma., rising to a maximum of 75 or 80 ma . under load, which may be a 15 -watt light bulb connected to the antenna jack. C_{3} should be adjusted along with the coupling between L_{4} and L_{5} until maximum output is obtained. The correct degree of loading has been obtained when the plate current at resonance is 10 to 15 ma. below the off-resonance value. The plate tuning condenser, C_{2}, should be reset each time that a loading adjustment is made.

A final check of voltages and currents should show the following: oseillator and amplifier plate, 300 volts; oscillator screen, 200 volts: amplifier screen, 150 volts; amplifier bias (read at the grid-coil center-tap with a high-resistance voltmeter), 65 volts, negative.

The oscillator plate current should be 28 to 30 ma. and amplifier grid current should be about 3 ma. Under load, the amplifier cathode current should be approximately 60 ma . with 8 or 10 mat. of this amount being drawn by the 832 A sereen.

Modulation can be supplied by the audio system used in the 2 -meter rig shown in Fig. $17-26$, or a similar unit may be added, if only 50 Me . operation is desired.

A 100-Watt R.F. Amplifier for 50 and 144 Mc.

The r.f. amplifier shown in Figs. 17-27, 17-28 and 17-29 is designed for use with a dual beam tetrode such as the 829 B or $\mathrm{AN}-9903$. It is capable of handling an input of up to 120 watts on c.w. or f.m. and about 100 watts on a.m. 'phone. The driver stage should have an output of 5 watts or more, to assure adequate driving power. The same general layout may be used with an 832 A or 815 , if a suitable value of grid resistor is used. The 815 also requires a different socket.

The amplifier is built on an aluminum chassis 3 by 4 by 17 inches in size, with practically all components mounted topside. The two-land
tank circuit described on page 396 is used, to facilitate casy band changing and assure efficient operation on 144 Mc . Only the plate circuit is tuned. The grid coils are made to resonate with the input capacitance of the tube. The plate tuning condenser is cut down to a capacitance suitable for $144-\mathrm{Mc}$. used by removing plates, leaving two stator and three rotor plates in each section. The two stator plates left are those on either side of the stator connection lug. One rotor plate is removed from carh end of the shaft and four from the middle.

The tube socket is mounted on a bracket $35 / 8$

Fig. 17.27-A dual-tetrode amplifier for 50 and 141 Me., with 50-Me. coilo in place. In the foreground are the 1 H/- 1 le. grid coil and the antenna conpling loop used for $1 / 4-$ Nc. operation.

inches high, with the tule erntered $21 / 2$ inches above the chassis. The tuning condenser ami coil socket are also mounted on brackets, the former $23 / 8$ inches high. Both brackets have Ushaped cutouts to pass the plate lines with at least $\frac{5}{16}$ inch elearance all around.

The plate lines are $51 / 2$ inches long, exclusive of the flexibld portion at the plate end. This is of tinned braid, making $11 / 4$ inches additional, from the end of the lines to the slip-on connerstors. The flexible portion of the line is made fast by inserting the end of the braid in the tubing and crimping the tubing in a visa. The connection is soldered for added firmness, but the tubing should be squeezed tight enough to hold the braid in place, as long periods of operation may heat the line sufficiently to loosen soldered connections. Connections from the lines to the tuning condenser are made by wrapping the tubing with four turns of tinned wire and soldering this wray, to the line and the condenser tab. The far end of the line is mounted on 2inch standoffs and small copper brackets, bringing the over-all height to $2 \frac{1}{2}$ inches.

The spacing of the lines, $3 / 4$ inch center to center, is determined by the spacing of the pins of the Millen 37212 plug used for a shorting bar. A short is placed across the terminals of the plug, and connection is mado for the I3-plus with a flexible

Fig. 17-29 - Bottom view of the tetrode amplifier.
lead. The Millen 37211 socket, mounted at the end of the chassis, serves as a conveniont storage device for the plug and as a terminal strip for $R F C_{2}$. The plug may be used to adjust the line length; sliding it into or out of the line permits an adjustment of about $1 / \frac{1}{}$ inch in over-all length. This may tre useful in romaterarting for slight variations in tube characteristics.

The grid eoil socket is mounted on a plate held in position by the serews on which the tube socket is mounted. It is positioned for minimum lead length - an important consideration. The

Fig. 17-28 - Schematic diagram of the two-land tetrode amplifier.
C. C_{2} - Neutralizing capacitors, see text.
$\mathrm{C}_{3}, \mathrm{C}_{4}-0.001-\mu \mathrm{ff}$. dise ceramic.
C: - Split-stator variable, approx. $1.5 \mu \mu \mathrm{fl}$, per section (Millen 91935 with $\underline{2}$ stator and 3 rotor wates removed from each section).
$C_{6}-0.001-\mu \mathrm{fd}$. mica, 1200 -volt ratime.
J_{01} - $80 \mathrm{Vl} \mathrm{co}: 3$ turns No. $18,11 / 4$-inch dia., turns spared wire dia.
1.1 Mr.: L.shaped $\mathrm{lopp}_{\mathrm{op}} 1 / 2$ inch wide and $11 / 8$ inch long, Vo. 11 timned.
$1_{2}-50, b 1 e:$: 2 turns each side of L_{1}, same diat and spacing, centor tapped. Can be made hy removing one turn from each end of a National AR-16 10-s assembly.
114 Mce: L-shaped loop similar to L_{1}, but center tapped. See Fig. 16-27.
I.3-3 turns each side of center. No. 12 timmed. 1 ineh dia., spaced I dia., center tapped, Leave 1 -inch space for L_{4}.
I_{4} - 3 turns No. 14 enamel, 1 -inch dia.. spaced 1 dia.
 centers.
Ifi - 11 airpin coughing loop $31 / 2$ inches long, $3 / 4$ inch wide, No. 12 enamel. h, J_{2} - Closed-rirctit jach.
13 - Wale a.c. comnector.
RFC1 - 7.0 - $\mu \mathrm{h}$. r.f. choke (0hmite Z - F 0).
$1 \mathrm{NC}_{2}$ - $1.8-\mu h$, r.f. choke (0hmite $\left.Z-111\right)$.
${ }^{1}{ }_{1}$ - Filament transformer, 6.3 volts, 3 amp.
R_{1} - 1700 ohms, 1 watt.
R_{2} - $10,0(0)$ ohms, 10 watts.
input capacitance of the 82913 is high enough so that it may be impossible to resonate the grid circuit at 148 Mc , if appreciable lad length or stray capacitance is introduced. If an $832 . \mathrm{A}$ or AN-9903 is used the grid coil will be somewhat larger than that specified, and neutralization may not be needed.

Neutralization is acomplishod, when reguired, by means of leads brought through the bracket, adjacent to the tube plates. Theser are crossed over to the opposite grids at the socket. Feredt.hrough bushings are used and soldering lugs are attarhed to the bushings to provide the neutralizing capacitance. If more is neoded these can be replaced with small tabs of sheet eopper.
There may be a slight change in neutralizing capacitance needed for the two bands. As moutralization is inclined to be more critical at the higher frequence, the adjustment should be made carefully on $1+4 \mathrm{Me}$. This same setting may be satisfactory for $50-\mathrm{Mc}$ operation as well.

The plug-in coils are mounted on National 1'13-16 hases, fitting X X 13-16 sockots. When the stage is used on 144 Me , the eoupling is by means; of a hairpin loop which plugs into the eosil socknt. The r.f. output is thas fed down to a erystal socket on the back of the chassis, for either band. A similar erystal socket is used for the ref. input, at the tube end of the ehassis.

Transmitting Equipment for 420 Mc .

Though it is possible to use ervatal control on 420 Ne. it is improbable that all amateurs will rave to go to the trouble and expense neressary to aceomplish it. As the assignment is wide colough so that we noed have little foar of interference problems there is no real need to employ

Fig. 17-30-A 420-Me, transmitter huilt in two units. The modulator portion, on a $7 \times 7 \times 2$-inel chasis, nees a $6 \mathrm{C} / \mathrm{d}$ diving a GAQ5 modulator. The oseillater uses a 6.56 and is assembled on a remonable trough-shaped chanis.
advanced techniques in bocal work on 420 Mc., if one is not so inclined. Crystal control and seleetive receivers are desirable, but there is plenty of room for fellows who want to operate with simpler gear.

- A SIMPLE LOW-POWERED TRANSMITTER

The transmitter shown in Figs. 17-30 through $17-33$ is trpical of the sort of thing that can be used to good advantage in developing local activity on 420 Mc. It runs only a few watts input, and delivers only about one watt of output, but it is quite capable of working over a radius of several miles when used with a good antenna system. A single 6J6 is used as a pushpull oscillator, with a halfwave line in its plate cireuit. The complete osillator assembly is built in a trough made of flashing copper. The 6.AQs modulator and 6 C 4 speech amplifier are on the main chassis, at the back of which is a copper clip into which the oscillator unit is fitted. This arrangement permits experimenting with different types of r.f. sections without the neressity of making changes in the audio portion of the rig.

Only three adjustments are necessary in placing the unit into operation. The frequency should
the checked with Lecher wires or a calibrated wavemeter, setting the frequency near the middl. of the band. The method of determining the proper point for ferding the B -plus to the line is diseussed earlier in this chaptor. When this is done the eoupling loop should be arljusted for maximum prower in the antenna and the transmitter is ready for use. Frequency chores should be made again, after the antemat is connected to be sure that the signal radiated is well inside the band limits.

STABILIZED TRANSMITTERS

Not many presently-available transmitting tubes will operate satisfactorily on 420 Mc . Of the transmitting triodes only the $316 \mathrm{~A}, 703 \mathrm{~A}, 15 \mathrm{~L}, 8012$ and 8025 will work well as oscillators, and operation of these as frequency multipliors or amplifiers is generally not too satisfactory. Of the tetrodes the 832A and AN-9903 are the most useful for 420-Me work, bither will operate as a pushpull tripler to 420 Mc . with fair efficioney, giving enough output to drive a second tube of the same type as a straight-through amplifier. An 832A will give an output of about 2 watts as a tripler and 5 watts as an amplifier. The 9903 delivers 10 and 25 watts respectively. Both tubes should be operated at not more than about 60 pereent of their normal ratings.

For best results tulnes designed specifically for u.h.f. service should be used. These are the pencil-tube, lighthouse, and eoaxialelectrode types, designed for use with coaxial or flat-plate tank eircuits. The 5675, 2C43, 2("39 and 4×150 are typiral of the speeial tubes that are capable of plate officioneries up to 60 percent, when used in suitably-designed cireuits. Foreedair cooling is necessary with these tubes when they are run at their normal ratings.

Fig. 17-31 - IKottom view of the oscillator assentbly. The trough in which the components are mounted is made of flashing copper. It is 6 inehes long, $17 / 8$ inches high, and $21 / 4$ inches wide, with $1 / 4$-inch edges folded over for sliding into a clip attached to the main chassis.

Fig. 17-32 - Schematic diagram of the 420-Mr. transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{4}-10-\mu \mathrm{fd} .25$-volt electrolytic.
$\mathrm{C}_{2}-8-\mu \mathrm{fd} .450$ volt electrolytic.
$\mathrm{C}_{3}-0.01-\mu \mathrm{fd}$. tulnular.
C_{5} - Miniature split-stator variable, $4 \mu \mu \mathrm{fl}$. per seetion. (Millen 219121), with one rotor plate removed from each section.)
$\mathrm{R}_{1}-470 \mathrm{olms}$, 1 watt.
$\mathrm{R}_{2}-0.33$ megohm, $1 / 2$ watt.
$\mathrm{R}_{3}, \mathrm{~K}_{4}-5000$ ohms, 5 watts.
R_{5} - 0.4^{7} megohm, $1 / 2$ watt.
$\mathrm{R}_{8}-680$ ohms, I watt.
$\mathrm{K}_{7}, \mathrm{R}_{\mathrm{s}}-100$ ohms, $1 / 2$ watt, carbon.

Bibliography on 420-Mc. Equipment

For the convenience of the experimenter who is interested in 420 Mc. a list of articles appearing in QS'' since 1946 is given below.
"Getting Started on 420 Mc." (Hoisington), June 1946 QST, page 43.
"Four-Twenty Is Fun" (Tilton), Nov. 1947 QS'T', page 13.
"Operating the BC-645 on 420 Me." (Ralph and Wood), Felb. 1947 QS'T, page 15.
$R_{0}-2700$ ohms, $1 / 2$ watt.
L_{1} - Midget filter choke.
H_{2} - Plate line made of two pieces of No. 12 wire, $11 / 4$ inches long, $2 / 8$ inch apart, center to center.
L_{3} - Hairpin of No. 18 wire. I'ortion which couples to L_{2} is alout $5 / 8$ inch long. Position should the adjusted for maximum transfer of power to anterna.
$\mathrm{J}_{1} \mathrm{~J}_{2}$ - Closed-circuit jack.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}-12$ turns No. 20 cnameled wire, 3 但-inch diam.. $8 / 4$ inch long.
T, - Single-hutton microphone transformer.
"Fun on 420 with the BC-788" (Clapp), July 1948 QS'T, page 21.
"Operating the Al'S-13 on 420 Mc." (Addison), May 1948 QST, page 57.
"Tripling to 420 Me," (Brannin), June 1948 QS'T, page 52.
"A Doorknob (ssillator for 420 Mc." (Tilton), January 1949 (SS'T, page 29.
"Simple Gear for the $420-\mathrm{Mc}$. Beginner" (Tilton), May 1949 QST, page 11.
"Better Results on 420 Me." (Tilton), August 1950 QS J^{\prime}, page 11.

Fig. 17-33- Bottom view of the main chassis of the 420-Mc. transmitter, slowing andio components.

CHAPTER 18

V.H.F. Antennas

While the basic prineiples of antenna operation are essentially the same for all frequencies, certain factors peeuliar to v.h.f. work call for changes in antenna technique for the frequencies above 50 megacyeles. Here the physical size of multiclement arrays is redued to the point where an antenna system having some gain over a simple dipole is possible in nearly every location, and experimentation with various types of arrays is an important part of the program of most progressive amateurs. The importance of high-gain antennas in v.h.f. work cannot be overemphasized. A good antenna system is often the sole difference between routine operation and outstanding success in this fiefd. By no other means can so large a return be obtained from a small investment as results from the erection of a good directional array.

Design Factors

Beginning with the $50-\mathrm{Mc}$, band, the frequeney range over which antenna arrays should operate effectively is often wider in pereentage than that required of lower-frequeney systems; thus greater attention must be paid to designing arrays for maximum frequeney response, possithy to the extent of sacrifieing other factors sueh as high front-to-baek ratio.

As the frequency of operation is increased, losses in the transmission line rise sharply; hence it becomes more important that the line be matched to the antenna system correctly. Because any v.h.f. transmission line is long, in terms of wavelength, it may le more effeetive to use a high-gain array at relatively low height, rather than to employ a low-gain system at great height above ground, particularly if the antenna location is not completely shielded bey heavy foliage, buildings, or other obstruetions in the immediate vicinity.
This coneept is in dirrect contrast to early notions of what wat most desirable in a v.h.f. antenna system. An appreciable clearance above surrounding terrain is desirable, but groat height is by no means so all-important as it was onee thought to be. Outstanding results have been obtained by many v.h.f. workers, especially on 50 and 114 Me ., with antemas not more than 25 to 40 feet above ground. IN can be worked on 50 Me, with arrays as low as a half-wave above the ground level.

Polarization

In the early days of v.h.f. operation everyone used simple antennas, and since the vertieal halfwave gave at least as good performance in all
directions as its horizontal counterpart offered in only two directions, the 5 -and $21 / 2$-meter activity of the early '30s standardized on vertical polarization. Later on when high-gain antennas began to be used it was only natural that these, too, were put up vertical in areas where v.h.f. artivity was already well established.

The increase in operating range that became available with the discovery of the various forms of long-distance propagation stirred interest in v.h.f. operation in areas where there was no previous experience, and here many of the newcomers started in with horizontal arrays, these having been more or less standard practice on the frequencies with which these operators were more familiar.

As best results are oltained only when the same polarization is used at both ends of a path, this use of both polarizations resulted in a confliet that, even now, has not been completely resolved. Numerous tests have demonstrated that there is little difference in results over long paths with either horizontal or vertical polarization, but each has features in its favor.
Horizontal systems are generally easier to build and rotate, particularly on 50 and 144 Mc . Where ignition and some other forms of manmade noise are troublesome, horizontal antennas usually provide better signal-to-noise ratio, Simple 3 - or 4 -element arrays are more effective horizontal than vertical, as their radiation patterns are broad in the plane of the elements and sharp) in a plane perpendicular to them.
Vertical sustems, on the other hand, can provide uniform coverage in all directions, a feature that is possible only with fairly complex horizontal arrays, Gain can be built up simply without introducing directivity, by stacking halfwave elements one above the other and feeding them in phase. This is a useful feature in net operation, or in locations where the installation of a rotatable system is not possible. Mobile operation is simpler and more effective when vertical antennas are used. The possibility of increased trouble with television interference, because of the use of horizontal polarization in TV broadcasting, has deterred v.h.f. men in densely populated areas from changing from vertical to horizontal.
The factors in favor of horizontal polarization have leen predominant in $50-\mathrm{Mc}$, operation, and today we find practically complete standardization on horizontal systems for that band. The trend is toward horizontal for 144 Mc . and higher bands, partieularly in long distance work, though vertieal polarization is still widely used.

The neweomer to the v.h.f. bands should aseertain which is in use in the areas he expects to work, and go along with others in those areas. In setting up new activity in ragions where no
operation is presently going on, it is recommended that horizontal polarization toe used, principally as a step toward eventual standardization.

Impedance Matching

Because line losses tend to be much higher in v.h.f. antenna systems, it beromes inoreasingly important that feedlimes be made as nearly "flat" as possible. Transmission lines commonly. used in v.h.f. work include the open-wire line of 400 to 600 ohms impedance, usually spaced about one to two inches; the polyethylene-insulated flexible lines, available in imperdanes of 300,150 , and $\mathbf{7 2}$ ohms: and coasial lines of 50 to 90 ohms impedance. These may be matehed to dipole or multielement antennas by any of several arrangements detailed below.

The " J "

Used prineipally as a means of feeding a stationary vertical radiator, around which parasitio clements are rotated, the "J" consists of a halfwave vertical radiator fed by a quarter-wave matehing section, as shown at A. Fig. 18-1. The spacing letween the two sides of the matching

sertion should be two inches or less, and the point of attachment of the feedline will depend on the impedatue of the line used. The feeder should be slid along the matehing seretion until the point is found that gives the best operation. The bottom of the matehing section may be grounded for lightning protection. A variation of the "J" for use with eotaxial-line feed is shown at B in Fig. 18-1. The " J " is also useful in mobile applications.

The Delta or "Y'"-Match

Probably the simplest arrangement for feeding a dipole or parasitic array is the familiar delta, or "Y"-nateh, in which the feeder system is famed ont and attached to the radiator at a point where the impedance along the eloment is the same as that of the line used, Information on figuring the dimensions of the dolta may be found in the transmission-line chapter. Chief wakness of the delta is the likeli-
hood of radiation from the matching section, which may interfere with the effectiveness of a multiclement array. It is also somewhat unstable mechanieally, and quite eritical in adjustment.

The " Q " Section

An effective arrangement for matehing an open-wire line to a dipole, or to the driven olement in a 2 - or 3 -rement array having wide (0.2) wavelength or greater) spacing, is the " Q " section. This consists of a quarter-wave line, usually of $1 / 4$ to $1 / 2$ inch tubing, the spateing of which is determined by the imperdane at the enter of the array. The parallel-pipe " Q " seetion is not practical for matehing multielement arrays to lines of lower impedances than about 600 ohms, nor can it be used effectively with close-spaced parasitic arrays. The imperdance of the " $($ " section required in these cases is lower than can he obtained with parallel sections of tubing of practical dimensions, A quarter-wave sertion of coaxial or other low-impedance line is a com-monly-used means of matching a line of 300 to 600 ohms imperdanee to the low center impedanere of a 3 - or t-element array. The length of such a line will depend on the velocity of propagation (propagation factor) of the line used. The propagation factors of all the eommonly-used lines are given in the transmission-line chapter.

In some installations it may be more eonvenient to use a lime of greater length than a single quarter wave for matehing purposes, in which ease any odd multiple of a quarter wavelength maty be used. The exact length required may be determined experimentally by shorting one cud of the line and coupling it to a souree of r.f., and trimming the line length until maximum loading is obtaimed at the center frequency of the operating range.

The "T". Match

The principal disadvantages of the delta system ean be overeome through the we of an arrangemont shown in the tranmission-line chapter, commonly called the "T"-mateh. It has the advantage of providing a means of adjustment (hy sliding clips along the parallel coneluctors), ret the radiation from the matehing arrangement is lower than with the delta, and its rigid construction is more suitable for rotatalble arrays. Because the matching arrangement is adjustable, the dimensions of the " T " rection are not critical. The position of the elips should be adjusted for lowest standing-wave ratio on the transmission line. The "T"-mateh may be used with any balanced line. This may be a douho coaxial line or any two-wire sustem, either polyethylene insulated or open-wire construction. The "T" system is particularly well suited for use in all-metal "plumbing" arrays.

The Folded Dipole

Probably the most effeetive means of matching various lines to the wide range of antemna impedances encountered in v.h.f. antenma work is the folded dipole, shown in its simplest form in Fig. 18-2. When all portions of the dipole are of the same conductor size. the impedance at the feed-point is equal to the square of the number of elements in the folded dipole times the normal eenter impedance which would be present if only a conventional split half-wave radiator were used. Thus, the simple folded dipole of Fig. 18-2 hats a feed-point impedane of 4×72, or approximately 288 ohms. It may be fed with the popular $300-$ ohm line without appreriable mismateh. If a thre-wire dipole were used, the step-up in intpedance would be nine times. Note that this stepup oreurs only if all portions of the folded dipole. are the same eonductor size.

The impedance at the feed-point of a folded

Fif. 18.2 - 1 le . tails of the folded dipole. mission Lines Chapter. Note that center-tocenter spacing of the conductors is important.

Antenna Systems for 50 and 144 Mc.

Since the same basie principles apply to all antemnas regardless of frequences, little diseussion is given here of the various simple dipoles that may be used when nondirectional systems are desired. Details of such antemnas may be found in another chapter, and the only modifieation neressary for adaptation to use on 50 Me . or higher is the reduction in length necessary for increased conductor diameter at these frequencies.

A Simple 2-element Array

A simple but effective array which requires no matching arrangement is shown in Fig. 18-3. Its design takes into aceount the drop in center

Fig. 18-3 - A simple 2eelement array for 50 V1e. No mateling devires are needed with this arrangenent.
impedance of a half-wave radiator when a parasitie element is placed a quarter wavelength awas: A director element is shown, as the drop in impedance using a slightly-shortened parasitie element is just about right to provide a good mateh to a 50 -ohm coaxial line. The element longths are not extremoly eritical in such a simple system, and the figures presented may be used with satisfactory results.

A 4-Element Array

The importance of broad frequency response in any antenna designed for v.h.f. work canoot be overlooked. The disadvantage of all parasitic systems is that they tend to tune quite sharply,
and thus are often effective over only a small portion of a given hand. One way in which the response of a system can be broadened out is to incrase the spacing between the parasitie oloments to somewhat more than the 0.1 or 0.15 wavelength normally considered to provide optimum front-to-back ratio. Some broadening may also be obtained by making the direetors slightly shorter and the reflector slightly longer than the optimum value. The folded dipole is useful as the radiator in such an array, as its over-all frequence response is somewhat broader than other types of driven elements.

A 4 -element array for 50 Mc . having an effeetive operating range of about 2 Me , is shown in Fig. 18-4. It employs a folded dipole having nonuniform conductor size. Reffertor and first director are spaced 0.2 wavelength from the driven element, while the forward director is spared 0.25 wavelength. The spacing and element lengths given were derived experimentally, and are those that give optimum forward gain at the expense of some front-to-back ratio. As the later quality is not of great value in $50-\mathrm{Me}$. work, it ean be negleeted entirely in the tuning proeedure for such an array.

The dimensions given are for peak performance at $50 . \overline{5}$ Me. For other frequencies, the

Fig. 18-4- Dimensional drawing of a 1-element 50- Me. array, Flement length and spacing were derived experimentally for maximum forward gain at $\mathbf{5 0}, 5 \mathrm{Me}$,
longth of the folded dipole in inches should be figured aceording to the formula

$$
L=\frac{5.540}{f_{M_{c}}}
$$

The reflector will be 5 per cent longer, the first director 5 per cent shorter, and the second director 6 per cent shorter than the driven element. A broadening of the response may be obtained,

Fig. 18-4- Detail drawing of inserts which may be used in the ends of the elements of a parasitie array to permit accurate adjustment of element length.
at a slight sacrifice in forward gain, by ardding to the reflector length and subtracting from the director lengths. For those interested in exprimenting with clement lengths, slotted extensions may be inserted in the ends of the various elements, other than the dipole, as shown in Fig. 18-4. A 3 -element array may be built, using the same general dimensions, exeept that the conductors of the folded dipole should have a 3 -to-1 diameter ratio instead of 4-to-1.

A Stacked Array for 50 Mc .

The radiation angle of a v.h.f. antenna system may be lowered, with a resulting improvement in operating range, by stacking two parasitic arrays one above the other and feeding them in phase. At spacings of $1 / 2$ to $5 / 8$ wavelength a gain of 4 dh. or more may be realized by starking in this way. An example is the 4 -over-4 array for 50 Mc .

TABLE 18-I
Dimensions for V.H.F. Arrays, in Inches

Fircaj. (Vro.)	50	14.1	220	420
I riven Filement	110	38	247/8	123/4
Reflector	116	40	261/8	133/8
1st 1)ircetor	10.5	36	235/8	$121 / 8$
2nd Director	103	3.53	233/8	12
Phasing section*	11.4	301/2	257/8	131/4
0.25 Wavelength	57	193/4	13	65/8
0.2 Wavelength	16	1.53/4	103/8	$53 / 8$
0.15 Wavelength	34	$113 / 4$	$73 / 4$	4

[^9]shown in Fig. 18-5. The 12-element array mounted between the two $50-\mathrm{Mc}$. sections is described later.

All-motal design is used in both arrays. Booms for the $50-\mathrm{Mc}$. portion are $11 / 2$-inch $24 \mathrm{~S}^{\circ} \mathrm{C}$ dural tubing 128 inches long. Elements are $3 / 4$-inch tubing of the same alloy, foreed through holes in the booms and held in place with U-shaped clamps of sheet aluminum, made similar to those in Fig. 18-9. Director spacing is 0.2 wavelength, reflector spacing 0.15 wavelength, see Table 18-I. The booms are mounted on the vertical member (a $11 / 2$-inch o.d. pipe) by means of blocks of wood, the only nonmetallic parts employed. These were made from pieces of two-by-four one

Fip. 18.5-An 8-element stacked array for 50 Mc., with a 12 -elenent system for 1.44 Wc , mounted in the space between the two 50 . Me, sections.
foot long. A hole the size of the mast is made in the block near one side, at the middle of the block lengthwise. The block is then sawed lengthwise in a vertical plane, through the middle of this hole. Bolting the two portions together provides a tight fit around the vertical pipe. The boom is bolted to the block at three points. This method of mounting provides a rigid assembly. The booms should be bonded to the main support to provide lightning protection.

The main transmission line is 300 -ohm TwinLead. The method of fred was checked out for minimum standing-wave ratio with one bay alone; then the phasing section for the two hays was proportioned so that it would serve as a " Q " section as woll. No, 14 enameled wire spaced one inch is suggested. The feedline is brought at right angles from the phasing seetion to stand-off insulators on the main vertical support. It drops
vertically to a combination tie point and bearing, just below the lower boom of the 6 -meter array. From this anchor, which rotates with the beams, it drops loosely to a fixed point, with enough slack left to pormit slightly more than 360 degrees of rotation.

The foed sertions of the $50-\mathrm{Mc}$. folded dipoles are made of $3 / 16$-inch copper tubing, mounted on $5 / 8$-inch cone standoffs. The outer ends are supported on metal pillars of the same length. Two stand-offs are used for each side of the dipole; otherwise the rather soft tubing tends to sag and disturb the spacing between it and the larger element. The copper tubing is flattened in a vise at the points where it is to be mounted. The 4 -to-1 conductor ratio, and the spacing of one inch, center to center, between the two ronductors gives the necessary impedance step-up to mateh 300 -ohm line, in a telemont array of the spacings mentioned earlier.

Phased Arrays for 144 Mc.

Superior performance is obtainable on 144 Me. and higher by using curtains of $4,6,8$ or more driven half-wave elements, arranged in pairs fed in phase, and backed up by reflectors. Figs. 18-5 to $18-7$ show 12 - and 16 -element arrays that are capable of more than 12 and 14 db . gain, respeetively. The supporting strurtures required by such arrays would make them out of the question for lower frequencies, but for 144 Me. and higher they are relatively easy to build and ereet. Their dimensions are not partieularly critieal, and careful adjustment of the elements is not required for good results. The frequeney response of arrays having several driven elements is broader than that of systems in which the gain is built up through the use of additional parasitic elements.

The 12 -element array, Figs, 18-5 and 18-6, has a similar pattorn in both horizontal and

Fig, 18-6-Element arrangement and feed system of the 12 -element array. Reflectors are spaced 0.15 wavelength trehind the driven elements.

Fig. 18.7-Schematic drawing of a 16 -element array. A variable " Q " section may be inserted at the feed point if aecurate matching is desired. Reflector sparing is 0.2 wavelength.
vertical planes. The horizontal radiation pattern of the 16 -element array is somewhat sharper when it is used in a vertical position, but it is a highly effective antenna either way.

The clements need not be larger than halfinch diameter, and smaller sizes can be used if desired, so the entire structure can be made light in wright and still have considerable strength. The phasing sections may be No. 14 or 16 wire, spaced 1 to $11 / 2$ inches. They are transposed in both sides of the 12 -element array, and in the two end sections of the 16 -element.

Fither array may be fed with $300-\mathrm{hm}$ 'TwinLead, connected as shown in the drawings. The feed impedance of the 12 -element array is brought down by sparing the reflectors 0.15 wavelength, making it possible to connect the transmission line to the center pair of elements directly without a matching device. The feed impedance of the 16 -element array may be somewhat lower than 300 ohms, but the mismateh is not serious and it may be disregarded if the transmission line is relatively short. If a long line is necessary it may be desirable to install an adjustable " Q " section at the feed proint. This can be made of two 20 -inch tubes of the same matorial as is used for the driven elements, mounted so that the spacing between them can be adjusted for lowest standing-wave ratio. The feed imperdance of an array having several driven elements is subject to many variables, making some sort of adjustable impedance-matching device highly desirable if long feedlines are used. Nement lengths and spacings may be taken from 'rable 18-I.

All-Metal Design in Phased Arrays

A very light weight yet physically rugged array can be built if the supporting structure is made entirely of metal. This involves few complications in the construction of small parasitic arrays, but with the 12 - and 16 -element jobs described above some special precautions must be observed. It is important that the supporting framework be designed so that it is entirely in back of the reflector plane, otherwise it will dis-
fort the radiation pattern and reduce the efferetiveness of the system.

The supporting frame of the 12 -element array of Pig. 18-i) is shown in Fig. 18-8, with a detail of the method of joining mombers in Fig. 18-9. When ${ }^{3}$-inch tubing is used for the frame, $11 / 2-$ inch for the vertical support, and $1 / 4$-inch tubing for the elements, the sheet aluminum clanups may be made according to the dimensions given in Fig. 18-10. If other sizes of tubing are used the clamp dimensions can be determined readily by making experimental clamps of thin sheet metal or stiff cardboard. These can be folded and bent into the proper shape and then flattened out and used for templates.

Fig, 18-8 - Supporting framework for a 12 -clement 1/t-Me. array of all-metal design. Dimensions are as follows: elenent supports (I) $3 / 4$ by 16 int hes; horizontal members (2) $3 / 4$ by to inches; vertioal members (3) $3 / 4$ hy 80 inches; vertical support (f) $11 / 2$-inch diameter, lengih as required; reflector-to-drivendelement spading 12 inches. P'arts not shown is sketch: driven elements $1 / 4$ by 38 inches: reflectors $1 / 4$ by 40 inches: phasing linss No. 18 spaced 1 inch, 80 inches long. fanned out to $31 / 2$ inches at driven elements (transpose eath halfwave section).

Long-Wire Antennas

Where long-wire systems designed for use on lower freguencies are available they may often be used on the v.h.f. bands with good results, particularly if the feedlines are not too long, "V" and rhombic antenna systems desigued expressly for the v.h.f. bands are small enough in size to be ased in many locations where similar arrays for lower frequencies would be out of the question. The polarization of longwire systems is normally horizontal, but in locations where they have a downward slope they may also have a considerable vertical component. Therir polarization discrimination is seldom as sharp as that of systems using half-wave elements.

Information on the various types of long-

Fig. I8.9 - Model showing the method of assemtling for all-metal constioction of phased arraya. Dimension: of clamps are given in lig. 18-10.
wire armas will be found in an earlier chapter. At 144 Me and higher it is relatively easy to stark two or more "l" or rhombic arrave a half-wave apart. This improves their performane eonsiderably, but makes them essentially one-hand devieres.

Matching deviees that permit feerling longwire antemat sustems with flat lines also introduce onc-hand limitation, so their use is not advisable exeept in the case of 50 and 144 Me., two bands that are close to third-harmonic relationship. A "Q" section that is approximately. three quarter-wave-lengths long at i4t Me. is one quater-wavelength long at 50 Mc ., so if the feed impedance of the anteman system is the same for both frequencies a " Q " section about 58 inches long may be used for both bands. In the case of a rhombic terminated in 800 ohms and fod with 300 -ohm line, the matehing section should have an impedaner of about 500 ohms.

Fig. 18-10 - I Etail drawings of the elamps used to as. semblite the all-metal 2-meter array. A, B and C are before bending into " "* shape. The right-angle bends should the matle first, along the doted lines as shown, then the plates may be bent around a piece of pipe of the proper diameter. Sheet stock should be $1 / 16$-ineh or heavier aluminum.

Arrays for 220 and 420 Mc .

'The use of a high-gain antemna system is atmost a neeressity if work is to be done over any great distance on 220 and 420 Mr. Experimentation with antenna arrays for these frequencies is faseinating inderd, as their size is so small as to permit trying various element arrangements and feed systems with ease. Arrays for 420 Mr., particularly, are convenient for use in demonstrations of antemat principles, as even high-gain systems may be of table-top proportions.

Any of the arrays descrited freviously may be used on these bands, but those having at number of driven elements fed in phase will be most desirable, The 12 - and 16 -emement arrays, Figs. 18-6 and 18-7, may be adapted to use on 220 or 420 Me. by using the dimensions given in Table 18-1.

The use of a plane reflector, in place of the parasitie reflectors used in the $144-$ Ma models, is highly desidable when phatsed systems are used on higher bands. The spacing between the driven elements and the reflecting plane is not particularly reitical, exerpt as it afferts the feed imperdance of the system. Maximum gain oceurs in the region around 0.1 to 0.15 wavelength, with the feed impedanee lowing lowest with the dosest spacing. The feed impedaner is highest at approximately 0.3 -wavelength spacing. The roflector has no effere on the feed impedance when a spacing of 0.22 wavelength is used. As the gain is nearly constant from 0.1 to 0.25 wavelength, it may lo seen that the spacing may le variod to achie ve an imperdance mateh.

An advantage of the plane reflector is that it may be used for two arrays, incorporating horizontal and vertical polarization on opposite sides of the plane, or providing two-band oporation, as is done in the array for 220 and 420 Mc . shown in lög. 18-11. Six driven elements for 220 Me. are used on one side, arranged in a manner similar to the driven clements in the 12dement array for 144 Me . described earlier in this chapter. The $420-\mathrm{Mc}$. side uses 16 driven elements arranged in two sets of 8 each.

These two sets of elements are mounted one

Fig. 18-11-A two-band sereenreflector array, One side has 16 driven elements for $4 \geq 0$ Wr... and the reverse side has 6 half-waves in phase for 220 Nc. Both sets of elements are spared 0.15 wavelength from the rellecting plane.
above the other with their ends approximately one-half wavelength apart. This dimension is not aritical, though maximum gain is obtained with end-to-end spacings of about a half wavelongth. The two pairs of phasing wires are conneeted by means of one-wavelength sections of 300 -ohm Twin-head at the middle of the array. This junction, which has an imperdance of about 150 ohms, is ferd with 300 -ohm line through an adjustable" ()" section.
The one-wavelength sertions of 300 -ohm line are $21 \frac{3}{4}$ inches long, this figure taking the propagation fartor of the line into aceount. The "(?" section may lee mate of the same material as the elements, or any available tubing, from $1 / 4-101 / 2$-inch diamotor, may be used. As proper matching is extremely important at 420 Mr. the spacing of this "()" section should be adjusted carefully for minimum standing-wave ratio.

The reflecting plane is 6 feret square. This is larger than neessary for the $420-\mathrm{Mc}$. system, the size being determined by the 220 Me. side. ('hicken wire of 1 -inch mesh is used for the screen. Wire netting, sheet motal, or closely-spaced wires may be substituted. The size of the reflector is not critical, exeept that it should extend at least a quarter wavelength beyond the area covered by the driven elements. A plane-reflector array has slightly more gain than is obtained with the same number of driven elements backed up by parasidic reflectors. The frequeney response is wider and it has a considerably higher front-to-back ratio. The principal dimensions may be taken from Table 18-I.

Miscellaneous Antenna Systems

Coaxial Antennas

With the "J" antenna radiation from the matching section and the transmission line tends to combine with the radiation from the antema in such a way as to raise the angle of radiation. At v.h.f. the lowest possible radiation angle is essential, and the coaxial antenna shown in Fig. 18-12 was developed to eliminate feeder radiation. The center conductor of a $70-0 h m$ concentrie transmission line is extended one-guarter wave beyond the end of the line, to act as the upper half of a half-wave antema. The lower half is provided by the quarter-wave slecve, the upper end of which is connected to the outer comductor of the concentric line. The sleeve ates as a shield about the transmission line and very little current is induced on the outside of the line by the antema field. The line is non-resonant, since its characteristic impelance is the same as the center impedance of the half-wave antema. The sleeve may be made of copper or hrass tubing of suitable diameter to clear the transmission line. The coaxial antenna is somewhat difficult to construct, but is superior to simpler systems in its performance at low radiation angles.

Broadband Antennas

Certain types of antennas used in television work are of interest because they work across a wide band of frequencies with relatively uniform response. At very-high frequencies an antenna made of small wire is purcly resistive only over a very small frequency range. Its Q, and therefore its selectivity, is sufficient to limit its optimum performance to a narrow frequency range, and readjustment of the length or tuning is required for each narrow sliee of the speetrum. With tuned transmission lines, the effective length of the antenna can be shifted by returing the whole system. However, in the case of antennas fed by matched-impedance lines, any appreciable frequency change requires an actual mechanieal adjustment of the system. Otherwise, the resulting mismatch with the line will be sufficient to cause significant reduction in power input to the antenna.

A properly designed and constructed wideband antenna, on the other hand, will exhibit very nearly constant input impedance over several megacycles.
The simplest method of obtaining a broadband characteristic is the use of what is termed a "cylindrical" antema. This is no more that a conventional doublet in which large-diameter tubing is used for the elements. The use of a relatively large diameter-to-length ratio lowers the Q of the antemna, thus broadening the resonance characteristic.
As the diameter-to-length ratio is increasel, end efferts also inerease, with the result that the antenna must be made shorter than a thinwire antema resonating at the same frequency. The reduction factor may be as much as 20 per rent with the tubing sizes commonly used for amateur antemas at v.h.f.

Cone Antennas

From the cylindrical antema various specialized forms of broadly-resonant radiators have been evolved, including the ellipsoid, spheroid, cone, diamond and double diamond. Of these, the conical antenna is perhaps the most interesting. With large angles of revolution, the variation in the characteristic impedance with changes in frequency can be reduced to a very low value, making such an antema suitable for extremely wide-band operation. The cone may be made up either of sheet metal or of multiple wire spines.

Plane Sheet Reflectors

The small physical size of v.l.f. antennas makes practical many methods not feasible on hower frequencies. For example, a plane flat-sheet reflector may be used with a halfwave dipole, obtaining gains of 5 to 7 dth . Much higher gains are attainable with a number of stacked dipoles fed in phase, mounted in front of a reflecting plane. Such an arrangement is called a "billboard" array.
Plane reflectors need not be constructed of solid sheets. Wire mesh, or a grid of closelyspaced parallel-wire spines, is more casily erected and offers lower wind resistance.

Parabolic Reflectors

A plane sheet may be formed into the shape of a parabolic curve and used with a driven radiator situated at its focus, to provide a highlydirective antema system. If the parabolic reflector is sufficiently large so that the distance to the focal point is a number of wavelengths, optical conditions are approached and the wave across the mouth of the reflector is a plane wave. However, if the reflector is of the same order of dimensions as the operating wavelength, or less, the driven radiator is appreciably coupled to the reflecting sheet and minor lobes occur in the pattern. With an aperture of the order of 10 or 20

Fig. 18-1.3 - Ilane sheet reflectors for v.h.f. and u.h.f. A shows a paratolie sheet and 13 a square-corner reflector.
wavelengths, sizes that may be pratical for microwave work, a beam-width of approximately 5 degrees may be achieved.

A reflecting paraboloid must be carefully designed and constructed to obtain ideal performance. The antenna must be located at the focal point. The most desirable focal length of the parabola is that which places the radiator along the plane of the mouth; this length is equal to one-half the mouth radius. At other foral distances interference fields may deform the pattern or cancel a sizable portion of the radiation.

Corner Reflectors

The "corner" reflector consists of two flat conducting sheets which intersect at a designated angle. The corner-reflector antenna is particularly useful at v.h.f. where structures one or two wavelengths in maximum dimensions are more practical to build than larger systems.

The plane surfaces are set at an angle of 90 degrees, with the antenna set on a line bisecting this angle. For maximum performance, the distance of the antenna from the vertex should be 0.5 wavelength, but compromise designs can be built with closer spacings. The plane surfaces need not be solid sheets; spines spaced about 0.1 wavelength apart will serve as well.

The spines do not have to be eonnected together electrically.

If the driven radiator is situated on a line bisecting the corner angle, as shown in Fig. 18-13, maximum radiation is in the direction of this line. There is no focus point for the driven radiator, as with a parabolic reflector, and the radiator can be placed at a variety of positions along the bisecting line.

Corner angles larger than 90 degrees can be used, with some decrease in gain. A 180-degree "corner" is equivalent to a single flat-sheet reflector. With angles smaller than 90 degrees, the gain theoretically increases as the corner angle is decreased. However, to realize this gain the size of the reflecting sheets must also be increased.

At a spacing of 0.5 wavelength from the driven dipole to the vertex, the radiation resistance of the driven dipole is approximately twice the radiation resistance of the same dipole in free space. Smaller sparings of driven dipole and vertex are practical, but at a slight sacrifice in efficiency. 'The alternative design for the 144and $\mathbf{5 0} 0$-Mc. square-corner reflector has a dipole-to-vertex spacing of 0.4 wavelength. At this spacing the driven-dipole radiation resistance is still somewhat higher than its free-space value, but is considerably less than when the spacing is 0.5 wavelength.

U.H.F. and Microwave Communication

In moving into the microwave region the amateur eneounters marked differences in both the teechnical approach and the uses to which his frequency assignments may be put. Above 1000 Me. We must discard most of our conventional circuitry and antenna ideas. (oils and eondensers are replaced by resonant cavities. Paral-lel-wire transmission lines give way to coaxial limes or wavequide. Parasitic arrays are abandoned in favor of parabolie reflectors or horns. And in contrast to the random operating that has been so large a part of the amateur pieture on our communication freduencies, microwave work is principally a matter of point-to-point communiation botwern two cooperating stations.

These hasie differences have tended to raise a natural boundary in the region around 500 Me ., beyond which relatively few rommunieating amateurs have ventured. The frequeneies at the high end of the speetrum have a strong appeal to the
experimenter, however, and new classes of l censes, now under discussion, are expected to provide the means whereby this type of worker may logal!y engage in two-way eommunieation.

At least some amateur work has been done in all the assigmments now open to our use. The work of these pioneress in adapting the frequencies above 1000 Me . to communication purposes has been in line with the best amateur tradition, and it is hoped that the bands begiming at 1215 Me . will sere much amateur exploration in the mear future. The frequencies assigned to amateurs in the mierowave region are as follows: 1215 to $1300 \mathrm{Mc} ., 2300$ to $2450 \mathrm{Mc} ., 3300$ to 3500 Mc ., $\overline{5650} 0$ to $5925 \mathrm{Mc} \cdot, 10,000$ to $10,500 \mathrm{Mc} \cdot$, and 21,000 to $22,000 \mathrm{Me}$. Any frequency above 30,000 Me. may be used. Any type of emission may be used in any of these bands, exerept in the case of the lowest, where pulse transmission is prohibited.

U.H.F. Tank Circuits

In resonant eircuits as employed at the lower frequencies it is possible to consider cach of the reactance components as a separate entity, A coil is used to provide the reguired induetance and a condenser is comected across it to provide the needed eaparitance. The faet that the coil itself has a certain amount of self-capacitance, as well as some resistance, while the condenser also possesses a small self-inductance, can usually be disregateded.

At the very-high and ultrahigh frequencies, however, it is no longer possible to separate these components. The connecting leads which, at lower frequencies, would serve merely to join the eondenser to the coil now may have more inductance than the coil itself. The required inductance coil may be no more than a single turn of wire. yet even this single turn may have dimensions comparable to a wavelength at the operating frequencr. Thus the energy in the field surrounding the "coil" may in part be radiated. At a sufficiently high frequency the loss by radiation may represent a major portion of the total energy in the circuit. Since energy which camot be utilized as intended is wasted, regardless of whether it is consumed as heat by the resistance of the wire or simply radiated into space, the effect is as though the resistance of the tuned eircuit were greatly increased and its Q greatly reduced.

For this reason, it is common practice to utilize resonant sections of transmission line as tuned circuits at frequencies above 100 Mr . A quarter-wavelength line, or any odd multiple thereof, shorted at one end and open at the other, exhibits large standing waves. When a voltage of the frequency at which such a line is resonant is applied to the open end, the response is very similar to that of a parallel resonant circuit; it will have very high input impedance at resonance and a large current flowing at the short-cireuited end. The input impedance may be as high as 0.4 megohm for a well-const ructed line.

The action of a resonant quarter-wavelength line can be compared with that of a coil-andcondenser combination whose constants have been adjusted to resonance at a corresponding frequency. Around the point of resonance, in fact, the line will display very nearly the same characteristies as those of the tuned circuit. The equivalent relationships are shown in lig. 10-1. At frequencies off resonance the line displays qualities comparable to the inductive and capacitive reactances of the coil-andcondenser eircuit, although the exaet relationships involved are somewhat different. For all practical purposes, however, sections of resonant wire or transmission line can be used in much the same manner as coils or condensers.

U.H.F. AND MICROWAVE COMMUNICATION 429

In circuits operating above 300 Me., the spacing between conductors beeomes an appreciable fraction of a wavelength. To keep the radiation loss as small as possible the parallel conductors should not be spaced farther apart tlian 10 per cent of the wavelength, conter to center. On the other hand, the spacing of large-diameter conductors should not be reduced to much less twice the diameter because of what is known as the proximity effect, whereby another form of loss is introdured through eddy currents set up by the adjacent fields. I Beause the cancellation is no longer complete, radiation from an open line beromes so great that the Q is greatly reduced. Consequently, at these frequencies coaxial lines must be used.

Construction

Practical information concerning the construction of transmission lines for such sperifie uses as feeding antennas and as resomant circuits in radio transmitters will be found in this

Fig. 19.1- Equivalent coupling circuits for parallel. line, coaxial-line and conventional resonant circuits,
and other chapters of this Mandbook. Certain basic eonsiderations applicable in general to resonant lines used as circuit elements maty be considered here, however.

While either parallel-line or coaxial sections may be used, the latter are preferred for higherfrequency operation. Representative methods for adjusting the length of such lines to resonance are shown in Fig. 19-2. At the left, a sliding shorting disk is used to reduce the effective length of the line by altering the position of the short-circuit. In the center, the same effect is accomplished by using a telescoping tube in the end of the inner conductor to vary its length and thereby the effective length of the line. At the right, two possible methods of mounting parallel-plate condensers, used to tune a "foreshortened" line to resonance, are illustrated. The arrangement with the loading caparitor at the open end of the line hats the greatest tuning effect per unit of caparitance; the alternative method, which is equivalent to "tapping" the condenser down on the line, has less effeet on the Q of the circuit. lines with capacitive "loading" of the sort illustrated will
be shorter, physically, than an unloaded line resonant at the same frequency.

The short-circuiting disk at the end of the line must be designed to make perfect electrical contact. The voltage is a minimum at this end of the line; therefore, it will not break down some of the thinnest insulating films. Usually a

Fig. 19.2 - Methods of tuning coaxial resonant lines.
soldered connection or a tight clamp is used to secure good contact. When the lengtli of line must be readily adjustable, the shorting plug is provided with spring collars which make contact on the inner and outer conductors at some distance away from the shorting plug at a point where the voltage is sufficient to break down the film het ween the collar and conductor.

Two methods of tuning parallel-eonductor lines are shown in Fig. 19-3. The sliding shortcircuiting strap can be tightened by means of screws and nuts to make good electrisal contact. The parallel-plate condenser in the sdeond drawing may be placed anywhere along the line, the tuning effect becoming less as the rondenser is tocated nearer the shorted end of the line. Although a low-eapacitance variathe condenser of ordinary construction can be used, the circular-plate type shown is symmetrical and thas does not unbalance the line. It also has the further advant age that no insulating material is required.

Fig. 19.3-Methods of tuning parallel. type resonant lines.

Equivalent impedance points, for eoupling or impedane-transformation purposes, are shown in Fig. 19-1 for parallel-line, coaxial-line, and ronventional coil-and-condenser circuits.

Lumped-Constant Circuits

At the very-high frequencies the low values of L and C required make ordinary coils and condensers impracticable, while linear eircuits offer mechanical difficulties in making tuning adjust ments over a wide frequency range, and radiation from unshiclded lines may reduce their effectiveness materially.

To overcome these difficulties, special high- Q
lumped-constant circuits have been developed in which connections from the "condenser" to the "coil" are an inherent part of the structure, Integral design minimizes both resistance and inductance and increases the C / L ratio.

The simplest of these circuits is based on the use of disks combining half-turn inductance loops with semicircular condenser plates. By connecting several of these half-turn coils in parallel, the effective inductance is reduced to a value appreciably below that for a single turn. Tuning is accomplished by interleaving grounded rotor plates between the turns, Both by shielding action and short-circuited-turn effect, these further reduce the inductance.

Another type of high- C circuit is a singleturn toroid, commonly termed the "hat" resonator. Two copper shells with wide, flat "brims" are mounted facing each other on an axially-aligned copper rod. The capacitance in the circuit is that between the wide shells, while the central rod comprises the inductance.

"Butterfly" Circuits

The tank circuits described in the preceding section are primarily fixed-frequency deviees. The "butterfly" circuits shown in Fig, 19-4 are capable of being tuned over an exceptionally wide range, while still having high Q and reasonable physical dimensions. The circuit at A is derived from a conventional balanced-type variable condenser. The inductance is in the wide circular band eonnecting the stator plates. At its minimum setting the rotor plate fills the opening of the loop, reducing the inductance to a minimum. Connections are made to points 1 and 2. This basic structure climinates all connecting leads and avoids all sliding or wiping electrical contacts to a rotating member. A disadvantage is that the electrical midpoint shifts from point 3 to point 3^{\prime} as the rotor is turned. Constant magnetic coupling may be obtained by a coupling loop located at point 4 , however.

In the modification shown at D, two sectoral stators are spaced 180 degrees, thereby achiev-

Fig, 19-4 - "Butterfly" tank eircuits for v.h.f., showing front and crosis-section views and the equivalent circuit.
ing the electrical symmetry required to permit tapping for balanced operation. Connections to the circuit should be made at points 1 and 2 and it may be tapped at points 3 and S^{\prime}, which are the electrical midpoints. Where magnetic coupling is employed, points 4 and $/ 4$ are suitable locations for coupling links.

The capacitance of any butterfly circuit may be computed by the standard formula for parallel-plate condensers given in the data chapter. The maximum inductance can be obtained approximately by finding the inductance of a full ring of the same diameter and multiplying the result by a factor of 0.17 . The ratio of minimum to maximum inductance varies between 1.5 and 4 with eonventional construction.

Any number of butterfly sections may be connected in parallel. In practice, units of four to eight plates prove most satisfactory. The ring and stator sections may either be made in a single piece or with separate sectoral stator plates and spacing rings assembled with machine serews.

Wave Guides and Cavity Resonators

A wave guide is a conducting tube through which energy is transmitted in the form of eleetromagnetic waves. The tube is not considered as carrying a current in the same sense that the wires of a two-conductor line do, but rather as a boundary which confines the waves to the enclosed space. Skin effect prevents any electromagnetic effects from being evident outside the guide. The energy is injected at one end, either through capacitive or inductive coupling or by radiation, and is received at the other end. The wave guide then merely confines the energy of the fields, which are propagated through it to the receiving end by means of reflections against its inner walls.

The difficulty of visualizing energy transfer without the usual closed circuit can be relieved somewhat by considering the guide as being evolved from an ordinary two-conductor line.

In Fig. 19-5A, several closed quarter-wave stubs are shown connected in parallel across a two-wire transmission line. Since the open end of each stub is equivalent to an open circuit, the line impedance is not affected by their presence. linough stubs may be added to form a " U "shaped rectangular tube with solid walls, as at I3, and another identical " U "-shaped tube may be added edge-to-edge to form the rectangular pipe shown in Fig. 19-5C. As before, the line impedance still will not be affected. But now, instead of a two-wire transmission lime, the energy is being conducted within a hollow reet angular tube.

This analogy to wave-guide operation is not exact, and therefore should not be taken too literally. In the evolution from the two-wire line to the closed tube the electric- and mag-netic-field configurations undergo considerable

(B)

Fig. 19-5 - Evolution of a wave gride from a two-wire transmission line.
tributions of electric and magnetic fields in a rectangular guide are shown in Fig. 19-6. It will be observed that the intensity of the electric field is greatest at the center along the x dimension, diminishing to zero at the end walls. The latter is a necessary condition, since the existence of any elec-
change, with the result that the gaide does not actually operate like a two-conductor line shunted by an infinite number of quarter-wave st ubs. If it did, only waves of the proper length to correspond to the stubs would be propagated through the tube, but the fact is that such waves do not pass through the guide. Only waves of shorter length - that is, higher frequency - can go through. The distance x represents half the cut-off wavelength, or the shortest wavelength that is unable to go through the guide. Or, to put it another way, waves of length equal to or greater than $2 x$ cannot be propagated in the guide.

A second point of difference is that the apparent length of a wave along the direction of propagation through a guide always is greater than that of a wave of the same frequency in free space, whereas the wavelength along a two-conductor transmission line is the same as the free-space wavelength (when the insulation between the wires is air).

Operating Principles of Wave Guides

Analysis of wave-guide operation is based on the assumption that the guide material is a perfect conductor of electrieity. Typical dis-

Fig. 19-6 - Field distribution in a rertangular wave guide. The $T E_{1,0}$ mode of propagation is depicted.
tric field parallel to the walls at the surface would cause an infinite current to flow in a perfect conductor. This represents an impossible situation.

Zero electric field at the end walls will result if the wave is considered to consist of two separate waves moving in zigzag fashion down the guide, reflected back and forth from the end walls as shown in Fig. 19-7. Just at the walls, the positive crest of one wave meets the negative crest of the other, giving complete cancellation of the electric fields. The angle of

Fig. 19.7- Reflection of two component waves in a rectangular guide. $\lambda=$ wavelength in space, $\lambda g=$ wavelengthinguide. Direction of wave motion is perpendicular to the wave front (crests) as shown by the arrows.
reflection at which this cancellation occurs depends upon the width x of the guide and the length of the waves; Fig. 19-7 A illustrates the case of a wave considerably shorter than the cut-off wavelength, while B shows a longer wave. When the wavelength equals the cut-off value, the two waves simply bounce back and forth between the walls and no energy is transmitted through the guide.

The two waves travel with the speed of light, but since they do not travel in a straight line the energy does not travel through the guide as rapidly as it does in space. A further consequence of the repeated reflections is that the points of maximum intensity or wave crests are separated more along the line of propagation in the guide than they are in the two separate waves. In other words, the wavelength in the guide is greater than the free-space wavelength. This is also shown in Fig. 19-7.

Modes of Propagation

Fig. 19-6 represents a relatively simple distribution of the electric and magnetic fields. There is in general an infinite number of ways in which the fields can arrange themselves in a guide so long as there is no upper limit to the
frequency to be transmitted. Each field configuration is called a mole. All modes may be separated into two general groups. One group, designated TM (transcerse magnetic), has the magnetic field entirely transverse to the direction of propagation, but has a component of clectric field in that direction. The other type, designated TE' (transverse electric) has the electric field entirely transverse, but has a component of magnetic field in the direction of propagation. T.II waves are sometimes called E waves, and $7 E$ waves are sometimes called II waves, but the $T . M$ and $T E$ designations are preferred.

The particular mode of transmission is identified by the group letters followed by two subscript numerals; for example, $T E_{1,0}$, $T . M_{1.1}$. ete. The number of possible modes increases with frequency for a given size of guide. Thare is only one possible mode (ralled the dominant mode) for the lowest frequeney that can be transmitted. The dominant mode is the one generally used in practical work.

Wave-Guide Dimensions

In the rectangular guide the eritical dimension is x in Fig. 19-5; this dimension must be more than one-half wavelength at the lowest frequency to be transmitted. In pratice, the y dimension usually is made about equal to $1 / 2 x$ to avoid the possibility of operation at other than the dominant mode.

Other cross-sertional shapes than the rectangle can be used, the most important boing the eircular pipe. Wurh the same consider:itions apply as in the rectangular case.

Wavelength formulas for rectangular and circular guides are given in the following table, where x is the width of a rectangular guide and r is the radius of a circular guide. All figures are in terms of the dominant mode.

	Rectanjular	Circular
Cut-off wavelength	$2 x$	$3.41 r$
Longest wavelength transmitted with little attenuation	- 1.6x	$3.2 r$
Shortest wavelength hefore next mode becomes possible \qquad	- $1.1 x$	$2.8 r$

Cavity Resonators

At low and medium radio frequencios resonant circuits usually are composed of "humped" constants of L and C; that is, the inductance is roncentrated in a coil and the capacitance conrentrated in a condenser. However, as the frequency is increased, coils and condensers must. be reduced to impracticably small physical dimensions. Tp to a cortain point this difficulty may be overoome by using lincar circuits buit even these fail at extremely high frequeneies. Another kind of circuit particularly applicable at wavelengths of the order of centimeters is the cavity resonator, which may be looked upon as a section of a wave guide with the dimensions chosen so that waves of a given length can be maintained inside.

The derivation of one type of cavity resonator from an ordinary $L C$ circuit is shown in Fig. 19-8, As in the case of the wave-guide derivation, this picture must be accepted with some reservations, and for the same reasons.

Considering that even a straight piece of wire has appreciable inductance at very-high frequencies, it may be seen in Fig. 19-8A and 13 that a direct short across a two-plate condenser with air dielectric is the equivalent of a tuned circuit with a typical coiled inductance, With two wires hetween the plates, as shown in Fig. 19-8C, the circuit may be thought of

Fig. 19.8 - Stepm in the derivation of a cavity resonator from a eonventional coil-ind-condenser tuned circuit.
as a resonant-line section. For d.c. or exיn low frequency r.f., this line would appear as a short across the two condenser plates. At the ultrahigh frequencies, however, such a section of line a quarter wavelength long would appear as an open circuit when viewed from one of the plates with respect to the other ent of the section.

Increasing the number of parallel wires hetween the plates of the condenser would have no effect on the equivalent circuit, as shown at D. Eventually, the closed figure at E will be developed. Since earh wire which is added in D is like connecting inductances in parallel, the total inductance across the condenser becomes increasingly smaller as the solid form is ap)proached, and the resonant frequency of the figure therefore heeomes higher.

If energy now is introduced into the cavity in a manner such as that shown at \mathbb{F}, the circuit will respond like any equivalent roil-contenser tank circuit at its resomant frequency. A cavity resonator may therefore be used as a u.h.i. tuning element, along with a vacuum tube of suitable design, to form the main components of an oscillator circuit which will be capable of functioning at frequencies considerably beyond the maximum limits possible when conventional tubes, coils and condensers are employed.

Other shapes than the cylinder may be used as resonators, among them the rectangular box, the sphere, and the sphere with re-entrant cones, as shown in Fig, 19-9. The resonant fre-

U.H.F. AND MICROWAVE COMMUNICATION 433

quency depends upon the dimensions of the cavity and the mode of oscillation of the waves (comparable to the transmission modes in a wave guide). For the lowest modes the resonant wavelengths are as follows:

(Y) -	$2.61 r$
Square box	1.411
Sphere.	$2.28 r$
Sphere witl	

The resonant wavelengths of the cylinder and square box are independent of the height when the height is less than a half-wavelength. In other modes of oscillation the height must be a multiple of a half-wavelength as measured inside the cavity. Fig. 19-8F shows how a cylindrical cavity can be tuned when operating in such a mode. Other tuning methods include placing adjustable tuning paddles or "slugs" inside the cavity so that the standing-wave pattern of the electric and magnetic fields can be varied.

Fig. 19-9 - Firms of cavity resonators.
A form of cavity resonator in wide practical use is the re-entrant cylindrical type shown in Fig. 19-10. It is useful in connection with vac-num-tube oscillators of the types described for u.h.f. use elsewhere in this chapter. In construction it resembles a concentric line closed at both ends with capacitance loading at the top, but the actual mode of oseillation may differ considerably from that occurring in coaxial lines. The resonant frequency of such a arvity depends upon the diameters of the two relinders and the distance d between the ends of the imer and outer cylinders.

CROSS-SECTIONAL VIEW
I'ig. 19-10 - Re-entrant eylindrical cavity resonator.

Compared to ordinary resonant circuits, cavity resonators have extremely-high Q. A value of Q of the order of 1000 or more is readily obtainable, and Q values of several thousand can readily be secured with good design and construction.

Coupling to Wave Guides and Cavity Resonators

Energy may be introduced into or abstracted from a wave guide or resonator by means of either the electric or magnetie field. The energy transfer frequently is through a coaxial line, two methods for coupling to which are shown in Fig. 1!-11. The probe shown at d is simply a short extension of the inner conductor of the coasial line, so oriented that it is parallel to the electric lines of force. The loop shown at B is arranged so that it encloses some of the magnetic lines of force. The point at which maximum coupling will be secured depends upon the particular mode of propatgation in the guide or cavity; the coupling will be maximum when the coupling device is in the most intense field.

Coupling can be varied by turning either the probe or loop through a 90 -degree angle. When the probe is perpendicular to the electric lines the coupling will be minimum; similarly, when the plane of the loop is parallel to the magnetic lines the coupling will have its least possible value.

Fig. 19.11- Conupling to wave guides and resonators.

U.H.F. and Microwave Tubes

It very-high frequencies, interelectrode capacitance and the inductance of internal leads determine the highest possible frequency to which a vacuum tube can be tuned. The tube usually will not oseillate up to this limit, however, because of dieleetric losses, grid emission, and "transit-time" effects. In low-frequency operation, the actual time of flight of electrons bet ween the cathode and the anode is negligible in relation to the duration of the cyele. At 1000 kc., for example, transit time of 0.001 microsecond, which is typical of conventional tubes, is only $1 / 1000$ cycle. But at 100 Mc ., this same
transit time represents 1 of a evele and a full cycle at 1000 Mc. These limiting factors establish about 3000 Mc , as the upper frequency limit for negative-grid tubes.

With tubes of ordinary construction, the upper limit of oscillation is about 150 Mc . For higher frequencies, v.h.f, tubes of sperial construction are used. The "atcorn" and "doorknob" types and the special v.h.f. "miniature" tubes, in which the grid-cathode spacing is made as little as 0.005 inch, are capable of operation up to about 700-800 Mc. The normal frequency limit is around 600 Mc ., although
output may be obtained up to 800 Mc .
Very low interelectrode capacitance and lead inductance have been achieved in the newer tubes of modified construction. In multiplelead types the electrodes are provided with up to three separate leads which, when connected in parallel, have considerably-reduced effective inductance. In double-lead trpes the plate and grid elements are supported by heavy single wires which run entirely through the envelope, providing terminals at either end of the bulb. When a resonant circuit is connected to each pair of leads, the shunting capacitance divides between the two circuits. With linear circuits the leads become a part of the line and have distributed rather than lumped constants. Radiation loss is minimized and the effect of the transit time is reduced. In "lighthouse" tubes or megotrons the plate, grid and cathode are assembled in parallel phanes, as shown in Fig. 1!)-12, instead of coaxially. The uniform coplanar electrode design and disk-seal terminals permit low interelectrode capacitance.

Velocity Modulation

In negative-grid operation the potential on the grid tends to reduce the electron velocity during the more negative half of the oscillation cycle, while on the other half-cycle the positive potential on the grid serves to accelerate them. Thus the electrons tend to separate into groups, those leaving the cathode during the negative half-cycle bring colleetively slowed down, while those leaving on the positive half are accelerated. After passing into the grid-plate space only a part of the electron stream follows the original form of the oscillation cycle, the remainder traveling to the plate at differing velocities. Since these contribute nothing to the power output at the operating frequency, the efficiency is reduced in direet proportion to the variation in velocity, the output reaching a value of zero when the transit time approaches a half-cycle.

This effect, such a disadvantage in conventional tubes, is an advantage in velocity-modulated tubes in that the input signal voltage on the grid is used to change the velority of the electrons in a constant-current electron beam, rather than to vary the intensity of a con-stant-velocity current flow as is the method in ordinary tubes.

A simple form of veloc-ity-modulation oseillator tube is shown in Fig. 19-13. Electrons emitted from the cathode are

Fir. 19.13-Simple form of cylindrical-grid velocitynodnlated tube with retarding-fieid collector and coaxial-fine output rircuit, used as a superheterodync high-frefuency oscillator or as a superregencrative detector. Similar tubes can also be used as r.f. amplifiers and frequency eonverters in the $5-50-\mathrm{cm}$. region.
accelerated through a negatively-biased cylindrical grid by a constant positive voltage applied to a sleeve eleetrode, shown in heavy lines. This electrode, which is the velocity-modulation control grid, consists of two hollow tubes, with a small space at cach end between the inner tube, through which the electron beam passes, and the disks at the ends of the larger tube portion. With r.f, voltage applied across these gaps, which are small compared to the distance traveled by the electrons in one half-eycle, electrons entering the tube will be accelerated on positive half-cycles and decelerated on the negative half-cycles. The length of the tube is made equal to the distance covered by the electrons in one-half cycle, so that the electrons will be further accelerated or decelerated as they leave the tube.

As the beam approaches the collector electrode, which is at nearly zero potential, the electrons are retarded, brought to rest, and ultimately turned back by the attraction of the positive sleeve electrode. The collector electrode is, therefore, also termed a reflector. The point at which electrons are returned depends on their velocity. Thus the velocity modulation is again translated into current modulation.

Velocity-modulated tubes operate satisfactorily up to 6000 Mc . (5 cm .) and higher, with outputs of 100 watts or more.

The Klystron

In the klystron velocit y-modulated tube, the electrons emitted by the cathode are accelerated or retarded during their passage through an electric field established by two grids in a cavity resonator, or rhumbutron, called the "buncher." The high-frequency electrie field between the grids is parallel to the electron stream. This field accelerates the clectrons at one moment and retards them at another, in accordance with the variations of the r.f. voltage applied. The resulting velocity-modulated beam travels through a field-free "drift space," where the slowly-moving electrons are gradu-

U.H.F. AND MICROWAVE COMMUNICATION

ally overtaken by the faster ones. The eleatrons emerging from the pair of grids therefore are separated into groups or bunched along the direction of motion. The velocity-modulated electron stream is passed to a "eatcher" rhumbatron. Again the beam passes through two parallel grids; the r.f. current created by the bunching of the electron beam induces an r.f. voltage bet ween the grids. The catcher cavity is made resonant at the frequency of the velocity-modulated electron heam, so that an oscillating field is set up within it by the passage of the electron bunches through the grid aperture.

If a feed-back loop is provided between the two rhumbatrons, as shown in Fig. 19-14, oscillations will occur. The resonant frequency depends on the electrode voltages and on the shape of the cavities, and may be adjusted by varying the supply voltage and altering the dimensions of the rhumbatrons. The bunched beam current is rich in harmonics, but the output waveform is remarkably pure because the high Q of the catcher rhumbatron suppresses the unwanted harmonics.

Magnetrons

A magnetron is fundamentally a diode with cylindrical electrodes placed in a uniform magnetic field with the lines of electromagnetic. force parallel to the elements. The simple cylindrical magnetron consists of a filamentary cathode surrounded by a coneentrie cylindrical anode. In the more efficient split-anode magnetron the eylinder is divided longitudinally:

Magnetron oscillators are operated in two different ways. Electrically the eircuits are similar, the difference being in the relation between electron transit time and the frequency of oscillation.

In the negative-resistance or dynatron type

Fig. 19.14 - Circuit diagram of the klystron oscillator, showing the feed-back loop coupling the frequency -controlling rhumbatrons and the output loop in the catcher.
of magnetron oscillator, the element dimensions and anode voltage are such that the transit time is short compared with the period of the oscillation frequency. Electrons emitted from the athode are driven toward both halves of the anode. If the potentials of the two halves are unequal, the effect of the magnetic field is such that the majority of the electrons

Fig. 19-15-Conventional maknctrons, with equivalent schematic symbols at the right. A, simple cylindrical magnetron, 3 , split-anode negative-resist ance magnetron.
travel to that half of the anode that is at the lower potential. In other words, a decrease in the potential of either half of the anode results in an increase in the electron current flowing to that half. The magnetron consequently exhibits negative-resistance characteristies. Nega-tive-resistance magnetron oseillators are useful between 100 and 1000 Me . Cinder the best operating conditions efficiencies of 20 to $2 \overline{5}$ per cent may be obtained. Since the power loss in the tube appears as heat in the anode, where it is readily dissipated, relatively large power-handling eapacity can be obtained.

In the transit-time magnetron the frequency is determined primarily by its dimensions and by the electric and magnetic field intensities rather than by the tuning of the tank circuits. The efficiency is much better than that of a positive-grid oscillator and good power out put can be obtained even on the superhighs.

In a nonoscillating magnetron with a weak magnetic field, clectrons traveling from the cathode to the anode move almost radially, their trajectories being bent only slightly by the magnetic field. With increased magnetic field the electrons tend to spiral around the filament, their radial component of velocity being much smaller than the angular component. Inder critical conditions of magnetic field strength, a cloud of electrons rotates about the filament. It extends up to the anode but does not actually reach it.

The nature of these electron trajectories is shown in Fig. 19-16. Cases A, 13 and C eorrespond to the nonoscillating condition. For a small magnetic field (A) the trajectory is bent slightly near the anode. This bending increases for a higher magnetic field (B) and the clectron moves through quite a large angle near the anode before reaching it, signifying a large increase of space charge near the anode. For a
strong magnetic field (C) electrons start radially from the cathode but are soon bent and curl about the filament in the form of a long spiral before reaching the anole. This means a very long tramsit time and a very large space charge in the whole region where the spiraling takes place. Under critical conditions (D), no current flows to the anode and no electron is able to move from cat hode to anode. but a large space charge still exists between the cathole and anode. The spiraling becomes a set of concentric circles, and the entire space-charge distribution rotates about the filament.

Fig. 19-16 - Electron trajectorios for inereasing values of magnetic field strongth, $I /$. Welow is shown the eorrespomding rurve of plate eurrent, J_{a}, Oscillations commence when $/ /$ reaches a critical balue, $/ I_{c}$: progressively higher -order monles of oseillation owerer beyond this print.

Fig. 10-16E, F and G depiots higher-order (harmonic-type) modes of operation in which the space charge oscillates not only symmetrically but in transverse directions contrasting to the vibrations of the fundamental.

In a transit-time magnetron oscillator the intensity of the magnetic field is adjusted so that, under static conditions, electrons leaving the cathode move in curved paths which just fail to reach the anode. All clectrons are therefore deflected back to the cathode, and the anode current is zoro. When an alternating voltage is applied between the two halves of the anode, causing the potentials of these halves to vary about their average positive values, the conditions in the tube become analogous to those in a positive-grid oscillator. If the period of the alternating voltage is made equal to the time required for an electron to make one
complete rotation in the magnetic field, the a.c. component of the anode voltage reverses direction twice with each electron rotation. Some electrons will lose energy to the electric field. with the result that they are unable to reach the cathode and continue to rotate

Fing 19.11 -Split-anode magnetron with integral resonant anodr -avity for use ath, h.f.
about it. Mean while other electrons gain energy from the field and are returned to the cathode. Since those electrons that lose energy remain in the interelectrode space longer than those that gain energy, the net effect is a transfer of energy from the electrons to the electric fiekl. This energy can be applied to sustain oscillations in a resonant transmission line connected between the two halves of the anole.

Split-anode magnetrons for u.h.f. are constructed with a cavity resonat or built into the tube structure, as illustrated in Fig, 19-17. The assembly is a solid block of copper which assists in heat dissipation. At extremely high frequencies operation is improved by subdivid-

ing the anode structure into from 4 to 16 or more segments, the resonant cavities for each anode coupled by slots of critical dimensions to the common cat hode region, as in Fig. 19-18.

The effeciency of multisegment magnetrons reaches 65 or 70 per cent. Nlotted-anode magnetrons with four segments function up to $30,000 \mathrm{Mc}$. (1 cm .), delivering up to 100 watts at efficiencies greater than 50 per cent. Using larger multiples of anodes and higher-order modes, performance can be attained at 0.2 cm .

Amateur Microwave Technique

All the bands that have been assigned to amateurs in the microwave region have been used for experimental two-way communication. Complete deseriptions of suitable equipment for all these bands is beyond the scope of this text, but examples of the techniques employed are shown below. Reference is marle to various articles that have appeared in QST', describing microwave gear used by amateurs, for those who wish more details.

1215 Mc .

In this band it is possible to use a few more-or-less conventional triodes with linear circuits, though great care must be used in designing such
layouts, and the efficiency will be very low. A transmitter for 1215 Mc., designed and built by W3MLN and W3HFW, is shown in Figs. 19-19 - 19-21. It uses a 703A doorknob triode, completely shielded, with the antenna as an integral part of the assembly. The tube is mounted at the end of a halfwave line. Output is capacitively coupled to the folded quarter-wave antenna by means of a probe mounted alongside the plate line.

It should be emphasized that complete shielding of the oscillating circuit (including the tube clements) is absolutely neecssary. The circuit will not oscillate at all if the shield is removed from the grid and plate rods, and only very weakly if

Fig, 19.19 - An owdllator and antenna system for 1215 Me.. built an one unit. (W3HFW - W3MIN)
the tule shiedd is not in place. Output is only about one watt, with an input of 80 ma at ario volts, but two of these units have been used to communicate over distances up to 12 miles or so with S9 signals. The equipment is described in detail by the designers in (QST for April, 1948, Page 16:
lighthouse tubes in suitably designed eircuits are more efficient at this frequency. For best results cavities should the used, though trough-line and flat-plate circuits have been used.
Parabolic reflectors are usually employed for this and higher frequencies. It is desirable to make the transmitser or receiver an integral part of the antema system if possible. If this cannot be done, coaxial line of the shortest usable length may be used. Air-insulated line is preferred to the flexible polyethylene-insulated variety, because of the higher losses in the latter.

Fig. 19-20-Schematic diagram of the 1215. . oscillator.

2300 Mc .

Must of the work on 2300 Me. has been done with lighthouse tubes in cavity oscillators, though some of the klystron types such as the 70713 have been used. ('avities for this frequency may be a quarter wavelength, half wavelength or three-quarter wavelength long.
Details of a half-wave cavity oscillator using a $2(40$ lighthouse tube are shown in Figs, 19-21 and 19-22. This oseillator was designed and built by W2RMA. It may be duplieated by any worker who has areess to a few metal-working tools.

The main body of the eravity is 1 -ineh brass pipe, silver plated. The end that fits over the tute is cut out to an inside diameter of $11 / 32$ ineh, the only lathe work required. This end is also sawed crosswise at several points so that it may be clamped tightly to the tube with a brass strap, as seen in the photograph. Plate voltage is ferd

Fis. 19.21 - Wetail drawing of the 703A oscillator for 121: Mc.
into the cavity through a feed-through capacitor mounted on the side of the tubing, and power is roupled out by means of a capacity probe and eoaxial fitting at the hot end. The cavity is tuned with a serew mounted in the end, providing a variable capacitance to the anode post.

Output, with a 250 -volt supply, will be 50 to 250 millivatts. This sermingly small amount of power may be made to do very well with the antenna gain that is possible at this frequency with a parabolic reflector of reasonable dimensions. Gear for 2300 Mc . is described in QST' for July, 1946, Page 32, August, 1947, Page 128, and February, 1918, Page 11.

3300 Mc .

Lighthouse oscillators may be used on this frequency, but it is close to the top limit of their capabilities, so better results are obtainable with the klystron types. An advantage of the latter is
that the frequency of oscillation may be varied over an appreciable range by changing the reflector voltage. This characteristic is also useful in providing a convenient means of oftaining frequency modulation. This sensitivity to voltage changes makes it desirable to use a regulated hum-free supply:

On this and higher frequencies a convemient system for two-way work is the use of a klystron as tooth transmitting oscillator and as a local oscillator for receiving. A crystal miser is used in this case, its output being fed into a receiver serving as the i.f. system. If the receiver so used is capable of f.m. detection it is only necessary to modulate the klystron reflector voltage to provide f.m. communication of good quality. The ascillators of the two stations in communication are then operated on frequencies differing by the value of the intermediate frequency selected. A single antema system is used for both transmitting and receiving, and no change-over arrangement is needed.

5650 Mc .

Amateur work in this range has been done largely with reflex klystrons, two types of which (2 K 43 and 2 K 44) are capable of operation within our hand. The one-tube system described above may be used for each station, or of course separate tubes may be used for transmitter and local oscillator. In the latter case two antema systems are required, but the transmitter efficieney is somewhat higher as some power is dissipated arross the erystal in the one-tube arrangement.

Frequency modulation of klystrons is more practical than amplitude modulation. Modulation of the repellor voltage requires no audio power, as there is no current drawn by this tube clement. A carbon microphone and a microphone transformer, with the repellor voltage fed through the secomdary, will handle the audio requirements nicely.

Fig. 19.22-A halfwave cavity oscillator for 2300 Mc. (H2RMA)

Fig. 19-2.3-Merhanical details of the 2300.3c. lighthouse oscillator.

The first two-way microwave communication in amateur history was carried out in this way by A. E. Ilarrison, W613MS/2, and R. E. Merehant, W2LGF, who operated in the temporary 5300 Me. band. Their equipment, described in QST' for January, 1946, lage 19, will also work in the present band.

$10,000 \mathrm{Mc}$.

The 723A/B reflex klystron, available at low cost for some time on the surplus market, provided amateurs with a convenient and inexpensive means of operation on $10,000 \mathrm{Me}$. As manufactured, the tube will not ordinarily oprate in the amateur band without nodification.

Like other tubes of the reflex klystron variety, the frequency of oscillation is varied by warping the built-in cavity. It is used with a modified octal socket, with pin No. 4 removed and the hole enlarged to pass the coaxial line that is part of the tube. This line is terminated in an "antenna" which is ordinarily used to transfer power to a waveguide.

Two vertical struts are provided for tuning, one of which is already variable by means of a stud, which spreads or contracts the flexible strut on the right side, compressing or stretching the bellows, lowering or raising the frequency respectively.

The upper limit of frefuency range, reached by rotating the tuning stud, will seldom be within tho amateur band, hence it is necessary to perform the following operation. It may be seen that the top of the cavity is held in a fixed position on the strut on the side of the tube by two small

U.H.F. AND MICROWAVE COMMUNICATION

nuts which, after having been tightened, have been spot-welded to each other. The spot weld should be filed away until each nut can be moved freely on the threaded stud. Nest, the position of these nuts should be adjusted very carefully, to raise the top of the cavity as was done on the other side. Extreme care should be used in this operation, as excessive stretching of the bellows may break some of the seals and render the tube inoperative. It is advisable to move the lower nut only until a firm resistance is felt. The operating frequencr. should then be checked, and if it is still below the limit of the band another tube should be tried, as any further attempt to raise the frequeney will almost certainly ruin the tube.

Equipment for use on $10,000 \mathrm{Mc}$. is described in detail in QST for February, 1947, Page 58.

21,000 Mc.

Operation in this frequency, and in the unassigned region above $30,000 \mathrm{Mc}$, is still highly exprimental in nature. Only onee has the $21,000-$ Mc. band been used for amateur two-way communication. This was accomplished under laboratory conditions by two engineers whose specialty is development work in this field. Their work is detailed in QST for August, 1946, Page 19. Type Z-668 refiex klystrons were used, with horn and parabolic antenna systems, to work two-way over a distance of 800 feet.

Mobile Equipment

The amateur who goes in for mobile operafion will find plenty of room for exercising his individuality and developing original ideas in equipment. Each installation has its special problems to be solved.

Most mobile receriving systems are designed around the use of a h.f. convertor working into a standard car broadeast receiver tuned to 1500 ke. Which serves as the i.f, and audio amplifiers. The car recoiver is modified to take a noise limiter and provide power for the converter.

While a few mobile transmitters may run an input to the final amplifier as high as 100 watts, an input of about 30 watts normally is considered the practical limit unkess the car is equipped with a sperial hatterv-charging sustem. The majority of mobile operators use 'phone.

In contemplating a mobile installation, the car should be studied carefully to determine the most suitable spots for mounting the equipment. Then the various unit should be built in a form that will make best use of that space. The location of the converter should have first consideration. It should be placed where the controls can be operated conveniently without distracting attention from the wheel. The following list suggests spots that may be found suitable, depending upon the individual car.

On top of the instrument panel
Attached to the steering post
Under the instrument panel
In a unit made to fit between the lower lip of the instrument panel and the floor at the center of the car
On the left-hand door panel (detachable when not in use)
Under the left-hand front seat
In the motor compartment (eontrols extended through the instrument panel)

The transmitter power control ean be placed close to the receiver position, or inrluded in the converter unit. This control normally operates relays, rather than to switeh
the power rircuit directly. This permits a minimum length of heavy-current battery circuit. Frequency within any of the 'phone bands sometimes is ehanged remotely by means of a stepping-switch sustem that switehes crystals. In most cases, however, it is necessary to stop the car to make the several changes required in changing bands.

Depending upon the size of the transmitter unit, one of the following places may be found eonvenient for mounting the transmitter:

In the glove compartment
Under the instrument panel
In a unit in combination with or without the converter, built to fit between the lower edge of the instrument panel and the floor at the center
Under the right-hand or left-hand front seat On the ledge above the rear seat
Fastened to the back of the front seat
In the trunk
In the motor compartment
Most mohile antennas consist of a vertical whip with some system of adjustable loading for the lower frequencies. Power supplies are of the vibrator-transformer-rectifier or motor-generator type operating from the car storage battery.

Units intended for use in mobile installations should be assmbled with greater than ordinary care, since they will be subject to ronsiderable vibration. Soldered joints should be woll made and wire wrap-arounds should be used to avoid dependence upon the solder for mechanical strength, Self-tapping screws should be used wherever feasible, otherwise lock-washers should be provided. Any shafts that are normally operated at a permanent or semi-permanent setting should be provided with shaft locks so they cannot jar out of adjustment. Where wires pass through metal, the holes should be fitted with rubber grommets to prevent chafing. Any eabling or wiring between units should be securely clamped in place where it cannot work loose to interfere with the operation of the car.

Noise Elimination

Filectrical-noise interference to reception in a car may arise from several different sources. As examples, trouble may be experienced with ignition noise, gencrator and voltage-regulator hash, or wheel and tire static.

A noise limiter added to the car b.c. receiver will go far in reducing some types, especially ignition noise from passing cars as well as your own. But for the satisfactory reception of weaker signals, some investigation and treat-
ment of the car's electrical system will be necessary.

Ignition Interference

The metal caps terminating ignition wires at the distributor usually are simply elamped onto the ends of the eables and thus depend upon an uncertain pressure contact with the wire. These wires should be fitted with new caps soldered to the conductor. The cable in-
sulation should be inspeeted to make sure that there is no stray break-down between wires or to ground. Lse fiber spacers to keep the cables a way from ground and rerun them, if neressary, to keep them well spared from lowvoltage wiring that may rarry noise through the firewall into the inside of the cur.

The spark plugs should be kept elean and adjusted to proper gap. Thery, and the common distributor lead, should be fitted with good carbon suppressors. Before purchasing these resistors, it is a good idea to cheek them with an ohmmeter, sinee individual units may vary widely. A good resistor should measure within 20 per eent of 10,000 ohms. Sometimes r.f. chokes in series with the resistors will bring the noise down still further. ()hmite $/ 2-28$ chokes are usually quite affective in reducing noise on 10 meters. The motor timing should be readjusted after the insertion of suppressors. The distributor points should be in good condition, of course.

Generator Noise

Generator hash is caused by sparking at the commutator. It shows up as a high-pitched whine that varies with the speed of the motor. While the interference may not be noticeable in the bee band, it usually increases in intensity at the higher frequencies. At $\&$ Me., and possibly 14 Me, a large 15 -volt electrolytic condenser ($500 \mu \mathrm{fd}$. or more) connected between the generator output terminal and ground, alone or in conjunction with an r.f. choke in series with the output lead, may be sufficient, A few turns of No. 10 wire, space-wound, often will be enough, To reduce the noise at 28 Mc ., it may be necessary to insert a parallel trap, tuned to the middle of the band, in series with the gencrator output lead. The coil should have about 8 turns of No. 10 wire, spacewound on a l-inch diameter and should be shunted with a $30-\mu \mu \mathrm{fd}$. mica trimmer. It can be protuned by putting it in the anterna load to the home-station receiver tuned to the middle of the band, and adjusting the trap to the point of minimum noise. The tuning may need to the praked up after installing in the car, since it is fairly critical.

Voltage-Regulator Interference

This type of interference may show up only at 10 and 11 metares. It is caused by sparking at the regulator points as they operate to

Fig. 20-1 - The converter is clamped to the steering post, while the transmitter rides suspended from the instrument panel.
reduce the charging rate when the battery approaches full chatge. A condenser cannot be used across the contacts berame it will cause the points to burn out in at short time. A satisfactory remedy for this type of noise is a togere switch on the instrument pancl that shortcircuits the points when the switeh is closed. This removes the interference and acts to provide full generator output. This does no harm so long as there is sufficient load on the batter. to prevent overcharging. If a double-pole switeh is used, it can be provided with a signal light to remind the operator to open the switeh.

Wheel Static

Wheel static shows up as a steady popping in the receiver at speeds over about $15 \mathrm{~m}, \mathrm{p}, \mathrm{h}$. on smooth streets. It is usually not noticeable on dirt, gravel or wot roals. It is caused by the grease in the front-whed bearings insulating the wheels from the car. Front-wheel static collectors are available on the market to eliminate this varioty of interference. They fit inside the dust cap and bear on the end of the axle, effertively groumding the wheed at all times. Those designated particularly for your ear are preferable, since the universal trpe does not always fit well. There are designed to operate without lubrication and the end of the axle and dust cap should be cleaned of grease befere the installation is mate. These collectors require replacement about every 10,000 miles.

Rear-wheel eollectors have a brush that bears against the inside of the brake drum. It may be necessary to order these from the factory through your dovaler.

Tire Static

This sometimes sounds like a leaky power line and can be very troublesome aven on the broadeast band. It can be remedied by injecting an antistatic powder into the inner tubes

(A)

(B)

Fig. 20-2 - Diagrams showing addition of noise limiter to car receiver, A - L'sual circuit. IS - Modifeation. $\mathrm{C}_{1}, \mathrm{C}_{3}-100-\mu \mu \mathrm{fd}$, mica.
$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{6}-0.01-\mu \mathrm{fd}$, paper.
$\mathrm{C}_{5}-0.1-\mu \mathrm{fd}$. paper.
$\mathrm{H}_{1}-47,000$ ohms.
$\mathbf{R}_{2}, \mathrm{R}_{10}-1$ megohm.
$\mathrm{H}_{3}-1 / 2$ megohm
$\mathrm{R}_{7}, \mathrm{R}_{\mathrm{s},} \mathrm{R}_{9}-0.4^{7}$ megohm.
\mathbf{R}_{4} - 10 megohms.
R_{s} - $1 / 4$ megolim.
$R_{8}-0.1$ megohm.
T_{1} - I.f. iransformer.
V_{1} - Second detector.
through the valve stem. The powder is marketed by Chevrolet and possibly others. Chevrolet dealers can also supply a convenient injector for inserting the powder.

Tracing Noise

To determine if the receiving antenna is picking up all of the noise, the shiclded lead-in should be disconnected at the point where it conneets to the antenna. The motor should be started with the receiver gain control wide open. If no noise is heard, all noise is being picked up via the antenna. If the noise is still heard with the antenna disconnected, even though it may be reduced in strength, it indicates that some signal from the ignition system
is being picked up by the antenna transmission line. The lead-in may not be sufficiently-well shiclded, or the shield not properly grounded. Noise may also be pieked up through the 6-volt circuit, although this does not normally happen if the receiver is provided with the usual r.f.-(hoke-and-by-pass-condenser filter.

With the motor running at idling speed or slightly faster, checks should be made to try to determine what is bringing the noise into the field of the antenna. It should be assumed that any control rod, metal tube, steering post, etc., passing from the motor compartment through an insulated bushing in the firewall will carry noise to a point where it can be radiated to the antenna. All of these should be bonded to the firewall with heavy wire or braid. Insulated wires can be stripped of r.f. by by-passing them to ground with $0.5-\mu \mathrm{fl}$. metal-case condensers. The following should not he overlooked: battery lead at the ammeter, gasoline gauge, ignition switeh, headlight and taillight leads and the wiring of any accessories running from the motor compartment to the instrument panel or outside the car. For cars having Electrolok ignition systems, there is a special condenser that fits in the space in the top of the coil and hy-passes the battery-supply wire from the ignition switch to the primary of the ignition coil. For other models, there is space in the top of the coil housing where a $0.02-\mu \mathrm{fd}$. 1000 -volt mica condenser can be mounted. This measure is usually very effective, since it prevents the main source of noise from feeding into the interior of the car. The wire from the coil to the swit ch should be shielded, with the shicld grounded to the firewall.

The firewall should be bonded to the frame of the car and also to the motor block with heavy braid. If the exhaust pipe and muffler are insulated from the frame by rubber mountings, they should likewise be grounded to the frame with flexible copper braid.

Noise Limiter

Fig. 20-2 shows the alterations that may be made in the existing car-receiver circuit to provide for a noise limiter. The usual diodetriode second detector is replaced with a type having an extra independent diode. If the car receiver uses octal-base tubes, a 6S8GT may be substituted. The 7×7 is a suitable replacement in receivers using loktal-type tubes, while the 6T8 may be used with miniatures.

The switch that cuts the limiter in and out of the circuit may be located for eonvenience on or near the converter panel. liegardless of its placement, however, the leads to the switch should be shielded to prevent hum piek-up.

A Bandswitching Mobile Converter

The circuit diagram of a bandswitching converter covering the 75 -meter 'phone band and all of the $20-, 11$ - and 10 -meter bands is shown in Fig. 20-3. To avoid the complication
of tracking, the input circuit of the r.f. amplifier is tuned by a separate control. A single setting will hold over a considerable portion of each tuning range. The output circuit is
broad-banded and thus requires only initial adjustment. By means of inductance slugs, it is tuned to the approximate center of each hand. The high-frequency oscillator uses a high-C Colpitts circuit. Each of the bands is spread out over a good portion of the dial so there is no difficulty in tuning in and holding a signal. An air trimmer, C_{8}, is provided so that the tuning may be adjusted to calibration from the panel. The output coil, L_{14}, is tuned to 1500 ke , and is coupled to the input circuit of the b.e. receiver by L_{15}, a winding of several turns scramble-wound over the bottom end of the output coil, L_{14}.

A 5-circuit switch takes care of bandswitching in all circuits. One coil serves for both 27 and 29 Me, at the input of the r.f. stage. A separate coil for 27 Mc , is required in the output circuit berause a single roil does not quite cover both 27 and 29 Me. satisfactorily. In the h.f. oscillator eircuit, the same coil is used for
both of the latter hands, but the tuning range is altered by switching in the series capacitance made up of C_{14} and $C_{15} . C_{10}$ is added at 14 Mc. primarily for bandspread purposes, but it also improves the stability on this band.

One section of the bandswitch, $S_{1 E}$, together with the final tap of $S_{1 A}$, serves to connect the antenna to the b.c. receiver when the converter is not in use. The last switch section, $S_{1 F}$, turns off the filaments of the converter automatically when the switch is turned to the b.c. position. Power for the converter is taken from an outlet added to the b.c. receiver. A dropping resistor in the b.c. set should be inserted if the " B " voltage to the converter exceeds 180 under load.

Construction

The converter shown in Fig. 20-4 is buikt on a $5 \times 7 \times 2$-inch aluminum rhassis. A box, $51 / 8$ inches high, made of sheet alumin-

Fig. 20-3 - Cironit diagram of the mobile eonverter.
$\mathrm{C}_{\mathrm{I}}-50-\mu \mu \mathrm{fd}$. variable air trimmer (National IPSE-50).
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{12}, \mathrm{C}_{13}-\mathrm{O} .01-\mu \mathrm{fd}$. dise ecramic.
$\mathrm{C}_{5}-100-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{6}, \mathrm{C}_{7}-220-\mu \mu \mathrm{fd}$. silvered mica.
C_{8} - Approx. $40-\mu \mu \mathrm{fd}$. variable (Millen 19050 with one rotor and one stator plate remoned).
C_{0} - Approx. $5-\mu \mu \mathrm{fd}$. variable (National PSE. 25 with all but two plates removed).
$\mathrm{C}_{10}-100-\mu \mu \mathrm{fl}$. silvered mica.
$\mathrm{C}_{11}-47-\mu \mu \mathrm{fd}$. silvered mi"a.
Cis $-470 \cdot \mu \mathrm{fd}$. silvered mica.
(i,15 - $330-\mu \mu \mathrm{fd}$. silvered mica.
$\mathrm{C}_{10}-30-\mu_{\mu} \mathrm{fd}$. mica trimmer.
$\mathrm{Clt}_{\mathrm{t}}-50-\mu \mu \mathrm{fd}$. ceramic.
Cis - $0.1-\mu \mathrm{fd}$. paper.
$11_{1}-100$ ohms, $1 / 2$ wat .
$1 R_{2}-22000$ ohme, $1 / 2$ watt.
$\mathrm{H}_{3}-15,000$ ohms, $1 / 2$ watt.
$11_{4}-22,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-15,000$ ohms, 1 watt.
$\mathrm{K}_{6}-10$ ohms, 1 watt.
L_{1} - 15 turns No. 24 d.s.e. seramble-wound on L_{2}.
L_{2} - CT'C T'ype $1.5 \mathrm{M} .5 \mathrm{Mc}, 7$ turns removed. ($10 \mu \mathrm{~h}$.)
$\mathrm{L}_{3}-4$ turns $\mathrm{Y}_{0} 24$ d.s.c. wound at bottom of L_{4}.
L_{4} - C'IC: Type LS3.10 Me. ($3.5 \mu \mathrm{~h}$.)
$\mathrm{L}_{5}-3$ turns No. 24 d.s.c. wound over bottom of L_{6}.
$\mathrm{L}_{6}-11$ turns No. 22, $5 / 8$ inch long, on CTC 'l'ype LS3 $8 / 8$-ineh diam. form, slug removed. (1 $\mu \mathrm{h}$.)
L_{7} - Cíc ISM-1 Mc., 150 turns removed. (110 $\mu \mathrm{h}$.)
I. 8 - (.IC 'Type I.S3-5 Mc., 50 turns removed. ($8 \mu \mathrm{~h}$.)
$\mathrm{L}_{\theta}, \mathrm{L}_{10}-$ CTC $1 . \$ 3-10 \mathrm{Mc} ., 4$ turns removed. (1.9/2.2 $\mu \mathrm{h}$.)
$\mathrm{L}_{11}-90$ turns No. 30 enam., wound on C'TC Type LS4 $1 / 2$-inch diam. form. ($32 \mu \mathrm{~h}$.)
$\mathrm{L}_{12}-5$ turns No. $20,5 / 8$-inch diam., spaced 16 turns per inch (B \& W 3007 Miniductor), slipped over CTY: Type $1.541 / 2$-inch diam. form. ($0.6 \mu \mathrm{~h}$.)
$L_{13}-3$ turns No. $16,5 / 8$-inch diam., spaced 8 turns per inch (1 \& W 3006 Miniductor), slipped over CT'C Type 1 S $41 / 2$-inch diam. form. ($0.2 \mu \mathrm{~h}$.)
L_{14} - CTC'T'ype LS3-1 Ne., 80turns removed. (450 нh.)
Lis - 20 turns No. 24 d.s.c. scramble-wound over bottom end of L_{14}.
$\mathrm{I}_{1}, \mathrm{I}_{2}-6.3$-volt 150 -ma. dial lamp.
J_{1} - Shielded jack (ICA 2378).
J_{2} - l'in plug (ICA 2375).
J_{3} - 4-contaet chassis-mounting plug (Jones S-304-A13).
RFC 1 - $2.5-\mathrm{mh}$. r.f. choke (National R-50).
S_{1} - Bandswiteh-sec text.

Fig. 20-4 - The completed handswitching montile conwreer ready to install. At the bettom, the r.f. input tuning is on the left and the oseilator trimmer on the right -hand side of the bandswiteh.
um, is fitted around the chassis. Half-inch lips are bent over along the top and botom edges of the sides, and along all four edges of the front and rear ends. The lips along the side a alges of the front panel extend down only to the chassis. The box is assombled with machine serews and huts. Four long machine sorews through one side of the chassis provide means for attaching a clamp mounting so that the eonverter may be fastened to the stcering post.

The National MCN dial is placed on the front pancl so that it will line up with the shaft of the osciblator tuning condenser which is musutad directly on top) of the (hassis. It is neeressary to noteh out the front edge of the Whassis for the dial merdanism.

The bandswiteh is pared underneath at the center of the front colge of the chassis, with the rontrols for input tuning and ascillator trimmer to cither side. The switeh is made up from ('entralab kit parts. All switch wafers are of the two-pole five-position type. One ceramic wafer (Type RIS) is used for Sic and sin in
the amplifier-output and oscillator-circuits. This section is spaced two inches from the index head (Type P123). The other two wafers are of hakelite (Type \mathbb{K}). The innermost of these serves for S_{15} and $S_{1 F}$, while the end section takes care of $S_{1,1}$ and S_{13}. Two and one half inches back of the ceramie section, the two 6 -inch switch-assembly rods pass through an aluminum bracket which provides a rugged brace for the rear end of the switch gang. The first bakclite switeh wafer is spaced $1 / 4$ inch behind this bracket and the second wafer is $1 / 2$ inch bohind the first. The input tuning condenser, C_{1}, also is mounted on this aluminum bracket and is eontrolled by an extension shaft from the panel in front. The oscillator trimmer condenser, Cy, is fastened dircotly on the front edge of the chassis.

The placement of the two tubes can be seen in the top-view photograph of Fig. 20-5. The converter tube is near the front of the oscillator tuning condenser and the amplifier tube is to the rear, covered with a shield.

CTC (Cambridge Thermionie Corp.) slugtuned coils and coil forms are used for the various inductances. Details are given under Fig. 20-3. About a half inch must be eut from the top of each of the LSt forms so that they will fit under the chassis. The placement of the coils can be judged from the bottom-view photograph of Fig, 20-6, In that view, the oscillator coils are the three large ones near the bottom. From left to right, they are for the 75 -, 20- and 10-11 meter bands. The three smaller coils above are in the output circuit of the r.f. amplifier. From left to right, they are for the 20-, 10- and 11 -meter bands. The 75 moter coil is the large one above, mounted horizontally from the side of the chassis. The r.f. input coils are to the extreme left, grouped around the end of the switeh. From top to bottom, they are for 10-11, 20 and 75 metors. The output roil, L_{14}, is hidden under the lip of the chassis in the extreme upper-right rorner. Its tuning condenser, C_{16}, is the mion trimmer in the lower-right corner of the top-view picture (Fig. 20-5). A grommeted hole in the top eover permits adjusting this condenser after the top is in place. This may be found convenient in case it is neressary to shift the i.f. slightly to avoid interference from a strong local b.e. signal at 1500 kc . The indurtance of L_{7} is trimmed from the side, while the slugs of all other eovils are adjusted before the cover is fastened down.

Fig. 20-5 - Thp view of the bandswitehing eonverter with the cover removed to adjust the various inductance slugs. 'The object to the right is the dial-lamp shield.

Fig, 20 - 6 - Bottom view of the batdswitchink mobile converter showing the placement of the miniature coils.

A short length of coax line eommects the output winding of L_{15} to the switch. Another external length eomeets the output of the converter to the input of the bee. recoiver. A pin jack at the rear
 provides a connection for the antenna input. Power connections are made at the rear through a four-contact connector.

Provision for illuminating the dial at night is made with a simple home-brewed arrangement. One end of a piece of shim brass or copper about 3 inches square is rolled a little more than halfway around a pair of standard 6.3volt dial lamps placed butt to butt. The ends of the partial cylinder thus formed are covered by soldering in small dises of the same material. The lamps are then spaced about an inch apart and their sholls are soldered to the metal enclosure. The two lead tips of the lamps are joined by a short piece of wire which connects to the "hot" side of the filament circuit. The remainder of the sheet is inserted between the top lip of the panel and the cover. By loosening the cover serews, it is possible to adjust the position of the lights for best illumination of the dial scale. The lamps should not need replacement often because the dimmer resistor, R_{6}, cuts the current down well below normal rating.

Adjustment

The output circuit of the converter tube should be adjusted first. Before proceeding, retrim the input circuit of the b.c. set to the antenna with the bandswiteh in the b.c. position. Then switch to any of the four converter positions and tune C_{16} for maximum noise with the b.e. receiver tuning set at 1500 kc . The next step is to tune the h.f. oscillator to the appropriate ranges, starting with the $75-$ meter band. On all but the 10-11-meter band, the oscillator is tuned to the low-frequency side of the signal frequency, Since the i,f, is 1500 kc , the oscillator should be tuned 1500 kc . lower than the desired signal. For the range of 3800 to 4000 kc ., the oscillator should cover the range of 2300 to 2500 kc . To accomplish this, turn the bandswiteh to the 75 -meter position, set the tuning condenser, C_{8}, at maximum and adjust the slug in L_{11} until the oscillator signal is heard on the station com-
munications receiver at 2300 kc. $\{3800$ minus 1500). To hear the signal, it may be neoessary to run a wire from a point near the oscillator coil to the antenna terminal of the station receiver. Now, with an antenna connected to the input of the converter, swing the input tuning condenser, C_{1}, through its range, listening for a peak in noise. If none is found, set the slug in L_{-}to a different pasition and try again. . Is soon as a noise peak is found on $C, 5$, adjust the slug in L_{7} for maximum response. The same procedure is followed for the 20 -meter hamd, setting the tuning condenser at maximum, adjusting the slug in L_{12} until the oscillator is heard at $12,500 \mathrm{kc}$. (14,000 minus 1500), and then peaking up the r.f. stage inpurt and output circuits. In this case, a second response point may be found. This is the image response to signals at $11,000 \mathrm{kc}$. If two response points are found, peak C_{1} and L_{8} at the response of higher frequency.

On the 10 -meter band, which should be taken care of next, the ascillator is tuned to the highfrequency side of the desired signal. So, with the dial at the maximum-capacitance end, and the switeh in the 28-Me. position, adjust the slug in L_{13} until the oseillater signal is heard on the station recriver at $29,500 \mathrm{kc} . \quad(28.000)$ plus 1500), and then trim up the r.f. stage tuning as before. The imatge response will come at $31,000 \mathrm{ke}$, so be sure to peak up the r.f. circuits at the response of lower frequency.

Adjusfing the slug in L_{13} for 28 Mc . also should pace the oscillator in the correct range for the 11-meter band when the switch is in the 11-meter position, C_{1} has sufficient range to eover both bands, but the separate r.f. stage output coil, L_{9}, must the peaked up. If it is found that the 11-meter range comes too far off on the dial, if may be necessary to slide the 10-meter range toward one end of the dial or the other by readjusting the slug in L_{12}, slightly. As an altornative, the correction may be made by altering the capacitance of eifher series capacitor, C_{14} or C_{15}.

A Mobile Converter for 28 and 50 Mc .

The converter shown in Figs. 20-7 to 20-10 was designed for mobile reeeption on 6,10 , and 11 meters, but it may also be used in fixedstation work with good results. The intermediate frequency is 1500 ke , to permit its use with mobile broadeast receivers.

Circuit Details

The converter circuit diagram is shown in Fig. 20-8. A 6.1 K 5 broadband r.f, amplifier is followed by a 6.56 mixer-oscillator. The oscillator circuit is the ultradion type, operating 1500 kc . below the signal frequeney. The need for gang-tuned circuits is eliminated by the broadband r rf, amplifior; thus only the oscillator tuning condenser, C_{1}, requires adjustment during normal tuning operation. Band

Fig. 20.7-A bandswitching converter for 6, 10 and 11 meters. The pilot light at the lower right has an adjustaine beam, for cons enience in motile work.
changing is accomplished with a \bar{b}-section selector switch, shown on the diagram as $S_{1 A}$, B, c., b, E.

Seven commereially-available coils are used, six of them being identical exeept for the setting of the slugs. The wide inductanee range of the slug-tuned units makes it possible to use similar coils for the r.f., mixer and oscillator coils for both ranges. Patder capacitance is added across the 10 -meter r.f. and mixer coils, L_{44} and L_{6}, and aeross both oseillator coils, L_{4} and Lo8. Varying the slug position takes care of the noressary differences in eoil induetance for all these positions.

A single whip antenna may be used for both broadeast and amateur reception. it jumper eonnertion between sections A and E of S_{1} completes the circuit between the antenna and the broadeast receiver, with the switeh in the position marked B.C. in Fig. 20-8. A filament
switch, S_{2}, is provided to remove the load of the converter tubes from the car battery when the receiver is being used for broadeast reception.

IBroadbanding of the r.f. and mixer circuits is aceomplished through the use of low- Q coils and tight coupling in the antenna circuit. The plate coil of the mixer is solf-resonant at the intermediate frequeney, giving at degree of broadness sufficient to permit tuning the receiver over a limited range near the high end of the broadeast band, providing a vernier effect.

Construction

All of the metal components are formed from $1 / 16$-inch aluminum stock. The interior view, Fig. 20-9, shows the "L,"-shaped section which serves as the front pancl and the bot tom plate of the unit. The pand and the bottom aroas are each 5 inches square. Lips, $1 / 2$ inch wide, are folded over along the top and side edges of the pancl and also along the sides of the bottom section. The rolled-over edges are drilled and tapped to accommodate 6-32 machine screws.

A three-sided portion and a square top plate complete the converter cabinet. The sides are 5 inches square and the rear wall is $51 / 8$ inches wide. Wil three sides are 5 inches high with $1 / 2$-inch flanges folded over on the top edges and drilled and tapped for (i-32 serews. The sides and bot tom edges of the case are drilled to clear machine serews; the holes should line up with the tapped holes of the pancl-bottom assembly, A rectangular hole, $17 / 8$ inches high and 2 inches wide, is cut at the bottom lefthand corner (as seen from the rear of the converter) of the rear wall, to provide charance for the cable connectors. The top plate for the converter measures 5 by 5 inches. Iloles, drilled along the edges, allow the cover to be fastened to the flanges at the top of the cabinet.

The physieal shape of the eonverter chassis can best be visualized by study of the interior views. The ehassis is 5 by $47 / 8$ by $1 \frac{3}{4}$ inches in size, with flanges ta inch wide folded over along the front and the bottom alges to provide a means of mounting. A $21 / 4 \times 33 / 4$-inch cut-out at the ernter of the chassis allows clearance for the bandswiteh. A large round hole loeated in the rear wall of the chassis simplifies the joh of finding the oscillator padder condenser when this control requires adjustment.

A vertical partition used as the mounting surface for the oseillator toming eondenser, ('1, also serves as the shichd betwern the plate and the grid circuits of the r.f. amplifier. It is $3 \frac{1}{2}$ inches wide and $43 / 4$ inches high, and is notehed to clear the main chassis and the spacer bars and rotor arm of the bandswitch. The partition is held in place by a spade lug which passes through the chassis and by a momeng

Fig. 20-8 - Circuit diagram of the bandswitching v.h.f. converter.
$\mathrm{C}_{1}-15 \mu \mu \mathrm{fd}$. variable reduced to one stator and 2 rotor plates (Villen 2001.5).
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-3-30-\mu \mu \mathrm{fd}$, mica trimmer (Millen 27030).
CB, ($\mathrm{C}_{7}-0.0015-\mu \mathrm{fd}$, ceramic (Centralab DA0 88002 A).
C $\%, \mathrm{C}_{9}-100-\mu$ fil. ceramic (Centralab CC32\%).
Cs, ($10-10-\mu \mu \mathrm{fl}$. ceramic (Centralab CC20Z).
(ill- 500 - $\mu \mu \mathrm{fd}$, ceramic (Centralab 1 (6.501).
($12-0.01-\mu \mathrm{fd}$, ceramic (Centralalo i) 1018013. 1).
\mathbf{R}_{1} - 220 ohms, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{~K}_{0}-680$ ohms, $1 / 2$ watt.
$13_{3}-1.5$ megohms, $1 / 2$ watt.
$11_{4}-12,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-4 \overline{4}, 000$ ohms, $1 / 2$ watt.
$11_{7}-500 \%$ ohms, 10 watts.
$\mathrm{L}_{1}, \mathrm{~L}, 2-4$ turns $\mathrm{V}_{0}, 28 \mathrm{~d}$, s.c. close-wound over ground ends of L_{a} and L_{4}.
lip which is screwed to the bottom side of the cabinet. It is located 3 inches in from the front edge of the chassis.

The heater switch and the pilot-light assembly are mounted at the lower left-and right-hand corners of the front panel with the bandswiteh at the center, $11 / 8$ inches up from the hottom edge. The seleetor-switeh index plate should have a rotorshaft length of at least 3 inches, and the switeh wafers should be mounted on the shaft with the first separated from the index plate by 1-inch spaters and with the second wafer separated from the first by $15 / 8$ inches.

The National MCN dial is centered above the bandswitch with the control shaft 3 inches above the bottom edge of the panel. It is wise to cut the large mounting hole suggested in the dial-mounting instruction sheet and then do the final fastening down of the dial after the tuning condenser and its mounting

Fig. 20.9 - Interior view of the converter. Only the oscillator is tuned by the front-panel control, eliminating tracking problenis.
$L_{3}, L_{4}, L_{5}, L_{A}, L_{7}, L_{8}-6$ turns No, 20 enarneled wire close-wound on $3 / 8$-inch diameter form; slugtuned: inductance range 0.35 to 1.0 hh . (Camlriige 'Thermionic Corp, 1, S3-30 Mc.).
L_{0} - Scramble-type winding on $3 / 8$-inch slag-toned form; inductance range 325 to $750 \mu \mathrm{~h}$. (Cambridge 'Thermionic Corp. LS3-1 Me.).
L10 - 20 turns No. 28 dis.e. seramble-wound next to L_{9}. It - Adjustable-beam dial-light assembly.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial-cable jacks (Amphenol 75-1PC1M). J_{3} - 3-prong cable connector (Jones P-303AB). $\mathrm{RFC}_{1}-300-\mu \mathrm{h}$. r.f. chohe (Millen 34:300).
Si A, $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ - 2 -gang 6 -circuit bandswitch (two Centralab sis sections).
$\mathrm{S}_{2}-\mathrm{S}, \mathrm{p}, \mathrm{s}, \mathrm{t}$, toggle switch.
plate have been permanently secured in place.
The interior view of the completed converter shows the GAK゙う amplifier tube in front of the shied partition, with the grid inductances to
the right of the tube. The padder condensers for 27 and 28 Me. are mounted on the forward coil. From loft to right across the rear of the chassis are the mixer-oscillator tube, five of the slug-tumed inductances, and the regulator tube. The i,f. output coil and the two oscillator coils are mounted below the ehassis, as seen in the bottom view of the chassis subassembly. The r.f. plate eobls are above the chassis to the left of the 0132 regulator, the $28-$ Mo coil being the one with the frimmer condenser mounted across the terminals.

Construction will be simpler if the buider uses eoils as shown. The Type Las $30-\mathrm{Mc}$, inductors will resonate at 50 No, with the tube and circuit capacitances, and only a small padder capacitance is required to tune them to 27 and 28 Me .

Coaxial jacks for the antemna and i.f. output cables are at the rear of the chassis to the left of the power-cable jack. They are closely grouped so that the input and output cables may be taped together to form a common cable.

Wiring can be done readily if the subassembly method is employed. The bottom-view photograph of the chassis, Fig. 20-10, shows how the circuit components are closely grouped around the tube sorkets, with wiring completed to the print of making eonnections to the band-switeh. 'l'win-Lead of the 75 -ohm type is used to make the connection betwern the antoma input jack and the bandswitch. The two wires enclosed in spaghetai at the right of the chassis in the bottom view are the 6.3 -volt leads which go to the heater switeh.

Testing

The heater requirements of the converter are 6.3 volts at 0.625 amp ., and the plate supply should eleliver 200 to 250 volts at 25 to 30 mas. These may be drawn from the receiver with which the converter is to be used, or a separate supply may be employed. With power turned on, the plate voltage of the mixer and

r.f. amplifier should measure 105 volts and the G. K 5 5 cathode resistor should provide a drop of approximately 2 volts. The 6.1 K 5 cathode current should be about 8.5 ma . The regulatortube drain will be about 8 ma .

Nlignment of the converter is mate most simple if a calibrated signal generator is available, ot herwise amateur transmitter signals of known frequency may be used. The r.f. and i.f. cireuits can be peaked on hackground noise. The oscillator stage should be on the low side of the signal frequency. It is possible to vary the bandspread of the converter over a wide range. With a fairly low order of padder capacitance, and with the indurtance increased by the tuning slug, the 10- and 11 meter bands can be covered with one swing of the tuning dial. Anyone not interested in 11 meters can increase the bandspread on the 10 -meter range by adding more padder capacitance and by decreasing the inductance of L as. The converter as shown has 13 divisions of bandspread at 11 meters and 52 divisions at 10 metors, with the logging of frequencies made on the 13 seale of the dial. Bandspread for the 50-Mc, band is 48 divisions on the A scale. This spread may be increased by the same method.

Some operators favor a selected group of frequencies within a band. A slight improvement in the performance of the converter can be made in this case by peaking the r.f. amplifier circuits at a favorite spot rather than at the center of a band. There may be a tendeney toward regeneration in the $50-\mathrm{Mc}$. r.f. amplifier, however, if the input and plate circuits are peaked at precisely the same frequency, making stagger tuning desirable.

Reducing Spurious Responses

In localities where there are stations operating in the high F.M band a converter or receiver having broadband r.f. stages will experience eonsidorable interference on the $50-$ Me, range. This can be corrected in several ways, the simplest being the insertion of a 100 -Me. trap in the antenna lead.

Fig. 20-10 - Construction of the converter is made easier if as much wiring as possible is done before the assembling is completed. This bottom view of the chassis subassembly shows the wiring completed to the point of connection to the bandswitch.

A Mobile Converter for 144 Mc.

Working directly into the car broadcast receiver with a converter, as is done normally on lower-frequency bands, is not satisfactory for 144-Mc. work. Because the highest obtainable i.f. in such a system is 1600 ke., the image rejection is very low. Signals repeat within the band, making it very difficult to distinguish between the true signal and its image. A logical solution is to carry the conversion process one step further and design a 2 -meter converter to work into a second converter designed for a lower frequency. The latter then feeds the signal into the car b.c. receiver.

This approach is emploved by W1DI3M in the $14+\mathrm{Mc}$, converter shown in the photngraphs of Figs, 20-11 through 20-14. The output frequency is 14 Me., but it could just as well be 28 Mc . with suitable modification of the output eoil, L_{6}. The output of this convertar can be fed into the 28 - and $50-\mathrm{Mc}$. converter described in the preceding section, or into any of the various manufactured converters on the market covering the 28 - or $14-\mathrm{Mc}$. ranges.

Electrical and Mechanical Details

The circuit diagram, Fig. 20-13, shows a 6AK̄̄ r.f, amplifier, 6J6 miser-oscillator, and a 6 AK 5 i.f. amplifier. The pentode screens and the triode plates are fed through an OI32 voltage regulator. Slug-tuned coils are used in the $1+4-M c$. circuits for relatively broad response. The oscillator is tuned by a small splitstator condenser, with a ceramic padder for band-setting purposes. The mixer and i.f. plate coils are slug-tuned and are shunted with fixed eeramie condensers.

To hold down the overall size, some care must be used in planning the lay-out and assembly procedure. By mounting the tube sockets in the position shown, it is possible to

Fig. 20.11 - Wobile comverter for 114 No. 'I'he heavy angle brackets are desigmed for mounting the converter under the dash.
use a single shield for both i.f. and r.f. stages. This shield (shown in the bottom-view photograph of Fig. 20-14) is notched to clear the tube prongs. The surrounding components must be mounted in such positions that the shicld can be dropped into place and screwed down as a final operation.

Fig. 20-I2 - Kear view of the 2 -meter mobile converter, with dust cover removed.

The panel is 4 by $4 \frac{1}{2}$ inches in size, this being determined by the dimensions of the Millen 10039 dial. The chassis is $51 / 2$ inches long, $41 / 2$ inches wide and $13 / 4$ inches deep. With this depth, the OB2 regulator socket must be submounted, because it is of greater height than the 6AK5̄s and 6J6. The panel and bottom are folded from a single piece of $1 / 16$-inch aluminum, with $5 / 8$-inch lips turned up on the sides.

In addition to the holes for the tube sockets, the chassis has a cut-out for the tuning condenser. The condenser is mounted ruggedly on a heavy angle bracket in position so that its shaft lines up with the hole in the vernier dial. Coaxial connectors for the antenna and output, and a small shielded 3 -wire receptacle are mounted on the rear edge of the chassis.

The dust cover is also of $1 / 16$-inch aluminum sheet. It has a removable back plate, with clearance holes for the coaxial fittings and power plug. Two mounting angles of 3/32inch aluminum are bolted to the top edges of the cover. These must be strong since they are used to fasten the converter under the instrument panel. The unit is completely wired and tested before mounting in the combination panel and bottom eover. A clearance hole in the side of the chassis provides for final adjustment of the oscillator padder.

Pretesting

The slug-tuned coils can be adjusted to approximately the correct settings by the use of a grid-dip meter. If the coils are made closely

Fig. 20-13 - Wiring diagram of the I11-Mc. mohile converter.
$C_{1}-3-\mu \mu \mathrm{fd}$, ceramic.
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-30-\mu \mu \mathrm{fd}$, ceramic.
C.5, $\mathrm{C}_{8}-50$ - $-\mu \mathrm{fd}$. ceramie.
$\mathrm{C}_{6}-4-30-\mu \mu \mathrm{fd}$, ceramic padder.
C_{7} - Miniature split stator, 2 rotor and 2 stator plates per section, double-spaced, double bearing.
C9 - $4-\mu \mathrm{fd}$. 450-volt electrolytic.
$\mathrm{C}_{10}-\mathrm{C}_{25}-\mathbf{0}, 001$ - or $0.005-\mu \mathrm{fd}$, dise ceramic.
$R_{1}, R_{2}, R_{6}, R_{7}, R_{8}-270$ ohms, $1 / 2$ watt.
$R_{3}, R_{4}, R_{10}-1000$ ohms, $1 / 2$ watt.
R_{5} - 10,000 ohms, $1 / 2$ watt.
$K_{9}-10,000$ ohms, 10 watts.
$\mathrm{R}_{\mathrm{II}}-15,100$ ohms, $1 / 2$ watt.
$\mathrm{R}_{12}-1.5$ megohms, $1 / 2$ watt.
L. 1 - 2 turns No, 20 enameled wire at cold end of L_{2}. 1.2-5 turns No. 20 enameled wire 316 inch long on CTC slug-tuned coil form $3 / 8$-inch diameter, iron slug (approximately $0.17 \mu \mathrm{~h}$.)
to the dimensions given, it should be possible to adjust them and the oseillator padder, close enough to the proper values so as to be able to receive signals without further adjustments than these. The slugs should be adjusted before the heater and plate voltages are applied.

After this has been done, the converter should be placed in operation, using it in conjunction with the home-station communica-
 tuned eoil from $3 / 8$-inch diameter, brass slug (approximately $0.08 \mu \mathrm{~h}$.)
$1.4-3$ turns Y_{o}. 12 tinned wire, $3 / 8$ incl, long, $3 / 8$-inch inside diameter, with $1 / 4$-inch leads to condenser.
$1.5, \mathrm{~L}_{8}-15$ turns No. 28 enameled wire $1 / 4$ inch long on C'T'C: slug-tuned $3 / 8$-inch diameter mil form, combination iron and brass slug (approximately 2.5 uh.)
1.7-4 turns No. 28 enameled wire wound at cold end of coil form.
\backslash alues of L_{5}, L_{6} and L_{7} are for 14 -Me. i.f.
$\mathrm{RFC} C_{1}, \mathrm{RP}_{2} \mathrm{C}_{2}, \mathrm{RFC}_{4}-1$-watt 1 -megohm resistor wound full with No. 32 enameled wire.
RFC.3- I-watt I-megohm resistor wound fuil with No. 18 enameled wire.
CIC enil forms (new coramic type with ligh-frequency iron preferred) manufactured by the (ambridge 'Thermionic Corp,. 5.6 Concord Ave., Cambritge, Mass.
tions receiver. The slug and padeler settings should be rechecked, peaking the r.f. grid coil at 145 Mc., and the mixer grid coil at 147 Mc. for uniform response across the band. The mixer and i.f. amplifier plate coils can be peaked for maximum receiver noise. A slight readjustment of the oscillator padder condenser may be needed when the converter is installed in its case.

Fig. 20-14-1'mor-chassis view of the 2 -meter converter, 'Ihe coils at the bottom of the photo are (left) r.f. grid and (right) mixer grid. At the tols, same order, are the i,f, amplifier and mixer plate coils. 'The lattor is partially olsecured by the small dise ceramics.

A Bandswitching Transmitter for the Car

A complete compact bandswitching transmitter for mobile work, covering the $75-, 20$-, 11 -and 10-meter bands is shown in Fig. 20-15. The circuit diagram of the r.f. and control sections appears in Fig. 20-17. A 5763 miniature tube in the oscillator drives a 2 E 26 output stage. An octal tube socket, J_{1}, set in the front panel where it can be rached easily, serves as the erystal socket. With the erystal plugged into prongs 6 and 8 , and prongs + and 7 shorted with a jumper, the circuit is a Tri-tet with the cathode tank adjusted for maximum 29-Me.

Fig. 20-15 - A handswitching mobile transmitter. From left to right are the control unit, the r, f, unit and the nodulator.
output from a 7 -Mc. crystal. With this adjustment, adequate output is obtained also on the other bands. LIowever, if desired, the circuit can be easily changed to a straight pentode circuit for straight-through operation at the erystal fundamental by plugging the crystal into prongs 4 and 6 and jumpering prongs 1 , 4 and 8 , thus cutting L_{1} and C_{1} out of the circuit. The octal socket also provides means for feeding a VFO, through prongs 6 and 8 with prongs 1 and 8 strapped together, to the input of the erystal stage. If desired, the extra socket prongs can be used to bring out power for the VFO, should one be used.

The oscillator stage is capacitively coupled to the amplifier. The plate of the latter stage is parallel fed, $R F C_{1}$ is a v.h.f. parasitic suppressor. A three-gang, threc-position, rotary switch takes care of the bandswitching, changing coils in both stages and also the output coupling eoils. The 10 - and 11 -meter bands are covered with a single set of coils.

Modulator connections are made at J_{5}. With a 5 -wire cable connerting J_{5} of Fig. 20-17 to J_{1} of Fig. 20-20, the connections include power supply to the modulator. Connections between the r.f. unit and the power supply are made through J_{6}. This is a 5 -prong plug to avoid any mistake in plugging in the cables. S_{5} is the filament switch and it can be used also to control simultaneously power and antenna relays, A cable from a small control box plugs into J_{3}. The control-box wiring also is shown in Fig. 20-17. Connections to the micro-
phone are included in the r.f. unit to avoid split cabling from the control box. S_{3} is in the eathode circuit of the 2E26. This permits cutting off the amplifier while monitoring the oscillator which is still left rumning.

A milliammeter may be plugged in at J_{4} to read either output-stage cathode current or grid current, depending upon the position of S_{4}. If desired, R_{7} ran be a multiplier shunt so that both currents ean be measured with a single low-range (5- or 10-ma.) meter.

Modulator

The circuit of the modulator is shown in Fig. 20-20. It consists of a 12.1 T 7 dual triode driving a 6N7 Class-13 stage. The first section of the 12AT7 is operated as a grounded-grid amplifier so that a carbon microphone may be conveniently fed to the input without a transformer. Mierophone voltage is obtained from the drop across R_{1}. A 3 -circuit plug is needed, as indicated in Fig. 20-17, B_{1} is a small 6 -volt battery for bias.

Construction

In building the r.f. unit, an aluminum chassis, $5 \times 7 \times 2$ inches is titted with an aluminum box of sheet stork that makes the total heright 6 inches. A strip $4 \frac{1}{2}$ inches wide is bent to fit around the sides and back of the chassis, overtapping the chassis by $1 / 2$ inch along the bottom edges. The panel, which is 6 inches high and 5 inches wide, has $1 / 2$-inch lips bent along the vertical sides down to the chassis level. These serve as a means for fastening the sides of the box to the panel. A partition 4 inches high and 5 inches wide, with $1 / 2$-inch lips along the vertical edges, placed approximately 4 inches behind the panel, divides the enclosure into two sections. Approximately half-way up on the panel, the amplifier tuning condenser, C_{14}, and the bandswitch, S_{1}, are spaced with their shafts $13 / 8$ inches in from either edge. The antenna tuning condenser,

Fig. 20.16-. Top view of the bandswitching molite transmitter, The oscillator is at the rear and the amplifier and antemna-coupling section in front.

Fïß. 20-17-Cirenit diagram of the handswitehing mobile transmitter.
$\mathrm{C}_{\mathrm{t}}, \mathrm{C}_{\mathrm{e}}-100-\mu \mathrm{ff}$. mica.
$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{9}-0.01-\mu \mathrm{fd}$. dish ceramic.
(:3-100- $\mu \mathrm{ffl}$. variable (Hilllen l9100).
$\mathrm{C}_{5}, \mathrm{C}_{12}, \mathrm{C}_{13}-0.002-\mu \mathrm{fd}$. mica.
C: - $0.005-\mu \mathrm{fd}$. disk ceramic.
© 8 , C10- $0.1 \kappa(6)-\mu \mathrm{fd}$. disk ceramic.
C:11-0.0068- $\mu \mathrm{fd}$. mica.
Ci4 - $100-\mu \mathrm{ff}$ d. variable (Millen 20 lOn).
Cis - $1.40-\mu \mu \mathrm{fl}$. variable (Millen 20140).
$\mathrm{I}_{\mathrm{t}}-0.1$ megohm, $1 / 2$ watt.
R_{2} - 0.1 megohm, 1 watt.
R_{3} - 1000 ohms, 10 watts.
R_{4} - 18,000 ohms, 1 watt.
$\mathrm{R}_{5}-50$ ohms, $1 / 2$ watt.
$\mathrm{R}_{6}-20,000$ ohms, 10 watts.
$\mathrm{K}_{7}-220$ ohms, 1 watt.
$\mathrm{L}_{1}-2 \mu \mathrm{~h}$. - 16 turns No. 22, $1 / 2$ inch diam., $1 / 2 \mathrm{inch}$ long (13 \& W 3004 Miniductor).
$\mathrm{L} .2-0.4 \mu \mathrm{~h} .-7$ turns No. $18,5 / 8$ inch diam., 1 imch long (13 \& W 3006 Miniductor)
$\mathrm{I}_{3}-1.2 \mu \mathrm{~h}$. - 18 turns No. 18, $1 / 2$ inch diam., 1 inch long (B \& W 3003 Miniductor).
L_{4} - $18 \mu \mathrm{~h}$. - 64 turns No. $22, \frac{5}{8}$ inch diam., 2 inclues long (B \& W 3008 Miniductor).
C_{15}, is spaced centrally above. The indicator lamp, I_{1}, is mounted at the center. Along the bottom edge of the panel, from left to right in Fig. 20-15, are the filament switch, S_{5}, the meter switch, S_{4}, the control for the oscillator tuning condenser, C_{3}, and the crystal socket. Corresponding holes must be cut in the chassis. The output connector, J_{7}, is set in the right side of the box near the front corner.

After the panel has been drilled, the first part of the bandswitch should be assembled and mounted. The switch is made up of Centralab kit parts. It starts out at the front with the index assembly (Type P123). Section S1C (Type H) should be spaced $1 / 2$ inch back of the index. A second similar switch section should be spaced $1 / 4$ inch back of the first. The contacts of this section are wired together; it
 long (B \& W Miniductor 3006); link 3 turns wound on outside.
Ls - $2.4 \mu \mathrm{~h}$. 19 turns No. $22,5 / 8$ inch diam., $11 / 4$ inches long (B \& $\mathrm{W}^{2} 300$. Miniductor); link 4 turns of $1 / 2$-inch Miniductor inserted.
I.a - Same as $I / 4$; link 10 turns $1 / 2$-inch Miniductor inserted.
I_{1} - 6.3-volt signal lamp.
J_{t} - Ortal tube socket.
$J_{2}-3$-circuit microphone jack.
J_{3} - 4-prong female connector (Jones S-404-A13).
I_{4} - (losed-circuit jark.
$\mathrm{J}_{5}-6$-prong tuhe socket.
$\mathrm{J}_{\mathrm{n}}-5$-pin chassis-mounting phag.
I; - Coaxial connector (Amphenol Type 1IS).
$\mathrm{p}_{1}-3$-circuit microphone plag.
$\mathrm{P}_{2}-4$-pronk plag connector (Joncs $\mathrm{P}-10 \mathrm{~A}-\mathrm{C}(\mathrm{CO})$.
s_{1} - Bandswitch - shown in 4.Mc. position (see text).
S_{2} - Mierophone-relay switch (ineluded in mirro. phone).
S_{3} - Anplifier cathode switch - 8.jp.s.t. toggle.
s_{4} - Meter switeh - d.p.d.t. togkle.
s_{5} - Filament switch - s.p.s.t. toggle.
serves only as a means of terminating the common ends of the output link coils. spaced $\frac{1}{4}$ inch more toward the rear is a third switeh scetion which also may be of bakelite (Type II). The contacts of this section also are wired together and the section serves as a termination and support for the common ends of the output tank coils. Spaced 2 inches farther to the rear is the fourth switch section, S_{13}. This should be a ceramic wafer (Type X).
When the coils have been soldered in place, the two variable condensers may be mounted. Then the panel can be held temporarily in place while the socket for the 2E26 is located in the remaining available space. This done, the partition is drilled to fit the switch-assembly rods, including a clearance hole for the shaft. The partition is spaced $3 / 8$ inch from the

Fig. 20-18 - Bottom view of the bandswitching mobile transmitter.
last-assembled switch wafer. On the other side of the partition, spaced $1 / 2$ inch, is another ceramic wafer, $S_{1 A}$. The final section, spared $11 / 2$ inches behind $S_{1 A}$ is of bakelite and this serves as a support and termination for the common ends of the oscillator plate coils.
in the left-hand side of the chassis, toward the rear, while the modulator and power connectors, J_{5} and J_{6}, are mounted in the back edge.

The modulator components are enclosed in a $5 \times 10 \times 3$-inch aluminum chassis, as shown in Fig. 20-19. With the exception of the modulation transformer and the biasing battery, the parts are mounted on a shelf or partition that spans the chassis. An aluminum strap clamps the battery against one side. Half-inch holes near the tubes provide ventilation.

The control unit, included in Fig. 20-15 is enclosed in a National Type RO shield can whose depth has been reduced to a little over 2 inches. The open end is closed with a piece of aluminum cut to fit and fastened in with small angles. Tabs are provided for fastening to the lip along the lower edge of the instrumont panel in the car. The interconnecting cables are shielded in copper braid.

The power-control relay winding connects across Pins 3 and 4 of J_{6}. The ungrounded side of the battery connects to Pin 5 and plus h.v. to Pin 2.

Fig, 20.20 - Circuit diagram of the modulator for the bandswitching molile transmitter.
$\mathrm{C}_{1}-0.01-\mu \mathrm{ffl}$. disk ceramic. C $2-8-\mu$ fil. 450 -volt electrolytic. (3 $3-20$ - $\mu \mathrm{fd}$. 25 -volt electrolytic. C_{4} - $0.001-\mu \mathrm{fd}$. disk ceramic.
$\mathrm{R}_{1}-470 \mathrm{olms}$, 1 watt.
$\mathrm{H}_{2}-22,000$ ohms, 1 watt.
$\mathrm{H}_{3}-0.5$-megohm potentiometer.
H_{4} - 1.500 ohms, $1 / 2$ watt.
$\mathrm{H}_{5}-4700$ ohms, 1 watt.
$3_{1}-6$-volt dry battery.
" 1 ' - Interstage transformer, $1: 2$ ration (Thordarson 'T20A16).
\mathbf{T}_{2} - Modulation transformer: 10,000 ohms plate to plate $\$ 5000$ ohms (Stancor A.3845).

The miniature oscillator tube is placed so that it will not interfere with mounting C_{3} underneath the chassis. $R F_{2}$ is placed alongside the 2 E 26 and $R F^{\prime} C_{1}$ is suspended between the plate cap and the top of $R F^{\prime} C_{2}$. The control connector, J_{3}, and the meter jark, J_{4}, are set

Fig. 20-19 - Inside view of the modulator for the bandsuitching mobile transmitter.

Adjustment

The transmitter will operate satisfactorily with any supply delivering 300 to 500 volts. Naturally, the power output will be commensurate. With a 300 -volt supply, the total current, including that of the modulator, and with the output stage loaded to about 55 ma ., will run approximately 90 ma . and up to 125 ma . with modulation. At 450 volts, the total current will be near 130 ma . increasing to 170 ma . under modulation, the output-stage cathode current running about 130 ma . fully loaded. The output stage should operate properly with a grid current of 0.5 to 2 ma . If it exceeds this value the output circuit of the oscillator should be detuned to limit the grid current. The audio control should be preset to give adequate modulation.

In all cases, the output stage operates as a straight amplifier. For $27-29-\mathrm{Mc}$. output, a crystal in the $7-\mathrm{Mc}$. region is required, and the output circuit of the oscillator is tuned to the fourth harmonic.

Mobile Gear with Quick-Heating Filaments for 50 and 144 Mc .

A worth-while saving in battery drain can be made by using filament-type tubes in the mobile station, arranging the control circuits so that the filament voltage is applied simultaneously with the starting of the generator or vibrator supply. The mobile transmitters shown in Figs. 20-21 to 20-29 combine operation on 50 and $1+4$ Mc. They use Hytron instant-heating filament tubes throughout. All the necessary control and power-supply circuits are given in the sehematic diagrams.

Fig. 20-21 shows the three units. At the left is the 144 -Mc. transmitter, with the $50-\mathrm{Mc}$. rig at the right. The modulator, shown between them, may be used with either unit. By means of suitable interconnecting cables, connections for which are shown in the schematic diagrams, it is possible to select either band by operation of a single switch at the control position. Operation thereafter is controlled entirely by the push-to-talk switch on the microphone.

Both units use Valpey type CM-5 crystals in the $24-2 \overline{6}-\mathrm{Mc}$. range, with a 2 E 30 Tri-tet oscillator doubling to 48-54. Me. The oscillatordoubler drives a liytron 5516 amplifier directly in the $50-\mathrm{Mc}$. transmitter. A Type 5812 tripler drives the 5516 final in the $14+$ - Me, rig. The modulator uses two 2E30s driven directly by a carbon microphone. Coaxial output fittings are provided for antenna connection, and a series-tuned antenna coupling circuit is included in each unit. Note that the jacks for metering purposes are recessed in back of the panels, to prevent contact with the high voltage, a danger spot in many mobile installations.

The 50-Mc. R.F. Section

The $50-\mathrm{Mc}$. r.f. unit, Figs $20-22,20-23$, and $20-24$, is built on an aluminum chassis 4 inches square and 2 inchos high. The panel is 4 inches square, with a half-inch lip folded over across the bottom for fastening to the
chassis. Arrangement of the parts is obvious from the photographs. It will be seen that the screen dropping resistor, R_{2}, is a lower value in this unit than in the $1+4-\mathrm{Mc}$. one. More oscillator power was required, as the final stage is driven directly, and the value of the sereen resistor is a good means of controlling oscillator output.

No neutralization of the final was required, but a slight regenerative tendency at some condenser settings was corrected by the insertion of R_{5}, a $22-0 \mathrm{hm}$ resistor, at the grid terminal of the 5516 .

The 144-Mc. Portion

The 2-meter r.f. section is built on a standard $2 \times 5 \times 7$-inch chassis, with a 6×7-inch

Typical Operating Conditions in the 50- and 144-Mc. Mobile Transmitters of Fig. 20-21 When Used with a 300 -Volt Supply.			
Stage	Plate Current	Screen loltage	Grid Current
50-Mc. Osc.	30 ma .	200 v .	-
144-Mc. Osc.	30		-
144-Mc. Tripler	40	150	-
50-Mc, Amp.	60	220	3 ma .
144-Mc. Amp.	60	160	3
Modulator	50-80	300	-

panel. The oscillator is similar to the 6 -meter one, except as noted above. It is followed by a tripler stage using a 5812, a tube similar to the 2E30 but designed specifically for frequeney multiplication. The plate cireuit of this tube is inductively eoupled to the final grid cireuit, L_{3} and L_{4} being hairpin-shaped loops visible in the bottom view, Fig. 20-27.

Note the method of neutralization used in the final stage. The eopper fin (designated as C_{16} in Fig. 20-26) visible in the rear view of the $1+4$-Mc. unit is a device occasionally found neeessary in tetrode amplifiers. In this

Fig. 20-21 - A com. plete mobile station for 50 and 144 Mc. using quick-heating filament tubes. The 144 Me. r.f. section is at the left, the 50-Mc. portion at the right, and the modulator in the middle.

Fig. 20.22 - Rear view of the 50. Mc. r.f, section. The knob above the chassis is the cathode control. The final tank circuit is at the upper left, with antenna series tuning at the upper right.
case the physical layout was such that the gridplate capacitance was effectively negative; thus the addition of external capacitance directly from grid to plate. The position of the fin is adjusted in the normal manner. It was mate by hammering out the end of a piece of 3 í - -ineh copper tubing.

Details Common to Both Units

The Tri-tet circuit is modified for filamenttype tubes by using closely-coupled (interwound) coils in the filamont leads and tuning one of them. This cathode circuit is resonated slightly higher than the frequency marked on the erystal. It may be tuned for maximum grid current indication in the succeeding stage. There are various types of crystals for the $24-27-$ Mc. range. Until recently such crystals have been highly active but very unstable, and great care has been necessary to prevent extreme drift when they were used. Most crystal companies now supply harmonic-type crystals that are less active, but much more stable. The same cathode circuit will work with either variety, but more input will have to be run to the oscillator to achieve the same grid drive when the new type of crystal is used. If the old-type crystals are used the screen resistor, L_{2}, can be increased to as much as 120,000 ohms, dropping the total cathode current to about 20 ma . It this input the drift, with the unstable type of erystal, is not severe. It amounts to approximately 20 to 30 kc ., at 14t Me., but may be as much as ten times this value if the oscillator is not operated correctly. The newer types of erystals show a quiek drift of a few kilocycles at 144 Mc., as the plate voltage is applied, but remain fairly steady after the first few seconds.

The cathode-circuit values given are correct for either type of crystal. The cathode coils, $L_{1 \mathrm{~A}}$ and L_{IB}, are made by winding with two wires simultanoously. A coating of household cement over the windings will hold them together, giving the coil the appearance of a single winding.

Fig. 20.23 - Nehematic diagram of the 50. Me. mobite unit.
($: 1, \mathrm{C}_{4}-50-\mu \mu \mathrm{fd}$. variable (Millen 20050).
$\mathrm{C}_{2}, \mathrm{C}_{3}-15-\mu \mu \mathrm{fd}$. varialle (Millen 20015).
$\mathrm{C}_{5}, \mathrm{C}_{6},\left(\mathrm{C}_{-},\left(.9, \mathrm{C}_{10}-4{ }_{4}()\right.\right.$ - $\mu \mathrm{fl}$. mica.
$\mathrm{C}_{8}-22-\mu \mathrm{fd}$. mica or ceramic.
$\mathrm{H}_{1}-0.1$ megohm, $1 / 2$ watt.
$R_{2}-39,000$ ohems, 1 watt.
R_{3} - $\mathbf{1 0 0}$ ohms, $1 / 2$ watt.
$R_{4}-15,000$ ohms, $1 / 2$ watt.
$R_{5}-22$ ohms, $1 / 2$ watt.
$R_{6}-8010$ ohms, 2 watts.
$\mathrm{L}_{14}, \mathrm{~L}_{1 \mathrm{~B}}$ - Interwound coils, each 12 turns No. 18 enamel, $8 / 8$-inch diameter.
$1.2-7$ turns No. 18 tinned, $1 / 2$-inch diameter, $7 / 8$ inch long (B \& W Miniductor, No. 3002).
$\mathrm{L}_{3}-8$ turns Vo. 20 tinned, $1 / 2$-inch diameter, 1 inch long (B \& W No. 3002).
$L_{4}-7$ turns No. 20 tinned, $1 / 2$-inch diameter, 3 伯 inch long (B \& W No. 3003).
I_{1} - Pilot-lamp assembly with 60 - ma. bulb.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Closed-circuit jack.
J_{3} - Coaxial out ${ }^{\prime}$ ut fitting.
$P_{1}-4$-prong inalc plug (Jones P-304-AB).
$\mathrm{RFC} \mathrm{C}_{1}, \mathrm{RFC} \mathrm{K}_{2}-7-\mu \mathrm{h}$. r.f. chohe (0hmite \%.50).

Fig. 20.24-Bottom view of the $50-\mathrm{Mc}$. rig. Note the interwound cathode coil at the left.

The Modulator and Control Circuits

The modulator, Figs. 20-28 and $20-29$, is also the power-distribution unit. Control of the power system is; by the push-to-talk microphone button, or the toggle switch, S_{1}, by which the transmitter may be turned on and

Provision is made for metering the grid and plate circuits of the final stages by means of jacks in each rig. An approximate check on the final plate currents, sufficient for normal tuning-up purposes, is provided by a 60 -ma. pilot lamp connected in the high-voltage lead to the final plate coil. After a few comparisons between the bulb brilliance and observed platemeter readings it will be possible to estimate the plate current fairly closely by this means. The red jewel in front of the lamp also allows it to serve as a power-on indicator. Off-resonance or no-drive plate current in the 50-Ny. final stage may be sufficient to burn out a $60-\mathrm{ma}$. pilot lamp, so a $150-\mathrm{ma}$. bulb may be used during the initialtest phases. Once the rig is adjusted there is little likelihood that the current will exceed 80 ma . or so, which the $60-\mathrm{ma}$. lamp will take in stride.

Fik, 20.25-Rear view of the 144-Mc. mobile unit. The copper fin at the side of the final tube is a neutralizing adjustment.

Fig. 20.26 - Schematir diagram of the 141 -Mc. r.f. scetion.
$\mathrm{C}_{1}-50-\mathrm{H}_{\mu} \mathrm{fd}$. variable (Millen 20050).
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-15-\mu \mu \mathrm{fd}$. variable (Willen 20015).
C5-6. $-\mu \mu \mathrm{fl}$.-per-scetion butterfly variable (Cardwell ER.6.BFS).
$\mathrm{C}_{8}-\mathbf{3 5}-\mu \mu \mathrm{fl}$. variable (Millen 20035).
$\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21}$ - 470- $\mu \mu \mathrm{fl}$. mica.
C_{10} - 17 - $\mu \mu \mathrm{fl}$. mica.
C_{16} - Neutralizing-capacitor plate - see text and Fig. 20-25.
$\mathbf{R}_{1}, \mathbf{R}_{4}-0.1$ megohm, $1 / 2$ watt.
$\mathbf{R}_{2}-82,000$ ohms, $1 / 2$ watt.
$R_{3}-100$ ohms, $1 / 2$ watt.
$\mathbf{R}_{5}-33,000$ ohms, $1 / 2$ watt.
$R_{6}-15,000$ ohms, $1 / 2$ watt.
shielded cable can be used between the power sources, B, and the power plug, P_{1}, on the modulator. The wires carrying the filament current and the generator starting current should, of course, be heavy conductors. The cable shield can be used for the common ground, Pin 2 on P_{1}.

If the filament selector switch is located at a distance from the modulator the leads from it to J_{2} should be of wire capable of carrying 2 amperes without appreciable drop. As indi-
$\mathrm{R}_{7}-22,000$ ohms, 1 watt.
$\mathrm{I}_{1 \mathrm{~A}}, \mathrm{~L}_{1 \mathrm{~B}}$ - Interwound coils, each 13 turns No. 18 enamel, $3 / 8$-inch diameter.
I. $2-7$ turns No. 18 tinned, $1 / 2$-inch diameter, $7 / 8$ inch long (B \& W Miniductor No. 3002).
$1.3,14$ - Ilairpin loops No. 14 wire, $11 / 4$ inches long, $7 / 8$ inch wide. (See bottom view, Fig. 20-27.)
$L_{5}-6$ turns No. 14 , c.t., with $3 / 8$-inch space at center, $11 / 2$-inch diameter, 1 inch total length.

1. $-11 / 4$ turns No. 11 enamel, $3 / 8$-inch diameter.
I_{1} - Pilot-lamp assembly with $60-\mathrm{ma}$. bulb.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Closed-circuit jack.
J_{3} - Coaxial output fitting.
$\mathrm{P}_{1}-4$-prong male plug (Jones L-304-AB). $\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{3}-1.8$ - $\mu \mathrm{h}$. r.f. choke (Ohmite Z-144).
cated in the diagram, there should be 4 -conductor cables from J_{3} to the $50-$ Mc. r.f. section, and from J_{4} to the 144-Mc. unit.

The modulator uses a single stage, without a speech amplifier. Though this necessitates close talking it makes for economy and simplifies bias problems. It also keeps down powersupply noise (electrical) and car noise (mechanical). With a 300 -volt supply there is adequate audio for modulating the final stage of either rig. Bias is supplied by a 30 -volt hear-

Fig. 20.27 - Bottom view of the 144-Mc. transmitter. Note the hairpin loops in the tripler-plate and am-plifier-grid circuits. Oscillator components are at the left, the tripler in the middle, and the amplifier at the right.

Fig. $20-28$ - Bottom view of the modulator and power-distribution unit.
ing-aid battery, which should be good for two years or more of ordinary use.

Testing

Oporation of this equipment is similar to that of any transmitter using tetrode tubes,

Fig. 20-29 - Schematic diagram of the modulator unit. (Chassissize. 2 by iby zinches. Connections to the power pluy and jach s on the unit are shown at A. Dixternal power circuits are given in B,
B1 - Bias battery, 30 volts (Eveready No, 430 hearingaid type).
J_{1} - Mierophone jack, double-hution type.
$\mathrm{J}_{2}, \mathrm{~J}_{3}, \mathrm{~J}_{4}-4$-prong female plug (Jones S.304-A13).
P_{1} - 4 -prong make plug (Jones P^{\prime}-30:-AB).
S_{1}-S.p.s.t. togzle switch.
'T1 - Mirrophone transformer ('Ihordarson 1'-20.02).
T_{2} - Modulation transformer (Staneor A-3845).
except for the removal of filament voltage during stand-by periods. A supply voltage of 300 is recommended, though lower or higher voltages may be used with suitable modification of the circuit values. No more than 300 volts should be applied to any of the smaller whes, in any case, and the generator type of supply is recommended.

Bench testing can be done with an a.c. supply, though there will be some hum in the modulation. Operation should be checked, starting with the oscillator, with plate voltage applied to this stage only until it is running properly. An insulated rod, or an empty'phone phag, can be inserted in the amplifier plate jack to permit tuning the exciter portion without damaging the final tube. The accompanying dable shows the approximate voltages and currents that will result from use of a 300 -volt supply, when the rigs are properly tuned. All controls except the final plate and antenna coupling should be adjusted for maximum final grid current.

The antenna coupling eircuit shown will permit the use of almost any coaxial-line-fed antenna system. The proper method of adjustrment is to set the coupling at the loosest value that will permit the proper plate current to be drawn when the series condenser is tuned for plate current peak. If the system is properly tuned there will be little, if any, change in the position of the final plate tuning for minimum plate current, with and without the antenna connected to the coaxial output fitting.

Conclusion

Because the form factor of the mobile installation will be different with almost every car, no particular case or mounting is shown. The designs merely show practical parts arrangements and eleetrical values, leaving the shape and placement of the units to the individual constructor.

Mobile Power Supply

By far the majority of amateur mobile installations depend upon the car storage hattery as the source of power. The tube types used in equipment are chosen so that the filaments or heaters may be operated directly from the battery. High voltage may be obtained from a supply of the vibrator-transformer-rectifier type or from a small motor-generator operating from the battery.

Filaments

Because tubes with directly-heated cathodes (filament-type tubes) have the advantage that they can be turned off during receiving periods and thereby reduce the average load on the battery, they are preferred by some for transmitter applications. However, the choice of types with direct heating is limited, especially among those for 6 -volt operation, and the saving may not always be as great as anticipated, hecause directly-heated tubes may require greater filament power than those of equivalent rating with indirectly-heated cathodes. In most cases, the power required for transmitter filaments will he quite small compared to the total power consumed.

Plate Power

Under steady rumning conditions, the vi-brator-transformer-rectifier system and the motor-generator-type plate supply operate with approximately the same efficiency. However, for the same power, the motor-generator's overall efficiency may be somewhat lower because it draws a heavier starting current. On the other hand, the output of the generator requires less filtering and sometimes trouble is experienced in eliminating interference from the vibrator.

Mobile Power Considerations

Since the car storage battery is a low-voltage source, this means that the current drawn from the battery for even a moderate amount of power will be large. Therefore, it is important that the resistance of the (j-volt circuit be held to a minimum by the use of havy conductors, no longer than necessary, and good solid connections. A heaveduty relay should be used in the line between the battery and the plate-power unit. An ordinary toggle switch, located in any convenient position, may then be used for the power control. A second relay may sometimes be advisable for switching the filaments. If the power unit must be located at some distance from the battery
(in the trunk, for instance) the 6 -volt cable should be of the heavy military type.

A complete mohile installation may draw 30 to 40 amperes or more from the 6 -volt battery. This requires a considerably increased demand from the car's battery-charging generator. The voltage-regulator systems on cars of recent rears will take care of a moderate increase in demand if the ear is driven fair distances regularly at a speed great enough to ensure maximum charging rate. However, if much of the driving is in urban areas at slow speed, or at night, it may be necessary to modify the charging system. Special commu-nications-type generators, such as those used in police-car installations, are designed to charge at a high rate at slow engine speeds. The charging rate of the standard system can be increased within limits by tightening up on the voltage-regulator spring. This should be done with raution, however, cherking for exeessive generator temperature or abnormal sparking at the commutator. The average car generator has a rating of 35 amperes, but it may be possible to adjust the regulator so that the generator will at least hold even with the transmitter, receiver, lights, heater, etc., all operating at the same time.

Another scheme that has been used to inerease generator output at slow driving speeds is to decrease slightly the diameter of the generator pulley. This means, of course, that the generator will be running above normal at high driving speeds. Some generators will not stand the higher speed without damage.
lf higher transmitter power is used, it may be necessary to install an a.e. charging system. In this sytem, the generator delivers a.c. and works into a reetifier. A charging rate of 75 amperes is easily obtained. Commutator trouble often experienced with d.e. generators at high current is avoided, but the cost of such a system is rather high.
some mohile operators prefer to use a separate battery for the radio equipment. Such a system can be arranged with a switeh that cuts the auxiliary battery in parallel with the car battery for charging at times when the car battery is lightly loaded. The auxiliary battery can also be charged at home when not in use.

A tip: many mobile operators make a habit of carrying a pair of heavy cables five or six feet long, fitted with elips to make a connection to the battery of another car in case the operator's battery has been allowed to run too far down for starting.

Mobile Antennas

Most practicable mobile antenna systems are basically of the quarter-wave type, the car body serving as "ground." Dixceptions are the half-wave systems sometimes used for 50 and 114 Mc. At 29 Mc., a simple quarter-wave
vertical whip (approximately 8 feet) is feasible, A quarter-wave system for lower frequencies is simulated by the addition of loading inductance and eaparitance to the 10 -meter whip to make the system resonant at the operating

460

frequency. Capacitive loading at the top end of the whip is preferable from the consideration of radiating efficiency, since it increases the current in the upper portion of the antenna more than any other loading system. This is desirable because that is the part of the antenna that is highest above ground and from which most-effective radiation takes place. However, top loading in most forms presents a mechanical problem, since it places a considerable weight at the top of the light whip structure. For this reason, it is often considered preferable to place the loading coil at the base of the whip antenna. More recently, a compromise has found favor in many mobile installations. In this arrangement, popularly called center loading, the loading coil is placed part way up on the antenna. The section of the whip above the loading coil serves as a loading capacitance as well as part of the radiating system.

A BASE-LOADED ANTENNA

The diagram of a base-loaded mobile antenna system is shown in Fig, 20-30. The cat pacitance of the antenna is combined with the inductance of the loading coil at the base to make the system resonant. The capacitance of a vertical antenna shorter than a quartor wavelength is given b_{y} :

$$
C_{\mathrm{n}}=\frac{17 L}{\left[\left(\log _{\mathrm{e}} \frac{2+L}{D}\right)-1\right]\left[1-\left(\frac{F L}{246}\right)^{2}\right]}
$$

where
$C_{a}=$ capacitance of antenna in $\mu \mu \mathrm{fd}$.
$L=$ antenna height in feet
$D=$ diameter of radiator in inches
$F=$ operating frequency in Mc.

$$
\log _{\mathrm{c}} \frac{24 L}{D}=2.3 \log _{10} \frac{24 L}{D}
$$

The graph of Fig. 20-31 shows the capacitance of whips of various diameters and lengths. From this, the value of loading-coil inductance required to resonate at the desired frequency may be calculated.

Fig. 20-31-Graph showing the capacitance of short vertical antennas for various diameters and lengths.

Fig. 20-32 shows the installation of a haseloaded antenna on the rear apron of a car. The coil form is a wood dowel $13 / 8$ inches in diameter and 2 feet long. A hole 4 inches deep to fit the radiator snugly is drilled in the top end of the dowel. If the whip is hollow, it should be strengthened at the base by plagging it with dowel or aluminum rod for a distance of about 2 feet.

For 3.9 Me ., and a capacitance of $27 \mu \mu \mathrm{fl}$. ($1 / 2$-inch-diameter whip, 8 feet long), the form is close-wound with 100 turns of No. 14 enameled wire. The coil winding, which is about 8 inches long, is centered on the dowel form and the space at the bottom is used for mounting on the car. For 14 Mc., approximately 10 turns are required. A tap can be provided on the 75 -meter coil so that all but 10 turns may be shortcircuited.

As shown in Fig. 20-30, the antenna is fed with $\mathrm{RG}-8 / \mathrm{U}$ coaxial cable linked to the output tank coil. A variable condenser, C_{t}, is provided to tune out the reactance of the link. This condenser may be enclosed in a case and mounted near the base of the antenna, or placed at the other end of the line on the transmitter chassis.

Fig. 20.32 - The base loading coil and tuning condenser mounted on the rear apron of W2N..K's car.

A TUNABLE CENTER-LOADED ANTENNA FOR 75 METERS

The installation of a center-loaded whip for 75 meters is shown in Figs. 20-33 and 20-3-4 To farilitate aceurate adjustment of resonance, the coil is fitted with a movable brass slug that acts principally as a small variable capacitance, as shown in the sketch of Fig, 20-35. The coil shown has an inductance of $80 \mu \mathrm{~h}$. It consists of 73 turns of No. 12 enameled wirc close-wound on a 2 -inch diameter bakelite tube. The tubing is boiled in household paraffin bofore winding, and the eompleted winding is dipped several times in the same substance to make it weather-resistant. Details of the assembly are shown in Fig. 20-35.

The coil is fastened to the top of a 27 -inch length of $1 / 2$-ineh i, d, copper pipe. The ends of the pipe are plugged with brass inserts sweatsoldered in. The inserts are drilled and tapped for 5/16-18 machine screws. The portion of the antenna above the loading coil is a 40 -inch collapsible whip with a 34 -inch length of $1 / 8$ inch brazing rod soldered to the top to make the overall length 74 inches. The entire atssembly is designed to be fastened to the rear bumper apron with two $1 / 4$-inch bolts. On cars: without this apron, a bumper fitting may be devised.

The antenna is fed with a length of RG-8/[${ }^{\dagger}$ coaxial cable. The coupling and ehange-over rircuit is shown in Fig. 20-33. Keeping the output tank circuit tuned to resonance, the slug is adjusted until the plate current rises and passes through a peak. If this peak does not come up to rated loaded plate current, the coupling to the output tank should be increased.

AN ALL-BAND ANTENNA

An antenna system that may be adjusted for operation in any band from 2 meters to 160 is illustrated in the sketch of Fig. 20-36. In the

Fig. 20-33 - Electrical diagram of the slug-tuned mobile antenna.
C_{1} - Tunable brass slug. See text and Fig. 20.34.
L_{1} - 73 turns No. 12 enameled, close-wound on 2 -inch diameter bakelite form.
$\mathrm{L}_{2}-4$-turn coupling coil. See text.
$\mathrm{R}_{y_{1}}$ - Antenna changeover relay.

Fig. 20-34-A close-up view of the hottom section of the center-loaded antenna of $H 2 A B S$, showing the mounting base and the loading coil. 'lhe tuning adjustment screw can be seen at the bottom end of the coil.
arrangement shown, a feed-through insulator is set in the roof of the car, near the rear. 144-$50-$ and even 28 -Mc. $1 / 4$-wave whips can be attached at this point and fed with a short coavial line link-coupled directly to the output tank circuit. For the lower frequencies, a center-loaded system is used. As the sketch shows, the antenna for lower frequencies consists of a 12 -inch and a 45 -inch section of whip at the respective bottom and top ends of the loading eoil. This assembly plugs into a 30 -inch bakelite-tubing mounting, Also part of the radiating system is a 43 -inch wire connecting the bottom of the whip to the feed-through insulator in the top of the car. This arrangement is fed from a parallel-tuned antenna tank circuit link-coupled to the output amplifier.

The bakelite mounting is $11 / 4$ inches o.d. and $3 / 4$ ineh inside. It is screwed on with standard iron-pipe fittings to a steel bracket bolted under the bumper guard. The top of the mounting is fitted with a Johnson No. $703 / 8$-inch jumbo banana jack so that the whip can be easily detarched.

The loading coil consists of 200 turns of No. 22 d.s.c. wire, tapped every 5 turns, wound on a $12-$ inch section of $11 / 4$-inch bakelite tubing. The turns are spaced the diameter of the wire and the taps are made by wrapping small soldering lugs around the wire and soldering them fast. The coil is then given two coats of lacquer to make it weather-resistant. Plugs made from l-inch-diameter brass rod are fitted into both ends of the tubing. The plugs are drilled to

Fig. 20-35 - Detail sketch of the Ioading-eroil form and monnting for the adjustable renter-loaded mobile ant. tenna. (1) and (2) are hrass pond plates. (3) is the tuning slug. (4) is the brass mounting plate. (5) is a mometing liracket made of alumimum.
take jumbo-size banana jacks. The antemat soctions are of $3 / 8$-inch rod to fit the jacks. The entire assembly may be taken apart in seronds.

For 10 -meter operation of the bumpermounted antenna, the loading coil is shorted out. The 20 -meter hand is covered with 5 to 10 turns, the remainder heing shorted out. (On 40, the sestem resonates with 35 to 60 turns, while 135 to 190 turns are required for the 75 -meter band. The setting of the tap is critieal for any given frequency. The system may be operated on 160 metors by making a second loading eoil to plug into the top of the first. This should

Fig. 20-36 - The all-band mohile antenna imstallation. As an alternative to feeding through an insulator in the roof of the ear, the ronnection to the coupling circuit may be made through the bakelite tubing mount, when the transmitter is mounted in the car trank.
have 325 turns of No. 24 enameled wire, wound similarly to the first coil. No taps are necessary, however, adjustment being made on the first coil. The antemat resonates at 1820 ke . with the first coil set at 140 turns and at 1880 ke. with 80 turns.

- ANTENNAS FOR 50 AND 144 MC.

A common type of antenna employed for mobile operation on 50 and 144 Me is the quarter-wave radiator which is fed with a

coaxial line. The antenna, which may be a flexible telescoping "fish pole," is mounted in any of several places on the car. Quite a good match may be obtained by this method with the 50 -ohm coaxial line now available; however, it is well to provide some means of tuning the system, so that all variables can bo taken care of. The simplest tuning arrangemont consists of a variable condenser connected between the low side of the transmitter coupling coil and ground, as shown in Fig. 20-37. This condenser should have a maximum caparitance of 75 to $100 \mu \mu \mathrm{fl}$. for 50 Me ., and should be adjusted for maximum loading with the least roupling to the transmiter. Some mothod of varying the compling to the tramsmitter should be provided.

The short antenna required for 144 Mc . (approximately 19 inches) permits mounting the antenna on the top of the car. This provides good eoverage in all directions, the car boty arting as a ground plane. When the antenna is mounted elsewhere on the car, it is apt to show quite marked directivity. Because of this it is desirable to use the same antenna for both transmitting and receiving.

Measuring Equipment

To comply with FCC regulations it is necessary that the amateur station be equipped to make a few relatively simple measurements. For example, the regulations require that means be available for checking the transmitter frequency to make sure that it is inside the band. The regulations also impose certain requirements with respect to plate-supply filtering, stability and purity of the transmitted signal, measurement of d.c. plate power input, and
depth of modulation in the case of 'phone transmission.

In many cases all these measurements can be made to a satisfactory degree of accuracy with no more auxiliary equipment than the regular station receiver. However, a better job usually can be done by building and calibrating some relatively simple test gear. Too, the progressive amateur is interested in instruments as an aid to better performance.

Frequency Measurement

Types of Equipment

Frequency-measuring equipment can be divided into two broad classes: oscillators of various types generating signals of known frequency that can be compared with the signal whose frequency is unknown, and adjustable resonant circuits.

Instruments in the first classification are the more accurate. Two types are commonly used by amateurs, the secondary frequency standard and the heterodyne frequency meter. The secondary frequency standard usually generates a frequency of 100 kc . and employs a circuit that is rich in harmonic output. As a result, it supplies a series of frequencies, all multiples of 100 kc ., which provide accurate calibration points throughout the communications spectrum. The more elaborate instruments of this type include frequency dividers (multivibrators) to supply intermediate calibration points; a divisor commonly used is 10 , thus signals are generated at intervals of 10 kc . when the fundamental frequency is 100 kc .

The conventional type of heterodyne frequency meter is simply a variable-frequency oscillator. The oscillator usually is designed to cover the lowest frequency band in which measurements are to be made; measurements then can be made in higher frequency bands by using the harnonic output of the oscillator. For example, when the oscillator is set to 3560 kc . its second harmonic is 7120 kc ., its fourth harmonic is $14,240 \mathrm{kc}$, and so on. The proper frequency reading is determined by observing the fundamental frequency of the oscillator and then multiplying by the number of the harmonic that falls in the desired frequency range.

In both types of instruments - secondary standard and heterodyne meter - the inherent accuracy is a fixed percentage of the
frequency at which the measurement is made. The secondary standard is usually the more accurate, since it can be made crystal-controlled with attendant high stability. However, it lacks the flexibility of the heterodyne meter in that it does not in itself provide a means for making measurements between adjacent harmonics of the oscillator or multivibrator. A third type of instrument uses a secondary standard in conjunction with a variable oscillator for interpolation. When these are combined in the "additive" frequency meter as described later, the result is a frequency meter that has essentially the accuracy of the secondary standard but has the direct measurement feature of the heterodyne meter.

Frequency-measuring equipment incorporating oscillators is used in conjunction with a regular receiver. The process of measurement consists of comparing the signal from the frequency meter with the signal whose frequency is to be measured. Nonoscillating types of frequency meters operate by absorbing some energy from the signal source under measurement, and in consequence are called "absorption" frequency meters. They are simply tuned circuits, adjustable over the desired frequency range, provided with some means for indicating when the energy in the circuit is maximum. Their accuracy is low compared with the oscillating types, but where approximate measurement is sufficient they have a number of desirable features.

Frequency Measurement with the Receiver

An ordinary receiver has the essential elements needed for frequency measurement. Its dial readings must be calibrated in terms of frequency, of course, before measurements can be made. Manufactured receivers are generally so calibrated; the accuracy of the calibration
will vary with the receiver model, but if the receiver is well made and has good inherent stability, a bandspread dial calibration can be relied upon to within perhaps 0.2 per cent. For most accurate measurement, maximum response in the receiver should be determined by means of a carrier-operated tuning indicator (such as an S-meter), the receiver beat oscillator being turned off. If the receiver has a crystal filter, it should be set in a fairly "sharp" position to increase the accuracy.

When checking the frequency of your own transmitter, the receiving antenna should be disconnected so the signal will not overload or "block" the receiver. Also, the r.f. gain should be reduced as a further precaution against overloading. If the receiver still blocks without an antenna the frequency may be checked by turning off the power amplifier and tuning in the oscillator alone. It is difficult to avoid blocking under almost any conditions with a regenerative receiver, and so this type is not very suitable for checking the frequency of one's own transmitter.

- THE SECONDARY FREQUENCY STANDARD

The most practical type of secondary standard for amateur use is a 100 -ke. crystal oscillator. It is verv simple to build and its harmonies will mark the edges of the amateur bands to " high degree of accuracy. A series of such "marker" signals at the band edges is all that is required, from the standpoint of making sure that the transmitter frequency is inside the band on which it is supposed to be working.

Manufacturers of $100-\mathrm{kc}$. crystals usually supply circuit information for their particular crystals. The circuit given in Fig. 21-1 is representative, and will generate usable harmonics up to 30 Mc . or so. The variable condenser, C_{l}, provides a means for adjusting the frequency to exactly 100 ke . Harmonic output is taken from the circuit through a small con-

Fig. 21.I-Circuit for rrystal-controlled frequency standard. Tuhes sueh as the 6SK7, GSH7, 6AL6, etce.. are suitable.
C_{1} - $50-\mu \mu \mathrm{fd}$. variable.
$\mathrm{C}_{2}-150-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{3}-0.0022-\mu \mathrm{fd}$. miea.
$\mathrm{C}_{4}-0.01-\mu \mathrm{fd}$. paper.
$\mathrm{C}_{5}-22 \cdot \mu \mu \mathrm{fd}$. mica.
$R_{1}-0.47$ megohm, $1 / 2$ watt.
R_{2} - 1000 ohms, $1 / 2$ watt.
$R_{3}=0.1$ megohm, $1 / 2$ watt.
H_{4} - $0.15 \mathrm{megohn}, 1 / 2$ watt.

WWV SCHEDULES

Standard radio and audio frequencies are broadeast continuously from WWV, the station of the Central Radio Propagation Laboratory, National Bureau of Standards, Washington, D. C., on the following frequencies:

Mc.	Poucer (hiw.)	Audio Freq. (cycles)
2.5	0.7	$1,4.0$ or 600
5.0	8.0	1,440 or 600
10.0	9.0	$1,4.40$ or 600
150	9.0	$1,4.40$ or 600
20.0	8.5	1,410 or 600
25.0	0.1	1,440 or 600
30.0	0.1	1
35.0	0.1	1

The 1 -c.p.s. modulation is a $0.00-$-second pulse, the leginning of which marhs the beginning of each second to an accuracy of one part in $1,000,000$. The pulse is omitted on the 59 th second of every minute.
The 4.10 - and 600 -eyele standard audio frequencies are transmitted in alternative fiveminute periods, beginning with 600 e.p.s. in the first five-minute period of each hour.

The aceuraey of the radio and andio frequeneies is within one part in $30,000,000$. The audio frequencies are interrupted at preeisely one minute before each hour and eachs five minutes thereafter (59th minute, 4 minutes past hour, etc.): they are resumed in precisely one minute. During each silent interval the time (in GMT) is given in telegraphic code and in ES' by voice. A station announcement is given in voice on the hour and half hour.
An announcement of radio propagation eonditions is broadeast in code at 19 and 49 minutes past the hour. The letters transmitted have the following signifieance:

W-Ionospheric disturbance in progress or expected.
U - Lustable conditions expected.
N - No warning.
denser, C_{5}. There are no particular constructional points to be observed in building such a unit. Power for the tube heater and plate may be taken from the supply in the receiver with which the unit is to be used. The plate voltage is not eritical, but it is recommended that it be taken from a VR-150 regulator if the receiver is equipped with one.

Sufficient signal strength usually will be secured if a wire is run between the output terminal connected to C_{5} and the antenna post on the receiver. At the lower frequencies a metallic connection may not be necessary.

Adjusting to Frequency

The frequency can be adjusted exactly to 100 kc. by making use of the WWV transmissions tabulated in this chapter. Select the frequency that gives a good signal at your location at the time of day most convenient. Tune in the WWV signal with the receiver b.f.o. off and wait for the period during which the modulation is absent. Then switch on the $100-\mathrm{kc}$. oscillator and adjust its frequency, by means of C_{1}, until its harmonic is in zero beat with WWV. The exact setting is easily found by observing the slow pulsation in background noise as the harmonic comes close to zero beat, and adjusting to where the pulsation disappears or occurs at a very slow rate. The pulsa-
tions can be observed even more readily by switching on the receiver's b.f.o., after approximate zero beat has been secured, and observing the rise and fall in intensity (not frequency) of the beat tone. For best results the WWV signal and the signal from the $100-\mathrm{kc}$. oscillator should be about the same strength. It is advisable not to try to set the 100-kc. oscillator when the WWV signal is modulated, since it is difficult to tell whether the harmonic is being adjusted to zero beat with the carrier or with one of the sidebands.

"Marker" Frequencies

Identification of the $100-\mathrm{kc}$. harmonics is usually not difficult in or near the amateur bands because the normal activity in those bands will show which 100-ke. harmonics define the band limits. In other regions harmonics can be identified by counting them off from one whose frequency is known. The frequency of a given harmonic can often be identified by comparing it with a commercial or government station of known frequency operating in the vicinity. Alternatively, a "marker" crystal can be used. A favorite frequency for such a marker is 1000 kc. Harmonics of a $1000-\mathrm{kc}$. oscillator are easily identified on the average receiver because they are fairly widely spaced, and once the receiver setting for a multiple of 1000 kc . is determined it is an easy matter to count off the $100-\mathrm{kc}$. points between. Other marker frequencies can of course be used - for example, a frequency near 2000 ke ., which is in the range of crystals available for amateur use. The circuit given in Fig. 21-1 will work satisfactorily with such crystals, so the marker points can be determined simply by inserting a suitable crystal.

the heterodyne frequency METER

The basis of the heterodyne frequency meter is a completely-shielded oscillator with a precise frequency calibration. The oscillator must be so designed and constructed that it can be accurately calibrated and will retain its calibration over long periods of time.

The oscillator used in the frequency meter must be very stable. Mechanical considerations are most important in its construction. No matter how good the instrument may be electrically, its accuracy cannot be depended upon if the mechanical construction is flimsy. Inherent frequency stability can be improved by avoiding the use of phenolic compounds and thermoplastics (bakelite, polystyrene, etc.) in the oscillator circuit, employing only high-grade ceramics instead. Plug-in coils ordinarily are not acceptable; instead, a solidlybuilt and firmly-mounted tuned circuit should be permanently installed. The oscillator panel and chassis should be as rigid as possible.

To be usable over a wide frequency range the heterodyne frequency meter must have strong harmonic output. A suitable circuit, including a harmonic amplifier, is shown in Fig. 21-2. The mechanical construction should parallel that of the VFOs shown in the transmitting chapter. In the oscillator circuit, an adjustable padding condenser, C_{2}, is provided so that the tuning range can be set to cover whichever band is selected for the fundamental frequency. In addition, it may be necessary to adjust the coil inductance slightly in order to make the range cover as much as possible of the tuning dial.

Fig. 21-2 - Heterodyne frequency meter with harmonic amplifier.
$\mathrm{C}_{1}-100-\mu \mu \mathrm{fd}$. variable (tuning).
$\mathrm{C}_{2}-100-\mu \mu \mathrm{fd}$. variable (band-set).
C_{3} - $220-\mu \mathrm{fd}$. silver mica (padder).
$\mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{10}-100-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{9}-0.01-\mu \mathrm{fd}$. paper.
$\mathrm{K}_{1}, \mathrm{~K}_{3}-0.47$ megohm, $1 / 2$ watt.
$\mathrm{H}_{2}-10,000$ ohms, 1 watt.
$\mathrm{R}_{4}-330$ ohms, 1 watt.
$\mathrm{H}_{5}-25,000$-ohm potentiometer.
L_{1} - For 3500-4000 kc. fundamental: 18 turns No. 18 on 1 -inch form, length $1 \frac{1}{2}$ inches. Cathode tap

5 turns from ground end.
For 1750-2000 ke. fundanental: 36 turns No. 20 d.c.c. close-wound on 1 -inch form. Cathode tap 10 turns from ground cud.
$\mathrm{L}_{2}, \mathrm{~L}_{3}-2.5-\mathrm{mh}$. r.f. choke.
$\mathrm{L}_{4}-24$ turns No. 18 enam. close-wound on $1 / 4$-inch form.
L_{5} - 11 turns No. 18 enam. elose-wound on $1 / 4$-inch form.
$\mathrm{L}_{6}-2$ turns No. 16 spaced $1 / 2$ inch, diameter $1 / 4 \mathrm{inch}$. S_{1} - 4-position 1-pole ccramic wafer switch.

Although the oscillator alone will give satisfactory output in the lower-frequency amateur bands, better results at 28 Mc. and higher are obtained by using the 6.AC7 harmonic amplifier. The 6A('7 plate circuit is broadly tuned by means of switched coils resonating, with the circuit capacitances, at 144,50 and 28 Mc. A radio-frequency choke is connected to the fourth switch position; this gives ample signal strength at 14 Mc . and lower frequencies. Potentiometer R_{5} in the output circuit makes it possible to reduce the strength of the signal from the frequency meter to the value desired for measurement purposes.

The various amateur bands are covered by the following harmonics: 3.5-4 Alc, fimdamental; 7-7.3 Mc., 2nd harmonic; 14-14.4 Mc., 4th: 26.96-27.23 Mc., 7th; 28-29.7 Mc., 8th; 50-54 Me., 14th; 144-148 Mc., 40th. At lower frequencies a short length of wire connected to the output terminal will give ample signal strength under average conditions, but in the v.h.f. range closer coupling - such as running the wire in close proximity to the receiving antenna lead, or actually connecting it to the antenna post through a small fixed condenser - may be necessary to get a good signal.

Calibration

The heterodyne frequency meter may be calibrated against the harmonics of a $100-\mathrm{ke}$. secondary standard of the type described in the preceding section, using a receiver as an auxiliary. For example, suppose the oscillator fundamental range is $3 . \overline{0}-4$ Mc. Then if the receiver is adjusted to pick up the fifth harmonic of the oscillator (17.5 to 20 Me) and the harmonic is beat against 100 -ke, points from the crystal oscillator in that range, 100-ke.

Fig. 21-3- Additive frequency meter with self-rontained power supply. The small knots are for correction of drift so that both the $100-\mathrm{ke}$. erystal oscillator and V(O) ean be set to exaet frequency. Dial calibration is in 1000 -cycle intervals. This unit can be used for higharcuracy frequency measurement at all freqnencies from looke. through 30 Me .
intervals on the fifth harmonic will give 20-ke. intervals on the fundamental. With a straightline capacitance condenser at (v_{1}, the relationship between dial divisions and frequency is almost linear, and marking off the dial at the proper intervals between actual calibration points will result in a calibration of sufficient accuracy.

INTERPOLATION-TYPE FREQUENCY METER

I3y using a variable-frequency oscillator of restricted tuning range to interpolate between the harmonies generated by a 100 -kc. erystal standard, it becomes possible to measure frequency with an accuracy that is more than adequate for all practical purposes. In the frequency meter shown in Figs. 21-3 to 21-6, inclusive, this interpolation is acconıplished by modulating the harmonic output of the 100 -ke. oscillator with the output of a $100-$ 150-ke. variable oscillator. As in ordinary telephony, the modulation process sets up side frequencies that add algebraically to each harmonic, hence the name "additive frequency meter." The sidebands appear as signals of adjustable frequency between the $100-\mathrm{kc}$. harmonics.

To cover a $100-\mathrm{kc}$. range, the interpolation oscillator need cover only an actual tuning range of 50 ke . This is because both sum and difference frequencies appear. For example, if the VFO is set at 100 ke ., this frequency will add to and subtract from each harmonic of the crystal oscillator. Thus the erystal harmonic at 6900 ke., when modulated by 100 kc ., will produce side frequencies at 7000 kc . and 6800 ke.; likewise, the crystal harmonic at 7200 kc . will have side frequencies at 7300 and 7100 ke . If the VFO is set to 150 kc ., the same crystal harmonics will have side frequencies at 7050 and 6750 kc ., and at 7350 and 7050 kc ., respectively. In the latter case the upper side frequency of the $6800-\mathrm{ke}$. harmonic coincides with the lower side frequency of the $7200-\mathrm{kc}$. harmonic, both being at 7050 ke . Hence the same VFO signa!, in tuning from 100 to 150 kc ., covers the range from 7000 to 7050 kc ., and from 7100 to 7050 kc ., simultaneously. This occurs between each pair of 100-kc. erystal harmonics throughout the spectrum. Since the side frequencies move in opposite directions when the tuning of the VF() is varied, the interpolation scale is calibrated to read from $0-50 \mathrm{kc}$. (corresponding to varying the actual VFO frequency from 100 to 150 kc .) in one direction, and from $50-100 \mathrm{kc}$. in the opposite direction.

The circuit diagram of the instrument is shown in Fig. 21-4. A double triode is used as a combination VF ()-amplifier, the amplifier being of the cathode-follower type to provide good isolation. The output of the amplifier goes through a low-pass filter (C_{13}, C_{14}, C_{15}, L_{2}, L_{3} and R_{7}) to prevent oscillator harmonies

Fig. 21-4 - Cirenit diagram of the additive frequency meter.
(:1 - 25- $\mu \mu$ fd. variable (Millen 200025) (drift corrector).
($\dot{2}_{2}-100$ - $\mu \mu$ fid. variable (1 illen 26100) (padder).
(3 - 250- $\mu \mathrm{fd}$. variable (National SEH-250) (tming).
($4, \mathrm{C}_{5}, \mathrm{C}_{23}-0.0022-\mu \mathrm{fd}$. mica.
($6, \mathrm{C}_{7}, \mathrm{C}_{19}-47 \mathrm{O}_{-\mu \mu} \mathrm{fA}$. mica.
C $8, \mathrm{C}_{16}, \mathrm{C}_{18}-0.001-\mu \mathrm{fl}$. mica.
C. $\mathrm{C}_{1}, \mathrm{C}_{11}, \mathrm{C}_{20}-0.1-\mu \mathrm{fd}$. paper.
$\mathrm{C}_{10}, \mathrm{C}_{12}, \mathrm{C}_{17}, \mathrm{C}_{25}-0.01-\mu \mathrm{fl}$. paper.
$\mathrm{C}_{13}, \mathrm{C}_{15}-680-\mu \mu \mathrm{fd}$. mica.
(C_{14} - I $360-\mu \mu \mathrm{fd}$. mica (two $680-\mu \mu \mathrm{fd}$. units in parallel).
($\mathrm{i}_{21}-150-\mu \mu \mathrm{ff}$. mica.
($22-50-\mu \mu \mathrm{fd}$. variable (Millen 26050).
$\mathrm{C}_{24}-22-\mu \mu \mathrm{fd}$. mica.
(i26-100- $\mu \mu \mathrm{fd}$. mica.
(i27-15- $\mu \mu \mathrm{fd}$. variable (Willen 20015).
(.28, C $29-8-\mu \mathrm{fd}$. electrolytic, 4.50 volts.
$\mathrm{R}_{1}-47,000$ ohms, $1 / 2$ watt.
$\|_{2}, \mathbb{R}_{10}-22,000$ ohmes, I watt.
$\mathrm{l}_{3}-3300$ ohms, $1 / 2$ watt.
$\mathrm{K}_{4}-2200$ ohms, $1 / 2$ watt.
from being applied to the 6SA7 modulator or mixer tube. The output of the 6SII7 100-ke. erystal oscillator is fed through a harmonic amplifier (one 6SLA section) before also being applied to the mixer tube, the purpose being to level off the harmonic strength throughout the spectrum as much as possible. The plate cirruit of the mixer is likewise adjusted so that the output signal is as uniform in strength as possible up to 30 Mc . The spare triode section of the 6SL7 is used as an auxiliary crystal

Fig. 21-5-. Chassis view of the additive frequeney meter. Immediately in front of the power transformer are the rectifier and voltage-regulator tulves. The loo.ke. crystal, mounted in a metal-tule shell (James Knights), is just to the right of the power transformer. The tubes along the rear edge, from left to right, are the 6.815 , 6S1,7, and 6SA?. The marker erystal is immediately in front of the $6.51,7$. The IFO eoil is at the lower right, with the 6SV7 just behind it. The shaft for the oscillator padder projects through the chassis to the right of the tuning condenser.
$R_{5,}, R_{12}, R_{14}, R_{18}-0.47$ megohm, $1 / 2$ watt,
$\mathrm{K}_{6,}, \mathrm{~K}_{15}, \mathrm{~K}_{19}-1000$ ohms, $1 / 2$ watt.
$11_{7}-1500$ ohms, $1 / 2$ watt.
$1 \mathrm{R}_{8}-2500$ ohms, 10 watts.
$\mathrm{R}_{\theta}-220$ ohms, $1 / 2$ watt.
$R_{11}-0.22$ megohn, $1 / 2$ watt.
$R_{13}-0.1$ megohm, 1 watt.
$\mathrm{R}_{18}-0.1$ megohm, $1 / 2$ watt.
$11_{17}-0.15$ megrim, $1 / 2$ watt.
I_{11} - Variable from app. 8 to 11 mh . (Millen 65000-35).
$\mathrm{L}_{12}, \mathrm{I}_{3}-2.5-\mathrm{mh}$. r.f. choke ((ational li-50).
$\mathrm{L}_{4}-10 \mu \mathrm{~h}$. (Xational $18-60$).
$\mathrm{I}_{5}-100 \mu \mathrm{~h}$. (National R-33).
$\mathrm{I}_{6}-7 \mu \mathrm{~h}$. (Ohmite $\mathrm{Z}-50$).
L_{7} - 40 -ma. filter choke.
1-Pilot-lamp assembly.
$S_{1}, S_{2}, S_{3}, S_{4}-S_{\text {.p.s.t. }}$ toggle.
T_{1} - Power transformer, 275 carh side e.t. at 50 ma.; 6.3 v . at 2.5 amp .; 5 v . at 2 amp . (Thordarson T22li30).
oscillator so that a marker crystal can be used for identification of the 100 -ke. crystal harmonics.

Calibration

To set up the instrument, it is necessary first to adjust the $V^{\prime} F()$ range exactly to $100-$

Fig. $21.6-$ Bottom view of the frequeney meter. Parts ean hew identified by reference to the tubes with which they are arsoeriated (sec top view).
frequeney is $2100 / 20=105 \mathrm{kc}$. Mark this point " 5 " on the scale, move the receiver to 2200 kc , and increase the VFO frequency until its 20th harmonir coincides with 2200 kc ., giving the 10 kr . point. Continue until the scale is ralibrated at each 5-kc. point up to 50 ke .

The next step is to calibrate at $2-\mathrm{ke}$. intervals, and for this purpose it is necessary to increase the strength of the harmonics. The marker oscillator can be used as an amplifier, by removing the crustal and making the connections shown in Fig. 21-7A. Clip leads are satisfartory. It is necessaryto replace the 6SL7, but do not put the 6s: 17 in its socket. Tune in the $5000-$ ke . harmonic of the $100-\mathrm{kc}$. crystal orillator, set the VPO to 100 ke . by beating its 50th harmonic with the $5000-\mathrm{kc}$. harmonic of the crystal, and proceed up through the spectrum one $100-\mathrm{kc}$, point at a time, using the same

150 ke. For this purpose the 6SL7 and 6S. 17 should be out of their sockets. On any receiver rapable of tuning to 600 ke , tune in the $6 \mathrm{th}^{2}$ harmonic of the $100-\mathrm{ke}$. erystal oscillator, Connect a wire from point X to the antenna post of the recciver. Turn the VFO condenser over its whole range and note the number of harmonies heard at 600 kc. . (2 being at about 75 per cent oif full seale. Adjust L_{1}, and C_{2} if necessary, until there are just three such harmonies, one at each end of the scale and one between. This adjusts the oscillator to the proper range, by making the th harmonic of the high end and the 6 th harmonic of the low end fall at (000 ke .

After noting the strength of the oscillator harmonies, shut off the loo-ke. crystal oscillator and move the rereiver antemma connertion from X to the $\mathcal{N o} 3$ grid connection (output of the harmonic filter) on the 6S. 17 socket. It should be impossible to hear any harmonic output from the oseillator when the tuning is varied. Then insert the 6SAC in its sorket, allow it to warm up, and again tune the VFO over its range. If harmonies now beeomed audible the oscillator signal is too strong. It may be reduced be increasing the caparitance at C_{8} as much as is neressary to make the harmonics disappear.

Calibration is best carried out in a series of steps. Remove the 6SA7 and 6SLA , connect the receiver antenna post to point X, and tunc in the 2000-ke. harmonie from the 100-ke. erystal oscillator. Set the VFO at 100 kc , and bring its harmonic to zero beat with the crystal hapmonic. Mark this point " 0 " on the dial. Then tume the receiver to the 21 st crystal harmonie (2100 ke) and slowly tune the VFO higher in frequency until its harmonic is at zero beat with the crystal harmonie. At this point the $20 t h$ harmonic of the VFO coincides with the 21 st harmonic of the crustal, and so the VFO
procedure as before. The VFO harmonics will tune quite rapidly, and the previously-determined $\overline{5}-\mathrm{k}$ e, marks will ensure that the calibration points do not get out of proper order.

The impromptu harmonic amplifier alone will mot usually give enough output to repeat this process with the 100th harmonic, by means of which l-ke. points are obtained. The necessary harmonics can be generated by using a crystal rectifier as shown in Fig. 21-7B. In this rase the lead from the receiver antenna should be brought near, but not connected to, the harmonic amplifier. The crystal acts as a mixer and introduces many secondary beats, but if the coupling to the receiver is loose enough the desired harmonies will be the strongest and can easily be identified, particularly since the 2-kc. points already plotted will practically show where they should fall. There should also be no trouble in hearing the $100-\mathrm{kc}$. crystal harmonics from 10 to 15 Mc . if the receiver antenna lead is near the crystal oseillator. The calibration points should be plotted on the scale as accurately as possible.

By use of the drift-corrector condensers the arouracy of the instrument is practically the

Vig. 21.7-'Iemporary connections for amplifying VO) harmonics when calibrating. The marker-oscillator tube is used with the crystal removed.
accuracy with which the dial can be read. Interpolation to 100 creles is readily possible. The crystal-oscillator frequency can be checked against WWV and reset when accurate measurements are to be made. The VFO is easily rorrected by setting the dial to the so-kc. point and adjusting the drift-corrector condenser to bring the two side frequencies into exact zero beat. Without drift correction the instrument is reliable to the nearest kilocycle, with average construction and good compo-

Fig. 21-8- Mborption frequency meter and a typical application. The meter consists simply of the resonant cirenit LC. When coupled to an amplifier or oseillator the tube plate current will rise when the frequeney meter is tuned to resonanec. The frepuency may then be read from a calibrated condenser dial, Suitable constants for L and C may be taken from Fig, 16-10. A Hlashlight lanıp may be connected in scrics at X to give a visual indication, but it decreases the selectivity of the instrument and makes it necessary to use rather rlose coupling to the circuit being measured.
nents, at frequencies as high as 30 megacycles.
(A complete description of this system is given in May, 1949, QST'.)

ABSORPTION FREQUENCY METERS

The simplest possible frequency-measuring device is a resonant circuit, tunable over the dosired frequency range and having its tuning dial calibrated in terms of frequency. Such a frequency metrr operates by extracting a small amount of energy from the oscillatime circuit to be measured, the frequene, boing determined by the tuning setting at which the energy absorption is maximum.

This method is not capable of as high accuracy as the heterodym. methods for two reasons: First, thi. resonance indication is relativel "broad" as compared with the zer" beat of a heterodyne; second, th. neeessarily close coupling betwern the frequency meter and the circuit being measured causes some detuning in both circuits, with the result that the calibration of the frequencymeter circuit depends to some degree on the coupling to the circuit being measured. Nevertheless, an absorption wavemeter is a highly useful
instrument in the amateur station. It requires no power supply for its operation, which is a convenience. It also eliminates the confusion that sometimes arises because of the large number of harmonic responses that occur in making measurements by heterodyne methods; a simple tuned circuit will respond to only one frequency. This is helpful, for example, in determining the actual output frequency of a frequency multiplier in the transmiter, and eliminates the possibility that the multiplier can be tuned to the wrong harmonic.

When an absorption meter is used for checking a transmitter, the plate current of the tube connected to the circuit being checked can provide the necessary resonance indication. When the frequency meter is tuned through resonance the plate current will rise, and if the frequency meter is loosely coupled to the tank circuit the plate current will simply give a slight upward flicker as the meter is tuned through resonance. The greatest accuracy is secured when the loosest possible coupling is used.

A receiver oscillator may be checked by tuning in a steady signal and heterodyning it to give a beat note as in ordinary c.w. reception. When the frequency meter is coupled to the oscillator coil and tuned through resonance the beat note will change. Again, the coupling should be made loose enough so that a justperceptible change in beat note is observed when the meter is tuned through resonance.

An approximate calibration may be obtained by comparison with a calibrated receiver. The usual receiver dial calibration is sufficiently aecurate. A simple oscillator circuit covering the same range as the frequency meter will be useful in calibration. Set the receiver to a given frequeney, tune the oseillator to zero beat at the same frequeney, and adjust the frequency meter to resonance with the os-

Fig. 21-9-A sensitive absorption-type liequency meter with a rrytal-detector rectifier and a d,c.-millianmeter indicating cireuil. 'ihe meter is housed in a separate compartment so that it may le used with other measuring devices. The eabinct and front eover are drilled and tapped to accommodate the mounting screws for a large-size chart frame; frequency calibrations are marked on card. board held in place by the chart frame. A short strip of wood, drilled to matel the coil-form prongs, is used as a rack for the coils. Meterbox connections are shown in Fig. 21-20.
cillator as described above. This gives one calibration point. When a sufficient number of such points has been obtained a graph may be drawn to show frequency vs. dial settings on the frequency meter.

A Sensitive Absorption Frequency Meter

Figs. 21-9 to 21-11, inclusive, show an absorption frequency meter or "wavemeter" with a erystal-detector/milliammeter resonance indicator that provides a relatively high degree of sensitivity. As shown in Fig. 21-10, a resonant circuit is connceted in series with a erystal detector and a $0-1$ milliammeter (a microammeter ean be substituted for still greater sensitivity). The tank coil, L_{1}, serves as the pick-up coil, and the crystal is tapped down on the inductance in order to improve the sensitivity and selectivity of the meter. Dlug-in coils are provided so that the unit rovers a frequency range from about 1 megacerele to 16i\% megacuroles. Any type of fixed arystal detector may be used, but the v.h.f. tripes are recommended. The meter box shown at the right in l'ig. 21-9 is the same unit that is used with the volt-ohm-milliammeter described later in this chapter.

The frequency meter is housed in a $2 \times 4 \times 4$ inch metal box, the milliammeter being mounted in a separate box of the same size. The coil socket is on the top near the front edge, with the tuning condenser just below it inside the case. This arrangement keeps the tuned-circuit leads short. A headphone jack is provided for monitoring 'phone transmissions. The unit may be calibrated as deseribed in the preceding section.

A two- or three-foot antenna rod may be added to the unit to permit using the instru-

Fig. 21-10-- Circuit diagram of the alsorption-type frequeney meter.
$\mathrm{C}_{1}-140 \cdot \mu \mathrm{ff}$. variable (Millen 22140).
$\mathrm{C}_{2}-0.0015-\mu \mathrm{fl}$. midget mica.
$L_{1}-1.22-4.0 \mathrm{~V}_{\mathrm{c}} \cdot \mathrm{:} \mathbf{7 0}$ turns No. 32 enameled wire, 1. inch diam., $5 / 8$ inch long. T'ap $121 / 2$ turns from grounded end.

- 4.0-13.5 Me.: 20 turns No. 20 enameled wire, 1. inch diam., 9 in inch long. Trap $41 / 2$ turns from gromonded end.
- 13.2-44.0 Mc.: 5 turns No. 20 mameled wire, 1-inch diam., 5 íc inch long. Tap $11 / 2$ turns from grounded end.
- 39.8-16.5 Mc.: 11 airpin loop of No. 14 wire, $1 / 2$-inch spacing, 2 inches long (total length including ends which fit down into the coil form prongs). T'ap $15 / 8$ inches from grounded end.
All four coils wound on Millen 4500.4 coil forms.
J_{1} - A-prong tube socket.
J_{2} - Closed-circuit jack.
$\mathrm{P}_{1}-4$-prong male plug.
X'1AL-Type 1 N 34 .

Fig. $2 / .1 /$ - I rear view of the almorption-type frequency meter. The crystal is wired betwenn the conneetor plag at the left and the coil socket at the top. The meter hy-pass condenser is mounted between the plug and the grounded side of the phone jack. 'I'he variable-condenser terminals are conneeted directly to the coil socket.
ment for field-strength measurements. The antenna should be connected to the fop end of the tank coil, L_{1}. The rod antenna may be undesirable when the frequencies of individual simultancously-operating eireuits are to be checked - as in the case of a multistage transmitter with frequency multipliers - because the antenna increases the sensitivity to such an extent that it may be difficult to identify the output of a particular circuit. It may be convenient to intereonnect the two units by moans of a length of lamp eord or coaxial cable of any reasonable length (up to several hundred feet) when the moter is being used as a field-strength measuring deviee.

In addition to the uses mentioned in the preceding section, a meter of this type may be used for final adjustment of neutralization in r.f. amplifiers. For this purpose it may be loosely coupled to the plate tank coil. Alternatively, L_{1} nay be removed and the final-amplifier link output terminals connceted to Prongs ' 2 and 4 in the coil socket. The later method tends to ensure that the piek-up is from the final tank coil only.

LECHER WIRES

At very-high and ultrahigh frequencies it is possible to determine frequeney by actually measuring the length of the waves gencrated. The measurement is made by observing standing waves on a two-wire parallel transmission line or Lecher wires. Such a line shows pronounced resonance effects, and it is possible to determine quite aceurately the carrent loops (points of maximum current). The physieal distance between two consecutive current loops is equal to one-half wavelength. Thus the wavelength can he read directly in meters (39.37 inches $=1$ meter; 0.3937 inch $=1 \mathrm{~cm}$.) ,
or in centimeters for the very-short wavelengths.

The Lecher-wire line should be at least a wavelength long - that is, 7 feet or more on 144 Mc . - and should be entirely air-insulated except where it is supported at the ends. It may be made of copper tubing or of wires stretched tightly. The spacing between wires should not exceed about 2 per cent of the shortest wavelength to be measured. The positions of the current loops are found by means of a "shorting bar," which is simply a metal strip or knife edge which ean be slid along the line to vary its effective lengtl. The system can be used more conveniently and with greater accuracy if it is built up in permanent fashion and provided with a shorting bar maintained at right angles to the wires (Fig. 21-12). The support may consist of two picees of " $1-b y-2$ " pine fastened together with wood screws to form a " Γ "-girder, this arrangement being used to minimize bending of the wood when the wires are tightened. A slider holds the shorting bar and acts as a guide to keep the wire spacing constant.

For measuring lengths in the metric system used for wavelengt h, the supporting beam may be marked off in decimeter (10-centimeter) units. A 10 -centimeter transparent scale (obtainable at 5 \& 10 cent stores) may be cemented to the slider, extending out from the front, so that readings can be taken to the nearest millimeter. The difference between any two realings gives the half-wavelength directly.

Making Measurements

Let us suppose the frequency of a transmitter is to be measured. A convenient and fairly sensitive indicator can be made by soldering the ends of a one-turn loop of wire, of about the same diameter as the transmitter tank coil, to a low-current flashlight bulb, then coupling the loop to the tank coil to give a moderately bright glow. A coupling loop should be connected to the ends of the Lecher wires and brought near the tank coil, as shown in Fig. 21-13. Then the shorting bar should be slid along the wires outward from the transmitter until the lamp gives a sharp dip in brightness. This point should be marked and the shorting har moved out until a second dip is obtained. The distance between the two points will be equal to half the wavelength. If the measurement is made in

Fig. 21-12-One end of a typical lecher wire system. The feet at cach end keep the assembly from tipping over when in use. 'The wire is No, 16 bare solid-copper antenna wire (hard-drawn). The turnbuckles are helet in place by a 3.10×2-inch bolt through the anchor block. The other end of the line, the one connected to the pich-up loop, should be insulated.
inches, the frequeney will be

$$
F_{\mathrm{Mc}}=\frac{5905}{\text { length (inches) }}
$$

If the length is measured in meters,

$$
F_{\mathrm{Mc}}=\frac{150}{\text { length (meters) }}
$$

In checking a superregenerative receiver, the Lecher wires may be similarly coupled to the receiver coil. In this case the resonance indication may be obtained by setting the receiver just to the point where the hiss is obtained, then as the bar is slid along the wires a spot will be found where the receiver goes out

f"í, 2l-1,3-Coupling a Lecher wire system to a tranimitter tank coil. Typical standing-wave distribution is shown liy the dashed line. The distance X between the positions of the shorting bar at the current loops equals. one-half wavelength.
of oseillation. The distance between two such spots is equal to a half-wavelength.

The most accurate readings result when the loosest possible coupling is used between the line and the tank coil. After taking a preliminary reading to find the regions along the line in which resonance occurs, loosen the coupling until the indications are just discernible and repeat the measurement. As the coupling is loosened the resonance points will become sharper, which is a further aid to accurate determination of the wavelength.

The shorting bar must be kept at right angles to the two wires. A sharp edge on the bar is desirable, since it not only helps make good contact but also definitely locates the point of contact.

The accuracy with which frequency can be measured by such a system depends principally upon the technique of measurement. Careful measurement of the exact distance between two current loops is essential. An aceurate standard of length is necessary - a good steel tape, for instance - for all but rough measurements.

Signal Monitoring

Every amateur should make provision for checking the quality of his transmitter's output. This requires that some means be available in the station for reducing the strength of the signal from the transmitter to the point where its characteristics ran be examined without danger of false indications from overloading the receiving equipment.

The simplest method of checking the quality of c.w. transmissions is to use the regular station receiver. If the receiver is a superheterodyne the process may simply be that of reducing the r.f. gain to minimum and tuning to the transmitter frequency. If distant signals are stable and have "pure-d.c." tone in normal reception, then the local transmitter should, too, when the receiver gain is reduced to the point where the receiver does not overload. If the signal is too strong with the r.f. gain "olf," shorting the receiver antenna input terminals may reduce it to suitable proportions, or the mixer circuit in the receiver may be temporarily detuned to arrive at the same desired result.

An alternative method is to set the receiver on the next lower-frequency band than the one in use, then tune the receiver so that the second harmonic of its oscillator beats with the transmitter signal to produce the intermediate frequency. Higher-order harmonics also may be used for this purpose. With this harmonic method there is ordinarily no danger that the receiver will overload, because the r.f. and mixer tuned circuits are so far from resonance with the transmitter freguency. The setting of the tuning dial bears no direct relation to the transmitter freguency under these conditions, since the oscillator harmonic must maintain a constant difference with the transmitter to produce the i.f. beat.

A phone signal may be monitored in the same way, provided a headset is used for reception. Use of a loudspeaker is not usually practicable becanse the sound output feeds back to the microphone and causes howling. A crystal detector and headset may also be used for the same purpose, as described in preceding sections. In monitoring a phone signal the best plan is to have another person speak into the microphome rather than to
listen to one's own voice. It is difficult to judge quality when speaking and listening at the same time.

O MODULATION MONITOR

Fig. 21-14 is the circuit of a 'phone monitor that can be used both for aural checking and for measuring modulation percentage. When a small r.f. voltage is applied to the input circuit it is rectified by the crystal. With switch S_{1} in the "r.f." position the average value of the rectified current is measured by the 0-1 milliammeter, $1 / A$. With the switch in the "a.f." position, the audio modulation on the signal is transferred through T_{1} to a second rectifier. The average value of the rectified audio is again read by the milliammeter. The circuit constants are chosen so that if the input is adjusted to make the meter read full scale on r.f., the a.f. meter readings will be directly proportional to percentage of modulation (for voice modulation), 100 per cent modulation being reprosented by a current of 1 milliampore. Switch S_{2} provides for reversing the "polarity" of the modulation, giving a qualitative indication of the up- and down-peaks. 1 headphone jack, J_{1}, is provided for listening to the quality of the modulation. (The percentage modulation cannot be read with 'phones plugged into J_{1}, so the 'phones must be removed when readings are to be taken.)

In constructing such an instrument, care should be used to prevent r.f. piek-up in the audio rectifier circuit. This can be checked by testing the instrument on an unnodulated carrier (which must be substantially hum-free); with a full-scale reading when S_{1} is in the "r.f." position, the meter should read zero when S_{1} is switched to "a.f." The values of resistors R_{1} and R_{2} are critical and should be within plus or minus 5 per cent of the recommended values.

A sample of the modulated carrier may be coupled into the instrument through a oneturn link and a length of Twin-Lead, the link being placed within a few inches of the final tank circuit of the transmitter. The coupling betweon the link and final tank coil must be adjusted to give a full-scate r.f. reading, after

Pig. 21-14 - Circuit of directreading modulation meter.
$\mathrm{C}_{1}, \mathrm{C}_{4}-1000-\mu \mathrm{fl}$. ceramic. $\mathrm{C}_{2}-100-\mu \mathrm{ffl}$, varialle midget. C_{3} - $12-\mu \mu \mathrm{fd}$. mica, C. $-4.40-\mu \mu \mathrm{fd}$. mica, $R_{1}-1100$ ohms, $5 \%, 1$ watt. $\mathrm{R}_{2}-16,000$ ohms, 5%, 1 watt. J_{1}-Chsed-circuit jack. AL- $0-1$ ma., 100 ohms. $\mathrm{RFC}-20 \mu \mathrm{~h}$.
 Tr-Push-pull interstage transformer, $1: 1$ ratio.
C_{2} has been set for maximum reading. Alternatively, a coil that will resonate with C_{2} at the operating frequency may be connected to the input terminals and the instrument located so that a suitable full-seale reading will be obtained.

Besides indicating modulation percentage, the instrument will show carrier shift (as shown by a change in the reading, when modulating, with S_{1} in the "r.f." position) and thus detect nonlinearity in the modulated a mplifier.

Measurement of Current, Voltage and Resistance

D. C. Instruments

D.c. ammeters and volt metors are basically identical instruments, the difference being in the method of connection. An ammeter is connected in series with the circuit and measures the current flow. A voltmeter indicates the current through a high resistance comected across the source to be measured; its calibration is in terms of the voltage drop in the resistance or multiplier.

If a single instrument must be used for measuring widely-different values of current or voltage, it is advisable to purchase one that will read, at about 75 per cent of full scale, the smallest value of current or voltage to be measured. Small currents cannot be read with any degree of precision on a high-scale instrument, but the range of a low-scale inst rument can be extended as desired to take care of larger values. The ranges can be extended by the use of external resistors, commeted in series with the instrument in the case of a voltmeter, and in parallel or "shunt" in the case of an ammeter. Fig, 21-15 shows at the left the manner in which a shunt is connected to extend the range of an ammeter and at the right the connection of a voltmeter multiplier.

To calculate the value of a shunt or mult i plier it is neressary to know the internal resistance of the meter itself. If it is desired to extend the range of a voltmeter, the value of resistance which must be added in series is given by the formula

$$
R=R_{\mathrm{ma}}(n-1)
$$

where R is the multiplier resistance, R_{m} the resistance of the voltmeter, and n the scale multiplication factor. For example, if the range of a 10 -volt meter is to be extended to 1000 volts, n is equal to 1000 , 10 or 100 .

If a millitmmeter is to be used as a voltmeter, the value of series resistanee can be found by Ohm's Latw:

$$
R=\frac{1000 E}{I}
$$

where E is the desired full-seale voltage and I the full-scale reading of the instrument in milliamperes.

To increase the current range of a milliammeter, the resistance of the shunt is

$$
R=\frac{R_{\mathrm{m}}}{n-1}
$$

where the symbols have the same meanings as above.

Honemade milliammeter shunts can be constructed from any of the various special kinds of resistance wire, or from ordinary copper magnet wire if no resistance wire is available. The Copper Wire 'Table in the data chapter gives the resistance per 1000 feet for various sizes of copper wire. After computing the resistance required, determine the smallest wire size that will carry the full-scale current (at 250 circular mils per ampere). Measure off enough wire (pulled tight but not stretched) to provide the required resistance. Accuracy can be cheeked by causing enough current to flow through the meter to make it read full scale without the shunt: connecting the shunt should then give the correct reading on the new full-scale range.
(A)

(B)

(C)

Fig. 21.16-Circuits for measuring resistance. Valucs are discussed in the text,

Fip. 21.17-An inexpensive maltirange volt-ohm-milliammeter. The $2 \times 4 \times 4$-ineh cabinet at the left houses the multipliers, shunts, switch and zero-aljustment resistor The meter is mounted in the metal cabinet shown at the right. 'The units are provided with plugs and jacks so that the meter can be used independently or as the indicator component for other instruments. Connections to the volt-ohm-milliammeter, or to the meter alone, are made to the terminals momed at the top of both boxes. Handles are mounted on the cabinets to facilitate handling.

Precision wire-wound resistors used as voltmeter multipliers cannot readily be made by the amateur because of the much higher resistance required (as high as several megohms) As an economical substitute, standard fixed resistors may be used. Such resistors are supplied in tolerances of 5,10 or 20 per cent \pm the marked values. By obtaining matched pairs from the dealer's stock, one of which is, for example, 4 per cent low while the other is 4 per cent high, and using the pairs in parallel or series to obtain the required value of resistance, good accuracy can be obtained at small cost. High-voltage multipliers are preferably made up of several resistors in series; this not only raises the breakdown voltage but tends to average out errors in the individual resistors attributable to manufacturing tolerances.

When d.c. voltage and current are known, the power in a d.c. circuit can be stated by simple application of Ohm's Law: $P=E 1$. Thus the voltmeter and ammeter are also the instruments used in measuring d.c. power.

Multirange Voltmeters and Ohmmeters

A combination voltmeter-milliammeter having various ranges is extremely useful for experimental purposes and for trouble shooting in receivers and transmitters. As a voltmeter such an instrument should have high resistance so that very little current will be drawn in making voltage measurements. A voltmeter taking considarable current will give inaccurate readings when connected in a high-resistance circuit - for example, in various parts of a receiver. For such purposes the instrument should have a resistance of at least 1000 ohms per volt; a 0-1 milliammeter or $0-500$ microammeter ($0-0.5 \mathrm{ma}$.) is the basis of many multirange meters of this type. Nicroammeters having a range of $0-50 \mu$ a., giving a sensitivity of 20,000 ohms per volt, also are used.

The various current ranges on a multirange instrument can be obtained by using a number of shunts individually switched in parallel with the meter. A switch with low contact resistance must be used.

It is often necessary to check the value of a
resistor or to find the value of an unknown resistance, particularly in receiver servicing. An ohmmeter is used for this purpose. The ohmmeter is a low-current d.c. voltmeter provided with a source of voltage (usually dry cells). In the simplest form, shown in Fig. 21-16A, the meter and battery are connected in series with the unknown resistance. If a given deflection is obtained with terminals $A-B$ shorted, insertion of the resistance under measurement will cause the meter reading to decrease. When the resistance of the voltmeter is known, the following formula can be applied:

$$
R=\frac{e R_{\mathrm{m}}}{E}-R_{\mathrm{m}}
$$

where R is the resistance under measurement, e is the voltage applied ($A-13$ shorted), E is the voltmeter reading with R connected, and
R_{m} is the resistance of the voltmeter.
The circuit of Fig. 21-16A is not suited to measuring low values of resistance (below a

Fig. 21.18-Diagram of the volt-ohm-milliammeter.
$\mathrm{R}_{1}-2000$-ohm wire-wound variable.
$\mathrm{R}_{2}-3000$ ohms, $1 / 2$ watt.
R_{3} - 10 -ma. shont, 6.11 ohnis (see text).
$R_{4}-100$ ma. shunt, 0.555 olum (see text).
$\mathrm{R}_{5}-1000$-ma. shumt, 0.055 ohm (see text).
R_{6} - 1000 -wolt multiplier, 0.9 megohm, $1 / 2$ watt.
K_{7} - 100 -wolt multiplier, 90,000 ohms. $1 / 2$ watt.
R_{8} - 10 -volt multiplier, 10,000 ohms, $1 / 2$ watt.
β - $4 . \overline{5}$-volt dry battery (K_{1} urkess 5360).
P_{1} - 4 -prong male plug (for milliammeter).
$\mathrm{S}_{\text {A-13 }}$ - 9-point 2 -pole selector switch 3229J).
(Mallory

Fig. 21-19-A rear view of the volt ohm-milliammeter. The range-selector switch is mounted above the zero aljestment poteutiometer, and the shunts and maltiplliers are connected across the switeh terminals, A four-prong male plug, for connection to the meter hox, is showin at the left of the calinet. The ohmmeter hattery fits inside the case; the battery terminals should be insulated with tape or paper before the battery is installed in the bro.
hundred ohms or so) with a high-resistance voltmeter. For such measurements the circuit of Fig. 21-16B can be used. The milliammeter should be a $0-1 \mathrm{ma}$. instrument, and R_{1} should he equal to the battery voltage, e, multiplied by 1000 . The unknown resistance is

$$
R=\frac{I_{2} R_{\mathrm{m}}}{I_{1}-I_{2}}
$$

where R is the unknown,
R_{m} is the internal resistance of the milliammeter,
I_{1} is the current in ma, with R disconnected from terminals $A-B$, and
I_{2} is the current in ma. with R connected.
The formula is approximate, but the error will be negligible if e is at least 3 volts so that R_{1} is at least 3000 ohms.

A third circuit for measuring resistance is shown in lig. 21-16C. In this case a highresistance voltmeter is used to measure the voltage drop across a reference resistor, R_{2}, when the unknown resistor is connected so that current flows through it, R_{2} and the battery in series. I3y suitable choice of R_{2} (low values for low resistance, high values for highresistance unknowns) this circuit will give equally good results on all resistance values in the range from one ohm to several megohms, provided that the voltmeter resistance, R_{m}, is always very high (50 times or more) compared with the resistance of R_{2}. A $20,000-$ ohms-per-volt instrument ($50-\mu a m p$. move-
ment) is generally used. Assuming that the current through the voltmeter is negligible compared with the current through R_{2}, the formula for the unknown is

$$
R=\frac{e R_{2}}{E}-R_{2}
$$

where R and R_{2} are as shown in Fig. 21-16C,
e is the voltmeter reading with $A-B$ shorted, and
E is the voltmeter reading with R connected.
The "zero adjuster," R_{1}, is used to set the voltmeter reading exactly to full scale when the meter is calibrated in ohms. A 10,000 -ohm

Fig. $21-20$ - Wir. ing diagram of the $0-1$ milliammeter shown in Figs. 21.9 and 21.17 . J_{1} is a 4 -prong tuhe socket.
variable resistor is suitable with a $20,000-$ ohms-per-volt meter. The battery voltage is usually 3 volts for ranges up to 100,000 ohms or so and 6 volts for higher ranges.

AN INEXPENSIVE V.O.M.

A combination multirange volt-ohm-milliammeter, reduced to simple and inexpensive terms, is shown in Figs. 21-17 to 21-20. Using a $0-1$ milliammeter, the volt meter has three

Fif. 21.21 - Calibration curve for the high- and lowresistance ranges of the volt-ohm-milliammeter.
ranges at 1000 ohms per volt: $0-10,100$ and 1000 volts. Current ranges of $0-1,10,100$ and 1000 ma . are provided. There are two resist-ance-measurement ranges, a series range that is useful up to about 0.5 megohm, and a shunt range of $0-1000 \mathrm{ohms}$.

For economy, ordinary carbon resistors are used as voltmeter multipliers. These can be obtained with an accuracy within $\tilde{5}$ per cent. However, standard resistors of 10 per cent tolerance can be used without introducing undue error. The 1000 -volt multiplier, R_{6}, is two 1.8 -megohm resistors connected in parallel, and the 100 -volt multiplier, R_{7}, is two
0.18 -megohm resistors arranged in parallel.

The $10-$, 100 - and $1000-\mathrm{ma}$. shunts are made of ordinary copper magnet wire wound on $1 / 2$-watt resistors of high resistance value 10,000 ohms or higher. The approximate lengths and sizes of the wire for the shunts are as follows: $R_{3}, 9$ feet No. 38 enameled; R_{4}, 5 feet No. 30 enameled; $R_{5}, 81 / 2$ feet No. 18.

A calibration curve for the ohmmeter ranges, is given in Fig. 21-21. With instruments having different internal resistance than the one shown in the photograph (Tripleit Model $0321-1$) the "low-ohms" curve will not apply
exactly.

Grid-Dip Meters

A useful and inexpensive general-purpose instrument is an r.f. oscillator covering a wide frequency range. It generates signals that can be used for receiver alignment, for calibrating absorption wavemeters as described carlier in this chapter, and for furnishing small r.f. voltages for whatever purpose may be required. When equipped with a low-range milliammeter connected to read the oscillator grid current, it becomes a grid-dip meter and may be used for checking the resonant frequencies of tuned circuits, and as a means for measuring inductance and capacitance as described in a later section.

The grid-dip meter is so called because when its oscillator is coupled to a tuned circuit, the oscillator grid current will show a decrease or "dip" when the oscillator is tuned through resonance with the unknown circuit. The reason for this is that the external circuit will absorb energy from the oscillator when both it and the oscillator are tuned to the same frequency, and the loss of energy from the oscillator circuit causes the feed-back to decrease. The decrease in feed-back is accompanied by a decrease in grid current. The dip in grid current is quite sharp when the circuit to which the oscillator is coupled has reasonably high Q.
Any type of oscillator circuit can be used for the grip-dip meter, the only requirement being that a milliammeter of suitable range ($0-1$ is satisfactory in most cases) be connected in series with the grid teak. However, the grid-dip meter will be most useful when it covers a wide frequency range and is so constructed that it
can be coupled to circuits in hard-to-reach plates such as in a receiver chassis. The meters described in the following section have been designed with this in mind.

- inexpensive grid.dip meter

The grid-dip meter shown in Fig. 21-22 is easy to build, handy to use, and covers a frequenc. range of 2850 kc . to 48 Mc . with five plug-in coils. This range readily can be extended in either direction, but for v.h.f. use a somewhat different version, shown later, is recommended. The circuit diagram of the oscillator is given in Fig. 21-23.

The support for the oscillator is a piece of aluminum measuring $91 / 2$ by $11 / 2$ inches, bent in the form of a " U " with sides $33 / 4$ inches long so that the width of the " U " is just great enough (approximatcly 2 inches) for fastening to the mounting studs on the tuning conelenser, As shown in Fig. 21-22, the socket for the plugin coils is mounted across the open end of the "U" by means of small aluminum angle brackets. The socket for the 955 oscillator tube is similarly mounted near the closed end of the " L ." The blocking and by-pass condensers are miniature ceramic units that take up very little space and thus contribute to compactness. The oscillator is provided with a handle (which ean easily be made from a piece of broomstick) for ease of manipulation in checking circuits in receivers and transmitters.

The tuning condenser is a double-bearing unit originally of the single-section type having a maximum capacitance of $100 \mu \mu \mathrm{fd}$. To change

Típ. 21.22- Inexpensive griddidp oseillator using a 955 and plus-in coils. The five coils -hown cover the range 2850 kc , to 48 Mc . in external 0-1 d.c. milliammeter iz ased as an indicator. I'ower and meter connections are brought through the four-wire calle.
it to the balanced type the renter two stator plates are removed and the support bars sawed through at the middle. The rotor need not be touched. The stator plates can be removed without difficulty by hending them

Fig. 21-23 - Cirenit diagram of the grid-dip meter.
C_{1} - Double-section midget, app. $42 \mu \mu \mathrm{fd}$. per section (Millen 21100 modified as described in text).
$\mathrm{C}_{2}, \mathrm{C}_{3}-100-\mu \mathrm{fd}$. ceranic (Centralab) IIi-Kap).
($\mathrm{CA}_{4}, \mathrm{C}_{5}, \mathrm{C}_{8}-\mathbf{0} .01-\mu \mathrm{fd}$. ceramic (S_{p} rague dise ceramic).
$\mathrm{K}_{1}-22,000$ ohms, $1 / 2$ watt, carbon.
$R_{2}-68,000$ ohms, $1 / 2$ watt, carbon.
I.1-2.85-5.4 Mc.: 90 turns No. 30 s.c.c. on 1 -inch form, close wound.

- 4.6-8.6 Mc.: 37 turns No. 30 s.c.c. on 1 -ineh form, close-wound.
-8.4-15. 3 Mc.: 19 turns No. 30 s.c.c. on 1 -inch form, elose-wound.
- 14.1-25.5 Me.: 11 turns No. 24 enam. on 1 -inch form, close-wound.
-25.1-48 Mc.: 8 turns No. 21 enam. on 1 -inch form, spared to occupy ${ }^{1316}$ inches.
MA - 0-1 d.c. milliammeter.
back and forth at the soldered joint with a pair of long-nose pliers until the solder breaks loose. The rotor should the grounded to the " U " frame at both ends; this helps to prevent dead spots (condenser settings at which the grid current shows rapid variations) in various portions of the range. The frequency calibration can be marked on a small piece of cardboard as shown in Fig. 21-22, using a pointer on the rear shaft extension of the rondensers as an indicator.

Fig. 21-24- V.11.1. regencrative wave-meter/grid-dip meter. covering the $50-250 \mathrm{Mc}$. range. This is a high-sensitivity absorption-tyne wavemeter particularly useful for cheeking transmitter harmonics in television bands. The case in which the meter is mounted also contains the power supply. Regeneration is controlled by the knoli on top of the case.

The power requirements of the oseillator are 6.3 volts at $0.1 \overline{5}$ amp. for the 955 heater and a maximum of about 2 mat at 1.50 volts for the pate. This power usually ean be taken from a receiver or other existing supply. Iowever, if a special supply is to be made for the instrument, the circuit of Fig. 21-27 will serve, the 1.5 -volt dry eell shown in that diagram being omitted. In any event, it is a good idea to use a potentiometer, as shown in Fig. 21-27, for adjustment of plate voltage. In any grid-dip meter the grid current will be different in different parts of the frequency range, with fixed plate voltage, so that it is ordinarily necessary to "hoose a plate voltage that will keep the reading on scale in the part of the range where the grid current is highest. This usually results in rather low grid current at some other part of the range. With variable plate voltage this compromise is unneressary.

The instrument may be calibrated by listening to its output with a calibrated receiver. High accuracy is not required in the applications for which a grid-dip meter is useful. The unit also may be used as an indicating wavemeter, in which case no plate voltage is needed since the grid and cathode of the 955 act as a simple diode. However, this type of circuit is not as sensitive as the crystal-detector type shown earlier in this chapter, because of the high-resistance grid leak in series with the meter.

REGENERATIVE WAVEMETER AND GRID-DIP METER

The unit shown in Fig. 21-24 is similar in construction to the grid-dip meter of Fig. 21-22, but in addition is an absorption wavemeter of very high sensitivity. The latter feature is particularly desirable in the v.h.f. range which this instrument covers, because of the necessity for detecting the presence of weak harmonics in the various television chammels (i) $4-88 \mathrm{Mc}$. and $17 \mathrm{f}-216 \mathrm{Mc}$.). High sensitivity

Fig, 21-25-A bottom view of the regenerative wavemeter/grid-dip meter. This view shows the botom of the 95.5 socket, with the miniature tulnlar ceramies momted between the stator sections of the tuning condenser and the yrid and plate terminals on the socket. The krid choke, shunting resistor, and by-pass condenser are at the bottom; the mate resistor, mounted through the socket, and the plate by-pass condenser are at the top. There is no wiring on the other side.
is achieved by operating the unit as a regenerative deteretor and by eliminating the grid-leak resistance, a low-resistance r.f. choke being substituted. The frequency range that can be covored satisfactorily with a given choke is limited, but the choke sperified in the rircuit diagram, Fig. 21-26, has been found to be adequate over the range $00-250 \mathrm{Me}$.

With this instrument variable plate voltage is essential as a means of controlling regeneration. It is also essential to use the bias battery shown in the power-supply diagram of Fig. 21-27; without such bias there is a grid current of about 0.5 ma., even with no plate voltage on the tube, because of contact potential. Just as in the case of the lower-frequency instrument deseribed earlier, the power for the oseillator can be taken from any existing supply. The

Fig. 21.26-Cireuit diakram of the regenerative wave-meter/xrid-dip meter.
C_{1} - Woublle-sertion midget, app. $36 \mu \mu \mathrm{fd}$, per seetion
(Millen 21100 modified as described in text).

$\mathrm{C}_{4}, \mathrm{C}_{5} \mathrm{C}_{\mathrm{f}}-0.001-\mu \mathrm{fd}$, ceramice (Eprague dise ceramic). K_{1} - 23.0100 ohms, $1 / 2$ watt, carbon.
$\mathrm{H}_{2}-68,000$ ohms, $1 / 2$ watt, cartom.
L_{1} - 48-98 Mc.: $\overline{3} 4$ turns No. $12,1 / 2$-ineh diam., 1 ineh long, with $31 / 2$-ineh leads.

- $76-1.56$. Ne: $233 / 4$ turns No. $12,1 / 2$-ineh diam., $3 / 8$ ineh long, $21 / 2$-inch leads.
- 130-26.5 Me.: "U"-shaped loop, No. 12, 11/2 inches long, $1 / 2$ inch between sides.
RFC - Ohmite Z.144.

Fig. 21-27-Powersuply eircuit for the grid-dip meters shown in Figs, $21-22$ and $21 \cdot 24$. When used with the meter of lig. 21-22 the 1.5 -volt battery should be omitted.
$\mathrm{C}_{1}, \mathrm{C}_{2}-16-\mu \mathrm{fI}$. 150 -volt electrolytie.
$11_{1}-0.1-m e g o h m$ potentionseter.
$1 K_{2}-1000$ ohms. 2 watts.
\$A-0-1 ma. (or smaller range for greater sensitivity). S_{1} - S.prs.t. toggle (mounted on R_{1}).
Sk-Selenian rectifier.
T' Power transformer, required to frornish 6.3 volt at 0.3 amp, and app. 5 ma, at 115 wolts (Millen $00011)$.
plate-supply requirements are 150 volts and alpproximately 4 ma. About half of this current flows through the voltage divider, R_{1}, in Fig. 21-27.

The tuning condenser, C_{1}, is the same type used in the instrument shown in Fig. 21-22 and is similarly modified into a split-stator unit. However, in this case a somewhat smaller minimum capacitance is desirable, so enough plates are removed from both rotor and stator so that each section consists of 5 stator and 5 rotor plates. Both ends of the rotor must be grounded to avoid dead spots. This can be done by soldering a short piece of wire between the contact washer and a mounting stud at each end. The ground connection is then made through the stud to the "U"-shaperd support.
A crustal socket (half-inch spacing) with its lugs soldered directly to the condenser stators is used as a coil socket. No. 12 wire makes a good fit in such a socket, so the coils are selfsupporting. A little additional strength for the socket mounting is secured by cementing it to the condenser end plates with Duco cement.

There are several methods by which the instrument can be given a frequency calibration. If a receiver is available covering at least a part of the range the unit can be used as an oscillator and calibrated against the receiver settings. Lecher wires also can be used; the method of using them is described earlier in this chapter.

To use the unit as a grid-dip meter the platevoltage control is advanced to the point where a convenient value of grid current is obtained, after which it functions in the same way as the conventional grid-dip meter. To use it as a simple absorption wavemeter the plate voltage is turned off; the sensitivity under these conditions is about the same as the sensitivity of a crystal-detector wavemeter. To use it as a regenerative wavemeter the plate-voltage control is first advanced to the point where oscilla-
tion begins, as evidenced by a small amount of grid current, and then backed off until the grid current just disappears. This is the most sensitive condition. The setting of the platevoltage control will depend to some extent on how tightly the instrument is coupled to the circuit being checked; tight coupling requires more plate voltage, loose coupling less. Care must be used to avoid false indications caused by actual oscillation should the coupling inadvertently be decreased; this usually can be checked by tuning over a small range about the desired frequency. When the unit is properly operated the grid current will show a sharp kick as the circuit is tuned through an actual signal and the current will drop to zero on either side. If the circuit is oscillating the grid current will be appreciable over a considerable tuning range.

Measuring Inductance and Capacitance

The ability to measure the inductance of coils, the capacitance of condensers, or the resonant frequency of a tuned circuit frequently saves time that might otherwise be spent in cut-and-try. A convenient instrument for this purpose is the grid-dip oscillator, described earlier in this chapter.

For measuring inductance, the coil is connected to a condenser of known capacitance as shown at A in Fig. 21-28, A mica condenser may be used as a standard; a $100-\mu \mu \mathrm{fd} .5$ per cent tolerance unit will serve for most purposes. With the unknown coil connected to the standard condenser, the pick-up loop is coupled to the coil and the oscillator frequency adjusted for the grid-current dip, using the loosest coupling that gives a detectable indication. The inductance is then given by the formula

$$
L_{\mu \mathrm{h} .}=\frac{25,330}{C_{\mu \mu \mathrm{td}} \cdot f_{\mathrm{Mc.} .}{ }^{2}}
$$

A calibrated variable condenser is generally used for measuring capacitance. The circuit is shown at 13 in Fig. 21-28. The frequency of the circuit, using any convenient coil, is first measured with the unknown capacitance disconnected and the calibrated condenser set near maximum. The unknown is then connected and the calibrated condenser readjusted to resonance. The unknown capacitance is then equal to the difference between the capacitances at the two settings of the calibrated condenser. Obviously only capacitances smaller than the maximum capacitance of the calibrated condenser can be measured by this method.

Since high accuracy in capacitance measurement is not ordinarily required, a satisfactory standard is any condenser of the straight-line capacitance type, for which a sufficiently good calibration curve can be constructed by noting the dial setting at which the plates just start to mesh and the setting at which they are com-
pletely meshed, and assuming that the capacitance change is linear within those limits. The minimum and maximum capacitance (corresponding closely enough to these condenser settings) can be obtained from the manufacturer's data on the particular variable condenser used.

An alternative method of measuring capacitance utilizes the fixed standard capacitance described above in inductance measurements, together with a coil of the proper inductance to resonate at a convenient part of the frequency range of the grid-dip meter. First measure the inductance of the coil with the standard condenser connected to it. Then substitute the unknown capacitance for the standard and determine the new resonant frequency. The unknown capacitance is then

$$
C_{\mu \mu \mathrm{dd}}=\frac{2 \overline{5}, 330}{L_{\mu \mathrm{h}} f_{\mathrm{Mc} \cdot}{ }^{2}}
$$

where f is the new frequency. This method is most adaptable to capacitances in the range $10-1000 \mu \mu \mathrm{fd}$. The standard condenser should be approximately $100 \mu \mu \mathrm{fd}$. for this range of measurement.

Fig. 21.28 - Set-ups for measuring induetance and capacitance with the grid-dip meter.

Audio-Frequency Oscillators

A usciul accessory for testing audio-frequeney amplifiers and modulators is an audio-frequency signat gromerator or oscillator. Cheeks for disfortion, gain, and the ordinary troubles that oecur in such amplifiers do not require chaborate equipment; in most cases, a single audio frequency in the $300-1000$ cyele region will suffiee. The chief requirement is that the audio oseillator be able to generate a reasonably good sine wave.

Fig. 21-29 - Audionseillator circuit for fixed-frequeney output.
$\mathrm{Ci}_{\mathrm{i}}-\mathrm{App}, 0.0 .5 \mu \mathrm{fl}$. (see text).
(i2 - 8- $\mu \mathrm{ff}$. electrolytic.
C3, $\mathrm{Ca}-0.1$ - -fd . paper.
H_{1} - 68,000 ohms, I watt.
$\mathrm{H}_{2}-1500$ ohms, I watt.
1_{3} - 0.1 -thegohm potentiometer.
L.1-App. 1 henry.

A circuit for a simple audio oscillator is given in lig. 21-29. The second section of the 6s..7(i'I double triode is used to provide foedtrack in the proper phase to the first section, so that oscillations can be maintained without requiring a tapped coil at L_{2}. The output amplitude is controlled hy the potentiometer, K_{3}.

The frectueney of oscillation is determined by L_{1} and (1, L_{1} preferably should be an air-eore coil, and can be an orelinary small "a.c.-d.e." filter choke with the iron core removed. Such coils usually will resonate in the vieinity of 400 cyeles with 0.0) $-\mu$ fle at C_{1}. If trial shows that the tone generated is too high or too low, appropriate changes in C_{1} will bring it within the range desired. A number of frequencies can be made availathle by using several different values of caparitance, connected to a switch for convenient selaction.

The output of such an oscillator with the control at maximum should be approximately 1.5 volts.

VARIABLE-FREQUENCY AUDIO-I.F. OSCILLATOR

For measurements requiring a variable-frequency audio source the signal generator shown in Figs. 21-30 to 21-33, inclusive, is relatively inexpensive and casy to build. It is also useful as an intermediate-frequency signal generator for aligning recoiver i.f. circuits at any frequency up) to 500 kc . The complete frequency range is 50 cycles to 500 kilocycles.

The oscillator consists of a BAG7 amplifier coupled to a 6AG7 cathode follower. 'Two feedback loops are provided: (1) a cathode-to-cathode regenerative loop consisting of C_{5} and lamp I_{1}; (2) a cathode-to-grid degenerative loop consisting of a bridged-'T circuit. Oseillation occurs at the null frequency of the bridge, where the degeneration is mininum, and is determined principally by the values of C_{6}, C_{7}, C_{8} and R_{6} through R_{13}. The oscillator output is fed to the grid of a $6 V^{\prime} 6$ cathode follower, which serves as an isolation stage between oscillator and load. Potentiometer R_{18} in the grid circuit controls the output voltage.

Output from the unit is taken across the $6{ }^{\circ} 6$ cathode resistor, R_{19}, through the coupling eondenser, C_{11}. At 100 cycles the value given for C_{11} is suitable for working into load impedanees as low as 20,000 ohms. For low audio frequencies and loads between 500 ohms and 20,000 ohms, (excessive loss of voltage can be avoided by sub)stituting a $25-\mu \mathrm{fd}$, electrolytice at C_{11}.

A 4 -watt 115 -volt lamp, I_{1}, regulates the feedback current and thus tends to keep the output voltage constant throughout the range, Potentiometer R_{2} provides the means for adjusting the operating conditions to give minimum waveform distortion.

The 50 -cycle to 500 -kilocyele band is covered in four ranges, as follows:

Range	Frequency
A	50 to 500 kilocycles
B	5000 to 50,000 eycles
C	500 to 50)00 cyeles
I)	50 to 500 cycles

Wach step covers a $10-\mathrm{to}-1$ froqueney range.
The ceramic trimmer, C_{4}, comnected between the 6AG7 cathodes, has little efferet at the lower frequencies, but to maintain the 10 -to- 1 frequency ratio on the high range this trimmer is essential.

The power supply uses a two-section choke imput filter to insure good filtering. The com-

Fig. 21-30-An RC oscillator covering the unusually wide range of 50 cycles to 500 kilocyrles, with good waveform and practically constant output.

fig. 21.31 - Cireouit diagram of the audio-i,f, test oscillator.
$\mathrm{C}_{1}-0.002 \cdot \mu \mathrm{fd}$. mica.
(2 - 40- $\mu \mathrm{fd}$. 1.50 -volt electrolytic.
(3 - $1-\mu \mathrm{fl}$. 400-volt paper.
(4 , (i, ($\%$ - $15-\mu \mu \mathrm{fi}$). ceramic trimmers (Centralab) Type 8iz. 13N).
(5 - $100-\mu \mathrm{fd}$. B (0 -volt elcetrolytic.
$\mathrm{C}_{6}-500-\mu \mu \mathrm{fl}$ - j er-section dual variable, hroadcast receiver type.
 $\mathrm{C}_{12}, \mathrm{C}_{13}-\mathrm{H}_{-\mu \mathrm{fd}} \mathrm{f}, \mathrm{S}()$ volt electrolytic. R_{1} - 100 ohms, 1 watt.
$\mathrm{H}_{2}-2000$-ohm wire-wound potentiometer.
$\mathrm{R}_{3}, \mathrm{R}_{16}-68$ ohms, 1 watt.
$\mathrm{K}_{4}, \mathrm{R}_{17}-5000$ ohma, 10 watts.

Ri_{6} - $1 \mathrm{E}, 000$ ohms, $1 / 2$ watt, 10%.
$k_{T}-0.18$ megohm, $1 / 2$ watt, 10%.
$\mathrm{Rs}-1.8$ megohms, $1 / 2$ watt, 10%.
Ros- 20,0 megohms, $1 / 2$ watt, 10%
$\mathrm{R}_{10}-\boldsymbol{2} 000$ ohms, $1 / 2$ watt, 10%.
$R_{1!}-39,000$ ohms, $3 / 2$ watt, 10%. $\mathrm{R}_{12}-0.33$ megohm, $1 / 2$ watt, 10% $\mathrm{R}_{13}-3.3$ megohms, $1 / 2$ watt, 10%. $\mathrm{R}_{14,} \mathrm{R}_{1 \mathrm{n}}-1.0$ megohm, 1 watt. $\mathrm{R}_{\text {in }}$ - $0, \mathrm{~B}$-megohm potentionneter.
R_{19} - 2904 ohms, I watt,

l_{1} - 1-watt Il.j-sent lamp.
ponents are eonfined to the extrenme rear of the chassiss and shicherl wire is used for the filament wiring.

Construction

The eomplete unit is honsed in a standard $8 \times 10 \times 8$-inch starel cabinet, 'The chassis is $7 \times 9 \times 2$ inches.

The power transformor, T_{1}, is submonnted at the rear of the whssis. "The can-type electrolyties, C_{10} and $C_{\text {la }}$ ate mounted above the elatsins while the filter ehokes are placed below,
"lhe main tuning condenstry, C_{6}, must be insulated from the chassis. Small porerhain stambeoffs or a sab of polystyrene or bakelite sheet will be satisfactory. An insulated roupling most be used between the condenner and dial. 'The frequeneydetermining resistors, h_{6} through h_{13}, are monnted on the reramie range switels, \mathbb{S}_{1}, which is looated wneler the tuming eontrol. 'lhese resistors must have the designated values or the froqueney ranges will diffor from those givern. Resistors of 10 per erent tolerance are satisforlory.

On the front pancl there are four controls and

Fia, 21 -.32 - In this rear view of the oncillator the metal tube on the loft is the firat eathonle follower. 'ithe taming condenser and its trimmers are mounted on a picee of batelite to insilate them from ground and the condenser is driven throngh an insulated eonpling. The conimal shaft of the waveform potentioneter, K_{2}, is visible on the chassis to the right of the tuning condenaer.

Jt - Shortingetyo microphome jack (Amphenof i3-CL P(:IV).
s_{1} - Single onertion 2 -pele 1 -position ceramic.
S_{2}-S.p....t. toggle swit!h.
' 1 ' -300 (1)-300 v., 30 ma,; $\overline{3}$ v., 2 ampo; 6,3 v., 3 amp.
the output terminal. A National type SC'N dial is used for tuning. In the lower corner of the panel is a toggle switch, S_{2}, for the a.e. line. The bandchanging switch is plaeed under the tuning knob. At the lower right is the attenuation control, R_{18}. Just above this control is the output conneetor, J_{1}. These controls fasten the panel to the chassis.

Preliminary Adjustment

An oscilloweope should be used for adjusting the waveform and for calibrating the low-freguener ranges. Comeet the output of the osicillator to the vertieal plates of the 'seope and, with the range selector in position $1 /$ and the tuning condenser. C_{6}, nearly at maximum, adjust the internal horizontal swerp in the 'seope for synchronization,

l̈a, 2l-3.3-13ottom view of the autio-i,f. test oseillator. The filter elokes are at the bottom risht. The frecuenes-determining resistors are supmorted by the ceramic range switeh at the top renter.
R_{2} should be adjusted to give a grod sine wavo. In (ase the 'soope has no internal sweep, an external souree of 60 cycles from a filament transformer can be used as the horizontal sweep, and the tuning condenser of the test oscillator adjusted until a singlo-loop Lissajous pattern appears. The pattern will resemble either a circle, ellipse, or straight line. Adjustment of $k z$ will affect the symmetry of the loop about its own axes and the distertion will be least when the loop is perfectly symmetrical.

To aljust the ranges, sot the tuning condenser approximately 10 dial divisions from minimum (apacity with S_{1} on range l). 'Trimmer's C_{-}and C 8 should be set to full capacity. Connect the output of the oscillator to the vertical plates of the 'seope. Feed the audio output of a recoiver tumed to WWV to the horizontal plates. WWV sends either a 440 or (600 -eycle tone, so make

- sure that the adjustment is made during the fitt)ryele period. Adjust trimmers C_{7} and C_{8} a lithit at a time, keeping their caparities about equal, until a single-loop Lissajous figure is seen on the sereen. This adjustment sets the high end of range D and at the same time fixes ranges B and C.

Most 'seopes arr useless for calibration in the r.f. range. A simple yet affertive method for atjusting the high cond of range A utilizes at receiver calibrated over the beoadeast band. For preliminary adjustments, the soo-ke, intervals starting at 1 Me, are needed, However, the l0-ke, points from tooke, and up will be useful later on for calibration. Broadeast stations can be used to spot frequencies on the dial. By interpolation, the 10-ke, points can be marked with reasonable arcuracy. A 10-ke, multivibrator would be axcellent for calibration, but the station spotting mothod will give very satisfactory results. After ralibrating the receiver, the output of the oscillator should be connected to the antena terminals through a shielded cable. Sot h_{18} at maximum and the main tuning dial five divisions from minimum eapacity. With the reodiver sed at exactly 1000 ke, and the b.f.o, in the "on" posi-
tion, adjust trimmer (4, for zero beat. 'The oscollator will be on 500 kr . if heats are ohserved only at 1000 ke and 1500 ke . It may be neeessary to try a few settings of C_{4} before the right one is found.

Calibration

 the oseilloseope and the WWY standarel audin signal are used for calibrating. Information on using Lissajous figures is given later in this chapter. Assuming that 60 evelos from the power line and WWV's 440- and (ono-rycle tones are the standard signals avaitabie, it is feasible to calibrate up to 6000 eveles: above this frequerey the patherns are too complex for rapid analysis.

Botween 6000 and 10,000 cyeles, the most feasible method is to obtain the points from a regular calibrated andio oscillator. Alternatively, a fixed-frequency oseillator (such as the simple type deseribed carlier in this section) can be constructed in tomporary fashion and adjusted to, say, 2000 cyrles and used for ohtaining points at 2-ke, intervals between 6 and 10 ke . by the Lissajous-figure methord.
'Io spot points from 10 kr , to 500 ke , than full outpat of the owallator on range C ' is fed into the (ablibated receiver antenna terminals, and the tuning comt rol should be adjusted until the signals fall at every lo-ke. point through the broadeast mand. At this setting the oseillator frequeney will be 10 ke . (onsiderable care, and several attempts, will undoubtedly tre meessary before the eromert setting is reached. The harmonic method dewribut andier in this chapter in the section on freguency measurement ain be used for catibnating up to $\mathbf{3} 0 \mathrm{O}$ ke.

In wsing the instrument, a wam-up protion of about 20 minutes should the allowed for the frequency to stabilize. At the setting of he that gives good waveform, the output with $R_{\text {se }}$ at maximum is approximately 10 volts r.m.s. The attenuator gives smooth output control and is readily adjustable to outpuls in the mierovolt region even at , 00 ke .

The Oscilloscope

The cathode-rat osilloscope gives a visible representation of siguals at both audio and radio frequencies abl can therofore be wasd for many types of measurements that are mot possible with instruments of the types desoribed earlier in this chaptor. For example, it van be made to show the waveform of an atudio-frequeneg signal and thus detect distortion in an audio-frequency amplifier. With suitable cralibration, it will measure a.c. roltages at radio as well as andio frequencies. The oseilloscope is such a versatile instrument that it is a highly valuable addition to the practical amateur station.

- CATHODE-RAY TUBES

The heart of the weilloscope is the cathoderay tube, a vacuum tuhe in which the electrons emitted from a hot cathode are first accelerated togive them considerable velocity, then formed into a beam, and finally allowed to strike a special tramslueent sereen which fluoresces, or gives off light at the point where the beam strikes. A narrow beam of moving electrons is analogous to a wire carrying current, and can be moved laterally, or deflected, by electric or magnetic fields.

Since the eathode-ray beam consists only of moving electrons. its weight and inertia are negligibly small. For this reason, it ath be made to follow instantly the variationsin periodicallychanging fiedds at both audio and radio frequencies.

The elertrode arrangement that forms the electrons into a beam is called the electron gun. In the simple tube structure shown in Fig. 21-34, the gun consists of the eathode, grid, and anodes Nos. 1 and 2. The intensity of the electron beam is regulated by the grid in the same way as in an ordinary tube Anodo No. 1 is operated at a positive potential with respect to the eathode, thas accelerating the electrons that pass through the grid, and is provided with small apertures through which the electron stream pasies. On emerging from the apertures the electrons are traveling in practically parallel straight-line paths. The electrostatic fields set up by the potentials on anode No. 1 and anode No. 2 form an electron lens
system which makes the electron paths converge to a point at the fluorescent screen. The potential on anode No. 2 is usually fixed, while that on anode No. 1 is varied to bring the beam into focus. Anole No. 1 is, therefore, called the focusing electrode.
sharpest focus is obtaned when the electrons of the bean have high velocity, so that relatively high d.e. potentials are common with cathode-ray tubes. However, the current required is small, so that the power comsumption is negligible. A second grid may be placed between the eontrol grid and anode No, 1, for additional acceleration of the electrons.

Methods of Deflection

When focused, the beam from the gun produces only a small spot on the srreen, as described above. However, if after leaving the gun the beam is deflected by either magnetic or electric fields, the spot will move actos; the soreen in aecordance with the force exerted on the beam. If the motion is rapid, the path of the spot (trace) appears as a continuous line.

Electrostatic deflection, the type generally used in the smaller tubes, is produced ly deflecting plates. Two sets of plates are placed at right angles to each other, as indiated in lig. 21-34. The field are created by applying suitable voltages between the two plates of each pair. l'sually one plate of each pair is eonnected to anode No. 2, to establish the polarities of the vertical and horizontal fields with respeet to the beam and to each other.

Formation of Patterns

When periodically-varying voltages are applied to the two sets of deffecting plates, the path traced by the fluoreseent spot forms a pattern that is stationary so long as the amplitude and phase relationships of the voltages remain unchanged. lig. 21-35 shows how such patterns are formed. The horizontal sweep voltage is assumed to have the "sawtooth" waveshape indicated. With no voltage applied to the vertical plates the trace simply sweepsi from left to right across the sereen along the horizontal axis $\boldsymbol{X}-X^{\prime}$ until the instant H is reached, when it reverses direction and returns

Fig. 21-34-Typical construction for a cathode-ray tuhe of the electrostatic-deflection type.
to the starting point. The sine-wave voltage applied to the vertical plates similarly would trace a line along the axis $Y-Y^{\prime}$ in the absence of any deflecting voltage on the horizontal plates. IIowever, when both voltages are present the position of the spot at any instant depends upon the voltages on both sets of plates at that instant. 'Thus at time B the horizontal voltage has moved the spot a short distance to the right and the vertieal voltage has similarly moved it upward, so that it reaches the actual position B^{\prime} on the screen. The resulting trace is casily followed from the other indicated positions, which are taken at equal time intervals,

Types of Sweeps

A sawtooth sweep-voltage waveshape, such as is shown in Fig. 21-35, is called a linear sweep, because the deflection in the horizontal direction is directly proportional to time. If the sweep were perfect the fly-back time, or time taken for the spot to return from the end ($I I$) to the beginning (I or A) of the horizontal trace, would be zero, so that the line $I / /$ would be perpendicular to the axis $Y-Y^{\prime}$. Although the fly-back time eanot be made zero in practicable sweep-voltage generators it can be made quite small in eomparison to the time of

Fig. 2I-35 - A.c. voltage waveshape as viewed on an ancillenieope sereen, slowing the formation of the pattern from the borizontal (sawtooth) and ver tiral sweep voltages.
the desired trace A / I, at least at most frequencies within the audio range. The fly-back time is somewhat exaggerated in Fig. 21-35, to show its effect on the pattern, 'The line $I^{\prime} I^{\prime}$ is called the return trace; with a linear sweep it is less brilliant than the pattern, berause the spot is moving much more rapidly during the fly-back time than during the time of the main trace. If the Hy-back time is short enough, the return trace will be invisible.

The linear sweep has the advantage that it shows the shape of the wave in the same way that it is usually represented graphically. If the
time of one eycle of the a.c. voltage applied to the vertical plates is a fraction of the time taken to sweep horizontally acosos the screon, several cyeles of the vertical or "signal" voltage will appear in the pattern. The shape of only the last eycle (or the last few eycles, dopending upon the number in the pattern and the characteristics of the sweep) to appear will be afferted by the fly-back in such a case.

The shape of the pattern obtained, with a given signal waveshape on the vertiral plates, obviously will depend upon the shape of the horizontal sweep voltage. If the horizontal sweep is sinusoidal, the main and return sweeps each oceupy the same time and the spot moves faster horizontally in the center of the pattern than it does at the ends. When two simusuidal voltages of the same frequeney are applied to both rets of plates, the pattern may be a straight line, an ellipse, of a circle, depending upon the amplitudes and phase relationships of the two voltages.

For many amateur purposes a satisfactory horizontal sweep is simply a 60 -cycle voltago of adjunable amplitude. In motulation monitoring (deseribed in the chapter on amplitude modulation) adudio-frequency voltage can be taken from the modulator to supply the horizontal sweep. For examination of audio-frequence y waveforms, the linear sweep is essential. Its frequency should be adjustahle over the entire range of a wio frequencies to be inspected on the ascillosicope.

Lissajous Figures

When sinusoidal a.c. voltages are applied to the two sets of deflecting plates in the oscilloscope the resultant pattern depends on the relative amplitudes, frequencies and phase of the two voltages. If the relationship between these quantities is random the pattern is in continuous motion, but if the ratio between the two frequencies is constant and can be expressed in integers the pattern will be stationary. This makes it possible to use the oseilloseope for determining an unknown frequener, provided a variable frequency standard is available, or for determining calibration points for a variable-frequency oscillator if a few known frequencies are available for comparison.

The stationary patterns obtained in this way are called "Lissajous figures." Fxamples of some of the simpler Lissajous figures are given in Fig. 21-36. Patterns of the type shown in Fig. 21-36 are obtained when the two voltages have equal amplitudes; in case one has greater amplitude than the other the patterns will be elongated in the direction having the larger amplitude but will retain the same essential features. The form of the pattern for a fixed frequency ratio depends on the phase relationship between the two voltages; these figures are for a 90 -degree phase difference.

In every case the patterns shown will be produced when the higher of the two frequencies
is applied to the vertical deflerting plates. Should the lower frequency be applied to the vertical plates the pattern will be turned at right angles. The frequency ratio is found by counting the number of loops along two adjacent edges. Thus in the third figure from the top there are three loops along a horizontal

Fig. 21-36- Lissajous figures and rorresmmoting frequency ration for a 90 -degree phase relationship, between the voltakes applied to the two sets of deflecting phates.
edge and only one along the vertical, so the ratio of the horizontal frequency to the vertical frequency is 1 to 3 . Similarly, in the fifth figure from the top there are fon loops along the horizontal edge and three along the vertiral edge, giving a ratio of 3 to 4. Assuming that the known frequency is applied to the horizontal plates, the unknown frequener is

$$
f_{2}=\frac{n_{2}}{n_{1}} f_{1}
$$

where $f_{1}=$ known frequency applied to horizontal plates,
$f_{2}=$ unknown frequency applied to vertical plates,
$n_{1}=$ number of loops along a vertical edge, and
$n_{2}=$ number of loops along a horizontal edge.
In ealibrating an oseillator, one of the frequencies is usually variable. The 90 -degree pattern can be obtained by careful adjustment of the variable frequency until a stationary pattern resembling those shown is obtained. As the phase is varied the patterns will assume various forms, for a given frequeney ratio, but the 90 -degree pattern is easily identified because it is the most symmetrical.

An important application of Lissajous figures is in the ealibration of audio-frequency
signal generators, such as the variable-frequency a.f. oseillator deseribed earlier in this chapter. standard audio frequencies for this purpose are readily available. For very low frequencies the $60-\mathrm{cyc}$ e power-line frequency is held accurately enough to be used as a standard in most localities. The medium audiofrequency range can be covered by comparison with the 440- and 600-cycle modulation on the WWV transmissions. An oseilloscope having both horizontal and vortical amplifiers is desirable, since it is eonvenient to have a means for adjusting the voltages applied to the deflection plates to secure a suitable pattern size. The signal to the horizontal plates is fed directly to the amplifier, the horizontal linear sweep (if any) in the 'scope being switehed out. The 60 -cyele voltage can be obtained from the secondary of a filament transformer. The 440 and 600 eycle voltages from the WWV signal can be taken from the headphone jack on a recoiver. It is possible to calibrate over a 10 -to-1 range, both upwards and downwards, from each of the latter frepuencies and thus cover the audio range useful for voice communication.

A SIMPLE OSCILLOSCOPE FOR MODULATION MONITORING

Figs. 21-37 through 21-39 show the cireuit and consiructional details of a simple 2 -ineh oscilloscope that is suitable for use as a modulation monitor. It is designed to be mounted in the transmitter rack, becoming a permanent part of the 'phone station. Inexpensive parts are used throughout, and the eircuits themselves are simple to build and operate.

The 2.1P'l cathode-ray tube is mounted with its sereen protruding through a 2 -inch hole in the $19 \times 5 \frac{1}{4}$-inch ahuminum rark panel. The cathode-ray tube is enclosed in a Millen shield, and its screen is covered by a Millen type so072 bezel. The power-supply eomponents are housed in a standard $3 \times 4 \times 5$-inch utility box that is bolted to the left rear of the rack panel, An inexpensive replacement-type transformor is used with a $2 \mathbf{X} 2$ half-wave rectifier to deliver about 800 volts at the required 4 or 5 ma. drain.

The voltage-divider eireuit eomponents and the swerp-eireuit eontrols are mounted on the right-hand side of the panel, and are enclosed by a $6 \times 41 / 4 \times 21 / 2$-inch three-sided box folded from sheet aluminum. A small audio. transformer, mounted on the rear of this box, sarves to provide 60 -eycle sweep voltage. The by-pass condensers. C_{2}, C_{3} and C_{4}, used to eliminate a.e. eomponents from the d.e. control circuits, are connected directly to the rotor arms of their respective potentiometers, R_{1}, R_{8} and R_{9}.

The socket for the cathole-ray tube is not fastened to any of the struetural members of the unit but is used as a plug, with the soeket

Fig. 21.37 - l'ront view of a rath-mmmting oseillocope for modulation monitoring. All components are mounted on the rear of a 19 $\times 51 / 2$ inch rack panel, The power-supply components are built into a utilitr box bolted on the left side of the panel, and the "roope circuits are mounted on the right-hand side. enclosed by a shield box. The a, ce switeli is on the left. All other controls are on the right, as follows: top row, l. to r., sweep switeh, intensity control. fow is control: bottom row, *Nep-amplitule control. horizontal emtering, vertical rentering.
terminals enclosed in a tubular alumitum shield made by cutting down a N゙ational type T-78 tube shield. The base plate of this assemby is used as the support for a two-terminal tie point that holds isolating resistors R_{10} and R_{11}. These resistors are mounted inside the socket shiedd, as elose to the tube base as possible. A $1 / 2$-inch hole is drilled through the side of the shied to pass the cabled and shielded d.c. leads that run from the tube socket into the divider network in the aluminum shield hox. A ecramic feed-through bushing requiring a $3 / 8$-inch clearance hole passes through the opposite side of the socket shield to serve as the vertical input terminal, C_{6} is connected between this bushing and the vertical deflec-tion-plate pin on the tube socket. C_{5}, the coupling condenser for the horizontal plates, is mounted inside the larger shield compartment,
near the horizontal-amplitude control. $R_{\text {Ig }}$
The horizontal input terminals of the scope are mounted on the rear of the shied box, alongside the audio transformer. The transformer secondary is connected to produce a turns ratio of approximately 1 -to- 1 , which is sufficient to produce more than enough sweep voltage. A double-pole loggle switeh is used to open the primary circuit of the audio transformer and to connert the external terminal to the amplitude cont rol when the seope is used for transmitter monitoring. In this case sweep voltage is obtained from the audio system of the transmitter. R_{12} is connected on the tube side of the sweep switch, so that it remains in the circuit at all times to give control of voltage applied to the horizontal plates.

Details for using this oseilloseope to monitor a 'phone transmitter and to checek both linearity and percentage modulation are contaimed in the chapter on amplitude modulation. An external resistor, R_{E} in Fig. 21-38, must be used in series with the lead to the horizontal input

Fig. 21-38-Circuit diagram of the simple oscilluserpe for mendulation monitoring.
Ci - 1μ ffl., 1000 volta. oil-filled.
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-0.01 \ldots \mathrm{fd}, 600$-volt paper.
(is- $0.1 \mu \mathrm{fil}$., 1000 welts, paper.
(if - $0.001 \mu \mathrm{fl} ., 600$ volts, mira.
k_{1} - 20.000-ohm potentiometer, linear taper.
R_{2} - 4:10) ohms, $1 / 2$ watt.
$12_{3}-50,010$, ohm potentioneter, linear taper.
R_{4}. $\mathrm{R}_{5}-33,000$ olims, I watt.

 taper.
$\mathrm{H}_{10}, \mathrm{R}_{11}-1$ nersohm, $1 / 2$ watt.
H_{12} - $\mathbf{0}, 25$-magohm potentiometer, linear taper.
\mathbf{S}_{1} - S.p.s.t. toggle switel.
S_{2} - D.p.d.t. togele switeh.
\mathbf{T}_{1} - Replacement-type receiver transformer: 350 r. eath side of e.t., $\mathbf{~} 0 \mathrm{ma}$. (Stancor P-6011.)
$\mathrm{I}_{\mathbf{2}}$ - Interstage andio transformer. ($\mathrm{Cl}^{\prime} \mathrm{TC}$ S.2, with half of secondary unged, to. produce approx. $1: 1$ turns ratio.)
pie. 2l-zy - liear view of the rack-mounting oscilloseope'. 'l'he shied covering the voltare divider componenthas been removed to show wiring. Mounted on the shiedd are the audio transformer and the horizontal input terminals. 'lhe scope tulie and itsocket have bean remoned.

terminals to reduce the audio voltage to the desired level, as described in the amplitudemodulation chapter.

LINEAR SWEEPS AND AMPLIFIERS

Probably the chief use of the oscilloscope in amateur work is in measuring the percentage modulation in 'phone transmitters and in serving as a continuous monitor of modulation percentage. An oscilloscope for this purpose may be quite simple and inexpensive, consisting only of a small cathode-ray tube and an appropriate power supply as described earlier. However, by providing amplifiers for the deflection plates and furnishing a linear sweep circuit, the possibilities of the instrument are sreatly extended. It then becomes possible, for example, to examine a.f. waveforms and to locate causes of distortion in a.f. amplifiers.

Gas-Tube Sweep Generator

I typical circuit for a linear sweep generator and amplifier is shown in Fig, 21-40. The tube is a gas triode or grid-control rectifier. The striking or breakdown voltage, which is the plate voltage at which the tube ionizes or "fires" and starts conducting, is determined by the grid bias. When plate voltage, E_{b} in Fig. 21-41, is applied, the condenser between plate and cathode acquires a charge through $R_{6} R_{7}$. The charging voltage rises relatively slowly, as shown by the solid line, until the breakdown or flashing point, V_{f}, is reached. Then the condenser discharges rapidly through the comparatively low plate-cathode resistance of the tube. When the voltage drops to a value too low to maintain plate-current flow, E_{k}, the ionization is extinguished and the condenser once more charges through $R_{6} R_{7}$. If the resistance is large enough, the voltage across

Fig. 21-40-I Linear sweep generator and horizontal amplifier.
$\mathrm{C}_{1}-0.1-\mu \mathrm{fl}$. paper.
$\mathrm{C}_{2}-25-\mu \mathrm{fl}$. 25. volt elestralytie.
$\mathrm{C}_{2}-0.25-\mu \mathrm{fd}$, paper, 600 wilts.
$\mathrm{C}_{64}-0.1-\mu \mathrm{fd}$. paper, 600 volts.
(6) $-0.04-\mu \mathrm{fd}$. paper, 600 volts.
$\mathrm{C}_{8}-0.015-\mu \mathrm{fd}$. paper, 600 volt.
$6_{7}-0.005-\mu \mathrm{fd}$. paper or mica, boll volts. $\mathrm{C}_{8}-0.00 \geq 2-\mu \mathrm{fd}$. mital.
$\mathrm{Cog}_{9} \mathrm{C}_{11}-0.5-\mu \mathrm{fd}$. paper, 600 velt .
$\mathrm{C}_{10}-8$ - $\mu \mathrm{fil}$. electrolytic, 4.0 volts.
lii. 11.25 -ibeqohm pirtentioneter.
$\mathrm{R}_{2}-22,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{3}-470$ ohms, $1 / 2$ watt.
$R_{4}-2200$ ohme, $1 / 2$ watl.
$1 \mathrm{k}, \mathrm{E}$ - 2,000 ohms, 1 watt.
R_{6} - 11.33 megohm, $1 / 2$ watt.
If - I-megohm potentionnter.
Rs, $\mathrm{I}_{\mathrm{g}}-6 \mathbf{2}, 000$ ohms, I watt.
$11_{10}-1$ megohm, $1 / 2$ watt.
R_{11} - $0 . \bar{\sigma}$-megohm potentiometer.
$\mathbf{R}_{12}-8 \geq 0$ ohme, $1 / 2$ watt.
$\mathrm{H}_{13}-11.1$ memohm, I watt.
Wh - Bleed for horizontal deflection plates.
the condenser will rise linearly with time up to the breakdown point. This linear voltage change is used for the sweep. The fly-back time is the time required for condenser discharge through the sweep-generator tube; to keep this time small, the resistance during discharge must be low.

Fig. 21-H - Condenser charging curves showing how a sawtooth wave is produeed by a gaseantiotube linear sweep owillator.

The "sawtooth" rate is controlled by varying the capacitance betwern plate and cathode and the resistance of $R_{6} R_{7}$. To obtain a stattionary pattern, the swerp is synchronized by introducing some of the voltage being observed on the vertical plates into the grid circuit of the 884 gas triode. This voltage "triggers" the tube into operation in synehronism with the signal frequeney. Symehronization will ocear so long as the signal frequency is nearly the same as, or a multiple of, the self-generated sweep frequency.

The pentore amplifier in Fig, 21-40 can be used either to amplify the sweep-voltage output of the 884 oscillator, or to amplify any extormal voltage that it may be desired to use as a horizontal sweop. The gain control, R_{11}. provides a means for adjusting the width of the pattern on the cathode-ray tube screen. The output of the amplifier should be connected to the horizontal deflection plates of the tube. If this circuit is to be used with the oscilloscope previously described, the output terminals may be connected directly to Terminals 6 and 9 on the 2 Al' 1 socket. In such case C_{5} in Fig. 21-38 should be disconnected, but all other connections should be left unchanged.

Vertical Amplifiers

When using an oscilloscope for checking audio-frequency waveforms a "vertical" amplifier is a practical neressity. For most purposes the amplifier will be satisfactory if its frequency-reponse characteristic is flat over the a.f. range and if it has a gain of 100 or so. A typical circuit is shown in Fig. 21-42. It will be recognized as being practically similar to the "horizontal" amplifier of Fig. 21-40. A high-resistance gain control is desirable, to avoid loaling the audio circuits to which the amplifier is connected.

When such an amplifier is used with the oscilloseope of Fig. 21-38, the out put terminals should be connected between Terminals 3 and 8 on the 2AP1 soeket. It is advisable to connect

Terminal 3 to the arm of a 2 -position ceramic switch, one contact going to the vertical amplifier and the other to C_{6} in Fig. 21-38. This permits using either r.f. or a.f. input to the vertical deflection plates, disconnecting the a.f. amplifier circuit when r.f. voltage is to be applied.

Constructional Considerations

In building an oseilloscope, care should be taken to see that the tube is shielded from stray electric and magnetic fields that might defiect the beam, and means should be provided to protect the operator from accidental shock, since the voltages employed with the larger tubes are quite high. In general, the preferable form of construction is to enclose the instrument completely in a metal cabinet. From the standpoint of safety, it is good practice to provide an interlock switeh that automatically disconnects the high-voltage supply when the cabinet is opened for servicing or other reasons.

In laying out the unit, the cathode-ray tube must be placed so that the alternating magnetic field from the power transformer has no effect on the electron beam. The transformer should be mounted directly behind the base of the tube, with the axes of the transformer winding: and of the tube on a common line.

It is important that provision be included either for switehing off the eleetron beam or reducing the spot intensity when no signal voltage is being applied. A thin, bright line or a spot of high intensity will "burn" the tube screen.

fig. 21-f: - Cirnuit diagram of a vertieal amplifier for an onsilloseope.

h_{1} - 1 -megolim putentioneter.
$R_{2}-1.300$ ohms. ${ }^{1} \frac{1}{2}$ watt.
$R_{3}-2.2$ megolims, I wati.
$R_{4}-0.17$ megohm. I watt.
R_{5} - Bleed resistor for vertical deflection plates.
If trouble is experienced in obtaining a clean pattern from a high-power transmitter because of r.f. voltage introduced by the 115 -volt line. by-pass condensers (0.01 or $0.1 \mu \mathrm{fd}$.) should be connected in series across the primary of the power transformer, the common connection between the two being grounded to the oscilloscope case.

Antenna and Transmission-Line Measurements

Two principal types of measurements are made on antenna systems: 1) The standing-wave ratio on the transmission line, as a means for determining whether or not the antemat is properly matehed to the line; 2) The comparative radiation field strength in the vicinity of the anterma, as a means for cherking the dirertivity of a beam antemna and ass an aid in adjustment of eloment tuning and phasing. Both types of measurements can be made with rather simple equipment,

FIELD STRENGTH MEASUREMENTS

The radiation field of an antemna is measured with a devier that is essentially a very simple receiver equipped with an indicator to give a visual representation of the comparative signal strength. Such a field-strength meter is used with a "pick-up antema", which should always have the same polarization as the antennat being checked - e.g., the pick-up antemna should be horizontal if the transmitting antema is horizontal. Care should be taken to prevent stras pick-up by the fiold-strength meter itself or by any transmission line that may conneet it to the pick-up antemna.

Field-strength moasurements preferably should be made at a distance of several wavelengths from the transmitting antenna being tested. Measurements made within a wavalength of the antema may be misleading, beatuse of the possibility that the measuring equipment may be responding to the combined induction and radiation fietds of the antenna, rather than to the radiation ficld alone. Also, if the pick-up antenna has dimensions comparable with those of the antenma under test it is likely that the coupling between the two antemas will be great enough to cause the pick-up antemna to tend to become part of the radiating system and thus result in misleading ficld-strength readings.

A desirable form of piok-up antemna is a dipole installed at the same height as the antema boing tested, with low-impedanee line suth as 75 -ohm Twin-Lead connected at the center to transfer the r.f. signal to the field-strength meter. The length of the dipole need only be great enough to give adequate meter readings. A half-wave dipole will give maximum sensitivity, hut such length will not be needed unless the distance is several wavelengths and a relatively insensitive meter is used.

Field-Strength Meters

The crystal-detector wavemeter deseribed earlior in this chapter may be used as a fieldstrength meter. It may Ire coupled to the transmission hine to the pick-np antenna by means of a link of a few turns wound around the wavemeter coil. Also, the wavemeter proper may be ronnereted to the milliammeter through a seetion of lamperd or similar two-conductor cable of any convenient length. This permits the milliammeter unit to be near the point where adjust-

Fig. 21-14-Wiring diagram of the sensitive fieldstrength meter.
$\mathrm{C}_{1},\left(\mathrm{C}_{2}, \mathrm{C}_{3}-0.001-\mu \mathrm{fd}\right.$, ceramic,
C3. C $_{5}-4$ - $0-\mu \mu \mathrm{fl}$. ceramie.
$\mathrm{C}_{4}-0.005-\mu \mathrm{fd}$, erramic.
$\mathrm{H}_{1}-1 . \overline{\mathrm{j}}$ megohms.
I.i - $1+$ Mr.: 8 turns No. 30 d.e.c.

28 Mc.: 6 turns No. 22 d.c.e.
$1.2-1+$ Me: 34 turns No, 30 d.e.e. 28 Mc.: 24 turns No. 2.2 d.c.e,
L. $3-1+\mathrm{Mr} \cdot: 2^{7}$ turns No. 28 d.e.c.

28 Me.: 16 turns Do. 20 d.e.e.
L_{1} wound over ground end of Lia. L_{2} and I_{3} closewound on Dational \R-.s) slug-tuned roil forms.

$S_{1}-S_{p} p, s_{2} t$, togule.
IIA-0. 0 milliammeter.
ments are being made, even though the piek-up antemat and wavemeter may be several wavelengthe away.

The indications with a ervstal wavemeter connocted as shown in Fig. 21-10 will tend to be "square law" - that is, the meter reading will be proportional to the sfuare of the r.f. voltage. This exaggerates the efferet of relatively small adjustments to the antenna sustem and gives a false impression of the improvement secured. The moter reading can be made more linear by connecting a fairly large resistance in series with the milliammeter (or microammoter). About

Fig. 21-43-A logarithmic field-strength meter of high sensitivity. It uses two miniature hattery-operated tubes and a $0-500$ microammeter, and gives readings that are approximately proportional to the change in field strength in decilels.

Fif. 21-4. - The logarithunie f.s. meter is constructed on a small alumimem channel. A small copper plate between the two coils is used for redaming the interstage compling to the point where the r.f. amplifier is nonregeneratise.

10,000 ohms is reguired for good linearity. This considerably reduces the semsitivity of the meter, but the lower sensitivity can be compensated for by making the pick-up antenna sufficiently large.

A Sensitive Logarithmic F.S. Meter

For indicating the effect of antenna adjustments at a distant station, a logarithmic type of indicator is desirable in the field-strength meter since the meter readings with such an instrument are directly proportional to decibels. Figs, 21-43 to 2I-t5, inclusive, show a meter of this type. It makes use of the fact that the rectified d.c. output of a detector following a.v.e.-controlled r.f. stages tends to be logarithmic with respect to the r.f. voltage applied to the reediver.

lig. 21-16 - Typiral calihration eurve of the logarith. mie field-itength meter. 'The curve is sufficiently logarithmic, for practical purposes, betwern aloum 0.0 .5 and 0.45 ma. 'The way in which the readinge vary with applied signal, and not the absolute value of the signal. is the important peint, and since this will not change signifieantly mo long as the same ciremit is used, the curve above may be used with any eimilar instrument.

As shown in Fig. 21-4t, the eireuit includes an r.f. amplifier, a detector, and a d.c. amplifier, using miniature battery tubes. The reetified r.f. voltage developed aeross R_{1} in the diode circuit of the $11^{\circ} 5$ is applied through the ground eomection to the grid of the ITt r.f. amplifier and thus controls its gain. The $11 / 2$-volt " A " battery is not connected to ground but is allowed to "flost", permitting the a.v.c. voltare to be affective on the grids.

In the unit shown in the photographs, slugtuned coils are used becouse of their small size
and because they eliminate the need for variable tuming condensers. However, ordinary condensertuned circuits can be substituted; the only requirement is that the circuits must be tumable to the frequeney at which the antenna is being adjusted. The onty critical point about the construction of such a meter is to lay out the tuned circuits so that the r.f. amplifier is stable; otherwise, any convenient layout may be used.

With the values shown in Fig, 21-4t the nosignal plate current should be very close to 0.5 milliampere. A less-sensitive d.c. instrument will reduire more " B " voltage. Whatever the type of meter, the current may be brought to exactly full seale, with no signal input, b, shomting it with a variable resistor of suitable range, depending on the internal resistance.

Fig. 21-46 is a typical calibration curve. The readings are approximately logarithmic over about 70 percent of the scale, with a range of about 20 db . U゙sed with a folded-dipole piek-up antenua, the instrument is sensitive mough for use a few thousand fert away from a bean antemna fed with a few hundred watts.

CHECKING STANDING WAVES

Standing waves on a transmission line can be measured if it is possible to measure the current at every point along the line, or the voltage between the wo conductors at every point along the line. Rough cherks on parallejconductor lines can be made by going along the line with an absorption wavemeter having a crustal rectificr, taking eare to keep the pick-up coil (or pick-up antenna) at the same distance from the line at evory measurement. With such a device the milliammeter usually will indicate courrent loops if a small pick-up roil is used. and voltage loops if a short piekup antenua is used.

In alternative indieator, also useful with parallel-conductor lines, is a neon lamp. With moderalle amounts of transmitter power, a lowWattage lamp will glow when the glass bulb is brought into contact with one line wire. As the lamp is moved along the line at change in brightness indicates standing waves. If the glow is substantially the same all along the line the s.w.r. can be considered to be low enough for pratidal purposis.

Standing-Wave Ratio Indicators

Simple indicators such as those just mentioned are useful for cherking the presence of standing waves along a transmission line but
are not adequate for actual measurement of the standing-wave ratio. Also, it is frequently inconvenient, and sometimes impossible, to move a current or voltage indieator along a Iransmission line for the distance required in therking standing waves.

for $v=0$
$R_{L}=\frac{R_{2}}{R_{1}} R_{s}$
any of the four resistance "arms" of the bridge for maximum sensitivity. From Ohm's Law it is apparent that when R_{1} / R_{2} equals R_{s} / R_{1} the voltage drops aeross R_{1} and R_{s} are equal (this is also true of the voltage drops across R_{2} and R_{1}) and there is no difference of potential between points C and D. Hence the voltmeter reading is zoro ("null") and the bridge is said to be "halanced." Under any other conditions the potentials at C and D) are not the same and the voltmeter reads the difference of potential. When the bridge is bedanced,
R_{1} and R_{2} are ealled the "ratio arms" of the bridge.

The basis for s.w.r. moasurements with a bridge is the fact that the input impedanee of a properly-terminated transmission line is a pure resistance equal to the line's characteristie impedance. If a matehed line is comnected as the unknown arm of an appropriate bridge riment the bridge ean be bataneed in the usual way and the indieating instrument will show a mull. However, if the line is not property terminated the voltage refleeted hark from the far end of the line will appear at the terminals of the bridge and will register on the voltmetor. The relationship between voltmeter reading (in percentage of full scale) and standing-wave ratio is shown in Fig. 21-48. This curve applies only when the voltmeter inperdance is extremely high - 20 times or more-compared with the impedance for which the bridge is designed.

While other bridge circuits can be used for s.w.r. measurement, the resistance bridge is about the simplest and casiest to build. It lends itself wedl to construetion for coaxial lines and when so designed can be used for measarement of open-wire lines as shown later in this chapter.

S.W.R. INDICATOR FOR COAXIAL LINES

Figs. 21-49 to 21-51, inclusive, illustrate the type of eonstruetion that should he used in a coaxial-line s.w.r. indicator. Coupling between various parts of the r.f. cireuits should be as small as possible. Short leads in the ref. wiring are important, to minimize stray reactances that, although not visible in the circuit diagram, may become appreciable at frequencies of the order of If Me and higher. The loading resistor, R_{1}, places a constant low-resistance load on the fransmitter and therehy helps maintain constant voltage acerose the britge regatrdess of the load that may be connected to the output terminals. A refinement, although mot ath essential part of the bridge, is the voltmeter connerted across the input side of the line and eonsisting of the erystal rectifier, C_{1}, and R_{5}, in ronjunction with S_{1} and the meter. This line voltmeter is a eonvenience in making measurements, because it will show whether or not the line voltage varies when shift-
where I^{\prime} o and I^{\prime} rare the ontmoing and reflected compo-nent-, respeetively, of the voltage on the transmission lise.

Fig. 21-48-stamling-wave ratin in term* of metor reading (relative to full scale) after setting outwoing veltage to full wale. This wraph is a plot of the formula

$$
\therefore . H . K=\frac{10+1 r}{10-1 r}
$$

Fig, 21-4 - Rerietanoe bridge as used for resintance measurement, lhis fundamental circoit is the basis for one type of bridge for neasaring standing-wave ratio.

An alternative method ases a bridge rirruit to measure the standing-wave ratio. While there are many forms of bridge circuits, the simple resistance bridge shown in Fig. 21-47 will serve to illustrate the basic principles. This type of bridge is often used for measurement of resistance, R_{1} and R_{2} are fixed resistors having known values, and R s is a calibrated variable resistor. The unknown resistance to be moasured, R_{L}, is connected in series with R s to form a voltage divider across the souree of voltage, E. The resistance of the voltmeter, 1 , should be very much larger than

Fig. 21-49-Reqistance-bridge-tandingewave indicator for coavial lines. Input and output termmals are at the fower loft and lower right. respertionly. "Ihis unit, built in at by thy thon, iz browided with a with an hat the voltmeter can measure either the applied whage or the liridge woltage.
ing the output commetions from ofn or or shortrimenit the reforence madingst on the atual line to be mesasured. Thus it shows whether or not an error has bern introduced bereatso of line voltage regulation, and fermits readjustment to the proper value. The cratibrations of the two woltmetors de net have to be identical.

The bridge performande can be weved by using a notinductive resistor of tho rame value as R_{2} (matched as chasely an persible) as a hoad.

Fig. 21.50 - Resistance-l, ridur s.w.r. indicator for coaxial lines.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-\mathrm{O}, \mathrm{KNI} \mathrm{I}-\mu \mathrm{fd}$, máa
 watt resistors ill parallil,.
$\mathrm{R}_{2}-50$ to $\overline{6} .5$ ohme, carbon, $\frac{1}{2}$ watt (ielect resistance value to ecrual charaterintic imperiance of line).
$R_{3}, R_{4}-$ Ipp. $\overline{0} 0$ ohms, Absoluter alue mot crinieal, bui the tworesiators slumbld the within a fre per cent of the same value.
R_{5} - 4060 ohms, $1 / 2$ watt, rarlom.
$\mathrm{R}_{6}-820$ ohms. $1 / 2$ watt, warthen.
Jo, Jo foras connextorn.
$114-0-1$ d.e. milliammeter or mismammeter.
S_{1}-sped.t. wagke.
Atal- NDis or 1 N31.

With the output terminals open and S_{1} set to read input voltage, adjust the transmitter coupling to obtain a roading between half and full scalo. Bocause the bridge operates at a very how power level it may be necessary to couple it to a low-power driver stage rather than to the final amplifier. Alternatively, the plate voltage and excitation for the final amplifior may be reduced to the point where the power output is of the order of five watts. Then coment the test resistor to the output terminals, using loads as shout as possible, and switch S_{1} to the bridge position, when the reading should drop to zaro. A poor null under these eronditions indicates stray moupling or execssive lead reactance in the bridge cireuit.
"The bridge maty" be calibrated by using nominductive resistors as loads. Aljusis the transmitter coupling so that the voltmeter reads full seale (hridge position of s_{1}) with the output terminals opern, and then cherek the iuput voltage. Comert various values of resistance across the output terminals, making sure that the input voltage is the same in each case, and mote the reading with the moter in the bridg position. The s.w.r., is given by

$$
S . I^{*} . R=\frac{R_{\mathrm{I}_{0}}}{R_{0}} \text { or } \frac{R_{0}}{R_{\mathrm{L}}}
$$

Fig. 21.31- Inside view of the remintaner-bridge s.w.r. indicator. 'Tle input torminal is at the right. An aluminum strip, the full width of the box, rerves as a lowindustanee ground plane for the instrument. Small ceramic through-bushings are uned to insulate the "hot" line condurtor and the bridge resistor, R_{2} (Fig. $\because=-50$). at the lower left. 'The ratio arms, R_{3} and R_{4}, are mounted above the kreund wane at the left edge of the hers. The load resisior, at the right, consists of five 1 -watt resistor: mounted in ring fashion. Ihis construction shiedse the hot conductor and hridge rexistor from all other parto of the tridge.

Where R_{0} is the line impedanee for which the bridge has been adjusted to null, and h_{L} is the resistance used as a load. Use the formula that places the larger of the two resistances in the numerator. The readings may not comespond exactly for the same sw, when appopriate resistors above and below the line impedane for which the bridge is designed are used. This is because of the current taken low the voltmeter. With the eonstants given in lige 21-50 the variattion should not exered about is per cent, and the emor can be made smatler by using a low-range microammeter with a large serios resistance as a veltmeter.

To use the bridge for s.w.r. meaturements, conneet it to the transmitter and adjust the coupling to make the metcor read full scate with the bridge output terminals bither open or shortrircuited and S_{1} in the bridge position. ('herek the line voltage. Connert the transmission line to be measured, readjust the transmitter coupling for the same line voltage, if neressary, and then switeh S_{1} to the bridge position for the s.w.r. reading, as given by the previonsly-determined calibration curve.

Parallel-Conductor Lines

Bridge measurements made directly on paral-lel-conductor lines arr frecuently subject to considerable error becanse of "antemma" courents flowing on such lines. These currents, which are rither induced on the line by the field around the antenna or conpled into the line from the transmitter hy stray capacitanere, are in the same phase in both line wires and henee do not batance out like the true transmission-line currents. They will nevertheless artuate the bridge voltmeter, (ausing an indiation that has no relationship to the standing-wave ratio.

Fig. 21-52- Circuit for using coasial sw.r. hridge for measuremonts on parallaleondurtor lines. Values of pircuit components are identical with those nsed for the similar "antenna-eompler" circuit discuserd in the chapter on transmission lines.

The rffert of "antemat" currents on s.w.r. measurements ean be largely overeome by using at coaxial bridge and coupling it to the parallelconductor line through a property-designod imperdaner-matehing eircuit. A suitable eireuit is given in Fig. 21-52. It closely rescmbles the common type of "antemat couplor", and in fart such a coupter can be used for the purpose, In the balanced tank eiredit the "anternas" on parallel eomponents on the line tend to balance out and so are not passed on to the s.w.r. bridge. It is essential that L_{1} be coupled to a "erold" pint on L_{2} to minimize caparitive coupling, and also desiratbe that the renter of L_{2} la grounded to the rhassis on which the circuit is mounted.

Values should be such that $L_{2} C_{1}$ can be tunced to the operating frequency and that L_{1} provides sufficient coupling, as deseribed in the trans-mission-line chapter. The measurement procedure is as follows:
(Connert a moninductive ($1 / 2$ or 1 watt carbon) resistor, having the same value as the chararteristie impedane of the parallel-conductor line, to the "line" terminals, Apply r.f. to the bridge, adjust the taps on L_{2} (kereping them equidistant from the center) and vary the capacitance of (${ }_{1}$ until the bridge shows a nult. After tho nuth is obtained, do not touch any of the circuit adjustments. Next, short-circuit the "line" terminals and adjust the ref. input until the bridge voltmoter reads full scale. Remove the short-circuit and test resistor, and conneet the regular transmission line. The bridge will then indicate the standing-wave ratio on the line.

The circuit requires rematching, with the lest resistor, whenever the frecuency is changed appreciably. It ran, however, be used over a pertion of an amatear band without readjustment, with negligible crror.

The "Twin-Lamp"

A simple and inexpensive standing-wave indicator for 300 -ohm line is shown in Fig. 21-i33. It consists only of two flashlight lamps and a short piece of 300 -shm line. When laid flat against the line to be cherked, the combination of inductive and capacitive coupling is such that outgoing power on the line causes the lamp nearest to the transmitter to light, while reflected power lights the lamp nearest the koad. The power input to the line should be adjusted to make the lamp nearest the transmitter light to full brilliance. If the line is properly matehed and the reflected power is very low, the tamp toward the antema will le dark. If the s.w.r. is high, the two lamps will glow with practically equal brilliance.

The length of the piere of 300 -ohm line used in the twin-lamp will depend on the transmitter power and the operating frequency. A few inches will sutfice with high power and at high fre-

Fig. 2I-53-The "t win-lamp" standing-wave indicator.
quencies, while a foot or two may be needed with low power and at low frequencies.

In constructing the twin-lamp, cut one wire in the exact center of the piece and peed the ends back on either side just far enough to provide leads to the flashlight lamps. Remove about $1 / 4$ inch of insulation from one wire of the main

Fig, 21.5.4-Wiring diagram of the "twin-lamp" standing-wave indicator.
transmission line at some convenient point. Ve the lowest-current flashlight bulhs or dial hamps available. Solder the tips of the bulbs together and conneet them to the bare point in the transmission line, then solder the ends of the eut prortion of the short piere to the shadls of the bulls, Figs. 21-53 and 21-54 should make the construction clear.

Installing the twin-lamp on a line introduces a discontinuity in the line impedance which rauses the s.w.r. from the twin-lamp back to the transmitter to diffor from the s.w.r. existing between the antenna and twin-lamp. For this reason it is frequently desirable to remope it after s.w.r. checks have been made. It is ronvenient to mount the twin-tamp on a short length of line fitted to a $300-\mathrm{oh}$ om plag at one end anda mating socket (rerystal socked with halfinch spacing) at the other. If similar plugs and sockets are used on the transmitter and regular transmission line, the whole test unit can be inserted and taken out at will.

The fwin-lamp will respond to "antenna" currents on the transmission line in much the same way as the brigge cireuits discussed carlier. There is therefore always a possibility of error in its indieations, unless it has been determined by other moans that "antenna" eurrents are inconserquential compared with the true transmission-line current.

Assembling a Station

An amateur station is generally far better known by its signal and good operation than by its physioal appearance. Good operating and a clean signal will build a reputation faster than thousands of dollars invested in special equipment and an claborate "shack," and it is this very fact that makes amateur radio the democratic hobby that it is. However, most amateurs take pride in the arrangement of their stations, in the same way that they are carefal of the apporance and arramement of anything else which is part of the household. An antenna installation is the only external indibation of the amateur station. and the degree of neathess required is generally determined by the district where the amateur lives and the attitude of the neighbors. However, with the advent of all different kinds of television receiving antennas, neighbors are in a much less favorable position to complain about the appearance of an amateur antemma system in the vicinity. TVI is something else, however!

The actual location inside the house of the "shack" - the room where the transmitter and receiver are located - depends. of conrse. on the free space available for amateur activities, Fortmate imienl is the amateur with a

A pood cxample of a station well prepared for attivity on several hands. The rafek house's prower supply anil F- and 11. . Me. output amplifiers, with the $3,3$. . Me. amplifier adjafent in its own rack. 'The receiver, VFO, tube keyer, typewriter, control switehes, key and telephone are all within easy reach of the operator. Special cubby* Heles provided for message forms, log book, Call Book and other papers keep the operating position neat and ready for action at any time. (N 1(:I) A, Wanville, Ky .)
separate room that he can devote to his amateur station, or the few who can have a special small building separate from the anain house. However, most amateurs must share a room with other domestie antivities, and amateur stations will be found tucked away in a corner of the living room, a bedroom, a large closet, or even under the kitchen stove! A spot in the cellar or the attic can almost be classed as a separate room, although it may lack the "finish" of a normal room.

Regardless of the location of the station, however, it should be designed for maximum operating convenience and safety. It is foolish (o) have the station arranged so that the throwing of several switches is requirel to go from "receive" to "transmit," just as it is silly to have the equipment arranged so that the operator is in an uncomfortable and cramped position during his operating hours. The reasons for building the station as safe as possible are obvious, if you are interested in spending a number of yeat's with your hobby!

CONVENIENCE

The first consideration in any amateur station is the operating position, which inchades the operator's table and chair and the pieres of equipment that are in constant use (the receiver, send-receive switch, and key or microphone). The table should be as large as posible, to allow sullicient room for the recoiver or recoivers, frequence-measuring equipmont. monitoring equipment, control switches, and kess and miomphones. with enough space left over for the loghook, a pad and pencil, and perhaps a large ash tray. Suitable space shoubl be included for radiogram blanks and a call book, if these aroessories are in frequent use. If the table is small. or the number of pieces of equipment is large, it is oftell neressary to build a shelf or rack for the auxiliary equipment, or to mount it in some less convenient location in or under the table. If one has the facilities, a semicireular "console" can be built of wood, or a simpler solution is to use two small wooden rabinets to support a table top of wood or Masonite. Home-built tables or consoles can be finished in any of the available oil stains, varnishes, paints or lacruers. Many operators
use a large piece of plate glass over part of their table, since it furnishes a good witing surface and ran cover miseellaneous charts and tablom. prefix lists, operating aids, calendar, and simihar arcessories.

If the major interests never require frequent band changing, or frequency changing within a band, the transmitter can be located some distance from the operator, in a location where the meters am be observed from time to time (amd the color of the tube plates noted!). If frequent band or frequeber chamges are a part of the usual operating procedure the trimsmitter should be mounted elose to the operator, either along one side or above the rereiver. so that the controls are easily aremsible

Fig. 22.1 - In a station assembled for maximum rant in froumency or hand elanging. the tramsmittor slombel tre lowated next to the operating position, as shown above. On the operating table, the receiser in in fromt of the operator amd IFO or ersstal-switching oserillator on the left. ('lhe IFO or erystal oscillator could be part of the tramsmitter proper, bot most onerators serem to profer a seluarate \FO.)

The frequeney stamlard and other anxiliary equipment can be monnted on a shelf above the receiver, "llo. operating table can the an old desk, or a top supported by two small wooden calninets. The "send-receive" suiteh is to the right of the telegraph keys - other switches are on the transmitter or the individual units.
'The above arrangement can be made to lowh cleaner ly arranging all of the equipment on the table behind a single pancl or a set of patmels. In this crase, provision must be made for getting belsind the franel for perviting the units.
without the need for leaving the operating position.

A compromise arrangement would place the VFO or erystal-switched oscillator at the operating position and the transmitter in some convenient location not adjacent to the opcrator. Since it is usually possible to operate over a portion of a band without retuning the transmitter stages, an operating position of this, trpe is an advantage over one in which the operator must leave his position to make a change in frequencr.

Controls

"Phe operator has an excellent chance to exercise his ingenuity in the loration of the operating controls. The most important controls in the station are the receiver tuming dial and the send-receive switch. The receiver tuming dial should be located four to eight inches

Once of the mont romenient etation arrangements is to build a semioe ircular operating table as shown here. Ill operating controls are readil: atvalahle, and considerably more equipment ran be grouped aromml the opprator than when an ordinary drak is usid. (NIEAI, Riverton. . . I.)
above tife aperating table, and if this requires mometing the reepiver off the table, a small shelf or brateket will do the trick. With the single exeption of the amateur whose work is alnost entively in traffi, or ras-chew nets, which require little or no attention to the reereiver it will be fomme that the operators: hamd is on the receiver tming dial most of the time. lit the tming knob is too high of too low. the hand gets cramped after an extended period of operating. hence the importance of a pooperv-located receiver. The majority of (..w. , peratore tume with the left hand, prefereing ho loave the right hand free for copping messages and handling the kers, and so the receiver shonid be momed where the knob (an be retu hed by the left hand. 'Phone op)erators aren't tied down thes way, and tune the commanicattons recriver with the hand that is more convenient.

The hand key should be fintened securely to the table, in a line just outside the right

When one zuerializes in elean-ent $c \cdot w$, operation on all hands, he is likely to eome up with a ne'at arrangement like this. 'The trammitter rums 40) watts, despite its small size. The small mit between transmitter and receiver is the V'O. (NSMY, San Antonio, 'Texas.)
shoulder and far enough batek from the front edge of the table so that the elhow ram rest on the table. A grood lasation for the semiantomatio or "bug' key is right next to the hathdkes, although some operators prefer to momat the automatic key in front of them on the left, so that the right formarm rests on the table parallel to the front edge.
The best location for the mierophone is directly in front of the operater, so that he doesn't have ta shout arross the table into it. or rum up the suech-amplifier gatn so high that afl manner of external sounds are pioked up.

In any amateur station worthy of the name, it should be neressary to throw no more than one switeh to go from the "reerive" to the "transmit" condition. In 'plone stations, this switch should be located where it can be easily reached by the hand that isn't on the recoiver. In the case of r. w. operation, this swith is most conveniently locuted to the right or left of the key, although some operators profer to have it mounted on the left-hand side of the operating position and work it with the left hand while the right hand is on the kes. Fither location is satisfactory, of course, and the choice depends upon personal preference. Gome operators use a foot-controlled swit \cdot h, which is a convenicnce but doesn't allow too much frecedom of pesition during long operating periods.

If the microphone is hand-held during 'phone operation. a "push-to-talk" switch on the microphone is convenient, bat hand-held mierophones tie up the use of one hand and

F'is. $22-2$ - When little space is availalile for the amateat station, the rofuipment has to be spotted where it will fit. In the alowe arrangenment, the transmitter, momblator and power supplies (separate units) are samlwidhed in alongside the operating table and on a sholf above the tathle. The antenma tuning unit is mounted over the feed-through insulators that bring the antenna line into the "shack," and londspeaker and small power supplies are mounted under the table. The operating position is clean, however, with the V゙FO, receiver and kevs at table level. The taning knoh of thireceiver would be uncomfortably low if the reeviver weren't raised by the wooden arch, and the "senelrerrive" switeh is mounted on the right-hand side of this arih, next to the hand key. Intercomecting leads should be cabled along the lack of the table and table lege, to keep them inconspiluous,

This illumates how concealing all intereonnecting wires and eliminating gear mot nereasary to commonication results in an extremely neat station. (IE: 1 LJ , Woodstork, Ont.)
are not too desirable, although they are widely used in mohile and portable work.

The location of other switches, such as those used to control power supplies, filaments, 'phone/r.w, change-over and the like, is of no particular importance, and they can be located on the unit with which they are associated. This is not strictly true in the case of the 'phone/c.w. IN man, who sometimes has need to change in a hurry from rew. to 'phone. In this case. the change-over switch should be at the operating table, although the actual change-over shoulis be done by a relay eontrolled be the switeh.

If a rotary locam is used the control of the beam should he convenient to the operator. Thedirection indicator, however, can be located anywhere within sight of the operator, and does mot have to be located on the operating table unless it is included with the control.

When several fixed beams are used, the selection of any one should be possible from the operating position. to minimize the time reguired to select the proper one. This generally means using a series of antenna relays or a stepping switen.

Frequency Spotting

In a station where a VFO is used, or where a number of arystals is availatble the operator should be able tes turn on only the ascillator of his transmitter. so that he cain spot accurately his location in the band with respect to other stations. This allow's him to see if he has anything like a clear channel (if such a thing exists in the amateur bands!), or to see what his frequency is with respect to another station. Sueh a provision can be part of the "send-receive" switch. switches are available with a center "off" position. a "hold" position on ene side, for turning on the oscillator only, and a "lock" position on the other side for furning on the transmitter and antemar relays. If oseillator keying is used, the key serves the same pur-

Fip. 22 -3 - Power circuits for a high-power station. A shows the outlets for the receiver, monitoring equipment, speech amplifier and the like. The outlets should be momed inconspicuonsly on the operating table. B shows the transmitter filament circuits and control-relay ciretits, if the latter are used. C shows the plate-transformer primary rircuits, eontrolled by the power relay. A heavy-duty switeh can be used instead of the relay, in which case the antenna relay would be connected in circuit C.

If 115 -volt pilot lamps are used, they can be connerted as shown. Lower-voltage lamps nust be connected arrose suitable winding o on transformers.

With "push-totatk" opration, the "send-receive" switch can be a d.p.d.t. affair, with the second mole eontrolling the "on-nf" circuit of the receiver.
pose. provided a "smed-receive" switel is a vailable to turn off the high-voltage supplies and prevent a signal going out on the air during adjustment of the oscillator frequeney.

For 'phone operation, the telegraph key or an auxiliary switch can eontrol the tranmitter oscillator, and the "send-receive" switch can then be wired into the eontrol system so as to control the ospillator as well an the ot her circuits.

Comfort

Of prime importane is the eonfort of the operator. If you find sompself getting tired after a short period of operating. examine your station to find what rauses the fatigue. It may be that the chair is too soft or hasn't a straight back or is the wrong height for yous. The key or receiver may the located so that you assume an uncomfortable position while using them. If you get slepsy fist. the ventilation may be at fault. (Or fon may need sleep!)

POWER CONNECTIONS AND CONTROL

Following a few simple rules in wiring your power supplies and control circuits will make it an easy job to change units in the station, If the station is planned in this way from the start, or if the rules are recalled when you are rebuilding, you will find it a simple matter to revise your station from time to time without a major rewiring job.

It is neater and safer to run a single pair of wires from the outlet over to the operating table
or some central point, rather than to use a number of adapters at the wall outlet.

Interconnections

The wiring of any station will entail two or three common circuits, as shown in Fig. 22-3. The circuit for the receiver, monitoring equipment and the like, assuming it to be taken from a wall outlet, should be run from the wall to an ineonspicuous point on the operating table, where it terminates in a multiple outlet large enough to handle the required number of plugs. A single switch between the wall outlet and the receptacle will then turn on all of this equipment at one time.

The second common eircuit in the station is that supplying voltage to rectifier- and trans-mitter-tube filaments. bias supplies, and anything else that is not switehed on and off during transmit and receive periods. The coil power for control relays should also be obtained from this circuit, The power for this circuit can come from a wall outlet or from the transmitter line, if a sperial one is used.

The third circuit is the one that furnishes power to the plate-supply transformers for the r.f. stages and for the modulator. (See ehapter on Power Supplies for high-power eonsiderafions. When it is opened, the transmitter is clisabled except for the filaments, and the transmitter should be safe to work on. However, one always feels safer when working on the transmitter if he has turned off every power supply pertaining to the transmitter.

With these three circuits established, it becomes a simple matter to armange the station for different conditions and with new wits. Anything on the operating table that runs all the time ties into the first cirenit. Any wow power supply or r.f. unit gets it: filament power from the serond eireuit. Since the third cireuit is controlled by the send-receive swite h (or relay) any power-supply pimary that is to be switehed on and off for and and rearive commerts to cirwuit Xio. 3.

Break-In and Push-To-Talk

In (e.w, operation, "break-in" is any system that allows the tramsmitting operator to hear the other fellow's signal during the "key-np" periods between rharamers and lotters, This allows the semding station to be "broken" by the receriving station at any time to shortent (alls, ask for "fills" in messages, allad speerel up operation in genaral. With present terdnigues, it refuires the use of a sepatate remedoing anternatan, with high powor. some means for protereting the reoriver from the tramsmitter when the key is "down," several mothors. appliable to high-pewer stations. are deseribed in ('hapor Fight. If the tramimitter is
 equipmont is required except the sepatate roroiving antemband areodiver that "rowers" fast. Where break-in uperation is used. there should be a switeh on the operating table to turn off the phate supplies when adjusting the oscillator to a new frequencer, ahhongh daring all break-in work this switch will be elosed.
"Push-to-talk" is ath exphession derived from the "push" switel on wome microphomes. and it means a 'phone station with a single control for all change-over functions. Striotly speaking. it should apply only t a atation where this single send-redeive switch must be held in plate daring tranemission periods. but any fast-acting switel will give pratetically the same effect, I control switoh with a renter "off" position, andonte "hold" and one "lowe" position, will give more floxibility thats a st raight "push" switch. Ther one switch must control the antemat thamerenver melay, the transmittor pewer suphlios. and the reerever "on-off" rimentit. This latter is neressisty to disable the receriver during thansmit periods. to avold acoustio feret-bark.

Switches and Relays

It is dangerous to twe an overnouded switch in the power circuits, Alter it has been used for some time, it may fail. leaving the power on the arenit even after the switeh is thrown to the "off" position for this reason, large switehes. or relays with adequate ratings, should be ased to control the plate power. Reliys are rated by eoil voltages (for their control circuits) and by their contact current ratings.

When relays are used, the send-receive switeh closes the riment to their coils. thas closing the relay contacts. The relay contacts
are in the power circuit being controlled, and thus the switeh handles only the relay-coil current.

SAFETY

Of prime importance in the layout of the station is the personal safety of the operator and of visitoms. invited or otherwise. darims normal operating pratio. If there are small childen in the house evory step must he taken to prevent their aceridental contate with power leads of any voltage. A loeked room is at fine idea, if it is possible, otherwise housing the transmitter and power supplies in metal cabinets is an excellent, although expensive, solntion. Lacking a metal cabinct, a wooden eabinet or a woolen framework eovered with wire serem is the next-best solution. Many stations: have the power supplies housed in metal cabinets in the operating room or in a closect or basement. and this cabinet or entry is kept locked - with the key out of ratal of everyone bat the operator. The power leads are run through combluit to the tamsmitter. using ignition cable for the high-voltage leats. If the power supplies and transmitter are in the same abinet, alock-type main switeh for the incombay line power is a good preatation.

A simple substitute for a lock-type main switch is an ordinary line plog with a short comecting wire betwern the two pins. By wiring a fimate receptable in series with the main power line in the transmitter, the shoting plug will act ats the main safety lock. When the plag is remowed and hidden. it will be imprsisible to entergize the transmitter, athd at stranger or ehild isn't likely to spot or suspect the open recoptache.

An exsential adjunct to any station is a shorting stick for diseharging atny high voltage (t) ground before any work or coil changing is done in the transmitter. Beven if interleeks and power-supply beroters are used. the lature of

In this example of a compart hish-power mation, the operatiog lable fold- up when not in wee and covera the receiser and spectlamplifier. special furniture, like this homenade operating table. groe a long way toward solving the space problem for many amatetirs. ($\mathrm{H} / \mathrm{IIAV}$, Fort I'homas, Ky,
one or more of these components may lave the transmitter in a dangerous condition. 'The shorting stick is made by mounting a small metal hook, of wire or rod, on one end of a dry stick or bakelite rod. A piece of ignition cable or other well-insulated wire is then run from the hook on the stick to the chassis or common ground of the transmitter, and the stick is hung afongside the transmitter. Whenever the power is turned off in the transmitter to work on the rig, or to change coils, the shorting stick is first used to touch the several high-voltage leads (tank condenser, filter condenser, tube plate connection, ete.) to insure that there is no high voltage at any of these points. This simple device, has saved many a life. Use it!

Fusing

A minor hazard in the amateur station is the possibility of fire through the failure of at component. If the failure is complete and the component is large, the house fuses will gernerally blow, Howerer, it is unwise and inconvenient to depend upon the house fuses to protect the lines running to the radio equipnont, and every power supply should have its own set of fuses, with the fuse ratings selected at about 150 or 200 per cent of the maximum rating of the supply. If, for example, a power transformer is rated at 600 watts, it would draw about σ amperes from the a.e. line $(600 \div 115=5.2)$, and a 10 -ampere fusce should be used in the primary circuit of the transformer. Circuit breakers can be used insteal of fuses if desired.

Wiring

Control-cirenit wires running between the operating position and atransmitter in another part of the room should be hidelen, if possible. 'lhis can be done by running the wires under the floor or bohind the base molding, bringing

This station goes all the way in eonecalment by housing the entire station in a sperial cabinet. When the cabinet is opened, the operating table is formed and all pieces of gear are accessible. (NGYNX, Dountain View, Calif.)

There was enough reomen at this station to build the transmitter into the wall, amel to proteet it with plass dowrs. In an instaltation like this, it is convenient to have areess the rear of the transmitter units. for mahing connection to them and for testing. If the rear cannet be reached, all power leads should be cabled up along the side walls. at the rear. (1 GNO ', W'hittier, Calif.)
the wires out to terminal boxes or regular watl fixtures. Such construction, however, is gonarally only possible in claborate installations, and the average amateur must content himself with trying to make the wires as ineonspicuous as possible. If several pairs of leads mast be run from the operating table to the transmittor, as is generally the case, a single piece of rubber- or vinyi-covered multiconductor cable will always look neater than sereral pieces of rubber-covered lamp eord.

The antenna wires always present a problem, unless eoaxiat-line feed is used. (Open-wire line from the point of entry of the antoma line should always be arranged neatly, and it is generally best to support it at several points. Many operators prefer to mount their antemattuning assemblies right at the point of entry of the feedline, together with an antenna changeover relay (if one is used), and then the link from the tuning assembly to the transmitter can be made of ineonspreuous coaxial hine or Twin-Lead. If the transmitter is mounted near the point of entry of the line, it simplifies the problem of "What to do with the feeders:""

General

You can check your station arrangement by asking yourself the following questions. If all of your answers are an honest " Ves," your station will be one of which you can be proud.

1) Is your station safe, under normad operating conditions, buth for the operator and the visitor?
2) Is the operating position comfortable, even after several hours of operating?
3) Do you throw not more than one switeh to go from "receive" to "transmit"?
4) Does it take only a short time to explain to another amateur how to work your station?
b) Do you show your station to visiting amateurs or laymen without apologizing for its appearance?

BCI and TVI

It is the duty of every amatour to maker sure that the operation of his station does not, becatase of anys shorteomings in cogupment, canse interferenere with other ratio serviess.

Howerer, there is a larger obligation - to eliminate interferener with regular broadeasting (BC'l) and television (I'VI) to the gradest possible extent revell when your own transmitter is not at fault. The institution of amateur radio cannot eontinue to flourish in the fare of ill ferling on the part of a large segment of the general publie - ill ferling that is only too readily genarated if the public's favorite programs are broken up be amate ur transmissions. The future of amateur radio depende in lamge part on the efforts you cerert now to make it possible for your neighbors to eontinue to anjoy their radio reeception while vou pursue your transmitting artivities. It is unfort unately true that much interference is direetly the fault of receiver eonstruetion. Nevertheless, the amateur ean and should help to alleviate int erference evern though the responsibility for it doces not lie with him.

The regulation of the Federal Communications Commission covering interference to broadrasting is quoted below:
\$12.1:32. Rextricted operation. (a) If the operation of an amateur station canses eaneral interference to the remetion of transmissions from stations operating in the domestibrombast serviee when revisurs of good enginerring dexign indmeling aleguate selectivity rharacterinties are userl to receive such tramsmissions amel this fact is mate known to the amateur station lienosed, the amateme station shall not he operated during the houre from 8 orelock p.m. (10 $10: 30$ p.s.. loral time, and on sunday. for the addational periorl fronl $10: 30$ A.m. until 1 P.s., local time, nimen the frequency or frequencies used when the interforance is areated. (1) In gemernd, such steps mas me neressary to minimize interferenee to stations operating in other serviees mats be reguired after invertigation by the Commission.
FC' recognizes the fact that much interference oceurs beradas receivers are not capable of rejeeting signals fier outside the frequency hand to Which the receiver is tuned. "(Quict hours" are not imposed unless it is shown that the interference is actually the fault of the transmitter.

- GETTING LISTENER COÖPERATION

To be sucerssful in handling interference cases you have got to win the listener's roeppration. The first step is to earn the listener's confidenere in your terehnical ability and to convine him of your simerity in wanting to doar up interference. Here are a few pointers on how to go about it.

Clean House First

We've said above that the first obligation of every amateur is to clean up his 1 ratnimitt $\cdot \mathrm{r}$ so it has no radiations outside the bathde assigned for amateur use. The best chere on this is your
own AM or 'TV receiver. It is always convineing if you can say - and demonstrate - that you do not interfere with reception in your own home.

Don't Hide Your Identity

Whemever you rhange location, or mode of trammission, or incrase power, or put up a mew anterma, cherek with your meighbors to make sure that they are not experioneing interference. Anbounce your proseme and conduct oceasional tests on the air, requesting anyone whose reereption is being spoiled to lat you know about it so that you may take stops to climinate the trouble.

Act Promptly

The average person will tolerate a limited amount of interference, that no one can be expereded to put up with frequent and extemed interruptions to programs. "The sooner you take staps to eliminate the interference, the more agreeable the listemer will be; the lomger he has to wait for you, the less willing he will le to eoriperate.

Present Your Story Tactfully

When you interfere, it is natural for the eomphanant to assume that your transmitter is at fault. Lixplain that you do not operate on the broadeast frequencies, and the real trouble is that fou and he happen to be loeated so close to each other. Point out that the average reereiver is made to sell as cheaply as possible, and that features that would prevent interferene from near-by stations are left out.

It should be explained to the listener that if it is simply the presence of your strong signat on his receiving antronat that causes the difticulty, the situation can be cleared up by a filter or wavetrap. If the whing of the receiver itself is picking up your signal, such cases can be rured only by suppressing this unwanted pick-up in the receiver itself: in other words, some modifications will have to be made in the receiver if he is to expect interference-free reception.

Arrange for Tests

Most listeners are not very competent observers of the various aspects of interference. If at all posible, enlist the help of another amateur and have him operate vour transmitter while you see what happens at the affeeted receiver. You can then determine for yourself where the trouble is most likely to be.

Avoid Working on the Receiver

If your texts show that the fault has to be remedied in the recerver itself, do not offer to work on the receirer. It is not your fault that. the rerefiver design is defective. Recommend that the work be done by a reliable service-
man, and offer to advise the latter as to the cause and cure if necessary.

However, if the owner of the reediver obviously prefers to have you make the modifications, do so only with the understanding that it is purely because you are anxious to coöperate.

In General

In this "public relations" phase of the problema great deal depends on your own attit ude Most people will be willing to meet you half way, particularly when the interterence is not of long standing, if you as a person make a good impression. Your personal appearance is important. So is what sou say about the recever. A dixplay of lofty technical superionty is more likely to generate resent ment than cooperation. Above all, don't make remarks on the air about "bum broadeast receivers" and "cherap midgets. " No one takes kindly to hearing his pussessions publichy derided. If rou diseluss vour intorference problems on the air, do it in a construetive way - one cadeulated to inrrase listener comperation, not dest roy it.

RADIO-CLUB INTERFERENCE COMMITTEES

Organized amateur radio clubs can do a lot
to pave the way toward couppration between individual amateurs and the broadeast listeners. Most clubs maintain interference committees charged with handling both the public relations and the technical aspects of amateur interference. Through such committees, technical assistance is mate available to all members of the clubso that those less qualified can have the benefit of the experience of others. The committee should abo maintain contact with the local radio servicmen, suppling them with information and technical assistance whenever possible. The committee can maintain valuable contacts with the local newspapers, broadeast stations and other authorities to provide the right kind of publicity for the efforts of individuals or groups who are trying to elear up interference problems.

League Aids

The ('ommunications Department of ARKL, as one of its servieres to affiliated clubs, has propared material suggesting various ways in which looal dubs can form interference committeres, and methods be which such groups can function efficientiy for the good of all coneorned. This materiai is available to aftiliated clubs on request, addreseed to ARRLI, headquarters.

Causes and Cure of BCI

There are no magic cures for all eases of interference to st andard AM broadeasting. The great mumber of different types of broadeast. recerivers makes it neessary to tailor the remedy to the specifie set. However, intorference does usually fall into one or more rather welldefined categories. A knowledge of the gencral types of interference and the methods required to eliminate it will lead to a rapid appratisal of the situation and will avoid much eut-andtry in finding at cure.

Transmitter Defects

Out-of-hand radiation is something that must be cured at the tramsmiter. Parasitio oscillations are a frequently unsusperted souree of such radiations, and no transmitter can be considered satisfactory unt it has heon thoroughty charesed for both low- and highfrequency parasitices. Vers ofton parasitics show ap only as thansidets, masing key clicks in c.w. transmitters and "splashes" or "burps" on modulation peaks in AM transmitters. Methots for deterting and eliminating paratsities are diseussod in (hapter six.

In e.w. transmitters the sharp make and break that oreurs with unfiltered kering eatuses transients that, in theory, eontain frequeney components through the ent ire radio spect rum. Practically, these transients do not have very much amplitude at frequencies very far away from the transmitting frequency. Nevertheless they are often strong enough in the immediate vicinity of the transmitter to cause serious
interference to broadeast remption. Liey clicks can be eliminated by the mothods detailed in Chapter Eight.

A distinction must be made betwen elioks generated in the transmitter itsolf and those set up by the mere opening and closing of the key contacts when eurrent is Howing. The latter are of the same nature as the elicks heard in a receiver when a wall switeh is thrown to turn a light on or off, and may be more troublesome nearby than the elicks that aetually go out on the signal. A filter for eliminating them usually has to be installed as ase as possible to the key contate.
()yermodulation in A.M phone transmitters generates transionts similar to key dioks. It wan be prevented either by using automatic systems for limiting the modulation to 100 fer cent, or by rontinuonsly monitoring the modulation. Methods for both are described in Chapter Niae. In this commetion, the term "overmodulation" means any type of nonlinear modulation that results from wermading or inateguate design. This can oecor even though the artand modulation pereentage is less than (10).

BC:I is Trequenty made worse by radiation from the transmiter, power wiring, or the r.f. transmission line. This is because the signal catusing the interference, in such cases, is radiated from wiring that is nearer the broadcast receiver than the antenna itself. In such cases much depends on the method used to couple the transmitter to the antemna, a subjeet that
is discussed in Chapter Ten. If it is at all possible, too, the antenna it self should he placed so that it is not in close proximity to house wiring, telephone and power lines, and similar conductors.

Image and Oscillator-Harmonic Responses

Relatively few superhet broadcast rereivers have any ref. amplification precoding the mixer, so that the selectivity at the signal frequency is not especially high (the i.f. amplifier provides most of the working selectivit?). The result is that strong signals from near-by transmitters, even though the transmitting frequeney is far removed from the broadeast band, can force themselves to the mixer grid. They will normally be eliminated by the i.f. selectivity, except in cases where the transmitter frequence is the image of the broadeast signal to which the receiver is tuned, or when the transmitter frequency is so related to a harmonic of the broadcast receiver's local oscillator as to produce a beat at the intermediate frequency.

These image and oscillator-harmonic responses tune in and out on the broadeast receiver dial just like a broadcast signal, except that in the case of harmonic response the tuning rate is more rapid. Since most receivers use an intermediate frequency in the neighborhood of 450 kr ., the interference is a true image only when the amateur transmitting frequency is in the $17.50-k e$. band. Oscillator-harmonie responses oceur from 3.i- and 7-Mc. transmissions, and sometimes even from higher frequencies.

Regardless of whether the interference is caused by either an image or by harmonic response, the problem is to reduce the amplitude of the amateur signal in the front end of the b.c. receiver. If the receiver uses an external antenna a wavetrap at the receiver antenna terminals may help. It may also be helpful to reduce the length of the receiving antenna - and particularly to avoid a length that might be near resonance at the transmitter frequency - or to change its direction with respect to the transmitting antenna. If the signal is being picked up by the antenna it will disappear when the antenna is disconnerted. If it is still present under these circumstances the piek-up is in the set wiring or the power circuits. 1 line filter may be tried for the latter. pick-up on the set wiring can only be cured by installing some shiedding around the r.f. eircuits. Copper window screening cut and fitted to size will usually do the trick.

Since images and harmonic responses oceur at definite frequencies on the receiver dial, it is always possible to choose an operating frequeney that will not give such a response on top of the broadeast stations that are favored in the vicinity. While vour signal may still be heard when the receiver is tuned off the local stations, it will at least not interfere with program reception.

Cross-Talk

With some of the older receivers, particularly of the nonsuperneterodyne type, interference oceurs only when the receiver is tuned to a strong broadeast signal and disappears between stations. This is crosis-modulation, a result of rectification in one of the early stages of the receivar. It is not so likely to occur in more modern sets using a remote-cot-off tube in the antenna stage.
One remedy is to install remote-cut-off tubes in the r.f. stages and put in an a.v.c. circuit. However, this is a major operation and frequently is not practicable. The remaining thing is to reduce the strength of the amateur signal at the grid of the first tube in the receiver. Wavetraps, a smaller antenna, and a different antenna position should be tried. Additional shielding about the r.f. circuits also will sometimes effect an improvement.

Blanketing

"Blanketing" is a form of interference that partially or complet ely masks reception, no matter where the broadeast receiver is tuned. Each time the carrier is thrown on, whether by keying or for modulation, the program disappears or is greatly reduced in amplitude. Amplitude modulation in such a case is usually dist orted rather severely.

When the tramsmitter is operated on the lower frequencies this tepe of interference occurs only when the recciver and transmitter are very close together. It is the result of simple overloading of the receiver by the very st rong field in the virinity of the transmitting antenna. It occurs principally on receivers using external antennas (as contrasted with a built-in loop), and can be reduced by the steps recommended above: i,e, using a short receiving antenna, repositioning the antenna with respect to the transmitting antenna so the pick-up is reduced, or using wavet raps and line filters.

When the transmiter is operated on 28 Mc . or v.h.f. "blanketing" occurs rather rarely, and then only when the transmitting and receiving installations are located exceptionally close together.

Audio-Circuit Rectification

The most frequent cause of int erference from operation at the higher frequencies is from rectification of a signal that by one means or another gets into the audio system of the recover. In the mider cases an amplitudemodulated signal will be heard with reasonably grod quality, but is not tunable - that is, it is present no matter what the froquency to which the receiver dial is set. An unmodulated carrier may have no observable effect in such cases beyond causing a little hum. However, if the signal is very strong there will be a reduction of the audio output level of the receiver whenever the carrier is thrown on. This causes an annoying "jumping" of the program when
the interfering signal is keven. With 'phone transmission the change in audio level is not so objectionable because it occurs at hess frequent intervals. Also, ordinary reatification gives no andio output from a froguener-modulated signal, so the interference ean he made almost eompleted unnoticerable if F.M or PM is used inst ead of AM.

Interforence of this type is most prevalent in a.ce-d.e. receivers, The pick-up maty oecur in the atado-cireuit wiring or the intorfering signal may got into the audio circuits by way of the line cord. Power-line pick-up can be treated by means of line filters, but pick-up in the rededver wiring requires individuad attention. Remedies that have been forund suecessul are deseribed in the sertions following.

CHECKING AND CURING BCI

When a case of broaleast interferencer comes to your attention, set a definite time to conduct tests and then prepare to do the joh as expeditiousty as possible. Provide fourself with one or two wavet raps and line filters, since they can be tried immediately without getting into the reediver. As suggested before get another amateur to operate your transmitter while you do the actual observing and testing at the listener's recoiver. The procedure outlined below will save time in getting at the souree of the trouble and in satisfactorily eliminating it.

1) Determine whether the interference is tunable or not. This will usually indieate the methods required for climination of the trouble, as it will show which of the general types of interference discussed abowe is present. In severe cases it is possible that two or more types will be present at the same time, and stops will be necessary to eliminate cach type.
2) If the sot has an external antemna, disconneet it and tarn the volume cont rol up full. If the interfarence is mo longer present, it is merely necessary to prevent the r.f, appearing on the antenna from ontering the set. If wavetraps reduce the amplitude of the int orfering signal but do not eliminate it entirely, try a short piece of wire ats a receiving antemat. Altematively, the antenna may be relocated. It should be placed as far as possible from the transmitting antenna, and should ram at right angles to it to minimize coupling.

If the interference persists after the antennat is disconnected, the search is narrowed to an investigation of whet her the signal is roming in on the power lines, or is being pieked up directly on the recenver wiring.
3) ('heek for power-line interference by using a sensitive wavemeter suth as that deseribed in Chapter sixteen of this Mandhook to probe along the a.c. cord that eonnects the set to the power source. (hecks shoutd be made at the transmitter frequency, and also at harmonic frequencies. If r.f. is detected in the line, by-pass both sides of the a.e line to ground with $0000-\mu \mathrm{fd}$, mica condensers at the
point where the line cord enters the set. (A simple phag-and-socket adapter can be mado up for this purpose.) If this does not eompletely eliminate the interference, try a line filter dosigned for the oprating frequency.
4) If it is evident that the interiomence is heing pieked up on the recoper wiring, explain the situation to the owner and toll him that the exact eatase camot be determined without removing the whassis from the cabinet, and that, in any event, the reediver will have to be modified if the interference is to be eliminated. Recommend that the actual work he done by a radioserviceman. Offer to check into the cause yourself, if he will allow you to lake the sot to your shop, (with the understanding that you will not make any changes in the receiver without his (express permission) so the servierman can be told what nereds to be done.
i) In the event that the owner allows you to take the recoiver, sed it up near your transmitter and chook to see if the amplitude of the interfering signal is changed by various settings of the reerever volume eontrol. If it does, the ref. is entering the set ahead of the volume eontrol. If it is madfected by the volume control, it is getting into the atodio stages at a point following the volume eontrol.
(i) Jin the souree down, if it is ahead of the Folume control, hy removing one tube at a fime until one is found that kills the interferronere when it is romoverd. In sets using seriesconnected filaments, this will be possible only if a tube of equal heater rating, and with all but the heater pins clipped off, is substituted for the tube.

(A)

(B)

Fiz, 2:3.1 - 'Iwo methode of eliminating r.f. from the gritl af a combined detevoor/firsl-atudio staze. It \backslash, the value of the grid leah is reduced to 2 or 3 megohmes, and a mida loy-pass romdenser is added. At H , hooth grid and cathule are lig-pasied.
7) Determine which element (or elements) of the tube is pieking up the interference by touching each tube pin with a test lead about three feet long. The lead, acting as an antenna, will cause the interforence to increase when it is placed on a tube pin that is contributing to the interference. Once the sensitive points have been determined, the trouble can be eliminated by shedding the leads connected to the tube chement that is affereded, and by shielding the tube itsolf. (irid leads are the prineipal offenders, cespecially the long leads that run from a tube cap to a tuning eondenser.
8) If the pick-up is found to be in the audio
system - as is the case in many sots, esperially when the transmitter is operating at 28 Mc. or higher - it can be eliminated by one or another of the methods shown in Figs, 23-1 and 23-2. Fig. 23-1A is a method that has proved successful with many a.e.-d.e. receivers. The value of the grid leak in the combined detector/first-andio tube (usually a 12 s(o7 or its equivalent) is reduced to 2 or 3 megohms. The grid is then by-passed for r.f. with a $200-$ $\mu \mu \mathrm{fel}$. miea condenser. Fig. 23-1 13 is a similar method. A third mothod that has worked in

fig. 23-2-1 sing a 7 万. (Mhlochen resistor to furm a low-pas- filter with the tube eapacitamer The resistor muat tre mounted at the tube pin, letween the grid and all other grid connertions.
alr.-d.c. receivers requires only that the heater of the deteetor first-audio stage be bepassed to ground with a $0.001-\mu \mathrm{fd}$. condenser. The method shown in Fig. 23-2 uses a 7 7,000-ohm $1 / 2$-wat resistor to form, with the tube eaparitance, a low-pass filter. The resistor is connected between the grid pin of the audio stare and all other wires connereted to the grid. In all cases, both sides of the a.c. line should be by-passed to chassis with $0.001-$ to $0.01-\mu \mathrm{fl}$. condonsers.

Wavetraps and A.C. Line Filters

1 wavetrap eonsists of a parallol-tunod cirruit that is comnected in series with the broadrast antemas and the antenna post of the reereiver. It should be designed to rexonate at the frequency of the interfering signal. The cirenit of a simple trap is shown in Fig. 23-3. If interference results from operation in more than one amateur hand several traps may be conneded in series, earh tunced to the renter of one of the hands in which operation is rontemplated. 'Io

Fig. 2.3.3 - A simple wavetrab circuit, I, and C must resonate at the frequency of the interfering signat. suitable constants are tabulated below.

Hand	i		i.	
3.5	$140 \mu \nu \mathrm{fa}$,	16, ylo.. 32 turns	322. I" diamo.	$1^{\prime \prime}$ long
7	$104 \mu \mu \mathrm{fl}$.	6 19	22. $1^{\prime \prime}$	1',
11	$50 \mu \mu \mathrm{fl}$.	3.511	*18, I"	I'"
21	$3.5 \mu \mu \mathrm{Cd}$.	2.212	"18.1"	$\mathrm{I}^{\prime \prime}$
28	$25 \mu \mu \mathrm{fl}$.	1.50	\#18. ${ }^{\prime \prime}$	$1^{\prime \prime}$

fik. 2.3-1- - .c. line titer for receivers. 'the values of Ci, Ci2 and (i) are not generally seritical; capacitances from 0.001 to $0.01 \mu \mathrm{fd}$, can lie nised. L_{1} ind $l / 2$ can be a 2 -ineh winding of No. 18 enameled wire on a half-inch diameter form.
adjust the wavetrap, have another licensed amateur operate the transmitter while you tune the tratp for maximum attenuation of the interference.

A common form of a.c. line filter is shown in Fig. 23-4. This type of filter will usually do some good if the signal is being pieked up on the house wiring and transferred to the set by way of the line cord. The values used for the coils and condensers are in general not eritieal.

Figs, 2.3-5 - Resomant lilter for the a.e. line, I single condenser tames both L_{A} and L_{2}, which are unitycoupled, one wound on top of the other. Constants for atmaterur banels are tabulated below.

Bund	c	1.1 - 1.2
3.\%	$\underset{\text { (fixed) }}{100}+150$	25 1. No. 18, 11/4' diat, $\times 28 / 8^{\prime \prime}$ long
7	$10 \mu \mu \mathrm{fla}$.	18 t , No. $18.11 / 4^{\prime \prime}$ dia, $\times 28 / 8^{\prime \prime}$ long
11	$100 \mu \mu \mathrm{fl}$,	12 t. Mo, 18. $11 / 4{ }^{\prime \prime}$, dial $\times 28 / 8^{\prime \prime}$ long
21		111 , No. 18, 11/4" dia. $\times 288^{\prime \prime}$ long
1:	$2.3 \mu \mu \mathrm{fl}$.	91. Vo. 18. $1^{1 / 2 \prime \prime}$ dia, $\times 2 \frac{8}{8 \prime \prime}$ lonk

D.c.e. wire is recommended for all coils.

The effectiveness of the filter will depend considerably on the ground comnection used, and it may be necessary to try grounding to several different possible ground eomnections to secure the best results. A filter of this type will usually not be very helpful if the signal is being picked up on the line eord itsedf, which may be the catse when the transmitter is on v.h.f. In such a case it should be installed inside the receiver chassis and grounded to the chassis at the point where the line cord enters.

The tuned filter shown in Fig. 23-i is often more effective than the untuned type when only one frequency needs to be eliminated. After installation, the condenser is simply adjusted to reduce the interference to the greatest possible extent. It is advisable to mount either type of filter in a small shield box, to prevent piek-up in the filter and to make it less conspicuous.

Interference with Television

Interference with reereption of tellevision sighats presente a more difficult probleom than interferenee with ordinary AM brouldetsting. In the latter case it is comparatively easy for cloan up a transmittor so that it will have no spurious radiations in the broadeast bated. (leaning up intorfarme differties then becomes a matter of wereoming deficienefes in the selertivity of the broadeast reeniver.
lat the ease of television recention similar receiver defiemoncios exist, and
baken to prevent hammonics from reaching the antemas will not reduee TVI if the tramsmitter itwelf is radiating harmonics. But onde it has bern found that the tramsmitter itself is free from harmonie matiation, devices for preventing hamomies from reathing the antenna can be expeeted to produce results.

There is wo magic "pimmick" that will climimate TVI eatused be harmonies. The problem has to be worked on one step at a time.
must be treated by mothode similar in principle to those used for low-frequency broadeasting. How(ever, at mort serious situation for the amatour arises becatus. harmonises of his transmitting frequency fall in mans. of the television chamels. The relationship, betwern television chatmels and harmonies of amateur bands from It through 2s Mc. is shown in Fig. 23-6. Harmonies of the 7 and 3 . $)^{-}$- Me bands are not shown because they fall in every tolevision chanmel. Nso, the harmonies above ju Me from these bandsare of such high order that they are usually rather low in amplitude. They are not, however, too weak to interfere if the television recodiver is quite closie to the amateur transmitter.

Low-order harmonies - up to about the sixth - are usually the most difficult to climinate. The de-

Fig. 2:300- Relationship of amateurband harmonice to IT channels. Harmonic interference is mone likely to be serions in the low-chamel aroup (s) 10 88 Nr.).
 gree of harmonice suppression reguired is very: great, particularly when the television reoriver is nearhy and the signals from television stations are wak. Deffective harmonic suppression has three separate phases:
I) Reducing the amplitude of harmonic: generated in the transmitter. This is a matter of circuit design and operating conditions.
2) Preventing stray radiation from the transmitter and from associated wiring. This requires adequate shielding and filtering of all cireuits and leads from which radiation can take place.
3) Preventing harmonics from being fed into the antema.
It is very difficult to secure adequate harmonic suppression, expecially with transmitters operating at If Mc. and higher, unloss these three phases are attacked separately and in the order given above. It is impossible to build a transmitter that will not gencrate some harmonies, hut it is obviously advantageous to reduce their strength, bey circuit design, by as large a factor as possible before attempting to prevent them from being radiated. Second, harmonic radiation from the transmitter itself or from its associated wiring obviously will cause interference just as vadily as ratiation from the antemat, so mosures

- REDUCING HARMONIC GENERATION

Reasonablyeefficient operation of r.f. power amplifiers always is aceompanied by hamonio generation, and in the case of frequency multipliers the harmonic output at a particular froqueney is deliberately accentuated. From the standpoint of TVI reduction, good judgment ealls for operating all frequencr-multiplier stages at a very low power leved - recoiving tubes and plate voltages not excerding 250 or 300 . When the final output frequener is reached, it is highly dosirable to use as few stages as possible in reaching the output power level, and to use tubes that require at minimum of driving power. The smatler the number of stages operating at appreciabla. power levels, the smaller the number of points: where damaging harmonies can be generated.

Circuit Design and Layout

Harmonic currents of considerable amplitudeHow in both the grid and plate circuits of ref. power amplifiers. They will do relativaly little harm if they can be effeetively by-passed to the cathode of the tube, but this is irequently difficult to do. Fig. 23-7A shows the paths followed by harmonic currents in an amplifier cireuit; because
of the high reactanee of the tank eoil there is little harmonic current in it, so the harmonie eurrents simply flow through the tank eondenser, the plate (or grid) boeking eondenser, and the tube capacitances. The lengthe of the leads forming these pathe is of great importance, since the indurtanere in this rircuit will resonate with the tule capacitance al some frequence in the v.h.f. range (the tank and bloeking eondonsers are so large compared with the tube enpacitaner that ther have little effere on the resonant frequence. If surh at resoname happens to oceur at or near the same frequener as one of the transmitter harmonies, the effect is just the same as though a harmonie tank cireuit had been deliberately introdued: the harmonic at that frequenery will be tremendously increased in amplitude.
Such resonances are unavoidable, but by keeping the path from plate to wathode and from grid to cathode as short as is phesically possible, the resonant frequency usually can be rased above 100 Mc . in amplifiers of medium power. This puts it between the two groups of television chamels. bxecet in very low power miniature-tube transmitters, it is usually not fetsible to raise the resonanee above 216 Mc .

Where phesically-short return paths from phate or grid to cathode are diffieult because of the shape and size of tubes and tank condensers, the arrangement shown in Fig. 23-713 is frequently. helpful. Condensers C's and (C_{6} should be of the vacuum or tubular tepe and should be mounted as elose as possible to the tube comertions. They form resonant eireuits in themsolves with the tube capacitanee, but generally at a suffieiently: high frequence so that wo harm is done. At lower frequencies than this solf-resonance, ther effeetively add to the tube eapacitance and thus tume the inductance of the leads through the regular tank and bocking condensers to a considerably lower frequeney than the tule alone. The resonance therefore can be shifted to a frequenes. belou 54 Me , and again is outside the TV range.

Fig. 23.7-(1) A , .h.f. resonant circuit is formed hy the tube capacitanee and the leads through the tank and blocking condensers. Regular tank coils are not shown, since they have little effeet on surh resonances. (13) l sing low-inductance ronderners shanting the tube elements to lower the resonance pmint belon the 'N channels. C_{s} s and C_{6} usually are 15 so $50 \mu \mu \mathrm{fd}$. and cither of varuum or tubular construction.

This method is most useful at 3.5 and 7 Mc. It increases the tank eapacitance to the point where there may he very little lank eoil left, when the transmitter is used on 28 Mo., unless the leads are climinated by using the shunting condenser ats the tank condenser and adjusting the tank eoil inductance to resomate, no regular tank eondenser being used.

It is casior to playe grid-eiment v.h.f. resonances where they will do wo harm if the amplifier is link-couphed to the driver stage, sinere this generalle permits shomer leats and more favorable conditions for be-passing the hamonies than is the case with capacitive coupling. Link coupling also redures the coupling botween the driver and amplifier at harmonic frequencies, thus preventing driver harmonies from being amplified.

The inductance of leads from the tube to the tank condenser can be roduced not only be shortening but be using flat strip instead of wire conduetors. It is also better to use the chassis as the return from the blocking condenser to cathode, since a chassis path will have less inductanee than almost any other form of connertion.

The v.h.f. resonance points in amplifier tank cireuits can be found by coupling a grid-dip meter eovering the $50-250 \mathrm{Mc}$, range to the grid and plate leads. If a resonance is found in or near a TV' channol, methorls such as those deseribed above should be used to move it well out of the TV range. The grid-dip meter also should be used to choek for v.h.f. resonances in the tank eoils, because coils made for 14 Me and below usually will show such resonanees. If a resonance falls in a TV chamel that is in use in the loeality, changing the number of turns will move it to a frequene? where it will not be troublesome.

In most r.f. amplifiers the eathode connection of the tube is below chassis while the plate (and sometimes the grid) connection frequently is above. In such a ease the blocking condenser should be mounted below chassis. If the ground return is mate to the top, the r.f. eurrent has to flow over the top and either through a good-sized hole or clse entirely over the chassis surface before it reaches the cathode. This condition is highly undesirable not only because of v.h.f. resonanees but breause such chassis currents frequently cause instability in the amplifies. If the by-pass condenser is mounted above, it should be connected to the cathode bey means of an insulated lead running through the chassis by the shortest possible path.

Operating Conditions

High values of grid bias and grid eurrent increase the harmonic content of the r.f. curments in both the grid and plate circuits. All tubes in the transmitter, and partieularly those operating at appreciable power levels, should be driven nos harder than is neressary to give reasonably efficient operation and satisfactory linearity, if modulated. Generally, it is unnecessary to go very far beyond eut-off bias, and the grid current should be kept to the minimum that gives satisfactory operation.

For equal operating conditions, there is little or no difference betwen single-ended and pushpull amplifiers in respeet to harmonie generation. Push-pull amplifiers are frecuently trouble-makers on even harmonies because with such amplifiers the even-hamonic voltages are in phase at the ends of the tank circuit and hence appear with equal amplitude arross the whole tank coil, if the center of the eoil is not grounded. Cnder such circunistanes the even harmonics can be conpled to the output eircuit through stray caparitance between the tank and coupling eoils, This does not occur in a single-ended amplitier if the coupling coil is phaced at the cold end of the tank.

Harmonic Traps

If a harmonic in only one TV channel is particularly bothersome - freguently the case when the transmitter operates on 28 Me. - its amplitude can be reduced by a vere considerable factor if a trap tuned to the harmonie frequener is installed in the phate lead as shown in Fig. 23-8. At the harmonic frequence the trap represents a very high impedance and hence reduces the amplitude of the harmonic current flowing through the tank circuit. In the push-pull cireuit both traps have the same constants. The $L^{\prime}{ }^{\prime}{ }^{\prime}$ ratio is not eritical but a high-e cireuit usually" will have least effect on the performance of the plate circuit at the normal operating frequence:

Since there is a considerable harmonic voltage built up across the trap, there may be ratiation from the trap unless the transmitter is well shielded. The traps should be placed so that

Fig. 2:3-8- Harmonic traps in an amplifier plate circuit. L. and (; should resonate at the frequency of the harmonic to lie suppressed. C may be a 25^{-}. to $50-\mu \mu \mathrm{fil}$. midget, and L, usually consists of 3 to 6 turns about $1 / 2$ inch in diameter. The induetance should be adjusted so that the trap resonates at about half rapacity of C : loefore being installed in the transmitter. It may be (ar eked with a grid-dip meter. When in place, it is adjusted for minimum interference to the T pieture.
there is no coupling botween them and the amplifier tank cireuit.

A trap is a highly-selective device and so is useful onl ${ }^{-}$over a small range of frepuencies. A scoond- or third-hamonie trap on a $28-\mathrm{Mc}$. tank circuit usualle will not be effective over more than 50 ke , or so at the fundamental frequener, depending on how sorious the interforence is without the trap. Because they are crition of adjusiment, it is better to prevent TVI he other means, if possible, and use traps only as a last resort.

- PREVENTING RADIATION FROM THE TRANSMITTER

The extent t_{1} which harmonic interference will be caused by transmitter radiation depends on the operating frequency, the transmitter power level, the strength of the television signal, and the distance between the transmitter and TV reeriver, as well as on the strength of the harmonies gencrated in the transmitter. Transmitter radiation can be a vory serious problem if the TV signal is marginal or below, the TV receiver and amateur transmitter are close together, and the transmitter is operated with high power on 28 Me .

Transmitter radiation can be prevented b, shielding the r.f, chassis. A metal enclosure is not necessarily a shield. A shield will not be good, electrically; unless all its joints make good connections along their contire length, A slit or arack at a joint will let out a surprising amount of r,f. encrgy. Ventilating louvers and large holes such as those used for mounting neters will do the same. On the other hand, small holes do not impair the shielding very much, hence ventitating holes may be used if they are small - not over $1 / 4$ inch in diamoter - and wire screening of the type used for fly sereens also is satisfactory. It is unfortunate that conventional metal cahinets, with their doors, painted surfaces where joined, and ventilating louvers are practically useless as shields. They ean be made effective ber eovering louvers with sereening, and by seraping and bonding all joints to secure a good cloctrical comnertion.

Lead Treatment

Even vory grood shirlding can be made eompletely useless when commections are run from external power supplies and other equipment to the circuits inside the shicld. Wivery conductor so introduced into the shiclding forms a path for the escape of r,f., which is then radiated by the eonnecting wires. Hence a step that is exsential in every casce, and more important than the shiceding itself in most, is to prevent harmonic currents from flowing on the loads leaving the shielded entelosure.

Harmonie currents always flow on the d.c. or a.c. leads connecting to the tube circuits, A veryeffective means of preventing such currents from being coupled into other wiring, and one that provides desirable bepassing as well, is to use shiclded wire for all such leads, maintaining the shidding from the point where the lead connects
to the tube or r.f. circuit right through to the point where it is about to leave the chassis. "lhe shield braid should be grounded to the chassis at both ends and at frequent intervals along the path. Where the lead comes to the connection block through which it leaves the chassis it is frequently neeresary to install r.f. filters as well, Typieal filter cireuits are shown in Fig, 23-9. The "Hypass" type of eondenser is most effective

Fik. 23.9-V.h.f, filters in power leads, A - Filter for phate- or hias-supply leat. B - Filament-eireuit filer. ing. C: - Meter filtering. C. C_{2} and (is may he 470. $\mu \mu \mathrm{fd}$. mica condensers. Fied-through type condensers:
 (is beeause it is difficult to build satisfactory lowresistance chohes for filament cireuits, Capacitanees of 0.01 to 0.1μ fel. have been found satisfatery, R / C_{i} is a - $-\mu \mathrm{h}$. , .h.f. chohe (ohmite Z-ī0 or equivalent).
at v.h.f., but micat condensers will serve when installed so that there is essentially mo lead length between ground (chassis) and the eircuit to which the ungrounded side of the condenser is commerted. It is generally best to use low (not more than $500 \mu \mathrm{fd}$.) values of capacitance when mica by-passes are used, and to employ the smallest physical size of condenser that is rated for the voltage on the cireuit.

Filters at the eomeretion block preferably should be shicded from each other and from the other components under the chassis. Iowever, if the coils are physically small - they usually consist of a winding of an inch or so on a $1 / 4$-inch diamoter form - and are mounted well away from other eomponents, it is possible to dispemse with individual shiclding of the filters.

Mreters should be anclosed in shiclding covers and comereted with shielded wire, . I mica hy-pass

FíR. 23-10 - Recommended dummy-antenna rircuit for Therking harmonie radiation from the transmitter athl leads. The matrhing cireuit helps prevent harmonies in the output of the transmitter from flowing back over the transmitter itself, as might occur if the lamp load is simply conmeated to the out put coil of the final amplifier. See transmission-line chapter for details of the matehing cirenit. Toming must be adjusted by rut-and-try, since the bridge method deseribed in the transmisuion-line chapter will not work with lamp loads heranse of the change in resistance when the lamps are heot.
condenser should be strapped across the moter terminals and v.h.f. chokes placed as shown in Fig. $23-9 \mathrm{C}$ at the point where the meter connertions to the cireuit are made. Any meter multipliers must, of course, he adjusted with the meter wired up and in place, to inelude the resistance of the leads and chokes.
('are should be used in the selection of shielded wire for transmitter use, Not only should the insulation be conservatively rated for the d.e. voltage in use, but the insulation should be of material that will not casily deteriorate in soldering. For high voltages, automohile ignition cable covared with shiolding baid is recommended. Where the wiring crosses or runs parallel, the shields should be spot-soldared together and connected to the chassis.

Checking Transmitter Radiation

The simplest instrument for eheeking harmonie radiation from the transmitter chassis and the connecting leads is a crostal-detector wavemoter oovering the TV' range (sere chapter on measurements). In most cases it will be sufficient to cover 50 to 100 Me, since harmonies falling in the 176-216 Mc. range will bo of low amplitude from

Fig. 2:3-II - A metal rahinet can be an adequate shield, hut there will still the radiation if the leads inside ean piek upr.f. from the transmitting cirenits.
transmitters working on 28 Mc. and below, providing the principles of reducing harmonic generation have bern followed. In the case of a $50-\mathrm{Me}$. transmitter, the methods discussed above are used, but the only troublesome harmonic is the fourth, falling in the neighborhood of 200 Mc . In such ease the wavemeter should cover 200 Mc .

Checking should be done with the transmitter delivering full power into a clummy antenna, preferably through a coas-matching circuit such as is shown in Fig. 23-10. The lamp used as the dummy antemna should have a power rating equal to the powor output of the transmitter; a combination of lamps in series or parallel may be
used instad of a single lamp. By exploring the vicinity of the transmitter shield with the wavemeter, tuning over the TV range, the direct radiation mase be cheeked ame the weak spots in the shielding located. The presener of harmonie carrents on the extornal leates may be dotected by wrapping a turn or two wh the leal aromand the Wavemoter coil, If a harmonie can be deteeted at all in a load, a different filter arrangement should be tried until the wavemeter no longer indicates its presemee. When the wavemeter shows no harmonics to be either radiated from the shiclding or on the loade, the tramsmitter will be satisfartory in most localities. If the 'T1' sigual is very weak, a more sensitive ithdicator such as the regencrative wavemeter shown in the measurements chapter should be used.

Proper shiedding of the transmitter repuires that the r.f. cireuits be shielded entirely from the external comecting leads. A situation such as is shown in Fig. 23-11, where the leads in the r.f. chassis have been shiedded and properly filtered but the chassis is mounted in a large shield, simply invites the harmonic currents to travel over the chassis and on out over the leads outside the chassis. The shielding about the r.f. cireuits should make complete contact with the chassis on which the parts are mounted.

PREVENTING HARMONICS FROM
 REACHING THE ANTENNA

The third and last strep in redueing harmonie TVI is to keep the harmonies gemerated in the final stage from traveling over the tranmission line to the antenna. It is soldom worthwhike aren to attempt this until the radiation from the transmitter and its commerting leads has bern redued to the point where, with the tratsmiter delivering full power into a dummy antema, it has beren determined both by the wavemeter eheek and by

Fig. 23-12 - The stray capacitive compling between
coils in the upper cirenit leads to the equivalent circuit shown below.

-

actual testing with a television receiver that the madiation is below the level that can cause interference. If the dummy antema test shows enough radiation to be seren in a TV pioture, it is a praptieal eertainty that harmonies will be coupled to the antenna system no matlor what preventive measures are tatern.

Fig. 23-13 - Methods of compling and sromoling linh circuits to reduep energy tranafer through stray capacitance.

In inductively-coupled output systems, some hamonic energy will be transfered from the final amplifier through the mutual induetance between the tank coil and the output coupling coil. Harmonies transferred in this way are not too hard to handle, and can be greatly reduced by providing sufficient selectivity betwen the final tank and the tranmission line. A good deal of selectivity, amounting to 20 to 30 dt . reduction of the second harmonic and much higher reduction of higher-order harmonios, is furnished by a matehing circuit of the tepe shown in Fig. 23-10 and deseribed in the chapter on transmission lines. An "intenna coupler" is therefore a worthwhile addition to the transmitter.

Capacitive Coupling

Harmonies transfored from the tank by stray empacitance are not suppressed by an antenna coupler to the same extent as those transferred by pure inductive coupling. The upper drawing in lig. 23-12 shows the link-coupled system as it might be used to couple into a paralkeleconductor line. Inasmuch as a coil is a sizable motallie object, it will have capacitance to any other metallic objoets in its vicinity, ineluding other coils. Consequently there is capseitance between the final tank eobl and its associated link roil, and between the antenna tank coil and its link. linregy eoupled through these capacitances travels over the link cirenit and the transmission line as thongh these were morely single conductors. The tunced (ireuits simply act as masses of metal and offor no soloctivity at all for eapacitrecoupled enorgy. Although the actual capacitances are small, ther offer a very good eoupling medium for freguoncies in the v.h.t. rabge.
('apacitive coupling can be reduced be coupling to a "rold" print on the tank roil - the end conneeted to ground or cathode in a single-ended stage. In push-pull circuits having a split-stator condenser with the rotor grounded for rif., all parts of the tank coil arr "hot" at even harmonies, but the center of the coil is "cold" at the fundamental and odd harmonies. If the center of the tank coil, rather than the rotor of the tank condemser, is grounded through a by-pass comdenser the erenter of the coil is "cold" at all fre-

Fig. 23-11 - I shidded linh coil constructed from coavial rable, 'The smaller siges of cable such as R(;-.j)/L are mosit convenient, exeph when the coils have a diametar of 3 inehes or more. Pior larger eoils, RK; \$/U or RK;-11/U can lue ured.
guencios, but this arrangoment is not very desimble because it catuses the harmonice currents to flow through, the coil rather than the tank condonser and thus increases the hamonie transfer bey pure inductive coupling.

With either single-ended or balaneed tank circuits the coupling eoil should be grounded to the chassis by a short, direct connection as shown in Fig. 23-13. If the coil feeds a balaneed line or link, it is preferable to ground its center, but if it feeds a coax line or link one side may le grounded. Cosxial output is much preferable to balanced output, from the standpoint of harmonic reduction.

At high frequencios - 28 and possibly 14 Mc . - capacitive eoupling can be greatly reduced by using a shiedded coupling coil as shown in lig. 23-14. The inner conductor of a length of coaxial cable is used to form a one-turn coupling coil. The outer conductor serves as an open-circuited shield

(B)

Fig. 2.3-15 - Right (B) and wrong (I and (C) ways to eonneet a eqaxial line to the transmitter. la either ior C, harmonic energy coupled by stray capacitaner to the outside of the cable will flon without hindrance to the antenna system. In Is the energy cannot leave the shifld and hence ean flow out only throngh, not over, the cable.
around the turn, the shicld being grounded to the chassis. The shiedding has no reffect on the inductive compling. Bareanse this const ruction is suitable only fen one turn, the coil is not well adapted for use on the lower frequencies where many turns are required for good compling. Shiclded coupling erils having a larger number of turns are arailable commercially. A shichled enil is particularly usofut with push-pull amplifiers when the suppression of even harmonics is important.

A shicleded emopling coil or eotaxial outpul will mot prevent stray capa(itive compling to the antenna if harmonie earrents ran flow orer the outside of the eon line. In Fig. 2:3-1:5, the arrangement at either A or (' will allow r.f. to fow over the outside of the cable to the antuma system. The proper way to use coaxial cable is shield the transmitter completely, as shown at 13 , and make sure that the outer conductor of the cable is a continuation of the transmitter shielding. This prevents r.f. inside the transmitter from getting out by any path except the inside of the cable. Harmonies flowing through a coax line can be stopped from reaching the antenna system by an antemna coupler or by a low-pass filter installed in the line.

Low-Pass Filters

A low-pans filter properly installed in a consial line, foeding eithor a matching circuit (antenna coupler), or feeding the antenna directly, will provide very great attenuation of hamonics. The coax-coupled matching-civeuit arrangement is highly recommended when the main transmission line is of the parallel-conductor type.

A properly-designed low-pass filter will not introduce apprectable power loss at the fundamental frequeney if the coaxial line in which it is inserted is terminated so that the s.w.r. is low. The s.w.r. can easily be measured by means of a simple bridge as deveribed in the chapters on measuremonts and transmission lines. Such a filter has the proporty of passing without loss all frequencies below its "cut-off" freguencr, bat simultaneously has large attenuation for all frequencies above the cut-off frequency, Space does not permit a complete description here, but detailed design information can be found in a series of articles in QSTV" (irammer, "Eliminating TVI With Low-l'ass Filters', QsTT, in three parts, February, March, and April, 1950).

A relatively simple low-pass filter of the m-derived type is shown in Figs, 23-16 to 23-18, inclusive. This filter hats two rejection frequencies and will give a minimum of $\mathbf{5 0} \mathbf{d t}$, attenuation over any two selected channels in the 5 t-88 Me, range. The attenuation in other channels varies from 20 to 40 db ., depending on the freguenes. In general, localities with a number of television stations fall into two groups. In one, the assignment pattern is Chamels 2,4 and 5 in the low band, and in the other Channels 3 and 6 , The filter designs given in

Fig. 23-15 are based on maximum attenuation in Chamels 2 and 4 in the one case, and Chamels 3 and 6 in the other. In either case the attenuation is ample for hamonies falling in the $17 \mathrm{t}-216$ Me. range.

As shown in Fig. 23-18, the components are laid out in essentially the same form as in the circuit diagram. The condenser rotors are grounded to the aluminum plate on the side nearest the eoax terminals, to keep the return pathe as short as possible. The coils are mounted at right angles to reduce the coupling betwern them. A shield folded from a piece of aluminum is placed about the eonter condenser to reduce capacitive coupling betweren the three mits. The other bathe shield similarly is used to reduce the coupling betwern L_{1} and L_{2}.

The filter can be adjusted by short-cireuiting point 1 to the common ground phate (use the shortest possible connertion) and setting C_{1} so that a grid-dip moter coupled to L_{3} shows the cireuit to be resonant at so Me. for a channel 2 filter, or at 63 Mc . for a Chanmel 3 filter. Adjust ('2 similarly with the gridedip) meter coupled to L_{4} and point C shorted we ground. Then short point B to ground at the hole in the shield, Fig. 23-18, comple the grid-dip moter to L_{5}, and adjust
 for a ("hamed 6 filter. These adjust ments usually. will provide good average attenuation in the two chamels. Should actual interforene be caused a more exact adjustment, made while watehing the television picture, should result in a considerable increase in attenuation.

The eut-off frequencies in both filteres are well above 30 Mc ., and so the filter should have no effere on the performatere of the antemnat coupling system at frequemios bolow 30 Mr. If inserting the filter in the line causes the loading on the final stage to change, it is an indication that the coas line is operating at an s.w.r. greater than 1. Optimum results will be secured when the line is first matched as elosely as possible so that it operates at a low s.w.r.

The hammonie attenuation provided bev filters of the tepe shown will, with careful adjust ment,

Fig. 2\%/6-'I'flevision-frequenry harmonie filter. for use with coax cable. All parts are monnted on a $\overline{3} \times \overline{\mathrm{C}}$-inch piece of adominum, mounted with sheremetal sorews in a 5 by $\overline{-}$ by 2 alumitum chassis which serves as a shield.
be adequate for areas in which the tele vision signal is of good strength, for operation on all hands from 30 Mc , down. In weak-signal regions, more attenuation may be needed when the transmitter is oprating on 28 Mc . Information on such filters mat be found in the QST' article eited above.

Filter Installation

In order to give the harmonic attenuation of which it is caprable, a low-pass filter must be installed in such a way that all the output of the tramsmitter flows through it. If harmonic eurrents

Fig. 23.17-Cirouit diasram of the harmenie filter. It proviles two high-attemation pointa which maty lue plared in television channels employed in the loeality in which the filter is to be wed.

 (Dillen 22033 ог 220.50)

Coil and Caparibunce Denta

For 50 onhm rahle. maximum reioction in Chamels 2 and f :

C $1, \mathrm{C}_{2}-12 \mu_{\mu} \mathrm{fl}$.
 rient rimatitamere.)
J.1, I.2 - \boldsymbol{i} turna No. I2. $1 / 2$-inch inside diametur. length $5 / \mathrm{m}_{\mathrm{y}}$ ine h .
I.3. Ia-I turns Do. I2, 16oineh inside diameter. longth 9f indh.
I. 5 - 1 turn Xo. I2, D/2-inch inside diameter. Ionsth $3 / 8$ inch
For Solohm rable, maximum rejertion in Chammels 3 and 6:
$\mathrm{Ci}_{1} \mathrm{C}_{2}-38 \mathrm{\mu}_{\mu} \mathrm{ff}$.
(:3-90 $\mu_{\mu} \mathrm{ff}$.
I.1, l. $2-\overline{3}$ turns No. 12, 1́2-ineh inside diameter. length ${ }^{\circ} \mathrm{x}$ inch.
I.3, I.4-1 turns lo. I2. 1/2-imoh inside dianmeter, length 1_{10} inch.
Is- 1 turn to. $12.3 / 8$-ineh inside diameter. Inenth 1, inch.
 and 4 :
(1. C $_{2}-38_{\mu \mu} \mathrm{fl}$).
(:3-1 $\mu_{\underline{\mu}} \mathrm{fil}$.
L.t. 1.2 - turns Do. 12. 'adinch inside diameter, honath ${ }_{4}^{3}$ innh.
 longth $11 / 18 \mathrm{imph}$.
Is - 3 tarns \o. 12. ${ }^{3}$ ainch inside diameter. denath ${ }_{9}{ }_{16}$ iluch.
For in-ohm cable. maximam rejoction in (hammels 3 and (1):
$\mathrm{C}_{1} \mathrm{C}_{2}-2 . \mathrm{H}_{\mu} \mathrm{Cl} \mathrm{I}_{\text {. }}$
Cis- $60 \mu_{\mu} \mathrm{fl}$.
1.1. 1.2 T turns No, 12. 12 -ined inside diameter, lengily $13_{10} \mathrm{ineh}$.
 lengeth $3 / 4$ ineth.
1.5-2 turns Do. 12, 3́z-ineh inside diameter. Iength $3 / 4$ inch.
Coil lengths in all cases measured between centers of wire att ends.

Fig. 23-18-Construction of the harmonic filter. Dimenwions shomld le followed fairly closely for optimum remults. The center-to-center distance between the coav cemnectors is $41 / 2$ inches. Momenting centers of the variable condensers are on a line $21 / 4$ inches below and parallel to a line through the centers of the coas fittines.
are permitted to flow on the outside of the connecting consial cables, they will simply flow over the filter and on through to the antemna, and the filter does not have an opportunity to stop) them. That is why it is so important to reduce the radiation from the transmitter and its learls to negligible proportions.

IVig. 23-19 shows the propor way to insta! a filter between a shielded transmitter and a matehing cireuit. Note that the coas between the tramsmitter and filter, together with the shields about the transmitter and filter, forms a continuous shied to keep all the r.f. inside. It is thus formed to flow through the filter and the hamonics are attenuated. If there is no harmonie energy left after passing through the filter, shiclding from that point on is not necessary; ronsequently, the matching circuit or anteman coupler does not need to be shielded. Howerer, the chassis arrangement shown in Fig. 23-19 is desirable becatase it will tend to prevent fundamental-frequeney energ. from flowing from the matching circuit back over the transmitter: this helps climinate ferel-back troubles in audio systems.

If the antenma is driven through consial line the matching rircuit shown in Fig. 23-1! mas be omitted. In that case the line goes direetly from the filter to the anteman.

When a filter does not seem to give the hatmonie attenuation of which it should be capoble, the probable reason is that hamonies are beypassing it beceatuse of improper installation and inadecpuate transmitter shielding, including lead filtering. However, there are occasionally cases

Fig. 23-19 - The proper method of installing a low pass filter betwern the tramsmitter and antema coupler or matching circuit. If the antema is fed throngh coas the matching circuit may be omitted lon the same ronstruction should be used hetween the transwitter and filter. The filter should be thoroughly shielded.
where the circuits formed by the eonnceting cables and the apparatus to which they connect berome resonant at a harmonic frequenes. This Ereatly increases the harmonic output at that frequener and the overall attenuation suffers. Such troubles can be completely overcome by substituting a slightly difforent cable length. The most eritical length is that comereting the transmitter to the filter. Checking with a grid-dip moter at the final amplifior output coil usually will show whether an unfavorable resonance of this type exists.

Summary

The methods of harmonic climination outlined in this section have been proved beyond doubt to be rffertive even under highly unfavorable conditions. It must be emphasized once more, however, that the problem must be solved one step at a time, and the procedure must be in logical order. It camot be done properly without a few items of simple equipment. These are:

1) A crystal-detector waveneter covering the 'IV bands.
2) A grid-dip moter covering the TV bands.
3) A dummy antenna.

The procedure may be summarized as follows:

1) Take a critical look at the transmitter on the basis of the design eonsiderations outlined under "IReducing Harmonic (ienoration".
2) Cherk all circuits, particularly those connereded with the final amplifier, with the grid-dip meter to determine whether there are any resonances in the TV bands. If so, rearrange the eircuits so the resomanes are moved out of the eritical frequency region.
3) Comere the transmitter to the dummy anteman and check for the presenee of harmonies on loads and around the transmitter enclosure. Somb off the wrak spots in the shimbling and filter the leads until the wavemeter shows no indication at any harmonic frectuence:
4) At this stage, chock for interference on a nomber TV recoiver if possible, still using the dummy antenna. If there is interferenere, use a more sensitive harmonic indicator (measurements chapter) and work for zoro harmonic indication.
5) When the transmitter is completely elean on the dumme antema, connee it to the regular antoma and cheek for interforence on the 'TV' receiver. If the interferenere is not bad, ath antemat coupler or matching cireuit instatled as previously. described should elear it up). Alternatively, a lowpass filter may be used. If neither the antemar coupler make any difference in the interferener, the cuidene is strong that the interference, at least in part, is boing caused by receiver overloading because of the strong fundamental-frequency field about the TV antenna and recoiver. (Soe later section for identification of fundamental-frequency interference.) A coupler and/or filter, installed as described above, will invariably make a difference in the interfer-
ence if the intorference is catused by harmonies alone.
(6) If there is still interference after installing the coupler and/or filter, and the evidenere shows that it is probably causod by a harmonic, more attenuation is meeded. A more elaborate filter may be neerssary. However, it is well at this stage to assume that part of the interference may be caused bey rereiver overloading, and take steps to alleviate such a condition before trying highlyClaborate harmonic-suppression methods on the transmitter.

- TV RECEIVER DEFICIENCIES

When a television receriver is quite close to the transmitter, the intense r.f. signal from the transmitter's fundamental maty overload one or more of the receiver cirmits to produce spurious responses that cause interference. "Fundamental" interference usually can be identified by the fact that the interference is of about the same intensity on all TV chamels, including those that have no harmonic relationship to the transmitting frequency. It is a simple matter to determine, from the chat of Fig. 23-6 or by calculation, whether or not a transmitter harmonic will fall in a particular TV channel.

Assuming that the measures deseribed earlier to reduce harmonie radiation have been taken, the presence of interferonce on chamels that are not harmonically related to the transmitting frequeney, along with interference in those that are, is a good indication that at least part of the TVI is caused bey some action taking place in the receiver. The most likely possibility is that the first stage, or first few stages, arre simply bring overloaded. In the case of 28 -Mc. operation, it im also possible that the amateur signal is getting into the pieture i.f. amplifier because of insufficient i.f. rejection in the recesiver.

In either case, the interferene eatn be eliminated if the fundamental signal strength can be reduced to a level that the recoiver can handle.

Fir. 23-20 - High-pass filters for installation at the 'TY' receiver antenna terminals. A - halanced filter for 300 . ohm line. 3-for $\overline{\text { an }}$-ohm coaxial line. Importunt: Do not use a direct ground on an a.e-d.e. chassis. Ground through a 0.001 -ufd. mica condenser.

The most satisfactory deviee for this purpose is a high-pass filter having a cut-off frequency between 30 and 50 Me., installed at the antemat terminals of the receiver. Cireuits that have proved effective are shown in Figs, 23-20 and 23-21. Fig. 23-21 has one more section than the filters of Fig. 23-20 and as a consequence has somewhat better cut-off eharacteristics. All the eircuits given are designed to have little or no effert on the TV signals but will attomuate all

Fig, 23.21 - Another type of high-pass filter for 300. ohm line. The coils may be wound on $\frac{1}{8}$-ineh diameter plastic knitting nerdles. Important: Do not use a direct pround on an a.c.ad, e, chassis, Ground through a 0.001 $\mu \mathrm{fl}$. mical condenser.
signals lower in frequence than about to Me. These filters preferably should be constructed in some sort of shielding container, although shiclding is not always necessary. The dashed lines in Fig. 23-21 show how individual filter coils can be shielded from each other. The eondensers can be ceramie units eentered in holes in the partitions that separate the eoils.

Jligh-pass filters designed for this purpose are available commereially at moderate pries. In this connection, it should be understood by all parties concerned that while an amateur is responsible for harmonic radiation from his transmitter, it is no part of his responsibility to pay for or install filters, wavetraps, cte, that may be required at the receiver to prevent interference caused by his fumdamental frequeney: It is a good idea for the amateur to have a high-pass filter that can be tried on the receiver when interference exists. If trial shows it to be effective, the reason why it works should be carefully explained to the sat owner, who should then be advised to get in touch with the organization from which he purehased the receiver or whieh sorvices it, to make arrangements for proper installation. The question of cost is one to be settled between the set owner and the organization with which he deals.

Wavetraps may be used insteat of high-pass filters. If the reeciver has a balaneed $(300-\mathrm{hmm})$ transmission line a trap should be used in each line wire. They may be construeted from the data in Fig. 23-3. When properly tuned, wavetraps will greatly attenuate the fundamental signal but suffer the disadvantage, as eompared with a highpass filter, that they must be retuned if the transmitter frequeney is moved. They are of eourse of no value in rejecting a frequeney to which they cannot be tuned, and therefore usually are good only for one amateur hand.

If the fundamental signal is getting into the receiver by way of the line cord a line filter such as that shown in Fig. 23-4 will help. To be most effective it should be installed inside the receiver chassis at the point where the cord enters, making the ground comnections directly to chassis at this point. It may not be so helpful if placed between the line plug and the wall soeket unless the r.f. is. actually picked up on the house wiring rather than on the line cord itself.

Antenna Installation

Many television receivers will respond strongly to parallel currents on the receiving transmission line. Usually, the transmission line pieks up a great deal more energy from a near-by transmitter than the television receiving antenna itself, causing parallel eurrents that should be, but are not, rejected by the receiver's input circuit. A strong signal that overloads the first or second stages in the receiver will cause the receiver itself to generate harmonies that fall in the television
channels. This situation can be improved by using shielded tranmission line - coax or, in the batanced form, "twinax" - on the receiving installation. For best results the line should terminate in a coax fitting on the receiver chassis, but if this is not possible the shield should be grounded to the chassis right at the antenna terminals.

The use of shielded transmission line for the receiver also will be helpful in reducing response to harmonics actually being radiated from the transmitter or transmitting antenna. In most receiving installations the transmission line is very much longer than the antemat itself, and is conseduently far more exposed to the harmonie fields from the transmitter. Much of the harmonic piek-up, therefore, is on the reoriving transmission line when the transmitter and reeciver are quite close together. Shiedded line, plus relocation of either the transmitting or receiving antenna to take advantage of directive effects, often will result in reducing overloading, as well as harmonie pick-up, to a level that does not interfere with reception,

Construction Practices

TOOLS AND MATERIALS

While an easier, and perhaps a better, job can be done with a greater variety of tools available, by taking a little thought and care it is possible to turn out a fine piece of equipment with only a few of the common hand tools. A list of tools which will be indispensable in the construction of radio equipment will be found on this page. With these tools it should be possible to perform any of the required operations in preparing

INDISPENSABLE TOOLS

Iong-nose wiers, (i-jurh.

Diagonal cutting pliers, f-inch.
Screwdriver, 6- to 7 -inch, $1 / 4$-inch blade.
Screwdriver, $4-$ to $\overline{\text {-inch}}$, $1 / 8$-inch blade.
Scrateh awl or scriber for marking lines.
Combination square, 12 -inch. for laying out work.
lland drill, $1 / 4$-iach cluack or larger, 2 -speed twpe preferable.
Electric soldering iron, 100 watts.
Hack saw, 12-inch blades.
C'enter punch for marking hole centers.
Hammer, ball-peen, 1-lb, head.
Heary knife,
Yardstick or other straightelge.
('arpenter's brace with adjustable hole cutter or socket-hole punches (see text).
J.arge, coarse, flat file.

Jarge round or rat-tail file, $1 / 2$-inch diameter,
Three or four small and medium filcs-flat, round, half-round, triangular.
Irills, particularly- 1 -inch and 大os, 18, 28, 33, 42 and 50.
('ombination oil stone for sharpening tools.
Solder and soldering paste (noncorroding).
Medium-weight machine oil.

ADDITIONAL TOOLS

13nench vise, 4 -inch jaws.
Tin shears, 16 -inch, for cutting thin sheet metal. Taper reamer, $1 / 2$-inch, for enlarging small holes. Taper reamer, 1 -inch, for enlarging holes.
Countersink for brace.
Carpenter's plane, 8- to 12-inch, for woolworking. Carpenter's saw, crosscut.
Motor-driven emery wheel for grinding.
long-shank serewdriver with serew-holding elip for tight places.
Set of "Spintite" socket wrenches for hex nuts. Set of small, flat, open-end wrenches for hex nuts. Wood chisel, $1 / 2$-inch.
Cold chisel, $1 / 2$-inch.
Wing dividers, 8-inch, for seribing circles.
Set of marhine-serew taps and dies.
Folding rule, 6-foot.
Dusting brush.
Socket punches, (ss), $11 / 8^{\prime \prime}$ and $11 / 4$ ".
panels and metal chassis for assembly and wiring. It is an excellent idea for the amateur who does constructional work to add to his supply of tools from time to time as finances permit.

Several of the pieces of light woodworking machinery, often sold in hardware stores and mail-order retail stores, are ideal for amateur radio work, especially the drill press, grinding head, band and circular saws, and joiner. Although not essential, they are desiratile should you be in a position to acquire them.

Twist Drills

Thist drills are made of either high-speed sted or carbon stecl. The latter type is more common and will usually be supplied unless specific request is made for high-speed drills. The carbon drill will suffice for most ordinary equipment construction work and costs less than the high-speed type.

While twist drills are available in a number of sizes those listed in bold-faced type in Table 18-I will be most commonly used in construetion of amateur equipment. It is usually desirable to purchase several of each of the commonly-used sizes rather than a quantity of odd sizes, most of which will be used infrequently, if at all.

Care of Tools

The proper care of tools is not alone in matter of pride to a good workman. He also realizes the energy which may be saved and the annoyance which may be avoided by the possession of a full kit of well-kept sharp-edged tools.

Drills should be sharpened at frequent intervals so that grinding is kept at a minimum each time. This makes it casier to maintain the rather critical surface angles required for best cutting with least wear, Oceasional oilstoning of the cutting edges of a drill or reamer will extend the time between grindings.

The soldering iron can be kept in good condition by keeping the tip well tinned with solder and not allowing it to run at full voltage for long periods when it is not beine used. After cach period of use, the tip should be removed and cleaned of any sale which may have accumulated. An oxidized tip maty be
cleaned by dipping it in sal ammoniac while hot and then wiping it clean with a rag. If the tip beromes pitted, it should be filed until smooth and bright, and then tinned by dipping it in solder.

Useful Materials

Small stocks of various miscellaneous materiats will be required in constructing radio apparatus, most of which are available from hardware or radio-supply stores. A representative list follows:
$1 / 2 \times 1 / 6$-inch brass strip for brackets, etc. (half-hard for bending).
$1 / 4$-inch-square brass rod or $1 / 2 \times 1 / 2 \times 1 / 16$ inch angle brass for eorner joints.
$1 / 4$-inch diameter round brass rod for shaft extensions.
Machine sorews: Round-head and flat-head, with muts to fit. Most nseful sizes: $4-36$, 6-32 and 8-32, in lengths from $1 / 4$ inch to $11 / 2$ inches. (Nickel-plated iron will be found satisfactory exeppt in strong r.f. fields, where brass should be used.)
Bakelite and hard-rubber seraps.
Soldering lugs, panel bearings, rubher grommets, terminal-lug wiring strips, var-nished-ambric insulating tubing.
Copper braid for shielding wires.
Machine screws, nuts, washers, soldering lugs, ete., are most reasonably purchased in quantities of a gross.

CHASSIS WORKING

With a few essential tools and proper procedure, it will be found that building radio gear on a metal chassis is no more of a chore than building with wood, and a more sattisfactory job results. Aluminum is to be proferred to sted, not only bectuse it is at superior shiclding material, but because it is much easier to work and to provide good chasis contacts.

The placing of components on the ehassis is shown quite clearly in the photographs in this Handbool. Aside from certain essential dimensions. which usually are given in the text. exant duplication is not necessary.

Much trouble and energy can be saved by spending sufficient time in planning the job. When all details are worked out beforehand

Fig. 24.1 - Method of measuring the heights of condenser shafts, ete. If the square is adjustable, the end of the seale should the set flush with the face of the thead.

Number	TABLE 24-I Numbered Drill Sizes		
	$\begin{aligned} & \text { Diameter } \\ & (\text { mils }) \end{aligned}$	Will Clear screw	Drilled for Tapping Iron, Stecl or Brass*
1	228.0	-	-
2	221.0	12-24	-
3	213.0	-	14-24
4	209.0	12-20	-
5	205.0	-	-
6	204.0	-	-
7	201.0	-	-
8	199.0	-	-
9	196.0	-	-
10	143.5	10-32	-
11	141,0	10-24	-
12	$18: 1.0$	-	-
13	185.0	-	-
14	182.0	-	-
15	180.0	-	-
16	177.0	-	12-24
17	173.0	-	-
18	169.5	8-32	-
19	1168.0	-	12-20
20	161.0	-	
21	154.0	-	10-32
22	157.0	-	-
23	154.0	-	-
24	152.0	-	-
25	149.5	-	10-24
26	147.0	-	-
27	144.0	-	-
28	140.0	6-32	-
29	136.0	-	8-32
30	128.5	-	-
31	120.0	-	-
32	116.0	-	-
33	113.0	4-36, 4-40	-
34	111.0	,	-
35	110.0	-	6-32
36	10ti. 5	-	
37	104.0	-	-
38	101.5	-	-
39	0049.5	3-48	-
40	048.0	-	-
41	006.0	-	-
42	093.5	-	4-36, 4-40
43	089.0	2-56	-
44	086.0	-	-
45	08: 0	-	3-48
46	081.0	-	-
47	078.5	-	-
48	076.0	-	-
49	073.0	-	2-56
50	070.0	-	- -
51	067.0	-	-
52	063.5	-	-
53	059.5	-	-
5.4	055.0	-	
* Use oue size larger for tapping bakelite and hard rubleer.			

the aetual construction is greatly simplified. Cover the top of the chassis with a piece of wrapping paper or, preferably, eross-section paper, folding the edges down over the sides of the chassis and fastening with adhesive tape. Then assemble the parts to be mounted on top of the chassis and move them about until a satisfactory arrangement has been found, keeping in mind any parts which are to be mounted underneath, so that interferences in mounting may be avoided. Place condensers and other parts with shafts extending through the panel first, and arrange them so that the controls will
form the desired pattern on the panel. Be sure to line up the shafts squarely with the chassis front. Locate any partition shields and panel Irackets next, and then the tube sockets and any other parts, marking the mounting-hole centers of each accurately on the paper. Watch out for condensers whose shafts are off center and do not line up with the mounting holes. Do not forget to mark the centers of socket holes and holes for leads under i.f. transformers. etc., as well as holes for wiring leads. The small holes for sorket-mounting screws are hest located and punched, using the socket itself as a template, after the main conter hole has been cut.

By means of the square, lines indicating accurately the centers of shafts should be extended to the front of the chassis and marked on the panel at the chassis line, the panel being fastened on temporarily. The hole centers may then be punched in the chassis with the center punch. After drilling. the parts which require mounting undernath may be located and the mounting holes drilled, making sure by trial that no interferences exist with parts mounted on top. Mounting holes along the front edge

Fig. 24-2 - To cut rectangular holes in a chassis corner, holes may be filed out as shown in the shaded portion of B. mahing it possible to start the hack-saw blade along the cutting line. A shows how a sinpleended handle may be construeted for a hack-saw hlade.
of the chassis should be transferred to the panel, by once again fastening the panel to the chassia and marking it from the rear.

Next, mount on the chassis the condensers and any other parts with shafts extending to the panel, and measure accurately the height of the center of each shaft above the chassis, as illustrated in Fig. 24-1. The horizontal displacement of shafts having already been marked on the chassis line on the panel, the vertical displacement can be measured from this line. The shaft centers may now be marked on the back of the panel, and the holes drilled. Holes for any other panel equipment coming above the chassis line may then be marked and drilled, and the remainder of the apparatus mounted. Holes for terminals etc., in the rear edge of the chassis should be marked and drilled at the same time that they are done for the top.

Drilling and Cutting Holes

When drilling holes in metal with a hand drill it is important that the centers first be located with a center punch. so that the drill point will not "walk" away from the center when starting the hole. When the drill starts to break through, special care must be used. Often it is an advantage to shift a two-speed drill to low gear at this point. Holes more than $1 / 4$ inch in diameter may be started with a smaller drill and reamed out with the larger drill.

The chuck on the usual type of hand drill is limited to $1 / 4$-inch drills. Although it is rather tedious, the $1 / 4$-inch hole may be filed out to larger diameters with round files. Another method possible with limited tools is to drill a series of small holes with the hand drill along the inside of the diameter of the large hole, placing the holes as close together as possible. The center may then be knocked out with : cold chisel and the edges smoothed up with a file. Taper reamers which fit into the carpenter's brace will make the job easier. A large rattail file clamped in the brace makes a very good reamer for holes up to the diameter of the file, if the file is revolved counterclockwise.

For socket holes and other large round holes, an adjustable cutter designed for the purpose may be used in the brace. Occasional application of machine oil in the cutting groove will help. The cutter first should be tried out on a block of wood, to make sure that it is set for the correct diameter. The most eonvenient device for cutting socket holes is the socket-hole punch. The best type is that which works by turning a take-up) screw with a wrench.

Rectangular Holes

Square or rectangular holes may be cut out by making a row of small holes as previously described, but is more easily done by drilling a $1 / 2$-inch hole inside each corner, as illustrated in Fig. 24-2, and using these holes for starting and turning the hack saw. The sockethole punch and the square punches which are now a vailable also may be of considerable assistance in cutting out large rectangular openings. The burrs or rough edges which usually result after drilling or cutting holes may be removed with a file. or sometimes more conveniently with a sharp knife or chisel. It is a good idea to keep an old wood chisel sharpened and available for this purpose. A burr reamer will also be useful.

Placement of Components

While a requirement of compactness in certain equipment may preclude best practices in the placement of parts, there are a few basic rules that should be followed whenever the necessary space can be provided. They are important from the considerations of losses and stability.

Coils should be mounted so that they are spaced at least their diameter from shiolding or other large masses of metal or rlieleretric. This :uphlies partieularly to the ends of coils.

It should be remembered that mounting a variable condenser with its stator plates close to the chassis will increase the minimum capacitance appreciably. This may be of considerable importance when, for instance, it is desired to design a tank circuit that will have sufficiently low capacitance for 28 Mc. When using a large tank condenser that will also be suitable for 3.5 M . For this reason, it may be preferable to invert the condenser so that its rotor plates, rather than the stator plates, are close to the chassis when the condenser is near minimum capacitance.

Resistors and by-pass condensers may be mounted flat against the chassis, but coupling or phate-blocking condensers should be well spaced from the chassis to reduce capacitance to ground. The characteristies of r.f. chokes also may be affected by mounting too close to the chassis.

Screen and filament or cathode by-pass condensers should be mounted on the tube socket with the shortest possible leads. While the length of leads between the tank coil and the tank condenser are of less importance, it should be an objective in design to arrange the components so that the paths from the rotors of grid and plate tank condensers back to cathode or filament are as short as possible. These two paths should be independent and of heavy conductor to keep the inductance low. It is usually considered preferable not to use the chassis for these return paths.

CONSTRUCTION NOTES

If a control shaft must be extended or insulated, a flexible shaft coupling with adequate insulation should be used. Satisfactory support for the shaft extension can be provided by means of a metal panel bearing made for the purpose. Never use panel bearings of the nonmetal type unless the condenser shaft is grounded. The metal bearing should be conneced to the chassis with a wire or grounding strip. This prevents any possibte danger of shock.

The use of fiber washers between ceramic insulation and metal brackets, screws or nuts will prevent the ceramic parts from breaking.

Cutting and Bending Sheet Metal

If a sheet of metal is too large to be cut conveniently with a hack saw, it may be marked with scratches as deep as possible along the line of the cut on both sides of the sheet and then clamped in a vise and worked back and forth until the sheet breaks at the line. Do not carry the bending too far until the break begins to weaken; otherwise the edge of the sheet may become bent. A pair of iron bars or pieces of heavy angle stock, as long or longer than the width of the sheet, to hold it in the vise will make the job easier. "C"-clamps may be used to keep the bars from spreading at the ends. The rough edges may be smoothed up with a file or by placing a large piece of emery cloth or sandpaper on a flat surface and running the edge of the metal back and forthover the slieet.

DECIMAL EQUIVALENTS OF FRACTIONS			
1,32.	.03125	17/32.	. 53125
1 16.	. 0825	$9 / 16$,	. 0625
332	.0037\%	19/3:	. 39875
1/8	.125	58	. 625
$\checkmark 32$.	.17862\%	$21 / 32$.65625
316.	.187.)	11/16	. 6875
733.	.2187.7	$23 / 39$.7187.)
1.4.	. 25	34	
932.	. 28125	25/32.	.78127
- 16	.3125	1316	.812.
1132.	.34375	$27 / 32$.	.8437:
38.	.37.5	78	.87:,
13 32.	40tis.	$29 / 32$.	-904295
716.	. 4375	$15 / 16$. 9375
1.) 32.	. 4687 \%	3132.	.9687.)
12.	. 5	1.	

Bends may be made similarly. The sheet should be scratched on both sides, but not so decply as to cause it to break.

Finishing Aluminum

Aluminum chassis, panels and parts may be given a sheen finish by treating them in a caustic bath. An enamelled container, such as a dishpan or infant's bathtub, should be used for the solution. Dissolve ordinary household lye in cold water in a proportion of $1 / 4$ to $1 / 2$ can of lye per gallon of water. The stronger solution will do the job more rapidly. Stir the solution with a stick of wood until the lye crystals are complete dissolved. Be very careful to avoid any skin contact with the solution. It is also harmful to dothing. Sufficient solution should be prepared to cover the piece completely. When the aluminum is immersed, a very pronounced bubbling takes place and ventilation should be provided to disperse the escaping gas. A half hour to two hours in the solution should be sufficient, depending upon the strength of the solution and the desired surface.

Remove the aluminum from the solution with sticks and thereafter handle with cotton gloves until after the piece has been rinsed thoroughly in cold water while swabling with a rag to remove the black deposit. If any black stains result, reimmerse the piece for another minute or two and rinse again. (See May, 1950 QST for a method of coloring and anodizing aluminum.)

Soldering

The secret of good soldering is in allowing time for the joint, as well as the solder, to at tain sufficient temperature. Enough heat should be applied so that the solder will melt when it comes in contact with the wires being joined. without touching the solder to the iron.

Sohlering paste, if of the noncorroding type, is extremely helpful when used correctly. In general, it should not be used for radio work except when necessary. The joint should first be warmed slightly and the soldering paste applied with a piece of wire, Only the hit of paste which melts from the warmth of the joint should be used. If the soldering iron is clean it will be possible with one hand to piek up a drop of solder on the tip of the iron which can be

Fig. 24.3-Cablestripping dimensions for Jones 'l'vpe P. l0] plugs. Smaller dimensions are for $1 / 4$-imela plage, the larger dimensions for 1_{2}-inch plames. As indicated in Co, the remaising copper lorais is womm with bate or tinned wire to make a smuk lit in the slecve of the plug.
applied to the joint. while the other hand is used to hold the eonnecting wires together. The use of excessive soldering paste causes the paste to spread over the surface of adjacent insulation, cansing leakage or breakdown of the insulattion. Exeept where absolutely neressary, solder should never be depended upon for the mechanimal strength of the joint: the wire should be wrapped around the terminals or elamped with soldering terminals.

Wiring

If the plate voltage exereds a 00 , sperial care should be used in solecting wire that has adequato voltage rating for transmitter plate-power circolits. T'o be conservative, the insulation should be mod for twied the plate voltage and this figure should be doubled again if the lead carries modulation as well as d.e.

The wire for filament ciredits should be of sufficient size to assure rated voltage at the filament terminals (sere wire table in the misedlaneonsdata (hapter).

Iowror wing in tansmitters should be shielded

Fifs. 2fet- Dimensions for stripping 1/2-inch calle to dit Amphenal 'Type 83-ISP'plug.

Fig. 24.5- Method of assemiling $1 / 4$-inoll cable, Amphemod 'Type 83-1SP' pluk and adapter.
as a means of reducing TVI. If shielded wire with sufficient voltage rating is not available, unshichded wire ean be covered with eopper braid.

In making eomnertions with shielded wire, the braid should be stripped back about an inch at eath end to provide adequate insulation between the eonductor and the braid. After fraying the braid back and snipping it off, it should be bound with a few turns of small hare wire, lenving a lead of a few inches for ground to the chassis at the nearest point. Solder should be flowed into the winding, being careful not to apply too much heat that might damage the insulation. The brate of shiedded power wires running parallol should the bonded togethor by spots of solder at freguent intervals. Wires that aross should be similarly bomded. In cases where power-supply leads in the chassis have several branches, it is convenient

Fip. 2.1-6-Stripuink dimensions for Amphenal 82.830 and $82-8.32$ phag-in connectors. The longer expored braid is for the first type.

Fig. 24-7 - Methods of lacing cables. The method showil at C is more secure, but takes more time than the method of 13. The latter is usually adequate for most amateur requirements.
to use fiber terminal or lug strips as anchorages or junction points. Strips of this type are also uscful as insulated anchorages for resistors, ref. chokes and condensers. High-voltage wiring should have exposed points held to a minimum and those which cannot be avoided shoulal be roudered as inaccessible as possible to accidental contact or short-circuit.

For r.f. wiring, soft-drawn bare solid timod antenma wire, No. 14 or No. 12, is most suitable. Kinks can be removed by stretching a length of 10 or 15 feet and then cutting into short piecoss that can be handed conveniently. lef. wiring should be run directly from point to point over the shortest path and should be kept well spaced from the chassis and components. Where the wiring must pass through the chassis, a halfinch hole should be cut at the appopriate point and the hole lined with a rubber grommet. The wire should not be allowed to touch the rubber,

Power and control wiring outside the transmitter chassis should be cabled wo make a neatlowking joh. Fig. 24-7 shows the correct methods of lacing cables.

Coaxial Plug Connections

Considerable time and trouble can be saved in making rable eonnections to coaxial plugs by starting out with the correct stripping dimensions. Fig. $24-3$ shows how the end of the cable should be prepared for connceting to Jones Type P-101 phugs, After the exposed braid has
been wound, it should be carefully tinned, applying no more heat than is neessary, to avoid melting the inner insulation. A small amount of solder also should be flowed into the sleeve of the plug. Then, when the cable is inserted in the slereve, the comnertion can be made secure by holding the iron against the sleme until the solder inside melts. While joining the two, the plag may be lowd by inserting it in a lonle drilled in a board. Figs, 2t-4, $24-$ and $24-$ show details of comneetions to different types of Amphemol plugs and adipters.

COMPONENT VALUES

Values of composition resistors and small condensers (mica and eremmic) are sperified throughout this Handbook in terms of "preferred values." In the preferrod-number sustem, all values represent (approximately) a constant-percentage increase over the next lower value. The base of the system is the number 10. Only two significant figures are used. Table $24-11$ shows the preferred values hased on tokerance steps of 20,10 and $\overline{5}$ per cent. All other values are expressed by multiplying or dividing the base figures given in the table by the appropriate power of 10 . (For example, resistor values of 33,000 ohms, 6800 ohms, and 150 ohms are obtained by multiplying the base figures by 1000,100 , and 10 , respectively.)
"'Tolerance" means that a variation of plus or minus the percentage given is considered satisiactory. For example, the act ual resistance of a " 4700 -ohm" 20 -per-cent resistor can lie anywhere between 3700 and 5600 ohms, approximately. The permissible variation in the same resistance value with $\overline{5}$-per-cent tolerance

TABLE 24-II Standard Component Values		
$\begin{gathered} 20 \% \\ \text { Tolerance } \end{gathered}$	$\begin{gathered} 10 \% \\ \text { Tolerance } \end{gathered}$	$5^{(1)}$ Tolerance
10	10	$\begin{aligned} & 10 \\ & 11 \end{aligned}$
	12	12
15	15	15 16
	18	18 20
22	22	22
	$: 7$	27 30
33	33	36 36
	39	39 43
47	47	47 31
	56	56
		62
¢8	68	68 75
	82	82
		91
1(H)	100	100

would be in the range from 4500 to 4900 ohms, approximately.

Only those values shown in the first column of Table $24-1 I$ are available in 20 -per-eent folerance. Additional values, as shown in the second column, are available in 10 -per-cent tolerance; still more values can be obtained in -jerereent tolerance.

In the component specifications in this IIandbork, it is to be understood that when no tolerance is specified the largest tolerance available in that value will he satisfactory.
V Values that do not fit into the preferrednumber system (such as $500,25,000$, ete.) easily can be substituted. It is obvious, for example, that a 5000 -ohm resistor falls well within the tolerance range of the 4700 -ohm 20-per-cent resistor used in the example above. It would not, however, be usable if the tolerance were specified as $\bar{\delta}$ per cent.

COLOR CODES

Standardized color codes are used to mark values on small compononts sueh as composition resistors and mica condensers, and to identify leads from transformers, etc. The resistor-eondenser umber eolor eode is given in Trable 24-III.

Fixed Condensers

The methods of marking "postage-stamp" mica condensers, molded paper condensers, and tubular ceramic condensers are shown in Fig. 24-5. Condensers made to American War Standards or Joint Army-Navy specifications are marked with the 6 -dot code shown at the top. Practically all surplus condensers are in this category. The 3 -dot RMA eode is used for condensers having a rating of 500 volts and $\pm 20 \%$ tolerance only; other ratings and tolerances are covered by the 6-dot IR MA code.

[^10]
Ceramic Condensers

Conventional markings for ceramic condensers are shown in the lower drawing of Fig. 24-8. The colors have the meanings indicated in Table $24-I V$. In practice, dots may be used instead of the narrow bands indicated in Fig. 24-8.

Example: A ceramic contenser has the following markings: Broad band, violet: narrow bands or dots, green, brown, black, grcen. The significant figures are 5 , I (5 I) and the deeimal multiplier is 1 , so the capacitance is $51 \mu \mu \mathrm{dd}$. The temperature coefficient is -7.0 parts fer million per degree C., as given by the broad band, and the capacitance tolerance is $\pm 5 \%$.

Fixed Composition Resistors

Composition resistors (including small wirewound units molded in eases identical with the

RMA 3-dot 500 -volt, $\pm 20 \%$ tolerance only

Fig, 24-8-Color coding of fixed mica, molded paper, and tubular ceramic condensers. The color code for mica and molded paper condensers is given in Table 2b.1]. 'I'able 24-IV gives the color rode for tubular ceramic condensers.

Fixed composition resistors
Fig. 24.9 - Color coding of fixed composition resistors. The color code is given in Talle 24.1II. The colored areas have the following signifieance:
A - First significant figure of resistance in ohms.
B - Sccoud significant figure.
C- Decimal multiplier.
D - Resistance tolerance in per cent. If no color is shown. the tolerance is $\pm 20 \%$.
composition type) are color-coded as shown in Fig. 24-9. Colored bands are used on resistors having axial leads; on radial-lead resistors the colors are placed as shown in the drawing. When bands are used for color coding the body color has no significance.

Examples: A resistor of the type shown in the lower drawing of Fig. 24-9 has the following color bands: A, red; B, red; C, orange; D, no color. The significant figures are 2.2 (22) and the decimal multiplier is 1000 . The value of resistance is therefore 22.000 ohms and the tolerance is $\pm 20 \%$.

A resistor of the type shown in the upper drawing has the following colors: body (A), blue: end (13), gray: dot, red; end (D), gold. The significant figures are 6, 8 (68) and the decimal multiplier is 100 , so the resistance is 6800 ohms. The tolerance is $\pm 5 \%$.

I.F. Transformers

Blue - plate lead.
Red - "13" + lead.
Green - grid (or diode) lead.
Black - grid (or diode) return.
Note: If the secondary of the i.f.t. is centertapped, the second diode plate lead is green-

Color	TABLE 24-III Resistor-Condenser Color Code			Voltage Rating*
	Significant Figure	t Decimal Multiplier	Tolerance (c7)	
Black	0	1	-	-
Brown	1	10	1*	100
Red	2	100	2*	200
Orange	3	1000	3*	300
Yellow	4	10,000	4*	400
Green	5	100,000	5^{*}	500
Hlue	6	1,000,000	6^{*}	600
\checkmark iolet	7	10.000.000	7*	700
Gray	8	100.000,000	8*	800
White	91	1,000,000,000	$9{ }^{*}$	900
Gold	-	0.1	5	1000
Silver	-	0.01	10	2000
No color	-	-	20	500

TABLE 24-IV Color Code for Ceramic Condensers					
Color	Significant Figure	Dectimal Multiplier	Capacilance Tolerance		Temp, Coeff. p.p.m./deg. C.
			$\begin{gathered} \text { Hore than } \\ 10 \mu \mu \mathrm{fd} \\ (\text { in } \bar{\sigma}, \mathrm{c}) \end{gathered}$	Less than $10 \mu \mu \mathrm{fd}$. (in $_{\mu} \mu$ fd.)	
Black	0	1	± 20	2.0	0
Brown	1	10	± 1		-30
Red	2	100	± 2		-80
Orange	3	1000			-150
Vellow	1				-220
Green	5		± 5	0.5	- 330
Blue	6				-470
Violet	7				- 730
Gray	8	0.01		0.23	30
White	9	0.1	± 10	1.0	500

and-black striped, and black is used for the center-tap lead.

A.F. Transformers

Blue - plate (finish) lead of primary.
Red - " B " + lead (this applies whether the primary is plain or center-tapped).
Brown - plate (start) lead on center-tapped primaries. (Blue may be used for this lead if polarity is not important.)
Green - grid (finish) lead to secondary.
Black - grid return (this applies whether the secondary is plain or center-tapped).
Yellow - grid (start) lead on center-tapped secondaries. (Green may be used for this lead if polarity is not important.)
Note: These markings apply also to line-togrid and tube-to-line transformers.

Loudspeaker Voice Coils

Green - finish.
Black - start.

Loudspeaker Field Coils

Black and Red - start.
Yellow and Red - finish.
Slate and Red - tap (if any).

Power Transformers

1) Primary Leads. Black If tapped:

Common. Black
Tap. Black and Yellow Striped
Finish. Black and Red Striped
2) High-Voltage l'late Winding......... Red

Center-Tap. . Red and Yellow Striped
3) Rectifier Filament Winding. Yellow

Center-Tap. . Yellow and Blue Striped
4) Filament Winding No. 1..........Green

Center-Tap. .Green and Yellow Striped
5) Filament Winding No. 2.......... Brown

Center-Tap. Brown and Yellow Striped
6) Filament Winding No. 3. Slate

Center-Tap. . Slate and Yellow Striped

Operating a Station

The enjoyment of our hohby usually eomes from the operation of our station onde we have finished its ronstruction, Lpon the station and its operalion depend the communication records that are made.

An operator with a slow, steady, elcam-rut mothod of sending has a big advantage over the poor operator. (iood sending is partly a matter of practice but patienee and judgment are just as important qualities of an operator as a good "fist." The technique of speaking in eonnected thoughts and phrases is equally important for the operator who uses voice.

- OPERATING COURTESY AND TOLERANCE

Sormal oprating interests in amateur radio vary considerably. some profor to rag-chew, others handle fraffie, others work 1 NK, otherw concentrate on working certain areas, countries or states, still others get on for ath occasional contact only to chere at new rig or antema.

Interferenere is one of the things we amateruss have to live with. Howerer, we cath eonduet our operating in a way designed to alleviate it as much as possible. Before pulting the transmilter of" the air, listen on your oum fremency. If you hear stations congaged in communication on that frequence, stand be until bou are sure no interforrone will le ratused be vour operations, or shift to another frequene!!. Xo amatemer or ame group of amberens has any erchesine claim to amy frequeney in any band. We must work logether, each resperting the rights of others. Remember, those other chatps cean ratase you as much interferenere as you ratuse them, sometimes more! Where a VOO is used it is not meecsarary to stick to a single operating fregueney though it is woll to have one or 1 wo prefered and alternate frequencos. It has berome general operating procedure these dass to work stations on or near your own frequener. This practiore will atomationally aswint in reducing interfermere.

- C.W. PROCEDURE

The best operators, both those using voice athd e.w., ohserve certain proeedures developed from experienco and regarded as "standard pratioce."

1) "alls. ("atling stations may eall effieiently be transmitting the call signal of the station ralled three times, the letters Inti, followed bo. one's own station call sent three times. (Short ralls with frequent "breaks" to listen have
proved to be the best method.) Repeating the call of the station called live times and signing not more than twice (repeating not more thatn three times) has proved excellent pratider, thes:
 W1AW [ete.] AR.
('). The gencral-inguiry call (CO) should be sent mot more than five times without interspersing one's station identification. The length of repeated calls is carefully limited in intelligent amateur oprerating. (CO is not to be used when testing or when the sender is not expecting or looking for an answer. Never send a CQ "blind." Alway listen on the frequeney first.)

The direetional CQ: To reduee the number of useless answers and lessen (QlRM, every ('Q eall should be made informative when possible.

> Examples: I Inited States station looking for any Hawaiian amateur ralls: CQ KHG ('QKil6 CQ Kll D): W4I WHIA W4A K゙. A Wextern station with traffir for the last coast when looking for an intermediate relay station "alls: ('Q EAS'C ('Q RAST' (Q EAS'T DE: Wial(iW WoIciW WialgW K. A station with mensages for points in Maswachasetts valls: (' Q MASE ('Q MANS CQ MASS DE WZCOY W7C\%V'W7C\%Y K. In meh example indieated it is understomd that the combination used is repented three times.

Llams who do not raise stations readily may find that their sending is poor, their calls ill-timed or judgment in error. When conditions are right To bring in signals from the desired locality, you (an eall them. R(asomably short malls, with al)propriatte athd brief breaks to listen, will raise sations with minimum time and trouble.
2) Ansurring a (rall: (all three times (or less); send DF: sign three times (or less) : after eontact is astablished deerease the use of the coll sigmats of both stations to omer or turiere. When a station reeceives at call but does not recerive the call letters of the station calling, (QRZ\%'s may be used. It means "By whom am I being called?" Qli\% should not be used in phace of CQ
3) Ending Signals and Sign-()ff: The proper use of $\overline{A R}, K, \bar{K} \bar{N}, ~ s \bar{K}$ and Cla ending signals is as follows:
$A R$ - Vhed of transmission, Jerommended after call to a sperifie station before contact has beren established.

Ewampe: Whatse W'sabC WGABC IDE
WoI.MN WGLMN WOI.MN AR. Ano at the end of transmission of a radiogram, imumediately following the signature, proceding identification.
Ii- (io ahead (amy station). Recommended after CQ and at the end of each transmission
during QSO when there is no objection to others breaking in.

> Example: CQ CQ CQ DE WIABC WIABC WIABC K or W9XYZ DE WIABCK.
$\overline{K N}$ - Go ahead (specifie station), all others keep out. Reeommended at the end of each transmission during a QSO, or after a call, when calls from other stations are not desired and will not be answered.

Example: W4FGH DE XUGGRL $\overline{\mathrm{KNN}}$.

$\overline{S K}$ - lind of QSO. Recommended before signing last transmission at end of a (2SO.

Example: . . . SK W8LAM DE W5BCD.
CL-I am closing station. Ireommended When a station is going off the air, to indicate that it will not listen for any further calls.

> Example: . . . SK W7HIJJ IDE W2.JKL. CL.
4) Test signals to permit another station to adjust receiving equipment may eonsist of a series of Vs with the call signal of the transmitting station at frequent intervals. Remember that a test signal can be a totally unwarmanted cause of QRM, and always listen first to find a elear spot if possible.
5) Receipting for conversation or traffic: Never send acknowledgment until the transmission has been entirely reecived. " R " means "All right, OK, I understand completely." L'se I only when all is recoived correctly.
(i) Repeats. When most of a transmission is lost, a call should be followed by correct abbroviations to ask for repeats, When a few words on the end of a transmission are lost, the last uord received correctly is given after ?AA, meaning "all after." When a few words on the beginning of a transmission are lost, "AB for "all before" a stated word should be used. The quickest way to ask for a fill in the middle of a transmission is to send the last word received correctly, a question mark, then the nest word received correetly. Another way is to send "?BN [word] and [word]."

Do not send words twiee ($\mathrm{Q}_{\mathrm{S}} / \mathrm{Z}$) unless it is requested. Send single. Do not fall into the bad habit of sonding double without a request from fellows you work. Don't say "(2RID" or "QRN" when you mean "Qlis," Bon't CQ unless there is definite reason for so doing. When sending CQ, use judgment.

General Practices

When a station has receiving trouble, the operator asks the transmitting station to "QsV." The letter " R " is often used in plater of a decimal point (e,g., " 3 R 5 Me .") or the colon in time designation (c.g., "2IR30 PM"). A long dash is sent for "zero,"

The law concerning superfluous signals should be noted. If you must test, diseonneet the antemna system and use an equivalent "dummy" antenna. Send your eall frequently when operating. liek a time for adjusting the station apparatus when few stations will be bothered.

The up-to-date amateur station uses "break-
in." For best results send at a medium speed. Send evenly with proper spacing. The standardtype telegraph key is best for all-round use. Regular daily practice periods, two or three periods a day, are best to aequire real familiarity and profieieney with eode.

No exeuse can be made for "garbled" copy. Operators should copy what is sent and refuse to acknowledge a whole transmission until every word has been received correctly. Good operators do not guess. "Swing" in a fist is not the mark of a good operator. Chusual words are sent twiee, the word reprated following the transmission of "?". If not sure, a good operator systematically asks for a fill or repeat. Sign your eall frequently, interspersed with calls, and at the end of all transmissions.

On Good Sending

Assuming that an operator has learned sending properly, and comes up with a precision "fist" - not fast, but clean, steady, making wellformed rhethmical characters and spacing beautiful to listen to - he then becomes subject to outside pressures to his own possible detriment in everyday operating. He will want to "speed it up" beause the operator at the other end is going faster, and so he begins, unconseiously, to run his words together or develops a "swing."
lerhaps one of the easiest ways to get into bad habits is to do too much playing around with sperial keys. Too many operators spend only enough time with a straight key to aequire "passable" sending, then subjeet their newlydeveloped "fists" to the entirely different movements of bugs, side-swipers, eleetronic kevs, or what-have-you. All too often, this results in the ruination of what may have become a very good "fist."

Think about your sending a little. Are you satisfied with it'? You should not be - ever. Nobody's sending is perfeet, and therefore ever! operator should continually strive for improvement. Do you ever run words together - like Q for MA, or P' for AN - especially when you are in a hurry"? Practically everybody does at one time or another. Do you have a "swing'". Any reognizable "swing" is a deviation from perfection, Strive to send like tape sending; eopy a WIAW Bulletin and try to send it with the same spacing using a local oscillator on a subsequent transmission.

Cheek vour spacing in characters, betweon characters and between words oreasionally by making a recording of your fist on an inked tape recorder. This will show up your faults as nothing else will. Practice the correction of faults.

USING A BREAK-IN SYSTEM

Break-in avoids unnecessarily long calls, pre vents QRM, gives more communication per hour of operating. Briof ealls with frequent short pauses for reply can approach (but not equal) break-in effieiency.

A separate receiving antenna facilitates break-
in operation. It is only meressary with break-in to pause just a monment with the key up (or to cut the carrier momentarily and pause in a 'phone conversation) to listen for the other station. The click when the carrier is eut off is as efferetive as the word "broak."

Cur. telegraph brak-in is usually simple to arrange. With break-in, ideas and meseages to be transmitterd ran he pulled right through the holes in the QRRM. Snappy, offertive, efficient, enjoyahle amateur work really reguires but a simple switching arrangement in your station to cut off the bower and switch 'phones from monitor to reeciver.

In calling, the tramsmiting onerator semds the lotters "BK" at freruent intervals during his call so that stations hearing the call may know that break-in is in use and take advantager of the fact. He pouses at imfervals during his call, to listen for a moment for a reply. If the station boing called does not answer, the call can be contimued.

With a tap of the key, the man on the receiving end can interrupt (if a word is missed). The other operator is constantly monitoring, awaiting just such directions. It is not neressary that yon have perfect facilities to take advantage of break-in when the stations you work are break-inequipped. Ifter any invitation to break is given (and at each pause) press your key - and contact can start immediately.

VOICE OPERATING

The use of proper procedure to get best results is just as important as in using coole. In telegraphy words must be spelled out lotter by letter. It is therefore but natural that abbreviations and shorteuts should have come into widespread use. In voice work, bowever, abbreviations are not necessary, and should have less importance in our operating procodure.

The letter "k" has beron agreed to in telographir practice so that the operator will mot have to peand out the separate letters that suell the words "go ahead." The voice operator c:un say the words "go ahead" or "over," or "come in please."

One laughs on cew, by spelling out 1ll. On 'phone use a laugh when ond is ealled for. Be natural as you would with your family and friends.
The matter of reporting readability and strength is as important to 'phone operators as to those using code. With telograph nomenclature, it is necessary to speell out words to describe signals or use the abbreviated signal reporting system (IRST . . . see (hapter Twenty-Four). I'sing voiere, wo have the ability to "say it with words." "Readability four, strength right" is the bost way to give a quantitative report. Reporting can he done so much more meaningfully with ordinary words: "You are weak hut you are in the clear and I can understand you, so go ahead," or "Your signal is strong hut you are buried under local interference." Why not shy it with words".

Voice-Operating Hints

1) Listen before calling.
2) Make short calls with braks to listen. Avoid long ('Qs; do not answer any.
3) Use push-to-talk. Give essential data concisely in first transmission.
4) Make repoits honest. I'se definitions of strongth and readability for referenece. Make your reports informative and useful. Ilonost reports and full word deseription of signals save amateur operators from FC' irouble.
i) Limit transmission longth. Two minutes or less will eonvey much information. When three or more stations converse in round tables, brevity is essential.
5) Display sportsmanship and courtesy. Bands are congested . . . make transmissions meaningful . . . give others a break,
6) Chork transmitter adjustment . . . avoid AM overmodulation and splattor. Do not radiate when moving I'FO frequency or cherking NFM swing. I'se receiver b.f.o. to check stability of signal. Complete testing before busy hours!

Voice Equivalents to Code Procedure

'Phone-Operating Practice

Efficient voice communication, like good c.w. communication, demands good operating. Adherenee to certain points "on getting results" will go a long way toward improving our 'phoneband operating conditions.

Tos push-to-talk technique. Where possible arrange on-off switehes or controls for fast back-and-forth exchanges that emulate the practicality of the wire telephone. This will help reduce the length of transmissions and kecp brother amateurs from calling you a "monologuist" - a guy who likes to hear himself talk!

Listen with care. Kicep noise and "backgrounds" out of your operating room to farilitate good listening. It is natural to answer the strongest signal, but take time to listen and give some consideration to the best signals, regardless of strength. livery amateur cannot run a kilowatt, but there is mo reason why every amateur cannot have a signal of good quality, and utilize uniform operating practices to aid in the understandability and case of his own communications.

Interpose your call regularly and at frequent intervals. Three short calls are better than one
long one．In calling Co，one＇s call should certainly appear at least once for every five or six Cos． Calls with frequent breaks to listen will save time and be most productive of results．In iden－ tifying，always transmit your own call last．Don＇t say＂This is W1ABC standing by for W2DEF＂； say＂W2DEF，this is W1ABC，over．＂FCC regu－ lations require that the call of the transmitting station be sent last．

Include country prefix before call．It is not cor－ reet to say＂9RRX this is 1BDI，＂Correct and legal use is＂W9RRX this is W1BDI，＂FCC regulations require proper use of calls；stations have been cited for failure to comply with this requirement．

Monitor your own frequenc！y．This helps in tim－ ing calls and transmissions，Send when there is a chance of being copied successfully－not when you are merely＂more QRM，＂Tinning transmis－ sions is an art to eultivate．

Keep modulation constant．By turning the gain ＂wide open＂you are subjecting anyone listening to the diversion of whatever noises are present in or near your operating room，to say nothing of the presibility of feed－back，echo due to poor acousties and modulation exeesses due to sudden loud noises．Speak near the microphone，and don＇t let your gaze wander all over the station causing sharply－varying input to your speech amplifier；at the same time，keep far enough from the mierophone so your signal is not modulated by your breathing．Change distance or gain only ats neressary to insure uniform transmitter per－ formane without overmodutation，splatter or distortion．

Wake connected thoughts and phrases，Don＇t mix disconnected subjects．Ask questions consistently． Pause and get answers．
Have a pad of paper handy．It is convenient and desirable to jot down questions as they come in the course of discussion in order not to miss any：It will help you to make intelligent to－the－ point replies．

Steer clear of inanities and soap－opera stuff．Our anateur radio and also our personal reputation as a serious communications worker depend on us．

A void repetition．Don＇t repeat back what the other fellow has just said．Too often we hear a conversation like this：＂Okay on your new an－ tema there，okay on the trouble you＇re having with your receiver，okay on the company who just came in with some ice cream，okay．．． ［ete．］．＂Just say you received everything OK゙． Don＇t try to prove it．

Itse phonetics only as required．When clarifying genuinely doubtful expressions and in getting your call identified positively we suggest use of the ARIRI．Phonetic List，Limit such use to really－necessary clarification．

The speed of radiotelephone transmission（with perfect accuracy）depends almost entirely upon the skill of the two operators involved．One must learn to speak at a rate allowing perfect under－ standing as well as permitting the receiving uperator to cony down the message text，if that is necessary：Becaus of the similarity of many

Einglish spereh sounds，the use of alphabetical word lists has been found neeressary．All woier－ operated stations should use a staiulard list as needed to identify call signals or unfamiliar expressions．

ARRL Word List for Radiotelephony

ADAM
BAKER
（ $\mathrm{CH} A R \mathrm{LH}$ ）
DAVI）
EDWARD
FRAN゙
（iborcie
HENRY
ID）

KNALIWISMARNANCYOTTPETERQCEEN

心し心AN
TH（）MAS
INION
VICTOR
WIILIAM
－KRAI
100．0．
ZEIBRA

RoBERT
Example：W1AW．．．W I ADAM WlL LIAN，

Round Tables．The round table has many ad－ vantages if rum properly．It clears frequencies of interferener，especially if all stations involved are on the same frequency，while the mjoyment value remains the same，if not greater．By use of push－to－talk，the conversation can be kept lively and interesting，giving each station operator ample opportunity to participate without wait－ ing overlong for his turn．

Round tables can become very unpopular if ther are not conducted properly，The monologu－ ist，off on a long spiel about nothing in particular， cannot be interrupted；make your transmissions short and to the point．＂Butting in＂is discourteous and unsportsmanlike；don＇t emter a round table，or any contart betureen two other cemateurs，unless you arce invited．It is bad enough trying to understand voice through prevailing interference without the added difficulty of poor quality；check your transmitter adjustments frequently．In general， follow the precepts as hereinbefore outlined for the most enjoyment in round tables as well as any other form of radiotelephone conmunication．

WORKING DX

Most amateurs at one time or another make ＂working IN＂a major aim．As in every other phase of amateur work，there are right and wrong ways to go about getting best results in working foreign stations，and it is the intention of this section to outline a fow of them．

The ham who has trouble raising I）X stations readily may find that poor transmitter effiejency is not the reason．He may find that his sending is poor，or his calls ill－timed，or his judgment in error．When conditions are right to bring in the DX，and the receiver sensitive enough to bring in several stations from the desired locality，the way to work DX is to use the appropriate fro－ quency and timing and call these stations，as against the common practice of ealling＂ C （ DN．＂

The call CQ DN means slightly different things to amateurs in different bands：
a）On v．h．f．，（Q DX is a general call ordi－ narily used only when the hand is open，under
favorable "skip" conditions. F'or v.h.f. work such a call is used for looking for new states and countries, also for distinees beyond the customary "line-of-sight" range on most v.h.f. bands.
i) CQ DX on our $\overline{7}-14-$ and 28 -Mc. bands may be taken to mean "General call to any foreign station." The term "foreign station" usually refers to any station in a foreign contiment. ($E x$ periencel amateurs in the C.S. A. and Canada do not use this call, hut ansurer suth calls made bẹ formign stations.)

DX OPERATING CODE (For W/VE Amateurs)

Some amateurs interested in D.X work have caused considerable cenfusion and (SIRM in their efforts to work DX stations. The points below, if observed by all W/VE amateurs, will go a long way toward making DN more enjoyable for everybody.

1. Call DN only after he calls CQ , QlRZ?, signs $\overline{\mathrm{SK}}$, or 'phone equivalents thereof.
2. Do not call a DX station:
a. On the frequency of the station he is working until you are sure the (QSO is over. This is indicated by the ending signal SK on e.w. and any indication that the operator is listening, on 'phone.
b. Because vou hear someone else calling him.
c. When he signs $\overline{\mathrm{KN}}, \overline{\mathrm{AIR}}$, (CI, or 'phone equivalents.
d. Exactly on his frequeney.
e. After her calls a direetional CQ, moness of eourse you are in the right direction or area.
3. K゙erp within frequenry-band limits. Some INX stations operate outside. Perhaps they can gol away with it, but you "ammot.
4. Ohsorve callimg instructions of 1)N stations. "100" means eall ten ke. "p from his frequency, "151)" means 10 ke. doum, rtc.
5. Give honest reports. Many foreign stations depend on W and VE reports for adjust ment of station and equipment.
6. Kerp your signal clean. Key clicks, (hip)s, hum or splatter give you a had repatation and may get you a citation from $\mathrm{FC}^{\prime}{ }^{\prime}$.
7. Listen for and coll the station you Want. (alling ('Q I)N is not the best assurance that the rare D. will reply.
8. When there are several W or VE stations Wating to work a DN station, awoid arking him to "listen for a friend." Let gour friend take his chateres with the rest. Also avoid engaging WX stations in rag-chews against their wishos.
c) CQ DAX used on 3.5 Mc . under winter-night conditions maty be used in this same manner. At other times, under average $3.5-\mathrm{Mc}$. propagation conditions, the call may be used in domestic work when looking for new states or countries in one's own continent, usually applying to stations located over 1000 miles distant from your own.

The way to work DX is not to use a CQ call at all (in our continent). Instead, use your best tuning skill-and listen - and listen - and listen. You have to hear them before you can aworl: them. Henir the desired stations first; time your calls well. I'se your utmost skill. A sensitive receiver is often more important than the power iuput in working foreign stations. Jefore vou can expert to be successful in working any particular foreign country or area, you should be able to hear ten or a dozen stations from that area.

One of the most affective ways to work DX is to know the operating habits of the DX stations sought. Doing too much transmitting on the DX bands is not the way to do this. Again, listening is cffective. Once you know the operating habits of the DX station you are after you will know when and where to call, and when to remain silent waiting your chance.

Many I)X stations use the signals IIM, MII, LM and MI, to indicate where they are tuning for replies. The meanings of these signals are as follows:

IIM - Will start to listen at high-fregueney end of band and tune toward middle of land.
MH1 - Will start to listen in the middle of the band and the toward the hioh-frequency end.
L.M -- Will start to listen at low-fremency emd of band and tune toward middle of band.
ML - Will start to listen in the middle of the band and tune toward the low-frequeney end.
Example: If the proeedure will be to tune
froun the middle of the band to the high end, a
CQ eall goes: CQ DJ (ishy Mn K.
ARRL has recommemded some operating procedures to IJX stations aimed at eontrolling some of the thoughtless operating practices sometimes used by $\mathbf{W}^{\top} / \mathrm{VE}$ amateurs. A eopy of these recommendations (Operating Aid No. 5) can be obtained free of charge from ARRL I Ieadquarters.

In any hand, particularly at line-of-sight frequencies, when directional antennas are used, the directional C Q such as CQ W5, CQ north, ete., is the proferable type of call. Mature amateurs agree that CQ DX is a wishful rather than a practical type of call for most stations in the North Americas looking for contacts in foreign countries. Ordinarily, it is a cause of unnecessary QRM.

Conditions in the transmission medium make all field strengths from a given region more nearly equal at a distance, irrespective of powrer used. In general, the higher the frequency band, the less important power considerations become. This acoounts in part for the relative popularity of the $1+$-and 28 -Mc. bands among amateurs who like to work IDX.

KEEP AN ACCERATE AND COMPLETE STATION LOG A' ALL TIMES: F.C.C. REQUTRES IT,

Abstract

A page from the official ARRI log is shown alowe, answering every Government requirement in respect to station records. bound logs made up in aceord with the atove form can he obtained from Ifeadenarters for a nominal sum or you can prepare your own, in which case we offer this form as a suggestion. The ARRI, log has a special wire binding and lies perfectly flat on the tatbe.

- KEEPING AN AMATEUR STATION LOG

The FCC requires every amateur to keep a complete station operating recorl. It may also contain records of experimental tests and adjustment data. A stenographer's notebook can be ruled with vertical lines in any form to suit the user. The Federal Communications Commission requirements are that a log be maintained that shows (1) the date and time of each transmission, (2) all calls and transmissions made (whether two-way contacts resulted or not), (3) the input
power to the last stage of the transmitter, (4) the frequency band used, (i) the time of ending each (SSO and the operator's identifying signature for responsibility for each session of operating. Messages may be written in the log or separate records kept - but record must be made for one yoar as required by the $F\left({ }^{\prime} C\right.$. For the convenience of amateur station operators AIRIRL stoeks both logbooks and message blanks, and if one uses the official log he is sure to comply fully with the Government roquirements if the precautions and suggestions included in the log are followed.

Message Handling

Amatcur operators in the United States and a few other countries enjoy a privilege not available to amateurs in most countries - that of handling third-party message traffic. In the early history of amateur radio in this country, some amateurs who were among the first to take advantage of this privilege formed an extensive relay organization which became known as the American IRadio Relay League.
Thus, amateur message-handling has had a long and honorable history and, like most services, has gone through many periods of development and change. Those amateurs who handled traffic in 1914 would hardly reeognize it the way some of us do it today, just as equipment in those days was far different from that in use now. Progress has been made and new methods have been doveloped in step with advancement in communieation techniques of all kinds. Amatruss who handted a lot of traffic found that organized operating schedules were more effective than random relays, and as techniques advanced and messages inereased in number, trunk lines were organized, spot frequencies began to be used, and there sprang into existence a numleer of traffic nets in which many stations operated on the same frequency to effect wider cov-
arage in less time with fewor relays; but the old mothods are still available to the amateur who handles only an occasional message.

Although message handling is as old ant art as is amateur radio itself, there are many amateurs who do not know how to handle a mossage and have never done so. As each amateur grows older and gains experience in the amateur service, there is lound to come a time when he will be ealled upon to handle a written message, during a communications emergence, in casual contact with one of his many acquantanees on the air, or as a result of a request from a nonamateur friend. Regardless of the oreasion, if it comes to you, you will want to rise to it! Considerable embarrassment is likely to be experienced by the amateur who finds he not only does not know the form in which the message should be prepared, but does not know what to do with the message once it has been filed or received in his station.

Traffic work need not be a complicated or time-consuming activity for the casual or occasional message-handler. Amateurs may participate in traffic work to whatever extent they wish, from an occasional message now and then to becoming a part of organized traffic systems.

This chapter explains some principles so the reader may know where to find out more about the subject and may exercise the message-handling privilege to best effect as the spirit and opportunity arise.

Responsibility

Amateurs who originate messages for transmission or who recelve messages for relay or delivery should first consider that in doing so they are acepting the reponsibility of elearing the message from their station on its way to its destination in the shortest possible time. Fortyright hours after filing or reerept is the gencrallyaccepted rule among traffic-handing amateurs, but it is obvious that if every amateur who relayed the mossage allowed it to remain in his station this long it might be a long time reaching its destination. Traffic should be relayed or delivered as quickly as possible.

Message Form

Once this responsibility is realized and acrepted, handling the message becomes a matter of following generally-acerpted standards of form and transmission. For this purpose, each message is divided into four parts: the preamble, the address, the text and the signature. Some of these parts themselves are subdivided. It is necessary in preparing the message for transmission and in actually transmitting it to know not only what sach part is and what it is for, but to know in what order it should be transmitted, and to know the various procedure signals used with it when sont by e.w. If you are going to sond a message, you may as well send it right.

Stamdardization is important! There is a great doal of room for expressing originality and individuatity in amateur radio, but there are also times and phates where such expression can only rause confusion and indficioney, Recognizing the need for standardization in message form and message transmitting procedures, ARIRL has long siner recommended such standards, and most traffic-interested amateurs have followed them. In general, these recommendations, and the various changes they have undergone from vear to vear, have beren at the reguest of ama-

Here is an example of a plainlanguage message in eorrect IRRL, form.
teurs participating in this activity, and they are completely outlined and explained in Operating an .1 mateur Radio Station, a copy of which is available upon request or by use of the coupon at the end of this Chapter.

Clearing a Message

Anateurs not experienced in message handling should depend on the experieneed messagehander to get a messuge through, if it is important; but the average amateur can enjoy operating with a message to be handled either through a local tratfic net or by free-lancing. The latter may be accomplished by careful listening for an amateur station at desired points, directional (C2s, use of the General ('alling frequencies, or by making and kereping a schedule with another amateur for regular work between sperified points. Ile may well aim at learning and enjoying through doing. The joy and aceomplishment in thus devoloping one's operating skill to tops perfection has a reward all its own,

The best way to clear a message is to put it into one of the many organized traffic networks, or to give it to a station who can do so, There are many amateurs who make the handling of traffic their principal operating activity, and many more still who participate in this activity to a greater or lesser extent. The result is a system of traffic nots which spreads to all corners of the Cinited States and covers most ['. S. possessions and Canada. Once a message gets into ome of these nets, regardless of the net's size or coverage, it is systematically routed toward its destiation in the shortest possible time.
If you deeide to "take the bull lye the homs" and put the message into a traffic not yourself (and more power to you if you do!, you will ned to know something about how traffie nets operate, and the sperial Q signats and procedure they use to dispatch all traffic with a maximum of efficieney. Reference to net lists in QS'T (usually in the November and January issues) will give wou the frequency and operating time of the net in your section, or other net into which your message ean go. Listening for a fow minutes at the time and frequeney indicated should arquaint you with enough fundamentals to emable you to report into the net and indicate vour traffic. From that time on you follow the insinuctions of the net control station, who will tell you when and to whom (and on what frequence, if different from the net frequencer) to send vour message. Sine most nets use the spectial "(Q)" signals, it is usually very helpful to have a list of these before you (list available from ARLRI, Hq.).

Network Operation

About this time, you may find that you are enjoying this type of operating activity and want to know more about it, and to increase your proficiency. Many amateurs are happily "addicted" to traffic handling after only one or two briof exposures to it. Most traffie nets are at present being conducted by c.w., since this mode of
communiration seems to be more popular for record purposes - but this does not mean that high code speed is a neecssary prerequisite to working in traffic networks. There are many nets organized specifically for the slow-speed amateur, and most of the so-called "fast." nets are usually glad to slow down to accommodate slower operafors, esperially those nets at state or section level.

The significant facet of net operation, however, is that eode speed alone does not make for efliciency - sometimes quite the contrary! A high-spered operator who does not know net proecdure (an "foul up" a net much more completely and more quickly than ean a slow operator. It is a proven fact that a bunch of high-speed operators who are not "savvy" in net operation cannot aceomplish as mueh during a specified period as an equal number of slow operators who know net procedure. I Don't let your code speed deter you from getting into traffic work. Given a little time, your speed will reach the point where you can compete with the best of them. Concentrate first on learning net procedure, for most traffic nowadays is handled on nets.

T'eam work is the theme of net operation. The net whidh functions most efficiontly is the net in which all participants are thoroughly familiar with the procedure used, and in which operators refrain from transmitting exerept at the direction of the net control station, and do mot oreu, y time with extraneous comments, even cxehange of pleasantries. There is a time and place for everything. When a nett is in session it should concentrate on handling traffie until all traffic is cleared. Before or after the net is the time for rag-chewing and discussion. Some details of net operation are included in Operating an Amateur Radio Station, mentioned earlier, but the whole story amoot be told. There is no substitute for actual participation.

The National Traffic System

To farilitate and sperd the movement of message traffic, there is in existence an integrated national system hy means of which originated
traffic will normally reach its destination area the same day the message is originated. This system uses the local section not as a hasis. Wach section net sends a representative to a "regional" net (normally covering a call area) and auch "regional" net sends a representative to an "area" net (normally covering a time zone). After the area net has cleared all its traffic, its members then go back to their respective regional nets, where they clear trafie to the various section net representatives. When this is done, the section representatives return to their section nets to distribute the traffic to or near its ultimate destination. By moans of connerting schedules between the four area nets, traffic can flow both ways so that traffie originated on the West Coast reaches the East Coast the aame night it is originated, and vice versa. In general local section nets function at 1900 , regional nets at 1945, area nets at 2030 and the same or different regional and section groups meet again at 2130 and 2200 respectively. Local time is referred to in each case.

The NTs plan somewhat spreads traffic opportunity so that casual traffic may be reported into nets for effieient handling one or two nights per weok, early or hate; or the ardent traffic man can operate in both early and late groups and in bebetween to roll up impressive totals and speed traffie reliably to its destination. (Ohd-time traffic men who prefer a high degree of organization and teamwork have returned to the traffic game as a result of the new system. Beginners have shown more interest in becoming part of a system nationwide in seope, in which anyone can participate. The National Traflic System has vast and intriguing possibilities as an amateur sorvice. It is open to any amateur who wishes to participate.

The above is but the briefest résumé of what is of necessity a rather eomplicated arrangement of nets and sehedules. Complete details of the System and its operation are available to anyone interested. Just drop a line to ARRL Meadquarters.

Emergency Communication

One of the most important ways in which the amateur serves the public, thus making his existence a national asset, is by his preparation for and his participation in communications emorgencies. Fvery amateur, regardless of the extent of his normal operating artivitios, should give some thought to the possibility of his being the only means of communication should his eommunity be cut off from the outside world. It has happened many times, often in the most unlikely places; it has happened without warning, finding some amateurs totally unprepared; it can happen to you. Are you ready?

There are two principal ways in which any amateur can propare himself for such an eventuality. One is to provide himself with equipment capable of operating on any type of emergeney power (i.e., either a.c. or d.c.), and equip-
ment which can readily be transported to the seene of disaster. Mobile equipment is esperially desirable in most emergeney situations.

Such equipment, regardless of its claborateness or modernness, is of little use, however, if it is not used properly and at the right times; and so anothor way for an amateur to propare himself for emergencies, by no means lews important than the first, is to learn to operate efficiently. There are many amateurs who feel that they know how to operate effieiently who find themselves considcrably handicapped at the crucial time by not knowing proper procedure, by being unable due to yoars of casual amateur operation to adapt themselves to snappy, athhreviated transmissions, and by being unfamiliar with message form and routing procedures. It is dangerous to overrate your ability in this respect;

EMERGENCY RADIO UNIT
 A. Registored with the Amateur Radio Emergency Corp: Sponsored by the American Radio Relay League in the Public Interest

This is one of the aids which are available through your local E.C. to put amateur radio before the mublic eye. It can be used on molite rigs or self-contained portable stations. Your EC has or can get a supply of them from AlRRI. headquarters.
it is far better to assume that you have much to learn.

In general it can be said that there is more emergency equipment available than there are operators who know properly how to operate during emergency conditions, for such conditions require clipped, terse procedure with complete break-in on c.w. and fast push-to-talk on 'phone. The casual rag-chewing aspect of amateur radio, however enjoyable and worth while in its place, must be forgoten at such times in favor of the business at hand. There is only one way to gain experience in this type of operation, and that is by prarticing it. During an emergency is no time for practice; it should be done beforehand, as often ats possible, on at regular basis.

This leads up to the necessity for emergency organization and preparedness. ARRL has long
recognized this neeessity and has provided for it. The Section Communications Manager (whose address appears on page 6 of any recent issue of (SST') is empowered to appoint certain qualified amateurs in his section for the purpose of coordinating emergency communication organization and preparedness in specified areas or eommunities. This appointee is known as an Emergeney Coördinator for the city or town. One is specified for each community. For coördination and promotion at section level a Section Emorgency Coördinator arranges for and recommends the appointments of various Jmorgency Coordinators at aetivity points throughout the section. Bmergency Coürdinators organize amateurs in their communities acoording to local needs for emergeney communication facilitios.
The community amateurs taking part in the

Before Emergency

PREISARE yourself by providing it transmitter-receiver set-up together with an emergeney power source upon which you ean depend.

Tlis'T both the dependability of your emergency equipment and your own operating ability in the annual ARRI, Field Day and the several other on-the-air contests which take phace annually.

RIE(ISNCLR your facilities and vour availability with your local ARRI, limergency Coördinator. If vour community has no EC , contact your local eivie and relief agencies and explain to them what the Amateur Service offers the community in time of disaster.

In Emergency

L.ル゙TEN hefore you transmit. Never violate this prineiple.

REPORT at one to vour bmergeney Courdinator so that he will have up-to-theminute data on the farilities available to him. Work with local civie and relief ageneces as the EC : suggests, offer these agencies your serviees direetly in the absence of an BC.
 som as FCC has "decelared" a state of communications emergeney.

QRRRIR is the official ARRL, "land sos," a distress eall for emorgency only. It is for use only by a station seeking assistance.

RLSPDCT the fact that the sucerss of the amateur effort in emergeney depends largely on circuit discipline. The key station in the emergene! zone should be the supreme authority for priority and traffic routing.

CO-OPlekATh with those we serve. Be ready to help, but stay of the air unless there is a sperific job to be done that you can handle more efficiently than any other station,

COPV all bulletins from WI.IW. During time of emergeney sperial bulletins will kere) you posted on the latest developments.

After Emergency

REPMORT to ARRL Ileadquarters as soon as possible and as fully as possible so that the Amateur Sarvice can receive full credit. Amateur Radio has won glowing public tribute in over 75 major disasters since 1919. Maintain this record.
local organization are members of the Amateur Radio Emergency Corps (AIREC), All amateurs are invited to register in the AREC, whether they are able to play an active part in their local organization or only a supporting rôle. Application blanks are available from your Emergency ('oördinator, from your Section Emergency Coordinator, from your Section Communications Manager or direct from ARIRL. Headquarters, In the event that inquiry reveals no Emergency Coörlinator appointed for your community, your SC'M would weleome a recommendation aither from yourself or from a radio club of which you are a member. By holding an amateur operator lieense, you have the responsibility both to vour community and to amaterer radio to uphold the traditions of the service.

For many vears amateurs have been serving the public in man-made and natural disasters of various kinds. Now, as oner before in our history, we are being called upon to prepare for participation in civil defense communication. The eontribution our larger number of mobiles and emergency powered facilities can make is today a much greater one than ever before. Within the limits set by serourity and frequeney availabilities, we hope that we might have an opportunity
to serve civil defense needs much more effectively than hefore. The need is greater than ever. 'To counterbalance this, our Emergency Corps organization is much stronger, much larger and much more efficient than ever before in its history.

The extent to which we will figure in the completed plans for civil defense at all levels depends entirely on the extent to which we participate as an organization, as one strong facility, in the plans and preparations being made. And whild we are doing this we must not forget that it by no means relieves us of the responsibility for continuing to carry on our traditional preparation for and participation in peacetime communirations emergencies. We simply have an extra job to do.

Among the latage's publications is a booklot entitled E'mergency Communication.. This booklet, while small in size, contains a wealth of information on AREC organization and functions and is invaluable to any amateur participating in emergency work, It is free to ARLD members and should be in every amateur's shaek. Drop a line to the ARRRL ('ommunications Department if you want a copy, or use the coupon at the end of this chapter.

ARRL Operating Organization

Amateur operation must have point and ronstructive purpose to win public respoct. bach individual amateur is the ambassador of the entire fraternity in his publie rolations and attitude toward his hobby. AIRIRL field organization adds point and purpose to amateur operating.

The Communications Department of the League is concerned with the practical operation of stations in all branches of amateur activity. Appointments or awards are available for rag-chewer, traffic enthusiast, 'phone operator, DN man and experimenter.

There are seventy-two ARRIRL Seetions in the League's field organization, which embraces the I'nited States, C'anada and eertain other territory. Operating affairs in cach Section are supervised by a Section C'ommunieations Manager clected by members in that section for a twovear term of office. Organization appointments are made by the seetion managers. The election of officials is covered in detail in the League's Constitution and By-Laws. Section communieations managers' addresses for all sections are given in full in eath issue of QST'. SC'Ms welcome monthly activity reports from all amateur stations in their jurisdiction.

Whether your activity ambraces 'phone or telegraphy, or both, there is a place for you in Lague organization.

LEADERSHIP POSTS

'To advanco cach type of station work and group interest in amateur maia, and to develop practical communications plans with the greatest success, appointments of leaders and or-
ganizers in particular single-interest fields are mado hy SCMs. Each leadership post is important. Each provides artivities and assistance for appointee groups and individual members along the lines of natural interest. While some posts further the general ability of amateurs to commonicate efliciently at all times, by pointing aetivity toward networks and round tables, others are aimed specifically at establishment of provisions for orgamizing the amateur service as a stand-by communications group to serve the publie in disaster or emergeney of any sort. The SCM appoints the following in aecordance with section needs and individual qualifieations:
P.A.M Phone Activities Manager, Organizes activities for OPSs and voice e,perators in his section,
RMM Route Manazor, Coördinates traflic activities,
SEC Sertion Fimergency ('oürdinator. Promotes and administers section emergeney radio organization,
EC Emergency Coürlinator. Orqanizes amateurs of a community or othor area for emeruency radio service; liaison with officials and arencies served; also with other local commanication facilities,

STATION APPOINTMENTS

ARLRL's fiold organization has a place for every active amateur who has a station. The Communieations Department organization exists to incroase individual enjoyment in amateur radio work, and we extend a cordial invitation to every amateur to participate fully in the artivities and to apply to the SC'M for one of the following station appoint ments:
OPS Otixial 'Phone Station. Voice operating, example in setting operating standards, activities on voice. ORS Official Relay Station. Traffie service, operates nets and trunk lines.

OIss Official Bullotin Stution. I'ransmitw ARRI, and FC'C bulletin information to amateurs.
OES Official Experimental Station, Experimental oferating, collects reports w.h.f.-u.h.f.-s.h.f. propagation data, may engage in facsimile, TT, TV, etc., experiments.
OO
Official Observer. Sends coöperative notices to amateurs to assist in frequency observance, insures high-quality signals, and prevents FCC trouble.

Emblem Colors

Members wear the emblem with black-comamel background. A red background for an emblem will indicate that the wearer is SC.M. SEC's, EC's, RMs, PAMs may wear the emblem with green background. Observers and all station appointers are entitled to wear emblems with blue background.

SECTION NETS

Amatsurs can add much experience and pleasure to their own amateur lives, and substance and accomplishment to the credit of all of amateur radio, when organized into effective interconneretion of cities and towns.

The successful operation of a met depends a lot on the Net Control Station. 'This station should be chosen carefully and be one that will not hesitate to enforce dach and every net rule and set the example in his own operation.

A progressive net grows, obtaining new members both directly and through other net members. Bulletins may be issued at intervals to keep in direct contact with the mentrers regarding general met artivity, to keep tab on net procedure and make suggestions for improvement, to keep track of artive members and weed out inactive ones.

Official Rolay Stations at key points are organized into numerous section and local networks and ferder systems for the purpose of efficient dispateh of traffic. Speedy and reliable work is carried on, the operation entirely on separate spot frequencies in the $3.5-\mathrm{Me}$. amateur band.

Radio Club Affiliation

ARIRI, is pleased to grant affiliation to any amateur society having (1) 51% of the voting club membership made up of licensed United States or Canadian amateurs, and (2) 51% of its licensed amateurs also members of ARLRL.

Where a society has common aims and wishes to add strength to that of other club groups to strengthen amateur radio by affiliation with the national amateur organization, a request addressed to the Communications Manager will bring the necessary forms and information to initiate the application for affiliation. Such clubs receive field-organization bulletins and sperial information at intervals for posting on club bullotin boards or for rolay to their memberships. A travel plan providing communications, technical and sereretarial contart from the Ileadquarters is worked out seasonally to give maximum bemefits to as many as possible of the several hundred active affiliated radio clubs. Papers on club work, suggestions for organizing, for constitutions, for radio courses of study, cte., are available on request.

Club Training Aids

One section of the AlRLRL, Communications Department handles the 'Training Aids Program. This program is a service to ARLRI, affiliated clubs. Material is supplied for club programs aimed at education, training and entertaimment of club members, to make your club meetings more interosting and consequently better attended.
Training Aids include such items as motionpicture films, film strips, slides, and leeture outlines. Also, code-proficiency training equipment such as recorders, tape transmitters and tapes will he loaned when such items are available.

All Training Aids materials are loaned free (except for shipping charges) to AIRRL, affiliated clubs. Numerous groups use this ARLRI. service to good advantage. If your club is affiliated but has not yet taken advantage of this sarvice, you are missing a good chance to add the available features to your meeting programs and general club activities. Watch club bulletins and QST or write the ARRI, Communieations Department for full details.

wlaw

The Maxim Memorial Station, W1AW, is dedicated to fraternity and serviee. Operated by the League headquarters, W1AW is loeated about four miles south of the Headquarters officeson a sev-
 en-acre site. The station is on the air daily, except holidays, and available time is divided between different bands and modes. ''elegraph and 'phone transmitters are provided for all bands from 1.8 to 144 Mc . The normal frequencies in each band for c.w. and voice transmissions are as follows: 1887, 3555, $3950,7215,14,100,14,280,28,060,29,000,52,000$
and $146,000 \mathrm{ke}$. Operating-visiting hours and the station schedule are listed every other month in QST.

All amateurs are invited to visit W1AW, as well as to work the station from their own shacks. The station was established to be a living memorial to Iliram Perey Maxim and to carry on the work and traditions of the amateur fraternity.

- operating activities

Within the ARIRL, field organization there are several spectial activities. The first Saturday night each month is set aside for all AlRRI, officials, officers and directors to get together over the air from their own stations. 'This activity is known to the gang as LO-NITE. For all appointees, quarterly tests called CD parties are scheduled to develop operating ability and a spirit of fraternalism.

In addition to these special activities for appointees and members, ARIRI, sponsors various other activities open to all amateurs. The IDXminded amateur may participate in the Amual ARRL International DX C'ompetition during February and March. This popular contest may bring you the thrill of working new countries, Then there is the ever-popular Sweepstakes in November. Of domestie scope, the SS affords the opportunity to work new states for that WAS award. For the $28-\mathrm{Me}$. gang there is the TenMeter WAS Contest held each year. The interests of v.h.f. enthusiasts are, also provided for in special activities planned by ARIRL.

As in all our operating, the idea of having a good time is combined in the Annual Fied Day with the more serious thought of preparing ourselves to render publie service in times of emergency. A premium is placed on the use of equipment without connection to rommercial power sourees. Clubs and individual groups always have a good time in the "FD," learn mueh about the requirements for knoekabout conditions afiek.

AIRIRL, contest activities are diversified to appeal to all operating interests, and wibl be found amounced in detail in issues of QST' proceding the different events.

AWARDS

The League-sponsored operating activities heretofore mentioned have useful objectives and provide much enjoyment for members of the fraternity. Achievement in amateur radio is recognized by various eertificates offered through the League and detailed below.

WAS Award

WAS means "Worked All States." This award is available regardless of affiliation or nonaffiliation with any organization. Here are the few simple rules to follow in applying for a WAS Certificate:

1) Two-way communications must be patablished on the amateur hands with all forty-right United Sitates; any and

all amateur bands may be used. A card from the District of Columbia may be submitted in lieu of one from Maryland.
2) Contacts with all forty-cight states must be made from the same location. Within a given community one location may be defined as from places no two of which are more than 25 miles apart.
3) Contacts may be marle over any period of yeara, and may have been made any number of years ago, provided only that all contacts are from the same location.
4) Forty-eight QSL cards, or other written communications from stations worked eonfirming the necessary twoway contacts, must be subuitted by the applicant to ARRL headguarters.
5) Sufficient postage must be sent with the confirmations to finance their return, No correspondence will be returned unloss sufficient postage is furnished.
f) The WAS award is available to all amateurs.
6) Address all applications and confirmations to the Communications Department, ARRL, 38 La Salle Road, West Hartford, Conn,

DX Century Club Award

Here are the rules under which the DX Century Club Award will be issued to amateurs who have worked and confirmed contact with 100 countries in the postwar period. If you worked fewer than 100 countries before the war and have since worked and confirmed a suffieient number to make the 100 mark, the DNCC is still available to you under the rules detailed on page 74 of June, 1946, QST.

1) The Century Club Award Certificate for confirmed contaets with 100 or more countries is available to all anateurs everywhere in the world.
2) Confirmations must be submitted direct to ARRI. headfuarters for all countries claimed. Claims for a total of 100 countries must be included with first application. Confirmation from forcign contest logs may be requested in the case of the ARRL International DX Competition only, subject to the following conditions:
a) Sufficient confirmations of other types must be submitted so that these, plus the DX Contest confirmations, will total 100. In every case, Contest confirmations must not be recmested for any countries from which the applicant has regular confirmations. That is, contest confirmations will be granted only in the case of countries from which applicants have no regular confirmations.
b) Look up the contest results as published in QST to see if your inan is listed in the foreign scores. If he isn't, he did not send in a log and no confirmation is possible.
c) (ive year of contest, date and time of QSO.
d) In future DX Contests do not request confirmations until after the final results have been published, usually in one of the early fall issues. Requests before this time must be ignored,
3) The ARRL Countries List, printed periodically in QST, will be used in determining what constitutes a "country." The Miscellaneous Data chapter of this Mandbook contains the Postwar Countries List.
4) Confirmations must be aecompanied by a list of claimed comntries and stations to aid in checking and for futiure reference.
5) Confirmations from additional countries may be submitted for credit ench time ton additional contirmations are available. Endorsements for affixing to eertificates and showing the mew confirmed total (110, 120, 130, ete.) will be awarded an additional eredits are pranted. ARRL I)X Competition logs from foreign stations may be utilized for these endorsements, subject to conditions stated under (2),
(i) All contacts must be made with amateur stations working in the anthorized amateur bands or with other stations licensed to work amateurs.
6) In cases of countries where amateurs are lieensed in the normal manner, credit may be clamed only for stations using regular government-assigned eall letters. No credit thay be clamed for contacts with stations in any eountries in which anateurs have been temporarily closed down hy sperial governmont edict where amateme licenses were formerly issued in the normal manmer.
7) All stations contacted must bre "land stations" contarts with ships, anchored or otherwise, and aireraft, cannot be counted.
(9) All stations must be contacted from the same eall ares, where sueh areas exist, or from the same country in cosecs where there are wo call areas. One exception is allowed to this ruld: where a station is moved from one call area to another, or from one country to another, all contacts must he made from within a radius of 150 miles of the initial location.
8) ('ontacts bay be made oser any period of years from November 15, 19,4, movided only that all contacts be made under the provisions of Rule ! , and hy the same station licenser; pontacts may have been made under different call fetters in the same area (or comntry), if the lieensee for all was the satue.
9) All confirmations must tre submitted exactly as roerived from the stations worked. Any altered or forged confirmations submited for (' (' eredit will result in disulablifeation of the applicant. The cligibility of any DXCC applicant who was ever harred from IDN(C to reamyly, and the eonditions for such apmiention, shall be deteranined by the Awards Committce. Any holder of the Century Club Award submitting forged or altered confirmations must forfeit his right to be considered for furthor endorsements.
10) OPERATIN(F'THIC 's: Jair julay and grood sportsmanshoj in oproting are required of all amateurs working toward the IS. (entury C'lub) Award. In the event of specifie objections relative to continued poor operating ethes an individual may be dispualified from the IDNCC by action of the ARRL Awards committee.
11) Nuflicient postage for the return of confirmations must be forwarded with the appliontion. In order to insure the safe return of large batehes of confirmations, it is suggested that enough postage be sent to make prossible their return by first-class mail, registered.
12) Decisions of the ARRL Awards Committee resarding interpretation of the rules as here printed or later amended shall tre final.
13) Addrows all aphlications and confirmations to the Commanieations beparthent, ARRL, 38 La Salle Road, West Hartford 7, Comm.

WAC Award

The International Amateur Radio lonim issues WAC (Worked All ('ontinents) cert fifates to all members of member-sorictice who sulmit proof of two-way communication with at least one station on carh contiment. Forrign anaterurs submit thair proof direct to member-sorocictics of the LARL', Others may make application to ARRLL, headquarters society of the l'nion. A c.w. and a telephony rertificate are available. Also, special condorsement will be placed on certificates upon receipt of reguest accompaniod by proof of having worked all continents on 50 Mc.

Code Proficiency Award

Many hams can follow the gencral idea of a contact "ly car" but when pressed to "write it down" they "muff" the copy. The Code

Proficiency Award invites every amateur to prove himself as a proficient oprator, and sets. up a system of awards for step-by-step gains in copying proficiency. It enables every amateur to check his code proficicncy, to better that profiriency, and to receive a certification of his rereiving speed.
This program is a whale of a lot of fun. The Learue will give a certificate to any licensed radio amateur who demonstrates that he can copy perfectly, for at least one minute, plainlanguage ('ontinental code at 15, 20, 25, 30 or 35 words per minute, as transmitted during special monthly transmissions from WiAW, or from WGOWP and Whred).
As part of the ARRLL Code Proficiency program, W1AW transmits phain-language practice material (ach evening, Monday through liriday, at speeds from 9 to $35 \mathrm{w} . \mathrm{p} . \mathrm{m}$. All amateurs are invited to use these transmissions to inercase

their codo-ropying ability. Nom-amateurs arr invited to utilize the lower sporeds, 9, 13 and 15 w.p.m., which are transmitted for the bencfit of persons studying the colde in preparation for the amateur license examination. Refer to any issue of QST' for details of the practice schedule.

Rag Chewers Club

The Ray Chewers Clubs is designed to encourage friendly contacts and diseomrage the "hello-groxl-by" type of (2SO. Its purpesie is to lond together operators interested in honest-togrodinss rag-chowing over the air. Membership certificates are available.
How To (iet in: (1) ('hew the rag with a member of the chub for at least a solid half hour. This does not mean a half hour spont in trying to got a message over through had QRN or QRN, hat a molid half hour of eonversation or message handling. (2) Report the eonversation by card to The Ray Chewers Cluh, ARRL, Communications Department, Wrost Hartford, Conn. and ask the member station you talk with to do the same. When both reports are received you will be sent a membership certifieate entitling you to all the privileges of a Kag Chewer.
How To Stay in: (1) Be a eonversationalist on the air instead of one of those tongue-tied infants who don't know any words exeept "cuagn" or "cul," or "QRL" or "nil." Talk to the fellows you work with and get to know them, (2) Operate vomr station in accordance with the radiolaws and ARRL practice. (3) Obmerve rules of eonrtesy on the air. (4) Sign "RC'C" after mach call so that others may know you can talk as well as call.

A. 1 Operator Club

The A-1 Operator C'luh should include in its ranks every good operator. To herome a member, ond must be nominated by at least two operators who alrady belong, Gencral keying or voice terhnique, procedure, eopsing ability, judgment and courtesy all count in rating candidates under the relub rules detailed at longth in operating an Amateur Radio station. Aim to make yourself a fine operator, and one of these days gou may be pleasantly surprised by an invitation to belong to the A-1 Operator ('lub), which carries a worth-while certificate in its own right,

Brass Pounders League

Pivery individual reporting more than a specified minimum in offie ial monthly traflic totals is given an honor place in the QST listing known ats the Brass Poundors League and a cortificate to recognize his performance.

The value to amateurs in operator training, and the utility of amateur message handing to the members of the fraternity itself as well ats to the general public, make message-handling work of prime importance to the fraternity. Fun, enjoyment, and the feeling of having done something really worth while for one's fellows is aecentuated by pride in message files, records, and letters from those served.

Old Timers Club

The Old Timers Club is open to anyone who holds an amateur call at the present time, and who held an amateur lieense (operator or stafion) 20 -tr-more vears ago. Latpses in activity during the intervening yours are permitted.

If you can qualify as an "Old Timer," send us a brief chromology of your ham career, being sure to indicate the date of vour first amateur license, and your present cail. If the evidence submitted proves you cligible for the OTC: you will be added to the ruster and will receive a membership certificate.

- INVITATION

Amateur radio is capable of giving enjoyment, self-training, social and organization benelits in propertion to what the individual amateur puts into his hoblos. All amateuss are invited to berome ARRL, members, to work toward awards, and to acrept the challenge and invitation offered in field-organization appointments. Drop a line to ARLRL. Headquarters for the booklot Operating an Amateur Ralio Station, which has detailed information on the fiedd-organization appointments and awards. Accept today the invitation to take full part in all League activities and organization work.

538

- Operating an Amateur Radio Station covers the details of practical amateur operating. In it you will find information on Operating Practices, Emergency Communication, ARRL Operating Activities and Awards, the ARRL Field Organization, Handling Messages, Network Organization, "Q" Signals and Abbreviations used in amateur operating, important extracts from the FCC Regulations, and other helpful material. It's a handy reference that wili serve to answer many of the questions concerning operating that arise during your activities on the air.
- If you as a licensed amateur should ever find yourself in a position to serve during on emer. gency, there are a lot of things you will wish you had known beforehand. You will do the best you can, and those you serve will sing your praises - but you yourself will realize that had you been better prepared you could have done more and done it more effectively. The booklet Emergency Communications would have told you all you needed to know. You should have had it, studied it, and followed up its advices. Don't wait until the emergency is upon you to wonder what you should do and how you should do it. Get a copy of Emergency Communications and make your preparations now!

The two publications described above may be obtained without charge by any Handbook reader. Either or both will be sent upon request.

RMERICAN RADIO RELAY LEAGUE

 38 La Salle RoadWest Hartford 1, Connecticut, U. S. A.

Please send me, without charge, the following:
OPERATING RN AMATEUR RADIO STATION EMERGENCY COMMUNICATIONS

Name

Address

Miscellaneous Data

THE DECIBEL

In most radio commmication the received signal is converted into sound. This being the case, it is useful to appraise signal strengt ths in terms of relative loudness as registered by the ear. A pecularity of the ear is that an increase

or decrease in londness is responsive to the ratio of the amounts of power involved, gnd is practieally independent of absolute value of the power. For example, if a person estimates that the signal is "twice as loud" when the trans:mitter power is increased from 10 watts to 40 watts, he will also estimate that a 400 -watt signal is twice as loud as a 100 -watt signal. In other words, the ear has a logarithmic response.

This fact is the basis for the use of the relative-power unit called the decibel. A change of one decibel (ab)reviated db .) in the power level is just detectable as a change in loudness under ideal conditions. The power ratio and decibels are related by the following formula:

$$
D b .=10 \log \frac{P_{\mathrm{a}}}{P_{1}}
$$

Common logarithms (base 10) are ured.
Note that the deribel is hased on power ratios. Voltage or current ratios can be used, but onl!, when the impedence is the sume for both values of poltele, or current. The gain of an amplifier cammot be expressed correctly in db . if it is based on the ratio of the output voltage to the input voltage unless both voltages are measured across the same value of impedance. When the impedance at both points of measurement is the same, the following formula may be used for voltage or current ratios:

$$
I b .=20 \log \frac{\Gamma_{2}}{V_{1}} \text { or } 20 \log \frac{I_{2}}{I_{1}}
$$

The two formulas are shown graphically in the aecompanying chat for ratios from 1 to 10 .

Gains (increases) expressed in decibels may be added arithmetically; losses (decreases) may be subtracted. A power decrease is indieated by prefixing the decibel figure with a minus sign. Thus +6 db . means that the power has been multiplied by 4 , while -6 dh. means that the power has been divided by 4 . The chart may be used for other ratios by adding (or subtracting, if a loss) 10 db . eath time the ratio scake is multiplied by 10. for power ratios; or by adding (or subtracting) 20 dh. each time the scate is multiplied by 10 for voltage or current ratios.

- INDUCTANCE OF SMALL COILS

Most inductance formulas lose accuracy when applied to the small coils used in v.h.f. work and in low-pass filters built for reducing harmonic interference to television, bocause the conduetor thickness is no longer negligible in comparison with the size of the coil. The aceompunying ehart shows the measured inductance of typieal coils used for these purposes, and may be used as a 1asis for circuit design. Two curves are given: curve A is for coils wound to an inside diameter of $1 / 2$ inch; curve 13 is for evils of $3 / 4$ inch inside diameter. In both curves the wire size is No. 12, winding pitch 8 turns to the inch ($1 / 8$ inch center-to-center turn spacing). The inductance values given include leads $1 / 2$ inch long.

Measured inductance of coils wound with No. 12 hare wirc, 8 turns to the inch. The values include half-ineh leads. Where smaller inductance values are required, thry should le obtained experimentally hy adjusting to the proper remonance fregurury with the sperified ra. paritance. Coils of larger inductance ean be wound from the common formulats.

symbols for electrical quantities	
Idmittance	r, y
Angular velocity (2mf)	
Capacitance	C
Conductance	G, g
Comductivity	
Current	1, i
Differenee of potential	E, e
Dielectric constant	${ }^{\prime}$
Dielectric flux	*
Energy	$1{ }^{\circ}$
Frequenes	f
Impedance	\%, z
Indurtance	L
Magnetic intensity	II
Magnetie flux	Ф
Magnetie flux density	13
Magnetomotive force	r
Mutual inductance	. 1
Number of conductors or turns	\cdots
Period	T
Permeability	μ
Phase displacement	θ
Power	${ }^{\prime}, p$
Quantity of electricit.	(1), q
Reactanee	. $1, x$
Reactance, Caparitive	r_{1}
Reactance, Inductive	ri_{1}
Reluetivity	"
Resistance	R, r
Resistivity	ρ
Susceptance	b
spreed of rotation	"
Voltage	Li, e
Work	11

PILOT-LAMP DATA					
$\begin{gathered} \text { Lamp } \\ \text { No. } \end{gathered}$	Bead Color	Base (.Miniature)	$\begin{aligned} & \text { Bulb } \\ & \text { Ty/ve } \end{aligned}$	R.ITING	
				Volts	Amp.
40	13rown	S'rew	T-314	6-8	0.15
$40 A^{1}$	Brown	Bayonet	T-31/4	6-8	0.15
41	White	sirew	T-31/4	2.5	0.5
42	Green	s.rew	T-31/4	3.2	**
43	White	Bayonet	T-31/4	2.5	0.5
44	Blue	Bayonet	T-31/4	6-8	0.25
45	*	Bayonet	T-21/4	3.2	**
46^{2}	Blue	Screw	T-31/4	6-8	0.25
47^{1}	Brown	Bayonet	T-31/4	6-9	0.15
48	Pink	sicrew	T-31/4	2.0	006
49^{3}	Piuk	Bayonet	T-31/6	2.0	0.06
${ }^{4}$	White	sicrew	T-31/4	2.1	0.12
$49 A^{3}$	White	Bayonet	T-31/4	2.1	0.12
50	White	Screw	(i-3) 1 ¢	6-8	0.2
51^{2}	White	Bayonet	C-3 $1 / 2$	6-8	0.2
-	White	s'rew	C-41/2	6-8	0.4
55	White	bayonet	G-4 $1 / 2$	6-8	0.4
292^{6}	White	Screw	T-31/4	2.9	0.17
292A ${ }^{\text {s }}$	White	Bayonet	T-31/4	2.9	0.17
	Brown		G-5	18.0	0.25
$1455 \mathrm{~A}$	Brown	Bayonet	(i-5)	18.0	0.25
* White in G.E, and sylvania; grew in National I'nion Raytheon and Tung-ioul. ** 0.35 in G.E. and Sylvania: 0.5 it National Union Raytheon and Tung-tiol. 140 A and 47 are interchangeable. ${ }^{2}$ Have frosted bulb. : 49 and 49A are int orchangoable. ${ }^{4}$ Replace with No. 48. ${ }^{5}$ 'se in 2.5 -volt sets where regular bulb burns out two frequently.					

ABBREVIATIONS FOR ELECTRICAL AND RADIO TERMS			
Alternating current	a.c.	Medium frequeney	m.f.
Ampere (amperes)	a.	Megacyeles (per second)	Mc.
Amplitude modulation	AM	Megohm (por meond	$\mathrm{M} \Omega$
Antemna	ant.	Meter	m.
Audio frequency	a.f.	Microfarad	$\mu \mathrm{fd}$.
Centimeter	cm.	Microhenry	$\mu \mathrm{h}$.
Continuous waves	c.w.	Micromicrofarad	$\mu \mu \mathrm{fd}$.
Cryes per sceond	e.p.s.	Microvalt	
Direct eurrent	d.c.	Mierovolt per meter	$\mu \mathrm{v} . \mathrm{m}$.
Electromotive force	c.m.f.	Milliampere	$\mu \mathrm{w}$. ma.
Frequeney	f.	Millivolt	mv .
Frequency modulation	FM	Milliwatt	nww.
Ground	gnd.	Modulated continuous waves	m.c.w.
Henry	h.	Ohm	
High frequeney	h.f.	Power	P
Intermediate frequency	i.f.	Power factor	p.f.
Interrupted continuous waves	i.c.w.	Radio frequency	r.f.
Kilocycles (per second)	kc.	Tluahigh frequency	u.h.f.
Kilovolt	kv.	Very-high frequency	v.h.f.
Kilowatt	kw.	Volt (volts)	v.
Magnetomotive force	m.m.f.	Watt (watts)	w.

In the ahove formulas K is in ohms, C in farads, L in henrys, and f in cyeles por second.

- filters

The filter sections shown on the facing page can be used alone or, if greater attenuation and sharper cut-off are required, several sections can be connected in series. In the low- and high-pass filters, f_{c} represents the cut-off frequency, the highest (for the low-pass) or the lowest (for the high-pass) frequency transmitted without attenuation. In the bandpassfilter designs, f_{1} is the low-frequency cut-off and f_{2} the high-frequency cut-off. The units for L, C, R and f are henrys, farads, ohms and cycles, respertively.

All of the types shown are for use in an unbalanced line (one side grounded), and thus they are suitable for use in coaxial line or any other unbalaneed circuit. To transform them for use in balanced lines (e.g., 300 -ohm transmission line, or push-pull audio circuits), the series reartances should be equally divided between the two legs. Thus the balanced con-stant-k π-section low-pass filter would use two inductances of a value equal to $L_{k} / 2$, while the balanced constant- k-section high-pass filter would use two condensers of a value equal to $2 C_{k}$.

If several low- (or high-) pass sections are to be used, it is advisable to use m-derived end sections on either side of a constant- k section, although an m-derived center section can be used. The factor m relates the ratio of the cutoff frequency and f_{∞}, a frequency of high attemuation. Where only one m-derived section is used, a value of 0.6 is generally used for m, although a deviation of 10 or 15 per cent from this value is not too serious in amateur work. For a value of $m=0.6, f$ will be $1.25 f_{c}$ for the low-pass filter and $0.8 f_{\mathrm{c}}$ for the high-pass filter. Other values can be found from
$m=\sqrt{1-\left(\frac{f_{\mathrm{c}}}{f_{\infty}}\right)^{2}}$ for the low-pass filter and $m=\sqrt{1-\left(\frac{f_{\infty}}{f_{c}}\right)^{2}}$ for the high-pass filter.

The filters shown should be terminated in a resistance $=R$, and there should be little or no reactive component in the termination.

Simple audio filters can be made with pow-dered-iron-core chokes and paper condensers. Sharper cut-off characteristies will be obtained with more sections. The values of the components can vary by $\pm 5 \%$ with little or no reduction in performance. The more sections there are to a filter the greater is the need for accuracy in the values of the components. Iligh-performance audio filters can be built with only two sections by winding the inductances on toroidial powdered-iron forms - it generally takes three sections to obtain the same results when using other inductances.

Sideband filters are usually devigned to operate in the range 10 to 20 kc . Their attenuation requirements are such that usually at
least a five-section filter is required. The coils should be as high-Q as possible, and mica condensers are the most suitable capacitors.

Low-pass and high-pass filters for harmonic suppression and receiver-overload prevention in the television frefuencies range are usually. made with self-supporting coils and mica or ceramic condensers, depending upon the power requirements.

In any filter, there should be no magnetic or capacity roupling bet ween sections of the filter unless the design specifically calls for it. This requirement makes it necessary to shield the coils from each other in some applications, or to mount them at right angles to each other.
Further information on filter design can be found in the following articles:
Bemett," "Audio Filters for Eliminating QRM," QST', July, 1949.
Berry, "Filter Design for the Single-Sidehand Transmitter," QS'T', June, 1949.
Buchheim, "Low-Pass Audio Filters," QST', July, 1948.
Grammer, "Pointers on Harmonic Reduction," $Q S T$ ", April, 1949; "IIigh-Pass Filters for TVI Reduction," QST', May, 1949.
Mann, "An Inexpensive Sideband Filter," QST', March, 1949.
Rand, "The Little Slugger," QS'T, February, 1949.

Smith, "Premodulation Speech Clipping and Filtering," QST, February, 1946; "More on Speech Clipping,' QST', March, 1947.

TUNED-CIRCUIT RESPONSE

The graph below gives the response and phase angle of a high-Q parallel-tuned cireuit.

Circuit Q is equal to

$$
2 \pi f R C^{\prime} \text { or } \frac{h}{2 \pi f L}
$$

where L and C are the inductance and capacitance at the resonant irequeney, f, and R is the parallel resistanee across the cireuit. The curves above become more accurate as the eirarit Q is highor, but the ceror is not especially great for values as low as $Q=10$.

voltage decay
 IN RC CIRCUITS

The accompanying chart anables calculation of the instantaneous voltage aeross the termi-

nals of a condenser distharging through a resistance. The voltage is given in terms of percentage of the voltage to which the condenser is initially charged. To obtain the voltage-decay time in seconds, multiply the factor ($t / C R$) by the time constant of the re-sistor-condenser circuit.

Example: A 0.01- $\mathrm{\mu f}$. eondenser is charged to 150 volts and then allowed to discharge through a $0.1-\mathrm{meg}$ ohm resistor. How long will it take the voltage to fall to 10 volts? In pereentage, $10 / 150=$ 6.7%. From the chart, the factor corremponding to 6.7% is 2.7. The time constant of the circuit is edual to $C R=0.01 \times 0.1=0.001$. The tinc is therefore $2.7 \times 0.001=0.0027$ second, or 2.7 milliseconds.

Erample: An RC circuit is desired in which the voltage will fall to 50% of the initial value in 0.1 second. l'rom the chart, $t / C R=0.7$ at the $50 \%-$ voltage point. Therefore $C R=t / 0.7=0.1 / 0.7=$ 1.43. Any combination of resistance and capacitance whose product (R in megohms and C in microfarads) is equal to 1,43 can be used; for example, C could be $1 \mu \mathrm{fd}$. and $R 1.43$ megohms.

GERMANIUM CRYSTAL DIODES

Type	Max. Inverse Volts	Peak Rectif'd Ma.	Max. Surge Ma.	Max. Revarse μ-Amp.	Max. Average Ma.	Freq. Range Mc.	Type	Max. Inverse Volis	$\left\lvert\, \begin{gathered} \text { Peak } \\ \text { Rectif'd } \\ \text { Ma. } \end{gathered}\right.$	Max. Surge Ma.	Max Reverse μ-Amp.	Max. Average Ma.	Freq. Range Mc.
IN34	60	150	500	$\begin{array}{ll} 50(a) & 10 \mathrm{~V} \\ 800(a) & 50 \mathrm{~V} \end{array}$	40	0-100	$\begin{aligned} & \text { IN52 } \\ & \mathbf{G 5 D}^{3} \end{aligned}$	85	150	400	150 (a) 50 V.	50	-
1N351	50	60	100	10 (a) 10 V .	22.5	0-100	IN54	35	150	500	10 (a) 10 V	40	0-100
1N38	100	150	500	$\begin{gathered} 6 \pi 3 \mathrm{~V}, \\ 625 \text { (a) } 100 \mathrm{~V} . \end{gathered}$	40	0-100	IN53	150	150	500	$\begin{aligned} & 300\left(\sigma_{i}, 100 \mathrm{~V}\right. \\ & 800(\mathrm{c}, 150 \mathrm{~V} . \end{aligned}$	40	0-100
1N39	200	150	500	$\begin{aligned} & 200 \text { (a) } 100 \mathrm{~V} \text {. } \\ & 800 \text { (a) } 200 \mathrm{~V} . \end{aligned}$	40	0-100	IN56	40	200	1000	300 (a) 30 V	50	0-100
1N40 ${ }^{\text {a }}$	25	60	100	50 (a) 10 V .	22.5	0-100	IN57	80	150	500	500 (a) 75 V	40	0-100
IN41:	25	60	100	50 (a) 10 V	22.5	0-100	IN5 8	100	150	500	800 (a) 100 V	40	0-100
IN42 ${ }^{\text {2 }}$	50	60	100	6 (a) 3 V . 625 (r) 100 V .	22.5	0-100	$\begin{aligned} & \text { IN63 } \\ & \text { G5E } \end{aligned}$	125	150	400	50 @ 50 V	50	-
$\begin{aligned} & \text { IN48 } \\ & \text { G5 }^{2} \end{aligned}$	85	150	400	833 (T) 50	50	-	$\begin{aligned} & \text { IN64 } \\ & \text { G5F } \end{aligned}$	20	Spacially dasigned for use as second dstactor in Tel. receivers.				-
$\begin{aligned} & \text { IN5 } 1 \\ & \text { GSC }^{8} \end{aligned}$	50	100	300	1667 (at) 50 V	25	-	$\begin{aligned} & \text { 1N65 } \\ & \mathbf{G 5} \mathbf{G}^{3} \end{aligned}$	85	150	400	200 @ 50 V	50	-
							67 ${ }^{3}$	5	U.H.F, receiver mixer diode, Sensiinvify 4-8 $\mu \mathrm{V}$. Noise index 2.5-5 $\mu \mathrm{V}$.				100-1000

Ratings given are for individual diodes. Average life is over 10,000 hours. Ambient temperature range for all types -$-50^{\circ} \mathrm{C}$. to $+7.5^{\circ} \mathrm{C}$. Avorage shtunt eapacitance $-0.8 \mu \mu \mathrm{fd}$.

MINIATURE SELENIUM RECTIFIERS

Manufacturer	Type Number	Max. A.C. Volis	Peak Inverse Volis	Peok Current Ma.	Max. R.M.S. Ma.	Max. D.C. Output Ma.	Rectifier Service
Federal Telephone and Radio Corporation	40203200	117	380	-	-	50	Half-Wave
-	$\begin{aligned} & \text { 402D2788 } \\ & 402 \mathrm{D} 3150 \mathrm{~A} \end{aligned}$	117	380	900	220	75	Half-Wave
*	$\begin{aligned} & \text { 403D2625 } \\ & \text { 403D2625A } \end{aligned}$	117	380	1200	325	100	Half-Wave
"	402D3151	18	-	-	-	100	Hall-Wave
"	402D3239A	160	-	-	-	75	Doubler
"	403D3240A	160	-	-	-	100	Doubler
General Electric Co.	6RS5GH2	117	380	650	163	65	Half-Wave
"	6R55GH 1	117	380	750	187	75	Half-Wave
Radio Receptor Company, Inc.	511	117	380	-	-	75	Half-Wave
"	5 MI	117	380	-	-	100	Half-Wave

INDUCTIVE AND CAPACITIVE REACTANCE VS. FREQUENCY CHART

 read direetly. Intermediate balues ean be estimated by interpolation. In making interpolations, remember that the rate of change letween limes is logarithmic. Dise the frequeney or reactance seates as a guide iu motimating intermediate valars on the caparitane or inductance seales.

This chart alsor ran he usell to find the approximate resonanee frecurncies of LC combinations. or the frequeney to whid a kiven coil-and-romenser combination will tune. First lorate the respertive slanting line for the raparitance and induetance. The buint where they intersect, i.e., where the reartanes are equal, is the resmant frequeney (projected downuaral and read on the frempency acalei).

ELECTRICAL CONDUCTIVITY OF METALS

[^11]Couductirily ${ }^{1}$ of Resistatmer

Relative Temp. Corj. ${ }^{2}$ (oudurfirit!) 1 of hexistauce

Relative Temp. Corf.2

Lead.	7	0.0041
Manganin.	3.7	0.040)?
Mereury	1.6it	$0.04 \mathrm{MR:}$
Molyixdemum.	33.2	0.00133
Monel.	4	0.0019
Nichrome	1.4.)	0.001017
Nicke	12-16	0.00 .5
Phosphor Brom	36	0.0×14
l'latimm.	1.5	
siluer	10:	0.004
sterel	3-1.5	
Tith	13	0.0042
Toungsten.	28.9	0.004:
Zinx	28.2	0.003 .5

Ipproximate relations
An inerease of 1 in A. W. G. or B. \& S. Wire size increases resistance $2 .{ }^{\circ} \mathrm{c}$.
An increase of 2 increases resistance $60{ }^{\circ}{ }^{\circ}$.
An increase of 3 increases resistance 100%
An increase of 10 inereases resistance 10 times

INDUCTANCE, CAPACITANCE AND FREQUENCY CHART - 1.5-40 MC.

This chart may le uscd to find the valucs of inductance and capacitance required to resonate at any given frefuency in the medium- or high-freduency ranges; or, conversely, to find the frequency to which any given coilrondenser combination will tone. In the example shown by the dashed lines, a condenser has a minimum capacitance of $15 \mu \mu \mathrm{fd}$. and a maximum capacitance of $50 \mu \mu \mathrm{fd}$. If it is to be used with a coil of $10-\mu \mathrm{h}$. inductance, what frequency range will be covered? 'The straightedge is connected between 10 on the left-hand seale and 15 on the right, giving 13 Nc . as the high-frequency limit. Keeping the straightedge at 10 on the left-hand seale, the other end is swung to 50 on the right-hand scale, giving a low-frequency limit of 7.1 Mc , The tuning range would, therefore, be from $7,1 \mathrm{Mc}$, to 13 Mc, or 7100 ke , to $13,000 \mathrm{ke}$. The center scale also serves to convert frequency to wavelength.

The range of the chart can he extended by multiplying each of the scales by 0.1 or 10 . In the example above, if the capacitances are 150 and $500 \mu \mu \mathrm{fol}$, and the indurtance $100 \mu \mathrm{~h}$, the range becomes approximately 231 to 422 meters or 0.7 to 1.3 Ve. Iternatively, 1.5 to $5 \mu \mu \mathrm{fil}$, and $1 \mu \mathrm{~h}$. will give a range of approximately il to l 30 Mc .

COPPER－WIRE TABLE

Gaupe No． B．\＆S ．	Diam． in Mils ${ }^{1}$	$\begin{gathered} \text { Circular } \\ \text { Mil } \\ \text { Area } \end{gathered}$	Turns per Linear Inch ${ }^{2}$				Turns per Square Inch ${ }^{2}$			Feet per Lb．		$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \mathrm{ft} . \\ 2.5^{\circ} \mathrm{C} . \end{gathered}$	Current Carrying （＇apacily at 1.500 （．． M ． per Amp．${ }^{3}$	Diam． in mm．	Nearest British S．W．G． No．
			Enamel	S．S．C．	$\begin{aligned} & \text { D.S.C. } \\ & \text { or } \\ & \text { S. } \because . C . \end{aligned}$	D．C．C．	S．C．C．	Enamel S.C.C.	D．C．C．	Bare	D．C．C．				
1	289.3	83690	－	－	－	－	－								
2	257.6	6，63370	－	－	－	－	－	－	－	3.947 4.977	二	.1264 .1593	58.7 14.1	7.348 6.54	$\begin{aligned} & 1 \\ & 3 \end{aligned}$
3	229.4	526.40	－	－	－	－	－		－	4.977 6.276	－	1593 .2009	14.1 85.0	19．344 -7.827 8.188	3
4	204.3 181.4	41740 33100	－	－	－	－	－	－	二	6.276 7.914	－	． 2009	15.11 27.8	－7． 807 B． 18.	$\begin{aligned} & 4 \\ & 5 \end{aligned}$
5	181.9	833100	－	－	－	－	－	－	－	0.980	－	． 3195	28.6	1．62\％	$\begin{aligned} & 5 \\ & 7 \end{aligned}$
6	162.11 14.3	26050 $208: 0$	－	－	－	－	－	－	－	12．58	－	． 4028	17.	4.11 .5	8
8	128．5	16.510	7.6	－	7.4	7.1				15． 87	I	． 5080	13.8	3． 3163	9
9	114．4	1309\％	8.6	－	8.2	7.8	－	－		20．01	19.1	． 6.405	11.0	3.264	10
10	101．！	10：380	9.6	－	9.3	8.9	87.5	－84．8	80.0	2．5．23	24.6	． 8018	8.7	$\because .906$	11
11	90.74	8：344	10.7	－	10.3	8.8 9.8	110	${ }_{105}^{84}$	80.0 97.5	31．82 40.12	30.9 38.8	1.018	6.9	？． 388	12
12	80.81	6i530	12.0	－	11.5	10.9	1136	108 131	${ }^{97} 129$	40．12 80.50	38.8 48.9	1.284 1.619	5.5	2．305	13
13	71.96	5178	13．5	－	12.8	12.0	170）	162	150	（i3． 80	48.9	1.684 2.619 2.042	4.4	2.05 .3	14
14	64.08	4107	1．5．0	－	14.2	13.8	211	198	183	80.48	77.3	2．042	3.5	1．828	15
15	57.17	32.57	16.8	－	15.8	14.7	262	250	$\cdots 3$	101.4	77.3 97.3	3．57．7	2.7	1.68	16
16	50.82	2583	18.9	18.9	17.9	16.4	321	306	271	101．4	97.3 119	3.247 4.004	$\underline{2.2}$	1.450 1.291	17
17	45.26	2048	21.2	21.2	119.6	18.1	307	372	329	$127 . ?$	119 150	4．014 5.163	1.7 1.3	1.291 1.150	18
18	40.30	1624	23.6	$\bigcirc 3.6$	22.0	19.8	493	4 tit	399	161.3 203.4	150	5． 163 6.510 8.510	1.3	1.150 1.024	18
19	35．8！	1288	26.4	26.4	24.4	21.8	592	553	479	256.5	188	6.510 8.210	1.1	1.018 .0116	19 20
20	31.96	102：	29.4	29.4	27.0	23.8	775	725	62．5	323.4	298	10．35	.86 .68	.9116 .8118	20 21
21 22	28.46 25.35	810.1	33.1 37.0	32.7	29.8	26.0	940	895	7 F	107.8	370	13.05	． 11	． 7230	21 22
23	22.57	509.5	41.3	40.6	34.1 37.6	30.0 31.6	11.0 1400	1070 1300	910 1080	514.2	461	16． 41	． 4 \％	． 14438	23
24	20．10	404.0	＋6．3	4．7．3	37.5 +1.5	31.6 35.6	1400 1700	1300 1570	1080 1260	618.4 817.7	584	20.76	． 34	．．5733	24
25	17.90	320.4	51.7	50.4	45.6	38.6	20650	1370 1910	1208 1510	817.7 1031	745 303	26.17	． 27	． 510%	$\because 5$
26	15．94	254.1	．88．0	53．6	50.2	41.8	$2: 800$	1910	1810 1750	1031 $1: 300$	303 1118	33.00 +1.63	． 21	． 1517	$\because 6$
27	14.20	201.5	64.9	61.5	55． 0	41.8 +1.0	3030	1910 .3780	17.0 2020	1300 1639	1118 1422	41.62 52.48	． 17	． 4049	27
28	12．64	159.8	7：．7	68.6	（6）．2	48.5	3670	33350	1720 $2: 310$	1634 -2067	1422 1759	52．48	． 13	． 36006	29 30
29	11.26	126.7	81.6	74.8	（6．5．4	51.8	＋300	33900	2.310 2700	2606 2608	1759 2.07	06.17 8.3 .4	． 11	.3211 .2859	30 31
30 31	10.03	100.5	（10．5）	83.3	71.5	55.5	5040	＋6i60	3700 3020	26,07 3,887	2207 2534	83.44 103.2	． 08.4	． 3859	31 33
31 32	8.928	79.70	101	92.0	77．5	59.2	5920	$\therefore 280$	－	＋145	26834 2768	103.2 132.7		.0 .516 .3268	
32 33	7.950 7.080	633．21	113	101	83.1	62.6	70）60	6250	－	5297	3137	167.3	． 042	．2068	34 36
34	6．305	30.13 39.75	127 143	110 120	90.3	66.3	8120	7340	－	${ }^{6} 591$	4697	211.0	．033	． 1798	37
35）	5．615	31.52	1.88	132	104	70.0 73.5	（10） 10900	$8: 310$ 8700	－－	8310 10480	${ }_{6} 6168$	266.0	． 020	． 1601	38
36	5．000	2 m .00	175	143	104 111	78.5 78.0		8700 10700	二	10480 $1: 2010$	67.37	33．5．0	． 021	． $1+29$	38－39
37	4.453	19.83	198	1.7	118	87.0 80.3	12200	10700	－	13210 16660	7877 9309	423.0	． 017	． 1270	39－40
38	3.965	15.72	224	166	126	88.6	－	－	二	16660 .21010	¢ 0309	533.1	． 013	． 1131	41
39	3.531	12.47	2.19	181	133	88	－	－	二	21010 26500		872.6 8.8 .1	.010 .008	． 1007	42
40	3.145	9.88	282	194	140	89.7	二	－	二	26.00 33410	$\begin{aligned} & 114107 \\ & 14222 \end{aligned}$	848.1 $106!1$	$\begin{aligned} & .008 \\ & .001 \end{aligned}$	$\begin{array}{r} .0897 \\ .0799 \end{array}$	$\begin{aligned} & 43 \\ & 44 \end{aligned}$

[^12]| STANDARD METAL GAUGES | | | |
| :---: | :---: | :---: | :---: |
| Gauge No. | American or B. E.S. ${ }^{1}$ | L. S.
 Standard ${ }^{2}$ | Birmingham or Stubs ${ }^{3}$ |
| 1 | . 2893 | .28125 | . 300 |
| 2 | .2576 | . 263625 | . 284 |
| 3 | .29314 | $\therefore 5$ | . 2.59 |
| 4 | . 20.43 | .234375 | . 238 |
| 5 | .1819 | .21875 | . 220 |
| 6 | .1620 | .203125 | . 203 |
| 7 | .14.43 | . 187. | . 180 |
| 8 | .128: | . 171875 | . 165 |
| 9 | .1144 | . 150425 | . 1.48 |
| 10 | . 1019 | . 1401025 | . 134 |
| 11 | . 0 What | 125 | . 120 |
| 12 | . 08081 | . 101:375 | . 109 |
| 13 | .07164 | .0:1375 | . 095 |
| 1.1 | , ofilus | . 178×125 | . 083 |
| 1is | . 0.7707 | . 080.3125 | .072 |
| 16 | .0.0)82 | . 012 id | . 0 ¢ī |
| 17 | . 0.6420 | .0.8ti25 | . 0.58 |
| 18 | .0-1030 | . 0.5 | . 019 |
| 1:3 | .03389 | . 04375 | . 012 |
| 20 | . 03196 | .0375 | .035 |
| 21 | . 028846 | .031375 | .0:32 |
| 22 | .02535 | .03125 | . 028 |
| 23 | . 022.557 | . 028125 | . 025 |
| 2.4 | . 02010 | . 025 | .022 |
| 25 | . 01790 | . 021875 | . 020 |
| 26 | .01594 | . 01875 | . 018 |
| 27 | .01.420 | .0171875 | . 016 |
| 28 | . 01264 | . $01562{ }^{\circ}$ | . 014 |
| 23 | .01126 | . 01.401025 | .013 |
| 30 | . 010003 | .0125 | .012 |
| 31 | | . 010104375 | . 010 |
| 3: | .0174, 010 | . 01010685 | . H (1) |
| 33 | . 0107080 | (0)9:37\% | . 018 |
| 34 | . 6 Hemisol | .0018394375 | . 0107 |
| 35 | .00505 | .0078125 | . 005 |
| 36 | . 0 ancom | .00703125 | . 004 |
| 37 | . 0014.453 | . OLlifiofizf | . . . |
| 38 | . 00 039665 | .001225 | |
| 39 | .00)25:31 | | |
| 40 | .00:3145 | | |
| 1 Lised for alumiamm, coppor, brass and nonferous alloy sheets, wire and rods.
 ${ }^{2}$ Used for irom, steel, nickel and ferrous alloy heets, wire and rods.
 ${ }^{3}$ ["sead for seamless thbes: also by some manufacurers for eopper and brass. | | | |

greek alphabet		
Greek Letter	Greek Name	$\begin{gathered} \text { E'glish } \\ \text { Equivalent } \end{gathered}$
${ }^{\text {A }}$ a	Alpha	a
${ }_{\Gamma}^{\mathrm{B}}{ }_{\gamma}$	${ }_{\text {Bamma }}^{\text {Beta }}$	
$\Delta \delta$	${ }_{\text {Delta }}$	d
${ }_{\text {E }}^{\text {E }}$	Epsilon	e
11%	${ }_{\text {Eta }}$	${ }^{\text {a }}$
${ }^{9}{ }^{\text {a }}$	Theta	in
${ }_{\text {I }}{ }_{\text {c }}$	lota	i
K ${ }^{\text {k }}$	Kappa	k
${ }_{\text {M }}^{\text {A }}{ }_{\mu}$	${ }_{\text {L }}^{\text {Lambda }}$	1
N ${ }^{\text {p }}$	$\stackrel{\mathrm{Mu}}{\mathrm{Nu}}$	$\stackrel{m}{n}$
$\Xi \xi$	Xi	$\stackrel{n}{8}$
$\bigcirc{ }^{\circ}$	Omicron	\%
${ }^{11}{ }^{11}{ }^{\text {a }}$ 。	$\mathrm{P}_{\mathrm{Pi}}^{\text {Rho }}$	p
$\stackrel{\text { z }}{ }$	Sigma	¢
${ }_{\text {T }}{ }^{\text {r }}$	Tau	i
${ }_{\text {r }}{ }^{\text {v }}$	Tysilon	${ }^{\prime}$
${ }_{\text {¢ }}{ }_{\text {¢ }}$		ph
$\mathrm{x} \times$ ψ	$\underset{\text { Pri }}{\text { Pri }}$	ch
${ }_{22} \omega$	${ }_{\text {Omega }}$	$\frac{\mathrm{ps}}{\overline{0}}$

Q SIGNALS

Given below are a mumber of Q signals whose meanings most of ten need to be expressed with brevity and elammese in QRG Wour. (Q abhreviations take the form of guestions only when eath is sent followed by a guestion marh.)
QRG Will you tell me my exact frequency (or that QSL (an you acknowledpe recript? I an acknowledging of.......)? Your exact frequency (or that of.) is. ke.
QIRH Does my frequency vary? Your frequency varies.
QRI How is the tone of my transmission? The tone of your transmission is..... (1. Good; 2. Variable: 3. Bad).

QRK What is the readability of my signals (or those of) ? The readabitity of your signals (or those of.....) is. (1. Unreadable; 2. IReadable now and then; 3. IReadable but with dif ficulty; 4. Readable; 5 . Perfectly readable).
QRL Are you busy? I am busy (or I ain busy with
QRM). Ilease do not interfere

QRM Areyou being inse do not interfere.
QRN Are you troubled by static? I ann being troubled by static.
QRQ Shall I send faster? Send faster (. words per min.).
w.p.m.).

QRT Shall I stop sending? Stop sending.
QRU Have you anything for me? I have nothing for you.
QRV Are you ready? I am ready.
QRW Shall I tell.....that yon are calling him on himone.? Please inform......that I an calling
QRX When will you call me again? I will call you again at.hours (on.kc.).
Who is calling me? You are being called by..... (on. ke.).
QSA What is the strength of my signals (or those of of......) The strength of your signals (or those of.....) is....... (1. Scarcely perceptible; 2.
Are my sipnaly folina, (iood; i. Very good)
(Si) Aour signals are fading.
(dil) Is my keying defective? Your keying is defective
QSic: Shall I send. messages at a thone? send. .. .
QSM Shall I repeat the Jast messave which I sent wou or some previons message? IRepeat the last message which you sent me [or messuge(s) number(s)......].
QSO Can you communicate with. . . . direct or by relay? I can communicate with. direct (or by relay through.).
QSP Wil! you relay to ? I will relay to ...
QSV Shall I send a series of Vs on this frequeney (or (or.ke.)? Send a series of ts on this frequeney (or. . . . ke.).
QSW Will you send on this frequeney (or on....ke.)? I an going to send on this fredueney (or on
QSX Will you listen to.....on.....ke? I ann listening to...... on. k.
Shall I rhange to transmission on another freghency? (hange to transmission on another frequency (or onke.).
QSZ Shall I send cach word or sroup more then onew?
QTA Shall I cancel message number... (ortines). hall I cancel message number. . . . as if it had not heen sent? Cancel messuge number. . . . as if it liad not been sent.
QTI3 Do you agree with my counting of words? I do not agree with your counting of words; I will repeat the first letter or digit of each word or group.
QTC How many messages have you to send? I have.... messages for you (or for.).
QTH What is your location? My location is. . . .
QTIR What is the exact time? The time is......
Special abbreviations adopted by ARRL:
QNT General call preceding a message addressed to all amatelurs and ARIRL, members. This is in effect
QIRIRR Official AIRIRL "land sos." A distress eall for emergency use only by a station in an emergency
situation.

ABBREVIATIONS FOR C．W．WORK

Abbreviations help to ent down unneceasary transmission．However，make it a rule not to abbreviate unnecessarily when working an operator of unknown experienee．

AA	All after	Nw	Now；I resumue transmission
AB	All before	O13	Old boy－
ABT	About	OM	Old man
ADIR	Address	O）${ }^{\text {P－OPR }}$	Operator
AGN：	Again	OSC	Oscillator
AN＇	Antenma	${ }^{9} \mathrm{~T}$	Old timer；old top
HC1	13roadeast interference	P13．	Preamble
1sc＇I．	l3roadtast listener	PSE－PLS	Please
やに゙	Break；break me；break in	PWに	Power
13N	．lll between；been	PN	Press．
13.4	Before	R	
C	Yes	RAS ${ }^{\text {c }}$	Rectifiol athernatimer corrent
（1\％）	Confiru； 1 confirm	12（1）	Rocecivend
（K）	（ heerk	121：1	Refer to；referring to；reference
$1 \cdot 1$	1 ath clowing my station：arill	R1＇10	Repeat； 1 ropest
（1，1）－（1）di	（＇alled；calling	AP1）	said
（＇じ）	（ ould	A1：\％	Siys
C＇1）	See sou later	Sll	Signature；simnal
（ UMI	Come	SINE，	Operator＇s jersonal initials or nimkname
（＇W		AK1\％	Sehedule
DLD－DIAI）	Delivared	ERI	Sorrs：
DX	Distance	5 SC	Servire：prefix to service message
ECO	Blectron－conuled（weillator	$\mathrm{TH}^{\text {H }}$	Traffie
$1 \cdot 13$	line business；exerellent	TMW	＇romorrow
（i．A	（io abeind（or resinfer sending）	TNX－TKS	Thanks
（i）	（iood－by	TT	That
（iB．	（iive better address	TU＇	Thank you
（iE	（ioorl evening	1ヘT＇	＇rext
（i）；	Gioing	lR－URS	Your y youre；yours
（ 1×1	（iood morning	V10	Fariahlefrepreney oavillator
（iN：	（iood night	VY	Very
（iN1）	（iround	W＇	Word after
（il＇）	（ioul	W13	Word hefore
111	The telograjolate latuh；high	WD－WIs．	Word；words
1112	Ilere；hear	WKD－WK（	Workeel；working
115	Have	Wl．	Well；will
HW	How	WUD	Would
L．ID	A poor operator	WX	Weather
M11s	Milliamperes	NMTR	Transmitter
MsG	Messuge；prefix to radiorram	NTAL	（rastal
N	No	YF（XYL）	Wife
ND	Nothing doing	Y1．	Young lady
NII．	Nothing； 1 have nothing for you	73	lest requrds
NR	Nimmiker	88	Love and kissex

W PREFIXES BY STATES

Alabama	W 4	Nebrask：	Wo
Arizona	W7	Nevada	W7
Arkansas	W5	New Hampshire	W1
California	W6	New Jersey	W2
Colorado	Wg	New Mexico．	W5
Connecticut	W1	New York	W2
Delaware．	W3	North Carolina．	W4
District of Columbia	W3	North Dakota	Wø
Florida	W4	Ohio	W8
Georgia	W4	Oklahoma	W5
Idaho．	W7	Oregon	W7
Illinois．	W9	Pennsylvania	W3
Indiana	W9	Rhode Island	W1
Iowa	Wg	South Carolina．	W 4
Kansas．	W0	South Dakota．	Wø
Kentucky	W4	Tennessee．．	W4
Louisiana	W5	Texas．．．	W：5
Maryland	W3	Utah	W7
Massachusetts	W1	Vermont	W1
Michigan．．．．．	W8	Virginia．	W4
Minnesota	W6	Washington．	W7
Mississippi	W5	West Virginia	W8
Missouri	W0	Wisconsin．	W9
Montana．	W7	Wyoming．	W7

INTERNATIONAL PREFIXES

Bolow is the list of prefixes assigned to the countries of the world by the 1947 International Telecommunications Conference at λ tlantic City．These assigmments berame efferive on January 1， 1949.

AAA－ALZ	United States of America
AMA－AOZ	（Not allocated）
APA－ANZ	Pakistan
ATA－AW\％	India
AXA－AN\％	Commonwealth of Australia
AYA－AZ\％	Srgentina Republic
BAA－BZ\％	China
CAA－CE\％	（ Mile
（CFA－CK\％	（ $:$ nada
CLA－（ C / L	（＇uba
CNA－CN\％	Moroceo
COA－COZ	C＇uba
CPA－CPZ	Kolivia
（＇QA－C＇RZ	Portuguese Colonies
C＇sA－C＇Z	Portuga！
（VA－CXV	Cruguay
CYA－（\％Z	Canada
HAd－1）M\％	（iernatny
DNA－DQ\％	Belgian Congo
DR．A－1）T\％	Bjelorussian Soviet Socialist Republic
DUA－DZ\％	Republic of the Philippines
EAA－EHZ	Apmain
EIA－E．JZ	Ireland
EKA－EK\％	Union of Soviet Socialist Republies
dodA－lil． 2	Repnblic of Liberin
FMA－HOZ	Union of Soviet Nociaist Republies
EPA－EQZ	Iran
ERA－ERZ	Union of Soviet Socialist Repuhlies
ESA－ENZ	Estonia
ETA－ETZ	Jthiopa
ECA－E\％Z	Union of soviet Socialist Republics
FAA－1\％Z	France and（olonies and Protectorates
GAN－TZZ	Great 1ritain
1HA－IIA\％	llungary
113A－LIBZ	Switzerland
11CA－HI）	Exatador
1H：．．－1E\％／	Switzerland
11F．J－HF\％	Poland
IICiA－IIC：\％	Hungary
11HA－H13Z	Republic of Hatiti
111．A－11\％	Dominisan IRepublic
11JA－111\％	Republie of＇olombia
11L．A－1［M\％	Korea
11NA－IIN\％	1 raq
110A－11 ${ }^{\text {\％}}$／	Republic of Panama
HQ．A－11R\％	Republie of Ilonduras
11sA－115\％	Siam
11TA－11T\％	Nicaragua
11UA－11じ\％	Republic of Eis salviulor
HVA－HV\％	Vatiean City state
11WA－11\％\％	France and Colonies and Protectorates
112A－1127	Kingdoun of Saudi Arithia
IAA－1\％\％	Italy and Colonies
JAA－JSZ	Jajan
JTA－J「\％	Mongolian P＇eople＇s Republic
JWA－JXZ	Norwas
JY A－JZ\％	（Not allocated）
КАА－K\％\％	Conited States of America
1．AA－1．NZ	Norway
［．OA－1．W\％	Argentina Republic
1．XA－Lベ\％	Luxembourg
I．YA－LY\％	Lithumia
L／KA－I．$/ 7$	Bulgaria
MAA－MZZ	（ireat l3ritain
NAA－NZ7	United States of America
OAA－OC＇Z	Pera
ODA－ODZ	Repmblic of Lebanon
OFA－0EZ	Austria
OFA－（）J\％	Finland
OKA－OMZ	（＇zechoslovakia
ONA－（）T\％	lelgium and（＇olonies
0LA－07\％	Denmark
PAA－PI／	Netherlands
PJA－PJ\％	Curacao
PKA－POZ	Netherlands Indies
PPA－PYZ	Brazil
P＇A－1＇R／\％	Surinam
Q1．1－QZZ	（Service abbreviations）

RA．1－RZZ
SAA－SMZ
SNA－SRZ
SSA－sC゚Z
SVA－ $\mathrm{SZ} \%$
TAA－TC\％
TDA－TDZ
TEA－TEZ
TFA－TF\％
TGA－TG\％
THA－THZ
TIA－＇IZ
TJA－TZZ
UAA－UQZ
－R．A－UT＂
UUA－UZZ
VAA－VG\％
114－VN\％
VOA－VOZ
VPA－VSZ
VTA－VWZ
CXA－VY\％
VM．1－VZ
W」 1 Wワワ
NAS－NIZ
NJA－NOZ
MPA－NPZ
Demmark
Chile
Chin：
XTA－XWZ France and（olonies and Protectorates
XXA－XXZ Portuguese Colonies
XY．A－XZZ Burma
YA．A－YA\％Afghanistan
YBSA－Y1IZ Netherlands Indies
CIA－YIZ Iraq
YJA－Y＇JZ New IIebrides
YKA－YK／Syria
Ylat－YLZ Iatvia
YMA－YMZ＇Turkey
YミA－YN\％Nicaragu，
YOA－YRZ Roumania
Ys．A－Y氵Z Republic of El Salvador
YTA－YCZ Yugoslavia
YVA－YY\％Venezuela
YZA－YZZ Yugoslavia
ZA．1－\％AZ ．Ilbania
ZBA－ZばZ
－ール
New Zealarnd
ZNA－ZOZ British Colonis＇s and Protectorates
ZPA－ZP＇Paraguay
ZQA－ZQZ British Colonies and Protertorates
ZRA－ZLZ Union of South Ifrica
ZVA－ZZZZ Brazil
2AA－2ZZ（ireat Britain
3．1A－3AZ Principality of Monaco
3bA－3F\％Canadit

311A－3L゙Z China
3VA－3V\％France and Colonies and Protectorates
3W．A－3．\％（Not allocated）
3YA－3YZ Norway
3ZA－3Z7 Poland
4AA－4C M Mexico
4DA－412 Republic of the Philippines
4．J．1－4I．Z Union of soviet Siocialist Reput）lies
4MA－4M7 Venezuela
1N：407 Yugoslavia
4PA－4SZ British Colonies and Protectorates
4ГA－4TZ Peru
4UA－4UZ United Nations
$4 \mathrm{VA}-4 \mathrm{VZ} \quad$ Republic of Iaiti
4WA－4WZ Yemen
4XA－4ZZ（Not allocated）
5AA－5ZZ（Not allocated）
6AA－6ZZ（Not allocated）
7AA－77\％（Not allocated）
8AA－8\％Z（Not allocated）
！AA－0Z\％（Not allocated）

A.R.R.L. COUNTRIES LIST - Official List for ARRL DX Cantest and the Postwar DXCC

AC3. Sikkim	KS6. American Samoa	VP8. South Shetland Islands
AC4.... Tibet	KV4. Virgin Islands	VP9. Bermuda Islands
AG2 (See I)	KWG. Wake Island	VQ1. Zanzibar
AP. Pakistan	Kd6............. Marshall Isiands	VQ2. Northern Rhodesia
AR8................... Lebanon	KZV5................. ('anal Zone	VQ3..... . . Tanganyika Tcrritory
((mmoflicial).............. China	LA.............. Norway	VQ1.... Kenys
(3................... Formosa	LA. . . Svallard (Spitzbergen)	VQ5.... ${ }^{\text {Vmanda }}$
(9. Manchuria		VQt.............. . . British Somaliland
Chile	1,1:.................. Argentina	VQ8. 'hagos Islands
(M, (0) ${ }^{\text {a }}$	1.x	V(88. Manritins
(*-.......... French Moroceo	1\%. Bulgaria	
(p Bolivia	M1................. San Maring	
(R4ape Verde Islands	M139.-. (See OF)	Ocean Island
(125) ${ }^{\text {Portuquese (}}$ (tinea	M(11, 2. (Sore LII)	VR1........ . British I'hoenix Islands
(R̄̄. Principe, Sao Thomr		Vh2..................... . . liji Islands
(126. - . . Angola	M1)3. (kee I6)	VR3............... Franning Island
(1k7. Mozambinue	M1)4 (Ser 15)	hristmas Island)
(128 Ma, (Portuguese India)		VR4............. . . Solomon Islands
(r29. Macan		VR5. l'onga (Friendly) Istands
(r210.... Portuguese Timor	\$11)7.................. (See 7C4)	VR6.... Pitcairn Island
(111 Portugal	MF2. (See 1)	VSi, 2........................... Malaya
C12 Azores lslands	M13. (See I6)	VS4. British North Borneo
(13, Madcira Islands	M1P4. (See VU7)	Vis. l3runci
(X................. ${ }^{\text {Lruguay }}$	MP4. Oman	V55. Sarawak
1)L...................... Germany	MS4. (See I5)	Vi6.
[)(".... Philippine Islands		VS7, Ceylon
E.A Spain	OA Peru	Vs9. Aden \& Socotra
BA6. Balearic Islands	OE, MB9 Austria	VS9. Maldive Isiands
H.t8........... Canary Islands	OH. Finland	VU. India
E.A9 Spanish Moroceo	OK Czrehoslorakia	VL4. Iaceadive Islands
1:I Sire (Irish Free State)	ON Belgiun	Vl` 7, M1'4. Mahrein Islands
セK........... Tangicr \%one	OQ Bedmian Congo	W, k UnitedStates of America
HL. Liberia	Ox Grepnland	NE. Mexico
HP, EQ. Iran (Persia)	0) ${ }^{\text {a }}$. Faeroes	X $7 . . .$. Burma
ET. dithiopia	O/. Denmark	YA Afghanistan
F . ${ }^{\text {Prance }}$	1PA...................etherlands	YI, MD6................... Irad
Fi. Algeria	PJ. Netherlands West Indies	YJ. (See FU8)
F138. Kerguelen Islands \&	PK1, 2, 3.......................ava	YK. Syria
New Ansterdam Island	JK4................... Sumatra	Y: . ${ }^{\text {co. Nicaragua }}$
I'B8. Madagascar	11K5....... Netherlands, Borned	Y(), YR. Roumania
1(...................... Corsica	PL6. . . . Celeles \& Molucra Islands	Y. . ${ }^{\text {a }}$. Salvador
F1)8........... French Togoland	PLit. Netherlands New Guineat	YT, Y ${ }^{\text {r }}$. Yugoslavia
Filis French Cameroons	PX. Andorra	YV.... Venezucla
FP8. French West Africa	Pl \|lrazil	Z.A. Albania
P(18.................. . . .uadeloupe		ZB1. Malta
F18. French Indo-China	SM Sweden	Z132. (iit)raltar
Fk8. ${ }^{\text {chew Caledonia }}$	S1P. Poland	ZC1. Transjordan
11.8. French Somaliland	*T. . . . Anglo-Egyptian Sudan	ZC2 Cocos Islands
FM8. Martinique	SC, M1s. Ekypt	7C3. . ${ }^{\text {a }}$. Christmas Island
FN French India	SV. Greece	Z(4, MD7.................. 'уprus $^{\text {a }}$
FO8. ... Fronelı Oceania (e.g., Tahiti)	SV. Crete	Z(6). Palestine
1-18. . St. l'ierre \& Miquelon Islands	SV'5....... Dodecancse (0.m., Ihodes)	
FO88.... . . Freneh Equatorial Afriea	TA. Turkey	ZD2. Nigeria
	'IF . Iceland	7D3. Giambia
168, y.j. New ILebrides	TG: (inatemala	ZD) (iold ('oast Togoland
Fr8. French Guiana \& Inini	TI Costa Rica	Z1) ${ }^{\text {a }}$. Nyasaland
(i. England	T1 Cocos Island	Z1)7. St. Helena
CiC Channel Islands	UA1, 3, 4, 6....... Eurovean Russian	ZD8 Aseension Island
(iD) Isle of Man	Socialist Federated Sovict lepublic	
Cil Northern Ircland	CA9, H. . . Asiatic Russian S.S.S.R.	Gouch Island
(iM. Scotland	(T35. Tkraine	
GW....................... Wales	(C2. White Russian Soviet	Y/il. Cook Islands
11. Hungary	Nocialist Republic	ZK2.iue
H13. Switzerland	【106. Azerbaijan	ZLL. Neve Zealand
l18. Dicuador	[F6. .	\%II Aritish Samoa
HE1 Liechtenstein	UG6. Armenia	Z1. Paramay
H1H. Ilaiti	UH8. Turkoman	7/S1, 2, 4, 5, 6. Union of South Arrica
1H. Dominican Republic	U18. Mabek	//83. ${ }^{\text {authwest Africa }}$
IIK.... Colombia	UJ8. Tadzhik	/s7. Swaziland
11L. ${ }^{\text {Vorea }}$	UL7.... Kazakh	7/88. Masutoland
H11. Panama	UM8. Kirghiz	7/89.... Bechuanaland
IR. IIonduras	CN1 İgrelo-Finnish Republic	3.11, 2 Monaco
IIS. Siann	U05 Moldavia	3V8. Tunisia
IIV. Vatican City	UP2 Jithuania	4X4.... Israc-I
IIZ. . Saudi Arahia (lledjaz \& Nejd)	UQ2 Latvia	Qst. Saar
I Italy	UR2 1 Estonia	Aldabra Islands
I, A(12, M1:2. Trieste	VE, VO........................	Indaman and Nieohar Islands
1:5, MD4, M4. . . . italian Somaliland	VK...Australia (including Tasmania)	ntaretica
16, MD3, MI3. Eritrea	Vki.....................eard Island	Bhutan
IS. Sardinia	VkI.............. Macquarie Island	'lipperton Island
IT1 . Sicily	Vk9. Papua Territory	Comoro Islands
J. Japan	VK9. Territory of New Guinea	Faster Island
JAb. Bonin \& Volcano Islands	VK9 Norfolk Island	-ridtjof Nansen Land
k................... (Sre W)	VO. (See VE)	(Franz Josef Land)
Kis6. . . Haker, Ilowland \& American	V1P1. Irritish IIonduras	(ialapagos Islands
Phoenix Islands	VP2 Iceward Islands Ifni
KC6. Caroline lslands	VP2. Windward Islands	Jan Mayen lsland
KC6. Palau lslands	V1P3. British Guiana Kuwait
KG4. Guantanamo lsay	V1P4. Trinidad \& Tobago	Marion Island
K(i6. Mariana Islands	VIP5. Cayman Islands	... Mongolia
KH6. Hawaiian Islands		. Nepal
liJ6. Johnston Island	VP5. Turks \& Caicos Islands	
KL7.iol. . Alaskn	VP6. Barbados	
lıM6. Midway lslanda	VP7. Bahama Lsands	Tannu Tuva
KP4. . . . Palmyra Group, Jarvis Island	VP8. Falkland Islands	Tokelau (Union) Islands
KR6. Ryukyu Islands (e.g., Okinawa)	VP8. South Orkney Islands	Wrangel Isiands
KS4 Swan Island	VP8. South Sandwich Islands	. Yemen

CHAPTER 27

Vacuum-Tube Data

For the convenience of the elesigner, the re-eciving-type tubes listed in this chapter are grouped by filament voltages and construction types (glass, metal, miniature, etc.). For example, all 6.3 -volt metal tubes are listed in Table I, all lock-in base tubes are in Table III, all miniatures are in Table XI, and so on.

Transmitting tubes are divided into triodes and tetrodes-pentorles, then listed according to rated plate dissipation. This permits direct remparison of ratings of tubes in the same power classification.

For guiek reference, all tubes are listed in numeridal-alphabetical orter in the index begriming on the following page.

Tube Ratings

Vacuum tubes are designed to be operated within definite maximum (and minimum) ratings. These ratings are the maximum safe operating voltages and currents for the electrodes, based on inherent limiting factors such as permissible cathode temperature, emission, and power dissipation in clectrodes.

In the transmitting-tube tables, maximum ratings for eldetrode voltage, current and dissipation are given separately from the typical operating conditions for the recommended classes of operation. In the receiving-tube tables, because of space limitations, ratings and operating data are combined. Where only one set of operating conditions appears, the positive electrode voltages shown (plate, screen,
etc.) are, in general, also the maximum rated voltages for those electrodes.

For certain air-cooled transmitting tubes, there are two sets of maximum values, one designated as CCS (Continuous Commercial Sorvice) ratings, the other ICAS (Intermittent Commercial and Amateur Service) ratings. Continuous Commercial Service is defined as that type of service in which long tube life and reliability of performance under continuous operating conditions are the prime consideration. Intermittent Commercial and Amateur Sorvice is defined to include the many applications where the transmitter design factors of minimum size, light weight, and maximum power output are more important than long tube life. ICAS ratings are considerably higher than CCS ratings. They permit the handling of greater power, and although such use involves some sacrifice in tube life, the period over which tubes will continue to give satisfactory performance in intermittent service can be extremely long.

Typical Operating Conditions

The typical operating conditions given for transmitting tubes represent, in general, maximum IC.AS ratings where such ratings have been given by the manufacturer. They do not represent the only possible method of operation of a particular tube type. Other values of plate voltage, plate current, grid bias, etc., may be used so long as the maximum ratings for a particular voltage or current are not execeded.

INDEX TO TUBE TABLES

I - 6.3-Volt Mctal Recoiving Tubes... V13
II - 6.3-Volt (ilass Tubers with Octal Bases V゙14
III - 7-Volt Lock-In Base Tubes. V 16
IV' - 6.3-Volt Glass Receiving 'Tubes... V17
V - 2.5-Volt Receiving Tubes. V19
VI - 2.0-Volt Receiving 'Tubes......... V19
VII - 2.0-Volt Tubes with Octal Bases. . V20
VIII - 1.5-Volt Battery Tubes........ V21
I X - High-Voltage Heater Tubes. . . . V22
X - Special Receiving Tubes. V'24
XI - Miniature Receiving Tubes. . . . V V 26
XII - Subminiature Tubes. V29
XIII - Control and IRegulator Tubes.. V3t
NIV - Cathode-Ray Tubes and Kine-
scopus. V32
XV-Ructifiers. V3t
XVI - Triohe Transmitting Tubes . . . V Vi
XVII - Tetrode and Pentode Transmit- ting Tubes. V゚5
XVIII - Klystrons 150
NIX - Crystal Triodes. Visi
XX - Cavity Magnetrons 1.37

BASE TYPE DESIGNATIONS

The type of base used on earh tube listed in the tables is indicated in the base column by a letter whose meaning is as follows:
$A=$ Arorn
13 = Glass-button miniature
$13 \mathrm{~s}=$ Glass-button subminiature
$\mathrm{J}=$ Jumbo
$\mathrm{L}_{\mathrm{L}}=$ Lock-in

[^13]INDEX TO VACUUM－TUBE TYPES
For convenience in locating data on specific tube types the inder below lists alt tubes in numerical－alphabetical order，showing the page number where individual tubes may be found in the elassified－data section（pages V13－V57）and the identifying base－diagram number in the base－diagram section（pages V5－V13）．

Type	Pape	Hase	Type	Pape	Base	Tupe	Page	Base	Type	Page	Base	ype		
00－A	V	4D	21325	$V 36$	31	3 l 4.	V26	7RA	6AK6．	v	713 k	6N7．	V39	Rase 81
OI-A	124	41	$9 \text { IS P1 }$	Y3 3	12 W	3 （25	${ }^{2} 4$	7 AB	6AK7．	150 $V 13$	${ }_{81} 713$	6 W 7	V39	$\begin{aligned} & 813 \\ & 9 T \end{aligned}$
$\begin{aligned} & \text { OA } 2 \\ & \text { OA } \end{aligned}$	131	5130	go	$\checkmark 32$	5AS		$\checkmark 33$	12F	$6 \mathrm{AL5}$	$V 26$	6 BT	${ }_{6}{ }^{\text {P }}$	$V 15$	97
$\begin{aligned} & O A 3 \\ & 0.44 \end{aligned}$	$V 32$	$4 \mathrm{~A}{ }^{\text {d }}$		$\stackrel{Y}{17}$	713H	3 S	$V 26$	73A	6 A	$V 15$	6AM	6P7（9．	V15	$7{ }^{\text {d }}$
OA	V31	Fls． 33	$20 \cdot 2$	V14	4AM	3－25A	5	${ }_{3} 68$	6 6AL7				$V 15$	8 K
0 H 2	V31	5130°	2022	$\checkmark 39$	4AM	$3-2513$	V11	31）	$6 \mathrm{AM5}$	V26	6CII	604.	V27	9 S
UB3	132	4AJ	2 （25	－11	（11）	3－50．44	V12	36	6AM6	\checkmark	71313	6058 8686	$V 32$	64 64
0×3	V32	4AJ	$2{ }^{2} 26.4$	139	＋1313	3－501）4	Vi2	2 H	$6 \mathrm{AN6}$	V27	7 HJ		$\begin{aligned} & 515 \\ & \hline 13 \end{aligned}$	${ }_{7}^{6 Y}$
0103	\checkmark	4AJ	$2 \mathrm{C34}$	$\checkmark 39$	T－71）C	3－506：2	V42	21	6 A N 7	$V 27$	90	6 S 4	－27	${ }_{9 R}$
（1）	V	4135	$2{ }^{2}$	125	Flg． 38	3－75A2	V44	$21)$	$6 \mathrm{Al25}$	527	713Z	6R6：	$V 15$	6AW
OZ4 ${ }^{\text {O }}$	\checkmark	$4 R$ $4 R$	$2 \mathrm{2C36}$	V39	Fig． 36	3－75A3	V＋4	2 D	6Al25．	V50	713\％	6R7	V13	7\％
	$\checkmark 36$	4 C	2 C 39	146	Fis	3－100A4	${ }^{4} 45$	2 l	6A 6 （26	$\checkmark 27$	713%	6188	$V 27$	9\％
1.4	V2a	5AP	2 C 39 A	146		3X－100A	$\checkmark 46$	2	6 Ars	527	${ }_{60}{ }^{\circ} \mathrm{K}$	$66^{64} 6$	V27	${ }_{9}^{9 A C}$
1A4P	$V 19$	＋M	2 C 40	53	Fig． 19	3－150． 2	${ }^{4}+7$	413 C	6 AR6	V15	fibs	6s60		5AK
$1 \mathrm{~A} T$	$\checkmark 19$	＋K	2ct3	$\checkmark 39$	Fik． 19	3－150A3	V47	4 HC	$6 \mathrm{AR5}$ ．	$V 27$	6131	6．37\％	$\begin{array}{r} Y 13 \\ 15 \end{array}$	${ }_{8}^{78} \mathrm{CB}$
1450	V21	$6{ }^{1}$	2 C 4	$\underline{V} 5$	F＇ig． 17	3X－150A3．	54	4 C	$\begin{aligned} & 6 A 55 \\ & 6 A 56 \end{aligned}$	$\underline{V} 27$	7 C	$6{ }_{6 S A}$	$\begin{aligned} & 15 \\ & 13 \end{aligned}$	$8 \mathrm{8R}$
1.46	$\checkmark 19$	61.	20.51	$V 26$	$8{ }^{8} \mathrm{j}$	$3-200 \mathrm{~A} 3$	V48	Fig． 52	6As7i	415	8131	65137	Vi3	8R
$\begin{aligned} & 1 A 76 \\ & 1 A 35 \end{aligned}$	$\stackrel{V 21}{12}$	77 513	${ }_{21 \% 51}$	V19	7 FN	$\begin{aligned} & 3-250 A 2 \\ & 3-250 A 4 \end{aligned}$	V48	2 N	6AT6．	V15	711 60	6567 68107%	V13	88
1 A （＇5	V29	Fir． 14	$21 \% 2$	$\checkmark 52$	5 S	3－300A2	$\checkmark 49$	${ }^{2} 11 \mathrm{C}$	6AU6	V27	${ }^{6 \times 15}$	6S1）7（iT	$V 15$	8 M
1．${ }^{\text {a }}$	V29	Flg． 16	2 F 24	550	$7{ }^{\circ} \mathrm{l}$ ．	3－300 A3	$\stackrel{19}{ }$	413 C	6 6－5	127	6＇${ }^{\prime} \mathrm{K}$	6s\％＇5．	V15	8A
1 AF	$\stackrel{1}{26}$	6AR	2105	51	513J	4 A 6 C	$V 2$	81.	$6 A V 6$	V27	7 BC	$6{ }^{6}$	114	6AB
1 AF 5	$\stackrel{26}{ }$	${ }^{64}{ }^{+}$	$21: 26$	$V 50$	7\％	4A61	$V 24$	8 L	6A다	V36	6s	优く，	614	$8 \mathrm{8BK}$
1133 C	$\checkmark 36$	$3{ }^{\circ}$	$21: 30$	$\checkmark 6$	$7{ }^{7}$	4 C 32	Y 4	2 N	6AN6：	$\stackrel{16}{ }$	$7{ }^{3}$	$6 \mathrm{S117}$	\cdots	813 K
$\begin{aligned} & 184 \\ & 185 \end{aligned}$	V19	6．${ }^{\text {dit }}$	21.30	50	$7{ }^{\prime} \times$	4（ 34	148	2 N	61346	V15	5.	6SM7L	V16	813 K
1132：	$\checkmark 21$	7\％	$21 \% 32$	$v 29$		$4{ }^{4} \mathrm{C} 21$	46	Fig． 56	6135	V18	6AS	6.517	V14	8 N
1138 GT	$V 21$	sAW	21.35	$\stackrel{+}{2}$		$41) 22$	$\checkmark 53$	Fig． 50	6136 6157	${ }^{1} 15$	7 V	$6 \mathrm{SJ7}$	$\cdot 14$	8 C
114	V31		21,36	$V 29$		41923	V54	533k	6138	V13		6 Sil		N
11348	$V 36$		2 F 4	$V 29$	－	41）32	${ }^{5} 5$	Fik． 51	$613 \mathrm{~A}{ }^{\circ}$	V27	${ }^{71}{ }^{\prime}$	6sivir		8131
108	$\vee 26$	5 F	21642	$\stackrel{V 9}{ }$		41627	－53	$713{ }^{\text {1 }}$	61347.	$\dot{V} 27$	$8{ }^{\text {¢ }}$	$6 \mathrm{SN7}$		813 813
1 C	$\bigcirc 21$	${ }^{6 \times}$	2 235	V19	61	41.27 A	V54	7 BM	61365.	$V 27$	7131）	$6 \mathrm{SH}_{27}$	414	
$\begin{aligned} & 1(96 \\ & 167 \end{aligned}$	V20	612	${ }_{2}{ }^{2} \mathrm{C} 21$	V29		4 J 50	$\stackrel{5}{5}$		$6 \mathrm{B1)56}$	$V 15$	6rk	BSIR 7	V14	8（2）
$1(\cdot 8$	V29	，	2 J 42	57		45	$\stackrel{57}{7}$		63	V27	$7{ }^{\circ} \times$	6847	114	s．${ }^{5}$
1021	51	4 V	2 J 42 A	V57		$4 \times 150 \mathrm{~A}$	V54	T－9J	6 6136	27	${ }^{7} 11$	6ST7		$8(2$
11）5（iP	V20	5 y	2 K 25.	V5	Fig． 60	4X150\％	5.54	－-9.	${ }_{6} 81356$	V27	${ }^{713}{ }^{\prime \prime}{ }^{\prime}$	6 s		8HD
11）5（\％T	V20	5 R	2 K 26	V55	Fict． 60	4－65A	V53	5НК	613×16.	$V 15$				7AZ
$11) 7($	V20	7\％	2 K 28	V55	Flg． 61	4－125A	5.54	513 k	61116	$\checkmark 27$	$7{ }^{\circ} \mathrm{M}$		\checkmark	${ }_{60} 8$
$1108(1 T$	V21	84.	2 K 33	$V 55$	Flg． 62	4－250 A	V55	513K	613.66.	V27	7（S	6才6\％	$\stackrel{16}{ }$	6\％
1 ETC	V21	5	2 F 34	V55	Fig． 58	4－400）	555	513 K	613 K 6	V27	711T	6197	VH_{4}	7 V
1 F 56	V20	5Y	2K35	55	Fig． 58	5.46	V50	91.	6131.6	$\checkmark 56$		618	127	9F：
11：7\％	V20	8C	2 639	V55	Fig 59	5.4 PI	533	11 A	613M6	Y 56		61＊40゙	$\cdots 36$	$4{ }^{\prime} \mathrm{G}$
1158	V 29 V 20	Fig． 27 5 K	$2 \mathrm{~K}+1$	V55	Fic． 59	5AZ4	$V 36$		613×6.	$\because 7$	71）F	$6 \cup 5$	V18	612
1Ft		5K	－ 2 Cl	$V 55$ $V 55$	F18． 59	513 P	733 \checkmark	114	$613 N 7$ 613	V27	Fig． 41	6U6：1	116	${ }_{7} \mathrm{AC}$
$11: 6$	V20	6W	2 K 4	${ }^{5} 5$	Fig． 59	$5 \mathrm{5C2}$	$\stackrel{1}{43}$	$\stackrel{1+13}{\text { F1g．}} 26$	613 T 61366	127		$6 \mathrm{VY7}$	$\stackrel{V 6}{ }$	7 R
$1 \mathrm{~F}^{\text {c }}$	V20	7AD	2 K 46	$V 55$	F19， 58	5192	V5	${ }_{515}$	6 C＇4．	$\stackrel{59}{ }$	6AM	6）${ }^{6} 6$	${ }^{1} 14$	${ }^{\text {9M }}$ AC．
IGtC	V21	5	2 K 47	$Y 55$	Fig． 58	$5 \mathrm{FPP}^{\text {P }}$		5AN	$6{ }^{6} 4$	$\checkmark 27$	6136			${ }_{7}^{7} \mathrm{AC}$
1G5：	V20	6．	2 K 56	V55	Fig． 60	$51^{1} 1$	V33	114	$6{ }^{6} 5$	${ }^{1} 13$	612	6）${ }^{\text {c }}$		
1689	V21	7A13	2N／4N	V19	51	5JP1．	V：33	11゙	6 ${ }^{\text {c } 6}$	IV	$6{ }^{\circ}$	6W4a＇		＋（＇G
$1 \mathrm{H4G}$	V20	5	${ }_{2} \mathrm{~V}^{\prime} 3 \mathrm{C}$	5	＋${ }^{\text {P }}$	$5 \mathrm{CP1}$	V33	115	$6{ }_{6} 7$	－18	－	6W5：	$\checkmark 36$	${ }_{6}{ }^{\text {a }}$
1150	$\checkmark 21$	5%	2 W 3	V34	＋	5MP1	V33	7AN	6C＇si＇	$\checkmark 15$	86	fWeg io	V15	7A
1463	120	7AA	$2 \mathrm{X}=$	136	$+113$	5 Rt （i）	$V 36$	${ }^{5}$	8 （＇136．	$\stackrel{4}{4}$	．709	6以7：	$\checkmark 16$	7R ${ }^{\text {7 }}$
$\begin{aligned} & 1550 \\ & \text { 1J6G } \end{aligned}$	$\begin{array}{r} 120 \\ V 20 \end{array}$	6．${ }_{\text {7 }}$	${ }_{2}^{2} \mathrm{C} 2-\mathrm{A}$	V36	$+A 13$ $+A B$	5RP1	$V 33$	${ }_{51}^{1+5}$	6（1） 6 （1）	$V 15$	5 HN	6．4	136	${ }^{7 \mathrm{C}} \mathrm{F}$
1 L 4	V26	6AR	$2 \% 2$	$\checkmark 36$	${ }_{4}{ }^{\text {H }}$	$5 \mathrm{~T}+\mathrm{P}$	136 $V 3$	${ }_{12 \mathrm{C}}^{12}$	8154	132 $V 18$	5A ${ }^{\text {F }}$	6.5	136	6s
11.6	126	7DC	3 A 4	$\because 26$	71313	$5 \mathrm{C}^{4} \mathrm{C}$	$\checkmark 36$	${ }^{12 \mathrm{~T}}$	6137	V18	${ }_{71}{ }^{1}$	$6{ }^{6} \mathrm{Y} \cdot$		${ }_{4}^{7} \mathrm{AL}$
ILA4	V1	5AD	3 A 4	V50	71313	5 ¢P1．	$\stackrel{3}{ }{ }^{3}$	12 E	6198	V15	8 A	$6{ }_{6} 5$		
11.46	W1	7AK	3 A 5	$V 26$	7130	5 C （；	V36	5 L	81.5	vis	6 R	6 Y 6 C		
11.134	51	5AD	3 A 5	$\vee 39$	7 BC	5 W 4		51	6 F 6	V18	713	$6{ }^{6} 76$	${ }^{1} 16$	＋ 8
11.136	V21	8AX	3 ABG	V24	8AS	5WPII	V33	12C	61.7	V18	711			46：
11.1 ¢	V1	7AO	3AP1	V33	7AN	5WP15	Y34	12C	6158	$\checkmark 15$	81	$6 \% 4$		51）
11.6		7 F	3134	V50	7¢：Y	5×3	136	46	6 ELU	127	7131	675	$\checkmark 36$	6א
11.10	$\cdots 21$	6AA	3135 3137 317	V24	7AP	5 S 4	$\checkmark 36$	$5{ }^{51}$	6 F 4	124	7111	6771	$\checkmark 16$	813
$11.10{ }^{\text {a }}$	V1	7 AO	3137	V3a	7 BH	5 Y 4 ：		51	6	V13	71318	6／750		
11.114	121	5 A （	31324	$\checkmark 36$	T－4A	523.	V36	$4{ }^{4}$	619	V13	781	$7 \mathrm{7A5}$ ．		5 AC
11．05	121	7A0）	31325	V36	4P	524		51	61\％	$\checkmark 50$	7 7	7 AB ．		6AA
1 NSC＇T	V1	5 Y	31226	V36	Fig． 31	$5-125$		713	$6{ }^{6} 7$	V18	7\％	787.		$8{ }^{7}$
1N86．	21	7AM	31327	V36	$4{ }^{\text {P }}$	6 A 3.	117	415	6kx	15	8 C			815
$1 \mathrm{P5} \times 1 \mathrm{~T}$	121	$5{ }^{5}$	318 Pl	$V 33$	14A	6.44	$\stackrel{17}{ }$	513	6（：5	V1\％	614	7A137．	$\checkmark 25$	8130
1050	21	6AF	$3{ }^{3} 50{ }^{\text {a }}$	V24	7AC8	6 A 5	Y14	$6{ }^{1}$	6ifici	115	7	$7 \mathrm{A17}{ }^{\text {7 }}$	416	8 X
		7AIT	3	V24	713 W	${ }_{6}{ }^{\text {A }}$	V17	713	$6114{ }^{1}$	115	5AF＇	7 Al7．	$V 16$	8AC
$1 \leq 4$	$\stackrel{26}{ }$	7 AV	31.23	V32	318	6 6A		${ }_{8} 8$	6115 8116	V13	${ }_{74}$	7A177	$V 16$	8V
1 S5	V26	6AU	3 c 24.	V41	21）	6 A134	V26	${ }_{5} 5 \mathrm{CE}$	61189	$\checkmark 15$	810，	7 7A117．		XV
1satic	V21	6CA	3 C 28	V41	FHg， 56	6×135	$V 17$	6 R	634.	${ }^{1} 27$	7 BC	7AP4．	134	${ }_{5} 5$
1s1360＂1	V21	6C13	$3{ }^{3} 34$	$5+1$	3：	6AJ30		7 Al	6J5	${ }^{1} 13$	60，	7134.	V16	${ }_{5}{ }^{\text {d }}$（
1 T	V6	6AR	3837	$V 47$		6 ± 137	$V 13$	8N	6.56	$\underline{\square}$	$711{ }^{\circ}$	7135	$\stackrel{16}{16}$	6AF：
1＇556		6AF	3176	V21	6313	6a（5ch	V14	612	656	V39	$713{ }^{\prime}$	7156	116	8W
$11^{1} 6$		${ }_{\text {Pidip }} 28$	3156	V50	${ }_{61318}$	8AC6G	$V 14$	7A ${ }^{\circ}$	$6{ }^{6} 7$	513	7 H	7137	V16	XV＇
115		$6 A R$ $6 H W$	31523 31324 3	V52	${ }_{\text {Fig．}} 54$	6A（＇7．	$V 13$	$8 \mathrm{8N}$	6J88	115	811	7138	$V 16$	88
$11^{\circ} 6$	V26	710	$319 P 1$	$\checkmark 33$	$\mathrm{Fig}_{10} 49$	6ADS！		740，	$6 \mathrm{6t}$	V29		713 Pl	V34	5AN
$1-\mathrm{y}$	＋36	${ }_{\text {ti }}$	3150	V52	F｜e． 40	6AD7 ${ }^{\text {6 }}$	V14	¢A）：	8K6G＇1）	V15）	7	7C5	$\stackrel{1}{25}$	4AH
15	$\stackrel{36}{ }$	$91 \times$	376	526	813 X	6A145：	V14	$6{ }^{\text {6 }}$	$6 \mathrm{K7}$ ．	$\checkmark 13$	712			6AA
165.	V99		3166		7CJ	6A lobai	$V 15$	7 AH	6 K 8	513	8 K	7 C 7	V17	8 C
$1{ }^{1} 4$	V26	515\％	31222	$V 52$	$813 Y$	6A Li＇7a＇	V15	1AX	614．	Y24	7181	7 P 1	V34	${ }_{6 . A Z}$
IW゙5	$\stackrel{V}{V}$				${ }^{711 P}$	6AFSG．	V15	68.	$6{ }^{65} 5$	vis	6¢	7137	$V 17$	XAR
$1 \times 2 \mathrm{~A}$	$\stackrel{36}{ }$	gy_{9}	31.8	V33	${ }_{11}^{11} 4$	6AF6	v17	77：	6L6	V． 13	7AC，	710 P 4	V34	$12{ }^{\circ}$
1722	$\checkmark 36$	${ }^{7} \mathrm{CH}$	3 J 31.	V57	1／A	6A ${ }^{\text {6AF }}$	V26	8 CAG		－51	${ }_{7}^{7} \mathrm{AC}$	7 7 7\％	$\begin{aligned} & V 25 \\ & V 17 \end{aligned}$	813N 8 W
$2{ }^{2} 3$	$Y 19$	4 D	3JP1	${ }^{4} 3$	1413	6AG6G	$V 15$	75	61.7	V13	${ }_{7}{ }^{\text {T }}$	7 7 7\％	617	
2.146	V31	51	3 K 21	$V 55$	Fir． 58	6AG7．	V13	8 y	6×15	V27	9M	$7 \mathrm{EP4}$	V34	IAN
9	V19	613	3 K 22	$V 55$	F｜k． 58	6 6G7	$\stackrel{5}{5}$	8 Y	6．16G	Y15	\％	7 F7．	V17	8 AC
$2{ }^{2}$	$\stackrel{1}{519}$	${ }_{7}^{60}$	3 K 2	$V 55$	Fic． 54	6AH5G	$\checkmark 15$	6AP	6M7G	515	71	$7 \mathrm{F8}$ ．	V17	8 BW
APi	119	${ }_{113}$	3 K 27 3 K 30 1		Fig． 58	${ }_{6}{ }^{\text {AHF6 }}$	V26	7CO	6M80T	$V 15$	8A ${ }^{\text {d }}$	$7 \mathrm{G7}$	V17	8 V
2144	$\checkmark 32$	5A	3 KPl	13	$11.1{ }^{\text {ch }}$	6AJ5．．		71）	6 EH	－ 34	$7{ }^{7} \times$	${ }_{70} 7 \mathrm{CP}$	V17	$8 \mathrm{8BV}$
236	119	7J	31，M4．	－24	613 A	6AJ7．		$8{ }^{-1}$	6 \％ 5	V17	6it			Fig． 47
2137	19	71）	31.14	ve4	61513	BAKS	$\checkmark \cdot \mathrm{L}$	7131	¢ CbO	$V 15$	7AU	7117	$V 17$	
2152	V11	1／fy． 37	3MPI	$\checkmark 33$	Fig． 2	6AKt	526	713 K	6×17.	V13	813	$7 \mathrm{JP4}$		14 C

\qquad

ค

4
8.
 :宅

 Fin

 89 M M

Type	Page	Base	Type	Page	Base	Type Page	Base	Type	Pane	Hase	Type	Page	Base
5×81	V51	7AC	（＇K568AX．	Y 30		HV18．．．．V47	2N	RK2J68．	V57	－	RK63	$V 48$	2
5×81	116	7AC＇	CK569AX	130	－	HV27 ．．V48	3N	RK2J69．	$V 57$	－	RK63A	V48	2 N
5896	V31	8 DJJ	（15605C＇	$V 30$		HY6J5GTX：V39	69	RK4J31	V57	－	RK64	$V 50$	5AW
5897	V31	8 DK	CK606HX	$\checkmark 30$	－	HY6L6GTX V51	7AC	RK4J32．	V57	－	RK65	V55	T－313C
5898	V31	8DK	CK608C	V30	－	11 Y6VbGTX V51	7AC	RK4J33．	$V 57$	－	RK66	V52	$\mathrm{T}^{-}-5 \mathrm{C}$
5899	V31	8 DH	CK619（文	$\checkmark 30$	－	$11 Y 24 . . .$.	4D	RK4J34	V57		RK75	V51	T－5C
5900	V31	81）	CK624C＇	V30	－	$11 \mathrm{Y} 26 . . . \mathrm{V} 41$	36	RK4J35．	V57	－	RK 100	$V 40$	6A
5901	$\checkmark 31$	8 DL	CK650AX	V30		HY30Z．．．．V41	4130	RK4J36	V57	－	RK705A	V37	T－3AA
5902	V31	81）L	CK703	$V 56$		HY317．．．．V41	T－4D	RK4J37	V57	－	RK866	V37	4 P
5903	131	813 J	（K1005．	$\checkmark 37$	5ACl	HY40．．．．．V42	3G	RK4J38	$\checkmark 57$	－	RM208	V32	
5004	V31	8 DK	CK1006	$V 37$	$4{ }^{+}$	HY40\％．．．Vt2	3G	RK4J39	V57		RM209	V32	－
5005	V31	81）	CK 1007	V37	T－0\％	IIV1A．．．V43	3G	RK4J40	$\checkmark 57$	－	SIP917A	V30	\square
5006	V31	817.	CK1009	$\checkmark 37$		HY5IH V43	3 C	RK4J41．	V57		S1）829A	V30	
$5!907$	V31	8 DL	CK5672	V30		11251\％．．．．${ }^{1 / 3}$	4130）	12K4J43	$\checkmark 57$	－	S1）828F：	$\checkmark 30$	
5018	V31	8i）${ }^{\text {（ }}$	1）R31327	$\stackrel{36}{ }$	$4{ }^{3}$	$11 Y 57 \ldots{ }^{1}$	36i	RK4J44	V57		St） 1103	$V 56$	
5915	V29	7（1）	1）121236	746	1918．26	11Y60．．．．．V5l	5AW	RK4J53	V57	－	S1）1104．	V56	
5916	V31	813	$1) \mathrm{R} 200$	V47	2 N	11Y61．．．．．．V52	5AW	RK4J54	$V 57$		SN044．	V30	
5433	$\checkmark 52$	5 SW	F1F50	$\checkmark 25$	31	11Y63．．．． 50	1－8D13	12K4J55	V57		8×646	V30	
5963	$\checkmark 29$	9A	F123A	$\checkmark 46$	1＊g． 26	1165．．． 51	T－8D13	RK4J56	$\vee 57$		SN947）	V30	
5964	$V 29$	7BF	F127A	$\stackrel{48}{4}$	1Flg． 26	11Y67．．．． 53	T－5113	RK4J57	$V 57$	－	8×948（	V30	
7100	V16	7R	G84	136	413	HY69．．．．V5\％	T－51）	RK4J58	V57	－	SN9531	V30	
7193	$V 39$	4AM	GL2C 44	$\because 25$	Fíg． 17	$11175 . . V 40$	2 T	RK4J59	V57	－	8×954	V30	
7700	V18	6 F	G1．2C．44	$\checkmark 39$	Flg． 17	11Y75A V40	$2{ }^{2} \mathrm{~T}$	3K725A．	V57		SN955i3	V30	
8000	$V 48$	2 N	Ci1．5 ${ }^{124}$	148	Fig． 26	HY113．．．V30	5 F	12K10．	V40	41）	SN95613	V31	
¢011	V53	7 HM	CL5IM24	$V 55$	5 HK	11Y11413 ．．． 39	2 T	RK11	V41	3 C	SN957A	$V 31$	
M（0）3	V46	3N	GL146．	$V 47$	＇r－413G	$11 \pm 115 \ldots 30$	5 K	RK12	V＋1	3G	SN1006	V31	
8005	V45	3G	（11．152	47	T－4 13 C	1YY123．．．．V30	5K	RK15	V19	4 D	8N100713	V31	
8008	$V 38$	Flg． 11	（iL159	$\checkmark 49$	T－413G	IY125．．．．V30	5K	RK16	$V 19$	5 A	T20．	V40	$3 G$
8010	$V 42$		GL169	149	1－413G	1Y145．．．．V30	5 K	RK17	$V 19$	$5{ }^{5}$	T21	V51	6A
8012	V41	T－4B13	CJ．446A	V39	Fhg． 19	IIY155．．．．V30	5 K	IRK18	V11	3 l	＇ 140	V42	3 C
$8013-\mathrm{A}$	V38	4P	G1，446A	$V 25$	Fig． 19	11 $615 \ldots . . .339$	T－8AG	RK19	V38	4AT	155	V43	3 C
8016.	V38	4 AC	GL44613	925	Vig． 19	HY801A．．．V40	41）	RK20	552	T－50	T60	V43	2 D
8020	$V 38$	4 P	GL44613	$\checkmark 39$	Fig． 19	HY866Jr ．．．V37	4 P	RK20A	152	T－5C	$\mathrm{T}^{1} 100$	V44	2 D
8025	$V 41$	$4 \mathrm{~A} Q$	G1．464A	525	Fig， 17	11Y1231Z．V41	T－41）	RK21	$V 38$	4 P	T125	V46	2N
9001	V29	7PM	GL464A	39	Fle 17	HY1269．．．V53	T－51013	RK22	$V 38$	T－4AG	T200	V48	2 N
1002	V29	7TM	GL559	V25	lig， 18	IIYtill48 V39	＇r－8A ${ }^{\text {c }}$	RK23	V50	613M	T300	V48	
10002	$V 39$	7TM	GI592．	148	Fix． 52	K121．．．．V32		RK24	139	41）	T814	V48	3N
1003	$\checkmark 29$	7PM	（ildol2A	$\stackrel{71}{1}$	T－41313	K $8866 . .132$	F＇ねx． 8	RK24	V20	413	${ }^{1} \mathrm{P} 22$	V48	3 N
9004	V25	413 J	1112203 A	V47	3 N	M54 ．．．．．V30		RK25	150	6 BM	T1335	$V 52$	F1g． 54
M05	$V 25$	513	If F60	V44	21	M64．．．．V30		12K2513	$V 50$	6HM	Tliz20	$V 40$	
1006	$V 29$	6141	HFF5．	V44	$21)$	M74．．．V30	ザィ 38	RK28．	$V 54$	5 J	TW75．	V44	213
AT－340	$V 55$	513 K	H1F100	$\stackrel{4}{4}$	$21)$	NU－2（\％35 ．．．V25	Fiz 38	12K28A	V54	5 J	TW150	$V 77$	2N
A $\times 9900$	$V 47$	Fig． 5	HF120	$\checkmark 45$	4 F	PW340 ．．V54	513K	IRK30	V41	$21)$	TZ20．	140	3 G
A $\times 9003$	V52	Fig， 10	IF125	$V 45$		2K159．．．．V56	1ヶ゙が， 63	12K31	V41	$3(3$	TZ40	$V 42$	3 y
A $\times 9905$.	$V 51$	Fig． 34	IF130	546	－	RK2J23．．．．V57	－	1RK32	V42	21）	TH100．	V44	$2 \square$
13 A	V36	4 J	11 Fl 10	$\stackrel{4}{4}$	＋F	RK2J23 ．V57	－	12K33	V39	T－71） 4	UF468．	$V 47$	Flg． 57
13 H	V36	4 J	1F150．．	746	\cdots	RK2J24 ．．V57	－	1RK34	V39	T－71）（	UH35．	$V 44$	3G
13 R	$V 36$	4H	$11 F 175$	$\checkmark 46$	$\cdots-3 A C$	RK2J25 ．．．V57	－	12 K35	$1 \cdot 42$	2 b	［1150．	V＇42	2D
（1）220．	136	＋P	HF200．	147	2N	RK2J26．．．．V57	－	RK36	$V 45$	21）	U151．	V42	2 D
（＇K501	129		H ${ }^{2} 250$.	$V 47$	2 N	RK2J27．．．V57	－	RK37	$V 42$	2 l	$V 70$.	$V 44$	3N
（K502	「29	－	11 F 300	548	2 N	RK2J28 ．．．V57	－	RK38	V45	2 D	V70A	V44	3N
（＇K503	V29	－	HK24	V41	3 C		－	RK39	V51	5AW	V703	V＇4	3 C
C＇K504	129	－	MK54	5	${ }_{5}^{2} \mathrm{D}$	RK2J30，．．V 57	－	RK41	V51	5 AW	$\checkmark 700$	V44	3 C
CK505	$\checkmark 29$	－	HK57．	$\checkmark 53$	$5 \mathrm{5DK}$	RF2J31．．．． 57	－	RK42	V21	4 D	V701）	V45	3 C
（＇K506	$V 29$	－	HK154	V42	21	RK2J32 ．．．V57		RK43	V21		VR75	V32	4 AJ
（＇K507	$V 29$	－	HK158．	V42	${ }_{413}^{21}$	RK2J33 ．．．V57	二	RK43	$V 50$	613 M	VR90	V32	$4 A J$
（\％5509	V30	－	HK252L	$\checkmark 47$	413 C	RK2J34．．．V 57	二	RK46	V52	T－5C	VR105	$V 32$	$4 A J$
CK510	1＇30	－	IIK253．	$\checkmark 37$	${ }_{2}{ }^{\text {AT }}$	RK2J36．．．V＇57	二	RK46	V52	T－5C	V12150	V32	4 AJ
CK512	V30	－	HK254	$\stackrel{1}{45}$	2N	RK2J38，．．V57	－	RK47	V53	T－51）	VT52．	V25	4 D
CK51513	V30	－	HK257	$V 54$	7 BM	RK2J39．．．．V57	－	I2K48．	V54	T－51）	VT127A	$V 45$	T－4B
（K520A	V30	－	HK25713	$\checkmark 54$	7BM	RK2J48．．．．V＇57	－	RK48A	V54	T－5D	VT191．	V41	－
（K521A	V30	－	HK304L．	V49	4BC	RK：J49 ．．．V57	－	12K49	V51	6 A	WE304A	$V 42$	21）
（16522A	V30	－	HK354．	$V 47$	2N	RK2J50．．．．V＇57	－	12K51	V43	3G	$\times 6030$	V25	Flg． 4
CK523A	V30	－	HK354＊＊	V47	2 N	RK2J54．．．V57	－	RK52	$V 43$	3G	XX13．	V25	Fig． 9
CK524A	$V 30$	二	HK3541）	$V 47$	2N	12K2J55．．．V57	－	RK56	V50	5AW	XXD	$V 24$	8AC
CK525A	$V 30$		HK3541：	147	2 N	RK2J56．．．V57	－	RK57	V46	3N	XXL	V17	5AC
CK526A	\checkmark		HK354F	$V 47$	2N	RK2J58．．．．V57	－	RK58	$\checkmark 45$	3N	XXFM	V25	813 Z
CK529A	V30		HK45411	V49	2N	RK2J61A ．．V57	－	RK59	$V 40$	T－4D	Z225．	V37	4P
CK551A	V30		HK454］	V49	2N	RK2J62A ．V57	－	RK60	V37	T－4AG	Z668	$V 56$	－
CK553	V30		HK654	$V 49$	2N	RK2J66．．．．V57	－	RK61	V30	－	Z 1360	$V 44$	2 D
CK556A	V30	－	HV12．	148	3 N	12K2J67．．．V57	－	RK62	V32	4 D	Z13120．	$v 44$	4 E

VACUUM-TUBE BASE DIAGRAMS

The diagrams on the following pages show standard socket connections corresponding to the base designations kiven in the column headed "Sochet Connections" in the classiGed tube-data tables. Bottom views are shown throughout. 'Terminal designations are as follows:

Aphabetical subscripts I), P, T and IIX indicate, respectively, diode unit, pentode unit, triode unit or hexode unit in multi unit types. Subseript M, T' or CT' indicates filament or heater tap.
Generally when the No. I pin of a metal-type tube in Table I, with the exception of all triodes, is shown eonneeted to the shecti, the No. 1 pin in the glass (G or (O^{\prime}) equivalent is connected to an internal shield.

R.T.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are shown above.

2D

3 N

4AF

4BR

4D

4 K

4 V

2 N

$3 T$

4AH

$4 E$

4 M

4X

$2 T$

4AA

4AJ

4 F

$4 P$

$4 Y$

22

4AB

4BC

46

42

3C

4AC

3 G

4 AD

4 H

5A
R.T.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. Terminal desiznations on sockets are given on page V5.

5AB					
		SAM			
		SAY			
			5BQ		5BU
		5CB	SCE		
		5J	5K		
			$5 T$		
	6AL			GAR	6AS

R.T.M.A. TUBE BASE DIAGRAMS

Hotton views are whwn. Treminal dexignations on sorkets are given on page V5.

6BQ

6 E

6 L

$6 T$

7AA

7 AJ

6BB

6AW

68W
(4) ${ }^{\mathrm{H}}$
 6 CH
 $6 G$

6AX

$6 B x$

6 C

$6 C J$

60
(2) (4)
6 H

6 J

$6 Y$

62

(3) (5) ${ }^{G_{5}}$

R.T.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page V5.

	7AW				7BA
7BB	$7 B C$	$7 B D$			
				$7 B 0$	
$7 B 0$					
				7CF	
			7CX		
			7TM		

R.T.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sochets are given on page V5.

R.T.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. 'Terminal designations on sockets are given on page V5.

$8 \times$
8 Y

9L

11 F

1 M

MR

95

 A (4)

12 E

14 A

bY

11 A

$11 N$

148

12 C

14 F

:
SUPPLEMENTARY BASE DIAGRAMS

FIG. 7

FIG. 2

FIG. 3

SUPPLEMENTARY BASE DIAGRAMS
Bottont views are shown. 'l'emminal designations on soekets are given on page V5.

SUPPLEMENTARY "T"-GROUP BASE DIAGRAMS

lhotom views are shown. 'lerminal designations on sockets are given on page V5.

TABLE I-METAL RECEIVING TUBES
 For "G" and "GT" tubes not listed (not having metal counterparts), see Tables II, VII, VIII and IX.

Type	Name	Sockel Connec- fions	Fil. or Healer		Capacitance $\mu \mu \mathrm{fd}$,			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconducłance Micromhos	Amp. Factar	Load Resisfance Ohms	Power Outpu Watts	Type
			Volts	Amp.	In	Out	PlafeGrid												
6A8	Pentagrid Converter	8A	6.3	0.3	Osc. Grid leak 50000n			Converter	250	- 3.0	100	2.7	3.5	Anode-grid (No. 2) 250 volts max. thru 20,000 ohms					6A8
$\begin{aligned} & 6 A B 7 \\ & 1853 \end{aligned}$	Remote Cutoff Pentode	8 N	6.3	0.45	8	5	0.015	Class-A Amp.	300	- 3.0	200	3.2	12.5	700000	5000	3500	-	\longrightarrow	$\begin{aligned} & 6 A B 7 \\ & 1853 \end{aligned}$
$\begin{aligned} & 6 A C 7 \\ & 1852 \end{aligned}$	Sharp Cufoff Pentode	8 N	6.3	0.45	11	5	0.015	Class-A Amp.	300	160*	150	2.5	10	1000000	9000	6750	-	-	$\begin{aligned} & 64 C 7 \\ & 1852 \end{aligned}$
GuG7	Sharp Cut-off Pentode	8 Y	6.3	0.65	13	7.5	0.06	Class-A, Amp.	300	-3.0	150	718	$30 / 30.5$	130000	17000	-	10000	3.0	6AG7
- GAJ7	Sharp Cut-ofl Pentode	8 N	6.3	0.45	-			Class-A Amp.	300	160°	300	2.5	10	1000000	9000				6 A.J7
-6AK7	Pentode Power Amp.	8 Y	6.3	0.65	13	7.5	0.06	Closs-A Amp.	300	-3	150	7	30	130000	11000	-	10000	3.0	6AK7
SB8	Duplex-Diode Pentodo	8 E	6.3	0.3	6	9	0.005	Class-A Amp.	250	-3.0	125	2.3	9.0	650000	1125	730			6888
$6 \mathrm{C5}$	Triode	69	6.3	0.3	3	11	2	Closs-A Amp.	250	-8.0 -17.0			8.0	10000	2000	20	-		6 Cs
								Bias Detector	250	-17.0		-	Plate current adjusted to 0.2 ma . with no signal						6 C 5
$6 F 5$	High- μ Triodo	5M	6.3	0.3	5.5	4	2.3	Class-A Amp.	250	- 1.3			0.2	66000	1500	100	- signal		$6 F 5$
$6 F 6$	Pentode Power Amplifler	75	6.3	0.7	6.5	13	0.2	Class-A Pent. ${ }^{\text {b }}$	$\begin{array}{r} 250 \\ 315 \\ \hline \end{array}$	$\begin{array}{r} -16.5 \\ -22.0 \\ \hline \end{array}$	$\begin{array}{r} 250 \\ 315 \end{array}$	$\begin{aligned} & 6.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 36^{7} \\ & 42 \end{aligned}$	$\begin{array}{r} 80000 \\ 75000 \end{array}$	$\begin{array}{r} 2500 \\ 2650 \\ \hline \end{array}$	$\begin{array}{r} 200 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & 7000 \\ & 7000 \end{aligned}$	$\begin{array}{r} 3.2 \\ 5.0 \\ \hline \end{array}$	6F6
								Class- A_{1} Triode ${ }^{\text {a }}$	250	-20.0	-	-	$34{ }^{7}$	2600	2600	6.8	4000	0.85	
								Class-AB. Amp. Class-AB Amp. ${ }^{6}$	$\begin{array}{r} 375 \\ 375 \\ \hline \end{array}$	$\begin{array}{r} 340 \\ -26.0 \\ \hline \end{array}$	$\begin{array}{r} 250 \\ \mathbf{2 5 0} \\ \hline \end{array}$	$\begin{gathered} 8 / 18 \\ 5 / 19.5 \end{gathered}$	$\begin{aligned} & 54 / 77 \\ & 34 / 82 \end{aligned}$	Power output for 2 fubes of stated load, plate-to-plate			$\begin{aligned} & 10000 \\ & 10000 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 18.5 \end{aligned}$	
								Class-AB. Amp. ${ }^{16}$	$\begin{array}{r} 350 \\ 350 \\ \hline \end{array}$	$\begin{gathered} 730^{*} \\ -38 \\ \hline \end{gathered}$	-		$\begin{aligned} & 50 / 61 \\ & 48 / 92 \end{aligned}$	-	-		$\begin{gathered} 10000^{3} \\ 60000^{8} \end{gathered}$	$\begin{gathered} 18.2 \\ 13 \end{gathered}$	
6H6	Twin Diodo	70	6.3	0.3	3.4		3.4	Reclifier		Max. a.c. voltoge per plote $=150$ r.m.s. Max. output current 8.0 ma. d.c.									6H6
635	Triode	60	6.3	0.3	3.4	3.6	3.4	Class-A Amp.	250	- 8.0			9	7700	2600	20	\cdots	-	615
6.7	Sharp Cut-off Pentode	7R	6.3	0.3	7	12	0.005	R.F. Amp.	250	-3.0	100	Cothode current 0.43 mo .			1225	1500	-	-	617
$6 \mathrm{K7}$	Variable- μ Pentode	7R	6.3	0.3	7	12	0.005	R.F. Amp.	250	-3.0	125	2.6	10.5	\| 60.43 ma .	1650	990	0.5 meg .		$6 \mathrm{K7}$
								Mixer	250	-10.0	100			60000	Oscillotor peak volis $=7.0$				
6K8	Triode-Hexode	8K	6.3	0.3		-		Converter	250	- 3.0	100	6	2.5	Triode Plate (No. 2) 100 volts, 3.8 ma .					6K8
616	Boom Powor Amplifier	7 AC	6.3	0.9	10	12	0.4	Single Tube Class A_{1}	$\begin{array}{r} 250 \\ 300 \\ \hline \end{array}$	$\begin{aligned} & 170^{*} \\ & 220^{*} \\ & \hline \end{aligned}$	$\begin{array}{r} 250 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & 5.4 / 7.2 \\ & 3.0 / 4.6 \end{aligned}$	$\begin{array}{r} 75 / 78 \\ 51 / 54.5 \\ \hline \end{array}$	-	-	-	$\begin{aligned} & 2500 \\ & 4500 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$	616
								Single Tube Class A_{1}	$\begin{array}{r} 250 \\ 350 \end{array}$	$\begin{array}{r} -14.0 \\ -18.0 \end{array}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 5.0 / 7.3 \\ & 2.5 / 7.0 \end{aligned}$	$\begin{aligned} & 72 / 79 \\ & 54 / 66 \end{aligned}$	$\begin{array}{r} 22500 \\ 33000 \end{array}$	$\begin{aligned} & 6000 \\ & 5200 \end{aligned}$	-	$\begin{aligned} & 2500 \\ & 4200 \end{aligned}$	$\begin{array}{\|c\|} \hline 8.5 \\ 10.8 \\ \hline \end{array}$	
								P.P. Closs $A_{1}{ }^{6}$	270	125*	270	11/17	134/145	-	-		5000 -	18.5	
								P.P. Class $A_{1}{ }^{\text {c }}$	$\begin{array}{r} 250 \\ 270 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-16.0 \\ -17.5 \\ \hline \end{array}$	$\begin{array}{r} 250 \\ 270 \\ \hline \end{array}$	$\begin{aligned} & 10 / 16 \\ & 11 / 17 \\ & \hline \end{aligned}$	$\begin{array}{r} 120 / 140 \\ 134 / 155 \\ \hline \end{array}$	$\begin{aligned} & 24500 \\ & 23500 \end{aligned}$	$\begin{aligned} & 5500 \\ & 5700 \end{aligned}$		$\begin{aligned} & 50000^{s} \\ & 5000^{s} \end{aligned}$	$\begin{aligned} & 14.5 \\ & 17.5 \end{aligned}$	
								P.P. Class $A B_{1}{ }^{\circ}$	360	$250{ }^{*}$	270	5/17	88/100	Power outpuifor 2 fubes. Load plate-to-plate			$9000{ }^{8}$	24.5	
								P.P. Class $A B 1^{8}$	360	-22.5	270	5/15	88/132				$6600{ }^{\text {s }}$	26.5	
								P.P. Class $A B B_{2}{ }^{6}$	$\begin{array}{r} 360 \\ 360 \\ \hline \end{array}$	$\begin{array}{r} -18.0 \\ -22.5 \\ \hline \end{array}$	$\begin{aligned} & 225 \\ & 270 \end{aligned}$	$\begin{gathered} 3.5 / 11 \\ 5 / 16 \end{gathered}$	$\begin{aligned} & 78 / 142 \\ & 88 / 205 \end{aligned}$				$\begin{aligned} & 6000^{8} \\ & 3800^{8} \\ & \hline \end{aligned}$	$\begin{aligned} & 31.0 \\ & 470 \end{aligned}$	
617	Pentagrid Mixer Amplifier	71	6.3	0.3	-	-		R.F. Amp.	250	- 3.0	100	5.5	5.3	800000	1100	-	\square	$\underline{-}$	
	Twin Triode							Mixer	250	-6.0	150	8.3	3.3	Over 1 meg.	Oscillator-g	rid (No. 3	3) voltoge $=$	- 15	617
607	Tuinlex-Diode Triode	7 V	6.3	0.8	5	3.8	1.4	Closs-B Amp.	300 250	0 -3.0		-	35/70	58000	-	70	8000	10.0	6N7
6R7	Duplex-Diode Triode	7 V	6.3	0.3	4.8	3.8	2.4	Triode Amp.	250	- 3.0			9.1	58000 8500	1200	70			607
657	Remote Cut-off Pentode	7 R	6.3	0.15	6.5	10.5	0.005	Closs-A Amp.	250	-3.0	100	2.0	8.5	1000000	1750	16	10000	0.28	6R7
65A7	Pentagrid Converler	8R ${ }^{\mathbf{2}}$	6.3	0.3		-		Converter	250	0^{3}	100	8.0	3.4	800000	Grid No. 1 resistor 20000 ohms				657
6587Y	Pentagrid Converter	8R	6.3	0.3	9.6	9.2		Converter	100	- 1	100	10.2	3.6	500000	900	1 resisto	20000 oh		6SA7
								Converter	250	- 1	100	10	3.8	1000000	950				6587Y
					Osc. Section in 88-108 Mc. Serv.				250	22000^{9}	12000^{3}	12.6/12.5	6.8/6.5				-	-	
$65 C 7$	Twin-Triode	85	6.3	0.3	-	-		Closs-A Amp.	250	- 2.0	-	-	2.0	53000	1325	70	-		65C7

table I-metal receiving tubes-Continued

Type	Name	Sockel Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bios	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhes	Amp. Factor	$\begin{gathered} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Power Output Walts	Type
			Volts	Amp.	In	Out	PlateGrid												
			6.3	0.3	4	3.6	2.4	Class-A Amp.	250	- 2.0			0.9	66000	1500	100			6SF5
6SF5	High- μ Triode	6AB	6.3	0.3	5.5	6	0.004	Class-A Amp.	250	- 1.0	100	3.3	12.4	700000	2050		-		6SF7
6SF7	Diode Variable- μ Peniode	7AZ	6.3	0.3 0.3	8.5	7	0.004	H.F. Amp.	250	- 2.5	150	3.4	9.2	Over 1 meg.	4000				6SG7
6SG7	Semivariable- μ Pentode	8BK	6.3	0.3 0.3	8.5	7	0.003	Class-A Amp.	250	-1.0	150	4.1	10.8	900000	4900				6SH7
6SH7	Sharp Cut-off Pentode	$8 \mathrm{8K}$	6.3	0.3 0.3	8.5	7	0.003	Class-A Amp.	250	- 3.0	100	0.8	3	1500000	1650	2500			65.17
65176	Sharp Cut-off Pentode	8 N	6.3	0.3	6	7	0.003	Class-A Amp.	250	-3.0	100	2.4	9.2	800000	2000	1600			65K7
6SK7	Variable - μ Pentode	8 N	6.3	0.3 0.3	3.2	7.0	1.6	Class-A Amp.	250	- 2.0	100		0.8	91000	1100	100			6507
$6 \mathrm{SQ7}$	Duplex-Diode Triode	8Q	6.3	0.3	3.6	2.8	2.40	Class-A Amp.	250	-9.0			9.5	8500	1900	16			6SR7
6SR7	Duplex-Diode Triode	80	6.3	0.3 0.15	3.6	2.8	2.40 0	Class-A Amp.	250	- 3.0	100	2.0	9.0	1000000	1850				6557
6557	Variable μ Pentode	8 N	6.3	0.15	5.5	7.0	1.50	Class-A Amp.	250	-9.0			9.5	8500	1900	16			6ST7
6ST7	Duplex-Diode Triode	BA	6.3	0.15	2.8	6	0.004	Closs-A Amp.	250	-1	150	2.8	7.5	800000	3400				6SV7
6SV7	Diode R.F. Pentode	7AZ	6.3	0.3	2.5	2.8	0.004 1.10	Class-A Amp.	250	-3	-		1.0	58000	1200	70	-	-	6527
6527	Duplex-Diode Triode	7V	6.3	0.15	2.6	3.1	1.70	Class-A Amp.	250	-3.0			1.2	62000	1050	65			6 677
$6 T 7$	Duplex-Diode Triode	7 AC	6.3	0.15	2.0	3.1	0.7	Class-A Amp. ${ }^{\text {c }}$	250	-12.5	250	4.5/7.0	45/47	52000	4100	218	5000	4.5	6V6
6V6	Beam Power Amplifior		6.3	0.45		7.5		Class-AB1 Amp. ${ }^{6}$	250	-15.0	250	5/13	70/79	60000	3750		10000^{8}	10.0	
									285	-19.0	285	4/13.5	70/92	65000	3600		$8000{ }^{\text { }}$	14.0	
			6.3	0.7				Audio Amp.	Characleristics same as 6F6										1611
1611	Pentode Power Amplifier	7 T	6.3	0.7	7.5	11	0.001	Class-A Amp.	250	-3.0	100	6.5	5.3	600000	1100	880	-	-	1612
1612	Penlogrid Amplifier	7R	6.3	0.3	7.5	11	0.001	Class-A Amp.	Characteristics some a										1620
1620	Sharp Cut-aff Penlode	7R	6.3	0.3				Class-AB2 Amp. ${ }^{6}$	300	-30.0	300	6.5/13	38/69	-			$4000{ }^{8}$	5.0	1621
1621	Power Amplifier Pentode	75	6.3	0.7				Class-A1 Amp. ${ }^{61}$	330	500*	250		55/59	-			5000 ${ }^{8}$	2.0	
1622	Beam Power Amplifler	7 AC	6.3	0.9				Closs-A Amp.	300	-20.0	250	4/10.5	86/125	750000	9000	6750			1851
1851	Telovision Amp. Pentode	7R	6.3	0.45	11.5	5.2	0.02	Class-A Amp.	300	- 3	150	2.85	3.0	1000000	1650				5693
5693	Sharp Cut-off Pentode	8 N	6.3	0.3	5.3	6.2	0.005	Class-A Am	${ }^{3}$ Grid bias-2 volts if separale ascillator excitation is used. - Also Type "6SJ7Y."				${ }^{5}$ Values are for single tube. - Values are for two tubes in push-puli.				${ }^{7}$ Max.-signal value. " $\overline{\text { Fiafe-to-piate vaiue. }}$ - Ose. grid leak-Sern res.		

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES
(For "G" and "GT"-Type Tubes Not Listed Here, 5ee Equivalent Type in Table I; Choracteristics and Cannections Will Be Identical)

Type	Name	Socke 1 Connections	Fil. or Heator		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Valis	Grid Blos	$\begin{gathered} \text { Sereen } \\ \text { Volts } \end{gathered}$	Screen Curren 1 Ma.	Plate Current Ma.		Transconductance Mieromhos	Amp. Factor	LoadResistanceOhms	Power Output Wolts	Typ*
			Volts	Amp.	In	Out	PlaleGrid												
					2.2			U.h.f. Delector		Average cothode Ma. $=5$; Oulput volis $=50$ d.c.; Lead resistance $=10000 \mathrm{~S} 2$.									$2 \mathrm{B22}$
2822	Diod.	Fig. 37	6.3	0.75	2.2			Closs-A Amp.	300	-10.5			11	6600	3000	20	-		2 C 22
2 C 22	Triode	4AM	6.3	0.3	2.2	0.7	3.60	Closs-A Amp. ${ }^{6}$	250	-45.0			60	800		4.2	2500	3.75	6A5G T
6A5GT	Triode Power Amplifier	$6 T$	6.3	1.0			-	P.P. Class $A B^{3}$	325	-68.0	-	-	80	-	5250	-	$3000{ }^{\circ}$	15.0	
								P.P. Class AB ${ }^{\text {d }}$	325	850*			80	-		-	$5000{ }^{\circ}$	10.0	
									250	0	Input		5.0	40000	1800	72	8000	3.5	6AB6G
6AB6G	Direct-Coupled Amplifler	7 AU	6.3	0.5				Closs-A Amp.	250	0	Output		34						
	High- μ Power-Amplifior	60	6.3	0.4				P.P. Class B ${ }^{\text {S }}$	250	0			${ }^{51} 3$	36700	3400	125	10000 7000	8.0	6AC5GT
6AC5CT	Triode	60	6.3	0.4				Dyn.-Coupled	250	0	Inpul		3.0	-	3000	54	4000	3.8	6AC6G
6AC6G	Direct-Coupled Amplihor	7 AU	6.3	1.1	-	-	-	Class-A Amp.	180	0	Output		45						
		60	6.3	0.3	4.1	3.9	3.3	Closs-A Amp.	250	- 2.0	-		0.9		1500	100		-	6AD5G
6AD5G	High- μ Triode	6a	6.3	0.3	4.1			Indicator	100		0 for $90^{\circ} ;-23$ for 13			; 45 for 0°. Targat current $1.5 \mathrm{ma}$. for $\mathrm{O}^{\text {c }}$.					6AD6G
6AD6G ${ }^{10}$	Electran-Ray Tube	7 AG	6.3	0.15				Triode Amp.	250	-25.0				19000	325	6.0	$\overline{7000}$	3.2	6AD7 G
6AD7G	Triode-Pentode	8AY	6.3	0.85				Pentode Amp.	250	-16.5	250	6.5	34	80000	2500		7000	3.2	
								Class-A Amp.	95	-15.0	-	-	7.0	3500	1200	4.2			GAES

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES-Confinued

Type	Name	Socket Connecfions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Volts } \end{aligned}$	Screen Current Ma.	Plate Current Ma.	Plate Resisfance Ohms	Transcanductance Micromhos	Amp. Factor	LoadResistanceOhms	Power Output Watts	Type					
			Volts	Amp.		Out	PlateGrid																	
6AE6GT10	Twin-Plate Triode with Single Grid	7AH	6.3	0.15	Remote cut-of			Class-A Amp. Class-A Amp.	250	- 1.5			6.5	25000	1000	25	-	-	6AE6GT					
					Sharp cut-off				250	-1.5			4.5	35000	$\underline{950}$	33								
6AE7GT ${ }^{\text {6AF5G }}$	Twin-Inpul Triode	7AX	6.3	0.5				Driver Amplifer	250	-13.5			5.0	9300	1500	14			6AE7GT					
6AF5G	Triode	60	6.3	0.3				Class-A Amplifer	180	-18.0	-		7.0		1500	7.4			6AF5G					
6AF7G	Twin Electron Ray	8AG	6.3	0.3				Indicator Tube											6AF7G					
6AG6G ${ }^{10}$	Power-Amplifier Pentode	75	6.3	1.25		-		Class-A Amplifer	250	-6.0	250	6.0	32		10000		8500	3.75	6AG6G					
6AH5G	Beam Power Amplifier	6AP	6.3	0.9				Class-A Amplifier	350	-18	250			33000	5200		4200	10.8	6AH5G					
6ALGG	Twin Triode	6BE	6.3	0.3				Converier \& Amp.	250	- 9.0			121	6500	2400	16			6AH7GT					
6A17GT	Eeam Power Amplifer	6AM	6.3	0.9				Class-A Amplifier	250	-14.0	250	5.0	72	22500	6000		2500	6.5	6AL6G					
6ALIGT	Electron-Ray Tube	$8 \mathrm{8CH}$	6.3	0.15				Indicator Class-A Amplifer	Outer edge of any of the three illuminated areas displaced $1 / 16 \mathrm{in}$. min. outward with +5 volts to its electrode. Similar inward disp. with -5 volts. No pattern with -6 volts grid.										6AL7GT					
6AR6	Deam Power Amp.	886	6.3	0.3	2.3	1.5	2.8		250	- 2.0			2.3	44000	1600	70			6AQ7GT					
		88	6.3	2.5			-	Class-A1 Amp. P.P.	250	2500*			100/106	280	7500	2.1	$6000{ }^{\circ}$	13	6AS7G					
6AU5GT	Beam Pentode	6CK	6.3	1.25	11.3	7	0.5	Horz. Def. Amp.	45011	-5011			100^{11}	Peak pos. plate pulse $=\mathbf{5 0 0 0}$ volis.										
6AV5GT	Beam Pentode	6CK	6.3	1.2				Horz. Def. Amp.	50011	-5011	1751		10011						6AU5GT					
684 G	Triode Power Amplifier	55	6.3	1.0				Power Amplifier	Choracterisfics same as Type 6A3-Table IV							Peak pos. plote pulse $=4500$ volts.			6AVSGT					
6B6G	Duplex-Diode High- μ Triode	7 V	6.3	0.3	1.7	3.8	1.7	Detector-Amplifier											6B4G					
68D5GT	Beam Pentode	6CK	6.3	0.9				Horz. Def. Amp.	32511		325^{11}	Characteristics same as Type 75-Table IV							6B6G					
68Q6GT	Beam Pentode	6AM	6.3	1.2				Deflection Amp.	S50 ${ }^{11}$		150		10011						GT					
6BG6	Beam Power Amplifier	5BT	6.3	0.9	11	6.5	0.5	Deflection Amp.	70011	-5011	350		10013	Peak pos. plate pulse $=\mathbf{4 0 0 0}$ volts.					6BC6GT					
6C8G	Twin Triode	8 G	6.3	0.3				Amp. I Section	250	- 4.5			3.1	Peok pos. plate pulse $=6000$ volts.					6BG6					
6CD6G	Beam Pentode	587	6.3	2.5	26	10	1.0	Horz. Def. Amp.	700^{13}	-5011	1751		170	Peak pos. plate puise $=6000$ volts.					6C8G					
6D8G	Pentogrid Converter	8 A	6.3	0.15				Converter	250	-3.0	100	Cathode current 13.0 Ma .			6CD6G									
6E8G10	Triode-Hexode Converter	80	6.3	0.3				Converter	250	- 2.0	Triode Plote 150 volts								608G					
6 68G	Twin Triode	8 G	6.3	0.6				Amplifier	250	-8.0									6E8G					
6G6G	Pentode Power Amplifer	75	6.3	0.15	-			Class-A Amplifier	180	-9.0	180	2.5	15						175000	2300	400	10000	1.1	6G6G
6H4GT	Diode Reclifler	5 AF						Class-A Amplifier ${ }^{2}$	180	-12.0				4750	2000	9.5	12000	0.25						
6H8G	Duo-Diode High- μ Pentode	8 SE	6.3	0.15				Delector	100			-	4.0	-	-		-		6H4GT					
$6 \mathrm{6} 8 \mathrm{G}^{10}$	Triode Heptode	8 H	6.3	0.3				Closs-A Amplifier	250	-2.0	100		8.5	650000	2400		-		6H8G					
6K5GT10	High- μ Triode	50	6.3	0.3	2.4	3.6	2.0	Converter	250	-3.0 -3.0	100	2.8	1.2	Anode-grid (No. 2) 250 valts max. ${ }^{3} 5 \mathrm{ma}$.					6J8G					
6K6GT	Pentade Power Amplifier	75	6.3	0.4				Class-A Amplifier	Characteristics some as Type 41-Table IV										6K5GT					
61.5 G	Triode Amplifier	60	6.3	0.15	2.8	5.0	2.8	Closs-A Amplifer											6K6GT					
6M6G ${ }^{10}$	Power Amplifer Pentode	75	6.3	1.2				Class-A Amplifer	250	-9.0 -6.0	250	4.0	8.0		1900	17	-	F	615G					
$6 \mathrm{M7G}$	Pentode Amplifier	7 R	6.3	0.3				R.F. Amplifier	250	- 2.5	125	2.8	10.5		9500		7000	4.4	6M6G					
6M8GT	Diode Triode Pe	8AU	6.3	0.6				Triode Amplifier	100				0.5	91000	3400		-	-	6M7G					
SN6G10								Pentode Amplifier	100	-3.0	100		8.5	200000	1900				6M8GT					
6P65GTIO	irect-Coupled Amplifier	7 AU	6.3	0.8		-		Power Amplifier Class-A Amplifier	Characteristics same as Type 68S-Table IV										6N6G					
6P7G10	Triode Amplifler	60	6.3	0.3	3.4	5.5	2.6		250	-13.5	-	-	5.0	9500	1450	13.8								
6P8G	Triode-Hexode Converter	8 K	6,3	0.3				Clase-A Amplifier	Chorucieristics sathe as 6F7-lable IV										$\frac{6 P 5 \mathrm{GT}}{6 \text { P/ }}$					
6 66G	Diode-Triode	6Y	6.3	0.15				Class-A Amplifier	250	2.0	75	1.4	1.5 1.2	Triode Plate 100 v. 2.2 ma .					6P8G					
6R6G	Pentode Amplifier	6AW	6.3	0.3	4.5	11	0.007	Class-A Amplifer	250	-3.0	100		1.2		1050	65.2 ma.		--	606G					
6S6GT	Remote Cuf-off Penlode	5AK	6.3	0.45				R.F. Amplifer					13	35000	1450	1160	-		6R6G					
6S8GT	Triple Diode Triode	8 CB	6.3	0.3	1.2	5	2	Closs-A Amplifier	250	- 2.0	100	3.0		350000	4000	-		-	6S6GT					
6SD7GT	Medium Cut-off Pentode	8 M	6.3	0.3	9	7.5	. 0035	R.F. Amplifer	250	- 2.0	100	1.9	0.9	91000	1100	100			658GT					
6SE7GT	Sharp Cut-off Pentode	8N	6.3	0.3	8	7.5	. 005	R.F. Amplifier ${ }^{\text {a }}$ /idR	250	- 2.0	100	1.9	6.0	$\underline{1000000}$	3600	375		-	6507GT					

table II-6.3-volt glass tubes with octal bases-Continued

Type	Name	Socket Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volfs	Screen Current Ma.	Plate Curren 1 Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	LoadResistanceOhms	Power Outpu Wafts	Type
			Volts	Amp.	In	Out	PloleGrid												
	Penlode R.F. Amp.	88K	6.3	0.3				Class-A Amplifier	250	- 1.0	150	4.1	10.8	900000	4900				6SH7L
6SH7 ${ }^{\text {6ST }}$	Penlode R.F. Amp. Twin Triode	88D	6.3	0.3				Class-A Amplifier	250	- 2.0			$2.3{ }^{1}$	44000	1600	70			6SL7GT
6SL7GT	Twin Triode	8BD	6.3	0.6				Class-A Amplifier	250	-8.0		-	$9.0{ }^{1}$	7700	2600	20	\cdots	-	$\begin{aligned} & \text { 6SN7GT } \\ & \text { 6SN7GTA } \end{aligned}$
$\begin{aligned} & \text { 6NN7GT } \\ & \text { 6SNT7 GTA } \\ & \hline \end{aligned}$	Twin Triode	8BD	6.3	0.6		-	-	Class-A Amplifier	250	- 2.0			2.3	44000	1600	70			6SU7GTY
6SU7 GTY	Twin Triode	8BD	6.3	0.3				Class-A Amplifier	250	- 2.0	100	2.0	10	1000000	5500				6T6GM
6T6GM 10	Amplifier	6Z	6.3	0.45		-	-	Class-A Amplifier	250	-1.0	135	3.0	56	20000	6200		3000	5.5	6U6GT
6U6GT	Beam Power Amplifier	7AC 7 7	6.3	0.75				Closs-A Amplifier	200	- 14.0		Charac	Sistics 8	e as Type 6	26-Table III				6U7G
6U79	Variable- μ Pentode	7R	6.3	0.3	5	9.5	1.7	Class-A Amplifier				Chara	eristics so	ne as Type 8	5-Table III				6V7G
6V76 ${ }^{10}$	Duplex Diode-Triode	7AC	6.3	${ }^{0.3}$	2	3.5	1.7	Class-A Amplifier	135	- 9.5	135	12.0	61.0	-	9000	215	2000	3.3	6WGGT
6W6GT	Beam Power Amplifier	7R	6.3	0.15	5	8.5	. 007	Class-A Amplifier	250	-3.0	100	2.0	0.5	1500000	1225	1850			6W7 G
6X6G	Electron-Ray Tube	7 AL	6.3	0.3				Indicator Tube	250			$0 \times$ for	2 m	v. for 0	ma. Vane	rid 12			6X6G
6Y6G	Beam Power Amplifer	7 AC	6.3	1.25	15	8	0.7	Class-A Amplifier	135	-13.5	135	3.0	60.0	9300	7000		2000	3.6	6Y76
6 Y7 G^{10}	Twin Triode Amplifier	8 B	6.3	0.3		-		Class-B Amplifier				Chora	ristics s	as Type	Table		12000	4.2	
6276	Twin Triode Amplifier	88	6.3	0.3	-	-	-	Class-B Amplifier	180	0		-	6.4				9000	2.5	627G
								Class-A Amplifier	120	-2.0	120	2.5	7.5	390000	4000			-	717A
717 A	Sharp Cut-off Pentode	88K	6.3	0.175				Class-A Amplifler		- 2.0		Cho	acteristics	ame as 6 C6	-Table IV				1223
1223	Sharp Cut-off Pentode	7R	6.3	0.3				Class-B Amplifier	400	0	-		10/63	-			14000	17	1635
1635	Twin Triode Ampliner	888	6.3	0.6	2.48	2.38	3.6 ?		250	- 2			$2.3{ }^{1}$	44000	1600	70	\cdots	-	5691
5691	Hi-Mu Twin Triode	8BD	6.3	0.6	$2.7{ }^{\text {8 }}$	2.78	$3.6{ }^{8}$	Closs-A Amp.	250	- 2									
5692	Medium-Mu Twin Triode	8BD	6.3	0.6	$\begin{aligned} & 2.3^{7} \\ & 2.6^{8} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5^{7} \\ & 2.7^{8} \\ & \hline \end{aligned}$	$\begin{aligned} & 3.57 \\ & 3.38 \end{aligned}$	Closs-A Amp.	250	9	-	-	6.51	9100	2200	18			5692
5881	Beam Power Amp.	7 AC	6.3	0.9				Audio Amplifier	Characteristics same as 6L6, Table I										5881
7000	Low-Noise Amplifer	7R	6.3	0.3			\cdots	Class-A Amplifier	Characleristics same as Type 6J7-Table										7000
* Cathode resistor-ohms. 1 Per plate.		${ }^{2}$ Screen tied to plate. ${ }^{3}$ Through 20,000-ohm dropping resistor.						- Values are for single tube. Values are for two tubes in push-pull.				- Plate-lo-plate value. 7 No. 1 triode.			${ }^{8}$ No. 2 friode. ${ }^{2}$ Peak a.f. volts G-G.			${ }^{10}$ Discontinued. ${ }^{11}$ Max, value.	

TABLE III-7-VOLT LOCK-IN-BASE TUBES
For other lock-in-base Iypes see Tables VIII, IX, and X

Type	Name	Socket Connections	Healer		Capocitonce $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	Screan Volis	Screen Current Mo.	Plote Current Ma.	Plate Resistonce Ohms	Transconductonce Micromhos	Amp. Factor	Load Resisfance Ohms	Power Oufput Watts	Type
			Volis	Amp.	In	Oul	PlafeGrid												
744	Triode Amplifler	5AC	7.0	0.32	3.4	3	4	Class-A Amplifier	250	-8.0	-		9.0	7700	2600	20			7 A4
7 A5	Beam Power Amplifier	6AA	7.0	0.75	13	7.2	0.44	Closs-A Amplifier	125	- 9.0	125	3.2/8	37.5/40	17000	6100		2700	1.9	$7 A 5$
$7 \mathrm{A6}$	Twin Diode	7AJ	7.0	0.16				Rectifier		Max. A.C. valts per plate-150. Max. Output curreni- 10 ma									7 A 6
7A7	Remole Cut-off Pentode	8 V	7.0	0.32	6	7	. 005	Class-A Amplifier	250	- 3.0	100	2.0	8.6	800000	2000	1600	-	-	7A7
7 78	Mulligrid Converter	8 O	7.0	0.16	7.5	9.0	0.15	Converter	250	-3.0	100	3.1	3.0	50000	Anode-grid 250 volis max. ${ }^{1}$				7 AB
7 AD7	Pentode	8 V	6.3	0.6	11.5	7.5	0.03	Class-A Amp.	300	68*	150	7.0	28.0	300000	9500	-			7AD7
7AF7	Twin Triode	8AC	6.3	0.3	2.2	1.6	2.3	Class-A Amp.	250	-10			9.0	7600	2100	16			$7 \mathrm{FAF7}$
$7 A G 7$	Sharp Cut-aff Pentode	8 V	7.0	0.16	7.0	6.0	0.005	Class-A Amp.	250	250*	250	2.0	6.0	750000	420			-	7AG7
7AH7	Pentode Amplifier	8 V	6.3	0.15	7.0	6.5	0.005	Closs-A1 Amplifier	250	250*	250	1.9	6.8	1000000	3300				7AN7
7AJ7	Sharp Cut-off Pentode	8 V	6.3	0.3	6.0	6.5	0.007	Closs-A1 Amp.	250	-3 -1	100	0.7 1.8	$\mathbf{2 . 2}$	1 Mog.	1575		-		7AJ7
784	High $-\mu$ Triode	5AC	7.0	0.32	3.6	3.4	1.6	Class-A Amplifer	250	-2.0	- -		0.9	66000	1500	100		-	784
785	Pentode Power Amplifier	6AE	7.0	0.43	3.2	3.2	1.6	Class-A, Amplifier	250	-18.0	230	5.5/10	32/33	68000	2300		76	3.4	785
7B6	Duo-Diode Triode	8 W	7.0	0.32	3.0	2.4	1.6	Class-A Amplifier	250	-2.0		2.	1.0	91000	10	100			786
787	Remote Cut-off Pentode	8 V	7.0	0.16	5	7	. 005	Class-A Amplifer	250	-3.0	100	2.0	8.5	70000	1700	1200			787
788	Pentagrid Converter	8 X	7.0	0.32	10.0	9.0	0.2	Converter	250	-3.0	100	2.7	3.5	360000	Anode-grid 250 volis max. ${ }^{1}$				78

[^14]TABLE III-7-VOLT LOCK-IN-BASE TUBES-Continued

TABLE IV-6.3-VOLT GLASS RECEIVING TUBES

Type	Name	Base	Socket Connec. tions	Fil. or Healer		Capacitence μ / fd.			Uso	Plate Supply Volis	Grid Bias	Screen Volls	Screen Cusprent Ma.	Plato Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Faclor	Load Resistance Ohms	Power Output Watts	Type
				Volts	Amp.	In	Out	PicteGrid												
$\begin{aligned} & 2 \mathrm{C21/} \\ & 1642 \end{aligned}$	Twin-Triode Amplifier	M.	7BH	6.3	0.6	-	-	-	Class-A Amp.	250	-16.5	-	-	8.3	7600	1375	10.4	-	-	$\begin{aligned} & 2 C 27 / \\ & 1642 \end{aligned}$
$6 A^{3}$	Triode Power Amplifier	M.	4D	6.3	1.0	7.0	5.0	16.0	Class-A Amp.	250	-45	\cdots	-	60	805	5250	4.2	2500	3.5	6A3
									Class $A B_{1}$ Amp. ${ }^{10}$	$\begin{array}{r} 300 \\ 300 \\ \hline \end{array}$	$\begin{gathered} -62 \\ 850 \\ \hline \end{gathered}$	Fixad Bias Salf Bias		$\begin{aligned} & 80 \\ & 80 \end{aligned}$	-	-	-	$\begin{aligned} & 300011 \\ & 500011 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	
6A4*	Pentode Power Amplifier	M.	5B	6.3	0.3	-			Class-A Amp.	180	-12.0	180	3.9	22	60000	2500	150	8000	1.5	6 44
6 646	Twin Triode Amplifier	M.	78	6.3	0.8	-	90	-	Class-B Amp. P.P.	$\begin{array}{r} 250 \\ 300 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	-	-	Power oulput is for one tube of sfated load, plate-to-plate				$\begin{array}{r} 8000 \\ 10000 \end{array}$	$\begin{array}{\|r\|} 8.0 \\ 10.0 \\ \hline \end{array}$	6A6
6A7 6 6B5/6N5	Penlagrid Converter	5.	7C 6R	6.3	0.3 0.15	8.5	9.0	0.3	Converter Indicator Tube	250	- 3.0	100	2.2	3.5	360000	Anode grid (No. 2) 200 volis max.) 200 volis max.		6A7
6AFGG		s.	7AG	6.3	0.15				Indicator Tube	180	Cut-off Grid dias $=-12 \mathrm{v}$.			0.5		Target Current 2 mo.				6AB3/6N5
6AF6G	Twin Indicator Type	s.	7 AG	6.3	0.15	-	-	-	Indicator Tube	$\begin{aligned} & 133 \\ & 100 \end{aligned}$	Roy Control Voltage $=81$ for 0° Shadow Angle. Target current 1.5 mo . Ray Control Voltage $=60$ for 0° Shadow Angle. Target current 0.9 ma .									6AF6G

TABLE IV-6.3-VOLT GLASS RECEIVING TUBES-Continued

table V-2.5-VOlt receiving tubes

Type	Name	Base	Socket ConnecNons	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plale Supply Volts	Grid Bies	Screen Volts	Sereen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	Load ResistanceOhms Ohms	Power Output Watts	Type
				Volts	Amp.	In	Out	PlateGrid												
	Duodiode	M.	50	2.5	1.35				Detector		At 50 d.c. Volts per plate, cathode ma. $=80$									2S/4S
2S/4S	Triode Power Amplifier	M.	4D	2.5	2.5	7.5	5.5	16.5	Class-A Amp.		Characteristics same as Type 6A3, Table IV									2A3
2A5	Pentode Power Amplifier	M.	68	2.5	1.75				Class-A Amp.		Characteristics same as Type 42, Table IV									2 A5
2A6	Duplex-Diode Triode	S.	6G	2.5	0.8	1.7	3.8	1.7	Class-A Amp.		Characteristics same as Type 75, Table IV									2A6
2A7	Pentogrid Convertor	5.	7 C	2.5	0.8				Converter		Characteristies same as Type 6A7, Table IV									247
286	Direct-Coupled Amplifier	M.	73	2.5	2.25				Amplifier	250	-24.0	-		40.0	5150	3500	18.0	5000	4.0	286
287	Duplex-Diode Pentode	S.	70	2.5	0.8	3.5	9.5	. 007	Pentode Amp.		Characteristics same as Type 687 -Table IV									287
2 E 5	Electron-Ray Tube	S.	6R	2.5	0.8				Indicator Tube		Characteristics same as Type 6E5-Table IV									2 ES
2G5	Electron-Ray Tube	5.	6R	2.5	0.8				Indicator Tube		Characteristics same as 6U5/6G5-Table IV									$2 \mathrm{G5}$
24-A	Tetrode R.F. Amplifier	M.	5E	2.5	1.75	5.3	10.5	. 007	Screen-Grid R.F. Amplifier	250	- 3.0	90	1.7	4.0	600000	1050	630	-	-	24-A
									Bias Detector	250	- 5.0	20/45	Plate current adjusted to 0.1 ma . with no signal							
27	Triode Detector-Amplifier	M.	5A	2.5	1.75	3.1	2.3	3.3	Class-A Amp.	250	-21.0			5.2	9250	975	9.0			27
									Bias Dafector	250	-30.0		Plate current adjusted to 0.2 ma . with no signal							
35/51	Remote Cut-off Pentode	M.	$5 E$	2.5	1.75	5.3	10.5	. 007	Screen-Grid R.F. Amplifier	250	- 3.0	90	2.5	6.5	400000	1050	420	-	-	35/51
45	Triode Power Amplifier	M.	40	2.5	1.5	4	3		Class-A Amp.	275	-56.0		-	36.0	1700	2050	3.5	4600	2.00	45
								7	Class-A Amp. ${ }^{\text {a }}$	250	-33.0			22.0	2380	2350	5.6	6400	1.25	46
46	Dual-Grid Power Amp.	M.	5 C	2.5	1.75				Class-B Amp. ${ }^{3}$	400	0			12	Power oulput for 2 tubes			5800	20.0	
47	Pentode Power Amplifier	M.	58	2.5	1.75	8.6	13	1.2	Class-A Amp.	250	-16.5	250	6.0		60000	2500	150	7000	2.7	47
53	Twin Triode Amplifiar	M.	78	2.5	2.0				Class-B Amp.		Characleristics same as Type 6A6, Table IV									53
55	Duplex-Diode Triode	5.	6 G	2.5	1.0	1.5	4.3	1.5	Class-A Amp.		Characteristics same as Type 85, Table IV									55
56	Triode Amplifier, Delector	S.	5A	2.5	1.0	3.2	2.4	3.2	Class-A Amp.		Characleristics same as Type 76, Table IV									56
57	Sharp Cul-off Pentode	5.	6 F	2.5	1.0				R.F. Ampllifier	250	-3.0	100	0.5	2.0	1500000	1225	1500	-		57
58	Remote Cut-off Pentode	S.	6 F	2.5	1.0	4.7	6.3	. 007	Screen-Grid R.F. Amplifier	250	- 3.0	100	2.0	8.2	800000	1600	1280	-	-	58
			7A	2.5	2.0				Class-A Triode ${ }^{4}$	250	-28.0		9.0	26.0	2300	2600	6.0 100	5000	1.25	59
59	Pentode Power Amplifier	M.		2.5	2.0				Class-A Pentode ${ }^{2}$	250	-18.0	250	9.0	35.0	40000	2500	100	6000	3.0	
RK15	Triode Power Amplifier	M.	$4 \mathrm{Cl}^{1}$	2.5	1.75				Characleristics same as Type 46 with Class-8 connections											RK15
RK16	Triode Power Amplifier	M.	5A	2.5	2.0				Characteristics same as Type 59 with Class-A triode connections											
RK17	Pentode Power Amplifier	M.	5 F	2.5	2.0				Charactoristics same as Type 2A5											RK17

TABLE VI-2.0-VOLT BATTERY RECEIVING TUBES

Typo	Name	Base	Socket Connecfions	Filament		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plale Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Mieromhos	Amp. Factor	Load Resistonce Ohms	Power Outpu Walts	Type
				Volts	Amp.	In	Out	PlateGrid												
1A4P	Variable- μ Pentodo	S.	4M	2.0	0.06	5	11	. 007	R.F. Amplifier	180	-3.0	67.5	0.8	2.3	1000000	750	750			1A4P
1A4T	Variable- μ Tetrode	5.	4K	2.0	0.06	5	11	. 007	R.F. Amplifier	180	-3.0	67.5	0.7	2.3	960000	750	720			IA4T
lab	Pentagrid Converter	S.	61	2.0	0.06				Converfer	180	-3.0	67.5	2.4	1.3	500000	Anode grid	(No. 2)) 180 max.	volis	1 A6
1B4P/951	Pentode R.F. Amplifier	S.	4M	2.0	0.06	5	11	. 007	R.F. Amplifier	$\begin{array}{r} 180 \\ 90 \end{array}$	-3.0 -3.0	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 1500000 \\ & 1000000 \end{aligned}$	$\begin{aligned} & 650 \\ & 600 \end{aligned}$	$\begin{array}{r} 1000 \\ 550 \\ \hline \end{array}$	-	-	$184 \mathrm{P} / 951$
185/25S	Duplex-Diode Triode	s.	6 M	2.0	0.06	1.6	1.9	3.6	Triode Closs-A	135	-3.0			0.8	35000	575	20			185/25S

TABLE VI-2.0-VOLT BATTERY RECEIVING TUBES—Continued

table vil-2.0-volt battery tubes with octal bases

Typo	Namo	5ocket Connestions	Filament		Copacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Rosistance Ohms	Transeonductance Micromhos	Amp. Factor	Load Resistance Ohms	Powor Oufput Watts	Type
			Volts	Amp.	In	Out	PlateGrid												
IC7G	Heplode	7Z	2.0	0.06	10	14	0.26	Converter	Characteristics same as Type 1C6-Table Vi										1C7G
105GP	Variable- μ Pentode	5Y	2.0	0.06	5	11	. 007	R.F. Amplifier	Characteristics same as Type IA4P-Table VI										105GP
105GT	Variable- μ Tetrode	5R	2.0	0.06	-			R.F. Amplifier	180	-3.0	67.5	0.7	2.2	600000	650				105GT
1D7G	Pentagrid Converter	72	2.0	0.06	10.5	9.0	0.25	Converter			Characteristics same as Type 1A6-Table VI								107 G
1E5GP	Pentode Amplifier	5 Y	2.0	0.06	5	11	. 007	R.F. Amplifier			Charocieristics some as Type 184-Table VI								1E5GP
$1 E 7 \mathrm{G}$	Double Pentode Power Amp.	8 C	2.0	0.24			-	Class-A Amplifier	135	-7.5	135	2.01	6.51	220000	1600	350	24000	0.65	187G
1F5G	Pentode Power Amplifier	6X	2.0	0.12				Class-A Amplifier	Characteristics same as Type 1F4-Table VI										1F5G
1F7G ${ }^{2}$	Duplex-Diode Pentode	7 AD	2.0	0.06	3.8	9.5	0.01	Delector-Amplifer	Characteristics same as Type 1F6-Table VI										1F7G
1G5G	Pentode Power Amplifier	6X	2.0	0.12				Closs-A Amplifier	135	-13.5	135	2.5	8.7	160000	1550	250	9000	0.55	1G5G
1H4G	Triode Amplifier	55	2.0	0.06				Delector-Amplifier	Characteristics same as Type 30-Table VI										1H4G
1H6G	Duplex-Diode Triode	7AA	2.0	0.06	1.6	1.9	3.6	Detector-Amplifier	Characteristics some as Type 185-Table VI										1H6G
1J5G ${ }^{\text {a }}$	Pentode Power Amplifier	$6 \times$	2.0	0.12				Class-A Amplifier	135	-16.5	135	2.0	7.0	-	950	100	13500	0.45	1J5G
$116 G T$	Twin Triode	$7 A B$	2.0	0.24				Class-8 Amplifier			Characteristics same as Type 19-Table VI								1J6G
4A6G	Twin Triode	81	2.0	0.12				Class-A, 1 section		- 1.5		-		26600	750	20			4A6G
4A6G	Twin Triode	8	4.0	0.06				Class-B, 2 sections	90	-1.5		-	$10.8{ }^{3}$				8000	1.0	4A6G

\# Discontinued.
${ }^{1}$ Total current for both sections; no signal.
${ }^{3}$ Max. signol.

TABLE VIII-1.5-VOLT FILAMENT BATTERY TUBES
See also Table X for Special 1.4-voli Tubes

Type	Name	Base	Socket Connections	Filament		Copacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Curreni Ma.	Plate Current Mo.	Plale Resistance Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Outpul M-watts	Type
				Volts	Amp.	In	Out	PlateGrid												
1A5GT	Penlode Power Amplifler	0.	6 X	1.4	0.05	-	-	-	Class-A, Amp.	90	-4.5	90	0.8	4.0	300000	850	240	25000	115	IA5GT
1A7GT	Pentagrid Converter	0.	72	1.4	0.05	Osc. Grid leak 200000st			Converter	90	0	45	0.7	0.6	600000	250	Anode-grid volts 90		-	IA7GT
1 AB5	Pentode R.F. Amplifler	L.	5BF	1.2	0.05	2.8	4.2	0.25	R.F. Amplifier	90	0 -1.5	90 150	0.8 2.0	3.5 6.8	275000 125000	1100		-	-	1 AB5
187GT	Heptode	0.	72	1.4	0.1		-	-	Converter	90	0	45	1.3	1.5	350000	Grid No. 1 resistor 200,000 ahms				1B7GT
1B8GT	Diode Triode Pentode	O.	8AW	1.4	0.1	-	-	-	Triode Amplifler Penlode Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -6.0 \end{gathered}$	90	1.4	$\begin{aligned} & 0.15 \\ & 6.3 \end{aligned}$	$\underline{240000}$	$\begin{array}{r} 275 \\ 1150 \end{array}$	$=$	$\overline{14000}$	$\overline{210}$	188 GT
IC5GT	Pentode Power Amplifler	0.	6X	1.4	0.1				Class-A Amp.	90	-7.5	90	1.6	7.5	115000	1530	165	8000	240	IC5GT
1D8GT	Diode Triode Pentode	0.	8AJ	1.4	0.1	-	-	-	Triode Amp. Pentode Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{array}{r} 0 \\ -9.0 \\ \hline \end{array}$	90	1.0	$\begin{aligned} & 1.1 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 43500 \\ 200000 \end{array}$	$\begin{aligned} & 575 \\ & 925 \end{aligned}$	25	-	二-	108GT
IE4G	Triode Amplifier	0.	5S	1.4	0.05	2.4	6	2.40	Closs-A Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -3.0 \end{gathered}$	-	-	$\begin{aligned} & 4.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 11000 \\ & 17000 \end{aligned}$	$\begin{array}{r} 1325 \\ 825 \end{array}$	$\begin{aligned} & 14.5 \\ & 14^{2} \end{aligned}$	-	-	1E4G
1G4GT	Triode Amplifer	0.	5 S	1.4	0.05	2.2	3.4	2.80	Class-A Amp.	90	-6.0			2.3	10700	825	8.8	-	- 1	1G4GT
IG6GT	Twin Triode	0.	7 AB	1.4	0.1		-		Class-A Amp.	90	0			1.0	45000	675	30		-	
	Twin Triode								Class-B Amp.	90	0		-	1/7	34 volis	Is input per g	grid	12000	675	G6GT
IH5GT	Diode High- μ Triode	0.	52	1.4	0.03	1.1	6	1.00	Closs-A Amp.	90	0	-		0.14	240000	275	65			1H5GT
ILA4	Pentode Power Amplifier	1.	5AD	1.4	0.05				Class-A Amp.	90	Characteristics same as 1A5GT									ILA4
ILA6	Pentagrid Converter	L.	7AK	1.4	0.05	$\begin{aligned} & \text { Osc. Grid leak } \\ & 2000008 \end{aligned}$			Converter	90	0	45	0.6	0.55	750000	250	Anode Grid Volts 90			ILA6
1184	Pentode Power Amplifler	L.	5AD	1.4	0.05	-	-	-	Class-A Amp.	90	-9	90	1.0	5.0	200000	925	-	12000	200	1184
1186	Heplode Converter	1.	8AX	1.4	0.05				Converter	90	0	67.5	2.2	0.4	Grid No. 4-67.5 v., No. 5-0 v.					1286
ILC5	Remote Cut-off Pentode	L.	7AO	1.4	0.05	3.2	7	. 007	R.F. Amplifier	90	0	45	0.2	1.15	1500000	775				ILC5
1LC6	Pentagrid Converler	L.	7AK	1.4	0.05	Osc. Grid leak 200000			Convertor	90	0	351	0.7	0.75	650000	275	Anode Grid Volis 45			1tc6
$1 \mathrm{DD5}$	Diode Pentode	1.	6AX	1.4	0.05	3.2	6	0.18	Class-A Amp.	90	0	45	0.1	0.6	950000	600	-	-	-	1105
1LE3	Triode Amplifier	L.	4AA	1.4	0.05	1.7	3	1.70	Class-A Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{array}{r} 0 \\ -3 \end{array}$	-	-	$\begin{aligned} & 4.5 \\ & 1.3 \end{aligned}$	$\begin{array}{r} 11200 \\ 19000 \end{array}$	$\begin{array}{r} 1300 \\ 760 \end{array}$	14.5	-	-	lle3
1LG5	Pentode R.F. Amp.	1.	7AO	1.4	0.05	I			Class-A Amp.	90	0	45	0.4	1.7	1000000	800		-		ILG5
1LH4	Diode High- μ Triode	L.	5AG	1.4	0.05	1.1	6	1.00	Class-A Amp.	90	0	-	-	0.15	240000	275	65	-		1LH4
12N5	Remote Cut-off Pentode	1.	740	1.4	0.05	3.4	8	. 007	Closs-A Amp.	90	0	90	0.3	1.2	1500000	750		-	- 1	ILN5
INSGT	Remote Cut-off Pentode	0.	5 Y	1.4	0.05	3	10	. 007	Class-A Amp.	90	0	90	0.3	1.2	1500000	750	1160			IN5GT
IN6G \#	Diode-Power-Pentode	0.	7AM	1.4	0.05				Class-A Amp.	90	-4.5	90	0.6	3.1	300000	800	-	25000	100	IN6G
1 P5GT	Pentode	0.	5 Y	1.4	0.05	3	10	. 007	R.F. Amplifier	90	0	90	0.7	2.3	800000	800	640			1P5GT
105GT	Tetrode Power Amplifler	0.	6AF	1.4	0.1	-	-	\square	Class-A Amp.	$\begin{aligned} & 85 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & -5.0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & 85 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.2 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 70000 \\ 75000 \\ \hline \end{array}$	$\begin{aligned} & 1950 \\ & 2100 \end{aligned}$	-	$\begin{aligned} & 9000 \\ & 8000 \end{aligned}$	$\begin{array}{r} 250 \\ 270 \end{array}$	105GT
1R4/1294	U.h.f. Diode	L.	4AH	1.4	0.15				Rectifier	Max. r.m.s. voltage per plate-30					Max. d.c. outpul current-340 $\mu \mathrm{a}$.					1R4/1294
ISAGGT	Medium Cut-ofl Pentode	0.	6CA	1.4	0.05	5.2	8.6	0.01	R.F. Amplifer	90	0	67.5	0.68	2.45	800000	970		.	- 1	1SAGGT
1SB6GT	Diode Pentode	0.	6CB	1.4	0.05	3.2	3	0.25	Class-A Amp.	90	0	67.5	0.38	1.45	700000	665		-	- 1	
									R.C. Amplifor	90	0	90	Screen resistor 5 meg., grid 10 meg.					1 meg .	110^{2}	ISB6GT
TT5GT	Beam Power Amplifier	0.	6AF	1.4	0.05	4.8	8	0.50	Class-A Amp.	90	-6.0	90	1.4	6.5	-	1150		14000	170	1T5GT
$387 / 1291$	U.h.f. Twin Triode	1.	7BE	$2.8{ }^{3}$	0.11	1.4	2.6	2.6	Closs-A Amp.	90	0	-	-	5.2	11350	1850	21	-	- 3	387/1291
1293	U.h.f. Triode	1.	4AA	1.4	0.11	1.7	3.0	1.7	Class-A Amp.	90	0	-		4.7	10750	1300	14	-		1293
306/1299	U.h.f. Tetrode	L.	68B	$2.8{ }^{\text {3 }}$	0.11	7.5	6.5	0.30	Class-A Amp.	135	-6	90	0.7	5.7	-	2200	-	13000	500	306/1299
3 E6	R.F. Pentade	L.	7 CJ	$\begin{aligned} & 1.4 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.05 \\ & \hline \end{aligned}$	5.5	7.5	0.007	Class-A Amp.	90	0	90	1.3	3.8	300000	2100	-	-	- 3	3E6
RK42	Triode Amplifier	S.	40	1.5	0.6	-	-	-	Class-A Amp.		Characteristics same as Type 30-Table Vi									RK42
RK43	Twin Triode Amplifier	5.	6 C	1.5	0.12		-	-	Class-A Amp.	135	-3	-	-	4.5	14500	900	13	-	-	RK43

\#Discontinued.
${ }^{1}$ Throuah series resistor. Seraen voltaga must ha at lenet 10 valte inwar than neriliminp amade

TABLE IX-HIGH-VOLTAGE HEATER TUBES

Type	Name	Base	Sockes Connec. fions	Hoater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volis	Screen Current Mo.	Plate Current Ma.	PlateResistanceOhms	Transconduclance Micromhos	Amp. Factor	Load Resistance Ohms	Power Outpul Watts	Type
				Volts	Amp.	In	Out	PlateGrid												
12A5 ${ }^{\text {8 }}$	Penlode Power Amplifier	M.	7 F	$\begin{array}{r} 12.6 \\ 6.3 \\ \hline \end{array}$	$\begin{aligned} & 0.3 \\ & 0.6 \\ & \hline \end{aligned}$	9.0	9.0	0.3	Class-A ${ }_{1}$ Ampr ${ }^{\text {b }}$	$\begin{aligned} & 100 \\ & 180 \end{aligned}$	$\begin{aligned} & -15 \\ & -25 \\ & \hline \end{aligned}$	$\begin{array}{r} 100 \\ 180 \\ \hline \end{array}$	$\begin{aligned} & 3 / 6.5 \\ & 8 / 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 / 19 \\ & 45 / 48 \\ & \hline \end{aligned}$	$\begin{array}{r} 50000 \\ 35000 \\ \hline \end{array}$	$\begin{array}{r} 1700 \\ 2400 \\ \hline \end{array}$	-	$\begin{aligned} & 4500 \\ & 3300 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 3.4 \end{aligned}$	12As
12A6	Beam Power Amplifior	0.	7AC	12.6	0.15				Class-A Amp.	250	-12.5	250	3.5	30	70000	3000		7500	3.4	12A6
12A7	Rectifier-Amplifier	M.	7K	12.6	0.3				Class-A Amp.	135	-13.5	135	2.5	9.0	102000	975	100	13500	0.55	1247
12A8GT	Heplode	0.	8A	12.6	0.15	9.5	12	0.26	Converter	Characteristics same as 6A8-Tablel										12A8GT
12AH7GT	Twin Triode	0.	8BE	12.6	0.15	Each Triode Sect.			Class-A Amp.	180	-6.5			7.6	8400	1900	16			12AH7GT
12B6M	Diode Triode	0.	6Y	12.6	0.15				Class-A Amp.	250	- 2.0			0.9	91000	1100	100			12B6M
$12 \mathrm{B7ML}$	Pentode Amplifer	0.	8 V	12.6	0.15				Closs-A Amp.	250	- 3.0	100	2.6	9.2	800000	2000				1287 ML
1288GT ${ }^{8}$	Triode-Pentode	0.	8 T	12.6	0.3	Triode Section Pentode Section			Class-A Amp. Class-A Amp.	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & -1 \\ & -3 \end{aligned}$	100	2	$\begin{aligned} & 0.6 \\ & 8 \end{aligned}$	$\begin{array}{r} 73000 \\ 170000 \end{array}$	$\begin{array}{r} 1500 \\ 2100 \end{array}$	$\begin{array}{r} 110 \\ 360 \end{array}$			1288GT
12 Cs	Duplex-Diode Pentode	0.	8 E	12.6	0.15	6	9	. 005	Class-A Amp.	Characteristics same as 6B8-Table I										12C8
12E5GT	Triode Amplifier	0.	60	12.6	0.15	3.4	5.5	2.60	Class-A Amp.	250	-13.5			50	-	1450	13.8	-		12E5GT
12 F GT	Triode Amplifier	0.	5 M	12.6	0.15	1.9	3.4	2.40	Class-A Amp.	Characteristics same as 65F5-Table I										12F5GT
12G7G	Duplex-Diode Triode	0.	7 V	12.6	0.15				Class-A Amp.	250	- 3.0			- 1	58000	1200	70	-		12G7G
12H6	Twin Diode	0.	70	12.6	0.15				Rectifier	Characteristics same as 6H6-Table 1										12H6
12J5GT	Triode Amplifier	0.	60	12.6	0.15	3.4	3.6	3.40	Class-A Amp.	Characterisfics same as $6 \mathrm{J5}$-Table 1										12J5GT
12J7GT	Sharp Cut-off Pentode	0.	7R	12.6	0.15	4.2	5.0	3.8	Class-A Amp.	Characteristics same as 6J7-Table I										12J7GT
12K7GT	Remote Cut-off Pentode	0.	7R	12.6	0.15	4.6	12	. 005	R.F. Amplifier	Characteristics same as 6K7-Table I										12 K 7 GT
12 K 8	Triode Hexode Converler	0.	8K	12.6	0.15				Converter	Characteristics same as 6K8-Table 1										12 K 8
12L8GT	Twin Pentode	0.	8BU	12.6	0.15	5	6	0.70	Class-A1 Amp.	100	-9.0	180	2.8	13.0	160000	2150	-	10000	1.0	12L8GT
$12076 T$	Duplex-Diode Triode	0.	7 V	12.6	0.15	2.2	5	1.60	Class-A Amp.	Characteristics same as 607-Tablel										12a7GT
1258GT	Triple-Diode Triode	0.	8CB	12.6	0.15	2.0	3.8	1.2	Class-A Amp.	250	- 2.0			0.9	91000	1100	100		-	1258GT
125A7	Heptode	0.	8R	12.6	0.15	9.5	12	0.13	Converter	Characieristics same as 65A7-Tablel										12547
125 Cl	Twin Triode	0.	85	12.6	0.15	2.2	3.0	2.0	Class-A Amp.-	Characteristics same as 65C7-Table 1										$125 \mathrm{C7}$
$125 \mathrm{F5}$	High- μ Triode	0.	6AB	12.6	0.15	4	3.6	2.40	Closs-A Amp.	Characteristics same as 6SF5-Tablel										125 F5
12557	Diode Variable- μ Pentode.	0.	7AZ	12.6	0.85	5.5	6.0	. 004	Class-A Amp.	Characteristics same as 65F7-Table I										12557
$125 \mathrm{G7}$	Medium Cut-off Pentode	0.	8BK	12.6	0.15	8.5	7.0	. 003	Class-A Amp.	Characleristics same as 65G7-Table										12567
125H7	Sharp Cut-off Pentode	0.	8BK	12.6	0.15	8.5	7.0	. 003	H-F Amplifier	Characleristics same as 65H7-Table I										$125 \mathrm{H7}$
12517	Sharp Cut-off Pentode	0.	8 N	12.6	0.15		-	-	ClosseA Amp.	Characteristics same as 65J7-Table I										12557
$125 K 7$	Remote Cus-off Pentode	0.	8 N	12.6	0.15	6.0	7.0	. 003	R.F. Amplifior	Characleristics same as 6SK7-Tabla I										$125 \mathrm{S7}$
12517 GT	Twin Triode	0.	880	12.6	0.15	-	-	\square	Class-A Amp.	Characteristics same as 6SL7GT-Table II										125L7 GT
125N7GT	Twin Triode	0.	8BD	12.6	0.3				Closs-A Amp.	Characteristics same as 6SN7GT-Table II										12SN7GT
12507	Duplex-Diode Triode	0.	80	12.6	0.15	3.2	3.0	1.60	Class-A Amp.	Characteristics same as 6507-Table 1										12507
125R7	Duplex-Diode Trriode	0.	80	12.6	0.15	3.6	2.8	2.40	Class-A Amp.	Characteristics same as 6R7-Table 1										12587
125W7	Duplex-Diode Triode	0.	80	12.6	0.15	3.0	2.8	2.4	Class-A A Amp.	250	$\rightarrow 9$	-		9.5	8500	1900	16	-	-	125W7
125×7	Twin Triode	0.	8 BD	12.6	0.3	3.0	0.8	3.6	Class-A1 Amp. ${ }^{5}$	250	-8	-	-	9	7700	2600	20			125×7
125 Y 7	Heptode Converter	0.	8 R	12.6	0.15	Ose.-Grid laak 20000 ohms			Converter	250	- 2	100	8.5	3.5	1000000	450	-	-	-	125Y7
14A4	Triade Amplifier	1.	$5 A C$	14	0.16	3.4	3.0	4.00	Class-A Amp.	Characteristics same as 7 A4-Table III										$14 \mathrm{A4}$
14A5	Beam Power Amplifler	L.	6AA	14	0.16		-	-	Class-A Amp.	250	-12.5	250	3.5/5.5	30/32	70000	3000		7500	2.8	14A5
$\begin{aligned} & 14 A 7 / \\ & 1287 \\ & \hline \end{aligned}$	Remote Cut-off Pentode	L.	8 V	14	0.16	6.0	7.0	. 005	Class-A Amp.	250	- 3.0	100	2.6	9.2	800000	2000	-	-	-	$\begin{aligned} & 14 A 7 / \\ & 12 B 7 / \end{aligned}$
14AF7	Twin Triode	1.	8 AC	14	0.16	2.2	1.6	2,30	Class-A Amp.	250	-10			9	7600	2100	16	-		14AF7
1486	Duplex-Diode Triode	1.	8w	14	0.16	-		-	Class-A Amp.	Characteristies same as 786-Table III										1486
14B8	Pentagrid Converter	L.	$8 \times$	14	0.16	$1 \mathrm{c} 2=4 \mathrm{Ma}$.			Canvertar	Characteristics same as 788-Table III										1488
14C5	Beam Power Amplifler	L.	6AA	14	0.24		-	-	Class-A Amp.	Characteristics same as 6V6-Tablel										$14 \mathrm{C5}$

TABLE IX—HIGH-VOLTAGE HEATER TUBES—Continued

table ix-high-voltage heater tubes-Cominued

table X-special receiving tubes

Type	Name	Base	Socket Connec tions	Fil. or Heoter		Capacitonce $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	Screen Volts	Screen Current Ma.	Plate Curreni Ma.	Plole Resistonce Ohms	Tronsconductance Micromhos	Amp. Factor	Lood Resistance Ohms	Power Outpu Watts	Type
				Volts	Amp.	In	Out	PloteGrid												
00.A ${ }^{1}$	Triode Detector	M.	40	5.0	0.25	3.2	2.0	8.50	Grid-Leak Det.	45				1.5	30000	666	20	-	-	00.4
$01 . A^{7}$	Triade Detector Amplifier	M.	4D	5.0	0.25				Class-A Amp.	135	- 9.0			3.0	10000	800	8.0	-		01-A
3A8GT	Diode Triode Pentode	0.	8AS	1.4	0.1	2.6	4.2	2.0	Class-A Triode	90	0			0.15	240000	275	65			3A8GT
				2.8	0.05	3.0	10.0	0.012	Class-A Pentode	90	0	90	0.3	1.2	600000	750		-		
385GT	Beam Power Amplifier	0.	7AP	$\begin{array}{\|l\|} \hline 1.4 \\ 2.8 \end{array}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	-		-	Class-A Amp.	67.5	-7.0	67.5	$\begin{aligned} & 0.6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.7 \end{aligned}$	100000	$\begin{aligned} & 1650 \\ & 1500 \end{aligned}$	-	5000	$\begin{array}{\|l\|} \hline 0.2 \\ 0.18 \\ \hline \end{array}$	3B5GT
3C5GT	Power Output Pentade	0.	7A0	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	-			Class-A Amp.	90	-9.0	90	1.4	6.0	-	$\begin{aligned} & 1550 \\ & 1450 \end{aligned}$	-	$\begin{array}{r} 8000 \\ 10000 \end{array}$	$\begin{aligned} & 0.24 \\ & 0.26 \end{aligned}$	3C5GT
$3 \mathrm{C6}$	Twin Triode	L.	7BW	$\begin{array}{\|l\|} \hline 1.4 \\ 2.8 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$				Class-A Amp.	90	0	-	-	4.5	11200	1300	14.5	-	-	3C6
3LE4	Power Amplifier Pentode	1.	68A	2.8	0.05				Class-A Amp.	90	-9.0	90	1.8	9.0	110000	1600	-	6000	0.30	3LE4
3LF4	Beam Pentode	L.	6B8	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	-	-	-	Class-A Amp.	90	-4.5	90	$\begin{aligned} & 1.3 \\ & 1.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 8.0 \end{gathered}$	$\begin{aligned} & 75000 \\ & 80000 \end{aligned}$	$\begin{aligned} & 2200 \\ & 2000 \end{aligned}$	-	$\begin{aligned} & 8000 \\ & 7000 \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.23 \end{aligned}$	3LF4
3Q5GT	Beam Power Amplifier	0.	7 AQ	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	Parallel Filaments Series Filaments			Class-A Amp.	90	-4.5	90	$\begin{aligned} & 1.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 2100 \\ & 1800 \end{aligned}$	-	8000	$\begin{aligned} & 0.27 \\ & 0.25 \end{aligned}$	305GT
4A6G		0.	81	4	0.06	Triodes Parollal			Class-A Amp.	90	-1.5			2.2	13300	1500	20	-	-	4A6G
4A6G	Twin Triode Amplifier	0.	81	2	0.12	Both Seclians			Class-8 Amp.	90	0		-	4.6	-	-		8000	1.0	
$6 F 4$	Acorn Triode	A.	78R	6.3	0.225	2.0	0.6	1.90	Class-A Amp.	80	150*			13.0	2900	5800	17	-		$6 F 4$
614	U.H.F. Triode	A.	78R	6.3	0.225	1.8	0.5	1.6	Class-A, Amp.	80	150*			9.5	4400	6400	28	-		61.4
10	Triode Power Amplifler	M.	40	7.5	1.25	4.0	3.0	7.00	Class-A Amp.	425	-39.0		-	18.0	5000	1600	8.0	10200	1.6	10
11/127	Triode Detector Amplifer	M.	4F/4D	1.1	0.25		-	-	Class-A Amp.	135	-10.5	-		3.0	15000	440	6.6	-	-	11/12
20^{7}	Triode Power Amplifier	5.	40	3.3	0.132	2.0	2.3	4.10	Class-A Amp.	135	-22.5	-	-	6.5	6300	525	3.3	6500	0.11	20
227	Tetrode R.F. Amplifier	M.	4K	3.3	0.132	3.5	10	0.02	Closs-A Amp.	135	-1.5	67.5	1.3	3.7	325000	500	160	-		22
26	Triode Amplifier	M.	40	1.5	105	2.8	2.5	8.10	Class-A Amp.	180	-14.5			6.2	7300	1150	8.3	-	- 12	26
40^{7}	Triode Voltage Amplifier	M.	4D	5.0	0.25	2.8	2.2	2.00	Class-A Amp.	180	- 3.0	-		0.2	150000	200	30	-	-	40
50	Triode Power Amplifier	M.	40	7.5	125	4.2	3.4	7.10	Class-A Amp.	450	-84.0	-	-	55.0	1800	2100	3.8	4350	4.6	50

TABLE X-SPECIAL RECEIVING TUBES-Continued

Type	Nome	Base	Sockel Connec tions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Us*	Plate Supply Volts	Grid Bias	ScreenVolts	Screen Current Mo.	Plote Current Ma.	Plate Resistance Ohm:	Trantcon. ductance Micromhos	Amp. Factor		Power Output Wats	Type
				Volis	Amp.	In	Out	Plate: Grid												
71.4	Triode Power Ampliner	M.	40	5.0	0.25	3.2	2.9	7.50	Closs-A Amp.	180	-43.0	-	-	20.0	1750	1700	3.0	4800	0.79	71-A
991 ?	Triode Defector Amplinier	s.	4D	3.3	0.063	2.5	2.5	3.30	Class-A Amp.	90	- 4.5	-	-	2.5	15500	425	6.6			99
112A'	Triode Delector Amplinier	M.	4D	5.0	0.25		-	-	Class-A Amp.	180	-13.5	-	-	7.7	4700	1800	8.5			112A
$\begin{array}{r} 1828 / \\ 4828 \\ \hline \end{array}$	Triode Amplifier	M.	4D	5.0	1.25	-	-	-	Closs-A Amp.	250	-35.0	-	-	18.0	-	1500	5.0	-	-	$\begin{array}{r} 1828 / \\ 4828 \\ \hline \end{array}$
183/483 '	Power Triode	M.	40	5.0	1.25		-	-	Class-A Amp.	250	-60.0		-	25.0	18050	1800	3.2	4500	2.0	183/483
$485{ }^{7}$	Triode	5.	5A	3.0	1.3	-	-		Class-A Amp.	180	- 9.0	-	-	6.0	9300	1350	12.5	\square		485
864	Triode Amplifier	5.	4D	1.1	0.25	-	\cdots	-	Class-A Amp.	90	-4.5			2.9	13505	610	8.2	-		864
954	Pentode Detector,	A.	5B8	6.3	0.15	3.4	3.0	0.007	Class-A Amp.	250	-3.0	100	0.7	2.0	1.5 meg.	1400	2000	-		954
		A.	5 B	0.3	0.13	3.4	3.0	0.007	Bias Detector	250	- 6.0	100	-	Plate current to be adjusted to 0.1 mo. with no signal					-	
955	Triade Detector, Amplifier, Oscillator	A.	5BC	6.3	0.15	1.0	0.6	1.40	Class-A Amp.	250	- 7.0	-		6.3	11400	2200	25		-	955
										90	- 2.5			2.5	14700	1700	25			
956	Variable- μ Pentode R.F. Amplifier	A.	5BE	6.3	0.15	3.4	3.0	0.007	Class-A Amp. Mixer	250	-3.0 -10.0	100	2.7	6.7	700000	1800	1440			936
										250	-10.0	100			Oscillator peak vales-7 min.					
957	$\begin{gathered} \text { Triode Detector, } \\ \text { Amplifler, Oscillator } \\ \hline \end{gathered}$	A.	5BD	1.25	0.05	0.3	0.7	1.20	Clast-A Amp.	135	-5.0	-	-	2.0	20800	650	13.5	-	-	957
$\begin{array}{r} 958 \\ 958-\mathrm{A} \\ \hline \end{array}$	Triode A.F. Amplifier, Oscillator	A.	58D	1.25	0.1	0.6	0.8	2.60	Closs-A Amp.	135	- 7.5	-	-	3.0	10000	1200	12	-	-	$\begin{array}{l\|} \hline 958 \\ 958-\mathrm{A} \end{array}$
939	Pentode Detector, Amplifier	A.	58E	1.25	0.05	1.8	2.5	0.015	Class-A Amp.	145	-3.0	67.3	0.4	1.7	800000	600	480	-		959
7E5/1201	U.h.f. Triode	L.	88N	6.3	0.15	3.6	2.8	1.50	Class-A Amp.	180	-3	-	-	5.5	12000	-	36	-		7E5/1201
7C4/1203	U.h.f. Diode	L.	4AH	6.3	0.15			-	Rectifor		Max. r.m.s. voltage- 150				Max. d.c. output current-8 ma.					7C4/1203
$\begin{aligned} & \hline 7487 / \\ & 1204 \end{aligned}$	Sharp Cut-off Pentode	1.	8 BO	6.3	0.15	3.5	4.0	0.06	Class-A Amp.	250	- 2	100	0.6	1.75	800000	1200	-	-	-	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline 1204 \end{array}$
1276	Triode Power Amplifier	M.	40	4.5	1.14	-			Class-A Amp.		Characteristics similar to 6A3									1276
1609	Pentode Amplifer	5.	58	1.1	0.25		-		Closs-A Amp.	135	- 1.5	67.5	0.65	2.5	400000	725	300			1609
5768	U.h.f. "Rocket" Triode	N.	Fig. 36	6.3	0.4	1.2	0.01	1.3	$\begin{array}{\|c} 1000-3000-\text { Mc. } \\ \text { Amplifier } \end{array}$	250	- 1	-	-	9.3	-	4500	35	\square		5768
9004	U.h.f. Diode	A.	48.5	6.3	0.15		\cdots	-	Detector	Max. a.c. voltage-117. Max. d.c. output current-5 ma.										9004
9005	U.h.f. Diode	A.	586	3.6	0.165		-		Delector	Max. a.c. voltage -117 . Max. d.c. oulput current-1 ma.										9005
EF-50	Sharp Cut-off Pentode	1.	9 C	6.3	0.3	8	5	0.007	I.F.-R.F. Amp.	250	150*	250	3.1	10	600000	6300	-	-		EF-50
$\begin{aligned} & \text { GI-2C44 } \\ & \text { GI-464A } \\ & \hline \end{aligned}$	U.h.f. Triode	0.	Fig. 17	6.3	0.75	-	-	-	Class-A Amp. and Modulator	250	100*	-	-	25.0	\square	7000	-	-	-	$\begin{aligned} & \text { CL-2C4A } \\ & \text { GL-464A } \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{GI}-446 \mathrm{~A} \\ & \mathrm{G}(-446 \mathrm{~B} \\ & \hline \end{aligned}$	U.h.f. Triode	0.	Fig. 19	6.3	0.75	-	-	-	Oscillator, Amp. or Converter	250	200*	-	-	15.0	-	4500	45	-	-	$\begin{aligned} & G L-446 A \\ & G L-446 B \\ & \hline \end{aligned}$
$\begin{aligned} & 559 \\ & \mathbf{G L} .559 \\ & \hline \end{aligned}$	U.h.f. Diode	0.	Fig. 18	6.3	0.75	-	-	-	Detector or trans. line switch	5.0	-	-	-	24.0	-	-	-	-	-	$\begin{aligned} & \mathbf{5 5 9} \\ & \mathbf{G l . 5 5 9} \\ & \hline \end{aligned}$
NU-2C35	Special Hi-Mu Triode	O.	Fig. 38	0.3	0.3	5.2	2.3	0.62	Shunt Voltage Regulator	8000	-200	-	\cdots	5.0	525000	950	500	-	\cdots	NU-2C35
VT52	Triode	M.	4D	7.0	1.18	5.0	3.0	7.7	Class-A, Amp.	220	-43.5	\cdots	-	29.0	1650	2300	3.8	3800	1.0	VT52
$\times 6030$	Dlode	L.	Fig. 4	3.0	0.6		-		Noise Diode	90	-	-	-	4.0	-	-	-	-	-	$\times 6030$
XXB	Twin-Triode Frequency Converter	L.	Fig. 9	$\begin{aligned} & 2.8 / \\ & 1.4 \\ & 3.24 / \\ & 1.6 \end{aligned}$	0.05 / 0.10 \qquad \qquad	-	-	-	Converter ${ }^{1}$	90 :	$\begin{array}{r} 0 \\ -3 \end{array}$		ـ	$\begin{aligned} & 4.54 \\ & 4.54 \\ & 1.44 \\ & 1.41 \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline 11200 \\ 11200 \\ 1900 \\ 1900 \\ \hline \end{array}$	$\begin{aligned} & 13004 \\ & 1300: \\ & 7604 \\ & 760: \\ & \hline \end{aligned}$	$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$		\longrightarrow	XX8
XXFM	Twin-Diode Triode	1.	882	6.3	0.3	-	-	-	Class-A Amp.	$\begin{aligned} & 250 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{r} -1 \\ 0 \end{array}$	-	-	$\begin{aligned} & 1.9 \\ & 1.2 \end{aligned}$	$\begin{array}{r} 6700 \\ \mathbf{8 5 0 0 0} \\ \hline \end{array}$	$\begin{aligned} & 1500 \\ & 1000 \\ & \hline \end{aligned}$	$\begin{array}{r} 100 \\ 85 \\ \hline \end{array}$	$=$	\square	XXFM

table XI-MINIATURE RECEIVING TUBES
Other miniature types in Tables XIII and $X V$

TABLE XI-MINIATURE RECEIVING TUBES—Continued

TABLE XI - MINIATURE RECEIVING TUBES - Consinued

Type	Name	Base	Socket Connerfions 1	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	Screen Volts	Screan Current Ma.	Piate Current Ma.	PlateResistanceOhms	Transeonductance Mieromhos	Amp. Faclor 4	LoadResistanceOhms	Power Outpul Watls	Prototype
				Volts	Amp	In	Out	PlateGrid												
12AT6	Duplex Diode Triode	B.	781	12.6	0.15	2.3	1.1	2.10	Class-A Amp.	250	- 3.0			1.0	58000	1200	70	-		12Q7GT
12 A17	Double Triode	B.	94	6.3	0.3	$2.5{ }^{7}$	$0.45{ }^{\text {7 }}$	1.45 ${ }^{\text {\% }}$	Class-A1 Amp. Each Unit	250	-12		-	10	10000	5500	55	-		
				12.6	0.15	2.58	$0.35{ }^{8}$	1.458		180	-1			11	9400	6600	62			
12AU6	Sharp Cut-off Penlode	B.	7CC	12.6	0.15	5.5	5.0	. 0035	Class-A Amp.	250	- 1.0	150	4.3	10.8	1 meg.	5200	-			12SH7GT
12AU7	Twin-Triade Amplifier	B.	9 A	6.3	0.3	1.67	0.57	1.57	Class-A Amp.	250	-8.5	-	-	10.5	7700	2200	17	\square		12SN7GT
				12.6	0.15	$1.6{ }^{6}$	$0.35{ }^{8}$	1.58												
12AVB	Duadiode Mi-mu Triode	B.	7 BT	12.6	0.15				Class-A, Amp.	250	2			1.2	62500	1600	100			
12AW6	Sharp Cut-off Pentode	B.	7 CM	12.6	0.15	6.5	1.5	0.025	Pentode Amp.	250	200*	150	2.0	7.0	800000	5000		-		
12AW6									Triode Amp. ${ }^{\text {a }}$	250	825*			5.5	11000	3800	42			
12AW7	Sharp Cut-off Pentode	B.	7CM	12.6	0.15	6.5	1.5	0.025	Class-A, Amp.	250	200*	150	2.0	7.0	0.8 meg.	5000				
12AX7	Double Triode	B.	9A	12.6	0.15	$1.6{ }^{7}$	0.46 ?	1.7%	Closs-A1 Amp.	250	- 2			$1.2{ }^{1}$	62500	1600	100			
				6.3	0.3	$1.6{ }^{8}$	$0.34{ }^{8}$	$1.7{ }^{8}$		100	- 1			0.51	8000	1250	100			
12AY7	Dual Triode	B.	9 A	12.6	0.15	1.3	0.6	1.3	Class-A Amp.	250	- 4		-	3		1750	40			
12AV					0.3				Lo-Level Amp.	150	2700*		Plato resistor $=20000 \Omega$. Grid resistor $=0.1$ Mag. V.G. $=12.5$							
128A6	Remote Cul-off Penfode	B.	7CC	12.6	0.15	5.5	5.0	. 0035	Class-A Amp.	250	68*	100	4.2	11.0	1500000	4400				125G7G
$12 B A 7$	Pentagrid Converter	B.	8CT	12.6	0.15	9.5	8.3	-	Converter	250	- 1	100	10	3.8	1000000	3.5				-
12BD6	Ramote Cul-off Pentode	B.	7CC	12.6	0.15	4.3	5.0	004	Ciass-A Amp.	250	- 3	100	3.5	9.0	700000	2000				12SK7GT
12BE6	Pentagrid Converter	B.	7CH	12.6	0.15	Osc. Grid 50000Ω			Converter	250	- 1.5	100	7.8	3.0	1000000	475				12SA7GT
12BF6	Duadiode Triade	B.	7BT	12.6	0.15	1.8	1.1	2.00	Class-A Amp.	250	-9		-	9.5	8500	1900	16			12SR7GT
128H7	Dual Triode	B.	9A	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 0.6 \\ & 0.3 \end{aligned}$	3	2.6	2.4	Class-A1 Amp.	250	-9.5	-	-	11.5	-	3250	18	-	-	6SN7GT
$128 \mathrm{K6}$	Duodiode Triode	B.	7 Br	12.6	0.15				Class-A ${ }_{1}$ Amp.	250	-2			1.2	63000	1600	100			
12BN6	Gated-beam Disc.	B.	7DF	12.6	0.15	4.2	3.3	. 004	FM Dise.					Same as 6BN6						
12816	Duodiode Triode	B.	7Br	12.6	0.15				Class-A, Amp.					Same as 6BT6						
128U6	Duadiode Triode	B.	781	12.6	0.15		-		Class-A, Amp.					Same as 6BU6						
1956	Twin Triode	8.	7BF	18.9	0.15	2.0	0.4	1.5	Class-A1 Amp.	100	50*	-		8.51	7100	5300	38			
1978	Triple-Diode Triode	B.	9 E	18.9	0.15	1.5	1.1	2.4	Class-A ${ }_{1}$ Amp.	250	-3			1.0	5800	1200	70			
26A6	Remote Cul-off Pentode	B.	78K	26.5	0.07	6.0	5.0	. 0035	Class-A ${ }_{1}$ Amp.	250	125*	100	4	10.5	1000000	4000				
268K6	Duodiode Triode	B.	7 Br	26.5	0.07				Class-A Amp.					Same as 68K6						-
$26 \mathrm{C6}$	Duplex-Diode Triode	B.	781	26.5	0.07	1.8	1.4	2	Class-A1 Amp.	250	- 9	-	-	9.5	8500	1900	16			
26D6	Pentagrid Converter Beam Power Amplifier	B.	7CH	26.5	0.07	Osc	Grid 20000 ,		Converter Class-A1 Amp.	250	-1.5	100	7.8	3.0	1000000	475				
3585		B.	782	35	0.15	11	6.5	0.4		110	-7.5	110	7:	412	-	5800	$40{ }^{3}$	2500	1.5	35L6GT
35 C 5	Beam Power Amplifier	B.	7 CV	35	0.15	12	6.2	0.57	Class-A Amp.	110	-7.5	110	3/7	40/41	-	5800		2500	1.5	
5085	Beam Power Amplifier	B.	782	30	0.15	13	6.5	0.50	Class-A Amp.	110	-7.5	110	4.0	49.0	14000	7500	-	3000	1.9	50L6GT
50 C 5	Beam Power Amplifier	B.	7CV	50	0.15				Class-A1 Amp.	110	-7.5	110	4/8.5	49/50	10000	7500		2500	1.9	-
5590	Pentade	B.	780	6.3	0.15	3.4	2.9	0.01	Class-A ${ }_{1}$ Amp.	90	820**	90	1.4	3.9	300000	2000			-	-
5591	R.F. Pentode	B.	7BD	6.3	0.15	3.9	2.85	0.01	Class-A Amp.	180	200*	120	2.4	1.7	690000	5100	3500		-	-
5654	Sharp Cut-off Penlode	B.	7BD	6.3	0.175	4	2.9	0.02	Class-A1 Amp.	120	200*	120	2.5	7.5	340000	5000		-		
5670	Dual Triode	E.	8. ${ }^{\text {d }}$	6.3	0.35	2.2	1.0	1.3	Closs- A_{1} Amp.	150	240*			8.2	-	5500	35			758
5686		B	Fig. 29	6.3	0.35	6.4	4.0	0.11	Class-A1 Amp.	250	-12.5	250	5	27	-	3100		9000	2.7	
5687	Dual Triode	B.	9 H	12.6	0.45	4	0.45	3.1	Class-A Amp.	250	-12.5			16	4000	4100	16.5		-	-
				6.3	0.9					120	- 2	-	-	34	2000	10000	20	-	-	
5722	Noise Generating Diode	B.	5CB	2/5.5	1.6		1.5	-	Noise Generator	200				35	-	-			-	
5725	Semiremote Cut-off Pentode	B.	7CM	6.3	. 175	-		\square	Class-A1 Amp.	120	-2	120	3.5	5.2	-	3200				
5726	Twin Diode	B.	6BT	6.3	0.3		3.2	-	Rectifier		Maximum a.c. voltage per plate =117; Maximum d.c. Ma. per plate $=9$.									-
5749	Remote Cul-off Pentode	B.	78K	6.3	0.30	5.5	5.0	. 0035	Class-A1 Amp.	250	68*	100	4.2	11	1 Mag.	4400		\longrightarrow	-	-
5750	Pentagrid Converter	B.	7CH	6.3	0.30	Osc. Grid 200002			Converter	250	- 1.5	100	7.5	2.6	1 Meg.	475	0.510	-	-	-
5751	Dual Triode	B.	9A	12.6	. 175		-		Class-A1 Amp.	250	- 3	-	-	1.1	58000	1200	70	-	-	125L7 GT
5812	Beam Pentode	B.	7C0	6.3	0.65	9	7.4	0.2	Class-A Amp.	250	-23	250	1.8	40	55000	4100	-	-		-

TAble XI-Miniature receiving tubes-Continued

Type	Name	Base	Socket Conneclions	Fil. or Heater		Capacitonce $\mu \mu \mathrm{fd}$.			Uso	Plate Supply Volis	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Volis } \end{aligned}$	Screen Current Mo.	Plate Current Ma.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Type
				Volts	Amp.	In	Oul	PlateGrid												
5814	Dual Triode	8.	9 A	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 0.35 \\ & .175 \\ & \hline \end{aligned}$	1.6	0.5	1.5	Closs-A1 Amp.	250	-8.5	-	-	10.5	6250	2200	19.5	-	-	12SN7GT
5079	Sharp Cut-off Pentode	B.	9AD	6.3	0.15	2.7	2.4	0.11	Class-A A Amp.	250	-3	100	0.4	1.8	2 Meg.	1000			-	-
5915	Dual Control Sharp Cut-off Heptode	8.	7CH	6.3	0.3	7.2	8.6	0.3	Switch	30	-5.5	75	8.25	6	-	\square	\cdots	-	-	-
5963	Dual Triode	B.	9A	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.15 \\ & 0.3 \end{aligned}$	1.9	-	. 1.5	Clost-A, Amp.	67.5	0	-	-	71	7850	2800	22	-	-	
5964	Dual Triode	8.	7BF	6.3	0.45	2.1	-	1.3	Class-A, Amp.	100	50*		\square	9.51	6500	6000	39	-	-	-
9001		8.	7PM	6.3	0.15	3.6	3.0	0.01	Class-A Amp.	250	- 3.0	100	0.7 2.0 1 meg. + 0.7			1400				
9001	Sharp Cut-off Pentode	8.							Mixer	250	-5.0	100	Osc. peak voltoge 4 volis			550		-	-	
9002	Triode Detector,		7TM	6.3	0.15	1.2	1.1	1.40	Clas s-A Amp.	250	-7.0	-	-	6.3	11400	2200	25	-	-	
	Amplifier, Oscillator	B.								90	- 2.5		-	2.5	14700	1700	25	-	-	
9003	Remote Cut-off Pentode	B.	7PM	6.3	0.15	3.6	3.0	0.01	Closs-A Amp.	250	-3.0	100	2.7	6.7	700000	1800		-	-	-
									Mixer	250	-10.0	100	Osc. peak vollage 9 volis			600	-	-		
9006	U.h.f. Diode	B.	68H	6.3	0.15	-	-	-	Detector	Max. a.c. voltage-270. Mox. d.c. output current-5 ma.										-

* Cathode resistor-ohms.
${ }_{2}$ Per Plote.
: Maximum-signal current for full-power output.

Values are for two tubes in push-pult.
UNless otherwise noted.

- No signol plate ma.
- Effective plate-to-plote.

7 Triode No. 1.
1 Triode No. 2.

Grid Na. 2 tied to plate and No. 3 to cathode.
${ }^{10}$ Oscillator grid current Mo.

TABLE XII-SUB-MINIATURE TUBES

TABLE XII-SUB-MINIATURE TUBES-Continued

Type	Name	Base	SocketConnec-tions	Fil, or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use		Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Mo.	Plate Resistance Ohms	Transconductance Micromhos	Amp. Factor		Power Output Watts	Type
				Volis	Amp.	In	Out	Plate: Grid												
CK509	Triode Voltage Amplifier	- ${ }^{1}$	${ }^{2}$	0.625	0.03				Class-A Amp.	45	0 .		-	0.15	150000	160	16	1000000		CK509
CK510	Dual Space-Charge Tetrode	-1	2	0.625	0.05				Class-A Amp.	45	0	0.2	$200 \mu \alpha$	$60 \mu \alpha$	500000	65	32.5			CK510
CK512	Low Microphonic Pentode	1	2	0.625	0.02				Voltage Amp.	22.5	0	22.5	0.04	0.125	-	160			-	CK412
CK5158X	Triode Valtage Amplifier	-1	2	0.625	0.03				Class-A Amp.	45	0			0.15		160	24	1000000		CK5 158X
CK520AX	Audio Pentode	1	2	0.625	0.05				Class-A Amp.	45	-2.5	45	0.07	0.24		180			0.0045	CK520AX
CK521AX	Audio Pantode	1	2	1.25	0.05				Class-A1 Amp.	22.5	-3	22.5	0.22	0.8		400			0.006	CK521AX
CK522AX	Audio Pentode	1	2	1.25	0.02				Class-A1 Amp.	22.5	0	22,5	0.08	0.3		450			0.0012	CK522AX
CK523AX	Pentode Output Amp.	1		1.25	0.03				Class-A Amp.	22.5	-1.2	22.5	0.075	0.3		360			0.0025	CK523AX
CK524AX	Penlode Oulpul Amp.	1		1.25	0.03				Class-A Amp.	15	-1.75	15	0.125	0.45		300			0.0022	CK524AX
CK525AX	Pentode Output Amp.	1	-	1.25	0.2				Class-A Amp.	22.5	-1.2	22.5	0.06	0.25		325			0.0022	CK525AX
CK526AX	Penlode Output Amp.	1	\cdots	1.25	0.2				Class-A Amp.	22.5	-1.5	22.5	0.12	0.45		400			0.004	CK526AX
CK527AX	Pentode Output Amp.	1		1.25	0.015				Class-A Amp.	22.5	0	22.5	0.025	0.1		75			0.0007	CK527AX
CK529AX	Shielded Output Pontode	1		1.25	0.02				Class-A Amp.	15	-1.5	15	0.05	0.2		275			0.0012	CK529AX
CK55IAXA	Diode Pentode	1	2	1.25	0.03				Datector-Amp.	22.5	0	22.5	0.04	0.17		235				CKS51AXA
CK553AXA	R.F. Pentode	1	2	1.25	0.05				Class-A Amp.	22.5	0	22.5	0.13	0.42		550				CK553AXA
CK556AX	U.h.f. Triode	1	2	1.25	0.125				R.F. Oscillator	135	-5	-		4.0		1600				CK556AX
CK568AX	U.h.f. Triode	1	2	1.25	0.07				R,F. Oscillator	135	-6	-		1.9		650				CK568AX
CK569AX	R.F. Pentode	1	2	1.25	0.05				Class-A1 Amp.	67.5	0	67.5	0.48	1.8		1100				CK569AX
CK605CX	Sharp Cut-off Pentode	1	-	6.3	0.2				Class-A Amp.	120	-2	120	2.5	7.5		5000	-			CK605CX
CK6068X	Single Diode	1	2	6.3	0.15				Detector	150 a.c.				9.0 d.c.	-	-		-		CK6068X
CK608CX	U.h.f. Triode	1	2	6.3	0.2				500-Mc. Osc.	120	-2			9.0		5000	-		0.75	CK608CX
CK619CX	Hi-Mu Triode	1	2	6.3	0.2				Class-A Amp.	250	-2	-	,	4.0		4000	-		-	CK619CX
CK624CX	Sharp Cut-off Pontode	1		6.3	0.2				Class-A Amp.	120	-2	120	3.5	5.2		3000				CK624CX
CK650AX	Sharp Cut-off Pentode	1	2	6.3	0.2				Class-A, Amp.	120	-2	120	2.5	7.5	-	5000			-	CK650AX
CK5672	Pentode Output Amp.	1	-	1.25	0.05				Class-A Amp.	67.5	-6.25	67.5	1.0	2.75	-	625		-	0.06	CK5672
$\begin{aligned} & \text { HY113 } \\ & \text { HY123 } \\ & \hline \end{aligned}$	Triode Amplifier	- ${ }^{1}$	5K	1.4	0.07				Class-A Amp.	45	-4.5	-	-	0.4	25000	250	6.3	40000	0.0065	$\begin{aligned} & \text { HY113 } \\ & \text { HY } 123 \end{aligned}$
$\begin{aligned} & \text { HY115 } \\ & \text { HY145 } \end{aligned}$	Pentode Voltage Amplifier	-1	5K	1.4	0.07				Class-A Amp.	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{array}{r} -1.5 \\ -1.5 \end{array}$	$\begin{array}{r} 22.5 \\ 45 \\ \hline \end{array}$	$\begin{aligned} & 0.008 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.48 \end{aligned}$	$\begin{array}{r} 5200000 \\ 1300000 \\ \hline \end{array}$	$\begin{array}{r} 58 \\ \mathbf{2 7 0} \\ \hline \end{array}$	$\begin{array}{r} 300 \\ 370 \\ \hline \end{array}$	-		$\begin{aligned} & \text { HY115 } \\ & \text { HY145 } \end{aligned}$
HY125 HY155	Pentode Power Amplifier	- ${ }^{1}$	5K	1.4	0.07				Class-A Amp.	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{array}{r} -3.0 \\ -7.5 \\ \hline \end{array}$	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 825000 \\ & 425000 \\ & \hline \end{aligned}$	$\begin{array}{r} 310 \\ 450 \\ \hline \end{array}$	$\begin{aligned} & 255 \\ & 190 \\ & \hline \end{aligned}$	$\begin{array}{r} 50000 \\ 28000 \\ \hline \end{array}$	$\begin{aligned} & 0.0115 \\ & 0.09 \end{aligned}$	HY 125 HY 155
M54	Tetrode Power Amplifier	1	2	0.625	0.04				Class-A Amp.	30	0	30	0.06	0.5	130000	200	26	35000	0.005	M54
M64	Tetrode Voltage Amplifier	1	2	0.625	0.02				Class-A Amp.	30	0			0.03	200000	110	25	-		M64
M74	Tetrode Voltage Amplifier	1	2	0.625	0.02				Class-A Amp.	30	0	7.0	0.01	0.02	500000	125	70			M74
RK61	Gas Triode	1	2	1.4	0.05				Radio Control	45	-	-		1.5	-	-				RK61
$\begin{aligned} & \text { SD917A } \\ & 5637 \end{aligned}$	Triode	1	3	6.3	0.15	2.6	0.7	1.4	Class-A1 Amp.	100	820*	-	-	1.4	26000	2700	70	-	-	$\begin{aligned} & \text { SD917A } \\ & 5637 \end{aligned}$
$\begin{aligned} & \hline \text { SD828A } \\ & 5638 \\ & \hline \end{aligned}$	Audio Penlode	1	2	6.3	0.15	4.0	3.0	0.22	Class- A_{1} Amp.	100	270*	100	1.25	4.8	150000	3300	-	\square	-	$\begin{aligned} & \text { SDB28A } \\ & 5638 \end{aligned}$
$\begin{aligned} & \text { SD228E } \\ & 5634 \end{aligned}$	Shorp Cut-off Pentode	4	-	6.3	0.15	4.4	2.8	0.01	Class-A Amp.	100	150*	100	2.5	6.5	240000	3500	-	-	-	$\begin{aligned} & \text { SD828E } \\ & 5634 \end{aligned}$
$\begin{aligned} & \text { SN944 } \\ & 5633 \\ & \hline \end{aligned}$	Remate Cut-off Pentade	4	-	6.3	0.15	4.0	2.8	0.01	Class-A1 Amp.	100	150*	100	2.8	7.0	200000	3400	-	-	-	$\begin{aligned} & \text { SN944 } \\ & 5633 \\ & \hline \end{aligned}$
SN946	Diode	1	2	6.3	0.15	1.8			Rectifier	150	-		-	9.0	-	-	-	-	-	SN946
$\begin{aligned} & \text { SN847 D } \\ & 5640 \end{aligned}$	Audio Beam Pentode	1	2	6.3	0.45	-	-	-	Class-A Amp.	100	-9	100	2.2	31.0	15000	5000	-	3000	1.25	$\begin{aligned} & \text { SN947C } \\ & 5640 \end{aligned}$
SN948C	Voltago Regulator	1			-				Regulator				perating	voltage $=$	95; Max.	current $=25 \mathrm{M}$	Ma.			5N948C
SN953D	Power Pentode	1		6.3	0.15	9.5	3.8	0.2	Class-A Amp.	150	100*	100	4/7.5	21/20	50000	9000	-	9000	1.0	SN953D
$\begin{aligned} & \text { SN954 } \\ & 5641 \end{aligned}$	Half-Wave Rectifier	1	2	6.3	0.45	-		-	Rectifier	300	-	-	-	45.0	-	-	-	-	-	$\begin{aligned} & \text { SN954 } \\ & \text { S641 } \end{aligned}$
SN955B	Dual Triode	1	2	6.3	0.45	2.8	1.0	1.3	Class-A ${ }_{1}$ Amp. ${ }^{5}$	100	100*	-	-	5.5	8000	4250	34	-	-	SN9558

TABLE XII-SUB-MINIATURE TUBES-Continued

Type	Nome	8ase	Socket Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volts	Sereen Current Ma.	Plate Current Mo.	Plate Resistonce Ohms	Transcanductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Outpuit Watts	Type
				Volts	Amp.	In	Out	$\begin{aligned} & \text { Plate- } \\ & \text { Grid } \end{aligned}$												
$\begin{aligned} & \hline \text { SN956B } \\ & 5642 \end{aligned}$	H.V. Holf-Wave Rectifier	-	-	1.25	0.14	-	-	-	H.V. Rectifier	Peak inverse V. $=10000 \mathrm{Max}$. Average $\mathrm{Ip}=2 \mathrm{Ma}$. Poak $\mathrm{Ip}=23 \mathrm{Ma}$.										SN9568 5642
$\begin{aligned} & \text { SN957A } \\ & 5645 \end{aligned}$	Triode	1	2	6.3	0.15	2.0	1.0	1.8	Class-A Amp.	100	560*	-	-	5.0	7400	2700	20	-	-- ${ }_{5}$	$\begin{aligned} & \text { SN957A } \\ & 5645 \end{aligned}$
SN1006	Triode	1	$\stackrel{1}{ }$	6.3	0.15				Class-A, Amp.	100	$820{ }^{\text {\% }}$			1.4	29000	2400	70	-	- S	SN1006
SN10078	Mixer	4	-	6.3	0.15	5.0	2.8	0.003	Mixer	100	150*	100	5.0	4.0	230000	900		-	-	SN1007B
5639	Video Pentade	1	8DL	6.3	0.45	9.5	7.5	0.10	Class-A, Amp.	150	100*	100	4.0	21	50K	9000		9000	1.0	5639
5641	Single Diade	1	6CJ	6.3	0.45	-	-		H. W. Rectifier				235 volts a.c. max.; 45 Ma. d.e. output.							5641
5643	Tetrade Thyratron	1	8DD	6.3	0.15	1.7	1.6	0.1	Reloy Tube Grid Contr. Rect.	Peak onode volts $=500 ; \mathrm{lnv}$. volts $=500 ;$ Peak $\mathrm{I}_{\mathrm{k}}=100 \mathrm{Ma} . ;$ Avg. $=22 \mathrm{Mo}$.										5643
5644	Cald Cathode Diode	1	4 CN	-	-	-	-	-	Voltage Reg.	Starting voltage $=125$ max. d.c. Operating voltage $=95$. Operating current $=5-25 \mathrm{Ma}$. Regulation $=4$ volts approx.										5644
5647	Single Diode	${ }^{1}$	81	6.3	0.15	2.2			H. W. Rectifier			150 valts a.c. mox; 9 Ma. d.e. autput.								5647
5718	U.h.f. Medium-Mu Triode	1	8DK	6.3	0.15	2.2	0.7	1.4	Class-A, Amp.	150	180*	Fm	-	13	4150	6500	27	-		5718
5718	U.h.f. Medium-Mu Triode			6.3		2.2			U.h.f. Oseillator	150	-12	Fme. $=500$		20		$\mathrm{lg}=3.7 \mathrm{Ma}$.			0.9	
5719	Hi-Mu Triade	+	8DK	6.3	0.15	2.4	0.6	0.7	Class-A1 Amp.	150	680*			1.7	26000	2700	70			5719
5840	U.h.f. Sharp Cut-off Pent.	${ }^{1}$	8DL	6.3	0.15	4.2	4.0	0.015	Class-A Amp.	100	150*	100	2.4	7.5	230K	5000				5840
5896	U.h.f. Dual Diode	1	8DJ	6.3	0.3	3.0			Det.-Rectifier	150 volts o.c. max.; 9 Ma, d.c. output per plate.										5896
	U.h.f. Medium-Mu Triode	1	8DK	6.3	0.15	2.2	0.7	1.4	Closs-A1 Amp.	150	180*			13	4150	6500	27	\cdots		5897
5897	U.h.F. Medium-Mu Triode		8DK	6.3	0.15	2.2	0.7	1.4	U.h.f. Oscillator	150	-12			20	$1 \mathrm{~g}=3.7 \mathrm{Mo}. \mathrm{Fmc}=500.$.				0.9	
5898	Hi-Mu Triode	,	8DK	6.3	0.15	2.4	0.6	0.7	Closs-A1 Amp.	150	680*			1.7	26000	2700	70	-		5898
5899	U.h.f. Somi-Romate Pent.	1	8DL	6.3	0.15	4.4	4.0	0.015	Closs-A ${ }_{1}$ Amp.	100	120**	100	2.2	7.2	260K	4500				5899
5900	U.h.f. Semi-Remate Pent.	${ }^{1}$	8 CL	6.3	0.15	4.4	4.0	0.015	Class-A ${ }_{1}$ Amp.	100	120*	100	2.2	7.2	260K	4500				5900
5901	U.h.f. Sharp Cut-off Pent.	1	8 DL	6.3	0.15	4.2	4.0	0.015	Class-A, Amp.	100	150*	100	2.4	7.5	230K	5000				5901
5902	Audia Beam Pentode	1	8DL	6.3	0.15	6.5	7.5	0.11	Class-A1 Amp.	110	270*	110	2.2	30	15K	4200		3000	1.0	5902
5903	U.h.f. Dual Diode	$\stackrel{1}{2}$	8DJ	26.5	0.075	3.0	-		Det.-Rectifier	150 valts a.c. max.; 9 Ma, d.c. output per plate.										5903
	U.h.f. Medium-Mu Triode	1	sDK	26.5	0.045	2.2	0.8	1.8	Class-A Amp.	26.5	-3.5	-	-	3	3800	5000	19		-	5904
5904	U.h.f. Medium-Mu Triode		-0K	26.5	0.045	2.2	0.8	1.6	U.h.f. Oscillator	26.5	0		-	20	$1 \mathrm{~g}=7.5 \mathrm{Ma}$. Fmc. $=400$.				0.06	
5905	U.h.f. Sharp Cut-off Pent.	${ }^{1}$	8DL	26.5	0.045	4.4	4.2	0.015	Class-A, Amp.	26.5	$2.2{ }^{8}$	26.5	0.9	2.3	110K	2850	-	-		5905
5906	U.h.f. Sharp Cut-off Pent.	${ }^{2}$	8DL	26.5	0.045	4.2	4.0	0.015	Class-A Amp.	100	150*	100	2.4	7.5	230K	5000		-		5906
5907	U.h.f. Remate Cut-off Pent		801	26.5	0.045	4.4	4.0	0.015	Class-A, Amp.	26.5	2.2^{8}	26.5	1.1	2.7	125K	3000				5907
5908	U.h.f. Penfode	1	8 CC	26.5	0.045	4.4	4.6	0.08	Class-A Amp.	26.5	$2.2{ }^{8}$	26.5	1.6	2.3	30K	1750	-	-	-	5908
5908									Mixer	26.5	2.2^{8}	26.5	1.6	1.0	100K	800			-	
5916	U.h.f. Pentode		8DC	26.5	0.045	4.2	4.0	0.015	Class-A1 Amp.	100	150*	100	3.4	4.4	130K	3000	-	-	-	5916
5916									Mixer	100	150*	100	4.6	2.5	400K	1100	-		-	

TABLE XIII-CONTROL AND REGULATOR TUBES

Type	Name	Base	Socket Connections	Cathode	Fil. or Heater		Use	Peak Anoda Voltage	Max. Anode Ma.	Minimum Supply Voltoge	Operating Voltage	Operating Mo.	Grid Resistor	Tube Voltago Drop	Type
					Volts	Amp.									
OA2	Voltage Regulator	7 -pin ${ }^{\text {B }}$.	580	Cold			Voltage Regulator		-	185	150	5-30	-	-	OA2
OA5	Gos Pentode	7-pin ${ }^{\text {\% }}$.	Fig. 33	Cold		-	Relay ar Trigger	Plote-750 V., Screen - 90 V., Grid +3 V., Pulse-85 V.							OA5
082	Voltage Regulotar	7-pin 8.	58O	Cold		-	Voltage Regulator		-	133	108	5-30	-		082
$\begin{aligned} & \text { OA4G } \\ & 1267 \end{aligned}$	Gas Triode Starier-Anode Type	6-pin 0.	$\begin{aligned} & 4 V \\ & 4 V \end{aligned}$	Cold		-	Cold-Cathode Starter-A node Relay Tube	With 105-120-valt a.e. anade supply, pack starter-anode a.e. voltage is 70, peak r.f. voltage 55. Peok d.c. $m a=100$. Average d.c. $m a=25$.							$\begin{aligned} & \text { OA4G } \\ & 1267 \\ & \hline \end{aligned}$
1847	Voltage Regulatar	7.pin B.		-			Voltage Regulator	-	-	225	82	1-2	-	-	1847
$1 \mathrm{C21}$	Gas Triode Glow-Discharge Type	6-pin 0.	4V	Cold	-	-	Relay Tube	125-145	25	66°	\longrightarrow	-		73	$1 \mathrm{C21}$
2A4G	Gas Triade Grid Type	7-pin 0.	55	Fil.	2.5	2.5	Control Tube Regulator	200	0.1 ${ }^{100}$	1804				55	2A4G

table XIV-CATHODE-RAY tUBES AND KINESCOPES—Continued

Type	Name	Socket Connec: fions	Heater		Use	Size	Anode Mo. 2 Voltage	Anode No. 1 Voltage	Cul-Off Grid Voliage	Grid No. 2 Volloge	Ion. Trap Ma.	Max. Input Volłage ${ }^{1}$	Focus Coil Mo.	Deflection Sensitivily ${ }^{\text {© }}$		$\left\{\begin{array}{l} \text { Anode } \\ \text { No. } 3 \\ \text { Volsage } \end{array}\right.$	Pattorn Color	Typo
			Volts	Amp.										0,0	$\mathrm{O}_{3} \mathrm{D}_{4}$			
$\begin{aligned} & 3 A P 1 / \\ & 906-P 1 . \\ & 4.5 .117 \end{aligned}$	Electrostatic Cathode-Ray	TAN	2.5	2.1	Oscillograph	3"	1500	430	- 50	-	\cdots	550	-	0.22	0.23	-	Green Blue White	$\begin{aligned} & \text { 3AP1// } \\ & 906-P 1 . \\ & 4.5 .11 \end{aligned}$
							1000	285	- 33					0.33	0.35			
							600	170	- 20	-				0.55	0.58			
$\begin{aligned} & 3 \mathrm{BP1} 1- \\ & 4-11 \\ & \hline \end{aligned}$	Electrostalic Cathode-Ray	14A	6.3	0.6	Oscillograph	3'1	2000	575	- 60	-		550	-	0.13	0.17	-	Green	$\begin{aligned} & 3 \mathrm{BP} 1 . \\ & 4.11 \end{aligned}$
							1500	430	- 45					0.17	0.23			
30P 1	Electrostatic Cathode-Ray	Fig. 49	6.3	0.6	Oscillograph	3"	2000	575	-60 -40	\square		550	-	200^{3}	$148{ }^{3}$		Green	30P 1
							1500	430	- 40					$150{ }^{3}$	111^{3}			
$\begin{aligned} & \text { 3EP 1/ } \\ & 1806-\mathrm{P} 1 \\ & \hline \end{aligned}$	Electrostatic Calhode-Ray	11A	6.3	0.6	Oscillograph Television	3"	2000	575	-60	\square	-	550	—	0.115	0.154	——	Green	3EP1/ 1806-P 1
							1500	430	- 45					0.153	0.205			
$\begin{aligned} & 3 G P 1-1 \\ & 4.5 .11 \end{aligned}$	Electrostatic Cathode-Ray	11A	6.3	0.6	Oscillograph	3'	1500	350	- 50	-	-	550		0.21	0.24	—	White Green Blue	$\begin{aligned} & \text { 3GP1. } \\ & 4.5 .11 \end{aligned}$
							1000	234	- 33	-	\square			0.32	0.36			
$\begin{aligned} & \text { 3.JP1-1. } \\ & \text { 2-4-7-11 } \end{aligned}$	Electroslatic Cothode-Ray	148	6.3	0.6	Oscillograph	3'1	2000	575	- 60	\cdots	-	550	-	0.13	0.17	4000	Green Blue White	$\begin{aligned} & 3 J P 1- \\ & 2-4-7-11 \end{aligned}$
							1500	430	- 45					0.17	0.23	3000		
3KP1.	Electrostatic Cath ode-Roy	11 M	6.3	0.6	Oscillograph	3"	1000	300	- 45	1000		500		$68{ }^{3}$	1363		Green	3KPI
							2000	600	- 90	2000				$52{ }^{3}$	$104{ }^{8}$			
$3 \mathrm{MP1}$	Electrostatic Cathode-Ray	Fig. 2	6.3	0.6	Oseillograph	3"	1000	200/350	- 68	-				$190{ }^{3}$	1803	-	Green	3MP1
3RPI	Eloctrostatic Cathode-Ray	12E	6.3	0.6	Oscillograph	3"	1000	165/310	-67.5			-	-	73/993	52/70 ${ }^{\text {a }}$		Grean	3RP 1
							2000	330/620	-135		-	$\underline{-}$	\square	146/198 ${ }^{2}$	104/140 ${ }^{3}$			
$\begin{aligned} & 5 A P 1 / \\ & 1805-P 1 \\ & 5 A P 4 / \\ & 1805-\mathrm{P4} 7 \end{aligned}$	Electroslatic Pliture Tube	IIA	6.3	0.6	Oscillograph Television	5"	2000	575	- 35			500		0.17	0.21		Green While	$\begin{aligned} & \text { 5API/ } \\ & 1805 . P 1 \\ & 5 A P 4 / \\ & 1805 . P 4 \end{aligned}$
							1500	430	- 27					0.23	0.28			
$\begin{aligned} & \text { 3BP1/f } \\ & 1802-P 1 \text {. } \\ & 2-4.5-11 \\ & \hline \end{aligned}$	Electrostatic Pielure Tube	11A	6.3	0.6	Oscillograph	5"	2000	450	- 40			500	-	0.3	0.33		Green White Blue	$\begin{aligned} & \text { 58P 1/ } \\ & 1802-\mathrm{P} 1 \\ & 2.4 .5-7-11 \end{aligned}$
							1500	337	- 30					0.4	0.45			
$\begin{aligned} & 5 C P 1- \\ & 2-4-5-7-11 \end{aligned}$	Electrostatic Cathode-Ray	148	6.3	0.6	Oscillograph Television	5"	2000	575	- 60			550	\square	0.28	0.32	4000	White Green Blue	$\begin{aligned} & 5 C P 1 . \\ & 2-4-5-11 \end{aligned}$
							1500	430	-45					0.37	0.43	3000		
							2000	575	-60					0.36	0.41	2000		
$\begin{aligned} & \text { 5FP1- } \\ & 2-4.11^{7} \end{aligned}$	Electromagnetic Cothode-Ray	5AN	6.3	0.6	Oscillograph Television	5"	7000	250	- 45					-	-			
							4000	250	-45			-		-		-	White Blue	2-4-11
$\begin{aligned} & \text { 5HP1, } \\ & \text { 5HP4 } \end{aligned}$	Electrostatic Calhode-Ray	11A	6.3	0.6	Oscillograph	5"	2000	425	- 40			500		0.3	0.33			
							1500	310	- 30					0.4	0.44	-	White	5HPP4
$\begin{aligned} & \text { 5.JP1- } \\ & 2-4.5-11 \end{aligned}$	Electrostatic Cathode-Ray	IIE	6.3	0.6	Oscillograph	5"	2000	520	- 75			500		0.25	0.28	4000	White	
							1500	390	- 56					0.33	0.37	3000		2-4-5-11
$\begin{aligned} & \text { 5LP1- } \\ & 2-4.5-11 \end{aligned}$	Electrastatic Cathode-Ray	11F					2000	500	- 60				-	0.25	0.28	4000		
			6.3	0.6	$\begin{aligned} & \text { Oscillograp } \\ & \text { Television } \end{aligned}$	5"	1500	375	- 45			500		0.33	0.37	3000	Green	$\begin{aligned} & \text { 5LP 1- } \\ & 2-4-5-11 \end{aligned}$
							1000	250	- 30					0.49	0.56	2000		
5MP1-	Electrostatic Cathode-Ray	TAN	2.5	2.1	cill	5"	1500	375	- 50			660		0.39	0.42			
4-5.11					cill		1000	250	- 33			600		0.58	0.64		Green Blue	4-5-11
5RP1.	Electrosiatic Cathode	$14 F$	6.3	0.6	Oscillograph	5"	3000	-	-90	-		1200		0.12	0.12	15000		
2-4-11	Elotrostaik Cathode-Ray				Oscllograph		2000	575	- 60	.		1200		0.18	0.18	10000	Blue	2-4.11
STP4	Projaction Kinescope	12C	6.3	0.6	Television	5"	27000	4900	- 70	200		-	\square	-	-	-	White	5TP4
							2500	640	-90			500		38.5^{3}	77^{3}	-		
SUPI-	Electrosialic Cothode-Ray	12E	6.3	0.6	Oscillograph	5"	2500	340	- 90	-	\square	500	-	28^{8}	56\%	-	Yel.	
					Oscillograph		1000	320	- 45	-	-	500		31^{3}	62^{3}	\cdots	low	7.11
							1000	170	-45	-	-	500	-	$23{ }^{3}$	46^{3}	-	Blue	
5WP11	Transeriber Kinescope	12C	6.3	0.6	Television	5"1	27000	5400	-42/-98	200					-		Rlue	swoil

TABLE XIV-CATHODE-RAY TUBES AND KINESCOPES—Continued

Type	Nome	Socket Connections	Heater		Use	Size	Anode No. 2 Voltage	Anode No. 1 Voliage	Cut-Off Grid Voliage	$\begin{gathered} \text { Grid } \\ \text { No. } 2 \\ \text { Volloge } \end{gathered}$	IonTrap Ma.	Max. Input Voltage	Focus Coll Ma.	Deflection Sensitivity ${ }^{6}$		$\begin{gathered} \text { Anode } \\ \text { Mo. } 3 \\ \text { Voltage } \end{gathered}$	Patlern Color	Type
			Volts	Amps.										$\mathrm{D}_{1} \mathrm{D}$	$D_{3} \mathrm{D}_{4}$			
5WP 15	Flying-Spot Cathode-Roy	12C	6.3	0.6	Vid. Sig. Gen.	5"	20000	$\begin{aligned} & 3000 / \\ & 3800 \end{aligned}$	-42/-98	200			-	-	-	-	Blue Green	5WP 15
7 AP4	tomagneli	5AJ	2.5	2.1	Television	7"	3500	1000	-67.5	-	-				-		White	7 AP4
$\begin{aligned} & \text { 7BP1- } \\ & 2-4-7-11 \end{aligned}$	Electromognetic Cathode-Ray	5AN	6.3	0.6	Oscillograph Television	7''	7000	250	- 45	-		-	-	-	-	—	White Green Blue	$\begin{aligned} & 78 P 1 . \\ & 2-4.7 .11 \end{aligned}$
							4000	230	-45	-	-							
$\begin{aligned} & 7 C P 1 / 5 \\ & 1811 . P^{5} \end{aligned}$	Electromagnetic Cathode-Ray	6AZ	6.3	0.6	Oscillograph	$7 \prime \prime$	7000	1470	-45	250		-					Green	$\begin{aligned} & \text { 7CP1/ } \\ & 1811-P 1 \end{aligned}$
							4000	840	-45	250								
7DP4	Kinescope	12C	6.3	0.6	Television	7"	6000	1430	-45	250				110^{3}	953		White	7EP4
7EP4	Electrostatic Cathode-Ray	11 N	6.3	0.6	Television	7"1	$\mathbf{2 5 0 0}$	650	-60 -84					$123{ }^{3}$	102 ${ }^{3}$		White	$7 \mathrm{GP4}$
7GP4:	Electrostotic Kinascope	Fig. 47	6.3	0.6	Television	7"1	3000	1200	-84 -168	3000				2468	204%		White	7JP4
$7 \mathrm{JP4}$	Electrostatic Kinescope	14G	6.3	0.6	Oscillograph Radar	7"	6000	2400	$\frac{-168}{-27 /-63}$	250			85		20		G'rnish Yellow	7MP7
7MP7	Electromognetic Cothode Ray	12D	6.3	0.6		$7 \prime 1$	-	7000	$-27 /-63$ $-27 /-63$	250	-		62					
8 AP4	Electromagnetic Picture Tube	12H	6.3	0.6	Television	$8{ }^{\prime \prime}$		7000	-27/-63	-	45^{8}		115				White	8 AP4
88P4	Electrostatic Picture Tube	14G	6.3	0.6	Television	$8^{\prime \prime}$	-	2400	-72/-168	6000				146/1988	124/168 ${ }^{8}$	-	White	$8 \mathrm{BP4}$
						$9 \prime$	7000	1425	- -40	250	-			-	-	-	White	$\begin{aligned} & \text { 9AP4/ } \\ & 1804-\mathrm{P4} \end{aligned}$
$\begin{aligned} & 9 \mathrm{AP4} / \mathrm{P} \\ & 1804-\mathrm{P4} \end{aligned}$	Electromognetic Kinescope	6AL	2.5	2.1	Television		6000	1225	- 38								White	$9 \mathrm{CP4}$
9 CP 4	Electromagnetic Kinescope	4AF	2.5	2.1	Television	$9 \prime \prime$	7000		-110 -90		-	3000		0.136			Grean	$\begin{aligned} & 9 . J \mathrm{P} 1 / \\ & 1809-\mathrm{PI} \end{aligned}$
$\begin{aligned} & \text { 9.JP 1/. } \\ & \text { 1809.-P } \end{aligned}$	Electrostatic-Magnetic Cathode-Ray	88 R	2.5	2.1	Oscillograph	$9 \prime$	5000	1570	-90 -45					0.272				
108p4	Magnelic Kines cope	12D	6.3	0.6	Television	$10^{\prime \prime}$	-	9000	-45	250							White	108P4
10EP4	Magnetic-Focus Cathode-Ray	12D	6.3	0.6	Television	$10^{1 / 2 / 2}$		8000	-45	250							White	10EP4
10FP4	Electromagnetic Picture Tube	12D	6.3	0.6	Television	$10^{\prime \prime}$		9000	-27/-63	250				1303	$10{ }^{3}$		White	$10 \mathrm{HP4}$
10HP4	Electrostatic Cathode-Ray	14G	6.3	0.6	Television	$10^{\prime \prime}$		5000	$\frac{-60 /-140}{-27 /-63}$	1800 250								10KP7
10KP7	Magnetic Cathode-Ray	12D	6.3	0.6	Oscillograph	$10^{\prime \prime}$		9000	$-27 /-63$	250			10			-		$\begin{aligned} & \text { 12AP4/ } \\ & 1803-P 4 \end{aligned}$
$\begin{aligned} & 12 A P 4 / \\ & 1803 . \mathrm{P} 4 \end{aligned}$	Electromagnetic Picture Tube	6AL	2.5	2.1	Television	12/	7000	1460	- 75	250	25			-			White	
12CP4	Electromagnetic Pielure Tube	4AF	2.5	2.1	Television	$12^{\prime \prime}$	7000		-110		25		10				White	12 CP 4
	Electromognetic Cathode-Ray	5AN	6.3	0.6	Telovision	$12^{\prime \prime}$	7000	250	- 45	-							White	12DP4
12DP4-7							4000	250	- 45									$12 \mathrm{KP4} 4$ -
12KP4-A	Electromagnelic Picture Tube	Fig. 35	6.3	0.6	Television	$12^{\prime \prime}$		11000	-27/-63	250							White	12LP4
12LP4	Electromagnellic Kinescope	120	6.3	0.6	Television	$12^{\prime \prime}$		11000	-27/-63	250			110	-			White	148P4
148P4	Electromagnetic Picture Tube	Fig. 35	6.3	0.6	Television	$14^{\prime \prime}$		11000	$\frac{-27 /-63}{-45}$	250	120					-	White	15 AP4
15 AP4		$\begin{array}{c\|} \hline \text { 12D } \\ \hline \text { Fig. } 35 \\ \hline \end{array}$	6.3	0.6	Television	$15^{\prime \prime}$		8000	- 45	250	109		115				While	$15 \mathrm{CP4}$
$15 \mathrm{CP4}$	Electremognetic Piclure Tube Electromagnetic Picture Tube		6.3	$\frac{0.6}{0.6}$	Television	$15^{\prime \prime}$		9000	- -45	250	105		146		-		While	15DP4
15DP4		120			Television	$15^{\prime \prime}$		13000	-27/-63	350							White	16AP4
16 AP4	Electromagnetic Piclure Tube	Fig. 35	6.3	0.6	Television	$\begin{aligned} & 16^{\prime \prime} \\ & 16^{\prime \prime} \\ & \hline \end{aligned}$		12000	-33/-77	300			105				White	16EP4A
16EP4A	Electromagnetic Piclure Tube	120	6.3	0.6	Television		-	13000	-33/-77	250	105		146				White	16FP4
16FP4	Electromagnetic Piclure Tube	$\begin{gathered} \text { Fig. } 35 \\ \hline \text { 12D } \end{gathered}$	6.3	0.6	Telovision	$16^{\prime \prime}$		13000	-27/-63	300	23^{8}		100				White	16GP4
16GP4			6.3	0.6	Television	$16^{\prime \prime}$	-	12000	-33/-77	300	120		110				White	16HP4
16HP4	Electromagnetic Plicture Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$		12000	-27/-63	250	120		115				White	16JP4
16JP4	Electromagnetic Pieture Tube	12 D	6.3	0.6	Television	$16^{\prime \prime}$	-	11000	-27/-63	250	$3{ }^{18}$		90				White	$16 \mathrm{KP4}$
$16 \mathrm{KP4}$	Electromagnetic Picture Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$		14000	-33/-77	300	120		110				White	16LP4
16LP4	Electromognetic Picture Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$	-	12000	-33/-77	300	120		100			-	White	16RP4
16RP4	Electromagnetic Piature Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$		12000	-33/-77	300	45^{8}	-	115				White	16 TP4
$16 T P 4$	Electromagnetic Picture Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$	-	12000	-33/-77	300	$23{ }^{8}$		100				Whita	16UP4
16UP4	Electromagnetic Picture Tube	120	6.3	0.6	Television	$\frac{16}{} 16^{\prime \prime}$		12000	-27/-63	250	105		146			-	White	19 AP4
19AP4	Electromognetic Picture Tube	Fig. 35	6.3	0.6	Telavision	16			-27)-63									

TABLE XIV-CATHODE-RAY TUBES AND KINESCOPES—Continued

TYpe	Name	Socket Connec. tions	Healer		Use	Size	Anode Na. 2 Voltoge	Anode No. 1 Voltage	Cut-Off Grid Voltage	Grid No. 2 Voltage			Focus Coil Ma.	Deflection Sensitivily ©		Anode No. 3 Voltage	Pattern Colar	Type
			Volts	Amps.										D 10	$D_{3} D_{4}$			
19AP4A	Electromagnetic Picture Tube	12D	6.3	0.6	Television	$16^{\prime \prime}$	-	12000	-33/-77	300	75	-	140	-	-		White	19AP4A
$19 \mathrm{FP4}$	Electromagnetic Picture Tube	Fig. 35	6.3	0.6	Television	$16^{\prime \prime}$		13000	-27/-68	250	100	-	100/130				White	19FP4
20BP4	Electramagnatic Cathade-Ray	12D	6.3	0.6	Television	$20^{\prime \prime}$	\cdots	15000	- 45	250			-		\square	\longrightarrow	White	20BP4
$22 A P 4$	Electromagnelic Picture Tube	Fig. 35	6.3	0.6	Teloviston	27'		14000	-33/-77	300	$35{ }^{5}$	-	117	$\underline{-}$	$\underline{\square}$		White	22 AP4
$902{ }^{7}$	Elactrostatic Cathode-Ray	Fig. 1	6.3	0.6	Oscillograph	$2^{\prime \prime}$	600	150	- 60	-	-	350		0.19	0.22		Green	902
$903{ }^{3}$	Electromagnetic Cathode-Ray	6AL	2.5	2.1	Oscillograph	$9 \prime$	7000	1360	-120	250	-	-					Green	903
904	Electrostatic-Magnetic Cathode-Ray	Fig. 3	2.5	2.1	Oscillograph	$5^{\prime \prime}$	4600	970	- 75	250	-	4000	-	0.09	\longrightarrow	$\underline{-}$	Green	904
905	Electrastatic Cathode-Ray	Fig. 6	2.5	2.1	Oscillograph	$5^{\prime \prime}$	2000	450	- 35	-	-	1000		0.19	0.23	-	Green	905
907	Electrostatic Cothode-Ray	Fig. 6	2.5	2.1	Osclilegraph	$5^{\prime \prime}$		Characteristics same as $\mathrm{T}_{\text {Ype }} 905$ Cheracteristics same as Type 3API/906PI						-	0.23	-	Blue	907
908 :	Electrostatic Cathode-Ray	TAN	2.5	2.1	Oscillogreph	37								$\underline{\square}$	\longrightarrow	\square	Blue	908
908.A	Electrostatic Cathode-Ray	7CE	2.5	2.1	Ozellilogroph	3	1500	430	- 50	-		500		0.223	0.233			
					Oscmigrapb		1000	287	- 33	-		500	-	0.334	0.348		Blue	908-A
9095	Electrosianic Cathode-Ray	Fig. 6	2.5	2.1	Oscillograph	$5{ }^{\prime \prime}$		Characteristics serme as Type 905 Characteristics same as Type 3AP 1/906P1 Charocteristies same as Type 3AP1/906P1						-			Blue	909
$910{ }^{\circ}$	Electrostatic Cathode-Ray	7AN	2.5	2.1	Oscillograph	$3^{\prime \prime}$								-	-	-	Blue	910
911°	Electrostatic Cothode-Ray	7 AN	2.5	2.1	Oxcillogrmph	$3^{\prime \prime}$										-	Green	911
912	Electrostatic Cothode-Ray	Fig. 8	2.5	2.1	Oscillograph	$5{ }^{\prime \prime}$	10000	2000	-66	250	-	7000	-	0.041	0.051	\cdots	Grean	912
913	Electrostatic Cothode-Ray	Fig. 1	6.3	0.6	Oseillograph	1 "	500	100	-65		\cdots	250		0.07	0.10		Green	913
$914{ }^{\text {1 }}$	Electrostatic Cathode-Ray	Fig. 12	2.5	2.1	Oselllogroph	$9 \prime$	7000	1450	- 50	250	-	3000	-	0.073	0.093	\longrightarrow	Grean	914
1800 1801^{5}	Electromagnetic Kınescope	6AL	2.5	2.1	Television	$9 \prime$	6000	1250	- 75	250		-	-	-	-	-	Yellow	1800
18015	Electromagnefic Kinascope	Fig. 13	2.5	2.1	Telovision	$5{ }^{\prime \prime}$	3000	450	- 35				-			\longrightarrow	Yallow	1801
2001	Electroslatic Cathode-Ray	4AA	6.3	0.6	Oseillagraph	$1^{\prime \prime}$				Characteristics essentially same as 913								2001
2002	Electrostatic Cathode-Ray	Fig. 1	6.3	0.6	Oselllograph	2"	600	120			-	-	-	0.16	0.17	\longrightarrow	Green	2002
${ }_{\text {2005 }}^{2005}$	Electrastatic Cothode-Ray	Fig. 14	2.5	2.1	Telavision	$5{ }^{\prime \prime}$	2000	1000	- 35	200		-	-	0.5	0.56			2005
24-XH	Electrostotic Cathode-Ray	Fig. 1	6.3	0.6	Oscilloscope	2'	600	120	- 60	-	-	-	-	0.14	0.16		Blue	24-XH

D.c. Volts/in.

Cathode connected to Pin 7.

- Discontinued. in mm./volld.c.
${ }^{7}$ Superseded by same lype with suffix "A."
Ion-Irap gausses.

TABLE XV-RECTIFIERS-RECEIVING AND TRANSMITTING
See also Table XIII-Control and Regulator Tubes

Typo No.	Name	Base	Sockel Connections	Cathode	Fii. or Heater		Max.A.C.VoltagePor Plate	D.C. Outpul Current Ma.	Max. Inverse Peak Valtage	Peak Plate Current Ma.	Typo
					Volts	Amp.					
BA	Full-Wave Rectifier	4-pin M.	41	Cold			350	350	Tube drap 80 v .		G
BH	Full-Wave Rectifier	4-pin M.	4J	Cold			350	125	Tube dran 90 v .		G
BR	Half-Wove Rectifier	4-pin M.	4H	Cold			300	50	Tube drop 60 v .		G
CE. 220	Half-Wave Rectifier	4-pin M.	4 P	Fil.	2.5	3.0	-	20	20000	100	HV
OY4	Half-Wave Rectifier	$5-\mathrm{pin} 0$.	4BU	Cold	Connect Pins 7 and 8		95	75	300	500	G
OZ4	Full-Wave Rectifior	5-pin 0.	4R	Cold			350	30-75	1250	200	G
1	Half-Wave Rectifier	4-pln 5.	46	Hir.	6.3	0.3	350	50	1000	400	MV
1-V	Half-Wave Rectifier	4 -pin 5.	4G	Hir.	6.3	0.3	350	50		\square	HV
1V2	Half-Wave Rectifier	9-pin 8.	90	Fil.	. 625	0.3	-	0.5	7500	10	HV
1B3GT/8016	Half-Wave Rectifior	6-pin 0.	3 C	Fil.	1.25	0.2	-	2.0	4000	17	HV
1848	Helf-Wave Rectifier	7 -pin 8 .		Cold			800	6	2700	50	G
1×2	Half-Wove Reclifier	9-pin B.	9 Y	Fil.	1.25	0.2		1	15000	10	HV
1 $\times 2 \times 1$	Half-Wave Rectifler	9-pin B.	9 Y	Fil.	1.25	0.2	-	1.1	20000	11	HV
122	Half-Wave Reclifier	7-pin B.	7 CB	Fil.	1.5	0.3	7800	2	20000	10	HV
2B25	Half-Wave Rectifier	7-pin B.	3 T	Fil.	1.4	0.11	1000	1.5	-	9	HV
2V36	Half-Wave Rectifior	6-pin 0.	4 Y	Fil.	2.5	5.0	\cdots	2.0	16500	12	HV
2W3	Half-Wave Rectifier	5-pin 0.	4X	Fil.	2.5	1.5	350	55	-		HV
2X2/87910	Half-Wave Rectifior	4-pin 5.	4AB	Hit.	2.5	1.75	4500	7.5			HV
2X2.A	Half-Wave Rectifier	4-pin 5.	4AB	Same as $2 \times 2 / 879$ but will withstand severe shock \& vibration							HV
2 Y 2	Half-Wave Rectifier	4-pin M.	4AB	Fil.	2.5	1.75	4400	5.0	-		HV
222/G84	Half-Wave Rectifier	4-pin M.	4B	Fil.	2.5	1.5	350	50			HV
$3 \mathrm{E24}$	Half-Wave Rectifier	4-pin M.	T-4A	Fil.	$\begin{aligned} & 5.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 60 \\ & 30 \\ & \hline \end{aligned}$	$\begin{array}{r} 20000 \\ 20000 \\ \hline \end{array}$	$\begin{array}{r} 300 \\ 150 \\ \hline \end{array}$	HV
3825	Half-Wave Reclifer	4-pin M.	4P	Fil.	2.5	5.0		500	4500	2000	G
3B26	Half-Wave Rectifier	$8-\mathrm{pin} 0$.	Fig. 31	Hir.	2.5	4.75	-	20	15000	8000	HV
DR-3827	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	3000	250	8500	1000	HV
SAZ4	Full-Wave Rectifier	5-pin 0.	5 T	Fil.	5.0	2.0	Same as Type 80				HV
5R4GY	Full-Wave Rectifier	5 -pin 0.	51	Fil.	5.0	2.0	$\begin{aligned} & 9004 \\ & 9507 \end{aligned}$	$\begin{aligned} & 1504 \\ & 1757 \\ & \hline \end{aligned}$	2800	650	HV
5T4	Full-Wave Rectifier	5-pin 0.	57	Fil.	5,0	3.0	450	250	1250	800	HV
5U4G	Full-Wave Rectifier	$8-\mathrm{pin} 0$.	51	Fil.	5.0	3.0	5ame as Type $5 \mathrm{Z3}$				HV
5V4G	Full-Wave Rectifier	8 -pin 0.	51	Hir.	5.0	2.0	5ame as Type 83V				HV
5W4	Full-Wave Rectifier	5-pin 0.	5 T	Fil.	5.0	1.5	350	110	1000		HV
5×3	Full-Wave Rectifer	4 -pin M.	4 C	Fil.	5.0	2.0	1275	30			HV
5X4G	Full-Wave Rectifier	$8-p \ln 0$.	50	Fil.	5.0	3.0	Same as 523				HV
5Y3G	Full-Wava Rectifor	5-pin 0.	5 T	Fil.	5.0	2.0	Same as Type 80				HV
5Y4G	Full-Wave Rectifier	8 -pin 0.	50	Fil.	5.0	2.0	Same as Type 80				HV
523	Full-Wave Rectifier	4 -pin M.	4C	Fil.	5.0	3.0	500	250	1400		HV
524	Full-Wave Rectifior	5 -pin 0.	51	Hir.	5.0	2.0	400	125	1100	575	HV
6AX5GT	Full-Wave Rectifier	6-pin 0.	65	Hir.	6.3	1.2	450	125	1250	375	HV
6AX6G	Full-Wave Rectifier	7 -pin 0.	70	Mir.	6.3	2.5	350	250	1250	600	HV
6U4GT	Half-Wove Rectifier	5-pin 0.	4CG	Hir.	6.3	1.2		138	1375	660	HV
6 V 4	Full-Wave Rectifier	$9-\mathrm{pin}$ B.	9 M	Hir.	6.3	0.6	350	90	-	-	HV
6W4GT	Damper Service	6-pin 0.	4C6	Hir.	6.3	1.2		125	2000	600	HV
	Half-Wave Rectifier						350	125	1250	600	
6W5G	Full-Wave Rectifier	6 -pin 0 .	65	Hir.	6.3	0.9	380	100	1250	350	HV
6×4	Full-Wave Rectifior	7 -pin 8.	7 CF	Hir.	6.3	0.6	32.	70	1250	210	HV
6×5	Full-Wave Rectifer	6-pin 0.	65	Htr.	6.3	0.5	580	75			HV
6 63G	Half-Wave Reclifier	5-pin 0.	4AC	Hitr.	6.3	0.5	5600	7.3		-	HV
6Y5 ${ }^{10}$	Full-Wave Rectifier	$6-\operatorname{pin} 5$.	63	Hitr	6.3	0.6	750	50	-	-	HV
623	Half-Wave Rectifier	4-pin M.	4 G	11.	6.5	0.3	250	50	-	-	HV
$6 \mathrm{Z5}{ }^{10}$	Full-Wave Rectifier	6-pin 5.	6K	Hir.	6.9	0.6	230	60	$\underline{\square}$	-	HV
6ZY5G	Full-Wave Rectifier	6 -pin 0 .	65	Mir.	6.3	0.3	130	35	1000	150	HV
7Y4	Full-Wave Rectifier	8 -pin L.	5AB	Hir.	6.2	0.5	350	60	-	-	HV
724	Full-Wave Rectifier	8 -pin L.	5 AB	Hir.	6.3	0.9	$\begin{array}{r} 4501 \\ 3254 \\ \hline \end{array}$	100	1250	300	HV
1247	Rectifier-Pontode	7-pin 5.	7K	Hir.	12.6	0.3	125	30	\cdots	-	HV
1273	Half-Wave Rectifier	4-pin 5.	46	Hir.	12.6	0.3	250	60	-		HV
1225	Vollage Doubler	7-pin M.	71	Her.	12.6	0.3	225	60	-	-	HV
14 Y 4	Full-Wave Rectifier	8-pin L .	5AB	Htr.	12.6	0.3	$\begin{array}{r} 4501 \\ 3254 \end{array}$	70	1250	210	HV
1423	Half-Wave Rectifier	4-pln 5.	4 G	Hro.	12.6	0.3	250	60	-		HV
25A7G ${ }^{10}$	Rectifier-Pentode	8 -pin 0.	8 F	Hr.	25	0.3	125	75	\square	-	HV
25W4GT	Half-Wave Reclifier	6 -pin 0.	4CG	Hir.	25	0.3	350	125	1250	600	HV
$25 \times 6 \mathrm{GT}$	Voltage Doubler	7 -pin 0.	70	Hir.	25	0.15	125	60	-	-	HV
25Y4GT	Half-Wave Rectifer	6 -pin 0.	5AA	Hir.	25	0.15	125	75	-		HV
25 Y 510	Voltage Doubler	6 -pin 5.	6 E	Hhr.	25	0.3	250	85	-		HV
2573	Half-Wave Rectifer	4-pin 5.	4G	Htr.	25	0.3	250	50	\square	-	HV
2574	Half-Wave Ractifer	6 -pin 0.	5AA	Hir.	25	0.3	125	125	-	\square	HV
2575	Rectifier-Doubler	6-pin 5.	$6 E$	Hirs.	25	0.3	125	100	-	500	HV
2526	Rectifier-Doubler	7 -pin 0.	70	Hir.	25	0.3	125	100	-	500	HV

TABLE XV—RECTIFIERS—RECEIVING AND TRANSMITTING - Continued
See also Table XIII-Control and Regulator Tubes

Type No.	Nome	Base	Sacket Cannecfians	Cathode	Fil. or Heater		$\|c\|$ Max. Aaliage Per Plate	D.C. Oulput Current Ma.	Max. Inverse Peak Voltage	Peak Plafe Curreni Ma.	Type
					Volts	Amp.					
2825	Full-Wave Reclifier	8-pin L.	5AB	Htr.	28	0.24	$\begin{array}{r} 450{ }^{7} \\ 3254 \end{array}$	100	-	300	HV
32 LTGT	Rectifier-Tetrade	8 -pin 0 .	82	Hfr.	32.5	0.3	125	60		\cdots	HV
35W4	Half-Wave Rectifier	7-pin B.	5BQ	Hir.	35%	0.15	125	1008	330	600	HV
$35 Y 4$	Half-Wave Rectifier	8 -pin 0.	5AL	Htr.	352	0.15	235	$\begin{gathered} 60 \\ 100^{8} \end{gathered}$	700	600	HV
3573	Half-Wave Rectifer	8 -pin L.	42	Her.	35	0.15	250 8	100	700	600	HV
35Z4GT	Half-Wave Rectifer	6-pin 0.	5AA	Htr.	35	0.15	250	100	700	600	HV
3525G	Half-Wave Rectifer	$6-\mathrm{pin} 0$.	6AD	Htr.	352	0.15	125	$\begin{gathered} 60 \\ 100^{8} \\ \hline \end{gathered}$	-	-	HV
3526G	Valtage Daubler	6-pin 0.	70	Hir.	35	0.3	125	110		500	HY
4025GT	Half-Wave Rectifier	6-pin 0.	6AD	Htr.	40 2	0.15	125	$\begin{gathered} 60 \\ 100 ~ \end{gathered}$	-	-	HV
4523	Half-Wave Rectifier	7-pin B.	5AM	Hfr.	45	0.075	117	65	350	390	HV
4525GT	Half-Wave Rectifler	6-pin 0.	6AD	Htr.	45^{2}	0.15	125	$\begin{gathered} 60 \\ 100^{8} \end{gathered}$	-	-	HV
50AX6G	Full-Wave Rectifier	7-pin 0.	70	Hir.	50	0.3	350	250	1250	600	HV
50×6	Valtage Daubler	8 -pin L.	7AJ	Htr.	50	0.15	117	75	700	450	HV
50Y6GT	Full-Wave Rectifier	7 -pin 0.	70	Hir.	50	0.15	125	85			HV
50Y7GT	Valtage Daubler	8 -pin L.	8 AN	Hfr.	50^{2}	0.15	117	65	700		HV
5026G	Valtage Doubler	7-pin 0.	70	Htr.	50	0.3	125	150		-	HV
5027G10	Vallage Doubler	8-pin 0.	8AN	Hir.	50	0.15	117	65		-	HV
70A7GT	Reclifer-Tetrade	$8-\mathrm{pin}$ O.	8AB	Hir.	70	0.15	125 8	60			HV
7017 GT	Reclifier-Tetrade	8 -pin 0.	8AA	Hir.	70	0.15	117	70		350	HV
72	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	3.0		30	20000	150	HV
73	Half-Wave Rectifer	8 -pin 0.	4Y	Fil.	2.5	4.5	-	20	13000	3000	HV
80	Full-Wave Rectifier	4-pin M.	4C	Fil.	5.0	2.0	$\begin{aligned} & 3504 \\ & 500^{7} \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	1400	375	HV
81	Half-Wave Rectifer	4-pin M.	4B	Fil.	7.5	1.25	700	85	-		HV
82	Full-Wave Rectifier	4-pin M.	4 C	Fil.	2.5	3.0	500	125	1400	400	MV
83	Full-Wave Rectifier	4-pin M.	4C	Fil.	5.0	3.0	500	250	1400	800	MV
83-V	Full-Wave Rectifler	4-pin M.	4AD	Htr.	5.0	2.0	400	200	1100	\square	HV
84/624	Full-Wave Rectifier	5-pin 5.	5D	Htr.	6.3	0.5	350	60	1000		HV
$\begin{aligned} & 117 \mathrm{GGT} / \\ & 117 \mathrm{M} 7 \mathrm{GI} \end{aligned}$	Rectifier-Tetrode	8-pin 0.	8 AO	Htr.	117	0.09	117	75	-	-	HV
117N7GT	Rectifler-Tetrade	8 -pin 0.	8AV	Hir.	117	0.09	117	75	350	450	HV
117P7GT	Rectifier-Tetrade	8 -pin 0.	8AV	Htr.	117	0.09	117	75	350	450	HV
11723	Half-Wave Rectifier	7-pin B.	4BR	Htr.	117	0.04	117	90	330	-	HV
11724GT	Half-Wave Rectifier	6-pin 0.	5AA	Hfr.	117	0.04	117	90	350		HV
11726GT	Valtage Daubler	7-pin 0.	70	Htr.	117	0.075	235	60	700	360	HV
217.A10	Half-Wave Rectifer	4-pin J	4AT	Fil.	10	3.25		\square	3500	600	HV
217-C	Half-Wave Rectifier	4-pin J.	4AT	Fil.	10	3.25			7500	600	HV
$\mathrm{Z225}$	Half-Wave Rectifer	4-pin M.	4P	Fil.	2.5	5.0		250	10000	1000	MV
249-B	Half-Wave Rectifier	4-pin M.	Fig. 53	Fil.	2.5	7.5	3180	375	10000	1500	MV
HK253	Half-Wave Rectifier	4-pin J.	4AT	Fil.	5.0	10	-	350	10000	1500	HV
$\begin{aligned} & \text { 705A } \\ & \text { RK-705A } \end{aligned}$	Half-Wave Rectifler	4-pin W.	T-3AA	Fil.	$\begin{aligned} & 2.5^{9} \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	\square	$\begin{array}{r} 50 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 35000 \\ & 35000 \end{aligned}$	$\begin{aligned} & 375 \\ & 750 \end{aligned}$	HV
816	Half-Wave Rectifler	4-pin 5.	4P	Fil.	2.5	2.0	2200	125	7500	500	MV
836	Half-Wave Rectifier	4-pin M.	4P	Hitr.	2.5	5.0	-		5000	1000	HV
866A/866	Half-Wave Rectifer	4-pin M.	4P	Fil.	2.5	5.0	3500	250	10000	1000	MV
866 B	Half-Wave Rectifier	4-pin M.	4P	Fil.	5.0	5.0	-	\square	8500	1000	MV
866 Jr.	Half-Wave Rectifer	4-pin M.	4B	Fil.	2.5	2.5	1250	2503	\cdots	-	MV
HY866 Jr.	Half-Wave Rectifer	4-pin M.	4P	Fil.	2.5	2.5	1750	2503	5000	-	MV
RK866	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	3500	250	10000	1000	MV
Q7110	Half-Wave Rectifer	4-pin M.	4P	Fil.	2.5	2.0	1750	250	5000	500	MV
878	Half-Wave Rectifer	4-pin M.	4P	Fil.	2.5	5.0	7100	5	20000	-	HV
879	Half-Wave Rectifer	4-pin 5.	4P	Fil.	2.5	1.75	2650	7.5	7500	100	HV
872A/872	Half-Wave Rectifer	4 -pin J.	4AT	Fil.	5.0	7.5	-	1250	10000	5000	MV
975A	Half-Wave Rectifer	4-pin J.	4AT	Fil.	5.0	10.0	-	1500	15000	6000	MV
$\begin{aligned} & \text { OZ4A/ } \\ & 1003 \end{aligned}$	Full-Wave Rectifier	5-pin 0.	4R	Cold	-	ـ	-	110	880	-	G
$\begin{aligned} & 1005 / \\ & \text { CK } 1005 \end{aligned}$	Full-Wave Rectifler	8 -pin 0.	5AQ	Fit.	6.3	0.1	-	70	450	210	G
$\begin{aligned} & 1006 / \\ & \text { CK } 1006 \end{aligned}$	Full-Wave Rectifer	4-pin M.	4C	Fil.	1.75	2.25	-	200	1600	-	6
CK1007	Full-Wave Rectifier	8 -pin 0.	T-9G	Fil.	1.0	1.2		110	980		G
CK1009/BA	Full-Wave Reclifier	4-pin M.		Cald		\square		350	1000		G
1274	Full-Wave Recifier	6-pin 0.	65	Hr.	6.3	0.6	Same as 7Y4				HV
1275	Full-Wave Rectifier	4-pin M.	4 C	Fil.	5.0	1.75	Same as 5Z3				HV
1616	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	-	130	6000	800	HV
$\begin{aligned} & 1641 / \\ & \text { RK } 60 \end{aligned}$	Full-Wave Rectifier	4-pin M.	T-4AG	Fil.	5.0	3.0	-	50 250	4500	-	HV
1654	Half-Wave Rectifier	7-pin B.	27	Fii.	1.4	0.05	2500	1	7000	6	HV
5517	Half-Wave Rectifier	7 pin B.	58U	Cald	-	-	1200	6	-	50	G

TABLE XV-RECTIFIERS-RECEIVINO AND TRANSMITTING-Continued
See also Table XIII-Control and Regulator Tubes

Type No.	Name	Base	Socket Connec. tions	Cothode	Fin, or Heater		Max. A.C. Voltage Por Plate		Mox. Inverse Pook Voliage	Peak Plat Current Me.	Type
					Volts	Amp.					
5825	Holf-Wove Rectifier	4-pin M.	4P	Fil.	1.6	1.25	-	2	60000	40	HV
4008	Half-Wave Rectifer	4-pin ${ }^{\text {a }}$	Fig. 11	Fil.	5.0	7.5		1250	10000	5000	MV
2013A	Helf-Wave Rectifier	4-pin M.	4P	Fil.	2.5	3.0		20	40000	150	HV
5016	Helf-Wave Rectiner	6-pin 0.	4AC	Fil.	1.25	0.2		2.0	10000	7.5	HV
020	Malf-Wove Rectifler	4-pin M.	4P	FII.	$\begin{aligned} & 5.0 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 10000 \\ & 12500 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{r} 40000 \\ 40000 \\ \hline \end{array}$	$\begin{aligned} & 750 \\ & 750 \\ & \hline \end{aligned}$	HV
(1)19	Full-Wave Roctifier	4-pln M.	4AT	Htr.	7.5	2.3	1230	2004	3500	600	HV
RK21	Half-Wave Rectifiter	4-pln M.	4P	Hir.	2.5	4.0	1250	2004	3500	600	HV
KK22	Full-Wave Rectifer	4-pin M.	T.4AG	Hir.	2.5	8.0	1250	2004	3500	600	HV

1 With input cheke of elleast 20 henrys.
2 Topped for pilet lamps.

- Per pair with choke input.
- Condenger Inpul.

W With 100 ohms min. resistance in serles with plate; witheut series resistor, maximum rom.s. plate ruting is $\mathbf{I} 17$ velis.

S Some as 872A/872 excepl for heavyduty push-type base. Filament connected to pins 2 end 3, plete to top cap. Choke input.
s Without panel lamp.

- Using oniy one-holf of flement. 10 Discentinued.

TABLE XVI-TRIODE TRANSMITTING TUBES

Type	Max. Plate Dissi- pation Watts	Cathade		Max. Plote Voltage	Mox. Plofe Current Ma	Mox. D.C. Grid Current Mo.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Sockel Connec tions	Typical Operation	Plate Valiage	Grid Voltage	Plate Current Ma.		Approx. Grid Driving Power Watis	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Lood Res. } \\ \text { Ohms } \end{gathered}$	Approx. Outpul Power Watts
		Valts	Amp.					$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$	$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Plate } \end{gathered}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
958-A	0.6	1.25	0.1	135	7	1.0	12	0.6	2.6	0.8	500	A.	5BD	Class-C Amp.-Oscillator	135						
$3 \mathrm{B7} 2$	-	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \\ & \hline \end{aligned}$	180	25	-	20	1.4	2.6	2.6	125	0.	7 AP	Class-C Amp. (Telegraphy)	180	- 20	25	1.0	0.035	-	0.6
RK24	1.5	2.0	0.12	180	20	6.0	8.0	3.5	5.5	3.0	125	S.	4D	Class-C Amp.-Oscillator							2.8
6.163	1.5	6.3	0.45	300	30	16	32	2.2	1.6	0.4	250	B.	7BF	Class-C Amp.-Oscillator	180	-45 -10	16.5	6.0	0.5		2.0
9002	1.6	6.3	0.15	250	8	2.0	25	1.2	1.4	1.1	250	B.	7TM	Class-C Amp.-Oscillator	180	-10 -35	30 7	16	0.35		3.5
955	1.6	6.3	0.15	180	8	2.0	25	1.0	1.4	0.6	250	A.	5BC	Class-C Amp.-Oscillator	180	-	7	1.5			0.5
HY114B	1.3	1.4	0.155	180	12	3.0	13	1.0	1.3	1.0	300	0.	2T	Class-C Amp.-Oscillator	180	-30	12	2.0	0.2		$1.4{ }^{3}$
		1.4	0.22											Class-C Amp. (Telephany)	180	- 35	12	2.5	0.3		$1.4{ }^{3}$
$3{ }^{3} 5^{2}$	2.0	2.8	0.11	150	30	5.0	15	0.9	3.2	1.0	40	B.	7BC	Class-C Amp.-Oscillator ${ }^{2}$	150	- 35	30	5.0	0.2	-	2.2
6F4	2.0	6.3	0.225	150	20	8.0	17	2.0	1.9	0.6	500	A.	7BR	Class-C Amp.-Oscillator	150	$\begin{gathered} -15 \\ 550^{*} \\ 2000^{* *} \end{gathered}$	20	7.5	0.2	-	1.8
HY24	2.0	2.0	0.13	180	20	4.5	9.3	2.7	5.4	2.3	60	S.	4D	Class-C Amp. (Telegraphy)	180	- 45	20	4.5	0.2	-	2.7
RK33 1, ${ }^{\text {2 }}$	2.5	2.0	0.12	250	20	6.0	10.5	3-2	3-2	2.5	60	S.	T.7DA	Class-C Amp. (Telephony)	180	-45	20	4.5	0.3		2.5
12AU7:	$2.75{ }^{6}$	6.3	0.3	350	12°	$3.5{ }^{6}$	18	1.5	1.5	0.5	54	B.	9 A	Class-C Amp.-Oscillator ${ }^{2}$	350	-	24	6.0	0.54		3.5
6N4	3.0	6.3	0.2	180	12	-	32	3.1	2.35	0.55	500	B.	7CA	Class-C Amp.-Oscillatar	180	-100		7			6.0
HY6J5GTX	3.5	6.3	0.3	330	20	4.0	20	4.2	3.8	5.0	60	0.	60	Class-C Amp.-Oscillator	330	- 33	20	2.0	0.2		3.5
2C22/7193	3.5	6.3	0.3	500		-	20	2.2	3.6	0.7				Class-C Amp. (Telephony)	250	- 30	20	2.5	0.3	-	2.5
HY615 HY-E1148	3.5	6.3	0.175	300	20	4.0	20	1.4	1.6	1.2	300	0.	t-bAG	Class-C Amp. Amp.-Oseillator	300	- 35	20	2.0	$\underline{0.4}$	-	$4.0{ }^{3}$
GL-446A													T.BA	Class-C'Amp. (Tolephony)	300	- 35	20	3.0	0.8		$3.5{ }^{3}$
GL-446B ${ }^{\text {a }}$	3.75	6.3	0.75	400	20	-	45	2.2	1.6	0.02	500	0.	Fig. 19	Class-C Amp.-Oscillator	250	\square	-	-	-	-	-
$\begin{aligned} & \text { GL-2C44 } \\ & \text { GL-464A } \end{aligned}$	5.0	6.3	0.75	500	40			2.7	2.0	0.1	500	0.	Fig. 17	Class-C Amp.-Oscillator	250	-	-	-	\square	-	-
$6 \mathrm{C4}$	5.0	6.3	0.15	350	25	8.0	18	1.8	1.6	13	54	8.	6BG	Class-C Amp.-Oscillator	300	- 27					
1626	5.0	12.6	0.25	250	25	8.0	5.0	3.2	4.4	3.4	30	0.	60	Class-C Amp.-Oscillator	250	-27	25	7.0	0.35 0.5		5.5
$\begin{aligned} & \hline \text { 2C21/ } \\ & \text { RK33: } \\ & \hline \end{aligned}$	5.0	6.3	0.6	250	40	12	-	1.6	1.6	2.0	-	S.	T-7DA	Class-C Amp.-Oscillator ${ }^{2}$	250	- -60	25	12	1.0	-	4.0
2 C 36	5	6.3	0.4	$1500{ }^{5}$,	25	1.4	2.4	0.36	1200	N.	Fig. 36	Plate-Pulsed 1000.Mc. Osc.	$1000{ }^{\circ}$	0	9005				
$\begin{aligned} & 2 C 37 \\ & 5766 \\ & 5767 \\ & \hline \end{aligned}$	5	6.3	0.4	350	-	-	25	1.4	1.85	0.02	3300	N.	Fig. 36	1000-Mc. C.W. Oscillator	150	3000 **	15	3.6	-	-	2005
5764	5	6.3	0.4	1500^{5}	11.5	-	25	1.4	1.85	0.02	3300	N.	Fig. 36	Plate-Pulsed 3300-Me. Ose.	10005	0	13005				
5765	5	6.3	0.4	350			25	1.3	2.1	0.03	2900	N.	Fig. 36	1900-Mc. C.W. Oscillator	180	10000 **	25				$200{ }^{3}$
5675	5	6.3	0.135	165	30	8	20	2.3	1.3	0.09	3000	N.	Fig. 36	Grounded-Grid Osc.	120	- 8	25				0.225
6N7 ${ }^{2}$	$5.5{ }^{\text {b }}$	6.3	0.8	350	30^{6}	$5.0{ }^{\circ}$	35				10	0.	88	Class-C Amp. Oscillatar ${ }^{2,11}$	350	-8 -100	60	10	\cdots		0.05
5876	6.25	6.3	0.135	300	25	-	56	2.5	1.4	0.035	1700	N.	Fig. 36	Grounded-Grid OsciMator	250	- 2	23	3	-		14.5 0.75
2 C 40	6.5	6.3	0.75	500	25	-	36	2.1	1.3	0.05	500	0.		Frequency Multiplier	300	-70	17.3	7	-	-	2.0
												0.	Fig. 19	Class-C Amp.-Oscillator	250	- 5	20	0.3	-	-	0.075
5556	7.0	4.5	1.1	350	40	10	8.5	4.0	8.3	3.0	6	M.	4D	Class-C Amp. (Telegraphy)	350	-80	35	2	0.25	-	6
$2 \mathrm{C43}$.	12	6.3	0.9	500	40	-	48	2.9	1.7	0.05	1250	0.	Fig. 19	Class-C Amp. (Telephony)	330	-130	30	2	0.3	-	4
2C26A	10	6.3	1.10	-		-	16.3	2.6	2.8	1.1	250	0.	4BB	Class-C Amp.-Oscillator	470	-	387		-		97
$\begin{aligned} & \text { 2C34/ } \\ & \text { RK } 34^{2} \end{aligned}$	10	6.3	0.8	300	80	20	13	3.4	2.4	0.5	250	M.	T.7DC	Class-C Amp.-Oscillator ${ }^{2}$	300	- 36	80	20	1.8	\square	- 16

table XVI-triode transmitting tubes-Confinuad

TABLE XVI-TRIODE TRANSMITTING TUBES—Continued

[^15]TABLE XVI-TRIODE TRANSMITTING TUBES - Continued

Typo	Max. Plate Dissipation Watts	Cethode		Max. Plate Voltage		Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ralings	Base	Sockel Connections	Typical Operation	Plate Volitage	Grid Voltage	PlateCurrentMa.		Approx. Grid Driving Power Watts	$\begin{aligned} & \text { Class B } \\ & \text { P-to.P } \\ & \text { Logd Res. } \\ & \text { Ohms } \end{aligned}$	Approx. Output Power Watts
		Volts	Amp.					$\begin{aligned} & \text { Gidd } \\ & \text { lo } \\ & \text { Fil. } \end{aligned}$	Grid fa Piate	Plate to Fil.											
HY40 ${ }^{1}$	40	7.5	2.25	1000	125	25	25	6.1	5.6	1.0	60	M.	3G	Class-C Amp. (Telegraphy)	1000	- 90	125	20	5.0		94
														Class-C Amp. (Telephony)	850	-90	125	25	5.0	-	82
														Grid-Modulated Amp.	1000	-	125		-	-	20
HY40Z ${ }^{1}$	40	7.5	2.6	1000	125	30	80	6.2	6.3	0.8	60	M.	3G	Class-C Amp. (Telegraphy)	1000	-27	125	25	5.0		94
														Class-C Amp. (Telephony)	850	- 30	100	30	7.0		82
														Grid-Madulated Amp.	1000		60				20
														Class-C Amp.-Oseilfator	1500	-140	150	28	9.0		158
T40	40	7.5	2.5	1500	150	40	25	4.5	4.0	0.0	60	M.	3G	Class-C Amp. (Telephony)	1250	-115	115	20	5.25	-	104
TZ40	40	7.5	2.5	1500	150	45	62	4.8	5.0	0.6	60	M.	3 G	Class-C Amp.-Oseillator	1500	-90	150	38	10	-	165
														Class-C Amp. (telephony)	1250	-100	125	30	7.5	--	116
														Class-B Amo. Audio?	1500	- 9	250.	$285{ }^{9}$	6.08	12000	250
HY57	40	6.3	2.25	850	110	25	50	4.9	5.1	1.7	60	M.	3G	Closs-C Amp. (Telegraphy)	850	- 48	110	15	2.5	-	70
														Class-C Amp. (Telephany)	700	-45	90	17	5.0	-	47
														Grid-Modulated Amp.	850	-	70	-	-	-	20
7561	40	7.5	2.0	850	110	25	8.0	3.0	7.0	2.7	-	M.	4D	Class-C Amplifier	850	-	-110	25	7.	\square	
756	4		2.0	850										Class-C Amplifer	750	-180	110	18	7.0	-	55
8301	40	10	2.15	750	110	18	8.0	4.9	9.9	2.2	15	M.	4D	Grid-Modulated Amp.	1000	-200	50	2.0	3.0	-	15
$\begin{aligned} & 3-50 A 4 \\ & 35 T \\ & 3-50 D 4 \\ & \text { 35TG } \end{aligned}$	50	5.0	4.0	2000	150	50	39	$\begin{aligned} & 4.1 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	M. M.	$\begin{aligned} & \text { 3G } \\ & 2 \mathrm{D} \end{aligned}$	Class-C Amp. (Telegraphy)	2000	-135	125	45	13		200
														Class-C Amp. (Telephony)	1500	-120	100	30	5.0	-	120
														Class-B Amp. Audio ${ }^{7}$	2000	- 40	34/167	$255{ }^{\text { }}$	$4.0{ }^{8}$	27500	235
8010-R	50	6.3	2.4	1350	150	20	30	2.3	1.5	0.07	350	N.	-	Class-C Amplifer	--	-	-		-	-	
8010-R														Closs-C Amp. (Telegraphy)	1250	-225	100	14	4.8	-	90
RK32 ${ }^{1}$	50	7.5	3.25	1250	100	25	11	2.5	3.4	0.7	100	M.	20	Class-C Amp. (Telephony)	1000	-310	100	21	8.7	-	70
RK351	50	7.5	4.0	1500	125	20	9.0	3.5	2.7	0.4	60	M.	2 D	Class-C Amp. (Tolegraphy)	1500	-250	115	15	5.0	-	120
														Class-C Amp. (Telephony)	1250	-250	100	14	4.6	-	93
														Grid-Modulated Amp.	1500	-180	37		2.0	-	25
RK37	50	7.5	4.0	1500	125	35	20	3.5	3.2	0.2	60	M.	2 D	Class-C Amp. (Telegraphy)	1500	-130	115	30	7.0	-	122
														Class-C Amp. (Telephony)	1250	-150 -50	100	23	5.6	-	90
														Grid-Modulated Amp.	1500	- 50	50		2.4	-	26
$\begin{aligned} & \text { 3-50G2 } \\ & \text { UH50 } \end{aligned}$	50	7.5	3.25	1250	125	25	10.6	2.2	2.6	0.3	60			Class-C Amp. (Telegraphy)	1250	-225	125	20	7.5	-	115
												M.	2 D	Class-C Amp. (Telephony)	1250	-325	125	20	10	-	115
														Grid-Modulated Amp.	1250	-200	60	2.0	3.0	-	25
UH5 1^{1}	50			2000					2.3	0.3				Class-C Amp. (Telegraphy)	2000	-500	150	20	15	-	225
		5.0	6.5		175	25	10.6	2.2			60	M.	2D	Class-C Amp. (Telephony)	15	-400	165	20	15	-	200
														Grid-Modulated Amp.	1500	-400	85	2.0	8.0	-	65
HK54	50	5.0							1.9	0.2	100			Class-C Amp. (Telegraphy)	3000	-290	100	25	10	\square	250
			5.0	3000	150	30	27	1.9				M.	2 D	Class-C Amp. (Telephony)	2500	-250	100	20	8.0	-	210
														Class-B Amp. Audio ${ }^{\text {? }}$	2500	-85	20/150	$360{ }^{\circ}$	5.0	40000	275
HK154	50	5.0	6.5	1500	175									Class-C Amp. (Telegraphy)	1500	-590	167	20	15	-	200
						30	6.7	4.3	5.9	1.1	60	M.	20	Class-C Amp. (Telephony)	1250	-460	170	20	12	-	162
														Grid-Modulated Amp.	1500	-450	52	-	5.0	-	28
														Class-C Amp.-Oseillator	2000	-150	125	25	6.0	-	200
HK158	50	12.6	2.5	2000	200	40	25	4.7	4.6	1.0	60	M.	20	Class-C Amp. Telephony)	2000	-140	105	25	5.0	-	170
														Class-C Amp. (Telegraphy)	1250	-200	100	-	-	-	85
$\begin{aligned} & \text { WE304 } \\ & 304 B \end{aligned}$	50	7.5	3.25	1250	100	25	11	2.0	2.5	0.7	100	M.	20	Class-C Amp. (Telephony)	1000	-180	100	-	\square	-	65

TABLE XVI-TRIODE TRANSMITTING TUBES—Continued

Type	Max. Plate Dissipation Watts	Cathode		Mox. Plate Voltage	MoxPlate Current Ma.	Max. D.C. Grid Current Me.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Sockel Connecfions	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.		Approx. Grid Driving Power Wafts	Class B P-to-P Lond Res. Ohms	Approx. Oulput Power Watts
		Volts	Amp.					Grid to Fil.	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	Plafe 10 Fil.											
356A	50	5.0	5.0	1500	120		50	2.25	2.75	1.0	60	N.	T-48D	Class-C Amp. (Telegraphy)	1500	- 60	100	-	-	-	100
808			4.0			35					60	N.		Class-C Amp. (Telephony)	1250	-100	100	35			85
	50	7.5		1500	150	35	47	5.3	2.8	0.15	30	M.	2D		1500	-200	125	30	9.5		140
															1250	-225	100	32	10.5		105
														Class-C Amp. (Telephony) Class-B Amp. Audio ${ }^{\text {i }}$	1500	- 25	30/190	$220{ }^{\circ}$	$4.8{ }^{8}$	18300	185
834	50	7.5	3.1	1230	100	20	10.5	2.2	2.6	0.6	100	M.	2D	Class-C Amp. (Telegraphy)	1250	-225	90	15	4.5		75
841A1	50	10	2.0		150									Class-C Amp. (Telephony)	1000	-310	90	17.5	6.5		58
8415W	50	10	2.0	1000	150	30	14.6	3.5	9.0	2.5	-	M.	3G	Class-C Amplifier		-	-		-	-	85
T55	55	7.5	3.0	1500	150	40								Class-C Amplifier	1500	-170	150	18	6.0	二	170
811		7.5	3.0	1500	150	40	20	5.0	3.9	1.2	60	M.	3G	Class-C Amp. (Telephony)	1500	-195	125	15	5.0		145
	55	6.3	4.0	1500	150	50	160	5.5	5.5	0.6	60	M.	3G	Class-C Amp. (Telegraphy)	1500	-113	150	35	8.0	\cdots	170
														Class-C Amp. (Telephony)	1250	-125	125	50	11		120
														Class-B Amp. Audio ${ }^{\text {\% }}$	1500	- 9	20/200	$150{ }^{\circ}$	$3.0{ }^{8}$	17600	220
812	55	6.3	4.0	1500	150	35	29	5.3	5.3	0.8	60	M.	3G	Class-C Amp. (Telegraphy)	1500	-175	150	25	6.5		170
														Class-C Amp. (Telephony)	1250	-125	125	25	6.0		120
RK51	60													Class-B Amp. Audio'	1500	- 45	50/200	232 ${ }^{\circ}$	4.78	18000	22
		7.5	3.75	1500	150	40	20	6.0	6.0	2.5	60	M.	36	Class-C Amp. (Telegraphy)	1500	-250	150	31	10	-	170
														Class-C Amp. (Telephony)	1250	-200	105	17	4.5	-	96
														Grid-Modulated Amp.	1500	-130	60	0.4	2.3		128
RK52	60	7.5	3.75	1500	130	50	170	6.6	12	2.2	60	M.	36	Class-C Amp. (Telegraphy)	1500	-120	130	40	7.0	-	135
														Class-C Amp. (Telephony)	1250	-120	115	47	8.5		102
														Class-B Amp. Audio ${ }^{\text {² }}$	1250	0	40/300	180%	$7.5{ }^{8}$	10000	250
T-60	60	10	2.5	1600	150	50	20	5.5	5.2	2.5	60	M.	2D	Class-C Amp.-Oselllator	1500	-150	150	50	9.0		100
826	53	7.5	4.0	1000	125	40	31	3.7	2.9	1.4	250	N.	780	Class-C Amp.-Oscillator	1000	- 70	130	35	5.8	-	90
														Class-C Amp. (Telephony)	1000	-160	95	40	11.5		70
														Grid-Modulated Amp.	1000	-125	65	9.5	8.2	-	25
$\begin{aligned} & 830 \mathrm{~B} \\ & 930 \mathrm{~B} \end{aligned}$	60	10	2.0	1000	150	30	25	5.0	11	1.8	15	M.	36	Class-C Amp.-Oscillator	1000	-110	140	30	7.0	-	90
														Class-C Amp. (Telephony)	800	-150	95	20	5.0		50
														Class-B Amp. Audio?	1000	- 35	20/280	$270{ }^{\circ}$	$6.0{ }^{8}$	7600	175
$811 . A$	65	6.3	4.0	1500	175	50	160	5.9	5.6	0.7	60	M.		Class-C Amp. (Telegraphy)	1500	- 70	173	40	7.1		200
													36	Class-C Amp. (Telephony)	1250	-120	140	45	10.0	-	135
														Class-8 Amp. Audio?	1500	- 4.5	32/313	170°	$4.4{ }^{\text {8 }}$	12400	340
														Class-C Amp. (Telegraphy)	1500	-120	173	30	6.5		190
812.A	65	6.3	4.0	1500	175	35	29	5.4	5.5	0.77	60	M.	36	Class-C Amp. (Telephony)	1250	-115	140	35	7.6		130
														Class-B Audio ${ }^{\text {a }}$	1500	- 48	28/310	$270{ }^{\circ}$	5.0	13200	340
														Class-C Amp. (Telegraphy)	1000	-75	175	20	7.5	,	131
HY518 ${ }^{\text {d }}$	65	10	2.25	1000	' 175	25	25	6.5	7.0	1.1	60	M.	36	Class-C Amp. (Telephony)	1006	-67.5	130	15	7.5	-	104
														Grid-Madulated Amp.	1000	-	100		-	-	33
HY5121	65	7.5												Class-C Amp. (Telegraphy)	1000	-22.5	175	35	10		131
HY5iz	65	7.5	3.5	1000	175	35	85	7.9	7.2	0.9	60	M.	480	Class-C Amp. (Telephony)	1000	- 30	150	35	10	-	104
														Grid-Modulated Amp.	1000	-	100		-		33
5514	65	7.5	3.0	1500	175	60								Class-C Amp. (Telegraphy)	1500	-106	175	60	12	-	200
				1500	175	60	145	7.8	7.9	1.0	60	M.	4 BO	Class-C Amp. (Telephony)	1250	- 84	142	60	10	-	135
														Class-B Audio	1500	-4.5	$350{ }^{\text {8 }}$	$88{ }^{8}$	$6.5{ }^{\text {8 }}$	10300	400

TABLE XVI-TRIODE TRANSMITTING TUBES-Continued

Type	Max. Plate Disstpation Watts	Cathode		Max. Plate Voltoge	Max. Plato Current Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	$\begin{gathered} \text { Inforelectrode } \\ \text { Capacitances (} \mu \mu \mathrm{fd} . \text {) } \end{gathered}$			Max. Freq. Mc. Full Ratings	Base	Socket Connections	Typical Operation	Plate Volioge	Grid Voltage	Plate Current Ma.	D.C. Grid Current Ma.	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Load Res. } \\ \text { Ohms } \end{gathered}$	Approx. Output Power Wotts
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { lo } \\ \text { Fil. } \end{gathered}$	Grid to Plate	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
														Class-C Amp. (Telegraphy)	1500	-170	150	30	7.0	-	170
UH35 ${ }^{1}$	70	5.0	4.0	1500	150	35	30	1.4	16	0.2	60	M.	3G	Class-C Amp. (Telephony)	1500	-120	100	30	5.0	-	120
														Class-C Amp. (Telegraphy)	1500	-215	130	6.0	3.0		140
$V 70$ V70B	70	10	2.5	1500	140	25	14	5.0	9.0	2.3	-	M.	3G	Class-C Amp. (Telephony)	1250	-250	130	6.0	3.0	-	120
														Class-C Amp. (Telegraphy)	1000	-110	140	30	7.0		90
V70A	70	10	2.5	1500	140	20	25	5.0	9.5	2.0	-	\dot{M}.	3 G	Class-C Amp. (Telephony)	800	-150	95	20	5.0	-	50
5011	75	5.0	6.0	3000	100	30	12	2.0	2.0	0.4	-	M.	2D	Class-C Amplifier	3000	-600	100	25	10	-	250
														Class-C Amp. (Telegraphy)	2000	-200	150	32	10	-	225
$\begin{aligned} & 3.75 \mathrm{~A} 3 \\ & 75 \mathrm{TH} \end{aligned}$						40	20	2.7	2.3	0.3			2D	Class-B Amp. Audio ${ }^{3}$	2000	- 90	50/225	$350{ }^{\circ}$	$3{ }^{\text {8 }}$	19300	300
	75	5.0	6.25	3000	225						40	M.		Class-C Amp. (Telography)	2000	-300	150	21	8		225
3.7542 75 TL						35	12	2.6	2.4	0.4			2D	Class-B Amp. Audio ${ }^{7}$	2000	-160	50/250	535 *	$5{ }^{8}$	18000	350
														Class-C Amp. (Telegraphy)	1600	-190	158	12	3.5	-	200
' $+\mathrm{F}-60$	75	10	2.5	1600	160	-	28	5.4	5.2	1.5	30	M.	2D	Class-C Amp. (Telephony)	1250	-190	113	8	2.5	-	110
														Class-B Amp. Audio ${ }^{\text {? }}$	1600	- 75	50/248	310°	3.0	13800	262
														Class-C Amp. (Telegraphy)	1500	- 95	158	31	6.0	-	190
28-60	75	10	2.5	1600	160	40	80	6.1	5.8	1.85	30	M.	2D	Class-B Amp. Audio ${ }^{\text {? }}$	1500	- 9	30/305	2089	12.5	11200	320
														Class-C Amp. (Telegraphy)	1500	-200	150	18	6.0		170
IIH	75	10	2.5	1500	160	30	23	5.0	4.6	2.9	30	M.	2D	Class-C Amp. (Telephony)	1250	-250	110	21	8.0		105
														Class-B Amp. Audio ${ }^{7}$	1750	- 62	40/270	$324{ }^{\circ}$	9.0	16000	350
HF75	75	10	3.25	2000	120	-	12.5	-	2.0	-	75	M.	2D	Class-C Oscillator-Amp.	2000	-	120	-			150
														Class-C Amp.-Oscillator	2000	-175	150	37	12.7	-	225
TW75	75	7.5	4.15	2000	175	60	20	3.35	1.5	0.7	60	M.	2D	Class-C Amp. (Telephony)	2000	-260	125	32	13.2	-	198
														Class-C Amp. (Telography)	1500	-200	150	18	6.0	-	170
														Class-C Amp. (Telephony)	1250	-250	110	21	8.0	-	105
$\text { HF } 100$	75	10	2.5	1500	150	30	23	4.0	4.5	2.6	30	M.	2D	Grid-Madulated Amp.	1500	-280	72	1.5	6.0	-	42
														Class-B Amp. Audio?	1750	- 62	40/270	$324{ }^{\text {\% }}$	$9.0{ }^{8}$	16000	350
														Class-C Amp. (Telegraphy)	1500	-200	150	18	6.0		170
UE-100	75	10	2.5	1750	150	30	23	3.5	4.5	1.4	30	M.	2D	Class-C Amp. (Telephony)	1250	-250	120	21	8.0		105
														Class-B Audio ${ }^{\text {- }}$	1750	-62	$540{ }^{8}$		9.0	16000	350
														Class-C Amp. (Telegraphy)	1250	-135	160	23	5.5	-	145
											30		$4 E$	Class-C Amp. (Telephony)	1000	-150	120	21	5.0	-	95
2B120	75	10	2.0	1250	160	40	90	5.3	5.2	3.2	30	J.	$4 E$	Grid-Modulated Amp.	1250	-	95	8.0	1.5	-	45
														Class-B Amp. Audio ${ }^{7}$	1500	- 9	60/296	196\%	$5.0{ }^{8}$	11200	300
3278	75	10.5	10.6	-	-	-	30	3.4	2.45	0.3	-	N.	T-4AD	-							
													$4 E$	Class-C Amp. (Telegraphy)	1250	-175	150	-			130
242A	85	10	3.25	1250	150	50	12.5	6.5	13	4.0	6	J.	48	Class-C Amp. (Telephony)	1000	-160	150	50	-	-	100
														Class-C Amp. (Telegraphy)	1250	-500	150	50			125
284D	85	10	3.25	1250	150	100	4.8	6.0	8.3	5.6	-	J.	$4 E$	Class-C Amp. (Telephony)	1000	-450	150	50	-	\square	100
														Class-B Amp. Audio?	1250	-250	30/200	-		11200	140
															1750	-175	170	26	6.5	-	225
														Class.C Amp. (Telegraphy)	1250	-125	125	25	5.0	-	116
812H	85	6.3	4.0	1750	200	45	-	5.3	5.3	0.8	30	M.	3 G		1500	-125	165	21	6.0	-	180
														Class-C Amp. (Folephany)	1250	-125	125	25	6.0	-	120
														Class-B Amp Audio ${ }^{\text {] }}$	1500	- 46	42/200		-	18000	225

TABLE XVI－TRIODE TRANSMITTING TUBES—Continued

Type	Max． Plate Dissi－ patian Watts	Cathode		Mox． Plate Voltage	Max． Plote Current Mo．	Max． D．C． Grid Current Ma．	Amp． Factor	Inferelectrode Copacitances（ $\mu \mu \mathrm{fd}$ ．）			Max． Freq． Me． Full Ratings	Base	Socket Connec－ tions	Typical Operation	Plate Valiage	Grid Voltage	Plate Curren 1 Ma．		Approx． Grid Driving Pawer Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Logd Res. } \\ \text { Ohms } \end{gathered}$	Approx． Outpu Power Watts
		Volts	Amp．					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plote } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
8003	85	10	3.25	1500	200	45	20	6.4	5.0	1.0	60	M．	3 G	Class－C Amp．－Telegraphy	1500	－130	200	32	7.5	－	220
														Class－C Amp．（Telephany）	1250	－195	190	28	9.0		170
														Class－B Amp．Audia ${ }^{\text {？}}$	1500	－ 70	40／310	310°	4.0	10000	300
V－70－D	85	7.5	3.25	1750	200	45		4.5	4.5	1.7	30	M．	$3 G$	Class－C Amp．（Telegraphy）	1750	－100	170	19	3.9		225
							－								1500	－ 90	165	19	3.9		195
														Class－C Amp．（Telephony）	1500	－ 90	165	19	3.7	－	185
															1250	－ 72	127	16	2.6		122
RK36 ${ }^{\text {a }}$	100	5.0	8.0	3000	165	35	14	4.5	5.0	1.0	60	M．	2D	Class－C Amp．（Telegraphy）	2000	－360	150	30	15	－	200
														Class－C Amp．（Telephony）	2000	－360	150	30	15		200
														Grid－Modulated Amp．	2000	－270	72	1.0	3.5		42
RK38：	100	5.0	0.0	3000	165	40		4.6	4.3	0.9	60	M．	2D	Class－C Amp．（Telegraphy）	2000	－200	160	30	10		225
							－							Class－C Amp．（Telephony）	2000	－200	160	30	10		225
														Grid－Modulated Amp．	2000	-150	80	2.0	5.5		60
$\begin{aligned} & 3-100 \mathrm{A4} \\ & 100 \mathrm{TH} \end{aligned}$	100	5.0	6.3	3000	225	60	40	2.9	2.0	0.4	40	M．	2D	Class－C Amp．（Telography） Closs－C Amp．（Telephony）	3000	－200	165	51	18	－	400
														Grid－Modulated Amp．	3000	－400	70	3.0	7.0		100
														Class－8 Amp．（Audia）${ }^{7}$	3000	－ 65	40／215	335%	5.0^{8}	31000	630
$\begin{aligned} & 3-100 \mathrm{~A} 2 \\ & 100 \mathrm{~T} \end{aligned}$	100	5.0	6.3	3000	225	50	14	2.3	2.0	0.4	40	M．	2D	Class－C Amp．（T\＄drgraphy） Closs－C Amp．（Telephony）	3000	－400	165	30	20	－	400
														Grid－Modulated Amp．	3000	-560	60	2.0	7.0	－	90
														Class－8 Amp．（Audio）${ }^{\text {］}}$	3000	－185	40／215	640\％	$6.0{ }^{8}$	30000	450
VT127A	100	5.0	10.4	3000	－	－	15.5	2.7	2.3	0.35	150	N．	T－48	Class－C Amp．（Telography）	2000	－340	210	67	25		315
														Class－B Amp．（Audio）？	1500	－125	242	44	7.3	3000	200
227A	100	10.5	10.7	－	－	－	31	3.0	2.2	0.30	－	N．	T－4B	Oscillator at 200 Mc ．	ー二	一－	－	－		－	－
327 A	100	10.5	10.7		－	－	31	3.4	2.3	0.35	－	N．	T－4AD	Oscillator af $\mathbf{2 0 0}$ Mc．	－－	ーー	－	－		－	－
HK254	100	5.0	7.5	4000	200	40	25	3.3	3.4	1.1	50	J．	2N	Class－C Amp．（Telegraphy）	4000	－380	120	35	20	－	475
														Class－C Amp．（Telephany）	3000	－290	135	40	23	－	320
														Grid－Madulated Amp．	3000	－	51	3.0	4.0	－	58
														Class－8 Amp．（Audio）${ }^{\text {］}}$	3000	－100	40／240	4569	$7.0{ }^{8}$	30000	520
RK58	100	10	3.25	1250	175	70	－	8.5	6.5	10.5	－	J.	3N	Class－C Amp．（Telegraphy）	1250	－ 90	150	30	6.0	－	130
														Class－C Amp．（Telephony）	1000	－135	150	50	16	－	100
HF120	100	10	3.25	1250	175	50	12	5.5	12.5	3.5	15	J．	4F	Class－C Amp．－Oscillator	1250	-300	168	8	3.5		148
HF125	100	10	3.25	1500	175		25		11.5		30	J．	－	Class－C Amp．－Oseillator	1500		175		\cdots	－	200
HF140	100	10	3.25	1250	175	－	12	5.5	13.0	4.5	15	J．	4 F	Class－C Amp．－Oscillator	1250	－300	166	8	3.5		148
$\begin{aligned} & \text { 203A } \\ & 303 A \end{aligned}$	100	10	3.25	1250	175	60	25	6.5	14.5	5.5	15	J．	4E	Closs－C Amp．（Telegraphy）	1250	－125	150	25	7.0	\cdots	130
														Class－C Amp．（Telephony）	1000	－135	150	50	14	\square	100
														Class－B Amp．（Audio）？	1250	－ 45	26／320	330＊	11^{8}	9000	260
203H	100	10	3.25	1500	175	60	25	6.5	11.5	1.5	15	J．	3N	Class－C Amp．（Telegraphy）	1500	－200	170	12	3.8	－	200
														Class－C Amp．（Telephony）	1230	－160	167	19	5.0	－	160
														Class－B Amp．（Audio）${ }^{\text {？}}$	1500	－ 52	30／320	3049	5.58	11000	340
$\begin{aligned} & 211 \\ & 311 \\ & 835! \end{aligned}$	100	10	3.25	1250	175	50	12	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$						Class－C Amp．（Telegraphy）	1250	－225	150	18	7.0	\square	130
									$\begin{aligned} & 14.5 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	15	J．	4 E	Class－C Amp．（Telephony）	1000	－260	150	35	14	－	100
														Class－B Amp．（Audio）${ }^{\text {］}}$	1250	－100	20／320	410\％	8.0^{8}	9000	260
$\begin{aligned} & 2428 \\ & 3428 \end{aligned}$	100	10	3.25	1250	150	50	12.5	7.0	13.6	6.0	6	J．	45	Class－C Amp．（Telegraphy）	1250	－175	150	－	－	－	130
														Class－C Amp．（Telophony）	1000	－160	150	50		－	100

TABLE XVI-TRIODE TRANSMITTING TUBES - Continued

Type	Max. Plate Dissi- pation Walts	Cathode		Max. Plate Voltage	Max.Plate Current Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ralings	Base	Socke 1 Connecfions	Typleal Operation	Plate Voltage	Grid Voltage	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Wats	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Logd Res. } \\ \text { Ohms } \end{gathered}$	Approx. Oulpui Power Watts
		Volts	Amp.					Grid 10 Fil.	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { 10 } \\ \text { Fil. } \end{gathered}$											
242C	100					50	12.5							Class-C Amp. (Telegraphy)	1250	-175	150		-	-	130
		10	3.25	1250	150			6.1	13.0	4.7	6	J.	4E	Class-C Amp. (Telephony)	1000	-160	150	50	-		100
														Class-B Amp: (Audio) ${ }^{7}$	1250	- 80	25/150		25^{8}	7600	200
														Class-C Amp. (Telegraphy)	1250	-175	125		-	-	100
$\begin{aligned} & 261 A \\ & 361 A \end{aligned}$	100	10	3.25	1250	150	50	12	6.5	9.0	4.0	30	J.	4E	Class-C Amp. (Telephony)	1000	-160	150	50	-	$\overline{7200}$	100
														Class-B Amp. (Audio) ${ }^{\text {] }}$	1250	- 90	20/150		258	7200	200
														Class-C Amp. (Telegruphy)	1250	-175	125		-	-	100
$\begin{aligned} & 276 A \\ & 376 A \end{aligned}$	100	10	3.0	1250	125	50	12	6.0	9.0	4.0	30	J.	4E	Class-C Amp. (Telophony)	1000	-160	125	50			85
														Class-B Amp. (Audio) ${ }^{\text {? }}$	1250	- 90	20/125		258	9000	175
														Class-C Amp. (Telegraphy)	1250	-503	150		-	-	125
284B	100	10	3.25	1250	150	100	5.0	4.2	7.4	5.3	-	J.	3N	Class-C Amp. (Telephony)	1000	- -430	150	50	-		100
														Class-B Amp. (Audia) ${ }^{7}$	1250	-245	15/150	-	10^{8}	7200	200
														Class-C Amp. (Telegraphy)	1250	-125	150		-		125
295A	100	10	3.25	1250	175	50	25	6.5	14.5	5.5	-	J.	$4 E$	Class-C Amp. (Telephany)	1000	-125	150	50	-	-	100
														Class-B Amp. (Audia) ${ }^{7}$	1250	- 40	12/160		$20{ }^{\circ}$	9000	250
														Class-C Amp. (Telegraphy)	1250	-90	150	30	6.0	-	130
$\begin{aligned} & 838 \\ & 938 \end{aligned}$	100	10	3.25	1250	175	70	-	6.5	8.0	5.0	30	J.	$4 E$	Class-C Amp. (Telephony)	1000	-135	150	60	16	T-000	100
														Class-B Amp. (Audio) ${ }^{\text {? }}$	1250	0	148/320	$200{ }^{\text {s }}$	7.5^{8}	9000	260
														Class-C Amp. (Telegraphy)	3000	-600	85	15	12	-	165
852	100	10	3.25	3000	150	40	12	1.9	2.6	1.0	30	M.	2D	Class-C Amp. (Telephony)	2000	-500	67	30	23	-	75
														Class-B Amp. (Audio) ${ }^{\text {] }}$	3000	-250	14/160	780%	$3.5{ }^{\text {8 }}$	10250	320
														Class-C Amp. (Telegraphy)	1000	- 50	50	18	4	-	30
564812	100	6.3	1.1	1000	100	50	100	8.75	1.95	0.035	2500	N.		Class-C Amp. (Telephony)	600	- 25	55	22	6	-	20
														Class-C Amp.-Oseillator	1350	-180	245	35	11	-	250
8003	100	10	3.25	1500	250	50	12	5.8	11.7	3.4	30	J.	3 N	Class-C Amp. (Telephony)	1100	-260	200	40	15	-	167
														Class-B Amp. (Audio) ${ }^{7}$	1350	-100	40/490	$480{ }^{\circ}$	$10.5{ }^{8}$	6000	460
3x100A11	100	6.3	1.1	1000	60	40	100	6.5	1.95	0.03	500	N.	-	"Grid Isolation" Cireuil	600	- 35	60	40	5.0	-	20
2 C 39		6.3	1.0	1000	80	50	100	6.5	1.95	. 035	500	N.	-	Class-C Amplifier	800	- 45	80	45	6	\cdots	27
2C39A	100	6.3	1.0	1000										Class-C Amp. (Telegraphy)	1750	-200	200	20	4.5	-	260
311-CH	125	10	3.25	1750	200	50	12	5.5	8.0	4.5	30	J.	Fig. 57	Closs-C Amp. (Telephony)	1250	-200	166	8	3.5	8200	148
														Class-B (Audlo)?	1500	-110	400^{8}	-	-	8200	400
	125	6.3	2.0	1000	150	70	40	4.9	2.4	0.05	500	0.	Fig. 30	Class-C Amp.-Oscillator	1000	-200	150	70	18	-	65
3 C 22	125	6.3	7.5	4000		-	29	3.2	3.0	0.4	60	J.	Fig. 56	Class-C Amp. -Oseillator		-	-	-	18	-	480
$4 \mathrm{C36}$	125	5	7.5	4000		-								Class-C Amp. (Telegraphy)	1500	-250	250	30	11		300
$\begin{aligned} & \text { F-123-A } \\ & \text { DR-123C } \end{aligned}$	125	10	4.0	2000	300	75	14.5	6.5	8.5	3.3	-	J.	Fig. 26	Class-C Amp. (Telephony)	1500	-290	160	25	10	1380	200
														Class-8 Amp. (Audio) ${ }^{7}$	2000	-130	30/175	217 9	$3.4{ }^{8}$	13800	522
														Class.C Amp. (Telegraphy)	1500	-105	200	40	8.5	-	215
RK57/805	125	10	3.25	1500	210	70	-	6.5	8.0	5.0	30	J.	3N	Class-C Amp. (Telephony)	1250	-160	160	60	16	\square	140
														Class-B Amp. (Audio) ${ }^{\text {] }}$	1500	- 16	84/400	$280{ }^{\circ}$	7.0^{8}	8200	370
														Class-C Amp. (Telegraphy)	2500	-200	240	31	11	-	475
T125	125	10	4.5	2500	250	60	25	6.3	6.0	1.3	60	J.	2N	Class-C Amp. (Telephony)	2000	-215	200	28	10	\square	320
HF130	125	10	3.25	1250	210	-	12.5	5.5	9.0	3.5	20	J.	-	Class-C Amp.-Oscillator	1250	-250	200	10	3.5	-	170
HF150	125	10	3.25	1500	210		12.5	5.5	7.2	1.9	30	J.		Class-C Amp.-Oseillator	1500	-300	200	10	4	\square	220
HF175	125	10	4.0	2000	250	-	18	4.8	6.3	2.7	25	J.	T.3AC	Class-C Amp.-Oscillator	2000	-250	200	23	9	-	320

TABLE XVI-TRIODE TRANSMITTING TUBES—Continued

Type	Max. Plate Dissipation Watts	Cathodo		Max. Plate Volfage		Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Sockel Connecfions	Typical Operation	Plate Volitage	Grid Vollage	$\begin{gathered} \text { Plale } \\ \text { Current } \\ \text { Ma. } \end{gathered}$		Approx. Grid Driving Power Wat's	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Lood Res. } \\ \text { Ohms } \end{gathered}$	Approx. Oulput Power Watts
		Volts	Amp.					$\begin{gathered} \hline \text { Grid } \\ \text { io } \\ \text { Fil. } \end{gathered}$	Grid to Plate	$\begin{gathered} \text { Plote } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
GL146	125	10	3.25	1500	200	60	75	7.2	9.2	3.9	15	J.	T-4BG	Class-C Amp.-Oscillator	1250	-150	180	30			150
														Closs-C Amp. (Telephony)	1000	-200	160	40			100
														Class-B Amp. (Audio) ${ }^{7}$	1250	0	34/320			8400	250
GL152	125	10	3.25	1500	200	60	25	7.0	8.8	4.0	15	J.	T-4BG	Class-C Amp.-Oscillator	1250	-150	180	30			150
														Closs-C Amp. (Telephony)	1000	-200	160	30		-	100
														Class-8 Amp. (Audio) ${ }^{7}$	1250	-40	16/320			8400	250
805	125	10	3.25	1500	210	70	40/60	8.5	6.5	10.5	30	J.	3N	Closs-C Amp. (Telegraphy)	1500	-105	200	40	8.5		215
														Closs-C Amp. (Telephony)	1250	-160	160	60	16		140
														Closs-B Amp. (Audio) ${ }^{7}$	1500	- 16	84/400	$280{ }^{9}$	7.0^{8}	8200	370
$\begin{aligned} & A \times 9900 / \\ & 5866^{12} \end{aligned}$	135	6.3	5.4	2500	200	40	25	5.8	5.5	0.1	150	N.	Fig. 5	Class-C Amp. (Talegraphy)	2500	-200	200	40	16		390
														Class-C Amp. (Telephony)	2000	-225	127	40	16	—	204
														Class-B (Audio) ${ }^{\text {º }}$	2500	- 90	80/330	$350{ }^{\circ}$	$14{ }^{8}$	15680	560
$\begin{aligned} & 3 \times 150 \mathrm{A3} \\ & 3 \mathrm{C} 37 \\ & \hline \end{aligned}$	150	6.3	2.5	1000	-	-	23	4.2	3.5	0.6	500	N.		\rightarrow		-	-	-	-	-	56
$150{ }^{1}$	150	5.0	10	3000	200	50	13	3.0	3.5	0.5		J.	2N	Closs-C Amp. (Telegraphy)	3000	-600	200	35			450
$\begin{aligned} & 3.150 \mathrm{AB} \\ & 152 \mathrm{TH} \end{aligned}$	150	5/10	$\frac{12.51}{6.25}$	3000	450	85	20	5.7	4.5	0.8	40	J.	4BC	Class-C Amp. (Telegraphy)	3000	-300	250	70	27	-	600
3-150A2														Class-B Amp, (Audio) ${ }^{7}$	3000	-150	67/335	$430{ }^{\circ}$	$3.0{ }^{8}$	20300	700
152TL						75	12	4.5	4.4	0.7			4BC	Class-C Amp. (Telegraphy)	3000	-400	250	40	20	-	600
														Class-B Amp. (Audio) ${ }^{7}$	3000	-260	65/335	675^{9}	$3.0{ }^{8}$	20400	700
TW150	150	10	4.1	3000	200	60	35	3.9	2.0	0.8	-	J.	2N	Class-C Amp.-Oscillatar	3000	-170	200	45	17	-	470
HK252-L	150	5/10	13/6	3000	500	75								Class-C Amp.-Oscillator	3000	-400	250	30	15		400
								7.0	5.0	0.4	125	N.	4BC	Class-C Amp. (Telephony)	2500	-350	250	35	16		500
DR200 HF200 HV18	150	10-11	3.4	2500	200	50	18	5.2	58	1.2	20	J.	2N	Class-C Amp. (Telegraphy)	2500	-300	200	18	8.0	\square	380
														Closs-C Amp. (Telephony)	2000	-350	160	20	9.0	\square	250
														Class-B Amp. (Audia) ${ }^{7}$	2500	-130	60/360	460°	$8.0{ }^{8}$	16000	600
HF250	150	10.5	4.0	2000	250	60	25	\square	12	-	15	J.	3N	Class-C Amplifor	-	-	-	-		-	375
$\begin{aligned} & \text { HK354 } \\ & \text { HK354C } \end{aligned}$	So	10.5	4.0	2500	200	-	18	-	5.8	-	20	J.	2N	Class-C Amp.-Oscillator	2500	-	200			-	375
	150	5.0	10	4000	300	50	14	4.5	3.8	1.1	30	J.	2N	Closs-C Amp. (Telegraphy)	4000	-690	245	50	48	-	830
														Class-C Amp. (Telephony)	3000	-550	210	50	35	-	525
														Grid-Moduloted Amp.	3000	-400	78	3.0	12	-	05
														Class-B Amp. (Audio) ${ }^{7}$	3000	-205	65/313	$630{ }^{\circ}$	20^{8}	22000	665
HK3540	150	5.0	10	4000	300	55	22	4.5	38	1.1	30	J.	2N	Class-C Amp. (Telegrophy)	3500	-490	240	50	38		690
										1.1	30	J.	2 N	Class-C Amp. (Telephony)	3500	-425	210	55	36	-	525
HK354E	150	5.0	10	4000	300	60	35	4.5	3.8	1.1	30		2N	Class C Amp. (Telegrophy)	3500	-448	240	60	45		690
							3	4.5	3.8	1.1	30	J.	2 N	Class-C Amp. (Telephony)	3000	-437	210	60	45	-	525
HK354F	150	5.0	10	4000	300	75	50	4.5	3.8	1.1	30	J.	2N	Closs-C Amp. (Telegrophy)	3500	-368	250	75	50	-	720
												J.		Class-C Amp. (Telephony)	3000	-312	210	75	45	-	525
UE-468	150	10	4.05	2500	200	60	18	8.8	7.0	1.25	30	J.	Fig. 57	Class-C Amp. (Telegraphy)	2500	-300	200	18	8.0	$\underline{\square}$	380
														Class-C Amp. (Telephony)	2000	-350	160	20	9.0	-	250
														Class-B (Audio) ${ }^{7}$	2500	-130	$320{ }^{8}$	410^{9}	2.5	16000	500
$\begin{aligned} & 810 \\ & 16271 \end{aligned}$	175	$\begin{gathered} 10 \\ 5.0 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	2500	300	75	36	8.7	4.0	12	30	J.	2N	Class-C Amp. (Telegraphy)	2500	-180	300	60	19		575
														Class-C Amp. (Telephony)	2000	-350	250	70	35		380
														Grid-Moduloted Amp.	2250	-140	100	2.0	4.0	-	75
														Class-B Amp. (Audio) ${ }^{7}$	2\%50	-60	70/450	$330{ }^{3}$	13^{8}	11600	725

TABLE XVI-TRIODE TRANSMITTING TUBES-Continued

TABLE XVI-TRIODE TRANSMITTING TUBES-Continued

Type	Mox. Plare Dissi- pation Watts	Cathode		Max. Plate Volfage		Max. D.C. Grid Current Ma.	Amp. Factor	$\begin{gathered} \text { Intorelectrode } \\ \text { Capacitances }(\mu \mu \mathrm{fd} .) \end{gathered}$			Max. Freq. Mc. Full Ratings	Base	Sockel Connections	Typical Operation	Plote Voltage	Grid Voitage	Plate Current Ma .		Approx. Grid Driving Power Wafts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Load Res. } \\ \text { Ohms } \end{gathered}$	Approx Output Walts
		Vclts	Amp.					Grid 10 Fil.	$\begin{aligned} & \text { Grid } \\ & \text { flo } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { fil. } \end{gathered}$											
GL159	250	10	9.6	2000	400	100	20	11	17.6	5.0	15	J.	T-48G	Class-C Amp.-Oscillator	2000	-200	400	17	6.0	-	620
														Class-C Amp. (Telephony)	1500	-240	400	23	9.0		450
														Class-B Amp. (Audio) ?	2000	-100	30/660	4009	$4.0{ }^{8}$	6880	900
GL169	250	10	9.6	2000	400	100	85	11.5	19	4.7	15	J.	T-4BG	Class-C Amp.-Oscillotor	2000	-100	400	42	10	680	620
														Class-C Amp. (Telephony)	1500	-103	400	45	10	-	450
														Class-B Amp. (Audio)?	2000	-18	30/660	220,	6.0^{8}	7000	900
$\begin{aligned} & 204 \mathrm{~A} \\ & 304 \mathrm{~A} \end{aligned}$	250	11	3.85	2500	275	80	23	12.5	15	2.3	3	N.	T-1A	Ciass-C Amp. (Telegraphy)	2500	-200	250	30	15	-	450
														Class-C Amp. (Telephony)	2000	-250	250	35	20		350
														Class-8 Amp. (Audia)?	3000	-100	80/372	$50{ }^{\circ}$	18^{8}	20000	700
308B	250	14	4.0	2250	325	75	8.0	13.6	17.4	9.3	1.5	N.	T-2A	Class-C Amp. (Telegraphy)	1750	-345	300	-			350
															1500	-300	300	-	-	-	300
HK454H	250	5.0	11	5000				4.6						Class-B Amp. (Audio) ${ }^{\text {² }}$	1750	-215	30/300		358	5200	575
HK 454-L	250	5.0	11	5000	375	60	12	4.6	3.4	1.4	100	J.	2 N	Class-C Amo. (Telegraphy)	3500	-275	270	60	28	-	760
$\begin{aligned} & 212 E \\ & 2418 \\ & 312 E \end{aligned}$	275	14	4.0	3000	350	75	16	14.9	18.8	1.4	100	J.	2N	Class-C Amp. (Telephony)	3500	-450	270	45	30	-	760
										8.6	1.5	N.	$\begin{aligned} & \mathrm{T}-2 \mathrm{AA} \\ & \mathrm{~T}-2 A A \end{aligned}$	Class-C Amp. (Telography)	3500	-275	270	60	28	-	760
														Class-B Amo. (Audio)?	2000	-450	$\frac{270}{40 / 300}$	45	5088		760
$300{ }^{1} 1$	300	8.0	11.5	3500	350	75	16	4.0	4.0	0.6	-	J.	2N	Class-C Amp. (Telegraphy)	2000	-225	40/300		$5{ }^{\circ}$	8000	650
HK304-L	300	5/10	26/13	3000	1000	150	10	12	9.0	0.8	-	N.	4BC	Closs-C Amp. (Telepheny)	1500	-2200	300	75			400
527	300	5.5	135.0	-	\square	-	38	19.0	12.0	1.4	200	N.	T-4B	Oscillator of 200 Mc .	1500	Approximately 250 watts output					300
HK654	300	7.5	15	4000	600	100	22	6.2	5.5	1.5	20	J.	2N	Class-C Amp. (Telegraphy)	2000	-380	500	75	57		720
														Class-C Amp. (Telephony)	2000	-365	450	110	70	\square	655
														Grid-Modulated Amp.	3500	-210	150	15	15	-	210
$\begin{aligned} & \text { 3-300A3 } \\ & \text { 304TH } \end{aligned}$	300	5/10	25/12.5	3000	900	170	20	13.5	10.2	0.7	40	N.	4BC	Class-C Amplifier	1500	-125	667	115	25	\square	700
$\begin{aligned} & 3-300 A 2 \\ & 304 \mathrm{TL} \end{aligned}$														Class-B Amp. (Audio) ${ }^{\text {P }}$	3000	-159	134/667	420	$6.0{ }^{8}$	10200	1400
						150	12	8.5	9.1	0.6	40	N.	4BC	Class-C Amplifler	1500	-250	665	90	33		700
														Class-B Amp. (Audio) ${ }^{\text {] }}$	3005	-250	130/667	650	6.0 :	10200	1400
833A	350	10	10	3300	500	100	35	12.3	6.3	8.5	30	N.	T-1AB	Closs-C Amp. (Telegraphy)	2000	-200	475	65	25		740
														Class-C Amp. (Telephony)	2500	-300	335	75	30		635
270A	350	10	4.0	3000	375	75	16	18	21	2.0	7.5	N.	T.1A	Class-C Amo. (Telegraphy)	3000	-375	350		-	-	700
														Class-C Amp. (Telephony)	2250	-300	300	80		$\underline{-}$	450
8491	400	11	5.0	2500	350	125	19	17	33.5	3.0	3	N.	T-IA	Class-C Amo. (Telegraphy)	2500	-250	300	20	8.0	-	560
														Class-C Amp. (Telephony)	2000	-300	300	30	14		425
8314	400	11	10	3500	350	75	14.5	3.8	4.0	1.4	-	N.	T-IAA	Closs-C Amp. (Telegraphy)	3500	-400	275	40	30		590
														Class-C Amp. (Telephony)	3000	-500	200	60	50		360

- Cathode resistor in ohms. ** Grid resistor ohms.
${ }^{1}$ Discontinued.
Twin friode. Volues, extapi Intereiement capacilios,
are for boilh sections in push-pull
are for boih sections in push-pull.
Output at 112 Mc.

Grid-leak resistor in ohms.

- Peak valves.
? Values are for two tubes in push-pull.
${ }^{3}$ Max. signal value.
${ }^{9}$ Peak o.f. grid-to-grid valts.
${ }_{11}$ Class-B data in Table I.
18 Forced-air cooling.

Type	Mox. Plate Dissipalion Watts	Cathode		Max. Plate Volfage	Mox. Screen Volt--ge	Max. Screen Dissipotion Watts	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Socket Con: nec= tions	Typical Operation	Piate Voltage	Screen Voltage	Sup-Voltage	Grid Volfage	Plate Current Ma.	Screan Current Ma.	Grial Curren! Ma.	Scraen Resistor Ohms	Approx. Grid Driving Power Watis	Class B P-to-P Load Res. Ohms	Approx. Output Power Watts
		Volts	Amp.				$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$															
344	2.0	$\begin{aligned} & \hline 1.4 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \\ & \hline \end{aligned}$	150	135	0.9	4.8	0.2	4.2	10	8.	788	Class-C Amp. (Telegraphy)	150	135	0	- 26	18.3	6.5	0.13	2300	-	-	1.2
3D6	4.5	$\begin{aligned} & 2.8 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.22 \end{aligned}$	180	135	0.9	75	0.3	5.5	50	L.	688	Class-C Amp. (Telegraphy)	150	135		- 20	23	6.0	1.0		0.25		1.4
3B4	3.0	$\begin{aligned} & 2.5 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 0.165 \\ & 0.33 \end{aligned}$	150	135	-	4.6	0.16	7.6	100	8.	7CY	Class-C Amp.	150	135		- 75	25		-		-	-	1.25
		2.5										T-8D3	Class-C Amp. (Telegraphy)	200	100		-22.5	20	4.0	2.0		0.1		3.0
HY63 ${ }^{1}$	3.0	1.25	0.225	200	100	0.6	8.0	0.1	8.0	60	0.	T-8D3	Class-C Amp. (Telephony)	180	100		- 35	15	3.0	2.0		0.2		2.0
6AK6	3.5	6.3	0.15	375	250	1.0	3.6	0.12	4.2	54	8.	78K	Class-C Amp. (Telegraphy)	375	250		-100	15	4.0	3.0		-		4.0
5A6	5.0	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0.46 \\ & 0.23 \end{aligned}$	150	150	2	8.5	0.15	9.5	100	8.	91	Class-C Amp.	150	150	0	- 24	40	11	1.2		-		3.1
5618	5.0	$\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.46 \end{aligned}$	300	125	2.0	7.0	0.24	5.0	83	3.	7 CU	Class-C Amp. (Telegraphy)	300	75	0	-45	25	7.0	1.5	32000	0.3	-	5.4
5686	7.5	6.3	0.35	250	250	3.0	6.4	0.11	4.0	150	8.	Fig. 29	Class-C Amp. (Telegraphy)	250	250		-50 -30	40	10.5 6.5	2.0		0.15 0.10	-	6.5 5.0
6 A05	8.0	6.3	0.45	350	250	2.0	7.6	0.35	6.0	54	B.	782	Class-C Amp. (Telegraphy)	350	250		-100	47	7.0	5.0				11
6V6GT	8.0	6.3	0.45	350	250	2.0	9.5	0.7	7.5	10	0.	7AC	Class-C Amp. (Telegraphy)	350	250		-100	47	7.0	5.0				11
6AG7	9.0	6.3	0.65	375	250	1.5	13	0.06	7.5	10	0.	8Y	Class-C Amp. (Telegrophy)	375	250		-75	35	9.0	5.0		4		7.5
6AG7	9.0	6.3											Class-C Amp. (Telegraphy)	400	100	30	-30	35	10	3.0	\cdots	0.18		10
RK64 ${ }^{1}$	6.0	6.3	0.5	400	100	3.0	10	0.4	9.0	60	M.	SAW	Class-C Amp. (Telephony)	300	\cdots	30	- 30	26	8.0	4.0	30000	0.2		6.0
1610	6.0	2.5	1.75	400	200	2.0	8.5	1.2	13	20	M.	T-5CA	Class-C Amp. (Telegraphy)	400	150	-	- 50	22.5	7.0	1.5	-	0.1		5.0
													Class-C Amp. (Telegraphy)	400	300		- 40	62	12	1.6		0.1		12.5
RK56	0.0	6.3	0.55	300	300	4.5	10	0.2	9.0	60	M.	5AW	Class-C Amp. (Telephony)	250	200		-40	50	10	1.6	2800	0.28		8.5
													Class-C Amp. (Telegraphy)	500	200	45	- 90	55	38	4.0		0.5		22
$\begin{aligned} & \text { RK23 } \\ & \text { RK25 } \end{aligned}$	10			500	250	8	10	0.2	10	-	M.	68M	Class-C Amp. (Telephony)	400	150	0	-90	43	30	6.0	8300	0.8		13.5
RK258 ${ }^{\text {a }}$		6.3	0.9										Suppressor-Modulated Amp.	500	200	-45	-90	31	39	4.0		0.5		6.0
												75	Class-C Amp. (Telegraphy)	350	200		- 35	50	10	3.5	20000	0.22	-	9
1613	10	6.3	0.7	350	275	2.5	8.5	0.5	11.5	45	O.	75	Class-C Amp. (Telephony)	275	250	-	- 35	42	10	2.8	10000	0.16		6.0
										160	8.	760	Class-C Amp. (Telegraphy)	250	200	-	- 53	50	10	2.5	\cdots	0.2		7.5
2 E 30	10	6.0	0.7	250	250	2.5	10	0.5	4.5	160	8.	7 Ca	Class-AB2 Amp. (Audio) ${ }^{\text {b }}$	250	250		- 30	40/120	4/20	$2.3{ }^{7}$	878	0.2	3800	17
5812	10	6.0	0.65	300	250	2.5	9.0	0.2	7.4	165	B.	7CQ	Class-C Amp. (Telegraphy)	300	200		- 45	55	3.0	0.75	-	1.5	-	7.0
$\begin{aligned} & 837 \\ & \text { RK44 } 1 \end{aligned}$	12	12.6	0.7	500	300	8	16	0.2	10	20	M.	6BM	Class-C. Amp. (Telegraphy)	500	200	40	- 70	80	15	4.0	2050)	0.4		28
													Cless-C Amp. (Telephany)	400	140	40	- 40	45	20	5.0	13000	0.3		11
													Suppressor-Modulated Amp.	500	-	-65	- 20	35	23	3.5	14000	0.1		5.0
											8.		Closs-C Amp. (Telegraphy)	300	250	0	- 60	50	5.0	3.0	$\underline{+}$	0.35		8.0
5763	12	6.0	0.75	300	250	2	9.5	0.3	4.5	175	8.	9 K	Doubler to 175 Mc .	300	250	0	- 75	40	4.0	1.0	12500	0.6		3.0
							6.5	0.2	13			7 AC	Clusx-C Amp. (Telegraphy)	400	275	-	-100	50	11	5.0	-	-		14
$\begin{aligned} & 6 F 6 \\ & 6 F 6 G \end{aligned}$	12.5	6.3	0.7	400	275	3.0	8.0	0.5	6.5	10	O.	7 AC	Closs-C Amp. (Telaphony)	275	200	-	- 35	42	10	2.8	--	0.16		6.0
$2 \mathrm{E24}$	$\begin{array}{r} 9.0 \\ 13.5 \end{array}$	6.3^{5}	0.65				8.5	0.11	6.5	125	0.	7CL	Class-C Amp. (Telephony)	400	180	-	- 45	50	8.0	2.5	27500	0.15		13.5
				500	200	2.3								500	180	-	-45	54	8.0	2.5	40000	0.16		18.0
													Class-C Amp. (Telegraphy)	400	200	\cdots	- 45	75	10.0	3.0	20000	0.19		20
				600	200	2.5								600	195	-	- 50	66	10	3.0	40500	0.21	-	27
2E26	$\begin{array}{r} 13.5 \\ 9.0 \end{array}$	6.3	0.8	600	200	2.5	13	0.2	7.0	125	0.	7CK	Class-C Amp. (Telegraphy)	600	185	-	-45	66	10	3.0	41500	0.17	-	27
				600	200								Class-C Amp. (Telephony)	500	180	-	- 50	54	9.0	2.5	35500	0.15	-	18
				500	200	2.3							Class-A B_{2} Amp. (Audio) ${ }^{\text {c }}$	500	125	-	- 15	22/150	$32{ }^{7}$	-	60^{8}	0.36 ?	8020	54
802	13	6.3	0.9	600	250	6.0	12	0.15	8.5	30	m.	6BM	Class-C Amp. (Telegraphy)	600	250	40	-120	55	16	2.4	22000	0.30	-	23
													Cluss-C Amp. (Telephony)	500	245	40	-40	40	15	1.5	16300	0.10	-	12
													Suppressor-Modulatad Amip.	600	253	-45	-100	30	24	5.0	14500	0.6	-	6.3

TABLE XVII-TETRODE AND PENTODE TRANSMITTING TUBES - Continued

Type	Max. Plate Dissipation Walts	Cathode		Max. Plate Volt. age	Max. Screen Volfage	Max. Screen Dissipation Watts	Interelectrode Capacilances ($\mu \mu \mathrm{ff}$.)			Max. Freq. Mc. Full Ratings	Base	$\begin{aligned} & \text { Socket } \\ & \text { Con- } \\ & \text { nec- } \\ & \text { tions } \end{aligned}$	Typleal Operation	Plate Volsage	Screen Volsage	Suppressor Volfage	Grid Voltage	Plate Current Ma .	Screen Current Ma.	Grid Current Ma.	5creen Resistor Ohms	Approx. Grid Driving Power Watts	$\begin{aligned} & \text { Class B } \\ & \text { P-to-P } \\ & \text { Lood } \\ & \text { Res. } \\ & \text { Ohms } \end{aligned}$	Approx. Output PawerWatis
		Volts	Amp.				Grid to Fil.	Grid la Plate	$\begin{array}{\|c\|} \hline \text { Plate } \\ \text { to } \\ \text { FiI. } \\ \hline \end{array}$															
HY6V6GTX	13	6.3	0.5	350	225	2.5	9.5	0.7	9.5	60	O.	7AC	Class-C Amp. (Telegraphy)	300	200	-	- 45	60	7.5	2.5		0.3	\cdots	12
													Class-C Amp. (Telephany)	250	200		- 45	60	6.0	2.0	15000	0.4		10
HY60	15	6.3	0.5	425	225	2.5	10	0.2	8.5	60	M.	5AW	Class-C Amp. (Telegraphy)	425	200		-62.5	60	8.5	3.0		0.3		18
		6.3		425		2.5	10	0.2	8.5	60			Class-C Amp. (Telephony)	325	200		- 45	60	7.0	2.5		0.2		14
HY65 1	15	6.3	0.85	450	250	4.0	9.1	0.18	7.2	60	0.	T.8DB	Class-C Amp.-Oscillator	450	250		- 45	75	15	3.0		0.5		24
HYos 1		6.3		450	250	4.0	9.1	0.18					Class-C Amp. (Telephony)	350	200		- 45	63	12	3.0		0.5		16
$2 \mathrm{E25}$	15	6.0	0.8	450	250	4.0	8.5	0.15	6.7	125	0.	58J	Class-C Amp.-Oscillatar	450	250		-45	75	15	3.0		0.4		24
													Class-C Amp. (Telephony)	400	200		- 45	60	12	3.0		0.4		16
													Class-AB2 Amp. (Audia) ${ }^{\text {c }}$	450	250		- 30	44/150	10/40	3.0	$142{ }^{8}$	0.97	6000	40
306A	15	2.75	2.0	300	300	6.0	13	0.35	13		M.	T-5CB	Class-C Amp. (Talephony)	300	180		- 50	36	15	3.0	8000			7.0
$307 \mathrm{~A}$	15	5.5	1.0	500	250	6.0	15	0.55	12	-	M.	T-5C	Class-C Amp. (Telegraphy)	500	250	0	- 35	60	13	1.4	20000			20
													Suppressor-Madulated Amp.	500	200	-50	- 35	40	20	1.5	14000			6.0
$832{ }^{\text {3 }}$	15	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	1.6	500	250	5.0	7.5	2.05	3.8	200	N.	78P	Class-C Amp. (Telegraphy)	500	200		- 65	72	14	2.6	21000	0.18		26
													Class-C Amp. (Telephony)	425	200		-60	52	16	2.4	14000	0.15		16
$832 A^{3}$	15	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	1.6	750	250	5.0	7.5	0.05	3.8	200	N.	7BP	Class-C Amp. (Telegraphy)	750	200		- 65	48	15	2.8	36500	0.19		26
													Class-C Amp. (Telephony)	603	200		-65	36	16	2.6	25000	0.16	-	17
8441	15	2.5	2.5	500	180	3.0	9.5	0.15	7.5	-	M.	5AW	Class-C Amp. (Telegraphy)	500	175		-125	25		5.0		$\underline{\square}$		9.0
									7.5			SAW	Class-C Amp. (Telephony)	500	150		-100	20	-				-	4.0
865	15	7.5	2.0	750	175	3.0	8.5	0.1	8.0	15	M.	1-4C	Class-C Amp. (Tolegraphy)	750	125		-80	40	-	5.5	-	1.0	-	16
							0.5		ه. 0	15	M.	1-4C	Class-C Amp. (Telephony)	500	125		-120	40	-	9.0	-	2.5	-	10
													Class-C Amp. (Tolegraphy)	400	300	-	- 55	75	10.5	5.0	9500	0.36	-	19.5
1619	15	2.5	2.0	400	300	3.5	10.5	0.35	12.5	45	O.	T9H	Class-C Amp. (Telaphony)	325	285	\cdots	- 50	62	7.5	2.8	5000	0.18	-	13
													Class-AB ${ }^{\text {a }}$ Amp. (Audio) ${ }^{\text {a }}$	400	300	0	-16.5	75/150	6.5/11.5		77\%	0.47	6000	36
													Class-C Amp. (Telegraphy)	600	250		- 60	75	15	5.0	-	0.5		32
5516	15	6.0	0.7	600	250	5.0	8.5	0.12	6.5	80	0.	7CL	Class-C Amp. (Telephony)	475	250		- 90	63	10	4.0	22500	0.5		22
													Closs-AB2 (Audio) ${ }^{\text {a }}$	600	250		- 25	36/140	1/24	$4{ }^{7}$	$80 \cdot$	0.16	10500	67
AX9905:	16	6.3	0.68	400	250	5	8.5	0.05	3.3	186	0.	Fig. 34	Class-C Amplifier	400	250		- 80	80	6	3.5		0.39		20.8
254 A	20	5.0	3.25	750										250	175		- 70	80	6.5	4.2		0.26		16.9
616						5.0	4.6	0.1	9.4	-	M.	T-4C	Class-C Amplifier	750	175		- 90	60			\square			25
	21	6.3	0.9	400	300	3.5	10	0.4	12	10	0.	7 AC	Class-C Amp.-Oscillator	400	300	-	-125	100	12	5.0		-		28
6L6G						3.5	11.5	0.9	9.5	10	0.	7 AC	Class-C Amp. (Telephony)	325	250		- 70	65		9.0		0.8		11
6L6GX	21	6.3	0.9	500	300	3.5	11	1.5	7.0	-	0.	7 AC	Class-C Amp. (Telegraphy)	500	250		-50	90	9.0	2.0	\cdots	0.25		30
												TAC	Class-C Amp. (Telephony)	325	225		- 45	90	9.0	3.0	-	0.25		20
HY6L6GTX	21	6.3	0.9	500	300	3.5	11	0.5	7.0	60	O.	7AC	Class-C Amp.-Oscillatar	500	250	-	-50	90	9.0	2.0		0.5		30
								0.5	7.0	60	O.	7 AC	Class-C Amp. (Tolephony)	400	225		-45	90	9.0	3.0	16000	0.8		20
r21	21	6.3	0.9	400	300	3.5	13	0.7	12	30	M.	6 A	Class-C Amp. (Telegraphy)	400	250		- 50	95	8.0	3.0	-	0.2		25
											m.	6A	Class-C Amp. (Telephony)	350	200		- 45	65	17	5.0	-	0.35	-	14
RK49	21	6.3	0.9	400	300	3.5	11.5	1.4	10.6		M.	6 A	Class-C Amp. (Telegraphy)	400	250		-50	95	8.0	3.0	--	0.2		29
													Class-C Amp. (Telephony)	300	200		-45	60	15	5.0	6700	0.34		12
5881	23	6.3	0.9	400	300	3				-	0.	7 AC	Class-C Amplifier						Same as	626				
													Class-C Amp. (Telegraphy)	450	250	-	-45	100	\%	2.0	12500	0.15	-	31
1614	25	6.3	0.9	450	300	3.5	10	0.4	12.5	80	0.	7 AC	Class-C Amp. (Telephony)	375	250		-50	93	7.0	2.0	10000	0.15	-	24.5
													Class-AB1 Amp. (Audio) ${ }^{\text {a }}$	530	340		-36	60/160	207	-	72^{8}		7200	50
RK41 ${ }^{1}$	25	2.5	2.4	600	300	3.5	13	0.2	10	30	M.	5AW	Class-C Amp. (Telography)	600	300		-90	93	10	3.0	-	0.38	-	36
RK39	25	6.3	0.9	600	300	3.5	13	0.2	10	30	M.	SAW	Class-C Amp. (Telephony)	475	250	-	-50	85	9.0	2.5	25000	0.2	\square	26

TABLE XVII-TETRODE AND PENTODE TRANSMITTING TUBES—Continued

Type	Max. Plate Dissipation Wotts	Cathode		Max. Plate Voltage	Max. Screen Voltage	Max. Screen Dissi $=$ pation Watts	Interelectrode Capacifances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Sacket Con-nections	Typical Operation	Plate Voltage	Scroen Volt age	Suppressor Voltage	Grid Voltage	Plate Current Ma.	Screen Curreni Me.	Grid Current Mo.	Serean Resistor Ohms	Approx. Grid Driving Power Watts	Class B P-10-P Load Res. Ohms	Approx. Output Power Watts
		Volis	Amp.				Grid to Fil.	Grid to Plate	Plete to Fil.															
HY61	25	6.3	0.9	600	300	3.5	11	0.2	7.0	60	M.	5AW	Class-C Amp. (Telegraphy)	600	250		- 50	85	9.0	4.0	39000	0.4		40
													Class-C A.mp. (Telephony)	475	250		- 50	100	9.0	3.5	25030	0.2		27
													Class-AB2 Amp. (Audio) ${ }^{6}$	600	300		- 30	2007	10^{7}			$0.1{ }^{17}$		80
$815{ }^{3}$	25	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.8 \\ & 1.6 \end{aligned}$	500	200	4.0	13.3	0.2	8.5	125	O.	8 BY	Class-C Amp.-Oscillator	500	200		- 45	150	17	2.5		0.13		56
													Class-C Amp. (Telephony)	400	175		- 45	150	15	3.0	$\underline{\square}$	0.16		45
													Class-AB2 Amp. (Audio) ${ }^{\text {8 }}$	500	125		-15	22/150	327		60^{8}	0.367	8000	54
254B	25	7.5	3.25	750	150	5.0	11.2	0.085	5.4	-	M.	T-4C	Class-C Amplifier	750	150		-135	75		-				30
1624	25	2.5	2.0	600	300	3.5	11	0.25	7.5	60	M.	T-5DC	Ciass-C Amp. (Telegraphy)	600	300		-60	90	10	5.0	30000	0.43	-	35
													Class-C Amp. (Telephony)	500	275		- 50	75	9.0	3.3	25000	0.25		24
													Class-AB2 Amp. (Audio) ${ }^{\text {c }}$	600	300		- 25	42/185	5/15	1068	\square	$1.2{ }^{7}$	7500	72
$3 \mathrm{DX3}$	25	6.3	3.0	1500	200	-				250	S.	Fig. 40	Class-C Amp. (Telegraphy)	1000	200		-155	75		2.8		0.57	-	50
3E22 ${ }^{3}$	30	$\begin{array}{r} 12.6 \\ 6.3 \\ \hline \end{array}$	$\begin{aligned} & 0.8 \\ & 1.6 \end{aligned}$	560	225	6.0	14	0.22	8.5	200	0.	8BY	Class-C Amp. (Telegraphy) ${ }^{3}$	600	200		-55	160	20	7.0	20000	0.45		72
													Class-C Amp. (Telephony) ${ }^{3}$	560	200		- 50	160	20	6.5	18000	0.4		67
RK66	30	6.3	1.5	600	300	3.5	12	0.25	10.5	60	M.	T.5C	Class-C Amp.-Oscillator	600	300		-60	90	11	5.0	-	0.5		40
RK60	30	6.3	1.5	600	300	3.5	12	0.25	10.5	60	m.	T.sc	Class-C Amp. (Telephony)	500	-		- 50	75	8.0	3.2	25000	0.23		25
$\begin{aligned} & 807 \\ & 807 \mathrm{~W} \\ & 5933 \\ & 1625 \\ & \hline \end{aligned}$	30	6.3	0.9	750	300	3.5	11	0.2	7.0	60	M.	5AW	Class-C Amp. (Telegraphy)	750	250		- 45	100	6	3.5	85000	0.22	-	50
													Class-C Amp. (Telephony)	600	275		- 90	103	6.5	4.0	50300	0.4		42.5
		12.6	0.45										Class-AB2 Amp. (Audio) ${ }^{\text {e }}$	750	300		32	60/240	5/10	928		$0.2{ }^{7}$	6950	120
													Class-B Amp. (Audio):	750			0	15/240		5558		$5.3{ }^{7}$	6650	120
$2 \mathrm{E22}$	30	6.3	1.5	750	250	10	13	0.2	8.0		M.	5J	Class-C Amp.-Oscillator	500	250	22.5	-60	100	16	6.0	15000	0.55	-	34
										-			Class-C Amp.-Oseillator	750	250	22.5	-60	100	16	6.0	30000	0.55	-	53
													Suppressor-Modulated Amp.	750	250	-90	-65	55	29	6.5	17000	0.6		16.5
3D23	35	6.3	3.0	-	-	-	6.5	0.2	1.8	250	M.	Fig. 54	Class-C Amp. (Telegraphy)	1500	375		-300	110	22	15	-	4.5		130
TB.35	35	6.3	3.0		,		6.5	0.2	3.	250	m.	Fig. 3	Class-C Amp. (Telephony)	1000	300		-200	85	14	10		2.0	\square	60
${ }^{\text {AX- }}$	40	6.3	1.8	600	250	7	6.7	0.08	2.1	150	N.	Fig. 10	Class-C Amp. (Telography)	600	250	-	-80	200	16	2		0.2		80
$9903{ }^{8}$	40	12.6	0.9	600	250	7	6.7	0.08	2.1	150	N.	Fig. 10	Class-C Amp. (Telephony)	600	250	-	-100	200	24	8		1.2		85
$\begin{aligned} & \text { RK201 } \\ & \text { RK20A } \\ & \text { RK46 } \end{aligned}$	40	$\begin{array}{r} 7.5 \\ 7.5 \\ 12.6 \end{array}$	$\begin{aligned} & 3.0 \\ & 3.25 \\ & 2.5 \end{aligned}$	1250	300	15	14	0.01	12		M.	T-5C	Class-C Amp. (Telegraphy)	1250	300	45	-100	92	36	11.5	-	1.6	-	84
													Class-C Amp. (Telephony)	1000	300	0	-100	75	30	10	23000	1.3		52
													Supprossor-Modulated Amp.	1250	300	-45	-109	48	44	11.5	-	1.5	-	21
													Grid-Modulated Amp.	1250	300	45	-142	40	7.0	18	——	1.5		20
HY69	40	6.3	1.5	600	300	5.0	15.4	0.23	6.5	60	M.	T-50	Class-C Amp.-Oscillator	650	250		- 69	103	12.5	4.0	30000	0.25	\square	42
													Class-C Amp. (Totophony)	600	250	-	-69	100	12.5	5.0	30500	0.35	-	42
													Modulated Doubler	600	200	-	-350	90	11.5	6.0	35000	2.8	-	27
													Class-AB2 Amp. (Audio) ${ }^{\text {a }}$	600	300	-	- 35	2307	187	5.07		0.37	-	80
8291.3	40	$\begin{gathered} 6.3 \\ 12.6 \end{gathered}$	$\begin{aligned} & 2.25 \\ & 1.12 \end{aligned}$	500	225	40	14.5	0.1	7.0	200	N.	7BP	Class-C Amp. (Telegraphy)	500	200	-	-45	240	32	12	9300	0.7		83
													Class-C Amp. (Telephony)	425	200	\square	-60	212	35	11	6400	0.8		63
													Grid-Modulated Amp.	500	200	-	- 38	120	10	2.0	--	0.5		23
$829 \mathrm{~A}^{1.2}$	40	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 2.25 \\ & 1.12 \end{aligned}$	750	240	7.0	14.4	0.1	7.0	200	N.	78P	Class-C Amp.-Oseillator	750	200	——	- 55	160	30	12	18330	0.8		87
													Class-C Amp. (Telephony)	600	200	-	-70	150	30	12	13300	0.9		70
													Grid-Modulated Amp.	750	235	-	- 55	80	5.0	0	一-	0.7		24
$\begin{aligned} & 82983 \\ & 3 E 293 \end{aligned}$	40	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 1.125 \\ & 2.25 \end{aligned}$	750	240	$\begin{aligned} & 6 \\ & 7 \\ & 7 \end{aligned}$	14.5	0.12	7.0	200	N.	7BP	Class-C Amp. (Grid Mod.)	500	200	-	- 38	120	10	2		0.5		23
													Class-C Amp. (Telephony)	425	200	-	-60	212	35	11.0	6400	0.8	-	63
													Class-C Amp. (Telegraphy)	500	200		-45	240	32	12.0	9300	0.7	-	83

table XVil-tetrode and pentode transmitting tubes-Continued

Type	Max. Plate Dissi palion Watis	Calhode		Mox. Plate Voltage	Mox. Screan Voltage	Max. Screen Dissi. pation Walts	Interelectrode Copacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Base	Socket Con-nections	Typical Operalion	Plate Voltage	$\begin{aligned} & \text { Screen } \\ & \text { Volt- } \\ & \text { age } \end{aligned}$	Sup:pressor Voltage	Grid Valfage	Plate Cuprent Ma.	Screen Current Mo.	Grid Current Mo.	Screen Resistor Ohms	Approx. Grid Driving Power Watts	Class B P-to-P Lood Res. Ohm 3	Approx. Outpui Powor Wats
		Volts	Amp.				$\begin{gathered} \text { Grid } \\ \text { lo } \\ \text { fil. } \end{gathered}$	Grid to Plate	$\begin{array}{\|c} \left\lvert\, \begin{array}{c} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{array}\right. \\ \hline \end{array}$															
HY1269	40	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 3.5 \\ & 1.75 \end{aligned}$	750	300	5.0	16.0	0.25	7.5	6	M.	T-50B	Class-C Amp.-Oscillator	750	300	-	-70	120	15	4	-	0.25		63
													Class-C Amp. (Telephony)	600	250		-70	100	12.5	5	35000	0.5		42
													Grid-Modulated Amp.	750	300		\square	80	-					20
													Class.ABz Amp. (Aud!o) ${ }^{\text {b }}$	600	300		- 35	200^{7}				0.3	-	80
3D24	45	6.3	3.0	2000	400	10	6.5	0.2	2.4	125	L.	T.9J	Class-C Amp.-Oscillator	2000	375		-300	90	20	10	\square	4.0		140
														1500	375		-300	90	22	10		4.0		105
715-8	50	26/28			-	-							Class-C Amp. (Telegraphy)	1500	300			125	-			-		
5562	45	6.3	3.0	2000	400	8	0.5	0.2	1.8	120	M.	Fig. 54	Class-C Amp. (Telegraphy)	1500	375	-	-300	116	21	12		3.6		135
						8	0.5	0.2	1.8	120	m.	Fig. 54	Class-C Amp. (Telephony)	1000	300	-	-200	85	14	10		2.0		60
HK-57	50	5	5	3000	500	25	7.29	0.05	3.13	200	N.	5BK	Class-C Amp. (Telegraphy)	2000	450	+30	-145	110	2	1		0.15		166
													Class-C Amp. (Telephony)	2000	450	+30	-145	88	2	1.5		0.2		135
													Suppressor-Madulated Amp.	2000	450	-190	-240	80	14	2.5	110000	0.6		90
RK47	50	10	3.25	1250	300	10	13	0.12	10		M.	T-5D	Class-C Amp. (Telegraphy)	1250	300		-70	138	14	7.0	-	1.0	-	120
													Class-C Amp. (Telephany)	900	300	-	-153	120	17.5	6.0	-	1.4		87
													Grid-Modulated Amp.	1250	300		- 30	60	2.0	0.9		4.0		25
312A	50	10	2.8	1250	500	20	15.5	0.15	12.3		M.	T-6C	Class-C Amp. (Telegraphy)	1250	300	20	- 55	100	36	5.5	-	0.7		90
										-			Class-C Amp. (Telephony)	1000		40	- 40	95	35	7.0	22000	1.0	-	65
													Suppressor-Modulated Amp.	1250	-	-85	- 50	50	42	5.0	22005	0.55		23
804	50	7.5	3.0	1500	300	15	16	0.01	14.5	15	M.	T.5C	Class-C Amp. (Telegraphy)	1500	300	45	-100	100	35	7.0	34000	1.95		110
													Class-C Amp. (Telephony)	1250	250	50	-90	75	20	6.0	50000	0.75		65
													Grid-Madulated Amp.	1500	300	45	-130	50	13.5	3.7	-	1.3	\longrightarrow	28
													Suppressor-Madulated Amp.	1500	300	-50	-115	50	32	7.0		0.95		28
$4 \mathrm{D22}$	50	25.2	0.8	750	350	14	20	0.27	13	60	N.	Fig. 50	Class-C Amp. (Telegraphy)	750	300		-100	240	26	12		1.5		135
		12.6	1.6									F.	Class-C Amp. (Telegraphy)	600	300		-100	215	30	10		1.25		100
4032		6.3	3.75									Fig. 51	Class-C Amp, (Telephony)	600	-		-100	220	28	10	10000	1.25		100
														550			-100	175	17	6	15000	0.6	-	70
													Class-AB ${ }_{2}$ Amp. (Audia) ${ }^{\text {c }}$	600	250		- 25	100/365	267	70^{8}		0.45	3000	125
305A	60	10	3.1	1000	200	6	10.5	0.14	5.4	-	M.	T-4CE	Class-C Amp. (Telegraphy)	1000	200		-200	125			-	0.45		85
							10.5	0.14	5.4	-	m.	1-4CE	Class-C Amp. (Telephony)	800	200		-270	125			-	-		70
HY67	65	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 4.5 \\ & 2.25 \end{aligned}$	1250	300	10		0.19	14.5		M.	T.5DB	Class-C Amp. (Telegraphy)	1250	300		- 80	175	22.5	10	-	1.5		152
							-			-			Class-C Amp. (Telephony)	1000	300	\cdots	-150	145	17.5	14		2.0		101
													Grid-Modulated Amp.	1250	300	-	-	78	-					32,5
814	65	10	3.25	1500	300	10	13.5	0.1	13.5	30	M.	T.5D	Class-C Amp. (Telegraphy)	1500	300		-90	150	24	10	50000	1.5		160
													Class-C Amp. (Telephony)	1250	300		-150	145	20	10	48000	3.2		130
													Grid-Madulated Amp.	1500	250		-120	60	3.0	2.5		4.2		35
4-65A	65	6.0	3.5	$\begin{aligned} & 3000 \\ & 2500 \\ & 3000 \\ & 3000 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 600 \\ & 600 \end{aligned}$	10	8.0	0.08	2.1	160 :	N.	5BK	Closs-C Amp. (Telegrophy)	3000	250	-	- 90	115	20	10		1.7		280
													Class-C Amp. (Telephony)	2500	250		-150	108	16	8		1.9		225
													Class-B Linear Amp.	2500	500		- 100	20/230	0/35	610		1.810	-	3257
													Class-AB2 Amp. (Audio):	1800	250		- 35	50/220	0/25	180:	-	$2.2{ }^{\text {i }}$	20000	270
282A	70	10	3.0	1000	250	5	12.2	0.2	6.8	-	M.	T-4C	Class-C Amp. (Telegraphy)	1000	150	-	-160	100	-		\square	-		33
													Class-C Amp. (Telaphony)	750	150		-180	100		50				50
$\begin{aligned} & \text { 4E27// } \\ & 8001 \end{aligned}$	75	5.0											Class-C Amp. Telegraphy)	2000	500	60	-200	150	11	6	136000	1.4		230
			7.5	4000	750	30	12	0.06	6.5	75	J.	78M	Class-C Amp. (Telophony)	1800	400	60	-130	135	11	8	125000	1.7	-	178
													Suppressor-Modulated Amp.	2000	500	-300	-130	55	27	3.0	-	0.4	-	35

table XVII-tetrode and pentode transmitting tubes-Continuad

$T_{\text {ype }}$	Max. Plate Dissipation Watts	Cathode		Max. Plate Voltoge	Max. Screen Voliage	Max. Screen Dissipation Wafts	Inierelectrode Capacifances ($\mu \mu \mathrm{fd}$.)			Mox. Freq. Mc. Full Rotings	Base	Socket Con-nections	Typical Operation	Plato Voltage	Screen Volfage	Sup-pressor Volt. age	Grid Voltoge	Plafe Current Ma.	Screan Current Mo.	Grid Curren! Ma.	Screen Resistor Ohms	Apprnx. Grid Driving Power Watis	Class B P-to-P Load Res. Ohms	
		Volts	Amp.				$\begin{gathered} \text { Grid } \\ \text { 10 } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$															
$\begin{aligned} & \text { HK257 } \\ & \text { HK2578 } \end{aligned}$	75	5.0	7.5	4000	750	25	13.8	0.04	6.7	$\begin{array}{r} 75 \\ 120 \end{array}$	J.	7BM	Class-C Amp. (Telegraphy)	2000	500	60	-200	150	11	6.0	\square	1.4	-	230
													Closs-C Amp. (Telephony)	1800	400	60	-130	135	11	8.0		1.7		178
													Suppressor-Modulaled Amp.	2000	500	-300	-130	55	27	3.0		0.4		35
828	80	10	3.25	2000	750	23	13.5	0.05	14.5	30	M.	$5 J$	Class-C Amp. (Telegraphy)	1500	400	75	-100	180	28	12	40000	2.2		200
													Class-C Amp. (Telephony)	1250	400	75	-140	160	28	12	30000	2.7	-	150
													Grid-Modulated Amp.	1500	400	75	-150	80	4.0	1.3	-	1.3		41
													Closs-AB1 Amp. (Audio) ${ }^{\text {B }}$	2000	750	60	-120	S0/270	2/60	240	-	0	18500	385
RK28	100	10	5.0	2000	400	35	15	0.02	15		J.	5J	Class-C Amp. (Telegrophy)	2000	400	45	-100	150	55	13	21000	2.0		210
										-			Class-C Amp. (Tolephony)	1500	400	45	-100	135	52	13	21000	2.0		155
										-			Suppressor-Modulated Amp.	2000	400	-45	-100	85	65	13		1.8	-	60
													Grid-Modulated Amplifior	2000	400	45	-140	80	20	4.0	-	0.9		75
$\begin{aligned} & \text { RK48 } \\ & \text { RK48A } \end{aligned}$	100	10	5.0	2000	400	22	17	0.13	13		J.	T-50	Class-C Amp. (Telegraphy)	2000	400		-100	180	40	6.5		1.0	-	250
										-			Closs-C Amp. (Telephony)	1500	400		-100	148	50	6.5	22000	1.0		165
													Grid-Modulated Amplifier	1500	400	-	-145	77	10	1.5	-	1.6		40
813	100	10	5.0	2250	400	22	16.3	0.2	14	30	J.	5BA	Closs-C Amp. (Telegraphy)	2250	400	0	-155	220	40	15	46000	4.0	-	375
													Class-C Amp. (Telephony)	2000	350	0	-175	200	40	16	41000	4.3		300
													Grid-Modulated Amplifier	2000	400		-120	75	3.0	-	-			50
													Closs-B Amp. (Audio) ${ }^{\text {a }}$	2500	750	0	- 95	35/360	1.2/55	-	-	0.35	17000	650
850	100	10	3.25	1250	175	10	17	0.25	25	15	J.	T-3B	Class-C Amp. (Telegraphy)	1250	175		-150	160		35		10		130
													Closs-C Amp. (Telephony)	1000	140		-100	125	-	40		10		63
													Grid-Modulated Amplifier	1250	175	-	-13	110				-		40
860	100	10	3.25	3000	500	10	7.75	0.08	7.5	30	M.	T-4CB	Class-C Amp.-Oscillator	3000	300		-150	85	25	15		7.0	-	165
860	100	10	3.25	3000	500	10							Class-C Amp. (Talephony)	2000	220		-200	85	25	38	100000	17		105
$\begin{aligned} & \text { 4-125A } \\ & 4 D 21 \end{aligned}$	125	5.0	8.2	3000	400	20	10.3	0.03	3.0	120	N.	58K	Class-C Amp. (Telegraphy)	3000	350		-150	167	30	9		2.5		375
													Class-C Amp. (Telephony)	2500	350		-210	152		9		3.3	-	300
													Class-AB2 Amp. (Audio) ${ }^{6}$	2500	350		- 43	93/260	0/6	178 ${ }^{8}$		10	22200	400
$\begin{aligned} & \text { 4E27A/ } \\ & 5-125 B \end{aligned}$	125	5.0	7.5	4000	750	20	10.5	0.08	4.7	75	J.	7BM	Class-C Amp. (Telegraphy)	3000	500	60	-200	167	5	6		1.6		375
														1500	500	60	-130	200	11	8		1.6		215
														1000	750	0	-170	160	21	3	-	0.6	-	115
RK28A	125	10	5.0	2000	400	35	15	0.02	15		J.	5J	Closs-C Amp. (Telegraphy)	2000	400	45	-100	170	60	10		1.6	-	250
										-			Class-C Amp. (Telegraphy)	1500	400	45	-100	135	54	10	18500	1.6	\square	150
													Grid-Modulated Amp.	2000	400	45	- 55	80	18	2.0	-	0.5		60
													Suppres sor-Modulatod Amp.	2000		-45	-115	90	52	11.5	30000	1.5		60
803	125	10	5.0	2000	600	30	17.5	0.15	29	20	J.	51	Class-C Amp. (Telegraphy)	2000	500	40	-90	160	45	12	-	2.0		210
													Closs-C Amp. (Telephony)	1600	400	100	-80	150	45	25	27000	5.0		153
													Suppressar-Modulated Amp.	2000	-	-110	-100	80	48	15	35000	2.5	-	53
													Grid-Modulated Amplifier	2000	600	40	-80	80	20	4.0	-	2.0		53
$\begin{aligned} & 4 \mathrm{X} \\ & 150 \mathrm{~A} \end{aligned}$	150	6.0	2.0	1000	300	15	16.1	0.02	4.7	500	N.	T.9J	Class-C Amp. (Telogrophy)	1000	250	-	- 80	200	39	7	-	0.69		148
														750	250		-80	200	37	6.5	-	0,63	-	110
														600	250		- 75	200	35	6	-	0.52	-	85
$\begin{aligned} & \hline 4 X \\ & 150 \mathrm{~g} \end{aligned}$	150	2.5	6.25	1250	300	15	16.1	0.02	4.7	165	N.	-	Class-C Amp. (Telegraphy)	1250	250	-	- 90	200	20	11	-	1.2	-	195
													Class-C Amp. (Telegrophy)	3000	400	-	-290	200	27	7	-	2.6	-	450
$\begin{aligned} & \text { PE340// } \\ & \text { 4D239 } \end{aligned}$	150	5.0	7.5	4000	400	-	11.6	0.06	4.35	120	N.	58K	Class-C Amp. (Telephony)	2500	400	-	-425.	180	27	9	—	4	19	350
													Class AB_{2} Audio ${ }^{\text {a }}$	2500	400	-	- 95	2847	77	-	-	1.87	19100	460

TABLE XVII-TETRODE AND PENTODE TRANSMITTING TUBES-Continued

TABLE XVIII-KLYSTRONS-Continued

Type	Freq. Range-Me.	Cathode		Base Connecfions	Typical Operation	Beam Volts	Beam Ma, (Max.)	Beam Watts (Max.)	ControlElectrode Volls	Reflector Volts	Cathode Ma.	R.F. Driving Power Watts ${ }^{4}$	Output Watts
		Volts	Amp.										
$3 \mathrm{~K} 27{ }^{3}$	750-960	6.3	1.6	Fig. 59	Reflex Oscillator*	1000	90	80	0	-300	70	-	1-2
$\begin{aligned} & 3 K 30 \\ & (110 R)^{8} \end{aligned}$	2700-3300	6.3	1.6	Fig. 58	Oscillator-Amolifigr*	2000	150	450	0	-	125	1-3	10-20
6BL6	1250-6000	-	-	-	Reflex Oscillator	350	-	-	+1	0/-400	25	-	-
$68 \mathrm{M6}$	550-3000	-	-	-	Reflex Oscillator	350	-	-	$+1$	0/-600	20	-	\square
$7078{ }^{3}$	1200-3750	6.3	0.65	Fig. 61	Reflex Oscillator	$300{ }^{7}$	45	-	300	-155/-290	35	-	0.140
501103	1250-6000	-	-	-	Reflex Oscillator	350	-	-	+10	0/-400	25	-	-
5D1104	550-3000	-	-	-	Reflex Oscillator	350	-	-	+10	0/-600	22	-	-
OK159	2950-3275	6.3	0.65	Fig. 63	Reflex Oscillator	300	45	-	300	-100/-175	20	-	0.150
2-668	21900-26100				Refiex Oscillator*	1700	-	15	-	-1700/-2300	-	-	0.02

1 Inpui frequency.
2 Outpul frequency.

- At max. rotings.
${ }^{6}$ Cathode current specified on each tube.
* Forced-air cooling required.
table xix-Crystal triodes

Type	Maximum Ratings				Typical Operation								
	Collector			Emitter Mc.	Collector			Emitter			Transeonductance μ-Mhos,	Power Gain Db.	Power Output M. Watts
	Volts	Ma.	Dissipation M. Watts		Volts	Mo.	Z Ohms	Volts	Mo.	Z Ohms			
CK703	-70	4	200	10	-30	2	10000	0.2	0.75	500	5000	16	2

TABLE XX-CAVITY MA GNETRONS

Type	Clas:	Bond or Range Mc.	Heoter		Maximum Rotings					Typicol Operotion				Peak Pwr. Output KW.
			Volts	Amps.	Anode KV.	Anode Amps.	Duly Cycle	Input Wafts	Anode KV.	Anode Amps.	Fiold Gouss	Pulse Sec.	P.P.S.	
RK2J22	1	3267-3333	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2250	1.0	1000	265
RK2J23	1	3071-3100	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J24	1	3047-3071	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J25	1	3019-3047	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J26	1	2992-3019	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J27	1	2965-2992	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J28	1	2939-2965	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J29	1	2914-2939	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J30	1	2860-2900	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J31	1	2820-2860	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J32	1	2780-2820	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J33	1	2740-2780	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J34	1	2700-2740	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J36	1	9003-9168	6.3	1.3	13.5	12.0	. 002	200	11.5	10.0	2500	1.0	1000	15.0
RK2J38	1	3249-3263	6.3	1.25	6.0	8.0	. 012	200	4.9	3.0	Pkg.	1.0	2000	5.0
RK2J39	1	3267-3333	6.3	1.25	6.0	8.0	. 002	200	5.4	5.0	Pkg.	1.0	2000	8.7
2 J 42	1	9345-9405	6.3	0.5	5.7	6.5	. 001		-		4800	2.5	$\underline{\square}$	14
2J42A	1	9345-9405	6.3	0.5	8.0	7.0	. 001				6500	2.5		35
RK2J48	1	9310-9320	6.3	1.0	16.0	16.0	. 002	230	12.0	12.0	4850	1.0	1000	50.0
RK2 J49	1	9000-9160	6.3	1.0	16.0	16.0	. 0012	180	12.0	12.0	5400	1.0	1000	58.0
RK2J50	1	8740-8890	6.3	1.0	16.0	16.0	. 0012	180	12.0	12.0	5400	1.0	1000	58.0
RK2J54	2	3123-3259	6.3	1.5	14.0	15.0	. 002	250	11.6	12.5	1400	1.0	2000	45.0
RK2J55	1	9345-9405	6.3	1.0	16.0	16.0	. 001	180	12.8	12.0	Pkg.	1.0	1000	50.0
RK2J56	1	9215-9275	6.3	1.0	16.0	16.0	. 001	180	12.8	12.0	Pkg.	1.0	1000	50.0
RK2J58	2	2992-3100	6.3	1.5	22.0	15.0	. 002	600	10.5	12.5	1450	1.0	2000	50.0
RK2J61A	2	3000-3100	6.3	1.5	15.0	15.0	. 002	250	10.7	12.5	1300	1.0	2000	35.0
RK2J62A	2	2914-3010	6.3	1.5	15.0	15.0	. 002	250	10.2	12.5	1300	1.0	2000	35.0
RK2J66	2	2845-2905	6.3	1.5	20.0	25.0	. 001	400	18.0	25.0	1700	1.0	1000	150
RK2J67	2	2795-2855	6.3	1.5	20.0	25.0	. 001	400	18.0	25.0	1700	1.0	1000	150
RK2J68	${ }^{2}$	2745-2805	6.3	1.5	20.0	25.0	. 001	400	18.0	25.0	1700	1.0	1000	130
RK2J69	2	2695-2755	6.3	1.5	20.0	25.0	. 001	400	18.0	25.0	1700	1.0	1000	150
3 J 31	12	23744-24224	6.0	1.9	15.0	14.0	. 0005				7600	1.0		54
RK4J31	1	2860-2900	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J32	1	2820-2860	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J33	1	2780-2820	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J34	1	2740-2780	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J35	1	2700-2740	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J36	1	3650-3700	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J37	1	3600-3650	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J38	1	3550-3600	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J39	1	3500-3550	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J40	1	3450-3500	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J41	1	3400-3450	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J43	1	2992-3019	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J44	1	2965-2992	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
$4 J 50$	1	9345-9405	13.6	3.5	23.0	27.5	. 004	-			6300	0.5		300
4 J 52	1	9345-9405	12.6	1.9	16.0	15.0	. 002			-	5000	6.0		120
RK4J53	1	2793-2813	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4JJ4	1	6875-6775	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
RK4J55	1	6775-6675	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
RK4J56	1	6675-6575	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Plkg.	1.0	1000	200
RK4J57	1	6575-6475	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
RK4J58	1	6475-6375	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Plig.	1.0	1000	200
RK4J59	1	6375-6275	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
$4 \mathrm{J78}$	1	$9003-9168$	13.6	3.5	23.0	27.5	. 004				0300	0.5	,	300
RK725A	1	9345-9405	6.3	1.0	16.0	16.0	. 001	180	12.0	12.0	5400	1.0	1000	50.0

${ }^{1}$ Fixed-frequency-Pulsed. ${ }^{2}$ Tunable-Pulsed.

Jhe

Catalog Section

H H H

In the following pages is a catalog-
file of the principal manufacturers and the principal distributors who serve the radio communication and industrial fields. Appearance in these pages is by invitation-space has been sold only to those dependable firms whose established integrity and whose products have earned the approval of the American Radio Relay League.

INDEX OF ADVERTISERS * CATALOG SECTION

Jhe Radio Amateur's Handbook

PageAllied Radio Corporation. . . .99, $111,133,144$American Lava Corporation 41
American Phenolic Corp. 69-71
American Radio Relay League, Inc 85-96
American Television \& Radio Co. 135
Amperex Electronic Corporation. 110
Astatic Corporation, The 63
Barker \& Williamson, Inc. 57-59
Belden Manufacturing Co 98
Bliley Electric Company 101
Burstein-Applebee Co. 128
Cameradio Company 124
Candler System Co 118
Centralab 48
Chicago Transformer Co. 118
Callins Radio Company 65-68
Cornell-Dubilier Elec. Corp. 78-79
Eitel-McCullough, Inc. 56
Electric Soldering Iron Co. 100
Electronic Instrument Co. $\$$ 125
Electrons, Inc. 127
Electro-Voice, Inc 108
Gates Radio Company 104
General Electric Company 83
General Radio Company 40
Good, Inc., Don. 137
Hallicrafters Co., The 22-31
Harvey Radio Company 106-107
Heath Company, The 49-55
Helipot Corporation 105
Henry Radio Stores. 22
Hudson Radio \& Television Corp 40
Illinois Condenser Co. 120
Instructograph Co. 109
nternational Resistance Co. 72-75
Johnson Co., E. 42-47
Page
Kenyon Transformer Company 123
Knights Co., The James 121
Lysco Manufacturing Co. 134
Macmillan Company, The 138
Mallory \& Co. Inc., P. R. 82
McElroy Manufacturing Co. 142-143
Measurements Corporation 60
Merit Transformer Corporation 129
Millen Mfg. Co. Inc., The James 32-39
National Co., Inc.. 3-21
Newark Electric Co. 136
Ohmite Manufacturing Co. 86
Par-Metal Products Corp. 102
Premax Products Company 130
Radio Corporation of America 76-77
Radio Shack Corporation, The 112
Rider Publishers Inc., John 14
Shure Brothers, Inc. 115
Shurite Meters 103
Sprague Products Company 61
Standard Transformer Corporation. 113
Supreme incorporated 131
Television Equipment Corporation $80-81$
Terminal Radio Corporation 116
Triplett Electrical Instrument Co. 64
Turner Company, The 119
United Transformer Company. 97
Vibroplex Company, The 117
Wile, Eugene G. 139
Workshop Associates 62
World Radio Laboratories. 126

National Television is engineered and built with the same superb skill and custom craftsmanship that have made National communication equipment known and respected throughout the woild. The latest turret-type tuners, a full 4 mcs. video bandwidth and dark-screen rectangular picture tubes are just a few of the many fine features that distinguish the 1951 line of ien $17^{\prime \prime}$ and $20^{\prime \prime}$ models. See your National dealer or write for TV literature.

The superb Nationol TV chassis engineered for us 6 with 16", $17^{\prime \prime}$. $19^{\prime \prime}$ or $20^{\prime \prime}$ picture tubes. Latest turref-type tuner, double-tuned RF and 4 mas. video bondwidth for pietures of unsurpossed strength and clarity. Three-unit design pro. vides flexible mounting for custom installations.

[18-50

\$359*

(including coils A, B, C, D. Less speaker.)
st and Fimest

CCompare the characteristics and features of the new HRO-50 and see why. once again, the HRO sets the standard of receiver performance! You'll appreciate the convenience of the new HRO-50, too - the new edge-lighted, direct reading dial and the insulated, heavy-duty, built-in power supply section. For thrilling performance, be sure to see and try the new HRO-50!

COVERAGE: 50.430 kc., 480 kc. 35 mc . Voice, CW, NFM (with adaptor).

FEATURES: Sensitivity of 1 mv . or better at 6 db . sig. f noise. Selectivity variable from 13 kc . overall to app. 1200 cps . at 40 db . Negligible drift after warm-up. Micrometer dial for logging. Provision for crystal calibrator unit. Variable ant. trimmer. Lively S-meter. Min. fubes in front end and high freq. osc. Osc. circuits not disabled when receiver in send position. High-fidelity push-pull audio with phono jack. BFO switch separated from BFO freq. control. Dimmer illumination control. Accessory socket for Select-O-Ject.

CONTROLS: Bandswitch, Osciliator, Tone, Ant. Trimmer, Dimmer, AVC, Limiter, AF Gain, Calibration, CWO, Phasing, Selectivity, On-Off, RF Gain, AM-NFM-PHONO.

TUBE COMPLEMENT: 6BA6, 1st r.f.; 6BA6 2nd r.f.; 6BE6, mixer; 6C4 h.f. oscillator; 6K7, 1st i.f.; 6K7 2nd i.f.; 6H6 def. \& o.v.c.; 6H6, a.n.l.; 6SJ7, 1 st audio; 6SN7, phase

HRO-50C
(HRO. 50 receiver with rack, speaker and lo-coil compartment. Coils A, B, C, D included.)
splitter and S-meter amp.; 6V6GT (2) p.p. audio; 5V4G. rect.; 6J7, b.f.o.; OB2, volt. reg. Accessories Crystal Calibrotor, 6AK6; NFM Adoptor, 6SK7, i.f. amp., 6H6, ratio det.; Select-O-Ject, 12 AT7 (2).

SIZE: Table $193 / 4^{\prime \prime}$ wide $\times 101 / 8^{\prime \prime}$ high $\times 161 / 2^{\prime \prime}$ deep. Rock: $19^{\prime \prime}$ wide $\times 101 / 2^{\prime \prime}$ high $\times 177 / 16^{\prime \prime}$ from rear of front panel incl. $11 / k^{\prime \prime}$ handle.

Write for list of accessories.
*Slightly higher west of the Rockies.

From 2-Stage RF to Push-Pull

\$279*
(less speaker)

Audio . . . Designed to Out-Perform:

COVERAGE: Continuous from 540 kcs . to 31 mcs . plus 48 to 56 mcs. for 6 -meter reception.

FEATURES: Two tuned R.F. stages. Voltage regulated osc. and BFO. Main tuning dial covers range in five bands. Bandspread dial calibrated for amateur 80, 40, 20, 11-10 and 6-meter bands. Bandspread usable over entire range. Six-position crystal filter. New-type noise limiter. High fidelity push-pull audio. Accessory socket for NFM adaptor or other unit, such os crystal calibrator.

CONTROLS: CWO Switch, CWO pitch, Tone, AF Gain, Main Tuning, Bandspread, Ant. Trimmer, Bandswitch, SendReceive, Phono-Radio, Selectivity, Phasing, Limiter, RF Gain. TUBE COMPLEMENT: Uses 2-6SG7 R.F.; 16SA7 1 st det.; 1-6J5 osc.; 2-6SG7 I.F.; 1-6H6 2nd det.; 1-6SJ7 B.F.O.; 1-6AC7 A.V.C.; 1-6H6 noise limiter; 1-6SJ7 A.F.; 1-6J5 phase inv.; 2-6V6GT aud. out.; 1-VR-150 volt. reg.; 1-5U4G rect.

COVERAGE: 560 kcs . to 35 mc . in 4 bands. Voice or CW. FEATURES: Edge-lighted direct-reoding scale with amateur, police, foreign, ship frequencies clearly marked. Sensational National Select-O-Ject built-in. Exceptional sensitivity on all bands. Lively S-meter reads S 9 to 50 mv . signal. AVC, ANL, jack for phono or NFM adaptor, volt. reg., stabilized ose., audio essentially flat to 10,000 c.p.s.

CONTROLS: Moin Tuning, Bandspread, Freq. (SOJ),

Boost (SOJ), Send-Receive, Pitch, CWO-MVC-AVC-ANL, AF Gain, Tone, Trimmer, Bandswitch, RF Gain.
TUBE COMPLEMENT: 6SG7 RF amp, 6SB7-Y osc.-mixer, 6SG7 1 st IF, 6SG7 2nd IF, 6H6 2nd det-AVC-ANL, 6SL7GT phase shifter, 6SL7GT boost-reject aud. amp., 6SL7GT 1st oud.-CWO, 6V6GT aud. output, OD3/VR-1 50 volt. reg., 5Y3GT rect.
*Slightly higher west of the Rockies.

SW-54

Sleek Low-Priced Beauty is Most

 Compact General Coverage Receiver Ever Ruilt?

USES MINIATURE TUBES AND UNIQUE BANDSPREAD DIAL

New miniature tubes make possible new sensitivity and performance. Unique plastic bandspread dial is adjustable to assure complete logging accuracy.

Here is National's latest engineering triumph! A complete superheterodyne receiver covering all major broadcast and shortwave bands that is smaller than the average table radio! New design makes possible a standard of performance never before achieved in so compact a receiver!

COVERAGE: Entire frequency range from 540 kc . to 30 mc . Voice, music or code.

FEATURES: Sensitive and selective superhet circuit. Slide rule general coverage dial with police, foreign, amateur and ship bands clearly marked. Separate bandspread and logging scale usable over entire range.

CONTROLS: Main tuning, Bandspread, On-Off and Volume, Receive-Standby, Bandswitch, AM-CW, Speaker.Phones.

TUBE COMPLEMENT: 12BE6, converter; 12BA6, CW osc. - IF amp.; 12AV6, 2nd det.-1st aud. - A.V.C.; 50C5, audio output; $35 Z 5$, rectifier.

SIZE: $11^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $7^{\prime \prime}$ deep.
(Complete with built- in speaker and power supply)

NC-57C Same as NC-57B except that frequency range is $190-410$ kes. and $540 \mathrm{kcs} .35 \mathrm{mcs} . \$ 99.50^{*}$

NC-57M Same caverage as NC. 57C but wired for AC/DC apera. tion. \$99.50*
(with built-in speaker \& pawer supply)

Popular Low-Priced Receiver that Has Set New Performance Records!

COVERAGE: Phone and CW from 550 kes. to 55 mes. in 5 bands. FEATURES: Volt. stab. osc. keeps signal steady regardless of line voltage changes, out. noise lim., provision for connecting S-meter and other accessories, ant. terminals for single, double or co-ax ant. lead. CONTROLS: Main Tuning, Bandspread, Band Switch, RF Gain, RF Trimmer, BFO. MVC-AVC, ANL Swith, AF Gain, BFO Pitch, Tone Control and On-Off Switch. TUBE COMPLEMENT: 6SG7 RF amp., 6SB7Y conv., 2.6SG7 IF amp., 6H6 Det., AVC, ANL, 6SL7GT Audio amp., BFO; 6V6GT Audio amp., 5Y3GT rect., VR-150 voltage rect. \$99.50*

SELEGT-○-JECT

Boosts or Rejects Any Selected Frequency 38db!

Set SELECT-O-JECT for REJECT, tune by ear and - presto! - an annoying heterodyne or other unwanted signal practically disappears without materially affecting the wanted signa!! Set SELECT-O-JECT, for BOOST, tune - and presto! a selected signal rises above background noise and interfering signals! Can also be used as audio oscillator having over 100 to 1 frequency range with a single rotation of the tuning knob! Excellent as a code practice oscillator! Effective on any frequency from 80 c.p.s. to 9,000 c.p.s.! \$24.95*

Makes the Difference Between A Picture and No Picture!

Adds a stage of RF amplification to average TV set. If signal is low, but perceptible, this booster will aid materially in increasing brightness and definition. Utilizes turret tuner for exceptionally high gain and uniform bandwidth on all channels. Housed in smart metal cabinet finished in special wear-resistant mahogany enamel.
\$39.95* Lis
*Prices slightly higher west of the Rockies.

TV BOOSTR

GOMMIZRGIAL EQUIPMENT

Designed and Built to Exacting Specifications

Over the years, the National Company has been called upon by the government and industry to design and build radio and electronic equipment for specialized purposes. National engineers have met this challenge by producing equipment that, in all cases, has more than met the most exacting specifications... equipment that is operating dependably today all over the world. A few examples are illustrated at the right.

If you use or need similar equipment, why not write National today for further information. Address inquiries to the Commercial Division.

EXPORT INQUIRIES on all National products - television, communication receivers, commercial equipment and components - should be addressed to Export Div,, Dept. H8.

VHF Transmitter

Frequency Shift Equipment

Single-Channel Receiver

NATIONAL COMPANY, INC.
61 Sherman St., Malden, Mass.

FWG

XS-9

XS-1

FWG
Net $\$.60$
A Victron terminal strip for high frequency use. The binding posts take banana plugs at the top, and grip wires through hole at the bottom, simultaneously, if desired.

FWH

Net \$.66
The insulators of this terminal assembly are moulded R-39 and have serrated bosses that allow the thinnest panel to be gripped firmly, and yet have ample shoulders. Binding posts same as FWG above.

FWJ

Net \$.54
This assembly uses the same insulators as the FWH above, but has jacks. When used with the FWF plug (below), there is no exposed metal when the plug is in place.

FWF

Net $\$.70$
This moulded R-39 plug has two banana plugs on $3 / 4^{\prime \prime}$ centers and fits FWG. FWH or FWJ above. Leads may be brought out through the top or side.
FWA, Post Net, each $\$ \mathbf{2 0}$ Brass Nickel Plated
FWE, Jack Net, each \$.15 Brass Nickel Plated
FWC, insulator
Net, per pair \$.24 R-39 Insulation.
FWB, Insulator
Net, each \$. 15 Polystyrene insulation.
XS. 6
Net, each \$. 12
A low-loss steatite bushing for $1 / 2^{\prime \prime}$ holes. Passes 6.32 screw.
XP-6 Net, box of ten \$.51 Same as above but polystyrene.
TPB Net, per dozen $\$.75$ A threaded polystyrene bushing with removable .093 conductor moulded in, $1 / 4^{\prime \prime}$ diam,. 32 thread.
XS-7. ($3 / 8^{\prime \prime}$ Hole) Net $\$.36$
XS-8, ($1 / 2^{\prime \prime}$ Holel Net $\$.48$
XS-1. ($1^{\prime \prime}$ Hole) Net $\$.72$ XS-2, ($11 / 2^{\prime \prime}$ Hole) Net $\$.81$ Prices listed are per pair. including metal fittings and steatite insulators.
XS-9
Net $\$.30$
Feed-through insulator. Hole size $13 / 64^{\prime \prime}$. Insulators are adjustable on silver-plated terminal stud for different partition thicknesses. Ceramic insulators are of high grade materials designed for high frequency equipment.

AA. 3
Net \$.36
A low-loss steatite spreader for 6 inch line spacing. 1600 ohms impedance with No. 12 wire.)
AA- 5
Net $\$.30$
A low-loss steatite aircrafttype strain insulator.

AA- 6

Net $\$.54$
A general purpose strain insulator of low-loss steatite.
GS-1, $1 / 2^{\prime \prime} \times 13 / 8^{\prime \prime}$. Net $\$.24$
GS-2, $1 / 2^{\prime \prime} \times 27 / 8^{\prime \prime}$ Net $\$.30$
GS-3, $34^{\prime \prime} \times 27 / 8^{\circ \prime}$ Net $\$.60$
GS-4, $3 / 4^{\prime \prime} \times 47 / 8^{\prime \prime}$ Net $\$.75$
GS-4A, $3 / 4^{\prime \prime} \times 67 / 8^{\prime \prime}$
Net \$1.05 Cylindrical low-loss steatite standoff insulators with nickel plated caps and bases.
GSJ. (not illustrated)
Net $\$.10$ A special nickel plated jack top threaded to fit the $3 / 4^{\prime \prime}$ diameter insulators GS-3. GS-4 \& GS-4A.
GS-10. 3/4" high
Net, box of ten $\$.90$
GS-IOS (not illustrated) but same as GS-10 except includes threaded stud in top end. Net, box of ten $\$ 1.00$
GS-5. $11 / 4^{\prime \prime}$ high Net $\$.30$ GS-6, $2^{\prime \prime}$ high Net $\$.42$ GS-7. 3" high

Net $\$.75$
These cone type standoff insulators are of low loss steatite. They are molded with a tapped hole in each end for mounting as follows:
GS-5. 8-32 tap 7/16" deep: GS-6 \& GS-7. 10-24 tap 11/16" deep: GS-10, 6-32 tap $1 / 4^{\prime \prime}$ deep and GS-IOS as noted above.
GS-8, with terminal Net $\$.54$ GS-9, with jock Net $\$.75$ These low-loss steatite standoff Insulators are also useful as lead-through bushings.
XS-3, ($23 / 4$ " hole) Net $\$ 3.60$ XS-4, ($33 / 4$ " hole) Net $\$ 4.35$ Prices are per pair and include nickel plated spindles, lugs and hardware. These low-loss steatite bowls are ideal for lead-in purposes at high voltages.
XS-5, Without Fittings
Net, each \$ 4.95
XS-5F, With Fittings
Net, per pair $\$ 10.20$ These big low-loss bowls have an extremely long leakage path and a $51 / 4^{\prime \prime}$ flange for bolting in place. Insulation steatite. Fittings include nickel plated brass spindles. lugs, nuts and washers.

POPULAR

HR

5B

ODD

ODL

HRT (gray or black) Net $\$.75$ The HRT knob is $21 / 8^{\prime \prime}$ in dia. and fits $1 / 4^{\prime \prime}$ snafts. This knob has a chrome appearance circle and combined with the HRS series shown be'ow gives the new look to panel layouts.

HRS (gray or black) Net $\mathbf{\$. 5 0}$
The HRS series knobs are a popular easy to grip knob. They are molded of high quality plastic and have 13^{3} g dia. chrome plated bevel skirts fit $1 / 4^{\prime \prime}$ shafts available in the following scales:

HRS-1 ON-OFF through 30° R
HRS-2 5-0-5 through 180°
HRS-3 0-10 through 300°
HRS-4
HRS-5
$0-10$
Single etched lina

HR (gray or black)
Net $\$.30$
An HRS type knob without the chrome p'ated skirt but with a white dot for spotring relative control setrings.

HRB

Neł $\$.45$
Ideal for bandswitching or other appications where a switch is turned to several index positions, the new HRB lever knob has just the right feel - a bright zinc alloy die casting.

S3
Net $\$.18$
A nickel plated brass bushing $1 / 2^{\prime \prime}$ dia. (Fits $1 / 4^{\prime \prime}$ shaft).

ODL
Net $\$.33$
A locking device which clamps the rim of O, K, L and M Dials. Brass, nickel plated.

ODD
Net $\$.42$
Vernier pinch drive for O, L, or other plain dials.

RSL (fits $1 / 4^{\prime \prime}$ shaft) Net $\$.57$ Rotor shaft lock for TMA, TMC and similar condensers.

AN Vernier Mechanism Net \$ A vernier mechanism ratio 5-1 an insulated output shaft couf for $1 / 4^{\prime \prime}$ shafts. Drive Shaft $3 / 16^{\prime \prime}$ knob.

AVD Vernier Mechanism Net $\$$ Similar to AN-Output shaft cc ling is non insulated.
For commercial uses many varia available. Writa for further ticulars.

R

Net $\$$
This small dial has a $15 / 8^{\circ "}$. scale calibrated $0-10$ in 180° increased reading with clock rotation. Black bakelite knob. $1 / 4^{\prime \prime}$ shaft.

HRP-P

Net \$
Black bakelite knob $11 / 4^{\prime \prime}$ long $1 / 2^{\circ \prime}$ wide. Equipped with poi Especially suitable for use on w and other rotary switches on oratory equipment and the (Fits $1 / 4^{\prime \prime}$ shaft).

HRP

Net \$
The type HRP knob has no poi but is otherwise the same as knob above. Reccommended for calibrated or hard-tuning cont (Fits $1 / 4^{\prime \prime}$ shaft).

POPULAR

Net $\$ 4.50$ Net $\$ 3.00$ four-inch N and $A D$ Dials have ne divided and die stamped es respectively. The N Dial has scimal vernier; the $A D$ Dial ems a pointer. The planefary drive a ratio of 5 to 1 , and is conad within the body of the dial. $\therefore 4,5$ or blank scale. Fits $1 / 4^{\prime \prime}$ t. Specify scale.
ial
Net $\$ 2.70$ vet Vernier" Dial, Type B, has a pact veriable ratio 6 to $1 \mathrm{~min}_{\text {. }}$ to I max. drive that is smooth trouble free. The case is black ilite. 1 or 5 scale. $4^{\prime \prime}$ dia. Fits shaft. Specify scale.

Dial

Net \$2.10
BM Dial is a smaller version he B for use where space is limiThe drive ratio is fixed. Aligh smal! in size, the BM Dial the same smooth action as the er units. । or 5 scale. $3^{\prime \prime}$ dia. $1 / 4^{\prime \prime}$ shaft. Specify scale.

Dial
Nei \$2.25
original "Velvet Vernier" mechm in a metal skirted dial $3^{\prime \prime}$ in ratio 5 to 1 . It is available $2,3,4,5$ or 6 scale and fits shaft.

ial

Net $\$ 1.00$ new P dial is the same as the except direct drive.
e $0,31 / 2^{\prime \prime}$ dia., scale 2 , with < knob, fits $1 / 4^{\prime \prime}$ shafts. Net $\$ 1.00$ - L. same as O except $5^{\prime \prime}$ dia... - 2 only. Net $\$ 1.95$ - K, same as O except less knob. plete with ODD vernier drive, e 2 only.

Net $\$ 1.50$ e M, same as K except $5^{\prime \prime}$ dia., e 2 only.

Net $\$ 2.25$

The dials at the right are for individual calibration: all four employ the noted $5: 1$ drive ratio Velvet Vernier mechanism and are of excellent quality.

MCN Dial

Net $\$ 2.70$
The MCN dial has been scaled down to lend itself ideal'y to mobilo installations and small converters and tuners. It may also be mounted on the standard $31 / 2^{\prime \prime}$ rack panel where such mounting may be desirable. The dial provides three calbrating scales and a 0.100 logging scale. On the rear side of the d'al, the mechanism extends $1 / 4^{\prime \prime}$ below the

SCN Dial

Net $\$ 3.00$
The SCN dial provides the same dial scales as the ACN dial but in a reduced size. It is used where economy of panel-mounting space is desirable and where a smaller dial would be out of proportion with the size of the panel. $4-7 / 16^{\prime \prime} \mathrm{H}, x$ 61/4"W.

ICN Dial

Net $\$ 6.00$
The ICN dial meets those hundreds of requests from amateurs the world over for an illuminated ACN dial. Two dial lights mounted on the top corners of the dial provide efficient and even illumination on all bands. The dial window has been blanked out in semi-circular shape to prevent shadow casting. Dial scales are the same as those used on the ACN dial. $51 / 8^{\prime \prime} H . \times 71 / 4^{\prime \prime} W$.

ACN Dial

Net $\$ 3.30$
The ACN is the original of this type dial, a National design for the benefit of experimenters who "build their own" and desire direct calibration $5^{\prime \prime} \mathrm{H} . \times 7 \frac{1}{4} 4^{\prime \prime} \mathrm{W}$.

ICN

ACN

DIAL SCALES

AM

TX-10

SHAFT COUPLINGS

TX-19
Net $\$ 1.25$
A steatite insulated fexible coupling for $1 / /^{*}$ shafts. Conservatively rated at 5000 volts peak. Diameter $13 / \mathrm{m}^{\prime \prime}$, length 1". Length and flashover voleage can be increased by turning collars outboard.

TX-11
Net $\$.42$
The fexible shaft of this coupling connects shafts at angles up to 90 degrees, and eliminates misalignment problems. Fits $1 / 4^{\prime \prime}$ shafts. Length $41 / 4^{\prime \prime}$.

TX-12, Length $45 / s^{\prime \prime}$
Net $\$ \mathbf{8} .90$ TX-13, Length $71 / 8$ Net $\$ 1.05$ These couplings use flexible shafting like the TX-11 above, but are also provided with steatite insulators at each end.
TX-1, Leakage path 1" Net $\$.65$ TX-2, Leakage path $21 / 2^{\prime \prime}$ Net $\$.75$ Flexible couplings with glazed steatite insulation which fit $1 / 6^{3}$ shafts.

TX-93
Net $\$ 1.35$
A deluxe insulated flexible caupling designed for coupling $1 / 4^{\prime \prime}$ shafts. Will handle a maximum radial misalignment of $1 / 16^{\prime \prime}$ also 2 degrees maximum angular misalignment.
TX-24
Net \$1.35
Same as TX-23, shaft size $5 / 32^{\prime \prime}$.
TX-95 Net $\$ 1.35$ Same as TX-23, non-insulated.

TX-8
Net $\$.60$
A non-flexible rigid coupling with steatite insulation. $1^{\prime \prime}$ diam. Fits $1 / 4^{\prime \prime}$ shaft.

TX-10

Nel $\$.40$
A very compact insulated coupling free from backlash. Insulation is canvas bakelite. $1-1 / 16^{\prime \prime}$ diam. Fits $1 / 4^{\prime \prime}$ shaft.

TX-10F(Notillustrated) Net $\$.45$ A new versian af the $T X-10$ which employs thin canvas bakelite strips for fexibility.

TX-22 (Not illustrated) Net $\$.40$ A non-insulated coupling identical to TX-10 except of all metal construction. Makes good electrical connection between coupled shafts.

TX-9 This small insulated Rexible coupling provides hish electrical efficiency when used to isolate circuits. Insulation is steatite. $1 \mathrm{~s} / \mathrm{h}^{\prime \prime}$ diam. Fits $1 / 4^{* *}$ shaft.

TX-21 (Notillustrated) Net $\$.40$ Similar to TX-10 except $13 / 16^{\prime \prime}$ lons and couples $1 / 4^{\prime \prime}$ shaft to $5 / 32^{\prime \prime}$ shaft.

SAFETY GRID AND PLATE CAPS

SPP-9
Net $\$.21$
Ceramic insulation. Fits $9 / 16^{\prime \prime}$ diameter.

SPP-3
Net $\$.21$
Ceramic insulatian. Fits $3 / \mathrm{R}^{n}$ diameter. National Safety Grid and Plate Caps have a ceramic body which offers protection asainst accidental contact with high voltage caps an tubes.

GRID AND PLATE GRIPS

Type 12, for 9/16" Caps Net $\$.06$
Type 24, for $3 / 8^{\prime \prime}$ Caps Net $\$.03$
Type 8, for $1 / 4$ " Caps
Net $\$.03$
National Grid and Plate Grips provide a secure and positive cantact with the tube cap and yet are released easily by a slight pressure on the ear.

RIGHT ANGLE DRIVES

ACD-1
Net $\$ 3.75$
ACD- 2 Net \$3.90
ACD-3
Net $\$ 3.90$
These sturdy drives were developed for use with the new National AMT condensers (see page 26). They are as compact as the torque requirements will allow and have nickel plated cast frames and bronze gears which operate smoothly without chatter or binding. The ACD-1 has chatter or binding. The ACD- 1 has 32 pitch gears and a $1 / 4^{n}$ dia. dial shaft and drives $1 / 4^{\prime \prime}$ shatts. ACD- 2 has 24 pitch gears (for heavier service) and $1 / 4^{\prime \prime}$ dia. shaft driving $1 / 4^{\prime \prime}$ shafts. ACD- 3 is the same as ACD-2 except that it drives $3 / \mathrm{s}^{\prime \prime}$ diameter shafts.

HEAT RADIATING CAPS. Designed to government specifications. Alumf num contact fingers are integral with radiating fins. Tension on fingers maintained by an encircling steel spring. 6/32"tapped center hale for attaching grid ribban or other lead. Crimped beryllium copper, silver-plated grid ribbon $31 / 4$ " long, supplied with each cap. Special lengths can be supplied to manufacturers in quantities.

Type No.	Price	Hole Size For Lead or Cap.		Heat Radiating Connectors To Fit the Following Tubes
HC-26	$36 t$	Max. $.051$	Min. .045	3C24, HK24, 24G, 25 T
HC-27	36 r	. 062	. 058	UH50, 304B, 829B, 832A, 834
HC-28	36.	. 072	. 062	$35 \mathrm{~T}, 35 \mathrm{TG}, 75 \mathrm{TH}, 8001$
HC.89	50 ¢	. 126	. 120	152TH
HC-30	50¢	. 365	. 350	$\begin{aligned} & \text { 4-195A, 250R, 250TH, 25TL, 802, 804, } \\ & 807,814,815,828 \end{aligned}$
HC-31	$60 ¢$. 128	. 116	$304 \mathrm{TH}, 304 \mathrm{TL}$
HC. 32	604	. 573	. 558	100R, $450 \mathrm{TH}, 803,805,806,808,809$, $810,811,812,813,833 \mathrm{~A}, 866,1500 \mathrm{~T}$, 2000T, 8000, 80003, 80005, HF100, ZB60, HF60, 111H, 211H, 203H, HF175, 5311, 5332
HC. 33	$80 ¢$. 807	. 793	WL460, WL463, WL468, HF200, HF201, HF300

SPP-3

24

COMPONENTS

R-100
R-100U
R-100S
R-IOOST
\qquad Net \$. 35 Net \$. 42 Net $\$.42$ Net $\$.40$
These RF chokes are identical electrically, but differ in mounting provisions. The R-100 empleys piqtail leads; the R-100U has pigtail leads and a removable stand-off insulator; the R-IOOS has cotter-pin luq terminals and a non-removable stand-off insulator; the R-100ST has a 6-32 threaded stud at each end. These chokes are available in 2.5, 5 and 10 millihenry sizes and are rated at 125 milliamperes.

R-33
Net \$. 35
The R-33 series chokes are 2-section RF chokes available in 10,50, 100 and 750 microhenry sizes. Also available in this series is a single layer solenoid chcke of 1 microhenry inductance. All are rated at 33 milliamperes. The chokes are wound on a $5 / 8$ " long form and range in diameter up to $5 / 16^{\prime \prime}$ maximum.

R-50
 R-50-1
 Net \$. 35
 Net \$. 53

The R-50 series chokes are 3 and 4 -section RF chokes and available in 0.5. I. 2.5, and 10 millihenry sizes. They are rated at 50 milliamperes The chokes are wound on a 1 " lonq form and have a maximum diameter of $15 / 32^{\prime \prime}$. The 10 millihenry R-50-i choke is wound on an iron core.

R-33G

Net $\$ 3.60$
The R-33G choke is a 2 section 750 microhenry RF choke hermetically sealed in glass with a current rating of 33 milliamperes. The choke body is I" long by $5 / 8$ " diameter.

R-60

Net \$. 35
The R-60 choke is a high current RF choke (500 mil liamperes) available in 2 and 4 microhenry sizes. The choke is $11 / 8^{\prime \prime}$ long by $5 / 16^{\prime \prime}$ diameter.

R-300	Net \$. 38
R-300U	Net \$. 42
R-300S	Net \$. 42
R-300ST	Net \$. 40

These RF chokes are similar in size to R-100 series but have higher current capacity. The R-300U is provided with a removable stand-off insulator at one end. The R-300S has a non-removable stand-off insulator and cot-ter-pin luq terminals. The R-300ST has a 6 - 32 threaded stud at each end. Inductance values of $0.5,1.0,2.5$ and 5.0 millihenries are available with a current rating of 300 milliamperes. R-300, R-300U, R-300S and R-300ST are identical olectrically.

R-152

Net $\$ 1.75$
For use in the range between 2 and 4 Mc . Ideal for high power transmitter staqes operated in the 80 meter amateur band. Inductance 4 m.h., DC resistance 10 ohms, DC current 600 ma. Coils honeycomb wound on steatite core.

R-I54
 R-I54U

Net $\$ 1.75$
Not $\$ 1.40$
For the 20, 40 and 80 meter bands, Inductance I m.h., DC resistance 6 ohms. DC current 600 ma . Coils honeycomb wound on steatite core. The R-I54U does not have the third mounting foot and the small insulator, but is otherwise the same as R-154. See illustration.

R-175

Net $\$ 2.25$
The R-175 Choke is suitable for parallel-feed as well as series-feed in transmitters with plate supply up to 3000 volts modulated or 4000 volts unmodulated. Unlike conventional chokes, the reactance of the R-175 is high throughout the 10 and 20 meter bands as well as the 40 and 80 meter bands. Inductance $225 \mu h_{\text {, }}$ distributed capacity 0.6 mmf ., $D C$ resistance 6 ohms, DC current 800 ma., voltace breakdown to base 12,500 volts.

Manufacturers: We have facilities for quantity production of RF chokes of practically any type. Send us your specifications.

R-300ST

R-152

R-154

R-154U

R-175

POPULAR

I. F. TRANSFORMERS

OSR

AR-5

AR-2

IFC, Transformer, Net $\$ 4.25$ IFCO, Oscillator, Net $\$ 4.25$ Litz coils wound on a polystyrene form and ceramic insulated air-dielectric trimming condensers make these transformers inherently stable and exceptionally retentive of tuning. The $4 / 2^{\prime \prime} \times 23^{\prime \prime} / \times 2$ " shield can has two 6.32 spade bolts for mounting. Available for either 175 KC or $450-550$ KC. Specify frequency.
IFL FM Discriminator
Net $\$ 6.90$
IFM IF Transformer Net $\$ 6.45$ IFN IF Transformer Net $\$ 6.45$ IFO FM Ratio Discriminator Net $\$ 6,98$ IFL, IFM, IFN and IFO transformers operate at 10.7 Mc . and are designed for use in FM Superheterodyne receivers. Coils are precision wound on grooved polystyrene forms and tuning is accomplished by movable iron cores. Band. width is not affected by tuning slug position. The transformer cans are $13 /{ }^{\prime \prime}$ " square and stand $31 / 8^{\prime \prime}$ above the chassis. Two 6 - 32 spade bolts are provided for mounting. The IFL transformer is a 10.7 Mc. FM discriminator transformer suitable for use in conventional FM receiver discrim. inator circuit and is linear over a band of $\pm 100 \mathrm{Kc}$.
The IFM transformer is a 10.7 Mc . IF transformer with a 150 Kc. bandwidth at 1.5 db attenuation. Approximate stage gain of 30 is obtained with IFM Transformer and 6SG7 tube.

COILS AND COIL FORMS

AR-2 H.F. Coil
 $\mathrm{Ne}+\$ 1.70$
 OSR

 AR-5 H.F. Coil Net $\$ 1.46$The AR-2 and AR-5 coils are high Q permeability tuned RF coils on low loss mica-filled bakelite forms. The AR-2 coil tunes from 75 Mc . to 220 Mc . with capacities from 100 to 10 mmfd . The AR-5 coil tunes from 37 Mc . to 110 Mc . with capacities from 100 to 10 mmfd. The inductive windings supplied may be replaced by other windings as desired to modify the tuning range.

XR-50

Net $\$.90$
These mica-filled bakelite coil forms may be wound as desired to provide a permeability tuned coil, The form winding length is $11 / 16^{\prime \prime}$ and the form winding diameter is $1 / 2$ inch. The iron slug is $3 / 8$ " dia. by $1 / 2^{\prime \prime}$ long.
XR-51 same but with brass slug

The IFN transformer is a 10.7 Mc. IF transformer with a 100 Kc . pass band at 1.5 db attenuation. Approximate stage gain of 30 is obtained with IFN Transformer and 6SG7 tube.
The IFO transformer is a 10.7 Mc. FM discriminator transformer of the ratio type and is linear over a band of ± 100 Kc.
IFJ, with variable coupling Net $\$ 8.25$
IFK, with fixed coupling Net $\$ 7.25$ 15 Mc. IF transformers suitable for ultra high frequency superheterodynes. They are made in two models with and without variable cou. pling. Approximate stage gain of 10 is obtained with IFJ or IFK Transformer and 6AB7 tube.
SA:4842
Net $\$ 4.50$ A 456 kc . discriminator transformer for narrow band frequency modulation. This unit is the nucleus of the NFM adapter described by Harrington and Bartell in November 1947 QST. Two slug-tuned secondaries are employed and discrimination is accomplished by resonating one at approximately 10 kc . above, the other at approximately 10 kc . below the center frequency of the i.f. channel.
CD-I, $1 / 4$ pint can
Net $\$.95$ Liquid Polystyrene Cement is ideal for windings as it will not spoil the properties of the best coil form.

Net $\$ 1.80$ A shielded oscillator coil which tunes to 100 kc . with .00041 mfd . Two separate inductances, closely coupled. Excellent for interruption-frequency oscillator in superregenerative receivers.
CERAMIC SLUG.TUNED COIL FORMS
XR-70 (grooved for 19 wire, with iron slug) Net $\$ 1.32$ XR-71 (same, brass slug) Nel $\$ 1.32$ XR-72 (no! grooved, winding length $1^{\prime \prime}$, with iron slug) Net $\$ 1.32$ XR-73 (same, brass slug) Net $\$ 1.39$ XR-60 (grooved lor $\$ 26$ wire, with iron slug)

Net $\$ 1.32$ XR-61 (same, brass slug) Net $\$ 1.32$ XR-62 (root grooved, winding length $11 / 4^{\prime \prime}$, with ion siug) Net $\$ 1.32$ XR. 63 (same, brass slug) Net $\$ 1.32$ High-grade ceramic coil forms conforming to JAN specifications. Moy be wound as desired to provide a per-meability-tuned coil. Extra lugs provided.

COMPONENTS

POPULAR
 Matanal COMPONENTS
 TYPE TMS TRANSMITTING CONDENSERS

s is a condenser designed for transmitter use in low power stages. It is compact, rigid, and dependable. Provision has an made for mounting either on the panel, on the chassis, or on two stand-off insulators. Insulation is steatite. Voltage rat5 listed are conservative.

TYPE TMK TRANSMITTING CONDENSERS

is is a new condenser for exciters and tow power transmitters. Special provision has been made for mounting AR-16 coils a swivel plug-in mount on either the top or rear of the condenser. For stand-off or panel mounting-steatite insulation.

Cepecity	Minimum Capacity	Length	Ait Gap	Peak Voltese	No. of Plates	Catalos Symbol	Net
SINGLE STATOR MODELS							
35 Mmf .	7.5	27 ${ }^{\prime \prime}$.047"	1500 v .	7	TMK-35	\$3.45
50	8	$28^{\prime \prime \prime}{ }^{\prime \prime}$.047"	1500 v .	9	TMK-50	3.55
75	9	$2^{11 / 1010}$.047 ${ }^{\prime \prime}$	1500 v .	13	TMK-75	3.80 3.95
100	10	$3^{\prime \prime}$.047 ${ }^{\prime \prime}$	1500 v .	17	TMK-100	3.95
150	10.5	35\%"	.047"'	1500 v .	25	TMK-150	4.65 5.95
200 250	11.5	41/1"	.047"'	1500 v . 1500 v .	33 41	TMK-200 TMK-250	5.25 5.75
DOUBLE STATOR MODELS							
35-35 Mmf.	7.5-7.5	3'	.047"	1500\%.	7-7	TMK-35D	\$3.80
$50-50$	8-8	35/8'	. $047^{\prime \prime}$	1500 v .	9-9	TMK-50D	3.95
100-100	10-10	411/"	.047 ${ }^{\prime \prime}$	1500 v .	17-17	TMK-1000	5.25
Swivel Mounting Hardware for AR 16 Coils						SMH	\$. 10

TYPE TMH TRANSMITTING CONDENSERS

condenser that features very compact construction. Excellent power factor, and aluminum plates $.0400^{\prime \prime}$ thick with olished edges. It mounts on the panel or on removable stand-off insulators. Steatite insulators have long leakage path. tand-offs included in listed price.

	Cepocity	Minimum Capacity	Length	Air Gap	$\begin{aligned} & \text { Peak } \\ & \text { Voltase } \end{aligned}$	No. of Plates	Catalog Symbol	Net
	SINGLE STATOR MODELS							
	50 MmF .	${ }_{1} 9$	34\%	.085"	3500 v .	15	TMH-50	\$3.95
		11.5	51"	.085"	35000. 3500%.	95	TMH 100	4.35
		18.	6512	.085"	3500%.	37	TMH-150	4.95
		11	$51 / 8^{\prime \prime}$. $180^{\prime \prime}$	6500v.	17	TMH-35A	4.25
	DOUBLE STATOR MODELS							
	35-35 Mmf.	6	3:1"	.085"	3500 v .	9-9	TMH-35D	
	50-50 $75-75$	$\begin{gathered} 8-8 \\ 19-91 \end{gathered}$	51/",	.085"	3500% 3500%	13-13 $19-19$	TMH-50D	4.35 4.95

TYPE TMC TRANSMITTING CONDENSERS

a condenser designed for use in the power stages of transmitters where peak voltages do not exceed 3000 volts. The frame is -xtremely rigid and arranged for mounting on panel, chassis or stand-off insulators. The plates are aluminum with buffed idges. Insulation is steatite. The stator in the split stator models is supported at both ends.

Capacity	Minimum Capacity	Length	Alı Gap	Peak Voltage	No. of Plates	Catalog Symbol	Net
SINGLE STATOR MODELS							
$\begin{aligned} & 50 \mathrm{Mmf} . \\ & 100 \\ & 150 \\ & 950 \\ & 300 \end{aligned}$	10 13 17 23 95	$\begin{aligned} & 3^{\prime \prime \prime} \\ & 3,2^{\prime \prime \prime} \\ & 45 / 8^{\prime \prime} \\ & 6^{\prime \prime \prime} \\ & 635^{\prime \prime \prime} \end{aligned}$	$\begin{aligned} & .077^{\prime \prime} \\ & .077^{\prime \prime} \\ & .077^{\prime \prime} \\ & .077^{\prime \prime} \\ & .077^{\prime \prime} \end{aligned}$	$\begin{aligned} & 3000 \mathrm{v} . \\ & 3000 \mathrm{v} \\ & 3000 \mathrm{v} . \\ & 3000 \mathrm{v} \\ & 3000 \mathrm{v} . \end{aligned}$	7 13 97 39 39	TMC-50 TMC-100 TMC-150 TMC-250 TMC-300	$\begin{array}{r} \$ 3.60 \\ 4.25 \\ 5.25 \\ 5.70 \\ 6.10 \end{array}$
DOUBLE STATOR MODELS							
$\begin{aligned} & 50-50 \mathrm{Mmf} . \\ & 100-100 \\ & 200-200 \end{aligned}$	$\begin{gathered} 9-9 \\ 18.511 \\ 18.5-18.5 \end{gathered}$	$\begin{aligned} & 48 / 8^{\prime \prime} \\ & 688_{1}^{\prime \prime} \\ & 914^{\prime \prime} \end{aligned}$	$\begin{aligned} & .077^{\prime \prime \prime} \\ & .077^{\prime \prime} \\ & .077^{\prime \prime} \end{aligned}$	$\begin{aligned} & 3000 \mathrm{v} . \\ & 3000 \mathrm{v} . \\ & 3000 \mathrm{v} . \end{aligned}$	$7-7$ $13-13$ $25-25$	TMC-50D TMC-100D TMC-200D	$\$ 4.35$ 5.95 7.25

TYPE AMT

A larger and sturdier model of the TMK condenser. The frame is extremely rigid, with mounting feet a part of the end plates. Heavy steatite insulation.
The solid aluminum tie bar across the top of the condenser acts as a mounting for AR-I 8 series coils in the double stator models.
The double stator models are available in either standard end drive (D series) or center-drive (DG series) with $1 / 4^{\prime \prime}$ dia. shaft extension.

TYPE TMA

This is a larger model of the popular TMC. The frame is extremely rigid and arranged for mounting on panal, chassis or sta off insulators. The plates are of heavy aluminum with rounded and buffed edges. Insulation is steatite located outside of concentrated field.

Maximum Capacity	Minimum Capacity	Length	Air Gap	Peak Voltage	No. of Plates	$\begin{aligned} & \text { Catalog } \\ & \text { Symbol } \end{aligned}$	Net
SINGLE STATOR MODELS							
$50 \mathrm{Mmf} \text {. }$ 100	$\begin{aligned} & 13 \\ & 20 \end{aligned}$	$\begin{aligned} & 4^{3,3} \\ & 63_{4}^{4} \end{aligned}$	$\begin{aligned} & 177^{\circ} \\ & .177^{\circ} \end{aligned}$	$\begin{aligned} & 6000 \mathrm{v} . \\ & 6000 \mathrm{v.} \end{aligned}$	17	AMT-50 AMT-100	5.90 6.10
300 50 100 150 230 100 150 50 100	$\begin{array}{r} 19.5 \\ 15 \\ 19.5 \\ 29.5 \\ 33 \\ 30 \\ 40.5 \\ 97 \\ 37.5 \end{array}$		$\begin{aligned} & .077^{\circ} \\ & .171^{\circ} \\ & .1711^{\circ} \\ & .171^{\circ} \\ & .265^{\circ} \\ & .359^{\circ} \\ & .359^{\circ} \end{aligned}$	$\begin{gathered} 3000 \mathrm{v} \\ 6000 \\ 6000 \\ 6000 \\ 6000 \\ 6000 \\ 9000 \\ 9000 \\ 19.000 \\ 12,000 \\ 12 . \\ \mathrm{v} \\ \hline \end{gathered}$	$\begin{aligned} & 93 \\ & 7 \\ & 15 \\ & 21 \\ & 33 \\ & 93 \\ & 33 \\ & 13 \\ & 95 \end{aligned}$	TMA-300 TMA-50A TMA-100A TMA-150A TMA-100B TMA-1508 TMA-50C TMA-100C	$\begin{aligned} & 7.60 \\ & 4.95 \\ & 5.85 \\ & 6.45 \\ & 7.95 \\ & 8.90 \\ & 9.95 \\ & 5.55 \\ & 8.95 \end{aligned}$
$\begin{array}{r} 75 \\ 150 \\ 100 \\ 50 \\ 245 \\ 150 \\ 100 \\ 75 \\ 500 \\ 350 \\ 250 \end{array}$	$\begin{array}{r} 25 \\ 60 \\ 45 \\ 92 \\ 54 \\ 45 \\ 39 \\ 23.5 \\ 55 \\ 45 \\ 35 \\ \hline 5 \end{array}$		$\begin{aligned} & .710^{\circ} \\ & .460^{\circ} \\ & .69^{\circ} \\ & .449^{\circ} \\ & .340^{\circ} \\ & .344^{\circ} \\ & .344^{\circ} \\ & . .19^{\circ} \\ & .819^{\circ} \\ & .0 \end{aligned}$	$\begin{array}{r} 20,000 \mathrm{v} \\ 15,000 \\ \mathrm{v} \\ 15,000 \mathrm{v} \\ 15,000 \mathrm{v} \\ 10,000 \\ 10,000 \\ 10,00 \mathrm{v} \\ 10,00 \mathrm{v} \\ 7,500 \\ 7,50 \mathrm{v} \\ 7,50 \mathrm{v} . \\ 7,500 \mathrm{v} . \end{array}$	$\begin{aligned} & 17 \\ & 27 \\ & 19 \\ & 9 \\ & 35 \\ & 21 \\ & 15 \\ & 11 \\ & 49 \\ & 33 \\ & 95 \end{aligned}$	TML-75E TML-150D TML-100D TML-50D TML-245B TML-1508 TML-100B TML-500A TML-350A TML-950A	$\begin{aligned} & 18.35 \\ & 18.50 \\ & 16.60 \\ & 11.50 \\ & 90.15 \\ & 18.35 \\ & 17.55 \\ & 19.80 \\ & 94.80 \\ & 19.65 \\ & 18.35 \end{aligned}$
DOUBLE STATOR MODELS D-End drive DG-Center drive							
$\begin{array}{r} 5050 \\ 100-100 \\ 50-50 \\ 100-100 \\ \hline \end{array}$	$\begin{aligned} & 13-13 \\ & 20-20 \\ & 13-13 \\ & 20-20 \end{aligned}$		$\begin{aligned} & .177^{\circ} \\ & .177^{\circ} \\ & .177^{\circ} \\ & .177^{\circ} \end{aligned}$	$\begin{aligned} & 6000 \mathrm{v} . \\ & 600 \mathrm{v} \\ & 6000 \mathrm{v} \\ & 600 \mathrm{v} \end{aligned}$	$\begin{aligned} & 18 \\ & 34 \\ & 18 \\ & 34 \end{aligned}$	AMT-50D AMT-100D AMT-50DG AMT-100DG	$\begin{array}{r} 7.00 \\ 9.00 \\ 10.75 \\ 19.75 \end{array}$
$\begin{gathered} 200-900 \\ 180-180 \\ 50-50 \\ 100-100 \\ 60-60 \\ 40-40 \\ \hline \end{gathered}$	$\begin{gathered} \hline 15-15 \\ 10-10 \\ 12.5-12.5 \\ 17-17 \\ 19.5-19.5 \\ 18-18 \\ \hline \end{gathered}$		$.077^{\circ}$ $.140^{\circ}$ $.155^{\circ}$ $.249^{\circ}$ $.343^{\circ}$	$\begin{array}{r} 3000 \mathrm{v} . \\ 4000 \\ 6000 \\ 6000 \\ 9000 \\ 9.000 \\ 12,000 \end{array}$	$\begin{aligned} & 16-16 \\ & 24-24 \\ & 8-8 \\ & 14-14 \\ & 15-15 \\ & 11-11 \end{aligned}$	TMA-200D TMA-180D TMA-50DA TMA-100DA TMA-60DB TMA-40DC	$\begin{array}{r} 9.40 \\ 18.90 \\ 6.75 \\ 8.75 \\ 8.95 \\ 8.50 \end{array}$
$\begin{gathered} 30-30 \\ 60-60 \\ 100-100 \\ 60-60 \\ 900-900 \\ 100-100 \end{gathered}$	$\begin{aligned} & 19-12 \\ & 26-96 \\ & 97-97 \\ & 20-20 \\ & 30-30 \\ & 17-17 \end{aligned}$		$\begin{aligned} & .710^{\circ} \\ & .469^{\circ} \\ & .344{ }^{\circ} \\ & .344^{\circ} \\ & .919^{\circ} \end{aligned}$	$20,000 \mathrm{v}$ 15,000 10,000 10,000 7, 7,500 7. 7.	$\begin{gathered} 7-7 \\ 11-11 \\ 15-15 \\ 9-9 \\ 21191 \\ 11-11 \end{gathered}$	TML-30DE TML-60DD TML-100DB TML-60DB TML-900DA TML-100DA	$\begin{aligned} & 18.55 \\ & 90.15 \\ & 99.35 \\ & 19.15 \\ & 94.60 \\ & 90.15 \end{aligned}$

TYPE LMT

A heavy duty transmitting condenser that completely eliminates troublesome closed loops, vastly simplifying the probl. of unwanted harmonics. The rotor shaft is completaly insulated from the end plates. Long leakage path (higher safety facto Plates and parts are extra heavy with highly polished rounded edges to prevent flash-over. Adjustable stator plate mounti and end bearings. Available in single-stator, double-stator, or double-stator right angle center drive models. Same capacit and prices as National TML Condenser. Condensers with right angle drive add $\$ 3.90$ to price shown.

TYPE TML

is a heavy duty job throughout. The frame structure (rugged aluminum castings with dural tie bars) and precision bearings assure permanent rotor alignment. All plates are extra thick with rounded and polished edges. This, plus specially treated steatite insulators and a husky self-cleaning rotor contact, provides high flashover, current and voltage ratings.

POPULAR

MINIATURE CONDENSERS:

Type PS variable condensers are compact silver plated units of soldered construction for use as semi-fixed bandsets or padders. Base is steatite - bearing is "snug" but smooth. PSR models are screwdriver adjust type; PSE have $1 / 4^{\prime \prime}$ diameter shafts both ends; PSL ore similar to PSR but include rotor shaft lock.

Trpe M-30

Net $\$.22$
The M-30 is a tiny $\left(13 / 16^{\prime \prime} \times 9 / 16^{\prime \prime}\right.$ $x 1 / 2^{\prime \prime}$) mica trimmer - 30 mmf . mox. - steatite base.

Type W-75, 75 mmF . Net $\$ 1.60$
Type W-100, 100 mmf . Nel $\$ 1.76$ Small air-dielectric paddins condensers hoving o very low temperature coelficient. They are mounted in $11 / 4^{\prime \prime}$ diameter aluminum shields and have $1 / 4^{\prime \prime}$ hex heads for socketwrench odjustment.

The UM condensers are low-loss, aluminum plate staked construction miniature variables designed for UHF canverters, VFOs and the like - minimum copacity is exceptionally low. The UMs can be mounted in PB-10 or RO shield cans and have $1 / 4^{n}$ dia. shalts front and rear for ganging (see pages 21, 23 and 24 for shield cans and couplings). Plates: straight-linecap., 180° rotation. Dimensions: Bose $1^{\prime \prime} \times 21 / 4^{\prime \prime}$, mtg. holes on $5 / 8^{\prime \prime} \times$ $1.23 / 32^{\prime \prime}$ centers, $2.5 / 16^{\prime \prime}$ max. length.
The UMB-25 and UMB-50 are differential (balanced stator) models. UM-10D and UMA-25 are double-spaced and the latter is bolted construction for experimental copacity reduction. Hardware for panel or chassis mounting is supplied with all UM condensers.

neutralizing CONDENSERS:

NC-600U
Net $\$.38$
With standoll insulator
NC-600
Net $\$.32$
Without insulator
For neutralizing low power beam tubes requiring from .5 to 4 mmf ., and 1500 max. total volts such as the OL6. The NC-600U is supplied with a GS-10 standolf insulator screwed on one end, which may be removed for pigtail mounting.

"TU BY" CONDENSERS

Tubular condensers providing short r.f. path between plate and cothode for tubes having the plate connection at the top. Design reduces harmonics and helps eliminate parasitics. 3,000 volts or 1,500 volts. 15 mmid . Net $\$ 1.80$

STN

Net \$2.07
The Type STN has a moximum capacity of $18 \mathrm{mmf} .(3000 \mathrm{~V})$, making it suitable for suct tubes as the 809. It is supplied with two standoff insulators.

NC-800A

Net $\$ 3.00$
The NC-800A disk-type neutralizing condenser is suitable for the T40, $35 \mathrm{TG}, 808$ and similar tubes. It is equipped with a clamp for locking. The chart below gives capacity and air gap for different settings.
NC-75
Net $\$ 3.60$
For $812,75 \mathrm{TH}$ and similar tubes.
NC. 150 Net $\$ 5.25$ For RK $36,100 \mathrm{TH}, \mathrm{HK} 354,250 \mathrm{TH}$, etc.
NC-500
Net $\mathbf{\$ 8 . 7 5}$
For WE-251, 304TH, 833A and the like. These large disk-type neutralizing condensers are for the higher powered tubes. Disks ore aluminum, insulation steatite.

POPULAR

PRECISION CONDENSERS

Originally developed for the famous HRO and NC-100 eeceivers, National PW and NPW condensers and drive units are well known to professional and amateur radio men throughout the world. Sturdily constructed of the finest materials and carefully adjusted by skilled hands, they have become "standard specifications" for applications requiring smooth, precise control and high re-set accuracy.
The Micrometer Dial reads direct to one part in 500. Division lines are approximately $1 / 4^{\prime \prime}$ apart. The drive, at the mid-point of the rotor, is through an enclosed preloaded worm gear with 20 to I ratio. Each rotor is individually insulated from the frame, and each has its own individual rotor contact. Stator insulation is steatite. Plate shape is straight-line frequency when the frequency range is $2: 1$,
PW Condensers are available in 1, 2, 3 or 4 sections, in either 160 or 225 mmf per section, Larger capacities cannot be supplied.
PW-IR Single section right
Net $\$ 13.50$
PW-IL Single section left
PW-2R Double section right
Net $\$ 13.50$
PW-2L Double section left
Net $\$ 18.00$
PW-2S Single section each side
Net $\$ 18.00$
PW-3R Double section right; single left
Net $\$ 18.00$
PW-3L Double section left; single right
Net $\$ 24.00$
PW-4 Double section each side
Net $\$ 24.00$
NPW-3 Three sections, each 225 mmf .
Net $\$ 27.00$ Similar to PW models, except that rotor shaft is perpendicular to panel.
NPW-O Net $\$ 9.00$ Uses parts similar to the NPW condenser. Drive shaft perpendicular to panel. One TX-9 coupling supplied.

PW-O

Net $\$ 9.90$
Uses parts similar to the PW condenser. Drive shaft parallel to panel. Two TX-9 couplings supplied.

PW-D

Net \$5.
The Micrometer Dial used on the condensers and drives above is available separately. It revolves ten times in covering 4 complete range and as there is no gear reduction unit furnished, the driven shaft will revalve ten times, also. The PW. dial fits a shaft $5 / 16^{\prime \prime}$ in diameter.

MULTI-BAND TANK ASSEMBLIES

The unique MB-I 50 Multi-Band Tank tunes all amateur bands from 80 through 10 meters with 180° rotation of the shaft; tl coils are never changed. The unit is buitt around a circuit which tunes to two harmonically unrelated frequencies of the san time. Thus, it becomes possible to cover a wide frequency range and yet maintain a reasonably constant L / C ratio. $3^{\prime \prime}$ wic $\times 81 / 4^{\prime \prime}$ high (including the GS-10 standoffs) $\times 9^{\prime \prime}$ long overali includirg the $1 / 4^{\prime \prime}$ dia. shaft and output terminals.

Features of the MB-150:
(1) For use as the all-band plate tank in push-pull or single-ended stages running up to 150 -watts input (1500 volts peak). It is ideal for a pair of 807s or 809s or a single 829B.
(2) Separate link coupling coil has spocial clips which adjust to match impedances up to 600 ohms directly. Output couples into a higher powered amplifier, an antenna or an antenna tuning network.
(3) Fast band changing is accomplished without handling coils, thus removing one of the danger points in the amateur station.
MB-I 50 Multi-Band Tank Assembly
Net $\$ 18.75$

MB 40L LOW-POWER MULTI-BAND TANK

Same principle as the famous MB-I50. Logical application as grid circuit for tubes having MB-150 in plate circuit. Will handle 40 watts input if link kept loaded Net $\$ 12.90$

M8-150

POPULAR

TYPE ST (180° Rotation)

 STRAIGHT-LINE WAVELENGTHST Type condenser has Straight-Line Wavelength plates. All doublering models have the front bearing insulated to prevent noise. On special ler a shaft extension at each end is available, for sanging. On doublegring single shaft models, the rotor contact is through o constont impedance tail Steatite insulation.
JTE - Type SS Condensers, hoving straight-line capacity plates but ierwise similar to the Type ST, are available. Capocities and Prices same Type ST.

iapacity	Minimum Capacity	No. of Plates	Air Gap	Length	Catalog Symbol	Net

15 MmF .

95
95

SPLIT STATOR DOUBLE BEARING MODELS
50-50
$00-100$

$5-5$	$11-11$	$.026^{\prime \prime}$
$5.5-5.5$	$14-14$	

$5.5-5.5$	$14-14$	$.018^{\prime \prime}$

DOUBLE BEARING MODELS

35 MmF .	6 Mmf .	8	.026"	21/"	ST. 35	51.85
50		11	.026"	21/"	ST. 50	1.90
75	8	15	.026"	911"	ST. 75	2.00
-0	9	20	.026 ${ }^{\prime \prime}$	21/"	ST-100	2.10
40	10	97	.026"	23/"	ST-140	2.30
50	10.5	29	.026"	$23^{\prime \prime}$	ST-150	2.30
!00	12.0	27	.018'"	21/"	STH-200	2.50
i50	13.5	39	.018'	28/4"	STH-250	8.70
300	15.0	39	.018 ${ }^{\prime \prime}$	2\%"'	STH-300	2.90
335	17.0	43	.018 ${ }^{\prime \prime}$	284"	STH.335	3.10

TYPE SE (270° Rotation) STRAIGHT-LINE FREQUENCY
IPE SE - All models have two rotor bearings, the front bearing being sulated to orevent noise. A shaft extension at each end, for ganging, is 'ailable on special order. On models with single shaft $v x$ xtension, the rotor intact is through a constant impedance pigtail. The SEU models (illustrated) e suitable for high voltoges as their plates are thick poli hed aluminum with unded edges. Other SE condensers do not have polished edges on the ates. Steatite insulation.

15 Mmf. 80 25	$\begin{aligned} & 7 \mathrm{Mmf.} \\ & 7.5 \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \\ & 9 \end{aligned}$	$\begin{aligned} & .055^{\prime \prime} \\ & .055^{\prime \prime} \\ & .055^{\prime \prime} \end{aligned}$	$21 / 4 \prime \prime$ $21 / \prime \prime \prime$ $21 / 4$	$\begin{aligned} & \text { SEU. } 15 \\ & \text { SEU. } 20 \\ & \text { SEU. } 25 \end{aligned}$	$\begin{array}{r} \$ 2.80 \\ 9.95 \\ 3.10 \end{array}$
50	9	11	.026 ${ }^{\prime \prime}$	21/1"	SE. 50	2.30
75	10	15	.026"'	21/"	SE- 75	8.40
100	11.5	90	.026"'	21/4"	SE-100	2.60
150	13	29	.026"	23/4"	SE-150	2.75
800	12	27	.018 ${ }^{\prime \prime}$	21/"	SEH-800	2.80
250	14	32	.018"	2\%"'1	SEH-250	3.00
300	16	39	. $018^{\prime \prime}$	2\%"'	SEH-300	3.25
335	17	43	.018 ${ }^{\prime \prime}$	284"	SEH.335	3.50

TYPE EMC (180° Rotation) STRAIGHT-LINE WAVELENGTH

TYPE EMC - A seneral purpose condenser available in large sizes and hoving Straight-Line wavelength plates. They are similar in construction to the TMC Transmitting condenser. and have high efficiency and rugged frame Insulation is Steatite, and Peak Voltage Rating is 1000 volts. Same sizes available with straight line capacity plates, type DXC condenser.

Capecity	Minimum Copacity	No. of Plates	Length	Catalog Symbol	Net
$\begin{aligned} & 150 \mathrm{Mmf} . \\ & 250 \\ & 350 \\ & 500 \\ & 1000 \end{aligned}$	$\begin{aligned} & 9 \text { Mmf. } \\ & 11 \\ & 19 \\ & 16 \\ & 29 \end{aligned}$	$\begin{array}{r} 9 \\ 15 \\ 90 \\ 99 \\ 56 \end{array}$		EMC. 150 EMC. 250 EMC. 350 EMC. 500 EMC-1000	$\begin{array}{r} \$ 4.50 \\ 4.75 \\ 6.00 \\ 6.75 \\ 10.35 \end{array}$

VHF CONDENSERS

- Shaft extension at rear for ganging purposes. Dual condensers ideal for mixer-oscillator unit. - Ball bearings front and back for smooth rotation and freedom from back-lash. - Brackets for mounting 7 -pin miniature tube sockets, i.e., National XOA for very short leads from tube to condenser essential for VHF efficiency, and rigid compact unit-assembly that produces better stability. - Wide low-inductance stator strap connections raise frequency limit of condensers. Coil or strap tank can be connected directly to stator straps allowing maximum inductance in tank and a minimum of into stator straps allowing maximum inductance in tank and a miator strap connections silver-plated for best efficiency. - Rigid square construction, heavy isolantite end olates. - Spade bolts allow solid connections to chassis for extreme rigidity. - Flexible insulating coupling available to connect con denser shaft to $1 / 4^{\prime \prime}$ dial shaft. Flexible insulating coupling ovailable to connect two or more condensers together as ganged units. - High capacity single spaced units for general coverage. Low capacity double spaced units for bandsoread, suitable for ham use, particularly in the VHF and UHF ham bands. - Stators solder construction can be removed and replaced by strap tanks for special VHF and UHF apolication.

DOUBLE SPACED MODELS

Two section VHF-2D, price $\$ 6.50$.
Maximum capacity per section stator to stator 0.75 mmf . Minimum capacity per section stator to stator 3.0 mmp . Net change. 3.75 mm .

Single section VHF-1D, price $\$ 3.25$.
Moximum capacity stator to stator.
Minimum capacity stator to stator.
6.75 mmf

Net change.
3.0 mmf . 3.75 mmf

SINGLE SPACED MODELS

Two section VHF-2S, price \$6.50.
Maximum capacity per sectior stator to stator 22.5 mm
Minimum capacity per section .tator to stator
3.0 mmf

Net change
19.5 mmp

Single section VHF-1S, price $\$ 3.25$.
Maximum capacity stator to st.ator.
29.5 mmf .

Minimum capacity stator to sta*or.
3.0 mmf .
19.5 mm

hallicrafters

For Definitely Superior Mam Performance

Frefm the Nams of Holliccoflers to Homs everysive' comes this lop-pecforming rectver in the medium price clost. Eatro sensilivily, selectivity, and llobility. definitly superior inogy reitetion with double uperheterodyne cercuit, plut built-in Norrow sand FM reception. Extra wids dials fos main and band ippeod luning. Surposses in hom performonce many receivers prist conilitrobly higher
PERFORMANCE: Continuous AM rezeption from 538 tc 1035 Mt , and 46 to 56 Mc . Buili-in limier and bolonced detector stages for hiss.free NBFM reception. Doubls conversion (2075 and 455 te i-f channeli) givet imoge rejection of better thon 150 to 1 ot 28 Mc . Temperature compensated, valtoge reguloled. One r.f, iwo conversion, and 3 i-f slages yizld high goin for sensitivity of .7 microvolis with 50 mill witt output. Audio peaked for communications frequencies, with 3 wall output.
CONTROLS: Band Selestor $538.1650 \mathrm{kc}, 1600-4800 \mathrm{kc}, 4.6 \cdot 13.5 \mathrm{Mc}, 12.5 .35 \mathrm{Mc}, 46.56 \mathrm{Mc}$. Separate Main ond Bandsprad luning zontrols; bandspreod dial colibraind for 80, 10, 20, 10, and 6 Metser Band. BfO Pitch 3.position Selectivity, Crystal Phasing. Tone, o.f Gain, and p.l Goin controls. ANL, BFO, and Receival Send switches. " 5 " meter odjustmont on rear.
PHYSICAL DAYA: Sotin block sleal cobinet with chrome trim. Piono hinge top. Size $181 / 2$ in, wide by $\$ \%$ in. high by 12 in . deep. Ship, wl. 51 ibs .
EXTIERNAL CONNECTIONS: Use doublet or single wire ontenino. 500 and 3.2 ahm outputs for seporate speaker. Phone jeck. Sockel for extarnol power supply. Connections for remete control. Far $105-125$ volis $50 / 40$ syclo AC.
11 TUEES PLUS VOLTAGE REGULATOR AND RECTIFIER: $68 A G$ r-f Amp., $6 C 4$ OsC., GAUS MINER, $68 E G$ 2nd Conv.. three $65 K 7$ i-f Amps., oH6 ANL ond deloysd AVC, GSC7 BFO ond e.f Amp., GALS Det. sk6GT Oulput, VR. $1 \$ 0$ Reg.. and SY3GT Rect
UNIVERSAL MODEL SXTIU: Samn os obovo only far 115/250 volts. $25 / 60$ cycle $A C$.
K. 46 SP素AKER. Naw $10^{\prime \prime}$ PM in sotin block slest cobinet to match $\$ \times .71$ and 5 -75 (also suitoble for $5 \mathbb{K} .62$). 500 -ohm transformer. 80 to 5000 cycle renge. $15^{\prime \prime}$ wide. 10% " high, 10% deap.

communicotions equipment

ew! A Double Superhet With 50 kc I-F

A n Ex double conversion reseish jwil introduced of the lower-pricad eunnirg mate to the olready fomous 54-71. The only double superthet with 50 : speand i.f ond the only set row known with o giont sized 4-inch ' $S^{\text {el Mafer. Ahother nem Hallicrofterl enqinttring triumph. . . a special value leoder in the }}$ moderole price congn

PRRIOAMANCE: COnthwoul coverogs 538.1580 ke ond 1.72 .32 MC Double conversion olmost completely sliminates impges. 50 is steatal i-f gives Excellent "skift" selectivity with nose" selinctivity variable from $5 . d$ te doern to 5 th piles. Temperature compen aled, valtage regulated. One p.f, two conversion, and sro it slapes. $2 \frac{1}{2}$ watil ouipul, with oudio peaktd for communicotions frequancies.
 spreod tuning; bondspread calibrated for 80, 40, 20, 11, 10 meters; five-position Selectivity with phono Iwitct built-in; BFO Pitsh; full-range Tone; AVC, BFO. ANL, Rec./Stondby switches. "S" Meter adiustment on retif.
PhYsical Data: Solin block sie el cabinet with chrome Irim. Piono hinge iop. Size $18 \% / 2^{\circ}$ wide, $8 \%{ }^{\circ}$ high, 9° Aleop. Ship. wt. opprot. 46 lbs
EXTERNAL CONNECTIONS: Use doubiet or single wire ontenno. 500 ot 3.2 ohm outputs. Phote jact. Photlo inpur jack. Connections exfernal power ond for remote contral. Mounting holes provided for caon connector. For $105-125$ volis $50 / 60$ cycle AC.

- TUBES PLUS REGULATOR AND RECTIFIER: GCSS f.f Amp., $6 A \cup S$ ist CONv., GC4 Osc., 68 AG Ist if GRES 2nd CoTv., 6BAG 2nd i.f, GAL5 DE1., ANL, 6SC7 BFO. GKSGT Oulput, YR-150 REg., SY3GT Rect

hallicrafters

Ofers superiar performance in the madium price cange, born of Hallicraftors long atparience in high quality cammunicatians equipment. Camplete in itself, with built-in PM speater.
PERFORMANCE: AM reception 540 ke la 43 Mc. Temperotura compensated oscillator. One RF and lwo IF slages. Audia response to 10,000 cycles.
HONTROLS: Band Switch $540-1700 \mathrm{kc}, 1700-5300 \mathrm{kc}, 5.3-15.7 \mathrm{Mc}, 15.7-43.0 \mathrm{Mc}$. Main tuning in Me. band-spread dial has arbitrary scale. AF and RF Gain controls; AVC, BFO, and Noise limiter switcher; three-positian Tane, BFO Pitch, and Receiva/Standby cantrols. Setlings for Broadcast Band marked in colar for simplified use by others in your family.
PHYSICAL DATA: Satin block steel cabinet with throme trim. Top opens on piano hinge. Size $18 \frac{1}{2} \mathrm{in}$. wide by 8% in high by $91 / 2 \mathrm{in}$. deep. Ship. wt. 32 lbs .
EXTERNAL CONNECTIONS: Doublet ar single wire antenna. Phone fack. Sochet ar external power supply Remote cantrol connections. S.4OB uses 105.125 . $50 / 60$ cycle AC only. 5.77 uses 105.125 V . DC of $30 / 60$ cycle AC.
7 TUBES PLUS RECTIFIER: (in S-4OB) 6SG7 RF Amp., GSA7 COnv., two $65 K 7$ IF Amps., 6H6 ANL and AVC, 6SI7 BFO and Del., 6F6G Outpul, 5Y3GT Rectifier. Comparable ACIDC type fukes used in S 77.

UNIVERSAL MODEL S-4OBU: Same as above only for $115 / 250$ volt, $25 / 60$ eysie AC

uperb Performance in Compact Size

Unquestionably the finest smoll cammunications receiver built. Several steps better than the $5.38 B$ but not as good as the $\mathrm{S}-40 \mathrm{~B}$. Complete in itself, with built-in PM speater
PERFORMANCE: Coverage $540-1600 \mathrm{kc}, 2.6-31$ Me plus $48-54.5$ Me Two stages if amplification. CONTROLS: Main luning in Me; separate band-spread dial with logging secle plus Mc calibration for 48-54.5 Mc band; Receive/Standby switch; Band switch 540-1630 ke, 2.5-6.3 Mc, 6.3-16 Me, $14-31$ Me, and 48-54.3 Mc; AM/CW; RF Gain. Noise Limiter, AF Goin, Iwo-position Tone; Speaker/Phones switch on rear.

PMYSICAL DATA: Satin black steel cabinel witt brushed chrome trim. Top opens on piono hinge. Size $12 \% \mathrm{in}$. wide by 7 in . high by $7 \frac{1}{4}$ in deep. Ship wt. 19 lbs.

EXTERNAL CONNECTIONS: Doublet or single wire antenna. Phone tip jacts. Phonograph input jack. 105-125 V. 50/60 cycle AC line.
7 TUEES PLUS RECTIFIER: 6C4 Osc., 6BA6 Miner, two 6BA6 IF Amps., 6H6 Del.. AVC and ANL, 6SC7 BFO and AF Amp., 6K6GT Output, 5Y3GT Rectifier.

UNIVERSAL MODEL S-53AU: Same as above only for $115 / 250$ volts, $25 / 60$ eyele AC

he Rudio That Amazes the Experts

Abstract

The lawest priced communications receiver on the market . . with many feopures found in much highet priced sets. Standard Broadcast plus three Short-Wave bands. Built.in PM speater

PRRFORMANCE: Continuous AN reception 540 ke to 32 Mc. Marimum sensifivity and salecfivity from ewperlly engineered chassis. CONTROLS: Main Tuning in Me; separate band-spread dial with arbitrary scale; Speaker/Phones. AM/ CW switches; Bond Switch 540-1650 kc, $1.65-5 \mathrm{Mc} .5-14.5 \mathrm{Mc}, 13.5-32 \mathrm{M}$. Af Gain, Receive/Stondby. PHYSICAL DATA: Steal cobinet in black wrirkle finish with brushed chrome irim. Size $12 / / 2$ in. wide by 7 in, high by $71 / 4$ in. deep. Ship. wf. 14 lbs. EXTERNAL CONNECTIONS: Doublel or single wire ontenna Phone lip joels. $105-1254$. DC or $50 / 60$ cycle AC. A TUBES PLUS RECTIFIER: $125 A 7$ Conv., $125 K 7$ IF Amp. and BFO, 12507 Del. ond AYC, $3516 G T$ Ouipul. 3525GT Rectifier

220-VOLT LINE CORD: Available separately, Worts for AC or DC.

Modernize your present transmifter with this famous Hallierafters excifer. Crystal of VFO, NBFM or CW on 5 Bands with all coils, speech amplifier, and power supply built in. Features never before available in one low-priced unit. Low frequency drift, low FM distortion, low hum level, excellent keying. Output 2.5 to 4.5 watts. Consisis of an oscillator (crystal controlied or VFOI, a frequency modulator with speech amplifier. and a buffer-output tube.

CONTROLS: Operatian Switch has three crystal positions plus VFO and NBFM; Band Selector switch - 80, 40, 20, 15, 10 Meters; Check switch turns on oscillator for spot fing signals on receiver. Plate switch controls all " B " power anc makes connections for remote control. Power switch is in 115 -volt line. Deviation Control adjusts for 0.4 ratio on all bands. Tuning control operates osc. gang and calibrated dial.

PHYSICAL DATA AND CONNECTIONS: Satin black steel cabinet with brushed chrome trim; size $12 \frac{18}{\prime \prime}$ wide, $7^{\prime \prime}$ high, by $7 \frac{3 / 4 " ~ d e e p . ~ S h i p p i n g ~ w e i g h t ~}{} 24 \mathrm{lbs}$. Connections for microphone, keying losc. keyingl, remote contral, and 72 -ohm output. Line cord for 115 V .50 .80 cycle AC.

TUBE5: Three 6BA6-Osc., Freq. Modulator, Speech Amp., 6 L6 Buffer, VR- 105 Voltage Rem., 5Y3GT Rectifier.

communicaifons equipment

New Transceiver with Amaxing Performance

A Eompletely new type of unit-a small transceiver for the novice class and or beginning amateur; can alto be used later as exciler unit. Reteives on 540 kt through 32 the, transmits on $10,11,20,40,0$ meter bands. 10 wa is input to final amp.

Receiving section is substantialiy same as our S-388. Band:pread tuning, Speaker/ phanes switch, BFD switch. Rec. Standby switch; four lubes plus rectifier,

Trammithing sectinm uses electron coupled Xal oscillafor plus output thbe of receiverOviliftar leying, therough relay, so comoletely isolated. Vatage doubler rectifier in increase plate volage-

CONTROLS: Noin funing in Wic; separate eleciricel bandsaread; AM CW. Speaker/ Phores, and Refeive Standby switches, Volume control with power switch. Xmer contrals ofl rear; tuning, coupling adi., dowbler coll switch $(10$ meters) and adjutiment. power sivich with irierlock.

PHYSICAL DATA AND CONNECTIONS: Satin black sfeel cabinet with brushed ehrome frim; size $127^{\prime \prime}$ wide, $7^{\prime \prime}$ high, by $73^{\prime \prime}$ deep. Shipping weight IG Bs. Connticlions for keying headphone rip jacks, funing meter or bulb, and eulput. Line terd for 115 volts $50 / 00$ tycle AC or DC. Shipped with coils, lest crystals.

27

hallicrafters

esigned for Top Broadcast Reception
The warlds finest receiver for the All-Wove listener. Will oulperform ony ordirory broadcast receiver on any frequency - Stondord Broodcost. Shors. Wove or FM. Continuaus caverage from 540 kc to 109 Mc

Having basically the seme chassis as a fine communications receiver, the $\$ X-62$ provides cammunicatiente receiver perfarmance in simplified farm. A singles funing cantral covers the wide-visian dial. Onls of a band lighls up of o time you olway: hnow lust where you ore funing. In oddition o 500 the crytul calibration ascillatar is built in, enabing you te odjuit the dial pointer to show the exoct frecuencr being luned of any limo.
PERFORMANCE: Continuous AM receplion 540 kc to 109 Mc : FM receplion $27-109 \mathrm{Mc}$. Tomperoiure coni. pensated, valloge requlaticd. Two ff, thrie if sleges; dual if chonnell (455 ke and 10.7 Mc .). Audio fot 50-15000 eycles. 10 wall push-pull output.

CONTROLS: Bond Selector 540-1620 hc. $1.62-4.9 \mathrm{Mc}, 4.9-15 \mathrm{Mc}, 15-32 \mathrm{Mc}, 27-56 \mathrm{Mc}, 54-109 \mathrm{Mc}$ Receive/Siondby, Colibration Osc. On/Of, Noise Limiler, Tuning. AF Gair, Phono/FM/Am/CW, vitposition Selectivily, Iaur-position Tane, RF Gain, Calibratian Resel.

PHYSICAL DATA: Groy sleel cobinet with salin chrame Irim. Top opens on ciono hinge, Cobinet 27 in. wide by $10 \frac{1}{4} \mathrm{in}$. high by 16 in . deep. Ship. Wi. be lbs.

EXTERNAL CONNECTIONS: Daublet or single wire ontenno. 500 ond 500 -ohm oulputs, Phane goct. Phanagroph input jock. Socket for external powar. Remate contral connectior. 105-125 V. $50 / 60$ crcle AC line.

84 TUBES PLUS VOLTAGE REGULATOR AND RECTIFIER: Two $6 A G 5 \mathrm{kF}$ Amp:., 7 F8 COnv., $6 S K 7$ IF Amp., 6SG7 IF Amp., 7H7 IF Amp., 7H7 FM Limiter ord AM Del., 6H6 FM Del., 7 AA BFO, GHG ANL, GSI7 AF Amp.. Iwo 6V6 Push-pull Oulput, 6CA Calibration Osc., VR-I 50 Reoulator. SUAG Reclifier.

UNIVERSAL MODEL SX-62U: Same or obove only far $115 / 250$ volls, $25 / 60$ cycle AC

communicalions equipment

R
 egular and Long-Wave 3 - Way Porfable

You'll olwoys be in louch with the ouseid warld whertitr you go with thit new Hallicroflies eztio. lensibike portable. Desietied batk far the perion who wonts better fion overiso aperation even in wist signal ortos ord for the fodia hmoteur.
PERFORMANCE: Reqular Madel $\$ 72$ cavers stindard broadtait and thrit shori-wove bonds 540 ic 1 s 30 Wic continuously. Lara. Wave Madel $\$.721$ saper. Eirways rar qe. and lowet: and morine beacoti ifs$\div 20$ kc, plus Braodcast and 2 shart-wove bands 540 as to 125 Mc . One sage funed r-f amplificalient separate bondspread iunina gang. Two bull in anteanos-loop for brooocost and 61-inch lelescaping wh'p far harl-wave. Overall set slifity 1.8 microvalts of 30 Mc , ronging io 6 ficravalls of 1.7 Mc CONTROLS: Band Selectar, r-f Gain, AVC, BFO. a-f Gain, Main iunina, Bandspreod funing.
PHYSICAL DATA: Luggage-type cobinet in brawn leatherette. space inside for phones. Size 14 in . wide, $121 / 4 \mathrm{in}$. $1 \mathrm{igh}, 71 / 4 \mathrm{in}$. detp. Ship, wi. 18 lbs., less ballery pock.
EXTERNAL CONNECTIONS: Phane jack. Antenna terminals if needed. $105-125$ V. DC ar $50 / 60$ eycle AC line. Bollery power 100 ma . of 7.5 V . and 30 mo . of 90 V . Tothes ?CA VSO18, Burgess G6M60, Generol 6086F65 and simitar pocks, lite 50 to 100 hours.
8 TUBES PLUS RECT: ITA r-i Amp., IR5 Osc., IU4 Mizer, iwo IU4 i.f Amps., 1 U5 Del. ond of Amp., 1 B5 BFO, 314 Oulpui, long.life selenium rechifier.

Lang Wave Model $\$-72 L$ is onswer to airplane ar baol owne-'s dreom. Receives morine beacans, airwoys ronged and lawers, as well as airway: and marine shariwave charinels and regulor braod. cast band.

hallicrafters

nsurpassed Performance Under All Conditions

Coming soon from Hallicrafters world-famous short wave laboratories will be a superb new communications receiver-the SX-73, proud successor to so many famous topquality Hallicrafters receivers. Absolutely without equal in its combination of ruggedness, sensitivity, stability, selectivity, resetability, and image and i-f rejection. Based on an original design developed by Hallicrafters for the armed forces for universal use all over the world, this new receiver will surpass all others in versatility, dependability, performance and value.
PERFORMANCE: Continuous frequency coverage 540 kc to 54.0 Mc . Two r-f, two i-f stages. Dual conversion above 7 Mc ; second beat oscillator is crystal controlled. Choice of six pretuned crystal controlled channels in range 1.5 to 30 Mc . Single tuning knob furns main and bandspread dials (6 to 1 ratio between the two); 50 to 1 tuning ratio.. Resetability accurate to within 30 cycles per megacycle. Selectivity variable 14.5 kc to 300 cycles at 6 db down. Sensitivity less than 2 microvolts for .5 watts output. Signal to noise ratio 10 db for 2 mv inpul. Image rejection 80 to 120 db . I-f rejection not less than 60 db . AVC circuit will hold up to one volt without overload. Series type noise limiter. Carrier level meter. Audio response plus or minus $11 / 2 \mathrm{db}$ from 300 to 3500 cycles.
CONTROLS: Tuning knob with dial lock; Band Selector 540-1350 kc, 1.35-3.45 Mc, 3.45-7.00 Mc, 7.00-14.4 Mc, 14.4-29.7 Mc, 29.7-54.0 Mc; r-f Gain and AC on/off, BFO Pitch, Xtal Phasing, 6-pos. Xtal Selectivity, 6-pos. Xtal fixed-frequency channel selector, a-f Gain, Xtal tuning Vernier; Rec./Standby, BFO, AVC, and ANL switches; BFO injection control and carrier meter adj. on rear.
PHYSICAL DATA: Two-tone gray steel cabinet with satin chrome trim. Piano hinge top. Size 20 in . wide, 11 in . high, $18 \frac{1}{2} \mathrm{in}$. deep.
EXTERNAL CONNECTIONS: Antenna Input 50 to 200 ohms throughout tuning range. Output 600 and 50 ohms. For $50 / 60$ cycle current at $75,105,117,130,190,210$, 234 , or 260 volts.
17 tubes plus voltage regulator, ballast tube and rectifier.

Precision-Built Television

with the

A funing system more accurate and more powerful than any in Television History

The Dynamic Tuner - a rotary-type tuner - uses flat tuning cots that are precision-printed by a special photo-etzh process. Because wite stretches as it is wound, and because coil forms vary, NO OTHER TUNING SYSTEM can even approach the absolute accuracy of precision pholo-printed coils.

The heart of the Dynamic Tuner lies ir the 12 channel strips. Each strip has been prepared by photographically printing the desired patlern on copper and then etching away the unwanted metal. The result of this process is complete uniformity in production. Every chassis coming off the line is "hot" in sensitivity; variations in tuning alignment are practically eliminated.

Only Hallicrafters has the Dynamic Tuner, to bring you the clearest picfure in television. "City Clear", even in weak signal areas. Independent research laboratories report that Hallicrafters chassis deliveted 2 to 4 times more sensifivity than the best of four other leading sets tested. See
 your Classified Telephone Directory for your nearest Hallizrafters TV dealer.

hallicrafters

Magnificent in performance... Modest in price

MALDEN •MASSSACHESETS S

90921

SECONDARY FREQUENCY STANDARD

A precision frequency standard for both laboratory and production uses, odjustable output, provided af intervals of $10,25,100$ and 1000 kc , with magnitude useful to 50 mc . Harmonic amplifier with tuned plate circuit and panel range switch. 800 cycle modulator with panel control switch. In addition to oscillators, multivibrators, modulators and amplifiers, a built-in detector with phone iack and gain control is incorporated. Self-contained power supply.
Model 90505, with fubes

ABSORPTION WAVEMETERS

The 90800 series of absorption wavemeters are available in several styles and many different ranges. Most popular is kit of four units, covering range of 3.0 to 140 mc .
Model 90600.
$\$$

GRID DIP METER

The No. 90651 MILLEN GRID DIP METER is compact and completely self cantained. The $A C$ power supply is of the "transformer" type. The drum dial has seven calibrated uniform length scales from 1.5 MC to 300 MC with generous over laps plus an arbitrary scale for use with special application in ductors. Infernol terminal strip permits battery operation for antenna measurement.
No, 90651, with tube.
Additional Inductors for Lower Frequencies
No. 46702-925 to 2000 KC.
No. 46703-500 to 1050 KC
No. 46704-325 to 600 KC
No. 46705-220 to 350 KC

LABORATORY SYNCHROSCOPES

The 5" laboratory synchroscopes are available with and without detector-video strips.
Model P-4-2, with tubes.
Model P.4E-2, with tubes

MINIATURE SYNCHROSCOPE

The compact design of the No. 90952, measuring only $71 / 2^{\prime \prime} \times 556^{\prime \prime} \times 13^{\prime \prime}$, and weighing only 17 tbs., makes available for the first time a truly DESIGNED FOR APPLICATION "field service" Synchroscope.
No. 90952, with tubes

CATHODE RAY OSCILLOSCOPES

The No. 90902 , No. 90903 and No. 90905 Rack Panel Oscilloscopes, for \$wo, three and five inch pubes, respectively, are inexpensive bosic units comprising power supply, brilliancy ond centering controls, sofety features, magnetic shielding, switches, etc. As o transmitter monitor, no odditional equipment or accessories are required. The well-known trapezoidal monitoring patterns are secured by feeding modulated carrier voltage from a pickup loop directly to vertical plates of the cothode ray tube and oudio modulating voltage to horizonial plates, By the oddition of such units as sweeps, puise generators, amplifiers, servo sweeps, etc., all of which can be conveniently and neafly constructed on componion rack panels, the original basic "scope unit may be exponded to serve any conceivable industriol or laboratory applisation.
No. 90902, less fubes.
No. 90903 , less tubes
No. 90905 , less tubes
'SCOPE AMPLIFIER-SWEEP UNIT
Vertical and horizontol amplifiers along with hardlube, sow tooth sweep generator. Complete with power supply mounted on a standard $51 / 4^{\circ}$ rack panel.
No. 90921 , with tubes,................ \$

REGULATED POWER SUPPLIES

A compoct, uncosed, regulated power supply. either for toble use in the laboratory or for incorporation as an integral part af larger equip. ments. 50 watts, with regulated voltage from 0 to 200 valts.
Model 9020 , less fubes.

90952

J AME S M M ILCEN

92101

90800

R9'er MATCHING PREAMPLIFIER

The Millen 92101 is an electronic impedonce matching devise and a broad-band preamplifier combined into o single unit, designed primarily for operation on 6 and 10 meters Coils for 20 meter band also available.
No. 92101 , less tubes.

STANDING WAVE RATIO BRIDGE
The Millen S.W.R. bridge provides easy and inexpensive measurement of standing wave ratio on antennas using co-ax cable. As assembled the bridge is set up for 52 ohm line. A colibrated 75 ohm resistor is mounted inside the case for substitution in the circuit when 75 ahm line is used. No. 90671

FREQUENCY SHIFTER

A fovorite frequency shifter, plugs in, in place of crystal, for instant finger-tip control of carrier frequency. Low drift, chirpless keying, vibration immune, big band spreod, accurate calibration. Model 90700, with tubes.

VARIABLE FREQUENCY OSCILLATOR
The No. 90711 is a complete transmitter control unis with 6SK7 temperoture-compensoted, electron coupled oscillator of exceptional stobility and low drift, a SSK7 brood-band buffer or frequency doubler, a SA67 tuned amplifier which trocks with the asciltator tuning, and a regulated power supply. Output sufficient to drive on 807 is availoble on 160,80 ond 40 meters ond reduced output is ovailable on 20 meters. Close frequency setting is obtoined by meons of the vernier controt arm at the right of the diol. Since the output is isoloted from the oscillotor by two stoges, zero frequency shift occurs when the output load is varied from open circuit to short circuit. The entire unit is unusually solidly built so that na frequency shift occurs due to vibration. The keying is cleon ond free from oll annoying chirp, quick drift, iump, ond similar difficulties often encountered in keying variable frequency oscillators.
No. 90711 , with tubes...

50 WATT TRANSMITTER

Based on an original Hondbook design, this flexible unit is ideal for either low power omoteur band tronsmitter use or as on exciter for high power PA stoges.
Model 90800 , less tubes.

OCTAL BASE AND SHIELD

Low loss phenolic base with oct of pocket plug and aluminum shield can $17 / 16 \times 17 / 4 \times 315 / 15$. Na. 74400.

TRANSMISSION LINE PLUG

An inexpensive, conipoct, ond efficient polyethylene unit for use with the 300 ohm ribbon type polyethylene transmission lines. Fits into ptondord Millen No. 33102 (crystal) socket. Pir spocing $1 / 2^{\prime \prime}$. diameter 095
No. 37412

PERMEABILITY TUNED CERAMIC FORMS

In oddition to the papulor shielded plug-in permeability tuned farms, 74000 series, the 69040 series of ceromic permeability tuned unshielded farms are ovailable os standord stock items. Winding diameters and lengths of winding space are ${ }^{13,12} \times 172$ for 69041-2; $1 / 4 \times 1 / 4$ for 69043-7-8; $1 / 2 \times 1 / 16$ for $69345-6 ; 3 / 16 \times 3 / 16$ for 69044
No. 69041 -(Copper Slug)
No. 69042 -(Iran Core)
No. 69043 - (Iron Core)
No. 69044-(Copper Slug)
Na. 69045-(Copper Slug)
No. 69046 -(Iron Core).
No. 69047 -(Copper Slug)
Na. 69048 - (Iran Care)

90711

L. SIZE

SHAFT LOCKS

In addition to the original Na. 10060 and No. 10061 "DESIGNED FOR APPLICATION" shaft locks, we can also furnish such variations as the No. 10062 and No. 10063 for easy thumb operation as illustrated above. The No. 10061 instantly converts any plain " $1 / 4$ shaft" volume control, condenser, etc. from "plain" to "shaft locked" type. Each to mount in plase of regular mounting nut.
No. 10060 .
No. 10061
No. 10062
No. 10063

TRANSMITTING TANK COILS

A full line-all popular wattages for all bands. Send for special catalog.

DIAL LOCK

Compact, easy to mount, positive in oction, does not alter dial setting in operation! Rotation of knob " A " depresses finger " B " and " C " without imparting any rotary motion to Dial. Single hole mounted. No. 10050

RIGHT ANGLE DRIVE

Extremely compact, with provisions for many meth ods of mounting. Ideal for operating potentiometers, switches, etc., that must be located, for short leads, in remote parts of chassis.
No. 10012.
\$

THRU-BUSHING

Efficient, compact, easy to use and neat appearing. Fits $1 / 4^{\prime \prime}$ hole in chassis. Held in place with a drop of solder or a "nick" from a crimping tool.
No. 32150

FLEXIBLE COUPLINGS

The No. 39000 series of Millen "Designed for Application" flexible coupling units include, in oddition to improved versions of the conventional types, also such exclusive original designs as the No. 39001 insulated universal joint and the No. 39006 "slideaction" coupling (in both steatite and bakelite insulation).
The No. 39006 "slide-action" coupling permits longitudinal shaft motion, eccentric shaft motion and out-of-line operation, as well as angular drive without backlash.
The No. 39005 is simitar to the No. 39001 , but is not insulated and is designed for applications where relatively high tor que is required. The steatite insulated No. 39001 has a special anti-backlash pivot and socket grip feature. All of the above illustrated units are for $1 / 4^{\prime \prime}$ shaft and are standard production type units.
No. 39001
No. 39002
No. 39003
No. 39005
No. 39008

CATHODE RAY TUBE SHIELDS

For many years we have specialized in the design and manufacture of magnetic metal shields of nicoloi and mumetal for cathode ray tubes in our own complete equipment, as well as for applications of all other principal complete equipment manufacturers. Stock types as well as special designs to customers' specificotions promptly available. No. 80045-Nicoloi for $5^{\prime \prime \prime}$ tube. No. 80043-Nicoloi for $3^{\prime \prime \prime}$ ' Pube
No. 80042-Nicoloi for 2" fube

BEZELS FOR

 CATHODE RAY TUBESFive inch bezel is of cast aluminum with black wrinkle finish. Complete with neoprene cushion, green lucite filter scale and four screws for quick detachment from panel when inserting tube.
No. 80075-5"
No. 80073-3
No. 80072-2'

THE 28000-29000 SERIES VARIABLE AIR CAPACITORS
"Designed for Application," double bearings, steatite end plates, cadmium or silver plated brass plates. Single or double section $.022^{\prime \prime}$ or $.066^{\prime \prime}$ air gap. End plate size: $19 / 16^{\prime \prime} \times 11 / 16^{\prime \prime}$. Rotor plate radius: $3 / 4^{\prime \prime}$. Shaft lock, rear shaft extension, special mounting brackets, etc., to meet your requirements. The 28000 series has semi-circular rotor plate shape. The 29000 series has approximately straight frequency line rotor plate shope. Prices quoted on request. Many stock sizes.

NEUTRALIZING CAPACITOR
Designed originally for use in our own No. 90881 Power Amplifier, the No. 15011 disc neutralizing capacitor has such unique features as rigid channel frame, horizontal or vertical mounting, fine thread over-size lead screw with stop to prevent shorting and rotor lock. Heavy rounded-edged polished aluminum plates are $2^{\prime \prime}$ diameter. Glazed Steatite insulation.
No. 15011 $\$$
I.F. TRANSFORMERS

The Millen "Designed for Application" line of I.F. transformers includes air condenser tuned, and permeability tuned types for all applications. Standard stock units are for 456,1600 and 5000 kc . B.F.O.also available.

JAMES
 ${ }_{4}^{5 \pi}{ }_{4}^{2 \pi}$

 \mathbb{N}
 MALDEN•MASSACHUSETTS

CERAMIC PLATE OR GRID CAPS

Soldering lug and contact one-piece. Lug ears annealed and solder dipped to facilitate easy combination "mechanical plus soldered" connection of cable.
No. 36001-9/16
No. 36002-3/8'
No. 36004 - $1 / 4^{\prime \prime}$

SNAP LOCK PLATE CAP

For Mobile, Industrial and other applications where tighter than normal grip with multiple finger 360° low resistance contact is required. Contact self-locking when cap is pressed into position. Insulated snap button at top releases contact grip for easy removal without damage to tube.
No. 36011-9/16"
\$ No. $36012-3 / \%^{\prime \prime}$

SAFETY TERMINAL

Combination high voltage terminal and thrubushing. Tapered contact pin fits firmly into conical socket providing large area, low resistance connection. Pin is swivel mounted in cap to prevent twisting of lead wire. No. 37001, Black or Red. No. 37501 , Low loss.

TERMINAL STRIP

A sturdy four-terminal strip of molded black Textolite. Barriers between contacts. "Non furning" studs, threaded 8/32 each end.
No. 37104

POSTS, PLATES and PLUGS

Designed for Application! Compact, easy to use. Made in black and red regular bakelite as well as low loss brown mica filled bakelite or steatite for R.F. uses. Posts have captive head.
No. 37202 Plates (pr.)
No. 37212 Plugs. . .
No. 37222 Posts (pr.)

STEATITE TERMINAL STRIPS

Terminal and lug are one piece. lugs are Navy turret type and are free floating so as not to strain stealite during wide temperafure variations. Easy to mount with series of round holes for integral chassis bushings.
No. 37302
No. 37303
No. 37304
No. 37305
No. 37306

MIDGET COIL FORMS

Made of low loss mica filled brown bakelite. Guide funnel makes for easy threading of leads through pins.
No. 45000
No, 45004
No. 45005

TUNABLE COIL FORM

Standard octal base of low loss mica-filled bakelite, polystyrene $1 / 2^{\prime \prime}$ diameter coil form, heavy aluminum shield, iron tuning slug of high frequency type, suitable for use up to 35 mc . Adjusting screw protrudes through center hole of standard octal socket.
No. 7400 1, with iron core \$ No. 74002, qess iron core,

Midget Absorption Frequency Meters

Many amateurs and expermenters do not realize that one of the most useful "tools" of the commercial transmitter designer is a series of very small absorption type frequency meters. These handy instruments can be poked into small shield comportments, coil cans, corners of chassis, etc., to check harmonics; parasitics; oscillator-doubler, etc., tank tuning; and a host of other such applications. Quickly enables the design engineer to find out what is really "going on" in a circuit.

Types 90605 thru 90609 are extremely small and designed primarily for engineering laboratory use where they
will be handled with reasonable care. The most useful combination being the group of four under code No, 90600 and covering the total range of from 3.0 to 140 megacycles. When purchased in sets of four under code No. 90600 a convenient carrying and storage case is included. Series 90601 are slightly larger and very much more rugged. They are further protected by a contaur fitting transparent polystyrene case to protect against damage and dirt. This latter series is designed primarily for field use and are not quite as convenient for laboratory use as the 90605 thru 90608 types. All types have dials directly calibrated in frequency.

Code	Description	Net Price
90604	Range 160 to 210 mc .	\$
90605	Range 3.0 to 10 mc .	
90606	Range 9.0 to 23 mc .	
90607	Range 23 to 60 mc .	
90608	Range 50 to 140 mc ,	
90609	Range 130 to 170 mc ,	
90610	Range 105 to 150 mc	
90619	Range 350 to 1000 kc .-Neon Indicator	
90620	Ronge 150 to 350 kc . - Neon Indicator	
90625	Range 2 to 6 mc . - Neon Indicator	
90626	Ronge 5.5 to 15 mc , - Neon Indicator	
90600	Complete set of 90605 thru 90608, in case	
90601	Complete set Field type Frequency Meters in metol carrying cose 1.5 to 40 me .	

PHILADELPHIA
 L. D. Lowery

 1343 Arch Sireet
SEATtLE

V. Jensen 2616 Second Avenue INDIANAPOLIS
V. MaeNabb 915 Westfield Blval.

DISTRICT SALES OFFICES

739 Boylston Street

SAN FRANCISCO
Russ Hines
234 Ninth Street
CHICAGO
G, G. Ryan
549 W. Washington Blvd,
BOSTON
Harry Gerber

CANADA
H. R, Gray 44 Danforth Road

Toronto
ox 215
M
Ellioff Equipment Co,
712 6th Avenue Sou'h

JAMES MILLEN
 MAIN OFFICE

Here's a NEW G-R Catalog of QUALITY PARTS \& ACCESSORIES

GENERAL RADIO COMPANY

275 Massachusefts Ave., Cambridge 39, Mass.

Please send me a copy of the NEW G-R PARTS CATALOG.

Name

Sireet Address
Cily
State

50th YEAR
OF CERAMIC IEADERSH:P

คbSTMコ

Custom Made Technical Ceramics (SOLDONLYTOMANUFACTURERS)

AMERICAN LAVA CORPORATION CHATTANOOGA 5, TENNESSEE

E. F. JOHNSON COMPANY

WASEGA, MINNESOTA

The products included on these sixpages represent only part of the extensive JOHNSON line. Ask your distributor or write JOHNSON for complete catalog.

THE VIKING 1 TRANSMITTER KIT

Conservatively rated af 100 watts AM phone output, 115 wats CW. Incorpora features such as band-switching, crystal control or optional VFO input, pi-network out tuning and complete coverage of all amateur bands from 160 to 10 meters. In addit to amateur use, the Viking 1 is also designed to operate of frequencies assigned to me commercial services.

VFO drive requirements are very slight. Only six volts of 7.5 mc . RF is required for output at 30 mcs ., less for the 14 and 7 mc . bands. Two volts of 1.75 mc . VFO outpu ample excitation for 1.75 and 3.5 mc . output.

Delivering full output on phone with 115 volts $50 / 60$ cycle line voltage, the tra mitter's power consumption is 350 watts. With line voltage between 105 and 120 vc performance is satisfactory.

In addition to being a completely self-contained, compact, anc efficient 100 w transmitter, the Viking 1 can be used as a driver for a kilowatt amplifier. Full output the modulator is available at a nominal 500 ohms impedance.

Clear, complete, easy-to-follow instructions make assembly easy-assure perfi performance. Everything needed is included. No holes to drill, every part is furnist including cabinet, wiring harness, screws, nuts, washers, solder terminals, wire, gromm -everything!
See it at your jobbers today-or write for literature.

Tube Line Up

6AU6 crystal oscillator
6AQ5 buffer/doubler 4D32 final amplifier

GAU6 voltage amplifier 6AU6 driver 807 pp modulators
Complete, less fubes, crystals, key, mike

CRYSTAL SELECTOR

Ten frequencies with a twist of the knob with extra position for ECO. Accommoda crystals with $1 / 2^{\prime \prime}$ spacing. With odaptors also takes $3 / 4^{\prime \prime}$ spaced holders. Bracket pern vertical or horizontal mounting.
126-220-1. Instant Crystal Selector.
126-120-1. Crystal Mounting Board only.

UNIVERSAL ROTOMATIC ANTENNA

Universal because its construction allows a variety of different combinations and typ of beams. Main boom alloy steel tubing to which elements are cttached with spec slamps allowing any spacing or combination of elements.

Rotomatic-the deluxe Rotator. Simple to erect-built to last a lifetime. Heavy ovi size gears, bearings, shafts. Precision throughout. Remote control box with selsyn directi indicator. Weatherproof RF relay box for swithing with dual beams.

Fully adjustable aluminum alloy parasitic elements, heavier walls and larger diameta to withstand high winds and ice loading. High gain and front to tack ratio.

Many combinations of single or dual arrays are available up to 4 elements on meters, 3 elements on 20 meters. Write for Catalog 204 for complete information. Cat. No.
138-111. Rotator complete with motor $\&$ control box.
138-108. Weatherproof antenna relay for dual beams.

ANTENNA ACCESSORIES

Enamelled Copperweld Antenna Wire

Will not stretch nor sog. Carried by most suppliers in bulk, it is available from \dagger factory in any specified length.

Col	8 S	Ft. per	Break
Col. No.	Gauge		9
144-348	10	$341 / 2$	1
144-350	12	54	7201
144-352	14	85	400

SR4 HV rectifie $5 Z 4$ LV rectifier 6AL5 bios rectif
Amateur Net \$209.:

\therefore a fariace canme in tadia $\frac{1}{3}$

VARIABLE CONDENSERS

Partial Listing
his is a partial listing of the large JOHNSON line of quality condensers. Several types not shown, likewise many additional sizes are available in most types. All types sloy excellent steatife insulation. Approximate flashover voltage is 100 x final numIs in cotalog numbers, (except Type N). "L" dimension is overall length less shaft ension.

TYPES C and D

dy, rigid construction of low cost! Aluminum plates . 051 thick, raunded edges. Panel space eC, $51 / 2^{\prime \prime}$ wide $\times 5 \%^{\prime \prime}$ high, Type D, $41 / 4^{\prime \prime}$ wide and $4^{\prime \prime}$ high.

TYPE C-Single Section					TYPE C-Dual Section				
- No.	Max. Cop.	Air Gop	Number Plates	L		Max. Cap.	Air	Number	L
$0 C 70$	252	.175"	24	613/66	Cat. No.	Per Sec.			1825
0c70	496	. $175^{\prime \prime}$	47	123/6	$300 C 070$.305	$.175^{\prime \prime}$	29	$1625 / 32$
OC90	337	. $250{ }^{\prime \prime}$	43	$1427 / 3$	$150 C D 90$. 147	. 250 "	19	1427
c110	51	. 35011	8	$425 / 0$	SOCD110	. 50	. 350 "	8	10\%6
OCI3	. 102	. $500{ }^{\prime \prime}$	21	$1311 / 3$	$100 C D 110$. . 103	$.350{ }^{\prime \prime}$	17	$16^{25 / m}$
					50CDI 30	51	. $500^{\prime \prime}$	10	1427/n
TYPE D-Single Section					TYPE D-Dual Section				
0035	. 498	.080"	39	629/32	5000035	. 496	.080 ${ }^{\prime \prime}$	39	$1311 / 32$
0045	. 146	. $125^{\prime \prime}$	17	$4^{25} 32$	1500045	. 155	. $1285^{\prime \prime}$	18	$913 / 12$
070.	. 72	. $175^{\prime \prime}$	11	425132	500070	- 52	$.175^{\prime \prime}$	8	513/6
0070	. 98	.175"	15	$425 / 37$	700070	. 72	.175"	11	7116
0070	. 244	.175"	37	10\%	1000070	. 97	.175"	15	$915 / 38$
0090	. 99	.250"	19	711/6	1500070	. . 151	.175"	23	$1311 / 32$
0090	$\ldots 149$.250'	29	105/16	500090	. 52	$.250^{\prime \prime}$	10	915/3

TYPES E and F

lugged compact units for low and medium pawer transmitters. Aluminum plates 032 thick, rounded zes. Stainless steel shafts. Panel space, Type E, $2 \% /^{\prime \prime}$ square, Type F, $21 / 6_{6}^{\prime \prime}$ square.

TYPE E-Single 5ection					TYPE E-Dual Section				
1. No.	Max. Cap.	Air Gap	Number Plotes	L		Max. Cop.	Air	Number	
OE 20	353	.045 ${ }^{\prime \prime}$	33	$317 / 80$	Cat. No.	Per Sec.	Gap	Plates	L
OE20	. 488	.045"	45	415	300ED20	. 312	. $04.45^{\prime \prime}$	29	$6^{21 / 22}$
OE30	. 100	.075"	15	29/6	100ED30	99	. $0755^{\prime \prime}$	15	51/4
OE30	251	. $075^{\prime \prime}$	37	$415 / 6$	150 ED 30	. 153	.075""	23	71/6
E45	53	.125"	12	$231 / 28$	200ED30	. 196	.075"	29	8\%
OE45	145	. $125^{\prime \prime}$	33	$63 / 2$	SOED45	. 52	.125"*	12	65/32
					100ED45	100	.125"	23	99\%
TYPE F-Single Secrion					TYPE F-Dual Section				
10F20	. 106	.045"	17	21/4	100FD20	. 104	. $045^{\prime \prime \prime}$	17	$4^{23 / 22}$
OF 20	. 154	.045"	25	27/1	150FD20	. 153	. $045^{\prime \prime}$	25	
10F30	99	.075"	25	319	$70 F 030$. 66	.075"	17	523/12
OF30	. 148	.075"	37	47/9	100FD30	, 99	.075"	25	7/12

TYPE M MINIATURE

jmallest ever built, yet tops in accuracy. Ideal for VHF, miniafure test equipment, ets, Panel space ' $\times 1 / 4^{\prime \prime}$. Air gap . 017 . Maunts in $1 / 4^{\prime \prime}$ hole.

Singlo			Difforontial			Bupterfly		
	Capasity			Copacity			Copacity	
Cot. No.	Max.	Min.	Cat. No.	Max.	Min.	Cot. No.	Mox.	Min,
H1.	5.1	1.5	6 MAII	5.0	1.5	3 MB 11	3.3	1.7
111.	8.7	1.7	9 MAII	8.6	1.8	5 MB 11	5.3	2.1
iMII.	. 14.6	2.1	15 mal	. 14.2	2.3	9MBII.	8.5	2.7
IMII.	. 19.7	2.6	19 MAII	. 19.6	2.7	IIMEII	. 11.0	3.

TYPE L

Ceramic soldered-na eyelets ar rivets to loosen. All brass, saldered canstruction, "Bright alloy, , ted. Ideal for raugh service. Panel space $11 / 3^{\prime \prime}$ square. Air gap $.030^{\prime \prime}$; also furnished in $.020^{\prime \prime}$ $50^{\prime \prime}$ and $.080^{\prime \prime}$. In additian ta those listed, alsa ovailable in Differential types.
Single End Plape

Dual Section

Cot. No.	Cop. per Sect. Mox, Min.	Number Plates	Cat. No.	Cop. per Max.	Sect. Min.	Number Plates
)LI5	112.8	3	251015	27	3.5	7
SLI5	. 273.5	7	S0LD15	51	4.6	13
) 15	. 514.6	13	100LDIS		6.8	25
545	$75 \quad 5.7$	19	Butierfly			
Dauble End Plate			JOLB15.	10.5	2.8	5
20L15.	. 996.8	25	25LB15.	26	4.3	12
jolis.	. 20211.6	51	50LB15.	51	6.5	23

TYPE N

Small mounting space requirements, extremely th valtage rating and fine odjustment make ese neutralizing condensers ideal.

Cot. No.
125.

125

375

Capacity
Mox

Mox.	Min.	Spacing
11.0	1.1	$.125^{\prime \prime}$
10.6	1.4	$.250^{\prime \prime}$
10.7	1.7	$.375^{\prime \prime}$

TYPE G

Extremely papular as neutralizing candensers for medium ond low power stages. Also widely used for grid and plate tuning ot high frequencies.

Cot. No.	Cop. Max.	Sect. Min.	Spacing
13645	13	4.7	. $125^{\prime \prime}$
6G70.	5.7	3.5	.225"
$12 \mathrm{G7O}$.	12	6	.225"

TyPE C

TYPE F

TYPE M

TYPE E

SINGLE

BUTIERFLY
differential

TYPE G

TYPE N

E. F. JOHNSON COMPANY WASEGA, MINNESOTA

AIR WOUND HAM INDUCTORS
JOHNSON Air Wound Ham Inductors provide a degree of ciency never before available in commercially produced coils for amateur. This "broadcast" efficiency is possible because there model designed to match the impedance of each tank circuit-eit high voltage low current or low voltage high current tubes.

Efficiency is further increased because coil windings are a w size larger than on most available inductors - resulting in less heat lower loss with consequent higher efficiency.

JOHNSON Ham Inductors are built to give many years of efficient service. Coil winc are Formex-coated for better insulation and color preservation and JOHNSON qual apparent in the Steatite jack and plug bars and the crystal clear polystyrene coil supI and spacers. All JOHNSON inductors are conservatively rated.

The Swinging Link type inductors permit instant and perfect matching of inductor to transmission line thus preventing wasteful dissipation of power.

With these fine JOHNSON Ham Inductors and "plug-in" Swinging Link Assemblies, the amateur can instantly match coil to fube and link to line with broadcast efficiency. These outstanding inductors are also available in semi-fixed models.
$\left.\begin{array}{ccc} & & \\ \text { Cwinging Link }\end{array}\right)$

HCS-Inductors match high voltage, low 8 rent fubes-swinging line iype.
LCS-Inductors match low valtoge, high c rent fubes-swinging link type.
HCF-Inductors match high voltage, low e rent tubes-semi-fixed link.
LCF-Inductors match low voltage, high c rent tubes-semi-fixed link.

FARADAY SHIELD

Reduce TVI caused by capacitive coupling! Designed for JOHNSON Plug-In links, equally effective and easily installed on other links including non-plug-in types. Screen itself is metallic plating on polystyrene. Grounded hood and copper braid complete shielding. Link impedance rela-
fively unchanged, plug-in link flexib unimpaired. Made in two sizes.
Cat. No. Description 238-303. 150/500 wott swinging link sh hood and lead assembly. 238-304. Same as asove, for 1000 w 238-301. 150/500 watt link shield on 238-302. 1000 waft link shield only.

NEW JOHNSON KNOBS \& DIALS
Featuring fresh, advanced styling, these new JOHNSON models will enhance the pearance of your equipment. Molded phenolic knobs have 12 well defined flutes, la gripping area. Knob faces slightly convex, sides slightly tapered to contribute to plea appearance. Beautiful satin chrome scales that will retain their new appearance ind nitely. Each knob and dial has brass set serew insert molded in place. Special mo available on quantity orders.

Knob Diam.	Shaft Diam.	Knob Only Cat, No.	Spinner Knob Cat. No.	Knob with Phenolic Skirt		Knob with Chrome Dial		
2\%"	1/4"	116-280	116-286	116-281	$3^{\prime \prime}$	116-282	$4^{\prime \prime}$	0-100 1
23/"	$3 / 1$	116-280-3						
$1 \%^{\prime \prime}$	$1 / 4$ "	116-260		116-261	21/16"	116-262	21/4"	0-100
1\%""	$1 / 4 \prime \prime$	116-220		116-221	$11 / 2^{\prime \prime}$	116-222-1	11/2"	100-0
11\%",	1/4"					116-222-2	$11 / 2^{\prime \prime}$	0-10
11\%"	$1 / 4$ "					116-222-3	$11 / 2^{\prime \prime}$	1-7
1\%"	$1 / 4^{\prime \prime}$					116-222-4	11/2"	On-off
11/4"	$1 / 4{ }^{\prime \prime}$					116-222-5	$11 / 2^{\prime \prime}$	Indisator

- a famone name in Radia

TUBE SOCKETS
Highest Quality Sockets for Every Application
23-206. Industrial Bayonet, Steatite, Silver plated beryllium copper contacts. Base is 4 pin super jumbo. Tension springs in shell.
23-209. Medium 4 pin bayonet, white glazed porcelain base, metal shell, heavy phosphor bronze side wiping contacts. $213 / 16^{\prime \prime}$ Dia.
23-20958. Same as -209 but with Steatite base and beryllium copper contacts.
23-210. Same as -209 except contact to shell spacing not as great. $21 / 2^{\prime \prime}$ Dia.
23-211. Standard 50 watt type. Similar to -209 but with double filament contacts. 33/8" Dia.
23-211S8. Same as -211 but with Steatite base and beryllium copper contacts.
24-212. Steatite socket for RCA833 or 833A. $51 / 8^{\prime \prime}$ plate leads.
23-216. Giant 5 pin Bayonet. For tubes such as 803, RK28. $33 / 4^{\prime \prime}$ Dia.
23-2165B. Same as -216 but with Steatite base and beryllium copper contacts.
24-213. For Eimac 152TL and 304 TL. Contacts arranged for either series or parallel filaments.
24-214. For Eimac 1500TH, with air cooling jet.
24-215. For 250 watt tubes such as 204A, 849, etc. The plate terminal has a "safety cup" which prevents accidental dislodgement.

Wofer Types
Steatite, top and sides glazed. Brass contacts with steel springs cadmium plated.
22-217. 7 pin small. 122-225. 5 pin. 122-227. 7 pin medium.
122-224. 4 pin.
122-226. 6 pin.
122-228. Octal socket.
122-237. Giant 7 pin Steatite wafer. For Xmitting tubes such as HK257 and RCA813.
With $3 / 4^{\prime \prime}$ diam. ventilating hole (not illustrated) in base.
122-247. 7 pin Steatite for fubes such as 826. Etched aluminum shield.
122-244. 4 pin Steatite. Super jumbo base tubes such as 8008 .
122-101. 7 pin Steatite wafer with shield, retainer springs and provision for mounting button mica by-pass capacitors. Designed for VHF use with tubes such as 832.
122-275. Giant 5 pin Steatite wafer socket for 4-125A, RK48 tubes. Ventilation holes in base.

121-265. Steatite acorn socket. Silver plated beryllium copper contacts,
COUPLINGS AND SHAFTS
JOHNSON insulated shaft couplings provide maximum voltage breakdown and suserior strength. Glazed Steatite insulation except -264 which is phenolic.

Cot. No.	Mad. Peok Volt.	Dio.	Cot. No.	Mad. Peak Valt.	Dio.
104-250	4000	$13 / 6{ }^{\prime \prime}$	104-258.		1/2"
104-2503	4000	$13 / 16^{\prime \prime}$	104-259.	8000	——
104-251.	5000	$21 /{ }^{\prime \prime}$	104-2593	5000	
104-251A	5000	21/",	104-261.	7500	21/2"
104-2518	5000	211"',	104-262	5000	${ }^{\prime \prime}$
104-252.	1000	$11 / 16$ "	104-264	400	11/2"
Panel 8 earings					

For $1 / 4^{\prime \prime}$ shaft. Up to $3 / \mathrm{g}^{\prime \prime}$ panels.
115-255. Panel bearing only.
115-256. Bearing and $3^{\prime \prime}$ shaft,
115-2562. Bearing and $6^{\prime \prime}$ shaft.

Flexible Shafts
Non-rusting phosphor bronze, with $1 / 4^{\prime \prime}$ hubs, for connecting out of line control shafts.
115-253. $3^{\prime \prime}$ long. 115-254. $6^{\prime \prime}$ long.

PILOT, DIAL AND INDICATOR LIGHTS
JOHNSON dial and indicator light assemblies are outstanding examples of sound engineering design, excellent material and careful workmanship.

JOHNSON carries a complete line of hundreds of standard pilot light assemblies to meet every ordinary need, In addition, special assemblies can be furnished in production quantities on special order. Your inquiries are invited.

E. F. JOHNSON COMPANY

WASECA, MINNESOTA

INSULATORS AND BUSHINGS

JOHNSON insulators are especially designed for high frequency use. They are me of superior grade low absorption, well glazed electrical porcelain or Steatite. They accurotely molded ond furnished with hordwore of high grade nickel-plated brass, 1 JOHNSON insulators with confidence. " H " dimension is height of ceromic above panel

Stand-Off Insulators
steatite

Cat. No.	H	Hardware	Cat. No.	H	Hardx
135-20.	. 1% \% ${ }^{\prime \prime}$	10-32	135-22J,		74-Ja
135-20J.	. $19 / 16^{\prime \prime}$	74-Jack	135-24	. $51 / 4$	
135-22.	.1"	8-32			
PORCELAIN					
135-60.	. $41 / 2^{\prime \prime}$	1/4-20	135-62	23/41	1/4-20
Metal Base Types					
135-65.	13/6"	10-32	135-67.	. $4^{1 / 22^{\prime \prime}}$	1/4-20
135-65 ${ }^{\text {J }}$. $13 / 4{ }^{\prime \prime}$	74-Jack	135-67J	. $41 /{ }^{\prime \prime}$	76-Ja
135-66.	. $23 / 4{ }^{\prime \prime}$	1/4-20	135-68.	. $2^{\prime \prime}$ "'	10-32
135-66J.	.23/4"	76-Jack	135-68」.	. $2^{\prime \prime}$	74-Ja
Steatite Cone Insulators					
135-500	.5/1"	6-32	135-503.	. $2^{\prime \prime}$	10-32
135-501	.1"	8-32	135-504.	. $3^{\prime \prime}$	10-32
135-502	. $11 / 2^{\prime \prime}$	8-32			

Thru-Panel Insulators
Steatite

Lead-In Bushings
STEATITE
$\begin{array}{llll}6-32 & 135-52 \\ 10-32 & 135-55\end{array} \cdots \cdot$.
PORCELAIN
Mounting flanges not included. See $135-90$ and $135-91$ below.
BOWL INSULATORS
Electrical glass, $815 / 16^{\prime \prime} O D, 43 / 2^{\prime \prime}$ high. Fittings include $1 / 2^{\prime \prime}$ stud, nuts and washers, corona shield mounting flanges and gaskets.

> Single Bowl
> $135-15-0$. Bowl only
> $135-15-1.101 / 4^{\prime \prime}$ stud

Two Bowls
135-15-3. $16^{\prime \prime}$ stud
135-15-7. $24^{\prime \prime}$ stud

MOUNTING FLANGES

Cal. No
135-90 for bushing No. 135-53.
Cat. No.
135-91 for bushing No. 135-54.

THREADED BRASS ROD

$1 / 4^{\prime \prime}$ Dia. with nuts and washers.

Cot. No
115-240. 8" long

Cot. No. 18 gauge Size

Cat. No.
115-241. $10^{\prime \prime}$ long
ALUMINUM CHASSIS
JOHNSON Aluminum Chassis are smoother, better fitted. No raw metol edges or openings at corners, nor overlapping metal. Spot-weided gussets on botiom flanges assure extreme rigidity. The one oustanding line!

Beautiful, fine black or silver gray wrinkle $1 / 8^{\prime \prime}$ aluminum pancls. W.E. notching, 19" long, fit standard relay racks or cabinets.

a famous name in Radia 3

SPEED-X KEYS, PRACTICE SETS, BUZZERS

itandard Semi-Automatic Keys

 nproved model, heavy steel base, ber feet. Chrome plated vibrator and dware. Five adjustments, lowest and rest speeds. Circuit closing switch. Adable paddles.4-500. $1 / 6^{\prime \prime}$ contacts, black wrinkle base. 4-501. 1/4" contacts, polished chrome base 4-501L. Same os 114-501 except left. anded

Amateur Special Model Semi-Automatic Key

tam favorite, rubber feet, $1 /{ }^{\prime \prime}$ coin er contacts, chrome plated hardware \pm vibrator, black wrinkle base.

4-515. Amateur model, semi-automatic.

Amateur Semi-Automatic Key

 With SwitchBimilar to Amateur Special but has :uit closing switch. Smaller, less weight. 4-510. Semi-Automatic with switch.

Heavy Duty Keys

Ehrome plated key arm. $1 / 4^{\prime \prime}$ coin silver tacts. Navy knob.
4-320. Black wrinkle enamel base, 4-321. Polished chrome plated base. 4-326. Brass wrinkle finish bose.

Standard Keys

High quality, low cost. Provision for plugging in semi-automatic key. $1 / \mathrm{B}^{\prime \prime}$ coin silver contacts.
114-310. Black wrinkle, less switch.
114-3105, Black wrinkle, with switch.
114-311. Chrome plated, less switch.
114-3115. Chrome plated, with switch. 114-312. Gray wrinkle, less switch.
114-3125. Gray wrinkle, with switch.
114-316. Brass wrinkle, less s witch.
114-3165. Brass wrinkle, with switch.
Molded Base Keys
Black phenolic base. $1 / 8^{\prime \prime}$ coin silver contacts. Metal parts nickel plated,
114-301, Less switch.
114-3015. With switch.

Practice Keys

For beginners. $1 / \mathrm{g}^{\prime \prime}$ coin silver contacts. 114-300. Molded brown phenalic base. 114-305. Black wrinkle finish metal base.

Practice Set

Constant frequency buzzer \& key mounted on $4^{\prime \prime} \times 6^{\prime \prime}$ phenolic base.
114-450. Code practice set.

Constant Frequency Buzzer

Fully adjustable, holds frequency. Uses 2 dry cells or "C" battery.
114-400. Constant frequency buzzer,

PLUGS AND JACKS

Banana Spring Type

Accurately turned from brass, with milled s and tinned terminals. Nickel plated. :kel-silver springs (other metals optional). * contact resistance, high current cacity.
-75 series plugs fit -74 series jacks, 7 series plugs fit -76 jack. -7451 and 452 have molded phenolic heads.

JACK 5

18-74. $1 / 4-28 \times 17 / 20$ thread. 8-7451, $1 / 4-28 \times 1 / 2$ thread, red. 8-7452. $1 / 4-28 \times 1 / 2$ thread, black. 18-76. $3 / 1-24 \times 15 / 6$ thread.

PLUGS

18-75. $6-32 \times 3 / 6$ thread. 18-75A. $6-32 \times 1 / 4$ thread. 18-75BB. $1 / 8 \times 13 / 1 /$ handle, black. 18-75BR. $1 / 3 \times 13 / 5$ handle, red. 18-75C. $6-32 \times 5 / 6$ screw. 18-77. $10-32 \times 5 / 8$ threod. 18-77A. $10-32 \times 7 / 4$ screw. 18-77BB. $5 / 6 \times 1 / 4$ hondle, black.
18-77BR, $5 / 3 \times 13 / 4$ handle, red.

Tip Jacks and Plugs

 plastic head tip jacksAttractively colored strong Plaskon heads, accurately threaded $1 / 4-32$ with milled hex nut and insulating washers for $3 / 8$ hole.

Cat. No.	Color	Cat. No.	Color
105-520	Red	105-526	. Oronge
105-521	Black	105-527	. Yellow
105-522	Dk. Green	105-528	. Lt. Green
105-524	Brown	105-529	. Dk. Blue
105-525	. Lt. Blue	105-530	Ivory
Molded Tip Jacks			

Heavy duty type. Nickel plated brass body molded into phenolic head. 5/6-40 thread, and insulating washers for $3 / 8$ hole. No. 105-418, Red No, 105-419. Block

All Metal Tip Jack

Nickel plated brass, 5/16 hex head, 1/4-32 thread, with insulating washers for $3 / 8$ hole. 105-1 similar but headless, no nut nor washers, for mounting in $1 / 4-32$ tapped panel hole.

No, 105-417

No. 105-1

Solderless Tip Plugs

No. 105-15. ${ }^{13} / \mathrm{h}$ prong
No, 105-415. ${ }^{\text {/hb }}$ prong
No, 105-14. Long, sharpened point

BROADCAST EQUIPMENT

Careful attention to specifications is the reason JOHNSON Broadcast Equipment enjoys :h wide popularity. Because practically all units are individually designed, there's no ed for compromises with good engineering. The cost is no more-frequently it is lower an less flexible, less generously rated equipment. For specific information on the equipint listed below and related items, write E. F. JOHNSON CO.
tenna Phasing Equipmen axial line
Iation Filters

Phase Sampling Loops Pressurized Capacitors Open Wire Line Supports

RF Contactors
Tower Lighting Filters Variable Inductors

ARE YOU QUALITY-CONSCIOUS?

New Centralab parts give you the advantages of Centralab leadership in electronic component research

NEMI Centralab's new ceramic gives you discs and plates up to and including . 1 mfd - tops in ceramics -your most permanent type capacitors.

NEW! New BC Hi-Kap ceramic tubulars are now availa. ble in 48 different values. Best for r.f. by-pass and audio-coupling applications. For temperature compensating capacitors - ask for CRL's TC's.

NEW!
The best in ceramic sta. bility, permanence and high-temperature characteristics in tubular form with ample external insulation. Pictured: CRL Cat, No, TV6-502 rated at . 005 mfd . - 6000 V DC.

NEW!
Centralab's new Blue Shaft Volume Controls are a complete line of all generally required sizes. plain and switch types. They're factory-assembled and tested . . . ready to install.

MEMI It Switch has a new look! It has heavier Steatite insulatorssmoother action. You can't find a huskier amateur switch with a longer life . . . it's high quality at low cost.

NEW! Now you can get CRL's Nircuits Gamous Printed Electronic Circuits - everything from single value capacitors and resistor plates to complete 3 -stage speech amplifiers. Ask your local CRL distributor.

POWER SWITCHES are specially designed for transmitters, power supply convertors and other applications. Efficient performance up to 20 megacycles.

ROTARY BAND SWITCH is used primarily for band change and general tap switch applications. Made with Steatite or phenolic insulation.

LEVER, SPRING RETURN, TONE SWITCHES. See your Centralab distributor for complete details on these switches - and all quality CRL parts.

The NEW products are lisfed in Catalog 27. Jus1 fell us you are a radio amateur - it will be mailed of once.

129 mprouements IN NEW 1951

MODEL O-6
 PUSH-PULL

Heathbit OSCILLOSCOPE KII

* New $A C$ and $D C$ push-pull amplifier.
* New step attenuator frequency compensated input.
* New non frequency discriminating input control.
* New heavy duty power transformer has 68% less magnetic field.
* New filter condenser has separate vertical and horizontal sections.
\# New intensity circuit gives greater brilliance.
* Improved amplifiers for better response useful to 2 megacycles.
* High gain amplifiers 04 Volts RMS per inch defection.
* Improved Allegheny Ludlum magnetic metal CR tube shield.
* New synchronization circuit works with either positive or nega. tive peaks of signal.
* New extended range sweep circuit 15 cycles to over 100,000 cycles.

Onl4 53950

* Both vertical and horizontal amplifier use push-pull pentodes for maximum gain.

Nem inexpensive model s-2 ELECTRONIC SWITCH KIT

The new 195 ${ }^{\text {P }}$ Heathkit Push.Pull Occilloscope Kit is again the best buy. No other kit offers half the features - check them. Measure either AC or DC on this new scope - the first oscilloscope under $\$ 100.00$ with a $D C$ amplifier.
The vertical amplifier has frequency compensated sep attenuator input into a cathode follower stage. The gain control is of the non frequency discriode stape feeds the C.R response at any setting. A push.pull wide range for observing any portion of the trace.
The horizontal amplifiers are direct coupled to the C.R. tube and may
be used as cither AC or DC amplifiers. Separate binding posts are be used as cither $A C$ or DC amplifiers. Separate binding poses are provided for AC or DC.
The multivibrator type sweep generator has new frequency compen. sation for the high range it covers; 15 cycles to cover 100,000 cycles. The new model 0.6 Scope uses 10 tubes in all - several more than any other. Only Heathkit Scopes have all the feature:
New husky heavy duty power transformer has 50 管 more laminations. It runs cool and has the lowest possible magnetic field. A complete electrostatic shield covers primary and other necessary windings and electrostatic shield covers primary and othe
The new filter condenser has separate filters for the vertical and horizontal screen grids and prevents interaction between them.
An improved intensity circuit provides almost double previous brilbiance and better intensity modulation.
A new syachronization circuit allows the trace to be synchronized with e!ther the positive or negative pulse, an important feature in observing the complex pulses encountered in television servicing. The magnetic alloy shield supplied for the C R. cube is of new design and uses a special meral developed by Allegheny Ludlum for such applications.
The Heathkit scope cabinet is of aluminum alloy for ligheness of portability.
The kit is complete, all tubes, cabinet, transformer, controls, grid screen, tube shield, etc. The instruction manual has complete step.by-step assembly and pictorials of every section. Compare it with all others and you will buy a Heathkit. Model 0.6. Shipping $W_{t .}, 30 \mathrm{lbs}$.

[^16]
Teen 1951 •• MODEL V-4A

Preatheit VTVM KIT

has every expensive Feature

* Higher AC input impedonce, (greater than 1 megohm of 1000 cyeles).
\star New AC valtmeter Aot within 1 db 20 cycles to 2 megacyeles (600 ohm source).
* New occessory probe (extra) extends DC range to 30,000 Volts,
* New high quality Simpson 200 microompere meter.
\star New $\$ 2 \%$ volsoge divider resistors (finest ovailoble).
$\star 24$ Complete ranges.
\star Low volloge range 3 Volfs full scole ($1 / 3$ of scole per volt).
* Crystal probe (extro) extends RF range to 250 megacycles.
* Modern push-pull electronic voltmeter on both AC ond DC.
* Completely transformer operated isolated from line for safety.
* Largest scale availoble on streomline $41 / 2$ inch meter.
* Burn-out proof meter circuif.
* Isoloted probe for dynamic testing no circuit loading
* New simplified switches for eosy ossembly.

ทew LOW PRICE $\$ 50$

The new Heathkit Model V-4A VTVM Kit measures to 30,000 Voles DC and 250 megacycles with accessory probes - think of it, all in one electronic instrument more useful than ever before. The AC voltmeter is so hat and extended in its response it eliminates the need for separate expensive AC VTVM's. + or -db from 20 cycles to 2 megacycles. Meter has decibel ranges for direct reading. New zero center on meter scale for quick FM alignment.
There are six complete ranges for each function. Four functions give total of 24 ranges. The 3 Volt range allows $331 / 3 \%$ of the scale for reading one vole as against only 20% of the scale on 5 Volt types.
The ranges decade for quick reading.
New $1 / 2 \%$ ceramic precision are the most accurate commercial resistors available - you find the same make and quality in the finest laboratory equipment selling for thousands of dollars. The entire voltage divider decade uses these $1 / 2 \%$ resistors.
New 200 microampere $41 / 2^{\prime \prime}$ streamline meter with Simpson quality movement. Five times as sensitive as commonly used I MA meters.
Shatterproof plastic merer face for maximum protection. Both AC and DC voltmeter use push-pull electronic voltmeter circuir with burn-out proof meter circuit.
Electronic ohmmeter circuir measures resistance over the amazing range of $1 / 10 \mathrm{ohm}$ to one billion ohms all with internal 3 Volr battery. Ohmmeter batteries mount on the chassis in snap-in mounting for easy replacement.
Voltage ranges are full scale 3 Volts, 10 Volts, 30 Volts, 100 Voles, 300 Volts, 1000 Volts. Complete decading coverage without gaps.
The DC probe is isolated for dynamic measurements. Negligible circuit loading. Gets the accurate reading without distutbing the operation of the instrument under test. Kit comes complete. cabinet, transformer, Simpson meter, test leads, complete assembly and instruction manual Compare it with all others and you will buy a Heathkit. Model V-4A. Shipping We 8 lbs Note new low price $\$ 23.50$

YOU SAVE BY ORDERING DIRECT FROM MANUFACTURER-USE ORDER BLANK ON IAST PAGE

NEW 1951 Tieatheit
 SIGNAL
 GENERATOR KIT

Features

- Transformer aperated for safety.
- Sine wave audia madulatian.
- Extended range 160 Kc . to 50 megacycles fundamentals.
- Now step attenuator autput.
- Now miniature HF fubes.

Calibrated hom 150 ma

- New external madulation switch.
- Stal vernier tuning for accurate seltings.

A completely new Heathkit Signal Gencrator Kit. Dozens of improvements. The range on fundamenals has been exiended to over 50 megacycles; makes this Heathkit ideal as a marker oscillator for T.V. New step attenuator gives controlled outputs from very low values to high output. A continuously variable control is used with each step. New miniature HI: zubes are required for the high frequencies covered.

Uses 6 Ca master oscillator and 60 i sine wave audio oscillator. The se is transformer operated and a husky selenium rectifier is used in the power supply. The coils are precision wound and checked for calibration making onty one adjustment necessary for all bands. external audio testing. Switch provided allows the oscillator to be modulated by an external external audio testing. Switch provide aliows
audio oscillator for fidelity testing of reccivers.
A best buy - think of all the features for less than $\$ 20.00$. The entire coil and tuning assembly are assembled on a separate turret for quick assembly - come complere - all rubes- cabinet test fun to build a Heathkit Model SG-6 Signal Generator. Shipping Wit., 7 Jbs.

SINEAND SQuare wave AUDIO GENERATOR KIT

Either sine of square wove slable RC bridge circuit. Covers 20 10 20,000 cycles. Less than 1% distortian.
Hundreds of Heathkit Audio Generators are used by speaker manufac-turers-definite proof of then deature and dependability. The up an entirely
of square wave opens up of squeld of amplifier resting. Uses the
new field best of parts, 4 gang condenser, fiter calibrating resistors, metal cately calibrated panel and decailed G-2. Shipping

$$
\leqslant 2 \rightarrow \begin{aligned}
& \text { lo-30-300-1,000-5,000 Volis. } \\
& \text { lorge quality } 3 \text { built-in } \\
& \text { moter. }
\end{aligned}
$$

the new Freatheit

 HAND ITESTER KIT- Benutiful streamlin.

AC
5,000 Valts ranges to

- 1\% Precision
resistars
odiust contral thumb pype
- 400 Micantral.

400 Microamperemete
movement
Quolitr
rectifier Bradiey AC

- Multiplyin
ranges.
- All

A precision portable
${ }^{5} 3^{50}$ strumem for portuble voleohm ists, elecrricians stuenes, radio scrvilliammerer An movement. Twelve mechanics, etcice, experimenters Ateal in a, curacy. Easjly ae compleie erc. Rugged 100 ers, hobbypicrosial diagry asembled frames, precision wa merer cose Order todams. An hout of complecte incuruividers for
 Shipping We, 2 Ibs.ialf the

new \#eathkit

 BATTERY ELIMINATOR KIT
Features

- Provides variable DC valiag* for all checks.
- Volimeter for accurate check.
- Lacales sticky vibratars-intermittents
- Hos 4000 MFD Mallary filter far ripple-free valtage.

Even the smallest shop can afford the Heathkit Battery Elimanator Kit. A few auto radio repair jobs will pay for it. It's fast for service, the voltage san be lowered to find sticky vibrators or raised to ferret out intermittents. Provides variable DC voltage 5 to $7 \frac{1}{2}$ Volts at 10 Amperes continuous or IS Amperes intepmittent. Also serves as storage battery charget Ideal for all auto radio testing and demonstating.

A well filtered rugged power supply uses heavy duty selenium recififer, choke input filter with $4,000 \mathrm{MFD}$ of electrolytic filter tos clean DC. 0.15 V volemeter indicates output which is variable in eight steps Easily constructed in a few hours from oup instructions and diagrams - better be equipped tor all types of service - it means mort income. Model BE-2. Shipping W't.4 19 lbs.

YOU SAVE BY ORDERING DIRECT FROM MANUFACTURER-USE ORDER BLANK ON LAST PAGE
cent afine w

New

HUNDREDS OF LABORATORIES USE Frasteat IMPEDANCE BRIDGE ac Stardand LABORATORY INSTRUMENT KITS

Features

- Measures inductance 10 microhenries to 100 henries - Measures resistance . 01 ahms to 10 megahms * Meosures capacitance . 00001 MFD to 100 MFD - Measures "Q" Measures inductance from 10 microhenries to 100 henries. capacitance from . 00001 MFD to 100 MiFD . Resstance from . on ohms to 10 megohms. Dissipation factor from .001 to 1 . "Q" from 1 to 1 ,000. Ideal for schools, lahoratorien, service shops, serious experimenters. An impedince baidge for cueryone - the mose useful inverument of all, which heretofore has been out of the price range of serious experimenters and service shops. Now at the lowes price pussible. All highest qualiey p.res. Gencral Rado man calibrated control. Gentral Rado 1.000 cycle hummer. Mallory ceramic switches with 60
 sandards of Siluer Mica, accurate to 1 , of 1% fand w ith dissinatson factors of pacisy and inductance one million. Provisions on pancl for external generator and deector Aleasure all your than io parts in way haboratornes do - with a bridge for accuracy and specd
s6950 Supplied complene, Hay and Maxwell circuits for different measurements and inseruction minual for quatity part - all calibations completed and inseruction manual for assembly and use. Deliverics ate limited.

NEW Heathkit LABORATORY
 POWER SUPPILY KIT KIT Features

RESISTANCE DECADE KIT

 Features
$\$ 1950$

Wres the fincse Centralab ceranic switches, liort ceramic habotatny equipment. The range in one cinet quatum panel- laborample to

- $1 / 2 \%$ Accuracy
 - Birch Cabinet

Ceramic Switches 99,997 ohms The new lleathkit Re. sintance Decade is a handy tow and service shop. Ideal ior and serviss, calibratimg meassruments, bridie multi wiements. pliets, ets. the tine decades are Shipping the the

- Supplies 6.3 V. AC of 45 Amps
- Heavdy fory canstruction.
- Supplies variable DC 50 and service shops. - Shows volloge or current on Volts. This ncu bicablit V iribe merer. fills handreds of herds Viale Power Supply K mental crecuis of needs- use ie for experi power supply- use it ned to buid a a experitermine proper coefficients in uni voltage to de-- calhrate instruments win unk nown circuits
 an $A C$ filamens voleage of 6 (rogether with Amperes. A huile-in i MA 6 , Voles at 1.5 proner hums w retd 0.500 Voles merer has ubes to sary
 Shipring W't., 18 dbs. Ilas instruction manual for assembiometer. Cise measures

Heatheit RECEIVER \& TUNER KIIS for AM and FM

TWO HIGH QUALITY \#eathkit SUPERHETERODYNE

RECEIVER KITS

Two new Heathkies. Idenl for schools, replacernent of worn out receivers, amateurs and custom Both are transformer operated quality unirs. The best of materials are used throughout - six inch calibrated slide fule dial - quality power and output zransformers - dual iron core shiclded outlet for phone meror and there is a phono-r parts. The chassis has phono input jack- 110 Volt outict for phomo merer and there is a phono-radio switch on panel. A large metal pancl simplifying instaftation in used console cabincts is included. Comes complete with rubes and inseruction manual moorporating pactorins and step-by-step instructions (less speaker and cabince). The three band
model has stmple coil turfer which is assmbled separately for ease of conseructon.

TRUE FM FROM Zeathkit FM TUNER KIT
${ }^{5} 22^{50}$

The Hearhkit FM: Tuner

 Model FM1. 2 was de. signed for best possible tonal reproduction. The circuit incorporates the mose desirable FAI features-:wound and adjusted coils -3 rat rady uound and adjused coils - 3 stages of 10.7 Mc. Tube (ineun 7 (
 as discriminator, $6 \mathbf{N} 5$ rectificr.
The instrument is eransformer operated making it safe for connection to any tipe receiver or amrlifier. The R.F. coils are ready wound mounted on the tuning condenser and the con denser is adjusted - no R.F. coils to wind or adiust.

A calibrated six inch slide rule diai has vernier lrite for easy suning. The finest pares are provided with all tubes, punched and formed chassis, transformers. condensers and complere instruction manual. Model FM-2. Shipping $\mathrm{X}^{\prime} \mathrm{t}$. 10 lbs .
new poatictif (m)

The HEEATM COMDANY
 BENTON HARBOR 26, MICHIGAN

ENJOY MUSIC AT ITS Finest WITH

 Preathbit AMPLIFIERS
NEW \#eathkit

 $\underset{20}{\text { HIGH FIDELTY }}$ AMPLIFIER KIT

- putatures
- Full 20 Wotts output.
- Fully enclosed chossis.
- Provisions for reluctonce piskup Compensation stage.
- Cosed high fidelity output transformer.
- Treble and boss boost tone controls. Full ronge
The finest amplifier kit we have evef offered - check the features. This inexpensive amplitice compares favorably with instemments costing five times as much. Northing has been spared to provide the best reproducrion - an ideal amplicr for the now Heathkit IM Tunce hised below.

Dual tone controls for control of both tecble and bass. Bass control is of the boost type for maximum listening pleasute. Optional preamplifier stage for use wish G. E. reluctance pichup of microphone. Uses inverse feedback to give excellent response over entire range. Tube lineup: $6 S J 7$ preamplifier stage. GJ phase splatter seage, two GLG's in push.pull and SY 3 rectitier (GSC7 as optional com. pensation stage)

Uses highest quality Chicago Transformer Corporation cased output transformer with taps of $3.2,8,15,60$ and 500 ohms to match any speaker combination. power transiormer is conservatively tated for continuous operation in sound systems. Tone concrol gives maximum bass boovt of 6 db at 70 cycies. Amplifiet has maxi* 17 lbs . Complece with all parts, cubes and insiruction manalal. cycles. Stipping Model A.SA Amplifier nith preamplifict for G. E. cartidges ot micropione $\$ 23.50$ $12^{\prime \prime} 20$ Watt Speaher, No. 326.

ECONOM Heathket APM WATT PUSH-PULL AMPLIFIER KIT
 ${ }^{\text {s }} 12{ }^{50}$

No. 304

No. 304
12-inch Speaker .. $\$ 95$
This new Heathkir Amplifice
phase inverter at very low price designed to give gualiey complete with sixe and push. price. Has two preame qualizy ohm roice coil) tubes, quality outpur power output. Comes other parce. Hoil), husky cased poutpur transformer (tomes has pictorial for tone and volurne pouer transformer (to 3.4 fat $\pm 112 \mathrm{db}$ from assembly. Six watis. Instruction and all kit 2 t new low from 50 to 15.000 wate output with manual W'., 7 los.

\#eathkit RECEIVERS and TUNER CABINETS

Ord	No. 350 for IM tuner. Blonde birch vencer is an assee to any r ceivers. Size $7 \times 13!$ Order No. 345 for e Metal professiona! e to the the pancl supp not included with c sional appcarance Wt., Glbs. 5" Permoflux Speak No. $3205^{\prime \prime}$ Speahe	for cith peaker aches. S ver unicatio Heathk speak recen her cabi	receiver cad of ng Wt., 5 ceiver cabi 1 and $A R$ unts in en ize $7 \times$	or tuner. Modern stgling binet when used with res. Fet. Finished in deep grey 1 Reccivers (pancl shown of cabinct. Gives profes- $\times 73 / 4$ inches. Shipping either Heathkit Recriver $\$ 2.75$	fot	rs only.
		\cdots	:	A M		
$7 a$ BEN MIC	EATH COMPANY TON HARBOR HIGAN \qquad \qquad	i^{p}	SE PRIN	T)		VIA Posi ess ht Way
Quontity	Irem	Prise	Quantity	Item		Pric*
	Heorhkit Oscilloseope Kit - Model O.6			Heothkit VTVM Kit - Model V.4A		
	Heothkit T.V. Alignment Gen. Kit - TS. 2			Heothkit R.F. Probe Kit - No. 309		
	Heothkit FM Tuner Kit - FM-2			Heothkit H.V. Probe Kit - No. 336		
	Heothkit Broodcost Receiver Kit - Madel BR-I			Heothkit R.F. Signol Gen, Kit - Model SC		
	Heothkir Three Bond Receiver Kit - Model AR. 1			Heorhkit Condenser Checker Kit - Model		
	Heathkit Amplifier Kit - Model A 4			Heathkit Honditester Kit - Model M.I		
	Heothkit Amplifier Kit - Model A. 5 (or A.5A)			Hecthkit Vorioble Power Supply Kit - M	del PS. 1	
	Heothkit Tube Checker Kit - Model TC-I			Heothkit Resistonce Decode Kit - Model	RD. 1	
	Heothkit Audio Generotor Kit - Model G-2			Heothkit Impedonce Bridge Kit - Model		
	Heothkit Bottery Eliminotor Kit - Model BE. 2			Heothkit Signol Trocer Kit - Model T-2		
	Heothkit Electronic Switch Kit - Model S. 2					
On Porcel Post Orders, include pastoge for weight shown ond insur. once. (We insure oil shipments.) On Express Orders, do not include tronsportation charges - they will be collected by the Express Agency of time of delivery.			Enclosed find \square Check \square Money Order for			
			Please ship C.O.D. \square Postage enclosed for__lbs.			

THESE ARE THE TUBES OF CHAMPIONS . . THE FIRST CHOICE OF LEADING AMATEURS EVERYWHERE. THEY PROVIDE MORE WATTS PER DOLLAR COST AND THE UTMOST IN DEPENDABILITY AND PERFORMANCE.

COMPLETE TUBE DATA AVAILABLE FREE

4-125A The fube that made transmifting screen-grid tubes popular. The $4.125 A$ will fake a plafe input of 500 watts for CW or 380 watts for phone. Driving power is less than 2 watts. A pair of these tubes makes an ideal high-power phone or CW final.

IOOT The "old reliable" 100T, improved throughout the years, is still top choice of amateurs who prefer a triode. Will take a plate input of 500 watts for CW or 350 watfs for phone. As modulators, a pair will deliver 420 watts of audio.

4.400A For really deluxe equipment use the 4-400A tefrode. One fube can be run af a KW input for CW or 880 watts for phone. Low drive, too, of course, less than 5 watts. Available as an accessory is an airsystem socket for simplified cooling.

4-250A A pair of 4-250 A tetrodes will easily handle a KW for phone. In CW service, one tube will take a KW input. Driving power is only 2 to 3 watts per tube. As modulators, a pair will deliver as much as 750 watts of audio with zero driving power.

4-65A This small fofrode operates well at plate voltages from 600 to 3000 volts. Af 2000 volts one tube will handle up to 300 watts input for CW or 240 wafts for phone. Driving power is 2 to 3 watts.

4XI50A For VHF or UHF work, use the 4XI50A. This small. forced-dir cooled external anode tefrode will handle 250 wafts input on the ultrahighs with a driving power of but a few watts. The $4 \times 150 A$ operates well on plate voltages as low as 400 or 500 volts, making if ideal for portable or mobile equipment with a wallop.

VVC60-20 This is but one type in the Eimac line of variable and fixed vacuum capacilors for plafe tank eircuits. The VVC60-20 is variable over a range of 10 mmfd to 60 mmfd . Maximum r-f voltage is 20 kv .

250T A tried, proven, and continually improved 250 walt triode. The ideal triode for 1 KW CW input. Will handle 825 watts inpuf on phone. With plate voltage as low as 1500 volis, a pair will modulate all the law allows.

San Bruno, California

BEW was the first to develop and manufacture the air wound type inductor, a modern type of coil that sets a standard of design and construction throughout the industry.

Pioneers in many new types of coils, $B \mathbb{W}$ was the first to manufacture a complete line of coils for amateur use. First in the development of variable links, B\&W now offers "plug-in" wariable links for greater flexibility.

Among the many other BsW firsts in the electronic fieldare: transmitting turret assemblies, coil-variable condenser combinations, miniature air wound coils and the latest development, the Faraday Shielded Link.

Sisteen years of unchallenged leadership provides an assurance that, regardless of the application. B\&W has a coil to fit the need . . and you can depend on them.

B \& W BAND SWITCHING TURRETS

Pioneered by 13 E W^{\prime}-These compact 5-band switching "iurrets are available from 35-watt ratings up through units that may be operated at voltages up to 1000 volts and input powers as high as 150 watts. They provide instant band switching, covering the 80 to 10 meter bands, and are regularly stocked as center-linked, center-tapped coils or end-linked untapped.

B\&W LOW-PASS FILTERS

... Solve IV Interference Problems

Used in conjunction with the 13\&W' Faraday Shielded Link, B\&WC Low-Pass Filters are highly effective in reducing Television interference caused by Amateur Transmissions. While the Faraday Link effectively reduces capacity coupled harmonic and spurious signal radiations, the Low-Pass Filter, consisting of two " M " derived end sections and three midsections of the constant "K" type, attenuate all frequencies above 30 megacycles 75 db or more throughout the entire TV band. W'rite for a copy of "Filter-Facts" priced at 15 cents for details on how to lick your TVI.

B \& W COAXIAL CONNEGTOR CC-50

Provides efficient, watertight coaxial cable connections for amateur and commercial use. Also serves as a center insulator. Made of aluminum with steatite insulation, this unit comes complete with weatherproof cement and assembly screws. Weight 12 oz ., pull strength 500 lhs .

B\&W HEAVY-DUTY VARIABLE CAPACITORS

Type CX is a radically designed split stator, butterfly rotor variable capacitor that permits mounting the tank coil assembly directly on the capacitor frame as illustrated. Opposed stator sections provide short R-F paths desirable in high power rigs. Built-in neutralizing capacitors are provided for, on rear end plate.

EqUIPMENT

In addition to the B \& W products shown here, there are dozens of others in our general catalog. All are made under the direct supervision of men who know amateur radio requirements personally. And all are produced to the high quality and design standards that are characteristic of $B \& W$ equipment.

B \& W BUTTERFLY VARIABLE CAPACITORS

Compactness and symmetry make these 13 \& W JCX Variable Capacitors an outsanding favorite. Heavy rounded edge plates permit ratinge to 2500 voles D.C. unmodulated and 1500 volts D.C. in modulated tinal amplifier circuits. "They may be used as a capacitorinductor assembly with any $B \& W$ " 13 " or " $B X$ " inductors including the fixed or variable link types. Voltage rating measured at 30 megacycles.

B\&W ALL-BAND FREQUENCY MULTIPLIER

Model 507 - A fixed-tuned. 80- 10 10-mener broadband freguency multiplier designed for use with eithera V.F.O. or Crystal inpur. Makes ranmission on any band avalable at the flip of a switch. Ideal as a basic unit for your new rig.

B \& W "BABY" AIR INDUCTORS

25 If"atts Rating-Ideal for crowded layouts, portables and any other application where space is at a premium and high efficiency a "must." Many other types and sizes avail. able. All offer famous $B \& W$ "air wound" construction.

B \& W TEST INSTRUMENTS

Accurate Inexpensive Reliable

AUDIO OSCILLATOR-Model 2KO-An extremely low distortion source of frequencies between 30 and 30,000 cycles.
DISTORTION METER- Model 400 - Measures total harmonic distortion for the range of 50 to 15,000 cycles.
SINE WAVE CLIPPER-Model 250-Provides test signal particularly useful in examining the phase angle, transient and frequency response of audio circuits.
frequency meter - Model 300-An accurate and convenient means of making direct measurements of unknown audio frequencies up to 30,000 cycles.
WRITE FOR COMPLETE B \& W INSTRUMENT CATALOG!

Get this Handy Catalos
for full for full details on inductors, variable capacitors and accessories every ball
needs needs for his rig.

WORKSHOP antennas

 A Complete Line for allHigh-Frequency Bands
AMATEUR TELEVISION FM
EMERGENCY SERVICES

RADIO RELAY MICROWAVE RELAY STL RELAY TV RELAY

Government

RADAR
GUIDED MISSILE or ROCKET-BORNE
COMMUNICATION and NAVIGATION

The WORKSHOP pioneered antennas for the high-frequency spectrum, and today our complete line covers all bands from 28 mc . up. Our standard antennas fit the majority of applications, but where special situations must be met, slight modifications in design usually accomplish the desired result with a minimum of time and expense.

Engineering and Contract Service. The WORKSHOP handles scores of special government and commercial antenna problems every year from design through production. With our new plant and greatly expanded facilities, we are able to handle a larger proportion of this type of contract work than ever before. If your product or service requires high-frequency antennas - research, design, test, or production - get in touch with the WORKSHOP. Write, or phone Needham 3-0005. No obligation.

the NORKSHOP ASSOCIATES, Inc.

 Specialists in High-Frequency Antennas 139 Crescent Road, Needham Heights 94, Mass.A representative group of h precision radar antennas.

Standard Parabolic Reloy Anten for Studio-fo-Transmitter Link $920-960 \mathrm{mc}$. band.

Leff - High-Gain Beacon Antent Recammended by all 152-162, equipment manufacturers. Hundre are in use throughout the countr)

Below - WORKSHOP DUBL-V Television Antenno, double-stacke

Below - 10 over 20 Stacked A_{1} ray - the last word in amoteu antenna equipment.

DO YOU KNOW THIS ABOUT ASTATIC MICROPHONES?

7HE CRYSTAL ELEMENTS of Astatic's famous D-104 and the longpopular T-3 Microphones now have special METALSEAL protection against moisture and dryness.

7HE NEWEST MODEL in the Astatic Microphone line is the Synabar, Model DR-10, a unidirectional cardioid crystal microphone of highest performance quality. An outstanding feature is the use of a special sintered metal to cancel out 15 db front to back, making the Synabar, for practical purposes, dead to sound from rear. Output level - 54 db , frequency response 50 to 10,000 c.p.s. Has response selector switch, METALSEAL protection of crystal elements.

WRITE FOR COMPLETE DETAILS

Model D-I04

Model T-3

Model DR-IO-S

Astatic Crystal Devices manufactured under Brush Development Co. patents

Volt-Ohm-Mil-Ammeters

ABSORPTION FREQUENCY METER

Model 3256

A band-switching, tuned absorption type frequency meter that covers five amateur hands. Has Germanium crystal and a DC Milliammeter indicator for greater senaitivity. Direct calibration or panel - no coils to change. Switching permits instanta. neous band change. Andio jack provides for monitoring of phone signals - another new feature. Calibration is in Megacycles in following bands: 3.5-4 MC; 7-7.3 MC; 14-14.4 MC: $20-21.5 \mathrm{MC}$; 28-30 MC. Coil is removable and other coils may be substituted for special bands. Useful for checking: Fundamental frequency oi oscillating cireuits; Presence, order and relative amplifude of harmonics, Parasitio oscillations, etc. Size: 71/." $\times 21 / 2^{\prime \prime} \times 21 / 4^{\prime \prime}$. Metal case with gray enamel kinish, black trim.

A COMPLETE LINE OF METERS

Triplett panel and portable meters are avcilable in more than 26 case styles - round, square and fan $2^{\prime \prime}$ to $7^{\prime \prime}$ sizes Included are voltmeters, ammetess, milliammeters, millivoltmeters, microammeters, thermo-ammeters, DB meters, VU meters and electrodynamometer type instruments.

Address oll inquiries to Dept. Q-51

In Canada:

Triplett Instruments of Conada, Georgetownr Ont.

-

 your AC and DC Resistance, Direct Current and Megohms Enclosed selector switch of molded construc. tion keeps dirt out. Retains tion keeps dirt out. Retainscontact alignment permacontact alignment permanently. Unit Construction All Resistors, shunts, rectia molded base integral with theswitch. Eliminates chancefor shorts. Direct connections. No cabling. All precision film or wire-wound resistors, mounted in their own compartment-assures greater accuracy.3" Rreater accuracy. Red instrument. Red and black markings on a white background. Easy to read scale. Precalibrated recti-
 fier unit. Self-contained batteries.
RANGES: AC.DC Volts: 0-10-50-250-1000-5000, 1000 Ohms/Volt; Direct Current: $0-10-100 \mathrm{Ma}$. 0-1 Amp.; Resistánce: $0-3000-300,000$ Ohms, 3 Meg . Black molded case, completely insulated, $31 / 16^{\prime \prime} \times$ $5 \% 8^{\prime \prime} \times 29 / 16^{\prime \prime}$. White panel markings.

Model 666-HH VOLT-OHM-MILLIAMMETER

A complete miniature laboratory for DC-AC Voltage, Direct Current and Resistance analyses. The answer to V-O-Ma. requirements of radio servicemen, amateurs, industrial engineers, etc. Greater scale readability on the $3^{\prime \prime}$ RED ${ }^{\prime}$ DOT Lifetime guaranteed instrument with red and black scale markings. Simplified switching.
RANGES: AC-DC Volts: $0-10-50-250-1000-5000$, 1000 Ohm/Volt; DC Ma: 0-10-100-500; OHMS 0-2000-400,000. Self-contained plug-in batteries. Black molded case, completely insulated, $31 / 16^{1 /}$ x $57 / 8^{\prime \prime} \times 29 / 16^{\prime \prime}$. Panel with white markings.

FOR THE MAN WHO TAKES PRIDE IN HIS WORK

triplett eiectaical instrument company - aiuffond ohio, u.s. A.

Collins for top performance

Collins 75A-2 Receiver

The new Collins 75A-2 is a double-conversion superheterodyne, designed specifically to give top performance for the amateur in the $160,80,40,20$, 15, 11 and 10 meter bands. It features sensational stability, calibration accuracy and sensitivity, and provides the greatly improved selectivity required for successful ham operation under present overcrowded conditions.

This increased selectivity is provided by nine tuned circuits at $455 \mathrm{kc} \mathrm{i}-\mathrm{f}$, plus an improved crystal filter which is variable by a front panel control. When the 75A-2 is tuned, the increased skirt selectivity is instantly apparent. There are interfer-ence-free holes in the crowded phone bands. Highpitched heterodynes are practically eliminated. This leaves the phasing control free for use in eliminating low-pitched heterodynes. The range of the phasing control notch has been extended downward to approximately 200 cps .

Only the band in use is visible. The slide rule dial is calibrated directly in one-tenth me, the vernier dial at one kc intervals on all bands except 11 and 10, where it is two kc. A vernier zero set control is on the front panel. Other front panel controls include band change; on-off-standby; CW-AM-FM; r-f gain; audio gain; limiter in-out and calibrate; separate $C W$ liniter; selectivity; crystal filter phasing; BFO pitch; antenna trimmer.

The 70E-12 PTO employs a new Collins permeability tuned two-tube circuit, which assures improved stability unaffected by variations in tubes.

15 miniature tubes and rectifier are employed:

GAK5 r-f amplifier, 6BEG h-f mixer, 12AT7 crystal oscillator, 6BE6 l-f mixer, two 6BAG VFO's, three 6BAG i-f amplifiers, GAL5 AVC-detectoraudio detector, GBAG BFO, GAL-5 noise limiter, 12AX7 AYC amplifier-audio amplifier, 6ALS CW noise limiter, 6AQS power amplifier, and SY3 power rectifier.

The 8R-1 100 kc crystal calibrator and the $148 \mathrm{C}-1$ NBFM adapter, shoun on this page, are available as accessories, for plugging into completely wired sockets on the top of the chassis. The operation of both units may be controlled by switches located on the front pasel.

75A-2 dimensions:
$211 / 8^{\prime \prime}$ wide, 12 7/16" high, 13 5/16" deep. Power source: 115 volts $50 / 60$ cycles a-c. Shipping weight: 70 lbs.
Net domestic prices:
75A-2 receiver: $\$ 420.00$
10 -inch speaker in matching cobinet: $\$ 20.00$ 8R-1 crystel calibrator: \$25.00
148C-1 NBFM adapter: $\$ 22.50$

Collins for more QSO'S

Dimensions:

$28^{\prime \prime}$ wide, $18^{\prime \prime}$ deep, 66 1/2" high.
Power source:
$115 / 230$ volis, 60 cycle single phase grounded neutral.

Price to be announced.

Collins KW-1 Transmitter

This new kilowatt rig is as convenient to operate as a Collins 32 V . Completely integrated in an attractive wrinkle-finish cabinet, it is a product of the most modern design techniques. The power input is 1000 watts on CW, phone, and NBFM. Provision for NBFM is built in as standard equipment. The frequency range covers the $160,80,40,20,15,11$ and 10 meter amateur bands.

Complete bandswitching of the exciter, driver, and power amplifier is accomplished by a single control on the front panel. This reduces to four the number of tuning functions required: bandswitch selection, frequency setting, PA tuning, and PA loading. Over any narrow frequency range, it is only necessary to adjust the frequency control. Frequency control is by means of a newly developed, extremely stable, hermetically sealed master oscillator. Operating controls can all be reached from a sitting position if the $\mathrm{KW}-1$ is installed next to the desk. However, the entire exciter-power amplifier section may be removed and placed on the desk if desired.

TVI reduction is accomplished by the use of multiple-tuned circuits at the output frequency on every band. A minimum of three circuits at the output frequency greatly attenuates not only the second and third harmonics, but also sub-harmonics. Particular attention has been paid to filtering all control and power leads entering the exciter-power amplifier compartment, which itself is a totally enclosed and shielded structure. A $35 \mathrm{C}-1$ low pass filter is incorporated as standard equipment. The output network is a conventional pi followed by an L section for increased harmonic attenuation.

The speech amplifier has a peak clipper plus a low and high level filter, and permits high-percentage modulation without splatter.
Tube line-up: Exciter - one GBAG, five GAQ5's, one 807 W , one 12AU7, one 6AL5. Power amplifier - two 4-250A's. Speech amplifier - one 12AX7, one 6AL5, two 12AU7's, two 6BGG's, two 810's. Rectifiers - two 872's, one 5R4GY, three 5V4's.
Metering includes modulator current, PA plate current, high voltage, line voltage, multi-purpose meter, and antenna ammeter. Line fuses, plus overload relay in Class C amplifier current lead, provide circuit protection.

Collins 32V-2 Transmitter

The $32 \mathrm{~V}-2$ is a VFO controlled bandswitching, gang-tuned amateur transmitter, conservatively rated at 150 watts input on $\mathbf{c}-\mathrm{w}$ and 120 watus input on phone. It covers the 80, 40, 20, 15, 11 and 10 meter bands. The heart of the $32 \mathrm{~V}-2$ is the Collins 70E-8A perneability tuned oscillator, used as the VFO. The calibration is very accurate, and stability compares favorably with most crystals used by amateurs.

The r-f tube line-up: a $6 \mathbf{S} \mathbf{J 7} \mathrm{VFO}, ~$ GAKG buffer, 6AG7, 7C5 and 7C5 frequency multipliers, and 41032 final amplifier. Speech line-up: a 6SL7 in cascade to a GSN7 to a pair of 807 modulators, which furnish 60 watts audio power to modulate the final amplifier. The power supply contains a $5 Z 4$ (low voltage) and twe 5R4GY (high voltage) rectifiers, a VR-75 bias regulator, and two OA2 screen voltage limiters.

All controls are conveniently located on the front panel. As an additional refinement, both coarse and
fine antenna loading controls are actuated by the same dial. The $32 \mathrm{~V}-2$ can be operated by a push-totalk switch on the microphone, a key, or a separate switch. Terminals are provided for supplying the energizing voltage for an antenna change-over relay. Other terminals, paralleled with the operate switch, are used to disable the receiver when the transmitter is in SENI) position. Grid-block keying is utilized on three stages following the VFO. The back-wave of the VFO as heard in a receiver placed beside the 32 V .2 is negligible; thus break-in operation is accomplished without difficulty. Keying is very clean, without chirp or clicks. The keyer circuit also includes a side-tone oscillator which is used as a c-w keying monitor.
Dimensions:
$211 / 8^{\prime \prime}$ wide, $127 / 16^{\prime \prime}$ high, $137 / 8^{\prime \prime}$ deep.
Power source: 11 ' 5 volis $50 / 60$ cycles a-c.
Shipping weight: 128 pounds.
Nef domestic price
$\$ 575.00$

35C-1 LOW PAS5 FILTER

A coaxial fiting is provided at the rear of the $32 \mathrm{~V}-2$ cabinet. This permits the use of a well shielded transmission line in which the Collins 35C-1 Low Pass Filter may be inserted. The 35C-1 is a 52 ohm three-section filter which, with approximately 0.2 db insertion loss below 29.7 mc , provides approximately 75 db attenuation of harmonic emmissions at the television frequencies. This high attenuation is added to that provided in the transmitter. The unbalanced output permits grounding of the outer conductor of the line and the case of the filter.
Net domestic price
$\$ 40.00$

148B-1 NBFM ADAPTER

The Collins 148B-1 Narrow Band FM Adapter is for use with either the $32 \mathrm{~V}-1$ or the $32 \mathrm{~V}-2$ amateur transmitter. It plugs into the $70 \mathrm{E}-8$ variable frequency oscillator, and is suitable for FM operation on all bands. Frequency deviation is adjusted by the Audio Gain control on the transmitter. A toggle switch selects AM or FM.
Net domestic price
$\$ 31.75$

Collins for all communications

The advanced engineering, reliability, and high performance typical of Collins ham gear are also characteristic of Collins airborne and ground-based radio communication and navigation equipment, and Collins $A M$ and $F M$ broadcast station transmitters, audio equipment and accessories.

Collins fixed based transmitters are available in powers ranging from 75 wats to 50 kilowatts, CW, FSK and plone, operating at high and very high frequencies, autotuned, servo tuned and manual tuned. Ground station receising gear includes single and multichannel and continuously tunable rack mounting equipment for $\mathrm{A} 1,12$, and A3 reception at high and very high frequencies.
Collins airborne transmitters and receivers provide facilities for IIF and VHF two-way phone communication, for ommirange navigation, and for instrument landing.

For broadcast stations, Collins makes a wide range of transmitters, as well as a complete line of speech equipment.

All Collins equipments for commercial and personal applications are designed and made to the cxacting standards set for military applications. Our engineering and manufacturing personnel do not know how to shoctcut or cheapen.

20 V one KW

AM broadcast transmitter

Collins $51 /$ Cemmanication 㾍eseiver

THE PRACTICAL ROTATOR FOR 2 AND 6 METERS

'Auto-Dial" is the Rotator for VHF! Conservaive in price and size yet rugged enough for imateur use.
Hams will appreciate the fast. automatic ection. No buttons or switches to hold while urray rotates. Just turn knob to desired direcion and continue QSO. Antenna rotates in one lirection to exact number of degrees and :tops! No coasting, no backlash!

UNUSUAL FEATURES OF "AUTO-DIAL"

- Slip-ring contacts of coin-silver-no line unbalance, no twisted feed-lines!
- Antenno rotates rapidiy-only 22 seconds for complete revolution!
- Rotation in steps of 6 degrees permits exact orien-tation-accurate antenna field strength measurements!
- Lifetime lubricated! Sealed against dirt and moisturel
- Heavy Duty Motor!
- Inline mast mounting. Takes mast sizes l" to I $1 / 2^{\prime \prime}$ O.D.

Rotator housing is cold-rolled steel, capper flashed for durabilify. Baked-on enomel
finish. Weighs just 6 lbs.

AMPHENOL RF CONNECTORS

Unsurpassed for mechanical design and electrical efficiency. Provide lowest loss continuity in critical RF circuits with little or no impedance change or increase in standing wave ratio.
Wide variety of AMPHENOL RF Connectors available includes Plugs, Jacks, Receptacles, Adapters, etc. High and low voltage types, various impedances. many weatherproof or pressurized. All AMPHENOL connectors meet rigid government specifications.

AMPHENOL COAX AND TWINAX

Produced to standards surpassing military specifications for electrical performance. mechanical excellence.

Use of AMPHENOL coar is a great step toward elimination of TVI!

Most AMPHENOL RG cables have polyethylene dielectric for low loss, flexibility, mechanical stability. Certain AMPHENOL cables utilize TEFLON and withstand temperatures as high as $500^{\circ} \mathrm{F}$.

AMPHENOL can supply coax and Twinax in a large number of types.

To make connection, unscrew coupling ring from one cable end, slip it back over cable.

You now have male and female cable ends. Screw the remaining ring on to the ringless end...

...tighten coupling ring. Contact is made, the junction is completed without loss of ime or effort.

AMPHENOL MICROPHONE CONNECTORS

AMPHENOL manufactures an extensive line of connectors to fit practically all makes of microphones.

The 75-MClF Microphone Connectors, illustrated above, function as either male or female fitting so that in use a mating connection is always ready for instant application.

Distinctively styled, AMPHENOL'S 75-MClF, single contact, shielded cable type microphone connectors are made of chrome plated, machined brass. Will accommodate cables up to $1 / 4^{\prime \prime}$ diameter.

The 75 Series connectors include Jacks, Plugs, Receptacles, "Mike" Switches, etc. See them at your dealer.

The 80 Series, single and double contact connectors are designed for shielded cables and have many uses in both alidio and RF circuits. Obtainable as male or female cable connectors or chassis units.

The 91 Series includes both three and four contact connectors. polarized to prevent incorrect insertion. Procurable as plugs, cable jacks and chassis receptacles, either male or female types.

बnRHITMO

INDUSTRIAL TUBE SOCKETS

Peak performance-utmost de. pendability! These sockets have rugged insulating barriers, removable contacts. RMA numbered reversible screw type terminals to simplify wiring and permit use of wiring harness and terminal lug connections. Illustrated is 146 103 of molded Melamine. Other models such as barrier type high voltage sockets, barrier type miniature 7 -pin sockets, stair type sockets for jumbo tubes, high voltage mounting plate type sockets and stilt type tube sockets are also procurable in Melamine, Steatite and high grade phenolics.

PATENTED "CLOVER LEAF" CONTACTS ON ALL AMPHENOL INDUSTRIAL SOCKETS

The "Clover Leaf" contact provides four full lines of contact along each tube pin, assuring
 a high degree of rententivity with a contact re. sistance considerably less than .002 ohms. Contacts plated to resist corrosion.

Available for every application. Materials used are finest available, include black bakelite, mica-filled bakelite, AMPHENOL Steatite and AMPHENOL'S own Ethylon-A with its high "Q" factor and low-loss properties. Also Zip-In sockets for high speed production.

COMPLETE CABLE HARNESSES

 and assemblies avallable!AMPHENOL produces complex wired assemblies and harnesses involving many components as one quality unit-reducing procurement, production planning, inventory control and component inspection costs.

AMPHENOL "AN" CONNECTORS
For Power, Signal and Control Circuits in Aircraft and Electronic Equipment

AMPHENOL leads the industry in the manufacture of "AN" connectors to meet government specifications under MIL-C-5015.

Available in many shell styles, AMPHENOL "AN" connectors feature many improvements worked out by AMPHENOL engineers in cooperation with government engineers.

Included among these superior features are:

- Lowest milivolt drop.
- Coupling rings machined from solid aluminum bar stock. Extra high tensile strength (53,000 pounds).
- AMPHENOL non-rotating contacts for easy, fass soldering.
- Coupling rings and assembly screws drilled for safety wiring.
- Simple assembly, no special tools required.

In AMPHENOL'S Catalog 74 will be found the most complete listing of " $A N^{\prime}$ " connectors available from a single manufacturer under Specification MIL-C5015. All inserts and shell types available from regular AMPHENOL production.

HEAVY DUTY RADIO CONNECTORS
Compact, lightweight, used extensively for connecting various units of transmitters and testing apparatus and as power connectors for mobile transmitters and receivers. Completely encased in heavy drawn brass cadmium plated shell. Entirely free of shock hazard-will not radiate RF. Polarized shell permits 4 different element positions for added circuit protection. Plugs, jacks and receptacles available in 4, 5, 6, 8 and 12 contacts.

"See Catalog 74 for complete description and listing of these and other AMPHENOL products."

WHEREVER THE CIRCUIT SAYS -W-

ADVANCED TYPE BT RESISTORS

New type BT Insulaled Composition Resistors: meet JAN-R. 11 |pecifica ${ }^{\circ}$ ons at $1 / 3, \frac{1}{2}$, and 2 walts. Small size BTB specially designed for miniature 2 watt requirements. Type BT^{\prime} s ore suited to television and similar exacting circuits. Extremely Low aperating temperature. Excellent power dissipation. 330 ohms to 22 megohms in RMA ranges. (Fully described in Catalog RDC8.)

BW INSULATED WIRE WOUND RESISTORS

Exceptionally stable, inezt pensive low wattage wire wound resistors. $1 / 2,1$ and 2 watts0.24 ohms to 8.200 ohms in RMA ranges. 50% to 100% overloads can be opplied with negligible change, and return to initial value (Fully deseribed in Catalog RDC8.)

NEWLY DEVELOPED TYPE Q VOLUME CONTROL

"Sha" diameter and $1 / 4$ " bu hing suit Type Q's to smallest chassis yet they handle big-set requirements. Interchangeable Fixed Shaft feoiure (13 special shafts) gives coverage of 90% of AM, FM and TV needs. Knab Master fized Shaft fits most push-on tenobs without alteration. Range. 500 ohms to 10 megohms. Accommodate Type 7 ' Switch.
(fully described in Catalog RDC1-A.)

2 WATT

RHEOSTAT-POTENTIOMETER

Designed for long, dependable service and balaneed performance in every characteristic. 2 watt, variable wire-wound W Controls provide maximum adaptability to most rheostat and potentiometer opplications within their power rating. Size $11 / 4{ }^{\prime \prime}$ by $9 /{ }^{\prime \prime}$. Resistance values: 2 ohms to 10,000 ahms.
(Fully described in Catalog RDCI-A.)

POWER WIRE WOUND RESISTORS

Fixed and adjustable Power Wire Wounds- 10 to 200 watts - handle full rated power in all standard ranges, require no derating at high ranges. Dark, rough coating dissipates heat more rapidly. Unique terminals assure easy installation. 10 and 20 watt fixed types have lead and lug terminal, and lug may be clipped off for space saving in crowded chassis. Permanent, fadeless marking shows type, size, resistance.
Where limited space is a factor, Type FRW Flat Wire Wounds give higher space-power ratio than standard tubular types. Construction allows easy vertical or horizontal mounting, singly or in stacks.
(Fully described in Catalogs RDC-5 and RC.1.)

WHEREVER THE CIRCUIT SAYS -W-

CLOSE TOLERANCE

 DEPOSITED CARBON PRECISTORS tolarance zabilite and economy Pure srystelliant carbon bonded to selected ceramic cores overcomes limitations of carbon composition resistort and higher cost of precision wire wounds. PRECISTORS offer wide range of values, guarah. reed accuracy, high stability, low voltage conff. cient, excellent frequency characteristics, predictable temperature coefficient. (Fully described in Capolog RDC.3.)

HIGH FREQUENCY RESISTORS

Type MP fiesistors ore designed for frequencies obove those of conventional resistors. 2 wotts to 90 waths. Special construction, with resistance Alm bonded to steatite ceramic form, provides stable resistors of low inductance and capocity. Type MPM's ore minialure $1 / 4$ woll units for small-space, high frequency receiver applicalions.
(fully doscribed in Cotolog RF-1.)

HIGH VOLTAGE RESISTORS

Typ $\%$ ive meel high resistance and p wer requifemants in high voltage applications. Resistance coating in helical furns on ceromic tube provides a conducting path of long effective length. 2 watts to 90 watts. Variety of terminal types. Type MVX's meet requirements for small, high range unit with axial leads. $2^{\prime \prime} \times 1 /{ }^{\prime \prime}$ " construction identical with Type MV's, except for terminal.
(Fully described in Catalogs RG-1 and RG-2.)

WATER COOLED RESISTORS

Unic a high frequency his po eer re isfor Foa le eviblom, F) and dielectric heating op: Tications. Centrifugal force whirls high velocity trean of water in spiral path againsi resistance Ath-gives efficient high power dissipation up to 5 K.W. 35 ohms to 1,500 ohms. Resistor -tements interchangeable.
(Fully deteribed in Cotalog RF-2.)

SEALED VOLTMETER MULTIPLIERS

Dependable multipliers for use under the mast severe humidity conditions, Type MF Resistors consist of a number of IRC Precisions interconnected and hermetically sealed in a glazed ceramic tube. Compact, rugged, stable, fully moisture-proof and easy to install. Moximum current: 1.0 M.A.; 0.5 megohms to 6 megohms.
(Fully described in Cotalog RD-2.)

MATCHED PAIR RESISTORS

Two resistars matched in series ar parallel to as close as 1% initial accuracy. Dependable low-cost solution to clase talerance requirements. Bath Types BT and BW resistors are available in matched pairs. Tolerances fram $\pm 5 \%$ ta $\pm 1 \%$ can be furnished.
(Fully described in Catalog RB-3.)

INSULATED CHOKES

Ideal for TV and similar circuits. Wide range of size and characteristic combinations permit accurate specification to individual requirements. Types CLA and CL-1 Chokes are fully insulated in molded phenolic housings-protected from high humidity, obrosion, physical damage or shorting to chassis.
(Completely described in Cotalog RDC7.)

IRC RESIST-O-GUIDE

\triangle New aid in easy resistor range identification. Turn 3 wheels to correspond with color code on resistors and standard RMA Range is automatically indicated. 15 c of all IRC Distributors. When ordering direct, send stamps or coin.
For full information on any of IRC's many resistor types, write today for cotalog bulletins in which you are interested. Also,

INTERNATIONAL RESSSTANGE COMPANY

RCA tube line-ups for 1951

CW, FM, and Phone-160, 80, 40, 20, and 10 Meters
Input Watts to Final

CW 8 FM	PHONE	osc.	MULTIPLIERS	BUFFER	FINAL	MODULATORS	Class
17	15	(6AK6)		(bakb	5763	(6A05) (6105	AB1
40	27	6407	$\rightarrow 6 A G 7$	(6AG7)	$2 E 26$	(616) 616	AB1
75	60	(6AG7)	$\rightarrow 6 A 67$	$6 A 67$	(807)	(616) (616)	ABI
120	90	(6AG7)	$\rightarrow 6 A$	5763	(829.8)	(807) 807	AB2
260	175	(6AG7)	$6 A G 7$	(2E26	(812.4)	(807) 807	B**
345	260	(AG7)	$\rightarrow 6 A 67$	(6A67)	4.654	(811-A) (811.A)	B
500	375	$6 A G 7$	$\rightarrow 6 A$	(2E26	$4.125 A>$	(811A) (811-A)	B
500	400	$6 A G 7$	$\rightarrow 6067$	(2E26)	813	(311-A) (81+A)	B
520	350		$\rightarrow 6 A G 7$	(807)	2.8124	(811.4) (811-t)	B
750	500	(6AC7)	5763	807	810	(811-A) (81+A)	B
1000	1000		8	(812.A)	$(833 A$	(810) (810)	B
1000	800	(6A67)	$6 A G 7$	807	2.813		8

CW, FM, and Phone-VHF Bands

Input Watts to Final

CW \& FM	PHONE	BANDS UP TO	- osc.	MULTIPL	BUFFER	FINAL	MOD	TORS	CLASS
18*	12*	$\rightarrow 1700 \mathrm{Mc}$	$\rightarrow 6 \text { AK6 }$	5763	5876	2.5876	680	(6AOS)	A
17	15	$\rightarrow 175 \mathrm{Mc}$	$6 A K 6$	$\triangle \text { CAK6 }$	5763	5763	6 6	6005	ABI
40	27	, 160 Mc	$\rightarrow 6 A K 6$	$6 \text { AKG }$	5763	$2 E 26$	61	(616)	AB1
50	36	200 Mc	GAK6	$\rightarrow 6 \text { AK6 }$	5763	832.4	6	(616)	ABI
150	120	$\rightarrow 200 \mathrm{Mc}$		5763	2 E 26	(829.8	807	(807)	8**

[^17]selected to save you time and calculation

	6	9	*	3	0
	nimater on	\%emeation		\%ater	
	vors				
					5
		sam			
$\overbrace{5016}$	comer	$\stackrel{5}{0} 8$		$\%$	
	坔A				
			S	\%	
	mor	ca a	S		
	${ }^{\text {mox }}$	边	\%		
	$\cdots{ }^{\text {man }}{ }^{25}$	\%	.		
		-			

RCA has a popular tube for every Amateur service, every power, and every active band.

In addition, there are specialapplication types, such as phototubes, acorns, kinescopes, iconoscopes, and the well-known receiv-
ing types in metal, glass, miniature. and subminiatures.

For additional technical data on these RCA tube types, see your local RCA Tube Supplier, or write RCA, Commercial Engineering. Section A35M, Harrison, N. J.

Are you getting the new RCA HAM TIPS? There's a copy waiting for you at your RCA Tube Supplier.

$$
\therefore i-1 a-D a-D i n_{o}
$$

Yes, say hams the world over it's CO

CAPACITORS • VIBRATORS • ROTATORS - ANTENNAS - CONVERTERS
for dependable service in all radio and TV applications
Whenever hams CQ , Cornell-Dubilier gets the reconmendations on dependable capacitors; rotator, TV, FM and AM antennas: power converters and vibrators. For the most for your money look for the C-D quality trade-mark on these components. Cornell-Dubilier Electric Corporation, Dept. AH50, South Plainfield, N. J. Other plants in New Bedford, Brookline and Worcester, Mass. ; Providence,

CORNELL-DUBILIER "SKYHAWK" ROTATORS

Rotators that will handle 10 meter and 20 meter beam antennas. Ruggedly constructed, these weatherproof rotators will fit masts up to 2 inches O.D. Furnished with most accurate compass indicator control device available. Also FM, AM and TV antennas of all types, shapes and sizes.

CORNELL•DUBILIER VIBRATORS

Both heary duty and automobile radio vibrators have now been added to the famous C-D bannerhead. For the finest engineering in vibrators - for quiet, stable long-life insist on C-D vibrators. Catalog No. VA of standard stock vibrators on request.

CORNELL-DUBILIER POWERCON CONVERTERS

C-D) Powercons are honestly rated for dependathe trouble-free long life. A complete line for conversion to 110 volts $A C$ from 6,32 or 110 volts $D C$; converters for operating phono-turntahles from 110 $V D C:$ battery chargers for 6 and 12 volt $D C$ nutput from 110 VAC and converters for conversion of IC voltage at one level to DC at another. Poweran catalog on request

MUULI ~er
T- 602

Here's the exact duplicate of the TEC Projection Oscilloscope developed for the U. S. Navy for mass electronics training. Makes waveforms brilliantly clear to groups as large as 750 persons! No more students hunching round a tiny image! No more mistaking what you mean! Only TEC gives you such advanced features for lop performance and nexibility:

IDEAL FOR

- SCHOOLS AND COLLEGES
- military training
- LABORATORIES
- INDUSTRY tRAINING
- DEMONSTRATIONS
- GOVERNMENT AGENCIES

AMPLIFIER CHARACTERISTICS
PAIKLVETER
A.C Goin
D.C Gain

L-F Response
H-F Respanse
Input Impedance
Altenuator
Def. PlatesDirect
y axis
i mu rms/inch
2.5 rolts/inch
$=10 \% 2 \mathrm{cps}$
$-10 \% 750 \mathrm{he}$ - 3 db 825 kc 2 megohms, 30 mm 1. 10, 100 X
A.C, 1.5 megs,

20 mmf

SWEEP CIRCUITS
Recurrent atweeps
Driven sweepy
Linearily.
Synchronization:
line freq sweep:
GENERAL
Size: $26^{\prime \prime}$ wide, 33° deep, $66^{\prime \prime}$ high; weight: 350 lbs .
Input: 105 - 130 volls, 50 cps, 600 wolts
Price: $\$ 2495$ - F.O.B. Now York City

BLACKBOARD
PICTURE SIZE
Integral screen:

$$
\begin{aligned}
& 18^{\prime \prime} \times 24^{\prime \prime} \text {, non-directional } \\
& \text { ojected screen: } \\
& 8^{\prime} \times 10^{\prime} \text {, or larger, as desired }
\end{aligned}
$$

SIGNAL CALIBRATOR
Built-in, line-frequency signal, range 0 - 10 volts. Reads peak-to-peak voltage

OPTICS
5 RPA tube, 20 kv acceleration, 1/1.9-5" Bausch \& Lomb coated lens Tube brighiness ! 100×100 line raster) 130 foot candles, averag.

NOTE: Model T-602 available as a medium gain wide band instrument, on special order.
Price on applicrition

MODEL T-601-A

 WIDE-BAND HIGH-GAIN OSCILLOSCOPEThe TEC Model T-601-A Oscilloscope is a general-purpose high-quality cathode-ray oscilloscope, which has been designed for laboratory engineering use. It has all the features requisite to a precision laboratory equipment, and is in every sense a professional unit. It uses a Type 5UP $5^{\prime \prime} \mathrm{C}-\mathrm{R}-\mathrm{T}$ with an accelerating potential of 1750 volts. It includes the necessary engineering features of phaseable 60 cycle sweep, internal voltage calibrator, as well as wide band amplifiers and driven sweep circuit.

AMPLIFIER CHARACTERISTICS

PARAMETER	Y-AXIS
Gain	$10 \mathrm{mv} \mathrm{rms} / \mathrm{in}$
L-F Response	10\% tilt 10 cps
H-F Response	- $3 \mathrm{db} @ 12 \mathrm{Mc}$
Input Z	2 Megs, 20 mmf
Attenuatar range	1, 10, 100, 1000 X
X-AXIS	2 AXIS
$250 \mathrm{mv} \mathrm{rms} / \mathrm{in}$	1.5 v ims visible
10\% tilt 20 eps	-
-3 db @ 250 kc	Useable to 1 Ms
2 Megs, 10 mmf	50 K ohms, 50 mmf

SIGNAL CALIBRATOR

Built-in, line frequency signal, range $0-10$ volis.
Reads peok-1o-peak voltoge.

GENERAL

Range of Centering: $3^{\prime \prime} \times 4^{\prime \prime}$ approximately X and Y axes respectively
line Width: Approximately 0.5 mm at best focus Input: 105-125 $\times \mathrm{rms} 50 / 60$ cycles; 175 watts Size: $14^{\prime \prime}$ High $\times 10^{\prime \prime}$ Wide $\times 17^{\prime \prime}$ Deep Weight: Approximately 45 lbs .

- 17 TUBES INCLUDING 5". CRT.
- 10 MILLIVOLT SENSITIVITY
- 12 MEGACYCLE BANDWIDTH
- DEFLECTION PLATES AVAILABLE ON TERMINAL BOARD
- continuously variable calibrator
- SWEEP MAGNIFICATION 5 TIMES SCREEN SIZE
- GOOD TRANSIENT RESPONSE
- TRIID AND PROVEN CIRCUITS

SWEEP CIRCUITS

Recurreat ${ }^{\circ}$ eops 10 cps to 100 kc , dutomotic retroce blanking dircuit
Driven Swesps: 10 microser to 10^{5} micrasec., outomotic brightoning circuit
lineorify: $\pm 10 \%$ variotion of epot valocity
Synchronization: Internal, external, power line =- input: tigh goin
Senshivity Ahnimum syne volfoge 30 mv rms
To synchronize of 1000 cps
Sweep Expansion; S times Puli scale, undistorted
Naximum Writ ng Speed. 2.j inshes per microsecond

You Can Rely on MALLORY Approved Precision Products

VIBRAPACK* Powar Supplies . . . A completely dependable source of high voltage where commercial $A C$ is not available. A complete line includes units adaptable to many applications. High efficiency, low battery drain, rugged dependability, compact, light weight.

"hamband" switches . . This Ceramir Section Switch is one of a group of Mallory switches designed to meet your every need. Available in one or more sections with one or more circuits per section... ideal for band switching in low power transmitter circuits and many other applications.

You can rely on Wallory Approved Precision Products to give you long life and dependable service . . . fewer shut-downs and less trouble-shooting. You can rely on Mallory for helpful literature and advice on your technical problems. And you can rely, too. on your Mallory Distributor. He is ready to serve you.

Insist on Mallory Many amateurs have standardized on the complete line of Mallory Approved I'recision Products... Capacitors . . . Controls . . . Inductuners . . . Resistors . . . Switches .. Jacks \& Plugs ... Vilirators .. . Rectifiers . . . Battery Chargers... Noise Filters... and a wide range of special items, accessories, tools and harduare.

An excellent general purpose tuner for the entire frequency range from 52 through 216 megacycles. Write for technical infornation bulletin.

```
P. R. MALLORY & CO., Inc.
INDIANAPOLISG6, INDIANA
```

*Reg. U. S. Pot. Off.
**Reg. Mrademark of P. R. Mallary \& Co., Inc. for inductance funing devices covered by Mollary-Wore potents.

"THE HAM TUBE YOU WANT-

 when you want it-
you'll find it in G.E.'s complete line!

... plus circuit-application help that I'm glad to give you regularly in Ham News, or by letter upon request."

Lighthouse Larry
C 1951 by General E/ectror Conpany

G-E POWER TUBES

GL-2C40
GL-2C43
GL-2E24
GL-2E26
GL-4D21/4-125A
GL-4-250A/5D22
GL.35T
GL-100TH
GL-203.A
GL-211

GL-592
GL-802
GL-803
GL. 805
GL-806
GL-807
GL-810
GL-811-A
GL-812-A
GL. 813

GL-814
GL-815
GL-826
GL-828
GL-829-8
GL.832-A
GL- 837
GL-838
GL-1613
GL. 1614

GL-1619
GL. 1623
GL-1624
GL-1625
GL-8000
GL-8005
GL-8012-A
GL-8025-A

G-E RECEIVING TUBES

Mare than 500 types, covering every circuit need. Metal, glass, miniatures.

5R4-GY
GL. 816
GL.866-A
GL-872•A
GL-8008

G-E VACUUM CAPACITORS

GL-IL21
GL-1L22

ENERAL

GL-1L25
GL-IL31

G-E RECTIFIER TUBES

OHMITE

BROWN DEVIL RESISTORS

Sturdy, wirc-wound, vitre. ons-rnameled resistors for voltage dropping. biaw milts, bleeders, etc. In 5, 10 and 20. watts; values to 100,000 otme.

LITTLE DEVIL COMPOSITION RESISTORS

Tiny, molded, fixed resistorsindividually marked with resistance and wattage rating$1 / 2$. I. and 2 -watt sizen. $\pm 10 \%$ tol. Also $\pm 5 \%$ tol. 10 Ohus to 22 mrgohms.

FIXED RESISTORS

Resintance wire is wound over at - coramic core, permanently locked in place. insulated and protected by Ohmite vitreous enamel. In 25. 50. 100, 160. and 200-watt stock sizes; valurs from 1 to 250,000 ohms.

DIVIDOHA

 RESISTOR!A. You can quickly adjus these handy vitreous-enamele resistors to the exact resistanc you want. or put on taps whet ever meeded for multi-tap re sistors and voltage dividers. It sizo- from 10 to 200 watts, to 100,000 ohms.

DUMMY

 ANTENNA RESISTORS For loading transmit. ters or other r.f. sources. Now, rupged, vitreous-enameled units are practically non-ract. tive within their recommended frequency range. 100 And 250. watt sizes, 52 to 600 ohms, $\pm 5 \%$.

A high-quality, $2 \cdot$ watt unit wit a good margin of safety. Re sistance element is solid mold ed-not a film. The noise leve is low ant decreases with use.

CLOSE CONTROL RHEOSTATS

Insure permanently smooth. clove control. Widely used in indus. try. All ceramic. vitreous enameled: 25. 50, 75, 100. 150. 22.5, 300, 500, $\mathbf{3 5} 0$, and 1000 watt sizes.

POWER LINE CHOKES

Keep r.f. currents from going out over the power line and causing interference with radio recrivers. Also used to stop int. coming r.f. interference. Has a ceramic core and mointureproof coating. In 5, 10 , and 20 amps.

Single-layer wound on low powerfactor stratite or bakelite rores, with mointureproof coating. Severn stock size- for all frequencies, 3 to 520 me. Two mit. rated 600 ma, others rated 1000 ma.

HIGH-CURREN

 TAP SWITCHES Compact, all-cerami multipoint, rotary st lectors for a-c use. Seif-cleaninz silverto-silver contarte. Rate at $10,15,25,50$, and 100 ant peres. Two or more can b mounted in tandem. TAP SWITCHE Used in a simple potomtiompter cirenit as a trans. mitting element to remotrly indirate the position of a rotary. bean antemna. CALCULATOI
Redesigned! Figures all Ohm
Law problems, itwhding parall
resistance, with one selting
the slide. Also has slandard slid
rule scale. Send 25 in coin. CALCULATOI
Redesigned! Figures all Ohm
Law problems, itwhding parall,
resistance, with one selting
the slide. Also hats standard slid!
rule scale. Send $25 ¢$ in coin. CALCULATOI
Redesigned! Figures all Ohm
Law problems, itwhding parall
resistance, with one selting
the slide. Also has standard slid!
rule scale. Send 25 in coin. CALCULATOI
Redesigned! Figures all Ohm
Law problems, itwhding parall
resistance, with one selting
the slide. Also has standard slid!
rule scale. Send 25 in coin. CALCULATOI
Redesigned! Figures all Ohm
Law problems, inthding parall
resistance, with one selting
the slide. Also hats standard slid!
rule scale. Send 25 in coin. CALCULATO
Redesigned! Figures all Ohm
Law problems, inwhding paral
resistance, wibh one selting
the slide. Also has standard sli
rule scale. Send 25 in coin. FREQUENCY
CHOKES -

SEND FOR FREE CATALOG

Stork paxalog lï-t hundrede of whith, given helpuiul infermation.

OHMITE MANUFACTURING CO.

 4822 Flournoy St^{2}.Chicago 44, 11

QST faithfully and adequately reports each month the rapid development which makes Amateur Radio so intriguing. Edited in the sole interests of the members of The American Radio Relay League, who are its owners, QST treats of equipment and practices and construction and design, and the romance which is part of Amateur Radio, in a

प5I BINDERS

Price $\$ 2.50$ each, postpaid

Available only in U. S. and Possessions

Those who take pride in the appearance of their bookshelf and wish to keep their reference file of QST in a presentable manner, appreciate the QST binder. It is stiff-covered, finished in beautiful and practical fabrikoid. Cleverly
 designed to take each issue as received and hold it firmly without mutilation, it permits removal of any desired issue without disturbing the rest of the file. It accommodates 12 copies of QST. Opens flat at any page of any issue.

With each Binder is furnished a sheet of gold and black gummed labels for years 1940 through 1960. The proper one can be cut from the sheet and pasted in the space provided for it on the back of the binder. The back copies of QST contain the record of development of modern amateur technique. They are invaluable as technical references. Some back copies are available-list will be sent upon request.

Ama-
teurs are
noted for their
ingenuity in overcom-

ing by clever means the minor and major obstacles they meet in their pursuit of their chosen hobby. An amateur must be resourceful and a good tinkerer. He must be able to make a small amount of money do a great deal for him. He must frequently be able to utilize the contents of the junk box. Hints and Kinks is a compilation of hundreds of good ideas which amateurs have found helpful, including conversion procedures for war surplus. It will return its cost many times in money savingsand it will save hours of time.
$\$ 1.00$ postpoid
U.S.A. and Passessians, and Conodo
Elsewhere
$\$ 1.25$

A

compre-
hensive manual
of antenna design and construction, by the headquarters staff of the American Radio Relay League. Sixteen chapters, profusely illustrated. Both the theory and the practice of all types of antennas used by the amateur, from simple doublets multi-element rotaries, including long wires, rhomboids, vees, phased systems, v.h.f systems, etc. Feed systems and their adjustment. Construction of masts, lines and rotating mechanisms. The most comprehensive and reliable information ever published on the subject.

obtain an

amateuropera-
tor's license you must pass
a government examination. The
License Manual tells how to do that -tells what you must do and how to do it. It makes a simple and comparatively easy task of what otherwise might seem difficult. In addition to a large amount of general information, it contains questions and answers such as are asked in the government examinations. If you know the answers to the questions in this book, you can pass the examination without trouble.

25 c
Postpaid

This
booklet is
designed to
train students to handle code skillfully and with precision, both in sending and in receiving. Employing a novel system of code-learning based on the accepted method of sound conception, it
is particularly excellent for the student who does not have the continuous help of an experienced operator or access to a code machine. It is similarly helpful home-study material for members of code classes. Adequate practice material is included for classwork as well as for home-study.

There are also helpful data on high-speed operation, typewriter copy, general operating information-and an entire chapter on tone sources for code practice, including the description of a complete code instruction table with practice
 oscillator.

$25 c$

Postpaid
" A
Course In Radio

Fundamentals" is a study

guide, examination book and laboratory manual. Its text is based on
the "Radio Amateur's Handbook." As a text, this book greatly smooths the way for the student of the technicalities of radio. It contains interesting study assignments, experiments and examination questions for either class or individual instruction. It describes in detail 40 experiments with simple apparatus giving a complete practical knowledge of radio theor: and design

50c

Postpaid
Anywhere

Amateur Radio MAP, entirely different in conception and design from any other map, contains a wealth of information usefel to the radio amateur. A special type of projection made by Rand, McNally to A.R.R.L. specifications, it gives great circle distance measurements in miles or kilometers within an accuracy of $2 \pi \%$. The map shows principal cities of the world; local time zones; WAC divisions;
more than 265 countries, indexed; and amateur prefixes through-
out the world. Large enough to be easily readable from your
operating position, the map is printed in six
colors on heavy paper, 30×40 inches.

$\$ 2.00$

STATION OPERATING

As can be seen in the illustration, the log page provides spaces for all facts pertaining to transmission and reception, and is equally as useful for portable or mobile operation as it is for fixed. The log pages with an equal number of blank pages for notes and a sheet of graph paper are spiral bound, permitting the book to be folded back flat at any page, requiring only the page size of $81 / 2 \times 11$ on the operating table. In addition, a number sheet, with A.R.R.L. Numbered Texts printed on back, for traffic handlers, is included with each book.

5Oc per book

Also available in loose-leaf form, punched for a three-ring binder, $10081 / 2 \times 11$ log Sheets, 75 c.

Official Radiogram Forms

The radiogram blank is designed to comply with the proper order of transmission. All blocks for fill-in are properly spaced for use in typewriter. It has a heading that you will like. Radiogram blanks, $81 / 2 \times 71 / 4$, lithographed in green ink, and padded 100 blanks to the pad, 35 c per pad, postpaid.

Message Delivery Cards

Radiogram delivery cards embody the same design as the radiogram blank and are available in two styles-on stamped government postcard, 2c each; unstamped, lc each.
The operating supplies shown on this page have been designed by the A.R.R.L. Communications Department. MEMBERSHIP

Members' Stationery

Members' stationery is lithographed on standard $81 / 2 \times 11$ bond paper which every member should be proud to use for his radio correspondence.

100 Sheets, \$1.00 250 Sheets, \$1.50
500 Sheets $\$ 2.50$
pastpaid

> In the
> January,
> 1920 issue of
> QST there appeared
> an editorial requesting
> suggestions for the design of an
A.R.R.L. emblem-a device whereby
every amateur could know his brother amateur
when they met. In the July, 1920 issue the design was announced-the familiar diamond that greets you everywhere in Ham Radio. For years it has been the unchallenged emblem of amateur radio.

[^18]

Lightning Calculators

Aware of the practical bent of the average amateur and knowing of his limited time, the League, under license of the designer, W. P. Koechel, has made available these calculators to obviate the tedious and sometimes difficult mathematical work involved in the design and construction of radio equipment. The lightning calculators are ingenious devices for rapid, certain and simple solution of the various mathematical problems which arise in radio and allied work. They make it possible to read direct answers without struggling with formulas and computations. They are tremendous time-savers for amateurs, engineers, servicemen and experimenters. Their accuracy is more than adequate
for the solution of practical problems, and is well within the limits of measurement by ordinary means. Each calculator has on its reverse side detailed instructions for its use; the greatest mathematical ability required is that of dividing or multiplying simple numbers. They are printed in several colors. You will find lightning calculators the most useful gadgets you ever owned.

TYPE B

Ohm's Law Calculator

This calculator has four scales: a power scale from 1C microwatts through 10 kilowatts, a resistance scale from .01 ohm through 100 megohms, a current scale from 1 microampere through 100 amperes, a voltage scale froir 10 microvolts through 10 kilovolts.

With this concentrated collection of scales calculations may be made involving voltage current, and resistance, and can be made with a single setting of a dial. The power oו voltage or current or resistance in any circui can be found easily if any two are known This is a newly-designed Type B Calculato which is more accurate and simpler to use than the justly-famous original model. It wil be found useful for many calculations whict must be made frequently but which are ofter confusing if done by ordinary methods. Al answers will be accurate within the tolerance: of commercial equipment. \$1.00 Postpaid.

To Handbook readers

who are not ARRL members . . .

For thirty-seven years the American Radio Relay League has been the organized body of amateur radio, its representative in this country and abroad, its champion against attack by other interests, its leader in technical progress, its center of operating activities.

Join the
 Seaque

ARRL is an organization that does things. The League protects amateur interests in domestic legislation and regulations and at international conferences. It stages annual operating events such as the Sweepstakes, Menber Party, Field Day and DX contests; offers appointments such as Official Experimental Station, Emergency Coordinator, and Official Bulletin Station; and issues awards for achievement in operating skill such as Worked-All-States, DX Century Club, and Code Proficiency. It handles foreign QSL cards for you, answers your technical and regulatory questions, provides you or your clubs with training aids and operating literature - to name just a few of its many services.

As an ARRL member, you will be
posted on amateur affairs. QST will be delivered to your door each month, chock full of the latest news of ham doings, not to mention a wealth of technical and constructional material on amateur gear.

We need you in this big organization of radio amateurs. You need the League and its services to get the most out of your amateur activities.

A bona-fide interest in amateur radio is the only essential requirement for membership, but full voting membership is granted only to licensed amateurs of the United States and Canada.

An application blank for League membership and QST subscription is printed on the following page.

The American Radio Relay League, Inc.
Headquarters: WEST HARTFORD, CONDECTICUT, U. S. A.

Ameificin Radio flay League

Administrative Headquarters: West Hartford, Con no, U. S. A.

American Radio Relay League,
West Hartford, Comm., U. S. A.
Being genuinely interested in Amateur Radio, I hereby apply for membership in the American Radio Relay League, and enclose $\$ 4.00^{*}$ in payment of one year's dues, $\$ 2.00$ of which is for a subscription to QST for the same period. Please begin my subscription with the issue.

The call of my station is
The class of my operator's license is
I belong to the following radio societies

> Send my Certificate of Membership \square or Membership Card \square (Indicate which) to the address below:

Name

$\left(\begin{array}{l}* \$ 4.00 \text { in the United States and Possessions, } \\ \$ 4.25, \text { U. S. funds, in Canada, } \$ 5.00, \\ \text { U. S. funds, in all other countries. }\end{array}\right)$

COMPONENTS FOR EVERY APPILCATION

IINEAR STANDARD
High Fidelity Ideal

HIPERM ALLOY
High Fidelity . . . Compact

ULTRA COMPACT
Porloble . . . High Fidelify

POWER COMPONENTS
Rugged . . . Dependable

OUNCER
Wide Range... I aunce

VARITRAN
Valtoge Adjustors

SUB OUNCER Weight $1 / 3$ ounce

COMmERCIAL GRADE
Industrial Dependability

SPECIAL SERIES Quatily for the "Ham

VARIABLE INDUCTOR
Adiust like a Trimmer

TOROID HIGH O COILS
Accuracy . . . Stobility

TOROAD FILTERS
Any type lo 300kC

EQualizers Braadcost \& Sound

pulse transformers
For all Services

saturable reactors
Power or Phase Cantral

LARGE UNITS
Ta lookw Broadeast

MODULATION UNITS One wall to lookw

MU-CORE FILTERS
Any type $1 / 2-10,000$ eye.

PLUG-IN TYPE Quick shange servise

LINE ADJUSTORS
Match any line valtage

CABLE TYPE
For mike cable line

VERTICAL SHELLS
Husky . . - Inexpensive

STEP-DOWN
Up ta $2500 \mathrm{~W} .$. Stock

Channel frame
Simple low cost
\square

Be Sure of Your Installations Getthe Gysitumalsarenteb TRANSMISSIONLINE

APTITUDE RATING

No. 8227

Frequency Attenuation

(mc)	per 100 ft
100.	4.1
200.	6.4
300.	8.4
400.	10.2

For use with relevision and FM antenna in extremely noisy locations.

APTITUDE RATING
No. 8240
Frequency Altenuation (me) per 100 f 100.4 .10
$200 . \quad 6.20$
$300 . \quad 8.00$
400.
9.50

For use with radio lrequency transmission video, lesl equipment, and pulse transmission

The

Aptitude-Jested LINE

ESICO

Red Label Irons

These are the irons that are used so universally in factory production lines. They are light weight, finely balanced, and have the coolest handles of any irons on the market. Elements are mounted and held in place with a knurled nut which engages the back end of the element and seats against the shoulder of the case shell, holding the element firmly in place regardless of the most rugged use. They ore ideal from a maintenance standpoint for, due to their two piece combination terminal and handle, elements are replaceable in three minutes or less. The only iran an the market designed for use with or without a ground wire.

Irons are normally supplied in four wattages. They are obtainable, when required in quantity, in special wattages at no extra cost. Standard voltages are 105-120 and 220-240. Special voltages may be had. List prices of irons are as follows: No. 38-100 watt \$7.65, No. 58-200 watt \$9.85, No. 78-300 watt $\$ 12.05$ and No. $98-550$ watt $\$ 14.25$. The iron ilfustrated is the No .38 and is $1 / 3$ actual size

- No. 61 Pencil Iron

This pencil iron is only seven inches in length and weighs just $21 / 2$ ources ex. clusive of cord. The handle temperature of the point where it is held in the fingers, is actually no higher than body temperature. Diameter of handle is $3 / 4^{\prime \prime}$ and may be used as a pencil for the most delicate soldering operations. The element construction is of the same type as used in ESICO industrial irons and will give long service. The tip is the so-called plug type, held in place with a set screw. Three shapes of tips are available, Type B-1/4" dia. pyramid point, Type $A-1 / s^{\prime \prime}$ dia. straight pencil point and Type $C-1 / s^{\prime \prime}$ dia. bent 90 degrees with a pencil point.

The No. 61 is regularly wound to 25 watts at 105-1 20 volts, but may be hod in higher wattages, when required in quantities at no extra cost. List price of iron is $\$ 5.45$. Tips A, B, or C 40 c each list. Irons ore ovailable thru any of the better tool or Radio \& Electronic Supply houses. If your distributor can not supply you from stock, send your order direct to us, but please be sure and
 give name of your distributor.

SOLDER POTS

Ruggedly constructed cast iron pots, with easily replaceable elements. Model No. $12-3 / 4 \mathrm{lb}$. cap. 200 watt. Net. $\$ 4.95$

Model No. 36-21/4 lbs. cap. 250 watt. Net. $\$ 6.05$
Model No. 60-3³/4 Ibs. cap. 325 watt. Net. $\$ 7.15$

- Temperature Control Stand

This control stand is thermostatically actuated by the tip temperature of the iron. This is the only logical way to control the temperature of a soldering iron, for there is too much lag between element and tip temperature for the application of a thermostat to the element, whether in an iron or a control stand. Cat. No. 5, irons up to $1^{\prime \prime}$ dia. tip; Cat. No. 6 , irons $1^{\prime \prime}$ to $15 /{ }^{\prime \prime}$ dia. tips. List price. $\$ 7.15$

- Ni.y Bliley offers the famous CCO-2A rystal controlled oscillator for 2-6-10-11 neters. Direct output on 6-10-11 meters. Je Bliley type AX2 20 meter crystal or top performance on 10.11 meters; hliley type AX3 for 6 and 2 meter peration. The ideal nucleus for your lew equipment.

BLILEY TYPE AX3

BLILEY TYPE AX2
Bliley Type
Supplied Toleronce (ke)

Range
(ke)

AX2
± 1

1803-1822 1878-1897 $1903-1922$
$1978-1997$
$3500-3999$
$3500 \cdot 3999$
$7000-7425$
$7000-7425$
$12500-13500$
$13480 \cdot 13615$
$14000 \cdot 14850$ Calibrated to $+.00 \overline{2 \%}$ Drify less than $.0002 \%$ per ${ }^{\circ} \mathrm{C}$.

BLILEY TYPE AX3		
Bliley Type	Supplied Tolerance (kc)	Ronge (ke)
AX3	± 5	$24000-24333$
AX3	± 5	$25000-25500$

Specially designed third overtone crystal produced for the Bliley CCO. 2A. Calibroted to $\pm .003 \%$. Drifs le:s than $.0002 \%$ per ${ }^{\circ} \mathrm{C}$.

BlILEY TYPE

Commercial designation for HC.6/U holder; metal-to glass hermetic seal. Supplied as types CR-18; CR-23; CR-27; CR-32 for Military and CAA specifications. Frequency range $1-100 \mathrm{mc}$.

Miniature crystal oven. Designed specifically for use with Bliley Type BH6 crystal units. Maintains crystal temperature within $\pm 2^{\circ} \mathrm{C}$ under ambient conditions between $-55^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$. Heater rating 6.3 volts, 87 amps . Size: $114 "$ dia. $x \quad 19 / 6 "$ high. excluding octal base pins. Warm up time: 7 minutes. Dual unit available.
 reference at 100 kc type BCS-IA maintains frequency better than two parts in 10.000,000 for any 24 hour period. An outstanding instrument utilizing special purpose crystal and circuitry. Furnished with rack panel or cabinct. Available with 1000 kc crystal on special order. Write for Bultetin 40,

For precision CRYSTALS

BLILEY TYPE BCS - MODEL IA

CRYSTALS
BLILEY ELIBCTRIG COMPANY
UNHON STATION

PAR-METAL Standard

RACKS • CABINETS • CHASSIS • PANELS

ADAPTABLE FOR EVERY REQUIREMENT

from a Small Receiver to a DeLuxe Transmitter!

No. R-3675 - Type "C" Cabinet Racks - $151 / 4^{\prime \prime}$ Deep Racks - For $19^{\prime \prime}$ Rack Panels. 3 Sizes

Par-Metal Housings for Electronic Apparatus are of beautiful streamlined design, ruggedly constructed, and highly adaptable. Because Par-Metal offers Standardized Units for every type of transmitting or receiving apparatus, special Made-toOrder units on many jobs are unnecessary.

A representative number of ParMetal Racks, Cabinets, Chassis, and Panels are illustrated on this page. Sizes for every requirement are available. By using PAR-METAL STANDARDIZED UNITS, you can build Electronic Equipment that is professional in construction, appearance, and most economical. Par-Metal units are being extensively used for Amateur equipment as well as Commercial, Marine, Airline, and Broadcast equipment.

PAR-METAL PRODUCTS CORP.

32-62 49th Street, Long Island City 3, N. Y.

EXPORT DEPT.: ROCKE INT. CORP., 13 E. 40th St., New York 16, N. Y.

No. DL- 128 Single Unit Desk Panel Cabinet Rock, 3 Sizes

No. DL. 1713 Double Unit Desk Panel Cabinet Rock. 191/4'

$$
\begin{aligned}
& c k .191 / 4^{\prime \prime} \\
& 213 \%^{\prime \prime} \times 15^{\prime \prime}
\end{aligned}
$$

No. CA. 200 Rounded Corner Jtility Desk Cobinet. 5 Sizes

No. FC- 510 Deluxe Type Amplifier Foundation Chossis. 6 Sizes

No. SP- 1050 Speaker Panel for 19' Rock Panel, 4 Sizes

No. C. 996 Standard Speaker Cabinet. 4 Sizes

No. TR-2520 Table-Type Relay Rocks. 2 Sizes

They're RUGGED.
Sturdy construction throughout. Molded inner unit with coil frames and insulators integral for maximum rigidity. Exceptionally high ratio, torque-to-weight.

They're NEAT
Dials are metal so they stay good looking in spite of age and moisture. Rich telephone black finish on metal cases. Concealed coils and good readable scales.

They're SENSITIVE Accuracy well within 5%. AC meters are double-vane repulsion type; nost DC meters are polarized-vane solenoid type. High internal resistance voltmeters available in popular ranges.

They're GUARANTEED. For one year from date of purchase against defective workmanship and material, and will be repaired or replaced if sent to the factory postpaid with 25 c handing charge.

They're INEXPENSIVE For instance, Model 950, 0-100 DC Ma. sells for \$1.60; Model 550, 0-10 DC Amps. for $\$ 1.45$. Other meters are correspondingly reasonable in price. You get the benefit of low costs made possible by quantity production.

The line is COMPLETE. All of these features are available in 323 ranges and types; AC, DC, Voltmeters, Ammeters, Milliammeters, Resistance Meters. For instance, IDC Milliammeters are made in 65 types and ranges.

They're AVAILABLE. Stocked by leading elecronic distributors in a wide variety of types and ranges. Look for this display.

New Catd log Sheet F-S4-SH gives approximate internal resistances. Ash for your copy.

Need SPECAALIZ:D equipment GATES will PERFORM

Large or small either in size, complexity or quantity-if it's electronics, Gates will do the job. There is a Gates field engineer nearby. He will enjoy chatting over your problem with you . . . A wire will bring him.

Left, special master control console constructed for "Voice Of America". Gates hos been in oudio for 28 years.

Right, 15KW high frequency high speed felegraph transmitter specially designed for a Government Agency.

Left, 10 watt mobile transmitter for single and two-way service. Transmitters of all power ranges ovailable.

Precise Accuracy + Maximum Versatility + Space-saving Compaciness

The potentiometers illustrated above are typical examples of the tough problems HELIP Of engineers are solving every day for modern electronic applications, If you have a problem calling for utmost precision in the design, construction and operation of potentiometer units caupled with minimum space requirements and maximum adaptability to installation and operating limitations - bring your problems to HELIPOR. Here you will find advanced "know-how," coupled with manufacturing faxilities unequaled in the industry!

The HELIPOTS above-now in production for various military and industrial applications-include the following unique features

This 10-turn Helipot combines highest electrical accuracies with exeremes in mechan. ical precision. It features zero electrical and mechanical blacklash...a precision-supported shaft running on ball bearings at each end of the housing for low torque and long life ..materials selected for greatest possible stability under aging and remperarure extremes ... special mounting and coupling for "plug-in" convenience... mechanical and electrical rotation held to a colerance of $1 / 2^{\circ}$ \ldots. . resistance and linearity accuracies, $\pm 1 \%$ and $\pm 0.025 \%$, or berte, respectively.

2
This foar-gang assembly of Nodel F single-turn potentiometers has a special machined aluminum front ent for servo-sype panel mounting. with shaft supported by pre cision ball bearings and bating a splined and threaded front extension. Each of the four resistance elements contuins 10 equi-spaced tap connections with terminals, and all parts are macbined for greatest possible stability and accuracy.
(3)This standard Model A, 10 -rurn Hell POT has been modified to incorporate ball bearings on the shafe and a special flange (or
ring-type) mounting surface in place of the customary threaded bushing. This Helipot also contains additional taps and terminals at the $1 / 4$ - and $93 / 4$-turn positions.
(3This standard Model B, 15-turn HellPOT bas a total of 40 special tap connections which are locased in accordance with a schedule of positions required by the user to permit external resistance padding which changes the normally-linear resistanse i's. rotation curte to one hating predetermined nor-linear characteristics. All taps are permanently spot-iwelded and short out only ure or two turns on the resistance elenent-a unique Hpilpot feature!
(3) This six-gang assembly of standard Model F single-turn potentiometers has the customary threaded bushing mountings, and has shaft extensions at each end. The two center potentiometers each have 19 equispaced, spot-welded rap connections brought out to terminals. Each tap shorts only two turns of .009 " diameter wire on the mesist. ance element.
(8) This Model B, 15 -turn Helipot has betn modificd to incorporate, at the extreme
ends of mechanical and electrical rotation, switches which contral circuits entirely separate from the HElipot coil or irs slider contact.
(This 10 -turn Helipot has many de. sign features similar to those described for unit No. 1, plus the following additional features... a servo-type front end mounting splined and threarded shaft extension.. and a center tap on the coil. All components are machined to the highest accuracy, with concentricities and alignments held in some places to a few ten-thousandths of an inch to conform to the precision of the mechanical systems in which this Hellpot is used. Lintarity accuracies frequently run as bigh as $\pm 0.010 \%$!

(3)
This single-tarn Model G Potentiometer has been modifed to incorporate a ball bear. ing shaft and a servo-fype front end mount. ing. Special attemtion is given to contact designs and pressuses to insure that starting forque does not exceed 0.2 inch-ounces under all condtions of temperature.

The obove presision potentiometers are only typical of the hundreds of apecies. ized designs which have been develaped and produced by HELIPOT to meot sigid customer specifications. For the wfmost in accoracy, dependability ond adoptability, bring your potentiomefer problems io HELIPOT !

WE'LL LEND A HELPING "HAM"

...Harvey's staff is always at your service

Authorized distributors of

receiving and non-receiving tubes batteries * test equipment television components service poris
... and other produc"s of famous nomes in radio and electronics

Need help in building or maintaining your equipment? Harvey Radio has been headquarters for hams, professionals and commercial engineers for over 23 years. Six full-time, active amateur operators, as well as a large staff of technical experts, are ready to help you.

These staff salesmen talk from personal experience. They'll recommend the right parts and equipment from our huge stock.

Harvey offers you world-wide one-stop service for everything you need in radio and electronics. Phone, wire, or letter orders from anywhere are filled as soon as they're received. Located at the crossroads of the world, one block from Times Square. Come in today, or nest time you're in New York.

free RCA HAM TIPS

Are you getting R(A HAM TIPS? There's a free copy waiting for you at Harvey Radio Co. If you can'i call personally. write for it.

103 West 43rd St., New York 18, N. Y.

106

Learn Code the EASY Way

Beginners, Amateurs and Experts alike recommend the INSTRUCTOGRAPH, to learn code and increase speed.

Learning the INSTRUCTOGRAPH way will give you a decided advantage in qualifying for Amateur or Commercial examinations, and to increase your words per minute to the standard of an expert. The Government uses a machine in giving examinations.
Motor with adjustable speed and spacing of characters on tapes permit a speed range of from 3 to 40 words per minute. A large variety of tapes are available - elementary, words, messages, plain language and coded groups. Also an'"Airways' series for those interested in Aviation.

MAY BE PURCHASED OR RENTED

The INSTRUCTOGRAPH is made in several models to suit your purse and all may be purchased on convenient monthly payments if desired. These machines may also be rented on very reasonable terms and if when renting should you decide to buy the equipment the first three months rental may be applied in full on the purchase price.

ACQUIRING THE CODE

It is a well-known fact that practice and practice alone constitutes ninety per cent of the entire effort necessary to "Acquire the Code," or, in other words, learn telegraphy either wire or wireless. The Instructograph supplies this ninety per cent. It takes the place of an expert operator in teaching the student. It will send slowly at first, and gradually faster and faster, until one is just naturally copying the fastest sending without conscious effort.

BOOK OF INSTRUCTIONS

Other than the practice afforded by the Instructograph, all that is required is well directed practice instruction, and that is just what the Instructograph's "Book of Instructions" does. It supplies the remaining ten per cent necessary to acquire the code. It directs one how to practice to the best advantage, and how to take advantage of the few "short cuts" known to experienced operators, that so materially assists in acquiring the code in the quickest possible time. Therefore, the Instructograph, the tapes, and the book of instructions is everything needed to acquire the code as well as it is possible to acquire it.

MACHINES FOR RENT OR SALE

ACCOMPLISHES THESE PURPOSES:

FIRST: It teaches you to receive telegraph symbols, words and messages.
SECOND: It teaches you to send perfectly.
THIRD: It increases your speed of sending and receiving after you have learned the code.

With the Instructograph it is not necessary to impose on your friends. It is aiways ready and waiting for you. You are also free from Q.R.M. experienced in listening through your receiver. This machine is just as valuable to the licensed amateur for increasing his speed as to the beginner who wishes to obtain his amateur license.

Postal eard will bring full particulars IMMEDIATELY

THE INSTRUCTOGRAPH CO.

Specialists in electronic tube design and construction, our over-all laboratory facilities for the design and production are recognized as outstanding.

AMPEREX Tubes are designed, not only for all phases of communications, but for application in all fields where electronic equipments are used - industrial, radiation, electro-medical...etc....to assure yourself of unvarying performance and more all-around-value for your money - be sure to specify AMPEREX.
VC-25

100-C
833.A
n
4.E
re-tube with AMPEREX

LOOK

HERE for whatever you nee

Barker \& Williamson 117. 129

Beiden80-83
Black \& De............................. 139
Bliley 126
Bogen136. 139. 143. 153. 161-167, 170, Cover

Brociner 150
Brook 138
Browning 135
Brush128. 145. 158
Bud 7. 75. 118. 126, 129, 131
Burgess28, 168
"Cullmatel" 167
Connon ,...........-76, 74, 12:
Corling ...
Cater
Centralab
\ldots
Crntury
Chelletuer …...........16i-16ib
Chic sen Itamifermer 33-.37
(inch
Citictuctin
13. 12\%, 1 к0

Cleinetat
1.6-67

Collime Ithdis 117.11? routr
Contrit

Cranam:

Dialco	
Drake Ple	
Drake, R. L. 117	
Dremel 100	

Eagle 96
Eico
21
Eimac4. 53
Electrons Inc. 4
El-Menco26. 131
Erie

Fahnstock

Fairchild 96
Federal T. \& R.6, 83

Garrard

114
General Cement25. \&8. 90-92, 99-100, 11月 General Electric
7. 18, 26-27, 144

General Hardware96-99
General Industries 142
General Tranaformer ... 31
Gilbert
GoF 1
115. 123

Gon-Set
72.102

Gordon
$\begin{array}{r}147 \\ \hline \text { 17. } 19\end{array}$
Greenle17, 99
Gusidinu
. 72
Hallicrafters119-121. 136
Hancock
Harvey-Wells
Hatheway
................... 121
Hickok
15-16
Hy-Lite
Hytron …........................... 97

You'll find our new mail-order catalog the handiest reference book and buying guide you've ever used. It's planned for your convenience - from this inclusive brand-name index on the front cover to the detailed product index in the back of the book.

> WRITE NOW for your FREE COPY of this "Buying Bible of Hamdom".

pr Mounting. Provides direct. protected both to anodes* of rectifier lubes with heavily-insulated $H V$ leads out of fop of trons. former. Primary brought out bottom for concealed whb-chassis wiring. "Insu. lated plate coos required.

Give your pocket-
book a break. Wee these units hose units le these next
in your inter.
inamsmet

FREE CATALOG
Ask your Stancor distributor or write for a copy of our new catalog, listing complete specifications and prices of more than 400 transformers and related components.
to Stancor standards. No cost wasted in fancy trimmings. SAFE No exposed terminals. Insulated leads provide protected routing to circuit.
EASY APPLICATION Simplified design offers ease of mounting and neat, convenient circuit wiring. No diffcult cutouts needed.
COMPACTNESS Each of these units is "all transformer," taking a minimum of chassis space. No bulky casing or protruding, "hot" terminals to increase mounting area. DC output rated of load terminals of single-section, reactor-input filter with full-wave mercury-vapor rectification. Primaries for 117 volts, 60 cycles.

TYPE 8	SECONDARY	OC VOLTS	OC MA,	
PART NO.	AC VOLTS		COS	ICAS
PT8311	1200.0 .1200	1000	225	280
PT8312	$1200-0.1200$	1000	325	405
PT8313	1475.0 .1475	1250	250	310
PT8314	$1790-0.1790$	1500	225	280
PT8315	$2065-0.2065$	1750	200	250

OC output rated CCS at load terminals of single-section reactor-input filter, ICAS with single-section capacitor-inpup filter. Primaries for 117 volts, 60 cycles.

- Topped for use with dual rectifier-filter systems to deliver two rated outputs simultaneously.

PC Mounting. For units requiring single. ended rectifiers where sofety, convenience and neatness are achieved with all leads brought out baftom of transformer for concelled sub-chossis wiring.

STANDARD TRANSFORMER CORPORATION 3580 ELSTON AVENUE CHICAGO 18, ILLIONIS

THIS VALUABLE BOOK all about code FREE

Hrre＇s your chance to learn code fuickly and easily ．．．to get maximum speed and proficiency in code operation ．．．rixht in your own home．The forty－year record of the CANIDIER SYS． THM in training beginners to develop and apply their talents to top speed and efficiency is sound proof of what the CANIDLER SYSTEM offers you

HERE＇S WHAT WORLD CHAMPION TED McELROY SAYS ABOUT THE FAMOUS CANDLER SYSTEM

 ＂My skill and speed are the result of the exclusive，sci－ entific training Walter Cand－ ler gave me．Practice is necessary，but without proper training to develop Concentra－ tion，Co－ordination and a keen Perceptive Sense，practice is of little value．One is likely to practice the wrong way．＂
McElroy is the Official Champion Radio Operator， 75.2 w．p．m．won at Asheville Code Tournament，July 2，1939．

LEARN CODE THE EASY CANDLER WAY

Think of the thrills and excitement you can have communicat－ ing by code with people all over the world ．．．when you herone a pood Amateur Operator．Or．yon may have your sights set on heconuing a highly－paid．expert Commerrial Operator．In either case，you can save time and moncy learning the fundamentals of case，you can sare time and moncy learning the fundamentals of
code mending and receiving and the princjples of fast，cflicient oprorating with the world famous CANIDLER SYST＇EMi．

OPERATORS

INCREASE SPEED and SKILL THE CHAMPION CANDLER WAY

Are you hoping for a nice promotion ．．a bigker salary ．．．as an expert Operator？Then，now in the time to improve your apeed and skill in coole mending and receiving．The CANIDIER SYS＇IEM OF CHAMI＇IONS nhows you how to improve your code tech． nigue－increase your npeed－develop your skill to the highest point－eliminate uervous tension－and pave the way to a top． bracket position as an expert Opmator．

Besides experience．you must have sperial training to develop the extra skill and speped you nerd to be a sucersofful Commercial Operator．The CANIDIER SYSTEM offers you that training in an easy，therough and interesting way．It is the outstanding method that has developed thousands of first－claes operators－ Method that has developed thousands of first eclaes operators－ even Champions－from ordinary operators．There is a course to＇ meet wour rejuire

> FIND OUT HOW THE CANDLER SYSTEM CAN HELP YOU. SEND NAME AND ADDRESS ON COUPON OR POSTCARD FOR FREE COPY OF CANDLER BOOK OF FACTS.

CANDLER SYSTEM CO．

P．O．Box 928，Depl．20，Denver 1，Colorado，U．S．A． and at 121 Kingsway，London，W．C．2，England．

SPECIAL COURSES FOR BEGINNERS \＆OPERATORS

The SCIENTIFIC CODE COURSE，especially designed for the beginner．Teaches the basic principles of code operation scientifically．

The HIGH SPEED TELEGRAPHING COURSE，intended for the operator who wishes code speed and skill to become a good operator or a better one faster．
The HIGH SPEED TYPEWRITING COURSE，designed for those who desire typewriting proficiency and speed．Especially designed for copying messages and press with typewriter．

ーー一ー－IT＇S FREE！－MAIL COUPON NOW！－ー一ー一

CANDLER SYSTEM CO．，Dept．20，

P．O．Box 928 ，Denver，Colo．

Or： 121 Kingsway，London，W．C．2，England
Gentlemen：Yes．．．I＇m interested in the CANDLER Code Troining System．Please rush my FREE copy of the CANDLER Book of Facts today．
\qquad
\qquad
\qquad

"WHEN YOU CALL CQ-YOU'LL GET THROUGH" WITH THESE DEPENDABLE SHURE MICROPHONES...

The "REX' Crystal Microphone is a strik-ing-looking, low-cost hand-held microphone. Fits snugly in the hand, sits firmly on a desk, or can be placed on a stand. Recommended where good quality speech reproduction is required and low-cost is an important factor. With stand adapter.
Model 710A List Price \$10.95 Model 710S. (with switch) . List Price $\$ 12.95$

The "DISPATCHER" is a Controlled Reluctance Microphone dispatching unit that handles the most severe field requirements of amateur rigs, paging and dispatching systems. Supplied with 3 -conductor shielded cable, and is wired to operate both microphone and relay circuits.

Model 520SL-7 (7' cable) . . List Price \$35.00 Model 520SL-20 (20' cable) . . List Price $\$ 37.00$

The multi-impedance "UNIDYNE" is a high quality Super-Cardioid Dynamic Microphone for hams whose rigs must provide dependable performance even under difficult conditions. Reduces random noise pickup by 73%.

The "HERCULES" Controlled Reluctance Microphone provides clear reproduction, high speech intelligibility, high output and ruggedness at an amazingly low price! Can be used indoors or outdoorsfits in the hand, sits firmly on a desk, can be placed on a stand. (With stand adapter.)

Model 510C List Price $\$ 14.50$
Model 510S . (with switch) . List Price $\$ 16.50$

The "SONODYNE", a high-output dynamic microphone with widerange frequency response. Has moving coil unit. Features a Multi-Impedance switch. A rugged unit with high sensitivity, yet perfect for Hams in high temperature and high humidity locations.

Model 51 List Price \$42.50

The "MONOPLEX", the only super-cardioid crystal microphone. Has high-output, wide-range frequency response. Perfect for Hams who want the extra "push" that insures a "strong" voice. Featureshighquality performance at low cost.

Model 737A
 . List Price \$39.75

Model 55
Lisł Price $\$ 69.50$

Other SHURE Microphones and Phonograph Pickups are illustrated in the new SHURE Catalogs. Write for catalogs No. 159 and 160.

Microphones and Acoustic Devices 225 W. Huron St., Chicago 10, III.
 Cable Address: SHUREMICRO
by the produces Altiover they handle

RATHEOM

MAlLory Tripuet OHMITE IRC vision GC Simpson ASTATIC

EUD JACKSON Beicen 5

Distributors of Radio \& Electronic Equipment 85 CORTLANDT STREET NEW YORK 7, N. Y. Phone: WOrth 4-3311

CH||CABCO

the transformer line designed for Today's Amateur Circuits . .

PLATE TRANSFORMERS.-Primary $\mathbf{1 1 5 / 2 3 0}$ Valis, $50 / 60$ Cycies
Here they are-topperforming plate transformers and matching filter reactors. They're conservatively designed, with ample insulation throughout. They operate with a temperature rise of 40° to $50^{\circ} \mathrm{C}$ at full load, 60 cycles,
 under CCS duty. Under ICAS conditions, duty cycle is 15 min . on and 15 off, $40^{\circ}-50^{\circ}$ temperature rise.

Catalog No.	$\begin{array}{\|c\|} \hline \text { Max. Pri. } \\ V A \end{array}$	Secondary A-C Load Volts	D.C Volts after filter	$\begin{array}{cc} \mathrm{D-C} \\ \mathrm{Ma} \\ \text { ICAS } \\ \hline \end{array}$	
P-45	185	$\begin{array}{r} 675-0.675 \\ 575.0 .575 \end{array}$	$\begin{aligned} & 400 \\ & 500 \\ & \hline \end{aligned}$	250	325
P-67	250	$\begin{array}{r} 900-0-900 \\ 735-0.735 \end{array}$	$\begin{array}{r} 750 \\ 600 \\ \hline \end{array}$	250	325
P-107	310	$\begin{gathered} 1150-0.1150 \\ 870-0.870 \end{gathered}$	$\begin{array}{r} 1000 \\ 750 \\ \hline \end{array}$	250	350
P-1240	360	$\begin{gathered} 1425-0.1425 * \\ 600-0.800 \end{gathered}$	$\begin{array}{r} 1250 \\ 400 \\ \hline \end{array}$	$\begin{array}{r} 150 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 260 \end{aligned}$
P-1512	550	$\begin{aligned} & 1710-0.1710 \\ & 1430-0.1430 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1250 \end{aligned}$	300	425
P-2520	915	$\begin{aligned} & 2820-0-2820 \\ & 2280-0-2280 \\ & \hline \end{aligned}$	$\begin{aligned} & 2500 \\ & 2000 \end{aligned}$	300	425
P-3025	1850	$\begin{aligned} & 3450.0-3450 \\ & 2850-0-2850 \\ & \hline \end{aligned}$	$\begin{aligned} & 3000 \\ & 2500 \\ & \hline \end{aligned}$	500	700

*Both secondaries may be rectified simulianeously

FILTER REACTORS

Cotalog No.	Inductance in Menties	Max. D-C Ma.	D-C Resistance, Ohms	Insulation Volis RMS
R-67	6	700	35	10.000
R-105	10	500	40	9.000
R-65	6	500	35	9.000
R-103	10	300	40	7.500
R-63	6	300	35	7.500

Filament Transformers
сhicago offers a complete line of filament transformers, rated to provide voltages and currents for heating a wide range of receiving and transmitting tubes. Filament units geared to today's Amateur circuits are fully described in our New Equipment Catalog. Write for your FREE copy today.

Splatter Chokes

Designed specifically for use in high bevel 'clipper' filters. They eliminate splatter caused by heavy modulation, limit band width to 3,000 cycles, effectively increase "get through" phone signal ability, prevent negative peak clipping. Windings tapped to cover inductance range from .02 to 1.5 hys at relatively constant Q. Adequately insulated to withstand high peak voltages.

Catolog No.	D-C Ma.	Insulation Volis	Inductance in Henries
SR-300	300	7,500	.02 to 1.5 Hy
SR-500	500	10,000	.02101 .5 Hy

WRITE FOR APPLICATION DATA SHEE

Low Pass Filter No. LPF-I

Designed to provide optimum attenuation of audio frequencies above 3,000 cycles. Fconomically and effectively confines a speech signal within narrow frequency limits. The filter operates out of a source impedance of $15,000 \mathrm{ohms}$
 (as presented by plate of single 6C5, 6J5, or triode-connected 6J7) into a $100,000 \mathrm{ohm}$ grid. Step-up ratio of $1: 2.63$ is obtained when primary is connected to $100,000 \mathrm{ohm}$ secondary. A plate blocking condenser is required to prevent D-C from saturating the coils in the filter proper. Filter operates satisfactorily at signal levels of +10 volts RMS across the 100,000 ohm secondary, or of +0.7 volts RMS at 500 ohms.

WRITE FOR APPLICATION DATA SHEET

WRITE FOR FREE
New Equipt. CATALOG TODAY!

CHICAGO TRANSFORMER DIVISION OF ESSEX WIRE CORPORATION

3501 ADDISON STREET • CHICAGO 18, ILLINOIS

CALL OUT WITH TURNER
 FOR RELIABLE COMMUNICATIONS

W'hatever you have to say - say it to a Turner and you'll get through. With a Turner microphone your voice is reproduced sharp and clear, free from distortions and garbling. Always dependable and ready for service, Turner microphones are built to retain their sound performance characteristics under toughest conditions. There's a model that's right for your rig. See your dealer for the complete line.

Model 22X - 22D
Crystal or Dynamic

Model 9X - 9D Crystal or Dynamic

Model 33X - 33D
Crystal or Dynamic

Model 25X - 25D Crystal or Dynamic

Write for complete Microphone Literature

the TURNER company

931 17th Street N. E., Cedar Rapids, lowa IN CANADA:

Conodian Marconi Co., Toronto, Ont., and Branches EXPORT:

Ad. Auriemo, Inc., 89 Broad Street, New York 4, N. Y.

Model 99 Dynamic
Model 999 Balanced Line Dynamic

Model U9S MultiImpedance Dynamic

Illinois condensers for every electronic need!

\square

Here's a complete line of condensers that are the ultimate in dependability - condensers that are lamously long-lived! Illinois motto "Time Tested Quality" is more than a phrase. Its truth is underscored by the eflicient perform-
ance of literally millions of Illinois condensers in service all over the world since 1934. Once you have tried Illinois condensers you, too, will join the ever-increasing numbers who consis. tently specily lllinois condensers for every electronic application.

O)
 ELECTROLYTIC CAPACITORS

Rugged, dependable tubular aluminum can with outer insulating sleeve.ILLINI-HYCAPS are short prool, hermetically sealed, have low leakage, excellent shelf life, provide extremely long, quiet and stable operation.
Type IHT available in low voltage, intermediate voltage, high voltage, special high voltage, dual units aluminum can (low voltage) and dual units aluminum can. Working voltages $D C$ lrom 5 to 500 .

Type IHC
 CLAMP MOUNTING TUBULAR ELECTROLYTICS

Built for long life under severest operating and climatic conditions. Leads color coded and securely anchored. Common negative or multiple negative units for all service applications. Available in low voltage common negative, separate negative 4 leads, multiple unite, high voltage - single units, high surge - single units, and high voltage, multiple units. Working voltages DC from 3 to 600 .

Type UMP

ILLINOIS TWIST PRONG

 MOUNTING CONDENSERSOller a wider range of voltage and capacity types than heretolore possible in units of comparable size. Characteristics superb. Capacities always plus, low power lactor, low leakage. Hermetically sealed in seamless drawn aluminum cans. Soldering lugs heavily tinned.
Available in single units, dual units, triple units and in quadruple units. Working voltages $D C$ from 3 to 600.

DCWV.

$$
\begin{aligned}
& \text { TYPELN } \\
& \text { ALUMINUM } \\
& \text { CAN CONDENSERS } \\
& \text { Buill to operted Screw Mounting) } \\
& \text { conditions. Ute Units corverest completely }
\end{aligned}
$$

Our enginzering stall is always available to help design and build in production quantities special types to meet your special needs

A new and greatly inlarged Illinois Condenser catalog is now oll press. Write for your liee copy today!

There are no rungs missing in the JK kilocycle ladder!

No matter how special your crystal needs may be, the JAMES KNIGHTS CO. is fully equipped to meet them. There's a complete selection for commercial, broadcast, industrial and amateur applications. Special crystals to fit special needs will be built to order at modest price Your inquiries are invited.

Two Jame: Knights Co planes are alialable for the frandling of emergericies Stabiliged Zuanty Ougatals

BOB HENRY,

WøARA, OFFERS

 YOU:LOW PRICES: I sell to you as cheap or cheaper than you can buy anywhere.

COMPLETE STOCKS: Collins, Hallicrafters, National, Hammarlund, RME, Millen,
 Harvey-Wells, Meissner, Gonset, Keck, Johnson, RCA, all other amateur receivers, transmitters, beams, TV, AM-FM, Polic-Alarm and Monitoradio, high fidelity amplifiers and speakers, test equipment, tubes, parts, etc. I can supply nearly any equipment shown in any catalog or advertisement and at lowest prices.

BEST TRADE-IN ALLOWANCE: Customers in all parts of the USA trade with me because I allow so much. Tell me what you have to trade and what you want. I also buy equipment.

TIME PAYMENTS: You can order anything on terms. I finance the terms myself to save you time and bother. Customers everywhere in the USA find my terms best. Write for details.

QUICK DELIVERY: Mail, phone, or wire your order. It will be shipped promptly. I can be reached nearly 24 hours a day, 7 days a week.

TEN-DAY TRIAL: Try any communications receiver ten days -if you return it your only cost is shipping charges.

PERSONAL ATTENTION: The Butler store is run by Bob Henry, WøARA, and the Los Angeles store by Ted Henry, W6UOU. We make the deals ourselves. We finance the time payments ourselves. That way we have the lowest overhead and can do more for you. That's why YOU AND I CAN DO BUSINESS. Write, phone, or visit either store. Export orders solicited.
73. CALIF.

J=w. $7 / 4 \square$ struments and KITS

Over 50,000 SERVICEMEN must be right!

give you Laboratory Precision at Lowest Cost!

New s" push-pull oscluloscopg

All-new loboratary-precision scope with all the extro sensitivity and response for precise servicing of TV, FM 8 AM sels. Push-pull undistorted vertical and horizontol omplifiers. Boosted sensitivity, . 0510.1 rms voles/inch. Useful to 2.5 MC . TV.type multivibrator sweep circuits, $15 \mathrm{cps}-75 \mathrm{KC}$. Z-oxis intensity modulation feature. Dual positioning contrals move trace anywhere on screen. Com plete with 2-615, 3-6SN7, 2.5Y3, 5BP I CRT. 3 color etched rubproof panel; steel case. $115 \mathrm{v}, 60$ cycle AC. 8 为 $\times 17 \times 13^{\prime \prime}$.
Model $425 . \mathrm{K}, \mathrm{KIT}$, only $\$ 39.95$
Model 42s. loclory wired, \$09.9S

New vacuum tube voltmeter Loborotary precision VTVM for tipger-fast operation ond lifetime service. 15 different ranges. Lorge $4 / \mathrm{g}^{\prime \prime}$ meter, con'p-burn-out circuit. New zero conter for TV \& FM dis. criminator olignment. Electronic $A C$ \& $D C$ ranges: 0.5 , $10,100,500,1000$ v. $(30,000$ volis $\& 200 \mathrm{MC}$ with HVP. 1 \& P. 75 probes). Ohmmeter ranges, 2 ohms to 1000 megs. DB scale. New stable double.triode balaneed bridge circuit-extreme accuracy. 25 megs $D C$ imput im. pedance. 3-colos etched rubprool panel; steel cose 115 v., 80 cycle AC. $9.7 / 16 \times 8 \times 5$ " Model $221-\mathrm{K}, \mathrm{KIT}$, only $\$ 23.95$ model 221. foctory wired. 340.93

New tube tester new prolessional tube rester and merchondiser EICO Engineered for unbeatable value! large $41 / \mathbf{h}^{\prime \prime}$ fullmeter. Tests conventional and TV tubes including tiniatures. New lever-action switches-tesis evary tube it. Illuminated "Speed Roll-Chor1." 2 grid cops. Short jen-element lests. Spare socker for new tubes. Protec erlood bulb. Electronic rectifier. 3 -celor etched panel: I steel cose. $115 \mathrm{v} ., 60$ cyelo AC . $12 \mathrm{~K} \times 9 / 2 \times 4 \mathrm{~K}^{\prime \prime}$ $625 . \mathrm{K}, \mathrm{KIT}$, only $\$ 29.95$ 23. factary mived. 846.93

1-Signal tracer

gain ond hexibility in howeort field. tracer all IF, RF, Video ard Audio trem SPKR or CRT withoul swith hing. Rerponse or 200 MC . Integrol test speoker. Provi. Pvisual trocing with VTVM. Complete il7, 6 ks . 6×5. Germanium erystol diode. etched panel; rugged stool core. 115 v. - $A C .10 \times 8 \times 44^{31}$

145-K, KIT, only $\$ 18.95$
145. toctary mired. 523.93

New battery eliminator,

CHARGER \& BOOSTER

for oll auto eodio 1esting. latert-type full-wove bridge cirevit. 4-track manganese copper-oxide rectifiers. Specially denigned tronsiormer, voriable fram 0 to 15 valn Continuous: 5-0 v. 10 ompt. Intermittent: 20 amps . $10,000 \mathrm{mid}$ filter condenser Moter measures current and valtage owtput. Fused primory iteel case. 115 v.r 60 cycle $A C .101 / 2 \times 74 \times 83$ Model $1040-\mathrm{K}, \mathrm{KIY}$, only $\$ 22.95$ Model 1040, loctoty wired. 529.95

New deluxe signal generator

A lobaratory-precision generotor EICO Survice-Engineered with 1\% accuracy, Extromely stoble, fequency $75 \mathrm{KC}-150 \mathrm{MC}$ in 7 calibrated ranges. Illuminated hairlise vernier funing. VR tobilized line supply. 400 -cpale pure bine wove with letr than 5% distortion. Tube complement: 6X5, 7F7, 6C4. VR.150. 3. color etched ponel; fugged iteet cove. 115 v.. 60 acyle AC. $12 \times 13 \times 7^{\prime \prime}$
Model $315-\mathrm{K}, \mathrm{KIT}$, ondy $\$ 39.9 \mathrm{~S}$
model 319, factory wired, $\$ 39.95$

New signal generator

For PM.AM pracision alignment and TV morker hoquancieb. Yernier Tuning Candenser. Highly roble RF ascillator, ronge: orciliator supplies with fundamentols to 34 MC . Seporate oudio modulated RF of pure AF for external wenting. 115×-60 ryla AC. $10 \approx 8 \approx 4^{34^{\prime 4}}$
Model $320-\mathrm{K}, \mathrm{KIT}$, only $\$ 19.95$
Model 320 , loktory wired, 329.85

VOLT-OHM-MILLAMMETER

Poshet-size VOM crom-poched with voluol 22 different canges. 3" D'Arsanval movement. Ring-type shunts. Germanium cryztal rectitier. Ronges -OC: $0.5,50,250,500,2500$ v, AC \& Output: $0.10,100,500,1000 \mathrm{v}$. DC Ma: 0.1, 10, 100. OC Amp: 0.1
 -lichad ponel; rugged hordwood cose, 8×4^{4} 天 $3^{\prime \prime}$
Model $511-\mathrm{K}, \mathrm{KIT}$, only $\$ 14.95$
model $\$ 11$, toctory wired, 317 95

Hew sweep generator

Covers all IV.fM alignment frequencies, $500 \mathrm{KC}-228 \mathrm{MC}$. Vernier-driven dial: center of each of 13 TV channels marker" on front panel. Sweepwidth voriable 0.30 MC with mechon ical inductive sweep-permits gain comparison of odjacent IF IV chonnels. Crysial morker oscillatar, variable ampli. pude. Provides for injection of external marker. Phasing con. trol. Complete with HF tubes: $6 \times 5 \mathrm{GY}, 12 \mathrm{AU7}$ (dual-triote), 2-6C4. less crystal. $10 \times 8 \times 834^{\prime \prime} .5 \mathrm{MC}$ Crystal, eo. $\$ 3.95$ Model $\mathbf{3 6 0} \mathrm{K}, \mathrm{KII}$, only $\$ \mathbf{2 9 . 9 5}$
model 360 . Foctory wired, $\$ 49 . \overline{\mathrm{O}}$

Due to unseltled conditicns, prices ond specifications are subiect to chonge without notice.

ZIMOS SUPERSIMPLIFIED INSTRUCTIONS

 Easy-to-follow step-by-step EICO pictorial and schematic instructions-most explicit and comprehensive in electronics!-supplied with each Kit. Anyone can build the EICO Kits!ECTRONIC INSTRUMENT CO., Inc. 76 NEWPORT STREET, BROOKLYN 12, N, Y.
the exclusive EICO Make-Good GUARANTEE Each EICO Kil and fntrument is doubly guoronteed, by EICO and your iobber, to contain only selected quality components. ESO guaronteet to replace ony component which might be: eme delective in normal use it refurned to the factory trons. portation charges pre-paid within po days of pucchore. EICO guorentees all Kits owsembled oscording to ELCO's simplifitad instructions will operote ol sposified therein, EICO guverantoen mervice and calibration of every EICO Kit and Instrument at the neminal charge os atated in the instructions.

Be sure to look at the EICO line before you buy any higher-priced equipment! Each EICO product is jam-packed with unbelievable value. YOU be the judge compare EICO at your local jobber today, and SAVE! Write NOW for free newest Cataiog H .

World Radio History

We Have The Most Satiofted Customers

Ask the fellows who deal with me. They'll tell you that WRL, will allow you more for your present equipment-that WRL's large volume of sales means faster turnover and greater savings. Our customers know that we finance our own paper, climinating all red tape. WRL buys more equipment - WRL. sells more equipment. We offer the mose personalized service anywhere. (Deal II ith the II'orld's Largest Distribulor of Amafeur Radio Transmilling Equipment.)

WRL WATT GLOBE CHAMPION
 TRANSMITTER

MORE WATTS PER DOLLAR

Lero J.
Meverson

R. F. Section o complete 175 woll XMTR Provisions for ECO. Automotic fixed bios on Final and Buffer. Closs B Speech Madulator 175 walt input- 10 thru 160 meter bonds. Complete with tubes and meters.

KIT FORM
WIRED
$\$ 279.00$
$\$ 299.00$

Low Down Payment

NEW WRL "400" GLOBEKING TRANSMITTER

 MORE WATTS PER DOLLAREfficient performonce on all bonds - 10 to 160 an phone and CW. 350 wolts phone 400 watts CW. Provisions for ECO. Com. plete with fubes, meters.
$\underset{\text { FORM }}{\text { KIT }} \$ \mathbf{4 3 9 . 4 5} \underset{\text { WIRED }}{\text { TESTED }} \$ \mathbf{4 9 . 4 5}$
Low Dnwn Poyment

WRL "40" TROTTER TRANSMITTER

Copoble of 25 wolt input on phone and 40 wolt input on CW on all bonds fram 1500 KC through 28 megacycles. Bond switching for ony 3 bonds. A proven rig. Thousands in operation throughous the world.

$\$ 89.50$ WIRED $\$ 79.50 \mathrm{KIT}$ FORM
tow Down Payment

WRL 10 METER BEAM
GUARANTEED CRYSTALS IN HOLDERS
An economical 3-element
Alumbers Delight. Hasmany
outstanding features such as: outstanding features such as:
quick assembly takes less han $1 / 2$ hour); all aluminum construction for very light weight; has Gamma match which reduces standing wave ratio. Beam is grounded for lightning protection. Furnished less mast and lead. Great value for the money. NS-666 Narrow spaced, NET WS.666 Wide spoced, NET
RADIO REFERENCE MAP
CU on 10-20 \& 75 Mefers Just right for your conlral room walls. Approximately $28^{\prime \prime} \times 36^{\prime \prime}$ Contains time zones, amoteur zones, monitoring
slotions.
Mail coupon
loday and.

160 METER

1.8 to $1.825 \quad 3.5$ to 4.0
1.875 to $1.9 \quad 7.0$ to 7.4 1.9 to 1.925 to 2.0

Pleose state frequency. We will come os close os possible

98c ea.
\$1.25ea.

THE WORLD'S LARGEST DISTRIBUTORS OF AMATEUR RADIO TRANSMITTING EQUIPMENT. SPECION AIIENIION
GIVEN fo forelgn Orders Through our Speclal Export Deportment. CABLE ADDRESS WRLI. Given fo forelgn Orders Through our Speclal Export Deportment. CABLE ADDRESS WREf.

Write for defailed XMTR specificarlon sheefs.
WRITE - WIRE
PHONE 7795

World Radio Loboratories, Inc.
744 West Broodway Council Bluffs, Iowa
Pleose send me:

\square Radio Mop

[] New Catalog \square List of Guorontecd Used Equipmen:
Name
Address
Cily
\square Globe Champion Info
\square '40" Trotter Info [] Globe King Info I

RECTIFIERS

:ULL WAVE RECTIFIER
).C. Output (Amps.) ., 1.0 'eak Anode Current ." 4.0 Peak Inverse Volts 725 filament Volts 2.5 Filament Amperes 6.0 Overall Length \qquad
full wave rectifier D.C. Output (Amps.) ., 2.5 Peak Anode Current .. 10.0 Peak Inverse Volits 725 Filament Volis 2.5 Filament Amperes 11.5 Overall Length $7^{\prime \prime}$
full waye rectifier half waye rectifier

EL 6C
D.C. Oufput (Amps.) ., 6.4 Peak Anode Current ., 25.6 Peak Inverse Volls 725 Filament Volis 2.5 Filament Amperes 17.0 Overall Length $71 / 2$.

EL 6B \& EL 6 F
D.C. Output (Amps.) .. 6.4 Peak Anode Currenf .. 40.0 Peak Inverse Volis 920 Filament Volts 2.5 Filament Amperes....... 21 Overall Length (6B) .. 9" Overall Length (6 F) ... $81 / \mathrm{s}^{\prime \prime}$ (Panel Mounting)
half wave rectifier EL 16 F
D.C. Oufput (Amps.) .. 16.0 Peak Anode Current .. 96.0 Peak Inverse Volts 620 Filament Volts 2.5 Filament Amperes....... 36 Overall Length 155/8"
(Panel Mounting)

GRIDCONTROL RECTIFIERS

(THYRATRONS)

EL (1K
).C. Oufpul (Amps.) .. 1.0 'eak Anode Current .. 8.0 'eak Forward Volts.... 1000 'eak Inverse Volts 1250 :ilament Volts 2.5 Filament Amperes 6.3 Jverall Length 41/4"

EL (3)
D.C. Output (Amps.) .. 2.5 Peak Anode Current .. 30.0 Peak Forward Volts 750 Peak Inverse Volts 1250 Filament Volts 2.5 Filament Amperes....... 9.0. Overall Length 61/8"

EL (1B/A

1.C. Output (Amps.) .. 1.0 Cak Anode Curent 80 Peak Anode Current .. 30.0 eak Forward Volts 750 Peak Forward Volts 1000 'eak Inverse Volts 1250 "ilament Volts 2.5 "ilament Amperes 6.3 Jverall Length $41 / 2^{\prime \prime}$

EL (6)
D.C. Oulput (Amps.)

EL (16)

D.C. Output (Amps.) .. 16.0 Peak Anode Current " 160.0 Peak Forward Volts 1000 Peak Inverse Volis 1250 Filament Volts 2.5 Filament Amperes 31.0 Overall Length 10" (Panel Mounting)

EL (6C
D.C. Outpul (Amps.) .. 6.4 Peak Anode Current .. 77.0 Peak Forward Volis 2000 Peak Inverse Volts.... 4000 Filament Volts 2.5 Filament Amperes 24.0 Overall Length \qquad $11^{\prime \prime}$

EL (6)/A
D.C. Oufput (Amps.) .. 6.4 Peak Anode Current .. 17.0 Peak Forward Volis 1000 Peak Inverse Volis 1250
Filament Volts 2.5
Filament Amperes 21.0
Overall Length $9^{\prime \prime}$

Electrons. Incorporated

$$
\begin{aligned}
& \text { TRONS. NEANENUE } \\
& 127 \text { SUSSEXANSH. }
\end{aligned}
$$

128

129

Premal

 VERTICAL AND MOBILE ANTENNAELEMENTS－－MOUNTINGS－－ACCESSORI

I＇remax Tubular Vertical Antemnas are fully collansing and adjusi－ alde，yet give exceptionally efficient，dependatule performather ander most severe romditions．Will withstand ordinary stresses bot should be supported by guys or standoff insulators against almormal winds． In 6^{\prime} to 35^{\prime} heights，in aluninum and steel．

Wrathor－lifosistant Naral Antomnas

No，	Inscrimien	longth Extenderl	Lougeh Cillapsed	（1．）． Biase	$I . I$ Brase	$\begin{aligned} & \text { W'riphit } \\ & \text { ruch. los. } \end{aligned}$
112－11	2－nes．telescop＇t	11×8＇	6＇1＂	．0．36＂	．．3ish＂	1
318.11		$17^{\prime \prime} 3^{\prime \prime}$	$6^{\prime 2} 2^{\prime \prime}$	．87\％＂	．773＇	7
22．1．11	t－mer．（tlenentig	$22^{\prime \prime}{ }^{\prime \prime}$	$63^{\prime \prime}$	$1.06 .3{ }^{\prime \prime}$	． $96.33^{\prime \prime}$	11
130.11	5－mec．whesmop＇s	$28^{\prime \prime}{ }^{\prime \prime}$	6＇．＇	$1.250^{\prime \prime}$	1.1 .301	15
1360．11	6－яес．เelorcopig	$\left.33^{\prime \prime}\right)^{\prime \prime}$	6＇5＇	$1.3000^{\prime \prime}$	$1.100^{\prime \prime}$	20
No．	Descrimion	langth Expmiderl	longth ciollapsed	（）．I）． Brase	I．I． Bras．	ITrizht cath．Ms．
Af． 106	1－piecre tapmer rom	＂＇3＇	$6{ }_{6 \prime \prime}$	．313 $3^{\prime \prime}$		14
AL． 312		$12^{\prime} 1^{\prime \prime}$	6＇1＂	． $51040^{\prime \prime}$	． 3.31 1＇	$11 / 2$
AL． 518	3－mer．1＋lracoprg	$18{ }^{\prime \prime}{ }^{\prime \prime}$	6＇．＇${ }^{\prime \prime}$	． 7.310	． 581 1＂	3
A1． 321	1－mer，trlameotig	$21^{\prime} 1^{\prime \prime}$	$6{ }^{6} 4^{\prime \prime}$	$1 . \mathrm{MWH}^{\prime \prime}$	83 $1^{\prime \prime}$	5
Al．a．3．30		$30^{\prime} 1^{\prime \prime}$	6 ＇5＇	$1.2 .8)^{\prime \prime}$	1．088 $1^{\prime \prime}$	7
A1．．535		$3.7{ }^{\prime \prime}$	$6^{\prime 2}{ }^{\prime \prime}$	． $\mathbf{. 3}(1)^{\prime \prime}$	$1.311{ }^{\prime \prime}$	12

I＇remax Corulite Filementm meet the need for aturily．lightemeight elements in horizontal arrays and nimilar applibations，Pixurptionally light weight．yet they provide the needed atrongh and rigidity masmial in horizontal inntallations－and at an extremely low cons．＇The nopecial sted mbing is a I＇remar development to insure unusial miffacmand strengith．Heavily
 Fills adjumathe to amg hesired lengit．

Langth LaHgh O．I）．Revermmanderl H＇riphe Vo．Diserimion Extendeal Cilllapsed lase forr permair

Less bithe

HPIREMAX MADEMTINGE ANID ENNILATAIBN

 ＂ypr IX Base Insulator．gats．iron or bronzr：top tapped standard ${ }^{3}{ }^{\prime \prime}$＂ 16 thread． ＇Iyor Ill Base Insulator：nimilar in＇I＇ybe I exerpting penat is hinged．

 ＂Ype 8－C Insulated Vlomiting Clamp for horizontals or vertirals：fits $5 / \mathbf{g}^{\prime \prime}$ i＂ $1^{\prime \prime}$（）． 1 ）．「yoce 3 standoft Insulator for vertirals or horizontals；fits $1 / /^{\prime \prime}$ to $11 / /^{\prime \prime}(0,1$ ）．

＇l＇ype I3－II Stamdoft Jasulator．same as＇l＇ype 13－s hot with hinged rag．
TYy 9．（：Insalated Mounting（Blamp for horizontals or verticals：fites $\mathrm{s} / \mathrm{g}^{\prime \prime}$（1）I＂（I．I）
 ＂rype 7 Atandoff Insalitur for vertivals or herizontals；fits $5 / 8^{\prime \prime}$ to $]^{\prime \prime}$（ 0,1 ）．

Maloile ．Antemanats

 En！rove radiation characteristices over standa whip，＂ly zeres．llas \＆dl）．kain，equal（1）（ Iransmitting mower．Cereatly improves affertiv nese ind ramke．Thas extra－lonk spare－womm rember．hathed indurtar with base section at vertiocal whig．A how eeost solution to mot） －ix－meler tronlober．Converts to 10，15，20 a 16 meleren without chameing coils．Alme avaital
 310：he．o． 2371 he．IHusiration shows Doumting．

WHIP－TYIPE ANTENNA：

I－piore latereal＂whip＂stylem desikned for ma immen strength and fle xitility to mere most a

 stael in＂2＂． $8 y^{\prime \prime}$ and＂（6）honkthe．Ank f I＇sw ti．

 slemp．in $72^{\prime \prime} .78^{\prime \prime} .81^{\prime \prime}$ ． $90^{\prime \prime}$ and $96^{\prime \prime}$ lankl $^{\prime}$ Ash for＇lype A．

MoIBIIE：MoIJNTINJis

I＇A Wounting for irmok，pabel or rowif NI．Tounting for patill of par． 1．Bumber Vtemimg：Io＇adjostment． K Burbiner VIomoting． $10^{\prime \prime}$ adjustment． Rs I nivernal Dountiong for ally nurface，sori t yle．
Climif Alountiak．apring mely．
E1 Siring Vaptor：une with athy mumating \＄8．1 Inivermal Womming for any surface． F（ nivermal Vennting： 30° adjenatasout －Momoting for thrioleoth or rowif．
 （II Ví Ary＇4＂M hín Antemai）

TVIATED GildodNil imens

Made of copprer－plated aterel in $3 / 8^{\prime \prime}$ ． $1 / 2^{\prime \prime}$ and $5 / /^{\prime \prime}$ dianneqers and in＇$l^{\prime}, B^{\prime}, 6^{\prime}$ and 8^{\prime} longths； one ent pointed for eany dris． ing．（6）sicrew（llamp，（1＇） Pigtail，（II）Irillaed Ilote types available．

Complete
には，630゙か for 6 ． 10 atul
 ＂cludem aluminnm framee， 3 pairs
＂lements．

＂l＇matelh aceqmericr．insulatora and moreswary har ware．Wit． 20 lhs．

SEND FOR ANTENNA CATALOG

PRHVAK PRODUCIS

DIVISION CHISHOLM－RYDER CO．，INC．

MINIMETERS

ices listed above apply to shipments directly from the etory to points in the U. S. A. only. Export prices sent on request
Send all orders directly to factory For odditionol information write Dept. AR-1
UPREME, INCORPORATED
GREENWOOD, MISSISSIPPI, U. S. A. Export Dept., 13 E. 40th St., Now York ,N. Y.

MODEL
543-M

MODEL 574 ELECTRONIC SET TESTER AND V.T.V.M.-Indispensable in the field of modern electronics. Over 40 ranges including Voltage (ac-rf-af-dc), Current (d-c) and Ohms. Uses 9006 diode probe for sests at 100 megacycles. Input impedonce $9 \mathrm{~mm}^{\text {f- }} 10$ megohms at 60 cycles ond only 20,000 ohms at 100 megacycles. Voltage readings (tF and DC) to 2500 volits. Resistance measurements to 1000 megohms (1 billion ohms). Reads d-c Current to 25 amps. Professional type probe supplied. Size $91 / 2 \times 12 \times 5$ inches -For use on $100-\$ 42.50$
130 volts $50-60$ cycle power.......

MODEL 616 TUBE AND BATTERY TESTER-A fube tester that is simple to operate and uses de. pendable circuits which were pioneered and devel. oped by SUPREME ofter almost a quarter century of building quality tube testers. Tests all receiving type fubes on Good-Bad Scale of 7 inch full vision meter. llluminated roll chart. Supreme Tube setting serv. ice minimizes obsolescence. Size $11 \times 15 \times 6$ inches. For 110-133 volts $50-60$ cycle
power............................ $\mathbf{\$ 5 4 . 9 5}$ MODEL 600 TUBE, BATTERY AND SET TESTER functions,............................ \$74.95
MODEL $650 \overline{\text { OSCILLOSCOPE-The ideal general }}$ purpose instrument for woveform observotion, modulation testing ond receiver olignment. Both vertical and horizontal amplifiers will pass 60 eycle square wave and have excellent response to $100,000 \mathrm{cy}$. cles. Sensitivity 0.3 Volts. Time base (sweep) range 20 to 30,000 cycles. All controls on front panel. Internal or External synchronization-Positive locking of pattern. 3 inch Cothode Ray fube. Size $13 \times 111 / 2$ $\times 81 / 2$ inches. For $110-125$ volts $50-$
$\$ 49.95$
SUPREME MINIMETERS-About the size of a cigar ette pack, these single function instruments are built to the same quality stondards as the larger instruments. Each minimeter has three ranges. VOLTMETERS OR AMMETERS (mils ond omps) $\$ 10.65$-OHMMETERS $\$ 11.50-$ MICR OAM PERE METERS
(center scole IYPe)............. $\mathbf{~} \mathbf{4 . 5 0}$
high voltage range extension unit(Not illustroted)-For extending SUPREME 20,000 ohms/volt multi-meters (640 , 592 , etc.) and V.T. Voltmeters ($574,565,6881$ to read high D-C Voltage in Television Power Supplies. Extends ronge to 25,000 Volts. Stote Model of SUPREME Tester
when ordering. Type 9800 Extension Unit
MODEL 640 MULTI-METER - Well known to Engineers, Amoteurs, and Technicians as a most occurate and rugged instrument in the portable class. Genvine SUPREME 4 inch, full-vision 50 microampere $\{20,000$ ohms/volt) meter. Measures-VOLTAGE (o-c, d-c, opv) from 0.1 to 5000, CURRENT (dec) 10 microomps' to 500 M.A., RESISTANCE 0.5 ohms to 20 megohms, DECIBELS -10 to +49 db . Total Seven functions${ }_{35}$ Ronges. Metallic case with meter protector shield and rest lead compartment. Size $5 x$ $71 / 2 \times 3$ inches.
\$36.40
MODEL 543 VOLT-OHM-MLLIAMMETER_PORular as o companion tester among radio amateurs and technicians for general testing. Checks VOLT. AGE ($0 .-c$, d.c) to 3000 volts, CURRENT (d-c) to 600 M.A., RESISTANCE to 200,000 ohms. Three inch meter indicator with SUPREME built 1000 ohms/volt movement and sturdy pointer. Available in boke. lite case (Type B) for $\$ 22.45$ or in metallic case Trype M) with meter protector shield \$25.75

MODEL 680 AUDIO GENERATOR-A high quallity beat frequency type AF generator with frequency range from 15 cycles to 15,000 cycles. Ided for testing modulation equipment. Output impedances $250 / 500 / 5000$ ohms, center tapped for balanced input systems. Output voltage approx. 50 volts maxi mum. Output virtually flot over frequency rangewithin 1 db from 30 to 10,000 cycles down 2 db at 15,000 cycles. $13 \times 9 \times 61 / 2$ inches. Wgt. 17 lbs . For $1110-125$ volts $50-60$ cycle $\$ 59.95$

MODEL 650

MODEL 680

SUPREME Testing Instruments

"SUPREME BY COMPARISON"

To Mamufacturers anal Distributors of Products Used in Short-Wave Haslis Communication

The Radio Amatelr's llandbook is the world's standard reference on the technique of high-frequency radio communication. Now in its twenty-eighth annual edition, it is used universally by radio engineers and technicians as well as by thousands of amateurs and experimenters. Year after year it has sold more widely, until the Handbook now has a world-wide annual distribution greater than any other technical handbook in any field of human activity. To manufacturers whose integrity is established and whose products meet the approval of the American Radio Relay League technical staff, and to well established distributors of those products, we offer use of space in the Handbooh's Catalog-Advertising Section. Testimony to its effectiveness is the large volume of advertising which the Handbook carries each year. It is truly the standard guide for amateur, commercial and govermment buyers of short-wave radio equipment. Particularly valuable as a medium through which complete data on products can be made easily available to the whole radio engineering and experimenting field, it offers a surprisingly inexpensive method of producing and distributing a creditable catalog, accomplishes its production in the easiest possible manner, and provides adequate distribution and permanent availability impossible to attain by any other means. We solicit inquiries from qualified manufacturers and distributors who wish full data for their examination when catalog and advertising plans are under consideration.

ADVEIETINING DEIPABTMENT . . .

There must be a reason-compare Lysco's engineering skill, the painstaking eraftsmanship, the components and wiring, with any on the market to-day - You will agree that Lysco Ham Equipment is all that we say - plus! • If you are looking for Mobile, Fixed or Portable operation, switch to Lysco for dependable QSO's. SEE YOUR DEALER NOW!

LYSCO MODULATOR Model 400

Matches Lysco Mod. 500 and 600 TRANSMASTERS
Dimensions: $9^{\prime \prime} \times 17^{\prime \prime} \times 11^{\prime \prime}$ Deep. Black Wrinkle Finish - Outputs 40 Watts Audio into 4000 Ohm R.F. Load - Input: High impedance (Crys. tal or Dynamic Mic. Tube Line-up: 1st Audio $65 \mathbf{J 7}$, 2nd Audio 1/2-65N7, Phase Inverter $1 / 2$-65N7, Driver P.P. 65N7, Modufafor P.P. 6 L6G's, Rectifier 5U4G

FEATURES: Standby on switch has terminated spare contacts for Transmitter keying control. Milliameter in modulator plate circuit. Will madulate 100 Watt Transmitter.

TRANSMITTER-EXCITER TRANSMASTER

Mod. 600-TV Areas - Mod. 500-Wide Open Spaces
FEATURES: Break-in keying, illuminated dial, PA Plate meter, 35 watts input on $160,80,40,20,15,11$ and 10 meters, provisions for modulator tie-in, Grid Meter Jack, complete with tubes and built-in power supply, VFO or Crystal ("Rubbers" the Crystal also), Cabinet $17^{\prime \prime} \times 9^{\prime \prime} \times 11^{\prime \prime}$. Tubes OSC 6AG7, BUFF 6AG7, P. A. 807. Volt, Reg. VR-1 50 Rect. 5U4G.

CONVERTERS

Mobile or Fixed. Dimensions $41 / 4 \times 43 / 4 \times$ $4^{\prime \prime}$. Simple installation. Extremely sensitive, will operate on 45 Volt miniature battery for shelf life of battery. Switch connects Antenna to Converter or receiver and controls filaments of converter. Illuminated Dial, Power requirements: Filaments $6.3 \mathrm{VAC} / \mathrm{DC} 1$ Amp. requirements: Filaments 6.3 V AC/DC Amp .
plate 45 Volts DC 2.5 Ma .90 Volts DC Max. Plate 45 Volts DC 2.5 Ma .90 Volts DC Max.
I.F. Output Frea. 1500 KC . Tube Complement: RF 6 AK 5, Mixer 9002 , OSC 9002 .
Modet 130-26-30 MC.
Model 132-14-14.4 MC.
Model $133-3.5-4 \mathrm{MC}$.

GRID DIP METER

Model DMR-115VAC/DC only Model DMB-Batteries or Separate Supply

NOT A KIT. 955 OSC, 3.4 to 170 Mcs as Dip Meter, 3.4 to 340 Mes as Signal Generator, 5 Plug.in Coils. Use as Phone Monitor, CW Monitor, Marmonic Indicator, Absorption Wavemeter, Measures Tuned Circuits, Antennas, etc.

A Must for Ali Hom Stations

MINIATURE VFO

Mobile or Fixed. Dimensions $41 / 4 \times 43 / 4 \times$ 4". Good stability, Series Tuned, "Colpitts" Oscillator, Illuminated Dial, Colibrated for 80, 40, 20 and 10 Meters. Output on 80 or 40 Meters. Power Requirements 6.3 V AC/DC; 1.35 Amps. $200 \mathrm{~V} D C$ Max. 30 Ma Tube complement: 6 AK 5 Osc, 6 AK 5 Buffer, 6AK5 Doubler
Model 3 Is 1-High impedance, $14^{\prime \prime}$ Ribbon Lead with plug for x tal socket.
Model 381 -R-Same os Mod, 381 except that it has Low impedance, 15^{\prime} Coax cable with remote tuned circuit on 80 or 40 meters.

Wripe for liferapure of other Lysco Equipment, or See your Dealer,

LYSCO MFG. CO., Inc.
 MAIN OFFICE-1401 CLINTON ST., HOBOKEN, N. J. PLANT NO. 2-EAST RUTHERFORD, N. J.

134

A Complete Line of Vibrators . . .
Designed for Use in Standard Vibrator-Operated Auto Radio Receivers. Built with Precision Construction, featuring Ceramic Stack Spacers for Longer Lasting life.
Backed by more than 17 years of experience in Vibrator Design, Development, and Manufacturing-•
AIR PIONEERED IN THE VIBRATOR FIELD.

New Models

For Inverting D. C. to A. C. . . .
Specially Designed for operating A. C. Radios, Television Sets, Amplifiers, Ad. dress Systems, and Radio Test Equip. mont from D. C. Voltages in Vehicles. Ships, Trains, Planes and in D.C. Districts.

```
American Television \& Radio Co. Quality Products Since 1931
```

SAINT PAUL I, MINNESOTA-U.S.A.

(iB)

"A" battery ELIMINATORS

New Models

STANDARD AND heavy duty INVERTERS

For demonstrating and testing: AUTO RADIOS
New Models . . . Designed for Testing D. C. Electrical Apparatus on Regular A. C. Lines. Equipped with Full-Wave Dry Disc Type Rectifier, Assuring Noiseless, Interference-Free Operation and Extreme Long life and Reliability.

What's New?

IN RADIO, TV AND ELECTRONICS

 Ask NewarkUP
THE MINUTEfor the amateur and the industrial user

When the manufacturer announces it - Newark has it! By keeping constantly abreast of new electronics developments, Newark has always been the first to stock the new releases. Such recent innovations as the standing wave ratio bridge and TVI filters were first carried by Newark! For the latest in Ham gear, always look to Newark!

NEWARK carries the world's largest stock of radio, television and electronics supplies. If there is anything you need. . . from the smallest trimount to the tallest tower . . . we can supply it immediately!

NEWARK is the acknowledged leader in the distribution of electronics equipment, and many of our customers place their initial order because of our reputation for being the first with the latest. However our continued success is due largely to repeat husiness . . . from friends who have come to know that there is no substitute for . . .

NEWARK QUALITY

We carry only tested products of nationally. advertised, completely dependable manufacturers.

NEWARK SERVICE
Every order, no matter how large or how small . . . is filled accurately, speedily, satisfactorily.

Send for our latest catalog and bargain bulletins-full of the best buys in amateur equipment. Write to Dept. H-131.

NATIONALLY KNOWN
MANUFACTURERS

ADVANCE
AMPHENOL
BARKER-WILLIAMSON
BLILEY
BUD
COLLINS
EIMAC
GENERAL ELECTRIC
GONSET
GREENLEE
GUARDIAN
HALLICRAFTERS
HAMMARLUND
HARVEY-WELLS
HYTRON
E. F. JOHNSON

MASTER MOBILE
MILLEN
MON-KEY
MOSLEY
NATIONAL CO.
OHMITE
PAR METAL
PREMAX
R M E
SIMPSON
STANCOR
THORDARSON
TRIMM
UNITED TRANS, CORP.
VIBROPLEX
WORKSHOP, INC.
and many others

TRAP INTERFERENCE

with DON GOOD TRAPS TELEPASS* - TELETRAPS* (FM \& DIA.)

DON GOOD TRAPS, known as "Darn Good Traps," do their intended job-they do eliminate unwanted interference. That's why they're so well liked-and used.

NEW DON GOOD TELEPASS*

A TV HIGH PASS FILTER that eliminates-or greatly reduces-interference which may be picked up by I. F. Amplifier or TV Receiver and also interference which may arise from strong, local low-frequency fields radiated from Amateur Radio Stations, Diathermy and X-Ray Equipment, Industrial Induction Heaters, Household Appliances, Neon Signs, etc. . . . Pretuned at factory-no adjustments required.... Easily installed at receiver antenna terminal. . . . In compact, low-loss Polystyrene Case— $23 / 3^{\prime \prime} \times 1 \frac{1}{4^{\prime \prime}} \times 41 / 8^{\prime \prime}$. . . . No. 72 -for 72 Ohm Line. No. 300-for 300 Ohm Line.

Price - Either
$\$ 3.95$

NEW DON GOOD VARIABLE TELETRAPS*

No. R-301 FM-88 MC to 110 MC . This effectively eliminates interference from FM Stations operating within its tuning range.

No. R-302 DA-26 MC to 32 MC. This effectively eliminates interference from DIATHERMY ond AMATEUR SIGNALS within its tuning range.
Either Teletrop* obove. Price . $\$ 3.95$
For quick, simple installation of TV receiver antenna terminals.

POPULARLY PRICED-all at $\$ 3.95$

 All New Items

NOTE: DON GOOD TELETRAPS* ore funoble. ... Enclosed in a round, compoct low-loss Polystyrene Case: $3 \mathrm{~s} / \mathrm{m}^{\prime \prime}$ diameter by $17 / \mathrm{s}^{\prime \prime}$ thick

ELIMINATES 80\% of FEEDLINE DIELECTRIC LOSSES
of the signal. Standard close wire spacing and standard nominal 300 ohm impedance eliminates losses through re-radiation due to poor balance to ground so prevalent in wide-spaced lines. . . . GOODLINE AIRLEAD* effectively eliminates wet weather losses. Installation is simple-with standard insulators. No special transformers or "experimenting" required. Weather resistant low-loss dielectricnominal dimensions of $.375^{\prime \prime} \times .083^{\prime \prime}$. . . . Standard lengths: $500^{\prime}-1000^{\prime}-2500^{\prime}$.

*PATENT PENDING *TRADE MARK

Ask Your Local Dealer or Write

1014 Fair Oaks Avenue, SOUTH PASADENA, CALIF. Phone: SYcomore 9-1194

Are you making use of these helpful books?

CHECK THE ONES YOU WANT AND SEE THEM ON APPROVAL

Radio \& Television Mathematics by Bermberd Fischer

721 typical problems with step-by-step solutions. "This is not a text but a tooland one of the most useful this reviewer has ever seen. The designer may turn to it in his hour of need and be certain that full instruction for whatever calculation he needs to make will be spread before him like a blueprint . . . Recommended to radiomen as a candidate for the place of honor beside its natural partner, the slide rule."-Radio Electronics
$\$ 6.00$

Television \& FM Antenna Guide by E.M. Noll \in. M. Mandl

A fundamental course on antenna theory together with a complete handbook on the characteristics, dimensions, and installation procedures for every type of antenna, including all commercial models and new types recently tested by the authors. Specific instruction for selecting the right type for the site, installing it and its transmission line and allied equipment, and for making sure the receiver will get the most out of the antenna system. (Dec.)

Television for Radiomen by Е.м. Noll

Clear, non-mathematical explanation of the function and operating princip!es of every circuit in today's television receivers, the major components of TV transmission, and all techniques of installation, adjustment, alignment and trouble shooting, with handy trouble shooting charts. Here is the thorough, basic knowledge you need in order to UNDERSTAND what you are doing as well as how to do it on any installation, servicing, or construction job. Mathematics are explained in a final chapter for those who need them.
$\$ 7.00$

Movies for TV by Jobn Battison

Comprehensive, practical instruction on the production of movies for TV and their transmission. The operating principles and use of all leading movie cameras, sound equipment, projectors, lighting and all other equipment is clearly explained. There is detailed instruction on editing, making titles, fades, dissolves and other special effects, and on the production of commercials, newsreels, and features, showing what to do and what NOT to do. (Dec.)

An Introduction to Electronics by Ralpb G. Hultson

This brilliant exposition of electronic theories, the construction and operation of the basic electronic devices, and their uses and potentialities gives a clear, scientifically sound understanding of a science that underlies many of the most important technical developments of our times and now contributes to almost every field of human endeavor.
$\$ 3.30$

Introduction to Practical Radio by D. J. Tucker

An outstandingly thorough explanation of all radio fundamentals, showing just how they are applied in the construction and operation of radio parts and circuits. All the necessary mathematics is explained at the points where it is used. Hundreds of problems give you practice in radio calculations and the construction of radio apparatus. Provides thorough preparation for FCC exams and a useful reference for anyone in radio.

COMPLETE OUTFITTERS

 for the HAM...
COMMUNICATIONS

AND

ELECTRONIC

ENGINEERS

EUGENE G. WILE

Distributors of
Nationally Advertised Lines of
RADIO, TELEVISION and ELECTRONIC Parts

meet new york's newest and most progressive radio and electronic supply house...

Our New, Modern Store and Warehouse ... 4 Gigantic Floors with Every Facility For Display and Demonstration of All the Finest Electronic and Sound Equipment.
immediate delivery! Our competent staff is equipped to ship WITHIN 24 HOURS to Any Part of the World! Order by Mail, Phone or Wire!
complete stock! Largest Stock in the East of All Standard Makes... Everything in Electronics for those who make radio a profession or hobby ...Amateur Gear...Sound and Recording Equipment...TV Chassis, Tubes, Accessories... Radio and TV Replacement Parts, Tubes... Test Equipment ..., Hardware ...Tools ... Kits ... Books and Manuals ...etc., etc.
industrial depariment! Fast, Friendly Service! Our special staff of trained men will fill industrial requirements accurately and completely, without delay, or advise and assist in the selection of equipment.
Iowest prices! You Save on Everything at Hudson! Our Dealer-Low Prices are the Lowest Possible! You buy directly from the distributor and pay the Lowest Prevailing Prices at the time of your purchase! You can buy with confidence at Hudson!
new york's first radio super-markef! Thousands of Amazing Bargains in Standard and Surplus Electronic Equipment in our Giant Radio Super-Market. Always Something New! An entire floor where you can Serve Yourself and Save!
time payments! Take a Year to Pay for any purchase of $\$ 75.00$ or over. Send for special order blanks.
complete sound studio! A newly enlarged and fully equipped sound room where the professional or beginner can see...hear.... and compare the finest high fidelity sound and recording equipment!
bob gunderson, w2 $\mathbf{~ b 1 0}$, and other hams on our staff will be happy to help with your problems. Drop us a line or call in person, anytime!

FREE! Send for our new 1951 radio-TV-sound catalog H-51. A penny postal card with your name and address to Dep't. H. puts you on our regular mailing list for catalogs and Bargain Flyers!

212 Fulton Street • New York 7, New York
Phone: DIgby 9-1192

WE GUARANTEE that RIDER BOOKS will show you how to get MORE out of your investment in ham gear...

Whether you're a fully experienced radio ham, a newly licensed amateur, or a SWL . . . knowing the answers to what - when - where - why -and how . . . will make it so much easier for you to ENJOY OPERATING!

Fvets well-equipped ham shack hoold have a scople. Every man Fwe builds and operates it rif should know the instrument thorwho burds. This practical book tells you everything you should know ouphly. This practical hroh it is... what it can DO
H/OH to use it moperty

ENCYCLOPEDIA ON CATHODE-RAY OSCILLOSCOPES AND THEIR USES

by John F Rider and Seymour D. Usian
The FIRST and ONLY book that so fully and clearly describes the 'scope ... its construction... its capabilities ... its applications in communications, engi neering, research . . . with thousands of time-saving and labor-saving references, charts, waveforms, etc.
All oscilloscopes produced during the past ten years, a total of more than 70 different models, are accurately described-with specifications and wiring diagrams.

Planning to buy or build a 'scope? This book will help you select the type best suited to your needs! If you already own one, the book will show you how to increase your instrument's usefulness in a thousand and one ways.
992 Pages - 500,000 Words - 3,000 lllustrations 81/2 $\times 11^{\prime \prime}$ Size - 22 Chopters - Completely Indexed Easy to Read - Cloth Bound..............And only $\$ 9.00$

TV and OTHER RECEIVING ANTENNAS

(heory and Proctice) by Arnold B. Bailey

Tells you . . . WHAT each type con do . . . HOW to use it . . . and WHICH is best!
This is a text book on ail types of receiving antennas. If you have any questions-you'll find the an. swers in this book! Radio amateur, manufacturer, engineer, student, service technician-all can use this text. WE GUARANTEE IT! Antenna data never before published any. where will be found in it. And it's readable-because mathematics has been translated into charts and graphs.
606 Pages . . . 310 Illustrations........And only $\$ 6.00$

Planning to install your own TV receiver? Order this RIIDER work, the ($\mathcal{V} L)^{\prime}$ text that wises you complete information on all the mechamm and electrical comsinterations.

TV INSTALLATION TECHNIQUES

by Somuel t. Marshatl
KNOW the absolute facts about such things as ice
 loading, wind surface, and mounting requirementswhether for short chimney-attached mast or an 80 ft . tower. including foundation.

HAVE at your fingertips, accurate data on receiver adjustments in the home . . . municipal regulations governing the installation of TV antennas and masts in all of the major television areas in the U.S. SURE to help you wherever and whenever any part of the installation requires "doping out"! A TIMELY and IMPORTANT book!
336 Pages - 270 Illustrations - $5 \frac{5}{6} \times 8 \frac{5 / 3}{6}$ Size
Cloph Bound
And only $\$ 3.60$

FM TRANSMISSION AND RECEPTION by John F. Rider and Seymour D. Uslan

The entire system of frequency modulation is ex. plained thoroughly : . . all types employed in ama teur radio, television, broadcast, railroad, aviation marine, police, point-to-point and mobile receivers. Basic theory, transmission, reception, circuit design and servicing are covered, with mathematics kept to a minimum. Almost all of the presently used FM commercial transmitters are described in detail.
416 Pages, Profusely Illustrated. \qquad .\$3.60

Beaf the Tube Shortage! Stay On The Air! This Sensational New RIDER Book Shows lon HOW to Do It!

receiving tube substitution guide book

 by H. A. Middleton

For AM-FM-TV Receivers and

 Allied Equipment!- 2500 Radia and TV Tube Substitutions Are lisfed!
- IV Receiver Filament Wiring!
- Heater Substitutian Wiring Instructions!
- Tube Types Classified By Functions!
- And A Wealth of Other Priceless Data!

EXTRA! In addition to tube information... this sensational book contains material on Cathode.Ray Tube Characteristics, Complete Tube Characteristics Chart, Ballast Tube Data, Pilot Light Information, Resistors-Capacitors-Transformer Color Codes, Transformer Substitution, Fixed Condenser Substitution, etc.
208 Pages in Heavy Durable Paper Cover. $81 / 2 \times 11^{\prime \prime}$
Only.
$\$ 2.40$
New . . . Revised . . . Enlarged RADIO OPERATOR'S IICENSE 0 and A MANUAL
 by milton Kaufman
Alt the QUESTIONS and ANSWERS for the FCC examinations. New Elements 2,5 and 7 have been included-and Elements 3 and 6 have been revised as of the September, 1950, FCC Supplements. However, the outstanding feature of this book is a THOROUGH FOLLOW.THROUGH . . . a carefully prepared discussion of the answer to the technical question, so necessary for an absolute understanding of the answer. It also lists "extras" not ordinarily found in a volume of this type . . . including Useful Appendices which take in Small Vessel Direction Finders and Auto. matic Alarm.
766 Pages, Hundreds of Explanatory Diagrams. $\$ 6.60$

UNDERSTANDING VECTORS AND PHASE

IN RADIO
by gohn F. alde, and soymeur D. Usion
This book was especially written tor persons who may not have had the advantage of an extensive mathematical education. it atfers a "shorthand" method to an easier understand. ung of radio theory. The subject is fully developed, sted by step. until its application to everyday electronic problems is clearly demonstrated. While this is a shori book, and inexpen. sively priced. it is extremely valuable to anyone interested in radio.

160 Poges, 72 Illustrotions, with Cloth Cover. $\$ 1.89$
with Paper Cover
.99

WE GUARANTEE your satisfaction! Make these books PROVE their value ta yau. Take advantage of aur 10-DAY MONEY BACK GUAR. ANTEE!

JOHN F. RIDER W2RID
JOHN F. RIDER, PUBLISHER, Inc.
480 Canal Street. New Yark 13, N. Y.

McELROY

 MANUFACTURING CORPORATION, LITTLETON, MASS.

 MANUFACTURING CORPORATION, LITTLETON, MASS.
 Telephone, Bosion Liberty 2-3411. Coble, Tedmac, Boston
 MARS and Red Cross and other Emergency Communication Systems please note

Tens of Thousands of radio operators
have been trained on MeELROY equipment.

Hundreds of Radiotelegraph Stations - military, naval, com-

 mercial - use McELROY equipment.
Now even the Smallest Station

 can convert from manual to automatic operation.The McElroy Portable Morse Package Unit MP-() - sturdy, light, compact - gives you perforated tape keyed transmission and inked slip recording at speeds up to 100 words per minute.

Technical Information will be sent upon request

DEPENDABLE High Speed Communications
 By SKILLED Communications Engineers of long EXPERIENCE and INTEGRITY

144

Index

Chayts and Tables PAGE
Aboreviations for Electrical and Radio Torms 540
Abhreviations, Radiotelegrap ith, in4!
Alphahet, (ireek 548
Lnateur Frequency Bands. $11 ;$
. Amateur's ('orde s
Intematand Feeder Iengths. . . . 340,346 , 350)
Intemna Diameter is. Length 3:39
Intemna (ialin (351, 352
Attemuation of Tramsmission Lines. 319
13:and |onss Filters $541-i+2$
kandwidth, Typieal I.F. N6, 100
battery hervice IIours 240
Beam lidement lengths. 3:)
Breakdown Voltage 26
(ill Lreas i) $4!$
(athode and sreen-i)ropping Resistors for R.F. and I.F. Amplifiers 99
(athode- Dodulation Performance ('urves 2×2
('hatacteristic Impedance :317,:318
Circuit and Operating Values for Con- verter 'Tubes. 96
Color Conle for Radio l'arts 52:3
Conductivity of Metals 21,54
Continental Code 13
Conversion of Fractional and Multiple lnits 23
(opper-Wire Table 546
(ountries I ist, IIRIRI, 51
(${ }^{(0 m p l i n g}$ to Flat Lines $3: 3$
(rystal I)iodes. i-4:3
beribel 539
Decimal liquavalents of Fractions 319
Dielectric Constants. 26
Drill Nizes 517
Driving-Power/Pate-Ciruit-Eficiency ciure 161
liffert of (iround on lorizontal Antennats $3: 38$
l:lectrical (Quantitios, symols for 9+1) 9+1)
Extended Double-\%epp Lengths 3:3
Field strength Meter (alibration C urve $4!1$
Folded Dipole Nomogram 32:3 32:3
Frequenc-v-Npertrum Nomenclature 20

(iauges, Standard Metal 547
(iemmanimm (rystal) iorles i) 43
Half-Wave Antenna Lengtlis 3.40
Imperdance Stej-Ip in Folded Dipoles. 323
Inductance and Capacitance for Ripple
Reduction 221,223
Indurtance, Capacitance and Frequency Charts 539,545
PAGR
Imluctance of Small Coins i.3!
International Amateur Prefixes i)is
International Norse Conle 1:3
International Call . Mlowations ():")
L-R Time ('onstant :31
Lang-Wire Antenna Lengths. $34: 3$
Message Form 5)30
Metals, Relative Resistivity of 21
Monlulator Characteristic ('hart 277,242
Musical sacale i) 47
Comemelature of Frequendies 20
()pen situbs, Position and Length 322
Operating Values, (onvortor Tubes 96
Output Voltage Regulation of Beam-Tet- rode Driver with Negative Fexd-l3ack 270
Deak-Rertifier-('urrent 1).('.-low- Current Ratio 224
Perentage Ripple Arross Input Com- demser 29
Phonetic Cisde 527
Pilot-Lamp I Mata 540
Mate-('ireait-l'fliciency/D)riving-Power Curve 161
Puncture Voltages, Diclectric 26
() Signals 515
Rr' 'Time ('onstant :31
R-N-T system 545
Radiation Angles $3: 36$
Radiation I'attems 340, 344
Radiation Resistance 339, 343
Rearetance Chart it 4
Relationship of Imateur-IBand Hamonics
Resistance-Coupled Voltage-AmplifierDatat254
Resistivity of Metals, Relative 21
Resistor ('olor ('ode 522
Response, Tuned-Circuit i4!
Rhombic Antemma Design 319
sichematio symbols 2
S(reen-I)ropping and (athode Resistors for R.F. and I.F. Amplifiers 9!
selenium Rectifiers i) 4 :
Signal-Ntrength, Realability and Tone scales. i)
Shorted Stubs, Position and Iength 32:2
Standard ('omponent Values 521
Standing-Wave Ratio :32
sIVR Calibration 491
stul) Position and Length 322
Simbols for Viectrical (Quantities 540
Tank-('ircuit ('aparitance 15), 15
$\mathrm{T}: 1 \mathrm{p}$ Nizes 517
Time, Condenser ('hatre and Discharge
Time Constant, L - R (©ireuit 34
Transmission-Line ()ata 319
Transmission-Line Losses 319
Transmission Lines, spacing 317

- -Antenna Design ('hart $3+8$
Varnum-Tube Characteristies 11-157
Varuum-Tube Iudex 12-155
Vicuum-Tube Notation Symbols 54
Vacuum-Tube sorket Diagrams. 15-112
Velocity Factor and Ittenuation of Trans- mission Lines 319
Voltage Decay. 54:3
Voltage-Output/Transformer-VoltageRatio2.24
Volt-()hm-Milliammeter Range (alihra- tion 45
II Prefises by States i49
IIIV'shedules +64
Wire Table 546
Word Lists for dereurate Transmission 527
Formulas
1.('. Average, Fffertive and Peak Values 20
Intema Length $3: 39,3+2,3+4,3.52,422$
Capacitance of Condenser $\stackrel{2}{7}$
Caparitance Measurement 479
Caparitive Reactance 38
Cathode Bias 7
Characteristic Imperlance 315, 321
(ritical Inductance 222
Decibels, (Gain in 339
Delta-Matehing Transformer Design 324
Efficiency Power 25
Energy, llectrical 24
Feeder Length 319
Filter Design 292
Folded Dipole, Driven-llement Length $+2:$
Frequency, Resonant4
Frequency-Wavelength Conversion20
Grid-Leak Bias
High-Pass Filter $5+1$
Impedance Matching 41
Impedance Ratios 45, 315
Impedance, Resistive at Resonance 49
Inductance ('alculation 30)
Indurtance Measurement 479
Indurtive Reactance 35
LC' Constant 31
Lecher Wires 41
Low-Pass Filter 5+1
L-R Time Constant 35
Modulation Impedance 278. 2
Modulation Index
Modulation Index 290
Modulation Percentage 276
Modulation Transformers, Turns Ratio 266
Multiplier, Meter 475
Ohm's Law (A.C.) 39, 41
Ohm's Law (D.(.) $2 \cdot 2-23,2$
Output Condenser for Modulated-Plate Power Supply 275
P.IGE
P.IGE 34 34
Output Voltage
pagh
Parallel Impedance 223,225 223,225
Parallel Resonance $+9$ $+9$
Phasing-Line Length 49, 50 49, 50
Power 352
Power ()utput 2.5
165Power-siupply Output Yoltage
22:3
Power-supply Transformer Coltage 225
$44,50,542$
-()" Antenna. 321
Re' Time Constant 34
Reartance 38
Regulation 222
Resistance Measurel by Voltmeter 47
Resonance 47
Resonant Frequency 47
Rhombic Antenna 349
Ripple 224,225
Screen Dropping Resistor 7.5
Neries, Parallel and Series-Parallel ('apar- itances 28, 29
Series, Parallel and series-Parallel In- ductances 32
Series, Parallel and Neries-Parallel Re- sistances 23, 25
shunts, Meter 473
Standing-Wave Ratio 314, 491
surge Impedance 317, 321
Time (onstant 3+, 35
Transformer Current $+4$
Transformer Efficieney 4
Transformer Turns, Primary 226
Transformer Coltage 4
Transformer Colt-Ampere Rating 226
Transmission-Line Length 319
Transmission-Line Output Impedance 315
Tums Ratio t+
Voltage Dividers 227
Voltage-I ropping series Resistor 227
Voltage Regulation 222
Voltage-Regulator Limiting Resistor 228
lia elength 20
Wiavelength-Freguency Consersion 20
Text
"A" Battery 60
Abbreviations for Rarlio Terms $5+0$
A.C. 19, 35-4:3
A.C.-D.C. ('onverters 236
A.C. Line Filters 505
Additive Frequency Meter 46:3, $46 ; 6$
ARRL Einblem Colors 534
AT-('ut Crystals 14
Ahsorption Frequency Meters 469
Nborption of Radio Waves 81
"Acom" Tubes 433
Alignment, Receiver 113,121
Alternating ('urrent 19. 35-43
Alternations 19
Amateur lhand Operating Chararteris- tics $79-80$
PAGE
Amateur Bands. 16
Amateur Radio limergency Corps. 532
Amateur Operator and sitation Licenses. 13
Amateur Regulations 501
Amateur's C'ode s
American Radio Relay League:
Headquarters 12-13Hiram Perey Maxim Memorial sta-tion. 12, 5.34
Joining the League 533
Ampere 20
Amplification Factor 63
Amplifier, Class 1 65, 17
Class 13 6
Class C os
Amplifier Classifications 60-6'
Amplifiers (see basic classifications, e.g.,"Receivers,"" "Transmitters," "Radio-telephony," and "Y.II.F."
Amplitude, Current 19
Amplitude Modulation 2
Angle of Radiation. 43, 337, 338, 340, 344
Antenna Construction 35 K
Antenna Couplers 3:31-3:36;
Anode (i)
Antemas, Recriving 337
Antenna Lengtl. 339, 346, 349, 352, 354, 3.36
Antemna switching. 35%
Antennas for Restricted spare 345
Antennas for S'.II.F. 419
Antemnas for 160 347
Assembling a station 495
Atoms is
Antistatic Powder $4+1$
Atmospheric Bending 80 A4, 371
Audio-Amplifier Classifications $6 i 6$
Audio-C'ircuit Rectification. 5013
Audio ('onverters 96
Audio Frequencics 20
Audio Itarmonies, Suppression of 267
Audio Image 10.5
Audio Limiting 103
Audio ()scillators 480
Auroral Reflection 52-83. 370
Autodyne Reception ¢5, 90
Automatic Volume Control (9), 101-102
Autotransfomer 16
Average-Current lalue 20
Awards 5.35
"13" Battery (6)
13T-C'ut Crystals 147
Back-Wave 41
Baffle shields. is
Balancel Cireuit 57
Balanced Modulator
Balanced Modulator 299
92
Band-Changing, Receivers
Band-Changing, Receivers
541-542
541-542
Banduass Filters
Banduass Filters 92
Bandspreading
86
86
Bandwidth
Bandwidth
338
338
Bandwidth, Antenna
Bandwidth, Antenna 369

1AGE
Battery 18
Battery Nervice Hours (Table) 240
B.C.I. 501
Beam Antennas 350, 354, 361
Beam Tetrodes. 7
Beat Frepuencies 5
Beat Note 85
Beat (xscillator 1(9)-101
Bent Antemans 346, 347
Bias. 64-65, 15 5
Bias, ('athode 74-75
Bias Mordulation 279
Bias rupplies 230
"Birrlies". 94, 114
Blanketing 503
Bleetler 222
Blocked-(irid Keying 242
Blocking Condenser. 55, 156
Body ('apacity 91
Brass Pounders League 337
Breakilown Voltage 2
13reak-In 524
Bridge Rectifiers. 215
Bridge-Type standing-Wave Indicators. 491
Broadhand Antemmas 426
Broadcast Interference, Elimmation of $501-51 \%$
Broadside Arrays 331
Buffer Amplifier 140, $2 \overline{7}$
Buffer C"ondenser 237
"Buncher" 434
Butterfly ('ircuits 430
Button, Microphone 250
Buzzer Code-I'ractice set $1+$
By-Prassing $55-50,15 \%$
"('" Battery 63
(' (Caparitance) 26
(-I. Ratios 50-51
($-R$ and R-L Time Constants 34-35
(able Lacing 521
Canadian (ieneral Mamager 12
Capacitance and Condensers 26-29
Capacitance, Distributed 56
Feed-Back 76
Inductance, and Frequency (harts 545
Interelectrode 70-71, 161
Neasurement 479
sperific Inductive 27
Caparitance-Resistance Time Constant. 33
Caparitive Coupling.
Reactance 37-34
Carbon Microphone 250
Carrier 275
('arrier suppression 298
(ascade Amplifiers. 67
Cascode R.F. Amplifier. 373
"Cartcher" 435
Cathode 59, 60
Cireuits 72-73
Follower 72, 73-74
Keying 242
Mordulation $2 \mathrm{~N}_{2}$

	DAGE	P.age
Resistor		Sweep. 484
Cathorle-Bias Calculation	74	Transmitter (see "Transmitters")
Cathorle-Ray Oscilloscopes	483	Tamerl-Plate Tuned-(irid. 76
Cavity Resonators.	430	Voltage Multiplying 23.3
Cell.		(lass A Amplifiers. 66
Center-Fed Antenna	341.345	Class . 13 . Implifiers. 68
Center-Tap, Filament	73	Class I3 Amplifiers.67-6s
Center-Tal Full-Wave Rectifier.	218	Class I3 Mrodulators. 266
Center-Tap Keving	242	('lass C Implifiers6s-69
('enter-Tap) Moclulation	2 N 2	Clicks, Keving 241
Chammel.	275	Clipping, ذр
Characteristic C'urves.	(i)	Clipter ('ircuit ${ }_{2} \mathbf{5} 9$
Characteristic Imperlance	311	Club Affiliation 3 \%
('haracteristics, I)ynamic.	(i)3	Coaxial futemas. 426
Characteristics of IRadio Waves. .	N0-81	Coaxial-electrode Tulses. 395
(Charges, Electrical.	17.18	(oaxith-Line Cireuits. 42)
Chassis Iayout	517	Coaxial Transmission Lines 3li, $3+1,347$, 3507
Chirp, Ieying	$1+2.241$	Corle (Continental) and Corle Practice. . 13-16
Choke:		Code Proficiency (ertificate 3.36
(oil	30. 222	Coefficient of Coupling32, 3.3
Filter	$22: 3$	('oefficient. Temperature21-2)
Radio-Frequency	55	(oil (see "Inductance")
Swinging	223	(ond-C'athode Rectifiers. 219
Choke-Input Filter	221	Collinear \ratys. 3.0)
(ireuit Tracking	.93. 105	Color (oodes, RXI
('ircuits:		('olpitts Cireuit 7 . $1+1$
Batanced	37	('ombined A.C. and 1) (${ }^{\text {c }}$ (. 5 ¢-5)
Butterfy	430	(ombination Arays 3 37
(athode	73-74	('ompact Intennats. 345
Coaxial-Line	429	Complex Waves 19, 4i3
('olpitts.	76. $1+1$	Component Values
('ombined A. ('. and J).('	54	Compression. Speech Implifier 256
Converter	9.5	(Ooncentric-Line Matching section 3 St
Coupled.	51-54	Concentrie Transmission Line 316
Blectrical.	17-54	(ondenser. 26
Filter . .	35	I3and-setting . 92
(irid Separation	72	Bandspreading 92
Martley	-75, 141	Blocking 5 5, 6i5, 150
High- ${ }^{\text {r }}$.	- 50	Color ('orle .
High-Frequency (scillator	97	Coupling .ibl-i) 2 , 153
Keving.	242	Series and larallel Connections . . . 28-29
Laig.	24	Condenser-Input Filter. 224
Law-('	50	('ondensers, Bandspread. 92
$L R$	35	Buffer . 245
Lumperl-Constant	429	
Nonlinear.	57	Electrolytic $27-26$
$O_{\text {Ol }}$	22	Filter . 2.5
1 larallel	41-42	Fixerl . $27-2 \mathrm{y}$
larallel-Resonant	49-50	Veutralizing . 150
lot-Tank.	- 429	Variable . $27-2 \times$
Power-Amplifier	66	Conductance. 22
Primary.	51	Conductance, Mutual 63
Rarlio-Frequency Power- Implifier	149	Conductivity $21,22,544$
RC'.	33-34	Conductor Size, Intennas. 340
Receiver (see " Receivers")		Condurtors. 18
Resonant.	47-51	C'one Antennas. 426
Resonant-Line	429	Constant, Time $33-35$
Secondary	51	Constants, LC. 51
Series...	40-41	Constant-Voltage Transformers 235
Shielding.	57	Construction, Intenna. 35 S
Single-Ended.	. 57	C'onstruction Practice 516

PAGEDividers, Voltare227
Divisions, IRIRI 12
Door-Kinob Tube 4.33
Doubler, Frequency 140
Doublet, Folded $3+1$
Half-W:ave 339
Double-Humped Resonance ('urve 53
Double Superheterodvine 94
Drift, Frequency 77,143
Drift Spare 434
Drill Sizes (Table) 517
Driven Element Dirertive Antemms 330
Driver 152
Driver I'ower 160. 252
Drivers for Class 13 Modulators 269
Driving-l'ower I'late-Cirruit-Efficiency C'urve 161
I) hmmy Antenna 165
Duplex-I Dode, Triodes and Pentodes 75
Duplex P'ower Supplies 231
D) ${ }^{\prime}$ (' $5: 35$
Dynamic Characteristios 6.3
Instability 77 77
Microphones 251
Denamotors. 236
Dynatron Oscillator 7s, 4:35
E (loltage) IS
E layer ×2
Eddy Current 31, 43
İffective Current ${ }^{\text {Palue }}$ 20
Efficieney $25-26$
Amplifier 161
Conversion 94
Transformer 44
Electric Current 18
Electrical Charge 17
Electrical Laws and ('ircuits 17-58
Electrode 60
Electrolytic Condenser: 28
Electromagnetic Deflection 483
I'ield 17
Waves. $17,80-81$
Dlectromotive Force (E.M.F.) 1s
Electron-(oupled ()scillator 142
Blectron (iun 4×3
lens 4×:3
Transit Time 433
Elertronic Condurtion 18
Kievs 249
Niwitching 75
Voltage Regulation 22 N
Dlestrons 1K
IVlectrostatie Coupling 51-5)2
Deflection 483
Field 17
Shield 135, 511
Waves 80-81
Element spacing, Antenna 350, 354
blements, Antenna 350
Emergency Communication 531
Emergency Coordinator 533
Rmergency Power Supply $2: 36$PAGE
Eimission, Eilectron
Secondary 71
Thermionic 59-60
Find liffert 3:39
İnd-Fire Arrays 351
Energy 25-26
Excitation 160
(irid 77
Parasitic 354
Exciter ("nits (see "Transmitters")
lixtended I)ouble-Zepp Intema $35: 3$
F-hayer 内2,369
Farle-()uts, Rarlio $\$ 2$
Fading 84
Farad 27
Faraday Shield 135, 511
Feed, series and l'arallel 55
Feerl-13ack 69, 70, 76-78, 107, 270
Feerlers and Feed systems. 311
Feeding (lose-spaced Antenna Arrays 355
Feeding I Ialf-W:ave Intennas $3+1$
Fidelity 47.9x, 250
rield Direction 17
F゙ield, İlectrostatic 17
Fiekl, Electromagnetio 17
l'ield Intensity 17,337
ľield, Mannetostatio 17
l-ield Strength 337
Field-Strength Meters 489
Filament 59
Filament Center-Tap 7.3
Filament Supply 2:3:3
-ilament Voltage 161
Filter, C'rystal (06, 111
Filter Component Ratings: 225
Filter Resonanne 223
Filters (61, 5 9
High l'ass 514
Keying. 244
Line. 505
Low Pass. 511
Power supply 221
R. l°. 244
loiltering, speech 257
liiring Voltage 457
lirst Detector 04
rlat Lines 316
Flux Density, Magnetic 17,31
Flux, Leakire 4.
Flux Lines 17
Fly-13ack 484
l'ocusing Electrode 4×3
Folded Dipole 322. 341
Force, Electromotive 18
Force, Lines of 17
Free-cipace l'attern 338
Frequency 19
Amateur Allocations 16
Audio 20
Critical 81

P\GE
${ }^{1} \mathrm{AGE}$
${ }^{1} \mathrm{AGE}$
（apacitance，and liequency（＂hart．．．itt IVilovolt
23
23
（ ritical 2.2 2.5
Distributer
af Kilowatt IIour
leakige 45
Measurement 479
Mutual ：32－3：3
Of Small Coils i）39
Optimum Vidue リ．23
Inductance－Resistance Time（onstant ．．．
Inductances in Neries and l＇aralle34
Inductive（＇apacitance，Specilic 27
Inductive（＇oupling
Inductive（＇oupling $1: 2), 326$
noluctive Neutralization $1: 0$
Inductive Reartance 3ヘ－－39
Inductor $3:$
ninite imperlance Detector
ninite imperlance Detector
2
2
Input Impenanne 314
Instalbility，Rereiver114
Insulators
26
26
Klystrons． $4: 34$
L（Induetance） $29-33$
I．C Constants． ． 1
I／（＂Ratios： （0）（．1．12，154
L－R＇Time Constant
3．5
3．5
＂L，＂－section Filters i41－it2
lang（＂ireuits ＇4．）
arg Corrent or Voltage $3 \overline{5}, 40$
laminations 31
ans（＇onmeming dmatent（oprations． 3， 0 ）
aws，Electrical 17－5
Latzy－ll Antemat 3.02
leaid．（＇urrent or Voltage 35． 40
l．eakage Plax 4i）
leakage Indurtance 4.5
Leakage Reartance 45
Interelectrode（＇inameitanors 470
Level，Mirrophone Intermediate Frequency 2\％
9：3 License Mamunh，The Rimbio Immene Intermediate Frequency Amplifier $95-100$ $1: 3$
Intermediate－lirequency Bandwidths：T：ible100
Intermediate－Frequency Noise Nilener 10.4
Intermediate－Frequency Transfommers 99
Intermittent Direct（＇urrent
Licenses，Amatent
13
13
lighthouse Tohes． 37：3．305
lightning l＇rotection 361
Limiters，Doise
10：3
10：3
limiting Resistor 22
International Amateur Rarlio Cnion
International Amateur Rarlio Cnion 20）
Line－Voltage Adjustment
Interruption Frequency 234
37：linear Amplifiers
Interstage Coupling ！ 290．301
Inverse P＇ak Voltare $2 \cdot 20$
Inversion，Phase
Inversion，Phase 25：3
Inversion，Temperature 37
Ionization
Ionization （x，s！－N4，360 （x，s！－N4，360
lonosphere
lonosphere （1）－94 （1）－94
Iron Core Coils 29．31－32，？
Isolating Amplifiers $29.31-32,93$
142
＂J＂．Intenna 420
Keepring a loor 52！
Key Chirps
Key Chirps $24!$
Ker（＇licks 241,24
Linear Antenma Tramsfommers 321
linear sweep 4N
linearity 64， 277
lines，Flux 17
Matched 312
Lines of Force 17
lines．Nonresonant and Resonant 316
limes．Parallel（omductor 317
lines．Tramsmission 311－3：36
link（coupling $53-54,151,325$
link Neutralization 150
lissajous F－igures 4が4
Keving：
Ker：llow to I＂se
Ker：llow to I＂se 15 Load ．．．．．．．．． 46， 51,61 266
Lomal Rexistor
Lomal Rexistor
Back－lVave （i1， 87
241 Lomded（＇irruit（）
Break－In 241.245 local（oseillatom 万）
l：lectronic Kievs 249 loocking－In 94，97－9x 94，97－9x
Kev－（ 1 ick Reduction 243 lagr，Ntation 02
Methorls： 520
lang－lVire Antennas
Blocked（irid $34: 3$
242 Long－Wire Direative Arays
Cathorle or Center－Tap 242 Loops 345
Plate 313
242 Josses， 11 ysteresis Hrreen－（ irid 24）Low－r＂（irmuit 31－32
Tube lieyer 243,240 Low Frequencies 50
Monitoring 20
246 Iow－Level Modulator：
Oscillator Keving 241 Low－Pass Filters 290
Parasitic（ licks 166，245 Lamped－Constant（irruits 511，541－542
Relays 243 Magnetic itorms 429
Kilorvele$82-83,370$
20 Magnetizing Current
Kilohm 4
24 Magnetrons
24 Magnetrons 435

PAGE 1AGE
Ohmmeters. 474
Old Timers (lub 537
Open-Wire line. 317
Operating an Amatear Katio N゙hation. .i33, 533
()perating Angle, Amplifier 68
Operating a station 524
Operating Bias 15 K
Operator's lidense. Anateur 13
Oscillation 70. 76-78
Oscillator lieving 241.248
Oscillators, Vewative-Resistance 7N, 435
Oscillators, Test 4×1
()scilloseone . Amplifiers 4×7
()k illoseone Patterns. $2 \times 5,2 \times 7,3(0) 1,45$
Oscilloscones 4×3
Output C'onclenser, filter 223
Output Limiting 257
Output Jower (6). 161
Outןut Voltage 22%
()xide-(oated ('athode 6()
Overexcitation 26 N
Overmodulation 276
(${ }^{\text {Permondulation Indicators }}$ 2 NS
I' ('swer). 25-26
'adding Condenser 93
Paralonic Reflectors 426
I arallel Amplifiers (77
larallel Antenna Tunimg 346
Parallel Capacitances $2 \mathrm{~S}-29$
Jarallel ("ircuits. $23-25$). 2K-29, 32, 41-42
lanallel-('onductor I.ine 317
Parallel Feed 55
Paralled Impedance 41-42
Parallel Inductances 32
Paralleal Resistances 23-25
Parallel Resonance 4! 50
Parallel Tuning 346
Parasitic F'lenents, Intenna Arrave with $3 \overline{3} 4$
Parasitice ()sollations 16.3 , 166 (169
l'asshand, TRereiver
Patterns, ()sojlloseone 2*is, 2ヘ7, 3()l, 485
Patterns, Radiation 340,344
Peak-('urrent Vilue 20
Jeak Voltage Kating 22.5
l'encil Tubes. 4305
I'entagrid Converters 9
Pentode Amplifiers. 71-72
Pentode ('rystal ()surillators $14 i$
Pentodes 71-72
l'ercentare of Nodulation 276
Per ('ent Ripple 222
I'ermeability 31
Phase $.35-.36$
lhase Inversion $2 \overline{3} 3$
Phase Modulation (See also "IVrequency Modulation") 290
Phase-Mondalation Reception 112
Phase Relations, Amplifiers 64
Phase Nhift 290
Phased Antennas 352
'I'hone Activities Manager).3:3

PAlit：
Preferred Vahues，（＇omponent 5＇21
Prefixes 20）（5）
Preselectors 124
Primary（oil 43
Procedure，（＇．II 52
Procedure，Vione 526
Propagation，lonospherí x1－84． 36
Propagation l＇atterns 344 ff
Propagation lhenomenat 369
Propagation Predictions 4， 369
Protective lias 15 s
lublie Relations 501
Pulleys，Antoma 360
＂Pulling＇ 92，95
Pulsating（＇urront 54
Puncture Voltage 26
P＇ush－l’ull Amplifier ${ }^{19}$
Push－Pull Multiplier 166
Pash－l＇ush Multiplier 166
Puslı－to－Talk 499
1 4n，50， $52,-33,58,93,154-150$
＇（2）－er＂ 106
（ ℓ＂Antenn： $312,+20$
（），Loarded C＇irouits 50
＂（）＂－Nertion Transformer $321,+20$
（Q）Signals 548
（ぶT） 12
Quench Freguency 375
R（Resistanere） 21－22
R＇（＂ircuits． ：3：3－34
R．J＂20
 20
R心T Nystem in 4
Radiation 316
Radiation Angle 43，337，335
Radiation（hatarteristion 34
Radiation from Transmitter 508
Rarliation l＇atterns $3+0) \mathrm{ff}$
Radiation lResistance $3+0$
Radio Frequency 20
Amplification 14）－152
Amplifiers（Rerodum） 106
C＇loke C＇oil in） 1.66
Feod－Bark 38
Rilters $24+505$
Power－Amplifios（irouits 149
Radiotelegraph（Operating Procedure 524
Radiotelephone（）perating Irocedure 520
Radiotelephony：
Mljustments amd Testing ．．．． $272,2533,296$
Audio－Harmonic suppression 269
Class－13 Molulators 266
Cherking ． $1 / 2$ Tramsmitters 2×3
（Cherking F．M and PM Transmitters 296
（onstructional：
20－Watt Speech Amplifier
Morlulator 271
（0）－Watt Molulator $2(62$
100－W：1tt 807 Speech Implifier
Modulator． 264
Chipper－Filter sipeech Amplifier 259PAGF：
（rystal－Filter Nill Exiter 307
High－Power Mondulators 266
Narrow－13anl Reactance－Nodulator L＇nit 295
Phasing Type sisk Exater 301
Driver stages 269
Measurements． 27
Microphones 200
Modulation 27.5
Monitors．
Output Limiting 2.5
（）vermodulation Indicators 2 st
Principles． 27.5
Rereption 111，112
Resistance－（＇oupled sperth－smplifier bata $2: 54$
Single－Sidehand Transmission 298
Speerh Amplifiers 250
Vohme Compression 257
Ratio Waves，Characteristies of ．．．79－84，365
Rag（＇hewers（＇lut） 5：36
Range，l．H．F． 36 N
Ratio，Image 94
Ratio，Impelance 15－46
Ratio，Turns 4：3
Ratio，P＇ower－．Implification $6 i 6$
Ratio，standing 1 iave $31+$
Ratio，Voltage－Amplification 64
Ratio，L／C 50－51，154
Reartance，Caparitive ：37－38
Reartance，Inductive ．3x－3！
Reartance，Leakige 4i）
Reartance，Moxlulator 295
Reactance，Tramsinission－Line 31：3
Reartive Power 39
Readability scale 5.4
Rebound 379
Receiver Servimy 113
Receivers，High－Frequency：（ine also ＂I＇H．F．＂）
Antemas for 337
Constructional：1－Tube Converter for 10 and 11
Meters ．．．．．．．．．．．．．．．．1：30－1：31
1－Tube Regenerative Receiver．．．11：－117
s－Tube Regenerative s．s．superhet－erodyne ．．．．．．．．．．．．．．．．．．． 118 122
Antema Coupling（Tnit for Receiving 12013and－switching Preselector for $1+$ to
30）Mc．．．．．．．．．．．．．．．．．．．120－127
（＇lipper／Filter for C．W．or＇Phome． 12：3
Crystal－Controlled Converters for 1．t，
21 and 28 Me 132－135
Receiver Matching to Coaxial Line 139
Rereiver Matching to Tuned Lines 129
＂Nelectoject＂ 125
Nharp I．F．Amplifier for＇Phone or C．W． 136
Nelertivity 86,105
sensitivity 85－86，111－116
Servicing 113

Safety 499
61
?833, 370
sereenll liy-lass (ommenser 1.
K(reen |)issipation 161Screen-(irid Smplifiers.164
mreentirid keving71-72
Fiecond Deterotor43
Feromdary binission 1
Section Communications Manager 533Selective Fading84Selectivity Control100
-$220,232,543$
self-Bias 58
()ncillitors29
Relf-()nemillation , 6
Sensitivity, Roceiver 110Neries ('apacitances2K-29series lem5)
*23
series Resomance
Nerving Superhet Reremer: 113
7shieldiner
shielas. 57Nhorting Stick499Shunts, Meter473
-ilond (intorn$2 \overline{7}$
Fidebmads275
Signal cienerators (SO
Signal-to-Image Ratio 94
Sinal Ionitor.42
Nignal-strength Indicators 1 ()
Siansors.$1(12,123$
Sine Wiave53
. Amplification308
J.AGE: PAGE
Exciters 301, 306
Switching Antenna 35 S
Signal Reception 112
Transmission 298-310
Reception 105
Nkip Distance $83-84,369$
Skirt Selectivity 86 80-84
Smoothing Choke 225
Socket Comnertions (Diagrams) 15 15
solar Cycle 369
Soldering 519
fuace Charge 59
Saace Wave 81
Spark Plug Suppressor: 44 44 27 27
Tetrode 7
Switching, Meter 162
Symbols for Electrical (unatities 540
Synchronous Vibrators 237
"T"-Match to Antennas. 323
"T"'Section Filters 541-i54
Tank-Circuit (..... 0. 143, 154-156
Tank Constants $154-159$
Television Interference, Vlimination of 151, 501
Temperature Effects $21-22$
Temperature Inversion 371
Termination, line 313
Tertiary Winding 100
Sipectrum, Frequencr
Sipectrum, Frequencr 21-22, 80 21-22, 80
Speech Amplifiers 2.52 ff
Speed Amplifier Design 2.5
Speech Clipping and Filtering 257
Speech Compression 251
250 ff
Splatter 276-27
Sporadie-L Laver Ionization S3, 369
Spomadic-İ Nkip 369
Spurious Responses 94, 111,514
Spurious Sidehands. $2 \mathrm{S8}$
squegring 94
Squench Oscilhator 37
sill Exaters 301, 306
Stability, Receiver $87,96,114$
stacked Arrays $+22$
Ntage, Amplifier 67
Staguer-Tuning 3.3
standard Component Values 521
Standards, Frequency 464
Standing Waves312
Standing-Wave Ratio 314,490
Starting Voltage 22N
Static Characteristics (i)
Static Collectors 44
Station Control Circuits 49 s
Straight Amplifier. 140)
Stray Receiver Rectification 503
Striking Voltage 45
Ntubs, Antenna-Matching 321
Sunspot Cycle N2
Superheterorlyne 93
Superhigh Frequencies (See abso "Very IIigh Frequencies') 20)
Superregeneration 37
Superregenerative Receivers 372, 375, 393
Suppressor (irid 71
Suppressor-(irid Modulation 2 SI
103
Suppressor, Noise
Suppressor, Noise 103
N 1
Surface Wave
Surface Wave
311
311
Surge Imperlance
Surge Imperlance
4×7
4×7
sweep (ireuits
sweep (ireuits
414
414
Swee] Waveforms
Swee] Waveforms
62
62
Swinging Choke 223
Switch 22
PSCF:IMGE
Push-Pull slis Trinsmitter. . . . 190-19s
Nhielded lis)-watt Transmitter forFour Bands. $1 \times 1-184$
175-Watt Transmitter for the l6o
Meter 13and 199-201
500-Watt Link-(ompled . Ill-band
Tramsmitter. $1 \times \bar{i}-191$
All-Band Bandpass Voxeiter $175-1 \times 0$
Simple VFO
Bandswitching (ians-luned VFo lexiter $207-210$
Silenced V'ro for 3 reak-In ('. W' $204-206$
Single-Control low-l'ower Trans- mitter $171-174$
Power Amplifiens:
Push-Pull wot Implitier with Mul-tiple-13am Tumers. $211-213$1-KW Ikeam-Tetronle .implifier 214-216
line-Voltuge . $d j u s t m e n t$ $2: 34$
Metering 163
Principles and I esign 40 ti
Rack Construction 217
Transverse F:lestric and Mannetio Morle 431
Trapezoidal l'attern 204
Trimmer C'ondenser $9: 3$
Triocles (i)-6:3
Trionle Amplifiers $149-151$
Triode Crystal Oscillators 145
Triple-Detertion sumerheterodyne 110
Tri-Tet ()scillator $146-147$
Troposphere l'romagation
79.371
Tropospheric Bending
() N 4
() N 4
Tromospheric Waves.
113
113
Trouble Whooting (Receivers)
Trouble Whooting (Receivers) 23
Tube Kever.
Tube Noise xt
Tuned- ©ircuit liesponse) 42
Tuned Compling 326
Tuned Screen C'irouits. 397
 76
Tuned Line 397
Tumed Transmissiom Lines 316
Tuners, Antenna, (onstruction of:Coax-('oupled Matehing ('ircuit332
Lower-l'ower Rack-Momed Intenna ('onpler. 334
Rereiver ('ompler' 12x. 129
Series-l'aratlel ('oupler iom 1 , all .uoun- ting 333
Wide-Range .Intenna Compler 335
Tuning Indicators 104
Tuning R.F'. Amplifier: 162
Tuning Range, Extenting the Reveiver 110
Tuning Receivers 92,110
Tuning Slug. 99
Turns latio 43
T.V.l. $50 t$
"Twin-Lamp" Standing Wiave Indicator 493
Twin lead 317
Lltra-IFigh Frequencies:"Butterfly" Cireuits430
Cavity Resonators. 430, 432
Klystrons 435
" lighthouse" Tuines. : $1: 3,395,434$
lumperl-(onstant ('ircuits $+29$
Magnetrons 43%
Megatrons 434
Tank ('irruits 42 N
Techniques 436
Transmission-line 'lanks 42 N
Tubes. 43:3
Velocity Mowlulation 434
Wave (inide. 430
I'nbalance in . Implifiers 163
Inbalance in Transmission lines 318
Iniversal Sntenna Couplers 332
Entumed Transmission lines 316
Cpward Modulation 248
" l^{\prime} " Intennas 34 S
VR-Tubes 227
Vacumm-Tube Principles. $.9-78$
Vane Tuning 93
Variable-lrequency Oseillatom $1+1-144$
(TVs)
(TVs) (See also "Transmitter, ('onstruction-al," "Mohile." and "V.H.F.")Variable- Tubes72
Variable selectivity 100, 10t
Velocity Pactor 319
Velocity Microphone 251
Velocity-Modulated Tubes 434
Velocity Morlulation 434
Velocity of Radio Wiaces. $20, \mathrm{~N}^{(0)}$
Vertical Amplifiers 4×8
Very-High Frequencies (V.Il.F.)
Antenna Systems:
13 roadlband Intemmas 426
('oaxial Intenna $+26$
Cone Intenna 426
Corner-Reflertor Antennia $+27$
('ylindrical Intemnas 426
Delta Mateh $+20$
Design lactors $+19$
Directive Arrays 421
Folded Dipole 421
"J" Antenna 420
Long-Wire Intennas $+20$
Mobile Antennas 459
Pamabolic Reflectors. 426
Phased Irrays $+23$
Plane-sheet Reflectors 426
Polarization 419
"()" nertion 420
starked Intemnas 422
"T"'-Match 420
"I"-Match 420
50 and 144 Mr. 421
220 and 420 Mc 425
Constructional:Receivers:
1'AGF PDAE
Crystal-Controlled Converters. . . . 376 Voltage Node 313
Superregen Rereiver for 420 Me. . 393 Voltage Ratio, Transformer $43-44$
2-Meter Mobile ('onverter 449 Voltage Regulation 222
28 - and 50-Me, Simple Converter. 3s4 Voltage, Ripple 221
6.56 Preamplifier for $2 \mathbb{2 N}, 50$ and 144 Voltage Rise 49
Mc. 389 $4+1$
144 Me. Low-Noise Converter.381 Voltage Stahilization
220 Mc. Caseode ('omperter 297
387 Voltage-Ntabilized Power supplies
120-Me. Converter 227391 Voltmeters
Transmitters: 47
Volume Compression 257
50-144 Me, 400 Watt Transmitter 398
50-144 Me. Crystal (ontrolled Mo-
454
bile Transmitters Whis Awarl
420-Mc. Transmitters 417 25
$12,5: 34$
$12,5: 34$
II AC Certificatos 536
Crystal Control on 220 M1.409 Watt-Hour
Double Beam-Yetrode . Amplifier 26for 50 and $14+$ Mc.415
Low-Power for 50 and $1+4$ Ne.
cimplified Excitor for 50 and 144411
Ne. 407
VFO with NFM for V. H. F 404
Receiver Considerations. 372
station lacations 371
Superregenerative Recoivor 375
Transmitter Design 395
V.II.F. Rereiver Dosign374
I.F. Amplifiers
Nixer ('ircuits.
Watt-second 26
Wiave Angle A.3, 338
Wiverinvolope Pattern 284
Wave (iuides $4: 30$
Wave, (iroumd 80-81
Wave Propagation S1-84
Wave, Nine 19, 35, 43
Wave, sky $\mathrm{sl}-84$
Wavotraps 505
 19
Wivelength 20-21
Wiarelength-Frequency ('onversion 21()soiltator Ntabilits
R.F. Amplifier Design 372
Superregencrative Recorors37)
What to lexperet 365
Vibrator Power supplies237
Virtusil Meight
Sl-82
Witves, Flectromsiguetir
Witves, Flectromsiguetir 17 17
Voice Control 301
Voice Operating 526
Volt. 19
Volt-Imperes
Volt-Imperes 39,42 39,42
Volt-Ampere Rating 226
Voltage Amplification (66-67, 25)
Voltage Creakilown 24
Voltage Decay
Voltage Decay i-43
Yoltage Distribution, Intems: 2.27 2.27
Voltage Drop. $340,3+3$
$3-24,227$
Voltare Feed for Antemas: 341

- Cut Crystals 147
Voltage (iain. (if), 252
Voltage Loop 313
Voltare-Multiplier Circuits
3.4 Wivelengths, imatemr 7()-80 7()-80 16
 ment") 16
Wiaves, Complex 43 43
Wherel static 4.4
Wide-l Band Antennar 426
Wire Table 546
Wiring Diagrams, Symbols for 2
Word Lists for Aeceurate Tramsmission 527
Working 1)X 527
Working Voltage, C'ondenser 225
Workshop Practice 516
WWV Schedules $4(5) 4$
X (Reactance) 315-39
X-Cut Crystals 147
"Y"-Matching Transformer 420
/ (Impedance) 40-43
Zero Beat 92

The Radio Amateur best justifies his existence by the service he renders his community in times of disaster and distress when all other media of summoning assistance have failed. In these days of existing and pending national emergency, your services as an amateur in this respect are needed more than ever before in the increased demand for emergency communications facilities for civil defense work. The amateur's emergency service is implemented and centralized by the Amateur Radio Emergency Corps, sponsored by ARIL in the public interest. Any licensed amateur in the U. S. or Canada is invited to register his facilities in the AREC. Use the form below or facsimile thereof.

AMATEUR RADIO EMERGENCY CORPS

REGISTRATION FORM
In registering in the Amateur Radio Emergency Corps, it should be understood that there is no expense of any kind invalved and that there is no obligation to join any amateur radio arganization in order to retain membership

PLEASE PRINT OR TYPE

TRANSMITTERS

$\begin{gathered} \text { Band(s) } \\ \text { Mc. } \end{gathered}$	Line-Up	Power		Port.	Mble.	Fixed	Xtal or VFO	CW or Phone
		Emerg.	Reg.					
							\rightarrow	

POWER SUPPLIES

Emergency	Regular (Commercial Mains)

[^19]| RECEIVERS | Power Source
 (check which) | |
| :---: | :---: | :---: |
| | Emerg. | Reg. |
| | | |
| | | |

Coordinator, Section Emergency Coordinator or Section Communications Manager supervising my area and that it will be based entirely upon the degree of my activity in local AREC plans and drills. I further understand that my continued interest and activity, together with annual endorsement of my membership card are the sole requirements for retaining my membership in good standing.

Date.
.Signed

Forward this registration form to your EC, SEC or SCM, in that order of preference. SCM addresses are given on page 6 of
each issue of QST. Addresses of SEC's and EC's are on file both with hq. and the SCM.

[^0]: * lixefent in State of Washington where daytime power limited to 200 watts and night time power to : 0 () watto.

[^1]: 'McLaughlin, "Exit Heterodyne QRM," QST, October, 1947.

[^2]: $\mathrm{C}_{35}-100-\mu \mu \mathrm{fl}$. varialle (M illen 90100)
 C:37, $\mathrm{C}_{38}-6.50-\mu \mu \mathrm{fd}$. silver mica.
 (:51-0.005- $\mu \mathrm{fd}$. ceramir (Surague 290 (i)).
 (:52-12-mufd, ubular air condenter (seep text).

 C_{54} - $12.5-\mu \mu \mathrm{fl}$-per-section variable (National TVIS. 125-1)).
 $\mathrm{C}_{55}-0.001-\mu \mathrm{ff}$. 2.500 -volt mica.
 C.57-470 $\mu \mu \mathrm{fd}$. mica.

 CS8 - $470-\mu \mu \mathrm{fl}$. 2500 volt mica.
 (:59-300- $\mu \mathrm{fd}$. variable (Vational STII-300).
 (:60, C61-0.1 $\mu \mathrm{fel}$, 250 volts (Sprazue liypass).

[^3]: * Iny or all holes for smaller panels that follon may be added or substituted as desirable. Hole distances are from either top or hottom edges of panel.

[^4]: ${ }^{1}$ For a description of a well-shielded oscillator, see Smith, "A Solution to the Keyed-VFO Problem," QST, February, 1950.

[^5]: 1 Voltoge across next－stage grid resistor at grid－current point．
 ${ }^{2}$ At 5 volts r．m．s．output．
 ${ }^{2}$ Cathode－resistor values are for phese－inverter service．

[^6]: (. 1 - 100- $\mu \mu \mathrm{fd}$ nica.
 (:2, Сб, (iз - $20-\mu \mathrm{fd}$. 25 -volt clectrolytic.
 ($a-0.1-\mu \mathrm{fl}$. 40)-volt paper.

 ($\mathrm{S}_{5} \mathrm{C}_{8}-8-\mu \mathrm{fI}$. 4.50 -volt electrolytic.

 (.10 - $0.002-\mu \mathrm{fd}$. mica or paper.
 (: $12-3 \mathbf{3 0}-\mu \mu \mathrm{fd}$ mica.
 (14 - 30- $\mathbf{\mu f l}$. 150-volt electrolytic.
 C: : $_{18}$, C19 - 16- ffl . 450 -volt electrolytie.
 (20, (21 - 8-pfd. 4, ()-volt electrolytic (can type).
 $\mathrm{R}_{1}-2.2$ megoluns, $1 / 2 \mathrm{watt}$.
 $R_{2}, R_{14}-2200$ ohms, $1 / 2$ watt.
 R_{3} - 1 megohm, $1 / 2$ watt.
 $1 \mathrm{R}_{4}, \mathrm{R}_{9}-0.4 \mathrm{~m}$ mohm, $1 / 2$ watt.
 $1 R_{5}-47,000$ ohms, $1 / 2$ watt.
 $R_{6}-2$-megohin volume control.
 $\mathrm{R}_{7}-3900$ ohms, $1 / 2$ watt.
 $R_{s}-0.1$ megohm, $1 / 2$ watt.
 $R_{10}-1500$ ohms, I watt.
 $R_{11}-47,000$ ohms, 1 watt.
 $\mathrm{R}_{12}-56,000$ ohmes, $1 / 2$ watt .
 $\mathrm{R}_{13}-0.5$-megohim volume control.
 $\mathrm{R}_{15}-10,(0) 0$ ohms, 20 watts.
 $\mathrm{R}_{16}-2000$-ohm 25-watt adjustable.
 1.1-20 henrys, 900 ohms (Stancor (..1515).
 $\mathrm{I}_{2}, \mathrm{I}_{3}$ - 15 henrys, 75 ma (Stancor (i-1002).
 1 1.4 - 10.5 henrys, 110 tha. (Stancor (.-1001).
 J. Wierophone cable receptarle (1 mphenol l'(:IM).
 I_{2} - Chassis-mounting $115-\mathrm{volt}$ plug.
 s_{1} - D.p.d.t. rotary switch (Nallory 3122-J),
 $\mathrm{S}_{2}, \mathrm{~S}_{3}$ - S.p.s.t. togyle.
 T_{1} - Audio transformer, single plate to p.p. grids. ratio 2:1 (Thordarson T20A17).
 'I2 - Iriver transformer, variable ratio, p.p. driver w, Class-13 grids, pri. rating 120 ma. per side (Stancor A-4.6.3).
 la - Power transformer: 700 v. c. t., 90 ma.; 5 v., ${ }^{9}$ amp.; 6.3 v. 3.5 amp. (Stancor P - 40.9).
 T_{4} - Power transformer: 700 v. e. t ., 110 ma.; 5 v., 3 amp.: 6.3 v. 4.5 amp. (Staneor P-4080).
 $1 \mathrm{HCC}_{1}-2.5$ mil. r.f. choke.

[^7]: Example: Two tubes having plate dissipation ratings of 55 watts each are to be used with grid modulation.

[^8]: ${ }^{1}$ Basic Radio Propagation Predictions, issued monthly, three months in advance, by the Central Radio Propagation Laboratory of the National Bureau of Standards. Order from the Supt. of Documents, Washington 25, D. C.; $\$ 1.00$ per year.

[^9]: * Open-wire line ouly.

[^10]: Lixamples: A condenser with a 6 -dot code has the following markings: Top row, left to right. hack, yellow, violet; bottom row, right to left, brown, silver, red. since the first color in the top row is black (significant figure zero) this is the IWS rode and the condenser has mica dielectris. Tho significant figures are 4 and 7 , the decimal multiplier 10 (brown, at risht of second row). so the oapacitanece is $470 \mu \mu \mathrm{fd}$. The tolerance is $\pm 10 \%$. The final color, the characteristic, deals with temprature coefficients and methods of testing, and may be innored.

 A condenser with a 3 -dot code has the following colore, left to right: brown, blaek, red. The significunt figures are $1,0(10)$ and the multiplier is 100 . The 'rapacitance is therefore $1000 \mu \mu \mathrm{fd}$.

 A condenser with a G-dot eode has the following markings: Top row, left to right, brown. black, black; bottom row, right to left, black. sold, blue. Since the first color in the top row is neither black nor silver, this is the RMA eode. The significant figures are $1,0,0$ (100) and the decimal multipler is 1 (blaek). The capacitance is therefore $100 \mu \mu \mathrm{fd}$. The gold dot shows that the toleranee is $\pm 5 \%$ and the blue dot indicates 600-volt rating.

[^11]: ${ }^{1}$ At $20^{\circ} \mathrm{C}$.. based on copper as $100 .{ }^{2} \mathrm{Per}{ }^{\circ} \mathrm{C}$. at $20^{\circ} \mathrm{C}$.

[^12]: A mil is 1／1000（one－thousandth）of an inch
 The figures given are approximate onls，siuce the thickness of the insulation varies with different manufacturers．
 ${ }^{3}$ The eurrent－carrying eapacity at $1000 \mathrm{C} . \mathrm{I}$ ．per ampere is equal to the eircular－mil area（Column 3）divided by 1000

[^13]: $\mathrm{M}=$ Medium
 $\mathrm{N}=$ None or special type
 () = Octal
 $s=$ Small
 $W=$ Wafer

[^14]: World Radiohisom

[^15]: World Radio History

[^16]: YOU SAVE BY ORDERING DIRECT FROM MANUFACTURER-USE ORDER BLANK ON IAST PAGE

[^17]: *Watts at 500 Mc
 **Special triode connection

[^18]: The League Emblem, with gold border and lettering, and with black enamel background, is available in either pin (with safety clasp) or screw-bock type. In addition, there ore special colors for Communications Department ap-
 pointees. - Red enameled baskground for the SCM. Blue enameled background for the ORS or OPS.
 \$1.00 each postpaid
 The Emblem Cut. A mounted printing electrotype, $5 / \mathrm{B}^{\prime \prime}$ high, for use by members on amoteur printed mat-
 ter, letterheads, cards, etc.

 ## $\$ 1.00$

 each
 postpaid

[^19]: \square I intend to participate ACTIVELY in the AREC program and request FULL MEMBERSHIP
 \square As my participation must be limited, as explained on reverse side, I request SUPPORTING MEMBERSHIP
 It is understood and agreed that my membership grade (FULL or SUPPORTING) will be determined by the Emergency

